Table of contents 目次

7×10119+9

c116

name 名前Sinkiti Sibata
date 日付January 4, 2008 22:58:38 UTC 2008 年 1 月 5 日 (土) 7 時 58 分 38 秒 (日本時間)
composite number 合成数
21881154074583476602794535963239661154699759307305179581757369260104404363727298302647619643024600668938138851551999<116>
prime factors 素因数
12429111900259089222404905377487364334851383<44>
1760476070227298881000250830892187832585839053412152708131162759974648953<73>
factorization results 素因数分解の結果
Number: 70009_119
N=21881154074583476602794535963239661154699759307305179581757369260104404363727298302647619643024600668938138851551999
  ( 116 digits)
SNFS difficulty: 120 digits.
Divisors found:
 r1=12429111900259089222404905377487364334851383 (pp44)
 r2=1760476070227298881000250830892187832585839053412152708131162759974648953 (pp73)
Version: GGNFS-0.77.1-20060513-k8
Total time: 2.00 hours.
Scaled time: 4.04 units (timescale=2.016).
Factorization parameters were as follows:
name: 70009_119
n: 21881154074583476602794535963239661154699759307305179581757369260104404363727298302647619643024600668938138851551999
m: 1000000000000000000000000
c5: 7
c0: 90
skew: 1.67
type: snfs
Factor base limits: 600000/800000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 46/46
Sieved algebraic special-q in [400000, 550001)
Primes: RFBsize:49098, AFBsize:64083, largePrimes:2159262 encountered
Relations: rels:2257962, finalFF:227231
Max relations in full relation-set: 28
Initial matrix: 113247 x 227231 with sparse part having weight 20803966.
Pruned matrix : 89761 x 90391 with weight 5658124.
Total sieving time: 1.87 hours.
Total relation processing time: 0.05 hours.
Matrix solve time: 0.04 hours.
Time per square root: 0.04 hours.
Prototype def-par.txt line would be:
snfs,120,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000
total time: 2.00 hours.
 --------- CPU info (if available) ----------
execution environment 実行環境
Core 2 Duo E6300 1.86GHz, Windows Vista

7×10120+9

c118

name 名前Sinkiti Sibata
date 日付January 4, 2008 05:45:44 UTC 2008 年 1 月 4 日 (金) 14 時 45 分 44 秒 (日本時間)
composite number 合成数
1937448104068641018544146138942706891779684472737337392748408524771657902020481594243011347910323830611680044284528093<118>
prime factors 素因数
830640561618524856111311045749<30>
5267270292924611350420925089608485692597297<43>
442824191940348923348965981442994565437113881<45>
factorization results 素因数分解の結果
Number: 70009_120
N=1937448104068641018544146138942706891779684472737337392748408524771657902020481594243011347910323830611680044284528093
  ( 118 digits)
SNFS difficulty: 120 digits.
Divisors found:
 r1=830640561618524856111311045749 (pp30)
 r2=5267270292924611350420925089608485692597297 (pp43)
 r3=442824191940348923348965981442994565437113881 (pp45)
Version: GGNFS-0.77.1-20060513-k8
Total time: 2.11 hours.
Scaled time: 4.22 units (timescale=2.003).
Factorization parameters were as follows:
name: 70009_120
n: 1937448104068641018544146138942706891779684472737337392748408524771657902020481594243011347910323830611680044284528093
m: 1000000000000000000000000
c5: 7
c0: 9
skew: 1.05
type: snfs
Factor base limits: 600000/800000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 46/46
Sieved algebraic special-q in [400000, 550001)
Primes: RFBsize:49098, AFBsize:63908, largePrimes:1993457 encountered
Relations: rels:1958903, finalFF:135849
Max relations in full relation-set: 28
Initial matrix: 113072 x 135849 with sparse part having weight 10934243.
Pruned matrix : 104688 x 105317 with weight 6771158.
Total sieving time: 1.96 hours.
Total relation processing time: 0.04 hours.
Matrix solve time: 0.06 hours.
Time per square root: 0.05 hours.
Prototype def-par.txt line would be:
snfs,120,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000
total time: 2.11 hours.
 --------- CPU info (if available) ----------
execution environment 実行環境
Core 2 Duo E6300 1.86GHz, Windows Vista)

7×10127+9

c124

name 名前Robert Backstrom
date 日付January 4, 2008 07:10:00 UTC 2008 年 1 月 4 日 (金) 16 時 10 分 0 秒 (日本時間)
composite number 合成数
1559749548786737672408030481962610575101940774081418926446667706499699191158448272020321308407050067960516054279284297778471<124>
prime factors 素因数
75697857002716999529892478650803<32>
1098672696747497143987400806595400953<37>
18754390384244538050938832102972339330160248332842058469<56>
factorization results 素因数分解の結果
GMP-ECM 6.0 [powered by GMP 4.1.4] [ECM]
Input number is 1559749548786737672408030481962610575101940774081418926446667706499699191158448272020321308407050067960516054279284297778471 (124 digits)
Using B1=626000, B2=430724637, polynomial Dickson(3), sigma=1697096860
Step 1 took 5148ms
Step 2 took 3113ms
********** Factor found in step 2: 75697857002716999529892478650803
Found probable prime factor of 32 digits: 75697857002716999529892478650803
Composite cofactor 20604936659313275793147116596703623610330405620941715110418268482641652370080548824924320957 has 92 digits


GMP-ECM 6.0 [powered by GMP 4.1.4] [ECM]
Input number is 20604936659313275793147116596703623610330405620941715110418268482641652370080548824924320957 (92 digits)
Using B1=2756000, B2=3559335548, polynomial Dickson(6), sigma=3947222449
Step 1 took 15881ms
Step 2 took 8859ms
********** Factor found in step 2: 1098672696747497143987400806595400953
Found probable prime factor of 37 digits: 1098672696747497143987400806595400953
Probable prime cofactor 18754390384244538050938832102972339330160248332842058469 has 56 digits

7×10134+9

c116

name 名前Robert Backstrom
date 日付January 4, 2008 08:09:18 UTC 2008 年 1 月 4 日 (金) 17 時 9 分 18 秒 (日本時間)
composite number 合成数
27398308966242614052370386890973075579926911826659484325153695781935010059366680927309235345688227100842435214405703<116>
prime factors 素因数
1439181583139272216526486427199<31>
19037423273913052788182876625430173418517933868978126334120252095713816138227879752697<86>
factorization results 素因数分解の結果
GMP-ECM 6.0 [powered by GMP 4.1.4] [ECM]
Input number is 27398308966242614052370386890973075579926911826659484325153695781935010059366680927309235345688227100842435214405703 (116 digits)
Using B1=976000, B2=810987665, polynomial Dickson(3), sigma=1922583022
Step 1 took 7349ms
********** Factor found in step 1: 1439181583139272216526486427199
Found probable prime factor of 31 digits: 1439181583139272216526486427199
Probable prime cofactor 19037423273913052788182876625430173418517933868978126334120252095713816138227879752697 has 86 digits

7×10137+9

c121

name 名前Robert Backstrom
date 日付January 4, 2008 19:25:36 UTC 2008 年 1 月 5 日 (土) 4 時 25 分 36 秒 (日本時間)
composite number 合成数
2690209242163733079058961856013706690488883800070139975077938579898447635548085461020149959227339603250033223472503615927<121>
prime factors 素因数
1529173935702381764254152743534663932887976167416684647<55>
1759256536718344842192906040610542540050982219751847395727987528241<67>
factorization results 素因数分解の結果
Number: n
N=2690209242163733079058961856013706690488883800070139975077938579898447635548085461020149959227339603250033223472503615927
  ( 121 digits)
SNFS difficulty: 137 digits.
Divisors found:
 r1=1529173935702381764254152743534663932887976167416684647 (pp55)
 r2=1759256536718344842192906040610542540050982219751847395727987528241 (pp67)
Version: GGNFS-0.77.1-20051202-athlon
Total time: 4.64 hours.
Scaled time: 8.43 units (timescale=1.817).
Factorization parameters were as follows:
name: KA_7_0_136_9
n: 2690209242163733079058961856013706690488883800070139975077938579898447635548085461020149959227339603250033223472503615927
skew: 0.42
deg: 5
c5: 700
c0: 9
m: 1000000000000000000000000000
type: snfs
rlim: 2200000
alim: 2200000
lpbr: 28
lpba: 28
mfbr: 48
mfba: 48
rlambda: 2.5
alambda: 2.5
qintsize: 100000
Factor base limits: 2200000/2200000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 48/48
Sieved algebraic special-q in [100000, 700001)
Primes: RFBsize:162662, AFBsize:162645, largePrimes:6524001 encountered
Relations: rels:6138409, finalFF:570651
Max relations in full relation-set: 48
Initial matrix: 325375 x 570651 with sparse part having weight 34157269.
Pruned matrix : 163092 x 164782 with weight 16077087.
Total sieving time: 4.22 hours.
Total relation processing time: 0.12 hours.
Matrix solve time: 0.20 hours.
Total square root time: 0.10 hours, sqrts: 4.
Prototype def-par.txt line would be:
snfs,137,5,0,0,0,0,0,0,0,0,2200000,2200000,28,28,48,48,2.5,2.5,75000
total time: 4.64 hours.
 --------- CPU info (if available) ----------

Cygwin on AMD 64 X2 6000+

7×10141+9

c133

name 名前Jo Yeong Uk
date 日付January 5, 2008 00:38:09 UTC 2008 年 1 月 5 日 (土) 9 時 38 分 9 秒 (日本時間)
composite number 合成数
4039899261695309109005048398359631685685486063939556024524503957895943660252833528639281309585610432411465854402366497268246378586833<133>
prime factors 素因数
101414229444075792057935393801590219007<39>
39835625472292178795478811905988720116944029945084978719281689145836957513895091630614531075119<95>
factorization results 素因数分解の結果
Number: 70009_141
N=4039899261695309109005048398359631685685486063939556024524503957895943660252833528639281309585610432411465854402366497268246378586833
  ( 133 digits)
SNFS difficulty: 141 digits.
Divisors found:
 r1=101414229444075792057935393801590219007 (pp39)
 r2=39835625472292178795478811905988720116944029945084978719281689145836957513895091630614531075119 (pp95)
Version: GGNFS-0.77.1-20050930-nocona
Total time: 6.92 hours.
Scaled time: 14.86 units (timescale=2.146).
Factorization parameters were as follows:
n: 4039899261695309109005048398359631685685486063939556024524503957895943660252833528639281309585610432411465854402366497268246378586833
m: 10000000000000000000000000000
c5: 70
c0: 9
skew: 0.66
type: snfs
Factor base limits: 1500000/1500000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 47/47
Sieved algebraic special-q in [750000, 1200001)
Primes: RFBsize:114155, AFBsize:114417, largePrimes:3355192 encountered
Relations: rels:3424431, finalFF:361194
Max relations in full relation-set: 28
Initial matrix: 228640 x 361194 with sparse part having weight 32688347.
Pruned matrix : 183772 x 184979 with weight 14082163.
Total sieving time: 6.73 hours.
Total relation processing time: 0.05 hours.
Matrix solve time: 0.12 hours.
Time per square root: 0.02 hours.
Prototype def-par.txt line would be:
snfs,141,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,47,47,2.3,2.3,50000
total time: 6.92 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Memory for crash kernel (0x0 to 0x0) notwithin permissible range
Memory: 8178280k/8912896k available (2434k kernel code, 208060k reserved, 1235k data, 192k init)
Calibrating delay using timer specific routine.. 4812.90 BogoMIPS (lpj=2406450)
Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117)
Calibrating delay using timer specific routine.. 4809.83 BogoMIPS (lpj=2404916)
Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117)
execution environment 実行環境
Core 2 Quad Q6600

7×10142+9

c112

name 名前Jo Yeong Uk
date 日付January 5, 2008 00:39:07 UTC 2008 年 1 月 5 日 (土) 9 時 39 分 7 秒 (日本時間)
composite number 合成数
2989240637896832248093598836643841444086092572084139927456736533426375053444720175992103186377912235052595510563<112>
prime factors 素因数
19435116457349819947354128996919945157<38>
153806160331310217740660239181144108766898224889935222716697800849639765959<75>
factorization results 素因数分解の結果
Number: 70009_142
N=2989240637896832248093598836643841444086092572084139927456736533426375053444720175992103186377912235052595510563
  ( 112 digits)
SNFS difficulty: 142 digits.
Divisors found:
 r1=19435116457349819947354128996919945157 (pp38)
 r2=153806160331310217740660239181144108766898224889935222716697800849639765959 (pp75)
Version: GGNFS-0.77.1-20050930-nocona
Total time: 7.54 hours.
Scaled time: 16.22 units (timescale=2.152).
Factorization parameters were as follows:
n: 2989240637896832248093598836643841444086092572084139927456736533426375053444720175992103186377912235052595510563
m: 10000000000000000000000000000
c5: 700
c0: 9
skew: 0.42
type: snfs
Factor base limits: 1500000/1500000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 47/47
Sieved algebraic special-q in [750000, 1250001)
Primes: RFBsize:114155, AFBsize:114082, largePrimes:3285538 encountered
Relations: rels:3277670, finalFF:296280
Max relations in full relation-set: 28
Initial matrix: 228305 x 296280 with sparse part having weight 26224627.
Pruned matrix : 203393 x 204598 with weight 14737735.
Total sieving time: 7.32 hours.
Total relation processing time: 0.05 hours.
Matrix solve time: 0.14 hours.
Time per square root: 0.02 hours.
Prototype def-par.txt line would be:
snfs,142,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,47,47,2.3,2.3,50000
total time: 7.54 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Memory for crash kernel (0x0 to 0x0) notwithin permissible range
Memory: 8178280k/8912896k available (2434k kernel code, 208060k reserved, 1235k data, 192k init)
Calibrating delay using timer specific routine.. 4812.90 BogoMIPS (lpj=2406450)
Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117)
Calibrating delay using timer specific routine.. 4809.83 BogoMIPS (lpj=2404916)
Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117)
execution environment 実行環境
Core 2 Quad Q6600

7×10146+9

c141

name 名前Robert Backstrom
date 日付January 5, 2008 20:38:15 UTC 2008 年 1 月 6 日 (日) 5 時 38 分 15 秒 (日本時間)
composite number 合成数
367598985216744238804904190575917330139073198935643395375289681128885980772472507534466343424625666076232677554248420243361031041633735924241<141>
prime factors 素因数
29348460735839486849597048687491482266220440029873<50>
12525324190779213411439080213347337398023495842703998477149462377348409081784748884226366817<92>
factorization results 素因数分解の結果
Number: n
N=367598985216744238804904190575917330139073198935643395375289681128885980772472507534466343424625666076232677554248420243361031041633735924241
  ( 141 digits)
SNFS difficulty: 146 digits.
Divisors found:
 r1=29348460735839486849597048687491482266220440029873 (pp50)
 r2=12525324190779213411439080213347337398023495842703998477149462377348409081784748884226366817 (pp92)
Version: GGNFS-0.77.1-20060513-athlon-xp
Total time: 11.17 hours.
Scaled time: 14.57 units (timescale=1.305).
Factorization parameters were as follows:
name: KA_7_0_145_9
n: 367598985216744238804904190575917330139073198935643395375289681128885980772472507534466343424625666076232677554248420243361031041633735924241
skew: 0.66
deg: 5
c5: 70
c0: 9
m: 100000000000000000000000000000
type: snfs
rlim: 2800000
alim: 2800000
lpbr: 28
lpba: 28
mfbr: 48
mfba: 48
rlambda: 2.5
alambda: 2.5
qintsize: 100000
Factor base limits: 2800000/2800000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 48/48
Sieved algebraic special-q in [100000, 1200001)
Primes: RFBsize:203362, AFBsize:203847, largePrimes:6878552 encountered
Relations: rels:6404033, finalFF:539587
Max relations in full relation-set: 28
Initial matrix: 407277 x 539587 with sparse part having weight 31365500.
Pruned matrix : 292139 x 294239 with weight 15013733.
Total sieving time: 9.38 hours.
Total relation processing time: 0.19 hours.
Matrix solve time: 1.42 hours.
Total square root time: 0.17 hours, sqrts: 2.
Prototype def-par.txt line would be:
snfs,146,5,0,0,0,0,0,0,0,0,2800000,2800000,28,28,48,48,2.5,2.5,100000
total time: 11.17 hours.
 --------- CPU info (if available) ----------

Cygwin on AMD 64 3200+

7×10148+9

c91

name 名前Sinkiti Sibata
date 日付January 4, 2008 05:37:33 UTC 2008 年 1 月 4 日 (金) 14 時 37 分 33 秒 (日本時間)
composite number 合成数
1241687068906518298633710848308113944954223996000579428139069580827675959567636029806646943<91>
prime factors 素因数
9370251329536055623552717563916135025857<40>
132513742186678071112443165485840454095701370690399<51>
factorization results 素因数分解の結果
Fri Jan  4 08:23:13 2008  Msieve v. 1.30
Fri Jan  4 08:23:13 2008  random seeds: 2a1795f6 2f265fbe
Fri Jan  4 08:23:13 2008  factoring 1241687068906518298633710848308113944954223996000579428139069580827675959567636029806646943 (91 digits)
Fri Jan  4 08:23:14 2008  commencing quadratic sieve (90-digit input)
Fri Jan  4 08:23:14 2008  using multiplier of 2
Fri Jan  4 08:23:14 2008  using 64kb Pentium 4 sieve core
Fri Jan  4 08:23:14 2008  sieve interval: 18 blocks of size 65536
Fri Jan  4 08:23:14 2008  processing polynomials in batches of 6
Fri Jan  4 08:23:14 2008  using a sieve bound of 1652503 (62277 primes)
Fri Jan  4 08:23:14 2008  using large prime bound of 145420264 (27 bits)
Fri Jan  4 08:23:14 2008  using double large prime bound of 492861412574344 (42-49 bits)
Fri Jan  4 08:23:14 2008  using trial factoring cutoff of 49 bits
Fri Jan  4 08:23:14 2008  polynomial 'A' values have 12 factors
Fri Jan  4 12:29:01 2008  62747 relations (16982 full + 45765 combined from 694116 partial), need 62373
Fri Jan  4 12:29:04 2008  begin with 711098 relations
Fri Jan  4 12:29:05 2008  reduce to 152534 relations in 10 passes
Fri Jan  4 12:29:05 2008  attempting to read 152534 relations
Fri Jan  4 12:29:10 2008  recovered 152534 relations
Fri Jan  4 12:29:10 2008  recovered 128623 polynomials
Fri Jan  4 12:29:10 2008  attempting to build 62747 cycles
Fri Jan  4 12:29:10 2008  found 62747 cycles in 5 passes
Fri Jan  4 12:29:10 2008  distribution of cycle lengths:
Fri Jan  4 12:29:10 2008     length 1 : 16982
Fri Jan  4 12:29:10 2008     length 2 : 12077
Fri Jan  4 12:29:10 2008     length 3 : 10920
Fri Jan  4 12:29:10 2008     length 4 : 8357
Fri Jan  4 12:29:10 2008     length 5 : 5867
Fri Jan  4 12:29:10 2008     length 6 : 3794
Fri Jan  4 12:29:10 2008     length 7 : 2182
Fri Jan  4 12:29:10 2008     length 9+: 2568
Fri Jan  4 12:29:10 2008  largest cycle: 19 relations
Fri Jan  4 12:29:11 2008  matrix is 62277 x 62747 with weight 3737470 (avg 59.56/col)
Fri Jan  4 12:29:12 2008  filtering completed in 3 passes
Fri Jan  4 12:29:12 2008  matrix is 57933 x 57997 with weight 3465014 (avg 59.74/col)
Fri Jan  4 12:29:13 2008  saving the first 48 matrix rows for later
Fri Jan  4 12:29:13 2008  matrix is 57885 x 57997 with weight 2675909 (avg 46.14/col)
Fri Jan  4 12:29:13 2008  matrix includes 64 packed rows
Fri Jan  4 12:29:13 2008  using block size 21845 for processor cache size 512 kB
Fri Jan  4 12:29:13 2008  commencing Lanczos iteration
Fri Jan  4 12:29:46 2008  lanczos halted after 916 iterations (dim = 57883)
Fri Jan  4 12:29:46 2008  recovered 17 nontrivial dependencies
Fri Jan  4 12:29:47 2008  prp40 factor: 9370251329536055623552717563916135025857
Fri Jan  4 12:29:47 2008  prp51 factor: 132513742186678071112443165485840454095701370690399
Fri Jan  4 12:29:47 2008  elapsed time 04:06:34
execution environment 実行環境
Pentium 4 2.4GHz, Windows XP and Cygwin)

7×10149+9

c93

name 名前Sinkiti Sibata
date 日付January 4, 2008 22:50:11 UTC 2008 年 1 月 5 日 (土) 7 時 50 分 11 秒 (日本時間)
composite number 合成数
767514148726373849421756982578139971558958367374633360077892901949480634454258309618499746041<93>
prime factors 素因数
239837507703455294015342234963512005413275037<45>
3200142279977988684517610934831971048558705274893<49>
factorization results 素因数分解の結果
Fri Jan  4 14:41:22 2008  Msieve v. 1.30
Fri Jan  4 14:41:22 2008  random seeds: 89fffcd3 bf362a6f
Fri Jan  4 14:41:22 2008  factoring 767514148726373849421756982578139971558958367374633360077892901949480634454258309618499746041 (93 digits)
Fri Jan  4 14:41:23 2008  commencing quadratic sieve (93-digit input)
Fri Jan  4 14:41:23 2008  using multiplier of 1
Fri Jan  4 14:41:23 2008  using 64kb Pentium 4 sieve core
Fri Jan  4 14:41:23 2008  sieve interval: 18 blocks of size 65536
Fri Jan  4 14:41:23 2008  processing polynomials in batches of 6
Fri Jan  4 14:41:23 2008  using a sieve bound of 1956883 (72780 primes)
Fri Jan  4 14:41:23 2008  using large prime bound of 244610375 (27 bits)
Fri Jan  4 14:41:23 2008  using double large prime bound of 1256766767596625 (42-51 bits)
Fri Jan  4 14:41:23 2008  using trial factoring cutoff of 51 bits
Fri Jan  4 14:41:23 2008  polynomial 'A' values have 12 factors
Fri Jan  4 22:12:21 2008  73205 relations (18541 full + 54664 combined from 996755 partial), need 72876
Fri Jan  4 22:12:25 2008  begin with 1015296 relations
Fri Jan  4 22:12:27 2008  reduce to 187278 relations in 10 passes
Fri Jan  4 22:12:27 2008  attempting to read 187278 relations
Fri Jan  4 22:12:34 2008  recovered 187278 relations
Fri Jan  4 22:12:34 2008  recovered 167179 polynomials
Fri Jan  4 22:12:34 2008  attempting to build 73205 cycles
Fri Jan  4 22:12:34 2008  found 73205 cycles in 6 passes
Fri Jan  4 22:12:34 2008  distribution of cycle lengths:
Fri Jan  4 22:12:34 2008     length 1 : 18541
Fri Jan  4 22:12:34 2008     length 2 : 13029
Fri Jan  4 22:12:34 2008     length 3 : 12466
Fri Jan  4 22:12:34 2008     length 4 : 9874
Fri Jan  4 22:12:34 2008     length 5 : 7323
Fri Jan  4 22:12:34 2008     length 6 : 5045
Fri Jan  4 22:12:34 2008     length 7 : 2957
Fri Jan  4 22:12:34 2008     length 9+: 3970
Fri Jan  4 22:12:34 2008  largest cycle: 21 relations
Fri Jan  4 22:12:35 2008  matrix is 72780 x 73205 with weight 4304451 (avg 58.80/col)
Fri Jan  4 22:12:37 2008  filtering completed in 4 passes
Fri Jan  4 22:12:37 2008  matrix is 68783 x 68847 with weight 4056821 (avg 58.93/col)
Fri Jan  4 22:12:37 2008  saving the first 48 matrix rows for later
Fri Jan  4 22:12:37 2008  matrix is 68735 x 68847 with weight 3005294 (avg 43.65/col)
Fri Jan  4 22:12:37 2008  matrix includes 64 packed rows
Fri Jan  4 22:12:37 2008  using block size 21845 for processor cache size 512 kB
Fri Jan  4 22:12:38 2008  commencing Lanczos iteration
Fri Jan  4 22:13:22 2008  lanczos halted after 1088 iterations (dim = 68733)
Fri Jan  4 22:13:22 2008  recovered 15 nontrivial dependencies
Fri Jan  4 22:13:23 2008  prp45 factor: 239837507703455294015342234963512005413275037
Fri Jan  4 22:13:23 2008  prp49 factor: 3200142279977988684517610934831971048558705274893
Fri Jan  4 22:13:23 2008  elapsed time 07:32:01
execution environment 実行環境
Pentium 4 2.4GHz, Windows XP and Cygwin)

7×10152+9

c114

name 名前Jo Yeong Uk
date 日付January 6, 2008 00:20:05 UTC 2008 年 1 月 6 日 (日) 9 時 20 分 5 秒 (日本時間)
composite number 合成数
849436829589735592329176864706011392830693305217572069249710802758273465640411056591506419610722308940760472684753<114>
prime factors 素因数
77865850690669784859431617592698851037196011<44>
10908977710449886619312815188508141739609220654946251183378377187561523<71>
factorization results 素因数分解の結果
Number: 70009_152
N=849436829589735592329176864706011392830693305217572069249710802758273465640411056591506419610722308940760472684753
  ( 114 digits)
SNFS difficulty: 152 digits.
Divisors found:
 r1=77865850690669784859431617592698851037196011 (pp44)
 r2=10908977710449886619312815188508141739609220654946251183378377187561523 (pp71)
Version: GGNFS-0.77.1-20050930-nocona
Total time: 17.38 hours.
Scaled time: 37.41 units (timescale=2.153).
Factorization parameters were as follows:
n: 849436829589735592329176864706011392830693305217572069249710802758273465640411056591506419610722308940760472684753
m: 1000000000000000000000000000000
c5: 700
c0: 9
skew: 0.42
type: snfs
Factor base limits: 2400000/2400000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 48/48
Sieved algebraic special-q in [1200000, 2300001)
Primes: RFBsize:176302, AFBsize:176233, largePrimes:5591809 encountered
Relations: rels:5524453, finalFF:488152
Max relations in full relation-set: 28
Initial matrix: 352603 x 488152 with sparse part having weight 45172811.
Pruned matrix : 301081 x 302908 with weight 25623922.
Total sieving time: 16.80 hours.
Total relation processing time: 0.09 hours.
Matrix solve time: 0.45 hours.
Time per square root: 0.04 hours.
Prototype def-par.txt line would be:
snfs,152,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000
total time: 17.38 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Memory for crash kernel (0x0 to 0x0) notwithin permissible range
Memory: 8178280k/8912896k available (2434k kernel code, 208060k reserved, 1235k data, 192k init)
Calibrating delay using timer specific routine.. 4812.90 BogoMIPS (lpj=2406450)
Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117)
Calibrating delay using timer specific routine.. 4809.83 BogoMIPS (lpj=2404916)
Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117)
execution environment 実行環境
Core 2 Quad Q6600

7×10153+9

c113

name 名前Robert Backstrom
date 日付January 5, 2008 11:25:58 UTC 2008 年 1 月 5 日 (土) 20 時 25 分 58 秒 (日本時間)
composite number 合成数
13724075773278342050547285092460654415713568410827990794169953053919762120614788358731584934625313917555196162381<113>
prime factors 素因数
104956686158012241596645982785813<33>
130759423488435528873829580092903272449089541268530772072226531544627524905762137<81>
factorization results 素因数分解の結果
GMP-ECM 6.0.1 [powered by GMP 4.1.4] [ECM]
Input number is 13724075773278342050547285092460654415713568410827990794169953053919762120614788358731584934625313917555196162381 (113 digits)
Using B1=1260000, B2=1166963547, polynomial Dickson(6), sigma=161872807
Step 1 took 13266ms
Step 2 took 7953ms
********** Factor found in step 2: 104956686158012241596645982785813
Found probable prime factor of 33 digits: 104956686158012241596645982785813
Probable prime cofactor 130759423488435528873829580092903272449089541268530772072226531544627524905762137 has 81 digits

7×10157+9

c142

name 名前Robert Backstrom
date 日付January 6, 2008 05:10:28 UTC 2008 年 1 月 6 日 (日) 14 時 10 分 28 秒 (日本時間)
composite number 合成数
9148268936726694531651576219628786925034862262185737873387878910253280521430132640027051308022147551977228490456289749680469055617015909332001<142>
prime factors 素因数
643687030404506197051806584898109829074806677658713563<54>
14212293404416947433671925044120391584277610010545822637985641678790000790685720922856627<89>
factorization results 素因数分解の結果
Number: n
N=9148268936726694531651576219628786925034862262185737873387878910253280521430132640027051308022147551977228490456289749680469055617015909332001
  ( 142 digits)
SNFS difficulty: 157 digits.
Divisors found:

Sun Jan 06 15:50:12 2008  prp54 factor: 643687030404506197051806584898109829074806677658713563
Sun Jan 06 15:50:12 2008  prp89 factor: 14212293404416947433671925044120391584277610010545822637985641678790000790685720922856627
Sun Jan 06 15:50:12 2008  elapsed time 00:47:37 (Msieve 1.32)

Version: GGNFS-0.77.1-20051202-athlon
Total time: 21.73 hours.
Scaled time: 39.50 units (timescale=1.818).
Factorization parameters were as follows:
name: KA_7_0_156_9
n: 9148268936726694531651576219628786925034862262185737873387878910253280521430132640027051308022147551977228490456289749680469055617015909332001
skew: 0.42
deg: 5
c5: 700
c0: 9
m: 10000000000000000000000000000000
type: snfs
rlim: 2800000
alim: 2800000
lpbr: 28
lpba: 28
mfbr: 48
mfba: 48
rlambda: 2.5
alambda: 2.5
qintsize: 100000
Factor base limits: 2800000/2800000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 48/48
Sieved  special-q in [100000, 1599990)
Primes: RFBsize:203362, AFBsize:203497, largePrimes:7016855 encountered
Relations: rels:6475989, finalFF:479308
Max relations in full relation-set: 28
Initial matrix: 406927 x 479308 with sparse part having weight 42290325.
Pruned matrix : 
Total sieving time: 21.58 hours.
Total relation processing time: 0.15 hours.
Matrix solve time: 0.00 hours.
Total square root time: 0.00 hours, sqrts: 0.
Prototype def-par.txt line would be:
snfs,157,5,0,0,0,0,0,0,0,0,2800000,2800000,28,28,48,48,2.5,2.5,100000
total time: 21.73 hours.
 --------- CPU info (if available) ----------

Cygwin on AMD 64 X2 6000+

7×10159+9

c141

name 名前Robert Backstrom
date 日付January 7, 2008 00:01:12 UTC 2008 年 1 月 7 日 (月) 9 時 1 分 12 秒 (日本時間)
composite number 合成数
220814126429987102417525345115212994015254781641465598720037588384391899194205728399759788601386125925513113788312586671462061961060563534993<141>
prime factors 素因数
4231538071496958890327182029936342614194854003919814193922731887<64>
52182946885757635675346604057724856979445602984378050368353799424430749322239<77>
factorization results 素因数分解の結果
Number: n
N=220814126429987102417525345115212994015254781641465598720037588384391899194205728399759788601386125925513113788312586671462061961060563534993
  ( 141 digits)
SNFS difficulty: 160 digits.
Divisors found:

Mon Jan  7 10:52:24 2008  prp64 factor: 4231538071496958890327182029936342614194854003919814193922731887
Mon Jan  7 10:52:24 2008  prp77 factor: 52182946885757635675346604057724856979445602984378050368353799424430749322239
Mon Jan  7 10:52:24 2008  elapsed time 00:47:28 (Msieve 1.32)

Version: GGNFS-0.77.1-20050930-k8
Total time: 37.69 hours.
Scaled time: 31.55 units (timescale=0.837).
Factorization parameters were as follows:
name: KA_7_0_158_9
n: 220814126429987102417525345115212994015254781641465598720037588384391899194205728399759788601386125925513113788312586671462061961060563534993
type: snfs
deg: 5
c5: 7
c0: 90
skew: 1.66
m: 100000000000000000000000000000000
rlim: 3000000
alim: 3000000
lbpr: 28
lbpa: 28
mbpr: 48
mbpa: 48
rlambda: 2.5
alambda: 2.5
qintsize: 100000
Factor base limits: 3000000/3000000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 48/48
Sieved  special-q in [100000, 3600000)
Primes: RFBsize:216816, AFBsize:217356, largePrimes:5850727 encountered
Relations: rels:5857858, finalFF:519585
Max relations in full relation-set: 28
Initial matrix: 434238 x 519585 with sparse part having weight 53804158.
Pruned matrix : 399638 x 401873 with weight 39322056.
Total sieving time: 37.57 hours.
Total relation processing time: 0.12 hours.
Matrix solve time: 0.00 hours.
Total square root time: 0.00 hours, sqrts: 0.
Prototype def-par.txt line would be:
snfs,160,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.5,2.5,100000
total time: 37.69 hours.
 --------- CPU info (if available) ----------
CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03
CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03
Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM)
Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888)
Calibrating delay loop... 6045.69 BogoMIPS (lpj=3022848)
Total of 2 processors activated (12009.47 BogoMIPS).

