name 名前 | Sinkiti Sibata |
---|---|
date 日付 | January 4, 2008 22:58:38 UTC 2008 年 1 月 5 日 (土) 7 時 58 分 38 秒 (日本時間) |
composite number 合成数 | 21881154074583476602794535963239661154699759307305179581757369260104404363727298302647619643024600668938138851551999<116> |
prime factors 素因数 | 12429111900259089222404905377487364334851383<44> 1760476070227298881000250830892187832585839053412152708131162759974648953<73> |
factorization results 素因数分解の結果 | Number: 70009_119 N=21881154074583476602794535963239661154699759307305179581757369260104404363727298302647619643024600668938138851551999 ( 116 digits) SNFS difficulty: 120 digits. Divisors found: r1=12429111900259089222404905377487364334851383 (pp44) r2=1760476070227298881000250830892187832585839053412152708131162759974648953 (pp73) Version: GGNFS-0.77.1-20060513-k8 Total time: 2.00 hours. Scaled time: 4.04 units (timescale=2.016). Factorization parameters were as follows: name: 70009_119 n: 21881154074583476602794535963239661154699759307305179581757369260104404363727298302647619643024600668938138851551999 m: 1000000000000000000000000 c5: 7 c0: 90 skew: 1.67 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 550001) Primes: RFBsize:49098, AFBsize:64083, largePrimes:2159262 encountered Relations: rels:2257962, finalFF:227231 Max relations in full relation-set: 28 Initial matrix: 113247 x 227231 with sparse part having weight 20803966. Pruned matrix : 89761 x 90391 with weight 5658124. Total sieving time: 1.87 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.04 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,120,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 2.00 hours. --------- CPU info (if available) ---------- |
execution environment 実行環境 | Core 2 Duo E6300 1.86GHz, Windows Vista |
name 名前 | Sinkiti Sibata |
---|---|
date 日付 | January 4, 2008 05:45:44 UTC 2008 年 1 月 4 日 (金) 14 時 45 分 44 秒 (日本時間) |
composite number 合成数 | 1937448104068641018544146138942706891779684472737337392748408524771657902020481594243011347910323830611680044284528093<118> |
prime factors 素因数 | 830640561618524856111311045749<30> 5267270292924611350420925089608485692597297<43> 442824191940348923348965981442994565437113881<45> |
factorization results 素因数分解の結果 | Number: 70009_120 N=1937448104068641018544146138942706891779684472737337392748408524771657902020481594243011347910323830611680044284528093 ( 118 digits) SNFS difficulty: 120 digits. Divisors found: r1=830640561618524856111311045749 (pp30) r2=5267270292924611350420925089608485692597297 (pp43) r3=442824191940348923348965981442994565437113881 (pp45) Version: GGNFS-0.77.1-20060513-k8 Total time: 2.11 hours. Scaled time: 4.22 units (timescale=2.003). Factorization parameters were as follows: name: 70009_120 n: 1937448104068641018544146138942706891779684472737337392748408524771657902020481594243011347910323830611680044284528093 m: 1000000000000000000000000 c5: 7 c0: 9 skew: 1.05 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 550001) Primes: RFBsize:49098, AFBsize:63908, largePrimes:1993457 encountered Relations: rels:1958903, finalFF:135849 Max relations in full relation-set: 28 Initial matrix: 113072 x 135849 with sparse part having weight 10934243. Pruned matrix : 104688 x 105317 with weight 6771158. Total sieving time: 1.96 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.06 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,120,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 2.11 hours. --------- CPU info (if available) ---------- |
execution environment 実行環境 | Core 2 Duo E6300 1.86GHz, Windows Vista) |
name 名前 | Robert Backstrom |
---|---|
date 日付 | January 4, 2008 07:10:00 UTC 2008 年 1 月 4 日 (金) 16 時 10 分 0 秒 (日本時間) |
composite number 合成数 | 1559749548786737672408030481962610575101940774081418926446667706499699191158448272020321308407050067960516054279284297778471<124> |
prime factors 素因数 | 75697857002716999529892478650803<32> 1098672696747497143987400806595400953<37> 18754390384244538050938832102972339330160248332842058469<56> |
factorization results 素因数分解の結果 | GMP-ECM 6.0 [powered by GMP 4.1.4] [ECM] Input number is 1559749548786737672408030481962610575101940774081418926446667706499699191158448272020321308407050067960516054279284297778471 (124 digits) Using B1=626000, B2=430724637, polynomial Dickson(3), sigma=1697096860 Step 1 took 5148ms Step 2 took 3113ms ********** Factor found in step 2: 75697857002716999529892478650803 Found probable prime factor of 32 digits: 75697857002716999529892478650803 Composite cofactor 20604936659313275793147116596703623610330405620941715110418268482641652370080548824924320957 has 92 digits GMP-ECM 6.0 [powered by GMP 4.1.4] [ECM] Input number is 20604936659313275793147116596703623610330405620941715110418268482641652370080548824924320957 (92 digits) Using B1=2756000, B2=3559335548, polynomial Dickson(6), sigma=3947222449 Step 1 took 15881ms Step 2 took 8859ms ********** Factor found in step 2: 1098672696747497143987400806595400953 Found probable prime factor of 37 digits: 1098672696747497143987400806595400953 Probable prime cofactor 18754390384244538050938832102972339330160248332842058469 has 56 digits |
name 名前 | Robert Backstrom |
---|---|
date 日付 | January 4, 2008 08:09:18 UTC 2008 年 1 月 4 日 (金) 17 時 9 分 18 秒 (日本時間) |
composite number 合成数 | 27398308966242614052370386890973075579926911826659484325153695781935010059366680927309235345688227100842435214405703<116> |
prime factors 素因数 | 1439181583139272216526486427199<31> 19037423273913052788182876625430173418517933868978126334120252095713816138227879752697<86> |
factorization results 素因数分解の結果 | GMP-ECM 6.0 [powered by GMP 4.1.4] [ECM] Input number is 27398308966242614052370386890973075579926911826659484325153695781935010059366680927309235345688227100842435214405703 (116 digits) Using B1=976000, B2=810987665, polynomial Dickson(3), sigma=1922583022 Step 1 took 7349ms ********** Factor found in step 1: 1439181583139272216526486427199 Found probable prime factor of 31 digits: 1439181583139272216526486427199 Probable prime cofactor 19037423273913052788182876625430173418517933868978126334120252095713816138227879752697 has 86 digits |
name 名前 | Robert Backstrom |
---|---|
date 日付 | January 4, 2008 19:25:36 UTC 2008 年 1 月 5 日 (土) 4 時 25 分 36 秒 (日本時間) |
composite number 合成数 | 2690209242163733079058961856013706690488883800070139975077938579898447635548085461020149959227339603250033223472503615927<121> |
prime factors 素因数 | 1529173935702381764254152743534663932887976167416684647<55> 1759256536718344842192906040610542540050982219751847395727987528241<67> |
factorization results 素因数分解の結果 | Number: n N=2690209242163733079058961856013706690488883800070139975077938579898447635548085461020149959227339603250033223472503615927 ( 121 digits) SNFS difficulty: 137 digits. Divisors found: r1=1529173935702381764254152743534663932887976167416684647 (pp55) r2=1759256536718344842192906040610542540050982219751847395727987528241 (pp67) Version: GGNFS-0.77.1-20051202-athlon Total time: 4.64 hours. Scaled time: 8.43 units (timescale=1.817). Factorization parameters were as follows: name: KA_7_0_136_9 n: 2690209242163733079058961856013706690488883800070139975077938579898447635548085461020149959227339603250033223472503615927 skew: 0.42 deg: 5 c5: 700 c0: 9 m: 1000000000000000000000000000 type: snfs rlim: 2200000 alim: 2200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 2200000/2200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 700001) Primes: RFBsize:162662, AFBsize:162645, largePrimes:6524001 encountered Relations: rels:6138409, finalFF:570651 Max relations in full relation-set: 48 Initial matrix: 325375 x 570651 with sparse part having weight 34157269. Pruned matrix : 163092 x 164782 with weight 16077087. Total sieving time: 4.22 hours. Total relation processing time: 0.12 hours. Matrix solve time: 0.20 hours. Total square root time: 0.10 hours, sqrts: 4. Prototype def-par.txt line would be: snfs,137,5,0,0,0,0,0,0,0,0,2200000,2200000,28,28,48,48,2.5,2.5,75000 total time: 4.64 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+ |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | January 5, 2008 00:38:09 UTC 2008 年 1 月 5 日 (土) 9 時 38 分 9 秒 (日本時間) |
composite number 合成数 | 4039899261695309109005048398359631685685486063939556024524503957895943660252833528639281309585610432411465854402366497268246378586833<133> |
prime factors 素因数 | 101414229444075792057935393801590219007<39> 39835625472292178795478811905988720116944029945084978719281689145836957513895091630614531075119<95> |
factorization results 素因数分解の結果 | Number: 70009_141 N=4039899261695309109005048398359631685685486063939556024524503957895943660252833528639281309585610432411465854402366497268246378586833 ( 133 digits) SNFS difficulty: 141 digits. Divisors found: r1=101414229444075792057935393801590219007 (pp39) r2=39835625472292178795478811905988720116944029945084978719281689145836957513895091630614531075119 (pp95) Version: GGNFS-0.77.1-20050930-nocona Total time: 6.92 hours. Scaled time: 14.86 units (timescale=2.146). Factorization parameters were as follows: n: 4039899261695309109005048398359631685685486063939556024524503957895943660252833528639281309585610432411465854402366497268246378586833 m: 10000000000000000000000000000 c5: 70 c0: 9 skew: 0.66 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved algebraic special-q in [750000, 1200001) Primes: RFBsize:114155, AFBsize:114417, largePrimes:3355192 encountered Relations: rels:3424431, finalFF:361194 Max relations in full relation-set: 28 Initial matrix: 228640 x 361194 with sparse part having weight 32688347. Pruned matrix : 183772 x 184979 with weight 14082163. Total sieving time: 6.73 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.12 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,47,47,2.3,2.3,50000 total time: 6.92 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory for crash kernel (0x0 to 0x0) notwithin permissible range Memory: 8178280k/8912896k available (2434k kernel code, 208060k reserved, 1235k data, 192k init) Calibrating delay using timer specific routine.. 4812.90 BogoMIPS (lpj=2406450) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117) Calibrating delay using timer specific routine.. 4809.83 BogoMIPS (lpj=2404916) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117) |
execution environment 実行環境 | Core 2 Quad Q6600 |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | January 5, 2008 00:39:07 UTC 2008 年 1 月 5 日 (土) 9 時 39 分 7 秒 (日本時間) |
composite number 合成数 | 2989240637896832248093598836643841444086092572084139927456736533426375053444720175992103186377912235052595510563<112> |
prime factors 素因数 | 19435116457349819947354128996919945157<38> 153806160331310217740660239181144108766898224889935222716697800849639765959<75> |
factorization results 素因数分解の結果 | Number: 70009_142 N=2989240637896832248093598836643841444086092572084139927456736533426375053444720175992103186377912235052595510563 ( 112 digits) SNFS difficulty: 142 digits. Divisors found: r1=19435116457349819947354128996919945157 (pp38) r2=153806160331310217740660239181144108766898224889935222716697800849639765959 (pp75) Version: GGNFS-0.77.1-20050930-nocona Total time: 7.54 hours. Scaled time: 16.22 units (timescale=2.152). Factorization parameters were as follows: n: 2989240637896832248093598836643841444086092572084139927456736533426375053444720175992103186377912235052595510563 m: 10000000000000000000000000000 c5: 700 c0: 9 skew: 0.42 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved algebraic special-q in [750000, 1250001) Primes: RFBsize:114155, AFBsize:114082, largePrimes:3285538 encountered Relations: rels:3277670, finalFF:296280 Max relations in full relation-set: 28 Initial matrix: 228305 x 296280 with sparse part having weight 26224627. Pruned matrix : 203393 x 204598 with weight 14737735. Total sieving time: 7.32 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.14 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,142,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,47,47,2.3,2.3,50000 total time: 7.54 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory for crash kernel (0x0 to 0x0) notwithin permissible range Memory: 8178280k/8912896k available (2434k kernel code, 208060k reserved, 1235k data, 192k init) Calibrating delay using timer specific routine.. 4812.90 BogoMIPS (lpj=2406450) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117) Calibrating delay using timer specific routine.. 4809.83 BogoMIPS (lpj=2404916) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117) |
execution environment 実行環境 | Core 2 Quad Q6600 |
name 名前 | Robert Backstrom |
---|---|
date 日付 | January 5, 2008 20:38:15 UTC 2008 年 1 月 6 日 (日) 5 時 38 分 15 秒 (日本時間) |
composite number 合成数 | 367598985216744238804904190575917330139073198935643395375289681128885980772472507534466343424625666076232677554248420243361031041633735924241<141> |
prime factors 素因数 | 29348460735839486849597048687491482266220440029873<50> 12525324190779213411439080213347337398023495842703998477149462377348409081784748884226366817<92> |
factorization results 素因数分解の結果 | Number: n N=367598985216744238804904190575917330139073198935643395375289681128885980772472507534466343424625666076232677554248420243361031041633735924241 ( 141 digits) SNFS difficulty: 146 digits. Divisors found: r1=29348460735839486849597048687491482266220440029873 (pp50) r2=12525324190779213411439080213347337398023495842703998477149462377348409081784748884226366817 (pp92) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 11.17 hours. Scaled time: 14.57 units (timescale=1.305). Factorization parameters were as follows: name: KA_7_0_145_9 n: 367598985216744238804904190575917330139073198935643395375289681128885980772472507534466343424625666076232677554248420243361031041633735924241 skew: 0.66 deg: 5 c5: 70 c0: 9 m: 100000000000000000000000000000 type: snfs rlim: 2800000 alim: 2800000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1200001) Primes: RFBsize:203362, AFBsize:203847, largePrimes:6878552 encountered Relations: rels:6404033, finalFF:539587 Max relations in full relation-set: 28 Initial matrix: 407277 x 539587 with sparse part having weight 31365500. Pruned matrix : 292139 x 294239 with weight 15013733. Total sieving time: 9.38 hours. Total relation processing time: 0.19 hours. Matrix solve time: 1.42 hours. Total square root time: 0.17 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,2800000,2800000,28,28,48,48,2.5,2.5,100000 total time: 11.17 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+ |
name 名前 | Sinkiti Sibata |
---|---|
date 日付 | January 4, 2008 05:37:33 UTC 2008 年 1 月 4 日 (金) 14 時 37 分 33 秒 (日本時間) |
composite number 合成数 | 1241687068906518298633710848308113944954223996000579428139069580827675959567636029806646943<91> |
prime factors 素因数 | 9370251329536055623552717563916135025857<40> 132513742186678071112443165485840454095701370690399<51> |
factorization results 素因数分解の結果 | Fri Jan 4 08:23:13 2008 Msieve v. 1.30 Fri Jan 4 08:23:13 2008 random seeds: 2a1795f6 2f265fbe Fri Jan 4 08:23:13 2008 factoring 1241687068906518298633710848308113944954223996000579428139069580827675959567636029806646943 (91 digits) Fri Jan 4 08:23:14 2008 commencing quadratic sieve (90-digit input) Fri Jan 4 08:23:14 2008 using multiplier of 2 Fri Jan 4 08:23:14 2008 using 64kb Pentium 4 sieve core Fri Jan 4 08:23:14 2008 sieve interval: 18 blocks of size 65536 Fri Jan 4 08:23:14 2008 processing polynomials in batches of 6 Fri Jan 4 08:23:14 2008 using a sieve bound of 1652503 (62277 primes) Fri Jan 4 08:23:14 2008 using large prime bound of 145420264 (27 bits) Fri Jan 4 08:23:14 2008 using double large prime bound of 492861412574344 (42-49 bits) Fri Jan 4 08:23:14 2008 using trial factoring cutoff of 49 bits Fri Jan 4 08:23:14 2008 polynomial 'A' values have 12 factors Fri Jan 4 12:29:01 2008 62747 relations (16982 full + 45765 combined from 694116 partial), need 62373 Fri Jan 4 12:29:04 2008 begin with 711098 relations Fri Jan 4 12:29:05 2008 reduce to 152534 relations in 10 passes Fri Jan 4 12:29:05 2008 attempting to read 152534 relations Fri Jan 4 12:29:10 2008 recovered 152534 relations Fri Jan 4 12:29:10 2008 recovered 128623 polynomials Fri Jan 4 12:29:10 2008 attempting to build 62747 cycles Fri Jan 4 12:29:10 2008 found 62747 cycles in 5 passes Fri Jan 4 12:29:10 2008 distribution of cycle lengths: Fri Jan 4 12:29:10 2008 length 1 : 16982 Fri Jan 4 12:29:10 2008 length 2 : 12077 Fri Jan 4 12:29:10 2008 length 3 : 10920 Fri Jan 4 12:29:10 2008 length 4 : 8357 Fri Jan 4 12:29:10 2008 length 5 : 5867 Fri Jan 4 12:29:10 2008 length 6 : 3794 Fri Jan 4 12:29:10 2008 length 7 : 2182 Fri Jan 4 12:29:10 2008 length 9+: 2568 Fri Jan 4 12:29:10 2008 largest cycle: 19 relations Fri Jan 4 12:29:11 2008 matrix is 62277 x 62747 with weight 3737470 (avg 59.56/col) Fri Jan 4 12:29:12 2008 filtering completed in 3 passes Fri Jan 4 12:29:12 2008 matrix is 57933 x 57997 with weight 3465014 (avg 59.74/col) Fri Jan 4 12:29:13 2008 saving the first 48 matrix rows for later Fri Jan 4 12:29:13 2008 matrix is 57885 x 57997 with weight 2675909 (avg 46.14/col) Fri Jan 4 12:29:13 2008 matrix includes 64 packed rows Fri Jan 4 12:29:13 2008 using block size 21845 for processor cache size 512 kB Fri Jan 4 12:29:13 2008 commencing Lanczos iteration Fri Jan 4 12:29:46 2008 lanczos halted after 916 iterations (dim = 57883) Fri Jan 4 12:29:46 2008 recovered 17 nontrivial dependencies Fri Jan 4 12:29:47 2008 prp40 factor: 9370251329536055623552717563916135025857 Fri Jan 4 12:29:47 2008 prp51 factor: 132513742186678071112443165485840454095701370690399 Fri Jan 4 12:29:47 2008 elapsed time 04:06:34 |
execution environment 実行環境 | Pentium 4 2.4GHz, Windows XP and Cygwin) |
name 名前 | Sinkiti Sibata |
---|---|
date 日付 | January 4, 2008 22:50:11 UTC 2008 年 1 月 5 日 (土) 7 時 50 分 11 秒 (日本時間) |
composite number 合成数 | 767514148726373849421756982578139971558958367374633360077892901949480634454258309618499746041<93> |
prime factors 素因数 | 239837507703455294015342234963512005413275037<45> 3200142279977988684517610934831971048558705274893<49> |
factorization results 素因数分解の結果 | Fri Jan 4 14:41:22 2008 Msieve v. 1.30 Fri Jan 4 14:41:22 2008 random seeds: 89fffcd3 bf362a6f Fri Jan 4 14:41:22 2008 factoring 767514148726373849421756982578139971558958367374633360077892901949480634454258309618499746041 (93 digits) Fri Jan 4 14:41:23 2008 commencing quadratic sieve (93-digit input) Fri Jan 4 14:41:23 2008 using multiplier of 1 Fri Jan 4 14:41:23 2008 using 64kb Pentium 4 sieve core Fri Jan 4 14:41:23 2008 sieve interval: 18 blocks of size 65536 Fri Jan 4 14:41:23 2008 processing polynomials in batches of 6 Fri Jan 4 14:41:23 2008 using a sieve bound of 1956883 (72780 primes) Fri Jan 4 14:41:23 2008 using large prime bound of 244610375 (27 bits) Fri Jan 4 14:41:23 2008 using double large prime bound of 1256766767596625 (42-51 bits) Fri Jan 4 14:41:23 2008 using trial factoring cutoff of 51 bits Fri Jan 4 14:41:23 2008 polynomial 'A' values have 12 factors Fri Jan 4 22:12:21 2008 73205 relations (18541 full + 54664 combined from 996755 partial), need 72876 Fri Jan 4 22:12:25 2008 begin with 1015296 relations Fri Jan 4 22:12:27 2008 reduce to 187278 relations in 10 passes Fri Jan 4 22:12:27 2008 attempting to read 187278 relations Fri Jan 4 22:12:34 2008 recovered 187278 relations Fri Jan 4 22:12:34 2008 recovered 167179 polynomials Fri Jan 4 22:12:34 2008 attempting to build 73205 cycles Fri Jan 4 22:12:34 2008 found 73205 cycles in 6 passes Fri Jan 4 22:12:34 2008 distribution of cycle lengths: Fri Jan 4 22:12:34 2008 length 1 : 18541 Fri Jan 4 22:12:34 2008 length 2 : 13029 Fri Jan 4 22:12:34 2008 length 3 : 12466 Fri Jan 4 22:12:34 2008 length 4 : 9874 Fri Jan 4 22:12:34 2008 length 5 : 7323 Fri Jan 4 22:12:34 2008 length 6 : 5045 Fri Jan 4 22:12:34 2008 length 7 : 2957 Fri Jan 4 22:12:34 2008 length 9+: 3970 Fri Jan 4 22:12:34 2008 largest cycle: 21 relations Fri Jan 4 22:12:35 2008 matrix is 72780 x 73205 with weight 4304451 (avg 58.80/col) Fri Jan 4 22:12:37 2008 filtering completed in 4 passes Fri Jan 4 22:12:37 2008 matrix is 68783 x 68847 with weight 4056821 (avg 58.93/col) Fri Jan 4 22:12:37 2008 saving the first 48 matrix rows for later Fri Jan 4 22:12:37 2008 matrix is 68735 x 68847 with weight 3005294 (avg 43.65/col) Fri Jan 4 22:12:37 2008 matrix includes 64 packed rows Fri Jan 4 22:12:37 2008 using block size 21845 for processor cache size 512 kB Fri Jan 4 22:12:38 2008 commencing Lanczos iteration Fri Jan 4 22:13:22 2008 lanczos halted after 1088 iterations (dim = 68733) Fri Jan 4 22:13:22 2008 recovered 15 nontrivial dependencies Fri Jan 4 22:13:23 2008 prp45 factor: 239837507703455294015342234963512005413275037 Fri Jan 4 22:13:23 2008 prp49 factor: 3200142279977988684517610934831971048558705274893 Fri Jan 4 22:13:23 2008 elapsed time 07:32:01 |
execution environment 実行環境 | Pentium 4 2.4GHz, Windows XP and Cygwin) |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | January 6, 2008 00:20:05 UTC 2008 年 1 月 6 日 (日) 9 時 20 分 5 秒 (日本時間) |
composite number 合成数 | 849436829589735592329176864706011392830693305217572069249710802758273465640411056591506419610722308940760472684753<114> |
prime factors 素因数 | 77865850690669784859431617592698851037196011<44> 10908977710449886619312815188508141739609220654946251183378377187561523<71> |
factorization results 素因数分解の結果 | Number: 70009_152 N=849436829589735592329176864706011392830693305217572069249710802758273465640411056591506419610722308940760472684753 ( 114 digits) SNFS difficulty: 152 digits. Divisors found: r1=77865850690669784859431617592698851037196011 (pp44) r2=10908977710449886619312815188508141739609220654946251183378377187561523 (pp71) Version: GGNFS-0.77.1-20050930-nocona Total time: 17.38 hours. Scaled time: 37.41 units (timescale=2.153). Factorization parameters were as follows: n: 849436829589735592329176864706011392830693305217572069249710802758273465640411056591506419610722308940760472684753 m: 1000000000000000000000000000000 c5: 700 c0: 9 skew: 0.42 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 2300001) Primes: RFBsize:176302, AFBsize:176233, largePrimes:5591809 encountered Relations: rels:5524453, finalFF:488152 Max relations in full relation-set: 28 Initial matrix: 352603 x 488152 with sparse part having weight 45172811. Pruned matrix : 301081 x 302908 with weight 25623922. Total sieving time: 16.80 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.45 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,152,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 17.38 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory for crash kernel (0x0 to 0x0) notwithin permissible range Memory: 8178280k/8912896k available (2434k kernel code, 208060k reserved, 1235k data, 192k init) Calibrating delay using timer specific routine.. 4812.90 BogoMIPS (lpj=2406450) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117) Calibrating delay using timer specific routine.. 4809.83 BogoMIPS (lpj=2404916) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117) |
execution environment 実行環境 | Core 2 Quad Q6600 |
name 名前 | Robert Backstrom |
---|---|
date 日付 | January 5, 2008 11:25:58 UTC 2008 年 1 月 5 日 (土) 20 時 25 分 58 秒 (日本時間) |
composite number 合成数 | 13724075773278342050547285092460654415713568410827990794169953053919762120614788358731584934625313917555196162381<113> |
prime factors 素因数 | 104956686158012241596645982785813<33> 130759423488435528873829580092903272449089541268530772072226531544627524905762137<81> |
factorization results 素因数分解の結果 | GMP-ECM 6.0.1 [powered by GMP 4.1.4] [ECM] Input number is 13724075773278342050547285092460654415713568410827990794169953053919762120614788358731584934625313917555196162381 (113 digits) Using B1=1260000, B2=1166963547, polynomial Dickson(6), sigma=161872807 Step 1 took 13266ms Step 2 took 7953ms ********** Factor found in step 2: 104956686158012241596645982785813 Found probable prime factor of 33 digits: 104956686158012241596645982785813 Probable prime cofactor 130759423488435528873829580092903272449089541268530772072226531544627524905762137 has 81 digits |
name 名前 | Robert Backstrom |
---|---|
date 日付 | January 6, 2008 05:10:28 UTC 2008 年 1 月 6 日 (日) 14 時 10 分 28 秒 (日本時間) |
composite number 合成数 | 9148268936726694531651576219628786925034862262185737873387878910253280521430132640027051308022147551977228490456289749680469055617015909332001<142> |
prime factors 素因数 | 643687030404506197051806584898109829074806677658713563<54> 14212293404416947433671925044120391584277610010545822637985641678790000790685720922856627<89> |
factorization results 素因数分解の結果 | Number: n N=9148268936726694531651576219628786925034862262185737873387878910253280521430132640027051308022147551977228490456289749680469055617015909332001 ( 142 digits) SNFS difficulty: 157 digits. Divisors found: Sun Jan 06 15:50:12 2008 prp54 factor: 643687030404506197051806584898109829074806677658713563 Sun Jan 06 15:50:12 2008 prp89 factor: 14212293404416947433671925044120391584277610010545822637985641678790000790685720922856627 Sun Jan 06 15:50:12 2008 elapsed time 00:47:37 (Msieve 1.32) Version: GGNFS-0.77.1-20051202-athlon Total time: 21.73 hours. Scaled time: 39.50 units (timescale=1.818). Factorization parameters were as follows: name: KA_7_0_156_9 n: 9148268936726694531651576219628786925034862262185737873387878910253280521430132640027051308022147551977228490456289749680469055617015909332001 skew: 0.42 deg: 5 c5: 700 c0: 9 m: 10000000000000000000000000000000 type: snfs rlim: 2800000 alim: 2800000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 1599990) Primes: RFBsize:203362, AFBsize:203497, largePrimes:7016855 encountered Relations: rels:6475989, finalFF:479308 Max relations in full relation-set: 28 Initial matrix: 406927 x 479308 with sparse part having weight 42290325. Pruned matrix : Total sieving time: 21.58 hours. Total relation processing time: 0.15 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,157,5,0,0,0,0,0,0,0,0,2800000,2800000,28,28,48,48,2.5,2.5,100000 total time: 21.73 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+ |
name 名前 | Robert Backstrom |
---|---|
date 日付 | January 7, 2008 00:01:12 UTC 2008 年 1 月 7 日 (月) 9 時 1 分 12 秒 (日本時間) |
composite number 合成数 | 220814126429987102417525345115212994015254781641465598720037588384391899194205728399759788601386125925513113788312586671462061961060563534993<141> |
prime factors 素因数 | 4231538071496958890327182029936342614194854003919814193922731887<64> 52182946885757635675346604057724856979445602984378050368353799424430749322239<77> |
factorization results 素因数分解の結果 | Number: n N=220814126429987102417525345115212994015254781641465598720037588384391899194205728399759788601386125925513113788312586671462061961060563534993 ( 141 digits) SNFS difficulty: 160 digits. Divisors found: Mon Jan 7 10:52:24 2008 prp64 factor: 4231538071496958890327182029936342614194854003919814193922731887 Mon Jan 7 10:52:24 2008 prp77 factor: 52182946885757635675346604057724856979445602984378050368353799424430749322239 Mon Jan 7 10:52:24 2008 elapsed time 00:47:28 (Msieve 1.32) Version: GGNFS-0.77.1-20050930-k8 Total time: 37.69 hours. Scaled time: 31.55 units (timescale=0.837). Factorization parameters were as follows: name: KA_7_0_158_9 n: 220814126429987102417525345115212994015254781641465598720037588384391899194205728399759788601386125925513113788312586671462061961060563534993 type: snfs deg: 5 c5: 7 c0: 90 skew: 1.66 m: 100000000000000000000000000000000 rlim: 3000000 alim: 3000000 lbpr: 28 lbpa: 28 mbpr: 48 mbpa: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved special-q in [100000, 3600000) Primes: RFBsize:216816, AFBsize:217356, largePrimes:5850727 encountered Relations: rels:5857858, finalFF:519585 Max relations in full relation-set: 28 Initial matrix: 434238 x 519585 with sparse part having weight 53804158. Pruned matrix : 399638 x 401873 with weight 39322056. Total sieving time: 37.57 hours. Total relation processing time: 0.12 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.5,2.5,100000 total time: 37.69 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM) Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6045.69 BogoMIPS (lpj=3022848) Total of 2 processors activated (12009.47 BogoMIPS). |
