Table of contents 目次

7×10108+3

c102

name 名前Sinkiti Sibata
date 日付August 2, 2007 22:14:54 UTC 2007 年 8 月 3 日 (金) 7 時 14 分 54 秒 (日本時間)
composite number 合成数
439347152726045522264827040637289363637658854593101458877326178418502138773321409870034208196950039513<102>
prime factors 素因数
21135103243411643094225839323775893<35>
20787556496228678876263628963578198111397575572164064323810422220341<68>
factorization results 素因数分解の結果
Number: 70003_108
N=439347152726045522264827040637289363637658854593101458877326178418502138773321409870034208196950039513
  ( 102 digits)
SNFS difficulty: 108 digits.
Divisors found:
 r1=21135103243411643094225839323775893 (pp35)
 r2=20787556496228678876263628963578198111397575572164064323810422220341 (pp68)
Version: GGNFS-0.77.1-20060722-pentium4
Total time: 1.97 hours.
Scaled time: 1.30 units (timescale=0.661).
Factorization parameters were as follows:
name: 70003_108
n: 439347152726045522264827040637289363637658854593101458877326178418502138773321409870034208196950039513
m: 1000000000000000000000
c5: 7000
c0: 3
skew: 0.21
type: snfs
Factor base limits: 600000/800000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 46/46
Sieved algebraic special-q in [400000, 500001)
Primes: RFBsize:49098, AFBsize:64153, largePrimes:2383720 encountered
Relations: rels:2939110, finalFF:154239
Max relations in full relation-set: 0
Initial matrix: 113318 x 154239 with sparse part having weight 3864688.
Pruned matrix : 79599 x 80229 with weight 1974973.
Total sieving time: 1.80 hours.
Total relation processing time: 0.09 hours.
Matrix solve time: 0.05 hours.
Time per square root: 0.03 hours.
Prototype def-par.txt line would be:
snfs,108,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000
total time: 1.97 hours.
 --------- CPU info (if available) ----------
execution environment 実行環境
Pentium 4 2.4GHz, Windows XP and Cygwin)

7×10109+3

c93

name 名前Robert Backstrom
date 日付July 31, 2007 12:16:13 UTC 2007 年 7 月 31 日 (火) 21 時 16 分 13 秒 (日本時間)
composite number 合成数
158132850072416566802699765435756674614463053664908574703804989105665472581049135992398731331<93>
prime factors 素因数
94998794192060872628935849323365693<35>
1664577444559100089652031980780871295487207378438987754367<58>
factorization results 素因数分解の結果
Tue Jul 31 20:06:20 2007  
Tue Jul 31 20:06:20 2007  
Tue Jul 31 20:06:20 2007  Msieve v. 1.25
Tue Jul 31 20:06:20 2007  random seeds: 58a7aa10 e5a73f18
Tue Jul 31 20:06:20 2007  factoring 158132850072416566802699765435756674614463053664908574703804989105665472581049135992398731331 (93 digits)
Tue Jul 31 20:06:20 2007  commencing quadratic sieve (92-digit input)
Tue Jul 31 20:06:20 2007  using multiplier of 5
Tue Jul 31 20:06:20 2007  using 64kb Opteron sieve core
Tue Jul 31 20:06:20 2007  sieve interval: 18 blocks of size 65536
Tue Jul 31 20:06:20 2007  processing polynomials in batches of 6
Tue Jul 31 20:06:20 2007  using a sieve bound of 1885601 (70588 primes)
Tue Jul 31 20:06:20 2007  using large prime bound of 220615317 (27 bits)
Tue Jul 31 20:06:20 2007  using double large prime bound of 1043624286913572 (42-50 bits)
Tue Jul 31 20:06:20 2007  using trial factoring cutoff of 50 bits
Tue Jul 31 20:06:20 2007  polynomial 'A' values have 12 factors
Tue Jul 31 22:12:14 2007  71029 relations (18147 full + 52882 combined from 923968 partial), need 70684
Tue Jul 31 22:12:15 2007  begin with 942115 relations
Tue Jul 31 22:12:16 2007  reduce to 179413 relations in 13 passes
Tue Jul 31 22:12:16 2007  attempting to read 179413 relations
Tue Jul 31 22:12:18 2007  recovered 179413 relations
Tue Jul 31 22:12:18 2007  recovered 159146 polynomials
Tue Jul 31 22:12:18 2007  attempting to build 71029 cycles
Tue Jul 31 22:12:18 2007  found 71029 cycles in 5 passes
Tue Jul 31 22:12:19 2007  distribution of cycle lengths:
Tue Jul 31 22:12:19 2007     length 1 : 18147
Tue Jul 31 22:12:19 2007     length 2 : 13037
Tue Jul 31 22:12:19 2007     length 3 : 12364
Tue Jul 31 22:12:19 2007     length 4 : 9648
Tue Jul 31 22:12:19 2007     length 5 : 7028
Tue Jul 31 22:12:19 2007     length 6 : 4488
Tue Jul 31 22:12:19 2007     length 7 : 2773
Tue Jul 31 22:12:19 2007     length 9+: 3544
Tue Jul 31 22:12:19 2007  largest cycle: 18 relations
Tue Jul 31 22:12:19 2007  matrix is 70588 x 71029 with weight 4271043 (avg 60.13/col)
Tue Jul 31 22:12:20 2007  filtering completed in 3 passes
Tue Jul 31 22:12:20 2007  matrix is 66489 x 66553 with weight 4008580 (avg 60.23/col)
Tue Jul 31 22:12:21 2007  saving the first 48 matrix rows for later
Tue Jul 31 22:12:21 2007  matrix is 66441 x 66553 with weight 3003773 (avg 45.13/col)
Tue Jul 31 22:12:21 2007  matrix includes 64 packed rows
Tue Jul 31 22:12:21 2007  using block size 21845 for processor cache size 512 kB
Tue Jul 31 22:12:21 2007  commencing Lanczos iteration
Tue Jul 31 22:13:01 2007  lanczos halted after 1053 iterations
Tue Jul 31 22:13:02 2007  recovered 19 nontrivial dependencies
Tue Jul 31 22:13:02 2007  prp35 factor: 94998794192060872628935849323365693
Tue Jul 31 22:13:02 2007  prp58 factor: 1664577444559100089652031980780871295487207378438987754367
Tue Jul 31 22:13:02 2007  elapsed time 02:06:42

AMD 64 3400+

7×10115+3

c90

name 名前Sinkiti Sibata
date 日付July 31, 2007 09:05:55 UTC 2007 年 7 月 31 日 (火) 18 時 5 分 55 秒 (日本時間)
composite number 合成数
231954858579080269057677376740414939630659505325131391785225954643473927231021865193551451<90>
prime factors 素因数
229383234010881253145836095413674027664523319<45>
1011211039809810274754617373533701326457880829<46>
factorization results 素因数分解の結果
 
Tue Jul 31 07:34:45 2007  Msieve v. 1.23
Tue Jul 31 07:34:45 2007  random seeds: f6cd87d8 a53fdc24
Tue Jul 31 07:34:45 2007  factoring 231954858579080269057677376740414939630659505325131391785225954643473927231021865193551451 (90 digits)
Tue Jul 31 07:34:46 2007  commencing quadratic sieve (89-digit input)
Tue Jul 31 07:34:46 2007  using multiplier of 11
Tue Jul 31 07:34:46 2007  using 64kb Pentium 2 sieve core
Tue Jul 31 07:34:46 2007  sieve interval: 18 blocks of size 65536
Tue Jul 31 07:34:46 2007  processing polynomials in batches of 6
Tue Jul 31 07:34:46 2007  using a sieve bound of 1575269 (59601 primes)
Tue Jul 31 07:34:46 2007  using large prime bound of 126021520 (26 bits)
Tue Jul 31 07:34:46 2007  using double large prime bound of 380890718607520 (42-49 bits)
Tue Jul 31 07:34:46 2007  using trial factoring cutoff of 49 bits
Tue Jul 31 07:34:46 2007  polynomial 'A' values have 12 factors
Tue Jul 31 17:16:16 2007  59785 relations (16189 full + 43596 combined from 628261 partial), need 59697
Tue Jul 31 17:16:20 2007  begin with 644450 relations
Tue Jul 31 17:16:21 2007  reduce to 144357 relations in 9 passes
Tue Jul 31 17:16:21 2007  attempting to read 144357 relations
Tue Jul 31 17:16:29 2007  recovered 144357 relations
Tue Jul 31 17:16:29 2007  recovered 122313 polynomials
Tue Jul 31 17:16:29 2007  attempting to build 59785 cycles
Tue Jul 31 17:16:30 2007  found 59785 cycles in 6 passes
Tue Jul 31 17:16:34 2007  distribution of cycle lengths:
Tue Jul 31 17:16:34 2007     length 1 : 16189
Tue Jul 31 17:16:34 2007     length 2 : 11643
Tue Jul 31 17:16:34 2007     length 3 : 10503
Tue Jul 31 17:16:34 2007     length 4 : 7913
Tue Jul 31 17:16:34 2007     length 5 : 5683
Tue Jul 31 17:16:34 2007     length 6 : 3388
Tue Jul 31 17:16:34 2007     length 7 : 2104
Tue Jul 31 17:16:34 2007     length 9+: 2362
Tue Jul 31 17:16:34 2007  largest cycle: 22 relations
Tue Jul 31 17:16:35 2007  matrix is 59601 x 59785 with weight 3535144 (avg 59.13/col)
Tue Jul 31 17:16:41 2007  filtering completed in 3 passes
Tue Jul 31 17:16:41 2007  matrix is 55625 x 55687 with weight 3317745 (avg 59.58/col)
Tue Jul 31 17:16:43 2007  saving the first 48 matrix rows for later
Tue Jul 31 17:16:43 2007  matrix is 55577 x 55687 with weight 2590949 (avg 46.53/col)
Tue Jul 31 17:16:43 2007  matrix includes 64 packed rows
Tue Jul 31 17:16:43 2007  using block size 5461 for processor cache size 128 kB
Tue Jul 31 17:16:44 2007  commencing Lanczos iteration
Tue Jul 31 17:19:46 2007  lanczos halted after 879 iterations
Tue Jul 31 17:19:47 2007  recovered 16 nontrivial dependencies
Tue Jul 31 17:19:50 2007  prp45 factor: 229383234010881253145836095413674027664523319
Tue Jul 31 17:19:50 2007  prp46 factor: 1011211039809810274754617373533701326457880829
Tue Jul 31 17:19:50 2007  elapsed time 09:45:05
execution environment 実行環境
Celeron 750MHz,Windows 2000)    

7×10117+3

c117

name 名前Robert Backstrom
date 日付July 31, 2007 08:22:30 UTC 2007 年 7 月 31 日 (火) 17 時 22 分 30 秒 (日本時間)
composite number 合成数
225806451612903225806451612903225806451612903225806451612903225806451612903225806451612903225806451612903225806451613<117>
prime factors 素因数
796610382478821640289686993942482559318724926882166707<54>
283459086875391589955150402968360965955345854041338678737403759<63>
factorization results 素因数分解の結果
Number: n
N=225806451612903225806451612903225806451612903225806451612903225806451612903225806451612903225806451612903225806451613
  ( 117 digits)
SNFS difficulty: 117 digits.
Divisors found:
 r1=796610382478821640289686993942482559318724926882166707 (pp54)
 r2=283459086875391589955150402968360965955345854041338678737403759 (pp63)
Version: GGNFS-0.77.1-20051202-athlon
Total time: 1.23 hours.
Scaled time: 1.78 units (timescale=1.451).
Factorization parameters were as follows:
name: KA_7_0_116_3
n: 225806451612903225806451612903225806451612903225806451612903225806451612903225806451612903225806451612903225806451613
skew: 0.34
deg: 5
c5: 700
c0: 3
m: 100000000000000000000000
type: snfs
rlim: 600000
alim: 600000
lpbr: 28
lpba: 28
mfbr: 48
mfba: 48
rlambda: 2.5
alambda: 2.5
qintsize: 100000
Factor base limits: 600000/600000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 48/48
Sieved algebraic special-q in [100000, 200001)
Primes: RFBsize:49098, AFBsize:48976, largePrimes:3849937 encountered
Relations: rels:3225255, finalFF:131768
Max relations in full relation-set: 28
Initial matrix: 98141 x 131768 with sparse part having weight 8495908.
Pruned matrix : 84202 x 84756 with weight 3752118.
Total sieving time: 1.07 hours.
Total relation processing time: 0.07 hours.
Matrix solve time: 0.05 hours.
Total square root time: 0.04 hours, sqrts: 3.
Prototype def-par.txt line would be:
snfs,117,5,0,0,0,0,0,0,0,0,600000,600000,28,28,48,48,2.5,2.5,50000
total time: 1.23 hours.
 --------- CPU info (if available) ----------

Cygwin on AMD 64 3400+

7×10120+3

c109

name 名前Robert Backstrom
date 日付July 31, 2007 16:35:12 UTC 2007 年 8 月 1 日 (水) 1 時 35 分 12 秒 (日本時間)
composite number 合成数
1691673621516014680304576988516586290004567558148171765518815439071657240016879833070443049183852561781239643<109>
prime factors 素因数
787073943986243214424803305243<30>
2149319812250807291486495152588101029793779750183550066121886943689304730180801<79>
factorization results 素因数分解の結果
Number: n
N=1691673621516014680304576988516586290004567558148171765518815439071657240016879833070443049183852561781239643
  ( 109 digits)
SNFS difficulty: 120 digits.
Divisors found:
 r1=787073943986243214424803305243 (pp30)
 r2=2149319812250807291486495152588101029793779750183550066121886943689304730180801 (pp79)
Version: GGNFS-0.77.1-20051202-athlon
Total time: 1.62 hours.
Scaled time: 2.35 units (timescale=1.448).
Factorization parameters were as follows:
name: KA_7_0_119_3
n: 1691673621516014680304576988516586290004567558148171765518815439071657240016879833070443049183852561781239643
skew: 0.34
deg: 5
c5: 7
c0: 3
m: 1000000000000000000000000
type: snfs
rlim: 800000
alim: 800000
lpbr: 28
lpba: 28
mfbr: 48
mfba: 48
rlambda: 2.5
alambda: 2.5
qintsize: 50000
Factor base limits: 800000/800000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 48/48
Sieved algebraic special-q in [100000, 250001)
Primes: RFBsize:63951, AFBsize:63643, largePrimes:4609625 encountered
Relations: rels:4046821, finalFF:240563
Max relations in full relation-set: 28
Initial matrix: 127659 x 240563 with sparse part having weight 15790458.
Pruned matrix : 84816 x 85518 with weight 3791952.
Total sieving time: 1.46 hours.
Total relation processing time: 0.08 hours.
Matrix solve time: 0.06 hours.
Total square root time: 0.03 hours, sqrts: 2.
Prototype def-par.txt line would be:
snfs,120,5,0,0,0,0,0,0,0,0,800000,800000,28,28,48,48,2.5,2.5,50000
total time: 1.62 hours.
 --------- CPU info (if available) ----------

Cygwin on AMD 64 3400+

7×10122+3

c94

name 名前Robert Backstrom
date 日付July 31, 2007 14:44:13 UTC 2007 年 7 月 31 日 (火) 23 時 44 分 13 秒 (日本時間)
composite number 合成数
1060392733017473507363436391125662056426006504379915175604094685956234092303916292830483893009<94>
prime factors 素因数
36803587049889567164794261972333592412847<41>
28812211472214508546521155757658327809127986705923647<53>
factorization results 素因数分解の結果
Tue Jul 31 22:22:05 2007  
Tue Jul 31 22:22:05 2007  
Tue Jul 31 22:22:05 2007  Msieve v. 1.25
Tue Jul 31 22:22:05 2007  random seeds: 2df35130 45e71b74
Tue Jul 31 22:22:05 2007  factoring 1060392733017473507363436391125662056426006504379915175604094685956234092303916292830483893009 (94 digits)
Tue Jul 31 22:22:05 2007  commencing quadratic sieve (93-digit input)
Tue Jul 31 22:22:05 2007  using multiplier of 1
Tue Jul 31 22:22:05 2007  using 64kb Opteron sieve core
Tue Jul 31 22:22:05 2007  sieve interval: 18 blocks of size 65536
Tue Jul 31 22:22:05 2007  processing polynomials in batches of 6
Tue Jul 31 22:22:05 2007  using a sieve bound of 1986401 (74118 primes)
Tue Jul 31 22:22:05 2007  using large prime bound of 256245729 (27 bits)
Tue Jul 31 22:22:05 2007  using double large prime bound of 1366412668937199 (42-51 bits)
Tue Jul 31 22:22:05 2007  using trial factoring cutoff of 51 bits
Tue Jul 31 22:22:05 2007  polynomial 'A' values have 12 factors
Wed Aug 01 00:39:21 2007  74518 relations (18810 full + 55708 combined from 1024843 partial), need 74214
Wed Aug 01 00:39:22 2007  begin with 1043653 relations
Wed Aug 01 00:39:23 2007  reduce to 190550 relations in 13 passes
Wed Aug 01 00:39:23 2007  attempting to read 190550 relations
Wed Aug 01 00:39:26 2007  recovered 190550 relations
Wed Aug 01 00:39:26 2007  recovered 169642 polynomials
Wed Aug 01 00:39:26 2007  attempting to build 74518 cycles
Wed Aug 01 00:39:26 2007  found 74518 cycles in 5 passes
Wed Aug 01 00:39:27 2007  distribution of cycle lengths:
Wed Aug 01 00:39:27 2007     length 1 : 18810
Wed Aug 01 00:39:27 2007     length 2 : 13413
Wed Aug 01 00:39:27 2007     length 3 : 12787
Wed Aug 01 00:39:27 2007     length 4 : 10167
Wed Aug 01 00:39:27 2007     length 5 : 7362
Wed Aug 01 00:39:27 2007     length 6 : 4755
Wed Aug 01 00:39:27 2007     length 7 : 3092
Wed Aug 01 00:39:27 2007     length 9+: 4132
Wed Aug 01 00:39:27 2007  largest cycle: 20 relations
Wed Aug 01 00:39:27 2007  matrix is 74118 x 74518 with weight 4440747 (avg 59.59/col)
Wed Aug 01 00:39:28 2007  filtering completed in 3 passes
Wed Aug 01 00:39:28 2007  matrix is 70053 x 70117 with weight 4190795 (avg 59.77/col)
Wed Aug 01 00:39:29 2007  saving the first 48 matrix rows for later
Wed Aug 01 00:39:29 2007  matrix is 70005 x 70117 with weight 3152619 (avg 44.96/col)
Wed Aug 01 00:39:29 2007  matrix includes 64 packed rows
Wed Aug 01 00:39:29 2007  using block size 21845 for processor cache size 512 kB
Wed Aug 01 00:39:29 2007  commencing Lanczos iteration
Wed Aug 01 00:40:15 2007  lanczos halted after 1108 iterations
Wed Aug 01 00:40:15 2007  recovered 16 nontrivial dependencies
Wed Aug 01 00:40:16 2007  prp41 factor: 36803587049889567164794261972333592412847
Wed Aug 01 00:40:16 2007  prp53 factor: 28812211472214508546521155757658327809127986705923647
Wed Aug 01 00:40:16 2007  elapsed time 02:18:11

AMD 64 3400+

7×10125+3

c122

name 名前Robert Backstrom
date 日付August 2, 2007 05:39:50 UTC 2007 年 8 月 2 日 (木) 14 時 39 分 50 秒 (日本時間)
composite number 合成数
37913665168174186210258354546931701240318474787412663164166170178194226290418675188214266370578995829496831500839516871581<122>
prime factors 素因数
13699452564493006814819701274146501315424887911148777<53>
2767531402418291140749455418859878737861230939330176281407585478703253<70>
factorization results 素因数分解の結果
Number: n
N=37913665168174186210258354546931701240318474787412663164166170178194226290418675188214266370578995829496831500839516871581
  ( 122 digits)
SNFS difficulty: 125 digits.
Divisors found:
 r1=13699452564493006814819701274146501315424887911148777 (pp53)
 r2=2767531402418291140749455418859878737861230939330176281407585478703253 (pp70)
Version: GGNFS-0.77.1-20060513-athlon-xp
Total time: 2.02 hours.
Scaled time: 2.73 units (timescale=1.352).
Factorization parameters were as follows:
name: KA_7_0_124_3
n: 37913665168174186210258354546931701240318474787412663164166170178194226290418675188214266370578995829496831500839516871581
skew: 0.84
deg: 5
c5: 7
c0: 3
m: 10000000000000000000000000
type: snfs
rlim: 700000
alim: 700000
lpbr: 28
lpba: 28
mfbr: 48
mfba: 48
rlambda: 2.5
alambda: 2.5
qintsize: 50000
Factor base limits: 700000/700000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 48/48
Sieved algebraic special-q in [100000, 300001)
Primes: RFBsize:56543, AFBsize:56283, largePrimes:5007709 encountered
Relations: rels:4440675, finalFF:243454
Max relations in full relation-set: 28
Initial matrix: 112891 x 243454 with sparse part having weight 20075677.
Pruned matrix : 80668 x 81296 with weight 4508727.
Total sieving time: 1.76 hours.
Total relation processing time: 0.10 hours.
Matrix solve time: 0.08 hours.
Total square root time: 0.08 hours, sqrts: 3.
Prototype def-par.txt line would be:
snfs,125,5,0,0,0,0,0,0,0,0,700000,700000,28,28,48,48,2.5,2.5,50000
total time: 2.02 hours.
 --------- CPU info (if available) ----------

Cygwin on AMD 64 3200+

7×10127+3

c123

name 名前Robert Backstrom
date 日付August 2, 2007 03:23:45 UTC 2007 年 8 月 2 日 (木) 12 時 23 分 45 秒 (日本時間)
composite number 合成数
369996458605324777605700059727999746288142670634438213234244757943031116702168707813796639375023124778662832798600356253733<123>
prime factors 素因数
101758248455110600982078958785140824830321627783059244018899<60>
3636034073135055601486854090198041730366400527898690994554262567<64>
factorization results 素因数分解の結果
Number: n
N=369996458605324777605700059727999746288142670634438213234244757943031116702168707813796639375023124778662832798600356253733
  ( 123 digits)
SNFS difficulty: 127 digits.
Divisors found:
 r1=101758248455110600982078958785140824830321627783059244018899 (pp60)
 r2=3636034073135055601486854090198041730366400527898690994554262567 (pp64)
Version: GGNFS-0.77.1-20060513-athlon-xp
Total time: 2.70 hours.
Scaled time: 3.67 units (timescale=1.358).
Factorization parameters were as follows:
name: KA_7_0_126_3
n: 369996458605324777605700059727999746288142670634438213234244757943031116702168707813796639375023124778662832798600356253733
skew: 0.34
deg: 5
c5: 700
c0: 3
m: 10000000000000000000000000
type: snfs
rlim: 800000
alim: 800000
lpbr: 28
lpba: 28
mfbr: 48
mfba: 48
rlambda: 2.5
alambda: 2.5
qintsize: 100000
Factor base limits: 800000/800000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 48/48
Sieved algebraic special-q in [100000, 400001)
Primes: RFBsize:63951, AFBsize:63898, largePrimes:4621659 encountered
Relations: rels:3934593, finalFF:151818
Max relations in full relation-set: 28
Initial matrix: 127916 x 151818 with sparse part having weight 11015888.
Pruned matrix : 117329 x 118032 with weight 6729113.
Total sieving time: 2.34 hours.
Total relation processing time: 0.09 hours.
Matrix solve time: 0.20 hours.
Total square root time: 0.07 hours, sqrts: 2.
Prototype def-par.txt line would be:
snfs,127,5,0,0,0,0,0,0,0,0,800000,800000,28,28,48,48,2.5,2.5,50000
total time: 2.70 hours.
 --------- CPU info (if available) ----------

Cygwin on AMD 64 3200+

7×10131+3

c85

name 名前Robert Backstrom
date 日付July 31, 2007 09:02:49 UTC 2007 年 7 月 31 日 (火) 18 時 2 分 49 秒 (日本時間)
composite number 合成数
9008357438502274995224625264375573726008762745952381754409588880984018651293713894171<85>
prime factors 素因数
245476063044641766698278446037400797293497<42>
36697498431299323192437388994595232599875443<44>
factorization results 素因数分解の結果
Tue Jul 31 18:27:11 2007  
Tue Jul 31 18:27:11 2007  
Tue Jul 31 18:27:11 2007  Msieve v. 1.25
Tue Jul 31 18:27:11 2007  random seeds: 51a0e488 172d0ce2
Tue Jul 31 18:27:11 2007  factoring 9008357438502274995224625264375573726008762745952381754409588880984018651293713894171 (85 digits)
Tue Jul 31 18:27:11 2007  commencing quadratic sieve (85-digit input)
Tue Jul 31 18:27:11 2007  using multiplier of 59
Tue Jul 31 18:27:11 2007  using 64kb Opteron sieve core
Tue Jul 31 18:27:11 2007  sieve interval: 6 blocks of size 65536
Tue Jul 31 18:27:11 2007  processing polynomials in batches of 17
Tue Jul 31 18:27:11 2007  using a sieve bound of 1442509 (54972 primes)
Tue Jul 31 18:27:11 2007  using large prime bound of 115400720 (26 bits)
Tue Jul 31 18:27:11 2007  using double large prime bound of 325068826146400 (41-49 bits)
Tue Jul 31 18:27:11 2007  using trial factoring cutoff of 49 bits
Tue Jul 31 18:27:11 2007  polynomial 'A' values have 11 factors
Tue Jul 31 18:57:24 2007  55354 relations (16849 full + 38505 combined from 558450 partial), need 55068
Tue Jul 31 18:57:25 2007  begin with 575299 relations
Tue Jul 31 18:57:25 2007  reduce to 126894 relations in 9 passes
Tue Jul 31 18:57:25 2007  attempting to read 126894 relations
Tue Jul 31 18:57:27 2007  recovered 126894 relations
Tue Jul 31 18:57:27 2007  recovered 104607 polynomials
Tue Jul 31 18:57:27 2007  attempting to build 55354 cycles
Tue Jul 31 18:57:27 2007  found 55354 cycles in 5 passes
Tue Jul 31 18:57:27 2007  distribution of cycle lengths:
Tue Jul 31 18:57:27 2007     length 1 : 16849
Tue Jul 31 18:57:27 2007     length 2 : 11673
Tue Jul 31 18:57:27 2007     length 3 : 9808
Tue Jul 31 18:57:27 2007     length 4 : 6856
Tue Jul 31 18:57:27 2007     length 5 : 4419
Tue Jul 31 18:57:27 2007     length 6 : 2741
Tue Jul 31 18:57:27 2007     length 7 : 1489
Tue Jul 31 18:57:27 2007     length 9+: 1519
Tue Jul 31 18:57:27 2007  largest cycle: 18 relations
Tue Jul 31 18:57:28 2007  matrix is 54972 x 55354 with weight 2949435 (avg 53.28/col)
Tue Jul 31 18:57:28 2007  filtering completed in 3 passes
Tue Jul 31 18:57:28 2007  matrix is 49563 x 49627 with weight 2651538 (avg 53.43/col)
Tue Jul 31 18:57:29 2007  saving the first 48 matrix rows for later
Tue Jul 31 18:57:29 2007  matrix is 49515 x 49627 with weight 2025706 (avg 40.82/col)
Tue Jul 31 18:57:29 2007  matrix includes 64 packed rows
Tue Jul 31 18:57:29 2007  commencing Lanczos iteration
Tue Jul 31 18:58:45 2007  lanczos halted after 785 iterations
Tue Jul 31 18:58:46 2007  recovered 12 nontrivial dependencies
Tue Jul 31 18:58:46 2007  prp42 factor: 245476063044641766698278446037400797293497
Tue Jul 31 18:58:46 2007  prp44 factor: 36697498431299323192437388994595232599875443
Tue Jul 31 18:58:46 2007  elapsed time 00:31:35

AMD 64 3400+

7×10132+3

c114

name 名前Robert Backstrom
date 日付August 2, 2007 12:59:58 UTC 2007 年 8 月 2 日 (木) 21 時 59 分 58 秒 (日本時間)
composite number 合成数
119024360921276121842517421424303849703442150179435383100670930768158762553946642889669912459689870973548741157857<114>
prime factors 素因数
1514672391291856973675707124754820474913203927051<49>
78580927206153670651740539814203277361304443804223185859614493507<65>
factorization results 素因数分解の結果
Number: n
N=119024360921276121842517421424303849703442150179435383100670930768158762553946642889669912459689870973548741157857
  ( 114 digits)
SNFS difficulty: 132 digits.
Divisors found:
 r1=1514672391291856973675707124754820474913203927051 (pp49)
 r2=78580927206153670651740539814203277361304443804223185859614493507 (pp65)
Version: GGNFS-0.77.1-20051202-athlon
Total time: 4.29 hours.
Scaled time: 5.12 units (timescale=1.193).
Factorization parameters were as follows:
name: KA_7_0_131_3
n: 119024360921276121842517421424303849703442150179435383100670930768158762553946642889669912459689870973548741157857
type: snfs
skew: 0.34
deg: 5
c5: 700
c0: 3
m: 100000000000000000000000000
rlim: 900000
alim: 900000
lpbr: 28
lpba: 28
mfbr: 48
mfba: 48
qintsize: 50000
Factor base limits: 900000/900000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 48/48
Sieved algebraic special-q in [100000, 700001)
Primes: RFBsize:71274, AFBsize:71340, largePrimes:3740700 encountered
Relations: rels:3055228, finalFF:161685
Max relations in full relation-set: 28
Initial matrix: 142681 x 161685 with sparse part having weight 7259713.
Pruned matrix : 128325 x 129102 with weight 4802914.
Total sieving time: 3.74 hours.
Total relation processing time: 0.10 hours.
Matrix solve time: 0.40 hours.
Total square root time: 0.05 hours, sqrts: 2.
Prototype def-par.txt line would be:
snfs,132,5,0,0,0,0,0,0,0,0,900000,900000,28,28,48,48,2.2,2.2,50000
total time: 4.29 hours.
 --------- CPU info (if available) ----------

Cygwin on AMD XP 2700+

7×10133+3

c89

name 名前Robert Backstrom
date 日付July 31, 2007 10:02:14 UTC 2007 年 7 月 31 日 (火) 19 時 2 分 14 秒 (日本時間)
composite number 合成数
26439604183568695431333540511848343933708312285905784586381054531841927202958085090487801<89>
prime factors 素因数
8783383808652802647890907770843019907393<40>
3010184316154118713322706068056130317359871964857<49>
factorization results 素因数分解の結果
Tue Jul 31 19:07:15 2007  
Tue Jul 31 19:07:15 2007  
Tue Jul 31 19:07:15 2007  Msieve v. 1.25
Tue Jul 31 19:07:15 2007  random seeds: d5724f40 7200004e
Tue Jul 31 19:07:15 2007  factoring 26439604183568695431333540511848343933708312285905784586381054531841927202958085090487801 (89 digits)
Tue Jul 31 19:07:15 2007  commencing quadratic sieve (89-digit input)
Tue Jul 31 19:07:15 2007  using multiplier of 1
Tue Jul 31 19:07:15 2007  using 64kb Opteron sieve core
Tue Jul 31 19:07:15 2007  sieve interval: 15 blocks of size 65536
Tue Jul 31 19:07:15 2007  processing polynomials in batches of 7
Tue Jul 31 19:07:15 2007  using a sieve bound of 1544831 (58667 primes)
Tue Jul 31 19:07:15 2007  using large prime bound of 123586480 (26 bits)
Tue Jul 31 19:07:15 2007  using double large prime bound of 367745783685200 (42-49 bits)
Tue Jul 31 19:07:15 2007  using trial factoring cutoff of 49 bits
Tue Jul 31 19:07:15 2007  polynomial 'A' values have 11 factors
Tue Jul 31 19:50:38 2007  58799 relations (16800 full + 41999 combined from 610095 partial), need 58763
Tue Jul 31 19:50:38 2007  begin with 626895 relations
Tue Jul 31 19:50:39 2007  reduce to 139283 relations in 10 passes
Tue Jul 31 19:50:39 2007  attempting to read 139283 relations
Tue Jul 31 19:50:40 2007  recovered 139283 relations
Tue Jul 31 19:50:40 2007  recovered 109037 polynomials
Tue Jul 31 19:50:40 2007  attempting to build 58799 cycles
Tue Jul 31 19:50:41 2007  found 58799 cycles in 5 passes
Tue Jul 31 19:50:41 2007  distribution of cycle lengths:
Tue Jul 31 19:50:41 2007     length 1 : 16800
Tue Jul 31 19:50:41 2007     length 2 : 11719
Tue Jul 31 19:50:41 2007     length 3 : 10451
Tue Jul 31 19:50:41 2007     length 4 : 7497
Tue Jul 31 19:50:41 2007     length 5 : 5180
Tue Jul 31 19:50:41 2007     length 6 : 3241
Tue Jul 31 19:50:41 2007     length 7 : 1863
Tue Jul 31 19:50:41 2007     length 9+: 2048
Tue Jul 31 19:50:41 2007  largest cycle: 18 relations
Tue Jul 31 19:50:41 2007  matrix is 58667 x 58799 with weight 3374117 (avg 57.38/col)
Tue Jul 31 19:50:42 2007  filtering completed in 3 passes
Tue Jul 31 19:50:42 2007  matrix is 53856 x 53920 with weight 3132205 (avg 58.09/col)
Tue Jul 31 19:50:43 2007  saving the first 48 matrix rows for later
Tue Jul 31 19:50:43 2007  matrix is 53808 x 53920 with weight 2508505 (avg 46.52/col)
Tue Jul 31 19:50:43 2007  matrix includes 64 packed rows
Tue Jul 31 19:50:43 2007  using block size 21568 for processor cache size 512 kB
Tue Jul 31 19:50:43 2007  commencing Lanczos iteration
Tue Jul 31 19:51:11 2007  lanczos halted after 852 iterations
Tue Jul 31 19:51:11 2007  recovered 17 nontrivial dependencies
Tue Jul 31 19:51:11 2007  prp40 factor: 8783383808652802647890907770843019907393
Tue Jul 31 19:51:11 2007  prp49 factor: 3010184316154118713322706068056130317359871964857
Tue Jul 31 19:51:11 2007  elapsed time 00:43:56

AMD 64 3400+

7×10135+3

c120

name 名前Robert Backstrom
date 日付August 2, 2007 09:35:13 UTC 2007 年 8 月 2 日 (木) 18 時 35 分 13 秒 (日本時間)
composite number 合成数
733539978030426032474138343766645879888898534474528389024587518339851243854978692112465545639290426570208439273154088059<120>
prime factors 素因数
498282829674007715259141593888416290550964085919<48>
1472135771787141323267702134218700861789671776680188265909145553844113061<73>
factorization results 素因数分解の結果
Number: n
N=733539978030426032474138343766645879888898534474528389024587518339851243854978692112465545639290426570208439273154088059
  ( 120 digits)
SNFS difficulty: 135 digits.
Divisors found:
 r1=498282829674007715259141593888416290550964085919 (pp48)
 r2=1472135771787141323267702134218700861789671776680188265909145553844113061 (pp73)
Version: GGNFS-0.77.1-20060513-athlon-xp
Total time: 3.62 hours.
Scaled time: 4.92 units (timescale=1.358).
Factorization parameters were as follows:
name: KA_7_0_134_3
n: 733539978030426032474138343766645879888898534474528389024587518339851243854978692112465545639290426570208439273154088059
skew: 0.84
deg: 5
c5: 7
c0: 3
m: 1000000000000000000000000000
type: snfs
rlim: 1000000
alim: 1000000
lpbr: 28
lpba: 28
mfbr: 48
mfba: 48
rlambda: 2.5
alambda: 2.5
qintsize: 50000
Factor base limits: 1000000/1000000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 48/48
Sieved algebraic special-q in [100000, 550001)
Primes: RFBsize:78498, AFBsize:78031, largePrimes:5443174 encountered
Relations: rels:4746285, finalFF:189754
Max relations in full relation-set: 28
Initial matrix: 156594 x 189754 with sparse part having weight 15131695.
Pruned matrix : 142669 x 143515 with weight 9259290.
Total sieving time: 3.03 hours.
Total relation processing time: 0.12 hours.
Matrix solve time: 0.43 hours.
Total square root time: 0.05 hours, sqrts: 1.
Prototype def-par.txt line would be:
snfs,135,5,0,0,0,0,0,0,0,0,1000000,1000000,28,28,48,48,2.5,2.5,75000
total time: 3.62 hours.
 --------- CPU info (if available) ----------

Cygwin on AMD 64 3200+

7×10136+3

c137

name 名前Robert Backstrom
date 日付July 31, 2007 07:03:28 UTC 2007 年 7 月 31 日 (火) 16 時 3 分 28 秒 (日本時間)
composite number 合成数
70000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003<137>
prime factors 素因数
189532579450789969799143826592293<33>
2381835865531583487969941738318774107993447<43>
155060912820934332646084226028944988675098343203271382941181793<63>
factorization results 素因数分解の結果
Number: n
N=70000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003
  ( 137 digits)
SNFS difficulty: 136 digits.
Divisors found:
 r1=189532579450789969799143826592293 (pp33)
 r2=2381835865531583487969941738318774107993447 (pp43)
 r3=155060912820934332646084226028944988675098343203271382941181793 (pp63)
Version: GGNFS-0.77.1-20051202-athlon
Total time: 5.52 hours.
Scaled time: 8.03 units (timescale=1.455).
Factorization parameters were as follows:
name: KA_7_0_135_3
n: 70000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003
skew: 0.53
deg: 5
c5: 70
c0: 3
m: 1000000000000000000000000000
type: snfs
rlim: 1000000
alim: 1000000
lpbr: 28
lpba: 28
mfbr: 48
mfba: 48
rlambda: 2.5
alambda: 2.5
qintsize: 100000
Factor base limits: 1000000/1000000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 48/48
Sieved algebraic special-q in [100000, 900001)
Primes: RFBsize:78498, AFBsize:78021, largePrimes:6514103 encountered
Relations: rels:5824178, finalFF:190944
Max relations in full relation-set: 28
Initial matrix: 156586 x 190944 with sparse part having weight 19426214.
Pruned matrix : 147516 x 148362 with weight 12985709.
Total sieving time: 4.77 hours.
Total relation processing time: 0.15 hours.
Matrix solve time: 0.53 hours.
Total square root time: 0.07 hours, sqrts: 2.
Prototype def-par.txt line would be:
snfs,136,5,0,0,0,0,0,0,0,0,1000000,1000000,28,28,48,48,2.5,2.5,75000
total time: 5.52 hours.
 --------- CPU info (if available) ----------

Cygwin on AMD 64 3400+

7×10137+3

c103

name 名前Sinkiti Sibata
date 日付August 1, 2007 18:50:01 UTC 2007 年 8 月 2 日 (木) 3 時 50 分 1 秒 (日本時間)
composite number 合成数
5479612061930819937675113993646705222614196918682242006504828855291692670246697931177796783015886771433<103>
prime factors 素因数
139631923964055191736784404269<30>
39243261185324721562992298947369650901900632234898044840233858916987494957<74>
factorization results 素因数分解の結果
Number: 70003_137
N=5479612061930819937675113993646705222614196918682242006504828855291692670246697931177796783015886771433
  ( 103 digits)
SNFS difficulty: 137 digits.
Divisors found:
 r1=139631923964055191736784404269 (pp30)
 r2=39243261185324721562992298947369650901900632234898044840233858916987494957 (pp74)
Version: GGNFS-0.77.1-20060722-pentium4
Total time: 9.59 hours.
Scaled time: 6.54 units (timescale=0.682).
Factorization parameters were as follows:
name: 70003_137
n: 5479612061930819937675113993646705222614196918682242006504828855291692670246697931177796783015886771433
m: 1000000000000000000000000000
c5: 700
c0: 3
skew: 0.34
type: snfs
Factor base limits: 1000000/800000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 43/43
Sieved algebraic special-q in [400000, 1375001)
Primes: RFBsize:78498, AFBsize:63898, largePrimes:1539023 encountered
Relations: rels:1533849, finalFF:161515
Max relations in full relation-set: 0
Initial matrix: 142463 x 161515 with sparse part having weight 13047221.
Pruned matrix : 136623 x 137399 with weight 9876416.
Total sieving time: 9.04 hours.
Total relation processing time: 0.09 hours.
Matrix solve time: 0.40 hours.
Time per square root: 0.06 hours.
Prototype def-par.txt line would be:
snfs,137,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000
total time: 9.59 hours.
 --------- CPU info (if available) ----------
execution environment 実行環境
Pentium 4 2.4GHz, Windows XP and Cygwin)

