name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 23, 2022 14:58:47 UTC 2022 年 12 月 23 日 (金) 23 時 58 分 47 秒 (日本時間) |
composite number 合成数 | 2194037555671448826989378934690775352434564182391003219765140602342053941345020761005232268630023714840999<106> |
prime factors 素因数 | 16402506201416065771302076790158421743746431356215461<53> 133762336604514288227145397437271167973963529532160859<54> |
factorization results 素因数分解の結果 | N=2194037555671448826989378934690775352434564182391003219765140602342053941345020761005232268630023714840999 ( 106 digits) SNFS difficulty: 112 digits. Divisors found: r1=16402506201416065771302076790158421743746431356215461 (pp53) r2=133762336604514288227145397437271167973963529532160859 (pp54) Version: Msieve v. 1.54 (SVN 1043M) Total time: 0.02 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 2194037555671448826989378934690775352434564182391003219765140602342053941345020761005232268630023714840999 m: 5000000000000000000000000000 deg: 4 c4: 73 c0: 5 skew: 0.51 # Murphy_E = 1.117e-07 type: snfs lss: 1 rlim: 530000 alim: 530000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 530000/530000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [265000, 465001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 43211 x 43436 Total sieving time: 0.00 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.01 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,112.000,4,0,0,0,0,0,0,0,0,530000,530000,25,25,45,45,2.2,2.2,20000 total time: 0.02 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 25, 2022 20:32:00 UTC 2022 年 12 月 26 日 (月) 5 時 32 分 0 秒 (日本時間) |
composite number 合成数 | 107457009618669881362417896546095517758063835121435152967011906771794590857445079944894327992465446449387453831907<114> |
prime factors 素因数 | 10373781928152032165451039119625424259285869<44> 10358518268738283564115178353776513047954113763726704846350559577314703<71> |
factorization results 素因数分解の結果 | N=107457009618669881362417896546095517758063835121435152967011906771794590857445079944894327992465446449387453831907 ( 114 digits) SNFS difficulty: 125 digits. Divisors found: r1=10373781928152032165451039119625424259285869 (pp44) r2=10358518268738283564115178353776513047954113763726704846350559577314703 (pp71) Version: Msieve v. 1.54 (SVN 1043M) Total time: 0.02 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 107457009618669881362417896546095517758063835121435152967011906771794590857445079944894327992465446449387453831907 m: 10000000000000000000000000000000 deg: 4 c4: 73 c0: 8 skew: 0.58 # Murphy_E = 2.252e-08 type: snfs lss: 1 rlim: 880000 alim: 880000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 880000/880000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [440000, 740001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 102793 x 103018 Total sieving time: 0.00 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.01 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,125.000,4,0,0,0,0,0,0,0,0,880000,880000,26,26,46,46,2.3,2.3,75000 total time: 0.02 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 1, 2023 01:08:37 UTC 2023 年 1 月 1 日 (日) 10 時 8 分 37 秒 (日本時間) |
composite number 合成数 | 19188860094995883225148981622842232646114436978811684643500108719228169731814825226006857013652698292254605502167047<116> |
prime factors 素因数 | 218716701636808346544556151329814664140951<42> 87733858234841563501111119154841325045451289988568034647065274561845434897<74> |
factorization results 素因数分解の結果 | N=19188860094995883225148981622842232646114436978811684643500108719228169731814825226006857013652698292254605502167047 ( 116 digits) SNFS difficulty: 134 digits. Divisors found: r1=218716701636808346544556151329814664140951 (pp42) r2=87733858234841563501111119154841325045451289988568034647065274561845434897 (pp74) Version: Msieve v. 1.54 (SVN 1043M) Total time: 0.06 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 19188860094995883225148981622842232646114436978811684643500108719228169731814825226006857013652698292254605502167047 m: 1000000000000000000000000000000000 deg: 4 c4: 365 c0: 4 skew: 0.32 # Murphy_E = 8.704e-09 type: snfs lss: 1 rlim: 1220000 alim: 1220000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1220000/1220000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [610000, 1310001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 159227 x 159452 Total sieving time: 0.00 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.03 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,134.000,4,0,0,0,0,0,0,0,0,1220000,1220000,26,26,47,47,2.3,2.3,100000 total time: 0.06 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 23, 2022 23:00:46 UTC 2022 年 12 月 24 日 (土) 8 時 0 分 46 秒 (日本時間) |
composite number 合成数 | 10138888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888889<140> |
prime factors 素因数 | 1925595976429343730367845690495278653243<40> 5265325132060960723097328629734151616454525552363896105063119375077007297908624607718838134095780123<100> |
factorization results 素因数分解の結果 | Number: n N=10138888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888889 ( 140 digits) SNFS difficulty: 140 digits. Divisors found: Sat Dec 24 09:53:33 2022 p40 factor: 1925595976429343730367845690495278653243 Sat Dec 24 09:53:33 2022 p100 factor: 5265325132060960723097328629734151616454525552363896105063119375077007297908624607718838134095780123 Sat Dec 24 09:53:33 2022 elapsed time 00:03:22 (Msieve 1.54 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.319). Factorization parameters were as follows: # # N = 73x10^139+8 = 81(138)2 # n: 10138888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888889 m: 50000000000000000000000000000000000 deg: 4 c4: 73 c0: 5 skew: 0.51 # Murphy_E = 4.986e-09 type: snfs lss: 1 rlim: 1550000 alim: 1550000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1550000/1550000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved special-q in [100000, 6375000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 452077 hash collisions in 6795567 relations (7097440 unique) Msieve: matrix is 197445 x 197670 (66.7 MB) Sieving start time : 2022/12/24 09:35:14 Sieving end time : 2022/12/24 09:49:52 Total sieving time: 0hrs 14min 38secs. Total relation processing time: 0hrs 1min 38sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 12sec. Prototype def-par.txt line would be: snfs,140,4,0,0,0,0,0,0,0,0,1550000,1550000,26,26,48,48,2.3,2.3,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | anonymous |
---|---|
date 日付 | January 16, 2023 06:33:35 UTC 2023 年 1 月 16 日 (月) 15 時 33 分 35 秒 (日本時間) |
composite number 合成数 | 2489865197994901763843024343819067614986561154821392913341755055580050081301523700445124436230944926629747748133<112> |
prime factors 素因数 | 2981867357332918309621840932489021512622786626615153<52> 835001996943928552650771065751315316377492205865041022844661<60> |
factorization results 素因数分解の結果 | 2981867357332918309621840932489021512622786626615153*835001996943928552650771065751315316377492205865041022844661 |
software ソフトウェア | GGNFS snfs |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 23, 2022 21:59:44 UTC 2022 年 12 月 24 日 (土) 6 時 59 分 44 秒 (日本時間) |
composite number 合成数 | 349616858237547892720306513409961685823754789272030651340996168582375478927203065134099616858237547892720306513409961685823754789272030651341<141> |
prime factors 素因数 | 2065110333221909086956376061132651947216361208094653221<55> 169296939060921043558009395023902269003061745896117657153242614931986137727379740899721<87> |
factorization results 素因数分解の結果 | Number: n N=349616858237547892720306513409961685823754789272030651340996168582375478927203065134099616858237547892720306513409961685823754789272030651341 ( 141 digits) SNFS difficulty: 143 digits. Divisors found: Sat Dec 24 08:52:28 2022 p55 factor: 2065110333221909086956376061132651947216361208094653221 Sat Dec 24 08:52:28 2022 p87 factor: 169296939060921043558009395023902269003061745896117657153242614931986137727379740899721 Sat Dec 24 08:52:28 2022 elapsed time 00:02:38 (Msieve 1.54 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.277). Factorization parameters were as follows: # # N = 73x10^142+8 = 81(141)2 # n: 349616858237547892720306513409961685823754789272030651340996168582375478927203065134099616858237547892720306513409961685823754789272030651341 m: 100000000000000000000000000000000000 deg: 4 c4: 1825 c0: 2 skew: 0.18 # Murphy_E = 2.939e-09 type: snfs lss: 1 rlim: 1710000 alim: 1710000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1710000/1710000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved special-q in [100000, 6455000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 419796 hash collisions in 6267885 relations (6090840 unique) Msieve: matrix is 255172 x 255397 (86.8 MB) Sieving start time : 2022/12/24 08:18:34 Sieving end time : 2022/12/24 08:41:15 Total sieving time: 0hrs 22min 41secs. Total relation processing time: 0hrs 0min 57sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 20sec. Prototype def-par.txt line would be: snfs,143,4,0,0,0,0,0,0,0,0,1710000,1710000,26,26,48,48,2.3,2.3,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 23, 2022 23:21:11 UTC 2022 年 12 月 24 日 (土) 8 時 21 分 11 秒 (日本時間) |
composite number 合成数 | 36287181486530536249780835365514913514622899036812938008649352928968070899068308223200246267679462779512205635898357874801548884042909781<137> |
prime factors 素因数 | 15103337407700717793963520735964953549440382855510081177<56> 2402593579616968705179156866267212905805875895759426288398548249518611278910036253<82> |
factorization results 素因数分解の結果 | Number: n N=36287181486530536249780835365514913514622899036812938008649352928968070899068308223200246267679462779512205635898357874801548884042909781 ( 137 digits) SNFS difficulty: 144 digits. Divisors found: Sat Dec 24 10:17:51 2022 p56 factor: 15103337407700717793963520735964953549440382855510081177 Sat Dec 24 10:17:51 2022 p82 factor: 2402593579616968705179156866267212905805875895759426288398548249518611278910036253 Sat Dec 24 10:17:51 2022 elapsed time 00:02:31 (Msieve 1.54 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.297). Factorization parameters were as follows: # # N = 73x10^143+8 = 81(142)2 # n: 36287181486530536249780835365514913514622899036812938008649352928968070899068308223200246267679462779512205635898357874801548884042909781 m: 500000000000000000000000000000000000 deg: 4 c4: 73 c0: 5 skew: 0.51 # Murphy_E = 3.137e-09 type: snfs lss: 1 rlim: 1800000 alim: 1800000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved special-q in [100000, 6500000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 395005 hash collisions in 6049678 relations (6344620 unique) Msieve: matrix is 254868 x 255093 (86.7 MB) Sieving start time : 2022/12/24 09:58:44 Sieving end time : 2022/12/24 10:15:04 Total sieving time: 0hrs 16min 20secs. Total relation processing time: 0hrs 0min 58sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 9sec. Prototype def-par.txt line would be: snfs,144,4,0,0,0,0,0,0,0,0,1800000,1800000,26,26,49,49,2.3,2.3,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Rytis Slatkevičius |
---|---|
date 日付 | January 26, 2023 17:46:55 UTC 2023 年 1 月 27 日 (金) 2 時 46 分 55 秒 (日本時間) |
composite number 合成数 | 179653143519667196034187195236816296468970568569485872548066262586151170969102426930115216908397551199647359959481315090382621<126> |
prime factors 素因数 | 1148177761609762395821666533190715259672591513830724269649277<61> 156468057060947428236369285004781978139122669597422063404175690273<66> |
factorization results 素因数分解の結果 | 156468057060947428236369285004781978139122669597422063404175690273 1148177761609762395821666533190715259672591513830724269649277 NFS elapsed time = 19539.2522 seconds. pretesting / nfs ratio was 0.09 Total factoring time = 21306.0219 seconds ***factors found*** P66 = 156468057060947428236369285004781978139122669597422063404175690273 P61 = 1148177761609762395821666533190715259672591513830724269649277 |
software ソフトウェア | yafu |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | anonymous |
---|---|
date 日付 | January 26, 2023 13:42:49 UTC 2023 年 1 月 26 日 (木) 22 時 42 分 49 秒 (日本時間) |
composite number 合成数 | 1141827570023269548566642400960021748408546955889545933512507084137037929915844952619780376100607688838496331743349<115> |
prime factors 素因数 | 395543635629964511030708810951456237126647<42> 2886729723775563395554466438006718185166987518187957082906508861389614067<73> |
factorization results 素因数分解の結果 | Input number is 1141827570023269548566642400960021748408546955889545933512507084137037929915844952619780376100607688838496331743349 (115 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=0:2902560407 Step 1 took 4968ms Step 2 took 2344ms ********** Factor found in step 2: 395543635629964511030708810951456237126647 Found prime factor of 42 digits: 395543635629964511030708810951456237126647 Prime cofactor 2886729723775563395554466438006718185166987518187957082906508861389614067 has 73 digits |
software ソフトウェア | GMP-ECM 7.0.5 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | ebina |
---|---|
date 日付 | December 24, 2022 01:40:37 UTC 2022 年 12 月 24 日 (土) 10 時 40 分 37 秒 (日本時間) |
composite number 合成数 | 14484126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984127<152> |
prime factors 素因数 | 381941631685791947369000703903137633579820925335589<51> 37922357194207344571835476426970920521474896666489173189668098302595884426059845118305846505936724243<101> |
factorization results 素因数分解の結果 | Number: 81112_152 N = 14484126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984127 (152 digits) SNFS difficulty: 154 digits. Divisors found: r1=381941631685791947369000703903137633579820925335589 (pp51) r2=37922357194207344571835476426970920521474896666489173189668098302595884426059845118305846505936724243 (pp101) Version: Msieve v. 1.53 (SVN unknown) Total time: 1.53 hours. Factorization parameters were as follows: n: 14484126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984127 m: 1000000000000000000000000000000 deg: 5 c5: 1825 c0: 2 skew: 0.26 # Murphy_E = 9.103e-10 type: snfs lss: 1 rlim: 2500000 alim: 2500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 27/27 Sieved rational special-q in [0, 0) Total raw relations: 8261031 Relations: 714468 relations Pruned matrix : 420355 x 420580 Total sieving time: 1.39 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.07 hours. time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,154,5,0,0,0,0,0,0,0,0,2500000,2500000,27,27,50,50,2.4,2.4,100000 total time: 1.53 hours. Intel64 Family 6 Model 60 Stepping 3, GenuineIntel processors: 8, speed: 2.29GHz Windows-post2008Server-6.2.9200 Running Python 3.2 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 28, 2022 06:56:45 UTC 2022 年 12 月 28 日 (水) 15 時 56 分 45 秒 (日本時間) |
composite number 合成数 | 420788190732386485015415956958963533453680969343963556217745665786986934613371655134093596466479656958489161057180798410116588113719708760286878051<147> |
prime factors 素因数 | 15034104710678856874218398419783940378530557072159974240451463<62> 27988909138932425437695220455975695092902966843975747309418868530467041785911753015877<86> |
factorization results 素因数分解の結果 | Number: n N=420788190732386485015415956958963533453680969343963556217745665786986934613371655134093596466479656958489161057180798410116588113719708760286878051 ( 147 digits) SNFS difficulty: 156 digits. Divisors found: Wed Dec 28 17:45:27 2022 p62 factor: 15034104710678856874218398419783940378530557072159974240451463 Wed Dec 28 17:45:27 2022 p86 factor: 27988909138932425437695220455975695092902966843975747309418868530467041785911753015877 Wed Dec 28 17:45:27 2022 elapsed time 00:05:30 (Msieve 1.54 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.279). Factorization parameters were as follows: # # N = 73x10^155+8 = 81(154)2 # n: 420788190732386485015415956958963533453680969343963556217745665786986934613371655134093596466479656958489161057180798410116588113719708760286878051 m: 10000000000000000000000000000000 deg: 5 c5: 73 c0: 8 skew: 0.64 # Murphy_E = 8.107e-10 type: snfs lss: 1 rlim: 2900000 alim: 2900000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2900000/2900000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved special-q in [100000, 7050000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1321028 hash collisions in 13722645 relations (13269377 unique) Msieve: matrix is 391185 x 391411 (131.2 MB) Sieving start time : 2022/12/28 17:11:23 Sieving end time : 2022/12/28 17:39:38 Total sieving time: 0hrs 28min 15secs. Total relation processing time: 0hrs 2min 3sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 19sec. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,2900000,2900000,27,27,50,50,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 29, 2022 20:02:31 UTC 2022 年 12 月 30 日 (金) 5 時 2 分 31 秒 (日本時間) |
composite number 合成数 | 524136419757361948629625301008098429216540590563780707935977747765301801766767921127876681620115864641962380552974107298697197<126> |
prime factors 素因数 | 3236102215044252868668279920394440046707<40> 161965347485229083648876380406771864582944969987325660085927530513365967931211244183071<87> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 524136419757361948629625301008098429216540590563780707935977747765301801766767921127876681620115864641962380552974107298697197 (126 digits) Using B1=25060000, B2=96190324246, polynomial Dickson(12), sigma=1:2028766043 Step 1 took 39066ms Step 2 took 14842ms ********** Factor found in step 2: 3236102215044252868668279920394440046707 Found prime factor of 40 digits: 3236102215044252868668279920394440046707 Prime cofactor 161965347485229083648876380406771864582944969987325660085927530513365967931211244183071 has 87 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 30, 2023 13:42:27 UTC 2023 年 1 月 30 日 (月) 22 時 42 分 27 秒 (日本時間) |
composite number 合成数 | 235279435531664742198898511616726576985789851774437774677680984113415583489806802564251584085380262190641204366707663771486223358592383<135> |
prime factors 素因数 | 31367690323648088657527549511491768400439067329551385204236351<62> 7500693647000451092877507617576874536291352007454259758417239159918512833<73> |
factorization results 素因数分解の結果 | Number: n N=235279435531664742198898511616726576985789851774437774677680984113415583489806802564251584085380262190641204366707663771486223358592383 ( 135 digits) SNFS difficulty: 160 digits. Divisors found: Tue Jan 31 00:30:10 2023 prp62 factor: 31367690323648088657527549511491768400439067329551385204236351 Tue Jan 31 00:30:10 2023 prp73 factor: 7500693647000451092877507617576874536291352007454259758417239159918512833 Tue Jan 31 00:30:10 2023 elapsed time 00:12:14 (Msieve 1.44 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.103). Factorization parameters were as follows: # # N = 73x10^159+8 = 81(158)2 # n: 235279435531664742198898511616726576985789851774437774677680984113415583489806802564251584085380262190641204366707663771486223358592383 m: 50000000000000000000000000000000 deg: 5 c5: 146 c0: 5 skew: 0.51 # Murphy_E = 5.42e-10 type: snfs lss: 1 rlim: 3300000 alim: 3300000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3300000/3300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved special-q in [100000, 12850000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1224388 hash collisions in 14040544 relations (13748087 unique) Msieve: matrix is 534078 x 534304 (147.2 MB) Sieving start time: 2023/01/30 22:31:45 Sieving end time : 2023/01/31 00:17:47 Total sieving time: 1hrs 46min 2secs. Total relation processing time: 0hrs 8min 5sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 59sec. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,3300000,3300000,27,27,51,51,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | December 25, 2022 08:30:42 UTC 2022 年 12 月 25 日 (日) 17 時 30 分 42 秒 (日本時間) |
composite number 合成数 | 1064066201161254860165763754459472996900014850653833819597589660455164853397522272289027603415449275347651<106> |
prime factors 素因数 | 264476602074132531957162375349978017471516244577<48> 4023290502132956731058744015956524309833488919681743660963<58> |
factorization results 素因数分解の結果 | -> makeJobFile(): Adjusted to q0=1250000, q1=1400000. -> client 1 q0: 1250000 LatSieveTime: 56 LatSieveTime: 58 LatSieveTime: 60 LatSieveTime: 61 LatSieveTime: 61 LatSieveTime: 62 LatSieveTime: 62 LatSieveTime: 62 LatSieveTime: 62 LatSieveTime: 63 LatSieveTime: 63 LatSieveTime: 63 LatSieveTime: 64 LatSieveTime: 64 LatSieveTime: 64 LatSieveTime: 65 LatSieveTime: 65 LatSieveTime: 65 LatSieveTime: 65 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 68 LatSieveTime: 68 LatSieveTime: 68 LatSieveTime: 68 LatSieveTime: 68 LatSieveTime: 69 LatSieveTime: 69 LatSieveTime: 70 LatSieveTime: 70 LatSieveTime: 70 LatSieveTime: 70 LatSieveTime: 71 LatSieveTime: 71 LatSieveTime: 71 LatSieveTime: 71 LatSieveTime: 72 LatSieveTime: 72 LatSieveTime: 72 LatSieveTime: 73 LatSieveTime: 74 LatSieveTime: 78 -> makeJobFile(): Adjusted to q0=1400001, q1=1550000. -> client 1 q0: 1400001 LatSieveTime: 60 LatSieveTime: 60 LatSieveTime: 61 LatSieveTime: 61 LatSieveTime: 63 LatSieveTime: 63 LatSieveTime: 63 LatSieveTime: 63 LatSieveTime: 64 LatSieveTime: 64 LatSieveTime: 64 LatSieveTime: 64 LatSieveTime: 65 LatSieveTime: 65 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 68 LatSieveTime: 68 LatSieveTime: 68 LatSieveTime: 68 LatSieveTime: 69 LatSieveTime: 69 LatSieveTime: 69 LatSieveTime: 69 LatSieveTime: 70 LatSieveTime: 70 LatSieveTime: 70 LatSieveTime: 71 LatSieveTime: 71 LatSieveTime: 72 LatSieveTime: 72 LatSieveTime: 72 LatSieveTime: 73 LatSieveTime: 73 LatSieveTime: 73 LatSieveTime: 73 LatSieveTime: 75 LatSieveTime: 78 LatSieveTime: 80 -> makeJobFile(): Adjusted to q0=1550001, q1=1700000. -> client 1 q0: 1550001 LatSieveTime: 59 LatSieveTime: 61 LatSieveTime: 62 LatSieveTime: 62 LatSieveTime: 62 LatSieveTime: 62 LatSieveTime: 63 LatSieveTime: 64 LatSieveTime: 65 LatSieveTime: 65 LatSieveTime: 65 LatSieveTime: 65 LatSieveTime: 65 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 68 LatSieveTime: 68 LatSieveTime: 68 LatSieveTime: 69 LatSieveTime: 69 LatSieveTime: 69 LatSieveTime: 69 LatSieveTime: 69 LatSieveTime: 70 LatSieveTime: 69 LatSieveTime: 70 LatSieveTime: 70 LatSieveTime: 70 LatSieveTime: 71 LatSieveTime: 71 LatSieveTime: 71 LatSieveTime: 71 LatSieveTime: 71 LatSieveTime: 71 LatSieveTime: 72 LatSieveTime: 73 LatSieveTime: 73 LatSieveTime: 73 LatSieveTime: 73 LatSieveTime: 75 LatSieveTime: 77 -> makeJobFile(): Adjusted to q0=1700001, q1=1850000. -> client 1 q0: 1700001 LatSieveTime: 58 LatSieveTime: 59 LatSieveTime: 60 LatSieveTime: 62 LatSieveTime: 62 LatSieveTime: 62 LatSieveTime: 63 LatSieveTime: 65 LatSieveTime: 65 LatSieveTime: 66 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 68 LatSieveTime: 68 LatSieveTime: 68 LatSieveTime: 68 LatSieveTime: 68 LatSieveTime: 69 LatSieveTime: 69 LatSieveTime: 69 LatSieveTime: 69 LatSieveTime: 70 LatSieveTime: 70 LatSieveTime: 70 LatSieveTime: 70 LatSieveTime: 70 LatSieveTime: 70 LatSieveTime: 70 LatSieveTime: 71 LatSieveTime: 71 LatSieveTime: 71 LatSieveTime: 71 LatSieveTime: 71 LatSieveTime: 71 LatSieveTime: 71 LatSieveTime: 71 LatSieveTime: 72 LatSieveTime: 72 LatSieveTime: 73 LatSieveTime: 73 LatSieveTime: 74 LatSieveTime: 74 LatSieveTime: 75 -> makeJobFile(): Adjusted to q0=1850001, q1=2000000. -> client 1 q0: 1850001 LatSieveTime: 56 LatSieveTime: 57 LatSieveTime: 60 LatSieveTime: 61 LatSieveTime: 62 LatSieveTime: 62 LatSieveTime: 63 LatSieveTime: 64 LatSieveTime: 65 LatSieveTime: 65 LatSieveTime: 65 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 68 LatSieveTime: 68 LatSieveTime: 68 LatSieveTime: 69 LatSieveTime: 69 LatSieveTime: 70 LatSieveTime: 70 LatSieveTime: 70 LatSieveTime: 70 LatSieveTime: 70 LatSieveTime: 70 LatSieveTime: 70 LatSieveTime: 70 LatSieveTime: 71 LatSieveTime: 71 LatSieveTime: 71 LatSieveTime: 72 LatSieveTime: 72 LatSieveTime: 72 LatSieveTime: 73 LatSieveTime: 74 LatSieveTime: 74 LatSieveTime: 75 LatSieveTime: 76 LatSieveTime: 77 -> makeJobFile(): Adjusted to q0=2000001, q1=2150000. -> client 1 q0: 2000001 LatSieveTime: 58 LatSieveTime: 60 LatSieveTime: 62 LatSieveTime: 62 LatSieveTime: 63 LatSieveTime: 63 LatSieveTime: 63 LatSieveTime: 64 LatSieveTime: 64 LatSieveTime: 65 LatSieveTime: 65 LatSieveTime: 65 LatSieveTime: 65 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 68 LatSieveTime: 68 LatSieveTime: 69 LatSieveTime: 70 LatSieveTime: 70 LatSieveTime: 70 LatSieveTime: 71 LatSieveTime: 71 LatSieveTime: 71 LatSieveTime: 71 LatSieveTime: 72 LatSieveTime: 72 LatSieveTime: 72 LatSieveTime: 72 LatSieveTime: 73 LatSieveTime: 73 LatSieveTime: 73 LatSieveTime: 73 LatSieveTime: 74 LatSieveTime: 74 LatSieveTime: 74 LatSieveTime: 75 LatSieveTime: 76 LatSieveTime: 78 LatSieveTime: 79 Sun Dec 25 09:25:10 2022 Sun Dec 25 09:25:10 2022 Sun Dec 25 09:25:10 2022 Msieve v. 1.52 (SVN 927) Sun Dec 25 09:25:10 2022 random seeds: b32f0458 ed22f9bd Sun Dec 25 09:25:10 2022 factoring 1064066201161254860165763754459472996900014850653833819597589660455164853397522272289027603415449275347651 (106 digits) Sun Dec 25 09:25:11 2022 searching for 15-digit factors Sun Dec 25 09:25:11 2022 commencing number field sieve (106-digit input) Sun Dec 25 09:25:11 2022 R0: -149679410306059467344 Sun Dec 25 09:25:11 2022 R1: 209280999721 Sun Dec 25 09:25:11 2022 A0: 58050380488538860512620283 Sun Dec 25 09:25:11 2022 A1: 17598268960534175419431 Sun Dec 25 09:25:11 2022 A2: -1784795963759781091 Sun Dec 25 09:25:11 2022 A3: -38270784662179 Sun Dec 25 09:25:11 2022 A4: 2217419516 Sun Dec 25 09:25:11 2022 A5: 14160 Sun Dec 25 09:25:11 2022 skew 28762.46, size 3.651e-010, alpha -6.582, combined = 1.502e-009 rroots = 5 Sun Dec 25 09:25:11 2022 Sun Dec 25 09:25:11 2022 commencing relation filtering Sun Dec 25 09:25:11 2022 estimated available RAM is 65413.5 MB Sun Dec 25 09:25:11 2022 commencing duplicate removal, pass 1 Sun Dec 25 09:25:19 2022 found 412236 hash collisions in 4381198 relations Sun Dec 25 09:25:23 2022 added 31090 free relations Sun Dec 25 09:25:23 2022 commencing duplicate removal, pass 2 Sun Dec 25 09:25:25 2022 found 319208 duplicates and 4093080 unique relations Sun Dec 25 09:25:25 2022 memory use: 16.3 MB Sun Dec 25 09:25:25 2022 reading ideals above 100000 Sun Dec 25 09:25:25 2022 commencing singleton removal, initial pass Sun Dec 25 09:25:38 2022 memory use: 94.1 MB Sun Dec 25 09:25:38 2022 reading all ideals from disk Sun Dec 25 09:25:38 2022 memory use: 131.4 MB Sun Dec 25 09:25:38 2022 keeping 4615138 ideals with weight <= 200, target excess is 22912 Sun Dec 25 09:25:38 2022 commencing in-memory singleton removal Sun Dec 25 09:25:38 2022 begin with 4093080 relations and 4615138 unique ideals Sun Dec 25 09:25:39 2022 reduce to 1269881 relations and 1261484 ideals in 20 passes Sun Dec 25 09:25:39 2022 max relations containing the same ideal: 88 Sun Dec 25 09:25:39 2022 filtering wants 1000000 more relations Sun Dec 25 09:25:39 2022 elapsed time 00:00:29 -> makeJobFile(): Adjusted