name 名前 | suberi |
---|---|
date 日付 | January 24, 2007 02:31:24 UTC 2007 年 1 月 24 日 (水) 11 時 31 分 24 秒 (日本時間) |
composite number 合成数 | 722222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222227<153> |
prime factors 素因数 | 6550213397685364775986550762989701971314721157128662740183066777671<67> 110259342463168051908664963775205452537386095869746869361395515038990560570276567780437<87> |
factorization results 素因数分解の結果 | Number: 72227_152 N=722222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222227 ( 153 digits) SNFS difficulty: 153 digits. Divisors found: r1=6550213397685364775986550762989701971314721157128662740183066777671 (pp67) r2=110259342463168051908664963775205452537386095869746869361395515038990560570276567780437 (pp87) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 43.65 hours. Scaled time: 28.11 units (timescale=0.644). Factorization parameters were as follows: n: 722222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222227 m: 1000000000000000000000000000000 c5: 6500 c0: 43 skew: 1 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 100000 ) Primes: RFBsize:176302, AFBsize:176528, largePrimes:5513675 encountered Relations: rels:5400593, finalFF:452520 Max relations in full relation-set: 28 Initial matrix: 352897 x 452520 with sparse part having weight 40973848. Pruned matrix : 314268 x 316096 with weight 25151271. Total sieving time: 38.70 hours. Total relation processing time: 0.26 hours. Matrix solve time: 4.53 hours. Time per square root: 0.17 hours. Prototype def-par.txt line would be: snfs,153,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 43.65 hours. --------- CPU info (if available) ---------- |
execution environment 実行環境 | Pentium 4 2.24GHz, Windows XP and Cygwin |
name 名前 | Robert Backstrom |
---|---|
date 日付 | April 26, 2007 07:04:42 UTC 2007 年 4 月 26 日 (木) 16 時 4 分 42 秒 (日本時間) |
composite number 合成数 | 5103403032154343834741178855604673819491372467573218373515476529946980780374398851423525859559148205166416041259945688339089065263392267437602072831<148> |
prime factors 素因数 | 2283906434721397222715225004575163162522053541582590209420748519155831<70> 2234506175283351071706709697979013414681324521591035009309462144344402039107001<79> |
factorization results 素因数分解の結果 | Number: n N=5103403032154343834741178855604673819491372467573218373515476529946980780374398851423525859559148205166416041259945688339089065263392267437602072831 ( 148 digits) SNFS difficulty: 160 digits. Divisors found: r1=2283906434721397222715225004575163162522053541582590209420748519155831 (pp70) r2=2234506175283351071706709697979013414681324521591035009309462144344402039107001 (pp79) Version: GGNFS-0.77.1-20051202-athlon Total time: 48.27 hours. Scaled time: 63.86 units (timescale=1.323). Factorization parameters were as follows: name: KA_7_2_157_7 n: 5103403032154343834741178855604673819491372467573218373515476529946980780374398851423525859559148205166416041259945688339089065263392267437602072831 skew: 1.16 deg: 5 c5: 104 c0: 215 m: 50000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 2000001) Primes: RFBsize:216816, AFBsize:216546, largePrimes:7326828 encountered Relations: rels:6829370, finalFF:530036 Max relations in full relation-set: 48 Initial matrix: 433428 x 530036 with sparse part having weight 48883949. Pruned matrix : 366007 x 368238 with weight 29896532. Total sieving time: 42.64 hours. Total relation processing time: 0.23 hours. Matrix solve time: 4.80 hours. Total square root time: 0.60 hours, sqrts: 7. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 48.27 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+ |
name 名前 | Robert Backstrom |
---|---|
date 日付 | June 10, 2007 07:45:59 UTC 2007 年 6 月 10 日 (日) 16 時 45 分 59 秒 (日本時間) |
composite number 合成数 | 188070384038043145789855963382740207328959180189136326467303443069361466091139927156978142277394156582511341411629330403090273249350352884837936146356521<153> |
prime factors 素因数 | 17352541246944072825111665711753<32> 2342545412736254376314836515222427<34> 4626678339400851524807725560482691036987427405150010526072468457028149806517927931218291<88> |
factorization results 素因数分解の結果 | Number: n N=188070384038043145789855963382740207328959180189136326467303443069361466091139927156978142277394156582511341411629330403090273249350352884837936146356521 ( 153 digits) SNFS difficulty: 161 digits. Divisors found: r1=17352541246944072825111665711753 (pp32) r2=2342545412736254376314836515222427 (pp34) r3=4626678339400851524807725560482691036987427405150010526072468457028149806517927931218291 (pp88) Version: GGNFS-0.77.1-20051202-athlon Total time: 39.23 hours. Scaled time: 56.69 units (timescale=1.445). Factorization parameters were as follows: name: KA_7_2_159_7 n: 188070384038043145789855963382740207328959180189136326467303443069361466091139927156978142277394156582511341411629330403090273249350352884837936146356521 skew: 0.92 deg: 5 c5: 65 c0: 43 m: 100000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1700001) Primes: RFBsize:250150, AFBsize:250296, largePrimes:7171287 encountered Relations: rels:6695030, finalFF:564527 Max relations in full relation-set: 28 Initial matrix: 500512 x 564527 with sparse part having weight 35787677. Pruned matrix : 445479 x 448045 with weight 23699811. Total sieving time: 34.25 hours. Total relation processing time: 0.21 hours. Matrix solve time: 4.54 hours. Total square root time: 0.23 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 39.23 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+ |
name 名前 | Robert Backstrom |
---|---|
date 日付 | June 12, 2007 13:10:24 UTC 2007 年 6 月 12 日 (火) 22 時 10 分 24 秒 (日本時間) |
composite number 合成数 | 19271078854289890392033039523500339467465971721915367351234683198287542285194178355317187134034800603629485343603335971988745689949094704011052704918275801751<158> |
prime factors 素因数 | 52947769774827685110950551656087356218398433<44> 363963939109135155217567052297823083527155953215564045576179453409875651685542451308909281653467079298253731913847<114> |
factorization results 素因数分解の結果 | Number: n N=19271078854289890392033039523500339467465971721915367351234683198287542285194178355317187134034800603629485343603335971988745689949094704011052704918275801751 ( 158 digits) SNFS difficulty: 162 digits. Divisors found: r1=52947769774827685110950551656087356218398433 (pp44) r2=363963939109135155217567052297823083527155953215564045576179453409875651685542451308909281653467079298253731913847 (pp114) Version: GGNFS-0.77.1-20051202-athlon Total time: 51.24 hours. Scaled time: 74.29 units (timescale=1.450). Factorization parameters were as follows: name: KA_7_2_160_7 n: 19271078854289890392033039523500339467465971721915367351234683198287542285194178355317187134034800603629485343603335971988745689949094704011052704918275801751 skew: 0.58 deg: 5 c5: 650 c0: 43 m: 100000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 2300001) Primes: RFBsize:250150, AFBsize:249736, largePrimes:7540584 encountered Relations: rels:7113733, finalFF:609923 Max relations in full relation-set: 28 Initial matrix: 499953 x 609923 with sparse part having weight 44644601. Pruned matrix : 412583 x 415146 with weight 28053407. Total sieving time: 45.96 hours. Total relation processing time: 0.24 hours. Matrix solve time: 4.95 hours. Total square root time: 0.08 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,162,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 51.24 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+ |
name 名前 | Robert Backstrom |
---|---|
date 日付 | February 15, 2008 01:00:40 UTC 2008 年 2 月 15 日 (金) 10 時 0 分 40 秒 (日本時間) |
composite number 合成数 | 22092718465017248771037776619885496253769731032787367896536812757589874812967027353750731118374142593784616914591704075466651<125> |
prime factors 素因数 | 137954707191964580423759095965459263169617010356229781<54> 160144723690182851686046435792735566441355086416901397233226149694716271<72> |
factorization results 素因数分解の結果 | Number: n N=22092718465017248771037776619885496253769731032787367896536812757589874812967027353750731118374142593784616914591704075466651 ( 125 digits) SNFS difficulty: 163 digits. Divisors found: Fri Feb 15 11:54:20 2008 prp54 factor: 137954707191964580423759095965459263169617010356229781 Fri Feb 15 11:54:20 2008 prp72 factor: 160144723690182851686046435792735566441355086416901397233226149694716271 Fri Feb 15 11:54:20 2008 elapsed time 00:55:13 (Msieve 1.33) Version: GGNFS-0.77.1-20051202-athlon Total time: 35.21 hours. Scaled time: 64.41 units (timescale=1.829). Factorization parameters were as follows: name: KA_7_2_161_7 n: 22092718465017248771037776619885496253769731032787367896536812757589874812967027353750731118374142593784616914591704075466651 skew: 0.37 deg: 5 c5: 6500 c0: 43 m: 100000000000000000000000000000000 type: snfs rlim: 3200000 alim: 3200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 2300001) Primes: RFBsize:230209, AFBsize:230052, largePrimes:7364839 encountered Relations: rels:6841139, finalFF:523751 Max relations in full relation-set: 28 Initial matrix: 460328 x 523751 with sparse part having weight 47945873. Pruned matrix : Total sieving time: 35.04 hours. Total relation processing time: 0.17 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,163,5,0,0,0,0,0,0,0,0,3200000,3200000,28,28,48,48,2.5,2.5,100000 total time: 35.21 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+ |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | September 7, 2008 22:22:45 UTC 2008 年 9 月 8 日 (月) 7 時 22 分 45 秒 (日本時間) |
composite number 合成数 | 161824745494397415085594949862446015318804831340450950581977528424876612513918227943180593176597511704495626812201425598050776499<129> |
prime factors 素因数 | 2844021580936529047321181522766000025422187626149<49> 56899971005532573858733054130402004114671676641026019412601626011729833138572151<80> |
factorization results 素因数分解の結果 | Number: 72227_165 N=161824745494397415085594949862446015318804831340450950581977528424876612513918227943180593176597511704495626812201425598050776499 ( 129 digits) SNFS difficulty: 166 digits. Divisors found: r1=2844021580936529047321181522766000025422187626149 (pp49) r2=56899971005532573858733054130402004114671676641026019412601626011729833138572151 (pp80) Version: GGNFS-0.77.1-20050930-nocona Total time: 45.38 hours. Scaled time: 108.18 units (timescale=2.384). Factorization parameters were as follows: n: 161824745494397415085594949862446015318804831340450950581977528424876612513918227943180593176597511704495626812201425598050776499 m: 1000000000000000000000000000000000 c5: 65 c0: 43 skew: 0.92 type: snfs Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved algebraic special-q in [3000000, 5500001) Primes: RFBsize:412849, AFBsize:413366, largePrimes:6535631 encountered Relations: rels:6859270, finalFF:962155 Max relations in full relation-set: 28 Initial matrix: 826281 x 962155 with sparse part having weight 57220973. Pruned matrix : 707273 x 711468 with weight 37824375. Total sieving time: 42.55 hours. Total relation processing time: 0.10 hours. Matrix solve time: 2.66 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,6000000,6000000,27,27,49,49,2.6,2.6,100000 total time: 45.38 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047092k/8912896k available (2460k kernel code, 339200k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.61 BogoMIPS (lpj=2673805) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672345) Calibrating delay using timer specific routine.. 5344.05 BogoMIPS (lpj=2672026) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347) |
execution environment 実行環境 | Core 2 Quad Q6700 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Jo Yeong Uk | August 5, 2008 11:43:28 UTC 2008 年 8 月 5 日 (火) 20 時 43 分 28 秒 (日本時間) | |
25 | 5e4 | 214 | Jo Yeong Uk | August 5, 2008 11:43:33 UTC 2008 年 8 月 5 日 (火) 20 時 43 分 33 秒 (日本時間) | |
30 | 25e4 | 430 | Jo Yeong Uk | August 5, 2008 11:43:38 UTC 2008 年 8 月 5 日 (火) 20 時 43 分 38 秒 (日本時間) | |
35 | 1e6 | 904 | Jo Yeong Uk | August 5, 2008 11:43:43 UTC 2008 年 8 月 5 日 (火) 20 時 43 分 43 秒 (日本時間) |
name 名前 | Justin Card |
---|---|
date 日付 | June 12, 2009 03:56:41 UTC 2009 年 6 月 12 日 (金) 12 時 56 分 41 秒 (日本時間) |
composite number 合成数 | 9763436759606743427904739583306785308462946373464374213867612168717174093348236091973396634356359866256404708584327307961415747853<130> |
prime factors 素因数 | 450631373675458452337775455499947328084685648775502985779<57> 21666127415793961010964729859371091707932535791390299034807201472008220607<74> |
factorization results 素因数分解の結果 | Sieving performed over 2.5 days manually Postprocessing log: Thu Jun 11 22:15:03 2009 Thu Jun 11 22:15:03 2009 Thu Jun 11 22:15:03 2009 Msieve v. 1.41 Thu Jun 11 22:15:03 2009 random seeds: 891788b7 6f9284bd Thu Jun 11 22:15:03 2009 factoring 9763436759606743427904739583306785308462946373464374213867612168717174093348236091973396634356359866256404708584327307961415747853 (130 digits) Thu Jun 11 22:15:04 2009 searching for 15-digit factors Thu Jun 11 22:15:05 2009 commencing number field sieve (130-digit input) Thu Jun 11 22:15:05 2009 R0: -1000000000000000000000000000000000 Thu Jun 11 22:15:05 2009 R1: 1 Thu Jun 11 22:15:05 2009 A0: 43 Thu Jun 11 22:15:05 2009 A1: 0 Thu Jun 11 22:15:05 2009 A2: 0 Thu Jun 11 22:15:05 2009 A3: 0 Thu Jun 11 22:15:05 2009 A4: 0 Thu Jun 11 22:15:05 2009 A5: 650 Thu Jun 11 22:15:05 2009 skew 1.00, size 9.555107e-12, alpha -0.317313, combined = 3.222005e-10 Thu Jun 11 22:15:05 2009 Thu Jun 11 22:15:05 2009 commencing relation filtering Thu Jun 11 22:15:05 2009 commencing duplicate removal, pass 1 Thu Jun 11 22:17:35 2009 found 2090217 hash collisions in 13684980 relations Thu Jun 11 22:18:13 2009 added 357929 free relations Thu Jun 11 22:18:13 2009 commencing duplicate removal, pass 2 Thu Jun 11 22:18:27 2009 found 2030428 duplicates and 12012481 unique relations Thu Jun 11 22:18:27 2009 memory use: 69.3 MB Thu Jun 11 22:18:27 2009 reading rational ideals above 6094848 Thu Jun 11 22:18:27 2009 reading algebraic ideals above 6094848 Thu Jun 11 22:18:27 2009 commencing singleton removal, pass 1 Thu Jun 11 22:20:57 2009 relations with 0 large ideals: 299061 Thu Jun 11 22:20:57 2009 relations with 1 large ideals: 1856276 Thu Jun 11 22:20:57 2009 relations with 2 large ideals: 4373394 Thu Jun 11 22:20:57 2009 relations with 3 large ideals: 4053181 Thu Jun 11 22:20:57 2009 relations with 4 large ideals: 1048259 Thu Jun 11 22:20:57 2009 relations with 5 large ideals: 39190 Thu Jun 11 22:20:57 2009 relations with 6 large ideals: 343119 Thu Jun 11 22:20:57 2009 relations with 7+ large ideals: 1 Thu Jun 11 22:20:57 2009 12012481 relations and about 9765690 large ideals Thu Jun 11 22:20:57 2009 commencing singleton removal, pass 2 Thu Jun 11 22:23:39 2009 found 3384675 singletons Thu Jun 11 22:23:39 2009 current dataset: 8627806 relations and about 5627344 large ideals Thu Jun 11 22:23:39 2009 commencing singleton removal, pass 3 Thu Jun 11 22:25:22 2009 found 877593 singletons Thu Jun 11 22:25:22 2009 current dataset: 7750213 relations and about 4725529 large ideals Thu Jun 11 22:25:22 2009 commencing singleton removal, pass 4 Thu Jun 11 22:26:57 2009 found 139102 singletons Thu Jun 11 22:26:57 2009 current dataset: 7611111 relations and about 4585593 large ideals Thu Jun 11 22:26:57 2009 commencing singleton removal, final pass Thu Jun 11 22:28:37 2009 memory use: 123.1 MB Thu Jun 11 22:28:37 2009 commencing in-memory singleton removal Thu Jun 11 22:28:38 2009 begin with 7611111 relations and 4846475 unique ideals Thu Jun 11 22:28:45 2009 reduce to 7238441 relations and 4470046 ideals in 8 passes Thu Jun 11 22:28:45 2009 max relations containing the same ideal: 31 Thu Jun 11 22:28:46 2009 reading rational ideals above 720000 Thu Jun 11 22:28:46 2009 reading algebraic ideals above 720000 Thu Jun 11 22:28:46 2009 commencing singleton removal, final pass Thu Jun 11 22:30:40 2009 keeping 4652011 ideals with weight <= 20, new excess is 661449 Thu Jun 11 22:30:45 2009 memory use: 177.4 MB Thu Jun 11 22:30:45 2009 commencing in-memory singleton removal Thu Jun 11 22:30:46 2009 begin with 7239473 relations and 4652011 unique ideals Thu Jun 11 22:30:50 2009 reduce to 7238347 relations and 4645988 ideals in 4 passes Thu Jun 11 22:30:50 2009 max relations containing the same ideal: 20 Thu Jun 11 22:30:55 2009 removing 1370225 relations and 970225 ideals in 400000 cliques Thu Jun 11 22:30:56 2009 commencing in-memory singleton removal Thu Jun 11 22:30:56 2009 begin with 5868122 relations and 4645988 unique ideals Thu Jun 11 22:31:02 2009 reduce to 5763246 relations and 3565026 ideals in 7 passes Thu Jun 11 22:31:02 2009 max relations containing the same ideal: 20 Thu Jun 11 22:31:06 2009 removing 1048359 relations and 648359 ideals in 400000 cliques Thu Jun 11 22:31:06 2009 commencing in-memory singleton removal Thu Jun 11 22:31:07 2009 begin with 4714887 relations and 3565026 unique ideals Thu Jun 11 22:31:10 2009 reduce to 4612574 relations and 2807796 ideals in 6 passes Thu Jun 11 22:31:10 2009 max relations containing the same ideal: 20 Thu Jun 11 22:31:13 2009 removing 958972 relations and 558972 ideals in 400000 cliques Thu Jun 11 22:31:14 2009 commencing in-memory singleton removal Thu Jun 11 22:31:14 2009 begin with 3653602 relations and 2807796 unique ideals Thu Jun 11 22:31:17 2009 reduce to 3546460 relations and 2133022 ideals in 6 passes Thu Jun 11 22:31:17 2009 max relations containing the same ideal: 19 Thu Jun 11 22:31:19 2009 removing 927820 relations and 527820 ideals in 400000 cliques Thu Jun 11 22:31:20 2009 commencing in-memory singleton removal Thu Jun 11 22:31:20 2009 begin with 2618640 relations and 2133022 unique ideals Thu Jun 11 22:31:22 2009 reduce to 2502532 relations and 1476617 ideals in 7 passes Thu Jun 11 22:31:22 2009 max relations containing the same ideal: 16 Thu Jun 11 22:31:24 2009 removing 617081 relations and 358447 ideals in 258634 cliques Thu Jun 11 22:31:24 2009 commencing in-memory singleton removal Thu Jun 11 22:31:24 2009 begin with 1885451 relations and 1476617 unique ideals Thu Jun 11 22:31:25 2009 reduce to 1796412 relations and 1019287 ideals in 7 passes Thu Jun 11 22:31:25 2009 max relations containing the same ideal: 14 Thu Jun 11 22:31:26 2009 removing 44809 relations and 34965 ideals in 9844 cliques Thu Jun 11 22:31:27 2009 commencing in-memory singleton removal Thu Jun 11 22:31:27 2009 begin with 1751603 relations and 1019287 unique ideals Thu Jun 11 22:31:27 2009 reduce to 1750837 relations and 983553 ideals in 4 passes Thu Jun 11 22:31:27 2009 max relations containing the same ideal: 14 Thu Jun 11 22:31:28 2009 relations with 0 large ideals: 174112 Thu Jun 11 22:31:28 2009 relations with 1 large ideals: 583484 Thu Jun 11 22:31:28 2009 relations with 2 large ideals: 636673 Thu Jun 11 22:31:28 2009 relations with 3 large ideals: 282529 Thu Jun 11 22:31:28 2009 relations with 4 large ideals: 64640 Thu Jun 11 22:31:28 2009 relations with 5 large ideals: 7757 Thu Jun 11 22:31:28 2009 relations with 6 large ideals: 1629 Thu Jun 11 22:31:28 2009 relations with 7+ large ideals: 13 Thu Jun 11 22:31:28 2009 commencing 2-way merge Thu Jun 11 22:31:29 2009 reduce to 1298618 relation sets and 531334 unique ideals Thu Jun 11 22:31:29 2009 commencing full merge Thu Jun 11 22:31:35 2009 memory use: 52.1 MB Thu Jun 11 22:31:35 2009 found 764728 cycles, need 661649 Thu Jun 11 22:31:35 2009 weight of 661649 cycles is about 32721827 (49.45/cycle) Thu Jun 11 22:31:35 2009 distribution of cycle lengths: Thu Jun 11 22:31:35 2009 1 relations: 174112 Thu Jun 11 22:31:35 2009 2 relations: 97968 Thu Jun 11 22:31:35 2009 3 relations: 80875 Thu Jun 11 22:31:35 2009 4 relations: 65935 Thu Jun 11 22:31:35 2009 5 relations: 56261 Thu Jun 11 22:31:35 2009 6 relations: 46805 Thu Jun 11 22:31:35 2009 7 relations: 40424 Thu Jun 11 22:31:35 2009 8 relations: 33366 Thu Jun 11 22:31:35 2009 9 relations: 27756 Thu Jun 11 22:31:35 2009 10+ relations: 38147 Thu Jun 11 22:31:35 2009 heaviest cycle: 14 relations Thu Jun 11 22:31:35 2009 matrix can improve, retrying Thu Jun 11 22:31:36 2009 reading rational ideals above 720000 Thu Jun 11 22:31:36 2009 reading algebraic ideals above 720000 Thu Jun 11 22:31:36 2009 commencing singleton removal, final pass Thu Jun 11 22:33:29 2009 keeping 4741281 ideals with weight <= 25, new excess is 572179 Thu Jun 11 22:33:34 2009 memory use: 177.4 MB Thu Jun 11 22:33:34 2009 commencing in-memory singleton removal Thu Jun 11 22:33:35 2009 begin with 7239473 relations and 4741281 unique ideals Thu Jun 11 22:33:40 2009 reduce to 7238347 relations and 4735258 ideals in 4 passes Thu Jun 11 22:33:40 2009 max relations containing the same ideal: 25 Thu Jun 11 22:33:45 2009 removing 1370225 relations and 970225 ideals in 400000 cliques Thu Jun 11 22:33:46 2009 commencing in-memory singleton removal Thu Jun 11 22:33:47 2009 begin with 5868122 relations and 4735258 unique ideals Thu Jun 11 22:33:52 2009 reduce to 5763246 relations and 3654296 ideals in 7 passes Thu Jun 11 22:33:52 2009 max relations containing the same ideal: 25 Thu Jun 11 22:33:57 2009 removing 1048359 relations and 648359 ideals in 400000 cliques Thu Jun 11 22:33:57 2009 commencing in-memory singleton removal Thu Jun 11 22:33:58 2009 begin with 4714887 relations and 3654296 unique ideals Thu Jun 11 22:34:02 2009 reduce to 4612548 relations and 2897043 ideals in 6 passes Thu Jun 11 22:34:02 2009 max relations containing the same ideal: 24 Thu Jun 11 22:34:05 2009 removing 958960 relations and 558960 ideals in 400000 cliques Thu Jun 11 22:34:05 2009 commencing in-memory singleton removal Thu Jun 11 22:34:06 2009 begin with 3653588 relations and 2897043 unique ideals Thu Jun 11 22:34:09 2009 reduce to 3546576 relations and 2222376 ideals in 6 passes Thu Jun 11 22:34:09 2009 max relations containing the same ideal: 23 Thu Jun 11 22:34:12 2009 removing 927863 relations and 527863 ideals in 400000 cliques Thu Jun 11 22:34:12 2009 commencing in-memory singleton removal Thu Jun 11 22:34:13 2009 begin with 2618713 relations and 2222376 unique ideals Thu Jun 11 22:34:15 2009 reduce to 2502567 relations and 1565849 ideals in 7 passes Thu Jun 11 22:34:15 2009 max relations containing the same ideal: 19 Thu Jun 11 22:34:17 2009 removing 645878 relations and 372888 ideals in 272990 cliques Thu Jun 11 22:34:17 2009 commencing in-memory singleton removal Thu Jun 11 22:34:18 2009 begin with 1856689 relations and 1565849 unique ideals Thu Jun 11 22:34:19 2009 reduce to 1761413 relations and 1086714 ideals in 7 passes Thu Jun 11 22:34:19 2009 max relations containing the same ideal: 17 Thu Jun 11 22:34:20 2009 removing 49978 relations and 39007 ideals in 10971 cliques Thu Jun 11 22:34:21 2009 commencing in-memory singleton removal Thu Jun 11 22:34:21 2009 begin with 1711435 relations and 1086714 unique ideals Thu Jun 11 22:34:22 2009 reduce to 1710437 relations and 1046700 ideals in 5 passes Thu Jun 11 22:34:22 2009 max relations containing the same ideal: 16 Thu Jun 11 22:34:22 2009 relations with 0 large ideals: 113635 Thu Jun 11 22:34:22 2009 relations with 1 large ideals: 443963 Thu Jun 11 22:34:22 2009 relations with 2 large ideals: 615026 Thu Jun 11 22:34:22 2009 relations with 3 large ideals: 381062 Thu Jun 11 22:34:22 2009 relations with 4 large ideals: 128224 Thu Jun 11 22:34:22 2009 relations with 5 large ideals: 24417 Thu Jun 11 22:34:22 2009 relations with 6 large ideals: 3945 Thu Jun 11 22:34:22 2009 relations with 7+ large ideals: 165 Thu Jun 11 22:34:22 2009 commencing 2-way merge Thu Jun 11 22:34:23 2009 reduce to 1266153 relation sets and 602416 unique ideals Thu Jun 11 22:34:23 2009 commencing full merge Thu Jun 11 22:34:38 2009 memory use: 58.1 MB Thu Jun 11 22:34:38 2009 found 666737 cycles, need 584616 Thu Jun 11 22:34:39 2009 weight of 584616 cycles is about 41139292 (70.37/cycle) Thu Jun 11 22:34:39 2009 distribution of cycle lengths: Thu Jun 11 22:34:39 2009 1 relations: 113778 Thu Jun 11 22:34:39 2009 2 relations: 61154 Thu Jun 11 22:34:39 2009 3 relations: 53353 Thu Jun 11 22:34:39 2009 4 relations: 47482 Thu Jun 11 22:34:39 2009 5 relations: 44643 Thu Jun 11 22:34:39 2009 6 relations: 40899 Thu Jun 11 22:34:39 2009 7 relations: 38087 Thu Jun 11 22:34:39 2009 8 relations: 34576 Thu Jun 11 22:34:39 2009 9 relations: 31157 Thu Jun 11 22:34:39 2009 10+ relations: 119487 Thu Jun 11 22:34:39 2009 heaviest cycle: 18 relations Thu Jun 11 22:34:39 2009 matrix can improve, retrying Thu Jun 11 22:34:40 2009 reading rational ideals above 720000 Thu Jun 11 