name 名前 | Sinkiti Sibata |
---|---|
date 日付 | August 2, 2007 22:14:54 UTC 2007 年 8 月 3 日 (金) 7 時 14 分 54 秒 (日本時間) |
composite number 合成数 | 439347152726045522264827040637289363637658854593101458877326178418502138773321409870034208196950039513<102> |
prime factors 素因数 | 21135103243411643094225839323775893<35> 20787556496228678876263628963578198111397575572164064323810422220341<68> |
factorization results 素因数分解の結果 | Number: 70003_108 N=439347152726045522264827040637289363637658854593101458877326178418502138773321409870034208196950039513 ( 102 digits) SNFS difficulty: 108 digits. Divisors found: r1=21135103243411643094225839323775893 (pp35) r2=20787556496228678876263628963578198111397575572164064323810422220341 (pp68) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 1.97 hours. Scaled time: 1.30 units (timescale=0.661). Factorization parameters were as follows: name: 70003_108 n: 439347152726045522264827040637289363637658854593101458877326178418502138773321409870034208196950039513 m: 1000000000000000000000 c5: 7000 c0: 3 skew: 0.21 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 500001) Primes: RFBsize:49098, AFBsize:64153, largePrimes:2383720 encountered Relations: rels:2939110, finalFF:154239 Max relations in full relation-set: 0 Initial matrix: 113318 x 154239 with sparse part having weight 3864688. Pruned matrix : 79599 x 80229 with weight 1974973. Total sieving time: 1.80 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.05 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,108,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 1.97 hours. --------- CPU info (if available) ---------- |
execution environment 実行環境 | Pentium 4 2.4GHz, Windows XP and Cygwin) |
name 名前 | Robert Backstrom |
---|---|
date 日付 | July 31, 2007 12:16:13 UTC 2007 年 7 月 31 日 (火) 21 時 16 分 13 秒 (日本時間) |
composite number 合成数 | 158132850072416566802699765435756674614463053664908574703804989105665472581049135992398731331<93> |
prime factors 素因数 | 94998794192060872628935849323365693<35> 1664577444559100089652031980780871295487207378438987754367<58> |
factorization results 素因数分解の結果 | Tue Jul 31 20:06:20 2007 Tue Jul 31 20:06:20 2007 Tue Jul 31 20:06:20 2007 Msieve v. 1.25 Tue Jul 31 20:06:20 2007 random seeds: 58a7aa10 e5a73f18 Tue Jul 31 20:06:20 2007 factoring 158132850072416566802699765435756674614463053664908574703804989105665472581049135992398731331 (93 digits) Tue Jul 31 20:06:20 2007 commencing quadratic sieve (92-digit input) Tue Jul 31 20:06:20 2007 using multiplier of 5 Tue Jul 31 20:06:20 2007 using 64kb Opteron sieve core Tue Jul 31 20:06:20 2007 sieve interval: 18 blocks of size 65536 Tue Jul 31 20:06:20 2007 processing polynomials in batches of 6 Tue Jul 31 20:06:20 2007 using a sieve bound of 1885601 (70588 primes) Tue Jul 31 20:06:20 2007 using large prime bound of 220615317 (27 bits) Tue Jul 31 20:06:20 2007 using double large prime bound of 1043624286913572 (42-50 bits) Tue Jul 31 20:06:20 2007 using trial factoring cutoff of 50 bits Tue Jul 31 20:06:20 2007 polynomial 'A' values have 12 factors Tue Jul 31 22:12:14 2007 71029 relations (18147 full + 52882 combined from 923968 partial), need 70684 Tue Jul 31 22:12:15 2007 begin with 942115 relations Tue Jul 31 22:12:16 2007 reduce to 179413 relations in 13 passes Tue Jul 31 22:12:16 2007 attempting to read 179413 relations Tue Jul 31 22:12:18 2007 recovered 179413 relations Tue Jul 31 22:12:18 2007 recovered 159146 polynomials Tue Jul 31 22:12:18 2007 attempting to build 71029 cycles Tue Jul 31 22:12:18 2007 found 71029 cycles in 5 passes Tue Jul 31 22:12:19 2007 distribution of cycle lengths: Tue Jul 31 22:12:19 2007 length 1 : 18147 Tue Jul 31 22:12:19 2007 length 2 : 13037 Tue Jul 31 22:12:19 2007 length 3 : 12364 Tue Jul 31 22:12:19 2007 length 4 : 9648 Tue Jul 31 22:12:19 2007 length 5 : 7028 Tue Jul 31 22:12:19 2007 length 6 : 4488 Tue Jul 31 22:12:19 2007 length 7 : 2773 Tue Jul 31 22:12:19 2007 length 9+: 3544 Tue Jul 31 22:12:19 2007 largest cycle: 18 relations Tue Jul 31 22:12:19 2007 matrix is 70588 x 71029 with weight 4271043 (avg 60.13/col) Tue Jul 31 22:12:20 2007 filtering completed in 3 passes Tue Jul 31 22:12:20 2007 matrix is 66489 x 66553 with weight 4008580 (avg 60.23/col) Tue Jul 31 22:12:21 2007 saving the first 48 matrix rows for later Tue Jul 31 22:12:21 2007 matrix is 66441 x 66553 with weight 3003773 (avg 45.13/col) Tue Jul 31 22:12:21 2007 matrix includes 64 packed rows Tue Jul 31 22:12:21 2007 using block size 21845 for processor cache size 512 kB Tue Jul 31 22:12:21 2007 commencing Lanczos iteration Tue Jul 31 22:13:01 2007 lanczos halted after 1053 iterations Tue Jul 31 22:13:02 2007 recovered 19 nontrivial dependencies Tue Jul 31 22:13:02 2007 prp35 factor: 94998794192060872628935849323365693 Tue Jul 31 22:13:02 2007 prp58 factor: 1664577444559100089652031980780871295487207378438987754367 Tue Jul 31 22:13:02 2007 elapsed time 02:06:42 AMD 64 3400+ |
name 名前 | Sinkiti Sibata |
---|---|
date 日付 | July 31, 2007 09:05:55 UTC 2007 年 7 月 31 日 (火) 18 時 5 分 55 秒 (日本時間) |
composite number 合成数 | 231954858579080269057677376740414939630659505325131391785225954643473927231021865193551451<90> |
prime factors 素因数 | 229383234010881253145836095413674027664523319<45> 1011211039809810274754617373533701326457880829<46> |
factorization results 素因数分解の結果 | Tue Jul 31 07:34:45 2007 Msieve v. 1.23 Tue Jul 31 07:34:45 2007 random seeds: f6cd87d8 a53fdc24 Tue Jul 31 07:34:45 2007 factoring 231954858579080269057677376740414939630659505325131391785225954643473927231021865193551451 (90 digits) Tue Jul 31 07:34:46 2007 commencing quadratic sieve (89-digit input) Tue Jul 31 07:34:46 2007 using multiplier of 11 Tue Jul 31 07:34:46 2007 using 64kb Pentium 2 sieve core Tue Jul 31 07:34:46 2007 sieve interval: 18 blocks of size 65536 Tue Jul 31 07:34:46 2007 processing polynomials in batches of 6 Tue Jul 31 07:34:46 2007 using a sieve bound of 1575269 (59601 primes) Tue Jul 31 07:34:46 2007 using large prime bound of 126021520 (26 bits) Tue Jul 31 07:34:46 2007 using double large prime bound of 380890718607520 (42-49 bits) Tue Jul 31 07:34:46 2007 using trial factoring cutoff of 49 bits Tue Jul 31 07:34:46 2007 polynomial 'A' values have 12 factors Tue Jul 31 17:16:16 2007 59785 relations (16189 full + 43596 combined from 628261 partial), need 59697 Tue Jul 31 17:16:20 2007 begin with 644450 relations Tue Jul 31 17:16:21 2007 reduce to 144357 relations in 9 passes Tue Jul 31 17:16:21 2007 attempting to read 144357 relations Tue Jul 31 17:16:29 2007 recovered 144357 relations Tue Jul 31 17:16:29 2007 recovered 122313 polynomials Tue Jul 31 17:16:29 2007 attempting to build 59785 cycles Tue Jul 31 17:16:30 2007 found 59785 cycles in 6 passes Tue Jul 31 17:16:34 2007 distribution of cycle lengths: Tue Jul 31 17:16:34 2007 length 1 : 16189 Tue Jul 31 17:16:34 2007 length 2 : 11643 Tue Jul 31 17:16:34 2007 length 3 : 10503 Tue Jul 31 17:16:34 2007 length 4 : 7913 Tue Jul 31 17:16:34 2007 length 5 : 5683 Tue Jul 31 17:16:34 2007 length 6 : 3388 Tue Jul 31 17:16:34 2007 length 7 : 2104 Tue Jul 31 17:16:34 2007 length 9+: 2362 Tue Jul 31 17:16:34 2007 largest cycle: 22 relations Tue Jul 31 17:16:35 2007 matrix is 59601 x 59785 with weight 3535144 (avg 59.13/col) Tue Jul 31 17:16:41 2007 filtering completed in 3 passes Tue Jul 31 17:16:41 2007 matrix is 55625 x 55687 with weight 3317745 (avg 59.58/col) Tue Jul 31 17:16:43 2007 saving the first 48 matrix rows for later Tue Jul 31 17:16:43 2007 matrix is 55577 x 55687 with weight 2590949 (avg 46.53/col) Tue Jul 31 17:16:43 2007 matrix includes 64 packed rows Tue Jul 31 17:16:43 2007 using block size 5461 for processor cache size 128 kB Tue Jul 31 17:16:44 2007 commencing Lanczos iteration Tue Jul 31 17:19:46 2007 lanczos halted after 879 iterations Tue Jul 31 17:19:47 2007 recovered 16 nontrivial dependencies Tue Jul 31 17:19:50 2007 prp45 factor: 229383234010881253145836095413674027664523319 Tue Jul 31 17:19:50 2007 prp46 factor: 1011211039809810274754617373533701326457880829 Tue Jul 31 17:19:50 2007 elapsed time 09:45:05 |
execution environment 実行環境 | Celeron 750MHz,Windows 2000) |
name 名前 | Robert Backstrom |
---|---|
date 日付 | July 31, 2007 08:22:30 UTC 2007 年 7 月 31 日 (火) 17 時 22 分 30 秒 (日本時間) |
composite number 合成数 | 225806451612903225806451612903225806451612903225806451612903225806451612903225806451612903225806451612903225806451613<117> |
prime factors 素因数 | 796610382478821640289686993942482559318724926882166707<54> 283459086875391589955150402968360965955345854041338678737403759<63> |
factorization results 素因数分解の結果 | Number: n N=225806451612903225806451612903225806451612903225806451612903225806451612903225806451612903225806451612903225806451613 ( 117 digits) SNFS difficulty: 117 digits. Divisors found: r1=796610382478821640289686993942482559318724926882166707 (pp54) r2=283459086875391589955150402968360965955345854041338678737403759 (pp63) Version: GGNFS-0.77.1-20051202-athlon Total time: 1.23 hours. Scaled time: 1.78 units (timescale=1.451). Factorization parameters were as follows: name: KA_7_0_116_3 n: 225806451612903225806451612903225806451612903225806451612903225806451612903225806451612903225806451612903225806451613 skew: 0.34 deg: 5 c5: 700 c0: 3 m: 100000000000000000000000 type: snfs rlim: 600000 alim: 600000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 600000/600000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 200001) Primes: RFBsize:49098, AFBsize:48976, largePrimes:3849937 encountered Relations: rels:3225255, finalFF:131768 Max relations in full relation-set: 28 Initial matrix: 98141 x 131768 with sparse part having weight 8495908. Pruned matrix : 84202 x 84756 with weight 3752118. Total sieving time: 1.07 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.05 hours. Total square root time: 0.04 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,117,5,0,0,0,0,0,0,0,0,600000,600000,28,28,48,48,2.5,2.5,50000 total time: 1.23 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+ |
name 名前 | Robert Backstrom |
---|---|
date 日付 | July 31, 2007 16:35:12 UTC 2007 年 8 月 1 日 (水) 1 時 35 分 12 秒 (日本時間) |
composite number 合成数 | 1691673621516014680304576988516586290004567558148171765518815439071657240016879833070443049183852561781239643<109> |
prime factors 素因数 | 787073943986243214424803305243<30> 2149319812250807291486495152588101029793779750183550066121886943689304730180801<79> |
factorization results 素因数分解の結果 | Number: n N=1691673621516014680304576988516586290004567558148171765518815439071657240016879833070443049183852561781239643 ( 109 digits) SNFS difficulty: 120 digits. Divisors found: r1=787073943986243214424803305243 (pp30) r2=2149319812250807291486495152588101029793779750183550066121886943689304730180801 (pp79) Version: GGNFS-0.77.1-20051202-athlon Total time: 1.62 hours. Scaled time: 2.35 units (timescale=1.448). Factorization parameters were as follows: name: KA_7_0_119_3 n: 1691673621516014680304576988516586290004567558148171765518815439071657240016879833070443049183852561781239643 skew: 0.34 deg: 5 c5: 7 c0: 3 m: 1000000000000000000000000 type: snfs rlim: 800000 alim: 800000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 250001) Primes: RFBsize:63951, AFBsize:63643, largePrimes:4609625 encountered Relations: rels:4046821, finalFF:240563 Max relations in full relation-set: 28 Initial matrix: 127659 x 240563 with sparse part having weight 15790458. Pruned matrix : 84816 x 85518 with weight 3791952. Total sieving time: 1.46 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.06 hours. Total square root time: 0.03 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,120,5,0,0,0,0,0,0,0,0,800000,800000,28,28,48,48,2.5,2.5,50000 total time: 1.62 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+ |
name 名前 | Robert Backstrom |
---|---|
date 日付 | July 31, 2007 14:44:13 UTC 2007 年 7 月 31 日 (火) 23 時 44 分 13 秒 (日本時間) |
composite number 合成数 | 1060392733017473507363436391125662056426006504379915175604094685956234092303916292830483893009<94> |
prime factors 素因数 | 36803587049889567164794261972333592412847<41> 28812211472214508546521155757658327809127986705923647<53> |
factorization results 素因数分解の結果 | Tue Jul 31 22:22:05 2007 Tue Jul 31 22:22:05 2007 Tue Jul 31 22:22:05 2007 Msieve v. 1.25 Tue Jul 31 22:22:05 2007 random seeds: 2df35130 45e71b74 Tue Jul 31 22:22:05 2007 factoring 1060392733017473507363436391125662056426006504379915175604094685956234092303916292830483893009 (94 digits) Tue Jul 31 22:22:05 2007 commencing quadratic sieve (93-digit input) Tue Jul 31 22:22:05 2007 using multiplier of 1 Tue Jul 31 22:22:05 2007 using 64kb Opteron sieve core Tue Jul 31 22:22:05 2007 sieve interval: 18 blocks of size 65536 Tue Jul 31 22:22:05 2007 processing polynomials in batches of 6 Tue Jul 31 22:22:05 2007 using a sieve bound of 1986401 (74118 primes) Tue Jul 31 22:22:05 2007 using large prime bound of 256245729 (27 bits) Tue Jul 31 22:22:05 2007 using double large prime bound of 1366412668937199 (42-51 bits) Tue Jul 31 22:22:05 2007 using trial factoring cutoff of 51 bits Tue Jul 31 22:22:05 2007 polynomial 'A' values have 12 factors Wed Aug 01 00:39:21 2007 74518 relations (18810 full + 55708 combined from 1024843 partial), need 74214 Wed Aug 01 00:39:22 2007 begin with 1043653 relations Wed Aug 01 00:39:23 2007 reduce to 190550 relations in 13 passes Wed Aug 01 00:39:23 2007 attempting to read 190550 relations Wed Aug 01 00:39:26 2007 recovered 190550 relations Wed Aug 01 00:39:26 2007 recovered 169642 polynomials Wed Aug 01 00:39:26 2007 attempting to build 74518 cycles Wed Aug 01 00:39:26 2007 found 74518 cycles in 5 passes Wed Aug 01 00:39:27 2007 distribution of cycle lengths: Wed Aug 01 00:39:27 2007 length 1 : 18810 Wed Aug 01 00:39:27 2007 length 2 : 13413 Wed Aug 01 00:39:27 2007 length 3 : 12787 Wed Aug 01 00:39:27 2007 length 4 : 10167 Wed Aug 01 00:39:27 2007 length 5 : 7362 Wed Aug 01 00:39:27 2007 length 6 : 4755 Wed Aug 01 00:39:27 2007 length 7 : 3092 Wed Aug 01 00:39:27 2007 length 9+: 4132 Wed Aug 01 00:39:27 2007 largest cycle: 20 relations Wed Aug 01 00:39:27 2007 matrix is 74118 x 74518 with weight 4440747 (avg 59.59/col) Wed Aug 01 00:39:28 2007 filtering completed in 3 passes Wed Aug 01 00:39:28 2007 matrix is 70053 x 70117 with weight 4190795 (avg 59.77/col) Wed Aug 01 00:39:29 2007 saving the first 48 matrix rows for later Wed Aug 01 00:39:29 2007 matrix is 70005 x 70117 with weight 3152619 (avg 44.96/col) Wed Aug 01 00:39:29 2007 matrix includes 64 packed rows Wed Aug 01 00:39:29 2007 using block size 21845 for processor cache size 512 kB Wed Aug 01 00:39:29 2007 commencing Lanczos iteration Wed Aug 01 00:40:15 2007 lanczos halted after 1108 iterations Wed Aug 01 00:40:15 2007 recovered 16 nontrivial dependencies Wed Aug 01 00:40:16 2007 prp41 factor: 36803587049889567164794261972333592412847 Wed Aug 01 00:40:16 2007 prp53 factor: 28812211472214508546521155757658327809127986705923647 Wed Aug 01 00:40:16 2007 elapsed time 02:18:11 AMD 64 3400+ |
name 名前 | Robert Backstrom |
---|---|
date 日付 | August 2, 2007 05:39:50 UTC 2007 年 8 月 2 日 (木) 14 時 39 分 50 秒 (日本時間) |
composite number 合成数 | 37913665168174186210258354546931701240318474787412663164166170178194226290418675188214266370578995829496831500839516871581<122> |
prime factors 素因数 | 13699452564493006814819701274146501315424887911148777<53> 2767531402418291140749455418859878737861230939330176281407585478703253<70> |
factorization results 素因数分解の結果 | Number: n N=37913665168174186210258354546931701240318474787412663164166170178194226290418675188214266370578995829496831500839516871581 ( 122 digits) SNFS difficulty: 125 digits. Divisors found: r1=13699452564493006814819701274146501315424887911148777 (pp53) r2=2767531402418291140749455418859878737861230939330176281407585478703253 (pp70) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 2.02 hours. Scaled time: 2.73 units (timescale=1.352). Factorization parameters were as follows: name: KA_7_0_124_3 n: 37913665168174186210258354546931701240318474787412663164166170178194226290418675188214266370578995829496831500839516871581 skew: 0.84 deg: 5 c5: 7 c0: 3 m: 10000000000000000000000000 type: snfs rlim: 700000 alim: 700000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 700000/700000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 300001) Primes: RFBsize:56543, AFBsize:56283, largePrimes:5007709 encountered Relations: rels:4440675, finalFF:243454 Max relations in full relation-set: 28 Initial matrix: 112891 x 243454 with sparse part having weight 20075677. Pruned matrix : 80668 x 81296 with weight 4508727. Total sieving time: 1.76 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.08 hours. Total square root time: 0.08 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,125,5,0,0,0,0,0,0,0,0,700000,700000,28,28,48,48,2.5,2.5,50000 total time: 2.02 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+ |
name 名前 | Robert Backstrom |
---|---|
date 日付 | August 2, 2007 03:23:45 UTC 2007 年 8 月 2 日 (木) 12 時 23 分 45 秒 (日本時間) |
composite number 合成数 | 369996458605324777605700059727999746288142670634438213234244757943031116702168707813796639375023124778662832798600356253733<123> |
prime factors 素因数 | 101758248455110600982078958785140824830321627783059244018899<60> 3636034073135055601486854090198041730366400527898690994554262567<64> |
factorization results 素因数分解の結果 | Number: n N=369996458605324777605700059727999746288142670634438213234244757943031116702168707813796639375023124778662832798600356253733 ( 123 digits) SNFS difficulty: 127 digits. Divisors found: r1=101758248455110600982078958785140824830321627783059244018899 (pp60) r2=3636034073135055601486854090198041730366400527898690994554262567 (pp64) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 2.70 hours. Scaled time: 3.67 units (timescale=1.358). Factorization parameters were as follows: name: KA_7_0_126_3 n: 369996458605324777605700059727999746288142670634438213234244757943031116702168707813796639375023124778662832798600356253733 skew: 0.34 deg: 5 c5: 700 c0: 3 m: 10000000000000000000000000 type: snfs rlim: 800000 alim: 800000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 400001) Primes: RFBsize:63951, AFBsize:63898, largePrimes:4621659 encountered Relations: rels:3934593, finalFF:151818 Max relations in full relation-set: 28 Initial matrix: 127916 x 151818 with sparse part having weight 11015888. Pruned matrix : 117329 x 118032 with weight 6729113. Total sieving time: 2.34 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.20 hours. Total square root time: 0.07 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,127,5,0,0,0,0,0,0,0,0,800000,800000,28,28,48,48,2.5,2.5,50000 total time: 2.70 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+ |
name 名前 | Robert Backstrom |
---|---|
date 日付 | July 31, 2007 09:02:49 UTC 2007 年 7 月 31 日 (火) 18 時 2 分 49 秒 (日本時間) |
composite number 合成数 | 9008357438502274995224625264375573726008762745952381754409588880984018651293713894171<85> |
prime factors 素因数 | 245476063044641766698278446037400797293497<42> 36697498431299323192437388994595232599875443<44> |
factorization results 素因数分解の結果 | Tue Jul 31 18:27:11 2007 Tue Jul 31 18:27:11 2007 Tue Jul 31 18:27:11 2007 Msieve v. 1.25 Tue Jul 31 18:27:11 2007 random seeds: 51a0e488 172d0ce2 Tue Jul 31 18:27:11 2007 factoring 9008357438502274995224625264375573726008762745952381754409588880984018651293713894171 (85 digits) Tue Jul 31 18:27:11 2007 commencing quadratic sieve (85-digit input) Tue Jul 31 18:27:11 2007 using multiplier of 59 Tue Jul 31 18:27:11 2007 using 64kb Opteron sieve core Tue Jul 31 18:27:11 2007 sieve interval: 6 blocks of size 65536 Tue Jul 31 18:27:11 2007 processing polynomials in batches of 17 Tue Jul 31 18:27:11 2007 using a sieve bound of 1442509 (54972 primes) Tue Jul 31 18:27:11 2007 using large prime bound of 115400720 (26 bits) Tue Jul 31 18:27:11 2007 using double large prime bound of 325068826146400 (41-49 bits) Tue Jul 31 18:27:11 2007 using trial factoring cutoff of 49 bits Tue Jul 31 18:27:11 2007 polynomial 'A' values have 11 factors Tue Jul 31 18:57:24 2007 55354 relations (16849 full + 38505 combined from 558450 partial), need 55068 Tue Jul 31 18:57:25 2007 begin with 575299 relations Tue Jul 31 18:57:25 2007 reduce to 126894 relations in 9 passes Tue Jul 31 18:57:25 2007 attempting to read 126894 relations Tue Jul 31 18:57:27 2007 recovered 126894 relations Tue Jul 31 18:57:27 2007 recovered 104607 polynomials Tue Jul 31 18:57:27 2007 attempting to build 55354 cycles Tue Jul 31 18:57:27 2007 found 55354 cycles in 5 passes Tue Jul 31 18:57:27 2007 distribution of cycle lengths: Tue Jul 31 18:57:27 2007 length 1 : 16849 Tue Jul 31 18:57:27 2007 length 2 : 11673 Tue Jul 31 18:57:27 2007 length 3 : 9808 Tue Jul 31 18:57:27 2007 length 4 : 6856 Tue Jul 31 18:57:27 2007 length 5 : 4419 Tue Jul 31 18:57:27 2007 length 6 : 2741 Tue Jul 31 18:57:27 2007 length 7 : 1489 Tue Jul 31 18:57:27 2007 length 9+: 1519 Tue Jul 31 18:57:27 2007 largest cycle: 18 relations Tue Jul 31 18:57:28 2007 matrix is 54972 x 55354 with weight 2949435 (avg 53.28/col) Tue Jul 31 18:57:28 2007 filtering completed in 3 passes Tue Jul 31 18:57:28 2007 matrix is 49563 x 49627 with weight 2651538 (avg 53.43/col) Tue Jul 31 18:57:29 2007 saving the first 48 matrix rows for later Tue Jul 31 18:57:29 2007 matrix is 49515 x 49627 with weight 2025706 (avg 40.82/col) Tue Jul 31 18:57:29 2007 matrix includes 64 packed rows Tue Jul 31 18:57:29 2007 commencing Lanczos iteration Tue Jul 31 18:58:45 2007 lanczos halted after 785 iterations Tue Jul 31 18:58:46 2007 recovered 12 nontrivial dependencies Tue Jul 31 18:58:46 2007 prp42 factor: 245476063044641766698278446037400797293497 Tue Jul 31 18:58:46 2007 prp44 factor: 36697498431299323192437388994595232599875443 Tue Jul 31 18:58:46 2007 elapsed time 00:31:35 AMD 64 3400+ |
name 名前 | Robert Backstrom |
---|---|
date 日付 | August 2, 2007 12:59:58 UTC 2007 年 8 月 2 日 (木) 21 時 59 分 58 秒 (日本時間) |
composite number 合成数 | 119024360921276121842517421424303849703442150179435383100670930768158762553946642889669912459689870973548741157857<114> |
prime factors 素因数 | 1514672391291856973675707124754820474913203927051<49> 78580927206153670651740539814203277361304443804223185859614493507<65> |
factorization results 素因数分解の結果 | Number: n N=119024360921276121842517421424303849703442150179435383100670930768158762553946642889669912459689870973548741157857 ( 114 digits) SNFS difficulty: 132 digits. Divisors found: r1=1514672391291856973675707124754820474913203927051 (pp49) r2=78580927206153670651740539814203277361304443804223185859614493507 (pp65) Version: GGNFS-0.77.1-20051202-athlon Total time: 4.29 hours. Scaled time: 5.12 units (timescale=1.193). Factorization parameters were as follows: name: KA_7_0_131_3 n: 119024360921276121842517421424303849703442150179435383100670930768158762553946642889669912459689870973548741157857 type: snfs skew: 0.34 deg: 5 c5: 700 c0: 3 m: 100000000000000000000000000 rlim: 900000 alim: 900000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 50000 Factor base limits: 900000/900000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 700001) Primes: RFBsize:71274, AFBsize:71340, largePrimes:3740700 encountered Relations: rels:3055228, finalFF:161685 Max relations in full relation-set: 28 Initial matrix: 142681 x 161685 with sparse part having weight 7259713. Pruned matrix : 128325 x 129102 with weight 4802914. Total sieving time: 3.74 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.40 hours. Total square root time: 0.05 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,132,5,0,0,0,0,0,0,0,0,900000,900000,28,28,48,48,2.2,2.2,50000 total time: 4.29 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+ |
name 名前 | Robert Backstrom |
---|---|
date 日付 | July 31, 2007 10:02:14 UTC 2007 年 7 月 31 日 (火) 19 時 2 分 14 秒 (日本時間) |
composite number 合成数 | 26439604183568695431333540511848343933708312285905784586381054531841927202958085090487801<89> |
prime factors 素因数 | 8783383808652802647890907770843019907393<40> 3010184316154118713322706068056130317359871964857<49> |
factorization results 素因数分解の結果 | Tue Jul 31 19:07:15 2007 Tue Jul 31 19:07:15 2007 Tue Jul 31 19:07:15 2007 Msieve v. 1.25 Tue Jul 31 19:07:15 2007 random seeds: d5724f40 7200004e Tue Jul 31 19:07:15 2007 factoring 26439604183568695431333540511848343933708312285905784586381054531841927202958085090487801 (89 digits) Tue Jul 31 19:07:15 2007 commencing quadratic sieve (89-digit input) Tue Jul 31 19:07:15 2007 using multiplier of 1 Tue Jul 31 19:07:15 2007 using 64kb Opteron sieve core Tue Jul 31 19:07:15 2007 sieve interval: 15 blocks of size 65536 Tue Jul 31 19:07:15 2007 processing polynomials in batches of 7 Tue Jul 31 19:07:15 2007 using a sieve bound of 1544831 (58667 primes) Tue Jul 31 19:07:15 2007 using large prime bound of 123586480 (26 bits) Tue Jul 31 19:07:15 2007 using double large prime bound of 367745783685200 (42-49 bits) Tue Jul 31 19:07:15 2007 using trial factoring cutoff of 49 bits Tue Jul 31 19:07:15 2007 polynomial 'A' values have 11 factors Tue Jul 31 19:50:38 2007 58799 relations (16800 full + 41999 combined from 610095 partial), need 58763 Tue Jul 31 19:50:38 2007 begin with 626895 relations Tue Jul 31 19:50:39 2007 reduce to 139283 relations in 10 passes Tue Jul 31 19:50:39 2007 attempting to read 139283 relations Tue Jul 31 19:50:40 2007 recovered 139283 relations Tue Jul 31 19:50:40 2007 recovered 109037 polynomials Tue Jul 31 19:50:40 2007 attempting to build 58799 cycles Tue Jul 31 19:50:41 2007 found 58799 cycles in 5 passes Tue Jul 31 19:50:41 2007 distribution of cycle lengths: Tue Jul 31 19:50:41 2007 length 1 : 16800 Tue Jul 31 19:50:41 2007 length 2 : 11719 Tue Jul 31 19:50:41 2007 length 3 : 10451 Tue Jul 31 19:50:41 2007 length 4 : 7497 Tue Jul 31 19:50:41 2007 length 5 : 5180 Tue Jul 31 19:50:41 2007 length 6 : 3241 Tue Jul 31 19:50:41 2007 length 7 : 1863 Tue Jul 31 19:50:41 2007 length 9+: 2048 Tue Jul 31 19:50:41 2007 largest cycle: 18 relations Tue Jul 31 19:50:41 2007 matrix is 58667 x 58799 with weight 3374117 (avg 57.38/col) Tue Jul 31 19:50:42 2007 filtering completed in 3 passes Tue Jul 31 19:50:42 2007 matrix is 53856 x 53920 with weight 3132205 (avg 58.09/col) Tue Jul 31 19:50:43 2007 saving the first 48 matrix rows for later Tue Jul 31 19:50:43 2007 matrix is 53808 x 53920 with weight 2508505 (avg 46.52/col) Tue Jul 31 19:50:43 2007 matrix includes 64 packed rows Tue Jul 31 19:50:43 2007 using block size 21568 for processor cache size 512 kB Tue Jul 31 19:50:43 2007 commencing Lanczos iteration Tue Jul 31 19:51:11 2007 lanczos halted after 852 iterations Tue Jul 31 19:51:11 2007 recovered 17 nontrivial dependencies Tue Jul 31 19:51:11 2007 prp40 factor: 8783383808652802647890907770843019907393 Tue Jul 31 19:51:11 2007 prp49 factor: 3010184316154118713322706068056130317359871964857 Tue Jul 31 19:51:11 2007 elapsed time 00:43:56 AMD 64 3400+ |
name 名前 | Robert Backstrom |
---|---|
date 日付 | August 2, 2007 09:35:13 UTC 2007 年 8 月 2 日 (木) 18 時 35 分 13 秒 (日本時間) |
composite number 合成数 | 733539978030426032474138343766645879888898534474528389024587518339851243854978692112465545639290426570208439273154088059<120> |
prime factors 素因数 | 498282829674007715259141593888416290550964085919<48> 1472135771787141323267702134218700861789671776680188265909145553844113061<73> |
factorization results 素因数分解の結果 | Number: n N=733539978030426032474138343766645879888898534474528389024587518339851243854978692112465545639290426570208439273154088059 ( 120 digits) SNFS difficulty: 135 digits. Divisors found: r1=498282829674007715259141593888416290550964085919 (pp48) r2=1472135771787141323267702134218700861789671776680188265909145553844113061 (pp73) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 3.62 hours. Scaled time: 4.92 units (timescale=1.358). Factorization parameters were as follows: name: KA_7_0_134_3 n: 733539978030426032474138343766645879888898534474528389024587518339851243854978692112465545639290426570208439273154088059 skew: 0.84 deg: 5 c5: 7 c0: 3 m: 1000000000000000000000000000 type: snfs rlim: 1000000 alim: 1000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 550001) Primes: RFBsize:78498, AFBsize:78031, largePrimes:5443174 encountered Relations: rels:4746285, finalFF:189754 Max relations in full relation-set: 28 Initial matrix: 156594 x 189754 with sparse part having weight 15131695. Pruned matrix : 142669 x 143515 with weight 9259290. Total sieving time: 3.03 hours. Total relation processing time: 0.12 hours. Matrix solve time: 0.43 hours. Total square root time: 0.05 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,135,5,0,0,0,0,0,0,0,0,1000000,1000000,28,28,48,48,2.5,2.5,75000 total time: 3.62 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+ |
name 名前 | Robert Backstrom |
---|---|
date 日付 | July 31, 2007 07:03:28 UTC 2007 年 7 月 31 日 (火) 16 時 3 分 28 秒 (日本時間) |
composite number 合成数 | 70000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003<137> |
prime factors 素因数 | 189532579450789969799143826592293<33> 2381835865531583487969941738318774107993447<43> 155060912820934332646084226028944988675098343203271382941181793<63> |
factorization results 素因数分解の結果 | Number: n N=70000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003 ( 137 digits) SNFS difficulty: 136 digits. Divisors found: r1=189532579450789969799143826592293 (pp33) r2=2381835865531583487969941738318774107993447 (pp43) r3=155060912820934332646084226028944988675098343203271382941181793 (pp63) Version: GGNFS-0.77.1-20051202-athlon Total time: 5.52 hours. Scaled time: 8.03 units (timescale=1.455). Factorization parameters were as follows: name: KA_7_0_135_3 n: 70000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003 skew: 0.53 deg: 5 c5: 70 c0: 3 m: 1000000000000000000000000000 type: snfs rlim: 1000000 alim: 1000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 900001) Primes: RFBsize:78498, AFBsize:78021, largePrimes:6514103 encountered Relations: rels:5824178, finalFF:190944 Max relations in full relation-set: 28 Initial matrix: 156586 x 190944 with sparse part having weight 19426214. Pruned matrix : 147516 x 148362 with weight 12985709. Total sieving time: 4.77 hours. Total relation processing time: 0.15 hours. Matrix solve time: 0.53 hours. Total square root time: 0.07 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,136,5,0,0,0,0,0,0,0,0,1000000,1000000,28,28,48,48,2.5,2.5,75000 total time: 5.52 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+ |
name 名前 | Sinkiti Sibata |
---|---|
date 日付 | August 1, 2007 18:50:01 UTC 2007 年 8 月 2 日 (木) 3 時 50 分 1 秒 (日本時間) |
composite number 合成数 | 5479612061930819937675113993646705222614196918682242006504828855291692670246697931177796783015886771433<103> |
prime factors 素因数 | 139631923964055191736784404269<30> 39243261185324721562992298947369650901900632234898044840233858916987494957<74> |
factorization results 素因数分解の結果 | Number: 70003_137 N=5479612061930819937675113993646705222614196918682242006504828855291692670246697931177796783015886771433 ( 103 digits) SNFS difficulty: 137 digits. Divisors found: r1=139631923964055191736784404269 (pp30) r2=39243261185324721562992298947369650901900632234898044840233858916987494957 (pp74) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 9.59 hours. Scaled time: 6.54 units (timescale=0.682). Factorization parameters were as follows: name: 70003_137 n: 5479612061930819937675113993646705222614196918682242006504828855291692670246697931177796783015886771433 m: 1000000000000000000000000000 c5: 700 c0: 3 skew: 0.34 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 1375001) Primes: RFBsize:78498, AFBsize:63898, largePrimes:1539023 encountered Relations: rels:1533849, finalFF:161515 Max relations in full relation-set: 0 Initial matrix: 142463 x 161515 with sparse part having weight 13047221. Pruned matrix : 136623 x 137399 with weight 9876416. Total sieving time: 9.04 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.40 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,137,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 9.59 hours. --------- CPU info (if available) ---------- |
execution environment 実行環境 | Pentium 4 2.4GHz, Windows XP and Cygwin) |
name 名前 | Sinkiti Sibata |
---|---|
date 日付 | August 2, 2007 20:00:31 UTC 2007 年 8 月 3 日 (金) 5 時 0 分 31 秒 (日本時間) |
composite number 合成数 | 14265902958935973680620930474842135188483839358780870437646100498699296745754482441030588187552932849553<104> |
prime factors 素因数 | 39500434691109480414761661938549<32> 361158125739483496643032610400546386075176007047634753673066706124874797<72> |