to q0=2150001, q1=2300000. -> client 1 q0: 2150001 LatSieveTime: 58 LatSieveTime: 60 LatSieveTime: 62 LatSieveTime: 62 LatSieveTime: 62 LatSieveTime: 63 LatSieveTime: 64 LatSieveTime: 64 LatSieveTime: 65 LatSieveTime: 65 LatSieveTime: 65 LatSieveTime: 65 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 67 LatSieveTime: 68 LatSieveTime: 69 LatSieveTime: 69 LatSieveTime: 70 LatSieveTime: 70 LatSieveTime: 70 LatSieveTime: 70 LatSieveTime: 70 LatSieveTime: 70 LatSieveTime: 71 LatSieveTime: 71 LatSieveTime: 71 LatSieveTime: 72 LatSieveTime: 72 LatSieveTime: 73 LatSieveTime: 73 LatSieveTime: 73 LatSieveTime: 73 LatSieveTime: 73 LatSieveTime: 74 LatSieveTime: 74 LatSieveTime: 75 LatSieveTime: 75 LatSieveTime: 76 LatSieveTime: 77 LatSieveTime: 77 LatSieveTime: 78 LatSieveTime: 80 LatSieveTime: 81 LatSieveTime: 84 Sun Dec 25 09:27:07 2022 Sun Dec 25 09:27:07 2022 Sun Dec 25 09:27:07 2022 Msieve v. 1.52 (SVN 927) Sun Dec 25 09:27:07 2022 random seeds: 5dc46570 95fd0853 Sun Dec 25 09:27:07 2022 factoring 1064066201161254860165763754459472996900014850653833819597589660455164853397522272289027603415449275347651 (106 digits) Sun Dec 25 09:27:08 2022 searching for 15-digit factors Sun Dec 25 09:27:08 2022 commencing number field sieve (106-digit input) Sun Dec 25 09:27:08 2022 R0: -149679410306059467344 Sun Dec 25 09:27:08 2022 R1: 209280999721 Sun Dec 25 09:27:08 2022 A0: 58050380488538860512620283 Sun Dec 25 09:27:08 2022 A1: 17598268960534175419431 Sun Dec 25 09:27:08 2022 A2: -1784795963759781091 Sun Dec 25 09:27:08 2022 A3: -38270784662179 Sun Dec 25 09:27:08 2022 A4: 2217419516 Sun Dec 25 09:27:08 2022 A5: 14160 Sun Dec 25 09:27:08 2022 skew 28762.46, size 3.651e-010, alpha -6.582, combined = 1.502e-009 rroots = 5 Sun Dec 25 09:27:08 2022 Sun Dec 25 09:27:08 2022 commencing relation filtering Sun Dec 25 09:27:08 2022 estimated available RAM is 65413.5 MB Sun Dec 25 09:27:08 2022 commencing duplicate removal, pass 1 Sun Dec 25 09:27:18 2022 found 538436 hash collisions in 5133600 relations Sun Dec 25 09:27:22 2022 added 460 free relations Sun Dec 25 09:27:22 2022 commencing duplicate removal, pass 2 Sun Dec 25 09:27:23 2022 found 417614 duplicates and 4716446 unique relations Sun Dec 25 09:27:23 2022 memory use: 24.6 MB Sun Dec 25 09:27:23 2022 reading ideals above 100000 Sun Dec 25 09:27:23 2022 commencing singleton removal, initial pass Sun Dec 25 09:27:39 2022 memory use: 94.1 MB Sun Dec 25 09:27:39 2022 reading all ideals from disk Sun Dec 25 09:27:39 2022 memory use: 151.6 MB Sun Dec 25 09:27:39 2022 keeping 4911080 ideals with weight <= 200, target excess is 25108 Sun Dec 25 09:27:39 2022 commencing in-memory singleton removal Sun Dec 25 09:27:39 2022 begin with 4716446 relations and 4911080 unique ideals Sun Dec 25 09:27:40 2022 reduce to 2006927 relations and 1771023 ideals in 14 passes Sun Dec 25 09:27:40 2022 max relations containing the same ideal: 112 Sun Dec 25 09:27:40 2022 removing 486378 relations and 382989 ideals in 103389 cliques Sun Dec 25 09:27:40 2022 commencing in-memory singleton removal Sun Dec 25 09:27:40 2022 begin with 1520549 relations and 1771023 unique ideals Sun Dec 25 09:27:41 2022 reduce to 1428997 relations and 1290537 ideals in 8 passes Sun Dec 25 09:27:41 2022 max relations containing the same ideal: 89 Sun Dec 25 09:27:41 2022 removing 387942 relations and 284553 ideals in 103389 cliques Sun Dec 25 09:27:41 2022 commencing in-memory singleton removal Sun Dec 25 09:27:41 2022 begin with 1041055 relations and 1290537 unique ideals Sun Dec 25 09:27:41 2022 reduce to 961424 relations and 920446 ideals in 9 passes Sun Dec 25 09:27:41 2022 max relations containing the same ideal: 67 Sun Dec 25 09:27:41 2022 removing 72747 relations and 60895 ideals in 11852 cliques Sun Dec 25 09:27:41 2022 commencing in-memory singleton removal Sun Dec 25 09:27:41 2022 begin with 888677 relations and 920446 unique ideals Sun Dec 25 09:27:41 2022 reduce to 885226 relations and 856067 ideals in 6 passes Sun Dec 25 09:27:41 2022 max relations containing the same ideal: 62 Sun Dec 25 09:27:41 2022 relations with 0 large ideals: 85 Sun Dec 25 09:27:41 2022 relations with 1 large ideals: 239 Sun Dec 25 09:27:41 2022 relations with 2 large ideals: 4035 Sun Dec 25 09:27:41 2022 relations with 3 large ideals: 29477 Sun Dec 25 09:27:41 2022 relations with 4 large ideals: 107930 Sun Dec 25 09:27:41 2022 relations with 5 large ideals: 221645 Sun Dec 25 09:27:41 2022 relations with 6 large ideals: 261959 Sun Dec 25 09:27:41 2022 relations with 7+ large ideals: 259856 Sun Dec 25 09:27:41 2022 commencing 2-way merge Sun Dec 25 09:27:42 2022 reduce to 526974 relation sets and 497815 unique ideals Sun Dec 25 09:27:42 2022 commencing full merge Sun Dec 25 09:27:47 2022 memory use: 63.4 MB Sun Dec 25 09:27:47 2022 found 265709 cycles, need 262015 Sun Dec 25 09:27:47 2022 weight of 262015 cycles is about 18439145 (70.37/cycle) Sun Dec 25 09:27:47 2022 distribution of cycle lengths: Sun Dec 25 09:27:47 2022 1 relations: 24892 Sun Dec 25 09:27:47 2022 2 relations: 26214 Sun Dec 25 09:27:47 2022 3 relations: 26644 Sun Dec 25 09:27:47 2022 4 relations: 25036 Sun Dec 25 09:27:47 2022 5 relations: 24227 Sun Dec 25 09:27:47 2022 6 relations: 22440 Sun Dec 25 09:27:47 2022 7 relations: 20666 Sun Dec 25 09:27:47 2022 8 relations: 18063 Sun Dec 25 09:27:47 2022 9 relations: 15594 Sun Dec 25 09:27:47 2022 10+ relations: 58239 Sun Dec 25 09:27:47 2022 heaviest cycle: 21 relations Sun Dec 25 09:27:47 2022 commencing cycle optimization Sun Dec 25 09:27:47 2022 start with 1675922 relations Sun Dec 25 09:27:49 2022 pruned 45847 relations Sun Dec 25 09:27:49 2022 memory use: 53.3 MB Sun Dec 25 09:27:49 2022 distribution of cycle lengths: Sun Dec 25 09:27:49 2022 1 relations: 24892 Sun Dec 25 09:27:49 2022 2 relations: 26769 Sun Dec 25 09:27:49 2022 3 relations: 27547 Sun Dec 25 09:27:49 2022 4 relations: 25724 Sun Dec 25 09:27:49 2022 5 relations: 24936 Sun Dec 25 09:27:49 2022 6 relations: 23082 Sun Dec 25 09:27:49 2022 7 relations: 21099 Sun Dec 25 09:27:49 2022 8 relations: 18340 Sun Dec 25 09:27:49 2022 9 relations: 15739 Sun Dec 25 09:27:49 2022 10+ relations: 53887 Sun Dec 25 09:27:49 2022 heaviest cycle: 21 relations Sun Dec 25 09:27:49 2022 RelProcTime: 41 Sun Dec 25 09:27:49 2022 elapsed time 00:00:42 Sun Dec 25 09:27:49 2022 Sun Dec 25 09:27:49 2022 Sun Dec 25 09:27:49 2022 Msieve v. 1.52 (SVN 927) Sun Dec 25 09:27:49 2022 random seeds: 1fc14d20 35c6d797 Sun Dec 25 09:27:49 2022 factoring 1064066201161254860165763754459472996900014850653833819597589660455164853397522272289027603415449275347651 (106 digits) Sun Dec 25 09:27:49 2022 searching for 15-digit factors Sun Dec 25 09:27:50 2022 commencing number field sieve (106-digit input) Sun Dec 25 09:27:50 2022 R0: -149679410306059467344 Sun Dec 25 09:27:50 2022 R1: 209280999721 Sun Dec 25 09:27:50 2022 A0: 58050380488538860512620283 Sun Dec 25 09:27:50 2022 A1: 17598268960534175419431 Sun Dec 25 09:27:50 2022 A2: -1784795963759781091 Sun Dec 25 09:27:50 2022 A3: -38270784662179 Sun Dec 25 09:27:50 2022 A4: 2217419516 Sun Dec 25 09:27:50 2022 A5: 14160 Sun Dec 25 09:27:50 2022 skew 28762.46, size 3.651e-010, alpha -6.582, combined = 1.502e-009 rroots = 5 Sun Dec 25 09:27:50 2022 Sun Dec 25 09:27:50 2022 commencing linear algebra Sun Dec 25 09:27:50 2022 read 262015 cycles Sun Dec 25 09:27:50 2022 cycles contain 865609 unique relations Sun Dec 25 09:27:52 2022 read 865609 relations Sun Dec 25 09:27:52 2022 using 20 quadratic characters above 67108472 Sun Dec 25 09:27:55 2022 building initial matrix Sun Dec 25 09:27:58 2022 memory use: 106.7 MB Sun Dec 25 09:27:59 2022 read 262015 cycles Sun Dec 25 09:27:59 2022 matrix is 261838 x 262015 (77.9 MB) with weight 24781559 (94.58/col) Sun Dec 25 09:27:59 2022 sparse part has weight 17543583 (66.96/col) Sun Dec 25 09:28:00 2022 filtering completed in 2 passes Sun Dec 25 09:28:00 2022 matrix is 261769 x 261946 (77.9 MB) with weight 24778877 (94.60/col) Sun Dec 25 09:28:00 2022 sparse part has weight 17542885 (66.97/col) Sun Dec 25 09:28:00 2022 matrix starts at (0, 0) Sun Dec 25 09:28:00 2022 matrix is 261769 x 261946 (77.9 MB) with weight 24778877 (94.60/col) Sun Dec 25 09:28:00 2022 sparse part has weight 17542885 (66.97/col) Sun Dec 25 09:28:00 2022 saving the first 48 matrix rows for later Sun Dec 25 09:28:00 2022 matrix includes 64 packed rows Sun Dec 25 09:28:00 2022 matrix is 261721 x 261946 (75.1 MB) with weight 19779830 (75.51/col) Sun Dec 25 09:28:00 2022 sparse part has weight 17067844 (65.16/col) Sun Dec 25 09:28:00 2022 using block size 8192 and superblock size 12582912 for processor cache size 131072 kB Sun Dec 25 09:28:01 2022 commencing Lanczos iteration (32 threads) Sun Dec 25 09:28:01 2022 memory use: 57.8 MB Sun Dec 25 09:28:05 2022 linear algebra at 4.6%, ETA 0h 1m Sun Dec 25 09:29:36 2022 lanczos halted after 4139 iterations (dim = 261721) Sun Dec 25 09:29:36 2022 recovered 30 nontrivial dependencies Sun Dec 25 09:29:36 2022 BLanczosTime: 106 Sun Dec 25 09:29:36 2022 elapsed time 00:01:47 Sun Dec 25 09:29:36 2022 Sun Dec 25 09:29:36 2022 Sun Dec 25 09:29:36 2022 Msieve v. 1.52 (SVN 927) Sun Dec 25 09:29:36 2022 random seeds: c92b3ef0 6b0bdb11 Sun Dec 25 09:29:36 2022 factoring 1064066201161254860165763754459472996900014850653833819597589660455164853397522272289027603415449275347651 (106 digits) Sun Dec 25 09:29:36 2022 searching for 15-digit factors Sun Dec 25 09:29:36 2022 commencing number field sieve (106-digit input) Sun Dec 25 09:29:36 2022 R0: -149679410306059467344 Sun Dec 25 09:29:36 2022 R1: 209280999721 Sun Dec 25 09:29:36 2022 A0: 58050380488538860512620283 Sun Dec 25 09:29:36 2022 A1: 17598268960534175419431 Sun Dec 25 09:29:36 2022 A2: -1784795963759781091 Sun Dec 25 09:29:36 2022 A3: -38270784662179 Sun Dec 25 09:29:36 2022 A4: 2217419516 Sun Dec 25 09:29:36 2022 A5: 14160 Sun Dec 25 09:29:36 2022 skew 28762.46, size 3.651e-010, alpha -6.582, combined = 1.502e-009 rroots = 5 Sun Dec 25 09:29:36 2022 Sun Dec 25 09:29:36 2022 commencing square root phase Sun Dec 25 09:29:36 2022 reading relations for dependency 1 Sun Dec 25 09:29:36 2022 read 130875 cycles Sun Dec 25 09:29:36 2022 cycles contain 432386 unique relations Sun Dec 25 09:29:38 2022 read 432386 relations Sun Dec 25 09:29:38 2022 multiplying 432386 relations Sun Dec 25 09:29:47 2022 multiply complete, coefficients have about 18.48 million bits Sun Dec 25 09:29:47 2022 initial square root is modulo 203591 Sun Dec 25 09:29:57 2022 sqrtTime: 21 Sun Dec 25 09:29:57 2022 prp48 factor: 264476602074132531957162375349978017471516244577 Sun Dec 25 09:29:57 2022 prp58 factor: 4023290502132956731058744015956524309833488919681743660963 Sun Dec 25 09:29:57 2022 elapsed time 00:00:21 |
software ソフトウェア | GNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | December 24, 2022 16:42:28 UTC 2022 年 12 月 25 日 (日) 1 時 42 分 28 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | December 25, 2022 11:26:46 UTC 2022 年 12 月 25 日 (日) 20 時 26 分 46 秒 (日本時間) |
composite number 合成数 | 51981153495394568706631828239668669172111271624202895643322278154135030027691211459124964532765288697407135439<110> |
prime factors 素因数 | 705408382555289879030555412033350386875047<42> 73689446823833693393788834945679262118921220087329371577432886282137<68> |
factorization results 素因数分解の結果 | -> makeJobFile(): Adjusted to q0=1600000, q1=1700000. -> client 1 q0: 1600000 LatSieveTime: 87 LatSieveTime: 92 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 -> makeJobFile(): Adjusted to q0=1700001, q1=1800000. -> client 1 q0: 1700001 LatSieveTime: 94 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 123 -> makeJobFile(): Adjusted to q0=1800001, q1=1900000. -> client 1 q0: 1800001 LatSieveTime: 90 LatSieveTime: 90 LatSieveTime: 91 LatSieveTime: 92 LatSieveTime: 95 LatSieveTime: 97 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 -> makeJobFile(): Adjusted to q0=1900001, q1=2000000. -> client 1 q0: 1900001 LatSieveTime: 89 LatSieveTime: 92 LatSieveTime: 93 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 125 -> makeJobFile(): Adjusted to q0=2000001, q1=2100000. -> client 1 q0: 2000001 LatSieveTime: 86 LatSieveTime: 90 LatSieveTime: 94 LatSieveTime: 95 LatSieveTime: 97 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 121 LatSieveTime: 123 -> makeJobFile(): Adjusted to q0=2100001, q1=2200000. -> client 1 q0: 2100001 LatSieveTime: 90 LatSieveTime: 91 LatSieveTime: 92 LatSieveTime: 93 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 124 LatSieveTime: 127 -> makeJobFile(): Adjusted to q0=2200001, q1=2300000. -> client 1 q0: 2200001 LatSieveTime: 83 LatSieveTime: 91 LatSieveTime: 96 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 131 Sun Dec 25 12:19:06 2022 Sun Dec 25 12:19:06 2022 Sun Dec 25 12:19:06 2022 Msieve v. 1.52 (SVN 927) Sun Dec 25 12:19:06 2022 random seeds: 12f371f8 30b850a6 Sun Dec 25 12:19:06 2022 factoring 51981153495394568706631828239668669172111271624202895643322278154135030027691211459124964532765288697407135439 (110 digits) Sun Dec 25 12:19:07 2022 searching for 15-digit factors Sun Dec 25 12:19:07 2022 commencing number field sieve (110-digit input) Sun Dec 25 12:19:07 2022 R0: -1202217597815467715505 Sun Dec 25 12:19:07 2022 R1: 496843337933 Sun Dec 25 12:19:07 2022 A0: -41129905480091221392228692 Sun Dec 25 12:19:07 2022 A1: 4739303870674272552234 Sun Dec 25 12:19:07 2022 A2: 1517489470109024614 Sun Dec 25 12:19:07 2022 A3: -88014042346341 Sun Dec 25 12:19:07 2022 A4: -4594217444 Sun Dec 25 12:19:07 2022 A5: 20700 Sun Dec 25 12:19:07 2022 skew 19579.60, size 1.252e-010, alpha -5.707, combined = 8.564e-010 rroots = 5 Sun Dec 25 12:19:07 2022 Sun Dec 25 12:19:07 2022 commencing relation filtering Sun Dec 25 12:19:07 2022 estimated available RAM is 65413.5 MB Sun Dec 25 12:19:07 2022 commencing duplicate removal, pass 1 Sun Dec 25 12:19:21 2022 found 608196 hash collisions in 6953587 relations Sun Dec 25 12:19:28 2022 added 57310 free relations Sun Dec 25 12:19:28 2022 commencing duplicate removal, pass 2 Sun Dec 25 12:19:30 2022 found 336150 duplicates and 6674747 unique relations Sun Dec 25 12:19:30 2022 memory use: 24.6 MB Sun Dec 25 12:19:30 2022 reading ideals above 100000 Sun Dec 25 12:19:30 2022 commencing singleton removal, initial pass Sun Dec 25 12:19:54 2022 memory use: 188.3 MB Sun Dec 25 12:19:54 2022 reading all ideals from disk Sun Dec 25 12:19:54 2022 memory use: 224.5 MB Sun Dec 25 12:19:55 2022 keeping 7648562 ideals with weight <= 200, target excess is 36059 Sun Dec 25 12:19:55 2022 commencing in-memory singleton removal Sun Dec 25 12:19:55 2022 begin with 6674747 relations and 7648562 unique ideals Sun Dec 25 12:19:57 2022 reduce to 1822129 relations and 1794637 ideals in 18 passes Sun Dec 25 12:19:57 2022 max relations containing the same ideal: 81 Sun Dec 25 12:19:57 2022 filtering wants 1000000 more relations Sun Dec 25 12:19:57 2022 elapsed time 00:00:51 -> makeJobFile(): Adjusted to q0=2300001, q1=2400000. -> client 1 q0: 2300001 LatSieveTime: 89 LatSieveTime: 91 LatSieveTime: 94 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 126 Sun Dec 25 12:22:09 2022 Sun Dec 25 12:22:09 2022 Sun Dec 25 12:22:09 2022 Msieve v. 1.52 (SVN 927) Sun Dec 25 12:22:09 2022 random seeds: 9b48f000 91edef58 Sun Dec 25 12:22:09 2022 factoring 51981153495394568706631828239668669172111271624202895643322278154135030027691211459124964532765288697407135439 (110 digits) Sun Dec 25 12:22:09 2022 searching for 15-digit factors Sun Dec 25 12:22:10 2022 commencing number field sieve (110-digit input) Sun Dec 25 12:22:10 2022 R0: -1202217597815467715505 Sun Dec 25 12:22:10 2022 R1: 496843337933 Sun Dec 25 12:22:10 2022 A0: -41129905480091221392228692 Sun Dec 25 12:22:10 2022 A1: 4739303870674272552234 Sun Dec 25 12:22:10 2022 A2: 1517489470109024614 Sun Dec 25 12:22:10 2022 A3: -88014042346341 Sun Dec 25 12:22:10 2022 A4: -4594217444 Sun Dec 25 12:22:10 2022 A5: 20700 Sun Dec 25 12:22:10 2022 skew 19579.60, size 1.252e-010, alpha -5.707, combined = 8.564e-010 rroots = 5 Sun Dec 25 12:22:10 2022 Sun Dec 25 12:22:10 2022 commencing relation filtering Sun Dec 25 12:22:10 2022 estimated available RAM is 65413.5 MB Sun Dec 25 12:22:10 2022 commencing duplicate removal, pass 1 Sun Dec 25 12:22:26 2022 found 776920 hash collisions in 7997051 relations Sun Dec 25 12:22:34 2022 added 1269 free relations Sun Dec 25 12:22:34 2022 commencing duplicate removal, pass 2 Sun Dec 25 12:22:36 2022 found 428111 duplicates and 7570209 unique relations Sun Dec 25 12:22:36 2022 memory use: 24.6 MB Sun Dec 25 12:22:36 2022 reading ideals above 100000 Sun Dec 25 12:22:36 2022 commencing singleton removal, initial pass Sun Dec 25 12:23:03 2022 memory use: 188.3 MB Sun Dec 25 12:23:03 2022 reading all ideals from disk Sun Dec 25 12:23:03 2022 memory use: 254.9 MB Sun Dec 25 12:23:03 2022 keeping 8123009 ideals with weight <= 200, target excess is 41379 Sun Dec 25 12:23:03 2022 commencing in-memory singleton removal Sun Dec 25 12:23:03 2022 begin with 7570209 relations and 8123009 unique ideals Sun Dec 25 12:23:05 2022 reduce to 2773113 relations and 2455964 ideals in 14 passes Sun Dec 25 12:23:05 2022 max relations containing the same ideal: 103 Sun Dec 25 12:23:06 2022 removing 667141 relations and 532566 ideals in 134575 cliques Sun Dec 25 12:23:06 2022 commencing in-memory singleton removal Sun Dec 25 12:23:06 2022 begin with 2105972 relations and 2455964 unique ideals Sun Dec 25 12:23:06 2022 reduce to 1980144 relations and 1789827 ideals in 11 passes Sun Dec 25 12:23:06 2022 max relations containing the same ideal: 81 Sun Dec 25 12:23:07 2022 removing 531349 relations and 396774 ideals in 134575 cliques Sun Dec 25 12:23:07 2022 commencing in-memory singleton removal Sun Dec 25 12:23:07 2022 begin with 1448795 relations and 1789827 unique ideals Sun Dec 25 12:23:07 2022 reduce to 1336828 relations and 1273273 ideals in 8 passes Sun Dec 25 12:23:07 2022 max relations containing the same ideal: 61 Sun Dec 25 12:23:07 2022 removing 102228 relations and 86673 ideals in 15555 cliques Sun Dec 25 12:23:07 2022 commencing in-memory singleton removal Sun Dec 25 12:23:07 2022 begin with 1234600 relations and 1273273 unique ideals Sun Dec 25 12:23:07 2022 reduce to 1229485 relations and 1181417 ideals in 6 passes Sun Dec 25 12:23:07 2022 max relations containing the same ideal: 59 Sun Dec 25 12:23:08 2022 relations with 0 large ideals: 138 Sun Dec 25 12:23:08 2022 relations with 1 large ideals: 657 Sun Dec 25 12:23:08 2022 relations with 2 large ideals: 8121 Sun Dec 25 12:23:08 2022 relations with 3 large ideals: 52415 Sun Dec 25 12:23:08 2022 relations with 4 large ideals: 176228 Sun Dec 25 12:23:08 2022 relations with 5 large ideals: 328634 Sun Dec 25 12:23:08 2022 relations with 6 large ideals: 353107 Sun Dec 25 12:23:08 2022 relations with 7+ large ideals: 310185 Sun Dec 25 12:23:08 2022 commencing 2-way merge Sun Dec 25 12:23:08 2022 reduce to 707410 relation sets and 659342 unique ideals Sun Dec 25 12:23:08 2022 commencing full merge Sun Dec 25 12:23:14 2022 memory use: 78.5 MB Sun Dec 25 12:23:14 2022 found 355861 cycles, need 349542 Sun Dec 25 12:23:14 2022 weight of 349542 cycles is about 24669529 (70.58/cycle) Sun Dec 25 12:23:14 2022 distribution of cycle lengths: Sun Dec 25 12:23:14 2022 1 relations: 34745 Sun Dec 25 12:23:14 2022 2 relations: 34915 Sun Dec 25 12:23:14 2022 3 relations: 36524 Sun Dec 25 12:23:14 2022 4 relations: 35569 Sun Dec 25 12:23:14 2022 5 relations: 33599 Sun Dec 25 12:23:14 2022 6 relations: 30844 Sun Dec 25 12:23:14 2022 7 relations: 27365 Sun Dec 25 12:23:14 2022 8 relations: 24180 Sun Dec 25 12:23:14 2022 9 relations: 20792 Sun Dec 25 12:23:14 2022 10+ relations: 71009 Sun Dec 25 12:23:14 2022 heaviest cycle: 19 relations Sun Dec 25 12:23:14 2022 commencing cycle optimization Sun Dec 25 12:23:15 2022 start with 2156713 relations Sun Dec 25 12:23:17 2022 pruned 49775 relations Sun Dec 25 12:23:17 2022 memory use: 71.7 MB Sun Dec 25 12:23:17 2022 distribution of cycle lengths: Sun Dec 25 12:23:17 2022 1 relations: 34745 Sun Dec 25 12:23:17 2022 2 relations: 35633 Sun Dec 25 12:23:17 2022 3 relations: 37695 Sun Dec 25 12:23:17 2022 4 relations: 36439 Sun Dec 25 12:23:17 2022 5 relations: 34494 Sun Dec 25 12:23:17 2022 6 relations: 31364 Sun Dec 25 12:23:17 2022 7 relations: 27868 Sun Dec 25 12:23:17 2022 8 relations: 24508 Sun Dec 25 12:23:17 2022 9 relations: 20746 Sun Dec 25 12:23:17 2022 10+ relations: 66050 Sun Dec 25 12:23:17 2022 heaviest cycle: 19 relations Sun Dec 25 12:23:17 2022 RelProcTime: 67 Sun Dec 25 12:23:17 2022 elapsed time 00:01:08 Sun Dec 25 12:23:17 2022 Sun Dec 25 12:23:17 2022 Sun Dec 25 12:23:17 2022 Msieve v. 1.52 (SVN 927) Sun Dec 25 12:23:17 2022 random seeds: ccbab110 c80cd42c Sun Dec 25 12:23:17 2022 factoring 51981153495394568706631828239668669172111271624202895643322278154135030027691211459124964532765288697407135439 (110 digits) Sun Dec 25 12:23:17 2022 searching for 15-digit factors Sun Dec 25 12:23:18 2022 commencing number field sieve (110-digit input) Sun Dec 25 12:23:18 2022 R0: -1202217597815467715505 Sun Dec 25 12:23:18 2022 R1: 496843337933 Sun Dec 25 12:23:18 2022 A0: -41129905480091221392228692 Sun Dec 25 12:23:18 2022 A1: 4739303870674272552234 Sun Dec 25 12:23:18 2022 A2: 1517489470109024614 Sun Dec 25 12:23:18 2022 A3: -88014042346341 Sun Dec 25 12:23:18 2022 A4: -4594217444 Sun Dec 25 12:23:18 2022 A5: 20700 Sun Dec 25 12:23:18 2022 skew 19579.60, size 1.252e-010, alpha -5.707, combined = 8.564e-010 rroots = 5 Sun Dec 25 12:23:18 2022 Sun Dec 25 12:23:18 2022 commencing linear algebra Sun Dec 25 12:23:18 2022 read 349542 cycles Sun Dec 25 12:23:18 2022 cycles contain 1193117 unique relations Sun Dec 25 12:23:21 2022 read 1193117 relations Sun Dec 25 12:23:21 2022 using 20 quadratic characters above 134194592 Sun Dec 25 12:23:24 2022 building initial matrix Sun Dec 25 12:23:30 2022 memory use: 150.0 MB Sun Dec 25 12:23:30 2022 read 349542 cycles Sun Dec 25 12:23:30 2022 matrix is 349364 x 349542 (104.8 MB) with weight 33043349 (94.53/col) Sun Dec 25 12:23:30 2022 sparse part has weight 23627963 (67.60/col) Sun Dec 25 12:23:32 2022 filtering completed in 2 passes Sun Dec 25 12:23:32 2022 matrix is 349116 x 349293 (104.8 MB) with weight 33033285 (94.57/col) Sun Dec 25 12:23:32 2022 sparse part has weight 23624683 (67.64/col) Sun Dec 25 12:23:32 2022 matrix starts at (0, 0) Sun Dec 25 12:23:33 2022 matrix is 349116 x 349293 (104.8 MB) with weight 33033285 (94.57/col) Sun Dec 25 12:23:33 2022 sparse part has weight 23624683 (67.64/col) Sun Dec 25 12:23:33 2022 saving the first 48 matrix rows for later Sun Dec 25 12:23:33 2022 matrix includes 64 packed rows Sun Dec 25 12:23:33 2022 matrix is 349068 x 349293 (100.8 MB) with weight 26287624 (75.26/col) Sun Dec 25 12:23:33 2022 sparse part has weight 22925552 (65.63/col) Sun Dec 25 12:23:33 2022 using block size 8192 and superblock size 12582912 for processor cache size 131072 kB Sun Dec 25 12:23:34 2022 commencing Lanczos iteration (32 threads) Sun Dec 25 12:23:34 2022 memory use: 78.2 MB Sun Dec 25 12:23:38 2022 linear algebra at 3.5%, ETA 0h 1m Sun Dec 25 12:25:47 2022 lanczos halted after 5520 iterations (dim = 349066) Sun Dec 25 12:25:47 2022 recovered 29 nontrivial dependencies Sun Dec 25 12:25:47 2022 BLanczosTime: 149 Sun Dec 25 12:25:47 2022 elapsed time 00:02:30 Sun Dec 25 12:25:48 2022 Sun Dec 25 12:25:48 2022 Sun Dec 25 12:25:48 2022 Msieve v. 1.52 (SVN 927) Sun Dec 25 12:25:48 2022 random seeds: 7cee8490 3f308c82 Sun Dec 25 12:25:48 2022 factoring 51981153495394568706631828239668669172111271624202895643322278154135030027691211459124964532765288697407135439 (110 digits) Sun Dec 25 12:25:48 2022 searching for 15-digit factors Sun Dec 25 12:25:48 2022 commencing number field sieve (110-digit input) Sun Dec 25 12:25:48 2022 R0: -1202217597815467715505 Sun Dec 25 12:25:48 2022 R1: 496843337933 Sun Dec 25 12:25:48 2022 A0: -41129905480091221392228692 Sun Dec 25 12:25:48 2022 A1: 4739303870674272552234 Sun Dec 25 12:25:48 2022 A2: 1517489470109024614 Sun Dec 25 12:25:48 2022 A3: -88014042346341 Sun Dec 25 12:25:48 2022 A4: -4594217444 Sun Dec 25 12:25:48 2022 A5: 20700 Sun Dec 25 12:25:48 2022 skew 19579.60, size 1.252e-010, alpha -5.707, combined = 8.564e-010 rroots = 5 Sun Dec 25 12:25:48 2022 Sun Dec 25 12:25:48 2022 commencing square root phase Sun Dec 25 12:25:48 2022 reading relations for dependency 1 Sun Dec 25 12:25:48 2022 read 173822 cycles Sun Dec 25 12:25:48 2022 cycles contain 593962 unique relations Sun Dec 25 12:25:50 2022 read 593962 relations Sun Dec 25 12:25:51 2022 multiplying 593962 relations Sun Dec 25 12:26:03 2022 multiply complete, coefficients have about 26.79 million bits Sun Dec 25 12:26:04 2022 initial square root is modulo 49322093 Sun Dec 25 12:26:19 2022 sqrtTime: 31 Sun Dec 25 12:26:19 2022 prp42 factor: 705408382555289879030555412033350386875047 Sun Dec 25 12:26:19 2022 prp68 factor: 73689446823833693393788834945679262118921220087329371577432886282137 Sun Dec 25 12:26:19 2022 elapsed time 00:00:31 |
software ソフトウェア | GNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | December 24, 2022 16:19:32 UTC 2022 年 12 月 25 日 (日) 1 時 19 分 32 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 28, 2022 23:48:09 UTC 2022 年 12 月 29 日 (木) 8 時 48 分 9 秒 (日本時間) |
composite number 合成数 | 83535976814490169303814562289049514049107156009322462152663394747818310239651139971262801170520429609085533782036069215169121416254525884137678933847<149> |
prime factors 素因数 | 119540590969039524494571941840024963263899881<45> 698808464449750057287209186597796238956589468323001642700249077651134923439770511167129657008684103028287<105> |
factorization results 素因数分解の結果 | Number: n N=83535976814490169303814562289049514049107156009322462152663394747818310239651139971262801170520429609085533782036069215169121416254525884137678933847 ( 149 digits) SNFS difficulty: 163 digits. Divisors found: Thu Dec 29 10:44:36 2022 p45 factor: 119540590969039524494571941840024963263899881 Thu Dec 29 10:44:36 2022 p105 factor: 698808464449750057287209186597796238956589468323001642700249077651134923439770511167129657008684103028287 Thu Dec 29 10:44:36 2022 elapsed time 00:08:33 (Msieve 1.54 - dependency 3) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.298). Factorization parameters were as follows: # # N = 73x10^162+8 = 81(161)2 # n: 83535976814490169303814562289049514049107156009322462152663394747818310239651139971262801170520429609085533782036069215169121416254525884137678933847 m: 100000000000000000000000000000000 deg: 5 c5: 1825 c0: 2 skew: 0.26 # Murphy_E = 3.745e-10 type: snfs lss: 1 rlim: 3700000 alim: 3700000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3700000/3700000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved special-q in [100000, 7450000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1255249 hash collisions in 12419341 relations (11919632 unique) Msieve: matrix is 530169 x 530394 (181.1 MB) Sieving start time : 2022/12/29 10:02:03 Sieving end time : 2022/12/29 10:35:46 Total sieving time: 0hrs 33min 43secs. Total relation processing time: 0hrs 3min 54sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 1min 46sec. Prototype def-par.txt line would be: snfs,163,5,0,0,0,0,0,0,0,0,3700000,3700000,27,27,51,51,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | February 2, 2023 08:24:38 UTC 2023 年 2 月 2 日 (木) 17 時 24 分 38 秒 (日本時間) |