name 名前 | Sinkiti Sibata |
---|---|
date 日付 | January 8, 2008 21:17:17 UTC 2008 年 1 月 9 日 (水) 6 時 17 分 17 秒 (日本時間) |
composite number 合成数 | 797282146233441389637438465879864974174079631931857291117873335595617292138291581776356920378174414625935543749<111> |
prime factors 素因数 | 139490464604623382674750512013106688318266001541875221<54> 5715674892138940064628738708170977544099888345108701283569<58> |
factorization results 素因数分解の結果 | Number: 70009_161 N=797282146233441389637438465879864974174079631931857291117873335595617292138291581776356920378174414625935543749 ( 111 digits) SNFS difficulty: 161 digits. Divisors found: r1=139490464604623382674750512013106688318266001541875221 (pp54) r2=5715674892138940064628738708170977544099888345108701283569 (pp58) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 89.61 hours. Scaled time: 60.58 units (timescale=0.676). Factorization parameters were as follows: name: 70009_161 n: 797282146233441389637438465879864974174079631931857291117873335595617292138291581776356920378174414625935543749 m: 100000000000000000000000000000000 c5: 70 c0: 9 skew: 0.66 type: snfs Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2250000, 4350001) Primes: RFBsize:315948, AFBsize:316621, largePrimes:5728840 encountered Relations: rels:5815604, finalFF:721506 Max relations in full relation-set: 28 Initial matrix: 632637 x 721506 with sparse part having weight 43287861. Pruned matrix : 561950 x 565177 with weight 30874466. Total sieving time: 75.81 hours. Total relation processing time: 0.37 hours. Matrix solve time: 13.19 hours. Time per square root: 0.25 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,4500000,4500000,27,27,48,48,2.3,2.3,100000 total time: 89.61 hours. --------- CPU info (if available) ---------- |
execution environment 実行環境 | Pentium 4 2.4GHz, Windows XP and Cygwin) |
name 名前 | Robert Backstrom |
---|---|
date 日付 | January 4, 2008 19:47:31 UTC 2008 年 1 月 5 日 (土) 4 時 47 分 31 秒 (日本時間) |
composite number 合成数 | 7745599116559095048459787615672223949613771232623578267619301590392801461483901878750391429383926111410484664267006292746025124510505798687452903991085921931<157> |
prime factors 素因数 | 296777596371098420029084738265707<33> 26099002118993499083959038032360499646655560409399625783207929493736469419962227821932572864657403345682890557765228381684833<125> |
factorization results 素因数分解の結果 | GMP-ECM 6.0 [powered by GMP 4.1.4] [ECM] Input number is 7745599116559095048459787615672223949613771232623578267619301590392801461483901878750391429383926111410484664267006292746025124510505798687452903991085921931 (157 digits) Using B1=322000, B2=167041872, polynomial Dickson(3), sigma=4004011612 Step 1 took 3990ms Step 2 took 1865ms ********** Factor found in step 2: 296777596371098420029084738265707 Found probable prime factor of 33 digits: 296777596371098420029084738265707 Probable prime cofactor 26099002118993499083959038032360499646655560409399625783207929493736469419962227821932572864657403345682890557765228381684833 has 125 digits |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | January 7, 2008 10:58:05 UTC 2008 年 1 月 7 日 (月) 19 時 58 分 5 秒 (日本時間) |
composite number 合成数 | 17736220616750730441171459656279219097305026284234519209128657392107895275988306959156196633013809260456105154427871177<119> |
prime factors 素因数 | 18751242705828780547597219322844983<35> 945869076252608429463531219474556440073685963101828788499278956282259958157147275519<84> |
factorization results 素因数分解の結果 | Number: 70009_163 N=17736220616750730441171459656279219097305026284234519209128657392107895275988306959156196633013809260456105154427871177 ( 119 digits) Divisors found: r1=18751242705828780547597219322844983 (pp35) r2=945869076252608429463531219474556440073685963101828788499278956282259958157147275519 (pp84) Version: GGNFS-0.77.1-20050930-nocona Total time: 38.06 hours. Scaled time: 81.90 units (timescale=2.152). Factorization parameters were as follows: name: 70009_163 n: 17736220616750730441171459656279219097305026284234519209128657392107895275988306959156196633013809260456105154427871177 skew: 221395.86 # norm 1.00e+16 c5: 900 c4: -368936484 c3: -64515235009570 c2: -6637800111968368825 c1: 1003631229460161110538300 c0: 64280742149364474007670220864 # alpha -5.48 Y1: 2264490571433 Y0: -114531360207998065534985 # Murphy_E 3.62e-10 # M 13078825261663832417425027932008595424256843732315959701340945098020013622714623701968577018374575816455494749105625740 type: gnfs rlim: 4500000 alim: 4500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 75000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [2250000, 4125001) Primes: RFBsize:315948, AFBsize:315634, largePrimes:7634260 encountered Relations: rels:7677465, finalFF:728561 Max relations in full relation-set: 28 Initial matrix: 631658 x 728561 with sparse part having weight 60105103. Pruned matrix : 551454 x 554676 with weight 40275843. Polynomial selection time: 2.27 hours. Total sieving time: 33.75 hours. Total relation processing time: 0.15 hours. Matrix solve time: 1.72 hours. Time per square root: 0.17 hours. Prototype def-par.txt line would be: gnfs,118,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4500000,4500000,27,27,50,50,2.4,2.4,75000 total time: 38.06 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory for crash kernel (0x0 to 0x0) notwithin permissible range Memory: 8178280k/8912896k available (2434k kernel code, 208060k reserved, 1235k data, 192k init) Calibrating delay using timer specific routine.. 4812.90 BogoMIPS (lpj=2406450) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117) Calibrating delay using timer specific routine.. 4809.83 BogoMIPS (lpj=2404916) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117) |
execution environment 実行環境 | Core 2 Quad Q6600 |
name 名前 | Robert Backstrom |
---|---|
date 日付 | January 16, 2008 21:21:57 UTC 2008 年 1 月 17 日 (木) 6 時 21 分 57 秒 (日本時間) |
composite number 合成数 | 413701596371317891466218325717451870444516473623608643198379811850920699346023699901441617183278752045530834118946731942880940904318389213136733<144> |
prime factors 素因数 | 12939677343964955884740014469294611585657994552577<50> 31971554264779842589165734337945281912004539206121203124090877304667512724759902380130148456029<95> |
factorization results 素因数分解の結果 | Number: n N=413701596371317891466218325717451870444516473623608643198379811850920699346023699901441617183278752045530834118946731942880940904318389213136733 ( 144 digits) SNFS difficulty: 165 digits. Divisors found: Thu Jan 17 05:01:38 2008 prp50 factor: 12939677343964955884740014469294611585657994552577 Thu Jan 17 05:01:38 2008 prp95 factor: 31971554264779842589165734337945281912004539206121203124090877304667512724759902380130148456029 Thu Jan 17 05:01:38 2008 elapsed time 01:15:29 (Msieve 1.33) Version: GGNFS-0.77.1-20051202-athlon Total time: 50.52 hours. Scaled time: 92.41 units (timescale=1.829). Factorization parameters were as follows: name: KA_7_0_163_9 n: 413701596371317891466218325717451870444516473623608643198379811850920699346023699901441617183278752045530834118946731942880940904318389213136733 skew: 1.67 deg: 5 c5: 7 c0: 90 m: 1000000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 3200001) Primes: RFBsize:250150, AFBsize:250726, largePrimes:7700483 encountered Relations: rels:7192174, finalFF:570722 Max relations in full relation-set: 28 Initial matrix: 500942 x 570722 with sparse part having weight 52231117. Pruned matrix : Total sieving time: 50.35 hours. Total relation processing time: 0.18 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 50.52 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+ |
name 名前 | Robert Backstrom |
---|---|
date 日付 | January 7, 2008 15:30:19 UTC 2008 年 1 月 8 日 (火) 0 時 30 分 19 秒 (日本時間) |
composite number 合成数 | 3022556483630129261598847253569879921858042829617050352190156557137315012023902736896851269624585181616682870685916160325557846898137814787523960148613<151> |
prime factors 素因数 | 21801158658206841112555253752829902500472040092585365034962893355053<68> 138642011235137555584320880412798358499970719485097366270743949931671229392787022521<84> |
factorization results 素因数分解の結果 | Number: n N=3022556483630129261598847253569879921858042829617050352190156557137315012023902736896851269624585181616682870685916160325557846898137814787523960148613 ( 151 digits) SNFS difficulty: 166 digits. Divisors found: Tue Jan 08 02:23:48 2008 prp68 factor: 21801158658206841112555253752829902500472040092585365034962893355053 Tue Jan 08 02:23:48 2008 prp84 factor: 138642011235137555584320880412798358499970719485097366270743949931671229392787022521 Tue Jan 08 02:23:48 2008 elapsed time 01:22:44 (Msieve 1.32) Version: GGNFS-0.77.1-20051202-athlon Total time: 48.47 hours. Scaled time: 88.50 units (timescale=1.826). Factorization parameters were as follows: name: KA_7_0_165_9 n: 3022556483630129261598847253569879921858042829617050352190156557137315012023902736896851269624585181616682870685916160325557846898137814787523960148613 skew: 0.66 deg: 5 c5: 70 c0: 9 m: 1000000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 3200001) Primes: RFBsize:250150, AFBsize:250721, largePrimes:7669339 encountered Relations: rels:7156943, finalFF:567239 Max relations in full relation-set: 28 Initial matrix: 500939 x 567239 with sparse part having weight 51971046. Pruned matrix : Total sieving time: 48.24 hours. Total relation processing time: 0.23 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 48.47 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+ |
name 名前 | matsui |
---|---|
date 日付 | May 10, 2009 06:25:15 UTC 2009 年 5 月 10 日 (日) 15 時 25 分 15 秒 (日本時間) |
composite number 合成数 | 9054212878954652228888100592451098523536681789916597423465588315561167609163922756593556020840808722859548049818240407383034120643<130> |
prime factors 素因数 | 6790719988452911272645568689691193108538390322657<49> 1333321487905646787354335377158150700210766538153045388940264597308992314691236899<82> |
factorization results 素因数分解の結果 | N=9054212878954652228888100592451098523536681789916597423465588315561167609163922756593556020840808722859548049818240407383034120643 ( 130 digits) SNFS difficulty: 168 digits. Divisors found: r1=6790719988452911272645568689691193108538390322657 (pp49) r2=1333321487905646787354335377158150700210766538153045388940264597308992314691236899 (pp82) Version: GGNFS-0.77.1-20060722-nocona |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | January 3, 2008 09:00:00 UTC 2008 年 1 月 3 日 (木) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 904 | Jo Yeong Uk | July 24, 2008 07:52:33 UTC 2008 年 7 月 24 日 (木) 16 時 52 分 33 秒 (日本時間) |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | August 21, 2009 18:34:41 UTC 2009 年 8 月 22 日 (土) 3 時 34 分 41 秒 (日本時間) |
composite number 合成数 | 39173479488280698301566650872036774199426866136397189452808421112916404369440174985140115774837583709302975448240597911414597984769<131> |
prime factors 素因数 | 14895146820296515742340476222921748580100430093472165449145387<62> 2629949201635387234251242596490670534870085851462962353425228926560387<70> |
factorization results 素因数分解の結果 | Number: 70009_169 N=39173479488280698301566650872036774199426866136397189452808421112916404369440174985140115774837583709302975448240597911414597984769 ( 131 digits) SNFS difficulty: 170 digits. Divisors found: r1=14895146820296515742340476222921748580100430093472165449145387 r2=2629949201635387234251242596490670534870085851462962353425228926560387 Version: Total time: 34.98 hours. Scaled time: 83.07 units (timescale=2.375). Factorization parameters were as follows: n: 39173479488280698301566650872036774199426866136397189452808421112916404369440174985140115774837583709302975448240597911414597984769 m: 10000000000000000000000000000000000 deg: 5 c5: 7 c0: 90 skew: 1.67 type: snfs lss: 1 rlim: 5600000 alim: 5600000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5600000/5600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2800000, 5600001) Primes: rational ideals reading, algebraic ideals reading, Relations: 11269680 Max relations in full relation-set: Initial matrix: Pruned matrix : 925303 x 925551 Total sieving time: 32.31 hours. Total relation processing time: 0.81 hours. Matrix solve time: 1.77 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,5600000,5600000,27,27,52,52,2.4,2.4,100000 total time: 34.98 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673788) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672348) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672340) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672343) |
software ソフトウェア | GGNFS / Msieve v1.39 |
execution environment 実行環境 | Core 2 Quad Q6700 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | January 3, 2008 09:00:00 UTC 2008 年 1 月 3 日 (木) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 825 | Wataru Sakai | May 27, 2009 13:51:53 UTC 2009 年 5 月 27 日 (水) 22 時 51 分 53 秒 (日本時間) | |
40 | 3e6 | 2111 | Jo Yeong Uk | July 25, 2009 05:34:09 UTC 2009 年 7 月 25 日 (土) 14 時 34 分 9 秒 (日本時間) |
name 名前 | Robert Backstrom |
---|---|
date 日付 | July 1, 2008 05:39:55 UTC 2008 年 7 月 1 日 (火) 14 時 39 分 55 秒 (日本時間) |
composite number 合成数 | 962861072902338376891334250343878954607977991746905089408528198074277854195323246217331499312242090784044016506189821182943603851444291609353507565337001375515818431911967<171> |
prime factors 素因数 | 46703390984381129306990060832824441396119105760387<50> 803575513133626214041688443279256687479553115056384050651<57> 25655974804389045502754045805223424190216260512796697773191686191<65> |
factorization results 素因数分解の結果 | Number: n N=962861072902338376891334250343878954607977991746905089408528198074277854195323246217331499312242090784044016506189821182943603851444291609353507565337001375515818431911967 ( 171 digits) SNFS difficulty: 173 digits. Divisors found: Tue Jul 01 15:01:54 2008 prp50 factor: 46703390984381129306990060832824441396119105760387 Tue Jul 01 15:01:54 2008 prp57 factor: 803575513133626214041688443279256687479553115056384050651 Tue Jul 01 15:01:54 2008 prp65 factor: 25655974804389045502754045805223424190216260512796697773191686191 Tue Jul 01 15:01:54 2008 elapsed time 03:00:18 (Msieve 1.36) Version: GGNFS-0.77.1-20051202-athlon Total time: 143.54 hours. Scaled time: 262.54 units (timescale=1.829). Factorization parameters were as follows: name: KA_7_0_172_9 n: 962861072902338376891334250343878954607977991746905089408528198074277854195323246217331499312242090784044016506189821182943603851444291609353507565337001375515818431911967 skew: 0.26 deg: 5 c5: 7000 c0: 9 m: 10000000000000000000000000000000000 type: snfs rlim: 7200000 alim: 7200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 7200000/7200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 8200537) Primes: RFBsize:489319, AFBsize:488763, largePrimes:9369787 encountered Relations: rels:8949267, finalFF:985202 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 142.94 hours. Total relation processing time: 0.61 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,173,5,0,0,0,0,0,0,0,0,7200000,7200000,28,28,48,48,2.5,2.5,100000 total time: 143.54 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+ |
name 名前 | Serge Batalov |
---|---|
date 日付 | November 25, 2008 04:08:50 UTC 2008 年 11 月 25 日 (火) 13 時 8 分 50 秒 (日本時間) |
composite number 合成数 | 7955590246088851391043819919104341971364959624752412002636294080619743127047841835520737627867899331614503802191122075200152974690427<133> |
prime factors 素因数 | 1927956018365591441032402945607921<34> 4126437621140930568054372656781264192663859088452172703723803757169122245662645278492526385498425387<100> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3558391417 Step 1 took 12353ms Step 2 took 9712ms ********** Factor found in step 2: 1927956018365591441032402945607921 Found probable prime factor of 34 digits: 1927956018365591441032402945607921 Probable prime cofactor 4126437621140930568054372656781264192663859088452172703723803757169122245662645278492526385498425387 has 100 digits |
software ソフトウェア | GMP-ECM 6.2.1 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | January 3, 2008 09:00:00 UTC 2008 年 1 月 3 日 (木) 18 時 0 分 0 秒 (日本時間) |
name 名前 | Sinkiti Sibata |
---|---|
date 日付 | January 5, 2008 23:10:02 UTC 2008 年 1 月 6 日 (日) 8 時 10 分 2 秒 (日本時間) |
composite number 合成数 | 26897173819877028591110438652440673484340131396511460906841522339126291846561419391159526937917846026688166192869239<116> |
prime factors 素因数 | 13724946734647014417463514389532708012499306431<47> 1959728831003640657417517089713455927810208846008120710768293127210569<70> |
factorization results 素因数分解の結果 | Number: 70009_178 N=26897173819877028591110438652440673484340131396511460906841522339126291846561419391159526937917846026688166192869239 ( 116 digits) Divisors found: r1=13724946734647014417463514389532708012499306431 (pp47) r2=1959728831003640657417517089713455927810208846008120710768293127210569 (pp70) Version: GGNFS-0.77.1-20060513-k8 Total time: 46.23 hours. Scaled time: 92.32 units (timescale=1.997). Factorization parameters were as follows: name: 70009_178 n: 26897173819877028591110438652440673484340131396511460906841522339126291846561419391159526937917846026688166192869239 skew: 65128.70 # norm 2.59e+16 c5: 75240 c4: -13181039364 c3: -658562293775890 c2: 51710009653767333541 c1: 1420986165414594796991522 c0: -33687414893484683332845870465 # alpha -6.85 Y1: 2035177406489 Y0: -12901908954921655902182 # Murphy_E 4.88e-10 # M 8982289048165742481213259840673138009408130390316621262097418188889777156561626476495961720222603100592888454691430 type: gnfs rlim: 4500000 alim: 4500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 60000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [2250000, 3510001) Primes: RFBsize:315948, AFBsize:315985, largePrimes:7448433 encountered Relations: rels:7438490, finalFF:727459 Max relations in full relation-set: 28 Initial matrix: 632017 x 727459 with sparse part having weight 54906751. Pruned matrix : 548769 x 551993 with weight 34635393. Total sieving time: 42.35 hours. Total relation processing time: 0.31 hours. Matrix solve time: 3.15 hours. Time per square root: 0.41 hours. Prototype def-par.txt line would be: gnfs,115,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4500000,4500000,27,27,50,50,2.4,2.4,60000 total time: 46.23 hours. --------- CPU info (if available) ---------- |
execution environment 実行環境 | Core 2 Duo E6300 1.86GHz, Windows Vista) |
name 名前 | Wataru Sakai |
---|---|
date 日付 | February 8, 2009 05:18:48 UTC 2009 年 2 月 8 日 (日) 14 時 18 分 48 秒 (日本時間) |
composite number 合成数 | 1454771265274838504802719507838411489534063780913110045341063849287359513258473575015176381663813583116174084579985714146175001085882837294433026799172775493671433259354750753<175> |
prime factors 素因数 | 1161717801790034418750773470371703452693891867991269877836662145444170819572499<79> 1252258735325612009550476834654012397263074865238067762790885431533794609601067164264750550906747<97> |
factorization results 素因数分解の結果 | Number: 70009_180 N=1454771265274838504802719507838411489534063780913110045341063849287359513258473575015176381663813583116174084579985714146175001085882837294433026799172775493671433259354750753 ( 175 digits) SNFS difficulty: 180 digits. Divisors found: r1=1161717801790034418750773470371703452693891867991269877836662145444170819572499 r2=1252258735325612009550476834654012397263074865238067762790885431533794609601067164264750550906747 Version: Total time: 217.89 hours. Scaled time: 380.44 units (timescale=1.746). Factorization parameters were as follows: n: 1454771265274838504802719507838411489534063780913110045341063849287359513258473575015176381663813583116174084579985714146175001085882837294433026799172775493671433259354750753 m: 1000000000000000000000000000000000000 deg: 5 c5: 7 c0: 9 skew: 1.05 type: snfs lss: 1 rlim: 7200000 alim: 7200000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5Factor base limits: 7200000/7200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3600000, 5800001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 942311 x 942559 Total sieving time: 217.89 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,180,5,0,0,0,0,0,0,0,0,7200000,7200000,28,28,53,53,2.5,2.5,100000 total time: 217.89 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | January 3, 2008 09:00:00 UTC 2008 年 1 月 3 日 (木) 18 時 0 分 0 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | July 12, 2008 23:32:14 UTC 2008 年 7 月 13 日 (日) 8 時 32 分 14 秒 (日本時間) |
composite number 合成数 | 1280960293780191686627101267275639544655397765035451237747273514034825593102962944599931261620769895075959698994646135500853926881523242775994242017892827042201333748282723<172> |
prime factors 素因数 | 133818982259225767835521221337<30> |
composite cofactor 合成数の残り | 9572336242243985044301236538042107107618534026530064456879616370843986823511954236728268510314492217680175701229960850902545463856024173108379<142> |
factorization results 素因数分解の結果 | Using B1=2000000, B2=14266909030, polynomial Dickson(12), sigma=1992546363 Step 1 took 16492ms Step 2 took 19942ms ********** Factor found in step 2: 133818982259225767835521221337 Found probable prime factor of 30 digits: 133818982259225767835521221337 Composite cofactor 9572336242243985044301236538042107107618534026530064456879616370843986823511954236728268510314492217680175701229960850902545463856024173108379 has 142 digits |
software ソフトウェア | GMP-ECM 6.2.1 |
execution environment 実行環境 | Linux x86_64 |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | April 29, 2014 12:45:23 UTC 2014 年 4 月 29 日 (火) 21 時 45 分 23 秒 (日本時間) |
composite number 合成数 | 9572336242243985044301236538042107107618534026530064456879616370843986823511954236728268510314492217680175701229960850902545463856024173108379<142> |
prime factors 素因数 | 13214865621025845082848623280537933590284273<44> 724361224454199379440128440125992163708369782380051341613073328396889213781158264106704866584123723<99> |
factorization results 素因数分解の結果 | GMP-ECM 6.4.4 [configured with GMP 6.0.0, --enable-asm-redc] [ECM] Input number is 9572336242243985044301236538042107107618534026530064456879616370843986823511954236728268510314492217680175701229960850902545463856024173108379 (142 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=8090215246 Step 1 took 24554ms Step 2 took 8575ms ********** Factor found in step 2: 13214865621025845082848623280537933590284273 Found probable prime factor of 44 digits: 13214865621025845082848623280537933590284273 Probable prime cofactor 724361224454199379440128440125992163708369782380051341613073328396889213781158264106704866584123723 has 99 digits |
execution environment 実行環境 | Core i7-4930K |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | January 3, 2008 09:00:00 UTC 2008 年 1 月 3 日 (木) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 300 | Ignacio Santos | November 6, 2010 04:50:43 UTC 2010 年 11 月 6 日 (土) 13 時 50 分 43 秒 (日本時間) | |
40 | 3e6 | 110 | Ignacio Santos | November 6, 2010 04:50:43 UTC 2010 年 11 月 6 日 (土) 13 時 50 分 43 秒 (日本時間) | |
45 | 11e6 | 1572 / 4104 | 32 | Ignacio Santos | November 6, 2010 04:50:43 UTC 2010 年 11 月 6 日 (土) 13 時 50 分 43 秒 (日本時間) |
230 | Ignacio Santos | October 19, 2013 20:37:08 UTC 2013 年 10 月 20 日 (日) 5 時 37 分 8 秒 (日本時間) | |||
230 | Ignacio Santos | October 20, 2013 12:47:43 UTC 2013 年 10 月 20 日 (日) 21 時 47 分 43 秒 (日本時間) | |||
230 | Ignacio Santos | October 20, 2013 22:03:19 UTC 2013 年 10 月 21 日 (月) 7 時 3 分 19 秒 (日本時間) | |||
850 | Serge Batalov | November 8, 2013 17:06:30 UTC 2013 年 11 月 9 日 (土) 2 時 6 分 30 秒 (日本時間) | |||
50 | 43e6 | 96 / 7195 | Youcef Lemsafer | January 3, 2014 16:31:27 UTC 2014 年 1 月 4 日 (土) 1 時 31 分 27 秒 (日本時間) |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | October 9, 2014 06:15:35 UTC 2014 年 10 月 9 日 (木) 15 時 15 分 35 秒 (日本時間) |
composite number 合成数 | 46311230336433526367480938361232001196087734687381240915762130609396672331449325702347703143080352239448334328381714872342918701248586124012299<143> |
prime factors 素因数 | 6226948870897014750254616144888930511934539593221295631<55> 7437226689443207894215947465210640762035529884807643889746758266570488755348062040969029<88> |
factorization results 素因数分解の結果 | Number: 70009_185 N=46311230336433526367480938361232001196087734687381240915762130609396672331449325702347703143080352239448334328381714872342918701248586124012299 ( 143 digits) SNFS difficulty: 185 digits. Divisors found: r1=6226948870897014750254616144888930511934539593221295631 r2=7437226689443207894215947465210640762035529884807643889746758266570488755348062040969029 Version: Total time: 65.14 hours. Scaled time: 342.64 units (timescale=5.260). Factorization parameters were as follows: n: 46311230336433526367480938361232001196087734687381240915762130609396672331449325702347703143080352239448334328381714872342918701248586124012299 m: 10000000000000000000000000000000000000 deg: 5 c5: 7 c0: 9 skew: 1.05 # Murphy_E = 7.244e-11 type: snfs lss: 1 rlim: 8400000 alim: 8400000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 8400000/8400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [4200000, 7100001) Primes: rational ideals reading, algebraic ideals reading, Relations: 19855189 Max relations in full relation-set: Initial matrix: Pruned matrix : 1710210 x 1710458 Total sieving time: 59.43 hours. Total relation processing time: 1.47 hours. Matrix solve time: 3.77 hours. Time per square root: 0.47 hours. Prototype def-par.txt line would be: snfs,185,5,0,0,0,0,0,0,0,0,8400000,8400000,28,28,54,54,2.5,2.5,100000 total time: 65.14 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM) i7-4930K CPU @ 3.40GHz stepping 04 Memory: 49373664k/51380224k available (5220k kernel code, 1086460k absent, 920100k reserved, 7121k data, 1264k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 6799.70 BogoMIPS (lpj=3399852) Total of 12 processors activated (81596.44 BogoMIPS). |
software ソフトウェア | GGNFS / Msieve v1.39 |
execution environment 実行環境 | Core i7-4930K |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | January 3, 2008 09:00:00 UTC 2008 年 1 月 3 日 (木) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 300 | Ignacio Santos | November 6, 2010 04:51:10 UTC 2010 年 11 月 6 日 (土) 13 時 51 分 10 秒 (日本時間) | |
40 | 3e6 | 1910 | 110 | Ignacio Santos | November 6, 2010 04:51:10 UTC 2010 年 11 月 6 日 (土) 13 時 51 分 10 秒 (日本時間) |
1800 | Youcef Lemsafer | January 3, 2014 22:08:58 UTC 2014 年 1 月 4 日 (土) 7 時 8 分 58 秒 (日本時間) | |||
45 | 11e6 | 622 / 4043 | 32 | Ignacio Santos | November 6, 2010 04:51:10 UTC 2010 年 11 月 6 日 (土) 13 時 51 分 10 秒 (日本時間) |
590 | Youcef Lemsafer | January 4, 2014 03:35:42 UTC 2014 年 1 月 4 日 (土) 12 時 35 分 42 秒 (日本時間) |
name 名前 | Erik Branger |
---|---|
date 日付 | January 24, 2017 12:34:26 UTC 2017 年 1 月 24 日 (火) 21 時 34 分 26 秒 (日本時間) |
composite number 合成数 | 4018382732831026028734171990955267430287395278693625779502768993304712225782232884974215486767459406455038617824999261858746781983801626605141512076515938127060403651<166> |