22:34:40 2009 reading algebraic ideals above 720000 Thu Jun 11 22:34:40 2009 commencing singleton removal, final pass Thu Jun 11 22:37:12 2009 keeping 4838805 ideals with weight <= 30, new excess is 474655 Thu Jun 11 22:37:20 2009 memory use: 177.4 MB Thu Jun 11 22:37:20 2009 commencing in-memory singleton removal Thu Jun 11 22:37:22 2009 begin with 7239473 relations and 4838805 unique ideals Thu Jun 11 22:37:29 2009 reduce to 7238347 relations and 4832782 ideals in 4 passes Thu Jun 11 22:37:29 2009 max relations containing the same ideal: 30 Thu Jun 11 22:37:39 2009 removing 1370225 relations and 970225 ideals in 400000 cliques Thu Jun 11 22:37:40 2009 commencing in-memory singleton removal Thu Jun 11 22:37:42 2009 begin with 5868122 relations and 4832782 unique ideals Thu Jun 11 22:37:53 2009 reduce to 5763246 relations and 3751820 ideals in 7 passes Thu Jun 11 22:37:53 2009 max relations containing the same ideal: 30 Thu Jun 11 22:38:01 2009 removing 1048359 relations and 648359 ideals in 400000 cliques Thu Jun 11 22:38:02 2009 commencing in-memory singleton removal Thu Jun 11 22:38:03 2009 begin with 4714887 relations and 3751820 unique ideals Thu Jun 11 22:38:11 2009 reduce to 4612549 relations and 2994568 ideals in 6 passes Thu Jun 11 22:38:11 2009 max relations containing the same ideal: 28 Thu Jun 11 22:38:17 2009 removing 958958 relations and 558958 ideals in 400000 cliques Thu Jun 11 22:38:18 2009 commencing in-memory singleton removal Thu Jun 11 22:38:19 2009 begin with 3653591 relations and 2994568 unique ideals Thu Jun 11 22:38:25 2009 reduce to 3546538 relations and 2319864 ideals in 6 passes Thu Jun 11 22:38:25 2009 max relations containing the same ideal: 26 Thu Jun 11 22:38:30 2009 removing 927846 relations and 527846 ideals in 400000 cliques Thu Jun 11 22:38:31 2009 commencing in-memory singleton removal Thu Jun 11 22:38:31 2009 begin with 2618692 relations and 2319864 unique ideals Thu Jun 11 22:38:36 2009 reduce to 2502397 relations and 1663234 ideals in 7 passes Thu Jun 11 22:38:36 2009 max relations containing the same ideal: 21 Thu Jun 11 22:38:39 2009 removing 676969 relations and 388406 ideals in 288563 cliques Thu Jun 11 22:38:40 2009 commencing in-memory singleton removal Thu Jun 11 22:38:41 2009 begin with 1825428 relations and 1663234 unique ideals Thu Jun 11 22:38:44 2009 reduce to 1723810 relations and 1160990 ideals in 7 passes Thu Jun 11 22:38:44 2009 max relations containing the same ideal: 18 Thu Jun 11 22:38:46 2009 removing 55463 relations and 43243 ideals in 12220 cliques Thu Jun 11 22:38:47 2009 commencing in-memory singleton removal Thu Jun 11 22:38:47 2009 begin with 1668347 relations and 1160990 unique ideals Thu Jun 11 22:38:49 2009 reduce to 1667063 relations and 1116452 ideals in 5 passes Thu Jun 11 22:38:49 2009 max relations containing the same ideal: 18 Thu Jun 11 22:38:49 2009 relations with 0 large ideals: 65458 Thu Jun 11 22:38:49 2009 relations with 1 large ideals: 297828 Thu Jun 11 22:38:49 2009 relations with 2 large ideals: 530856 Thu Jun 11 22:38:49 2009 relations with 3 large ideals: 462549 Thu Jun 11 22:38:49 2009 relations with 4 large ideals: 229066 Thu Jun 11 22:38:49 2009 relations with 5 large ideals: 67346 Thu Jun 11 22:38:49 2009 relations with 6 large ideals: 12804 Thu Jun 11 22:38:49 2009 relations with 7+ large ideals: 1156 Thu Jun 11 22:38:49 2009 commencing 2-way merge Thu Jun 11 22:38:52 2009 reduce to 1233370 relation sets and 682759 unique ideals Thu Jun 11 22:38:52 2009 commencing full merge Thu Jun 11 22:39:14 2009 memory use: 65.7 MB Thu Jun 11 22:39:14 2009 found 634387 cycles, need 560959 Thu Jun 11 22:39:15 2009 weight of 560959 cycles is about 39428217 (70.29/cycle) Thu Jun 11 22:39:15 2009 distribution of cycle lengths: Thu Jun 11 22:39:15 2009 1 relations: 72319 Thu Jun 11 22:39:15 2009 2 relations: 52148 Thu Jun 11 22:39:15 2009 3 relations: 55635 Thu Jun 11 22:39:15 2009 4 relations: 54694 Thu Jun 11 22:39:15 2009 5 relations: 54247 Thu Jun 11 22:39:15 2009 6 relations: 49707 Thu Jun 11 22:39:15 2009 7 relations: 45747 Thu Jun 11 22:39:15 2009 8 relations: 40721 Thu Jun 11 22:39:15 2009 9 relations: 35481 Thu Jun 11 22:39:15 2009 10+ relations: 100260 Thu Jun 11 22:39:15 2009 heaviest cycle: 16 relations Thu Jun 11 22:39:15 2009 commencing cycle optimization Thu Jun 11 22:39:17 2009 start with 3244833 relations Thu Jun 11 22:39:31 2009 pruned 210947 relations Thu Jun 11 22:39:31 2009 memory use: 93.5 MB Thu Jun 11 22:39:31 2009 distribution of cycle lengths: Thu Jun 11 22:39:31 2009 1 relations: 72319 Thu Jun 11 22:39:31 2009 2 relations: 54853 Thu Jun 11 22:39:31 2009 3 relations: 60718 Thu Jun 11 22:39:31 2009 4 relations: 60060 Thu Jun 11 22:39:31 2009 5 relations: 60069 Thu Jun 11 22:39:31 2009 6 relations: 54268 Thu Jun 11 22:39:31 2009 7 relations: 49024 Thu Jun 11 22:39:31 2009 8 relations: 42072 Thu Jun 11 22:39:31 2009 9 relations: 35161 Thu Jun 11 22:39:31 2009 10+ relations: 72415 Thu Jun 11 22:39:31 2009 heaviest cycle: 16 relations Thu Jun 11 22:39:34 2009 RelProcTime: 1326 Thu Jun 11 22:39:34 2009 elapsed time 00:24:31 Thu Jun 11 22:39:45 2009 Thu Jun 11 22:39:45 2009 Thu Jun 11 22:39:45 2009 Msieve v. 1.41 Thu Jun 11 22:39:45 2009 random seeds: 2f7019d3 c696b041 Thu Jun 11 22:39:45 2009 factoring 9763436759606743427904739583306785308462946373464374213867612168717174093348236091973396634356359866256404708584327307961415747853 (130 digits) Thu Jun 11 22:39:47 2009 searching for 15-digit factors Thu Jun 11 22:39:48 2009 commencing number field sieve (130-digit input) Thu Jun 11 22:39:48 2009 R0: -1000000000000000000000000000000000 Thu Jun 11 22:39:48 2009 R1: 1 Thu Jun 11 22:39:48 2009 A0: 43 Thu Jun 11 22:39:48 2009 A1: 0 Thu Jun 11 22:39:48 2009 A2: 0 Thu Jun 11 22:39:48 2009 A3: 0 Thu Jun 11 22:39:48 2009 A4: 0 Thu Jun 11 22:39:48 2009 A5: 650 Thu Jun 11 22:39:48 2009 skew 1.00, size 9.555107e-12, alpha -0.317313, combined = 3.222005e-10 Thu Jun 11 22:39:48 2009 Thu Jun 11 22:39:48 2009 commencing linear algebra Thu Jun 11 22:39:48 2009 read 560959 cycles Thu Jun 11 22:39:51 2009 cycles contain 1460370 unique relations Thu Jun 11 22:40:18 2009 Thu Jun 11 22:40:18 2009 Thu Jun 11 22:40:18 2009 Msieve v. 1.41 Thu Jun 11 22:40:18 2009 random seeds: 896479b4 8c2297c6 Thu Jun 11 22:40:18 2009 factoring 9763436759606743427904739583306785308462946373464374213867612168717174093348236091973396634356359866256404708584327307961415747853 (130 digits) Thu Jun 11 22:40:19 2009 searching for 15-digit factors Thu Jun 11 22:40:20 2009 commencing number field sieve (130-digit input) Thu Jun 11 22:40:20 2009 R0: -1000000000000000000000000000000000 Thu Jun 11 22:40:20 2009 R1: 1 Thu Jun 11 22:40:20 2009 A0: 43 Thu Jun 11 22:40:20 2009 A1: 0 Thu Jun 11 22:40:20 2009 A2: 0 Thu Jun 11 22:40:20 2009 A3: 0 Thu Jun 11 22:40:20 2009 A4: 0 Thu Jun 11 22:40:20 2009 A5: 650 Thu Jun 11 22:40:20 2009 skew 1.00, size 9.555107e-12, alpha -0.317313, combined = 3.222005e-10 Thu Jun 11 22:40:20 2009 Thu Jun 11 22:40:20 2009 commencing linear algebra Thu Jun 11 22:40:20 2009 read 560959 cycles Thu Jun 11 22:40:21 2009 cycles contain 1460370 unique relations Thu Jun 11 22:40:43 2009 read 1460370 relations Thu Jun 11 22:40:46 2009 using 20 quadratic characters above 134210724 Thu Jun 11 22:41:00 2009 building initial matrix Thu Jun 11 22:41:26 2009 memory use: 185.1 MB Thu Jun 11 22:41:27 2009 read 560959 cycles Thu Jun 11 22:41:27 2009 matrix is 560744 x 560959 (161.1 MB) with weight 48786446 (86.97/col) Thu Jun 11 22:41:27 2009 sparse part has weight 36056943 (64.28/col) Thu Jun 11 22:41:43 2009 filtering completed in 2 passes Thu Jun 11 22:41:43 2009 matrix is 559754 x 559954 (160.9 MB) with weight 48736748 (87.04/col) Thu Jun 11 22:41:43 2009 sparse part has weight 36028515 (64.34/col) Thu Jun 11 22:41:47 2009 read 559954 cycles Thu Jun 11 22:41:48 2009 matrix is 559754 x 559954 (160.9 MB) with weight 48736748 (87.04/col) Thu Jun 11 22:41:48 2009 sparse part has weight 36028515 (64.34/col) Thu Jun 11 22:41:48 2009 saving the first 48 matrix rows for later Thu Jun 11 22:41:48 2009 matrix is 559706 x 559954 (153.0 MB) with weight 38273617 (68.35/col) Thu Jun 11 22:41:48 2009 sparse part has weight 34501380 (61.61/col) Thu Jun 11 22:41:48 2009 matrix includes 64 packed rows Thu Jun 11 22:41:48 2009 using block size 10922 for processor cache size 256 kB Thu Jun 11 22:41:52 2009 commencing Lanczos iteration (2 threads) Thu Jun 11 22:41:52 2009 memory use: 149.8 MB Thu Jun 11 23:37:37 2009 lanczos halted after 8855 iterations (dim = 559706) Thu Jun 11 23:37:38 2009 recovered 39 nontrivial dependencies Thu Jun 11 23:37:38 2009 BLanczosTime: 3438 Thu Jun 11 23:37:38 2009 elapsed time 00:57:20 Thu Jun 11 23:42:07 2009 Thu Jun 11 23:42:07 2009 Thu Jun 11 23:42:07 2009 Msieve v. 1.41 Thu Jun 11 23:42:07 2009 random seeds: f3d8e841 ee630f48 Thu Jun 11 23:42:07 2009 factoring 9763436759606743427904739583306785308462946373464374213867612168717174093348236091973396634356359866256404708584327307961415747853 (130 digits) Thu Jun 11 23:42:09 2009 searching for 15-digit factors Thu Jun 11 23:42:09 2009 commencing number field sieve (130-digit input) Thu Jun 11 23:42:09 2009 R0: -1000000000000000000000000000000000 Thu Jun 11 23:42:09 2009 R1: 1 Thu Jun 11 23:42:09 2009 A0: 43 Thu Jun 11 23:42:09 2009 A1: 0 Thu Jun 11 23:42:09 2009 A2: 0 Thu Jun 11 23:42:09 2009 A3: 0 Thu Jun 11 23:42:09 2009 A4: 0 Thu Jun 11 23:42:09 2009 A5: 650 Thu Jun 11 23:42:09 2009 skew 1.00, size 9.555107e-12, alpha -0.317313, combined = 3.222005e-10 Thu Jun 11 23:42:10 2009 Thu Jun 11 23:42:10 2009 commencing square root phase Thu Jun 11 23:42:10 2009 reading relations for dependency 1 Thu Jun 11 23:42:10 2009 read 279367 cycles Thu Jun 11 23:42:10 2009 cycles contain 921779 unique relations Thu Jun 11 23:42:27 2009 read 921779 relations Thu Jun 11 23:42:33 2009 multiplying 729442 relations Thu Jun 11 23:44:19 2009 multiply complete, coefficients have about 22.36 million bits Thu Jun 11 23:44:20 2009 initial square root is modulo 2636251 Thu Jun 11 23:47:12 2009 reading relations for dependency 2 Thu Jun 11 23:47:12 2009 read 279179 cycles Thu Jun 11 23:47:13 2009 cycles contain 921197 unique relations Thu Jun 11 23:47:29 2009 read 921197 relations Thu Jun 11 23:47:35 2009 multiplying 728430 relations Thu Jun 11 23:49:22 2009 multiply complete, coefficients have about 22.33 million bits Thu Jun 11 23:49:22 2009 initial square root is modulo 2586791 Thu Jun 11 23:52:15 2009 sqrtTime: 605 Thu Jun 11 23:52:15 2009 prp57 factor: 450631373675458452337775455499947328084685648775502985779 Thu Jun 11 23:52:15 2009 prp74 factor: 21666127415793961010964729859371091707932535791390299034807201472008220607 Thu Jun 11 23:52:15 2009 elapsed time 00:10:08 |
software ソフトウェア | GGNFS for sieving, msieve for post processing |
execution environment 実行環境 | Athlon 64 X2 3600+, 1 GB RAM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Jo Yeong Uk | August 5, 2008 11:45:18 UTC 2008 年 8 月 5 日 (火) 20 時 45 分 18 秒 (日本時間) | |
25 | 5e4 | 214 | Jo Yeong Uk | August 5, 2008 11:45:23 UTC 2008 年 8 月 5 日 (火) 20 時 45 分 23 秒 (日本時間) | |
30 | 25e4 | 430 | Jo Yeong Uk | August 5, 2008 11:45:27 UTC 2008 年 8 月 5 日 (火) 20 時 45 分 27 秒 (日本時間) | |
35 | 1e6 | 904 | Jo Yeong Uk | August 5, 2008 11:45:33 UTC 2008 年 8 月 5 日 (火) 20 時 45 分 33 秒 (日本時間) | |
40 | 3e6 | 114 / 2089 | Jo Yeong Uk | August 5, 2008 11:51:59 UTC 2008 年 8 月 5 日 (火) 20 時 51 分 59 秒 (日本時間) |
name 名前 | Robert Backstrom |
---|---|
date 日付 | July 19, 2008 06:24:54 UTC 2008 年 7 月 19 日 (土) 15 時 24 分 54 秒 (日本時間) |
composite number 合成数 | 2416540618929028067669513756315393816139046863325989248996067013124199091486295011457802290992087222445824703172180542641244773807423934871823<142> |
prime factors 素因数 | 6350896847958870927475301612070577433786600427541<49> 380503836982596483446568644330742044611360532394516326298199791512990729260726018085652941203<93> |
factorization results 素因数分解の結果 | Number: n N=2416540618929028067669513756315393816139046863325989248996067013124199091486295011457802290992087222445824703172180542641244773807423934871823 ( 142 digits) SNFS difficulty: 168 digits. Divisors found: Sat Jul 19 16:15:17 2008 prp49 factor: 6350896847958870927475301612070577433786600427541 Sat Jul 19 16:15:17 2008 prp93 factor: 380503836982596483446568644330742044611360532394516326298199791512990729260726018085652941203 Sat Jul 19 16:15:17 2008 elapsed time 02:23:29 (Msieve 1.36) Version: GGNFS-0.77.1-20051202-athlon Total time: 44.76 hours. Scaled time: 82.09 units (timescale=1.834). Factorization parameters were as follows: name: KA_7_2_166_7 n: 2416540618929028067669513756315393816139046863325989248996067013124199091486295011457802290992087222445824703172180542641244773807423934871823 skew: 0.37 deg: 5 c5: 6500 c0: 43 m: 1000000000000000000000000000000000 type: snfs rlim: 5800000 alim: 5800000 lpbr: 28 lpba: 28 mfbr: 50 mfba: 50 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 5800000/5800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 50/50 Sieved special-q in [100000, 2700209) Primes: RFBsize:399993, AFBsize:399914, largePrimes:9845687 encountered Relations: rels:9387478, finalFF:832705 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 44.42 hours. Total relation processing time: 0.34 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,168,5,0,0,0,0,0,0,0,0,5800000,5800000,28,28,50,50,2.5,2.5,100000 total time: 44.76 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+ |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | June 26, 2010 20:37:05 UTC 2010 年 6 月 27 日 (日) 5 時 37 分 5 秒 (日本時間) |
composite number 合成数 | 19113958229382764022416910172563472600191966665754415602250152737562817069743686536690566748519854859251484268130476545867407859706526374365134641813<149> |
prime factors 素因数 | 792147391952173569345614293181560386713273086864783950340692957382755593<72> 24129295158415142625439656524867185952404391593366896845223628197631014762541<77> |
factorization results 素因数分解の結果 | N=19113958229382764022416910172563472600191966665754415602250152737562817069743686536690566748519854859251484268130476545867407859706526374365134641813 ( 149 digits) SNFS difficulty: 173 digits. Divisors found: r1=792147391952173569345614293181560386713273086864783950340692957382755593 (pp72) r2=24129295158415142625439656524867185952404391593366896845223628197631014762541 (pp77) Version: Msieve-1.40 Total time: 76.03 hours. Scaled time: 143.16 units (timescale=1.883). Factorization parameters were as follows: n: 19113958229382764022416910172563472600191966665754415602250152737562817069743686536690566748519854859251484268130476545867407859706526374365134641813 m: 10000000000000000000000000000000000 deg: 5 c5: 6500 c0: 43 skew: 0.37 type: snfs lss: 1 rlim: 5500000 alim: 5500000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 qintsize: 200000Factor base limits: 5500000/5500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2750000, 6550001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 845758 x 845986 Total sieving time: 73.92 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.93 hours. Time per square root: 1.07 hours. Prototype def-par.txt line would be: snfs,173.000,5,0,0,0,0,0,0,0,0,5500000,5500000,27,27,52,52,2.4,2.4,100000 total time: 76.03 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Max Dettweiler | March 6, 2009 00:19:55 UTC 2009 年 3 月 6 日 (金) 9 時 19 分 55 秒 (日本時間) | |
25 | 5e4 | 250 | Lionel Debroux | September 26, 2009 11:18:43 UTC 2009 年 9 月 26 日 (土) 20 時 18 分 43 秒 (日本時間) | |
30 | 25e4 | 450 | Lionel Debroux | September 26, 2009 11:52:07 UTC 2009 年 9 月 26 日 (土) 20 時 52 分 7 秒 (日本時間) | |
35 | 1e6 | 1000 | 300 | Lionel Debroux | September 27, 2009 14:21:24 UTC 2009 年 9 月 27 日 (日) 23 時 21 分 24 秒 (日本時間) |
400 | Lionel Debroux | September 27, 2009 16:09:20 UTC 2009 年 9 月 28 日 (月) 1 時 9 分 20 秒 (日本時間) | |||
300 | Lionel Debroux | September 27, 2009 17:04:20 UTC 2009 年 9 月 28 日 (月) 2 時 4 分 20 秒 (日本時間) | |||
40 | 3e6 | 2350 | Wataru Sakai | September 30, 2009 06:25:25 UTC 2009 年 9 月 30 日 (水) 15 時 25 分 25 秒 (日本時間) |
name 名前 | Wataru Sakai |
---|---|
date 日付 | August 25, 2012 13:05:05 UTC 2012 年 8 月 25 日 (土) 22 時 5 分 5 秒 (日本時間) |
composite number 合成数 | 3924125310964336084779407887834582549766049138373034995181290203503151529920176472249351489929430782545390012911988106223102213423579050921517149<145> |
prime factors 素因数 | 1449464669051073897128725775862333795857342147055903749<55> 2707292833521328203621638640560784095385527451307697738097558655304617787389888950711636601<91> |
factorization results 素因数分解の結果 | N=3924125310964336084779407887834582549766049138373034995181290203503151529920176472249351489929430782545390012911988106223102213423579050921517149 ( 145 digits) SNFS difficulty: 177 digits. Divisors found: r1=1449464669051073897128725775862333795857342147055903749 r2=2707292833521328203621638640560784095385527451307697738097558655304617787389888950711636601 Version: Total time: 344.47 hours. Scaled time: 452.98 units (timescale=1.315). Factorization parameters were as follows: n: 3924125310964336084779407887834582549766049138373034995181290203503151529920176472249351489929430782545390012911988106223102213423579050921517149 m: 100000000000000000000000000000000000 deg: 5 c5: 650 c0: 43 skew: 0.58 # Murphy_E = 1.287e-10 type: snfs lss: 1 rlim: 6400000 alim: 6400000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5Factor base limits: 6400000/6400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3200000, 6900001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1039613 x 1039861 Total sieving time: 344.47 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,177,5,0,0,0,0,0,0,0,0,6400000,6400000,28,28,53,53,2.5,2.5,100000 total time: 344.47 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Max Dettweiler | March 6, 2009 00:20:51 UTC 2009 年 3 月 6 日 (金) 9 時 20 分 51 秒 (日本時間) | |
25 | 5e4 | 204 | Ignacio Santos | August 22, 2010 11:00:59 UTC 2010 年 8 月 22 日 (日) 20 時 0 分 59 秒 (日本時間) | |
30 | 25e4 | 403 | Ignacio Santos | August 22, 2010 11:01:16 UTC 2010 年 8 月 22 日 (日) 20 時 1 分 16 秒 (日本時間) | |
35 | 1e6 | 300 | Ignacio Santos | August 22, 2010 15:07:08 UTC 2010 年 8 月 23 日 (月) 0 時 7 分 8 秒 (日本時間) | |
40 | 3e6 | 2144 | 110 | Ignacio Santos | August 22, 2010 15:07:08 UTC 2010 年 8 月 23 日 (月) 0 時 7 分 8 秒 (日本時間) |
2034 | Wataru Sakai | October 24, 2011 00:58:01 UTC 2011 年 10 月 24 日 (月) 9 時 58 分 1 秒 (日本時間) | |||
45 | 11e6 | 32 / 3991 | Ignacio Santos | August 22, 2010 15:07:08 UTC 2010 年 8 月 23 日 (月) 0 時 7 分 8 秒 (日本時間) |
name 名前 | Robert Backstrom |
---|---|
date 日付 | February 7, 2012 08:00:54 UTC 2012 年 2 月 7 日 (火) 17 時 0 分 54 秒 (日本時間) |
composite number 合成数 | 24841527200121408189725500987500695192188121391618205643797489038423760737932664450293443638344033134614211306494086279169428157930654912309084669790284674478477512407<167> |
prime factors 素因数 | 16924478768088386980498460554883134209509010986941801847151531818618471942261317<80> 1467786839436429428180563997498291748574948606652120905924251950685514095210980066161771<88> |
factorization results 素因数分解の結果 | Number: n N=24841527200121408189725500987500695192188121391618205643797489038423760737932664450293443638344033134614211306494086279169428157930654912309084669790284674478477512407 ( 167 digits) SNFS difficulty: 178 digits. Divisors found: Tue Feb 7 18:58:04 2012 prp80 factor: 16924478768088386980498460554883134209509010986941801847151531818618471942261317 Tue Feb 7 18:58:04 2012 prp88 factor: 1467786839436429428180563997498291748574948606652120905924251950685514095210980066161771 Tue Feb 7 18:58:04 2012 elapsed time 02:36:33 (Msieve 1.44 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=1.651). Factorization parameters were as follows: name: KA_72227_177 n: 24841527200121408189725500987500695192188121391618205643797489038423760737932664450293443638344033134614211306494086279169428157930654912309084669790284674478477512407 m: 100000000000000000000000000000000000 # c167, diff: 178.81 skew: 0.37 deg: 5 c5: 6500 c0: 43 type: snfs lss: 1 rlim: 15000000 alim: 15000000 lpbr: 29 lpba: 29 mfbr: 57 mfba: 57 rlambda: 2.5 alambda: 2.5 Factor base limits: 15000000/15000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 57/57 Sieved special-q in [100000, 13100000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 7328768 hash collisions in 76534222 relations (71698923 unique) Msieve: matrix is 1102795 x 1103025 (306.9 MB) Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,178,5,0,0,0,0,0,0,0,0,15000000,15000000,29,29,57,57,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM) i7 CPU 930 @ 2.80GHz stepping 05 CPU1: Intel(R) Core(TM) i7 CPU 930 @ 2.80GHz stepping 05 CPU2: Intel(R) Core(TM) i7 CPU 930 @ 2.80GHz stepping 05 CPU3: Intel(R) Core(TM) i7 CPU 930 @ 2.80GHz stepping 05 CPU4: Intel(R) Core(TM) i7 CPU 930 @ 2.80GHz stepping 05 CPU5: Intel(R) Core(TM) i7 CPU 930 @ 2.80GHz stepping 05 CPU6: Intel(R) Core(TM) i7 CPU 930 @ 2.80GHz stepping 05 CPU7: Intel(R) Core(TM) i7 CPU 930 @ 2.80GHz stepping 05 Memory: 6059348k/6815744k available (3972k kernel code, 525828k absent, 230568k reserved, 2498k data, 1292k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 5595.06 BogoMIPS (lpj=2797533) Calibrating delay using timer specific routine.. 5595.11 BogoMIPS (lpj=2797555) Calibrating delay using timer specific routine.. 5595.11 BogoMIPS (lpj=2797555) Calibrating delay using timer specific routine.. 5595.11 BogoMIPS (lpj=2797555) Calibrating delay using timer specific routine.. 5595.10 BogoMIPS (lpj=2797553) Calibrating delay using timer specific routine.. 5595.10 BogoMIPS (lpj=2797554) Calibrating delay using timer specific routine.. 5595.10 BogoMIPS (lpj=2797554) Calibrating delay using timer specific routine.. 5595.11 BogoMIPS (lpj=2797555) Total of 8 processors activated (44760.82 BogoMIPS). |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Max Dettweiler | March 6, 2009 00:22:19 UTC 2009 年 3 月 6 日 (金) 9 時 22 分 19 秒 (日本時間) | |
25 | 5e4 | 204 | Ignacio Santos | August 22, 2010 11:18:14 UTC 2010 年 8 月 22 日 (日) 20 時 18 分 14 秒 (日本時間) | |
30 | 25e4 | 403 | Ignacio Santos | August 22, 2010 11:18:20 UTC 2010 年 8 月 22 日 (日) 20 時 18 分 20 秒 (日本時間) | |
35 | 1e6 | 300 | Ignacio Santos | August 22, 2010 16:07:20 UTC 2010 年 8 月 23 日 (月) 1 時 7 分 20 秒 (日本時間) | |
40 | 3e6 | 110 / 2144 | Ignacio Santos | August 22, 2010 16:07:20 UTC 2010 年 8 月 23 日 (月) 1 時 7 分 20 秒 (日本時間) | |
45 | 11e6 | 32 / 4441 | Ignacio Santos | August 22, 2010 16:07:20 UTC 2010 年 8 月 23 日 (月) 1 時 7 分 20 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | August 22, 2010 14:02:41 UTC 2010 年 8 月 22 日 (日) 23 時 2 分 41 秒 (日本時間) |
composite number 合成数 | 251366816007577101065618042053352221821523137844856964191859283181181596625271613654687473427850914381627426295446108227776561308747596520466570270760596915673313346841<168> |
prime factors 素因数 | 823495925730701698329925620979931<33> |
composite cofactor 合成数の残り | 305243545418315365706523948809887230051449997362932667299646911325212873489978025312554118551698843099290398053736354512640249758339611<135> |
factorization results 素因数分解の結果 | Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2085669415 Step 1 took 6630ms Step 2 took 4821ms ********** Factor found in step 2: 823495925730701698329925620979931 Found probable prime factor of 33 digits: 823495925730701698329925620979931 Composite cofactor 305243545418315365706523948809887230051449997362932667299646911325212873489978025312554118551698843099290398053736354512640249758339611 has 135 digits |
software ソフトウェア | GMP-ECM 6.3 |
name 名前 | Serge Batalov |
---|---|
date 日付 | October 11, 2010 08:07:06 UTC 2010 年 10 月 11 日 (月) 17 時 7 分 6 秒 (日本時間) |
composite number 合成数 | 305243545418315365706523948809887230051449997362932667299646911325212873489978025312554118551698843099290398053736354512640249758339611<135> |