7×10138+3

c104

name 名前Sinkiti Sibata
date 日付August 2, 2007 20:00:31 UTC 2007 年 8 月 3 日 (金) 5 時 0 分 31 秒 (日本時間)
composite number 合成数
14265902958935973680620930474842135188483839358780870437646100498699296745754482441030588187552932849553<104>
prime factors 素因数
39500434691109480414761661938549<32>
361158125739483496643032610400546386075176007047634753673066706124874797<72>
factorization results 素因数分解の結果
Number: 70003_138
N=14265902958935973680620930474842135188483839358780870437646100498699296745754482441030588187552932849553
  ( 104 digits)
SNFS difficulty: 138 digits.
Divisors found:
 r1=39500434691109480414761661938549 (pp32)
 r2=361158125739483496643032610400546386075176007047634753673066706124874797 (pp72)
Version: GGNFS-0.77.1-20060722-pentium4
Total time: 12.90 hours.
Scaled time: 8.80 units (timescale=0.682).
Factorization parameters were as follows:
name: 70003_138
n: 14265902958935973680620930474842135188483839358780870437646100498699296745754482441030588187552932849553
m: 1000000000000000000000000000
c5: 7000
c0: 3
skew: 0.21
type: snfs
Factor base limits: 1000000/800000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 43/43
Sieved algebraic special-q in [400000, 1750001)
Primes: RFBsize:78498, AFBsize:64153, largePrimes:1565292 encountered
Relations: rels:1549696, finalFF:159894
Max relations in full relation-set: 0
Initial matrix: 142718 x 159894 with sparse part having weight 17823941.
Pruned matrix : 138506 x 139283 with weight 13759036.
Total sieving time: 12.18 hours.
Total relation processing time: 0.11 hours.
Matrix solve time: 0.54 hours.
Time per square root: 0.07 hours.
Prototype def-par.txt line would be:
snfs,138,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000
total time: 12.90 hours.
 --------- CPU info (if available) ----------
execution environment 実行環境
Pentium 4 2.4GHz, Windows XP and Cygwin)

7×10140+3

c107

name 名前Sinkiti Sibata
date 日付August 2, 2007 05:14:21 UTC 2007 年 8 月 2 日 (木) 14 時 14 分 21 秒 (日本時間)
composite number 合成数
18598132598981632690429372380577188394736092833600211994959614409569142544257818749339461669680023478312571<107>
prime factors 素因数
278323359075849334609317178348129<33>
66822032691525636457754568132542380413223137289570793768530446299737118299<74>
factorization results 素因数分解の結果
Number: 70003_140
N=18598132598981632690429372380577188394736092833600211994959614409569142544257818749339461669680023478312571
  ( 107 digits)
SNFS difficulty: 140 digits.
Divisors found:
 r1=278323359075849334609317178348129 (pp33)
 r2=66822032691525636457754568132542380413223137289570793768530446299737118299 (pp74)
Version: GGNFS-0.77.1-20060722-pentium4
Total time: 9.94 hours.
Scaled time: 6.78 units (timescale=0.682).
Factorization parameters were as follows:
name: 70003_140
n: 18598132598981632690429372380577188394736092833600211994959614409569142544257818749339461669680023478312571
m: 10000000000000000000000000000
c5: 7
c0: 3
skew: 0.84
type: snfs
Factor base limits: 1300000/1300000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 45/45
Sieved algebraic special-q in [650000, 1550001)
Primes: RFBsize:100021, AFBsize:99538, largePrimes:2645025 encountered
Relations: rels:2617239, finalFF:224213
Max relations in full relation-set: 0
Initial matrix: 199624 x 224213 with sparse part having weight 12939835.
Pruned matrix : 190257 x 191319 with weight 10105839.
Total sieving time: 9.03 hours.
Total relation processing time: 0.11 hours.
Matrix solve time: 0.72 hours.
Time per square root: 0.08 hours.
Prototype def-par.txt line would be:
snfs,140,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000
total time: 9.94 hours.
 --------- CPU info (if available) ----------
execution environment 実行環境
Pentium 4 2.4GHz, Windows XP and Cygwin)

7×10143+3

c114

name 名前Robert Backstrom
date 日付August 6, 2007 05:43:22 UTC 2007 年 8 月 6 日 (月) 14 時 43 分 22 秒 (日本時間)
composite number 合成数
407955737430738536692939991644316206131841159102557048096582503950767590461218943000918208625655443001223610844649<114>
prime factors 素因数
99615388886871440186141889727022388487187792018971<50>
4095308385474807274359199791739966295408609792078800566560390219<64>
factorization results 素因数分解の結果
Number: n
N=407955737430738536692939991644316206131841159102557048096582503950767590461218943000918208625655443001223610844649
  ( 114 digits)
SNFS difficulty: 143 digits.
Divisors found:
 r1=99615388886871440186141889727022388487187792018971 (pp50)
 r2=4095308385474807274359199791739966295408609792078800566560390219 (pp64)
Version: GGNFS-0.77.1-20051202-athlon
Total time: 8.69 hours.
Scaled time: 11.45 units (timescale=1.318).
Factorization parameters were as follows:
name: KA_7_0_142_3
n: 407955737430738536692939991644316206131841159102557048096582503950767590461218943000918208625655443001223610844649
skew: 0.21
deg: 5
c5: 7000
c0: 3
m: 10000000000000000000000000000
type: snfs
rlim: 1300000
alim: 1300000
lpbr: 28
lpba: 28
mfbr: 48
mfba: 48
rlambda: 2.5
alambda: 2.5
qintsize: 100000
Factor base limits: 1300000/1300000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 48/48
Sieved algebraic special-q in [100000, 1200001)
Primes: RFBsize:100021, AFBsize:100188, largePrimes:6536058 encountered
Relations: rels:5813023, finalFF:258829
Max relations in full relation-set: 48
Initial matrix: 200276 x 258829 with sparse part having weight 33020205.
Pruned matrix : 185384 x 186449 with weight 17965451.
Total sieving time: 7.28 hours.
Total relation processing time: 0.18 hours.
Matrix solve time: 1.13 hours.
Total square root time: 0.09 hours, sqrts: 2.
Prototype def-par.txt line would be:
snfs,143,5,0,0,0,0,0,0,0,0,1300000,1300000,28,28,48,48,2.5,2.5,100000
total time: 8.69 hours.
 --------- CPU info (if available) ----------

Cygwin on AMD 64 3200+

7×10145+3

c101

name 名前Robert Backstrom
date 日付July 31, 2007 23:02:27 UTC 2007 年 8 月 1 日 (水) 8 時 2 分 27 秒 (日本時間)
composite number 合成数
22213689941209063158208924297571722939004404285708946735588677498261543842008297054574418225109352683<101>
prime factors 素因数
54389898345654421049856493544427544048520119<44>
408415728230237921555405467245794348472339374239159426157<57>
factorization results 素因数分解の結果
Number: n
N=22213689941209063158208924297571722939004404285708946735588677498261543842008297054574418225109352683
  ( 101 digits)
Divisors found:
 r1=54389898345654421049856493544427544048520119 (pp44)
 r2=408415728230237921555405467245794348472339374239159426157 (pp57)
Version: GGNFS-0.77.1-20051202-athlon
Total time: 5.98 hours.
Scaled time: 8.61 units (timescale=1.440).
Factorization parameters were as follows:
name: n
n: 22213689941209063158208924297571722939004404285708946735588677498261543842008297054574418225109352683
skew: 9797.27
# norm 1.17e+14
c5: 52860
c4: 698483228
c3: -14911543473265
c2: -55584912348479370
c1: 671780603124125519596
c0: 65049529035605759990224
# alpha -6.39
Y1: 18029502491
Y0: -13325918615022094611
# Murphy_E 3.27e-09
# M 11752346036422637204237551646785296678119824290663937408764580117521053325165969638739266765025892067
type: gnfs
rlim: 1800000
alim: 1800000
lpbr: 26
lpba: 26
mfbr: 48
mfba: 48
rlambda: 2.5
alambda: 2.5
qintsize: 100000
Factor base limits: 1800000/1800000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 48/48
Sieved algebraic special-q in [100000, 800001)
Primes: RFBsize:135072, AFBsize:135185, largePrimes:3524807 encountered
Relations: rels:3561278, finalFF:435975
Max relations in full relation-set: 28
Initial matrix: 270338 x 435975 with sparse part having weight 24359364.
Pruned matrix : 135847 x 137262 with weight 7808751.
Total sieving time: 5.46 hours.
Total relation processing time: 0.14 hours.
Matrix solve time: 0.28 hours.
Total square root time: 0.10 hours, sqrts: 2.
Prototype def-par.txt line would be:
gnfs,100,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,26,26,48,48,2.5,2.5,100000
total time: 5.98 hours.
 --------- CPU info (if available) ----------

Cygwin on AMD 64 3400+

7×10147+3

c117

name 名前Sinkiti Sibata
date 日付August 4, 2007 13:18:48 UTC 2007 年 8 月 4 日 (土) 22 時 18 分 48 秒 (日本時間)
composite number 合成数
212084016898807566754857352490161533118634629504259292309654861162435026120974930470578532991845919966137704006103901<117>
prime factors 素因数
49184959607580348859573544470471<32>
4311968914702968224249026994416631354378899830941813009414303440243079537179314918331<85>
factorization results 素因数分解の結果
Number: 70003_147
N=212084016898807566754857352490161533118634629504259292309654861162435026120974930470578532991845919966137704006103901
  ( 117 digits)
SNFS difficulty: 147 digits.
Divisors found:
 r1=49184959607580348859573544470471 (pp32)
 r2=4311968914702968224249026994416631354378899830941813009414303440243079537179314918331 (pp85)
Version: GGNFS-0.77.1-20060722-pentium4
Total time: 22.87 hours.
Scaled time: 15.60 units (timescale=0.682).
Factorization parameters were as follows:
name: 70003_147
n: 212084016898807566754857352490161533118634629504259292309654861162435026120974930470578532991845919966137704006103901
m: 100000000000000000000000000000
c5: 700
c0: 3
skew: 0.34
type: snfs
Factor base limits: 1500000/1500000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 45/45
Sieved algebraic special-q in [750000, 2850001)
Primes: RFBsize:114155, AFBsize:114337, largePrimes:2762094 encountered
Relations: rels:2702598, finalFF:256255
Max relations in full relation-set: 0
Initial matrix: 228559 x 256255 with sparse part having weight 29944652.
Pruned matrix : 220754 x 221960 with weight 23313853.
Total sieving time: 20.76 hours.
Total relation processing time: 0.17 hours.
Matrix solve time: 1.83 hours.
Time per square root: 0.11 hours.
Prototype def-par.txt line would be:
snfs,147,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,100000
total time: 22.87 hours.
 --------- CPU info (if available) ----------
execution environment 実行環境
Pentium 4 2.4GHz, Windows XP and Cygwin)

7×10148+3

c142

name 名前Robert Backstrom
date 日付August 3, 2007 02:31:19 UTC 2007 年 8 月 3 日 (金) 11 時 31 分 19 秒 (日本時間)
composite number 合成数
1364974401952552982797637104512560523696218862959553488013662535779635256610215160329990751518441398909225555838538581966703087433649813048231<142>
prime factors 素因数
1248139200509574640907510234705365019<37>
668778149760661722591247508440960905084930985277<48>
1635232116045943944454517876533152037422559560020696414537<58>
factorization results 素因数分解の結果
Number: n
N=1364974401952552982797637104512560523696218862959553488013662535779635256610215160329990751518441398909225555838538581966703087433649813048231
  ( 142 digits)
SNFS difficulty: 148 digits.
Divisors found:
 r1=1248139200509574640907510234705365019 (pp37)
 r2=668778149760661722591247508440960905084930985277 (pp48)
 r3=1635232116045943944454517876533152037422559560020696414537 (pp58)
Version: GGNFS-0.77.1-20060513-athlon-xp
Total time: 16.09 hours.
Scaled time: 21.91 units (timescale=1.362).
Factorization parameters were as follows:
name: KA_7_0_147_3
n: 1364974401952552982797637104512560523696218862959553488013662535779635256610215160329990751518441398909225555838538581966703087433649813048231
skew: 0.21
deg: 5
c5: 7000
c0: 3
m: 100000000000000000000000000000
type: snfs
rlim: 1500000
alim: 1500000
lpbr: 28
lpba: 28
mfbr: 48
mfba: 48
rlambda: 2.5
alambda: 2.5
qintsize: 100000
Factor base limits: 1500000/1500000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 48/48
Sieved algebraic special-q in [100000, 2000001)
Primes: RFBsize:114155, AFBsize:114347, largePrimes:7377130 encountered
Relations: rels:6857385, finalFF:270003
Max relations in full relation-set: 28
Initial matrix: 228569 x 270003 with sparse part having weight 30080076.
Pruned matrix : 218314 x 219520 with weight 22382143.
Total sieving time: 14.03 hours.
Total relation processing time: 0.24 hours.
Matrix solve time: 1.64 hours.
Total square root time: 0.17 hours, sqrts: 2.
Prototype def-par.txt line would be:
snfs,148,5,0,0,0,0,0,0,0,0,1500000,1500000,28,28,48,48,2.5,2.5,100000
total time: 16.09 hours.
 --------- CPU info (if available) ----------

Cygwin on AMD 64 3200+

7×10150+3

c122

name 名前Robert Backstrom
date 日付August 4, 2007 01:03:12 UTC 2007 年 8 月 4 日 (土) 10 時 3 分 12 秒 (日本時間)
composite number 合成数
14379248154270385139813463545958394801202417801191544982206419087617630689229379296085630002943418668516430905971555961007<122>
prime factors 素因数
2860432727051506986615284475786112947115219635815431<52>
5026948551624322877511681422548970043126094617265313823362275760438297<70>
factorization results 素因数分解の結果
Number: n
N=14379248154270385139813463545958394801202417801191544982206419087617630689229379296085630002943418668516430905971555961007
  ( 122 digits)
SNFS difficulty: 150 digits.
Divisors found:
 r1=2860432727051506986615284475786112947115219635815431 (pp52)
 r2=5026948551624322877511681422548970043126094617265313823362275760438297 (pp70)
Version: GGNFS-0.77.1-20060513-athlon-xp
Total time: 14.95 hours.
Scaled time: 20.40 units (timescale=1.365).
Factorization parameters were as follows:
name: KA_7_0_149_3
n: 14379248154270385139813463545958394801202417801191544982206419087617630689229379296085630002943418668516430905971555961007
skew: 0.84
deg: 5
c5: 7
c0: 3
m: 1000000000000000000000000000000
type: snfs
rlim: 2000000
alim: 2000000
lpbr: 28
lpba: 28
mfbr: 48
mfba: 48
rlambda: 2.5
alambda: 2.5
qintsize: 100000
Factor base limits: 2000000/2000000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 48/48
Sieved algebraic special-q in [100000, 700001)
Primes: RFBsize:148933, AFBsize:148270, largePrimes:5983637 encountered
Relations: rels:5373975, finalFF:333157
Max relations in full relation-set: 28
Initial matrix: 297268 x 333157 with sparse part having weight 22706688.
Pruned matrix : 269197 x 270747 with weight 15488628.
Total sieving time: 13.19 hours.
Total relation processing time: 0.15 hours.
Matrix solve time: 1.53 hours.
Total square root time: 0.08 hours, sqrts: 1.
Prototype def-par.txt line would be:
snfs,150,5,0,0,0,0,0,0,0,0,2000000,2000000,28,28,48,48,2.5,2.5,100000
total time: 14.95 hours.
 --------- CPU info (if available) ----------

Cygwin on AMD 64 3200+

7×10152+3

c140

name 名前Robert Backstrom
date 日付August 4, 2007 00:45:07 UTC 2007 年 8 月 4 日 (土) 9 時 45 分 7 秒 (日本時間)
composite number 合成数
37423691459111630694213075267719021502276516612327799793244021635177923501617996604911113655109015687913454442940049105499674605998317941207<140>
prime factors 素因数
710664466259752258736962985632455239789<39>
52660141650353797139373582732951853429418586057828085008415146466989469864283870303119649117935460563<101>
factorization results 素因数分解の結果
Number: n
N=37423691459111630694213075267719021502276516612327799793244021635177923501617996604911113655109015687913454442940049105499674605998317941207
  ( 140 digits)
SNFS difficulty: 152 digits.
Divisors found:
 r1=710664466259752258736962985632455239789 (pp39)
 r2=52660141650353797139373582732951853429418586057828085008415146466989469864283870303119649117935460563 (pp101)
Version: GGNFS-0.77.1-20051202-athlon
Total time: 26.23 hours.
Scaled time: 31.40 units (timescale=1.197).
Factorization parameters were as follows:
name: KA_7_0_151_3
n: 37423691459111630694213075267719021502276516612327799793244021635177923501617996604911113655109015687913454442940049105499674605998317941207
type: snfs
skew: 0.34
deg: 5
c5: 700
c0: 3
m: 1000000000000000000000000000000
rlim: 3000000
alim: 3000000
lpbr: 28
lpba: 28
mfbr: 48
mfba: 48
qintsize: 100000
Factor base limits: 3000000/3000000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 48/48
Sieved algebraic special-q in [100000, 1000001)
Primes: RFBsize:216816, AFBsize:216741, largePrimes:6016357 encountered
Relations: rels:5499110, finalFF:498155
Max relations in full relation-set: 28
Initial matrix: 433624 x 498155 with sparse part having weight 22030485.
Pruned matrix : 366825 x 369057 with weight 12772769.
Total sieving time: 23.88 hours.
Total relation processing time: 0.19 hours.
Matrix solve time: 2.02 hours.
Total square root time: 0.14 hours, sqrts: 2.
Prototype def-par.txt line would be:
snfs,152,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.3,2.3,100000
total time: 26.23 hours.
 --------- CPU info (if available) ----------

Cygwin on AMD XP 2700+

7×10153+3

c131

name 名前Jo Yeong Uk
date 日付September 16, 2007 06:58:07 UTC 2007 年 9 月 16 日 (日) 15 時 58 分 7 秒 (日本時間)
composite number 合成数
16998600397783389175759249569289061087069302188459355668140254648218552381501175502221072936905279990154489333515869992693852871047<131>
prime factors 素因数
2379079812909254428043276041211980572721289410506055623377<58>
7145031581347695270977233930386125972534532154126683920313280001705450711<73>
factorization results 素因数分解の結果
Number: 70003_153
N=16998600397783389175759249569289061087069302188459355668140254648218552381501175502221072936905279990154489333515869992693852871047
  ( 131 digits)
SNFS difficulty: 155 digits.
Divisors found:
 r1=2379079812909254428043276041211980572721289410506055623377 (pp58)
 r2=7145031581347695270977233930386125972534532154126683920313280001705450711 (pp73)
Version: GGNFS-0.77.1-20050930-nocona
Total time: 20.08 hours.
Scaled time: 42.73 units (timescale=2.128).
Factorization parameters were as follows:
n: 16998600397783389175759249569289061087069302188459355668140254648218552381501175502221072936905279990154489333515869992693852871047
m: 10000000000000000000000000000000
c5: 7
c0: 300
skew: 2.12
type: snfs
Factor base limits: 3000000/3000000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 48/48
Sieved algebraic special-q in [1500000, 2700001)
Primes: RFBsize:216816, AFBsize:216676, largePrimes:5675578 encountered
Relations: rels:5689109, finalFF:598690
Max relations in full relation-set: 28
Initial matrix: 433559 x 598690 with sparse part having weight 47345346.
Pruned matrix : 332263 x 334494 with weight 29525513.
Total sieving time: 19.32 hours.
Total relation processing time: 0.10 hours.
Matrix solve time: 0.62 hours.
Time per square root: 0.04 hours.
Prototype def-par.txt line would be:
snfs,155,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000
total time: 20.08 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Memory: 8167564k/8912896k available (2106k kernel code, 0k reserved, 1299k data, 196k init)
Calibrating delay using timer specific routine.. 4815.37 BogoMIPS (lpj=2407686)
Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124)
Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117)
Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405131)
Total of 4 processors activated (19246.11 BogoMIPS).
execution environment 実行環境
Core 2 Quad Q6600

7×10156+3

c137

name 名前Robert Backstrom
date 日付August 18, 2007 15:22:35 UTC 2007 年 8 月 19 日 (日) 0 時 22 分 35 秒 (日本時間)
composite number 合成数
53082836237769857722135010860503485221907656970354532121622796129493381197886353182035304221918803574861216603875564877388744020202012977<137>
prime factors 素因数
1122763019112328991917896688146547<34>
47278753694379635584088304024046021007264290269515393607169408994420953596008025338686045504887530367691<104>
factorization results 素因数分解の結果
Number: n
N=53082836237769857722135010860503485221907656970354532121622796129493381197886353182035304221918803574861216603875564877388744020202012977
  ( 137 digits)
SNFS difficulty: 156 digits.
Divisors found:
 r1=1122763019112328991917896688146547 (pp34)
 r2=47278753694379635584088304024046021007264290269515393607169408994420953596008025338686045504887530367691 (pp104)
Version: GGNFS-0.77.1-20051202-athlon
Total time: 48.61 hours.
Scaled time: 58.14 units (timescale=1.196).
Factorization parameters were as follows:
name: KA_7_0_155_3
n: 53082836237769857722135010860503485221907656970354532121622796129493381197886353182035304221918803574861216603875564877388744020202012977
type: snfs
skew: 1.00
deg: 5
c5: 70
c0: 3
m: 10000000000000000000000000000000
rlim: 2000000
alim: 2000000
lpbr: 28
lpba: 28
mfbr: 48
mfba: 48
qintsize: 50000
Factor base limits: 2000000/2000000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 48/48
Sieved algebraic special-q in [100000, 2100001)
Primes: RFBsize:148933, AFBsize:148155, largePrimes:7023899 encountered
Relations: rels:6408331, finalFF:334175
Max relations in full relation-set: 28
Initial matrix: 297155 x 334175 with sparse part having weight 35120249.
Pruned matrix : 287404 x 288953 with weight 27659186.
Total sieving time: 44.44 hours.
Total relation processing time: 0.30 hours.
Matrix solve time: 3.56 hours.
Total square root time: 0.31 hours, sqrts: 3.
Prototype def-par.txt line would be:
snfs,156,5,0,0,0,0,0,0,0,0,2000000,2000000,28,28,48,48,2.3,2.3,100000
total time: 48.61 hours.
 --------- CPU info (if available) ----------

Cygwin on AMD XP 2700+

7×10157+3

c137

name 名前Robert Backstrom
date 日付August 17, 2007 16:20:24 UTC 2007 年 8 月 18 日 (土) 1 時 20 分 24 秒 (日本時間)
composite number 合成数
14787936384321003708141216422843185879204009734434037034013241495186860920918712525674496781342997140195863042629969015291500910654045277<137>
prime factors 素因数
289487332555897025292304347439098723403965940378647989<54>
51083189905954193522289990799875185494212136099456609629347350039925026063426710793<83>
factorization results 素因数分解の結果
Number: n
N=14787936384321003708141216422843185879204009734434037034013241495186860920918712525674496781342997140195863042629969015291500910654045277
  ( 137 digits)
SNFS difficulty: 157 digits.
Divisors found:
 r1=289487332555897025292304347439098723403965940378647989 (pp54)
 r2=51083189905954193522289990799875185494212136099456609629347350039925026063426710793 (pp83)
Version: GGNFS-0.77.1-20060513-athlon-xp
Total time: 31.10 hours.
Scaled time: 42.45 units (timescale=1.365).
Factorization parameters were as follows:
name: KA_7_0_156_3
n: 14787936384321003708141216422843185879204009734434037034013241495186860920918712525674496781342997140195863042629969015291500910654045277
skew: 1.00
deg: 5
c5: 700
c0: 3
m: 10000000000000000000000000000000
type: snfs
rlim: 3000000
alim: 3000000
lpbr: 28
lpba: 28
mfbr: 48
mfba: 48
rlambda: 2.5
alambda: 2.5
qintsize: 100000
Factor base limits: 3000000/3000000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 48/48
Sieved algebraic special-q in [100000, 1300001)
Primes: RFBsize:216816, AFBsize:216741, largePrimes:6935490 encountered
Relations: rels:6416479, finalFF:495576
Max relations in full relation-set: 28
Initial matrix: 433624 x 495576 with sparse part having weight 32902854.
Pruned matrix : 382603 x 384835 with weight 21351181.
Total sieving time: 28.05 hours.
Total relation processing time: 0.20 hours.
Matrix solve time: 2.62 hours.
Total square root time: 0.22 hours, sqrts: 2.
Prototype def-par.txt line would be:
snfs,157,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000
total time: 31.10 hours.
 --------- CPU info (if available) ----------

Cygwin on AMD 64 3200+

7×10158+3

c158

name 名前Robert Backstrom
date 日付August 2, 2007 19:51:08 UTC 2007 年 8 月 3 日 (金) 4 時 51 分 8 秒 (日本時間)
composite number 合成数
18918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918919<158>
prime factors 素因数
4683555637807654711165402911872475397796795663167619<52>
4039435074966837668459019948543510692643700803297645131234240674842966427190365006893589626840507633222701<106>
factorization results 素因数分解の結果
Number: n
N=18918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918919
  ( 158 digits)
SNFS difficulty: 158 digits.
Divisors found:
 r1=4683555637807654711165402911872475397796795663167619 (pp52)
 r2=4039435074966837668459019948543510692643700803297645131234240674842966427190365006893589626840507633222701 (pp106)
Version: GGNFS-0.77.1-20051202-athlon
Total time: 38.49 hours.
Scaled time: 51.00 units (timescale=1.325).
Factorization parameters were as follows:
name: KA_7_0_157_3
n: 18918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918919
skew: 0.21
deg: 5
c5: 7000
c0: 3
m: 10000000000000000000000000000000
type: snfs
rlim: 3500000
alim: 3500000
lpbr: 28
lpba: 28
mfbr: 48
mfba: 48
rlambda: 2.5
alambda: 2.5
qintsize: 100000
Factor base limits: 3500000/3500000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 48/48
Sieved algebraic special-q in [100000, 1600001)
Primes: RFBsize:250150, AFBsize:249771, largePrimes:7165440 encountered
Relations: rels:6701601, finalFF:585929
Max relations in full relation-set: 48
Initial matrix: 499988 x 585929 with sparse part having weight 38496719.
Pruned matrix : 424349 x 426912 with weight 22476047.
Total sieving time: 34.02 hours.
Total relation processing time: 0.22 hours.
Matrix solve time: 4.17 hours.
Total square root time: 0.08 hours, sqrts: 1.
Prototype def-par.txt line would be:
snfs,158,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000
total time: 38.49 hours.
 --------- CPU info (if available) ----------

Cygwin on AMD 64 3200+

7×10161+3

c148

name 名前Robert Backstrom
date 日付August 12, 2007 00:15:32 UTC 2007 年 8 月 12 日 (日) 9 時 15 分 32 秒 (日本時間)
composite number 合成数
6368659357987869688073561004013094128236058980958992215610258085707689898194797495537752585473375498765201263898209639690325753644190663517010979507<148>
prime factors 素因数
3753845625711756879793515975255349607797<40>
1696569329960212414283207012646965391569808922194244639849139334297461697448507406571284397297756255793527431<109>
factorization results 素因数分解の結果
Number: n
N=6368659357987869688073561004013094128236058980958992215610258085707689898194797495537752585473375498765201263898209639690325753644190663517010979507
  ( 148 digits)
SNFS difficulty: 161 digits.
Divisors found:
 r1=3753845625711756879793515975255349607797 (pp40)
 r2=1696569329960212414283207012646965391569808922194244639849139334297461697448507406571284397297756255793527431 (pp109)
Version: GGNFS-0.77.1-20051202-athlon
Total time: 52.92 hours.
Scaled time: 76.63 units (timescale=1.448).
Factorization parameters were as follows:
name: KA_7_0_160_3
n: 6368659357987869688073561004013094128236058980958992215610258085707689898194797495537752585473375498765201263898209639690325753644190663517010979507
skew: 0.53
deg: 5
c5: 70
c0: 3
m: 100000000000000000000000000000000
type: snfs
rlim: 3500000
alim: 3500000
lpbr: 28
lpba: 28
mfbr: 48
mfba: 48
rlambda: 2.5
alambda: 2.5
qintsize: 100000
Factor base limits: 3500000/3500000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 48/48
Sieved algebraic special-q in [100000, 2400001)
Primes: RFBsize:250150, AFBsize:249361, largePrimes:7501056 encountered
Relations: rels:7035914, finalFF:574163
Max relations in full relation-set: 28
Initial matrix: 499578 x 574163 with sparse part having weight 42428847.
Pruned matrix : 441215 x 443776 with weight 29106337.
Total sieving time: 46.77 hours.
Total relation processing time: 0.24 hours.
Matrix solve time: 5.57 hours.
Total square root time: 0.34 hours, sqrts: 4.
Prototype def-par.txt line would be:
snfs,161,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000
total time: 52.92 hours.
 --------- CPU info (if available) ----------

Cygwin on AMD 64 3400+

7×10164+3

c107

name 名前Sinkiti Sibata
date 日付August 5, 2007 10:14:30 UTC 2007 年 8 月 5 日 (日) 19 時 14 分 30 秒 (日本時間)
composite number 合成数
39197392403144687459815035426745024063531397479986412229829216553848174308140333001931690855527749962515357<107>
prime factors 素因数
329805675824054241199035943707983<33>
118849963103897079083614037915925391439183742364207872856583449031842800979<75>
factorization results 素因数分解の結果
Number: 70003_164
N=39197392403144687459815035426745024063531397479986412229829216553848174308140333001931690855527749962515357
  ( 107 digits)
Divisors found:
 r1=329805675824054241199035943707983 (pp33)
 r2=118849963103897079083614037915925391439183742364207872856583449031842800979 (pp75)
Version: GGNFS-0.77.1-20060722-pentium4
Total time: 19.99 hours.
Scaled time: 13.63 units (timescale=0.682).
Factorization parameters were as follows:
name: 70003_164
n: 39197392403144687459815035426745024063531397479986412229829216553848174308140333001931690855527749962515357
skew: 20910.15
# norm 1.06e+15
c5: 9720
c4: 2125480070
c3: -30292207723211
c2: -241365060444554346
c1: 6224386460235202586792
c0: 9860520441272134662836800
# alpha -6.80
Y1: 174301888739
Y0: -331977164050768224741
# Murphy_E 1.59e-09
# M 19494045783360941309357024716550423366184593205803102929257298699651293357014392618726071159638485253850725
type: gnfs
rlim: 2500000
alim: 2500000
lpbr: 26
lpba: 26
mfbr: 49
mfba: 49
rlambda: 2.6
alambda: 2.6
qintsize: 150000
Factor base limits: 2500000/2500000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 49/49
Sieved algebraic special-q in [1250000, 2300001)
Primes: RFBsize:183072, AFBsize:182671, largePrimes:4488141 encountered
Relations: rels:4624312, finalFF:419683
Max relations in full relation-set: 0
Initial matrix: 365820 x 419683 with sparse part having weight 23910189.
Pruned matrix : 319973 x 321866 with weight 16314933.
Polynomial selection time: 1.16 hours.
Total sieving time: 15.72 hours.
Total relation processing time: 0.22 hours.
Matrix solve time: 2.66 hours.
Time per square root: 0.23 hours.
Prototype def-par.txt line would be:
gnfs,106,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,2500000,26,26,49,49,2.6,2.6,150000
total time: 19.99 hours.
 --------- CPU info (if available) ----------
execution environment 実行環境
Pentium 4 2.4GHz, Windows XP and Cygwin)

7×10165+3

c166

name 名前Robert Backstrom
date 日付August 3, 2007 05:10:17 UTC 2007 年 8 月 3 日 (金) 14 時 10 分 17 秒 (日本時間)
composite number 合成数
7000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003<166>
prime factors 素因数
152833588533830632515504625196129899<36>
2783607568442084600657258901797095301845534239737<49>
16453989692271955709439095429034688807841041398306296314589415102129894839413356881<83>
factorization results 素因数分解の結果
Number: n
N=7000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003
  ( 166 digits)
SNFS difficulty: 165 digits.
Divisors found:
 r1=152833588533830632515504625196129899 (pp36)
 r2=2783607568442084600657258901797095301845534239737 (pp49)
 r3=16453989692271955709439095429034688807841041398306296314589415102129894839413356881 (pp83)
Version: GGNFS-0.77.1-20051202-athlon
Total time: 52.97 hours.
Scaled time: 76.80 units (timescale=1.450).
Factorization parameters were as follows:
name: KA_7_0_164_3
n: 7000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003
skew: 0.84
deg: 5
c5: 7
c0: 3
m: 1000000000000000000000000000000000
type: snfs
rlim: 3500000
alim: 3500000
lpbr: 28
lpba: 28
mfbr: 48
mfba: 48
rlambda: 2.5
alambda: 2.5
qintsize: 100000
Factor base limits: 3500000/3500000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 48/48
Sieved algebraic special-q in [100000, 2400001)
Primes: RFBsize:250150, AFBsize:249766, largePrimes:7413466 encountered
Relations: rels:6928393, finalFF:560270
Max relations in full relation-set: 28
Initial matrix: 499981 x 560270 with sparse part having weight 40280814.
Pruned matrix : 452422 x 454985 with weight 28649122.
Total sieving time: 46.55 hours.
Total relation processing time: 0.23 hours.
Matrix solve time: 5.70 hours.
Total square root time: 0.49 hours, sqrts: 6.
Prototype def-par.txt line would be:
snfs,165,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000
total time: 52.97 hours.
 --------- CPU info (if available) ----------

Cygwin on AMD 64 3400+

7×10168+3

c140

name 名前Serge Batalov
date 日付November 24, 2008 01:43:07 UTC 2008 年 11 月 24 日 (月) 10 時 43 分 7 秒 (日本時間)
composite number 合成数
20475578808793101098067109352302136241947465332363736170498450833112663592480281217974216315890803341249803045346825107415291040669074603423<140>
prime factors 素因数
5749965473293729696597801765242916256625281553550128309455278186337<67>
3560991610105122471722990488660298925687905168583791168409158735294004479<73>
factorization results 素因数分解の結果
SNFS difficulty: 170 digits.
Divisors found:
 r1=5749965473293729696597801765242916256625281553550128309455278186337 (pp67)
 r2=3560991610105122471722990488660298925687905168583791168409158735294004479 (pp73)
Version:
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.723).
Factorization parameters were as follows:
n: 20475578808793101098067109352302136241947465332363736170498450833112663592480281217974216315890803341249803045346825107415291040669074603423
m: 5000000000000000000000000000000000
deg: 5
c5: 56
c0: 75
skew: 1.06
type: snfs
lss: 1
rlim: 4800000
alim: 4800000
lpbr: 27
lpba: 27
mfbr: 53
mfba: 53
rlambda: 2.4
alambda: 2.4
Factor base limits: 4800000/4800000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 53/53
Sieved rational special-q in [2400000, 4800001)
Primes: rational ideals reading, algebraic ideals reading,
Relations: relations
Max relations in full relation-set:
Initial matrix:
Pruned matrix : 917860 x 918102
Total sieving time: 0.00 hours.
Total relation processing time: 0.00 hours.
Matrix solve time: 0.00 hours.
Time per square root: 0.00 hours.
Prototype def-par.txt line would be:
snfs,170,5,0,0,0,0,0,0,0,0,4800000,4800000,27,27,53,53,2.4,2.4,100000
total time: 36.00 hours.
software ソフトウェア
Msieve-1.38
execution environment 実行環境
Opteron-2.6GHz; Linux x86_64

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaJuly 30, 2007 09:00:00 UTC 2007 年 7 月 30 日 (月) 18 時 0 分 0 秒 (日本時間)
351e6344257Jo Yeong UkJuly 24, 2008 07:56:46 UTC 2008 年 7 月 24 日 (木) 16 時 56 分 46 秒 (日本時間)
87Jo Yeong UkJuly 25, 2008 08:36:44 UTC 2008 年 7 月 25 日 (金) 17 時 36 分 44 秒 (日本時間)
403e61060 / 2242Serge BatalovNovember 22, 2008 09:05:06 UTC 2008 年 11 月 22 日 (土) 18 時 5 分 6 秒 (日本時間)

7×10169+3

c129

name 名前Robert Backstrom
date 日付February 13, 2008 13:35:47 UTC 2008 年 2 月 13 日 (水) 22 時 35 分 47 秒 (日本時間)
composite number 合成数
290475563551371151534737430440749777292188316539837646424563937372527089326875496888413405136007889525927998508162719895399133057<129>
prime factors 素因数
5175216009374760485968852867656086119<37>
56128200837449627643617345573916608964872045642509134587009683630669439311948801876882681303<92>
factorization results 素因数分解の結果
GMP-ECM 6.1.3 [powered by GMP 4.2.1] [ECM]
Input number is 290475563551371151534737430440749777292188316539837646424563937372527089326875496888413405136007889525927998508162719895399133057 (129 digits)
Using B1=928000, B2=871204962, polynomial Dickson(3), sigma=3134470293
Step 1 took 9161ms
Step 2 took 3910ms
********** Factor found in step 2: 5175216009374760485968852867656086119
Found probable prime factor of 37 digits: 5175216009374760485968852867656086119
Probable prime cofactor 56128200837449627643617345573916608964872045642509134587009683630669439311948801876882681303 has 92 digits

7×10171+3

c139

name 名前Serge Batalov
date 日付November 5, 2008 04:38:21 UTC 2008 年 11 月 5 日 (水) 13 時 38 分 21 秒 (日本時間)
composite number 合成数
3710312630994794641105126501206381526091747729020560266427319100310922347391243101537035401634082509899448410498434916083412947305423807611<139>
prime factors 素因数
2894880042580604713105118836471073339<37>
composite cofactor 合成数の残り
1281680959632193503942635352586274267558015554322256712727649413867069609775801786926191322876429626049<103>
factorization results 素因数分解の結果
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=799800686
Step 1 took 14613ms
Step 2 took 10661ms
********** Factor found in step 2: 2894880042580604713105118836471073339
Found probable prime factor of 37 digits: 2894880042580604713105118836471073339
Composite cofactor 1281680959632193503942635352586274267558015554322256712727649413867069609775801786926191322876429626049 has 103 digits
software ソフトウェア
GMP-ECM 6.2.1

c103

name 名前Jo Yeong Uk
date 日付November 6, 2008 16:13:14 UTC 2008 年 11 月 7 日 (金) 1 時 13 分 14 秒 (日本時間)
composite number 合成数
1281680959632193503942635352586274267558015554322256712727649413867069609775801786926191322876429626049<103>
prime factors 素因数
80382204556821276120047494428888590479349<41>
15944834639689281626909755621895853382079436807483057371958301<62>
factorization results 素因数分解の結果
Number: 70003_171
N=1281680959632193503942635352586274267558015554322256712727649413867069609775801786926191322876429626049
  ( 103 digits)
Divisors found:
 r1=80382204556821276120047494428888590479349 (pp41)
 r2=15944834639689281626909755621895853382079436807483057371958301 (pp62)
Version: GGNFS-0.77.1-20050930-nocona
Total time: 4.35 hours.
Scaled time: 10.35 units (timescale=2.380).
Factorization parameters were as follows:
name: 70003_171
n: 1281680959632193503942635352586274267558015554322256712727649413867069609775801786926191322876429626049
skew: 12451.75
# norm 3.14e+14
c5: 28800
c4: -1396556640
c3: -21383349502937
c2: 102977721717798824
c1: 1369617770306240302888
c0: -3004456949011618764265560
# alpha -6.63
Y1: 66033646709
Y0: -33859902537347602823
# Murphy_E 2.62e-09
# M 353806601918654332315014283607060409901318680890166882125174584860899677165461883132592572648288552241
type: gnfs
rlim: 1500000
alim: 1500000
lpbr: 26
lpba: 26
mfbr: 49
mfba: 49
rlambda: 2.6
alambda: 2.6
qintsize: 50000
Factor base limits: 1500000/1500000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 49/49
Sieved algebraic special-q in [750000, 1400001)
Primes: RFBsize:114155, AFBsize:114273, largePrimes:4440046 encountered
Relations: rels:4417859, finalFF:331596
Max relations in full relation-set: 28
Initial matrix: 228507 x 331596 with sparse part having weight 29476847.
Pruned matrix : 180731 x 181937 with weight 13703494.
Polynomial selection time: 0.35 hours.
Total sieving time: 3.76 hours.
Total relation processing time: 0.07 hours.
Matrix solve time: 0.12 hours.
Time per square root: 0.04 hours.
Prototype def-par.txt line would be:
gnfs,102,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1500000,1500000,26,26,49,49,2.6,2.6,50000
total time: 4.35 hours.
 --------- CPU info (if available) ----------
execution environment 実行環境
Core 2 Quad Q6700

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaJuly 30, 2007 09:00:00 UTC 2007 年 7 月 30 日 (月) 18 時 0 分 0 秒 (日本時間)

7×10173+3

c144

name 名前Wataru Sakai
date 日付December 12, 2009 07:56:55 UTC 2009 年 12 月 12 日 (土) 16 時 56 分 55 秒 (日本時間)
composite number 合成数
691387159016913058622935613250685456926825485030218389749462169026394567500966819455870114279646650276021876516864242700408272469813878832883389<144>
prime factors 素因数
4395944156853610582716741443564661893213<40>
composite cofactor 合成数の残り
157278421733130527374822423031190273787717697677845850752050907400924177459930910588027890386838400438753<105>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1786388023
Step 1 took 42364ms
********** Factor found in step 1: 4395944156853610582716741443564661893213
Found probable prime factor of 40 digits: 4395944156853610582716741443564661893213
Composite cofactor 157278421733130527374822423031190273787717697677845850752050907400924177459930910588027890386838400438753 has 105 digits
software ソフトウェア
GMP-ECM 6.2.1

c105

name 名前Dmitry Domanov
date 日付December 13, 2009 12:24:04 UTC 2009 年 12 月 13 日 (日) 21 時 24 分 4 秒 (日本時間)
composite number 合成数
157278421733130527374822423031190273787717697677845850752050907400924177459930910588027890386838400438753<105>
prime factors 素因数
290110443363764923642894085090214904885689697<45>
542132919827093529306769989453942968418390454867117966238849<60>
factorization results 素因数分解の結果
Number: g105-1
N=157278421733130527374822423031190273787717697677845850752050907400924177459930910588027890386838400438753
  ( 105 digits)
Divisors found:
 r1=290110443363764923642894085090214904885689697 (pp45)
 r2=542132919827093529306769989453942968418390454867117966238849 (pp60)
Version: Msieve-1.40
Total time: 6.56 hours.
Scaled time: 12.53 units (timescale=1.911).
Factorization parameters were as follows:
name: g105-1
n: 157278421733130527374822423031190273787717697677845850752050907400924177459930910588027890386838400438753
skew: 13202.27
# norm 5.31e+014
c5: 69300
c4: 887486732
c3: 18054159829435
c2: -309959698006720573
c1: -3462703690957884986615
c0: 9494266772135327220966825
# alpha -7.07
Y1: 53466939577
Y0: -74333807980636864352
# Murphy_E 2.06e-009
# M 39261685110727373311766962481659204345999512574698899717038255884429614107360099199141019944888487217157
type: gnfs
rlim: 2500000
alim: 2500000
lpbr: 26
lpba: 26
mfbr: 49
mfba: 49
rlambda: 2.6
alambda: 2.6
qintsize: 150000
Factor base limits: 2500000/2500000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 49/49
Sieved algebraic special-q in [1250000, 2000001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 276557 x 276783
Polynomial selection time: 0.74 hours.
Total sieving time: 5.46 hours.
Total relation processing time: 0.04 hours.
Matrix solve time: 0.23 hours.
Time per square root: 0.10 hours.
Prototype def-par.txt line would be:
gnfs,104,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,2500000,26,26,49,49,2.6,2.6,150000
total time: 6.56 hours.
 --------- CPU info (if available) ----------
software ソフトウェア
GGNFS/msieve

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaJuly 30, 2007 09:00:00 UTC 2007 年 7 月 30 日 (月) 18 時 0 分 0 秒 (日本時間)
351e61000700Lionel DebrouxSeptember 27, 2009 19:35:07 UTC 2009 年 9 月 28 日 (月) 4 時 35 分 7 秒 (日本時間)
300Lionel DebrouxSeptember 28, 2009 04:22:41 UTC 2009 年 9 月 28 日 (月) 13 時 22 分 41 秒 (日本時間)

7×10175+3

c168

name 名前matsui
date 日付April 5, 2008 12:20:29 UTC 2008 年 4 月 5 日 (土) 21 時 20 分 29 秒 (日本時間)
composite number 合成数
151628361122324449605999010616279199054547780878970071028724500558327034384345390656706742598481954467220514093835588185333846845161508345996485657487401215720241896017<168>
prime factors 素因数
15382421157285425929466447017738051797673565880227<50>
9857249360937578381060501178705637693417639727420036892990380567114305681621039301876173072701917734426786021572283771<118>
factorization results 素因数分解の結果
N=151628361122324449605999010616279199054547780878970071028724500558327034384345390656706742598481954467220514093835588185333846845161508345996485657487401215720241896017
  ( 168 digits)

SNFS difficulty: 175 digits.