7×10161+9

c111

name 名前Sinkiti Sibata
date 日付January 8, 2008 21:17:17 UTC 2008 年 1 月 9 日 (水) 6 時 17 分 17 秒 (日本時間)
composite number 合成数
797282146233441389637438465879864974174079631931857291117873335595617292138291581776356920378174414625935543749<111>
prime factors 素因数
139490464604623382674750512013106688318266001541875221<54>
5715674892138940064628738708170977544099888345108701283569<58>
factorization results 素因数分解の結果
Number: 70009_161
N=797282146233441389637438465879864974174079631931857291117873335595617292138291581776356920378174414625935543749
  ( 111 digits)
SNFS difficulty: 161 digits.
Divisors found:
 r1=139490464604623382674750512013106688318266001541875221 (pp54)
 r2=5715674892138940064628738708170977544099888345108701283569 (pp58)
Version: GGNFS-0.77.1-20060513-pentium4
Total time: 89.61 hours.
Scaled time: 60.58 units (timescale=0.676).
Factorization parameters were as follows:
name: 70009_161
n: 797282146233441389637438465879864974174079631931857291117873335595617292138291581776356920378174414625935543749
m: 100000000000000000000000000000000
c5: 70
c0: 9
skew: 0.66
type: snfs
Factor base limits: 4500000/4500000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 48/48
Sieved algebraic special-q in [2250000, 4350001)
Primes: RFBsize:315948, AFBsize:316621, largePrimes:5728840 encountered
Relations: rels:5815604, finalFF:721506
Max relations in full relation-set: 28
Initial matrix: 632637 x 721506 with sparse part having weight 43287861.
Pruned matrix : 561950 x 565177 with weight 30874466.
Total sieving time: 75.81 hours.
Total relation processing time: 0.37 hours.
Matrix solve time: 13.19 hours.
Time per square root: 0.25 hours.
Prototype def-par.txt line would be:
snfs,161,5,0,0,0,0,0,0,0,0,4500000,4500000,27,27,48,48,2.3,2.3,100000
total time: 89.61 hours.
 --------- CPU info (if available) ----------
execution environment 実行環境
Pentium 4 2.4GHz, Windows XP and Cygwin)

7×10162+9

c157

name 名前Robert Backstrom
date 日付January 4, 2008 19:47:31 UTC 2008 年 1 月 5 日 (土) 4 時 47 分 31 秒 (日本時間)
composite number 合成数
7745599116559095048459787615672223949613771232623578267619301590392801461483901878750391429383926111410484664267006292746025124510505798687452903991085921931<157>
prime factors 素因数
296777596371098420029084738265707<33>
26099002118993499083959038032360499646655560409399625783207929493736469419962227821932572864657403345682890557765228381684833<125>
factorization results 素因数分解の結果
GMP-ECM 6.0 [powered by GMP 4.1.4] [ECM]
Input number is 7745599116559095048459787615672223949613771232623578267619301590392801461483901878750391429383926111410484664267006292746025124510505798687452903991085921931 (157 digits)
Using B1=322000, B2=167041872, polynomial Dickson(3), sigma=4004011612
Step 1 took 3990ms
Step 2 took 1865ms
********** Factor found in step 2: 296777596371098420029084738265707
Found probable prime factor of 33 digits: 296777596371098420029084738265707
Probable prime cofactor 26099002118993499083959038032360499646655560409399625783207929493736469419962227821932572864657403345682890557765228381684833 has 125 digits

7×10163+9

c119

name 名前Jo Yeong Uk
date 日付January 7, 2008 10:58:05 UTC 2008 年 1 月 7 日 (月) 19 時 58 分 5 秒 (日本時間)
composite number 合成数
17736220616750730441171459656279219097305026284234519209128657392107895275988306959156196633013809260456105154427871177<119>
prime factors 素因数
18751242705828780547597219322844983<35>
945869076252608429463531219474556440073685963101828788499278956282259958157147275519<84>
factorization results 素因数分解の結果
Number: 70009_163
N=17736220616750730441171459656279219097305026284234519209128657392107895275988306959156196633013809260456105154427871177
  ( 119 digits)
Divisors found:
 r1=18751242705828780547597219322844983 (pp35)
 r2=945869076252608429463531219474556440073685963101828788499278956282259958157147275519 (pp84)
Version: GGNFS-0.77.1-20050930-nocona
Total time: 38.06 hours.
Scaled time: 81.90 units (timescale=2.152).
Factorization parameters were as follows:
name: 70009_163
n: 17736220616750730441171459656279219097305026284234519209128657392107895275988306959156196633013809260456105154427871177
skew: 221395.86
# norm 1.00e+16
c5: 900
c4: -368936484
c3: -64515235009570
c2: -6637800111968368825
c1: 1003631229460161110538300
c0: 64280742149364474007670220864
# alpha -5.48
Y1: 2264490571433
Y0: -114531360207998065534985
# Murphy_E 3.62e-10
# M 13078825261663832417425027932008595424256843732315959701340945098020013622714623701968577018374575816455494749105625740
type: gnfs
rlim: 4500000
alim: 4500000
lpbr: 27
lpba: 27
mfbr: 50
mfba: 50
rlambda: 2.4
alambda: 2.4
qintsize: 75000
Factor base limits: 4500000/4500000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 50/50
Sieved algebraic special-q in [2250000, 4125001)
Primes: RFBsize:315948, AFBsize:315634, largePrimes:7634260 encountered
Relations: rels:7677465, finalFF:728561
Max relations in full relation-set: 28
Initial matrix: 631658 x 728561 with sparse part having weight 60105103.
Pruned matrix : 551454 x 554676 with weight 40275843.
Polynomial selection time: 2.27 hours.
Total sieving time: 33.75 hours.
Total relation processing time: 0.15 hours.
Matrix solve time: 1.72 hours.
Time per square root: 0.17 hours.
Prototype def-par.txt line would be:
gnfs,118,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4500000,4500000,27,27,50,50,2.4,2.4,75000
total time: 38.06 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Memory for crash kernel (0x0 to 0x0) notwithin permissible range
Memory: 8178280k/8912896k available (2434k kernel code, 208060k reserved, 1235k data, 192k init)
Calibrating delay using timer specific routine.. 4812.90 BogoMIPS (lpj=2406450)
Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117)
Calibrating delay using timer specific routine.. 4809.83 BogoMIPS (lpj=2404916)
Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117)
execution environment 実行環境
Core 2 Quad Q6600

7×10164+9

c144

name 名前Robert Backstrom
date 日付January 16, 2008 21:21:57 UTC 2008 年 1 月 17 日 (木) 6 時 21 分 57 秒 (日本時間)
composite number 合成数
413701596371317891466218325717451870444516473623608643198379811850920699346023699901441617183278752045530834118946731942880940904318389213136733<144>
prime factors 素因数
12939677343964955884740014469294611585657994552577<50>
31971554264779842589165734337945281912004539206121203124090877304667512724759902380130148456029<95>
factorization results 素因数分解の結果
Number: n
N=413701596371317891466218325717451870444516473623608643198379811850920699346023699901441617183278752045530834118946731942880940904318389213136733
  ( 144 digits)
SNFS difficulty: 165 digits.
Divisors found:

Thu Jan 17 05:01:38 2008  prp50 factor: 12939677343964955884740014469294611585657994552577
Thu Jan 17 05:01:38 2008  prp95 factor: 31971554264779842589165734337945281912004539206121203124090877304667512724759902380130148456029
Thu Jan 17 05:01:38 2008  elapsed time 01:15:29 (Msieve 1.33)

Version: GGNFS-0.77.1-20051202-athlon
Total time: 50.52 hours.
Scaled time: 92.41 units (timescale=1.829).
Factorization parameters were as follows:
name: KA_7_0_163_9
n: 413701596371317891466218325717451870444516473623608643198379811850920699346023699901441617183278752045530834118946731942880940904318389213136733
skew: 1.67
deg: 5
c5: 7
c0: 90
m: 1000000000000000000000000000000000
type: snfs
rlim: 3500000
alim: 3500000
lpbr: 28
lpba: 28
mfbr: 48
mfba: 48
rlambda: 2.5
alambda: 2.5
qintsize: 100000
Factor base limits: 3500000/3500000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 48/48
Sieved  special-q in [100000, 3200001)
Primes: RFBsize:250150, AFBsize:250726, largePrimes:7700483 encountered
Relations: rels:7192174, finalFF:570722
Max relations in full relation-set: 28
Initial matrix: 500942 x 570722 with sparse part having weight 52231117.
Pruned matrix : 
Total sieving time: 50.35 hours.
Total relation processing time: 0.18 hours.
Matrix solve time: 0.00 hours.
Total square root time: 0.00 hours, sqrts: 0.
Prototype def-par.txt line would be:
snfs,165,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000
total time: 50.52 hours.
 --------- CPU info (if available) ----------

Cygwin on AMD 64 X2 6000+

7×10166+9

c151

name 名前Robert Backstrom
date 日付January 7, 2008 15:30:19 UTC 2008 年 1 月 8 日 (火) 0 時 30 分 19 秒 (日本時間)
composite number 合成数
3022556483630129261598847253569879921858042829617050352190156557137315012023902736896851269624585181616682870685916160325557846898137814787523960148613<151>
prime factors 素因数
21801158658206841112555253752829902500472040092585365034962893355053<68>
138642011235137555584320880412798358499970719485097366270743949931671229392787022521<84>
factorization results 素因数分解の結果
Number: n
N=3022556483630129261598847253569879921858042829617050352190156557137315012023902736896851269624585181616682870685916160325557846898137814787523960148613
  ( 151 digits)
SNFS difficulty: 166 digits.
Divisors found:

Tue Jan 08 02:23:48 2008  prp68 factor: 21801158658206841112555253752829902500472040092585365034962893355053
Tue Jan 08 02:23:48 2008  prp84 factor: 138642011235137555584320880412798358499970719485097366270743949931671229392787022521
Tue Jan 08 02:23:48 2008  elapsed time 01:22:44 (Msieve 1.32)

Version: GGNFS-0.77.1-20051202-athlon
Total time: 48.47 hours.
Scaled time: 88.50 units (timescale=1.826).
Factorization parameters were as follows:
name: KA_7_0_165_9
n: 3022556483630129261598847253569879921858042829617050352190156557137315012023902736896851269624585181616682870685916160325557846898137814787523960148613
skew: 0.66
deg: 5
c5: 70
c0: 9
m: 1000000000000000000000000000000000
type: snfs
rlim: 3500000
alim: 3500000
lpbr: 28
lpba: 28
mfbr: 48
mfba: 48
rlambda: 2.5
alambda: 2.5
qintsize: 100000
Factor base limits: 3500000/3500000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 48/48
Sieved  special-q in [100000, 3200001)
Primes: RFBsize:250150, AFBsize:250721, largePrimes:7669339 encountered
Relations: rels:7156943, finalFF:567239
Max relations in full relation-set: 28
Initial matrix: 500939 x 567239 with sparse part having weight 51971046.
Pruned matrix : 
Total sieving time: 48.24 hours.
Total relation processing time: 0.23 hours.
Matrix solve time: 0.00 hours.
Total square root time: 0.00 hours, sqrts: 0.
Prototype def-par.txt line would be:
snfs,166,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000
total time: 48.47 hours.
 --------- CPU info (if available) ----------

Cygwin on AMD 64 X2 6000+

7×10167+9

c130

name 名前matsui
date 日付May 10, 2009 06:25:15 UTC 2009 年 5 月 10 日 (日) 15 時 25 分 15 秒 (日本時間)
composite number 合成数
9054212878954652228888100592451098523536681789916597423465588315561167609163922756593556020840808722859548049818240407383034120643<130>
prime factors 素因数
6790719988452911272645568689691193108538390322657<49>
1333321487905646787354335377158150700210766538153045388940264597308992314691236899<82>
factorization results 素因数分解の結果
N=9054212878954652228888100592451098523536681789916597423465588315561167609163922756593556020840808722859548049818240407383034120643
  ( 130 digits)
SNFS difficulty: 168 digits.
Divisors found:
 r1=6790719988452911272645568689691193108538390322657 (pp49)
 r2=1333321487905646787354335377158150700210766538153045388940264597308992314691236899 (pp82)

Version: GGNFS-0.77.1-20060722-nocona

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaJanuary 3, 2008 09:00:00 UTC 2008 年 1 月 3 日 (木) 18 時 0 分 0 秒 (日本時間)
351e6904Jo Yeong UkJuly 24, 2008 07:52:33 UTC 2008 年 7 月 24 日 (木) 16 時 52 分 33 秒 (日本時間)

7×10169+9

c131

name 名前Jo Yeong Uk
date 日付August 21, 2009 18:34:41 UTC 2009 年 8 月 22 日 (土) 3 時 34 分 41 秒 (日本時間)
composite number 合成数
39173479488280698301566650872036774199426866136397189452808421112916404369440174985140115774837583709302975448240597911414597984769<131>
prime factors 素因数
14895146820296515742340476222921748580100430093472165449145387<62>
2629949201635387234251242596490670534870085851462962353425228926560387<70>
factorization results 素因数分解の結果
Number: 70009_169
N=39173479488280698301566650872036774199426866136397189452808421112916404369440174985140115774837583709302975448240597911414597984769
  ( 131 digits)
SNFS difficulty: 170 digits.
Divisors found:
 r1=14895146820296515742340476222921748580100430093472165449145387
 r2=2629949201635387234251242596490670534870085851462962353425228926560387
Version: 
Total time: 34.98 hours.
Scaled time: 83.07 units (timescale=2.375).
Factorization parameters were as follows:
n: 39173479488280698301566650872036774199426866136397189452808421112916404369440174985140115774837583709302975448240597911414597984769
m: 10000000000000000000000000000000000
deg: 5
c5: 7
c0: 90
skew: 1.67
type: snfs
lss: 1
rlim: 5600000
alim: 5600000
lpbr: 27
lpba: 27
mfbr: 52
mfba: 52
rlambda: 2.4
alambda: 2.4
Factor base limits: 5600000/5600000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 52/52
Sieved rational special-q in [2800000, 5600001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 11269680
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 925303 x 925551
Total sieving time: 32.31 hours.
Total relation processing time: 0.81 hours.
Matrix solve time: 1.77 hours.
Time per square root: 0.10 hours.
Prototype def-par.txt line would be:
snfs,170,5,0,0,0,0,0,0,0,0,5600000,5600000,27,27,52,52,2.4,2.4,100000
total time: 34.98 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init)
Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673788)
Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672348)
Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672340)
Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672343)
software ソフトウェア
GGNFS / Msieve v1.39
execution environment 実行環境
Core 2 Quad Q6700

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaJanuary 3, 2008 09:00:00 UTC 2008 年 1 月 3 日 (木) 18 時 0 分 0 秒 (日本時間)
351e6825Wataru SakaiMay 27, 2009 13:51:53 UTC 2009 年 5 月 27 日 (水) 22 時 51 分 53 秒 (日本時間)
403e62111Jo Yeong UkJuly 25, 2009 05:34:09 UTC 2009 年 7 月 25 日 (土) 14 時 34 分 9 秒 (日本時間)

7×10173+9

c171

name 名前Robert Backstrom
date 日付July 1, 2008 05:39:55 UTC 2008 年 7 月 1 日 (火) 14 時 39 分 55 秒 (日本時間)
composite number 合成数
962861072902338376891334250343878954607977991746905089408528198074277854195323246217331499312242090784044016506189821182943603851444291609353507565337001375515818431911967<171>
prime factors 素因数
46703390984381129306990060832824441396119105760387<50>
803575513133626214041688443279256687479553115056384050651<57>
25655974804389045502754045805223424190216260512796697773191686191<65>
factorization results 素因数分解の結果
Number: n
N=962861072902338376891334250343878954607977991746905089408528198074277854195323246217331499312242090784044016506189821182943603851444291609353507565337001375515818431911967
  ( 171 digits)
SNFS difficulty: 173 digits.
Divisors found:

Tue Jul 01 15:01:54 2008  prp50 factor: 46703390984381129306990060832824441396119105760387
Tue Jul 01 15:01:54 2008  prp57 factor: 803575513133626214041688443279256687479553115056384050651
Tue Jul 01 15:01:54 2008  prp65 factor: 25655974804389045502754045805223424190216260512796697773191686191
Tue Jul 01 15:01:54 2008  elapsed time 03:00:18 (Msieve 1.36)

Version: GGNFS-0.77.1-20051202-athlon
Total time: 143.54 hours.
Scaled time: 262.54 units (timescale=1.829).
Factorization parameters were as follows:
name: KA_7_0_172_9
n: 962861072902338376891334250343878954607977991746905089408528198074277854195323246217331499312242090784044016506189821182943603851444291609353507565337001375515818431911967
skew: 0.26
deg: 5
c5: 7000
c0: 9
m: 10000000000000000000000000000000000
type: snfs
rlim: 7200000
alim: 7200000
lpbr: 28
lpba: 28
mfbr: 48
mfba: 48
rlambda: 2.5
alambda: 2.5
qintsize: 100000
Factor base limits: 7200000/7200000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 48/48
Sieved  special-q in [100000, 8200537)
Primes: RFBsize:489319, AFBsize:488763, largePrimes:9369787 encountered
Relations: rels:8949267, finalFF:985202
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 
Total sieving time: 142.94 hours.
Total relation processing time: 0.61 hours.
Matrix solve time: 0.00 hours.
Total square root time: 0.00 hours, sqrts: 0.
Prototype def-par.txt line would be:
snfs,173,5,0,0,0,0,0,0,0,0,7200000,7200000,28,28,48,48,2.5,2.5,100000
total time: 143.54 hours.
 --------- CPU info (if available) ----------

Cygwin on AMD 64 X2 6000+

7×10174+9

c133

name 名前Serge Batalov
date 日付November 25, 2008 04:08:50 UTC 2008 年 11 月 25 日 (火) 13 時 8 分 50 秒 (日本時間)
composite number 合成数
7955590246088851391043819919104341971364959624752412002636294080619743127047841835520737627867899331614503802191122075200152974690427<133>
prime factors 素因数
1927956018365591441032402945607921<34>
4126437621140930568054372656781264192663859088452172703723803757169122245662645278492526385498425387<100>
factorization results 素因数分解の結果
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3558391417
Step 1 took 12353ms
Step 2 took 9712ms
********** Factor found in step 2: 1927956018365591441032402945607921
Found probable prime factor of 34 digits: 1927956018365591441032402945607921
Probable prime cofactor 4126437621140930568054372656781264192663859088452172703723803757169122245662645278492526385498425387 has 100 digits
software ソフトウェア
GMP-ECM 6.2.1

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaJanuary 3, 2008 09:00:00 UTC 2008 年 1 月 3 日 (木) 18 時 0 分 0 秒 (日本時間)

7×10178+9

c116

name 名前Sinkiti Sibata
date 日付January 5, 2008 23:10:02 UTC 2008 年 1 月 6 日 (日) 8 時 10 分 2 秒 (日本時間)
composite number 合成数
26897173819877028591110438652440673484340131396511460906841522339126291846561419391159526937917846026688166192869239<116>
prime factors 素因数
13724946734647014417463514389532708012499306431<47>
1959728831003640657417517089713455927810208846008120710768293127210569<70>
factorization results 素因数分解の結果
Number: 70009_178
N=26897173819877028591110438652440673484340131396511460906841522339126291846561419391159526937917846026688166192869239
  ( 116 digits)
Divisors found:
 r1=13724946734647014417463514389532708012499306431 (pp47)
 r2=1959728831003640657417517089713455927810208846008120710768293127210569 (pp70)
Version: GGNFS-0.77.1-20060513-k8
Total time: 46.23 hours.
Scaled time: 92.32 units (timescale=1.997).
Factorization parameters were as follows:
name: 70009_178
n: 26897173819877028591110438652440673484340131396511460906841522339126291846561419391159526937917846026688166192869239
skew: 65128.70
# norm 2.59e+16
c5: 75240
c4: -13181039364
c3: -658562293775890
c2: 51710009653767333541
c1: 1420986165414594796991522
c0: -33687414893484683332845870465
# alpha -6.85
Y1: 2035177406489
Y0: -12901908954921655902182
# Murphy_E 4.88e-10
# M 8982289048165742481213259840673138009408130390316621262097418188889777156561626476495961720222603100592888454691430
type: gnfs
rlim: 4500000
alim: 4500000
lpbr: 27
lpba: 27
mfbr: 50
mfba: 50
rlambda: 2.4
alambda: 2.4
qintsize: 60000
Factor base limits: 4500000/4500000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 50/50
Sieved algebraic special-q in [2250000, 3510001)
Primes: RFBsize:315948, AFBsize:315985, largePrimes:7448433 encountered
Relations: rels:7438490, finalFF:727459
Max relations in full relation-set: 28
Initial matrix: 632017 x 727459 with sparse part having weight 54906751.
Pruned matrix : 548769 x 551993 with weight 34635393.
Total sieving time: 42.35 hours.
Total relation processing time: 0.31 hours.
Matrix solve time: 3.15 hours.
Time per square root: 0.41 hours.
Prototype def-par.txt line would be:
gnfs,115,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4500000,4500000,27,27,50,50,2.4,2.4,60000
total time: 46.23 hours.
 --------- CPU info (if available) ----------
execution environment 実行環境
Core 2 Duo E6300 1.86GHz, Windows Vista)

7×10180+9

c175

name 名前Wataru Sakai
date 日付February 8, 2009 05:18:48 UTC 2009 年 2 月 8 日 (日) 14 時 18 分 48 秒 (日本時間)
composite number 合成数
1454771265274838504802719507838411489534063780913110045341063849287359513258473575015176381663813583116174084579985714146175001085882837294433026799172775493671433259354750753<175>
prime factors 素因数
1161717801790034418750773470371703452693891867991269877836662145444170819572499<79>
1252258735325612009550476834654012397263074865238067762790885431533794609601067164264750550906747<97>
factorization results 素因数分解の結果
Number: 70009_180
N=1454771265274838504802719507838411489534063780913110045341063849287359513258473575015176381663813583116174084579985714146175001085882837294433026799172775493671433259354750753
  ( 175 digits)
SNFS difficulty: 180 digits.
Divisors found:
 r1=1161717801790034418750773470371703452693891867991269877836662145444170819572499
 r2=1252258735325612009550476834654012397263074865238067762790885431533794609601067164264750550906747
Version: 
Total time: 217.89 hours.
Scaled time: 380.44 units (timescale=1.746).
Factorization parameters were as follows:
n: 1454771265274838504802719507838411489534063780913110045341063849287359513258473575015176381663813583116174084579985714146175001085882837294433026799172775493671433259354750753
m: 1000000000000000000000000000000000000
deg: 5
c5: 7
c0: 9
skew: 1.05
type: snfs
lss: 1
rlim: 7200000
alim: 7200000
lpbr: 28
lpba: 28
mfbr: 53
mfba: 53
rlambda: 2.5
alambda: 2.5Factor base limits: 7200000/7200000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 53/53
Sieved rational special-q in [3600000, 5800001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 942311 x 942559
Total sieving time: 217.89 hours.
Total relation processing time: 0.00 hours.
Matrix solve time: 0.00 hours.
Time per square root: 0.00 hours.
Prototype def-par.txt line would be:
snfs,180,5,0,0,0,0,0,0,0,0,7200000,7200000,28,28,53,53,2.5,2.5,100000
total time: 217.89 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaJanuary 3, 2008 09:00:00 UTC 2008 年 1 月 3 日 (木) 18 時 0 分 0 秒 (日本時間)

7×10183+9

c172

name 名前Serge Batalov
date 日付July 12, 2008 23:32:14 UTC 2008 年 7 月 13 日 (日) 8 時 32 分 14 秒 (日本時間)
composite number 合成数
1280960293780191686627101267275639544655397765035451237747273514034825593102962944599931261620769895075959698994646135500853926881523242775994242017892827042201333748282723<172>
prime factors 素因数
133818982259225767835521221337<30>
composite cofactor 合成数の残り
9572336242243985044301236538042107107618534026530064456879616370843986823511954236728268510314492217680175701229960850902545463856024173108379<142>
factorization results 素因数分解の結果
Using B1=2000000, B2=14266909030, polynomial Dickson(12), sigma=1992546363
Step 1 took 16492ms
Step 2 took 19942ms
********** Factor found in step 2: 133818982259225767835521221337
Found probable prime factor of 30 digits: 133818982259225767835521221337
Composite cofactor 9572336242243985044301236538042107107618534026530064456879616370843986823511954236728268510314492217680175701229960850902545463856024173108379 has 142 digits
software ソフトウェア
GMP-ECM 6.2.1
execution environment 実行環境
Linux x86_64

c142

name 名前Jo Yeong Uk
date 日付April 29, 2014 12:45:23 UTC 2014 年 4 月 29 日 (火) 21 時 45 分 23 秒 (日本時間)
composite number 合成数
9572336242243985044301236538042107107618534026530064456879616370843986823511954236728268510314492217680175701229960850902545463856024173108379<142>
prime factors 素因数
13214865621025845082848623280537933590284273<44>
724361224454199379440128440125992163708369782380051341613073328396889213781158264106704866584123723<99>
factorization results 素因数分解の結果
GMP-ECM 6.4.4 [configured with GMP 6.0.0, --enable-asm-redc] [ECM]
Input number is 9572336242243985044301236538042107107618534026530064456879616370843986823511954236728268510314492217680175701229960850902545463856024173108379 (142 digits)
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=8090215246
Step 1 took 24554ms
Step 2 took 8575ms
********** Factor found in step 2: 13214865621025845082848623280537933590284273
Found probable prime factor of 44 digits: 13214865621025845082848623280537933590284273
Probable prime cofactor 724361224454199379440128440125992163708369782380051341613073328396889213781158264106704866584123723 has 99 digits
execution environment 実行環境
Core i7-4930K

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaJanuary 3, 2008 09:00:00 UTC 2008 年 1 月 3 日 (木) 18 時 0 分 0 秒 (日本時間)
351e6300Ignacio SantosNovember 6, 2010 04:50:43 UTC 2010 年 11 月 6 日 (土) 13 時 50 分 43 秒 (日本時間)
403e6110Ignacio SantosNovember 6, 2010 04:50:43 UTC 2010 年 11 月 6 日 (土) 13 時 50 分 43 秒 (日本時間)
4511e61572 / 410432Ignacio SantosNovember 6, 2010 04:50:43 UTC 2010 年 11 月 6 日 (土) 13 時 50 分 43 秒 (日本時間)
230Ignacio SantosOctober 19, 2013 20:37:08 UTC 2013 年 10 月 20 日 (日) 5 時 37 分 8 秒 (日本時間)
230Ignacio SantosOctober 20, 2013 12:47:43 UTC 2013 年 10 月 20 日 (日) 21 時 47 分 43 秒 (日本時間)
230Ignacio SantosOctober 20, 2013 22:03:19 UTC 2013 年 10 月 21 日 (月) 7 時 3 分 19 秒 (日本時間)
850Serge BatalovNovember 8, 2013 17:06:30 UTC 2013 年 11 月 9 日 (土) 2 時 6 分 30 秒 (日本時間)
5043e696 / 7195Youcef LemsaferJanuary 3, 2014 16:31:27 UTC 2014 年 1 月 4 日 (土) 1 時 31 分 27 秒 (日本時間)

7×10185+9

c143

name 名前Jo Yeong Uk
date 日付October 9, 2014 06:15:35 UTC 2014 年 10 月 9 日 (木) 15 時 15 分 35 秒 (日本時間)
composite number 合成数
46311230336433526367480938361232001196087734687381240915762130609396672331449325702347703143080352239448334328381714872342918701248586124012299<143>
prime factors 素因数
6226948870897014750254616144888930511934539593221295631<55>
7437226689443207894215947465210640762035529884807643889746758266570488755348062040969029<88>
factorization results 素因数分解の結果
Number: 70009_185
N=46311230336433526367480938361232001196087734687381240915762130609396672331449325702347703143080352239448334328381714872342918701248586124012299
  ( 143 digits)
SNFS difficulty: 185 digits.
Divisors found:
 r1=6226948870897014750254616144888930511934539593221295631
 r2=7437226689443207894215947465210640762035529884807643889746758266570488755348062040969029
Version: 
Total time: 65.14 hours.
Scaled time: 342.64 units (timescale=5.260).
Factorization parameters were as follows:
n: 46311230336433526367480938361232001196087734687381240915762130609396672331449325702347703143080352239448334328381714872342918701248586124012299
m: 10000000000000000000000000000000000000
deg: 5
c5: 7
c0: 9
skew: 1.05
# Murphy_E = 7.244e-11
type: snfs
lss: 1
rlim: 8400000
alim: 8400000
lpbr: 28
lpba: 28
mfbr: 54
mfba: 54
rlambda: 2.5
alambda: 2.5
Factor base limits: 8400000/8400000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 54/54
Sieved rational special-q in [4200000, 7100001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 19855189
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1710210 x 1710458
Total sieving time: 59.43 hours.
Total relation processing time: 1.47 hours.
Matrix solve time: 3.77 hours.
Time per square root: 0.47 hours.
Prototype def-par.txt line would be:
snfs,185,5,0,0,0,0,0,0,0,0,8400000,8400000,28,28,54,54,2.5,2.5,100000
total time: 65.14 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM) i7-4930K CPU @ 3.40GHz stepping 04
Memory: 49373664k/51380224k available (5220k kernel code, 1086460k absent, 920100k reserved, 7121k data, 1264k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 6799.70 BogoMIPS (lpj=3399852)
Total of 12 processors activated (81596.44 BogoMIPS).
software ソフトウェア
GGNFS / Msieve v1.39
execution environment 実行環境
Core i7-4930K

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaJanuary 3, 2008 09:00:00 UTC 2008 年 1 月 3 日 (木) 18 時 0 分 0 秒 (日本時間)
351e6300Ignacio SantosNovember 6, 2010 04:51:10 UTC 2010 年 11 月 6 日 (土) 13 時 51 分 10 秒 (日本時間)
403e61910110Ignacio SantosNovember 6, 2010 04:51:10 UTC 2010 年 11 月 6 日 (土) 13 時 51 分 10 秒 (日本時間)
1800Youcef LemsaferJanuary 3, 2014 22:08:58 UTC 2014 年 1 月 4 日 (土) 7 時 8 分 58 秒 (日本時間)
4511e6622 / 404332Ignacio SantosNovember 6, 2010 04:51:10 UTC 2010 年 11 月 6 日 (土) 13 時 51 分 10 秒 (日本時間)
590Youcef LemsaferJanuary 4, 2014 03:35:42 UTC 2014 年 1 月 4 日 (土) 12 時 35 分 42 秒 (日本時間)

7×10186+9

c166

name 名前Erik Branger
date 日付January 24, 2017 12:34:26 UTC 2017 年 1 月 24 日 (火) 21 時 34 分 26 秒 (日本時間)
composite number 合成数
4018382732831026028734171990955267430287395278693625779502768993304712225782232884974215486767459406455038617824999261858746781983801626605141512076515938127060403651<166>
prime factors 素因数
315900163684744874477268938933266937598119304608097157297190535189644975009<75>
12720419913555991712888486982641819432280759769248922538842247908857705164883938974958208739<92>
factorization results 素因数分解の結果
Number: 70009_186
N = 4018382732831026028734171990955267430287395278693625779502768993304712225782232884974215486767459406455038617824999261858746781983801626605141512076515938127060403651 (166 digits)
SNFS difficulty: 187 digits.
Divisors found:
r1=315900163684744874477268938933266937598119304608097157297190535189644975009 (pp75)
r2=12720419913555991712888486982641819432280759769248922538842247908857705164883938974958208739 (pp92)
Version: Msieve v. 1.51 (SVN 845)
Total time: 150.45 hours.
Factorization parameters were as follows:
n: 4018382732831026028734171990955267430287395278693625779502768993304712225782232884974215486767459406455038617824999261858746781983801626605141512076515938127060403651
m: 10000000000000000000000000000000000000
deg: 5
c5: 70
c0: 9
skew: 0.66
# Murphy_E = 6.203e-11
type: snfs
lss: 1
rlim: 9100000
alim: 9100000
lpbr: 28
lpba: 28
mfbr: 54
mfba: 54
rlambda: 2.5
alambda: 2.5
Factor base limits: 9100000/9100000
Large primes per side: 3
Large prime bits: 28/28
Sieved rational special-q in [0, 0)
Total raw relations: 23144493
Relations: 2405066 relations
Pruned matrix : 1548237 x 1548462
Polynomial selection time: 0.00 hours.
Total sieving time: 147.91 hours.
Total relation processing time: 0.14 hours.
Matrix solve time: 2.27 hours.
time per square root: 0.13 hours.
Prototype def-par.txt line would be: snfs,187,5,0,0,0,0,0,0,0,0,9100000,9100000,28,28,54,54,2.5,2.5,100000
total time: 150.45 hours.
Intel64 Family 6 Model 58 Stepping 9, GenuineIntel
Windows-post2008Server-6.2.9200
processors: 8, speed: 2.29GHz
software ソフトウェア
GGNFS, Msieve

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaJanuary 3, 2008 09:00:00 UTC 2008 年 1 月 3 日 (木) 18 時 0 分 0 秒 (日本時間)
351e6300Ignacio SantosNovember 6, 2010 04:51:34 UTC 2010 年 11 月 6 日 (土) 13 時 51 分 34 秒 (日本時間)
403e61910110Ignacio SantosNovember 6, 2010 04:51:34 UTC 2010 年 11 月 6 日 (土) 13 時 51 分 34 秒 (日本時間)
1800Youcef LemsaferJanuary 4, 2014 08:17:10 UTC 2014 年 1 月 4 日 (土) 17 時 17 分 10 秒 (日本時間)
4511e6622 / 404332Ignacio SantosNovember 6, 2010 04:51:34 UTC 2010 年 11 月 6 日 (土) 13 時 51 分 34 秒 (日本時間)
590Youcef LemsaferJanuary 4, 2014 11:39:54 UTC 2014 年 1 月 4 日 (土) 20 時 39 分 54 秒 (日本時間)