composite number 合成数 | 16330417229388172427807547379574679013112122112156494562768203618661493854356996294187159526070311461290631995091081550947<122> |
prime factors 素因数 | 68931450339805425481625718634726147592877505664914231<53> 236908075325348924066508407046726165655369043622304870334030987472437<69> |
factorization results 素因数分解の結果 | Number: n N=16330417229388172427807547379574679013112122112156494562768203618661493854356996294187159526070311461290631995091081550947 ( 122 digits) SNFS difficulty: 163 digits. Divisors found: Thu Feb 2 19:21:25 2023 prp53 factor: 68931450339805425481625718634726147592877505664914231 Thu Feb 2 19:21:25 2023 prp69 factor: 236908075325348924066508407046726165655369043622304870334030987472437 Thu Feb 2 19:21:25 2023 elapsed time 00:16:38 (Msieve 1.44 - dependency 5) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.084). Factorization parameters were as follows: # # N = 73x10^163+8 = 81(162)2 # n: 16330417229388172427807547379574679013112122112156494562768203618661493854356996294187159526070311461290631995091081550947 m: 100000000000000000000000000000000 deg: 5 c5: 9125 c0: 1 skew: 0.16 # Murphy_E = 3.868e-10 type: snfs lss: 1 rlim: 3800000 alim: 3800000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3800000/3800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved special-q in [100000, 27500000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1368169 hash collisions in 16930407 relations (16320139 unique) Msieve: matrix is 610048 x 610276 (167.4 MB) Sieving start time: 2023/02/02 16:14:41 Sieving end time : 2023/02/02 19:04:35 Total sieving time: 2hrs 49min 54secs. Total relation processing time: 0hrs 9min 59sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 3min 8sec. Prototype def-par.txt line would be: snfs,163,5,0,0,0,0,0,0,0,0,3800000,3800000,27,27,51,51,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 27, 2022 16:55:14 UTC 2022 年 12 月 28 日 (水) 1 時 55 分 14 秒 (日本時間) |
composite number 合成数 | 233271934490843034158846820129979522231283396343108344345323574497333370568186734737890728341933510600109604519707891406789005221863372757987459406994826073<156> |
prime factors 素因数 | 5686132538805730657551485332799927626105952681420036829489756679<64> 41024709307925767549583848738160087754550355225370251643468555435233999560196912314589405087<92> |
factorization results 素因数分解の結果 | Number: n N=233271934490843034158846820129979522231283396343108344345323574497333370568186734737890728341933510600109604519707891406789005221863372757987459406994826073 ( 156 digits) SNFS difficulty: 166 digits. Divisors found: Wed Dec 28 03:30:47 2022 p64 factor: 5686132538805730657551485332799927626105952681420036829489756679 Wed Dec 28 03:30:47 2022 p92 factor: 41024709307925767549583848738160087754550355225370251643468555435233999560196912314589405087 Wed Dec 28 03:30:47 2022 elapsed time 00:08:05 (Msieve 1.54 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.322). Factorization parameters were as follows: # # N = 73x10^165+8 = 81(164)2 # n: 233271934490843034158846820129979522231283396343108344345323574497333370568186734737890728341933510600109604519707891406789005221863372757987459406994826073 m: 1000000000000000000000000000000000 deg: 5 c5: 73 c0: 8 skew: 0.64 # Murphy_E = 3.309e-10 type: snfs lss: 1 rlim: 4200000 alim: 4200000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4200000/4200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved special-q in [100000, 22100000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1464581 hash collisions in 13621781 relations (12978595 unique) Msieve: matrix is 555890 x 556120 (190.0 MB) Sieving start time : 2022/12/28 01:11:30 Sieving end time : 2022/12/28 03:21:55 Total sieving time: 2hrs 10min 25secs. Total relation processing time: 0hrs 4min 20sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 31sec. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4200000,4200000,27,27,51,51,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 1, 2023 05:08:16 UTC 2023 年 1 月 1 日 (日) 14 時 8 分 16 秒 (日本時間) |
composite number 合成数 | 4266965593405165629528774514313470646739423504782272926208880575798365065740535976538168264328626248991907182670229650369376995911435896026510402099<148> |
prime factors 素因数 | 28682986735388595600177371864502211308693082107902770893839<59> 148762945531772460425596669125018798975945692996267984403691458315931664146404710790077341<90> |
factorization results 素因数分解の結果 | Number: n N=4266965593405165629528774514313470646739423504782272926208880575798365065740535976538168264328626248991907182670229650369376995911435896026510402099 ( 148 digits) SNFS difficulty: 168 digits. Divisors found: Sun Jan 1 16:03:35 2023 p59 factor: 28682986735388595600177371864502211308693082107902770893839 Sun Jan 1 16:03:35 2023 p90 factor: 148762945531772460425596669125018798975945692996267984403691458315931664146404710790077341 Sun Jan 1 16:03:35 2023 elapsed time 00:11:10 (Msieve 1.54 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.298). Factorization parameters were as follows: # # N = 73x10^167+8 = 81(166)2 # n: 4266965593405165629528774514313470646739423504782272926208880575798365065740535976538168264328626248991907182670229650369376995911435896026510402099 m: 1000000000000000000000000000000000 deg: 5 c5: 1825 c0: 2 skew: 0.26 # Murphy_E = 2.384e-10 type: snfs lss: 1 rlim: 4500000 alim: 4500000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved special-q in [100000, 29450000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1604390 hash collisions in 14663802 relations (13955545 unique) Msieve: matrix is 666480 x 666707 (229.2 MB) Sieving start time : 2023/01/01 12:53:18 Sieving end time : 2023/01/01 15:51:34 Total sieving time: 2hrs 58min 16secs. Total relation processing time: 0hrs 6min 12sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 1min 22sec. Prototype def-par.txt line would be: snfs,168,5,0,0,0,0,0,0,0,0,4500000,4500000,27,27,52,52,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 31, 2022 06:49:38 UTC 2022 年 12 月 31 日 (土) 15 時 49 分 38 秒 (日本時間) |
composite number 合成数 | 1427275044439046405960338891922102939901250281360447169895927799864790154565484002149215729336739842428464024819293245207308014826536904694699604805485883<154> |
prime factors 素因数 | 4252615162136873986811601720121812409060731282280659753548456828506103<70> 335622902619258535487853064924780576581137883322011503201642955054305325950645431261<84> |
factorization results 素因数分解の結果 | Number: n N=1427275044439046405960338891922102939901250281360447169895927799864790154565484002149215729336739842428464024819293245207308014826536904694699604805485883 ( 154 digits) SNFS difficulty: 168 digits. Divisors found: Sat Dec 31 17:45:02 2022 p70 factor: 4252615162136873986811601720121812409060731282280659753548456828506103 Sat Dec 31 17:45:02 2022 p84 factor: 335622902619258535487853064924780576581137883322011503201642955054305325950645431261 Sat Dec 31 17:45:02 2022 elapsed time 00:11:48 (Msieve 1.54 - dependency 3) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.299). Factorization parameters were as follows: # # N = 73x10^168+8 = 81(167)2 # n: 1427275044439046405960338891922102939901250281360447169895927799864790154565484002149215729336739842428464024819293245207308014826536904694699604805485883 m: 1000000000000000000000000000000000 deg: 5 c5: 9125 c0: 1 skew: 0.16 # Murphy_E = 2.462e-10 type: snfs lss: 1 rlim: 4600000 alim: 4600000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 4600000/4600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved special-q in [100000, 15100000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1313489 hash collisions in 13045583 relations (12536873 unique) Msieve: matrix is 664213 x 664440 (230.7 MB) Sieving start time : 2022/12/31 16:34:15 Sieving end time : 2022/12/31 17:32:58 Total sieving time: 0hrs 58min 43secs. Total relation processing time: 0hrs 6min 5sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 2min 31sec. Prototype def-par.txt line would be: snfs,168,5,0,0,0,0,0,0,0,0,4600000,4600000,27,27,52,52,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | December 31, 2022 18:42:57 UTC 2023 年 1 月 1 日 (日) 3 時 42 分 57 秒 (日本時間) |
composite number 合成数 | 42811352495570738072537939537946762563959764907690842391322909353194559337010248723053510961604445610314789957116059023<119> |
prime factors 素因数 | 61055960451622023641419020753923303031796870026493<50> 701182197100846752332076934049430173574082194714549599473382633433211<69> |
factorization results 素因数分解の結果 | 42811352495570738072537939537946762563959764907690842391322909353194559337010248723053510961604445610314789957116059023=61055960451622023641419020753923303031796870026493*701182197100846752332076934049430173574082194714549599473382633433211 cado polynomial n: 42811352495570738072537939537946762563959764907690842391322909353194559337010248723053510961604445610314789957116059023 skew: 47524.179 c0: 2250467033656721642402058900 c1: -59214385027804743019680 c2: -7928429911412239087 c3: -183046895869715 c4: 2864728968 c5: 7920 Y0: -145344198678683572451071 Y1: 24523066000981 # MurphyE (Bf=1.342e+08,Bg=1.342e+08,area=8.389e+12) = 1.717e-06 # f(x) = 7920*x^5+2864728968*x^4-183046895869715*x^3-7928429911412239087*x^2-59214385027804743019680*x+2250467033656721642402058900 # g(x) = 24523066000981*x-145344198678683572451071 cado parameters (extracts) tasks.lim0 = 3000000 tasks.lim1 = 5500000 tasks.lpb0 = 27 tasks.lpb1 = 27 tasks.sieve.mfb0 = 54 tasks.sieve.mfb1 = 54 tasks.I = 12 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 61055960451622023641419020753923303031796870026493 701182197100846752332076934049430173574082194714549599473382633433211 Info:Square Root: Total cpu/real time for sqrt: 772.83/103.028 Info:Polynomial Selection (size optimized): Aggregate statistics: Info:Polynomial Selection (size optimized): potential collisions: 19893.3 Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 20161/35.670/42.356/47.490/1.045 Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 15743/33.320/37.476/42.840/0.811 Info:Polynomial Selection (size optimized): Total time: 3038.73 Info:Polynomial Selection (root optimized): Aggregate statistics: Info:Polynomial Selection (root optimized): Total time: 1205.57 Info:Polynomial Selection (root optimized): Rootsieve time: 1158.59 Info:Generate Factor Base: Total cpu/real time for makefb: 5.29/0.83838 Info:Generate Free Relations: Total cpu/real time for freerel: 129.66/16.339 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 13421732 Info:Lattice Sieving: Average J: 1893.47 for 212229 special-q, max bucket fill -bkmult 1.0,1s:1.242300 Info:Lattice Sieving: Total time: 43686.4s Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 31.55/50.5743 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 50.5s Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 149.76/107.336 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 102.1s Info:Filtering - Singleton removal: Total cpu/real time for purge: 69.93/59.062 Info:Filtering - Merging: Merged matrix has 593748 rows and total weight 60219114 (101.4 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 41.34/7.52892 Info:Filtering - Merging: Total cpu/real time for replay: 12.85/10.1954 Info:Linear Algebra: Total cpu/real time for bwc: 2283.18/610.88 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: WCT time 363.09, iteration CPU time 0.02, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (18688 iterations) Info:Linear Algebra: Lingen CPU time 59.1, WCT time 16.08 Info:Linear Algebra: Mksol: WCT time 219.89, iteration CPU time 0.02, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (9472 iterations) Info:Quadratic Characters: Total cpu/real time for characters: 23.78/5.53109 Info:Square Root: Total cpu/real time for sqrt: 772.83/103.028 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 108913/12630.1 Info:root: Cleaning up computation data in /tmp/cado.b_ggtn_1 61055960451622023641419020753923303031796870026493 701182197100846752332076934049430173574082194714549599473382633433211 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 1, 2023 06:47:17 UTC 2023 年 1 月 1 日 (日) 15 時 47 分 17 秒 (日本時間) |
composite number 合成数 | 1533319174370015989082673378897798792366556085032090925218753521540540780013091638744000309009603167066805839284716367988610105249531849930293461948380928459492911<163> |
prime factors 素因数 | 7642608010022117342648948800871171074615277<43> 200627740211103491700281527240461082169285192028531991235719144133261176089895367206052986903130664720537267837398668043<120> |
factorization results 素因数分解の結果 | Number: n N=1533319174370015989082673378897798792366556085032090925218753521540540780013091638744000309009603167066805839284716367988610105249531849930293461948380928459492911 ( 163 digits) SNFS difficulty: 171 digits. Divisors found: Sun Jan 1 17:42:44 2023 p43 factor: 7642608010022117342648948800871171074615277 Sun Jan 1 17:42:44 2023 p120 factor: 200627740211103491700281527240461082169285192028531991235719144133261176089895367206052986903130664720537267837398668043 Sun Jan 1 17:42:44 2023 elapsed time 00:11:53 (Msieve 1.54 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.293). Factorization parameters were as follows: # # N = 73x10^170+8 = 81(169)2 # n: 1533319174370015989082673378897798792366556085032090925218753521540540780013091638744000309009603167066805839284716367988610105249531849930293461948380928459492911 m: 10000000000000000000000000000000000 deg: 5 c5: 73 c0: 8 skew: 0.64 # Murphy_E = 2.099e-10 type: snfs lss: 1 rlim: 5100000 alim: 5100000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5100000/5100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved special-q in [100000, 8150000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1370480 hash collisions in 12549251 relations (11919232 unique) Msieve: matrix is 737927 x 738155 (255.9 MB) Sieving start time : 2023/01/01 16:41:44 Sieving end time : 2023/01/01 17:30:31 Total sieving time: 0hrs 48min 47secs. Total relation processing time: 0hrs 7min 55sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 51sec. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,5100000,5100000,27,27,52,52,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 4, 2023 03:02:11 UTC 2023 年 1 月 4 日 (水) 12 時 2 分 11 秒 (日本時間) |
composite number 合成数 | 7173194379193852000511365998039980157403110430838985277643825062998766469956577259368172085721366970171166996647530716561790218643668032851<139> |
prime factors 素因数 | 1466162200706462626509068321001384384363770477216138801<55> 4892497143724947770558622141450763447929243497917553528466735917770876257423789754051<85> |
factorization results 素因数分解の結果 | Number: n N=7173194379193852000511365998039980157403110430838985277643825062998766469956577259368172085721366970171166996647530716561790218643668032851 ( 139 digits) SNFS difficulty: 173 digits. Divisors found: Wed Jan 4 13:48:52 2023 p55 factor: 1466162200706462626509068321001384384363770477216138801 Wed Jan 4 13:48:52 2023 p85 factor: 4892497143724947770558622141450763447929243497917553528466735917770876257423789754051 Wed Jan 4 13:48:52 2023 elapsed time 00:15:25 (Msieve 1.54 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.278). Factorization parameters were as follows: # # N = 73x10^172+8 = 81(171)2 # n: 7173194379193852000511365998039980157403110430838985277643825062998766469956577259368172085721366970171166996647530716561790218643668032851 m: 10000000000000000000000000000000000 deg: 5 c5: 1825 c0: 2 skew: 0.26 # Murphy_E = 1.511e-10 type: snfs lss: 1 rlim: 5400000 alim: 5400000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5400000/5400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved special-q in [100000, 8326387) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1429658 hash collisions in 12172445 relations (11432986 unique) Msieve: matrix is 857526 x 857750 (298.0 MB) Sieving start time : 2023/01/04 12:14:23 Sieving end time : 2023/01/04 13:33:07 Total sieving time: 1hrs 18min 44secs. Total relation processing time: 0hrs 11min 10sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 1min 8sec. Prototype def-par.txt line would be: snfs,173,5,0,0,0,0,0,0,0,0,5400000,5400000,27,27,52,52,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 2, 2023 12:21:52 UTC 2023 年 1 月 2 日 (月) 21 時 21 分 52 秒 (日本時間) |
composite number 合成数 | 7301619534562469508145572949046696467828096958656992528454708360074368737157106372887335493786220071660273796233072438712930654731367357786519638500403<151> |
prime factors 素因数 | 5149160171345627573972539657801795444574863<43> 1418021442641264886977319814262321197103327036057946311372010234329838724464234176954223385440077912418135581<109> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 7301619534562469508145572949046696467828096958656992528454708360074368737157106372887335493786220071660273796233072438712930654731367357786519638500403 (151 digits) Using B1=29090000, B2=144288594466, polynomial Dickson(12), sigma=1:3060330042 Step 1 took 59217ms Step 2 took 23073ms ********** Factor found in step 2: 5149160171345627573972539657801795444574863 Found prime factor of 43 digits: 5149160171345627573972539657801795444574863 Prime cofactor 1418021442641264886977319814262321197103327036057946311372010234329838724464234176954223385440077912418135581 has 109 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | April 20, 2023 08:25:54 UTC 2023 年 4 月 20 日 (木) 17 時 25 分 54 秒 (日本時間) |
composite number 合成数 | 23822703195641054428332077124005538267109158099136792518585497679059034096495354043523392217449339984554838336581508289143650533265560038685651<143> |
prime factors 素因数 | 12634805322790399630384637572895621247977828973984019579<56> 1885482410454726737895038031716774053681391282937929869676215280283314924503392425759369<88> |
factorization results 素因数分解の結果 | -> makeJobFile(): Adjusted to q0=3200000, q1=3300000. -> client 1 q0: 3200000 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 122 -> makeJobFile(): Adjusted to q0=3300001, q1=3400000. -> client 1 q0: 3300001 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 -> makeJobFile(): Adjusted to q0=3400001, q1=3500000. -> client 1 q0: 3400001 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 -> makeJobFile(): Adjusted to q0=3500001, q1=3600000. -> client 1 q0: 3500001 LatSieveTime: 101 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 124 -> makeJobFile(): Adjusted to q0=3600001, q1=3700000. -> client 1 q0: 3600001 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 129 -> makeJobFile(): Adjusted to q0=3700001, q1=3800000. -> client 1 q0: 3700001 LatSieveTime: 96 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 -> makeJobFile(): Adjusted to q0=3800001, q1=3900000. -> client 1 q0: 3800001 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 123 LatSieveTime: 129 -> makeJobFile(): Adjusted to q0=3900001, q1=4000000. -> client 1 q0: 3900001 LatSieveTime: 102 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 127 -> makeJobFile(): Adjusted to q0=4000001, q1=4100000. -> client 1 q0: 4000001 LatSieveTime: 102 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 -> makeJobFile(): Adjusted to q0=4100001, q1=4200000. -> client 1 q0: 4100001 LatSieveTime: 103 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 128 -> makeJobFile(): Adjusted to q0=4200001, q1=4300000. -> client 1 q0: 4200001 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 -> makeJobFile(): Adjusted to q0=4300001, q1=4400000. -> client 1 q0: 4300001 LatSieveTime: 103 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 129 -> makeJobFile(): Adjusted to q0=4400001, q1=4500000. -> client 1 q0: 4400001 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 134 -> makeJobFile(): Adjusted to q0=4500001, q1=4600000. -> client 1 q0: 4500001 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 125 -> makeJobFile(): Adjusted to q0=4600001, q1=4700000. -> client 1 q0: 4600001 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 129 -> makeJobFile(): Adjusted to q0=4700001, q1=4800000. -> client 1 q0: 4700001 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 -> makeJobFile(): Adjusted to q0=4800001, q1=4900000. -> client 1 q0: 4800001 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 130 -> makeJobFile(): Adjusted to q0=4900001, q1=5000000. -> client 1 q0: 4900001 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 128 -> makeJobFile(): Adjusted to q0=5000001, q1=5100000. -> client 1 q0: 5000001 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 -> makeJobFile(): Adjusted to q0=5100001, q1=5200000. -> client 1 q0: 5100001 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 127 -> makeJobFile(): Adjusted to q0=5200001, q1=5300000. -> client 1 q0: 5200001 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 128 -> makeJobFile(): Adjusted to q0=5300001, q1=5400000. -> client 1 q0: 5300001 LatSieveTime: 101 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 -> makeJobFile(): Adjusted to q0=5400001, q1=5500000. -> client 1 q0: 5400001 LatSieveTime: 111 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 -> makeJobFile(): Adjusted to q0=5500001, q1=5600000. -> client 1 q0: 5500001 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 131 -> makeJobFile(): Adjusted to q0=5600001, q1=5700000. -> client 1 q0: 5600001 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 -> makeJobFile(): Adjusted to q0=5700001, q1=5800000. -> client 1 q0: 5700001 LatSieveTime: 103 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 -> makeJobFile(): Adjusted to q0=5800001, q1=5900000. -> client 1 q0: 5800001 LatSieveTime: 106 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 128 LatSieveTime: 132 -> makeJobFile(): Adjusted to q0=5900001, q1=6000000. -> client 1 q0: 5900001 LatSieveTime: 103 LatSieveTime: 106 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 -> makeJobFile(): Adjusted to q0=6000001, q1=6100000. -> client 1 q0: 6000001 LatSieveTime: 102 LatSieveTime: 104 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 131 -> makeJobFile(): Adjusted to q0=6100001, q1=6200000. -> client 1 q0: 6100001 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 129 -> makeJobFile(): Adjusted to q0=6200001, q1=6300000. -> client 1 q0: 6200001 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 -> makeJobFile(): Adjusted to q0=6300001, q1=6400000. -> client 1 q0: 6300001 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 -> makeJobFile(): Adjusted to q0=6400001, q1=6500000. -> client 1 q0: 6400001 LatSieveTime: 108 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 131 LatSieveTime: 131 -> makeJobFile(): Adjusted to q0=6500001, q1=6600000. -> client 1 q0: 6500001 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 142 -> makeJobFile(): Adjusted to q0=6600001, q1=6700000. -> client 1 q0: 6600001 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 128 Thu Apr 20 09:46:59 2023 Thu Apr 20 09:46:59 2023 Thu Apr 20 09:46:59 2023 Msieve v. 1.52 (SVN 927) Thu Apr 20 09:46:59 2023 random seeds: 8f23e4b8 6f4e6c3e Thu Apr 20 09:46:59 2023 factoring 23822703195641054428332077124005538267109158099136792518585497679059034096495354043523392217449339984554838336581508289143650533265560038685651 (143 digits) Thu Apr 20 09:46:59 2023 searching for 15-digit factors Thu Apr 20 09:46:59 2023 commencing number field sieve (143-digit input) Thu Apr 20 09:46:59 2023 R0: -100000000000000000000000000000000000 Thu Apr 20 09:46:59 2023 R1: 1 Thu Apr 20 09:46:59 2023 A0: 4 Thu Apr 20 09:46:59 2023 A1: 0 Thu Apr 20 09:46:59 2023 A2: 0 Thu Apr 20 09:46:59 2023 A3: 0 Thu Apr 20 09:46:59 2023 A4: 0 Thu Apr 20 09:46:59 2023 A5: 365 Thu Apr 20 09:46:59 2023 skew 0.41, size 2.133e-012, alpha 0.302, combined = 1.299e-010 rroots = 1 Thu Apr 20 09:46:59 2023 Thu Apr 20 09:46:59 2023 commencing relation filtering Thu Apr 20 09:46:59 2023 estimated available RAM is 65413.5 MB Thu Apr 20 09:46:59 2023 commencing duplicate removal, pass 1 Thu Apr 20 09:47:29 2023 found 2109237 hash collisions in 17131335 relations Thu Apr 20 09:47:43 2023 added 691920 free relations Thu Apr 20 09:47:43 2023 commencing duplicate removal, pass 2 Thu Apr 20 09:47:49 2023 found 1441343 duplicates and 16381912 unique relations Thu Apr 20 09:47:49 2023 memory use: 82.6 MB Thu Apr 20 09:47:49 2023 reading ideals above 720000 Thu Apr 20 09:47:49 2023 commencing singleton removal, initial pass Thu Apr 20 09:48:47 2023 memory use: 376.5 MB Thu Apr 20 09:48:47 2023 reading all ideals from disk Thu Apr 20 09:48:47 2023 memory use: 494.3 MB Thu Apr 20 09:48:47 2023 keeping 18845174 ideals with weight <= 200, target excess is 115858 Thu Apr 20 09:48:48 2023 commencing in-memory singleton removal Thu Apr 20 09:48:49 2023 begin with 16381912 relations and 18845174 unique ideals Thu Apr 20 09:48:57 2023 reduce to 5526260 relations and 5301778 ideals in 19 passes Thu Apr 20 09:48:57 2023 max relations containing the same ideal: 80 Thu Apr 20 09:48:59 2023 removing 527305 relations and 482262 ideals in 45043 cliques Thu Apr 20 09:48:59 2023 commencing in-memory singleton removal Thu Apr 20 09:48:59 2023 begin with 4998955 relations and 5301778 unique ideals Thu Apr 20 09:49:02 2023 reduce to 4952088 relations and 4772099 ideals in 10 passes Thu Apr 20 09:49:02 2023 max relations containing the same ideal: 74 Thu Apr 20 09:49:03 2023 removing 386899 relations and 341856 ideals in 45043 cliques Thu Apr 20 09:49:03 2023 commencing in-memory singleton removal Thu Apr 20 09:49:03 2023 begin with 4565189 relations and 4772099 unique ideals Thu Apr 20 09:49:05 2023 reduce to 4537739 relations and 4402502 ideals in 9 passes Thu Apr 20 09:49:05 2023 max relations containing the same ideal: 71 Thu Apr 20 09:49:07 2023 relations with 0 large ideals: 2852 Thu Apr 20 09:49:07 2023 relations with 1 large ideals: 1695 Thu Apr 20 09:49:07 2023 relations with 2 large ideals: 26798 Thu Apr 20 09:49:07 2023 relations with 3 large ideals: 175929 Thu Apr 20 09:49:07 2023 relations with 4 large ideals: 602047 Thu Apr 20 09:49:07 2023 relations with 5 large ideals: 1169012 Thu Apr 20 09:49:07 2023 relations with 6 large ideals: 1351992 Thu Apr 20 09:49:07 2023 relations with 7+ large ideals: 1207414 Thu Apr 20 09:49:07 2023 commencing 2-way merge Thu Apr 20 09:49:09 2023 reduce to 2555844 relation sets and 2420608 unique ideals Thu Apr 20 09:49:09 2023 ignored 1 oversize relation sets Thu Apr 20 09:49:09 2023 commencing full merge Thu Apr 20 09:49:39 2023 memory use: 278.3 MB Thu Apr 20 09:49:40 2023 found 1276691 cycles, need 1260808 Thu Apr 20 09:49:40 