prime factors 素因数 | 315900163684744874477268938933266937598119304608097157297190535189644975009<75> 12720419913555991712888486982641819432280759769248922538842247908857705164883938974958208739<92> |
factorization results 素因数分解の結果 | Number: 70009_186 N = 4018382732831026028734171990955267430287395278693625779502768993304712225782232884974215486767459406455038617824999261858746781983801626605141512076515938127060403651 (166 digits) SNFS difficulty: 187 digits. Divisors found: r1=315900163684744874477268938933266937598119304608097157297190535189644975009 (pp75) r2=12720419913555991712888486982641819432280759769248922538842247908857705164883938974958208739 (pp92) Version: Msieve v. 1.51 (SVN 845) Total time: 150.45 hours. Factorization parameters were as follows: n: 4018382732831026028734171990955267430287395278693625779502768993304712225782232884974215486767459406455038617824999261858746781983801626605141512076515938127060403651 m: 10000000000000000000000000000000000000 deg: 5 c5: 70 c0: 9 skew: 0.66 # Murphy_E = 6.203e-11 type: snfs lss: 1 rlim: 9100000 alim: 9100000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 9100000/9100000 Large primes per side: 3 Large prime bits: 28/28 Sieved rational special-q in [0, 0) Total raw relations: 23144493 Relations: 2405066 relations Pruned matrix : 1548237 x 1548462 Polynomial selection time: 0.00 hours. Total sieving time: 147.91 hours. Total relation processing time: 0.14 hours. Matrix solve time: 2.27 hours. time per square root: 0.13 hours. Prototype def-par.txt line would be: snfs,187,5,0,0,0,0,0,0,0,0,9100000,9100000,28,28,54,54,2.5,2.5,100000 total time: 150.45 hours. Intel64 Family 6 Model 58 Stepping 9, GenuineIntel Windows-post2008Server-6.2.9200 processors: 8, speed: 2.29GHz |
software ソフトウェア | GGNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | January 3, 2008 09:00:00 UTC 2008 年 1 月 3 日 (木) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 300 | Ignacio Santos | November 6, 2010 04:51:34 UTC 2010 年 11 月 6 日 (土) 13 時 51 分 34 秒 (日本時間) | |
40 | 3e6 | 1910 | 110 | Ignacio Santos | November 6, 2010 04:51:34 UTC 2010 年 11 月 6 日 (土) 13 時 51 分 34 秒 (日本時間) |
1800 | Youcef Lemsafer | January 4, 2014 08:17:10 UTC 2014 年 1 月 4 日 (土) 17 時 17 分 10 秒 (日本時間) | |||
45 | 11e6 | 622 / 4043 | 32 | Ignacio Santos | November 6, 2010 04:51:34 UTC 2010 年 11 月 6 日 (土) 13 時 51 分 34 秒 (日本時間) |
590 | Youcef Lemsafer | January 4, 2014 11:39:54 UTC 2014 年 1 月 4 日 (土) 20 時 39 分 54 秒 (日本時間) |
name 名前 | Wataru Sakai |
---|---|
date 日付 | October 18, 2008 08:00:30 UTC 2008 年 10 月 18 日 (土) 17 時 0 分 30 秒 (日本時間) |
composite number 合成数 | 85900110442999140998895570008590011044299914099889557000859001104429991409988955700085900110442999140998895570008590011044299914099889557000859001104429991409988955700085900110442999141<185> |
prime factors 素因数 | 390755155423951786421642709723832482956478913627<48> 219831035497922940488479509910463429809878109532808903912313282503371748866596450007079463861910551465289953658044366335149641788862040383<138> |
factorization results 素因数分解の結果 | Number: 70009_188 N=85900110442999140998895570008590011044299914099889557000859001104429991409988955700085900110442999140998895570008590011044299914099889557000859001104429991409988955700085900110442999141 ( 185 digits) SNFS difficulty: 188 digits. Divisors found: r1=390755155423951786421642709723832482956478913627 (pp48) r2=219831035497922940488479509910463429809878109532808903912313282503371748866596450007079463861910551465289953658044366335149641788862040383 (pp138) Version: GGNFS-0.77.1-20060722-nocona Total time: 1450.14 hours. Scaled time: 2891.58 units (timescale=1.994). Factorization parameters were as follows: n: 85900110442999140998895570008590011044299914099889557000859001104429991409988955700085900110442999140998895570008590011044299914099889557000859001104429991409988955700085900110442999141 m: 10000000000000000000000000000000000000 c5: 7000 c0: 9 skew: 0.26 type: snfsFactor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 24600001) Primes: RFBsize:501962, AFBsize:501336, largePrimes:7487189 encountered Relations: rels:8168947, finalFF:1186873 Max relations in full relation-set: 32 Initial matrix: 1003366 x 1186873 with sparse part having weight 161157006. Pruned matrix : 876731 x 881811 with weight 145912668. Total sieving time: 1436.68 hours. Total relation processing time: 0.20 hours. Matrix solve time: 12.95 hours. Time per square root: 0.31 hours. Prototype def-par.txt line would be: snfs,188,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 1450.14 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | January 3, 2008 09:00:00 UTC 2008 年 1 月 3 日 (木) 18 時 0 分 0 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | November 6, 2010 04:48:35 UTC 2010 年 11 月 6 日 (土) 13 時 48 分 35 秒 (日本時間) |
composite number 合成数 | 247127593929643442784925204240216658917398032080539142529224922476957177159295498804261399975905643519060278085976030109847180496059190981211806763031631969956356494355862401948831<180> |
prime factors 素因数 | 2927496542390393545039100405013873875990737<43> |
composite cofactor 合成数の残り | 84416015647231454587428286993638318425328756265845466080626519601594745207305504047619318891173939837046673824725804636107440032597105263<137> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=2953621787 Step 1 took 100527ms Step 2 took 45661ms ********** Factor found in step 2: 2927496542390393545039100405013873875990737 Found probable prime factor of 43 digits: 2927496542390393545039100405013873875990737 Composite cofactor 84416015647231454587428286993638318425328756265845466080626519601594745207305504047619318891173939837046673824725804636107440032597105263 has 137 digits |
software ソフトウェア | GMP-ECM 6.3 |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | February 22, 2019 11:37:24 UTC 2019 年 2 月 22 日 (金) 20 時 37 分 24 秒 (日本時間) |
composite number 合成数 | 84416015647231454587428286993638318425328756265845466080626519601594745207305504047619318891173939837046673824725804636107440032597105263<137> |
prime factors 素因数 | 92395453258952757747894839893424342277180056322275209<53> 913638200471210666520399982328575328819892169827426647111007849466561325954281393207<84> |
factorization results 素因数分解の結果 | 56893 * 4978723 * 2927496542390393545039100405013873875990737 * 92395453258952757747894839893424342277180056322275209 * 913638200471210666520399982328575328819892169827426647111007849466561325954281393207 [32;1mInfo[0m:root: Using default parameter file ./parameters/factor/params.c135 [32;1mInfo[0m:root: No database exists yet [32;1mInfo[0m:root: Created temporary directory /tmp/cado.2du2886j [32;1mInfo[0m:Database: Opened connection to database /tmp/cado.2du2886j/c135.db [32;1mInfo[0m:root: Set tasks.threads=12 based on detected logical cpus [32;1mInfo[0m:root: tasks.polyselect.threads = 2 [32;1mInfo[0m:root: tasks.sieve.las.threads = 2 [32;1mInfo[0m:root: slaves.scriptpath is /home/ng/cado-nfs-2.3.0 [32;1mInfo[0m:root: Command line parameters: ./cado-nfs.py 84416015647231454587428286993638318425328756265845466080626519601594745207305504047619318891173939837046673824725804636107440032597105263 [32;1mInfo[0m:root: If this computation gets interrupted, it can be resumed with ./cado-nfs.py /tmp/cado.2du2886j/c135.parameters_snapshot.0 [32;1mInfo[0m:Server Launcher: Adding ng-All-Series to whitelist to allow clients on localhost to connect [32;1mInfo[0m:HTTP server: Using non-threaded HTTPS server [32;1mInfo[0m:HTTP server: Using whitelist: localhost,ng-All-Series [32;1mInfo[0m:Complete Factorization: Factoring 84416015647231454587428286993638318425328756265845466080626519601594745207305504047619318891173939837046673824725804636107440032597105263 [32;1mInfo[0m:HTTP server: serving at https://ng-All-Series:37529 (0.0.0.0) [32;1mInfo[0m:HTTP server: For debugging purposes, the URL above can be accessed if the server.only_registered=False parameter is added [32;1mInfo[0m:HTTP server: You can start additional cado-nfs-client.py scripts with parameters: --server=https://ng-All-Series:37529 --certsha1=e76a60ea80251852ce06d3a89c6ff7f7ea5d98da [32;1mInfo[0m:HTTP server: If you want to start additional clients, remember to add their hosts to server.whitelist [32;1mInfo[0m:Client Launcher: Starting client id localhost on host localhost [32;1mInfo[0m:Client Launcher: Starting client id localhost+2 on host localhost [32;1mInfo[0m:Client Launcher: Starting client id localhost+3 on host localhost [32;1mInfo[0m:Client Launcher: Starting client id localhost+4 on host localhost [32;1mInfo[0m:Client Launcher: Starting client id localhost+5 on host localhost [32;1mInfo[0m:Client Launcher: Starting client id localhost+6 on host localhost [32;1mInfo[0m:Client Launcher: Running clients: localhost (Host localhost, PID 9552), localhost+2 (Host localhost, PID 9555), localhost+3 (Host localhost, PID 9558), localhost+4 (Host localhost, PID 9561), localhost+5 (Host localhost, PID 9564), localhost+6 (Host localhost, PID 9567) [32;1mInfo[0m:Polynomial Selection (size optimized): Starting [32;1mInfo[0m:Polynomial Selection (size optimized): 0 polynomials in queue from previous run [32;1mInfo[0m:Polynomial Selection (size optimized): Adding workunit c135_polyselect1_0-2000 to database [32;1mInfo[0m:Polynomial Selection (size optimized): Adding workunit c135_polyselect1_2000-4000 to database [32;1mInfo[0m:Polynomial Selection (size optimized): Adding workunit c135_polyselect1_4000-6000 to database [32;1mInfo[0m:Polynomial Selection (size optimized): Adding workunit c135_polyselect1_6000-8000 to database [32;1mInfo[0m:Polynomial Selection (size optimized): Adding workunit c135_polyselect1_8000-10000 to database [32;1mInfo[0m:Polynomial Selection (size optimized): Adding workunit c135_polyselect1_10000-12000 to database [32;1mInfo[0m:Polynomial Selection (size optimized): Adding workunit c135_polyselect1_12000-14000 to database [32;1mInfo[0m:Polynomial Selection (size optimized): Adding workunit c135_polyselect1_14000-16000 to database [32;1mInfo[0m:Polynomial Selection (size optimized): Adding workunit c135_polyselect1_16000-18000 to database [32;1mInfo[0m:Polynomial Selection (size optimized): Adding workunit c135_polyselect1_18000-20000 to database [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c135_polyselect1_0-2000 to client localhost [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c135_polyselect1_2000-4000 to client localhost+2 [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c135_polyselect1_4000-6000 to client localhost+3 [33;1mWarning[0m:HTTP server: 127.0.0.1 Connection error: [Errno 104] Connection reset by peer [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c135_polyselect1_6000-8000 to client localhost+4 [33;1mWarning[0m:HTTP server: 127.0.0.1 Connection error: [Errno 104] Connection reset by peer [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c135_polyselect1_8000-10000 to client localhost+5 [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c135_polyselect1_10000-12000 to client localhost+6 [32;1mInfo[0m:Polynomial Selection (size optimized): Adding workunit c135_polyselect1_20000-22000 to database [32;1mInfo[0m:Polynomial Selection (size optimized): Adding workunit c135_polyselect1_22000-24000 to database [32;1mInfo[0m:Polynomial Selection (size optimized): Adding workunit c135_polyselect1_24000-26000 to database [32;1mInfo[0m:Polynomial Selection (size optimized): Adding workunit c135_polyselect1_26000-28000 to database [32;1mInfo[0m:Polynomial Selection (size optimized): Adding workunit c135_polyselect1_28000-30000 to database [32;1mInfo[0m:Polynomial Selection (size optimized): Adding workunit c135_polyselect1_30000-32000 to database [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c135_polyselect1_12000-14000 to client localhost+4 [32;1mInfo[0m:Polynomial Selection (size optimized): Adding workunit c135_polyselect1_32000-34000 to database [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c135_polyselect1_14000-16000 to client localhost [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c135_polyselect1_16000-18000 to client localhost+6 [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c135_polyselect1_18000-20000 to client localhost+2 [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c135_polyselect1_20000-22000 to client localhost+5 [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c135_polyselect1_22000-24000 to client localhost+3 [32;1mInfo[0m:Polynomial Selection (size optimized): Parsed 381 polynomials, added 238 to priority queue (has 100) [32;1mInfo[0m:Polynomial Selection (size optimized): Worst polynomial in queue now has lognorm 38.450000 [32;1mInfo[0m:Polynomial Selection (size optimized): Marking workunit c135_polyselect1_6000-8000 as ok (1.0% => ETA Unknown) [32;1mInfo[0m:Polynomial Selection (size optimized): Adding workunit c135_polyselect1_34000-36000 to database [32;1mInfo[0m:Polynomial Selection (size optimized): Adding workunit c135_polyselect1_36000-38000 to database [32;1mInfo[0m:Polynomial Selection (size optimized): Adding workunit c135_polyselect1_38000-40000 to database [32;1mInfo[0m:Polynomial Selection (size optimized): Adding workunit c135_polyselect1_40000-42000 to database [32;1mInfo[0m:Polynomial Selection (size optimized): Adding workunit c135_polyselect1_42000-44000 to database [32;1mInfo[0m:Polynomial Selection (size optimized): Parsed 370 polynomials, added 81 to priority queue (has 100) [32;1mInfo[0m:Polynomial Selection (size optimized): Worst polynomial in queue now has lognorm 37.950000 [32;1mInfo[0m:Polynomial Selection (size optimized): Marking workunit c135_polyselect1_0-2000 as ok (2.0% => ETA Wed Feb 20 19:53:59 2019) [32;1mInfo[0m:Polynomial Selection (size optimized): Parsed 358 polynomials, added 39 to priority queue (has 100) [32;1mInfo[0m:Polynomial Selection (size optimized): Worst polynomial in queue now has lognorm 37.820000 [32;1mInfo[0m:Polynomial Selection (size optimized): Marking workunit c135_polyselect1_2000-4000 as ok (3.0% => ETA Wed Feb 20 19:10:23 2019) [32;1mInfo[0m:Polynomial Selection (size optimized): Parsed 326 polynomials, added 11 to priority queue (has 100) [32;1mInfo[0m:Polynomial Selection (size optimized): Worst polynomial in queue now has lognorm 37.760000 [32;1mInfo[0m:Polynomial Selection (size optimized): Marking workunit c135_polyselect1_4000-6000 as ok (4.0% => ETA Wed Feb 20 18:55:41 2019) [32;1mInfo[0m:Polynomial Selection (size optimized): Parsed 378 polynomials, added 18 to priority queue (has 100) [32;1mInfo[0m:Polynomial Selection (size optimized): Worst polynomial in queue now has lognorm 37.700000 [32;1mInfo[0m:Polynomial Selection (size optimized): Marking workunit c135_polyselect1_8000-10000 as ok (5.0% => ETA Wed Feb 20 18:48:23 2019) [32;1mInfo[0m:Polynomial Selection (size optimized): Parsed 398 polynomials, added 14 to priority queue (has 100) [32;1mInfo[0m:Polynomial Selection (size optimized): Worst polynomial in queue now has lognorm 37.630000 [32;1mInfo[0m:Polynomial Selection (size optimized): Marking workunit c135_polyselect1_10000-12000 as ok (6.0% => ETA Wed Feb 20 18:43:59 2019) [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c135_polyselect1_24000-26000 to client localhost+4 [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c135_polyselect1_26000-28000 to client localhost+5 [32;1mInfo[0m:Polynomial Selection (size optimized): Adding workunit c135_polyselect1_44000-46000 to database [32;1mInfo[0m:Polynomial Selection (size optimized): Adding workunit c135_polyselect1_46000-48000 to database [32;1mInfo[0m:Polynomial Selection (size optimized): Parsed 386 polynomials, added 13 to priority queue (has 100) [32;1mInfo[0m:Polynomial Selection (size optimized): Worst polynomial in queue now has lognorm 37.580000 [32;1mInfo[0m:Polynomial Selection (size optimized): Marking workunit c135_polyselect1_12000-14000 as ok (7.0% => ETA Wed Feb 20 18:54:00 2019) [32;1mInfo[0m:Polynomial Selection (size optimized): Parsed 355 polynomials, added 8 to priority queue (has 100) [32;1mInfo[0m:Polynomial Selection (size optimized): Worst polynomial in queue now has lognorm 37.560000 ... EJ: many quasi-identical lines... [32;1mInfo[0m:Polynomial Selection (size optimized): Worst polynomial in queue now has lognorm 36.870000 [32;1mInfo[0m:Polynomial Selection (size optimized): Marking workunit c135_polyselect1_198000-200000 as ok (100.0% => ETA Wed Feb 20 18:47:45 2019) [32;1mInfo[0m:Polynomial Selection (size optimized): Finished [32;1mInfo[0m:Polynomial Selection (size optimized): Aggregate statistics: [32;1mInfo[0m:Polynomial Selection (size optimized): potential collisions: 35600.4 [32;1mInfo[0m:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 36311/40.230/49.241/53.820/0.951 [32;1mInfo[0m:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 36311/38.630/44.363/49.970/1.528 [32;1mInfo[0m:Polynomial Selection (size optimized): Total time: 15036 [32;1mInfo[0m:Polynomial Selection (root optimized): Starting [32;1mInfo[0m:Polynomial Selection (root optimized): No polynomial was previously found [32;1mInfo[0m:Polynomial Selection (root optimized): Adding workunit c135_polyselect2_0 to database [32;1mInfo[0m:Polynomial Selection (root optimized): Adding workunit c135_polyselect2_6 to database [32;1mInfo[0m:Polynomial Selection (root optimized): Adding workunit c135_polyselect2_12 to database [32;1mInfo[0m:Polynomial Selection (root optimized): Adding workunit c135_polyselect2_18 to database [32;1mInfo[0m:Polynomial Selection (root optimized): Adding workunit c135_polyselect2_24 to database [32;1mInfo[0m:Polynomial Selection (root optimized): Adding workunit c135_polyselect2_30 to database [32;1mInfo[0m:Polynomial Selection (root optimized): Adding workunit c135_polyselect2_36 to database [32;1mInfo[0m:Polynomial Selection (root optimized): Adding workunit c135_polyselect2_42 to database [32;1mInfo[0m:Polynomial Selection (root optimized): Adding workunit c135_polyselect2_48 to database [32;1mInfo[0m:Polynomial Selection (root optimized): Adding workunit c135_polyselect2_54 to database [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c135_polyselect2_0 to client localhost [32;1mInfo[0m:Polynomial Selection (root optimized): Adding workunit c135_polyselect2_60 to database [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c135_polyselect2_6 to client localhost+3 [32;1mInfo[0m:Polynomial Selection (root optimized): Adding workunit c135_polyselect2_66 to database [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c135_polyselect2_12 to client localhost+4 [32;1mInfo[0m:Polynomial Selection (root optimized): Adding workunit c135_polyselect2_72 to database [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c135_polyselect2_18 to client localhost+6 [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c135_polyselect2_24 to client localhost+2 [32;1mInfo[0m:Polynomial Selection (root optimized): Adding workunit c135_polyselect2_78 to database [32;1mInfo[0m:Polynomial Selection (root optimized): Adding workunit c135_polyselect2_84 to database [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c135_polyselect2_30 to client localhost+5 [32;1mInfo[0m:Polynomial Selection (root optimized): Adding workunit c135_polyselect2_90 to database [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c135_polyselect2_36 to client localhost+6 [32;1mInfo[0m:Polynomial Selection (root optimized): Adding workunit c135_polyselect2_96 to database [32;1mInfo[0m:Polynomial Selection (root optimized): New best polynomial from file /tmp/cado.2du2886j/c135.upload/c135.polyselect2.dnq4go6g.opt_18: Murphy E = 2.38e-10 [32;1mInfo[0m:Polynomial Selection (root optimized): Marking workunit c135_polyselect2_18 as ok (4.0% => ETA Unknown) [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c135_polyselect2_42 to client localhost+3 [32;1mInfo[0m:Polynomial Selection (root optimized): New best polynomial from file /tmp/cado.2du2886j/c135.upload/c135.polyselect2.w46ngwv5.opt_6: Murphy E = 2.41e-10 [32;1mInfo[0m:Polynomial Selection (root optimized): Marking workunit c135_polyselect2_6 as ok (10.0% => ETA Wed Feb 20 19:58:40 2019) [32;1mInfo[0m:Polynomial Selection (root optimized): Best polynomial from file /tmp/cado.2du2886j/c135.upload/c135.polyselect2.ni49vs2u.opt_30 with E=2.26e-10 is no better than current best with E=2.41e-10 [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c135_polyselect2_48 to client localhost+5 [32;1mInfo[0m:Polynomial Selection (root optimized): Marking workunit c135_polyselect2_30 as ok (16.0% => ETA Wed Feb 20 19:23:37 2019) [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c135_polyselect2_54 to client localhost+2 [32;1mInfo[0m:Polynomial Selection (root optimized): New best polynomial from file /tmp/cado.2du2886j/c135.upload/c135.polyselect2.1dwu4m9y.opt_24: Murphy E = 2.51e-10 [32;1mInfo[0m:Polynomial Selection (root optimized): Marking workunit c135_polyselect2_24 as ok (22.0% => ETA Wed Feb 20 19:12:49 2019) [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c135_polyselect2_60 to client localhost+4 [32;1mInfo[0m:Polynomial Selection (root optimized): Best polynomial from file /tmp/cado.2du2886j/c135.upload/c135.polyselect2.4z_pvx1y.opt_12 with E=2.28e-10 is no better than current best with E=2.51e-10 [32;1mInfo[0m:Polynomial Selection (root optimized): Marking workunit c135_polyselect2_12 as ok (28.0% => ETA Wed Feb 20 19:08:58 2019) [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c135_polyselect2_66 to client localhost [32;1mInfo[0m:Polynomial Selection (root optimized): Best polynomial from file /tmp/cado.2du2886j/c135.upload/c135.polyselect2.g43i_yd_.opt_0 with E=2.22e-10 is no better than current best with E=2.51e-10 [32;1mInfo[0m:Polynomial Selection (root optimized): Marking workunit c135_polyselect2_0 as ok (34.0% => ETA Wed Feb 20 19:06:35 2019) [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c135_polyselect2_72 to client localhost+5 [32;1mInfo[0m:Polynomial Selection (root optimized): Best polynomial from file /tmp/cado.2du2886j/c135.upload/c135.polyselect2.z3e4wrky.opt_48 with E=2.48e-10 is no better than current best with E=2.51e-10 [32;1mInfo[0m:Polynomial Selection (root optimized): Marking workunit c135_polyselect2_48 as ok (40.0% => ETA Wed Feb 20 19:04:05 2019) [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c135_polyselect2_78 to client localhost+3 [32;1mInfo[0m:Polynomial Selection (root optimized): Best polynomial from file /tmp/cado.2du2886j/c135.upload/c135.polyselect2.jyk2vqe8.opt_42 with E=2.17e-10 is no better than current best with E=2.51e-10 [32;1mInfo[0m:Polynomial Selection (root optimized): Marking workunit c135_polyselect2_42 as ok (46.0% => ETA Wed Feb 20 19:05:38 2019) [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c135_polyselect2_84 to client localhost+4 [32;1mInfo[0m:Polynomial Selection (root optimized): Best polynomial from file /tmp/cado.2du2886j/c135.upload/c135.polyselect2.xu6b03vp.opt_60 with E=2.41e-10 is no better than current best with E=2.51e-10 [32;1mInfo[0m:Polynomial Selection (root optimized): Marking workunit c135_polyselect2_60 as ok (52.0% => ETA Wed Feb 20 19:03:44 2019) [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c135_polyselect2_90 to client localhost+6 [32;1mInfo[0m:Polynomial Selection (root optimized): Best polynomial from file /tmp/cado.2du2886j/c135.upload/c135.polyselect2.m5818lt1.opt_36 with E=2.41e-10 is no better than current best with E=2.51e-10 [32;1mInfo[0m:Polynomial Selection (root optimized): Marking workunit c135_polyselect2_36 as ok (58.0% => ETA Wed Feb 20 19:02:17 2019) [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c135_polyselect2_96 to client localhost+2 [32;1mInfo[0m:Polynomial Selection (root optimized): Best polynomial from file /tmp/cado.2du2886j/c135.upload/c135.polyselect2.lxchh9vq.opt_54 with E=2.44e-10 is no better than current best with E=2.51e-10 [32;1mInfo[0m:Polynomial Selection (root optimized): Marking workunit c135_polyselect2_54 as ok (64.0% => ETA Wed Feb 20 19:03:58 2019) [32;1mInfo[0m:Polynomial Selection (root optimized): New best polynomial from file /tmp/cado.2du2886j/c135.upload/c135.polyselect2.isrm956x.opt_66: Murphy E = 2.67e-10 [32;1mInfo[0m:Polynomial Selection (root optimized): Marking workunit c135_polyselect2_66 as ok (70.0% => ETA Wed Feb 20 19:03:38 2019) [32;1mInfo[0m:Polynomial Selection (root optimized): Best polynomial from file /tmp/cado.2du2886j/c135.upload/c135.polyselect2.cubum9_g.opt_96 with E=2.4e-10 is no better than current best with E=2.67e-10 [32;1mInfo[0m:Polynomial Selection (root optimized): Marking workunit c135_polyselect2_96 as ok (76.0% => ETA Wed Feb 20 19:02:51 2019) [32;1mInfo[0m:Polynomial Selection (root optimized): Best polynomial from file /tmp/cado.2du2886j/c135.upload/c135.polyselect2.sykwzpp0.opt_72 with E=2.66e-10 is no better than current best with E=2.67e-10 [32;1mInfo[0m:Polynomial Selection (root optimized): Marking workunit c135_polyselect2_72 as ok (82.0% => ETA Wed Feb 20 19:01:45 2019) [32;1mInfo[0m:Polynomial Selection (root optimized): Best polynomial from file /tmp/cado.2du2886j/c135.upload/c135.polyselect2.g4p3kp_y.opt_84 with E=2.63e-10 is no better than current best with E=2.67e-10 [32;1mInfo[0m:Polynomial Selection (root optimized): Marking workunit c135_polyselect2_84 as ok (88.0% => ETA Wed Feb 20 19:00:46 2019) [32;1mInfo[0m:Polynomial Selection (root optimized): Best polynomial from file /tmp/cado.2du2886j/c135.upload/c135.polyselect2._xe956kc.opt_90 with E=2.47e-10 is no better than current best with E=2.67e-10 [32;1mInfo[0m:Polynomial Selection (root optimized): Marking workunit c135_polyselect2_90 as ok (94.0% => ETA Wed Feb 20 19:00:01 2019) [32;1mInfo[0m:Polynomial Selection (root optimized): Best polynomial from file /tmp/cado.2du2886j/c135.upload/c135.polyselect2._w95eosc.opt_78 with E=2.5e-10 is no better than current best with E=2.67e-10 [32;1mInfo[0m:Polynomial Selection (root optimized): Marking workunit c135_polyselect2_78 as ok (100.0% => ETA Wed Feb 20 18:59:25 2019) [32;1mInfo[0m:Polynomial Selection (root optimized): Finished, best polynomial from file /tmp/cado.2du2886j/c135.upload/c135.polyselect2.isrm956x.opt_66 has Murphy_E = 2.67e-10 [32;1mInfo[0m:Polynomial Selection (root optimized): Best overall polynomial was 28-th in list after size optimization [32;1mInfo[0m:Polynomial Selection (root optimized): Aggregate statistics: [32;1mInfo[0m:Polynomial Selection (root optimized): Total time: 7671.43 [32;1mInfo[0m:Polynomial Selection (root optimized): Rootsieve time: 7669.31 [32;1mInfo[0m:Generate Factor Base: Starting [32;1mInfo[0m:Generate Factor Base: Finished [32;1mInfo[0m:Generate Factor Base: Total cpu/real time for makefb: 18.65/1.99092 [32;1mInfo[0m:Generate Free Relations: Starting [32;1mInfo[0m:Generate Free Relations: Found 63620 free relations [32;1mInfo[0m:Generate Free Relations: Finished [32;1mInfo[0m:Generate Free Relations: Total cpu/real time for freerel: 319.54/29.0238 [32;1mInfo[0m:Lattice Sieving: Starting [32;1mInfo[0m:Lattice Sieving: We want 19112516 relations [32;1mInfo[0m:Lattice Sieving: Adding workunit c135_sieving_10664570-10670000 to database [32;1mInfo[0m:Lattice Sieving: Adding workunit c135_sieving_10670000-10680000 to database [32;1mInfo[0m:Lattice Sieving: Adding workunit c135_sieving_10680000-10690000 to database [32;1mInfo[0m:Lattice Sieving: Adding workunit c135_sieving_10690000-10700000 to database [32;1mInfo[0m:Lattice Sieving: Adding workunit c135_sieving_10700000-10710000 to database [32;1mInfo[0m:Lattice Sieving: Adding workunit c135_sieving_10710000-10720000 to database [32;1mInfo[0m:Lattice Sieving: Adding workunit c135_sieving_10720000-10730000 to database [32;1mInfo[0m:Lattice Sieving: Adding workunit c135_sieving_10730000-10740000 to database [32;1mInfo[0m:Lattice Sieving: Adding workunit c135_sieving_10740000-10750000 to database [32;1mInfo[0m:Lattice Sieving: Adding workunit c135_sieving_10750000-10760000 to database [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c135_sieving_10664570-10670000 to client localhost+5 [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c135_sieving_10670000-10680000 to client localhost+4 [32;1mInfo[0m:Lattice Sieving: Adding workunit c135_sieving_10760000-10770000 to database [32;1mInfo[0m:Lattice Sieving: Adding workunit c135_sieving_10770000-10780000 to database [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c135_sieving_10680000-10690000 to client localhost [32;1mInfo[0m:Lattice Sieving: Adding workunit c135_sieving_10780000-10790000 to database [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c135_sieving_10690000-10700000 to client localhost+2 [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c135_sieving_10700000-10710000 to client localhost+6 [32;1mInfo[0m:Lattice Sieving: Adding workunit c135_sieving_10790000-10800000 to database [32;1mInfo[0m:Lattice Sieving: Adding workunit c135_sieving_10800000-10810000 to database [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c135_sieving_10710000-10720000 to client localhost+3 [32;1mInfo[0m:Lattice Sieving: Adding workunit c135_sieving_10810000-10820000 to database [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c135_sieving_10720000-10730000 to client localhost+5 [32;1mInfo[0m:Lattice Sieving: Adding workunit c135_sieving_10820000-10830000 to database [32;1mInfo[0m:Lattice Sieving: Found 7413 relations in '/tmp/cado.2du2886j/c135.upload/c135.10664570-10670000.qfl70dae.gz', total is now 7413/19112516 [32;1mInfo[0m:Lattice Sieving: Marking workunit c135_sieving_10664570-10670000 as ok (0.0% => ETA Unknown) [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c135_sieving_10730000-10740000 to client localhost+4 [32;1mInfo[0m:Lattice Sieving: Adding workunit c135_sieving_10830000-10840000 to database [32;1mInfo[0m:Lattice Sieving: Found 14293 relations in '/tmp/cado.2du2886j/c135.upload/c135.10670000-10680000.sftbqv87.gz', total is now 21706/19112516 [32;1mInfo[0m:Lattice Sieving: Marking workunit c135_sieving_10670000-10680000 as ok (0.1% => ETA Wed Feb 27 22:34:37 2019) [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c135_sieving_10740000-10750000 to client localhost+3 [32;1mInfo[0m:Lattice Sieving: Adding workunit c135_sieving_10840000-10850000 to database [32;1mInfo[0m:Lattice Sieving: Found 15269 relations in '/tmp/cado.2du2886j/c135.upload/c135.10710000-10720000.oun12gvk.gz', total is now 36975/19112516 [32;1mInfo[0m:Lattice Sieving: Marking workunit c135_sieving_10710000-10720000 as ok (0.2% => ETA Sun Feb 24 11:53:44 2019) [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c135_sieving_10750000-10760000 to client localhost [32;1mInfo[0m:Lattice Sieving: Adding workunit c135_sieving_10850000-10860000 to database [32;1mInfo[0m:Lattice Sieving: Found 15135 relations in '/tmp/cado.2du2886j/c135.upload/c135.10680000-10690000.tsztf8rm.gz', total is now 52110/19112516 [32;1mInfo[0m:Lattice Sieving: Marking workunit c135_sieving_10680000-10690000 as ok (0.3% => ETA Sat Feb 23 05:54:53 2019) [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c135_sieving_10760000-10770000 to client localhost+2 [32;1mInfo[0m:Lattice Sieving: Adding workunit c135_sieving_10860000-10870000 to database [32;1mInfo[0m:Lattice Sieving: Found 14912 relations in '/tmp/cado.2du2886j/c135.upload/c135.10690000-10700000.waqgculo.gz', total is now 67022/19112516 [32;1mInfo[0m:Lattice Sieving: Marking workunit c135_sieving_10690000-10700000 as ok (0.4% => ETA Fri Feb 22 15:32:05 2019) [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c135_sieving_10770000-10780000 to client localhost+6 [32;1mInfo[0m:Lattice Sieving: Adding workunit c135_sieving_10870000-10880000 to database [32;1mInfo[0m:Lattice Sieving: Found 14990 relations in '/tmp/cado.2du2886j/c135.upload/c135.10700000-10710000.muqdiaaa.gz', total is now 82012/19112516 [32;1mInfo[0m:Lattice Sieving: Marking workunit c135_sieving_10700000-10710000 as ok (0.4% => ETA Fri Feb 22 06:43:47 2019) [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c135_sieving_10780000-10790000 to client localhost+5 [32;1mInfo[0m:Lattice Sieving: Adding workunit c135_sieving_10880000-10890000 to database [32;1mInfo[0m:Lattice Sieving: Found 14616 relations in '/tmp/cado.2du2886j/c135.upload/c135.10720000-10730000.cty9svtl.gz', total is now 96628/19112516 [32;1mInfo[0m:Lattice Sieving: Marking workunit c135_sieving_10720000-10730000 as ok (0.5% => ETA Fri Feb 22 13:12:53 2019) ... EJ: many quasi-identical lines... [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c135_sieving_26330000-26340000 to client localhost+3 [32;1mInfo[0m:Lattice Sieving: Adding workunit c135_sieving_26430000-26440000 to database [32;1mInfo[0m:Lattice Sieving: Found 10810 relations in '/tmp/cado.2du2886j/c135.upload/c135.26270000-26280000.gkvzpaff.gz', total is now 19096874/19112516 [32;1mInfo[0m:Lattice Sieving: Marking workunit c135_sieving_26270000-26280000 as ok (99.9% => ETA Fri Feb 22 06:40:39 2019) [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c135_sieving_26340000-26350000 to client localhost+2 [32;1mInfo[0m:Lattice Sieving: Adding workunit c135_sieving_26440000-26450000 to database [32;1mInfo[0m:Lattice Sieving: Found 10877 relations in '/tmp/cado.2du2886j/c135.upload/c135.26280000-26290000.pb8c7b1s.gz', total is now 19107751/19112516 [32;1mInfo[0m:Lattice Sieving: Marking workunit c135_sieving_26280000-26290000 as ok (100.0% => ETA Fri Feb 22 06:40:10 2019) [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c135_sieving_26350000-26360000 to client localhost+6 [32;1mInfo[0m:Lattice Sieving: Adding workunit c135_sieving_26450000-26460000 to database [32;1mInfo[0m:Lattice Sieving: Found 11043 relations in '/tmp/cado.2du2886j/c135.upload/c135.26300000-26310000.aocz1swn.gz', total is now 19118794/19112516 [32;1mInfo[0m:Lattice Sieving: Marking workunit c135_sieving_26300000-26310000 as ok (100.0% => ETA Fri Feb 22 06:41:12 2019) [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c135_sieving_26360000-26370000 to client localhost+5 [32;1mInfo[0m:Lattice Sieving: Adding workunit c135_sieving_26460000-26470000 to database [32;1mInfo[0m:Lattice Sieving: Reached target of 19112516 relations, now have 19118794 [32;1mInfo[0m:Lattice Sieving: Aggregate statistics: [32;1mInfo[0m:Lattice Sieving: Total number of relations: 19118794 [32;1mInfo[0m:Lattice Sieving: Average J: 3800.7 for 936687 special-q, max bucket fill: 0.698028 [32;1mInfo[0m:Lattice Sieving: Total CPU time: 1.45064e+06s [32;1mInfo[0m:Filtering - Duplicate Removal, splitting pass: Starting [32;1mInfo[0m:Filtering - Duplicate Removal, splitting pass: Splitting 1564 new files [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c135_sieving_26370000-26380000 to client localhost [32;1mInfo[0m:Filtering - Duplicate Removal, splitting pass: Relations per slice: 0: 9559731, 1: 9559063 [32;1mInfo[0m:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 96.1/167.315 [32;1mInfo[0m:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: [32;1mInfo[0m:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 167.1s [32;1mInfo[0m:Filtering - Duplicate Removal, removal pass: Starting [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c135_sieving_26380000-26390000 to client localhost+3 [32;1mInfo[0m:Filtering - Duplicate Removal, removal pass: 8185327 unique relations remain on slice 0 [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c135_sieving_26390000-26400000 to client localhost+4 [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c135_sieving_26400000-26410000 to client localhost+2 [32;1mInfo[0m:Filtering - Duplicate Removal, removal pass: 8182607 unique relations remain on slice 1 [32;1mInfo[0m:Filtering - Duplicate Removal, removal pass: Of 19118794 newly added relations 16367934 were unique (ratio 0.856117) [32;1mInfo[0m:Filtering - Duplicate Removal, removal pass: 16367934 unique relations remain in total [32;1mInfo[0m:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 390.14/258.431 [32;1mInfo[0m:Filtering - Singleton removal: Starting [32;1mInfo[0m:Filtering - Singleton removal: Reading 16367934 unique and 63620 free relations, total 16431554 [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c135_sieving_26410000-26420000 to client localhost+5 [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c135_sieving_26420000-26430000 to client localhost+6 [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c135_sieving_26430000-26440000 to client localhost [32;1mInfo[0m:Filtering - Singleton removal: After purge, 5016882 relations with 5016722 primes remain with weight 97760000 and excess 160 [32;1mInfo[0m:Filtering - Singleton removal: Have enough relations [32;1mInfo[0m:HTTP server: Got notification to stop serving Workunits [32;1mInfo[0m:Lattice Sieving: Cancelling remaining workunits [32;1mInfo[0m:Client Launcher: Stopped client localhost (Host localhost, PID 9552) [32;1mInfo[0m:Client Launcher: Stopped client localhost+2 (Host localhost, PID 9555) [32;1mInfo[0m:Client Launcher: Stopped client localhost+3 (Host localhost, PID 9558) [32;1mInfo[0m:Client Launcher: Stopped client localhost+4 (Host localhost, PID 9561) [32;1mInfo[0m:Client Launcher: Stopped client localhost+5 (Host localhost, PID 9564) [32;1mInfo[0m:Client Launcher: Stopped client localhost+6 (Host localhost, PID 9567) [32;1mInfo[0m:Filtering - Singleton removal: Total cpu/real time for purge: 258.21/194.905 [32;1mInfo[0m:Filtering - Merging: Starting [32;1mInfo[0m:Filtering - Merging: Merged matrix has 1361898 rows and total weight 231522879 (170.0 entries per row on average) [32;1mInfo[0m:Filtering - Merging: Total cpu/real time for merge: 640.91/583.613 [32;1mInfo[0m:Filtering - Merging: Total cpu/real time for replay: 44.19/34.2819 [32;1mInfo[0m:Linear Algebra: Starting [32;1mInfo[0m:Linear Algebra: krylov: N=1000 ; ETA (N=43000): Fri Feb 22 08:35:43 2019 [0.127 s/iter] [32;1mInfo[0m:Linear Algebra: krylov: N=2000 ; ETA (N=43000): Fri Feb 22 08:37:49 2019 [0.130 s/iter] [32;1mInfo[0m:Linear Algebra: krylov: N=3000 ; ETA (N=43000): Fri Feb 22 08:38:43 2019 [0.131 s/iter] [32;1mInfo[0m:Linear Algebra: krylov: N=4000 ; ETA (N=43000): Fri Feb 22 08:39:26 2019 [0.132 s/iter] [32;1mInfo[0m:Linear Algebra: krylov: N=5000 ; ETA (N=43000): Fri Feb 22 08:39:54 2019 [0.133 s/iter] [32;1mInfo[0m:Linear Algebra: krylov: N=6000 ; ETA (N=43000): Fri Feb 22 08:40:13 2019 [0.133 s/iter] [32;1mInfo[0m:Linear Algebra: krylov: N=7000 ; ETA (N=43000): Fri Feb 22 08:40:26 2019 [0.133 s/iter] [32;1mInfo[0m:Linear Algebra: krylov: N=8000 ; ETA (N=43000): Fri Feb 22 08:40:39 2019 [0.134 s/iter] [32;1mInfo[0m:Linear Algebra: krylov: N=9000 ; ETA (N=43000): Fri Feb 22 08:40:49 2019 [0.134 s/iter] [32;1mInfo[0m:Linear Algebra: krylov: N=10000 ; ETA (N=43000): Fri Feb 22 08:40:54 2019 [0.134 s/iter] [32;1mInfo[0m:Linear Algebra: krylov: N=11000 ; ETA (N=43000): Fri Feb 22 08:41:01 2019 [0.134 s/iter] [32;1mInfo[0m:Linear Algebra: krylov: N=12000 ; ETA (N=43000): Fri Feb 22 08:41:06 2019 [0.134 s/iter] [32;1mInfo[0m:Linear Algebra: krylov: N=13000 ; ETA (N=43000): Fri Feb 22 08:41:12 2019 [0.135 s/iter] [32;1mInfo[0m:Linear Algebra: krylov: N=14000 ; ETA (N=43000): Fri Feb 22 08:41:17 2019 [0.135 s/iter] [32;1mInfo[0m:Linear Algebra: krylov: N=15000 ; ETA (N=43000): Fri Feb 22 08:41:20 2019 [0.135 s/iter] [32;1mInfo[0m:Linear Algebra: krylov: N=16000 ; ETA (N=43000): Fri Feb 22 08:41:23 2019 [0.135 s/iter] [32;1mInfo[0m:Linear Algebra: krylov: N=17000 ; ETA (N=43000): Fri Feb 22 08:41:25 2019 [0.135 s/iter] [32;1mInfo[0m:Linear Algebra: krylov: N=18000 ; ETA (N=43000): Fri Feb 22 08:41:29 2019 [0.135 s/iter] [32;1mInfo[0m:Linear Algebra: krylov: N=19000 ; ETA (N=43000): Fri Feb 22 08:41:32 2019 [0.135 s/iter] [32;1mInfo[0m:Linear Algebra: krylov: N=20000 ; ETA (N=43000): Fri Feb 22 08:41:34 2019 [0.135 s/iter] [32;1mInfo[0m:Linear Algebra: krylov: N=21000 ; ETA (N=43000): Fri Feb 22 08:41:36 2019 [0.135 s/iter] [32;1mInfo[0m:Linear Algebra: krylov: N=22000 ; ETA (N=43000): Fri Feb 22 08:41:38 2019 [0.135 s/iter] [32;1mInfo[0m:Linear Algebra: krylov: N=23000 ; ETA (N=43000): Fri Feb 22 08:41:40 2019 [0.135 s/iter] [32;1mInfo[0m:Linear Algebra: krylov: N=24000 ; ETA (N=43000): Fri Feb 22 08:41:40 2019 [0.135 s/iter] [32;1mInfo[0m:Linear Algebra: krylov: N=25000 ; ETA (N=43000): Fri Feb 22 08:41:41 2019 [0.135 s/iter] [32;1mInfo[0m:Linear Algebra: krylov: N=26000 ; ETA (N=43000): Fri Feb 22 08:41:44 2019 [0.135 s/iter] [32;1mInfo[0m:Linear Algebra: krylov: N=27000 ; ETA (N=43000): Fri Feb 22 08:41:44 2019 [0.135 s/iter] [32;1mInfo[0m:Linear Algebra: krylov: N=28000 ; ETA (N=43000): Fri Feb 22 08:41:45 2019 [0.135 s/iter] [32;1mInfo[0m:Linear Algebra: krylov: N=29000 ; ETA (N=43000): Fri Feb 22 08:41:46 2019 [0.135 s/iter] [32;1mInfo[0m:Linear Algebra: krylov: N=30000 ; ETA (N=43000): Fri Feb 22 08:41:47 2019 [0.135 s/iter] [32;1mInfo[0m:Linear Algebra: krylov: N=31000 ; ETA (N=43000): Fri Feb 22 08:41:49 2019 [0.135 s/iter] [32;1mInfo[0m:Linear Algebra: krylov: N=32000 ; ETA (N=43000): Fri Feb 22 08:41:50 2019 [0.135 s/iter] [32;1mInfo[0m:Linear Algebra: krylov: N=33000 ; ETA (N=43000): Fri Feb 22 08:41:51 2019 [0.135 s/iter] [32;1mInfo[0m:Linear Algebra: krylov: N=34000 ; ETA (N=43000): Fri Feb 22 08:41:50 2019 [0.135 s/iter] [32;1mInfo[0m:Linear Algebra: krylov: N=35000 ; ETA (N=43000): Fri Feb 22 08:41:52 2019 [0.135 s/iter] [32;1mInfo[0m:Linear Algebra: krylov: N=36000 ; ETA (N=43000): Fri Feb 22 08:41:52 2019 [0.135 s/iter] [32;1mInfo[0m:Linear Algebra: krylov: N=37000 ; ETA (N=43000): Fri Feb 22 08:41:52 2019 [0.135 s/iter] [32;1mInfo[0m:Linear Algebra: krylov: N=38000 ; ETA (N=43000): Fri Feb 22 08:41:53 2019 [0.135 s/iter] [32;1mInfo[0m:Linear Algebra: krylov: N=39000 ; ETA (N=43000): Fri Feb 22 08:41:53 2019 [0.135 s/iter] [32;1mInfo[0m:Linear Algebra: krylov: N=40000 ; ETA (N=43000): Fri Feb 22 08:41:55 2019 [0.136 s/iter] [32;1mInfo[0m:Linear Algebra: krylov: N=41000 ; ETA (N=43000): Fri Feb 22 08:41:56 2019 [0.136 s/iter] [32;1mInfo[0m:Linear Algebra: krylov: N=42000 ; ETA (N=43000): Fri Feb 22 08:41:56 2019 [0.136 s/iter] [32;1mInfo[0m:Linear Algebra: krylov: N=43000 ; ETA (N=43000): Fri Feb 22 08:41:57 2019 [0.136 s/iter] [32;1mInfo[0m:Linear Algebra: lingen ETA: Fri Feb 22 08:42:10 2019 [32;1mInfo[0m:Linear Algebra: lingen ETA: Fri Feb 22 08:42:57 2019 [32;1mInfo[0m:Linear Algebra: lingen ETA: Fri Feb 22 08:42:56 2019 [32;1mInfo[0m:Linear Algebra: lingen ETA: Fri Feb 22 08:43:01 2019 [32;1mInfo[0m:Linear Algebra: lingen ETA: Fri Feb 22 08:43:01 2019 [32;1mInfo[0m:Linear Algebra: lingen ETA: Fri Feb 22 08:42:59 2019 [32;1mInfo[0m:Linear Algebra: lingen ETA: Fri Feb 22 08:43:01 2019 [32;1mInfo[0m:Linear Algebra: lingen ETA: Fri Feb 22 08:43:01 2019 [32;1mInfo[0m:Linear Algebra: lingen ETA: Fri Feb 22 08:43:02 2019 [32;1mInfo[0m:Linear Algebra: lingen ETA: Fri Feb 22 08:43:03 2019 [32;1mInfo[0m:Linear Algebra: lingen ETA: Fri Feb 22 08:43:01 2019 [32;1mInfo[0m:Linear Algebra: lingen ETA: Fri Feb 22 08:43:01 2019 [32;1mInfo[0m:Linear Algebra: lingen ETA: Fri Feb 22 08:43:01 2019 [32;1mInfo[0m:Linear Algebra: lingen ETA: Fri Feb 22 08:43:02 2019 [32;1mInfo[0m:Linear Algebra: lingen ETA: Fri Feb 22 08:43:02 2019 [32;1mInfo[0m:Linear Algebra: lingen ETA: Fri Feb 22 08:43:02 2019 [32;1mInfo[0m:Linear Algebra: lingen ETA: Fri Feb 22 08:42:56 2019 [32;1mInfo[0m:Linear Algebra: mksol: N=1000 ; ETA (N=22000): Fri Feb 22 09:35:29 2019 [0.144 s/iter] [32;1mInfo[0m:Linear Algebra: mksol: N=2000 ; ETA (N=22000): Fri Feb 22 09:36:05 2019 [0.145 s/iter] [32;1mInfo[0m:Linear Algebra: mksol: N=3000 ; ETA (N=22000): Fri Feb 22 09:36:20 2019 [0.146 s/iter] [32;1mInfo[0m:Linear Algebra: mksol: N=4000 ; ETA (N=22000): Fri Feb 22 09:36:24 2019 [0.146 s/iter] [32;1mInfo[0m:Linear Algebra: mksol: N=5000 ; ETA (N=22000): Fri Feb 22 09:36:29 2019 [0.146 s/iter] [32;1mInfo[0m:Linear Algebra: mksol: N=6000 ; ETA (N=22000): Fri Feb 22 09:36:30 2019 [0.146 s/iter] [32;1mInfo[0m:Linear Algebra: mksol: N=7000 ; ETA (N=22000): Fri Feb 22 09:36:33 2019 [0.147 s/iter] [32;1mInfo[0m:Linear Algebra: mksol: N=8000 ; ETA (N=22000): Fri Feb 22 09:36:34 2019 [0.147 s/iter] [32;1mInfo[0m:Linear Algebra: mksol: N=9000 ; ETA (N=22000): Fri Feb 22 09:36:33 2019 [0.147 s/iter] [32;1mInfo[0m:Linear Algebra: mksol: N=10000 ; ETA (N=22000): Fri Feb 22 09:36:34 2019 [0.147 s/iter] [32;1mInfo[0m:Linear Algebra: mksol: N=11000 ; ETA (N=22000): Fri Feb 22 09:36:35 2019 [0.147 s/iter] [32;1mInfo[0m:Linear Algebra: mksol: N=12000 ; ETA (N=22000): Fri Feb 22 09:36:36 2019 [0.147 s/iter] [32;1mInfo[0m:Linear Algebra: mksol: N=13000 ; ETA (N=22000): Fri Feb 22 09:36:35 2019 [0.147 s/iter] [32;1mInfo[0m:Linear Algebra: mksol: N=14000 ; ETA (N=22000): Fri Feb 22 09:36:35 2019 [0.147 s/iter] [32;1mInfo[0m:Linear Algebra: mksol: N=15000 ; ETA (N=22000): Fri Feb 22 09:36:35 2019 [0.147 s/iter] [32;1mInfo[0m:Linear Algebra: mksol: N=16000 ; ETA (N=22000): Fri Feb 22 09:36:35 2019 [0.147 s/iter] [32;1mInfo[0m:Linear Algebra: mksol: N=17000 ; ETA (N=22000): Fri Feb 22 09:36:36 2019 [0.147 s/iter] [32;1mInfo[0m:Linear Algebra: mksol: N=18000 ; ETA (N=22000): Fri Feb 22 09:36:35 2019 [0.147 s/iter] [32;1mInfo[0m:Linear Algebra: mksol: N=19000 ; ETA (N=22000): Fri Feb 22 09:36:35 2019 [0.147 s/iter] [32;1mInfo[0m:Linear Algebra: mksol: N=20000 ; ETA (N=22000): Fri Feb 22 09:36:36 2019 [0.147 s/iter] [32;1mInfo[0m:Linear Algebra: mksol: N=21000 ; ETA (N=22000): Fri Feb 22 09:36:36 2019 [0.147 s/iter] [32;1mInfo[0m:Linear Algebra: mksol: N=22000 ; ETA (N=22000): Fri Feb 22 09:36:28 2019 [0.146 s/iter] [32;1mInfo[0m:Linear Algebra: Total cpu/real time for bwc: 98392.8/0.000312328 [32;1mInfo[0m:Linear Algebra: Aggregate statistics: [32;1mInfo[0m:Linear Algebra: Krylov: WCT time 5830.3 [32;1mInfo[0m:Linear Algebra: Lingen CPU time 437.51, WCT time 51.88 [32;1mInfo[0m:Linear Algebra: Mksol: WCT time 3219.0 [32;1mInfo[0m:Quadratic Characters: Starting [32;1mInfo[0m:Quadratic Characters: Total cpu/real time for characters: 51.08/11.8357 [32;1mInfo[0m:Square Root: Starting [32;1mInfo[0m:Square Root: Creating file of (a,b) values [33;1mWarning[0m:Command: Process with PID 20664 finished with return code -6 [31;1mError[0m:Square Root: Program run on server failed with exit code -6 [31;1mError[0m:Square Root: Command line was: /home/ng/cado-nfs-2.3.0/build/ng-All-Series/sqrt/sqrt -poly /tmp/cado.2du2886j/c135.poly -prefix /tmp/cado.2du2886j/c135.dep.gz -purged /tmp/cado.2du2886j/c135.purged.gz -index /tmp/cado.2du2886j/c135.index.gz -ker /tmp/cado.2du2886j/c135.kernel -dep 0 -t 8 -side0 -side1 -gcd > /tmp/cado.2du2886j/c135.sqrt.stdout.2 2> /tmp/cado.2du2886j/c135.sqrt.stderr.2 square root time is 2550.74s\nBug: the squares do not agree modulo n!\ncode BUG() : condition 0 failed in calculateGcd at /home/ng/cado-nfs-2.3.0/sqrt/sqrt.c:1138 -- Abort\n' Traceback (most recent call last): File "./cado-nfs.py", line 122, in <module> factors = factorjob.run() File "./scripts/cadofactor/cadotask.py", line 5429, in run last_status, last_task = self.run_next_task() File "./scripts/cadofactor/cadotask.py", line 5504, in run_next_task return [task.run(), task.title] File "./scripts/cadofactor/cadotask.py", line 4429, in run raise Exception("Program failed") Exception: Program failed EJ: Well, at this stage, i reran the last command line, it was ok, and I got the two factors in the file c135.sqrt.stdout.2 |
software ソフトウェア | cado-nfs-2.3.0 |
execution environment 実行環境 | Linux Ubuntu 18.04 LTS GenuineIntel Intel(R) Core(TM) i7-5820K CPU @ 3.30GHz [Family 6 Model 63 Stepping 2] (12 processors) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | January 3, 2008 09:00:00 UTC 2008 年 1 月 3 日 (木) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 300 | Ignacio Santos | November 13, 2010 17:15:52 UTC 2010 年 11 月 14 日 (日) 2 時 15 分 52 秒 (日本時間) | |
40 | 3e6 | 1910 | 110 | Ignacio Santos | November 13, 2010 17:15:52 UTC 2010 年 11 月 14 日 (日) 2 時 15 分 52 秒 (日本時間) |
1800 | Youcef Lemsafer | January 4, 2014 18:27:56 UTC 2014 年 1 月 5 日 (日) 3 時 27 分 56 秒 (日本時間) | |||
45 | 11e6 | 4043 | 32 | Ignacio Santos | November 13, 2010 17:15:52 UTC 2010 年 11 月 14 日 (日) 2 時 15 分 52 秒 (日本時間) |
224 | Youcef Lemsafer | January 4, 2014 20:53:05 UTC 2014 年 1 月 5 日 (日) 5 時 53 分 5 秒 (日本時間) | |||
366 | Youcef Lemsafer | January 5, 2014 06:41:21 UTC 2014 年 1 月 5 日 (日) 15 時 41 分 21 秒 (日本時間) | |||
3421 | shun | January 16, 2019 06:57:47 UTC 2019 年 1 月 16 日 (水) 15 時 57 分 47 秒 (日本時間) |
name 名前 | Robert Backstrom |
---|---|
date 日付 | August 14, 2008 07:55:46 UTC 2008 年 8 月 14 日 (木) 16 時 55 分 46 秒 (日本時間) |
composite number 合成数 | 7216494845360824742268041237113402061855670103092783505154639175257731958762886597938144329896907216494845360824742268041237113402061855670103092783505154639175257731958762886597938144329897<190> |
prime factors 素因数 | 234464897294589778294207283924185372179122521034823214261<57> 37245591958990518315896750106678790768293832822047005717210831897<65> 826368192949751598558367932833322291039122696920944478534061838111341<69> |
factorization results 素因数分解の結果 | Number: n N=7216494845360824742268041237113402061855670103092783505154639175257731958762886597938144329896907216494845360824742268041237113402061855670103092783505154639175257731958762886597938144329897 ( 190 digits) SNFS difficulty: 191 digits. Divisors found: Thu Aug 14 17:44:30 2008 prp57 factor: 234464897294589778294207283924185372179122521034823214261 Thu Aug 14 17:44:30 2008 prp65 factor: 37245591958990518315896750106678790768293832822047005717210831897 Thu Aug 14 17:44:30 2008 prp69 factor: 826368192949751598558367932833322291039122696920944478534061838111341 Thu Aug 14 17:44:30 2008 elapsed time 12:59:34 (Msieve 1.36) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 167.63 hours. Scaled time: 218.25 units (timescale=1.302). Factorization parameters were as follows: name: KA_7_0_190_9 n: 7216494845360824742268041237113402061855670103092783505154639175257731958762886597938144329896907216494845360824742268041237113402061855670103092783505154639175257731958762886597938144329897 type: snfs skew: 0.66 deg: 5 c5: 70 c0: 9 m: 100000000000000000000000000000000000000 rlim: 9500000 alim: 9500000 lpbr: 28 lpba: 28 mfbr: 50 mfba: 50 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 9500000/9500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 50/50 Sieved special-q in [100000, 14600001) Primes: RFBsize:633578, AFBsize:635068, largePrimes:11104373 encountered Relations: rels:11157968, finalFF:1297829 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 166.97 hours. Total relation processing time: 0.66 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,191,5,0,0,0,0,0,0,0,0,9500000,9500000,28,28,50,50,2.5,2.5,100000 total time: 167.63 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+ |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | January 3, 2008 09:00:00 UTC 2008 年 1 月 3 日 (木) 18 時 0 分 0 秒 (日本時間) |
name 名前 | Sinkiti Sibata |
---|---|
date 日付 | April 9, 2010 08:03:29 UTC 2010 年 4 月 9 日 (金) 17 時 3 分 29 秒 (日本時間) |
composite number 合成数 | 3761864954913963305216285313826516722992973293912532948415624819300798599573925261366288009876980589923493602165953677693332011<127> |
prime factors 素因数 | 65784275817411879643104829802279958915138729043<47> 57184865352249835245518591011633288175983574082732971807733160734211631478699977<80> |
factorization results 素因数分解の結果 | Number: 70009_193 N=3761864954913963305216285313826516722992973293912532948415624819300798599573925261366288009876980589923493602165953677693332011 ( 127 digits) Divisors found: r1=65784275817411879643104829802279958915138729043 (pp47) r2=57184865352249835245518591011633288175983574082732971807733160734211631478699977 (pp80) Version: Msieve-1.40 Total time: 121.47 hours. Scaled time: 315.22 units (timescale=2.595). Factorization parameters were as follows: name: 70009_193 # Murphy_E = 1.106139e-10, selected by Jeff Gilchrist n: 3761864954913963305216285313826516722992973293912532948415624819300798599573925261366288009876980589923493602165953677693332011 Y0: -2681798075468550223350477 Y1: 65727034522909 c0: 7030854032314089557519814448112 c1: 879467878075130583205938177 c2: 8684027777830562069999 c3: -13882250473218267 c4: -42952054366 c5: 27120 skew: 392843.86 type: gnfs # selected mechanically rlim: 7900000 alim: 7900000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 7900000/7900000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved algebraic special-q in [3950000, 7750001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1175094 x 1175342 Total sieving time: 117.62 hours. Total relation processing time: 0.22 hours. Matrix solve time: 3.35 hours. Time per square root: 0.27 hours. Prototype def-par.txt line would be: gnfs,126,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,7900000,7900000,28,28,53,53,2.5,2.5,100000 total time: 121.47 hours. --------- CPU info (if available) ---------- |
execution environment 実行環境 | Core i7 2.93GHz,Windows 7 64bit,and Cygwin) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | January 3, 2008 09:00:00 UTC 2008 年 1 月 3 日 (木) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2336 | 500 | Erik Branger | March 16, 2009 19:52:28 UTC 2009 年 3 月 17 日 (火) 4 時 52 分 28 秒 (日本時間) |
1836 | Wataru Sakai | December 6, 2009 06:19:22 UTC 2009 年 12 月 6 日 (日) 15 時 19 分 22 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | November 8, 2020 10:43:59 UTC 2020 年 11 月 8 日 (日) 19 時 43 分 59 秒 (日本時間) |
composite number 合成数 | 120657689208079695622601388842002862399832841703491716947294597618335218504374341858689696854434888913194201731060405314132155040434352964813449202640436304370462901269<168> |
prime factors 素因数 | 451462144164584668642700987597608659866621015435277338723771480368676282376719<78> 267259815175318060555841769299453098326361199201134619213710918934100569942291460025879451<90> |