Divisors found:

 r1=15382421157285425929466447017738051797673565880227 (pp50)

 r2=9857249360937578381060501178705637693417639727420036892990380567114305681621039301876173072701917734426786021572283771 (pp118)

Version: GGNFS-0.77.1-20060513-prescott
Total time: 186.17 hours.

Scaled time: 315.56 units (timescale=1.695).

Factorization parameters were as follows:

n: 151628361122324449605999010616279199054547780878970071028724500558327034384345390656706742598481954467220514093835588185333846845161508345996485657487401215720241896017
m: 100000000000000000000000000000000000
c5: 7
c0: 3
skew: 0.84
type: snfs


Factor base limits: 7400000/7400000

Large primes per side: 3

Large prime bits: 27/27
Max factor residue bits: 48/48

Sieved algebraic special-q in [3700000, 10600001)

Primes: RFBsize:501962, AFBsize:500771, largePrimes:6392766 encountered

Relations: rels:6833029, finalFF:1124040

Max relations in full relation-set: 28

Initial matrix: 1002798 x 1124040 with sparse part having weight 66158404.

Pruned matrix : 898702 x 903779 with weight 50386598.

Total sieving time: 171.47 hours.

Total relation processing time: 0.15 hours.

Matrix solve time: 14.30 hours.

Time per square root: 0.26 hours.

Prototype def-par.txt line would be:

snfs,175,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000

total time: 186.17 hours.

7×10179+3

c148

name 名前Ignacio Santos
date 日付November 21, 2010 21:14:16 UTC 2010 年 11 月 22 日 (月) 6 時 14 分 16 秒 (日本時間)
composite number 合成数
6861847122632973914379472012758459686732244728294442375722973505282513400916058793709564193945386621827810375796633922030118997100245586561698507107<148>
prime factors 素因数
7377639422767413795152038802532449<34>
composite cofactor 合成数の残り
930087081981439273567985206159110552837053823290939433458652252669912132232462610932999805284053024941861452978243<114>
factorization results 素因数分解の結果
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1484558775
Step 1 took 7160ms
Step 2 took 5195ms
********** Factor found in step 2: 7377639422767413795152038802532449
Found probable prime factor of 34 digits: 7377639422767413795152038802532449
Composite cofactor 930087081981439273567985206159110552837053823290939433458652252669912132232462610932999805284053024941861452978243 has 114 digits
software ソフトウェア
GMP-ECM 6.3

c114

name 名前Dmitry Domanov
date 日付November 24, 2010 21:27:56 UTC 2010 年 11 月 25 日 (木) 6 時 27 分 56 秒 (日本時間)
composite number 合成数
930087081981439273567985206159110552837053823290939433458652252669912132232462610932999805284053024941861452978243<114>
prime factors 素因数
8924589012579945383764872567099224584777759201<46>
104216236811622888894520864063301304707400428779271994024902963412643<69>
factorization results 素因数分解の結果
Number: gga114
N=930087081981439273567985206159110552837053823290939433458652252669912132232462610932999805284053024941861452978243
  ( 114 digits)
Divisors found:
 r1=8924589012579945383764872567099224584777759201 (pp46)
 r2=104216236811622888894520864063301304707400428779271994024902963412643 (pp69)
Version: Msieve-1.40
Total time: 24.12 hours.
Scaled time: 47.51 units (timescale=1.970).
Factorization parameters were as follows:
name: gga114
n: 930087081981439273567985206159110552837053823290939433458652252669912132232462610932999805284053024941861452978243
skew: 65985.64
# norm 1.06e+016
c5: 18900
c4: 2128166204
c3: 66687311928581
c2: -15911979575823911646
c1: 153920137885264019704504
c0: 10911574457650167928381016416
# alpha -6.90
Y1: 308551290553
Y0: -8677847502263844354045
# Murphy_E 5.99e-010
# M 310319948908300515604721694075378857585771720004662294297966292146374216731299946273327222282009518196078344923109
type: gnfs
rlim: 3500000
alim: 3500000
lpbr: 27
lpba: 27
mfbr: 50
mfba: 50
rlambda: 2.6
alambda: 2.6
qintsize: 100000
Factor base limits: 3500000/3500000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 50/50
Sieved algebraic special-q in [1750000, 2850001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 466648 x 466876
Polynomial selection time: 2.39 hours.
Total sieving time: 20.98 hours.
Total relation processing time: 0.07 hours.
Matrix solve time: 0.61 hours.
Time per square root: 0.07 hours.
Prototype def-par.txt line would be:
gnfs,113,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3500000,3500000,27,27,50,50,2.6,2.6,100000
total time: 24.12 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaJuly 30, 2007 09:00:00 UTC 2007 年 7 月 30 日 (月) 18 時 0 分 0 秒 (日本時間)
351e6300Ignacio SantosNovember 22, 2010 17:58:52 UTC 2010 年 11 月 23 日 (火) 2 時 58 分 52 秒 (日本時間)
403e6110 / 2144Ignacio SantosNovember 22, 2010 17:58:52 UTC 2010 年 11 月 23 日 (火) 2 時 58 分 52 秒 (日本時間)
4511e632 / 4441Ignacio SantosNovember 22, 2010 17:58:52 UTC 2010 年 11 月 23 日 (火) 2 時 58 分 52 秒 (日本時間)

7×10180+3

c181

name 名前Jo Yeong Uk
date 日付August 2, 2007 23:41:27 UTC 2007 年 8 月 3 日 (金) 8 時 41 分 27 秒 (日本時間)
composite number 合成数
7000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003<181>
prime factors 素因数
1661635052382325894228860798388965059<37>
composite cofactor 合成数の残り
4212718063430313817949556918391010227926614475612398920219025346271127082558521092818662843579474726787185571200372160360259201106912513664366017<145>
factorization results 素因数分解の結果
GMP-ECM 6.1.2 [powered by GMP 4.2.1] [ECM]
Input number is 7000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003 (181 digits)
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1692799595
Step 1 took 29897ms
Step 2 took 12361ms
********** Factor found in step 2: 1661635052382325894228860798388965059
Found probable prime factor of 37 digits: 1661635052382325894228860798388965059
Composite cofactor 4212718063430313817949556918391010227926614475612398920219025346271127082558521092818662843579474726787185571200372160360259201106912513664366017 has 145 digits
execution environment 実行環境
Core 2 Quad Q6600

c145

name 名前Kenji Ibusuki
date 日付October 8, 2013 19:16:43 UTC 2013 年 10 月 9 日 (水) 4 時 16 分 43 秒 (日本時間)
composite number 合成数
4212718063430313817949556918391010227926614475612398920219025346271127082558521092818662843579474726787185571200372160360259201106912513664366017<145>
prime factors 素因数
131913960468256481049783481878995394120408634187<48>
31935346709903794461672028654050306602845641564412306934217578538639453607167090484368169049565091<98>
factorization results 素因数分解の結果
Number: 70003_180
N=4212718063430313817949556918391010227926614475612398920219025346271127082558521092818662843579474726787185571200372160360259201106912513664366017
  ( 145 digits)
SNFS difficulty: 180 digits.
Divisors found:
 r1=131913960468256481049783481878995394120408634187 (pp48)
 r2=31935346709903794461672028654050306602845641564412306934217578538639453607167090484368169049565091 (pp98)
Msieve version: Msieve v. 1.49 (SVN unknown)
GGNFS version: GGNFS-0.77.1-VC8(UTE)
Total time: 118.99 hours.
Scaled time: 526.99 units (timescale=4.429).
Factorization parameters were as follows:
n: 4212718063430313817949556918391010227926614475612398920219025346271127082558521092818662843579474726787185571200372160360259201106912513664366017
m: 1000000000000000000000000000000000000
deg: 5
c5: 7
c0: 3
skew: 0.84
# Murphy_E = 1.32e-10
type: snfs
lss: 1
rlim: 7200000
alim: 7200000
lpbr: 28
lpba: 28
mfbr: 55
mfba: 55
rlambda: 2.5
alambda: 2.5
qintsize: 10000
relslim: 30000000

Polynomial score was as follows:
skew 0.84, size 2.287e-012, alpha 0.848, combined = 1.320e-010 rroots = 1 
Factor base limits: 7200000/7200000
Large primes per side: 3
Large prime bits: 28/28
Sieved special-q in [3600000, 8820001)
Relations: raw-rels:24566574 rels:22316674, finalFF:1098835
Pruned matrix : 1078369 x 1078599
Total sieving time: 112.16 hours.
Total relation processing time: 1.18 hours.
Total matrix build processing time: 4.96 hours.
Matrix pruned processing time: 0.00 hours.
Matrix solve time: 0.65 hours.
Total time of square root: 0.03 hours.
Prototype def-par.txt line would be:
snfs,180,5,0,0,0,0,0,0,0,0,7200000,7200000,28,28,55,55,2.5,2.5,100000
total time: 118.99 hours.
 --------- CPU info (if available) ----------
software ソフトウェア
Msieve v. 1.49 (SVN unknown) + GGNFS-0.77.1-VC8 with 
factMsieve.pl (decomposed + modified) snfs
execution environment 実行環境
Core i7 2600 - Windows7 64bit (7 threads used),
Core i7 4770 - Windows7 64bit (8 threads used) and
Core 2 Quad Q6600 - Windows Vista 32bit (4 threads used)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaJuly 30, 2007 09:00:00 UTC 2007 年 7 月 30 日 (月) 18 時 0 分 0 秒 (日本時間)
351e6300Ignacio SantosNovember 21, 2010 21:49:24 UTC 2010 年 11 月 22 日 (月) 6 時 49 分 24 秒 (日本時間)
403e62144110Ignacio SantosNovember 21, 2010 21:49:24 UTC 2010 年 11 月 22 日 (月) 6 時 49 分 24 秒 (日本時間)
2034Wataru SakaiJune 29, 2012 00:23:23 UTC 2012 年 6 月 29 日 (金) 9 時 23 分 23 秒 (日本時間)
4511e632 / 3991Ignacio SantosNovember 21, 2010 21:49:24 UTC 2010 年 11 月 22 日 (月) 6 時 49 分 24 秒 (日本時間)

7×10181+3

c159

name 名前Youcef Lemsafer
date 日付November 12, 2013 16:23:25 UTC 2013 年 11 月 13 日 (水) 1 時 23 分 25 秒 (日本時間)
composite number 合成数
326998194399748176441609858419080681045982355899322450312083578721962978687367437656996085017149435322203657523434318188882834784965537082167543672801977676057<159>
prime factors 素因数
141841795076420712913980812493112825124222601248955632166449031731<66>
2305372645795761082391178326649414245146333413240828452602567296737367149385317590295058383747<94>
factorization results 素因数分解の結果
Sun Nov 10 22:46:07 2013 -> factmsieve.py (v0.76)
Sun Nov 10 22:46:07 2013 -> This is client 1 of 1
Sun Nov 10 22:46:07 2013 -> Running on 4 Cores with 2 hyper-threads per Core
Sun Nov 10 22:46:07 2013 -> Working with NAME = 70003_181
Sun Nov 10 22:46:07 2013 -> Selected lattice siever: gnfs-lasieve4I13e
Sun Nov 10 22:46:07 2013 -> Creating param file to detect parameter changes...
Sun Nov 10 22:46:07 2013 -> Running setup ...
Sun Nov 10 22:46:07 2013 -> Estimated minimum relations needed: 1.58489e+07
Sun Nov 10 22:46:07 2013 -> cleaning up before a restart
Sun Nov 10 22:46:07 2013 -> Running lattice siever ...
Sun Nov 10 22:46:07 2013 -> entering sieving loop
    ...<snip>...
Sun Nov 10 22:46:07 2013 -> Lattice sieving rational q from 3750000 to 3850000.
    ...<snip>...
Sun Nov 10 23:16:00 2013 Found 294212 relations, 1.9% of the estimated minimum (15848931).
    ...<snip>...
Sun Nov 10 23:45:46 2013 Found 589326 relations, 3.7% of the estimated minimum (15848931).
    ...<snip>...
Mon Nov 11 00:45:29 2013 Found 1173962 relations, 7.4% of the estimated minimum (15848931).
    ...<snip>...
Mon Nov 11 03:16:33 2013 Found 2631863 relations, 16.6% of the estimated minimum (15848931).
    ...<snip>...
Mon Nov 11 08:01:29 2013 Found 5214074 relations, 32.9% of the estimated minimum (15848931).
    ...<snip>...
Mon Nov 11 18:01:00 2013 Found 10227940 relations, 64.5% of the estimated minimum (15848931).
    ...<snip>...
Tue Nov 12 13:12:48 2013 Found 19354419 relations, 122.1% of the estimated minimum (15848931).
Tue Nov 12 13:12:48 2013  
Tue Nov 12 13:12:48 2013  
Tue Nov 12 13:12:48 2013  Msieve v. 1.50 (SVN 708)
Tue Nov 12 13:12:48 2013  random seeds: 3d09f5f4 2147b59e
Tue Nov 12 13:12:48 2013  factoring 326998194399748176441609858419080681045982355899322450312083578721962978687367437656996085017149435322203657523434318188882834784965537082167543672801977676057 (159 digits)
Tue Nov 12 13:12:49 2013  searching for 15-digit factors
Tue Nov 12 13:12:50 2013  commencing number field sieve (159-digit input)
Tue Nov 12 13:12:50 2013  R0: -1000000000000000000000000000000000000
Tue Nov 12 13:12:50 2013  R1: 1
Tue Nov 12 13:12:50 2013  A0: 3
Tue Nov 12 13:12:50 2013  A1: 0
Tue Nov 12 13:12:50 2013  A2: 0
Tue Nov 12 13:12:50 2013  A3: 0
Tue Nov 12 13:12:50 2013  A4: 0
Tue Nov 12 13:12:50 2013  A5: 70
Tue Nov 12 13:12:50 2013  skew 0.53, size 1.084e-012, alpha 1.708, combined = 8.681e-011 rroots = 1
Tue Nov 12 13:12:50 2013  
Tue Nov 12 13:12:50 2013  commencing relation filtering
Tue Nov 12 13:12:50 2013  estimated available RAM is 4096.0 MB
Tue Nov 12 13:12:50 2013  commencing duplicate removal, pass 1
Tue Nov 12 13:14:29 2013  skipped 1 relations with b > 2^32
Tue Nov 12 13:14:29 2013  found 2613751 hash collisions in 19354417 relations
Tue Nov 12 13:15:00 2013  added 956 free relations
Tue Nov 12 13:15:00 2013  commencing duplicate removal, pass 2
Tue Nov 12 13:15:11 2013  found 2329715 duplicates and 17025658 unique relations
Tue Nov 12 13:15:11 2013  memory use: 98.6 MB
Tue Nov 12 13:15:11 2013  reading ideals above 720000
Tue Nov 12 13:15:11 2013  commencing singleton removal, initial pass
Tue Nov 12 13:17:07 2013  memory use: 376.5 MB
Tue Nov 12 13:17:07 2013  reading all ideals from disk
Tue Nov 12 13:17:07 2013  memory use: 529.7 MB
Tue Nov 12 13:17:09 2013  keeping 19384312 ideals with weight <= 200, target excess is 115699
Tue Nov 12 13:17:10 2013  commencing in-memory singleton removal
Tue Nov 12 13:17:11 2013  begin with 17025658 relations and 19384312 unique ideals
Tue Nov 12 13:17:23 2013  reduce to 6231444 relations and 6062792 ideals in 19 passes
Tue Nov 12 13:17:23 2013  max relations containing the same ideal: 96
Tue Nov 12 13:17:25 2013  removing 269639 relations and 252418 ideals in 17221 cliques
Tue Nov 12 13:17:26 2013  commencing in-memory singleton removal
Tue Nov 12 13:17:26 2013  begin with 5961805 relations and 6062792 unique ideals
Tue Nov 12 13:17:30 2013  reduce to 5952062 relations and 5800590 ideals in 9 passes
Tue Nov 12 13:17:30 2013  max relations containing the same ideal: 95
Tue Nov 12 13:17:32 2013  removing 194404 relations and 177183 ideals in 17221 cliques
Tue Nov 12 13:17:33 2013  commencing in-memory singleton removal
Tue Nov 12 13:17:33 2013  begin with 5757658 relations and 5800590 unique ideals
Tue Nov 12 13:17:37 2013  reduce to 5752255 relations and 5617981 ideals in 8 passes
Tue Nov 12 13:17:37 2013  max relations containing the same ideal: 91
Tue Nov 12 13:17:38 2013  relations with 0 large ideals: 2822
Tue Nov 12 13:17:38 2013  relations with 1 large ideals: 1029
Tue Nov 12 13:17:38 2013  relations with 2 large ideals: 19063
Tue Nov 12 13:17:38 2013  relations with 3 large ideals: 140650
Tue Nov 12 13:17:38 2013  relations with 4 large ideals: 553121
Tue Nov 12 13:17:38 2013  relations with 5 large ideals: 1256991
Tue Nov 12 13:17:38 2013  relations with 6 large ideals: 1740935
Tue Nov 12 13:17:38 2013  relations with 7+ large ideals: 2037644
Tue Nov 12 13:17:38 2013  commencing 2-way merge
Tue Nov 12 13:17:42 2013  reduce to 3314328 relation sets and 3180055 unique ideals
Tue Nov 12 13:17:42 2013  ignored 1 oversize relation sets
Tue Nov 12 13:17:42 2013  commencing full merge
Tue Nov 12 13:18:34 2013  memory use: 331.2 MB
Tue Nov 12 13:18:35 2013  found 1675265 cycles, need 1662255
Tue Nov 12 13:18:35 2013  weight of 1662255 cycles is about 116656163 (70.18/cycle)
Tue Nov 12 13:18:35 2013  distribution of cycle lengths:
Tue Nov 12 13:18:35 2013  1 relations: 236242
Tue Nov 12 13:18:35 2013  2 relations: 209852
Tue Nov 12 13:18:35 2013  3 relations: 198488
Tue Nov 12 13:18:35 2013  4 relations: 173244
Tue Nov 12 13:18:35 2013  5 relations: 150963
Tue Nov 12 13:18:35 2013  6 relations: 124178
Tue Nov 12 13:18:35 2013  7 relations: 105017
Tue Nov 12 13:18:35 2013  8 relations: 86097
Tue Nov 12 13:18:35 2013  9 relations: 70908
Tue Nov 12 13:18:35 2013  10+ relations: 307266
Tue Nov 12 13:18:35 2013  heaviest cycle: 26 relations
Tue Nov 12 13:18:35 2013  commencing cycle optimization
Tue Nov 12 13:18:37 2013  start with 9726484 relations
Tue Nov 12 13:18:55 2013  pruned 203125 relations
Tue Nov 12 13:18:55 2013  memory use: 261.4 MB
Tue Nov 12 13:18:55 2013  distribution of cycle lengths:
Tue Nov 12 13:18:55 2013  1 relations: 236242
Tue Nov 12 13:18:55 2013  2 relations: 214133
Tue Nov 12 13:18:55 2013  3 relations: 204642
Tue Nov 12 13:18:55 2013  4 relations: 176415
Tue Nov 12 13:18:55 2013  5 relations: 153540
Tue Nov 12 13:18:55 2013  6 relations: 125070
Tue Nov 12 13:18:55 2013  7 relations: 105139
Tue Nov 12 13:18:55 2013  8 relations: 85041
Tue Nov 12 13:18:55 2013  9 relations: 69681
Tue Nov 12 13:18:55 2013  10+ relations: 292352
Tue Nov 12 13:18:55 2013  heaviest cycle: 26 relations
Tue Nov 12 13:18:56 2013  RelProcTime: 366
Tue Nov 12 13:18:56 2013  elapsed time 00:06:08
Tue Nov 12 13:18:56 2013 LatSieveTime: 2349.77
Tue Nov 12 13:18:56 2013 -> Running matrix solving step ...
    ...<snip>...
Tue Nov 12 13:18:58 2013  
Tue Nov 12 13:18:58 2013  commencing linear algebra
Tue Nov 12 13:18:59 2013  read 1662255 cycles
Tue Nov 12 13:19:02 2013  cycles contain 5589994 unique relations
Tue Nov 12 13:19:30 2013  read 5589994 relations
Tue Nov 12 13:19:37 2013  using 20 quadratic characters above 268434044
Tue Nov 12 13:20:02 2013  building initial matrix
Tue Nov 12 13:21:03 2013  memory use: 615.5 MB
Tue Nov 12 13:21:05 2013  read 1662255 cycles
Tue Nov 12 13:21:05 2013  matrix is 1662071 x 1662255 (474.3 MB) with weight 146928395 (88.39/col)
Tue Nov 12 13:21:06 2013  sparse part has weight 112707585 (67.80/col)
Tue Nov 12 13:21:22 2013  filtering completed in 2 passes
Tue Nov 12 13:21:23 2013  matrix is 1658997 x 1659180 (474.1 MB) with weight 146822055 (88.49/col)
Tue Nov 12 13:21:23 2013  sparse part has weight 112668685 (67.91/col)
Tue Nov 12 13:21:27 2013  matrix starts at (0, 0)
Tue Nov 12 13:21:27 2013  matrix is 1658997 x 1659180 (474.1 MB) with weight 146822055 (88.49/col)
Tue Nov 12 13:21:27 2013  sparse part has weight 112668685 (67.91/col)
Tue Nov 12 13:21:27 2013  saving the first 48 matrix rows for later
Tue Nov 12 13:21:28 2013  matrix includes 64 packed rows
Tue Nov 12 13:21:28 2013  matrix is 1658949 x 1659180 (446.7 MB) with weight 116427360 (70.17/col)
Tue Nov 12 13:21:28 2013  sparse part has weight 107137730 (64.57/col)
Tue Nov 12 13:21:28 2013  using block size 65536 for processor cache size 8192 kB
Tue Nov 12 13:21:37 2013  commencing Lanczos iteration (8 threads)
Tue Nov 12 13:21:37 2013  memory use: 465.3 MB
Tue Nov 12 13:21:47 2013  linear algebra at 0.1%, ETA 3h 2m
Tue Nov 12 13:21:50 2013  checkpointing every 570000 dimensions
Tue Nov 12 16:15:54 2013  lanczos halted after 26236 iterations (dim = 1658947)
Tue Nov 12 16:15:57 2013  recovered 37 nontrivial dependencies
Tue Nov 12 16:15:57 2013  BLanczosTime: 10619
Tue Nov 12 16:15:57 2013  elapsed time 02:57:01
Tue Nov 12 16:15:57 2013 -> Running square root step ...
    ...<snip>...
Tue Nov 12 16:15:57 2013  
Tue Nov 12 16:15:59 2013  commencing square root phase
Tue Nov 12 16:15:59 2013  reading relations for dependency 1
Tue Nov 12 16:16:00 2013  read 829162 cycles
Tue Nov 12 16:16:01 2013  cycles contain 2793814 unique relations
Tue Nov 12 16:16:33 2013  read 2793814 relations
Tue Nov 12 16:16:46 2013  multiplying 2793814 relations
Tue Nov 12 16:20:25 2013  multiply complete, coefficients have about 78.16 million bits
Tue Nov 12 16:20:26 2013  initial square root is modulo 407821
Tue Nov 12 16:25:00 2013  GCD is N, no factor found
Tue Nov 12 16:25:00 2013  reading relations for dependency 2
Tue Nov 12 16:25:01 2013  read 830842 cycles
Tue Nov 12 16:25:02 2013  cycles contain 2796620 unique relations
Tue Nov 12 16:25:19 2013  read 2796620 relations
Tue Nov 12 16:25:33 2013  multiplying 2796620 relations
Tue Nov 12 16:29:11 2013  multiply complete, coefficients have about 78.24 million bits
Tue Nov 12 16:29:12 2013  initial square root is modulo 412891
Tue Nov 12 16:33:48 2013  GCD is N, no factor found
Tue Nov 12 16:33:48 2013  reading relations for dependency 3
Tue Nov 12 16:33:48 2013  read 829132 cycles
Tue Nov 12 16:33:50 2013  cycles contain 2793042 unique relations
Tue Nov 12 16:34:06 2013  read 2793042 relations
Tue Nov 12 16:34:20 2013  multiplying 2793042 relations
Tue Nov 12 16:37:59 2013  multiply complete, coefficients have about 78.14 million bits
Tue Nov 12 16:37:59 2013  initial square root is modulo 406171
Tue Nov 12 16:42:37 2013  GCD is 1, no factor found
Tue Nov 12 16:42:37 2013  reading relations for dependency 4
Tue Nov 12 16:42:38 2013  read 829945 cycles
Tue Nov 12 16:42:40 2013  cycles contain 2795422 unique relations
Tue Nov 12 16:42:56 2013  read 2795422 relations
Tue Nov 12 16:43:10 2013  multiplying 2795422 relations
Tue Nov 12 16:46:48 2013  multiply complete, coefficients have about 78.20 million bits
Tue Nov 12 16:46:48 2013  initial square root is modulo 410621
Tue Nov 12 16:51:23 2013  GCD is N, no factor found
Tue Nov 12 16:51:23 2013  reading relations for dependency 5
Tue Nov 12 16:51:24 2013  read 829047 cycles
Tue Nov 12 16:51:25 2013  cycles contain 2796686 unique relations
Tue Nov 12 16:51:41 2013  read 2796686 relations
Tue Nov 12 16:51:56 2013  multiplying 2796686 relations
Tue Nov 12 16:55:34 2013  multiply complete, coefficients have about 78.24 million bits
Tue Nov 12 16:55:35 2013  initial square root is modulo 413071
Tue Nov 12 17:00:14 2013  sqrtTime: 2655
Tue Nov 12 17:00:14 2013  prp66 factor: 141841795076420712913980812493112825124222601248955632166449031731
Tue Nov 12 17:00:14 2013  prp94 factor: 2305372645795761082391178326649414245146333413240828452602567296737367149385317590295058383747
Tue Nov 12 17:00:14 2013  elapsed time 00:44:17
Tue Nov 12 17:00:14 2013 -> Computing 1.38427e+09 scale for this machine...
Tue Nov 12 17:00:14 2013 -> procrels -speedtest> PIPE
Tue Nov 12 17:00:20 2013 -> Factorization summary written to s182-70003_181.txt



Number: 70003_181
N = 326998194399748176441609858419080681045982355899322450312083578721962978687367437656996085017149435322203657523434318188882834784965537082167543672801977676057 (159 digits)
SNFS difficulty: 182 digits.
Divisors found:
r1=141841795076420712913980812493112825124222601248955632166449031731 (pp66)
r2=2305372645795761082391178326649414245146333413240828452602567296737367149385317590295058383747 (pp94)
Version: Msieve v. 1.50 (SVN 708)
Total time: 42.33 hours.
Factorization parameters were as follows:
n: 326998194399748176441609858419080681045982355899322450312083578721962978687367437656996085017149435322203657523434318188882834784965537082167543672801977676057
m: 1000000000000000000000000000000000000
deg: 5
c5: 70
c0: 3
skew: 0.53
# Murphy_E = 8.681e-11
type: snfs
lss: 1
rlim: 7500000
alim: 7500000
lpbr: 28
lpba: 28
mfbr: 53
mfba: 53
rlambda: 2.5
alambda: 2.5
Factor base limits: 7500000/7500000
Large primes per side: 3
Large prime bits: 28/28
Sieved rational special-q in [0, 0)
Total raw relations: 19354419
Relations: 2796686 relations
Pruned matrix : 1658949 x 1659180
Polynomial selection time: 0.00 hours.
Total sieving time: 38.54 hours.
Total relation processing time: 0.10 hours.
Matrix solve time: 2.95 hours.
time per square root: 0.74 hours.
Prototype def-par.txt line would be: snfs,182,5,0,0,0,0,0,0,0,0,7500000,7500000,28,28,53,53,2.5,2.5,100000
total time: 42.33 hours.
Intel64 Family 6 Model 26 Stepping 5, GenuineIntel
Windows-7-6.1.7601-SP1
processors: 4, speed: 2.80GHz
software ソフトウェア
GGNFS (SVN430), msieve 1.50 (SVN708)
execution environment 実行環境
Windows 7 Pro x64, Intel Xeon W3530@2.8GHz, 8GB RAM.

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaJuly 30, 2007 09:00:00 UTC 2007 年 7 月 30 日 (月) 18 時 0 分 0 秒 (日本時間)
351e6300Ignacio SantosNovember 21, 2010 22:55:38 UTC 2010 年 11 月 22 日 (月) 7 時 55 分 38 秒 (日本時間)
403e6110Ignacio SantosNovember 21, 2010 22:55:38 UTC 2010 年 11 月 22 日 (月) 7 時 55 分 38 秒 (日本時間)
4511e6632 / 444132Ignacio SantosNovember 21, 2010 22:55:38 UTC 2010 年 11 月 22 日 (月) 7 時 55 分 38 秒 (日本時間)
600Rich DickersonMay 19, 2012 13:51:16 UTC 2012 年 5 月 19 日 (土) 22 時 51 分 16 秒 (日本時間)

7×10182+3

c180

name 名前Sinkiti Sibata
date 日付June 24, 2008 10:48:17 UTC 2008 年 6 月 24 日 (火) 19 時 48 分 17 秒 (日本時間)
composite number 合成数
995732574679943100995732574679943100995732574679943100995732574679943100995732574679943100995732574679943100995732574679943100995732574679943100995732574679943100995732574679943101<180>
prime factors 素因数
5796213552807101290302139288236547086048674920761890437988566399723613188147<76>
171790180884158531835765998721853676674416631560705620499042258287282118632167531441001689658431400392783<105>
factorization results 素因数分解の結果
Number: 70003_182
N=995732574679943100995732574679943100995732574679943100995732574679943100995732574679943100995732574679943100995732574679943100995732574679943100995732574679943100995732574679943101
  ( 180 digits)
SNFS difficulty: 182 digits.
Divisors found:
 r1=5796213552807101290302139288236547086048674920761890437988566399723613188147 (pp76)
 r2=171790180884158531835765998721853676674416631560705620499042258287282118632167531441001689658431400392783 (pp105)
Version: GGNFS-0.77.1-20060513-k8
Total time: 549.90 hours.
Scaled time: 1098.71 units (timescale=1.998).
Factorization parameters were as follows:
name: 70003_182
n: 995732574679943100995732574679943100995732574679943100995732574679943100995732574679943100995732574679943100995732574679943100995732574679943100995732574679943100995732574679943101
m: 1000000000000000000000000000000000000
c5: 700
c0: 3
skew: 0.34
type: snfs
Factor base limits: 7400000/7400000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 48/48
Sieved algebraic special-q in [3700000, 9800001)
Primes: RFBsize:501962, AFBsize:501711, largePrimes:6541906 encountered
Relations: rels:7006429, finalFF:1144045
Max relations in full relation-set: 28
Initial matrix: 1003740 x 1144045 with sparse part having weight 73023928.
Pruned matrix : 886255 x 891337 with weight 55995755.
Total sieving time: 538.86 hours.
Total relation processing time: 0.43 hours.
Matrix solve time: 10.28 hours.
Time per square root: 0.33 hours.
Prototype def-par.txt line would be:
snfs,182,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000
total time: 549.90 hours.
 --------- CPU info (if available) ----------
execution environment 実行環境
Core 2 Duo E6300 1.86GHz, Windows Vista)

7×10183+3

c160

name 名前Ignacio Santos
date 日付October 20, 2013 22:03:05 UTC 2013 年 10 月 21 日 (月) 7 時 3 分 5 秒 (日本時間)
composite number 合成数
2150024355779666337892169253743610067474396939372976006637034637667574578846555961184807896703068981762235863613875851054165261451557337238686025205387175026281<160>
prime factors 素因数
6532146026519860457157147209255179524173<40>
329145176340330144366067696273650835525363281649760739050879404222106372606647737182646483636713315293456550191850515597<120>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:3277507288
Step 1 took 32156ms
Step 2 took 22844ms
********** Factor found in step 2: 6532146026519860457157147209255179524173
Found probable prime factor of 40 digits: 6532146026519860457157147209255179524173
Probable prime cofactor 329145176340330144366067696273650835525363281649760739050879404222106372606647737182646483636713315293456550191850515597 has 120 digits
software ソフトウェア
GMP-ECM 7.0

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaJuly 30, 2007 09:00:00 UTC 2007 年 7 月 30 日 (月) 18 時 0 分 0 秒 (日本時間)
351e6300Ignacio SantosNovember 22, 2010 00:31:39 UTC 2010 年 11 月 22 日 (月) 9 時 31 分 39 秒 (日本時間)
403e6110 / 2144Ignacio SantosNovember 22, 2010 00:31:39 UTC 2010 年 11 月 22 日 (月) 9 時 31 分 39 秒 (日本時間)
4511e632 / 4441Ignacio SantosNovember 22, 2010 00:31:39 UTC 2010 年 11 月 22 日 (月) 9 時 31 分 39 秒 (日本時間)

7×10184+3

c141

name 名前Dmitry Domanov
date 日付January 28, 2014 07:15:45 UTC 2014 年 1 月 28 日 (火) 16 時 15 分 45 秒 (日本時間)
composite number 合成数
132571781276242613582924893974195017823570621394920024816982011061082992933784678263182673833598703821031344729949834888220892770899346132967<141>
prime factors 素因数
10353940181472354735743878357133906382757885744626795077825537<62>
12803993354478757798948858513755811035616773207420548027821509860182615116604391<80>
factorization results 素因数分解の結果
N=132571781276242613582924893974195017823570621394920024816982011061082992933784678263182673833598703821031344729949834888220892770899346132967
  ( 141 digits)
SNFS difficulty: 185 digits.
Divisors found:
 r1=10353940181472354735743878357133906382757885744626795077825537 (pp62)
 r2=12803993354478757798948858513755811035616773207420548027821509860182615116604391 (pp80)
Version: Msieve v. 1.50 (SVN unknown)
Total time: 174.86 hours.
Scaled time: 0.00 units (timescale=0.000).
Factorization parameters were as follows:
n: 132571781276242613582924893974195017823570621394920024816982011061082992933784678263182673833598703821031344729949834888220892770899346132967
m: 5000000000000000000000000000000000000
deg: 5
c5: 112
c0: 15
skew: 0.67
# Murphy_E = 6.292e-11
type: snfs
lss: 1
rlim: 8700000
alim: 8700000
lpbr: 28
lpba: 28
mfbr: 54
mfba: 54
rlambda: 2.5
alambda: 2.5
qintsize: 600000
Factor base limits: 8700000/8700000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 54/54
Sieved rational special-q in [4350000, 12750001)
Primes: , ,
Relations: relations
Max relations in full relation-set:
Initial matrix:
Pruned matrix : 1850705 x 1850930
Total sieving time: 171.12 hours.
Total relation processing time: 0.24 hours.
Matrix solve time: 3.29 hours.
Time per square root: 0.22 hours.
Prototype def-par.txt line would be:
snfs,185.000,5,0,0,0,0,0,0,0,0,8700000,8700000,28,28,54,54,2.5,2.5,100000
total time: 174.86 hours.
 --------- CPU info (if available) ----------
[    0.074309] CPU0: Intel(R) Xeon(R) CPU           E5620  @ 2.40GHz stepping 02
[    0.000000] Memory: 49296732k/51380224k available (5105k kernel code, 1057796k absent, 1025696k reserved, 7223k data, 1316k init)
[    0.000007] Calibrating delay loop (skipped), value calculated using timer frequency.. 4800.00 BogoMIPS (lpj=2400000)
[    0.707507] Total of 16 processors activated (76799.07 BogoMIPS).