2023 weight of 1260808 cycles is about 88362559 (70.08/cycle) Thu Apr 20 09:49:40 2023 distribution of cycle lengths: Thu Apr 20 09:49:40 2023 1 relations: 165875 Thu Apr 20 09:49:40 2023 2 relations: 150604 Thu Apr 20 09:49:40 2023 3 relations: 144702 Thu Apr 20 09:49:40 2023 4 relations: 128028 Thu Apr 20 09:49:40 2023 5 relations: 113255 Thu Apr 20 09:49:40 2023 6 relations: 95499 Thu Apr 20 09:49:40 2023 7 relations: 82482 Thu Apr 20 09:49:40 2023 8 relations: 69873 Thu Apr 20 09:49:40 2023 9 relations: 58202 Thu Apr 20 09:49:40 2023 10+ relations: 252288 Thu Apr 20 09:49:40 2023 heaviest cycle: 25 relations Thu Apr 20 09:49:40 2023 commencing cycle optimization Thu Apr 20 09:49:41 2023 start with 7565845 relations Thu Apr 20 09:49:51 2023 pruned 147181 relations Thu Apr 20 09:49:51 2023 memory use: 257.4 MB Thu Apr 20 09:49:51 2023 distribution of cycle lengths: Thu Apr 20 09:49:51 2023 1 relations: 165875 Thu Apr 20 09:49:51 2023 2 relations: 153482 Thu Apr 20 09:49:51 2023 3 relations: 148942 Thu Apr 20 09:49:51 2023 4 relations: 130396 Thu Apr 20 09:49:51 2023 5 relations: 115206 Thu Apr 20 09:49:51 2023 6 relations: 96233 Thu Apr 20 09:49:51 2023 7 relations: 82813 Thu Apr 20 09:49:51 2023 8 relations: 69296 Thu Apr 20 09:49:51 2023 9 relations: 57664 Thu Apr 20 09:49:51 2023 10+ relations: 240901 Thu Apr 20 09:49:51 2023 heaviest cycle: 25 relations Thu Apr 20 09:49:52 2023 RelProcTime: 173 Thu Apr 20 09:49:52 2023 elapsed time 00:02:53 Thu Apr 20 09:49:52 2023 Thu Apr 20 09:49:52 2023 Thu Apr 20 09:49:52 2023 Msieve v. 1.52 (SVN 927) Thu Apr 20 09:49:52 2023 random seeds: 29fea998 1574a624 Thu Apr 20 09:49:52 2023 factoring 23822703195641054428332077124005538267109158099136792518585497679059034096495354043523392217449339984554838336581508289143650533265560038685651 (143 digits) Thu Apr 20 09:49:52 2023 searching for 15-digit factors Thu Apr 20 09:49:52 2023 commencing number field sieve (143-digit input) Thu Apr 20 09:49:52 2023 R0: -100000000000000000000000000000000000 Thu Apr 20 09:49:52 2023 R1: 1 Thu Apr 20 09:49:52 2023 A0: 4 Thu Apr 20 09:49:52 2023 A1: 0 Thu Apr 20 09:49:52 2023 A2: 0 Thu Apr 20 09:49:52 2023 A3: 0 Thu Apr 20 09:49:52 2023 A4: 0 Thu Apr 20 09:49:52 2023 A5: 365 Thu Apr 20 09:49:52 2023 skew 0.41, size 2.133e-012, alpha 0.302, combined = 1.299e-010 rroots = 1 Thu Apr 20 09:49:52 2023 Thu Apr 20 09:49:52 2023 commencing linear algebra Thu Apr 20 09:49:52 2023 read 1260808 cycles Thu Apr 20 09:49:54 2023 cycles contain 4375511 unique relations Thu Apr 20 09:50:02 2023 read 4375511 relations Thu Apr 20 09:50:07 2023 using 20 quadratic characters above 268434582 Thu Apr 20 09:50:18 2023 building initial matrix Thu Apr 20 09:50:43 2023 memory use: 523.6 MB Thu Apr 20 09:50:44 2023 read 1260808 cycles Thu Apr 20 09:50:44 2023 matrix is 1260628 x 1260808 (379.1 MB) with weight 113855082 (90.30/col) Thu Apr 20 09:50:44 2023 sparse part has weight 85517692 (67.83/col) Thu Apr 20 09:50:50 2023 filtering completed in 2 passes Thu Apr 20 09:50:51 2023 matrix is 1257296 x 1257475 (378.8 MB) with weight 113732710 (90.45/col) Thu Apr 20 09:50:51 2023 sparse part has weight 85472981 (67.97/col) Thu Apr 20 09:50:52 2023 matrix starts at (0, 0) Thu Apr 20 09:50:53 2023 matrix is 1257296 x 1257475 (378.8 MB) with weight 113732710 (90.45/col) Thu Apr 20 09:50:53 2023 sparse part has weight 85472981 (67.97/col) Thu Apr 20 09:50:53 2023 saving the first 48 matrix rows for later Thu Apr 20 09:50:53 2023 matrix includes 64 packed rows Thu Apr 20 09:50:53 2023 matrix is 1257248 x 1257475 (361.0 MB) with weight 90702077 (72.13/col) Thu Apr 20 09:50:53 2023 sparse part has weight 82065345 (65.26/col) Thu Apr 20 09:50:53 2023 using block size 8192 and superblock size 12582912 for processor cache size 131072 kB Thu Apr 20 09:50:57 2023 commencing Lanczos iteration (32 threads) Thu Apr 20 09:50:57 2023 memory use: 288.2 MB Thu Apr 20 09:50:58 2023 linear algebra at 0.1%, ETA 0h13m Thu Apr 20 09:50:58 2023 checkpointing every 7300000 dimensions Thu Apr 20 10:06:36 2023 lanczos halted after 19882 iterations (dim = 1257242) Thu Apr 20 10:06:37 2023 recovered 35 nontrivial dependencies Thu Apr 20 10:06:37 2023 BLanczosTime: 1005 Thu Apr 20 10:06:37 2023 elapsed time 00:16:45 Thu Apr 20 10:06:37 2023 Thu Apr 20 10:06:37 2023 Thu Apr 20 10:06:37 2023 Msieve v. 1.52 (SVN 927) Thu Apr 20 10:06:37 2023 random seeds: 318d5120 1409faa7 Thu Apr 20 10:06:37 2023 factoring 23822703195641054428332077124005538267109158099136792518585497679059034096495354043523392217449339984554838336581508289143650533265560038685651 (143 digits) Thu Apr 20 10:06:38 2023 searching for 15-digit factors Thu Apr 20 10:06:38 2023 commencing number field sieve (143-digit input) Thu Apr 20 10:06:38 2023 R0: -100000000000000000000000000000000000 Thu Apr 20 10:06:38 2023 R1: 1 Thu Apr 20 10:06:38 2023 A0: 4 Thu Apr 20 10:06:38 2023 A1: 0 Thu Apr 20 10:06:38 2023 A2: 0 Thu Apr 20 10:06:38 2023 A3: 0 Thu Apr 20 10:06:38 2023 A4: 0 Thu Apr 20 10:06:38 2023 A5: 365 Thu Apr 20 10:06:38 2023 skew 0.41, size 2.133e-012, alpha 0.302, combined = 1.299e-010 rroots = 1 Thu Apr 20 10:06:38 2023 Thu Apr 20 10:06:38 2023 commencing square root phase Thu Apr 20 10:06:38 2023 reading relations for dependency 1 Thu Apr 20 10:06:38 2023 read 628941 cycles Thu Apr 20 10:06:39 2023 cycles contain 2188656 unique relations Thu Apr 20 10:06:44 2023 read 2188656 relations Thu Apr 20 10:06:49 2023 multiplying 2188656 relations Thu Apr 20 10:07:25 2023 multiply complete, coefficients have about 65.42 million bits Thu Apr 20 10:07:25 2023 initial square root is modulo 2466181511 Thu Apr 20 10:08:10 2023 GCD is N, no factor found Thu Apr 20 10:08:10 2023 reading relations for dependency 2 Thu Apr 20 10:08:10 2023 read 630197 cycles Thu Apr 20 10:08:11 2023 cycles contain 2191032 unique relations Thu Apr 20 10:08:16 2023 read 2191032 relations Thu Apr 20 10:08:21 2023 multiplying 2191032 relations Thu Apr 20 10:08:55 2023 multiply complete, coefficients have about 65.49 million bits Thu Apr 20 10:08:56 2023 initial square root is modulo 2525458451 Thu Apr 20 10:09:41 2023 sqrtTime: 183 Thu Apr 20 10:09:41 2023 prp56 factor: 12634805322790399630384637572895621247977828973984019579 Thu Apr 20 10:09:41 2023 prp88 factor: 1885482410454726737895038031716774053681391282937929869676215280283314924503392425759369 Thu Apr 20 10:09:41 2023 elapsed time 00:03:04 |
software ソフトウェア | GNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | February 16, 2023 11:21:15 UTC 2023 年 2 月 16 日 (木) 20 時 21 分 15 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 5, 2023 23:03:53 UTC 2023 年 1 月 6 日 (金) 8 時 3 分 53 秒 (日本時間) |
composite number 合成数 | 2687806169337776905464647083017699974322750754852272550596670406050199125812910827426419176267160897661864175193296382496917653528593578773159360374431<151> |
prime factors 素因数 | 7154331266514303389275917936428133893009135614245263<52> 375689364835256789997087291002943096956684615657355474829979417779282865050630281002704556407101937<99> |
factorization results 素因数分解の結果 | Number: n N=2687806169337776905464647083017699974322750754852272550596670406050199125812910827426419176267160897661864175193296382496917653528593578773159360374431 ( 151 digits) SNFS difficulty: 178 digits. Divisors found: Fri Jan 6 09:59:34 2023 prp52 factor: 7154331266514303389275917936428133893009135614245263 Fri Jan 6 09:59:34 2023 prp99 factor: 375689364835256789997087291002943096956684615657355474829979417779282865050630281002704556407101937 Fri Jan 6 09:59:34 2023 elapsed time 01:07:45 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.012). Factorization parameters were as follows: # # N = 73x10^177+8 = 81(176)2 # n: 2687806169337776905464647083017699974322750754852272550596670406050199125812910827426419176267160897661864175193296382496917653528593578773159360374431 m: 100000000000000000000000000000000000 deg: 5 c5: 1825 c0: 2 skew: 0.26 # Murphy_E = 9.53e-11 type: snfs lss: 1 rlim: 6200000 alim: 6200000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 Factor base limits: 6200000/6200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved special-q in [100000, 43100000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1117101 hash collisions in 11386940 relations (10965505 unique) Msieve: matrix is 1444758 x 1444984 (409.1 MB) Sieving start time: 2023/01/06 03:21:30 Sieving end time : 2023/01/06 08:51:38 Total sieving time: 5hrs 30min 8secs. Total relation processing time: 1hrs 2min 32sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 2min 26sec. Prototype def-par.txt line would be: snfs,178,5,0,0,0,0,0,0,0,0,6200000,6200000,27,27,52,52,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Erik Branger |
---|---|
date 日付 | January 12, 2023 16:04:59 UTC 2023 年 1 月 13 日 (金) 1 時 4 分 59 秒 (日本時間) |
composite number 合成数 | 213265404817945160338202075975998438322142516295705412038526398395327317659357679811177386172665231532659090352099957941727642946319<132> |
prime factors 素因数 | 186164609841322383083272386855559433592582430097002538622181<60> 1145574365609672916211287498332714489976281924095983585308315504099638499<73> |
factorization results 素因数分解の結果 | Number: 81112_179 N = 213265404817945160338202075975998438322142516295705412038526398395327317659357679811177386172665231532659090352099957941727642946319 (132 digits) SNFS difficulty: 182 digits. Divisors found: r1=186164609841322383083272386855559433592582430097002538622181 (pp60) r2=1145574365609672916211287498332714489976281924095983585308315504099638499 (pp73) Version: Msieve v. 1.52 (SVN unknown) Total time: 7.28 hours. Factorization parameters were as follows: n: 213265404817945160338202075975998438322142516295705412038526398395327317659357679811177386172665231532659090352099957941727642946319 m: 1000000000000000000000000000000000000000000000000000000000000 deg: 3 c3: 73 c0: 80 skew: 1.00 type: snfs lss: 1 rlim: 8000000 alim: 8000000 lpbr: 29 lpba: 26 mfbr: 58 mfba: 52 rlambda: 2.8 alambda: 2.8 side: 1 maxa: 10000000 maxb: 10000000 Number of cores used: 4 Number of threads per core: 1 Factor base limits: 8000000/8000000 Large primes per side: 3 Large prime bits: 29/26 Total raw relations: 16798588 Relations: 4438274 relations Total pre-computation time approximately 1000 CPU-days. Pre-computation saved approximately 18 G rational relations. Total batch smoothness checking time: 1.64 hours. Total relation processing time: 0.23 hours. Pruned matrix : 3418609 x 3418857 Matrix solve time: 5.32 hours. time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,182,3,0,0,0,0,0,0,0,0,8000000,8000000,29,26,58,52,2.8,2.8,100000 total time: 7.28 hours. Intel64 Family 6 Model 165 Stepping 5, GenuineIntel Windows-10-10.0.22621-SP0 processors: 16, speed: 3.79GHz |
software ソフトウェア | GGNFS, NFS_facotry, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Erik Branger |
---|---|
date 日付 | January 12, 2023 16:05:21 UTC 2023 年 1 月 13 日 (金) 1 時 5 分 21 秒 (日本時間) |
composite number 合成数 | 80543902748836935335841071656414322897536117953516444122319607411913016238703870371161736054708840913154970876428001449281760520907158021480900033439657<152> |
prime factors 素因数 | 9099017652525590210980428983069111533857509476184477919597943<61> 8851933892718691203785593527614173239262238233865776939151806858822439299339928734773343199<91> |
factorization results 素因数分解の結果 | Number: 81112_180 N = 80543902748836935335841071656414322897536117953516444122319607411913016238703870371161736054708840913154970876428001449281760520907158021480900033439657 (152 digits) SNFS difficulty: 182 digits. Divisors found: r1=9099017652525590210980428983069111533857509476184477919597943 (pp61) r2=8851933892718691203785593527614173239262238233865776939151806858822439299339928734773343199 (pp91) Version: Msieve v. 1.52 (SVN unknown) Total time: 7.36 hours. Factorization parameters were as follows: n: 80543902748836935335841071656414322897536117953516444122319607411913016238703870371161736054708840913154970876428001449281760520907158021480900033439657 m: 1000000000000000000000000000000000000000000000000000000000000 deg: 3 c3: 73 c0: 8 skew: 1.00 type: snfs lss: 1 rlim: 10000000 alim: 10000000 lpbr: 29 lpba: 26 mfbr: 58 mfba: 52 rlambda: 2.8 alambda: 2.8 side: 1 maxa: 10000000 maxb: 10000000 Number of cores used: 4 Number of threads per core: 1 Factor base limits: 10000000/10000000 Large primes per side: 3 Large prime bits: 29/26 Total raw relations: 16641646 Relations: 4460460 relations Total pre-computation time approximately 1000 CPU-days. Pre-computation saved approximately 18 G rational relations. Total batch smoothness checking time: 1.64 hours. Total relation processing time: 0.22 hours. Pruned matrix : 3451131 x 3451379 Matrix solve time: 5.45 hours. time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,182,3,0,0,0,0,0,0,0,0,10000000,10000000,29,26,58,52,2.8,2.8,100000 total time: 7.36 hours. Intel64 Family 6 Model 165 Stepping 5, GenuineIntel Windows-10-10.0.22621-SP0 processors: 16, speed: 3.79GHz |
software ソフトウェア | GGNFS; NFS_factory, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Norman Powell |
---|---|
date 日付 | January 24, 2023 16:17:46 UTC 2023 年 1 月 25 日 (水) 1 時 17 分 46 秒 (日本時間) |
composite number 合成数 | 16379371706783703150515199731954131697722842681278256460560058027152761472646946469836715747469604578054243458921954688188339628018459991053<140> |
prime factors 素因数 | 78314494549707855946762214961456611210531378824614928543<56> 209148661444624042308894521968901652345247064894247856213219156987484486264000751571<84> |
factorization results 素因数分解の結果 | n: 16379371706783703150515199731954131697722842681278256460560058027152761472646946469836715747469604578054243458921954688188339628018459991053 skew: 110969.279 c0: 1824272429399046023733286954080 c1: -606656611273366889277695227 c2: -31485600638524963288464 c3: 148295455814885933 c4: 1276214039210 c5: 1321320 Y0: -594586969365004772313760718 Y1: 1454801511830358576559 # MurphyE (Bf=1.074e+09,Bg=1.074e+09,area=8.389e+13) = 1.183e-06 # f(x) = 1321320*x^5+1276214039210*x^4+148295455814885933* x^3-31485600638524963288464*x^2-606656611273366889277695227* x+1824272429399046023733286954080 # g(x) = 1454801511830358576559*x-594586969365004772313760718 Factors: 209148661444624042308894521968901652345247064894247856213219156987484486264000751571 78314494549707855946762214961456611210531378824614928543 Total cpu/elapsed time for entire Complete Factorization 962819/135882 |
software ソフトウェア | CADO-NFS v3.0.0. |
execution environment 実行環境 | Ubuntu v20.04.4 LTS, Intel Xeon E5-1620. |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 11, 2023 11:18:42 UTC 2023 年 1 月 11 日 (水) 20 時 18 分 42 秒 (日本時間) |
composite number 合成数 | 57836096310161616735615289110625370679028253334445867848135368656841911384086812162341195564850039971140965579223263169847365508671008983918015388793105373067704032180701696287<176> |
prime factors 素因数 | 753235810975203956558955433691033316751972937<45> 76783519141611210797579773702942518870687076530040801533895630366302438117541034492187942736785419959804488860887232797263086784551<131> |
factorization results 素因数分解の結果 | Number: n N=57836096310161616735615289110625370679028253334445867848135368656841911384086812162341195564850039971140965579223263169847365508671008983918015388793105373067704032180701696287 ( 176 digits) SNFS difficulty: 186 digits. Divisors found: Wed Jan 11 22:12:06 2023 prp45 factor: 753235810975203956558955433691033316751972937 Wed Jan 11 22:12:06 2023 prp131 factor: 76783519141611210797579773702942518870687076530040801533895630366302438117541034492187942736785419959804488860887232797263086784551 Wed Jan 11 22:12:06 2023 elapsed time 01:36:24 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.119). Factorization parameters were as follows: # # N = 73x10^185+8 = 81(184)2 # n: 57836096310161616735615289110625370679028253334445867848135368656841911384086812162341195564850039971140965579223263169847365508671008983918015388793105373067704032180701696287 m: 10000000000000000000000000000000000000 deg: 5 c5: 73 c0: 8 skew: 0.64 # Murphy_E = 5.21e-11 type: snfs lss: 1 rlim: 8600000 alim: 8600000 lpbr: 27 lpba: 27 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 8600000/8600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 53/53 Sieved special-q in [100000, 29900000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1028503 hash collisions in 11863560 relations (11596176 unique) Msieve: matrix is 1775057 x 1775287 (506.3 MB) Sieving start time: 2023/01/11 10:06:47 Sieving end time : 2023/01/11 20:35:30 Total sieving time: 10hrs 28min 43secs. Total relation processing time: 1hrs 30min 44sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 2min 23sec. Prototype def-par.txt line would be: snfs,186,5,0,0,0,0,0,0,0,0,8600000,8600000,27,27,53,53,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 15, 2023 21:53:32 UTC 2023 年 1 月 16 日 (月) 6 時 53 分 32 秒 (日本時間) |
composite number 合成数 | 138091350531426411861838089726214427520628406090302638193128627145880360181046362777416849626174964910607917930565953128709482652760244776775601731018076165253843<162> |
prime factors 素因数 | 7035258635586725570672096619239920691263763717788917744065941<61> 19628468217630763427566521706804662257595447763640142162384889808250272357891620801315124072837889223<101> |
factorization results 素因数分解の結果 | Number: n N=138091350531426411861838089726214427520628406090302638193128627145880360181046362777416849626174964910607917930565953128709482652760244776775601731018076165253843 ( 162 digits) SNFS difficulty: 187 digits. Divisors found: Mon Jan 16 08:48:58 2023 prp61 factor: 7035258635586725570672096619239920691263763717788917744065941 Mon Jan 16 08:48:58 2023 prp101 factor: 19628468217630763427566521706804662257595447763640142162384889808250272357891620801315124072837889223 Mon Jan 16 08:48:58 2023 elapsed time 01:20:38 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.105). Factorization parameters were as follows: # # N = 73x10^186+8 = 81(185)2 # n: 138091350531426411861838089726214427520628406090302638193128627145880360181046362777416849626174964910607917930565953128709482652760244776775601731018076165253843 m: 10000000000000000000000000000000000000 deg: 5 c5: 365 c0: 4 skew: 0.41 # Murphy_E = 5.106e-11 type: snfs lss: 1 rlim: 9100000 alim: 9100000 lpbr: 27 lpba: 27 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 9100000/9100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 53/53 Sieved special-q in [100000, 30150000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1064403 hash collisions in 12318626 relations (12050134 unique) Msieve: matrix is 1597346 x 1597574 (456.2 MB) Sieving start time: 2023/01/15 21:17:19 Sieving end time : 2023/01/16 07:28:08 Total sieving time: 10hrs 10min 49secs. Total relation processing time: 1hrs 15min 6sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 2min 17sec. Prototype def-par.txt line would be: snfs,187,5,0,0,0,0,0,0,0,0,9100000,9100000,27,27,53,53,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 14, 2023 19:53:50 UTC 2023 年 1 月 15 日 (日) 4 時 53 分 50 秒 (日本時間) |
composite number 合成数 | 38036998076791686965789410174878334575198048693759741489595047306753342863803170442304560775202361048325724842687806361613894489213601603927941911013993604074210217<164> |
prime factors 素因数 | 897665806430931832986322394918063865814731473213664363488093<60> 42373228215102262747332093530023379266311812598509861759580817803309280652648712230356114335886086932669<104> |
factorization results 素因数分解の結果 | Number: n N=38036998076791686965789410174878334575198048693759741489595047306753342863803170442304560775202361048325724842687806361613894489213601603927941911013993604074210217 ( 164 digits) SNFS difficulty: 188 digits. Divisors found: Sun Jan 15 06:49:48 2023 prp60 factor: 897665806430931832986322394918063865814731473213664363488093 Sun Jan 15 06:49:48 2023 prp104 factor: 42373228215102262747332093530023379266311812598509861759580817803309280652648712230356114335886086932669 Sun Jan 15 06:49:48 2023 elapsed time 01:31:26 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.103). Factorization parameters were as follows: # # N = 73x10^187+8 = 81(186)2 # n: 38036998076791686965789410174878334575198048693759741489595047306753342863803170442304560775202361048325724842687806361613894489213601603927941911013993604074210217 m: 10000000000000000000000000000000000000 deg: 5 c5: 1825 c0: 2 skew: 0.26 # Murphy_E = 3.741e-11 type: snfs lss: 1 rlim: 9300000 alim: 9300000 lpbr: 27 lpba: 27 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 9300000/9300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 53/53 Sieved special-q in [100000, 37452637) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1221978 hash collisions in 12790182 relations (12371054 unique) Msieve: matrix is 1732301 x 1732525 (489.8 MB) Sieving start time: 2023/01/14 14:48:20 Sieving end time : 2023/01/15 05:18:11 Total sieving time: 14hrs 29min 51secs. Total relation processing time: 1hrs 25min 41sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 2min 26sec. Prototype def-par.txt line would be: snfs,188,5,0,0,0,0,0,0,0,0,9300000,9300000,27,27,53,53,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 11, 2023 16:12:07 UTC 2023 年 1 月 12 日 (木) 1 時 12 分 7 秒 (日本時間) |
composite number 合成数 | 441814409106602505827591520517920126757414050283704305360770204115277947487289886647259390979401146221293296895385232853998153539492776928628248996433781<153> |
prime factors 素因数 | 7273473918357434562504643685063186737231<40> 57428112289469821628387426646728895277403<41> 1057726655112391434716782102110126458271757597108022019594402518001736417<73> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 441814409106602505827591520517920126757414050283704305360770204115277947487289886647259390979401146221293296895385232853998153539492776928628248996433781 (153 digits) Using B1=25110000, B2=96190324246, polynomial Dickson(12), sigma=1:4088799959 Step 1 took 50942ms Step 2 took 18135ms ********** Factor found in step 2: 57428112289469821628387426646728895277403 Found prime factor of 41 digits: 57428112289469821628387426646728895277403 Composite cofactor 7693347238711428523238712106853237761635241656668892235092224827113571798140173622381792900976997111182702441327 has 112 digits GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 7693347238711428523238712106853237761635241656668892235092224827113571798140173622381792900976997111182702441327 (112 digits) Using B1=40500000, B2=192393771586, polynomial Dickson(12), sigma=1:853442061 Step 1 took 52580ms Step 2 took 20764ms ********** Factor found in step 2: 7273473918357434562504643685063186737231 Found prime factor of 40 digits: 7273473918357434562504643685063186737231 Prime cofactor 1057726655112391434716782102110126458271757597108022019594402518001736417 has 73 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 29, 2023 23:10:47 UTC 2023 年 1 月 30 日 (月) 8 時 10 分 47 秒 (日本時間) |
composite number 合成数 | 16125138014878029738742153147814636791202191113529613388838633094781957307118226237195916424770670115048048124385863706083771883672956734999949280255153904294728936797<167> |
prime factors 素因数 | 43414234374084713797700435545625289485758591552503072530591157765769459531418323<80> 371425138491066388711138731963899529842502320766408658168455392844662359874838464391439<87> |
factorization results 素因数分解の結果 | Number: n N=16125138014878029738742153147814636791202191113529613388838633094781957307118226237195916424770670115048048124385863706083771883672956734999949280255153904294728936797 ( 167 digits) SNFS difficulty: 192 digits. Divisors found: Thu Jan 26 14:41:35 2023 prp80 factor: 43414234374084713797700435545625289485758591552503072530591157765769459531418323 Thu Jan 26 14:41:35 2023 prp87 factor: 371425138491066388711138731963899529842502320766408658168455392844662359874838464391439 Thu Jan 26 14:41:35 2023 elapsed time 01:41:36 (Msieve 1.44 - dependency 3) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.105). Factorization parameters were as follows: # # N = 73x10^191+8 = 81(190)2 # n: 16125138014878029738742153147814636791202191113529613388838633094781957307118226237195916424770670115048048124385863706083771883672956734999949280255153904294728936797 m: 100000000000000000000000000000000000000 deg: 5 c5: 365 c0: 4 skew: 0.41 # Murphy_E = 3.18e-11 type: snfs lss: 1 rlim: 10900000 alim: 10900000 lpbr: 27 lpba: 27 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 10900000/10900000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved special-q in [100000, 38250000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1330424 hash collisions in 13679643 relations (13216111 unique) Msieve: matrix is 1771109 x 1771334 (504.7 MB) Sieving start time: 2023/01/25 20:44:05 Sieving end time : 2023/01/26 12:59:47 Total sieving time: 16hrs 15min 42secs. Total relation processing time: 1hrs 30min 59sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 7min 1sec. Prototype def-par.txt line would be: snfs,192,5,0,0,0,0,0,0,0,0,10900000,10900000,27,27,54,54,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | January 1, 2023 18:56:40 UTC 2023 年 1 月 2 日 (月) 3 時 56 分 40 秒 (日本時間) |
2350 | Ignacio Santos | January 20, 2023 09:27:51 UTC 2023 年 1 月 20 日 (金) 18 時 27 分 51 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 30, 2023 05:32:56 UTC 2023 年 1 月 30 日 (月) 14 時 32 分 56 秒 (日本時間) |
composite number 合成数 | 180725635708612839145271722231134719325660663604728772907593249476638364536975969927254218086823566226785420739182704210065576173132188176483287087376141047198604104898110352558579862905989<189> |
prime factors 素因数 | 1766564916062525569901227287849690686043218209<46> 11239683737723387964712871213328641921533413296253726904419883431013<68> 9101984020780747696191162644616592504643028905576422089439541405067791756417<76> |
factorization results 素因数分解の結果 | Number: n N=180725635708612839145271722231134719325660663604728772907593249476638364536975969927254218086823566226785420739182704210065576173132188176483287087376141047198604104898110352558579862905989 ( 189 digits) SNFS difficulty: 193 digits. Divisors found: Mon Jan 30 16:09:32 2023 prp46 factor: 1766564916062525569901227287849690686043218209 Mon Jan 30 16:09:32 2023 prp68 factor: 11239683737723387964712871213328641921533413296253726904419883431013 Mon Jan 30 16:09:32 2023 prp76 factor: 9101984020780747696191162644616592504643028905576422089439541405067791756417 Mon Jan 30 16:09:32 2023 elapsed time 02:45:52 (Msieve 1.44 - dependency 6) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.091). Factorization parameters were as follows: # # N = 73x10^193+8 = 81(192)2 # n: 180725635708612839145271722231134719325660663604728772907593249476638364536975969927254218086823566226785420739182704210065576173132188176483287087376141047198604104898110352558579862905989 m: 100000000000000000000000000000000000000 deg: 5 c5: 9125 c0: 1 skew: 0.16 # Murphy_E = 2.399e-11 type: snfs lss: 1 rlim: 11600000 alim: 11600000 lpbr: 27 lpba: 27 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 11600000/11600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved special-q in [100000, 45860609) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1297505 hash collisions in 12985605 relations (12489748 unique) Msieve: matrix is 2176765 x 2176990 (619.0 MB) Sieving start time: 2023/01/29 17:16:47 Sieving end time : 2023/01/30 13:23:29 Total sieving time: 20hrs 6min 42secs. Total relation processing time: 2hrs 21min 36sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 20min 31sec. Prototype def-par.txt line would be: snfs,193,5,0,0,0,0,0,0,0,0,11600000,11600000,27,27,54,54,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | January 1, 2023 18:56:31 UTC 2023 年 1 月 2 日 (月) 3 時 56 分 31 秒 (日本時間) |
