Table of contents 目次

7×10108-9

c95

name 名前Robert Backstrom
date 日付December 27, 2007 10:50:01 UTC 2007 年 12 月 27 日 (木) 19 時 50 分 1 秒 (日本時間)
composite number 合成数
45703847612105192551412600444051943138121632548159102877835632289400552214113597792942597220103<95>
prime factors 素因数
2663967441313171836581746263544242756268412123<46>
17156308633252668896929507566790813539577265672261<50>
factorization results 素因数分解の結果
Number: n
N=45703847612105192551412600444051943138121632548159102877835632289400552214113597792942597220103
  ( 95 digits)
Divisors found:
 r1=2663967441313171836581746263544242756268412123 (pp46)
 r2=17156308633252668896929507566790813539577265672261 (pp50)
Version: GGNFS-0.77.1-20051202-athlon
Total time: 4.81 hours.
Scaled time: 8.43 units (timescale=1.754).
Factorization parameters were as follows:
name: KA_6_9_107_1
n:  45703847612105192551412600444051943138121632548159102877835632289400552214113597792942597220103
m:  5492465041505502450157
deg: 4
c4: 50220792
c3: 473490998762
c2: -150320131923816106
c1: -1840155014132418213
c0: 240325391527681110358680
skew: 1635.250
type: gnfs
# adj. I(F,S) = 54.908
# E(F1,F2) = 4.085225e-05
# GGNFS version 0.77.1-20050930-k8 polyselect.
# Options were: 
# lcd=1, enumLCD=24, maxS1=60.00000000, seed=1198729570.
# maxskew=2000.0
# These parameters should be manually set:
rlim: 1200000
alim: 1200000
lpbr: 25
lpba: 25
mfbr: 45
mfba: 45
rlambda: 2.4
alambda: 2.4
qintsize: 60000

type: gnfs
Factor base limits: 1200000/1200000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 45/45
Sieved  special-q in [100000, 100000)
Primes: RFBsize:92938, AFBsize:92993, largePrimes:1857627 encountered
Relations: rels:1908164, finalFF:212612
Max relations in full relation-set: 28
Initial matrix: 186005 x 212612 with sparse part having weight 16282353.
Pruned matrix : 174218 x 175212 with weight 11293718.
Total sieving time: 4.41 hours.
Total relation processing time: 0.06 hours.
Matrix solve time: 0.30 hours.
Total square root time: 0.04 hours, sqrts: 14.
Prototype def-par.txt line would be:
gnfs,94,4,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1200000,1200000,25,25,45,45,2.4,2.4,60000
total time: 4.81 hours.
 --------- CPU info (if available) ----------

Cygwin on AMD 64 3200+

7×10113-9

c102

name 名前Sinkiti Sibata
date 日付December 26, 2007 15:55:31 UTC 2007 年 12 月 27 日 (木) 0 時 55 分 31 秒 (日本時間)
composite number 合成数
146954483345879750650262027109056915485927149646071893433452883477538598863216027684838960521344430819<102>
prime factors 素因数
184432465107840005841929350652158018855881137453<48>
796792925041443202307060294296189274485989498333919823<54>
factorization results 素因数分解の結果
Number: 69991_113
N=146954483345879750650262027109056915485927149646071893433452883477538598863216027684838960521344430819
  ( 102 digits)
SNFS difficulty: 113 digits.
Divisors found:
 r1=184432465107840005841929350652158018855881137453 (pp48)
 r2=796792925041443202307060294296189274485989498333919823 (pp54)
Version: GGNFS-0.77.1-20060513-pentium4
Total time: 2.40 hours.
Scaled time: 1.62 units (timescale=0.675).
Factorization parameters were as follows:
name: 69991_113
n: 146954483345879750650262027109056915485927149646071893433452883477538598863216027684838960521344430819
m: 10000000000000000000000
c5: 7000
c0: -9
skew: 0.26
type: snfs
Factor base limits: 600000/800000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 46/46
Sieved algebraic special-q in [400000, 550001)
Primes: RFBsize:49098, AFBsize:63823, largePrimes:2223893 encountered
Relations: rels:2457553, finalFF:359535
Max relations in full relation-set: 28
Initial matrix: 112989 x 359535 with sparse part having weight 31384555.
Pruned matrix : 71414 x 72042 with weight 5203701.
Total sieving time: 2.19 hours.
Total relation processing time: 0.08 hours.
Matrix solve time: 0.09 hours.
Time per square root: 0.04 hours.
Prototype def-par.txt line would be:
snfs,113,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000
total time: 2.40 hours.
 --------- CPU info (if available) ----------
execution environment 実行環境
(上の枠に貼り付けた素因数分解ソフトウェアの出力結果に実行環境の情報が含まれていない場合は
Pentium 4 2.4GHz, Windows XP and Cygwin)

7×10117-9

c118

name 名前Jo Yeong Uk
date 日付December 25, 2007 23:10:22 UTC 2007 年 12 月 26 日 (水) 8 時 10 分 22 秒 (日本時間)
composite number 合成数
6999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999991<118>
prime factors 素因数
965127703405741647531200158987421082342396773977<48>
7252926193392239386243000349720048960099140101219877063658000208088783<70>
factorization results 素因数分解の結果
Number: 69991_117
N=6999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999991
  ( 118 digits)
SNFS difficulty: 117 digits.
Divisors found:
 r1=965127703405741647531200158987421082342396773977 (pp48)
 r2=7252926193392239386243000349720048960099140101219877063658000208088783 (pp70)
Version: GGNFS-0.77.1-20050930-nocona
Total time: 1.05 hours.
Scaled time: 2.25 units (timescale=2.145).
Factorization parameters were as follows:
n: 6999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999991
m: 100000000000000000000000
c5: 700
c0: -9
skew: 0.42
type: snfs
Factor base limits: 600000/600000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 45/45
Sieved algebraic special-q in [300000, 450001)
Primes: RFBsize:49098, AFBsize:49186, largePrimes:1878131 encountered
Relations: rels:1929377, finalFF:194599
Max relations in full relation-set: 28
Initial matrix: 98352 x 194599 with sparse part having weight 16935639.
Pruned matrix : 78199 x 78754 with weight 4525630.
Total sieving time: 1.00 hours.
Total relation processing time: 0.03 hours.
Matrix solve time: 0.02 hours.
Time per square root: 0.01 hours.
Prototype def-par.txt line would be:
snfs,117,5,0,0,0,0,0,0,0,0,600000,600000,25,25,45,45,2.4,2.4,30000
total time: 1.05 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Memory: 8167512k/8912896k available (2115k kernel code, 0k reserved, 1306k data, 208k init)
Calibrating delay using timer specific routine.. 4815.36 BogoMIPS (lpj=2407681)
Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124)
Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120)
Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133)
Total of 4 processors activated (19246.11 BogoMIPS).
execution environment 実行環境
Core 2 Quad Q6600

7×10118-9

c107

name 名前Sinkiti Sibata
date 日付December 26, 2007 07:35:35 UTC 2007 年 12 月 26 日 (水) 16 時 35 分 35 秒 (日本時間)
composite number 合成数
31745882381597551712985680104483070892222684616727431250512197757342182638804213346559326046812565481941879<107>
prime factors 素因数
1984136958064167375045366373528421<34>
15999844291278446970836451631567805232288393575182670206207520554418064299<74>
factorization results 素因数分解の結果
Number: 69991_118
N=31745882381597551712985680104483070892222684616727431250512197757342182638804213346559326046812565481941879
  ( 107 digits)
SNFS difficulty: 118 digits.
Divisors found:
 r1=1984136958064167375045366373528421 (pp34)
 r2=15999844291278446970836451631567805232288393575182670206207520554418064299 (pp74)
Version: GGNFS-0.77.1-20060513-k8
Total time: 2.24 hours.
Scaled time: 4.45 units (timescale=1.991).
Factorization parameters were as follows:
name: 69991_118
n: 31745882381597551712985680104483070892222684616727431250512197757342182638804213346559326046812565481941879
m: 100000000000000000000000
c5: 7000
c0: -9
skew: 0.26
type: snfs
Factor base limits: 600000/800000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 46/46
Sieved algebraic special-q in [400000, 550001)
Primes: RFBsize:49098, AFBsize:63823, largePrimes:2167506 encountered
Relations: rels:2281489, finalFF:242097
Max relations in full relation-set: 28
Initial matrix: 112989 x 242097 with sparse part having weight 22238741.
Pruned matrix : 87145 x 87773 with weight 5534433.
Total sieving time: 2.10 hours.
Total relation processing time: 0.05 hours.
Matrix solve time: 0.04 hours.
Time per square root: 0.04 hours.
Prototype def-par.txt line would be:
snfs,118,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000
total time: 2.24 hours.
 --------- CPU info (if available) ----------
execution environment 実行環境
Core 2 Duo  E6300 1.86GHz ,  Windows Vista)

7×10120-9

c116

name 名前Robert Backstrom
date 日付December 26, 2007 05:33:08 UTC 2007 年 12 月 26 日 (水) 14 時 33 分 8 秒 (日本時間)
composite number 合成数
84804283827823074034139781689543631804029414971590564917679270198563173134002883345650145984517160752577444483481337<116>
prime factors 素因数
1323129079639263647678527821934298050401138159281717<52>
64093734415499366088944419295581630353010019359658087508532919861<65>
factorization results 素因数分解の結果
Number: n
N=84804283827823074034139781689543631804029414971590564917679270198563173134002883345650145984517160752577444483481337
  ( 116 digits)
SNFS difficulty: 120 digits.
Divisors found:
 r1=1323129079639263647678527821934298050401138159281717 (pp52)
 r2=64093734415499366088944419295581630353010019359658087508532919861 (pp65)
Version: GGNFS-0.77.1-20051202-athlon
Total time: 1.47 hours.
Scaled time: 2.59 units (timescale=1.755).
Factorization parameters were as follows:
name: KA_6_9_119_1
n: 84804283827823074034139781689543631804029414971590564917679270198563173134002883345650145984517160752577444483481337
type: snfs
skew: 1.05
deg: 5
c5: 7
c0: -9
m: 1000000000000000000000000
rlim: 1000000
alim: 1000000
lpbr: 28
lpba: 28
mfbr: 48
mfba: 48
qintsize: 20000
Factor base limits: 1000000/1000000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 48/48
Sieved algebraic special-q in [100000, 220001)
Primes: RFBsize:78498, AFBsize:78361, largePrimes:4117883 encountered
Relations: rels:3508482, finalFF:209284
Max relations in full relation-set: 28
Initial matrix: 156925 x 209284 with sparse part having weight 9419779.
Pruned matrix : 113353 x 114201 with weight 3874739.
Total sieving time: 1.28 hours.
Total relation processing time: 0.08 hours.
Matrix solve time: 0.10 hours.
Total square root time: 0.02 hours, sqrts: 1.
Prototype def-par.txt line would be:
snfs,120,5,0,0,0,0,0,0,0,0,1000000,1000000,28,28,48,48,2.4,2.4,50000
total time: 1.47 hours.
 --------- CPU info (if available) ----------