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaJuly 30, 2007 09:00:00 UTC 2007 年 7 月 30 日 (月) 18 時 0 分 0 秒 (日本時間)
351e6300Ignacio SantosNovember 22, 2010 05:33:07 UTC 2010 年 11 月 22 日 (月) 14 時 33 分 7 秒 (日本時間)
403e6110Ignacio SantosNovember 22, 2010 05:33:07 UTC 2010 年 11 月 22 日 (月) 14 時 33 分 7 秒 (日本時間)
4511e6632 / 444132Ignacio SantosNovember 22, 2010 05:33:07 UTC 2010 年 11 月 22 日 (月) 14 時 33 分 7 秒 (日本時間)
600Rich DickersonNovember 15, 2013 18:44:09 UTC 2013 年 11 月 16 日 (土) 3 時 44 分 9 秒 (日本時間)

7×10186+3

c149

name 名前Erik Branger
date 日付January 17, 2017 16:19:57 UTC 2017 年 1 月 18 日 (水) 1 時 19 分 57 秒 (日本時間)
composite number 合成数
33504738391487228749747446501773612093806339087076250696339848800027312314168629811645372145705956250463561211796008719270845701080544205217255359051<149>
prime factors 素因数
2935025821474710522373226657650253973539388376844261729<55>
11415483348167852008275676098662676700917828937365724798901968306864980550722949713100200107819<95>
factorization results 素因数分解の結果
Number: 70003_186
N = 33504738391487228749747446501773612093806339087076250696339848800027312314168629811645372145705956250463561211796008719270845701080544205217255359051 (149 digits)
SNFS difficulty: 187 digits.
Divisors found:
r1=2935025821474710522373226657650253973539388376844261729 (pp55)
r2=11415483348167852008275676098662676700917828937365724798901968306864980550722949713100200107819 (pp95)
Version: Msieve v. 1.51 (SVN 845)
Total time: 171.85 hours.
Factorization parameters were as follows:
n: 33504738391487228749747446501773612093806339087076250696339848800027312314168629811645372145705956250463561211796008719270845701080544205217255359051
m: 10000000000000000000000000000000000000
deg: 5
c5: 70
c0: 3
skew: 0.53
# Murphy_E = 5.437e-11
type: snfs
lss: 1
rlim: 9100000
alim: 9100000
lpbr: 28
lpba: 28
mfbr: 54
mfba: 54
rlambda: 2.5
alambda: 2.5
Factor base limits: 9100000/9100000
Large primes per side: 3
Large prime bits: 28/28
Sieved rational special-q in [0, 0)
Total raw relations: 23040771
Relations: 2689564 relations
Pruned matrix : 1717783 x 1718008
Polynomial selection time: 0.00 hours.
Total sieving time: 168.77 hours.
Total relation processing time: 0.14 hours.
Matrix solve time: 2.80 hours.
time per square root: 0.14 hours.
Prototype def-par.txt line would be: snfs,187,5,0,0,0,0,0,0,0,0,9100000,9100000,28,28,54,54,2.5,2.5,100000
total time: 171.85 hours.
Intel64 Family 6 Model 58 Stepping 9, GenuineIntel
Windows-post2008Server-6.2.9200
processors: 8, speed: 2.29GHz
software ソフトウェア
GGNFS, Msieve

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaJuly 30, 2007 09:00:00 UTC 2007 年 7 月 30 日 (月) 18 時 0 分 0 秒 (日本時間)
351e6300Ignacio SantosNovember 22, 2010 05:33:36 UTC 2010 年 11 月 22 日 (月) 14 時 33 分 36 秒 (日本時間)
403e61910110Ignacio SantosNovember 22, 2010 05:33:36 UTC 2010 年 11 月 22 日 (月) 14 時 33 分 36 秒 (日本時間)
1500Dmitry DomanovDecember 2, 2013 13:06:17 UTC 2013 年 12 月 2 日 (月) 22 時 6 分 17 秒 (日本時間)
300Serge BatalovJanuary 9, 2014 04:59:15 UTC 2014 年 1 月 9 日 (木) 13 時 59 分 15 秒 (日本時間)
4511e6182 / 404332Ignacio SantosNovember 22, 2010 05:33:36 UTC 2010 年 11 月 22 日 (月) 14 時 33 分 36 秒 (日本時間)
150Rich DickersonApril 9, 2014 21:25:55 UTC 2014 年 4 月 10 日 (木) 6 時 25 分 55 秒 (日本時間)

7×10192+3

c130

name 名前Robert Backstrom
date 日付February 1, 2008 05:11:40 UTC 2008 年 2 月 1 日 (金) 14 時 11 分 40 秒 (日本時間)
composite number 合成数
6948450842398574021083827748228008733680416101397780867570196837840177721896089316923841361695973007521582377123874074480140622029<130>
prime factors 素因数
360922089125386739265100361213804922199<39>
19251941213231301805507821363673906075280686340797762406923312617295075302212157369103874171<92>
factorization results 素因数分解の結果
GMP-ECM 6.1.3 [powered by GMP 4.2.1] [ECM]
Input number is 6948450842398574021083827748228008733680416101397780867570196837840177721896089316923841361695973007521582377123874074480140622029 (130 digits)
Using B1=2148000, B2=2854157680, polynomial Dickson(6), sigma=1344192446
Step 1 took 21206ms
Step 2 took 8411ms
********** Factor found in step 2: 360922089125386739265100361213804922199
Found probable prime factor of 39 digits: 360922089125386739265100361213804922199
Probable prime cofactor 19251941213231301805507821363673906075280686340797762406923312617295075302212157369103874171 has 92 digits

7×10194+3

c192

name 名前Wataru Sakai
date 日付July 12, 2009 09:51:05 UTC 2009 年 7 月 12 日 (日) 18 時 51 分 5 秒 (日本時間)
composite number 合成数
212572122684482235044032796841785605830549650774369875493470999088976617066504706954145156392347403583358639538414819313695718190100212572122684482235044032796841785605830549650774369875493471<192>
prime factors 素因数
711549423651204178804703845878926067199337895119<48>
298745407724036587596846553046331517575087722040410770709987309288456174674024401314163963624147750872498764458224098031975479126729720370314609<144>
factorization results 素因数分解の結果
Number: 70003_194
N=212572122684482235044032796841785605830549650774369875493470999088976617066504706954145156392347403583358639538414819313695718190100212572122684482235044032796841785605830549650774369875493471
  ( 192 digits)
SNFS difficulty: 195 digits.
Divisors found:
 r1=711549423651204178804703845878926067199337895119
 r2=298745407724036587596846553046331517575087722040410770709987309288456174674024401314163963624147750872498764458224098031975479126729720370314609
Version: 
Total time: 644.03 hours.
Scaled time: 1297.07 units (timescale=2.014).
Factorization parameters were as follows:
n: 212572122684482235044032796841785605830549650774369875493470999088976617066504706954145156392347403583358639538414819313695718190100212572122684482235044032796841785605830549650774369875493471
m: 1000000000000000000000000000000000000000
deg: 5
c5: 7
c0: 30
skew: 1.34
type: snfs
lss: 1
rlim: 12900000
alim: 12900000
lpbr: 28
lpba: 28
mfbr: 55
mfba: 55
rlambda: 2.5
alambda: 2.5Factor base limits: 12900000/12900000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 55/55
Sieved rational special-q in [6450000, 13550001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 2257343 x 2257591
Total sieving time: 644.03 hours.
Total relation processing time: 0.00 hours.
Matrix solve time: 0.00 hours.
Time per square root: 0.00 hours.
Prototype def-par.txt line would be:
snfs,195,5,0,0,0,0,0,0,0,0,12900000,12900000,28,28,55,55,2.5,2.5,100000
total time: 644.03 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaJuly 30, 2007 09:00:00 UTC 2007 年 7 月 30 日 (月) 18 時 0 分 0 秒 (日本時間)

7×10195+3

c157

name 名前Serge Batalov
date 日付October 30, 2013 15:03:39 UTC 2013 年 10 月 31 日 (木) 0 時 3 分 39 秒 (日本時間)
composite number 合成数
6794401418249220564470302772715475023213633607997441631965102666715002834175385614573567133933861717994501840072302208696048566059616014946241190422937491167<157>
prime factors 素因数
3264429666208402941646844264448525016971036119<46>
2081344097739694518485623114863207666580074112266611692519396401802216778880649252109357498189265361435766375993<112>
factorization results 素因数分解の結果
Using B1=110000000, B2=776278396540, polynomial Dickson(30), sigma=3341907957
Step 1 took 617039ms
Step 2 took 190452ms
********** Factor found in step 2: 3264429666208402941646844264448525016971036119
Found probable prime factor of 46 digits: 3264429666208402941646844264448525016971036119
Probable prime cofactor

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaJuly 30, 2007 09:00:00 UTC 2007 年 7 月 30 日 (月) 18 時 0 分 0 秒 (日本時間)
351e6300Ignacio SantosNovember 22, 2010 05:34:08 UTC 2010 年 11 月 22 日 (月) 14 時 34 分 8 秒 (日本時間)
403e6110 / 2144Ignacio SantosNovember 22, 2010 05:34:08 UTC 2010 年 11 月 22 日 (月) 14 時 34 分 8 秒 (日本時間)
4511e632 / 4441Ignacio SantosNovember 22, 2010 05:34:08 UTC 2010 年 11 月 22 日 (月) 14 時 34 分 8 秒 (日本時間)

7×10196+3

c189

name 名前Wataru Sakai
date 日付August 16, 2010 13:39:05 UTC 2010 年 8 月 16 日 (月) 22 時 39 分 5 秒 (日本時間)
composite number 合成数
870531918755444788521494434185778500590102497298646184824845309276175467746437979258134439900447462111559486175747933354115832007088318584636477125461818737421046952176346585718473683453229<189>
prime factors 素因数
6209295025861248104401498918612644843252814534446112342360551710652554123<73>
140198189187298177033134475194820344937688280235805400687901079429074440127140284360976916800670096474701071003670823<117>
factorization results 素因数分解の結果
Number: 70003_196
N=870531918755444788521494434185778500590102497298646184824845309276175467746437979258134439900447462111559486175747933354115832007088318584636477125461818737421046952176346585718473683453229
  ( 189 digits)
SNFS difficulty: 196 digits.
Divisors found:
 r1=6209295025861248104401498918612644843252814534446112342360551710652554123
 r2=140198189187298177033134475194820344937688280235805400687901079429074440127140284360976916800670096474701071003670823
Version: 
Total time: 749.83 hours.
Scaled time: 1510.15 units (timescale=2.014).
Factorization parameters were as follows:
n: 870531918755444788521494434185778500590102497298646184824845309276175467746437979258134439900447462111559486175747933354115832007088318584636477125461818737421046952176346585718473683453229
m: 1000000000000000000000000000000000000000
deg: 5
c5: 70
c0: 3
skew: 0.53
type: snfs
lss: 1
rlim: 13400000
alim: 13400000
lpbr: 28
lpba: 28
mfbr: 55
mfba: 55
rlambda: 2.5
alambda: 2.5Factor base limits: 13400000/13400000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 55/55
Sieved rational special-q in [6700000, 15200001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 2291194 x 2291442
Total sieving time: 749.83 hours.
Total relation processing time: 0.00 hours.
Matrix solve time: 0.00 hours.
Time per square root: 0.00 hours.
Prototype def-par.txt line would be:
snfs,196,5,0,0,0,0,0,0,0,0,13400000,13400000,28,28,55,55,2.5,2.5,100000
total time: 749.83 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaJuly 30, 2007 09:00:00 UTC 2007 年 7 月 30 日 (月) 18 時 0 分 0 秒 (日本時間)
351e6300Ignacio SantosJune 21, 2010 12:37:56 UTC 2010 年 6 月 21 日 (月) 21 時 37 分 56 秒 (日本時間)
403e62446110Ignacio SantosJune 21, 2010 12:37:56 UTC 2010 年 6 月 21 日 (月) 21 時 37 分 56 秒 (日本時間)
2336Wataru SakaiJune 22, 2010 06:19:39 UTC 2010 年 6 月 22 日 (火) 15 時 19 分 39 秒 (日本時間)
4511e6137 / 392432Ignacio SantosJune 21, 2010 12:37:56 UTC 2010 年 6 月 21 日 (月) 21 時 37 分 56 秒 (日本時間)
105Dmitry DomanovJune 21, 2010 12:57:40 UTC 2010 年 6 月 21 日 (月) 21 時 57 分 40 秒 (日本時間)

7×10197+3

c183

name 名前Bob Backstrom
date 日付February 26, 2021 10:57:54 UTC 2021 年 2 月 26 日 (金) 19 時 57 分 54 秒 (日本時間)
composite number 合成数
583723040868188398708597090156241795531993542291926409332571092713616810806791118215733781720504096037754967368622540416612763148781932602531673090118185678243217961071094830531676979<183>
prime factors 素因数
17011170339509324068653941761136158241765663627<47>
3812632423046170713337259874692065312037416328197868801<55>
9000107691047169821956093145893689162787487575541330951012503933273421655114147577<82>
factorization results 素因数分解の結果
Number: n
N=583723040868188398708597090156241795531993542291926409332571092713616810806791118215733781720504096037754967368622540416612763148781932602531673090118185678243217961071094830531676979  ( 183 digits)
SNFS difficulty: 197 digits.
Divisors found:

Fri Feb 26 21:47:36 2021  found factor: 3812632423046170713337259874692065312037416328197868801
Fri Feb 26 21:52:50 2021  p47 factor: 17011170339509324068653941761136158241765663627
Fri Feb 26 21:52:50 2021  p55 factor: 3812632423046170713337259874692065312037416328197868801
Fri Feb 26 21:52:50 2021  p82 factor: 9000107691047169821956093145893689162787487575541330951012503933273421655114147577
Fri Feb 26 21:52:50 2021  elapsed time 01:21:40 (Msieve 1.54 - dependency 3)

Version: 
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.324).
Factorization parameters were as follows:
#
# N = 7x10^197+3 = 70(196)3
#
n: 583723040868188398708597090156241795531993542291926409332571092713616810806791118215733781720504096037754967368622540416612763148781932602531673090118185678243217961071094830531676979
m: 1000000000000000000000000000000000000000
deg: 5
c5: 700
c0: 3
skew: 0.34
# Murphy_E = 2.277e-11
type: snfs
lss: 1
rlim: 13900000
alim: 13900000
lpbr: 28
lpba: 28
mfbr: 55
mfba: 55
rlambda: 2.5
alambda: 2.5
Factor base limits: 13900000/13900000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 55/55
Sieved  special-q in [100000, 19750000)
Primes: , , 
Relations: 
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 

Msieve: found 3027937 hash collisions in 26100268 relations (24546834 unique)
Msieve: matrix is 1780285 x 1780510 (622.8 MB)

Sieving start time: 2021/02/26 15:55:56
Sieving end time  : 2021/02/26 20:30:34

Total sieving time: 4hrs 34min 38secs.

Total relation processing time: 1hrs 1min 51sec.
Matrix solve time: 0.00 hours.
Total square root time: 0hrs 7min 49sec.

Prototype def-par.txt line would be:
snfs,197,5,0,0,0,0,0,0,0,0,13900000,13900000,28,28,55,55,2.5,2.5,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------
[    0.116873] smpboot: CPU0: AMD Ryzen 7 2700 Eight-Core Processor (family: 0x17, model: 0x8, stepping: 0x2)
[    0.000000] Memory: 16241916K/16727236K available (14339K kernel code, 2400K rwdata, 4964K rodata, 2732K init, 4968K bss, 485320K reserved, 0K cma-reserved)
[    0.153556] x86/mm: Memory block size: 128MB
[    0.000005] Calibrating delay loop (skipped), value calculated using timer frequency.. 6399.16 BogoMIPS (lpj=12798332)
[    0.152039] smpboot: Total of 16 processors activated (102386.65 BogoMIPS)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaJuly 30, 2007 09:00:00 UTC 2007 年 7 月 30 日 (月) 18 時 0 分 0 秒 (日本時間)
351e6300Ignacio SantosNovember 22, 2010 05:34:37 UTC 2010 年 11 月 22 日 (月) 14 時 34 分 37 秒 (日本時間)
403e61910110Ignacio SantosNovember 22, 2010 05:34:37 UTC 2010 年 11 月 22 日 (月) 14 時 34 分 37 秒 (日本時間)
1500Dmitry DomanovDecember 2, 2013 13:06:26 UTC 2013 年 12 月 2 日 (月) 22 時 6 分 26 秒 (日本時間)
300Serge BatalovJanuary 9, 2014 04:59:16 UTC 2014 年 1 月 9 日 (木) 13 時 59 分 16 秒 (日本時間)
4511e61532 / 404332Ignacio SantosNovember 22, 2010 05:34:37 UTC 2010 年 11 月 22 日 (月) 14 時 34 分 37 秒 (日本時間)
1500Dmitry DomanovApril 30, 2014 12:31:08 UTC 2014 年 4 月 30 日 (水) 21 時 31 分 8 秒 (日本時間)

7×10198+3

c179

name 名前Bob Backstrom
date 日付March 16, 2021 07:00:00 UTC 2021 年 3 月 16 日 (火) 16 時 0 分 0 秒 (日本時間)
composite number 合成数
14303370437529736035776509021020367994977563743718072242830294592017946229786059564291921595196918594785013092205330293250436877969336545570611980419433044939382199912869165524687<179>
prime factors 素因数
14954303136576143663755172942190647069262449676658268330213460823<65>
956471880160412365634560741676128762607311882672548924582358724779501256628825949916623036449639892678775202647369<114>
factorization results 素因数分解の結果
Number: n
N=14303370437529736035776509021020367994977563743718072242830294592017946229786059564291921595196918594785013092205330293250436877969336545570611980419433044939382199912869165524687  ( 179 digits)
SNFS difficulty: 198 digits.
Divisors found:

Tue Mar 16 17:53:36 2021  p65 factor: 14954303136576143663755172942190647069262449676658268330213460823
Tue Mar 16 17:53:36 2021  p114 factor: 956471880160412365634560741676128762607311882672548924582358724779501256628825949916623036449639892678775202647369
Tue Mar 16 17:53:36 2021  elapsed time 01:21:52 (Msieve 1.54 - dependency 1)

Version: 
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.345).
Factorization parameters were as follows:
#
# N = 7x10^198+3 = 70(197)3
#
n: 14303370437529736035776509021020367994977563743718072242830294592017946229786059564291921595196918594785013092205330293250436877969336545570611980419433044939382199912869165524687
m: 1000000000000000000000000000000000000000
deg: 5
c5: 7000
c0: 3
skew: 0.21
# Murphy_E = 1.716e-11
type: snfs
lss: 1
rlim: 14400000
alim: 14400000
lpbr: 28
lpba: 28
mfbr: 55
mfba: 55
rlambda: 2.5
alambda: 2.5
Factor base limits: 14400000/14400000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 55/55
Sieved  special-q in [100000, 27200000)
Primes: , , 
Relations: 
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 

Msieve: found 3939462 hash collisions in 29055135 relations (26631712 unique)
Msieve: matrix is 1823457 x 1823682 (633.1 MB)

Sieving start time : 2021/03/16 09:52:34
Sieving end time  : 2021/03/16 16:31:13

Total sieving time: 6hrs 38min 39secs.

Total relation processing time: 1hrs 4min 50sec.
Matrix solve time: 0.00 hours.
Total square root time: 0hrs 2min 38sec.

Prototype def-par.txt line would be:
snfs,198,5,0,0,0,0,0,0,0,0,14400000,14400000,28,28,55,55,2.5,2.5,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------
[    0.116745] smpboot: CPU0: AMD Ryzen 7 2700 Eight-Core Processor (family: 0x17, model: 0x8, stepping: 0x2)
[    0.000000] Memory: 16241916K/16727236K available (14339K kernel code, 2400K rwdata, 4964K rodata, 2732K init, 4968K bss, 485320K reserved, 0K cma-reserved)
[    0.152613] x86/mm: Memory block size: 128MB
[    0.000005] Calibrating delay loop (skipped), value calculated using timer frequency.. 6399.17 BogoMIPS (lpj=12798352)
[    0.150217] smpboot: Total of 16 processors activated (102386.81 BogoMIPS)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaJuly 30, 2007 09:00:00 UTC 2007 年 7 月 30 日 (月) 18 時 0 分 0 秒 (日本時間)
351e6300Ignacio SantosNovember 22, 2010 06:21:49 UTC 2010 年 11 月 22 日 (月) 15 時 21 分 49 秒 (日本時間)
403e61910110Ignacio SantosNovember 22, 2010 06:21:49 UTC 2010 年 11 月 22 日 (月) 15 時 21 分 49 秒 (日本時間)
1500Dmitry DomanovDecember 2, 2013 13:06:35 UTC 2013 年 12 月 2 日 (月) 22 時 6 分 35 秒 (日本時間)
300Serge BatalovJanuary 9, 2014 04:59:16 UTC 2014 年 1 月 9 日 (木) 13 時 59 分 16 秒 (日本時間)
4511e61532 / 404332Ignacio SantosNovember 22, 2010 06:21:49 UTC 2010 年 11 月 22 日 (月) 15 時 21 分 49 秒 (日本時間)
1500Dmitry DomanovApril 30, 2014 12:31:22 UTC 2014 年 4 月 30 日 (水) 21 時 31 分 22 秒 (日本時間)

7×10201+3

c181

name 名前Bob Backstrom
date 日付September 27, 2021 19:17:35 UTC 2021 年 9 月 28 日 (火) 4 時 17 分 35 秒 (日本時間)
composite number 合成数
2043058492307067550223787256705332909947066274414760791548170707723398336498263778729521492707748176450075551852219460025505931254136390203052158453596295307634918824329063029075447<181>
prime factors 素因数
34909614287403391947472276470412403010427513579259072008021665092127667547<74>
58524235629961526330246236147048526938955364204843848064298945603804208142542106333075493462169670132375701<107>
factorization results 素因数分解の結果
Number: n
N=2043058492307067550223787256705332909947066274414760791548170707723398336498263778729521492707748176450075551852219460025505931254136390203052158453596295307634918824329063029075447  ( 181 digits)
SNFS difficulty: 201 digits.
Divisors found:

Tue Sep 28 05:09:17 2021  p74 factor: 34909614287403391947472276470412403010427513579259072008021665092127667547
Tue Sep 28 05:09:17 2021  p107 factor: 58524235629961526330246236147048526938955364204843848064298945603804208142542106333075493462169670132375701
Tue Sep 28 05:09:17 2021  elapsed time 01:53:07 (Msieve 1.54 - dependency 2)

Version: 
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.347).
Factorization parameters were as follows:
#
# N = 7x10^201+3 = 70(200)3
#
n: 2043058492307067550223787256705332909947066274414760791548170707723398336498263778729521492707748176450075551852219460025505931254136390203052158453596295307634918824329063029075447
m: 10000000000000000000000000000000000000000
deg: 5
c5: 70
c0: 3
skew: 0.53
# Murphy_E = 1.155e-11
type: snfs
lss: 1
rlim: 16200000
alim: 16200000
lpbr: 29
lpba: 29
mfbr: 56
mfba: 56
rlambda: 2.6
alambda: 2.6
Factor base limits: 16200000/16200000
Large primes per side: 3
Large prime bits: 29/29
Max factor residue bits: 56/56
Sieved  special-q in [100000, 35300000)
Primes: , , 
Relations: 
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 

Msieve: found 9209709 hash collisions in 66984491 relations (59218207 unique)
Msieve: matrix is 2157425 x 2157654 (738.2 MB)

Sieving start time : 2021/09/27 14:51:54
Sieving end time  : 2021/09/28 03:13:26

Total sieving time: 12hrs 21min 32secs.

Total relation processing time: 1hrs 32min 12sec.
Matrix solve time: 0.00 hours.
Total square root time: 0hrs 4min 45sec.

Prototype def-par.txt line would be:
snfs,201,5,0,0,0,0,0,0,0,0,16200000,16200000,29,29,56,56,2.6,2.6,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------
[    0.119850] smpboot: CPU0: AMD Ryzen 7 2700 Eight-Core Processor (family: 0x17, model: 0x8, stepping: 0x2)
[    0.000000] Memory: 16239964K/16727236K available (14339K kernel code, 2400K rwdata, 5016K rodata, 2736K init, 4964K bss, 487272K reserved, 0K cma-reserved)
[    0.154026] x86/mm: Memory block size: 128MB
[    0.000005] Calibrating delay loop (skipped), value calculated using timer frequency.. 6399.44 BogoMIPS (lpj=12798892)
[    0.150212] smpboot: Total of 16 processors activated (102391.13 BogoMIPS)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaNovember 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間)
403e60--
4511e66780400Serge BatalovNovember 19, 2013 18:02:10 UTC 2013 年 11 月 20 日 (水) 3 時 2 分 10 秒 (日本時間)
400Serge BatalovNovember 19, 2013 18:02:11 UTC 2013 年 11 月 20 日 (水) 3 時 2 分 11 秒 (日本時間)
1500Dmitry DomanovApril 30, 2014 12:31:39 UTC 2014 年 4 月 30 日 (水) 21 時 31 分 39 秒 (日本時間)
4480Ignacio SantosAugust 6, 2021 10:01:58 UTC 2021 年 8 月 6 日 (金) 19 時 1 分 58 秒 (日本時間)

7×10202+3

c192

name 名前Serge Batalov
date 日付November 19, 2013 08:08:18 UTC 2013 年 11 月 19 日 (火) 17 時 8 分 18 秒 (日本時間)
composite number 合成数
141734045183450564369687269373108407355944152733843188740270370034157499914549055413846352188194164524031751346142089972459731442850378453098352226785923400084777068650988480269004513656861111<192>
prime factors 素因数
1793258149946950549505155314272581687<37>
composite cofactor 合成数の残り
79037167731619367064646295811996973912509341300003788988243863560636996657843086441558616189531026784673009053593529999453293710597199270027151583251649153<155>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=2119995705
Step 1 took 57863ms
Step 2 took 21625ms
********** Factor found in step 2: 1793258149946950549505155314272581687
Found probable prime factor of 37 digits: 1793258149946950549505155314272581687
Composite cofactor

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaNovember 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間)
403e61500Dmitry DomanovDecember 2, 2013 13:06:52 UTC 2013 年 12 月 2 日 (月) 22 時 6 分 52 秒 (日本時間)
4511e66380400Serge BatalovNovember 19, 2013 18:02:12 UTC 2013 年 11 月 20 日 (水) 3 時 2 分 12 秒 (日本時間)
1500Dmitry DomanovApril 30, 2014 12:32:15 UTC 2014 年 4 月 30 日 (水) 21 時 32 分 15 秒 (日本時間)
4480Ignacio SantosSeptember 5, 2021 19:34:58 UTC 2021 年 9 月 6 日 (月) 4 時 34 分 58 秒 (日本時間)

7×10203+3

c171

name 名前Serge Batalov
date 日付November 18, 2013 20:05:34 UTC 2013 年 11 月 19 日 (火) 5 時 5 分 34 秒 (日本時間)
composite number 合成数
124956847898059343731280999734898943683796790757158915439916494920500719325376677914850824527540403982793246986957675211600773261715608999956141775983900403496364362450177<171>
prime factors 素因数
39421058788435533306235532145937<32>
composite cofactor 合成数の残り
3169799384858642689307824257681793381139457759844836172206199951519946138870465411351524182766174123991887262638511743942997861907363041521<139>
factorization results 素因数分解の結果
Using B1=2000000, B2=5705781910, polynomial Dickson(6), sigma=3839599914
Step 1 took 8156ms
Step 2 took 5965ms
********** Factor found in step 2: 39421058788435533306235532145937
Found probable prime factor of 32 digits: 39421058788435533306235532145937
Composite cofactor 

c139

name 名前Youcef Lemsafer
date 日付December 4, 2013 06:30:06 UTC 2013 年 12 月 4 日 (水) 15 時 30 分 6 秒 (日本時間)
composite number 合成数
3169799384858642689307824257681793381139457759844836172206199951519946138870465411351524182766174123991887262638511743942997861907363041521<139>
prime factors 素因数
11161082229868366178586047078195906213830944275401463<53>
284004661875520229748354481165373733772213270925504868400991084706402200408864083124567<87>
factorization results 素因数分解の結果
<Polynomial selection using msieve 1.52 (SVN 942) win64 CUDA>

Sun Dec 01 09:09:33 2013  Msieve v. 1.52 (SVN unknown)
Sun Dec 01 09:09:33 2013  random seeds: 596e29c0 31cecd85
Sun Dec 01 09:09:33 2013  factoring 3169799384858642689307824257681793381139457759844836172206199951519946138870465411351524182766174123991887262638511743942997861907363041521 (139 digits)
Sun Dec 01 09:09:34 2013  searching for 15-digit factors
Sun Dec 01 09:09:34 2013  commencing number field sieve (139-digit input)
Sun Dec 01 09:09:34 2013  commencing number field sieve polynomial selection
Sun Dec 01 09:09:34 2013  polynomial degree: 5
Sun Dec 01 09:09:34 2013  max stage 1 norm: 1.32e+021
Sun Dec 01 09:09:34 2013  max stage 2 norm: 2.50e+019
Sun Dec 01 09:09:34 2013  min E-value: 1.94e-011
Sun Dec 01 09:09:34 2013  poly select deadline: 186675
Sun Dec 01 11:44:42 2013  polynomial selection complete
Sun Dec 01 11:44:42 2013  R0: -621007583157439336356169977
Sun Dec 01 11:44:42 2013  R1: 673551616329769
Sun Dec 01 11:44:42 2013  A0: -1252991855929474820815625495702540
Sun Dec 01 11:44:42 2013  A1: 5549610486493690177921411772
Sun Dec 01 11:44:42 2013  A2: 19083381265157798420373
Sun Dec 01 11:44:42 2013  A3: -37949423452445696
Sun Dec 01 11:44:42 2013  A4: -1413396172
Sun Dec 01 11:44:42 2013  A5: 34320
Sun Dec 01 11:44:42 2013  skew 666828.93, size 2.088e-013, alpha -6.253, combined = 2.568e-011 rroots = 3

<Sieving>
<7500000, 10000000>
<    2013-12-01 16:08:40 ... 2013-12-02 07:50:44>
<    15h 42m, Intel Xeon W3530 @ 2.8 GHz, 4 threads>
<    4566469 relations>
<10000000, 11500000>
<    2013-12-02 08:18:28 ... 2013-12-02 21:32:38>
<    13h 14m, Intel Xeon W3530 @ 2.8 GHz, 3 threads>
<    2798578 relations>
<11500000, 12800000>
<    2013-12-02 21:36:15 ... 2013-12-03 06:33:10>
<    08h 57m, Intel Xeon W3530 @ 2.8 GHz, 4 threads>
<    2434411 relations>

<Resuming on 2x Intel Xeon E5-2620 @ 2.0 GHz, 24 threads>

Tue Dec 03 08:41:38 2013 -> factmsieve.py (v0.76)
Tue Dec 03 08:41:38 2013 -> This is client 1 of 1
Tue Dec 03 08:41:38 2013 -> Running on 12 Cores with 2 hyper-threads per Core
Tue Dec 03 08:41:38 2013 -> Working with NAME = 70003_203
Tue Dec 03 08:41:38 2013 -> Selected lattice siever: gnfs-lasieve4I13e
Tue Dec 03 08:41:38 2013 -> Creating param file to detect parameter changes...
Tue Dec 03 08:41:38 2013 -> Running setup ...
Tue Dec 03 08:41:38 2013 -> Estimated minimum relations needed: 2.2e+07
Tue Dec 03 08:41:38 2013 -> cleaning up before a restart
Tue Dec 03 08:41:38 2013 -> Running lattice siever ...
Tue Dec 03 08:41:38 2013 -> entering sieving loop
<...snipped...>
Tue Dec 03 08:41:38 2013 -> Lattice sieving algebraic q from 12800000 to 12900000.
<...snipped...>
Tue Dec 03 09:00:29 2013 Found 9988455 relations, 45.4% of the estimated minimum (22000000).
Tue Dec 03 09:00:29 2013 LatSieveTime: 1130.65
<...snipped...>
Tue Dec 03 10:14:20 2013 Found 11105919 relations, 50.5% of the estimated minimum (22000000).
<...snipped...>
Tue Dec 03 16:26:41 2013 Found 16477471 relations, 74.9% of the estimated minimum (22000000).
<...snipped...>
Tue Dec 03 23:07:40 2013 Found 22003913 relations, 100.0% of the estimated minimum (22000000).
<...snipped...>
Wed Dec 04 01:18:25 2013 Found 23167723 relations, 105.3% of the estimated minimum (22000000).
<...snipped...>
Wed Dec 04 01:18:27 2013  
Wed Dec 04 01:18:27 2013  commencing relation filtering
Wed Dec 04 01:18:27 2013  estimated available RAM is 4096.0 MB
Wed Dec 04 01:18:27 2013  commencing duplicate removal, pass 1
Wed Dec 04 01:20:55 2013  found 3327890 hash collisions in 23167722 relations
Wed Dec 04 01:21:44 2013  added 24 free relations
Wed Dec 04 01:21:44 2013  commencing duplicate removal, pass 2
Wed Dec 04 01:22:02 2013  found 2932861 duplicates and 20234885 unique relations
Wed Dec 04 01:22:02 2013  memory use: 98.6 MB
Wed Dec 04 01:22:02 2013  reading ideals above 19988480
Wed Dec 04 01:22:09 2013  commencing singleton removal, initial pass
Wed Dec 04 01:24:44 2013  memory use: 376.5 MB
Wed Dec 04 01:24:44 2013  reading all ideals from disk
Wed Dec 04 01:24:45 2013  memory use: 334.3 MB
Wed Dec 04 01:24:45 2013  commencing in-memory singleton removal
Wed Dec 04 01:24:46 2013  begin with 20234885 relations and 19398073 unique ideals
Wed Dec 04 01:24:54 2013  reduce to 8793349 relations and 6184297 ideals in 22 passes
Wed Dec 04 01:24:54 2013  max relations containing the same ideal: 31
Wed Dec 04 01:24:55 2013  reading ideals above 100000
Wed Dec 04 01:24:55 2013  commencing singleton removal, initial pass
Wed Dec 04 01:26:26 2013  memory use: 188.3 MB
Wed Dec 04 01:26:26 2013  reading all ideals from disk
Wed Dec 04 01:26:26 2013  memory use: 343.3 MB
Wed Dec 04 01:26:27 2013  keeping 8670950 ideals with weight <= 200, target excess is 45673
Wed Dec 04 01:26:28 2013  commencing in-memory singleton removal
Wed Dec 04 01:26:29 2013  begin with 8793377 relations and 8670950 unique ideals
Wed Dec 04 01:26:39 2013  reduce to 8690791 relations and 8568112 ideals in 15 passes
Wed Dec 04 01:26:39 2013  max relations containing the same ideal: 200
Wed Dec 04 01:26:43 2013  removing 475420 relations and 440571 ideals in 34849 cliques
Wed Dec 04 01:26:43 2013  commencing in-memory singleton removal
Wed Dec 04 01:26:44 2013  begin with 8215371 relations and 8568112 unique ideals
Wed Dec 04 01:26:49 2013  reduce to 8193961 relations and 8105982 ideals in 9 passes
Wed Dec 04 01:26:49 2013  max relations containing the same ideal: 196
Wed Dec 04 01:26:53 2013  removing 344212 relations and 309363 ideals in 34849 cliques
Wed Dec 04 01:26:53 2013  commencing in-memory singleton removal
Wed Dec 04 01:26:54 2013  begin with 7849749 relations and 8105982 unique ideals
Wed Dec 04 01:27:00 2013  reduce to 7837707 relations and 7784509 ideals in 10 passes
Wed Dec 04 01:27:00 2013  max relations containing the same ideal: 192
Wed Dec 04 01:27:05 2013  relations with 0 large ideals: 157
Wed Dec 04 01:27:05 2013  relations with 1 large ideals: 100
Wed Dec 04 01:27:05 2013  relations with 2 large ideals: 1270
Wed Dec 04 01:27:05 2013  relations with 3 large ideals: 17088
Wed Dec 04 01:27:05 2013  relations with 4 large ideals: 124427
Wed Dec 04 01:27:05 2013  relations with 5 large ideals: 532600
Wed Dec 04 01:27:05 2013  relations with 6 large ideals: 1403211
Wed Dec 04 01:27:05 2013  relations with 7+ large ideals: 5758854
Wed Dec 04 01:27:05 2013  commencing 2-way merge
Wed Dec 04 01:27:11 2013  reduce to 4600807 relation sets and 4547609 unique ideals
Wed Dec 04 01:27:11 2013  commencing full merge
Wed Dec 04 01:28:43 2013  memory use: 482.7 MB
Wed Dec 04 01:28:44 2013  found 2387434 cycles, need 2383809
Wed Dec 04 01:28:44 2013  weight of 2383809 cycles is about 167019205 (70.06/cycle)
Wed Dec 04 01:28:44 2013  distribution of cycle lengths:
Wed Dec 04 01:28:44 2013  1 relations: 370628
Wed Dec 04 01:28:44 2013  2 relations: 317039
Wed Dec 04 01:28:44 2013  3 relations: 290942
Wed Dec 04 01:28:44 2013  4 relations: 247452
Wed Dec 04 01:28:44 2013  5 relations: 209719
Wed Dec 04 01:28:44 2013  6 relations: 173208
Wed Dec 04 01:28:44 2013  7 relations: 144382
Wed Dec 04 01:28:44 2013  8 relations: 118386
Wed Dec 04 01:28:44 2013  9 relations: 96153
Wed Dec 04 01:28:44 2013  10+ relations: 415900
Wed Dec 04 01:28:44 2013  heaviest cycle: 28 relations
Wed Dec 04 01:28:44 2013  commencing cycle optimization
Wed Dec 04 01:28:48 2013  start with 13504511 relations
Wed Dec 04 01:29:15 2013  pruned 286099 relations
Wed Dec 04 01:29:15 2013  memory use: 362.5 MB
Wed Dec 04 01:29:15 2013  distribution of cycle lengths:
Wed Dec 04 01:29:15 2013  1 relations: 370628
Wed Dec 04 01:29:15 2013  2 relations: 324064
Wed Dec 04 01:29:15 2013  3 relations: 300213
Wed Dec 04 01:29:15 2013  4 relations: 251595
Wed Dec 04 01:29:15 2013  5 relations: 213136
Wed Dec 04 01:29:15 2013  6 relations: 173687
Wed Dec 04 01:29:15 2013  7 relations: 143821
Wed Dec 04 01:29:15 2013  8 relations: 116769
Wed Dec 04 01:29:15 2013  9 relations: 94454
Wed Dec 04 01:29:15 2013  10+ relations: 395442
Wed Dec 04 01:29:15 2013  heaviest cycle: 28 relations
Wed Dec 04 01:29:18 2013  RelProcTime: 651
Wed Dec 04 01:29:18 2013  elapsed time 00:10:53
Wed Dec 04 01:29:18 2013 LatSieveTime: 1432.94
Wed Dec 04 01:29:18 2013 -> Running matrix solving step ...
<...snipped...>
Wed Dec 04 01:29:20 2013  
Wed Dec 04 01:29:20 2013  commencing linear algebra
Wed Dec 04 01:29:21 2013  read 2383809 cycles
Wed Dec 04 01:29:26 2013  cycles contain 7765915 unique relations
Wed Dec 04 01:30:15 2013  read 7765915 relations
Wed Dec 04 01:30:28 2013  using 20 quadratic characters above 268435068
Wed Dec 04 01:31:09 2013  building initial matrix
Wed Dec 04 01:33:03 2013  memory use: 888.8 MB
Wed Dec 04 01:33:06 2013  read 2383809 cycles
Wed Dec 04 01:33:07 2013  matrix is 2383632 x 2383809 (679.5 MB) with weight 221286497 (92.83/col)
Wed Dec 04 01:33:07 2013  sparse part has weight 161442270 (67.72/col)
Wed Dec 04 01:33:33 2013  filtering completed in 2 passes
Wed Dec 04 01:33:35 2013  matrix is 2382831 x 2383008 (679.5 MB) with weight 221257956 (92.85/col)
Wed Dec 04 01:33:35 2013  sparse part has weight 161436229 (67.74/col)
Wed Dec 04 01:33:46 2013  matrix starts at (0, 0)
Wed Dec 04 01:33:47 2013  matrix is 2382831 x 2383008 (679.5 MB) with weight 221257956 (92.85/col)
Wed Dec 04 01:33:47 2013  sparse part has weight 161436229 (67.74/col)
Wed Dec 04 01:33:47 2013  saving the first 48 matrix rows for later
Wed Dec 04 01:33:48 2013  matrix includes 64 packed rows
Wed Dec 04 01:33:48 2013  matrix is 2382783 x 2383008 (653.1 MB) with weight 176351030 (74.00/col)
Wed Dec 04 01:33:48 2013  sparse part has weight 156915968 (65.85/col)
Wed Dec 04 01:33:48 2013  using block size 65536 for processor cache size 15360 kB
Wed Dec 04 01:34:04 2013  commencing Lanczos iteration (24 threads)
Wed Dec 04 01:34:04 2013  memory use: 964.3 MB
Wed Dec 04 01:34:14 2013  linear algebra at 0.1%, ETA 3h54m
Wed Dec 04 01:34:17 2013  checkpointing every 610000 dimensions
Wed Dec 04 05:38:49 2013  lanczos halted after 37683 iterations (dim = 2382781)
Wed Dec 04 05:38:54 2013  recovered 30 nontrivial dependencies
Wed Dec 04 05:38:59 2013  BLanczosTime: 14979
Wed Dec 04 05:38:59 2013  elapsed time 04:09:41
Wed Dec 04 05:38:59 2013 -> Running square root step ...
<...snipped...>
Wed Dec 04 05:39:01 2013  
Wed Dec 04 05:39:01 2013  commencing square root phase
Wed Dec 04 05:39:01 2013  reading relations for dependency 1
Wed Dec 04 05:39:01 2013  read 1191060 cycles
Wed Dec 04 05:39:04 2013  cycles contain 3880442 unique relations
Wed Dec 04 05:39:32 2013  read 3880442 relations
Wed Dec 04 05:39:53 2013  multiplying 3880442 relations
Wed Dec 04 05:50:26 2013  multiply complete, coefficients have about 184.04 million bits
Wed Dec 04 05:50:29 2013  initial square root is modulo 4026571
Wed Dec 04 06:03:13 2013  GCD is N, no factor found
Wed Dec 04 06:03:13 2013  reading relations for dependency 2
Wed Dec 04 06:03:14 2013  read 1191752 cycles
Wed Dec 04 06:03:16 2013  cycles contain 3882558 unique relations
Wed Dec 04 06:03:44 2013  read 3882558 relations
Wed Dec 04 06:04:05 2013  multiplying 3882558 relations
Wed Dec 04 06:14:37 2013  multiply complete, coefficients have about 184.15 million bits
Wed Dec 04 06:14:40 2013  initial square root is modulo 4060139
Wed Dec 04 06:27:28 2013  sqrtTime: 2907
Wed Dec 04 06:27:28 2013  prp53 factor: 11161082229868366178586047078195906213830944275401463
Wed Dec 04 06:27:28 2013  prp87 factor: 284004661875520229748354481165373733772213270925504868400991084706402200408864083124567
Wed Dec 04 06:27:28 2013  elapsed time 00:48:29
software ソフトウェア
GGNFS (SVN 440), msieve 1.51 (SVN 845)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaNovember 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間)
403e6300Serge BatalovNovember 19, 2013 19:20:41 UTC 2013 年 11 月 20 日 (水) 4 時 20 分 41 秒 (日本時間)
4511e6600 / 4409Serge BatalovNovember 20, 2013 01:02:51 UTC 2013 年 11 月 20 日 (水) 10 時 2 分 51 秒 (日本時間)

7×10204+3

c177

name 名前Dmitry Domanov
date 日付November 26, 2013 06:08:24 UTC 2013 年 11 月 26 日 (火) 15 時 8 分 24 秒 (日本時間)
composite number 合成数
135400519652139383152063380976101933022817084388501269467439904941112596334806562911225723422264094469406228649621931708646032177849769316033817839205703921397123068847947028161<177>
prime factors 素因数
5396904049036253429396109729240338143<37>
25088554182525885596739966302426014545032142855717083058096800211032876592311215655652188376631954202866760200561135138478555417285172588127<140>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2483173277
Step 1 took 22844ms
Step 2 took 8988ms
********** Factor found in step 2: 5396904049036253429396109729240338143
Found probable prime factor of 37 digits: 5396904049036253429396109729240338143

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaNovember 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間)
403e60 / 938--
4511e6400 / 4475Serge BatalovNovember 19, 2013 18:02:14 UTC 2013 年 11 月 20 日 (水) 3 時 2 分 14 秒 (日本時間)

7×10205+3

c160

name 名前Bob Backstrom
date 日付January 14, 2024 19:32:57 UTC 2024 年 1 月 15 日 (月) 4 時 32 分 57 秒 (日本時間)
composite number 合成数
5899553461139675179912882213016471722934865502498794687623580161308214078279299524547466036204550618860402930369201325049526621661496510062595118968133176263431<160>
prime factors 素因数
240719260580283379889791169237263380903214210323964573001005619<63>
24508024189331905012114963800398002321176356759266118203650024773520213971942982338449900321449949<98>
factorization results 素因数分解の結果
Number: n
N=5899553461139675179912882213016471722934865502498794687623580161308214078279299524547466036204550618860402930369201325049526621661496510062595118968133176263431  ( 160 digits)
SNFS difficulty: 205 digits.
Divisors found:

Sun Jan 14 18:58:54 2024  prp63 factor: 240719260580283379889791169237263380903214210323964573001005619
Sun Jan 14 18:58:54 2024  prp98 factor: 24508024189331905012114963800398002321176356759266118203650024773520213971942982338449900321449949
Sun Jan 14 18:58:54 2024  elapsed time 02:29:39 (Msieve 1.44 - dependency 1)

Version: 
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.095).
Factorization parameters were as follows:
#
# N = 7x10^205+3 = 70(204)3
#
n: 5899553461139675179912882213016471722934865502498794687623580161308214078279299524547466036204550618860402930369201325049526621661496510062595118968133176263431
m: 100000000000000000000000000000000000000000
deg: 5
c5: 7
c0: 3
skew: 0.84
# Murphy_E = 1.083e-11
type: snfs
lss: 1
rlim: 18900000
alim: 18900000
lpbr: 27
lpba: 27
mfbr: 56
mfba: 56
rlambda: 2.6
alambda: 2.6
Factor base limits: 18900000/18900000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 56/56
Sieved  special-q in [100000, 42250000)
Primes: , , 
Relations: 
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 

Msieve: found 3420528 hash collisions in 20075541 relations (17117631 unique)
Msieve: matrix is 2191524 x 2191749 (615.9 MB)

Total sieving time: 0.00 hours.
Total relation processing time: 2hrs 22min 4sec.
Matrix solve time: 0.00 hours.
Total square root time: 0hrs 2min 14sec.

