name 名前 | Dmitry Domanov |
---|---|
date 日付 | November 25, 2022 23:59:18 UTC 2022 年 11 月 26 日 (土) 8 時 59 分 18 秒 (日本時間) |
composite number 合成数 | 23263888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888889<107> |
prime factors 素因数 | 100483536096630330530171281313986790097490688402647<51> 231519408975785763305630554896223450260544266940847403887<57> |
factorization results 素因数分解の結果 | N=23263888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888889 ( 107 digits) SNFS difficulty: 108 digits. Divisors found: r1=100483536096630330530171281313986790097490688402647 (pp51) r2=231519408975785763305630554896223450260544266940847403887 (pp57) Version: Msieve v. 1.54 (SVN 1043M) Total time: 0.18 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 23263888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888889 m: 500000000000000000000000000 deg: 4 c4: 67 c0: 20 skew: 0.74 # Murphy_E = 1.531e-07 type: snfs lss: 1 rlim: 450000 alim: 450000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2 Factor base limits: 450000/450000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [225000, 385001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 38782 x 39007 Total sieving time: 0.17 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,108.000,4,0,0,0,0,0,0,0,0,450000,450000,25,25,44,44,2.2,2.2,20000 total time: 0.18 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | November 26, 2022 00:14:03 UTC 2022 年 11 月 26 日 (土) 9 時 14 分 3 秒 (日本時間) |
composite number 合成数 | 16988942958963728600697020931749012063046111346380078798348513273360721578484295477927588001040847114987<104> |
prime factors 素因数 | 2152934278511972772802621903945066201327669471<46> 7891064362032382717677807950070234860378793315565896385397<58> |
factorization results 素因数分解の結果 | N=16988942958963728600697020931749012063046111346380078798348513273360721578484295477927588001040847114987 ( 104 digits) SNFS difficulty: 112 digits. Divisors found: r1=2152934278511972772802621903945066201327669471 (pp46) r2=7891064362032382717677807950070234860378793315565896385397 (pp58) Version: Msieve v. 1.54 (SVN 1043M) Total time: 0.01 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 16988942958963728600697020931749012063046111346380078798348513273360721578484295477927588001040847114987 m: 5000000000000000000000000000 deg: 4 c4: 67 c0: 20 skew: 0.74 # Murphy_E = 1.003e-07 type: snfs lss: 1 rlim: 530000 alim: 530000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 530000/530000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [265000, 465001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 51522 x 51747 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,112.000,4,0,0,0,0,0,0,0,0,530000,530000,25,25,45,45,2.2,2.2,20000 total time: 0.01 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | November 26, 2022 12:27:34 UTC 2022 年 11 月 26 日 (土) 21 時 27 分 34 秒 (日本時間) |
composite number 合成数 | 27096829013765697203483302272907898140959127776056977580835596160042132618246351392264860865700162910965737<107> |
prime factors 素因数 | 125498681029426271450297807743149581060529837407<48> 215913257346602511966513571410706141857343464826947691403191<60> |
factorization results 素因数分解の結果 | N=27096829013765697203483302272907898140959127776056977580835596160042132618246351392264860865700162910965737 ( 107 digits) SNFS difficulty: 124 digits. Divisors found: r1=125498681029426271450297807743149581060529837407 (pp48) r2=215913257346602511966513571410706141857343464826947691403191 (pp60) Version: Msieve v. 1.54 (SVN 1043M) Total time: 0.01 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 27096829013765697203483302272907898140959127776056977580835596160042132618246351392264860865700162910965737 m: 5000000000000000000000000000000 deg: 4 c4: 67 c0: 20 skew: 0.74 # Murphy_E = 2.731e-08 type: snfs lss: 1 rlim: 840000 alim: 840000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 840000/840000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [420000, 795001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 73244 x 73471 Total sieving time: 0.00 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.01 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,124.000,4,0,0,0,0,0,0,0,0,840000,840000,25,25,46,46,2.2,2.2,75000 total time: 0.01 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | November 29, 2022 12:25:45 UTC 2022 年 11 月 29 日 (火) 21 時 25 分 45 秒 (日本時間) |
composite number 合成数 | 270881989847932497461786793723625703344304104733377264883948571067656186775680400444501610582293720880926054323983<114> |
prime factors 素因数 | 9867537370570941317416996012128288284323<40> 27451833185432274847050767292326788625313728268310635858106008106619488421<74> |
factorization results 素因数分解の結果 | 270881989847932497461786793723625703344304104733377264883948571067656186775680400444501610582293720880926054323983=9867537370570941317416996012128288284323*27451833185432274847050767292326788625313728268310635858106008106619488421 cado polynomial n: 270881989847932497461786793723625703344304104733377264883948571067656186775680400444501610582293720880926054323983 skew: 82354.028 c0: -199601412843890332522316755 c1: 31127194371955402133429 c2: 2086795776287081269 c3: -11826486263753 c4: -178575930 c5: 300 Y0: -21425906006181625147854 Y1: 5560450852397 # MurphyE (Bf=6.711e+07,Bg=6.711e+07,area=6.711e+12) = 1.181e-06 # f(x) = 300*x^5-178575930*x^4-11826486263753*x^3+2086795776287081269*x^2+31127194371955402133429*x-199601412843890332522316755 # g(x) = 5560450852397*x-21425906006181625147854 cado parameters (extracts) tasks.lim0 = 2500000 tasks.lim1 = 4500000 tasks.lpb0 = 26 tasks.lpb1 = 26 tasks.sieve.mfb0 = 52 tasks.sieve.mfb1 = 52 tasks.I = 12 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 9867537370570941317416996012128288284323 27451833185432274847050767292326788625313728268310635858106008106619488421 Info:Square Root: Total cpu/real time for sqrt: 215.22/63.5023 Info:Polynomial Selection (root optimized): Aggregate statistics: Info:Polynomial Selection (root optimized): Total time: 295.2 Info:Polynomial Selection (root optimized): Rootsieve time: 294.13 Info:Polynomial Selection (size optimized): Aggregate statistics: Info:Polynomial Selection (size optimized): potential collisions: 21492.9 Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 21597/32.050/40.407/45.200/1.078 Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 16746/31.970/35.778/40.800/0.836 Info:Polynomial Selection (size optimized): Total time: 1806.62 Info:Quadratic Characters: Total cpu/real time for characters: 14.91/5.90989 Info:Generate Factor Base: Total cpu/real time for makefb: 4.16/1.19738 Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 114.35/120.22 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 91.39999999999999s Info:Generate Free Relations: Total cpu/real time for freerel: 63.85/17.2147 Info:Square Root: Total cpu/real time for sqrt: 215.22/63.5023 Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 28.17/27.8966 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 27.2s Info:Filtering - Singleton removal: Total cpu/real time for purge: 88.63/100.288 Info:Filtering - Merging: Merged matrix has 412030 rows and total weight 64152058 (155.7 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 64.31/18.898 Info:Filtering - Merging: Total cpu/real time for replay: 13.67/11.2331 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 6944841 Info:Lattice Sieving: Average J: 1912.02 for 123218 special-q, max bucket fill -bkmult 1.0,1s:1.340290 Info:Lattice Sieving: Total time: 14219.3s Info:Linear Algebra: Total cpu/real time for bwc: 2209.81/574.42 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 1358.0, WCT time 350.54, iteration CPU time 0.03, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (12928 iterations) Info:Linear Algebra: Lingen CPU time 63.68, WCT time 16.24 Info:Linear Algebra: Mksol: CPU time 753.73, WCT time 193.43, iteration CPU time 0.03, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (6528 iterations) Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 30914.7/8544.28 Info:root: Cleaning up computation data in /tmp/cado.g2ci39kl 9867537370570941317416996012128288284323 27451833185432274847050767292326788625313728268310635858106008106619488421 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | November 28, 2022 15:40:26 UTC 2022 年 11 月 29 日 (火) 0 時 40 分 26 秒 (日本時間) |
composite number 合成数 | 1047892425719803447071222091935267441223802179462615400678288674248761495327178252220893180085428441791<103> |
prime factors 素因数 | 6191035539940753528158992766804728944111040611<46> 169259636608358330206800639813336547451462681896626779381<57> |
factorization results 素因数分解の結果 | 1047892425719803447071222091935267441223802179462615400678288674248761495327178252220893180085428441791=6191035539940753528158992766804728944111040611*169259636608358330206800639813336547451462681896626779381 cado polynomial n: 1047892425719803447071222091935267441223802179462615400678288674248761495327178252220893180085428441791 skew: 4266.287 c0: -63586949137430330759780 c1: -20926399399265104142 c2: 13482442931561073 c3: 2164811859235 c4: 18144294 c5: -52920 Y0: -48817052695945443621 Y1: 10507718686943 # MurphyE (Bf=6.711e+07,Bg=3.355e+07,area=2.517e+12) = 4.515e-06 # f(x) = -52920*x^5+18144294*x^4+2164811859235*x^3+13482442931561073*x^2-20926399399265104142*x-63586949137430330759780 # g(x) = 10507718686943*x-48817052695945443621 cado parameters (extracts) tasks.lim0 = 1000000 tasks.lim1 = 1600000 tasks.lpb0 = 25 tasks.lpb1 = 26 tasks.sieve.mfb0 = 50 tasks.sieve.mfb1 = 52 tasks.I = 12 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 6191035539940753528158992766804728944111040611 169259636608358330206800639813336547451462681896626779381 Info:Square Root: Total cpu/real time for sqrt: 189.73/25.9145 Info:Polynomial Selection (size optimized): Aggregate statistics: Info:Polynomial Selection (size optimized): potential collisions: 9952.64 Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 9120/29.160/35.943/41.650/1.053 Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 6824/28.800/31.971/36.490/0.903 Info:Polynomial Selection (size optimized): Total time: 623.42 Info:Polynomial Selection (root optimized): Aggregate statistics: Info:Polynomial Selection (root optimized): Total time: 144.61 Info:Polynomial Selection (root optimized): Rootsieve time: 133.86 Info:Generate Factor Base: Total cpu/real time for makefb: 1.57/0.253759 Info:Generate Free Relations: Total cpu/real time for freerel: 61.98/7.80499 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 4661078 Info:Lattice Sieving: Average J: 1897.58 for 29829 special-q, max bucket fill -bkmult 1.0,1s:1.273140 Info:Lattice Sieving: Total time: 5490.56s Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 9.98/12.8277 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 12.8s Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 45.89/34.2561 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 32.4s Info:Filtering - Singleton removal: Total cpu/real time for purge: 26.08/28.6092 Info:Filtering - Merging: Merged matrix has 161080 rows and total weight 23516596 (146.0 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 23.85/3.71359 Info:Filtering - Merging: Total cpu/real time for replay: 4.45/3.55389 Info:Linear Algebra: Total cpu/real time for bwc: 217.23/58.62 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: WCT time 33.13, iteration CPU time 0.01, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (5120 iterations) Info:Linear Algebra: Lingen CPU time 12.14, WCT time 3.33 Info:Linear Algebra: Mksol: WCT time 19.48, iteration CPU time 0.01, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (2560 iterations) Info:Quadratic Characters: Total cpu/real time for characters: 6.37/1.5233 Info:Square Root: Total cpu/real time for sqrt: 189.73/25.9145 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 17226.2/1724.47 Info:root: Cleaning up computation data in /tmp/cado.2zijdxao 6191035539940753528158992766804728944111040611 169259636608358330206800639813336547451462681896626779381 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | November 28, 2022 15:55:32 UTC 2022 年 11 月 29 日 (火) 0 時 55 分 32 秒 (日本時間) |
composite number 合成数 | 151422430286750090708377176607453511915139503845836226336572594816681587486709429663525298937126064301<102> |
prime factors 素因数 | 80417728660503664129341177637556335897074402937<47> 1882948359882236409860107725037605345423479809426562773<55> |
factorization results 素因数分解の結果 | 151422430286750090708377176607453511915139503845836226336572594816681587486709429663525298937126064301=80417728660503664129341177637556335897074402937*1882948359882236409860107725037605345423479809426562773 cado polynomial n: 151422430286750090708377176607453511915139503845836226336572594816681587486709429663525298937126064301 skew: 1057010.319 c0: -36959364710555145282261131840 c1: -31792931431309926288698 c2: -1907937322027711 c3: -34902191050 c4: 39000 Y0: -1403755882991005185281979 Y1: 147179666470399 # MurphyE (Bf=3.355e+07,Bg=1.678e+07,area=2.206e+12) = 2.076e-06 # f(x) = 39000*x^4-34902191050*x^3-1907937322027711*x^2-31792931431309926288698*x-36959364710555145282261131840 # g(x) = 147179666470399*x-1403755882991005185281979 cado parameters (extracts) tasks.lim0 = 919082 tasks.lim1 = 1051872 tasks.lpb0 = 24 tasks.lpb1 = 25 tasks.sieve.mfb0 = 49 tasks.sieve.mfb1 = 50 tasks.I = 11 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 80417728660503664129341177637556335897074402937 1882948359882236409860107725037605345423479809426562773 Info:Square Root: Total cpu/real time for sqrt: 45.14/16.1359 Info:Polynomial Selection (size optimized): Aggregate statistics: Info:Polynomial Selection (size optimized): potential collisions: 5781.44 Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 5873/33.400/38.623/39.460/0.689 Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 3391/32.820/37.112/39.420/0.991 Info:Polynomial Selection (size optimized): Total time: 104.53 Info:Quadratic Characters: Total cpu/real time for characters: 6.76/3.42019 Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 34.75/45.3227 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 32.300000000000004s Info:Square Root: Total cpu/real time for sqrt: 45.14/16.1359 Info:Generate Free Relations: Total cpu/real time for freerel: 24.21/8.75022 Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 10.27/11.5396 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 10.699999999999998s Info:Filtering - Singleton removal: Total cpu/real time for purge: 25.31/31.3569 Info:Filtering - Merging: Merged matrix has 204578 rows and total weight 34800130 (170.1 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 46.25/16.9457 Info:Filtering - Merging: Total cpu/real time for replay: 7.04/5.94882 Info:Generate Factor Base: Total cpu/real time for makefb: 0.74/0.386956 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 2517261 Info:Lattice Sieving: Average J: 1024 for 109098 special-q, max bucket fill -bkmult 1.0,1s:1.340560 Info:Lattice Sieving: Total time: 5183.19s Info:Linear Algebra: Total cpu/real time for bwc: 1529.91/591.28 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 309.68, WCT time 151.39, iteration CPU time 0.01, COMM 0.0, cpu-wait 0.01, comm-wait 0.0 (6528 iterations) Info:Linear Algebra: Lingen CPU time 1032.48, WCT time 348.98 Info:Linear Algebra: Mksol: CPU time 170.58, WCT time 81.91, iteration CPU time 0.02, COMM 0.0, cpu-wait 0.01, comm-wait 0.0 (3200 iterations) Info:Polynomial Selection (root optimized): Aggregate statistics: Info:Polynomial Selection (root optimized): Total time: 63.13 Info:Polynomial Selection (root optimized): Rootsieve time: 62.71 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 8972.71/3392.68 Info:root: Cleaning up computation data in /tmp/cado.qlrfm4e_ 80417728660503664129341177637556335897074402937 1882948359882236409860107725037605345423479809426562773 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | November 28, 2022 15:35:09 UTC 2022 年 11 月 29 日 (火) 0 時 35 分 9 秒 (日本時間) |
composite number 合成数 | 13931777216201803299420990242568963618257578023111043394164601162914703580002240602543576187179559857<101> |
prime factors 素因数 | 163106630073019730907460182630201879390049<42> 85415149647594411439517841004712139748865801694055371699793<59> |
factorization results 素因数分解の結果 | 13931777216201803299420990242568963618257578023111043394164601162914703580002240602543576187179559857=163106630073019730907460182630201879390049*85415149647594411439517841004712139748865801694055371699793 cado polynomial n: 13931777216201803299420990242568963618257578023111043394164601162914703580002240602543576187179559857 skew: 2611944.918 c0: 14443112765469950236981183042 c1: 1870480752113822766067 c2: -7405442829938738 c3: -1248712290 c4: 360 Y0: -2494375767105350362732259 Y1: 237430291538491 # MurphyE (Bf=3.355e+07,Bg=1.678e+07,area=2.206e+12) = 2.517e-06 # f(x) = 360*x^4-1248712290*x^3-7405442829938738*x^2+1870480752113822766067*x+14443112765469950236981183042 # g(x) = 237430291538491*x-2494375767105350362732259 cado parameters (extracts) tasks.lim0 = 919082 tasks.lim1 = 1051872 tasks.lpb0 = 24 tasks.lpb1 = 25 tasks.sieve.mfb0 = 49 tasks.sieve.mfb1 = 50 tasks.I = 11 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 85415149647594411439517841004712139748865801694055371699793 163106630073019730907460182630201879390049 Info:Complete Factorization / Discrete logarithm: Square Root Info:Square Root: Total cpu/real time for sqrt: 42.31/13.2949 Info:HTTP server: Got notification to stop serving Workunits Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 9.11/7.308 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 6.799999999999999s Info:Quadratic Characters: Total cpu/real time for characters: 6.72/2.61233 Info:Filtering - Singleton removal: Total cpu/real time for purge: 21.23/19.1674 Info:Filtering - Merging: Merged matrix has 200490 rows and total weight 34149627 (170.3 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 44.11/12.2085 Info:Filtering - Merging: Total cpu/real time for replay: 6.54/5.62723 Info:Generate Free Relations: Total cpu/real time for freerel: 24.4/7.25762 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 2487285 Info:Lattice Sieving: Average J: 1024 for 99063 special-q, max bucket fill -bkmult 1.0,1s:1.327320 Info:Lattice Sieving: Total time: 3493.85s Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 30.43/32.2213 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 18.6s Info:Linear Algebra: Total cpu/real time for bwc: 580.01/171.47 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 352.05, WCT time 94.48, iteration CPU time 0.01, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (6400 iterations) Info:Linear Algebra: Lingen CPU time 19.93, WCT time 20.55 Info:Linear Algebra: Mksol: CPU time 189.2, WCT time 49.17, iteration CPU time 0.01, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (3200 iterations) Info:Generate Factor Base: Total cpu/real time for makefb: 0.72/0.216892 Info:Polynomial Selection (root optimized): Aggregate statistics: Info:Polynomial Selection (root optimized): Total time: 64.04 Info:Polynomial Selection (root optimized): Rootsieve time: 63.65 Info:Polynomial Selection (size optimized): Aggregate statistics: Info:Polynomial Selection (size optimized): potential collisions: 6382.08 Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 4317/33.570/38.224/39.060/0.680 Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 2444/32.970/36.682/39.030/1.008 Info:Polynomial Selection (size optimized): Total time: 93.8 Info:Square Root: Total cpu/real time for sqrt: 42.31/13.2949 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire Complete Factorization 7302.54/2077.55 Info:root: Cleaning up computation data in /tmp/cado.dfuinqyk 85415149647594411439517841004712139748865801694055371699793 163106630073019730907460182630201879390049 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | November 29, 2022 19:56:19 UTC 2022 年 11 月 30 日 (水) 4 時 56 分 19 秒 (日本時間) |
composite number 合成数 | 582945789384841479020709212307974265204556301779004001816647630738670813037058550789260253367245909603447435689729<114> |
prime factors 素因数 | 5073713902606514775134756045595873030759796592853231977<55> 114895281952213590328573869982547929261703226065832761007577<60> |