7×10188+9

c185

name 名前Wataru Sakai
date 日付October 18, 2008 08:00:30 UTC 2008 年 10 月 18 日 (土) 17 時 0 分 30 秒 (日本時間)
composite number 合成数
85900110442999140998895570008590011044299914099889557000859001104429991409988955700085900110442999140998895570008590011044299914099889557000859001104429991409988955700085900110442999141<185>
prime factors 素因数
390755155423951786421642709723832482956478913627<48>
219831035497922940488479509910463429809878109532808903912313282503371748866596450007079463861910551465289953658044366335149641788862040383<138>
factorization results 素因数分解の結果
Number: 70009_188
N=85900110442999140998895570008590011044299914099889557000859001104429991409988955700085900110442999140998895570008590011044299914099889557000859001104429991409988955700085900110442999141
  ( 185 digits)
SNFS difficulty: 188 digits.
Divisors found:
 r1=390755155423951786421642709723832482956478913627 (pp48)
 r2=219831035497922940488479509910463429809878109532808903912313282503371748866596450007079463861910551465289953658044366335149641788862040383 (pp138)
Version: GGNFS-0.77.1-20060722-nocona
Total time: 1450.14 hours.
Scaled time: 2891.58 units (timescale=1.994).
Factorization parameters were as follows:
n: 85900110442999140998895570008590011044299914099889557000859001104429991409988955700085900110442999140998895570008590011044299914099889557000859001104429991409988955700085900110442999141
m: 10000000000000000000000000000000000000
c5: 7000
c0: 9
skew: 0.26
type: snfsFactor base limits: 7400000/7400000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 48/48
Sieved algebraic special-q in [3700000, 24600001)
Primes: RFBsize:501962, AFBsize:501336, largePrimes:7487189 encountered
Relations: rels:8168947, finalFF:1186873
Max relations in full relation-set: 32
Initial matrix: 1003366 x 1186873 with sparse part having weight 161157006.
Pruned matrix : 876731 x 881811 with weight 145912668.
Total sieving time: 1436.68 hours.
Total relation processing time: 0.20 hours.
Matrix solve time: 12.95 hours.
Time per square root: 0.31 hours.
Prototype def-par.txt line would be:
snfs,188,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000
total time: 1450.14 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaJanuary 3, 2008 09:00:00 UTC 2008 年 1 月 3 日 (木) 18 時 0 分 0 秒 (日本時間)

7×10190+9

c180

name 名前Ignacio Santos
date 日付November 6, 2010 04:48:35 UTC 2010 年 11 月 6 日 (土) 13 時 48 分 35 秒 (日本時間)
composite number 合成数
247127593929643442784925204240216658917398032080539142529224922476957177159295498804261399975905643519060278085976030109847180496059190981211806763031631969956356494355862401948831<180>
prime factors 素因数
2927496542390393545039100405013873875990737<43>
composite cofactor 合成数の残り
84416015647231454587428286993638318425328756265845466080626519601594745207305504047619318891173939837046673824725804636107440032597105263<137>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=2953621787
Step 1 took 100527ms
Step 2 took 45661ms
********** Factor found in step 2: 2927496542390393545039100405013873875990737
Found probable prime factor of 43 digits: 2927496542390393545039100405013873875990737
Composite cofactor 84416015647231454587428286993638318425328756265845466080626519601594745207305504047619318891173939837046673824725804636107440032597105263 has 137 digits
software ソフトウェア
GMP-ECM 6.3

c137

name 名前Eric Jeancolas
date 日付February 22, 2019 11:37:24 UTC 2019 年 2 月 22 日 (金) 20 時 37 分 24 秒 (日本時間)
composite number 合成数
84416015647231454587428286993638318425328756265845466080626519601594745207305504047619318891173939837046673824725804636107440032597105263<137>
prime factors 素因数
92395453258952757747894839893424342277180056322275209<53>
913638200471210666520399982328575328819892169827426647111007849466561325954281393207<84>
factorization results 素因数分解の結果
56893 * 4978723 * 2927496542390393545039100405013873875990737 * 92395453258952757747894839893424342277180056322275209 * 913638200471210666520399982328575328819892169827426647111007849466561325954281393207

Info:root: Using default parameter file ./parameters/factor/params.c135
Info:root: No database exists yet
Info:root: Created temporary directory /tmp/cado.2du2886j
Info:Database: Opened connection to database /tmp/cado.2du2886j/c135.db
Info:root: Set tasks.threads=12 based on detected logical cpus
Info:root: tasks.polyselect.threads = 2
Info:root: tasks.sieve.las.threads = 2
Info:root: slaves.scriptpath is /home/ng/cado-nfs-2.3.0
Info:root: Command line parameters: ./cado-nfs.py 84416015647231454587428286993638318425328756265845466080626519601594745207305504047619318891173939837046673824725804636107440032597105263
Info:root: If this computation gets interrupted, it can be resumed with ./cado-nfs.py /tmp/cado.2du2886j/c135.parameters_snapshot.0
Info:Server Launcher: Adding ng-All-Series to whitelist to allow clients on localhost to connect
Info:HTTP server: Using non-threaded HTTPS server
Info:HTTP server: Using whitelist: localhost,ng-All-Series
Info:Complete Factorization: Factoring 84416015647231454587428286993638318425328756265845466080626519601594745207305504047619318891173939837046673824725804636107440032597105263
Info:HTTP server: serving at https://ng-All-Series:37529 (0.0.0.0)
Info:HTTP server: For debugging purposes, the URL above can be accessed if the server.only_registered=False parameter is added
Info:HTTP server: You can start additional cado-nfs-client.py scripts with parameters: --server=https://ng-All-Series:37529 --certsha1=e76a60ea80251852ce06d3a89c6ff7f7ea5d98da
Info:HTTP server: If you want to start additional clients, remember to add their hosts to server.whitelist
Info:Client Launcher: Starting client id localhost on host localhost
Info:Client Launcher: Starting client id localhost+2 on host localhost
Info:Client Launcher: Starting client id localhost+3 on host localhost
Info:Client Launcher: Starting client id localhost+4 on host localhost
Info:Client Launcher: Starting client id localhost+5 on host localhost
Info:Client Launcher: Starting client id localhost+6 on host localhost
Info:Client Launcher: Running clients: localhost (Host localhost, PID 9552), localhost+2 (Host localhost, PID 9555), localhost+3 (Host localhost, PID 9558), localhost+4 (Host localhost, PID 9561), localhost+5 (Host localhost, PID 9564), localhost+6 (Host localhost, PID 9567)
Info:Polynomial Selection (size optimized): Starting
Info:Polynomial Selection (size optimized): 0 polynomials in queue from previous run
Info:Polynomial Selection (size optimized): Adding workunit c135_polyselect1_0-2000 to database
Info:Polynomial Selection (size optimized): Adding workunit c135_polyselect1_2000-4000 to database
Info:Polynomial Selection (size optimized): Adding workunit c135_polyselect1_4000-6000 to database
Info:Polynomial Selection (size optimized): Adding workunit c135_polyselect1_6000-8000 to database
Info:Polynomial Selection (size optimized): Adding workunit c135_polyselect1_8000-10000 to database
Info:Polynomial Selection (size optimized): Adding workunit c135_polyselect1_10000-12000 to database
Info:Polynomial Selection (size optimized): Adding workunit c135_polyselect1_12000-14000 to database
Info:Polynomial Selection (size optimized): Adding workunit c135_polyselect1_14000-16000 to database
Info:Polynomial Selection (size optimized): Adding workunit c135_polyselect1_16000-18000 to database
Info:Polynomial Selection (size optimized): Adding workunit c135_polyselect1_18000-20000 to database
Info:HTTP server: 127.0.0.1 Sending workunit c135_polyselect1_0-2000 to client localhost
Info:HTTP server: 127.0.0.1 Sending workunit c135_polyselect1_2000-4000 to client localhost+2
Info:HTTP server: 127.0.0.1 Sending workunit c135_polyselect1_4000-6000 to client localhost+3
Warning:HTTP server: 127.0.0.1 Connection error: [Errno 104] Connection reset by peer
Info:HTTP server: 127.0.0.1 Sending workunit c135_polyselect1_6000-8000 to client localhost+4
Warning:HTTP server: 127.0.0.1 Connection error: [Errno 104] Connection reset by peer
Info:HTTP server: 127.0.0.1 Sending workunit c135_polyselect1_8000-10000 to client localhost+5
Info:HTTP server: 127.0.0.1 Sending workunit c135_polyselect1_10000-12000 to client localhost+6
Info:Polynomial Selection (size optimized): Adding workunit c135_polyselect1_20000-22000 to database
Info:Polynomial Selection (size optimized): Adding workunit c135_polyselect1_22000-24000 to database
Info:Polynomial Selection (size optimized): Adding workunit c135_polyselect1_24000-26000 to database
Info:Polynomial Selection (size optimized): Adding workunit c135_polyselect1_26000-28000 to database
Info:Polynomial Selection (size optimized): Adding workunit c135_polyselect1_28000-30000 to database
Info:Polynomial Selection (size optimized): Adding workunit c135_polyselect1_30000-32000 to database
Info:HTTP server: 127.0.0.1 Sending workunit c135_polyselect1_12000-14000 to client localhost+4
Info:Polynomial Selection (size optimized): Adding workunit c135_polyselect1_32000-34000 to database
Info:HTTP server: 127.0.0.1 Sending workunit c135_polyselect1_14000-16000 to client localhost
Info:HTTP server: 127.0.0.1 Sending workunit c135_polyselect1_16000-18000 to client localhost+6
Info:HTTP server: 127.0.0.1 Sending workunit c135_polyselect1_18000-20000 to client localhost+2
Info:HTTP server: 127.0.0.1 Sending workunit c135_polyselect1_20000-22000 to client localhost+5
Info:HTTP server: 127.0.0.1 Sending workunit c135_polyselect1_22000-24000 to client localhost+3
Info:Polynomial Selection (size optimized): Parsed 381 polynomials, added 238 to priority queue (has 100)
Info:Polynomial Selection (size optimized): Worst polynomial in queue now has lognorm 38.450000
Info:Polynomial Selection (size optimized): Marking workunit c135_polyselect1_6000-8000 as ok (1.0% => ETA Unknown)
Info:Polynomial Selection (size optimized): Adding workunit c135_polyselect1_34000-36000 to database
Info:Polynomial Selection (size optimized): Adding workunit c135_polyselect1_36000-38000 to database
Info:Polynomial Selection (size optimized): Adding workunit c135_polyselect1_38000-40000 to database
Info:Polynomial Selection (size optimized): Adding workunit c135_polyselect1_40000-42000 to database
Info:Polynomial Selection (size optimized): Adding workunit c135_polyselect1_42000-44000 to database
Info:Polynomial Selection (size optimized): Parsed 370 polynomials, added 81 to priority queue (has 100)
Info:Polynomial Selection (size optimized): Worst polynomial in queue now has lognorm 37.950000
Info:Polynomial Selection (size optimized): Marking workunit c135_polyselect1_0-2000 as ok (2.0% => ETA Wed Feb 20 19:53:59 2019)
Info:Polynomial Selection (size optimized): Parsed 358 polynomials, added 39 to priority queue (has 100)
Info:Polynomial Selection (size optimized): Worst polynomial in queue now has lognorm 37.820000
Info:Polynomial Selection (size optimized): Marking workunit c135_polyselect1_2000-4000 as ok (3.0% => ETA Wed Feb 20 19:10:23 2019)
Info:Polynomial Selection (size optimized): Parsed 326 polynomials, added 11 to priority queue (has 100)
Info:Polynomial Selection (size optimized): Worst polynomial in queue now has lognorm 37.760000
Info:Polynomial Selection (size optimized): Marking workunit c135_polyselect1_4000-6000 as ok (4.0% => ETA Wed Feb 20 18:55:41 2019)
Info:Polynomial Selection (size optimized): Parsed 378 polynomials, added 18 to priority queue (has 100)
Info:Polynomial Selection (size optimized): Worst polynomial in queue now has lognorm 37.700000
Info:Polynomial Selection (size optimized): Marking workunit c135_polyselect1_8000-10000 as ok (5.0% => ETA Wed Feb 20 18:48:23 2019)
Info:Polynomial Selection (size optimized): Parsed 398 polynomials, added 14 to priority queue (has 100)
Info:Polynomial Selection (size optimized): Worst polynomial in queue now has lognorm 37.630000
Info:Polynomial Selection (size optimized): Marking workunit c135_polyselect1_10000-12000 as ok (6.0% => ETA Wed Feb 20 18:43:59 2019)
Info:HTTP server: 127.0.0.1 Sending workunit c135_polyselect1_24000-26000 to client localhost+4
Info:HTTP server: 127.0.0.1 Sending workunit c135_polyselect1_26000-28000 to client localhost+5
Info:Polynomial Selection (size optimized): Adding workunit c135_polyselect1_44000-46000 to database
Info:Polynomial Selection (size optimized): Adding workunit c135_polyselect1_46000-48000 to database
Info:Polynomial Selection (size optimized): Parsed 386 polynomials, added 13 to priority queue (has 100)
Info:Polynomial Selection (size optimized): Worst polynomial in queue now has lognorm 37.580000
Info:Polynomial Selection (size optimized): Marking workunit c135_polyselect1_12000-14000 as ok (7.0% => ETA Wed Feb 20 18:54:00 2019)
Info:Polynomial Selection (size optimized): Parsed 355 polynomials, added 8 to priority queue (has 100)
Info:Polynomial Selection (size optimized): Worst polynomial in queue now has lognorm 37.560000
... EJ: many quasi-identical lines...
Info:Polynomial Selection (size optimized): Worst polynomial in queue now has lognorm 36.870000
Info:Polynomial Selection (size optimized): Marking workunit c135_polyselect1_198000-200000 as ok (100.0% => ETA Wed Feb 20 18:47:45 2019)
Info:Polynomial Selection (size optimized): Finished
Info:Polynomial Selection (size optimized): Aggregate statistics:
Info:Polynomial Selection (size optimized): potential collisions: 35600.4
Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 36311/40.230/49.241/53.820/0.951
Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 36311/38.630/44.363/49.970/1.528
Info:Polynomial Selection (size optimized): Total time: 15036
Info:Polynomial Selection (root optimized): Starting
Info:Polynomial Selection (root optimized): No polynomial was previously found
Info:Polynomial Selection (root optimized): Adding workunit c135_polyselect2_0 to database
Info:Polynomial Selection (root optimized): Adding workunit c135_polyselect2_6 to database
Info:Polynomial Selection (root optimized): Adding workunit c135_polyselect2_12 to database
Info:Polynomial Selection (root optimized): Adding workunit c135_polyselect2_18 to database
Info:Polynomial Selection (root optimized): Adding workunit c135_polyselect2_24 to database
Info:Polynomial Selection (root optimized): Adding workunit c135_polyselect2_30 to database
Info:Polynomial Selection (root optimized): Adding workunit c135_polyselect2_36 to database
Info:Polynomial Selection (root optimized): Adding workunit c135_polyselect2_42 to database
Info:Polynomial Selection (root optimized): Adding workunit c135_polyselect2_48 to database
Info:Polynomial Selection (root optimized): Adding workunit c135_polyselect2_54 to database
Info:HTTP server: 127.0.0.1 Sending workunit c135_polyselect2_0 to client localhost
Info:Polynomial Selection (root optimized): Adding workunit c135_polyselect2_60 to database
Info:HTTP server: 127.0.0.1 Sending workunit c135_polyselect2_6 to client localhost+3
Info:Polynomial Selection (root optimized): Adding workunit c135_polyselect2_66 to database
Info:HTTP server: 127.0.0.1 Sending workunit c135_polyselect2_12 to client localhost+4
Info:Polynomial Selection (root optimized): Adding workunit c135_polyselect2_72 to database
Info:HTTP server: 127.0.0.1 Sending workunit c135_polyselect2_18 to client localhost+6
Info:HTTP server: 127.0.0.1 Sending workunit c135_polyselect2_24 to client localhost+2
Info:Polynomial Selection (root optimized): Adding workunit c135_polyselect2_78 to database
Info:Polynomial Selection (root optimized): Adding workunit c135_polyselect2_84 to database
Info:HTTP server: 127.0.0.1 Sending workunit c135_polyselect2_30 to client localhost+5
Info:Polynomial Selection (root optimized): Adding workunit c135_polyselect2_90 to database
Info:HTTP server: 127.0.0.1 Sending workunit c135_polyselect2_36 to client localhost+6
Info:Polynomial Selection (root optimized): Adding workunit c135_polyselect2_96 to database
Info:Polynomial Selection (root optimized): New best polynomial from file /tmp/cado.2du2886j/c135.upload/c135.polyselect2.dnq4go6g.opt_18: Murphy E = 2.38e-10
Info:Polynomial Selection (root optimized): Marking workunit c135_polyselect2_18 as ok (4.0% => ETA Unknown)
Info:HTTP server: 127.0.0.1 Sending workunit c135_polyselect2_42 to client localhost+3
Info:Polynomial Selection (root optimized): New best polynomial from file /tmp/cado.2du2886j/c135.upload/c135.polyselect2.w46ngwv5.opt_6: Murphy E = 2.41e-10
Info:Polynomial Selection (root optimized): Marking workunit c135_polyselect2_6 as ok (10.0% => ETA Wed Feb 20 19:58:40 2019)
Info:Polynomial Selection (root optimized): Best polynomial from file /tmp/cado.2du2886j/c135.upload/c135.polyselect2.ni49vs2u.opt_30 with E=2.26e-10 is no better than current best with E=2.41e-10
Info:HTTP server: 127.0.0.1 Sending workunit c135_polyselect2_48 to client localhost+5
Info:Polynomial Selection (root optimized): Marking workunit c135_polyselect2_30 as ok (16.0% => ETA Wed Feb 20 19:23:37 2019)
Info:HTTP server: 127.0.0.1 Sending workunit c135_polyselect2_54 to client localhost+2
Info:Polynomial Selection (root optimized): New best polynomial from file /tmp/cado.2du2886j/c135.upload/c135.polyselect2.1dwu4m9y.opt_24: Murphy E = 2.51e-10
Info:Polynomial Selection (root optimized): Marking workunit c135_polyselect2_24 as ok (22.0% => ETA Wed Feb 20 19:12:49 2019)
Info:HTTP server: 127.0.0.1 Sending workunit c135_polyselect2_60 to client localhost+4
Info:Polynomial Selection (root optimized): Best polynomial from file /tmp/cado.2du2886j/c135.upload/c135.polyselect2.4z_pvx1y.opt_12 with E=2.28e-10 is no better than current best with E=2.51e-10
Info:Polynomial Selection (root optimized): Marking workunit c135_polyselect2_12 as ok (28.0% => ETA Wed Feb 20 19:08:58 2019)
Info:HTTP server: 127.0.0.1 Sending workunit c135_polyselect2_66 to client localhost
Info:Polynomial Selection (root optimized): Best polynomial from file /tmp/cado.2du2886j/c135.upload/c135.polyselect2.g43i_yd_.opt_0 with E=2.22e-10 is no better than current best with E=2.51e-10
Info:Polynomial Selection (root optimized): Marking workunit c135_polyselect2_0 as ok (34.0% => ETA Wed Feb 20 19:06:35 2019)
Info:HTTP server: 127.0.0.1 Sending workunit c135_polyselect2_72 to client localhost+5
Info:Polynomial Selection (root optimized): Best polynomial from file /tmp/cado.2du2886j/c135.upload/c135.polyselect2.z3e4wrky.opt_48 with E=2.48e-10 is no better than current best with E=2.51e-10
Info:Polynomial Selection (root optimized): Marking workunit c135_polyselect2_48 as ok (40.0% => ETA Wed Feb 20 19:04:05 2019)
Info:HTTP server: 127.0.0.1 Sending workunit c135_polyselect2_78 to client localhost+3
Info:Polynomial Selection (root optimized): Best polynomial from file /tmp/cado.2du2886j/c135.upload/c135.polyselect2.jyk2vqe8.opt_42 with E=2.17e-10 is no better than current best with E=2.51e-10
Info:Polynomial Selection (root optimized): Marking workunit c135_polyselect2_42 as ok (46.0% => ETA Wed Feb 20 19:05:38 2019)
Info:HTTP server: 127.0.0.1 Sending workunit c135_polyselect2_84 to client localhost+4
Info:Polynomial Selection (root optimized): Best polynomial from file /tmp/cado.2du2886j/c135.upload/c135.polyselect2.xu6b03vp.opt_60 with E=2.41e-10 is no better than current best with E=2.51e-10
Info:Polynomial Selection (root optimized): Marking workunit c135_polyselect2_60 as ok (52.0% => ETA Wed Feb 20 19:03:44 2019)
Info:HTTP server: 127.0.0.1 Sending workunit c135_polyselect2_90 to client localhost+6
Info:Polynomial Selection (root optimized): Best polynomial from file /tmp/cado.2du2886j/c135.upload/c135.polyselect2.m5818lt1.opt_36 with E=2.41e-10 is no better than current best with E=2.51e-10
Info:Polynomial Selection (root optimized): Marking workunit c135_polyselect2_36 as ok (58.0% => ETA Wed Feb 20 19:02:17 2019)
Info:HTTP server: 127.0.0.1 Sending workunit c135_polyselect2_96 to client localhost+2
Info:Polynomial Selection (root optimized): Best polynomial from file /tmp/cado.2du2886j/c135.upload/c135.polyselect2.lxchh9vq.opt_54 with E=2.44e-10 is no better than current best with E=2.51e-10
Info:Polynomial Selection (root optimized): Marking workunit c135_polyselect2_54 as ok (64.0% => ETA Wed Feb 20 19:03:58 2019)
Info:Polynomial Selection (root optimized): New best polynomial from file /tmp/cado.2du2886j/c135.upload/c135.polyselect2.isrm956x.opt_66: Murphy E = 2.67e-10
Info:Polynomial Selection (root optimized): Marking workunit c135_polyselect2_66 as ok (70.0% => ETA Wed Feb 20 19:03:38 2019)
Info:Polynomial Selection (root optimized): Best polynomial from file /tmp/cado.2du2886j/c135.upload/c135.polyselect2.cubum9_g.opt_96 with E=2.4e-10 is no better than current best with E=2.67e-10
Info:Polynomial Selection (root optimized): Marking workunit c135_polyselect2_96 as ok (76.0% => ETA Wed Feb 20 19:02:51 2019)
Info:Polynomial Selection (root optimized): Best polynomial from file /tmp/cado.2du2886j/c135.upload/c135.polyselect2.sykwzpp0.opt_72 with E=2.66e-10 is no better than current best with E=2.67e-10
Info:Polynomial Selection (root optimized): Marking workunit c135_polyselect2_72 as ok (82.0% => ETA Wed Feb 20 19:01:45 2019)
Info:Polynomial Selection (root optimized): Best polynomial from file /tmp/cado.2du2886j/c135.upload/c135.polyselect2.g4p3kp_y.opt_84 with E=2.63e-10 is no better than current best with E=2.67e-10
Info:Polynomial Selection (root optimized): Marking workunit c135_polyselect2_84 as ok (88.0% => ETA Wed Feb 20 19:00:46 2019)
Info:Polynomial Selection (root optimized): Best polynomial from file /tmp/cado.2du2886j/c135.upload/c135.polyselect2._xe956kc.opt_90 with E=2.47e-10 is no better than current best with E=2.67e-10
Info:Polynomial Selection (root optimized): Marking workunit c135_polyselect2_90 as ok (94.0% => ETA Wed Feb 20 19:00:01 2019)
Info:Polynomial Selection (root optimized): Best polynomial from file /tmp/cado.2du2886j/c135.upload/c135.polyselect2._w95eosc.opt_78 with E=2.5e-10 is no better than current best with E=2.67e-10
Info:Polynomial Selection (root optimized): Marking workunit c135_polyselect2_78 as ok (100.0% => ETA Wed Feb 20 18:59:25 2019)
Info:Polynomial Selection (root optimized): Finished, best polynomial from file /tmp/cado.2du2886j/c135.upload/c135.polyselect2.isrm956x.opt_66 has Murphy_E = 2.67e-10
Info:Polynomial Selection (root optimized): Best overall polynomial was 28-th in list after size optimization
Info:Polynomial Selection (root optimized): Aggregate statistics:
Info:Polynomial Selection (root optimized): Total time: 7671.43
Info:Polynomial Selection (root optimized): Rootsieve time: 7669.31
Info:Generate Factor Base: Starting
Info:Generate Factor Base: Finished
Info:Generate Factor Base: Total cpu/real time for makefb: 18.65/1.99092
Info:Generate Free Relations: Starting
Info:Generate Free Relations: Found 63620 free relations
Info:Generate Free Relations: Finished
Info:Generate Free Relations: Total cpu/real time for freerel: 319.54/29.0238
Info:Lattice Sieving: Starting
Info:Lattice Sieving: We want 19112516 relations
Info:Lattice Sieving: Adding workunit c135_sieving_10664570-10670000 to database
Info:Lattice Sieving: Adding workunit c135_sieving_10670000-10680000 to database
Info:Lattice Sieving: Adding workunit c135_sieving_10680000-10690000 to database
Info:Lattice Sieving: Adding workunit c135_sieving_10690000-10700000 to database
Info:Lattice Sieving: Adding workunit c135_sieving_10700000-10710000 to database
Info:Lattice Sieving: Adding workunit c135_sieving_10710000-10720000 to database
Info:Lattice Sieving: Adding workunit c135_sieving_10720000-10730000 to database
Info:Lattice Sieving: Adding workunit c135_sieving_10730000-10740000 to database
Info:Lattice Sieving: Adding workunit c135_sieving_10740000-10750000 to database
Info:Lattice Sieving: Adding workunit c135_sieving_10750000-10760000 to database
Info:HTTP server: 127.0.0.1 Sending workunit c135_sieving_10664570-10670000 to client localhost+5
Info:HTTP server: 127.0.0.1 Sending workunit c135_sieving_10670000-10680000 to client localhost+4
Info:Lattice Sieving: Adding workunit c135_sieving_10760000-10770000 to database
Info:Lattice Sieving: Adding workunit c135_sieving_10770000-10780000 to database
Info:HTTP server: 127.0.0.1 Sending workunit c135_sieving_10680000-10690000 to client localhost
Info:Lattice Sieving: Adding workunit c135_sieving_10780000-10790000 to database
Info:HTTP server: 127.0.0.1 Sending workunit c135_sieving_10690000-10700000 to client localhost+2
Info:HTTP server: 127.0.0.1 Sending workunit c135_sieving_10700000-10710000 to client localhost+6
Info:Lattice Sieving: Adding workunit c135_sieving_10790000-10800000 to database
Info:Lattice Sieving: Adding workunit c135_sieving_10800000-10810000 to database
Info:HTTP server: 127.0.0.1 Sending workunit c135_sieving_10710000-10720000 to client localhost+3
Info:Lattice Sieving: Adding workunit c135_sieving_10810000-10820000 to database
Info:HTTP server: 127.0.0.1 Sending workunit c135_sieving_10720000-10730000 to client localhost+5
Info:Lattice Sieving: Adding workunit c135_sieving_10820000-10830000 to database
Info:Lattice Sieving: Found 7413 relations in '/tmp/cado.2du2886j/c135.upload/c135.10664570-10670000.qfl70dae.gz', total is now 7413/19112516
Info:Lattice Sieving: Marking workunit c135_sieving_10664570-10670000 as ok (0.0% => ETA Unknown)
Info:HTTP server: 127.0.0.1 Sending workunit c135_sieving_10730000-10740000 to client localhost+4
Info:Lattice Sieving: Adding workunit c135_sieving_10830000-10840000 to database
Info:Lattice Sieving: Found 14293 relations in '/tmp/cado.2du2886j/c135.upload/c135.10670000-10680000.sftbqv87.gz', total is now 21706/19112516
Info:Lattice Sieving: Marking workunit c135_sieving_10670000-10680000 as ok (0.1% => ETA Wed Feb 27 22:34:37 2019)
Info:HTTP server: 127.0.0.1 Sending workunit c135_sieving_10740000-10750000 to client localhost+3
Info:Lattice Sieving: Adding workunit c135_sieving_10840000-10850000 to database
Info:Lattice Sieving: Found 15269 relations in '/tmp/cado.2du2886j/c135.upload/c135.10710000-10720000.oun12gvk.gz', total is now 36975/19112516
Info:Lattice Sieving: Marking workunit c135_sieving_10710000-10720000 as ok (0.2% => ETA Sun Feb 24 11:53:44 2019)
Info:HTTP server: 127.0.0.1 Sending workunit c135_sieving_10750000-10760000 to client localhost
Info:Lattice Sieving: Adding workunit c135_sieving_10850000-10860000 to database
Info:Lattice Sieving: Found 15135 relations in '/tmp/cado.2du2886j/c135.upload/c135.10680000-10690000.tsztf8rm.gz', total is now 52110/19112516
Info:Lattice Sieving: Marking workunit c135_sieving_10680000-10690000 as ok (0.3% => ETA Sat Feb 23 05:54:53 2019)
Info:HTTP server: 127.0.0.1 Sending workunit c135_sieving_10760000-10770000 to client localhost+2
Info:Lattice Sieving: Adding workunit c135_sieving_10860000-10870000 to database
Info:Lattice Sieving: Found 14912 relations in '/tmp/cado.2du2886j/c135.upload/c135.10690000-10700000.waqgculo.gz', total is now 67022/19112516
Info:Lattice Sieving: Marking workunit c135_sieving_10690000-10700000 as ok (0.4% => ETA Fri Feb 22 15:32:05 2019)
Info:HTTP server: 127.0.0.1 Sending workunit c135_sieving_10770000-10780000 to client localhost+6
Info:Lattice Sieving: Adding workunit c135_sieving_10870000-10880000 to database
Info:Lattice Sieving: Found 14990 relations in '/tmp/cado.2du2886j/c135.upload/c135.10700000-10710000.muqdiaaa.gz', total is now 82012/19112516
Info:Lattice Sieving: Marking workunit c135_sieving_10700000-10710000 as ok (0.4% => ETA Fri Feb 22 06:43:47 2019)
Info:HTTP server: 127.0.0.1 Sending workunit c135_sieving_10780000-10790000 to client localhost+5
Info:Lattice Sieving: Adding workunit c135_sieving_10880000-10890000 to database
Info:Lattice Sieving: Found 14616 relations in '/tmp/cado.2du2886j/c135.upload/c135.10720000-10730000.cty9svtl.gz', total is now 96628/19112516
Info:Lattice Sieving: Marking workunit c135_sieving_10720000-10730000 as ok (0.5% => ETA Fri Feb 22 13:12:53 2019)
... EJ: many quasi-identical lines...
Info:HTTP server: 127.0.0.1 Sending workunit c135_sieving_26330000-26340000 to client localhost+3
Info:Lattice Sieving: Adding workunit c135_sieving_26430000-26440000 to database
Info:Lattice Sieving: Found 10810 relations in '/tmp/cado.2du2886j/c135.upload/c135.26270000-26280000.gkvzpaff.gz', total is now 19096874/19112516
Info:Lattice Sieving: Marking workunit c135_sieving_26270000-26280000 as ok (99.9% => ETA Fri Feb 22 06:40:39 2019)
Info:HTTP server: 127.0.0.1 Sending workunit c135_sieving_26340000-26350000 to client localhost+2
Info:Lattice Sieving: Adding workunit c135_sieving_26440000-26450000 to database
Info:Lattice Sieving: Found 10877 relations in '/tmp/cado.2du2886j/c135.upload/c135.26280000-26290000.pb8c7b1s.gz', total is now 19107751/19112516
Info:Lattice Sieving: Marking workunit c135_sieving_26280000-26290000 as ok (100.0% => ETA Fri Feb 22 06:40:10 2019)
Info:HTTP server: 127.0.0.1 Sending workunit c135_sieving_26350000-26360000 to client localhost+6
Info:Lattice Sieving: Adding workunit c135_sieving_26450000-26460000 to database
Info:Lattice Sieving: Found 11043 relations in '/tmp/cado.2du2886j/c135.upload/c135.26300000-26310000.aocz1swn.gz', total is now 19118794/19112516
Info:Lattice Sieving: Marking workunit c135_sieving_26300000-26310000 as ok (100.0% => ETA Fri Feb 22 06:41:12 2019)
Info:HTTP server: 127.0.0.1 Sending workunit c135_sieving_26360000-26370000 to client localhost+5
Info:Lattice Sieving: Adding workunit c135_sieving_26460000-26470000 to database
Info:Lattice Sieving: Reached target of 19112516 relations, now have 19118794
Info:Lattice Sieving: Aggregate statistics:
Info:Lattice Sieving: Total number of relations: 19118794
Info:Lattice Sieving: Average J: 3800.7 for 936687 special-q, max bucket fill: 0.698028
Info:Lattice Sieving: Total CPU time: 1.45064e+06s
Info:Filtering - Duplicate Removal, splitting pass: Starting
Info:Filtering - Duplicate Removal, splitting pass: Splitting 1564 new files
Info:HTTP server: 127.0.0.1 Sending workunit c135_sieving_26370000-26380000 to client localhost
Info:Filtering - Duplicate Removal, splitting pass: Relations per slice: 0: 9559731, 1: 9559063
Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 96.1/167.315
Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics:
Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 167.1s
Info:Filtering - Duplicate Removal, removal pass: Starting
Info:HTTP server: 127.0.0.1 Sending workunit c135_sieving_26380000-26390000 to client localhost+3
Info:Filtering - Duplicate Removal, removal pass: 8185327 unique relations remain on slice 0
Info:HTTP server: 127.0.0.1 Sending workunit c135_sieving_26390000-26400000 to client localhost+4
Info:HTTP server: 127.0.0.1 Sending workunit c135_sieving_26400000-26410000 to client localhost+2
Info:Filtering - Duplicate Removal, removal pass: 8182607 unique relations remain on slice 1
Info:Filtering - Duplicate Removal, removal pass: Of 19118794 newly added relations 16367934 were unique (ratio 0.856117)
Info:Filtering - Duplicate Removal, removal pass: 16367934 unique relations remain in total
Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 390.14/258.431
Info:Filtering - Singleton removal: Starting
Info:Filtering - Singleton removal: Reading 16367934 unique and 63620 free relations, total 16431554
Info:HTTP server: 127.0.0.1 Sending workunit c135_sieving_26410000-26420000 to client localhost+5
Info:HTTP server: 127.0.0.1 Sending workunit c135_sieving_26420000-26430000 to client localhost+6
Info:HTTP server: 127.0.0.1 Sending workunit c135_sieving_26430000-26440000 to client localhost
Info:Filtering - Singleton removal: After purge, 5016882 relations with 5016722 primes remain with weight 97760000 and excess 160
Info:Filtering - Singleton removal: Have enough relations
Info:HTTP server: Got notification to stop serving Workunits
Info:Lattice Sieving: Cancelling remaining workunits
Info:Client Launcher: Stopped client localhost (Host localhost, PID 9552)
Info:Client Launcher: Stopped client localhost+2 (Host localhost, PID 9555)
Info:Client Launcher: Stopped client localhost+3 (Host localhost, PID 9558)
Info:Client Launcher: Stopped client localhost+4 (Host localhost, PID 9561)
Info:Client Launcher: Stopped client localhost+5 (Host localhost, PID 9564)
Info:Client Launcher: Stopped client localhost+6 (Host localhost, PID 9567)
Info:Filtering - Singleton removal: Total cpu/real time for purge: 258.21/194.905
Info:Filtering - Merging: Starting
Info:Filtering - Merging: Merged matrix has 1361898 rows and total weight 231522879 (170.0 entries per row on average)
Info:Filtering - Merging: Total cpu/real time for merge: 640.91/583.613
Info:Filtering - Merging: Total cpu/real time for replay: 44.19/34.2819
Info:Linear Algebra: Starting
Info:Linear Algebra: krylov: N=1000 ; ETA (N=43000): Fri Feb 22 08:35:43 2019 [0.127 s/iter]
Info:Linear Algebra: krylov: N=2000 ; ETA (N=43000): Fri Feb 22 08:37:49 2019 [0.130 s/iter]
Info:Linear Algebra: krylov: N=3000 ; ETA (N=43000): Fri Feb 22 08:38:43 2019 [0.131 s/iter]
Info:Linear Algebra: krylov: N=4000 ; ETA (N=43000): Fri Feb 22 08:39:26 2019 [0.132 s/iter]
Info:Linear Algebra: krylov: N=5000 ; ETA (N=43000): Fri Feb 22 08:39:54 2019 [0.133 s/iter]
Info:Linear Algebra: krylov: N=6000 ; ETA (N=43000): Fri Feb 22 08:40:13 2019 [0.133 s/iter]
Info:Linear Algebra: krylov: N=7000 ; ETA (N=43000): Fri Feb 22 08:40:26 2019 [0.133 s/iter]
Info:Linear Algebra: krylov: N=8000 ; ETA (N=43000): Fri Feb 22 08:40:39 2019 [0.134 s/iter]
Info:Linear Algebra: krylov: N=9000 ; ETA (N=43000): Fri Feb 22 08:40:49 2019 [0.134 s/iter]
Info:Linear Algebra: krylov: N=10000 ; ETA (N=43000): Fri Feb 22 08:40:54 2019 [0.134 s/iter]
Info:Linear Algebra: krylov: N=11000 ; ETA (N=43000): Fri Feb 22 08:41:01 2019 [0.134 s/iter]
Info:Linear Algebra: krylov: N=12000 ; ETA (N=43000): Fri Feb 22 08:41:06 2019 [0.134 s/iter]
Info:Linear Algebra: krylov: N=13000 ; ETA (N=43000): Fri Feb 22 08:41:12 2019 [0.135 s/iter]
Info:Linear Algebra: krylov: N=14000 ; ETA (N=43000): Fri Feb 22 08:41:17 2019 [0.135 s/iter]
Info:Linear Algebra: krylov: N=15000 ; ETA (N=43000): Fri Feb 22 08:41:20 2019 [0.135 s/iter]
Info:Linear Algebra: krylov: N=16000 ; ETA (N=43000): Fri Feb 22 08:41:23 2019 [0.135 s/iter]
Info:Linear Algebra: krylov: N=17000 ; ETA (N=43000): Fri Feb 22 08:41:25 2019 [0.135 s/iter]
Info:Linear Algebra: krylov: N=18000 ; ETA (N=43000): Fri Feb 22 08:41:29 2019 [0.135 s/iter]
Info:Linear Algebra: krylov: N=19000 ; ETA (N=43000): Fri Feb 22 08:41:32 2019 [0.135 s/iter]
Info:Linear Algebra: krylov: N=20000 ; ETA (N=43000): Fri Feb 22 08:41:34 2019 [0.135 s/iter]
Info:Linear Algebra: krylov: N=21000 ; ETA (N=43000): Fri Feb 22 08:41:36 2019 [0.135 s/iter]
Info:Linear Algebra: krylov: N=22000 ; ETA (N=43000): Fri Feb 22 08:41:38 2019 [0.135 s/iter]
Info:Linear Algebra: krylov: N=23000 ; ETA (N=43000): Fri Feb 22 08:41:40 2019 [0.135 s/iter]
Info:Linear Algebra: krylov: N=24000 ; ETA (N=43000): Fri Feb 22 08:41:40 2019 [0.135 s/iter]
Info:Linear Algebra: krylov: N=25000 ; ETA (N=43000): Fri Feb 22 08:41:41 2019 [0.135 s/iter]
Info:Linear Algebra: krylov: N=26000 ; ETA (N=43000): Fri Feb 22 08:41:44 2019 [0.135 s/iter]
Info:Linear Algebra: krylov: N=27000 ; ETA (N=43000): Fri Feb 22 08:41:44 2019 [0.135 s/iter]
Info:Linear Algebra: krylov: N=28000 ; ETA (N=43000): Fri Feb 22 08:41:45 2019 [0.135 s/iter]
Info:Linear Algebra: krylov: N=29000 ; ETA (N=43000): Fri Feb 22 08:41:46 2019 [0.135 s/iter]
Info:Linear Algebra: krylov: N=30000 ; ETA (N=43000): Fri Feb 22 08:41:47 2019 [0.135 s/iter]
Info:Linear Algebra: krylov: N=31000 ; ETA (N=43000): Fri Feb 22 08:41:49 2019 [0.135 s/iter]
Info:Linear Algebra: krylov: N=32000 ; ETA (N=43000): Fri Feb 22 08:41:50 2019 [0.135 s/iter]
Info:Linear Algebra: krylov: N=33000 ; ETA (N=43000): Fri Feb 22 08:41:51 2019 [0.135 s/iter]
Info:Linear Algebra: krylov: N=34000 ; ETA (N=43000): Fri Feb 22 08:41:50 2019 [0.135 s/iter]
Info:Linear Algebra: krylov: N=35000 ; ETA (N=43000): Fri Feb 22 08:41:52 2019 [0.135 s/iter]
Info:Linear Algebra: krylov: N=36000 ; ETA (N=43000): Fri Feb 22 08:41:52 2019 [0.135 s/iter]
Info:Linear Algebra: krylov: N=37000 ; ETA (N=43000): Fri Feb 22 08:41:52 2019 [0.135 s/iter]
Info:Linear Algebra: krylov: N=38000 ; ETA (N=43000): Fri Feb 22 08:41:53 2019 [0.135 s/iter]
Info:Linear Algebra: krylov: N=39000 ; ETA (N=43000): Fri Feb 22 08:41:53 2019 [0.135 s/iter]
Info:Linear Algebra: krylov: N=40000 ; ETA (N=43000): Fri Feb 22 08:41:55 2019 [0.136 s/iter]
Info:Linear Algebra: krylov: N=41000 ; ETA (N=43000): Fri Feb 22 08:41:56 2019 [0.136 s/iter]
Info:Linear Algebra: krylov: N=42000 ; ETA (N=43000): Fri Feb 22 08:41:56 2019 [0.136 s/iter]
Info:Linear Algebra: krylov: N=43000 ; ETA (N=43000): Fri Feb 22 08:41:57 2019 [0.136 s/iter]
Info:Linear Algebra: lingen ETA: Fri Feb 22 08:42:10 2019
Info:Linear Algebra: lingen ETA: Fri Feb 22 08:42:57 2019
Info:Linear Algebra: lingen ETA: Fri Feb 22 08:42:56 2019
Info:Linear Algebra: lingen ETA: Fri Feb 22 08:43:01 2019
Info:Linear Algebra: lingen ETA: Fri Feb 22 08:43:01 2019
Info:Linear Algebra: lingen ETA: Fri Feb 22 08:42:59 2019
Info:Linear Algebra: lingen ETA: Fri Feb 22 08:43:01 2019
Info:Linear Algebra: lingen ETA: Fri Feb 22 08:43:01 2019
Info:Linear Algebra: lingen ETA: Fri Feb 22 08:43:02 2019
Info:Linear Algebra: lingen ETA: Fri Feb 22 08:43:03 2019
Info:Linear Algebra: lingen ETA: Fri Feb 22 08:43:01 2019
Info:Linear Algebra: lingen ETA: Fri Feb 22 08:43:01 2019
Info:Linear Algebra: lingen ETA: Fri Feb 22 08:43:01 2019
Info:Linear Algebra: lingen ETA: Fri Feb 22 08:43:02 2019
Info:Linear Algebra: lingen ETA: Fri Feb 22 08:43:02 2019
Info:Linear Algebra: lingen ETA: Fri Feb 22 08:43:02 2019
Info:Linear Algebra: lingen ETA: Fri Feb 22 08:42:56 2019
Info:Linear Algebra: mksol: N=1000 ; ETA (N=22000): Fri Feb 22 09:35:29 2019 [0.144 s/iter]
Info:Linear Algebra: mksol: N=2000 ; ETA (N=22000): Fri Feb 22 09:36:05 2019 [0.145 s/iter]
Info:Linear Algebra: mksol: N=3000 ; ETA (N=22000): Fri Feb 22 09:36:20 2019 [0.146 s/iter]
Info:Linear Algebra: mksol: N=4000 ; ETA (N=22000): Fri Feb 22 09:36:24 2019 [0.146 s/iter]
Info:Linear Algebra: mksol: N=5000 ; ETA (N=22000): Fri Feb 22 09:36:29 2019 [0.146 s/iter]
Info:Linear Algebra: mksol: N=6000 ; ETA (N=22000): Fri Feb 22 09:36:30 2019 [0.146 s/iter]
Info:Linear Algebra: mksol: N=7000 ; ETA (N=22000): Fri Feb 22 09:36:33 2019 [0.147 s/iter]
Info:Linear Algebra: mksol: N=8000 ; ETA (N=22000): Fri Feb 22 09:36:34 2019 [0.147 s/iter]
Info:Linear Algebra: mksol: N=9000 ; ETA (N=22000): Fri Feb 22 09:36:33 2019 [0.147 s/iter]
Info:Linear Algebra: mksol: N=10000 ; ETA (N=22000): Fri Feb 22 09:36:34 2019 [0.147 s/iter]
Info:Linear Algebra: mksol: N=11000 ; ETA (N=22000): Fri Feb 22 09:36:35 2019 [0.147 s/iter]
Info:Linear Algebra: mksol: N=12000 ; ETA (N=22000): Fri Feb 22 09:36:36 2019 [0.147 s/iter]
Info:Linear Algebra: mksol: N=13000 ; ETA (N=22000): Fri Feb 22 09:36:35 2019 [0.147 s/iter]
Info:Linear Algebra: mksol: N=14000 ; ETA (N=22000): Fri Feb 22 09:36:35 2019 [0.147 s/iter]
Info:Linear Algebra: mksol: N=15000 ; ETA (N=22000): Fri Feb 22 09:36:35 2019 [0.147 s/iter]
Info:Linear Algebra: mksol: N=16000 ; ETA (N=22000): Fri Feb 22 09:36:35 2019 [0.147 s/iter]
Info:Linear Algebra: mksol: N=17000 ; ETA (N=22000): Fri Feb 22 09:36:36 2019 [0.147 s/iter]
Info:Linear Algebra: mksol: N=18000 ; ETA (N=22000): Fri Feb 22 09:36:35 2019 [0.147 s/iter]
Info:Linear Algebra: mksol: N=19000 ; ETA (N=22000): Fri Feb 22 09:36:35 2019 [0.147 s/iter]
Info:Linear Algebra: mksol: N=20000 ; ETA (N=22000): Fri Feb 22 09:36:36 2019 [0.147 s/iter]
Info:Linear Algebra: mksol: N=21000 ; ETA (N=22000): Fri Feb 22 09:36:36 2019 [0.147 s/iter]
Info:Linear Algebra: mksol: N=22000 ; ETA (N=22000): Fri Feb 22 09:36:28 2019 [0.146 s/iter]
Info:Linear Algebra: Total cpu/real time for bwc: 98392.8/0.000312328
Info:Linear Algebra: Aggregate statistics:
Info:Linear Algebra: Krylov: WCT time 5830.3
Info:Linear Algebra: Lingen CPU time 437.51, WCT time 51.88
Info:Linear Algebra: Mksol: WCT time 3219.0
Info:Quadratic Characters: Starting
Info:Quadratic Characters: Total cpu/real time for characters: 51.08/11.8357
Info:Square Root: Starting
Info:Square Root: Creating file of (a,b) values
Warning:Command: Process with PID 20664 finished with return code -6
Error:Square Root: Program run on server failed with exit code -6
Error:Square Root: Command line was: /home/ng/cado-nfs-2.3.0/build/ng-All-Series/sqrt/sqrt -poly /tmp/cado.2du2886j/c135.poly -prefix /tmp/cado.2du2886j/c135.dep.gz -purged /tmp/cado.2du2886j/c135.purged.gz -index /tmp/cado.2du2886j/c135.index.gz -ker /tmp/cado.2du2886j/c135.kernel -dep 0 -t 8 -side0 -side1 -gcd > /tmp/cado.2du2886j/c135.sqrt.stdout.2 2> /tmp/cado.2du2886j/c135.sqrt.stderr.2
square root time is 2550.74s\nBug: the squares do not agree modulo n!\ncode BUG() : condition 0 failed in calculateGcd at /home/ng/cado-nfs-2.3.0/sqrt/sqrt.c:1138 -- Abort\n'
Traceback (most recent call last):
  File "./cado-nfs.py", line 122, in <module>
    factors = factorjob.run()
  File "./scripts/cadofactor/cadotask.py", line 5429, in run
    last_status, last_task = self.run_next_task()
  File "./scripts/cadofactor/cadotask.py", line 5504, in run_next_task
    return [task.run(), task.title]
  File "./scripts/cadofactor/cadotask.py", line 4429, in run
    raise Exception("Program failed")
Exception: Program failed