prime factors 素因数 | 2883512186922976391516148614422398647<37> 73103392428164454693538645532408204663783<41> 1448062032706726649842998183838802213388455327191403022011<58> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1269583826 Step 1 took 8465ms Step 2 took 4824ms ********** Factor found in step 2: 73103392428164454693538645532408204663783 Found probable prime factor of 41 digits: 73103392428164454693538645532408204663783 Divisors found: r1=2883512186922976391516148614422398647 (pp37) r2=1448062032706726649842998183838802213388455327191403022011 (pp58) Version: Msieve v. 1.47 SVN367 Total time: 0.85 hours. Scaled time: 2.03 units (timescale=2.400). Factorization parameters were as follows: name: test type: gnfs n: 4175504518730303928632433986349924694469193395234556304499340835294854340452980089283157619117 skew: 804738.33 Y0: -38402205641904013907273 Y1: 1575870816971 c0: -129995157620372599045866879 c1: 1476429946713228907665 c2: 441176170664309 c3: -1825678900 c4: 1920 Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [625000, 825001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 121790 x 122038 Total sieving time: 0.75 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.05 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: gnfs,93,4,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1000000,1000000,25,25,44,44,2.4,2.4,40000 total time: 0.85 hours. |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Max Dettweiler | March 6, 2009 00:24:53 UTC 2009 年 3 月 6 日 (金) 9 時 24 分 53 秒 (日本時間) | |
25 | 5e4 | 204 | Ignacio Santos | August 22, 2010 11:41:30 UTC 2010 年 8 月 22 日 (日) 20 時 41 分 30 秒 (日本時間) | |
30 | 25e4 | 403 | Ignacio Santos | August 22, 2010 11:41:43 UTC 2010 年 8 月 22 日 (日) 20 時 41 分 43 秒 (日本時間) | |
35 | 1e6 | 300 | Ignacio Santos | August 22, 2010 22:13:16 UTC 2010 年 8 月 23 日 (月) 7 時 13 分 16 秒 (日本時間) | |
40 | 3e6 | 110 / 2144 | Ignacio Santos | August 22, 2010 22:13:16 UTC 2010 年 8 月 23 日 (月) 7 時 13 分 16 秒 (日本時間) | |
45 | 11e6 | 32 / 4441 | Ignacio Santos | August 22, 2010 22:13:16 UTC 2010 年 8 月 23 日 (月) 7 時 13 分 16 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 21, 2012 10:26:28 UTC 2012 年 12 月 21 日 (金) 19 時 26 分 28 秒 (日本時間) |
composite number 合成数 | 74179078364952204363062060815582478396550591667069958112149915809414721297998111234819293135605945867999471053996556946024015410171362184232450783399143090473417<161> |
prime factors 素因数 | 264945275282398797357057330593223170261<39> 9876799734361672860702797201677919331197<40> 28347124164014742156421402749776720447633854223036509771812018770989067950607373001<83> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1399407343 Step 1 took 28398ms Step 2 took 10403ms ********** Factor found in step 2: 9876799734361672860702797201677919331197 Found probable prime factor of 40 digits: 9876799734361672860702797201677919331197 Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2865897740 Step 1 took 19201ms ********** Factor found in step 1: 264945275282398797357057330593223170261 Found probable prime factor of 39 digits: 264945275282398797357057330593223170261 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Max Dettweiler | March 6, 2009 00:27:12 UTC 2009 年 3 月 6 日 (金) 9 時 27 分 12 秒 (日本時間) | |
25 | 5e4 | 204 | Ignacio Santos | August 22, 2010 12:04:09 UTC 2010 年 8 月 22 日 (日) 21 時 4 分 9 秒 (日本時間) | |
30 | 25e4 | 403 | Ignacio Santos | August 22, 2010 12:04:17 UTC 2010 年 8 月 22 日 (日) 21 時 4 分 17 秒 (日本時間) | |
35 | 1e6 | 300 | Ignacio Santos | August 22, 2010 17:01:22 UTC 2010 年 8 月 23 日 (月) 2 時 1 分 22 秒 (日本時間) | |
40 | 3e6 | 110 / 2144 | Ignacio Santos | August 22, 2010 17:01:22 UTC 2010 年 8 月 23 日 (月) 2 時 1 分 22 秒 (日本時間) | |
45 | 11e6 | 32 / 4441 | Ignacio Santos | August 22, 2010 17:01:22 UTC 2010 年 8 月 23 日 (月) 2 時 1 分 22 秒 (日本時間) |
name 名前 | KTakahashi |
---|---|
date 日付 | July 7, 2014 10:17:15 UTC 2014 年 7 月 7 日 (月) 19 時 17 分 15 秒 (日本時間) |
composite number 合成数 | 26843367371977830009190807721372860615698193277053020929521814037157238925617427483851274091814193119989249009139934637579450403910214060327855586965839324283847959<164> |
prime factors 素因数 | 3789387619315317182057889730303485117494184850363<49> 7083827274663446762783944388898914030420067099226641511014512248767103111480158509042213895290917741693871303313493<115> |
factorization results 素因数分解の結果 | GMP-ECM 6.4.4 [configured with GMP 5.1.2] [ECM] Input number is 26843367371977830009190807721372860615698193277053020929521814037157238925617427483851274091814193119989249009139934637579450403910214060327855586965839324283847959 (164 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=3925383724 Step 1 took 42152ms Step 2 took 17035ms ********** Factor found in step 2: 3789387619315317182057889730303485117494184850363 Found probable prime factor of 49 digits: 3789387619315317182057889730303485117494184850363 Probable prime cofactor 7083827274663446762783944388898914030420067099226641511014512248767103111480158509042213895290917741693871303313493 has 115 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Max Dettweiler | March 6, 2009 00:31:49 UTC 2009 年 3 月 6 日 (金) 9 時 31 分 49 秒 (日本時間) | |
25 | 5e4 | 204 | Ignacio Santos | August 22, 2010 12:23:22 UTC 2010 年 8 月 22 日 (日) 21 時 23 分 22 秒 (日本時間) | |
30 | 25e4 | 403 | Ignacio Santos | August 22, 2010 12:23:28 UTC 2010 年 8 月 22 日 (日) 21 時 23 分 28 秒 (日本時間) | |
35 | 1e6 | 300 | Ignacio Santos | August 22, 2010 17:55:09 UTC 2010 年 8 月 23 日 (月) 2 時 55 分 9 秒 (日本時間) | |
40 | 3e6 | 1110 | 110 | Ignacio Santos | August 22, 2010 17:55:09 UTC 2010 年 8 月 23 日 (月) 2 時 55 分 9 秒 (日本時間) |
1000 | Dmitry Domanov | December 23, 2012 18:06:04 UTC 2012 年 12 月 24 日 (月) 3 時 6 分 4 秒 (日本時間) | |||
45 | 11e6 | 1720 / 4220 | 32 | Ignacio Santos | August 22, 2010 17:55:09 UTC 2010 年 8 月 23 日 (月) 2 時 55 分 9 秒 (日本時間) |
600 | Dmitry Domanov | December 28, 2012 22:45:32 UTC 2012 年 12 月 29 日 (土) 7 時 45 分 32 秒 (日本時間) | |||
1088 | KTakahashi | July 6, 2014 09:14:57 UTC 2014 年 7 月 6 日 (日) 18 時 14 分 57 秒 (日本時間) |
name 名前 | matsui |
---|---|
date 日付 | November 15, 2010 20:47:03 UTC 2010 年 11 月 16 日 (火) 5 時 47 分 3 秒 (日本時間) |
composite number 合成数 | 598660672549356470685940719081056400666580071403292199882593105751106570886451910228787641074010913230446289632138996832723306480302540394280837815472375262163534915643<168> |
prime factors 素因数 | 7444483359376530123707340177521318836833474628003821134892941514151353736791082837<82> 80416684899339186819271435257284669841017111933411402390836349981380078636670050505039<86> |
factorization results 素因数分解の結果 | N=598660672549356470685940719081056400666580071403292199882593105751106570886451910228787641074010913230446289632138996832723306480302540394280837815472375262163534915643 ( 168 digits) SNFS difficulty: 186 digits. Divisors found: r1=7444483359376530123707340177521318836833474628003821134892941514151353736791082837 (pp82) r2=80416684899339186819271435257284669841017111933411402390836349981380078636670050505039 (pp86) Version: Msieve v. 1.48 Total time: Scaled time: 64.10 units (timescale=0.653). Factorization parameters were as follows: n: 598660672549356470685940719081056400666580071403292199882593105751106570886451910228787641074010913230446289632138996832723306480302540394280837815472375262163534915643 m: 10000000000000000000000000000000000000 deg: 5 c5: 65 c0: 43 skew: 0.92 type: snfs lss: 1 rlim: 9100000 alim: 9100000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 qintsize: 1000000 Factor base limits: 9100000/9100000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [4550000, 11550001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1741370 x 1741596 Total sieving time: Total relation processing time: Matrix solve time: Time per square root: Prototype def-par.txt line would be: snfs,186.000,5,0,0,0,0,0,0,0,0,9100000,9100000,28,28,54,54,2.5,2.5,100000 total time: |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Max Dettweiler | March 6, 2009 00:32:56 UTC 2009 年 3 月 6 日 (金) 9 時 32 分 56 秒 (日本時間) | |
25 | 5e4 | 204 | Ignacio Santos | August 22, 2010 13:57:50 UTC 2010 年 8 月 22 日 (日) 22 時 57 分 50 秒 (日本時間) | |
30 | 25e4 | 403 | Ignacio Santos | August 22, 2010 13:57:58 UTC 2010 年 8 月 22 日 (日) 22 時 57 分 58 秒 (日本時間) | |
35 | 1e6 | 300 | Ignacio Santos | August 22, 2010 18:49:35 UTC 2010 年 8 月 23 日 (月) 3 時 49 分 35 秒 (日本時間) | |
40 | 3e6 | 110 / 2144 | Ignacio Santos | August 22, 2010 18:49:35 UTC 2010 年 8 月 23 日 (月) 3 時 49 分 35 秒 (日本時間) | |
45 | 11e6 | 32 / 4441 | Ignacio Santos | August 22, 2010 18:49:35 UTC 2010 年 8 月 23 日 (月) 3 時 49 分 35 秒 (日本時間) |
name 名前 | Robert Backstrom |
---|---|
date 日付 | July 10, 2008 10:36:28 UTC 2008 年 7 月 10 日 (木) 19 時 36 分 28 秒 (日本時間) |
composite number 合成数 | 16718710758983417904325764979115737352533734026329181743231117992679770513403951522113448936053249828131368509947780448280670564561<131> |
prime factors 素因数 | 3377652857328732875380257962975302947377<40> 4949801375445568906672988898650230437891483199484561725621942929232193814285739846837010593<91> |
factorization results 素因数分解の結果 | GMP-ECM 6.2.1 [powered by GMP 4.1.4] [ECM] Input number is 16718710758983417904325764979115737352533734026329181743231117992679770513403951522113448936053249828131368509947780448280670564561 (131 digits) Using B1=3520000, B2=5707365310, polynomial Dickson(6), sigma=225760141 Step 1 took 45328ms Step 2 took 18969ms ********** Factor found in step 2: 3377652857328732875380257962975302947377 Found probable prime factor of 40 digits: 3377652857328732875380257962975302947377 Probable prime cofactor 4949801375445568906672988898650230437891483199484561725621942929232193814285739846837010593 has 91 digits |
name 名前 | Wataru Sakai |
---|---|
date 日付 | October 27, 2009 13:06:16 UTC 2009 年 10 月 27 日 (火) 22 時 6 分 16 秒 (日本時間) |
composite number 合成数 | 218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855219<189> |
prime factors 素因数 | 344169962009931548308268017081595995989862134133897845813087998330100327017231481133237154389<93> 635892852406752029790139607998304098096231541911114002251357000552628373073014289921768913242471<96> |
factorization results 素因数分解の結果 | Number: 72227_189 N=218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855219 ( 189 digits) SNFS difficulty: 191 digits. Divisors found: r1=344169962009931548308268017081595995989862134133897845813087998330100327017231481133237154389 r2=635892852406752029790139607998304098096231541911114002251357000552628373073014289921768913242471 Version: Total time: 327.17 hours. Scaled time: 656.96 units (timescale=2.008). Factorization parameters were as follows: n: 218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855219 m: 100000000000000000000000000000000000000 deg: 5 c5: 13 c0: 86 skew: 1.46 type: snfs lss: 1 rlim: 10700000 alim: 10700000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 10700000/10700000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [5350000, 8950001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1761109 x 1761357 Total sieving time: 327.17 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,191,5,0,0,0,0,0,0,0,0,10700000,10700000,28,28,54,54,2.5,2.5,100000 total time: 327.17 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | 50 | Makoto Kamada | February 5, 2009 04:25:32 UTC 2009 年 2 月 5 日 (木) 13 時 25 分 32 秒 (日本時間) |
380 | Andreas Tete | April 7, 2009 15:46:08 UTC 2009 年 4 月 8 日 (水) 0 時 46 分 8 秒 (日本時間) | |||
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 700 / 4479 | Dmitry Domanov | June 20, 2009 22:18:24 UTC 2009 年 6 月 21 日 (日) 7 時 18 分 24 秒 (日本時間) |
name 名前 | Edwin Hall |
---|---|
date 日付 | December 22, 2020 13:44:57 UTC 2020 年 12 月 22 日 (火) 22 時 44 分 57 秒 (日本時間) |
composite number 合成数 | 1782273046678260456560503126617621393287999382158763878059972237503028737809365356256810301598403157692043216543126913724589893011698315177706705791974649<154> |
prime factors 素因数 | 52221983040684916683314475234920133049556432568891950626849955577455497<71> 34128789121043785615502713634593303174390510366034241176104498197080365078029189617<83> |
factorization results 素因数分解の結果 | p71 factor: 52221983040684916683314475234920133049556432568891950626849955577455497 p83 factor: 34128789121043785615502713634593303174390510366034241176104498197080365078029189617 Msieve v. 1.54 (SVN 1032M) random seeds: ec4c74b1 94b1ba27 factoring 1782273046678260456560503126617621393287999382158763878059972237503028737809365356256810301598403157692043216543126913724589893011698315177706705791974649 (154 digits) searching for 15-digit factors commencing number field sieve (154-digit input) R0: -100000000000000000000000000000000000000 R1: 1 A0: 43 A1: 0 A2: 0 A3: 0 A4: 0 A5: 650 skew 1.00, size 1.702e-13, alpha -0.317, combined = 2.828e-11 rroots = 1 commencing relation filtering estimated available RAM is 48213.5 MB commencing duplicate removal, pass 1 found 2431114 hash collisions in 37817613 relations added 727902 free relations commencing duplicate removal, pass 2 found 0 duplicates and 38545515 unique relations memory use: 98.6 MB reading ideals above 720000 commencing singleton removal, initial pass memory use: 753.0 MB reading all ideals from disk memory use: 1254.3 MB keeping 40533501 ideals with weight <= 200, target excess is 207530 commencing in-memory singleton removal begin with 38545515 relations and 40533501 unique ideals reduce to 15326044 relations and 13431121 ideals in 13 passes max relations containing the same ideal: 109 removing 2045274 relations and 1645274 ideals in 400000 cliques commencing in-memory singleton removal begin with 13280770 relations and 13431121 unique ideals reduce to 13055244 relations and 11552819 ideals in 9 passes max relations containing the same ideal: 101 removing 1631887 relations and 1231887 ideals in 400000 cliques commencing in-memory singleton removal begin with 11423357 relations and 11552819 unique ideals reduce to 11256235 relations and 10148584 ideals in 8 passes max relations containing the same ideal: 92 removing 1528467 relations and 1128467 ideals in 400000 cliques commencing in-memory singleton removal begin with 9727768 relations and 10148584 unique ideals reduce to 9554867 relations and 8841221 ideals in 8 passes max relations containing the same ideal: 82 removing 1503447 relations and 1103447 ideals in 400000 cliques commencing in-memory singleton removal begin with 8051420 relations and 8841221 unique ideals reduce to 7846526 relations and 7524828 ideals in 10 passes max relations containing the same ideal: 71 removing 443565 relations and 362602 ideals in 80963 cliques commencing in-memory singleton removal begin with 7402961 relations and 7524828 unique ideals reduce to 7382786 relations and 7141849 ideals in 6 passes max relations containing the same ideal: 67 relations with 0 large ideals: 4409 relations with 1 large ideals: 13185 relations with 2 large ideals: 104659 relations with 3 large ideals: 455649 relations with 4 large ideals: 1178621 relations with 5 large ideals: 1897258 relations with 6 large ideals: 1984962 relations with 7+ large ideals: 1744043 commencing 2-way merge reduce to 4564851 relation sets and 4323914 unique ideals commencing full merge memory use: 495.2 MB found 2115669 cycles, need 2088114 weight of 2088114 cycles is about 188212150 (90.13/cycle) distribution of cycle lengths: 1 relations: 166770 2 relations: 168125 3 relations: 175957 4 relations: 175539 5 relations: 173499 6 relations: 162550 7 relations: 155492 8 relations: 142104 9 relations: 127976 10+ relations: 640102 heaviest cycle: 26 relations commencing cycle optimization start with 15593004 relations pruned 529693 relations memory use: 460.5 MB distribution of cycle lengths: 1 relations: 166770 2 relations: 172094 3 relations: 182754 4 relations: 181462 5 relations: 180232 6 relations: 168257 7 relations: 160736 8 relations: 145829 9 relations: 130775 10+ relations: 599205 heaviest cycle: 26 relations RelProcTime: 715 elapsed time 00:11:56 Msieve v. 1.54 (SVN 1032M) random seeds: 2b10962e d55d3459 factoring 1782273046678260456560503126617621393287999382158763878059972237503028737809365356256810301598403157692043216543126913724589893011698315177706705791974649 (154 digits) searching for 15-digit factors commencing number field sieve (154-digit input) R0: -100000000000000000000000000000000000000 R1: 1 A0: 43 A1: 0 A2: 0 A3: 0 A4: 0 A5: 650 skew 1.00, size 1.702e-13, alpha -0.317, combined = 2.828e-11 rroots = 1 commencing linear algebra read 2088114 cycles cycles contain 7226744 unique relations read 7226744 relations using 20 quadratic characters above 4294917295 building initial matrix memory use: 899.9 MB read 2088114 cycles matrix is 2087936 x 2088114 (767.4 MB) with weight 229112791 (109.72/col) sparse part has weight 178201710 (85.34/col) filtering completed in 2 passes matrix is 2087297 x 2087474 (767.3 MB) with weight 229088198 (109.74/col) sparse part has weight 178193014 (85.36/col) matrix starts at (0, 0) matrix is 2087297 x 2087474 (767.3 MB) with weight 229088198 (109.74/col) sparse part has weight 178193014 (85.36/col) saving the first 48 matrix rows for later matrix includes 64 packed rows matrix is 2087249 x 2087474 (733.6 MB) with weight 188036330 (90.08/col) sparse part has weight 171439106 (82.13/col) using block size 8192 and superblock size 1474560 for processor cache size 15360 kB commencing Lanczos iteration (8 threads) memory use: 694.6 MB linear algebra at 0.1%, ETA 1h31m checkpointing every 1460000 dimensions lanczos halted after 33006 iterations (dim = 2087243) recovered 35 nontrivial dependencies BLanczosTime: 5758 elapsed time 01:36:00 Msieve v. 1.54 (SVN 1032M) random seeds: 3830cb15 b45d1919 factoring 1782273046678260456560503126617621393287999382158763878059972237503028737809365356256810301598403157692043216543126913724589893011698315177706705791974649 (154 digits) searching for 15-digit factors commencing number field sieve (154-digit input) R0: -100000000000000000000000000000000000000 R1: 1 A0: 43 A1: 0 A2: 0 A3: 0 A4: 0 A5: 650 skew 1.00, size 1.702e-13, alpha -0.317, combined = 2.828e-11 rroots = 1 commencing square root phase reading relations for dependency 1 read 1043288 cycles cycles contain 3611378 unique relations read 3611378 relations multiplying 3611378 relations multiply complete, coefficients have about 112.17 million bits initial square root is modulo 112466671 GCD is 1, no factor found reading relations for dependency 2 read 1044052 cycles cycles contain 3613706 unique relations read 3613706 relations multiplying 3613706 relations multiply complete, coefficients have about 112.23 million bits initial square root is modulo 113713891 sqrtTime: 590 p71 factor: 52221983040684916683314475234920133049556432568891950626849955577455497 p83 factor: 34128789121043785615502713634593303174390510366034241176104498197080365078029189617 elapsed time 00:09:51 |
software ソフトウェア | CADO-NFS/Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Max Dettweiler | March 6, 2009 00:41:36 UTC 2009 年 3 月 6 日 (金) 9 時 41 分 36 秒 (日本時間) | |
25 | 5e4 | 204 | Ignacio Santos | August 22, 2010 13:58:26 UTC 2010 年 8 月 22 日 (日) 22 時 58 分 26 秒 (日本時間) | |
30 | 25e4 | 403 | Ignacio Santos | August 22, 2010 13:58:38 UTC 2010 年 8 月 22 日 (日) 22 時 58 分 38 秒 (日本時間) | |
35 | 1e6 | 300 | Ignacio Santos | August 22, 2010 19:56:38 UTC 2010 年 8 月 23 日 (月) 4 時 56 分 38 秒 (日本時間) | |
40 | 3e6 | 1110 | 110 | Ignacio Santos | August 22, 2010 19:56:38 UTC 2010 年 8 月 23 日 (月) 4 時 56 分 38 秒 (日本時間) |
1000 | Dmitry Domanov | December 23, 2012 18:06:18 UTC 2012 年 12 月 24 日 (月) 3 時 6 分 18 秒 (日本時間) | |||
45 | 11e6 | 4220 | 32 | Ignacio Santos | August 22, 2010 19:56:38 UTC 2010 年 8 月 23 日 (月) 4 時 56 分 38 秒 (日本時間) |
700 | Dmitry Domanov | December 28, 2012 22:45:06 UTC 2012 年 12 月 29 日 (土) 7 時 45 分 6 秒 (日本時間) | |||
3488 | yas mat | February 10, 2015 06:15:51 UTC 2015 年 2 月 10 日 (火) 15 時 15 分 51 秒 (日本時間) | |||
50 | 43e6 | 152 / 6562 | KTakahashi | October 4, 2016 10:07:00 UTC 2016 年 10 月 4 日 (火) 19 時 7 分 0 秒 (日本時間) |
name 名前 | Edwin Hall |
---|---|
date 日付 | December 20, 2020 03:11:00 UTC 2020 年 12 月 20 日 (日) 12 時 11 分 0 秒 (日本時間) |
composite number 合成数 | 486874979152054047897013649779237370325053123698747918110101972070610494190479560572295917431829448321417857484549430468778981389285777311111520071281597<153> |
prime factors 素因数 | 294358572551679635770399772083632847170571521426276653<54> 1654020044096303308649779937852402717827808708128481875299849886885494081655932708130521053016215249<100> |
factorization results 素因数分解の結果 | p54 factor: 294358572551679635770399772083632847170571521426276653 p100 factor: 1654020044096303308649779937852402717827808708128481875299849886885494081655932708130521053016215249 Msieve v. 1.54 (SVN 1034) random seeds: 5b03caeb 4eff9095 factoring 486874979152054047897013649779237370325053123698747918110101972070610494190479560572295917431829448321417857484549430468778981389285777311111520071281597 (153 digits) searching for 15-digit factors commencing number field sieve (153-digit input) R0: -100000000000000000000000000000000000000 R1: 1 A0: 43 A1: 0 A2: 0 A3: 0 A4: 0 A5: 6500 skew 1.00, size 1.501e-13, alpha -1.322, combined = 2.564e-11 rroots = 1 commencing relation filtering estimated available RAM is 15892.2 MB commencing duplicate removal, pass 1 found 2097026 hash collisions in 35001250 relations added 726349 free relations commencing duplicate removal, pass 2 found 0 duplicates and 35727599 unique relations memory use: 98.6 MB reading ideals above 720000 commencing singleton removal, initial pass memory use: 753.0 MB reading all ideals from disk memory use: 1163.7 MB keeping 39104566 ideals with weight <= 200, target excess is 190590 commencing in-memory singleton removal begin with 35727599 relations and 39104566 unique ideals reduce to 12668115 relations and 11866823 ideals in 15 passes max relations containing the same ideal: 102 removing 1800460 relations and 1510356 ideals in 290104 cliques commencing in-memory singleton removal begin with 10867655 relations and 11866823 unique ideals reduce to 10634674 relations and 10116394 ideals in 10 passes max relations containing the same ideal: 92 removing 1434098 relations and 1143994 ideals in 290104 cliques commencing in-memory singleton removal begin with 9200576 relations and 10116394 unique ideals reduce to 9020835 relations and 8787603 ideals in 9 passes max relations containing the same ideal: 82 removing 108868 relations and 96721 ideals in 12147 cliques commencing in-memory singleton removal begin with 8911967 relations and 8787603 unique ideals reduce to 8911040 relations and 8689953 ideals in 6 passes max relations containing the same ideal: 81 relations with 0 large ideals: 3932 relations with 1 large ideals: 9935 relations with 2 large ideals: 85555 relations with 3 large ideals: 405936 relations with 4 large ideals: 1167464 relations with 5 large ideals: 2109165 relations with 6 large ideals: 2499537 relations with 7+ large ideals: 2629516 commencing 2-way merge reduce to 5432206 relation sets and 5211119 unique ideals commencing full merge memory use: 584.1 MB found 2495035 cycles, need 2477319 weight of 2477319 cycles is about 223029713 (90.03/cycle) distribution of cycle lengths: 1 relations: 212439 2 relations: 219273 3 relations: 227985 4 relations: 215583 5 relations: 205197 6 relations: 185638 7 relations: 170612 8 relations: 152511 9 relations: 135398 10+ relations: 752683 heaviest cycle: 28 relations commencing cycle optimization start with 18618503 relations pruned 581949 relations memory use: 553.6 MB distribution of cycle lengths: 1 relations: 212439 2 relations: 224663 3 relations: 236375 4 relations: 222337 5 relations: 211883 6 relations: 190574 7 relations: 175002 8 relations: 154766 9 relations: 137005 10+ relations: 712275 heaviest cycle: 28 relations RelProcTime: 963 elapsed time 00:16:04 Msieve v. 1.54 (SVN 1034) random seeds: 16e5be0e 6da7aee6 factoring 486874979152054047897013649779237370325053123698747918110101972070610494190479560572295917431829448321417857484549430468778981389285777311111520071281597 (153 digits) searching for 15-digit factors commencing number field sieve (153-digit input) R0: -100000000000000000000000000000000000000 R1: 1 A0: 43 A1: 0 A2: 0 A3: 0 A4: 0 A5: 6500 skew 1.00, size 1.501e-13, alpha -1.322, combined = 2.564e-11 rroots = 1 commencing linear algebra read 2477319 cycles cycles contain 8736697 unique relations read 8736697 relations using 20 quadratic characters above 4294917295 building initial matrix memory use: 1070.4 MB read 2477319 cycles matrix is 2477141 x 2477319 (912.3 MB) with weight 273391462 (110.36/col) sparse part has weight 211891584 (85.53/col) filtering completed in 2 passes matrix is 2476142 x 2476320 (912.2 MB) with weight 273352037 (110.39/col) sparse part has weight 211878558 (85.56/col) matrix starts at (0, 0) matrix is 2476142 x 2476320 (912.2 MB) with weight 273352037 (110.39/col) sparse part has weight 211878558 (85.56/col) saving the first 48 matrix rows for later matrix includes 64 packed rows matrix is 2476094 x 2476320 (875.8 MB) with weight 225652019 (91.12/col) sparse part has weight 204817609 (82.71/col) using block size 8192 and superblock size 786432 for processor cache size 8192 kB commencing Lanczos iteration (8 threads) memory use: 828.9 MB linear algebra at 0.1%, ETA 3h 9m checkpointing every 820000 dimensions lanczos halted after 39159 iterations (dim = 2476092) recovered 39 nontrivial dependencies BLanczosTime: 10666 elapsed time 02:57:47 Msieve v. 1.54 (SVN 1034) random seeds: a3a4b12e 806a805f factoring 486874979152054047897013649779237370325053123698747918110101972070610494190479560572295917431829448321417857484549430468778981389285777311111520071281597 (153 digits) searching for 15-digit factors commencing number field sieve (153-digit input) R0: -100000000000000000000000000000000000000 R1: 1 A0: 43 A1: 0 A2: 0 A3: 0 A4: 0 A5: 6500 skew 1.00, size 1.501e-13, alpha -1.322, combined = 2.564e-11 rroots = 1 commencing square root phase reading relations for dependency 1 read 1237541 cycles cycles contain 4366306 unique relations read 4366306 relations multiplying 4366306 relations multiply complete, coefficients have about 148.69 million bits initial square root is modulo 216841 GCD is N, no factor found reading relations for dependency 2 read 1238074 cycles cycles contain 4366362 unique relations read 4366362 relations multiplying 4366362 relations multiply complete, coefficients have about 148.69 million bits initial square root is modulo 216841 GCD is N, no factor found reading relations for dependency 3 read 1239974 cycles cycles contain 4371888 unique relations read 4371888 relations multiplying 4371888 relations multiply complete, coefficients have about 148.88 million bits initial square root is modulo 220291 GCD is 1, no factor found reading relations for dependency 4 read 1236751 cycles cycles contain 4365902 unique relations read 4365902 relations multiplying 4365902 relations multiply complete, coefficients have about 148.67 million bits initial square root is modulo 216551 sqrtTime: 1179 p54 factor: 294358572551679635770399772083632847170571521426276653 p100 factor: 1654020044096303308649779937852402717827808708128481875299849886885494081655932708130521053016215249 elapsed time 00:19:40 |