factorization results 素因数分解の結果 | 582945789384841479020709212307974265204556301779004001816647630738670813037058550789260253367245909603447435689729=5073713902606514775134756045595873030759796592853231977*114895281952213590328573869982547929261703226065832761007577 cado polynomial n: 582945789384841479020709212307974265204556301779004001816647630738670813037058550789260253367245909603447435689729 skew: 20678.808 c0: 165120143494471976394734040 c1: -17606570870142542393219 c2: -1978353337502377466 c3: -10406257388849 c4: -1455560106 c5: 52560 Y0: -9262123515694086472326 Y1: 7879882521375679 # MurphyE (Bf=6.711e+07,Bg=6.711e+07,area=6.711e+12) = 1.205e-06 # f(x) = 52560*x^5-1455560106*x^4-10406257388849*x^3-1978353337502377466*x^2-17606570870142542393219*x+165120143494471976394734040 # g(x) = 7879882521375679*x-9262123515694086472326 cado parameters (extracts) tasks.lim0 = 2500000 tasks.lim1 = 4500000 tasks.lpb0 = 26 tasks.lpb1 = 26 tasks.sieve.mfb0 = 52 tasks.sieve.mfb1 = 52 tasks.I = 12 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 5073713902606514775134756045595873030759796592853231977 114895281952213590328573869982547929261703226065832761007577 Info:Polynomial Selection (size optimized): Aggregate statistics: Info:Polynomial Selection (size optimized): potential collisions: 21492.9 Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 21638/32.400/40.517/45.670/1.081 Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 16999/32.220/35.891/40.990/0.853 Info:Polynomial Selection (size optimized): Total time: 2267.8 Info:Polynomial Selection (root optimized): Aggregate statistics: Info:Polynomial Selection (root optimized): Total time: 321.82 Info:Polynomial Selection (root optimized): Rootsieve time: 303.22 Info:Generate Factor Base: Total cpu/real time for makefb: 4.35/0.677652 Info:Generate Free Relations: Total cpu/real time for freerel: 64.28/8.09278 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 6789260 Info:Lattice Sieving: Average J: 1887.86 for 114966 special-q, max bucket fill -bkmult 1.0,1s:1.239000 Info:Lattice Sieving: Total time: 22033.4s Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 15.82/21.7048 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 21.400000000000002s Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 124.6/98.9942 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 85.5s Info:Filtering - Singleton removal: Total cpu/real time for purge: 98.85/86.5867 Info:Filtering - Merging: Merged matrix has 415941 rows and total weight 65269936 (156.9 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 70.76/10.8107 Info:Filtering - Merging: Total cpu/real time for replay: 12.86/10.3639 Info:Linear Algebra: Total cpu/real time for bwc: 1525.9/399.61 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: WCT time 240.64, iteration CPU time 0.02, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (13056 iterations) Info:Linear Algebra: Lingen CPU time 38.89, WCT time 10.58 Info:Linear Algebra: Mksol: WCT time 140.42, iteration CPU time 0.02, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (6528 iterations) Info:Quadratic Characters: Total cpu/real time for characters: 17.09/4.3583 Info:Square Root: Total cpu/real time for sqrt: 612.91/82.2802 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 60521.2/6548.8 Info:root: Cleaning up computation data in /tmp/cado.0_otcnbf 5073713902606514775134756045595873030759796592853231977 114895281952213590328573869982547929261703226065832761007577 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | November 29, 2022 03:51:38 UTC 2022 年 11 月 29 日 (火) 12 時 51 分 38 秒 (日本時間) |
composite number 合成数 | 777166351929596240707081402201493768253349351395150055809329048206316513799683629434295138350383699804785633<108> |
prime factors 素因数 | 26486357448775211167511589902437448023<38> 29342137869755818895787559348661219299876606706638474144116836963912071<71> |
factorization results 素因数分解の結果 | 777166351929596240707081402201493768253349351395150055809329048206316513799683629434295138350383699804785633=26486357448775211167511589902437448023*29342137869755818895787559348661219299876606706638474144116836963912071 cado polynomial n: 777166351929596240707081402201493768253349351395150055809329048206316513799683629434295138350383699804785633 skew: 34666.455 c0: 191111038470665361949841208 c1: 27693704274616072655670 c2: -1107372787973027785 c3: -28898792757500 c4: 546442532 c5: 3600 Y0: -151345942536900385685 Y1: 18815138460872741 # MurphyE (Bf=6.711e+07,Bg=3.355e+07,area=4.194e+12) = 2.003e-06 # f(x) = 3600*x^5+546442532*x^4-28898792757500*x^3-1107372787973027785*x^2+27693704274616072655670*x+191111038470665361949841208 # g(x) = 18815138460872741*x-151345942536900385685 cado parameters (extracts) tasks.lim0 = 1400000 tasks.lim1 = 2500000 tasks.lpb0 = 25 tasks.lpb1 = 26 tasks.sieve.mfb0 = 50 tasks.sieve.mfb1 = 52 tasks.I = 12 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 29342137869755818895787559348661219299876606706638474144116836963912071 26486357448775211167511589902437448023 Info:Polynomial Selection (size optimized): Aggregate statistics: Info:Polynomial Selection (size optimized): potential collisions: 11711.3 Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 13160/32.440/38.008/43.410/1.202 Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 10419/30.750/34.184/38.730/1.061 Info:Polynomial Selection (size optimized): Total time: 922.9 Info:Polynomial Selection (root optimized): Aggregate statistics: Info:Polynomial Selection (root optimized): Total time: 268.93 Info:Polynomial Selection (root optimized): Rootsieve time: 251.32 Info:Generate Factor Base: Total cpu/real time for makefb: 2.39/0.379682 Info:Generate Free Relations: Total cpu/real time for freerel: 61.48/7.73577 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 4917977 Info:Lattice Sieving: Average J: 1911.59 for 63256 special-q, max bucket fill -bkmult 1.0,1s:1.182330 Info:Lattice Sieving: Total time: 10801.6s Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 11.3/16.6166 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 16.099999999999998s Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 89.38/70.083 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 60.20000000000001s Info:Filtering - Singleton removal: Total cpu/real time for purge: 71.01/74.3517 Info:Filtering - Merging: Merged matrix has 274678 rows and total weight 42684825 (155.4 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 45.81/6.98502 Info:Filtering - Merging: Total cpu/real time for replay: 8.4/6.67854 Info:Linear Algebra: Total cpu/real time for bwc: 643.55/169.86 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: WCT time 100.03, iteration CPU time 0.01, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (8704 iterations) Info:Linear Algebra: Lingen CPU time 23.69, WCT time 6.46 Info:Linear Algebra: Mksol: WCT time 58.39, iteration CPU time 0.01, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (4352 iterations) Info:Quadratic Characters: Total cpu/real time for characters: 12.4/2.98363 Info:Square Root: Total cpu/real time for sqrt: 356.31/48.1898 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 32233.8/3216.39 Info:root: Cleaning up computation data in /tmp/cado.2xqlycrg 29342137869755818895787559348661219299876606706638474144116836963912071 26486357448775211167511589902437448023 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | November 30, 2022 05:34:52 UTC 2022 年 11 月 30 日 (水) 14 時 34 分 52 秒 (日本時間) |
composite number 合成数 | 2095621370498131831802267475662612796463436747902455738634195202766172481595660186090578107942806763670958934659561331<118> |
prime factors 素因数 | 1184873550747405410025134195727602624703697<43> 1768645581780635204121460730253067637176390993143566156458376965003941617923<76> |
factorization results 素因数分解の結果 | 2095621370498131831802267475662612796463436747902455738634195202766172481595660186090578107942806763670958934659561331=1184873550747405410025134195727602624703697*1768645581780635204121460730253067637176390993143566156458376965003941617923 cado polynomial n: 2095621370498131831802267475662612796463436747902455738634195202766172481595660186090578107942806763670958934659561331 skew: 59062.445 c0: 5018006736853566490219121352 c1: -105444173603159579070697 c2: 9685048849650708660 c3: 94612214121733 c4: -3130973472 c5: -6480 Y0: -82723820568878489720828 Y1: 302329556626903 # MurphyE (Bf=1.342e+08,Bg=1.342e+08,area=8.389e+12) = 1.824e-06 # f(x) = -6480*x^5-3130973472*x^4+94612214121733*x^3+9685048849650708660*x^2-105444173603159579070697*x+5018006736853566490219121352 # g(x) = 302329556626903*x-82723820568878489720828 cado parameters (extracts) tasks.lim0 = 3000000 tasks.lim1 = 5500000 tasks.lpb0 = 27 tasks.lpb1 = 27 tasks.sieve.mfb0 = 54 tasks.sieve.mfb1 = 54 tasks.I = 12 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 1768645581780635204121460730253067637176390993143566156458376965003941617923 1184873550747405410025134195727602624703697 Info:Square Root: Total cpu/real time for sqrt: 126.7/45.3042 Info:Generate Factor Base: Total cpu/real time for makefb: 4.99/2.4504 Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 145.97/168.904 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 158.0s Info:Generate Free Relations: Total cpu/real time for freerel: 126.85/41.0422 Info:Square Root: Total cpu/real time for sqrt: 126.7/45.3042 Info:Filtering - Singleton removal: Total cpu/real time for purge: 63.66/79.3502 Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 57.55/65.2197 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 65.1s Info:Filtering - Merging: Merged matrix has 518219 rows and total weight 52739007 (101.8 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 38.42/15.0664 Info:Filtering - Merging: Total cpu/real time for replay: 12.3/10.0039 Info:Linear Algebra: Total cpu/real time for bwc: 5893.39/2198.24 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 1487.56, WCT time 641.56, iteration CPU time 0.03, COMM 0.0, cpu-wait 0.01, comm-wait 0.0 (16256 iterations) Info:Linear Algebra: Lingen CPU time 3510.65, WCT time 1180.56 Info:Linear Algebra: Mksol: CPU time 865.27, WCT time 360.4, iteration CPU time 0.03, COMM 0.0, cpu-wait 0.01, comm-wait 0.0 (8192 iterations) Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 13428771 Info:Lattice Sieving: Average J: 1904.33 for 182781 special-q, max bucket fill -bkmult 1.0,1s:1.261340 Info:Lattice Sieving: Total time: 30910s Info:Polynomial Selection (root optimized): Aggregate statistics: Info:Polynomial Selection (root optimized): Total time: 989.53 Info:Polynomial Selection (root optimized): Rootsieve time: 986.79 Info:Polynomial Selection (size optimized): Aggregate statistics: Info:Polynomial Selection (size optimized): potential collisions: 19893.3 Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 19964/34.410/41.850/47.240/1.025 Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 15656/33.780/37.030/42.350/0.818 Info:Polynomial Selection (size optimized): Total time: 2326.41 Info:Quadratic Characters: Total cpu/real time for characters: 15.39/7.6939 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 53162.3/19449.1 Info:root: Cleaning up computation data in /tmp/cado.89emxe7o 1768645581780635204121460730253067637176390993143566156458376965003941617923 1184873550747405410025134195727602624703697 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | December 4, 2022 14:53:51 UTC 2022 年 12 月 4 日 (日) 23 時 53 分 51 秒 (日本時間) |
composite number 合成数 | 156295297302341210278931797551777119147714330686139676719378655280947275799796172448848729972922757519873676236370690421841337953<129> |
prime factors 素因数 | 56699303042483868277014235072795982693926088650292228101629371<62> 2756564700367333945030307847316257072300086915457893441611347025043<67> |
factorization results 素因数分解の結果 | 156295297302341210278931797551777119147714330686139676719378655280947275799796172448848729972922757519873676236370690421841337953=56699303042483868277014235072795982693926088650292228101629371*2756564700367333945030307847316257072300086915457893441611347025043 cado polynomial n: 156295297302341210278931797551777119147714330686139676719378655280947275799796172448848729972922757519873676236370690421841337953 skew: 0.34 type: snfs c0: 8 c5: 1675 Y0: 100000000000000000000000000000 Y1: -1 # f(x) = 1675*x^5+8 # g(x) = -x+100000000000000000000000000000 cado parameters (extracts) tasks.lim0 = 2100000 tasks.lim1 = 2100000 tasks.lpb0 = 26 tasks.lpb1 = 26 tasks.sieve.mfb0 = 49 tasks.sieve.mfb1 = 49 tasks.sieve.lambda0 = 2.3 tasks.sieve.lambda1 = 2.3 tasks.I = 12 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 2756564700367333945030307847316257072300086915457893441611347025043 56699303042483868277014235072795982693926088650292228101629371 Info:Square Root: Total cpu/real time for sqrt: 38.71/12.4703 Info:Generate Free Relations: Total cpu/real time for freerel: 30.4/10.1286 Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 23.77/23.0543 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 22.9s Info:Filtering - Singleton removal: Total cpu/real time for purge: 40.05/33.9386 Info:Filtering - Merging: Merged matrix has 204700 rows and total weight 34854041 (170.3 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 41.08/11.7225 Info:Filtering - Merging: Total cpu/real time for replay: 6.32/5.41408 Info:Generate Factor Base: Total cpu/real time for makefb: 0.93/0.609375 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 6060415 Info:Lattice Sieving: Average J: 1894.78 for 81889 special-q, max bucket fill -bkmult 1.0,1s:1.222350 Info:Lattice Sieving: Total time: 8466.15s Info:Linear Algebra: Total cpu/real time for bwc: 547.57/150.2 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 323.38, WCT time 87.45, iteration CPU time 0.01, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (6528 iterations) Info:Linear Algebra: Lingen CPU time 29.76, WCT time 7.82 Info:Linear Algebra: Mksol: CPU time 177.18, WCT time 47.9, iteration CPU time 0.01, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (3200 iterations) Info:Quadratic Characters: Total cpu/real time for characters: 6.47/2.61274 Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 52.11/54.0192 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 44.2s Info:Square Root: Total cpu/real time for sqrt: 38.71/12.4703 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 16129.6/4669.64 Info:root: Cleaning up computation data in /tmp/cado.8tvxbrub 2756564700367333945030307847316257072300086915457893441611347025043 56699303042483868277014235072795982693926088650292228101629371 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | November 25, 2022 18:07:10 UTC 2022 年 11 月 26 日 (土) 3 時 7 分 10 秒 (日本時間) |
composite number 合成数 | 215586033628847084504576859316920478999989703353617726706411721702241579917420896014168185422008051977470937715586033628847084504576859316920479<144> |
prime factors 素因数 | 189155781022884694568418115136462373085473020346392422075107515111231881<72> 1139727437686743341996351399799872393724900161897815000586916734063779559<73> |
factorization results 素因数分解の結果 | Number: n N=215586033628847084504576859316920478999989703353617726706411721702241579917420896014168185422008051977470937715586033628847084504576859316920479 ( 144 digits) SNFS difficulty: 148 digits. Divisors found: Sat Nov 26 05:03:12 2022 p72 factor: 189155781022884694568418115136462373085473020346392422075107515111231881 Sat Nov 26 05:03:12 2022 p73 factor: 1139727437686743341996351399799872393724900161897815000586916734063779559 Sat Nov 26 05:03:12 2022 elapsed time 00:03:49 (Msieve 1.54 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.296). Factorization parameters were as follows: # # N = 67x10^148+32 = 74(147)8 # n: 215586033628847084504576859316920478999989703353617726706411721702241579917420896014168185422008051977470937715586033628847084504576859316920479 m: 100000000000000000000000000000 deg: 5 c5: 8375 c0: 4 skew: 0.22 # Murphy_E = 1.585e-09 type: snfs lss: 1 rlim: 2100000 alim: 2100000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 2100000/2100000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved special-q in [100000, 6650000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 759130 hash collisions in 7305618 relations (7008661 unique) Msieve: matrix is 323267 x 323492 (108.4 MB) Sieving start time : 2022/11/26 04:41:55 Sieving end time : 2022/11/26 04:59:09 Total sieving time: 0hrs 17min 14secs. Total relation processing time: 0hrs 1min 49sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 18sec. Prototype def-par.txt line would be: snfs,148,5,0,0,0,0,0,0,0,0,2100000,2100000,26,26,49,49,2.3,2.3,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | November 27, 2022 15:43:01 UTC 2022 年 11 月 28 日 (月) 0 時 43 分 1 秒 (日本時間) |
composite number 合成数 | 21148989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989899<149> |
prime factors 素因数 | 66433774043381838378419474730434941477587282809650891<53> 318346958358551520708832124287730316783146364283857478213779255099047226344799449079477181986689<96> |
factorization results 素因数分解の結果 | Number: n N=21148989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989899 ( 149 digits) SNFS difficulty: 151 digits. Divisors found: Mon Nov 28 02:33:41 2022 p53 factor: 66433774043381838378419474730434941477587282809650891 Mon Nov 28 02:33:41 2022 p96 factor: 318346958358551520708832124287730316783146364283857478213779255099047226344799449079477181986689 Mon Nov 28 02:33:41 2022 elapsed time 00:05:15 (Msieve 1.54 - dependency 3) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.318). Factorization parameters were as follows: # # N = 67x10^150+32 = 74(149)8 # n: 21148989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989899 m: 1000000000000000000000000000000 deg: 5 c5: 67 c0: 32 skew: 0.86 # Murphy_E = 1.676e-09 type: snfs lss: 1 rlim: 2400000 alim: 2400000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved special-q in [100000, 6800000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1207411 hash collisions in 14537179 relations (14311382 unique) Msieve: matrix is 455309 x 455537 (54.3 MB) Sieving start time : 2022/11/28 02:10:48 Sieving end time : 2022/11/28 02:28:07 Total sieving time: 0hrs 17min 19secs. Total relation processing time: 0hrs 1min 20sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 37sec. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,49,49,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | November 29, 2022 17:56:10 UTC 2022 年 11 月 30 日 (水) 2 時 56 分 10 秒 (日本時間) |
composite number 合成数 | 736200084210367573331931309801418714558963058439960855126736930872836775095270371099499566737645307744421686774167299040922333<126> |
prime factors 素因数 | 124850169446654339974163150892392345483927<42> 5896668682735983439463126168379406349736225459143514681096989728759447042119391582379<85> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 736200084210367573331931309801418714558963058439960855126736930872836775095270371099499566737645307744421686774167299040922333 (126 digits) Using B1=26190000, B2=144285141016, polynomial Dickson(12), sigma=1:3752629434 Step 1 took 40678ms Step 2 took 18768ms ********** Factor found in step 2: 124850169446654339974163150892392345483927 Found prime factor of 42 digits: 124850169446654339974163150892392345483927 Prime cofactor 5896668682735983439463126168379406349736225459143514681096989728759447042119391582379 has 85 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | November 27, 2022 20:34:42 UTC 2022 年 11 月 28 日 (月) 5 時 34 分 42 秒 (日本時間) |
composite number 合成数 | 81369040963788746188479807128460409137722897250070351429924632156555317287572200814634776298386598139069144389426342334624395260429703930170342371<146> |
prime factors 素因数 | 25548436134175322469446678451604219927550411467293956083<56> 3184893217590879993102899824061247943673222769869964929693474046345645376782643874512173137<91> |
factorization results 素因数分解の結果 | Number: n N=81369040963788746188479807128460409137722897250070351429924632156555317287572200814634776298386598139069144389426342334624395260429703930170342371 ( 146 digits) SNFS difficulty: 153 digits. Divisors found: Mon Nov 28 07:12:44 2022 p56 factor: 25548436134175322469446678451604219927550411467293956083 Mon Nov 28 07:12:44 2022 p91 factor: 3184893217590879993102899824061247943673222769869964929693474046345645376782643874512173137 Mon Nov 28 07:12:44 2022 elapsed time 00:05:58 (Msieve 1.54 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.342). Factorization parameters were as follows: # # N = 67x10^153+32 = 74(152)8 # n: 81369040963788746188479807128460409137722897250070351429924632156555317287572200814634776298386598139069144389426342334624395260429703930170342371 m: 1000000000000000000000000000000 deg: 5 c5: 8375 c0: 4 skew: 0.22 # Murphy_E = 1.024e-09 type: snfs lss: 1 rlim: 2600000 alim: 2600000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2600000/2600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved special-q in [100000, 6900000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1183466 hash collisions in 14136837 relations (13900295 unique) Msieve: matrix is 344689 x 344916 (114.7 MB) Sieving start time : 2022/11/28 06:33:42 Sieving end time : 2022/11/28 07:06:28 Total sieving time: 0hrs 32min 46secs. Total relation processing time: 0hrs 2min 7sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 38sec. Prototype def-par.txt line would be: snfs,153,5,0,0,0,0,0,0,0,0,2600000,2600000,27,27,50,50,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | November 29, 2022 16:03:14 UTC 2022 年 11 月 30 日 (水) 1 時 3 分 14 秒 (日本時間) |
composite number 合成数 | 5741973853404958637569788553892848395408316389809246121505615024508915455216446108971347517260618097122563005398993187931440707354691154706238369<145> |
prime factors 素因数 | 6481758913080942458566091735306483587978196474680275006761963812861969<70> 885866618984700027745005346770657205466520882405988399451940547488659155601<75> |
factorization results 素因数分解の結果 | Number: n N=5741973853404958637569788553892848395408316389809246121505615024508915455216446108971347517260618097122563005398993187931440707354691154706238369 ( 145 digits) SNFS difficulty: 156 digits. Divisors found: Wed Nov 30 02:59:28 2022 p70 factor: 6481758913080942458566091735306483587978196474680275006761963812861969 Wed Nov 30 02:59:28 2022 p75 factor: 885866618984700027745005346770657205466520882405988399451940547488659155601 Wed Nov 30 02:59:28 2022 elapsed time 00:05:26 (Msieve 1.54 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.319). Factorization parameters were as follows: # # N = 67x10^155+32 = 74(154)8 # n: 5741973853404958637569788553892848395408316389809246121505615024508915455216446108971347517260618097122563005398993187931440707354691154706238369 m: 10000000000000000000000000000000 deg: 5 c5: 67 c0: 32 skew: 0.86 # Murphy_E = 1.079e-09 type: snfs lss: 1 rlim: 2900000 alim: 2900000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2900000/2900000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved special-q in [100000, 7050000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1437969 hash collisions in 15668033 relations (15291778 unique) Msieve: matrix is 311894 x 312119 (104.2 MB) Sieving start time : 2022/11/30 02:32:12 Sieving end time : 2022/11/30 02:53:36 Total sieving time: 0hrs 21min 24secs. Total relation processing time: 0hrs 1min 40sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 14sec. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,2900000,2900000,27,27,50,50,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | November 28, 2022 22:39:32 UTC 2022 年 11 月 29 日 (火) 7 時 39 分 32 秒 (日本時間) |