EJ: Well, at this stage, i reran the last command line, it was ok, and I got the two factors in the file  c135.sqrt.stdout.2
software ソフトウェア
cado-nfs-2.3.0
execution environment 実行環境
Linux Ubuntu 18.04 LTS 
GenuineIntel Intel(R) Core(TM) i7-5820K CPU @ 3.30GHz [Family 6 Model 63 Stepping 2] (12 processors) 

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaJanuary 3, 2008 09:00:00 UTC 2008 年 1 月 3 日 (木) 18 時 0 分 0 秒 (日本時間)
351e6300Ignacio SantosNovember 13, 2010 17:15:52 UTC 2010 年 11 月 14 日 (日) 2 時 15 分 52 秒 (日本時間)
403e61910110Ignacio SantosNovember 13, 2010 17:15:52 UTC 2010 年 11 月 14 日 (日) 2 時 15 分 52 秒 (日本時間)
1800Youcef LemsaferJanuary 4, 2014 18:27:56 UTC 2014 年 1 月 5 日 (日) 3 時 27 分 56 秒 (日本時間)
4511e6404332Ignacio SantosNovember 13, 2010 17:15:52 UTC 2010 年 11 月 14 日 (日) 2 時 15 分 52 秒 (日本時間)
224Youcef LemsaferJanuary 4, 2014 20:53:05 UTC 2014 年 1 月 5 日 (日) 5 時 53 分 5 秒 (日本時間)
366Youcef LemsaferJanuary 5, 2014 06:41:21 UTC 2014 年 1 月 5 日 (日) 15 時 41 分 21 秒 (日本時間)
3421shunJanuary 16, 2019 06:57:47 UTC 2019 年 1 月 16 日 (水) 15 時 57 分 47 秒 (日本時間)

7×10191+9

c190

name 名前Robert Backstrom
date 日付August 14, 2008 07:55:46 UTC 2008 年 8 月 14 日 (木) 16 時 55 分 46 秒 (日本時間)
composite number 合成数
7216494845360824742268041237113402061855670103092783505154639175257731958762886597938144329896907216494845360824742268041237113402061855670103092783505154639175257731958762886597938144329897<190>
prime factors 素因数
234464897294589778294207283924185372179122521034823214261<57>
37245591958990518315896750106678790768293832822047005717210831897<65>
826368192949751598558367932833322291039122696920944478534061838111341<69>
factorization results 素因数分解の結果
Number: n
N=7216494845360824742268041237113402061855670103092783505154639175257731958762886597938144329896907216494845360824742268041237113402061855670103092783505154639175257731958762886597938144329897
  ( 190 digits)
SNFS difficulty: 191 digits.
Divisors found:

Thu Aug 14 17:44:30 2008  prp57 factor: 234464897294589778294207283924185372179122521034823214261
Thu Aug 14 17:44:30 2008  prp65 factor: 37245591958990518315896750106678790768293832822047005717210831897
Thu Aug 14 17:44:30 2008  prp69 factor: 826368192949751598558367932833322291039122696920944478534061838111341
Thu Aug 14 17:44:30 2008  elapsed time 12:59:34 (Msieve 1.36)

Version: GGNFS-0.77.1-20060513-athlon-xp
Total time: 167.63 hours.
Scaled time: 218.25 units (timescale=1.302).
Factorization parameters were as follows:
name: KA_7_0_190_9
n: 7216494845360824742268041237113402061855670103092783505154639175257731958762886597938144329896907216494845360824742268041237113402061855670103092783505154639175257731958762886597938144329897
type: snfs
skew: 0.66
deg: 5
c5: 70
c0: 9
m: 100000000000000000000000000000000000000
rlim: 9500000
alim: 9500000
lpbr: 28
lpba: 28
mfbr: 50
mfba: 50
rlambda: 2.5
alambda: 2.5
qintsize: 100000
Factor base limits: 9500000/9500000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 50/50
Sieved  special-q in [100000, 14600001)
Primes: RFBsize:633578, AFBsize:635068, largePrimes:11104373 encountered
Relations: rels:11157968, finalFF:1297829
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 
Total sieving time: 166.97 hours.
Total relation processing time: 0.66 hours.
Matrix solve time: 0.00 hours.
Total square root time: 0.00 hours, sqrts: 0.
Prototype def-par.txt line would be:
snfs,191,5,0,0,0,0,0,0,0,0,9500000,9500000,28,28,50,50,2.5,2.5,100000
total time: 167.63 hours.
 --------- CPU info (if available) ----------

Cygwin on AMD 64 3200+

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaJanuary 3, 2008 09:00:00 UTC 2008 年 1 月 3 日 (木) 18 時 0 分 0 秒 (日本時間)

7×10193+9

c127

name 名前Sinkiti Sibata
date 日付April 9, 2010 08:03:29 UTC 2010 年 4 月 9 日 (金) 17 時 3 分 29 秒 (日本時間)
composite number 合成数
3761864954913963305216285313826516722992973293912532948415624819300798599573925261366288009876980589923493602165953677693332011<127>
prime factors 素因数
65784275817411879643104829802279958915138729043<47>
57184865352249835245518591011633288175983574082732971807733160734211631478699977<80>
factorization results 素因数分解の結果
Number: 70009_193
N=3761864954913963305216285313826516722992973293912532948415624819300798599573925261366288009876980589923493602165953677693332011
  ( 127 digits)
Divisors found:
 r1=65784275817411879643104829802279958915138729043 (pp47)
 r2=57184865352249835245518591011633288175983574082732971807733160734211631478699977 (pp80)
Version: Msieve-1.40
Total time: 121.47 hours.
Scaled time: 315.22 units (timescale=2.595).
Factorization parameters were as follows:
name: 70009_193
# Murphy_E = 1.106139e-10, selected by Jeff Gilchrist
n: 3761864954913963305216285313826516722992973293912532948415624819300798599573925261366288009876980589923493602165953677693332011
Y0: -2681798075468550223350477
Y1: 65727034522909
c0: 7030854032314089557519814448112
c1: 879467878075130583205938177
c2: 8684027777830562069999
c3: -13882250473218267
c4: -42952054366
c5: 27120
skew: 392843.86
type: gnfs
# selected mechanically
rlim: 7900000
alim: 7900000
lpbr: 28
lpba: 28
mfbr: 53
mfba: 53
rlambda: 2.5
alambda: 2.5
Factor base limits: 7900000/7900000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 53/53
Sieved algebraic special-q in [3950000, 7750001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1175094 x 1175342
Total sieving time: 117.62 hours.
Total relation processing time: 0.22 hours.
Matrix solve time: 3.35 hours.
Time per square root: 0.27 hours.
Prototype def-par.txt line would be:
gnfs,126,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,7900000,7900000,28,28,53,53,2.5,2.5,100000
total time: 121.47 hours.
 --------- CPU info (if available) ----------
execution environment 実行環境
Core i7 2.93GHz,Windows 7 64bit,and Cygwin)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaJanuary 3, 2008 09:00:00 UTC 2008 年 1 月 3 日 (木) 18 時 0 分 0 秒 (日本時間)
351e60--
403e62336500Erik BrangerMarch 16, 2009 19:52:28 UTC 2009 年 3 月 17 日 (火) 4 時 52 分 28 秒 (日本時間)
1836Wataru SakaiDecember 6, 2009 06:19:22 UTC 2009 年 12 月 6 日 (日) 15 時 19 分 22 秒 (日本時間)

7×10194+9

c168

name 名前Eric Jeancolas
date 日付November 8, 2020 10:43:59 UTC 2020 年 11 月 8 日 (日) 19 時 43 分 59 秒 (日本時間)
composite number 合成数
120657689208079695622601388842002862399832841703491716947294597618335218504374341858689696854434888913194201731060405314132155040434352964813449202640436304370462901269<168>
prime factors 素因数
451462144164584668642700987597608659866621015435277338723771480368676282376719<78>
267259815175318060555841769299453098326361199201134619213710918934100569942291460025879451<90>
factorization results 素因数分解の結果
120657689208079695622601388842002862399832841703491716947294597618335218504374341858689696854434888913194201731060405314132155040434352964813449202640436304370462901269=451462144164584668642700987597608659866621015435277338723771480368676282376719*267259815175318060555841769299453098326361199201134619213710918934100569942291460025879451

cado log (extracts)
n: 120657689208079695622601388842002862399832841703491716947294597618335218504374341858689696854434888913194201731060405314132155040434352964813449202640436304370462901269
skew: 0.83
type: snfs
c0: 45
c5: 112
Y0: 500000000000000000000000000000000000000
Y1: -1
# f(x) = 112*x^5+45
# g(x) = -x+500000000000000000000000000000000000000

cado parameters (extracts)
tasks.lim0 = 12700000
tasks.lim1 = 12700000
tasks.lpb0 = 28
tasks.lpb1 = 28
tasks.sieve.mfb0 = 55
tasks.sieve.mfb1 = 55
tasks.sieve.lambda0 = 2.5
tasks.sieve.lambda1 = 2.5
tasks.I = 12
tasks.linalg.m = 64
tasks.linalg.n = 64
tasks.linalg.characters.nchar = 50

cado log (extracts)
Info:Square Root: Factors: 267259815175318060555841769299453098326361199201134619213710918934100569942291460025879451 451462144164584668642700987597608659866621015435277338723771480368676282376719
Warning:Polynomial Selection (size optimized): some stats could not be displayed for polyselect1 (see log file for debug info)
Warning:Polynomial Selection (root optimized): some stats could not be displayed for polyselect2 (see log file for debug info)
Info:Generate Factor Base: Total cpu/real time for makefb: 5.36/2.20833
Info:Generate Free Relations: Total cpu/real time for freerel: 99.51/25.8478
Info:Lattice Sieving: Aggregate statistics:
Info:Lattice Sieving: Total number of relations: 29341179
Info:Lattice Sieving: Average J: 1894.12 for 3509868 special-q, max bucket fill -bkmult 1.0,1s:1.112590
Info:Lattice Sieving: Total time: 865300s
Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 55.75/140.163
Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics:
Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 139.4s
Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 481.12/483.689
Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics:
Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 422.4s
Info:Filtering - Singleton removal: Total cpu/real time for purge: 408.88/483.668
Info:Filtering - Merging: Merged matrix has 2676605 rows and total weight 455918458 (170.3 entries per row on average)
Info:Filtering - Merging: Total cpu/real time for merge: 390.11/112.379
Info:Filtering - Merging: Total cpu/real time for replay: 103.57/91.7012
Info:Linear Algebra: Total cpu/real time for bwc: 127333/32574.6
Info:Linear Algebra: Aggregate statistics:
Info:Linear Algebra: Krylov: WCT time 20818.78, iteration CPU time 0.23, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (83968 iterations)
Info:Linear Algebra: Lingen CPU time 541.76, WCT time 156.9
Info:Linear Algebra: Mksol: WCT time 11311.57, iteration CPU time 0.26, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (41984 iterations)
Info:Quadratic Characters: Total cpu/real time for characters: 93.25/40.4419
Info:Square Root: Total cpu/real time for sqrt: 732.72/230.534
Info:HTTP server: Shutting down HTTP server
Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 1.72886e+06/442318
267259815175318060555841769299453098326361199201134619213710918934100569942291460025879451 451462144164584668642700987597608659866621015435277338723771480368676282376719
software ソフトウェア
cado-nfs-3.0.0
execution environment 実行環境
Linux Ubuntu 20.04.1 LTS [5.4.0-48-generic|libc 2.31 (Ubuntu GLIBC 2.31-0ubuntu9.1)]
GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaJanuary 3, 2008 09:00:00 UTC 2008 年 1 月 3 日 (木) 18 時 0 分 0 秒 (日本時間)
351e6300Ignacio SantosNovember 6, 2010 04:52:08 UTC 2010 年 11 月 6 日 (土) 13 時 52 分 8 秒 (日本時間)
403e61910110Ignacio SantosNovember 6, 2010 04:52:08 UTC 2010 年 11 月 6 日 (土) 13 時 52 分 8 秒 (日本時間)
1800Youcef LemsaferJanuary 5, 2014 06:40:27 UTC 2014 年 1 月 5 日 (日) 15 時 40 分 27 秒 (日本時間)
4511e62100 / 404332Ignacio SantosNovember 6, 2010 04:52:08 UTC 2010 年 11 月 6 日 (土) 13 時 52 分 8 秒 (日本時間)
590Youcef LemsaferJanuary 5, 2014 13:17:25 UTC 2014 年 1 月 5 日 (日) 22 時 17 分 25 秒 (日本時間)
1478Eric JeancolasOctober 11, 2020 17:36:25 UTC 2020 年 10 月 12 日 (月) 2 時 36 分 25 秒 (日本時間)

7×10197+9

c171

name 名前Ignacio Santos
date 日付November 6, 2010 04:50:06 UTC 2010 年 11 月 6 日 (土) 13 時 50 分 6 秒 (日本時間)
composite number 合成数
383456685421648306006088817801817840632226742951668863490830668891742478382626515034371124939029073961923274994781482434725108581258090120035446733306078552751749034309977<171>
prime factors 素因数
7732381304521247951012533502107123<34>
composite cofactor 合成数の残り
49591021228794679704527998485919707880012710676409014785496914749711974590317804689075091979497315920612936553391069803089949415383597699<137>
factorization results 素因数分解の結果
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=543349924
Step 1 took 7660ms
********** Factor found in step 1: 7732381304521247951012533502107123
Found probable prime factor of 34 digits: 7732381304521247951012533502107123
Composite cofactor 49591021228794679704527998485919707880012710676409014785496914749711974590317804689075091979497315920612936553391069803089949415383597699 has 137 digits
software ソフトウェア
GMP-ECM 6.3

c137

name 名前Ignacio Santos
date 日付November 17, 2010 14:24:11 UTC 2010 年 11 月 17 日 (水) 23 時 24 分 11 秒 (日本時間)
composite number 合成数
49591021228794679704527998485919707880012710676409014785496914749711974590317804689075091979497315920612936553391069803089949415383597699<137>
prime factors 素因数
54628030277043788643629951448648724452709<41>
907794423069912523436799088645668400584031242930677594738332639048048170311106001749926560583111<96>
factorization results 素因数分解の結果
Using B1=43000000, B2=240490660426, polynomial Dickson(12), sigma=4067166299
Step 1 took 297884ms
Step 2 took 111853ms
********** Factor found in step 2: 54628030277043788643629951448648724452709
Found probable prime factor of 41 digits: 54628030277043788643629951448648724452709
Probable prime cofactor 907794423069912523436799088645668400584031242930677594738332639048048170311106001749926560583111 has 96 digits
software ソフトウェア
GMP-ECM 6.3

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaJanuary 3, 2008 09:00:00 UTC 2008 年 1 月 3 日 (木) 18 時 0 分 0 秒 (日本時間)
351e6300Ignacio SantosNovember 6, 2010 18:12:39 UTC 2010 年 11 月 7 日 (日) 3 時 12 分 39 秒 (日本時間)
403e6110 / 2144Ignacio SantosNovember 6, 2010 18:12:39 UTC 2010 年 11 月 7 日 (日) 3 時 12 分 39 秒 (日本時間)
4511e632 / 4441Ignacio SantosNovember 6, 2010 18:12:39 UTC 2010 年 11 月 7 日 (日) 3 時 12 分 39 秒 (日本時間)

7×10198+9

c184

name 名前Bob Backstrom
date 日付March 17, 2021 10:54:10 UTC 2021 年 3 月 17 日 (水) 19 時 54 分 10 秒 (日本時間)
composite number 合成数
8150391873150141502214930261030009511488735203489654742878414445786291154941703302503903152877063943022304471550603158999133877222600339100229692618348739301542546165241817960419983831<184>
prime factors 素因数
9792736651324038104465656852532086056747357956501<49>
416294859713813506942716572578719377463304059673169<51>
1999278825428789818667079365278666011171847023909742578034210180520905913798775559499<85>
factorization results 素因数分解の結果
Number: n
N=8150391873150141502214930261030009511488735203489654742878414445786291154941703302503903152877063943022304471550603158999133877222600339100229692618348739301542546165241817960419983831  ( 184 digits)
SNFS difficulty: 198 digits.
Divisors found:

Wed Mar 17 21:39:16 2021  found factor: 1999278825428789818667079365278666011171847023909742578034210180520905913798775559499
Wed Mar 17 21:42:39 2021  found factor: 1999278825428789818667079365278666011171847023909742578034210180520905913798775559499
Wed Mar 17 21:46:03 2021  p49 factor: 9792736651324038104465656852532086056747357956501
Wed Mar 17 21:46:03 2021  p51 factor: 416294859713813506942716572578719377463304059673169
Wed Mar 17 21:46:03 2021  p85 factor: 1999278825428789818667079365278666011171847023909742578034210180520905913798775559499
Wed Mar 17 21:46:03 2021  elapsed time 01:47:18 (Msieve 1.54 - dependency 3)

Version: 
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.344).
Factorization parameters were as follows:
#
# N = 7x10^198+9 = 70(197)9
#
n: 8150391873150141502214930261030009511488735203489654742878414445786291154941703302503903152877063943022304471550603158999133877222600339100229692618348739301542546165241817960419983831
m: 1000000000000000000000000000000000000000
deg: 5
c5: 7000
c0: 9
skew: 0.26
# Murphy_E = 1.497e-11
type: snfs
lss: 1
rlim: 14400000
alim: 14400000
lpbr: 28
lpba: 28
mfbr: 55
mfba: 55
rlambda: 2.5
alambda: 2.5
Factor base limits: 14400000/14400000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 55/55
Sieved  special-q in [100000, 27200000)
Primes: , , 
Relations: 
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 

Msieve: found 3827373 hash collisions in 27295823 relations (24830367 unique)
Msieve: matrix is 2104318 x 2104543 (734.6 MB)

Sieving start time : 2021/03/17 12:32:41
Sieving end time  : 2021/03/17 19:58:14

Total sieving time: 7hrs 25min 33secs.

Total relation processing time: 1hrs 26min 0sec.
Matrix solve time: 0.00 hours.
Total square root time: 0hrs 10min 11sec.