Prototype def-par.txt line would be:
snfs,205,5,0,0,0,0,0,0,0,0,18900000,18900000,27,27,56,56,2.6,2.6,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaNovember 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間)
403e61500Dmitry DomanovDecember 2, 2013 13:07:07 UTC 2013 年 12 月 2 日 (月) 22 時 7 分 7 秒 (日本時間)
4511e66380400Serge BatalovNovember 19, 2013 18:02:15 UTC 2013 年 11 月 20 日 (水) 3 時 2 分 15 秒 (日本時間)
1500Dmitry DomanovApril 30, 2014 12:32:30 UTC 2014 年 4 月 30 日 (水) 21 時 32 分 30 秒 (日本時間)
4480Ignacio SantosNovember 22, 2023 15:32:32 UTC 2023 年 11 月 23 日 (木) 0 時 32 分 32 秒 (日本時間)

7×10206+3

c143

name 名前Youcef Lemsafer
date 日付December 11, 2013 20:23:15 UTC 2013 年 12 月 12 日 (木) 5 時 23 分 15 秒 (日本時間)
composite number 合成数
20539083447741287182017697303302269309918065797535457340723054272110661643967188972755049685241231902258080855867054231580482017183346919405529<143>
prime factors 素因数
185837350131898929749363764227586673830577636841094338108364844767441<69>
110521826926414827248016437625056657689818035352943332588844089689442988169<75>
factorization results 素因数分解の結果
<Polynomial selection using msieve 1.52 win64 CUDA>

Sat Dec 07 16:06:31 2013  
Sat Dec 07 16:06:31 2013  Msieve v. 1.52 (SVN unknown)
Sat Dec 07 16:06:31 2013  random seeds: 4c624168 92e6d416
Sat Dec 07 16:06:31 2013  factoring 20539083447741287182017697303302269309918065797535457340723054272110661643967188972755049685241231902258080855867054231580482017183346919405529 (143 digits)
Sat Dec 07 16:06:32 2013  searching for 15-digit factors
Sat Dec 07 16:06:32 2013  commencing number field sieve (143-digit input)
Sat Dec 07 16:06:32 2013  commencing number field sieve polynomial selection
Sat Dec 07 16:06:32 2013  polynomial degree: 5
Sat Dec 07 16:06:32 2013  max stage 1 norm: 5.64e+021
Sat Dec 07 16:06:32 2013  max stage 2 norm: 9.65e+019
Sat Dec 07 16:06:32 2013  min E-value: 1.18e-011
Sat Dec 07 16:06:32 2013  poly select deadline: 282294
Sat Dec 07 16:06:32 2013  time limit set to 78.42 CPU-hours
Sat Dec 07 16:06:32 2013  expecting poly E from 1.49e-011 to > 1.71e-011
<...snipped...>
Sun Dec 08 13:15:06 2013  polynomial selection complete
Sun Dec 08 13:15:06 2013  R0: -2977969399429526441410361528
Sun Dec 08 13:15:06 2013  R1: 1037898735922843
Sun Dec 08 13:15:06 2013  A0: 8887305058317547520834959819011795
Sun Dec 08 13:15:06 2013  A1: 69433835627483582556342003419
Sun Dec 08 13:15:06 2013  A2: 6357211983452001269319
Sun Dec 08 13:15:06 2013  A3: -590089017197059335
Sun Dec 08 13:15:06 2013  A4: 69965999674
Sun Dec 08 13:15:06 2013  A5: 87696
Sun Dec 08 13:15:06 2013  skew 833461.55, size 9.072e-014, alpha -6.936, combined = 1.561e-011 rroots = 3
<...snipped...>
Mon Dec 09 08:27:10 2013 -> factmsieve.py (v0.76)
Mon Dec 09 08:27:11 2013 -> This is client 1 of 1
Mon Dec 09 08:27:11 2013 -> Running on 12 Cores with 2 hyper-threads per Core
Mon Dec 09 08:27:11 2013 -> Working with NAME = 70003_206
Mon Dec 09 08:27:11 2013 -> Selected lattice siever: gnfs-lasieve4I14e
Mon Dec 09 08:27:11 2013 -> Creating param file to detect parameter changes...
Mon Dec 09 08:27:11 2013 -> Running setup ...
Mon Dec 09 08:27:11 2013 -> Estimated minimum relations needed: 2.376e+07
Mon Dec 09 08:27:11 2013 -> cleaning up before a restart
Mon Dec 09 08:27:11 2013 -> Running lattice siever ...
Mon Dec 09 08:27:11 2013 -> entering sieving loop
<...snipped...>
Mon Dec 09 08:27:11 2013 -> Lattice sieving algebraic q from 8000000 to 8100000.
<...snipped...>
Mon Dec 09 08:53:36 2013 Found 275872 relations, 1.2% of the estimated minimum (23760000).
<...snipped...>
Mon Dec 09 18:19:01 2013 Found 5965550 relations, 25.1% of the estimated minimum (23760000).
<...snipped...>
Tue Dec 10 05:25:55 2013 Found 11927615 relations, 50.2% of the estimated minimum (23760000).
<...snipped...>
Tue Dec 10 17:14:38 2013 Found 17876409 relations, 75.2% of the estimated minimum (23760000).
<...snipped...>
Wed Dec 11 04:10:33 2013 -> Lattice sieving algebraic q from 16700000 to 16800000.
<...snipped...>
Wed Dec 11 04:40:10 2013 Found 23761236 relations, 100.0% of the estimated minimum (23760000).
Wed Dec 11 04:40:10 2013  
Wed Dec 11 04:40:10 2013  
Wed Dec 11 04:40:10 2013  Msieve v. 1.51 (SVN 845)
Wed Dec 11 04:40:10 2013  random seeds: 6c728954 70779fe1
Wed Dec 11 04:40:10 2013  factoring 20539083447741287182017697303302269309918065797535457340723054272110661643967188972755049685241231902258080855867054231580482017183346919405529 (143 digits)
Wed Dec 11 04:40:11 2013  searching for 15-digit factors
Wed Dec 11 04:40:11 2013  commencing number field sieve (143-digit input)
Wed Dec 11 04:40:11 2013  R0: -2977969399429526441410361528
Wed Dec 11 04:40:11 2013  R1: 1037898735922843
Wed Dec 11 04:40:11 2013  A0: 8887305058317547520834959819011795
Wed Dec 11 04:40:11 2013  A1: 69433835627483582556342003419
Wed Dec 11 04:40:11 2013  A2: 6357211983452001269319
Wed Dec 11 04:40:11 2013  A3: -590089017197059335
Wed Dec 11 04:40:11 2013  A4: 69965999674
Wed Dec 11 04:40:11 2013  A5: 87696
Wed Dec 11 04:40:11 2013  skew 833461.55, size 9.072e-014, alpha -6.936, combined = 1.561e-011 rroots = 3
Wed Dec 11 04:40:11 2013  
Wed Dec 11 04:40:11 2013  commencing relation filtering
Wed Dec 11 04:40:11 2013  estimated available RAM is 4096.0 MB
Wed Dec 11 04:40:11 2013  commencing duplicate removal, pass 1
Wed Dec 11 04:42:44 2013  found 2934397 hash collisions in 23761235 relations
Wed Dec 11 04:43:37 2013  added 121443 free relations
Wed Dec 11 04:43:37 2013  commencing duplicate removal, pass 2
Wed Dec 11 04:43:55 2013  found 2381021 duplicates and 21501657 unique relations
Wed Dec 11 04:43:55 2013  memory use: 98.6 MB
Wed Dec 11 04:43:55 2013  reading ideals above 16711680
Wed Dec 11 04:44:01 2013  commencing singleton removal, initial pass
Wed Dec 11 04:46:49 2013  memory use: 689.0 MB
Wed Dec 11 04:46:49 2013  reading all ideals from disk
Wed Dec 11 04:46:50 2013  memory use: 375.0 MB
Wed Dec 11 04:46:50 2013  commencing in-memory singleton removal
Wed Dec 11 04:46:51 2013  begin with 21501657 relations and 20848642 unique ideals
Wed Dec 11 04:47:00 2013  reduce to 9974146 relations and 7620103 ideals in 19 passes
Wed Dec 11 04:47:00 2013  max relations containing the same ideal: 41
Wed Dec 11 04:47:01 2013  reading ideals above 100000
Wed Dec 11 04:47:01 2013  commencing singleton removal, initial pass
Wed Dec 11 04:48:48 2013  memory use: 188.3 MB
Wed Dec 11 04:48:48 2013  reading all ideals from disk
Wed Dec 11 04:48:48 2013  memory use: 403.0 MB
Wed Dec 11 04:48:49 2013  keeping 9713274 ideals with weight <= 200, target excess is 54213
Wed Dec 11 04:48:50 2013  commencing in-memory singleton removal
Wed Dec 11 04:48:51 2013  begin with 9974390 relations and 9713274 unique ideals
Wed Dec 11 04:49:00 2013  reduce to 9951059 relations and 9688863 ideals in 11 passes
Wed Dec 11 04:49:00 2013  max relations containing the same ideal: 200
Wed Dec 11 04:49:05 2013  removing 995949 relations and 896295 ideals in 99654 cliques
Wed Dec 11 04:49:05 2013  commencing in-memory singleton removal
Wed Dec 11 04:49:06 2013  begin with 8955110 relations and 9688863 unique ideals
Wed Dec 11 04:49:13 2013  reduce to 8870955 relations and 8707168 ideals in 10 passes
Wed Dec 11 04:49:13 2013  max relations containing the same ideal: 190
Wed Dec 11 04:49:17 2013  removing 738047 relations and 638393 ideals in 99654 cliques
Wed Dec 11 04:49:18 2013  commencing in-memory singleton removal
Wed Dec 11 04:49:18 2013  begin with 8132908 relations and 8707168 unique ideals
Wed Dec 11 04:49:23 2013  reduce to 8079845 relations and 8015096 ideals in 8 passes
Wed Dec 11 04:49:23 2013  max relations containing the same ideal: 180
Wed Dec 11 04:49:29 2013  relations with 0 large ideals: 178
Wed Dec 11 04:49:29 2013  relations with 1 large ideals: 100
Wed Dec 11 04:49:29 2013  relations with 2 large ideals: 1189
Wed Dec 11 04:49:29 2013  relations with 3 large ideals: 15589
Wed Dec 11 04:49:29 2013  relations with 4 large ideals: 114566
Wed Dec 11 04:49:29 2013  relations with 5 large ideals: 496188
Wed Dec 11 04:49:29 2013  relations with 6 large ideals: 1338547
Wed Dec 11 04:49:29 2013  relations with 7+ large ideals: 6113488
Wed Dec 11 04:49:29 2013  commencing 2-way merge
Wed Dec 11 04:49:36 2013  reduce to 4792996 relation sets and 4728247 unique ideals
Wed Dec 11 04:49:36 2013  commencing full merge
Wed Dec 11 04:51:29 2013  memory use: 495.2 MB
Wed Dec 11 04:51:30 2013  found 2488819 cycles, need 2480447
Wed Dec 11 04:51:30 2013  weight of 2480447 cycles is about 173783414 (70.06/cycle)
Wed Dec 11 04:51:30 2013  distribution of cycle lengths:
Wed Dec 11 04:51:30 2013  1 relations: 354220
Wed Dec 11 04:51:30 2013  2 relations: 321467
Wed Dec 11 04:51:30 2013  3 relations: 315041
Wed Dec 11 04:51:30 2013  4 relations: 274120
Wed Dec 11 04:51:30 2013  5 relations: 228871
Wed Dec 11 04:51:30 2013  6 relations: 195810
Wed Dec 11 04:51:30 2013  7 relations: 161446
Wed Dec 11 04:51:30 2013  8 relations: 131100
Wed Dec 11 04:51:30 2013  9 relations: 107282
Wed Dec 11 04:51:30 2013  10+ relations: 391090
Wed Dec 11 04:51:30 2013  heaviest cycle: 24 relations
Wed Dec 11 04:51:31 2013  commencing cycle optimization
Wed Dec 11 04:51:35 2013  start with 13531053 relations
Wed Dec 11 04:51:59 2013  pruned 264754 relations
Wed Dec 11 04:51:59 2013  memory use: 370.2 MB
Wed Dec 11 04:51:59 2013  distribution of cycle lengths:
Wed Dec 11 04:51:59 2013  1 relations: 354220
Wed Dec 11 04:51:59 2013  2 relations: 328527
Wed Dec 11 04:51:59 2013  3 relations: 324881
Wed Dec 11 04:51:59 2013  4 relations: 278310
Wed Dec 11 04:51:59 2013  5 relations: 232538
Wed Dec 11 04:51:59 2013  6 relations: 195896
Wed Dec 11 04:51:59 2013  7 relations: 161076
Wed Dec 11 04:51:59 2013  8 relations: 129440
Wed Dec 11 04:51:59 2013  9 relations: 105075
Wed Dec 11 04:51:59 2013  10+ relations: 370484
Wed Dec 11 04:51:59 2013  heaviest cycle: 24 relations
Wed Dec 11 04:52:02 2013  RelProcTime: 711
Wed Dec 11 04:52:02 2013  elapsed time 00:11:52
Wed Dec 11 04:52:02 2013 LatSieveTime: 2488.99
Wed Dec 11 04:52:02 2013 -> Running matrix solving step ...
<...snipped...>
Wed Dec 11 04:52:04 2013  commencing linear algebra
Wed Dec 11 04:52:04 2013  read 2480447 cycles
Wed Dec 11 04:52:10 2013  cycles contain 7985077 unique relations
Wed Dec 11 04:53:03 2013  read 7985077 relations
Wed Dec 11 04:53:18 2013  using 20 quadratic characters above 268435130
Wed Dec 11 04:54:01 2013  building initial matrix
Wed Dec 11 04:56:04 2013  memory use: 944.0 MB
Wed Dec 11 04:56:07 2013  read 2480447 cycles
Wed Dec 11 04:56:08 2013  matrix is 2480269 x 2480447 (718.5 MB) with weight 235915397 (95.11/col)
Wed Dec 11 04:56:08 2013  sparse part has weight 168508008 (67.93/col)
Wed Dec 11 04:56:34 2013  filtering completed in 2 passes
Wed Dec 11 04:56:35 2013  matrix is 2478460 x 2478638 (718.4 MB) with weight 235850533 (95.15/col)
Wed Dec 11 04:56:35 2013  sparse part has weight 168494898 (67.98/col)
Wed Dec 11 04:56:48 2013  matrix starts at (0, 0)
Wed Dec 11 04:56:49 2013  matrix is 2478460 x 2478638 (718.4 MB) with weight 235850533 (95.15/col)
Wed Dec 11 04:56:49 2013  sparse part has weight 168494898 (67.98/col)
Wed Dec 11 04:56:49 2013  saving the first 48 matrix rows for later
Wed Dec 11 04:56:50 2013  matrix includes 64 packed rows
Wed Dec 11 04:56:51 2013  matrix is 2478412 x 2478638 (687.3 MB) with weight 188316334 (75.98/col)
Wed Dec 11 04:56:51 2013  sparse part has weight 165288497 (66.69/col)
Wed Dec 11 04:56:51 2013  using block size 65536 for processor cache size 15360 kB
Wed Dec 11 04:57:08 2013  commencing Lanczos iteration (24 threads)
Wed Dec 11 04:57:08 2013  memory use: 1009.0 MB
Wed Dec 11 04:57:19 2013  linear algebra at 0.1%, ETA 4h31m
Wed Dec 11 04:57:23 2013  checkpointing every 530000 dimensions
Wed Dec 11 09:54:00 2013  lanczos halted after 39195 iterations (dim = 2478412)
Wed Dec 11 09:54:04 2013  recovered 32 nontrivial dependencies
Wed Dec 11 09:54:07 2013  BLanczosTime: 18123
Wed Dec 11 09:54:07 2013  elapsed time 05:02:05
Wed Dec 11 09:54:08 2013 -> Running square root step ...
<...snipped...>
Wed Dec 11 09:54:09 2013  commencing square root phase
Wed Dec 11 09:54:09 2013  reading relations for dependency 1
Wed Dec 11 09:54:10 2013  read 1238575 cycles
Wed Dec 11 09:54:12 2013  cycles contain 3991084 unique relations
Wed Dec 11 09:54:43 2013  read 3991084 relations
Wed Dec 11 09:55:06 2013  multiplying 3991084 relations
Wed Dec 11 10:07:53 2013  multiply complete, coefficients have about 202.24 million bits
Wed Dec 11 10:07:56 2013  initial square root is modulo 18101893
Wed Dec 11 10:23:28 2013  GCD is 1, no factor found
Wed Dec 11 10:23:28 2013  reading relations for dependency 2
Wed Dec 11 10:23:29 2013  read 1239018 cycles
Wed Dec 11 10:23:31 2013  cycles contain 3991348 unique relations
Wed Dec 11 10:24:01 2013  read 3991348 relations
Wed Dec 11 10:24:27 2013  multiplying 3991348 relations
Wed Dec 11 10:37:15 2013  multiply complete, coefficients have about 202.24 million bits
Wed Dec 11 10:37:18 2013  initial square root is modulo 18113009
Wed Dec 11 10:52:52 2013  GCD is 1, no factor found
Wed Dec 11 10:52:52 2013  reading relations for dependency 3
Wed Dec 11 10:52:53 2013  read 1239845 cycles
Wed Dec 11 10:52:55 2013  cycles contain 3991578 unique relations
Wed Dec 11 10:53:25 2013  read 3991578 relations
Wed Dec 11 10:53:51 2013  multiplying 3991578 relations
Wed Dec 11 11:06:37 2013  multiply complete, coefficients have about 202.26 million bits
Wed Dec 11 11:06:42 2013  initial square root is modulo 18135629
Wed Dec 11 11:22:19 2013  GCD is 1, no factor found
Wed Dec 11 11:22:19 2013  reading relations for dependency 4
Wed Dec 11 11:22:20 2013  read 1239417 cycles
Wed Dec 11 11:22:22 2013  cycles contain 3995180 unique relations
Wed Dec 11 11:22:54 2013  read 3995180 relations
Wed Dec 11 11:23:21 2013  multiplying 3995180 relations
Wed Dec 11 11:36:40 2013  multiply complete, coefficients have about 202.44 million bits
Wed Dec 11 11:36:44 2013  initial square root is modulo 18409367
Wed Dec 11 11:52:25 2013  sqrtTime: 7096
Wed Dec 11 11:52:25 2013  prp69 factor: 185837350131898929749363764227586673830577636841094338108364844767441
Wed Dec 11 11:52:25 2013  prp75 factor: 110521826926414827248016437625056657689818035352943332588844089689442988169
Wed Dec 11 11:52:25 2013  elapsed time 01:58:17



Number: 70003_206
N = 20539083447741287182017697303302269309918065797535457340723054272110661643967188972755049685241231902258080855867054231580482017183346919405529 (143 digits)
Divisors found:
r1=185837350131898929749363764227586673830577636841094338108364844767441 (pp69)
r2=110521826926414827248016437625056657689818035352943332588844089689442988169 (pp75)
Version: Msieve v. 1.51 (SVN 845)
Total time: 51.61 hours.
Factorization parameters were as follows:
# Murphy_E = 1.561e-11, selected by Youcef Lemsafer
# msieve 1.52 GPU, expecting poly E from 1.49e-011 to > 1.71e-011
n: 20539083447741287182017697303302269309918065797535457340723054272110661643967188972755049685241231902258080855867054231580482017183346919405529
Y0: -2977969399429526441410361528
Y1: 1037898735922843
c0: 8887305058317547520834959819011795
c1: 69433835627483582556342003419
c2: 6357211983452001269319
c3: -590089017197059335
c4: 69965999674
c5: 87696
skew: 833461.55
type: gnfs
# selected mechanically
rlim: 21000000
alim: 21000000
lpbr: 28
lpba: 28
mfbr: 56
mfba: 56
rlambda: 2.6
alambda: 2.6
q0: 8000000
Factor base limits: 21000000/21000000
Large primes per side: 3
Large prime bits: 28/28
Sieved algebraic special-q in [8000000, 16800001)
Total raw relations: 23761236
Relations: 3995180 relations
Pruned matrix : 2478412 x 2478638
Polynomial selection time: 0.00 hours.
Total sieving time: 44.40 hours.
Total relation processing time: 0.20 hours.
Matrix solve time: 5.03 hours.
time per square root: 1.97 hours.
Prototype def-par.txt line would be: gnfs,142,5,67,2000,5e-06,0.28,250,20,50000,3600,21000000,21000000,28,28,56,56,2.6,2.6,100000
total time: 51.61 hours.
Intel64 Family 6 Model 45 Stepping 7, GenuineIntel
Windows-7-6.1.7601-SP1
processors: 24, speed: 2.00GHz
software ソフトウェア
msieve 1.52 GPU for polynomial selection, GGNFS (SVN 440), msieve 1.51 (SVN 845)
execution environment 実行環境
Windows 7 Pro 64bits, 2x Intel Xeon E5-2620 @ 2.0GHz, 2x NVIDIA GeForce GTX660, 32GB RAM

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaNovember 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間)
403e60--
4511e62687 / 4475400Serge BatalovNovember 19, 2013 18:02:16 UTC 2013 年 11 月 20 日 (水) 3 時 2 分 16 秒 (日本時間)
600Serge BatalovNovember 20, 2013 01:03:10 UTC 2013 年 11 月 20 日 (水) 10 時 3 分 10 秒 (日本時間)
1687Youcef LemsaferDecember 7, 2013 09:45:40 UTC 2013 年 12 月 7 日 (土) 18 時 45 分 40 秒 (日本時間)

7×10207+3

c194

name 名前Dmitry Domanov
date 日付May 5, 2014 05:42:35 UTC 2014 年 5 月 5 日 (月) 14 時 42 分 35 秒 (日本時間)
composite number 合成数
27718232858925000237635631592179598472937179662676250298382603206855112538143043420069345717694310956641514404086430141649682016773090221575377213203122278895684773938837040404414865253380362907<194>
prime factors 素因数
1188028131071590758930498763379193055166617<43>
23331293370909830112753518691795680285842593525007177818993216446285282195177465806442743444736734832170691967844901567091171572559767268061281827244371<152>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=3662884385
Step 1 took 100800ms
Step 2 took 32918ms
********** Factor found in step 2: 1188028131071590758930498763379193055166617
Found probable prime factor of 43 digits: 1188028131071590758930498763379193055166617

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaNovember 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間)
403e61500Dmitry DomanovDecember 2, 2013 13:07:24 UTC 2013 年 12 月 2 日 (月) 22 時 7 分 24 秒 (日本時間)
4511e61900 / 4143400Serge BatalovNovember 19, 2013 18:02:17 UTC 2013 年 11 月 20 日 (水) 3 時 2 分 17 秒 (日本時間)
1500Dmitry DomanovApril 30, 2014 12:32:45 UTC 2014 年 4 月 30 日 (水) 21 時 32 分 45 秒 (日本時間)

7×10208+3

c208

name 名前Serge Batalov
date 日付November 19, 2013 08:07:45 UTC 2013 年 11 月 19 日 (火) 17 時 7 分 45 秒 (日本時間)
composite number 合成数
3043478260869565217391304347826086956521739130434782608695652173913043478260869565217391304347826086956521739130434782608695652173913043478260869565217391304347826086956521739130434782608695652173913043478261<208>
prime factors 素因数
102672526173105876700515068182897<33>
29642576980508504694993798852590656516820034394346110328727438300207926928579716222939595958107388618768416681332961461614278066011078076173633167038867156128217165559327439813<176>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=3717163228
Step 1 took 63901ms
Step 2 took 23092ms
********** Factor found in step 2: 102672526173105876700515068182897
Found probable prime factor of 33 digits: 102672526173105876700515068182897
Probable prime cofactor

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaNovember 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間)

7×10209+3

c207

name 名前Serge Batalov
date 日付November 18, 2013 21:52:47 UTC 2013 年 11 月 19 日 (火) 6 時 52 分 47 秒 (日本時間)
composite number 合成数
259163272861902998889300259163272861902998889300259163272861902998889300259163272861902998889300259163272861902998889300259163272861902998889300259163272861902998889300259163272861902998889300259163272861903<207>
prime factors 素因数
13439934931113904319881321945371697<35>
19283074969502363385339409984983143972856363139426105368328720637251979578799804945134645882721133469401878150604925523181900247815845928251368791831964839378900776860908799<173>
factorization results 素因数分解の結果
Using B1=2000000, B2=5705781910, polynomial Dickson(6), sigma=1716420890
Step 1 took 10285ms
********** Factor found in step 1: 13439934931113904319881321945371697
Found probable prime factor of 35 digits: 13439934931113904319881321945371697
Probable prime cofactor 

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaNovember 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間)

7×10212+3

c206

name 名前Bob Backstrom
date 日付January 18, 2020 12:10:03 UTC 2020 年 1 月 18 日 (土) 21 時 10 分 3 秒 (日本時間)
composite number 合成数
65131419852856957166135643997613956956133337414902310779035982411167023850474635917689144667211475486254897766466827963077184175186399145252463805306926698587885686170208311681013102487731799234073111507503<206>
prime factors 素因数
670900252044462395925775788487421169066240622849582657<54>
97080631069043807291370115912135193206339932589767544463767543919442143784416843971955300989315580941111512937708260779247214294784689293255176991136879<152>
factorization results 素因数分解の結果
#
# N = 7x10^212+3 = 70(211)3
#
n: 65131419852856957166135643997613956956133337414902310779035982411167023850474635917689144667211475486254897766466827963077184175186399145252463805306926698587885686170208311681013102487731799234073111507503
m: 1000000000000000000000000000000000000000000
deg: 5
c5: 700
c0: 3
skew: 0.34
# Murphy_E = 4.706e-12
type: snfs
lss: 1
rlim: 25000000
alim: 25000000
lpbr: 29
lpba: 29
mfbr: 57
mfba: 57
rlambda: 2.6
alambda: 2.6



GMP-ECM 6.2.3 [powered by GMP 6.1.2] [ECM]
Input number is 65131419852856957166135643997613956956133337414902310779035982411167023850474635917689144667211475486254897766466827963077184175186399145252463805306926698587885686170208311681013102487731799234073111507503 (206 digits)
Using B1=50340000, B2=288591693406, polynomial Dickson(12), sigma=3182128368
Step 1 took 281003ms
Step 2 took 70907ms
********** Factor found in step 2: 670900252044462395925775788487421169066240622849582657
Found probable prime factor of 54 digits: 670900252044462395925775788487421169066240622849582657
Probable prime cofactor 97080631069043807291370115912135193206339932589767544463767543919442143784416843971955300989315580941111512937708260779247214294784689293255176991136879 has 152 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaNovember 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間)
403e61500Dmitry DomanovDecember 2, 2013 13:07:34 UTC 2013 年 12 月 2 日 (月) 22 時 7 分 34 秒 (日本時間)
4511e61900 / 4143400Serge BatalovNovember 19, 2013 18:02:18 UTC 2013 年 11 月 20 日 (水) 3 時 2 分 18 秒 (日本時間)
1500Dmitry DomanovApril 30, 2014 12:33:06 UTC 2014 年 4 月 30 日 (水) 21 時 33 分 6 秒 (日本時間)

7×10213+3

c211

name 名前Serge Batalov
date 日付November 22, 2014 04:32:46 UTC 2014 年 11 月 22 日 (土) 13 時 32 分 46 秒 (日本時間)
composite number 合成数
9985734664764621968616262482168330955777460770328102710413694721825962910128388017118402282453637660485021398002853067047075606276747503566333808844507845934379457917261055634807417974322396576319543509272467903<211>
prime factors 素因数
3706860927323951327696943477366192243798867586538315006021070431813569<70>
2693851984345552719374647011864777375768535211135930458196417662532168996562661466414894102908412028132596341826873565044421826630562900834687<142>
factorization results 素因数分解の結果
RelProcTime: 1929
BLanczosTime: 14988
sqrtTime: 5002
prp70 factor: 3706860927323951327696943477366192243798867586538315006021070431813569
prp142 factor: 2693851984345552719374647011864777375768535211135930458196417662532168996562661466414894102908412028132596341826873565044421826630562900834687
software ソフトウェア
Msieve v. 1.52 (SVN 923M)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaNovember 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間)
403e60--
4511e64700400Serge BatalovNovember 19, 2013 18:02:19 UTC 2013 年 11 月 20 日 (水) 3 時 2 分 19 秒 (日本時間)
600Serge BatalovNovember 20, 2013 01:03:24 UTC 2013 年 11 月 20 日 (水) 10 時 3 分 24 秒 (日本時間)
400Serge BatalovJanuary 6, 2014 02:27:34 UTC 2014 年 1 月 6 日 (月) 11 時 27 分 34 秒 (日本時間)
1500Dmitry DomanovApril 30, 2014 12:33:21 UTC 2014 年 4 月 30 日 (水) 21 時 33 分 21 秒 (日本時間)
1800Serge BatalovMay 24, 2014 09:17:11 UTC 2014 年 5 月 24 日 (土) 18 時 17 分 11 秒 (日本時間)

7×10214+3

c208

name 名前Bob Backstrom
date 日付November 30, 2019 04:16:26 UTC 2019 年 11 月 30 日 (土) 13 時 16 分 26 秒 (日本時間)
composite number 合成数
2001130867640887689074348615464722192578485996414945463037526263770603393271872124535748359051247846604514019508338726619251490720999161211703036410204498136246766422659250780605416986930985942027067238940543<208>
prime factors 素因数
3318560097159521828480881337011756383869659932541809571963181573309<67>
603011790973359053675967635684151675153449560644597179687887343809369979751416684862664394496279895472017815838284348584998248823108998446827<141>
factorization results 素因数分解の結果
Number: n
N=2001130867640887689074348615464722192578485996414945463037526263770603393271872124535748359051247846604514019508338726619251490720999161211703036410204498136246766422659250780605416986930985942027067238940543
  ( 208 digits)
SNFS difficulty: 215 digits.
Divisors found:

Sat Nov 30 15:09:27 2019  p67 factor: 3318560097159521828480881337011756383869659932541809571963181573309
Sat Nov 30 15:09:27 2019  p141 factor: 603011790973359053675967635684151675153449560644597179687887343809369979751416684862664394496279895472017815838284348584998248823108998446827
Sat Nov 30 15:09:27 2019  elapsed time 06:53:31 (Msieve 1.54 - dependency 1)

Version:
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.133).
Factorization parameters were as follows:
#
# N = 7x10^214+3 = 70(213)3
#
n: 2001130867640887689074348615464722192578485996414945463037526263770603393271872124535748359051247846604514019508338726619251490720999161211703036410204498136246766422659250780605416986930985942027067238940543
m: 5000000000000000000000000000000000000000000
deg: 5
c5: 112
c0: 15
skew: 0.67
# Murphy_E = 3.105e-12
type: snfs
lss: 1
rlim: 27000000
alim: 27000000
lpbr: 29
lpba: 29
mfbr: 57
mfba: 57
rlambda: 2.6
alambda: 2.6
Factor base limits: 27000000/27000000
Large primes per side: 3
Large prime bits: 29/29
Max factor residue bits: 57/57
Sieved  special-q in [100000, 75100000)
Primes: , ,
Relations:
Max relations in full relation-set: 28
Initial matrix:
Pruned matrix :

Msieve: found 9434230 hash collisions in 58062011 relations (50389455 unique)
Msieve: matrix is 3899739 x 3899965 (1362.4 MB)

Sieving start time: 2019/11/28 23:39:17
Sieving end time  : 2019/11/30 08:14:22

Total sieving time: 32hrs 35min 5secs.

Total relation processing time: 6hrs 29min 35sec.
Matrix solve time: 0.00 hours.
Total square root time: 0hrs 6min 7sec.

Prototype def-par.txt line would be:
snfs,215,5,0,0,0,0,0,0,0,0,27000000,27000000,29,29,57,57,2.6,2.6,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------
[    0.149711] smpboot: CPU0: AMD Ryzen 7 1700 Eight-Core Processor (family: 0x17, model: 0x1, stepping: 0x1)
[    0.000000] Memory: 16283564K/16703460K available (12300K kernel code, 2481K rwdata, 4264K rodata, 2432K init, 2388K bss, 419896K reserved, 0K cma-reserved)
[    0.184572] x86/mm: Memory block size: 128MB
[    0.024000] Calibrating delay loop (skipped), value calculated using timer frequency.. 5988.54 BogoMIPS (lpj=11977084)
[    0.182221] smpboot: Total of 16 processors activated (95816.67 BogoMIPS)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaNovember 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間)
403e61500Dmitry DomanovDecember 2, 2013 13:07:52 UTC 2013 年 12 月 2 日 (月) 22 時 7 分 52 秒 (日本時間)
4511e61900 / 4143400Serge BatalovNovember 19, 2013 18:02:20 UTC 2013 年 11 月 20 日 (水) 3 時 2 分 20 秒 (日本時間)
1500Dmitry DomanovApril 30, 2014 12:33:35 UTC 2014 年 4 月 30 日 (水) 21 時 33 分 35 秒 (日本時間)

7×10216+3

c161

composite cofactor 合成数の残り
10385144735345945569510941953764410444310283430640328102009745468340937242017104098480777003320481139551424294273876827762558612082203263347631493968371600438537<161>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaNovember 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間)
403e618001500Dmitry DomanovDecember 2, 2013 13:08:02 UTC 2013 年 12 月 2 日 (月) 22 時 8 分 2 秒 (日本時間)
300Serge BatalovJanuary 9, 2014 04:59:17 UTC 2014 年 1 月 9 日 (木) 13 時 59 分 17 秒 (日本時間)
4511e61651 / 4077151CypFebruary 15, 2014 12:26:42 UTC 2014 年 2 月 15 日 (土) 21 時 26 分 42 秒 (日本時間)
1500Dmitry DomanovMay 5, 2014 07:24:30 UTC 2014 年 5 月 5 日 (月) 16 時 24 分 30 秒 (日本時間)

7×10217+3

c187

composite cofactor 合成数の残り
5110613303174167333511062067656329548529943484140767046670953352619757687727246878758603511441195985911673739151006024845903689308018432670207981397063085063753049028924256253688075231611<187>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaNovember 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間)
403e61500Dmitry DomanovDecember 2, 2013 13:08:12 UTC 2013 年 12 月 2 日 (月) 22 時 8 分 12 秒 (日本時間)
4511e61900 / 4143400Serge BatalovNovember 19, 2013 18:02:21 UTC 2013 年 11 月 20 日 (水) 3 時 2 分 21 秒 (日本時間)
1500Dmitry DomanovMay 5, 2014 07:26:25 UTC 2014 年 5 月 5 日 (月) 16 時 26 分 25 秒 (日本時間)

7×10218+3

c145

name 名前Youcef Lemsafer
date 日付December 16, 2013 11:09:07 UTC 2013 年 12 月 16 日 (月) 20 時 9 分 7 秒 (日本時間)
composite number 合成数
1204586877884093663626828996016541924291596079301588987441279761500408323810366826462044654291109062624002359541506181090047539906570513948147193<145>
prime factors 素因数
6260912466135837184555391199525986430130346123065958687500997130124261<70>
192397974640196617059291295389129996678764450645044076196121227785839943813<75>
factorization results 素因数分解の結果
<Polynomial selection using msieve 1.52 (SVN 942) win64 CUDA>

Thu Dec 12 22:13:10 2013  Msieve v. 1.52 (SVN unknown)
Thu Dec 12 22:13:10 2013  random seeds: b8eea358 1bcbe95a
Thu Dec 12 22:13:10 2013  factoring 1204586877884093663626828996016541924291596079301588987441279761500408323810366826462044654291109062624002359541506181090047539906570513948147193 (145 digits)
Thu Dec 12 22:13:12 2013  searching for 15-digit factors
Thu Dec 12 22:13:12 2013  commencing number field sieve (145-digit input)
Thu Dec 12 22:13:12 2013  commencing number field sieve polynomial selection
Thu Dec 12 22:13:12 2013  polynomial degree: 5
Thu Dec 12 22:13:12 2013  max stage 1 norm: 1.10e+022
Thu Dec 12 22:13:12 2013  max stage 2 norm: 1.81e+020
Thu Dec 12 22:13:12 2013  min E-value: 9.40e-012
Thu Dec 12 22:13:12 2013  poly select deadline: 333439
Thu Dec 12 22:13:12 2013  time limit set to 92.62 CPU-hours
Thu Dec 12 22:13:12 2013  expecting poly E from 1.16e-011 to > 1.34e-011
Thu Dec 12 22:13:12 2013  searching leading coefficients from 1 to 5332374
Thu Dec 12 22:13:12 2013  using GPU 0 (GeForce GTX 660)
Thu Dec 12 22:13:12 2013  selected card has CUDA arch 3.0
Fri Dec 13 22:28:20 2013  
Fri Dec 13 22:28:20 2013  
Fri Dec 13 22:28:20 2013  Msieve v. 1.52 (SVN unknown)
Fri Dec 13 22:28:20 2013  random seeds: b2c23d00 3821de29
Fri Dec 13 22:28:20 2013  factoring 1204586877884093663626828996016541924291596079301588987441279761500408323810366826462044654291109062624002359541506181090047539906570513948147193 (145 digits)
Fri Dec 13 22:28:21 2013  searching for 15-digit factors
Fri Dec 13 22:28:22 2013  commencing number field sieve (145-digit input)
Fri Dec 13 22:28:22 2013  commencing number field sieve polynomial selection
Fri Dec 13 22:28:22 2013  polynomial degree: 5
Fri Dec 13 22:28:22 2013  max stage 1 norm: 1.10e+022
Fri Dec 13 22:28:22 2013  max stage 2 norm: 1.81e+020
Fri Dec 13 22:28:22 2013  min E-value: 9.40e-012
Fri Dec 13 22:28:22 2013  poly select deadline: 333439
Sat Dec 14 03:15:49 2013  polynomial selection complete
Sat Dec 14 03:15:49 2013  R0: -5604749605470449760036581047
Sat Dec 14 03:15:49 2013  R1: 3567324621627307
Sat Dec 14 03:15:49 2013  A0: 458493208716862933656118953192147216
Sat Dec 14 03:15:49 2013  A1: 2506873496905449788851337812796
Sat Dec 14 03:15:49 2013  A2: 2680692504215148942381076
Sat Dec 14 03:15:49 2013  A3: -1263560997560054119
Sat Dec 14 03:15:49 2013  A4: -648395650290
Sat Dec 14 03:15:49 2013  A5: 217800
Sat Dec 14 03:15:49 2013  skew 1703015.86, size 6.193e-014, alpha -7.977, combined = 1.237e-011 rroots = 5
Sat Dec 14 03:15:49 2013  elapsed time 04:47:29