composite number 合成数 | 11482121875441265194182456035221991054032181398108227703614469453055032641969020409258091277937631764798042220350932239336243238175536016399283<143> |
prime factors 素因数 | 2441095459855789308411258666009915303975370561507483337831256497<64> 4703675896443470321401466927736789484009444937249572626228154906779835759384739<79> |
factorization results 素因数分解の結果 | Number: n N=11482121875441265194182456035221991054032181398108227703614469453055032641969020409258091277937631764798042220350932239336243238175536016399283 ( 143 digits) SNFS difficulty: 158 digits. Divisors found: Tue Nov 29 09:34:34 2022 p64 factor: 2441095459855789308411258666009915303975370561507483337831256497 Tue Nov 29 09:34:34 2022 p79 factor: 4703675896443470321401466927736789484009444937249572626228154906779835759384739 Tue Nov 29 09:34:34 2022 elapsed time 00:06:18 (Msieve 1.54 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.334). Factorization parameters were as follows: # # N = 67x10^157+32 = 74(156)8 # n: 11482121875441265194182456035221991054032181398108227703614469453055032641969020409258091277937631764798042220350932239336243238175536016399283 m: 10000000000000000000000000000000 deg: 5 c5: 1675 c0: 8 skew: 0.34 # Murphy_E = 7.898e-10 type: snfs lss: 1 rlim: 3000000 alim: 3000000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved special-q in [100000, 7100000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1393034 hash collisions in 14911216 relations (14501807 unique) Msieve: matrix is 377976 x 378202 (125.5 MB) Sieving start time : 2022/11/29 08:46:48 Sieving end time : 2022/11/29 09:27:57 Total sieving time: 0hrs 41min 9secs. Total relation processing time: 0hrs 2min 15sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 39sec. Prototype def-par.txt line would be: snfs,158,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,50,50,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | November 25, 2022 23:49:01 UTC 2022 年 11 月 26 日 (土) 8 時 49 分 1 秒 (日本時間) |
composite number 合成数 | 20486387911311671188710824762524172286640860355430565818755076702512837209299998932070991148405470719<101> |
prime factors 素因数 | 20261692315847321781531885791884624108553318662163<50> 1011089675628358434257909002657482723025260697610213<52> |
factorization results 素因数分解の結果 | N=20486387911311671188710824762524172286640860355430565818755076702512837209299998932070991148405470719 ( 101 digits) Divisors found: r1=20261692315847321781531885791884624108553318662163 (pp50) r2=1011089675628358434257909002657482723025260697610213 (pp52) Version: Msieve v. 1.54 (SVN 1043M) Total time: 2.17 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 20486387911311671188710824762524172286640860355430565818755076702512837209299998932070991148405470719 skew: 554700.46 c0: 171160619991396977512931571 c1: -2176537320229725692507 c2: -31714096926955999 c3: 18113800159 c4: 28560 Y0: -920293106422048956166412 Y1: 8396900852297 rlim: 1940000 alim: 1940000 lpbr: 26 lpba: 26 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 type: gnfs qintsize: 50000 Factor base limits: 1940000/1940000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 52/52 Sieved algebraic special-q in [970000, 1320001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 229563 x 229795 Total sieving time: 2.11 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.03 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: gnfs,100,4,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1940000,1940000,26,26,52,52,2.5,2.5,100000 total time: 2.17 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | December 6, 2022 04:41:44 UTC 2022 年 12 月 6 日 (火) 13 時 41 分 44 秒 (日本時間) |
composite number 合成数 | 816337367205226694932994291793969420461242142241843561419182446395044375255987648300013092000026757731917631744451359220997556198998634632981347<144> |
prime factors 素因数 | 152898273381771969595379386389584807424071463408028385851<57> 5339088199949207254910830037510920890541741291927140045663554148652770060592317191323897<88> |
factorization results 素因数分解の結果 | 816337367205226694932994291793969420461242142241843561419182446395044375255987648300013092000026757731917631744451359220997556198998634632981347=152898273381771969595379386389584807424071463408028385851*5339088199949207254910830037510920890541741291927140045663554148652770060592317191323897 cado polynomial n: 816337367205226694932994291793969420461242142241843561419182446395044375255987648300013092000026757731917631744451359220997556198998634632981347 skew: 0.22 type: snfs c0: 4 c5: 8375 Y0: 100000000000000000000000000000000 Y1: -1 # f(x) = 8375*x^5+4 # g(x) = -x+100000000000000000000000000000000 cado parameters (extracts) tasks.lim0 = 3800000 tasks.lim1 = 3800000 tasks.lpb0 = 27 tasks.lpb1 = 27 tasks.sieve.mfb0 = 51 tasks.sieve.mfb1 = 51 tasks.sieve.lambda0 = 2.4 tasks.sieve.lambda1 = 2.4 tasks.I = 12 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 152898273381771969595379386389584807424071463408028385851 5339088199949207254910830037510920890541741291927140045663554148652770060592317191323897 Info:Complete Factorization / Discrete logarithm: Square Root Info:Square Root: Total cpu/real time for sqrt: 185.18/58.1763 Info:HTTP server: Got notification to stop serving Workunits Info:Filtering - Singleton removal: Total cpu/real time for purge: 72.85/60.7574 Info:Filtering - Merging: Merged matrix has 449094 rows and total weight 76656455 (170.7 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 102.77/29.028 Info:Filtering - Merging: Total cpu/real time for replay: 14.33/12.6025 Info:Generate Factor Base: Total cpu/real time for makefb: 1.62/0.953472 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 11631193 Info:Lattice Sieving: Average J: 1893.81 for 278510 special-q, max bucket fill -bkmult 1.0,1s:1.233500 Info:Lattice Sieving: Total time: 34717.7s Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 102.51/103.761 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 89.0s Info:Linear Algebra: Total cpu/real time for bwc: 3196.56/905 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 2009.6, WCT time 540.5, iteration CPU time 0.03, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (14080 iterations) Info:Linear Algebra: Lingen CPU time 48.8, WCT time 50.13 Info:Linear Algebra: Mksol: CPU time 1090.25, WCT time 294.81, iteration CPU time 0.04, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (7040 iterations) Info:Generate Free Relations: Total cpu/real time for freerel: 64.14/18.629 Info:Square Root: Total cpu/real time for sqrt: 185.18/58.1763 Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 44.34/40.3029 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 40.2s Info:Quadratic Characters: Total cpu/real time for characters: 14.57/5.82251 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire Complete Factorization 67063.6/18743.9 Info:root: Cleaning up computation data in /tmp/cado.00amu93j 152898273381771969595379386389584807424071463408028385851 5339088199949207254910830037510920890541741291927140045663554148652770060592317191323897 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | November 27, 2022 07:59:58 UTC 2022 年 11 月 27 日 (日) 16 時 59 分 58 秒 (日本時間) |
composite number 合成数 | 258991631892857563472806354268121419972588313310710372539587382733212272820720000497066017240959442655104503398695696247330807502213044065947672250813228467<156> |
prime factors 素因数 | 2997978249994373683483532389598558497427665881867581<52> 86388762791505780268998751337908247108971781141548082943728708373985929542639425573263270002427081983407<104> |
factorization results 素因数分解の結果 | Number: n N=258991631892857563472806354268121419972588313310710372539587382733212272820720000497066017240959442655104503398695696247330807502213044065947672250813228467 ( 156 digits) SNFS difficulty: 165 digits. Divisors found: Sun Nov 27 18:49:23 2022 p52 factor: 2997978249994373683483532389598558497427665881867581 Sun Nov 27 18:49:23 2022 p104 factor: 86388762791505780268998751337908247108971781141548082943728708373985929542639425573263270002427081983407 Sun Nov 27 18:49:23 2022 elapsed time 00:07:17 (Msieve 1.54 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.299). Factorization parameters were as follows: # # N = 67x10^164+32 = 74(163)8 # n: 258991631892857563472806354268121419972588313310710372539587382733212272820720000497066017240959442655104503398695696247330807502213044065947672250813228467 m: 500000000000000000000000000000000 deg: 5 c5: 67 c0: 10 skew: 0.68 # Murphy_E = 4.152e-10 type: snfs lss: 1 rlim: 4000000 alim: 4000000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved special-q in [100000, 7600000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1387233 hash collisions in 13690368 relations (13153563 unique) Msieve: matrix is 496427 x 496655 (169.5 MB) Sieving start time : 2022/11/27 18:07:19 Sieving end time : 2022/11/27 18:41:46 Total sieving time: 0hrs 34min 27secs. Total relation processing time: 0hrs 3min 36sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 28sec. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,51,51,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) |
name 名前 | Erik Branger |
---|---|
date 日付 | November 28, 2022 17:53:38 UTC 2022 年 11 月 29 日 (火) 2 時 53 分 38 秒 (日本時間) |
composite number 合成数 | 1393002667869059612190063855041292162964573481232224536459085038526401586428958768345271001112959583710705210099600193<118> |
prime factors 素因数 | 1107592856090715719343756694164251658853<40> 1257684771266679092282732239987687451654048050171711064499794536573287712612781<79> |
factorization results 素因数分解の結果 | Number: 74448_165 N = 1393002667869059612190063855041292162964573481232224536459085038526401586428958768345271001112959583710705210099600193 (118 digits) SNFS difficulty: 167 digits. Divisors found: r1=1107592856090715719343756694164251658853 (pp40) r2=1257684771266679092282732239987687451654048050171711064499794536573287712612781 (pp79) Version: Msieve v. 1.52 (SVN unknown) Total time: 1.31 hours. Factorization parameters were as follows: n: 1393002667869059612190063855041292162964573481232224536459085038526401586428958768345271001112959583710705210099600193 m: 10000000000000000000000000000000000000000000000000000000 deg: 3 c3: 67 c0: 32 skew: 1.00 type: snfs lss: 1 rlim: 536870912 alim: 44739242 lpbr: 29 lpba: 28 mfbr: 58 mfba: 56 rlambda: 2.8 alambda: 2.8 side: 1 Number of cores used: 6 Number of threads per core: 1 Factor base limits: 536870912/44739242 Large primes per side: 3 Large prime bits: 29/28 Total raw relations: 8797647 Relations: 1254684 relations Total pre-computation time approximately 1000 CPU-days. Pre-computation saved approximately 18 G rational relations. Total batch smoothness checking time: 0.62 hours. Total relation processing time: 0.08 hours. Pruned matrix : 1132817 x 1133043 Matrix solve time: 0.57 hours. time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,167,3,0,0,0,0,0,0,0,0,536870912,44739242,29,28,58,56,2.8,2.8,100000 total time: 1.31 hours. Intel64 Family 6 Model 158 Stepping 10, GenuineIntel Windows-10-10.0.22621-SP0 processors: 12, speed: 3.19GHz |
software ソフトウェア | GGNFS, NFS_factory, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | November 29, 2022 00:26:13 UTC 2022 年 11 月 29 日 (火) 9 時 26 分 13 秒 (日本時間) |
composite number 合成数 | 2114898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989899<169> |
prime factors 素因数 | 1358377804511750821490279609558710958221610562299<49> 1556929878325831179993201512275439374695602116265148148009350212296937642157183587620012158971209497960328507484068092401<121> |
factorization results 素因数分解の結果 | Number: n N=2114898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989899 ( 169 digits) SNFS difficulty: 171 digits. Divisors found: Tue Nov 29 10:49:02 2022 p49 factor: 1358377804511750821490279609558710958221610562299 Tue Nov 29 10:49:02 2022 p121 factor: 1556929878325831179993201512275439374695602116265148148009350212296937642157183587620012158971209497960328507484068092401 Tue Nov 29 10:49:02 2022 elapsed time 00:10:15 (Msieve 1.54 - dependency 3) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.306). Factorization parameters were as follows: # # N = 67x10^170+32 = 74(169)8 # n: 2114898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989899 m: 10000000000000000000000000000000000 deg: 5 c5: 67 c0: 32 skew: 0.86 # Murphy_E = 2.796e-10 type: snfs lss: 1 rlim: 5100000 alim: 5100000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5100000/5100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved special-q in [100000, 8150000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1386636 hash collisions in 13913205 relations (13401282 unique) Msieve: matrix is 596024 x 596251 (206.1 MB) Sieving start time : 2022/11/29 09:57:33 Sieving end time : 2022/11/29 10:38:28 Total sieving time: 0hrs 40min 55secs. Total relation processing time: 0hrs 5min 6sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 1min 48sec. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,5100000,5100000,27,27,52,52,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | December 8, 2022 22:00:22 UTC 2022 年 12 月 9 日 (金) 7 時 0 分 22 秒 (日本時間) |
composite number 合成数 | 312215761728192475392755512150007731850128602334888124370870316611730321316064640360518303086881630401388805596046624432841607399<129> |
prime factors 素因数 | 41447931945645879313361779425865156635749552902787<50> 7532722311396066105428606202801281733996748018063473619390705260274981135094477<79> |
factorization results 素因数分解の結果 | 312215761728192475392755512150007731850128602334888124370870316611730321316064640360518303086881630401388805596046624432841607399=41447931945645879313361779425865156635749552902787*7532722311396066105428606202801281733996748018063473619390705260274981135094477 cado polynomial n: 312215761728192475392755512150007731850128602334888124370870316611730321316064640360518303086881630401388805596046624432841607399 skew: 0.22 type: snfs c0: 4 c5: 8375 Y0: 10000000000000000000000000000000000 Y1: -1 # f(x) = 8375*x^5+4 # g(x) = -x+10000000000000000000000000000000000 cado parameters (extracts) tasks.lim0 = 5500000 tasks.lim1 = 5500000 tasks.lpb0 = 27 tasks.lpb1 = 27 tasks.sieve.mfb0 = 52 tasks.sieve.mfb1 = 52 tasks.sieve.lambda0 = 2.4 tasks.sieve.lambda1 = 2.4 tasks.I = 12 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 41447931945645879313361779425865156635749552902787 7532722311396066105428606202801281733996748018063473619390705260274981135094477 Warning:Polynomial Selection (size optimized): some stats could not be displayed for polyselect1 (see log file for debug info) Warning:Polynomial Selection (root optimized): some stats could not be displayed for polyselect2 (see log file for debug info) Info:Generate Factor Base: Total cpu/real time for makefb: 2.63/0.652883 Info:Generate Free Relations: Total cpu/real time for freerel: 49.95/6.44981 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 12017494 Info:Lattice Sieving: Average J: 1892.44 for 536383 special-q, max bucket fill -bkmult 1.0,1s:1.135930 Info:Lattice Sieving: Total time: 73772.4s Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 29.24/22.2208 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 21.9s Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 178.73/74.5695 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 64.5s Info:Filtering - Singleton removal: Total cpu/real time for purge: 125.86/59.5694 Info:Filtering - Merging: Merged matrix has 882423 rows and total weight 151185739 (171.3 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 198.69/29.2135 Info:Filtering - Merging: Total cpu/real time for replay: 28.83/23.8555 Info:Linear Algebra: Total cpu/real time for bwc: 7864.73/2052.85 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: WCT time 1286.68, iteration CPU time 0.04, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (27648 iterations) Info:Linear Algebra: Lingen CPU time 93.07, WCT time 25.27 Info:Linear Algebra: Mksol: WCT time 711.14, iteration CPU time 0.05, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (13824 iterations) Info:Quadratic Characters: Total cpu/real time for characters: 41.67/10.1773 Info:Square Root: Total cpu/real time for sqrt: 273.85/51.4294 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 177856/39294.9 Info:root: Cleaning up computation data in /tmp/cado.n1p5fbwn 41447931945645879313361779425865156635749552902787 7532722311396066105428606202801281733996748018063473619390705260274981135094477 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | November 26, 2022 08:57:43 UTC 2022 年 11 月 26 日 (土) 17 時 57 分 43 秒 (日本時間) |
composite number 合成数 | 4628499246800086607283416327146240484990449967960860068916820062158182138114668555001572507226946650759<103> |
prime factors 素因数 | 989668427754228099980994454365057706004394275167<48> 4676818131202945766228382779255487250214881870165538777<55> |
factorization results 素因数分解の結果 | Number: 1 N=4628499246800086607283416327146240484990449967960860068916820062158182138114668555001572507226946650759 ( 103 digits) Divisors found: r1=989668427754228099980994454365057706004394275167 (pp48) r2=4676818131202945766228382779255487250214881870165538777 (pp55) Version: Msieve v. 1.52 (SVN 927) Total time: 4.77 hours. Scaled time: 37.44 units (timescale=7.849). Factorization parameters were as follows: name: 1 n: 4628499246800086607283416327146240484990449967960860068916820062158182138114668555001572507226946650759 skew: 17526.76 # norm 3.78e+014 c5: 19800 c4: -1432368936 c3: -22616594320684 c2: 409508847711040583 c1: 2457193720847361416584 c0: -19554279019071595578434060 # alpha -6.12 Y1: 45261789977 Y0: -47180336033674127469 # Murphy_E 2.16e-009 # M 2673262559661025766993857686401853659858205939197001909862271166572250724724499873294239899335826582497 type: gnfs rlim: 2300000 alim: 2300000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1150000, 1950001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 254054 x 254280 Total sieving time: 4.73 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.02 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: gnfs,102,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2300000,2300000,26,26,49,49,2.6,2.6,100000 total time: 4.77 hours. --------- CPU info (if available) ---------- |
software ソフトウェア | GNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | December 12, 2022 21:46:25 UTC 2022 年 12 月 13 日 (火) 6 時 46 分 25 秒 (日本時間) |
composite number 合成数 | 180984564042322630026639389029106799409070352940089984733027107935347658829446725437046202336557492322052392945827178526099559965820246118987<141> |
prime factors 素因数 | 5978968009302076858108677037584299317214773086847841590223<58> 30270201105064769177042040916267306174556889516515745808805192810704934208124163269<83> |
factorization results 素因数分解の結果 | 180984564042322630026639389029106799409070352940089984733027107935347658829446725437046202336557492322052392945827178526099559965820246118987=5978968009302076858108677037584299317214773086847841590223*30270201105064769177042040916267306174556889516515745808805192810704934208124163269 cado polynomial n: 180984564042322630026639389029106799409070352940089984733027107935347658829446725437046202336557492322052392945827178526099559965820246118987 skew: 0.54 type: snfs c0: 16 c5: 335 Y0: 100000000000000000000000000000000000 Y1: -1 # f(x) = 335*x^5+16 # g(x) = -x+100000000000000000000000000000000000 cado parameters (extracts) tasks.lim0 = 6400000 tasks.lim1 = 6400000 tasks.lpb0 = 28 tasks.lpb1 = 28 tasks.sieve.mfb0 = 53 tasks.sieve.mfb1 = 53 tasks.sieve.lambda0 = 2.5 tasks.sieve.lambda1 = 2.5 tasks.I = 12 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 30270201105064769177042040916267306174556889516515745808805192810704934208124163269 5978968009302076858108677037584299317214773086847841590223 Info:Square Root: Total cpu/real time for sqrt: 166.07/53.1105 Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 224.74/206.249 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 189.5s Info:Square Root: Total cpu/real time for sqrt: 166.07/53.1105 Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 93.3/89.8484 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 89.7s Info:Filtering - Singleton removal: Total cpu/real time for purge: 147.26/126.424 Info:Generate Free Relations: Total cpu/real time for freerel: 117.76/31.0738 Info:Filtering - Merging: Merged matrix has 758381 rows and total weight 129139554 (170.3 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 173.88/48.8942 Info:Filtering - Merging: Total cpu/real time for replay: 25.32/21.8015 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 22427140 Info:Lattice Sieving: Average J: 1894.49 for 579909 special-q, max bucket fill -bkmult 1.0,1s:1.201690 Info:Lattice Sieving: Total time: 100040s Info:Linear Algebra: Total cpu/real time for bwc: 8718.31/2353.49 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 5474.42, WCT time 1469.22, iteration CPU time 0.06, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (23808 iterations) Info:Linear Algebra: Lingen CPU time 136.83, WCT time 35.89 Info:Linear Algebra: Mksol: CPU time 2988.9, WCT time 804.1, iteration CPU time 0.06, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (12032 iterations) Info:Quadratic Characters: Total cpu/real time for characters: 24.85/10.1694 Info:Generate Factor Base: Total cpu/real time for makefb: 2.73/1.61623 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 193292/53292.2 Info:root: Cleaning up computation data in /tmp/cado.eqhl66n9 30270201105064769177042040916267306174556889516515745808805192810704934208124163269 5978968009302076858108677037584299317214773086847841590223 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | December 20, 2022 16:57:33 UTC 2022 年 12 月 21 日 (水) 1 時 57 分 33 秒 (日本時間) |
