name 名前 | anonymous |
---|---|
date 日付 | December 23, 2022 21:54:06 UTC 2022 年 12 月 24 日 (土) 6 時 54 分 6 秒 (日本時間) |
composite number 合成数 | 183717125959481565370580093116899458915313954951554045551780546118031961746571033094249402290172392097646910783943626525732981<126> |
prime factors 素因数 | 171757771545286716323220204082131500377<39> |
composite cofactor 合成数の残り | 1069629189448592558718577228423803481458597316090100197495253804273043477239902652669053<88> |
factorization results 素因数分解の結果 | p39:171757771545286716323220204082131500377 c88:1069629189448592558718577228423803481458597316090100197495253804273043477239902652669053 |
software ソフトウェア | ECM |
name 名前 | Ignacio Santos |
---|---|
date 日付 | December 24, 2022 16:49:36 UTC 2022 年 12 月 25 日 (日) 1 時 49 分 36 秒 (日本時間) |
composite number 合成数 | 1069629189448592558718577228423803481458597316090100197495253804273043477239902652669053<88> |
prime factors 素因数 | 21387226435330020627967489552455882959<38> 50012524657318306169835503767843223881441133441267<50> |
factorization results 素因数分解の結果 | 12/24/22 17:46:13, nfs: commencing nfs on c88: 1069629189448592558718577228423803481458597316090100197495253804273043477239902652669053 12/24/22 17:46:14, nfs: commencing poly selection with 46 threads 12/24/22 17:46:14, nfs: setting deadline of 6 seconds 12/24/22 17:46:14, nfs: expecting degree 4 poly E from 6.46e-08 to > 7.43e-08 12/24/22 17:46:14, nfs: searching for avg quality poly E > 6.69e-08 12/24/22 17:46:21, nfs: completed 80 ranges of size 250 in 6.6122 seconds 12/24/22 17:46:21, nfs: best poly = # norm 5.337218e-12 alpha -5.919709 e 6.073e-08 rroots 2 12/24/22 17:46:21, nfs: commencing lattice sieving with 46 threads 12/24/22 17:46:27, nfs: commencing lattice sieving with 46 threads 12/24/22 17:46:33, nfs: commencing lattice sieving with 46 threads 12/24/22 17:46:39, nfs: commencing lattice sieving with 46 threads 12/24/22 17:46:45, nfs: commencing lattice sieving with 46 threads 12/24/22 17:46:51, nfs: commencing lattice sieving with 46 threads 12/24/22 17:46:57, nfs: commencing lattice sieving with 46 threads 12/24/22 17:47:03, nfs: commencing lattice sieving with 46 threads 12/24/22 17:47:09, nfs: commencing lattice sieving with 46 threads 12/24/22 17:47:15, nfs: commencing lattice sieving with 46 threads 12/24/22 17:47:22, nfs: commencing lattice sieving with 46 threads 12/24/22 17:47:27, nfs: commencing lattice sieving with 46 threads 12/24/22 17:47:33, nfs: commencing lattice sieving with 46 threads 12/24/22 17:47:40, nfs: commencing lattice sieving with 46 threads 12/24/22 17:47:46, nfs: commencing lattice sieving with 46 threads 12/24/22 17:47:52, nfs: commencing lattice sieving with 46 threads 12/24/22 17:47:59, nfs: commencing lattice sieving with 46 threads 12/24/22 17:48:06, nfs: commencing lattice sieving with 46 threads 12/24/22 17:48:12, nfs: commencing lattice sieving with 46 threads 12/24/22 17:48:19, nfs: commencing msieve filtering 12/24/22 17:48:39, nfs: commencing msieve linear algebra 12/24/22 17:48:59, nfs: commencing msieve sqrt 12/24/22 17:49:18, prp50 = 50012524657318306169835503767843223881441133441267 12/24/22 17:49:18, prp38 = 21387226435330020627967489552455882959 12/24/22 17:49:18, NFS elapsed time = 184.3478 seconds. 12/24/22 17:49:18, 12/24/22 17:49:18, |
software ソフトウェア | Yafu |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 26, 2022 00:38:51 UTC 2022 年 12 月 26 日 (月) 9 時 38 分 51 秒 (日本時間) |
composite number 合成数 | 18460985993675215620523052840146828061204490824510625814780674635237470237982340676000844653331765413974966397212138224735951<125> |
prime factors 素因数 | 281592321460000338221260898365637817629<39> 65559266310809416369038721395689259055425080322218736815655396004300291279230916269019<86> |
factorization results 素因数分解の結果 | N=18460985993675215620523052840146828061204490824510625814780674635237470237982340676000844653331765413974966397212138224735951 ( 125 digits) SNFS difficulty: 130 digits. Divisors found: r1=281592321460000338221260898365637817629 (pp39) r2=65559266310809416369038721395689259055425080322218736815655396004300291279230916269019 (pp86) Version: Msieve v. 1.54 (SVN 1043M) Total time: 0.04 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 18460985993675215620523052840146828061204490824510625814780674635237470237982340676000844653331765413974966397212138224735951 m: 100000000000000000000000000000000 deg: 4 c4: 146 c0: 7 skew: 0.47 # Murphy_E = 1.28e-08 type: snfs lss: 1 rlim: 1030000 alim: 1030000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1030000/1030000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [515000, 1015001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 143269 x 143494 Total sieving time: 0.00 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.02 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,130.000,4,0,0,0,0,0,0,0,0,1030000,1030000,26,26,47,47,2.3,2.3,100000 total time: 0.04 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 26, 2022 22:19:46 UTC 2022 年 12 月 27 日 (火) 7 時 19 分 46 秒 (日本時間) |
composite number 合成数 | 67996350235413293798174100897822007739627498309013037403222387808637306307101410129507046072528810475794028262167<113> |
prime factors 素因数 | 3727584682146034225885624281303848683468423<43> 18241396516380851888808062149774070569998247606975760072961765888537329<71> |
factorization results 素因数分解の結果 | N=67996350235413293798174100897822007739627498309013037403222387808637306307101410129507046072528810475794028262167 ( 113 digits) SNFS difficulty: 131 digits. Divisors found: r1=3727584682146034225885624281303848683468423 (pp43) r2=18241396516380851888808062149774070569998247606975760072961765888537329 (pp71) Version: Msieve v. 1.54 (SVN 1043M) Total time: 0.04 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 67996350235413293798174100897822007739627498309013037403222387808637306307101410129507046072528810475794028262167 m: 100000000000000000000000000000000 deg: 4 c4: 1460 c0: 7 skew: 0.26 # Murphy_E = 8.755e-09 type: snfs lss: 1 rlim: 1070000 alim: 1070000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1070000/1070000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [535000, 1335001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 147772 x 147998 Total sieving time: 0.00 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.02 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,131.000,4,0,0,0,0,0,0,0,0,1070000,1070000,26,26,47,47,2.3,2.3,100000 total time: 0.04 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 24, 2022 09:24:42 UTC 2022 年 12 月 24 日 (土) 18 時 24 分 42 秒 (日本時間) |
composite number 合成数 | 20000027397297804517540434986897242324989486286967516393858073778183257785284637376215583856964187622174824897020406877269694889993<131> |
prime factors 素因数 | 32963839895408620799699678813696437712661074227561675819<56> 606726263103938775719869931503575234322517026480054096622826532203042043547<75> |
factorization results 素因数分解の結果 | Number: n N=20000027397297804517540434986897242324989486286967516393858073778183257785284637376215583856964187622174824897020406877269694889993 ( 131 digits) SNFS difficulty: 136 digits. Divisors found: Sat Dec 24 20:15:23 2022 p56 factor: 32963839895408620799699678813696437712661074227561675819 Sat Dec 24 20:15:23 2022 p75 factor: 606726263103938775719869931503575234322517026480054096622826532203042043547 Sat Dec 24 20:15:23 2022 elapsed time 00:03:13 (Msieve 1.54 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.293). Factorization parameters were as follows: # # N = 73x10^135+35 = 81(134)5 # n: 20000027397297804517540434986897242324989486286967516393858073778183257785284637376215583856964187622174824897020406877269694889993 m: 1000000000000000000000000000000000 deg: 4 c4: 14600 c0: 7 skew: 0.15 # Murphy_E = 5.894e-09 type: snfs lss: 1 rlim: 1300000 alim: 1300000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved special-q in [100000, 6250000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 539967 hash collisions in 6364631 relations (6498929 unique) Msieve: matrix is 219350 x 219598 (72.2 MB) Sieving start time : 2022/12/24 20:01:13 Sieving end time : 2022/12/24 20:11:58 Total sieving time: 0hrs 10min 45secs. Total relation processing time: 0hrs 1min 16sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 17sec. Prototype def-par.txt line would be: snfs,136,4,0,0,0,0,0,0,0,0,1300000,1300000,26,26,48,48,2.3,2.3,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 6, 2023 23:30:26 UTC 2023 年 1 月 7 日 (土) 8 時 30 分 26 秒 (日本時間) |
composite number 合成数 | 200617407886463817413083671996947825356777952235497592427884974828165471056460899202757829988343890960308365000139129<117> |
prime factors 素因数 | 6619231694046829369745531657835677058536664459714199769<55> 30308261919112768348025305315848725839528075133112642479489441<62> |
factorization results 素因数分解の結果 | N=200617407886463817413083671996947825356777952235497592427884974828165471056460899202757829988343890960308365000139129 ( 117 digits) SNFS difficulty: 137 digits. Divisors found: r1=6619231694046829369745531657835677058536664459714199769 (pp55) r2=30308261919112768348025305315848725839528075133112642479489441 (pp62) Version: Msieve v. 1.54 (SVN 1043M) Total time: 0.04 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 200617407886463817413083671996947825356777952235497592427884974828165471056460899202757829988343890960308365000139129 m: 10000000000000000000000000000000000 deg: 4 c4: 73 c0: 35 skew: 0.83 # Murphy_E = 4.466e-09 type: snfs lss: 1 rlim: 1390000 alim: 1390000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1390000/1390000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [695000, 1995001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 210492 x 210717 Total sieving time: 0.00 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.02 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,137.000,4,0,0,0,0,0,0,0,0,1390000,1390000,26,26,48,48,2.3,2.3,100000 total time: 0.04 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 8, 2023 23:43:51 UTC 2023 年 1 月 9 日 (月) 8 時 43 分 51 秒 (日本時間) |
composite number 合成数 | 345308019170087288772859875548534976662952251546673870372401988787687438157284446632485857664249388133163164953<111> |
prime factors 素因数 | 62513177268037848853673136512835552100588680119<47> 5523763696884411263947588124308772095523242524127612755677613487<64> |
factorization results 素因数分解の結果 | N=345308019170087288772859875548534976662952251546673870372401988787687438157284446632485857664249388133163164953 ( 111 digits) SNFS difficulty: 139 digits. Divisors found: r1=62513177268037848853673136512835552100588680119 (pp47) r2=5523763696884411263947588124308772095523242524127612755677613487 (pp64) Version: Msieve v. 1.54 (SVN 1043M) Total time: 0.04 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 345308019170087288772859875548534976662952251546673870372401988787687438157284446632485857664249388133163164953 m: 10000000000000000000000000000000000 deg: 4 c4: 1460 c0: 7 skew: 0.26 # Murphy_E = 3.533e-09 type: snfs lss: 1 rlim: 1460000 alim: 1460000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1460000/1460000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [730000, 2330001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 247396 x 247621 Total sieving time: 0.00 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.03 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,139.000,4,0,0,0,0,0,0,0,0,1460000,1460000,26,26,48,48,2.3,2.3,100000 total time: 0.04 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 24, 2022 09:49:48 UTC 2022 年 12 月 24 日 (土) 18 時 49 分 48 秒 (日本時間) |
composite number 合成数 | 1656281962054306838250612310965988796575399786370834128636359100982673391569379986873198022682457744125162195377177900815925926163<130> |
prime factors 素因数 | 412105394271607169329255391099764621637<39> 4019073725015833208127034808822572863840215937659846865331917828796581532391485874982689399<91> |
factorization results 素因数分解の結果 | Number: n N=1656281962054306838250612310965988796575399786370834128636359100982673391569379986873198022682457744125162195377177900815925926163 ( 130 digits) SNFS difficulty: 142 digits. Divisors found: Sat Dec 24 20:46:22 2022 p39 factor: 412105394271607169329255391099764621637 Sat Dec 24 20:46:22 2022 p91 factor: 4019073725015833208127034808822572863840215937659846865331917828796581532391485874982689399 Sat Dec 24 20:46:22 2022 elapsed time 00:03:10 (Msieve 1.54 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.295). Factorization parameters were as follows: # # N = 73x10^141+35 = 81(140)5 # n: 1656281962054306838250612310965988796575399786370834128636359100982673391569379986873198022682457744125162195377177900815925926163 m: 100000000000000000000000000000000000 deg: 4 c4: 146 c0: 7 skew: 0.47 # Murphy_E = 3.265e-09 type: snfs lss: 1 rlim: 1640000 alim: 1640000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1640000/1640000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved special-q in [100000, 6420000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 495546 hash collisions in 6708179 relations (6949003 unique) Msieve: matrix is 242909 x 243135 (80.6 MB) Sieving start time : 2022/12/24 20:22:08 Sieving end time : 2022/12/24 20:43:00 Total sieving time: 0hrs 20min 52secs. Total relation processing time: 0hrs 1min 29sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 8sec. Prototype def-par.txt line would be: snfs,142,4,0,0,0,0,0,0,0,0,1640000,1640000,26,26,48,48,2.3,2.3,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 24, 2022 10:59:56 UTC 2022 年 12 月 24 日 (土) 19 時 59 分 56 秒 (日本時間) |
composite number 合成数 | 273879250197758113706617160937609310286661024503995403914328357471424637432005069888005895442211010843227148145202244952915106981<129> |
prime factors 素因数 | 53791444327650778330413342529577008299822488767<47> 5091502071026825330507326866751139160075923078453540641506574585320347674843270043<82> |
factorization results 素因数分解の結果 | Number: n N=273879250197758113706617160937609310286661024503995403914328357471424637432005069888005895442211010843227148145202244952915106981 ( 129 digits) SNFS difficulty: 145 digits. Divisors found: Sat Dec 24 21:53:05 2022 p47 factor: 53791444327650778330413342529577008299822488767 Sat Dec 24 21:53:05 2022 p82 factor: 5091502071026825330507326866751139160075923078453540641506574585320347674843270043 Sat Dec 24 21:53:05 2022 elapsed time 00:03:37 (Msieve 1.54 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.319). Factorization parameters were as follows: # # N = 73x10^144+35 = 81(143)5 # n: 273879250197758113706617160937609310286661024503995403914328357471424637432005069888005895442211010843227148145202244952915106981 m: 1000000000000000000000000000000000000 deg: 4 c4: 73 c0: 35 skew: 0.83 # Murphy_E = 1.773e-09 type: snfs lss: 1 rlim: 1890000 alim: 1890000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1890000/1890000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved special-q in [100000, 6545000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 447968 hash collisions in 5882769 relations (6097229 unique) Msieve: matrix is 312778 x 313003 (106.5 MB) Sieving start time : 2022/12/24 21:24:34 Sieving end time : 2022/12/24 21:49:14 Total sieving time: 0hrs 24min 40secs. Total relation processing time: 0hrs 1min 47sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 23sec. Prototype def-par.txt line would be: snfs,145,4,0,0,0,0,0,0,0,0,1890000,1890000,26,26,49,49,2.3,2.3,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 25, 2022 00:50:21 UTC 2022 年 12 月 25 日 (日) 9 時 50 分 21 秒 (日本時間) |
composite number 合成数 | 160287551475908012511211894653751442313498297768160524689223297027105064098552691238967879911688146296424379956151473931864616303439704983076489<144> |
prime factors 素因数 | 50298615652400757295426606797328530289984303<44> 3186718946374371513189537105654369103809414860516483016567498585376152532090068782888324011583441863<100> |
factorization results 素因数分解の結果 | Number: n N=160287551475908012511211894653751442313498297768160524689223297027105064098552691238967879911688146296424379956151473931864616303439704983076489 ( 144 digits) SNFS difficulty: 149 digits. Divisors found: Sun Dec 25 11:47:19 2022 p44 factor: 50298615652400757295426606797328530289984303 Sun Dec 25 11:47:19 2022 p100 factor: 3186718946374371513189537105654369103809414860516483016567498585376152532090068782888324011583441863 Sun Dec 25 11:47:19 2022 elapsed time 00:04:31 (Msieve 1.54 - dependency 3) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.279). Factorization parameters were as follows: # # N = 3x10^148+35 = 81(147)5 # n: 160287551475908012511211894653751442313498297768160524689223297027105064098552691238967879911688146296424379956151473931864616303439704983076489 m: 10000000000000000000000000000000000000 deg: 4 c4: 73 c0: 35 skew: 0.83 # Murphy_E = 1.11e-09 type: snfs lss: 1 rlim: 2200000 alim: 2200000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 2200000/2200000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved special-q in [100000, 6700000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 711021 hash collisions in 6607128 relations (6575584 unique) Msieve: matrix is 356795 x 357022 (121.6 MB) Sieving start time : 2022/12/25 11:18:50 Sieving end time : 2022/12/25 11:42:33 Total sieving time: 0hrs 23min 43secs. Total relation processing time: 0hrs 2min 14sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 39sec. Prototype def-par.txt line would be: snfs,149,4,0,0,0,0,0,0,0,0,2200000,2200000,26,26,49,49,2.3,2.3,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 31, 2022 00:42:36 UTC 2022 年 12 月 31 日 (土) 9 時 42 分 36 秒 (日本時間) |
composite number 合成数 | 152382960383267970872527968077899564893662549101515576512291904036038751465937899752404968186861953824211263071213651921864652571839<132> |
prime factors 素因数 | 1624928651407701434395040224851128411655731<43> 1842262555809930702825266581966563816059653<43> 50903844664298154589133938360049157621262756673<47> |
factorization results 素因数分解の結果 | Number: n N=93778246971801622240626065099140688466140446790095378867751185111146870241115531391814469 ( 89 digits) Divisors found: Sat Dec 31 11:38:49 2022 p43 factor: 1842262555809930702825266581966563816059653 Sat Dec 31 11:38:49 2022 p47 factor: 50903844664298154589133938360049157621262756673 Sat Dec 31 11:38:49 2022 elapsed time 00:02:38 (Msieve 1.54 - dependency 5) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.312). Factorization parameters were as follows: # # N = 73x10^154+35 = 81(153)5 # # GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] # Input number is 152382960383267970872527968077899564893662549101515576512291904036038751465937899752404968186861953824211263071213651921864652571839 (132 digits) # Using B1=34210000, B2=144293429296, polynomial Dickson(12), sigma=1:3713057991 # Step 1 took 54380ms # Step 2 took 19870ms # ********** Factor found in step 2: 1624928651407701434395040224851128411655731 # Found prime factor of 43 digits: 1624928651407701434395040224851128411655731 # Composite cofactor 93778246971801622240626065099140688466140446790095378867751185111146870241115531391814469 has 89 digits n: 93778246971801622240626065099140688466140446790095378867751185111146870241115531391814469 Y0: -2298470150122575188604 Y1: 269161861853 c0: -24065206177639190495018875 c1: 73910530349405896240 c2: -152875702696337 c3: 486313076 c4: 3360 # skew 401614.82, size 2.365e-12, alpha -5.287, combined = 4.763e-08 rroots = 2 skew: 401614.82 type: gnfs rlim: 2300000 alim: 2300000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved special-q in [100000, 6750000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 398742 hash collisions in 7256835 relations (7377355 unique) Msieve: matrix is 116894 x 117123 (40.0 MB) Sieving start time : 2022/12/31 11:31:58 Sieving end time : 2022/12/31 11:35:57 Total sieving time: 0hrs 3min 59secs. Total relation processing time: 0hrs 0min 37sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 30sec. Prototype def-par.txt line would be: gnfs,88,4,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2300000,2300000,26,26,49,49,2.6,2.6,10000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | December 24, 2022 17:35:11 UTC 2022 年 12 月 25 日 (日) 2 時 35 分 11 秒 (日本時間) |
composite number 合成数 | 499612509458726818829839818417827375686391134493968990167902066786665302824331791143362770721580987751<102> |
prime factors 素因数 | 561657385688874963018609252454359068531<39> 889532519626622798288675095419008724335949211962836171138530621<63> |
factorization results 素因数分解の結果 | 12/24/22 18:27:55, starting SIQS on c102: 499612509458726818829839818417827375686391134493968990167902066786665302824331791143362770721580987751 12/24/22 18:27:55, random seed: 9419346306522627017 12/24/22 18:27:55, ==== sieve params ==== 12/24/22 18:27:55, n = 104 digits, 346 bits 12/24/22 18:27:55, factor base: 134416 primes (max prime = 3780541) 12/24/22 18:27:55, single large prime cutoff: 567081150 (150 * pmax) 12/24/22 18:27:55, double large prime range from 14292490252681 to 15640248213288784 12/24/22 18:27:55, DLP MFB = 1.85 12/24/22 18:27:55, allocating 10 large prime slices of factor base 12/24/22 18:27:55, buckets hold 2048 elements 12/24/22 18:27:55, large prime hashtables have 1966080 bytes 12/24/22 18:27:55, using AVX2 enabled 32k sieve core 12/24/22 18:27:55, sieve interval: 12 blocks of size 32768 12/24/22 18:27:55, polynomial A has ~ 14 factors 12/24/22 18:27:55, using multiplier of 191 12/24/22 18:27:55, using multiplier of 191 12/24/22 18:27:55, using Q2(x) polynomials for kN mod 8 = 1 12/24/22 18:27:55, using SPV correction of 21 bits, starting at offset 33 12/24/22 18:27:55, trial factoring cutoff at 102 bits 12/24/22 18:27:55, ==== sieving started (46 threads) ==== 12/24/22 18:34:08, trial division touched 397239417 sieve locations out of 5555594723328 12/24/22 18:34:08, total reports = 397239417, total surviving reports = 99021524 12/24/22 18:34:08, total blocks sieved = 169544376, avg surviving reports per block = 0.58 12/24/22 18:34:08, dlp-ecm: 3 failures, 2401599 attempts, 86008945 outside range, 10102606 prp, 1914967 useful 12/24/22 18:34:08, 135523 relations found: 32190 full + 103333 from 2391151 partial, using 7064304 polys (3462 A polys) 12/24/22 18:34:08, on average, sieving found 0.34 rels/poly and 6492.89 rels/sec 12/24/22 18:34:08, trial division touched 397239417 sieve locations out of 5555594723328 12/24/22 18:34:08, ==== post processing stage (msieve-1.38) ==== 12/24/22 18:34:08, QS elapsed time = 373.2324 seconds. 12/24/22 18:34:09, begin singleton removal with 2423341 relations 12/24/22 18:34:10, reduce to 367150 relations in 11 passes 12/24/22 18:34:10, failed to read relation 98480 12/24/22 18:34:13, recovered 367149 relations 12/24/22 18:34:13, recovered 357716 polynomials 12/24/22 18:34:13, attempting to build 135522 cycles 12/24/22 18:34:13, found 135522 cycles from 367149 relations in 5 passes 12/24/22 18:34:13, distribution of cycle lengths: 12/24/22 18:34:13, length 1 : 32189 12/24/22 18:34:13, length 2 : 22155 12/24/22 18:34:13, length 3 : 21899 12/24/22 18:34:13, length 4 : 18168 12/24/22 18:34:13, length 5 : 14153 12/24/22 18:34:13, length 6 : 10133 12/24/22 18:34:13, length 7 : 6725 12/24/22 18:34:13, length 9+: 10100 12/24/22 18:34:13, largest cycle: 22 relations 12/24/22 18:34:13, matrix is 134416 x 135522 (43.7 MB) with weight 10382871 (76.61/col) 12/24/22 18:34:13, sparse part has weight 10382871 (76.61/col) 12/24/22 18:34:14, filtering completed in 3 passes 12/24/22 18:34:14, matrix is 128701 x 128765 (41.4 MB) with weight 9831779 (76.35/col) 12/24/22 18:34:14, sparse part has weight 9831779 (76.35/col) 12/24/22 18:34:14, saving the first 48 matrix rows for later 12/24/22 18:34:14, matrix is 128653 x 128765 (36.5 MB) with weight 8834634 (68.61/col) 12/24/22 18:34:14, sparse part has weight 8283092 (64.33/col) 12/24/22 18:34:14, matrix includes 64 packed rows 12/24/22 18:34:14, using block size 51506 for processor cache size 131072 kB 12/24/22 18:34:15, commencing Lanczos iteration 12/24/22 18:34:15, memory use: 27.8 MB 12/24/22 18:34:49, lanczos halted after 2036 iterations (dim = 128652) 12/24/22 18:34:50, recovered 16 nontrivial dependencies 12/24/22 18:34:50, prp39 = 561657385688874963018609252454359068531 12/24/22 18:34:50, prp63 = 889532519626622798288675095419008724335949211962836171138530621 12/24/22 18:34:50, Lanczos elapsed time = 41.5670 seconds. 12/24/22 18:34:50, Sqrt elapsed time = 0.3370 seconds. 12/24/22 18:34:50, SIQS elapsed time = 415.1392 seconds. 12/24/22 18:34:50, 12/24/22 18:34:50, |
software ソフトウェア | Yafu |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 27, 2022 23:33:35 UTC 2022 年 12 月 28 日 (水) 8 時 33 分 35 秒 (日本時間) |
composite number 合成数 | 3138556454494016223886216064116494960757403322626341461485150726271637202823041243576895847713457362635326331729810445593113112865220217780992863417052607<154> |
prime factors 素因数 | 136438834584811919152142254243967994433<39> 23003395360600607566302489328472310030989183977662696030368432964040751947328865621724361980022303538774927824762879<116> |
factorization results 素因数分解の結果 | Number: n N=3138556454494016223886216064116494960757403322626341461485150726271637202823041243576895847713457362635326331729810445593113112865220217780992863417052607 ( 154 digits) SNFS difficulty: 161 digits. Divisors found: Wed Dec 28 10:29:20 2022 p39 factor: 136438834584811919152142254243967994433 Wed Dec 28 10:29:20 2022 p116 factor: 23003395360600607566302489328472310030989183977662696030368432964040751947328865621724361980022303538774927824762879 Wed Dec 28 10:29:20 2022 elapsed time 00:07:53 (Msieve 1.54 - dependency 3) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.322). Factorization parameters were as follows: # # N = 73x10^160+35 = 81(159)5 # n: 3138556454494016223886216064116494960757403322626341461485150726271637202823041243576895847713457362635326331729810445593113112865220217780992863417052607 m: 100000000000000000000000000000000 deg: 5 c5: 73 c0: 35 skew: 0.86 # Murphy_E = 4.524e-10 type: snfs lss: 1 rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved special-q in [100000, 7350000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1242633 hash collisions in 12674501 relations (12214223 unique) Msieve: matrix is 488221 x 488454 (168.3 MB) Sieving start time : 2022/12/28 09:49:40 Sieving end time : 2022/12/28 10:21:09 Total sieving time: 0hrs 31min 29secs. Total relation processing time: 0hrs 3min 33sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 1min 25sec. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3500000,3500000,27,27,51,51,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 27, 2022 20:17:28 UTC 2022 年 12 月 28 日 (水) 5 時 17 分 28 秒 (日本時間) |