2350 | Ignacio Santos | January 25, 2023 10:23:49 UTC 2023 年 1 月 25 日 (水) 19 時 23 分 49 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | February 12, 2023 09:14:34 UTC 2023 年 2 月 12 日 (日) 18 時 14 分 34 秒 (日本時間) |
composite number 合成数 | 1408474375290820727830724814633994488631588759140090519077906812228815112494832147375450925135725495380916621314988020812760201546444141458993552706154629247076412798928000876329448949163022453<193> |
prime factors 素因数 | 587970904576658024965410677667126693313125763<45> 2395483117153440240054865846781095331168481375899027087133668725102639232114138155156039669280506933652480777541767261926178542887971466593518782631<148> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1848393489 Step 1 took 40600ms Step 2 took 14500ms ********** Factor found in step 2: 587970904576658024965410677667126693313125763 Found probable prime factor of 45 digits: 587970904576658024965410677667126693313125763 Probable prime cofactor 2395483117153440240054865846781095331168481375899027087133668725102639232114138155156039669280506933652480777541767261926178542887971466593518782631 has 148 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 15, 2023 16:40:03 UTC 2023 年 1 月 16 日 (月) 1 時 40 分 3 秒 (日本時間) | |
45 | 11e6 | 2000 / 4038 | 1000 | Dmitry Domanov | January 15, 2023 16:40:03 UTC 2023 年 1 月 16 日 (月) 1 時 40 分 3 秒 (日本時間) |
1000 | Dmitry Domanov | February 10, 2023 12:05:08 UTC 2023 年 2 月 10 日 (金) 21 時 5 分 8 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | April 30, 2024 11:06:38 UTC 2024 年 4 月 30 日 (火) 20 時 6 分 38 秒 (日本時間) |
composite number 合成数 | 104981071515861088272368997408160115501511174666487938166781998670945883413034379262299124050309431786679660619686033821850435389915236696340347200552600456369<159> |
prime factors 素因数 | 269950666847853088241702322998898903830162643046728867907552549853039<69> 388889839546236336484061214108459984374441169949337418507193261405663138653551920138325471<90> |
factorization results 素因数分解の結果 | Number: n N=104981071515861088272368997408160115501511174666487938166781998670945883413034379262299124050309431786679660619686033821850435389915236696340347200552600456369 ( 159 digits) SNFS difficulty: 203 digits. Divisors found: Mon Apr 29 10:09:43 2024 prp69 factor: 269950666847853088241702322998898903830162643046728867907552549853039 Mon Apr 29 10:09:43 2024 prp90 factor: 388889839546236336484061214108459984374441169949337418507193261405663138653551920138325471 Mon Apr 29 10:09:43 2024 elapsed time 02:39:21 (Msieve 1.44 - dependency 3) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=1.941). Factorization parameters were as follows: # # N = 73x10^202+8 = 81(201)2 # n: 104981071515861088272368997408160115501511174666487938166781998670945883413034379262299124050309431786679660619686033821850435389915236696340347200552600456369 m: 10000000000000000000000000000000000000000 deg: 5 c5: 1825 c0: 2 skew: 0.26 # Murphy_E = 8.913e-12 type: snfs lss: 1 rlim: 17100000 alim: 17100000 lpbr: 27 lpba: 27 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 17100000/17100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 56/56 Sieved special-q in [100000, 41350000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 4279798 hash collisions in 20853671 relations (16773566 unique) Msieve: matrix is 2194560 x 2194785 (616.9 MB) Sieving start time: 2024/04/28 15:31:20 Sieving end time : 2024/04/29 07:29:56 Total sieving time: 15hrs 58min 36secs. Total relation processing time: 2hrs 24min 24sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 9min 23sec. Prototype def-par.txt line would be: snfs,203,5,0,0,0,0,0,0,0,0,17100000,17100000,27,27,56,56,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 15, 2023 16:44:54 UTC 2023 年 1 月 16 日 (月) 1 時 44 分 54 秒 (日本時間) | |
45 | 11e6 | 7480 | 1000 | Dmitry Domanov | January 15, 2023 16:44:54 UTC 2023 年 1 月 16 日 (月) 1 時 44 分 54 秒 (日本時間) |
1000 | Dmitry Domanov | February 5, 2023 21:33:17 UTC 2023 年 2 月 6 日 (月) 6 時 33 分 17 秒 (日本時間) | |||
1000 | Dmitry Domanov | March 4, 2023 08:12:46 UTC 2023 年 3 月 4 日 (土) 17 時 12 分 46 秒 (日本時間) | |||
4480 | Ignacio Santos | October 19, 2023 09:38:32 UTC 2023 年 10 月 19 日 (木) 18 時 38 分 32 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | July 23, 2024 11:18:08 UTC 2024 年 7 月 23 日 (火) 20 時 18 分 8 秒 (日本時間) |
composite number 合成数 | 170087332622414882240850746082259639571428385031494582089365841729123667191001643835820709125311213219429807613985074440468594795308982046419955223694199938078891071598658761193843453669422174653688211<201> |
prime factors 素因数 | 19066877871589203275345980940758681055703470363570222512394861<62> 8920565483657670816993787719839519108763097130051132757666029432530649662028970342714274050813930176694361078192976547049966916133267172351<139> |
factorization results 素因数分解の結果 | Number: n N=170087332622414882240850746082259639571428385031494582089365841729123667191001643835820709125311213219429807613985074440468594795308982046419955223694199938078891071598658761193843453669422174653688211 ( 201 digits) SNFS difficulty: 207 digits. Divisors found: Tue Jul 23 20:48:01 2024 prp62 factor: 19066877871589203275345980940758681055703470363570222512394861 Tue Jul 23 20:48:01 2024 prp139 factor: 8920565483657670816993787719839519108763097130051132757666029432530649662028970342714274050813930176694361078192976547049966916133267172351 Tue Jul 23 20:48:01 2024 elapsed time 05:23:03 (Msieve 1.44 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=1.955). Factorization parameters were as follows: # # N = 73x10^206+8 = 81(205)2 # n: 170087332622414882240850746082259639571428385031494582089365841729123667191001643835820709125311213219429807613985074440468594795308982046419955223694199938078891071598658761193843453669422174653688211 m: 100000000000000000000000000000000000000000 deg: 5 c5: 365 c0: 4 skew: 0.41 # Murphy_E = 7.492e-12 type: snfs lss: 1 rlim: 20000000 alim: 20000000 lpbr: 27 lpba: 27 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 q0: 50000000 qintsize: 50000 Factor base limits: 20000000/20000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 56/56 Sieved special-q in [50000000, 88000000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 4188835 hash collisions in 22494050 relations (18847305 unique) Msieve: matrix is 2955025 x 2955250 (837.0 MB) Sieving start time: 2024/07/22 19:25:23 Sieving end time : 2024/07/23 15:21:24 Total sieving time: 19hrs 56min 1secs. Total relation processing time: 5hrs 2min 25sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 7min 54sec. Prototype def-par.txt line would be: snfs,207,5,0,0,0,0,0,0,0,0,20000000,20000000,27,27,56,56,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 20, 2023 22:45:28 UTC 2023 年 1 月 21 日 (土) 7 時 45 分 28 秒 (日本時間) | |
45 | 11e6 | 3584 | 1792 | Dmitry Domanov | January 20, 2023 22:45:28 UTC 2023 年 1 月 21 日 (土) 7 時 45 分 28 秒 (日本時間) |
1792 | Dmitry Domanov | February 7, 2024 06:20:57 UTC 2024 年 2 月 7 日 (水) 15 時 20 分 57 秒 (日本時間) | |||
50 | 43e6 | 1792 / 6675 | Dmitry Domanov | March 16, 2024 13:00:31 UTC 2024 年 3 月 16 日 (土) 22 時 0 分 31 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | August 19, 2024 19:42:19 UTC 2024 年 8 月 20 日 (火) 4 時 42 分 19 秒 (日本時間) |
composite number 合成数 | 713653990622245104229391744439483927450800613918151144569700355105130066877452400915537155292318794777286514559825321103339861814230688984386178943729353330654563278306804241046062134866644138835219<198> |
prime factors 素因数 | 8663755148063288052032713415741009348909969101076339219595970825687220183<73> 82372363764432636962769660971435789282702063729726487924801721719269305232767739239996320250052637348660324132109471849395493<125> |
factorization results 素因数分解の結果 | Number: n N=713653990622245104229391744439483927450800613918151144569700355105130066877452400915537155292318794777286514559825321103339861814230688984386178943729353330654563278306804241046062134866644138835219 ( 198 digits) SNFS difficulty: 207 digits. Divisors found: Fri Aug 16 14:35:00 2024 prp73 factor: 8663755148063288052032713415741009348909969101076339219595970825687220183 Fri Aug 16 14:35:00 2024 prp125 factor: 82372363764432636962769660971435789282702063729726487924801721719269305232767739239996320250052637348660324132109471849395493 Fri Aug 16 14:35:00 2024 elapsed time 05:35:19 (Msieve 1.44 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.116). Factorization parameters were as follows: # # N = 73x10^207+8 = 81(206)2 # n: 713653990622245104229391744439483927450800613918151144569700355105130066877452400915537155292318794777286514559825321103339861814230688984386178943729353330654563278306804241046062134866644138835219 m: 10000000000000000000000000000000000 deg: 6 c6: 9125 c0: 1 skew: 0.22 # Murphy_E = 6.142e-12 type: snfs lss: 1 rlim: 20000000 alim: 20000000 lpbr: 27 lpba: 27 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 q0: 35000000 qintsize: 50000 Factor base limits: 20000000/20000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 56/56 Sieved special-q in [35000000, 123400000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 6417593 hash collisions in 25813006 relations (18516808 unique) Msieve: matrix is 3099453 x 3099678 (869.8 MB) Sieving start time: 2024/08/14 11:41:35 Sieving end time : 2024/08/16 08:45:01 Total sieving time: 45hrs 3min 26secs. Total relation processing time: 5hrs 14min 33sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 13min 32sec. Prototype def-par.txt line would be: snfs,207,6,0,0,0,0,0,0,0,0,20000000,20000000,27,27,56,56,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 15, 2023 16:41:32 UTC 2023 年 1 月 16 日 (月) 1 時 41 分 32 秒 (日本時間) | |
45 | 11e6 | 3000 | 1000 | Dmitry Domanov | January 15, 2023 16:41:32 UTC 2023 年 1 月 16 日 (月) 1 時 41 分 32 秒 (日本時間) |
1000 | Dmitry Domanov | February 10, 2023 12:05:20 UTC 2023 年 2 月 10 日 (金) 21 時 5 分 20 秒 (日本時間) | |||
1000 | Dmitry Domanov | March 4, 2023 08:12:55 UTC 2023 年 3 月 4 日 (土) 17 時 12 分 55 秒 (日本時間) | |||
50 | 43e6 | 1792 / 6806 | Dmitry Domanov | March 13, 2024 10:40:34 UTC 2024 年 3 月 13 日 (水) 19 時 40 分 34 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 15, 2023 16:45:01 UTC 2023 年 1 月 16 日 (月) 1 時 45 分 1 秒 (日本時間) | |
45 | 11e6 | 3000 | 1000 | Dmitry Domanov | January 15, 2023 16:45:01 UTC 2023 年 1 月 16 日 (月) 1 時 45 分 1 秒 (日本時間) |
1000 | Dmitry Domanov | February 5, 2023 21:33:28 UTC 2023 年 2 月 6 日 (月) 6 時 33 分 28 秒 (日本時間) | |||
1000 | Dmitry Domanov | March 4, 2023 08:13:06 UTC 2023 年 3 月 4 日 (土) 17 時 13 分 6 秒 (日本時間) | |||
50 | 43e6 | 1792 / 6806 | Dmitry Domanov | March 12, 2024 20:26:54 UTC 2024 年 3 月 13 日 (水) 5 時 26 分 54 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 15, 2023 16:41:20 UTC 2023 年 1 月 16 日 (月) 1 時 41 分 20 秒 (日本時間) | |
45 | 11e6 | 3000 | 1000 | Dmitry Domanov | January 15, 2023 16:41:20 UTC 2023 年 1 月 16 日 (月) 1 時 41 分 20 秒 (日本時間) |
1000 | Dmitry Domanov | February 10, 2023 12:05:28 UTC 2023 年 2 月 10 日 (金) 21 時 5 分 28 秒 (日本時間) | |||
1000 | Dmitry Domanov | March 4, 2023 08:13:13 UTC 2023 年 3 月 4 日 (土) 17 時 13 分 13 秒 (日本時間) | |||
50 | 43e6 | 1792 / 6806 | Dmitry Domanov | March 13, 2024 10:40:41 UTC 2024 年 3 月 13 日 (水) 19 時 40 分 41 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 15, 2023 16:41:55 UTC 2023 年 1 月 16 日 (月) 1 時 41 分 55 秒 (日本時間) | |
45 | 11e6 | 3000 | 1000 | Dmitry Domanov | January 15, 2023 16:41:55 UTC 2023 年 1 月 16 日 (月) 1 時 41 分 55 秒 (日本時間) |
1000 | Dmitry Domanov | February 10, 2023 12:05:36 UTC 2023 年 2 月 10 日 (金) 21 時 5 分 36 秒 (日本時間) | |||
1000 | Dmitry Domanov | March 4, 2023 08:13:22 UTC 2023 年 3 月 4 日 (土) 17 時 13 分 22 秒 (日本時間) | |||
50 | 43e6 | 1792 / 6806 | Dmitry Domanov | March 13, 2024 10:40:49 UTC 2024 年 3 月 13 日 (水) 19 時 40 分 49 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 20, 2023 22:45:20 UTC 2023 年 1 月 21 日 (土) 7 時 45 分 20 秒 (日本時間) | |
45 | 11e6 | 3584 | 1792 | Dmitry Domanov | January 20, 2023 22:45:20 UTC 2023 年 1 月 21 日 (土) 7 時 45 分 20 秒 (日本時間) |
1792 | Dmitry Domanov | February 7, 2024 06:37:31 UTC 2024 年 2 月 7 日 (水) 15 時 37 分 31 秒 (日本時間) | |||
50 | 43e6 | 1792 / 6675 | Dmitry Domanov | March 16, 2024 13:00:38 UTC 2024 年 3 月 16 日 (土) 22 時 0 分 38 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 15, 2023 16:45:07 UTC 2023 年 1 月 16 日 (月) 1 時 45 分 7 秒 (日本時間) | |
45 | 11e6 | 3000 | 1000 | Dmitry Domanov | January 15, 2023 16:45:07 UTC 2023 年 1 月 16 日 (月) 1 時 45 分 7 秒 (日本時間) |
1000 | Dmitry Domanov | February 10, 2023 12:05:43 UTC 2023 年 2 月 10 日 (金) 21 時 5 分 43 秒 (日本時間) | |||
1000 | Dmitry Domanov | March 4, 2023 08:13:30 UTC 2023 年 3 月 4 日 (土) 17 時 13 分 30 秒 (日本時間) | |||
50 | 43e6 | 1792 / 6806 | Dmitry Domanov | March 13, 2024 10:40:58 UTC 2024 年 3 月 13 日 (水) 19 時 40 分 58 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 3, 2023 23:52:33 UTC 2023 年 1 月 4 日 (水) 8 時 52 分 33 秒 (日本時間) |
composite number 合成数 | 14514669807068891890616876616238426220473190081450148307016058824736218461733061041045912792541488727638534305536075322705027225861117085343382108592351471967576865759<167> |
prime factors 素因数 | 7281161549709842292531074051210948514073981<43> |
composite cofactor 合成数の残り | 1993455262319692425925287287677604711289204074898518077354123562645064612224307528046442428516475555468297494855183366790539<124> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @6c763ad417cc with GMP-ECM 7.0.5-dev on Mon Jan 2 00:18:14 2023 Input number is 14514669807068891890616876616238426220473190081450148307016058824736218461733061041045912792541488727638534305536075322705027225861117085343382108592351471967576865759 (167 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:3885549375 Step 1 took 0ms Step 2 took 2317ms ********** Factor found in step 2: 7281161549709842292531074051210948514073981 Found prime factor of 43 digits: 7281161549709842292531074051210948514073981 Composite cofactor 1993455262319692425925287287677604711289204074898518077354123562645064612224307528046442428516475555468297494855183366790539 has 124 digits |
name 名前 | Ignacio Santos |
---|---|
date 日付 | January 7, 2023 17:40:38 UTC 2023 年 1 月 8 日 (日) 2 時 40 分 38 秒 (日本時間) |
composite number 合成数 | 1993455262319692425925287287677604711289204074898518077354123562645064612224307528046442428516475555468297494855183366790539<124> |
prime factors 素因数 | 3236452614991438322793077341673740703900506638713413<52> 615938343446120835976225049897462176620972068616771871571562576216393103<72> |
factorization results 素因数分解の結果 | -> makeJobFile(): Adjusted to q0=2600000, q1=2700000. -> client 1 q0: 2600000 LatSieveTime: 86 LatSieveTime: 87 LatSieveTime: 88 LatSieveTime: 89 LatSieveTime: 93 LatSieveTime: 96 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 -> makeJobFile(): Adjusted to q0=2700001, q1=2800000. -> client 1 q0: 2700001 LatSieveTime: 96 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 104 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 -> makeJobFile(): Adjusted to q0=2800001, q1=2900000. -> client 1 q0: 2800001 LatSieveTime: 87 LatSieveTime: 88 LatSieveTime: 93 LatSieveTime: 98 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 134 -> makeJobFile(): Adjusted to q0=2900001, q1=3000000. -> client 1 q0: 2900001 LatSieveTime: 85 LatSieveTime: 94 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 127 LatSieveTime: 128 -> makeJobFile(): Adjusted to q0=3000001, q1=3100000. -> client 1 q0: 3000001 LatSieveTime: 84 LatSieveTime: 93 LatSieveTime: 93 LatSieveTime: 95 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 133 -> makeJobFile(): Adjusted to q0=3100001, q1=3200000. -> client 1 q0: 3100001 LatSieveTime: 93 LatSieveTime: 94 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 126 LatSieveTime: 126 -> makeJobFile(): Adjusted to q0=3200001, q1=3300000. -> client 1 q0: 3200001 LatSieveTime: 94 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 127 -> makeJobFile(): Adjusted to q0=3300001, q1=3400000. -> client 1 q0: 3300001 LatSieveTime: 93 LatSieveTime: 95 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 99 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 128 LatSieveTime: 127 -> makeJobFile(): Adjusted to q0=3400001, q1=3500000. -> client 1 q0: 3400001 LatSieveTime: 82 LatSieveTime: 89 LatSieveTime: 94 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 98 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 128 -> makeJobFile(): Adjusted to q0=3500001, q1=3600000. -> client 1 q0: 3500001 LatSieveTime: 92 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 100 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 130 -> makeJobFile(): Adjusted to q0=3600001, q1=3700000. -> client 1 q0: 3600001 LatSieveTime: 98 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 -> makeJobFile(): Adjusted to q0=3700001, q1=3800000. -> client 1 q0: 3700001 LatSieveTime: 91 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 128 LatSieveTime: 137 -> makeJobFile(): Adjusted to q0=3800001, q1=3900000. -> client 1 q0: 3800001 LatSieveTime: 94 LatSieveTime: 99 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 132 -> makeJobFile(): Adjusted to q0=3900001, q1=4000000. -> client 1 q0: 3900001 LatSieveTime: 94 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 131 -> makeJobFile(): Adjusted to q0=4000001, q1=4100000. -> client 1 q0: 4000001 LatSieveTime: 92 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 129 -> makeJobFile(): Adjusted to q0=4100001, q1=4200000. -> client 1 q0: 4100001 LatSieveTime: 84 LatSieveTime: 90 LatSieveTime: 93 LatSieveTime: 93 LatSieveTime: 94 LatSieveTime: 96 LatSieveTime: 98 LatSieveTime: 100 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 128 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 136 -> makeJobFile(): Adjusted to q0=4200001, q1=4300000. -> client 1 q0: 4200001 LatSieveTime: 91 LatSieveTime: 99 LatSieveTime: 101 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 132 LatSieveTime: 133 -> makeJobFile(): Adjusted to q0=4300001, q1=4400000. -> client 1 q0: 4300001 -> makeJobFile(): Adjusted to q0=4300001, q1=4400000. -> client 1 q0: 4300001 LatSieveTime: 90 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 129 -> makeJobFile(): Adjusted to q0=4400001, q1=4500000. -> client 1 q0: 4400001 LatSieveTime: 98 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 -> makeJobFile(): Adjusted to q0=4500001, q1=4600000. -> client 1 q0: 4500001 LatSieveTime: 88 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 -> makeJobFile(): Adjusted to q0=4600001, q1=4700000. -> client 1 q0: 4600001 LatSieveTime: 86 LatSieveTime: 91 LatSieveTime: 93 LatSieveTime: 97 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 131 LatSieveTime: 144 -> makeJobFile(): Adjusted to q0=4700001, q1=4800000. -> client 1 q0: 4700001 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 134 -> makeJobFile(): Adjusted to q0=4800001, q1=4900000. -> client 1 q0: 4800001 LatSieveTime: 94 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 132 LatSieveTime: 133 -> makeJobFile(): Adjusted to q0=4900001, q1=5000000. -> client 1 q0: 4900001 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 132 LatSieveTime: 132 -> makeJobFile(): Adjusted to q0=5000001, q1=5100000. -> client 1 q0: 5000001 LatSieveTime: 91 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 99 LatSieveTime: 103 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 131 LatSieveTime: 135 -> makeJobFile(): Adjusted to q0=5100001, q1=5200000. -> client 1 q0: 5100001 LatSieveTime: 95 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 134 LatSieveTime: 137 Sat Jan 07 18:02:59 2023 Sat Jan 07 18:02:59 2023 Sat Jan 07 18:02:59 2023 Msieve v. 1.52 (SVN 927) Sat Jan 07 18:02:59 2023 random seeds: b96e1fa8 18f97867 Sat Jan 07 18:02:59 2023 factoring 1993455262319692425925287287677604711289204074898518077354123562645064612224307528046442428516475555468297494855183366790539 (124 digits) Sat Jan 07 18:03:00 2023 searching for 15-digit factors Sat Jan 07 18:03:00 2023 commencing number field sieve (124-digit input) Sat Jan 07 18:03:00 2023 R0: -603215191557771874615403 Sat Jan 07 18:03:00 2023 R1: 6401939508173 Sat Jan 07 18:03:00 2023 A0: -540353842490682302194691658720 Sat Jan 07 18:03:00 2023 A1: 41747573079625527458591061 Sat Jan 07 18:03:00 2023 A2: 28141547886360002506 Sat Jan 07 18:03:00 2023 A3: -13060619100563726 Sat Jan 07 18:03:00 2023 A4: 3035458812 Sat Jan 07 18:03:00 2023 A5: 24960 Sat Jan 07 18:03:00 2023 skew 175220.72, size 4.940e-012, alpha -6.430, combined = 1.431e-010 rroots = 5 Sat Jan 07 18:03:00 2023 Sat Jan 07 18:03:00 2023 commencing relation filtering Sat Jan 07 18:03:00 2023 estimated available RAM is 65413.5 MB Sat Jan 07 18:03:00 2023 commencing duplicate removal, pass 1 Sat Jan 07 18:03:18 2023 found 953685 hash collisions in 9081166 relations Sat Jan 07 18:03:28 2023 added 62363 free relations Sat Jan 07 18:03:28 2023 commencing duplicate removal, pass 2 Sat Jan 07 18:03:31 2023 found 774663 duplicates and 8368866 unique relations Sat Jan 07 18:03:31 2023 memory use: 34.6 MB Sat Jan 07 18:03:31 2023 reading ideals above 100000 Sat Jan 07 18:03:31 2023 commencing singleton removal, initial pass Sat Jan 07 18:04:01 2023 memory use: 188.3 MB Sat Jan 07 18:04:01 2023 reading all ideals from disk Sat Jan 07 18:04:01 2023 memory use: 302.0 MB Sat Jan 07 18:04:02 2023 keeping 10192076 ideals with weight <= 200, target excess is 43809 Sat Jan 07 18:04:02 2023 commencing in-memory singleton removal Sat Jan 07 18:04:02 2023 begin with 8368866 relations and 10192076 unique ideals Sat Jan 07 18:04:15 2023 reduce to 998073 relations and 1339338 ideals in 217 passes Sat Jan 07 18:04:15 2023 max relations containing the same ideal: 49 Sat Jan 07 18:04:15 2023 filtering wants 1000000 more relations Sat Jan 07 18:04:15 2023 elapsed time 00:01:16 -> makeJobFile(): Adjusted to q0=5200001, q1=5300000. -> client 1 q0: 5200001 LatSieveTime: 94 LatSieveTime: 100 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 133 Sat Jan 07 18:06:33 2023 Sat Jan 07 18:06:33 2023 Sat Jan 07 18:06:33 2023 Msieve v. 1.52 (SVN 927) Sat Jan 07 18:06:33 2023 random seeds: 0c70c810 e9288586 Sat Jan 07 18:06:33 2023 factoring 1993455262319692425925287287677604711289204074898518077354123562645064612224307528046442428516475555468297494855183366790539 (124 digits) Sat Jan 07 18:06:33 2023 searching for 15-digit factors Sat Jan 07 18:06:33 2023 commencing number field sieve (124-digit input) Sat Jan 07 18:06:33 2023 R0: -603215191557771874615403 Sat Jan 07 18:06:33 2023 R1: 6401939508173 Sat Jan 07 18:06:33 2023 A0: -540353842490682302194691658720 Sat Jan 07 18:06:33 2023 A1: 41747573079625527458591061 Sat Jan 07 18:06:33 2023 A2: 28141547886360002506 Sat Jan 07 18:06:33 2023 A3: -13060619100563726 Sat Jan 07 18:06:33 2023 A4: 3035458812 Sat Jan 07 18:06:33 2023 A5: 24960 Sat Jan 07 18:06:33 2023 skew 175220.72, size 4.940e-012, alpha -6.430, combined = 1.431e-010 rroots = 5 Sat Jan 07 18:06:33 2023 Sat Jan 07 18:06:33 2023 commencing relation filtering Sat Jan 07 18:06:33 2023 estimated available RAM is 65413.5 MB Sat Jan 07 18:06:33 2023 commencing duplicate removal, pass 1 Sat Jan 07 18:06:52 2023 found 1019451 hash collisions in 9491144 relations Sat Jan 07 18:07:02 2023 added 113 free relations Sat Jan 07 18:07:02 2023 commencing duplicate removal, pass 2 Sat Jan 07 18:07:05 2023 found 825757 duplicates and 8665500 unique relations Sat Jan 07 18:07:05 2023 memory use: 49.3 MB Sat Jan 07 18:07:05 2023 reading ideals above 100000 Sat Jan 07 18:07:05 2023 commencing singleton removal, initial pass Sat Jan 07 18:07:37 2023 memory use: 344.5 MB Sat Jan 07 18:07:37 2023 reading all ideals from disk Sat Jan 07 18:07:37 2023 memory use: 312.8 MB Sat Jan 07 18:07:37 2023 keeping 10341579 ideals with weight <= 200, target excess is 45438 Sat Jan 07 18:07:38 2023 commencing in-memory singleton removal Sat Jan 07 18:07:38 2023 begin with 8665500 relations and 10341579 unique ideals Sat Jan 07 18:07:42 2023 reduce to 1794634 relations and 2087647 ideals in 36 passes Sat Jan 07 18:07:42 2023 max relations containing the same ideal: 68 Sat Jan 07 18:07:42 2023 filtering wants 1000000 more relations Sat Jan 07 18:07:42 2023 elapsed time 00:01:09 -> makeJobFile(): Adjusted to q0=5300001, q1=5400000. -> client 1 q0: 5300001 LatSieveTime: 81 LatSieveTime: 88 LatSieveTime: 96 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 139 LatSieveTime: 140 Sat Jan 07 18:10:06 2023 Sat Jan 07 18:10:06 2023 Sat Jan 07 18:10:06 2023 Msieve v. 1.52 (SVN 927) Sat Jan 07 18:10:06 2023 random seeds: 95a80c18 f951b545 Sat Jan 07 18:10:06 2023 factoring 1993455262319692425925287287677604711289204074898518077354123562645064612224307528046442428516475555468297494855183366790539 (124 digits) Sat Jan 07 18:10:06 2023 searching for 15-digit factors Sat Jan 07 18:10:06 2023 commencing number field sieve (124-digit input) Sat Jan 07 18:10:06 2023 R0: -603215191557771874615403 Sat Jan 07 18:10:06 2023 R1: 6401939508173 Sat Jan 07 18:10:06 2023 A0: -540353842490682302194691658720 Sat Jan 07 18:10:06 2023 A1: 41747573079625527458591061 Sat Jan 07 18:10:06 2023 A2: 28141547886360002506 Sat Jan 07 18:10:06 2023 A3: -13060619100563726 Sat Jan 07 18:10:06 2023 A4: 3035458812 Sat Jan 07 18:10:06 2023 A5: 24960 Sat Jan 07 18:10:06 2023 skew 175220.72, size 4.940e-012, alpha -6.430, combined = 1.431e-010 rroots = 5 Sat Jan 07 18:10:06 2023 Sat Jan 07 18:10:06 2023 commencing relation filtering Sat Jan 07 18:10:06 2023 estimated available RAM is 65413.5 MB Sat Jan 07 18:10:06 2023 commencing duplicate removal, pass 1 Sat Jan 07 18:10:27 2023 found 1082338 hash collisions in 9835098 relations Sat Jan 07 18:10:37 2023 added 87 free relations Sat Jan 07 18:10:37 2023 commencing duplicate removal, pass 2 Sat Jan 07 18:10:40 2023 found 877474 duplicates and 8957711 unique relations Sat Jan 07 18:10:40 2023 memory use: 49.3 MB Sat Jan 07 18:10:40 2023 reading ideals above 100000 Sat Jan 07 18:10:40 2023 commencing singleton removal, initial pass Sat Jan 07 18:11:14 2023 memory use: 344.5 MB Sat Jan 07 18:11:14 2023 reading all ideals from disk Sat Jan 07 18:11:14 2023 memory use: 323.5 MB Sat Jan 07 18:11:14 2023 keeping 10482064 ideals with weight <= 200, target excess is 47019 Sat Jan 07 18:11:15 2023 commencing in-memory singleton removal Sat Jan 07 18:11:15 2023 begin with 8957711 relations and 10482064 unique