composite number 合成数 | 49630499954646341744374107489277956728384680745521635312428482874430695588093038103187531494834680737488738384566182826774911788786832994149413283136351<152> |
prime factors 素因数 | 69136443350477359073684403587959846682724880981039883<53> 717863076974492111922001672140396845564373762786062255363668430151718969294798160783708233650031997<99> |
factorization results 素因数分解の結果 | 49630499954646341744374107489277956728384680745521635312428482874430695588093038103187531494834680737488738384566182826774911788786832994149413283136351=69136443350477359073684403587959846682724880981039883*717863076974492111922001672140396845564373762786062255363668430151718969294798160783708233650031997 cado polynomial n: 49630499954646341744374107489277956728384680745521635312428482874430695588093038103187531494834680737488738384566182826774911788786832994149413283136351 skew: 0.34 type: snfs c0: 8 c5: 1675 Y0: 1000000000000000000000000000000000000 Y1: -1 # f(x) = 1675*x^5+8 # g(x) = -x+1000000000000000000000000000000000000 cado parameters (extracts) tasks.lim0 = 7900000 tasks.lim1 = 7900000 tasks.lpb0 = 28 tasks.lpb1 = 28 tasks.sieve.mfb0 = 53 tasks.sieve.mfb1 = 53 tasks.sieve.lambda0 = 2.5 tasks.sieve.lambda1 = 2.5 tasks.I = 12 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 69136443350477359073684403587959846682724880981039883 717863076974492111922001672140396845564373762786062255363668430151718969294798160783708233650031997 Info:Square Root: Total cpu/real time for sqrt: 284.36/92.6421 Info:Square Root: Total cpu/real time for sqrt: 284.36/92.6421 Info:Generate Free Relations: Total cpu/real time for freerel: 118.97/32.0179 Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 94.71/92.9196 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 92.8s Info:Filtering - Singleton removal: Total cpu/real time for purge: 119.3/108.092 Info:Filtering - Merging: Merged matrix has 1135015 rows and total weight 193651139 (170.6 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 289.58/80.5719 Info:Filtering - Merging: Total cpu/real time for replay: 39.6/34.8491 Info:Generate Factor Base: Total cpu/real time for makefb: 3.42/1.93517 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 22415507 Info:Lattice Sieving: Average J: 1895.69 for 1025092 special-q, max bucket fill -bkmult 1.0,1s:1.174900 Info:Lattice Sieving: Total time: 181250s Info:Linear Algebra: Total cpu/real time for bwc: 20124.2/5366.42 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 12755.88, WCT time 3378.86, iteration CPU time 0.09, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (35584 iterations) Info:Linear Algebra: Lingen CPU time 231.46, WCT time 59.85 Info:Linear Algebra: Mksol: CPU time 6948.06, WCT time 1844.81, iteration CPU time 0.1, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (17920 iterations) Info:Quadratic Characters: Total cpu/real time for characters: 37.64/17.139 Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 235/235.057 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 220.2s Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 356434/97137.5 Info:root: Cleaning up computation data in /tmp/cado.3mk9q1qt 69136443350477359073684403587959846682724880981039883 717863076974492111922001672140396845564373762786062255363668430151718969294798160783708233650031997 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 5, 2022 05:42:52 UTC 2022 年 12 月 5 日 (月) 14 時 42 分 52 秒 (日本時間) |
composite number 合成数 | 15361911000521619947692371839843677742262083720901229657429343059735145647868293944716518287919251846903054752629629023842360932070264134581577838271147600276302226797499<170> |
prime factors 素因数 | 1049296893705366010338436869034041043115771414812382903508184085549623<70> 14640194870180487708292405599717435226791587142163231318339386377218200647277505086169640927475398813<101> |
factorization results 素因数分解の結果 | Number: n N=15361911000521619947692371839843677742262083720901229657429343059735145647868293944716518287919251846903054752629629023842360932070264134581577838271147600276302226797499 ( 170 digits) SNFS difficulty: 183 digits. Divisors found: Mon Dec 5 16:31:40 2022 p70 factor: 1049296893705366010338436869034041043115771414812382903508184085549623 Mon Dec 5 16:31:40 2022 p101 factor: 14640194870180487708292405599717435226791587142163231318339386377218200647277505086169640927475398813 Mon Dec 5 16:31:40 2022 elapsed time 00:18:18 (Msieve 1.54 - dependency 6) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.305). Factorization parameters were as follows: # # N = 67x10^183+32 = 74(182)8 # n: 15361911000521619947692371839843677742262083720901229657429343059735145647868293944716518287919251846903054752629629023842360932070264134581577838271147600276302226797499 m: 1000000000000000000000000000000000000 deg: 5 c5: 8375 c0: 4 skew: 0.22 # Murphy_E = 6.724e-11 type: snfs lss: 1 rlim: 8100000 alim: 8100000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.5 alambda: 2.5 Factor base limits: 8100000/8100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved special-q in [100000, 16850000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1617297 hash collisions in 12444730 relations (11489466 unique) Msieve: matrix is 809306 x 809533 (278.5 MB) Sieving start time : 2022/12/05 12:39:33 Sieving end time : 2022/12/05 16:13:03 Total sieving time: 3hrs 33min 30secs. Total relation processing time: 0hrs 9min 25sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 5min 39sec. Prototype def-par.txt line would be: snfs,183,5,0,0,0,0,0,0,0,0,8100000,8100000,27,27,50,50,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 26, 2023 16:07:26 UTC 2023 年 3 月 27 日 (月) 1 時 7 分 26 秒 (日本時間) |
composite number 合成数 | 55419375998495782642937863948703695521093401494452652299476330304534670593162586433296853552828091421887870602198626607583601984063023699629359136382712471<155> |
prime factors 素因数 | 83788198960863966566611589660914231230375717494196568638691652950189677229<74> 661422213220995769262691900302523343519989974608602160938058546810967056465049299<81> |
factorization results 素因数分解の結果 | Number: n N=55419375998495782642937863948703695521093401494452652299476330304534670593162586433296853552828091421887870602198626607583601984063023699629359136382712471 ( 155 digits) SNFS difficulty: 186 digits. Divisors found: Mon Mar 27 00:11:38 2023 prp74 factor: 83788198960863966566611589660914231230375717494196568638691652950189677229 Mon Mar 27 00:11:38 2023 prp81 factor: 661422213220995769262691900302523343519989974608602160938058546810967056465049299 Mon Mar 27 00:11:38 2023 elapsed time 00:46:55 (Msieve 1.44 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.082). Factorization parameters were as follows: # # N = 67x10^185+32 = 74(184)8 # n: 55419375998495782642937863948703695521093401494452652299476330304534670593162586433296853552828091421887870602198626607583601984063023699629359136382712471 m: 10000000000000000000000000000000000000 deg: 5 c5: 67 c0: 32 skew: 0.86 # Murphy_E = 6.947e-11 type: snfs lss: 1 rlim: 9100000 alim: 9100000 lpbr: 27 lpba: 27 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 9100000/9100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 53/53 Sieved special-q in [100000, 8550000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1261709 hash collisions in 13364641 relations (12952633 unique) Msieve: matrix is 1174038 x 1174263 (333.9 MB) Sieving start time: 2023/03/26 19:53:55 Sieving end time : 2023/03/26 23:24:26 Total sieving time: 3hrs 30min 31secs. Total relation processing time: 0hrs 40min 53sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 2min 55sec. Prototype def-par.txt line would be: snfs,186,5,0,0,0,0,0,0,0,0,9100000,9100000,27,27,53,53,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | February 16, 2023 10:23:49 UTC 2023 年 2 月 16 日 (木) 19 時 23 分 49 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 9, 2022 20:21:28 UTC 2022 年 12 月 10 日 (土) 5 時 21 分 28 秒 (日本時間) |
composite number 合成数 | 2392291955316904503242402621249742222894685136997254632387697911732413843049822652581756509968591494403338032774147664601670750367186361396755115261772619111<157> |
prime factors 素因数 | 252178539314968857987108196473266870231<39> 335361722715986446352653371969325894817734627154823912457<57> 28287369480415418252296309225384723405222453894796553398328233<62> |
factorization results 素因数分解の結果 | Number: n N=9486500960055733091387458865545368195560101288062427630078506789800742636682245289198172530651522306992187196143498481 ( 118 digits) Divisors found: Sat Dec 10 06:55:02 2022 p57 factor: 335361722715986446352653371969325894817734627154823912457 Sat Dec 10 06:55:02 2022 p62 factor: 28287369480415418252296309225384723405222453894796553398328233 Sat Dec 10 06:55:02 2022 elapsed time 00:05:00 (Msieve 1.54 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.357). Factorization parameters were as follows: # # N = 67x10^187+32 = 74(186)8 # # GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] # Input number is 2392291955316904503242402621249742222894685136997254632387697911732413843049822652581756509968591494403338032774147664601670750367186361396755115261772619111 (157 digits) # Using B1=28400000, B2=144287903776, polynomial Dickson(12), sigma=1:1878080523 # Step 1 took 67390ms # Step 2 took 24638ms # ********** Factor found in step 2: 252178539314968857987108196473266870231 # Found prime factor of 39 digits: 252178539314968857987108196473266870231 # Composite cofactor 9486500960055733091387458865545368195560101288062427630078506789800742636682245289198172530651522306992187196143498481 has 118 digits # n: 9486500960055733091387458865545368195560101288062427630078506789800742636682245289198172530651522306992187196143498481 Y0: -148356993895815757637473 Y1: 2640804994559 c0: 13785033667348733684111371776 c1: 4187168082806513227063288 c2: 26675340227073114048 c3: -65626179495720 c4: -136600669 c5: 132 # skew 392484.47, size 2.511e-11, alpha -5.598, combined = 3.716e-10 rroots = 5 skew: 392484.47 type: gnfs rlim: 2600000 alim: 2600000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 2600000/2600000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved special-q in [100000, 6900000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 954160 hash collisions in 6974108 relations (6233940 unique) Msieve: matrix is 395734 x 395959 (139.6 MB) Sieving start time : 2022/12/10 06:12:58 Sieving end time : 2022/12/10 06:49:46 Total sieving time: 0hrs 36min 48secs. Total relation processing time: 0hrs 2min 15sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 59sec. Prototype def-par.txt line would be: gnfs,117,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2600000,2600000,26,26,49,49,2.6,2.6,60000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 10, 2022 19:35:10 UTC 2022 年 12 月 11 日 (日) 4 時 35 分 10 秒 (日本時間) |
composite number 合成数 | 234670085425964350888212273839997371183320032553692373508086444006240787768618371769895587587886145030107319729125114649830716245899487821220776199158538468875884553586186392639<177> |
prime factors 素因数 | 1089501064790774151489809194844302590493205914946349306202834763340951777803881<79> 215392249727658574707313896476510233866835300792601433050198840468999257601945469026264996378146919<99> |
factorization results 素因数分解の結果 | Number: n N=234670085425964350888212273839997371183320032553692373508086444006240787768618371769895587587886145030107319729125114649830716245899487821220776199158538468875884553586186392639 ( 177 digits) SNFS difficulty: 192 digits. Divisors found: Sun Dec 11 06:17:29 2022 p79 factor: 1089501064790774151489809194844302590493205914946349306202834763340951777803881 Sun Dec 11 06:17:29 2022 p99 factor: 215392249727658574707313896476510233866835300792601433050198840468999257601945469026264996378146919 Sun Dec 11 06:17:29 2022 elapsed time 00:48:19 (Msieve 1.54 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.352). Factorization parameters were as follows: # # N = 67x10^191+32 = 74(190)8 # n: 234670085425964350888212273839997371183320032553692373508086444006240787768618371769895587587886145030107319729125114649830716245899487821220776199158538468875884553586186392639 m: 100000000000000000000000000000000000000 deg: 5 c5: 335 c0: 16 skew: 0.54 # Murphy_E = 3.861e-11 type: snfs lss: 1 rlim: 11300000 alim: 11300000 lpbr: 27 lpba: 27 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 11300000/11300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 53/53 Sieved special-q in [100000, 18450000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1292002 hash collisions in 12503786 relations (11969671 unique) Msieve: matrix is 1510837 x 1511063 (532.4 MB) Sieving start time : 2022/12/11 02:01:27 Sieving end time : 2022/12/11 05:28:49 Total sieving time: 3hrs 27min 22secs. Total relation processing time: 0hrs 42min 17sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 2min 8sec. Prototype def-par.txt line would be: snfs,192,5,0,0,0,0,0,0,0,0,11300000,11300000,27,27,53,53,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | December 9, 2022 11:33:45 UTC 2022 年 12 月 9 日 (金) 20 時 33 分 45 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 12, 2022 04:43:07 UTC 2022 年 12 月 12 日 (月) 13 時 43 分 7 秒 (日本時間) |
composite number 合成数 | 297873097168871816759140702802674633660549153506899985773225209844928154787309716887181675914070280267463366054915350689998577322520984492815478730971688718167591407028026746336605491535069<189> |
prime factors 素因数 | 252292466511093344368982555348685777123227723287<48> 183179043688601265672573033991232397501197775982307<51> 6445419832395272088089972135065249471097129332134494978700321486613629249974476624949276441<91> |
factorization results 素因数分解の結果 | Number: n N=297873097168871816759140702802674633660549153506899985773225209844928154787309716887181675914070280267463366054915350689998577322520984492815478730971688718167591407028026746336605491535069 ( 189 digits) SNFS difficulty: 193 digits. Divisors found: Mon Dec 12 15:18:51 2022 found factor: 252292466511093344368982555348685777123227723287 Mon Dec 12 15:28:02 2022 p48 factor: 252292466511093344368982555348685777123227723287 Mon Dec 12 15:28:02 2022 p51 factor: 183179043688601265672573033991232397501197775982307 Mon Dec 12 15:28:02 2022 p91 factor: 6445419832395272088089972135065249471097129332134494978700321486613629249974476624949276441 Mon Dec 12 15:28:02 2022 elapsed time 01:03:18 (Msieve 1.54 - dependency 5) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.327). Factorization parameters were as follows: # # N = 67x10^192+32 = 74(191)8 # n: 297873097168871816759140702802674633660549153506899985773225209844928154787309716887181675914070280267463366054915350689998577322520984492815478730971688718167591407028026746336605491535069 m: 100000000000000000000000000000000000000 deg: 5 c5: 1675 c0: 8 skew: 0.34 # Murphy_E = 3.149e-11 type: snfs lss: 1 rlim: 11600000 alim: 11600000 lpbr: 27 lpba: 27 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 11600000/11600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 53/53 Sieved special-q in [100000, 18616601) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1486518 hash collisions in 13039414 relations (12312354 unique) Msieve: matrix is 1543286 x 1543511 (540.7 MB) Sieving start time : 2022/12/12 10:07:56 Sieving end time : 2022/12/12 14:24:24 Total sieving time: 4hrs 16min 28secs. Total relation processing time: 0hrs 47min 43sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 11min 29sec. Prototype def-par.txt line would be: snfs,193,5,0,0,0,0,0,0,0,0,11600000,11600000,27,27,53,53,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 / 2078 | Dmitry Domanov | December 10, 2022 16:37:34 UTC 2022 年 12 月 11 日 (日) 1 時 37 分 34 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 21, 2022 07:31:33 UTC 2022 年 12 月 21 日 (水) 16 時 31 分 33 秒 (日本時間) |
composite number 合成数 | 152144931904526636967884032891670644797545727627662273343406008375948745346195265471829953712675365494398554420581797712301517219500508537101975298769<150> |
prime factors 素因数 | 2731296277546393864063441461456424345623149266709<49> 55704294387719458789585763350082835983468683767698867541361585994891668969319562524548043226929339341<101> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 152144931904526636967884032891670644797545727627662273343406008375948745346195265471829953712675365494398554420581797712301517219500508537101975298769 (150 digits) Using B1=25370000, B2=96190324246, polynomial Dickson(12), sigma=1:2655638945 Step 1 took 51005ms Step 2 took 17901ms ********** Factor found in step 2: 2731296277546393864063441461456424345623149266709 Found prime factor of 49 digits: 2731296277546393864063441461456424345623149266709 Prime cofactor 55704294387719458789585763350082835983468683767698867541361585994891668969319562524548043226929339341 has 101 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | December 10, 2022 16:37:41 UTC 2022 年 12 月 11 日 (日) 1 時 37 分 41 秒 (日本時間) |
2350 | Ignacio Santos | December 11, 2022 16:30:26 UTC 2022 年 12 月 12 日 (月) 1 時 30 分 26 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | November 29, 2022 16:21:15 UTC 2022 年 11 月 30 日 (水) 1 時 21 分 15 秒 (日本時間) |
composite number 合成数 | 12676811174571064422893345911677181202649850729620563919171563174389754731655641230531529454657388901054802279778954846851516313419<131> |
prime factors 素因数 | 93861197370298441476321677441020711964778977663398817<53> 135059124853893361090853045645278760995724237706612921632403347414690013920107<78> |
factorization results 素因数分解の結果 | 12676811174571064422893345911677181202649850729620563919171563174389754731655641230531529454657388901054802279778954846851516313419=93861197370298441476321677441020711964778977663398817*135059124853893361090853045645278760995724237706612921632403347414690013920107 cado polynomial n: 12676811174571064422893345911677181202649850729620563919171563174389754731655641230531529454657388901054802279778954846851516313419 skew: 14545.015 c0: 1455890097687104365177636800 c1: -215349731685725661040305 c2: -48778545182337121369 c3: -2244216221047120 c4: 141821051904 c5: -2004120 Y0: -8242178424820580411948686 Y1: 260654873089265357 # MurphyE (Bf=2.684e+08,Bg=2.684e+08,area=9.547e+13) = 4.496e-07 # f(x) = -2004120*x^5+141821051904*x^4-2244216221047120*x^3-48778545182337121369*x^2-215349731685725661040305*x+1455890097687104365177636800 # g(x) = 260654873089265357*x-8242178424820580411948686 cado parameters (extracts) tasks.lim0 = 13124945 tasks.lim1 = 44217255 tasks.lpb0 = 28 tasks.lpb1 = 28 tasks.sieve.mfb0 = 56 tasks.sieve.mfb1 = 56 tasks.I = 14 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 93861197370298441476321677441020711964778977663398817 135059124853893361090853045645278760995724237706612921632403347414690013920107 Info:Complete Factorization / Discrete logarithm: Square Root Info:Square Root: Total cpu/real time for sqrt: 899.3/274.108 Info:HTTP server: Got notification to stop serving Workunits Info:Quadratic Characters: Total cpu/real time for characters: 71.61/30.8987 Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 99.14/100.164 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 99.6s Info:Filtering - Singleton removal: Total cpu/real time for purge: 209.72/211.137 Info:Filtering - Merging: Merged matrix has 1820498 rows and total weight 311839189 (171.3 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 502.6/146.862 Info:Filtering - Merging: Total cpu/real time for replay: 73.13/77.0333 Info:Generate Factor Base: Total cpu/real time for makefb: 38.57/10.2788 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 23987063 Info:Lattice Sieving: Average J: 7598.94 for 68118 special-q, max bucket fill -bkmult 1.0,1s:1.072400 Info:Lattice Sieving: Total time: 94029.6s Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 354.8/362.477 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 293.09999999999997s Info:Linear Algebra: Total cpu/real time for bwc: 62520.6/16475.8 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 40002.58, WCT time 10340.69, iteration CPU time 0.17, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (57088 iterations) Info:Linear Algebra: Lingen CPU time 266.72, WCT time 272.2 Info:Linear Algebra: Mksol: CPU time 21829.27, WCT time 5659.67, iteration CPU time 0.18, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (28672 iterations) Info:Generate Free Relations: Total cpu/real time for freerel: 250.34/64.7177 Info:Polynomial Selection (root optimized): Aggregate statistics: Info:Polynomial Selection (root optimized): Total time: 5373.4 Info:Polynomial Selection (root optimized): Rootsieve time: 5370.87 Info:Polynomial Selection (size optimized): Aggregate statistics: Info:Polynomial Selection (size optimized): potential collisions: 40925.7 Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 28208/37.720/46.468/50.010/0.839 Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 22541/37.440/41.619/47.270/0.907 Info:Polynomial Selection (size optimized): Total time: 4636.05 Info:Square Root: Total cpu/real time for sqrt: 899.3/274.108 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire Complete Factorization 251455/67762.5 Info:root: Cleaning up computation data in /tmp/cado.7tlnwopt 93861197370298441476321677441020711964778977663398817 135059124853893361090853045645278760995724237706612921632403347414690013920107 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | November 26, 2022 14:05:03 UTC 2022 年 11 月 26 日 (土) 23 時 5 分 3 秒 (日本時間) |
name 名前 | ebina |
---|---|
date 日付 | November 27, 2022 21:03:24 UTC 2022 年 11 月 28 日 (月) 6 時 3 分 24 秒 (日本時間) |