composite number 合成数 | 25178057150740683256591994757445634366323486298653146394881611395657647403728421887664476520599444703123113801369272423129322089433838619000810526497318364461<158> |
prime factors 素因数 | 98029603940174380958767602044648464062673<41> 256841363616100875306193150643500225122638003434882071308028812455010502086859999177469863644536750559843781262777757<117> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 25178057150740683256591994757445634366323486298653146394881611395657647403728421887664476520599444703123113801369272423129322089433838619000810526497318364461 (158 digits) Using B1=25290000, B2=96190324246, polynomial Dickson(12), sigma=1:2621667762 Step 1 took 60922ms Step 2 took 19683ms ********** Factor found in step 2: 98029603940174380958767602044648464062673 Found prime factor of 41 digits: 98029603940174380958767602044648464062673 Prime cofactor 256841363616100875306193150643500225122638003434882071308028812455010502086859999177469863644536750559843781262777757 has 117 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 31, 2022 10:37:06 UTC 2022 年 12 月 31 日 (土) 19 時 37 分 6 秒 (日本時間) |
composite number 合成数 | 88943040780008312338699450550928006697990561845536203224088716465078878230015898669070712292908764714129442038857091036899189667920403119724757<143> |
prime factors 素因数 | 23273018497257707214587763521687593<35> 3821723460172929309164273782022294352602781630231667236479017758279165870074894544440571909124388244566943949<109> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 88943040780008312338699450550928006697990561845536203224088716465078878230015898669070712292908764714129442038857091036899189667920403119724757 (143 digits) Using B1=26090000, B2=96191014936, polynomial Dickson(12), sigma=1:1437688534 Step 1 took 53631ms Step 2 took 17431ms ********** Factor found in step 2: 23273018497257707214587763521687593 Found prime factor of 35 digits: 23273018497257707214587763521687593 Prime cofactor 3821723460172929309164273782022294352602781630231667236479017758279165870074894544440571909124388244566943949 has 109 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Norman Powell |
---|---|
date 日付 | January 12, 2023 23:48:34 UTC 2023 年 1 月 13 日 (金) 8 時 48 分 34 秒 (日本時間) |
composite number 合成数 | 1214729063021714181784632751947750910195105908419740122252303511645580749000565542534620048210706192850030971883620826590099621293209<133> |
prime factors 素因数 | 1226188085750989313687648554186657520162622695334355638455207423<64> 990654759361605641397386355915099376965451131917452332330169715047783<69> |
factorization results 素因数分解の結果 | **************************** Starting factorization of 1214729063021714181784632751947750910195105908419740122252303511645580749000565542534620048210706192850030971883620826590099621293209 using pretesting plan: normal no tune info: using qs/gnfs crossover of 95 digits **************************** rho: x^2 + 3, starting 2000 iterations on C133 rho: x^2 + 2, starting 2000 iterations on C133 rho: x^2 + 1, starting 2000 iterations on C133 pm1: starting B1 = 150K, B2 = gmp-ecm default on C133 current ECM pretesting depth: 0.00 scheduled 30 curves at B1=2000 toward target pretesting depth of 40.92 Finished 30 curves using Lenstra ECM method on C133 input, B1=2K, B2=gmp-ecm default current ECM pretesting depth: 15.18 scheduled 74 curves at B1=11000 toward target pretesting depth of 40.92 Finished 74 curves using Lenstra ECM method on C133 input, B1=11K, B2=gmp-ecm default current ECM pretesting depth: 20.24 scheduled 214 curves at B1=50000 toward target pretesting depth of 40.92 Finished 214 curves using Lenstra ECM method on C133 input, B1=50K, B2=gmp-ecm default pm1: starting B1 = 3750K, B2 = gmp-ecm default on C133 current ECM pretesting depth: 25.33 scheduled 430 curves at B1=250000 toward target pretesting depth of 40.92 Finished 430 curves using Lenstra ECM method on C133 input, B1=250K, B2=gmp-ecm default pm1: starting B1 = 15M, B2 = gmp-ecm default on C133 current ECM pretesting depth: 30.45 scheduled 904 curves at B1=1000000 toward target pretesting depth of 40.92 Finished 904 curves using Lenstra ECM method on C133 input, B1=1M, B2=gmp-ecm default current ECM pretesting depth: 35.56 scheduled 2350 curves at B1=3000000 toward target pretesting depth of 40.92 Finished 2350 curves using Lenstra ECM method on C133 input, B1=3M, B2=gmp-ecm default current ECM pretesting depth: 40.63 scheduled 265 curves at B1=11000000 toward target pretesting depth of 40.92 Finished 265 curves using Lenstra ECM method on C133 input, B1=11M, B2=gmp-ecm default final ECM pretested depth: 40.92 switching to sieve method nfs: commencing poly selection with 4 threads nfs: setting deadline of 19800 seconds nfs: completed 26 ranges of size 250 in 18783.8682 seconds nfs: best poly = # norm 1.310623e-012 alpha -8.447746 e 6.355e-011 rroots 5 nfs: commencing lattice sieving with 4 threads nfs: commencing msieve filtering nfs: commencing msieve linear algebra nfs: commencing msieve sqrt prp69 = 990654759361605641397386355915099376965451131917452332330169715047783 prp64 = 1226188085750989313687648554186657520162622695334355638455207423 NFS elapsed time = 20197.7611 seconds. |
software ソフトウェア | YAFU v1.34 |
execution environment 実行環境 | Windows 7 Professional SP1, Intel i5-3570. |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 1, 2023 23:28:54 UTC 2023 年 1 月 2 日 (月) 8 時 28 分 54 秒 (日本時間) |
composite number 合成数 | 233378698084578146449482501293241444669413339545060583930605142094799678222034894371510143212147326609576221091887501657312189704091746166032760316297964281675789<162> |
prime factors 素因数 | 423638599067374925445033194839231499926879<42> 863666153524087089980667830015209224233253264596947<51> 637851805752780017505676565324381432612394847443397422355997840732353<69> |
factorization results 素因数分解の結果 | Number: n N=233378698084578146449482501293241444669413339545060583930605142094799678222034894371510143212147326609576221091887501657312189704091746166032760316297964281675789 ( 162 digits) SNFS difficulty: 173 digits. Divisors found: Mon Jan 2 10:16:41 2023 found factor: 423638599067374925445033194839231499926879 Mon Jan 2 10:19:46 2023 p42 factor: 423638599067374925445033194839231499926879 Mon Jan 2 10:19:46 2023 p51 factor: 863666153524087089980667830015209224233253264596947 Mon Jan 2 10:19:46 2023 p69 factor: 637851805752780017505676565324381432612394847443397422355997840732353 Mon Jan 2 10:19:46 2023 elapsed time 00:17:50 (Msieve 1.54 - dependency 4) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.309). Factorization parameters were as follows: # # N = 73x10^172+35 = 81(171)5 # n: 233378698084578146449482501293241444669413339545060583930605142094799678222034894371510143212147326609576221091887501657312189704091746166032760316297964281675789 m: 10000000000000000000000000000000000 deg: 5 c5: 1460 c0: 7 skew: 0.34 # Murphy_E = 1.661e-10 type: snfs lss: 1 rlim: 5400000 alim: 5400000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5400000/5400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved special-q in [100000, 8300000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1435207 hash collisions in 12283954 relations (11548332 unique) Msieve: matrix is 831118 x 831344 (289.8 MB) Sieving start time : 2023/01/02 09:05:19 Sieving end time : 2023/01/02 10:01:37 Total sieving time: 0hrs 56min 18secs. Total relation processing time: 0hrs 10min 34sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 4min 7sec. Prototype def-par.txt line would be: snfs,173,5,0,0,0,0,0,0,0,0,5400000,5400000,27,27,52,52,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 1, 2023 22:02:24 UTC 2023 年 1 月 2 日 (月) 7 時 2 分 24 秒 (日本時間) |
composite number 合成数 | 15628133810625732677868254095720055373211087707607153075795030064731012312834607581942154612553154325625338115283794333260279204371714979900792674862951761147313203<164> |
prime factors 素因数 | 5678576294392894843486800838105347040079311<43> 2752121834843914875172873219401990040805458511571411993604943031341397639944867569307359344020238824193595070777677588573<121> |
factorization results 素因数分解の結果 | Number: n N=15628133810625732677868254095720055373211087707607153075795030064731012312834607581942154612553154325625338115283794333260279204371714979900792674862951761147313203 ( 164 digits) SNFS difficulty: 174 digits. Divisors found: Mon Jan 2 08:05:04 2023 p43 factor: 5678576294392894843486800838105347040079311 Mon Jan 2 08:05:04 2023 p121 factor: 2752121834843914875172873219401990040805458511571411993604943031341397639944867569307359344020238824193595070777677588573 Mon Jan 2 08:05:04 2023 elapsed time 00:20:13 (Msieve 1.54 - dependency 4) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.350). Factorization parameters were as follows: # # N = 73x10^173+35 = 81(172)5 # n: 15628133810625732677868254095720055373211087707607153075795030064731012312834607581942154612553154325625338115283794333260279204371714979900792674862951761147313203 m: 10000000000000000000000000000000000 deg: 5 c5: 14600 c0: 7 skew: 0.22 # Murphy_E = 1.168e-10 type: snfs lss: 1 rlim: 5600000 alim: 5600000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5600000/5600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved special-q in [100000, 15600000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2001632 hash collisions in 13884422 relations (12575239 unique) Msieve: matrix is 916799 x 917024 (317.0 MB) Sieving start time : 2023/01/02 06:12:33 Sieving end time : 2023/01/02 07:44:31 Total sieving time: 1hrs 31min 58secs. Total relation processing time: 0hrs 12min 4sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 4min 38sec. Prototype def-par.txt line would be: snfs,174,5,0,0,0,0,0,0,0,0,5600000,5600000,27,27,52,52,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | ebina |
---|---|
date 日付 | December 26, 2022 22:06:27 UTC 2022 年 12 月 27 日 (火) 7 時 6 分 27 秒 (日本時間) |
composite number 合成数 | 162222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222223<177> |
prime factors 素因数 | 94842528833856681807696839698532708891<38> 1710437545443352650190076205748753312767857938911136371665508292160001293391177059586624188792884997466918750824005787271065766884669361053<139> |
factorization results 素因数分解の結果 | Number: 81115_176 N = 162222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222223 (177 digits) SNFS difficulty: 178 digits. Divisors found: r1=94842528833856681807696839698532708891 (pp38) r2=1710437545443352650190076205748753312767857938911136371665508292160001293391177059586624188792884997466918750824005787271065766884669361053 (pp139) Version: Msieve v. 1.53 (SVN unknown) Total time: 8.79 hours. Factorization parameters were as follows: n: 162222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222223 m: 100000000000000000000000000000000000 deg: 5 c5: 146 c0: 7 skew: 0.54 # Murphy_E = 1.239e-10 type: snfs lss: 1 rlim: 6300000 alim: 6300000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 6300000/6300000 Large primes per side: 3 Large prime bits: 28/28 Sieved rational special-q in [0, 0) Total raw relations: 18167812 Relations: 2235628 relations Pruned matrix : 1300515 x 1300741 Total sieving time: 7.81 hours. Total relation processing time: 0.14 hours. Matrix solve time: 0.80 hours. time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,178,5,0,0,0,0,0,0,0,0,6300000,6300000,28,28,53,53,2.5,2.5,100000 total time: 8.79 hours. Intel64 Family 6 Model 60 Stepping 3, GenuineIntel processors: 8, speed: 2.29GHz Windows-post2008Server-6.2.9200 Running Python 3.2 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | December 24, 2022 10:42:05 UTC 2022 年 12 月 24 日 (土) 19 時 42 分 5 秒 (日本時間) |
composite number 合成数 | 3374610012965907333720102674663647990279654603645261093151883219300191543123294186009871731473658966492441276970091087<118> |
prime factors 素因数 | 607585146932223343345834568078178997231<39> 5554135136457422392971389837697264595907010055186821117710897706077006468585377<79> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:1191624232 Step 1 took 4375ms Step 2 took 2312ms ********** Factor found in step 2: 607585146932223343345834568078178997231 Found prime factor of 39 digits: 607585146932223343345834568078178997231 Prime cofactor 5554135136457422392971389837697264595907010055186821117710897706077006468585377 has 79 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 5, 2023 16:20:02 UTC 2023 年 1 月 6 日 (金) 1 時 20 分 2 秒 (日本時間) |
composite number 合成数 | 52818957117504731340203740303420957097304564065994592019303014349434005591591397343665065381692332026963247566869636143934237745138115834094121229781735333<155> |
prime factors 素因数 | 3057091135127397840544170456346962988843<40> 75034822413604421851770223326454189708799<41> 230260040821183313456451133295401059862847486178921473580492352148316858769<75> |
factorization results 素因数分解の結果 | Number: n N=17277521271966794813985550828953440722132944750341145420942374774059273914663287761395316210991222041836274519608431 ( 116 digits) Divisors found: Fri Jan 6 03:15:42 2023 prp41 factor: 75034822413604421851770223326454189708799 Fri Jan 6 03:15:42 2023 prp75 factor: 230260040821183313456451133295401059862847486178921473580492352148316858769 Fri Jan 6 03:15:42 2023 elapsed time 00:08:21 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.085). Factorization parameters were as follows: # # N = 73x10^179+35 = 81(178)5 # # GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] # Input number is 52818957117504731340203740303420957097304564065994592019303014349434005591591397343665065381692332026963247566869636143934237745138115834094121229781735333 (155 digits) # Using B1=26830000, B2=144285831706, polynomial Dickson(12), sigma=1:317009948 # Step 1 took 64068ms # Step 2 took 25064ms # ********** Factor found in step 2: 3057091135127397840544170456346962988843 # Found prime factor of 40 digits: 3057091135127397840544170456346962988843 # Composite cofactor 17277521271966794813985550828953440722132944750341145420942374774059273914663287761395316210991222041836274519608431 has 116 digits n: 17277521271966794813985550828953440722132944750341145420942374774059273914663287761395316210991222041836274519608431 Y0: -59081937686618173286467 Y1: 123538474411 c0: -1819996825456248301462467960 c1: 5645931722057362588494 c2: 6061290262431157495 c3: 45502372519048 c4: -91355184 c5: 24 # skew 237427.59, size 4.794e-11, alpha -5.234, combined = 5.151e-10 rroots = 5 skew: 237427.59 type: gnfs rlim: 2600000 alim: 2600000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 2600000/2600000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved special-q in [100000, 12500000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 486844 hash collisions in 5767632 relations (5496127 unique) Msieve: matrix is 437871 x 438096 (125.1 MB) Sieving start time: 2023/01/06 01:51:25 Sieving end time : 2023/01/06 03:07:09 Total sieving time: 1hrs 15min 44secs. Total relation processing time: 0hrs 5min 39sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 33sec. Prototype def-par.txt line would be: gnfs,115,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2600000,2600000,26,26,49,49,2.6,2.6,60000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 8, 2023 14:20:56 UTC 2023 年 1 月 8 日 (日) 23 時 20 分 56 秒 (日本時間) |
composite number 合成数 | 2259329616545795553677011898322778668324814732002952226277292179048521757560113662162219135537280686832246305724955803623695251425537979<136> |
prime factors 素因数 | 52314868611829506895333220927156081506789446277<47> 43187141179876976108851928091551879012796093545802156358283208770583382177412465155550527<89> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 2259329616545795553677011898322778668324814732002952226277292179048521757560113662162219135537280686832246305724955803623695251425537979 (136 digits) Using B1=34240000, B2=144293429296, polynomial Dickson(12), sigma=1:2465858676 Step 1 took 68603ms Step 2 took 21671ms ********** Factor found in step 2: 52314868611829506895333220927156081506789446277 Found prime factor of 47 digits: 52314868611829506895333220927156081506789446277 Prime cofactor 43187141179876976108851928091551879012796093545802156358283208770583382177412465155550527 has 89 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 8, 2023 02:31:01 UTC 2023 年 1 月 8 日 (日) 11 時 31 分 1 秒 (日本時間) |
composite number 合成数 | 3210052739975500284288349964439916312388640856039862850209098999908713069847141787213401788702689927017249432130605510379255390773986413047267435132928569898932613220196991<172> |
prime factors 素因数 | 39154589248881994634305635966403545149863525821592656497<56> 81984073937569372378284775138803994953095249713756989841776434660431798061353214919124093179600561423394679910507503<116> |
factorization results 素因数分解の結果 | Number: n N=3210052739975500284288349964439916312388640856039862850209098999908713069847141787213401788702689927017249432130605510379255390773986413047267435132928569898932613220196991 ( 172 digits) SNFS difficulty: 182 digits. Divisors found: Sun Jan 8 10:39:56 2023 prp56 factor: 39154589248881994634305635966403545149863525821592656497 Sun Jan 8 10:39:56 2023 prp116 factor: 81984073937569372378284775138803994953095249713756989841776434660431798061353214919124093179600561423394679910507503 Sun Jan 8 10:39:56 2023 elapsed time 01:04:18 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.103). Factorization parameters were as follows: # # N = 73x10^181+35 = 81(180)5 # n: 3210052739975500284288349964439916312388640856039862850209098999908713069847141787213401788702689927017249432130605510379255390773986413047267435132928569898932613220196991 m: 1000000000000000000000000000000000000 deg: 5 c5: 146 c0: 7 skew: 0.54 # Murphy_E = 7.785e-11 type: snfs lss: 1 rlim: 7100000 alim: 7100000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 Factor base limits: 7100000/7100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved special-q in [100000, 21950000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 855083 hash collisions in 10807639 relations (10655340 unique) Msieve: matrix is 1448745 x 1448973 (413.2 MB) Sieving start time: 2023/01/08 02:25:08 Sieving end time : 2023/01/08 09:35:22 Total sieving time: 7hrs 10min 14secs. Total relation processing time: 0hrs 59min 22sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 2min 7sec. Prototype def-par.txt line would be: snfs,182,5,0,0,0,0,0,0,0,0,7100000,7100000,27,27,52,52,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 10, 2023 03:03:03 UTC 2023 年 1 月 10 日 (火) 12 時 3 分 3 秒 (日本時間) |
composite number 合成数 | 11180170143702613749601498625973680060541708267354084535544033166549784723522173135488259175399371361893189170285795127908874270601685559864017506618082698597600470012351989<173> |
prime factors 素因数 | 967331555636052125500584729936054920811979<42> 11557743649075198767413654961271662203349644615176191806310467534559297871046347509364398207242404850768133657977545810447126416191<131> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 11180170143702613749601498625973680060541708267354084535544033166549784723522173135488259175399371361893189170285795127908874270601685559864017506618082698597600470012351989 (173 digits) Using B1=26020000, B2=96191014936, polynomial Dickson(12), sigma=1:309707156 Step 1 took 62124ms ********** Factor found in step 1: 967331555636052125500584729936054920811979 Found prime factor of 42 digits: 967331555636052125500584729936054920811979 Prime cofactor 11557743649075198767413654961271662203349644615176191806310467534559297871046347509364398207242404850768133657977545810447126416191 has 131 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 10, 2023 06:52:27 UTC 2023 年 1 月 10 日 (火) 15 時 52 分 27 秒 (日本時間) |
composite number 合成数 | 713131310210377570166460654299930253515359504313990330290579422340667606095295778080462028054891896085596243638446694660094565982119306835948443074475028489<156> |
prime factors 素因数 | 176848050395568075801614977483048583879056517286427<51> 4032452201849374148705163564737689888635615794126305569765609545786105491646837175751197570316305334030507<106> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 713131310210377570166460654299930253515359504313990330290579422340667606095295778080462028054891896085596243638446694660094565982119306835948443074475028489 (156 digits) Using B1=27070000, B2=144286522396, polynomial Dickson(12), sigma=1:186484414 Step 1 took 65208ms Step 2 took 25171ms ********** Factor found in step 2: 176848050395568075801614977483048583879056517286427 Found prime factor of 51 digits: 176848050395568075801614977483048583879056517286427 Prime cofactor 4032452201849374148705163564737689888635615794126305569765609545786105491646837175751197570316305334030507 has 106 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 10, 2023 08:05:23 UTC 2023 年 1 月 10 日 (火) 17 時 5 分 23 秒 (日本時間) |
composite number 合成数 | 361280812744420815376298791486048209558616151888996083257785162858208910328375081545202429371412888387294925350981167067843691140831322776630053102820873931603229<162> |
prime factors 素因数 | 1009530607389475356376286510669363107651<40> 357870093387905804442469215291950966282948420083197749972513875479040342603893400875792985133606012058192219069904883278879<123> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 361280812744420815376298791486048209558616151888996083257785162858208910328375081545202429371412888387294925350981167067843691140831322776630053102820873931603229 (162 digits) Using B1=27380000, B2=144286522396, polynomial Dickson(12), sigma=1:3565619049 Step 1 took 65931ms Step 2 took 25108ms ********** Factor found in step 2: 1009530607389475356376286510669363107651 Found prime factor of 40 digits: 1009530607389475356376286510669363107651 Prime cofactor 357870093387905804442469215291950966282948420083197749972513875479040342603893400875792985133606012058192219069904883278879 has 123 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 15, 2023 10:20:24 UTC 2023 年 1 月 15 日 (日) 19 時 20 分 24 秒 (日本時間) |
composite number 合成数 | 79250548054623123504047904767043046979224878638733739373197989931297563345933084437575959839316680126680432420027842367416830582059679581659556684657019211422682623<164> |
prime factors 素因数 | 38715602450117572933229068150610123496412439435482175611138908354328072491142169<80> 2046992505327330960618918421439500502285518167403583552323433802481651725907432631767<85> |
factorization results 素因数分解の結果 | Number: n N=79250548054623123504047904767043046979224878638733739373197989931297563345933084437575959839316680126680432420027842367416830582059679581659556684657019211422682623 ( 164 digits) SNFS difficulty: 188 digits. Divisors found: Sun Jan 15 21:13:10 2023 prp80 factor: 38715602450117572933229068150610123496412439435482175611138908354328072491142169 Sun Jan 15 21:13:10 2023 prp85 factor: 2046992505327330960618918421439500502285518167403583552323433802481651725907432631767 Sun Jan 15 21:13:10 2023 elapsed time 01:36:57 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.101). Factorization parameters were as follows: # # N = 73x10^187+35 = 81(186)5 # n: 79250548054623123504047904767043046979224878638733739373197989931297563345933084437575959839316680126680432420027842367416830582059679581659556684657019211422682623 m: 10000000000000000000000000000000000000 deg: 5 c5: 1460 c0: 7 skew: 0.34 # Murphy_E = 4.117e-11 type: snfs lss: 1 rlim: 9300000 alim: 9300000 lpbr: 27 lpba: 27 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 9300000/9300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 53/53 Sieved special-q in [100000, 30303619) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1120093 hash collisions in 12298735 relations (11959084 unique) Msieve: matrix is 1766987 x 1767212 (504.6 MB) Sieving start time: 2023/01/15 06:55:06 Sieving end time : 2023/01/15 19:36:03 Total sieving time: 12hrs 40min 57secs. Total relation processing time: 1hrs 31min 3sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 2min 34sec. Prototype def-par.txt line would be: snfs,188,5,0,0,0,0,0,0,0,0,9300000,9300000,27,27,53,53,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | December 26, 2022 17:41:19 UTC 2022 年 12 月 27 日 (火) 2 時 41 分 19 秒 (日本時間) |
composite number 合成数 | 5399784268902225551614224828197807286186592121321799350179889511499184399358881534787944769157003644326141044955721530259420714119<130> |
prime factors 素因数 | 7001298523996041550118396585760213057047<40> 26955786035998374462749546826249269879946673<44> 28611841675954226541562580604993845276324881249<47> |