<Sieving + post-processing using GGNFS (SVN 440) + msieve 1.51 (SVN 845)>

Sat Dec 14 05:44:54 2013 -> factmsieve.py (v0.76)
Sat Dec 14 05:44:55 2013 -> This is client 1 of 1
Sat Dec 14 05:44:55 2013 -> Running on 12 Cores with 2 hyper-threads per Core
Sat Dec 14 05:44:55 2013 -> Working with NAME = 70003_218
Sat Dec 14 05:44:55 2013 -> Selected lattice siever: gnfs-lasieve4I14e
Sat Dec 14 05:44:55 2013 -> Creating param file to detect parameter changes...
Sat Dec 14 05:44:55 2013 -> Running setup ...
Sat Dec 14 05:44:55 2013 -> Estimated minimum relations needed: 3.44021e+07
Sat Dec 14 05:44:55 2013 -> cleaning up before a restart
Sat Dec 14 05:44:55 2013 -> Running lattice siever ...
Sat Dec 14 05:44:55 2013 -> entering sieving loop
<...snipped...>
Sat Dec 14 05:44:55 2013 -> Lattice sieving algebraic q from 9000000 to 9100000.
<...snipped...>
Sat Dec 14 06:12:55 2013 Found 460044 relations, 1.3% of the estimated minimum (34402132).
<...snipped...>
Sat Dec 14 14:21:44 2013 -> Lattice sieving algebraic q from 10800000 to 10900000.
<...snipped...>
Sat Dec 14 14:51:25 2013 Found 8707720 relations, 25.3% of the estimated minimum (34402132).
<...snipped...>
Sun Dec 15 00:32:00 2013 -> Lattice sieving algebraic q from 12700000 to 12800000.
<...snipped...>
Sun Dec 15 01:06:48 2013 Found 17448385 relations, 50.7% of the estimated minimum (34402132).
<...snipped...>
Sun Dec 15 10:53:52 2013 -> Lattice sieving algebraic q from 14500000 to 14600000.
<...snipped...>
Sun Dec 15 11:27:57 2013 Found 25776604 relations, 74.9% of the estimated minimum (34402132).
<...snipped...>
Sun Dec 15 22:20:36 2013 -> Lattice sieving algebraic q from 16400000 to 16500000.
<...snipped...>
Sun Dec 15 22:55:03 2013 Found 34415333 relations, 100.0% of the estimated minimum (34402132).
<...snipped...>
Mon Dec 16 02:05:02 2013 -> Lattice sieving algebraic q from 16900000 to 17000000.
<...snipped...>
Mon Dec 16 02:36:40 2013 Found 36689330 relations, 106.6% of the estimated minimum (34402132).
Mon Dec 16 02:36:40 2013  
Mon Dec 16 02:36:40 2013  
Mon Dec 16 02:36:40 2013  Msieve v. 1.51 (SVN 845)
Mon Dec 16 02:36:40 2013  random seeds: 8e685ae8 c0804c77
Mon Dec 16 02:36:40 2013  factoring 1204586877884093663626828996016541924291596079301588987441279761500408323810366826462044654291109062624002359541506181090047539906570513948147193 (145 digits)
Mon Dec 16 02:36:41 2013  searching for 15-digit factors
Mon Dec 16 02:36:42 2013  commencing number field sieve (145-digit input)
Mon Dec 16 02:36:42 2013  R0: -5604749605470449760036581047
Mon Dec 16 02:36:42 2013  R1: 3567324621627307
Mon Dec 16 02:36:42 2013  A0: 458493208716862933656118953192147216
Mon Dec 16 02:36:42 2013  A1: 2506873496905449788851337812796
Mon Dec 16 02:36:42 2013  A2: 2680692504215148942381076
Mon Dec 16 02:36:42 2013  A3: -1263560997560054119
Mon Dec 16 02:36:42 2013  A4: -648395650290
Mon Dec 16 02:36:42 2013  A5: 217800
Mon Dec 16 02:36:42 2013  skew 1703015.86, size 6.193e-014, alpha -7.977, combined = 1.237e-011 rroots = 5
Mon Dec 16 02:36:42 2013  
Mon Dec 16 02:36:42 2013  commencing relation filtering
Mon Dec 16 02:36:42 2013  estimated available RAM is 4096.0 MB
Mon Dec 16 02:36:42 2013  commencing duplicate removal, pass 1
Mon Dec 16 02:40:44 2013  found 4490528 hash collisions in 36689329 relations
Mon Dec 16 02:41:38 2013  added 8 free relations
Mon Dec 16 02:41:38 2013  commencing duplicate removal, pass 2
Mon Dec 16 02:42:06 2013  found 2918950 duplicates and 33770387 unique relations
Mon Dec 16 02:42:06 2013  memory use: 165.2 MB
Mon Dec 16 02:42:06 2013  reading ideals above 16973824
Mon Dec 16 02:42:12 2013  commencing singleton removal, initial pass
Mon Dec 16 02:46:42 2013  memory use: 753.0 MB
Mon Dec 16 02:46:42 2013  reading all ideals from disk
Mon Dec 16 02:46:42 2013  memory use: 610.1 MB
Mon Dec 16 02:46:44 2013  commencing in-memory singleton removal
Mon Dec 16 02:46:46 2013  begin with 33770387 relations and 35029232 unique ideals
Mon Dec 16 02:47:07 2013  reduce to 12047352 relations and 9724220 ideals in 24 passes
Mon Dec 16 02:47:07 2013  max relations containing the same ideal: 50
Mon Dec 16 02:47:08 2013  reading ideals above 720000
Mon Dec 16 02:47:08 2013  commencing singleton removal, initial pass
Mon Dec 16 02:49:11 2013  memory use: 344.5 MB
Mon Dec 16 02:49:11 2013  reading all ideals from disk
Mon Dec 16 02:49:11 2013  memory use: 400.0 MB
Mon Dec 16 02:49:12 2013  commencing in-memory singleton removal
Mon Dec 16 02:49:13 2013  begin with 12047363 relations and 11787548 unique ideals
Mon Dec 16 02:49:26 2013  reduce to 12033180 relations and 11773321 ideals in 13 passes
Mon Dec 16 02:49:26 2013  max relations containing the same ideal: 181
Mon Dec 16 02:49:32 2013  removing 871131 relations and 808838 ideals in 62293 cliques
Mon Dec 16 02:49:32 2013  commencing in-memory singleton removal
Mon Dec 16 02:49:33 2013  begin with 11162049 relations and 11773321 unique ideals
Mon Dec 16 02:49:42 2013  reduce to 11105510 relations and 10907457 ideals in 10 passes
Mon Dec 16 02:49:42 2013  max relations containing the same ideal: 172
Mon Dec 16 02:49:47 2013  removing 633607 relations and 571314 ideals in 62293 cliques
Mon Dec 16 02:49:48 2013  commencing in-memory singleton removal
Mon Dec 16 02:49:49 2013  begin with 10471903 relations and 10907457 unique ideals
Mon Dec 16 02:49:56 2013  reduce to 10438728 relations and 10302764 ideals in 9 passes
Mon Dec 16 02:49:56 2013  max relations containing the same ideal: 167
Mon Dec 16 02:50:03 2013  relations with 0 large ideals: 546
Mon Dec 16 02:50:03 2013  relations with 1 large ideals: 417
Mon Dec 16 02:50:03 2013  relations with 2 large ideals: 9453
Mon Dec 16 02:50:03 2013  relations with 3 large ideals: 91422
Mon Dec 16 02:50:03 2013  relations with 4 large ideals: 477477
Mon Dec 16 02:50:03 2013  relations with 5 large ideals: 1444934
Mon Dec 16 02:50:03 2013  relations with 6 large ideals: 2653353
Mon Dec 16 02:50:03 2013  relations with 7+ large ideals: 5761126
Mon Dec 16 02:50:03 2013  commencing 2-way merge
Mon Dec 16 02:50:12 2013  reduce to 5822425 relation sets and 5686470 unique ideals
Mon Dec 16 02:50:12 2013  ignored 9 oversize relation sets
Mon Dec 16 02:50:12 2013  commencing full merge
Mon Dec 16 02:52:04 2013  memory use: 566.2 MB
Mon Dec 16 02:52:05 2013  found 3049806 cycles, need 3034670
Mon Dec 16 02:52:05 2013  weight of 3034670 cycles is about 212597743 (70.06/cycle)
Mon Dec 16 02:52:05 2013  distribution of cycle lengths:
Mon Dec 16 02:52:05 2013  1 relations: 449309
Mon Dec 16 02:52:05 2013  2 relations: 417574
Mon Dec 16 02:52:05 2013  3 relations: 390141
Mon Dec 16 02:52:05 2013  4 relations: 332071
Mon Dec 16 02:52:05 2013  5 relations: 280126
Mon Dec 16 02:52:05 2013  6 relations: 232289
Mon Dec 16 02:52:05 2013  7 relations: 188595
Mon Dec 16 02:52:05 2013  8 relations: 150800
Mon Dec 16 02:52:05 2013  9 relations: 122228
Mon Dec 16 02:52:05 2013  10+ relations: 471537
Mon Dec 16 02:52:05 2013  heaviest cycle: 24 relations
Mon Dec 16 02:52:06 2013  commencing cycle optimization
Mon Dec 16 02:52:10 2013  start with 16446763 relations
Mon Dec 16 02:52:38 2013  pruned 250044 relations
Mon Dec 16 02:52:38 2013  memory use: 464.8 MB
Mon Dec 16 02:52:38 2013  distribution of cycle lengths:
Mon Dec 16 02:52:38 2013  1 relations: 449309
Mon Dec 16 02:52:38 2013  2 relations: 424965
Mon Dec 16 02:52:38 2013  3 relations: 400194
Mon Dec 16 02:52:38 2013  4 relations: 335628
Mon Dec 16 02:52:38 2013  5 relations: 282853
Mon Dec 16 02:52:38 2013  6 relations: 232098
Mon Dec 16 02:52:38 2013  7 relations: 187147
Mon Dec 16 02:52:38 2013  8 relations: 148874
Mon Dec 16 02:52:38 2013  9 relations: 120247
Mon Dec 16 02:52:38 2013  10+ relations: 453355
Mon Dec 16 02:52:38 2013  heaviest cycle: 24 relations
Mon Dec 16 02:52:41 2013  RelProcTime: 959
Mon Dec 16 02:52:41 2013  elapsed time 00:16:01
Mon Dec 16 02:52:41 2013 LatSieveTime: 2859.75
Mon Dec 16 02:52:41 2013 -> Running matrix solving step ...
<...snipped...>
Mon Dec 16 02:52:43 2013  
Mon Dec 16 02:52:43 2013  commencing linear algebra
Mon Dec 16 02:52:44 2013  read 3034670 cycles
Mon Dec 16 02:52:51 2013  cycles contain 10239536 unique relations
Mon Dec 16 02:54:02 2013  read 10239536 relations
Mon Dec 16 02:54:18 2013  using 20 quadratic characters above 536870000
Mon Dec 16 02:55:15 2013  building initial matrix
Mon Dec 16 02:57:44 2013  memory use: 1220.7 MB
Mon Dec 16 02:57:47 2013  read 3034670 cycles
Mon Dec 16 02:57:49 2013  matrix is 3034489 x 3034670 (869.0 MB) with weight 285891636 (94.21/col)
Mon Dec 16 02:57:49 2013  sparse part has weight 206566972 (68.07/col)
Mon Dec 16 02:58:28 2013  filtering completed in 2 passes
Mon Dec 16 02:58:30 2013  matrix is 3028938 x 3029118 (868.7 MB) with weight 285685476 (94.31/col)
Mon Dec 16 02:58:30 2013  sparse part has weight 206514590 (68.18/col)
Mon Dec 16 02:58:42 2013  matrix starts at (0, 0)
Mon Dec 16 02:58:43 2013  matrix is 3028938 x 3029118 (868.7 MB) with weight 285685476 (94.31/col)
Mon Dec 16 02:58:43 2013  sparse part has weight 206514590 (68.18/col)
Mon Dec 16 02:58:43 2013  saving the first 48 matrix rows for later
Mon Dec 16 02:58:44 2013  matrix includes 64 packed rows
Mon Dec 16 02:58:45 2013  matrix is 3028890 x 3029118 (840.5 MB) with weight 227525188 (75.11/col)
Mon Dec 16 02:58:45 2013  sparse part has weight 202162759 (66.74/col)
Mon Dec 16 02:58:45 2013  using block size 65536 for processor cache size 15360 kB
Mon Dec 16 02:59:06 2013  commencing Lanczos iteration (24 threads)
Mon Dec 16 02:59:06 2013  memory use: 1232.2 MB
Mon Dec 16 02:59:19 2013  linear algebra at 0.1%, ETA 6h39m
Mon Dec 16 02:59:24 2013  checkpointing every 430000 dimensions
Mon Dec 16 10:28:48 2013  lanczos halted after 47901 iterations (dim = 3028888)
Mon Dec 16 10:28:54 2013  recovered 26 nontrivial dependencies
Mon Dec 16 10:28:55 2013  BLanczosTime: 27372
Mon Dec 16 10:28:55 2013  elapsed time 07:36:14
Mon Dec 16 10:28:55 2013 -> Running square root step ...
<...snipped...>
Mon Dec 16 10:28:56 2013  commencing square root phase
Mon Dec 16 10:28:56 2013  reading relations for dependency 1
Mon Dec 16 10:28:57 2013  read 1513213 cycles
Mon Dec 16 10:29:01 2013  cycles contain 5115612 unique relations
Mon Dec 16 10:29:42 2013  read 5115612 relations
Mon Dec 16 10:30:12 2013  multiplying 5115612 relations
Mon Dec 16 10:46:50 2013  multiply complete, coefficients have about 264.17 million bits
Mon Dec 16 10:46:55 2013  initial square root is modulo 3022390673
Mon Dec 16 11:05:54 2013  GCD is N, no factor found
Mon Dec 16 11:05:54 2013  reading relations for dependency 2
Mon Dec 16 11:05:55 2013  read 1515704 cycles
Mon Dec 16 11:05:58 2013  cycles contain 5121182 unique relations
Mon Dec 16 11:06:39 2013  read 5121182 relations
Mon Dec 16 11:07:14 2013  multiplying 5121182 relations
Mon Dec 16 11:23:56 2013  multiply complete, coefficients have about 264.47 million bits
Mon Dec 16 11:24:00 2013  initial square root is modulo 55667
Mon Dec 16 11:43:53 2013  sqrtTime: 4497
Mon Dec 16 11:43:53 2013  prp70 factor: 6260912466135837184555391199525986430130346123065958687500997130124261
Mon Dec 16 11:43:53 2013  prp75 factor: 192397974640196617059291295389129996678764450645044076196121227785839943813
Mon Dec 16 11:43:53 2013  elapsed time 01:14:58
Mon Dec 16 11:43:53 2013 -> Computing 1.38719e+09 scale for this machine...
Mon Dec 16 11:43:53 2013 -> procrels -speedtest> PIPE
Mon Dec 16 11:43:56 2013 -> Factorization summary written to g145-70003_218.txt



Number: 70003_218
N = 1204586877884093663626828996016541924291596079301588987441279761500408323810366826462044654291109062624002359541506181090047539906570513948147193 (145 digits)
Divisors found:
r1=6260912466135837184555391199525986430130346123065958687500997130124261 (pp70)
r2=192397974640196617059291295389129996678764450645044076196121227785839943813 (pp75)
Version: Msieve v. 1.51 (SVN 845)
Total time: 54.24 hours.
Factorization parameters were as follows:
# Murphy_E = 1.237e-11, selected by Youcef Lemsafer
# msieve 1.52 GPU, expecting poly E from 1.16e-011 to > 1.34e-011
n: 1204586877884093663626828996016541924291596079301588987441279761500408323810366826462044654291109062624002359541506181090047539906570513948147193
Y0: -5604749605470449760036581047
Y1: 3567324621627307
c0: 458493208716862933656118953192147216
c1: 2506873496905449788851337812796
c2: 2680692504215148942381076
c3: -1263560997560054119
c4: -648395650290
c5: 217800
skew: 1703015.86
type: gnfs
# selected mechanically
rlim: 24000000
alim: 24000000
lpbr: 29
lpba: 29
mfbr: 56
mfba: 56
rlambda: 2.6
alambda: 2.6
q0: 9000000
Factor base limits: 24000000/24000000
Large primes per side: 3
Large prime bits: 29/29
Sieved algebraic special-q in [9000000, 17000001)
Total raw relations: 36689330
Relations: 5121182 relations
Pruned matrix : 3028890 x 3029118
Polynomial selection time: 0.00 hours.
Total sieving time: 45.12 hours.
Total relation processing time: 0.27 hours.
Matrix solve time: 7.60 hours.
time per square root: 1.25 hours.
Prototype def-par.txt line would be: gnfs,144,5,67,2000,5e-06,0.28,250,20,50000,3600,24000000,24000000,29,29,56,56,2.6,2.6,100000
total time: 54.24 hours.
Intel64 Family 6 Model 45 Stepping 7, GenuineIntel
Windows-7-6.1.7601-SP1
processors: 24, speed: 2.00GHz
software ソフトウェア
msieve 1.52 (SVN 942) CUDA for polynomial selection, GGNFS (SVN 440), msieve 1.51 (SVN 845)
execution environment 実行環境
Windows 7 Pro 64bits, 2x Intel Xeon E5-2620 @ 2.0GHz, 2x NVIDIA GeForce GTX660, 32GB RAM

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaNovember 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間)
403e60--
4511e61000400Serge BatalovNovember 19, 2013 18:02:22 UTC 2013 年 11 月 20 日 (水) 3 時 2 分 22 秒 (日本時間)
600Serge BatalovNovember 20, 2013 01:03:14 UTC 2013 年 11 月 20 日 (水) 10 時 3 分 14 秒 (日本時間)
5043e61008 / 7328400Youcef LemsaferDecember 10, 2013 07:09:22 UTC 2013 年 12 月 10 日 (火) 16 時 9 分 22 秒 (日本時間)
200Youcef LemsaferDecember 10, 2013 16:08:06 UTC 2013 年 12 月 11 日 (水) 1 時 8 分 6 秒 (日本時間)
408Youcef LemsaferDecember 11, 2013 08:09:24 UTC 2013 年 12 月 11 日 (水) 17 時 9 分 24 秒 (日本時間)

7×10219+3

c207

name 名前Bob Backstrom
date 日付January 4, 2020 16:03:08 UTC 2020 年 1 月 5 日 (日) 1 時 3 分 8 秒 (日本時間)
composite number 合成数
114598234021501689699158488079737573971060533850913348456477076360636045164524618850760634790801932687869576368242939198621948928296030626496100561199061279108140161485328296432150988436210947386987791064131<207>
prime factors 素因数
26991186635971144821677462472278268796229465604401109620797539602469763456812543618733267<89>
4245764944205034098514137773736438649967307867458261346430120257917490437612392099830844977328642655116718350124790993<118>
factorization results 素因数分解の結果
Number: n
N=114598234021501689699158488079737573971060533850913348456477076360636045164524618850760634790801932687869576368242939198621948928296030626496100561199061279108140161485328296432150988436210947386987791064131
  ( 207 digits)
SNFS difficulty: 219 digits.
Divisors found:

Sat Jan  4 22:58:24 2020  p89 factor: 26991186635971144821677462472278268796229465604401109620797539602469763456812543618733267
Sat Jan  4 22:58:24 2020  p118 factor: 4245764944205034098514137773736438649967307867458261346430120257917490437612392099830844977328642655116718350124790993
Sat Jan  4 22:58:24 2020  elapsed time 09:10:25 (Msieve 1.54 - dependency 2)

Version:
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.133).
Factorization parameters were as follows:
#
# N = 7x10^219+3 = 70(218)3
#
n: 114598234021501689699158488079737573971060533850913348456477076360636045164524618850760634790801932687869576368242939198621948928296030626496100561199061279108140161485328296432150988436210947386987791064131
m: 1000000000000000000000000000000000000
deg: 6
c6: 7000
c0: 3
skew: 0.27
# Murphy_E = 2.051e-12
type: snfs
lss: 1
rlim: 32000000
alim: 32000000
lpbr: 29
lpba: 29
mfbr: 58
mfba: 58
rlambda: 2.6
alambda: 2.6
Factor base limits: 32000000/32000000
Large primes per side: 3
Large prime bits: 29/29
Max factor residue bits: 58/58
Sieved  special-q in [100000, 106400000)
Primes: , ,
Relations:
Max relations in full relation-set: 28
Initial matrix:
Pruned matrix :

Msieve: found 10381314 hash collisions in 63334034 relations (54283044 unique)
Msieve: matrix is 4450082 x 4450307 (1571.4 MB)

Sieving start time: 2020/01/02 08:57:42
Sieving end time  : 2020/01/04 13:46:53

Total sieving time: 52hrs 49min 11secs.

Total relation processing time: 8hrs 28min 23sec.
Matrix solve time: 0.00 hours.
Total square root time: 0hrs 21min 36sec.

Prototype def-par.txt line would be:
snfs,219,6,0,0,0,0,0,0,0,0,32000000,32000000,29,29,58,58,2.6,2.6,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------
[    0.149937] smpboot: CPU0: AMD Ryzen 7 1700 Eight-Core Processor (family: 0x17, model: 0x1, stepping: 0x1)
[    0.000000] Memory: 16283572K/16703460K available (12300K kernel code, 2481K rwdata, 4264K rodata, 2428K init, 2388K bss, 419888K reserved, 0K cma-reserved)
[    0.184567] x86/mm: Memory block size: 128MB
[    0.024000] Calibrating delay loop (skipped), value calculated using timer frequency.. 5988.57 BogoMIPS (lpj=11977148)
[    0.182215] smpboot: Total of 16 processors activated (95817.18 BogoMIPS)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaNovember 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間)
403e61500Dmitry DomanovDecember 2, 2013 13:08:45 UTC 2013 年 12 月 2 日 (月) 22 時 8 分 45 秒 (日本時間)
4511e61900 / 4143400Serge BatalovNovember 19, 2013 18:02:23 UTC 2013 年 11 月 20 日 (水) 3 時 2 分 23 秒 (日本時間)
1500Dmitry DomanovMay 7, 2014 09:17:09 UTC 2014 年 5 月 7 日 (水) 18 時 17 分 9 秒 (日本時間)

7×10220+3

c207

name 名前Erik Branger
date 日付January 12, 2019 09:14:18 UTC 2019 年 1 月 12 日 (土) 18 時 14 分 18 秒 (日本時間)
composite number 合成数
130849659272491633204254777792809866019412918502345453367160021166487459483630388063705179605572508019032437866241391059787220872772259894466047979532988239155310555022650899448534300474428546069577604792811<207>
prime factors 素因数
2215441034902811654471921433748628027519712045077<49>
59062578155338640036427317833752143982459745957327552911248107197988778667341610156883888119778215646978400391709078370694530318728233451339123641822248108543<158>
factorization results 素因数分解の結果
Number: 70003_220
N = 130849659272491633204254777792809866019412918502345453367160021166487459483630388063705179605572508019032437866241391059787220872772259894466047979532988239155310555022650899448534300474428546069577604792811 (207 digits)
SNFS difficulty: 221 digits.
Divisors found:
r1=2215441034902811654471921433748628027519712045077 (pp49)
r2=59062578155338640036427317833752143982459745957327552911248107197988778667341610156883888119778215646978400391709078370694530318728233451339123641822248108543 (pp158)
Version: Msieve v. 1.52 (SVN unknown)
Total time: 60.38 hours.
Factorization parameters were as follows:
n: 130849659272491633204254777792809866019412918502345453367160021166487459483630388063705179605572508019032437866241391059787220872772259894466047979532988239155310555022650899448534300474428546069577604792811
m: 10000000000000000000000000000000000000000000000000000000
deg: 4
c4: 7
c0: 3
skew: 1.00
type: snfs
lss: 1
rlim: 536870912
alim: 536870912
lpbr: 29
lpba: 28
mfbr: 58
mfba: 56
rlambda: 2.8
alambda: 2.8
side: 1
Factor base limits: 536870912/536870912
Large primes per side: 3
Large prime bits: 29/28
Relations: 6691802 relations
Pruned matrix : 6090052 x 6090277
Total pre-computation time approximately 300 CPU-days.
Pre-computation saved approximately 8 G relations.
Total batch smoothness checking time: 29.27 hours.
Total relation processing time: 0.38 hours.
Matrix solve time: 30.39 hours.
time per square root: 0.34 hours.
Prototype def-par.txt line would be: snfs,221,4,0,0,0,0,0,0,0,0,536870912,536870912,29,28,58,56,2.8,2.8,100000
total time: 60.38 hours.
Intel64 Family 6 Model 60 Stepping 3, GenuineIntel
Windows-10-10.0.17134-SP0
processors: 8, speed: 3.50GHz
software ソフトウェア
GGNFS, NFS_factory, Msieve

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaNovember 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間)
403e61500Dmitry DomanovDecember 2, 2013 13:08:54 UTC 2013 年 12 月 2 日 (月) 22 時 8 分 54 秒 (日本時間)
4511e6400 / 4143Serge BatalovNovember 19, 2013 18:02:24 UTC 2013 年 11 月 20 日 (水) 3 時 2 分 24 秒 (日本時間)

7×10222+3

c206

name 名前Erik Branger
date 日付March 10, 2022 17:53:07 UTC 2022 年 3 月 11 日 (金) 2 時 53 分 7 秒 (日本時間)
composite number 合成数
27550153187087148338772321956561896463860501740748310378698551757534754205402004020770525801534209151640567972418300259892431330226075674577320017731844340337770656008752089470476809063262159005556414550203<206>
prime factors 素因数
143300651575555905337999086375550927609627<42>
595499006849613947588721100218684289828155706145825539717899771889<66>
322845555035928091608057968661390292461792632286999369483348979851316193750468225607405304206511601<99>
factorization results 素因数分解の結果
Number: 70003_222
N = 27550153187087148338772321956561896463860501740748310378698551757534754205402004020770525801534209151640567972418300259892431330226075674577320017731844340337770656008752089470476809063262159005556414550203 (206 digits)
SNFS difficulty: 223 digits.
Divisors found:
r1=143300651575555905337999086375550927609627 (pp42)
r2=595499006849613947588721100218684289828155706145825539717899771889 (pp66)
r3=322845555035928091608057968661390292461792632286999369483348979851316193750468225607405304206511601 (pp99)
Version: Msieve v. 1.52 (SVN unknown)
Total time: 56.37 hours.
Factorization parameters were as follows:
n: 27550153187087148338772321956561896463860501740748310378698551757534754205402004020770525801534209151640567972418300259892431330226075674577320017731844340337770656008752089470476809063262159005556414550203
m: 10000000000000000000000000000000000000000000000000000000
deg: 4
c4: 700
c0: 3
skew: 1.00
type: snfs
lss: 1
rlim: 536870912
alim: 60000000
lpbr: 29
lpba: 28
mfbr: 58
mfba: 56
rlambda: 2.8
alambda: 2.8
side: 1
Number of cores used: 6
Number of threads per core: 1
Factor base limits: 536870912/60000000
Large primes per side: 3
Large prime bits: 29/28
Total raw relations: 33732097
Relations: 8345410 relations
Total pre-computation time approximately 1000 CPU-days.
Pre-computation saved approximately 18 G rational relations.
Total batch smoothness checking time: 25.54 hours.
Total relation processing time: 0.36 hours.
Pruned matrix : 7208348 x 7208573
Matrix solve time: 29.78 hours.
time per square root: 0.69 hours.
Prototype def-par.txt line would be: snfs,223,4,0,0,0,0,0,0,0,0,536870912,60000000,29,28,58,56,2.8,2.8,100000
total time: 56.37 hours.
Intel64 Family 6 Model 158 Stepping 10, GenuineIntel
Windows-10-10.0.22000-SP0
processors: 12, speed: 3.19GHz
software ソフトウェア
GGNFS, NFS_factory, Msieve

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaNovember 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間)
403e61500Dmitry DomanovDecember 2, 2013 13:09:04 UTC 2013 年 12 月 2 日 (月) 22 時 9 分 4 秒 (日本時間)
4511e6400 / 4143Serge BatalovNovember 19, 2013 18:02:25 UTC 2013 年 11 月 20 日 (水) 3 時 2 分 25 秒 (日本時間)

7×10223+3

c216

name 名前Bob Backstrom
date 日付July 20, 2019 08:17:47 UTC 2019 年 7 月 20 日 (土) 17 時 17 分 47 秒 (日本時間)
composite number 合成数
997119876215829218207733715889294680275719599691696232101929696182844207811120880828349075315897191869695348967099901483131772910050627907040679114986596358509665317995559426343260426159633678669658615070860110334733<216>
prime factors 素因数
85129228987509937649003833371995259008841415210394003<53>
11713014296912350716747105777058778708491607877204733921369881813106605259906995746914517332433070356560692632188599468032459510589613815532273620411050810612466911<164>
factorization results 素因数分解の結果
Number: n
N=997119876215829218207733715889294680275719599691696232101929696182844207811120880828349075315897191869695348967099901483131772910050627907040679114986596358509665317995559426343260426159633678669658615070860110334733
  ( 216 digits)
SNFS difficulty: 223 digits.
Divisors found:

Sat Jul 20 12:04:53 2019  p53 factor: 85129228987509937649003833371995259008841415210394003
Sat Jul 20 12:04:53 2019  p164 factor: 11713014296912350716747105777058778708491607877204733921369881813106605259906995746914517332433070356560692632188599468032459510589613815532273620411050810612466911
Sat Jul 20 12:04:53 2019  elapsed time 11:11:26 (Msieve 1.54 - dependency 4)

Version:
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=1.721).
Factorization parameters were as follows:
#
# N = 7x10^223+3 = 70(222)3
#
n: 997119876215829218207733715889294680275719599691696232101929696182844207811120880828349075315897191869695348967099901483131772910050627907040679114986596358509665317995559426343260426159633678669658615070860110334733
m: 10000000000000000000000000000000000000
deg: 6
c6: 70
c0: 3
skew: 0.59
# Murphy_E = 1.709e-12
type: snfs
lss: 1
rlim: 38000000
alim: 38000000
lpbr: 29
lpba: 29
mfbr: 58
mfba: 58
rlambda: 2.6
alambda: 2.6
Factor base limits: 38000000/38000000
Large primes per side: 3
Large prime bits: 29/29
Max factor residue bits: 58/58
Sieved  special-q in [100000, 87800000)
Primes: , ,
Relations:
Max relations in full relation-set: 28
Initial matrix:
Pruned matrix :

Msieve: found 13076632 hash collisions in 67571061 relations (56416013 unique)
Msieve: matrix is 4676836 x 4677061 (1644.1 MB)

Sieving start time: 2019/07/18 06:18:47
Sieving end time  : 2019/07/20 00:50:06

Total sieving time: 42hrs 31min 19secs.

Total relation processing time: 9hrs 56min 35sec.
Matrix solve time: 0.00 hours.
Total square root time: 0hrs 53min 2sec.

Prototype def-par.txt line would be:
snfs,223,6,0,0,0,0,0,0,0,0,38000000,38000000,29,29,58,58,2.6,2.6,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------
[    0.048000] smpboot: CPU0: AMD Ryzen 7 1700 Eight-Core Processor (family: 0x17, model: 0x1, stepping: 0x1)
[    0.000000] Memory: 16284124K/16703460K available (12300K kernel code, 2473K rwdata, 4272K rodata, 2408K init, 2416K bss, 419336K reserved, 0K cma-reserved)
[    0.080566] x86/mm: Memory block size: 128MB
[    0.028000] Calibrating delay loop (skipped), value calculated using timer frequency.. 5988.41 BogoMIPS (lpj=11976828)
[    0.078213] smpboot: Total of 16 processors activated (95814.62 BogoMIPS)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaNovember 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間)
403e61500Dmitry DomanovDecember 2, 2013 13:09:15 UTC 2013 年 12 月 2 日 (月) 22 時 9 分 15 秒 (日本時間)
4511e61900 / 4143400Serge BatalovNovember 19, 2013 18:02:26 UTC 2013 年 11 月 20 日 (水) 3 時 2 分 26 秒 (日本時間)
1500Dmitry DomanovMay 7, 2014 09:17:25 UTC 2014 年 5 月 7 日 (水) 18 時 17 分 25 秒 (日本時間)

7×10224+3

c185

composite cofactor 合成数の残り
69264843763964617568208124355189268233190081372218877027832367639316366799426128506729557857315217903095531234956374871974606279943333107875424338515654457474184084762076305129157252149<185>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaNovember 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間)
403e61500Dmitry DomanovDecember 2, 2013 13:09:25 UTC 2013 年 12 月 2 日 (月) 22 時 9 分 25 秒 (日本時間)
4511e61900 / 4143400Serge BatalovNovember 19, 2013 18:02:27 UTC 2013 年 11 月 20 日 (水) 3 時 2 分 27 秒 (日本時間)
1500Dmitry DomanovMay 7, 2014 09:17:40 UTC 2014 年 5 月 7 日 (水) 18 時 17 分 40 秒 (日本時間)

7×10225+3

c217

name 名前Dmitry Domanov
date 日付November 22, 2013 10:09:50 UTC 2013 年 11 月 22 日 (金) 19 時 9 分 50 秒 (日本時間)
composite number 合成数
2310260540302408160768028981091070950042801652468769644712625663325843014310433333269185098997603133402674395291704596620478207449783829531812760748319092302646967779558960417833219662519074290733669033838055106477669<217>
prime factors 素因数
50392306231003517204360326654783240793<38>
composite cofactor 合成数の残り
45845501289659895994034399882548158710967867463972373319296432705555526184894723730244802266706904638880884650937581230994874214860244071171676754858486736872026022742644216695533<179>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=4193646824
Step 1 took 30738ms
Step 2 took 11070ms
********** Factor found in step 2: 50392306231003517204360326654783240793
Found probable prime factor of 38 digits: 50392306231003517204360326654783240793

c179

name 名前Dmitry Domanov
date 日付May 13, 2014 06:05:10 UTC 2014 年 5 月 13 日 (火) 15 時 5 分 10 秒 (日本時間)
composite number 合成数
45845501289659895994034399882548158710967867463972373319296432705555526184894723730244802266706904638880884650937581230994874214860244071171676754858486736872026022742644216695533<179>
prime factors 素因数
11490186445963043272757708162816409649508168469737<50>
composite cofactor 合成数の残り
3989970180663798798178881159201005138612620134416575415620617721619975790854970313853278857887377984494974816401888175580453796709<130>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1034487263
Step 1 took 84305ms
Step 2 took 29206ms
********** Factor found in step 2: 11490186445963043272757708162816409649508168469737
Found probable prime factor of 50 digits: 11490186445963043272757708162816409649508168469737
Composite cofactor 3989970180663798798178881159201005138612620134416575415620617721619975790854970313853278857887377984494974816401888175580453796709 has 130 digits

c130

name 名前Cyp
date 日付May 14, 2014 11:34:47 UTC 2014 年 5 月 14 日 (水) 20 時 34 分 47 秒 (日本時間)
composite number 合成数
3989970180663798798178881159201005138612620134416575415620617721619975790854970313853278857887377984494974816401888175580453796709<130>
prime factors 素因数
27274110549533639162128771337949537322724747518364736341662065053<65>
146291486698253608805179035063607291595329945292541200561222261353<66>
factorization results 素因数分解の結果
05/13/14 21:59:03 v1.34.3, 
05/13/14 21:59:03 v1.34.3, ****************************
05/13/14 21:59:03 v1.34.3, Starting factorization of 3989970180663798798178881159201005138612620134416575415620617721619975790854970313853278857887377984494974816401888175580453796709
05/13/14 21:59:03 v1.34.3, using pretesting plan: none
05/13/14 21:59:03 v1.34.3, no tune info: using qs/gnfs crossover of 95 digits
05/13/14 21:59:03 v1.34.3, ****************************
05/13/14 21:59:03 v1.34.3, rho: x^2 + 3, starting 1000 iterations on C130
05/13/14 21:59:03 v1.34.3, rho: x^2 + 2, starting 1000 iterations on C130
05/13/14 21:59:03 v1.34.3, rho: x^2 + 1, starting 1000 iterations on C130
05/13/14 21:59:04 v1.34.3, final ECM pretested depth: 0.00
05/13/14 21:59:04 v1.34.3, scheduler: switching to sieve method
05/13/14 21:59:04 v1.34.3, nfs: commencing nfs on c130: 3989970180663798798178881159201005138612620134416575415620617721619975790854970313853278857887377984494974816401888175580453796709
05/13/14 21:59:04 v1.34.3, nfs: commencing poly selection with 8 threads
05/13/14 21:59:04 v1.34.3, nfs: setting deadline of 6776 seconds
05/13/14 23:52:52 v1.34.3, nfs: completed 883 ranges of size 250 in 6828.1447 seconds
05/13/14 23:52:52 v1.34.3, nfs: best poly = # norm 1.803426e-12 alpha -7.846614 e 7.663e-11 rroots 1
05/13/14 23:52:52 v1.34.3, nfs: commencing lattice sieving with 8 threads
05/14/14 00:04:31 v1.34.3, nfs: commencing lattice sieving with 8 threads
[55 lines snipped]
05/14/14 12:03:09 v1.34.3, nfs: commencing lattice sieving with 8 threads
05/14/14 12:17:17 v1.34.3, nfs: commencing lattice sieving with 8 threads
05/14/14 12:32:00 v1.34.3, nfs: commencing msieve filtering
05/14/14 12:36:39 v1.34.3, nfs: commencing msieve linear algebra
05/14/14 13:30:38 v1.34.3, nfs: commencing msieve sqrt
05/14/14 13:34:46 v1.34.3, prp65 = 27274110549533639162128771337949537322724747518364736341662065053
05/14/14 13:34:46 v1.34.3, prp66 = 146291486698253608805179035063607291595329945292541200561222261353
05/14/14 13:34:46 v1.34.3, NFS elapsed time = 56142.8491 seconds.
05/14/14 13:34:46 v1.34.3, 
05/14/14 13:34:46 v1.34.3, 
05/14/14 13:34:46 v1.34.3, Total factoring time = 56142.8923 seconds
--
Wed May 14 12:32:00 2014  
Wed May 14 12:32:00 2014  commencing relation filtering
Wed May 14 12:32:00 2014  estimated available RAM is 15988.7 MB
Wed May 14 12:32:00 2014  commencing duplicate removal, pass 1
Wed May 14 12:33:19 2014  found 2752695 hash collisions in 21032351 relations
Wed May 14 12:33:40 2014  added 121487 free relations
Wed May 14 12:33:40 2014  commencing duplicate removal, pass 2
Wed May 14 12:34:00 2014  found 1747355 duplicates and 19406483 unique relations
Wed May 14 12:34:00 2014  memory use: 82.6 MB
Wed May 14 12:34:00 2014  reading ideals above 720000
Wed May 14 12:34:00 2014  commencing singleton removal, initial pass
Wed May 14 12:35:37 2014  memory use: 689.0 MB
Wed May 14 12:35:37 2014  reading all ideals from disk
Wed May 14 12:35:37 2014  memory use: 595.4 MB
Wed May 14 12:35:38 2014  keeping 21079628 ideals with weight <= 200, target excess is 120101
Wed May 14 12:35:39 2014  commencing in-memory singleton removal
Wed May 14 12:35:40 2014  begin with 19406483 relations and 21079628 unique ideals
Wed May 14 12:35:49 2014  reduce to 7360795 relations and 6873833 ideals in 19 passes
Wed May 14 12:35:49 2014  max relations containing the same ideal: 102
Wed May 14 12:35:51 2014  removing 1362535 relations and 1188713 ideals in 173822 cliques
Wed May 14 12:35:51 2014  commencing in-memory singleton removal
Wed May 14 12:35:51 2014  begin with 5998260 relations and 6873833 unique ideals
Wed May 14 12:35:54 2014  reduce to 5784957 relations and 5465072 ideals in 11 passes
Wed May 14 12:35:54 2014  max relations containing the same ideal: 83
Wed May 14 12:35:57 2014  removing 1019611 relations and 845789 ideals in 173822 cliques
Wed May 14 12:35:57 2014  commencing in-memory singleton removal
Wed May 14 12:35:57 2014  begin with 4765346 relations and 5465072 unique ideals
Wed May 14 12:36:00 2014  reduce to 4611847 relations and 4460971 ideals in 12 passes
Wed May 14 12:36:00 2014  max relations containing the same ideal: 73
Wed May 14 12:36:01 2014  removing 113843 relations and 102285 ideals in 11558 cliques
Wed May 14 12:36:01 2014  commencing in-memory singleton removal
Wed May 14 12:36:01 2014  begin with 4498004 relations and 4460971 unique ideals
Wed May 14 12:36:03 2014  reduce to 4495962 relations and 4356643 ideals in 7 passes
Wed May 14 12:36:03 2014  max relations containing the same ideal: 72
Wed May 14 12:36:03 2014  relations with 0 large ideals: 502
Wed May 14 12:36:03 2014  relations with 1 large ideals: 1872
Wed May 14 12:36:03 2014  relations with 2 large ideals: 29315
Wed May 14 12:36:03 2014  relations with 3 large ideals: 187563
Wed May 14 12:36:03 2014  relations with 4 large ideals: 623280
Wed May 14 12:36:03 2014  relations with 5 large ideals: 1169513
Wed May 14 12:36:03 2014  relations with 6 large ideals: 1286977
Wed May 14 12:36:03 2014  relations with 7+ large ideals: 1196940
Wed May 14 12:36:03 2014  commencing 2-way merge
Wed May 14 12:36:05 2014  reduce to 2553329 relation sets and 2414010 unique ideals
Wed May 14 12:36:05 2014  commencing full merge
Wed May 14 12:36:29 2014  memory use: 285.3 MB
Wed May 14 12:36:29 2014  found 1306574 cycles, need 1288210
Wed May 14 12:36:29 2014  weight of 1288210 cycles is about 90321740 (70.11/cycle)
Wed May 14 12:36:29 2014  distribution of cycle lengths:
Wed May 14 12:36:29 2014  1 relations: 174270
Wed May 14 12:36:29 2014  2 relations: 151253
Wed May 14 12:36:29 2014  3 relations: 145233
Wed May 14 12:36:29 2014  4 relations: 128994
Wed May 14 12:36:29 2014  5 relations: 117290
Wed May 14 12:36:29 2014  6 relations: 99656
Wed May 14 12:36:29 2014  7 relations: 89033
Wed May 14 12:36:29 2014  8 relations: 76049
Wed May 14 12:36:29 2014  9 relations: 64995
Wed May 14 12:36:29 2014  10+ relations: 241437
Wed May 14 12:36:29 2014  heaviest cycle: 21 relations
Wed May 14 12:36:30 2014  commencing cycle optimization
Wed May 14 12:36:31 2014  start with 7473930 relations
Wed May 14 12:36:37 2014  pruned 148741 relations
Wed May 14 12:36:37 2014  memory use: 256.1 MB
Wed May 14 12:36:37 2014  distribution of cycle lengths:
Wed May 14 12:36:37 2014  1 relations: 174270
Wed May 14 12:36:37 2014  2 relations: 154339
Wed May 14 12:36:37 2014  3 relations: 149573
Wed May 14 12:36:37 2014  4 relations: 131504
Wed May 14 12:36:37 2014  5 relations: 119230
Wed May 14 12:36:37 2014  6 relations: 100683
Wed May 14 12:36:37 2014  7 relations: 89602
Wed May 14 12:36:37 2014  8 relations: 76122
Wed May 14 12:36:37 2014  9 relations: 64735
Wed May 14 12:36:37 2014  10+ relations: 228152
Wed May 14 12:36:37 2014  heaviest cycle: 21 relations
Wed May 14 12:36:39 2014  RelProcTime: 279
Wed May 14 12:36:39 2014  
Wed May 14 12:36:39 2014  commencing linear algebra
Wed May 14 12:36:39 2014  read 1288210 cycles
Wed May 14 12:36:41 2014  cycles contain 4366467 unique relations
Wed May 14 12:37:08 2014  read 4366467 relations
Wed May 14 12:37:11 2014  using 20 quadratic characters above 268434282
Wed May 14 12:37:26 2014  building initial matrix
Wed May 14 12:37:55 2014  memory use: 576.2 MB
Wed May 14 12:37:55 2014  read 1288210 cycles
Wed May 14 12:37:55 2014  matrix is 1288052 x 1288210 (392.2 MB) with weight 123694233 (96.02/col)
Wed May 14 12:37:55 2014  sparse part has weight 87341304 (67.80/col)
Wed May 14 12:38:03 2014  filtering completed in 2 passes
Wed May 14 12:38:04 2014  matrix is 1286067 x 1286236 (392.0 MB) with weight 123613378 (96.10/col)
Wed May 14 12:38:04 2014  sparse part has weight 87318537 (67.89/col)
Wed May 14 12:38:07 2014  matrix starts at (0, 0)
Wed May 14 12:38:07 2014  matrix is 1286067 x 1286236 (392.0 MB) with weight 123613378 (96.10/col)
Wed May 14 12:38:07 2014  sparse part has weight 87318537 (67.89/col)
Wed May 14 12:38:07 2014  saving the first 48 matrix rows for later
Wed May 14 12:38:07 2014  matrix includes 64 packed rows
Wed May 14 12:38:07 2014  matrix is 1286019 x 1286236 (376.6 MB) with weight 98370862 (76.48/col)
Wed May 14 12:38:07 2014  sparse part has weight 85859006 (66.75/col)
Wed May 14 12:38:07 2014  using block size 65536 for processor cache size 8192 kB
Wed May 14 12:38:10 2014  commencing Lanczos iteration (8 threads)
Wed May 14 12:38:10 2014  memory use: 362.1 MB
Wed May 14 12:38:14 2014  linear algebra at 0.1%, ETA 0h42m
Wed May 14 12:38:15 2014  checkpointing every 1830000 dimensions
Wed May 14 13:30:37 2014  lanczos halted after 20338 iterations (dim = 1286012)
Wed May 14 13:30:38 2014  recovered 27 nontrivial dependencies
Wed May 14 13:30:38 2014  BLanczosTime: 3239
Wed May 14 13:30:38 2014  
Wed May 14 13:30:38 2014  commencing square root phase
Wed May 14 13:30:38 2014  reading relations for dependency 1
Wed May 14 13:30:38 2014  read 643536 cycles
Wed May 14 13:30:39 2014  cycles contain 2183192 unique relations
Wed May 14 13:31:01 2014  read 2183192 relations
Wed May 14 13:31:08 2014  multiplying 2183192 relations
Wed May 14 13:32:45 2014  multiply complete, coefficients have about 104.63 million bits
Wed May 14 13:32:45 2014  initial square root is modulo 32373323
Wed May 14 13:34:46 2014  sqrtTime: 248
--
n: 3989970180663798798178881159201005138612620134416575415620617721619975790854970313853278857887377984494974816401888175580453796709
skew: 348899.80
c0: 81901281499473515085560092095312
c1: -246716758881327820210953676
c2: 4830880288032833618528
c3: 1113818053955397
c4: -36645134934
c5: 94248
Y0: -8420533872069767318544383
Y1: 31359420238907
rlim: 9000000
alim: 9000000
lpbr: 28
lpba: 28
mfbr: 56
mfba: 56
rlambda: 2.5
alambda: 2.5
software ソフトウェア
yafu v1.34.3
execution environment 実行環境
Gentoo Linux, Intel(R) Core(TM) i7-3770K CPU