composite number 合成数 | 3968408017992517051297068927449726174555606692046770729856212362338238125315582556009223384538483840862913384166398760233927462933<130> |
prime factors 素因数 | 540193514853414758159091319695600911285428251271052389<54> 7346271121135861803556920851409125041778296343823531476573235819851696230897<76> |
factorization results 素因数分解の結果 | Number: 74448_195 N = 3968408017992517051297068927449726174555606692046770729856212362338238125315582556009223384538483840862913384166398760233927462933 (130 digits) Divisors found: r1=540193514853414758159091319695600911285428251271052389 (pp54) r2=7346271121135861803556920851409125041778296343823531476573235819851696230897 (pp76) Version: Msieve v. 1.53 (SVN unknown) Total time: 18.71 hours. Factorization parameters were as follows: n: 3968408017992517051297068927449726174555606692046770729856212362338238125315582556009223384538483840862913384166398760233927462933 # norm 1.655730e-12 alpha -6.818593 e 7.245e-11 rroots 3 skew: 1430479.20 c0: -1563819269974471663788506479196640 c1: -6692748218916049766907736814 c2: 2004971125634512251189 c3: 8848524080496465 c4: -1527401353 c5: 420 Y0: -24835536829582558522436399 Y1: 11500032132049 type: gnfs Factor base limits: 7200000/7200000 Large primes per side: 3 Large prime bits: 28/28 Sieved algebraic special-q in [0, 0) Total raw relations: 20113150 Relations: 2675104 relations Pruned matrix : 1501695 x 1501928 Polynomial selection time: 0.19 hours. Total sieving time: 16.72 hours. Total relation processing time: 0.26 hours. Matrix solve time: 1.41 hours. time per square root: 0.13 hours. Prototype def-par.txt line would be: gnfs,129,5,65,2000,1e-05,0.28,250,20,50000,3600,7200000,7200000,28,28,55,55,2.5,2.5,100000 total time: 18.71 hours. Intel64 Family 6 Model 42 Stepping 7, GenuineIntel processors: 8, speed: 3.39GHz Windows-7-6.1.7601-SP1 Running Python 3.2 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2080 | ebina | November 26, 2022 02:24:01 UTC 2022 年 11 月 26 日 (土) 11 時 24 分 1 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | February 10, 2023 16:03:22 UTC 2023 年 2 月 11 日 (土) 1 時 3 分 22 秒 (日本時間) |
composite number 合成数 | 65542269695163246201129774397838944900452704058943581689046837212648371054767878760463292703591272007927644517055594492413661979869995988499646090116123070347443950793897876722689<179> |
prime factors 素因数 | 43952150958992583680413429301356818293<38> |
composite cofactor 合成数の残り | 1491218706368074511682505084841926466072292231064775897960556127931178080860427142154789443319504525178699298237170163181922280684601671806173<142> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:3090258194 Step 1 took 7453ms ********** Factor found in step 1: 43952150958992583680413429301356818293 Found prime factor of 38 digits: 43952150958992583680413429301356818293 Composite cofactor 1491218706368074511682505084841926466072292231064775897960556127931178080860427142154789443319504525178699298237170163181922280684601671806173 has 142 digits |
software ソフトウェア | GMP-ECM |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | July 13, 2023 07:15:39 UTC 2023 年 7 月 13 日 (木) 16 時 15 分 39 秒 (日本時間) |
composite number 合成数 | 1491218706368074511682505084841926466072292231064775897960556127931178080860427142154789443319504525178699298237170163181922280684601671806173<142> |
prime factors 素因数 | 509986698748297168763189018016503378926564827880318336445721020101877<69> 2924034509190331405642895994323661210737443536689736493709141303540344649<73> |
factorization results 素因数分解の結果 | 1491218706368074511682505084841926466072292231064775897960556127931178080860427142154789443319504525178699298237170163181922280684601671806173=509986698748297168763189018016503378926564827880318336445721020101877*2924034509190331405642895994323661210737443536689736493709141303540344649 cado polynomial n: 1491218706368074511682505084841926466072292231064775897960556127931178080860427142154789443319504525178699298237170163181922280684601671806173 skew: 0.22 type: snfs c0: 4 c5: 8375 Y0: 1000000000000000000000000000000000000000 Y1: -1 # f(x) = 8375*x^5+4 # g(x) = -x+1000000000000000000000000000000000000000 cado parameters (extracts) tasks.lim0 = 14500000 tasks.lim1 = 14500000 tasks.lpb0 = 28 tasks.lpb1 = 28 tasks.sieve.mfb0 = 55 tasks.sieve.mfb1 = 55 tasks.sieve.lambda0 = 2.5 tasks.sieve.lambda1 = 2.5 tasks.I = 13 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 2924034509190331405642895994323661210737443536689736493709141303540344649 509986698748297168763189018016503378926564827880318336445721020101877 Info:Complete Factorization / Discrete logarithm: Square Root Info:Square Root: Total cpu/real time for sqrt: 2804.53/151.494 Info:HTTP server: Got notification to stop serving Workunits Info:Linear Algebra: Total cpu/real time for bwc: 65593.8/8242.03 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 43283.88, WCT time 5450.12, iteration CPU time 0.04, COMM 0.0, cpu-wait 0.04, comm-wait 0.0 (68608 iterations) Info:Linear Algebra: Lingen CPU time 409.3, WCT time 25.76 Info:Linear Algebra: Mksol: CPU time 21483.12, WCT time 2715.39, iteration CPU time 0.04, COMM 0.0, cpu-wait 0.04, comm-wait 0.0 (34304 iterations) Info:Generate Factor Base: Total cpu/real time for makefb: 2.17/0.335296 Info:Square Root: Total cpu/real time for sqrt: 2804.53/151.494 Info:Generate Free Relations: Total cpu/real time for freerel: 69.68/6.18015 Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 102.26/77.8426 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 77.50000000000001s Info:Quadratic Characters: Total cpu/real time for characters: 57.62/11.2235 Info:Filtering - Singleton removal: Total cpu/real time for purge: 329.47/230.465 Info:Filtering - Merging: Merged matrix has 2186710 rows and total weight 372769493 (170.5 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 487.96/28.8095 Info:Filtering - Merging: Total cpu/real time for replay: 40.83/35.7508 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 25832470 Info:Lattice Sieving: Average J: 3790.55 for 1276909 special-q, max bucket fill -bkmult 1.0,1s:1.082740 Info:Lattice Sieving: Total time: 420151s Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 439.77/323.933 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 229.0s Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire Complete Factorization 867631/43868 Info:root: Cleaning up computation data in /tmp/cado.ng49yzf2 2924034509190331405642895994323661210737443536689736493709141303540344649 509986698748297168763189018016503378926564827880318336445721020101877 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)] 13th Gen Intel(R) Core(TM) i7-13700KF (24 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | December 10, 2022 16:37:50 UTC 2022 年 12 月 11 日 (日) 1 時 37 分 50 秒 (日本時間) |
2350 | Ignacio Santos | February 15, 2023 10:40:52 UTC 2023 年 2 月 15 日 (水) 19 時 40 分 52 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | May 13, 2023 14:34:50 UTC 2023 年 5 月 13 日 (土) 23 時 34 分 50 秒 (日本時間) |
composite number 合成数 | 1058718700400693234689335293552733336034494560190862756523644856035858479565675486905113438977623575117039453005646102496747109748947820706636308885539998421631590450317534627069524510963<187> |
prime factors 素因数 | 667798465983845295214067561055736560029306718057363071917220821<63> 1585386541493350310030138339678153695092256009573926226518072326583120377854685989314104615738212187117679993883587410478503<124> |
factorization results 素因数分解の結果 | Number: n N=1058718700400693234689335293552733336034494560190862756523644856035858479565675486905113438977623575117039453005646102496747109748947820706636308885539998421631590450317534627069524510963 ( 187 digits) SNFS difficulty: 200 digits. Divisors found: Fri May 12 12:45:32 2023 prp63 factor: 667798465983845295214067561055736560029306718057363071917220821 Fri May 12 12:45:32 2023 prp124 factor: 1585386541493350310030138339678153695092256009573926226518072326583120377854685989314104615738212187117679993883587410478503 Fri May 12 12:45:32 2023 elapsed time 02:32:53 (Msieve 1.44 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.097). Factorization parameters were as follows: # # N = 67x10^199+32 = 74(198)8 # n: 1058718700400693234689335293552733336034494560190862756523644856035858479565675486905113438977623575117039453005646102496747109748947820706636308885539998421631590450317534627069524510963 m: 5000000000000000000000000000000000000000 deg: 5 c5: 67 c0: 10 skew: 0.68 # Murphy_E = 1.577e-11 type: snfs lss: 1 rlim: 15300000 alim: 15300000 lpbr: 27 lpba: 27 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 15300000/15300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 56/56 Sieved special-q in [100000, 33250000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1960720 hash collisions in 14513494 relations (13323942 unique) Msieve: matrix is 2224094 x 2224320 (630.8 MB) Sieving start time: 2023/05/11 20:11:40 Sieving end time : 2023/05/12 10:12:22 Total sieving time: 14hrs 0min 42secs. Total relation processing time: 2hrs 23min 5sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 5min 40sec. Prototype def-par.txt line would be: snfs,200,5,0,0,0,0,0,0,0,0,15300000,15300000,27,27,56,56,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | December 10, 2022 16:38:07 UTC 2022 年 12 月 11 日 (日) 1 時 38 分 7 秒 (日本時間) |
2350 | Ignacio Santos | May 9, 2023 15:46:43 UTC 2023 年 5 月 10 日 (水) 0 時 46 分 43 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | July 18, 2023 19:19:06 UTC 2023 年 7 月 19 日 (水) 4 時 19 分 6 秒 (日本時間) |
composite number 合成数 | 600167833297327388072964362529935027250370217229984794950002204979727138193303781295155636313402119912270189313286494049450403200301551519630985237421615866551609940861043718389113<180> |
prime factors 素因数 | 6346075496239295323499048131881160367264160628508147414992759<61> 94573068607990681714719638241274152708239216131294802298891797275709397409841842164447842693783098673985124770577432207<119> |
factorization results 素因数分解の結果 | Number: n N=600167833297327388072964362529935027250370217229984794950002204979727138193303781295155636313402119912270189313286494049450403200301551519630985237421615866551609940861043718389113 ( 180 digits) SNFS difficulty: 202 digits. Divisors found: Wed Jul 19 05:14:27 2023 prp61 factor: 6346075496239295323499048131881160367264160628508147414992759 Wed Jul 19 05:14:27 2023 prp119 factor: 94573068607990681714719638241274152708239216131294802298891797275709397409841842164447842693783098673985124770577432207 Wed Jul 19 05:14:27 2023 elapsed time 01:49:01 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.104). Factorization parameters were as follows: # # N = 67x10^201+32 = 74(200)8 # n: 600167833297327388072964362529935027250370217229984794950002204979727138193303781295155636313402119912270189313286494049450403200301551519630985237421615866551609940861043718389113 m: 10000000000000000000000000000000000000000 deg: 5 c5: 335 c0: 16 skew: 0.54 # Murphy_E = 1.48e-11 type: snfs lss: 1 rlim: 16600000 alim: 16600000 lpbr: 27 lpba: 27 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 16600000/16600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 56/56 Sieved special-q in [100000, 26700000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2393372 hash collisions in 17479811 relations (15661234 unique) Msieve: matrix is 1870423 x 1870648 (531.2 MB) Sieving start time: 2023/07/18 18:50:38 Sieving end time : 2023/07/19 03:25:04 Total sieving time: 8hrs 34min 26secs. Total relation processing time: 1hrs 42min 8sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 2min 18sec. Prototype def-par.txt line would be: snfs,202,5,0,0,0,0,0,0,0,0,16600000,16600000,27,27,56,56,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | December 20, 2022 20:54:40 UTC 2022 年 12 月 21 日 (水) 5 時 54 分 40 秒 (日本時間) |
2350 | Ignacio Santos | July 9, 2023 14:28:00 UTC 2023 年 7 月 9 日 (日) 23 時 28 分 0 秒 (日本時間) |
composite cofactor 合成数の残り | 155053465836252264222056316143219337272510274270797967409416646710914261611662365377757582040715698249605730140942194619695058355047365908164292176680512307<156> |
---|
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | December 19, 2022 21:14:32 UTC 2022 年 12 月 20 日 (火) 6 時 14 分 32 秒 (日本時間) |
2350 | Ignacio Santos | October 6, 2023 10:02:05 UTC 2023 年 10 月 6 日 (金) 19 時 2 分 5 秒 (日本時間) | |||
45 | 11e6 | 4480 | Ignacio Santos | October 21, 2023 07:16:49 UTC 2023 年 10 月 21 日 (土) 16 時 16 分 49 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | April 20, 2024 15:20:22 UTC 2024 年 4 月 21 日 (日) 0 時 20 分 22 秒 (日本時間) |
composite number 合成数 | 15505847972705264101157004718221250584130750494150546139108655355081141408149466376656394852391733077982103196556016935533441902040810280997439822498309631140408369417987302052807641578112074602846633<200> |
prime factors 素因数 | 668846618588264436725622029665223095324993<42> 150049489194481206740291714007915805350629199574041825251<57> 154502127656474895189720401256856343142821369291949276566804264923530845301239503825925616994778417731<102> |
factorization results 素因数分解の結果 | Number: n N=15505847972705264101157004718221250584130750494150546139108655355081141408149466376656394852391733077982103196556016935533441902040810280997439822498309631140408369417987302052807641578112074602846633 ( 200 digits) SNFS difficulty: 206 digits. Divisors found: Sun Apr 21 01:17:02 2024 prp42 factor: 668846618588264436725622029665223095324993 Sun Apr 21 01:17:02 2024 prp57 factor: 150049489194481206740291714007915805350629199574041825251 Sun Apr 21 01:17:02 2024 prp102 factor: 154502127656474895189720401256856343142821369291949276566804264923530845301239503825925616994778417731 Sun Apr 21 01:17:02 2024 elapsed time 01:58:42 (Msieve 1.44 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=1.903). Factorization parameters were as follows: # # N = 67x10^205+32 = 74(204)8 # n: 15505847972705264101157004718221250584130750494150546139108655355081141408149466376656394852391733077982103196556016935533441902040810280997439822498309631140408369417987302052807641578112074602846633 m: 100000000000000000000000000000000000000000 deg: 5 c5: 67 c0: 32 skew: 0.86 # Murphy_E = 1.022e-11 type: snfs lss: 1 rlim: 19600000 alim: 19600000 lpbr: 27 lpba: 27 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 19600000/19600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 56/56 Sieved special-q in [100000, 6600000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 4643964 hash collisions in 23960782 relations (19680674 unique) Msieve: matrix is 1891695 x 1891921 (530.6 MB) Sieving start time: 2024/04/20 09:07:03 Sieving end time : 2024/04/20 23:17:52 Total sieving time: 14hrs 10min 49secs. Total relation processing time: 1hrs 47min 27sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 4min 35sec. Prototype def-par.txt line would be: snfs,206,5,0,0,0,0,0,0,0,0,19600000,19600000,27,27,56,56,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 / 2078 | Dmitry Domanov | January 13, 2023 08:03:11 UTC 2023 年 1 月 13 日 (金) 17 時 3 分 11 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | July 18, 2024 20:34:58 UTC 2024 年 7 月 19 日 (金) 5 時 34 分 58 秒 (日本時間) |
composite number 合成数 | 115645819475580672637577314867913033740109070209576410074773598687176220351768045305883196562921104155119461084000262936754939867078576718919939111898142037998885207<165> |
prime factors 素因数 | 685528696439699782796888215346489626623471656203<48> 109313649309328084501955799924024262862332655546738476027<57> 1543227329450736422093825356622552667061599817076828786639647<61> |
factorization results 素因数分解の結果 | Number: n N=115645819475580672637577314867913033740109070209576410074773598687176220351768045305883196562921104155119461084000262936754939867078576718919939111898142037998885207 ( 165 digits) SNFS difficulty: 207 digits. Divisors found: Mon Jul 15 18:05:12 2024 prp48 factor: 685528696439699782796888215346489626623471656203 Mon Jul 15 18:05:12 2024 prp57 factor: 109313649309328084501955799924024262862332655546738476027 Mon Jul 15 18:05:12 2024 prp61 factor: 1543227329450736422093825356622552667061599817076828786639647 Mon Jul 15 18:05:12 2024 elapsed time 03:53:09 (Msieve 1.44 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.127). Factorization parameters were as follows: # # N = 67x10^206+32 = 74(205)8 # n: 115645819475580672637577314867913033740109070209576410074773598687176220351768045305883196562921104155119461084000262936754939867078576718919939111898142037998885207 m: 100000000000000000000000000000000000000000 deg: 5 c5: 335 c0: 16 skew: 0.54 # Murphy_E = 9.104e-12 type: snfs lss: 1 rlim: 20000000 alim: 20000000 lpbr: 27 lpba: 27 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 q0: 70000000 qintsize: 50000 Factor base limits: 20000000/20000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 56/56 Sieved special-q in [70000000, 100800000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 4282133 hash collisions in 25294690 relations (21901619 unique) Msieve: matrix is 2643188 x 2643413 (750.1 MB) Sieving start time: 2024/07/14 22:48:47 Sieving end time : 2024/07/15 14:08:46 Total sieving time: 15hrs 19min 59secs. Total relation processing time: 3hrs 39min 53sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 6min 51sec. Prototype def-par.txt line would be: snfs,207,5,0,0,0,0,0,0,0,0,20000000,20000000,27,27,56,56,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | December 19, 2022 21:15:01 UTC 2022 年 12 月 20 日 (火) 6 時 15 分 1 秒 (日本時間) |
2350 | Ignacio Santos | July 10, 2024 15:58:39 UTC 2024 年 7 月 11 日 (木) 0 時 58 分 39 秒 (日本時間) |
name 名前 | anonymous |
---|---|
date 日付 | October 11, 2023 02:30:59 UTC 2023 年 10 月 11 日 (水) 11 時 30 分 59 秒 (日本時間) |
composite number 合成数 | 357577624129408287600278704329199332593696786877386345179279478441681988916421683161445703789166965083880130586703358108888661062846920159371041636689832935910628545606467<171> |
prime factors 素因数 | 15590522020051351453646492612176353499460335530721<50> 22935577376403366406443059064438767529017387819724095001882334402164547140058489566764599951988137511490128033312977637027<122> |
factorization results 素因数分解の結果 | prp50 = 15590522020051351453646492612176353499460335530721 (curve 126 stg2 B1=1000000 sigma=1961859508 thread=10) |
software ソフトウェア | yafu 2.10 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 / 2078 | Dmitry Domanov | December 19, 2022 21:15:12 UTC 2022 年 12 月 20 日 (火) 6 時 15 分 12 秒 (日本時間) |
composite cofactor 合成数の残り | 1379396472579149957709483992923586159175978522639110073127608609480881961141601628808747085690905451621782181493334542650062413873229678322765210136582071<154> |
---|
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | December 19, 2022 21:15:20 UTC 2022 年 12 月 20 日 (火) 6 時 15 分 20 秒 (日本時間) |
2350 | ccc | May 30, 2023 15:09:30 UTC 2023 年 5 月 31 日 (水) 0 時 9 分 30 秒 (日本時間) | |||
45 | 11e6 | 4480 | Ignacio Santos | January 2, 2025 09:29:23 UTC 2025 年 1 月 2 日 (木) 18 時 29 分 23 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 21, 2022 09:01:17 UTC 2022 年 12 月 21 日 (水) 18 時 1 分 17 秒 (日本時間) |
composite number 合成数 | 155079120719216551110040673447083830097305001723468139845363918154363462921056775803117331306458458565702089969251408929165386978029968949662148323039142656889912343433240325886697203126260911<192> |
prime factors 素因数 | 1454431360027817478551629750275194389351<40> |
composite cofactor 合成数の残り | 106625259177752125235942100781317368187703190396876713913966755898176235206068377439649066786044506225860927965908281354883950881866687012923124829085561<153> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:2822445031 Step 1 took 8507ms Step 2 took 4057ms ********** Factor found in step 2: 1454431360027817478551629750275194389351 Found prime factor of 40 digits: 1454431360027817478551629750275194389351 Composite cofactor 106625259177752125235942100781317368187703190396876713913966755898176235206068377439649066786044506225860927965908281354883950881866687012923124829085561 has 153 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | December 20, 2022 20:54:47 UTC 2022 年 12 月 21 日 (水) 5 時 54 分 47 秒 (日本時間) |
2350 | Ignacio Santos | September 12, 2024 07:02:53 UTC 2024 年 9 月 12 日 (木) 16 時 2 分 53 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | December 20, 2022 20:54:55 UTC 2022 年 12 月 21 日 (水) 5 時 54 分 55 秒 (日本時間) |
2350 | Ignacio Santos | September 12, 2024 07:03:07 UTC 2024 年 9 月 12 日 (木) 16 時 3 分 7 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | December 19, 2022 21:15:28 UTC 2022 年 12 月 20 日 (火) 6 時 15 分 28 秒 (日本時間) |
2350 | Ignacio Santos | September 12, 2024 07:03:19 UTC 2024 年 9 月 12 日 (木) 16 時 3 分 19 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | December 20, 2022 20:55:03 UTC 2022 年 12 月 21 日 (水) 5 時 55 分 3 秒 (日本時間) |
2350 | Ignacio Santos | September 12, 2024 07:05:51 UTC 2024 年 9 月 12 日 (木) 16 時 5 分 51 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | January 13, 2023 08:03:27 UTC 2023 年 1 月 13 日 (金) 17 時 3 分 27 秒 (日本時間) |
2350 | Ignacio Santos | September 12, 2024 07:31:16 UTC 2024 年 9 月 12 日 (木) 16 時 31 分 16 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | January 27, 2023 17:57:39 UTC 2023 年 1 月 28 日 (土) 2 時 57 分 39 秒 (日本時間) |
composite number 合成数 | 17013861748913012466954780058868489798161719671160587110963430598345567720449337319235580488865815551167065976907671874466864198316223<134> |
prime factors 素因数 | 35688296407551974414064934471711106089729773691084551010103<59> 476735049345553002412555052680871933992287309926563139483987960500827834041<75> |