factorization results 素因数分解の結果 | 5399784268902225551614224828197807286186592121321799350179889511499184399358881534787944769157003644326141044955721530259420714119=7001298523996041550118396585760213057047*26955786035998374462749546826249269879946673*28611841675954226541562580604993845276324881249 cado polynomial n: 5399784268902225551614224828197807286186592121321799350179889511499184399358881534787944769157003644326141044955721530259420714119 skew: 305907.591 c0: 33117874883767726983448627321170 c1: -159126371496416960139108021 c2: -1646976575807855769202 c3: 6889667284266269 c4: 9087508568 c5: 6720 Y0: -17412262794059028749801824 Y1: 52199536995650591 # MurphyE (Bf=2.684e+08,Bg=2.684e+08,area=9.547e+13) = 4.583e-07 # f(x) = 6720*x^5+9087508568*x^4+6889667284266269*x^3-1646976575807855769202*x^2-159126371496416960139108021*x+33117874883767726983448627321170 # g(x) = 52199536995650591*x-17412262794059028749801824 cado parameters (extracts) tasks.lim0 = 13124945 tasks.lim1 = 44217255 tasks.lpb0 = 28 tasks.lpb1 = 28 tasks.sieve.mfb0 = 56 tasks.sieve.mfb1 = 56 tasks.I = 14 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 26955786035998374462749546826249269879946673 7001298523996041550118396585760213057047 28611841675954226541562580604993845276324881249 Info:Complete Factorization / Discrete logarithm: Square Root Info:Square Root: Total cpu/real time for sqrt: 2664.45/779.318 Info:HTTP server: Got notification to stop serving Workunits Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 101.89/104.844 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 102.7s Info:Filtering - Singleton removal: Total cpu/real time for purge: 267.66/301.296 Info:Filtering - Merging: Merged matrix has 1701360 rows and total weight 290116552 (170.5 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 455.7/137.527 Info:Filtering - Merging: Total cpu/real time for replay: 66.63/73.6332 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 24397175 Info:Lattice Sieving: Average J: 8169.59 for 62861 special-q, max bucket fill -bkmult 1.0,1s:1.073960 Info:Lattice Sieving: Total time: 93228.8s Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 400.76/415.017 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 330.1s Info:Linear Algebra: Total cpu/real time for bwc: 53015.8/14350 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 33993.31, WCT time 9065.68, iteration CPU time 0.15, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (53248 iterations) Info:Linear Algebra: Lingen CPU time 254.11, WCT time 258.75 Info:Linear Algebra: Mksol: CPU time 18390.38, WCT time 4826.86, iteration CPU time 0.17, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (26624 iterations) Info:Polynomial Selection (root optimized): Aggregate statistics: Info:Polynomial Selection (root optimized): Total time: 5472.12 Info:Polynomial Selection (root optimized): Rootsieve time: 5469.56 Info:Polynomial Selection (size optimized): Aggregate statistics: Info:Polynomial Selection (size optimized): potential collisions: 40925.7 Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 28229/36.440/46.321/50.400/0.838 Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 22343/36.440/41.490/47.130/0.912 Info:Polynomial Selection (size optimized): Total time: 4633.49 Info:Generate Factor Base: Total cpu/real time for makefb: 38.4/10.4658 Info:Square Root: Total cpu/real time for sqrt: 2664.45/779.318 Info:Generate Free Relations: Total cpu/real time for freerel: 250.06/66.0768 Info:Quadratic Characters: Total cpu/real time for characters: 65.19/27.7566 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire Complete Factorization 239200/65923.8 Info:root: Cleaning up computation data in /tmp/cado.7zrlcxyl 26955786035998374462749546826249269879946673 7001298523996041550118396585760213057047 28611841675954226541562580604993845276324881249 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | December 24, 2022 08:41:31 UTC 2022 年 12 月 24 日 (土) 17 時 41 分 31 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | December 24, 2022 08:40:59 UTC 2022 年 12 月 24 日 (土) 17 時 40 分 59 秒 (日本時間) |
composite number 合成数 | 960189732822747058131785337906122105906287170166777398982386605243949557356257651039514144659919429706584263758630703868561014259<129> |
prime factors 素因数 | 56784693993537078422336027172191979056179<41> |
composite cofactor 合成数の残り | 16909305400712920507581899135714982500024112078975645128610840304919240821417922535155521<89> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:3669716306 Step 1 took 2812ms ********** Factor found in step 2: 56784693993537078422336027172191979056179 Found prime factor of 41 digits: 56784693993537078422336027172191979056179 Composite cofactor 16909305400712920507581899135714982500024112078975645128610840304919240821417922535155521 has 89 digits |
software ソフトウェア | GMP-ECM |
name 名前 | Ignacio Santos |
---|---|
date 日付 | December 24, 2022 16:51:08 UTC 2022 年 12 月 25 日 (日) 1 時 51 分 8 秒 (日本時間) |
composite number 合成数 | 16909305400712920507581899135714982500024112078975645128610840304919240821417922535155521<89> |
prime factors 素因数 | 78105044270421671062459446226717997273<38> 216494409018809856185930149353102199038764982673577<51> |
factorization results 素因数分解の結果 | 12/24/22 17:50:24, starting SIQS on c89: 16909305400712920507581899135714982500024112078975645128610840304919240821417922535155521 12/24/22 17:50:24, random seed: 2363575790674509253 12/24/22 17:50:24, ==== sieve params ==== 12/24/22 17:50:24, n = 89 digits, 294 bits 12/24/22 17:50:24, factor base: 69168 primes (max prime = 1850503) 12/24/22 17:50:24, single large prime cutoff: 203555330 (110 * pmax) 12/24/22 17:50:24, double large prime range from 3424361353009 to 2349971447277813 12/24/22 17:50:24, DLP MFB = 1.85 12/24/22 17:50:24, allocating 8 large prime slices of factor base 12/24/22 17:50:24, buckets hold 2048 elements 12/24/22 17:50:24, large prime hashtables have 1048576 bytes 12/24/22 17:50:24, using AVX2 enabled 32k sieve core 12/24/22 17:50:24, sieve interval: 8 blocks of size 32768 12/24/22 17:50:24, polynomial A has ~ 11 factors 12/24/22 17:50:24, using multiplier of 1 12/24/22 17:50:24, using multiplier of 1 12/24/22 17:50:24, using Q2(x) polynomials for kN mod 8 = 1 12/24/22 17:50:24, using SPV correction of 19 bits, starting at offset 28 12/24/22 17:50:24, trial factoring cutoff at 92 bits 12/24/22 17:50:24, ==== sieving started (46 threads) ==== 12/24/22 17:50:38, trial division touched 34408958 sieve locations out of 221850894336 12/24/22 17:50:38, total reports = 34408958, total surviving reports = 8475010 12/24/22 17:50:38, total blocks sieved = 6771056, avg surviving reports per block = 1.25 12/24/22 17:50:38, dlp-ecm: 0 failures, 798134 attempts, 3784374 outside range, 3612135 prp, 657125 useful 12/24/22 17:50:38, 70894 relations found: 21318 full + 49576 from 916174 partial, using 423147 polys (847 A polys) 12/24/22 17:50:38, on average, sieving found 2.22 rels/poly and 69814.49 rels/sec 12/24/22 17:50:38, trial division touched 34408958 sieve locations out of 221850894336 12/24/22 17:50:38, ==== post processing stage (msieve-1.38) ==== 12/24/22 17:50:38, QS elapsed time = 13.4308 seconds. 12/24/22 17:50:38, begin singleton removal with 937492 relations 12/24/22 17:50:38, reduce to 164504 relations in 10 passes 12/24/22 17:50:39, recovered 164504 relations 12/24/22 17:50:39, recovered 136649 polynomials 12/24/22 17:50:39, attempting to build 70894 cycles 12/24/22 17:50:39, found 70894 cycles from 164504 relations in 6 passes 12/24/22 17:50:39, distribution of cycle lengths: 12/24/22 17:50:39, length 1 : 21318 12/24/22 17:50:39, length 2 : 15329 12/24/22 17:50:39, length 3 : 12492 12/24/22 17:50:39, length 4 : 8762 12/24/22 17:50:39, length 5 : 5667 12/24/22 17:50:39, length 6 : 3424 12/24/22 17:50:39, length 7 : 1871 12/24/22 17:50:39, length 9+: 2031 12/24/22 17:50:39, largest cycle: 20 relations 12/24/22 17:50:39, matrix is 69168 x 70894 (16.8 MB) with weight 3842554 (54.20/col) 12/24/22 17:50:39, sparse part has weight 3842554 (54.20/col) 12/24/22 17:50:40, filtering completed in 4 passes 12/24/22 17:50:40, matrix is 61581 x 61645 (14.4 MB) with weight 3294066 (53.44/col) 12/24/22 17:50:40, sparse part has weight 3294066 (53.44/col) 12/24/22 17:50:40, saving the first 48 matrix rows for later 12/24/22 17:50:40, matrix is 61533 x 61645 (12.7 MB) with weight 2926969 (47.48/col) 12/24/22 17:50:40, sparse part has weight 2717806 (44.09/col) 12/24/22 17:50:40, matrix includes 64 packed rows 12/24/22 17:50:40, using block size 24658 for processor cache size 131072 kB 12/24/22 17:50:40, commencing Lanczos iteration 12/24/22 17:50:40, memory use: 10.2 MB 12/24/22 17:50:45, lanczos halted after 975 iterations (dim = 61529) 12/24/22 17:50:45, recovered 14 nontrivial dependencies 12/24/22 17:50:45, prp51 = 216494409018809856185930149353102199038764982673577 12/24/22 17:50:45, prp38 = 78105044270421671062459446226717997273 12/24/22 17:50:45, Lanczos elapsed time = 6.9280 seconds. 12/24/22 17:50:45, Sqrt elapsed time = 0.4000 seconds. 12/24/22 17:50:45, SIQS elapsed time = 20.7596 seconds. 12/24/22 17:50:45, 12/24/22 17:50:45, |
software ソフトウェア | Yafu |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | December 26, 2022 17:47:47 UTC 2022 年 12 月 27 日 (火) 2 時 47 分 47 秒 (日本時間) |
composite number 合成数 | 31555197648806666010781424033729566909389746555457316121859704819849115032582154945795427003138561942661587545983569469842019<125> |
prime factors 素因数 | 31166392780038138770847750865525487263639596569065792937<56> 1012475132156376919463538433296875040482462700888303569957089099724587<70> |
factorization results 素因数分解の結果 | 31555197648806666010781424033729566909389746555457316121859704819849115032582154945795427003138561942661587545983569469842019=31166392780038138770847750865525487263639596569065792937*1012475132156376919463538433296875040482462700888303569957089099724587 cado polynomial n: 31555197648806666010781424033729566909389746555457316121859704819849115032582154945795427003138561942661587545983569469842019 skew: 77202.471 c0: 40406227679201180881350074094 c1: 3221467959755855164215867 c2: -213097981062727577696 c3: -1194996773851945 c4: 13749404484 c5: 60480 Y0: -1209569293724309854932356 Y1: 1243636149641370101 # MurphyE (Bf=1.342e+08,Bg=1.342e+08,area=1.236e+14) = 2.867e-07 # f(x) = 60480*x^5+13749404484*x^4-1194996773851945*x^3-213097981062727577696*x^2+3221467959755855164215867*x+40406227679201180881350074094 # g(x) = 1243636149641370101*x-1209569293724309854932356 cado parameters (extracts) tasks.lim0 = 2377918 tasks.lim1 = 9209388 tasks.lpb0 = 27 tasks.lpb1 = 27 tasks.sieve.mfb0 = 57 tasks.sieve.mfb1 = 53 tasks.I = 13 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 31166392780038138770847750865525487263639596569065792937 1012475132156376919463538433296875040482462700888303569957089099724587 Info:Square Root: Total cpu/real time for sqrt: 661.72/106.566 Info:Polynomial Selection (size optimized): Aggregate statistics: Info:Polynomial Selection (size optimized): potential collisions: 19925.9 Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 20109/36.990/44.354/49.130/0.867 Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 15914/36.540/39.717/45.130/0.945 Info:Polynomial Selection (size optimized): Total time: 2699.8 Info:Polynomial Selection (root optimized): Aggregate statistics: Info:Polynomial Selection (root optimized): Total time: 2820.88 Info:Polynomial Selection (root optimized): Rootsieve time: 2774.83 Info:Generate Factor Base: Total cpu/real time for makefb: 8.95/1.3938 Info:Generate Free Relations: Total cpu/real time for freerel: 135.36/17.0433 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 11618141 Info:Lattice Sieving: Average J: 3800.02 for 182263 special-q, max bucket fill -bkmult 1.0,1s:1.148820 Info:Lattice Sieving: Total time: 84933.8s Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 30.5/71.9488 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 71.9s Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 150.44/118.129 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 113.0s Info:Filtering - Singleton removal: Total cpu/real time for purge: 70.85/76.8142 Info:Filtering - Merging: Merged matrix has 779277 rows and total weight 132765158 (170.4 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 154.34/23.3212 Info:Filtering - Merging: Total cpu/real time for replay: 26.32/21.3519 Info:Linear Algebra: Total cpu/real time for bwc: 6152.14/1605.52 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: WCT time 1004.95, iteration CPU time 0.04, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (24576 iterations) Info:Linear Algebra: Lingen CPU time 83.16, WCT time 22.6 Info:Linear Algebra: Mksol: WCT time 552.61, iteration CPU time 0.04, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (12288 iterations) Info:Quadratic Characters: Total cpu/real time for characters: 40.01/9.52506 Info:Square Root: Total cpu/real time for sqrt: 661.72/106.566 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 197772/24221.1 Info:root: Cleaning up computation data in /tmp/cado.91khiepr 31166392780038138770847750865525487263639596569065792937 1012475132156376919463538433296875040482462700888303569957089099724587 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | December 24, 2022 09:22:34 UTC 2022 年 12 月 24 日 (土) 18 時 22 分 34 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 18, 2023 19:14:08 UTC 2023 年 1 月 19 日 (木) 4 時 14 分 8 秒 (日本時間) |
composite number 合成数 | 162222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222223<192> |
prime factors 素因数 | 9415390331310762386004106584440704386295994196584552210724083<61> 17229473926615050474341485476090228716766223090107309430418918842664450003529153327079253191023984056809130904350263013690372910581<131> |
factorization results 素因数分解の結果 | Number: n N=162222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222223 ( 192 digits) SNFS difficulty: 192 digits. Divisors found: Thu Jan 19 06:07:20 2023 prp61 factor: 9415390331310762386004106584440704386295994196584552210724083 Thu Jan 19 06:07:20 2023 prp131 factor: 17229473926615050474341485476090228716766223090107309430418918842664450003529153327079253191023984056809130904350263013690372910581 Thu Jan 19 06:07:20 2023 elapsed time 02:12:16 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.085). Factorization parameters were as follows: # # N = 73x10^191+35 = 81(190)5 # n: 162222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222223 m: 100000000000000000000000000000000000000 deg: 5 c5: 146 c0: 7 skew: 0.54 # Murphy_E = 3.034e-11 type: snfs lss: 1 rlim: 10800000 alim: 10800000 lpbr: 27 lpba: 27 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 10800000/10800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved special-q in [100000, 45400000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1225502 hash collisions in 12748511 relations (12319762 unique) Msieve: matrix is 2073623 x 2073848 (590.1 MB) Sieving start time: 2023/01/18 11:12:13 Sieving end time : 2023/01/19 03:54:53 Total sieving time: 16hrs 42min 40secs. Total relation processing time: 2hrs 5min 44sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 2min 52sec. Prototype def-par.txt line would be: snfs,192,5,0,0,0,0,0,0,0,0,10800000,10800000,27,27,54,54,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 / 2078 | Dmitry Domanov | January 7, 2023 02:02:35 UTC 2023 年 1 月 7 日 (土) 11 時 2 分 35 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 7, 2023 10:51:50 UTC 2023 年 1 月 7 日 (土) 19 時 51 分 50 秒 (日本時間) |
composite number 合成数 | 16233227467083962902159786732343094727616933635359895476849742706524228441517394594529040799010424941238705735001753385183390830169526142642932245181049577689982773888068792741<176> |
prime factors 素因数 | 786241667753557671340769649883099783<36> |
composite cofactor 合成数の残り | 20646613036250531430419419121791469921450473569127553742943634527760249754288180161769288418877008318575789824179222201694311162934676474227<140> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:4080746340 Step 1 took 9154ms Step 2 took 4436ms ********** Factor found in step 2: 786241667753557671340769649883099783 Found prime factor of 36 digits: 786241667753557671340769649883099783 Composite cofactor 20646613036250531430419419121791469921450473569127553742943634527760249754288180161769288418877008318575789824179222201694311162934676474227 has 140 digits |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | July 4, 2023 07:09:10 UTC 2023 年 7 月 4 日 (火) 16 時 9 分 10 秒 (日本時間) |
composite number 合成数 | 20646613036250531430419419121791469921450473569127553742943634527760249754288180161769288418877008318575789824179222201694311162934676474227<140> |
prime factors 素因数 | 602844216793402698853476645119341984913703767475937459<54> 34248670653377461785062357801719774323859717235601167914388939368402957504711404377153<86> |
factorization results 素因数分解の結果 | 20646613036250531430419419121791469921450473569127553742943634527760249754288180161769288418877008318575789824179222201694311162934676474227=602844216793402698853476645119341984913703767475937459*34248670653377461785062357801719774323859717235601167914388939368402957504711404377153 cado polynomial n: 20646613036250531430419419121791469921450473569127553742943634527760249754288180161769288418877008318575789824179222201694311162934676474227 skew: 0.34 type: snfs c0: 7 c5: 1460 Y0: 100000000000000000000000000000000000000 Y1: -1 # f(x) = 1460*x^5+7 # g(x) = -x+100000000000000000000000000000000000000 cado parameters (extracts) tasks.lim0 = 11600000 tasks.lim1 = 11600000 tasks.lpb0 = 28 tasks.lpb1 = 28 tasks.sieve.mfb0 = 55 tasks.sieve.mfb1 = 55 tasks.sieve.lambda0 = 2.5 tasks.sieve.lambda1 = 2.5 tasks.I = 12 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 34248670653377461785062357801719774323859717235601167914388939368402957504711404377153 602844216793402698853476645119341984913703767475937459 Info:Square Root: Total cpu/real time for sqrt: 687.74/221.073 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 28272374 Info:Lattice Sieving: Average J: 1895.6 for 2851904 special-q, max bucket fill -bkmult 1.0,1s:1.177200 Info:Lattice Sieving: Total time: 585250s Info:Linear Algebra: Total cpu/real time for bwc: 97562.3/25046.4 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 62497.57, WCT time 15974.51, iteration CPU time 0.2, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (74752 iterations) Info:Linear Algebra: Lingen CPU time 513.52, WCT time 130.27 Info:Linear Algebra: Mksol: CPU time 33712.66, WCT time 8648.51, iteration CPU time 0.22, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (37376 iterations) Info:Generate Factor Base: Total cpu/real time for makefb: 4.89/2.37832 Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 535.87/570.618 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 472.40000000000003s Info:Generate Free Relations: Total cpu/real time for freerel: 120.4/31.5484 Info:Square Root: Total cpu/real time for sqrt: 687.74/221.073 Info:Quadratic Characters: Total cpu/real time for characters: 82.8/36.914 Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 121.88/117.522 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 116.8s Info:Filtering - Singleton removal: Total cpu/real time for purge: 417.38/411.069 Info:Filtering - Merging: Merged matrix has 2376583 rows and total weight 406053929 (170.9 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 646.73/176.682 Info:Filtering - Merging: Total cpu/real time for replay: 89.73/80.1412 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 1.19874e+06/319333 Info:root: Cleaning up computation data in /tmp/cado.lrseb6sg 34248670653377461785062357801719774323859717235601167914388939368402957504711404377153 602844216793402698853476645119341984913703767475937459 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | January 7, 2023 02:02:42 UTC 2023 年 1 月 7 日 (土) 11 時 2 分 42 秒 (日本時間) |
2350 | Ignacio Santos | January 24, 2023 16:53:16 UTC 2023 年 1 月 25 日 (水) 1 時 53 分 16 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | February 7, 2023 05:39:34 UTC 2023 年 2 月 7 日 (火) 14 時 39 分 34 秒 (日本時間) |
composite number 合成数 | 2369774442433869374689078694836662403831996691275475744798600742333467225589330846953003266279591604759149841146390397712914454275275174231579130526186178017878130259002225299358104390804113<190> |
prime factors 素因数 | 20818808198555858018814238705894323544045375768163336191<56> 113828535227979762120517859958160281656496236669017741249948948487758861833362750766470886548450171755142196337717855296306301590936943<135> |
factorization results 素因数分解の結果 | N=2369774442433869374689078694836662403831996691275475744798600742333467225589330846953003266279591604759149841146390397712914454275275174231579130526186178017878130259002225299358104390804113 ( 190 digits) SNFS difficulty: 197 digits. Divisors found: Tue Feb 7 15:52:28 2023 prp56 factor: 20818808198555858018814238705894323544045375768163336191 Tue Feb 7 15:52:28 2023 prp135 factor: 113828535227979762120517859958160281656496236669017741249948948487758861833362750766470886548450171755142196337717855296306301590936943 Tue Feb 7 15:52:28 2023 elapsed time 02:41:58 (Msieve 1.44 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.090). Factorization parameters were as follows: # # N = 73x10^196+35 = 81(195)5 # n: 2369774442433869374689078694836662403831996691275475744798600742333467225589330846953003266279591604759149841146390397712914454275275174231579130526186178017878130259002225299358104390804113 m: 1000000000000000000000000000000000000000 deg: 5 c5: 146 c0: 7 skew: 0.54 # Murphy_E = 1.882e-11 type: snfs lss: 1 rlim: 12500000 alim: 12500000 lpbr: 27 lpba: 27 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 12500000/12500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 53/53 Sieved special-q in [100000, 67850000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1291578 hash collisions in 13724107 relations (13019678 unique) Msieve: matrix is 2227573 x 2227797 (631.1 MB) Sieving start time: 2023/02/06 08:51:14 Sieving end time : 2023/02/07 13:10:17 Total sieving time: 28hrs 19min 3secs. Total relation processing time: 2hrs 32min 22sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 5min 39sec. Prototype def-par.txt line would be: snfs,197,5,0,0,0,0,0,0,0,0,12500000,12500000,27,27,53,53,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | January 7, 2023 02:02:50 UTC 2023 年 1 月 7 日 (土) 11 時 2 分 50 秒 (日本時間) |
2350 | Ignacio Santos | February 5, 2023 15:56:25 UTC 2023 年 2 月 6 日 (月) 0 時 56 分 25 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | December 26, 2022 19:09:45 UTC 2022 年 12 月 27 日 (火) 4 時 9 分 45 秒 (日本時間) |
composite number 合成数 | 451672427541005039772455754798673367521448045550220443093625410188178406241442279994189114389864332193723794849041<114> |
prime factors 素因数 | 6283596228027610275476429368335042749737<40> 71881198465036124227754917982605276726611208713663867111802793411588615593<74> |
factorization results 素因数分解の結果 | -> makeJobFile(): Adjusted to q0=1750000, q1=1850000. -> client 1 q0: 1750000 LatSieveTime: 76 LatSieveTime: 79 LatSieveTime: 84 LatSieveTime: 85 LatSieveTime: 86 LatSieveTime: 86 LatSieveTime: 90 LatSieveTime: 90 LatSieveTime: 90 LatSieveTime: 94 LatSieveTime: 94 LatSieveTime: 94 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 104 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 113 LatSieveTime: 128 -> makeJobFile(): Adjusted to q0=1850001, q1=1950000. -> client 1 q0: 1850001 LatSieveTime: 83 LatSieveTime: 91 LatSieveTime: 92 LatSieveTime: 93 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 114 -> makeJobFile(): Adjusted to q0=1950001, q1=2050000. -> client 1 q0: 1950001 LatSieveTime: 86 LatSieveTime: 86 LatSieveTime: 87 LatSieveTime: 90 LatSieveTime: 90 LatSieveTime: 91 LatSieveTime: 92 LatSieveTime: 92 LatSieveTime: 93 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 118 LatSieveTime: 121 LatSieveTime: 122 -> makeJobFile(): Adjusted to q0=2050001, q1=2150000. -> client 1 q0: 2050001 LatSieveTime: 74 LatSieveTime: 87 LatSieveTime: 88 LatSieveTime: 88 LatSieveTime: 88 LatSieveTime: 88 LatSieveTime: 90 LatSieveTime: 91 LatSieveTime: 92 LatSieveTime: 92 LatSieveTime: 92 LatSieveTime: 93 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 115 -> makeJobFile(): Adjusted to q0=2150001, q1=2250000. -> client 1 q0: 2150001 LatSieveTime: 76 LatSieveTime: 81 LatSieveTime: 85 LatSieveTime: 86 LatSieveTime: 87 LatSieveTime: 91 LatSieveTime: 92 LatSieveTime: 92 LatSieveTime: 93 LatSieveTime: 93 LatSieveTime: 93 LatSieveTime: 93 LatSieveTime: 94 LatSieveTime: 94 LatSieveTime: 94 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 108 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 119 -> makeJobFile(): Adjusted to q0=2250001, q1=2350000. -> client 1 q0: 2250001 LatSieveTime: 84 LatSieveTime: 88 LatSieveTime: 89 LatSieveTime: 94 LatSieveTime: 95 LatSieveTime: 99 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 111 LatSieveTime: 114 LatSieveTime: 113 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 -> makeJobFile(): Adjusted to q0=2350001, q1=2450000. -> client 1 q0: 2350001 LatSieveTime: 80 LatSieveTime: 86 LatSieveTime: 87 LatSieveTime: 88 LatSieveTime: 89 LatSieveTime: 90 LatSieveTime: 94 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 116 LatSieveTime: 117 -> makeJobFile(): Adjusted to q0=2450001, q1=2550000. -> client 1 q0: 2450001 LatSieveTime: 86 LatSieveTime: 88 LatSieveTime: 90 LatSieveTime: 93 LatSieveTime: 94 LatSieveTime: 94 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 119 LatSieveTime: 123 -> makeJobFile(): Adjusted to q0=2550001, q1=2650000. -> client 1 q0: 2550001 LatSieveTime: 88 LatSieveTime: 89 LatSieveTime: 89 LatSieveTime: 91 LatSieveTime: 93 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 118 -> makeJobFile(): Adjusted to q0=2650001, q1=2750000. -> client 1 q0: 2650001 LatSieveTime: 82 LatSieveTime: 82 LatSieveTime: 83 LatSieveTime: 90 LatSieveTime: 91 LatSieveTime: 91 LatSieveTime: 91 LatSieveTime: 92 LatSieveTime: 92 LatSieveTime: 93 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 116 LatSieveTime: 119 -> makeJobFile(): Adjusted to q0=2750001, q1=2850000. -> client 1 q0: 2750001 LatSieveTime: 78 LatSieveTime: 85 LatSieveTime: 85 LatSieveTime: 87 LatSieveTime: 88 LatSieveTime: 89 LatSieveTime: 89 LatSieveTime: 91 LatSieveTime: 92 LatSieveTime: 93 LatSieveTime: 94 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 125 Mon Dec 26 19:53:40 2022 Mon Dec 26 19:53:40 2022 Mon Dec 26 19:53:40 2022 Msieve v. 1.52 (SVN 927) Mon Dec 26 19:53:40 2022 random seeds: f980af28 3f5bbe9c Mon Dec 26 19:53:40 2022 factoring 451672427541005039772455754798673367521448045550220443093625410188178406241442279994189114389864332193723794849041 (114 digits) Mon Dec 26 19:53:40 2022 searching for 15-digit factors Mon Dec 26 19:53:40 2022 commencing number field sieve (114-digit input) Mon Dec 26 19:53:40 2022 R0: -8144839209406249720960 Mon Dec 26 19:53:40 2022 R1: 1362437583889 Mon Dec 26 19:53:40 2022 A0: -457283356237768854768831 Mon