Prototype def-par.txt line would be:
snfs,198,5,0,0,0,0,0,0,0,0,14400000,14400000,28,28,55,55,2.5,2.5,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------
[    0.116745] smpboot: CPU0: AMD Ryzen 7 2700 Eight-Core Processor (family: 0x17, model: 0x8, stepping: 0x2)
[    0.000000] Memory: 16241916K/16727236K available (14339K kernel code, 2400K rwdata, 4964K rodata, 2732K init, 4968K bss, 485320K reserved, 0K cma-reserved)
[    0.152613] x86/mm: Memory block size: 128MB
[    0.000005] Calibrating delay loop (skipped), value calculated using timer frequency.. 6399.17 BogoMIPS (lpj=12798352)
[    0.150217] smpboot: Total of 16 processors activated (102386.81 BogoMIPS)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaJanuary 3, 2008 09:00:00 UTC 2008 年 1 月 3 日 (木) 18 時 0 分 0 秒 (日本時間)
351e6300Ignacio SantosNovember 6, 2010 04:52:58 UTC 2010 年 11 月 6 日 (土) 13 時 52 分 58 秒 (日本時間)
403e61910110Ignacio SantosNovember 6, 2010 04:52:58 UTC 2010 年 11 月 6 日 (土) 13 時 52 分 58 秒 (日本時間)
1800Youcef LemsaferJanuary 5, 2014 16:01:32 UTC 2014 年 1 月 6 日 (月) 1 時 1 分 32 秒 (日本時間)
4511e6622 / 404332Ignacio SantosNovember 6, 2010 04:52:58 UTC 2010 年 11 月 6 日 (土) 13 時 52 分 58 秒 (日本時間)
590Youcef LemsaferJanuary 5, 2014 21:16:09 UTC 2014 年 1 月 6 日 (月) 6 時 16 分 9 秒 (日本時間)

7×10200+9

c191

name 名前matsui
date 日付October 30, 2011 19:54:06 UTC 2011 年 10 月 31 日 (月) 4 時 54 分 6 秒 (日本時間)
composite number 合成数
48374243567141831019813700337804205061331716273959451602377541025511646511667427930179677680896160885971661487292499019974624307848650717171646578129492227698227059461343975799970309699877319<191>
prime factors 素因数
8952148648493828905980569817199393252132348406550134419764886269092725633117<76>
5403646148713208269984988884486031786938037268833851952980769893580564243632401909511799179017395455509757738811507<115>
factorization results 素因数分解の結果
N=48374243567141831019813700337804205061331716273959451602377541025511646511667427930179677680896160885971661487292499019974624307848650717171646578129492227698227059461343975799970309699877319
  ( 191 digits)
SNFS difficulty: 200 digits.
Divisors found:
 r1=8952148648493828905980569817199393252132348406550134419764886269092725633117 (pp76)
 r2=5403646148713208269984988884486031786938037268833851952980769893580564243632401909511799179017395455509757738811507 (pp115)
Version: Msieve v. 1.50
Total time:
Scaled time: 123.80 units (timescale=1.894).
Factorization parameters were as follows:
n: 48374243567141831019813700337804205061331716273959451602377541025511646511667427930179677680896160885971661487292499019974624307848650717171646578129492227698227059461343975799970309699877319
m: 10000000000000000000000000000000000000000
deg: 5
c5: 7
c0: 9
skew: 1.05
type: snfs
lss: 1
rlim: 15600000
alim: 15600000
lpbr: 29
lpba: 29
mfbr: 56
mfba: 56
rlambda: 2.6
alambda: 2.6
qintsize: 160000
Factor base limits: 15600000/15600000
Large primes per side: 3
Large prime bits: 29/29
Max factor residue bits: 56/56
Sieved rational special-q in [7800000, 15480001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 3331038 x 3331266
Total sieving time:
Total relation processing time:
Matrix solve time:
Time per square root:
Prototype def-par.txt line would be:
snfs,200.000,5,0,0,0,0,0,0,0,0,15600000,15600000,29,29,56,56,2.6,2.6,100000
total time:
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaJanuary 3, 2008 09:00:00 UTC 2008 年 1 月 3 日 (木) 18 時 0 分 0 秒 (日本時間)
351e6300Ignacio SantosNovember 6, 2010 12:44:14 UTC 2010 年 11 月 6 日 (土) 21 時 44 分 14 秒 (日本時間)
403e6110 / 2144Ignacio SantosNovember 6, 2010 12:44:14 UTC 2010 年 11 月 6 日 (土) 21 時 44 分 14 秒 (日本時間)
4511e632 / 4441Ignacio SantosNovember 6, 2010 12:44:14 UTC 2010 年 11 月 6 日 (土) 21 時 44 分 14 秒 (日本時間)

7×10201+9

c149

name 名前Eric Jeancolas
date 日付January 4, 2022 06:53:12 UTC 2022 年 1 月 4 日 (火) 15 時 53 分 12 秒 (日本時間)
composite number 合成数
16391456686989140113452266405397447490627824879741203923709998404543864411007597734633821626184626494400989776988834072843950624687503217025770114489<149>
prime factors 素因数
6434286193237284201012977680809404310797436209020529104237408781<64>
2547517501508912825342232467008094346478680906523822338178570832805714957060680440669<85>
factorization results 素因数分解の結果
16391456686989140113452266405397447490627824879741203923709998404543864411007597734633821626184626494400989776988834072843950624687503217025770114489=6434286193237284201012977680809404310797436209020529104237408781*2547517501508912825342232467008094346478680906523822338178570832805714957060680440669

cado polynomial
n: 16391456686989140113452266405397447490627824879741203923709998404543864411007597734633821626184626494400989776988834072843950624687503217025770114489
skew: 0.66
type: snfs
c0: 9
c5: 70
Y0: 10000000000000000000000000000000000000000
Y1: -1
# f(x) = 70*x^5+9
# g(x) = -x+10000000000000000000000000000000000000000

cado parameters (extracts)
tasks.lim0 = 16200000
tasks.lim1 = 16200000
tasks.lpb0 = 29
tasks.lpb1 = 29
tasks.sieve.mfb0 = 56
tasks.sieve.mfb1 = 56
tasks.sieve.lambda0 = 2.6
tasks.sieve.lambda1 = 2.6
tasks.I = 12
tasks.linalg.m = 64
tasks.linalg.n = 64
tasks.linalg.characters.nchar = 50

cado log (extracts)
Info:Square Root: Factors: 2547517501508912825342232467008094346478680906523822338178570832805714957060680440669 6434286193237284201012977680809404310797436209020529104237408781
Info:Square Root: Total cpu/real time for sqrt: 1822.1/568.098
Info:Filtering - Singleton removal: Total cpu/real time for purge: 641.04/759.07
Info:Lattice Sieving: Aggregate statistics:
Info:Lattice Sieving: Total number of relations: 48381894
Info:Lattice Sieving: Average J: 1894.6 for 4417369 special-q, max bucket fill -bkmult 1.0,1s:1.149600
Info:Lattice Sieving: Total time: 1.19183e+06s
Info:Generate Free Relations: Total cpu/real time for freerel: 234.16/60.6028
Info:Linear Algebra: Total cpu/real time for bwc: 231366/59470.2
Info:Linear Algebra: Aggregate statistics:
Info:Linear Algebra: Krylov: CPU time 150382.14, WCT time 38590.6, iteration CPU time 0.33, COMM 0.02, cpu-wait 0.0, comm-wait 0.0 (109568 iterations)
Info:Linear Algebra: Lingen CPU time 764.95, WCT time 194.23
Info:Linear Algebra: Mksol: CPU time 78837.77,  WCT time 20172.8, iteration CPU time 0.35, COMM 0.02, cpu-wait 0.0, comm-wait 0.0 (54784 iterations)
Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 204.52/238.272
Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics:
Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 237.69999999999996s
Info:Filtering - Merging: Merged matrix has 3502766 rows and total weight 596695987 (170.3 entries per row on average)
Info:Filtering - Merging: Total cpu/real time for merge: 1009.83/278.172
Info:Filtering - Merging: Total cpu/real time for replay: 139.63/120.638
Info:Generate Factor Base: Total cpu/real time for makefb: 6.75/3.08414
Info:Quadratic Characters: Total cpu/real time for characters: 125.85/52.6921
Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 888.15/891.054
Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics:
Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 723.8s
Info:Square Root: Total cpu/real time for sqrt: 1822.1/568.098
Info:HTTP server: Shutting down HTTP server
Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 2.47718e+06/658467
Info:root: Cleaning up computation data in /tmp/cado.k8y874gn
2547517501508912825342232467008094346478680906523822338178570832805714957060680440669 6434286193237284201012977680809404310797436209020529104237408781
software ソフトウェア
cado-nfs-3.0.0
execution environment 実行環境
Linux Ubuntu 20.04.1 LTS [5.4.0-90-generic|libc 2.31 (Ubuntu GLIBC 2.31-0ubuntu9.3)]
GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61418118Makoto KamadaDecember 17, 2012 12:00:00 UTC 2012 年 12 月 17 日 (月) 21 時 0 分 0 秒 (日本時間)
1300Warut RoonguthaiDecember 18, 2012 12:10:10 UTC 2012 年 12 月 18 日 (火) 21 時 10 分 10 秒 (日本時間)
403e62500Warut RoonguthaiDecember 18, 2012 12:10:10 UTC 2012 年 12 月 18 日 (火) 21 時 10 分 10 秒 (日本時間)
4511e63796Youcef LemsaferJanuary 7, 2014 07:35:06 UTC 2014 年 1 月 7 日 (火) 16 時 35 分 6 秒 (日本時間)
5043e620 / 6599Youcef LemsaferJanuary 13, 2014 17:01:49 UTC 2014 年 1 月 14 日 (火) 2 時 1 分 49 秒 (日本時間)

7×10202+9

c181

name 名前Warut Roonguthai
date 日付December 17, 2012 13:49:50 UTC 2012 年 12 月 17 日 (月) 22 時 49 分 50 秒 (日本時間)
composite number 合成数
5401301754568808696475983575483521357842063213303059799880944516975366337731759508986905523289976453519456313032511898167589351618765691925652273517112059820537835641804598659941901<181>
prime factors 素因数
138169397596582173452736423203<30>
9066795815764899736644415283767<31>
4311543191294301177435369236845644263398874665878177734323712681874114913640389757906935322233729111309082688927693556201<121>
factorization results 素因数分解の結果
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2465968468
Step 1 took 10874ms
Step 2 took 6302ms
********** Factor found in step 2: 9066795815764899736644415283767
Found probable prime factor of 31 digits: 9066795815764899736644415283767
Composite cofactor 595723325452779051220336495789993919514578324299566048955927934003834383075748999065405694643047745469196148405968178676734196025579676899912000931803 has 150 digits

Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=828881802
Step 1 took 6505ms
Step 2 took 5257ms
********** Factor found in step 2: 138169397596582173452736423203
Found probable prime factor of 30 digits: 138169397596582173452736423203
Probable prime cofactor 4311543191294301177435369236845644263398874665878177734323712681874114913640389757906935322233729111309082688927693556201 has 121 digits
software ソフトウェア
GMP-ECM 6.3

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaDecember 17, 2012 12:00:00 UTC 2012 年 12 月 17 日 (月) 21 時 0 分 0 秒 (日本時間)

7×10204+9

c174

name 名前Youcef Lemsafer
date 日付July 31, 2013 10:54:42 UTC 2013 年 7 月 31 日 (水) 19 時 54 分 42 秒 (日本時間)
composite number 合成数
652378330232475425599865127566024453458646716215441400937179990896808711087371000644111795999080529634866780726615455089130956134384482161544929866597993763044949228784605401<174>
prime factors 素因数
254503251176113708125450442124258009797222269700582313<54>
2563339867831535622663819528145859021272487991080059737180509619183941751390577241296692459493891872005750328575335072177<121>
factorization results 素因数分解の結果
Tue Jul 09 10:56:42 2013 -> factmsieve.py (v0.76)
Tue Jul 09 10:56:42 2013 -> This is client 1 of 1
Tue Jul 09 10:56:42 2013 -> Running on 2 Cores with 2 hyper-threads per Core
Tue Jul 09 10:56:42 2013 -> Working with NAME = 70009_204
Tue Jul 09 10:56:42 2013 -> Selected lattice siever: gnfs-lasieve4I14e
Tue Jul 09 10:56:42 2013 -> Creating param file to detect parameter changes...
Tue Jul 09 10:56:42 2013 -> Running setup ...
Tue Jul 09 10:56:42 2013 -> Estimated minimum relations needed: 3.49025e+07
Tue Jul 09 10:56:42 2013 -> cleaning up before a restart
Tue Jul 09 10:56:42 2013 -> Running lattice siever ...
Tue Jul 09 14:16:10 2013 Found 307809 relations, 0.9% of the estimated minimum (34902548).
Tue Jul 09 17:31:11 2013 Found 616008 relations, 1.8% of the estimated minimum (34902548).
Tue Jul 09 20:49:19 2013 Found 926390 relations, 2.7% of the estimated minimum (34902548).
Wed Jul 10 00:15:27 2013 Found 1235174 relations, 3.5% of the estimated minimum (34902548).
Wed Jul 10 03:34:44 2013 Found 1543436 relations, 4.4% of the estimated minimum (34902548).
Wed Jul 10 06:53:49 2013 Found 1850100 relations, 5.3% of the estimated minimum (34902548).
Thu Jul 11 03:03:42 2013 Found 3703996 relations, 10.6% of the estimated minimum (34902548).
Fri Jul 12 16:18:26 2013 Found 7092707 relations, 20.3% of the estimated minimum (34902548).
Sun Jul 14 05:27:22 2013 Found 10473311 relations, 30.0% of the estimated minimum (34902548).
Mon Jul 15 23:15:20 2013 Found 14138364 relations, 40.5% of the estimated minimum (34902548).
Wed Jul 17 15:18:04 2013 Found 17480951 relations, 50.1% of the estimated minimum (34902548).
Fri Jul 19 11:12:44 2013 Found 21108825 relations, 60.5% of the estimated minimum (34902548).
Sun Jul 21 04:30:03 2013 Found 24422587 relations, 70.0% of the estimated minimum (34902548).
Tue Jul 23 02:34:16 2013 Found 28003591 relations, 80.2% of the estimated minimum (34902548).
Thu Jul 25 05:00:53 2013 Found 31543016 relations, 90.4% of the estimated minimum (34902548).
Sat Jul 27 07:19:47 2013 Found 35014256 relations, 100.3% of the estimated minimum (34902548).
Sat Jul 27 11:33:04 2013 Found 36030352 relations, 103.2% of the estimated minimum (34902548).
Sat Jul 27 15:39:52 2013 Found 36315836 relations, 104.0% of the estimated minimum (34902548).
Sat Jul 27 19:40:46 2013 Found 36596328 relations, 104.9% of the estimated minimum (34902548).
Sun Jul 28 00:16:03 2013 Found 36883838 relations, 105.7% of the estimated minimum (34902548).
Sun Jul 28 04:56:52 2013 Found 37167442 relations, 106.5% of the estimated minimum (34902548).
Sun Jul 28 10:14:14 2013 Found 37450326 relations, 107.3% of the estimated minimum (34902548).
Sun Jul 28 14:18:09 2013 Found 37732176 relations, 108.1% of the estimated minimum (34902548).
Sun Jul 28 18:21:55 2013 Found 38016610 relations, 108.9% of the estimated minimum (34902548).
Sun Jul 28 22:33:32 2013 Found 38298595 relations, 109.7% of the estimated minimum (34902548).
Mon Jul 29 03:28:27 2013 Found 38583432 relations, 110.5% of the estimated minimum (34902548).
Mon Jul 29 08:40:57 2013 Found 38866471 relations, 111.4% of the estimated minimum (34902548).
Mon Jul 29 13:31:00 2013 Found 39141607 relations, 112.1% of the estimated minimum (34902548).
Mon Jul 29 18:50:33 2013 Found 39419119 relations, 112.9% of the estimated minimum (34902548).
Mon Jul 29 23:50:18 2013 Found 39696775 relations, 113.7% of the estimated minimum (34902548).
Tue Jul 30 04:32:06 2013 Found 39974248 relations, 114.5% of the estimated minimum (34902548).
Tue Jul 30 04:32:07 2013  Msieve v. 1.50 (SVN 708)
Tue Jul 30 04:32:07 2013  random seeds: 41eb7668 b88f0019
Tue Jul 30 04:32:07 2013  factoring 652378330232475425599865127566024453458646716215441400937179990896808711087371000644111795999080529634866780726615455089130956134384482161544929866597993763044949228784605401 (174 digits)
Tue Jul 30 04:32:09 2013  searching for 15-digit factors
Tue Jul 30 04:32:10 2013  commencing number field sieve (174-digit input)
Tue Jul 30 04:32:10 2013  R0: -50000000000000000000000000000000000000000
Tue Jul 30 04:32:10 2013  R1: 1
Tue Jul 30 04:32:10 2013  A0: 45
Tue Jul 30 04:32:10 2013  A1: 0
Tue Jul 30 04:32:10 2013  A2: 0
Tue Jul 30 04:32:10 2013  A3: 0
Tue Jul 30 04:32:10 2013  A4: 0
Tue Jul 30 04:32:10 2013  A5: 112
Tue Jul 30 04:32:10 2013  skew 0.83, size 3.018e-014, alpha 0.265, combined = 9.469e-012 rroots = 1
Tue Jul 30 04:32:10 2013  
Tue Jul 30 04:32:10 2013  commencing relation filtering
Tue Jul 30 04:32:10 2013  estimated available RAM is 4095.6 MB
Tue Jul 30 04:32:10 2013  commencing duplicate removal, pass 1
Tue Jul 30 04:38:03 2013  skipped 1 relations with b > 2^32
Tue Jul 30 04:38:03 2013  found 4830160 hash collisions in 39974246 relations
Tue Jul 30 04:38:51 2013  added 30 free relations
Tue Jul 30 04:38:51 2013  commencing duplicate removal, pass 2
Tue Jul 30 04:44:24 2013  found 4080215 duplicates and 35894061 unique relations
Tue Jul 30 04:44:24 2013  memory use: 197.2 MB
Tue Jul 30 04:44:24 2013  reading ideals above 22347776
Tue Jul 30 04:44:24 2013  commencing singleton removal, initial pass
Tue Jul 30 04:51:47 2013  memory use: 753.0 MB
Tue Jul 30 04:51:47 2013  reading all ideals from disk
Tue Jul 30 04:51:47 2013  memory use: 642.9 MB
Tue Jul 30 04:51:49 2013  commencing in-memory singleton removal
Tue Jul 30 04:51:52 2013  begin with 35894061 relations and 36370393 unique ideals
Tue Jul 30 04:52:15 2013  reduce to 14221540 relations and 11333510 ideals in 19 passes
Tue Jul 30 04:52:15 2013  max relations containing the same ideal: 38
Tue Jul 30 04:52:17 2013  reading ideals above 720000
Tue Jul 30 04:52:17 2013  commencing singleton removal, initial pass
Tue Jul 30 04:57:52 2013  memory use: 376.5 MB
Tue Jul 30 04:57:52 2013  reading all ideals from disk
Tue Jul 30 04:57:52 2013  memory use: 489.6 MB
Tue Jul 30 04:57:54 2013  keeping 14035996 ideals with weight <= 200, target excess is 116118
Tue Jul 30 04:57:56 2013  commencing in-memory singleton removal
Tue Jul 30 04:57:57 2013  begin with 14221570 relations and 14035996 unique ideals
Tue Jul 30 04:58:22 2013  reduce to 14205845 relations and 14020122 ideals in 13 passes
Tue Jul 30 04:58:22 2013  max relations containing the same ideal: 179
Tue Jul 30 04:58:31 2013  removing 477129 relations and 451616 ideals in 25513 cliques
Tue Jul 30 04:58:32 2013  commencing in-memory singleton removal
Tue Jul 30 04:58:33 2013  begin with 13728716 relations and 14020122 unique ideals
Tue Jul 30 04:58:50 2013  reduce to 13714738 relations and 13554473 ideals in 9 passes
Tue Jul 30 04:58:50 2013  max relations containing the same ideal: 172
Tue Jul 30 04:58:59 2013  removing 342342 relations and 316829 ideals in 25513 cliques
Tue Jul 30 04:58:59 2013  commencing in-memory singleton removal
Tue Jul 30 04:59:01 2013  begin with 13372396 relations and 13554473 unique ideals
Tue Jul 30 04:59:13 2013  reduce to 13364576 relations and 13229804 ideals in 7 passes
Tue Jul 30 04:59:13 2013  max relations containing the same ideal: 171
Tue Jul 30 04:59:18 2013  relations with 0 large ideals: 2905
Tue Jul 30 04:59:18 2013  relations with 1 large ideals: 205
Tue Jul 30 04:59:18 2013  relations with 2 large ideals: 5256
Tue Jul 30 04:59:18 2013  relations with 3 large ideals: 58856
Tue Jul 30 04:59:18 2013  relations with 4 large ideals: 360082
Tue Jul 30 04:59:18 2013  relations with 5 large ideals: 1295801
Tue Jul 30 04:59:18 2013  relations with 6 large ideals: 2999848
Tue Jul 30 04:59:18 2013  relations with 7+ large ideals: 8641623
Tue Jul 30 04:59:18 2013  commencing 2-way merge
Tue Jul 30 04:59:32 2013  reduce to 7643315 relation sets and 7508546 unique ideals
Tue Jul 30 04:59:32 2013  ignored 3 oversize relation sets
Tue Jul 30 04:59:32 2013  commencing full merge
Tue Jul 30 05:02:45 2013  memory use: 779.9 MB
Tue Jul 30 05:02:47 2013  found 3965750 cycles, need 3958746
Tue Jul 30 05:02:47 2013  weight of 3958746 cycles is about 277312169 (70.05/cycle)
Tue Jul 30 05:02:47 2013  distribution of cycle lengths:
Tue Jul 30 05:02:47 2013  1 relations: 604056
Tue Jul 30 05:02:47 2013  2 relations: 553046
Tue Jul 30 05:02:47 2013  3 relations: 509428
Tue Jul 30 05:02:47 2013  4 relations: 436312
Tue Jul 30 05:02:47 2013  5 relations: 360428
Tue Jul 30 05:02:47 2013  6 relations: 298895
Tue Jul 30 05:02:47 2013  7 relations: 239755
Tue Jul 30 05:02:47 2013  8 relations: 190459
Tue Jul 30 05:02:47 2013  9 relations: 150688
Tue Jul 30 05:02:47 2013  10+ relations: 615679
Tue Jul 30 05:02:47 2013  heaviest cycle: 28 relations
Tue Jul 30 05:02:48 2013  commencing cycle optimization
Tue Jul 30 05:02:55 2013  start with 21738207 relations
Tue Jul 30 05:03:45 2013  pruned 370252 relations
Tue Jul 30 05:03:45 2013  memory use: 603.0 MB
Tue Jul 30 05:03:45 2013  distribution of cycle lengths:
Tue Jul 30 05:03:45 2013  1 relations: 604056
Tue Jul 30 05:03:45 2013  2 relations: 563300
Tue Jul 30 05:03:45 2013  3 relations: 523869
Tue Jul 30 05:03:45 2013  4 relations: 441467
Tue Jul 30 05:03:45 2013  5 relations: 364831
Tue Jul 30 05:03:45 2013  6 relations: 298204
Tue Jul 30 05:03:45 2013  7 relations: 238005
Tue Jul 30 05:03:45 2013  8 relations: 187170
Tue Jul 30 05:03:45 2013  9 relations: 147642
Tue Jul 30 05:03:45 2013  10+ relations: 590202
Tue Jul 30 05:03:45 2013  heaviest cycle: 28 relations
Tue Jul 30 05:03:50 2013  RelProcTime: 1900
Tue Jul 30 05:03:50 2013  elapsed time 00:31:43
Tue Jul 30 05:03:50 2013 LatSieveTime: 16878.3
Tue Jul 30 05:03:50 2013 -> Running matrix solving step ...
Tue Jul 30 05:03:50 2013  
Tue Jul 30 05:03:50 2013  
Tue Jul 30 05:03:50 2013  Msieve v. 1.50 (SVN 708)
Tue Jul 30 05:03:50 2013  random seeds: ec192e98 99889d10
Tue Jul 30 05:03:50 2013  factoring 652378330232475425599865127566024453458646716215441400937179990896808711087371000644111795999080529634866780726615455089130956134384482161544929866597993763044949228784605401 (174 digits)
Tue Jul 30 05:03:52 2013  searching for 15-digit factors
Tue Jul 30 05:03:53 2013  commencing number field sieve (174-digit input)
Tue Jul 30 05:03:53 2013  R0: -50000000000000000000000000000000000000000
Tue Jul 30 05:03:53 2013  R1: 1
Tue Jul 30 05:03:53 2013  A0: 45
Tue Jul 30 05:03:53 2013  A1: 0
Tue Jul 30 05:03:53 2013  A2: 0
Tue Jul 30 05:03:53 2013  A3: 0
Tue Jul 30 05:03:53 2013  A4: 0
Tue Jul 30 05:03:53 2013  A5: 112
Tue Jul 30 05:03:53 2013  skew 0.83, size 3.018e-014, alpha 0.265, combined = 9.469e-012 rroots = 1
Tue Jul 30 05:03:53 2013  
Tue Jul 30 05:03:53 2013  commencing linear algebra
Tue Jul 30 05:03:55 2013  read 3958746 cycles
Tue Jul 30 05:04:03 2013  cycles contain 13160332 unique relations
Tue Jul 30 05:11:41 2013  read 13160332 relations
Tue Jul 30 05:12:09 2013  using 20 quadratic characters above 536870780
Tue Jul 30 05:13:12 2013  building initial matrix
Tue Jul 30 05:16:07 2013  memory use: 1456.2 MB
Tue Jul 30 05:18:07 2013  read 3958746 cycles
Tue Jul 30 05:18:09 2013  matrix is 3958568 x 3958746 (1134.8 MB) with weight 348367269 (88.00/col)
Tue Jul 30 05:18:09 2013  sparse part has weight 269756755 (68.14/col)
Tue Jul 30 05:19:08 2013  filtering completed in 2 passes
Tue Jul 30 05:19:10 2013  matrix is 3954993 x 3955171 (1134.5 MB) with weight 348259306 (88.05/col)
Tue Jul 30 05:19:10 2013  sparse part has weight 269724116 (68.20/col)
Tue Jul 30 05:19:42 2013  matrix starts at (0, 0)
Tue Jul 30 05:19:44 2013  matrix is 3954993 x 3955171 (1134.5 MB) with weight 348259306 (88.05/col)
Tue Jul 30 05:19:46 2013  sparse part has weight 269724116 (68.20/col)
Tue Jul 30 05:19:46 2013  saving the first 48 matrix rows for later
Tue Jul 30 05:19:49 2013  matrix includes 64 packed rows
Tue Jul 30 05:20:04 2013  matrix is 3954945 x 3955171 (1077.6 MB) with weight 280161479 (70.83/col)
Tue Jul 30 05:20:04 2013  sparse part has weight 258743475 (65.42/col)
Tue Jul 30 05:20:04 2013  using block size 65536 for processor cache size 12288 kB
Tue Jul 30 05:20:29 2013  commencing Lanczos iteration (4 threads)
Tue Jul 30 05:20:29 2013  memory use: 1009.3 MB
Tue Jul 30 05:21:23 2013  linear algebra at 0.0%, ETA 37h28m
Tue Jul 30 05:21:37 2013  checkpointing every 120000 dimensions
Wed Jul 31 12:07:31 2013  lanczos halted after 62543 iterations (dim = 3954943)
Wed Jul 31 12:07:50 2013  recovered 39 nontrivial dependencies
Wed Jul 31 12:07:52 2013  BLanczosTime: 111839
Wed Jul 31 12:07:52 2013  elapsed time 31:04:02
Wed Jul 31 12:07:55 2013 -> Running square root step ...
Wed Jul 31 12:07:56 2013  
Wed Jul 31 12:07:56 2013  
Wed Jul 31 12:07:56 2013  Msieve v. 1.50 (SVN 708)
Wed Jul 31 12:07:56 2013  random seeds: 190eaba0 e9bb5a97
Wed Jul 31 12:07:56 2013  factoring 652378330232475425599865127566024453458646716215441400937179990896808711087371000644111795999080529634866780726615455089130956134384482161544929866597993763044949228784605401 (174 digits)
Wed Jul 31 12:07:57 2013  searching for 15-digit factors
Wed Jul 31 12:07:59 2013  commencing number field sieve (174-digit input)
Wed Jul 31 12:07:59 2013  R0: -50000000000000000000000000000000000000000
Wed Jul 31 12:07:59 2013  R1: 1
Wed Jul 31 12:07:59 2013  A0: 45
Wed Jul 31 12:07:59 2013  A1: 0
Wed Jul 31 12:07:59 2013  A2: 0
Wed Jul 31 12:07:59 2013  A3: 0
Wed Jul 31 12:07:59 2013  A4: 0
Wed Jul 31 12:07:59 2013  A5: 112
Wed Jul 31 12:07:59 2013  skew 0.83, size 3.018e-014, alpha 0.265, combined = 9.469e-012 rroots = 1
Wed Jul 31 12:07:59 2013  
Wed Jul 31 12:07:59 2013  commencing square root phase
Wed Jul 31 12:07:59 2013  reading relations for dependency 1
Wed Jul 31 12:08:06 2013  read 1977279 cycles
Wed Jul 31 12:08:11 2013  cycles contain 6579368 unique relations
Wed Jul 31 12:15:17 2013  read 6579368 relations
Wed Jul 31 12:16:19 2013  multiplying 6579368 relations
Wed Jul 31 12:29:17 2013  multiply complete, coefficients have about 201.29 million bits
Wed Jul 31 12:29:19 2013  initial square root is modulo 16746101
Wed Jul 31 12:44:06 2013  sqrtTime: 2167
Wed Jul 31 12:44:06 2013  prp54 factor: 254503251176113708125450442124258009797222269700582313
Wed Jul 31 12:44:06 2013  prp121 factor: 2563339867831535622663819528145859021272487991080059737180509619183941751390577241296692459493891872005750328575335072177
Wed Jul 31 12:44:06 2013  elapsed time 00:36:10
Wed Jul 31 12:44:07 2013 -> Computing 1.37527e+09 scale for this machine...
Wed Jul 31 12:44:07 2013 -> procrels -speedtest> PIPE
Wed Jul 31 12:44:13 2013 -> Factorization summary written to s206-70009_204.txt





Number: 70009_204
N = 652378330232475425599865127566024453458646716215441400937179990896808711087371000644111795999080529634866780726615455089130956134384482161544929866597993763044949228784605401 (174 digits)
SNFS difficulty: 206 digits.
Divisors found:
r1=254503251176113708125450442124258009797222269700582313 (pp54)
r2=2563339867831535622663819528145859021272487991080059737180509619183941751390577241296692459493891872005750328575335072177 (pp121)
Version: Msieve v. 1.50 (SVN 708)
Total time: 530.30 hours.
Factorization parameters were as follows:
n: 652378330232475425599865127566024453458646716215441400937179990896808711087371000644111795999080529634866780726615455089130956134384482161544929866597993763044949228784605401
m: 50000000000000000000000000000000000000000
deg: 5
c5: 112
c0: 45
skew: 0.83
# Murphy_E = 9.469e-12
type: snfs
lss: 1
rlim: 18700000
alim: 18700000
lpbr: 29
lpba: 29
mfbr: 56
mfba: 56
rlambda: 2.6
alambda: 2.6
Factor base limits: 18700000/18700000
Large primes per side: 3
Large prime bits: 29/29
Sieved rational special-q in [0, 0)
Total raw relations: 39974248
Relations: 6579368 relations
Pruned matrix : 3954945 x 3955171
Polynomial selection time: 0.00 hours.
Total sieving time: 498.10 hours.
Total relation processing time: 0.53 hours.
Matrix solve time: 31.07 hours.
time per square root: 0.60 hours.
Prototype def-par.txt line would be: snfs,206,5,0,0,0,0,0,0,0,0,18700000,18700000,29,29,56,56,2.6,2.6,100000
total time: 530.30 hours.
Intel64 Family 6 Model 44 Stepping 2, GenuineIntel
Windows-7-6.1.7601-SP1
processors: 2, speed: 2.79GHz

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61418118Makoto KamadaDecember 17, 2012 12:00:00 UTC 2012 年 12 月 17 日 (月) 21 時 0 分 0 秒 (日本時間)
1300Warut RoonguthaiDecember 18, 2012 15:35:07 UTC 2012 年 12 月 19 日 (水) 0 時 35 分 7 秒 (日本時間)
403e62500Youcef LemsaferMay 30, 2013 08:57:17 UTC 2013 年 5 月 30 日 (木) 17 時 57 分 17 秒 (日本時間)
4511e64500Youcef LemsaferJune 1, 2013 05:23:51 UTC 2013 年 6 月 1 日 (土) 14 時 23 分 51 秒 (日本時間)
5043e60--
5511e75606 / 153403084Youcef LemsaferJune 17, 2013 08:52:02 UTC 2013 年 6 月 17 日 (月) 17 時 52 分 2 秒 (日本時間)
2522Youcef LemsaferJuly 13, 2013 18:23:11 UTC 2013 年 7 月 14 日 (日) 3 時 23 分 11 秒 (日本時間)
6026e7915 / 39824256Youcef LemsaferJune 21, 2013 12:14:37 UTC 2013 年 6 月 21 日 (金) 21 時 14 分 37 秒 (日本時間)
659Youcef LemsaferJuly 13, 2013 18:23:11 UTC 2013 年 7 月 14 日 (日) 3 時 23 分 11 秒 (日本時間)