factorization results 素因数分解の結果 | Number: 70003_138 N=14265902958935973680620930474842135188483839358780870437646100498699296745754482441030588187552932849553 ( 104 digits) SNFS difficulty: 138 digits. Divisors found: r1=39500434691109480414761661938549 (pp32) r2=361158125739483496643032610400546386075176007047634753673066706124874797 (pp72) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 12.90 hours. Scaled time: 8.80 units (timescale=0.682). Factorization parameters were as follows: name: 70003_138 n: 14265902958935973680620930474842135188483839358780870437646100498699296745754482441030588187552932849553 m: 1000000000000000000000000000 c5: 7000 c0: 3 skew: 0.21 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 1750001) Primes: RFBsize:78498, AFBsize:64153, largePrimes:1565292 encountered Relations: rels:1549696, finalFF:159894 Max relations in full relation-set: 0 Initial matrix: 142718 x 159894 with sparse part having weight 17823941. Pruned matrix : 138506 x 139283 with weight 13759036. Total sieving time: 12.18 hours. Total relation processing time: 0.11 hours. Matrix solve time: 0.54 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,138,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 12.90 hours. --------- CPU info (if available) ---------- |
execution environment 実行環境 | Pentium 4 2.4GHz, Windows XP and Cygwin) |
name 名前 | Sinkiti Sibata |
---|---|
date 日付 | August 2, 2007 05:14:21 UTC 2007 年 8 月 2 日 (木) 14 時 14 分 21 秒 (日本時間) |
composite number 合成数 | 18598132598981632690429372380577188394736092833600211994959614409569142544257818749339461669680023478312571<107> |
prime factors 素因数 | 278323359075849334609317178348129<33> 66822032691525636457754568132542380413223137289570793768530446299737118299<74> |
factorization results 素因数分解の結果 | Number: 70003_140 N=18598132598981632690429372380577188394736092833600211994959614409569142544257818749339461669680023478312571 ( 107 digits) SNFS difficulty: 140 digits. Divisors found: r1=278323359075849334609317178348129 (pp33) r2=66822032691525636457754568132542380413223137289570793768530446299737118299 (pp74) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 9.94 hours. Scaled time: 6.78 units (timescale=0.682). Factorization parameters were as follows: name: 70003_140 n: 18598132598981632690429372380577188394736092833600211994959614409569142544257818749339461669680023478312571 m: 10000000000000000000000000000 c5: 7 c0: 3 skew: 0.84 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [650000, 1550001) Primes: RFBsize:100021, AFBsize:99538, largePrimes:2645025 encountered Relations: rels:2617239, finalFF:224213 Max relations in full relation-set: 0 Initial matrix: 199624 x 224213 with sparse part having weight 12939835. Pruned matrix : 190257 x 191319 with weight 10105839. Total sieving time: 9.03 hours. Total relation processing time: 0.11 hours. Matrix solve time: 0.72 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,140,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 9.94 hours. --------- CPU info (if available) ---------- |
execution environment 実行環境 | Pentium 4 2.4GHz, Windows XP and Cygwin) |
name 名前 | Robert Backstrom |
---|---|
date 日付 | August 6, 2007 05:43:22 UTC 2007 年 8 月 6 日 (月) 14 時 43 分 22 秒 (日本時間) |
composite number 合成数 | 407955737430738536692939991644316206131841159102557048096582503950767590461218943000918208625655443001223610844649<114> |
prime factors 素因数 | 99615388886871440186141889727022388487187792018971<50> 4095308385474807274359199791739966295408609792078800566560390219<64> |
factorization results 素因数分解の結果 | Number: n N=407955737430738536692939991644316206131841159102557048096582503950767590461218943000918208625655443001223610844649 ( 114 digits) SNFS difficulty: 143 digits. Divisors found: r1=99615388886871440186141889727022388487187792018971 (pp50) r2=4095308385474807274359199791739966295408609792078800566560390219 (pp64) Version: GGNFS-0.77.1-20051202-athlon Total time: 8.69 hours. Scaled time: 11.45 units (timescale=1.318). Factorization parameters were as follows: name: KA_7_0_142_3 n: 407955737430738536692939991644316206131841159102557048096582503950767590461218943000918208625655443001223610844649 skew: 0.21 deg: 5 c5: 7000 c0: 3 m: 10000000000000000000000000000 type: snfs rlim: 1300000 alim: 1300000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1200001) Primes: RFBsize:100021, AFBsize:100188, largePrimes:6536058 encountered Relations: rels:5813023, finalFF:258829 Max relations in full relation-set: 48 Initial matrix: 200276 x 258829 with sparse part having weight 33020205. Pruned matrix : 185384 x 186449 with weight 17965451. Total sieving time: 7.28 hours. Total relation processing time: 0.18 hours. Matrix solve time: 1.13 hours. Total square root time: 0.09 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,143,5,0,0,0,0,0,0,0,0,1300000,1300000,28,28,48,48,2.5,2.5,100000 total time: 8.69 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+ |
name 名前 | Robert Backstrom |
---|---|
date 日付 | July 31, 2007 23:02:27 UTC 2007 年 8 月 1 日 (水) 8 時 2 分 27 秒 (日本時間) |
composite number 合成数 | 22213689941209063158208924297571722939004404285708946735588677498261543842008297054574418225109352683<101> |
prime factors 素因数 | 54389898345654421049856493544427544048520119<44> 408415728230237921555405467245794348472339374239159426157<57> |
factorization results 素因数分解の結果 | Number: n N=22213689941209063158208924297571722939004404285708946735588677498261543842008297054574418225109352683 ( 101 digits) Divisors found: r1=54389898345654421049856493544427544048520119 (pp44) r2=408415728230237921555405467245794348472339374239159426157 (pp57) Version: GGNFS-0.77.1-20051202-athlon Total time: 5.98 hours. Scaled time: 8.61 units (timescale=1.440). Factorization parameters were as follows: name: n n: 22213689941209063158208924297571722939004404285708946735588677498261543842008297054574418225109352683 skew: 9797.27 # norm 1.17e+14 c5: 52860 c4: 698483228 c3: -14911543473265 c2: -55584912348479370 c1: 671780603124125519596 c0: 65049529035605759990224 # alpha -6.39 Y1: 18029502491 Y0: -13325918615022094611 # Murphy_E 3.27e-09 # M 11752346036422637204237551646785296678119824290663937408764580117521053325165969638739266765025892067 type: gnfs rlim: 1800000 alim: 1800000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 800001) Primes: RFBsize:135072, AFBsize:135185, largePrimes:3524807 encountered Relations: rels:3561278, finalFF:435975 Max relations in full relation-set: 28 Initial matrix: 270338 x 435975 with sparse part having weight 24359364. Pruned matrix : 135847 x 137262 with weight 7808751. Total sieving time: 5.46 hours. Total relation processing time: 0.14 hours. Matrix solve time: 0.28 hours. Total square root time: 0.10 hours, sqrts: 2. Prototype def-par.txt line would be: gnfs,100,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,26,26,48,48,2.5,2.5,100000 total time: 5.98 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+ |
name 名前 | Sinkiti Sibata |
---|---|
date 日付 | August 4, 2007 13:18:48 UTC 2007 年 8 月 4 日 (土) 22 時 18 分 48 秒 (日本時間) |
composite number 合成数 | 212084016898807566754857352490161533118634629504259292309654861162435026120974930470578532991845919966137704006103901<117> |
prime factors 素因数 | 49184959607580348859573544470471<32> 4311968914702968224249026994416631354378899830941813009414303440243079537179314918331<85> |
factorization results 素因数分解の結果 | Number: 70003_147 N=212084016898807566754857352490161533118634629504259292309654861162435026120974930470578532991845919966137704006103901 ( 117 digits) SNFS difficulty: 147 digits. Divisors found: r1=49184959607580348859573544470471 (pp32) r2=4311968914702968224249026994416631354378899830941813009414303440243079537179314918331 (pp85) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 22.87 hours. Scaled time: 15.60 units (timescale=0.682). Factorization parameters were as follows: name: 70003_147 n: 212084016898807566754857352490161533118634629504259292309654861162435026120974930470578532991845919966137704006103901 m: 100000000000000000000000000000 c5: 700 c0: 3 skew: 0.34 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [750000, 2850001) Primes: RFBsize:114155, AFBsize:114337, largePrimes:2762094 encountered Relations: rels:2702598, finalFF:256255 Max relations in full relation-set: 0 Initial matrix: 228559 x 256255 with sparse part having weight 29944652. Pruned matrix : 220754 x 221960 with weight 23313853. Total sieving time: 20.76 hours. Total relation processing time: 0.17 hours. Matrix solve time: 1.83 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: snfs,147,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,100000 total time: 22.87 hours. --------- CPU info (if available) ---------- |
execution environment 実行環境 | Pentium 4 2.4GHz, Windows XP and Cygwin) |
name 名前 | Robert Backstrom |
---|---|
date 日付 | August 3, 2007 02:31:19 UTC 2007 年 8 月 3 日 (金) 11 時 31 分 19 秒 (日本時間) |
composite number 合成数 | 1364974401952552982797637104512560523696218862959553488013662535779635256610215160329990751518441398909225555838538581966703087433649813048231<142> |
prime factors 素因数 | 1248139200509574640907510234705365019<37> 668778149760661722591247508440960905084930985277<48> 1635232116045943944454517876533152037422559560020696414537<58> |
factorization results 素因数分解の結果 | Number: n N=1364974401952552982797637104512560523696218862959553488013662535779635256610215160329990751518441398909225555838538581966703087433649813048231 ( 142 digits) SNFS difficulty: 148 digits. Divisors found: r1=1248139200509574640907510234705365019 (pp37) r2=668778149760661722591247508440960905084930985277 (pp48) r3=1635232116045943944454517876533152037422559560020696414537 (pp58) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 16.09 hours. Scaled time: 21.91 units (timescale=1.362). Factorization parameters were as follows: name: KA_7_0_147_3 n: 1364974401952552982797637104512560523696218862959553488013662535779635256610215160329990751518441398909225555838538581966703087433649813048231 skew: 0.21 deg: 5 c5: 7000 c0: 3 m: 100000000000000000000000000000 type: snfs rlim: 1500000 alim: 1500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 2000001) Primes: RFBsize:114155, AFBsize:114347, largePrimes:7377130 encountered Relations: rels:6857385, finalFF:270003 Max relations in full relation-set: 28 Initial matrix: 228569 x 270003 with sparse part having weight 30080076. Pruned matrix : 218314 x 219520 with weight 22382143. Total sieving time: 14.03 hours. Total relation processing time: 0.24 hours. Matrix solve time: 1.64 hours. Total square root time: 0.17 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,148,5,0,0,0,0,0,0,0,0,1500000,1500000,28,28,48,48,2.5,2.5,100000 total time: 16.09 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+ |
name 名前 | Robert Backstrom |
---|---|
date 日付 | August 4, 2007 01:03:12 UTC 2007 年 8 月 4 日 (土) 10 時 3 分 12 秒 (日本時間) |
composite number 合成数 | 14379248154270385139813463545958394801202417801191544982206419087617630689229379296085630002943418668516430905971555961007<122> |
prime factors 素因数 | 2860432727051506986615284475786112947115219635815431<52> 5026948551624322877511681422548970043126094617265313823362275760438297<70> |
factorization results 素因数分解の結果 | Number: n N=14379248154270385139813463545958394801202417801191544982206419087617630689229379296085630002943418668516430905971555961007 ( 122 digits) SNFS difficulty: 150 digits. Divisors found: r1=2860432727051506986615284475786112947115219635815431 (pp52) r2=5026948551624322877511681422548970043126094617265313823362275760438297 (pp70) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 14.95 hours. Scaled time: 20.40 units (timescale=1.365). Factorization parameters were as follows: name: KA_7_0_149_3 n: 14379248154270385139813463545958394801202417801191544982206419087617630689229379296085630002943418668516430905971555961007 skew: 0.84 deg: 5 c5: 7 c0: 3 m: 1000000000000000000000000000000 type: snfs rlim: 2000000 alim: 2000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 700001) Primes: RFBsize:148933, AFBsize:148270, largePrimes:5983637 encountered Relations: rels:5373975, finalFF:333157 Max relations in full relation-set: 28 Initial matrix: 297268 x 333157 with sparse part having weight 22706688. Pruned matrix : 269197 x 270747 with weight 15488628. Total sieving time: 13.19 hours. Total relation processing time: 0.15 hours. Matrix solve time: 1.53 hours. Total square root time: 0.08 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,150,5,0,0,0,0,0,0,0,0,2000000,2000000,28,28,48,48,2.5,2.5,100000 total time: 14.95 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+ |
name 名前 | Robert Backstrom |
---|---|
date 日付 | August 4, 2007 00:45:07 UTC 2007 年 8 月 4 日 (土) 9 時 45 分 7 秒 (日本時間) |
composite number 合成数 | 37423691459111630694213075267719021502276516612327799793244021635177923501617996604911113655109015687913454442940049105499674605998317941207<140> |
prime factors 素因数 | 710664466259752258736962985632455239789<39> 52660141650353797139373582732951853429418586057828085008415146466989469864283870303119649117935460563<101> |
factorization results 素因数分解の結果 | Number: n N=37423691459111630694213075267719021502276516612327799793244021635177923501617996604911113655109015687913454442940049105499674605998317941207 ( 140 digits) SNFS difficulty: 152 digits. Divisors found: r1=710664466259752258736962985632455239789 (pp39) r2=52660141650353797139373582732951853429418586057828085008415146466989469864283870303119649117935460563 (pp101) Version: GGNFS-0.77.1-20051202-athlon Total time: 26.23 hours. Scaled time: 31.40 units (timescale=1.197). Factorization parameters were as follows: name: KA_7_0_151_3 n: 37423691459111630694213075267719021502276516612327799793244021635177923501617996604911113655109015687913454442940049105499674605998317941207 type: snfs skew: 0.34 deg: 5 c5: 700 c0: 3 m: 1000000000000000000000000000000 rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1000001) Primes: RFBsize:216816, AFBsize:216741, largePrimes:6016357 encountered Relations: rels:5499110, finalFF:498155 Max relations in full relation-set: 28 Initial matrix: 433624 x 498155 with sparse part having weight 22030485. Pruned matrix : 366825 x 369057 with weight 12772769. Total sieving time: 23.88 hours. Total relation processing time: 0.19 hours. Matrix solve time: 2.02 hours. Total square root time: 0.14 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,152,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.3,2.3,100000 total time: 26.23 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+ |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | September 16, 2007 06:58:07 UTC 2007 年 9 月 16 日 (日) 15 時 58 分 7 秒 (日本時間) |
composite number 合成数 | 16998600397783389175759249569289061087069302188459355668140254648218552381501175502221072936905279990154489333515869992693852871047<131> |
prime factors 素因数 | 2379079812909254428043276041211980572721289410506055623377<58> 7145031581347695270977233930386125972534532154126683920313280001705450711<73> |
factorization results 素因数分解の結果 | Number: 70003_153 N=16998600397783389175759249569289061087069302188459355668140254648218552381501175502221072936905279990154489333515869992693852871047 ( 131 digits) SNFS difficulty: 155 digits. Divisors found: r1=2379079812909254428043276041211980572721289410506055623377 (pp58) r2=7145031581347695270977233930386125972534532154126683920313280001705450711 (pp73) Version: GGNFS-0.77.1-20050930-nocona Total time: 20.08 hours. Scaled time: 42.73 units (timescale=2.128). Factorization parameters were as follows: n: 16998600397783389175759249569289061087069302188459355668140254648218552381501175502221072936905279990154489333515869992693852871047 m: 10000000000000000000000000000000 c5: 7 c0: 300 skew: 2.12 type: snfs Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 2700001) Primes: RFBsize:216816, AFBsize:216676, largePrimes:5675578 encountered Relations: rels:5689109, finalFF:598690 Max relations in full relation-set: 28 Initial matrix: 433559 x 598690 with sparse part having weight 47345346. Pruned matrix : 332263 x 334494 with weight 29525513. Total sieving time: 19.32 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.62 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 20.08 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167564k/8912896k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.37 BogoMIPS (lpj=2407686) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405131) Total of 4 processors activated (19246.11 BogoMIPS). |
execution environment 実行環境 | Core 2 Quad Q6600 |
name 名前 | Robert Backstrom |
---|---|
date 日付 | August 18, 2007 15:22:35 UTC 2007 年 8 月 19 日 (日) 0 時 22 分 35 秒 (日本時間) |
composite number 合成数 | 53082836237769857722135010860503485221907656970354532121622796129493381197886353182035304221918803574861216603875564877388744020202012977<137> |
prime factors 素因数 | 1122763019112328991917896688146547<34> 47278753694379635584088304024046021007264290269515393607169408994420953596008025338686045504887530367691<104> |
factorization results 素因数分解の結果 | Number: n N=53082836237769857722135010860503485221907656970354532121622796129493381197886353182035304221918803574861216603875564877388744020202012977 ( 137 digits) SNFS difficulty: 156 digits. Divisors found: r1=1122763019112328991917896688146547 (pp34) r2=47278753694379635584088304024046021007264290269515393607169408994420953596008025338686045504887530367691 (pp104) Version: GGNFS-0.77.1-20051202-athlon Total time: 48.61 hours. Scaled time: 58.14 units (timescale=1.196). Factorization parameters were as follows: name: KA_7_0_155_3 n: 53082836237769857722135010860503485221907656970354532121622796129493381197886353182035304221918803574861216603875564877388744020202012977 type: snfs skew: 1.00 deg: 5 c5: 70 c0: 3 m: 10000000000000000000000000000000 rlim: 2000000 alim: 2000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 50000 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 2100001) Primes: RFBsize:148933, AFBsize:148155, largePrimes:7023899 encountered Relations: rels:6408331, finalFF:334175 Max relations in full relation-set: 28 Initial matrix: 297155 x 334175 with sparse part having weight 35120249. Pruned matrix : 287404 x 288953 with weight 27659186. Total sieving time: 44.44 hours. Total relation processing time: 0.30 hours. Matrix solve time: 3.56 hours. Total square root time: 0.31 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,2000000,2000000,28,28,48,48,2.3,2.3,100000 total time: 48.61 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+ |
name 名前 | Robert Backstrom |
---|---|
date 日付 | August 17, 2007 16:20:24 UTC 2007 年 8 月 18 日 (土) 1 時 20 分 24 秒 (日本時間) |
composite number 合成数 | 14787936384321003708141216422843185879204009734434037034013241495186860920918712525674496781342997140195863042629969015291500910654045277<137> |
prime factors 素因数 | 289487332555897025292304347439098723403965940378647989<54> 51083189905954193522289990799875185494212136099456609629347350039925026063426710793<83> |
factorization results 素因数分解の結果 | Number: n N=14787936384321003708141216422843185879204009734434037034013241495186860920918712525674496781342997140195863042629969015291500910654045277 ( 137 digits) SNFS difficulty: 157 digits. Divisors found: r1=289487332555897025292304347439098723403965940378647989 (pp54) r2=51083189905954193522289990799875185494212136099456609629347350039925026063426710793 (pp83) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 31.10 hours. Scaled time: 42.45 units (timescale=1.365). Factorization parameters were as follows: name: KA_7_0_156_3 n: 14787936384321003708141216422843185879204009734434037034013241495186860920918712525674496781342997140195863042629969015291500910654045277 skew: 1.00 deg: 5 c5: 700 c0: 3 m: 10000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1300001) Primes: RFBsize:216816, AFBsize:216741, largePrimes:6935490 encountered Relations: rels:6416479, finalFF:495576 Max relations in full relation-set: 28 Initial matrix: 433624 x 495576 with sparse part having weight 32902854. Pruned matrix : 382603 x 384835 with weight 21351181. Total sieving time: 28.05 hours. Total relation processing time: 0.20 hours. Matrix solve time: 2.62 hours. Total square root time: 0.22 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,157,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 31.10 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+ |
name 名前 | Robert Backstrom |
---|---|
date 日付 | August 2, 2007 19:51:08 UTC 2007 年 8 月 3 日 (金) 4 時 51 分 8 秒 (日本時間) |
composite number 合成数 | 18918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918919<158> |
prime factors 素因数 | 4683555637807654711165402911872475397796795663167619<52> 4039435074966837668459019948543510692643700803297645131234240674842966427190365006893589626840507633222701<106> |
factorization results 素因数分解の結果 | Number: n N=18918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918919 ( 158 digits) SNFS difficulty: 158 digits. Divisors found: r1=4683555637807654711165402911872475397796795663167619 (pp52) r2=4039435074966837668459019948543510692643700803297645131234240674842966427190365006893589626840507633222701 (pp106) Version: GGNFS-0.77.1-20051202-athlon Total time: 38.49 hours. Scaled time: 51.00 units (timescale=1.325). Factorization parameters were as follows: name: KA_7_0_157_3 n: 18918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918919 skew: 0.21 deg: 5 c5: 7000 c0: 3 m: 10000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1600001) Primes: RFBsize:250150, AFBsize:249771, largePrimes:7165440 encountered Relations: rels:6701601, finalFF:585929 Max relations in full relation-set: 48 Initial matrix: 499988 x 585929 with sparse part having weight 38496719. Pruned matrix : 424349 x 426912 with weight 22476047. Total sieving time: 34.02 hours. Total relation processing time: 0.22 hours. Matrix solve time: 4.17 hours. Total square root time: 0.08 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,158,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 38.49 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+ |
name 名前 | Robert Backstrom |
---|---|
date 日付 | August 12, 2007 00:15:32 UTC 2007 年 8 月 12 日 (日) 9 時 15 分 32 秒 (日本時間) |
composite number 合成数 | 6368659357987869688073561004013094128236058980958992215610258085707689898194797495537752585473375498765201263898209639690325753644190663517010979507<148> |
prime factors 素因数 | 3753845625711756879793515975255349607797<40> 1696569329960212414283207012646965391569808922194244639849139334297461697448507406571284397297756255793527431<109> |
factorization results 素因数分解の結果 | Number: n N=6368659357987869688073561004013094128236058980958992215610258085707689898194797495537752585473375498765201263898209639690325753644190663517010979507 ( 148 digits) SNFS difficulty: 161 digits. Divisors found: r1=3753845625711756879793515975255349607797 (pp40) r2=1696569329960212414283207012646965391569808922194244639849139334297461697448507406571284397297756255793527431 (pp109) Version: GGNFS-0.77.1-20051202-athlon Total time: 52.92 hours. Scaled time: 76.63 units (timescale=1.448). Factorization parameters were as follows: name: KA_7_0_160_3 n: 6368659357987869688073561004013094128236058980958992215610258085707689898194797495537752585473375498765201263898209639690325753644190663517010979507 skew: 0.53 deg: 5 c5: 70 c0: 3 m: 100000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 2400001) Primes: RFBsize:250150, AFBsize:249361, largePrimes:7501056 encountered Relations: rels:7035914, finalFF:574163 Max relations in full relation-set: 28 Initial matrix: 499578 x 574163 with sparse part having weight 42428847. Pruned matrix : 441215 x 443776 with weight 29106337. Total sieving time: 46.77 hours. Total relation processing time: 0.24 hours. Matrix solve time: 5.57 hours. Total square root time: 0.34 hours, sqrts: 4. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 52.92 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+ |
name 名前 | Sinkiti Sibata |
---|---|
date 日付 | August 5, 2007 10:14:30 UTC 2007 年 8 月 5 日 (日) 19 時 14 分 30 秒 (日本時間) |
composite number 合成数 | 39197392403144687459815035426745024063531397479986412229829216553848174308140333001931690855527749962515357<107> |
prime factors 素因数 | 329805675824054241199035943707983<33> 118849963103897079083614037915925391439183742364207872856583449031842800979<75> |
factorization results 素因数分解の結果 | Number: 70003_164 N=39197392403144687459815035426745024063531397479986412229829216553848174308140333001931690855527749962515357 ( 107 digits) Divisors found: r1=329805675824054241199035943707983 (pp33) r2=118849963103897079083614037915925391439183742364207872856583449031842800979 (pp75) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 19.99 hours. Scaled time: 13.63 units (timescale=0.682). Factorization parameters were as follows: name: 70003_164 n: 39197392403144687459815035426745024063531397479986412229829216553848174308140333001931690855527749962515357 skew: 20910.15 # norm 1.06e+15 c5: 9720 c4: 2125480070 c3: -30292207723211 c2: -241365060444554346 c1: 6224386460235202586792 c0: 9860520441272134662836800 # alpha -6.80 Y1: 174301888739 Y0: -331977164050768224741 # Murphy_E 1.59e-09 # M 19494045783360941309357024716550423366184593205803102929257298699651293357014392618726071159638485253850725 type: gnfs rlim: 2500000 alim: 2500000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 150000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1250000, 2300001) Primes: RFBsize:183072, AFBsize:182671, largePrimes:4488141 encountered Relations: rels:4624312, finalFF:419683 Max relations in full relation-set: 0 Initial matrix: 365820 x 419683 with sparse part having weight 23910189. Pruned matrix : 319973 x 321866 with weight 16314933. Polynomial selection time: 1.16 hours. Total sieving time: 15.72 hours. Total relation processing time: 0.22 hours. Matrix solve time: 2.66 hours. Time per square root: 0.23 hours. Prototype def-par.txt line would be: gnfs,106,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,2500000,26,26,49,49,2.6,2.6,150000 total time: 19.99 hours. --------- CPU info (if available) ---------- |
execution environment 実行環境 | Pentium 4 2.4GHz, Windows XP and Cygwin) |
name 名前 | Robert Backstrom |
---|---|
date 日付 | August 3, 2007 05:10:17 UTC 2007 年 8 月 3 日 (金) 14 時 10 分 17 秒 (日本時間) |
composite number 合成数 | 7000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003<166> |
prime factors 素因数 | 152833588533830632515504625196129899<36> 2783607568442084600657258901797095301845534239737<49> 16453989692271955709439095429034688807841041398306296314589415102129894839413356881<83> |
factorization results 素因数分解の結果 | Number: n N=7000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003 ( 166 digits) SNFS difficulty: 165 digits. Divisors found: r1=152833588533830632515504625196129899 (pp36) r2=2783607568442084600657258901797095301845534239737 (pp49) r3=16453989692271955709439095429034688807841041398306296314589415102129894839413356881 (pp83) Version: GGNFS-0.77.1-20051202-athlon Total time: 52.97 hours. Scaled time: 76.80 units (timescale=1.450). Factorization parameters were as follows: name: KA_7_0_164_3 n: 7000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003 skew: 0.84 deg: 5 c5: 7 c0: 3 m: 1000000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 2400001) Primes: RFBsize:250150, AFBsize:249766, largePrimes:7413466 encountered Relations: rels:6928393, finalFF:560270 Max relations in full relation-set: 28 Initial matrix: 499981 x 560270 with sparse part having weight 40280814. Pruned matrix : 452422 x 454985 with weight 28649122. Total sieving time: 46.55 hours. Total relation processing time: 0.23 hours. Matrix solve time: 5.70 hours. Total square root time: 0.49 hours, sqrts: 6. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 52.97 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+ |
name 名前 | Serge Batalov |
---|---|
date 日付 | November 24, 2008 01:43:07 UTC 2008 年 11 月 24 日 (月) 10 時 43 分 7 秒 (日本時間) |
composite number 合成数 | 20475578808793101098067109352302136241947465332363736170498450833112663592480281217974216315890803341249803045346825107415291040669074603423<140> |
prime factors 素因数 | 5749965473293729696597801765242916256625281553550128309455278186337<67> 3560991610105122471722990488660298925687905168583791168409158735294004479<73> |
factorization results 素因数分解の結果 | SNFS difficulty: 170 digits. Divisors found: r1=5749965473293729696597801765242916256625281553550128309455278186337 (pp67) r2=3560991610105122471722990488660298925687905168583791168409158735294004479 (pp73) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.723). Factorization parameters were as follows: n: 20475578808793101098067109352302136241947465332363736170498450833112663592480281217974216315890803341249803045346825107415291040669074603423 m: 5000000000000000000000000000000000 deg: 5 c5: 56 c0: 75 skew: 1.06 type: snfs lss: 1 rlim: 4800000 alim: 4800000 lpbr: 27 lpba: 27 mfbr: 53 mfba: 53 rlambda: 2.4 alambda: 2.4 Factor base limits: 4800000/4800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 53/53 Sieved rational special-q in [2400000, 4800001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 917860 x 918102 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,4800000,4800000,27,27,53,53,2.4,2.4,100000 total time: 36.00 hours. |
software ソフトウェア | Msieve-1.38 |
execution environment 実行環境 | Opteron-2.6GHz; Linux x86_64 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | July 30, 2007 09:00:00 UTC 2007 年 7 月 30 日 (月) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 344 | 257 | Jo Yeong Uk | July 24, 2008 07:56:46 UTC 2008 年 7 月 24 日 (木) 16 時 56 分 46 秒 (日本時間) |
87 | Jo Yeong Uk | July 25, 2008 08:36:44 UTC 2008 年 7 月 25 日 (金) 17 時 36 分 44 秒 (日本時間) | |||
40 | 3e6 | 1060 / 2242 | Serge Batalov | November 22, 2008 09:05:06 UTC 2008 年 11 月 22 日 (土) 18 時 5 分 6 秒 (日本時間) |
name 名前 | Robert Backstrom |
---|---|
date 日付 | February 13, 2008 13:35:47 UTC 2008 年 2 月 13 日 (水) 22 時 35 分 47 秒 (日本時間) |
composite number 合成数 | 290475563551371151534737430440749777292188316539837646424563937372527089326875496888413405136007889525927998508162719895399133057<129> |
prime factors 素因数 | 5175216009374760485968852867656086119<37> 56128200837449627643617345573916608964872045642509134587009683630669439311948801876882681303<92> |
factorization results 素因数分解の結果 | GMP-ECM 6.1.3 [powered by GMP 4.2.1] [ECM] Input number is 290475563551371151534737430440749777292188316539837646424563937372527089326875496888413405136007889525927998508162719895399133057 (129 digits) Using B1=928000, B2=871204962, polynomial Dickson(3), sigma=3134470293 Step 1 took 9161ms Step 2 took 3910ms ********** Factor found in step 2: 5175216009374760485968852867656086119 Found probable prime factor of 37 digits: 5175216009374760485968852867656086119 Probable prime cofactor 56128200837449627643617345573916608964872045642509134587009683630669439311948801876882681303 has 92 digits |
name 名前 | Serge Batalov |
---|---|
date 日付 | November 5, 2008 04:38:21 UTC 2008 年 11 月 5 日 (水) 13 時 38 分 21 秒 (日本時間) |
composite number 合成数 | 3710312630994794641105126501206381526091747729020560266427319100310922347391243101537035401634082509899448410498434916083412947305423807611<139> |
prime factors 素因数 | 2894880042580604713105118836471073339<37> |
composite cofactor 合成数の残り | 1281680959632193503942635352586274267558015554322256712727649413867069609775801786926191322876429626049<103> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=799800686 Step 1 took 14613ms Step 2 took 10661ms ********** Factor found in step 2: 2894880042580604713105118836471073339 Found probable prime factor of 37 digits: 2894880042580604713105118836471073339 Composite cofactor 1281680959632193503942635352586274267558015554322256712727649413867069609775801786926191322876429626049 has 103 digits |
software ソフトウェア | GMP-ECM 6.2.1 |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | November 6, 2008 16:13:14 UTC 2008 年 11 月 7 日 (金) 1 時 13 分 14 秒 (日本時間) |
composite number 合成数 | 1281680959632193503942635352586274267558015554322256712727649413867069609775801786926191322876429626049<103> |
prime factors 素因数 | 80382204556821276120047494428888590479349<41> 15944834639689281626909755621895853382079436807483057371958301<62> |
factorization results 素因数分解の結果 | Number: 70003_171 N=1281680959632193503942635352586274267558015554322256712727649413867069609775801786926191322876429626049 ( 103 digits) Divisors found: r1=80382204556821276120047494428888590479349 (pp41) r2=15944834639689281626909755621895853382079436807483057371958301 (pp62) Version: GGNFS-0.77.1-20050930-nocona Total time: 4.35 hours. Scaled time: 10.35 units (timescale=2.380). Factorization parameters were as follows: name: 70003_171 n: 1281680959632193503942635352586274267558015554322256712727649413867069609775801786926191322876429626049 skew: 12451.75 # norm 3.14e+14 c5: 28800 c4: -1396556640 c3: -21383349502937 c2: 102977721717798824 c1: 1369617770306240302888 c0: -3004456949011618764265560 # alpha -6.63 Y1: 66033646709 Y0: -33859902537347602823 # Murphy_E 2.62e-09 # M 353806601918654332315014283607060409901318680890166882125174584860899677165461883132592572648288552241 type: gnfs rlim: 1500000 alim: 1500000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 50000 Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [750000, 1400001) Primes: RFBsize:114155, AFBsize:114273, largePrimes:4440046 encountered Relations: rels:4417859, finalFF:331596 Max relations in full relation-set: 28 Initial matrix: 228507 x 331596 with sparse part having weight 29476847. Pruned matrix : 180731 x 181937 with weight 13703494. Polynomial selection time: 0.35 hours. Total sieving time: 3.76 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.12 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: gnfs,102,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1500000,1500000,26,26,49,49,2.6,2.6,50000 total time: 4.35 hours. --------- CPU info (if available) ---------- |