Dec 26 19:53:40 2022 A1: 116940701228057597671 Mon Dec 26 19:53:40 2022 A2: -574074270210591486 Mon Dec 26 19:53:40 2022 A3: 24202261414081 Mon Dec 26 19:53:40 2022 A4: 7017562895 Mon Dec 26 19:53:40 2022 A5: 12600 Mon Dec 26 19:53:40 2022 skew 10168.41, size 4.883e-011, alpha -4.451, combined = 5.226e-010 rroots = 3 Mon Dec 26 19:53:40 2022 Mon Dec 26 19:53:40 2022 commencing relation filtering Mon Dec 26 19:53:40 2022 estimated available RAM is 65413.5 MB Mon Dec 26 19:53:40 2022 commencing duplicate removal, pass 1 Mon Dec 26 19:53:53 2022 found 722899 hash collisions in 7043430 relations Mon Dec 26 19:54:01 2022 added 56926 free relations Mon Dec 26 19:54:01 2022 commencing duplicate removal, pass 2 Mon Dec 26 19:54:03 2022 found 469240 duplicates and 6631116 unique relations Mon Dec 26 19:54:03 2022 memory use: 24.6 MB Mon Dec 26 19:54:03 2022 reading ideals above 100000 Mon Dec 26 19:54:03 2022 commencing singleton removal, initial pass Mon Dec 26 19:54:27 2022 memory use: 188.3 MB Mon Dec 26 19:54:27 2022 reading all ideals from disk Mon Dec 26 19:54:27 2022 memory use: 228.2 MB Mon Dec 26 19:54:27 2022 keeping 7708746 ideals with weight <= 200, target excess is 35898 Mon Dec 26 19:54:27 2022 commencing in-memory singleton removal Mon Dec 26 19:54:27 2022 begin with 6631116 relations and 7708746 unique ideals Mon Dec 26 19:54:29 2022 reduce to 1694292 relations and 1758841 ideals in 21 passes Mon Dec 26 19:54:29 2022 max relations containing the same ideal: 78 Mon Dec 26 19:54:29 2022 filtering wants 1000000 more relations Mon Dec 26 19:54:29 2022 elapsed time 00:00:49 -> makeJobFile(): Adjusted to q0=2850001, q1=2950000. -> client 1 q0: 2850001 LatSieveTime: 76 LatSieveTime: 91 LatSieveTime: 93 LatSieveTime: 94 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 118 LatSieveTime: 121 Mon Dec 26 19:56:35 2022 Mon Dec 26 19:56:35 2022 Mon Dec 26 19:56:35 2022 Msieve v. 1.52 (SVN 927) Mon Dec 26 19:56:35 2022 random seeds: d9890e34 6407f4f3 Mon Dec 26 19:56:35 2022 factoring 451672427541005039772455754798673367521448045550220443093625410188178406241442279994189114389864332193723794849041 (114 digits) Mon Dec 26 19:56:35 2022 searching for 15-digit factors Mon Dec 26 19:56:36 2022 commencing number field sieve (114-digit input) Mon Dec 26 19:56:36 2022 R0: -8144839209406249720960 Mon Dec 26 19:56:36 2022 R1: 1362437583889 Mon Dec 26 19:56:36 2022 A0: -457283356237768854768831 Mon Dec 26 19:56:36 2022 A1: 116940701228057597671 Mon Dec 26 19:56:36 2022 A2: -574074270210591486 Mon Dec 26 19:56:36 2022 A3: 24202261414081 Mon Dec 26 19:56:36 2022 A4: 7017562895 Mon Dec 26 19:56:36 2022 A5: 12600 Mon Dec 26 19:56:36 2022 skew 10168.41, size 4.883e-011, alpha -4.451, combined = 5.226e-010 rroots = 3 Mon Dec 26 19:56:36 2022 Mon Dec 26 19:56:36 2022 commencing relation filtering Mon Dec 26 19:56:36 2022 estimated available RAM is 65413.5 MB Mon Dec 26 19:56:36 2022 commencing duplicate removal, pass 1 Mon Dec 26 19:56:50 2022 found 844856 hash collisions in 7732314 relations Mon Dec 26 19:56:58 2022 added 852 free relations Mon Dec 26 19:56:58 2022 commencing duplicate removal, pass 2 Mon Dec 26 19:57:01 2022 found 546856 duplicates and 7186310 unique relations Mon Dec 26 19:57:01 2022 memory use: 24.6 MB Mon Dec 26 19:57:01 2022 reading ideals above 100000 Mon Dec 26 19:57:01 2022 commencing singleton removal, initial pass Mon Dec 26 19:57:26 2022 memory use: 188.3 MB Mon Dec 26 19:57:26 2022 reading all ideals from disk Mon Dec 26 19:57:26 2022 memory use: 247.5 MB Mon Dec 26 19:57:27 2022 keeping 8012027 ideals with weight <= 200, target excess is 39131 Mon Dec 26 19:57:27 2022 commencing in-memory singleton removal Mon Dec 26 19:57:27 2022 begin with 7186310 relations and 8012027 unique ideals Mon Dec 26 19:57:30 2022 reduce to 2320287 relations and 2224052 ideals in 22 passes Mon Dec 26 19:57:30 2022 max relations containing the same ideal: 96 Mon Dec 26 19:57:31 2022 removing 249117 relations and 223695 ideals in 25422 cliques Mon Dec 26 19:57:31 2022 commencing in-memory singleton removal Mon Dec 26 19:57:31 2022 begin with 2071170 relations and 2224052 unique ideals Mon Dec 26 19:57:31 2022 reduce to 2049082 relations and 1977942 ideals in 8 passes Mon Dec 26 19:57:31 2022 max relations containing the same ideal: 92 Mon Dec 26 19:57:31 2022 removing 187949 relations and 162527 ideals in 25422 cliques Mon Dec 26 19:57:31 2022 commencing in-memory singleton removal Mon Dec 26 19:57:31 2022 begin with 1861133 relations and 1977942 unique ideals Mon Dec 26 19:57:32 2022 reduce to 1846352 relations and 1800442 ideals in 8 passes Mon Dec 26 19:57:32 2022 max relations containing the same ideal: 84 Mon Dec 26 19:57:32 2022 relations with 0 large ideals: 124 Mon Dec 26 19:57:32 2022 relations with 1 large ideals: 351 Mon Dec 26 19:57:32 2022 relations with 2 large ideals: 4999 Mon Dec 26 19:57:32 2022 relations with 3 large ideals: 39986 Mon Dec 26 19:57:32 2022 relations with 4 large ideals: 170045 Mon Dec 26 19:57:32 2022 relations with 5 large ideals: 401511 Mon Dec 26 19:57:32 2022 relations with 6 large ideals: 549211 Mon Dec 26 19:57:32 2022 relations with 7+ large ideals: 680125 Mon Dec 26 19:57:32 2022 commencing 2-way merge Mon Dec 26 19:57:33 2022 reduce to 1043272 relation sets and 997362 unique ideals Mon Dec 26 19:57:33 2022 commencing full merge Mon Dec 26 19:57:44 2022 memory use: 115.7 MB Mon Dec 26 19:57:44 2022 found 519282 cycles, need 513562 Mon Dec 26 19:57:44 2022 weight of 513562 cycles is about 36120349 (70.33/cycle) Mon Dec 26 19:57:44 2022 distribution of cycle lengths: Mon Dec 26 19:57:44 2022 1 relations: 59160 Mon Dec 26 19:57:44 2022 2 relations: 58403 Mon Dec 26 19:57:44 2022 3 relations: 58768 Mon Dec 26 19:57:44 2022 4 relations: 53112 Mon Dec 26 19:57:44 2022 5 relations: 47416 Mon Dec 26 19:57:44 2022 6 relations: 40273 Mon Dec 26 19:57:44 2022 7 relations: 35403 Mon Dec 26 19:57:44 2022 8 relations: 30064 Mon Dec 26 19:57:44 2022 9 relations: 25733 Mon Dec 26 19:57:44 2022 10+ relations: 105230 Mon Dec 26 19:57:44 2022 heaviest cycle: 23 relations Mon Dec 26 19:57:44 2022 commencing cycle optimization Mon Dec 26 19:57:45 2022 start with 3134095 relations Mon Dec 26 19:57:48 2022 pruned 62492 relations Mon Dec 26 19:57:48 2022 memory use: 106.2 MB Mon Dec 26 19:57:48 2022 distribution of cycle lengths: Mon Dec 26 19:57:48 2022 1 relations: 59160 Mon Dec 26 19:57:48 2022 2 relations: 59581 Mon Dec 26 19:57:48 2022 3 relations: 60643 Mon Dec 26 19:57:48 2022 4 relations: 53979 Mon Dec 26 19:57:48 2022 5 relations: 48226 Mon Dec 26 19:57:48 2022 6 relations: 40785 Mon Dec 26 19:57:48 2022 7 relations: 35532 Mon Dec 26 19:57:48 2022 8 relations: 30102 Mon Dec 26 19:57:48 2022 9 relations: 25420 Mon Dec 26 19:57:48 2022 10+ relations: 100134 Mon Dec 26 19:57:48 2022 heaviest cycle: 22 relations Mon Dec 26 19:57:49 2022 RelProcTime: 73 Mon Dec 26 19:57:49 2022 elapsed time 00:01:14 Mon Dec 26 19:57:49 2022 Mon Dec 26 19:57:49 2022 Mon Dec 26 19:57:49 2022 Msieve v. 1.52 (SVN 927) Mon Dec 26 19:57:49 2022 random seeds: 159cc950 430dd784 Mon Dec 26 19:57:49 2022 factoring 451672427541005039772455754798673367521448045550220443093625410188178406241442279994189114389864332193723794849041 (114 digits) Mon Dec 26 19:57:49 2022 searching for 15-digit factors Mon Dec 26 19:57:49 2022 commencing number field sieve (114-digit input) Mon Dec 26 19:57:49 2022 R0: -8144839209406249720960 Mon Dec 26 19:57:49 2022 R1: 1362437583889 Mon Dec 26 19:57:49 2022 A0: -457283356237768854768831 Mon Dec 26 19:57:49 2022 A1: 116940701228057597671 Mon Dec 26 19:57:49 2022 A2: -574074270210591486 Mon Dec 26 19:57:49 2022 A3: 24202261414081 Mon Dec 26 19:57:49 2022 A4: 7017562895 Mon Dec 26 19:57:49 2022 A5: 12600 Mon Dec 26 19:57:49 2022 skew 10168.41, size 4.883e-011, alpha -4.451, combined = 5.226e-010 rroots = 3 Mon Dec 26 19:57:49 2022 Mon Dec 26 19:57:49 2022 commencing linear algebra Mon Dec 26 19:57:49 2022 read 513562 cycles Mon Dec 26 19:57:50 2022 cycles contain 1794775 unique relations Mon Dec 26 19:57:53 2022 read 1794775 relations Mon Dec 26 19:57:55 2022 using 20 quadratic characters above 134216420 Mon Dec 26 19:57:59 2022 building initial matrix Mon Dec 26 19:58:08 2022 memory use: 225.0 MB Mon Dec 26 19:58:09 2022 read 513562 cycles Mon Dec 26 19:58:09 2022 matrix is 513384 x 513562 (154.2 MB) with weight 48835535 (95.09/col) Mon Dec 26 19:58:09 2022 sparse part has weight 34775452 (67.71/col) Mon Dec 26 19:58:11 2022 filtering completed in 2 passes Mon Dec 26 19:58:11 2022 matrix is 512504 x 512682 (154.1 MB) with weight 48798950 (95.18/col) Mon Dec 26 19:58:11 2022 sparse part has weight 34764257 (67.81/col) Mon Dec 26 19:58:12 2022 matrix starts at (0, 0) Mon Dec 26 19:58:12 2022 matrix is 512504 x 512682 (154.1 MB) with weight 48798950 (95.18/col) Mon Dec 26 19:58:12 2022 sparse part has weight 34764257 (67.81/col) Mon Dec 26 19:58:12 2022 saving the first 48 matrix rows for later Mon Dec 26 19:58:12 2022 matrix includes 64 packed rows Mon Dec 26 19:58:12 2022 matrix is 512456 x 512682 (148.7 MB) with weight 38612568 (75.31/col) Mon Dec 26 19:58:12 2022 sparse part has weight 33866569 (66.06/col) Mon Dec 26 19:58:12 2022 using block size 8192 and superblock size 12582912 for processor cache size 131072 kB Mon Dec 26 19:58:14 2022 commencing Lanczos iteration (32 threads) Mon Dec 26 19:58:14 2022 memory use: 115.9 MB Mon Dec 26 19:58:15 2022 linear algebra at 0.6%, ETA 0h 2m Mon Dec 26 20:02:23 2022 lanczos halted after 8105 iterations (dim = 512454) Mon Dec 26 20:02:23 2022 recovered 32 nontrivial dependencies Mon Dec 26 20:02:23 2022 BLanczosTime: 274 Mon Dec 26 20:02:23 2022 elapsed time 00:04:34 Mon Dec 26 20:02:23 2022 Mon Dec 26 20:02:23 2022 Mon Dec 26 20:02:23 2022 Msieve v. 1.52 (SVN 927) Mon Dec 26 20:02:23 2022 random seeds: 1a2cbda0 32e74988 Mon Dec 26 20:02:23 2022 factoring 451672427541005039772455754798673367521448045550220443093625410188178406241442279994189114389864332193723794849041 (114 digits) Mon Dec 26 20:02:23 2022 searching for 15-digit factors Mon Dec 26 20:02:24 2022 commencing number field sieve (114-digit input) Mon Dec 26 20:02:24 2022 R0: -8144839209406249720960 Mon Dec 26 20:02:24 2022 R1: 1362437583889 Mon Dec 26 20:02:24 2022 A0: -457283356237768854768831 Mon Dec 26 20:02:24 2022 A1: 116940701228057597671 Mon Dec 26 20:02:24 2022 A2: -574074270210591486 Mon Dec 26 20:02:24 2022 A3: 24202261414081 Mon Dec 26 20:02:24 2022 A4: 7017562895 Mon Dec 26 20:02:24 2022 A5: 12600 Mon Dec 26 20:02:24 2022 skew 10168.41, size 4.883e-011, alpha -4.451, combined = 5.226e-010 rroots = 3 Mon Dec 26 20:02:24 2022 Mon Dec 26 20:02:24 2022 commencing square root phase Mon Dec 26 20:02:24 2022 reading relations for dependency 1 Mon Dec 26 20:02:24 2022 read 255708 cycles Mon Dec 26 20:02:24 2022 cycles contain 895934 unique relations Mon Dec 26 20:02:26 2022 read 895934 relations Mon Dec 26 20:02:28 2022 multiplying 895934 relations Mon Dec 26 20:02:50 2022 multiply complete, coefficients have about 41.36 million bits Mon Dec 26 20:02:50 2022 initial square root is modulo 867173 Mon Dec 26 20:03:16 2022 GCD is N, no factor found Mon Dec 26 20:03:16 2022 reading relations for dependency 2 Mon Dec 26 20:03:16 2022 read 256716 cycles Mon Dec 26 20:03:16 2022 cycles contain 899020 unique relations Mon Dec 26 20:03:19 2022 read 899020 relations Mon Dec 26 20:03:20 2022 multiplying 899020 relations Mon Dec 26 20:03:42 2022 multiply complete, coefficients have about 41.50 million bits Mon Dec 26 20:03:42 2022 initial square root is modulo 909401 Mon Dec 26 20:04:09 2022 sqrtTime: 105 Mon Dec 26 20:04:09 2022 prp40 factor: 6283596228027610275476429368335042749737 Mon Dec 26 20:04:09 2022 prp74 factor: 71881198465036124227754917982605276726611208713663867111802793411588615593 Mon Dec 26 20:04:09 2022 elapsed time 00:01:46 |
software ソフトウェア | GNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | December 24, 2022 11:49:13 UTC 2022 年 12 月 24 日 (土) 20 時 49 分 13 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | May 10, 2023 22:20:55 UTC 2023 年 5 月 11 日 (木) 7 時 20 分 55 秒 (日本時間) |
composite number 合成数 | 1365982758877702969174155542017191404607091359220778889464090303411359158115471621443263389538915463546316517191782701675604480826447011223754232048366296022393084197393<169> |
prime factors 素因数 | 103542573882030310737516344594342717085224136295979189039620992258974652316903<78> 13192474435047510784114464867372092072220456353347676153758020332173079505217478839390517831<92> |
factorization results 素因数分解の結果 | Number: n N=1365982758877702969174155542017191404607091359220778889464090303411359158115471621443263389538915463546316517191782701675604480826447011223754232048366296022393084197393 ( 169 digits) SNFS difficulty: 200 digits. Divisors found: Wed May 10 16:40:09 2023 prp78 factor: 103542573882030310737516344594342717085224136295979189039620992258974652316903 Wed May 10 16:40:09 2023 prp92 factor: 13192474435047510784114464867372092072220456353347676153758020332173079505217478839390517831 Wed May 10 16:40:09 2023 elapsed time 03:22:02 (Msieve 1.44 - dependency 3) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=1.942). Factorization parameters were as follows: # # N = 73x10^199+35 = 81(198)5 # n: 1365982758877702969174155542017191404607091359220778889464090303411359158115471621443263389538915463546316517191782701675604480826447011223754232048366296022393084197393 m: 1000000000000000000000000000000000 deg: 6 c6: 146 c0: 7 skew: 0.60 # Murphy_E = 1.045e-11 type: snfs lss: 1 rlim: 15200000 alim: 15200000 lpbr: 27 lpba: 27 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 15200000/15200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 56/56 Sieved special-q in [100000, 54800000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2095202 hash collisions in 15069755 relations (13722491 unique) Msieve: matrix is 2460256 x 2460482 (699.2 MB) Sieving start time: 2023/05/09 14:16:34 Sieving end time : 2023/05/10 13:17:50 Total sieving time: 23hrs 1min 16secs. Total relation processing time: 3hrs 4min 54sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 12min 38sec. Prototype def-par.txt line would be: snfs,200,6,0,0,0,0,0,0,0,0,15200000,15200000,27,27,56,56,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2296 | 1000 | Dmitry Domanov | January 7, 2023 02:02:58 UTC 2023 年 1 月 7 日 (土) 11 時 2 分 58 秒 (日本時間) |
1296 | Rytis Slatkevičius | February 19, 2023 15:25:16 UTC 2023 年 2 月 20 日 (月) 0 時 25 分 16 秒 (日本時間) | |||
45 | 11e6 | 3927 | Rytis Slatkevičius | February 19, 2023 19:25:04 UTC 2023 年 2 月 20 日 (月) 4 時 25 分 4 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | December 28, 2022 14:25:45 UTC 2022 年 12 月 28 日 (水) 23 時 25 分 45 秒 (日本時間) |
composite number 合成数 | 1493960584834959228833314041733475284561252961585571817004603832674237770383699701654869707887577133930320897067105063793247716612514277597<139> |
prime factors 素因数 | 7101348834785540034032983490153953600498547<43> 210377017041731717260207831788340388210891274882498938448151432635212076295651775942379667351151<96> |
factorization results 素因数分解の結果 | 1493960584834959228833314041733475284561252961585571817004603832674237770383699701654869707887577133930320897067105063793247716612514277597=7101348834785540034032983490153953600498547*210377017041731717260207831788340388210891274882498938448151432635212076295651775942379667351151 cado polynomial n: 1493960584834959228833314041733475284561252961585571817004603832674237770383699701654869707887577133930320897067105063793247716612514277597 skew: 80621.507 c0: -549321055371273288028597211472 c1: 38507101789573285400978312 c2: 404406325359084109800 c3: -8350720810093154 c4: 13639202919 c5: 325440 Y0: -424314957953950000970996835 Y1: 13021800423634223467 # MurphyE (Bf=5.369e+08,Bg=2.684e+08,area=2.023e+14) = 2.964e-07 # f(x) = 325440*x^5+13639202919*x^4-8350720810093154*x^3+404406325359084109800*x^2+38507101789573285400978312*x-549321055371273288028597211472 # g(x) = 13021800423634223467*x-424314957953950000970996835 cado parameters (extracts) tasks.lim0 = 9457107 tasks.lim1 = 12662444 tasks.lpb0 = 28 tasks.lpb1 = 29 tasks.sieve.mfb0 = 58 tasks.sieve.mfb1 = 58 tasks.I = 13 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 7101348834785540034032983490153953600498547 210377017041731717260207831788340388210891274882498938448151432635212076295651775942379667351151 Info:Square Root: Total cpu/real time for sqrt: 764.01/236.222 Info:Quadratic Characters: Total cpu/real time for characters: 69.58/29.6457 Info:Linear Algebra: Total cpu/real time for bwc: 51364.5/13217.6 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 32847.45, WCT time 8401.01, iteration CPU time 0.14, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (55552 iterations) Info:Linear Algebra: Lingen CPU time 351.49, WCT time 89.22 Info:Linear Algebra: Mksol: CPU time 17837.99, WCT time 4603.89, iteration CPU time 0.16, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (27904 iterations) Info:Polynomial Selection (size optimized): Aggregate statistics: Info:Polynomial Selection (size optimized): potential collisions: 65655.1 Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 66730/39.740/49.711/54.610/0.944 Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 54726/39.650/44.332/50.370/1.004 Info:Polynomial Selection (size optimized): Total time: 22926.5 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 32840306 Info:Lattice Sieving: Average J: 3797.25 for 760404 special-q, max bucket fill -bkmult 1.0,1s:1.159090 Info:Lattice Sieving: Total time: 274228s Info:Generate Free Relations: Total cpu/real time for freerel: 492.43/126.575 Info:Polynomial Selection (root optimized): Aggregate statistics: Info:Polynomial Selection (root optimized): Total time: 6049.07 Info:Polynomial Selection (root optimized): Rootsieve time: 6046.53 Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 401.49/374.946 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 356.1s Info:Square Root: Total cpu/real time for sqrt: 764.01/236.222 Info:Filtering - Merging: Merged matrix has 1776973 rows and total weight 303536579 (170.8 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 438.58/121.918 Info:Filtering - Merging: Total cpu/real time for replay: 69.63/61.4245 Info:Filtering - Singleton removal: Total cpu/real time for purge: 150.91/151.291 Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 148.05/146.607 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 146.4s Info:Generate Factor Base: Total cpu/real time for makefb: 11.74/3.35244 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 591025/149582 7101348834785540034032983490153953600498547 210377017041731717260207831788340388210891274882498938448151432635212076295651775942379667351151 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | December 23, 2022 16:55:23 UTC 2022 年 12 月 24 日 (土) 1 時 55 分 23 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | July 18, 2023 06:39:59 UTC 2023 年 7 月 18 日 (火) 15 時 39 分 59 秒 (日本時間) |
composite number 合成数 | 37987516183818884110428337185151442248104620901357999866527689079004796386655896601369267572816649617941186011483219767479405215651859489<137> |
prime factors 素因数 | 488924568450442061553758672036707671041048971753150052417<57> 77696067318141614378897430766630866173382228249492259017672608576609122785205217<80> |
factorization results 素因数分解の結果 | 37987516183818884110428337185151442248104620901357999866527689079004796386655896601369267572816649617941186011483219767479405215651859489=488924568450442061553758672036707671041048971753150052417*77696067318141614378897430766630866173382228249492259017672608576609122785205217 cado polynomial n: 37987516183818884110428337185151442248104620901357999866527689079004796386655896601369267572816649617941186011483219767479405215651859489 skew: 66875.33 c0: -1429183724707689104653813584216 c1: 98938939239826934107699053 c2: 3788831287605545487346 c3: -49588822728207053 c4: -478252713090 c5: 1348200 Y0: -177987074533213777224143750 Y1: 26467520719318535671 # MurphyE (Bf=2.684e+08,Bg=1.342e+08,area=3.578e+14) = 1.054e-07 # f(x) = 1348200*x^5-478252713090*x^4-49588822728207053*x^3+3788831287605545487346*x^2+98938939239826934107699053*x-1429183724707689104653813584216 # g(x) = 26467520719318535671*x-177987074533213777224143750 cado parameters (extracts) tasks.lim0 = 3341873 tasks.lim1 = 16407032 tasks.lpb0 = 27 tasks.lpb1 = 28 tasks.sieve.mfb0 = 51 tasks.sieve.mfb1 = 62 tasks.I = 13 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 488924568450442061553758672036707671041048971753150052417 77696067318141614378897430766630866173382228249492259017672608576609122785205217 Info:Square Root: Total cpu/real time for sqrt: 1923.24/591.605 Info:Polynomial Selection (size optimized): Aggregate statistics: Info:Polynomial Selection (size optimized): potential collisions: 53395.3 Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 54351/40.900/49.100/54.330/0.958 Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 44087/39.720/44.023/49.770/1.215 Info:Polynomial Selection (size optimized): Total time: 18037.4 Info:Polynomial Selection (root optimized): Aggregate statistics: Info:Polynomial Selection (root optimized): Total time: 11302.2 Info:Polynomial Selection (root optimized): Rootsieve time: 11295.1 Info:Generate Factor Base: Total cpu/real time for makefb: 21.46/6.01204 Info:Generate Free Relations: Total cpu/real time for freerel: 322.37/81.954 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 17188797 Info:Lattice Sieving: Average J: 3778.04 for 794086 special-q, max bucket fill -bkmult 1.0,1s:1.188690 Info:Lattice Sieving: Total time: 463788s Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 50.97/116.336 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 116.0s Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 298.92/267.256 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 245.9s Info:Filtering - Singleton removal: Total cpu/real time for purge: 165.82/160.694 Info:Filtering - Merging: Merged matrix has 1497012 rows and total weight 255495658 (170.7 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 348.79/96.9691 Info:Filtering - Merging: Total cpu/real time for replay: 68.61/59.8124 Info:Linear Algebra: Total cpu/real time for bwc: 36546.5/18462.8 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: WCT time 11665.64, iteration CPU time 0.24, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (46848 iterations) Info:Linear Algebra: Lingen CPU time 311.21, WCT time 165.35 Info:Linear Algebra: Mksol: WCT time 6432.84, iteration CPU time 0.26, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (23552 iterations) Info:Quadratic Characters: Total cpu/real time for characters: 65.49/30.5083 Info:Square Root: Total cpu/real time for sqrt: 1923.24/591.605 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 968296/291.872 488924568450442061553758672036707671041048971753150052417 77696067318141614378897430766630866173382228249492259017672608576609122785205217 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)] Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz (8 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | December 23, 2022 16:42:44 UTC 2022 年 12 月 24 日 (土) 1 時 42 分 44 秒 (日本時間) | |
45 | 11e6 | 4480 | Ignacio Santos | December 28, 2022 15:57:47 UTC 2022 年 12 月 29 日 (木) 0 時 57 分 47 秒 (日本時間) | |
50 | 43e6 | 6454 | Ignacio Santos | April 24, 2023 15:13:14 UTC 2023 年 4 月 25 日 (火) 0 時 13 分 14 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | September 30, 2023 20:47:41 UTC 2023 年 10 月 1 日 (日) 5 時 47 分 41 秒 (日本時間) |
composite number 合成数 | 659817866192197179016195664879408261731746247907067779169310430087061970501866245443467616180948595565048312447972257270773088498450578935630868388259417290088129044555689669<174> |
prime factors 素因数 | 269273457462182439949451502492808257602502614549278439384310138959031684582147205049321<87> 2450363553878547238027249877612914408536267848970259909688642763804370618179728950808189<88> |
factorization results 素因数分解の結果 | Number: n N=659817866192197179016195664879408261731746247907067779169310430087061970501866245443467616180948595565048312447972257270773088498450578935630868388259417290088129044555689669 ( 174 digits) SNFS difficulty: 205 digits. Divisors found: Sun Oct 1 07:41:06 2023 prp87 factor: 269273457462182439949451502492808257602502614549278439384310138959031684582147205049321 Sun Oct 1 07:41:06 2023 prp88 factor: 2450363553878547238027249877612914408536267848970259909688642763804370618179728950808189 Sun Oct 1 07:41:06 2023 elapsed time 04:31:08 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.098). Factorization parameters were as follows: # # N = 73x10^204+35 = 81(203)5 # n: 659817866192197179016195664879408261731746247907067779169310430087061970501866245443467616180948595565048312447972257270773088498450578935630868388259417290088129044555689669 m: 10000000000000000000000000000000000000000 deg: 5 c5: 146000 c0: 7 skew: 0.14 # Murphy_E = 5.768e-12 type: snfs lss: 1 rlim: 18400000 alim: 18400000 lpbr: 27 lpba: 27 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 18400000/18400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 56/56 Sieved special-q in [100000, 92400000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 3915615 hash collisions in 19757283 relations (16067839 unique) Msieve: matrix is 2840801 x 2841026 (799.4 MB) Sieving start time: 2023/09/29 08:36:23 Sieving end time : 2023/10/01 03:09:18 Total sieving time: 41hrs 32min 55secs. Total relation processing time: 4hrs 21min 0sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 4min 38sec. Prototype def-par.txt line would be: snfs,205,5,0,0,0,0,0,0,0,0,18400000,18400000,27,27,56,56,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 / 2078 | Dmitry Domanov | January 29, 2023 10:18:16 UTC 2023 年 1 月 29 日 (日) 19 時 18 分 16 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | April 25, 2024 21:37:37 UTC 2024 年 4 月 26 日 (金) 6 時 37 分 37 秒 (日本時間) |
composite number 合成数 | 330257221998886578868172499322452749015942725157217671181690969429941166476006341468946899435704562822315365552808181759976588258438909150047647894521324079545344998840971972218169642071672244581<195> |