software ソフトウェア | CADO-NFS/Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Max Dettweiler | March 6, 2009 00:42:21 UTC 2009 年 3 月 6 日 (金) 9 時 42 分 21 秒 (日本時間) | |
25 | 5e4 | 204 | Ignacio Santos | August 22, 2010 13:58:55 UTC 2010 年 8 月 22 日 (日) 22 時 58 分 55 秒 (日本時間) | |
30 | 25e4 | 403 | Ignacio Santos | August 22, 2010 13:59:02 UTC 2010 年 8 月 22 日 (日) 22 時 59 分 2 秒 (日本時間) | |
35 | 1e6 | 300 | Ignacio Santos | August 22, 2010 20:30:43 UTC 2010 年 8 月 23 日 (月) 5 時 30 分 43 秒 (日本時間) | |
40 | 3e6 | 1110 | 110 | Ignacio Santos | August 22, 2010 20:30:43 UTC 2010 年 8 月 23 日 (月) 5 時 30 分 43 秒 (日本時間) |
1000 | Dmitry Domanov | December 23, 2012 18:06:45 UTC 2012 年 12 月 24 日 (月) 3 時 6 分 45 秒 (日本時間) | |||
45 | 11e6 | 4220 | 32 | Ignacio Santos | August 22, 2010 20:30:43 UTC 2010 年 8 月 23 日 (月) 5 時 30 分 43 秒 (日本時間) |
700 | Dmitry Domanov | December 28, 2012 22:44:29 UTC 2012 年 12 月 29 日 (土) 7 時 44 分 29 秒 (日本時間) | |||
3488 | yas mat | February 13, 2015 00:43:22 UTC 2015 年 2 月 13 日 (金) 9 時 43 分 22 秒 (日本時間) | |||
50 | 43e6 | 152 / 6562 | KTakahashi | October 4, 2016 10:07:17 UTC 2016 年 10 月 4 日 (火) 19 時 7 分 17 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | August 22, 2010 13:54:18 UTC 2010 年 8 月 22 日 (日) 22 時 54 分 18 秒 (日本時間) |
composite number 合成数 | 51342884892057433455312940001374134071460125186488738669270628902692473553023740598975903026172358775182819833759679854214440062111976499446763280435693086553894515983<167> |
prime factors 素因数 | 115326965446741182383882334367601077<36> 445194102638276257875666239443579478667151909829177561391451215835535102758739321859646411649336599765918464445366740562540718601779<132> |
factorization results 素因数分解の結果 | Using B1=250000, B2=128992510, polynomial Dickson(3), sigma=1756628656 Step 1 took 1716ms Step 2 took 1186ms ********** Factor found in step 2: 115326965446741182383882334367601077 Found probable prime factor of 36 digits: 115326965446741182383882334367601077 Probable prime cofactor 445194102638276257875666239443579478667151909829177561391451215835535102758739321859646411649336599765918464445366740562540718601779 has 132 digits |
software ソフトウェア | GMP-ECM 6.3 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Max Dettweiler | March 6, 2009 00:43:12 UTC 2009 年 3 月 6 日 (金) 9 時 43 分 12 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 29, 2012 09:06:04 UTC 2012 年 12 月 29 日 (土) 18 時 6 分 4 秒 (日本時間) |
composite number 合成数 | 361915551548092936690856728260962243092395288435318415127531360687931554555277499017489437662120609928123278868746527491815278447712128504835570870027714883030269861<165> |
prime factors 素因数 | 1402102904343454381764133316288206971751<40> |
composite cofactor 合成数の残り | 258123387682135011222846267624516085589584183508394557705931282349934931576760700930844237828804335573084740199280512918030611<126> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=2051019199 Step 1 took 91190ms Step 2 took 33688ms ********** Factor found in step 2: 1402102904343454381764133316288206971751 Found probable prime factor of 40 digits: 1402102904343454381764133316288206971751 Composite cofactor 258123387682135011222846267624516085589584183508394557705931282349934931576760700930844237828804335573084740199280512918030611 has 126 digits |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 3, 2013 16:18:53 UTC 2013 年 1 月 4 日 (金) 1 時 18 分 53 秒 (日本時間) |
composite number 合成数 | 258123387682135011222846267624516085589584183508394557705931282349934931576760700930844237828804335573084740199280512918030611<126> |
prime factors 素因数 | 14537407265769639621238988233731420607459<41> 17755806311481873392950205818502096009042430386860350880467949571046481024696478227729<86> |
factorization results 素因数分解の結果 | Mon Dec 31 12:50:39 2012 commencing relation filtering Mon Dec 31 12:50:39 2012 estimated available RAM is 4096.0 MB Mon Dec 31 12:50:39 2012 commencing duplicate removal, pass 1 Mon Dec 31 12:54:55 2012 found 1412344 hash collisions in 11526155 relations Mon Dec 31 12:55:29 2012 added 55 free relations Mon Dec 31 12:55:29 2012 commencing duplicate removal, pass 2 Mon Dec 31 12:55:36 2012 found 1151771 duplicates and 10374439 unique relations Mon Dec 31 12:55:36 2012 memory use: 49.3 MB Mon Dec 31 12:55:36 2012 reading ideals above 720000 Mon Dec 31 12:55:36 2012 commencing singleton removal, initial pass Mon Dec 31 13:00:03 2012 memory use: 344.5 MB Mon Dec 31 13:00:03 2012 reading all ideals from disk Mon Dec 31 13:00:03 2012 memory use: 305.0 MB Mon Dec 31 13:00:04 2012 commencing in-memory singleton removal Mon Dec 31 13:00:05 2012 begin with 10374439 relations and 11275751 unique ideals Mon Dec 31 13:00:16 2012 reduce to 4074937 relations and 3921510 ideals in 19 passes Mon Dec 31 13:00:16 2012 max relations containing the same ideal: 84 Mon Dec 31 13:00:19 2012 removing 167871 relations and 158499 ideals in 9372 cliques Mon Dec 31 13:00:19 2012 commencing in-memory singleton removal Mon Dec 31 13:00:20 2012 begin with 3907066 relations and 3921510 unique ideals Mon Dec 31 13:00:23 2012 reduce to 3901240 relations and 3757156 ideals in 8 passes Mon Dec 31 13:00:23 2012 max relations containing the same ideal: 84 Mon Dec 31 13:00:25 2012 removing 119976 relations and 110604 ideals in 9372 cliques Mon Dec 31 13:00:26 2012 commencing in-memory singleton removal Mon Dec 31 13:00:26 2012 begin with 3781264 relations and 3757156 unique ideals Mon Dec 31 13:00:29 2012 reduce to 3778097 relations and 3643369 ideals in 8 passes Mon Dec 31 13:00:29 2012 max relations containing the same ideal: 79 Mon Dec 31 13:00:31 2012 relations with 0 large ideals: 486 Mon Dec 31 13:00:31 2012 relations with 1 large ideals: 2323 Mon Dec 31 13:00:31 2012 relations with 2 large ideals: 33715 Mon Dec 31 13:00:31 2012 relations with 3 large ideals: 197420 Mon Dec 31 13:00:31 2012 relations with 4 large ideals: 609187 Mon Dec 31 13:00:31 2012 relations with 5 large ideals: 1053584 Mon Dec 31 13:00:31 2012 relations with 6 large ideals: 1051593 Mon Dec 31 13:00:31 2012 relations with 7+ large ideals: 829789 Mon Dec 31 13:00:31 2012 commencing 2-way merge Mon Dec 31 13:00:34 2012 reduce to 2136663 relation sets and 2001936 unique ideals Mon Dec 31 13:00:34 2012 ignored 1 oversize relation sets Mon Dec 31 13:00:34 2012 commencing full merge Mon Dec 31 13:01:21 2012 memory use: 220.5 MB Mon Dec 31 13:01:22 2012 found 1051211 cycles, need 1038136 Mon Dec 31 13:01:22 2012 weight of 1038136 cycles is about 72824493 (70.15/cycle) Mon Dec 31 13:01:22 2012 distribution of cycle lengths: Mon Dec 31 13:01:22 2012 1 relations: 141102 Mon Dec 31 13:01:22 2012 2 relations: 131058 Mon Dec 31 13:01:22 2012 3 relations: 126020 Mon Dec 31 13:01:22 2012 4 relations: 108119 Mon Dec 31 13:01:22 2012 5 relations: 93121 Mon Dec 31 13:01:22 2012 6 relations: 76876 Mon Dec 31 13:01:22 2012 7 relations: 66444 Mon Dec 31 13:01:22 2012 8 relations: 53874 Mon Dec 31 13:01:22 2012 9 relations: 44358 Mon Dec 31 13:01:22 2012 10+ relations: 197164 Mon Dec 31 13:01:22 2012 heaviest cycle: 25 relations Mon Dec 31 13:01:23 2012 commencing cycle optimization Mon Dec 31 13:01:25 2012 start with 6140221 relations Mon Dec 31 13:01:37 2012 pruned 123485 relations Mon Dec 31 13:01:38 2012 memory use: 210.7 MB Mon Dec 31 13:01:38 2012 distribution of cycle lengths: Mon Dec 31 13:01:38 2012 1 relations: 141102 Mon Dec 31 13:01:38 2012 2 relations: 133984 Mon Dec 31 13:01:38 2012 3 relations: 130020 Mon Dec 31 13:01:38 2012 4 relations: 109767 Mon Dec 31 13:01:38 2012 5 relations: 94519 Mon Dec 31 13:01:38 2012 6 relations: 77394 Mon Dec 31 13:01:38 2012 7 relations: 66216 Mon Dec 31 13:01:38 2012 8 relations: 53219 Mon Dec 31 13:01:38 2012 9 relations: 43665 Mon Dec 31 13:01:38 2012 10+ relations: 188250 Mon Dec 31 13:01:38 2012 heaviest cycle: 25 relations Mon Dec 31 13:01:39 2012 RelProcTime: 660 Mon Dec 31 13:01:40 2012 Mon Dec 31 13:01:40 2012 commencing linear algebra Mon Dec 31 13:01:40 2012 read 1038136 cycles Mon Dec 31 13:01:43 2012 cycles contain 3602439 unique relations Mon Dec 31 13:02:58 2012 read 3602439 relations Mon Dec 31 13:03:04 2012 using 20 quadratic characters above 134216838 Mon Dec 31 13:03:36 2012 building initial matrix Mon Dec 31 13:04:52 2012 memory use: 452.1 MB Mon Dec 31 13:04:53 2012 read 1038136 cycles Mon Dec 31 13:04:54 2012 matrix is 1037949 x 1038136 (311.1 MB) with weight 97754703 (94.16/col) Mon Dec 31 13:04:54 2012 sparse part has weight 70132592 (67.56/col) Mon Dec 31 13:05:12 2012 filtering completed in 2 passes Mon Dec 31 13:05:13 2012 matrix is 1033955 x 1034141 (310.6 MB) with weight 97561351 (94.34/col) Mon Dec 31 13:05:13 2012 sparse part has weight 70059377 (67.75/col) Mon Dec 31 13:05:17 2012 matrix starts at (0, 0) Mon Dec 31 13:05:17 2012 matrix is 1033955 x 1034141 (310.6 MB) with weight 97561351 (94.34/col) Mon Dec 31 13:05:17 2012 sparse part has weight 70059377 (67.75/col) Mon Dec 31 13:05:17 2012 saving the first 48 matrix rows for later Mon Dec 31 13:05:18 2012 matrix includes 64 packed rows Mon Dec 31 13:05:18 2012 matrix is 1033907 x 1034141 (300.1 MB) with weight 77724953 (75.16/col) Mon Dec 31 13:05:18 2012 sparse part has weight 68323482 (66.07/col) Mon Dec 31 13:05:18 2012 using block size 262144 for processor cache size 12288 kB Mon Dec 31 13:05:23 2012 commencing Lanczos iteration (8 threads) Mon Dec 31 13:05:23 2012 memory use: 379.2 MB Mon Dec 31 13:05:30 2012 linear algebra at 0.1%, ETA 1h19m Mon Dec 31 13:05:33 2012 checkpointing every 730000 dimensions Mon Dec 31 14:28:59 2012 lanczos halted after 16350 iterations (dim = 1033905) Mon Dec 31 14:29:02 2012 recovered 30 nontrivial dependencies Mon Dec 31 14:29:02 2012 BLanczosTime: 5242 Mon Dec 31 14:29:02 2012 Mon Dec 31 14:29:02 2012 commencing square root phase Mon Dec 31 14:29:02 2012 reading relations for dependency 1 Mon Dec 31 14:29:03 2012 read 516026 cycles Mon Dec 31 14:29:04 2012 cycles contain 1799374 unique relations Mon Dec 31 14:29:41 2012 read 1799374 relations Mon Dec 31 14:29:56 2012 multiplying 1799374 relations Mon Dec 31 14:34:33 2012 multiply complete, coefficients have about 76.86 million bits Mon Dec 31 14:34:34 2012 initial square root is modulo 328837 Mon Dec 31 14:39:58 2012 GCD is 1, no factor found Mon Dec 31 14:39:58 2012 reading relations for dependency 2 Mon Dec 31 14:39:58 2012 read 517177 cycles Mon Dec 31 14:40:00 2012 cycles contain 1802298 unique relations Mon Dec 31 14:40:46 2012 read 1802298 relations Mon Dec 31 14:41:01 2012 multiplying 1802298 relations Mon Dec 31 14:45:44 2012 multiply complete, coefficients have about 76.98 million bits Mon Dec 31 14:45:46 2012 initial square root is modulo 335809 Mon Dec 31 14:51:16 2012 GCD is N, no factor found Mon Dec 31 14:51:16 2012 reading relations for dependency 3 Mon Dec 31 14:51:16 2012 read 516585 cycles Mon Dec 31 14:51:17 2012 cycles contain 1799214 unique relations Mon Dec 31 14:51:58 2012 read 1799214 relations Mon Dec 31 14:52:11 2012 multiplying 1799214 relations Mon Dec 31 14:56:31 2012 multiply complete, coefficients have about 76.85 million bits Mon Dec 31 14:56:32 2012 initial square root is modulo 328411 Mon Dec 31 15:02:00 2012 sqrtTime: 1978 prp41 = 14537407265769639621238988233731420607459 prp86 = 17755806311481873392950205818502096009042430386860350880467949571046481024696478227729 NFS elapsed time = 67637.6190 seconds. |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Max Dettweiler | March 6, 2009 00:44:02 UTC 2009 年 3 月 6 日 (金) 9 時 44 分 2 秒 (日本時間) | |
25 | 5e4 | 204 | Ignacio Santos | August 22, 2010 13:59:33 UTC 2010 年 8 月 22 日 (日) 22 時 59 分 33 秒 (日本時間) | |
30 | 25e4 | 403 | Ignacio Santos | August 22, 2010 13:59:41 UTC 2010 年 8 月 22 日 (日) 22 時 59 分 41 秒 (日本時間) | |
35 | 1e6 | 300 | Ignacio Santos | August 22, 2010 21:19:53 UTC 2010 年 8 月 23 日 (月) 6 時 19 分 53 秒 (日本時間) | |
40 | 3e6 | 1110 | 110 | Ignacio Santos | August 22, 2010 21:19:53 UTC 2010 年 8 月 23 日 (月) 6 時 19 分 53 秒 (日本時間) |
1000 | Dmitry Domanov | December 23, 2012 18:07:07 UTC 2012 年 12 月 24 日 (月) 3 時 7 分 7 秒 (日本時間) | |||
45 | 11e6 | 672 / 4220 | 32 | Ignacio Santos | August 22, 2010 21:19:53 UTC 2010 年 8 月 23 日 (月) 6 時 19 分 53 秒 (日本時間) |
640 | Dmitry Domanov | December 28, 2012 22:43:58 UTC 2012 年 12 月 29 日 (土) 7 時 43 分 58 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | September 1, 2010 11:33:33 UTC 2010 年 9 月 1 日 (水) 20 時 33 分 33 秒 (日本時間) |
composite number 合成数 | 33128142207473777176945404153982601803048577023208399107348447299009815628994123133828678566876364239193891794405342788533236876415154600146050256727047700544305060079593266736695481983456081<191> |
prime factors 素因数 | 3296983163579069319676872740954569392586656179002403786310639061072493998957<76> 10048016797122866874080447284120713641197698468664489778429550873258543489602898482403791717816120439946971679116533<116> |
factorization results 素因数分解の結果 | Number: 8 N=33128142207473777176945404153982601803048577023208399107348447299009815628994123133828678566876364239193891794405342788533236876415154600146050256727047700544305060079593266736695481983456081 ( 191 digits) SNFS difficulty: 198 digits. Divisors found: r1=3296983163579069319676872740954569392586656179002403786310639061072493998957 (pp76) r2=10048016797122866874080447284120713641197698468664489778429550873258543489602898482403791717816120439946971679116533 (pp116) Version: Msieve-1.40 Total time: 538.65 hours. Scaled time: 936.71 units (timescale=1.739). Factorization parameters were as follows: n: 33128142207473777176945404153982601803048577023208399107348447299009815628994123133828678566876364239193891794405342788533236876415154600146050256727047700544305060079593266736695481983456081 m: 1000000000000000000000000000000000000000 deg: 5 c5: 6500 c0: 43 skew: 0.37 type: snfs lss: 1 rlim: 14400000 alim: 14400000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 Factor base limits: 14400000/14400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved rational special-q in [7200000, 15200001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 2608160 x 2608384 Total sieving time: 525.06 hours. Total relation processing time: 0.31 hours. Matrix solve time: 11.95 hours. Time per square root: 1.33 hours. Prototype def-par.txt line would be: snfs,198.000,5,0,0,0,0,0,0,0,0,14400000,14400000,28,28,55,55,2.5,2.5,100000 total time: 538.65 hours. --------- CPU info (if available) ---------- |
software ソフトウェア | GGNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Max Dettweiler | March 6, 2009 00:44:57 UTC 2009 年 3 月 6 日 (金) 9 時 44 分 57 秒 (日本時間) | |
25 | 5e4 | 0 | - | - | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 420 | 120 | Serge Batalov | June 18, 2010 05:47:16 UTC 2010 年 6 月 18 日 (金) 14 時 47 分 16 秒 (日本時間) |
300 | Ignacio Santos | June 21, 2010 20:26:01 UTC 2010 年 6 月 22 日 (火) 5 時 26 分 1 秒 (日本時間) | |||
40 | 3e6 | 2125 | 110 | Ignacio Santos | June 21, 2010 20:26:01 UTC 2010 年 6 月 22 日 (火) 5 時 26 分 1 秒 (日本時間) |
2015 | Wataru Sakai | June 26, 2010 06:59:32 UTC 2010 年 6 月 26 日 (土) 15 時 59 分 32 秒 (日本時間) | |||
45 | 11e6 | 32 / 3991 | Ignacio Santos | June 21, 2010 20:26:01 UTC 2010 年 6 月 22 日 (火) 5 時 26 分 1 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | August 22, 2010 14:00:34 UTC 2010 年 8 月 22 日 (日) 23 時 0 分 34 秒 (日本時間) |
composite number 合成数 | 9075345147887319369378718815773777753721393446681799098811666996799334278523970458312525918126766538082598102755710931923311766120044367112683111039334958682080427576972170881719001461<184> |
prime factors 素因数 | 28471682109840050372193837501779<32> |
composite cofactor 合成数の残り | 318749876205972548821813341629779365441848850494352846143527502420614252646982685843675204339592529657649170873275001196315016608022538467503393979233559<153> |
factorization results 素因数分解の結果 | Using B1=250000, B2=128992510, polynomial Dickson(3), sigma=1306081229 Step 1 took 1919ms Step 2 took 1388ms ********** Factor found in step 2: 28471682109840050372193837501779 Found probable prime factor of 32 digits: 28471682109840050372193837501779 Composite cofactor 318749876205972548821813341629779365441848850494352846143527502420614252646982685843675204339592529657649170873275001196315016608022538467503393979233559 has 153 digits |
software ソフトウェア | GMP-ECM 6.3 |
name 名前 | KTakahashi |
---|---|
date 日付 | October 2, 2016 09:43:23 UTC 2016 年 10 月 2 日 (日) 18 時 43 分 23 秒 (日本時間) |
composite number 合成数 | 318749876205972548821813341629779365441848850494352846143527502420614252646982685843675204339592529657649170873275001196315016608022538467503393979233559<153> |
prime factors 素因数 | 87378325198946765853726945510689126651760281<44> 71441238231144875885241109232738228327672239860070391<53> 51061942865720783341876540329370343841481291375631496329<56> |
factorization results 素因数分解の結果 | GMP-ECM 6.4.4 [configured with GMP 6.0.0] [ECM] Input number is 318749876205972548821813341629779365441848850494352846143527502420614252646982685843675204339592529657649170873275001196315016608022538467503393979233559 (153 digits) Using B1=43000000, B2=240490660426, polynomial Dickson(12), sigma=3970277437 Step 1 took 216483ms Step 2 took 74210ms ********** Factor found in step 2: 71441238231144875885241109232738228327672239860070391 Found probable prime factor of 53 digits: 71441238231144875885241109232738228327672239860070391 Composite cofactor 4461707049010990357444010204500684270167142931469051714214808131640461584898937386553679053839508449 has 100 digits Number: 72227_199 N=4461707049010990357444010204500684270167142931469051714214808131640461584898937386553679053839508449 ( 100 digits) Divisors found: r1=87378325198946765853726945510689126651760281 (pp44) r2=51061942865720783341876540329370343841481291375631496329 (pp56) Version: Msieve v. 1.51 (SVN Official Release) Total time: 7.17 hours. Scaled time: 10.77 units (timescale=1.502). Factorization parameters were as follows: name: 72227_199 n: 4461707049010990357444010204500684270167142931469051714214808131640461584898937386553679053839508449 skew: 6167.89 # norm 5.71e+013 c5: 15120 c4: -772061716 c3: 1326512090208 c2: 20211464956283487 c1: 36822775836286190092 c0: 35958144716370784892100 # alpha -5.73 Y1: 23187656179 Y0: -12416469760461926321 # Murphy_E 3.59e-009 # M 717650254256422493678904901983949230548504762942963510839897379299998569851955321387465852467827373 type: gnfs rlim: 1800000 alim: 1800000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved algebraic special-q in [900000, 1400001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 177096 x 177321 Polynomial selection time: 0.38 hours. Total sieving time: 6.60 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.14 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: gnfs,99,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,26,26,48,48,2.5,2.5,100000 total time: 7.17 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Max Dettweiler | March 6, 2009 00:45:53 UTC 2009 年 3 月 6 日 (金) 9 時 45 分 53 秒 (日本時間) | |
25 | 5e4 | 204 | Ignacio Santos | August 22, 2010 22:57:11 UTC 2010 年 8 月 23 日 (月) 7 時 57 分 11 秒 (日本時間) | |
30 | 25e4 | 403 | Ignacio Santos | August 22, 2010 22:57:19 UTC 2010 年 8 月 23 日 (月) 7 時 57 分 19 秒 (日本時間) | |
35 | 1e6 | 300 | Ignacio Santos | August 22, 2010 22:57:30 UTC 2010 年 8 月 23 日 (月) 7 時 57 分 30 秒 (日本時間) | |
40 | 3e6 | 1110 | 110 | Ignacio Santos | August 22, 2010 22:57:30 UTC 2010 年 8 月 23 日 (月) 7 時 57 分 30 秒 (日本時間) |
1000 | Dmitry Domanov | December 23, 2012 18:07:27 UTC 2012 年 12 月 24 日 (月) 3 時 7 分 27 秒 (日本時間) | |||
45 | 11e6 | 4220 | 32 | Ignacio Santos | August 22, 2010 22:57:30 UTC 2010 年 8 月 23 日 (月) 7 時 57 分 30 秒 (日本時間) |
700 | Dmitry Domanov | December 28, 2012 22:43:23 UTC 2012 年 12 月 29 日 (土) 7 時 43 分 23 秒 (日本時間) | |||
3488 | yas mat | February 18, 2015 00:57:06 UTC 2015 年 2 月 18 日 (水) 9 時 57 分 6 秒 (日本時間) |
name 名前 | Warut Roonguthai |
---|---|
date 日付 | December 20, 2012 15:33:56 UTC 2012 年 12 月 21 日 (金) 0 時 33 分 56 秒 (日本時間) |
composite number 合成数 | 168844264222182799466217922006804227345999691484949578598710433668164891643350476948166153983826119380342152044173727572014138081732655393955313660783414879366755277048295651321247602230247<189> |
prime factors 素因数 | 71704699865856532850830859376403<32> 2354716839175851519186317699947818472495188897661138576738547006173395935296100613647091778301850282380361676102788439579384090431856799844296972098202195549<157> |
factorization results 素因数分解の結果 | Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3378308294 Step 1 took 10561ms Step 2 took 6537ms ********** Factor found in step 2: 71704699865856532850830859376403 Found probable prime factor of 32 digits: 71704699865856532850830859376403 Probable prime cofactor 2354716839175851519186317699947818472495188897661138576738547006173395935296100613647091778301850282380361676102788439579384090431856799844296972098202195549 has 157 digits |
software ソフトウェア | GMP-ECM 6.3 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | December 20, 2012 14:00:00 UTC 2012 年 12 月 20 日 (木) 23 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 20, 2012 16:13:59 UTC 2012 年 12 月 21 日 (金) 1 時 13 分 59 秒 (日本時間) |
composite number 合成数 | 123940303911965555997728539617560058199377905158590649274642065994168123309896744366641072254589570634639161874559243662121192307556623418614731066873057002782534009735487845927217<180> |
prime factors 素因数 | 100216252855031186227645983746081851<36> 1236728578260181319555790168223370041764691925965318636002510125690519220313213556246535710353807014020475332990001869103834344179503878934523267<145> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3493363545 Step 1 took 33537ms Step 2 took 11784ms ********** Factor found in step 2: 100216252855031186227645983746081851 Found probable prime factor of 36 digits: 100216252855031186227645983746081851 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | December 20, 2012 14:00:00 UTC 2012 年 12 月 20 日 (木) 23 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | August 10, 2024 06:09:00 UTC 2024 年 8 月 10 日 (土) 15 時 9 分 0 秒 (日本時間) |
composite number 合成数 | 46868809666221802408222281362467417011315655878964932980499630575502784422894264539504609623858434763304381975715876899378520558491671898608415824035807609695513977493232013143191<179> |
prime factors 素因数 | 93333324392415667633039358242528115348915889534163708393243729616154837909538392618563<86> 502165865957629976362307239072905103330324657219775940014317831096064615785145090974935657757<93> |