execution environment 実行環境 | Core 2 Quad Q6700 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | July 30, 2007 09:00:00 UTC 2007 年 7 月 30 日 (月) 18 時 0 分 0 秒 (日本時間) |
name 名前 | Wataru Sakai |
---|---|
date 日付 | December 12, 2009 07:56:55 UTC 2009 年 12 月 12 日 (土) 16 時 56 分 55 秒 (日本時間) |
composite number 合成数 | 691387159016913058622935613250685456926825485030218389749462169026394567500966819455870114279646650276021876516864242700408272469813878832883389<144> |
prime factors 素因数 | 4395944156853610582716741443564661893213<40> |
composite cofactor 合成数の残り | 157278421733130527374822423031190273787717697677845850752050907400924177459930910588027890386838400438753<105> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1786388023 Step 1 took 42364ms ********** Factor found in step 1: 4395944156853610582716741443564661893213 Found probable prime factor of 40 digits: 4395944156853610582716741443564661893213 Composite cofactor 157278421733130527374822423031190273787717697677845850752050907400924177459930910588027890386838400438753 has 105 digits |
software ソフトウェア | GMP-ECM 6.2.1 |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 13, 2009 12:24:04 UTC 2009 年 12 月 13 日 (日) 21 時 24 分 4 秒 (日本時間) |
composite number 合成数 | 157278421733130527374822423031190273787717697677845850752050907400924177459930910588027890386838400438753<105> |
prime factors 素因数 | 290110443363764923642894085090214904885689697<45> 542132919827093529306769989453942968418390454867117966238849<60> |
factorization results 素因数分解の結果 | Number: g105-1 N=157278421733130527374822423031190273787717697677845850752050907400924177459930910588027890386838400438753 ( 105 digits) Divisors found: r1=290110443363764923642894085090214904885689697 (pp45) r2=542132919827093529306769989453942968418390454867117966238849 (pp60) Version: Msieve-1.40 Total time: 6.56 hours. Scaled time: 12.53 units (timescale=1.911). Factorization parameters were as follows: name: g105-1 n: 157278421733130527374822423031190273787717697677845850752050907400924177459930910588027890386838400438753 skew: 13202.27 # norm 5.31e+014 c5: 69300 c4: 887486732 c3: 18054159829435 c2: -309959698006720573 c1: -3462703690957884986615 c0: 9494266772135327220966825 # alpha -7.07 Y1: 53466939577 Y0: -74333807980636864352 # Murphy_E 2.06e-009 # M 39261685110727373311766962481659204345999512574698899717038255884429614107360099199141019944888487217157 type: gnfs rlim: 2500000 alim: 2500000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 150000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1250000, 2000001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 276557 x 276783 Polynomial selection time: 0.74 hours. Total sieving time: 5.46 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.23 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: gnfs,104,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,2500000,26,26,49,49,2.6,2.6,150000 total time: 6.56 hours. --------- CPU info (if available) ---------- |
software ソフトウェア | GGNFS/msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | July 30, 2007 09:00:00 UTC 2007 年 7 月 30 日 (月) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 1000 | 700 | Lionel Debroux | September 27, 2009 19:35:07 UTC 2009 年 9 月 28 日 (月) 4 時 35 分 7 秒 (日本時間) |
300 | Lionel Debroux | September 28, 2009 04:22:41 UTC 2009 年 9 月 28 日 (月) 13 時 22 分 41 秒 (日本時間) |
name 名前 | matsui |
---|---|
date 日付 | April 5, 2008 12:20:29 UTC 2008 年 4 月 5 日 (土) 21 時 20 分 29 秒 (日本時間) |
composite number 合成数 | 151628361122324449605999010616279199054547780878970071028724500558327034384345390656706742598481954467220514093835588185333846845161508345996485657487401215720241896017<168> |
prime factors 素因数 | 15382421157285425929466447017738051797673565880227<50> 9857249360937578381060501178705637693417639727420036892990380567114305681621039301876173072701917734426786021572283771<118> |
factorization results 素因数分解の結果 | N=151628361122324449605999010616279199054547780878970071028724500558327034384345390656706742598481954467220514093835588185333846845161508345996485657487401215720241896017 ( 168 digits) SNFS difficulty: 175 digits. Divisors found: r1=15382421157285425929466447017738051797673565880227 (pp50) r2=9857249360937578381060501178705637693417639727420036892990380567114305681621039301876173072701917734426786021572283771 (pp118) Version: GGNFS-0.77.1-20060513-prescott Total time: 186.17 hours. Scaled time: 315.56 units (timescale=1.695). Factorization parameters were as follows: n: 151628361122324449605999010616279199054547780878970071028724500558327034384345390656706742598481954467220514093835588185333846845161508345996485657487401215720241896017 m: 100000000000000000000000000000000000 c5: 7 c0: 3 skew: 0.84 type: snfs Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 10600001) Primes: RFBsize:501962, AFBsize:500771, largePrimes:6392766 encountered Relations: rels:6833029, finalFF:1124040 Max relations in full relation-set: 28 Initial matrix: 1002798 x 1124040 with sparse part having weight 66158404. Pruned matrix : 898702 x 903779 with weight 50386598. Total sieving time: 171.47 hours. Total relation processing time: 0.15 hours. Matrix solve time: 14.30 hours. Time per square root: 0.26 hours. Prototype def-par.txt line would be: snfs,175,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 186.17 hours. |
name 名前 | Ignacio Santos |
---|---|
date 日付 | November 21, 2010 21:14:16 UTC 2010 年 11 月 22 日 (月) 6 時 14 分 16 秒 (日本時間) |
composite number 合成数 | 6861847122632973914379472012758459686732244728294442375722973505282513400916058793709564193945386621827810375796633922030118997100245586561698507107<148> |
prime factors 素因数 | 7377639422767413795152038802532449<34> |
composite cofactor 合成数の残り | 930087081981439273567985206159110552837053823290939433458652252669912132232462610932999805284053024941861452978243<114> |
factorization results 素因数分解の結果 | Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1484558775 Step 1 took 7160ms Step 2 took 5195ms ********** Factor found in step 2: 7377639422767413795152038802532449 Found probable prime factor of 34 digits: 7377639422767413795152038802532449 Composite cofactor 930087081981439273567985206159110552837053823290939433458652252669912132232462610932999805284053024941861452978243 has 114 digits |
software ソフトウェア | GMP-ECM 6.3 |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | November 24, 2010 21:27:56 UTC 2010 年 11 月 25 日 (木) 6 時 27 分 56 秒 (日本時間) |
composite number 合成数 | 930087081981439273567985206159110552837053823290939433458652252669912132232462610932999805284053024941861452978243<114> |
prime factors 素因数 | 8924589012579945383764872567099224584777759201<46> 104216236811622888894520864063301304707400428779271994024902963412643<69> |
factorization results 素因数分解の結果 | Number: gga114 N=930087081981439273567985206159110552837053823290939433458652252669912132232462610932999805284053024941861452978243 ( 114 digits) Divisors found: r1=8924589012579945383764872567099224584777759201 (pp46) r2=104216236811622888894520864063301304707400428779271994024902963412643 (pp69) Version: Msieve-1.40 Total time: 24.12 hours. Scaled time: 47.51 units (timescale=1.970). Factorization parameters were as follows: name: gga114 n: 930087081981439273567985206159110552837053823290939433458652252669912132232462610932999805284053024941861452978243 skew: 65985.64 # norm 1.06e+016 c5: 18900 c4: 2128166204 c3: 66687311928581 c2: -15911979575823911646 c1: 153920137885264019704504 c0: 10911574457650167928381016416 # alpha -6.90 Y1: 308551290553 Y0: -8677847502263844354045 # Murphy_E 5.99e-010 # M 310319948908300515604721694075378857585771720004662294297966292146374216731299946273327222282009518196078344923109 type: gnfs rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1750000, 2850001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 466648 x 466876 Polynomial selection time: 2.39 hours. Total sieving time: 20.98 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.61 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: gnfs,113,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3500000,3500000,27,27,50,50,2.6,2.6,100000 total time: 24.12 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | July 30, 2007 09:00:00 UTC 2007 年 7 月 30 日 (月) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 300 | Ignacio Santos | November 22, 2010 17:58:52 UTC 2010 年 11 月 23 日 (火) 2 時 58 分 52 秒 (日本時間) | |
40 | 3e6 | 110 / 2144 | Ignacio Santos | November 22, 2010 17:58:52 UTC 2010 年 11 月 23 日 (火) 2 時 58 分 52 秒 (日本時間) | |
45 | 11e6 | 32 / 4441 | Ignacio Santos | November 22, 2010 17:58:52 UTC 2010 年 11 月 23 日 (火) 2 時 58 分 52 秒 (日本時間) |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | August 2, 2007 23:41:27 UTC 2007 年 8 月 3 日 (金) 8 時 41 分 27 秒 (日本時間) |
composite number 合成数 | 7000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003<181> |
prime factors 素因数 | 1661635052382325894228860798388965059<37> |
composite cofactor 合成数の残り | 4212718063430313817949556918391010227926614475612398920219025346271127082558521092818662843579474726787185571200372160360259201106912513664366017<145> |
factorization results 素因数分解の結果 | GMP-ECM 6.1.2 [powered by GMP 4.2.1] [ECM] Input number is 7000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003 (181 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1692799595 Step 1 took 29897ms Step 2 took 12361ms ********** Factor found in step 2: 1661635052382325894228860798388965059 Found probable prime factor of 37 digits: 1661635052382325894228860798388965059 Composite cofactor 4212718063430313817949556918391010227926614475612398920219025346271127082558521092818662843579474726787185571200372160360259201106912513664366017 has 145 digits |
execution environment 実行環境 | Core 2 Quad Q6600 |
name 名前 | Kenji Ibusuki |
---|---|
date 日付 | October 8, 2013 19:16:43 UTC 2013 年 10 月 9 日 (水) 4 時 16 分 43 秒 (日本時間) |
composite number 合成数 | 4212718063430313817949556918391010227926614475612398920219025346271127082558521092818662843579474726787185571200372160360259201106912513664366017<145> |
prime factors 素因数 | 131913960468256481049783481878995394120408634187<48> 31935346709903794461672028654050306602845641564412306934217578538639453607167090484368169049565091<98> |
factorization results 素因数分解の結果 | Number: 70003_180 N=4212718063430313817949556918391010227926614475612398920219025346271127082558521092818662843579474726787185571200372160360259201106912513664366017 ( 145 digits) SNFS difficulty: 180 digits. Divisors found: r1=131913960468256481049783481878995394120408634187 (pp48) r2=31935346709903794461672028654050306602845641564412306934217578538639453607167090484368169049565091 (pp98) Msieve version: Msieve v. 1.49 (SVN unknown) GGNFS version: GGNFS-0.77.1-VC8(UTE) Total time: 118.99 hours. Scaled time: 526.99 units (timescale=4.429). Factorization parameters were as follows: n: 4212718063430313817949556918391010227926614475612398920219025346271127082558521092818662843579474726787185571200372160360259201106912513664366017 m: 1000000000000000000000000000000000000 deg: 5 c5: 7 c0: 3 skew: 0.84 # Murphy_E = 1.32e-10 type: snfs lss: 1 rlim: 7200000 alim: 7200000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 qintsize: 10000 relslim: 30000000 Polynomial score was as follows: skew 0.84, size 2.287e-012, alpha 0.848, combined = 1.320e-010 rroots = 1 Factor base limits: 7200000/7200000 Large primes per side: 3 Large prime bits: 28/28 Sieved special-q in [3600000, 8820001) Relations: raw-rels:24566574 rels:22316674, finalFF:1098835 Pruned matrix : 1078369 x 1078599 Total sieving time: 112.16 hours. Total relation processing time: 1.18 hours. Total matrix build processing time: 4.96 hours. Matrix pruned processing time: 0.00 hours. Matrix solve time: 0.65 hours. Total time of square root: 0.03 hours. Prototype def-par.txt line would be: snfs,180,5,0,0,0,0,0,0,0,0,7200000,7200000,28,28,55,55,2.5,2.5,100000 total time: 118.99 hours. --------- CPU info (if available) ---------- |
software ソフトウェア | Msieve v. 1.49 (SVN unknown) + GGNFS-0.77.1-VC8 with factMsieve.pl (decomposed + modified) snfs |
execution environment 実行環境 | Core i7 2600 - Windows7 64bit (7 threads used), Core i7 4770 - Windows7 64bit (8 threads used) and Core 2 Quad Q6600 - Windows Vista 32bit (4 threads used) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | July 30, 2007 09:00:00 UTC 2007 年 7 月 30 日 (月) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 300 | Ignacio Santos | November 21, 2010 21:49:24 UTC 2010 年 11 月 22 日 (月) 6 時 49 分 24 秒 (日本時間) | |
40 | 3e6 | 2144 | 110 | Ignacio Santos | November 21, 2010 21:49:24 UTC 2010 年 11 月 22 日 (月) 6 時 49 分 24 秒 (日本時間) |
2034 | Wataru Sakai | June 29, 2012 00:23:23 UTC 2012 年 6 月 29 日 (金) 9 時 23 分 23 秒 (日本時間) | |||
45 | 11e6 | 32 / 3991 | Ignacio Santos | November 21, 2010 21:49:24 UTC 2010 年 11 月 22 日 (月) 6 時 49 分 24 秒 (日本時間) |
name 名前 | Youcef Lemsafer |
---|---|
date 日付 | November 12, 2013 16:23:25 UTC 2013 年 11 月 13 日 (水) 1 時 23 分 25 秒 (日本時間) |
composite number 合成数 | 326998194399748176441609858419080681045982355899322450312083578721962978687367437656996085017149435322203657523434318188882834784965537082167543672801977676057<159> |
prime factors 素因数 | 141841795076420712913980812493112825124222601248955632166449031731<66> 2305372645795761082391178326649414245146333413240828452602567296737367149385317590295058383747<94> |
factorization results 素因数分解の結果 | Sun Nov 10 22:46:07 2013 -> factmsieve.py (v0.76) Sun Nov 10 22:46:07 2013 -> This is client 1 of 1 Sun Nov 10 22:46:07 2013 -> Running on 4 Cores with 2 hyper-threads per Core Sun Nov 10 22:46:07 2013 -> Working with NAME = 70003_181 Sun Nov 10 22:46:07 2013 -> Selected lattice siever: gnfs-lasieve4I13e Sun Nov 10 22:46:07 2013 -> Creating param file to detect parameter changes... Sun Nov 10 22:46:07 2013 -> Running setup ... Sun Nov 10 22:46:07 2013 -> Estimated minimum relations needed: 1.58489e+07 Sun Nov 10 22:46:07 2013 -> cleaning up before a restart Sun Nov 10 22:46:07 2013 -> Running lattice siever ... Sun Nov 10 22:46:07 2013 -> entering sieving loop ...<snip>... Sun Nov 10 22:46:07 2013 -> Lattice sieving rational q from 3750000 to 3850000. ...<snip>... Sun Nov 10 23:16:00 2013 Found 294212 relations, 1.9% of the estimated minimum (15848931). ...<snip>... Sun Nov 10 23:45:46 2013 Found 589326 relations, 3.7% of the estimated minimum (15848931). ...<snip>... Mon Nov 11 00:45:29 2013 Found 1173962 relations, 7.4% of the estimated minimum (15848931). ...<snip>... Mon Nov 11 03:16:33 2013 Found 2631863 relations, 16.6% of the estimated minimum (15848931). ...<snip>... Mon Nov 11 08:01:29 2013 Found 5214074 relations, 32.9% of the estimated minimum (15848931). ...<snip>... Mon Nov 11 18:01:00 2013 Found 10227940 relations, 64.5% of the estimated minimum (15848931). ...<snip>... Tue Nov 12 13:12:48 2013 Found 19354419 relations, 122.1% of the estimated minimum (15848931). Tue Nov 12 13:12:48 2013 Tue Nov 12 13:12:48 2013 Tue Nov 12 13:12:48 2013 Msieve v. 1.50 (SVN 708) Tue Nov 12 13:12:48 2013 random seeds: 3d09f5f4 2147b59e Tue Nov 12 13:12:48 2013 factoring 326998194399748176441609858419080681045982355899322450312083578721962978687367437656996085017149435322203657523434318188882834784965537082167543672801977676057 (159 digits) Tue Nov 12 13:12:49 2013 searching for 15-digit factors Tue Nov 12 13:12:50 2013 commencing number field sieve (159-digit input) Tue Nov 12 13:12:50 2013 R0: -1000000000000000000000000000000000000 Tue Nov 12 13:12:50 2013 R1: 1 Tue Nov 12 13:12:50 2013 A0: 3 Tue Nov 12 13:12:50 2013 A1: 0 Tue Nov 12 13:12:50 2013 A2: 0 Tue Nov 12 13:12:50 2013 A3: 0 Tue Nov 12 13:12:50 2013 A4: 0 Tue Nov 12 13:12:50 2013 A5: 70 Tue Nov 12 13:12:50 2013 skew 0.53, size 1.084e-012, alpha 1.708, combined = 8.681e-011 rroots = 1 Tue Nov 12 13:12:50 2013 Tue Nov 12 13:12:50 2013 commencing relation filtering Tue Nov 12 13:12:50 2013 estimated available RAM is 4096.0 MB Tue Nov 12 13:12:50 2013 commencing duplicate removal, pass 1 Tue Nov 12 13:14:29 2013 skipped 1 relations with b > 2^32 Tue Nov 12 13:14:29 2013 found 2613751 hash collisions in 19354417 relations Tue Nov 12 13:15:00 2013 added 956 free relations Tue Nov 12 13:15:00 2013 commencing duplicate removal, pass 2 Tue Nov 12 13:15:11 2013 found 2329715 duplicates and 17025658 unique relations Tue Nov 12 13:15:11 2013 memory use: 98.6 MB Tue Nov 12 13:15:11 2013 reading ideals above 720000 Tue Nov 12 13:15:11 2013 commencing singleton removal, initial pass Tue Nov 12 13:17:07 2013 memory use: 376.5 MB Tue Nov 12 13:17:07 2013 reading all ideals from disk Tue Nov 12 13:17:07 2013 memory use: 529.7 MB Tue Nov 12 13:17:09 2013 keeping 19384312 ideals with weight <= 200, target excess is 115699 Tue Nov 12 13:17:10 2013 commencing in-memory singleton removal Tue Nov 12 13:17:11 2013 begin with 17025658 relations and 19384312 unique ideals Tue Nov 12 13:17:23 2013 reduce to 6231444 relations and 6062792 ideals in 19 passes Tue Nov 12 13:17:23 2013 max relations containing the same ideal: 96 Tue Nov 12 13:17:25 2013 removing 269639 relations and 252418 ideals in 17221 cliques Tue Nov 12 13:17:26 2013 commencing in-memory singleton removal Tue Nov 12 13:17:26 2013 begin with 5961805 relations and 6062792 unique ideals Tue Nov 12 13:17:30 2013 reduce to 5952062 relations and 5800590 ideals in 9 passes Tue Nov 12 13:17:30 2013 max relations containing the same ideal: 95 Tue Nov 12 13:17:32 2013 removing 194404 relations and 177183 ideals in 17221 cliques Tue Nov 12 13:17:33 2013 commencing in-memory singleton removal Tue Nov 12 13:17:33 2013 begin with 5757658 relations and 5800590 unique ideals Tue Nov 12 13:17:37 2013 reduce to 5752255 relations and 5617981 ideals in 8 passes Tue Nov 12 13:17:37 2013 max relations containing the same ideal: 91 Tue Nov 12 13:17:38 2013 relations with 0 large ideals: 2822 Tue Nov 12 13:17:38 2013 relations with 1 large ideals: 1029 Tue Nov 12 13:17:38 2013 relations with 2 large ideals: 19063 Tue Nov 12 13:17:38 2013 relations with 3 large ideals: 140650 Tue Nov 12 13:17:38 2013 relations with 4 large ideals: 553121 Tue Nov 12 13:17:38 2013 relations with 5 large ideals: 1256991 Tue Nov 12 13:17:38 2013 relations with 6 large ideals: 1740935 Tue Nov 12 13:17:38 2013 relations with 7+ large ideals: 2037644 Tue Nov 12 13:17:38 2013 commencing 2-way merge Tue Nov 12 13:17:42 2013 reduce to 3314328 relation sets and 3180055 unique ideals Tue Nov 12 13:17:42 2013 ignored 1 oversize relation sets Tue Nov 12 13:17:42 2013 commencing full merge Tue Nov 12 13:18:34 2013 memory use: 331.2 MB Tue Nov 12 13:18:35 2013 found 1675265 cycles, need 1662255 Tue Nov 12 13:18:35 2013 weight of 1662255 cycles is about 116656163 (70.18/cycle) Tue Nov 12 13:18:35 2013 distribution of cycle lengths: Tue Nov 12 13:18:35 2013 1 relations: 236242 Tue Nov 12 13:18:35 2013 2 relations: 209852 Tue Nov 12 13:18:35 2013 3 relations: 198488 Tue Nov 12 13:18:35 2013 4 relations: 173244 Tue Nov 12 13:18:35 2013 5 relations: 150963 Tue Nov 12 13:18:35 2013 6 relations: 124178 Tue Nov 12 13:18:35 2013 7 relations: 105017 Tue Nov 12 13:18:35 2013 8 relations: 86097 Tue Nov 12 13:18:35 2013 9 relations: 70908 Tue Nov 12 13:18:35 2013 10+ relations: 307266 Tue Nov 12 13:18:35 2013 heaviest cycle: 26 relations Tue Nov 12 13:18:35 2013 commencing cycle optimization Tue Nov 12 13:18:37 2013 start with 9726484 relations Tue Nov 12 13:18:55 2013 pruned 203125 relations Tue Nov 12 13:18:55 2013 memory use: 261.4 MB Tue Nov 12 13:18:55 2013 distribution of cycle lengths: Tue Nov 12 13:18:55 2013 1 relations: 236242 Tue Nov 12 13:18:55 2013 2 relations: 214133 Tue Nov 12 13:18:55 2013 3 relations: 204642 Tue Nov 12 13:18:55 2013 4 relations: 176415 Tue Nov 12 13:18:55 2013 5 relations: 153540 Tue Nov 12 13:18:55 2013 6 relations: 125070 Tue Nov 12 13:18:55 2013 7 relations: 105139 Tue Nov 12 13:18:55 2013 8 relations: 85041 Tue Nov 12 13:18:55 2013 9 relations: 69681 Tue Nov 12 13:18:55 2013 10+ relations: 292352 Tue Nov 12 13:18:55 2013 heaviest cycle: 26 relations Tue Nov 12 13:18:56 2013 RelProcTime: 366 Tue Nov 12 13:18:56 2013 elapsed time 00:06:08 Tue Nov 12 13:18:56 2013 LatSieveTime: 2349.77 Tue Nov 12 13:18:56 2013 -> Running matrix solving step ... ...<snip>... Tue Nov 12 13:18:58 2013 Tue Nov 12 13:18:58 2013 commencing linear algebra Tue Nov 12 13:18:59 2013 read 1662255 cycles Tue Nov 12 13:19:02 2013 cycles contain 5589994 unique relations Tue Nov 12 13:19:30 2013 read 5589994 relations Tue Nov 12 13:19:37 2013 using 20 quadratic characters above 268434044 Tue Nov 12 13:20:02 2013 building initial matrix Tue Nov 12 13:21:03 2013 memory use: 615.5 MB Tue Nov 12 13:21:05 2013 read 1662255 cycles Tue Nov 12 13:21:05 2013 matrix is 1662071 x 1662255 (474.3 MB) with weight 146928395 (88.39/col) Tue Nov 12 13:21:06 2013 sparse part has weight 112707585 (67.80/col) Tue Nov 12 13:21:22 2013 filtering completed in 2 passes Tue Nov 12 13:21:23 2013 matrix is 1658997 x 1659180 (474.1 MB) with weight 146822055 (88.49/col) Tue Nov 12 13:21:23 2013 sparse part has weight 112668685 (67.91/col) Tue Nov 12 13:21:27 2013 matrix starts at (0, 0) Tue Nov 12 13:21:27 2013 matrix is 1658997 x 1659180 (474.1 MB) with weight 146822055 (88.49/col) Tue Nov 12 13:21:27 2013 sparse part has weight 112668685 (67.91/col) Tue Nov 12 13:21:27 2013 saving the first 48 matrix rows for later Tue Nov 12 13:21:28 2013 matrix includes 64 packed rows Tue Nov 12 13:21:28 2013 matrix is 1658949 x 1659180 (446.7 MB) with weight 116427360 (70.17/col) Tue Nov 12 13:21:28 2013 sparse part has weight 107137730 (64.57/col) Tue Nov 12 13:21:28 2013 using block size 65536 for processor cache size 8192 kB Tue Nov 12 13:21:37 2013 commencing Lanczos iteration (8 threads) Tue Nov 12 13:21:37 2013 memory use: 465.3 MB Tue Nov 12 13:21:47 2013 linear algebra at 0.1%, ETA 3h 2m Tue Nov 12 13:21:50 2013 checkpointing every 570000 dimensions Tue Nov 12 16:15:54 2013 lanczos halted after 26236 iterations (dim = 1658947) Tue Nov 12 16:15:57 2013 recovered 37 nontrivial dependencies Tue Nov 12 16:15:57 2013 BLanczosTime: 10619 Tue Nov 12 16:15:57 2013 elapsed time 02:57:01 Tue Nov 12 16:15:57 2013 -> Running square root step ... ...<snip>... Tue Nov 12 16:15:57 2013 Tue Nov 12 16:15:59 2013 commencing square root phase Tue Nov 12 16:15:59 2013 reading relations for dependency 1 Tue Nov 12 16:16:00 2013 read 829162 cycles Tue Nov 12 16:16:01 2013 cycles contain 2793814 unique relations Tue Nov 12 16:16:33 2013 read 2793814 relations Tue Nov 12 16:16:46 2013 multiplying 2793814 relations Tue Nov 12 16:20:25 2013 multiply complete, coefficients have about 78.16 million bits Tue Nov 12 16:20:26 2013 initial square root is modulo 407821 Tue Nov 12 16:25:00 2013 GCD is N, no factor found Tue Nov 12 16:25:00 2013 reading relations for dependency 2 Tue Nov 12 16:25:01 2013 read 830842 cycles Tue Nov 12 16:25:02 2013 cycles contain 2796620 unique relations Tue Nov 12 16:25:19 2013 read 2796620 relations Tue Nov 12 16:25:33 2013 multiplying 2796620 relations Tue Nov 12 16:29:11 2013 multiply complete, coefficients have about 78.24 million bits Tue Nov 12 16:29:12 2013 initial square root is modulo 412891 Tue Nov 12 16:33:48 2013 GCD is N, no factor found Tue Nov 12 16:33:48 2013 reading relations for dependency 3 Tue Nov 12 16:33:48 2013 read 829132 cycles Tue Nov 12 16:33:50 2013 cycles contain 2793042 unique relations Tue Nov 12 16:34:06 2013 read 2793042 relations Tue Nov 12 16:34:20 2013 multiplying 2793042 relations Tue Nov 12 16:37:59 2013 multiply complete, coefficients have about 78.14 million bits Tue Nov 12 16:37:59 2013 initial square root is modulo 406171 Tue Nov 12 16:42:37 2013 GCD is 1, no factor found Tue Nov 12 16:42:37 2013 reading relations for dependency 4 Tue Nov 12 16:42:38 2013 read 829945 cycles Tue Nov 12 16:42:40 2013 cycles contain 2795422 unique relations Tue Nov 12 16:42:56 2013 read 2795422 relations Tue Nov 12 16:43:10 2013 multiplying 2795422 relations Tue Nov 12 16:46:48 2013 multiply complete, coefficients have about 78.20 million bits Tue Nov 12 16:46:48 2013 initial square root is modulo 410621 Tue Nov 12 16:51:23 2013 GCD is N, no factor found Tue Nov 12 16:51:23 2013 reading relations for dependency 5 Tue Nov 12 16:51:24 2013 read 829047 cycles Tue Nov 12 16:51:25 2013 cycles contain 2796686 unique relations Tue Nov 12 16:51:41 2013 read 2796686 relations Tue Nov 12 16:51:56 2013 multiplying 2796686 relations Tue Nov 12 16:55:34 2013 multiply complete, coefficients have about 78.24 million bits Tue Nov 12 16:55:35 2013 initial square root is modulo 413071 Tue Nov 12 17:00:14 2013 sqrtTime: 2655 Tue Nov 12 17:00:14 2013 prp66 factor: 141841795076420712913980812493112825124222601248955632166449031731 Tue Nov 12 17:00:14 2013 prp94 factor: 2305372645795761082391178326649414245146333413240828452602567296737367149385317590295058383747 Tue Nov 12 17:00:14 2013 elapsed time 00:44:17 Tue Nov 12 17:00:14 2013 -> Computing 1.38427e+09 scale for this machine... Tue Nov 12 17:00:14 2013 -> procrels -speedtest> PIPE Tue Nov 12 17:00:20 2013 -> Factorization summary written to s182-70003_181.txt Number: 70003_181 N = 326998194399748176441609858419080681045982355899322450312083578721962978687367437656996085017149435322203657523434318188882834784965537082167543672801977676057 (159 digits) SNFS difficulty: 182 digits. Divisors found: r1=141841795076420712913980812493112825124222601248955632166449031731 (pp66) r2=2305372645795761082391178326649414245146333413240828452602567296737367149385317590295058383747 (pp94) Version: Msieve v. 1.50 (SVN 708) Total time: 42.33 hours. Factorization parameters were as follows: n: 326998194399748176441609858419080681045982355899322450312083578721962978687367437656996085017149435322203657523434318188882834784965537082167543672801977676057 m: 1000000000000000000000000000000000000 deg: 5 c5: 70 c0: 3 skew: 0.53 # Murphy_E = 8.681e-11 type: snfs lss: 1 rlim: 7500000 alim: 7500000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 7500000/7500000 Large primes per side: 3 Large prime bits: 28/28 Sieved rational special-q in [0, 0) Total raw relations: 19354419 Relations: 2796686 relations Pruned matrix : 1658949 x 1659180 Polynomial selection time: 0.00 hours. Total sieving time: 38.54 hours. Total relation processing time: 0.10 hours. Matrix solve time: 2.95 hours. time per square root: 0.74 hours. Prototype def-par.txt line would be: snfs,182,5,0,0,0,0,0,0,0,0,7500000,7500000,28,28,53,53,2.5,2.5,100000 total time: 42.33 hours. Intel64 Family 6 Model 26 Stepping 5, GenuineIntel Windows-7-6.1.7601-SP1 processors: 4, speed: 2.80GHz |
software ソフトウェア | GGNFS (SVN430), msieve 1.50 (SVN708) |
execution environment 実行環境 | Windows 7 Pro x64, Intel Xeon W3530@2.8GHz, 8GB RAM. |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | July 30, 2007 09:00:00 UTC 2007 年 7 月 30 日 (月) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 300 | Ignacio Santos | November 21, 2010 22:55:38 UTC 2010 年 11 月 22 日 (月) 7 時 55 分 38 秒 (日本時間) | |
40 | 3e6 | 110 | Ignacio Santos | November 21, 2010 22:55:38 UTC 2010 年 11 月 22 日 (月) 7 時 55 分 38 秒 (日本時間) | |
45 | 11e6 | 632 / 4441 | 32 | Ignacio Santos | November 21, 2010 22:55:38 UTC 2010 年 11 月 22 日 (月) 7 時 55 分 38 秒 (日本時間) |
600 | Rich Dickerson | May 19, 2012 13:51:16 UTC 2012 年 5 月 19 日 (土) 22 時 51 分 16 秒 (日本時間) |
name 名前 | Sinkiti Sibata |
---|---|
date 日付 | June 24, 2008 10:48:17 UTC 2008 年 6 月 24 日 (火) 19 時 48 分 17 秒 (日本時間) |
composite number 合成数 | 995732574679943100995732574679943100995732574679943100995732574679943100995732574679943100995732574679943100995732574679943100995732574679943100995732574679943100995732574679943101<180> |
prime factors 素因数 | 5796213552807101290302139288236547086048674920761890437988566399723613188147<76> 171790180884158531835765998721853676674416631560705620499042258287282118632167531441001689658431400392783<105> |
factorization results 素因数分解の結果 | Number: 70003_182 N=995732574679943100995732574679943100995732574679943100995732574679943100995732574679943100995732574679943100995732574679943100995732574679943100995732574679943100995732574679943101 ( 180 digits) SNFS difficulty: 182 digits. Divisors found: r1=5796213552807101290302139288236547086048674920761890437988566399723613188147 (pp76) r2=171790180884158531835765998721853676674416631560705620499042258287282118632167531441001689658431400392783 (pp105) Version: GGNFS-0.77.1-20060513-k8 Total time: 549.90 hours. Scaled time: 1098.71 units (timescale=1.998). Factorization parameters were as follows: name: 70003_182 n: 995732574679943100995732574679943100995732574679943100995732574679943100995732574679943100995732574679943100995732574679943100995732574679943100995732574679943100995732574679943101 m: 1000000000000000000000000000000000000 c5: 700 c0: 3 skew: 0.34 type: snfs Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 9800001) Primes: RFBsize:501962, AFBsize:501711, largePrimes:6541906 encountered Relations: rels:7006429, finalFF:1144045 Max relations in full relation-set: 28 Initial matrix: 1003740 x 1144045 with sparse part having weight 73023928. Pruned matrix : 886255 x 891337 with weight 55995755. Total sieving time: 538.86 hours. Total relation processing time: 0.43 hours. Matrix solve time: 10.28 hours. Time per square root: 0.33 hours. Prototype def-par.txt line would be: snfs,182,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 549.90 hours. --------- CPU info (if available) ---------- |
execution environment 実行環境 | Core 2 Duo E6300 1.86GHz, Windows Vista) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | October 20, 2013 22:03:05 UTC 2013 年 10 月 21 日 (月) 7 時 3 分 5 秒 (日本時間) |
composite number 合成数 | 2150024355779666337892169253743610067474396939372976006637034637667574578846555961184807896703068981762235863613875851054165261451557337238686025205387175026281<160> |
prime factors 素因数 | 6532146026519860457157147209255179524173<40> 329145176340330144366067696273650835525363281649760739050879404222106372606647737182646483636713315293456550191850515597<120> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:3277507288 Step 1 took 32156ms Step 2 took 22844ms ********** Factor found in step 2: 6532146026519860457157147209255179524173 Found probable prime factor of 40 digits: 6532146026519860457157147209255179524173 Probable prime cofactor 329145176340330144366067696273650835525363281649760739050879404222106372606647737182646483636713315293456550191850515597 has 120 digits |
software ソフトウェア | GMP-ECM 7.0 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | July 30, 2007 09:00:00 UTC 2007 年 7 月 30 日 (月) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 300 | Ignacio Santos | November 22, 2010 00:31:39 UTC 2010 年 11 月 22 日 (月) 9 時 31 分 39 秒 (日本時間) | |
40 | 3e6 | 110 / 2144 | Ignacio Santos | November 22, 2010 00:31:39 UTC 2010 年 11 月 22 日 (月) 9 時 31 分 39 秒 (日本時間) | |
45 | 11e6 | 32 / 4441 | Ignacio Santos | November 22, 2010 00:31:39 UTC 2010 年 11 月 22 日 (月) 9 時 31 分 39 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 28, 2014 07:15:45 UTC 2014 年 1 月 28 日 (火) 16 時 15 分 45 秒 (日本時間) |
composite number 合成数 | 132571781276242613582924893974195017823570621394920024816982011061082992933784678263182673833598703821031344729949834888220892770899346132967<141> |
prime factors 素因数 | 10353940181472354735743878357133906382757885744626795077825537<62> 12803993354478757798948858513755811035616773207420548027821509860182615116604391<80> |