prime factors 素因数 | 31151792088698548730158824464852843905252027959236701792822687031991792594301062601029928483201<95> 10601548092595913864664077623407513788949176558878527962458571136527985111269238177775876259656145381<101> |
factorization results 素因数分解の結果 | Number: n N=330257221998886578868172499322452749015942725157217671181690969429941166476006341468946899435704562822315365552808181759976588258438909150047647894521324079545344998840971972218169642071672244581 ( 195 digits) SNFS difficulty: 206 digits. Divisors found: Thu Apr 25 06:15:26 2024 prp95 factor: 31151792088698548730158824464852843905252027959236701792822687031991792594301062601029928483201 Thu Apr 25 06:15:26 2024 prp101 factor: 10601548092595913864664077623407513788949176558878527962458571136527985111269238177775876259656145381 Thu Apr 25 06:15:26 2024 elapsed time 03:42:17 (Msieve 1.44 - dependency 4) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=1.941). Factorization parameters were as follows: # # N = 73x10^205+35 = 81(204)5 # n: 330257221998886578868172499322452749015942725157217671181690969429941166476006341468946899435704562822315365552808181759976588258438909150047647894521324079545344998840971972218169642071672244581 m: 100000000000000000000000000000000000000000 deg: 5 c5: 73 c0: 35 skew: 0.86 # Murphy_E = 6.689e-12 type: snfs lss: 1 rlim: 19600000 alim: 19600000 lpbr: 27 lpba: 27 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 19600000/19600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 56/56 Sieved special-q in [100000, 49800000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 4494295 hash collisions in 20652679 relations (16227579 unique) Msieve: matrix is 2561560 x 2561785 (720.9 MB) Sieving start time: 2024/04/24 05:57:29 Sieving end time : 2024/04/25 02:32:44 Total sieving time: 20hrs 35min 15secs. Total relation processing time: 3hrs 24min 5sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 12min 36sec. Prototype def-par.txt line would be: snfs,206,5,0,0,0,0,0,0,0,0,19600000,19600000,27,27,56,56,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | January 29, 2023 10:18:22 UTC 2023 年 1 月 29 日 (日) 19 時 18 分 22 秒 (日本時間) |
2350 | Ignacio Santos | April 22, 2024 15:17:00 UTC 2024 年 4 月 23 日 (火) 0 時 17 分 0 秒 (日本時間) | |||
45 | 11e6 | 1600 / 3519 | Dmitry Domanov | April 22, 2024 16:32:10 UTC 2024 年 4 月 23 日 (火) 1 時 32 分 10 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 8, 2023 10:57:35 UTC 2023 年 1 月 8 日 (日) 19 時 57 分 35 秒 (日本時間) |
composite number 合成数 | 2827218717939114086448926951863463851703257049776475720548885162916092294588179500744431558914437929831184437007352246723801269440123227388609431537943<151> |
prime factors 素因数 | 3284574818644341024488488307070323377<37> |
composite cofactor 合成数の残り | 860756376104109022379713923999461563752015343628298852881650868907243314757715307393813450514077248372408846873159<114> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @6ac90a82cbf2 with GMP-ECM 7.0.5-dev on Sat Jan 7 07:37:22 2023 Input number is 2827218717939114086448926951863463851703257049776475720548885162916092294588179500744431558914437929831184437007352246723801269440123227388609431537943 (151 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:2867982517 Step 1 took 0ms Step 2 took 3625ms ********** Factor found in step 2: 3284574818644341024488488307070323377 Found prime factor of 37 digits: 3284574818644341024488488307070323377 Composite cofactor 860756376104109022379713923999461563752015343628298852881650868907243314757715307393813450514077248372408846873159 has 114 digits |
name 名前 | Ignacio Santos |
---|---|
date 日付 | January 10, 2023 11:17:53 UTC 2023 年 1 月 10 日 (火) 20 時 17 分 53 秒 (日本時間) |
composite number 合成数 | 860756376104109022379713923999461563752015343628298852881650868907243314757715307393813450514077248372408846873159<114> |
prime factors 素因数 | 29478171388396941802850005573701038694505376104889<50> 29199788710195092702683415342653983288477490182774861635374994431<65> |
factorization results 素因数分解の結果 | -> makeJobFile(): Adjusted to q0=1750000, q1=1850000. -> client 1 q0: 1750000 LatSieveTime: 86 LatSieveTime: 87 LatSieveTime: 87 LatSieveTime: 88 LatSieveTime: 90 LatSieveTime: 91 LatSieveTime: 91 LatSieveTime: 92 LatSieveTime: 93 LatSieveTime: 94 LatSieveTime: 94 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 115 LatSieveTime: 116 -> makeJobFile(): Adjusted to q0=1850001, q1=1950000. -> client 1 q0: 1850001 LatSieveTime: 85 LatSieveTime: 92 LatSieveTime: 92 LatSieveTime: 93 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 116 LatSieveTime: 119 -> makeJobFile(): Adjusted to q0=1950001, q1=2050000. -> client 1 q0: 1950001 LatSieveTime: 83 LatSieveTime: 85 LatSieveTime: 85 LatSieveTime: 87 LatSieveTime: 91 LatSieveTime: 91 LatSieveTime: 92 LatSieveTime: 92 LatSieveTime: 93 LatSieveTime: 93 LatSieveTime: 93 LatSieveTime: 93 LatSieveTime: 94 LatSieveTime: 94 LatSieveTime: 94 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 107 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 118 LatSieveTime: 120 -> makeJobFile(): Adjusted to q0=2050001, q1=2150000. -> client 1 q0: 2050001 LatSieveTime: 91 LatSieveTime: 91 LatSieveTime: 92 LatSieveTime: 92 LatSieveTime: 93 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 123 -> makeJobFile(): Adjusted to q0=2150001, q1=2250000. -> client 1 q0: 2150001 LatSieveTime: 83 LatSieveTime: 85 LatSieveTime: 89 LatSieveTime: 89 LatSieveTime: 90 LatSieveTime: 90 LatSieveTime: 90 LatSieveTime: 94 LatSieveTime: 96 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 -> makeJobFile(): Adjusted to q0=2250001, q1=2350000. -> client 1 q0: 2250001 LatSieveTime: 82 LatSieveTime: 85 LatSieveTime: 86 LatSieveTime: 88 LatSieveTime: 90 LatSieveTime: 91 LatSieveTime: 92 LatSieveTime: 93 LatSieveTime: 93 LatSieveTime: 94 LatSieveTime: 94 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 -> makeJobFile(): Adjusted to q0=2350001, q1=2450000. -> client 1 q0: 2350001 LatSieveTime: 86 LatSieveTime: 90 LatSieveTime: 91 LatSieveTime: 92 LatSieveTime: 93 LatSieveTime: 93 LatSieveTime: 93 LatSieveTime: 95 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 118 -> makeJobFile(): Adjusted to q0=2450001, q1=2550000. -> client 1 q0: 2450001 LatSieveTime: 87 LatSieveTime: 89 LatSieveTime: 89 LatSieveTime: 91 LatSieveTime: 94 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 115 LatSieveTime: 119 -> makeJobFile(): Adjusted to q0=2550001, q1=2650000. -> client 1 q0: 2550001 LatSieveTime: 89 LatSieveTime: 90 LatSieveTime: 90 LatSieveTime: 91 LatSieveTime: 92 LatSieveTime: 94 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 125 -> makeJobFile(): Adjusted to q0=2650001, q1=2750000. -> client 1 q0: 2650001 LatSieveTime: 86 LatSieveTime: 86 LatSieveTime: 89 LatSieveTime: 89 LatSieveTime: 90 LatSieveTime: 92 LatSieveTime: 93 LatSieveTime: 93 LatSieveTime: 94 LatSieveTime: 94 LatSieveTime: 94 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 103 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 130 LatSieveTime: 132 -> makeJobFile(): Adjusted to q0=2750001, q1=2850000. -> client 1 q0: 2750001 LatSieveTime: 91 LatSieveTime: 92 LatSieveTime: 93 LatSieveTime: 94 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 100 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 126 -> makeJobFile(): Adjusted to q0=2850001, q1=2950000. -> client 1 q0: 2850001 LatSieveTime: 85 LatSieveTime: 88 LatSieveTime: 92 LatSieveTime: 93 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 115 Tue Jan 10 12:11:48 2023 Tue Jan 10 12:11:48 2023 Tue Jan 10 12:11:48 2023 Msieve v. 1.52 (SVN 927) Tue Jan 10 12:11:48 2023 random seeds: c03bc8f8 c4064c58 Tue Jan 10 12:11:48 2023 factoring 860756376104109022379713923999461563752015343628298852881650868907243314757715307393813450514077248372408846873159 (114 digits) Tue Jan 10 12:11:49 2023 searching for 15-digit factors Tue Jan 10 12:11:49 2023 commencing number field sieve (114-digit input) Tue Jan 10 12:11:49 2023 R0: -7938620576879754211611 Tue Jan 10 12:11:49 2023 R1: 913193257097 Tue Jan 10 12:11:49 2023 A0: 1774750854819466189292683232 Tue Jan 10 12:11:49 2023 A1: 389146446367662139682840 Tue Jan 10 12:11:49 2023 A2: 12436625301160978136 Tue Jan 10 12:11:49 2023 A3: -283424940382212 Tue Jan 10 12:11:49 2023 A4: -4167342785 Tue Jan 10 12:11:49 2023 A5: 27300 Tue Jan 10 12:11:49 2023 skew 51972.07, size 4.651e-011, alpha -5.871, combined = 4.995e-010 rroots = 5 Tue Jan 10 12:11:49 2023 Tue Jan 10 12:11:49 2023 commencing relation filtering Tue Jan 10 12:11:49 2023 estimated available RAM is 65413.5 MB Tue Jan 10 12:11:49 2023 commencing duplicate removal, pass 1 Tue Jan 10 12:12:05 2023 found 920247 hash collisions in 8237834 relations Tue Jan 10 12:12:13 2023 added 58962 free relations Tue Jan 10 12:12:13 2023 commencing duplicate removal, pass 2 Tue Jan 10 12:12:16 2023 found 583394 duplicates and 7713402 unique relations Tue Jan 10 12:12:16 2023 memory use: 41.3 MB Tue Jan 10 12:12:16 2023 reading ideals above 100000 Tue Jan 10 12:12:16 2023 commencing singleton removal, initial pass Tue Jan 10 12:12:43 2023 memory use: 188.3 MB Tue Jan 10 12:12:43 2023 reading all ideals from disk Tue Jan 10 12:12:44 2023 memory use: 263.7 MB Tue Jan 10 12:12:44 2023 keeping 8257382 ideals with weight <= 200, target excess is 41541 Tue Jan 10 12:12:44 2023 commencing in-memory singleton removal Tue Jan 10 12:12:44 2023 begin with 7713402 relations and 8257382 unique ideals Tue Jan 10 12:12:47 2023 reduce to 2905791 relations and 2601153 ideals in 16 passes Tue Jan 10 12:12:47 2023 max relations containing the same ideal: 103 Tue Jan 10 12:12:48 2023 removing 656677 relations and 528452 ideals in 128225 cliques Tue Jan 10 12:12:48 2023 commencing in-memory singleton removal Tue Jan 10 12:12:48 2023 begin with 2249114 relations and 2601153 unique ideals Tue Jan 10 12:12:48 2023 reduce to 2133236 relations and 1950435 ideals in 9 passes Tue Jan 10 12:12:48 2023 max relations containing the same ideal: 83 Tue Jan 10 12:12:49 2023 removing 522924 relations and 394699 ideals in 128225 cliques Tue Jan 10 12:12:49 2023 commencing in-memory singleton removal Tue Jan 10 12:12:49 2023 begin with 1610312 relations and 1950435 unique ideals Tue Jan 10 12:12:49 2023 reduce to 1508615 relations and 1447782 ideals in 10 passes Tue Jan 10 12:12:49 2023 max relations containing the same ideal: 72 Tue Jan 10 12:12:49 2023 removing 87466 relations and 74821 ideals in 12645 cliques Tue Jan 10 12:12:49 2023 commencing in-memory singleton removal Tue Jan 10 12:12:49 2023 begin with 1421149 relations and 1447782 unique ideals Tue Jan 10 12:12:49 2023 reduce to 1417940 relations and 1369713 ideals in 7 passes Tue Jan 10 12:12:49 2023 max relations containing the same ideal: 66 Tue Jan 10 12:12:49 2023 relations with 0 large ideals: 135 Tue Jan 10 12:12:49 2023 relations with 1 large ideals: 433 Tue Jan 10 12:12:49 2023 relations with 2 large ideals: 6648 Tue Jan 10 12:12:49 2023 relations with 3 large ideals: 47571 Tue Jan 10 12:12:49 2023 relations with 4 large ideals: 174263 Tue Jan 10 12:12:49 2023 relations with 5 large ideals: 352936 Tue Jan 10 12:12:49 2023 relations with 6 large ideals: 415501 Tue Jan 10 12:12:49 2023 relations with 7+ large ideals: 420453 Tue Jan 10 12:12:49 2023 commencing 2-way merge Tue Jan 10 12:12:50 2023 reduce to 826304 relation sets and 778077 unique ideals Tue Jan 10 12:12:50 2023 commencing full merge Tue Jan 10 12:12:58 2023 memory use: 94.9 MB Tue Jan 10 12:12:58 2023 found 420634 cycles, need 414277 Tue Jan 10 12:12:58 2023 weight of 414277 cycles is about 29317105 (70.77/cycle) Tue Jan 10 12:12:58 2023 distribution of cycle lengths: Tue Jan 10 12:12:58 2023 1 relations: 44329 Tue Jan 10 12:12:58 2023 2 relations: 43023 Tue Jan 10 12:12:58 2023 3 relations: 44863 Tue Jan 10 12:12:58 2023 4 relations: 42993 Tue Jan 10 12:12:58 2023 5 relations: 40171 Tue Jan 10 12:12:58 2023 6 relations: 36233 Tue Jan 10 12:12:58 2023 7 relations: 32473 Tue Jan 10 12:12:58 2023 8 relations: 28187 Tue Jan 10 12:12:58 2023 9 relations: 23607 Tue Jan 10 12:12:58 2023 10+ relations: 78398 Tue Jan 10 12:12:58 2023 heaviest cycle: 20 relations Tue Jan 10 12:12:58 2023 commencing cycle optimization Tue Jan 10 12:12:59 2023 start with 2482752 relations Tue Jan 10 12:13:01 2023 pruned 57374 relations Tue Jan 10 12:13:01 2023 memory use: 82.8 MB Tue Jan 10 12:13:01 2023 distribution of cycle lengths: Tue Jan 10 12:13:01 2023 1 relations: 44329 Tue Jan 10 12:13:01 2023 2 relations: 43930 Tue Jan 10 12:13:01 2023 3 relations: 46211 Tue Jan 10 12:13:01 2023 4 relations: 44053 Tue Jan 10 12:13:01 2023 5 relations: 41265 Tue Jan 10 12:13:01 2023 6 relations: 36911 Tue Jan 10 12:13:01 2023 7 relations: 32916 Tue Jan 10 12:13:01 2023 8 relations: 28315 Tue Jan 10 12:13:01 2023 9 relations: 23638 Tue Jan 10 12:13:01 2023 10+ relations: 72709 Tue Jan 10 12:13:01 2023 heaviest cycle: 20 relations Tue Jan 10 12:13:02 2023 RelProcTime: 73 Tue Jan 10 12:13:02 2023 elapsed time 00:01:14 Tue Jan 10 12:13:02 2023 Tue Jan 10 12:13:02 2023 Tue Jan 10 12:13:02 2023 Msieve v. 1.52 (SVN 927) Tue Jan 10 12:13:02 2023 random seeds: f67e9144 f844661d Tue Jan 10 12:13:02 2023 factoring 860756376104109022379713923999461563752015343628298852881650868907243314757715307393813450514077248372408846873159 (114 digits) Tue Jan 10 12:13:02 2023 searching for 15-digit factors Tue Jan 10 12:13:02 2023 commencing number field sieve (114-digit input) Tue Jan 10 12:13:02 2023 R0: -7938620576879754211611 Tue Jan 10 12:13:02 2023 R1: 913193257097 Tue Jan 10 12:13:02 2023 A0: 1774750854819466189292683232 Tue Jan 10 12:13:02 2023 A1: 389146446367662139682840 Tue Jan 10 12:13:02 2023 A2: 12436625301160978136 Tue Jan 10 12:13:02 2023 A3: -283424940382212 Tue Jan 10 12:13:02 2023 A4: -4167342785 Tue Jan 10 12:13:02 2023 A5: 27300 Tue Jan 10 12:13:02 2023 skew 51972.07, size 4.651e-011, alpha -5.871, combined = 4.995e-010 rroots = 5 Tue Jan 10 12:13:02 2023 Tue Jan 10 12:13:02 2023 commencing linear algebra Tue Jan 10 12:13:02 2023 read 414277 cycles Tue Jan 10 12:13:03 2023 cycles contain 1382423 unique relations Tue Jan 10 12:13:06 2023 read 1382423 relations Tue Jan 10 12:13:07 2023 using 20 quadratic characters above 134213804 Tue Jan 10 12:13:10 2023 building initial matrix Tue Jan 10 12:13:27 2023 memory use: 175.2 MB Tue Jan 10 12:13:28 2023 read 414277 cycles Tue Jan 10 12:13:28 2023 matrix is 414100 x 414277 (124.4 MB) with weight 39079379 (94.33/col) Tue Jan 10 12:13:28 2023 sparse part has weight 28058830 (67.73/col) Tue Jan 10 12:13:29 2023 filtering completed in 2 passes Tue Jan 10 12:13:29 2023 matrix is 413828 x 414005 (124.4 MB) with weight 39068745 (94.37/col) Tue Jan 10 12:13:29 2023 sparse part has weight 28055593 (67.77/col) Tue Jan 10 12:13:30 2023 matrix starts at (0, 0) Tue Jan 10 12:13:30 2023 matrix is 413828 x 414005 (124.4 MB) with weight 39068745 (94.37/col) Tue Jan 10 12:13:30 2023 sparse part has weight 28055593 (67.77/col) Tue Jan 10 12:13:30 2023 saving the first 48 matrix rows for later Tue Jan 10 12:13:30 2023 matrix includes 64 packed rows Tue Jan 10 12:13:30 2023 matrix is 413780 x 414005 (119.3 MB) with weight 30886079 (74.60/col) Tue Jan 10 12:13:30 2023 sparse part has weight 27141037 (65.56/col) Tue Jan 10 12:13:30 2023 using block size 8192 and superblock size 12582912 for processor cache size 131072 kB Tue Jan 10 12:13:32 2023 commencing Lanczos iteration (32 threads) Tue Jan 10 12:13:32 2023 memory use: 92.3 MB Tue Jan 10 12:13:37 2023 linear algebra at 2.9%, ETA 0h 2m Tue Jan 10 12:16:23 2023 lanczos halted after 6544 iterations (dim = 413780) Tue Jan 10 12:16:23 2023 recovered 30 nontrivial dependencies Tue Jan 10 12:16:23 2023 BLanczosTime: 201 Tue Jan 10 12:16:23 2023 elapsed time 00:03:21 Tue Jan 10 12:16:23 2023 Tue Jan 10 12:16:23 2023 Tue Jan 10 12:16:23 2023 Msieve v. 1.52 (SVN 927) Tue Jan 10 12:16:23 2023 random seeds: 5e7924f0 87093a88 Tue Jan 10 12:16:23 2023 factoring 860756376104109022379713923999461563752015343628298852881650868907243314757715307393813450514077248372408846873159 (114 digits) Tue Jan 10 12:16:23 2023 searching for 15-digit factors Tue Jan 10 12:16:24 2023 commencing number field sieve (114-digit input) Tue Jan 10 12:16:24 2023 R0: -7938620576879754211611 Tue Jan 10 12:16:24 2023 R1: 913193257097 Tue Jan 10 12:16:24 2023 A0: 1774750854819466189292683232 Tue Jan 10 12:16:24 2023 A1: 389146446367662139682840 Tue Jan 10 12:16:24 2023 A2: 12436625301160978136 Tue Jan 10 12:16:24 2023 A3: -283424940382212 Tue Jan 10 12:16:24 2023 A4: -4167342785 Tue Jan 10 12:16:24 2023 A5: 27300 Tue Jan 10 12:16:24 2023 skew 51972.07, size 4.651e-011, alpha -5.871, combined = 4.995e-010 rroots = 5 Tue Jan 10 12:16:24 2023 Tue Jan 10 12:16:24 2023 commencing square root phase Tue Jan 10 12:16:24 2023 reading relations for dependency 1 Tue Jan 10 12:16:24 2023 read 206788 cycles Tue Jan 10 12:16:24 2023 cycles contain 690768 unique relations Tue Jan 10 12:16:26 2023 read 690768 relations Tue Jan 10 12:16:27 2023 multiplying 690768 relations Tue Jan 10 12:16:41 2023 multiply complete, coefficients have about 30.88 million bits Tue Jan 10 12:16:41 2023 initial square root is modulo 740260567 Tue Jan 10 12:16:58 2023 GCD is N, no factor found Tue Jan 10 12:16:58 2023 reading relations for dependency 2 Tue Jan 10 12:16:58 2023 read 207038 cycles Tue Jan 10 12:16:58 2023 cycles contain 691572 unique relations Tue Jan 10 12:17:00 2023 read 691572 relations Tue Jan 10 12:17:02 2023 multiplying 691572 relations Tue Jan 10 12:17:15 2023 multiply complete, coefficients have about 30.92 million bits Tue Jan 10 12:17:15 2023 initial square root is modulo 757008253 Tue Jan 10 12:17:33 2023 sqrtTime: 69 Tue Jan 10 12:17:33 2023 prp50 factor: 29478171388396941802850005573701038694505376104889 Tue Jan 10 12:17:33 2023 prp65 factor: 29199788710195092702683415342653983288477490182774861635374994431 Tue Jan 10 12:17:33 2023 elapsed time 00:01:10 |
software ソフトウェア | GNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | January 8, 2023 10:57:29 UTC 2023 年 1 月 8 日 (日) 19 時 57 分 29 秒 (日本時間) |
2350 | Ignacio Santos | January 10, 2023 09:25:25 UTC 2023 年 1 月 10 日 (火) 18 時 25 分 25 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 8, 2023 14:17:21 UTC 2023 年 1 月 8 日 (日) 23 時 17 分 21 秒 (日本時間) |
composite number 合成数 | 93512664665648490824441208433951036080786519140797384238235484980089167421740035700867747297525298428539811313120586417533387632008741081230474137818775987900051548466880038253151546890057<188> |
prime factors 素因数 | 175887545565400475786876111542270751217037<42> |
composite cofactor 合成数の残り | 531661661233868120708440306277692224663834360254899035587234158436673159804994085207444639065012144352372048058604344411278792893005526332712428461<147> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @1f395b902b49 with GMP-ECM 7.0.5-dev on Sat Jan 7 19:19:54 2023 Input number is 93512664665648490824441208433951036080786519140797384238235484980089167421740035700867747297525298428539811313120586417533387632008741081230474137818775987900051548466880038253151546890057 (188 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:1392936152 Step 1 took 0ms Step 2 took 3209ms ********** Factor found in step 2: 175887545565400475786876111542270751217037 Found prime factor of 42 digits: 175887545565400475786876111542270751217037 Composite cofactor 531661661233868120708440306277692224663834360254899035587234158436673159804994085207444639065012144352372048058604344411278792893005526332712428461 has 147 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | January 8, 2023 14:17:12 UTC 2023 年 1 月 8 日 (日) 23 時 17 分 12 秒 (日本時間) |
2350 | Ignacio Santos | September 18, 2024 09:43:52 UTC 2024 年 9 月 18 日 (水) 18 時 43 分 52 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | January 29, 2023 10:18:33 UTC 2023 年 1 月 29 日 (日) 19 時 18 分 33 秒 (日本時間) |
2350 | Ignacio Santos | September 18, 2024 09:56:52 UTC 2024 年 9 月 18 日 (水) 18 時 56 分 52 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | January 29, 2023 10:18:38 UTC 2023 年 1 月 29 日 (日) 19 時 18 分 38 秒 (日本時間) |
2350 | Ignacio Santos | September 18, 2024 09:57:09 UTC 2024 年 9 月 18 日 (水) 18 時 57 分 9 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | January 29, 2023 10:18:43 UTC 2023 年 1 月 29 日 (日) 19 時 18 分 43 秒 (日本時間) |
2350 | Ignacio Santos | September 18, 2024 13:51:06 UTC 2024 年 9 月 18 日 (水) 22 時 51 分 6 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | January 29, 2023 10:18:47 UTC 2023 年 1 月 29 日 (日) 19 時 18 分 47 秒 (日本時間) |
2350 | Ignacio Santos | September 18, 2024 13:51:16 UTC 2024 年 9 月 18 日 (水) 22 時 51 分 16 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | January 29, 2023 10:18:52 UTC 2023 年 1 月 29 日 (日) 19 時 18 分 52 秒 (日本時間) |
2350 | Ignacio Santos | September 18, 2024 14:04:26 UTC 2024 年 9 月 18 日 (水) 23 時 4 分 26 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | January 29, 2023 10:18:58 UTC 2023 年 1 月 29 日 (日) 19 時 18 分 58 秒 (日本時間) |
2350 | Ignacio Santos | September 18, 2024 14:04:38 UTC 2024 年 9 月 18 日 (水) 23 時 4 分 38 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | September 18, 2024 14:31:45 UTC 2024 年 9 月 18 日 (水) 23 時 31 分 45 秒 (日本時間) |
composite number 合成数 | 15955900798700972478696241209596987656283384432858293056955430639334308555432274599941960541406121135397742532942688997135381046218239906586508589569680792046647362907925834784329027<182> |
prime factors 素因数 | 510212677885074489298159461160367706643<39> |
composite cofactor 合成数の残り | 31273038656822718971185567970155912082065270348243775746739138179544259588895888145475076517464766256109471363739978827652160662811615315164689<143> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:720073338 Step 1 took 5094ms ********** Factor found in step 2: 510212677885074489298159461160367706643 Found prime factor of 39 digits: 510212677885074489298159461160367706643 Composite cofactor 31273038656822718971185567970155912082065270348243775746739138179544259588895888145475076517464766256109471363739978827652160662811615315164689 has 143 digits |
software ソフトウェア | GMP-ECM |
name 名前 | Thomas Kozlowski |
---|---|
date 日付 | September 21, 2024 02:14:27 UTC 2024 年 9 月 21 日 (土) 11 時 14 分 27 秒 (日本時間) |
composite number 合成数 | 31273038656822718971185567970155912082065270348243775746739138179544259588895888145475076517464766256109471363739978827652160662811615315164689<143> |
prime factors 素因数 | 5823391758884415404570429535962465026761460619552985651535479463<64> 5370244687575970540290905501352598295542226747161517783773673994994266111060103<79> |
factorization results 素因数分解の結果 | FACTORS 5370244687575970540290905501352598295542226747161517783773673994994266111060103 5823391758884415404570429535962465026761460619552985651535479463 POLYNOMIAL n: 31273038656822718971185567970155912082065270348243775746739138179544259588895888145475076517464766256109471363739978827652160662811615315164689 skew: 576273.416 c0: -21792994444585087517259709331383680 c1: 98289310928250500810309222572 c2: -32231987192138329023840 c3: -340576868209807417 c4: 760375975320 c5: 403200 Y0: -4094482398910167859664594725 Y1: 23918140684564208423 # MurphyE (Bf=1.074e+09,Bg=1.074e+09,area=1.476e+14) = 7.390e-07 # f(x) = 403200*x^5+760375975320*x^4-340576868209807417*x^3-32231987192138329023840*x^2+98289310928250500810309222572*x-21792994444585087517259709331383680 # g(x) = 23918140684564208423*x-4094482398910167859664594725 |
software ソフトウェア | cado-nfs |
execution environment 実行環境 | 2x Xeon E5-2698v4, 128GB DDR4, Ubuntu Server 24.04 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 / 2078 | Dmitry Domanov | January 29, 2023 10:19:03 UTC 2023 年 1 月 29 日 (日) 19 時 19 分 3 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 7, 2023 10:12:33 UTC 2023 年 1 月 7 日 (土) 19 時 12 分 33 秒 (日本時間) |
composite number 合成数 | 2332980582039149135064413256264910636476633970616301109364197459989906511948327630066627856023601293958646615526213206479222506285613267523958435125856931835193478114147449161573830621<184> |
prime factors 素因数 | 24344956566533354536128914246373388001<38> |
composite cofactor 合成数の残り | 95830139423878144679735369501378619147261512394695637111750343856178329562850621440140988900026275347790355303252957187099222397309826431483882621<146> |
factorization results 素因数分解の結果 | GPU: factor 24344956566533354536128914246373388001 found in Step 1 with curve 1313 (-sigma 3:383287864) Computing 1792 Step 1 took 193ms of CPU time / 178215ms of GPU time Throughput: 10.055 curves per second (on average 99.45ms per Step 1) ********** Factor found in step 1: 24344956566533354536128914246373388001 Found prime factor of 38 digits: 24344956566533354536128914246373388001 Composite cofactor 95830139423878144679735369501378619147261512394695637111750343856178329562850621440140988900026275347790355303252957187099222397309826431483882621 has 146 digits Peak memory usage: 9428MB |
name 名前 | Bob Backstrom |
---|---|
date 日付 | May 29, 2024 19:12:33 UTC 2024 年 5 月 30 日 (木) 4 時 12 分 33 秒 (日本時間) |
composite number 合成数 | 95830139423878144679735369501378619147261512394695637111750343856178329562850621440140988900026275347790355303252957187099222397309826431483882621<146> |
prime factors 素因数 | 2872767048543974395863992590578907673425552137562601164131780603544103<70> 33358130960339592263184680201111727030121976071442636742687132273216224581307<77> |