Cygwin on AMD 64 3200+

7×10122-9

c97

name 名前Sinkiti Sibata
date 日付December 26, 2007 07:40:08 UTC 2007 年 12 月 26 日 (水) 16 時 40 分 8 秒 (日本時間)
composite number 合成数
2376607354879214865611819176528989671083739593311572594941837848584100495761234335579813189929281<97>
prime factors 素因数
82895830946665960950649287503567133316049651<44>
28669805558837951631417683899953649248910278323675131<53>
factorization results 素因数分解の結果
Number: 69991_122
N=2376607354879214865611819176528989671083739593311572594941837848584100495761234335579813189929281
  ( 97 digits)
SNFS difficulty: 122 digits.
Divisors found:
 r1=82895830946665960950649287503567133316049651 (pp44)
 r2=28669805558837951631417683899953649248910278323675131 (pp53)
Version: GGNFS-0.77.1-20060513-k8
Total time: 3.38 hours.
Scaled time: 6.77 units (timescale=2.003).
Factorization parameters were as follows:
name: 69991_122
n: 2376607354879214865611819176528989671083739593311572594941837848584100495761234335579813189929281
m: 1000000000000000000000000
c5: 700
c0: -9
skew: 0.42
type: snfs
Factor base limits: 600000/800000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 46/46
Sieved algebraic special-q in [400000, 650001)
Primes: RFBsize:49098, AFBsize:63803, largePrimes:2446192 encountered
Relations: rels:2891407, finalFF:532620
Max relations in full relation-set: 28
Initial matrix: 112969 x 532620 with sparse part having weight 52760048.
Pruned matrix : 76482 x 77110 with weight 9438717.
Total sieving time: 3.23 hours.
Total relation processing time: 0.07 hours.
Matrix solve time: 0.04 hours.
Time per square root: 0.04 hours.
Prototype def-par.txt line would be:
snfs,122,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000
total time: 3.38 hours.
 --------- CPU info (if available) ----------
execution environment 実行環境
Core 2 Duo E6300 1.86GHz, Windows Vista)

7×10132-9

c116

name 名前Sinkiti Sibata
date 日付December 26, 2007 10:58:03 UTC 2007 年 12 月 26 日 (水) 19 時 58 分 3 秒 (日本時間)
composite number 合成数
28406398199217797464553546226922521246087029329926717717175210835294924586217098258316437679183181636843102569417679<116>
prime factors 素因数
10653299394346279999189253853948866948741<41>
2666441366915221621544897168193843156735547511317187784920639757035112567619<76>
factorization results 素因数分解の結果
Number: 69991_132
N=28406398199217797464553546226922521246087029329926717717175210835294924586217098258316437679183181636843102569417679
  ( 116 digits)
SNFS difficulty: 132 digits.
Divisors found:
 r1=10653299394346279999189253853948866948741 (pp41)
 r2=2666441366915221621544897168193843156735547511317187784920639757035112567619 (pp76)
Version: GGNFS-0.77.1-20060513-k8
Total time: 5.77 hours.
Scaled time: 11.49 units (timescale=1.991).
Factorization parameters were as follows:
name: 69991_132
n: 28406398199217797464553546226922521246087029329926717717175210835294924586217098258316437679183181636843102569417679
m: 100000000000000000000000000
c5: 700
c0: -9
skew: 0.42
type: snfs
Factor base limits: 800000/800000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 44/44
Sieved algebraic special-q in [400000, 1150001)
Primes: RFBsize:63951, AFBsize:63803, largePrimes:1538473 encountered
Relations: rels:1545151, finalFF:170046
Max relations in full relation-set: 28
Initial matrix: 127822 x 170046 with sparse part having weight 14925657.
Pruned matrix : 117194 x 117897 with weight 8533990.
Total sieving time: 5.57 hours.
Total relation processing time: 0.07 hours.
Matrix solve time: 0.08 hours.
Time per square root: 0.05 hours.
Prototype def-par.txt line would be:
snfs,132,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000
total time: 5.77 hours.
 --------- CPU info (if available) ----------
execution environment 実行環境
Core 2 Duo E6300 1.86GHz, Windows Vista)

7×10133-9

c110

name 名前Sinkiti Sibata
date 日付December 26, 2007 15:28:56 UTC 2007 年 12 月 27 日 (木) 0 時 28 分 56 秒 (日本時間)
composite number 合成数
12168159188131852215584768023354461103145336764833774484034596076561291835579447472592128168069219417276360481<110>
prime factors 素因数
85173022756831337810382828011673697322037311<44>
142864005459473961587757841830261127716190760624346731496837517471<66>
factorization results 素因数分解の結果
Number: 69991_133
N=12168159188131852215584768023354461103145336764833774484034596076561291835579447472592128168069219417276360481
  ( 110 digits)
SNFS difficulty: 133 digits.
Divisors found:
 r1=85173022756831337810382828011673697322037311 (pp44)
 r2=142864005459473961587757841830261127716190760624346731496837517471 (pp66)
Version: GGNFS-0.77.1-20060513-k8
Total time: 8.35 hours.
Scaled time: 16.72 units (timescale=2.003).
Factorization parameters were as follows:
name: 69991_133
n: 12168159188131852215584768023354461103145336764833774484034596076561291835579447472592128168069219417276360481
m: 100000000000000000000000000
c5: 7000
c0: -9
skew: 0.26
type: snfs
Factor base limits: 1000000/800000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 43/43
Sieved algebraic special-q in [400000, 1375001)
Primes: RFBsize:78498, AFBsize:63823, largePrimes:1568311 encountered
Relations: rels:1565951, finalFF:168189
Max relations in full relation-set: 28
Initial matrix: 142389 x 168189 with sparse part having weight 15197800.
Pruned matrix : 134600 x 135375 with weight 10638770.
Total sieving time: 8.08 hours.
Total relation processing time: 0.07 hours.
Matrix solve time: 0.15 hours.
Time per square root: 0.05 hours.
Prototype def-par.txt line would be:
snfs,133,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000
total time: 8.35 hours.
 --------- CPU info (if available) ----------
execution environment 実行環境
Core 2 Duo E6300 1.86GHz, Windows Vista)

7×10135-9

c109

name 名前Sinkiti Sibata
date 日付December 26, 2007 22:40:18 UTC 2007 年 12 月 27 日 (木) 7 時 40 分 18 秒 (日本時間)
composite number 合成数
5861567143499528535945249491745181774451528037501922335500468042836092047603598088439983509779689035584096179<109>
prime factors 素因数
2619090469168430611738435623980583053<37>
2238016293251830424874207565385593578321653128229251831899397482529153343<73>
factorization results 素因数分解の結果
Number: 69991_135
N=5861567143499528535945249491745181774451528037501922335500468042836092047603598088439983509779689035584096179
  ( 109 digits)
SNFS difficulty: 135 digits.
Divisors found:
 r1=2619090469168430611738435623980583053 (pp37)
 r2=2238016293251830424874207565385593578321653128229251831899397482529153343 (pp73)
Version: GGNFS-0.77.1-20060513-k8
Total time: 6.83 hours.
Scaled time: 13.67 units (timescale=2.003).
Factorization parameters were as follows:
name: 69991_135
n: 5861567143499528535945249491745181774451528037501922335500468042836092047603598088439983509779689035584096179
m: 1000000000000000000000000000
c5: 7
c0: -9
skew: 1.05
type: snfs
Factor base limits: 1000000/800000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 43/43
Sieved algebraic special-q in [400000, 1225001)
Primes: RFBsize:78498, AFBsize:63908, largePrimes:1579365 encountered
Relations: rels:1604122, finalFF:195607
Max relations in full relation-set: 28
Initial matrix: 142472 x 195607 with sparse part having weight 16386599.
Pruned matrix : 126424 x 127200 with weight 8919279.
Total sieving time: 6.60 hours.
Total relation processing time: 0.06 hours.
Matrix solve time: 0.11 hours.
Time per square root: 0.05 hours.
Prototype def-par.txt line would be:
snfs,135,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000
total time: 6.83 hours.
 --------- CPU info (if available) ----------
execution environment 実行環境
Core 2 Duo E6300 1.86GHz, Windows Vista)

7×10137-9

c123

name 名前Jo Yeong Uk
date 日付December 26, 2007 23:37:09 UTC 2007 年 12 月 27 日 (木) 8 時 37 分 9 秒 (日本時間)
composite number 合成数
477550566505190610831339497667016508356659514844638240871039919937869611141038512390547786684479527858687496804388001769097<123>
prime factors 素因数
63195768153342995547599618615921084920365446753767<50>
7556685842419476053247753995520570438772601000514461987314342496480958991<73>
factorization results 素因数分解の結果
Number: 69991_137
N=477550566505190610831339497667016508356659514844638240871039919937869611141038512390547786684479527858687496804388001769097
  ( 123 digits)
SNFS difficulty: 137 digits.
Divisors found:
 r1=63195768153342995547599618615921084920365446753767 (pp50)
 r2=7556685842419476053247753995520570438772601000514461987314342496480958991 (pp73)
Version: GGNFS-0.77.1-20050930-nocona
Total time: 4.07 hours.
Scaled time: 8.67 units (timescale=2.130).
Factorization parameters were as follows:
n: 477550566505190610831339497667016508356659514844638240871039919937869611141038512390547786684479527858687496804388001769097
m: 1000000000000000000000000000
c5: 700
c0: -9
skew: 0.42
type: snfs
Factor base limits: 1400000/1400000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 47/47
Sieved algebraic special-q in [700000, 1450001)
Primes: RFBsize:107126, AFBsize:107093, largePrimes:2316731 encountered
Relations: rels:2429777, finalFF:264060
Max relations in full relation-set: 28
Initial matrix: 214287 x 264060 with sparse part having weight 22014166.
Pruned matrix : 198204 x 199339 with weight 13643617.
Total sieving time: 3.87 hours.
Total relation processing time: 0.04 hours.
Matrix solve time: 0.14 hours.
Time per square root: 0.02 hours.
Prototype def-par.txt line would be:
snfs,137,5,0,0,0,0,0,0,0,0,1400000,1400000,25,25,47,47,2.3,2.3,50000
total time: 4.07 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Memory: 8167512k/8912896k available (2115k kernel code, 0k reserved, 1306k data, 208k init)
Calibrating delay using timer specific routine.. 4815.36 BogoMIPS (lpj=2407681)
Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124)
Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120)
Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133)
Total of 4 processors activated (19246.11 BogoMIPS).
execution environment 実行環境
Core 2 Quad Q6600