factorization results 素因数分解の結果 | N=132571781276242613582924893974195017823570621394920024816982011061082992933784678263182673833598703821031344729949834888220892770899346132967 ( 141 digits) SNFS difficulty: 185 digits. Divisors found: r1=10353940181472354735743878357133906382757885744626795077825537 (pp62) r2=12803993354478757798948858513755811035616773207420548027821509860182615116604391 (pp80) Version: Msieve v. 1.50 (SVN unknown) Total time: 174.86 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 132571781276242613582924893974195017823570621394920024816982011061082992933784678263182673833598703821031344729949834888220892770899346132967 m: 5000000000000000000000000000000000000 deg: 5 c5: 112 c0: 15 skew: 0.67 # Murphy_E = 6.292e-11 type: snfs lss: 1 rlim: 8700000 alim: 8700000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 qintsize: 600000 Factor base limits: 8700000/8700000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [4350000, 12750001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1850705 x 1850930 Total sieving time: 171.12 hours. Total relation processing time: 0.24 hours. Matrix solve time: 3.29 hours. Time per square root: 0.22 hours. Prototype def-par.txt line would be: snfs,185.000,5,0,0,0,0,0,0,0,0,8700000,8700000,28,28,54,54,2.5,2.5,100000 total time: 174.86 hours. --------- CPU info (if available) ---------- [ 0.074309] CPU0: Intel(R) Xeon(R) CPU E5620 @ 2.40GHz stepping 02 [ 0.000000] Memory: 49296732k/51380224k available (5105k kernel code, 1057796k absent, 1025696k reserved, 7223k data, 1316k init) [ 0.000007] Calibrating delay loop (skipped), value calculated using timer frequency.. 4800.00 BogoMIPS (lpj=2400000) [ 0.707507] Total of 16 processors activated (76799.07 BogoMIPS). |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | July 30, 2007 09:00:00 UTC 2007 年 7 月 30 日 (月) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 300 | Ignacio Santos | November 22, 2010 05:33:07 UTC 2010 年 11 月 22 日 (月) 14 時 33 分 7 秒 (日本時間) | |
40 | 3e6 | 110 | Ignacio Santos | November 22, 2010 05:33:07 UTC 2010 年 11 月 22 日 (月) 14 時 33 分 7 秒 (日本時間) | |
45 | 11e6 | 632 / 4441 | 32 | Ignacio Santos | November 22, 2010 05:33:07 UTC 2010 年 11 月 22 日 (月) 14 時 33 分 7 秒 (日本時間) |
600 | Rich Dickerson | November 15, 2013 18:44:09 UTC 2013 年 11 月 16 日 (土) 3 時 44 分 9 秒 (日本時間) |
name 名前 | Erik Branger |
---|---|
date 日付 | January 17, 2017 16:19:57 UTC 2017 年 1 月 18 日 (水) 1 時 19 分 57 秒 (日本時間) |
composite number 合成数 | 33504738391487228749747446501773612093806339087076250696339848800027312314168629811645372145705956250463561211796008719270845701080544205217255359051<149> |
prime factors 素因数 | 2935025821474710522373226657650253973539388376844261729<55> 11415483348167852008275676098662676700917828937365724798901968306864980550722949713100200107819<95> |
factorization results 素因数分解の結果 | Number: 70003_186 N = 33504738391487228749747446501773612093806339087076250696339848800027312314168629811645372145705956250463561211796008719270845701080544205217255359051 (149 digits) SNFS difficulty: 187 digits. Divisors found: r1=2935025821474710522373226657650253973539388376844261729 (pp55) r2=11415483348167852008275676098662676700917828937365724798901968306864980550722949713100200107819 (pp95) Version: Msieve v. 1.51 (SVN 845) Total time: 171.85 hours. Factorization parameters were as follows: n: 33504738391487228749747446501773612093806339087076250696339848800027312314168629811645372145705956250463561211796008719270845701080544205217255359051 m: 10000000000000000000000000000000000000 deg: 5 c5: 70 c0: 3 skew: 0.53 # Murphy_E = 5.437e-11 type: snfs lss: 1 rlim: 9100000 alim: 9100000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 9100000/9100000 Large primes per side: 3 Large prime bits: 28/28 Sieved rational special-q in [0, 0) Total raw relations: 23040771 Relations: 2689564 relations Pruned matrix : 1717783 x 1718008 Polynomial selection time: 0.00 hours. Total sieving time: 168.77 hours. Total relation processing time: 0.14 hours. Matrix solve time: 2.80 hours. time per square root: 0.14 hours. Prototype def-par.txt line would be: snfs,187,5,0,0,0,0,0,0,0,0,9100000,9100000,28,28,54,54,2.5,2.5,100000 total time: 171.85 hours. Intel64 Family 6 Model 58 Stepping 9, GenuineIntel Windows-post2008Server-6.2.9200 processors: 8, speed: 2.29GHz |
software ソフトウェア | GGNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | July 30, 2007 09:00:00 UTC 2007 年 7 月 30 日 (月) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 300 | Ignacio Santos | November 22, 2010 05:33:36 UTC 2010 年 11 月 22 日 (月) 14 時 33 分 36 秒 (日本時間) | |
40 | 3e6 | 1910 | 110 | Ignacio Santos | November 22, 2010 05:33:36 UTC 2010 年 11 月 22 日 (月) 14 時 33 分 36 秒 (日本時間) |
1500 | Dmitry Domanov | December 2, 2013 13:06:17 UTC 2013 年 12 月 2 日 (月) 22 時 6 分 17 秒 (日本時間) | |||
300 | Serge Batalov | January 9, 2014 04:59:15 UTC 2014 年 1 月 9 日 (木) 13 時 59 分 15 秒 (日本時間) | |||
45 | 11e6 | 182 / 4043 | 32 | Ignacio Santos | November 22, 2010 05:33:36 UTC 2010 年 11 月 22 日 (月) 14 時 33 分 36 秒 (日本時間) |
150 | Rich Dickerson | April 9, 2014 21:25:55 UTC 2014 年 4 月 10 日 (木) 6 時 25 分 55 秒 (日本時間) |
name 名前 | Robert Backstrom |
---|---|
date 日付 | February 1, 2008 05:11:40 UTC 2008 年 2 月 1 日 (金) 14 時 11 分 40 秒 (日本時間) |
composite number 合成数 | 6948450842398574021083827748228008733680416101397780867570196837840177721896089316923841361695973007521582377123874074480140622029<130> |
prime factors 素因数 | 360922089125386739265100361213804922199<39> 19251941213231301805507821363673906075280686340797762406923312617295075302212157369103874171<92> |
factorization results 素因数分解の結果 | GMP-ECM 6.1.3 [powered by GMP 4.2.1] [ECM] Input number is 6948450842398574021083827748228008733680416101397780867570196837840177721896089316923841361695973007521582377123874074480140622029 (130 digits) Using B1=2148000, B2=2854157680, polynomial Dickson(6), sigma=1344192446 Step 1 took 21206ms Step 2 took 8411ms ********** Factor found in step 2: 360922089125386739265100361213804922199 Found probable prime factor of 39 digits: 360922089125386739265100361213804922199 Probable prime cofactor 19251941213231301805507821363673906075280686340797762406923312617295075302212157369103874171 has 92 digits |
name 名前 | Wataru Sakai |
---|---|
date 日付 | July 12, 2009 09:51:05 UTC 2009 年 7 月 12 日 (日) 18 時 51 分 5 秒 (日本時間) |
composite number 合成数 | 212572122684482235044032796841785605830549650774369875493470999088976617066504706954145156392347403583358639538414819313695718190100212572122684482235044032796841785605830549650774369875493471<192> |
prime factors 素因数 | 711549423651204178804703845878926067199337895119<48> 298745407724036587596846553046331517575087722040410770709987309288456174674024401314163963624147750872498764458224098031975479126729720370314609<144> |
factorization results 素因数分解の結果 | Number: 70003_194 N=212572122684482235044032796841785605830549650774369875493470999088976617066504706954145156392347403583358639538414819313695718190100212572122684482235044032796841785605830549650774369875493471 ( 192 digits) SNFS difficulty: 195 digits. Divisors found: r1=711549423651204178804703845878926067199337895119 r2=298745407724036587596846553046331517575087722040410770709987309288456174674024401314163963624147750872498764458224098031975479126729720370314609 Version: Total time: 644.03 hours. Scaled time: 1297.07 units (timescale=2.014). Factorization parameters were as follows: n: 212572122684482235044032796841785605830549650774369875493470999088976617066504706954145156392347403583358639538414819313695718190100212572122684482235044032796841785605830549650774369875493471 m: 1000000000000000000000000000000000000000 deg: 5 c5: 7 c0: 30 skew: 1.34 type: snfs lss: 1 rlim: 12900000 alim: 12900000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5Factor base limits: 12900000/12900000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved rational special-q in [6450000, 13550001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 2257343 x 2257591 Total sieving time: 644.03 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,195,5,0,0,0,0,0,0,0,0,12900000,12900000,28,28,55,55,2.5,2.5,100000 total time: 644.03 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | July 30, 2007 09:00:00 UTC 2007 年 7 月 30 日 (月) 18 時 0 分 0 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | October 30, 2013 15:03:39 UTC 2013 年 10 月 31 日 (木) 0 時 3 分 39 秒 (日本時間) |
composite number 合成数 | 6794401418249220564470302772715475023213633607997441631965102666715002834175385614573567133933861717994501840072302208696048566059616014946241190422937491167<157> |
prime factors 素因数 | 3264429666208402941646844264448525016971036119<46> 2081344097739694518485623114863207666580074112266611692519396401802216778880649252109357498189265361435766375993<112> |
factorization results 素因数分解の結果 | Using B1=110000000, B2=776278396540, polynomial Dickson(30), sigma=3341907957 Step 1 took 617039ms Step 2 took 190452ms ********** Factor found in step 2: 3264429666208402941646844264448525016971036119 Found probable prime factor of 46 digits: 3264429666208402941646844264448525016971036119 Probable prime cofactor |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | July 30, 2007 09:00:00 UTC 2007 年 7 月 30 日 (月) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 300 | Ignacio Santos | November 22, 2010 05:34:08 UTC 2010 年 11 月 22 日 (月) 14 時 34 分 8 秒 (日本時間) | |
40 | 3e6 | 110 / 2144 | Ignacio Santos | November 22, 2010 05:34:08 UTC 2010 年 11 月 22 日 (月) 14 時 34 分 8 秒 (日本時間) | |
45 | 11e6 | 32 / 4441 | Ignacio Santos | November 22, 2010 05:34:08 UTC 2010 年 11 月 22 日 (月) 14 時 34 分 8 秒 (日本時間) |
name 名前 | Wataru Sakai |
---|---|
date 日付 | August 16, 2010 13:39:05 UTC 2010 年 8 月 16 日 (月) 22 時 39 分 5 秒 (日本時間) |
composite number 合成数 | 870531918755444788521494434185778500590102497298646184824845309276175467746437979258134439900447462111559486175747933354115832007088318584636477125461818737421046952176346585718473683453229<189> |
prime factors 素因数 | 6209295025861248104401498918612644843252814534446112342360551710652554123<73> 140198189187298177033134475194820344937688280235805400687901079429074440127140284360976916800670096474701071003670823<117> |
factorization results 素因数分解の結果 | Number: 70003_196 N=870531918755444788521494434185778500590102497298646184824845309276175467746437979258134439900447462111559486175747933354115832007088318584636477125461818737421046952176346585718473683453229 ( 189 digits) SNFS difficulty: 196 digits. Divisors found: r1=6209295025861248104401498918612644843252814534446112342360551710652554123 r2=140198189187298177033134475194820344937688280235805400687901079429074440127140284360976916800670096474701071003670823 Version: Total time: 749.83 hours. Scaled time: 1510.15 units (timescale=2.014). Factorization parameters were as follows: n: 870531918755444788521494434185778500590102497298646184824845309276175467746437979258134439900447462111559486175747933354115832007088318584636477125461818737421046952176346585718473683453229 m: 1000000000000000000000000000000000000000 deg: 5 c5: 70 c0: 3 skew: 0.53 type: snfs lss: 1 rlim: 13400000 alim: 13400000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5Factor base limits: 13400000/13400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved rational special-q in [6700000, 15200001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 2291194 x 2291442 Total sieving time: 749.83 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,196,5,0,0,0,0,0,0,0,0,13400000,13400000,28,28,55,55,2.5,2.5,100000 total time: 749.83 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | July 30, 2007 09:00:00 UTC 2007 年 7 月 30 日 (月) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 300 | Ignacio Santos | June 21, 2010 12:37:56 UTC 2010 年 6 月 21 日 (月) 21 時 37 分 56 秒 (日本時間) | |
40 | 3e6 | 2446 | 110 | Ignacio Santos | June 21, 2010 12:37:56 UTC 2010 年 6 月 21 日 (月) 21 時 37 分 56 秒 (日本時間) |
2336 | Wataru Sakai | June 22, 2010 06:19:39 UTC 2010 年 6 月 22 日 (火) 15 時 19 分 39 秒 (日本時間) | |||
45 | 11e6 | 137 / 3924 | 32 | Ignacio Santos | June 21, 2010 12:37:56 UTC 2010 年 6 月 21 日 (月) 21 時 37 分 56 秒 (日本時間) |
105 | Dmitry Domanov | June 21, 2010 12:57:40 UTC 2010 年 6 月 21 日 (月) 21 時 57 分 40 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | February 26, 2021 10:57:54 UTC 2021 年 2 月 26 日 (金) 19 時 57 分 54 秒 (日本時間) |
composite number 合成数 | 583723040868188398708597090156241795531993542291926409332571092713616810806791118215733781720504096037754967368622540416612763148781932602531673090118185678243217961071094830531676979<183> |
prime factors 素因数 | 17011170339509324068653941761136158241765663627<47> 3812632423046170713337259874692065312037416328197868801<55> 9000107691047169821956093145893689162787487575541330951012503933273421655114147577<82> |
factorization results 素因数分解の結果 | Number: n N=583723040868188398708597090156241795531993542291926409332571092713616810806791118215733781720504096037754967368622540416612763148781932602531673090118185678243217961071094830531676979 ( 183 digits) SNFS difficulty: 197 digits. Divisors found: Fri Feb 26 21:47:36 2021 found factor: 3812632423046170713337259874692065312037416328197868801 Fri Feb 26 21:52:50 2021 p47 factor: 17011170339509324068653941761136158241765663627 Fri Feb 26 21:52:50 2021 p55 factor: 3812632423046170713337259874692065312037416328197868801 Fri Feb 26 21:52:50 2021 p82 factor: 9000107691047169821956093145893689162787487575541330951012503933273421655114147577 Fri Feb 26 21:52:50 2021 elapsed time 01:21:40 (Msieve 1.54 - dependency 3) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.324). Factorization parameters were as follows: # # N = 7x10^197+3 = 70(196)3 # n: 583723040868188398708597090156241795531993542291926409332571092713616810806791118215733781720504096037754967368622540416612763148781932602531673090118185678243217961071094830531676979 m: 1000000000000000000000000000000000000000 deg: 5 c5: 700 c0: 3 skew: 0.34 # Murphy_E = 2.277e-11 type: snfs lss: 1 rlim: 13900000 alim: 13900000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 Factor base limits: 13900000/13900000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved special-q in [100000, 19750000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 3027937 hash collisions in 26100268 relations (24546834 unique) Msieve: matrix is 1780285 x 1780510 (622.8 MB) Sieving start time: 2021/02/26 15:55:56 Sieving end time : 2021/02/26 20:30:34 Total sieving time: 4hrs 34min 38secs. Total relation processing time: 1hrs 1min 51sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 7min 49sec. Prototype def-par.txt line would be: snfs,197,5,0,0,0,0,0,0,0,0,13900000,13900000,28,28,55,55,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- [ 0.116873] smpboot: CPU0: AMD Ryzen 7 2700 Eight-Core Processor (family: 0x17, model: 0x8, stepping: 0x2) [ 0.000000] Memory: 16241916K/16727236K available (14339K kernel code, 2400K rwdata, 4964K rodata, 2732K init, 4968K bss, 485320K reserved, 0K cma-reserved) [ 0.153556] x86/mm: Memory block size: 128MB [ 0.000005] Calibrating delay loop (skipped), value calculated using timer frequency.. 6399.16 BogoMIPS (lpj=12798332) [ 0.152039] smpboot: Total of 16 processors activated (102386.65 BogoMIPS) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | July 30, 2007 09:00:00 UTC 2007 年 7 月 30 日 (月) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 300 | Ignacio Santos | November 22, 2010 05:34:37 UTC 2010 年 11 月 22 日 (月) 14 時 34 分 37 秒 (日本時間) | |
40 | 3e6 | 1910 | 110 | Ignacio Santos | November 22, 2010 05:34:37 UTC 2010 年 11 月 22 日 (月) 14 時 34 分 37 秒 (日本時間) |
1500 | Dmitry Domanov | December 2, 2013 13:06:26 UTC 2013 年 12 月 2 日 (月) 22 時 6 分 26 秒 (日本時間) | |||
300 | Serge Batalov | January 9, 2014 04:59:16 UTC 2014 年 1 月 9 日 (木) 13 時 59 分 16 秒 (日本時間) | |||
45 | 11e6 | 1532 / 4043 | 32 | Ignacio Santos | November 22, 2010 05:34:37 UTC 2010 年 11 月 22 日 (月) 14 時 34 分 37 秒 (日本時間) |
1500 | Dmitry Domanov | April 30, 2014 12:31:08 UTC 2014 年 4 月 30 日 (水) 21 時 31 分 8 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 16, 2021 07:00:00 UTC 2021 年 3 月 16 日 (火) 16 時 0 分 0 秒 (日本時間) |
composite number 合成数 | 14303370437529736035776509021020367994977563743718072242830294592017946229786059564291921595196918594785013092205330293250436877969336545570611980419433044939382199912869165524687<179> |
prime factors 素因数 | 14954303136576143663755172942190647069262449676658268330213460823<65> 956471880160412365634560741676128762607311882672548924582358724779501256628825949916623036449639892678775202647369<114> |
factorization results 素因数分解の結果 | Number: n N=14303370437529736035776509021020367994977563743718072242830294592017946229786059564291921595196918594785013092205330293250436877969336545570611980419433044939382199912869165524687 ( 179 digits) SNFS difficulty: 198 digits. Divisors found: Tue Mar 16 17:53:36 2021 p65 factor: 14954303136576143663755172942190647069262449676658268330213460823 Tue Mar 16 17:53:36 2021 p114 factor: 956471880160412365634560741676128762607311882672548924582358724779501256628825949916623036449639892678775202647369 Tue Mar 16 17:53:36 2021 elapsed time 01:21:52 (Msieve 1.54 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.345). Factorization parameters were as follows: # # N = 7x10^198+3 = 70(197)3 # n: 14303370437529736035776509021020367994977563743718072242830294592017946229786059564291921595196918594785013092205330293250436877969336545570611980419433044939382199912869165524687 m: 1000000000000000000000000000000000000000 deg: 5 c5: 7000 c0: 3 skew: 0.21 # Murphy_E = 1.716e-11 type: snfs lss: 1 rlim: 14400000 alim: 14400000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 Factor base limits: 14400000/14400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved special-q in [100000, 27200000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 3939462 hash collisions in 29055135 relations (26631712 unique) Msieve: matrix is 1823457 x 1823682 (633.1 MB) Sieving start time : 2021/03/16 09:52:34 Sieving end time : 2021/03/16 16:31:13 Total sieving time: 6hrs 38min 39secs. Total relation processing time: 1hrs 4min 50sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 2min 38sec. Prototype def-par.txt line would be: snfs,198,5,0,0,0,0,0,0,0,0,14400000,14400000,28,28,55,55,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- [ 0.116745] smpboot: CPU0: AMD Ryzen 7 2700 Eight-Core Processor (family: 0x17, model: 0x8, stepping: 0x2) [ 0.000000] Memory: 16241916K/16727236K available (14339K kernel code, 2400K rwdata, 4964K rodata, 2732K init, 4968K bss, 485320K reserved, 0K cma-reserved) [ 0.152613] x86/mm: Memory block size: 128MB [ 0.000005] Calibrating delay loop (skipped), value calculated using timer frequency.. 6399.17 BogoMIPS (lpj=12798352) [ 0.150217] smpboot: Total of 16 processors activated (102386.81 BogoMIPS) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | July 30, 2007 09:00:00 UTC 2007 年 7 月 30 日 (月) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 300 | Ignacio Santos | November 22, 2010 06:21:49 UTC 2010 年 11 月 22 日 (月) 15 時 21 分 49 秒 (日本時間) | |
40 | 3e6 | 1910 | 110 | Ignacio Santos | November 22, 2010 06:21:49 UTC 2010 年 11 月 22 日 (月) 15 時 21 分 49 秒 (日本時間) |
1500 | Dmitry Domanov | December 2, 2013 13:06:35 UTC 2013 年 12 月 2 日 (月) 22 時 6 分 35 秒 (日本時間) | |||
300 | Serge Batalov | January 9, 2014 04:59:16 UTC 2014 年 1 月 9 日 (木) 13 時 59 分 16 秒 (日本時間) | |||
45 | 11e6 | 1532 / 4043 | 32 | Ignacio Santos | November 22, 2010 06:21:49 UTC 2010 年 11 月 22 日 (月) 15 時 21 分 49 秒 (日本時間) |
1500 | Dmitry Domanov | April 30, 2014 12:31:22 UTC 2014 年 4 月 30 日 (水) 21 時 31 分 22 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | September 27, 2021 19:17:35 UTC 2021 年 9 月 28 日 (火) 4 時 17 分 35 秒 (日本時間) |
composite number 合成数 | 2043058492307067550223787256705332909947066274414760791548170707723398336498263778729521492707748176450075551852219460025505931254136390203052158453596295307634918824329063029075447<181> |
prime factors 素因数 | 34909614287403391947472276470412403010427513579259072008021665092127667547<74> 58524235629961526330246236147048526938955364204843848064298945603804208142542106333075493462169670132375701<107> |
factorization results 素因数分解の結果 | Number: n N=2043058492307067550223787256705332909947066274414760791548170707723398336498263778729521492707748176450075551852219460025505931254136390203052158453596295307634918824329063029075447 ( 181 digits) SNFS difficulty: 201 digits. Divisors found: Tue Sep 28 05:09:17 2021 p74 factor: 34909614287403391947472276470412403010427513579259072008021665092127667547 Tue Sep 28 05:09:17 2021 p107 factor: 58524235629961526330246236147048526938955364204843848064298945603804208142542106333075493462169670132375701 Tue Sep 28 05:09:17 2021 elapsed time 01:53:07 (Msieve 1.54 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.347). Factorization parameters were as follows: # # N = 7x10^201+3 = 70(200)3 # n: 2043058492307067550223787256705332909947066274414760791548170707723398336498263778729521492707748176450075551852219460025505931254136390203052158453596295307634918824329063029075447 m: 10000000000000000000000000000000000000000 deg: 5 c5: 70 c0: 3 skew: 0.53 # Murphy_E = 1.155e-11 type: snfs lss: 1 rlim: 16200000 alim: 16200000 lpbr: 29 lpba: 29 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 16200000/16200000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 56/56 Sieved special-q in [100000, 35300000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 9209709 hash collisions in 66984491 relations (59218207 unique) Msieve: matrix is 2157425 x 2157654 (738.2 MB) Sieving start time : 2021/09/27 14:51:54 Sieving end time : 2021/09/28 03:13:26 Total sieving time: 12hrs 21min 32secs. Total relation processing time: 1hrs 32min 12sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 4min 45sec. Prototype def-par.txt line would be: snfs,201,5,0,0,0,0,0,0,0,0,16200000,16200000,29,29,56,56,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- [ 0.119850] smpboot: CPU0: AMD Ryzen 7 2700 Eight-Core Processor (family: 0x17, model: 0x8, stepping: 0x2) [ 0.000000] Memory: 16239964K/16727236K available (14339K kernel code, 2400K rwdata, 5016K rodata, 2736K init, 4964K bss, 487272K reserved, 0K cma-reserved) [ 0.154026] x86/mm: Memory block size: 128MB [ 0.000005] Calibrating delay loop (skipped), value calculated using timer frequency.. 6399.44 BogoMIPS (lpj=12798892) [ 0.150212] smpboot: Total of 16 processors activated (102391.13 BogoMIPS) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | November 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 6780 | 400 | Serge Batalov | November 19, 2013 18:02:10 UTC 2013 年 11 月 20 日 (水) 3 時 2 分 10 秒 (日本時間) |
400 | Serge Batalov | November 19, 2013 18:02:11 UTC 2013 年 11 月 20 日 (水) 3 時 2 分 11 秒 (日本時間) | |||
1500 | Dmitry Domanov | April 30, 2014 12:31:39 UTC 2014 年 4 月 30 日 (水) 21 時 31 分 39 秒 (日本時間) | |||
4480 | Ignacio Santos | August 6, 2021 10:01:58 UTC 2021 年 8 月 6 日 (金) 19 時 1 分 58 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | November 19, 2013 08:08:18 UTC 2013 年 11 月 19 日 (火) 17 時 8 分 18 秒 (日本時間) |
composite number 合成数 | 141734045183450564369687269373108407355944152733843188740270370034157499914549055413846352188194164524031751346142089972459731442850378453098352226785923400084777068650988480269004513656861111<192> |
prime factors 素因数 | 1793258149946950549505155314272581687<37> |
composite cofactor 合成数の残り | 79037167731619367064646295811996973912509341300003788988243863560636996657843086441558616189531026784673009053593529999453293710597199270027151583251649153<155> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=2119995705 Step 1 took 57863ms Step 2 took 21625ms ********** Factor found in step 2: 1793258149946950549505155314272581687 Found probable prime factor of 37 digits: 1793258149946950549505155314272581687 Composite cofactor |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | November 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1500 | Dmitry Domanov | December 2, 2013 13:06:52 UTC 2013 年 12 月 2 日 (月) 22 時 6 分 52 秒 (日本時間) | |
45 | 11e6 | 6380 | 400 | Serge Batalov | November 19, 2013 18:02:12 UTC 2013 年 11 月 20 日 (水) 3 時 2 分 12 秒 (日本時間) |
1500 | Dmitry Domanov | April 30, 2014 12:32:15 UTC 2014 年 4 月 30 日 (水) 21 時 32 分 15 秒 (日本時間) | |||
4480 | Ignacio Santos | September 5, 2021 19:34:58 UTC 2021 年 9 月 6 日 (月) 4 時 34 分 58 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | November 18, 2013 20:05:34 UTC 2013 年 11 月 19 日 (火) 5 時 5 分 34 秒 (日本時間) |
composite number 合成数 | 124956847898059343731280999734898943683796790757158915439916494920500719325376677914850824527540403982793246986957675211600773261715608999956141775983900403496364362450177<171> |
prime factors 素因数 | 39421058788435533306235532145937<32> |
composite cofactor 合成数の残り | 3169799384858642689307824257681793381139457759844836172206199951519946138870465411351524182766174123991887262638511743942997861907363041521<139> |
factorization results 素因数分解の結果 | Using B1=2000000, B2=5705781910, polynomial Dickson(6), sigma=3839599914 Step 1 took 8156ms Step 2 took 5965ms ********** Factor found in step 2: 39421058788435533306235532145937 Found probable prime factor of 32 digits: 39421058788435533306235532145937 Composite cofactor |
name 名前 | Youcef Lemsafer |
---|---|
date 日付 | December 4, 2013 06:30:06 UTC 2013 年 12 月 4 日 (水) 15 時 30 分 6 秒 (日本時間) |
composite number 合成数 | 3169799384858642689307824257681793381139457759844836172206199951519946138870465411351524182766174123991887262638511743942997861907363041521<139> |
prime factors 素因数 | 11161082229868366178586047078195906213830944275401463<53> 284004661875520229748354481165373733772213270925504868400991084706402200408864083124567<87> |
factorization results 素因数分解の結果 | <Polynomial selection using msieve 1.52 (SVN 942) win64 CUDA> Sun Dec 01 09:09:33 2013 Msieve v. 1.52 (SVN unknown) Sun Dec 01 09:09:33 2013 random seeds: 596e29c0 31cecd85 Sun Dec 01 09:09:33 2013 factoring 3169799384858642689307824257681793381139457759844836172206199951519946138870465411351524182766174123991887262638511743942997861907363041521 (139 digits) Sun Dec 01 09:09:34 2013 searching for 15-digit factors Sun Dec 01 09:09:34 2013 commencing number field sieve (139-digit input) Sun Dec 01 09:09:34 2013 commencing number field sieve polynomial selection Sun Dec 01 09:09:34 2013 polynomial degree: 5 Sun Dec 01 09:09:34 2013 max stage 1 norm: 1.32e+021 Sun Dec 01 09:09:34 2013 max stage 2 norm: 2.50e+019 Sun Dec 01 09:09:34 2013 min E-value: 1.94e-011 Sun Dec 01 09:09:34 2013 poly select deadline: 186675 Sun Dec 01 11:44:42 2013 polynomial selection complete Sun Dec 01 11:44:42 2013 R0: -621007583157439336356169977 Sun Dec 01 11:44:42 2013 R1: 673551616329769 Sun Dec 01 11:44:42 2013 A0: -1252991855929474820815625495702540 Sun Dec 01 11:44:42 2013 A1: 5549610486493690177921411772 Sun Dec 01 11:44:42 2013 A2: 19083381265157798420373 Sun Dec 01 11:44:42 2013 A3: -37949423452445696 Sun Dec 01 11:44:42 2013 A4: -1413396172 Sun Dec 01 11:44:42 2013 A5: 34320 Sun Dec 01 11:44:42 2013 skew 666828.93, size 2.088e-013, alpha -6.253, combined = 2.568e-011 rroots = 3 <Sieving> <7500000, 10000000> < 2013-12-01 16:08:40 ... 2013-12-02 07:50:44> < 15h 42m, Intel Xeon W3530 @ 2.8 GHz, 4 threads> < 4566469 relations> <10000000, 11500000> < 2013-12-02 08:18:28 ... 2013-12-02 21:32:38> < 13h 14m, Intel Xeon W3530 @ 2.8 GHz, 3 threads> < 2798578 relations> <11500000, 12800000> < 2013-12-02 21:36:15 ... 2013-12-03 06:33:10> < 08h 57m, Intel Xeon W3530 @ 2.8 GHz, 4 threads> < 2434411 relations> <Resuming on 2x Intel Xeon E5-2620 @ 2.0 GHz, 24 threads> Tue Dec 03 08:41:38 2013 -> factmsieve.py (v0.76) Tue Dec 03 08:41:38 2013 -> This is client 1 of 1 Tue Dec 03 08:41:38 2013 -> Running on 12 Cores with 2 hyper-threads per Core Tue Dec 03 08:41:38 2013 -> Working with NAME = 70003_203 Tue Dec 03 08:41:38 2013 -> Selected lattice siever: gnfs-lasieve4I13e Tue Dec 03 08:41:38 2013 -> Creating param file to detect parameter changes... Tue Dec 03 08:41:38 2013 -> Running setup ... Tue Dec 03 08:41:38 2013 -> Estimated minimum relations needed: 2.2e+07 Tue Dec 03 08:41:38 2013 -> cleaning up before a restart Tue Dec 03 08:41:38 2013 -> Running lattice siever ... Tue Dec 03 08:41:38 2013 -> entering sieving loop <...snipped...> Tue Dec 03 08:41:38 2013 -> Lattice sieving algebraic q from 12800000 to 12900000. <...snipped...> Tue Dec 03 09:00:29 2013 Found 9988455 relations, 45.4% of the estimated minimum (22000000). Tue Dec 03 09:00:29 2013 LatSieveTime: 1130.65 <...snipped...> Tue Dec 03 10:14:20 2013 Found 11105919 relations, 50.5% of the estimated minimum (22000000). <...snipped...> Tue Dec 03 16:26:41 2013 Found 16477471 relations, 74.9% of the estimated minimum (22000000). <...snipped...> Tue Dec 03 23:07:40 2013 Found 22003913 relations, 100.0% of the estimated minimum (22000000). <...snipped...> Wed Dec 04 01:18:25 2013 Found 23167723 relations, 105.3% of the estimated minimum (22000000). <...snipped...> Wed Dec 04 01:18:27 2013 Wed Dec 04 01:18:27 2013 commencing relation filtering Wed Dec 04 01:18:27 2013 estimated available RAM is 4096.0 MB Wed Dec 04 01:18:27 2013 commencing duplicate removal, pass 1 Wed Dec 04 01:20:55 2013 found 3327890 hash collisions in 23167722 relations Wed Dec 04 01:21:44 2013 added 24 free relations Wed Dec 04 01:21:44 2013 commencing duplicate removal, pass 2 Wed Dec 04 01:22:02 2013 found 2932861 duplicates and 20234885 unique relations Wed Dec 04 01:22:02 2013 memory use: 98.6 MB Wed Dec 04 01:22:02 2013 reading ideals above 19988480 Wed Dec 04 01:22:09 2013 commencing singleton removal, initial pass Wed Dec 04 01:24:44 2013 memory use: 376.5 MB Wed Dec 04 01:24:44 2013 reading all ideals from disk Wed Dec 04 01:24:45 2013 memory use: 334.3 MB Wed Dec 04 01:24:45 2013 commencing in-memory singleton removal Wed Dec 04 01:24:46 2013 begin with 20234885 relations and 19398073 unique ideals Wed Dec 04 01:24:54 2013 reduce to 8793349 relations and 6184297 ideals in 22 passes Wed Dec 04 01:24:54 2013 max relations containing the same ideal: 31 Wed Dec 04 01:24:55 2013 reading ideals above 100000 Wed Dec 04 01:24:55 2013 commencing singleton removal, initial pass Wed Dec 04 01:26:26 2013 memory use: 188.3 MB Wed Dec 04 01:26:26 2013 reading all ideals from disk Wed Dec 04 01:26:26 2013 memory use: 343.3 MB Wed Dec 04 01:26:27 2013 keeping 8670950 ideals with weight <= 200, target excess is 45673 Wed Dec 04 01:26:28 2013 commencing in-memory singleton removal Wed Dec 04 01:26:29 2013 begin with 8793377 relations and 8670950 unique ideals Wed Dec 04 01:26:39 2013 reduce to 8690791 relations and 8568112 ideals in 15 passes Wed Dec 04 01:26:39 2013 max relations containing the same ideal: 200 Wed Dec 04 01:26:43 2013 removing 475420 relations and 440571 ideals in 34849 cliques Wed Dec 04 01:26:43 2013 commencing in-memory singleton removal Wed Dec 04 01:26:44 2013 begin with 8215371 relations and 8568112 unique ideals Wed Dec 04 01:26:49 2013 reduce to 8193961 relations and 8105982 ideals in 9 passes Wed Dec 04 01:26:49 2013 max relations containing the same ideal: 196 Wed Dec 04 01:26:53 2013 removing 344212 relations and 309363 ideals in 34849 cliques Wed Dec 04 01:26:53 2013 commencing in-memory singleton removal Wed Dec 04 01:26:54 2013 begin with 7849749 relations and 8105982 unique ideals Wed Dec 04 01:27:00 2013 reduce to 7837707 relations and 7784509 ideals in 10 passes Wed Dec 04 01:27:00 2013 max relations containing the same ideal: 192 Wed Dec 04 01:27:05 2013 relations with 0 large ideals: 157 Wed Dec 04 01:27:05 2013 relations with 1 large ideals: 100 Wed Dec 04 01:27:05 2013 relations with 2 large ideals: 1270 Wed Dec 04 01:27:05 2013 relations with 3 large ideals: 17088 Wed Dec 04 01:27:05 2013 relations with 4 large ideals: 124427 Wed Dec 04 01:27:05 2013 relations with 5 large ideals: 532600 Wed Dec 04 01:27:05 2013 relations with 6 large ideals: 1403211 Wed Dec 04 01:27:05 2013 relations with 7+ large ideals: 5758854 Wed Dec 04 01:27:05 2013 commencing 2-way merge Wed Dec 04 01:27:11 2013 reduce to 4600807 relation sets and 4547609 unique ideals Wed Dec 04 01:27:11 2013 commencing full merge Wed Dec 04 01:28:43 2013 memory use: 482.7 MB Wed Dec 04 01:28:44 2013 found 2387434 cycles, need 2383809 Wed Dec 04 01:28:44 2013 weight of 2383809 cycles is about 167019205 (70.06/cycle) Wed Dec 04 01:28:44 2013 distribution of cycle lengths: Wed Dec 04 01:28:44 2013 1 relations: 370628 Wed Dec 04 01:28:44 2013 2 relations: 317039 Wed Dec 04 01:28:44 2013 3 relations: 290942 Wed Dec 04 01:28:44 2013 4 relations: 247452 Wed Dec 04 01:28:44 2013 5 relations: 209719 Wed Dec 04 01:28:44 2013 6 relations: 173208 Wed Dec 04 01:28:44 2013 7 relations: 144382 Wed Dec 04 01:28:44 2013 8 relations: 118386 Wed Dec 04 01:28:44 2013 9 relations: 96153 Wed Dec 04 01:28:44 2013 10+ relations: 415900 Wed Dec 04 01:28:44 2013 heaviest cycle: 28 relations Wed Dec 04 01:28:44 2013 commencing cycle optimization Wed Dec 04 01:28:48 2013 start with 13504511 relations Wed Dec 04 01:29:15 2013 pruned 286099 relations Wed Dec 04 01:29:15 2013 memory use: 362.5 MB Wed Dec 04 01:29:15 2013 distribution of cycle lengths: Wed Dec 04 01:29:15 2013 1 relations: 370628 Wed Dec 04 01:29:15 2013 2 relations: 324064 Wed Dec 04 01:29:15 2013 3 relations: 300213 Wed Dec 04 01:29:15 2013 4 relations: 251595 Wed Dec 04 01:29:15 2013 5 relations: 213136 Wed Dec 04 01:29:15 2013 6 relations: 173687 Wed Dec 04 01:29:15 2013 7 relations: 143821 Wed Dec 04 01:29:15 2013 8 relations: 116769 Wed Dec 04 01:29:15 2013 9 relations: 94454 Wed Dec 04 01:29:15 2013 10+ relations: 395442 Wed Dec 04 01:29:15 2013 heaviest cycle: 28 relations Wed Dec 04 01:29:18 2013 RelProcTime: 651 Wed Dec 04 01:29:18 2013 elapsed time 00:10:53 Wed Dec 04 01:29:18 2013 LatSieveTime: 1432.94 Wed Dec 04 01:29:18 2013 -> Running matrix solving step ... <...snipped...> Wed Dec 04 01:29:20 2013 Wed Dec 04 01:29:20 2013 commencing linear algebra Wed Dec 04 01:29:21 2013 read 2383809 cycles Wed Dec 04 01:29:26 2013 cycles contain 7765915 unique relations Wed Dec 04 01:30:15 2013 read 7765915 relations Wed Dec 04 01:30:28 2013 using 20 quadratic characters above 268435068 Wed Dec 04 01:31:09 2013 building initial matrix Wed Dec 04 01:33:03 2013 memory use: 888.8 MB Wed Dec 04 01:33:06 2013 read 2383809 cycles Wed Dec 04 01:33:07 2013 matrix is 2383632 x 2383809 (679.5 MB) with weight 221286497 (92.83/col) Wed Dec 04 01:33:07 2013 sparse part has weight 161442270 (67.72/col) Wed Dec 04 01:33:33 2013 filtering completed in 2 passes Wed Dec 04 01:33:35 2013 matrix is 2382831 x 2383008 (679.5 MB) with weight 221257956 (92.85/col) Wed Dec 04 01:33:35 2013 sparse part has weight 161436229 (67.74/col) Wed Dec 04 01:33:46 2013 matrix starts at (0, 0) Wed Dec 04 01:33:47 2013 matrix is 2382831 x 2383008 (679.5 MB) with weight 221257956 (92.85/col) Wed Dec 04 01:33:47 2013 sparse part has weight 161436229 (67.74/col) Wed Dec 04 01:33:47 2013 saving the first 48 matrix rows for later Wed Dec 04 01:33:48 2013 matrix includes 64 packed rows Wed Dec 04 01:33:48 2013 matrix is 2382783 x 2383008 (653.1 MB) with weight 176351030 (74.00/col) Wed Dec 04 01:33:48 2013 sparse part has weight 156915968 (65.85/col) Wed Dec 04 01:33:48 2013 using block size 65536 for processor cache size 15360 kB Wed Dec 04 01:34:04 2013 commencing Lanczos iteration (24 threads) Wed Dec 04 01:34:04 2013 memory use: 964.3 MB Wed Dec 04 01:34:14 2013 linear algebra at 0.1%, ETA 3h54m Wed Dec 04 01:34:17 2013 checkpointing every 610000 dimensions Wed Dec 04 05:38:49 2013 lanczos halted after 37683 iterations (dim = 2382781) Wed Dec 04 05:38:54 2013 recovered 30 nontrivial dependencies Wed Dec 04 05:38:59 2013 BLanczosTime: 14979 Wed Dec 04 05:38:59 2013 elapsed time 04:09:41 Wed Dec 04 05:38:59 2013 -> Running square root step ... <...snipped...> Wed Dec 04 05:39:01 2013 Wed Dec 04 05:39:01 2013 commencing square root phase Wed Dec 04 05:39:01 2013 reading relations for dependency 1 Wed Dec 04 05:39:01 2013 read 1191060 cycles Wed Dec 04 05:39:04 2013 cycles contain 3880442 unique relations Wed Dec 04 05:39:32 2013 read 3880442 relations Wed Dec 04 05:39:53 2013 multiplying 3880442 relations Wed Dec 04 05:50:26 2013 multiply complete, coefficients have about 184.04 million bits Wed Dec 04 05:50:29 2013 initial square root is modulo 4026571 Wed Dec 04 06:03:13 2013 GCD is N, no factor found Wed Dec 04 06:03:13 2013 reading relations for dependency 2 Wed Dec 04 06:03:14 2013 read 1191752 cycles Wed Dec 04 06:03:16 2013 cycles contain 3882558 unique relations Wed Dec 04 06:03:44 2013 read 3882558 relations Wed Dec 04 06:04:05 2013 multiplying 3882558 relations Wed Dec 04 06:14:37 2013 multiply complete, coefficients have about 184.15 million bits Wed Dec 04 06:14:40 2013 initial square root is modulo 4060139 Wed Dec 04 06:27:28 2013 sqrtTime: 2907 Wed Dec 04 06:27:28 2013 prp53 factor: 11161082229868366178586047078195906213830944275401463 Wed Dec 04 06:27:28 2013 prp87 factor: 284004661875520229748354481165373733772213270925504868400991084706402200408864083124567 Wed Dec 04 06:27:28 2013 elapsed time 00:48:29 |