7×10206+9

c178

name 名前Warut Roonguthai
date 日付December 17, 2012 15:22:57 UTC 2012 年 12 月 18 日 (火) 0 時 22 分 57 秒 (日本時間)
composite number 合成数
1812556986655469147062656172649822242836844459011112493245964192311212454755933595471939464978956213360292195826414322459644208186112233114710796670372159729588143658149366084659<178>
prime factors 素因数
479720368613773140485004180039150937<36>
composite cofactor 合成数の残り
3778361531517069802580686213089429158003106736993512026021547035320478992179387007393877757435668833528625775758161455765932306424169102131307<142>
factorization results 素因数分解の結果
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=800261510
Step 1 took 10592ms
Step 2 took 6381ms
********** Factor found in step 2: 479720368613773140485004180039150937
Found probable prime factor of 36 digits: 479720368613773140485004180039150937
Composite cofactor 3778361531517069802580686213089429158003106736993512026021547035320478992179387007393877757435668833528625775758161455765932306424169102131307 has 142 digits
software ソフトウェア
GMP-ECM 6.3

c142

name 名前Warut Roonguthai
date 日付December 18, 2012 14:40:03 UTC 2012 年 12 月 18 日 (火) 23 時 40 分 3 秒 (日本時間)
composite number 合成数
3778361531517069802580686213089429158003106736993512026021547035320478992179387007393877757435668833528625775758161455765932306424169102131307<142>
prime factors 素因数
132998646312357931234997537091755389333<39>
28409022469621881079609147112589322036819312393566846943601826277800471758011094100771555411566224878079<104>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=4210819280
Step 1 took 19843ms
Step 2 took 11794ms
********** Factor found in step 2: 132998646312357931234997537091755389333
Found probable prime factor of 39 digits: 132998646312357931234997537091755389333
Probable prime cofactor 28409022469621881079609147112589322036819312393566846943601826277800471758011094100771555411566224878079 has 104 digits
software ソフトウェア
GMP-ECM 6.3

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaDecember 17, 2012 12:00:00 UTC 2012 年 12 月 17 日 (月) 21 時 0 分 0 秒 (日本時間)

7×10207+9

c176

name 名前ebina
date 日付September 3, 2023 23:13:11 UTC 2023 年 9 月 4 日 (月) 8 時 13 分 11 秒 (日本時間)
composite number 合成数
18585171551871640462604262386128994187237682746519701732101039901673345387137103060347270534362652281939563192814699933664642171570338909663022935565860031918182709850485383273<176>
prime factors 素因数
19846514879268003855940513706959713209654648811380854942747410176082204440717<77>
936445097032427421471563210248844054890360036326208561892963039718200512781183046516769555804411469<99>
factorization results 素因数分解の結果
Number: 70009_207
N = 18585171551871640462604262386128994187237682746519701732101039901673345387137103060347270534362652281939563192814699933664642171570338909663022935565860031918182709850485383273 (176 digits)
SNFS difficulty: 208 digits.
Divisors found:
r1=19846514879268003855940513706959713209654648811380854942747410176082204440717 (pp77)
r2=936445097032427421471563210248844054890360036326208561892963039718200512781183046516769555804411469 (pp99)
Version: Msieve v. 1.54 (SVN 1018)
Total time: 140.35 hours.
Factorization parameters were as follows:
n: 18585171551871640462604262386128994187237682746519701732101039901673345387137103060347270534362652281939563192814699933664642171570338909663022935565860031918182709850485383273
m: 100000000000000000000000000000000000000000
deg: 5
c5: 700
c0: 9
skew: 0.42
# Murphy_E = 7.268e-12
type: snfs
lss: 1
rlim: 20000000
alim: 20000000
lpbr: 29
lpba: 29
mfbr: 56
mfba: 56
rlambda: 2.6
alambda: 2.6
Factor base limits: 20000000/20000000
Large primes per side: 3
Large prime bits: 29/29
Sieved rational special-q in [0, 0)
Total raw relations: 40763181
Relations: 6862252 relations
Pruned matrix : 4167246 x 4167469
Total sieving time: 129.88 hours.
Total relation processing time: 0.21 hours.
Matrix solve time: 9.85 hours.
time per square root: 0.41 hours.
Prototype def-par.txt line would be: snfs,208,5,0,0,0,0,0,0,0,0,20000000,20000000,29,29,56,56,2.6,2.6,100000
total time: 140.35 hours.
Intel64 Family 6 Model 60 Stepping 3, GenuineIntel
processors: 8, speed: 3.19GHz
Windows-post2008Server-6.2.9200
Running Python 3.2

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61418118Makoto KamadaDecember 17, 2012 12:00:00 UTC 2012 年 12 月 17 日 (月) 21 時 0 分 0 秒 (日本時間)
1300Warut RoonguthaiDecember 18, 2012 15:35:35 UTC 2012 年 12 月 19 日 (水) 0 時 35 分 35 秒 (日本時間)
403e621001800Youcef LemsaferJanuary 7, 2014 15:28:03 UTC 2014 年 1 月 8 日 (水) 0 時 28 分 3 秒 (日本時間)
300Serge BatalovJanuary 9, 2014 04:59:21 UTC 2014 年 1 月 9 日 (木) 13 時 59 分 21 秒 (日本時間)
4511e64049Youcef LemsaferJanuary 9, 2014 20:06:46 UTC 2014 年 1 月 10 日 (金) 5 時 6 分 46 秒 (日本時間)

7×10208+9

c205

name 名前Robert Backstrom
date 日付February 13, 2014 05:04:45 UTC 2014 年 2 月 13 日 (木) 14 時 4 分 45 秒 (日本時間)
composite number 合成数
9231174996703151786891731504681524462613741263352235263088487406039825926414347883423447184491626005538704998021891072135038902808914677568244758011341157853092443623895555848608730054068310694975603323223<205>
prime factors 素因数
3172144837921186904035874500592333023568227061344555521649133215883773<70>
2910073615286952322318900278402900094322195103652463975869918241957123677181287168267792794142849556258545864656592435480292701278119651<136>
factorization results 素因数分解の結果
Number: n
N=9231174996703151786891731504681524462613741263352235263088487406039825926414347883423447184491626005538704998021891072135038902808914677568244758011341157853092443623895555848608730054068310694975603323223
  ( 205 digits)
SNFS difficulty: 208 digits.
Divisors found:

Thu Feb 13 15:59:41 2014  prp70 factor: 3172144837921186904035874500592333023568227061344555521649133215883773
Thu Feb 13 15:59:41 2014  prp136 factor: 2910073615286952322318900278402900094322195103652463975869918241957123677181287168267792794142849556258545864656592435480292701278119651
Thu Feb 13 15:59:41 2014  elapsed time 18:17:45 (Msieve 1.44 - dependency 1)

Version: GGNFS-0.77.1-20060513-nocona
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=1.732).
Factorization parameters were as follows:
#
#  7*10^208+9 - 70(207)9
#
#  c205, diff: 208.85
#
skew: 0.264
n: 9231174996703151786891731504681524462613741263352235263088487406039825926414347883423447184491626005538704998021891072135038902808914677568244758011341157853092443623895555848608730054068310694975603323223
m: 100000000000000000000000000000000000000000
deg: 5
c5: 7000
c0: 9
# Murphy_E = 5.693e-12
type: snfs
lss: 1
rlim: 21000000
alim: 21000000
lpbr: 29
lpba: 29
mfbr: 57
mfba: 57
rlambda: 2.6
alambda: 2.6
qintsize: 100000
Factor base limits: 21000000/21000000
Large primes per side: 3
Large prime bits: 29/29
Max factor residue bits: 57/57
Sieved  special-q in [100000, 32500000)
Primes: RFBsize:1329943, AFBsize:1328992,
Relations:
Max relations in full relation-set: 28
Initial matrix:
Pruned matrix :

Msieve: found 10017883 hash collisions in 59844416 relations (51586501 unique)
Msieve: matrix is 3214350 x 3214575 (912.5 MB)

Total sieving time: 0.00 hours.
Total relation processing time: 16hrs 50min 36sec.
Matrix solve time: 0.00 hours.
Total square root time: 0hrs 46min 21sec.

Prototype def-par.txt line would be:
snfs,208,5,0,0,0,0,0,0,0,0,21000000,21000000,29,29,57,57,2.6,2.6,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61418118Makoto KamadaDecember 17, 2012 12:00:00 UTC 2012 年 12 月 17 日 (月) 21 時 0 分 0 秒 (日本時間)
1300Warut RoonguthaiDecember 18, 2012 15:36:38 UTC 2012 年 12 月 19 日 (水) 0 時 36 分 38 秒 (日本時間)
403e60--
4511e65046850Serge BatalovNovember 8, 2013 17:13:54 UTC 2013 年 11 月 9 日 (土) 2 時 13 分 54 秒 (日本時間)
400Serge BatalovJanuary 6, 2014 02:27:19 UTC 2014 年 1 月 6 日 (月) 11 時 27 分 19 秒 (日本時間)
3796Youcef LemsaferJanuary 12, 2014 11:10:29 UTC 2014 年 1 月 12 日 (日) 20 時 10 分 29 秒 (日本時間)

7×10210+9

c189

name 名前Warut Roonguthai
date 日付December 17, 2012 21:54:49 UTC 2012 年 12 月 18 日 (火) 6 時 54 分 49 秒 (日本時間)
composite number 合成数
179504202546360104459045995701123313360034700918235532832855081251318161141149906664019082769452282855715976434379592616925153406371777196372402928830530571844047425337495932710579645073561<189>
prime factors 素因数
234488334836968001955296310839018389139<39>
composite cofactor 合成数の残り
765514423867453579361195765961872644450104210556408155241065789314317758732688395301378785612982957290747401048569743524839288528410190190696407739299<150>
factorization results 素因数分解の結果
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2970912462
Step 1 took 10452ms
Step 2 took 6568ms
********** Factor found in step 2: 234488334836968001955296310839018389139
Found probable prime factor of 39 digits: 234488334836968001955296310839018389139
Composite cofactor 765514423867453579361195765961872644450104210556408155241065789314317758732688395301378785612982957290747401048569743524839288528410190190696407739299 has 150 digits
software ソフトウェア
GMP-ECM 6.3

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61418118Makoto KamadaDecember 17, 2012 12:00:00 UTC 2012 年 12 月 17 日 (月) 21 時 0 分 0 秒 (日本時間)
1300Warut RoonguthaiDecember 18, 2012 15:28:55 UTC 2012 年 12 月 19 日 (水) 0 時 28 分 55 秒 (日本時間)
403e62500Warut RoonguthaiDecember 18, 2012 15:28:55 UTC 2012 年 12 月 19 日 (水) 0 時 28 分 55 秒 (日本時間)
4511e63796Youcef LemsaferJanuary 13, 2014 13:42:47 UTC 2014 年 1 月 13 日 (月) 22 時 42 分 47 秒 (日本時間)
5043e6221 / 659920Youcef LemsaferJanuary 13, 2014 15:04:12 UTC 2014 年 1 月 14 日 (火) 0 時 4 分 12 秒 (日本時間)
201AnonymousApril 16, 2014 23:21:19 UTC 2014 年 4 月 17 日 (木) 8 時 21 分 19 秒 (日本時間)

7×10212+9

c146

name 名前Warut Roonguthai
date 日付December 18, 2012 12:03:14 UTC 2012 年 12 月 18 日 (火) 21 時 3 分 14 秒 (日本時間)
composite number 合成数
18395439361054363335413446445217255848298737479737986176729753540487827990769203017000363028476816316295537187453526038186828047012227632323364863<146>
prime factors 素因数
4977421307868413978190512924607468562715457643<46>
3695777034581030875614362890745951898993861563489513363549590257035726892088519929850626146715460541<100>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=879787549
Step 1 took 15710ms
Step 2 took 11076ms
********** Factor found in step 2: 4977421307868413978190512924607468562715457643
Found probable prime factor of 46 digits: 4977421307868413978190512924607468562715457643
Probable prime cofactor 3695777034581030875614362890745951898993861563489513363549590257035726892088519929850626146715460541 has 100 digits
software ソフトウェア
GMP-ECM 6.3

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaDecember 17, 2012 12:00:00 UTC 2012 年 12 月 17 日 (月) 21 時 0 分 0 秒 (日本時間)

7×10221+9

c171

name 名前Erik Branger
date 日付January 11, 2022 10:57:23 UTC 2022 年 1 月 11 日 (火) 19 時 57 分 23 秒 (日本時間)
composite number 合成数
125215662031421783967616808713454401817766393947036069068312750576711658103642925264933348861204229729843789945899305357550953194615081679441012266352942007561485564714121<171>
prime factors 素因数
6266006603278579403994911189791724299890236781841553383963<58>
19983327493766900600338882724638959518830492396385707305343551692570848192958530654480359781560054586626738292267<113>
factorization results 素因数分解の結果
Number: 70009_221
N = 125215662031421783967616808713454401817766393947036069068312750576711658103642925264933348861204229729843789945899305357550953194615081679441012266352942007561485564714121 (171 digits)
SNFS difficulty: 222 digits.
Divisors found:
r1=6266006603278579403994911189791724299890236781841553383963 (pp58)
r2=19983327493766900600338882724638959518830492396385707305343551692570848192958530654480359781560054586626738292267 (pp113)
Version: Msieve v. 1.52 (SVN unknown)
Total time: 39.69 hours.
Factorization parameters were as follows:
n: 125215662031421783967616808713454401817766393947036069068312750576711658103642925264933348861204229729843789945899305357550953194615081679441012266352942007561485564714121
m: 10000000000000000000000000000000000000000000000000000000
deg: 4
c4: 70
c0: 9
skew: 1.00
type: snfs
lss: 1
rlim: 536870912
alim: 44739242
lpbr: 29
lpba: 28
mfbr: 58
mfba: 56
rlambda: 2.8
alambda: 2.8
side: 1
Factor base limits: 536870912/44739242
Large primes per side: 3
Large prime bits: 29/28
Relations: 8682368 relations
Pruned matrix : 7408690 x 7408915
Total pre-computation time approximately 1000 CPU-days.
Pre-computation saved approximately 18 G relations.
Total batch smoothness checking time: 27.82 hours.
Total relation processing time: 0.40 hours.
Matrix solve time: 10.90 hours.
time per square root: 0.58 hours.
Prototype def-par.txt line would be: snfs,222,4,0,0,0,0,0,0,0,0,536870912,44739242,29,28,58,56,2.8,2.8,100000
total time: 39.69 hours.
Intel64 Family 6 Model 60 Stepping 3, GenuineIntel
Windows-10-10.0.19041-SP0
processors: 8, speed: 3.50GHz
software ソフトウェア
GGNFS, NFS_factory, Msieve

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61418118Makoto KamadaDecember 17, 2012 12:00:00 UTC 2012 年 12 月 17 日 (月) 21 時 0 分 0 秒 (日本時間)
1300Warut RoonguthaiDecember 18, 2012 15:37:11 UTC 2012 年 12 月 19 日 (水) 0 時 37 分 11 秒 (日本時間)
403e62100300Serge BatalovJanuary 9, 2014 04:59:22 UTC 2014 年 1 月 9 日 (木) 13 時 59 分 22 秒 (日本時間)
1800Youcef LemsaferJanuary 13, 2014 17:42:51 UTC 2014 年 1 月 14 日 (火) 2 時 42 分 51 秒 (日本時間)
4511e63796Youcef LemsaferJanuary 15, 2014 17:26:58 UTC 2014 年 1 月 16 日 (木) 2 時 26 分 58 秒 (日本時間)
5043e6520 / 661440CypJanuary 12, 2014 06:27:25 UTC 2014 年 1 月 12 日 (日) 15 時 27 分 25 秒 (日本時間)
480Youcef LemsaferJanuary 16, 2014 07:25:37 UTC 2014 年 1 月 16 日 (木) 16 時 25 分 37 秒 (日本時間)

7×10223+9

c221

name 名前Bob Backstrom
date 日付April 30, 2019 10:39:13 UTC 2019 年 4 月 30 日 (火) 19 時 39 分 13 秒 (日本時間)
composite number 合成数
62444246208742194469223907225691347011596788581623550401427297056199821587867975022301516503122212310437109723461195361284567350579839429081177520071364852809991079393398751115075825156110615521855486173059768064228367529<221>
prime factors 素因数
714282992711508254249996799553629976699397664821109329592257519<63>
61111644927281007312979125903065928159333889949792380228189953367077409457<74>
1430533867857244264890371296128967304678422502231069482601590859533054268189392055063<85>
factorization results 素因数分解の結果
Number: n
N=62444246208742194469223907225691347011596788581623550401427297056199821587867975022301516503122212310437109723461195361284567350579839429081177520071364852809991079393398751115075825156110615521855486173059768064228367529
  ( 221 digits)
SNFS difficulty: 223 digits.
Divisors found:

Tue Apr 30 20:24:23 2019  found factor: 714282992711508254249996799553629976699397664821109329592257519
Tue Apr 30 20:32:32 2019  p63 factor: 714282992711508254249996799553629976699397664821109329592257519
Tue Apr 30 20:32:32 2019  p74 factor: 61111644927281007312979125903065928159333889949792380228189953367077409457
Tue Apr 30 20:32:32 2019  p85 factor: 1430533867857244264890371296128967304678422502231069482601590859533054268189392055063
Tue Apr 30 20:32:32 2019  elapsed time 08:21:13 (Msieve 1.54 - dependency 2)

Version:
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.122).
Factorization parameters were as follows:
#
# N = 7x10^223+9 = 70(222)9
#
n: 62444246208742194469223907225691347011596788581623550401427297056199821587867975022301516503122212310437109723461195361284567350579839429081177520071364852809991079393398751115075825156110615521855486173059768064228367529
m: 10000000000000000000000000000000000000
deg: 6
c6: 70
c0: 9
skew: 0.71
# Murphy_E = 2.32e-12
type: snfs
lss: 1
rlim: 38000000
alim: 38000000
lpbr: 29
lpba: 29
mfbr: 58
mfba: 58
rlambda: 2.6
alambda: 2.6
Factor base limits: 38000000/38000000
Large primes per side: 3
Large prime bits: 29/29
Max factor residue bits: 58/58
Sieved  special-q in [100000, 73400000)
Primes: , ,
Relations:
Max relations in full relation-set: 28
Initial matrix:
Pruned matrix :

Msieve: found 12706781 hash collisions in 68721679 relations (58259611 unique)
Msieve: matrix is 4291142 x 4291368 (1517.7 MB)

Sieving start time: 2019/04/29 02:14:53
Sieving end time  : 2019/04/30 12:10:08

Total sieving time: 33hrs 55min 15secs.

Total relation processing time: 7hrs 41min 56sec.
Matrix solve time: 0.00 hours.
Total square root time: 0hrs 16min 17sec.

Prototype def-par.txt line would be:
snfs,223,6,0,0,0,0,0,0,0,0,38000000,38000000,29,29,58,58,2.6,2.6,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------
[    0.044000] smpboot: CPU0: AMD Ryzen 7 1700 Eight-Core Processor (family: 0x17, model: 0x1, stepping: 0x1)
[    0.000000] Memory: 16285084K/16703460K available (12300K kernel code, 2473K rwdata, 4276K rodata, 2408K init, 2416K bss, 418376K reserved, 0K cma-reserved)
[    0.076569] x86/mm: Memory block size: 128MB
[    0.032000] Calibrating delay loop (skipped), value calculated using timer frequency.. 5988.92 BogoMIPS (lpj=11977856)
[    0.074217] smpboot: Total of 16 processors activated (95822.84 BogoMIPS)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61418118Makoto KamadaDecember 17, 2012 12:00:00 UTC 2012 年 12 月 17 日 (月) 21 時 0 分 0 秒 (日本時間)
1300Warut RoonguthaiDecember 18, 2012 15:37:18 UTC 2012 年 12 月 19 日 (水) 0 時 37 分 18 秒 (日本時間)
403e60--
4511e65046850Serge BatalovNovember 8, 2013 17:15:23 UTC 2013 年 11 月 9 日 (土) 2 時 15 分 23 秒 (日本時間)
400Serge BatalovJanuary 6, 2014 02:28:23 UTC 2014 年 1 月 6 日 (月) 11 時 28 分 23 秒 (日本時間)
3796Youcef LemsaferJanuary 19, 2014 09:58:53 UTC 2014 年 1 月 19 日 (日) 18 時 58 分 53 秒 (日本時間)
5043e6640 / 6413Youcef LemsaferJanuary 20, 2014 11:07:29 UTC 2014 年 1 月 20 日 (月) 20 時 7 分 29 秒 (日本時間)

7×10224+9

c211

name 名前Warut Roonguthai
date 日付December 17, 2012 18:46:57 UTC 2012 年 12 月 18 日 (火) 3 時 46 分 57 秒 (日本時間)
composite number 合成数
2521631226290359222885504072312990837055048121812337741567132373418805312480485153316980862113963740792966666465972935200806693509548725926027017822020655674304786631848945809386224038183238625987445503356549503<211>
prime factors 素因数
42403507175137242420664999797287304827<38>
composite cofactor 合成数の残り
59467515643821217886975696945391033387600364037750310311713882090670933794659337686108758809276899491688457429198571575123732672822702686852358198646787513738429675541283789<173>
factorization results 素因数分解の結果
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=354081159
Step 1 took 12137ms
********** Factor found in step 1: 42403507175137242420664999797287304827
Found probable prime factor of 38 digits: 42403507175137242420664999797287304827
Composite cofactor 59467515643821217886975696945391033387600364037750310311713882090670933794659337686108758809276899491688457429198571575123732672822702686852358198646787513738429675541283789 has 173 digits
software ソフトウェア
GMP-ECM 6.3

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61418118Makoto KamadaDecember 17, 2012 12:00:00 UTC 2012 年 12 月 17 日 (月) 21 時 0 分 0 秒 (日本時間)
1300Warut RoonguthaiDecember 18, 2012 15:37:26 UTC 2012 年 12 月 19 日 (水) 0 時 37 分 26 秒 (日本時間)
403e62100300Serge BatalovJanuary 9, 2014 04:59:22 UTC 2014 年 1 月 9 日 (木) 13 時 59 分 22 秒 (日本時間)
1800Youcef LemsaferJanuary 20, 2014 17:54:19 UTC 2014 年 1 月 21 日 (火) 2 時 54 分 19 秒 (日本時間)
4511e63796Youcef LemsaferJanuary 22, 2014 15:33:47 UTC 2014 年 1 月 23 日 (木) 0 時 33 分 47 秒 (日本時間)
5043e6640 / 6614Youcef LemsaferJanuary 23, 2014 11:25:29 UTC 2014 年 1 月 23 日 (木) 20 時 25 分 29 秒 (日本時間)

7×10226+9

c219

composite cofactor 合成数の残り
110326167920339425453438146618222488361861975555557387320184836111730544385735915249568674724229065286145030370453537621419483805830969029107326088925227106377261815878603250477157130057213432747444695040528105013641413<219>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61418118Makoto KamadaDecember 17, 2012 12:00:00 UTC 2012 年 12 月 17 日 (月) 21 時 0 分 0 秒 (日本時間)
1300Warut RoonguthaiDecember 18, 2012 15:37:40 UTC 2012 年 12 月 19 日 (水) 0 時 37 分 40 秒 (日本時間)
403e62100300Serge BatalovJanuary 9, 2014 04:59:23 UTC 2014 年 1 月 9 日 (木) 13 時 59 分 23 秒 (日本時間)
1800Youcef LemsaferJanuary 24, 2014 09:46:30 UTC 2014 年 1 月 24 日 (金) 18 時 46 分 30 秒 (日本時間)
4511e63796Youcef LemsaferJanuary 27, 2014 10:13:37 UTC 2014 年 1 月 27 日 (月) 19 時 13 分 37 秒 (日本時間)
5043e6640 / 6614Youcef LemsaferJanuary 28, 2014 10:29:43 UTC 2014 年 1 月 28 日 (火) 19 時 29 分 43 秒 (日本時間)

7×10228+9

c228

name 名前matsui
date 日付February 24, 2013 16:51:46 UTC 2013 年 2 月 25 日 (月) 1 時 51 分 46 秒 (日本時間)
composite number 合成数
304347826086956521739130434782608695652173913043478260869565217391304347826086956521739130434782608695652173913043478260869565217391304347826086956521739130434782608695652173913043478260869565217391304347826086956521739130434783<228>
prime factors 素因数
36055263983621189858032243115514731044831546039<47>
62706443359659759464314475064721791689594478503219<50>
2697875229135304613488854551280691099396022928929894714976463<61>
49896202654896904474939701875302608977837238325646448204204673437401101<71>
factorization results 素因数分解の結果
N=304347826086956521739130434782608695652173913043478260869565217391304347826086956521739130434782608695652173913043478260869565217391304347826086956521739130434782608695652173913043478260869565217391304347826086956521739130434783
  ( 228 digits)
SNFS difficulty: 228 digits.
Divisors found:
 r1=36055263983621189858032243115514731044831546039 (pp47)
 r2=62706443359659759464314475064721791689594478503219 (pp50)
 r3=2697875229135304613488854551280691099396022928929894714976463 (pp61)
 r4=49896202654896904474939701875302608977837238325646448204204673437401101 (pp71)
Version: Msieve v. 1.51 (SVN Unversioned directory)
Total time:
Scaled time: 437.07 units (timescale=1.763).
Factorization parameters were as follows:
n: 304347826086956521739130434782608695652173913043478260869565217391304347826086956521739130434782608695652173913043478260869565217391304347826086956521739130434782608695652173913043478260869565217391304347826086956521739130434783
m: 100000000000000000000000000000000000000
deg: 6
c6: 7
c0: 9
skew: 1.04
# Murphy_E = 1.339e-12
type: snfs
lss: 1
rlim: 46000000
alim: 46000000
lpbr: 30
lpba: 30
mfbr: 59
mfba: 59
rlambda: 2.7
alambda: 2.7
qintsize: 480000
Factor base limits: 46000000/46000000
Large primes per side: 3
Large prime bits: 30/30
Max factor residue bits: 59/59
Sieved rational special-q in [23000000, 51320001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 6449350 x 6449576
Total sieving time:
Total relation processing time:
Matrix solve time:
Time per square root:
Prototype def-par.txt line would be:
snfs,228.000,6,0,0,0,0,0,0,0,0,46000000,46000000,30,30,59,59,2.7,2.7,100000
total time:

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61418118Makoto KamadaDecember 17, 2012 12:00:00 UTC 2012 年 12 月 17 日 (月) 21 時 0 分 0 秒 (日本時間)
1300Warut RoonguthaiDecember 18, 2012 15:37:46 UTC 2012 年 12 月 19 日 (水) 0 時 37 分 46 秒 (日本時間)
403e60--
4511e61000 / 4415Dmitry DomanovDecember 28, 2012 15:34:34 UTC 2012 年 12 月 29 日 (土) 0 時 34 分 34 秒 (日本時間)

7×10231+9

c203

name 名前Youcef Lemsafer
date 日付January 28, 2014 10:32:14 UTC 2014 年 1 月 28 日 (火) 19 時 32 分 14 秒 (日本時間)
composite number 合成数
34307309080109315968796473207143572120843194720124176765033764397447751224733233520740852290410597694939904711474999169443992724973665177158662810120010566576733825851180353119480777059746389363819213229<203>
prime factors 素因数
152290506857301918343142836856302329695780639<45>
composite cofactor 合成数の残り
225275427786550657148742094695466401973621799561972682217697301043965475216721543764137053051792239081735392108941318613425718558140513710032718311036781285811<159>
factorization results 素因数分解の結果
GMP-ECM 6.4.4 [configured with MPIR 2.6.0] [ECM]
Input number is (7*10^231+9)/(6011*1053583*32217801571821666617) (203 digits)
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2334626980
Step 1 took 18375ms
Step 2 took 9453ms
********** Factor found in step 2: 152290506857301918343142836856302329695780639
Found probable prime factor of 45 digits: 152290506857301918343142836856302329695780639
Composite cofactor ((7*10^231+9)/(6011*1053583*32217801571821666617))/152290506857301918343142836856302329695780639 has 159 digits

c159

name 名前Youcef Lemsafer
date 日付January 28, 2014 14:56:00 UTC 2014 年 1 月 28 日 (火) 23 時 56 分 0 秒 (日本時間)
composite number 合成数
225275427786550657148742094695466401973621799561972682217697301043965475216721543764137053051792239081735392108941318613425718558140513710032718311036781285811<159>
prime factors 素因数
139269694121856855079103552367473358691601<42>
composite cofactor 合成数の残り
1617548090465692657480697142748206023596081855772046946721301294317147367889638106907644083690488187779066993784558211<118>
factorization results 素因数分解の結果
GMP-ECM 6.4.4 [configured with MPIR 2.6.0] [ECM]
Input number is (7*10^231+9)/(6011*1053583*32217801571821666617*152290506857301918343142836856302329695780639) (159 digits)
Using B1=31000000, B2=144289975846, polynomial Dickson(12), sigma=4016893388
Step 1 took 131836ms
Step 2 took 49921ms
********** Factor found in step 2: 139269694121856855079103552367473358691601
Found probable prime factor of 42 digits: 139269694121856855079103552367473358691601
Composite cofactor ((7*10^231+9)/(6011*1053583*32217801571821666617*152290506857301918343142836856302329695780639))/139269694121856855079103552367473358691601 has 118 digits

c118

name 名前Youcef Lemsafer
date 日付January 29, 2014 15:27:11 UTC 2014 年 1 月 30 日 (木) 0 時 27 分 11 秒 (日本時間)
composite number 合成数
1617548090465692657480697142748206023596081855772046946721301294317147367889638106907644083690488187779066993784558211<118>
prime factors 素因数
4208458143495672063597255874974469203081736811189359300327<58>
384356463890623016674515103897702873084553398599375771711493<60>
factorization results 素因数分解の結果
<Polynomial selection using msieve 1.51 win64>

Tue Jan 28 18:03:10 2014  Msieve v. 1.51 (SVN Official Release)
Tue Jan 28 18:03:10 2014  random seeds: b2428828 4e74ce58
Tue Jan 28 18:03:10 2014  factoring 1617548090465692657480697142748206023596081855772046946721301294317147367889638106907644083690488187779066993784558211 (118 digits)
Tue Jan 28 18:03:11 2014  searching for 15-digit factors
Tue Jan 28 18:03:11 2014  commencing number field sieve (118-digit input)
Tue Jan 28 18:03:11 2014  commencing number field sieve polynomial selection
Tue Jan 28 18:03:11 2014  polynomial degree: 5
Tue Jan 28 18:03:11 2014  max stage 1 norm: 3.93e+017
Tue Jan 28 18:03:11 2014  max stage 2 norm: 1.29e+016
Tue Jan 28 18:03:11 2014  min E-value: 3.07e-010
Tue Jan 28 18:03:11 2014  poly select deadline: 10800
Tue Jan 28 18:03:11 2014  time limit set to 3.00 CPU-hours
Tue Jan 28 18:03:11 2014  expecting poly E from 4.03e-010 to > 4.63e-010
Tue Jan 28 18:03:11 2014  searching leading coefficients from 30000 to 100000
Tue Jan 28 19:29:59 2014  polynomial selection complete
Tue Jan 28 19:29:59 2014  R0: -33603427929575649588503
Tue Jan 28 19:29:59 2014  R1: 256523584481
Tue Jan 28 19:29:59 2014  A0: -436824244338592452715678200
Tue Jan 28 19:29:59 2014  A1: 20099466361055785705495
Tue Jan 28 19:29:59 2014  A2: 20328668320162877583
Tue Jan 28 19:29:59 2014  A3: 261862339011723
Tue Jan 28 19:29:59 2014  A4: -7697748938
Tue Jan 28 19:29:59 2014  A5: 37752
Tue Jan 28 19:29:59 2014  skew 41775.71, size 3.475e-011, alpha -6.764, combined = 4.430e-010 rroots = 3
Tue Jan 28 19:29:59 2014  elapsed time 01:26:49