factorization results 素因数分解の結果 | CADO: STA:Tue May 28 12:33:57 AM AEST 2024 (95830139423878144679735369501378619147261512394695637111750343856178329562850621440140988900026275347790355303252957187099222397309826431483882621 - C146) /home/bob/Downloads/Math/cado-nfs/cado-nfs.py -t 18 --no-colors --screenlog DEBUG 95830139423878144679735369501378619147261512394695637111750343856178329562850621440140988900026275347790355303252957187099222397309826431483882621 2>&1 | tee -a log-27 /home/bob/Downloads/Math/cado-nfs/cado-nfs.py:93: DeprecationWarning: 'locale.getdefaultlocale' is deprecated and slated for removal in Python 3.15. Use setlocale(), getencoding() and getlocale() instead. loc = locale.getdefaultlocale()[1] Debug:root: Looking for parameter file for c146 in directory /home/bob/Downloads/Math/cado-nfs/parameters/factor Info:root: Using default parameter file /home/bob/Downloads/Math/cado-nfs/parameters/factor/params.c145 Debug:Parameters: Reading parameter file /home/bob/Downloads/Math/cado-nfs/parameters/factor/params.c145 Info:root: No database exists yet Info:root: Created temporary directory /tmp/cado.hmukq5pv Info:Database: Opened connection to database /tmp/cado.hmukq5pv/c145.db Info:root: Set tasks.threads=18 based on --server-threads 18 Info:root: tasks.threads = 18 [via tasks.threads] Info:root: tasks.polyselect.threads = 2 [via tasks.polyselect.threads] Info:root: tasks.sieve.las.threads = 2 [via tasks.sieve.las.threads] Info:root: tasks.linalg.bwc.threads = 18 [via tasks.threads] Info:root: tasks.sqrt.threads = 8 [via tasks.sqrt.threads] Info:root: slaves.scriptpath is /home/bob/Downloads/Math/cado-nfs/build/VM9 Info:root: Command line parameters: /home/bob/Downloads/Math/cado-nfs/cado-nfs.py -t 18 --no-colors --screenlog DEBUG 95830139423878144679735369501378619147261512394695637111750343856178329562850621440140988900026275347790355303252957187099222397309826431483882621 Debug:root: Root parameter dictionary: N = 95830139423878144679735369501378619147261512394695637111750343856178329562850621440140988900026275347790355303252957187099222397309826431483882621 name = c145 === Info:Polynomial Selection (root optimized): Best polynomial is: n: 95830139423878144679735369501378619147261512394695637111750343856178329562850621440140988900026275347790355303252957187099222397309826431483882621 skew: 1832646.095 c0: -485805442264377106255826828539066200 c1: 1083702429090773551204324381749 c2: 1093747892361634880680218 c3: -224600317674692201 c4: -172345218062 c5: 35280 Y0: -23468119605247381473295553866 Y1: 1087624287395579163949 # MurphyE (Bf=1.074e+09,Bg=1.074e+09,area=2.684e+14) = 4.379e-07 # f(x) = 35280*x^5-172345218062*x^4-224600317674692201*x^3+1093747892361634880680218*x^2+1083702429090773551204324381749*x-485805442264377106255826828539066200 # g(x) = 1087624287395579163949*x-23468119605247381473295553866 === Debug:Command: Process with PID 1707871 finished successfully Info:Square Root: finished Info:Square Root: Factors: 2872767048543974395863992590578907673425552137562601164131780603544103 33358130960339592263184680201111727030121976071442636742687132273216224581307 Debug:Square Root: Exit SqrtTask.run(sqrt) Info:Complete Factorization / Discrete logarithm: Square Root Info:Square Root: Total cpu/real time for sqrt: 2705.1/329.388 Info:HTTP server: Got notification to stop serving Workunits Info:Generate Free Relations: Total cpu/real time for freerel: 434.77/53.9213 Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 393.09/351.602 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 351.3s Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 89852003 Info:Lattice Sieving: Average J: 8160.57 for 529285 special-q, max bucket fill -bkmult 1.0,1s:1.191790 Info:Lattice Sieving: Total time: 1.05653e+06s Info:Generate Factor Base: Total cpu/real time for makefb: 6.2/1.12506 Info:Polynomial Selection (root optimized): Aggregate statistics: Info:Polynomial Selection (root optimized): Total time: 3151.83 Info:Polynomial Selection (root optimized): Rootsieve time: 3151.25 Info:Filtering - Merging: Total cpu/real time for merge: 260.48/40.7164 Info:Filtering - Merging: Total cpu/real time for replay: 45.31/40.035 Info:Polynomial Selection (size optimized): Aggregate statistics: Info:Polynomial Selection (size optimized): potential collisions: 133692 Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 92111/43.630/54.836/68.060/2.490 Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 78426/42.350/47.497/61.040/1.393 Info:Polynomial Selection (size optimized): Total time: 49002.3 Info:Quadratic Characters: Total cpu/real time for characters: 74.98/20.1817 Info:Filtering - Singleton removal: Total cpu/real time for purge: 569.28/553.208 Info:Square Root: Total cpu/real time for sqrt: 2705.1/329.388 Info:Linear Algebra: Total cpu/real time for bwc: 67607/8875.65 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 41520.02, WCT time 5385.19, iteration CPU time 0.05, COMM 0.01, cpu-wait 0.01, comm-wait 0.0 (80000 iterations) Info:Linear Algebra: Lingen CPU time 104.83, WCT time 105.95 Info:Linear Algebra: Mksol: CPU time 21604.04, WCT time 2834.25, iteration CPU time 0.05, COMM 0.01, cpu-wait 0.01, comm-wait 0.0 (40000 iterations) Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 1240.88/955.84 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 773.0s Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire Complete Factorization 1.11781e+06/134663 [1d 13:24:23] Info:root: Cleaning up computation data in /tmp/cado.hmukq5pv 2872767048543974395863992590578907673425552137562601164131780603544103 33358130960339592263184680201111727030121976071442636742687132273216224581307 END:Wed May 29 01:58:22 PM AEST 2024 (95830139423878144679735369501378619147261512394695637111750343856178329562850621440140988900026275347790355303252957187099222397309826431483882621 - C146) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | January 7, 2023 10:12:27 UTC 2023 年 1 月 7 日 (土) 19 時 12 分 27 秒 (日本時間) |
2350 | Ignacio Santos | January 10, 2023 09:33:27 UTC 2023 年 1 月 10 日 (火) 18 時 33 分 27 秒 (日本時間) | |||
45 | 11e6 | 4480 | Ignacio Santos | January 10, 2023 12:11:02 UTC 2023 年 1 月 10 日 (火) 21 時 11 分 2 秒 (日本時間) | |
50 | 43e6 | 6454 | Ignacio Santos | January 11, 2023 08:42:23 UTC 2023 年 1 月 11 日 (水) 17 時 42 分 23 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | January 29, 2023 10:19:11 UTC 2023 年 1 月 29 日 (日) 19 時 19 分 11 秒 (日本時間) |
2350 | Ignacio Santos | September 18, 2024 14:32:26 UTC 2024 年 9 月 18 日 (水) 23 時 32 分 26 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | September 18, 2024 14:32:49 UTC 2024 年 9 月 18 日 (水) 23 時 32 分 49 秒 (日本時間) |
composite number 合成数 | 359909224696480379902836273747554524585550262854544763363745507153227093294068981803731599903187041886602939285660456533933590016261476437606646355798290645361136963005298428555407074446950014230287153<201> |
prime factors 素因数 | 600063980059038151213905997754474132261<39> 599784750721198424697918456475824774472964608374834213700649292930217929162980853934584279126029097613360022987777675727242593905782049107324029604525583997446173<162> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:1398867595 Step 1 took 8781ms Step 2 took 3750ms ********** Factor found in step 2: 600063980059038151213905997754474132261 Found prime factor of 39 digits: 600063980059038151213905997754474132261 Prime cofactor 599784750721198424697918456475824774472964608374834213700649292930217929162980853934584279126029097613360022987777675727242593905782049107324029604525583997446173 has 162 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 / 2078 | Dmitry Domanov | January 29, 2023 10:19:17 UTC 2023 年 1 月 29 日 (日) 19 時 19 分 17 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | January 29, 2023 10:19:22 UTC 2023 年 1 月 29 日 (日) 19 時 19 分 22 秒 (日本時間) |
2350 | Ignacio Santos | September 18, 2024 14:33:12 UTC 2024 年 9 月 18 日 (水) 23 時 33 分 12 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | January 29, 2023 10:19:27 UTC 2023 年 1 月 29 日 (日) 19 時 19 分 27 秒 (日本時間) |
2350 | Ignacio Santos | September 18, 2024 15:04:33 UTC 2024 年 9 月 19 日 (木) 0 時 4 分 33 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | January 17, 2023 12:49:56 UTC 2023 年 1 月 17 日 (火) 21 時 49 分 56 秒 (日本時間) |
composite number 合成数 | 10868919469711610132635936383668539405996045502522779278379522732235013443666677338494829322966099144841673888598828694465067666259<131> |
prime factors 素因数 | 1152062010126409428875786061279176860743903199<46> 9434318095880119656322351099222133701502550689041802191049692466266072117661886044941<85> |
factorization results 素因数分解の結果 | -> makeJobFile(): Adjusted to q0=3750000, q1=3850000. -> client 1 q0: 3750000 LatSieveTime: 93 LatSieveTime: 96 LatSieveTime: 102 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 135 LatSieveTime: 137 LatSieveTime: 139 -> makeJobFile(): Adjusted to q0=3850001, q1=3950000. -> client 1 q0: 3850001 LatSieveTime: 99 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 137 LatSieveTime: 140 LatSieveTime: 142 -> makeJobFile(): Adjusted to q0=3950001, q1=4050000. -> client 1 q0: 3950001 LatSieveTime: 96 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 102 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 142 -> makeJobFile(): Adjusted to q0=4050001, q1=4150000. -> client 1 q0: 4050001 LatSieveTime: 95 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 -> makeJobFile(): Adjusted to q0=4150001, q1=4250000. -> client 1 q0: 4150001 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 143 -> makeJobFile(): Adjusted to q0=4250001, q1=4350000. -> client 1 q0: 4250001 LatSieveTime: 95 LatSieveTime: 97 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 145 -> makeJobFile(): Adjusted to q0=4350001, q1=4450000. -> client 1 q0: 4350001 LatSieveTime: 99 LatSieveTime: 104 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 138 LatSieveTime: 140 -> makeJobFile(): Adjusted to q0=4450001, q1=4550000. -> client 1 q0: 4450001 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 148 -> makeJobFile(): Adjusted to q0=4550001, q1=4650000. -> client 1 q0: 4550001 LatSieveTime: 98 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 140 -> makeJobFile(): Adjusted to q0=4650001, q1=4750000. -> client 1 q0: 4650001 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 111 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 142 LatSieveTime: 145 LatSieveTime: 149 -> makeJobFile(): Adjusted to q0=4750001, q1=4850000. -> client 1 q0: 4750001 LatSieveTime: 94 LatSieveTime: 101 LatSieveTime: 103 LatSieveTime: 106 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 143 -> makeJobFile(): Adjusted to q0=4850001, q1=4950000. -> client 1 q0: 4850001 LatSieveTime: 99 LatSieveTime: 103 LatSieveTime: 107 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 141 LatSieveTime: 145 -> makeJobFile(): Adjusted to q0=4950001, q1=5050000. -> client 1 q0: 4950001 LatSieveTime: 102 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 150 LatSieveTime: 153 -> makeJobFile(): Adjusted to q0=5050001, q1=5150000. -> client 1 q0: 5050001 LatSieveTime: 95 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 137 LatSieveTime: 141 LatSieveTime: 145 LatSieveTime: 150 -> makeJobFile(): Adjusted to q0=5150001, q1=5250000. -> client 1 q0: 5150001 LatSieveTime: 94 LatSieveTime: 93 LatSieveTime: 94 LatSieveTime: 107 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 137 -> makeJobFile(): Adjusted to q0=5250001, q1=5350000. -> client 1 q0: 5250001 LatSieveTime: 93 LatSieveTime: 95 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 147 -> makeJobFile(): Adjusted to q0=5350001, q1=5450000. -> client 1 q0: 5350001 LatSieveTime: 97 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 142 -> makeJobFile(): Adjusted to q0=5450001, q1=5550000. -> client 1 q0: 5450001 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 140 -> makeJobFile(): Adjusted to q0=5550001, q1=5650000. -> client 1 q0: 5550001 LatSieveTime: 107 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 141 LatSieveTime: 143 LatSieveTime: 145 -> makeJobFile(): Adjusted to q0=5650001, q1=5750000. -> client 1 q0: 5650001 LatSieveTime: 101 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 105 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 135 LatSieveTime: 137 LatSieveTime: 140 LatSieveTime: 145 LatSieveTime: 147 -> makeJobFile(): Adjusted to q0=5750001, q1=5850000. -> client 1 q0: 5750001 LatSieveTime: 97 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 137 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 143 LatSieveTime: 146 LatSieveTime: 150 -> makeJobFile(): Adjusted to q0=5850001, q1=5950000. -> client 1 q0: 5850001 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 141 -> makeJobFile(): Adjusted to q0=5950001, q1=6050000. -> client 1 q0: 5950001 LatSieveTime: 81 LatSieveTime: 95 LatSieveTime: 98 LatSieveTime: 104 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 137 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 156 -> makeJobFile(): Adjusted to q0=6050001, q1=6150000. -> client 1 q0: 6050001 LatSieveTime: 104 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 141 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 146 LatSieveTime: 149 -> makeJobFile(): Adjusted to q0=6150001, q1=6250000. -> client 1 q0: 6150001 LatSieveTime: 100 LatSieveTime: 103 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 110 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 140 LatSieveTime: 144 LatSieveTime: 148 -> makeJobFile(): Adjusted to q0=6250001, q1=6350000. -> client 1 q0: 6250001 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 138 -> makeJobFile(): Adjusted to q0=6350001, q1=6450000. -> client 1 q0: 6350001 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 106 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 139 LatSieveTime: 139 -> makeJobFile(): Adjusted to q0=6450001, q1=6550000. -> client 1 q0: 6450001 LatSieveTime: 98 LatSieveTime: 108 LatSieveTime: 111 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 142 -> makeJobFile(): Adjusted to q0=6550001, q1=6650000. -> client 1 q0: 6550001 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 160 -> makeJobFile(): Adjusted to q0=6650001, q1=6750000. -> client 1 q0: 6650001 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 149 LatSieveTime: 151 -> makeJobFile(): Adjusted to q0=6750001, q1=6850000. -> client 1 q0: 6750001 LatSieveTime: 99 LatSieveTime: 101 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 145 LatSieveTime: 147 LatSieveTime: 150 LatSieveTime: 152 -> makeJobFile(): Adjusted to q0=6850001, q1=6950000. -> client 1 q0: 6850001 LatSieveTime: 110 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 143 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 148 LatSieveTime: 147 -> makeJobFile(): Adjusted to q0=6950001, q1=7050000. -> client 1 q0: 6950001 LatSieveTime: 111 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 145 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 150 -> makeJobFile(): Adjusted to q0=7050001, q1=7150000. -> client 1 q0: 7050001 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 140 LatSieveTime: 143 LatSieveTime: 143 -> makeJobFile(): Adjusted to q0=7150001, q1=7250000. -> client 1 q0: 7150001 LatSieveTime: 99 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 144 -> makeJobFile(): Adjusted to q0=7250001, q1=7350000. -> client 1 q0: 7250001 LatSieveTime: 94 LatSieveTime: 102 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 148 LatSieveTime: 149 -> makeJobFile(): Adjusted to q0=7350001, q1=7450000. -> client 1 q0: 7350001 LatSieveTime: 103 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 138 LatSieveTime: 140 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 146 LatSieveTime: 150 -> makeJobFile(): Adjusted to q0=7450001, q1=7550000. -> client 1 q0: 7450001 LatSieveTime: 97 LatSieveTime: 109 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 146 LatSieveTime: 146 LatSieveTime: 149 LatSieveTime: 150 -> makeJobFile(): Adjusted to q0=7550001, q1=7650000. -> client 1 q0: 7550001 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 110 LatSieveTime: 113 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 144 LatSieveTime: 151 -> makeJobFile(): Adjusted to q0=7650001, q1=7750000. -> client 1 q0: 7650001 LatSieveTime: 99 LatSieveTime: 101 LatSieveTime: 105 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 135 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 141 LatSieveTime: 151 -> makeJobFile(): Adjusted to q0=7750001, q1=7850000. -> client 1 q0: 7750001 LatSieveTime: 100 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 110 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 143 LatSieveTime: 154 -> makeJobFile(): Adjusted to q0=7850001, q1=7950000. -> client 1 q0: 7850001 LatSieveTime: 103 LatSieveTime: 105 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 138 LatSieveTime: 141 LatSieveTime: 143 LatSieveTime: 148 LatSieveTime: 152 -> makeJobFile(): Adjusted to q0=7950001, q1=8050000. -> client 1 q0: 7950001 LatSieveTime: 94 LatSieveTime: 98 LatSieveTime: 104 LatSieveTime: 108 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 153 -> makeJobFile(): Adjusted to q0=8050001, q1=8150000. -> client 1 q0: 8050001 LatSieveTime: 100 LatSieveTime: 102 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 144 LatSieveTime: 158 -> makeJobFile(): Adjusted to q0=8150001, q1=8250000. -> client 1 q0: 8150001 LatSieveTime: 93 LatSieveTime: 99 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 105 LatSieveTime: 108 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 139 LatSieveTime: 144 LatSieveTime: 149 -> makeJobFile(): Adjusted to q0=8250001, q1=8350000. -> client 1 q0: 8250001 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 141 -> makeJobFile(): Adjusted to q0=8350001, q1=8450000. -> client 1 q0: 8350001 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 101 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 143 LatSieveTime: 145 -> makeJobFile(): Adjusted to q0=8450001, q1=8550000. -> client 1 q0: 8450001 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 147 -> makeJobFile(): Adjusted to q0=8550001, q1=8650000. -> client 1 q0: 8550001 LatSieveTime: 106 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 141 LatSieveTime: 142 -> makeJobFile(): Adjusted to q0=8650001, q1=8750000. -> client 1 q0: 8650001 LatSieveTime: 96 LatSieveTime: 98 LatSieveTime: 105 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 139 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 147 -> makeJobFile(): Adjusted to q0=8750001, q1=8850000. -> client 1 q0: 8750001 LatSieveTime: 99 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 140 LatSieveTime: 143 LatSieveTime: 144 -> makeJobFile(): Adjusted to q0=8850001, q1=8950000. -> client 1 q0: 8850001 LatSieveTime: 98 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 122 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 142 Tue Jan 17 12:15:58 2023 Tue Jan 17 12:15:58 2023 Tue Jan 17 12:15:58 2023 Msieve v. 1.52 (SVN 927) Tue Jan 17 12:15:58 2023 random seeds: a960c7e8 bd5ddc9a Tue Jan 17 12:15:58 2023 factoring 10868919469711610132635936383668539405996045502522779278379522732235013443666677338494829322966099144841673888598828694465067666259 (131 digits) Tue Jan 17 12:15:58 2023 searching for 15-digit factors Tue Jan 17 12:15:58 2023 commencing number field sieve (131-digit input) Tue Jan 17 12:15:58 2023 R0: -16833985991546096684496901 Tue Jan 17 12:15:58 2023 R1: 45199159670599 Tue Jan 17 12:15:58 2023 A0: -55007261533511262867513988689960 Tue Jan 17 12:15:58 2023 A1: 123543666749229886616031932 Tue Jan 17 12:15:58 2023 A2: 3077840558389088378380 Tue Jan 17 12:15:58 2023 A3: -4120700111719233 Tue Jan 17 12:15:58 2023 A4: -30923283440 Tue Jan 17 12:15:58 2023 A5: 8040 Tue Jan 17 12:15:58 2023 skew 348926.36, size 9.460e-013, alpha -5.239, combined = 5.757e-011 rroots = 5 Tue Jan 17 12:15:58 2023 Tue Jan 17 12:15:58 2023 commencing relation filtering Tue Jan 17 12:15:58 2023 estimated available RAM is 65413.5 MB Tue Jan 17 12:15:58 2023 commencing duplicate removal, pass 1 Tue Jan 17 12:16:30 2023 found 2120274 hash collisions in 16123695 relations Tue Jan 17 12:16:50 2023 added 119638 free relations Tue Jan 17 12:16:50 2023 commencing duplicate removal, pass 2 Tue Jan 17 12:16:55 2023 found 1589912 duplicates and 14653421 unique relations Tue Jan 17 12:16:55 2023 memory use: 82.6 MB Tue Jan 17 12:16:55 2023 reading ideals above 720000 Tue Jan 17 12:16:56 2023 commencing singleton removal, initial pass Tue Jan 17 12:17:46 2023 memory use: 376.5 MB Tue Jan 17 12:17:46 2023 reading all ideals from disk Tue Jan 17 12:17:46 2023 memory use: 450.6 MB Tue Jan 17 12:17:46 2023 keeping 18532042 ideals with weight <= 200, target excess is 116272 Tue Jan 17 12:17:47 2023 commencing in-memory singleton removal Tue Jan 17 12:17:48 2023 begin with 14653421 relations and 18532042 unique ideals Tue Jan 17 12:17:50 2023 reduce to 522 relations and 2 ideals in 18 passes Tue Jan 17 12:17:50 2023 max relations containing the same ideal: 2 Tue Jan 17 12:17:50 2023 filtering wants 1000000 more relations Tue Jan 17 12:17:50 2023 elapsed time 00:01:52 -> makeJobFile(): Adjusted to q0=8950001, q1=9050000. -> client 1 q0: 8950001 LatSieveTime: 93 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 110 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 144 LatSieveTime: 146 Tue Jan 17 12:20:22 2023 Tue Jan 17 12:20:22 2023 Tue Jan 17 12:20:22 2023 Msieve v. 1.52 (SVN 927) Tue Jan 17 12:20:22 2023 random seeds: 4c8fc67c f7c33132 Tue Jan 17 12:20:22 2023 factoring 10868919469711610132635936383668539405996045502522779278379522732235013443666677338494829322966099144841673888598828694465067666259 (131 digits) Tue Jan 17 12:20:22 2023 searching for 15-digit factors Tue Jan 17 12:20:23 2023 commencing number field sieve (131-digit input) Tue Jan 17 12:20:23 2023 R0: -16833985991546096684496901 Tue Jan 17 12:20:23 2023 R1: 45199159670599 Tue Jan 17 12:20:23 2023 A0: -55007261533511262867513988689960 Tue Jan 17 12:20:23 2023 A1: 123543666749229886616031932 Tue Jan 17 12:20:23 2023 A2: 3077840558389088378380 Tue Jan 17 12:20:23 2023 A3: -4120700111719233 Tue Jan 17 12:20:23 2023 A4: -30923283440 Tue Jan 17 12:20:23 2023 A5: 8040 Tue Jan 17 12:20:23 2023 skew 348926.36, size 9.460e-013, alpha -5.239, combined = 5.757e-011 rroots = 5 Tue Jan 17 12:20:23 2023 Tue Jan 17 12:20:23 2023 commencing relation filtering Tue Jan 17 12:20:23 2023 estimated available RAM is 65413.5 MB Tue Jan 17 12:20:23 2023 commencing duplicate removal, pass 1 Tue Jan 17 12:20:57 2023 found 2196427 hash collisions in 16541371 relations Tue Jan 17 12:21:16 2023 added 135 free relations Tue Jan 17 12:21:16 2023 commencing duplicate removal, pass 2 Tue Jan 17 12:21:22 2023 found 1640237 duplicates and 14901269 unique relations Tue Jan 17 12:21:22 2023 memory use: 82.6 MB Tue Jan 17 12:21:22 2023 reading ideals above 720000 Tue Jan 17 12:21:22 2023 commencing singleton removal, initial pass Tue Jan 17 12:22:13 2023 memory use: 376.5 MB Tue Jan 17 12:22:13 2023 reading all ideals from disk Tue Jan 17 12:22:13 2023 memory use: 458.3 MB Tue Jan 17 12:22:14 2023 keeping 18673127 ideals with weight <= 200, target excess is 116280 Tue Jan 17 12:22:15 2023 commencing in-memory singleton removal Tue Jan 17 12:22:15 2023 begin with 14901269 relations and 18673127 unique ideals Tue Jan 17 12:22:18 2023 reduce to 522 relations and 2 ideals in 21 passes Tue Jan 17 12:22:18 2023 max relations containing the same ideal: 2 Tue Jan 17 12:22:18 2023 filtering wants 1000000 more relations Tue Jan 17 12:22:18 2023 elapsed time 00:01:56 -> makeJobFile(): Adjusted to q0=9050001, q1=9150000. -> client 1 q0: 9050001 LatSieveTime: 94 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 137 LatSieveTime: 137 Tue Jan 17 12:24:41 2023 Tue Jan 17 12:24:41 2023 Tue Jan 17 12:24:41 2023 Msieve v. 1.52 (SVN 927) Tue Jan 17 12:24:41 2023 random seeds: 14f9b1fc fdb62bc8 Tue Jan 17 12:24:41 2023 factoring 10868919469711610132635936383668539405996045502522779278379522732235013443666677338494829322966099144841673888598828694465067666259 (131 digits) Tue Jan 17 12:24:42 2023 searching for 15-digit factors Tue Jan 17 12:24:42 2023 commencing number field sieve (131-digit input) Tue Jan 17 12:24:42 2023 R0: -16833985991546096684496901 Tue Jan 17 12:24:42 2023 R1: 45199159670599 Tue Jan 17 12:24:42 2023 A0: -55007261533511262867513988689960 Tue Jan 17 12:24:42 2023 A1: 123543666749229886616031932 Tue Jan 17 12:24:42 2023 A2: 3077840558389088378380 Tue Jan 17 12:24:42 2023 A3: -4120700111719233 Tue Jan 17 12:24:42 2023 A4: -30923283440 Tue Jan 17 12:24:42 2023 A5: 8040 Tue Jan 17 12:24:42 2023 skew 348926.36, size 9.460e-013, alpha -5.239, combined = 5.757e-011 rroots = 5 Tue Jan 17 12:24:42 2023 Tue Jan 17 12:24:42 2023 commencing relation filtering Tue Jan 17 12:24:42 2023 estimated available RAM is 65413.5 MB Tue Jan 17 12:24:42 2023 commencing duplicate removal, pass 1 Tue Jan 17 12:25:16 2023 found 2261024 hash collisions in 16832922 relations Tue Jan 17 12:25:35 2023 added 130 free relations Tue Jan 17 12:25:35 2023 commencing duplicate removal, pass 2 Tue Jan 17 12:25:41 2023 found 1689829 duplicates and 15143223 unique relations Tue Jan 17 12:25:41 2023 memory use: 82.6 MB Tue Jan 17 12:25:41 2023 reading ideals above 720000 Tue Jan 17 12:25:41 2023 commencing singleton removal, initial pass Tue Jan 17 12:26:31 2023 memory use: 376.5 MB Tue Jan 17 12:26:31 2023 reading all ideals from disk Tue Jan 17 12:26:31 2023 memory use: 465.8 MB Tue Jan 17 12:26:32 2023 keeping 18808381 ideals with weight <= 200, target excess is 116293 Tue Jan 17 12:26:33 2023 commencing in-memory singleton removal Tue Jan 17 12:26:33 2023 begin with 15143223 relations and 18808381 unique ideals Tue Jan 17 12:26:37 2023 reduce to 522 relations and 2 ideals in 26 passes Tue Jan 17 12:26:37 2023 max relations containing the same ideal: 2 Tue Jan 17 12:26:37 2023 filtering wants 1000000 more relations Tue Jan 17 12:26:37 2023 elapsed time 00:01:56 -> makeJobFile(): Adjusted to q0=9150001, q1=9250000. -> client 1 q0: 9150001 LatSieveTime: 95 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 -> makeJobFile(): Adjusted to q0=9250001, q1=9350000. -> client 1 q0: 9250001 LatSieveTime: 100 LatSieveTime: 102 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 133 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 139 -> makeJobFile(): Adjusted to q0=9350001, q1=9450000. -> client 1 q0: 9350001 LatSieveTime: 103 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 145 LatSieveTime: 147 -> makeJobFile(): Adjusted to q0=9450001, q1=9550000. -> client 1 q0: 9450001 LatSieveTime: 102 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 141 -> makeJobFile(): Adjusted to q0=9550001, q1=9650000. -> client 1 q0: 9550001 