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaNovember 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間)
403e61500Dmitry DomanovDecember 2, 2013 13:09:34 UTC 2013 年 12 月 2 日 (月) 22 時 9 分 34 秒 (日本時間)
4511e61900 / 4143400Serge BatalovNovember 19, 2013 18:02:28 UTC 2013 年 11 月 20 日 (水) 3 時 2 分 28 秒 (日本時間)
1500Dmitry DomanovMay 7, 2014 09:17:57 UTC 2014 年 5 月 7 日 (水) 18 時 17 分 57 秒 (日本時間)

7×10229+3

c188

composite cofactor 合成数の残り
16883209308648344188049015856737761723715320612731070151412307318545017238272983742978694415192605274450278379433661040010544246693740036008573023116543400707152241924050632479921676985217<188>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaNovember 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間)
403e61500Dmitry DomanovDecember 2, 2013 13:09:45 UTC 2013 年 12 月 2 日 (月) 22 時 9 分 45 秒 (日本時間)
4511e61900 / 4143400Serge BatalovNovember 19, 2013 18:02:29 UTC 2013 年 11 月 20 日 (水) 3 時 2 分 29 秒 (日本時間)
1500Dmitry DomanovMay 7, 2014 09:18:13 UTC 2014 年 5 月 7 日 (水) 18 時 18 分 13 秒 (日本時間)

7×10230+3

c209

composite cofactor 合成数の残り
10374767035400774674438602966950190856739905409661460661002465864572427591595823157481249302254910920749324109231176075969234080264006392450326135125522576442964698937300263248827942505602903337088658016178671<209>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaNovember 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間)
403e61500Dmitry DomanovDecember 2, 2013 13:09:56 UTC 2013 年 12 月 2 日 (月) 22 時 9 分 56 秒 (日本時間)
4511e61900 / 4143400Serge BatalovNovember 19, 2013 18:02:30 UTC 2013 年 11 月 20 日 (水) 3 時 2 分 30 秒 (日本時間)
1500Dmitry DomanovMay 7, 2014 09:18:27 UTC 2014 年 5 月 7 日 (水) 18 時 18 分 27 秒 (日本時間)

7×10231+3

c228

name 名前Serge Batalov
date 日付November 19, 2013 08:06:13 UTC 2013 年 11 月 19 日 (火) 17 時 6 分 13 秒 (日本時間)
composite number 合成数
666730164777597866463472711686827316887322602152585960567673111724926183446042480236212972664063244118487474997618820840080007619773311743975616725402419278026478712258310315268120773406991142013525097628345556719687589294218497<228>
prime factors 素因数
87982113884134640398342003644621056125511209<44>
composite cofactor 合成数の残り
7578019387618122109207134371339204628849506926817597094340240451410616495519221913900230897842215835319837708389541004900129127169426582620793163042616938534598770972125643313423985433<184>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=202485836
Step 1 took 66862ms
Step 2 took 21467ms
********** Factor found in step 2: 87982113884134640398342003644621056125511209
Found probable prime factor of 44 digits: 87982113884134640398342003644621056125511209
Composite cofactor 

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaNovember 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間)
403e60--
4511e6400Serge BatalovNovember 19, 2013 18:02:31 UTC 2013 年 11 月 20 日 (水) 3 時 2 分 31 秒 (日本時間)
5043e6100 / 6137Serge BatalovNovember 19, 2013 18:08:12 UTC 2013 年 11 月 20 日 (水) 3 時 8 分 12 秒 (日本時間)
5511e7550 / 17709Serge BatalovNovember 19, 2013 18:07:42 UTC 2013 年 11 月 20 日 (水) 3 時 7 分 42 秒 (日本時間)

7×10232+3

c193

name 名前Serge Batalov
date 日付November 18, 2013 18:00:31 UTC 2013 年 11 月 19 日 (火) 3 時 0 分 31 秒 (日本時間)
composite number 合成数
1462073431177390122572909197968503049685616178269734346278014173657086495695062891240657827670361272727222898043732796665917885349321251500685180421105529579698485406274617436828527974148363839<193>
prime factors 素因数
3056919077486918816940875845578571<34>
composite cofactor 合成数の残り
478283328448247624358799510465754225428844210588495270471120561287363267402694523465521726923614929111962729918063236590979902770881076830446875109991305967709<159>
factorization results 素因数分解の結果
Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=1984847614
Step 1 took 5244ms
Step 2 took 3877ms
********** Factor found in step 2: 3056919077486918816940875845578571
Found probable prime factor of 34 digits: 3056919077486918816940875845578571
Composite cofactor 

c159

name 名前yoyo@Home
date 日付April 13, 2021 13:24:42 UTC 2021 年 4 月 13 日 (火) 22 時 24 分 42 秒 (日本時間)
composite number 合成数
478283328448247624358799510465754225428844210588495270471120561287363267402694523465521726923614929111962729918063236590979902770881076830446875109991305967709<159>
prime factors 素因数
20148677612559720551631252367539447031296666135383227<53>
23737703170659135763716305702954929540954532924356754328990481747527973954404317047349990756741737095514567<107>
factorization results 素因数分解の結果
GMP-ECM 7.0.5-dev [configured with GMP 6.0.0, --enable-asm-redc, --enable-assert] [ECM]
Tuned for x86_64/core2/params.h
Running on iMac2008.local
Input number is 478283328448247624358799510465754225428844210588495270471120561287363267402694523465521726923614929111962729918063236590979902770881076830446875109991305967709 (159 digits)
[Mon Apr 12 18:21:35 2021]
Using MODMULN [mulredc:1, sqrredc:1]
Using B1=110000000, B2=776278396540, polynomial Dickson(30), sigma=0:1850451041541009529
dF=131072, k=4, d=1345890, d2=11, i0=71
Expected number of curves to find a factor of n digits:
35      40      45      50      55      60      65      70      75      80
34      135     614     3135    17884   111314  752662  5482978 4.3e+07 3.6e+08
Writing checkpoint to checkpnt at p = 105422861
Writing checkpoint to checkpnt at p = 110000000
Step 1 took 625176ms
Using 20 small primes for NTT
Estimated memory usage: 471.18MB
Initializing tables of differences for F took 551ms
Computing roots of F took 17963ms
Building F from its roots took 9177ms
Computing 1/F took 4081ms
Initializing table of differences for G took 452ms
Computing roots of G took 15313ms
Building G from its roots took 9045ms
Computing roots of G took 14927ms
Building G from its roots took 9104ms
Computing G * H took 2103ms
Reducing  G * H mod F took 2073ms
Computing roots of G took 16148ms
Building G from its roots took 8687ms
Computing G * H took 1956ms
Reducing  G * H mod F took 2010ms
Computing roots of G took 15372ms
Building G from its roots took 8717ms
Computing G * H took 2021ms
Reducing  G * H mod F took 2636ms
Computing polyeval(F,G) took 16782ms
Computing product of all F(g_i) took 86ms
Step 2 took 160156ms
********** Factor found in step 2: 20148677612559720551631252367539447031296666135383227
Found prime factor of 53 digits: 20148677612559720551631252367539447031296666135383227
Prime cofactor 23737703170659135763716305702954929540954532924356754328990481747527973954404317047349990756741737095514567 has 107 digits
software ソフトウェア
GMP-ECM 7.0.5-dev

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaNovember 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間)
403e6300Serge BatalovNovember 19, 2013 19:20:46 UTC 2013 年 11 月 20 日 (水) 4 時 20 分 46 秒 (日本時間)
4511e63400600Serge BatalovNovember 20, 2013 01:02:54 UTC 2013 年 11 月 20 日 (水) 10 時 2 分 54 秒 (日本時間)
400Serge BatalovJanuary 6, 2014 02:26:25 UTC 2014 年 1 月 6 日 (月) 11 時 26 分 25 秒 (日本時間)
1500Dmitry DomanovMay 5, 2014 07:26:58 UTC 2014 年 5 月 5 日 (月) 16 時 26 分 58 秒 (日本時間)
900Serge BatalovMay 24, 2014 19:03:14 UTC 2014 年 5 月 25 日 (日) 4 時 3 分 14 秒 (日本時間)
5043e61200 / 6778Erik BrangerOctober 21, 2015 20:18:13 UTC 2015 年 10 月 22 日 (木) 5 時 18 分 13 秒 (日本時間)

7×10233+3

c207

composite cofactor 合成数の残り
111341869167160693449109782019255242310697005612465071326684607529631860198801091679657178419708920258881002127189498627649269700225270296543559408120746219450572900407210972261216332763447856256083997510261<207>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaNovember 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間)
403e61500Dmitry DomanovDecember 2, 2013 13:10:16 UTC 2013 年 12 月 2 日 (月) 22 時 10 分 16 秒 (日本時間)
4511e61900 / 4143400Serge BatalovNovember 19, 2013 18:02:32 UTC 2013 年 11 月 20 日 (水) 3 時 2 分 32 秒 (日本時間)
1500Dmitry DomanovMay 7, 2014 09:18:59 UTC 2014 年 5 月 7 日 (水) 18 時 18 分 59 秒 (日本時間)

7×10234+3

c204

name 名前Dmitry Domanov
date 日付May 12, 2014 05:54:54 UTC 2014 年 5 月 12 日 (月) 14 時 54 分 54 秒 (日本時間)
composite number 合成数
261305734940502726878136536692691282637641216673843005212007044054280859879134397810320782588198001604811966159384041133803634658942263977071262012883027746264156894487233448118537076355599090348206078329<204>
prime factors 素因数
30533855655490826866446675252201001359632354423<47>
8557901690791309231657096285124708665799310293909095913778419888502919416932255556291122672579094866542390110225523082607118296443729755855591135960821454223<157>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=3134900388
Step 1 took 141070ms
Step 2 took 33598ms
********** Factor found in step 2: 30533855655490826866446675252201001359632354423
Found probable prime factor of 47 digits: 30533855655490826866446675252201001359632354423

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaNovember 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間)
403e61500Dmitry DomanovDecember 2, 2013 13:10:25 UTC 2013 年 12 月 2 日 (月) 22 時 10 分 25 秒 (日本時間)
4511e61900 / 4143400Serge BatalovNovember 19, 2013 18:02:33 UTC 2013 年 11 月 20 日 (水) 3 時 2 分 33 秒 (日本時間)
1500Dmitry DomanovMay 7, 2014 09:19:15 UTC 2014 年 5 月 7 日 (水) 18 時 19 分 15 秒 (日本時間)

7×10235+3

c220

name 名前Serge Batalov
date 日付November 19, 2013 08:09:13 UTC 2013 年 11 月 19 日 (火) 17 時 9 分 13 秒 (日本時間)
composite number 合成数
3130538222818493942208893612856192722238449879889500907299824941078034615859563797841442844730159905997111592644899708846918766359392358048253828211742364943371421172556885683197510311935352432442340164047297073049392641<220>
prime factors 素因数
1321997120762420412838677730813<31>
composite cofactor 合成数の残り
2368037096036225950198477496528971175674799694298148786305321528191796590130171779136666176699361020725438310944703039872583156424853658244032598777959929738683125784873369371762967734435157<190>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=231417044
Step 1 took 76666ms
Step 2 took 25962ms
********** Factor found in step 2: 1321997120762420412838677730813
Found probable prime factor of 31 digits: 1321997120762420412838677730813
Composite cofactor 

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaNovember 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間)
403e61500Dmitry DomanovDecember 2, 2013 13:10:34 UTC 2013 年 12 月 2 日 (月) 22 時 10 分 34 秒 (日本時間)
4511e61900 / 4143400Serge BatalovNovember 19, 2013 18:02:34 UTC 2013 年 11 月 20 日 (水) 3 時 2 分 34 秒 (日本時間)
1500Dmitry DomanovMay 7, 2014 09:19:30 UTC 2014 年 5 月 7 日 (水) 18 時 19 分 30 秒 (日本時間)

7×10236+3

c234

composite cofactor 合成数の残り
995732574679943100995732574679943100995732574679943100995732574679943100995732574679943100995732574679943100995732574679943100995732574679943100995732574679943100995732574679943100995732574679943100995732574679943100995732574679943101<234>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaNovember 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間)
403e6300Serge BatalovNovember 19, 2013 19:20:50 UTC 2013 年 11 月 20 日 (水) 4 時 20 分 50 秒 (日本時間)
4511e64600400Serge BatalovNovember 19, 2013 18:02:35 UTC 2013 年 11 月 20 日 (水) 3 時 2 分 35 秒 (日本時間)
600Serge BatalovNovember 20, 2013 01:02:57 UTC 2013 年 11 月 20 日 (水) 10 時 2 分 57 秒 (日本時間)
400Serge BatalovJanuary 6, 2014 02:29:36 UTC 2014 年 1 月 6 日 (月) 11 時 29 分 36 秒 (日本時間)
800Serge BatalovFebruary 23, 2014 19:25:31 UTC 2014 年 2 月 24 日 (月) 4 時 25 分 31 秒 (日本時間)
1500Dmitry DomanovMay 7, 2014 09:19:55 UTC 2014 年 5 月 7 日 (水) 18 時 19 分 55 秒 (日本時間)
900Serge BatalovMay 24, 2014 19:04:16 UTC 2014 年 5 月 25 日 (日) 4 時 4 分 16 秒 (日本時間)

7×10237+3

c206

composite cofactor 合成数の残り
94867086867966779896710937358605216453156602133589882818349223622976322051975529817346064056796527581790341008140185091921470672304877384827426108649345034151909059758328014114565037565319383423625822700091<206>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaNovember 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間)
403e61500Dmitry DomanovDecember 2, 2013 13:10:47 UTC 2013 年 12 月 2 日 (月) 22 時 10 分 47 秒 (日本時間)
4511e61900 / 4143400Serge BatalovNovember 19, 2013 18:02:36 UTC 2013 年 11 月 20 日 (水) 3 時 2 分 36 秒 (日本時間)
1500Dmitry DomanovMay 7, 2014 09:20:10 UTC 2014 年 5 月 7 日 (水) 18 時 20 分 10 秒 (日本時間)

7×10238+3

c237

name 名前Serge Batalov
date 日付November 18, 2013 18:12:38 UTC 2013 年 11 月 19 日 (火) 3 時 12 分 38 秒 (日本時間)
composite number 合成数
786516853932584269662921348314606741573033707865168539325842696629213483146067415730337078651685393258426966292134831460674157303370786516853932584269662921348314606741573033707865168539325842696629213483146067415730337078651685393258427<237>
prime factors 素因数
9925931694500868884933083164403<31>
79238592218837016342518986892279546910420072993760711534572986796217368513239646144648994069502905104455312336307705859863607066675319408088490842504647231550737511481825618727298322927878798015348306179609<206>
factorization results 素因数分解の結果
Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=4042820070
Step 1 took 6684ms
Step 2 took 5017ms
********** Factor found in step 2: 9925931694500868884933083164403
Found probable prime factor of 31 digits: 9925931694500868884933083164403
Probable prime cofactor 

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaNovember 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間)

7×10239+3

c192

name 名前Serge Batalov
date 日付November 19, 2013 08:10:46 UTC 2013 年 11 月 19 日 (火) 17 時 10 分 46 秒 (日本時間)
composite number 合成数
151930453733895259612796898239220601212312868101159101791622344155162960552370271257438466191732350031302800583989379006212937011548832293634293072948572192115424387066547334081885609196001859<192>
prime factors 素因数
619406699046924853756071225212316403<36>
composite cofactor 合成数の残り
245283840112916426960972758197174541528648655494848569259802771055042228040886755364118786492463224740541841277394241346565295103899502533674803608274077553<156>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=850474681
Step 1 took 50878ms
Step 2 took 17736ms
********** Factor found in step 2: 619406699046924853756071225212316403
Found probable prime factor of 36 digits: 619406699046924853756071225212316403
Composite cofactor 

c156

name 名前Serge Batalov
date 日付November 19, 2013 18:05:35 UTC 2013 年 11 月 20 日 (水) 3 時 5 分 35 秒 (日本時間)
composite number 合成数
245283840112916426960972758197174541528648655494848569259802771055042228040886755364118786492463224740541841277394241346565295103899502533674803608274077553<156>
prime factors 素因数
170611387456251992881757564074844934024228427370889419<54>
1437675666143983925089195484064912061373931891245112796796396803106628975879700112112335353063759559987<103>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=431402397
Step 1 took 57617ms
Step 2 took 9673ms
********** Factor found in step 2: 170611387456251992881757564074844934024228427370889419
Found probable prime factor of 54 digits: 170611387456251992881757564074844934024228427370889419
Composite cofactor 

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaNovember 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間)
403e60 / 938--
4511e6400 / 4475Serge BatalovNovember 19, 2013 18:02:37 UTC 2013 年 11 月 20 日 (水) 3 時 2 分 37 秒 (日本時間)

7×10241+3

c223

composite cofactor 合成数の残り
4003133676727429509010087563532162318830828981469922235613700260743218895813653882894952265354610134570156186316117135063726401268153796126526486520015743857677387115112132895791426342093632056816176073419172032942102886081<223>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaNovember 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間)
403e61500Dmitry DomanovDecember 2, 2013 13:10:57 UTC 2013 年 12 月 2 日 (月) 22 時 10 分 57 秒 (日本時間)
4511e61900 / 4143400Serge BatalovNovember 19, 2013 18:02:38 UTC 2013 年 11 月 20 日 (水) 3 時 2 分 38 秒 (日本時間)
1500Dmitry DomanovMay 7, 2014 09:20:27 UTC 2014 年 5 月 7 日 (水) 18 時 20 分 27 秒 (日本時間)

7×10242+3

c225

composite cofactor 合成数の残り
823676153522482049388171145287506843918766054951321124495591981140292164684555541124760845567393417911347316258009816052791674421630530573101473960712341450246612377442990342959985630939832029127489611038245605000786390870273<225>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaNovember 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間)
403e61500Dmitry DomanovDecember 2, 2013 13:11:06 UTC 2013 年 12 月 2 日 (月) 22 時 11 分 6 秒 (日本時間)
4511e61900 / 4143400Serge BatalovNovember 19, 2013 18:02:38 UTC 2013 年 11 月 20 日 (水) 3 時 2 分 38 秒 (日本時間)
1500Dmitry DomanovMay 7, 2014 09:20:41 UTC 2014 年 5 月 7 日 (水) 18 時 20 分 41 秒 (日本時間)

7×10243+3

c182

name 名前Dmitry Domanov
date 日付May 14, 2014 05:48:35 UTC 2014 年 5 月 14 日 (水) 14 時 48 分 35 秒 (日本時間)
composite number 合成数
24075729688234442870125666842871199105171465973478827739207451318821497020215122115062823862991972773547260520275598365417770263833675179664530498156310497621820678128584364046322431<182>
prime factors 素因数
1311820135242860956879961665353966762366406453<46>
18352919765008207633933452583058018127658293993518222363659269160996943999379586853531818421062861096833717152719623619862766358974739427<137>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=3543840413
Step 1 took 84008ms
Step 2 took 29204ms
********** Factor found in step 2: 1311820135242860956879961665353966762366406453
Found probable prime factor of 46 digits: 1311820135242860956879961665353966762366406453

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaNovember 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間)
403e61500Dmitry DomanovDecember 2, 2013 13:11:14 UTC 2013 年 12 月 2 日 (月) 22 時 11 分 14 秒 (日本時間)
4511e61900 / 4143400Serge BatalovNovember 19, 2013 18:02:39 UTC 2013 年 11 月 20 日 (水) 3 時 2 分 39 秒 (日本時間)
1500Dmitry DomanovMay 7, 2014 09:20:57 UTC 2014 年 5 月 7 日 (水) 18 時 20 分 57 秒 (日本時間)

7×10244+3

c225

composite cofactor 合成数の残り
170269418015375401808237178167594361950570816029235132473926193430243069525816392491105957008886063392459061459499827132167387864367124839266806160144534103839617557186260851592425183350591363454196108652272037820694871372001<225>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaNovember 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間)
403e61500Dmitry DomanovDecember 2, 2013 13:11:22 UTC 2013 年 12 月 2 日 (月) 22 時 11 分 22 秒 (日本時間)
4511e61900 / 4143400Serge BatalovNovember 19, 2013 18:02:40 UTC 2013 年 11 月 20 日 (水) 3 時 2 分 40 秒 (日本時間)
1500Dmitry DomanovMay 7, 2014 09:21:15 UTC 2014 年 5 月 7 日 (水) 18 時 21 分 15 秒 (日本時間)

7×10245+3

c241

name 名前Serge Batalov
date 日付November 19, 2013 08:11:54 UTC 2013 年 11 月 19 日 (火) 17 時 11 分 54 秒 (日本時間)
composite number 合成数
3415583845264292998541057757522823419194605329286679710944018580776118237753912063354200924159400418652991319537627535461079422083213381281624646853027427138277472272778284693792908272056132680794172038078880469203632229449163913868734233421<241>
prime factors 素因数
2735151574922376664866913524272831<34>
composite cofactor 合成数の残り
1248773149020535337312221356974049911598442132918644419640194245335921110721385311041740876285126160147650365342967311083914658356692263355504730160514266597435291240120160982778889190962918289020118026011891<208>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=2732035713
Step 1 took 96508ms
Step 2 took 32612ms
********** Factor found in step 2: 2735151574922376664866913524272831
Found probable prime factor of 34 digits: 2735151574922376664866913524272831
Composite cofactor 

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaNovember 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間)
403e61500Dmitry DomanovDecember 2, 2013 13:11:30 UTC 2013 年 12 月 2 日 (月) 22 時 11 分 30 秒 (日本時間)
4511e61900 / 4143400Serge BatalovNovember 19, 2013 18:02:41 UTC 2013 年 11 月 20 日 (水) 3 時 2 分 41 秒 (日本時間)
1500Dmitry DomanovMay 7, 2014 09:21:36 UTC 2014 年 5 月 7 日 (水) 18 時 21 分 36 秒 (日本時間)

7×10246+3

c207

name 名前Dmitry Domanov
date 日付May 12, 2014 05:54:14 UTC 2014 年 5 月 12 日 (月) 14 時 54 分 14 秒 (日本時間)
composite number 合成数
290708104993716102453057789690336057342166922380726342161650423925802388338520361771365528168414217129064986711389442761008712731881196895778887537793764954883706166895337615595065108048619673617237453592721<207>
prime factors 素因数
12639341241249741348353147872030007878097009477<47>
composite cofactor 合成数の残り
23000257643567801121660005940641007421587802985093997308298989101195962860938534722685986154482434113914216321748741213870915514365273147699134792247530461271773<161>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=3082790376
Step 1 took 98217ms
Step 2 took 33517ms
********** Factor found in step 2: 12639341241249741348353147872030007878097009477
Found probable prime factor of 47 digits: 12639341241249741348353147872030007878097009477

c161

name 名前yoyo
date 日付November 9, 2024 01:22:03 UTC 2024 年 11 月 9 日 (土) 10 時 22 分 3 秒 (日本時間)
composite number 合成数
23000257643567801121660005940641007421587802985093997308298989101195962860938534722685986154482434113914216321748741213870915514365273147699134792247530461271773<161>
prime factors 素因数
20243152416083460672021823856034596418441401633<47>
1136199400706669715375927235184537313020276402949080736803978947688046335022452690510690811215982239943455721131581<115>
factorization results 素因数分解の結果
GMP-ECM 7.0.5-dev [configured with GMP 6.1.2, --enable-asm-redc] [ECM]
Input number is 23000257643567801121660005940641007421587802985093997308298989101195962860938534722685986154482434113914216321748741213870915514365273147699134792247530461271773 (161 digits)
[Fri Nov 08 17:44:29 2024]
Using MODMULN [mulredc:0, sqrredc:0]
Using B1=110000000, B2=776278396540, polynomial Dickson(30), sigma=0:9200661411161370123
dF=131072, k=4, d=1345890, d2=11, i0=71
Expected number of curves to find a factor of n digits:
35       40      45      50      55      60      65      70      75      80
34      135     614     3135    17884   111314  752662  5482978 4.3e+07 3.6e+08
Writing checkpoint to checkpnt at p = 110000000
Step 1 took 374421ms
Using 20 small primes for NTT
Estimated memory usage: 472.20MB
Initializing tables of differences for F took 250ms
Computing roots of F took 11625ms
Building F from its roots took 5844ms
Computing 1/F took 2234ms
Initializing table of differences for G took 218ms
Computing roots of G took 9844ms
Building G from its roots took 5422ms
Computing roots of G took 9609ms
Building G from its roots took 5782ms
Computing G * H took 1297ms
Reducing  G * H mod F took 1406ms
Computing roots of G took 9766ms
Building G from its roots took 5765ms
Computing G * H took 1375ms
Reducing  G * H mod F took 1313ms
Computing roots of G took 9719ms
Building G from its roots took 5812ms
Computing G * H took 1391ms
Reducing  G * H mod F took 1297ms
Computing polyeval(F,G) took 11312ms
Computing product of all F(g_i) took 47ms
Step 2 took 102047ms
********** Factor found in step 2: 20243152416083460672021823856034596418441401633
Found prime factor of 47 digits: 20243152416083460672021823856034596418441401633
Prime cofactor 1136199400706669715375927235184537313020276402949080736803978947688046335022452690510690811215982239943455721131581 has 115 digits
Peak memory usage: 616MB
software ソフトウェア
GMP-ECM 7.0.5-dev [configured with GMP 6.1.2, --enable-asm-redc]

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaNovember 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間)
403e61500Dmitry DomanovDecember 2, 2013 13:11:38 UTC 2013 年 12 月 2 日 (月) 22 時 11 分 38 秒 (日本時間)
4511e61900400Serge BatalovNovember 19, 2013 18:02:42 UTC 2013 年 11 月 20 日 (水) 3 時 2 分 42 秒 (日本時間)
1500Dmitry DomanovMay 7, 2014 09:28:49 UTC 2014 年 5 月 7 日 (水) 18 時 28 分 49 秒 (日本時間)
5043e6640 / 7070Dmitry DomanovMay 14, 2014 13:07:39 UTC 2014 年 5 月 14 日 (水) 22 時 7 分 39 秒 (日本時間)

7×10248+3

c239

composite cofactor 合成数の残り
44856119932313840060350669475465732104411181022312457478749245452217857083585501810459035084744083996013293408217615501083259949164345252936476590710584038831760012434767499778128334179224382601773413397323404526708491063553828403067888467<239>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaNovember 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間)
403e61500Dmitry DomanovDecember 2, 2013 13:11:47 UTC 2013 年 12 月 2 日 (月) 22 時 11 分 47 秒 (日本時間)
4511e61900 / 4143400Serge BatalovNovember 19, 2013 18:02:43 UTC 2013 年 11 月 20 日 (水) 3 時 2 分 43 秒 (日本時間)
1500Dmitry DomanovMay 7, 2014 09:29:10 UTC 2014 年 5 月 7 日 (水) 18 時 29 分 10 秒 (日本時間)

7×10249+3

c236

composite cofactor 合成数の残り
33628743914678721915365542216492209428894673435401839760086346085668431515773770178242850945904131973522364461961066976205008299416409260802893004437640503151830736384459903968169652657739199145668420976121594144578846475456683113618453<236>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaNovember 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間)
403e61500Dmitry DomanovDecember 2, 2013 13:11:55 UTC 2013 年 12 月 2 日 (月) 22 時 11 分 55 秒 (日本時間)
4511e61900 / 4143400Serge BatalovNovember 19, 2013 18:02:44 UTC 2013 年 11 月 20 日 (水) 3 時 2 分 44 秒 (日本時間)
1500Dmitry DomanovMay 7, 2014 09:29:26 UTC 2014 年 5 月 7 日 (水) 18 時 29 分 26 秒 (日本時間)

7×10250+3

c213

composite cofactor 合成数の残り
497361774057902575795257859575238416899066324604015674931212793330879513655108479450797048891106412916768556135083041144728889345327142257141926310258378099443082338639551148618026285253146675282747092128796828933<213>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaNovember 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間)
403e61500Dmitry DomanovDecember 2, 2013 13:12:03 UTC 2013 年 12 月 2 日 (月) 22 時 12 分 3 秒 (日本時間)
4511e61900400Serge BatalovNovember 19, 2013 18:02:46 UTC 2013 年 11 月 20 日 (水) 3 時 2 分 46 秒 (日本時間)
1500Dmitry DomanovFebruary 28, 2014 19:26:52 UTC 2014 年 3 月 1 日 (土) 4 時 26 分 52 秒 (日本時間)
5043e6400 / 6780Dmitry DomanovMarch 7, 2014 08:49:44 UTC 2014 年 3 月 7 日 (金) 17 時 49 分 44 秒 (日本時間)
5511e7120 / 17496Dmitry DomanovMarch 12, 2014 06:08:37 UTC 2014 年 3 月 12 日 (水) 15 時 8 分 37 秒 (日本時間)

7×10252+3

c208

composite cofactor 合成数の残り
3645010616235740635133345832049609802070084828619157915543857242504421649340846206207758542177620952131262652100529320584380852383088732374214976335931890445837039150863392295135545748849006626278498421876237<208>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間)

7×10255+3

c216

composite cofactor 合成数の残り
186566309649571946510021410600805164739005046353882473788900297399140909671113400086060878724606406445635625100621187554519469367457512236264503865533591655309875539789912960970276116787207068832306081138428912554599<216>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間)

7×10257+3

c255

composite cofactor 合成数の残り
259163272861902998889300259163272861902998889300259163272861902998889300259163272861902998889300259163272861902998889300259163272861902998889300259163272861902998889300259163272861902998889300259163272861902998889300259163272861902998889300259163272861903<255>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間)
4511e61000 / 3844Dmitry DomanovApril 30, 2019 14:36:53 UTC 2019 年 4 月 30 日 (火) 23 時 36 分 53 秒 (日本時間)