<Sieving + postprocessing using GGNFS (SVN 440) + msieve 1.51>

Tue Jan 28 19:33:08 2014 -> factmsieve.py (v0.76)
Tue Jan 28 19:33:08 2014 -> This is client 1 of 1
Tue Jan 28 19:33:08 2014 -> Running on 4 Cores with 2 hyper-threads per Core
Tue Jan 28 19:33:08 2014 -> Working with NAME = 70009_231
Tue Jan 28 19:34:47 2014 -> factmsieve.py (v0.76)
Tue Jan 28 19:34:47 2014 -> This is client 1 of 1
Tue Jan 28 19:34:47 2014 -> Running on 4 Cores with 2 hyper-threads per Core
Tue Jan 28 19:34:47 2014 -> Working with NAME = 70009_231
Tue Jan 28 19:34:47 2014 -> Selected lattice siever: gnfs-lasieve4I13e
Tue Jan 28 19:34:47 2014 -> Creating param file to detect parameter changes...
Tue Jan 28 19:34:47 2014 -> Running setup ...
Tue Jan 28 19:34:47 2014 -> Estimated minimum relations needed: 8.55e+06
Tue Jan 28 19:34:47 2014 -> cleaning up before a restart
Tue Jan 28 19:34:47 2014 -> Running lattice siever ...
Tue Jan 28 19:34:47 2014 -> entering sieving loop
<...snipped...>
Tue Jan 28 19:34:47 2014 -> Lattice sieving algebraic q from 1900000 to 2000000.
<...snipped...>
Tue Jan 28 20:00:08 2014 Found 804824 relations, 9.4% of the estimated minimum (8550000).
<...snipped...>
Wed Jan 29 00:17:10 2014 -> Lattice sieving algebraic q from 3000000 to 3100000.
<...snipped...>
Wed Jan 29 00:43:17 2014 Found 9970073 relations, 116.6% of the estimated minimum (8550000).
Wed Jan 29 00:43:17 2014  
Wed Jan 29 00:43:17 2014  
Wed Jan 29 00:43:17 2014  Msieve v. 1.51 (SVN Official Release)
Wed Jan 29 00:43:17 2014  random seeds: d7763980 8e8c39d7
Wed Jan 29 00:43:17 2014  factoring 1617548090465692657480697142748206023596081855772046946721301294317147367889638106907644083690488187779066993784558211 (118 digits)
Wed Jan 29 00:43:18 2014  searching for 15-digit factors
Wed Jan 29 00:43:18 2014  commencing number field sieve (118-digit input)
Wed Jan 29 00:43:18 2014  R0: -33603427929575649588503
Wed Jan 29 00:43:18 2014  R1: 256523584481
Wed Jan 29 00:43:18 2014  A0: -436824244338592452715678200
Wed Jan 29 00:43:18 2014  A1: 20099466361055785705495
Wed Jan 29 00:43:18 2014  A2: 20328668320162877583
Wed Jan 29 00:43:18 2014  A3: 261862339011723
Wed Jan 29 00:43:18 2014  A4: -7697748938
Wed Jan 29 00:43:18 2014  A5: 37752
Wed Jan 29 00:43:18 2014  skew 41775.71, size 3.475e-011, alpha -6.764, combined = 4.430e-010 rroots = 3
Wed Jan 29 00:43:18 2014  
Wed Jan 29 00:43:18 2014  commencing relation filtering
Wed Jan 29 00:43:18 2014  estimated available RAM is 8189.6 MB
Wed Jan 29 00:43:18 2014  commencing duplicate removal, pass 1
Wed Jan 29 00:44:06 2014  found 831407 hash collisions in 9970072 relations
Wed Jan 29 00:44:25 2014  added 333 free relations
Wed Jan 29 00:44:25 2014  commencing duplicate removal, pass 2
Wed Jan 29 00:44:29 2014  found 563571 duplicates and 9406834 unique relations
Wed Jan 29 00:44:29 2014  memory use: 32.6 MB
Wed Jan 29 00:44:29 2014  reading ideals above 100000
Wed Jan 29 00:44:29 2014  commencing singleton removal, initial pass
Wed Jan 29 00:45:34 2014  memory use: 344.5 MB
Wed Jan 29 00:45:34 2014  reading all ideals from disk
Wed Jan 29 00:45:34 2014  memory use: 325.4 MB
Wed Jan 29 00:45:35 2014  keeping 10325410 ideals with weight <= 200, target excess is 49120
Wed Jan 29 00:45:35 2014  commencing in-memory singleton removal
Wed Jan 29 00:45:36 2014  begin with 9406834 relations and 10325410 unique ideals
Wed Jan 29 00:45:40 2014  reduce to 3320998 relations and 3109704 ideals in 17 passes
Wed Jan 29 00:45:40 2014  max relations containing the same ideal: 102
Wed Jan 29 00:45:42 2014  removing 617434 relations and 540277 ideals in 77157 cliques
Wed Jan 29 00:45:42 2014  commencing in-memory singleton removal
Wed Jan 29 00:45:42 2014  begin with 2703564 relations and 3109704 unique ideals
Wed Jan 29 00:45:44 2014  reduce to 2605633 relations and 2468424 ideals in 11 passes
Wed Jan 29 00:45:44 2014  max relations containing the same ideal: 83
Wed Jan 29 00:45:45 2014  removing 464962 relations and 387805 ideals in 77157 cliques
Wed Jan 29 00:45:45 2014  commencing in-memory singleton removal
Wed Jan 29 00:45:45 2014  begin with 2140671 relations and 2468424 unique ideals
Wed Jan 29 00:45:46 2014  reduce to 2068917 relations and 2006620 ideals in 9 passes
Wed Jan 29 00:45:46 2014  max relations containing the same ideal: 73
Wed Jan 29 00:45:47 2014  relations with 0 large ideals: 132
Wed Jan 29 00:45:47 2014  relations with 1 large ideals: 555
Wed Jan 29 00:45:47 2014  relations with 2 large ideals: 8689
Wed Jan 29 00:45:47 2014  relations with 3 large ideals: 64298
Wed Jan 29 00:45:47 2014  relations with 4 large ideals: 243781
Wed Jan 29 00:45:47 2014  relations with 5 large ideals: 515564
Wed Jan 29 00:45:47 2014  relations with 6 large ideals: 617860
Wed Jan 29 00:45:47 2014  relations with 7+ large ideals: 618038
Wed Jan 29 00:45:47 2014  commencing 2-way merge
Wed Jan 29 00:45:48 2014  reduce to 1150063 relation sets and 1087768 unique ideals
Wed Jan 29 00:45:48 2014  ignored 2 oversize relation sets
Wed Jan 29 00:45:48 2014  commencing full merge
Wed Jan 29 00:46:01 2014  memory use: 122.4 MB
Wed Jan 29 00:46:01 2014  found 569486 cycles, need 557968
Wed Jan 29 00:46:01 2014  weight of 557968 cycles is about 39097311 (70.07/cycle)
Wed Jan 29 00:46:01 2014  distribution of cycle lengths:
Wed Jan 29 00:46:01 2014  1 relations: 64281
Wed Jan 29 00:46:01 2014  2 relations: 62696
Wed Jan 29 00:46:01 2014  3 relations: 62909
Wed Jan 29 00:46:01 2014  4 relations: 56401
Wed Jan 29 00:46:01 2014  5 relations: 52062
Wed Jan 29 00:46:01 2014  6 relations: 44348
Wed Jan 29 00:46:01 2014  7 relations: 39319
Wed Jan 29 00:46:01 2014  8 relations: 34349
Wed Jan 29 00:46:01 2014  9 relations: 29398
Wed Jan 29 00:46:01 2014  10+ relations: 112205
Wed Jan 29 00:46:01 2014  heaviest cycle: 21 relations
Wed Jan 29 00:46:02 2014  commencing cycle optimization
Wed Jan 29 00:46:02 2014  start with 3365856 relations
Wed Jan 29 00:46:07 2014  pruned 64961 relations
Wed Jan 29 00:46:07 2014  memory use: 115.6 MB
Wed Jan 29 00:46:07 2014  distribution of cycle lengths:
Wed Jan 29 00:46:07 2014  1 relations: 64281
Wed Jan 29 00:46:07 2014  2 relations: 64003
Wed Jan 29 00:46:07 2014  3 relations: 64701
Wed Jan 29 00:46:07 2014  4 relations: 57441
Wed Jan 29 00:46:07 2014  5 relations: 52982
Wed Jan 29 00:46:07 2014  6 relations: 44715
Wed Jan 29 00:46:07 2014  7 relations: 39846
Wed Jan 29 00:46:07 2014  8 relations: 34215
Wed Jan 29 00:46:07 2014  9 relations: 29328
Wed Jan 29 00:46:07 2014  10+ relations: 106456
Wed Jan 29 00:46:07 2014  heaviest cycle: 21 relations
Wed Jan 29 00:46:07 2014  RelProcTime: 169
Wed Jan 29 00:46:07 2014  elapsed time 00:02:50
Wed Jan 29 00:46:07 2014 LatSieveTime: 1736.96
Wed Jan 29 00:46:07 2014 -> Running matrix solving step ...
<...snipped...>
Wed Jan 29 00:46:08 2014  commencing linear algebra
Wed Jan 29 00:46:08 2014  read 557968 cycles
Wed Jan 29 00:46:09 2014  cycles contain 1964371 unique relations
Wed Jan 29 00:46:19 2014  read 1964371 relations
Wed Jan 29 00:46:21 2014  using 20 quadratic characters above 134217594
Wed Jan 29 00:46:30 2014  building initial matrix
Wed Jan 29 00:46:48 2014  memory use: 244.4 MB
Wed Jan 29 00:46:49 2014  read 557968 cycles
Wed Jan 29 00:46:49 2014  matrix is 557788 x 557968 (167.3 MB) with weight 53060765 (95.10/col)
Wed Jan 29 00:46:49 2014  sparse part has weight 37709189 (67.58/col)
Wed Jan 29 00:46:53 2014  filtering completed in 2 passes
Wed Jan 29 00:46:53 2014  matrix is 555801 x 555981 (167.1 MB) with weight 52970186 (95.27/col)
Wed Jan 29 00:46:53 2014  sparse part has weight 37676036 (67.76/col)
Wed Jan 29 00:46:54 2014  matrix starts at (0, 0)
Wed Jan 29 00:46:54 2014  matrix is 555801 x 555981 (167.1 MB) with weight 52970186 (95.27/col)
Wed Jan 29 00:46:54 2014  sparse part has weight 37676036 (67.76/col)
Wed Jan 29 00:46:54 2014  saving the first 48 matrix rows for later
Wed Jan 29 00:46:55 2014  matrix includes 64 packed rows
Wed Jan 29 00:46:55 2014  matrix is 555753 x 555981 (161.5 MB) with weight 42323308 (76.12/col)
Wed Jan 29 00:46:55 2014  sparse part has weight 36786977 (66.17/col)
Wed Jan 29 00:46:55 2014  using block size 65536 for processor cache size 8192 kB
Wed Jan 29 00:46:57 2014  commencing Lanczos iteration (8 threads)
Wed Jan 29 00:46:57 2014  memory use: 153.7 MB
Wed Jan 29 00:47:03 2014  linear algebra at 0.5%, ETA 0h18m
Wed Jan 29 01:03:44 2014  lanczos halted after 8791 iterations (dim = 555750)
Wed Jan 29 01:03:45 2014  recovered 29 nontrivial dependencies
Wed Jan 29 01:03:45 2014  BLanczosTime: 1057
Wed Jan 29 01:03:45 2014  elapsed time 00:17:38
Wed Jan 29 01:03:45 2014 -> Running square root step ...
<...snipped...>
Wed Jan 29 01:03:46 2014  commencing square root phase
Wed Jan 29 01:03:46 2014  reading relations for dependency 1
Wed Jan 29 01:03:46 2014  read 278047 cycles
Wed Jan 29 01:03:46 2014  cycles contain 981984 unique relations
Wed Jan 29 01:03:53 2014  read 981984 relations
Wed Jan 29 01:03:57 2014  multiplying 981984 relations
Wed Jan 29 01:04:43 2014  multiply complete, coefficients have about 44.12 million bits
Wed Jan 29 01:04:44 2014  initial square root is modulo 2158459
Wed Jan 29 01:05:46 2014  sqrtTime: 120
Wed Jan 29 01:05:46 2014  prp58 factor: 4208458143495672063597255874974469203081736811189359300327
Wed Jan 29 01:05:46 2014  prp60 factor: 384356463890623016674515103897702873084553398599375771711493
Wed Jan 29 01:05:46 2014  elapsed time 00:02:01
Wed Jan 29 01:05:46 2014 -> Computing 1.39095e+09 scale for this machine...
Wed Jan 29 01:05:46 2014 -> procrels -speedtest> PIPE
Wed Jan 29 01:05:49 2014 -> Factorization summary written to g118-70009_231.txt



Number: 70009_231
N = 1617548090465692657480697142748206023596081855772046946721301294317147367889638106907644083690488187779066993784558211 (118 digits)
Divisors found:
r1=4208458143495672063597255874974469203081736811189359300327 (pp58)
r2=384356463890623016674515103897702873084553398599375771711493 (pp60)
Version: Msieve v. 1.51 (SVN Official Release)
Total time: 5.56 hours.
Factorization parameters were as follows:
#
# 70009_231, C118
# norm 4.201928e-011 alpha -6.764266 e 4.430e-010 rroots 3
n: 1617548090465692657480697142748206023596081855772046946721301294317147367889638106907644083690488187779066993784558211
skew: 41775.71
c0: -436824244338592452715678200
c1: 20099466361055785705495
c2: 20328668320162877583
c3: 261862339011723
c4: -7697748938
c5: 37752
Y0: -33603427929575649588503
Y1: 256523584481
type: gnfs
Factor base limits: 3800000/3800000
Large primes per side: 3
Large prime bits: 27/27
Sieved algebraic special-q in [1900000, 3100001)
Total raw relations: 9970073
Relations: 981984 relations
Pruned matrix : 555753 x 555981
Polynomial selection time: 0.00 hours.
Total sieving time: 5.19 hours.
Total relation processing time: 0.05 hours.
Matrix solve time: 0.29 hours.
time per square root: 0.03 hours.
Prototype def-par.txt line would be: gnfs,117,5,63,2000,2.6e-05,0.28,250,20,50000,3600,3800000,3800000,27,27,53,53,2.5,2.5,100000
total time: 5.56 hours.
Intel64 Family 6 Model 26 Stepping 5, GenuineIntel
Windows-7-6.1.7601-SP1
processors: 4, speed: 2.80GHz
execution environment 実行環境
Windows 7 Pro 64-bit, Intel Xeon W3530 @ 2.8 GHz, 8GB RAM

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61418118Makoto KamadaDecember 17, 2012 12:00:00 UTC 2012 年 12 月 17 日 (月) 21 時 0 分 0 秒 (日本時間)
1300Warut RoonguthaiDecember 18, 2012 15:37:54 UTC 2012 年 12 月 19 日 (水) 0 時 37 分 54 秒 (日本時間)
403e62144300Serge BatalovJanuary 9, 2014 04:59:24 UTC 2014 年 1 月 9 日 (木) 13 時 59 分 24 秒 (日本時間)
1444Youcef LemsaferJanuary 28, 2014 10:30:39 UTC 2014 年 1 月 28 日 (火) 19 時 30 分 39 秒 (日本時間)
400Youcef LemsaferJanuary 28, 2014 14:54:13 UTC 2014 年 1 月 28 日 (火) 23 時 54 分 13 秒 (日本時間)
4511e6619 / 3941Youcef LemsaferJanuary 28, 2014 14:55:02 UTC 2014 年 1 月 28 日 (火) 23 時 55 分 2 秒 (日本時間)

7×10232+9

c228

composite cofactor 合成数の残り
110411661995201824631579943563867625881124495458137418354519228190936464397759589647171647547047197830884034631406439523589451585274869832537054942420318269502248454631059431443033102993575618581336328118222498426633816568373999<228>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61418118Makoto KamadaDecember 17, 2012 12:00:00 UTC 2012 年 12 月 17 日 (月) 21 時 0 分 0 秒 (日本時間)
1300Warut RoonguthaiDecember 18, 2012 15:39:02 UTC 2012 年 12 月 19 日 (水) 0 時 39 分 2 秒 (日本時間)
403e62100300Serge BatalovJanuary 9, 2014 04:59:25 UTC 2014 年 1 月 9 日 (木) 13 時 59 分 25 秒 (日本時間)
1800Youcef LemsaferJanuary 28, 2014 15:56:49 UTC 2014 年 1 月 29 日 (水) 0 時 56 分 49 秒 (日本時間)
4511e63796Youcef LemsaferFebruary 1, 2014 06:35:34 UTC 2014 年 2 月 1 日 (土) 15 時 35 分 34 秒 (日本時間)
5043e6640 / 6614Youcef LemsaferFebruary 2, 2014 15:42:14 UTC 2014 年 2 月 3 日 (月) 0 時 42 分 14 秒 (日本時間)

7×10233+9

c223

name 名前Warut Roonguthai
date 日付December 17, 2012 22:17:51 UTC 2012 年 12 月 18 日 (火) 7 時 17 分 51 秒 (日本時間)
composite number 合成数
2398488786738578473203158062646735719453805305609055555344170076311432583105291226722102495667537655624158353197642335146683692471533169491129101216554163249688412781710676441480692061115805291720428062281702275684822158179<223>
prime factors 素因数
6381326268834967875571788474956533<34>
375860547744171069571451470511022770490162344239084610116302676550031636215371301390030313958267240151658681486750900746834806431882118561178656033449089882108591692172322831151319482230263<189>
factorization results 素因数分解の結果
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3604464390
Step 1 took 14149ms
Step 2 took 8066ms
********** Factor found in step 2: 6381326268834967875571788474956533
Found probable prime factor of 34 digits: 6381326268834967875571788474956533
Probable prime cofactor 375860547744171069571451470511022770490162344239084610116302676550031636215371301390030313958267240151658681486750900746834806431882118561178656033449089882108591692172322831151319482230263 has 189 digits
software ソフトウェア
GMP-ECM 6.3

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaDecember 17, 2012 12:00:00 UTC 2012 年 12 月 17 日 (月) 21 時 0 分 0 秒 (日本時間)

7×10234+9

c230

name 名前Dmitry Domanov
date 日付December 29, 2012 09:10:11 UTC 2012 年 12 月 29 日 (土) 18 時 10 分 11 秒 (日本時間)
composite number 合成数
39714734733939644950271478579574144572981498607147517545402452101193144102078215333291727420754920371956858451011874705685447953840131172095292669227321468083537107746075333178256750086521386384654226498805721191215100676852550537<230>
prime factors 素因数
28030523456799818765513387699786558131<38>
composite cofactor 合成数の残り
1416838854085166844165897177499624592105295966254851797910569259785597350128021784596710469867436071367017990303653125589072932486340360935505386699198615151694261306014535484086257035066851027<193>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=2005355187
Step 1 took 155594ms
Step 2 took 48106ms
********** Factor found in step 2: 28030523456799818765513387699786558131
Found probable prime factor of 38 digits: 28030523456799818765513387699786558131

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61418118Makoto KamadaDecember 17, 2012 12:00:00 UTC 2012 年 12 月 17 日 (月) 21 時 0 分 0 秒 (日本時間)
1300Warut RoonguthaiDecember 18, 2012 15:38:54 UTC 2012 年 12 月 19 日 (水) 0 時 38 分 54 秒 (日本時間)
403e60--
4511e643741000Dmitry DomanovDecember 28, 2012 15:33:54 UTC 2012 年 12 月 29 日 (土) 0 時 33 分 54 秒 (日本時間)
3374Youcef LemsaferFebruary 4, 2014 06:58:40 UTC 2014 年 2 月 4 日 (火) 15 時 58 分 40 秒 (日本時間)
5043e6256 / 6563Youcef LemsaferFebruary 4, 2014 09:44:05 UTC 2014 年 2 月 4 日 (火) 18 時 44 分 5 秒 (日本時間)

7×10235+9

c183

name 名前Youcef Lemsafer
date 日付February 5, 2014 06:31:00 UTC 2014 年 2 月 5 日 (水) 15 時 31 分 0 秒 (日本時間)
composite number 合成数
235757721517391560573113975940016405651192679687395645552999296956246467884544396227096043739780792198694553256388664296702454006647450838199435229552438456729010334201079621788605291<183>
prime factors 素因数
1093180458934333024832056915864043674826596171<46>
composite cofactor 合成数の残り
215662217148681621312515613791494562553990726219579429310096653452928434221267313308626378543609328587399167715891442290559946366385946721<138>
factorization results 素因数分解の結果
GMP-ECM 6.4.4 [configured with MPIR 2.6.0] [ECM]
Input number is (7*10^235+9)/(79*107*151*1527833364245053141*152253858781110260373426040213) (183 digits)
Using B1=31000000, B2=144289975846, polynomial Dickson(12), sigma=1884930792
Step 1 took 166719ms
Step 2 took 57844ms
********** Factor found in step 2: 1093180458934333024832056915864043674826596171
Found probable prime factor of 46 digits: 1093180458934333024832056915864043674826596171
Composite cofactor ((7*10^235+9)/(79*107*151*1527833364245053141*152253858781110260373426040213))/1093180458934333024832056915864043674826596171 has 138 digits

c138

name 名前Youcef Lemsafer
date 日付February 11, 2014 14:53:06 UTC 2014 年 2 月 11 日 (火) 23 時 53 分 6 秒 (日本時間)
composite number 合成数
215662217148681621312515613791494562553990726219579429310096653452928434221267313308626378543609328587399167715891442290559946366385946721<138>
prime factors 素因数
66009548658807131689203375478647378030310475749311647980915697429<65>
3267136672353349266424259451095918061973037047001751108459493575366936349<73>
factorization results 素因数分解の結果
<Polynomial selection using msieve 1.51 win64 CPU>

Wed Feb 05 17:40:43 2014  Msieve v. 1.51 (SVN Official Release)
Wed Feb 05 17:40:43 2014  random seeds: 1d6e30e0 5f086473
Wed Feb 05 17:40:43 2014  factoring 215662217148681621312515613791494562553990726219579429310096653452928434221267313308626378543609328587399167715891442290559946366385946721 (138 digits)
Wed Feb 05 17:40:44 2014  searching for 15-digit factors
Wed Feb 05 17:40:45 2014  commencing number field sieve (138-digit input)
Wed Feb 05 17:40:45 2014  commencing number field sieve polynomial selection
Wed Feb 05 17:40:45 2014  polynomial degree: 5
Wed Feb 05 17:40:45 2014  max stage 1 norm: 8.45e+020
Wed Feb 05 17:40:45 2014  max stage 2 norm: 1.65e+019
Wed Feb 05 17:40:45 2014  min E-value: 2.26e-011
Wed Feb 05 17:40:45 2014  poly select deadline: 153035
Wed Feb 05 17:40:45 2014  time limit set to 42.51 CPU-hours
Wed Feb 05 17:40:45 2014  expecting poly E from 2.59e-011 to > 2.98e-011
Wed Feb 05 17:40:45 2014  searching leading coefficients from 500000 to 2500000
Thu Feb 06 08:40:58 2014  polynomial selection complete
Thu Feb 06 08:40:58 2014  R0: -212246808948810211810635739
Thu Feb 06 08:40:58 2014  R1: 684949437662621
Thu Feb 06 08:40:58 2014  A0: 1623015833092722140549382326675100
Thu Feb 06 08:40:58 2014  A1: 21729532964812623885609776248
Thu Feb 06 08:40:58 2014  A2: -47974395894843700997331
Thu Feb 06 08:40:58 2014  A3: -415147460757138624
Thu Feb 06 08:40:58 2014  A4: 369891793844
Thu Feb 06 08:40:58 2014  A5: 500688
Thu Feb 06 08:40:58 2014  skew 422882.62, size 2.348e-013, alpha -7.203, combined = 2.667e-011 rroots = 5
Thu Feb 06 08:40:58 2014  elapsed time 15:00:15

<Sieving + postprocessing using GGNFS (SVN 440) + msieve 1.51 win64 CPU>

Thu Feb 06 08:51:30 2014 -> factmsieve.py (v0.76)
Thu Feb 06 08:51:30 2014 -> This is client 1 of 1
Thu Feb 06 08:51:30 2014 -> Running on 4 Cores with 2 hyper-threads per Core
Thu Feb 06 08:51:30 2014 -> Working with NAME = 70009_235
Thu Feb 06 08:51:30 2014 -> Selected lattice siever: gnfs-lasieve4I13e
Thu Feb 06 08:51:30 2014 -> Creating param file to detect parameter changes...
Thu Feb 06 08:51:30 2014 -> Running setup ...
Thu Feb 06 08:51:30 2014 -> Estimated minimum relations needed: 2.156e+07
Thu Feb 06 08:51:30 2014 -> cleaning up before a restart
Thu Feb 06 08:51:30 2014 -> Running lattice siever ...
Thu Feb 06 08:51:30 2014 -> entering sieving loop
<...snipped...>
Thu Feb 06 08:51:30 2014 -> Lattice sieving algebraic q from 6700000 to 6800000.
<...snipped...>
Thu Feb 06 09:36:33 2014 Found 196394 relations, 0.9% of the estimated minimum (21560000).
<...snipped...>
Tue Feb 11 04:05:57 2014 -> Lattice sieving algebraic q from 18600000 to 18700000.
<...snipped...>
Tue Feb 11 05:03:47 2014 Found 22998282 relations, 106.7% of the estimated minimum (21560000).
Tue Feb 11 05:03:47 2014  
Tue Feb 11 05:03:47 2014  
Tue Feb 11 05:03:47 2014  Msieve v. 1.51 (SVN Official Release)
Tue Feb 11 05:03:47 2014  random seeds: 101185c0 93eaf84c
Tue Feb 11 05:03:47 2014  factoring 215662217148681621312515613791494562553990726219579429310096653452928434221267313308626378543609328587399167715891442290559946366385946721 (138 digits)
Tue Feb 11 05:03:48 2014  searching for 15-digit factors
Tue Feb 11 05:03:48 2014  commencing number field sieve (138-digit input)
Tue Feb 11 05:03:48 2014  R0: -212246808948810211810635739
Tue Feb 11 05:03:48 2014  R1: 684949437662621
Tue Feb 11 05:03:48 2014  A0: 1623015833092722140549382326675100
Tue Feb 11 05:03:48 2014  A1: 21729532964812623885609776248
Tue Feb 11 05:03:48 2014  A2: -47974395894843700997331
Tue Feb 11 05:03:48 2014  A3: -415147460757138624
Tue Feb 11 05:03:48 2014  A4: 369891793844
Tue Feb 11 05:03:48 2014  A5: 500688
Tue Feb 11 05:03:48 2014  skew 422882.62, size 2.348e-013, alpha -7.203, combined = 2.667e-011 rroots = 5
Tue Feb 11 05:03:48 2014  
Tue Feb 11 05:03:48 2014  commencing relation filtering
Tue Feb 11 05:03:48 2014  estimated available RAM is 4095.6 MB
Tue Feb 11 05:03:48 2014  commencing duplicate removal, pass 1
Tue Feb 11 05:08:03 2014  found 3355774 hash collisions in 22998281 relations
Tue Feb 11 05:08:48 2014  added 15 free relations
Tue Feb 11 05:08:48 2014  commencing duplicate removal, pass 2
Tue Feb 11 05:08:59 2014  found 2987708 duplicates and 20010588 unique relations
Tue Feb 11 05:08:59 2014  memory use: 98.6 MB
Tue Feb 11 05:08:59 2014  reading ideals above 720000
Tue Feb 11 05:09:00 2014  commencing singleton removal, initial pass
Tue Feb 11 05:15:50 2014  memory use: 689.0 MB
Tue Feb 11 05:15:50 2014  reading all ideals from disk
Tue Feb 11 05:15:53 2014  memory use: 645.6 MB
Tue Feb 11 05:15:55 2014  keeping 21663452 ideals with weight <= 200, target excess is 121008
Tue Feb 11 05:15:57 2014  commencing in-memory singleton removal
Tue Feb 11 05:15:59 2014  begin with 20010588 relations and 21663452 unique ideals
Tue Feb 11 05:16:18 2014  reduce to 8383705 relations and 8209822 ideals in 18 passes
Tue Feb 11 05:16:18 2014  max relations containing the same ideal: 111
Tue Feb 11 05:16:22 2014  removing 283274 relations and 266517 ideals in 16757 cliques
Tue Feb 11 05:16:23 2014  commencing in-memory singleton removal
Tue Feb 11 05:16:23 2014  begin with 8100431 relations and 8209822 unique ideals
Tue Feb 11 05:16:29 2014  reduce to 8092414 relations and 7935259 ideals in 7 passes
Tue Feb 11 05:16:29 2014  max relations containing the same ideal: 109
Tue Feb 11 05:16:33 2014  removing 205369 relations and 188612 ideals in 16757 cliques
Tue Feb 11 05:16:34 2014  commencing in-memory singleton removal
Tue Feb 11 05:16:34 2014  begin with 7887045 relations and 7935259 unique ideals
Tue Feb 11 05:16:40 2014  reduce to 7882500 relations and 7742092 ideals in 8 passes
Tue Feb 11 05:16:40 2014  max relations containing the same ideal: 108
Tue Feb 11 05:16:42 2014  relations with 0 large ideals: 463
Tue Feb 11 05:16:42 2014  relations with 1 large ideals: 968
Tue Feb 11 05:16:42 2014  relations with 2 large ideals: 18635
Tue Feb 11 05:16:42 2014  relations with 3 large ideals: 144431
Tue Feb 11 05:16:42 2014  relations with 4 large ideals: 608950
Tue Feb 11 05:16:43 2014  relations with 5 large ideals: 1503308
Tue Feb 11 05:16:43 2014  relations with 6 large ideals: 2241778
Tue Feb 11 05:16:43 2014  relations with 7+ large ideals: 3363967
Tue Feb 11 05:16:43 2014  commencing 2-way merge
Tue Feb 11 05:16:49 2014  reduce to 4563170 relation sets and 4422767 unique ideals
Tue Feb 11 05:16:49 2014  ignored 5 oversize relation sets
Tue Feb 11 05:16:49 2014  commencing full merge
Tue Feb 11 05:18:19 2014  memory use: 522.3 MB
Tue Feb 11 05:18:19 2014  found 2351205 cycles, need 2338967
Tue Feb 11 05:18:20 2014  weight of 2338967 cycles is about 163767513 (70.02/cycle)
Tue Feb 11 05:18:20 2014  distribution of cycle lengths:
Tue Feb 11 05:18:20 2014  1 relations: 366001
Tue Feb 11 05:18:20 2014  2 relations: 313248
Tue Feb 11 05:18:20 2014  3 relations: 290374
Tue Feb 11 05:18:20 2014  4 relations: 247984
Tue Feb 11 05:18:20 2014  5 relations: 207401
Tue Feb 11 05:18:20 2014  6 relations: 170763
Tue Feb 11 05:18:20 2014  7 relations: 141273
Tue Feb 11 05:18:20 2014  8 relations: 114614
Tue Feb 11 05:18:20 2014  9 relations: 92313
Tue Feb 11 05:18:20 2014  10+ relations: 394996
Tue Feb 11 05:18:20 2014  heaviest cycle: 27 relations
Tue Feb 11 05:18:20 2014  commencing cycle optimization
Tue Feb 11 05:18:24 2014  start with 13122204 relations
Tue Feb 11 05:18:49 2014  pruned 272744 relations
Tue Feb 11 05:18:49 2014  memory use: 449.0 MB
Tue Feb 11 05:18:49 2014  distribution of cycle lengths:
Tue Feb 11 05:18:49 2014  1 relations: 366001
Tue Feb 11 05:18:49 2014  2 relations: 320426
Tue Feb 11 05:18:49 2014  3 relations: 300005
Tue Feb 11 05:18:49 2014  4 relations: 251898
Tue Feb 11 05:18:49 2014  5 relations: 209996
Tue Feb 11 05:18:49 2014  6 relations: 171121
Tue Feb 11 05:18:49 2014  7 relations: 140625
Tue Feb 11 05:18:49 2014  8 relations: 112782
Tue Feb 11 05:18:49 2014  9 relations: 90452
Tue Feb 11 05:18:49 2014  10+ relations: 375661
Tue Feb 11 05:18:49 2014  heaviest cycle: 26 relations
Tue Feb 11 05:18:51 2014  RelProcTime: 903
Tue Feb 11 05:18:51 2014  elapsed time 00:15:04
Tue Feb 11 05:18:51 2014 LatSieveTime: 4373.8
Tue Feb 11 05:18:51 2014 -> Running matrix solving step ...
<...snipped...>
Tue Feb 11 05:18:52 2014  commencing linear algebra
Tue Feb 11 05:18:53 2014  read 2338967 cycles
Tue Feb 11 05:18:58 2014  cycles contain 7691627 unique relations
Tue Feb 11 05:25:19 2014  read 7691627 relations
Tue Feb 11 05:25:31 2014  using 20 quadratic characters above 268435008
Tue Feb 11 05:26:09 2014  building initial matrix
Tue Feb 11 05:27:45 2014  memory use: 993.3 MB
Tue Feb 11 05:28:02 2014  read 2338967 cycles
Tue Feb 11 05:28:03 2014  matrix is 2338790 x 2338967 (702.9 MB) with weight 220185564 (94.14/col)
Tue Feb 11 05:28:03 2014  sparse part has weight 158528236 (67.78/col)
Tue Feb 11 05:28:28 2014  filtering completed in 2 passes
Tue Feb 11 05:28:29 2014  matrix is 2335481 x 2335658 (702.6 MB) with weight 220046898 (94.21/col)
Tue Feb 11 05:28:29 2014  sparse part has weight 158487974 (67.86/col)
Tue Feb 11 05:28:37 2014  matrix starts at (0, 0)
Tue Feb 11 05:28:38 2014  matrix is 2335481 x 2335658 (702.6 MB) with weight 220046898 (94.21/col)
Tue Feb 11 05:28:38 2014  sparse part has weight 158487974 (67.86/col)
Tue Feb 11 05:28:38 2014  saving the first 48 matrix rows for later
Tue Feb 11 05:28:39 2014  matrix includes 64 packed rows
Tue Feb 11 05:28:40 2014  matrix is 2335433 x 2335658 (678.3 MB) with weight 174981275 (74.92/col)
Tue Feb 11 05:28:40 2014  sparse part has weight 154443793 (66.12/col)
Tue Feb 11 05:28:40 2014  using block size 65536 for processor cache size 12288 kB
Tue Feb 11 05:28:51 2014  commencing Lanczos iteration (8 threads)
Tue Feb 11 05:28:51 2014  memory use: 658.3 MB
Tue Feb 11 05:29:12 2014  linear algebra at 0.1%, ETA 8h34m
Tue Feb 11 05:29:18 2014  checkpointing every 280000 dimensions
Tue Feb 11 14:58:27 2014  lanczos halted after 36931 iterations (dim = 2335431)
Tue Feb 11 14:58:33 2014  recovered 29 nontrivial dependencies
Tue Feb 11 14:58:33 2014  BLanczosTime: 34781
Tue Feb 11 14:58:33 2014  elapsed time 09:39:42
Tue Feb 11 14:58:33 2014 -> Running square root step ...
<...snipped...>
Tue Feb 11 14:58:35 2014  commencing square root phase
Tue Feb 11 14:58:35 2014  reading relations for dependency 1
Tue Feb 11 14:58:40 2014  read 1167101 cycles
Tue Feb 11 14:58:42 2014  cycles contain 3843166 unique relations
Tue Feb 11 15:06:33 2014  read 3843166 relations
Tue Feb 11 15:06:58 2014  multiplying 3843166 relations
Tue Feb 11 15:12:59 2014  multiply complete, coefficients have about 198.25 million bits
Tue Feb 11 15:13:04 2014  initial square root is modulo 13019401
Tue Feb 11 15:21:59 2014  GCD is N, no factor found
Tue Feb 11 15:21:59 2014  reading relations for dependency 2
Tue Feb 11 15:22:12 2014  read 1167784 cycles
Tue Feb 11 15:22:14 2014  cycles contain 3843034 unique relations
Tue Feb 11 15:28:26 2014  read 3843034 relations
Tue Feb 11 15:28:53 2014  multiplying 3843034 relations
Tue Feb 11 15:35:00 2014  multiply complete, coefficients have about 198.24 million bits
Tue Feb 11 15:35:02 2014  initial square root is modulo 13008367
Tue Feb 11 15:42:32 2014  sqrtTime: 2637
Tue Feb 11 15:42:32 2014  prp65 factor: 66009548658807131689203375478647378030310475749311647980915697429
Tue Feb 11 15:42:32 2014  prp73 factor: 3267136672353349266424259451095918061973037047001751108459493575366936349
Tue Feb 11 15:42:32 2014  elapsed time 00:43:58
Tue Feb 11 15:42:32 2014 -> Computing 1.39213e+09 scale for this machine...
Tue Feb 11 15:42:32 2014 -> procrels -speedtest> PIPE
Tue Feb 11 15:42:36 2014 -> Factorization summary written to g138-70009_235.txt