software ソフトウェア | GGNFS (SVN 440), msieve 1.51 (SVN 845) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | November 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 | Serge Batalov | November 19, 2013 19:20:41 UTC 2013 年 11 月 20 日 (水) 4 時 20 分 41 秒 (日本時間) | |
45 | 11e6 | 600 / 4409 | Serge Batalov | November 20, 2013 01:02:51 UTC 2013 年 11 月 20 日 (水) 10 時 2 分 51 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | November 26, 2013 06:08:24 UTC 2013 年 11 月 26 日 (火) 15 時 8 分 24 秒 (日本時間) |
composite number 合成数 | 135400519652139383152063380976101933022817084388501269467439904941112596334806562911225723422264094469406228649621931708646032177849769316033817839205703921397123068847947028161<177> |
prime factors 素因数 | 5396904049036253429396109729240338143<37> 25088554182525885596739966302426014545032142855717083058096800211032876592311215655652188376631954202866760200561135138478555417285172588127<140> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2483173277 Step 1 took 22844ms Step 2 took 8988ms ********** Factor found in step 2: 5396904049036253429396109729240338143 Found probable prime factor of 37 digits: 5396904049036253429396109729240338143 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | November 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 0 / 938 | - | - | |
45 | 11e6 | 400 / 4475 | Serge Batalov | November 19, 2013 18:02:14 UTC 2013 年 11 月 20 日 (水) 3 時 2 分 14 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 14, 2024 19:32:57 UTC 2024 年 1 月 15 日 (月) 4 時 32 分 57 秒 (日本時間) |
composite number 合成数 | 5899553461139675179912882213016471722934865502498794687623580161308214078279299524547466036204550618860402930369201325049526621661496510062595118968133176263431<160> |
prime factors 素因数 | 240719260580283379889791169237263380903214210323964573001005619<63> 24508024189331905012114963800398002321176356759266118203650024773520213971942982338449900321449949<98> |
factorization results 素因数分解の結果 | Number: n N=5899553461139675179912882213016471722934865502498794687623580161308214078279299524547466036204550618860402930369201325049526621661496510062595118968133176263431 ( 160 digits) SNFS difficulty: 205 digits. Divisors found: Sun Jan 14 18:58:54 2024 prp63 factor: 240719260580283379889791169237263380903214210323964573001005619 Sun Jan 14 18:58:54 2024 prp98 factor: 24508024189331905012114963800398002321176356759266118203650024773520213971942982338449900321449949 Sun Jan 14 18:58:54 2024 elapsed time 02:29:39 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.095). Factorization parameters were as follows: # # N = 7x10^205+3 = 70(204)3 # n: 5899553461139675179912882213016471722934865502498794687623580161308214078279299524547466036204550618860402930369201325049526621661496510062595118968133176263431 m: 100000000000000000000000000000000000000000 deg: 5 c5: 7 c0: 3 skew: 0.84 # Murphy_E = 1.083e-11 type: snfs lss: 1 rlim: 18900000 alim: 18900000 lpbr: 27 lpba: 27 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 18900000/18900000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 56/56 Sieved special-q in [100000, 42250000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 3420528 hash collisions in 20075541 relations (17117631 unique) Msieve: matrix is 2191524 x 2191749 (615.9 MB) Total sieving time: 0.00 hours. Total relation processing time: 2hrs 22min 4sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 2min 14sec. Prototype def-par.txt line would be: snfs,205,5,0,0,0,0,0,0,0,0,18900000,18900000,27,27,56,56,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | November 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1500 | Dmitry Domanov | December 2, 2013 13:07:07 UTC 2013 年 12 月 2 日 (月) 22 時 7 分 7 秒 (日本時間) | |
45 | 11e6 | 6380 | 400 | Serge Batalov | November 19, 2013 18:02:15 UTC 2013 年 11 月 20 日 (水) 3 時 2 分 15 秒 (日本時間) |
1500 | Dmitry Domanov | April 30, 2014 12:32:30 UTC 2014 年 4 月 30 日 (水) 21 時 32 分 30 秒 (日本時間) | |||
4480 | Ignacio Santos | November 22, 2023 15:32:32 UTC 2023 年 11 月 23 日 (木) 0 時 32 分 32 秒 (日本時間) |
name 名前 | Youcef Lemsafer |
---|---|
date 日付 | December 11, 2013 20:23:15 UTC 2013 年 12 月 12 日 (木) 5 時 23 分 15 秒 (日本時間) |
composite number 合成数 | 20539083447741287182017697303302269309918065797535457340723054272110661643967188972755049685241231902258080855867054231580482017183346919405529<143> |
prime factors 素因数 | 185837350131898929749363764227586673830577636841094338108364844767441<69> 110521826926414827248016437625056657689818035352943332588844089689442988169<75> |
factorization results 素因数分解の結果 | <Polynomial selection using msieve 1.52 win64 CUDA> Sat Dec 07 16:06:31 2013 Sat Dec 07 16:06:31 2013 Msieve v. 1.52 (SVN unknown) Sat Dec 07 16:06:31 2013 random seeds: 4c624168 92e6d416 Sat Dec 07 16:06:31 2013 factoring 20539083447741287182017697303302269309918065797535457340723054272110661643967188972755049685241231902258080855867054231580482017183346919405529 (143 digits) Sat Dec 07 16:06:32 2013 searching for 15-digit factors Sat Dec 07 16:06:32 2013 commencing number field sieve (143-digit input) Sat Dec 07 16:06:32 2013 commencing number field sieve polynomial selection Sat Dec 07 16:06:32 2013 polynomial degree: 5 Sat Dec 07 16:06:32 2013 max stage 1 norm: 5.64e+021 Sat Dec 07 16:06:32 2013 max stage 2 norm: 9.65e+019 Sat Dec 07 16:06:32 2013 min E-value: 1.18e-011 Sat Dec 07 16:06:32 2013 poly select deadline: 282294 Sat Dec 07 16:06:32 2013 time limit set to 78.42 CPU-hours Sat Dec 07 16:06:32 2013 expecting poly E from 1.49e-011 to > 1.71e-011 <...snipped...> Sun Dec 08 13:15:06 2013 polynomial selection complete Sun Dec 08 13:15:06 2013 R0: -2977969399429526441410361528 Sun Dec 08 13:15:06 2013 R1: 1037898735922843 Sun Dec 08 13:15:06 2013 A0: 8887305058317547520834959819011795 Sun Dec 08 13:15:06 2013 A1: 69433835627483582556342003419 Sun Dec 08 13:15:06 2013 A2: 6357211983452001269319 Sun Dec 08 13:15:06 2013 A3: -590089017197059335 Sun Dec 08 13:15:06 2013 A4: 69965999674 Sun Dec 08 13:15:06 2013 A5: 87696 Sun Dec 08 13:15:06 2013 skew 833461.55, size 9.072e-014, alpha -6.936, combined = 1.561e-011 rroots = 3 <...snipped...> Mon Dec 09 08:27:10 2013 -> factmsieve.py (v0.76) Mon Dec 09 08:27:11 2013 -> This is client 1 of 1 Mon Dec 09 08:27:11 2013 -> Running on 12 Cores with 2 hyper-threads per Core Mon Dec 09 08:27:11 2013 -> Working with NAME = 70003_206 Mon Dec 09 08:27:11 2013 -> Selected lattice siever: gnfs-lasieve4I14e Mon Dec 09 08:27:11 2013 -> Creating param file to detect parameter changes... Mon Dec 09 08:27:11 2013 -> Running setup ... Mon Dec 09 08:27:11 2013 -> Estimated minimum relations needed: 2.376e+07 Mon Dec 09 08:27:11 2013 -> cleaning up before a restart Mon Dec 09 08:27:11 2013 -> Running lattice siever ... Mon Dec 09 08:27:11 2013 -> entering sieving loop <...snipped...> Mon Dec 09 08:27:11 2013 -> Lattice sieving algebraic q from 8000000 to 8100000. <...snipped...> Mon Dec 09 08:53:36 2013 Found 275872 relations, 1.2% of the estimated minimum (23760000). <...snipped...> Mon Dec 09 18:19:01 2013 Found 5965550 relations, 25.1% of the estimated minimum (23760000). <...snipped...> Tue Dec 10 05:25:55 2013 Found 11927615 relations, 50.2% of the estimated minimum (23760000). <...snipped...> Tue Dec 10 17:14:38 2013 Found 17876409 relations, 75.2% of the estimated minimum (23760000). <...snipped...> Wed Dec 11 04:10:33 2013 -> Lattice sieving algebraic q from 16700000 to 16800000. <...snipped...> Wed Dec 11 04:40:10 2013 Found 23761236 relations, 100.0% of the estimated minimum (23760000). Wed Dec 11 04:40:10 2013 Wed Dec 11 04:40:10 2013 Wed Dec 11 04:40:10 2013 Msieve v. 1.51 (SVN 845) Wed Dec 11 04:40:10 2013 random seeds: 6c728954 70779fe1 Wed Dec 11 04:40:10 2013 factoring 20539083447741287182017697303302269309918065797535457340723054272110661643967188972755049685241231902258080855867054231580482017183346919405529 (143 digits) Wed Dec 11 04:40:11 2013 searching for 15-digit factors Wed Dec 11 04:40:11 2013 commencing number field sieve (143-digit input) Wed Dec 11 04:40:11 2013 R0: -2977969399429526441410361528 Wed Dec 11 04:40:11 2013 R1: 1037898735922843 Wed Dec 11 04:40:11 2013 A0: 8887305058317547520834959819011795 Wed Dec 11 04:40:11 2013 A1: 69433835627483582556342003419 Wed Dec 11 04:40:11 2013 A2: 6357211983452001269319 Wed Dec 11 04:40:11 2013 A3: -590089017197059335 Wed Dec 11 04:40:11 2013 A4: 69965999674 Wed Dec 11 04:40:11 2013 A5: 87696 Wed Dec 11 04:40:11 2013 skew 833461.55, size 9.072e-014, alpha -6.936, combined = 1.561e-011 rroots = 3 Wed Dec 11 04:40:11 2013 Wed Dec 11 04:40:11 2013 commencing relation filtering Wed Dec 11 04:40:11 2013 estimated available RAM is 4096.0 MB Wed Dec 11 04:40:11 2013 commencing duplicate removal, pass 1 Wed Dec 11 04:42:44 2013 found 2934397 hash collisions in 23761235 relations Wed Dec 11 04:43:37 2013 added 121443 free relations Wed Dec 11 04:43:37 2013 commencing duplicate removal, pass 2 Wed Dec 11 04:43:55 2013 found 2381021 duplicates and 21501657 unique relations Wed Dec 11 04:43:55 2013 memory use: 98.6 MB Wed Dec 11 04:43:55 2013 reading ideals above 16711680 Wed Dec 11 04:44:01 2013 commencing singleton removal, initial pass Wed Dec 11 04:46:49 2013 memory use: 689.0 MB Wed Dec 11 04:46:49 2013 reading all ideals from disk Wed Dec 11 04:46:50 2013 memory use: 375.0 MB Wed Dec 11 04:46:50 2013 commencing in-memory singleton removal Wed Dec 11 04:46:51 2013 begin with 21501657 relations and 20848642 unique ideals Wed Dec 11 04:47:00 2013 reduce to 9974146 relations and 7620103 ideals in 19 passes Wed Dec 11 04:47:00 2013 max relations containing the same ideal: 41 Wed Dec 11 04:47:01 2013 reading ideals above 100000 Wed Dec 11 04:47:01 2013 commencing singleton removal, initial pass Wed Dec 11 04:48:48 2013 memory use: 188.3 MB Wed Dec 11 04:48:48 2013 reading all ideals from disk Wed Dec 11 04:48:48 2013 memory use: 403.0 MB Wed Dec 11 04:48:49 2013 keeping 9713274 ideals with weight <= 200, target excess is 54213 Wed Dec 11 04:48:50 2013 commencing in-memory singleton removal Wed Dec 11 04:48:51 2013 begin with 9974390 relations and 9713274 unique ideals Wed Dec 11 04:49:00 2013 reduce to 9951059 relations and 9688863 ideals in 11 passes Wed Dec 11 04:49:00 2013 max relations containing the same ideal: 200 Wed Dec 11 04:49:05 2013 removing 995949 relations and 896295 ideals in 99654 cliques Wed Dec 11 04:49:05 2013 commencing in-memory singleton removal Wed Dec 11 04:49:06 2013 begin with 8955110 relations and 9688863 unique ideals Wed Dec 11 04:49:13 2013 reduce to 8870955 relations and 8707168 ideals in 10 passes Wed Dec 11 04:49:13 2013 max relations containing the same ideal: 190 Wed Dec 11 04:49:17 2013 removing 738047 relations and 638393 ideals in 99654 cliques Wed Dec 11 04:49:18 2013 commencing in-memory singleton removal Wed Dec 11 04:49:18 2013 begin with 8132908 relations and 8707168 unique ideals Wed Dec 11 04:49:23 2013 reduce to 8079845 relations and 8015096 ideals in 8 passes Wed Dec 11 04:49:23 2013 max relations containing the same ideal: 180 Wed Dec 11 04:49:29 2013 relations with 0 large ideals: 178 Wed Dec 11 04:49:29 2013 relations with 1 large ideals: 100 Wed Dec 11 04:49:29 2013 relations with 2 large ideals: 1189 Wed Dec 11 04:49:29 2013 relations with 3 large ideals: 15589 Wed Dec 11 04:49:29 2013 relations with 4 large ideals: 114566 Wed Dec 11 04:49:29 2013 relations with 5 large ideals: 496188 Wed Dec 11 04:49:29 2013 relations with 6 large ideals: 1338547 Wed Dec 11 04:49:29 2013 relations with 7+ large ideals: 6113488 Wed Dec 11 04:49:29 2013 commencing 2-way merge Wed Dec 11 04:49:36 2013 reduce to 4792996 relation sets and 4728247 unique ideals Wed Dec 11 04:49:36 2013 commencing full merge Wed Dec 11 04:51:29 2013 memory use: 495.2 MB Wed Dec 11 04:51:30 2013 found 2488819 cycles, need 2480447 Wed Dec 11 04:51:30 2013 weight of 2480447 cycles is about 173783414 (70.06/cycle) Wed Dec 11 04:51:30 2013 distribution of cycle lengths: Wed Dec 11 04:51:30 2013 1 relations: 354220 Wed Dec 11 04:51:30 2013 2 relations: 321467 Wed Dec 11 04:51:30 2013 3 relations: 315041 Wed Dec 11 04:51:30 2013 4 relations: 274120 Wed Dec 11 04:51:30 2013 5 relations: 228871 Wed Dec 11 04:51:30 2013 6 relations: 195810 Wed Dec 11 04:51:30 2013 7 relations: 161446 Wed Dec 11 04:51:30 2013 8 relations: 131100 Wed Dec 11 04:51:30 2013 9 relations: 107282 Wed Dec 11 04:51:30 2013 10+ relations: 391090 Wed Dec 11 04:51:30 2013 heaviest cycle: 24 relations Wed Dec 11 04:51:31 2013 commencing cycle optimization Wed Dec 11 04:51:35 2013 start with 13531053 relations Wed Dec 11 04:51:59 2013 pruned 264754 relations Wed Dec 11 04:51:59 2013 memory use: 370.2 MB Wed Dec 11 04:51:59 2013 distribution of cycle lengths: Wed Dec 11 04:51:59 2013 1 relations: 354220 Wed Dec 11 04:51:59 2013 2 relations: 328527 Wed Dec 11 04:51:59 2013 3 relations: 324881 Wed Dec 11 04:51:59 2013 4 relations: 278310 Wed Dec 11 04:51:59 2013 5 relations: 232538 Wed Dec 11 04:51:59 2013 6 relations: 195896 Wed Dec 11 04:51:59 2013 7 relations: 161076 Wed Dec 11 04:51:59 2013 8 relations: 129440 Wed Dec 11 04:51:59 2013 9 relations: 105075 Wed Dec 11 04:51:59 2013 10+ relations: 370484 Wed Dec 11 04:51:59 2013 heaviest cycle: 24 relations Wed Dec 11 04:52:02 2013 RelProcTime: 711 Wed Dec 11 04:52:02 2013 elapsed time 00:11:52 Wed Dec 11 04:52:02 2013 LatSieveTime: 2488.99 Wed Dec 11 04:52:02 2013 -> Running matrix solving step ... <...snipped...> Wed Dec 11 04:52:04 2013 commencing linear algebra Wed Dec 11 04:52:04 2013 read 2480447 cycles Wed Dec 11 04:52:10 2013 cycles contain 7985077 unique relations Wed Dec 11 04:53:03 2013 read 7985077 relations Wed Dec 11 04:53:18 2013 using 20 quadratic characters above 268435130 Wed Dec 11 04:54:01 2013 building initial matrix Wed Dec 11 04:56:04 2013 memory use: 944.0 MB Wed Dec 11 04:56:07 2013 read 2480447 cycles Wed Dec 11 04:56:08 2013 matrix is 2480269 x 2480447 (718.5 MB) with weight 235915397 (95.11/col) Wed Dec 11 04:56:08 2013 sparse part has weight 168508008 (67.93/col) Wed Dec 11 04:56:34 2013 filtering completed in 2 passes Wed Dec 11 04:56:35 2013 matrix is 2478460 x 2478638 (718.4 MB) with weight 235850533 (95.15/col) Wed Dec 11 04:56:35 2013 sparse part has weight 168494898 (67.98/col) Wed Dec 11 04:56:48 2013 matrix starts at (0, 0) Wed Dec 11 04:56:49 2013 matrix is 2478460 x 2478638 (718.4 MB) with weight 235850533 (95.15/col) Wed Dec 11 04:56:49 2013 sparse part has weight 168494898 (67.98/col) Wed Dec 11 04:56:49 2013 saving the first 48 matrix rows for later Wed Dec 11 04:56:50 2013 matrix includes 64 packed rows Wed Dec 11 04:56:51 2013 matrix is 2478412 x 2478638 (687.3 MB) with weight 188316334 (75.98/col) Wed Dec 11 04:56:51 2013 sparse part has weight 165288497 (66.69/col) Wed Dec 11 04:56:51 2013 using block size 65536 for processor cache size 15360 kB Wed Dec 11 04:57:08 2013 commencing Lanczos iteration (24 threads) Wed Dec 11 04:57:08 2013 memory use: 1009.0 MB Wed Dec 11 04:57:19 2013 linear algebra at 0.1%, ETA 4h31m Wed Dec 11 04:57:23 2013 checkpointing every 530000 dimensions Wed Dec 11 09:54:00 2013 lanczos halted after 39195 iterations (dim = 2478412) Wed Dec 11 09:54:04 2013 recovered 32 nontrivial dependencies Wed Dec 11 09:54:07 2013 BLanczosTime: 18123 Wed Dec 11 09:54:07 2013 elapsed time 05:02:05 Wed Dec 11 09:54:08 2013 -> Running square root step ... <...snipped...> Wed Dec 11 09:54:09 2013 commencing square root phase Wed Dec 11 09:54:09 2013 reading relations for dependency 1 Wed Dec 11 09:54:10 2013 read 1238575 cycles Wed Dec 11 09:54:12 2013 cycles contain 3991084 unique relations Wed Dec 11 09:54:43 2013 read 3991084 relations Wed Dec 11 09:55:06 2013 multiplying 3991084 relations Wed Dec 11 10:07:53 2013 multiply complete, coefficients have about 202.24 million bits Wed Dec 11 10:07:56 2013 initial square root is modulo 18101893 Wed Dec 11 10:23:28 2013 GCD is 1, no factor found Wed Dec 11 10:23:28 2013 reading relations for dependency 2 Wed Dec 11 10:23:29 2013 read 1239018 cycles Wed Dec 11 10:23:31 2013 cycles contain 3991348 unique relations Wed Dec 11 10:24:01 2013 read 3991348 relations Wed Dec 11 10:24:27 2013 multiplying 3991348 relations Wed Dec 11 10:37:15 2013 multiply complete, coefficients have about 202.24 million bits Wed Dec 11 10:37:18 2013 initial square root is modulo 18113009 Wed Dec 11 10:52:52 2013 GCD is 1, no factor found Wed Dec 11 10:52:52 2013 reading relations for dependency 3 Wed Dec 11 10:52:53 2013 read 1239845 cycles Wed Dec 11 10:52:55 2013 cycles contain 3991578 unique relations Wed Dec 11 10:53:25 2013 read 3991578 relations Wed Dec 11 10:53:51 2013 multiplying 3991578 relations Wed Dec 11 11:06:37 2013 multiply complete, coefficients have about 202.26 million bits Wed Dec 11 11:06:42 2013 initial square root is modulo 18135629 Wed Dec 11 11:22:19 2013 GCD is 1, no factor found Wed Dec 11 11:22:19 2013 reading relations for dependency 4 Wed Dec 11 11:22:20 2013 read 1239417 cycles Wed Dec 11 11:22:22 2013 cycles contain 3995180 unique relations Wed Dec 11 11:22:54 2013 read 3995180 relations Wed Dec 11 11:23:21 2013 multiplying 3995180 relations Wed Dec 11 11:36:40 2013 multiply complete, coefficients have about 202.44 million bits Wed Dec 11 11:36:44 2013 initial square root is modulo 18409367 Wed Dec 11 11:52:25 2013 sqrtTime: 7096 Wed Dec 11 11:52:25 2013 prp69 factor: 185837350131898929749363764227586673830577636841094338108364844767441 Wed Dec 11 11:52:25 2013 prp75 factor: 110521826926414827248016437625056657689818035352943332588844089689442988169 Wed Dec 11 11:52:25 2013 elapsed time 01:58:17 Number: 70003_206 N = 20539083447741287182017697303302269309918065797535457340723054272110661643967188972755049685241231902258080855867054231580482017183346919405529 (143 digits) Divisors found: r1=185837350131898929749363764227586673830577636841094338108364844767441 (pp69) r2=110521826926414827248016437625056657689818035352943332588844089689442988169 (pp75) Version: Msieve v. 1.51 (SVN 845) Total time: 51.61 hours. Factorization parameters were as follows: # Murphy_E = 1.561e-11, selected by Youcef Lemsafer # msieve 1.52 GPU, expecting poly E from 1.49e-011 to > 1.71e-011 n: 20539083447741287182017697303302269309918065797535457340723054272110661643967188972755049685241231902258080855867054231580482017183346919405529 Y0: -2977969399429526441410361528 Y1: 1037898735922843 c0: 8887305058317547520834959819011795 c1: 69433835627483582556342003419 c2: 6357211983452001269319 c3: -590089017197059335 c4: 69965999674 c5: 87696 skew: 833461.55 type: gnfs # selected mechanically rlim: 21000000 alim: 21000000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 q0: 8000000 Factor base limits: 21000000/21000000 Large primes per side: 3 Large prime bits: 28/28 Sieved algebraic special-q in [8000000, 16800001) Total raw relations: 23761236 Relations: 3995180 relations Pruned matrix : 2478412 x 2478638 Polynomial selection time: 0.00 hours. Total sieving time: 44.40 hours. Total relation processing time: 0.20 hours. Matrix solve time: 5.03 hours. time per square root: 1.97 hours. Prototype def-par.txt line would be: gnfs,142,5,67,2000,5e-06,0.28,250,20,50000,3600,21000000,21000000,28,28,56,56,2.6,2.6,100000 total time: 51.61 hours. Intel64 Family 6 Model 45 Stepping 7, GenuineIntel Windows-7-6.1.7601-SP1 processors: 24, speed: 2.00GHz |
software ソフトウェア | msieve 1.52 GPU for polynomial selection, GGNFS (SVN 440), msieve 1.51 (SVN 845) |
execution environment 実行環境 | Windows 7 Pro 64bits, 2x Intel Xeon E5-2620 @ 2.0GHz, 2x NVIDIA GeForce GTX660, 32GB RAM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | November 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 2687 / 4475 | 400 | Serge Batalov | November 19, 2013 18:02:16 UTC 2013 年 11 月 20 日 (水) 3 時 2 分 16 秒 (日本時間) |
600 | Serge Batalov | November 20, 2013 01:03:10 UTC 2013 年 11 月 20 日 (水) 10 時 3 分 10 秒 (日本時間) | |||
1687 | Youcef Lemsafer | December 7, 2013 09:45:40 UTC 2013 年 12 月 7 日 (土) 18 時 45 分 40 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | May 5, 2014 05:42:35 UTC 2014 年 5 月 5 日 (月) 14 時 42 分 35 秒 (日本時間) |
composite number 合成数 | 27718232858925000237635631592179598472937179662676250298382603206855112538143043420069345717694310956641514404086430141649682016773090221575377213203122278895684773938837040404414865253380362907<194> |
prime factors 素因数 | 1188028131071590758930498763379193055166617<43> 23331293370909830112753518691795680285842593525007177818993216446285282195177465806442743444736734832170691967844901567091171572559767268061281827244371<152> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=3662884385 Step 1 took 100800ms Step 2 took 32918ms ********** Factor found in step 2: 1188028131071590758930498763379193055166617 Found probable prime factor of 43 digits: 1188028131071590758930498763379193055166617 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | November 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1500 | Dmitry Domanov | December 2, 2013 13:07:24 UTC 2013 年 12 月 2 日 (月) 22 時 7 分 24 秒 (日本時間) | |
45 | 11e6 | 1900 / 4143 | 400 | Serge Batalov | November 19, 2013 18:02:17 UTC 2013 年 11 月 20 日 (水) 3 時 2 分 17 秒 (日本時間) |
1500 | Dmitry Domanov | April 30, 2014 12:32:45 UTC 2014 年 4 月 30 日 (水) 21 時 32 分 45 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | November 19, 2013 08:07:45 UTC 2013 年 11 月 19 日 (火) 17 時 7 分 45 秒 (日本時間) |
composite number 合成数 | 3043478260869565217391304347826086956521739130434782608695652173913043478260869565217391304347826086956521739130434782608695652173913043478260869565217391304347826086956521739130434782608695652173913043478261<208> |
prime factors 素因数 | 102672526173105876700515068182897<33> 29642576980508504694993798852590656516820034394346110328727438300207926928579716222939595958107388618768416681332961461614278066011078076173633167038867156128217165559327439813<176> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=3717163228 Step 1 took 63901ms Step 2 took 23092ms ********** Factor found in step 2: 102672526173105876700515068182897 Found probable prime factor of 33 digits: 102672526173105876700515068182897 Probable prime cofactor |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | November 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | November 18, 2013 21:52:47 UTC 2013 年 11 月 19 日 (火) 6 時 52 分 47 秒 (日本時間) |
composite number 合成数 | 259163272861902998889300259163272861902998889300259163272861902998889300259163272861902998889300259163272861902998889300259163272861902998889300259163272861902998889300259163272861902998889300259163272861903<207> |
prime factors 素因数 | 13439934931113904319881321945371697<35> 19283074969502363385339409984983143972856363139426105368328720637251979578799804945134645882721133469401878150604925523181900247815845928251368791831964839378900776860908799<173> |
factorization results 素因数分解の結果 | Using B1=2000000, B2=5705781910, polynomial Dickson(6), sigma=1716420890 Step 1 took 10285ms ********** Factor found in step 1: 13439934931113904319881321945371697 Found probable prime factor of 35 digits: 13439934931113904319881321945371697 Probable prime cofactor |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | November 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 18, 2020 12:10:03 UTC 2020 年 1 月 18 日 (土) 21 時 10 分 3 秒 (日本時間) |
composite number 合成数 | 65131419852856957166135643997613956956133337414902310779035982411167023850474635917689144667211475486254897766466827963077184175186399145252463805306926698587885686170208311681013102487731799234073111507503<206> |
prime factors 素因数 | 670900252044462395925775788487421169066240622849582657<54> 97080631069043807291370115912135193206339932589767544463767543919442143784416843971955300989315580941111512937708260779247214294784689293255176991136879<152> |
factorization results 素因数分解の結果 | # # N = 7x10^212+3 = 70(211)3 # n: 65131419852856957166135643997613956956133337414902310779035982411167023850474635917689144667211475486254897766466827963077184175186399145252463805306926698587885686170208311681013102487731799234073111507503 m: 1000000000000000000000000000000000000000000 deg: 5 c5: 700 c0: 3 skew: 0.34 # Murphy_E = 4.706e-12 type: snfs lss: 1 rlim: 25000000 alim: 25000000 lpbr: 29 lpba: 29 mfbr: 57 mfba: 57 rlambda: 2.6 alambda: 2.6 GMP-ECM 6.2.3 [powered by GMP 6.1.2] [ECM] Input number is 65131419852856957166135643997613956956133337414902310779035982411167023850474635917689144667211475486254897766466827963077184175186399145252463805306926698587885686170208311681013102487731799234073111507503 (206 digits) Using B1=50340000, B2=288591693406, polynomial Dickson(12), sigma=3182128368 Step 1 took 281003ms Step 2 took 70907ms ********** Factor found in step 2: 670900252044462395925775788487421169066240622849582657 Found probable prime factor of 54 digits: 670900252044462395925775788487421169066240622849582657 Probable prime cofactor 97080631069043807291370115912135193206339932589767544463767543919442143784416843971955300989315580941111512937708260779247214294784689293255176991136879 has 152 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | November 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1500 | Dmitry Domanov | December 2, 2013 13:07:34 UTC 2013 年 12 月 2 日 (月) 22 時 7 分 34 秒 (日本時間) | |
45 | 11e6 | 1900 / 4143 | 400 | Serge Batalov | November 19, 2013 18:02:18 UTC 2013 年 11 月 20 日 (水) 3 時 2 分 18 秒 (日本時間) |
1500 | Dmitry Domanov | April 30, 2014 12:33:06 UTC 2014 年 4 月 30 日 (水) 21 時 33 分 6 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | November 22, 2014 04:32:46 UTC 2014 年 11 月 22 日 (土) 13 時 32 分 46 秒 (日本時間) |
composite number 合成数 | 9985734664764621968616262482168330955777460770328102710413694721825962910128388017118402282453637660485021398002853067047075606276747503566333808844507845934379457917261055634807417974322396576319543509272467903<211> |
prime factors 素因数 | 3706860927323951327696943477366192243798867586538315006021070431813569<70> 2693851984345552719374647011864777375768535211135930458196417662532168996562661466414894102908412028132596341826873565044421826630562900834687<142> |
factorization results 素因数分解の結果 | RelProcTime: 1929 BLanczosTime: 14988 sqrtTime: 5002 prp70 factor: 3706860927323951327696943477366192243798867586538315006021070431813569 prp142 factor: 2693851984345552719374647011864777375768535211135930458196417662532168996562661466414894102908412028132596341826873565044421826630562900834687 |
software ソフトウェア | Msieve v. 1.52 (SVN 923M) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | November 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 4700 | 400 | Serge Batalov | November 19, 2013 18:02:19 UTC 2013 年 11 月 20 日 (水) 3 時 2 分 19 秒 (日本時間) |
600 | Serge Batalov | November 20, 2013 01:03:24 UTC 2013 年 11 月 20 日 (水) 10 時 3 分 24 秒 (日本時間) | |||
400 | Serge Batalov | January 6, 2014 02:27:34 UTC 2014 年 1 月 6 日 (月) 11 時 27 分 34 秒 (日本時間) | |||
1500 | Dmitry Domanov | April 30, 2014 12:33:21 UTC 2014 年 4 月 30 日 (水) 21 時 33 分 21 秒 (日本時間) | |||
1800 | Serge Batalov | May 24, 2014 09:17:11 UTC 2014 年 5 月 24 日 (土) 18 時 17 分 11 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | November 30, 2019 04:16:26 UTC 2019 年 11 月 30 日 (土) 13 時 16 分 26 秒 (日本時間) |
composite number 合成数 | 2001130867640887689074348615464722192578485996414945463037526263770603393271872124535748359051247846604514019508338726619251490720999161211703036410204498136246766422659250780605416986930985942027067238940543<208> |
prime factors 素因数 | 3318560097159521828480881337011756383869659932541809571963181573309<67> 603011790973359053675967635684151675153449560644597179687887343809369979751416684862664394496279895472017815838284348584998248823108998446827<141> |
factorization results 素因数分解の結果 | Number: n N=2001130867640887689074348615464722192578485996414945463037526263770603393271872124535748359051247846604514019508338726619251490720999161211703036410204498136246766422659250780605416986930985942027067238940543 ( 208 digits) SNFS difficulty: 215 digits. Divisors found: Sat Nov 30 15:09:27 2019 p67 factor: 3318560097159521828480881337011756383869659932541809571963181573309 Sat Nov 30 15:09:27 2019 p141 factor: 603011790973359053675967635684151675153449560644597179687887343809369979751416684862664394496279895472017815838284348584998248823108998446827 Sat Nov 30 15:09:27 2019 elapsed time 06:53:31 (Msieve 1.54 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.133). Factorization parameters were as follows: # # N = 7x10^214+3 = 70(213)3 # n: 2001130867640887689074348615464722192578485996414945463037526263770603393271872124535748359051247846604514019508338726619251490720999161211703036410204498136246766422659250780605416986930985942027067238940543 m: 5000000000000000000000000000000000000000000 deg: 5 c5: 112 c0: 15 skew: 0.67 # Murphy_E = 3.105e-12 type: snfs lss: 1 rlim: 27000000 alim: 27000000 lpbr: 29 lpba: 29 mfbr: 57 mfba: 57 rlambda: 2.6 alambda: 2.6 Factor base limits: 27000000/27000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 57/57 Sieved special-q in [100000, 75100000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 9434230 hash collisions in 58062011 relations (50389455 unique) Msieve: matrix is 3899739 x 3899965 (1362.4 MB) Sieving start time: 2019/11/28 23:39:17 Sieving end time : 2019/11/30 08:14:22 Total sieving time: 32hrs 35min 5secs. Total relation processing time: 6hrs 29min 35sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 6min 7sec. Prototype def-par.txt line would be: snfs,215,5,0,0,0,0,0,0,0,0,27000000,27000000,29,29,57,57,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- [ 0.149711] smpboot: CPU0: AMD Ryzen 7 1700 Eight-Core Processor (family: 0x17, model: 0x1, stepping: 0x1) [ 0.000000] Memory: 16283564K/16703460K available (12300K kernel code, 2481K rwdata, 4264K rodata, 2432K init, 2388K bss, 419896K reserved, 0K cma-reserved) [ 0.184572] x86/mm: Memory block size: 128MB [ 0.024000] Calibrating delay loop (skipped), value calculated using timer frequency.. 5988.54 BogoMIPS (lpj=11977084) [ 0.182221] smpboot: Total of 16 processors activated (95816.67 BogoMIPS) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | November 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1500 | Dmitry Domanov | December 2, 2013 13:07:52 UTC 2013 年 12 月 2 日 (月) 22 時 7 分 52 秒 (日本時間) | |