7×10140-9

c120

name 名前Jo Yeong Uk
date 日付December 27, 2007 17:21:21 UTC 2007 年 12 月 28 日 (金) 2 時 21 分 21 秒 (日本時間)
composite number 合成数
538754496546039129594575511841279608916142932610183608764794445522735349555460282454684421134028742368503726717312519097<120>
prime factors 素因数
3072384756632832193294930209979933326902287322161<49>
175353850256855514724412620180648233024414774451978568104314670271200777<72>
factorization results 素因数分解の結果
Number: 70009_140
N=538754496546039129594575511841279608916142932610183608764794445522735349555460282454684421134028742368503726717312519097
  ( 120 digits)
SNFS difficulty: 140 digits.
Divisors found:
 r1=3072384756632832193294930209979933326902287322161 (pp49)
 r2=175353850256855514724412620180648233024414774451978568104314670271200777 (pp72)
Version: GGNFS-0.77.1-20050930-nocona
Total time: 6.12 hours.
Scaled time: 13.11 units (timescale=2.144).
Factorization parameters were as follows:
n: 538754496546039129594575511841279608916142932610183608764794445522735349555460282454684421134028742368503726717312519097
m: 10000000000000000000000000000
c5: 7
c0: -9
skew: 1.05
type: snfs
Factor base limits: 1500000/1500000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 47/47
Sieved algebraic special-q in [750000, 1150001)
Primes: RFBsize:114155, AFBsize:113992, largePrimes:3368951 encountered
Relations: rels:3483950, finalFF:405792
Max relations in full relation-set: 28
Initial matrix: 228213 x 405792 with sparse part having weight 35387880.
Pruned matrix : 168806 x 170011 with weight 13391873.
Total sieving time: 5.95 hours.
Total relation processing time: 0.05 hours.
Matrix solve time: 0.10 hours.
Time per square root: 0.02 hours.
Prototype def-par.txt line would be:
snfs,140,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,47,47,2.3,2.3,50000
total time: 6.12 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Memory: 8167512k/8912896k available (2115k kernel code, 0k reserved, 1306k data, 208k init)
Calibrating delay using timer specific routine.. 4815.36 BogoMIPS (lpj=2407681)
Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124)
Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120)
Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133)
Total of 4 processors activated (19246.11 BogoMIPS).
execution environment 実行環境
Core 2 Quad Q6600

7×10143-9

c137

name 名前Robert Backstrom
date 日付December 27, 2007 08:42:12 UTC 2007 年 12 月 27 日 (木) 17 時 42 分 12 秒 (日本時間)
composite number 合成数
39868595387807238075146492882117277574103046308113959709594872989761346018457223189921629162943461946194596677613254006978940667499388729<137>
prime factors 素因数
11669963674208858774803484401760836297661604636382205067928038771673<68>
3416342715437805134104596866257027736379971208960481691857755728114273<70>
factorization results 素因数分解の結果
Number: n
N=39868595387807238075146492882117277574103046308113959709594872989761346018457223189921629162943461946194596677613254006978940667499388729
  ( 137 digits)
SNFS difficulty: 143 digits.
Divisors found:

Thu Dec 27 16:03:21 2007  prp68 factor: 11669963674208858774803484401760836297661604636382205067928038771673
Thu Dec 27 16:03:21 2007  prp70 factor: 3416342715437805134104596866257027736379971208960481691857755728114273
Thu Dec 27 16:03:21 2007  elapsed time 00:58:19 (Msieve 1.32)

Version: GGNFS-0.77.1-20060513-athlon-xp
Total time: 10.12 hours.
Scaled time: 13.24 units (timescale=1.309).
Factorization parameters were as follows:
name: KA_6_9_142_1
n: 39868595387807238075146492882117277574103046308113959709594872989761346018457223189921629162943461946194596677613254006978940667499388729
skew: 0.26
deg: 5
c5: 7000
c0: -9
m: 10000000000000000000000000000
type: snfs
rlim: 2800000
alim: 2800000
lpbr: 28
lpba: 28
mfbr: 48
mfba: 48
rlambda: 2.5
alambda: 2.5
qintsize: 100000
Factor base limits: 2800000/2800000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 48/48
Sieved  special-q in [100000, 1100001)
Primes: RFBsize:203362, AFBsize:202857, largePrimes:6879960 encountered
Relations: rels:6390626, finalFF:531267
Max relations in full relation-set: 28
Initial matrix: 406287 x 531267 with sparse part having weight 31643740.
Pruned matrix : 
Total sieving time: 9.91 hours.
Total relation processing time: 0.20 hours.
Matrix solve time: 0.00 hours.
Total square root time: 0.00 hours, sqrts: 0.
Prototype def-par.txt line would be:
snfs,143,5,0,0,0,0,0,0,0,0,2800000,2800000,28,28,48,48,2.5,2.5,100000
total time: 10.12 hours.
 --------- CPU info (if available) ----------

Cygwin on AMD 64 3200+

7×10144-9

c126

name 名前Jo Yeong Uk
date 日付December 28, 2007 10:07:30 UTC 2007 年 12 月 28 日 (金) 19 時 7 分 30 秒 (日本時間)
composite number 合成数
225985242350882492390817091181539241057870132922821577330562232474083020570409647436082746217322496695164359587616913392907587<126>
prime factors 素因数
2066420873807475272508154570496764559275489805725499291<55>
109360704402145490620976185805347880615820804660378980898198273592328057<72>
factorization results 素因数分解の結果
Number: 69991_144
N=225985242350882492390817091181539241057870132922821577330562232474083020570409647436082746217322496695164359587616913392907587
  ( 126 digits)
SNFS difficulty: 145 digits.
Divisors found:
 r1=2066420873807475272508154570496764559275489805725499291 (pp55)
 r2=109360704402145490620976185805347880615820804660378980898198273592328057 (pp72)
Version: GGNFS-0.77.1-20050930-nocona
Total time: 10.14 hours.
Scaled time: 21.75 units (timescale=2.144).
Factorization parameters were as follows:
n: 225985242350882492390817091181539241057870132922821577330562232474083020570409647436082746217322496695164359587616913392907587
m: 100000000000000000000000000000
c5: 7
c0: -90
skew: 1.67
type: snfs
Factor base limits: 1500000/1500000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 47/47
Sieved algebraic special-q in [750000, 1450001)
Primes: RFBsize:114155, AFBsize:114352, largePrimes:3482197 encountered
Relations: rels:3539168, finalFF:329576
Max relations in full relation-set: 28
Initial matrix: 228573 x 329576 with sparse part having weight 32251907.
Pruned matrix : 200812 x 202018 with weight 16980012.
Total sieving time: 9.89 hours.
Total relation processing time: 0.05 hours.
Matrix solve time: 0.17 hours.
Time per square root: 0.02 hours.
Prototype def-par.txt line would be:
snfs,145,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,47,47,2.3,2.3,50000
total time: 10.14 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Memory: 8167512k/8912896k available (2115k kernel code, 0k reserved, 1306k data, 208k init)
Calibrating delay using timer specific routine.. 4815.36 BogoMIPS (lpj=2407681)
Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124)
Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120)
Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133)
Total of 4 processors activated (19246.11 BogoMIPS).
execution environment 実行環境
Core 2 Quad Q6600

7×10145-9

c141

name 名前Robert Backstrom
date 日付December 27, 2007 11:57:33 UTC 2007 年 12 月 27 日 (木) 20 時 57 分 33 秒 (日本時間)
composite number 合成数
742618898590084976819681522580918937842798188009887440192656559977084902557791663572421255874645929917993655912837758988340883292135665863931<141>
prime factors 素因数
1021695068102849396044532089064863<34>
726849841772289840962937682508573633040889067399121266108989206433699098743911136797514039693842951036128037<108>
factorization results 素因数分解の結果
GMP-ECM 6.0.1 [powered by GMP 4.1.4] [ECM]
Input number is 742618898590084976819681522580918937842798188009887440192656559977084902557791663572421255874645929917993655912837758988340883292135665863931 (141 digits)
Using B1=672000, B2=476515716, polynomial Dickson(3), sigma=2836317521
Step 1 took 9672ms
Step 2 took 5562ms
********** Factor found in step 2: 1021695068102849396044532089064863
Found probable prime factor of 34 digits: 1021695068102849396044532089064863
Probable prime cofactor 726849841772289840962937682508573633040889067399121266108989206433699098743911136797514039693842951036128037 has 108 digits

7×10147-9

c96

name 名前Sinkiti Sibata
date 日付December 27, 2007 10:26:12 UTC 2007 年 12 月 27 日 (木) 19 時 26 分 12 秒 (日本時間)
composite number 合成数
103589823377869076072607851794326081481578050618794143412322232850520425835300380055682643364099<96>
prime factors 素因数
345533806013666402094028972113839143<36>
299796493353162488095487968396822078060268288441471385866693<60>
factorization results 素因数分解の結果
Number: 69991_147
N=103589823377869076072607851794326081481578050618794143412322232850520425835300380055682643364099
  ( 96 digits)
Divisors found:
 r1=345533806013666402094028972113839143 (pp36)
 r2=299796493353162488095487968396822078060268288441471385866693 (pp60)
Version: GGNFS-0.77.1-20060513-pentium4
Total time: 11.00 hours.
Scaled time: 7.42 units (timescale=0.675).
Factorization parameters were as follows:
name: 69991_147
n:  103589823377869076072607851794326081481578050618794143412322232850520425835300380055682643364099
m:  7455843658268344282957
deg: 4
c4: 33522000
c3: 140814788
c2: 77276617925738599
c1: 69424401729227304416
c0: 2357246899800669557952
skew: 1635.250
type: gnfs
# adj. I(F,S) = 55.016
# E(F1,F2) = 2.812171e-05
# GGNFS version 0.77.1-20060513-pentium4 polyselect.
# Options were: 
# lcd=1, enumLCD=24, maxS1=60.00000000, seed=1198709841.
# maxskew=2000.0
# These parameters should be manually set:
rlim: 1200000
alim: 1200000
lpbr: 25
lpba: 25
mfbr: 45
mfba: 45
rlambda: 2.4
alambda: 2.4
qintsize: 60000

type: gnfs
Factor base limits: 1200000/1200000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 45/45
Sieved algebraic special-q in [600000, 1500001)
Primes: RFBsize:92938, AFBsize:92936, largePrimes:1911524 encountered
Relations: rels:2002935, finalFF:233843
Max relations in full relation-set: 28
Initial matrix: 185950 x 233843 with sparse part having weight 21496159.
Pruned matrix : 166071 x 167064 with weight 13108251.
Polynomial selection time: 0.17 hours.
Total sieving time: 9.92 hours.
Total relation processing time: 0.13 hours.
Matrix solve time: 0.72 hours.
Time per square root: 0.07 hours.
Prototype def-par.txt line would be:
gnfs,95,4,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1200000,1200000,25,25,45,45,2.4,2.4,60000
total time: 11.00 hours.
 --------- CPU info (if available) ----------
execution environment 実行環境
Pentium 4 2.4GHz, Windows XP and Cygwin)