factorization results 素因数分解の結果 | 08/08/24 16:02:13 v1.34.5 @ TRIGKEY, 08/08/24 16:02:13 v1.34.5 @ TRIGKEY, **************************** 08/08/24 16:02:13 v1.34.5 @ TRIGKEY, Starting factorization of 6500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000043 08/08/24 16:02:13 v1.34.5 @ TRIGKEY, using pretesting plan: normal 08/08/24 16:02:13 v1.34.5 @ TRIGKEY, no tune info: using qs/gnfs crossover of 100 digits 08/08/24 16:02:13 v1.34.5 @ TRIGKEY, **************************** 08/08/24 16:02:13 v1.34.5 @ TRIGKEY, div: found prime factor = 3 08/08/24 16:02:13 v1.34.5 @ TRIGKEY, div: found prime factor = 3 08/08/24 16:02:13 v1.34.5 @ TRIGKEY, rho: x^2 + 3, starting 1000 iterations on C207 08/08/24 16:02:13 v1.34.5 @ TRIGKEY, rho: x^2 + 2, starting 1000 iterations on C207 08/08/24 16:02:13 v1.34.5 @ TRIGKEY, rho: x^2 + 1, starting 1000 iterations on C207 08/08/24 16:02:13 v1.34.5 @ TRIGKEY, prp8 = 20732143 08/08/24 16:02:13 v1.34.5 @ TRIGKEY, rho: x^2 + 1, starting 1000 iterations on C200 08/08/24 16:02:13 v1.34.5 @ TRIGKEY, pm1: starting B1 = 150K, B2 = gmp-ecm default on C200 08/08/24 16:02:13 v1.34.5 @ TRIGKEY, current ECM pretesting depth: 0.00 08/08/24 16:02:13 v1.34.5 @ TRIGKEY, scheduled 30 curves at B1=2000 toward target pretesting depth of 61.54 08/08/24 16:02:13 v1.34.5 @ TRIGKEY, Finished 30 curves using Lenstra ECM method on C200 input, B1=2K, B2=gmp-ecm default 08/08/24 16:02:13 v1.34.5 @ TRIGKEY, current ECM pretesting depth: 15.18 08/08/24 16:02:13 v1.34.5 @ TRIGKEY, scheduled 74 curves at B1=11000 toward target pretesting depth of 61.54 08/08/24 16:02:16 v1.34.5 @ TRIGKEY, Finished 74 curves using Lenstra ECM method on C200 input, B1=11K, B2=gmp-ecm default 08/08/24 16:02:16 v1.34.5 @ TRIGKEY, current ECM pretesting depth: 20.24 08/08/24 16:02:16 v1.34.5 @ TRIGKEY, scheduled 214 curves at B1=50000 toward target pretesting depth of 61.54 08/08/24 16:02:18 v1.34.5 @ TRIGKEY, prp21 = 743263365748716953579 (curve 17 stg2 B1=50000 sigma=1207690703 thread=0) 08/08/24 16:02:18 v1.34.5 @ TRIGKEY, Finished 17 curves using Lenstra ECM method on C200 input, B1=50K, B2=gmp-ecm default 08/08/24 16:02:18 v1.34.5 @ TRIGKEY, current ECM pretesting depth: 20.64 08/08/24 16:02:18 v1.34.5 @ TRIGKEY, scheduled 197 curves at B1=50000 toward target pretesting depth of 55.08 08/08/24 16:03:32 v1.34.5 @ TRIGKEY, nfs: commencing nfs on c208: 6500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000043 08/08/24 16:03:32 v1.34.5 @ TRIGKEY, nfs: input divides 65*10^206 + 43 08/08/24 16:03:32 v1.34.5 @ TRIGKEY, nfs: using supplied cofactor: 46868809666221802408222281362467417011315655878964932980499630575502784422894264539504609623858434763304381975715876899378520558491671898608415824035807609695513977493232013143191 08/08/24 16:03:32 v1.34.5 @ TRIGKEY, nfs: commencing snfs on c179: 46868809666221802408222281362467417011315655878964932980499630575502784422894264539504609623858434763304381975715876899378520558491671898608415824035807609695513977493232013143191 08/08/24 16:03:32 v1.34.5 @ TRIGKEY, gen: best 3 polynomials: n: 46868809666221802408222281362467417011315655878964932980499630575502784422894264539504609623858434763304381975715876899378520558491671898608415824035807609695513977493232013143191 # 65*10^206+43, difficulty: 208.81, anorm: 3.34e+032, rnorm: 1.31e+047 # scaled difficulty: 211.25, suggest sieving rational side # size = 1.702e-014, alpha = -0.317, combined = 6.634e-012, rroots = 1 type: snfs size: 208 skew: 0.5809 c5: 650 c0: 43 Y1: -1 Y0: 100000000000000000000000000000000000000000 m: 100000000000000000000000000000000000000000 n: 46868809666221802408222281362467417011315655878964932980499630575502784422894264539504609623858434763304381975715876899378520558491671898608415824035807609695513977493232013143191 # 65*10^206+43, difficulty: 209.02, anorm: 9.46e+032, rnorm: 1.86e+047 # scaled difficulty: 211.40, suggest sieving rational side # size = 1.351e-014, alpha = -1.010, combined = 5.779e-012, rroots = 1 type: snfs size: 209 skew: 1.1618 c5: 325 c0: 688 Y1: -1 Y0: 200000000000000000000000000000000000000000 m: 200000000000000000000000000000000000000000 n: 46868809666221802408222281362467417011315655878964932980499630575502784422894264539504609623858434763304381975715876899378520558491671898608415824035807609695513977493232013143191 # 65*10^206+43, difficulty: 209.81, anorm: 1.06e+039, rnorm: 1.52e+040 # scaled difficulty: 209.81, suggest sieving algebraic side # size = 1.370e-010, alpha = -0.661, combined = 4.200e-012, rroots = 0 type: snfs size: 209 skew: 0.4333 c6: 6500 c0: 43 Y1: -1 Y0: 10000000000000000000000000000000000 m: 10000000000000000000000000000000000 08/08/24 16:03:34 v1.34.5 @ TRIGKEY, test: fb generation took 1.5095 seconds 08/08/24 16:03:34 v1.34.5 @ TRIGKEY, test: commencing test sieving of polynomial 0 on the rational side over range 20200000-20202000 skew: 0.5809 c5: 650 c0: 43 Y1: -1 Y0: 100000000000000000000000000000000000000000 m: 100000000000000000000000000000000000000000 rlim: 20200000 alim: 20200000 mfbr: 56 mfba: 56 lpbr: 28 lpba: 28 rlambda: 2.60 alambda: 2.60 08/08/24 16:06:51 v1.34.5 @ TRIGKEY, nfs: parsing special-q from .dat file 08/08/24 16:06:53 v1.34.5 @ TRIGKEY, test: fb generation took 1.5907 seconds 08/08/24 16:06:53 v1.34.5 @ TRIGKEY, test: commencing test sieving of polynomial 1 on the rational side over range 21400000-21402000 skew: 1.1618 c5: 325 c0: 688 Y1: -1 Y0: 200000000000000000000000000000000000000000 m: 200000000000000000000000000000000000000000 rlim: 21400000 alim: 21400000 mfbr: 56 mfba: 56 lpbr: 28 lpba: 28 rlambda: 2.60 alambda: 2.60 08/08/24 16:09:52 v1.34.5 @ TRIGKEY, nfs: parsing special-q from .dat file 08/08/24 16:09:54 v1.34.5 @ TRIGKEY, test: fb generation took 2.3338 seconds 08/08/24 16:09:54 v1.34.5 @ TRIGKEY, test: commencing test sieving of polynomial 2 on the algebraic side over range 21400000-21402000 skew: 0.4333 c6: 6500 c0: 43 Y1: -1 Y0: 10000000000000000000000000000000000 m: 10000000000000000000000000000000000 rlim: 21400000 alim: 21400000 mfbr: 56 mfba: 56 lpbr: 28 lpba: 28 rlambda: 2.60 alambda: 2.60 08/08/24 16:12:49 v1.34.5 @ TRIGKEY, nfs: parsing special-q from .dat file 08/08/24 16:12:49 v1.34.5 @ TRIGKEY, gen: selected polynomial: n: 46868809666221802408222281362467417011315655878964932980499630575502784422894264539504609623858434763304381975715876899378520558491671898608415824035807609695513977493232013143191 # 65*10^206+43, difficulty: 208.81, anorm: 3.34e+032, rnorm: 1.31e+047 # scaled difficulty: 211.25, suggest sieving rational side # size = 1.702e-014, alpha = -0.317, combined = 6.634e-012, rroots = 1 type: snfs size: 208 skew: 0.5809 c5: 650 c0: 43 Y1: -1 Y0: 100000000000000000000000000000000000000000 m: 100000000000000000000000000000000000000000 08/10/24 02:51:59 v1.34.5 @ TRIGKEY, nfs: commencing msieve filtering 08/10/24 02:53:54 v1.34.5 @ TRIGKEY, nfs: raising min_rels by 5.00 percent to 22140981 08/10/24 05:03:47 v1.34.5 @ TRIGKEY, nfs: commencing msieve filtering 08/10/24 05:05:51 v1.34.5 @ TRIGKEY, nfs: raising min_rels by 5.00 percent to 23379145 08/10/24 07:15:12 v1.34.5 @ TRIGKEY, nfs: commencing msieve filtering 08/10/24 07:17:18 v1.34.5 @ TRIGKEY, nfs: raising min_rels by 5.00 percent to 24602781 08/10/24 09:41:54 v1.34.5 @ TRIGKEY, nfs: commencing msieve filtering 08/10/24 09:44:07 v1.34.5 @ TRIGKEY, nfs: raising min_rels by 5.00 percent to 25946620 08/10/24 12:06:24 v1.34.5 @ TRIGKEY, nfs: commencing msieve filtering 08/10/24 12:10:36 v1.34.5 @ TRIGKEY, nfs: commencing msieve linear algebra 08/10/24 15:08:01 v1.34.5 @ TRIGKEY, nfs: commencing msieve sqrt 08/10/24 15:11:40 v1.34.5 @ TRIGKEY, prp86 = 93333324392415667633039358242528115348915889534163708393243729616154837909538392618563 08/10/24 15:11:40 v1.34.5 @ TRIGKEY, prp93 = 502165865957629976362307239072905103330324657219775940014317831096064615785145090974935657757 08/10/24 15:11:40 v1.34.5 @ TRIGKEY, NFS elapsed time = 169688.2487 seconds. 08/10/24 15:11:40 v1.34.5 @ TRIGKEY, 08/10/24 15:11:40 v1.34.5 @ TRIGKEY, 08/08/24 16:12:49 v1.34.5 @ TRIGKEY, test: test sieving took 556.97 seconds |
software ソフトウェア | YAFU |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 20, 2012 14:00:00 UTC 2012 年 12 月 20 日 (木) 23 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | December 23, 2012 18:07:46 UTC 2012 年 12 月 24 日 (月) 3 時 7 分 46 秒 (日本時間) | |
45 | 11e6 | 4254 | 1000 | Dmitry Domanov | December 26, 2012 12:55:05 UTC 2012 年 12 月 26 日 (水) 21 時 55 分 5 秒 (日本時間) |
3254 | yas mat | February 19, 2015 09:37:03 UTC 2015 年 2 月 19 日 (木) 18 時 37 分 3 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 21, 2012 12:50:43 UTC 2012 年 12 月 21 日 (金) 21 時 50 分 43 秒 (日本時間) |
composite number 合成数 | 136212090412074493071546974951472159569368326355795602365266339748615509594880274584702947109911225907063297707530603925028963762154927797659<141> |
prime factors 素因数 | 730478527383826673344857408298101353<36> 12192039248965064351142147791754562238737041427277633<53> 15294379130012970568036268211683303287281332818000291<53> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=495116721 Step 1 took 14229ms Step 2 took 5247ms ********** Factor found in step 2: 730478527383826673344857408298101353 Found probable prime factor of 36 digits: 730478527383826673344857408298101353 Composite cofactor 186469670641670291985795010606710034875021548437616197235663053651233860009126222293809902039315131791203 has 105 digits GNFS prp53 = 12192039248965064351142147791754562238737041427277633 prp53 = 15294379130012970568036268211683303287281332818000291 NFS elapsed time = 8372.4204 seconds. |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | December 20, 2012 14:00:00 UTC 2012 年 12 月 20 日 (木) 23 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | April 19, 2021 10:41:10 UTC 2021 年 4 月 19 日 (月) 19 時 41 分 10 秒 (日本時間) |
composite number 合成数 | 2296063840859644165053572057780158777188349792818004550332459883367499489371359436509112219032696675494260056812465108335873137685732535257517685260792268457180817050536611971248472302606538604748497<199> |
prime factors 素因数 | 40115755547150797655531031435758929140398062363<47> 57235961520428623730745436828639895614459931908068160383948913017002658418116018956881297991175290715829394806320176402409725742084931584732725168857219<152> |
factorization results 素因数分解の結果 | Number: n N=2296063840859644165053572057780158777188349792818004550332459883367499489371359436509112219032696675494260056812465108335873137685732535257517685260792268457180817050536611971248472302606538604748497 ( 199 digits) SNFS difficulty: 210 digits. Divisors found: Mon Apr 19 20:32:21 2021 p47 factor: 40115755547150797655531031435758929140398062363 Mon Apr 19 20:32:21 2021 p152 factor: 57235961520428623730745436828639895614459931908068160383948913017002658418116018956881297991175290715829394806320176402409725742084931584732725168857219 Mon Apr 19 20:32:21 2021 elapsed time 05:14:42 (Msieve 1.54 - dependency 7) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.342). Factorization parameters were as follows: # # N = 65x10^208+43 = 72(207)7 # n: 2296063840859644165053572057780158777188349792818004550332459883367499489371359436509112219032696675494260056812465108335873137685732535257517685260792268457180817050536611971248472302606538604748497 m: 500000000000000000000000000000000000000000 deg: 5 c5: 104 c0: 215 skew: 1.16 # Murphy_E = 5.507e-12 type: snfs lss: 1 rlim: 23000000 alim: 23000000 lpbr: 29 lpba: 29 mfbr: 57 mfba: 57 rlambda: 2.6 alambda: 2.6 Factor base limits: 23000000/23000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 57/57 Sieved special-q in [100000, 38700000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 6960901 hash collisions in 50309333 relations (45131306 unique) Msieve: matrix is 3375663 x 3375888 (1187.1 MB) Sieving start time : 2021/04/19 01:16:10 Sieving end time : 2021/04/19 15:16:49 Total sieving time: 14hrs 0min 39secs. Total relation processing time: 4hrs 24min 11sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 35min 58sec. Prototype def-par.txt line would be: snfs,210,5,0,0,0,0,0,0,0,0,23000000,23000000,29,29,57,57,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- [ 0.118393] smpboot: CPU0: AMD Ryzen 7 2700 Eight-Core Processor (family: 0x17, model: 0x8, stepping: 0x2) [ 0.000000] Memory: 16241108K/16727236K available (14339K kernel code, 2400K rwdata, 5008K rodata, 2732K init, 4972K bss, 486128K reserved, 0K cma-reserved) [ 0.153523] x86/mm: Memory block size: 128MB [ 0.000004] Calibrating delay loop (skipped), value calculated using timer frequency.. 6399.30 BogoMIPS (lpj=12798612) [ 0.152049] smpboot: Total of 16 processors activated (102388.89 BogoMIPS) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 20, 2012 14:00:00 UTC 2012 年 12 月 20 日 (木) 23 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | December 23, 2012 18:08:05 UTC 2012 年 12 月 24 日 (月) 3 時 8 分 5 秒 (日本時間) | |
45 | 11e6 | 4254 | 1000 | Dmitry Domanov | December 26, 2012 12:55:27 UTC 2012 年 12 月 26 日 (水) 21 時 55 分 27 秒 (日本時間) |
3254 | yas mat | March 2, 2015 06:42:12 UTC 2015 年 3 月 2 日 (月) 15 時 42 分 12 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 20, 2012 14:00:00 UTC 2012 年 12 月 20 日 (木) 23 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | December 23, 2012 18:08:18 UTC 2012 年 12 月 24 日 (月) 3 時 8 分 18 秒 (日本時間) | |
45 | 11e6 | 4254 | 1000 | Dmitry Domanov | December 26, 2012 12:55:46 UTC 2012 年 12 月 26 日 (水) 21 時 55 分 46 秒 (日本時間) |
3254 | yas mat | March 11, 2015 23:45:50 UTC 2015 年 3 月 12 日 (木) 8 時 45 分 50 秒 (日本時間) |
name 名前 | Erik Branger |
---|---|
date 日付 | May 27, 2020 07:38:44 UTC 2020 年 5 月 27 日 (水) 16 時 38 分 44 秒 (日本時間) |
composite number 合成数 | 475445105590349934014096890404310330973570223350129711059459273086843050751249294773351391071693235336969355815928728708849303760851935021110319197234201633331706295624567878645590070730007<189> |
prime factors 素因数 | 11931397423229425769307008199438951085012843143851<50> 161347048016003050062177492821493170266425092049017<51> 246972185598202036376889235662462497894811207124313952439800744977288612800931943957848621<90> |
factorization results 素因数分解の結果 | Number: 72227_219 N = 475445105590349934014096890404310330973570223350129711059459273086843050751249294773351391071693235336969355815928728708849303760851935021110319197234201633331706295624567878645590070730007 (189 digits) SNFS difficulty: 222 digits. Divisors found: r1=11931397423229425769307008199438951085012843143851 (pp50) r2=161347048016003050062177492821493170266425092049017 (pp51) r3=246972185598202036376889235662462497894811207124313952439800744977288612800931943957848621 (pp90) Version: Msieve v. 1.52 (SVN unknown) Total time: 69.85 hours. Factorization parameters were as follows: n: 475445105590349934014096890404310330973570223350129711059459273086843050751249294773351391071693235336969355815928728708849303760851935021110319197234201633331706295624567878645590070730007 m: 10000000000000000000000000000000000000000000000000000000 deg: 4 c4: 13 c0: 86 skew: 1.00 type: snfs lss: 1 rlim: 536870912 alim: 44739242 lpbr: 29 lpba: 28 mfbr: 58 mfba: 56 rlambda: 2.8 alambda: 2.8 side: 1 Factor base limits: 536870912/44739242 Large primes per side: 3 Large prime bits: 29/28 Relations: 7640062 relations Pruned matrix : 6874877 x 6875102 Total pre-computation time approximately 1000 CPU-days. Pre-computation saved approximately 18 G relations. Total batch smoothness checking time: 33.69 hours. Total relation processing time: 0.41 hours. Matrix solve time: 35.17 hours. time per square root: 0.57 hours. Prototype def-par.txt line would be: snfs,222,4,0,0,0,0,0,0,0,0,536870912,44739242,29,28,58,56,2.8,2.8,100000 total time: 69.85 hours. Intel64 Family 6 Model 60 Stepping 3, GenuineIntel Windows-10-10.0.17763-SP0 processors: 8, speed: 3.50GHz |
software ソフトウェア | GGNFS, NFS_factory, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 20, 2012 14:00:00 UTC 2012 年 12 月 20 日 (木) 23 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | December 23, 2012 18:08:30 UTC 2012 年 12 月 24 日 (月) 3 時 8 分 30 秒 (日本時間) | |
45 | 11e6 | 4254 | 1000 | Dmitry Domanov | December 26, 2012 12:56:07 UTC 2012 年 12 月 26 日 (水) 21 時 56 分 7 秒 (日本時間) |
3254 | yas mat | March 19, 2015 04:34:42 UTC 2015 年 3 月 19 日 (木) 13 時 34 分 42 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | August 5, 2019 17:57:22 UTC 2019 年 8 月 6 日 (火) 2 時 57 分 22 秒 (日本時間) |
composite number 合成数 | 83515419432617054987027549899531592848865010674105757682785797891991152659132882013437014257456889436852828575389221363773650137384792245565038924160020220496382503910224059150296905667624896892184381642647824765737<215> |
prime factors 素因数 | 1472208762306530116618491968126336492504723391364784798798157768193<67> 56727973349222752894306979447539243630300674758239825793141676781062263441600264098506304990601621241068964858944413605589195100099000730843208564009<149> |
factorization results 素因数分解の結果 | Number: n N=83515419432617054987027549899531592848865010674105757682785797891991152659132882013437014257456889436852828575389221363773650137384792245565038924160020220496382503910224059150296905667624896892184381642647824765737 ( 215 digits) SNFS difficulty: 223 digits. Divisors found: Tue Aug 6 00:33:23 2019 p67 factor: 1472208762306530116618491968126336492504723391364784798798157768193 Tue Aug 6 00:33:23 2019 p149 factor: 56727973349222752894306979447539243630300674758239825793141676781062263441600264098506304990601621241068964858944413605589195100099000730843208564009 Tue Aug 6 00:33:23 2019 elapsed time 08:20:32 (Msieve 1.54 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.121). Factorization parameters were as follows: # # N = 65x10^221+43 = 72(220)7 # n: 83515419432617054987027549899531592848865010674105757682785797891991152659132882013437014257456889436852828575389221363773650137384792245565038924160020220496382503910224059150296905667624896892184381642647824765737 m: 10000000000000000000000000000000000000 deg: 6 c6: 13 c0: 86 skew: 1.37 # Murphy_E = 2.131e-12 type: snfs lss: 1 rlim: 37000000 alim: 37000000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.6 alambda: 2.6 Factor base limits: 37000000/37000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved special-q in [100000, 72900000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 12398419 hash collisions in 70204015 relations (59001152 unique) Msieve: matrix is 4294871 x 4295097 (1508.4 MB) Sieving start time: 2019/08/04 05:52:26 Sieving end time : 2019/08/05 16:08:41 Total sieving time: 34hrs 16min 15secs. Total relation processing time: 7hrs 44min 8sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 15min 9sec. Prototype def-par.txt line would be: snfs,223,6,0,0,0,0,0,0,0,0,37000000,37000000,29,29,58,58,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- [ 0.048000] smpboot: CPU0: AMD Ryzen 7 1700 Eight-Core Processor (family: 0x17, model: 0x1, stepping: 0x1) [ 0.000000] Memory: 16284124K/16703460K available (12300K kernel code, 2473K rwdata, 4272K rodata, 2408K init, 2416K bss, 419336K reserved, 0K cma-reserved) [ 0.080566] x86/mm: Memory block size: 128MB [ 0.028000] Calibrating delay loop (skipped), value calculated using timer frequency.. 5988.41 BogoMIPS (lpj=11976828) [ 0.078213] smpboot: Total of 16 processors activated (95814.62 BogoMIPS) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 20, 2012 14:00:00 UTC 2012 年 12 月 20 日 (木) 23 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | December 23, 2012 18:08:42 UTC 2012 年 12 月 24 日 (月) 3 時 8 分 42 秒 (日本時間) | |
45 | 11e6 | 4254 | 1000 | Dmitry Domanov | December 24, 2012 06:38:41 UTC 2012 年 12 月 24 日 (月) 15 時 38 分 41 秒 (日本時間) |
3254 | yas mat | March 30, 2015 00:21:20 UTC 2015 年 3 月 30 日 (月) 9 時 21 分 20 秒 (日本時間) |
name 名前 | Warut Roonguthai |
---|---|
date 日付 | December 20, 2012 17:04:31 UTC 2012 年 12 月 21 日 (金) 2 時 4 分 31 秒 (日本時間) |
composite number 合成数 | 937950937950937950937950937950937950937950937950937950937950937950937950937950937950937950937950937950937950937950937950937950937950937950937950937950937950937950937950937950937950937950937950937950937950937950937950937951<222> |
prime factors 素因数 | 36832427814302321591895347512349<32> 25465357393213276591223369503200040198735173818034774117232639914412865516355537191841346508135565343964958475781709797434938302049227035354405794977832718846952879242173086379441017971094699<191> |
factorization results 素因数分解の結果 | Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1945572584 Step 1 took 14071ms Step 2 took 7971ms ********** Factor found in step 2: 36832427814302321591895347512349 Found probable prime factor of 32 digits: 36832427814302321591895347512349 Probable prime cofactor 25465357393213276591223369503200040198735173818034774117232639914412865516355537191841346508135565343964958475781709797434938302049227035354405794977832718846952879242173086379441017971094699 has 191 digits |
software ソフトウェア | GMP-ECM 6.3 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | December 20, 2012 14:00:00 UTC 2012 年 12 月 20 日 (木) 23 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 20, 2012 14:00:00 UTC 2012 年 12 月 20 日 (木) 23 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | December 23, 2012 18:08:58 UTC 2012 年 12 月 24 日 (月) 3 時 8 分 58 秒 (日本時間) | |
45 | 11e6 | 4254 | 1000 | Dmitry Domanov | December 24, 2012 06:38:27 UTC 2012 年 12 月 24 日 (月) 15 時 38 分 27 秒 (日本時間) |
850 | Serge Batalov | November 8, 2013 17:15:32 UTC 2013 年 11 月 9 日 (土) 2 時 15 分 32 秒 (日本時間) | |||
400 | Serge Batalov | January 6, 2014 02:28:31 UTC 2014 年 1 月 6 日 (月) 11 時 28 分 31 秒 (日本時間) | |||
900 | Serge Batalov | May 24, 2014 19:03:47 UTC 2014 年 5 月 25 日 (日) 4 時 3 分 47 秒 (日本時間) | |||
1104 | KTakahashi | August 14, 2014 10:29:41 UTC 2014 年 8 月 14 日 (木) 19 時 29 分 41 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 20, 2012 14:00:00 UTC 2012 年 12 月 20 日 (木) 23 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | December 23, 2012 18:09:11 UTC 2012 年 12 月 24 日 (月) 3 時 9 分 11 秒 (日本時間) | |
45 | 11e6 | 4254 | 1000 | Dmitry Domanov | December 26, 2012 12:56:34 UTC 2012 年 12 月 26 日 (水) 21 時 56 分 34 秒 (日本時間) |
3254 | yas mat | April 6, 2015 23:52:20 UTC 2015 年 4 月 7 日 (火) 8 時 52 分 20 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 20, 2012 14:00:00 UTC 2012 年 12 月 20 日 (木) 23 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | December 23, 2012 18:09:23 UTC 2012 年 12 月 24 日 (月) 3 時 9 分 23 秒 (日本時間) | |
45 | 11e6 | 4254 | 1000 | Dmitry Domanov | December 26, 2012 12:58:42 UTC 2012 年 12 月 26 日 (水) 21 時 58 分 42 秒 (日本時間) |
3254 | yas mat | April 12, 2015 23:55:14 UTC 2015 年 4 月 13 日 (月) 8 時 55 分 14 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 26, 2012 15:50:18 UTC 2012 年 12 月 27 日 (木) 0 時 50 分 18 秒 (日本時間) |
composite number 合成数 | 46406053550519538904158628492742888348423798976217246518286590504868020077683766508386682707821854657332009835608491242779755442005230312782546973304044491048267270941953594355953429717172302457<194> |
prime factors 素因数 | 778078915215087650281131766365074551718183<42> 59641834064725063211255059637059761297614956334536280421600958092647120960823713533539411500719145027635567729515594521290801717673678612067715819402079<152> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=2212659088 Step 1 took 139167ms Step 2 took 42204ms ********** Factor found in step 2: 778078915215087650281131766365074551718183 Found probable prime factor of 42 digits: 778078915215087650281131766365074551718183 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 20, 2012 14:00:00 UTC 2012 年 12 月 20 日 (木) 23 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | December 23, 2012 18:09:35 UTC 2012 年 12 月 24 日 (月) 3 時 9 分 35 秒 (日本時間) | |
45 | 11e6 | 1000 / 4254 | Dmitry Domanov | December 26, 2012 13:02:35 UTC 2012 年 12 月 26 日 (水) 22 時 2 分 35 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 21, 2012 10:31:28 UTC 2012 年 12 月 21 日 (金) 19 時 31 分 28 秒 (日本時間) |
composite number 合成数 | 468898734107976448610159624162991600522265682084811534430768248321113082832373126829082187919757318766602003472251296128466869579647665780285695802800996031739078993382902752129825922974761881747973413394500919612724317<219> |
prime factors 素因数 | 9946139618773672441094504774877321301<37> 47143791669977600773550419502924857377637455371746918011886546822753396624597070878101124693398756271808185666996841242287905328945993368773925238336820422679724546172924865771402217<182> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=4017020262 Step 1 took 30925ms Step 2 took 11074ms ********** Factor found in step 2: 9946139618773672441094504774877321301 Found probable prime factor of 37 digits: 9946139618773672441094504774877321301 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | December 20, 2012 14:00:00 UTC 2012 年 12 月 20 日 (木) 23 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 20, 2012 14:00:00 UTC 2012 年 12 月 20 日 (木) 23 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | December 23, 2012 18:10:06 UTC 2012 年 12 月 24 日 (月) 3 時 10 分 6 秒 (日本時間) | |