45 | 11e6 | 1900 / 4143 | 400 | Serge Batalov | November 19, 2013 18:02:20 UTC 2013 年 11 月 20 日 (水) 3 時 2 分 20 秒 (日本時間) |
1500 | Dmitry Domanov | April 30, 2014 12:33:35 UTC 2014 年 4 月 30 日 (水) 21 時 33 分 35 秒 (日本時間) |
composite cofactor 合成数の残り | 10385144735345945569510941953764410444310283430640328102009745468340937242017104098480777003320481139551424294273876827762558612082203263347631493968371600438537<161> |
---|
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | November 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1800 | 1500 | Dmitry Domanov | December 2, 2013 13:08:02 UTC 2013 年 12 月 2 日 (月) 22 時 8 分 2 秒 (日本時間) |
300 | Serge Batalov | January 9, 2014 04:59:17 UTC 2014 年 1 月 9 日 (木) 13 時 59 分 17 秒 (日本時間) | |||
45 | 11e6 | 1651 / 4077 | 151 | Cyp | February 15, 2014 12:26:42 UTC 2014 年 2 月 15 日 (土) 21 時 26 分 42 秒 (日本時間) |
1500 | Dmitry Domanov | May 5, 2014 07:24:30 UTC 2014 年 5 月 5 日 (月) 16 時 24 分 30 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | November 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1500 | Dmitry Domanov | December 2, 2013 13:08:12 UTC 2013 年 12 月 2 日 (月) 22 時 8 分 12 秒 (日本時間) | |
45 | 11e6 | 1900 / 4143 | 400 | Serge Batalov | November 19, 2013 18:02:21 UTC 2013 年 11 月 20 日 (水) 3 時 2 分 21 秒 (日本時間) |
1500 | Dmitry Domanov | May 5, 2014 07:26:25 UTC 2014 年 5 月 5 日 (月) 16 時 26 分 25 秒 (日本時間) |
name 名前 | Youcef Lemsafer |
---|---|
date 日付 | December 16, 2013 11:09:07 UTC 2013 年 12 月 16 日 (月) 20 時 9 分 7 秒 (日本時間) |
composite number 合成数 | 1204586877884093663626828996016541924291596079301588987441279761500408323810366826462044654291109062624002359541506181090047539906570513948147193<145> |
prime factors 素因数 | 6260912466135837184555391199525986430130346123065958687500997130124261<70> 192397974640196617059291295389129996678764450645044076196121227785839943813<75> |
factorization results 素因数分解の結果 | <Polynomial selection using msieve 1.52 (SVN 942) win64 CUDA> Thu Dec 12 22:13:10 2013 Msieve v. 1.52 (SVN unknown) Thu Dec 12 22:13:10 2013 random seeds: b8eea358 1bcbe95a Thu Dec 12 22:13:10 2013 factoring 1204586877884093663626828996016541924291596079301588987441279761500408323810366826462044654291109062624002359541506181090047539906570513948147193 (145 digits) Thu Dec 12 22:13:12 2013 searching for 15-digit factors Thu Dec 12 22:13:12 2013 commencing number field sieve (145-digit input) Thu Dec 12 22:13:12 2013 commencing number field sieve polynomial selection Thu Dec 12 22:13:12 2013 polynomial degree: 5 Thu Dec 12 22:13:12 2013 max stage 1 norm: 1.10e+022 Thu Dec 12 22:13:12 2013 max stage 2 norm: 1.81e+020 Thu Dec 12 22:13:12 2013 min E-value: 9.40e-012 Thu Dec 12 22:13:12 2013 poly select deadline: 333439 Thu Dec 12 22:13:12 2013 time limit set to 92.62 CPU-hours Thu Dec 12 22:13:12 2013 expecting poly E from 1.16e-011 to > 1.34e-011 Thu Dec 12 22:13:12 2013 searching leading coefficients from 1 to 5332374 Thu Dec 12 22:13:12 2013 using GPU 0 (GeForce GTX 660) Thu Dec 12 22:13:12 2013 selected card has CUDA arch 3.0 Fri Dec 13 22:28:20 2013 Fri Dec 13 22:28:20 2013 Fri Dec 13 22:28:20 2013 Msieve v. 1.52 (SVN unknown) Fri Dec 13 22:28:20 2013 random seeds: b2c23d00 3821de29 Fri Dec 13 22:28:20 2013 factoring 1204586877884093663626828996016541924291596079301588987441279761500408323810366826462044654291109062624002359541506181090047539906570513948147193 (145 digits) Fri Dec 13 22:28:21 2013 searching for 15-digit factors Fri Dec 13 22:28:22 2013 commencing number field sieve (145-digit input) Fri Dec 13 22:28:22 2013 commencing number field sieve polynomial selection Fri Dec 13 22:28:22 2013 polynomial degree: 5 Fri Dec 13 22:28:22 2013 max stage 1 norm: 1.10e+022 Fri Dec 13 22:28:22 2013 max stage 2 norm: 1.81e+020 Fri Dec 13 22:28:22 2013 min E-value: 9.40e-012 Fri Dec 13 22:28:22 2013 poly select deadline: 333439 Sat Dec 14 03:15:49 2013 polynomial selection complete Sat Dec 14 03:15:49 2013 R0: -5604749605470449760036581047 Sat Dec 14 03:15:49 2013 R1: 3567324621627307 Sat Dec 14 03:15:49 2013 A0: 458493208716862933656118953192147216 Sat Dec 14 03:15:49 2013 A1: 2506873496905449788851337812796 Sat Dec 14 03:15:49 2013 A2: 2680692504215148942381076 Sat Dec 14 03:15:49 2013 A3: -1263560997560054119 Sat Dec 14 03:15:49 2013 A4: -648395650290 Sat Dec 14 03:15:49 2013 A5: 217800 Sat Dec 14 03:15:49 2013 skew 1703015.86, size 6.193e-014, alpha -7.977, combined = 1.237e-011 rroots = 5 Sat Dec 14 03:15:49 2013 elapsed time 04:47:29 <Sieving + post-processing using GGNFS (SVN 440) + msieve 1.51 (SVN 845)> Sat Dec 14 05:44:54 2013 -> factmsieve.py (v0.76) Sat Dec 14 05:44:55 2013 -> This is client 1 of 1 Sat Dec 14 05:44:55 2013 -> Running on 12 Cores with 2 hyper-threads per Core Sat Dec 14 05:44:55 2013 -> Working with NAME = 70003_218 Sat Dec 14 05:44:55 2013 -> Selected lattice siever: gnfs-lasieve4I14e Sat Dec 14 05:44:55 2013 -> Creating param file to detect parameter changes... Sat Dec 14 05:44:55 2013 -> Running setup ... Sat Dec 14 05:44:55 2013 -> Estimated minimum relations needed: 3.44021e+07 Sat Dec 14 05:44:55 2013 -> cleaning up before a restart Sat Dec 14 05:44:55 2013 -> Running lattice siever ... Sat Dec 14 05:44:55 2013 -> entering sieving loop <...snipped...> Sat Dec 14 05:44:55 2013 -> Lattice sieving algebraic q from 9000000 to 9100000. <...snipped...> Sat Dec 14 06:12:55 2013 Found 460044 relations, 1.3% of the estimated minimum (34402132). <...snipped...> Sat Dec 14 14:21:44 2013 -> Lattice sieving algebraic q from 10800000 to 10900000. <...snipped...> Sat Dec 14 14:51:25 2013 Found 8707720 relations, 25.3% of the estimated minimum (34402132). <...snipped...> Sun Dec 15 00:32:00 2013 -> Lattice sieving algebraic q from 12700000 to 12800000. <...snipped...> Sun Dec 15 01:06:48 2013 Found 17448385 relations, 50.7% of the estimated minimum (34402132). <...snipped...> Sun Dec 15 10:53:52 2013 -> Lattice sieving algebraic q from 14500000 to 14600000. <...snipped...> Sun Dec 15 11:27:57 2013 Found 25776604 relations, 74.9% of the estimated minimum (34402132). <...snipped...> Sun Dec 15 22:20:36 2013 -> Lattice sieving algebraic q from 16400000 to 16500000. <...snipped...> Sun Dec 15 22:55:03 2013 Found 34415333 relations, 100.0% of the estimated minimum (34402132). <...snipped...> Mon Dec 16 02:05:02 2013 -> Lattice sieving algebraic q from 16900000 to 17000000. <...snipped...> Mon Dec 16 02:36:40 2013 Found 36689330 relations, 106.6% of the estimated minimum (34402132). Mon Dec 16 02:36:40 2013 Mon Dec 16 02:36:40 2013 Mon Dec 16 02:36:40 2013 Msieve v. 1.51 (SVN 845) Mon Dec 16 02:36:40 2013 random seeds: 8e685ae8 c0804c77 Mon Dec 16 02:36:40 2013 factoring 1204586877884093663626828996016541924291596079301588987441279761500408323810366826462044654291109062624002359541506181090047539906570513948147193 (145 digits) Mon Dec 16 02:36:41 2013 searching for 15-digit factors Mon Dec 16 02:36:42 2013 commencing number field sieve (145-digit input) Mon Dec 16 02:36:42 2013 R0: -5604749605470449760036581047 Mon Dec 16 02:36:42 2013 R1: 3567324621627307 Mon Dec 16 02:36:42 2013 A0: 458493208716862933656118953192147216 Mon Dec 16 02:36:42 2013 A1: 2506873496905449788851337812796 Mon Dec 16 02:36:42 2013 A2: 2680692504215148942381076 Mon Dec 16 02:36:42 2013 A3: -1263560997560054119 Mon Dec 16 02:36:42 2013 A4: -648395650290 Mon Dec 16 02:36:42 2013 A5: 217800 Mon Dec 16 02:36:42 2013 skew 1703015.86, size 6.193e-014, alpha -7.977, combined = 1.237e-011 rroots = 5 Mon Dec 16 02:36:42 2013 Mon Dec 16 02:36:42 2013 commencing relation filtering Mon Dec 16 02:36:42 2013 estimated available RAM is 4096.0 MB Mon Dec 16 02:36:42 2013 commencing duplicate removal, pass 1 Mon Dec 16 02:40:44 2013 found 4490528 hash collisions in 36689329 relations Mon Dec 16 02:41:38 2013 added 8 free relations Mon Dec 16 02:41:38 2013 commencing duplicate removal, pass 2 Mon Dec 16 02:42:06 2013 found 2918950 duplicates and 33770387 unique relations Mon Dec 16 02:42:06 2013 memory use: 165.2 MB Mon Dec 16 02:42:06 2013 reading ideals above 16973824 Mon Dec 16 02:42:12 2013 commencing singleton removal, initial pass Mon Dec 16 02:46:42 2013 memory use: 753.0 MB Mon Dec 16 02:46:42 2013 reading all ideals from disk Mon Dec 16 02:46:42 2013 memory use: 610.1 MB Mon Dec 16 02:46:44 2013 commencing in-memory singleton removal Mon Dec 16 02:46:46 2013 begin with 33770387 relations and 35029232 unique ideals Mon Dec 16 02:47:07 2013 reduce to 12047352 relations and 9724220 ideals in 24 passes Mon Dec 16 02:47:07 2013 max relations containing the same ideal: 50 Mon Dec 16 02:47:08 2013 reading ideals above 720000 Mon Dec 16 02:47:08 2013 commencing singleton removal, initial pass Mon Dec 16 02:49:11 2013 memory use: 344.5 MB Mon Dec 16 02:49:11 2013 reading all ideals from disk Mon Dec 16 02:49:11 2013 memory use: 400.0 MB Mon Dec 16 02:49:12 2013 commencing in-memory singleton removal Mon Dec 16 02:49:13 2013 begin with 12047363 relations and 11787548 unique ideals Mon Dec 16 02:49:26 2013 reduce to 12033180 relations and 11773321 ideals in 13 passes Mon Dec 16 02:49:26 2013 max relations containing the same ideal: 181 Mon Dec 16 02:49:32 2013 removing 871131 relations and 808838 ideals in 62293 cliques Mon Dec 16 02:49:32 2013 commencing in-memory singleton removal Mon Dec 16 02:49:33 2013 begin with 11162049 relations and 11773321 unique ideals Mon Dec 16 02:49:42 2013 reduce to 11105510 relations and 10907457 ideals in 10 passes Mon Dec 16 02:49:42 2013 max relations containing the same ideal: 172 Mon Dec 16 02:49:47 2013 removing 633607 relations and 571314 ideals in 62293 cliques Mon Dec 16 02:49:48 2013 commencing in-memory singleton removal Mon Dec 16 02:49:49 2013 begin with 10471903 relations and 10907457 unique ideals Mon Dec 16 02:49:56 2013 reduce to 10438728 relations and 10302764 ideals in 9 passes Mon Dec 16 02:49:56 2013 max relations containing the same ideal: 167 Mon Dec 16 02:50:03 2013 relations with 0 large ideals: 546 Mon Dec 16 02:50:03 2013 relations with 1 large ideals: 417 Mon Dec 16 02:50:03 2013 relations with 2 large ideals: 9453 Mon Dec 16 02:50:03 2013 relations with 3 large ideals: 91422 Mon Dec 16 02:50:03 2013 relations with 4 large ideals: 477477 Mon Dec 16 02:50:03 2013 relations with 5 large ideals: 1444934 Mon Dec 16 02:50:03 2013 relations with 6 large ideals: 2653353 Mon Dec 16 02:50:03 2013 relations with 7+ large ideals: 5761126 Mon Dec 16 02:50:03 2013 commencing 2-way merge Mon Dec 16 02:50:12 2013 reduce to 5822425 relation sets and 5686470 unique ideals Mon Dec 16 02:50:12 2013 ignored 9 oversize relation sets Mon Dec 16 02:50:12 2013 commencing full merge Mon Dec 16 02:52:04 2013 memory use: 566.2 MB Mon Dec 16 02:52:05 2013 found 3049806 cycles, need 3034670 Mon Dec 16 02:52:05 2013 weight of 3034670 cycles is about 212597743 (70.06/cycle) Mon Dec 16 02:52:05 2013 distribution of cycle lengths: Mon Dec 16 02:52:05 2013 1 relations: 449309 Mon Dec 16 02:52:05 2013 2 relations: 417574 Mon Dec 16 02:52:05 2013 3 relations: 390141 Mon Dec 16 02:52:05 2013 4 relations: 332071 Mon Dec 16 02:52:05 2013 5 relations: 280126 Mon Dec 16 02:52:05 2013 6 relations: 232289 Mon Dec 16 02:52:05 2013 7 relations: 188595 Mon Dec 16 02:52:05 2013 8 relations: 150800 Mon Dec 16 02:52:05 2013 9 relations: 122228 Mon Dec 16 02:52:05 2013 10+ relations: 471537 Mon Dec 16 02:52:05 2013 heaviest cycle: 24 relations Mon Dec 16 02:52:06 2013 commencing cycle optimization Mon Dec 16 02:52:10 2013 start with 16446763 relations Mon Dec 16 02:52:38 2013 pruned 250044 relations Mon Dec 16 02:52:38 2013 memory use: 464.8 MB Mon Dec 16 02:52:38 2013 distribution of cycle lengths: Mon Dec 16 02:52:38 2013 1 relations: 449309 Mon Dec 16 02:52:38 2013 2 relations: 424965 Mon Dec 16 02:52:38 2013 3 relations: 400194 Mon Dec 16 02:52:38 2013 4 relations: 335628 Mon Dec 16 02:52:38 2013 5 relations: 282853 Mon Dec 16 02:52:38 2013 6 relations: 232098 Mon Dec 16 02:52:38 2013 7 relations: 187147 Mon Dec 16 02:52:38 2013 8 relations: 148874 Mon Dec 16 02:52:38 2013 9 relations: 120247 Mon Dec 16 02:52:38 2013 10+ relations: 453355 Mon Dec 16 02:52:38 2013 heaviest cycle: 24 relations Mon Dec 16 02:52:41 2013 RelProcTime: 959 Mon Dec 16 02:52:41 2013 elapsed time 00:16:01 Mon Dec 16 02:52:41 2013 LatSieveTime: 2859.75 Mon Dec 16 02:52:41 2013 -> Running matrix solving step ... <...snipped...> Mon Dec 16 02:52:43 2013 Mon Dec 16 02:52:43 2013 commencing linear algebra Mon Dec 16 02:52:44 2013 read 3034670 cycles Mon Dec 16 02:52:51 2013 cycles contain 10239536 unique relations Mon Dec 16 02:54:02 2013 read 10239536 relations Mon Dec 16 02:54:18 2013 using 20 quadratic characters above 536870000 Mon Dec 16 02:55:15 2013 building initial matrix Mon Dec 16 02:57:44 2013 memory use: 1220.7 MB Mon Dec 16 02:57:47 2013 read 3034670 cycles Mon Dec 16 02:57:49 2013 matrix is 3034489 x 3034670 (869.0 MB) with weight 285891636 (94.21/col) Mon Dec 16 02:57:49 2013 sparse part has weight 206566972 (68.07/col) Mon Dec 16 02:58:28 2013 filtering completed in 2 passes Mon Dec 16 02:58:30 2013 matrix is 3028938 x 3029118 (868.7 MB) with weight 285685476 (94.31/col) Mon Dec 16 02:58:30 2013 sparse part has weight 206514590 (68.18/col) Mon Dec 16 02:58:42 2013 matrix starts at (0, 0) Mon Dec 16 02:58:43 2013 matrix is 3028938 x 3029118 (868.7 MB) with weight 285685476 (94.31/col) Mon Dec 16 02:58:43 2013 sparse part has weight 206514590 (68.18/col) Mon Dec 16 02:58:43 2013 saving the first 48 matrix rows for later Mon Dec 16 02:58:44 2013 matrix includes 64 packed rows Mon Dec 16 02:58:45 2013 matrix is 3028890 x 3029118 (840.5 MB) with weight 227525188 (75.11/col) Mon Dec 16 02:58:45 2013 sparse part has weight 202162759 (66.74/col) Mon Dec 16 02:58:45 2013 using block size 65536 for processor cache size 15360 kB Mon Dec 16 02:59:06 2013 commencing Lanczos iteration (24 threads) Mon Dec 16 02:59:06 2013 memory use: 1232.2 MB Mon Dec 16 02:59:19 2013 linear algebra at 0.1%, ETA 6h39m Mon Dec 16 02:59:24 2013 checkpointing every 430000 dimensions Mon Dec 16 10:28:48 2013 lanczos halted after 47901 iterations (dim = 3028888) Mon Dec 16 10:28:54 2013 recovered 26 nontrivial dependencies Mon Dec 16 10:28:55 2013 BLanczosTime: 27372 Mon Dec 16 10:28:55 2013 elapsed time 07:36:14 Mon Dec 16 10:28:55 2013 -> Running square root step ... <...snipped...> Mon Dec 16 10:28:56 2013 commencing square root phase Mon Dec 16 10:28:56 2013 reading relations for dependency 1 Mon Dec 16 10:28:57 2013 read 1513213 cycles Mon Dec 16 10:29:01 2013 cycles contain 5115612 unique relations Mon Dec 16 10:29:42 2013 read 5115612 relations Mon Dec 16 10:30:12 2013 multiplying 5115612 relations Mon Dec 16 10:46:50 2013 multiply complete, coefficients have about 264.17 million bits Mon Dec 16 10:46:55 2013 initial square root is modulo 3022390673 Mon Dec 16 11:05:54 2013 GCD is N, no factor found Mon Dec 16 11:05:54 2013 reading relations for dependency 2 Mon Dec 16 11:05:55 2013 read 1515704 cycles Mon Dec 16 11:05:58 2013 cycles contain 5121182 unique relations Mon Dec 16 11:06:39 2013 read 5121182 relations Mon Dec 16 11:07:14 2013 multiplying 5121182 relations Mon Dec 16 11:23:56 2013 multiply complete, coefficients have about 264.47 million bits Mon Dec 16 11:24:00 2013 initial square root is modulo 55667 Mon Dec 16 11:43:53 2013 sqrtTime: 4497 Mon Dec 16 11:43:53 2013 prp70 factor: 6260912466135837184555391199525986430130346123065958687500997130124261 Mon Dec 16 11:43:53 2013 prp75 factor: 192397974640196617059291295389129996678764450645044076196121227785839943813 Mon Dec 16 11:43:53 2013 elapsed time 01:14:58 Mon Dec 16 11:43:53 2013 -> Computing 1.38719e+09 scale for this machine... Mon Dec 16 11:43:53 2013 -> procrels -speedtest> PIPE Mon Dec 16 11:43:56 2013 -> Factorization summary written to g145-70003_218.txt Number: 70003_218 N = 1204586877884093663626828996016541924291596079301588987441279761500408323810366826462044654291109062624002359541506181090047539906570513948147193 (145 digits) Divisors found: r1=6260912466135837184555391199525986430130346123065958687500997130124261 (pp70) r2=192397974640196617059291295389129996678764450645044076196121227785839943813 (pp75) Version: Msieve v. 1.51 (SVN 845) Total time: 54.24 hours. Factorization parameters were as follows: # Murphy_E = 1.237e-11, selected by Youcef Lemsafer # msieve 1.52 GPU, expecting poly E from 1.16e-011 to > 1.34e-011 n: 1204586877884093663626828996016541924291596079301588987441279761500408323810366826462044654291109062624002359541506181090047539906570513948147193 Y0: -5604749605470449760036581047 Y1: 3567324621627307 c0: 458493208716862933656118953192147216 c1: 2506873496905449788851337812796 c2: 2680692504215148942381076 c3: -1263560997560054119 c4: -648395650290 c5: 217800 skew: 1703015.86 type: gnfs # selected mechanically rlim: 24000000 alim: 24000000 lpbr: 29 lpba: 29 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 q0: 9000000 Factor base limits: 24000000/24000000 Large primes per side: 3 Large prime bits: 29/29 Sieved algebraic special-q in [9000000, 17000001) Total raw relations: 36689330 Relations: 5121182 relations Pruned matrix : 3028890 x 3029118 Polynomial selection time: 0.00 hours. Total sieving time: 45.12 hours. Total relation processing time: 0.27 hours. Matrix solve time: 7.60 hours. time per square root: 1.25 hours. Prototype def-par.txt line would be: gnfs,144,5,67,2000,5e-06,0.28,250,20,50000,3600,24000000,24000000,29,29,56,56,2.6,2.6,100000 total time: 54.24 hours. Intel64 Family 6 Model 45 Stepping 7, GenuineIntel Windows-7-6.1.7601-SP1 processors: 24, speed: 2.00GHz |
software ソフトウェア | msieve 1.52 (SVN 942) CUDA for polynomial selection, GGNFS (SVN 440), msieve 1.51 (SVN 845) |
execution environment 実行環境 | Windows 7 Pro 64bits, 2x Intel Xeon E5-2620 @ 2.0GHz, 2x NVIDIA GeForce GTX660, 32GB RAM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | November 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 1000 | 400 | Serge Batalov | November 19, 2013 18:02:22 UTC 2013 年 11 月 20 日 (水) 3 時 2 分 22 秒 (日本時間) |
600 | Serge Batalov | November 20, 2013 01:03:14 UTC 2013 年 11 月 20 日 (水) 10 時 3 分 14 秒 (日本時間) | |||
50 | 43e6 | 1008 / 7328 | 400 | Youcef Lemsafer | December 10, 2013 07:09:22 UTC 2013 年 12 月 10 日 (火) 16 時 9 分 22 秒 (日本時間) |
200 | Youcef Lemsafer | December 10, 2013 16:08:06 UTC 2013 年 12 月 11 日 (水) 1 時 8 分 6 秒 (日本時間) | |||
408 | Youcef Lemsafer | December 11, 2013 08:09:24 UTC 2013 年 12 月 11 日 (水) 17 時 9 分 24 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 4, 2020 16:03:08 UTC 2020 年 1 月 5 日 (日) 1 時 3 分 8 秒 (日本時間) |
composite number 合成数 | 114598234021501689699158488079737573971060533850913348456477076360636045164524618850760634790801932687869576368242939198621948928296030626496100561199061279108140161485328296432150988436210947386987791064131<207> |
prime factors 素因数 | 26991186635971144821677462472278268796229465604401109620797539602469763456812543618733267<89> 4245764944205034098514137773736438649967307867458261346430120257917490437612392099830844977328642655116718350124790993<118> |
factorization results 素因数分解の結果 | Number: n N=114598234021501689699158488079737573971060533850913348456477076360636045164524618850760634790801932687869576368242939198621948928296030626496100561199061279108140161485328296432150988436210947386987791064131 ( 207 digits) SNFS difficulty: 219 digits. Divisors found: Sat Jan 4 22:58:24 2020 p89 factor: 26991186635971144821677462472278268796229465604401109620797539602469763456812543618733267 Sat Jan 4 22:58:24 2020 p118 factor: 4245764944205034098514137773736438649967307867458261346430120257917490437612392099830844977328642655116718350124790993 Sat Jan 4 22:58:24 2020 elapsed time 09:10:25 (Msieve 1.54 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.133). Factorization parameters were as follows: # # N = 7x10^219+3 = 70(218)3 # n: 114598234021501689699158488079737573971060533850913348456477076360636045164524618850760634790801932687869576368242939198621948928296030626496100561199061279108140161485328296432150988436210947386987791064131 m: 1000000000000000000000000000000000000 deg: 6 c6: 7000 c0: 3 skew: 0.27 # Murphy_E = 2.051e-12 type: snfs lss: 1 rlim: 32000000 alim: 32000000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.6 alambda: 2.6 Factor base limits: 32000000/32000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved special-q in [100000, 106400000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 10381314 hash collisions in 63334034 relations (54283044 unique) Msieve: matrix is 4450082 x 4450307 (1571.4 MB) Sieving start time: 2020/01/02 08:57:42 Sieving end time : 2020/01/04 13:46:53 Total sieving time: 52hrs 49min 11secs. Total relation processing time: 8hrs 28min 23sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 21min 36sec. Prototype def-par.txt line would be: snfs,219,6,0,0,0,0,0,0,0,0,32000000,32000000,29,29,58,58,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- [ 0.149937] smpboot: CPU0: AMD Ryzen 7 1700 Eight-Core Processor (family: 0x17, model: 0x1, stepping: 0x1) [ 0.000000] Memory: 16283572K/16703460K available (12300K kernel code, 2481K rwdata, 4264K rodata, 2428K init, 2388K bss, 419888K reserved, 0K cma-reserved) [ 0.184567] x86/mm: Memory block size: 128MB [ 0.024000] Calibrating delay loop (skipped), value calculated using timer frequency.. 5988.57 BogoMIPS (lpj=11977148) [ 0.182215] smpboot: Total of 16 processors activated (95817.18 BogoMIPS) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | November 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1500 | Dmitry Domanov | December 2, 2013 13:08:45 UTC 2013 年 12 月 2 日 (月) 22 時 8 分 45 秒 (日本時間) | |
45 | 11e6 | 1900 / 4143 | 400 | Serge Batalov | November 19, 2013 18:02:23 UTC 2013 年 11 月 20 日 (水) 3 時 2 分 23 秒 (日本時間) |
1500 | Dmitry Domanov | May 7, 2014 09:17:09 UTC 2014 年 5 月 7 日 (水) 18 時 17 分 9 秒 (日本時間) |
name 名前 | Erik Branger |
---|---|
date 日付 | January 12, 2019 09:14:18 UTC 2019 年 1 月 12 日 (土) 18 時 14 分 18 秒 (日本時間) |
composite number 合成数 | 130849659272491633204254777792809866019412918502345453367160021166487459483630388063705179605572508019032437866241391059787220872772259894466047979532988239155310555022650899448534300474428546069577604792811<207> |
prime factors 素因数 | 2215441034902811654471921433748628027519712045077<49> 59062578155338640036427317833752143982459745957327552911248107197988778667341610156883888119778215646978400391709078370694530318728233451339123641822248108543<158> |
factorization results 素因数分解の結果 | Number: 70003_220 N = 130849659272491633204254777792809866019412918502345453367160021166487459483630388063705179605572508019032437866241391059787220872772259894466047979532988239155310555022650899448534300474428546069577604792811 (207 digits) SNFS difficulty: 221 digits. Divisors found: r1=2215441034902811654471921433748628027519712045077 (pp49) r2=59062578155338640036427317833752143982459745957327552911248107197988778667341610156883888119778215646978400391709078370694530318728233451339123641822248108543 (pp158) Version: Msieve v. 1.52 (SVN unknown) Total time: 60.38 hours. Factorization parameters were as follows: n: 130849659272491633204254777792809866019412918502345453367160021166487459483630388063705179605572508019032437866241391059787220872772259894466047979532988239155310555022650899448534300474428546069577604792811 m: 10000000000000000000000000000000000000000000000000000000 deg: 4 c4: 7 c0: 3 skew: 1.00 type: snfs lss: 1 rlim: 536870912 alim: 536870912 lpbr: 29 lpba: 28 mfbr: 58 mfba: 56 rlambda: 2.8 alambda: 2.8 side: 1 Factor base limits: 536870912/536870912 Large primes per side: 3 Large prime bits: 29/28 Relations: 6691802 relations Pruned matrix : 6090052 x 6090277 Total pre-computation time approximately 300 CPU-days. Pre-computation saved approximately 8 G relations. Total batch smoothness checking time: 29.27 hours. Total relation processing time: 0.38 hours. Matrix solve time: 30.39 hours. time per square root: 0.34 hours. Prototype def-par.txt line would be: snfs,221,4,0,0,0,0,0,0,0,0,536870912,536870912,29,28,58,56,2.8,2.8,100000 total time: 60.38 hours. Intel64 Family 6 Model 60 Stepping 3, GenuineIntel Windows-10-10.0.17134-SP0 processors: 8, speed: 3.50GHz |
software ソフトウェア | GGNFS, NFS_factory, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | November 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1500 | Dmitry Domanov | December 2, 2013 13:08:54 UTC 2013 年 12 月 2 日 (月) 22 時 8 分 54 秒 (日本時間) | |
45 | 11e6 | 400 / 4143 | Serge Batalov | November 19, 2013 18:02:24 UTC 2013 年 11 月 20 日 (水) 3 時 2 分 24 秒 (日本時間) |
name 名前 | Erik Branger |
---|---|
date 日付 | March 10, 2022 17:53:07 UTC 2022 年 3 月 11 日 (金) 2 時 53 分 7 秒 (日本時間) |
composite number 合成数 | 27550153187087148338772321956561896463860501740748310378698551757534754205402004020770525801534209151640567972418300259892431330226075674577320017731844340337770656008752089470476809063262159005556414550203<206> |
prime factors 素因数 | 143300651575555905337999086375550927609627<42> 595499006849613947588721100218684289828155706145825539717899771889<66> 322845555035928091608057968661390292461792632286999369483348979851316193750468225607405304206511601<99> |
factorization results 素因数分解の結果 | Number: 70003_222 N = 27550153187087148338772321956561896463860501740748310378698551757534754205402004020770525801534209151640567972418300259892431330226075674577320017731844340337770656008752089470476809063262159005556414550203 (206 digits) SNFS difficulty: 223 digits. Divisors found: r1=143300651575555905337999086375550927609627 (pp42) r2=595499006849613947588721100218684289828155706145825539717899771889 (pp66) r3=322845555035928091608057968661390292461792632286999369483348979851316193750468225607405304206511601 (pp99) Version: Msieve v. 1.52 (SVN unknown) Total time: 56.37 hours. Factorization parameters were as follows: n: 27550153187087148338772321956561896463860501740748310378698551757534754205402004020770525801534209151640567972418300259892431330226075674577320017731844340337770656008752089470476809063262159005556414550203 m: 10000000000000000000000000000000000000000000000000000000 deg: 4 c4: 700 c0: 3 skew: 1.00 type: snfs lss: 1 rlim: 536870912 alim: 60000000 lpbr: 29 lpba: 28 mfbr: 58 mfba: 56 rlambda: 2.8 alambda: 2.8 side: 1 Number of cores used: 6 Number of threads per core: 1 Factor base limits: 536870912/60000000 Large primes per side: 3 Large prime bits: 29/28 Total raw relations: 33732097 Relations: 8345410 relations Total pre-computation time approximately 1000 CPU-days. Pre-computation saved approximately 18 G rational relations. Total batch smoothness checking time: 25.54 hours. Total relation processing time: 0.36 hours. Pruned matrix : 7208348 x 7208573 Matrix solve time: 29.78 hours. time per square root: 0.69 hours. Prototype def-par.txt line would be: snfs,223,4,0,0,0,0,0,0,0,0,536870912,60000000,29,28,58,56,2.8,2.8,100000 total time: 56.37 hours. Intel64 Family 6 Model 158 Stepping 10, GenuineIntel Windows-10-10.0.22000-SP0 processors: 12, speed: 3.19GHz |
software ソフトウェア | GGNFS, NFS_factory, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | November 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1500 | Dmitry Domanov | December 2, 2013 13:09:04 UTC 2013 年 12 月 2 日 (月) 22 時 9 分 4 秒 (日本時間) | |
45 | 11e6 | 400 / 4143 | Serge Batalov | November 19, 2013 18:02:25 UTC 2013 年 11 月 20 日 (水) 3 時 2 分 25 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | July 20, 2019 08:17:47 UTC 2019 年 7 月 20 日 (土) 17 時 17 分 47 秒 (日本時間) |
composite number 合成数 | 997119876215829218207733715889294680275719599691696232101929696182844207811120880828349075315897191869695348967099901483131772910050627907040679114986596358509665317995559426343260426159633678669658615070860110334733<216> |
prime factors 素因数 | 85129228987509937649003833371995259008841415210394003<53> 11713014296912350716747105777058778708491607877204733921369881813106605259906995746914517332433070356560692632188599468032459510589613815532273620411050810612466911<164> |
factorization results 素因数分解の結果 | Number: n N=997119876215829218207733715889294680275719599691696232101929696182844207811120880828349075315897191869695348967099901483131772910050627907040679114986596358509665317995559426343260426159633678669658615070860110334733 ( 216 digits) SNFS difficulty: 223 digits. Divisors found: Sat Jul 20 12:04:53 2019 p53 factor: 85129228987509937649003833371995259008841415210394003 Sat Jul 20 12:04:53 2019 p164 factor: 11713014296912350716747105777058778708491607877204733921369881813106605259906995746914517332433070356560692632188599468032459510589613815532273620411050810612466911 Sat Jul 20 12:04:53 2019 elapsed time 11:11:26 (Msieve 1.54 - dependency 4) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=1.721). Factorization parameters were as follows: # # N = 7x10^223+3 = 70(222)3 # n: 997119876215829218207733715889294680275719599691696232101929696182844207811120880828349075315897191869695348967099901483131772910050627907040679114986596358509665317995559426343260426159633678669658615070860110334733 m: 10000000000000000000000000000000000000 deg: 6 c6: 70 c0: 3 skew: 0.59 # Murphy_E = 1.709e-12 type: snfs lss: 1 rlim: 38000000 alim: 38000000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.6 alambda: 2.6 Factor base limits: 38000000/38000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved special-q in [100000, 87800000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 13076632 hash collisions in 67571061 relations (56416013 unique) Msieve: matrix is 4676836 x 4677061 (1644.1 MB) Sieving start time: 2019/07/18 06:18:47 Sieving end time : 2019/07/20 00:50:06 Total sieving time: 42hrs 31min 19secs. Total relation processing time: 9hrs 56min 35sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 53min 2sec. Prototype def-par.txt line would be: snfs,223,6,0,0,0,0,0,0,0,0,38000000,38000000,29,29,58,58,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- [ 0.048000] smpboot: CPU0: AMD Ryzen 7 1700 Eight-Core Processor (family: 0x17, model: 0x1, stepping: 0x1) [ 0.000000] Memory: 16284124K/16703460K available (12300K kernel code, 2473K rwdata, 4272K rodata, 2408K init, 2416K bss, 419336K reserved, 0K cma-reserved) [ 0.080566] x86/mm: Memory block size: 128MB [ 0.028000] Calibrating delay loop (skipped), value calculated using timer frequency.. 5988.41 BogoMIPS (lpj=11976828) [ 0.078213] smpboot: Total of 16 processors activated (95814.62 BogoMIPS) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | November 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1500 | Dmitry Domanov | December 2, 2013 13:09:15 UTC 2013 年 12 月 2 日 (月) 22 時 9 分 15 秒 (日本時間) | |
45 | 11e6 | 1900 / 4143 | 400 | Serge Batalov | November 19, 2013 18:02:26 UTC 2013 年 11 月 20 日 (水) 3 時 2 分 26 秒 (日本時間) |
1500 | Dmitry Domanov | May 7, 2014 09:17:25 UTC 2014 年 5 月 7 日 (水) 18 時 17 分 25 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | November 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1500 | Dmitry Domanov | December 2, 2013 13:09:25 UTC 2013 年 12 月 2 日 (月) 22 時 9 分 25 秒 (日本時間) | |
45 | 11e6 | 1900 / 4143 | 400 | Serge Batalov | November 19, 2013 18:02:27 UTC 2013 年 11 月 20 日 (水) 3 時 2 分 27 秒 (日本時間) |
1500 | Dmitry Domanov | May 7, 2014 09:17:40 UTC 2014 年 5 月 7 日 (水) 18 時 17 分 40 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | November 22, 2013 10:09:50 UTC 2013 年 11 月 22 日 (金) 19 時 9 分 50 秒 (日本時間) |
composite number 合成数 | 2310260540302408160768028981091070950042801652468769644712625663325843014310433333269185098997603133402674395291704596620478207449783829531812760748319092302646967779558960417833219662519074290733669033838055106477669<217> |
prime factors 素因数 | 50392306231003517204360326654783240793<38> |
composite cofactor 合成数の残り | 45845501289659895994034399882548158710967867463972373319296432705555526184894723730244802266706904638880884650937581230994874214860244071171676754858486736872026022742644216695533<179> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=4193646824 Step 1 took 30738ms Step 2 took 11070ms ********** Factor found in step 2: 50392306231003517204360326654783240793 Found probable prime factor of 38 digits: 50392306231003517204360326654783240793 |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | May 13, 2014 06:05:10 UTC 2014 年 5 月 13 日 (火) 15 時 5 分 10 秒 (日本時間) |