7×10148-9

c123

name 名前Jo Yeong Uk
date 日付December 28, 2007 15:47:55 UTC 2007 年 12 月 29 日 (土) 0 時 47 分 55 秒 (日本時間)
composite number 合成数
518085453711788532865190630641573477595982123762441212022596337954685562506751479459950679549038087281476496982221376227399<123>
prime factors 素因数
2814258676699625279171724231993155814622006129842908123<55>
184093046599172102452699913165893938014185229449403497478166109476613<69>
factorization results 素因数分解の結果
Number: 69991_148
N=518085453711788532865190630641573477595982123762441212022596337954685562506751479459950679549038087281476496982221376227399
  ( 123 digits)
SNFS difficulty: 150 digits.
Divisors found:
 r1=2814258676699625279171724231993155814622006129842908123 (pp55)
 r2=184093046599172102452699913165893938014185229449403497478166109476613 (pp69)
Version: GGNFS-0.77.1-20050930-nocona
Total time: 15.54 hours.
Scaled time: 33.21 units (timescale=2.137).
Factorization parameters were as follows:
n: 518085453711788532865190630641573477595982123762441212022596337954685562506751479459950679549038087281476496982221376227399
m: 1000000000000000000000000000000
c5: 7
c0: -900
skew: 2.64
type: snfs
Factor base limits: 2400000/2400000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 48/48
Sieved algebraic special-q in [1200000, 2200001)
Primes: RFBsize:176302, AFBsize:175703, largePrimes:5573819 encountered
Relations: rels:5511681, finalFF:495649
Max relations in full relation-set: 28
Initial matrix: 352073 x 495649 with sparse part having weight 44562981.
Pruned matrix : 293821 x 295645 with weight 24414844.
Total sieving time: 15.02 hours.
Total relation processing time: 0.08 hours.
Matrix solve time: 0.40 hours.
Time per square root: 0.04 hours.
Prototype def-par.txt line would be:
snfs,150,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000
total time: 15.54 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Memory: 8167512k/8912896k available (2115k kernel code, 0k reserved, 1306k data, 208k init)
Calibrating delay using timer specific routine.. 4815.36 BogoMIPS (lpj=2407681)
Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124)
Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120)
Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133)
Total of 4 processors activated (19246.11 BogoMIPS).
execution environment 実行環境
Core 2 Quad Q6600

7×10152-9

c136

name 名前Jo Yeong Uk
date 日付December 26, 2007 11:48:21 UTC 2007 年 12 月 26 日 (水) 20 時 48 分 21 秒 (日本時間)
composite number 合成数
1089089097704044454562209370522213230901345185140697701040463384518222351927760818446156586438176084903071161505525643102442665266840569<136>
prime factors 素因数
12499425996572633795685838286539<32>
87131128901653143200613872829832683606052695848751370614553206443217691319643034696885938619060585421771<104>
factorization results 素因数分解の結果
GMP-ECM 6.1.3 [powered by GMP 4.2.2] [ECM]
Input number is 1089089097704044454562209370522213230901345185140697701040463384518222351927760818446156586438176084903071161505525643102442665266840569 (136 digits)
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1541462935
Step 1 took 7494ms
Step 2 took 4074ms
********** Factor found in step 2: 12499425996572633795685838286539
Found probable prime factor of 32 digits: 12499425996572633795685838286539
Probable prime cofactor 87131128901653143200613872829832683606052695848751370614553206443217691319643034696885938619060585421771 has 104 digits
execution environment 実行環境
Core 2 Quad Q6600

7×10153-9

c134

name 名前Robert Backstrom
date 日付December 29, 2007 03:06:12 UTC 2007 年 12 月 29 日 (土) 12 時 6 分 12 秒 (日本時間)
composite number 合成数
50744501927508504704520288732689404486764733105785265684820848287220516154517642636391409055776827484170513313682188589474831888859301<134>
prime factors 素因数
772167558584103691869638283989203<33>
65716956589780721844302884925214520835046088468765165698360498247128407329527151604691722545317100967<101>
factorization results 素因数分解の結果
GMP-ECM 6.1.3 [powered by GMP 4.2.1] [ECM]
Input number is 50744501927508504704520288732689404486764733105785265684820848287220516154517642636391409055776827484170513313682188589474831888859301 (134 digits)
Using B1=1170000, B2=1426247560, polynomial Dickson(6), sigma=4085508329
Step 1 took 11486ms
Step 2 took 5548ms
********** Factor found in step 2: 772167558584103691869638283989203
Found probable prime factor of 33 digits: 772167558584103691869638283989203
Probable prime cofactor 65716956589780721844302884925214520835046088468765165698360498247128407329527151604691722545317100967 has 101 digits

7×10154-9

c121

name 名前Robert Backstrom
date 日付December 31, 2007 06:32:10 UTC 2007 年 12 月 31 日 (月) 15 時 32 分 10 秒 (日本時間)
composite number 合成数
8095115504289729358554699371036659244322933458092801207869536333525253075152226722512930578942278905980957430591842680221<121>
prime factors 素因数
87307807817705591131142443529365687<35>
92719261960991305708767306625668063796197431975684064005420378748486361040936361668683<86>
factorization results 素因数分解の結果
GMP-ECM 6.0.1 [powered by GMP 4.1.4] [ECM]
Input number is 8095115504289729358554699371036659244322933458092801207869536333525253075152226722512930578942278905980957430591842680221 (121 digits)
Using B1=2160000, B2=2515276721, polynomial Dickson(6), sigma=4055603832
Step 1 took 26812ms
Step 2 took 15500ms
********** Factor found in step 2: 87307807817705591131142443529365687
Found probable prime factor of 35 digits: 87307807817705591131142443529365687
Probable prime cofactor 92719261960991305708767306625668063796197431975684064005420378748486361040936361668683 has 86 digits

7×10156-9

c123

name 名前JMB
date 日付January 4, 2008 02:15:20 UTC 2008 年 1 月 4 日 (金) 11 時 15 分 20 秒 (日本時間)
composite number 合成数
234098782427839665196883000012361900130395680636725922006376080346982807010226027831376517657752445555625517266741812986297<123>
prime factors 素因数
15854608314307477257889614412447463<35>
14765346313638338741527800132362791570551309344130945927519948485674768514606278097831519<89>
factorization results 素因数分解の結果
Number: 7*10^156-9
N=234098782427839665196883000012361900130395680636725922006376080346982807010226027831376517657752445555625517266741812986297
( 123 digits)
SNFS difficulty: 156 digits.
Divisors found:
r1=15854608314307477257889614412447463 (pp35)
r2=14765346313638338741527800132362791570551309344130945927519948485674768514606278097831519
(pp89)
Version: GGNFS-0.77.1-20060513-pentium4
Total time: 42.32 hours.

7×10158-9

c144

name 名前Robert Backstrom
date 日付December 27, 2007 17:10:15 UTC 2007 年 12 月 28 日 (金) 2 時 10 分 15 秒 (日本時間)
composite number 合成数
219685253774800485536656511120941272163807852863521628505826223167203129043779566214842475162722576220425528921066221984547130854785299026329077<144>
prime factors 素因数
4551229532797823713440523924237357<34>
48269429654485286004700435874371392955763120608188765913835335149678303496468383067863156974558912669025897961<110>
factorization results 素因数分解の結果
GMP-ECM 6.1.3 [powered by GMP 4.2.1] [ECM]
Input number is 219685253774800485536656511120941272163807852863521628505826223167203129043779566214842475162722576220425528921066221984547130854785299026329077 (144 digits)
Using B1=460000, B2=347971482, polynomial Dickson(3), sigma=4264591698
Step 1 took 4982ms
Step 2 took 2343ms
********** Factor found in step 2: 4551229532797823713440523924237357
Found probable prime factor of 34 digits: 4551229532797823713440523924237357
Probable prime cofactor 48269429654485286004700435874371392955763120608188765913835335149678303496468383067863156974558912669025897961 has 110 digits

7×10161-9

c124

name 名前Jo Yeong Uk
date 日付January 16, 2008 02:30:24 UTC 2008 年 1 月 16 日 (水) 11 時 30 分 24 秒 (日本時間)
composite number 合成数
5855963333799973007377401720154288941846324648597714697526451329295574137165874677067427392461665343120490471244481528370789<124>
prime factors 素因数
1154734515303355813588848626575829<34>
5071263789375496111006719685471610072718773087775179235920085143775708329815366365895324241<91>
factorization results 素因数分解の結果
GMP-ECM 6.1.3 [powered by GMP 4.2.2] [ECM]
Input number is 5855963333799973007377401720154288941846324648597714697526451329295574137165874677067427392461665343120490471244481528370789 (124 digits)
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=223357812
Step 1 took 6614ms
Step 2 took 4224ms
********** Factor found in step 2: 1154734515303355813588848626575829
Found probable prime factor of 34 digits: 1154734515303355813588848626575829
Probable prime cofactor 5071263789375496111006719685471610072718773087775179235920085143775708329815366365895324241 has 91 digits
execution environment 実行環境
Core 2 Quad Q6600