factorization results 素因数分解の結果 | -> makeJobFile(): Adjusted to q0=4450000, q1=4550000. -> client 1 q0: 4450000 LatSieveTime: 88 LatSieveTime: 100 LatSieveTime: 103 LatSieveTime: 106 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 137 LatSieveTime: 141 LatSieveTime: 146 LatSieveTime: 149 -> makeJobFile(): Adjusted to q0=4550001, q1=4650000. -> client 1 q0: 4550001 LatSieveTime: 104 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 141 LatSieveTime: 145 -> makeJobFile(): Adjusted to q0=4650001, q1=4750000. -> client 1 q0: 4650001 LatSieveTime: 101 LatSieveTime: 103 LatSieveTime: 106 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 146 -> makeJobFile(): Adjusted to q0=4750001, q1=4850000. -> client 1 q0: 4750001 LatSieveTime: 99 LatSieveTime: 104 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 140 -> makeJobFile(): Adjusted to q0=4850001, q1=4950000. -> client 1 q0: 4850001 LatSieveTime: 101 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 155 -> makeJobFile(): Adjusted to q0=4950001, q1=5050000. -> client 1 q0: 4950001 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 150 -> makeJobFile(): Adjusted to q0=5050001, q1=5150000. -> client 1 q0: 5050001 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 156 -> makeJobFile(): Adjusted to q0=5150001, q1=5250000. -> client 1 q0: 5150001 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 142 -> makeJobFile(): Adjusted to q0=5250001, q1=5350000. -> client 1 q0: 5250001 LatSieveTime: 102 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 142 -> makeJobFile(): Adjusted to q0=5350001, q1=5450000. -> client 1 q0: 5350001 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 109 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 143 LatSieveTime: 146 -> makeJobFile(): Adjusted to q0=5450001, q1=5550000. -> client 1 q0: 5450001 LatSieveTime: 114 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 138 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 149 LatSieveTime: 149 -> makeJobFile(): Adjusted to q0=5550001, q1=5650000. -> client 1 q0: 5550001 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 110 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 144 LatSieveTime: 147 LatSieveTime: 148 -> makeJobFile(): Adjusted to q0=5650001, q1=5750000. -> client 1 q0: 5650001 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 147 -> makeJobFile(): Adjusted to q0=5750001, q1=5850000. -> client 1 q0: 5750001 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 151 LatSieveTime: 152 LatSieveTime: 153 -> makeJobFile(): Adjusted to q0=5850001, q1=5950000. -> client 1 q0: 5850001 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 148 LatSieveTime: 152 -> makeJobFile(): Adjusted to q0=5950001, q1=6050000. -> client 1 q0: 5950001 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 144 LatSieveTime: 147 -> makeJobFile(): Adjusted to q0=6050001, q1=6150000. -> client 1 q0: 6050001 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 152 LatSieveTime: 154 -> makeJobFile(): Adjusted to q0=6150001, q1=6250000. -> client 1 q0: 6150001 LatSieveTime: 106 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 144 LatSieveTime: 148 -> makeJobFile(): Adjusted to q0=6250001, q1=6350000. -> client 1 q0: 6250001 LatSieveTime: 92 LatSieveTime: 102 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 147 LatSieveTime: 152 LatSieveTime: 152 LatSieveTime: 154 -> makeJobFile(): Adjusted to q0=6350001, q1=6450000. -> client 1 q0: 6350001 LatSieveTime: 104 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 140 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 152 -> makeJobFile(): Adjusted to q0=6450001, q1=6550000. -> client 1 q0: 6450001 LatSieveTime: 109 LatSieveTime: 114 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 148 LatSieveTime: 156 -> makeJobFile(): Adjusted to q0=6550001, q1=6650000. -> client 1 q0: 6550001 LatSieveTime: 102 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 151 LatSieveTime: 153 -> makeJobFile(): Adjusted to q0=6650001, q1=6750000. -> client 1 q0: 6650001 LatSieveTime: 108 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 142 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 149 LatSieveTime: 149 LatSieveTime: 151 -> makeJobFile(): Adjusted to q0=6750001, q1=6850000. -> client 1 q0: 6750001 LatSieveTime: 96 LatSieveTime: 101 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 112 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 149 -> makeJobFile(): Adjusted to q0=6850001, q1=6950000. -> client 1 q0: 6850001 LatSieveTime: 100 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 157 -> makeJobFile(): Adjusted to q0=6950001, q1=7050000. -> client 1 q0: 6950001 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 143 LatSieveTime: 145 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 147 -> makeJobFile(): Adjusted to q0=7050001, q1=7150000. -> client 1 q0: 7050001 LatSieveTime: 101 LatSieveTime: 107 LatSieveTime: 111 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 148 -> makeJobFile(): Adjusted to q0=7150001, q1=7250000. -> client 1 q0: 7150001 LatSieveTime: 96 LatSieveTime: 109 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 149 -> makeJobFile(): Adjusted to q0=7250001, q1=7350000. -> client 1 q0: 7250001 LatSieveTime: 108 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 142 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 151 LatSieveTime: 153 -> makeJobFile(): Adjusted to q0=7350001, q1=7450000. -> client 1 q0: 7350001 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 156 LatSieveTime: 157 -> makeJobFile(): Adjusted to q0=7450001, q1=7550000. -> client 1 q0: 7450001 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 143 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 146 LatSieveTime: 148 LatSieveTime: 151 LatSieveTime: 156 -> makeJobFile(): Adjusted to q0=7550001, q1=7650000. -> client 1 q0: 7550001 LatSieveTime: 109 LatSieveTime: 114 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 148 LatSieveTime: 149 LatSieveTime: 151 LatSieveTime: 152 LatSieveTime: 153 LatSieveTime: 155 LatSieveTime: 161 LatSieveTime: 167 -> makeJobFile(): Adjusted to q0=7650001, q1=7750000. -> client 1 q0: 7650001 LatSieveTime: 111 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 148 LatSieveTime: 149 LatSieveTime: 150 LatSieveTime: 158 -> makeJobFile(): Adjusted to q0=7750001, q1=7850000. -> client 1 q0: 7750001 LatSieveTime: 115 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 143 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 149 LatSieveTime: 149 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 151 LatSieveTime: 152 LatSieveTime: 152 LatSieveTime: 154 LatSieveTime: 162 LatSieveTime: 166 -> makeJobFile(): Adjusted to q0=7850001, q1=7950000. -> client 1 q0: 7850001 LatSieveTime: 109 LatSieveTime: 116 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 148 LatSieveTime: 149 LatSieveTime: 150 LatSieveTime: 149 LatSieveTime: 151 LatSieveTime: 155 LatSieveTime: 155 LatSieveTime: 156 LatSieveTime: 160 LatSieveTime: 162 -> makeJobFile(): Adjusted to q0=7950001, q1=8050000. -> client 1 q0: 7950001 LatSieveTime: 114 LatSieveTime: 118 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 149 LatSieveTime: 150 LatSieveTime: 152 LatSieveTime: 155 LatSieveTime: 158 -> makeJobFile(): Adjusted to q0=8050001, q1=8150000. -> client 1 q0: 8050001 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 148 LatSieveTime: 148 LatSieveTime: 148 LatSieveTime: 155 LatSieveTime: 155 -> makeJobFile(): Adjusted to q0=8150001, q1=8250000. -> client 1 q0: 8150001 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 119 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 151 LatSieveTime: 151 LatSieveTime: 151 LatSieveTime: 152 LatSieveTime: 152 LatSieveTime: 154 -> makeJobFile(): Adjusted to q0=8250001, q1=8350000. -> client 1 q0: 8250001 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 145 LatSieveTime: 148 LatSieveTime: 149 LatSieveTime: 150 LatSieveTime: 152 LatSieveTime: 154 LatSieveTime: 157 -> makeJobFile(): Adjusted to q0=8350001, q1=8450000. -> client 1 q0: 8350001 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 147 LatSieveTime: 149 LatSieveTime: 149 LatSieveTime: 150 LatSieveTime: 152 LatSieveTime: 153 LatSieveTime: 154 LatSieveTime: 156 -> makeJobFile(): Adjusted to q0=8450001, q1=8550000. -> client 1 q0: 8450001 LatSieveTime: 110 LatSieveTime: 114 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 153 LatSieveTime: 153 LatSieveTime: 155 LatSieveTime: 156 LatSieveTime: 163 -> makeJobFile(): Adjusted to q0=8550001, q1=8650000. -> client 1 q0: 8550001 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 122 LatSieveTime: 126 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 148 LatSieveTime: 150 LatSieveTime: 156 -> makeJobFile(): Adjusted to q0=8650001, q1=8750000. -> client 1 q0: 8650001 LatSieveTime: 102 LatSieveTime: 120 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 148 LatSieveTime: 148 LatSieveTime: 152 LatSieveTime: 152 LatSieveTime: 155 LatSieveTime: 163 -> makeJobFile(): Adjusted to q0=8750001, q1=8850000. -> client 1 q0: 8750001 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 126 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 148 LatSieveTime: 148 LatSieveTime: 150 LatSieveTime: 151 LatSieveTime: 152 LatSieveTime: 152 LatSieveTime: 153 LatSieveTime: 154 LatSieveTime: 155 LatSieveTime: 157 LatSieveTime: 163 -> makeJobFile(): Adjusted to q0=8850001, q1=8950000. -> client 1 q0: 8850001 LatSieveTime: 105 LatSieveTime: 108 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 144 LatSieveTime: 151 LatSieveTime: 152 LatSieveTime: 152 LatSieveTime: 153 LatSieveTime: 153 LatSieveTime: 153 LatSieveTime: 155 LatSieveTime: 155 LatSieveTime: 156 LatSieveTime: 157 -> makeJobFile(): Adjusted to q0=8950001, q1=9050000. -> client 1 q0: 8950001 LatSieveTime: 103 LatSieveTime: 105 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 141 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 151 LatSieveTime: 153 LatSieveTime: 155 -> makeJobFile(): Adjusted to q0=9050001, q1=9150000. -> client 1 q0: 9050001 LatSieveTime: 101 LatSieveTime: 106 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 149 LatSieveTime: 153 LatSieveTime: 153 -> makeJobFile(): Adjusted to q0=9150001, q1=9250000. -> client 1 q0: 9150001 LatSieveTime: 100 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 149 LatSieveTime: 149 LatSieveTime: 151 LatSieveTime: 154 LatSieveTime: 154 LatSieveTime: 155 -> makeJobFile(): Adjusted to q0=9250001, q1=9350000. -> client 1 q0: 9250001 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 108 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 146 LatSieveTime: 151 LatSieveTime: 151 LatSieveTime: 155 -> makeJobFile(): Adjusted to q0=9350001, q1=9450000. -> client 1 q0: 9350001 LatSieveTime: 103 LatSieveTime: 106 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 147 LatSieveTime: 149 LatSieveTime: 150 LatSieveTime: 153 -> makeJobFile(): Adjusted to q0=9450001, q1=9550000. -> client 1 q0: 9450001 LatSieveTime: 104 LatSieveTime: 109 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 149 LatSieveTime: 151 LatSieveTime: 154 LatSieveTime: 158 -> makeJobFile(): Adjusted to q0=9550001, q1=9650000. -> client 1 q0: 9550001 LatSieveTime: 101 LatSieveTime: 109 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 140 LatSieveTime: 142 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 149 LatSieveTime: 150 LatSieveTime: 151 LatSieveTime: 151 LatSieveTime: 151 LatSieveTime: 153 -> makeJobFile(): Adjusted to q0=9650001, q1=9750000. -> client 1 q0: 9650001 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 149 LatSieveTime: 151 LatSieveTime: 156 -> makeJobFile(): Adjusted to q0=9750001, q1=9850000. -> client 1 q0: 9750001 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 146 LatSieveTime: 146 LatSieveTime: 147 -> makeJobFile(): Adjusted to q0=9850001, q1=9950000. -> client 1 q0: 9850001 LatSieveTime: 99 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 146 LatSieveTime: 148 LatSieveTime: 156 LatSieveTime: 158 -> makeJobFile(): Adjusted to q0=9950001, q1=10050000. -> client 1 q0: 9950001 LatSieveTime: 95 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 149 -> makeJobFile(): Adjusted to q0=10050001, q1=10150000. -> client 1 q0: 10050001 LatSieveTime: 99 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 112 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 146 LatSieveTime: 152 -> makeJobFile(): Adjusted to q0=10150001, q1=10250000. -> client 1 q0: 10150001 LatSieveTime: 86 LatSieveTime: 97 LatSieveTime: 101 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 152 -> makeJobFile(): Adjusted to q0=10250001, q1=10350000. -> client 1 q0: 10250001 LatSieveTime: 100 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 145 LatSieveTime: 151 LatSieveTime: 151 -> makeJobFile(): Adjusted to q0=10350001, q1=10450000. -> client 1 q0: 10350001 LatSieveTime: 100 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 150 LatSieveTime: 152 LatSieveTime: 158 -> makeJobFile(): Adjusted to q0=10450001, q1=10550000. -> client 1 q0: 10450001 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 142 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 148 LatSieveTime: 155 LatSieveTime: 157 -> makeJobFile(): Adjusted to q0=10550001, q1=10650000. -> client 1 q0: 10550001 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 152 LatSieveTime: 164 LatSieveTime: 165 -> makeJobFile(): Adjusted to q0=10650001, q1=10750000. -> client 1 q0: 10650001 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 149 LatSieveTime: 150 LatSieveTime: 152 LatSieveTime: 153 -> makeJobFile(): Adjusted to q0=10750001, q1=10850000. -> client 1 q0: 10750001 LatSieveTime: 98 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 147 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 152 -> makeJobFile(): Adjusted to q0=10850001, q1=10950000. -> client 1 q0: 10850001 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 148 LatSieveTime: 149 LatSieveTime: 155 LatSieveTime: 156 -> makeJobFile(): Adjusted to q0=10950001, q1=11050000. -> client 1 q0: 10950001 LatSieveTime: 101 LatSieveTime: 106 LatSieveTime: 111 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 144 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 148 LatSieveTime: 149 LatSieveTime: 149 -> makeJobFile(): Adjusted to q0=11050001, q1=11150000. -> client 1 q0: 11050001 LatSieveTime: 100 LatSieveTime: 102 LatSieveTime: 112 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 146 LatSieveTime: 146 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 149 LatSieveTime: 152 LatSieveTime: 155 LatSieveTime: 155 -> makeJobFile(): Adjusted to q0=11150001, q1=11250000. -> client 1 q0: 11150001 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 145 LatSieveTime: 144 LatSieveTime: 146 LatSieveTime: 146 LatSieveTime: 148 LatSieveTime: 152 LatSieveTime: 153 LatSieveTime: 162 -> makeJobFile(): Adjusted to q0=11250001, q1=11350000. -> client 1 q0: 11250001 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 112 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 148 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 153 LatSieveTime: 154 -> makeJobFile(): Adjusted to q0=11350001, q1=11450000. -> client 1 q0: 11350001 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 114 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 141 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 154 -> makeJobFile(): Adjusted to q0=11450001, q1=11550000. -> client 1 q0: 11450001 LatSieveTime: 102 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 114 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 143 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 150 LatSieveTime: 155 LatSieveTime: 165 -> makeJobFile(): Adjusted to q0=11550001, q1=11650000. -> client 1 q0: 11550001 LatSieveTime: 101 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 142 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 146 -> makeJobFile(): Adjusted to q0=11650001, q1=11750000. -> client 1 q0: 11650001 LatSieveTime: 103 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 113 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 153 -> makeJobFile(): Adjusted to q0=11750001, q1=11850000. -> client 1 q0: 11750001 LatSieveTime: 108 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 146 LatSieveTime: 161 -> makeJobFile(): Adjusted to q0=11850001, q1=11950000. -> client 1 q0: 11850001 LatSieveTime: 91 LatSieveTime: 98 LatSieveTime: 101 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 144 LatSieveTime: 147 LatSieveTime: 150 LatSieveTime: 154 -> makeJobFile(): Adjusted to q0=11950001, q1=12050000. -> client 1 q0: 11950001 LatSieveTime: 104 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 143 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 149 -> makeJobFile(): Adjusted to q0=12050001, q1=12150000. -> client 1 q0: 12050001 LatSieveTime: 114 LatSieveTime: 119 LatSieveTime: 122 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 146 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 148 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 154 LatSieveTime: 155 LatSieveTime: 157 LatSieveTime: 157 LatSieveTime: 160 LatSieveTime: 165 LatSieveTime: 171 -> makeJobFile(): Adjusted to q0=12150001, q1=12250000. -> client 1 q0: 12150001 LatSieveTime: 105 LatSieveTime: 110 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 140 LatSieveTime: 142 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 146 LatSieveTime: 149 LatSieveTime: 149 LatSieveTime: 152 LatSieveTime: 153 -> makeJobFile(): Adjusted to q0=12250001, q1=12350000. -> client 1 q0: 12250001 LatSieveTime: 96 LatSieveTime: 101 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 139 LatSieveTime: 145 LatSieveTime: 147 LatSieveTime: 151 LatSieveTime: 151 -> makeJobFile(): Adjusted to q0=12350001, q1=12450000. -> client 1 q0: 12350001 LatSieveTime: 91 LatSieveTime: 104 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 146 LatSieveTime: 148 LatSieveTime: 149 LatSieveTime: 150 -> makeJobFile(): Adjusted to q0=12450001, q1=12550000. -> client 1 q0: 12450001 LatSieveTime: 103 LatSieveTime: 105 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 147 LatSieveTime: 149 LatSieveTime: 149 LatSieveTime: 149 -> makeJobFile(): Adjusted to q0=12550001, q1=12650000. -> client 1 q0: 12550001 LatSieveTime: 96 LatSieveTime: 101 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 114 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 121 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 146 LatSieveTime: 156 -> makeJobFile(): Adjusted to q0=12650001, q1=12750000. -> client 1 q0: 12650001 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 148 LatSieveTime: 151 LatSieveTime: 154 -> makeJobFile(): Adjusted to q0=12750001, q1=12850000. -> client 1 q0: 12750001 LatSieveTime: 95 LatSieveTime: 116 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 146 LatSieveTime: 149 LatSieveTime: 151 LatSieveTime: 153 LatSieveTime: 155 LatSieveTime: 158 LatSieveTime: 162 LatSieveTime: 169 -> makeJobFile(): Adjusted to q0=12850001, q1=12950000. -> client 1 q0: 12850001 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 137 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 149 -> makeJobFile(): Adjusted to q0=12950001, q1=13050000. -> client 1 q0: 12950001 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 119 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 146 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 149 LatSieveTime: 150 LatSieveTime: 151 LatSieveTime: 152 LatSieveTime: 155 LatSieveTime: 158 LatSieveTime: 158 LatSieveTime: 162 -> makeJobFile(): Adjusted to q0=13050001, q1=13150000. -> client 1 q0: 13050001 LatSieveTime: 101 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 114 LatSieveTime: 117 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 149 Fri Jan 27 17:54:01 2023 Fri Jan 27 17:54:01 2023 Fri Jan 27 17:54:01 2023 Msieve v. 1.52 (SVN 927) Fri Jan 27 17:54:01 2023 random seeds: 2e1dcad0 2b0621ff Fri Jan 27 17:54:01 2023 factoring 17013861748913012466954780058868489798161719671160587110963430598345567720449337319235580488865815551167065976907671874466864198316223 (134 digits) Fri Jan 27 17:54:01 2023 searching for 15-digit factors Fri Jan 27 17:54:01 2023 commencing number field sieve (134-digit input) Fri Jan 27 17:54:01 2023 R0: -44643769068874394206633638 Fri Jan 27 17:54:01 2023 R1: 116952483216481 Fri Jan 27 17:54:01 2023 A0: 22581493452880890123742439743555 Fri Jan 27 17:54:01 2023 A1: -1898842615298705892538962864 Fri Jan 27 17:54:01 2023 A2: -1167661272512654597705 Fri Jan 27 17:54:01 2023 A3: 261000708684182388 Fri Jan 27 17:54:01 2023 A4: -91030421666 Fri Jan 27 17:54:01 2023 A5: 95940 Fri Jan 27 17:54:01 2023 skew 207327.73, size 4.940e-013, alpha -7.048, combined = 3.966e-011 rroots = 3 Fri Jan 27 17:54:01 2023 Fri Jan 27 17:54:01 2023 commencing relation filtering Fri Jan 27 17:54:01 2023 estimated available RAM is 65413.5 MB Fri Jan 27 17:54:01 2023 commencing duplicate removal, pass 1 Fri Jan 27 17:54:26 2023 error -15 reading relation 11515680 Fri Jan 27 17:54:46 2023 found 2978489 hash collisions in 21039531 relations Fri Jan 27 17:55:08 2023 added 121019 free relations Fri Jan 27 17:55:08 2023 commencing duplicate removal, pass 2 Fri Jan 27 17:55:16 2023 found 2666521 duplicates and 18494029 unique relations Fri Jan 27 17:55:16 2023 memory use: 98.6 MB Fri Jan 27 17:55:16 2023 reading ideals above 720000 Fri Jan 27 17:55:16 2023 commencing singleton removal, initial pass Fri Jan 27 17:56:23 2023 memory use: 689.0 MB Fri Jan 27 17:56:23 2023 reading all ideals from disk Fri Jan 27 17:56:23 2023 memory use: 578.5 MB Fri Jan 27 17:56:24 2023 keeping 20657486 ideals with weight <= 200, target excess is 119125 Fri Jan 27 17:56:25 2023 commencing in-memory singleton removal Fri Jan 27 17:56:26 2023 begin with 18494029 relations and 20657486 unique ideals Fri Jan 27 17:56:40 2023 reduce to 6358647 relations and 6350259 ideals in 28 passes Fri Jan 27 17:56:40 2023 max relations containing the same ideal: 94 Fri Jan 27 17:56:40 2023 filtering wants 1000000 more relations Fri Jan 27 17:56:40 2023 elapsed time 00:02:39 -> makeJobFile(): Adjusted to q0=13150001, q1=13250000. -> client 1 q0: 13150001 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 149 LatSieveTime: 149 LatSieveTime: 153 LatSieveTime: 154 LatSieveTime: 165 Fri Jan 27 