45 | 11e6 | 4254 | 1000 | Dmitry Domanov | December 24, 2012 06:38:11 UTC 2012 年 12 月 24 日 (月) 15 時 38 分 11 秒 (日本時間) |
3254 | yas mat | April 19, 2015 23:45:18 UTC 2015 年 4 月 20 日 (月) 8 時 45 分 18 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 20, 2012 14:00:00 UTC 2012 年 12 月 20 日 (木) 23 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | December 23, 2012 18:10:19 UTC 2012 年 12 月 24 日 (月) 3 時 10 分 19 秒 (日本時間) | |
45 | 11e6 | 4254 | 1000 | Dmitry Domanov | December 29, 2012 14:32:59 UTC 2012 年 12 月 29 日 (土) 23 時 32 分 59 秒 (日本時間) |
3254 | yas mat | April 20, 2015 05:55:52 UTC 2015 年 4 月 20 日 (月) 14 時 55 分 52 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 20, 2012 14:00:00 UTC 2012 年 12 月 20 日 (木) 23 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | December 23, 2012 18:10:32 UTC 2012 年 12 月 24 日 (月) 3 時 10 分 32 秒 (日本時間) | |
45 | 11e6 | 4254 | 1000 | Dmitry Domanov | December 24, 2012 06:36:27 UTC 2012 年 12 月 24 日 (月) 15 時 36 分 27 秒 (日本時間) |
3254 | yas mat | April 27, 2015 23:42:44 UTC 2015 年 4 月 28 日 (火) 8 時 42 分 44 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 20, 2012 14:00:00 UTC 2012 年 12 月 20 日 (木) 23 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | December 23, 2012 18:12:56 UTC 2012 年 12 月 24 日 (月) 3 時 12 分 56 秒 (日本時間) | |
45 | 11e6 | 4254 | 1000 | Dmitry Domanov | December 24, 2012 06:37:45 UTC 2012 年 12 月 24 日 (月) 15 時 37 分 45 秒 (日本時間) |
3254 | yas mat | April 27, 2015 23:42:00 UTC 2015 年 4 月 28 日 (火) 8 時 42 分 0 秒 (日本時間) |
name 名前 | Warut Roonguthai |
---|---|
date 日付 | December 20, 2012 22:04:55 UTC 2012 年 12 月 21 日 (金) 7 時 4 分 55 秒 (日本時間) |
composite number 合成数 | 23228973563971968951875915887647249578389073697246402767885577300182978404156716628319996853269379239715572482855851196695397401291851345321976930478414178709232460335543892576771007802038480465540698833501306136031479821412201<227> |
prime factors 素因数 | 35963245252073006892517976786311<32> 4526360676206495396084813525630953<34> |
composite cofactor 合成数の残り | 142699347711211413693198300700136768369095067018489417091662361980307539415398907747569774024537966973772068090810158632647331996166975515429233382000406693771447<162> |
factorization results 素因数分解の結果 | Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3451185865 Step 1 took 14009ms Step 2 took 8003ms ********** Factor found in step 2: 35963245252073006892517976786311 Found probable prime factor of 32 digits: 35963245252073006892517976786311 Composite cofactor 645908716000344705589931846254044245329179775806964737200637162347828487990856680646931470944634204867881483359248376935771116508762147389330625660478930478916631958371304814963666569075850798991 has 195 digits Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2468037310 Step 1 took 9922ms Step 2 took 5709ms ********** Factor found in step 2: 4526360676206495396084813525630953 Found probable prime factor of 34 digits: 4526360676206495396084813525630953 Composite cofactor 142699347711211413693198300700136768369095067018489417091662361980307539415398907747569774024537966973772068090810158632647331996166975515429233382000406693771447 has 162 digits |
software ソフトウェア | GMP-ECM 6.3 |
name 名前 | Lionel Debroux |
---|---|
date 日付 | May 22, 2023 22:22:26 UTC 2023 年 5 月 23 日 (火) 7 時 22 分 26 秒 (日本時間) |
composite number 合成数 | 142699347711211413693198300700136768369095067018489417091662361980307539415398907747569774024537966973772068090810158632647331996166975515429233382000406693771447<162> |
prime factors 素因数 | 47305866586277417607051502646223642388499036740396244237647243585751567<71> 3016525391220841347289629737108571608491326727960131407947219158055650188564744127581351641<91> |
factorization results 素因数分解の結果 | 47305866586277417607051502646223642388499036740396244237647243585751567 3016525391220841347289629737108571608491326727960131407947219158055650188564744127581351641 |
software ソフトウェア | CADO-NFS |
execution environment 実行環境 | 20 x Xeon L5640 + 2 x Xeon X5560, Debian sid amd64 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 20, 2012 14:00:00 UTC 2012 年 12 月 20 日 (木) 23 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | December 23, 2012 18:13:40 UTC 2012 年 12 月 24 日 (月) 3 時 13 分 40 秒 (日本時間) | |
45 | 11e6 | 2250 | 1000 | Dmitry Domanov | December 24, 2012 06:37:33 UTC 2012 年 12 月 24 日 (月) 15 時 37 分 33 秒 (日本時間) |
850 | Serge Batalov | November 8, 2013 17:12:57 UTC 2013 年 11 月 9 日 (土) 2 時 12 分 57 秒 (日本時間) | |||
400 | Serge Batalov | January 6, 2014 02:26:39 UTC 2014 年 1 月 6 日 (月) 11 時 26 分 39 秒 (日本時間) | |||
50 | 43e6 | 600 | Erik Branger | March 18, 2014 08:32:24 UTC 2014 年 3 月 18 日 (火) 17 時 32 分 24 秒 (日本時間) | |
55 | 11e7 | 12000 / 17407 | yoyo@Home | April 25, 2022 13:51:44 UTC 2022 年 4 月 25 日 (月) 22 時 51 分 44 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 29, 2012 09:06:54 UTC 2012 年 12 月 29 日 (土) 18 時 6 分 54 秒 (日本時間) |
composite number 合成数 | 1955128975918551168408935949314856355777383329190686592245650133057035169805638501753333057309129973789282330850480037205820064575381142816938835015540042406112222615793891685917104020973321630649939269<202> |
prime factors 素因数 | 191644486532692246910487151556966411217937<42> 10201853501196496225855170978035232302901183126330386652136215937473648475211040592954148612752205194890095537114473261761255442563534805060003407013185757198837<161> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1692521254 Step 1 took 93783ms Step 2 took 31506ms ********** Factor found in step 2: 191644486532692246910487151556966411217937 Found probable prime factor of 42 digits: 191644486532692246910487151556966411217937 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 20, 2012 14:00:00 UTC 2012 年 12 月 20 日 (木) 23 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | December 23, 2012 18:13:51 UTC 2012 年 12 月 24 日 (月) 3 時 13 分 51 秒 (日本時間) | |
45 | 11e6 | 1000 / 4254 | Dmitry Domanov | December 28, 2012 22:46:05 UTC 2012 年 12 月 29 日 (土) 7 時 46 分 5 秒 (日本時間) |
name 名前 | matsui |
---|---|
date 日付 | April 19, 2015 19:25:50 UTC 2015 年 4 月 20 日 (月) 4 時 25 分 50 秒 (日本時間) |
composite number 合成数 | 2407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407409<241> |
prime factors 素因数 | 163759235058727634669271103765306809431004053292945946495814916457263166643653976749<84> 14700895534496473344824672427242735522949319772878350956981327724224090703551000667162149220961457979251013901572432102744134273233204602159251826349160664341<158> |
factorization results 素因数分解の結果 | N=2407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407409 ( 241 digits) SNFS difficulty: 241 digits. Divisors found: p84 factor: 163759235058727634669271103765306809431004053292945946495814916457263166643653976749 p158 factor: 14700895534496473344824672427242735522949319772878350956981327724224090703551000667162149220961457979251013901572432102744134273233204602159251826349160664341 Version: Msieve v. 1.53 (SVN unknown) Total time: Scaled time: 211.58 units (timescale=1.904). Factorization parameters were as follows: n: 2407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407409 m: 10000000000000000000000000000000000000000 deg: 6 c6: 65 c0: 43 skew: 0.93 # Murphy_E = 3.205e-13 type: snfs lss: 1 rlim: 75000000 alim: 75000000 lpbr: 30 lpba: 30 mfbr: 61 mfba: 61 rlambda: 2.7 alambda: 2.7 qintsize: 800000 Factor base limits: 75000000/75000000 Large primes per side: 3 Large prime bits: 30/30 Max factor residue bits: 61/61 Sieved rational special-q in [37500000, 104700001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 12625060 x 12625288 Total sieving time: Total relation processing time: Matrix solve time: Time per square root: Prototype def-par.txt line would be: snfs,241.000,6,0,0,0,0,0,0,0,0,75000000,75000000,30,30,61,61,2.7,2.7,100000 total time: |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 20, 2012 14:00:00 UTC 2012 年 12 月 20 日 (木) 23 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | December 23, 2012 18:14:02 UTC 2012 年 12 月 24 日 (月) 3 時 14 分 2 秒 (日本時間) | |
45 | 11e6 | 1000 | Dmitry Domanov | December 24, 2012 06:36:44 UTC 2012 年 12 月 24 日 (月) 15 時 36 分 44 秒 (日本時間) | |
50 | 43e6 | 928 / 5205 | Dmitry Domanov | January 28, 2013 09:08:05 UTC 2013 年 1 月 28 日 (月) 18 時 8 分 5 秒 (日本時間) | |
55 | 11e7 | 865 / 17368 | yoyo@home | October 1, 2013 20:45:35 UTC 2013 年 10 月 2 日 (水) 5 時 45 分 35 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 20, 2012 14:00:00 UTC 2012 年 12 月 20 日 (木) 23 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | December 23, 2012 18:14:23 UTC 2012 年 12 月 24 日 (月) 3 時 14 分 23 秒 (日本時間) | |
45 | 11e6 | 1000 | Dmitry Domanov | December 24, 2012 06:36:55 UTC 2012 年 12 月 24 日 (月) 15 時 36 分 55 秒 (日本時間) | |
50 | 43e6 | 940 / 7291 | 500 | Dmitry Domanov | January 5, 2013 15:27:07 UTC 2013 年 1 月 6 日 (日) 0 時 27 分 7 秒 (日本時間) |
440 | Dmitry Domanov | January 25, 2013 09:51:12 UTC 2013 年 1 月 25 日 (金) 18 時 51 分 12 秒 (日本時間) |
name 名前 | yas mat |
---|---|
date 日付 | April 30, 2015 23:59:53 UTC 2015 年 5 月 1 日 (金) 8 時 59 分 53 秒 (日本時間) |
composite number 合成数 | 6333249304516753080495708713012391860088302815780097122565729082910354243553449599843717516625808231613413038793085452621748299927152953849444929516303795699476116522346495354614265924557212947<193> |
prime factors 素因数 | 754858987804870474663603721183680029393919<42> 8389976680192731900921805453635464523979671566192036549084208636780797708251088469865203045004116852470105843551219782346530511030686501109401459468013<151> |
factorization results 素因数分解の結果 | Run 1031 out of 3254: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=3237209401 Step 1 took 198651ms Step 2 took 42963ms ********** Factor found in step 2: 754858987804870474663603721183680029393919 Found probable prime factor of 42 digits: 754858987804870474663603721183680029393919 Probable prime cofactor 8389976680192731900921805453635464523979671566192036549084208636780797708251088469865203045004116852470105843551219782346530511030686501109401459468013 has 151 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 20, 2012 14:00:00 UTC 2012 年 12 月 20 日 (木) 23 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | December 23, 2012 18:14:37 UTC 2012 年 12 月 24 日 (月) 3 時 14 分 37 秒 (日本時間) | |
45 | 11e6 | 1000 / 4254 | Dmitry Domanov | December 25, 2012 23:06:23 UTC 2012 年 12 月 26 日 (水) 8 時 6 分 23 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 20, 2012 14:00:00 UTC 2012 年 12 月 20 日 (木) 23 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | December 23, 2012 18:14:58 UTC 2012 年 12 月 24 日 (月) 3 時 14 分 58 秒 (日本時間) | |
45 | 11e6 | 4254 | 1000 | Dmitry Domanov | December 28, 2012 22:42:33 UTC 2012 年 12 月 29 日 (土) 7 時 42 分 33 秒 (日本時間) |
3254 | yas mat | May 10, 2015 23:43:26 UTC 2015 年 5 月 11 日 (月) 8 時 43 分 26 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 29, 2012 09:05:18 UTC 2012 年 12 月 29 日 (土) 18 時 5 分 18 秒 (日本時間) |
composite number 合成数 | 22179513974073145263807123629395453298218909144757741104129927530635030209438144025390223139991697621730063805589831151821991012579251469854819398871038640491220592736851988874199951109041793187492869233279424560223<215> |
prime factors 素因数 | 2249347428200562200486793872564977223<37> |
composite cofactor 合成数の残り | 9860421603174197334066521453131609415172457383543921971317824062279127215011240942585166643688359584768677411760673506808672458825703508549654784032162827631626224441461077321001<178> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=3589392696 Step 1 took 140294ms Step 2 took 45375ms ********** Factor found in step 2: 2249347428200562200486793872564977223 Found probable prime factor of 37 digits: 2249347428200562200486793872564977223 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 20, 2012 14:00:00 UTC 2012 年 12 月 20 日 (木) 23 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | December 23, 2012 18:15:12 UTC 2012 年 12 月 24 日 (月) 3 時 15 分 12 秒 (日本時間) | |
45 | 11e6 | 4254 | 1000 | Dmitry Domanov | December 28, 2012 22:41:10 UTC 2012 年 12 月 29 日 (土) 7 時 41 分 10 秒 (日本時間) |
3254 | yas mat | June 8, 2015 09:32:32 UTC 2015 年 6 月 8 日 (月) 18 時 32 分 32 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 20, 2012 14:00:00 UTC 2012 年 12 月 20 日 (木) 23 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | December 23, 2012 18:15:22 UTC 2012 年 12 月 24 日 (月) 3 時 15 分 22 秒 (日本時間) | |
45 | 11e6 | 4254 | 1000 | Dmitry Domanov | December 26, 2012 13:03:49 UTC 2012 年 12 月 26 日 (水) 22 時 3 分 49 秒 (日本時間) |
3254 | yas mat | July 23, 2015 02:02:58 UTC 2015 年 7 月 23 日 (木) 11 時 2 分 58 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 20, 2012 14:00:00 UTC 2012 年 12 月 20 日 (木) 23 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | December 23, 2012 18:15:32 UTC 2012 年 12 月 24 日 (月) 3 時 15 分 32 秒 (日本時間) | |
45 | 11e6 | 4254 | 1000 | Dmitry Domanov | December 24, 2012 06:37:10 UTC 2012 年 12 月 24 日 (月) 15 時 37 分 10 秒 (日本時間) |
3254 | yas mat | August 5, 2015 09:12:23 UTC 2015 年 8 月 5 日 (水) 18 時 12 分 23 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | April 24, 2021 16:49:04 UTC 2021 年 4 月 25 日 (日) 1 時 49 分 4 秒 (日本時間) |
composite number 合成数 | 3984091787200070648437314890391939878402209648746057642368377726601830532204236421193847207018215444763163825273694159583285963578190290139974544599195076103233267307314949406092628387036681363518588505747088057520278302882582302739196703<238> |
prime factors 素因数 | 5034095253492549576923063746212581<34> |
composite cofactor 合成数の残り | 791421613334787701447868623147676406545260916610816441832533015193110763479328855843371555423979518465568944707699412318420813553727553002057483200979986169007392288158091245627650354680523706418760266163<204> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 3984091787200070648437314890391939878402209648746057642368377726601830532204236421193847207018215444763163825273694159583285963578190290139974544599195076103233267307314949406092628387036681363518588505747088057520278302882582302739196703 (238 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1:248560343 Found prime factor of 34 digits: 5034095253492549576923063746212581 Composite cofactor 791421613334787701447868623147676406545260916610816441832533015193110763479328855843371555423979518465568944707699412318420813553727553002057483200979986169007392288158091245627650354680523706418760266163 has 204 digits |
software ソフトウェア | GMP-ECM 7.0.4 |
execution environment 実行環境 | Linux Ubuntu 20.04.1 LTS [5.4.0-48-generic|libc 2.31 (Ubuntu GLIBC 2.31-0ubuntu9.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | April 24, 2021 06:00:00 UTC 2021 年 4 月 24 日 (土) 15 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | April 24, 2021 06:00:00 UTC 2021 年 4 月 24 日 (土) 15 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | April 24, 2021 16:43:45 UTC 2021 年 4 月 25 日 (日) 1 時 43 分 45 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | January 22, 2022 09:07:05 UTC 2022 年 1 月 22 日 (土) 18 時 7 分 5 秒 (日本時間) | |
45 | 11e6 | 3906 | ebina | December 17, 2024 22:24:10 UTC 2024 年 12 月 18 日 (水) 7 時 24 分 10 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | April 24, 2021 06:00:00 UTC 2021 年 4 月 24 日 (土) 15 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | April 24, 2021 06:00:00 UTC 2021 年 4 月 24 日 (土) 15 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | April 24, 2021 16:43:21 UTC 2021 年 4 月 25 日 (日) 1 時 43 分 21 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | January 22, 2022 09:31:30 UTC 2022 年 1 月 22 日 (土) 18 時 31 分 30 秒 (日本時間) | |
45 | 11e6 | 3906 | ebina | December 18, 2024 21:47:33 UTC 2024 年 12 月 19 日 (木) 6 時 47 分 33 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | April 24, 2021 16:53:29 UTC 2021 年 4 月 25 日 (日) 1 時 53 分 29 秒 (日本時間) |
composite number 合成数 | 937950937950937950937950937950937950937950937950937950937950937950937950937950937950937950937950937950937950937950937950937950937950937950937950937950937950937950937950937950937950937950937950937950937950937950937950937950937950937950937950937950937951<252> |
prime factors 素因数 | 130002622732369221747264239967713<33> 7214861656151791575464419264691714316751536783334067508033638823420891385236000754152579115247975938052768436571793391768575463782198588546022943994009859356049196739899036693213447193929817251299709720515432168106436927<220> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 937950937950937950937950937950937950937950937950937950937950937950937950937950937950937950937950937950937950937950937950937950937950937950937950937950937950937950937950937950937950937950937950937950937950937950937950937950937950937950937950937950937951 (252 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1:3890539110 Found prime factor of 33 digits: 130002622732369221747264239967713 Prime cofactor 7214861656151791575464419264691714316751536783334067508033638823420891385236000754152579115247975938052768436571793391768575463782198588546022943994009859356049196739899036693213447193929817251299709720515432168106436927 has 220 digits |
software ソフトウェア | GMP-ECM 7.0.4 |
execution environment 実行環境 | Linux Ubuntu 20.04.1 LTS [5.4.0-48-generic|libc 2.31 (Ubuntu GLIBC 2.31-0ubuntu9.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | April 24, 2021 06:00:00 UTC 2021 年 4 月 24 日 (土) 15 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | April 24, 2021 06:00:00 UTC 2021 年 4 月 24 日 (土) 15 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | April 24, 2021 16:43:08 UTC 2021 年 4 月 25 日 (日) 1 時 43 分 8 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | April 24, 2021 16:58:03 UTC 2021 年 4 月 25 日 (日) 1 時 58 分 3 秒 (日本時間) |
composite number 合成数 | 2464922260144103147516116799393249905195297686765263557072430792567311338642396662874478574137277208949563898369359120212362533181645809632157755024649222601441031475161167993932499051952976867652635570724307925673113386423966628744785741372772089495639<253> |
prime factors 素因数 | 3185980605408541250636811689<28> |
composite cofactor 合成数の残り | 773677735501476437225356936344961076353311583693346448152361275156306440581231715089455228898631351752939548177257176092397499230768734106834082998820877773527463989763281299950674707375272741044967111127044216524311422295551<225> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 2464922260144103147516116799393249905195297686765263557072430792567311338642396662874478574137277208949563898369359120212362533181645809632157755024649222601441031475161167993932499051952976867652635570724307925673113386423966628744785741372772089495639 (253 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6) Found prime factor of 28 digits: 3185980605408541250636811689 Composite cofactor 773677735501476437225356936344961076353311583693346448152361275156306440581231715089455228898631351752939548177257176092397499230768734106834082998820877773527463989763281299950674707375272741044967111127044216524311422295551 has 225 digits |
software ソフトウェア | GMP-ECM 7.0.4 |
execution environment 実行環境 | Linux Ubuntu 20.04.1 LTS [5.4.0-48-generic|libc 2.31 (Ubuntu GLIBC 2.31-0ubuntu9.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | April 24, 2021 06:00:00 UTC 2021 年 4 月 24 日 (土) 15 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | April 24, 2021 06:00:00 UTC 2021 年 4 月 24 日 (土) 15 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | April 24, 2021 16:42:57 UTC 2021 年 4 月 25 日 (日) 1 時 42 分 57 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | January 22, 2022 09:32:12 UTC 2022 年 1 月 22 日 (土) 18 時 32 分 12 秒 (日本時間) | |
45 | 11e6 | 3906 | ebina | December 19, 2024 20:36:25 UTC 2024 年 12 月 20 日 (金) 5 時 36 分 25 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | April 24, 2021 06:00:00 UTC 2021 年 4 月 24 日 (土) 15 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | April 24, 2021 06:00:00 UTC 2021 年 4 月 24 日 (土) 15 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | April 24, 2021 16:42:43 UTC 2021 年 4 月 25 日 (日) 1 時 42 分 43 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | January 22, 2022 11:08:05 UTC 2022 年 1 月 22 日 (土) 20 時 8 分 5 秒 (日本時間) | |
45 | 11e6 | 3906 | ebina | December 20, 2024 21:21:04 UTC 2024 年 12 月 21 日 (土) 6 時 21 分 4 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | April 24, 2021 18:00:46 UTC 2021 年 4 月 25 日 (日) 3 時 0 分 46 秒 (日本時間) |
composite number 合成数 | 955838374395877115813367405283314941760420069942984833587078055485544438562641539379254834288344319327127617978681675277290341013781864272697520125614820406694784852348303078539340340889441996969553843929308234324032177313037043056956136334804234333<249> |
prime factors 素因数 | 27816738331684589572330266503<29> 34361986045902861697440474796864272160566691037356581328666892650261095009657602346263515511148560327228036196732168249917122857184738668379079722300946147577163472140397987138152069219381182911390088239739965535601967611<221> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 955838374395877115813367405283314941760420069942984833587078055485544438562641539379254834288344319327127617978681675277290341013781864272697520125614820406694784852348303078539340340889441996969553843929308234324032177313037043056956136334804234333 (249 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6) Found prime factor of 29 digits: 27816738331684589572330266503 Prime cofactor 34361986045902861697440474796864272160566691037356581328666892650261095009657602346263515511148560327228036196732168249917122857184738668379079722300946147577163472140397987138152069219381182911390088239739965535601967611 has 221 digits |
software ソフトウェア | GMP-ECM 7.0.4 |
execution environment 実行環境 | Linux Ubuntu 20.04.1 LTS [5.4.0-48-generic|libc 2.31 (Ubuntu GLIBC 2.31-0ubuntu9.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | April 24, 2021 06:00:00 UTC 2021 年 4 月 24 日 (土) 15 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | April 24, 2021 06:00:00 UTC 2021 年 4 月 24 日 (土) 15 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | April 24, 2021 16:42:32 UTC 2021 年 4 月 25 日 (日) 1 時 42 分 32 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | April 24, 2021 06:00:00 UTC 2021 年 4 月 24 日 (土) 15 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | April 24, 2021 06:00:00 UTC 2021 年 4 月 24 日 (土) 15 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | April 24, 2021 16:42:06 UTC 2021 年 4 月 25 日 (日) 1 時 42 分 6 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | January 22, 2022 11:08:29 UTC 2022 年 1 月 22 日 (土) 20 時 8 分 29 秒 (日本時間) | |
45 | 11e6 | 3927 | ebina | December 21, 2024 23:18:17 UTC 2024 年 12 月 22 日 (日) 8 時 18 分 17 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | April 24, 2021 18:16:19 UTC 2021 年 4 月 25 日 (日) 3 時 16 分 19 秒 (日本時間) |
composite number 合成数 | 4495915153304960626078421341810339901809062738693409644160193601197391073244595761300218184073360477878344843484623012265292929237044266542163753036819095274325363630757847290692702725352526342883925954310854317759041360329<223> |
prime factors 素因数 | 1030689305676610319491307<25> 4351820420588156520478424764788593<34> |
composite cofactor 合成数の残り | 1002349945350275536318361779928670683596469110718637250654838539588656452696371411880157526744701867666630208177453307976247784898030925878346947577124364790760322379<166> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 4495915153304960626078421341810339901809062738693409644160193601197391073244595761300218184073360477878344843484623012265292929237044266542163753036819095274325363630757847290692702725352526342883925954310854317759041360329 (223 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6) Found prime factor of 25 digits: 1030689305676610319491307 Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1:248560343 Found prime factor of 34 digits: 4351820420588156520478424764788593 Composite cofactor 1002349945350275536318361779928670683596469110718637250654838539588656452696371411880157526744701867666630208177453307976247784898030925878346947577124364790760322379 has 166 digits |
software ソフトウェア | GMP-ECM 7.0.4 |
execution environment 実行環境 | Linux Ubuntu 20.04.1 LTS [5.4.0-48-generic|libc 2.31 (Ubuntu GLIBC 2.31-0ubuntu9.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | April 24, 2021 06:00:00 UTC 2021 年 4 月 24 日 (土) 15 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | April 24, 2021 06:00:00 UTC 2021 年 4 月 24 日 (土) 15 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | April 24, 2021 16:41:54 UTC 2021 年 4 月 25 日 (日) 1 時 41 分 54 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | April 25, 2021 16:42:28 UTC 2021 年 4 月 26 日 (月) 1 時 42 分 28 秒 (日本時間) | |