7×10162-9

c135

name 名前Jo Yeong Uk
date 日付December 26, 2007 23:41:33 UTC 2007 年 12 月 27 日 (木) 8 時 41 分 33 秒 (日本時間)
composite number 合成数
377136843251446087800377155004344918975642748847262279155360596990712022331970934996803125039350096705096062786937436849241007926096847<135>
prime factors 素因数
436977788659416077831566216483<30>
863057237779628902143622988929371538585971609219344275040457451654589439284920068001169478963439353329509<105>
factorization results 素因数分解の結果
GMP-ECM 6.1.3 [powered by GMP 4.2.2] [ECM]
Input number is 377136843251446087800377155004344918975642748847262279155360596990712022331970934996803125039350096705096062786937436849241007926096847 (135 digits)
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2029589823
Step 1 took 6872ms
Step 2 took 3803ms
********** Factor found in step 2: 436977788659416077831566216483
Found probable prime factor of 30 digits: 436977788659416077831566216483
Probable prime cofactor 863057237779628902143622988929371538585971609219344275040457451654589439284920068001169478963439353329509 has 105 digits
execution environment 実行環境
Core 2 Quad Q6600

7×10163-9

c132

name 名前Jo Yeong Uk
date 日付March 11, 2008 13:07:30 UTC 2008 年 3 月 11 日 (火) 22 時 7 分 30 秒 (日本時間)
composite number 合成数
583438505740065243072122705696906658894648914815647966933605230597057392094515772905107543503016394593082146796990143221414907706289<132>
prime factors 素因数
129176060038429313134294565540217914223913<42>
120256406964389982245302914445931857545867029<45>
37558205196955967532214995487858032886370144357<47>
factorization results 素因数分解の結果
GMP-ECM 6.1.3 [powered by GMP 4.2.2] [ECM]
Input number is 583438505740065243072122705696906658894648914815647966933605230597057392094515772905107543503016394593082146796990143221414907706289 (132 digits)
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1287683819
Step 1 took 20192ms
Step 2 took 10349ms
********** Factor found in step 2: 129176060038429313134294565540217914223913
Found probable prime factor of 42 digits: 129176060038429313134294565540217914223913
Composite cofactor 4516614809017203638734673756033070566719308001891393690896873800964334745942246243456705353 has 91 digits

Tue Mar 11 20:26:37 2008  
Tue Mar 11 20:26:37 2008  
Tue Mar 11 20:26:37 2008  Msieve v. 1.32
Tue Mar 11 20:26:37 2008  random seeds: d1acc543 915d5279
Tue Mar 11 20:26:37 2008  factoring 4516614809017203638734673756033070566719308001891393690896873800964334745942246243456705353 (91 digits)
Tue Mar 11 20:26:37 2008  no P-1/P+1/ECM available, skipping
Tue Mar 11 20:26:37 2008  commencing quadratic sieve (91-digit input)
Tue Mar 11 20:26:38 2008  using multiplier of 1
Tue Mar 11 20:26:38 2008  using 32kb Intel Core sieve core
Tue Mar 11 20:26:38 2008  sieve interval: 36 blocks of size 32768
Tue Mar 11 20:26:38 2008  processing polynomials in batches of 6
Tue Mar 11 20:26:38 2008  using a sieve bound of 1714723 (64706 primes)
Tue Mar 11 20:26:38 2008  using large prime bound of 164613408 (27 bits)
Tue Mar 11 20:26:38 2008  using double large prime bound of 616080330033312 (42-50 bits)
Tue Mar 11 20:26:38 2008  using trial factoring cutoff of 50 bits
Tue Mar 11 20:26:38 2008  polynomial 'A' values have 12 factors
Tue Mar 11 22:05:45 2008  65009 relations (16375 full + 48634 combined from 767780 partial), need 64802
Tue Mar 11 22:05:45 2008  begin with 784155 relations
Tue Mar 11 22:05:46 2008  reduce to 163081 relations in 12 passes
Tue Mar 11 22:05:46 2008  attempting to read 163081 relations
Tue Mar 11 22:05:47 2008  recovered 163081 relations
Tue Mar 11 22:05:47 2008  recovered 143891 polynomials
Tue Mar 11 22:05:47 2008  attempting to build 65009 cycles
Tue Mar 11 22:05:47 2008  found 65009 cycles in 5 passes
Tue Mar 11 22:05:48 2008  distribution of cycle lengths:
Tue Mar 11 22:05:48 2008     length 1 : 16375
Tue Mar 11 22:05:48 2008     length 2 : 12106
Tue Mar 11 22:05:48 2008     length 3 : 11255
Tue Mar 11 22:05:48 2008     length 4 : 8787
Tue Mar 11 22:05:48 2008     length 5 : 6474
Tue Mar 11 22:05:48 2008     length 6 : 4192
Tue Mar 11 22:05:48 2008     length 7 : 2595
Tue Mar 11 22:05:48 2008     length 9+: 3225
Tue Mar 11 22:05:48 2008  largest cycle: 23 relations
Tue Mar 11 22:05:48 2008  matrix is 64706 x 65009 with weight 3948865 (avg 60.74/col)
Tue Mar 11 22:05:48 2008  filtering completed in 3 passes
Tue Mar 11 22:05:48 2008  matrix is 61147 x 61211 with weight 3734333 (avg 61.01/col)
Tue Mar 11 22:05:49 2008  saving the first 48 matrix rows for later
Tue Mar 11 22:05:49 2008  matrix is 61099 x 61211 with weight 2944184 (avg 48.10/col)
Tue Mar 11 22:05:49 2008  matrix includes 64 packed rows
Tue Mar 11 22:05:49 2008  using block size 24484 for processor cache size 4096 kB
Tue Mar 11 22:05:50 2008  commencing Lanczos iteration
Tue Mar 11 22:06:05 2008  lanczos halted after 968 iterations (dim = 61099)
Tue Mar 11 22:06:06 2008  recovered 17 nontrivial dependencies
Tue Mar 11 22:06:06 2008  prp45 factor: 120256406964389982245302914445931857545867029
Tue Mar 11 22:06:06 2008  prp47 factor: 37558205196955967532214995487858032886370144357
Tue Mar 11 22:06:06 2008  elapsed time 01:39:29
execution environment 実行環境
Core 2 Quad Q6600

7×10165-9

c150

name 名前Robert Backstrom
date 日付December 31, 2007 13:41:35 UTC 2007 年 12 月 31 日 (月) 22 時 41 分 35 秒 (日本時間)
composite number 合成数
835708819297501087161209256684919312616575197394475766671782482860339428847159691345411763978143923133144396640238950619922829764501373132545436100561<150>
prime factors 素因数
119720935477183205712026361015748167111027951799849560997421<60>
6980473515066820668028752248342210383473908035017528053560574089914810233581451339796380341<91>
factorization results 素因数分解の結果
Number: n
N=835708819297501087161209256684919312616575197394475766671782482860339428847159691345411763978143923133144396640238950619922829764501373132545436100561
  ( 150 digits)
SNFS difficulty: 165 digits.
Divisors found:

Mon Dec 31 23:17:09 2007  prp60 factor: 119720935477183205712026361015748167111027951799849560997421
Mon Dec 31 23:17:09 2007  prp91 factor: 6980473515066820668028752248342210383473908035017528053560574089914810233581451339796380341
Mon Dec 31 23:17:09 2007  elapsed time 02:16:22 (Msieve 1.32)

Version: GGNFS-0.77.1-20051202-athlon
Total time: 58.35 hours.
Scaled time: 102.75 units (timescale=1.761).
Factorization parameters were as follows:
name: KA_6_9_164_1
n: 835708819297501087161209256684919312616575197394475766671782482860339428847159691345411763978143923133144396640238950619922829764501373132545436100561
type: snfs
skew: 1.05
deg: 5
c5: 7
c0: -9
m: 1000000000000000000000000000000000
rlim: 3200000
alim: 3200000
lpbr: 28
lpba: 28
mfbr: 48
mfba: 48
qintsize: 100000
Factor base limits: 3200000/3200000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 48/48
Sieved  special-q in [100000, 2800001)
Primes: RFBsize:230209, AFBsize:230717, largePrimes:7456900 encountered
Relations: rels:6921697, finalFF:489538
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 
Total sieving time: 58.10 hours.
Total relation processing time: 0.25 hours.
Matrix solve time: 0.00 hours.
Total square root time: 0.00 hours, sqrts: 0.
Prototype def-par.txt line would be:
snfs,165,5,0,0,0,0,0,0,0,0,3200000,3200000,28,28,48,48,2.5,2.5,100000
total time: 58.35 hours.
 --------- CPU info (if available) ----------

Cygwin on AMD 64 3200+

7×10167-9

c132

name 名前Markus Tervooren
date 日付November 22, 2008 09:16:22 UTC 2008 年 11 月 22 日 (土) 18 時 16 分 22 秒 (日本時間)
composite number 合成数
181994511619460886722571958133515667928438683353276929634860147537918477950452863619794044389350713131234957248455222391689631344117<132>
prime factors 素因数
32171713835165356860545627602731658117138163<44>
5656972847387801199256068528668241589373474506207018297434013731023661520263653791197559<88>
factorization results 素因数分解の結果
N=181994511619460886722571958133515667928438683353276929634860147537918477950452863619794044389350713131234957248455222391689631344117
  ( 132 digits)
SNFS difficulty: 168 digits.
Divisors found:
 r1=32171713835165356860545627602731658117138163 (pp44)
 r2=5656972847387801199256068528668241589373474506207018297434013731023661520263653791197559 (pp88)
Version: GGNFS-0.77.1-20060722-nocona
Total time: 76.94 hours.
Scaled time: 157.33 units (timescale=2.045).
Factorization parameters were as follows:
n: 181994511619460886722571958133515667928438683353276929634860147537918477950452863619794044389350713131234957248455222391689631344117
m: 2000000000000000000000000000000000
deg: 5
c5: 175
c0: -72
skew: 0.84
type: snfs
lss: 1
rlim: 4500000
alim: 4500000
lpbr: 27
lpba: 27
mfbr: 52
mfba: 52
rlambda: 2.4
alambda: 2.4

Factor base limits: 4500000/4500000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 52/52
Sieved rational special-q in [2250000, 5150001)
Primes: RFBsize:315948, AFBsize:315881, largePrimes:10450786 encountered
Relations: rels:11438283, finalFF:947465
Max relations in full relation-set: 32
Initial matrix: 631897 x 947465 with sparse part having weight 126994170.
Pruned matrix : 515741 x 518964 with weight 79936325.
Total sieving time: 72.97 hours.
Total relation processing time: 0.21 hours.
Matrix solve time: 3.65 hours.
Time per square root: 0.10 hours.
Prototype def-par.txt line would be:
snfs,168,5,0,0,0,0,0,0,0,0,4500000,4500000,27,27,52,52,2.4,2.4,100000
total time: 76.94 hours.
 --------- CPU info (if available) ----------
execution environment 実行環境
Q6700, Linux2.6.22