ideals Sat Jan 07 18:11:20 2023 reduce to 2288021 relations and 2516348 ideals in 33 passes Sat Jan 07 18:11:20 2023 max relations containing the same ideal: 80 Sat Jan 07 18:11:20 2023 filtering wants 1000000 more relations Sat Jan 07 18:11:20 2023 elapsed time 00:01:14 -> makeJobFile(): Adjusted to q0=5400001, q1=5500000. -> client 1 q0: 5400001 LatSieveTime: 89 LatSieveTime: 94 LatSieveTime: 98 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 126 Sat Jan 07 18:13:31 2023 Sat Jan 07 18:13:31 2023 Sat Jan 07 18:13:31 2023 Msieve v. 1.52 (SVN 927) Sat Jan 07 18:13:31 2023 random seeds: d74d1d78 c79c2cca Sat Jan 07 18:13:31 2023 factoring 1993455262319692425925287287677604711289204074898518077354123562645064612224307528046442428516475555468297494855183366790539 (124 digits) Sat Jan 07 18:13:31 2023 searching for 15-digit factors Sat Jan 07 18:13:32 2023 commencing number field sieve (124-digit input) Sat Jan 07 18:13:32 2023 R0: -603215191557771874615403 Sat Jan 07 18:13:32 2023 R1: 6401939508173 Sat Jan 07 18:13:32 2023 A0: -540353842490682302194691658720 Sat Jan 07 18:13:32 2023 A1: 41747573079625527458591061 Sat Jan 07 18:13:32 2023 A2: 28141547886360002506 Sat Jan 07 18:13:32 2023 A3: -13060619100563726 Sat Jan 07 18:13:32 2023 A4: 3035458812 Sat Jan 07 18:13:32 2023 A5: 24960 Sat Jan 07 18:13:32 2023 skew 175220.72, size 4.940e-012, alpha -6.430, combined = 1.431e-010 rroots = 5 Sat Jan 07 18:13:32 2023 Sat Jan 07 18:13:32 2023 commencing relation filtering Sat Jan 07 18:13:32 2023 estimated available RAM is 65413.5 MB Sat Jan 07 18:13:32 2023 commencing duplicate removal, pass 1 Sat Jan 07 18:13:53 2023 found 1146433 hash collisions in 10176024 relations Sat Jan 07 18:14:03 2023 added 79 free relations Sat Jan 07 18:14:03 2023 commencing duplicate removal, pass 2 Sat Jan 07 18:14:07 2023 found 930530 duplicates and 9245573 unique relations Sat Jan 07 18:14:07 2023 memory use: 49.3 MB Sat Jan 07 18:14:07 2023 reading ideals above 100000 Sat Jan 07 18:14:07 2023 commencing singleton removal, initial pass Sat Jan 07 18:14:42 2023 memory use: 344.5 MB Sat Jan 07 18:14:42 2023 reading all ideals from disk Sat Jan 07 18:14:43 2023 memory use: 334.0 MB Sat Jan 07 18:14:43 2023 keeping 10615954 ideals with weight <= 200, target excess is 48590 Sat Jan 07 18:14:43 2023 commencing in-memory singleton removal Sat Jan 07 18:14:44 2023 begin with 9245573 relations and 10615954 unique ideals Sat Jan 07 18:14:48 2023 reduce to 2733375 relations and 2885076 ideals in 24 passes Sat Jan 07 18:14:48 2023 max relations containing the same ideal: 89 Sat Jan 07 18:14:48 2023 filtering wants 1000000 more relations Sat Jan 07 18:14:48 2023 elapsed time 00:01:17 -> makeJobFile(): Adjusted to q0=5500001, q1=5600000. -> client 1 q0: 5500001 LatSieveTime: 93 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 140 Sat Jan 07 18:17:12 2023 Sat Jan 07 18:17:12 2023 Sat Jan 07 18:17:12 2023 Msieve v. 1.52 (SVN 927) Sat Jan 07 18:17:12 2023 random seeds: eca05b88 6c3a42d3 Sat Jan 07 18:17:12 2023 factoring 1993455262319692425925287287677604711289204074898518077354123562645064612224307528046442428516475555468297494855183366790539 (124 digits) Sat Jan 07 18:17:13 2023 searching for 15-digit factors Sat Jan 07 18:17:13 2023 commencing number field sieve (124-digit input) Sat Jan 07 18:17:13 2023 R0: -603215191557771874615403 Sat Jan 07 18:17:13 2023 R1: 6401939508173 Sat Jan 07 18:17:13 2023 A0: -540353842490682302194691658720 Sat Jan 07 18:17:13 2023 A1: 41747573079625527458591061 Sat Jan 07 18:17:13 2023 A2: 28141547886360002506 Sat Jan 07 18:17:13 2023 A3: -13060619100563726 Sat Jan 07 18:17:13 2023 A4: 3035458812 Sat Jan 07 18:17:13 2023 A5: 24960 Sat Jan 07 18:17:13 2023 skew 175220.72, size 4.940e-012, alpha -6.430, combined = 1.431e-010 rroots = 5 Sat Jan 07 18:17:13 2023 Sat Jan 07 18:17:13 2023 commencing relation filtering Sat Jan 07 18:17:13 2023 estimated available RAM is 65413.5 MB Sat Jan 07 18:17:13 2023 commencing duplicate removal, pass 1 Sat Jan 07 18:17:35 2023 found 1211338 hash collisions in 10514971 relations Sat Jan 07 18:17:45 2023 added 82 free relations Sat Jan 07 18:17:45 2023 commencing duplicate removal, pass 2 Sat Jan 07 18:17:49 2023 found 984460 duplicates and 9530593 unique relations Sat Jan 07 18:17:49 2023 memory use: 49.3 MB Sat Jan 07 18:17:49 2023 reading ideals above 100000 Sat Jan 07 18:17:49 2023 commencing singleton removal, initial pass Sat Jan 07 18:18:25 2023 memory use: 344.5 MB Sat Jan 07 18:18:25 2023 reading all ideals from disk Sat Jan 07 18:18:25 2023 memory use: 344.4 MB Sat Jan 07 18:18:26 2023 keeping 10743201 ideals with weight <= 200, target excess is 50207 Sat Jan 07 18:18:26 2023 commencing in-memory singleton removal Sat Jan 07 18:18:27 2023 begin with 9530593 relations and 10743201 unique ideals Sat Jan 07 18:18:31 2023 reduce to 3152887 relations and 3217891 ideals in 22 passes Sat Jan 07 18:18:31 2023 max relations containing the same ideal: 97 Sat Jan 07 18:18:31 2023 filtering wants 1000000 more relations Sat Jan 07 18:18:31 2023 elapsed time 00:01:19 -> makeJobFile(): Adjusted to q0=5600001, q1=5700000. -> client 1 q0: 5600001 LatSieveTime: 88 LatSieveTime: 91 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 105 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 135 Sat Jan 07 18:20:51 2023 Sat Jan 07 18:20:51 2023 Sat Jan 07 18:20:51 2023 Msieve v. 1.52 (SVN 927) Sat Jan 07 18:20:51 2023 random seeds: d4559150 c98efc9a Sat Jan 07 18:20:51 2023 factoring 1993455262319692425925287287677604711289204074898518077354123562645064612224307528046442428516475555468297494855183366790539 (124 digits) Sat Jan 07 18:20:51 2023 searching for 15-digit factors Sat Jan 07 18:20:51 2023 commencing number field sieve (124-digit input) Sat Jan 07 18:20:51 2023 R0: -603215191557771874615403 Sat Jan 07 18:20:51 2023 R1: 6401939508173 Sat Jan 07 18:20:51 2023 A0: -540353842490682302194691658720 Sat Jan 07 18:20:51 2023 A1: 41747573079625527458591061 Sat Jan 07 18:20:51 2023 A2: 28141547886360002506 Sat Jan 07 18:20:51 2023 A3: -13060619100563726 Sat Jan 07 18:20:51 2023 A4: 3035458812 Sat Jan 07 18:20:51 2023 A5: 24960 Sat Jan 07 18:20:51 2023 skew 175220.72, size 4.940e-012, alpha -6.430, combined = 1.431e-010 rroots = 5 Sat Jan 07 18:20:51 2023 Sat Jan 07 18:20:51 2023 commencing relation filtering Sat Jan 07 18:20:51 2023 estimated available RAM is 65413.5 MB Sat Jan 07 18:20:51 2023 commencing duplicate removal, pass 1 Sat Jan 07 18:21:14 2023 found 1275591 hash collisions in 10845324 relations Sat Jan 07 18:21:24 2023 added 58 free relations Sat Jan 07 18:21:24 2023 commencing duplicate removal, pass 2 Sat Jan 07 18:21:29 2023 found 1038029 duplicates and 9807353 unique relations Sat Jan 07 18:21:29 2023 memory use: 49.3 MB Sat Jan 07 18:21:29 2023 reading ideals above 100000 Sat Jan 07 18:21:29 2023 commencing singleton removal, initial pass Sat Jan 07 18:22:06 2023 memory use: 344.5 MB Sat Jan 07 18:22:06 2023 reading all ideals from disk Sat Jan 07 18:22:06 2023 memory use: 354.5 MB Sat Jan 07 18:22:07 2023 keeping 10863071 ideals with weight <= 200, target excess is 51670 Sat Jan 07 18:22:07 2023 commencing in-memory singleton removal Sat Jan 07 18:22:08 2023 begin with 9807353 relations and 10863071 unique ideals Sat Jan 07 18:22:12 2023 reduce to 3550253 relations and 3521807 ideals in 20 passes Sat Jan 07 18:22:12 2023 max relations containing the same ideal: 102 Sat Jan 07 18:22:12 2023 filtering wants 1000000 more relations Sat Jan 07 18:22:12 2023 elapsed time 00:01:21 -> makeJobFile(): Adjusted to q0=5700001, q1=5800000. -> client 1 q0: 5700001 LatSieveTime: 94 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 120 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 134 Sat Jan 07 18:24:31 2023 Sat Jan 07 18:24:31 2023 Sat Jan 07 18:24:31 2023 Msieve v. 1.52 (SVN 927) Sat Jan 07 18:24:31 2023 random seeds: 5a0d06f0 eb0178ca Sat Jan 07 18:24:31 2023 factoring 1993455262319692425925287287677604711289204074898518077354123562645064612224307528046442428516475555468297494855183366790539 (124 digits) Sat Jan 07 18:24:31 2023 searching for 15-digit factors Sat Jan 07 18:24:32 2023 commencing number field sieve (124-digit input) Sat Jan 07 18:24:32 2023 R0: -603215191557771874615403 Sat Jan 07 18:24:32 2023 R1: 6401939508173 Sat Jan 07 18:24:32 2023 A0: -540353842490682302194691658720 Sat Jan 07 18:24:32 2023 A1: 41747573079625527458591061 Sat Jan 07 18:24:32 2023 A2: 28141547886360002506 Sat Jan 07 18:24:32 2023 A3: -13060619100563726 Sat Jan 07 18:24:32 2023 A4: 3035458812 Sat Jan 07 18:24:32 2023 A5: 24960 Sat Jan 07 18:24:32 2023 skew 175220.72, size 4.940e-012, alpha -6.430, combined = 1.431e-010 rroots = 5 Sat Jan 07 18:24:32 2023 Sat Jan 07 18:24:32 2023 commencing relation filtering Sat Jan 07 18:24:32 2023 estimated available RAM is 65413.5 MB Sat Jan 07 18:24:32 2023 commencing duplicate removal, pass 1 Sat Jan 07 18:24:55 2023 found 1339927 hash collisions in 11167575 relations Sat Jan 07 18:25:05 2023 added 57 free relations Sat Jan 07 18:25:05 2023 commencing duplicate removal, pass 2 Sat Jan 07 18:25:09 2023 found 1091487 duplicates and 10076145 unique relations Sat Jan 07 18:25:09 2023 memory use: 49.3 MB Sat Jan 07 18:25:09 2023 reading ideals above 720000 Sat Jan 07 18:25:09 2023 commencing singleton removal, initial pass Sat Jan 07 18:25:43 2023 memory use: 344.5 MB Sat Jan 07 18:25:43 2023 reading all ideals from disk Sat Jan 07 18:25:43 2023 memory use: 292.4 MB Sat Jan 07 18:25:43 2023 commencing in-memory singleton removal Sat Jan 07 18:25:44 2023 begin with 10076145 relations and 10912890 unique ideals Sat Jan 07 18:25:48 2023 reduce to 3930441 relations and 3740651 ideals in 18 passes Sat Jan 07 18:25:48 2023 max relations containing the same ideal: 75 Sat Jan 07 18:25:49 2023 removing 338378 relations and 310710 ideals in 27668 cliques Sat Jan 07 18:25:49 2023 commencing in-memory singleton removal Sat Jan 07 18:25:49 2023 begin with 3592063 relations and 3740651 unique ideals Sat Jan 07 18:25:50 2023 reduce to 3566947 relations and 3404542 ideals in 10 passes Sat Jan 07 18:25:50 2023 max relations containing the same ideal: 68 Sat Jan 07 18:25:51 2023 removing 245854 relations and 218186 ideals in 27668 cliques Sat Jan 07 18:25:51 2023 commencing in-memory singleton removal Sat Jan 07 18:25:51 2023 begin with 3321093 relations and 3404542 unique ideals Sat Jan 07 18:25:52 2023 reduce to 3305981 relations and 3171111 ideals in 9 passes Sat Jan 07 18:25:52 2023 max relations containing the same ideal: 63 Sat Jan 07 18:25:53 2023 relations with 0 large ideals: 464 Sat Jan 07 18:25:53 2023 relations with 1 large ideals: 2822 Sat Jan 07 18:25:53 2023 relations with 2 large ideals: 37984 Sat Jan 07 18:25:53 2023 relations with 3 large ideals: 210619 Sat Jan 07 18:25:53 2023 relations with 4 large ideals: 600166 Sat Jan 07 18:25:53 2023 relations with 5 large ideals: 955643 Sat Jan 07 18:25:53 2023 relations with 6 large ideals: 877580 Sat Jan 07 18:25:53 2023 relations with 7+ large ideals: 620703 Sat Jan 07 18:25:53 2023 commencing 2-way merge Sat Jan 07 18:25:54 2023 reduce to 1876209 relation sets and 1741341 unique ideals Sat Jan 07 18:25:54 2023 ignored 2 oversize relation sets Sat Jan 07 18:25:54 2023 commencing full merge Sat Jan 07 18:26:13 2023 memory use: 194.2 MB Sat Jan 07 18:26:13 2023 found 932066 cycles, need 915541 Sat Jan 07 18:26:13 2023 weight of 915541 cycles is about 64295721 (70.23/cycle) Sat Jan 07 18:26:13 2023 distribution of cycle lengths: Sat Jan 07 18:26:13 2023 1 relations: 121496 Sat Jan 07 18:26:13 2023 2 relations: 110938 Sat Jan 07 18:26:13 2023 3 relations: 107113 Sat Jan 07 18:26:13 2023 4 relations: 93759 Sat Jan 07 18:26:13 2023 5 relations: 82614 Sat Jan 07 18:26:13 2023 6 relations: 69099 Sat Jan 07 18:26:13 2023 7 relations: 60125 Sat Jan 07 18:26:13 2023 8 relations: 50489 Sat Jan 07 18:26:13 2023 9 relations: 41972 Sat Jan 07 18:26:13 2023 10+ relations: 177936 Sat Jan 07 18:26:13 2023 heaviest cycle: 22 relations Sat Jan 07 18:26:14 2023 commencing cycle optimization Sat Jan 07 18:26:14 2023 start with 5402072 relations Sat Jan 07 18:26:21 2023 pruned 109458 relations Sat Jan 07 18:26:21 2023 memory use: 185.0 MB Sat Jan 07 18:26:21 2023 distribution of cycle lengths: Sat Jan 07 18:26:21 2023 1 relations: 121496 Sat Jan 07 18:26:21 2023 2 relations: 113303 Sat Jan 07 18:26:21 2023 3 relations: 110466 Sat Jan 07 18:26:21 2023 4 relations: 95647 Sat Jan 07 18:26:21 2023 5 relations: 83937 Sat Jan 07 18:26:21 2023 6 relations: 69585 Sat Jan 07 18:26:21 2023 7 relations: 60267 Sat Jan 07 18:26:21 2023 8 relations: 49881 Sat Jan 07 18:26:21 2023 9 relations: 41602 Sat Jan 07 18:26:21 2023 10+ relations: 169357 Sat Jan 07 18:26:21 2023 heaviest cycle: 22 relations Sat Jan 07 18:26:22 2023 RelProcTime: 110 Sat Jan 07 18:26:22 2023 elapsed time 00:01:51 Sat Jan 07 18:26:22 2023 Sat Jan 07 18:26:22 2023 Sat Jan 07 18:26:22 2023 Msieve v. 1.52 (SVN 927) Sat Jan 07 18:26:22 2023 random seeds: b77210a0 39df3383 Sat Jan 07 18:26:22 2023 factoring 1993455262319692425925287287677604711289204074898518077354123562645064612224307528046442428516475555468297494855183366790539 (124 digits) Sat Jan 07 18:26:22 2023 searching for 15-digit factors Sat Jan 07 18:26:22 2023 commencing number field sieve (124-digit input) Sat Jan 07 18:26:22 2023 R0: -603215191557771874615403 Sat Jan 07 18:26:22 2023 R1: 6401939508173 Sat Jan 07 18:26:22 2023 A0: -540353842490682302194691658720 Sat Jan 07 18:26:22 2023 A1: 41747573079625527458591061 Sat Jan 07 18:26:22 2023 A2: 28141547886360002506 Sat Jan 07 18:26:22 2023 A3: -13060619100563726 Sat Jan 07 18:26:22 2023 A4: 3035458812 Sat Jan 07 18:26:22 2023 A5: 24960 Sat Jan 07 18:26:22 2023 skew 175220.72, size 4.940e-012, alpha -6.430, combined = 1.431e-010 rroots = 5 Sat Jan 07 18:26:22 2023 Sat Jan 07 18:26:22 2023 commencing linear algebra Sat Jan 07 18:26:22 2023 read 915541 cycles Sat Jan 07 18:26:23 2023 cycles contain 3154496 unique relations Sat Jan 07 18:26:30 2023 read 3154496 relations Sat Jan 07 18:26:33 2023 using 20 quadratic characters above 134216232 Sat Jan 07 18:26:41 2023 building initial matrix Sat Jan 07 18:26:59 2023 memory use: 404.3 MB Sat Jan 07 18:27:00 2023 read 915541 cycles Sat Jan 07 18:27:00 2023 matrix is 915360 x 915541 (278.2 MB) with weight 87902503 (96.01/col) Sat Jan 07 18:27:00 2023 sparse part has weight 61931075 (67.64/col) Sat Jan 07 18:27:04 2023 filtering completed in 2 passes Sat Jan 07 18:27:04 2023 matrix is 912130 x 912309 (277.8 MB) with weight 87756075 (96.19/col) Sat Jan 07 18:27:04 2023 sparse part has weight 61883030 (67.83/col) Sat Jan 07 18:27:06 2023 matrix starts at (0, 0) Sat Jan 07 18:27:06 2023 matrix is 912130 x 912309 (277.8 MB) with weight 87756075 (96.19/col) Sat Jan 07 18:27:06 2023 sparse part has weight 61883030 (67.83/col) Sat Jan 07 18:27:06 2023 saving the first 48 matrix rows for later Sat Jan 07 18:27:06 2023 matrix includes 64 packed rows Sat Jan 07 18:27:06 2023 matrix is 912082 x 912309 (268.0 MB) with weight 70130711 (76.87/col) Sat Jan 07 18:27:06 2023 sparse part has weight 61119832 (66.99/col) Sat Jan 07 18:27:06 2023 using block size 8192 and superblock size 12582912 for processor cache size 131072 kB Sat Jan 07 18:27:09 2023 commencing Lanczos iteration (32 threads) Sat Jan 07 18:27:09 2023 memory use: 209.4 MB Sat Jan 07 18:27:11 2023 linear algebra at 0.3%, ETA 0h 9m Sat Jan 07 18:36:40 2023 lanczos halted after 14422 iterations (dim = 912082) Sat Jan 07 18:36:40 2023 recovered 31 nontrivial dependencies Sat Jan 07 18:36:40 2023 BLanczosTime: 618 Sat Jan 07 18:36:40 2023 elapsed time 00:10:18 Sat Jan 07 18:36:41 2023 Sat Jan 07 18:36:41 2023 Sat Jan 07 18:36:41 2023 Msieve v. 1.52 (SVN 927) Sat Jan 07 18:36:41 2023 random seeds: 01186150 2bda02f2 Sat Jan 07 18:36:41 2023 factoring 1993455262319692425925287287677604711289204074898518077354123562645064612224307528046442428516475555468297494855183366790539 (124 digits) Sat Jan 07 18:36:41 2023 searching for 15-digit factors Sat Jan 07 18:36:41 2023 commencing number field sieve (124-digit input) Sat Jan 07 18:36:41 2023 R0: -603215191557771874615403 Sat Jan 07 18:36:41 2023 R1: 6401939508173 Sat Jan 07 18:36:41 2023 A0: -540353842490682302194691658720 Sat Jan 07 18:36:41 2023 A1: 41747573079625527458591061 Sat Jan 07 18:36:41 2023 A2: 28141547886360002506 Sat Jan 07 18:36:41 2023 A3: -13060619100563726 Sat Jan 07 18:36:41 2023 A4: 3035458812 Sat Jan 07 18:36:41 2023 A5: 24960 Sat Jan 07 18:36:41 2023 skew 175220.72, size 4.940e-012, alpha -6.430, combined = 1.431e-010 rroots = 5 Sat Jan 07 18:36:41 2023 Sat Jan 07 18:36:41 2023 commencing square root phase Sat Jan 07 18:36:41 2023 reading relations for dependency 1 Sat Jan 07 18:36:41 2023 read 456181 cycles Sat Jan 07 18:36:42 2023 cycles contain 1576940 unique relations Sat Jan 07 18:36:45 2023 read 1576940 relations Sat Jan 07 18:36:49 2023 multiplying 1576940 relations Sat Jan 07 18:37:34 2023 multiply complete, coefficients have about 72.82 million bits Sat Jan 07 18:37:34 2023 initial square root is modulo 168869 Sat Jan 07 18:38:27 2023 GCD is N, no factor found Sat Jan 07 18:38:27 2023 reading relations for dependency 2 Sat Jan 07 18:38:27 2023 read 455833 cycles Sat Jan 07 18:38:28 2023 cycles contain 1576528 unique relations Sat Jan 07 18:38:32 2023 read 1576528 relations Sat Jan 07 18:38:36 2023 multiplying 1576528 relations Sat Jan 07 18:39:20 2023 multiply complete, coefficients have about 72.81 million bits Sat Jan 07 18:39:20 2023 initial square root is modulo 168457 Sat Jan 07 18:40:13 2023 sqrtTime: 212 Sat Jan 07 18:40:13 2023 prp52 factor: 3236452614991438322793077341673740703900506638713413 Sat Jan 07 18:40:13 2023 prp72 factor: 615938343446120835976225049897462176620972068616771871571562576216393103 Sat Jan 07 18:40:13 2023 elapsed time 00:03:32 |
software ソフトウェア | GNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | January 3, 2023 23:52:24 UTC 2023 年 1 月 4 日 (水) 8 時 52 分 24 秒 (日本時間) |
2350 | Ignacio Santos | January 4, 2023 20:16:25 UTC 2023 年 1 月 5 日 (木) 5 時 16 分 25 秒 (日本時間) | |||
45 | 11e6 | 4480 | Ignacio Santos | January 5, 2023 07:53:50 UTC 2023 年 1 月 5 日 (木) 16 時 53 分 50 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 15, 2023 16:45:17 UTC 2023 年 1 月 16 日 (月) 1 時 45 分 17 秒 (日本時間) | |
45 | 11e6 | 3000 | 1000 | Dmitry Domanov | January 15, 2023 16:45:17 UTC 2023 年 1 月 16 日 (月) 1 時 45 分 17 秒 (日本時間) |
1000 | Dmitry Domanov | February 10, 2023 12:05:51 UTC 2023 年 2 月 10 日 (金) 21 時 5 分 51 秒 (日本時間) | |||
1000 | Dmitry Domanov | March 4, 2023 08:13:40 UTC 2023 年 3 月 4 日 (土) 17 時 13 分 40 秒 (日本時間) | |||
50 | 43e6 | 1792 / 6806 | Dmitry Domanov | March 12, 2024 20:27:02 UTC 2024 年 3 月 13 日 (水) 5 時 27 分 2 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 15, 2023 16:52:07 UTC 2023 年 1 月 16 日 (月) 1 時 52 分 7 秒 (日本時間) | |
45 | 11e6 | 3000 | 1000 | Dmitry Domanov | January 15, 2023 16:52:07 UTC 2023 年 1 月 16 日 (月) 1 時 52 分 7 秒 (日本時間) |
1000 | Dmitry Domanov | February 10, 2023 12:06:00 UTC 2023 年 2 月 10 日 (金) 21 時 6 分 0 秒 (日本時間) | |||
1000 | Dmitry Domanov | March 4, 2023 08:13:51 UTC 2023 年 3 月 4 日 (土) 17 時 13 分 51 秒 (日本時間) | |||
50 | 43e6 | 1792 / 6806 | Dmitry Domanov | March 13, 2024 10:41:06 UTC 2024 年 3 月 13 日 (水) 19 時 41 分 6 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | December 16, 2023 21:43:18 UTC 2023 年 12 月 17 日 (日) 6 時 43 分 18 秒 (日本時間) |
composite number 合成数 | 46089343029357969837185184912717328744593508894669221215554741620025659160957820604984003545448955243583419245188482813177564411282770288847147<143> |
prime factors 素因数 | 7803271766200122527442797514486583216563249420581540453713<58> 5906412644628627895288147533575968257362315522901684527063941769208331822918829068219<85> |
factorization results 素因数分解の結果 | 46089343029357969837185184912717328744593508894669221215554741620025659160957820604984003545448955243583419245188482813177564411282770288847147=7803271766200122527442797514486583216563249420581540453713*5906412644628627895288147533575968257362315522901684527063941769208331822918829068219 cado polynomial n: 46089343029357969837185184912717328744593508894669221215554741620025659160957820604984003545448955243583419245188482813177564411282770288847147 skew: 283133.846 c0: 1471199487638114691132413877196200 c1: 2648401435127795477449356720 c2: -72709979864555910412379 c3: 17356905282530755 c4: 275306606634 c5: 800640 Y0: -2582907132556700229335928139 Y1: 11235164303699294563 # MurphyE (Bf=5.369e+08,Bg=5.369e+08,area=3.355e+14) = 1.961e-07 # f(x) = 800640*x^5+275306606634*x^4+17356905282530755*x^3-72709979864555910412379*x^2+2648401435127795477449356720*x+1471199487638114691132413877196200 # g(x) = 11235164303699294563*x-2582907132556700229335928139 cado parameters (extracts) tasks.lim0 = 10000000 tasks.lim1 = 20000000 tasks.lpb0 = 29 tasks.lpb1 = 29 tasks.sieve.mfb0 = 58 tasks.sieve.mfb1 = 87 tasks.I = 13 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 7803271766200122527442797514486583216563249420581540453713 5906412644628627895288147533575968257362315522901684527063941769208331822918829068219 Info:Complete Factorization / Discrete logarithm: Square Root Info:Square Root: Total cpu/real time for sqrt: 2219.95/150.029 Info:HTTP server: Got notification to stop serving Workunits Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 883.77/699.099 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 506.5s Info:Linear Algebra: Total cpu/real time for bwc: 136297/14563.6 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 87986.82, WCT time 9487.3, iteration CPU time 0.05, COMM 0.01, cpu-wait 0.03, comm-wait 0.0 (105472 iterations) Info:Linear Algebra: Lingen CPU time 674.0, WCT time 46.36 Info:Linear Algebra: Mksol: CPU time 46777.28, WCT time 4940.2, iteration CPU time 0.05, COMM 0.01, cpu-wait 0.03, comm-wait 0.0 (52736 iterations) Info:Polynomial Selection (root optimized): Aggregate statistics: Info:Polynomial Selection (root optimized): Total time: 3496.56 Info:Polynomial Selection (root optimized): Rootsieve time: 3495.05 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 48520451 Info:Lattice Sieving: Average J: 3801.95 for 1055508 special-q, max bucket fill -bkmult 1.0,1s:1.198530 Info:Lattice Sieving: Total time: 1.0419e+06s Info:Generate Free Relations: Total cpu/real time for freerel: 234.24/13.5719 Info:Polynomial Selection (size optimized): Aggregate statistics: Info:Polynomial Selection (size optimized): potential collisions: 81888.4 Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 57155/44.370/51.405/57.320/0.919 Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 47192/41.870/45.778/52.080/0.955 Info:Polynomial Selection (size optimized): Total time: 29787.9 Info:Square Root: Total cpu/real time for sqrt: 2219.95/150.029 Info:Generate Factor Base: Total cpu/real time for makefb: 7.38/0.505447 Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 195.79/169.923 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 169.2s Info:Quadratic Characters: Total cpu/real time for characters: 92.1/19.4422 Info:Filtering - Singleton removal: Total cpu/real time for purge: 672.29/494.371 Info:Filtering - Merging: Merged matrix has 3366136 rows and total weight 572769374 (170.2 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 667.11/41.7332 Info:Filtering - Merging: Total cpu/real time for replay: 67.95/58.8947 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire Complete Factorization 2.03632e+06/103850 Info:root: Cleaning up computation data in /tmp/cado.vzc8bk1z 7803271766200122527442797514486583216563249420581540453713 5906412644628627895288147533575968257362315522901684527063941769208331822918829068219 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)] 13th Gen Intel(R) Core(TM) i7-13700KF (24 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | December 23, 2022 17:29:17 UTC 2022 年 12 月 24 日 (土) 2 時 29 分 17 秒 (日本時間) | |
45 | 11e6 | 4480 | Ignacio Santos | December 24, 2022 15:38:22 UTC 2022 年 12 月 25 日 (日) 0 時 38 分 22 秒 (日本時間) | |
50 | 43e6 | 6454 | Ignacio Santos | January 6, 2023 16:49:54 UTC 2023 年 1 月 7 日 (土) 1 時 49 分 54 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 4, 2023 08:51:43 UTC 2023 年 1 月 4 日 (水) 17 時 51 分 43 秒 (日本時間) |
composite number 合成数 | 98330668390116994907492113626764865608583836940281020539968540255074116013239688366988321874719939233428240387788316129975953960003391210622956494738743726880606340066445223913511<179> |
prime factors 素因数 | 6470322994600734498197410453790881695443<40> 15197180801046657010977654741546327222755855293115136720388871392696167727999890431461468174806184306133673443499438186394091271979872070877<140> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @6c763ad417cc with GMP-ECM 7.0.5-dev on Mon Jan 2 00:30:07 2023 Input number is 98330668390116994907492113626764865608583836940281020539968540255074116013239688366988321874719939233428240387788316129975953960003391210622956494738743726880606340066445223913511 (179 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:350970340 Step 1 took 0ms Step 2 took 4413ms ********** Factor found in step 2: 6470322994600734498197410453790881695443 Found prime factor of 40 digits: 6470322994600734498197410453790881695443 Prime cofactor 15197180801046657010977654741546327222755855293115136720388871392696167727999890431461468174806184306133673443499438186394091271979872070877 has 140 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 15, 2023 16:52:12 UTC 2023 年 1 月 16 日 (月) 1 時 52 分 12 秒 (日本時間) | |
45 | 11e6 | 3000 | 1000 | Dmitry Domanov | January 15, 2023 16:52:12 UTC 2023 年 1 月 16 日 (月) 1 時 52 分 12 秒 (日本時間) |
1000 | Dmitry Domanov | February 10, 2023 12:06:08 UTC 2023 年 2 月 10 日 (金) 21 時 6 分 8 秒 (日本時間) | |||
1000 | Dmitry Domanov | March 4, 2023 08:14:03 UTC 2023 年 3 月 4 日 (土) 17 時 14 分 3 秒 (日本時間) | |||
50 | 43e6 | 1792 / 6806 | Dmitry Domanov | April 9, 2024 16:18:01 UTC 2024 年 4 月 10 日 (水) 1 時 18 分 1 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 3, 2023 20:12:14 UTC 2023 年 1 月 4 日 (水) 5 時 12 分 14 秒 (日本時間) |
composite number 合成数 | 20013203231063123287911586602887603657426598150231714511930062353464970862969323323441876174747614316513469708234912237991529754424288681409543611237221706813700655117129328060813819089415702194763010775327942379520516549<221> |
prime factors 素因数 | 3110229743698141608958700210857904484917<40> 6434638235845214408288627938595682974339792106554386664982744105083725917459689744021070045711898672565111142670179758904233357618407251376489060360089201957370304325833622587138897<181> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @6c763ad417cc with GMP-ECM 7.0.5-dev on Sun Jan 1 21:56:14 2023 Input number is 20013203231063123287911586602887603657426598150231714511930062353464970862969323323441876174747614316513469708234912237991529754424288681409543611237221706813700655117129328060813819089415702194763010775327942379520516549 (221 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:302628061 Step 1 took 0ms Step 2 took 3208ms ********** Factor found in step 2: 3110229743698141608958700210857904484917 Found prime factor of 40 digits: 3110229743698141608958700210857904484917 Prime cofactor 6434638235845214408288627938595682974339792106554386664982744105083725917459689744021070045711898672565111142670179758904233357618407251376489060360089201957370304325833622587138897 has 181 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 3, 2023 12:51:50 UTC 2023 年 1 月 3 日 (火) 21 時 51 分 50 秒 (日本時間) |