factorization results 素因数分解の結果 | 120657689208079695622601388842002862399832841703491716947294597618335218504374341858689696854434888913194201731060405314132155040434352964813449202640436304370462901269=451462144164584668642700987597608659866621015435277338723771480368676282376719*267259815175318060555841769299453098326361199201134619213710918934100569942291460025879451 cado log (extracts) n: 120657689208079695622601388842002862399832841703491716947294597618335218504374341858689696854434888913194201731060405314132155040434352964813449202640436304370462901269 skew: 0.83 type: snfs c0: 45 c5: 112 Y0: 500000000000000000000000000000000000000 Y1: -1 # f(x) = 112*x^5+45 # g(x) = -x+500000000000000000000000000000000000000 cado parameters (extracts) tasks.lim0 = 12700000 tasks.lim1 = 12700000 tasks.lpb0 = 28 tasks.lpb1 = 28 tasks.sieve.mfb0 = 55 tasks.sieve.mfb1 = 55 tasks.sieve.lambda0 = 2.5 tasks.sieve.lambda1 = 2.5 tasks.I = 12 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 267259815175318060555841769299453098326361199201134619213710918934100569942291460025879451 451462144164584668642700987597608659866621015435277338723771480368676282376719 Warning:Polynomial Selection (size optimized): some stats could not be displayed for polyselect1 (see log file for debug info) Warning:Polynomial Selection (root optimized): some stats could not be displayed for polyselect2 (see log file for debug info) Info:Generate Factor Base: Total cpu/real time for makefb: 5.36/2.20833 Info:Generate Free Relations: Total cpu/real time for freerel: 99.51/25.8478 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 29341179 Info:Lattice Sieving: Average J: 1894.12 for 3509868 special-q, max bucket fill -bkmult 1.0,1s:1.112590 Info:Lattice Sieving: Total time: 865300s Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 55.75/140.163 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 139.4s Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 481.12/483.689 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 422.4s Info:Filtering - Singleton removal: Total cpu/real time for purge: 408.88/483.668 Info:Filtering - Merging: Merged matrix has 2676605 rows and total weight 455918458 (170.3 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 390.11/112.379 Info:Filtering - Merging: Total cpu/real time for replay: 103.57/91.7012 Info:Linear Algebra: Total cpu/real time for bwc: 127333/32574.6 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: WCT time 20818.78, iteration CPU time 0.23, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (83968 iterations) Info:Linear Algebra: Lingen CPU time 541.76, WCT time 156.9 Info:Linear Algebra: Mksol: WCT time 11311.57, iteration CPU time 0.26, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (41984 iterations) Info:Quadratic Characters: Total cpu/real time for characters: 93.25/40.4419 Info:Square Root: Total cpu/real time for sqrt: 732.72/230.534 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 1.72886e+06/442318 267259815175318060555841769299453098326361199201134619213710918934100569942291460025879451 451462144164584668642700987597608659866621015435277338723771480368676282376719 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 20.04.1 LTS [5.4.0-48-generic|libc 2.31 (Ubuntu GLIBC 2.31-0ubuntu9.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | January 3, 2008 09:00:00 UTC 2008 年 1 月 3 日 (木) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 300 | Ignacio Santos | November 6, 2010 04:52:08 UTC 2010 年 11 月 6 日 (土) 13 時 52 分 8 秒 (日本時間) | |
40 | 3e6 | 1910 | 110 | Ignacio Santos | November 6, 2010 04:52:08 UTC 2010 年 11 月 6 日 (土) 13 時 52 分 8 秒 (日本時間) |
1800 | Youcef Lemsafer | January 5, 2014 06:40:27 UTC 2014 年 1 月 5 日 (日) 15 時 40 分 27 秒 (日本時間) | |||
45 | 11e6 | 2100 / 4043 | 32 | Ignacio Santos | November 6, 2010 04:52:08 UTC 2010 年 11 月 6 日 (土) 13 時 52 分 8 秒 (日本時間) |
590 | Youcef Lemsafer | January 5, 2014 13:17:25 UTC 2014 年 1 月 5 日 (日) 22 時 17 分 25 秒 (日本時間) | |||
1478 | Eric Jeancolas | October 11, 2020 17:36:25 UTC 2020 年 10 月 12 日 (月) 2 時 36 分 25 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | November 6, 2010 04:50:06 UTC 2010 年 11 月 6 日 (土) 13 時 50 分 6 秒 (日本時間) |
composite number 合成数 | 383456685421648306006088817801817840632226742951668863490830668891742478382626515034371124939029073961923274994781482434725108581258090120035446733306078552751749034309977<171> |
prime factors 素因数 | 7732381304521247951012533502107123<34> |
composite cofactor 合成数の残り | 49591021228794679704527998485919707880012710676409014785496914749711974590317804689075091979497315920612936553391069803089949415383597699<137> |
factorization results 素因数分解の結果 | Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=543349924 Step 1 took 7660ms ********** Factor found in step 1: 7732381304521247951012533502107123 Found probable prime factor of 34 digits: 7732381304521247951012533502107123 Composite cofactor 49591021228794679704527998485919707880012710676409014785496914749711974590317804689075091979497315920612936553391069803089949415383597699 has 137 digits |
software ソフトウェア | GMP-ECM 6.3 |
name 名前 | Ignacio Santos |
---|---|
date 日付 | November 17, 2010 14:24:11 UTC 2010 年 11 月 17 日 (水) 23 時 24 分 11 秒 (日本時間) |
composite number 合成数 | 49591021228794679704527998485919707880012710676409014785496914749711974590317804689075091979497315920612936553391069803089949415383597699<137> |
prime factors 素因数 | 54628030277043788643629951448648724452709<41> 907794423069912523436799088645668400584031242930677594738332639048048170311106001749926560583111<96> |
factorization results 素因数分解の結果 | Using B1=43000000, B2=240490660426, polynomial Dickson(12), sigma=4067166299 Step 1 took 297884ms Step 2 took 111853ms ********** Factor found in step 2: 54628030277043788643629951448648724452709 Found probable prime factor of 41 digits: 54628030277043788643629951448648724452709 Probable prime cofactor 907794423069912523436799088645668400584031242930677594738332639048048170311106001749926560583111 has 96 digits |
software ソフトウェア | GMP-ECM 6.3 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | January 3, 2008 09:00:00 UTC 2008 年 1 月 3 日 (木) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 300 | Ignacio Santos | November 6, 2010 18:12:39 UTC 2010 年 11 月 7 日 (日) 3 時 12 分 39 秒 (日本時間) | |
40 | 3e6 | 110 / 2144 | Ignacio Santos | November 6, 2010 18:12:39 UTC 2010 年 11 月 7 日 (日) 3 時 12 分 39 秒 (日本時間) | |
45 | 11e6 | 32 / 4441 | Ignacio Santos | November 6, 2010 18:12:39 UTC 2010 年 11 月 7 日 (日) 3 時 12 分 39 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 17, 2021 10:54:10 UTC 2021 年 3 月 17 日 (水) 19 時 54 分 10 秒 (日本時間) |
composite number 合成数 | 8150391873150141502214930261030009511488735203489654742878414445786291154941703302503903152877063943022304471550603158999133877222600339100229692618348739301542546165241817960419983831<184> |
prime factors 素因数 | 9792736651324038104465656852532086056747357956501<49> 416294859713813506942716572578719377463304059673169<51> 1999278825428789818667079365278666011171847023909742578034210180520905913798775559499<85> |
factorization results 素因数分解の結果 | Number: n N=8150391873150141502214930261030009511488735203489654742878414445786291154941703302503903152877063943022304471550603158999133877222600339100229692618348739301542546165241817960419983831 ( 184 digits) SNFS difficulty: 198 digits. Divisors found: Wed Mar 17 21:39:16 2021 found factor: 1999278825428789818667079365278666011171847023909742578034210180520905913798775559499 Wed Mar 17 21:42:39 2021 found factor: 1999278825428789818667079365278666011171847023909742578034210180520905913798775559499 Wed Mar 17 21:46:03 2021 p49 factor: 9792736651324038104465656852532086056747357956501 Wed Mar 17 21:46:03 2021 p51 factor: 416294859713813506942716572578719377463304059673169 Wed Mar 17 21:46:03 2021 p85 factor: 1999278825428789818667079365278666011171847023909742578034210180520905913798775559499 Wed Mar 17 21:46:03 2021 elapsed time 01:47:18 (Msieve 1.54 - dependency 3) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.344). Factorization parameters were as follows: # # N = 7x10^198+9 = 70(197)9 # n: 8150391873150141502214930261030009511488735203489654742878414445786291154941703302503903152877063943022304471550603158999133877222600339100229692618348739301542546165241817960419983831 m: 1000000000000000000000000000000000000000 deg: 5 c5: 7000 c0: 9 skew: 0.26 # Murphy_E = 1.497e-11 type: snfs lss: 1 rlim: 14400000 alim: 14400000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 Factor base limits: 14400000/14400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved special-q in [100000, 27200000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 3827373 hash collisions in 27295823 relations (24830367 unique) Msieve: matrix is 2104318 x 2104543 (734.6 MB) Sieving start time : 2021/03/17 12:32:41 Sieving end time : 2021/03/17 19:58:14 Total sieving time: 7hrs 25min 33secs. Total relation processing time: 1hrs 26min 0sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 10min 11sec. Prototype def-par.txt line would be: snfs,198,5,0,0,0,0,0,0,0,0,14400000,14400000,28,28,55,55,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- [ 0.116745] smpboot: CPU0: AMD Ryzen 7 2700 Eight-Core Processor (family: 0x17, model: 0x8, stepping: 0x2) [ 0.000000] Memory: 16241916K/16727236K available (14339K kernel code, 2400K rwdata, 4964K rodata, 2732K init, 4968K bss, 485320K reserved, 0K cma-reserved) [ 0.152613] x86/mm: Memory block size: 128MB [ 0.000005] Calibrating delay loop (skipped), value calculated using timer frequency.. 6399.17 BogoMIPS (lpj=12798352) [ 0.150217] smpboot: Total of 16 processors activated (102386.81 BogoMIPS) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | January 3, 2008 09:00:00 UTC 2008 年 1 月 3 日 (木) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 300 | Ignacio Santos | November 6, 2010 04:52:58 UTC 2010 年 11 月 6 日 (土) 13 時 52 分 58 秒 (日本時間) | |
40 | 3e6 | 1910 | 110 | Ignacio Santos | November 6, 2010 04:52:58 UTC 2010 年 11 月 6 日 (土) 13 時 52 分 58 秒 (日本時間) |
1800 | Youcef Lemsafer | January 5, 2014 16:01:32 UTC 2014 年 1 月 6 日 (月) 1 時 1 分 32 秒 (日本時間) | |||
45 | 11e6 | 622 / 4043 | 32 | Ignacio Santos | November 6, 2010 04:52:58 UTC 2010 年 11 月 6 日 (土) 13 時 52 分 58 秒 (日本時間) |
590 | Youcef Lemsafer | January 5, 2014 21:16:09 UTC 2014 年 1 月 6 日 (月) 6 時 16 分 9 秒 (日本時間) |
name 名前 | matsui |
---|---|
date 日付 | October 30, 2011 19:54:06 UTC 2011 年 10 月 31 日 (月) 4 時 54 分 6 秒 (日本時間) |
composite number 合成数 | 48374243567141831019813700337804205061331716273959451602377541025511646511667427930179677680896160885971661487292499019974624307848650717171646578129492227698227059461343975799970309699877319<191> |
prime factors 素因数 | 8952148648493828905980569817199393252132348406550134419764886269092725633117<76> 5403646148713208269984988884486031786938037268833851952980769893580564243632401909511799179017395455509757738811507<115> |
factorization results 素因数分解の結果 | N=48374243567141831019813700337804205061331716273959451602377541025511646511667427930179677680896160885971661487292499019974624307848650717171646578129492227698227059461343975799970309699877319 ( 191 digits) SNFS difficulty: 200 digits. Divisors found: r1=8952148648493828905980569817199393252132348406550134419764886269092725633117 (pp76) r2=5403646148713208269984988884486031786938037268833851952980769893580564243632401909511799179017395455509757738811507 (pp115) Version: Msieve v. 1.50 Total time: Scaled time: 123.80 units (timescale=1.894). Factorization parameters were as follows: n: 48374243567141831019813700337804205061331716273959451602377541025511646511667427930179677680896160885971661487292499019974624307848650717171646578129492227698227059461343975799970309699877319 m: 10000000000000000000000000000000000000000 deg: 5 c5: 7 c0: 9 skew: 1.05 type: snfs lss: 1 rlim: 15600000 alim: 15600000 lpbr: 29 lpba: 29 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 qintsize: 160000 Factor base limits: 15600000/15600000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 56/56 Sieved rational special-q in [7800000, 15480001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 3331038 x 3331266 Total sieving time: Total relation processing time: Matrix solve time: Time per square root: Prototype def-par.txt line would be: snfs,200.000,5,0,0,0,0,0,0,0,0,15600000,15600000,29,29,56,56,2.6,2.6,100000 total time: --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | January 3, 2008 09:00:00 UTC 2008 年 1 月 3 日 (木) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 300 | Ignacio Santos | November 6, 2010 12:44:14 UTC 2010 年 11 月 6 日 (土) 21 時 44 分 14 秒 (日本時間) | |
40 | 3e6 | 110 / 2144 | Ignacio Santos | November 6, 2010 12:44:14 UTC 2010 年 11 月 6 日 (土) 21 時 44 分 14 秒 (日本時間) | |
45 | 11e6 | 32 / 4441 | Ignacio Santos | November 6, 2010 12:44:14 UTC 2010 年 11 月 6 日 (土) 21 時 44 分 14 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | January 4, 2022 06:53:12 UTC 2022 年 1 月 4 日 (火) 15 時 53 分 12 秒 (日本時間) |
composite number 合成数 | 16391456686989140113452266405397447490627824879741203923709998404543864411007597734633821626184626494400989776988834072843950624687503217025770114489<149> |
prime factors 素因数 | 6434286193237284201012977680809404310797436209020529104237408781<64> 2547517501508912825342232467008094346478680906523822338178570832805714957060680440669<85> |
factorization results 素因数分解の結果 | 16391456686989140113452266405397447490627824879741203923709998404543864411007597734633821626184626494400989776988834072843950624687503217025770114489=6434286193237284201012977680809404310797436209020529104237408781*2547517501508912825342232467008094346478680906523822338178570832805714957060680440669 cado polynomial n: 16391456686989140113452266405397447490627824879741203923709998404543864411007597734633821626184626494400989776988834072843950624687503217025770114489 skew: 0.66 type: snfs c0: 9 c5: 70 Y0: 10000000000000000000000000000000000000000 Y1: -1 # f(x) = 70*x^5+9 # g(x) = -x+10000000000000000000000000000000000000000 cado parameters (extracts) tasks.lim0 = 16200000 tasks.lim1 = 16200000 tasks.lpb0 = 29 tasks.lpb1 = 29 tasks.sieve.mfb0 = 56 tasks.sieve.mfb1 = 56 tasks.sieve.lambda0 = 2.6 tasks.sieve.lambda1 = 2.6 tasks.I = 12 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 2547517501508912825342232467008094346478680906523822338178570832805714957060680440669 6434286193237284201012977680809404310797436209020529104237408781 Info:Square Root: Total cpu/real time for sqrt: 1822.1/568.098 Info:Filtering - Singleton removal: Total cpu/real time for purge: 641.04/759.07 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 48381894 Info:Lattice Sieving: Average J: 1894.6 for 4417369 special-q, max bucket fill -bkmult 1.0,1s:1.149600 Info:Lattice Sieving: Total time: 1.19183e+06s Info:Generate Free Relations: Total cpu/real time for freerel: 234.16/60.6028 Info:Linear Algebra: Total cpu/real time for bwc: 231366/59470.2 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 150382.14, WCT time 38590.6, iteration CPU time 0.33, COMM 0.02, cpu-wait 0.0, comm-wait 0.0 (109568 iterations) Info:Linear Algebra: Lingen CPU time 764.95, WCT time 194.23 Info:Linear Algebra: Mksol: CPU time 78837.77, WCT time 20172.8, iteration CPU time 0.35, COMM 0.02, cpu-wait 0.0, comm-wait 0.0 (54784 iterations) Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 204.52/238.272 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 237.69999999999996s Info:Filtering - Merging: Merged matrix has 3502766 rows and total weight 596695987 (170.3 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 1009.83/278.172 Info:Filtering - Merging: Total cpu/real time for replay: 139.63/120.638 Info:Generate Factor Base: Total cpu/real time for makefb: 6.75/3.08414 Info:Quadratic Characters: Total cpu/real time for characters: 125.85/52.6921 Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 888.15/891.054 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 723.8s Info:Square Root: Total cpu/real time for sqrt: 1822.1/568.098 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 2.47718e+06/658467 Info:root: Cleaning up computation data in /tmp/cado.k8y874gn 2547517501508912825342232467008094346478680906523822338178570832805714957060680440669 6434286193237284201012977680809404310797436209020529104237408781 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 20.04.1 LTS [5.4.0-90-generic|libc 2.31 (Ubuntu GLIBC 2.31-0ubuntu9.3)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1418 | 118 | Makoto Kamada | December 17, 2012 12:00:00 UTC 2012 年 12 月 17 日 (月) 21 時 0 分 0 秒 (日本時間) |
1300 | Warut Roonguthai | December 18, 2012 12:10:10 UTC 2012 年 12 月 18 日 (火) 21 時 10 分 10 秒 (日本時間) | |||
40 | 3e6 | 2500 | Warut Roonguthai | December 18, 2012 12:10:10 UTC 2012 年 12 月 18 日 (火) 21 時 10 分 10 秒 (日本時間) | |
45 | 11e6 | 3796 | Youcef Lemsafer | January 7, 2014 07:35:06 UTC 2014 年 1 月 7 日 (火) 16 時 35 分 6 秒 (日本時間) | |
50 | 43e6 | 20 / 6599 | Youcef Lemsafer | January 13, 2014 17:01:49 UTC 2014 年 1 月 14 日 (火) 2 時 1 分 49 秒 (日本時間) |
name 名前 | Warut Roonguthai |
---|---|
date 日付 | December 17, 2012 13:49:50 UTC 2012 年 12 月 17 日 (月) 22 時 49 分 50 秒 (日本時間) |
composite number 合成数 | 5401301754568808696475983575483521357842063213303059799880944516975366337731759508986905523289976453519456313032511898167589351618765691925652273517112059820537835641804598659941901<181> |
prime factors 素因数 | 138169397596582173452736423203<30> 9066795815764899736644415283767<31> 4311543191294301177435369236845644263398874665878177734323712681874114913640389757906935322233729111309082688927693556201<121> |
factorization results 素因数分解の結果 | Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2465968468 Step 1 took 10874ms Step 2 took 6302ms ********** Factor found in step 2: 9066795815764899736644415283767 Found probable prime factor of 31 digits: 9066795815764899736644415283767 Composite cofactor 595723325452779051220336495789993919514578324299566048955927934003834383075748999065405694643047745469196148405968178676734196025579676899912000931803 has 150 digits Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=828881802 Step 1 took 6505ms Step 2 took 5257ms ********** Factor found in step 2: 138169397596582173452736423203 Found probable prime factor of 30 digits: 138169397596582173452736423203 Probable prime cofactor 4311543191294301177435369236845644263398874665878177734323712681874114913640389757906935322233729111309082688927693556201 has 121 digits |
software ソフトウェア | GMP-ECM 6.3 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | December 17, 2012 12:00:00 UTC 2012 年 12 月 17 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Youcef Lemsafer |
---|---|
date 日付 | July 31, 2013 10:54:42 UTC 2013 年 7 月 31 日 (水) 19 時 54 分 42 秒 (日本時間) |
composite number 合成数 | 652378330232475425599865127566024453458646716215441400937179990896808711087371000644111795999080529634866780726615455089130956134384482161544929866597993763044949228784605401<174> |
prime factors 素因数 | 254503251176113708125450442124258009797222269700582313<54> 2563339867831535622663819528145859021272487991080059737180509619183941751390577241296692459493891872005750328575335072177<121> |
factorization results 素因数分解の結果 | Tue Jul 09 10:56:42 2013 -> factmsieve.py (v0.76) Tue Jul 09 10:56:42 2013 -> This is client 1 of 1 Tue Jul 09 10:56:42 2013 -> Running on 2 Cores with 2 hyper-threads per Core Tue Jul 09 10:56:42 2013 -> Working with NAME = 70009_204 Tue Jul 09 10:56:42 2013 -> Selected lattice siever: gnfs-lasieve4I14e Tue Jul 09 10:56:42 2013 -> Creating param file to detect parameter changes... Tue Jul 09 10:56:42 2013 -> Running setup ... Tue Jul 09 10:56:42 2013 -> Estimated minimum relations needed: 3.49025e+07 Tue Jul 09 10:56:42 2013 -> cleaning up before a restart Tue Jul 09 10:56:42 2013 -> Running lattice siever ... Tue Jul 09 14:16:10 2013 Found 307809 relations, 0.9% of the estimated minimum (34902548). Tue Jul 09 17:31:11 2013 Found 616008 relations, 1.8% of the estimated minimum (34902548). Tue Jul 09 20:49:19 2013 Found 926390 relations, 2.7% of the estimated minimum (34902548). Wed Jul 10 00:15:27 2013 Found 1235174 relations, 3.5% of the estimated minimum (34902548). Wed Jul 10 03:34:44 2013 Found 1543436 relations, 4.4% of the estimated minimum (34902548). Wed Jul 10 06:53:49 2013 Found 1850100 relations, 5.3% of the estimated minimum (34902548). Thu Jul 11 03:03:42 2013 Found 3703996 relations, 10.6% of the estimated minimum (34902548). Fri Jul 12 16:18:26 2013 Found 7092707 relations, 20.3% of the estimated minimum (34902548). Sun Jul 14 05:27:22 2013 Found 10473311 relations, 30.0% of the estimated minimum (34902548). Mon Jul 15 23:15:20 2013 Found 14138364 relations, 40.5% of the estimated minimum (34902548). Wed Jul 17 15:18:04 2013 Found 17480951 relations, 50.1% of the estimated minimum (34902548). Fri Jul 19 11:12:44 2013 Found 21108825 relations, 60.5% of the estimated minimum (34902548). Sun Jul 21 04:30:03 2013 Found 24422587 relations, 70.0% of the estimated minimum (34902548). Tue Jul 23 02:34:16 2013 Found 28003591 relations, 80.2% of the estimated minimum (34902548). Thu Jul 25 05:00:53 2013 Found 31543016 relations, 90.4% of the estimated minimum (34902548). Sat Jul 27 07:19:47 2013 Found 35014256 relations, 100.3% of the estimated minimum (34902548). Sat Jul 27 11:33:04 2013 Found 36030352 relations, 103.2% of the estimated minimum (34902548). Sat Jul 27 15:39:52 2013 Found 36315836 relations, 104.0% of the estimated minimum (34902548). Sat Jul 27 19:40:46 2013 Found 36596328 relations, 104.9% of the estimated minimum (34902548). Sun Jul 28 00:16:03 2013 Found 36883838 relations, 105.7% of the estimated minimum (34902548). Sun Jul 28 04:56:52 2013 Found 37167442 relations, 106.5% of the estimated minimum (34902548). Sun Jul 28 10:14:14 2013 Found 37450326 relations, 107.3% of the estimated minimum (34902548). Sun Jul 28 14:18:09 2013 Found 37732176 relations, 108.1% of the estimated minimum (34902548). Sun Jul 28 18:21:55 2013 Found 38016610 relations, 108.9% of the estimated minimum (34902548). Sun Jul 28 22:33:32 2013 Found 38298595 relations, 109.7% of the estimated minimum (34902548). Mon Jul 29 03:28:27 2013 Found 38583432 relations, 110.5% of the estimated minimum (34902548). Mon Jul 29 08:40:57 2013 Found 38866471 relations, 111.4% of the estimated minimum (34902548). Mon Jul 29 13:31:00 2013 Found 39141607 relations, 112.1% of the estimated minimum (34902548). Mon Jul 29 18:50:33 2013 Found 39419119 relations, 112.9% of the estimated minimum (34902548). Mon Jul 29 23:50:18 2013 Found 39696775 relations, 113.7% of the estimated minimum (34902548). Tue Jul 30 04:32:06 2013 Found 39974248 relations, 114.5% of the estimated minimum (34902548). Tue Jul 30 04:32:07 2013 Msieve v. 1.50 (SVN 708) Tue Jul 30 04:32:07 2013 random seeds: 41eb7668 b88f0019 Tue Jul 30 04:32:07 2013 factoring 652378330232475425599865127566024453458646716215441400937179990896808711087371000644111795999080529634866780726615455089130956134384482161544929866597993763044949228784605401 (174 digits) Tue Jul 30 04:32:09 2013 searching for 15-digit factors Tue Jul 30 04:32:10 2013 commencing number field sieve (174-digit input) Tue Jul 30 04:32:10 2013 R0: -50000000000000000000000000000000000000000 Tue Jul 30 04:32:10 2013 R1: 1 Tue Jul 30 04:32:10 2013 A0: 45 Tue Jul 30 04:32:10 2013 A1: 0 Tue Jul 30 04:32:10 2013 A2: 0 Tue Jul 30 04:32:10 2013 A3: 0 Tue Jul 30 04:32:10 2013 A4: 0 Tue Jul 30 04:32:10 2013 A5: 112 Tue Jul 30 04:32:10 2013 skew 0.83, size 3.018e-014, alpha 0.265, combined = 9.469e-012 rroots = 1 Tue Jul 30 04:32:10 2013 Tue Jul 30 04:32:10 2013 commencing relation filtering Tue Jul 30 04:32:10 2013 estimated available RAM is 4095.6 MB Tue Jul 30 04:32:10 2013 commencing duplicate removal, pass 1 Tue Jul 30 04:38:03 2013 skipped 1 relations with b > 2^32 Tue Jul 30 04:38:03 2013 found 4830160 hash collisions in 39974246 relations Tue Jul 30 04:38:51 2013 added 30 free relations Tue Jul 30 04:38:51 2013 commencing duplicate removal, pass 2 Tue Jul 30 04:44:24 2013 found 4080215 duplicates and 35894061 unique relations Tue Jul 30 04:44:24 2013 memory use: 197.2 MB Tue Jul 30 04:44:24 2013 reading ideals above 22347776 Tue Jul 30 04:44:24 2013 commencing singleton removal, initial pass Tue Jul 30 04:51:47 2013 memory use: 753.0 MB Tue Jul 30 04:51:47 2013 reading all ideals from disk Tue Jul 30 04:51:47 2013 memory use: 642.9 MB Tue Jul 30 04:51:49 2013 commencing in-memory singleton removal Tue Jul 30 04:51:52 2013 begin with 35894061 relations and 36370393 unique ideals Tue Jul 30 04:52:15 2013 reduce to 14221540 relations and 11333510 ideals in 19 passes Tue Jul 30 04:52:15 2013 max relations containing the same ideal: 38 Tue Jul 30 04:52:17 2013 reading ideals above 720000 Tue Jul 30 04:52:17 2013 commencing singleton removal, initial pass Tue Jul 30 04:57:52 2013 memory use: 376.5 MB Tue Jul 30 04:57:52 2013 reading all ideals from disk Tue Jul 30 04:57:52 2013 memory use: 489.6 MB Tue Jul 30 04:57:54 2013 keeping 14035996 ideals with weight <= 200, target excess is 116118 Tue Jul 30 04:57:56 2013 commencing in-memory singleton removal Tue Jul 30 04:57:57 2013 begin with 14221570 relations and 14035996 unique ideals Tue Jul 30 04:58:22 2013 reduce to 14205845 relations and 14020122 ideals in 13 passes Tue Jul 30 04:58:22 2013 max relations containing the same ideal: 179 Tue Jul 30 04:58:31 2013 removing 477129 relations and 451616 ideals in 25513 cliques Tue Jul 30 04:58:32 2013 commencing in-memory singleton removal Tue Jul 30 04:58:33 2013 begin with 13728716 relations and 14020122 unique ideals Tue Jul 30 04:58:50 2013 reduce to 13714738 relations and 13554473 ideals in 9 passes Tue Jul 30 04:58:50 2013 max relations containing the same ideal: 172 Tue Jul 30 04:58:59 2013 removing 342342 relations and 316829 ideals in 25513 cliques Tue Jul 30 04:58:59 2013 commencing in-memory singleton removal Tue Jul 30 04:59:01 2013 begin with 13372396 relations and 13554473 unique ideals Tue Jul 30 04:59:13 2013 reduce to 13364576 relations and 13229804 ideals in 7 passes Tue Jul 30 04:59:13 2013 max relations containing the same ideal: 171 Tue Jul 30 04:59:18 2013 relations with 0 large ideals: 2905 Tue Jul 30 04:59:18 2013 relations with 1 large ideals: 205 Tue Jul 30 04:59:18 2013 relations with 2 large ideals: 5256 Tue Jul 30 04:59:18 2013 relations with 3 large ideals: 58856 Tue Jul 30 04:59:18 2013 relations with 4 large ideals: 360082 Tue Jul 30 04:59:18 2013 relations with 5 large ideals: 1295801 Tue Jul 30 04:59:18 2013 relations with 6 large ideals: 2999848 Tue Jul 30 04:59:18 2013 relations with 7+ large ideals: 8641623 Tue Jul 30 04:59:18 2013 commencing 2-way merge Tue Jul 30 04:59:32 2013 reduce to 7643315 relation sets and 7508546 unique ideals Tue Jul 30 04:59:32 2013 ignored 3 oversize relation sets Tue Jul 30 04:59:32 2013 commencing full merge Tue Jul 30 05:02:45 2013 memory use: 779.9 MB Tue Jul 30 05:02:47 2013 found 3965750 cycles, need 3958746 Tue Jul 30 05:02:47 2013 weight of 3958746 cycles is about 277312169 (70.05/cycle) Tue Jul 30 05:02:47 2013 distribution of cycle lengths: Tue Jul 30 05:02:47 2013 1 relations: 604056 Tue Jul 30 05:02:47 2013 2 relations: 553046 Tue Jul 30 05:02:47 2013 3 relations: 509428 Tue Jul 30 05:02:47 2013 4 relations: 436312 Tue Jul 30 05:02:47 2013 5 relations: 360428 Tue Jul 30 05:02:47 2013 6 relations: 298895 Tue Jul 30 05:02:47 2013 7 relations: 239755 Tue Jul 30 05:02:47 2013 8 relations: 190459 Tue Jul 30 05:02:47 2013 9 relations: 150688 Tue Jul 30 05:02:47 2013 10+ relations: 615679 Tue Jul 30 05:02:47 2013 heaviest cycle: 28 relations Tue Jul 30 05:02:48 2013 commencing cycle optimization Tue Jul 30 05:02:55 2013 start with 21738207 relations Tue Jul 30 05:03:45 2013 pruned 370252 relations Tue Jul 30 05:03:45 2013 memory use: 603.0 MB Tue Jul 30 05:03:45 2013 distribution of cycle lengths: Tue Jul 30 05:03:45 2013 1 relations: 604056 Tue Jul 30 05:03:45 2013 2 relations: 563300 Tue Jul 30 05:03:45 2013 3 relations: 523869 Tue Jul 30 05:03:45 2013 4 relations: 441467 Tue Jul 30 05:03:45 2013 5 relations: 364831 Tue Jul 30 05:03:45 2013 6 relations: 298204 Tue Jul 30 05:03:45 2013 7 relations: 238005 Tue Jul 30 05:03:45 2013 8 relations: 187170 Tue Jul 30 05:03:45 2013 9 relations: 147642 Tue Jul 30 05:03:45 2013 10+ relations: 590202 Tue Jul 30 05:03:45 2013 heaviest cycle: 28 relations Tue Jul 30 05:03:50 2013 RelProcTime: 1900 Tue Jul 30 05:03:50 2013 elapsed time 00:31:43 Tue Jul 30 05:03:50 2013 LatSieveTime: 16878.3 Tue Jul 30 05:03:50 2013 -> Running matrix solving step ... Tue Jul 30 05:03:50 2013 Tue Jul 30 05:03:50 2013 Tue Jul 30 05:03:50 2013 Msieve v. 