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaDecember 25, 2007 09:00:00 UTC 2007 年 12 月 25 日 (火) 18 時 0 分 0 秒 (日本時間)
351e6904Jo Yeong UkJuly 24, 2008 07:52:14 UTC 2008 年 7 月 24 日 (木) 16 時 52 分 14 秒 (日本時間)
403e620891000Markus TervoorenNovember 20, 2008 09:51:18 UTC 2008 年 11 月 20 日 (木) 18 時 51 分 18 秒 (日本時間)
1089Markus TervoorenNovember 21, 2008 20:31:23 UTC 2008 年 11 月 22 日 (土) 5 時 31 分 23 秒 (日本時間)

7×10168-9

c120

name 名前Jo Yeong Uk
date 日付January 4, 2008 10:19:17 UTC 2008 年 1 月 4 日 (金) 19 時 19 分 17 秒 (日本時間)
composite number 合成数
172975677141036546015229400354180589109448912005422828633671122239020593886199741604134349538195365917741806140785729931<120>
prime factors 素因数
1537937361615581169410967292004327295366166873569433<52>
112472511207691888590129843674497489028548891319841138462050561658307<69>
factorization results 素因数分解の結果
Number: 69991_168
N=172975677141036546015229400354180589109448912005422828633671122239020593886199741604134349538195365917741806140785729931
  ( 120 digits)
Divisors found:
 r1=1537937361615581169410967292004327295366166873569433 (pp52)
 r2=112472511207691888590129843674497489028548891319841138462050561658307 (pp69)
Version: GGNFS-0.77.1-20050930-nocona
Total time: 45.59 hours.
Scaled time: 97.92 units (timescale=2.148).
Factorization parameters were as follows:
name: 69991_168
n: 172975677141036546015229400354180589109448912005422828633671122239020593886199741604134349538195365917741806140785729931
skew: 67391.34
# norm 5.09e+16
c5: 17280
c4: -30345414866
c3: -366826887495445
c2: 155289263798816555595
c1: 1928173509479924180946865
c0: -5273396086403893411410733594
# alpha -6.54
Y1: 1609298589041
Y0: -100020889963331680840305
# Murphy_E 2.83e-10
# M 2243431063636352947101853464256196889266586342162306354589158668527910371904618647504604110166117078652154422036894215
type: gnfs
rlim: 4500000
alim: 4500000
lpbr: 27
lpba: 27
mfbr: 50
mfba: 50
rlambda: 2.4
alambda: 2.4
qintsize: 75000
Factor base limits: 4500000/4500000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 50/50
Sieved algebraic special-q in [2250000, 4500001)
Primes: RFBsize:315948, AFBsize:316323, largePrimes:7733678 encountered
Relations: rels:7843528, finalFF:762917
Max relations in full relation-set: 28
Initial matrix: 632354 x 762917 with sparse part having weight 66957880.
Pruned matrix : 527399 x 530624 with weight 44323563.
Polynomial selection time: 2.69 hours.
Total sieving time: 40.77 hours.
Total relation processing time: 0.18 hours.
Matrix solve time: 1.78 hours.
Time per square root: 0.17 hours.
Prototype def-par.txt line would be:
gnfs,119,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4500000,4500000,27,27,50,50,2.4,2.4,75000
total time: 45.59 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Memory for crash kernel (0x0 to 0x0) notwithin permissible range
Memory: 8178280k/8912896k available (2434k kernel code, 208060k reserved, 1235k data, 192k init)
Calibrating delay using timer specific routine.. 4812.90 BogoMIPS (lpj=2406450)
Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117)
Calibrating delay using timer specific routine.. 4809.83 BogoMIPS (lpj=2404916)
Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117)
execution environment 実行環境
Core 2 Quad Q6600

7×10169-9

c157

name 名前Robert Backstrom
date 日付July 22, 2008 04:47:49 UTC 2008 年 7 月 22 日 (火) 13 時 47 分 49 秒 (日本時間)
composite number 合成数
1389339220359877542274357801042835125646101146451738583460851033141648832587493612920864982552675488236762722326237405531715310872085039395485860784835768541<157>
prime factors 素因数
260261239348850539688922265966919165310599<42>
5338248691337501107137922770641624082752782783076792345043666099791736776212975427477023032244417290856029907636859<115>
factorization results 素因数分解の結果
Number: n
N=1389339220359877542274357801042835125646101146451738583460851033141648832587493612920864982552675488236762722326237405531715310872085039395485860784835768541
  ( 157 digits)
SNFS difficulty: 170 digits.
Divisors found:

Tue Jul 22 11:26:18 2008  prp42 factor: 260261239348850539688922265966919165310599
Tue Jul 22 11:26:18 2008  prp115 factor: 5338248691337501107137922770641624082752782783076792345043666099791736776212975427477023032244417290856029907636859
Tue Jul 22 11:26:18 2008  elapsed time 04:16:58 (Msieve 1.36)

Version: GGNFS-0.77.1-20051202-athlon
Total time: 76.95 hours.
Scaled time: 111.43 units (timescale=1.448).
Factorization parameters were as follows:
name: KA_6_9_168_1
n: 1389339220359877542274357801042835125646101146451738583460851033141648832587493612920864982552675488236762722326237405531715310872085039395485860784835768541
skew: 1.67
deg: 5
c5: 7
c0: -90
m: 10000000000000000000000000000000000
type: snfs
rlim: 6200000
alim: 6200000
lpbr: 28
lpba: 28
mfbr: 50
mfba: 50
rlambda: 2.5
alambda: 2.5
qintsize: 100000
Factor base limits: 6200000/6200000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 50/50
Sieved  special-q in [100000, 3500001)
Primes: RFBsize:425648, AFBsize:426372, largePrimes:10109777 encountered
Relations: rels:9700992, finalFF:871192
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 
Total sieving time: 76.51 hours.
Total relation processing time: 0.44 hours.
Matrix solve time: 0.00 hours.
Total square root time: 0.00 hours, sqrts: 0.
Prototype def-par.txt line would be:
snfs,170,5,0,0,0,0,0,0,0,0,6200000,6200000,28,28,50,50,2.5,2.5,100000
total time: 76.95 hours.
 --------- CPU info (if available) ----------

Cygwin on AMD 64 3400+

7×10171-9

c140

name 名前Serge Batalov
date 日付August 7, 2008 18:55:46 UTC 2008 年 8 月 8 日 (金) 3 時 55 分 46 秒 (日本時間)
composite number 合成数
13601434031470790196663340755116322235682559339754756053615772155826339457385452410053081531053896111300813447663911576564826844789925908881<140>
prime factors 素因数
121675574481606991533348359183<30>
37422933325867189106477419970456951426047763<44>
2987056712446451498387325795625445621950302093418101807281997373189<67>
factorization results 素因数分解の結果
#ECM, then gnfs/Msieve
#
Using B1=1000000, B2=2852890960, polynomial Dickson(6), sigma=3791932801
Step 1 took 4752ms
Step 2 took 4028ms
********** Factor found in step 2: 121675574481606991533348359183
Found probable prime factor of 30 digits: 121675574481606991533348359183
Composite cofactor 111784424190467595098459056149911917007502961485656473196420609707893662179624033360420585864758177758049626207 has 111 digits

Number: 69991_171
N=111784424190467595098459056149911917007502961485656473196420609707893662179624033360420585864758177758049626207
  ( 111 digits)
Divisors found:
 r1=37422933325867189106477419970456951426047763
 r2=2987056712446451498387325795625445621950302093418101807281997373189
Version: 
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.731).
Factorization parameters were as follows:
name: 69991_171
n: 111784424190467595098459056149911917007502961485656473196420609707893662179624033360420585864758177758049626207
skew: 16193.65
# norm 1.24e+15
c5: 11520
c4: 3427171552
c3: -6558936108298
c2: -63252626562105279
c1: 1972660268393096151002
c0: -13877734259057275740107961
# alpha -5.84
Y1: 104053675033
Y0: -1575375388115067456790
# Murphy_E 9.89e-10
# M 37041568271832547269366268052856747176849485994032370674464185504456218729408930988297991607542039622190059088
type: gnfs
rlim: 3200000
alim: 3200000
lpbr: 27
lpba: 27
mfbr: 50
mfba: 50
rlambda: 2.6
alambda: 2.6
qintsize: 100000
Factor base limits: 3200000/3200000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 50/50
Sieved algebraic special-q in [1600000, 3100001)
Primes: rational ideals filtering, algebraic ideals filtering, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 416881 x 417129
Total sieving time: 0.00 hours.
Total relation processing time: 0.00 hours.
Matrix solve time: 0.60 hours.
Time per square root: 0.30 hours.
Prototype def-par.txt line would be:
gnfs,110,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,3200000,27,27,50,50,2.6,2.6,100000

total time: 12.00 hours.
software ソフトウェア
GMP-ECM 6.2.1+pol51+Msieve 1.36
execution environment 実行環境
Opteron-2.6GHz; Linux x86_64

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaDecember 25, 2007 09:00:00 UTC 2007 年 12 月 25 日 (火) 18 時 0 分 0 秒 (日本時間)

7×10172-9

c163

name 名前Serge Batalov
date 日付October 15, 2008 06:16:53 UTC 2008 年 10 月 15 日 (水) 15 時 16 分 53 秒 (日本時間)
composite number 合成数
6604584784308756592809399333404107371973103803302616752748256819882053383173887637991171460740665429743736952188103699060096321723041245359586061437788090649683739<163>
prime factors 素因数
223245829680143568677436140783698003000608237638667397220569703726322445019<75>
29584359061808698085356769885290337868193171920464425723391688951441403237695049377138881<89>
factorization results 素因数分解の結果
SNFS difficulty: 172 digits.
Divisors found:
 r1=223245829680143568677436140783698003000608237638667397220569703726322445019
 r2=29584359061808698085356769885290337868193171920464425723391688951441403237695049377138881
Version:
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.731).
Factorization parameters were as follows:
n: 6604584784308756592809399333404107371973103803302616752748256819882053383173887637991171460740665429743736952188103699060096321723041245359586061437788090649683739
m: 10000000000000000000000000000000000
c5: 700
c0: -9
skew: 0.42
type: snfs
Factor base limits: 9000000/9000000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 54/54
Sieved rational special-q in [4500000, 7600001)
Primes: rational ideals reading, algebraic ideals reading,
Relations: relations
Max relations in full relation-set:
Initial matrix:
Pruned matrix : 1249370 x 1249618
Total sieving time: 0.00 hours.
Total relation processing time: 0.00 hours.
Matrix solve time: 0.00 hours.
Time per square root: 0.00 hours.
Prototype def-par.txt line would be:
snfs,172,5,0,0,0,0,0,0,0,0,9000000,9000000,27,27,54,54,2.6,2.6,100000
total time: 34.00 hours.
software ソフトウェア
Msieve-1.38
execution environment 実行環境
Opteron-2.6GHz; Linux x86_64