composite number 合成数 | 20024243083657106275428482740799945626150744727351551381327424600313836236011360040410199704808290379385277458425259067328358589057837157910353037411600830994576133312986535798595263463180243<191> |
prime factors 素因数 | 432116077683008948206791951495625006379<39> |
composite cofactor 合成数の残り | 46339963074334993641269592332045484449959155107017919449773908199796091936276783638416391528520139227601961361194696444570662759335453454682048630324217<152> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @6c763ad417cc with GMP-ECM 7.0.5-dev on Sun Jan 1 22:42:10 2023 Input number is 20024243083657106275428482740799945626150744727351551381327424600313836236011360040410199704808290379385277458425259067328358589057837157910353037411600830994576133312986535798595263463180243 (191 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:3764845266 Step 1 took 0ms Step 2 took 2592ms ********** Factor found in step 2: 432116077683008948206791951495625006379 Found prime factor of 39 digits: 432116077683008948206791951495625006379 Composite cofactor 46339963074334993641269592332045484449959155107017919449773908199796091936276783638416391528520139227601961361194696444570662759335453454682048630324217 has 152 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | January 3, 2023 12:51:44 UTC 2023 年 1 月 3 日 (火) 21 時 51 分 44 秒 (日本時間) |
2350 | Ignacio Santos | January 4, 2023 20:21:00 UTC 2023 年 1 月 5 日 (木) 5 時 21 分 0 秒 (日本時間) | |||
45 | 11e6 | 4480 | Ignacio Santos | January 4, 2023 22:54:33 UTC 2023 年 1 月 5 日 (木) 7 時 54 分 33 秒 (日本時間) | |
50 | 43e6 | 6454 | Ignacio Santos | February 14, 2024 07:57:12 UTC 2024 年 2 月 14 日 (水) 16 時 57 分 12 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 2, 2023 01:33:19 UTC 2023 年 1 月 2 日 (月) 10 時 33 分 19 秒 (日本時間) |
composite number 合成数 | 5933923002458422901782102572594526913539851325662084251172461923987847852475578766358523899384584461337066691444883440287191051360697925199572834604547716239987481650127633<172> |
prime factors 素因数 | 2462145254546744756375321056775224913<37> 2410062116156829339214341168785578349141314640805822556832498571666278308020667857340589091750244915916069966546975237809204286914357441<136> |
factorization results 素因数分解の結果 | GPU: factor 2462145254546744756375321056775224913 found in Step 1 with curve 679 (-sigma 3:-271468746) Computing 1792 Step 1 took 208ms of CPU time / 178433ms of GPU time Throughput: 10.043 curves per second (on average 99.57ms per Step 1) ********** Factor found in step 1: 2462145254546744756375321056775224913 Found prime factor of 37 digits: 2462145254546744756375321056775224913 Prime cofactor 2410062116156829339214341168785578349141314640805822556832498571666278308020667857340589091750244915916069966546975237809204286914357441 has 136 digits Peak memory usage: 9428MB |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 20, 2023 22:47:12 UTC 2023 年 1 月 21 日 (土) 7 時 47 分 12 秒 (日本時間) | |
45 | 11e6 | 3584 | 1792 | Dmitry Domanov | January 20, 2023 22:47:12 UTC 2023 年 1 月 21 日 (土) 7 時 47 分 12 秒 (日本時間) |
1792 | Dmitry Domanov | February 7, 2024 06:37:23 UTC 2024 年 2 月 7 日 (水) 15 時 37 分 23 秒 (日本時間) | |||
50 | 43e6 | 1792 / 6675 | Dmitry Domanov | March 16, 2024 13:00:48 UTC 2024 年 3 月 16 日 (土) 22 時 0 分 48 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 24, 2023 14:14:08 UTC 2023 年 1 月 24 日 (火) 23 時 14 分 8 秒 (日本時間) |
composite number 合成数 | 706431225316733003417053416581607891026490127525893242452616811532902383061504724470252743043383789470306321509149393144836934032396792877398269397835335057786959149202299179444341225723037242158429048116882887099917<216> |
prime factors 素因数 | 66070004644817963296211283779982137206127<41> 10692162489081044462713600061948375632234077081107663423029348107982866979935436352939375376754965133933346841885131093929821144367136018306616435956755673482038243084606088771<176> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @e742cbc687f4 with GMP-ECM 7.0.5-dev on Sat Jan 21 16:01:54 2023 Input number is 706431225316733003417053416581607891026490127525893242452616811532902383061504724470252743043383789470306321509149393144836934032396792877398269397835335057786959149202299179444341225723037242158429048116882887099917 (216 digits) Using B1=11000000-11000000, B2=35133391030, polynomial Dickson(12), sigma=3:2090891034 Step 1 took 0ms Step 2 took 13085ms ********** Factor found in step 2: 66070004644817963296211283779982137206127 Found prime factor of 41 digits: 66070004644817963296211283779982137206127 Prime cofactor 10692162489081044462713600061948375632234077081107663423029348107982866979935436352939375376754965133933346841885131093929821144367136018306616435956755673482038243084606088771 has 176 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 20, 2023 22:47:18 UTC 2023 年 1 月 21 日 (土) 7 時 47 分 18 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | January 20, 2023 22:47:18 UTC 2023 年 1 月 21 日 (土) 7 時 47 分 18 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | March 18, 2024 08:27:29 UTC 2024 年 3 月 18 日 (月) 17 時 27 分 29 秒 (日本時間) |
composite number 合成数 | 822813618807042525827232066195200675355596131410158510964320071704932324293563907989366539647359079323994260352253011439785526833898607239409001590460807197317909333350750053278440384450195250990452570146248607458550959<219> |
prime factors 素因数 | 41392258196627398963990046117149380815534600131<47> 19878442362298672101262277175103948180473624667034078045068511666258184841564738874803166751346620582796367684773003169053163654859477014525574151976895782938541452706100389<173> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @f10df40bb271 with GMP-ECM 7.0.5-dev on Sat Mar 16 15:52:03 2024 Input number is 822813618807042525827232066195200675355596131410158510964320071704932324293563907989366539647359079323994260352253011439785526833898607239409001590460807197317909333350750053278440384450195250990452570146248607458550959 (219 digits) Using B1=43000000-43000000, B2=240490660426, polynomial Dickson(12), sigma=3:330528835 Step 1 took 0ms Step 2 took 29512ms ********** Factor found in step 2: 41392258196627398963990046117149380815534600131 Found prime factor of 47 digits: 41392258196627398963990046117149380815534600131 Prime cofactor 19878442362298672101262277175103948180473624667034078045068511666258184841564738874803166751346620582796367684773003169053163654859477014525574151976895782938541452706100389 has 173 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 20, 2023 22:47:24 UTC 2023 年 1 月 21 日 (土) 7 時 47 分 24 秒 (日本時間) | |
45 | 11e6 | 3584 | 1792 | Dmitry Domanov | January 20, 2023 22:47:24 UTC 2023 年 1 月 21 日 (土) 7 時 47 分 24 秒 (日本時間) |
1792 | Dmitry Domanov | February 7, 2024 06:37:15 UTC 2024 年 2 月 7 日 (水) 15 時 37 分 15 秒 (日本時間) | |||
50 | 43e6 | 1792 / 6675 | Dmitry Domanov | March 16, 2024 13:00:56 UTC 2024 年 3 月 16 日 (土) 22 時 0 分 56 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 15, 2023 16:52:18 UTC 2023 年 1 月 16 日 (月) 1 時 52 分 18 秒 (日本時間) | |
45 | 11e6 | 3000 | 1000 | Dmitry Domanov | January 15, 2023 16:52:18 UTC 2023 年 1 月 16 日 (月) 1 時 52 分 18 秒 (日本時間) |
1000 | Dmitry Domanov | February 10, 2023 12:06:42 UTC 2023 年 2 月 10 日 (金) 21 時 6 分 42 秒 (日本時間) | |||
1000 | Dmitry Domanov | March 4, 2023 08:15:38 UTC 2023 年 3 月 4 日 (土) 17 時 15 分 38 秒 (日本時間) | |||
50 | 43e6 | 1792 / 6806 | Dmitry Domanov | March 13, 2024 10:41:20 UTC 2024 年 3 月 13 日 (水) 19 時 41 分 20 秒 (日本時間) |
name 名前 | Thomas Kozlowski |
---|---|
date 日付 | August 28, 2024 12:56:33 UTC 2024 年 8 月 28 日 (水) 21 時 56 分 33 秒 (日本時間) |
composite number 合成数 | 14355676938119069568522325921439950833493671009632021481471797352104714870181688336634263832789562864770260457464254067043866048689049892573152497643<149> |
prime factors 素因数 | 18650313785537655988421762546240658075652763525675919941954383<62> 769728440132259172240338509601809248501386122369938111070555789431175025596891759213221<87> |
factorization results 素因数分解の結果 | 18650313785537655988421762546240658075652763525675919941954383 769728440132259172240338509601809248501386122369938111070555789431175025596891759213221 |
software ソフトウェア | cado-nfs |
execution environment 実行環境 | 2x Xeon E5-2698v4, 256GB DDR4, Ubuntu Server 22.04 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | December 25, 2022 12:25:10 UTC 2022 年 12 月 25 日 (日) 21 時 25 分 10 秒 (日本時間) | |
45 | 11e6 | 4480 | Ignacio Santos | December 29, 2022 11:13:12 UTC 2022 年 12 月 29 日 (木) 20 時 13 分 12 秒 (日本時間) | |
50 | 43e6 | 6454 | Ignacio Santos | July 12, 2023 11:25:20 UTC 2023 年 7 月 12 日 (水) 20 時 25 分 20 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 15, 2023 16:52:24 UTC 2023 年 1 月 16 日 (月) 1 時 52 分 24 秒 (日本時間) | |
45 | 11e6 | 3000 | 1000 | Dmitry Domanov | January 15, 2023 16:52:24 UTC 2023 年 1 月 16 日 (月) 1 時 52 分 24 秒 (日本時間) |
1000 | Dmitry Domanov | February 10, 2023 12:06:49 UTC 2023 年 2 月 10 日 (金) 21 時 6 分 49 秒 (日本時間) | |||
1000 | Dmitry Domanov | March 4, 2023 08:15:47 UTC 2023 年 3 月 4 日 (土) 17 時 15 分 47 秒 (日本時間) | |||
50 | 43e6 | 1792 / 6806 | Dmitry Domanov | March 13, 2024 10:41:32 UTC 2024 年 3 月 13 日 (水) 19 時 41 分 32 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 20, 2023 22:47:31 UTC 2023 年 1 月 21 日 (土) 7 時 47 分 31 秒 (日本時間) | |
45 | 11e6 | 3584 | 1792 | Dmitry Domanov | January 20, 2023 22:47:31 UTC 2023 年 1 月 21 日 (土) 7 時 47 分 31 秒 (日本時間) |
1792 | Dmitry Domanov | February 7, 2024 06:37:08 UTC 2024 年 2 月 7 日 (水) 15 時 37 分 8 秒 (日本時間) | |||
50 | 43e6 | 1792 / 6675 | Dmitry Domanov | March 16, 2024 13:01:03 UTC 2024 年 3 月 16 日 (土) 22 時 1 分 3 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 20, 2023 22:47:36 UTC 2023 年 1 月 21 日 (土) 7 時 47 分 36 秒 (日本時間) | |
45 | 11e6 | 3584 | 1792 | Dmitry Domanov | January 20, 2023 22:47:36 UTC 2023 年 1 月 21 日 (土) 7 時 47 分 36 秒 (日本時間) |
1792 | Dmitry Domanov | February 7, 2024 06:37:01 UTC 2024 年 2 月 7 日 (水) 15 時 37 分 1 秒 (日本時間) | |||
50 | 43e6 | 1792 / 6675 | Dmitry Domanov | March 16, 2024 13:01:11 UTC 2024 年 3 月 16 日 (土) 22 時 1 分 11 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 15, 2023 16:53:36 UTC 2023 年 1 月 16 日 (月) 1 時 53 分 36 秒 (日本時間) | |
45 | 11e6 | 3000 | 1000 | Dmitry Domanov | January 15, 2023 16:53:36 UTC 2023 年 1 月 16 日 (月) 1 時 53 分 36 秒 (日本時間) |
1000 | Dmitry Domanov | February 10, 2023 12:06:58 UTC 2023 年 2 月 10 日 (金) 21 時 6 分 58 秒 (日本時間) | |||
1000 | Dmitry Domanov | March 4, 2023 08:15:55 UTC 2023 年 3 月 4 日 (土) 17 時 15 分 55 秒 (日本時間) | |||
50 | 43e6 | 1792 / 6806 | Dmitry Domanov | March 13, 2024 10:41:42 UTC 2024 年 3 月 13 日 (水) 19 時 41 分 42 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 4, 2023 08:52:01 UTC 2023 年 1 月 4 日 (水) 17 時 52 分 1 秒 (日本時間) |
composite number 合成数 | 681675481442726349670096746826077573204002081789775646979460299446522815521782696012761553027212266982415007302358698943190110782691188217715994672360580747786154579781034897639947540717<186> |
prime factors 素因数 | 1338329390192426131761331929451207<34> 509348062172283665044637331614737986924893625738603069974441619545412166858028545307216234593687665688822699638745301410468707192058051342471435280181931<153> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @6c763ad417cc with GMP-ECM 7.0.5-dev on Mon Jan 2 01:24:55 2023 Input number is 681675481442726349670096746826077573204002081789775646979460299446522815521782696012761553027212266982415007302358698943190110782691188217715994672360580747786154579781034897639947540717 (186 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:1767354147 Step 1 took 0ms Step 2 took 4714ms ********** Factor found in step 2: 1338329390192426131761331929451207 Found prime factor of 34 digits: 1338329390192426131761331929451207 Prime cofactor 509348062172283665044637331614737986924893625738603069974441619545412166858028545307216234593687665688822699638745301410468707192058051342471435280181931 has 153 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 15, 2023 16:53:41 UTC 2023 年 1 月 16 日 (月) 1 時 53 分 41 秒 (日本時間) | |
45 | 11e6 | 3000 | 1000 | Dmitry Domanov | January 15, 2023 16:53:41 UTC 2023 年 1 月 16 日 (月) 1 時 53 分 41 秒 (日本時間) |
1000 | Dmitry Domanov | February 10, 2023 12:07:06 UTC 2023 年 2 月 10 日 (金) 21 時 7 分 6 秒 (日本時間) | |||
1000 | Dmitry Domanov | March 4, 2023 08:16:03 UTC 2023 年 3 月 4 日 (土) 17 時 16 分 3 秒 (日本時間) | |||
50 | 43e6 | 1792 / 6806 | Dmitry Domanov | March 13, 2024 10:41:51 UTC 2024 年 3 月 13 日 (水) 19 時 41 分 51 秒 (日本時間) |
composite cofactor 合成数の残り | 31600469314892543827098252159434445328277192542411192938453247650517068476740979685628955076026829991890128372406597945955704006865553483401586523216825326524054727<164> |
---|
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | December 26, 2022 12:39:30 UTC 2022 年 12 月 26 日 (月) 21 時 39 分 30 秒 (日本時間) | |
45 | 11e6 | 4480 | Ignacio Santos | December 31, 2022 14:49:56 UTC 2022 年 12 月 31 日 (土) 23 時 49 分 56 秒 (日本時間) | |
50 | 43e6 | 1792 / 6453 | Dmitry Domanov | March 13, 2024 10:41:59 UTC 2024 年 3 月 13 日 (水) 19 時 41 分 59 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 18, 2023 23:19:13 UTC 2023 年 1 月 19 日 (木) 8 時 19 分 13 秒 (日本時間) | |
45 | 11e6 | 3584 | 1792 | Dmitry Domanov | January 18, 2023 23:19:13 UTC 2023 年 1 月 19 日 (木) 8 時 19 分 13 秒 (日本時間) |
1792 | Dmitry Domanov | February 12, 2024 06:37:38 UTC 2024 年 2 月 12 日 (月) 15 時 37 分 38 秒 (日本時間) | |||
50 | 43e6 | 1792 / 6675 | Dmitry Domanov | April 9, 2024 16:19:45 UTC 2024 年 4 月 10 日 (水) 1 時 19 分 45 秒 (日本時間) |
composite cofactor 合成数の残り | 9247185373391162247069717763150443850171231282032891704060114618764427709194269892826345788063614590667748358745874786936620349643148354250163394114839550098487<160> |
---|
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | December 26, 2022 11:42:36 UTC 2022 年 12 月 26 日 (月) 20 時 42 分 36 秒 (日本時間) | |
45 | 11e6 | 4480 | Ignacio Santos | December 30, 2022 16:19:56 UTC 2022 年 12 月 31 日 (土) 1 時 19 分 56 秒 (日本時間) | |
50 | 43e6 | 1792 / 6453 | Dmitry Domanov | March 13, 2024 10:42:07 UTC 2024 年 3 月 13 日 (水) 19 時 42 分 7 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 16, 2023 15:22:23 UTC 2023 年 1 月 17 日 (火) 0 時 22 分 23 秒 (日本時間) |
composite number 合成数 | 2853193351651410493777956285459846331598668804550846537092937346170674768719525716943865590688792856173977234375190169554857981585722816228016224806369405121191633464437401463179454624372783<190> |
prime factors 素因数 | 120662933557992915804076683707640013<36> |
composite cofactor 合成数の残り | 23645980314908481387704817046701834505674687153860928077792288398785392670164189011248189158447436217267405333918707802754673733778358371144484149813933291<155> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:3925251275 Step 1 took 27197ms Step 2 took 12025ms ********** Factor found in step 2: 120662933557992915804076683707640013 Found prime factor of 36 digits: 120662933557992915804076683707640013 Composite cofactor 23645980314908481387704817046701834505674687153860928077792288398785392670164189011248189158447436217267405333918707802754673733778358371144484149813933291 has 155 digits |
name 名前 | yoyo |
---|---|
date 日付 | May 14, 2024 14:32:00 UTC 2024 年 5 月 14 日 (火) 23 時 32 分 0 秒 (日本時間) |
composite number 合成数 | 23645980314908481387704817046701834505674687153860928077792288398785392670164189011248189158447436217267405333918707802754673733778358371144484149813933291<155> |
prime factors 素因数 | 1465610416621546629825149263963227841013874372737<49> |
composite cofactor 合成数の残り | 16133878448691731740470834506152771351757179728726802992056463153488258332805795542040519464059204486868843<107> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.5-dev [configured with GMP 6.1.2, --enable-asm-redc] [ECM] Input number is 23645980314908481387704817046701834505674687153860928077792288398785392670164189011248189158447436217267405333918707802754673733778358371144484149813933291 (155 digits) [Mon May 13 23:14:24 2024] Using MODMULN [mulredc:0, sqrredc:0] Using B1=110000000, B2=776278396540, polynomial Dickson(30), sigma=0:15444988876818985996 dF=131072, k=4, d=1345890, d2=11, i0=71 Expected number of curves to find a factor of n digits: 35 40 45 50 55 60 65 70 75 80 34 135 614 3135 17884 111314 752662 5482978 4.3e+07 3.6e+08 Writing checkpoint to checkpnt at p = 110000000 Step 1 took 227328ms Using 20 small primes for NTT Estimated memory usage: 472.20MB Initializing tables of differences for F took 172ms Computing roots of F took 9250ms Building F from its roots took 4250ms Computing 1/F took 1437ms Initializing table of differences for G took 141ms Computing roots of G took 7547ms Building G from its roots took 3766ms Computing roots of G took 7906ms Building G from its roots took 3641ms Computing G * H took 625ms Reducing G * H mod F took 907ms Computing roots of G took 7750ms Building G from its roots took 3937ms Computing G * H took 875ms Reducing G * H mod F took 953ms Computing roots of G took 7954ms Building G from its roots took 3890ms Computing G * H took 953ms Reducing G * H mod F took 953ms Computing polyeval(F,G) took 7531ms Computing product of all F(g_i) took 63ms Step 2 took 75250ms ********** Factor found in step 2: 1465610416621546629825149263963227841013874372737 Found prime factor of 49 digits: 1465610416621546629825149263963227841013874372737 Composite cofactor 16133878448691731740470834506152771351757179728726802992056463153488258332805795542040519464059204486868843 has 107 digits Peak memory usage: 617MB |
software ソフトウェア | GMP-ECM 7.0.5-dev [configured with GMP 6.1.2, --enable-asm-redc] |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | May 15, 2024 18:45:15 UTC 2024 年 5 月 16 日 (木) 3 時 45 分 15 秒 (日本時間) |
composite number 合成数 | 16133878448691731740470834506152771351757179728726802992056463153488258332805795542040519464059204486868843<107> |
prime factors 素因数 | 55075968241264002816718412123029922002891167755912179<53> 292938625754452219728994202714213565251965333412994217<54> |
factorization results 素因数分解の結果 | N=16133878448691731740470834506152771351757179728726802992056463153488258332805795542040519464059204486868843 ( 107 digits) Divisors found: r1=55075968241264002816718412123029922002891167755912179 (pp53) r2=292938625754452219728994202714213565251965333412994217 (pp54) Version: Msieve v. 1.54 (SVN 1043M) Total time: 0.10 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 16133878448691731740470834506152771351757179728726802992056463153488258332805795542040519464059204486868843 skew: 1812187.86 c0: -13166650774742717474391232593 c1: -123107117315363599599867 c2: -33068145954829048 c3: 17188562228 c4: 16800 Y0: -31304540269417612059175436 Y1: 12543244238369 rlim: 2780000 alim: 2780000 lpbr: 26 lpba: 26 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 type: gnfs qintsize: 50000 Factor base limits: 2780000/2780000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 52/52 Sieved algebraic special-q in [1390000, 2190001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 328052 x 328280 Total sieving time: 0.00 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.07 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: gnfs,106,4,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2780000,2780000,26,26,52,52,2.5,2.5,150000 total time: 0.10 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 15, 2023 16:53:48 UTC 2023 年 1 月 16 日 (月) 1 時 53 分 48 秒 (日本時間) | |
45 | 11e6 | 5480 | 1000 | Dmitry Domanov | January 15, 2023 16:53:48 UTC 2023 年 1 月 16 日 (月) 1 時 53 分 48 秒 (日本時間) |
4480 | Ignacio Santos | January 18, 2023 13:17:18 UTC 2023 年 1 月 18 日 (水) 22 時 17 分 18 秒 (日本時間) | |||
50 | 43e6 | 1792 | Dmitry Domanov | March 13, 2024 10:42:15 UTC 2024 年 3 月 13 日 (水) 19 時 42 分 15 秒 (日本時間) | |
55 | 11e7 | 3600 / 16772 | yoyo@Home | May 14, 2024 14:30:00 UTC 2024 年 5 月 14 日 (火) 23 時 30 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 15, 2023 16:53:54 UTC 2023 年 1 月 16 日 (月) 1 時 53 分 54 秒 (日本時間) | |
45 | 11e6 | 3000 | 1000 | Dmitry Domanov | January 15, 2023 16:53:54 UTC 2023 年 1 月 16 日 (月) 1 時 53 分 54 秒 (日本時間) |
1000 | Dmitry Domanov | February 10, 2023 12:07:14 UTC 2023 年 2 月 10 日 (金) 21 時 7 分 14 秒 (日本時間) | |||
1000 | Dmitry Domanov | March 4, 2023 08:16:10 UTC 2023 年 3 月 4 日 (土) 17 時 16 分 10 秒 (日本時間) | |||
50 | 43e6 | 1792 / 6806 | Dmitry Domanov | March 13, 2024 10:42:24 UTC 2024 年 3 月 13 日 (水) 19 時 42 分 24 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 18, 2023 23:19:21 UTC 2023 年 1 月 19 日 (木) 8 時 19 分 21 秒 (日本時間) | |
45 | 11e6 | 3584 | 1792 | Dmitry Domanov | January 18, 2023 23:19:21 UTC 2023 年 1 月 19 日 (木) 8 時 19 分 21 秒 (日本時間) |
1792 | Dmitry Domanov | February 7, 2024 06:36:52 UTC 2024 年 2 月 7 日 (水) 15 時 36 分 52 秒 (日本時間) | |||
50 | 43e6 | 1792 / 6675 | Dmitry Domanov | March 16, 2024 13:01:20 UTC 2024 年 3 月 16 日 (土) 22 時 1 分 20 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 18, 2023 23:19:28 UTC 2023 年 1 月 19 日 (木) 8 時 19 分 28 秒 (日本時間) | |
45 | 11e6 | 3584 | 1792 | Dmitry Domanov | January 18, 2023 23:19:28 UTC 2023 年 1 月 19 日 (木) 8 時 19 分 28 秒 (日本時間) |
1792 | Dmitry Domanov | February 7, 2024 06:36:44 UTC 2024 年 2 月 7 日 (水) 15 時 36 分 44 秒 (日本時間) | |||
50 | 43e6 | 1792 / 6675 | Dmitry Domanov | March 16, 2024 13:01:29 UTC 2024 年 3 月 16 日 (土) 22 時 1 分 29 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 15, 2023 16:54:01 UTC 2023 年 1 月 16 日 (月) 1 時 54 分 1 秒 (日本時間) | |
45 | 11e6 | 3000 | 1000 | Dmitry Domanov | January 15, 2023 16:54:01 UTC 2023 年 1 月 16 日 (月) 1 時 54 分 1 秒 (日本時間) |
1000 | Dmitry Domanov | February 5, 2023 21:33:55 UTC 2023 年 2 月 6 日 (月) 6 時 33 分 55 秒 (日本時間) | |||
1000 | Dmitry Domanov | March 4, 2023 08:16:29 UTC 2023 年 3 月 4 日 (土) 17 時 16 分 29 秒 (日本時間) | |||
50 | 43e6 | 1792 / 6806 | Dmitry Domanov | March 13, 2024 10:43:01 UTC 2024 年 3 月 13 日 (水) 19 時 43 分 1 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | March 14, 2024 19:23:51 UTC 2024 年 3 月 15 日 (金) 4 時 23 分 51 秒 (日本時間) |
composite number 合成数 | 4573973031289047266461313292306818351546449543804433720962387936304655594801896433941895566861279309972714335160957113404368250900982868449032168236364891023116756277878086047266901114089552709<193> |
prime factors 素因数 | 114953027206840353338202117517451268225786824329<48> 39789931091235064738639186464047327250234166421126835376305389762580157432518560050204243859845335561782176391622755836930232754640126252962144221<146> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @56bb121de844 with GMP-ECM 7.0.5-dev on Thu Mar 14 12:40:50 2024 Input number is 4573973031289047266461313292306818351546449543804433720962387936304655594801896433941895566861279309972714335160957113404368250900982868449032168236364891023116756277878086047266901114089552709 (193 digits) Using B1=43000000-43000000, B2=240490660426, polynomial Dickson(12), sigma=3:2623744054 Step 1 took 0ms Step 2 took 28356ms ********** Factor found in step 2: 114953027206840353338202117517451268225786824329 Found prime factor of 48 digits: 114953027206840353338202117517451268225786824329 Prime cofactor 39789931091235064738639186464047327250234166421126835376305389762580157432518560050204243859845335561782176391622755836930232754640126252962144221 has 146 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 15, 2023 16:54:07 UTC 2023 年 1 月 16 日 (月) 1 時 54 分 7 秒 (日本時間) | |
45 | 11e6 | 3000 | 1000 | Dmitry Domanov | January 15, 2023 16:54:07 UTC 2023 年 1 月 16 日 (月) 1 時 54 分 7 秒 (日本時間) |
1000 | Dmitry Domanov | February 10, 2023 12:07:21 UTC 2023 年 2 月 10 日 (金) 21 時 7 分 21 秒 (日本時間) | |||
1000 | Dmitry Domanov | March 4, 2023 08:16:38 UTC 2023 年 3 月 4 日 (土) 17 時 16 分 38 秒 (日本時間) | |||
50 | 43e6 | 1792 / 6806 | Dmitry Domanov | March 13, 2024 10:43:10 UTC 2024 年 3 月 13 日 (水) 19 時 43 分 10 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 3, 2023 20:12:39 UTC 2023 年 1 月 4 日 (水) 5 時 12 分 39 秒 (日本時間) |
composite number 合成数 | 54748280903979615040087741244924909357846163630462003493090316964047328913872104415921340069921804455340102320787127284203276017133062021852513831065704536877542045179781354865457224643146205209156432488019876175888077114378608511692732848188566879<248> |
prime factors 素因数 | 9237078792491244274451964000157916040571<40> 5927012439093201589611127781829843987358321115844893802424468816519782551975228811570150959613525855482390112086505623141424302468183971065858353805700529176272596553185263038995595358673381281035437732515949<208> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @6c763ad417cc with GMP-ECM 7.0.5-dev on Sun Jan 1 22:05:10 2023 Input number is 54748280903979615040087741244924909357846163630462003493090316964047328913872104415921340069921804455340102320787127284203276017133062021852513831065704536877542045179781354865457224643146205209156432488019876175888077114378608511692732848188566879 (248 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:758832408 Step 1 took 0ms Step 2 took 3581ms ********** Factor found in step 2: 9237078792491244274451964000157916040571 Found prime factor of 40 digits: 9237078792491244274451964000157916040571 Prime cofactor 5927012439093201589611127781829843987358321115844893802424468816519782551975228811570150959613525855482390112086505623141424302468183971065858353805700529176272596553185263038995595358673381281035437732515949 has 208 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 18, 2023 23:19:34 UTC 2023 年 1 月 19 日 (木) 8 時 19 分 34 秒 (日本時間) | |
45 | 11e6 | 3584 | 1792 | Dmitry Domanov | January 18, 2023 23:19:34 UTC 2023 年 1 月 19 日 (木) 8 時 19 分 34 秒 (日本時間) |
1792 | Dmitry Domanov | February 12, 2024 06:37:49 UTC 2024 年 2 月 12 日 (月) 15 時 37 分 49 秒 (日本時間) | |||
50 | 43e6 | 1792 / 6675 | Dmitry Domanov | April 11, 2024 09:55:17 UTC 2024 年 4 月 11 日 (木) 18 時 55 分 17 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 18, 2023 23:19:39 UTC 2023 年 1 月 19 日 (木) 8 時 19 分 39 秒 (日本時間) | |
45 | 11e6 | 3584 | 1792 | Dmitry Domanov | January 18, 2023 23:19:39 UTC 2023 年 1 月 19 日 (木) 8 時 19 分 39 秒 (日本時間) |
1792 | Dmitry Domanov | February 7, 2024 06:36:35 UTC 2024 年 2 月 7 日 (水) 15 時 36 分 35 秒 (日本時間) | |||
50 | 43e6 | 1792 / 6675 | Dmitry Domanov | March 16, 2024 13:01:37 UTC 2024 年 3 月 16 日 (土) 22 時 1 分 37 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 18, 2023 23:19:44 UTC 2023 年 1 月 19 日 (木) 8 時 19 分 44 秒 (日本時間) | |
45 | 11e6 | 3584 | 1792 | Dmitry Domanov | January 18, 2023 23:19:44 UTC 2023 年 1 月 19 日 (木) 8 時 19 分 44 秒 (日本時間) |
1792 | Dmitry Domanov | February 12, 2024 06:37:57 UTC 2024 年 2 月 12 日 (月) 15 時 37 分 57 秒 (日本時間) | |||
50 | 43e6 | 1792 / 6675 | Dmitry Domanov | April 9, 2024 16:19:57 UTC 2024 年 4 月 10 日 (水) 1 時 19 分 57 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 29, 2023 23:11:42 UTC 2023 年 1 月 30 日 (月) 8 時 11 分 42 秒 (日本時間) | |