45 | 11e6 | 4480 | Ignacio Santos | April 25, 2021 18:14:31 UTC 2021 年 4 月 26 日 (月) 3 時 14 分 31 秒 (日本時間) | |
50 | 43e6 | 1792 / 6452 | Dmitry Domanov | September 13, 2024 05:26:14 UTC 2024 年 9 月 13 日 (金) 14 時 26 分 14 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | April 24, 2021 06:00:00 UTC 2021 年 4 月 24 日 (土) 15 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | April 24, 2021 06:00:00 UTC 2021 年 4 月 24 日 (土) 15 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | April 24, 2021 16:41:36 UTC 2021 年 4 月 25 日 (日) 1 時 41 分 36 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | January 22, 2022 11:08:59 UTC 2022 年 1 月 22 日 (土) 20 時 8 分 59 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | April 24, 2021 18:30:29 UTC 2021 年 4 月 25 日 (日) 3 時 30 分 29 秒 (日本時間) |
composite number 合成数 | 175172665223231711592759378000755967339180538554129446576567072812769673837480728743267845432827746612574567311016489641009939329221232538937726016762178478775001506903037859449971112720460584937815831456562528672114378672794496422567048052737059221873<252> |
prime factors 素因数 | 14873574602250964594463321870440499<35> |
composite cofactor 合成数の残り | 11777442202543637773632138576967345032125992897457562849555967709115885154629716356881176133461517262723505886181625829398704518618862791718167288628272736657696834174747364123550933603790102922508145205643224182471627<218> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 175172665223231711592759378000755967339180538554129446576567072812769673837480728743267845432827746612574567311016489641009939329221232538937726016762178478775001506903037859449971112720460584937815831456562528672114378672794496422567048052737059221873 (252 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1:1768332779 Found prime factor of 35 digits: 14873574602250964594463321870440499 Composite cofactor 11777442202543637773632138576967345032125992897457562849555967709115885154629716356881176133461517262723505886181625829398704518618862791718167288628272736657696834174747364123550933603790102922508145205643224182471627 has 218 digits |
software ソフトウェア | GMP-ECM 7.0.4 |
execution environment 実行環境 | Linux Ubuntu 20.04.1 LTS [5.4.0-48-generic|libc 2.31 (Ubuntu GLIBC 2.31-0ubuntu9.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | January 22, 2022 11:09:49 UTC 2022 年 1 月 22 日 (土) 20 時 9 分 49 秒 (日本時間) |
composite number 合成数 | 11777442202543637773632138576967345032125992897457562849555967709115885154629716356881176133461517262723505886181625829398704518618862791718167288628272736657696834174747364123550933603790102922508145205643224182471627<218> |
prime factors 素因数 | 8092541262772806131582996908756947391<37> 1455345338394758743035487470910307590413771627929125828237214542646307854991605353218389221074610597052703868523618552811467296851196327402857491378887909115569913414617700585111797<181> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:1545081735 Step 1 took 11469ms Step 2 took 5094ms ********** Factor found in step 2: 8092541262772806131582996908756947391 Found prime factor of 37 digits: 8092541262772806131582996908756947391 Prime cofactor 1455345338394758743035487470910307590413771627929125828237214542646307854991605353218389221074610597052703868523618552811467296851196327402857491378887909115569913414617700585111797 has 181 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | April 24, 2021 06:00:00 UTC 2021 年 4 月 24 日 (土) 15 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | April 24, 2021 06:00:00 UTC 2021 年 4 月 24 日 (土) 15 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | April 24, 2021 16:41:23 UTC 2021 年 4 月 25 日 (日) 1 時 41 分 23 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | January 22, 2022 11:09:13 UTC 2022 年 1 月 22 日 (土) 20 時 9 分 13 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | April 24, 2021 18:35:54 UTC 2021 年 4 月 25 日 (日) 3 時 35 分 54 秒 (日本時間) |
composite number 合成数 | 208605733947359859670370181474599492501591772044912077145326925305842142554270152127059400712426591382046870376821159726238693877213615026725543321509539525120397237094231332520455093035483370458714611594180593868873461468110379418283<234> |
prime factors 素因数 | 32742997314789231289671838583<29> |
composite cofactor 合成数の残り | 6371002994681174861008780158823543555604815428734268778691919169900136981518995504603251864383478914154359369390359951023928716280168641276264708176588069380950223242608030514107457261303660895351005185901<205> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 208605733947359859670370181474599492501591772044912077145326925305842142554270152127059400712426591382046870376821159726238693877213615026725543321509539525120397237094231332520455093035483370458714611594180593868873461468110379418283 (234 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6) Found prime factor of 29 digits: 32742997314789231289671838583 Composite cofactor 6371002994681174861008780158823543555604815428734268778691919169900136981518995504603251864383478914154359369390359951023928716280168641276264708176588069380950223242608030514107457261303660895351005185901 has 205 digits |
software ソフトウェア | GMP-ECM 7.0.4 |
execution environment 実行環境 | Linux Ubuntu 20.04.1 LTS [5.4.0-48-generic|libc 2.31 (Ubuntu GLIBC 2.31-0ubuntu9.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | January 22, 2022 11:11:01 UTC 2022 年 1 月 22 日 (土) 20 時 11 分 1 秒 (日本時間) |
composite number 合成数 | 6371002994681174861008780158823543555604815428734268778691919169900136981518995504603251864383478914154359369390359951023928716280168641276264708176588069380950223242608030514107457261303660895351005185901<205> |
prime factors 素因数 | 1759513508934195383890293672462929<34> |
composite cofactor 合成数の残り | 3620888934544375849587385221941934253435276220278169966568130177122035273829456230699894128603061684453340773626453349639127077301696344538491114454181192506640421569202269<172> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:2281941462 Step 1 took 7172ms Step 2 took 3875ms ********** Factor found in step 2: 1759513508934195383890293672462929 Found prime factor of 34 digits: 1759513508934195383890293672462929 Composite cofactor 3620888934544375849587385221941934253435276220278169966568130177122035273829456230699894128603061684453340773626453349639127077301696344538491114454181192506640421569202269 has 172 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | April 24, 2021 06:00:00 UTC 2021 年 4 月 24 日 (土) 15 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | April 24, 2021 06:00:00 UTC 2021 年 4 月 24 日 (土) 15 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | April 24, 2021 16:41:09 UTC 2021 年 4 月 25 日 (日) 1 時 41 分 9 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | January 23, 2022 23:02:08 UTC 2022 年 1 月 24 日 (月) 8 時 2 分 8 秒 (日本時間) | |
45 | 11e6 | 4480 | Ignacio Santos | January 24, 2022 19:08:18 UTC 2022 年 1 月 25 日 (火) 4 時 8 分 18 秒 (日本時間) | |
50 | 43e6 | 1792 / 6452 | Dmitry Domanov | May 29, 2024 16:59:45 UTC 2024 年 5 月 30 日 (木) 1 時 59 分 45 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | April 24, 2021 06:00:00 UTC 2021 年 4 月 24 日 (土) 15 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | April 24, 2021 06:00:00 UTC 2021 年 4 月 24 日 (土) 15 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | April 24, 2021 16:40:52 UTC 2021 年 4 月 25 日 (日) 1 時 40 分 52 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | January 22, 2022 11:11:39 UTC 2022 年 1 月 22 日 (土) 20 時 11 分 39 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | April 24, 2021 06:00:00 UTC 2021 年 4 月 24 日 (土) 15 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | April 24, 2021 06:00:00 UTC 2021 年 4 月 24 日 (土) 15 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | April 24, 2021 16:40:41 UTC 2021 年 4 月 25 日 (日) 1 時 40 分 41 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | January 22, 2022 11:12:08 UTC 2022 年 1 月 22 日 (土) 20 時 12 分 8 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | April 24, 2021 18:44:17 UTC 2021 年 4 月 25 日 (日) 3 時 44 分 17 秒 (日本時間) |
composite number 合成数 | 1929697189707084121167753471293595203194773167349996500602465806541445927750235472794166618730865337554788304527700603139697017563523853298240332959511564031502758356453143651982594082376704078370123555492547714969756367408503887<229> |
prime factors 素因数 | 80731973860620923676687937<26> 23902514672050438627483058473155727017694691024031276728017910364981540539706682402269640425184809989074311228598798678561301817217566239944460777609935060037224097556418941657414493714276225684870174351<203> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 1929697189707084121167753471293595203194773167349996500602465806541445927750235472794166618730865337554788304527700603139697017563523853298240332959511564031502758356453143651982594082376704078370123555492547714969756367408503887 (229 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6) Found prime factor of 26 digits: 80731973860620923676687937 Prime cofactor 23902514672050438627483058473155727017694691024031276728017910364981540539706682402269640425184809989074311228598798678561301817217566239944460777609935060037224097556418941657414493714276225684870174351 has 203 digits |
software ソフトウェア | GMP-ECM 7.0.4 |
execution environment 実行環境 | Linux Ubuntu 20.04.1 LTS [5.4.0-48-generic|libc 2.31 (Ubuntu GLIBC 2.31-0ubuntu9.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | April 24, 2021 06:00:00 UTC 2021 年 4 月 24 日 (土) 15 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | April 24, 2021 06:00:00 UTC 2021 年 4 月 24 日 (土) 15 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | April 24, 2021 16:40:30 UTC 2021 年 4 月 25 日 (日) 1 時 40 分 30 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | April 24, 2021 06:00:00 UTC 2021 年 4 月 24 日 (土) 15 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | April 24, 2021 06:00:00 UTC 2021 年 4 月 24 日 (土) 15 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | April 24, 2021 16:40:09 UTC 2021 年 4 月 25 日 (日) 1 時 40 分 9 秒 (日本時間) | |
40 | 3e6 | 1200 | Dmitry Domanov | April 26, 2021 09:29:53 UTC 2021 年 4 月 26 日 (月) 18 時 29 分 53 秒 (日本時間) | |
45 | 11e6 | 5000 | 1000 | Dmitry Domanov | April 26, 2021 09:48:41 UTC 2021 年 4 月 26 日 (月) 18 時 48 分 41 秒 (日本時間) |
1000 | Dmitry Domanov | May 31, 2021 22:00:11 UTC 2021 年 6 月 1 日 (火) 7 時 0 分 11 秒 (日本時間) | |||
1000 | Ignacio Santos | June 29, 2021 13:54:12 UTC 2021 年 6 月 29 日 (火) 22 時 54 分 12 秒 (日本時間) | |||
1000 | Ignacio Santos | July 3, 2021 17:57:38 UTC 2021 年 7 月 4 日 (日) 2 時 57 分 38 秒 (日本時間) | |||
1000 | Ignacio Santos | July 4, 2021 16:55:27 UTC 2021 年 7 月 5 日 (月) 1 時 55 分 27 秒 (日本時間) | |||
50 | 43e6 | 7200 | 1800 | Dmitry Domanov | November 26, 2021 09:25:30 UTC 2021 年 11 月 26 日 (金) 18 時 25 分 30 秒 (日本時間) |
1800 | Dmitry Domanov | January 27, 2022 23:08:02 UTC 2022 年 1 月 28 日 (金) 8 時 8 分 2 秒 (日本時間) | |||
1800 | Dmitry Domanov | April 7, 2022 00:00:09 UTC 2022 年 4 月 7 日 (木) 9 時 0 分 9 秒 (日本時間) | |||
1800 | Dmitry Domanov | April 15, 2022 19:30:01 UTC 2022 年 4 月 16 日 (土) 4 時 30 分 1 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | April 24, 2021 18:49:51 UTC 2021 年 4 月 25 日 (日) 3 時 49 分 51 秒 (日本時間) |
composite number 合成数 | 105083234818396145237045615360054652261534587831697226859131465233581945298005708546012720793883570149864859085282150105324360895316814464833085281480858622775885766326386959040447704617012951801903322940353561931310536188389427871556212442418341843942818171<258> |
prime factors 素因数 | 5969378385281679190491656326590049<34> |
composite cofactor 合成数の残り | 17603714831931791687475865106123838205536055198671893906390174780889427194581771118775776531773639493152663277723769112897998972184884504092275406229261323252043684031338881397399747793603681186210139912184429999591037330779<224> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 105083234818396145237045615360054652261534587831697226859131465233581945298005708546012720793883570149864859085282150105324360895316814464833085281480858622775885766326386959040447704617012951801903322940353561931310536188389427871556212442418341843942818171 (258 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1:770808680 Found prime factor of 34 digits: 5969378385281679190491656326590049 Composite cofactor 17603714831931791687475865106123838205536055198671893906390174780889427194581771118775776531773639493152663277723769112897998972184884504092275406229261323252043684031338881397399747793603681186210139912184429999591037330779 has 224 digits |
software ソフトウェア | GMP-ECM 7.0.4 |
execution environment 実行環境 | Linux Ubuntu 20.04.1 LTS [5.4.0-48-generic|libc 2.31 (Ubuntu GLIBC 2.31-0ubuntu9.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | April 24, 2021 06:00:00 UTC 2021 年 4 月 24 日 (土) 15 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | April 24, 2021 06:00:00 UTC 2021 年 4 月 24 日 (土) 15 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | April 24, 2021 16:39:57 UTC 2021 年 4 月 25 日 (日) 1 時 39 分 57 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | January 22, 2022 11:13:16 UTC 2022 年 1 月 22 日 (土) 20 時 13 分 16 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | April 24, 2021 06:00:00 UTC 2021 年 4 月 24 日 (土) 15 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | April 24, 2021 06:00:00 UTC 2021 年 4 月 24 日 (土) 15 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | April 24, 2021 16:39:44 UTC 2021 年 4 月 25 日 (日) 1 時 39 分 44 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | January 22, 2022 11:24:57 UTC 2022 年 1 月 22 日 (土) 20 時 24 分 57 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | April 24, 2021 19:10:34 UTC 2021 年 4 月 25 日 (日) 4 時 10 分 34 秒 (日本時間) |
composite number 合成数 | 3458078103721018299433121708580108128218736589290448817903200740279378448102342729431905738529612390863066965066279618333276257422859996550481805217470923744104648289529153767542778931295878561663249012876770770227121657823442676547850145697564615386353<253> |
prime factors 素因数 | 177789984001421039632692494624483<33> |
composite cofactor 合成数の残り | 19450353871978404451125584645456159752968451867891659881767417883249941786086143800804767240711548568753191040426865065371299042528755432140966845867658525159768645198735021316327034228221525504264935432667670181714884891<221> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 3458078103721018299433121708580108128218736589290448817903200740279378448102342729431905738529612390863066965066279618333276257422859996550481805217470923744104648289529153767542778931295878561663249012876770770227121657823442676547850145697564615386353 (253 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1:248560343 Found prime factor of 33 digits: 177789984001421039632692494624483 Composite cofactor 19450353871978404451125584645456159752968451867891659881767417883249941786086143800804767240711548568753191040426865065371299042528755432140966845867658525159768645198735021316327034228221525504264935432667670181714884891 has 221 digits |
software ソフトウェア | GMP-ECM 7.0.4 |
execution environment 実行環境 | Linux Ubuntu 20.04.1 LTS [5.4.0-48-generic|libc 2.31 (Ubuntu GLIBC 2.31-0ubuntu9.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | April 24, 2021 06:00:00 UTC 2021 年 4 月 24 日 (土) 15 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | April 24, 2021 06:00:00 UTC 2021 年 4 月 24 日 (土) 15 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | April 24, 2021 16:39:33 UTC 2021 年 4 月 25 日 (日) 1 時 39 分 33 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | January 22, 2022 17:28:10 UTC 2022 年 1 月 23 日 (日) 2 時 28 分 10 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | April 24, 2021 06:00:00 UTC 2021 年 4 月 24 日 (土) 15 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | April 24, 2021 06:00:00 UTC 2021 年 4 月 24 日 (土) 15 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | April 24, 2021 16:39:21 UTC 2021 年 4 月 25 日 (日) 1 時 39 分 21 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | January 22, 2022 17:28:41 UTC 2022 年 1 月 23 日 (日) 2 時 28 分 41 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | April 24, 2021 06:00:00 UTC 2021 年 4 月 24 日 (土) 15 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | April 24, 2021 06:00:00 UTC 2021 年 4 月 24 日 (土) 15 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | April 24, 2021 16:39:07 UTC 2021 年 4 月 25 日 (日) 1 時 39 分 7 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | January 22, 2022 18:16:04 UTC 2022 年 1 月 23 日 (日) 3 時 16 分 4 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | April 24, 2021 06:00:00 UTC 2021 年 4 月 24 日 (土) 15 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | April 24, 2021 06:00:00 UTC 2021 年 4 月 24 日 (土) 15 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | April 24, 2021 16:38:48 UTC 2021 年 4 月 25 日 (日) 1 時 38 分 48 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | January 22, 2022 18:16:33 UTC 2022 年 1 月 23 日 (日) 3 時 16 分 33 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | April 24, 2021 06:00:00 UTC 2021 年 4 月 24 日 (土) 15 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | April 24, 2021 06:00:00 UTC 2021 年 4 月 24 日 (土) 15 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | April 24, 2021 16:38:35 UTC 2021 年 4 月 25 日 (日) 1 時 38 分 35 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | January 22, 2022 18:17:05 UTC 2022 年 1 月 23 日 (日) 3 時 17 分 5 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | April 24, 2021 06:00:00 UTC 2021 年 4 月 24 日 (土) 15 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | April 24, 2021 06:00:00 UTC 2021 年 4 月 24 日 (土) 15 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | April 24, 2021 16:38:22 UTC 2021 年 4 月 25 日 (日) 1 時 38 分 22 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | January 22, 2022 18:27:49 UTC 2022 年 1 月 23 日 (日) 3 時 27 分 49 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | April 24, 2021 19:15:52 UTC 2021 年 4 月 25 日 (日) 4 時 15 分 52 秒 (日本時間) |
composite number 合成数 | 4600141542816702052370842179759377211606510969568294409058740268931351733899504600141542816702052370842179759377211606510969568294409058740268931351733899504600141542816702052370842179759377211606510969568294409058740268931351733899504600141542816702052370842179759377211606511<277> |
prime factors 素因数 | 848264121661810434666666125297<30> |
composite cofactor 合成数の残り | 5423006143186504052961803033263023895984115286995987970671978494254845353509569119209158827163305856180526010487728828701239841002481937854383865143052659234268082252105697530280741043627557775571672521063886002053603883894911027420592313985002463<247> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 4600141542816702052370842179759377211606510969568294409058740268931351733899504600141542816702052370842179759377211606510969568294409058740268931351733899504600141542816702052370842179759377211606510969568294409058740268931351733899504600141542816702052370842179759377211606511 (277 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1:3158332481 Found prime factor of 30 digits: 848264121661810434666666125297 Composite cofactor 5423006143186504052961803033263023895984115286995987970671978494254845353509569119209158827163305856180526010487728828701239841002481937854383865143052659234268082252105697530280741043627557775571672521063886002053603883894911027420592313985002463 has 247 digits |
software ソフトウェア | GMP-ECM 7.0.4 |
execution environment 実行環境 | Linux Ubuntu 20.04.1 LTS [5.4.0-48-generic|libc 2.31 (Ubuntu GLIBC 2.31-0ubuntu9.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | January 22, 2022 18:44:47 UTC 2022 年 1 月 23 日 (日) 3 時 44 分 47 秒 (日本時間) |
composite number 合成数 | 5423006143186504052961803033263023895984115286995987970671978494254845353509569119209158827163305856180526010487728828701239841002481937854383865143052659234268082252105697530280741043627557775571672521063886002053603883894911027420592313985002463<247> |
prime factors 素因数 | 3827364290149480835305146966851158177<37> |
composite cofactor 合成数の残り | 1416903574385051317682612627065560541874966421798574029558027809586439174782354816674348704562239701036818968636949140410125418737996878496820555619850781852249122562240515702046933391396637847701487852078472319<211> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:863023939 Step 1 took 9954ms ********** Factor found in step 2: 3827364290149480835305146966851158177 Found prime factor of 37 digits: 3827364290149480835305146966851158177 Composite cofactor 1416903574385051317682612627065560541874966421798574029558027809586439174782354816674348704562239701036818968636949140410125418737996878496820555619850781852249122562240515702046933391396637847701487852078472319 has 211 digits |
software ソフトウェア | GMP-ECM |
name 名前 | Ignacio Santos |
---|---|
date 日付 | January 23, 2022 23:02:56 UTC 2022 年 1 月 24 日 (月) 8 時 2 分 56 秒 (日本時間) |
composite number 合成数 | 1416903574385051317682612627065560541874966421798574029558027809586439174782354816674348704562239701036818968636949140410125418737996878496820555619850781852249122562240515702046933391396637847701487852078472319<211> |
prime factors 素因数 | 182363682370074173467096409772479780045359<42> 7769658716968114790965981848164805617443790821777992280034991051539500867901380431787794715811677038880178814521790970662343548813317867610404280670656938375670281291441<169> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:3337843934 Step 1 took 9890ms Step 2 took 4828ms ********** Factor found in step 2: 182363682370074173467096409772479780045359 Found prime factor of 42 digits: 182363682370074173467096409772479780045359 Prime cofactor 7769658716968114790965981848164805617443790821777992280034991051539500867901380431787794715811677038880178814521790970662343548813317867610404280670656938375670281291441 has 169 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | April 24, 2021 06:00:00 UTC 2021 年 4 月 24 日 (土) 15 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | April 24, 2021 06:00:00 UTC 2021 年 4 月 24 日 (土) 15 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | April 24, 2021 16:38:10 UTC 2021 年 4 月 25 日 (日) 1 時 38 分 10 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | April 24, 2021 06:00:00 UTC 2021 年 4 月 24 日 (土) 15 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | April 24, 2021 06:00:00 UTC 2021 年 4 月 24 日 (土) 15 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | April 24, 2021 16:37:47 UTC 2021 年 4 月 25 日 (日) 1 時 37 分 47 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | January 22, 2022 19:03:14 UTC 2022 年 1 月 23 日 (日) 4 時 3 分 14 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | April 24, 2021 19:19:01 UTC 2021 年 4 月 25 日 (日) 4 時 19 分 1 秒 (日本時間) |
composite number 合成数 | 4733369585802824527464851038228786851298986754907629190858189868940130227224565702721937800074965266174027193825743262192902768326605922336758267625630150410998184539772269845509680725512279400383724614189156492913572966201448373458162722938006630113330241449913785867<268> |
prime factors 素因数 | 1728175079286742932554746432950139181<37> |
composite cofactor 合成数の残り | 2738941003452262229989320134527164739305700723727486411375077284602276453495115442017249650372213836155959293022220590077911592424649657781575666103890307986210171970516118992275246763815109668594172807852408558421176119625708963607<232> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 4733369585802824527464851038228786851298986754907629190858189868940130227224565702721937800074965266174027193825743262192902768326605922336758267625630150410998184539772269845509680725512279400383724614189156492913572966201448373458162722938006630113330241449913785867 (268 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1:4269707756 Found prime factor of 37 digits: 1728175079286742932554746432950139181 Composite cofactor 2738941003452262229989320134527164739305700723727486411375077284602276453495115442017249650372213836155959293022220590077911592424649657781575666103890307986210171970516118992275246763815109668594172807852408558421176119625708963607 has 232 digits |
software ソフトウェア | GMP-ECM 7.0.4 |
execution environment 実行環境 | Linux Ubuntu 20.04.1 LTS [5.4.0-48-generic|libc 2.31 (Ubuntu GLIBC 2.31-0ubuntu9.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | April 24, 2021 06:00:00 UTC 2021 年 4 月 24 日 (土) 15 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | April 24, 2021 06:00:00 UTC 2021 年 4 月 24 日 (土) 15 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | April 24, 2021 16:37:34 UTC 2021 年 4 月 25 日 (日) 1 時 37 分 34 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | January 22, 2022 19:13:07 UTC 2022 年 1 月 23 日 (日) 4 時 13 分 7 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | April 24, 2021 19:24:15 UTC 2021 年 4 月 25 日 (日) 4 時 24 分 15 秒 (日本時間) |