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaDecember 25, 2007 09:00:00 UTC 2007 年 12 月 25 日 (火) 18 時 0 分 0 秒 (日本時間)

7×10173-9

c141

name 名前Wataru Sakai
date 日付October 27, 2009 13:07:21 UTC 2009 年 10 月 27 日 (火) 22 時 7 分 21 秒 (日本時間)
composite number 合成数
118335266289699330717287805739976609910028642379095256867623958931583444124800011987668345641662168237014794505569635206720802429547119302389<141>
prime factors 素因数
5822198849636541604216008139984546047314947195596463077900521<61>
20324841068780494305293498995060419802226786782151713853158153045709315773873709<80>
factorization results 素因数分解の結果
Number: 69991_173
N=118335266289699330717287805739976609910028642379095256867623958931583444124800011987668345641662168237014794505569635206720802429547119302389
  ( 141 digits)
SNFS difficulty: 175 digits.
Divisors found:
 r1=5822198849636541604216008139984546047314947195596463077900521
 r2=20324841068780494305293498995060419802226786782151713853158153045709315773873709
Version: 
Total time: 117.44 hours.
Scaled time: 236.63 units (timescale=2.015).
Factorization parameters were as follows:
n: 118335266289699330717287805739976609910028642379095256867623958931583444124800011987668345641662168237014794505569635206720802429547119302389
m: 50000000000000000000000000000000000
deg: 5
c5: 56
c0: -225
skew: 1.32
type: snfs
lss: 1
rlim: 5800000
alim: 5800000
lpbr: 28
lpba: 28
mfbr: 52
mfba: 52
rlambda: 2.5
alambda: 2.5Factor base limits: 5800000/5800000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 52/52
Sieved rational special-q in [2900000, 6500001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1100358 x 1100606
Total sieving time: 117.44 hours.
Total relation processing time: 0.00 hours.
Matrix solve time: 0.00 hours.
Time per square root: 0.00 hours.
Prototype def-par.txt line would be:
snfs,175,5,0,0,0,0,0,0,0,0,5800000,5800000,28,28,52,52,2.5,2.5,100000
total time: 117.44 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaDecember 25, 2007 09:00:00 UTC 2007 年 12 月 25 日 (火) 18 時 0 分 0 秒 (日本時間)
351e6825Jo Yeong UkNovember 15, 2008 07:58:42 UTC 2008 年 11 月 15 日 (土) 16 時 58 分 42 秒 (日本時間)
403e62111Jo Yeong UkFebruary 1, 2009 05:36:21 UTC 2009 年 2 月 1 日 (日) 14 時 36 分 21 秒 (日本時間)

7×10175-9

c167

name 名前matsui
date 日付July 6, 2008 09:08:19 UTC 2008 年 7 月 6 日 (日) 18 時 8 分 19 秒 (日本時間)
composite number 合成数
76770838746934130507392324931250151067188852114401986823165103555542800872777834759409606762117612554266824567026809163243163420541346739870235062843495421078448688459<167>
prime factors 素因数
2998263129687771495713319147093796698599357538666071288999<58>
25605103830539641054955333281714615256570243024259263526043334000070733816061239428491153704128112278858660541<110>
factorization results 素因数分解の結果
N=76770838746934130507392324931250151067188852114401986823165103555542800872777834759409606762117612554266824567026809163243163420541346739870235062843495421078448688459
  ( 167 digits)

SNFS difficulty: 175 digits.

Divisors found:

 r1=2998263129687771495713319147093796698599357538666071288999 (pp58)

 r2=25605103830539641054955333281714615256570243024259263526043334000070733816061239428491153704128112278858660541 (pp110)

Version: GGNFS-0.77.1-20060513-pentium-m

Total time: 120.77 hours.

Scaled time: 343.95 units (timescale=2.848).

Factorization parameters were as follows:

n: 76770838746934130507392324931250151067188852114401986823165103555542800872777834759409606762117612554266824567026809163243163420541346739870235062843495421078448688459
m: 100000000000000000000000000000000000
c5: 7
c0: -9
skew: 1.05
type: snfs



Factor base limits: 7400000/7400000

Large primes per side: 3

Large prime bits: 27/27

Max factor residue bits: 48/48

Sieved algebraic special-q in [3700000, 12000001)

Primes: RFBsize:501962, AFBsize:502356, largePrimes:6549781 encountered

Relations: rels:7030593, finalFF:1152542

Max relations in full relation-set: 28

Initial matrix: 1004384 x 1152542 with sparse part having weight 76779199.

Pruned matrix : 878852 x 883937 with weight 58230885.

Total sieving time: 112.93 hours.

Total relation processing time: 0.11 hours.

Matrix solve time: 7.52 hours.

Time per square root: 0.22 hours.

Prototype def-par.txt line would be:

snfs,175,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000

total time: 120.77 hours.

7×10176-9

c170

name 名前Jo Yeong Uk
date 日付November 3, 2008 22:45:16 UTC 2008 年 11 月 4 日 (火) 7 時 45 分 16 秒 (日本時間)
composite number 合成数
79445813245364875893722838753259122620867441596261597811926110399944978099626638725952461668246314253362004949020189110543968888111580963739001436493797495118905981214243<170>
prime factors 素因数
1471607402359269526317161020368119<34>
53985739075515634697915501772688348506596820268762244897523775610785131164014476184599853349601190834688415144297768454969091079778009397<137>
factorization results 素因数分解の結果
GMP-ECM 6.2.1 [powered by GMP 4.2.3] [ECM]
Input number is 79445813245364875893722838753259122620867441596261597811926110399944978099626638725952461668246314253362004949020189110543968888111580963739001436493797495118905981214243 (170 digits)
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3920796782
Step 1 took 5865ms
Step 2 took 5148ms
********** Factor found in step 2: 1471607402359269526317161020368119
Found probable prime factor of 34 digits: 1471607402359269526317161020368119
Probable prime cofactor 53985739075515634697915501772688348506596820268762244897523775610785131164014476184599853349601190834688415144297768454969091079778009397 has 137 digits
execution environment 実行環境
Core 2 Quad Q6600

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaDecember 25, 2007 09:00:00 UTC 2007 年 12 月 25 日 (火) 18 時 0 分 0 秒 (日本時間)

7×10177-9

c142

name 名前Warut Roonguthai
date 日付April 2, 2012 12:34:50 UTC 2012 年 4 月 2 日 (月) 21 時 34 分 50 秒 (日本時間)
composite number 合成数
7975505127159272454394969903948159716142691004791684092830287499572352708024456452769522140725323266745618487784796297242877042038978987020247<142>
prime factors 素因数
16355013078228492064453493967087754617300913502022018300051109<62>
487648960536517434429738499186995203200651167075800879123844409853127228376999883<81>
factorization results 素因数分解の結果
N = 7975505127159272454394969903948159716142691004791684092830287499572352708024456452769522140725323266745618487784796297242877042038978987020247 (142 digits)
SNFS difficulty: 178 digits.
Divisors found:
r1=16355013078228492064453493967087754617300913502022018300051109 (pp62)
r2=487648960536517434429738499186995203200651167075800879123844409853127228376999883 (pp81)
Version: Msieve v. 1.48
Total time: 37.60 hours.
Factorization parameters were as follows:
name: 7*10^177-9
n: 7975505127159272454394969903948159716142691004791684092830287499572352708024456452769522140725323266745618487784796297242877042038978987020247
Y0: 100000000000000000000000000000000000
Y1: -1
c0: -9
c1: 0
c2: 0
c3: 0
c4: 0
c5: 700
skew: 0.42
type: snfs
Factor base limits: 6500000/6500000
Large primes per side: 3
Large prime bits: 28/28
Sieved rational special-q in [0, 0)
Total raw relations: 20749616
Relations: 2550858 relations
Pruned matrix : 1457814 x 1458038
Polynomial selection time: 0.00 hours.
Total sieving time: 34.50 hours.
Total relation processing time: 0.12 hours.
Matrix solve time: 2.84 hours.
time per square root: 0.14 hours.
Prototype def-par.txt line would be: snfs,178,5,0,0,0,0,0,0,0,0,6500000,6500000,28,28,55,55,2.5,2.5,100000
total time: 37.60 hours.
Intel64 Family 6 Model 42 Stepping 7, GenuineIntel
Windows-7-6.1.7601-SP1
processors: 4, speed: 2.29GHz

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaDecember 25, 2007 09:00:00 UTC 2007 年 12 月 25 日 (火) 18 時 0 分 0 秒 (日本時間)
351e6825Jo Yeong UkNovember 15, 2008 07:59:03 UTC 2008 年 11 月 15 日 (土) 16 時 59 分 3 秒 (日本時間)
403e62111Jo Yeong UkFebruary 1, 2009 05:36:30 UTC 2009 年 2 月 1 日 (日) 14 時 36 分 30 秒 (日本時間)

7×10178-9

c175

name 名前Robert Backstrom
date 日付September 22, 2008 10:47:13 UTC 2008 年 9 月 22 日 (月) 19 時 47 分 13 秒 (日本時間)
composite number 合成数
1451047863850251860450654008001492506374245973342177815551087249435127795858294811467423975456561845732882817520366493231898177898468108040878091250181380982981281482556331751<175>
prime factors 素因数
12897341641762311482225721924377786620072960817038184469508152023<65>
112507515436489482196909605851330785043044214218396095102143177575566128872215934971677861051720757848691700337<111>
factorization results 素因数分解の結果
Number: n
N=1451047863850251860450654008001492506374245973342177815551087249435127795858294811467423975456561845732882817520366493231898177898468108040878091250181380982981281482556331751
  ( 175 digits)
SNFS difficulty: 178 digits.
Divisors found:

Mon Sep 22 18:53:36 2008  prp65 factor: 12897341641762311482225721924377786620072960817038184469508152023
Mon Sep 22 18:53:36 2008  prp111 factor: 112507515436489482196909605851330785043044214218396095102143177575566128872215934971677861051720757848691700337
Mon Sep 22 18:53:36 2008  elapsed time 05:54:33 (Msieve 1.36)