1.50 (SVN 708) Tue Jul 30 05:03:50 2013 random seeds: ec192e98 99889d10 Tue Jul 30 05:03:50 2013 factoring 652378330232475425599865127566024453458646716215441400937179990896808711087371000644111795999080529634866780726615455089130956134384482161544929866597993763044949228784605401 (174 digits) Tue Jul 30 05:03:52 2013 searching for 15-digit factors Tue Jul 30 05:03:53 2013 commencing number field sieve (174-digit input) Tue Jul 30 05:03:53 2013 R0: -50000000000000000000000000000000000000000 Tue Jul 30 05:03:53 2013 R1: 1 Tue Jul 30 05:03:53 2013 A0: 45 Tue Jul 30 05:03:53 2013 A1: 0 Tue Jul 30 05:03:53 2013 A2: 0 Tue Jul 30 05:03:53 2013 A3: 0 Tue Jul 30 05:03:53 2013 A4: 0 Tue Jul 30 05:03:53 2013 A5: 112 Tue Jul 30 05:03:53 2013 skew 0.83, size 3.018e-014, alpha 0.265, combined = 9.469e-012 rroots = 1 Tue Jul 30 05:03:53 2013 Tue Jul 30 05:03:53 2013 commencing linear algebra Tue Jul 30 05:03:55 2013 read 3958746 cycles Tue Jul 30 05:04:03 2013 cycles contain 13160332 unique relations Tue Jul 30 05:11:41 2013 read 13160332 relations Tue Jul 30 05:12:09 2013 using 20 quadratic characters above 536870780 Tue Jul 30 05:13:12 2013 building initial matrix Tue Jul 30 05:16:07 2013 memory use: 1456.2 MB Tue Jul 30 05:18:07 2013 read 3958746 cycles Tue Jul 30 05:18:09 2013 matrix is 3958568 x 3958746 (1134.8 MB) with weight 348367269 (88.00/col) Tue Jul 30 05:18:09 2013 sparse part has weight 269756755 (68.14/col) Tue Jul 30 05:19:08 2013 filtering completed in 2 passes Tue Jul 30 05:19:10 2013 matrix is 3954993 x 3955171 (1134.5 MB) with weight 348259306 (88.05/col) Tue Jul 30 05:19:10 2013 sparse part has weight 269724116 (68.20/col) Tue Jul 30 05:19:42 2013 matrix starts at (0, 0) Tue Jul 30 05:19:44 2013 matrix is 3954993 x 3955171 (1134.5 MB) with weight 348259306 (88.05/col) Tue Jul 30 05:19:46 2013 sparse part has weight 269724116 (68.20/col) Tue Jul 30 05:19:46 2013 saving the first 48 matrix rows for later Tue Jul 30 05:19:49 2013 matrix includes 64 packed rows Tue Jul 30 05:20:04 2013 matrix is 3954945 x 3955171 (1077.6 MB) with weight 280161479 (70.83/col) Tue Jul 30 05:20:04 2013 sparse part has weight 258743475 (65.42/col) Tue Jul 30 05:20:04 2013 using block size 65536 for processor cache size 12288 kB Tue Jul 30 05:20:29 2013 commencing Lanczos iteration (4 threads) Tue Jul 30 05:20:29 2013 memory use: 1009.3 MB Tue Jul 30 05:21:23 2013 linear algebra at 0.0%, ETA 37h28m Tue Jul 30 05:21:37 2013 checkpointing every 120000 dimensions Wed Jul 31 12:07:31 2013 lanczos halted after 62543 iterations (dim = 3954943) Wed Jul 31 12:07:50 2013 recovered 39 nontrivial dependencies Wed Jul 31 12:07:52 2013 BLanczosTime: 111839 Wed Jul 31 12:07:52 2013 elapsed time 31:04:02 Wed Jul 31 12:07:55 2013 -> Running square root step ... Wed Jul 31 12:07:56 2013 Wed Jul 31 12:07:56 2013 Wed Jul 31 12:07:56 2013 Msieve v. 1.50 (SVN 708) Wed Jul 31 12:07:56 2013 random seeds: 190eaba0 e9bb5a97 Wed Jul 31 12:07:56 2013 factoring 652378330232475425599865127566024453458646716215441400937179990896808711087371000644111795999080529634866780726615455089130956134384482161544929866597993763044949228784605401 (174 digits) Wed Jul 31 12:07:57 2013 searching for 15-digit factors Wed Jul 31 12:07:59 2013 commencing number field sieve (174-digit input) Wed Jul 31 12:07:59 2013 R0: -50000000000000000000000000000000000000000 Wed Jul 31 12:07:59 2013 R1: 1 Wed Jul 31 12:07:59 2013 A0: 45 Wed Jul 31 12:07:59 2013 A1: 0 Wed Jul 31 12:07:59 2013 A2: 0 Wed Jul 31 12:07:59 2013 A3: 0 Wed Jul 31 12:07:59 2013 A4: 0 Wed Jul 31 12:07:59 2013 A5: 112 Wed Jul 31 12:07:59 2013 skew 0.83, size 3.018e-014, alpha 0.265, combined = 9.469e-012 rroots = 1 Wed Jul 31 12:07:59 2013 Wed Jul 31 12:07:59 2013 commencing square root phase Wed Jul 31 12:07:59 2013 reading relations for dependency 1 Wed Jul 31 12:08:06 2013 read 1977279 cycles Wed Jul 31 12:08:11 2013 cycles contain 6579368 unique relations Wed Jul 31 12:15:17 2013 read 6579368 relations Wed Jul 31 12:16:19 2013 multiplying 6579368 relations Wed Jul 31 12:29:17 2013 multiply complete, coefficients have about 201.29 million bits Wed Jul 31 12:29:19 2013 initial square root is modulo 16746101 Wed Jul 31 12:44:06 2013 sqrtTime: 2167 Wed Jul 31 12:44:06 2013 prp54 factor: 254503251176113708125450442124258009797222269700582313 Wed Jul 31 12:44:06 2013 prp121 factor: 2563339867831535622663819528145859021272487991080059737180509619183941751390577241296692459493891872005750328575335072177 Wed Jul 31 12:44:06 2013 elapsed time 00:36:10 Wed Jul 31 12:44:07 2013 -> Computing 1.37527e+09 scale for this machine... Wed Jul 31 12:44:07 2013 -> procrels -speedtest> PIPE Wed Jul 31 12:44:13 2013 -> Factorization summary written to s206-70009_204.txt Number: 70009_204 N = 652378330232475425599865127566024453458646716215441400937179990896808711087371000644111795999080529634866780726615455089130956134384482161544929866597993763044949228784605401 (174 digits) SNFS difficulty: 206 digits. Divisors found: r1=254503251176113708125450442124258009797222269700582313 (pp54) r2=2563339867831535622663819528145859021272487991080059737180509619183941751390577241296692459493891872005750328575335072177 (pp121) Version: Msieve v. 1.50 (SVN 708) Total time: 530.30 hours. Factorization parameters were as follows: n: 652378330232475425599865127566024453458646716215441400937179990896808711087371000644111795999080529634866780726615455089130956134384482161544929866597993763044949228784605401 m: 50000000000000000000000000000000000000000 deg: 5 c5: 112 c0: 45 skew: 0.83 # Murphy_E = 9.469e-12 type: snfs lss: 1 rlim: 18700000 alim: 18700000 lpbr: 29 lpba: 29 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 18700000/18700000 Large primes per side: 3 Large prime bits: 29/29 Sieved rational special-q in [0, 0) Total raw relations: 39974248 Relations: 6579368 relations Pruned matrix : 3954945 x 3955171 Polynomial selection time: 0.00 hours. Total sieving time: 498.10 hours. Total relation processing time: 0.53 hours. Matrix solve time: 31.07 hours. time per square root: 0.60 hours. Prototype def-par.txt line would be: snfs,206,5,0,0,0,0,0,0,0,0,18700000,18700000,29,29,56,56,2.6,2.6,100000 total time: 530.30 hours. Intel64 Family 6 Model 44 Stepping 2, GenuineIntel Windows-7-6.1.7601-SP1 processors: 2, speed: 2.79GHz |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1418 | 118 | Makoto Kamada | December 17, 2012 12:00:00 UTC 2012 年 12 月 17 日 (月) 21 時 0 分 0 秒 (日本時間) |
1300 | Warut Roonguthai | December 18, 2012 15:35:07 UTC 2012 年 12 月 19 日 (水) 0 時 35 分 7 秒 (日本時間) | |||
40 | 3e6 | 2500 | Youcef Lemsafer | May 30, 2013 08:57:17 UTC 2013 年 5 月 30 日 (木) 17 時 57 分 17 秒 (日本時間) | |
45 | 11e6 | 4500 | Youcef Lemsafer | June 1, 2013 05:23:51 UTC 2013 年 6 月 1 日 (土) 14 時 23 分 51 秒 (日本時間) | |
50 | 43e6 | 0 | - | - | |
55 | 11e7 | 5606 / 15340 | 3084 | Youcef Lemsafer | June 17, 2013 08:52:02 UTC 2013 年 6 月 17 日 (月) 17 時 52 分 2 秒 (日本時間) |
2522 | Youcef Lemsafer | July 13, 2013 18:23:11 UTC 2013 年 7 月 14 日 (日) 3 時 23 分 11 秒 (日本時間) | |||
60 | 26e7 | 915 / 39824 | 256 | Youcef Lemsafer | June 21, 2013 12:14:37 UTC 2013 年 6 月 21 日 (金) 21 時 14 分 37 秒 (日本時間) |
659 | Youcef Lemsafer | July 13, 2013 18:23:11 UTC 2013 年 7 月 14 日 (日) 3 時 23 分 11 秒 (日本時間) |
name 名前 | Warut Roonguthai |
---|---|
date 日付 | December 17, 2012 15:22:57 UTC 2012 年 12 月 18 日 (火) 0 時 22 分 57 秒 (日本時間) |
composite number 合成数 | 1812556986655469147062656172649822242836844459011112493245964192311212454755933595471939464978956213360292195826414322459644208186112233114710796670372159729588143658149366084659<178> |
prime factors 素因数 | 479720368613773140485004180039150937<36> |
composite cofactor 合成数の残り | 3778361531517069802580686213089429158003106736993512026021547035320478992179387007393877757435668833528625775758161455765932306424169102131307<142> |
factorization results 素因数分解の結果 | Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=800261510 Step 1 took 10592ms Step 2 took 6381ms ********** Factor found in step 2: 479720368613773140485004180039150937 Found probable prime factor of 36 digits: 479720368613773140485004180039150937 Composite cofactor 3778361531517069802580686213089429158003106736993512026021547035320478992179387007393877757435668833528625775758161455765932306424169102131307 has 142 digits |
software ソフトウェア | GMP-ECM 6.3 |
name 名前 | Warut Roonguthai |
---|---|
date 日付 | December 18, 2012 14:40:03 UTC 2012 年 12 月 18 日 (火) 23 時 40 分 3 秒 (日本時間) |
composite number 合成数 | 3778361531517069802580686213089429158003106736993512026021547035320478992179387007393877757435668833528625775758161455765932306424169102131307<142> |
prime factors 素因数 | 132998646312357931234997537091755389333<39> 28409022469621881079609147112589322036819312393566846943601826277800471758011094100771555411566224878079<104> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=4210819280 Step 1 took 19843ms Step 2 took 11794ms ********** Factor found in step 2: 132998646312357931234997537091755389333 Found probable prime factor of 39 digits: 132998646312357931234997537091755389333 Probable prime cofactor 28409022469621881079609147112589322036819312393566846943601826277800471758011094100771555411566224878079 has 104 digits |
software ソフトウェア | GMP-ECM 6.3 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | December 17, 2012 12:00:00 UTC 2012 年 12 月 17 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | ebina |
---|---|
date 日付 | September 3, 2023 23:13:11 UTC 2023 年 9 月 4 日 (月) 8 時 13 分 11 秒 (日本時間) |
composite number 合成数 | 18585171551871640462604262386128994187237682746519701732101039901673345387137103060347270534362652281939563192814699933664642171570338909663022935565860031918182709850485383273<176> |
prime factors 素因数 | 19846514879268003855940513706959713209654648811380854942747410176082204440717<77> 936445097032427421471563210248844054890360036326208561892963039718200512781183046516769555804411469<99> |
factorization results 素因数分解の結果 | Number: 70009_207 N = 18585171551871640462604262386128994187237682746519701732101039901673345387137103060347270534362652281939563192814699933664642171570338909663022935565860031918182709850485383273 (176 digits) SNFS difficulty: 208 digits. Divisors found: r1=19846514879268003855940513706959713209654648811380854942747410176082204440717 (pp77) r2=936445097032427421471563210248844054890360036326208561892963039718200512781183046516769555804411469 (pp99) Version: Msieve v. 1.54 (SVN 1018) Total time: 140.35 hours. Factorization parameters were as follows: n: 18585171551871640462604262386128994187237682746519701732101039901673345387137103060347270534362652281939563192814699933664642171570338909663022935565860031918182709850485383273 m: 100000000000000000000000000000000000000000 deg: 5 c5: 700 c0: 9 skew: 0.42 # Murphy_E = 7.268e-12 type: snfs lss: 1 rlim: 20000000 alim: 20000000 lpbr: 29 lpba: 29 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 20000000/20000000 Large primes per side: 3 Large prime bits: 29/29 Sieved rational special-q in [0, 0) Total raw relations: 40763181 Relations: 6862252 relations Pruned matrix : 4167246 x 4167469 Total sieving time: 129.88 hours. Total relation processing time: 0.21 hours. Matrix solve time: 9.85 hours. time per square root: 0.41 hours. Prototype def-par.txt line would be: snfs,208,5,0,0,0,0,0,0,0,0,20000000,20000000,29,29,56,56,2.6,2.6,100000 total time: 140.35 hours. Intel64 Family 6 Model 60 Stepping 3, GenuineIntel processors: 8, speed: 3.19GHz Windows-post2008Server-6.2.9200 Running Python 3.2 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1418 | 118 | Makoto Kamada | December 17, 2012 12:00:00 UTC 2012 年 12 月 17 日 (月) 21 時 0 分 0 秒 (日本時間) |
1300 | Warut Roonguthai | December 18, 2012 15:35:35 UTC 2012 年 12 月 19 日 (水) 0 時 35 分 35 秒 (日本時間) | |||
40 | 3e6 | 2100 | 1800 | Youcef Lemsafer | January 7, 2014 15:28:03 UTC 2014 年 1 月 8 日 (水) 0 時 28 分 3 秒 (日本時間) |
300 | Serge Batalov | January 9, 2014 04:59:21 UTC 2014 年 1 月 9 日 (木) 13 時 59 分 21 秒 (日本時間) | |||
45 | 11e6 | 4049 | Youcef Lemsafer | January 9, 2014 20:06:46 UTC 2014 年 1 月 10 日 (金) 5 時 6 分 46 秒 (日本時間) |
name 名前 | Robert Backstrom |
---|---|
date 日付 | February 13, 2014 05:04:45 UTC 2014 年 2 月 13 日 (木) 14 時 4 分 45 秒 (日本時間) |
composite number 合成数 | 9231174996703151786891731504681524462613741263352235263088487406039825926414347883423447184491626005538704998021891072135038902808914677568244758011341157853092443623895555848608730054068310694975603323223<205> |
prime factors 素因数 | 3172144837921186904035874500592333023568227061344555521649133215883773<70> 2910073615286952322318900278402900094322195103652463975869918241957123677181287168267792794142849556258545864656592435480292701278119651<136> |
factorization results 素因数分解の結果 | Number: n N=9231174996703151786891731504681524462613741263352235263088487406039825926414347883423447184491626005538704998021891072135038902808914677568244758011341157853092443623895555848608730054068310694975603323223 ( 205 digits) SNFS difficulty: 208 digits. Divisors found: Thu Feb 13 15:59:41 2014 prp70 factor: 3172144837921186904035874500592333023568227061344555521649133215883773 Thu Feb 13 15:59:41 2014 prp136 factor: 2910073615286952322318900278402900094322195103652463975869918241957123677181287168267792794142849556258545864656592435480292701278119651 Thu Feb 13 15:59:41 2014 elapsed time 18:17:45 (Msieve 1.44 - dependency 1) Version: GGNFS-0.77.1-20060513-nocona Total time: 0.00 hours. Scaled time: 0.00 units (timescale=1.732). Factorization parameters were as follows: # # 7*10^208+9 - 70(207)9 # # c205, diff: 208.85 # skew: 0.264 n: 9231174996703151786891731504681524462613741263352235263088487406039825926414347883423447184491626005538704998021891072135038902808914677568244758011341157853092443623895555848608730054068310694975603323223 m: 100000000000000000000000000000000000000000 deg: 5 c5: 7000 c0: 9 # Murphy_E = 5.693e-12 type: snfs lss: 1 rlim: 21000000 alim: 21000000 lpbr: 29 lpba: 29 mfbr: 57 mfba: 57 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 21000000/21000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 57/57 Sieved special-q in [100000, 32500000) Primes: RFBsize:1329943, AFBsize:1328992, Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 10017883 hash collisions in 59844416 relations (51586501 unique) Msieve: matrix is 3214350 x 3214575 (912.5 MB) Total sieving time: 0.00 hours. Total relation processing time: 16hrs 50min 36sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 46min 21sec. Prototype def-par.txt line would be: snfs,208,5,0,0,0,0,0,0,0,0,21000000,21000000,29,29,57,57,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1418 | 118 | Makoto Kamada | December 17, 2012 12:00:00 UTC 2012 年 12 月 17 日 (月) 21 時 0 分 0 秒 (日本時間) |
1300 | Warut Roonguthai | December 18, 2012 15:36:38 UTC 2012 年 12 月 19 日 (水) 0 時 36 分 38 秒 (日本時間) | |||
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 5046 | 850 | Serge Batalov | November 8, 2013 17:13:54 UTC 2013 年 11 月 9 日 (土) 2 時 13 分 54 秒 (日本時間) |
400 | Serge Batalov | January 6, 2014 02:27:19 UTC 2014 年 1 月 6 日 (月) 11 時 27 分 19 秒 (日本時間) | |||
3796 | Youcef Lemsafer | January 12, 2014 11:10:29 UTC 2014 年 1 月 12 日 (日) 20 時 10 分 29 秒 (日本時間) |
name 名前 | Warut Roonguthai |
---|---|
date 日付 | December 17, 2012 21:54:49 UTC 2012 年 12 月 18 日 (火) 6 時 54 分 49 秒 (日本時間) |
composite number 合成数 | 179504202546360104459045995701123313360034700918235532832855081251318161141149906664019082769452282855715976434379592616925153406371777196372402928830530571844047425337495932710579645073561<189> |
prime factors 素因数 | 234488334836968001955296310839018389139<39> |
composite cofactor 合成数の残り | 765514423867453579361195765961872644450104210556408155241065789314317758732688395301378785612982957290747401048569743524839288528410190190696407739299<150> |
factorization results 素因数分解の結果 | Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2970912462 Step 1 took 10452ms Step 2 took 6568ms ********** Factor found in step 2: 234488334836968001955296310839018389139 Found probable prime factor of 39 digits: 234488334836968001955296310839018389139 Composite cofactor 765514423867453579361195765961872644450104210556408155241065789314317758732688395301378785612982957290747401048569743524839288528410190190696407739299 has 150 digits |
software ソフトウェア | GMP-ECM 6.3 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1418 | 118 | Makoto Kamada | December 17, 2012 12:00:00 UTC 2012 年 12 月 17 日 (月) 21 時 0 分 0 秒 (日本時間) |
1300 | Warut Roonguthai | December 18, 2012 15:28:55 UTC 2012 年 12 月 19 日 (水) 0 時 28 分 55 秒 (日本時間) | |||
40 | 3e6 | 2500 | Warut Roonguthai | December 18, 2012 15:28:55 UTC 2012 年 12 月 19 日 (水) 0 時 28 分 55 秒 (日本時間) | |
45 | 11e6 | 3796 | Youcef Lemsafer | January 13, 2014 13:42:47 UTC 2014 年 1 月 13 日 (月) 22 時 42 分 47 秒 (日本時間) | |
50 | 43e6 | 221 / 6599 | 20 | Youcef Lemsafer | January 13, 2014 15:04:12 UTC 2014 年 1 月 14 日 (火) 0 時 4 分 12 秒 (日本時間) |
201 | Anonymous | April 16, 2014 23:21:19 UTC 2014 年 4 月 17 日 (木) 8 時 21 分 19 秒 (日本時間) |
name 名前 | Warut Roonguthai |
---|---|
date 日付 | December 18, 2012 12:03:14 UTC 2012 年 12 月 18 日 (火) 21 時 3 分 14 秒 (日本時間) |
composite number 合成数 | 18395439361054363335413446445217255848298737479737986176729753540487827990769203017000363028476816316295537187453526038186828047012227632323364863<146> |
prime factors 素因数 | 4977421307868413978190512924607468562715457643<46> 3695777034581030875614362890745951898993861563489513363549590257035726892088519929850626146715460541<100> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=879787549 Step 1 took 15710ms Step 2 took 11076ms ********** Factor found in step 2: 4977421307868413978190512924607468562715457643 Found probable prime factor of 46 digits: 4977421307868413978190512924607468562715457643 Probable prime cofactor 3695777034581030875614362890745951898993861563489513363549590257035726892088519929850626146715460541 has 100 digits |
software ソフトウェア | GMP-ECM 6.3 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | December 17, 2012 12:00:00 UTC 2012 年 12 月 17 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Erik Branger |
---|---|
date 日付 | January 11, 2022 10:57:23 UTC 2022 年 1 月 11 日 (火) 19 時 57 分 23 秒 (日本時間) |
composite number 合成数 | 125215662031421783967616808713454401817766393947036069068312750576711658103642925264933348861204229729843789945899305357550953194615081679441012266352942007561485564714121<171> |
prime factors 素因数 | 6266006603278579403994911189791724299890236781841553383963<58> 19983327493766900600338882724638959518830492396385707305343551692570848192958530654480359781560054586626738292267<113> |
factorization results 素因数分解の結果 | Number: 70009_221 N = 125215662031421783967616808713454401817766393947036069068312750576711658103642925264933348861204229729843789945899305357550953194615081679441012266352942007561485564714121 (171 digits) SNFS difficulty: 222 digits. Divisors found: r1=6266006603278579403994911189791724299890236781841553383963 (pp58) r2=19983327493766900600338882724638959518830492396385707305343551692570848192958530654480359781560054586626738292267 (pp113) Version: Msieve v. 1.52 (SVN unknown) Total time: 39.69 hours. Factorization parameters were as follows: n: 125215662031421783967616808713454401817766393947036069068312750576711658103642925264933348861204229729843789945899305357550953194615081679441012266352942007561485564714121 m: 10000000000000000000000000000000000000000000000000000000 deg: 4 c4: 70 c0: 9 skew: 1.00 type: snfs lss: 1 rlim: 536870912 alim: 44739242 lpbr: 29 lpba: 28 mfbr: 58 mfba: 56 rlambda: 2.8 alambda: 2.8 side: 1 Factor base limits: 536870912/44739242 Large primes per side: 3 Large prime bits: 29/28 Relations: 8682368 relations Pruned matrix : 7408690 x 7408915 Total pre-computation time approximately 1000 CPU-days. Pre-computation saved approximately 18 G relations. Total batch smoothness checking time: 27.82 hours. Total relation processing time: 0.40 hours. Matrix solve time: 10.90 hours. time per square root: 0.58 hours. Prototype def-par.txt line would be: snfs,222,4,0,0,0,0,0,0,0,0,536870912,44739242,29,28,58,56,2.8,2.8,100000 total time: 39.69 hours. Intel64 Family 6 Model 60 Stepping 3, GenuineIntel Windows-10-10.0.19041-SP0 processors: 8, speed: 3.50GHz |
software ソフトウェア | GGNFS, NFS_factory, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1418 | 118 | Makoto Kamada | December 17, 2012 12:00:00 UTC 2012 年 12 月 17 日 (月) 21 時 0 分 0 秒 (日本時間) |
1300 | Warut Roonguthai | December 18, 2012 15:37:11 UTC 2012 年 12 月 19 日 (水) 0 時 37 分 11 秒 (日本時間) | |||
40 | 3e6 | 2100 | 300 | Serge Batalov | January 9, 2014 04:59:22 UTC 2014 年 1 月 9 日 (木) 13 時 59 分 22 秒 (日本時間) |
1800 | Youcef Lemsafer | January 13, 2014 17:42:51 UTC 2014 年 1 月 14 日 (火) 2 時 42 分 51 秒 (日本時間) | |||
45 | 11e6 | 3796 | Youcef Lemsafer | January 15, 2014 17:26:58 UTC 2014 年 1 月 16 日 (木) 2 時 26 分 58 秒 (日本時間) | |
50 | 43e6 | 520 / 6614 | 40 | Cyp | January 12, 2014 06:27:25 UTC 2014 年 1 月 12 日 (日) 15 時 27 分 25 秒 (日本時間) |
480 | Youcef Lemsafer | January 16, 2014 07:25:37 UTC 2014 年 1 月 16 日 (木) 16 時 25 分 37 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | April 30, 2019 10:39:13 UTC 2019 年 4 月 30 日 (火) 19 時 39 分 13 秒 (日本時間) |
composite number 合成数 | 62444246208742194469223907225691347011596788581623550401427297056199821587867975022301516503122212310437109723461195361284567350579839429081177520071364852809991079393398751115075825156110615521855486173059768064228367529<221> |
prime factors 素因数 | 714282992711508254249996799553629976699397664821109329592257519<63> 61111644927281007312979125903065928159333889949792380228189953367077409457<74> 1430533867857244264890371296128967304678422502231069482601590859533054268189392055063<85> |
factorization results 素因数分解の結果 | Number: n N=62444246208742194469223907225691347011596788581623550401427297056199821587867975022301516503122212310437109723461195361284567350579839429081177520071364852809991079393398751115075825156110615521855486173059768064228367529 ( 221 digits) SNFS difficulty: 223 digits. Divisors found: Tue Apr 30 20:24:23 2019 found factor: 714282992711508254249996799553629976699397664821109329592257519 Tue Apr 30 20:32:32 2019 p63 factor: 714282992711508254249996799553629976699397664821109329592257519 Tue Apr 30 20:32:32 2019 p74 factor: 61111644927281007312979125903065928159333889949792380228189953367077409457 Tue Apr 30 20:32:32 2019 p85 factor: 1430533867857244264890371296128967304678422502231069482601590859533054268189392055063 Tue Apr 30 20:32:32 2019 elapsed time 08:21:13 (Msieve 1.54 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.122). Factorization parameters were as follows: # # N = 7x10^223+9 = 70(222)9 # n: 62444246208742194469223907225691347011596788581623550401427297056199821587867975022301516503122212310437109723461195361284567350579839429081177520071364852809991079393398751115075825156110615521855486173059768064228367529 m: 10000000000000000000000000000000000000 deg: 6 c6: 70 c0: 9 skew: 0.71 # Murphy_E = 2.32e-12 type: snfs lss: 1 rlim: 38000000 alim: 38000000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.6 alambda: 2.6 Factor base limits: 38000000/38000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved special-q in [100000, 73400000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 12706781 hash collisions in 68721679 relations (58259611 unique) Msieve: matrix is 4291142 x 4291368 (1517.7 MB) Sieving start time: 2019/04/29 02:14:53 Sieving end time : 2019/04/30 12:10:08 Total sieving time: 33hrs 55min 15secs. Total relation processing time: 7hrs 41min 56sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 16min 17sec. Prototype def-par.txt line would be: snfs,223,6,0,0,0,0,0,0,0,0,38000000,38000000,29,29,58,58,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- [ 0.044000] smpboot: CPU0: AMD Ryzen 7 1700 Eight-Core Processor (family: 0x17, model: 0x1, stepping: 0x1) [ 0.000000] Memory: 16285084K/16703460K available (12300K kernel code, 2473K rwdata, 4276K rodata, 2408K init, 2416K bss, 418376K reserved, 0K cma-reserved) [ 0.076569] x86/mm: Memory block size: 128MB [ 0.032000] Calibrating delay loop (skipped), value calculated using timer frequency.. 5988.92 BogoMIPS (lpj=11977856) [ 0.074217] smpboot: Total of 16 processors activated (95822.84 BogoMIPS) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1418 | 118 | Makoto Kamada | December 17, 2012 12:00:00 UTC 2012 年 12 月 17 日 (月) 21 時 0 分 0 秒 (日本時間) |
1300 | Warut Roonguthai | December 18, 2012 15:37:18 UTC 2012 年 12 月 19 日 (水) 0 時 37 分 18 秒 (日本時間) | |||
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 5046 | 850 | Serge Batalov | November 8, 2013 17:15:23 UTC 2013 年 11 月 9 日 (土) 2 時 15 分 23 秒 (日本時間) |
400 | Serge Batalov | January 6, 2014 02:28:23 UTC 2014 年 1 月 6 日 (月) 11 時 28 分 23 秒 (日本時間) | |||
3796 | Youcef Lemsafer | January 19, 2014 09:58:53 UTC 2014 年 1 月 19 日 (日) 18 時 58 分 53 秒 (日本時間) | |||
50 | 43e6 | 640 / 6413 | Youcef Lemsafer | January 20, 2014 11:07:29 UTC 2014 年 1 月 20 日 (月) 20 時 7 分 29 秒 (日本時間) |
name 名前 | Warut Roonguthai |
---|---|
date 日付 | December 17, 2012 18:46:57 UTC 2012 年 12 月 18 日 (火) 3 時 46 分 57 秒 (日本時間) |
composite number 合成数 | 2521631226290359222885504072312990837055048121812337741567132373418805312480485153316980862113963740792966666465972935200806693509548725926027017822020655674304786631848945809386224038183238625987445503356549503<211> |
prime factors 素因数 | 42403507175137242420664999797287304827<38> |
composite cofactor 合成数の残り | 59467515643821217886975696945391033387600364037750310311713882090670933794659337686108758809276899491688457429198571575123732672822702686852358198646787513738429675541283789<173> |
factorization results 素因数分解の結果 | Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=354081159 Step 1 took 12137ms ********** Factor found in step 1: 42403507175137242420664999797287304827 Found probable prime factor of 38 digits: 42403507175137242420664999797287304827 Composite cofactor 59467515643821217886975696945391033387600364037750310311713882090670933794659337686108758809276899491688457429198571575123732672822702686852358198646787513738429675541283789 has 173 digits |
software ソフトウェア | GMP-ECM 6.3 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1418 | 118 | Makoto Kamada | December 17, 2012 12:00:00 UTC 2012 年 12 月 17 日 (月) 21 時 0 分 0 秒 (日本時間) |
1300 | Warut Roonguthai | December 18, 2012 15:37:26 UTC 2012 年 12 月 19 日 (水) 0 時 37 分 26 秒 (日本時間) | |||
40 | 3e6 | 2100 | 300 | Serge Batalov | January 9, 2014 04:59:22 UTC 2014 年 1 月 9 日 (木) 13 時 59 分 22 秒 (日本時間) |
1800 | Youcef Lemsafer | January 20, 2014 17:54:19 UTC 2014 年 1 月 21 日 (火) 2 時 54 分 19 秒 (日本時間) | |||
45 | 11e6 | 3796 | Youcef Lemsafer | January 22, 2014 15:33:47 UTC 2014 年 1 月 23 日 (木) 0 時 33 分 47 秒 (日本時間) | |
50 | 43e6 | 640 / 6614 | Youcef Lemsafer | January 23, 2014 11:25:29 UTC 2014 年 1 月 23 日 (木) 20 時 25 分 29 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1418 | 118 | Makoto Kamada | December 17, 2012 12:00:00 UTC 2012 年 12 月 17 日 (月) 21 時 0 分 0 秒 (日本時間) |
1300 | Warut Roonguthai | December 18, 2012 15:37:40 UTC 2012 年 12 月 19 日 (水) 0 時 37 分 40 秒 (日本時間) | |||
40 | 3e6 | 2100 | 300 | Serge Batalov | January 9, 2014 04:59:23 UTC 2014 年 1 月 9 日 (木) 13 時 59 分 23 秒 (日本時間) |
1800 | Youcef Lemsafer | January 24, 2014 09:46:30 UTC 2014 年 1 月 24 日 (金) 18 時 46 分 30 秒 (日本時間) | |||
45 | 11e6 | 3796 | Youcef Lemsafer | January 27, 2014 10:13:37 UTC 2014 年 1 月 27 日 (月) 19 時 13 分 37 秒 (日本時間) | |
50 | 43e6 | 640 / 6614 | Youcef Lemsafer | January 28, 2014 10:29:43 UTC 2014 年 1 月 28 日 (火) 19 時 29 分 43 秒 (日本時間) |
name 名前 | matsui |
---|---|