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 137 LatSieveTime: 146 LatSieveTime: 147 Tue Jan 17 12:38:57 2023 Tue Jan 17 12:38:57 2023 Tue Jan 17 12:38:57 2023 Msieve v. 1.52 (SVN 927) Tue Jan 17 12:38:57 2023 random seeds: 3890af70 5385f1d9 Tue Jan 17 12:38:57 2023 factoring 10868919469711610132635936383668539405996045502522779278379522732235013443666677338494829322966099144841673888598828694465067666259 (131 digits) Tue Jan 17 12:38:58 2023 searching for 15-digit factors Tue Jan 17 12:38:58 2023 commencing number field sieve (131-digit input) Tue Jan 17 12:38:58 2023 R0: -16833985991546096684496901 Tue Jan 17 12:38:58 2023 R1: 45199159670599 Tue Jan 17 12:38:58 2023 A0: -55007261533511262867513988689960 Tue Jan 17 12:38:58 2023 A1: 123543666749229886616031932 Tue Jan 17 12:38:58 2023 A2: 3077840558389088378380 Tue Jan 17 12:38:58 2023 A3: -4120700111719233 Tue Jan 17 12:38:58 2023 A4: -30923283440 Tue Jan 17 12:38:58 2023 A5: 8040 Tue Jan 17 12:38:58 2023 skew 348926.36, size 9.460e-013, alpha -5.239, combined = 5.757e-011 rroots = 5 Tue Jan 17 12:38:58 2023 Tue Jan 17 12:38:58 2023 commencing relation filtering Tue Jan 17 12:38:58 2023 estimated available RAM is 65413.5 MB Tue Jan 17 12:38:58 2023 commencing duplicate removal, pass 1 Tue Jan 17 12:39:35 2023 found 2591861 hash collisions in 18275365 relations Tue Jan 17 12:39:55 2023 added 560 free relations Tue Jan 17 12:39:55 2023 commencing duplicate removal, pass 2 Tue Jan 17 12:40:01 2023 found 1945854 duplicates and 16330071 unique relations Tue Jan 17 12:40:01 2023 memory use: 82.6 MB Tue Jan 17 12:40:01 2023 reading ideals above 720000 Tue Jan 17 12:40:01 2023 commencing singleton removal, initial pass Tue Jan 17 12:40:57 2023 memory use: 376.5 MB Tue Jan 17 12:40:57 2023 reading all ideals from disk Tue Jan 17 12:40:58 2023 memory use: 502.8 MB Tue Jan 17 12:40:58 2023 keeping 19439815 ideals with weight <= 200, target excess is 116689 Tue Jan 17 12:40:59 2023 commencing in-memory singleton removal Tue Jan 17 12:41:00 2023 begin with 16330071 relations and 19439815 unique ideals Tue Jan 17 12:41:11 2023 reduce to 3415548 relations and 3811680 ideals in 44 passes Tue Jan 17 12:41:11 2023 max relations containing the same ideal: 66 Tue Jan 17 12:41:11 2023 filtering wants 1000000 more relations Tue Jan 17 12:41:11 2023 elapsed time 00:02:14 -> makeJobFile(): Adjusted to q0=9650001, q1=9750000. -> client 1 q0: 9650001 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 146 LatSieveTime: 146 LatSieveTime: 148 LatSieveTime: 148 LatSieveTime: 149 LatSieveTime: 151 LatSieveTime: 151 LatSieveTime: 152 LatSieveTime: 153 LatSieveTime: 153 Tue Jan 17 12:43:51 2023 Tue Jan 17 12:43:51 2023 Tue Jan 17 12:43:51 2023 Msieve v. 1.52 (SVN 927) Tue Jan 17 12:43:51 2023 random seeds: eeddb800 0f84d2bd Tue Jan 17 12:43:51 2023 factoring 10868919469711610132635936383668539405996045502522779278379522732235013443666677338494829322966099144841673888598828694465067666259 (131 digits) Tue Jan 17 12:43:51 2023 searching for 15-digit factors Tue Jan 17 12:43:51 2023 commencing number field sieve (131-digit input) Tue Jan 17 12:43:51 2023 R0: -16833985991546096684496901 Tue Jan 17 12:43:51 2023 R1: 45199159670599 Tue Jan 17 12:43:51 2023 A0: -55007261533511262867513988689960 Tue Jan 17 12:43:51 2023 A1: 123543666749229886616031932 Tue Jan 17 12:43:51 2023 A2: 3077840558389088378380 Tue Jan 17 12:43:51 2023 A3: -4120700111719233 Tue Jan 17 12:43:51 2023 A4: -30923283440 Tue Jan 17 12:43:51 2023 A5: 8040 Tue Jan 17 12:43:51 2023 skew 348926.36, size 9.460e-013, alpha -5.239, combined = 5.757e-011 rroots = 5 Tue Jan 17 12:43:51 2023 Tue Jan 17 12:43:51 2023 commencing relation filtering Tue Jan 17 12:43:51 2023 estimated available RAM is 65413.5 MB Tue Jan 17 12:43:51 2023 commencing duplicate removal, pass 1 Tue Jan 17 12:44:29 2023 found 2659048 hash collisions in 18559594 relations Tue Jan 17 12:44:49 2023 added 98 free relations Tue Jan 17 12:44:49 2023 commencing duplicate removal, pass 2 Tue Jan 17 12:44:55 2023 found 1997940 duplicates and 16561752 unique relations Tue Jan 17 12:44:55 2023 memory use: 82.6 MB Tue Jan 17 12:44:55 2023 reading ideals above 720000 Tue Jan 17 12:44:56 2023 commencing singleton removal, initial pass Tue Jan 17 12:45:52 2023 memory use: 376.5 MB Tue Jan 17 12:45:52 2023 reading all ideals from disk Tue Jan 17 12:45:53 2023 memory use: 510.0 MB Tue Jan 17 12:45:53 2023 keeping 19556983 ideals with weight <= 200, target excess is 116845 Tue Jan 17 12:45:54 2023 commencing in-memory singleton removal Tue Jan 17 12:45:55 2023 begin with 16561752 relations and 19556983 unique ideals Tue Jan 17 12:46:04 2023 reduce to 3771212 relations and 4119978 ideals in 32 passes Tue Jan 17 12:46:04 2023 max relations containing the same ideal: 68 Tue Jan 17 12:46:04 2023 filtering wants 1000000 more relations Tue Jan 17 12:46:04 2023 elapsed time 00:02:13 -> makeJobFile(): Adjusted to q0=9750001, q1=9850000. -> client 1 q0: 9750001 LatSieveTime: 93 LatSieveTime: 95 LatSieveTime: 98 LatSieveTime: 104 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 137 LatSieveTime: 143 LatSieveTime: 144 -> makeJobFile(): Adjusted to q0=9850001, q1=9950000. -> client 1 q0: 9850001 LatSieveTime: 92 LatSieveTime: 96 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 150 Tue Jan 17 12:51:10 2023 Tue Jan 17 12:51:10 2023 Tue Jan 17 12:51:10 2023 Msieve v. 1.52 (SVN 927) Tue Jan 17 12:51:10 2023 random seeds: 3b65cbc0 f9e91c04 Tue Jan 17 12:51:10 2023 factoring 10868919469711610132635936383668539405996045502522779278379522732235013443666677338494829322966099144841673888598828694465067666259 (131 digits) Tue Jan 17 12:51:10 2023 searching for 15-digit factors Tue Jan 17 12:51:10 2023 commencing number field sieve (131-digit input) Tue Jan 17 12:51:10 2023 R0: -16833985991546096684496901 Tue Jan 17 12:51:10 2023 R1: 45199159670599 Tue Jan 17 12:51:10 2023 A0: -55007261533511262867513988689960 Tue Jan 17 12:51:10 2023 A1: 123543666749229886616031932 Tue Jan 17 12:51:10 2023 A2: 3077840558389088378380 Tue Jan 17 12:51:10 2023 A3: -4120700111719233 Tue Jan 17 12:51:10 2023 A4: -30923283440 Tue Jan 17 12:51:10 2023 A5: 8040 Tue Jan 17 12:51:10 2023 skew 348926.36, size 9.460e-013, alpha -5.239, combined = 5.757e-011 rroots = 5 Tue Jan 17 12:51:10 2023 Tue Jan 17 12:51:10 2023 commencing relation filtering Tue Jan 17 12:51:10 2023 estimated available RAM is 65413.5 MB Tue Jan 17 12:51:10 2023 commencing duplicate removal, pass 1 Tue Jan 17 12:51:48 2023 found 2793063 hash collisions in 19124740 relations Tue Jan 17 12:52:07 2023 added 180 free relations Tue Jan 17 12:52:07 2023 commencing duplicate removal, pass 2 Tue Jan 17 12:52:14 2023 found 2102209 duplicates and 17022711 unique relations Tue Jan 17 12:52:14 2023 memory use: 82.6 MB Tue Jan 17 12:52:14 2023 reading ideals above 720000 Tue Jan 17 12:52:14 2023 commencing singleton removal, initial pass Tue Jan 17 12:53:11 2023 memory use: 376.5 MB Tue Jan 17 12:53:11 2023 reading all ideals from disk Tue Jan 17 12:53:11 2023 memory use: 524.3 MB Tue Jan 17 12:53:12 2023 keeping 19785381 ideals with weight <= 200, target excess is 117336 Tue Jan 17 12:53:13 2023 commencing in-memory singleton removal Tue Jan 17 12:53:13 2023 begin with 17022711 relations and 19785381 unique ideals Tue Jan 17 12:53:23 2023 reduce to 4450483 relations and 4692946 ideals in 29 passes Tue Jan 17 12:53:23 2023 max relations containing the same ideal: 79 Tue Jan 17 12:53:23 2023 filtering wants 1000000 more relations Tue Jan 17 12:53:23 2023 elapsed time 00:02:13 -> makeJobFile(): Adjusted to q0=9950001, q1=10050000. -> client 1 q0: 9950001 LatSieveTime: 94 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 101 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 135 LatSieveTime: 137 LatSieveTime: 140 -> makeJobFile(): Adjusted to q0=10050001, q1=10150000. -> client 1 q0: 10050001 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 142 LatSieveTime: 142 -> makeJobFile(): Adjusted to q0=10150001, q1=10250000. -> client 1 q0: 10150001 LatSieveTime: 103 LatSieveTime: 108 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 116 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 145 LatSieveTime: 150 LatSieveTime: 151 LatSieveTime: 156 -> makeJobFile(): Adjusted to q0=10250001, q1=10350000. -> client 1 q0: 10250001 LatSieveTime: 93 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 131 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 137 LatSieveTime: 141 Tue Jan 17 13:03:27 2023 Tue Jan 17 13:03:27 2023 Tue Jan 17 13:03:27 2023 Msieve v. 1.52 (SVN 927) Tue Jan 17 13:03:27 2023 random seeds: ec30aa68 7da49ac2 Tue Jan 17 13:03:27 2023 factoring 10868919469711610132635936383668539405996045502522779278379522732235013443666677338494829322966099144841673888598828694465067666259 (131 digits) Tue Jan 17 13:03:28 2023 searching for 15-digit factors Tue Jan 17 13:03:28 2023 commencing number field sieve (131-digit input) Tue Jan 17 13:03:28 2023 R0: -16833985991546096684496901 Tue Jan 17 13:03:28 2023 R1: 45199159670599 Tue Jan 17 13:03:28 2023 A0: -55007261533511262867513988689960 Tue Jan 17 13:03:28 2023 A1: 123543666749229886616031932 Tue Jan 17 13:03:28 2023 A2: 3077840558389088378380 Tue Jan 17 13:03:28 2023 A3: -4120700111719233 Tue Jan 17 13:03:28 2023 A4: -30923283440 Tue Jan 17 13:03:28 2023 A5: 8040 Tue Jan 17 13:03:28 2023 skew 348926.36, size 9.460e-013, alpha -5.239, combined = 5.757e-011 rroots = 5 Tue Jan 17 13:03:28 2023 Tue Jan 17 13:03:28 2023 commencing relation filtering Tue Jan 17 13:03:28 2023 estimated available RAM is 65413.5 MB Tue Jan 17 13:03:28 2023 commencing duplicate removal, pass 1 Tue Jan 17 13:04:08 2023 found 3063386 hash collisions in 20234443 relations Tue Jan 17 13:04:28 2023 added 296 free relations Tue Jan 17 13:04:28 2023 commencing duplicate removal, pass 2 Tue Jan 17 13:04:35 2023 found 2313618 duplicates and 17921121 unique relations Tue Jan 17 13:04:35 2023 memory use: 82.6 MB Tue Jan 17 13:04:35 2023 reading ideals above 720000 Tue Jan 17 13:04:35 2023 commencing singleton removal, initial pass Tue Jan 17 13:05:35 2023 memory use: 376.5 MB Tue Jan 17 13:05:35 2023 reading all ideals from disk Tue Jan 17 13:05:35 2023 memory use: 552.3 MB Tue Jan 17 13:05:36 2023 keeping 20209254 ideals with weight <= 200, target excess is 118955 Tue Jan 17 13:05:37 2023 commencing in-memory singleton removal Tue Jan 17 13:05:37 2023 begin with 17921121 relations and 20209254 unique ideals Tue Jan 17 13:05:48 2023 reduce to 5713646 relations and 5706096 ideals in 27 passes Tue Jan 17 13:05:48 2023 max relations containing the same ideal: 89 Tue Jan 17 13:05:49 2023 filtering wants 1000000 more relations Tue Jan 17 13:05:49 2023 elapsed time 00:02:22 -> makeJobFile(): Adjusted to q0=10350001, q1=10450000. -> client 1 q0: 10350001 LatSieveTime: 89 LatSieveTime: 94 LatSieveTime: 101 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 141 Tue Jan 17 13:08:16 2023 Tue Jan 17 13:08:16 2023 Tue Jan 17 13:08:16 2023 Msieve v. 1.52 (SVN 927) Tue Jan 17 13:08:16 2023 random seeds: b0185030 df95a17b Tue Jan 17 13:08:16 2023 factoring 10868919469711610132635936383668539405996045502522779278379522732235013443666677338494829322966099144841673888598828694465067666259 (131 digits) Tue Jan 17 13:08:17 2023 searching for 15-digit factors Tue Jan 17 13:08:17 2023 commencing number field sieve (131-digit input) Tue Jan 17 13:08:17 2023 R0: -16833985991546096684496901 Tue Jan 17 13:08:17 2023 R1: 45199159670599 Tue Jan 17 13:08:17 2023 A0: -55007261533511262867513988689960 Tue Jan 17 13:08:17 2023 A1: 123543666749229886616031932 Tue Jan 17 13:08:17 2023 A2: 3077840558389088378380 Tue Jan 17 13:08:17 2023 A3: -4120700111719233 Tue Jan 17 13:08:17 2023 A4: -30923283440 Tue Jan 17 13:08:17 2023 A5: 8040 Tue Jan 17 13:08:17 2023 skew 348926.36, size 9.460e-013, alpha -5.239, combined = 5.757e-011 rroots = 5 Tue Jan 17 13:08:17 2023 Tue Jan 17 13:08:17 2023 commencing relation filtering Tue Jan 17 13:08:17 2023 estimated available RAM is 65413.5 MB Tue Jan 17 13:08:17 2023 commencing duplicate removal, pass 1 Tue Jan 17 13:08:59 2023 found 2708980 hash collisions in 20509305 relations Tue Jan 17 13:09:20 2023 added 55 free relations Tue Jan 17 13:09:20 2023 commencing duplicate removal, pass 2 Tue Jan 17 13:09:28 2023 found 2367430 duplicates and 18141930 unique relations Tue Jan 17 13:09:28 2023 memory use: 98.6 MB Tue Jan 17 13:09:28 2023 reading ideals above 720000 Tue Jan 17 13:09:28 2023 commencing singleton removal, initial pass Tue Jan 17 13:10:30 2023 memory use: 376.5 MB Tue Jan 17 13:10:30 2023 reading all ideals from disk Tue Jan 17 13:10:30 2023 memory use: 559.2 MB Tue Jan 17 13:10:31 2023 keeping 20309773 ideals with weight <= 200, target excess is 119478 Tue Jan 17 13:10:32 2023 commencing in-memory singleton removal Tue Jan 17 13:10:32 2023 begin with 18141930 relations and 20309773 unique ideals Tue Jan 17 13:10:43 2023 reduce to 6016919 relations and 5940403 ideals in 23 passes Tue Jan 17 13:10:43 2023 max relations containing the same ideal: 92 Tue Jan 17 13:10:43 2023 filtering wants 1000000 more relations Tue Jan 17 13:10:43 2023 elapsed time 00:02:27 -> makeJobFile(): Adjusted to q0=10450001, q1=10550000. -> client 1 q0: 10450001 LatSieveTime: 92 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 138 LatSieveTime: 138 Tue Jan 17 13:13:08 2023 Tue Jan 17 13:13:08 2023 Tue Jan 17 13:13:08 2023 Msieve v. 1.52 (SVN 927) Tue Jan 17 13:13:08 2023 random seeds: 3b61ab60 3c21c1b7 Tue Jan 17 13:13:08 2023 factoring 10868919469711610132635936383668539405996045502522779278379522732235013443666677338494829322966099144841673888598828694465067666259 (131 digits) Tue Jan 17 13:13:08 2023 searching for 15-digit factors Tue Jan 17 13:13:09 2023 commencing number field sieve (131-digit input) Tue Jan 17 13:13:09 2023 R0: -16833985991546096684496901 Tue Jan 17 13:13:09 2023 R1: 45199159670599 Tue Jan 17 13:13:09 2023 A0: -55007261533511262867513988689960 Tue Jan 17 13:13:09 2023 A1: 123543666749229886616031932 Tue Jan 17 13:13:09 2023 A2: 3077840558389088378380 Tue Jan 17 13:13:09 2023 A3: -4120700111719233 Tue Jan 17 13:13:09 2023 A4: -30923283440 Tue Jan 17 13:13:09 2023 A5: 8040 Tue Jan 17 13:13:09 2023 skew 348926.36, size 9.460e-013, alpha -5.239, combined = 5.757e-011 rroots = 5 Tue Jan 17 13:13:09 2023 Tue Jan 17 13:13:09 2023 commencing relation filtering Tue Jan 17 13:13:09 2023 estimated available RAM is 65413.5 MB Tue Jan 17 13:13:09 2023 commencing duplicate removal, pass 1 Tue Jan 17 13:13:51 2023 found 2769864 hash collisions in 20787683 relations Tue Jan 17 13:14:11 2023 added 56 free relations Tue Jan 17 13:14:11 2023 commencing duplicate removal, pass 2 Tue Jan 17 13:14:19 2023 found 2422101 duplicates and 18365638 unique relations Tue Jan 17 13:14:19 2023 memory use: 98.6 MB Tue Jan 17 13:14:19 2023 reading ideals above 720000 Tue Jan 17 13:14:19 2023 commencing singleton removal, initial pass Tue Jan 17 13:15:22 2023 memory use: 376.5 MB Tue Jan 17 13:15:22 2023 reading all ideals from disk Tue Jan 17 13:15:22 2023 memory use: 566.1 MB Tue Jan 17 13:15:23 2023 keeping 20409831 ideals with weight <= 200, target excess is 120043 Tue Jan 17 13:15:24 2023 commencing in-memory singleton removal Tue Jan 17 13:15:25 2023 begin with 18365638 relations and 20409831 unique ideals Tue Jan 17 13:15:36 2023 reduce to 6321831 relations and 6172343 ideals in 22 passes Tue Jan 17 13:15:36 2023 max relations containing the same ideal: 93 Tue Jan 17 13:15:38 2023 relations with 0 large ideals: 518 Tue Jan 17 13:15:38 2023 relations with 1 large ideals: 1576 Tue Jan 17 13:15:38 2023 relations with 2 large ideals: 26948 Tue Jan 17 13:15:38 2023 relations with 3 large ideals: 191174 Tue Jan 17 13:15:38 2023 relations with 4 large ideals: 717481 Tue Jan 17 13:15:38 2023 relations with 5 large ideals: 1523625 Tue Jan 17 13:15:38 2023 relations with 6 large ideals: 1873096 Tue Jan 17 13:15:38 2023 relations with 7+ large ideals: 1987413 Tue Jan 17 13:15:38 2023 commencing 2-way merge Tue Jan 17 13:15:42 2023 reduce to 3427030 relation sets and 3278800 unique ideals Tue Jan 17 13:15:42 2023 ignored 1258 oversize relation sets Tue Jan 17 13:15:42 2023 commencing full merge Tue Jan 17 13:16:24 2023 memory use: 353.8 MB Tue Jan 17 13:16:24 2023 found 1667917 cycles, need 1663000 Tue Jan 17 13:16:24 2023 weight of 1663000 cycles is about 116640886 (70.14/cycle) Tue Jan 17 13:16:24 2023 distribution of cycle lengths: Tue Jan 17 13:16:24 2023 1 relations: 244157 Tue Jan 17 13:16:24 2023 2 relations: 218133 Tue Jan 17 13:16:24 2023 3 relations: 209496 Tue Jan 17 13:16:24 2023 4 relations: 179355 Tue Jan 17 13:16:24 2023 5 relations: 146508 Tue Jan 17 13:16:24 2023 6 relations: 124931 Tue Jan 17 13:16:24 2023 7 relations: 102013 Tue Jan 17 13:16:24 2023 8 relations: 81109 Tue Jan 17 13:16:24 2023 9 relations: 65109 Tue Jan 17 13:16:24 2023 10+ relations: 292189 Tue Jan 17 13:16:24 2023 heaviest cycle: 28 relations Tue Jan 17 13:16:24 2023 commencing cycle optimization Tue Jan 17 13:16:26 2023 start with 9620862 relations Tue Jan 17 13:16:38 2023 pruned 172263 relations Tue Jan 17 13:16:38 2023 memory use: 337.9 MB Tue Jan 17 13:16:38 2023 distribution of cycle lengths: Tue Jan 17 13:16:38 2023 1 relations: 244157 Tue Jan 17 13:16:38 2023 2 relations: 222850 Tue Jan 17 13:16:38 2023 3 relations: 215522 Tue Jan 17 13:16:38 2023 4 relations: 181787 Tue Jan 17 13:16:38 2023 5 relations: 148125 Tue Jan 17 13:16:38 2023 6 relations: 124904 Tue Jan 17 13:16:38 2023 7 relations: 101255 Tue Jan 17 13:16:38 2023 8 relations: 80051 Tue Jan 17 13:16:38 2023 9 relations: 63795 Tue Jan 17 13:16:38 2023 10+ relations: 280554 Tue Jan 17 13:16:38 2023 heaviest cycle: 28 relations Tue Jan 17 13:16:39 2023 RelProcTime: 210 Tue Jan 17 13:16:39 2023 elapsed time 00:03:31 Tue Jan 17 13:16:39 2023 Tue Jan 17 13:16:39 2023 Tue Jan 17 13:16:39 2023 Msieve v. 1.52 (SVN 927) Tue Jan 17 13:16:39 2023 random seeds: 093fdf70 aaa335a3 Tue Jan 17 13:16:39 2023 factoring 10868919469711610132635936383668539405996045502522779278379522732235013443666677338494829322966099144841673888598828694465067666259 (131 digits) Tue Jan 17 13:16:40 2023 searching for 15-digit factors Tue Jan 17 13:16:40 2023 commencing number field sieve (131-digit input) Tue Jan 17 13:16:40 2023 R0: -16833985991546096684496901 Tue Jan 17 13:16:40 2023 R1: 45199159670599 Tue Jan 17 13:16:40 2023 A0: -55007261533511262867513988689960 Tue Jan 17 13:16:40 2023 A1: 123543666749229886616031932 Tue Jan 17 13:16:40 2023 A2: 3077840558389088378380 Tue Jan 17 13:16:40 2023 A3: -4120700111719233 Tue Jan 17 13:16:40 2023 A4: -30923283440 Tue Jan 17 13:16:40 2023 A5: 8040 Tue Jan 17 13:16:40 2023 skew 348926.36, size 9.460e-013, alpha -5.239, combined = 5.757e-011 rroots = 5 Tue Jan 17 13:16:40 2023 Tue Jan 17 13:16:40 2023 commencing linear algebra Tue Jan 17 13:16:40 2023 read 1663000 cycles Tue Jan 17 13:16:42 2023 cycles contain 5853258 unique relations Tue Jan 17 13:16:54 2023 read 5853258 relations Tue Jan 17 13:17:00 2023 using 20 quadratic characters above 268432764 Tue Jan 17 13:17:15 2023 building initial matrix Tue Jan 17 13:17:50 2023 memory use: 754.8 MB Tue Jan 17 13:17:51 2023 read 1663000 cycles Tue Jan 17 13:17:51 2023 matrix is 1662792 x 1663000 (499.8 MB) with weight 157970818 (94.99/col) Tue Jan 17 13:17:51 2023 sparse part has weight 112725309 (67.78/col) Tue Jan 17 13:18:01 2023 filtering completed in 3 passes Tue Jan 17 13:18:02 2023 matrix is 1657617 x 1657817 (499.2 MB) with weight 157700908 (95.13/col) Tue Jan 17 13:18:02 2023 sparse part has weight 112625530 (67.94/col) Tue Jan 17 13:18:04 2023 matrix starts at (0, 0) Tue Jan 17 13:18:05 2023 matrix is 1657617 x 1657817 (499.2 MB) with weight 157700908 (95.13/col) Tue Jan 17 13:18:05 2023 sparse part has weight 112625530 (67.94/col) Tue Jan 17 13:18:05 2023 saving the first 48 matrix rows for later Tue Jan 17 13:18:05 2023 matrix includes 64 packed rows Tue Jan 17 13:18:05 2023 matrix is 1657569 x 1657817 (484.0 MB) with weight 125053341 (75.43/col) Tue Jan 17 13:18:05 2023 sparse part has weight 110306235 (66.54/col) Tue Jan 17 13:18:05 2023 using block size 8192 and superblock size 12582912 for processor cache size 131072 kB Tue Jan 17 13:18:10 2023 commencing Lanczos iteration (32 threads) Tue Jan 17 13:18:10 2023 memory use: 383.7 MB Tue Jan 17 13:18:11 2023 linear algebra at 0.1%, ETA 0h18m Tue Jan 17 13:18:12 2023 checkpointing every 3660000 dimensions Tue Jan 17 13:45:31 2023 lanczos halted after 26214 iterations (dim = 1657569) Tue Jan 17 13:45:32 2023 recovered 33 nontrivial dependencies Tue Jan 17 13:45:32 2023 BLanczosTime: 1732 Tue Jan 17 13:45:32 2023 elapsed time 00:28:53 Tue Jan 17 13:45:32 2023 Tue Jan 17 13:45:32 2023 Tue Jan 17 13:45:32 2023 Msieve v. 1.52 (SVN 927) Tue Jan 17 13:45:32 2023 random seeds: ea481570 f6071d77 Tue Jan 17 13:45:32 2023 factoring 10868919469711610132635936383668539405996045502522779278379522732235013443666677338494829322966099144841673888598828694465067666259 (131 digits) Tue Jan 17 13:45:32 2023 searching for 15-digit factors Tue Jan 17 13:45:33 2023 commencing number field sieve (131-digit input) Tue Jan 17 13:45:33 2023 R0: -16833985991546096684496901 Tue Jan 17 13:45:33 2023 R1: 45199159670599 Tue Jan 17 13:45:33 2023 A0: -55007261533511262867513988689960 Tue Jan 17 13:45:33 2023 A1: 123543666749229886616031932 Tue Jan 17 13:45:33 2023 A2: 3077840558389088378380 Tue Jan 17 13:45:33 2023 A3: -4120700111719233 Tue Jan 17 13:45:33 2023 A4: -30923283440 Tue Jan 17 13:45:33 2023 A5: 8040 Tue Jan 17 13:45:33 2023 skew 348926.36, size 9.460e-013, alpha -5.239, combined = 5.757e-011 rroots = 5 Tue Jan 17 13:45:33 2023 Tue Jan 17 13:45:33 2023 commencing square root phase Tue Jan 17 13:45:33 2023 reading relations for dependency 1 Tue Jan 17 13:45:33 2023 read 829614 cycles Tue Jan 17 13:45:34 2023 cycles contain 2928444 unique relations Tue Jan 17 13:45:41 2023 read 2928444 relations Tue Jan 17 13:45:48 2023 multiplying 2928444 relations Tue Jan 17 13:47:20 2023 multiply complete, coefficients have about 136.95 million bits Tue Jan 17 13:47:20 2023 initial square root is modulo 82223 Tue Jan 17 13:49:08 2023 sqrtTime: 215 Tue Jan 17 13:49:08 2023 prp46 factor: 1152062010126409428875786061279176860743903199 Tue Jan 17 13:49:08 2023 prp85 factor: 9434318095880119656322351099222133701502550689041802191049692466266072117661886044941 Tue Jan 17 13:49:08 2023 elapsed time 00:03:36 |
software ソフトウェア | GNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | December 24, 2022 08:41:42 UTC 2022 年 12 月 24 日 (土) 17 時 41 分 42 秒 (日本時間) | |
45 | 11e6 | 4480 | Ignacio Santos | January 2, 2023 13:03:16 UTC 2023 年 1 月 2 日 (月) 22 時 3 分 16 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | January 29, 2023 10:19:55 UTC 2023 年 1 月 29 日 (日) 19 時 19 分 55 秒 (日本時間) |
2350 | Ignacio Santos | September 18, 2024 15:04:45 UTC 2024 年 9 月 19 日 (木) 0 時 4 分 45 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 9, 2023 10:01:44 UTC 2023 年 1 月 9 日 (月) 19 時 1 分 44 秒 (日本時間) |
composite number 合成数 | 3262941944497091545123680127892153017484713951028330794976289024901859074084474820679136640659496590448085667148328322779277441720848816449950926368690689120182330707022263631122699232014041921452479491574531560017012097<220> |
prime factors 素因数 | 24492061999621451811076761942298138348302491<44> |
composite cofactor 合成数の残り | 133224468586904745971470827553220721792781404070278497850852585080788612033010856771542453010107759757279909830555888986215109732050752263248659135873474267008475984173596917267<177> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @1f395b902b49 with GMP-ECM 7.0.5-dev on Sat Jan 7 20:32:35 2023 Input number is 3262941944497091545123680127892153017484713951028330794976289024901859074084474820679136640659496590448085667148328322779277441720848816449950926368690689120182330707022263631122699232014041921452479491574531560017012097 (220 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:159260721 Step 1 took 0ms Step 2 took 3643ms ********** Factor found in step 2: 24492061999621451811076761942298138348302491 Found prime factor of 44 digits: 24492061999621451811076761942298138348302491 Composite cofactor 133224468586904745971470827553220721792781404070278497850852585080788612033010856771542453010107759757279909830555888986215109732050752263248659135873474267008475984173596917267 has 177 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | January 9, 2023 10:01:38 UTC 2023 年 1 月 9 日 (月) 19 時 1 分 38 秒 (日本時間) |
2350 | Ignacio Santos | September 18, 2024 15:09:50 UTC 2024 年 9 月 19 日 (木) 0 時 9 分 50 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | September 18, 2024 15:14:11 UTC 2024 年 9 月 19 日 (木) 0 時 14 分 11 秒 (日本時間) |
composite number 合成数 | 540740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740741<234> |
prime factors 素因数 | 1153635549544474918612997555208759303277<40> |
composite cofactor 合成数の残り | 468727529204745715949947189410414486095729986946153410333722590383317173175943420497101712770087246525383033269776671011859555490558549344978317993052117361973977623817684247275879549889842643833<195> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:1873140445 Step 1 took 8875ms Step 2 took 3922ms ********** Factor found in step 2: 1153635549544474918612997555208759303277 Found prime factor of 40 digits: 1153635549544474918612997555208759303277 Composite cofactor 468727529204745715949947189410414486095729986946153410333722590383317173175943420497101712770087246525383033269776671011859555490558549344978317993052117361973977623817684247275879549889842643833 has 195 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | January 29, 2023 10:20:02 UTC 2023 年 1 月 29 日 (日) 19 時 20 分 2 秒 (日本時間) |
2350 | Ignacio Santos | September 19, 2024 08:40:12 UTC 2024 年 9 月 19 日 (木) 17 時 40 分 12 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | January 29, 2023 10:20:08 UTC 2023 年 1 月 29 日 (日) 19 時 20 分 8 秒 (日本時間) |
2350 | Ignacio Santos | September 18, 2024 15:43:10 UTC 2024 年 9 月 19 日 (木) 0 時 43 分 10 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | January 29, 2023 10:20:18 UTC 2023 年 1 月 29 日 (日) 19 時 20 分 18 秒 (日本時間) |