composite number 合成数 | 45845501289659895994034399882548158710967867463972373319296432705555526184894723730244802266706904638880884650937581230994874214860244071171676754858486736872026022742644216695533<179> |
prime factors 素因数 | 11490186445963043272757708162816409649508168469737<50> |
composite cofactor 合成数の残り | 3989970180663798798178881159201005138612620134416575415620617721619975790854970313853278857887377984494974816401888175580453796709<130> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1034487263 Step 1 took 84305ms Step 2 took 29206ms ********** Factor found in step 2: 11490186445963043272757708162816409649508168469737 Found probable prime factor of 50 digits: 11490186445963043272757708162816409649508168469737 Composite cofactor 3989970180663798798178881159201005138612620134416575415620617721619975790854970313853278857887377984494974816401888175580453796709 has 130 digits |
name 名前 | Cyp |
---|---|
date 日付 | May 14, 2014 11:34:47 UTC 2014 年 5 月 14 日 (水) 20 時 34 分 47 秒 (日本時間) |
composite number 合成数 | 3989970180663798798178881159201005138612620134416575415620617721619975790854970313853278857887377984494974816401888175580453796709<130> |
prime factors 素因数 | 27274110549533639162128771337949537322724747518364736341662065053<65> 146291486698253608805179035063607291595329945292541200561222261353<66> |
factorization results 素因数分解の結果 | 05/13/14 21:59:03 v1.34.3, 05/13/14 21:59:03 v1.34.3, **************************** 05/13/14 21:59:03 v1.34.3, Starting factorization of 3989970180663798798178881159201005138612620134416575415620617721619975790854970313853278857887377984494974816401888175580453796709 05/13/14 21:59:03 v1.34.3, using pretesting plan: none 05/13/14 21:59:03 v1.34.3, no tune info: using qs/gnfs crossover of 95 digits 05/13/14 21:59:03 v1.34.3, **************************** 05/13/14 21:59:03 v1.34.3, rho: x^2 + 3, starting 1000 iterations on C130 05/13/14 21:59:03 v1.34.3, rho: x^2 + 2, starting 1000 iterations on C130 05/13/14 21:59:03 v1.34.3, rho: x^2 + 1, starting 1000 iterations on C130 05/13/14 21:59:04 v1.34.3, final ECM pretested depth: 0.00 05/13/14 21:59:04 v1.34.3, scheduler: switching to sieve method 05/13/14 21:59:04 v1.34.3, nfs: commencing nfs on c130: 3989970180663798798178881159201005138612620134416575415620617721619975790854970313853278857887377984494974816401888175580453796709 05/13/14 21:59:04 v1.34.3, nfs: commencing poly selection with 8 threads 05/13/14 21:59:04 v1.34.3, nfs: setting deadline of 6776 seconds 05/13/14 23:52:52 v1.34.3, nfs: completed 883 ranges of size 250 in 6828.1447 seconds 05/13/14 23:52:52 v1.34.3, nfs: best poly = # norm 1.803426e-12 alpha -7.846614 e 7.663e-11 rroots 1 05/13/14 23:52:52 v1.34.3, nfs: commencing lattice sieving with 8 threads 05/14/14 00:04:31 v1.34.3, nfs: commencing lattice sieving with 8 threads [55 lines snipped] 05/14/14 12:03:09 v1.34.3, nfs: commencing lattice sieving with 8 threads 05/14/14 12:17:17 v1.34.3, nfs: commencing lattice sieving with 8 threads 05/14/14 12:32:00 v1.34.3, nfs: commencing msieve filtering 05/14/14 12:36:39 v1.34.3, nfs: commencing msieve linear algebra 05/14/14 13:30:38 v1.34.3, nfs: commencing msieve sqrt 05/14/14 13:34:46 v1.34.3, prp65 = 27274110549533639162128771337949537322724747518364736341662065053 05/14/14 13:34:46 v1.34.3, prp66 = 146291486698253608805179035063607291595329945292541200561222261353 05/14/14 13:34:46 v1.34.3, NFS elapsed time = 56142.8491 seconds. 05/14/14 13:34:46 v1.34.3, 05/14/14 13:34:46 v1.34.3, 05/14/14 13:34:46 v1.34.3, Total factoring time = 56142.8923 seconds -- Wed May 14 12:32:00 2014 Wed May 14 12:32:00 2014 commencing relation filtering Wed May 14 12:32:00 2014 estimated available RAM is 15988.7 MB Wed May 14 12:32:00 2014 commencing duplicate removal, pass 1 Wed May 14 12:33:19 2014 found 2752695 hash collisions in 21032351 relations Wed May 14 12:33:40 2014 added 121487 free relations Wed May 14 12:33:40 2014 commencing duplicate removal, pass 2 Wed May 14 12:34:00 2014 found 1747355 duplicates and 19406483 unique relations Wed May 14 12:34:00 2014 memory use: 82.6 MB Wed May 14 12:34:00 2014 reading ideals above 720000 Wed May 14 12:34:00 2014 commencing singleton removal, initial pass Wed May 14 12:35:37 2014 memory use: 689.0 MB Wed May 14 12:35:37 2014 reading all ideals from disk Wed May 14 12:35:37 2014 memory use: 595.4 MB Wed May 14 12:35:38 2014 keeping 21079628 ideals with weight <= 200, target excess is 120101 Wed May 14 12:35:39 2014 commencing in-memory singleton removal Wed May 14 12:35:40 2014 begin with 19406483 relations and 21079628 unique ideals Wed May 14 12:35:49 2014 reduce to 7360795 relations and 6873833 ideals in 19 passes Wed May 14 12:35:49 2014 max relations containing the same ideal: 102 Wed May 14 12:35:51 2014 removing 1362535 relations and 1188713 ideals in 173822 cliques Wed May 14 12:35:51 2014 commencing in-memory singleton removal Wed May 14 12:35:51 2014 begin with 5998260 relations and 6873833 unique ideals Wed May 14 12:35:54 2014 reduce to 5784957 relations and 5465072 ideals in 11 passes Wed May 14 12:35:54 2014 max relations containing the same ideal: 83 Wed May 14 12:35:57 2014 removing 1019611 relations and 845789 ideals in 173822 cliques Wed May 14 12:35:57 2014 commencing in-memory singleton removal Wed May 14 12:35:57 2014 begin with 4765346 relations and 5465072 unique ideals Wed May 14 12:36:00 2014 reduce to 4611847 relations and 4460971 ideals in 12 passes Wed May 14 12:36:00 2014 max relations containing the same ideal: 73 Wed May 14 12:36:01 2014 removing 113843 relations and 102285 ideals in 11558 cliques Wed May 14 12:36:01 2014 commencing in-memory singleton removal Wed May 14 12:36:01 2014 begin with 4498004 relations and 4460971 unique ideals Wed May 14 12:36:03 2014 reduce to 4495962 relations and 4356643 ideals in 7 passes Wed May 14 12:36:03 2014 max relations containing the same ideal: 72 Wed May 14 12:36:03 2014 relations with 0 large ideals: 502 Wed May 14 12:36:03 2014 relations with 1 large ideals: 1872 Wed May 14 12:36:03 2014 relations with 2 large ideals: 29315 Wed May 14 12:36:03 2014 relations with 3 large ideals: 187563 Wed May 14 12:36:03 2014 relations with 4 large ideals: 623280 Wed May 14 12:36:03 2014 relations with 5 large ideals: 1169513 Wed May 14 12:36:03 2014 relations with 6 large ideals: 1286977 Wed May 14 12:36:03 2014 relations with 7+ large ideals: 1196940 Wed May 14 12:36:03 2014 commencing 2-way merge Wed May 14 12:36:05 2014 reduce to 2553329 relation sets and 2414010 unique ideals Wed May 14 12:36:05 2014 commencing full merge Wed May 14 12:36:29 2014 memory use: 285.3 MB Wed May 14 12:36:29 2014 found 1306574 cycles, need 1288210 Wed May 14 12:36:29 2014 weight of 1288210 cycles is about 90321740 (70.11/cycle) Wed May 14 12:36:29 2014 distribution of cycle lengths: Wed May 14 12:36:29 2014 1 relations: 174270 Wed May 14 12:36:29 2014 2 relations: 151253 Wed May 14 12:36:29 2014 3 relations: 145233 Wed May 14 12:36:29 2014 4 relations: 128994 Wed May 14 12:36:29 2014 5 relations: 117290 Wed May 14 12:36:29 2014 6 relations: 99656 Wed May 14 12:36:29 2014 7 relations: 89033 Wed May 14 12:36:29 2014 8 relations: 76049 Wed May 14 12:36:29 2014 9 relations: 64995 Wed May 14 12:36:29 2014 10+ relations: 241437 Wed May 14 12:36:29 2014 heaviest cycle: 21 relations Wed May 14 12:36:30 2014 commencing cycle optimization Wed May 14 12:36:31 2014 start with 7473930 relations Wed May 14 12:36:37 2014 pruned 148741 relations Wed May 14 12:36:37 2014 memory use: 256.1 MB Wed May 14 12:36:37 2014 distribution of cycle lengths: Wed May 14 12:36:37 2014 1 relations: 174270 Wed May 14 12:36:37 2014 2 relations: 154339 Wed May 14 12:36:37 2014 3 relations: 149573 Wed May 14 12:36:37 2014 4 relations: 131504 Wed May 14 12:36:37 2014 5 relations: 119230 Wed May 14 12:36:37 2014 6 relations: 100683 Wed May 14 12:36:37 2014 7 relations: 89602 Wed May 14 12:36:37 2014 8 relations: 76122 Wed May 14 12:36:37 2014 9 relations: 64735 Wed May 14 12:36:37 2014 10+ relations: 228152 Wed May 14 12:36:37 2014 heaviest cycle: 21 relations Wed May 14 12:36:39 2014 RelProcTime: 279 Wed May 14 12:36:39 2014 Wed May 14 12:36:39 2014 commencing linear algebra Wed May 14 12:36:39 2014 read 1288210 cycles Wed May 14 12:36:41 2014 cycles contain 4366467 unique relations Wed May 14 12:37:08 2014 read 4366467 relations Wed May 14 12:37:11 2014 using 20 quadratic characters above 268434282 Wed May 14 12:37:26 2014 building initial matrix Wed May 14 12:37:55 2014 memory use: 576.2 MB Wed May 14 12:37:55 2014 read 1288210 cycles Wed May 14 12:37:55 2014 matrix is 1288052 x 1288210 (392.2 MB) with weight 123694233 (96.02/col) Wed May 14 12:37:55 2014 sparse part has weight 87341304 (67.80/col) Wed May 14 12:38:03 2014 filtering completed in 2 passes Wed May 14 12:38:04 2014 matrix is 1286067 x 1286236 (392.0 MB) with weight 123613378 (96.10/col) Wed May 14 12:38:04 2014 sparse part has weight 87318537 (67.89/col) Wed May 14 12:38:07 2014 matrix starts at (0, 0) Wed May 14 12:38:07 2014 matrix is 1286067 x 1286236 (392.0 MB) with weight 123613378 (96.10/col) Wed May 14 12:38:07 2014 sparse part has weight 87318537 (67.89/col) Wed May 14 12:38:07 2014 saving the first 48 matrix rows for later Wed May 14 12:38:07 2014 matrix includes 64 packed rows Wed May 14 12:38:07 2014 matrix is 1286019 x 1286236 (376.6 MB) with weight 98370862 (76.48/col) Wed May 14 12:38:07 2014 sparse part has weight 85859006 (66.75/col) Wed May 14 12:38:07 2014 using block size 65536 for processor cache size 8192 kB Wed May 14 12:38:10 2014 commencing Lanczos iteration (8 threads) Wed May 14 12:38:10 2014 memory use: 362.1 MB Wed May 14 12:38:14 2014 linear algebra at 0.1%, ETA 0h42m Wed May 14 12:38:15 2014 checkpointing every 1830000 dimensions Wed May 14 13:30:37 2014 lanczos halted after 20338 iterations (dim = 1286012) Wed May 14 13:30:38 2014 recovered 27 nontrivial dependencies Wed May 14 13:30:38 2014 BLanczosTime: 3239 Wed May 14 13:30:38 2014 Wed May 14 13:30:38 2014 commencing square root phase Wed May 14 13:30:38 2014 reading relations for dependency 1 Wed May 14 13:30:38 2014 read 643536 cycles Wed May 14 13:30:39 2014 cycles contain 2183192 unique relations Wed May 14 13:31:01 2014 read 2183192 relations Wed May 14 13:31:08 2014 multiplying 2183192 relations Wed May 14 13:32:45 2014 multiply complete, coefficients have about 104.63 million bits Wed May 14 13:32:45 2014 initial square root is modulo 32373323 Wed May 14 13:34:46 2014 sqrtTime: 248 -- n: 3989970180663798798178881159201005138612620134416575415620617721619975790854970313853278857887377984494974816401888175580453796709 skew: 348899.80 c0: 81901281499473515085560092095312 c1: -246716758881327820210953676 c2: 4830880288032833618528 c3: 1113818053955397 c4: -36645134934 c5: 94248 Y0: -8420533872069767318544383 Y1: 31359420238907 rlim: 9000000 alim: 9000000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 |
software ソフトウェア | yafu v1.34.3 |
execution environment 実行環境 | Gentoo Linux, Intel(R) Core(TM) i7-3770K CPU |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | November 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1500 | Dmitry Domanov | December 2, 2013 13:09:34 UTC 2013 年 12 月 2 日 (月) 22 時 9 分 34 秒 (日本時間) | |
45 | 11e6 | 1900 / 4143 | 400 | Serge Batalov | November 19, 2013 18:02:28 UTC 2013 年 11 月 20 日 (水) 3 時 2 分 28 秒 (日本時間) |
1500 | Dmitry Domanov | May 7, 2014 09:17:57 UTC 2014 年 5 月 7 日 (水) 18 時 17 分 57 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | November 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1500 | Dmitry Domanov | December 2, 2013 13:09:45 UTC 2013 年 12 月 2 日 (月) 22 時 9 分 45 秒 (日本時間) | |
45 | 11e6 | 1900 / 4143 | 400 | Serge Batalov | November 19, 2013 18:02:29 UTC 2013 年 11 月 20 日 (水) 3 時 2 分 29 秒 (日本時間) |
1500 | Dmitry Domanov | May 7, 2014 09:18:13 UTC 2014 年 5 月 7 日 (水) 18 時 18 分 13 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | November 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1500 | Dmitry Domanov | December 2, 2013 13:09:56 UTC 2013 年 12 月 2 日 (月) 22 時 9 分 56 秒 (日本時間) | |
45 | 11e6 | 1900 / 4143 | 400 | Serge Batalov | November 19, 2013 18:02:30 UTC 2013 年 11 月 20 日 (水) 3 時 2 分 30 秒 (日本時間) |
1500 | Dmitry Domanov | May 7, 2014 09:18:27 UTC 2014 年 5 月 7 日 (水) 18 時 18 分 27 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | November 19, 2013 08:06:13 UTC 2013 年 11 月 19 日 (火) 17 時 6 分 13 秒 (日本時間) |
composite number 合成数 | 666730164777597866463472711686827316887322602152585960567673111724926183446042480236212972664063244118487474997618820840080007619773311743975616725402419278026478712258310315268120773406991142013525097628345556719687589294218497<228> |
prime factors 素因数 | 87982113884134640398342003644621056125511209<44> |
composite cofactor 合成数の残り | 7578019387618122109207134371339204628849506926817597094340240451410616495519221913900230897842215835319837708389541004900129127169426582620793163042616938534598770972125643313423985433<184> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=202485836 Step 1 took 66862ms Step 2 took 21467ms ********** Factor found in step 2: 87982113884134640398342003644621056125511209 Found probable prime factor of 44 digits: 87982113884134640398342003644621056125511209 Composite cofactor |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | November 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 400 | Serge Batalov | November 19, 2013 18:02:31 UTC 2013 年 11 月 20 日 (水) 3 時 2 分 31 秒 (日本時間) | |
50 | 43e6 | 100 / 6137 | Serge Batalov | November 19, 2013 18:08:12 UTC 2013 年 11 月 20 日 (水) 3 時 8 分 12 秒 (日本時間) | |
55 | 11e7 | 550 / 17709 | Serge Batalov | November 19, 2013 18:07:42 UTC 2013 年 11 月 20 日 (水) 3 時 7 分 42 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | November 18, 2013 18:00:31 UTC 2013 年 11 月 19 日 (火) 3 時 0 分 31 秒 (日本時間) |
composite number 合成数 | 1462073431177390122572909197968503049685616178269734346278014173657086495695062891240657827670361272727222898043732796665917885349321251500685180421105529579698485406274617436828527974148363839<193> |
prime factors 素因数 | 3056919077486918816940875845578571<34> |
composite cofactor 合成数の残り | 478283328448247624358799510465754225428844210588495270471120561287363267402694523465521726923614929111962729918063236590979902770881076830446875109991305967709<159> |
factorization results 素因数分解の結果 | Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=1984847614 Step 1 took 5244ms Step 2 took 3877ms ********** Factor found in step 2: 3056919077486918816940875845578571 Found probable prime factor of 34 digits: 3056919077486918816940875845578571 Composite cofactor |
name 名前 | yoyo@Home |
---|---|
date 日付 | April 13, 2021 13:24:42 UTC 2021 年 4 月 13 日 (火) 22 時 24 分 42 秒 (日本時間) |
composite number 合成数 | 478283328448247624358799510465754225428844210588495270471120561287363267402694523465521726923614929111962729918063236590979902770881076830446875109991305967709<159> |
prime factors 素因数 | 20148677612559720551631252367539447031296666135383227<53> 23737703170659135763716305702954929540954532924356754328990481747527973954404317047349990756741737095514567<107> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.5-dev [configured with GMP 6.0.0, --enable-asm-redc, --enable-assert] [ECM] Tuned for x86_64/core2/params.h Running on iMac2008.local Input number is 478283328448247624358799510465754225428844210588495270471120561287363267402694523465521726923614929111962729918063236590979902770881076830446875109991305967709 (159 digits) [Mon Apr 12 18:21:35 2021] Using MODMULN [mulredc:1, sqrredc:1] Using B1=110000000, B2=776278396540, polynomial Dickson(30), sigma=0:1850451041541009529 dF=131072, k=4, d=1345890, d2=11, i0=71 Expected number of curves to find a factor of n digits: 35 40 45 50 55 60 65 70 75 80 34 135 614 3135 17884 111314 752662 5482978 4.3e+07 3.6e+08 Writing checkpoint to checkpnt at p = 105422861 Writing checkpoint to checkpnt at p = 110000000 Step 1 took 625176ms Using 20 small primes for NTT Estimated memory usage: 471.18MB Initializing tables of differences for F took 551ms Computing roots of F took 17963ms Building F from its roots took 9177ms Computing 1/F took 4081ms Initializing table of differences for G took 452ms Computing roots of G took 15313ms Building G from its roots took 9045ms Computing roots of G took 14927ms Building G from its roots took 9104ms Computing G * H took 2103ms Reducing G * H mod F took 2073ms Computing roots of G took 16148ms Building G from its roots took 8687ms Computing G * H took 1956ms Reducing G * H mod F took 2010ms Computing roots of G took 15372ms Building G from its roots took 8717ms Computing G * H took 2021ms Reducing G * H mod F took 2636ms Computing polyeval(F,G) took 16782ms Computing product of all F(g_i) took 86ms Step 2 took 160156ms ********** Factor found in step 2: 20148677612559720551631252367539447031296666135383227 Found prime factor of 53 digits: 20148677612559720551631252367539447031296666135383227 Prime cofactor 23737703170659135763716305702954929540954532924356754328990481747527973954404317047349990756741737095514567 has 107 digits |
software ソフトウェア | GMP-ECM 7.0.5-dev |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | November 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 | Serge Batalov | November 19, 2013 19:20:46 UTC 2013 年 11 月 20 日 (水) 4 時 20 分 46 秒 (日本時間) | |
45 | 11e6 | 3400 | 600 | Serge Batalov | November 20, 2013 01:02:54 UTC 2013 年 11 月 20 日 (水) 10 時 2 分 54 秒 (日本時間) |
400 | Serge Batalov | January 6, 2014 02:26:25 UTC 2014 年 1 月 6 日 (月) 11 時 26 分 25 秒 (日本時間) | |||
1500 | Dmitry Domanov | May 5, 2014 07:26:58 UTC 2014 年 5 月 5 日 (月) 16 時 26 分 58 秒 (日本時間) | |||
900 | Serge Batalov | May 24, 2014 19:03:14 UTC 2014 年 5 月 25 日 (日) 4 時 3 分 14 秒 (日本時間) | |||
50 | 43e6 | 1200 / 6778 | Erik Branger | October 21, 2015 20:18:13 UTC 2015 年 10 月 22 日 (木) 5 時 18 分 13 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | November 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1500 | Dmitry Domanov | December 2, 2013 13:10:16 UTC 2013 年 12 月 2 日 (月) 22 時 10 分 16 秒 (日本時間) | |
45 | 11e6 | 1900 / 4143 | 400 | Serge Batalov | November 19, 2013 18:02:32 UTC 2013 年 11 月 20 日 (水) 3 時 2 分 32 秒 (日本時間) |
1500 | Dmitry Domanov | May 7, 2014 09:18:59 UTC 2014 年 5 月 7 日 (水) 18 時 18 分 59 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | May 12, 2014 05:54:54 UTC 2014 年 5 月 12 日 (月) 14 時 54 分 54 秒 (日本時間) |
composite number 合成数 | 261305734940502726878136536692691282637641216673843005212007044054280859879134397810320782588198001604811966159384041133803634658942263977071262012883027746264156894487233448118537076355599090348206078329<204> |
prime factors 素因数 | 30533855655490826866446675252201001359632354423<47> 8557901690791309231657096285124708665799310293909095913778419888502919416932255556291122672579094866542390110225523082607118296443729755855591135960821454223<157> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=3134900388 Step 1 took 141070ms Step 2 took 33598ms ********** Factor found in step 2: 30533855655490826866446675252201001359632354423 Found probable prime factor of 47 digits: 30533855655490826866446675252201001359632354423 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | November 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1500 | Dmitry Domanov | December 2, 2013 13:10:25 UTC 2013 年 12 月 2 日 (月) 22 時 10 分 25 秒 (日本時間) | |
45 | 11e6 | 1900 / 4143 | 400 | Serge Batalov | November 19, 2013 18:02:33 UTC 2013 年 11 月 20 日 (水) 3 時 2 分 33 秒 (日本時間) |
1500 | Dmitry Domanov | May 7, 2014 09:19:15 UTC 2014 年 5 月 7 日 (水) 18 時 19 分 15 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | November 19, 2013 08:09:13 UTC 2013 年 11 月 19 日 (火) 17 時 9 分 13 秒 (日本時間) |
composite number 合成数 | 3130538222818493942208893612856192722238449879889500907299824941078034615859563797841442844730159905997111592644899708846918766359392358048253828211742364943371421172556885683197510311935352432442340164047297073049392641<220> |
prime factors 素因数 | 1321997120762420412838677730813<31> |
composite cofactor 合成数の残り | 2368037096036225950198477496528971175674799694298148786305321528191796590130171779136666176699361020725438310944703039872583156424853658244032598777959929738683125784873369371762967734435157<190> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=231417044 Step 1 took 76666ms Step 2 took 25962ms ********** Factor found in step 2: 1321997120762420412838677730813 Found probable prime factor of 31 digits: 1321997120762420412838677730813 Composite cofactor |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | November 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1500 | Dmitry Domanov | December 2, 2013 13:10:34 UTC 2013 年 12 月 2 日 (月) 22 時 10 分 34 秒 (日本時間) | |
45 | 11e6 | 1900 / 4143 | 400 | Serge Batalov | November 19, 2013 18:02:34 UTC 2013 年 11 月 20 日 (水) 3 時 2 分 34 秒 (日本時間) |
1500 | Dmitry Domanov | May 7, 2014 09:19:30 UTC 2014 年 5 月 7 日 (水) 18 時 19 分 30 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | November 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 | Serge Batalov | November 19, 2013 19:20:50 UTC 2013 年 11 月 20 日 (水) 4 時 20 分 50 秒 (日本時間) | |
45 | 11e6 | 4600 | 400 | Serge Batalov | November 19, 2013 18:02:35 UTC 2013 年 11 月 20 日 (水) 3 時 2 分 35 秒 (日本時間) |
600 | Serge Batalov | November 20, 2013 01:02:57 UTC 2013 年 11 月 20 日 (水) 10 時 2 分 57 秒 (日本時間) | |||
400 | Serge Batalov | January 6, 2014 02:29:36 UTC 2014 年 1 月 6 日 (月) 11 時 29 分 36 秒 (日本時間) | |||
800 | Serge Batalov | February 23, 2014 19:25:31 UTC 2014 年 2 月 24 日 (月) 4 時 25 分 31 秒 (日本時間) | |||
1500 | Dmitry Domanov | May 7, 2014 09:19:55 UTC 2014 年 5 月 7 日 (水) 18 時 19 分 55 秒 (日本時間) | |||
900 | Serge Batalov | May 24, 2014 19:04:16 UTC 2014 年 5 月 25 日 (日) 4 時 4 分 16 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | November 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1500 | Dmitry Domanov | December 2, 2013 13:10:47 UTC 2013 年 12 月 2 日 (月) 22 時 10 分 47 秒 (日本時間) | |
45 | 11e6 | 1900 / 4143 | 400 | Serge Batalov | November 19, 2013 18:02:36 UTC 2013 年 11 月 20 日 (水) 3 時 2 分 36 秒 (日本時間) |
1500 | Dmitry Domanov | May 7, 2014 09:20:10 UTC 2014 年 5 月 7 日 (水) 18 時 20 分 10 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | November 18, 2013 18:12:38 UTC 2013 年 11 月 19 日 (火) 3 時 12 分 38 秒 (日本時間) |
composite number 合成数 | 786516853932584269662921348314606741573033707865168539325842696629213483146067415730337078651685393258426966292134831460674157303370786516853932584269662921348314606741573033707865168539325842696629213483146067415730337078651685393258427<237> |
prime factors 素因数 | 9925931694500868884933083164403<31> 79238592218837016342518986892279546910420072993760711534572986796217368513239646144648994069502905104455312336307705859863607066675319408088490842504647231550737511481825618727298322927878798015348306179609<206> |
factorization results 素因数分解の結果 | Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=4042820070 Step 1 took 6684ms Step 2 took 5017ms ********** Factor found in step 2: 9925931694500868884933083164403 Found probable prime factor of 31 digits: 9925931694500868884933083164403 Probable prime cofactor |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | November 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | November 19, 2013 08:10:46 UTC 2013 年 11 月 19 日 (火) 17 時 10 分 46 秒 (日本時間) |
composite number 合成数 | 151930453733895259612796898239220601212312868101159101791622344155162960552370271257438466191732350031302800583989379006212937011548832293634293072948572192115424387066547334081885609196001859<192> |
prime factors 素因数 | 619406699046924853756071225212316403<36> |
composite cofactor 合成数の残り | 245283840112916426960972758197174541528648655494848569259802771055042228040886755364118786492463224740541841277394241346565295103899502533674803608274077553<156> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=850474681 Step 1 took 50878ms Step 2 took 17736ms ********** Factor found in step 2: 619406699046924853756071225212316403 Found probable prime factor of 36 digits: 619406699046924853756071225212316403 Composite cofactor |
name 名前 | Serge Batalov |
---|---|
date 日付 | November 19, 2013 18:05:35 UTC 2013 年 11 月 20 日 (水) 3 時 5 分 35 秒 (日本時間) |
composite number 合成数 | 245283840112916426960972758197174541528648655494848569259802771055042228040886755364118786492463224740541841277394241346565295103899502533674803608274077553<156> |
prime factors 素因数 | 170611387456251992881757564074844934024228427370889419<54> 1437675666143983925089195484064912061373931891245112796796396803106628975879700112112335353063759559987<103> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=431402397 Step 1 took 57617ms Step 2 took 9673ms ********** Factor found in step 2: 170611387456251992881757564074844934024228427370889419 Found probable prime factor of 54 digits: 170611387456251992881757564074844934024228427370889419 Composite cofactor |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | November 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 0 / 938 | - | - | |
45 | 11e6 | 400 / 4475 | Serge Batalov | November 19, 2013 18:02:37 UTC 2013 年 11 月 20 日 (水) 3 時 2 分 37 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | November 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1500 | Dmitry Domanov | December 2, 2013 13:10:57 UTC 2013 年 12 月 2 日 (月) 22 時 10 分 57 秒 (日本時間) | |
45 | 11e6 | 1900 / 4143 | 400 | Serge Batalov | November 19, 2013 18:02:38 UTC 2013 年 11 月 20 日 (水) 3 時 2 分 38 秒 (日本時間) |
1500 | Dmitry Domanov | May 7, 2014 09:20:27 UTC 2014 年 5 月 7 日 (水) 18 時 20 分 27 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | November 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1500 | Dmitry Domanov | December 2, 2013 13:11:06 UTC 2013 年 12 月 2 日 (月) 22 時 11 分 6 秒 (日本時間) | |
45 | 11e6 | 1900 / 4143 | 400 | Serge Batalov | November 19, 2013 18:02:38 UTC 2013 年 11 月 20 日 (水) 3 時 2 分 38 秒 (日本時間) |
1500 | Dmitry Domanov | May 7, 2014 09:20:41 UTC 2014 年 5 月 7 日 (水) 18 時 20 分 41 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | May 14, 2014 05:48:35 UTC 2014 年 5 月 14 日 (水) 14 時 48 分 35 秒 (日本時間) |
composite number 合成数 | 24075729688234442870125666842871199105171465973478827739207451318821497020215122115062823862991972773547260520275598365417770263833675179664530498156310497621820678128584364046322431<182> |
prime factors 素因数 | 1311820135242860956879961665353966762366406453<46> 18352919765008207633933452583058018127658293993518222363659269160996943999379586853531818421062861096833717152719623619862766358974739427<137> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=3543840413 Step 1 took 84008ms Step 2 took 29204ms ********** Factor found in step 2: 1311820135242860956879961665353966762366406453 Found probable prime factor of 46 digits: 1311820135242860956879961665353966762366406453 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | November 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1500 | Dmitry Domanov | December 2, 2013 13:11:14 UTC 2013 年 12 月 2 日 (月) 22 時 11 分 14 秒 (日本時間) | |
45 | 11e6 | 1900 / 4143 | 400 | Serge Batalov | November 19, 2013 18:02:39 UTC 2013 年 11 月 20 日 (水) 3 時 2 分 39 秒 (日本時間) |
1500 | Dmitry Domanov | May 7, 2014 09:20:57 UTC 2014 年 5 月 7 日 (水) 18 時 20 分 57 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | November 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1500 | Dmitry Domanov | December 2, 2013 13:11:22 UTC 2013 年 12 月 2 日 (月) 22 時 11 分 22 秒 (日本時間) | |
45 | 11e6 | 1900 / 4143 | 400 | Serge Batalov | November 19, 2013 18:02:40 UTC 2013 年 11 月 20 日 (水) 3 時 2 分 40 秒 (日本時間) |
1500 | Dmitry Domanov | May 7, 2014 09:21:15 UTC 2014 年 5 月 7 日 (水) 18 時 21 分 15 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | November 19, 2013 08:11:54 UTC 2013 年 11 月 19 日 (火) 17 時 11 分 54 秒 (日本時間) |
composite number 合成数 | 3415583845264292998541057757522823419194605329286679710944018580776118237753912063354200924159400418652991319537627535461079422083213381281624646853027427138277472272778284693792908272056132680794172038078880469203632229449163913868734233421<241> |
prime factors 素因数 | 2735151574922376664866913524272831<34> |
composite cofactor 合成数の残り | 1248773149020535337312221356974049911598442132918644419640194245335921110721385311041740876285126160147650365342967311083914658356692263355504730160514266597435291240120160982778889190962918289020118026011891<208> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=2732035713 Step 1 took 96508ms Step 2 took 32612ms ********** Factor found in step 2: 2735151574922376664866913524272831 Found probable prime factor of 34 digits: 2735151574922376664866913524272831 Composite cofactor |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | November 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1500 | Dmitry Domanov | December 2, 2013 13:11:30 UTC 2013 年 12 月 2 日 (月) 22 時 11 分 30 秒 (日本時間) | |
45 | 11e6 | 1900 / 4143 | 400 | Serge Batalov | November 19, 2013 18:02:41 UTC 2013 年 11 月 20 日 (水) 3 時 2 分 41 秒 (日本時間) |
1500 | Dmitry Domanov | May 7, 2014 09:21:36 UTC 2014 年 5 月 7 日 (水) 18 時 21 分 36 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | May 12, 2014 05:54:14 UTC 2014 年 5 月 12 日 (月) 14 時 54 分 14 秒 (日本時間) |
composite number 合成数 | 290708104993716102453057789690336057342166922380726342161650423925802388338520361771365528168414217129064986711389442761008712731881196895778887537793764954883706166895337615595065108048619673617237453592721<207> |
prime factors 素因数 | 12639341241249741348353147872030007878097009477<47> |
composite cofactor 合成数の残り | 23000257643567801121660005940641007421587802985093997308298989101195962860938534722685986154482434113914216321748741213870915514365273147699134792247530461271773<161> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=3082790376 Step 1 took 98217ms Step 2 took 33517ms ********** Factor found in step 2: 12639341241249741348353147872030007878097009477 Found probable prime factor of 47 digits: 12639341241249741348353147872030007878097009477 |
name 名前 | yoyo |
---|---|
date 日付 | November 9, 2024 01:22:03 UTC 2024 年 11 月 9 日 (土) 10 時 22 分 3 秒 (日本時間) |
composite number 合成数 | 23000257643567801121660005940641007421587802985093997308298989101195962860938534722685986154482434113914216321748741213870915514365273147699134792247530461271773<161> |
prime factors 素因数 | 20243152416083460672021823856034596418441401633<47> 1136199400706669715375927235184537313020276402949080736803978947688046335022452690510690811215982239943455721131581<115> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.5-dev [configured with GMP 6.1.2, --enable-asm-redc] [ECM] Input number is 23000257643567801121660005940641007421587802985093997308298989101195962860938534722685986154482434113914216321748741213870915514365273147699134792247530461271773 (161 digits) [Fri Nov 08 17:44:29 2024] Using MODMULN [mulredc:0, sqrredc:0] Using B1=110000000, B2=776278396540, polynomial Dickson(30), sigma=0:9200661411161370123 dF=131072, k=4, d=1345890, d2=11, i0=71 Expected number of curves to find a factor of n digits: 35 40 45 50 55 60 65 70 75 80 34 135 614 3135 17884 111314 752662 5482978 4.3e+07 3.6e+08 Writing checkpoint to checkpnt at p = 110000000 Step 1 took 374421ms Using 20 small primes for NTT Estimated memory usage: 472.20MB Initializing tables of differences for F took 250ms Computing roots of F took 11625ms Building F from its roots took 5844ms Computing 1/F took 2234ms Initializing table of differences for G took 218ms Computing roots of G took 9844ms Building G from its roots took 5422ms Computing roots of G took 9609ms Building G from its roots took 5782ms Computing G * H took 1297ms Reducing G * H mod F took 1406ms Computing roots of G took 9766ms Building G from its roots took 5765ms Computing G * H took 1375ms Reducing G * H mod F took 1313ms Computing roots of G took 9719ms Building G from its roots took 5812ms Computing G * H took 1391ms Reducing G * H mod F took 1297ms Computing polyeval(F,G) took 11312ms Computing product of all F(g_i) took 47ms Step 2 took 102047ms ********** Factor found in step 2: 20243152416083460672021823856034596418441401633 Found prime factor of 47 digits: 20243152416083460672021823856034596418441401633 Prime cofactor 1136199400706669715375927235184537313020276402949080736803978947688046335022452690510690811215982239943455721131581 has 115 digits Peak memory usage: 616MB |
software ソフトウェア | GMP-ECM 7.0.5-dev [configured with GMP 6.1.2, --enable-asm-redc] |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | November 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1500 | Dmitry Domanov | December 2, 2013 13:11:38 UTC 2013 年 12 月 2 日 (月) 22 時 11 分 38 秒 (日本時間) | |
45 | 11e6 | 1900 | 400 | Serge Batalov | November 19, 2013 18:02:42 UTC 2013 年 11 月 20 日 (水) 3 時 2 分 42 秒 (日本時間) |
1500 | Dmitry Domanov | May 7, 2014 09:28:49 UTC 2014 年 5 月 7 日 (水) 18 時 28 分 49 秒 (日本時間) | |||
50 | 43e6 | 640 / 7070 | Dmitry Domanov | May 14, 2014 13:07:39 UTC 2014 年 5 月 14 日 (水) 22 時 7 分 39 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | November 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1500 | Dmitry Domanov | December 2, 2013 13:11:47 UTC 2013 年 12 月 2 日 (月) 22 時 11 分 47 秒 (日本時間) | |