date 日付 | February 24, 2013 16:51:46 UTC 2013 年 2 月 25 日 (月) 1 時 51 分 46 秒 (日本時間) |
composite number 合成数 | 304347826086956521739130434782608695652173913043478260869565217391304347826086956521739130434782608695652173913043478260869565217391304347826086956521739130434782608695652173913043478260869565217391304347826086956521739130434783<228> |
prime factors 素因数 | 36055263983621189858032243115514731044831546039<47> 62706443359659759464314475064721791689594478503219<50> 2697875229135304613488854551280691099396022928929894714976463<61> 49896202654896904474939701875302608977837238325646448204204673437401101<71> |
factorization results 素因数分解の結果 | N=304347826086956521739130434782608695652173913043478260869565217391304347826086956521739130434782608695652173913043478260869565217391304347826086956521739130434782608695652173913043478260869565217391304347826086956521739130434783 ( 228 digits) SNFS difficulty: 228 digits. Divisors found: r1=36055263983621189858032243115514731044831546039 (pp47) r2=62706443359659759464314475064721791689594478503219 (pp50) r3=2697875229135304613488854551280691099396022928929894714976463 (pp61) r4=49896202654896904474939701875302608977837238325646448204204673437401101 (pp71) Version: Msieve v. 1.51 (SVN Unversioned directory) Total time: Scaled time: 437.07 units (timescale=1.763). Factorization parameters were as follows: n: 304347826086956521739130434782608695652173913043478260869565217391304347826086956521739130434782608695652173913043478260869565217391304347826086956521739130434782608695652173913043478260869565217391304347826086956521739130434783 m: 100000000000000000000000000000000000000 deg: 6 c6: 7 c0: 9 skew: 1.04 # Murphy_E = 1.339e-12 type: snfs lss: 1 rlim: 46000000 alim: 46000000 lpbr: 30 lpba: 30 mfbr: 59 mfba: 59 rlambda: 2.7 alambda: 2.7 qintsize: 480000 Factor base limits: 46000000/46000000 Large primes per side: 3 Large prime bits: 30/30 Max factor residue bits: 59/59 Sieved rational special-q in [23000000, 51320001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 6449350 x 6449576 Total sieving time: Total relation processing time: Matrix solve time: Time per square root: Prototype def-par.txt line would be: snfs,228.000,6,0,0,0,0,0,0,0,0,46000000,46000000,30,30,59,59,2.7,2.7,100000 total time: |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1418 | 118 | Makoto Kamada | December 17, 2012 12:00:00 UTC 2012 年 12 月 17 日 (月) 21 時 0 分 0 秒 (日本時間) |
1300 | Warut Roonguthai | December 18, 2012 15:37:46 UTC 2012 年 12 月 19 日 (水) 0 時 37 分 46 秒 (日本時間) | |||
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 1000 / 4415 | Dmitry Domanov | December 28, 2012 15:34:34 UTC 2012 年 12 月 29 日 (土) 0 時 34 分 34 秒 (日本時間) |
name 名前 | Youcef Lemsafer |
---|---|
date 日付 | January 28, 2014 10:32:14 UTC 2014 年 1 月 28 日 (火) 19 時 32 分 14 秒 (日本時間) |
composite number 合成数 | 34307309080109315968796473207143572120843194720124176765033764397447751224733233520740852290410597694939904711474999169443992724973665177158662810120010566576733825851180353119480777059746389363819213229<203> |
prime factors 素因数 | 152290506857301918343142836856302329695780639<45> |
composite cofactor 合成数の残り | 225275427786550657148742094695466401973621799561972682217697301043965475216721543764137053051792239081735392108941318613425718558140513710032718311036781285811<159> |
factorization results 素因数分解の結果 | GMP-ECM 6.4.4 [configured with MPIR 2.6.0] [ECM] Input number is (7*10^231+9)/(6011*1053583*32217801571821666617) (203 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2334626980 Step 1 took 18375ms Step 2 took 9453ms ********** Factor found in step 2: 152290506857301918343142836856302329695780639 Found probable prime factor of 45 digits: 152290506857301918343142836856302329695780639 Composite cofactor ((7*10^231+9)/(6011*1053583*32217801571821666617))/152290506857301918343142836856302329695780639 has 159 digits |
name 名前 | Youcef Lemsafer |
---|---|
date 日付 | January 28, 2014 14:56:00 UTC 2014 年 1 月 28 日 (火) 23 時 56 分 0 秒 (日本時間) |
composite number 合成数 | 225275427786550657148742094695466401973621799561972682217697301043965475216721543764137053051792239081735392108941318613425718558140513710032718311036781285811<159> |
prime factors 素因数 | 139269694121856855079103552367473358691601<42> |
composite cofactor 合成数の残り | 1617548090465692657480697142748206023596081855772046946721301294317147367889638106907644083690488187779066993784558211<118> |
factorization results 素因数分解の結果 | GMP-ECM 6.4.4 [configured with MPIR 2.6.0] [ECM] Input number is (7*10^231+9)/(6011*1053583*32217801571821666617*152290506857301918343142836856302329695780639) (159 digits) Using B1=31000000, B2=144289975846, polynomial Dickson(12), sigma=4016893388 Step 1 took 131836ms Step 2 took 49921ms ********** Factor found in step 2: 139269694121856855079103552367473358691601 Found probable prime factor of 42 digits: 139269694121856855079103552367473358691601 Composite cofactor ((7*10^231+9)/(6011*1053583*32217801571821666617*152290506857301918343142836856302329695780639))/139269694121856855079103552367473358691601 has 118 digits |
name 名前 | Youcef Lemsafer |
---|---|
date 日付 | January 29, 2014 15:27:11 UTC 2014 年 1 月 30 日 (木) 0 時 27 分 11 秒 (日本時間) |
composite number 合成数 | 1617548090465692657480697142748206023596081855772046946721301294317147367889638106907644083690488187779066993784558211<118> |
prime factors 素因数 | 4208458143495672063597255874974469203081736811189359300327<58> 384356463890623016674515103897702873084553398599375771711493<60> |
factorization results 素因数分解の結果 | <Polynomial selection using msieve 1.51 win64> Tue Jan 28 18:03:10 2014 Msieve v. 1.51 (SVN Official Release) Tue Jan 28 18:03:10 2014 random seeds: b2428828 4e74ce58 Tue Jan 28 18:03:10 2014 factoring 1617548090465692657480697142748206023596081855772046946721301294317147367889638106907644083690488187779066993784558211 (118 digits) Tue Jan 28 18:03:11 2014 searching for 15-digit factors Tue Jan 28 18:03:11 2014 commencing number field sieve (118-digit input) Tue Jan 28 18:03:11 2014 commencing number field sieve polynomial selection Tue Jan 28 18:03:11 2014 polynomial degree: 5 Tue Jan 28 18:03:11 2014 max stage 1 norm: 3.93e+017 Tue Jan 28 18:03:11 2014 max stage 2 norm: 1.29e+016 Tue Jan 28 18:03:11 2014 min E-value: 3.07e-010 Tue Jan 28 18:03:11 2014 poly select deadline: 10800 Tue Jan 28 18:03:11 2014 time limit set to 3.00 CPU-hours Tue Jan 28 18:03:11 2014 expecting poly E from 4.03e-010 to > 4.63e-010 Tue Jan 28 18:03:11 2014 searching leading coefficients from 30000 to 100000 Tue Jan 28 19:29:59 2014 polynomial selection complete Tue Jan 28 19:29:59 2014 R0: -33603427929575649588503 Tue Jan 28 19:29:59 2014 R1: 256523584481 Tue Jan 28 19:29:59 2014 A0: -436824244338592452715678200 Tue Jan 28 19:29:59 2014 A1: 20099466361055785705495 Tue Jan 28 19:29:59 2014 A2: 20328668320162877583 Tue Jan 28 19:29:59 2014 A3: 261862339011723 Tue Jan 28 19:29:59 2014 A4: -7697748938 Tue Jan 28 19:29:59 2014 A5: 37752 Tue Jan 28 19:29:59 2014 skew 41775.71, size 3.475e-011, alpha -6.764, combined = 4.430e-010 rroots = 3 Tue Jan 28 19:29:59 2014 elapsed time 01:26:49 <Sieving + postprocessing using GGNFS (SVN 440) + msieve 1.51> Tue Jan 28 19:33:08 2014 -> factmsieve.py (v0.76) Tue Jan 28 19:33:08 2014 -> This is client 1 of 1 Tue Jan 28 19:33:08 2014 -> Running on 4 Cores with 2 hyper-threads per Core Tue Jan 28 19:33:08 2014 -> Working with NAME = 70009_231 Tue Jan 28 19:34:47 2014 -> factmsieve.py (v0.76) Tue Jan 28 19:34:47 2014 -> This is client 1 of 1 Tue Jan 28 19:34:47 2014 -> Running on 4 Cores with 2 hyper-threads per Core Tue Jan 28 19:34:47 2014 -> Working with NAME = 70009_231 Tue Jan 28 19:34:47 2014 -> Selected lattice siever: gnfs-lasieve4I13e Tue Jan 28 19:34:47 2014 -> Creating param file to detect parameter changes... Tue Jan 28 19:34:47 2014 -> Running setup ... Tue Jan 28 19:34:47 2014 -> Estimated minimum relations needed: 8.55e+06 Tue Jan 28 19:34:47 2014 -> cleaning up before a restart Tue Jan 28 19:34:47 2014 -> Running lattice siever ... Tue Jan 28 19:34:47 2014 -> entering sieving loop <...snipped...> Tue Jan 28 19:34:47 2014 -> Lattice sieving algebraic q from 1900000 to 2000000. <...snipped...> Tue Jan 28 20:00:08 2014 Found 804824 relations, 9.4% of the estimated minimum (8550000). <...snipped...> Wed Jan 29 00:17:10 2014 -> Lattice sieving algebraic q from 3000000 to 3100000. <...snipped...> Wed Jan 29 00:43:17 2014 Found 9970073 relations, 116.6% of the estimated minimum (8550000). Wed Jan 29 00:43:17 2014 Wed Jan 29 00:43:17 2014 Wed Jan 29 00:43:17 2014 Msieve v. 1.51 (SVN Official Release) Wed Jan 29 00:43:17 2014 random seeds: d7763980 8e8c39d7 Wed Jan 29 00:43:17 2014 factoring 1617548090465692657480697142748206023596081855772046946721301294317147367889638106907644083690488187779066993784558211 (118 digits) Wed Jan 29 00:43:18 2014 searching for 15-digit factors Wed Jan 29 00:43:18 2014 commencing number field sieve (118-digit input) Wed Jan 29 00:43:18 2014 R0: -33603427929575649588503 Wed Jan 29 00:43:18 2014 R1: 256523584481 Wed Jan 29 00:43:18 2014 A0: -436824244338592452715678200 Wed Jan 29 00:43:18 2014 A1: 20099466361055785705495 Wed Jan 29 00:43:18 2014 A2: 20328668320162877583 Wed Jan 29 00:43:18 2014 A3: 261862339011723 Wed Jan 29 00:43:18 2014 A4: -7697748938 Wed Jan 29 00:43:18 2014 A5: 37752 Wed Jan 29 00:43:18 2014 skew 41775.71, size 3.475e-011, alpha -6.764, combined = 4.430e-010 rroots = 3 Wed Jan 29 00:43:18 2014 Wed Jan 29 00:43:18 2014 commencing relation filtering Wed Jan 29 00:43:18 2014 estimated available RAM is 8189.6 MB Wed Jan 29 00:43:18 2014 commencing duplicate removal, pass 1 Wed Jan 29 00:44:06 2014 found 831407 hash collisions in 9970072 relations Wed Jan 29 00:44:25 2014 added 333 free relations Wed Jan 29 00:44:25 2014 commencing duplicate removal, pass 2 Wed Jan 29 00:44:29 2014 found 563571 duplicates and 9406834 unique relations Wed Jan 29 00:44:29 2014 memory use: 32.6 MB Wed Jan 29 00:44:29 2014 reading ideals above 100000 Wed Jan 29 00:44:29 2014 commencing singleton removal, initial pass Wed Jan 29 00:45:34 2014 memory use: 344.5 MB Wed Jan 29 00:45:34 2014 reading all ideals from disk Wed Jan 29 00:45:34 2014 memory use: 325.4 MB Wed Jan 29 00:45:35 2014 keeping 10325410 ideals with weight <= 200, target excess is 49120 Wed Jan 29 00:45:35 2014 commencing in-memory singleton removal Wed Jan 29 00:45:36 2014 begin with 9406834 relations and 10325410 unique ideals Wed Jan 29 00:45:40 2014 reduce to 3320998 relations and 3109704 ideals in 17 passes Wed Jan 29 00:45:40 2014 max relations containing the same ideal: 102 Wed Jan 29 00:45:42 2014 removing 617434 relations and 540277 ideals in 77157 cliques Wed Jan 29 00:45:42 2014 commencing in-memory singleton removal Wed Jan 29 00:45:42 2014 begin with 2703564 relations and 3109704 unique ideals Wed Jan 29 00:45:44 2014 reduce to 2605633 relations and 2468424 ideals in 11 passes Wed Jan 29 00:45:44 2014 max relations containing the same ideal: 83 Wed Jan 29 00:45:45 2014 removing 464962 relations and 387805 ideals in 77157 cliques Wed Jan 29 00:45:45 2014 commencing in-memory singleton removal Wed Jan 29 00:45:45 2014 begin with 2140671 relations and 2468424 unique ideals Wed Jan 29 00:45:46 2014 reduce to 2068917 relations and 2006620 ideals in 9 passes Wed Jan 29 00:45:46 2014 max relations containing the same ideal: 73 Wed Jan 29 00:45:47 2014 relations with 0 large ideals: 132 Wed Jan 29 00:45:47 2014 relations with 1 large ideals: 555 Wed Jan 29 00:45:47 2014 relations with 2 large ideals: 8689 Wed Jan 29 00:45:47 2014 relations with 3 large ideals: 64298 Wed Jan 29 00:45:47 2014 relations with 4 large ideals: 243781 Wed Jan 29 00:45:47 2014 relations with 5 large ideals: 515564 Wed Jan 29 00:45:47 2014 relations with 6 large ideals: 617860 Wed Jan 29 00:45:47 2014 relations with 7+ large ideals: 618038 Wed Jan 29 00:45:47 2014 commencing 2-way merge Wed Jan 29 00:45:48 2014 reduce to 1150063 relation sets and 1087768 unique ideals Wed Jan 29 00:45:48 2014 ignored 2 oversize relation sets Wed Jan 29 00:45:48 2014 commencing full merge Wed Jan 29 00:46:01 2014 memory use: 122.4 MB Wed Jan 29 00:46:01 2014 found 569486 cycles, need 557968 Wed Jan 29 00:46:01 2014 weight of 557968 cycles is about 39097311 (70.07/cycle) Wed Jan 29 00:46:01 2014 distribution of cycle lengths: Wed Jan 29 00:46:01 2014 1 relations: 64281 Wed Jan 29 00:46:01 2014 2 relations: 62696 Wed Jan 29 00:46:01 2014 3 relations: 62909 Wed Jan 29 00:46:01 2014 4 relations: 56401 Wed Jan 29 00:46:01 2014 5 relations: 52062 Wed Jan 29 00:46:01 2014 6 relations: 44348 Wed Jan 29 00:46:01 2014 7 relations: 39319 Wed Jan 29 00:46:01 2014 8 relations: 34349 Wed Jan 29 00:46:01 2014 9 relations: 29398 Wed Jan 29 00:46:01 2014 10+ relations: 112205 Wed Jan 29 00:46:01 2014 heaviest cycle: 21 relations Wed Jan 29 00:46:02 2014 commencing cycle optimization Wed Jan 29 00:46:02 2014 start with 3365856 relations Wed Jan 29 00:46:07 2014 pruned 64961 relations Wed Jan 29 00:46:07 2014 memory use: 115.6 MB Wed Jan 29 00:46:07 2014 distribution of cycle lengths: Wed Jan 29 00:46:07 2014 1 relations: 64281 Wed Jan 29 00:46:07 2014 2 relations: 64003 Wed Jan 29 00:46:07 2014 3 relations: 64701 Wed Jan 29 00:46:07 2014 4 relations: 57441 Wed Jan 29 00:46:07 2014 5 relations: 52982 Wed Jan 29 00:46:07 2014 6 relations: 44715 Wed Jan 29 00:46:07 2014 7 relations: 39846 Wed Jan 29 00:46:07 2014 8 relations: 34215 Wed Jan 29 00:46:07 2014 9 relations: 29328 Wed Jan 29 00:46:07 2014 10+ relations: 106456 Wed Jan 29 00:46:07 2014 heaviest cycle: 21 relations Wed Jan 29 00:46:07 2014 RelProcTime: 169 Wed Jan 29 00:46:07 2014 elapsed time 00:02:50 Wed Jan 29 00:46:07 2014 LatSieveTime: 1736.96 Wed Jan 29 00:46:07 2014 -> Running matrix solving step ... <...snipped...> Wed Jan 29 00:46:08 2014 commencing linear algebra Wed Jan 29 00:46:08 2014 read 557968 cycles Wed Jan 29 00:46:09 2014 cycles contain 1964371 unique relations Wed Jan 29 00:46:19 2014 read 1964371 relations Wed Jan 29 00:46:21 2014 using 20 quadratic characters above 134217594 Wed Jan 29 00:46:30 2014 building initial matrix Wed Jan 29 00:46:48 2014 memory use: 244.4 MB Wed Jan 29 00:46:49 2014 read 557968 cycles Wed Jan 29 00:46:49 2014 matrix is 557788 x 557968 (167.3 MB) with weight 53060765 (95.10/col) Wed Jan 29 00:46:49 2014 sparse part has weight 37709189 (67.58/col) Wed Jan 29 00:46:53 2014 filtering completed in 2 passes Wed Jan 29 00:46:53 2014 matrix is 555801 x 555981 (167.1 MB) with weight 52970186 (95.27/col) Wed Jan 29 00:46:53 2014 sparse part has weight 37676036 (67.76/col) Wed Jan 29 00:46:54 2014 matrix starts at (0, 0) Wed Jan 29 00:46:54 2014 matrix is 555801 x 555981 (167.1 MB) with weight 52970186 (95.27/col) Wed Jan 29 00:46:54 2014 sparse part has weight 37676036 (67.76/col) Wed Jan 29 00:46:54 2014 saving the first 48 matrix rows for later Wed Jan 29 00:46:55 2014 matrix includes 64 packed rows Wed Jan 29 00:46:55 2014 matrix is 555753 x 555981 (161.5 MB) with weight 42323308 (76.12/col) Wed Jan 29 00:46:55 2014 sparse part has weight 36786977 (66.17/col) Wed Jan 29 00:46:55 2014 using block size 65536 for processor cache size 8192 kB Wed Jan 29 00:46:57 2014 commencing Lanczos iteration (8 threads) Wed Jan 29 00:46:57 2014 memory use: 153.7 MB Wed Jan 29 00:47:03 2014 linear algebra at 0.5%, ETA 0h18m Wed Jan 29 01:03:44 2014 lanczos halted after 8791 iterations (dim = 555750) Wed Jan 29 01:03:45 2014 recovered 29 nontrivial dependencies Wed Jan 29 01:03:45 2014 BLanczosTime: 1057 Wed Jan 29 01:03:45 2014 elapsed time 00:17:38 Wed Jan 29 01:03:45 2014 -> Running square root step ... <...snipped...> Wed Jan 29 01:03:46 2014 commencing square root phase Wed Jan 29 01:03:46 2014 reading relations for dependency 1 Wed Jan 29 01:03:46 2014 read 278047 cycles Wed Jan 29 01:03:46 2014 cycles contain 981984 unique relations Wed Jan 29 01:03:53 2014 read 981984 relations Wed Jan 29 01:03:57 2014 multiplying 981984 relations Wed Jan 29 01:04:43 2014 multiply complete, coefficients have about 44.12 million bits Wed Jan 29 01:04:44 2014 initial square root is modulo 2158459 Wed Jan 29 01:05:46 2014 sqrtTime: 120 Wed Jan 29 01:05:46 2014 prp58 factor: 4208458143495672063597255874974469203081736811189359300327 Wed Jan 29 01:05:46 2014 prp60 factor: 384356463890623016674515103897702873084553398599375771711493 Wed Jan 29 01:05:46 2014 elapsed time 00:02:01 Wed Jan 29 01:05:46 2014 -> Computing 1.39095e+09 scale for this machine... Wed Jan 29 01:05:46 2014 -> procrels -speedtest> PIPE Wed Jan 29 01:05:49 2014 -> Factorization summary written to g118-70009_231.txt Number: 70009_231 N = 1617548090465692657480697142748206023596081855772046946721301294317147367889638106907644083690488187779066993784558211 (118 digits) Divisors found: r1=4208458143495672063597255874974469203081736811189359300327 (pp58) r2=384356463890623016674515103897702873084553398599375771711493 (pp60) Version: Msieve v. 1.51 (SVN Official Release) Total time: 5.56 hours. Factorization parameters were as follows: # # 70009_231, C118 # norm 4.201928e-011 alpha -6.764266 e 4.430e-010 rroots 3 n: 1617548090465692657480697142748206023596081855772046946721301294317147367889638106907644083690488187779066993784558211 skew: 41775.71 c0: -436824244338592452715678200 c1: 20099466361055785705495 c2: 20328668320162877583 c3: 261862339011723 c4: -7697748938 c5: 37752 Y0: -33603427929575649588503 Y1: 256523584481 type: gnfs Factor base limits: 3800000/3800000 Large primes per side: 3 Large prime bits: 27/27 Sieved algebraic special-q in [1900000, 3100001) Total raw relations: 9970073 Relations: 981984 relations Pruned matrix : 555753 x 555981 Polynomial selection time: 0.00 hours. Total sieving time: 5.19 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.29 hours. time per square root: 0.03 hours. Prototype def-par.txt line would be: gnfs,117,5,63,2000,2.6e-05,0.28,250,20,50000,3600,3800000,3800000,27,27,53,53,2.5,2.5,100000 total time: 5.56 hours. Intel64 Family 6 Model 26 Stepping 5, GenuineIntel Windows-7-6.1.7601-SP1 processors: 4, speed: 2.80GHz |
execution environment 実行環境 | Windows 7 Pro 64-bit, Intel Xeon W3530 @ 2.8 GHz, 8GB RAM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1418 | 118 | Makoto Kamada | December 17, 2012 12:00:00 UTC 2012 年 12 月 17 日 (月) 21 時 0 分 0 秒 (日本時間) |
1300 | Warut Roonguthai | December 18, 2012 15:37:54 UTC 2012 年 12 月 19 日 (水) 0 時 37 分 54 秒 (日本時間) | |||
40 | 3e6 | 2144 | 300 | Serge Batalov | January 9, 2014 04:59:24 UTC 2014 年 1 月 9 日 (木) 13 時 59 分 24 秒 (日本時間) |
1444 | Youcef Lemsafer | January 28, 2014 10:30:39 UTC 2014 年 1 月 28 日 (火) 19 時 30 分 39 秒 (日本時間) | |||
400 | Youcef Lemsafer | January 28, 2014 14:54:13 UTC 2014 年 1 月 28 日 (火) 23 時 54 分 13 秒 (日本時間) | |||
45 | 11e6 | 619 / 3941 | Youcef Lemsafer | January 28, 2014 14:55:02 UTC 2014 年 1 月 28 日 (火) 23 時 55 分 2 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1418 | 118 | Makoto Kamada | December 17, 2012 12:00:00 UTC 2012 年 12 月 17 日 (月) 21 時 0 分 0 秒 (日本時間) |
1300 | Warut Roonguthai | December 18, 2012 15:39:02 UTC 2012 年 12 月 19 日 (水) 0 時 39 分 2 秒 (日本時間) | |||
40 | 3e6 | 2100 | 300 | Serge Batalov | January 9, 2014 04:59:25 UTC 2014 年 1 月 9 日 (木) 13 時 59 分 25 秒 (日本時間) |
1800 | Youcef Lemsafer | January 28, 2014 15:56:49 UTC 2014 年 1 月 29 日 (水) 0 時 56 分 49 秒 (日本時間) | |||
45 | 11e6 | 3796 | Youcef Lemsafer | February 1, 2014 06:35:34 UTC 2014 年 2 月 1 日 (土) 15 時 35 分 34 秒 (日本時間) | |
50 | 43e6 | 640 / 6614 | Youcef Lemsafer | February 2, 2014 15:42:14 UTC 2014 年 2 月 3 日 (月) 0 時 42 分 14 秒 (日本時間) |
name 名前 | Warut Roonguthai |
---|---|
date 日付 | December 17, 2012 22:17:51 UTC 2012 年 12 月 18 日 (火) 7 時 17 分 51 秒 (日本時間) |
composite number 合成数 | 2398488786738578473203158062646735719453805305609055555344170076311432583105291226722102495667537655624158353197642335146683692471533169491129101216554163249688412781710676441480692061115805291720428062281702275684822158179<223> |
prime factors 素因数 | 6381326268834967875571788474956533<34> 375860547744171069571451470511022770490162344239084610116302676550031636215371301390030313958267240151658681486750900746834806431882118561178656033449089882108591692172322831151319482230263<189> |
factorization results 素因数分解の結果 | Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3604464390 Step 1 took 14149ms Step 2 took 8066ms ********** Factor found in step 2: 6381326268834967875571788474956533 Found probable prime factor of 34 digits: 6381326268834967875571788474956533 Probable prime cofactor 375860547744171069571451470511022770490162344239084610116302676550031636215371301390030313958267240151658681486750900746834806431882118561178656033449089882108591692172322831151319482230263 has 189 digits |
software ソフトウェア | GMP-ECM 6.3 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | December 17, 2012 12:00:00 UTC 2012 年 12 月 17 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 29, 2012 09:10:11 UTC 2012 年 12 月 29 日 (土) 18 時 10 分 11 秒 (日本時間) |
composite number 合成数 | 39714734733939644950271478579574144572981498607147517545402452101193144102078215333291727420754920371956858451011874705685447953840131172095292669227321468083537107746075333178256750086521386384654226498805721191215100676852550537<230> |
prime factors 素因数 | 28030523456799818765513387699786558131<38> |
composite cofactor 合成数の残り | 1416838854085166844165897177499624592105295966254851797910569259785597350128021784596710469867436071367017990303653125589072932486340360935505386699198615151694261306014535484086257035066851027<193> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=2005355187 Step 1 took 155594ms Step 2 took 48106ms ********** Factor found in step 2: 28030523456799818765513387699786558131 Found probable prime factor of 38 digits: 28030523456799818765513387699786558131 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1418 | 118 | Makoto Kamada | December 17, 2012 12:00:00 UTC 2012 年 12 月 17 日 (月) 21 時 0 分 0 秒 (日本時間) |
1300 | Warut Roonguthai | December 18, 2012 15:38:54 UTC 2012 年 12 月 19 日 (水) 0 時 38 分 54 秒 (日本時間) | |||
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 4374 | 1000 | Dmitry Domanov | December 28, 2012 15:33:54 UTC 2012 年 12 月 29 日 (土) 0 時 33 分 54 秒 (日本時間) |
3374 | Youcef Lemsafer | February 4, 2014 06:58:40 UTC 2014 年 2 月 4 日 (火) 15 時 58 分 40 秒 (日本時間) | |||
50 | 43e6 | 256 / 6563 | Youcef Lemsafer | February 4, 2014 09:44:05 UTC 2014 年 2 月 4 日 (火) 18 時 44 分 5 秒 (日本時間) |
name 名前 | Youcef Lemsafer |
---|---|
date 日付 | February 5, 2014 06:31:00 UTC 2014 年 2 月 5 日 (水) 15 時 31 分 0 秒 (日本時間) |
composite number 合成数 | 235757721517391560573113975940016405651192679687395645552999296956246467884544396227096043739780792198694553256388664296702454006647450838199435229552438456729010334201079621788605291<183> |
prime factors 素因数 | 1093180458934333024832056915864043674826596171<46> |
composite cofactor 合成数の残り | 215662217148681621312515613791494562553990726219579429310096653452928434221267313308626378543609328587399167715891442290559946366385946721<138> |
factorization results 素因数分解の結果 | GMP-ECM 6.4.4 [configured with MPIR 2.6.0] [ECM] Input number is (7*10^235+9)/(79*107*151*1527833364245053141*152253858781110260373426040213) (183 digits) Using B1=31000000, B2=144289975846, polynomial Dickson(12), sigma=1884930792 Step 1 took 166719ms Step 2 took 57844ms ********** Factor found in step 2: 1093180458934333024832056915864043674826596171 Found probable prime factor of 46 digits: 1093180458934333024832056915864043674826596171 Composite cofactor ((7*10^235+9)/(79*107*151*1527833364245053141*152253858781110260373426040213))/1093180458934333024832056915864043674826596171 has 138 digits |
name 名前 | Youcef Lemsafer |
---|---|
date 日付 | February 11, 2014 14:53:06 UTC 2014 年 2 月 11 日 (火) 23 時 53 分 6 秒 (日本時間) |
composite number 合成数 | 215662217148681621312515613791494562553990726219579429310096653452928434221267313308626378543609328587399167715891442290559946366385946721<138> |
prime factors 素因数 | 66009548658807131689203375478647378030310475749311647980915697429<65> 3267136672353349266424259451095918061973037047001751108459493575366936349<73> |