17:59:31 2023 Fri Jan 27 17:59:31 2023 Fri Jan 27 17:59:31 2023 Msieve v. 1.52 (SVN 927) Fri Jan 27 17:59:31 2023 random seeds: fbcd9f90 c025778d Fri Jan 27 17:59:31 2023 factoring 17013861748913012466954780058868489798161719671160587110963430598345567720449337319235580488865815551167065976907671874466864198316223 (134 digits) Fri Jan 27 17:59:32 2023 searching for 15-digit factors Fri Jan 27 17:59:32 2023 commencing number field sieve (134-digit input) Fri Jan 27 17:59:32 2023 R0: -44643769068874394206633638 Fri Jan 27 17:59:32 2023 R1: 116952483216481 Fri Jan 27 17:59:32 2023 A0: 22581493452880890123742439743555 Fri Jan 27 17:59:32 2023 A1: -1898842615298705892538962864 Fri Jan 27 17:59:32 2023 A2: -1167661272512654597705 Fri Jan 27 17:59:32 2023 A3: 261000708684182388 Fri Jan 27 17:59:32 2023 A4: -91030421666 Fri Jan 27 17:59:32 2023 A5: 95940 Fri Jan 27 17:59:32 2023 skew 207327.73, size 4.940e-013, alpha -7.048, combined = 3.966e-011 rroots = 3 Fri Jan 27 17:59:32 2023 Fri Jan 27 17:59:32 2023 commencing relation filtering Fri Jan 27 17:59:32 2023 estimated available RAM is 65413.5 MB Fri Jan 27 17:59:32 2023 commencing duplicate removal, pass 1 Fri Jan 27 17:59:56 2023 error -15 reading relation 11515680 Fri Jan 27 18:00:18 2023 found 3034874 hash collisions in 21374789 relations Fri Jan 27 18:00:39 2023 added 51 free relations Fri Jan 27 18:00:39 2023 commencing duplicate removal, pass 2 Fri Jan 27 18:00:48 2023 found 2712126 duplicates and 18662714 unique relations Fri Jan 27 18:00:48 2023 memory use: 98.6 MB Fri Jan 27 18:00:48 2023 reading ideals above 720000 Fri Jan 27 18:00:48 2023 commencing singleton removal, initial pass Fri Jan 27 18:01:55 2023 memory use: 689.0 MB Fri Jan 27 18:01:55 2023 reading all ideals from disk Fri Jan 27 18:01:55 2023 memory use: 583.9 MB Fri Jan 27 18:01:56 2023 keeping 20731067 ideals with weight <= 200, target excess is 119512 Fri Jan 27 18:01:57 2023 commencing in-memory singleton removal Fri Jan 27 18:01:57 2023 begin with 18662714 relations and 20731067 unique ideals Fri Jan 27 18:02:08 2023 reduce to 6595816 relations and 6530725 ideals in 22 passes Fri Jan 27 18:02:08 2023 max relations containing the same ideal: 96 Fri Jan 27 18:02:08 2023 filtering wants 1000000 more relations Fri Jan 27 18:02:08 2023 elapsed time 00:02:37 -> makeJobFile(): Adjusted to q0=13250001, q1=13350000. -> client 1 q0: 13250001 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 142 LatSieveTime: 145 LatSieveTime: 147 Fri Jan 27 18:04:42 2023 Fri Jan 27 18:04:42 2023 Fri Jan 27 18:04:42 2023 Msieve v. 1.52 (SVN 927) Fri Jan 27 18:04:42 2023 random seeds: 1a66a0f8 5e740189 Fri Jan 27 18:04:42 2023 factoring 17013861748913012466954780058868489798161719671160587110963430598345567720449337319235580488865815551167065976907671874466864198316223 (134 digits) Fri Jan 27 18:04:42 2023 searching for 15-digit factors Fri Jan 27 18:04:42 2023 commencing number field sieve (134-digit input) Fri Jan 27 18:04:42 2023 R0: -44643769068874394206633638 Fri Jan 27 18:04:42 2023 R1: 116952483216481 Fri Jan 27 18:04:42 2023 A0: 22581493452880890123742439743555 Fri Jan 27 18:04:42 2023 A1: -1898842615298705892538962864 Fri Jan 27 18:04:42 2023 A2: -1167661272512654597705 Fri Jan 27 18:04:42 2023 A3: 261000708684182388 Fri Jan 27 18:04:42 2023 A4: -91030421666 Fri Jan 27 18:04:42 2023 A5: 95940 Fri Jan 27 18:04:42 2023 skew 207327.73, size 4.940e-013, alpha -7.048, combined = 3.966e-011 rroots = 3 Fri Jan 27 18:04:42 2023 Fri Jan 27 18:04:42 2023 commencing relation filtering Fri Jan 27 18:04:42 2023 estimated available RAM is 65413.5 MB Fri Jan 27 18:04:42 2023 commencing duplicate removal, pass 1 Fri Jan 27 18:05:06 2023 error -15 reading relation 11515680 Fri Jan 27 18:05:28 2023 found 3085695 hash collisions in 21593285 relations Fri Jan 27 18:05:49 2023 added 43 free relations Fri Jan 27 18:05:49 2023 commencing duplicate removal, pass 2 Fri Jan 27 18:05:58 2023 found 2759242 duplicates and 18834086 unique relations Fri Jan 27 18:05:58 2023 memory use: 98.6 MB Fri Jan 27 18:05:58 2023 reading ideals above 720000 Fri Jan 27 18:05:58 2023 commencing singleton removal, initial pass Fri Jan 27 18:07:06 2023 memory use: 689.0 MB Fri Jan 27 18:07:06 2023 reading all ideals from disk Fri Jan 27 18:07:06 2023 memory use: 589.3 MB Fri Jan 27 18:07:07 2023 keeping 20804881 ideals with weight <= 200, target excess is 119975 Fri Jan 27 18:07:08 2023 commencing in-memory singleton removal Fri Jan 27 18:07:08 2023 begin with 18834086 relations and 20804881 unique ideals Fri Jan 27 18:07:20 2023 reduce to 6837207 relations and 6712493 ideals in 22 passes Fri Jan 27 18:07:20 2023 max relations containing the same ideal: 99 Fri Jan 27 18:07:20 2023 filtering wants 1000000 more relations Fri Jan 27 18:07:20 2023 elapsed time 00:02:38 -> makeJobFile(): Adjusted to q0=13350001, q1=13450000. -> client 1 q0: 13350001 LatSieveTime: 96 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 145 LatSieveTime: 150 Fri Jan 27 18:09:57 2023 Fri Jan 27 18:09:57 2023 Fri Jan 27 18:09:57 2023 Msieve v. 1.52 (SVN 927) Fri Jan 27 18:09:57 2023 random seeds: a27178f0 07997cc2 Fri Jan 27 18:09:57 2023 factoring 17013861748913012466954780058868489798161719671160587110963430598345567720449337319235580488865815551167065976907671874466864198316223 (134 digits) Fri Jan 27 18:09:58 2023 searching for 15-digit factors Fri Jan 27 18:09:58 2023 commencing number field sieve (134-digit input) Fri Jan 27 18:09:58 2023 R0: -44643769068874394206633638 Fri Jan 27 18:09:58 2023 R1: 116952483216481 Fri Jan 27 18:09:58 2023 A0: 22581493452880890123742439743555 Fri Jan 27 18:09:58 2023 A1: -1898842615298705892538962864 Fri Jan 27 18:09:58 2023 A2: -1167661272512654597705 Fri Jan 27 18:09:58 2023 A3: 261000708684182388 Fri Jan 27 18:09:58 2023 A4: -91030421666 Fri Jan 27 18:09:58 2023 A5: 95940 Fri Jan 27 18:09:58 2023 skew 207327.73, size 4.940e-013, alpha -7.048, combined = 3.966e-011 rroots = 3 Fri Jan 27 18:09:58 2023 Fri Jan 27 18:09:58 2023 commencing relation filtering Fri Jan 27 18:09:58 2023 estimated available RAM is 65413.5 MB Fri Jan 27 18:09:58 2023 commencing duplicate removal, pass 1 Fri Jan 27 18:10:22 2023 error -15 reading relation 11515680 Fri Jan 27 18:10:45 2023 found 3135564 hash collisions in 21807431 relations Fri Jan 27 18:11:06 2023 added 37 free relations Fri Jan 27 18:11:06 2023 commencing duplicate removal, pass 2 Fri Jan 27 18:11:14 2023 found 2805402 duplicates and 19002066 unique relations Fri Jan 27 18:11:14 2023 memory use: 98.6 MB Fri Jan 27 18:11:14 2023 reading ideals above 720000 Fri Jan 27 18:11:14 2023 commencing singleton removal, initial pass Fri Jan 27 18:12:22 2023 memory use: 689.0 MB Fri Jan 27 18:12:22 2023 reading all ideals from disk Fri Jan 27 18:12:23 2023 memory use: 594.6 MB Fri Jan 27 18:12:23 2023 keeping 20876853 ideals with weight <= 200, target excess is 120447 Fri Jan 27 18:12:25 2023 commencing in-memory singleton removal Fri Jan 27 18:12:25 2023 begin with 19002066 relations and 20876853 unique ideals Fri Jan 27 18:12:37 2023 reduce to 7070363 relations and 6886204 ideals in 22 passes Fri Jan 27 18:12:37 2023 max relations containing the same ideal: 101 Fri Jan 27 18:12:40 2023 removing 361092 relations and 338872 ideals in 22220 cliques Fri Jan 27 18:12:40 2023 commencing in-memory singleton removal Fri Jan 27 18:12:40 2023 begin with 6709271 relations and 6886204 unique ideals Fri Jan 27 18:12:43 2023 reduce to 6693087 relations and 6531061 ideals in 10 passes Fri Jan 27 18:12:43 2023 max relations containing the same ideal: 97 Fri Jan 27 18:12:45 2023 removing 259309 relations and 237089 ideals in 22220 cliques Fri Jan 27 18:12:46 2023 commencing in-memory singleton removal Fri Jan 27 18:12:46 2023 begin with 6433778 relations and 6531061 unique ideals Fri Jan 27 18:12:48 2023 reduce to 6425401 relations and 6285558 ideals in 8 passes Fri Jan 27 18:12:48 2023 max relations containing the same ideal: 93 Fri Jan 27 18:12:51 2023 relations with 0 large ideals: 485 Fri Jan 27 18:12:51 2023 relations with 1 large ideals: 1378 Fri Jan 27 18:12:51 2023 relations with 2 large ideals: 24442 Fri Jan 27 18:12:51 2023 relations with 3 large ideals: 174105 Fri Jan 27 18:12:51 2023 relations with 4 large ideals: 665701 Fri Jan 27 18:12:51 2023 relations with 5 large ideals: 1458117 Fri Jan 27 18:12:51 2023 relations with 6 large ideals: 1885259 Fri Jan 27 18:12:51 2023 relations with 7+ large ideals: 2215914 Fri Jan 27 18:12:51 2023 commencing 2-way merge Fri Jan 27 18:12:54 2023 reduce to 3607771 relation sets and 3467931 unique ideals Fri Jan 27 18:12:54 2023 ignored 3 oversize relation sets Fri Jan 27 18:12:54 2023 commencing full merge Fri Jan 27 18:13:37 2023 memory use: 402.3 MB Fri Jan 27 18:13:38 2023 found 1852764 cycles, need 1838131 Fri Jan 27 18:13:38 2023 weight of 1838131 cycles is about 128775919 (70.06/cycle) Fri Jan 27 18:13:38 2023 distribution of cycle lengths: Fri Jan 27 18:13:38 2023 1 relations: 281300 Fri Jan 27 18:13:38 2023 2 relations: 241326 Fri Jan 27 18:13:38 2023 3 relations: 227565 Fri Jan 27 18:13:38 2023 4 relations: 193519 Fri Jan 27 18:13:38 2023 5 relations: 162148 Fri Jan 27 18:13:38 2023 6 relations: 134923 Fri Jan 27 18:13:38 2023 7 relations: 111971 Fri Jan 27 18:13:38 2023 8 relations: 91605 Fri Jan 27 18:13:38 2023 9 relations: 74388 Fri Jan 27 18:13:38 2023 10+ relations: 319386 Fri Jan 27 18:13:38 2023 heaviest cycle: 26 relations Fri Jan 27 18:13:38 2023 commencing cycle optimization Fri Jan 27 18:13:40 2023 start with 10390082 relations Fri Jan 27 18:13:53 2023 pruned 196013 relations Fri Jan 27 18:13:53 2023 memory use: 361.4 MB Fri Jan 27 18:13:53 2023 distribution of cycle lengths: Fri Jan 27 18:13:53 2023 1 relations: 281300 Fri Jan 27 18:13:53 2023 2 relations: 246389 Fri Jan 27 18:13:53 2023 3 relations: 234544 Fri Jan 27 18:13:53 2023 4 relations: 196445 Fri Jan 27 18:13:53 2023 5 relations: 163889 Fri Jan 27 18:13:53 2023 6 relations: 135436 Fri Jan 27 18:13:53 2023 7 relations: 111157 Fri Jan 27 18:13:53 2023 8 relations: 90495 Fri Jan 27 18:13:53 2023 9 relations: 73231 Fri Jan 27 18:13:53 2023 10+ relations: 305245 Fri Jan 27 18:13:53 2023 heaviest cycle: 25 relations Fri Jan 27 18:13:54 2023 RelProcTime: 236 Fri Jan 27 18:13:54 2023 elapsed time 00:03:57 Fri Jan 27 18:13:54 2023 Fri Jan 27 18:13:54 2023 Fri Jan 27 18:13:54 2023 Msieve v. 1.52 (SVN 927) Fri Jan 27 18:13:54 2023 random seeds: 3d300000 0af7185b Fri Jan 27 18:13:54 2023 factoring 17013861748913012466954780058868489798161719671160587110963430598345567720449337319235580488865815551167065976907671874466864198316223 (134 digits) Fri Jan 27 18:13:55 2023 searching for 15-digit factors Fri Jan 27 18:13:55 2023 commencing number field sieve (134-digit input) Fri Jan 27 18:13:55 2023 R0: -44643769068874394206633638 Fri Jan 27 18:13:55 2023 R1: 116952483216481 Fri Jan 27 18:13:55 2023 A0: 22581493452880890123742439743555 Fri Jan 27 18:13:55 2023 A1: -1898842615298705892538962864 Fri Jan 27 18:13:55 2023 A2: -1167661272512654597705 Fri Jan 27 18:13:55 2023 A3: 261000708684182388 Fri Jan 27 18:13:55 2023 A4: -91030421666 Fri Jan 27 18:13:55 2023 A5: 95940 Fri Jan 27 18:13:55 2023 skew 207327.73, size 4.940e-013, alpha -7.048, combined = 3.966e-011 rroots = 3 Fri Jan 27 18:13:55 2023 Fri Jan 27 18:13:55 2023 commencing linear algebra Fri Jan 27 18:13:55 2023 read 1838131 cycles Fri Jan 27 18:13:58 2023 cycles contain 6236328 unique relations Fri Jan 27 18:14:11 2023 read 6236328 relations Fri Jan 27 18:14:18 2023 using 20 quadratic characters above 268434942 Fri Jan 27 18:14:34 2023 building initial matrix Fri Jan 27 18:15:15 2023 memory use: 812.1 MB Fri Jan 27 18:15:16 2023 read 1838131 cycles Fri Jan 27 18:15:17 2023 matrix is 1837954 x 1838131 (560.7 MB) with weight 175020057 (95.22/col) Fri Jan 27 18:15:17 2023 sparse part has weight 124920230 (67.96/col) Fri Jan 27 18:15:27 2023 filtering completed in 2 passes Fri Jan 27 18:15:27 2023 matrix is 1834089 x 1834266 (560.3 MB) with weight 174855662 (95.33/col) Fri Jan 27 18:15:27 2023 sparse part has weight 124871851 (68.08/col) Fri Jan 27 18:15:30 2023 matrix starts at (0, 0) Fri Jan 27 18:15:30 2023 matrix is 1834089 x 1834266 (560.3 MB) with weight 174855662 (95.33/col) Fri Jan 27 18:15:30 2023 sparse part has weight 124871851 (68.08/col) Fri Jan 27 18:15:30 2023 saving the first 48 matrix rows for later Fri Jan 27 18:15:31 2023 matrix includes 64 packed rows Fri Jan 27 18:15:31 2023 matrix is 1834041 x 1834266 (537.2 MB) with weight 139109216 (75.84/col) Fri Jan 27 18:15:31 2023 sparse part has weight 122488873 (66.78/col) Fri Jan 27 18:15:31 2023 using block size 8192 and superblock size 12582912 for processor cache size 131072 kB Fri Jan 27 18:15:36 2023 commencing Lanczos iteration (32 threads) Fri Jan 27 18:15:36 2023 memory use: 423.5 MB Fri Jan 27 18:15:38 2023 linear algebra at 0.1%, ETA 0h20m Fri Jan 27 18:15:39 2023 checkpointing every 3640000 dimensions Fri Jan 27 18:48:48 2023 lanczos halted after 29007 iterations (dim = 1834039) Fri Jan 27 18:48:49 2023 recovered 29 nontrivial dependencies Fri Jan 27 18:48:49 2023 BLanczosTime: 2094 Fri Jan 27 18:48:49 2023 elapsed time 00:34:55 Fri Jan 27 18:48:49 2023 Fri Jan 27 18:48:49 2023 Fri Jan 27 18:48:49 2023 Msieve v. 1.52 (SVN 927) Fri Jan 27 18:48:49 2023 random seeds: c2410bb0 33d559e6 Fri Jan 27 18:48:49 2023 factoring 17013861748913012466954780058868489798161719671160587110963430598345567720449337319235580488865815551167065976907671874466864198316223 (134 digits) Fri Jan 27 18:48:50 2023 searching for 15-digit factors Fri Jan 27 18:48:50 2023 commencing number field sieve (134-digit input) Fri Jan 27 18:48:50 2023 R0: -44643769068874394206633638 Fri Jan 27 18:48:50 2023 R1: 116952483216481 Fri Jan 27 18:48:50 2023 A0: 22581493452880890123742439743555 Fri Jan 27 18:48:50 2023 A1: -1898842615298705892538962864 Fri Jan 27 18:48:50 2023 A2: -1167661272512654597705 Fri Jan 27 18:48:50 2023 A3: 261000708684182388 Fri Jan 27 18:48:50 2023 A4: -91030421666 Fri Jan 27 18:48:50 2023 A5: 95940 Fri Jan 27 18:48:50 2023 skew 207327.73, size 4.940e-013, alpha -7.048, combined = 3.966e-011 rroots = 3 Fri Jan 27 18:48:50 2023 Fri Jan 27 18:48:50 2023 commencing square root phase Fri Jan 27 18:48:50 2023 reading relations for dependency 1 Fri Jan 27 18:48:50 2023 read 917429 cycles Fri Jan 27 18:48:51 2023 cycles contain 3118886 unique relations Fri Jan 27 18:48:59 2023 read 3118886 relations Fri Jan 27 18:49:08 2023 multiplying 3118886 relations Fri Jan 27 18:50:53 2023 multiply complete, coefficients have about 155.39 million bits Fri Jan 27 18:50:53 2023 initial square root is modulo 377287 Fri Jan 27 18:52:57 2023 GCD is 1, no factor found Fri Jan 27 18:52:57 2023 reading relations for dependency 2 Fri Jan 27 18:52:57 2023 read 918209 cycles Fri Jan 27 18:52:58 2023 cycles contain 3119520 unique relations Fri Jan 27 18:53:06 2023 read 3119520 relations Fri Jan 27 18:53:16 2023 multiplying 3119520 relations Fri Jan 27 18:55:00 2023 multiply complete, coefficients have about 155.42 million bits Fri Jan 27 18:55:01 2023 initial square root is modulo 378407 Fri Jan 27 18:57:04 2023 sqrtTime: 494 Fri Jan 27 18:57:04 2023 prp59 factor: 35688296407551974414064934471711106089729773691084551010103 Fri Jan 27 18:57:04 2023 prp75 factor: 476735049345553002412555052680871933992287309926563139483987960500827834041 Fri Jan 27 18:57:04 2023 elapsed time 00:08:15 |
software ソフトウェア | GNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | November 26, 2022 14:30:49 UTC 2022 年 11 月 26 日 (土) 23 時 30 分 49 秒 (日本時間) | |
45 | 11e6 | 4480 | Ignacio Santos | December 2, 2022 16:05:00 UTC 2022 年 12 月 3 日 (土) 1 時 5 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | December 20, 2022 20:55:11 UTC 2022 年 12 月 21 日 (水) 5 時 55 分 11 秒 (日本時間) |
2350 | Ignacio Santos | September 12, 2024 07:31:30 UTC 2024 年 9 月 12 日 (木) 16 時 31 分 30 秒 (日本時間) |
name 名前 | Erik Branger |
---|---|
date 日付 | September 3, 2023 17:37:05 UTC 2023 年 9 月 4 日 (月) 2 時 37 分 5 秒 (日本時間) |
composite number 合成数 | 1462955922455644260207364518837535753422754631850425659729915184020081979695341757576414118341792028970379253954526834884124907683884833408615779567338129<154> |
prime factors 素因数 | 226597944217849176019920445624835278672878260904619592224687081<63> 6456174734970993002272365858881357463293535996620610656525037770087331365128432754987362409<91> |
factorization results 素因数分解の結果 | Number: 74448_222 N = 1462955922455644260207364518837535753422754631850425659729915184020081979695341757576414118341792028970379253954526834884124907683884833408615779567338129 (154 digits) SNFS difficulty: 224 digits. Divisors found: r1=226597944217849176019920445624835278672878260904619592224687081 (pp63) r2=6456174734970993002272365858881357463293535996620610656525037770087331365128432754987362409 (pp91) Version: Msieve v. 1.52 (SVN unknown) Total time: 33.32 hours. Factorization parameters were as follows: n: 1462955922455644260207364518837535753422754631850425659729915184020081979695341757576414118341792028970379253954526834884124907683884833408615779567338129 m: 10000000000000000000000000000000000000000000000000000000 deg: 4 c4: 1675 c0: 8 skew: 1.00 type: snfs lss: 1 rlim: 536870912 alim: 44739242 lpbr: 29 lpba: 28 mfbr: 58 mfba: 56 rlambda: 2.8 alambda: 2.8 side: 1 Number of cores used: 6 Number of threads per core: 1 Factor base limits: 536870912/44739242 Large primes per side: 3 Large prime bits: 29/28 Total raw relations: 31174840 Relations: 8946564 relations Total pre-computation time approximately 1000 CPU-days. Pre-computation saved approximately 18 G rational relations. Total batch smoothness checking time: 10.80 hours. Total relation processing time: 0.30 hours. Pruned matrix : 7565740 x 7565965 Matrix solve time: 21.89 hours. time per square root: 0.33 hours. Prototype def-par.txt line would be: snfs,224,4,0,0,0,0,0,0,0,0,536870912,44739242,29,28,58,56,2.8,2.8,100000 total time: 33.32 hours. Intel64 Family 6 Model 158 Stepping 10, GenuineIntel Windows-10-10.0.22621-SP0 processors: 12, speed: 3.19GHz |
software ソフトウェア | GGNFS, NFS_factory, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | November 27, 2022 14:09:52 UTC 2022 年 11 月 27 日 (日) 23 時 9 分 52 秒 (日本時間) | |
45 | 11e6 | 4480 | Ignacio Santos | November 30, 2022 16:37:38 UTC 2022 年 12 月 1 日 (木) 1 時 37 分 38 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | December 20, 2022 20:55:18 UTC 2022 年 12 月 21 日 (水) 5 時 55 分 18 秒 (日本時間) |
2350 | Ignacio Santos | September 12, 2024 07:42:36 UTC 2024 年 9 月 12 日 (木) 16 時 42 分 36 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | December 19, 2022 21:15:54 UTC 2022 年 12 月 20 日 (火) 6 時 15 分 54 秒 (日本時間) |
2350 | Ignacio Santos | September 12, 2024 07:52:57 UTC 2024 年 9 月 12 日 (木) 16 時 52 分 57 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | December 20, 2022 20:55:27 UTC 2022 年 12 月 21 日 (水) 5 時 55 分 27 秒 (日本時間) |
2350 | Ignacio Santos | September 12, 2024 08:20:36 UTC 2024 年 9 月 12 日 (木) 17 時 20 分 36 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | January 13, 2023 08:03:36 UTC 2023 年 1 月 13 日 (金) 17 時 3 分 36 秒 (日本時間) |
2350 | Ignacio Santos | September 12, 2024 08:20:47 UTC 2024 年 9 月 12 日 (木) 17 時 20 分 47 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | December 20, 2022 20:55:36 UTC 2022 年 12 月 21 日 (水) 5 時 55 分 36 秒 (日本時間) |
2350 | Ignacio Santos | September 12, 2024 08:28:47 UTC 2024 年 9 月 12 日 (木) 17 時 28 分 47 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | December 20, 2022 20:55:44 UTC 2022 年 12 月 21 日 (水) 5 時 55 分 44 秒 (日本時間) |
2350 | Ignacio Santos | September 12, 2024 08:35:46 UTC 2024 年 9 月 12 日 (木) 17 時 35 分 46 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | January 14, 2023 20:44:19 UTC 2023 年 1 月 15 日 (日) 5 時 44 分 19 秒 (日本時間) |
2350 | Ignacio Santos | September 12, 2024 09:01:10 UTC 2024 年 9 月 12 日 (木) 18 時 1 分 10 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | September 12, 2024 09:06:14 UTC 2024 年 9 月 12 日 (木) 18 時 6 分 14 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | September 12, 2024 09:06:44 UTC 2024 年 9 月 12 日 (木) 18 時 6 分 44 秒 (日本時間) |
composite number 合成数 | 6675647442291418531001474334759349847942544662734787199070873588401847131689738192546079976382996824626065387375960851955099006733907594257029721105947416230477562150076147927021490061185726433981704423796679034751<214> |
prime factors 素因数 | 2455533652303160512441579290494310789719<40> |
composite cofactor 合成数の残り | 2718613705835395411966325176876168883310639272495728324860825297314581582491081953624176990331541536629749165166954959751789963176605969793573917623918618314627246034517519129<175> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:958927494 Step 1 took 7578ms Step 2 took 3563ms ********** Factor found in step 2: 2455533652303160512441579290494310789719 Found prime factor of 40 digits: 2455533652303160512441579290494310789719 Composite cofactor 2718613705835395411966325176876168883310639272495728324860825297314581582491081953624176990331541536629749165166954959751789963176605969793573917623918618314627246034517519129 has 175 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | January 13, 2023 08:03:46 UTC 2023 年 1 月 13 日 (金) 17 時 3 分 46 秒 (日本時間) |
2350 | Ignacio Santos | September 16, 2024 06:43:55 UTC 2024 年 9 月 16 日 (月) 15 時 43 分 55 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | January 14, 2023 20:44:27 UTC 2023 年 1 月 15 日 (日) 5 時 44 分 27 秒 (日本時間) |
2350 | Ignacio Santos | September 12, 2024 09:19:27 UTC 2024 年 9 月 12 日 (木) 18 時 19 分 27 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | January 14, 2023 20:44:35 UTC 2023 年 1 月 15 日 (日) 5 時 44 分 35 秒 (日本時間) |
2350 | Ignacio Santos | September 12, 2024 09:33:47 UTC 2024 年 9 月 12 日 (木) 18 時 33 分 47 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | January 13, 2023 08:03:56 UTC 2023 年 1 月 13 日 (金) 17 時 3 分 56 秒 (日本時間) |