Number: 70009_235
N = 215662217148681621312515613791494562553990726219579429310096653452928434221267313308626378543609328587399167715891442290559946366385946721 (138 digits)
Divisors found:
r1=66009548658807131689203375478647378030310475749311647980915697429 (pp65)
r2=3267136672353349266424259451095918061973037047001751108459493575366936349 (pp73)
Version: Msieve v. 1.51 (SVN Official Release)
Total time: 127.08 hours.
Factorization parameters were as follows:
#
# 70009_235, C138, GNFS
#
# Murphy_E = 2.667e-11, selected by Youcef Lemsafer
# msieve 1.51 CPU win64, expecting poly E from 2.59e-011 to > 2.98e-011
# norm 2.838802e-013 alpha -7.203448 e 2.667e-011 rroots 5
#
n: 215662217148681621312515613791494562553990726219579429310096653452928434221267313308626378543609328587399167715891442290559946366385946721
Y0: -212246808948810211810635739
Y1: 684949437662621
c0: 1623015833092722140549382326675100
c1: 21729532964812623885609776248
c2: -47974395894843700997331
c3: -415147460757138624
c4: 369891793844
c5: 500688
skew: 422882.62
type: gnfs
# selected mechanically
rlim: 15400000
alim: 15400000
lpbr: 28
lpba: 28
mfbr: 55
mfba: 55
rlambda: 2.6
alambda: 2.6
q0: 6700000
Factor base limits: 15400000/15400000
Large primes per side: 3
Large prime bits: 28/28
Sieved algebraic special-q in [6700000, 18700001)
Total raw relations: 22998282
Relations: 3843034 relations
Pruned matrix : 2335433 x 2335658
Polynomial selection time: 0.00 hours.
Total sieving time: 116.44 hours.
Total relation processing time: 0.25 hours.
Matrix solve time: 9.66 hours.
time per square root: 0.73 hours.
Prototype def-par.txt line would be: gnfs,137,5,67,2000,5e-06,0.28,250,20,50000,3600,15400000,15400000,28,28,55,55,2.6,2.6,100000
total time: 127.08 hours.
Intel64 Family 6 Model 44 Stepping 2, GenuineIntel
Windows-7-6.1.7601-SP1
processors: 2, speed: 2.79GHz
execution environment 実行環境
Windows 7 Pro 64-bit, Intel Xeon X5660 @ 2.8GHz, 4GB RAM

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61418118Makoto KamadaDecember 17, 2012 12:00:00 UTC 2012 年 12 月 17 日 (月) 21 時 0 分 0 秒 (日本時間)
1300Warut RoonguthaiDecember 18, 2012 15:38:46 UTC 2012 年 12 月 19 日 (水) 0 時 38 分 46 秒 (日本時間)
403e62100300Serge BatalovJanuary 9, 2014 04:59:26 UTC 2014 年 1 月 9 日 (木) 13 時 59 分 26 秒 (日本時間)
1800Youcef LemsaferFebruary 4, 2014 14:08:46 UTC 2014 年 2 月 4 日 (火) 23 時 8 分 46 秒 (日本時間)
4511e61689 / 3839822Youcef LemsaferFebruary 5, 2014 06:30:00 UTC 2014 年 2 月 5 日 (水) 15 時 30 分 0 秒 (日本時間)
867Youcef LemsaferFebruary 5, 2014 14:48:26 UTC 2014 年 2 月 5 日 (水) 23 時 48 分 26 秒 (日本時間)
5043e632 / 7087Youcef LemsaferFebruary 5, 2014 16:34:54 UTC 2014 年 2 月 6 日 (木) 1 時 34 分 54 秒 (日本時間)

7×10236+9

c227

name 名前Youcef Lemsafer
date 日付March 3, 2014 13:22:51 UTC 2014 年 3 月 3 日 (月) 22 時 22 分 51 秒 (日本時間)
composite number 合成数
20191894315498693730295378100685856813663427576661348802363106498429787420079620177482806690906801758752544090740841700586242203014923583007084505222695295168687521126629385946623750759874239213472972875728731988549350845500817<227>
prime factors 素因数
53293058714045020778091133423357264840061<41>
composite cofactor 合成数の残り
378884132431626751755649328115837205325842087191958584921877565066112853405523781977455284490210520449996693310067135286694694384834480454540765953882716024993058306907792202565498360997<186>
factorization results 素因数分解の結果
GMP-ECM 6.4.4 [configured with MPIR 2.6.0] [ECM]
Input number is (7*10^236+9)/(1009*34358153) (227 digits)
Using B1=31000000, B2=144289975846, polynomial Dickson(12), sigma=2831009954
Step 1 took 213688ms
Step 2 took 70265ms
********** Factor found in step 2: 53293058714045020778091133423357264840061
Found probable prime factor of 41 digits: 53293058714045020778091133423357264840061
Composite cofactor ((7*10^236+9)/(1009*34358153))/53293058714045020778091133423357264840061 has 186 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61418118Makoto KamadaDecember 17, 2012 12:00:00 UTC 2012 年 12 月 17 日 (月) 21 時 0 分 0 秒 (日本時間)
1300Warut RoonguthaiDecember 18, 2012 15:38:30 UTC 2012 年 12 月 19 日 (水) 0 時 38 分 30 秒 (日本時間)
403e62100300Serge BatalovJanuary 9, 2014 04:59:26 UTC 2014 年 1 月 9 日 (木) 13 時 59 分 26 秒 (日本時間)
1800Youcef LemsaferMarch 2, 2014 08:07:10 UTC 2014 年 3 月 2 日 (日) 17 時 7 分 10 秒 (日本時間)
4511e638851629Youcef LemsaferMarch 3, 2014 13:22:08 UTC 2014 年 3 月 3 日 (月) 22 時 22 分 8 秒 (日本時間)
2256Youcef LemsaferMarch 19, 2014 08:54:45 UTC 2014 年 3 月 19 日 (水) 17 時 54 分 45 秒 (日本時間)
5043e60 / 6304--
5511e7120 / 17508Youcef LemsaferMarch 19, 2014 15:23:41 UTC 2014 年 3 月 20 日 (木) 0 時 23 分 41 秒 (日本時間)

7×10237+9

c223

composite cofactor 合成数の残り
1081697847157823960199830383417255960085600840463653411080670198797821899698941204789305025083041156063228540722125229197726513458028056278323758069234401561329744514137082184893444760553304098992427994026564366402832700177<223>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61418118Makoto KamadaDecember 17, 2012 12:00:00 UTC 2012 年 12 月 17 日 (月) 21 時 0 分 0 秒 (日本時間)
1300Warut RoonguthaiDecember 18, 2012 15:39:24 UTC 2012 年 12 月 19 日 (水) 0 時 39 分 24 秒 (日本時間)
403e62100300Serge BatalovJanuary 9, 2014 04:59:27 UTC 2014 年 1 月 9 日 (木) 13 時 59 分 27 秒 (日本時間)
1800Youcef LemsaferMarch 3, 2014 13:25:18 UTC 2014 年 3 月 3 日 (月) 22 時 25 分 18 秒 (日本時間)
4511e63796Youcef LemsaferMarch 6, 2014 14:10:02 UTC 2014 年 3 月 6 日 (木) 23 時 10 分 2 秒 (日本時間)
5043e6480 / 6614Youcef LemsaferMarch 7, 2014 06:54:12 UTC 2014 年 3 月 7 日 (金) 15 時 54 分 12 秒 (日本時間)

7×10238+9

c187

name 名前Warut Roonguthai
date 日付December 18, 2012 05:04:54 UTC 2012 年 12 月 18 日 (火) 14 時 4 分 54 秒 (日本時間)
composite number 合成数
1361751517388525096528159634028742850470858949405963359413105110185013556121098431641814960313625053081557008044117758552873442292531570733328362713710706542108481384519113238983613831341<187>
prime factors 素因数
86079585006520066805517731395009193<35>
15819680325891205492700905306300290239905297519461823517568321923049832862135390001891635331895404921955079140320483022321519558546035039059921152398437<152>
factorization results 素因数分解の結果
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2502520157
Step 1 took 8720ms
Step 2 took 5398ms
********** Factor found in step 2: 86079585006520066805517731395009193
Found probable prime factor of 35 digits: 86079585006520066805517731395009193
Probable prime cofactor 15819680325891205492700905306300290239905297519461823517568321923049832862135390001891635331895404921955079140320483022321519558546035039059921152398437 has 152 digits
software ソフトウェア
GMP-ECM 6.3

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaDecember 17, 2012 12:00:00 UTC 2012 年 12 月 17 日 (月) 21 時 0 分 0 秒 (日本時間)

7×10241+9

c228

composite cofactor 合成数の残り
852578471726430583109534221183587033112271707399366951390490750280929837206792767377900506687934577357299997155452749869976289103901070109983405856271492567280594961046781394415300532689547568870524212738127325582414284990820599<228>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61418118Makoto KamadaDecember 17, 2012 12:00:00 UTC 2012 年 12 月 17 日 (月) 21 時 0 分 0 秒 (日本時間)
1300Warut RoonguthaiDecember 18, 2012 15:39:34 UTC 2012 年 12 月 19 日 (水) 0 時 39 分 34 秒 (日本時間)
403e62100300Serge BatalovJanuary 9, 2014 04:59:28 UTC 2014 年 1 月 9 日 (木) 13 時 59 分 28 秒 (日本時間)
1800Youcef LemsaferMarch 7, 2014 13:29:08 UTC 2014 年 3 月 7 日 (金) 22 時 29 分 8 秒 (日本時間)
4511e63796Youcef LemsaferMarch 10, 2014 10:56:40 UTC 2014 年 3 月 10 日 (月) 19 時 56 分 40 秒 (日本時間)
5043e6480 / 6614Youcef LemsaferMarch 11, 2014 08:18:23 UTC 2014 年 3 月 11 日 (火) 17 時 18 分 23 秒 (日本時間)

7×10242+9

c217

name 名前Warut Roonguthai
date 日付December 18, 2012 01:32:59 UTC 2012 年 12 月 18 日 (火) 10 時 32 分 59 秒 (日本時間)
composite number 合成数
1758823930799689880125437083148620681570821433377223060086807011947262519943855996831958279115289776546895448897083572333672243216181295373024547302661476246524648926979997194943272424484988930177328920088648227887639<217>
prime factors 素因数
893625308919995152437000309785219891<36>
composite cofactor 合成数の残り
1968189478569428676883505847570702524755417176906581844034679299313421008678161974170208915280249726461506241487144076702143705988795261574337697746623472508245555361607786540178829<181>
factorization results 素因数分解の結果
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=353979350
Step 1 took 11450ms
Step 2 took 6318ms
********** Factor found in step 2: 893625308919995152437000309785219891
Found probable prime factor of 36 digits: 893625308919995152437000309785219891
Composite cofactor 1968189478569428676883505847570702524755417176906581844034679299313421008678161974170208915280249726461506241487144076702143705988795261574337697746623472508245555361607786540178829 has 181 digits
software ソフトウェア
GMP-ECM 6.3

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61418118Makoto KamadaDecember 17, 2012 12:00:00 UTC 2012 年 12 月 17 日 (月) 21 時 0 分 0 秒 (日本時間)
1300Warut RoonguthaiDecember 18, 2012 15:39:40 UTC 2012 年 12 月 19 日 (水) 0 時 39 分 40 秒 (日本時間)
403e62100300Serge BatalovJanuary 9, 2014 04:59:29 UTC 2014 年 1 月 9 日 (木) 13 時 59 分 29 秒 (日本時間)
1800Youcef LemsaferMarch 11, 2014 08:19:08 UTC 2014 年 3 月 11 日 (火) 17 時 19 分 8 秒 (日本時間)
4511e63796Youcef LemsaferMarch 13, 2014 10:15:19 UTC 2014 年 3 月 13 日 (木) 19 時 15 分 19 秒 (日本時間)
5043e6342 / 661440CypJanuary 26, 2014 14:04:32 UTC 2014 年 1 月 26 日 (日) 23 時 4 分 32 秒 (日本時間)
302Youcef LemsaferMarch 13, 2014 18:12:45 UTC 2014 年 3 月 14 日 (金) 3 時 12 分 45 秒 (日本時間)

7×10243+9

c230

name 名前Cyp
date 日付January 7, 2014 23:34:39 UTC 2014 年 1 月 8 日 (水) 8 時 34 分 39 秒 (日本時間)
composite number 合成数
30176527121929353993110282403012521231040243851542013667580364193465070794975941079221945493868130320843294776511375601266261069004225149504318638290142964953015308407150436306423206090366767056897379034914512418125727670432297493<230>
prime factors 素因数
6780037698430314663744508825956863803335481<43>
composite cofactor 合成数の残り
4450790462258888990611934144237934301853206674417978263372241842760493899449490453879658554387061823436166020957523240739769711193284583197347463197746344209643013724832084219205385157053<187>
factorization results 素因数分解の結果
Run 417 out of 579:
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=204252887
Step 1 took 79503ms
Step 2 took 23921ms
********** Factor found in step 2: 6780037698430314663744508825956863803335481
Found probable prime factor of 43 digits: 6780037698430314663744508825956863803335481
Composite cofactor 4450790462258888990611934144237934301853206674417978263372241842760493899449490453879658554387061823436166020957523240739769711193284583197347463197746344209643013724832084219205385157053 has 187 digits
software ソフトウェア
GMP-ECM 6.4.4
execution environment 実行環境
Gentoo Linux, Intel(R) Core(TM) i7-3770K CPU

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61418118Makoto KamadaDecember 17, 2012 12:00:00 UTC 2012 年 12 月 17 日 (月) 21 時 0 分 0 秒 (日本時間)
1300Warut RoonguthaiDecember 18, 2012 15:39:53 UTC 2012 年 12 月 19 日 (水) 0 時 39 分 53 秒 (日本時間)
403e60--
4511e64375579CypJanuary 7, 2014 23:34:37 UTC 2014 年 1 月 8 日 (水) 8 時 34 分 37 秒 (日本時間)
3796Youcef LemsaferMarch 15, 2014 21:31:04 UTC 2014 年 3 月 16 日 (日) 6 時 31 分 4 秒 (日本時間)
5043e6256 / 6563Youcef LemsaferMarch 16, 2014 07:51:19 UTC 2014 年 3 月 16 日 (日) 16 時 51 分 19 秒 (日本時間)

7×10245+9

c209

composite cofactor 合成数の残り
11673580425056427261818733225583703333776141732581958589378358679411058684911133838503988011747251430364329548323222020647077801983677213869996855764163977427483423514352441903430502099836007373038657934448773<209>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61418118Makoto KamadaDecember 17, 2012 12:00:00 UTC 2012 年 12 月 17 日 (月) 21 時 0 分 0 秒 (日本時間)
1300Warut RoonguthaiDecember 18, 2012 15:40:00 UTC 2012 年 12 月 19 日 (水) 0 時 40 分 0 秒 (日本時間)
403e6300Serge BatalovJanuary 9, 2014 04:59:29 UTC 2014 年 1 月 9 日 (木) 13 時 59 分 29 秒 (日本時間)
4511e64168372CypMarch 8, 2014 02:18:11 UTC 2014 年 3 月 8 日 (土) 11 時 18 分 11 秒 (日本時間)
3796Youcef LemsaferMarch 19, 2014 05:12:12 UTC 2014 年 3 月 19 日 (水) 14 時 12 分 12 秒 (日本時間)
5043e6296 / 659840CypJanuary 11, 2014 20:35:52 UTC 2014 年 1 月 12 日 (日) 5 時 35 分 52 秒 (日本時間)
256Youcef LemsaferMarch 19, 2014 05:12:12 UTC 2014 年 3 月 19 日 (水) 14 時 12 分 12 秒 (日本時間)

7×10246+9

c215

composite cofactor 合成数の残り
53621250612635630878858806022656161973913145054062798464555941512837402473114420865953108233843858987757277093791985847065106839948459422426359550004076397657255772602248719252414058619174693175443123194294917720961<215>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61418118Makoto KamadaDecember 17, 2012 12:00:00 UTC 2012 年 12 月 17 日 (月) 21 時 0 分 0 秒 (日本時間)
1300Warut RoonguthaiDecember 18, 2012 15:40:07 UTC 2012 年 12 月 19 日 (水) 0 時 40 分 7 秒 (日本時間)
403e62100300Serge BatalovJanuary 9, 2014 04:59:30 UTC 2014 年 1 月 9 日 (木) 13 時 59 分 30 秒 (日本時間)
1800Youcef LemsaferMarch 19, 2014 17:10:18 UTC 2014 年 3 月 20 日 (木) 2 時 10 分 18 秒 (日本時間)
4511e63796Youcef LemsaferMarch 24, 2014 12:58:51 UTC 2014 年 3 月 24 日 (月) 21 時 58 分 51 秒 (日本時間)
5043e6256 / 6614Youcef LemsaferMarch 24, 2014 12:58:51 UTC 2014 年 3 月 24 日 (月) 21 時 58 分 51 秒 (日本時間)

7×10248+9

c237

name 名前Cyp
date 日付March 10, 2014 21:37:07 UTC 2014 年 3 月 11 日 (火) 6 時 37 分 7 秒 (日本時間)
composite number 合成数
103518794497984315426701920565861719344980435251277868496679478155598389623432165503149338164087361354256073969699585213125105160972011420211350895092068515305632802737353291438488930012204033847874612768271569926031570359992105408304223<237>
prime factors 素因数
41629372621452398224728717741923765223437<41>
composite cofactor 合成数の残り
2486676785627058303666145110095492012392912022588776912426333767047555310916020924139552108889253274915417330756159401501103817990704624801097234133096376805012399356876148980556684603540730257179<196>
factorization results 素因数分解の結果
Run 192 out of 482:
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=4201177542
Step 1 took 91101ms
Step 2 took 25431ms
********** Factor found in step 2: 41629372621452398224728717741923765223437
Found probable prime factor of 41 digits: 41629372621452398224728717741923765223437
Composite cofactor 2486676785627058303666145110095492012392912022588776912426333767047555310916020924139552108889253274915417330756159401501103817990704624801097234133096376805012399356876148980556684603540730257179 has 196 digits
software ソフトウェア
GMP-ECM 6.4.4
execution environment 実行環境
Gentoo Linux, Intel(R) Core(TM) i7-3770K CPU

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61418118Makoto KamadaDecember 17, 2012 12:00:00 UTC 2012 年 12 月 17 日 (月) 21 時 0 分 0 秒 (日本時間)
1300Warut RoonguthaiDecember 18, 2012 15:40:16 UTC 2012 年 12 月 19 日 (水) 0 時 40 分 16 秒 (日本時間)
403e6300Serge BatalovJanuary 9, 2014 04:59:31 UTC 2014 年 1 月 9 日 (木) 13 時 59 分 31 秒 (日本時間)
4511e63856482CypMarch 10, 2014 21:37:06 UTC 2014 年 3 月 11 日 (火) 6 時 37 分 6 秒 (日本時間)
3374Youcef LemsaferMarch 28, 2014 06:06:21 UTC 2014 年 3 月 28 日 (金) 15 時 6 分 21 秒 (日本時間)
5043e6640 / 6668Youcef LemsaferMarch 29, 2014 12:19:59 UTC 2014 年 3 月 29 日 (土) 21 時 19 分 59 秒 (日本時間)

7×10249+9

c245

composite cofactor 合成数の残り
64801014598742860316784388509854382862908824972459568795534284365366634883311887283263749386704683261897929144719180174592447904612906510650509613693380113494348425798209640539514732973533414180313451764901919035760902770706238486248298973366783<245>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61418118Makoto KamadaDecember 17, 2012 12:00:00 UTC 2012 年 12 月 17 日 (月) 21 時 0 分 0 秒 (日本時間)
1300Warut RoonguthaiDecember 18, 2012 15:40:25 UTC 2012 年 12 月 19 日 (水) 0 時 40 分 25 秒 (日本時間)
403e60--
4511e6600Dmitry DomanovDecember 19, 2012 23:03:20 UTC 2012 年 12 月 20 日 (木) 8 時 3 分 20 秒 (日本時間)
5043e61740 / 7410600Dmitry DomanovDecember 31, 2012 00:19:44 UTC 2012 年 12 月 31 日 (月) 9 時 19 分 44 秒 (日本時間)
500Dmitry DomanovJanuary 5, 2013 15:21:50 UTC 2013 年 1 月 6 日 (日) 0 時 21 分 50 秒 (日本時間)
640Youcef LemsaferMarch 24, 2014 14:51:15 UTC 2014 年 3 月 24 日 (月) 23 時 51 分 15 秒 (日本時間)

7×10250+9

c198

name 名前Warut Roonguthai
date 日付December 17, 2012 14:09:03 UTC 2012 年 12 月 17 日 (月) 23 時 9 分 3 秒 (日本時間)
composite number 合成数
112277557482888501870806943192150292985189368750786048394232266159540272426392271907930695086599945881642860802198793817132777019617864690150972396811494085992083643596135212511483881209432619495733<198>
prime factors 素因数
3363934732412756978578038165379417<34>
composite cofactor 合成数の残り
33376853718668395548242824460326859943721379933418476440457902637857926932107893738392471889822646851845864205703875623554525476286969790759756043917009752908037949<164>
factorization results 素因数分解の結果
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2561419392
Step 1 took 9719ms
Step 2 took 5632ms
********** Factor found in step 2: 3363934732412756978578038165379417
Found probable prime factor of 34 digits: 3363934732412756978578038165379417
Composite cofactor 33376853718668395548242824460326859943721379933418476440457902637857926932107893738392471889822646851845864205703875623554525476286969790759756043917009752908037949 has 164 digits
software ソフトウェア
GMP-ECM 6.3

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61418118Makoto KamadaDecember 17, 2012 12:00:00 UTC 2012 年 12 月 17 日 (月) 21 時 0 分 0 秒 (日本時間)
1300Warut RoonguthaiDecember 18, 2012 15:40:32 UTC 2012 年 12 月 19 日 (水) 0 時 40 分 32 秒 (日本時間)
403e60--
4511e61000Dmitry DomanovDecember 18, 2012 22:12:37 UTC 2012 年 12 月 19 日 (水) 7 時 12 分 37 秒 (日本時間)
5043e63408 / 7321976Dmitry DomanovDecember 21, 2012 10:43:59 UTC 2012 年 12 月 21 日 (金) 19 時 43 分 59 秒 (日本時間)
640Youcef LemsaferMarch 25, 2014 18:23:22 UTC 2014 年 3 月 26 日 (水) 3 時 23 分 22 秒 (日本時間)
1792Dmitry DomanovJanuary 6, 2025 23:43:29 UTC 2025 年 1 月 7 日 (火) 8 時 43 分 29 秒 (日本時間)

7×10251+9

c194

composite cofactor 合成数の残り
19488242545522892672829881944012844390174358920672227810595626472919999219435989979646250709905588862325788003560214906679482530947312609550161176803059846876187473616893634563087090010291829907<194>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間)

7×10254+9

c214

composite cofactor 合成数の残り
9451211204097671027935643636725134721699399152137730641382325075997024689475236286651918127122347208895609457630265741626032109857062607731708778705621642474521017622781942566210779987472014441454552901316736963989<214>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間)

7×10256+9

c231

composite cofactor 合成数の残り
204392213965693124389342529406513090274483007144739245084063514504306970228043071276799181932577283871366996446318706184098124833436193086378429554494552959505941410022986166865844222485611578962575546902118170511519092841516613867<231>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間)

7×10257+9

c222

composite cofactor 合成数の残り
247684067215226038715102656083619388657697837224443688506756104924461884464224597959347158968269690538315831672363754071754505930673064926447125208358875182526742129992065368271240209331998334498440558758761767527661155511<222>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間)

7×10258+9

c259

composite cofactor 合成数の残り
7000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000009<259>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間)
4511e62000Dmitry DomanovApril 26, 2019 16:19:39 UTC 2019 年 4 月 27 日 (土) 1 時 19 分 39 秒 (日本時間)
5043e650002000Dmitry DomanovApril 29, 2019 11:00:44 UTC 2019 年 4 月 29 日 (月) 20 時 0 分 44 秒 (日本時間)
3000Dmitry DomanovOctober 28, 2020 09:18:27 UTC 2020 年 10 月 28 日 (水) 18 時 18 分 27 秒 (日本時間)
5511e7828NFS@home + Dmitry DomanovNovember 22, 2020 01:13:35 UTC 2020 年 11 月 22 日 (日) 10 時 13 分 35 秒 (日本時間)
6026e712000 / 41083yoyo@HomeMay 27, 2024 01:55:36 UTC 2024 年 5 月 27 日 (月) 10 時 55 分 36 秒 (日本時間)

7×10259+9

c241

composite cofactor 合成数の残り
1104654381888515055653006077895526754888376175812359281394352147387475687224606348529985742225217001164566575019587572594229960750920437487173956765731145982599892966026146154169840200872211320347751172315039320822041358859978504974217111211<241>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間)

7×10260+9

c195

composite cofactor 合成数の残り
914375929303066719065659509622844540521797115027457069580368946136884872334564904676990156605303450074746752161208591936194812920400574989333543683736455622240730726697088914359754972579765680919<195>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間)

7×10261+9

c207

composite cofactor 合成数の残り
308353288226076287474149539784100788172989408769046447216527464448951711149700690157778950466290037753306653841961987671345525847847256616910737080359934496158097823458321359015073327352185926291780836236647<207>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間)

7×10265+9

c218

composite cofactor 合成数の残り
37843444835373516676994877009355068044849252310745053511522371157051636959710692464621798191378972881670737415011923115192546722635270061812397150743408454275982648822626108188638306364986024275988307798765432926607819<218>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間)

7×10266+9

c222

composite cofactor 合成数の残り
223192984837802616414927477297649769783089933836744890011908983600791879831330620541158107916309593272112759371712659164963057837642797283758708737776032580941707132900115488094521950866952117721407701343229350039778824157<222>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間)

7×10270+9

c253

composite cofactor 合成数の残り
7432936751337704516045891962651430972057761685193599116503402176679255982082542365603787087834185667613549830788636087801071382370754198443953400385931934328618565060127728032036357578377849017479078525844744085139895009137153430363107626016858199536601<253>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間)

7×10273+9

c265

composite cofactor 合成数の残り
1341910850236629808413484315324526576521480601224316020184663377151522161366976257315021790913603446815033458924297029328119743342810512895597353082458201267986860172284203549717243271339861758119364975710164675118530232972817628295449066297481482680311974818806719<265>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間)

7×10274+9

c251

composite cofactor 合成数の残り
11971113686092278770483247667816974758359973161671524075421126252731692349788313751869023655557601376979496871341131543414193425915235165345716850157436810288744357694273116828232286775283533632867667181615875949306640317368527239949610231760074795357<251>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間)

7×10275+9

c243

composite cofactor 合成数の残り
260391862294579726084458104391573676538579370964645387419029761727735931063790862934595230054805765291184742334339396044113738999194108028661478128718777504103448545768363880052511118057159063640652104771059445285488902813031146886724819252271<243>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間)

7×10276+9

c267

composite cofactor 合成数の残り
683046233146737647720126736390991168612372927272896563518475571046969096657956272125454964252190407955811679110298371008239477520629826073101060417967666249954243586649291478401288360087587990353617903068147750330601719590027348926254331775655928763451079809050120381<267>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間)

7×10277+9

c245

composite cofactor 合成数の残り
24606883852320035718195745720209872198738871694684881654185158695337198713395020253472129974524160496047278795664736545059492757683813558431682808643288796659864687709778136683288171777227971800848247187262720686427618344132371862544507511557699<245>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間)

7×10278+9

c246

composite cofactor 合成数の残り
102426533936953321973839588947055874473081501962957562975611264098417508595390527554285142847210014502106008849643208295608149088931905912490567446767134608071430255944844449545767569556548247886235803385998398090149185174576797882486012102075097<246>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間)

7×10279+9

c243

composite cofactor 合成数の残り
295903528480068724555309990637000248968786489694973949116839152447987447424425892744643396141894675233293595310431847432985580697266052991119311957094064009617131066002769265445071311617610758138729186340121207578487927029148871741438741630937<243>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間)

7×10282+9

c267

composite cofactor 合成数の残り
246949758936087054172016468258403936407481024261718528527767537529361678744323117367312514622452113466451899972666583825566082170784735251573890043012500154796971887858245892280009672460705365496130834990260316664293214563604179070590926561290439314500900975893423259<267>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間)

7×10283+9

c262

composite cofactor 合成数の残り
2664603947182388291489692468097254529616798112928122047299031500321247832875312426931235093059192324176083847046911055973612602059906085678376832282186367978070312471917133999234759830061185116336356137100984467203074101755979383987641549687682277343889955688027<262>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間)

7×10286+9

c282

name 名前Dmitry Domanov
date 日付May 24, 2019 09:12:07 UTC 2019 年 5 月 24 日 (金) 18 時 12 分 7 秒 (日本時間)
composite number 合成数
102499374021680081882357075605002555162966683310612638758527581849410848240891100272209051866147531741859719356713928639935806106326993503003963797221095542595079151480896313097516440167454691615990488058090788088401317263383855762880876691788775147123208640404374673283245305894739<282>
prime factors 素因数
3204848001332482698798118540520020338407<40>
composite cofactor 合成数の残り
31982600728353987380761047882919781818426492455369853763298209901615378592726952877969111584862229839056529487424367549559478206641144001842018238136101542228056367031707149336512344631461802943988575464798012562243518995826329229243440708277<242>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:3965363723
Step 1 took 41888ms
Step 2 took 15094ms
********** Factor found in step 2: 3204848001332482698798118540520020338407
Found prime factor of 40 digits: 3204848001332482698798118540520020338407

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間)
4511e62000 / 3844Dmitry DomanovMay 23, 2019 22:38:13 UTC 2019 年 5 月 24 日 (金) 7 時 38 分 13 秒 (日本時間)

7×10287+9

c254

composite cofactor 合成数の残り
10607726826389192933123640228853812214573724764382910792693463916732741840790059410587970611258306638449234534326527272780821322086570929734240793973044617782398807548588976684062702157652578603434391031698074481373485514892019487314414897813812515404987<254>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間)

7×10289+9

c256

composite cofactor 合成数の残り
2403592900247123591638609706645353031639580952080377221331398230578136236858403028142087557211470242186035176855371765713223128131385702715928805995482526291477828436581080614200646176686570817326079151549458377775180051971747537083375653112396364196289899<256>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間)

7×10290+9

c251

composite cofactor 合成数の残り
28284992908264294148900882415490937997963923862777891067380364609089355777044952173828087007965395182142908711117892696460430947384377474730812454100676534225935014770417405289747486124499628049370063837656013102405545183596938935106883846041212627543<251>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間)

7×10291+9

c251

composite cofactor 合成数の残り
20018188607868207232681584971865374356068043170971286525390832184855259694486415590415763126623573785256317574271109824489876425530102529694038303776103969018238296663146048884573361511515462524286172534614339660011797082411254159764603754637726135137<251>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間)

7×10293+9

c282

composite cofactor 合成数の残り
335234619241408045674101983265289303589151600668761871134819399618367390076505358960079865599434503284331865023869654880246792148697378519218075472842457073915760366966433612148249557374090287961802926146299922764368095655280248043497350634321415975984580414501280852247179709136271<282>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間)

7×10294+9

c248

composite cofactor 合成数の残り
25754782327146312993119272583047628017233939008539781435292156779313999993171620711812247737222005506995147530848645545062660125138705734033323759152208006532705544917286897988444232487398304927766431211582566281624241420855488410845666783962983301<248>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間)

7×10295+9

c241

composite cofactor 合成数の残り
3079787365822274148251354875514583832406136283533456738273418590243599450207249755257759059650112208375786464222405412072932090161383429100285000093644939769837355979945672280679990740301287197824060920920141713843877589308176894602392314869<241>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間)

7×10296+9

c283

composite cofactor 合成数の残り
2194558222448039282151780835340795123661993724026677872429166515456350596904272351115604992681140561954774315529254975339578843033581775176853219697264794603278486838746862872451494679890804693423420656202065331810149090695808151952024490846144613937361646467184261592115680055811197<283>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間)

7×10297+9

c251

composite cofactor 合成数の残り
78572207962542391913257767659651405523982249044328079854865214353312911405427515593284375816044295330752819124666517835784176665647318407579011275502508767732934351982122612291031493203629725663792274072082428645306998086163427761613378174227319752493<251>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間)

7×10300+9

c241

composite cofactor 合成数の残り
1774122150299848402639087655283933528703287925372867489403802872065501872117343527787053348851094699085262803045341634631872539652210325856192691165736839520519853816318098011579137135490194170638133286961444837300874313409614796349785879757<241>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間)
4511e62000Dmitry DomanovApril 24, 2019 18:50:47 UTC 2019 年 4 月 25 日 (木) 3 時 50 分 47 秒 (日本時間)
5043e6600 / 6996Dmitry DomanovApril 26, 2019 11:27:39 UTC 2019 年 4 月 26 日 (金) 20 時 27 分 39 秒 (日本時間)