factorization results 素因数分解の結果 | <Polynomial selection using msieve 1.51 win64 CPU> Wed Feb 05 17:40:43 2014 Msieve v. 1.51 (SVN Official Release) Wed Feb 05 17:40:43 2014 random seeds: 1d6e30e0 5f086473 Wed Feb 05 17:40:43 2014 factoring 215662217148681621312515613791494562553990726219579429310096653452928434221267313308626378543609328587399167715891442290559946366385946721 (138 digits) Wed Feb 05 17:40:44 2014 searching for 15-digit factors Wed Feb 05 17:40:45 2014 commencing number field sieve (138-digit input) Wed Feb 05 17:40:45 2014 commencing number field sieve polynomial selection Wed Feb 05 17:40:45 2014 polynomial degree: 5 Wed Feb 05 17:40:45 2014 max stage 1 norm: 8.45e+020 Wed Feb 05 17:40:45 2014 max stage 2 norm: 1.65e+019 Wed Feb 05 17:40:45 2014 min E-value: 2.26e-011 Wed Feb 05 17:40:45 2014 poly select deadline: 153035 Wed Feb 05 17:40:45 2014 time limit set to 42.51 CPU-hours Wed Feb 05 17:40:45 2014 expecting poly E from 2.59e-011 to > 2.98e-011 Wed Feb 05 17:40:45 2014 searching leading coefficients from 500000 to 2500000 Thu Feb 06 08:40:58 2014 polynomial selection complete Thu Feb 06 08:40:58 2014 R0: -212246808948810211810635739 Thu Feb 06 08:40:58 2014 R1: 684949437662621 Thu Feb 06 08:40:58 2014 A0: 1623015833092722140549382326675100 Thu Feb 06 08:40:58 2014 A1: 21729532964812623885609776248 Thu Feb 06 08:40:58 2014 A2: -47974395894843700997331 Thu Feb 06 08:40:58 2014 A3: -415147460757138624 Thu Feb 06 08:40:58 2014 A4: 369891793844 Thu Feb 06 08:40:58 2014 A5: 500688 Thu Feb 06 08:40:58 2014 skew 422882.62, size 2.348e-013, alpha -7.203, combined = 2.667e-011 rroots = 5 Thu Feb 06 08:40:58 2014 elapsed time 15:00:15 <Sieving + postprocessing using GGNFS (SVN 440) + msieve 1.51 win64 CPU> Thu Feb 06 08:51:30 2014 -> factmsieve.py (v0.76) Thu Feb 06 08:51:30 2014 -> This is client 1 of 1 Thu Feb 06 08:51:30 2014 -> Running on 4 Cores with 2 hyper-threads per Core Thu Feb 06 08:51:30 2014 -> Working with NAME = 70009_235 Thu Feb 06 08:51:30 2014 -> Selected lattice siever: gnfs-lasieve4I13e Thu Feb 06 08:51:30 2014 -> Creating param file to detect parameter changes... Thu Feb 06 08:51:30 2014 -> Running setup ... Thu Feb 06 08:51:30 2014 -> Estimated minimum relations needed: 2.156e+07 Thu Feb 06 08:51:30 2014 -> cleaning up before a restart Thu Feb 06 08:51:30 2014 -> Running lattice siever ... Thu Feb 06 08:51:30 2014 -> entering sieving loop <...snipped...> Thu Feb 06 08:51:30 2014 -> Lattice sieving algebraic q from 6700000 to 6800000. <...snipped...> Thu Feb 06 09:36:33 2014 Found 196394 relations, 0.9% of the estimated minimum (21560000). <...snipped...> Tue Feb 11 04:05:57 2014 -> Lattice sieving algebraic q from 18600000 to 18700000. <...snipped...> Tue Feb 11 05:03:47 2014 Found 22998282 relations, 106.7% of the estimated minimum (21560000). Tue Feb 11 05:03:47 2014 Tue Feb 11 05:03:47 2014 Tue Feb 11 05:03:47 2014 Msieve v. 1.51 (SVN Official Release) Tue Feb 11 05:03:47 2014 random seeds: 101185c0 93eaf84c Tue Feb 11 05:03:47 2014 factoring 215662217148681621312515613791494562553990726219579429310096653452928434221267313308626378543609328587399167715891442290559946366385946721 (138 digits) Tue Feb 11 05:03:48 2014 searching for 15-digit factors Tue Feb 11 05:03:48 2014 commencing number field sieve (138-digit input) Tue Feb 11 05:03:48 2014 R0: -212246808948810211810635739 Tue Feb 11 05:03:48 2014 R1: 684949437662621 Tue Feb 11 05:03:48 2014 A0: 1623015833092722140549382326675100 Tue Feb 11 05:03:48 2014 A1: 21729532964812623885609776248 Tue Feb 11 05:03:48 2014 A2: -47974395894843700997331 Tue Feb 11 05:03:48 2014 A3: -415147460757138624 Tue Feb 11 05:03:48 2014 A4: 369891793844 Tue Feb 11 05:03:48 2014 A5: 500688 Tue Feb 11 05:03:48 2014 skew 422882.62, size 2.348e-013, alpha -7.203, combined = 2.667e-011 rroots = 5 Tue Feb 11 05:03:48 2014 Tue Feb 11 05:03:48 2014 commencing relation filtering Tue Feb 11 05:03:48 2014 estimated available RAM is 4095.6 MB Tue Feb 11 05:03:48 2014 commencing duplicate removal, pass 1 Tue Feb 11 05:08:03 2014 found 3355774 hash collisions in 22998281 relations Tue Feb 11 05:08:48 2014 added 15 free relations Tue Feb 11 05:08:48 2014 commencing duplicate removal, pass 2 Tue Feb 11 05:08:59 2014 found 2987708 duplicates and 20010588 unique relations Tue Feb 11 05:08:59 2014 memory use: 98.6 MB Tue Feb 11 05:08:59 2014 reading ideals above 720000 Tue Feb 11 05:09:00 2014 commencing singleton removal, initial pass Tue Feb 11 05:15:50 2014 memory use: 689.0 MB Tue Feb 11 05:15:50 2014 reading all ideals from disk Tue Feb 11 05:15:53 2014 memory use: 645.6 MB Tue Feb 11 05:15:55 2014 keeping 21663452 ideals with weight <= 200, target excess is 121008 Tue Feb 11 05:15:57 2014 commencing in-memory singleton removal Tue Feb 11 05:15:59 2014 begin with 20010588 relations and 21663452 unique ideals Tue Feb 11 05:16:18 2014 reduce to 8383705 relations and 8209822 ideals in 18 passes Tue Feb 11 05:16:18 2014 max relations containing the same ideal: 111 Tue Feb 11 05:16:22 2014 removing 283274 relations and 266517 ideals in 16757 cliques Tue Feb 11 05:16:23 2014 commencing in-memory singleton removal Tue Feb 11 05:16:23 2014 begin with 8100431 relations and 8209822 unique ideals Tue Feb 11 05:16:29 2014 reduce to 8092414 relations and 7935259 ideals in 7 passes Tue Feb 11 05:16:29 2014 max relations containing the same ideal: 109 Tue Feb 11 05:16:33 2014 removing 205369 relations and 188612 ideals in 16757 cliques Tue Feb 11 05:16:34 2014 commencing in-memory singleton removal Tue Feb 11 05:16:34 2014 begin with 7887045 relations and 7935259 unique ideals Tue Feb 11 05:16:40 2014 reduce to 7882500 relations and 7742092 ideals in 8 passes Tue Feb 11 05:16:40 2014 max relations containing the same ideal: 108 Tue Feb 11 05:16:42 2014 relations with 0 large ideals: 463 Tue Feb 11 05:16:42 2014 relations with 1 large ideals: 968 Tue Feb 11 05:16:42 2014 relations with 2 large ideals: 18635 Tue Feb 11 05:16:42 2014 relations with 3 large ideals: 144431 Tue Feb 11 05:16:42 2014 relations with 4 large ideals: 608950 Tue Feb 11 05:16:43 2014 relations with 5 large ideals: 1503308 Tue Feb 11 05:16:43 2014 relations with 6 large ideals: 2241778 Tue Feb 11 05:16:43 2014 relations with 7+ large ideals: 3363967 Tue Feb 11 05:16:43 2014 commencing 2-way merge Tue Feb 11 05:16:49 2014 reduce to 4563170 relation sets and 4422767 unique ideals Tue Feb 11 05:16:49 2014 ignored 5 oversize relation sets Tue Feb 11 05:16:49 2014 commencing full merge Tue Feb 11 05:18:19 2014 memory use: 522.3 MB Tue Feb 11 05:18:19 2014 found 2351205 cycles, need 2338967 Tue Feb 11 05:18:20 2014 weight of 2338967 cycles is about 163767513 (70.02/cycle) Tue Feb 11 05:18:20 2014 distribution of cycle lengths: Tue Feb 11 05:18:20 2014 1 relations: 366001 Tue Feb 11 05:18:20 2014 2 relations: 313248 Tue Feb 11 05:18:20 2014 3 relations: 290374 Tue Feb 11 05:18:20 2014 4 relations: 247984 Tue Feb 11 05:18:20 2014 5 relations: 207401 Tue Feb 11 05:18:20 2014 6 relations: 170763 Tue Feb 11 05:18:20 2014 7 relations: 141273 Tue Feb 11 05:18:20 2014 8 relations: 114614 Tue Feb 11 05:18:20 2014 9 relations: 92313 Tue Feb 11 05:18:20 2014 10+ relations: 394996 Tue Feb 11 05:18:20 2014 heaviest cycle: 27 relations Tue Feb 11 05:18:20 2014 commencing cycle optimization Tue Feb 11 05:18:24 2014 start with 13122204 relations Tue Feb 11 05:18:49 2014 pruned 272744 relations Tue Feb 11 05:18:49 2014 memory use: 449.0 MB Tue Feb 11 05:18:49 2014 distribution of cycle lengths: Tue Feb 11 05:18:49 2014 1 relations: 366001 Tue Feb 11 05:18:49 2014 2 relations: 320426 Tue Feb 11 05:18:49 2014 3 relations: 300005 Tue Feb 11 05:18:49 2014 4 relations: 251898 Tue Feb 11 05:18:49 2014 5 relations: 209996 Tue Feb 11 05:18:49 2014 6 relations: 171121 Tue Feb 11 05:18:49 2014 7 relations: 140625 Tue Feb 11 05:18:49 2014 8 relations: 112782 Tue Feb 11 05:18:49 2014 9 relations: 90452 Tue Feb 11 05:18:49 2014 10+ relations: 375661 Tue Feb 11 05:18:49 2014 heaviest cycle: 26 relations Tue Feb 11 05:18:51 2014 RelProcTime: 903 Tue Feb 11 05:18:51 2014 elapsed time 00:15:04 Tue Feb 11 05:18:51 2014 LatSieveTime: 4373.8 Tue Feb 11 05:18:51 2014 -> Running matrix solving step ... <...snipped...> Tue Feb 11 05:18:52 2014 commencing linear algebra Tue Feb 11 05:18:53 2014 read 2338967 cycles Tue Feb 11 05:18:58 2014 cycles contain 7691627 unique relations Tue Feb 11 05:25:19 2014 read 7691627 relations Tue Feb 11 05:25:31 2014 using 20 quadratic characters above 268435008 Tue Feb 11 05:26:09 2014 building initial matrix Tue Feb 11 05:27:45 2014 memory use: 993.3 MB Tue Feb 11 05:28:02 2014 read 2338967 cycles Tue Feb 11 05:28:03 2014 matrix is 2338790 x 2338967 (702.9 MB) with weight 220185564 (94.14/col) Tue Feb 11 05:28:03 2014 sparse part has weight 158528236 (67.78/col) Tue Feb 11 05:28:28 2014 filtering completed in 2 passes Tue Feb 11 05:28:29 2014 matrix is 2335481 x 2335658 (702.6 MB) with weight 220046898 (94.21/col) Tue Feb 11 05:28:29 2014 sparse part has weight 158487974 (67.86/col) Tue Feb 11 05:28:37 2014 matrix starts at (0, 0) Tue Feb 11 05:28:38 2014 matrix is 2335481 x 2335658 (702.6 MB) with weight 220046898 (94.21/col) Tue Feb 11 05:28:38 2014 sparse part has weight 158487974 (67.86/col) Tue Feb 11 05:28:38 2014 saving the first 48 matrix rows for later Tue Feb 11 05:28:39 2014 matrix includes 64 packed rows Tue Feb 11 05:28:40 2014 matrix is 2335433 x 2335658 (678.3 MB) with weight 174981275 (74.92/col) Tue Feb 11 05:28:40 2014 sparse part has weight 154443793 (66.12/col) Tue Feb 11 05:28:40 2014 using block size 65536 for processor cache size 12288 kB Tue Feb 11 05:28:51 2014 commencing Lanczos iteration (8 threads) Tue Feb 11 05:28:51 2014 memory use: 658.3 MB Tue Feb 11 05:29:12 2014 linear algebra at 0.1%, ETA 8h34m Tue Feb 11 05:29:18 2014 checkpointing every 280000 dimensions Tue Feb 11 14:58:27 2014 lanczos halted after 36931 iterations (dim = 2335431) Tue Feb 11 14:58:33 2014 recovered 29 nontrivial dependencies Tue Feb 11 14:58:33 2014 BLanczosTime: 34781 Tue Feb 11 14:58:33 2014 elapsed time 09:39:42 Tue Feb 11 14:58:33 2014 -> Running square root step ... <...snipped...> Tue Feb 11 14:58:35 2014 commencing square root phase Tue Feb 11 14:58:35 2014 reading relations for dependency 1 Tue Feb 11 14:58:40 2014 read 1167101 cycles Tue Feb 11 14:58:42 2014 cycles contain 3843166 unique relations Tue Feb 11 15:06:33 2014 read 3843166 relations Tue Feb 11 15:06:58 2014 multiplying 3843166 relations Tue Feb 11 15:12:59 2014 multiply complete, coefficients have about 198.25 million bits Tue Feb 11 15:13:04 2014 initial square root is modulo 13019401 Tue Feb 11 15:21:59 2014 GCD is N, no factor found Tue Feb 11 15:21:59 2014 reading relations for dependency 2 Tue Feb 11 15:22:12 2014 read 1167784 cycles Tue Feb 11 15:22:14 2014 cycles contain 3843034 unique relations Tue Feb 11 15:28:26 2014 read 3843034 relations Tue Feb 11 15:28:53 2014 multiplying 3843034 relations Tue Feb 11 15:35:00 2014 multiply complete, coefficients have about 198.24 million bits Tue Feb 11 15:35:02 2014 initial square root is modulo 13008367 Tue Feb 11 15:42:32 2014 sqrtTime: 2637 Tue Feb 11 15:42:32 2014 prp65 factor: 66009548658807131689203375478647378030310475749311647980915697429 Tue Feb 11 15:42:32 2014 prp73 factor: 3267136672353349266424259451095918061973037047001751108459493575366936349 Tue Feb 11 15:42:32 2014 elapsed time 00:43:58 Tue Feb 11 15:42:32 2014 -> Computing 1.39213e+09 scale for this machine... Tue Feb 11 15:42:32 2014 -> procrels -speedtest> PIPE Tue Feb 11 15:42:36 2014 -> Factorization summary written to g138-70009_235.txt Number: 70009_235 N = 215662217148681621312515613791494562553990726219579429310096653452928434221267313308626378543609328587399167715891442290559946366385946721 (138 digits) Divisors found: r1=66009548658807131689203375478647378030310475749311647980915697429 (pp65) r2=3267136672353349266424259451095918061973037047001751108459493575366936349 (pp73) Version: Msieve v. 1.51 (SVN Official Release) Total time: 127.08 hours. Factorization parameters were as follows: # # 70009_235, C138, GNFS # # Murphy_E = 2.667e-11, selected by Youcef Lemsafer # msieve 1.51 CPU win64, expecting poly E from 2.59e-011 to > 2.98e-011 # norm 2.838802e-013 alpha -7.203448 e 2.667e-011 rroots 5 # n: 215662217148681621312515613791494562553990726219579429310096653452928434221267313308626378543609328587399167715891442290559946366385946721 Y0: -212246808948810211810635739 Y1: 684949437662621 c0: 1623015833092722140549382326675100 c1: 21729532964812623885609776248 c2: -47974395894843700997331 c3: -415147460757138624 c4: 369891793844 c5: 500688 skew: 422882.62 type: gnfs # selected mechanically rlim: 15400000 alim: 15400000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.6 alambda: 2.6 q0: 6700000 Factor base limits: 15400000/15400000 Large primes per side: 3 Large prime bits: 28/28 Sieved algebraic special-q in [6700000, 18700001) Total raw relations: 22998282 Relations: 3843034 relations Pruned matrix : 2335433 x 2335658 Polynomial selection time: 0.00 hours. Total sieving time: 116.44 hours. Total relation processing time: 0.25 hours. Matrix solve time: 9.66 hours. time per square root: 0.73 hours. Prototype def-par.txt line would be: gnfs,137,5,67,2000,5e-06,0.28,250,20,50000,3600,15400000,15400000,28,28,55,55,2.6,2.6,100000 total time: 127.08 hours. Intel64 Family 6 Model 44 Stepping 2, GenuineIntel Windows-7-6.1.7601-SP1 processors: 2, speed: 2.79GHz |
execution environment 実行環境 | Windows 7 Pro 64-bit, Intel Xeon X5660 @ 2.8GHz, 4GB RAM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1418 | 118 | Makoto Kamada | December 17, 2012 12:00:00 UTC 2012 年 12 月 17 日 (月) 21 時 0 分 0 秒 (日本時間) |
1300 | Warut Roonguthai | December 18, 2012 15:38:46 UTC 2012 年 12 月 19 日 (水) 0 時 38 分 46 秒 (日本時間) | |||
40 | 3e6 | 2100 | 300 | Serge Batalov | January 9, 2014 04:59:26 UTC 2014 年 1 月 9 日 (木) 13 時 59 分 26 秒 (日本時間) |
1800 | Youcef Lemsafer | February 4, 2014 14:08:46 UTC 2014 年 2 月 4 日 (火) 23 時 8 分 46 秒 (日本時間) | |||
45 | 11e6 | 1689 / 3839 | 822 | Youcef Lemsafer | February 5, 2014 06:30:00 UTC 2014 年 2 月 5 日 (水) 15 時 30 分 0 秒 (日本時間) |
867 | Youcef Lemsafer | February 5, 2014 14:48:26 UTC 2014 年 2 月 5 日 (水) 23 時 48 分 26 秒 (日本時間) | |||
50 | 43e6 | 32 / 7087 | Youcef Lemsafer | February 5, 2014 16:34:54 UTC 2014 年 2 月 6 日 (木) 1 時 34 分 54 秒 (日本時間) |
name 名前 | Youcef Lemsafer |
---|---|
date 日付 | March 3, 2014 13:22:51 UTC 2014 年 3 月 3 日 (月) 22 時 22 分 51 秒 (日本時間) |
composite number 合成数 | 20191894315498693730295378100685856813663427576661348802363106498429787420079620177482806690906801758752544090740841700586242203014923583007084505222695295168687521126629385946623750759874239213472972875728731988549350845500817<227> |
prime factors 素因数 | 53293058714045020778091133423357264840061<41> |
composite cofactor 合成数の残り | 378884132431626751755649328115837205325842087191958584921877565066112853405523781977455284490210520449996693310067135286694694384834480454540765953882716024993058306907792202565498360997<186> |
factorization results 素因数分解の結果 | GMP-ECM 6.4.4 [configured with MPIR 2.6.0] [ECM] Input number is (7*10^236+9)/(1009*34358153) (227 digits) Using B1=31000000, B2=144289975846, polynomial Dickson(12), sigma=2831009954 Step 1 took 213688ms Step 2 took 70265ms ********** Factor found in step 2: 53293058714045020778091133423357264840061 Found probable prime factor of 41 digits: 53293058714045020778091133423357264840061 Composite cofactor ((7*10^236+9)/(1009*34358153))/53293058714045020778091133423357264840061 has 186 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1418 | 118 | Makoto Kamada | December 17, 2012 12:00:00 UTC 2012 年 12 月 17 日 (月) 21 時 0 分 0 秒 (日本時間) |
1300 | Warut Roonguthai | December 18, 2012 15:38:30 UTC 2012 年 12 月 19 日 (水) 0 時 38 分 30 秒 (日本時間) | |||
40 | 3e6 | 2100 | 300 | Serge Batalov | January 9, 2014 04:59:26 UTC 2014 年 1 月 9 日 (木) 13 時 59 分 26 秒 (日本時間) |
1800 | Youcef Lemsafer | March 2, 2014 08:07:10 UTC 2014 年 3 月 2 日 (日) 17 時 7 分 10 秒 (日本時間) | |||
45 | 11e6 | 3885 | 1629 | Youcef Lemsafer | March 3, 2014 13:22:08 UTC 2014 年 3 月 3 日 (月) 22 時 22 分 8 秒 (日本時間) |
2256 | Youcef Lemsafer | March 19, 2014 08:54:45 UTC 2014 年 3 月 19 日 (水) 17 時 54 分 45 秒 (日本時間) | |||
50 | 43e6 | 0 / 6304 | - | - | |
55 | 11e7 | 120 / 17508 | Youcef Lemsafer | March 19, 2014 15:23:41 UTC 2014 年 3 月 20 日 (木) 0 時 23 分 41 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1418 | 118 | Makoto Kamada | December 17, 2012 12:00:00 UTC 2012 年 12 月 17 日 (月) 21 時 0 分 0 秒 (日本時間) |
1300 | Warut Roonguthai | December 18, 2012 15:39:24 UTC 2012 年 12 月 19 日 (水) 0 時 39 分 24 秒 (日本時間) | |||
40 | 3e6 | 2100 | 300 | Serge Batalov | January 9, 2014 04:59:27 UTC 2014 年 1 月 9 日 (木) 13 時 59 分 27 秒 (日本時間) |
1800 | Youcef Lemsafer | March 3, 2014 13:25:18 UTC 2014 年 3 月 3 日 (月) 22 時 25 分 18 秒 (日本時間) | |||
45 | 11e6 | 3796 | Youcef Lemsafer | March 6, 2014 14:10:02 UTC 2014 年 3 月 6 日 (木) 23 時 10 分 2 秒 (日本時間) | |
50 | 43e6 | 480 / 6614 | Youcef Lemsafer | March 7, 2014 06:54:12 UTC 2014 年 3 月 7 日 (金) 15 時 54 分 12 秒 (日本時間) |
name 名前 | Warut Roonguthai |
---|---|
date 日付 | December 18, 2012 05:04:54 UTC 2012 年 12 月 18 日 (火) 14 時 4 分 54 秒 (日本時間) |
composite number 合成数 | 1361751517388525096528159634028742850470858949405963359413105110185013556121098431641814960313625053081557008044117758552873442292531570733328362713710706542108481384519113238983613831341<187> |
prime factors 素因数 | 86079585006520066805517731395009193<35> 15819680325891205492700905306300290239905297519461823517568321923049832862135390001891635331895404921955079140320483022321519558546035039059921152398437<152> |
factorization results 素因数分解の結果 | Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2502520157 Step 1 took 8720ms Step 2 took 5398ms ********** Factor found in step 2: 86079585006520066805517731395009193 Found probable prime factor of 35 digits: 86079585006520066805517731395009193 Probable prime cofactor 15819680325891205492700905306300290239905297519461823517568321923049832862135390001891635331895404921955079140320483022321519558546035039059921152398437 has 152 digits |
software ソフトウェア | GMP-ECM 6.3 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | December 17, 2012 12:00:00 UTC 2012 年 12 月 17 日 (月) 21 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1418 | 118 | Makoto Kamada | December 17, 2012 12:00:00 UTC 2012 年 12 月 17 日 (月) 21 時 0 分 0 秒 (日本時間) |
1300 | Warut Roonguthai | December 18, 2012 15:39:34 UTC 2012 年 12 月 19 日 (水) 0 時 39 分 34 秒 (日本時間) | |||
40 | 3e6 | 2100 | 300 | Serge Batalov | January 9, 2014 04:59:28 UTC 2014 年 1 月 9 日 (木) 13 時 59 分 28 秒 (日本時間) |
1800 | Youcef Lemsafer | March 7, 2014 13:29:08 UTC 2014 年 3 月 7 日 (金) 22 時 29 分 8 秒 (日本時間) | |||
45 | 11e6 | 3796 | Youcef Lemsafer | March 10, 2014 10:56:40 UTC 2014 年 3 月 10 日 (月) 19 時 56 分 40 秒 (日本時間) | |
50 | 43e6 | 480 / 6614 | Youcef Lemsafer | March 11, 2014 08:18:23 UTC 2014 年 3 月 11 日 (火) 17 時 18 分 23 秒 (日本時間) |
name 名前 | Warut Roonguthai |
---|---|
date 日付 | December 18, 2012 01:32:59 UTC 2012 年 12 月 18 日 (火) 10 時 32 分 59 秒 (日本時間) |
composite number 合成数 | 1758823930799689880125437083148620681570821433377223060086807011947262519943855996831958279115289776546895448897083572333672243216181295373024547302661476246524648926979997194943272424484988930177328920088648227887639<217> |
prime factors 素因数 | 893625308919995152437000309785219891<36> |
composite cofactor 合成数の残り | 1968189478569428676883505847570702524755417176906581844034679299313421008678161974170208915280249726461506241487144076702143705988795261574337697746623472508245555361607786540178829<181> |
factorization results 素因数分解の結果 | Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=353979350 Step 1 took 11450ms Step 2 took 6318ms ********** Factor found in step 2: 893625308919995152437000309785219891 Found probable prime factor of 36 digits: 893625308919995152437000309785219891 Composite cofactor 1968189478569428676883505847570702524755417176906581844034679299313421008678161974170208915280249726461506241487144076702143705988795261574337697746623472508245555361607786540178829 has 181 digits |
software ソフトウェア | GMP-ECM 6.3 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1418 | 118 | Makoto Kamada | December 17, 2012 12:00:00 UTC 2012 年 12 月 17 日 (月) 21 時 0 分 0 秒 (日本時間) |
1300 | Warut Roonguthai | December 18, 2012 15:39:40 UTC 2012 年 12 月 19 日 (水) 0 時 39 分 40 秒 (日本時間) | |||
40 | 3e6 | 2100 | 300 | Serge Batalov | January 9, 2014 04:59:29 UTC 2014 年 1 月 9 日 (木) 13 時 59 分 29 秒 (日本時間) |
1800 | Youcef Lemsafer | March 11, 2014 08:19:08 UTC 2014 年 3 月 11 日 (火) 17 時 19 分 8 秒 (日本時間) | |||
45 | 11e6 | 3796 | Youcef Lemsafer | March 13, 2014 10:15:19 UTC 2014 年 3 月 13 日 (木) 19 時 15 分 19 秒 (日本時間) | |
50 | 43e6 | 342 / 6614 | 40 | Cyp | January 26, 2014 14:04:32 UTC 2014 年 1 月 26 日 (日) 23 時 4 分 32 秒 (日本時間) |
302 | Youcef Lemsafer | March 13, 2014 18:12:45 UTC 2014 年 3 月 14 日 (金) 3 時 12 分 45 秒 (日本時間) |
name 名前 | Cyp |
---|---|
date 日付 | January 7, 2014 23:34:39 UTC 2014 年 1 月 8 日 (水) 8 時 34 分 39 秒 (日本時間) |
composite number 合成数 | 30176527121929353993110282403012521231040243851542013667580364193465070794975941079221945493868130320843294776511375601266261069004225149504318638290142964953015308407150436306423206090366767056897379034914512418125727670432297493<230> |
prime factors 素因数 | 6780037698430314663744508825956863803335481<43> |
composite cofactor 合成数の残り | 4450790462258888990611934144237934301853206674417978263372241842760493899449490453879658554387061823436166020957523240739769711193284583197347463197746344209643013724832084219205385157053<187> |
factorization results 素因数分解の結果 | Run 417 out of 579: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=204252887 Step 1 took 79503ms Step 2 took 23921ms ********** Factor found in step 2: 6780037698430314663744508825956863803335481 Found probable prime factor of 43 digits: 6780037698430314663744508825956863803335481 Composite cofactor 4450790462258888990611934144237934301853206674417978263372241842760493899449490453879658554387061823436166020957523240739769711193284583197347463197746344209643013724832084219205385157053 has 187 digits |
software ソフトウェア | GMP-ECM 6.4.4 |
execution environment 実行環境 | Gentoo Linux, Intel(R) Core(TM) i7-3770K CPU |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1418 | 118 | Makoto Kamada | December 17, 2012 12:00:00 UTC 2012 年 12 月 17 日 (月) 21 時 0 分 0 秒 (日本時間) |
1300 | Warut Roonguthai | December 18, 2012 15:39:53 UTC 2012 年 12 月 19 日 (水) 0 時 39 分 53 秒 (日本時間) | |||
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 4375 | 579 | Cyp | January 7, 2014 23:34:37 UTC 2014 年 1 月 8 日 (水) 8 時 34 分 37 秒 (日本時間) |
3796 | Youcef Lemsafer | March 15, 2014 21:31:04 UTC 2014 年 3 月 16 日 (日) 6 時 31 分 4 秒 (日本時間) | |||
50 | 43e6 | 256 / 6563 | Youcef Lemsafer | March 16, 2014 07:51:19 UTC 2014 年 3 月 16 日 (日) 16 時 51 分 19 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1418 | 118 | Makoto Kamada | December 17, 2012 12:00:00 UTC 2012 年 12 月 17 日 (月) 21 時 0 分 0 秒 (日本時間) |
1300 | Warut Roonguthai | December 18, 2012 15:40:00 UTC 2012 年 12 月 19 日 (水) 0 時 40 分 0 秒 (日本時間) | |||
40 | 3e6 | 300 | Serge Batalov | January 9, 2014 04:59:29 UTC 2014 年 1 月 9 日 (木) 13 時 59 分 29 秒 (日本時間) | |
45 | 11e6 | 4168 | 372 | Cyp | March 8, 2014 02:18:11 UTC 2014 年 3 月 8 日 (土) 11 時 18 分 11 秒 (日本時間) |
3796 | Youcef Lemsafer | March 19, 2014 05:12:12 UTC 2014 年 3 月 19 日 (水) 14 時 12 分 12 秒 (日本時間) | |||
50 | 43e6 | 296 / 6598 | 40 | Cyp | January 11, 2014 20:35:52 UTC 2014 年 1 月 12 日 (日) 5 時 35 分 52 秒 (日本時間) |
256 | Youcef Lemsafer | March 19, 2014 05:12:12 UTC 2014 年 3 月 19 日 (水) 14 時 12 分 12 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1418 | 118 | Makoto Kamada | December 17, 2012 12:00:00 UTC 2012 年 12 月 17 日 (月) 21 時 0 分 0 秒 (日本時間) |
1300 | Warut Roonguthai | December 18, 2012 15:40:07 UTC 2012 年 12 月 19 日 (水) 0 時 40 分 7 秒 (日本時間) | |||
40 | 3e6 | 2100 | 300 | Serge Batalov | January 9, 2014 04:59:30 UTC 2014 年 1 月 9 日 (木) 13 時 59 分 30 秒 (日本時間) |
1800 | Youcef Lemsafer | March 19, 2014 17:10:18 UTC 2014 年 3 月 20 日 (木) 2 時 10 分 18 秒 (日本時間) | |||
45 | 11e6 | 3796 | Youcef Lemsafer | March 24, 2014 12:58:51 UTC 2014 年 3 月 24 日 (月) 21 時 58 分 51 秒 (日本時間) | |
50 | 43e6 | 256 / 6614 | Youcef Lemsafer | March 24, 2014 12:58:51 UTC 2014 年 3 月 24 日 (月) 21 時 58 分 51 秒 (日本時間) |
name 名前 | Cyp |
---|---|
date 日付 | March 10, 2014 21:37:07 UTC 2014 年 3 月 11 日 (火) 6 時 37 分 7 秒 (日本時間) |
composite number 合成数 | 103518794497984315426701920565861719344980435251277868496679478155598389623432165503149338164087361354256073969699585213125105160972011420211350895092068515305632802737353291438488930012204033847874612768271569926031570359992105408304223<237> |
prime factors 素因数 | 41629372621452398224728717741923765223437<41> |
composite cofactor 合成数の残り | 2486676785627058303666145110095492012392912022588776912426333767047555310916020924139552108889253274915417330756159401501103817990704624801097234133096376805012399356876148980556684603540730257179<196> |
factorization results 素因数分解の結果 | Run 192 out of 482: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=4201177542 Step 1 took 91101ms Step 2 took 25431ms ********** Factor found in step 2: 41629372621452398224728717741923765223437 Found probable prime factor of 41 digits: 41629372621452398224728717741923765223437 Composite cofactor 2486676785627058303666145110095492012392912022588776912426333767047555310916020924139552108889253274915417330756159401501103817990704624801097234133096376805012399356876148980556684603540730257179 has 196 digits |
software ソフトウェア | GMP-ECM 6.4.4 |
execution environment 実行環境 | Gentoo Linux, Intel(R) Core(TM) i7-3770K CPU |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1418 | 118 | Makoto Kamada | December 17, 2012 12:00:00 UTC 2012 年 12 月 17 日 (月) 21 時 0 分 0 秒 (日本時間) |
1300 | Warut Roonguthai | December 18, 2012 15:40:16 UTC 2012 年 12 月 19 日 (水) 0 時 40 分 16 秒 (日本時間) | |||
40 | 3e6 | 300 | Serge Batalov | January 9, 2014 04:59:31 UTC 2014 年 1 月 9 日 (木) 13 時 59 分 31 秒 (日本時間) | |
45 | 11e6 | 3856 | 482 | Cyp | March 10, 2014 21:37:06 UTC 2014 年 3 月 11 日 (火) 6 時 37 分 6 秒 (日本時間) |
3374 | Youcef Lemsafer | March 28, 2014 06:06:21 UTC 2014 年 3 月 28 日 (金) 15 時 6 分 21 秒 (日本時間) | |||
50 | 43e6 | 640 / 6668 | Youcef Lemsafer | March 29, 2014 12:19:59 UTC 2014 年 3 月 29 日 (土) 21 時 19 分 59 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1418 | 118 | Makoto Kamada | December 17, 2012 12:00:00 UTC 2012 年 12 月 17 日 (月) 21 時 0 分 0 秒 (日本時間) |
1300 | Warut Roonguthai | December 18, 2012 15:40:25 UTC 2012 年 12 月 19 日 (水) 0 時 40 分 25 秒 (日本時間) | |||
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 600 | Dmitry Domanov | December 19, 2012 23:03:20 UTC 2012 年 12 月 20 日 (木) 8 時 3 分 20 秒 (日本時間) | |
50 | 43e6 | 1740 / 7410 | 600 | Dmitry Domanov | December 31, 2012 00:19:44 UTC 2012 年 12 月 31 日 (月) 9 時 19 分 44 秒 (日本時間) |
500 | Dmitry Domanov | January 5, 2013 15:21:50 UTC 2013 年 1 月 6 日 (日) 0 時 21 分 50 秒 (日本時間) | |||
640 | Youcef Lemsafer | March 24, 2014 14:51:15 UTC 2014 年 3 月 24 日 (月) 23 時 51 分 15 秒 (日本時間) |
name 名前 | Warut Roonguthai |
---|---|
date 日付 | December 17, 2012 14:09:03 UTC 2012 年 12 月 17 日 (月) 23 時 9 分 3 秒 (日本時間) |
composite number 合成数 | 112277557482888501870806943192150292985189368750786048394232266159540272426392271907930695086599945881642860802198793817132777019617864690150972396811494085992083643596135212511483881209432619495733<198> |
prime factors 素因数 | 3363934732412756978578038165379417<34> |
composite cofactor 合成数の残り | 33376853718668395548242824460326859943721379933418476440457902637857926932107893738392471889822646851845864205703875623554525476286969790759756043917009752908037949<164> |
factorization results 素因数分解の結果 | Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2561419392 Step 1 took 9719ms Step 2 took 5632ms ********** Factor found in step 2: 3363934732412756978578038165379417 Found probable prime factor of 34 digits: 3363934732412756978578038165379417 Composite cofactor 33376853718668395548242824460326859943721379933418476440457902637857926932107893738392471889822646851845864205703875623554525476286969790759756043917009752908037949 has 164 digits |
software ソフトウェア | GMP-ECM 6.3 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1418 | 118 | Makoto Kamada | December 17, 2012 12:00:00 UTC 2012 年 12 月 17 日 (月) 21 時 0 分 0 秒 (日本時間) |
1300 | Warut Roonguthai | December 18, 2012 15:40:32 UTC 2012 年 12 月 19 日 (水) 0 時 40 分 32 秒 (日本時間) | |||
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 1000 | Dmitry Domanov | December 18, 2012 22:12:37 UTC 2012 年 12 月 19 日 (水) 7 時 12 分 37 秒 (日本時間) | |
50 | 43e6 | 3408 / 7321 | 976 | Dmitry Domanov | December 21, 2012 10:43:59 UTC 2012 年 12 月 21 日 (金) 19 時 43 分 59 秒 (日本時間) |
640 | Youcef Lemsafer | March 25, 2014 18:23:22 UTC 2014 年 3 月 26 日 (水) 3 時 23 分 22 秒 (日本時間) | |||
1792 | Dmitry Domanov | January 6, 2025 23:43:29 UTC 2025 年 1 月 7 日 (火) 8 時 43 分 29 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間) | |
45 | 11e6 | 2000 | Dmitry Domanov | April 26, 2019 16:19:39 UTC 2019 年 4 月 27 日 (土) 1 時 19 分 39 秒 (日本時間) | |
50 | 43e6 | 5000 | 2000 | Dmitry Domanov | April 29, 2019 11:00:44 UTC 2019 年 4 月 29 日 (月) 20 時 0 分 44 秒 (日本時間) |
3000 | Dmitry Domanov | October 28, 2020 09:18:27 UTC 2020 年 10 月 28 日 (水) 18 時 18 分 27 秒 (日本時間) | |||
55 | 11e7 | 828 | NFS@home + Dmitry Domanov | November 22, 2020 01:13:35 UTC 2020 年 11 月 22 日 (日) 10 時 13 分 35 秒 (日本時間) | |
60 | 26e7 | 12000 / 41083 | yoyo@Home | May 27, 2024 01:55:36 UTC 2024 年 5 月 27 日 (月) 10 時 55 分 36 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | May 24, 2019 09:12:07 UTC 2019 年 5 月 24 日 (金) 18 時 12 分 7 秒 (日本時間) |
composite number 合成数 | 102499374021680081882357075605002555162966683310612638758527581849410848240891100272209051866147531741859719356713928639935806106326993503003963797221095542595079151480896313097516440167454691615990488058090788088401317263383855762880876691788775147123208640404374673283245305894739<282> |
prime factors 素因数 | 3204848001332482698798118540520020338407<40> |
composite cofactor 合成数の残り | 31982600728353987380761047882919781818426492455369853763298209901615378592726952877969111584862229839056529487424367549559478206641144001842018238136101542228056367031707149336512344631461802943988575464798012562243518995826329229243440708277<242> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:3965363723 Step 1 took 41888ms Step 2 took 15094ms ********** Factor found in step 2: 3204848001332482698798118540520020338407 Found prime factor of 40 digits: 3204848001332482698798118540520020338407 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間) | |
45 | 11e6 | 2000 / 3844 | Dmitry Domanov | May 23, 2019 22:38:13 UTC 2019 年 5 月 24 日 (金) 7 時 38 分 13 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間) | |
45 | 11e6 | 2000 | Dmitry Domanov | April 24, 2019 18:50:47 UTC 2019 年 4 月 25 日 (木) 3 時 50 分 47 秒 (日本時間) | |
50 | 43e6 | 600 / 6996 | Dmitry Domanov | April 26, 2019 11:27:39 UTC 2019 年 4 月 26 日 (金) 20 時 27 分 39 秒 (日本時間) |