45 | 11e6 | 1900 / 4143 | 400 | Serge Batalov | November 19, 2013 18:02:43 UTC 2013 年 11 月 20 日 (水) 3 時 2 分 43 秒 (日本時間) |
1500 | Dmitry Domanov | May 7, 2014 09:29:10 UTC 2014 年 5 月 7 日 (水) 18 時 29 分 10 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | November 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1500 | Dmitry Domanov | December 2, 2013 13:11:55 UTC 2013 年 12 月 2 日 (月) 22 時 11 分 55 秒 (日本時間) | |
45 | 11e6 | 1900 / 4143 | 400 | Serge Batalov | November 19, 2013 18:02:44 UTC 2013 年 11 月 20 日 (水) 3 時 2 分 44 秒 (日本時間) |
1500 | Dmitry Domanov | May 7, 2014 09:29:26 UTC 2014 年 5 月 7 日 (水) 18 時 29 分 26 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | November 18, 2013 14:00:00 UTC 2013 年 11 月 18 日 (月) 23 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1500 | Dmitry Domanov | December 2, 2013 13:12:03 UTC 2013 年 12 月 2 日 (月) 22 時 12 分 3 秒 (日本時間) | |
45 | 11e6 | 1900 | 400 | Serge Batalov | November 19, 2013 18:02:46 UTC 2013 年 11 月 20 日 (水) 3 時 2 分 46 秒 (日本時間) |
1500 | Dmitry Domanov | February 28, 2014 19:26:52 UTC 2014 年 3 月 1 日 (土) 4 時 26 分 52 秒 (日本時間) | |||
50 | 43e6 | 400 / 6780 | Dmitry Domanov | March 7, 2014 08:49:44 UTC 2014 年 3 月 7 日 (金) 17 時 49 分 44 秒 (日本時間) | |
55 | 11e7 | 120 / 17496 | Dmitry Domanov | March 12, 2014 06:08:37 UTC 2014 年 3 月 12 日 (水) 15 時 8 分 37 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間) | |
45 | 11e6 | 1000 / 3844 | Dmitry Domanov | April 30, 2019 14:36:53 UTC 2019 年 4 月 30 日 (火) 23 時 36 分 53 秒 (日本時間) |
name 名前 | NFS@home + Dmitry Domanov |
---|---|
date 日付 | November 14, 2023 19:54:04 UTC 2023 年 11 月 15 日 (水) 4 時 54 分 4 秒 (日本時間) |
composite number 合成数 | 7000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003<259> |
prime factors 素因数 | 9223618483311294104386170862846699616261588294023453763819469859<64> 758921242532463090766177014282456590769224292837593837515920823981649638666060616279348203680278956575160849608595624482197272614121926175370962635770694325750671629835631792624164730629763283617<195> |
factorization results 素因数分解の結果 | Mon Nov 13 19:53:24 2023 Mon Nov 13 19:53:24 2023 Mon Nov 13 19:53:24 2023 Msieve v. 1.54 (SVN Unversioned directory) Mon Nov 13 19:53:24 2023 random seeds: f2736e76 9dd28310 Mon Nov 13 19:53:24 2023 Using 4 OpenMP threads Mon Nov 13 19:53:24 2023 factoring 7000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003 (259 digits) Mon Nov 13 19:53:25 2023 searching for 15-digit factors Mon Nov 13 19:53:25 2023 commencing number field sieve (259-digit input) Mon Nov 13 19:53:25 2023 R0: -10000000000000000000000000000000000000000000 Mon Nov 13 19:53:25 2023 R1: 1 Mon Nov 13 19:53:25 2023 A0: 3 Mon Nov 13 19:53:25 2023 A1: 0 Mon Nov 13 19:53:25 2023 A2: 0 Mon Nov 13 19:53:25 2023 A3: 0 Mon Nov 13 19:53:25 2023 A4: 0 Mon Nov 13 19:53:25 2023 A5: 0 Mon Nov 13 19:53:25 2023 A6: 7 Mon Nov 13 19:53:25 2023 skew 1.00, size 1.222e-12, alpha 0.227, combined = 1.337e-13 rroots = 0 Mon Nov 13 19:53:25 2023 Mon Nov 13 19:53:25 2023 commencing relation filtering Mon Nov 13 19:53:25 2023 setting target matrix density to 140.0 Mon Nov 13 19:53:25 2023 estimated available RAM is 15729.3 MB Mon Nov 13 19:53:25 2023 commencing duplicate removal, pass 1 Mon Nov 13 19:58:36 2023 error -1 reading relation 41833422 Mon Nov 13 19:58:53 2023 error -1 reading relation 43953467 Mon Nov 13 19:59:01 2023 error -1 reading relation 44945578 Mon Nov 13 20:00:33 2023 error -1 reading relation 65460437 Mon Nov 13 20:01:05 2023 error -1 reading relation 75736374 Mon Nov 13 20:01:09 2023 error -11 reading relation 76445953 Mon Nov 13 20:01:15 2023 error -1 reading relation 77834598 Mon Nov 13 20:01:52 2023 error -1 reading relation 86542843 Mon Nov 13 20:01:53 2023 error -1 reading relation 86809298 Mon Nov 13 20:02:36 2023 error -1 reading relation 99441706 Mon Nov 13 20:03:38 2023 error -15 reading relation 107307299 Mon Nov 13 20:04:32 2023 error -1 reading relation 113162520 Mon Nov 13 20:05:32 2023 error -1 reading relation 121001266 Mon Nov 13 20:05:34 2023 error -1 reading relation 121185521 Mon Nov 13 20:08:00 2023 error -1 reading relation 139585935 Mon Nov 13 20:08:21 2023 error -1 reading relation 141873405 Mon Nov 13 20:08:43 2023 error -1 reading relation 144868705 Mon Nov 13 20:08:50 2023 error -15 reading relation 145866912 Mon Nov 13 20:11:28 2023 error -1 reading relation 165279148 Mon Nov 13 20:11:32 2023 error -1 reading relation 166034754 Mon Nov 13 20:11:38 2023 error -1 reading relation 167030052 Mon Nov 13 20:11:44 2023 error -1 reading relation 168055500 Mon Nov 13 20:12:43 2023 error -1 reading relation 174711019 Mon Nov 13 20:12:47 2023 error -15 reading relation 175462752 Mon Nov 13 20:14:01 2023 error -1 reading relation 184221839 Mon Nov 13 20:17:28 2023 error -1 reading relation 211023222 Mon Nov 13 20:18:26 2023 error -1 reading relation 218627688 Mon Nov 13 20:20:14 2023 error -1 reading relation 232064253 Mon Nov 13 20:22:46 2023 error -1 reading relation 252943930 Mon Nov 13 20:24:08 2023 error -1 reading relation 264534990 Mon Nov 13 20:25:03 2023 error -1 reading relation 280491604 Mon Nov 13 20:25:08 2023 error -1 reading relation 281776400 Mon Nov 13 20:25:46 2023 error -5 reading relation 294228310 Mon Nov 13 20:25:48 2023 error -1 reading relation 294640260 Mon Nov 13 20:25:48 2023 error -1 reading relation 294697094 Mon Nov 13 20:25:52 2023 error -1 reading relation 295626133 Mon Nov 13 20:26:02 2023 skipped 1038 relations with b > 2^32 Mon Nov 13 20:26:02 2023 skipped 4 relations with composite factors Mon Nov 13 20:26:02 2023 skipped 408 malformed relations Mon Nov 13 20:26:02 2023 found 62673919 hash collisions in 298128849 relations Mon Nov 13 20:26:13 2023 added 1217759 free relations Mon Nov 13 20:26:13 2023 commencing duplicate removal, pass 2 Mon Nov 13 20:31:01 2023 found 62846622 duplicates and 236499986 unique relations Mon Nov 13 20:31:01 2023 memory use: 1449.5 MB Mon Nov 13 20:31:01 2023 reading ideals above 180027392 Mon Nov 13 20:31:01 2023 commencing singleton removal, initial pass Mon Nov 13 20:44:58 2023 memory use: 5512.0 MB Mon Nov 13 20:44:58 2023 reading all ideals from disk Mon Nov 13 20:45:00 2023 memory use: 5905.0 MB Mon Nov 13 20:45:08 2023 commencing in-memory singleton removal Mon Nov 13 20:45:15 2023 begin with 236499986 relations and 169004075 unique ideals Mon Nov 13 20:45:36 2023 reduce to 186926992 relations and 116197369 ideals in 11 passes Mon Nov 13 20:45:36 2023 max relations containing the same ideal: 29 Mon Nov 13 20:45:41 2023 reading ideals above 720000 Mon Nov 13 20:45:41 2023 commencing singleton removal, initial pass Mon Nov 13 21:01:45 2023 memory use: 3012.0 MB Mon Nov 13 21:01:45 2023 reading all ideals from disk Mon Nov 13 21:01:50 2023 memory use: 9112.0 MB Mon Nov 13 21:02:10 2023 keeping 135267424 ideals with weight <= 200, target excess is 988976 Mon Nov 13 21:02:29 2023 commencing in-memory singleton removal Mon Nov 13 21:02:38 2023 begin with 186926992 relations and 135267424 unique ideals Mon Nov 13 21:03:01 2023 reduce to 186926064 relations and 135266496 ideals in 6 passes Mon Nov 13 21:03:01 2023 max relations containing the same ideal: 200 Mon Nov 13 21:04:00 2023 removing 8797079 relations and 6797079 ideals in 2000000 cliques Mon Nov 13 21:04:03 2023 commencing in-memory singleton removal Mon Nov 13 21:04:12 2023 begin with 178128985 relations and 135266496 unique ideals Mon Nov 13 21:04:37 2023 reduce to 177781802 relations and 128117239 ideals in 7 passes Mon Nov 13 21:04:37 2023 max relations containing the same ideal: 199 Mon Nov 13 21:05:33 2023 removing 6861597 relations and 4861597 ideals in 2000000 cliques Mon Nov 13 21:05:37 2023 commencing in-memory singleton removal Mon Nov 13 21:05:45 2023 begin with 170920205 relations and 128117239 unique ideals Mon Nov 13 21:06:06 2023 reduce to 170685867 relations and 123018416 ideals in 6 passes Mon Nov 13 21:06:06 2023 max relations containing the same ideal: 197 Mon Nov 13 21:07:00 2023 removing 6314620 relations and 4314620 ideals in 2000000 cliques Mon Nov 13 21:07:04 2023 commencing in-memory singleton removal Mon Nov 13 21:07:11 2023 begin with 164371247 relations and 123018416 unique ideals Mon Nov 13 21:07:31 2023 reduce to 164170547 relations and 118500735 ideals in 6 passes Mon Nov 13 21:07:31 2023 max relations containing the same ideal: 195 Mon Nov 13 21:08:23 2023 removing 6030949 relations and 4030949 ideals in 2000000 cliques Mon Nov 13 21:08:26 2023 commencing in-memory singleton removal Mon Nov 13 21:08:33 2023 begin with 158139598 relations and 118500735 unique ideals Mon Nov 13 21:08:52 2023 reduce to 157956359 relations and 114284339 ideals in 6 passes Mon Nov 13 21:08:52 2023 max relations containing the same ideal: 190 Mon Nov 13 21:09:42 2023 removing 5850699 relations and 3850699 ideals in 2000000 cliques Mon Nov 13 21:09:46 2023 commencing in-memory singleton removal Mon Nov 13 21:09:52 2023 begin with 152105660 relations and 114284339 unique ideals Mon Nov 13 21:10:07 2023 reduce to 151931068 relations and 110256918 ideals in 5 passes Mon Nov 13 21:10:07 2023 max relations containing the same ideal: 185 Mon Nov 13 21:10:56 2023 removing 5721610 relations and 3721610 ideals in 2000000 cliques Mon Nov 13 21:10:59 2023 commencing in-memory singleton removal Mon Nov 13 21:11:05 2023 begin with 146209458 relations and 110256918 unique ideals Mon Nov 13 21:11:25 2023 reduce to 146041022 relations and 106364637 ideals in 7 passes Mon Nov 13 21:11:25 2023 max relations containing the same ideal: 182 Mon Nov 13 21:12:12 2023 removing 5631941 relations and 3631941 ideals in 2000000 cliques Mon Nov 13 21:12:15 2023 commencing in-memory singleton removal Mon Nov 13 21:12:21 2023 begin with 140409081 relations and 106364637 unique ideals Mon Nov 13 21:12:37 2023 reduce to 140244834 relations and 102566321 ideals in 6 passes Mon Nov 13 21:12:37 2023 max relations containing the same ideal: 177 Mon Nov 13 21:13:22 2023 removing 5561494 relations and 3561494 ideals in 2000000 cliques Mon Nov 13 21:13:25 2023 commencing in-memory singleton removal Mon Nov 13 21:13:31 2023 begin with 134683340 relations and 102566321 unique ideals Mon Nov 13 21:13:46 2023 reduce to 134520319 relations and 98839513 ideals in 6 passes Mon Nov 13 21:13:46 2023 max relations containing the same ideal: 171 Mon Nov 13 21:14:29 2023 removing 5505113 relations and 3505113 ideals in 2000000 cliques Mon Nov 13 21:14:32 2023 commencing in-memory singleton removal Mon Nov 13 21:14:37 2023 begin with 129015206 relations and 98839513 unique ideals Mon Nov 13 21:14:50 2023 reduce to 128851304 relations and 95168182 ideals in 5 passes Mon Nov 13 21:14:50 2023 max relations containing the same ideal: 168 Mon Nov 13 21:15:31 2023 removing 5460769 relations and 3460769 ideals in 2000000 cliques Mon Nov 13 21:15:34 2023 commencing in-memory singleton removal Mon Nov 13 21:15:39 2023 begin with 123390535 relations and 95168182 unique ideals Mon Nov 13 21:15:53 2023 reduce to 123225369 relations and 91539804 ideals in 6 passes Mon Nov 13 21:15:53 2023 max relations containing the same ideal: 164 Mon Nov 13 21:16:32 2023 removing 5428567 relations and 3428567 ideals in 2000000 cliques Mon Nov 13 21:16:35 2023 commencing in-memory singleton removal Mon Nov 13 21:16:39 2023 begin with 117796802 relations and 91539804 unique ideals Mon Nov 13 21:16:50 2023 reduce to 117628541 relations and 87940308 ideals in 5 passes Mon Nov 13 21:16:50 2023 max relations containing the same ideal: 159 Mon Nov 13 21:17:28 2023 removing 5402411 relations and 3402411 ideals in 2000000 cliques Mon Nov 13 21:17:30 2023 commencing in-memory singleton removal Mon Nov 13 21:17:35 2023 begin with 112226130 relations and 87940308 unique ideals Mon Nov 13 21:17:47 2023 reduce to 112052863 relations and 84361869 ideals in 6 passes Mon Nov 13 21:17:47 2023 max relations containing the same ideal: 155 Mon Nov 13 21:18:23 2023 removing 5386856 relations and 3386856 ideals in 2000000 cliques Mon Nov 13 21:18:25 2023 commencing in-memory singleton removal Mon Nov 13 21:18:30 2023 begin with 106666007 relations and 84361869 unique ideals Mon Nov 13 21:18:39 2023 reduce to 106487428 relations and 80793426 ideals in 5 passes Mon Nov 13 21:18:39 2023 max relations containing the same ideal: 153 Mon Nov 13 21:19:14 2023 removing 5375910 relations and 3375910 ideals in 2000000 cliques Mon Nov 13 21:19:16 2023 commencing in-memory singleton removal Mon Nov 13 21:19:20 2023 begin with 101111518 relations and 80793426 unique ideals Mon Nov 13 21:19:31 2023 reduce to 100926725 relations and 77229500 ideals in 6 passes Mon Nov 13 21:19:31 2023 max relations containing the same ideal: 148 Mon Nov 13 21:20:03 2023 removing 5373989 relations and 3373989 ideals in 2000000 cliques Mon Nov 13 21:20:05 2023 commencing in-memory singleton removal Mon Nov 13 21:20:09 2023 begin with 95552736 relations and 77229500 unique ideals Mon Nov 13 21:20:19 2023 reduce to 95359784 relations and 73658915 ideals in 6 passes Mon Nov 13 21:20:19 2023 max relations containing the same ideal: 138 Mon Nov 13 21:20:50 2023 removing 5377247 relations and 3377247 ideals in 2000000 cliques Mon Nov 13 21:20:52 2023 commencing in-memory singleton removal Mon Nov 13 21:20:56 2023 begin with 89982537 relations and 73658915 unique ideals Mon Nov 13 21:21:04 2023 reduce to 89780011 relations and 70075312 ideals in 5 passes Mon Nov 13 21:21:04 2023 max relations containing the same ideal: 133 Mon Nov 13 21:21:33 2023 removing 5387283 relations and 3387283 ideals in 2000000 cliques Mon Nov 13 21:21:35 2023 commencing in-memory singleton removal Mon Nov 13 21:21:38 2023 begin with 84392728 relations and 70075312 unique ideals Mon Nov 13 21:21:47 2023 reduce to 84179066 relations and 66469955 ideals in 6 passes Mon Nov 13 21:21:47 2023 max relations containing the same ideal: 127 Mon Nov 13 21:22:14 2023 removing 5399422 relations and 3399422 ideals in 2000000 cliques Mon Nov 13 21:22:16 2023 commencing in-memory singleton removal Mon Nov 13 21:22:19 2023 begin with 78779644 relations and 66469955 unique ideals Mon Nov 13 21:22:27 2023 reduce to 78551941 relations and 62838004 ideals in 6 passes Mon Nov 13 21:22:27 2023 max relations containing the same ideal: 121 Mon Nov 13 21:22:53 2023 removing 5420554 relations and 3420554 ideals in 2000000 cliques Mon Nov 13 21:22:54 2023 commencing in-memory singleton removal Mon Nov 13 21:22:57 2023 begin with 73131387 relations and 62838004 unique ideals Mon Nov 13 21:23:05 2023 reduce to 72888007 relations and 59168590 ideals in 6 passes Mon Nov 13 21:23:05 2023 max relations containing the same ideal: 117 Mon Nov 13 21:23:28 2023 removing 5449256 relations and 3449256 ideals in 2000000 cliques Mon Nov 13 21:23:30 2023 commencing in-memory singleton removal Mon Nov 13 21:23:32 2023 begin with 67438751 relations and 59168590 unique ideals Mon Nov 13 21:23:40 2023 reduce to 67177258 relations and 55451478 ideals in 7 passes Mon Nov 13 21:23:40 2023 max relations containing the same ideal: 110 Mon Nov 13 21:24:02 2023 removing 5487849 relations and 3487849 ideals in 2000000 cliques Mon Nov 13 21:24:04 2023 commencing in-memory singleton removal Mon Nov 13 21:24:06 2023 begin with 61689409 relations and 55451478 unique ideals Mon Nov 13 21:24:12 2023 reduce to 61404346 relations and 51671229 ideals in 6 passes Mon Nov 13 21:24:12 2023 max relations containing the same ideal: 102 Mon Nov 13 21:24:33 2023 removing 5525099 relations and 3525099 ideals in 2000000 cliques Mon Nov 13 21:24:34 2023 commencing in-memory singleton removal Mon Nov 13 21:24:36 2023 begin with 55879247 relations and 51671229 unique ideals Mon Nov 13 21:24:42 2023 reduce to 55565135 relations and 47823349 ideals in 6 passes Mon Nov 13 21:24:42 2023 max relations containing the same ideal: 98 Mon Nov 13 21:25:00 2023 removing 5577825 relations and 3577825 ideals in 2000000 cliques Mon Nov 13 21:25:02 2023 commencing in-memory singleton removal Mon Nov 13 21:25:03 2023 begin with 49987310 relations and 47823349 unique ideals Mon Nov 13 21:25:10 2023 reduce to 49636428 relations and 43883967 ideals in 8 passes Mon Nov 13 21:25:10 2023 max relations containing the same ideal: 89 Mon Nov 13 21:25:26 2023 removing 5638201 relations and 3638201 ideals in 2000000 cliques Mon Nov 13 21:25:28 2023 commencing in-memory singleton removal Mon Nov 13 21:25:29 2023 begin with 43998227 relations and 43883967 unique ideals Mon Nov 13 21:25:34 2023 reduce to 43595335 relations and 39829085 ideals in 7 passes Mon Nov 13 21:25:34 2023 max relations containing the same ideal: 83 Mon Nov 13 21:25:49 2023 removing 5712727 relations and 3712727 ideals in 2000000 cliques Mon Nov 13 21:25:50 2023 commencing in-memory singleton removal Mon Nov 13 21:25:51 2023 begin with 37882608 relations and 39829085 unique ideals Mon Nov 13 21:25:57 2023 reduce to 37402397 relations and 35618028 ideals in 9 passes Mon Nov 13 21:25:57 2023 max relations containing the same ideal: 76 Mon Nov 13 21:26:09 2023 removing 2236684 relations and 1599528 ideals in 637156 cliques Mon Nov 13 21:26:11 2023 commencing in-memory singleton removal Mon Nov 13 21:26:12 2023 begin with 35165713 relations and 35618028 unique ideals Mon Nov 13 21:26:15 2023 reduce to 35061377 relations and 33912595 ideals in 6 passes Mon Nov 13 21:26:15 2023 max relations containing the same ideal: 72 Mon Nov 13 21:26:30 2023 relations with 0 large ideals: 37249 Mon Nov 13 21:26:30 2023 relations with 1 large ideals: 16761 Mon Nov 13 21:26:30 2023 relations with 2 large ideals: 195197 Mon Nov 13 21:26:30 2023 relations with 3 large ideals: 1188316 Mon Nov 13 21:26:30 2023 relations with 4 large ideals: 3892506 Mon Nov 13 21:26:30 2023 relations with 5 large ideals: 7597898 Mon Nov 13 21:26:30 2023 relations with 6 large ideals: 9296776 Mon Nov 13 21:26:30 2023 relations with 7+ large ideals: 12836674 Mon Nov 13 21:26:30 2023 commencing 2-way merge Mon Nov 13 21:26:47 2023 reduce to 24340647 relation sets and 23191865 unique ideals Mon Nov 13 21:26:47 2023 commencing full merge Mon Nov 13 21:35:23 2023 memory use: 3187.1 MB Mon Nov 13 21:35:24 2023 found 10654639 cycles, need 10638065 Mon Nov 13 21:35:27 2023 weight of 10638065 cycles is about 1490116188 (140.07/cycle) Mon Nov 13 21:35:27 2023 distribution of cycle lengths: Mon Nov 13 21:35:27 2023 1 relations: 224303 Mon Nov 13 21:35:27 2023 2 relations: 442370 Mon Nov 13 21:35:27 2023 3 relations: 586206 Mon Nov 13 21:35:27 2023 4 relations: 656761 Mon Nov 13 21:35:27 2023 5 relations: 713446 Mon Nov 13 21:35:27 2023 6 relations: 738026 Mon Nov 13 21:35:27 2023 7 relations: 749910 Mon Nov 13 21:35:27 2023 8 relations: 737515 Mon Nov 13 21:35:27 2023 9 relations: 715514 Mon Nov 13 21:35:27 2023 10+ relations: 5074014 Mon Nov 13 21:35:27 2023 heaviest cycle: 28 relations Mon Nov 13 21:35:29 2023 commencing cycle optimization Mon Nov 13 21:35:49 2023 start with 106572759 relations Mon Nov 13 21:39:31 2023 pruned 6438146 relations Mon Nov 13 21:39:31 2023 memory use: 2554.7 MB Mon Nov 13 21:39:31 2023 distribution of cycle lengths: Mon Nov 13 21:39:31 2023 1 relations: 224303 Mon Nov 13 21:39:31 2023 2 relations: 455136 Mon Nov 13 21:39:31 2023 3 relations: 614671 Mon Nov 13 21:39:31 2023 4 relations: 691531 Mon Nov 13 21:39:31 2023 5 relations: 759528 Mon Nov 13 21:39:31 2023 6 relations: 787425 Mon Nov 13 21:39:31 2023 7 relations: 806185 Mon Nov 13 21:39:31 2023 8 relations: 792199 Mon Nov 13 21:39:31 2023 9 relations: 768716 Mon Nov 13 21:39:31 2023 10+ relations: 4738371 Mon Nov 13 21:39:31 2023 heaviest cycle: 28 relations Mon Nov 13 21:39:48 2023 RelProcTime: 6383 Mon Nov 13 21:39:51 2023 elapsed time 01:46:27 Mon Nov 13 22:21:50 2023 Mon Nov 13 22:21:50 2023 Mon Nov 13 22:21:50 2023 Msieve v. 1.54 (SVN Unversioned directory) Mon Nov 13 22:21:50 2023 random seeds: e5bbb2dc dcc3470c Mon Nov 13 22:21:50 2023 factoring 7000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003 (259 digits) Mon Nov 13 22:21:51 2023 searching for 15-digit factors Mon Nov 13 22:21:51 2023 commencing number field sieve (259-digit input) Mon Nov 13 22:21:51 2023 R0: -10000000000000000000000000000000000000000000 Mon Nov 13 22:21:51 2023 R1: 1 Mon Nov 13 22:21:51 2023 A0: 3 Mon Nov 13 22:21:51 2023 A1: 0 Mon Nov 13 22:21:51 2023 A2: 0 Mon Nov 13 22:21:51 2023 A3: 0 Mon Nov 13 22:21:51 2023 A4: 0 Mon Nov 13 22:21:51 2023 A5: 0 Mon Nov 13 22:21:51 2023 A6: 7 Mon Nov 13 22:21:51 2023 skew 1.00, size 1.222e-12, alpha 0.227, combined = 1.337e-13 rroots = 0 Mon Nov 13 22:21:51 2023 Mon Nov 13 22:21:51 2023 commencing linear algebra Mon Nov 13 22:21:51 2023 using VBITS=256 Mon Nov 13 22:21:52 2023 read 10638065 cycles Mon Nov 13 22:22:08 2023 cycles contain 34587559 unique relations Mon Nov 13 22:28:11 2023 read 34587559 relations Mon Nov 13 22:29:36 2023 using 20 quadratic characters above 4294917295 Mon Nov 13 22:31:40 2023 building initial matrix Mon Nov 13 22:39:07 2023 memory use: 4816.2 MB Mon Nov 13 22:39:14 2023 read 10638065 cycles Mon Nov 13 22:39:16 2023 matrix is 10637888 x 10638065 (5634.5 MB) with weight 1642386984 (154.39/col) Mon Nov 13 22:39:16 2023 sparse part has weight 1360028072 (127.85/col) Mon Nov 13 22:41:23 2023 filtering completed in 2 passes Mon Nov 13 22:41:25 2023 matrix is 10637834 x 10638006 (5634.5 MB) with weight 1642384795 (154.39/col) Mon Nov 13 22:41:25 2023 sparse part has weight 1360027374 (127.85/col) Mon Nov 13 22:41:46 2023 matrix starts at (0, 0) Mon Nov 13 22:41:47 2023 matrix is 10637834 x 10638006 (5634.5 MB) with weight 1642384795 (154.39/col) Mon Nov 13 22:41:47 2023 sparse part has weight 1360027374 (127.85/col) Mon Nov 13 22:41:47 2023 saving the first 240 matrix rows for later Mon Nov 13 22:41:49 2023 matrix includes 256 packed rows Mon Nov 13 22:41:54 2023 matrix is 10637594 x 10638006 (5158.7 MB) with weight 1242729941 (116.82/col) Mon Nov 13 22:41:54 2023 sparse part has weight 1182127001 (111.12/col) Mon Nov 13 22:41:54 2023 using block size 8192 and superblock size 294912 for processor cache size 12288 kB Mon Nov 13 22:42:25 2023 commencing Lanczos iteration Mon Nov 13 22:42:25 2023 memory use: 6835.8 MB Mon Nov 13 22:47:56 2023 lanczos halted after 20 iterations (dim = 5106) Mon Nov 13 22:47:57 2023 BLanczosTime: 1566 Mon Nov 13 22:47:57 2023 elapsed time 00:26:07 Tue Nov 14 06:17:56 2023 Tue Nov 14 06:17:56 2023 Tue Nov 14 06:17:56 2023 Msieve v. 1.54 (SVN unknown) Tue Nov 14 06:17:56 2023 random seeds: 612f0231 01b245d4 Tue Nov 14 06:17:56 2023 factoring 7000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003 (259 digits) Tue Nov 14 06:17:57 2023 no P-1/P+1/ECM available, skipping Tue Nov 14 06:17:57 2023 commencing number field sieve (259-digit input) Tue Nov 14 06:17:57 2023 R0: -10000000000000000000000000000000000000000000 Tue Nov 14 06:17:57 2023 R1: 1 Tue Nov 14 06:17:57 2023 A0: 3 Tue Nov 14 06:17:57 2023 A1: 0 Tue Nov 14 06:17:57 2023 A2: 0 Tue Nov 14 06:17:57 2023 A3: 0 Tue Nov 14 06:17:57 2023 A4: 0 Tue Nov 14 06:17:57 2023 A5: 0 Tue Nov 14 06:17:57 2023 A6: 7 Tue Nov 14 06:17:57 2023 skew 1.00, size 1.222e-12, alpha 0.227, combined = 1.337e-13 rroots = 0 Tue Nov 14 06:17:57 2023 Tue Nov 14 06:17:57 2023 commencing linear algebra Tue Nov 14 06:17:57 2023 using VBITS=128 Tue Nov 14 06:17:57 2023 skipping matrix build Tue Nov 14 06:18:02 2023 matrix starts at (0, 0) Tue Nov 14 06:18:04 2023 matrix is 10637834 x 10638006 (5634.5 MB) with weight 1642384795 (154.39/col) Tue Nov 14 06:18:04 2023 sparse part has weight 1360027374 (127.85/col) Tue Nov 14 06:18:04 2023 saving the first 112 matrix rows for later Tue Nov 14 06:18:07 2023 matrix includes 128 packed rows Tue Nov 14 06:18:09 2023 matrix is 10637722 x 10638006 (5227.6 MB) with weight 1316379579 (123.74/col) Tue Nov 14 06:18:09 2023 sparse part has weight 1242729941 (116.82/col) Tue Nov 14 06:18:09 2023 using GPU 0 (Tesla P100-PCIE-16GB) Tue Nov 14 06:18:09 2023 selected card has CUDA arch 6.0 Tue Nov 14 06:21:00 2023 commencing Lanczos iteration Tue Nov 14 06:21:00 2023 memory use: 11834.9 MB Tue Nov 14 06:21:07 2023 linear algebra at 0.0%, ETA 11h37m Tue Nov 14 06:21:09 2023 checkpointing every 920000 dimensions Tue Nov 14 17:28:57 2023 lanczos halted after 83610 iterations (dim = 10637722) Tue Nov 14 17:29:15 2023 recovered 37 nontrivial dependencies Tue Nov 14 17:29:16 2023 BLanczosTime: 40279 Tue Nov 14 17:29:16 2023 elapsed time 11:11:20 Tue Nov 14 20:38:18 2023 Tue Nov 14 20:38:18 2023 Tue Nov 14 20:38:18 2023 Msieve v. 1.54 (SVN Unversioned directory) Tue Nov 14 20:38:18 2023 random seeds: 00e3ecff b4f2a11f Tue Nov 14 20:38:18 2023 Using 4 OpenMP threads Tue Nov 14 20:38:18 2023 factoring 7000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003 (259 digits) Tue Nov 14 20:38:21 2023 searching for 15-digit factors Tue Nov 14 20:38:22 2023 commencing number field sieve (259-digit input) Tue Nov 14 20:38:22 2023 R0: -10000000000000000000000000000000000000000000 Tue Nov 14 20:38:22 2023 R1: 1 Tue Nov 14 20:38:22 2023 A0: 3 Tue Nov 14 20:38:22 2023 A1: 0 Tue Nov 14 20:38:22 2023 A2: 0 Tue Nov 14 20:38:22 2023 A3: 0 Tue Nov 14 20:38:22 2023 A4: 0 Tue Nov 14 20:38:22 2023 A5: 0 Tue Nov 14 20:38:22 2023 A6: 7 Tue Nov 14 20:38:22 2023 skew 1.00, size 1.222e-12, alpha 0.227, combined = 1.337e-13 rroots = 0 Tue Nov 14 20:38:22 2023 Tue Nov 14 20:38:22 2023 commencing square root phase Tue Nov 14 20:38:22 2023 reading relations for dependency 1 Tue Nov 14 20:38:25 2023 read 5316870 cycles Tue Nov 14 20:38:40 2023 cycles contain 17287542 unique relations Tue Nov 14 20:50:00 2023 read 17287542 relations Tue Nov 14 20:52:01 2023 multiplying 17287542 relations Tue Nov 14 21:00:59 2023 multiply complete, coefficients have about 497.41 million bits Tue Nov 14 21:01:01 2023 initial square root is modulo 841724089 Tue Nov 14 21:12:07 2023 GCD is 1, no factor found Tue Nov 14 21:12:07 2023 reading relations for dependency 2 Tue Nov 14 21:12:08 2023 read 5319291 cycles Tue Nov 14 21:12:19 2023 cycles contain 17296258 unique relations Tue Nov 14 21:24:07 2023 read 17296258 relations Tue Nov 14 21:26:06 2023 multiplying 17296258 relations Tue Nov 14 21:35:12 2023 multiply complete, coefficients have about 497.67 million bits Tue Nov 14 21:35:14 2023 initial square root is modulo 850585441 Tue Nov 14 21:46:27 2023 sqrtTime: 4085 Tue Nov 14 21:46:27 2023 p64 factor: 9223618483311294104386170862846699616261588294023453763819469859 Tue Nov 14 21:46:27 2023 p195 factor: 758921242532463090766177014282456590769224292837593837515920823981649638666060616279348203680278956575160849608595624482197272614121926175370962635770694325750671629835631792624164730629763283617 Tue Nov 14 21:46:27 2023 elapsed time 01:08:09 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間) | |
45 | 11e6 | 2000 | Dmitry Domanov | April 26, 2019 16:19:05 UTC 2019 年 4 月 27 日 (土) 1 時 19 分 5 秒 (日本時間) | |
50 | 43e6 | 5000 | 2000 | Dmitry Domanov | April 29, 2019 18:11:48 UTC 2019 年 4 月 30 日 (火) 3 時 11 分 48 秒 (日本時間) |
3000 | NFS@home + Dmitry Domanov | November 4, 2020 06:59:59 UTC 2020 年 11 月 4 日 (水) 15 時 59 分 59 秒 (日本時間) | |||
55 | 11e7 | 15844 | 828 | Dmitry Domanov | November 26, 2020 13:02:37 UTC 2020 年 11 月 26 日 (木) 22 時 2 分 37 秒 (日本時間) |
15016 | ebina | December 9, 2022 07:54:16 UTC 2022 年 12 月 9 日 (金) 16 時 54 分 16 秒 (日本時間) |
name 名前 | Seth Troisi |
---|---|
date 日付 | December 6, 2023 07:33:39 UTC 2023 年 12 月 6 日 (水) 16 時 33 分 39 秒 (日本時間) |
composite number 合成数 | 30902909263423121514137288176222522090867648692276002839289320418316962205078678694370832385008925107595817400112286737323198821426446578511133183734561816392992876580601217158325732703147903886378159<200> |
prime factors 素因数 | 4631819825775891064537001730676852164803<40> 6671872055870928788179475213338312870225882776332566953764936043989826504475581784520351752742414497653660456678510769495302625184544025386852730952596371961253<160> |
factorization results 素因数分解の結果 | Resuming P-1 residue saved by five@five with GMP-ECM 7.0.6-dev on Tue Nov 21 10:28:18 2023 Input number is 30902909263423121514137288176222522090867648692276002839289320418316962205078678694370832385008925107595817400112286737323198821426446578511133183734561816392992876580601217158325732703147903886378159 (200 digits) Using mpz_mod Using lmax = 33554432 with NTT which takes about 9600MB of memory Using B1=4000000000-4000000000, B2=8344907294582686, polynomial x^1 P = 240705465, l = 33554432, s_1 = 16220160, k = s_2 = 5, m_1 = 3 Probability of finding a factor of n digits (assuming one exists): 20 25 30 35 40 45 50 55 60 65 0.81 0.53 0.28 0.12 0.045 0.015 0.0045 0.0012 0.00031 7.3e-05 Step 1 took 0ms Computing F from factored S_1 took 173946ms Computing h took 20529ms Computing DCT-I of h took 53625ms Multi-point evaluation 1 of 5: Computing g_i took 67452ms Computing g*h took 111495ms Computing gcd of coefficients and N took 24062ms Multi-point evaluation 2 of 5: Computing g_i took 66770ms Computing g*h took 108401ms Computing gcd of coefficients and N took 23993ms Multi-point evaluation 3 of 5: Computing g_i took 67673ms Computing g*h took 110610ms Computing gcd of coefficients and N took 23591ms Step 2 took 853516ms ********** Factor found in step 2: 4631819825775891064537001730676852164803 Found prime factor of 40 digits: 4631819825775891064537001730676852164803 Prime cofactor 6671872055870928788179475213338312870225882776332566953764936043989826504475581784520351752742414497653660456678510769495302625184544025386852730952596371961253 has 160 digits |
execution environment 実行環境 | 1080 TI for stage 1 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間) | |
45 | 11e6 | 2000 | Dmitry Domanov | April 25, 2019 20:37:14 UTC 2019 年 4 月 26 日 (金) 5 時 37 分 14 秒 (日本時間) | |
50 | 43e6 | 2392 / 6996 | 600 | Dmitry Domanov | April 27, 2019 13:30:04 UTC 2019 年 4 月 27 日 (土) 22 時 30 分 4 秒 (日本時間) |
1792 | Dmitry Domanov | April 15, 2024 17:14:57 UTC 2024 年 4 月 16 日 (火) 2 時 14 分 57 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | April 28, 2019 06:46:16 UTC 2019 年 4 月 28 日 (日) 15 時 46 分 16 秒 (日本時間) |
composite number 合成数 | 2918064498223061108942745351236729122824981343884362618958275535173929016716929300236628886286405140066386949188004422010138048134685792561416864442985557772803<160> |
prime factors 素因数 | 318650287657118536675375207891994847934129309<45> 778907130397159793053450824927586365846321193807<48> 11756955989883511746329420881149353724775418128593846526295910488881<68> |
factorization results 素因数分解の結果 | GMP-ECM 6.4.3 [configured with GMP 6.0.0, --enable-asm-redc] [ECM] Input number is 2918064498223061108942745351236729122824981343884362618958275535173929016716929300236628886286405140066386949188004422010138048134685792561416864442985557772803 (160 digits) Using B1=43000000, B2=240490660426, polynomial Dickson(12), sigma=1145504256 Step 1 took 284251ms Step 2 took 81227ms ********** Factor found in step 2: 318650287657118536675375207891994847934129309 Found probable prime factor of 45 digits: 318650287657118536675375207891994847934129309 Composite cofactor 9157576852285865376535401868679976965012956741155909676274560825091443996076483489347766847059394690256780919559967 has 115 digits GNFS on c115: nfs: commencing nfs on c115: 9157576852285865376535401868679976965012956741155909676274560825091443996076483489347766847059394690256780919559967 nfs: commencing poly selection with 4 threads nfs: setting deadline of 1750 seconds nfs: completed 65 ranges of size 250 in 1705.9029 seconds nfs: best poly = # norm 5.742672e-11 alpha -6.294703 e 5.179e-10 rroots 5 ... <sieving> ... nfs: commencing msieve filtering nfs: commencing msieve linear algebra nfs: commencing msieve sqrt prp48 = 778907130397159793053450824927586365846321193807 prp68 = 11756955989883511746329420881149353724775418128593846526295910488881 NFS elapsed time = 22336.8741 seconds. Poly used: n: 9157576852285865376535401868679976965012956741155909676274560825091443996076483489347766847059394690256780919559967 skew: 59565.28 c0: 2281869871137157083660590481 c1: 309450645243934170535361 c2: -37816070965628164 c3: -379156730057584 c4: 648654510 c5: 15300 Y0: -14302692005997444847808 Y1: 161562953263 rlim: 4500000 alim: 4500000 lpbr: 27 lpba: 27 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間) | |
45 | 11e6 | 2000 | Dmitry Domanov | April 25, 2019 08:10:27 UTC 2019 年 4 月 25 日 (木) 17 時 10 分 27 秒 (日本時間) | |
50 | 43e6 | 600 / 6996 | Dmitry Domanov | April 28, 2019 00:21:55 UTC 2019 年 4 月 28 日 (日) 9 時 21 分 55 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 23, 2019 00:00:00 UTC 2019 年 4 月 23 日 (火) 9 時 0 分 0 秒 (日本時間) | |
45 | 11e6 | 2000 | Dmitry Domanov | April 24, 2019 20:47:57 UTC 2019 年 4 月 25 日 (木) 5 時 47 分 57 秒 (日本時間) | |
50 | 43e6 | 600 / 6996 | Dmitry Domanov | April 26, 2019 11:26:59 UTC 2019 年 4 月 26 日 (金) 20 時 26 分 59 秒 (日本時間) |