composite number 合成数 | 23459833715328578821988217136917440691168098373017016862905686375766378387775902282117365525953651999339261881825478508589339386905848147545753168271028922194613240274590951742447139408735592355643770724183262258862505653087166536801713052527397274586864369<257> |
prime factors 素因数 | 36959220641519657552549521<26> 634749145358709530658260667927644264199247235989792250238089377834149195402410707890743253364638315838139673826230848023390587148243344757487002221491766815362248536311298796542914596256440960259831396662071007938746920638196117089<231> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 23459833715328578821988217136917440691168098373017016862905686375766378387775902282117365525953651999339261881825478508589339386905848147545753168271028922194613240274590951742447139408735592355643770724183262258862505653087166536801713052527397274586864369 (257 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6) Found prime factor of 26 digits: 1302015764193989783 Prime cofactor 634749145358709530658260667927644264199247235989792250238089377834149195402410707890743253364638315838139673826230848023390587148243344757487002221491766815362248536311298796542914596256440960259831396662071007938746920638196117089 has 231 digits |
software ソフトウェア | GMP-ECM 7.0.4 |
execution environment 実行環境 | Linux Ubuntu 20.04.1 LTS [5.4.0-48-generic|libc 2.31 (Ubuntu GLIBC 2.31-0ubuntu9.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | April 24, 2021 06:00:00 UTC 2021 年 4 月 24 日 (土) 15 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | April 24, 2021 06:00:00 UTC 2021 年 4 月 24 日 (土) 15 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | April 24, 2021 16:37:09 UTC 2021 年 4 月 25 日 (日) 1 時 37 分 9 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | April 24, 2021 19:27:58 UTC 2021 年 4 月 25 日 (日) 4 時 27 分 58 秒 (日本時間) |
composite number 合成数 | 755802528566428647008824285214293272310999950000755802528566428647008824285214293272310999950000755802528566428647008824285214293272310999950000755802528566428647008824285214293272310999950000755802528566428647008824285214293272310999950000755802528566428647008824285214293272311<279> |
prime factors 素因数 | 478008098450256124906726650666703<33> |
composite cofactor 合成数の残り | 1581150049584528488023263131345711016962990459158960368077587564822674481040159840793541960516826382277485920192533738198903402700749134484972735134226236699565220033662407493003233775227640541954519811281483161910391674319835948759731195719778137<247> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 755802528566428647008824285214293272310999950000755802528566428647008824285214293272310999950000755802528566428647008824285214293272310999950000755802528566428647008824285214293272310999950000755802528566428647008824285214293272310999950000755802528566428647008824285214293272311 (279 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1:1582758163 Found prime factor of 33 digits: 478008098450256124906726650666703 Composite cofactor 1581150049584528488023263131345711016962990459158960368077587564822674481040159840793541960516826382277485920192533738198903402700749134484972735134226236699565220033662407493003233775227640541954519811281483161910391674319835948759731195719778137 has 247 digits |
software ソフトウェア | GMP-ECM 7.0.4 |
execution environment 実行環境 | Linux Ubuntu 20.04.1 LTS [5.4.0-48-generic|libc 2.31 (Ubuntu GLIBC 2.31-0ubuntu9.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | April 24, 2021 06:00:00 UTC 2021 年 4 月 24 日 (土) 15 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | April 24, 2021 06:00:00 UTC 2021 年 4 月 24 日 (土) 15 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | April 24, 2021 16:36:58 UTC 2021 年 4 月 25 日 (日) 1 時 36 分 58 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | January 22, 2022 19:24:50 UTC 2022 年 1 月 23 日 (日) 4 時 24 分 50 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | April 24, 2021 06:00:00 UTC 2021 年 4 月 24 日 (土) 15 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | April 24, 2021 06:00:00 UTC 2021 年 4 月 24 日 (土) 15 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | April 24, 2021 16:36:44 UTC 2021 年 4 月 25 日 (日) 1 時 36 分 44 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | January 22, 2022 19:59:17 UTC 2022 年 1 月 23 日 (日) 4 時 59 分 17 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | April 24, 2021 06:00:00 UTC 2021 年 4 月 24 日 (土) 15 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | April 24, 2021 06:00:00 UTC 2021 年 4 月 24 日 (土) 15 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | April 24, 2021 16:36:31 UTC 2021 年 4 月 25 日 (日) 1 時 36 分 31 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | January 22, 2022 20:27:39 UTC 2022 年 1 月 23 日 (日) 5 時 27 分 39 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | April 24, 2021 06:00:00 UTC 2021 年 4 月 24 日 (土) 15 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | April 24, 2021 06:00:00 UTC 2021 年 4 月 24 日 (土) 15 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | April 24, 2021 16:36:04 UTC 2021 年 4 月 25 日 (日) 1 時 36 分 4 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | April 24, 2021 18:06:04 UTC 2021 年 4 月 25 日 (日) 3 時 6 分 4 秒 (日本時間) | |
45 | 11e6 | 4480 | Ignacio Santos | April 25, 2021 13:46:23 UTC 2021 年 4 月 25 日 (日) 22 時 46 分 23 秒 (日本時間) | |
50 | 43e6 | 1792 / 6452 | Dmitry Domanov | July 25, 2024 07:08:55 UTC 2024 年 7 月 25 日 (木) 16 時 8 分 55 秒 (日本時間) |
name 名前 | anonymous |
---|---|
date 日付 | April 24, 2021 19:52:42 UTC 2021 年 4 月 25 日 (日) 4 時 52 分 42 秒 (日本時間) |
composite number 合成数 | 1710741890426843479663080586091949571520124657139920389331228971315586198553794444423244404556154868708004268873720361677375822731733584850501291576833603168520114829322546477213940648378330004786263654734810210438115173720155361903837254409937482982608887715277841486463754923593131<283> |
prime factors 素因数 | 23643670799909075213610926773<29> |
composite cofactor 合成数の残り | 72355172972270547698106536410326233456879060844398653272579408427330294661194175866600325878330346130688193642997800107172266048317295986360885500521072805274935310421334136462774034563726785307980052532744829043764039515560787863570903795416522930727647<254> |
factorization results 素因数分解の結果 | p29: 23643670799909075213610926773 c254: 72355172972270547698106536410326233456879060844398653272579408427330294661194175866600325878330346130688193642997800107172266048317295986360885500521072805274935310421334136462774034563726785307980052532744829043764039515560787863570903795416522930727647 |
software ソフトウェア | factordb, February 13, 2021, http://factordb.com/index.php?id=1000000000008950314 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | April 24, 2021 06:00:00 UTC 2021 年 4 月 24 日 (土) 15 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | April 24, 2021 06:00:00 UTC 2021 年 4 月 24 日 (土) 15 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | April 24, 2021 16:35:49 UTC 2021 年 4 月 25 日 (日) 1 時 35 分 49 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | January 22, 2022 20:27:55 UTC 2022 年 1 月 23 日 (日) 5 時 27 分 55 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | April 24, 2021 20:06:18 UTC 2021 年 4 月 25 日 (日) 5 時 6 分 18 秒 (日本時間) |
composite number 合成数 | 4284798327410811485946162219891228260760928563778491797385622525315062700007968129547166452852046016607837556329098229470309369152906391359878406255361012335387739463781170985617740350429285371029440922099094187634070921827903329917252177134142765091853443138307<262> |
prime factors 素因数 | 1363821857835242099434879435270921<34> |
composite cofactor 合成数の残り | 3141758069644049472027336911151007070432698604873092658347335625223337581869675093010435139535315096991687501333708633281945494709448003156662514091100532996146196817578763402380470251639518427956854955419305466201150301483754667<229> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 4284798327410811485946162219891228260760928563778491797385622525315062700007968129547166452852046016607837556329098229470309369152906391359878406255361012335387739463781170985617740350429285371029440922099094187634070921827903329917252177134142765091853443138307 (262 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1:1002371049 Found prime factor of 34 digits: 1363821857835242099434879435270921 Composite cofactor 3141758069644049472027336911151007070432698604873092658347335625223337581869675093010435139535315096991687501333708633281945494709448003156662514091100532996146196817578763402380470251639518427956854955419305466201150301483754667 has 229 digits |
software ソフトウェア | GMP-ECM 7.0.4 |
execution environment 実行環境 | Linux Ubuntu 20.04.1 LTS [5.4.0-48-generic|libc 2.31 (Ubuntu GLIBC 2.31-0ubuntu9.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | April 24, 2021 06:00:00 UTC 2021 年 4 月 24 日 (土) 15 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | April 24, 2021 06:00:00 UTC 2021 年 4 月 24 日 (土) 15 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | April 24, 2021 16:35:31 UTC 2021 年 4 月 25 日 (日) 1 時 35 分 31 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | January 22, 2022 20:45:18 UTC 2022 年 1 月 23 日 (日) 5 時 45 分 18 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | April 24, 2021 06:00:00 UTC 2021 年 4 月 24 日 (土) 15 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | April 24, 2021 06:00:00 UTC 2021 年 4 月 24 日 (土) 15 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | April 24, 2021 16:35:17 UTC 2021 年 4 月 25 日 (日) 1 時 35 分 17 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | January 22, 2022 21:07:35 UTC 2022 年 1 月 23 日 (日) 6 時 7 分 35 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | April 24, 2021 06:00:00 UTC 2021 年 4 月 24 日 (土) 15 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | April 24, 2021 06:00:00 UTC 2021 年 4 月 24 日 (土) 15 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | April 24, 2021 16:35:04 UTC 2021 年 4 月 25 日 (日) 1 時 35 分 4 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | January 22, 2022 21:31:12 UTC 2022 年 1 月 23 日 (日) 6 時 31 分 12 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | April 24, 2021 20:09:43 UTC 2021 年 4 月 25 日 (日) 5 時 9 分 43 秒 (日本時間) |
composite number 合成数 | 85087670240965649919228356363042558071178369260624940932489480066702386974700575224630694867941413407709485175053835637447248096792472597136648359658844127020567607140939064514123007771582248005452976733165136618286281814455215132154115624709235825140972545478011659209<269> |
prime factors 素因数 | 14948109875463953336440384711664051<35> |
composite cofactor 合成数の残り | 5692202622930260841464757613006394824376424290391963684950588370733331566065807199071038202710339768790092254650980030130112283852314585074584845870505214060070693435771259227231991660089497189705550783901571149407934822840641702170259<235> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 85087670240965649919228356363042558071178369260624940932489480066702386974700575224630694867941413407709485175053835637447248096792472597136648359658844127020567607140939064514123007771582248005452976733165136618286281814455215132154115624709235825140972545478011659209 (269 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1:1473135680 Found prime factor of 35 digits: 14948109875463953336440384711664051 Composite cofactor 5692202622930260841464757613006394824376424290391963684950588370733331566065807199071038202710339768790092254650980030130112283852314585074584845870505214060070693435771259227231991660089497189705550783901571149407934822840641702170259 has 235 digits |
software ソフトウェア | GMP-ECM 7.0.4 |
execution environment 実行環境 | Linux Ubuntu 20.04.1 LTS [5.4.0-48-generic|libc 2.31 (Ubuntu GLIBC 2.31-0ubuntu9.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | January 22, 2022 21:31:57 UTC 2022 年 1 月 23 日 (日) 6 時 31 分 57 秒 (日本時間) |
composite number 合成数 | 5692202622930260841464757613006394824376424290391963684950588370733331566065807199071038202710339768790092254650980030130112283852314585074584845870505214060070693435771259227231991660089497189705550783901571149407934822840641702170259<235> |
prime factors 素因数 | 73931038204754453076116376488817203<35> |
composite cofactor 合成数の残り | 76993408467571057236085584026631334865932443737787196791556820314209939678898155977399232508371712286773819870492809238712378192041624899189845114931617443378042960313993399974053681666326533099819553<200> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:3472675110 Step 1 took 13704ms Step 2 took 5484ms ********** Factor found in step 2: 73931038204754453076116376488817203 Found prime factor of 35 digits: 73931038204754453076116376488817203 Composite cofactor 76993408467571057236085584026631334865932443737787196791556820314209939678898155977399232508371712286773819870492809238712378192041624899189845114931617443378042960313993399974053681666326533099819553 has 200 digits |
software ソフトウェア | GMP-ECM |
name 名前 | Ignacio Santos |
---|---|
date 日付 | January 24, 2022 22:06:32 UTC 2022 年 1 月 25 日 (火) 7 時 6 分 32 秒 (日本時間) |
composite number 合成数 | 76993408467571057236085584026631334865932443737787196791556820314209939678898155977399232508371712286773819870492809238712378192041624899189845114931617443378042960313993399974053681666326533099819553<200> |
prime factors 素因数 | 46496369921683699116170166457525956492587<41> 1655901495046928114090722846068520927620254726100242583823838822187782649560550533099883837459808869365331791833166685044981980365194127110953666810368667189219<160> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:3606382809 Step 1 took 36328ms Step 2 took 14500ms ********** Factor found in step 2: 46496369921683699116170166457525956492587 Found prime factor of 41 digits: 46496369921683699116170166457525956492587 Prime cofactor 1655901495046928114090722846068520927620254726100242583823838822187782649560550533099883837459808869365331791833166685044981980365194127110953666810368667189219 has 160 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | April 24, 2021 06:00:00 UTC 2021 年 4 月 24 日 (土) 15 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | April 24, 2021 06:00:00 UTC 2021 年 4 月 24 日 (土) 15 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | April 24, 2021 16:34:49 UTC 2021 年 4 月 25 日 (日) 1 時 34 分 49 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | January 23, 2022 23:03:38 UTC 2022 年 1 月 24 日 (月) 8 時 3 分 38 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | April 24, 2021 20:13:00 UTC 2021 年 4 月 25 日 (日) 5 時 13 分 0 秒 (日本時間) |
composite number 合成数 | 1575015585162930483472483734144404043368065335518965068007727780264088882587168693948508331181185730650953953808323096388264746317885835148115722704126901656836403523809078745903151929083476669788314274860196110706275016508347865092262109714699686653967<253> |
prime factors 素因数 | 1679865201466024727957582149448167<34> |
composite cofactor 合成数の残り | 937584506059419775491199428025439163427769368340344130424161261156730352640084302374915472807917386001367800743713785649475410311096914677748478265763828856817292017196596194385917995336009971071022227134975316567317401<219> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 1575015585162930483472483734144404043368065335518965068007727780264088882587168693948508331181185730650953953808323096388264746317885835148115722704126901656836403523809078745903151929083476669788314274860196110706275016508347865092262109714699686653967 (253 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1:4253925862 Found prime factor of 34 digits: 1679865201466024727957582149448167 Composite cofactor 937584506059419775491199428025439163427769368340344130424161261156730352640084302374915472807917386001367800743713785649475410311096914677748478265763828856817292017196596194385917995336009971071022227134975316567317401 has 219 digits |
software ソフトウェア | GMP-ECM 7.0.4 |
execution environment 実行環境 | Linux Ubuntu 20.04.1 LTS [5.4.0-48-generic|libc 2.31 (Ubuntu GLIBC 2.31-0ubuntu9.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | April 24, 2021 06:00:00 UTC 2021 年 4 月 24 日 (土) 15 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | April 24, 2021 06:00:00 UTC 2021 年 4 月 24 日 (土) 15 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | April 24, 2021 16:34:33 UTC 2021 年 4 月 25 日 (日) 1 時 34 分 33 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | January 22, 2022 22:02:20 UTC 2022 年 1 月 23 日 (日) 7 時 2 分 20 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | April 24, 2021 06:00:00 UTC 2021 年 4 月 24 日 (土) 15 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | April 24, 2021 06:00:00 UTC 2021 年 4 月 24 日 (土) 15 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | April 24, 2021 16:34:13 UTC 2021 年 4 月 25 日 (日) 1 時 34 分 13 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | January 22, 2022 22:02:32 UTC 2022 年 1 月 23 日 (日) 7 時 2 分 32 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | April 24, 2021 20:18:42 UTC 2021 年 4 月 25 日 (日) 5 時 18 分 42 秒 (日本時間) |
composite number 合成数 | 22731709463257455772845507740786904346683137471503227849410622379545729731629251447927139951271174585049551806571900967191158764435521138761238783422336796853140419813544986385736405096225072821012291270473872323915771141043952272418561518348811<245> |
prime factors 素因数 | 19992165297360595509884951<26> 98214510190259944778006651<26> |
composite cofactor 合成数の残り | 11577015309705639798534357803938772402644918544366321284537316381377459535087753129497692325051015655483307183657525826168518555524931404235894291114902519441243627562214303150168030385171278711<194> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 22731709463257455772845507740786904346683137471503227849410622379545729731629251447927139951271174585049551806571900967191158764435521138761238783422336796853140419813544986385736405096225072821012291270473872323915771141043952272418561518348811 (245 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6) Found prime factor of 26 digits: 19992165297360595509884951 Using B1=1000000, B2=1045563762, polynomial Dickson(6) Found prime factor of 26 digits: 98214510190259944778006651 Composite cofactor 11577015309705639798534357803938772402644918544366321284537316381377459535087753129497692325051015655483307183657525826168518555524931404235894291114902519441243627562214303150168030385171278711 has 194 digits |
software ソフトウェア | GMP-ECM 7.0.4 |
execution environment 実行環境 | Linux Ubuntu 20.04.1 LTS [5.4.0-48-generic|libc 2.31 (Ubuntu GLIBC 2.31-0ubuntu9.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | April 25, 2021 19:10:25 UTC 2021 年 4 月 26 日 (月) 4 時 10 分 25 秒 (日本時間) |
composite number 合成数 | 11577015309705639798534357803938772402644918544366321284537316381377459535087753129497692325051015655483307183657525826168518555524931404235894291114902519441243627562214303150168030385171278711<194> |
prime factors 素因数 | 142326067111031682469967541329926322009547015271<48> |
composite cofactor 合成数の残り | 81341496640064933235053396744289384714729555613507516183917158297784961545220496832223529059828642356585039929651173963520284616411702863423190641<146> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:2559508042 Step 1 took 36391ms Step 2 took 14781ms ********** Factor found in step 2: 142326067111031682469967541329926322009547015271 Found prime factor of 48 digits: 142326067111031682469967541329926322009547015271 Composite cofactor 81341496640064933235053396744289384714729555613507516183917158297784961545220496832223529059828642356585039929651173963520284616411702863423190641 has 146 digits |
software ソフトウェア | GMP-ECM |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | May 4, 2021 01:03:58 UTC 2021 年 5 月 4 日 (火) 10 時 3 分 58 秒 (日本時間) |
composite number 合成数 | 81341496640064933235053396744289384714729555613507516183917158297784961545220496832223529059828642356585039929651173963520284616411702863423190641<146> |
prime factors 素因数 | 21082143372291823309015437216951373811921342817055247791<56> 3858312468691951732317637085532044131669706972410373822603551693734884915880383853620176351<91> |
factorization results 素因数分解の結果 | 81341496640064933235053396744289384714729555613507516183917158297784961545220496832223529059828642356585039929651173963520284616411702863423190641=21082143372291823309015437216951373811921342817055247791*3858312468691951732317637085532044131669706972410373822603551693734884915880383853620176351 cado polynomial n: 81341496640064933235053396744289384714729555613507516183917158297784961545220496832223529059828642356585039929651173963520284616411702863423190641 skew: 205557.628 c0: -377344625160593455554074130697791 c1: -5310222878931575853093484831 c2: 66221711965467769685379 c3: 361704637374090799 c4: -1027875347820 c5: -765000 Y0: -17394279439979920349180458522 Y1: 21183674951709802619 # MurphyE (Bf=5.369e+08,Bg=5.369e+08,area=3.355e+14) = 1.567e-07 # f(x) = -765000*x^5-1027875347820*x^4+361704637374090799*x^3+66221711965467769685379*x^2-5310222878931575853093484831*x-377344625160593455554074130697791 # g(x) = 21183674951709802619*x-17394279439979920349180458522 cado parameters (extracts) tasks.lim0 = 10000000 tasks.lim1 = 20000000 tasks.lpb0 = 29 tasks.lpb1 = 29 tasks.sieve.mfb0 = 58 tasks.sieve.mfb1 = 87 tasks.I = 13 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 21082143372291823309015437216951373811921342817055247791 3858312468691951732317637085532044131669706972410373822603551693734884915880383853620176351 Info:Square Root: Total cpu/real time for sqrt: 3380.77/1026.73 Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 233.32/274.408 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 273.4s Info:Polynomial Selection (size optimized): Aggregate statistics: Info:Polynomial Selection (size optimized): potential collisions: 77228.6 Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 78362/44.690/52.597/58.410/0.896 Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 63743/42.870/47.201/53.380/1.242 Info:Polynomial Selection (size optimized): Total time: 38170.8 Info:Linear Algebra: Total cpu/real time for bwc: 245203/62775.8 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 157904.29, WCT time 40289.71, iteration CPU time 0.33, COMM 0.02, cpu-wait 0.0, comm-wait 0.0 (114176 iterations) Info:Linear Algebra: Lingen CPU time 799.47, WCT time 202.84 Info:Linear Algebra: Mksol: CPU time 85030.51, WCT time 21724.49, iteration CPU time 0.36, COMM 0.02, cpu-wait 0.0, comm-wait 0.0 (57344 iterations) Info:Generate Factor Base: Total cpu/real time for makefb: 18.53/7.80039 Info:Filtering - Singleton removal: Total cpu/real time for purge: 949.21/1054.46 Info:Filtering - Merging: Merged matrix has 3648544 rows and total weight 624413227 (171.1 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 995.77/279.57 Info:Filtering - Merging: Total cpu/real time for replay: 156.1/136.339 Info:Polynomial Selection (root optimized): Aggregate statistics: Info:Polynomial Selection (root optimized): Total time: 5918.48 Info:Polynomial Selection (root optimized): Rootsieve time: 5916.29 Info:Quadratic Characters: Total cpu/real time for characters: 140.38/60.2005 Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 1132.75/1139.22 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 945.8s Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 51530892 Info:Lattice Sieving: Average J: 3787.93 for 1525468 special-q, max bucket fill -bkmult 1.0,1s:1.126910 Info:Lattice Sieving: Total time: 1.30219e+06s Info:Generate Free Relations: Total cpu/real time for freerel: 507.03/222.239 Info:Square Root: Total cpu/real time for sqrt: 3380.77/1026.73 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 2.76741e+06/528.107 21082143372291823309015437216951373811921342817055247791 3858312468691951732317637085532044131669706972410373822603551693734884915880383853620176351 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | 6 x Linux Ubuntu 20.04.1 LTS [5.4.0-72-generic|libc 2.31 (Ubuntu GLIBC 2.31-0ubuntu9.3)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | April 24, 2021 06:00:00 UTC 2021 年 4 月 24 日 (土) 15 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | April 24, 2021 06:00:00 UTC 2021 年 4 月 24 日 (土) 15 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | April 24, 2021 16:33:59 UTC 2021 年 4 月 25 日 (日) 1 時 33 分 59 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | April 25, 2021 16:42:53 UTC 2021 年 4 月 26 日 (月) 1 時 42 分 53 秒 (日本時間) | |
45 | 11e6 | 4480 | Ignacio Santos | April 27, 2021 10:41:10 UTC 2021 年 4 月 27 日 (火) 19 時 41 分 10 秒 (日本時間) |