7×10258+3

c259

name 名前NFS@home + Dmitry Domanov
date 日付November 14, 2023 19:54:04 UTC 2023 年 11 月 15 日 (水) 4 時 54 分 4 秒 (日本時間)
composite number 合成数
7000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003<259>
prime factors 素因数
9223618483311294104386170862846699616261588294023453763819469859<64>
758921242532463090766177014282456590769224292837593837515920823981649638666060616279348203680278956575160849608595624482197272614121926175370962635770694325750671629835631792624164730629763283617<195>
factorization results 素因数分解の結果
Mon Nov 13 19:53:24 2023  
Mon Nov 13 19:53:24 2023  
Mon Nov 13 19:53:24 2023  Msieve v. 1.54 (SVN Unversioned directory)
Mon Nov 13 19:53:24 2023  random seeds: f2736e76 9dd28310
Mon Nov 13 19:53:24 2023  Using 4 OpenMP threads
Mon Nov 13 19:53:24 2023  factoring 7000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003 (259 digits)
Mon Nov 13 19:53:25 2023  searching for 15-digit factors
Mon Nov 13 19:53:25 2023  commencing number field sieve (259-digit input)
Mon Nov 13 19:53:25 2023  R0: -10000000000000000000000000000000000000000000
Mon Nov 13 19:53:25 2023  R1: 1
Mon Nov 13 19:53:25 2023  A0: 3
Mon Nov 13 19:53:25 2023  A1: 0
Mon Nov 13 19:53:25 2023  A2: 0
Mon Nov 13 19:53:25 2023  A3: 0
Mon Nov 13 19:53:25 2023  A4: 0
Mon Nov 13 19:53:25 2023  A5: 0
Mon Nov 13 19:53:25 2023  A6: 7
Mon Nov 13 19:53:25 2023  skew 1.00, size 1.222e-12, alpha 0.227, combined = 1.337e-13 rroots = 0
Mon Nov 13 19:53:25 2023  
Mon Nov 13 19:53:25 2023  commencing relation filtering
Mon Nov 13 19:53:25 2023  setting target matrix density to 140.0
Mon Nov 13 19:53:25 2023  estimated available RAM is 15729.3 MB
Mon Nov 13 19:53:25 2023  commencing duplicate removal, pass 1
Mon Nov 13 19:58:36 2023  error -1 reading relation 41833422
Mon Nov 13 19:58:53 2023  error -1 reading relation 43953467
Mon Nov 13 19:59:01 2023  error -1 reading relation 44945578
Mon Nov 13 20:00:33 2023  error -1 reading relation 65460437
Mon Nov 13 20:01:05 2023  error -1 reading relation 75736374
Mon Nov 13 20:01:09 2023  error -11 reading relation 76445953
Mon Nov 13 20:01:15 2023  error -1 reading relation 77834598
Mon Nov 13 20:01:52 2023  error -1 reading relation 86542843
Mon Nov 13 20:01:53 2023  error -1 reading relation 86809298
Mon Nov 13 20:02:36 2023  error -1 reading relation 99441706
Mon Nov 13 20:03:38 2023  error -15 reading relation 107307299
Mon Nov 13 20:04:32 2023  error -1 reading relation 113162520
Mon Nov 13 20:05:32 2023  error -1 reading relation 121001266
Mon Nov 13 20:05:34 2023  error -1 reading relation 121185521
Mon Nov 13 20:08:00 2023  error -1 reading relation 139585935
Mon Nov 13 20:08:21 2023  error -1 reading relation 141873405
Mon Nov 13 20:08:43 2023  error -1 reading relation 144868705
Mon Nov 13 20:08:50 2023  error -15 reading relation 145866912
Mon Nov 13 20:11:28 2023  error -1 reading relation 165279148
Mon Nov 13 20:11:32 2023  error -1 reading relation 166034754
Mon Nov 13 20:11:38 2023  error -1 reading relation 167030052
Mon Nov 13 20:11:44 2023  error -1 reading relation 168055500
Mon Nov 13 20:12:43 2023  error -1 reading relation 174711019
Mon Nov 13 20:12:47 2023  error -15 reading relation 175462752
Mon Nov 13 20:14:01 2023  error -1 reading relation 184221839
Mon Nov 13 20:17:28 2023  error -1 reading relation 211023222
Mon Nov 13 20:18:26 2023  error -1 reading relation 218627688
Mon Nov 13 20:20:14 2023  error -1 reading relation 232064253
Mon Nov 13 20:22:46 2023  error -1 reading relation 252943930
Mon Nov 13 20:24:08 2023  error -1 reading relation 264534990
Mon Nov 13 20:25:03 2023  error -1 reading relation 280491604
Mon Nov 13 20:25:08 2023  error -1 reading relation 281776400
Mon Nov 13 20:25:46 2023  error -5 reading relation 294228310
Mon Nov 13 20:25:48 2023  error -1 reading relation 294640260
Mon Nov 13 20:25:48 2023  error -1 reading relation 294697094
Mon Nov 13 20:25:52 2023  error -1 reading relation 295626133
Mon Nov 13 20:26:02 2023  skipped 1038 relations with b > 2^32
Mon Nov 13 20:26:02 2023  skipped 4 relations with composite factors
Mon Nov 13 20:26:02 2023  skipped 408 malformed relations
Mon Nov 13 20:26:02 2023  found 62673919 hash collisions in 298128849 relations
Mon Nov 13 20:26:13 2023  added 1217759 free relations
Mon Nov 13 20:26:13 2023  commencing duplicate removal, pass 2
Mon Nov 13 20:31:01 2023  found 62846622 duplicates and 236499986 unique relations
Mon Nov 13 20:31:01 2023  memory use: 1449.5 MB
Mon Nov 13 20:31:01 2023  reading ideals above 180027392
Mon Nov 13 20:31:01 2023  commencing singleton removal, initial pass
Mon Nov 13 20:44:58 2023  memory use: 5512.0 MB
Mon Nov 13 20:44:58 2023  reading all ideals from disk
Mon Nov 13 20:45:00 2023  memory use: 5905.0 MB
Mon Nov 13 20:45:08 2023  commencing in-memory singleton removal
Mon Nov 13 20:45:15 2023  begin with 236499986 relations and 169004075 unique ideals
Mon Nov 13 20:45:36 2023  reduce to 186926992 relations and 116197369 ideals in 11 passes
Mon Nov 13 20:45:36 2023  max relations containing the same ideal: 29
Mon Nov 13 20:45:41 2023  reading ideals above 720000
Mon Nov 13 20:45:41 2023  commencing singleton removal, initial pass
Mon Nov 13 21:01:45 2023  memory use: 3012.0 MB
Mon Nov 13 21:01:45 2023  reading all ideals from disk
Mon Nov 13 21:01:50 2023  memory use: 9112.0 MB
Mon Nov 13 21:02:10 2023  keeping 135267424 ideals with weight <= 200, target excess is 988976
Mon Nov 13 21:02:29 2023  commencing in-memory singleton removal
Mon Nov 13 21:02:38 2023  begin with 186926992 relations and 135267424 unique ideals
Mon Nov 13 21:03:01 2023  reduce to 186926064 relations and 135266496 ideals in 6 passes
Mon Nov 13 21:03:01 2023  max relations containing the same ideal: 200
Mon Nov 13 21:04:00 2023  removing 8797079 relations and 6797079 ideals in 2000000 cliques
Mon Nov 13 21:04:03 2023  commencing in-memory singleton removal
Mon Nov 13 21:04:12 2023  begin with 178128985 relations and 135266496 unique ideals
Mon Nov 13 21:04:37 2023  reduce to 177781802 relations and 128117239 ideals in 7 passes
Mon Nov 13 21:04:37 2023  max relations containing the same ideal: 199
Mon Nov 13 21:05:33 2023  removing 6861597 relations and 4861597 ideals in 2000000 cliques
Mon Nov 13 21:05:37 2023  commencing in-memory singleton removal
Mon Nov 13 21:05:45 2023  begin with 170920205 relations and 128117239 unique ideals
Mon Nov 13 21:06:06 2023  reduce to 170685867 relations and 123018416 ideals in 6 passes
Mon Nov 13 21:06:06 2023  max relations containing the same ideal: 197
Mon Nov 13 21:07:00 2023  removing 6314620 relations and 4314620 ideals in 2000000 cliques
Mon Nov 13 21:07:04 2023  commencing in-memory singleton removal
Mon Nov 13 21:07:11 2023  begin with 164371247 relations and 123018416 unique ideals
Mon Nov 13 21:07:31 2023  reduce to 164170547 relations and 118500735 ideals in 6 passes
Mon Nov 13 21:07:31 2023  max relations containing the same ideal: 195
Mon Nov 13 21:08:23 2023  removing 6030949 relations and 4030949 ideals in 2000000 cliques
Mon Nov 13 21:08:26 2023  commencing in-memory singleton removal
Mon Nov 13 21:08:33 2023  begin with 158139598 relations and 118500735 unique ideals
Mon Nov 13 21:08:52 2023  reduce to 157956359 relations and 114284339 ideals in 6 passes
Mon Nov 13 21:08:52 2023  max relations containing the same ideal: 190
Mon Nov 13 21:09:42 2023  removing 5850699 relations and 3850699 ideals in 2000000 cliques
Mon Nov 13 21:09:46 2023  commencing in-memory singleton removal
Mon Nov 13 21:09:52 2023  begin with 152105660 relations and 114284339 unique ideals
Mon Nov 13 21:10:07 2023  reduce to 151931068 relations and 110256918 ideals in 5 passes
Mon Nov 13 21:10:07 2023  max relations containing the same ideal: 185
Mon Nov 13 21:10:56 2023  removing 5721610 relations and 3721610 ideals in 2000000 cliques
Mon Nov 13 21:10:59 2023  commencing in-memory singleton removal
Mon Nov 13 21:11:05 2023  begin with 146209458 relations and 110256918 unique ideals
Mon Nov 13 21:11:25 2023  reduce to 146041022 relations and 106364637 ideals in 7 passes
Mon Nov 13 21:11:25 2023  max relations containing the same ideal: 182
Mon Nov 13 21:12:12 2023  removing 5631941 relations and 3631941 ideals in 2000000 cliques
Mon Nov 13 21:12:15 2023  commencing in-memory singleton removal
Mon Nov 13 21:12:21 2023  begin with 140409081 relations and 106364637 unique ideals
Mon Nov 13 21:12:37 2023  reduce to 140244834 relations and 102566321 ideals in 6 passes
Mon Nov 13 21:12:37 2023  max relations containing the same ideal: 177
Mon Nov 13 21:13:22 2023  removing 5561494 relations and 3561494 ideals in 2000000 cliques
Mon Nov 13 21:13:25 2023  commencing in-memory singleton removal
Mon Nov 13 21:13:31 2023  begin with 134683340 relations and 102566321 unique ideals
Mon Nov 13 21:13:46 2023  reduce to 134520319 relations and 98839513 ideals in 6 passes
Mon Nov 13 21:13:46 2023  max relations containing the same ideal: 171
Mon Nov 13 21:14:29 2023  removing 5505113 relations and 3505113 ideals in 2000000 cliques
Mon Nov 13 21:14:32 2023  commencing in-memory singleton removal
Mon Nov 13 21:14:37 2023  begin with 129015206 relations and 98839513 unique ideals
Mon Nov 13 21:14:50 2023  reduce to 128851304 relations and 95168182 ideals in 5 passes
Mon Nov 13 21:14:50 2023  max relations containing the same ideal: 168
Mon Nov 13 21:15:31 2023  removing 5460769 relations and 3460769 ideals in 2000000 cliques
Mon Nov 13 21:15:34 2023  commencing in-memory singleton removal
Mon Nov 13 21:15:39 2023  begin with 123390535 relations and 95168182 unique ideals
Mon Nov 13 21:15:53 2023  reduce to 123225369 relations and 91539804 ideals in 6 passes
Mon Nov 13 21:15:53 2023  max relations containing the same ideal: 164
Mon Nov 13 21:16:32 2023  removing 5428567 relations and 3428567 ideals in 2000000 cliques
Mon Nov 13 21:16:35 2023  commencing in-memory singleton removal
Mon Nov 13 21:16:39 2023  begin with 117796802 relations and 91539804 unique ideals
Mon Nov 13 21:16:50 2023  reduce to 117628541 relations and 87940308 ideals in 5 passes
Mon Nov 13 21:16:50 2023  max relations containing the same ideal: 159
Mon Nov 13 21:17:28 2023  removing 5402411 relations and 3402411 ideals in 2000000 cliques
Mon Nov 13 21:17:30 2023  commencing in-memory singleton removal
Mon Nov 13 21:17:35 2023  begin with 112226130 relations and 87940308 unique ideals
Mon Nov 13 21:17:47 2023  reduce to 112052863 relations and 84361869 ideals in 6 passes
Mon Nov 13 21:17:47 2023  max relations containing the same ideal: 155
Mon Nov 13 21:18:23 2023  removing 5386856 relations and 3386856 ideals in 2000000 cliques
Mon Nov 13 21:18:25 2023  commencing in-memory singleton removal
Mon Nov 13 21:18:30 2023  begin with 106666007 relations and 84361869 unique ideals
Mon Nov 13 21:18:39 2023  reduce to 106487428 relations and 80793426 ideals in 5 passes
Mon Nov 13 21:18:39 2023  max relations containing the same ideal: 153
Mon Nov 13 21:19:14 2023  removing 5375910 relations and 3375910 ideals in 2000000 cliques
Mon Nov 13 21:19:16 2023  commencing in-memory singleton removal
Mon Nov 13 21:19:20 2023  begin with 101111518 relations and 80793426 unique ideals
Mon Nov 13 21:19:31 2023  reduce to 100926725 relations and 77229500 ideals in 6 passes
Mon Nov 13 21:19:31 2023  max relations containing the same ideal: 148
Mon Nov 13 21:20:03 2023  removing 5373989 relations and 3373989 ideals in 2000000 cliques
Mon Nov 13 21:20:05 2023  commencing in-memory singleton removal
Mon Nov 13 21:20:09 2023  begin with 95552736 relations and 77229500 unique ideals
Mon Nov 13 21:20:19 2023  reduce to 95359784 relations and 73658915 ideals in 6 passes
Mon Nov 13 21:20:19 2023  max relations containing the same ideal: 138
Mon Nov 13 21:20:50 2023  removing 5377247 relations and 3377247 ideals in 2000000 cliques
Mon Nov 13 21:20:52 2023  commencing in-memory singleton removal
Mon Nov 13 21:20:56 2023  begin with 89982537 relations and 73658915 unique ideals
Mon Nov 13 21:21:04 2023  reduce to 89780011 relations and 70075312 ideals in 5 passes
Mon Nov 13 21:21:04 2023  max relations containing the same ideal: 133
Mon Nov 13 21:21:33 2023  removing 5387283 relations and 3387283 ideals in 2000000 cliques
Mon Nov 13 21:21:35 2023  commencing in-memory singleton removal
Mon Nov 13 21:21:38 2023  begin with 84392728 relations and 70075312 unique ideals
Mon Nov 13 21:21:47 2023  reduce to 84179066 relations and 66469955 ideals in 6 passes
Mon Nov 13 21:21:47 2023  max relations containing the same ideal: 127
Mon Nov 13 21:22:14 2023  removing 5399422 relations and 3399422 ideals in 2000000 cliques
Mon Nov 13 21:22:16 2023  commencing in-memory singleton removal
Mon Nov 13 21:22:19 2023  begin with 78779644 relations and 66469955 unique ideals
Mon Nov 13 21:22:27 2023  reduce to 78551941 relations and 62838004 ideals in 6 passes
Mon Nov 13 21:22:27 2023  max relations containing the same ideal: 121
Mon Nov 13 21:22:53 2023  removing 5420554 relations and 3420554 ideals in 2000000 cliques
Mon Nov 13 21:22:54 2023  commencing in-memory singleton removal
Mon Nov 13 21:22:57 2023  begin with 73131387 relations and 62838004 unique ideals
Mon Nov 13 21:23:05 2023  reduce to 72888007 relations and 59168590 ideals in 6 passes
Mon Nov 13 21:23:05 2023  max relations containing the same ideal: 117
Mon Nov 13 21:23:28 2023  removing 5449256 relations and 3449256 ideals in 2000000 cliques
Mon Nov 13 21:23:30 2023  commencing in-memory singleton removal
Mon Nov 13 21:23:32 2023  begin with 67438751 relations and 59168590 unique ideals
Mon Nov 13 21:23:40 2023  reduce to 67177258 relations and 55451478 ideals in 7 passes
Mon Nov 13 21:23:40 2023  max relations containing the same ideal: 110
Mon Nov 13 21:24:02 2023  removing 5487849 relations and 3487849 ideals in 2000000 cliques
Mon Nov 13 21:24:04 2023  commencing in-memory singleton removal
Mon Nov 13 21:24:06 2023  begin with 61689409 relations and 55451478 unique ideals
Mon Nov 13 21:24:12 2023  reduce to 61404346 relations and 51671229 ideals in 6 passes
Mon Nov 13 21:24:12 2023  max relations containing the same ideal: 102
Mon Nov 13 21:24:33 2023  removing 5525099 relations and 3525099 ideals in 2000000 cliques
Mon Nov 13 21:24:34 2023  commencing in-memory singleton removal
Mon Nov 13 21:24:36 2023  begin with 55879247 relations and 51671229 unique ideals
Mon Nov 13 21:24:42 2023  reduce to 55565135 relations and 47823349 ideals in 6 passes
Mon Nov 13 21:24:42 2023  max relations containing the same ideal: 98
Mon Nov 13 21:25:00 2023  removing 5577825 relations and 3577825 ideals in 2000000 cliques
Mon Nov 13 21:25:02 2023  commencing in-memory singleton removal
Mon Nov 13 21:25:03 2023  begin with 49987310 relations and 47823349 unique ideals
Mon Nov 13 21:25:10 2023  reduce to 49636428 relations and 43883967 ideals in 8 passes
Mon Nov 13 21:25:10 2023  max relations containing the same ideal: 89
Mon Nov 13 21:25:26 2023  removing 5638201 relations and 3638201 ideals in 2000000 cliques
Mon Nov 13 21:25:28 2023  commencing in-memory singleton removal
Mon Nov 13 21:25:29 2023  begin with 43998227 relations and 43883967 unique ideals
Mon Nov 13 21:25:34 2023  reduce to 43595335 relations and 39829085 ideals in 7 passes
Mon Nov 13 21:25:34 2023  max relations containing the same ideal: 83
Mon Nov 13 21:25:49 2023  removing 5712727 relations and 3712727 ideals in 2000000 cliques
Mon Nov 13 21:25:50 2023  commencing in-memory singleton removal
Mon Nov 13 21:25:51 2023  begin with 37882608 relations and 39829085 unique ideals
Mon Nov 13 21:25:57 2023  reduce to 37402397 relations and 35618028 ideals in 9 passes
Mon Nov 13 21:25:57 2023  max relations containing the same ideal: 76
Mon Nov 13 21:26:09 2023  removing 2236684 relations and 1599528 ideals in 637156 cliques
Mon Nov 13 21:26:11 2023  commencing in-memory singleton removal
Mon Nov 13 21:26:12 2023  begin with 35165713 relations and 35618028 unique ideals
Mon Nov 13 21:26:15 2023  reduce to 35061377 relations and 33912595 ideals in 6 passes
Mon Nov 13 21:26:15 2023  max relations containing the same ideal: 72
Mon Nov 13 21:26:30 2023  relations with 0 large ideals: 37249
Mon Nov 13 21:26:30 2023  relations with 1 large ideals: 16761
Mon Nov 13 21:26:30 2023  relations with 2 large ideals: 195197
Mon Nov 13 21:26:30 2023  relations with 3 large ideals: 1188316
Mon Nov 13 21:26:30 2023  relations with 4 large ideals: 3892506
Mon Nov 13 21:26:30 2023  relations with 5 large ideals: 7597898
Mon Nov 13 21:26:30 2023  relations with 6 large ideals: 9296776
Mon Nov 13 21:26:30 2023  relations with 7+ large ideals: 12836674
Mon Nov 13 21:26:30 2023  commencing 2-way merge
Mon Nov 13 21:26:47 2023  reduce to 24340647 relation sets and 23191865 unique ideals
Mon Nov 13 21:26:47 2023  commencing full merge
Mon Nov 13 21:35:23 2023  memory use: 3187.1 MB
Mon Nov 13 21:35:24 2023  found 10654639 cycles, need 10638065
Mon Nov 13 21:35:27 2023  weight of 10638065 cycles is about 1490116188 (140.07/cycle)
Mon Nov 13 21:35:27 2023  distribution of cycle lengths:
Mon Nov 13 21:35:27 2023  1 relations: 224303
Mon Nov 13 21:35:27 2023  2 relations: 442370
Mon Nov 13 21:35:27 2023  3 relations: 586206
Mon Nov 13 21:35:27 2023  4 relations: 656761
Mon Nov 13 21:35:27 2023  5 relations: 713446
Mon Nov 13 21:35:27 2023  6 relations: 738026
Mon Nov 13 21:35:27 2023  7 relations: 749910
Mon Nov 13 21:35:27 2023  8 relations: 737515
Mon Nov 13 21:35:27 2023  9 relations: 715514
Mon Nov 13 21:35:27 2023  10+ relations: 5074014
Mon Nov 13 21:35:27 2023  heaviest cycle: 28 relations
Mon Nov 13 21:35:29 2023  commencing cycle optimization
Mon Nov 13 21:35:49 2023  start with 106572759 relations
Mon Nov 13 21:39:31 2023  pruned 6438146 relations
Mon Nov 13 21:39:31 2023  memory use: 2554.7 MB
Mon Nov 13 21:39:31 2023  distribution of cycle lengths:
Mon Nov 13 21:39:31 2023  1 relations: 224303
Mon Nov 13 21:39:31 2023  2 relations: 455136
Mon Nov 13 21:39:31 2023  3 relations: 614671
Mon Nov 13 21:39:31 2023  4 relations: 691531
Mon Nov 13 21:39:31 2023  5 relations: 759528
Mon Nov 13 21:39:31 2023  6 relations: 787425
Mon Nov 13 21:39:31 2023  7 relations: 806185
Mon Nov 13 21:39:31 2023  8 relations: 792199
Mon Nov 13 21:39:31 2023  9 relations: 768716
Mon Nov 13 21:39:31 2023  10+ relations: 4738371
Mon Nov 13 21:39:31 2023  heaviest cycle: 28 relations
Mon Nov 13 21:39:48 2023  RelProcTime: 6383
Mon Nov 13 21:39:51 2023  elapsed time 01:46:27
Mon Nov 13 22:21:50 2023  
Mon Nov 13 22:21:50 2023  
Mon Nov 13 22:21:50 2023  Msieve v. 1.54 (SVN Unversioned directory)
Mon Nov 13 22:21:50 2023  random seeds: e5bbb2dc dcc3470c
Mon Nov 13 22:21:50 2023  factoring 7000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003 (259 digits)
Mon Nov 13 22:21:51 2023  searching for 15-digit factors
Mon Nov 13 22:21:51 2023  commencing number field sieve (259-digit input)
Mon Nov 13 22:21:51 2023  R0: -10000000000000000000000000000000000000000000
Mon Nov 13 22:21:51 2023  R1: 1
Mon Nov 13 22:21:51 2023  A0: 3
Mon Nov 13 22:21:51 2023  A1: 0
Mon Nov 13 22:21:51 2023  A2: 0
Mon Nov 13 22:21:51 2023  A3: 0
Mon Nov 13 22:21:51 2023  A4: 0
Mon Nov 13 22:21:51 2023  A5: 0
Mon Nov 13 22:21:51 2023  A6: 7
Mon Nov 13 22:21:51 2023  skew 1.00, size 1.222e-12, alpha 0.227, combined = 1.337e-13 rroots = 0
Mon Nov 13 22:21:51 2023  
Mon Nov 13 22:21:51 2023  commencing linear algebra
Mon Nov 13 22:21:51 2023  using VBITS=256
Mon Nov 13 22:21:52 2023  read 10638065 cycles
Mon Nov 13 22:22:08 2023  cycles contain 34587559 unique relations
Mon Nov 13 22:28:11 2023  read 34587559 relations
Mon Nov 13 22:29:36 2023  using 20 quadratic characters above 4294917295
Mon Nov 13 22:31:40 2023  building initial matrix
Mon Nov 13 22:39:07 2023  memory use: 4816.2 MB
Mon Nov 13 22:39:14 2023  read 10638065 cycles
Mon Nov 13 22:39:16 2023  matrix is 10637888 x 10638065 (5634.5 MB) with weight 1642386984 (154.39/col)
Mon Nov 13 22:39:16 2023  sparse part has weight 1360028072 (127.85/col)
Mon Nov 13 22:41:23 2023  filtering completed in 2 passes
Mon Nov 13 22:41:25 2023  matrix is 10637834 x 10638006 (5634.5 MB) with weight 1642384795 (154.39/col)
Mon Nov 13 22:41:25 2023  sparse part has weight 1360027374 (127.85/col)
Mon Nov 13 22:41:46 2023  matrix starts at (0, 0)
Mon Nov 13 22:41:47 2023  matrix is 10637834 x 10638006 (5634.5 MB) with weight 1642384795 (154.39/col)
Mon Nov 13 22:41:47 2023  sparse part has weight 1360027374 (127.85/col)
Mon Nov 13 22:41:47 2023  saving the first 240 matrix rows for later
Mon Nov 13 22:41:49 2023  matrix includes 256 packed rows
Mon Nov 13 22:41:54 2023  matrix is 10637594 x 10638006 (5158.7 MB) with weight 1242729941 (116.82/col)
Mon Nov 13 22:41:54 2023  sparse part has weight 1182127001 (111.12/col)
Mon Nov 13 22:41:54 2023  using block size 8192 and superblock size 294912 for processor cache size 12288 kB
Mon Nov 13 22:42:25 2023  commencing Lanczos iteration
Mon Nov 13 22:42:25 2023  memory use: 6835.8 MB
Mon Nov 13 22:47:56 2023  lanczos halted after 20 iterations (dim = 5106)
Mon Nov 13 22:47:57 2023  BLanczosTime: 1566
Mon Nov 13 22:47:57 2023  elapsed time 00:26:07
Tue Nov 14 06:17:56 2023  
Tue Nov 14 06:17:56 2023  
Tue Nov 14 06:17:56 2023  Msieve v. 1.54 (SVN unknown)
Tue Nov 14 06:17:56 2023  random seeds: 612f0231 01b245d4
Tue Nov 14 06:17:56 2023  factoring 7000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003 (259 digits)
Tue Nov 14 06:17:57 2023  no P-1/P+1/ECM available, skipping
Tue Nov 14 06:17:57 2023  commencing number field sieve (259-digit input)
Tue Nov 14 06:17:57 2023  R0: -10000000000000000000000000000000000000000000
Tue Nov 14 06:17:57 2023  R1: 1
Tue Nov 14 06:17:57 2023  A0: 3
Tue Nov 14 06:17:57 2023  A1: 0
Tue Nov 14 06:17:57 2023  A2: 0
Tue Nov 14 06:17:57 2023  A3: 0
Tue Nov 14 06:17:57 2023  A4: 0
Tue Nov 14 06:17:57 2023  A5: 0
Tue Nov 14 06:17:57 2023  A6: 7
Tue Nov 14 06:17:57 2023  skew 1.00, size 1.222e-12, alpha 0.227, combined = 1.337e-13 rroots = 0
Tue Nov 14 06:17:57 2023  
Tue Nov 14 06:17:57 2023  commencing linear algebra
Tue Nov 14 06:17:57 2023  using VBITS=128
Tue Nov 14 06:17:57 2023  skipping matrix build
Tue Nov 14 06:18:02 2023  matrix starts at (0, 0)
Tue Nov 14 06:18:04 2023  matrix is 10637834 x 10638006 (5634.5 MB) with weight 1642384795 (154.39/col)
Tue Nov 14 06:18:04 2023  sparse part has weight 1360027374 (127.85/col)
Tue Nov 14 06:18:04 2023  saving the first 112 matrix rows for later
Tue Nov 14 06:18:07 2023  matrix includes 128 packed rows
Tue Nov 14 06:18:09 2023  matrix is 10637722 x 10638006 (5227.6 MB) with weight 1316379579 (123.74/col)
Tue Nov 14 06:18:09 2023  sparse part has weight 1242729941 (116.82/col)
Tue Nov 14 06:18:09 2023  using GPU 0 (Tesla P100-PCIE-16GB)
Tue Nov 14 06:18:09 2023  selected card has CUDA arch 6.0
Tue Nov 14 06:21:00 2023  commencing Lanczos iteration
Tue Nov 14 06:21:00 2023  memory use: 11834.9 MB
Tue Nov 14 06:21:07 2023  linear algebra at 0.0%, ETA 11h37m
Tue Nov 14 06:21:09 2023  checkpointing every 920000 dimensions
Tue Nov 14 17:28:57 2023  lanczos halted after 83610 iterations (dim = 10637722)
Tue Nov 14 17:29:15 2023  recovered 37 nontrivial dependencies
Tue Nov 14 17:29:16 2023  BLanczosTime: 40279
Tue Nov 14 17:29:16 2023  elapsed time 11:11:20
Tue Nov 14 20:38:18 2023  
Tue Nov 14 20:38:18 2023  
Tue Nov 14 20:38:18 2023  Msieve v. 1.54 (SVN Unversioned directory)
Tue Nov 14 20:38:18 2023  random seeds: 00e3ecff b4f2a11f
Tue Nov 14 20:38:18 2023  Using 4 OpenMP threads
Tue Nov 14 20:38:18 2023  factoring 7000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003 (259 digits)
Tue Nov 14 20:38:21 2023  searching for 15-digit factors
Tue Nov 14 20:38:22 2023  commencing number field sieve (259-digit input)
Tue Nov 14 20:38:22 2023  R0: -10000000000000000000000000000000000000000000
Tue Nov 14 20:38:22 2023  R1: 1
Tue Nov 14 20:38:22 2023  A0: 3
Tue Nov 14 20:38:22 2023  A1: 0
Tue Nov 14 20:38:22 2023  A2: 0
Tue Nov 14 20:38:22 2023  A3: 0
Tue Nov 14 20:38:22 2023  A4: 0
Tue Nov 14 20:38:22 2023  A5: 0
Tue Nov 14 20:38:22 2023  A6: 7
Tue Nov 14 20:38:22 2023  skew 1.00, size 1.222e-12, alpha 0.227, combined = 1.337e-13 rroots = 0
Tue Nov 14 20:38:22 2023  
Tue Nov 14 20:38:22 2023  commencing square root phase
Tue Nov 14 20:38:22 2023  reading relations for dependency 1
Tue Nov 14 20:38:25 2023  read 5316870 cycles
Tue Nov 14 20:38:40 2023  cycles contain 17287542 unique relations
Tue Nov 14 20:50:00 2023  read 17287542 relations
Tue Nov 14 20:52:01 2023  multiplying 17287542 relations
Tue Nov 14 21:00:59 2023  multiply complete, coefficients have about 497.41 million bits
Tue Nov 14 21:01:01 2023  initial square root is modulo 841724089
Tue Nov 14 21:12:07 2023  GCD is 1, no factor found
Tue Nov 14 21:12:07 2023  reading relations for dependency 2
Tue Nov 14 21:12:08 2023  read 5319291 cycles
Tue Nov 14 21:12:19 2023  cycles contain 17296258 unique relations
Tue Nov 14 21:24:07 2023  read 17296258 relations
Tue Nov 14 21:26:06 2023  multiplying 17296258 relations
Tue Nov 14 21:35:12 2023  multiply complete, coefficients have about 497.67 million bits
Tue Nov 14 21:35:14 2023  initial square root is modulo 850585441
Tue Nov 14 21:46:27 2023  sqrtTime: 4085
Tue Nov 14 21:46:27 2023  p64 factor: 9223618483311294104386170862846699616261588294023453763819469859
Tue Nov 14 21:46:27 2023  p195 factor: 758921242532463090766177014282456590769224292837593837515920823981649638666060616279348203680278956575160849608595624482197272614121926175370962635770694325750671629835631792624164730629763283617
Tue Nov 14 21:46:27 2023  elapsed time 01:08:09

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間)
4511e62000Dmitry DomanovApril 26, 2019 16:19:05 UTC 2019 年 4 月 27 日 (土) 1 時 19 分 5 秒 (日本時間)
5043e650002000Dmitry DomanovApril 29, 2019 18:11:48 UTC 2019 年 4 月 30 日 (火) 3 時 11 分 48 秒 (日本時間)
3000NFS@home + Dmitry DomanovNovember 4, 2020 06:59:59 UTC 2020 年 11 月 4 日 (水) 15 時 59 分 59 秒 (日本時間)
5511e715844828Dmitry DomanovNovember 26, 2020 13:02:37 UTC 2020 年 11 月 26 日 (木) 22 時 2 分 37 秒 (日本時間)
15016ebinaDecember 9, 2022 07:54:16 UTC 2022 年 12 月 9 日 (金) 16 時 54 分 16 秒 (日本時間)

7×10260+3

c200

name 名前Seth Troisi
date 日付December 6, 2023 07:33:39 UTC 2023 年 12 月 6 日 (水) 16 時 33 分 39 秒 (日本時間)
composite number 合成数
30902909263423121514137288176222522090867648692276002839289320418316962205078678694370832385008925107595817400112286737323198821426446578511133183734561816392992876580601217158325732703147903886378159<200>
prime factors 素因数
4631819825775891064537001730676852164803<40>
6671872055870928788179475213338312870225882776332566953764936043989826504475581784520351752742414497653660456678510769495302625184544025386852730952596371961253<160>
factorization results 素因数分解の結果
Resuming P-1 residue saved by five@five with GMP-ECM 7.0.6-dev on Tue Nov 21 10:28:18 2023
Input number is 30902909263423121514137288176222522090867648692276002839289320418316962205078678694370832385008925107595817400112286737323198821426446578511133183734561816392992876580601217158325732703147903886378159 (200 digits)
Using mpz_mod
Using lmax = 33554432 with NTT which takes about 9600MB of memory
Using B1=4000000000-4000000000, B2=8344907294582686, polynomial x^1
P = 240705465, l = 33554432, s_1 = 16220160, k = s_2 = 5, m_1 = 3
Probability of finding a factor of n digits (assuming one exists):
20      25      30      35      40      45      50      55      60      65
0.81    0.53    0.28    0.12    0.045   0.015   0.0045  0.0012  0.00031 7.3e-05
Step 1 took 0ms
Computing F from factored S_1 took 173946ms
Computing h took 20529ms
Computing DCT-I of h took 53625ms
Multi-point evaluation 1 of 5:
Computing g_i took 67452ms
Computing g*h took 111495ms
Computing gcd of coefficients and N took 24062ms
Multi-point evaluation 2 of 5:
Computing g_i took 66770ms
Computing g*h took 108401ms
Computing gcd of coefficients and N took 23993ms
Multi-point evaluation 3 of 5:
Computing g_i took 67673ms
Computing g*h took 110610ms
Computing gcd of coefficients and N took 23591ms
Step 2 took 853516ms
********** Factor found in step 2: 4631819825775891064537001730676852164803
Found prime factor of 40 digits: 4631819825775891064537001730676852164803
Prime cofactor 6671872055870928788179475213338312870225882776332566953764936043989826504475581784520351752742414497653660456678510769495302625184544025386852730952596371961253 has 160 digits
execution environment 実行環境
1080 TI for stage 1

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間)

7×10262+3

c247

composite cofactor 合成数の残り
7180694864699515884832863550828288721865237217122564860916843896229699574313138065875680287276682176753403170903675018960237880723102500612973477769098700257659146506834637558134964420561263120424274704328236430556901493625439184770200972594090677<247>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間)

7×10263+3

c239

composite cofactor 合成数の残り
18858066504059027721042883137261965308568546455100301148341766270882763725231701371176203652951830497090591711275860516933854590327777658330599512245348705257095686849734007429046440342258187745720838881338116712711210842441225231034151297<239>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間)

7×10264+3

c231

composite cofactor 合成数の残り
128566032360539801279215881527022741394497194755251176329093040262115423749388026624483859519539314021814814155874071342655638450890631860761333659664322553476053586448001594944999367712478574948682915872914176991529105242200591671<231>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間)

7×10265+3

c219

composite cofactor 合成数の残り
164432113611525474696380509723081954360577731696245250136208250632051115286088931769123675647709559933751312344480791470751045105888723120974057281766768811318270520988934844327681566368386378998617524533568611832827737<219>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間)

7×10268+3

c265

composite cofactor 合成数の残り
1120304722884624617896067730422674967591184802266216410863754941344045580397868220155882400012803482547252852775955059776259142486756397740185330409871485043931949490261351087495798857289182657682889746010914968871533056991501688459260918969959829073507994174415441<265>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間)

7×10269+3

c246

composite cofactor 合成数の残り
302265114808587379280712533363965752818699703475787733366624850415543186146345799959588913873543355799971657074868633964999578520215691151928967351406748509222477067515027231348319367508053022409467219676497016234563324066307346716410529503883901<246>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間)

7×10270+3

c221

composite cofactor 合成数の残り
31568112413687874993112272201765924453567371846189325729654871753281025912342462193148894657170066402970446303087461607169057682720343406479730654412148468778090154731607603129617377623197674985163359389272803437156413727<221>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間)

7×10271+3

c256

composite cofactor 合成数の残り
2154682470585675455175395222331698440747052472332590367377137221007770782088935055137627886561227788245748071088535721953105912142715173890933000050924715349476476792617582677400495714908220609408585198496497978391631437265518799047939917841790751125334543<256>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間)

7×10272+3

c216

composite cofactor 合成数の残り
100726955220064326908322288460595574721234959193104058506120782812798936295278036075599372745992813955717474429350826525973636404916105244467355895221976654518615713051365581973629300950670958353283078832814682424081<216>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間)

7×10273+3

c271

composite cofactor 合成数の残り
3306565895134624468587623996221067548417572035899858290033065658951346244685876239962210675484175720358998582900330656589513462446858762399622106754841757203589985829003306565895134624468587623996221067548417572035899858290033065658951346244685876239962210675484175720359<271>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間)

7×10276+3

c259

composite cofactor 合成数の残り
1211693785067515318335536981916344918031679101309040833407061601210915857497555558926204525422574710082607702939822642673464918274260597431935877555327793694136185220100118254432672115214815272051959777035997870715791918879382695638919169147715997713205859069<259>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間)

7×10277+3

c187

composite cofactor 合成数の残り
5737440933701304936130347874113503669780998911804272802038874763852707602390464296191470528281284152968022208054860037707382179938126500678247928034258699825911796065367791027439223095293<187>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間)
4511e62000Dmitry DomanovApril 25, 2019 20:37:14 UTC 2019 年 4 月 26 日 (金) 5 時 37 分 14 秒 (日本時間)
5043e62392 / 6996600Dmitry DomanovApril 27, 2019 13:30:04 UTC 2019 年 4 月 27 日 (土) 22 時 30 分 4 秒 (日本時間)
1792Dmitry DomanovApril 15, 2024 17:14:57 UTC 2024 年 4 月 16 日 (火) 2 時 14 分 57 秒 (日本時間)

7×10278+3

c204

composite cofactor 合成数の残り
334413719800734148782269076511755061388384931750496188922896627352493769983022604034503035221434934401155274756350946292214357734710780612062014285718714301199112263232847160802451130590172302686874821061<204>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間)

7×10279+3

c265

composite cofactor 合成数の残り
1788830995979969560420919045085312240228202529611090637854990743156275309744980139219800160746061201661831195405316349994648867697804432752305679704025261782413788663806474297122119358687652435231227791868325330509815138900356372668121451257000297822939057795227811<265>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間)

7×10282+3

c265

composite cofactor 合成数の残り
1833863066686405639506150519571684346104235288515780265885616997377175003710827618060623536127627502248305889202628037336391765979164688562635312789914396469925617562591752786489415066589042141652519047446857544002635010774328308941271521434836916992310964749809659<265>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間)

7×10283+3

c220

composite cofactor 合成数の残り
1364924828804410868511119624632304746041361078205303240506938347233534521974057860220202317604421274199856041634440258994073814730081999159406358256601734103947735983332639747614958497112728314126175416548466750193160503<220>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間)

7×10284+3

c271

composite cofactor 合成数の残り
2162174324578808462692089693441789890991632451570896446858434029366080297690997641356617218727335533790446437074137123282546369780550168207687390593492948287642016155428115092742401199864343182349460068310377085911866295917692164417846692527709180180399535501074024301527<271>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間)

7×10285+3

c257

composite cofactor 合成数の残り
32769302245422612742544174311334341910674953191370212569829316493989868216544604325970550468504790424771264158387699529581523968086105379322972356503238783031348337299669713288840496417581941054611184626839431445549256690503984552153459310493420892809208483<257>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間)

7×10286+3

c282

composite cofactor 合成数の残り
322121955372303954277089306011255861469152221030882292035764740530764947609164829804564007933403586597885959624313765191501502468834700817729592423691609643410995402859522615262138245539761353648491318813302716408432232443202996654533406347643217722229636140242695884661933007836767<282>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間)

7×10287+3

c253

composite cofactor 合成数の残り
2218627803991807204861465518512078042132137409934222486744414362299266238128257918349134329824812662787273041878665931640469884651267384911905937586599411089042674295710281598800022923047021151790538720509138844591502235339119653629234557312828025718177<253>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間)

7×10288+3

c160

name 名前Dmitry Domanov
date 日付April 28, 2019 06:46:16 UTC 2019 年 4 月 28 日 (日) 15 時 46 分 16 秒 (日本時間)
composite number 合成数
2918064498223061108942745351236729122824981343884362618958275535173929016716929300236628886286405140066386949188004422010138048134685792561416864442985557772803<160>
prime factors 素因数
318650287657118536675375207891994847934129309<45>
778907130397159793053450824927586365846321193807<48>
11756955989883511746329420881149353724775418128593846526295910488881<68>
factorization results 素因数分解の結果
GMP-ECM 6.4.3 [configured with GMP 6.0.0, --enable-asm-redc] [ECM]
Input number is 2918064498223061108942745351236729122824981343884362618958275535173929016716929300236628886286405140066386949188004422010138048134685792561416864442985557772803 (160 digits)
Using B1=43000000, B2=240490660426, polynomial Dickson(12), sigma=1145504256
Step 1 took 284251ms
Step 2 took 81227ms
********** Factor found in step 2: 318650287657118536675375207891994847934129309
Found probable prime factor of 45 digits: 318650287657118536675375207891994847934129309
Composite cofactor 9157576852285865376535401868679976965012956741155909676274560825091443996076483489347766847059394690256780919559967 has 115 digits

GNFS on c115:
nfs: commencing nfs on c115: 9157576852285865376535401868679976965012956741155909676274560825091443996076483489347766847059394690256780919559967
nfs: commencing poly selection with 4 threads
nfs: setting deadline of 1750 seconds
nfs: completed 65 ranges of size 250 in 1705.9029 seconds
nfs: best poly = # norm 5.742672e-11 alpha -6.294703 e 5.179e-10 rroots 5
...
<sieving>
...
nfs: commencing msieve filtering
nfs: commencing msieve linear algebra
nfs: commencing msieve sqrt
prp48 = 778907130397159793053450824927586365846321193807
prp68 = 11756955989883511746329420881149353724775418128593846526295910488881
NFS elapsed time = 22336.8741 seconds.


Poly used:
n: 9157576852285865376535401868679976965012956741155909676274560825091443996076483489347766847059394690256780919559967
skew: 59565.28
c0: 2281869871137157083660590481
c1: 309450645243934170535361
c2: -37816070965628164
c3: -379156730057584
c4: 648654510
c5: 15300
Y0: -14302692005997444847808
Y1: 161562953263
rlim: 4500000
alim: 4500000
lpbr: 27
lpba: 27
mfbr: 54
mfba: 54
rlambda: 2.5
alambda: 2.5

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間)
4511e62000Dmitry DomanovApril 25, 2019 08:10:27 UTC 2019 年 4 月 25 日 (木) 17 時 10 分 27 秒 (日本時間)
5043e6600 / 6996Dmitry DomanovApril 28, 2019 00:21:55 UTC 2019 年 4 月 28 日 (日) 9 時 21 分 55 秒 (日本時間)

7×10289+3

c271

composite cofactor 合成数の残り
3463190912650160281539130820692958908255217138222755206484025830172197222520139598911779798053826522497775294937696306028574942824329605013513708944326446708591423847902475178128787091771853358253880188133329457221595845057340079489491914415207686189307071455394696900029<271>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間)

7×10291+3

c256

composite cofactor 合成数の残り
2684237472981439484769071494026665219881186968066993248370006925227143203801212509623400586326413195935370721178404382339956755294846630536071193165919822055738533677839447168972220796172875536573990752570951778587314485208738574986381310793109030335091169<256>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間)

7×10292+3

c256

composite cofactor 合成数の残り
4391243413472648931387257438311016747891655887969835737773661699516725943016094523876028001892639319977332647918081444471114981881712107818388255129350471706117054286271194514158161806233454112332495001252036537447179030723446885771303104698449757163493589<256>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間)

7×10294+3

c240

composite cofactor 合成数の残り
117360861696138617782579651650577878428817178638831351758245573802777576194696310642104253991177298810286788585740858095266867247916365128330992881577342394432520564103669266086497923228080796274646863018124809039632616987731712138785504111<240>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間)

7×10295+3

c265

composite cofactor 合成数の残り
1391836896525639089711856287301168709161586371187877817104676974577481852821212120559170640532387273323021116599178965281158610274477480023552850487247745972333236562938797772853365833395149014468797058270777064052983049808590667549119529982075331481492385764248447<265>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間)

7×10296+3

c235

composite cofactor 合成数の残り
3760416596653618223083387411957861764205444495564861449338894757051904245713135618261139249494674507250592733651296913653323987900840762981397621997184877229831247518216000734919110829565912655354893543225420556355349008894169142815833<235>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間)

7×10297+3

c232

composite cofactor 合成数の残り
1396376217136185165691117035001463685729365956721463284845425385402741431503812044148647448188608530675009286130788786632503428441103531048025852759394774731836977751897696249228395404660983667803831704087394303655774643214790318831<232>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間)

7×10298+3

c298

composite cofactor 合成数の残り
4117647058823529411764705882352941176470588235294117647058823529411764705882352941176470588235294117647058823529411764705882352941176470588235294117647058823529411764705882352941176470588235294117647058823529411764705882352941176470588235294117647058823529411764705882352941176470588235294117647059<298>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間)

7×10299+3

c264

composite cofactor 合成数の残り
245455335161034198407156093734791146653865473999910918155821575310286777092752768997113077574394213089749791500082089352027911205847623054548009221103917528336663918716730095645977976629698777678062607084221479937799347450611735339945003006305025023232156411252147<264>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間)

7×10300+3

c250

composite cofactor 合成数の残り
1407794198453097274760805604509316730037953721849508711283822834500234175444102424418704270126913924690509948172686186012299096148067989177095759669294351492276053680589960863997493146262760098016801944437221353646103064038978439610750475500032945273<250>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間)
4511e62000Dmitry DomanovApril 24, 2019 20:47:57 UTC 2019 年 4 月 25 日 (木) 5 時 47 分 57 秒 (日本時間)
5043e6600 / 6996Dmitry DomanovApril 26, 2019 11:26:59 UTC 2019 年 4 月 26 日 (金) 20 時 26 分 59 秒 (日本時間)