2350 | Ignacio Santos | September 12, 2024 09:43:55 UTC 2024 年 9 月 12 日 (木) 18 時 43 分 55 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | January 13, 2023 08:04:05 UTC 2023 年 1 月 13 日 (金) 17 時 4 分 5 秒 (日本時間) |
2350 | Ignacio Santos | September 12, 2024 09:53:37 UTC 2024 年 9 月 12 日 (木) 18 時 53 分 37 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | November 27, 2022 14:11:12 UTC 2022 年 11 月 27 日 (日) 23 時 11 分 12 秒 (日本時間) |
composite number 合成数 | 944869135065390003315903622924531884822559863362164155162292029007102472125654676791126566274980349877248430298029919786993644632066800716416204369171255343<156> |
prime factors 素因数 | 37161492856429720913094520612117647811<38> |
composite cofactor 合成数の残り | 25426027385816061027709980496414673503995265552682906787249386385948932656923515390432316574514606296024697949808235813<119> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:388009620 Step 1 took 4375ms Step 2 took 2422ms ********** Factor found in step 2: 37161492856429720913094520612117647811 Found prime factor of 38 digits: 37161492856429720913094520612117647811 Composite cofactor 25426027385816061027709980496414673503995265552682906787249386385948932656923515390432316574514606296024697949808235813 has 119 digits |
software ソフトウェア | GMP-ECM |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | December 1, 2022 03:08:59 UTC 2022 年 12 月 1 日 (木) 12 時 8 分 59 秒 (日本時間) |
composite number 合成数 | 25426027385816061027709980496414673503995265552682906787249386385948932656923515390432316574514606296024697949808235813<119> |
prime factors 素因数 | 319829448308423702445324168335728783950341595896423411<54> 79498706327057087259536887921678289150120077627186335380480155783<65> |
factorization results 素因数分解の結果 | 25426027385816061027709980496414673503995265552682906787249386385948932656923515390432316574514606296024697949808235813=319829448308423702445324168335728783950341595896423411*79498706327057087259536887921678289150120077627186335380480155783 cado polynomial n: 25426027385816061027709980496414673503995265552682906787249386385948932656923515390432316574514606296024697949808235813 skew: 10898.063 c0: 134255318915633815793044020 c1: -3757756490390704702628 c2: -851046856737897249 c3: 172340575237913 c4: 318148644 c5: -1092960 Y0: -68807026594554122621719 Y1: 311262026208049877 # MurphyE (Bf=1.342e+08,Bg=1.342e+08,area=8.389e+12) = 1.716e-06 # f(x) = -1092960*x^5+318148644*x^4+172340575237913*x^3-851046856737897249*x^2-3757756490390704702628*x+134255318915633815793044020 # g(x) = 311262026208049877*x-68807026594554122621719 cado parameters (extracts) tasks.lim0 = 3000000 tasks.lim1 = 5500000 tasks.lpb0 = 27 tasks.lpb1 = 27 tasks.sieve.mfb0 = 54 tasks.sieve.mfb1 = 54 tasks.I = 12 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 319829448308423702445324168335728783950341595896423411 79498706327057087259536887921678289150120077627186335380480155783 Info:Square Root: Total cpu/real time for sqrt: 809.02/107.462 Info:Polynomial Selection (size optimized): Aggregate statistics: Info:Polynomial Selection (size optimized): potential collisions: 19893.3 Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 20124/35.110/42.283/48.070/1.036 Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 15889/33.620/37.402/42.690/0.813 Info:Polynomial Selection (size optimized): Total time: 3111.19 Info:Polynomial Selection (root optimized): Aggregate statistics: Info:Polynomial Selection (root optimized): Total time: 1199.82 Info:Polynomial Selection (root optimized): Rootsieve time: 1149.5 Info:Generate Factor Base: Total cpu/real time for makefb: 5.94/0.898127 Info:Generate Free Relations: Total cpu/real time for freerel: 133.87/16.8387 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 13474569 Info:Lattice Sieving: Average J: 1900.94 for 218571 special-q, max bucket fill -bkmult 1.0,1s:1.131040 Info:Lattice Sieving: Total time: 45384.8s Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 32.04/51.7167 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 51.6s Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 151.36/104.184 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 99.0s Info:Filtering - Singleton removal: Total cpu/real time for purge: 73.32/63.9474 Info:Filtering - Merging: Merged matrix has 601736 rows and total weight 61127776 (101.6 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 42.1/7.6874 Info:Filtering - Merging: Total cpu/real time for replay: 12.78/10.1959 Info:Linear Algebra: Total cpu/real time for bwc: 2252.04/593.01 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: WCT time 355.44, iteration CPU time 0.02, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (18944 iterations) Info:Linear Algebra: Lingen CPU time 60.47, WCT time 16.44 Info:Linear Algebra: Mksol: WCT time 209.23, iteration CPU time 0.02, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (9472 iterations) Info:Quadratic Characters: Total cpu/real time for characters: 26.68/5.90942 Info:Square Root: Total cpu/real time for sqrt: 809.02/107.462 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 112337/13040.3 Info:root: Cleaning up computation data in /tmp/cado.pksiq_pt 319829448308423702445324168335728783950341595896423411 79498706327057087259536887921678289150120077627186335380480155783 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | November 30, 2022 14:27:17 UTC 2022 年 11 月 30 日 (水) 23 時 27 分 17 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | January 13, 2023 08:04:15 UTC 2023 年 1 月 13 日 (金) 17 時 4 分 15 秒 (日本時間) |
2350 | Ignacio Santos | September 12, 2024 10:06:44 UTC 2024 年 9 月 12 日 (木) 19 時 6 分 44 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | November 27, 2022 14:43:20 UTC 2022 年 11 月 27 日 (日) 23 時 43 分 20 秒 (日本時間) | |
45 | 11e6 | 4480 | Ignacio Santos | December 1, 2022 15:29:58 UTC 2022 年 12 月 2 日 (金) 0 時 29 分 58 秒 (日本時間) | |
50 | 43e6 | 1792 / 6453 | Dmitry Domanov | June 11, 2024 06:34:32 UTC 2024 年 6 月 11 日 (火) 15 時 34 分 32 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | January 13, 2023 08:04:24 UTC 2023 年 1 月 13 日 (金) 17 時 4 分 24 秒 (日本時間) |
2350 | Ignacio Santos | September 10, 2024 15:47:07 UTC 2024 年 9 月 11 日 (水) 0 時 47 分 7 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | January 13, 2023 08:04:32 UTC 2023 年 1 月 13 日 (金) 17 時 4 分 32 秒 (日本時間) |
2350 | Ignacio Santos | September 10, 2024 15:53:12 UTC 2024 年 9 月 11 日 (水) 0 時 53 分 12 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2244 | 1000 | Dmitry Domanov | January 14, 2023 20:44:43 UTC 2023 年 1 月 15 日 (日) 5 時 44 分 43 秒 (日本時間) |
1244 | Thomas Kozlowski | October 3, 2024 03:08:12 UTC 2024 年 10 月 3 日 (木) 12 時 8 分 12 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2204 | Thomas Kozlowski | October 3, 2024 03:15:13 UTC 2024 年 10 月 3 日 (木) 12 時 15 分 13 秒 (日本時間) |
composite cofactor 合成数の残り | 71946215370481450236091099712770451150399051672693010397450200225044275838348257711004887233029770180108750503537147362016935697911726625772149006184118231177641639951<167> |
---|
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | November 27, 2022 14:14:12 UTC 2022 年 11 月 27 日 (日) 23 時 14 分 12 秒 (日本時間) | |
45 | 11e6 | 4480 | Ignacio Santos | December 1, 2022 13:37:43 UTC 2022 年 12 月 1 日 (木) 22 時 37 分 43 秒 (日本時間) | |
50 | 43e6 | 1792 / 6453 | Dmitry Domanov | June 30, 2024 18:22:41 UTC 2024 年 7 月 1 日 (月) 3 時 22 分 41 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2225 | 1000 | Dmitry Domanov | January 13, 2023 08:04:41 UTC 2023 年 1 月 13 日 (金) 17 時 4 分 41 秒 (日本時間) |
1225 | Thomas Kozlowski | October 3, 2024 03:18:46 UTC 2024 年 10 月 3 日 (木) 12 時 18 分 46 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2202 | Thomas Kozlowski | October 3, 2024 03:25:46 UTC 2024 年 10 月 3 日 (木) 12 時 25 分 46 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2204 | Thomas Kozlowski | October 3, 2024 03:32:44 UTC 2024 年 10 月 3 日 (木) 12 時 32 分 44 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2211 | 1000 | Dmitry Domanov | January 14, 2023 20:44:51 UTC 2023 年 1 月 15 日 (日) 5 時 44 分 51 秒 (日本時間) |
1211 | Thomas Kozlowski | October 3, 2024 03:36:18 UTC 2024 年 10 月 3 日 (木) 12 時 36 分 18 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2205 | Thomas Kozlowski | October 3, 2024 03:44:08 UTC 2024 年 10 月 3 日 (木) 12 時 44 分 8 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2205 | Thomas Kozlowski | October 3, 2024 03:51:14 UTC 2024 年 10 月 3 日 (木) 12 時 51 分 14 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2207 | 100 | Dmitry Domanov | January 14, 2023 20:45:00 UTC 2023 年 1 月 15 日 (日) 5 時 45 分 0 秒 (日本時間) |
900 | Dmitry Domanov | January 14, 2023 20:45:16 UTC 2023 年 1 月 15 日 (日) 5 時 45 分 16 秒 (日本時間) | |||
1207 | Thomas Kozlowski | October 3, 2024 03:54:48 UTC 2024 年 10 月 3 日 (木) 12 時 54 分 48 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 13, 2023 16:02:38 UTC 2023 年 1 月 14 日 (土) 1 時 2 分 38 秒 (日本時間) |
composite number 合成数 | 227584195709776995894819536137001815490856306689457936468920943620580554087124805642337603228553145645818432037602865231141502451219487270228324964664868931533787817821991161617542405180100901886286613<201> |
prime factors 素因数 | 13309584692106427253652941468652321961<38> |
composite cofactor 合成数の残り | 17099271012171501905607827548638312747528551195901095509267702139422594779982581672069560533195307997321517432373728568864117994011274728848499726259309889674977933<164> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:1765634811 Step 1 took 11137ms Step 2 took 3425ms ********** Factor found in step 2: 13309584692106427253652941468652321961 Found prime factor of 38 digits: 13309584692106427253652941468652321961 Composite cofactor 17099271012171501905607827548638312747528551195901095509267702139422594779982581672069560533195307997321517432373728568864117994011274728848499726259309889674977933 has 164 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | January 13, 2023 08:04:49 UTC 2023 年 1 月 13 日 (金) 17 時 4 分 49 秒 (日本時間) |
2350 | Ignacio Santos | January 15, 2023 11:00:05 UTC 2023 年 1 月 15 日 (日) 20 時 0 分 5 秒 (日本時間) | |||
45 | 11e6 | 4480 | Ignacio Santos | January 17, 2023 13:52:06 UTC 2023 年 1 月 17 日 (火) 22 時 52 分 6 秒 (日本時間) | |
50 | 43e6 | 1792 / 6415 | Dmitry Domanov | January 6, 2025 23:45:12 UTC 2025 年 1 月 7 日 (火) 8 時 45 分 12 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2246 | 1000 | Dmitry Domanov | January 13, 2023 08:04:58 UTC 2023 年 1 月 13 日 (金) 17 時 4 分 58 秒 (日本時間) |
1246 | Thomas Kozlowski | October 3, 2024 03:57:57 UTC 2024 年 10 月 3 日 (木) 12 時 57 分 57 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2201 | Thomas Kozlowski | October 3, 2024 04:05:49 UTC 2024 年 10 月 3 日 (木) 13 時 5 分 49 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2215 | 1000 | Dmitry Domanov | January 13, 2023 08:05:06 UTC 2023 年 1 月 13 日 (金) 17 時 5 分 6 秒 (日本時間) |
1215 | Thomas Kozlowski | October 3, 2024 04:08:57 UTC 2024 年 10 月 3 日 (木) 13 時 8 分 57 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2200 | Thomas Kozlowski | October 3, 2024 04:15:55 UTC 2024 年 10 月 3 日 (木) 13 時 15 分 55 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2203 | Thomas Kozlowski | October 3, 2024 04:22:57 UTC 2024 年 10 月 3 日 (木) 13 時 22 分 57 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2204 | Thomas Kozlowski | October 3, 2024 04:30:45 UTC 2024 年 10 月 3 日 (木) 13 時 30 分 45 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2236 | 1000 | Dmitry Domanov | January 13, 2023 08:05:16 UTC 2023 年 1 月 13 日 (金) 17 時 5 分 16 秒 (日本時間) |
1236 | Thomas Kozlowski | October 3, 2024 04:34:18 UTC 2024 年 10 月 3 日 (木) 13 時 34 分 18 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 13, 2023 17:36:26 UTC 2023 年 1 月 14 日 (土) 2 時 36 分 26 秒 (日本時間) |
composite number 合成数 | 549177605177513797204902222115508656547319644639445599115011911069379041762826108189503189422350823442024563807852138203306766245719706658761123108449397031561822771157135515952992345902730428506982059<201> |
prime factors 素因数 | 91188026269965570177130790183707357<35> 6022474963452470281777578620349056404485200913818499711425105410707903373847576911476127283378450524367770338325198606734058393396704333940889079043575733274887906087<166> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:2957690805 Step 1 took 11603ms Step 2 took 5008ms ********** Factor found in step 2: 91188026269965570177130790183707357 Found prime factor of 35 digits: 91188026269965570177130790183707357 Prime cofactor 6022474963452470281777578620349056404485200913818499711425105410707903373847576911476127283378450524367770338325198606734058393396704333940889079043575733274887906087 has 166 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 / 2078 | Dmitry Domanov | January 13, 2023 08:05:24 UTC 2023 年 1 月 13 日 (金) 17 時 5 分 24 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2201 | Thomas Kozlowski | October 3, 2024 04:42:05 UTC 2024 年 10 月 3 日 (木) 13 時 42 分 5 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2203 | Thomas Kozlowski | October 3, 2024 04:49:53 UTC 2024 年 10 月 3 日 (木) 13 時 49 分 53 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 14, 2023 09:05:06 UTC 2023 年 1 月 14 日 (土) 18 時 5 分 6 秒 (日本時間) |
composite number 合成数 | 4250902618109323114707313681587035267366118556257147487958851294606510556730558934667195686674579852185111741908476527923997970844945913276622336730678099636471249753571109582669494854899444681523106797216898528669<214> |
prime factors 素因数 | 658340077208543817587645359782195089323<39> |
composite cofactor 合成数の残り | 6457001123391665323555110044981781614355717435381422139116823548721701947409888661401563407600039834115188681929778268392858558026384981863260858224592495233464712959700690903<175> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:1535710154 Step 1 took 12563ms Step 2 took 5499ms ********** Factor found in step 2: 658340077208543817587645359782195089323 Found prime factor of 39 digits: 658340077208543817587645359782195089323 Composite cofactor 6457001123391665323555110044981781614355717435381422139116823548721701947409888661401563407600039834115188681929778268392858558026384981863260858224592495233464712959700690903 has 175 digits |
name 名前 | Ignacio Santos |
---|---|
date 日付 | January 15, 2023 11:00:34 UTC 2023 年 1 月 15 日 (日) 20 時 0 分 34 秒 (日本時間) |
composite number 合成数 | 6457001123391665323555110044981781614355717435381422139116823548721701947409888661401563407600039834115188681929778268392858558026384981863260858224592495233464712959700690903<175> |
prime factors 素因数 | 7471226823067214889643300730852950933<37> |
composite cofactor 合成数の残り | 864249108788378022863779705161064699486660470171078619179139909228746088305400594212791514555492442508659864661468192906045929786723132091<138> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:3629072665 Step 1 took 5375ms Step 2 took 2750ms ********** Factor found in step 2: 7471226823067214889643300730852950933 Found prime factor of 37 digits: 7471226823067214889643300730852950933 Composite cofactor 864249108788378022863779705161064699486660470171078619179139909228746088305400594212791514555492442508659864661468192906045929786723132091 has 138 digits |
software ソフトウェア | GMP-ECM |
name 名前 | Ignacio Santos |
---|---|
date 日付 | January 18, 2023 15:59:21 UTC 2023 年 1 月 19 日 (木) 0 時 59 分 21 秒 (日本時間) |
composite number 合成数 | 864249108788378022863779705161064699486660470171078619179139909228746088305400594212791514555492442508659864661468192906045929786723132091<138> |
prime factors 素因数 | 720383484822601695788878946450860804437031<42> 1199706999114789548592936271993753097068750038299989865980098415237307221595462659924090895357261<97> |
factorization results 素因数分解の結果 | Using B1=43000000, B2=240490660426, polynomial Dickson(12), sigma=1:3930455294 Step 1 took 81485ms Step 2 took 28031ms ********** Factor found in step 2: 720383484822601695788878946450860804437031 Found prime factor of 42 digits: 720383484822601695788878946450860804437031 Prime cofactor 1199706999114789548592936271993753097068750038299989865980098415237307221595462659924090895357261 has 97 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | January 13, 2023 08:05:32 UTC 2023 年 1 月 13 日 (金) 17 時 5 分 32 秒 (日本時間) |
2350 | Ignacio Santos | January 18, 2023 10:51:54 UTC 2023 年 1 月 18 日 (水) 19 時 51 分 54 秒 (日本時間) | |||
45 | 11e6 | 4480 | Ignacio Santos | January 18, 2023 13:16:58 UTC 2023 年 1 月 18 日 (水) 22 時 16 分 58 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2205 | Thomas Kozlowski | October 3, 2024 04:56:53 UTC 2024 年 10 月 3 日 (木) 13 時 56 分 53 秒 (日本時間) |
name 名前 | Thomas Kozlowski |
---|---|
date 日付 | October 3, 2024 05:07:18 UTC 2024 年 10 月 3 日 (木) 14 時 7 分 18 秒 (日本時間) |
composite number 合成数 | 225345518757744692472731766441194101202512840165915278024579573061043230874095708942871345893564217109918059904498379164331550005128931725988334028690202453471211685188659568878389042325709952902122077457132530410464702351581477628587790350812910445180657<255> |
prime factors 素因数 | 12300438444671520016871384022007933335829<41> |
composite cofactor 合成数の残り | 18320120845396619962431091540995428329533701071902517003837688731879308633785552019574159743537544908326542400338892789583892872433329117977813638896056918638673568660184152469881827761336059529372532924215798842733<215> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.6 [configured with GMP 6.3.0, --enable-asm-redc] [ECM] Input number is 225345518757744692472731766441194101202512840165915278024579573061043230874095708942871345893564217109918059904498379164331550005128931725988334028690202453471211685188659568878389042325709952902122077457132530410464702351581477628587790350812910445180657 (255 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:2383152912 Step 1 took 14870ms ** Factor found in step 1: 12300438444671520016871384022007933335829 Found prime factor of 41 digits: 12300438444671520016871384022007933335829 Composite cofactor 18320120845396619962431091540995428329533701071902517003837688731879308633785552019574159743537544908326542400338892789583892872433329117977813638896056918638673568660184152469881827761336059529372532924215798842733 has 215 digits |
execution environment 実行環境 | 4x Xeon E7-8890v4, 1024GB DDR4, Ubuntu Server 24.04 |
name 名前 | Thomas Kozlowski |
---|---|
date 日付 | October 7, 2024 00:41:14 UTC 2024 年 10 月 7 日 (月) 9 時 41 分 14 秒 (日本時間) |
composite number 合成数 | 18320120845396619962431091540995428329533701071902517003837688731879308633785552019574159743537544908326542400338892789583892872433329117977813638896056918638673568660184152469881827761336059529372532924215798842733<215> |
prime factors 素因数 | 13635111798652632156067641128776754137171<41> |
composite cofactor 合成数の残り | 1343598872963178921569637388051820128452605532130333567896189616649259542584753132207052277440615214271768403371453299305534887007925193581689878521607756706695308806996181823<175> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.6 [configured with GMP 6.3.0, --enable-asm-redc] [ECM] Input number is 18320120845396619962431091540995428329533701071902517003837688731879308633785552019574159743537544908326542400338892789583892872433329117977813638896056918638673568660184152469881827761336059529372532924215798842733 (215 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:373716800 Step 1 took 12422ms Step 2 took 4664ms Run 2 out of 0: Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:3215568257 Step 1 took 10195ms Step 2 took 4401ms Run 3 out of 0: ... Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:3508892906 Step 1 took 10186ms Step 2 took 4392ms Run 40 out of 0: Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:3568021913 Step 1 took 10190ms Step 2 took 4385ms ********** Factor found in step 2: 13635111798652632156067641128776754137171 Found prime factor of 41 digits: 13635111798652632156067641128776754137171 Composite cofactor 1343598872963178921569637388051820128452605532130333567896189616649259542584753132207052277440615214271768403371453299305534887007925193581689878521607756706695308806996181823 has 175 digits |
execution environment 実行環境 | 2x Xeon E5-2698v4, 128GB DDR4, Ubuntu Server 24.04 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | October 6, 2024 14:27:50 UTC 2024 年 10 月 6 日 (日) 23 時 27 分 50 秒 (日本時間) | |
45 | 11e6 | 4480 | Ignacio Santos | October 12, 2024 08:32:31 UTC 2024 年 10 月 12 日 (土) 17 時 32 分 31 秒 (日本時間) | |
50 | 43e6 | 1792 / 6453 | Dmitry Domanov | October 12, 2024 09:05:44 UTC 2024 年 10 月 12 日 (土) 18 時 5 分 44 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2206 | Thomas Kozlowski | October 3, 2024 05:03:22 UTC 2024 年 10 月 3 日 (木) 14 時 3 分 22 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2201 | Thomas Kozlowski | October 3, 2024 05:11:12 UTC 2024 年 10 月 3 日 (木) 14 時 11 分 12 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2204 | Thomas Kozlowski | October 3, 2024 05:19:02 UTC 2024 年 10 月 3 日 (木) 14 時 19 分 2 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2202 | Thomas Kozlowski | October 3, 2024 05:27:46 UTC 2024 年 10 月 3 日 (木) 14 時 27 分 46 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2202 | Thomas Kozlowski | October 3, 2024 05:36:30 UTC 2024 年 10 月 3 日 (木) 14 時 36 分 30 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | October 6, 2024 14:43:18 UTC 2024 年 10 月 6 日 (日) 23 時 43 分 18 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2204 | Thomas Kozlowski | October 3, 2024 05:53:01 UTC 2024 年 10 月 3 日 (木) 14 時 53 分 1 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2206 | Thomas Kozlowski | October 3, 2024 06:00:49 UTC 2024 年 10 月 3 日 (木) 15 時 0 分 49 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 25, 2022 15:00:00 UTC 2022 年 11 月 26 日 (土) 0 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | November 30, 2022 14:21:53 UTC 2022 年 11 月 30 日 (水) 23 時 21 分 53 秒 (日本時間) | |
45 | 11e6 | 3584 | Dmitry Domanov | November 30, 2022 14:21:53 UTC 2022 年 11 月 30 日 (水) 23 時 21 分 53 秒 (日本時間) | |
50 | 43e6 | 130 / 6675 | Dmitry Domanov | November 30, 2022 14:21:53 UTC 2022 年 11 月 30 日 (水) 23 時 21 分 53 秒 (日本時間) |