45 | 11e6 | 3584 | 1792 | Dmitry Domanov | January 29, 2023 23:11:42 UTC 2023 年 1 月 30 日 (月) 8 時 11 分 42 秒 (日本時間) |
1792 | Dmitry Domanov | February 7, 2024 06:36:23 UTC 2024 年 2 月 7 日 (水) 15 時 36 分 23 秒 (日本時間) | |||
50 | 43e6 | 1792 / 6675 | Dmitry Domanov | March 16, 2024 13:01:47 UTC 2024 年 3 月 16 日 (土) 22 時 1 分 47 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 20, 2023 22:47:42 UTC 2023 年 1 月 21 日 (土) 7 時 47 分 42 秒 (日本時間) | |
45 | 11e6 | 3584 | 1792 | Dmitry Domanov | January 20, 2023 22:47:42 UTC 2023 年 1 月 21 日 (土) 7 時 47 分 42 秒 (日本時間) |
1792 | Dmitry Domanov | February 7, 2024 06:36:15 UTC 2024 年 2 月 7 日 (水) 15 時 36 分 15 秒 (日本時間) | |||
50 | 43e6 | 1792 / 6675 | Dmitry Domanov | March 16, 2024 13:01:55 UTC 2024 年 3 月 16 日 (土) 22 時 1 分 55 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 12, 2023 12:50:11 UTC 2023 年 1 月 12 日 (木) 21 時 50 分 11 秒 (日本時間) | |
45 | 11e6 | 3584 | 1792 | Dmitry Domanov | January 12, 2023 12:50:11 UTC 2023 年 1 月 12 日 (木) 21 時 50 分 11 秒 (日本時間) |
1792 | Dmitry Domanov | February 11, 2024 17:14:19 UTC 2024 年 2 月 12 日 (月) 2 時 14 分 19 秒 (日本時間) | |||
50 | 43e6 | 1792 / 6675 | Dmitry Domanov | April 11, 2024 21:14:15 UTC 2024 年 4 月 12 日 (金) 6 時 14 分 15 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 12, 2023 12:50:18 UTC 2023 年 1 月 12 日 (木) 21 時 50 分 18 秒 (日本時間) | |
45 | 11e6 | 3584 | 1792 | Dmitry Domanov | January 12, 2023 12:50:18 UTC 2023 年 1 月 12 日 (木) 21 時 50 分 18 秒 (日本時間) |
1792 | Dmitry Domanov | February 11, 2024 17:14:34 UTC 2024 年 2 月 12 日 (月) 2 時 14 分 34 秒 (日本時間) | |||
50 | 43e6 | 1792 / 6675 | Dmitry Domanov | April 11, 2024 21:14:25 UTC 2024 年 4 月 12 日 (金) 6 時 14 分 25 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 23, 2023 20:46:30 UTC 2023 年 1 月 24 日 (火) 5 時 46 分 30 秒 (日本時間) |
composite number 合成数 | 212361168209896238036110514466393533502867800273004180312052745371802296257109600680418609544871210267365336688784295183264652832140947296018016351205362051740341230665512149553520799913611151167053910328722915116014652064911318039<231> |
prime factors 素因数 | 6301094225822581541404161267036748425147013020043<49> |
composite cofactor 合成数の残り | 33702268304386985139151963675066662081796959418662050392698092475337386961395310567000879098916987482255034805411933919974924002233616355918634003244209010937505187351799997515694373<182> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @9e6b56148bdb with GMP-ECM 7.0.5-dev on Fri Jan 20 14:38:24 2023 Input number is 212361168209896238036110514466393533502867800273004180312052745371802296257109600680418609544871210267365336688784295183264652832140947296018016351205362051740341230665512149553520799913611151167053910328722915116014652064911318039 (231 digits) Using B1=11000000-11000000, B2=35133391030, polynomial Dickson(12), sigma=3:3668157600 Step 1 took 0ms Step 2 took 13070ms ********** Factor found in step 2: 6301094225822581541404161267036748425147013020043 Found prime factor of 49 digits: 6301094225822581541404161267036748425147013020043 Composite cofactor 33702268304386985139151963675066662081796959418662050392698092475337386961395310567000879098916987482255034805411933919974924002233616355918634003244209010937505187351799997515694373 has 182 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 18, 2023 23:19:50 UTC 2023 年 1 月 19 日 (木) 8 時 19 分 50 秒 (日本時間) | |
45 | 11e6 | 3032 | 1792 | Dmitry Domanov | January 18, 2023 23:19:50 UTC 2023 年 1 月 19 日 (木) 8 時 19 分 50 秒 (日本時間) |
240 | Dmitry Domanov | March 4, 2023 08:17:00 UTC 2023 年 3 月 4 日 (土) 17 時 17 分 0 秒 (日本時間) | |||
1000 | Dmitry Domanov | March 4, 2023 08:17:15 UTC 2023 年 3 月 4 日 (土) 17 時 17 分 15 秒 (日本時間) | |||
50 | 43e6 | 1792 / 6799 | Dmitry Domanov | March 13, 2024 10:43:19 UTC 2024 年 3 月 13 日 (水) 19 時 43 分 19 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 18, 2023 23:19:55 UTC 2023 年 1 月 19 日 (木) 8 時 19 分 55 秒 (日本時間) | |
45 | 11e6 | 3584 | 1792 | Dmitry Domanov | January 18, 2023 23:19:55 UTC 2023 年 1 月 19 日 (木) 8 時 19 分 55 秒 (日本時間) |
1792 | Dmitry Domanov | February 12, 2024 06:38:05 UTC 2024 年 2 月 12 日 (月) 15 時 38 分 5 秒 (日本時間) | |||
50 | 43e6 | 1792 / 6675 | Dmitry Domanov | April 9, 2024 16:20:05 UTC 2024 年 4 月 10 日 (水) 1 時 20 分 5 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 24, 2023 06:37:26 UTC 2023 年 1 月 24 日 (火) 15 時 37 分 26 秒 (日本時間) |
composite number 合成数 | 24185181267833764034395457427051282947281386120951294742598894952819893419769077875924395903357884891654527493852056909258636383448704313300325935357545292008963659031084084350519682614059933358029337294430403349109<215> |
prime factors 素因数 | 11263922383602247253520333589291967723<38> 2147136711723260890551135051052225532376328019398632851629542350533889810913681676885971882169367726618842222343420159439190692240617159418278939674802221254854709959684421514783<178> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @e742cbc687f4 with GMP-ECM 7.0.5-dev on Sat Jan 21 15:19:02 2023 Input number is 24185181267833764034395457427051282947281386120951294742598894952819893419769077875924395903357884891654527493852056909258636383448704313300325935357545292008963659031084084350519682614059933358029337294430403349109 (215 digits) Using B1=11000000-11000000, B2=35133391030, polynomial Dickson(12), sigma=3:785662713 Step 1 took 1ms Step 2 took 13317ms ********** Factor found in step 2: 11263922383602247253520333589291967723 Found prime factor of 38 digits: 11263922383602247253520333589291967723 Prime cofactor 2147136711723260890551135051052225532376328019398632851629542350533889810913681676885971882169367726618842222343420159439190692240617159418278939674802221254854709959684421514783 has 178 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 20, 2023 22:44:44 UTC 2023 年 1 月 21 日 (土) 7 時 44 分 44 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | January 20, 2023 22:44:44 UTC 2023 年 1 月 21 日 (土) 7 時 44 分 44 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 18, 2023 23:20:01 UTC 2023 年 1 月 19 日 (木) 8 時 20 分 1 秒 (日本時間) | |
45 | 11e6 | 3584 | 1792 | Dmitry Domanov | January 18, 2023 23:20:01 UTC 2023 年 1 月 19 日 (木) 8 時 20 分 1 秒 (日本時間) |
1792 | Dmitry Domanov | February 12, 2024 06:38:13 UTC 2024 年 2 月 12 日 (月) 15 時 38 分 13 秒 (日本時間) | |||
50 | 43e6 | 1792 / 6675 | Dmitry Domanov | April 11, 2024 09:55:21 UTC 2024 年 4 月 11 日 (木) 18 時 55 分 21 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 16, 2023 01:34:57 UTC 2023 年 1 月 16 日 (月) 10 時 34 分 57 秒 (日本時間) |
composite number 合成数 | 37770384320831623838242365496886492074586426825411690996732155785903431833112677615697177278408020338159420374925983965667438334601396948218551015076692356779536307946204093291797325272090202835657<197> |
prime factors 素因数 | 11401679181425175964544866913036441662147<41> |
composite cofactor 合成数の残り | 3312703657051192191898976467431666595706484083420703666463218152134186414796464592766830219188869231013672276977883320208147995249419459197840705346802195331<157> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:2740064034 Step 1 took 32368ms Step 2 took 13034ms ********** Factor found in step 2: 11401679181425175964544866913036441662147 Found prime factor of 41 digits: 11401679181425175964544866913036441662147 Composite cofactor 3312703657051192191898976467431666595706484083420703666463218152134186414796464592766830219188869231013672276977883320208147995249419459197840705346802195331 has 157 digits |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | March 17, 2024 08:02:28 UTC 2024 年 3 月 17 日 (日) 17 時 2 分 28 秒 (日本時間) |
composite number 合成数 | 3312703657051192191898976467431666595706484083420703666463218152134186414796464592766830219188869231013672276977883320208147995249419459197840705346802195331<157> |
prime factors 素因数 | 94334164820330528223824892159108202501111112409842567<53> 35116690367276684971082058124496224858852458497762698406968829777844022532072300434926697196643881049893<104> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @510793d706ca with GMP-ECM 7.0.5-dev on Fri Mar 15 08:30:36 2024 Input number is 3312703657051192191898976467431666595706484083420703666463218152134186414796464592766830219188869231013672276977883320208147995249419459197840705346802195331 (157 digits) Using B1=43000000-43000000, B2=240490660426, polynomial Dickson(12), sigma=3:2435191458 Step 1 took 0ms Step 2 took 20882ms ********** Factor found in step 2: 94334164820330528223824892159108202501111112409842567 Found prime factor of 53 digits: 94334164820330528223824892159108202501111112409842567 Prime cofactor 35116690367276684971082058124496224858852458497762698406968829777844022532072300434926697196643881049893 has 104 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 15, 2023 16:54:48 UTC 2023 年 1 月 16 日 (月) 1 時 54 分 48 秒 (日本時間) | |
45 | 11e6 | 5480 | 1000 | Dmitry Domanov | January 15, 2023 16:54:48 UTC 2023 年 1 月 16 日 (月) 1 時 54 分 48 秒 (日本時間) |
4480 | Ignacio Santos | January 18, 2023 14:13:02 UTC 2023 年 1 月 18 日 (水) 23 時 13 分 2 秒 (日本時間) | |||
50 | 43e6 | 1792 / 6250 | Dmitry Domanov | March 13, 2024 10:43:28 UTC 2024 年 3 月 13 日 (水) 19 時 43 分 28 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 15, 2023 16:54:55 UTC 2023 年 1 月 16 日 (月) 1 時 54 分 55 秒 (日本時間) | |
45 | 11e6 | 2000 | 1000 | Dmitry Domanov | January 15, 2023 16:54:55 UTC 2023 年 1 月 16 日 (月) 1 時 54 分 55 秒 (日本時間) |
1000 | Dmitry Domanov | March 4, 2023 08:17:33 UTC 2023 年 3 月 4 日 (土) 17 時 17 分 33 秒 (日本時間) | |||
50 | 43e6 | 1792 / 7031 | Dmitry Domanov | April 12, 2024 21:50:58 UTC 2024 年 4 月 13 日 (土) 6 時 50 分 58 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 12, 2023 15:22:33 UTC 2023 年 1 月 13 日 (金) 0 時 22 分 33 秒 (日本時間) | |
45 | 11e6 | 3584 | 1792 | Dmitry Domanov | January 12, 2023 15:22:33 UTC 2023 年 1 月 13 日 (金) 0 時 22 分 33 秒 (日本時間) |
1792 | Dmitry Domanov | February 10, 2024 22:36:47 UTC 2024 年 2 月 11 日 (日) 7 時 36 分 47 秒 (日本時間) | |||
50 | 43e6 | 1792 / 6675 | Dmitry Domanov | March 8, 2024 23:01:48 UTC 2024 年 3 月 9 日 (土) 8 時 1 分 48 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 18, 2023 23:21:09 UTC 2023 年 1 月 19 日 (木) 8 時 21 分 9 秒 (日本時間) | |
45 | 11e6 | 3584 | 1792 | Dmitry Domanov | January 18, 2023 23:21:09 UTC 2023 年 1 月 19 日 (木) 8 時 21 分 9 秒 (日本時間) |
1792 | Dmitry Domanov | February 12, 2024 06:38:22 UTC 2024 年 2 月 12 日 (月) 15 時 38 分 22 秒 (日本時間) | |||
50 | 43e6 | 1792 / 6675 | Dmitry Domanov | April 9, 2024 16:20:15 UTC 2024 年 4 月 10 日 (水) 1 時 20 分 15 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 18, 2023 23:21:13 UTC 2023 年 1 月 19 日 (木) 8 時 21 分 13 秒 (日本時間) | |
45 | 11e6 | 3584 | 1792 | Dmitry Domanov | January 18, 2023 23:21:13 UTC 2023 年 1 月 19 日 (木) 8 時 21 分 13 秒 (日本時間) |
1792 | Dmitry Domanov | February 12, 2024 06:38:29 UTC 2024 年 2 月 12 日 (月) 15 時 38 分 29 秒 (日本時間) | |||
50 | 43e6 | 1792 / 6675 | Dmitry Domanov | April 9, 2024 16:20:25 UTC 2024 年 4 月 10 日 (水) 1 時 20 分 25 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 15, 2023 02:11:25 UTC 2023 年 1 月 15 日 (日) 11 時 11 分 25 秒 (日本時間) |
composite number 合成数 | 343889322283651218969877179693005762266013936468096492517345212118471284770508051720954071461143333069527825828066644808496044801712474608719902618081229484410978831492347755957293656985004541223379197805138177556181151473353759416914455411216256449102495976966010544683<270> |
prime factors 素因数 | 948479005642150526272319468582825722614119<42> |
composite cofactor 合成数の残り | 362569250598042688238717089180827168339309460316537414871055270120989513609399122478079671404900931590791729963288424096864089742730370161656815665342296370006866981071178075672056864399311654657190264382854130087965131445312157<228> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @d76a38ab5d79 with GMP-ECM 7.0.5-dev on Thu Jan 12 23:05:29 2023 Input number is 343889322283651218969877179693005762266013936468096492517345212118471284770508051720954071461143333069527825828066644808496044801712474608719902618081229484410978831492347755957293656985004541223379197805138177556181151473353759416914455411216256449102495976966010544683 (270 digits) Using B1=11000000-11000000, B2=35133391030, polynomial Dickson(12), sigma=3:3094840562 Step 1 took 0ms Step 2 took 16141ms ********** Factor found in step 2: 948479005642150526272319468582825722614119 Found prime factor of 42 digits: 948479005642150526272319468582825722614119 Composite cofactor 362569250598042688238717089180827168339309460316537414871055270120989513609399122478079671404900931590791729963288424096864089742730370161656815665342296370006866981071178075672056864399311654657190264382854130087965131445312157 has 228 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 12, 2023 15:22:40 UTC 2023 年 1 月 13 日 (金) 0 時 22 分 40 秒 (日本時間) | |
45 | 11e6 | 3584 | 1792 | Dmitry Domanov | January 12, 2023 15:22:40 UTC 2023 年 1 月 13 日 (金) 0 時 22 分 40 秒 (日本時間) |
1792 | Dmitry Domanov | February 7, 2024 06:36:10 UTC 2024 年 2 月 7 日 (水) 15 時 36 分 10 秒 (日本時間) | |||
50 | 43e6 | 1792 / 6675 | Dmitry Domanov | March 16, 2024 13:02:40 UTC 2024 年 3 月 16 日 (土) 22 時 2 分 40 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 12, 2023 12:50:24 UTC 2023 年 1 月 12 日 (木) 21 時 50 分 24 秒 (日本時間) | |
45 | 11e6 | 3584 | 1792 | Dmitry Domanov | January 12, 2023 12:50:24 UTC 2023 年 1 月 12 日 (木) 21 時 50 分 24 秒 (日本時間) |
1792 | Dmitry Domanov | February 11, 2024 17:14:41 UTC 2024 年 2 月 12 日 (月) 2 時 14 分 41 秒 (日本時間) | |||
50 | 43e6 | 1792 / 6675 | Dmitry Domanov | April 11, 2024 21:14:33 UTC 2024 年 4 月 12 日 (金) 6 時 14 分 33 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 18, 2023 23:21:19 UTC 2023 年 1 月 19 日 (木) 8 時 21 分 19 秒 (日本時間) | |
45 | 11e6 | 3584 | 1792 | Dmitry Domanov | January 18, 2023 23:21:19 UTC 2023 年 1 月 19 日 (木) 8 時 21 分 19 秒 (日本時間) |
1792 | Dmitry Domanov | February 7, 2024 06:36:01 UTC 2024 年 2 月 7 日 (水) 15 時 36 分 1 秒 (日本時間) | |||
50 | 43e6 | 1792 / 6675 | Dmitry Domanov | March 16, 2024 13:02:49 UTC 2024 年 3 月 16 日 (土) 22 時 2 分 49 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 20, 2023 22:44:23 UTC 2023 年 1 月 21 日 (土) 7 時 44 分 23 秒 (日本時間) | |
45 | 11e6 | 3584 | 1792 | Dmitry Domanov | January 20, 2023 22:44:23 UTC 2023 年 1 月 21 日 (土) 7 時 44 分 23 秒 (日本時間) |
1792 | Dmitry Domanov | February 7, 2024 06:35:51 UTC 2024 年 2 月 7 日 (水) 15 時 35 分 51 秒 (日本時間) | |||
50 | 43e6 | 1792 / 6675 | Dmitry Domanov | March 16, 2024 13:02:58 UTC 2024 年 3 月 16 日 (土) 22 時 2 分 58 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 14, 2023 15:47:24 UTC 2023 年 1 月 15 日 (日) 0 時 47 分 24 秒 (日本時間) |
composite number 合成数 | 8665716999050332383665716999050332383665716999050332383665716999050332383665716999050332383665716999050332383665716999050332383665716999050332383665716999050332383665716999050332383665716999050332383665716999050332383665716999050332383665716999050332383665716999050332383665717<277> |
prime factors 素因数 | 41586507835309859434338523245036353158481<41> |
composite cofactor 合成数の残り | 208378088234004861041176802784826037853099029014647002838832796197839697503081637833644951259971279913636855393606580225283844800352581709455025507885389266188065025988923226520687559925550896317160059530749807304029833934681266779048357<237> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @d76a38ab5d79 with GMP-ECM 7.0.5-dev on Thu Jan 12 23:21:44 2023 Input number is 8665716999050332383665716999050332383665716999050332383665716999050332383665716999050332383665716999050332383665716999050332383665716999050332383665716999050332383665716999050332383665716999050332383665716999050332383665716999050332383665716999050332383665716999050332383665717 (277 digits) Using B1=11000000-11000000, B2=35133391030, polynomial Dickson(12), sigma=3:787013621 Step 1 took 0ms Step 2 took 20898ms ********** Factor found in step 2: 41586507835309859434338523245036353158481 Found prime factor of 41 digits: 41586507835309859434338523245036353158481 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 12, 2023 15:22:47 UTC 2023 年 1 月 13 日 (金) 0 時 22 分 47 秒 (日本時間) | |
45 | 11e6 | 3584 | 1792 | Dmitry Domanov | January 12, 2023 15:22:47 UTC 2023 年 1 月 13 日 (金) 0 時 22 分 47 秒 (日本時間) |
1792 | Dmitry Domanov | February 12, 2024 06:38:38 UTC 2024 年 2 月 12 日 (月) 15 時 38 分 38 秒 (日本時間) | |||
50 | 43e6 | 1792 / 6675 | Dmitry Domanov | April 9, 2024 16:20:34 UTC 2024 年 4 月 10 日 (水) 1 時 20 分 34 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 18, 2023 23:21:26 UTC 2023 年 1 月 19 日 (木) 8 時 21 分 26 秒 (日本時間) | |
45 | 11e6 | 3584 | 1792 | Dmitry Domanov | January 18, 2023 23:21:26 UTC 2023 年 1 月 19 日 (木) 8 時 21 分 26 秒 (日本時間) |
1792 | Dmitry Domanov | February 7, 2024 06:35:43 UTC 2024 年 2 月 7 日 (水) 15 時 35 分 43 秒 (日本時間) | |||
50 | 43e6 | 1792 / 6675 | Dmitry Domanov | March 16, 2024 13:03:07 UTC 2024 年 3 月 16 日 (土) 22 時 3 分 7 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 18, 2023 23:21:31 UTC 2023 年 1 月 19 日 (木) 8 時 21 分 31 秒 (日本時間) | |
45 | 11e6 | 3584 | 1792 | Dmitry Domanov | January 18, 2023 23:21:31 UTC 2023 年 1 月 19 日 (木) 8 時 21 分 31 秒 (日本時間) |
1792 | Dmitry Domanov | February 7, 2024 06:35:34 UTC 2024 年 2 月 7 日 (水) 15 時 35 分 34 秒 (日本時間) | |||
50 | 43e6 | 1792 / 6675 | Dmitry Domanov | March 16, 2024 13:03:16 UTC 2024 年 3 月 16 日 (土) 22 時 3 分 16 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 12, 2023 12:50:31 UTC 2023 年 1 月 12 日 (木) 21 時 50 分 31 秒 (日本時間) | |
45 | 11e6 | 3584 | 1792 | Dmitry Domanov | January 12, 2023 12:50:31 UTC 2023 年 1 月 12 日 (木) 21 時 50 分 31 秒 (日本時間) |
1792 | Dmitry Domanov | February 11, 2024 17:14:48 UTC 2024 年 2 月 12 日 (月) 2 時 14 分 48 秒 (日本時間) | |||
50 | 43e6 | 1792 / 6675 | Dmitry Domanov | April 11, 2024 21:14:42 UTC 2024 年 4 月 12 日 (金) 6 時 14 分 42 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 12, 2023 12:50:36 UTC 2023 年 1 月 12 日 (木) 21 時 50 分 36 秒 (日本時間) | |
45 | 11e6 | 3584 | 1792 | Dmitry Domanov | January 12, 2023 12:50:36 UTC 2023 年 1 月 12 日 (木) 21 時 50 分 36 秒 (日本時間) |
1792 | Dmitry Domanov | February 11, 2024 17:14:56 UTC 2024 年 2 月 12 日 (月) 2 時 14 分 56 秒 (日本時間) | |||
50 | 43e6 | 1792 / 6675 | Dmitry Domanov | April 11, 2024 21:14:51 UTC 2024 年 4 月 12 日 (金) 6 時 14 分 51 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 2, 2023 01:32:47 UTC 2023 年 1 月 2 日 (月) 10 時 32 分 47 秒 (日本時間) |
composite number 合成数 | 16133494243698464480516086194970837738206901458626307532180330228702524151514777149223680275513873152863802383713073944665876917167864811397883776110784022355567755025413875175640339948959093320010868934447271765245227578232093698286530632378793880824356509<257> |
prime factors 素因数 | 768270845260102266361440066449157521<36> 20999748126894470920201883239959358311056157825844604356380509971987887818924014660013703454308146043042799946638260083733067192930836483409305360198068084413893857573699904641848065657931476746059152849705006221942180429<221> |
factorization results 素因数分解の結果 | GPU: factor 768270845260102266361440066449157521 found in Step 1 with curve 1228 (-sigma 3:-135034102) Computing 1792 Step 1 took 302ms of CPU time / 267947ms of GPU time Throughput: 6.688 curves per second (on average 149.52ms per Step 1) ********** Factor found in step 1: 768270845260102266361440066449157521 Found prime factor of 36 digits: 768270845260102266361440066449157521 Prime cofactor 20999748126894470920201883239959358311056157825844604356380509971987887818924014660013703454308146043042799946638260083733067192930836483409305360198068084413893857573699904641848065657931476746059152849705006221942180429 has 221 digits Peak memory usage: 9428MB |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 / 2078 | Dmitry Domanov | January 2, 2023 01:32:37 UTC 2023 年 1 月 2 日 (月) 10 時 32 分 37 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 12, 2023 12:50:46 UTC 2023 年 1 月 12 日 (木) 21 時 50 分 46 秒 (日本時間) | |
45 | 11e6 | 3584 | 1792 | Dmitry Domanov | January 12, 2023 12:50:46 UTC 2023 年 1 月 12 日 (木) 21 時 50 分 46 秒 (日本時間) |
1792 | Dmitry Domanov | February 10, 2024 22:37:37 UTC 2024 年 2 月 11 日 (日) 7 時 37 分 37 秒 (日本時間) | |||
50 | 43e6 | 1792 / 6675 | Dmitry Domanov | April 12, 2024 21:51:20 UTC 2024 年 4 月 13 日 (土) 6 時 51 分 20 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 18, 2023 23:21:36 UTC 2023 年 1 月 19 日 (木) 8 時 21 分 36 秒 (日本時間) | |
45 | 11e6 | 3584 | 1792 | Dmitry Domanov | January 18, 2023 23:21:36 UTC 2023 年 1 月 19 日 (木) 8 時 21 分 36 秒 (日本時間) |
1792 | Dmitry Domanov | February 12, 2024 06:38:46 UTC 2024 年 2 月 12 日 (月) 15 時 38 分 46 秒 (日本時間) | |||
50 | 43e6 | 1792 / 6675 | Dmitry Domanov | April 11, 2024 09:55:26 UTC 2024 年 4 月 11 日 (木) 18 時 55 分 26 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 20, 2023 19:43:19 UTC 2023 年 1 月 21 日 (土) 4 時 43 分 19 秒 (日本時間) | |
45 | 11e6 | 3584 | 1792 | Dmitry Domanov | January 20, 2023 19:43:19 UTC 2023 年 1 月 21 日 (土) 4 時 43 分 19 秒 (日本時間) |
1792 | Dmitry Domanov | February 7, 2024 06:35:28 UTC 2024 年 2 月 7 日 (水) 15 時 35 分 28 秒 (日本時間) | |||
50 | 43e6 | 1792 / 6675 | Dmitry Domanov | March 16, 2024 13:03:25 UTC 2024 年 3 月 16 日 (土) 22 時 3 分 25 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 12, 2023 12:50:53 UTC 2023 年 1 月 12 日 (木) 21 時 50 分 53 秒 (日本時間) | |
45 | 11e6 | 3584 | 1792 | Dmitry Domanov | January 12, 2023 12:50:53 UTC 2023 年 1 月 12 日 (木) 21 時 50 分 53 秒 (日本時間) |
1792 | Dmitry Domanov | February 10, 2024 22:37:30 UTC 2024 年 2 月 11 日 (日) 7 時 37 分 30 秒 (日本時間) | |||
50 | 43e6 | 1792 / 6675 | Dmitry Domanov | April 12, 2024 21:51:29 UTC 2024 年 4 月 13 日 (土) 6 時 51 分 29 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 3, 2023 16:31:56 UTC 2023 年 1 月 4 日 (水) 1 時 31 分 56 秒 (日本時間) |
composite number 合成数 | 1518266846254828328564463607484514913319428193022691586914627087395159571977739138485343064024645164027768268535368372575729924355449030860877649753068530701838623429090255127828939763481814129384246538276702754112474345538224864267404468125471593437161487680116111549649<271> |
prime factors 素因数 | 1299355881310683934734730034005487559221<40> |
composite cofactor 合成数の残り | 1168476526017895049505729540319222294516549542594721485683863349527907352159348414358135919469243210185602397755488749079691397249553228597152670255284796748855477652769874143697722025815637203554420102987417670824391233863050775469<232> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @6c763ad417cc with GMP-ECM 7.0.5-dev on Mon Jan 2 00:56:44 2023 Input number is 1518266846254828328564463607484514913319428193022691586914627087395159571977739138485343064024645164027768268535368372575729924355449030860877649753068530701838623429090255127828939763481814129384246538276702754112474345538224864267404468125471593437161487680116111549649 (271 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:1909377902 Step 1 took 0ms Step 2 took 4274ms ********** Factor found in step 2: 1299355881310683934734730034005487559221 Found prime factor of 40 digits: 1299355881310683934734730034005487559221 Composite cofactor 1168476526017895049505729540319222294516549542594721485683863349527907352159348414358135919469243210185602397755488749079691397249553228597152670255284796748855477652769874143697722025815637203554420102987417670824391233863050775469 has 232 digits |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 22, 2023 09:22:19 UTC 2023 年 1 月 22 日 (日) 18 時 22 分 19 秒 (日本時間) |
composite number 合成数 | 1168476526017895049505729540319222294516549542594721485683863349527907352159348414358135919469243210185602397755488749079691397249553228597152670255284796748855477652769874143697722025815637203554420102987417670824391233863050775469<232> |
prime factors 素因数 | 726757076975369708821092046702070785194361<42> |
composite cofactor 合成数の残り | 1607795180861369875544246067441724376280203647850743216469946339901182885899692653729983396609826018763675781101683400524234329341477793229803773391250730606299591744352512558505374854499029<190> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @9e6b56148bdb with GMP-ECM 7.0.5-dev on Fri Jan 20 16:48:48 2023 Input number is 1168476526017895049505729540319222294516549542594721485683863349527907352159348414358135919469243210185602397755488749079691397249553228597152670255284796748855477652769874143697722025815637203554420102987417670824391233863050775469 (232 digits) Using B1=11000000-11000000, B2=35133391030, polynomial Dickson(12), sigma=3:3514780086 Step 1 took 0ms Step 2 took 14341ms ********** Factor found in step 2: 726757076975369708821092046702070785194361 Found prime factor of 42 digits: 726757076975369708821092046702070785194361 Composite cofactor 1607795180861369875544246067441724376280203647850743216469946339901182885899692653729983396609826018763675781101683400524234329341477793229803773391250730606299591744352512558505374854499029 has 190 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 3, 2023 16:31:44 UTC 2023 年 1 月 4 日 (水) 1 時 31 分 44 秒 (日本時間) | |
45 | 11e6 | 3584 | 1792 | Dmitry Domanov | January 18, 2023 23:21:41 UTC 2023 年 1 月 19 日 (木) 8 時 21 分 41 秒 (日本時間) |
1792 | Dmitry Domanov | February 6, 2024 12:22:57 UTC 2024 年 2 月 6 日 (火) 21 時 22 分 57 秒 (日本時間) | |||
50 | 43e6 | 1792 / 6675 | Dmitry Domanov | March 13, 2024 10:43:37 UTC 2024 年 3 月 13 日 (水) 19 時 43 分 37 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 12, 2023 15:22:53 UTC 2023 年 1 月 13 日 (金) 0 時 22 分 53 秒 (日本時間) | |
45 | 11e6 | 3584 | 1792 | Dmitry Domanov | January 12, 2023 15:22:53 UTC 2023 年 1 月 13 日 (金) 0 時 22 分 53 秒 (日本時間) |
1792 | Dmitry Domanov | February 10, 2024 22:36:55 UTC 2024 年 2 月 11 日 (日) 7 時 36 分 55 秒 (日本時間) | |||
50 | 43e6 | 1792 / 6675 | Dmitry Domanov | March 8, 2024 23:01:45 UTC 2024 年 3 月 9 日 (土) 8 時 1 分 45 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 12, 2023 12:51:01 UTC 2023 年 1 月 12 日 (木) 21 時 51 分 1 秒 (日本時間) | |
45 | 11e6 | 3584 | 1792 | Dmitry Domanov | January 12, 2023 12:51:01 UTC 2023 年 1 月 12 日 (木) 21 時 51 分 1 秒 (日本時間) |
1792 | Dmitry Domanov | February 10, 2024 22:37:22 UTC 2024 年 2 月 11 日 (日) 7 時 37 分 22 秒 (日本時間) | |||
50 | 43e6 | 1792 / 6675 | Dmitry Domanov | April 12, 2024 21:51:39 UTC 2024 年 4 月 13 日 (土) 6 時 51 分 39 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 12, 2023 12:51:06 UTC 2023 年 1 月 12 日 (木) 21 時 51 分 6 秒 (日本時間) | |
45 | 11e6 | 3584 | 1792 | Dmitry Domanov | January 12, 2023 12:51:06 UTC 2023 年 1 月 12 日 (木) 21 時 51 分 6 秒 (日本時間) |
1792 | Dmitry Domanov | February 10, 2024 22:37:12 UTC 2024 年 2 月 11 日 (日) 7 時 37 分 12 秒 (日本時間) | |||
50 | 43e6 | 1792 / 6675 | Dmitry Domanov | March 8, 2024 23:01:53 UTC 2024 年 3 月 9 日 (土) 8 時 1 分 53 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 12, 2023 12:51:13 UTC 2023 年 1 月 12 日 (木) 21 時 51 分 13 秒 (日本時間) | |
45 | 11e6 | 3584 | 1792 | Dmitry Domanov | January 12, 2023 12:51:13 UTC 2023 年 1 月 12 日 (木) 21 時 51 分 13 秒 (日本時間) |
1792 | Dmitry Domanov | February 10, 2024 22:37:04 UTC 2024 年 2 月 11 日 (日) 7 時 37 分 4 秒 (日本時間) | |||
50 | 43e6 | 1792 / 6675 | Dmitry Domanov | April 12, 2024 21:51:56 UTC 2024 年 4 月 13 日 (土) 6 時 51 分 56 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | December 30, 2022 10:38:07 UTC 2022 年 12 月 30 日 (金) 19 時 38 分 7 秒 (日本時間) | |
45 | 11e6 | 3584 | Dmitry Domanov | December 30, 2022 10:38:07 UTC 2022 年 12 月 30 日 (金) 19 時 38 分 7 秒 (日本時間) | |
50 | 43e6 | 130 / 6675 | Dmitry Domanov | December 30, 2022 10:38:07 UTC 2022 年 12 月 30 日 (金) 19 時 38 分 7 秒 (日本時間) |