2350 | Ignacio Santos | September 18, 2024 15:43:20 UTC 2024 年 9 月 19 日 (木) 0 時 43 分 20 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 9, 2023 05:29:15 UTC 2023 年 1 月 9 日 (月) 14 時 29 分 15 秒 (日本時間) |
composite number 合成数 | 419339495813024183805243261856601548718931875719545299093763283817989441858796550644162891578467008287504177581414128664502038552360719078379292210551325573680406639247450780538309493800588424358529650796669717409260805770827<225> |
prime factors 素因数 | 35685813194322076825905841984166626423<38> 11750874038643029825228024547262480431368284395067176725795552225322816596145545125002282363406808982234181145752309717422682597869313856965077758045975534179712749147506702465421976460749<188> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @1f395b902b49 with GMP-ECM 7.0.5-dev on Sat Jan 7 19:40:42 2023 Input number is 419339495813024183805243261856601548718931875719545299093763283817989441858796550644162891578467008287504177581414128664502038552360719078379292210551325573680406639247450780538309493800588424358529650796669717409260805770827 (225 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:4251725895 Step 1 took 0ms Step 2 took 4203ms ********** Factor found in step 2: 35685813194322076825905841984166626423 Found prime factor of 38 digits: 35685813194322076825905841984166626423 Prime cofactor 11750874038643029825228024547262480431368284395067176725795552225322816596145545125002282363406808982234181145752309717422682597869313856965077758045975534179712749147506702465421976460749 has 188 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Erik Branger |
---|---|
date 日付 | March 5, 2024 18:09:47 UTC 2024 年 3 月 6 日 (水) 3 時 9 分 47 秒 (日本時間) |
composite number 合成数 | 249336555053528068131730032261010986296345760333091899837989054768614085443705295314565118330175359801569965542388525803292629082740217648719272299729971094643879<162> |
prime factors 素因数 | 23513977925144905214155836881640762332313246454895737423<56> 10603759000168897545775580436577270972420175697405934856059977906985017721963543251703122078158663230444073<107> |
factorization results 素因数分解の結果 | Number: 81115_240 N = 249336555053528068131730032261010986296345760333091899837989054768614085443705295314565118330175359801569965542388525803292629082740217648719272299729971094643879 (162 digits) SNFS difficulty: 242 digits. Divisors found: r1=23513977925144905214155836881640762332313246454895737423 (pp56) r2=10603759000168897545775580436577270972420175697405934856059977906985017721963543251703122078158663230444073 (pp107) Version: Msieve v. 1.52 (SVN unknown) Total time: 200.77 hours. Factorization parameters were as follows: n: 249336555053528068131730032261010986296345760333091899837989054768614085443705295314565118330175359801569965542388525803292629082740217648719272299729971094643879 m: 1000000000000000000000000000000000000000000000000000000000000 deg: 4 c4: 73 c0: 35 skew: 1.00 type: snfs lss: 1 rlim: 500000000 alim: 150000000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.8 alambda: 2.8 side: 1 Number of cores used: 8 Number of threads per core: 1 Factor base limits: 500000000/150000000 Large primes per side: 3 Large prime bits: 29/29 Total raw relations: 61263849 Relations: 17263590 relations Total pre-computation time approximately 1000 CPU-days. Pre-computation saved approximately 18 G rational relations. Total batch smoothness checking time: 23.76 hours. Total relation processing time: 0.69 hours. Pruned matrix : 12949723 x 12949948 Matrix solve time: 175.99 hours. time per square root: 0.33 hours. Prototype def-par.txt line would be: snfs,242,4,0,0,0,0,0,0,0,0,500000000,150000000,29,29,58,58,2.8,2.8,100000 total time: 200.77 hours. Intel64 Family 6 Model 165 Stepping 5, GenuineIntel Windows-10-10.0.22631-SP0 processors: 16, speed: 3.79GHz |
software ソフトウェア | GGNFS, NFS_factory, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | December 26, 2022 12:38:21 UTC 2022 年 12 月 26 日 (月) 21 時 38 分 21 秒 (日本時間) | |
45 | 11e6 | 4480 | Ignacio Santos | December 31, 2022 13:47:04 UTC 2022 年 12 月 31 日 (土) 22 時 47 分 4 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | January 29, 2023 10:20:26 UTC 2023 年 1 月 29 日 (日) 19 時 20 分 26 秒 (日本時間) |
2350 | Ignacio Santos | September 18, 2024 15:58:13 UTC 2024 年 9 月 19 日 (木) 0 時 58 分 13 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | January 29, 2023 10:20:31 UTC 2023 年 1 月 29 日 (日) 19 時 20 分 31 秒 (日本時間) |
2350 | Ignacio Santos | September 18, 2024 16:04:11 UTC 2024 年 9 月 19 日 (木) 1 時 4 分 11 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | January 29, 2023 10:20:36 UTC 2023 年 1 月 29 日 (日) 19 時 20 分 36 秒 (日本時間) |
2350 | Ignacio Santos | September 18, 2024 16:27:36 UTC 2024 年 9 月 19 日 (木) 1 時 27 分 36 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | January 29, 2023 10:20:41 UTC 2023 年 1 月 29 日 (日) 19 時 20 分 41 秒 (日本時間) |
2350 | Ignacio Santos | September 18, 2024 16:27:47 UTC 2024 年 9 月 19 日 (木) 1 時 27 分 47 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | January 29, 2023 10:20:45 UTC 2023 年 1 月 29 日 (日) 19 時 20 分 45 秒 (日本時間) |
2350 | Ignacio Santos | September 18, 2024 16:43:55 UTC 2024 年 9 月 19 日 (木) 1 時 43 分 55 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | January 29, 2023 10:20:50 UTC 2023 年 1 月 29 日 (日) 19 時 20 分 50 秒 (日本時間) |
2350 | Ignacio Santos | September 18, 2024 16:59:33 UTC 2024 年 9 月 19 日 (木) 1 時 59 分 33 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | January 29, 2023 10:20:55 UTC 2023 年 1 月 29 日 (日) 19 時 20 分 55 秒 (日本時間) |
2350 | Ignacio Santos | September 19, 2024 05:25:41 UTC 2024 年 9 月 19 日 (木) 14 時 25 分 41 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 29, 2023 10:20:59 UTC 2023 年 1 月 29 日 (日) 19 時 20 分 59 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 02:44:19 UTC 2024 年 10 月 3 日 (木) 11 時 44 分 19 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 8, 2023 21:40:10 UTC 2023 年 1 月 9 日 (月) 6 時 40 分 10 秒 (日本時間) |
composite number 合成数 | 31554236489399867991295613849264626060749298280985085998293098780163378060445070757278183611075326827984325056702035016976042620854791090852902381994073348655738472003156323526170251838340004499244117321152782130044585291807616286591573<236> |
prime factors 素因数 | 4118759497244982596731509519671197<34> |
composite cofactor 合成数の残り | 7661101967839184890719413812757055839094999598365373148776734741724800838807683239572000556139979482307420749043781826516047305028487257666306336206873290648515738725063614712718623949011224691743376409<202> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @1f395b902b49 with GMP-ECM 7.0.5-dev on Sat Jan 7 18:47:17 2023 Input number is 31554236489399867991295613849264626060749298280985085998293098780163378060445070757278183611075326827984325056702035016976042620854791090852902381994073348655738472003156323526170251838340004499244117321152782130044585291807616286591573 (236 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:3212242558 Step 1 took 0ms Step 2 took 4174ms ********** Factor found in step 2: 4118759497244982596731509519671197 Found prime factor of 34 digits: 4118759497244982596731509519671197 Composite cofactor 7661101967839184890719413812757055839094999598365373148776734741724800838807683239572000556139979482307420749043781826516047305028487257666306336206873290648515738725063614712718623949011224691743376409 has 202 digits |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 9, 2023 14:00:17 UTC 2023 年 1 月 9 日 (月) 23 時 0 分 17 秒 (日本時間) |
composite number 合成数 | 7661101967839184890719413812757055839094999598365373148776734741724800838807683239572000556139979482307420749043781826516047305028487257666306336206873290648515738725063614712718623949011224691743376409<202> |
prime factors 素因数 | 940053617928309308824466524228361<33> |
composite cofactor 合成数の残り | 8149643617906312312625334299029551903119688895094104523501109846999145724633384657843011350693411674495278472488999093361977499877596378892506694077575938154125277799569<169> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @1f395b902b49 with GMP-ECM 7.0.5-dev on Sat Jan 7 18:47:17 2023 Input number is 7661101967839184890719413812757055839094999598365373148776734741724800838807683239572000556139979482307420749043781826516047305028487257666306336206873290648515738725063614712718623949011224691743376409 (202 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:3212242684 Step 1 took 0ms Step 2 took 5909ms ********** Factor found in step 2: 940053617928309308824466524228361 Found prime factor of 33 digits: 940053617928309308824466524228361 Composite cofactor 8149643617906312312625334299029551903119688895094104523501109846999145724633384657843011350693411674495278472488999093361977499877596378892506694077575938154125277799569 has 169 digits |
name 名前 | Ignacio Santos |
---|---|
date 日付 | January 13, 2023 16:41:53 UTC 2023 年 1 月 14 日 (土) 1 時 41 分 53 秒 (日本時間) |
composite number 合成数 | 8149643617906312312625334299029551903119688895094104523501109846999145724633384657843011350693411674495278472488999093361977499877596378892506694077575938154125277799569<169> |
prime factors 素因数 | 97183444303364763346223164261876653235239041<44> 83858353409111975657768758391144111191060187895445251318114163876928662417442427243553022707166622355213911924343571823240209<125> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:1922539884 Step 1 took 24718ms Step 2 took 10469ms ********** Factor found in step 2: 97183444303364763346223164261876653235239041 Found prime factor of 44 digits: 97183444303364763346223164261876653235239041 Prime cofactor 83858353409111975657768758391144111191060187895445251318114163876928662417442427243553022707166622355213911924343571823240209 has 125 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | January 8, 2023 21:39:58 UTC 2023 年 1 月 9 日 (月) 6 時 39 分 58 秒 (日本時間) |
2350 | Ignacio Santos | January 13, 2023 16:20:02 UTC 2023 年 1 月 14 日 (土) 1 時 20 分 2 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 29, 2023 10:21:25 UTC 2023 年 1 月 29 日 (日) 19 時 21 分 25 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 02:46:44 UTC 2024 年 10 月 3 日 (木) 11 時 46 分 44 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 29, 2023 10:21:32 UTC 2023 年 1 月 29 日 (日) 19 時 21 分 32 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 02:49:53 UTC 2024 年 10 月 3 日 (木) 11 時 49 分 53 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 29, 2023 10:21:38 UTC 2023 年 1 月 29 日 (日) 19 時 21 分 38 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 02:52:20 UTC 2024 年 10 月 3 日 (木) 11 時 52 分 20 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 29, 2023 10:21:43 UTC 2023 年 1 月 29 日 (日) 19 時 21 分 43 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 02:55:08 UTC 2024 年 10 月 3 日 (木) 11 時 55 分 8 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 29, 2023 10:21:49 UTC 2023 年 1 月 29 日 (日) 19 時 21 分 49 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 02:58:36 UTC 2024 年 10 月 3 日 (木) 11 時 58 分 36 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 29, 2023 10:21:55 UTC 2023 年 1 月 29 日 (日) 19 時 21 分 55 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 03:01:05 UTC 2024 年 10 月 3 日 (木) 12 時 1 分 5 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 29, 2023 10:21:59 UTC 2023 年 1 月 29 日 (日) 19 時 21 分 59 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 03:03:31 UTC 2024 年 10 月 3 日 (木) 12 時 3 分 31 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 7, 2023 22:58:41 UTC 2023 年 1 月 8 日 (日) 7 時 58 分 41 秒 (日本時間) |
composite number 合成数 | 162222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222223<264> |
prime factors 素因数 | 2822825114743518521898251873253126149<37> 57468038446640258713520977430842871610912262650402809401477341483800820009376841498796976767464807912174190723643517226522858873472005808372321397698190254133911298931665732381460262308016698353268869257008346012345670149053827<227> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @6ac90a82cbf2 with GMP-ECM 7.0.5-dev on Sat Jan 7 07:03:47 2023 Input number is 162222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222223 (264 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:2807470310 Step 1 took 0ms Step 2 took 3933ms ********** Factor found in step 2: 2822825114743518521898251873253126149 Found prime factor of 37 digits: 2822825114743518521898251873253126149 Prime cofactor 57468038446640258713520977430842871610912262650402809401477341483800820009376841498796976767464807912174190723643517226522858873472005808372321397698190254133911298931665732381460262308016698353268869257008346012345670149053827 has 227 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 29, 2023 10:22:04 UTC 2023 年 1 月 29 日 (日) 19 時 22 分 4 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 03:05:59 UTC 2024 年 10 月 3 日 (木) 12 時 5 分 59 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 29, 2023 10:22:09 UTC 2023 年 1 月 29 日 (日) 19 時 22 分 9 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 03:09:27 UTC 2024 年 10 月 3 日 (木) 12 時 9 分 27 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 29, 2023 10:22:15 UTC 2023 年 1 月 29 日 (日) 19 時 22 分 15 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 03:12:34 UTC 2024 年 10 月 3 日 (木) 12 時 12 分 34 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 29, 2023 10:22:20 UTC 2023 年 1 月 29 日 (日) 19 時 22 分 20 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 03:15:21 UTC 2024 年 10 月 3 日 (木) 12 時 15 分 21 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 29, 2023 10:23:33 UTC 2023 年 1 月 29 日 (日) 19 時 23 分 33 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 03:18:07 UTC 2024 年 10 月 3 日 (木) 12 時 18 分 7 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 29, 2023 10:23:37 UTC 2023 年 1 月 29 日 (日) 19 時 23 分 37 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 03:20:52 UTC 2024 年 10 月 3 日 (木) 12 時 20 分 52 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 29, 2023 10:23:41 UTC 2023 年 1 月 29 日 (日) 19 時 23 分 41 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 03:24:45 UTC 2024 年 10 月 3 日 (木) 12 時 24 分 45 秒 (日本時間) |
name 名前 | Seth Troisi |
---|---|
date 日付 | November 15, 2023 17:17:56 UTC 2023 年 11 月 16 日 (木) 2 時 17 分 56 秒 (日本時間) |
composite number 合成数 | 725483260482080576806659637343863715288412631637020123875815001262924383579029683402222430409042472226502720951041225655622129462149626492331668347977338844751785303650072518033072529696683320209432988289245715887342053398329166087812288329<240> |
prime factors 素因数 | 22566885831388782728020298599939374665537<41> 32148133592850006638900977757393735646124788295924702142150710406921243316909201179947614832464194147850482283871510074459355164844217613873423484997904149704653556202299313378818298858024284043396617<200> |
factorization results 素因数分解の結果 | 22566885831388782728020298599939374665537 P-1 B1=1e9, B2=1e12, GMP-ECM 7.0.6 dev, 1080 ti for Stage 1 |
software ソフトウェア | GMP-ECM 7.0.6 dev |
execution environment 実行環境 | 1080 ti for Stage 1 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 / 2078 | Dmitry Domanov | January 29, 2023 10:24:16 UTC 2023 年 1 月 29 日 (日) 19 時 24 分 16 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 29, 2023 10:24:22 UTC 2023 年 1 月 29 日 (日) 19 時 24 分 22 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 03:28:13 UTC 2024 年 10 月 3 日 (木) 12 時 28 分 13 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 29, 2023 10:24:27 UTC 2023 年 1 月 29 日 (日) 19 時 24 分 27 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 03:31:22 UTC 2024 年 10 月 3 日 (木) 12 時 31 分 22 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 29, 2023 10:24:32 UTC 2023 年 1 月 29 日 (日) 19 時 24 分 32 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 03:35:20 UTC 2024 年 10 月 3 日 (木) 12 時 35 分 20 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 8, 2023 18:35:36 UTC 2023 年 1 月 9 日 (月) 3 時 35 分 36 秒 (日本時間) |
composite number 合成数 | 19219576362902710040281494468852504971474310311405742132977700152935219948701293469372611246003748500281832612726182678671926189151455958820061407612138642394765214826314160439694723437723690901531584939195266848731382965483183<227> |
prime factors 素因数 | 638037690838444707457182525411788809<36> 30122948281701482996219949840807051274192427820589744378579338518909863733594679022291444673995814032242706025648848299579859940188181243626853391418426287668239614776501719248389758786455287<191> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @6ac90a82cbf2 with GMP-ECM 7.0.5-dev on Sat Jan 7 07:44:46 2023 Input number is 19219576362902710040281494468852504971474310311405742132977700152935219948701293469372611246003748500281832612726182678671926189151455958820061407612138642394765214826314160439694723437723690901531584939195266848731382965483183 (227 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:935138617 Step 1 took 0ms Step 2 took 5662ms ********** Factor found in step 2: 638037690838444707457182525411788809 Found prime factor of 36 digits: 638037690838444707457182525411788809 Prime cofactor 30122948281701482996219949840807051274192427820589744378579338518909863733594679022291444673995814032242706025648848299579859940188181243626853391418426287668239614776501719248389758786455287 has 191 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 / 2078 | Dmitry Domanov | January 8, 2023 18:35:08 UTC 2023 年 1 月 9 日 (月) 3 時 35 分 8 秒 (日本時間) |
name 名前 | Thomas Kozlowski |
---|---|
date 日付 | October 3, 2024 03:38:46 UTC 2024 年 10 月 3 日 (木) 12 時 38 分 46 秒 (日本時間) |
composite number 合成数 | 12097920303377947849229051155108772307775485245852491887817531845388403991082426056024418093763800186938060369466245399782681400059364361729820428237430373890205804724274797879298998662250316126437547026375579835193246097580656523827369573277<242> |
prime factors 素因数 | 427842437503989148276423906096858785481<39> |
composite cofactor 合成数の残り | 28276578578685636776105741503867522535860801838072743106708709850349619555911371853503792816131866366933769442063513740300634635449499072594855330012173086375961173727295003542162647237362316008893912117<203> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.6 [configured with GMP 6.3.0, --enable-asm-redc] [ECM] Input number is 12097920303377947849229051155108772307775485245852491887817531845388403991082426056024418093763800186938060369466245399782681400059364361729820428237430373890205804724274797879298998662250316126437547026375579835193246097580656523827369573277 (242 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:196584958 Step 1 took 13630ms Step 2 took 4885ms Run 2 out of 0: Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:1759282703 Step 1 took 11745ms Step 2 took 4871ms Run 3 out of 0: Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:295757276 Step 1 took 11749ms Step 2 took 4875ms Run 4 out of 0: Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:3900431091 Step 1 took 11729ms Step 2 took 4879ms Run 5 out of 0: Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:2771650953 Step 1 took 11740ms Step 2 took 4884ms Run 6 out of 0: Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:2857051857 Step 1 took 11749ms ** Factor found in step 1: 427842437503989148276423906096858785481 Found prime factor of 39 digits: 427842437503989148276423906096858785481 Composite cofactor 28276578578685636776105741503867522535860801838072743106708709850349619555911371853503792816131866366933769442063513740300634635449499072594855330012173086375961173727295003542162647237362316008893912117 has 203 digits |
execution environment 実行環境 | 2x Xeon E5-2698v4, 256GB DDR4, Ubuntu Server 24.04 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | January 29, 2023 10:24:37 UTC 2023 年 1 月 29 日 (日) 19 時 24 分 37 秒 (日本時間) |
2350 | Ignacio Santos | October 6, 2024 16:25:21 UTC 2024 年 10 月 7 日 (月) 1 時 25 分 21 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 29, 2023 10:24:42 UTC 2023 年 1 月 29 日 (日) 19 時 24 分 42 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 03:40:06 UTC 2024 年 10 月 3 日 (木) 12 時 40 分 6 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 29, 2023 10:24:47 UTC 2023 年 1 月 29 日 (日) 19 時 24 分 47 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 03:43:33 UTC 2024 年 10 月 3 日 (木) 12 時 43 分 33 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 29, 2023 10:24:52 UTC 2023 年 1 月 29 日 (日) 19 時 24 分 52 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 03:47:25 UTC 2024 年 10 月 3 日 (木) 12 時 47 分 25 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 29, 2023 10:24:57 UTC 2023 年 1 月 29 日 (日) 19 時 24 分 57 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 03:50:12 UTC 2024 年 10 月 3 日 (木) 12 時 50 分 12 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 29, 2023 10:25:01 UTC 2023 年 1 月 29 日 (日) 19 時 25 分 1 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 03:53:17 UTC 2024 年 10 月 3 日 (木) 12 時 53 分 17 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 29, 2023 10:25:07 UTC 2023 年 1 月 29 日 (日) 19 時 25 分 7 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 03:57:08 UTC 2024 年 10 月 3 日 (木) 12 時 57 分 8 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 29, 2023 10:25:12 UTC 2023 年 1 月 29 日 (日) 19 時 25 分 12 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 04:00:38 UTC 2024 年 10 月 3 日 (木) 13 時 0 分 38 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 29, 2023 10:25:17 UTC 2023 年 1 月 29 日 (日) 19 時 25 分 17 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 04:04:08 UTC 2024 年 10 月 3 日 (木) 13 時 4 分 8 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 8, 2023 18:29:37 UTC 2023 年 1 月 9 日 (月) 3 時 29 分 37 秒 (日本時間) |
composite number 合成数 | 17227535590609241687450738142317011936810920169553126558505909190944469742334081951367515914274278162572316607679276705037816151011740899862406761093424747146808338730032070066341818060899105714777510226208329928777711311002917682736812866307456602328161413121661<263> |
prime factors 素因数 | 399351255739031016953456452458479513<36> 43138804105494365904049292646509286566848937937698092523191983285681001345767227839153986320977534996290664207087305222165080681467546109594585741583556649145358199028485301946215620130292222033690973725336142821798924762635397<227> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @1f395b902b49 with GMP-ECM 7.0.5-dev on Sat Jan 7 20:56:20 2023 Input number is 17227535590609241687450738142317011936810920169553126558505909190944469742334081951367515914274278162572316607679276705037816151011740899862406761093424747146808338730032070066341818060899105714777510226208329928777711311002917682736812866307456602328161413121661 (263 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:3987561135 Step 1 took 1ms Step 2 took 7401ms ********** Factor found in step 2: 399351255739031016953456452458479513 Found prime factor of 36 digits: 399351255739031016953456452458479513 Prime cofactor 43138804105494365904049292646509286566848937937698092523191983285681001345767227839153986320977534996290664207087305222165080681467546109594585741583556649145358199028485301946215620130292222033690973725336142821798924762635397 has 227 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 7, 2023 22:59:25 UTC 2023 年 1 月 8 日 (日) 7 時 59 分 25 秒 (日本時間) |
composite number 合成数 | 53033623328087327227397922452848377608290308989109432843938694017748079820499637829390608542265921637249369861570873576636122968394041884553582701135310753004112296169219016946309511657714863481882074224486147688419282692710592767741582293531958637159238128992802970437943197858252378143<287> |
prime factors 素因数 | 1545618616868113928703231744062625190081<40> 34312231199407604313111214241796003421750969381459942098354412268003578080006077129043833918773859118773999091937791803884188483941608299119476152852366390220275911768605418902361878164563290517233649275053043184724304758949330371510299068580935903<248> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @6ac90a82cbf2 with GMP-ECM 7.0.5-dev on Sat Jan 7 06:04:29 2023 Input number is 53033623328087327227397922452848377608290308989109432843938694017748079820499637829390608542265921637249369861570873576636122968394041884553582701135310753004112296169219016946309511657714863481882074224486147688419282692710592767741582293531958637159238128992802970437943197858252378143 (287 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:3301859703 Step 1 took 0ms Step 2 took 4430ms ********** Factor found in step 2: 1545618616868113928703231744062625190081 Found prime factor of 40 digits: 1545618616868113928703231744062625190081 Prime cofactor 34312231199407604313111214241796003421750969381459942098354412268003578080006077129043833918773859118773999091937791803884188483941608299119476152852366390220275911768605418902361878164563290517233649275053043184724304758949330371510299068580935903 has 248 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 29, 2023 10:25:22 UTC 2023 年 1 月 29 日 (日) 19 時 25 分 22 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 04:06:33 UTC 2024 年 10 月 3 日 (木) 13 時 6 分 33 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 29, 2023 10:25:27 UTC 2023 年 1 月 29 日 (日) 19 時 25 分 27 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 04:09:16 UTC 2024 年 10 月 3 日 (木) 13 時 9 分 16 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 29, 2023 10:25:33 UTC 2023 年 1 月 29 日 (日) 19 時 25 分 33 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 04:13:35 UTC 2024 年 10 月 3 日 (木) 13 時 13 分 35 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 29, 2023 10:25:39 UTC 2023 年 1 月 29 日 (日) 19 時 25 分 39 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 04:17:05 UTC 2024 年 10 月 3 日 (木) 13 時 17 分 5 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 29, 2023 10:25:44 UTC 2023 年 1 月 29 日 (日) 19 時 25 分 44 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 04:20:12 UTC 2024 年 10 月 3 日 (木) 13 時 20 分 12 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | December 30, 2022 10:38:39 UTC 2022 年 12 月 30 日 (金) 19 時 38 分 39 秒 (日本時間) | |
45 | 11e6 | 3584 | Dmitry Domanov | December 30, 2022 10:38:39 UTC 2022 年 12 月 30 日 (金) 19 時 38 分 39 秒 (日本時間) | |
50 | 43e6 | 130 / 6675 | Dmitry Domanov | December 30, 2022 10:38:39 UTC 2022 年 12 月 30 日 (金) 19 時 38 分 39 秒 (日本時間) |