Version: GGNFS-0.77.1-20051202-athlon
Total time: 57.99 hours.
Scaled time: 118.94 units (timescale=2.051).
Factorization parameters were as follows:
name: KA_6_9_177_1
n: 1451047863850251860450654008001492506374245973342177815551087249435127795858294811467423975456561845732882817520366493231898177898468108040878091250181380982981281482556331751
type: snfs
skew: 0.26
deg: 5
c5: 7000
c0: -9
m: 100000000000000000000000000000000000
rlim: 8000000
alim: 8000000
lpbr: 28
lpba: 28
mfbr: 52
mfba: 52
rlambda: 2.5
alambda: 2.5
qintsize: 100000
Factor base limits: 8000000/8000000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 52/52
Sieved  special-q in [100000, 11400001)
Primes: RFBsize:539777, AFBsize:539075, largePrimes:15392040 encountered
Relations: rels:15911037, finalFF:1641017
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 
Total sieving time: 57.50 hours.
Total relation processing time: 0.49 hours.
Matrix solve time: 0.00 hours.
Total square root time: 0.00 hours, sqrts: 0.
Prototype def-par.txt line would be:
snfs,178,5,0,0,0,0,0,0,0,0,8000000,8000000,28,28,52,52,2.5,2.5,100000
total time: 57.99 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaDecember 25, 2007 09:00:00 UTC 2007 年 12 月 25 日 (火) 18 時 0 分 0 秒 (日本時間)

7×10179-9

c169

name 名前Robert Backstrom
date 日付February 8, 2012 03:54:13 UTC 2012 年 2 月 8 日 (水) 12 時 54 分 13 秒 (日本時間)
composite number 合成数
9619157088519491680156965693395507601477580817741972083854967345169761985995395182281502397170631753532302442717445004234770902741776409518599118392080480975715276856547<169>
prime factors 素因数
1257951721263604352139589829106892400427551425645294710182642789568763<70>
7646682242190591161556198373637317987171335314757235302755083444223092418917335695838897522440941369<100>
factorization results 素因数分解の結果
Number: n
N=9619157088519491680156965693395507601477580817741972083854967345169761985995395182281502397170631753532302442717445004234770902741776409518599118392080480975715276856547
  ( 169 digits)
SNFS difficulty: 179 digits.
Divisors found:

Wed Feb  8 10:08:09 2012  prp70 factor: 1257951721263604352139589829106892400427551425645294710182642789568763
Wed Feb  8 10:08:09 2012  prp100 factor: 7646682242190591161556198373637317987171335314757235302755083444223092418917335695838897522440941369
Wed Feb  8 10:08:09 2012  elapsed time 02:44:47 (Msieve 1.44 - dependency 1)

Version: 
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=1.653).
Factorization parameters were as follows:
name: KA_69991_179
n: 9619157088519491680156965693395507601477580817741972083854967345169761985995395182281502397170631753532302442717445004234770902741776409518599118392080480975715276856547
m: 100000000000000000000000000000000000
#  c169, diff: 179.85
skew: 0.17
deg: 5
c5: 70000
c0: -9
type: snfs
lss: 1
rlim: 15000000
alim: 15000000
lpbr: 29
lpba: 29
mfbr: 57
mfba: 57
rlambda: 2.5
alambda: 2.5
Factor base limits: 15000000/15000000
Large primes per side: 3
Large prime bits: 29/29
Max factor residue bits: 57/57
Sieved  special-q in [100000, 17200000)
Primes: , , 
Relations: 
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 

Msieve: found 8377272 hash collisions in 76934803 relations (70851072 unique)
Msieve: matrix is 1223226 x 1223474 (341.0 MB)

Total sieving time: 0.00 hours.
Total relation processing time: 0.00 hours.
Matrix solve time: 0.00 hours.
Total square root time: 0.00 hours, sqrts: 0.
Prototype def-par.txt line would be:
snfs,179,5,0,0,0,0,0,0,0,0,15000000,15000000,29,29,57,57,2.5,2.5,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM) i7 CPU         930  @ 2.80GHz stepping 05
CPU1: Intel(R) Core(TM) i7 CPU         930  @ 2.80GHz stepping 05
CPU2: Intel(R) Core(TM) i7 CPU         930  @ 2.80GHz stepping 05
CPU3: Intel(R) Core(TM) i7 CPU         930  @ 2.80GHz stepping 05
CPU4: Intel(R) Core(TM) i7 CPU         930  @ 2.80GHz stepping 05
CPU5: Intel(R) Core(TM) i7 CPU         930  @ 2.80GHz stepping 05
CPU6: Intel(R) Core(TM) i7 CPU         930  @ 2.80GHz stepping 05
CPU7: Intel(R) Core(TM) i7 CPU         930  @ 2.80GHz stepping 05
Memory: 6059348k/6815744k available (3972k kernel code, 525828k absent, 230568k reserved, 2498k data, 1292k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 5595.06 BogoMIPS (lpj=2797533)
Calibrating delay using timer specific routine.. 5595.11 BogoMIPS (lpj=2797555)
Calibrating delay using timer specific routine.. 5595.11 BogoMIPS (lpj=2797555)
Calibrating delay using timer specific routine.. 5595.11 BogoMIPS (lpj=2797555)
Calibrating delay using timer specific routine.. 5595.10 BogoMIPS (lpj=2797553)
Calibrating delay using timer specific routine.. 5595.10 BogoMIPS (lpj=2797554)
Calibrating delay using timer specific routine.. 5595.10 BogoMIPS (lpj=2797554)
Calibrating delay using timer specific routine.. 5595.11 BogoMIPS (lpj=2797555)
Total of 8 processors activated (44760.82 BogoMIPS).

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaDecember 25, 2007 09:00:00 UTC 2007 年 12 月 25 日 (火) 18 時 0 分 0 秒 (日本時間)
351e6825Jo Yeong UkNovember 15, 2008 07:59:26 UTC 2008 年 11 月 15 日 (土) 16 時 59 分 26 秒 (日本時間)
403e62111Jo Yeong UkFebruary 27, 2009 10:03:59 UTC 2009 年 2 月 27 日 (金) 19 時 3 分 59 秒 (日本時間)
4511e60--
5043e61145yoyo@homeFebruary 7, 2010 02:07:12 UTC 2010 年 2 月 7 日 (日) 11 時 7 分 12 秒 (日本時間)
5511e72635 / 17343yoyo@homeNovember 3, 2010 19:55:11 UTC 2010 年 11 月 4 日 (木) 4 時 55 分 11 秒 (日本時間)

7×10182-9

c151

name 名前Jo Yeong Uk
date 日付December 1, 2008 09:41:46 UTC 2008 年 12 月 1 日 (月) 18 時 41 分 46 秒 (日本時間)
composite number 合成数
3080877024860949836881803991296662808651953686327894352408272117230457204223004198843440055196469778697272230530749827753879009022633410147845378287601<151>
prime factors 素因数
551024823684035448740408536106657207<36>
composite cofactor 合成数の残り
5591176463272303316615780966074659214096793163110886821777133410508295180383174336519509049157089247339837301301143<115>
factorization results 素因数分解の結果
GMP-ECM 6.2.1 [powered by GMP 4.2.3] [ECM]
Input number is 3080877024860949836881803991296662808651953686327894352408272117230457204223004198843440055196469778697272230530749827753879009022633410147845378287601 (151 digits)
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=820661537
Step 1 took 14820ms
Step 2 took 10654ms
********** Factor found in step 2: 551024823684035448740408536106657207
Found probable prime factor of 36 digits: 551024823684035448740408536106657207
Composite cofactor 5591176463272303316615780966074659214096793163110886821777133410508295180383174336519509049157089247339837301301143 has 115 digits
execution environment 実行環境
Core 2 Quad Q6600,Windows Vista(tm) Ultimate K x64

c115

name 名前Jo Yeong Uk
date 日付December 2, 2008 12:59:17 UTC 2008 年 12 月 2 日 (火) 21 時 59 分 17 秒 (日本時間)
composite number 合成数
5591176463272303316615780966074659214096793163110886821777133410508295180383174336519509049157089247339837301301143<115>
prime factors 素因数
120505114541548280042487841757872247892709036654778083<54>
46397835349507535301741903585430930023363737967949935765765821<62>
factorization results 素因数分解の結果
Number: 69991_182
N=5591176463272303316615780966074659214096793163110886821777133410508295180383174336519509049157089247339837301301143
  ( 115 digits)
Divisors found:
 r1=120505114541548280042487841757872247892709036654778083 (pp54)
 r2=46397835349507535301741903585430930023363737967949935765765821 (pp62)
Version: GGNFS-0.77.1-20050930-nocona
Total time: 22.15 hours.
Scaled time: 52.61 units (timescale=2.375).
Factorization parameters were as follows:
name: 69991_182
n: 5591176463272303316615780966074659214096793163110886821777133410508295180383174336519509049157089247339837301301143
skew: 17333.97
# norm 9.01e+15
c5: 97740
c4: 18416313678
c3: -212611237858754
c2: 202852738603153717
c1: 15507418452815452722844
c0: 58012158724999932663752355
# alpha -6.24
Y1: 2422555194829
Y0: -8942969295094779062108
# Murphy_E 5.46e-10
# M 2950275471248039864803529724056229443825261945017915189784971355597025064217620201603167612787728815854960471712106
type: gnfs
rlim: 2800000
alim: 2800000
lpbr: 27
lpba: 27
mfbr: 52
mfba: 52
rlambda: 2.6
alambda: 2.6
qintsize: 70000
Factor base limits: 2800000/2800000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 52/52
Sieved algebraic special-q in [1400000, 2660001)
Primes: RFBsize:203362, AFBsize:203456, largePrimes:9573195 encountered
Relations: rels:9505229, finalFF:506003
Max relations in full relation-set: 28
Initial matrix: 406897 x 506003 with sparse part having weight 54243052.
Pruned matrix : 348124 x 350222 with weight 36935690.
Polynomial selection time: 1.31 hours.
Total sieving time: 19.78 hours.
Total relation processing time: 0.16 hours.
Matrix solve time: 0.76 hours.
Time per square root: 0.14 hours.
Prototype def-par.txt line would be:
gnfs,114,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2800000,2800000,27,27,52,52,2.6,2.6,70000
total time: 22.15 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Memory: 8047068k/8912896k available (2460k kernel code, 339224k reserved, 1251k data, 196k init)
Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803)
Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672384)
Calibrating delay using timer specific routine.. 5497.76 BogoMIPS (lpj=2748880)
Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
execution environment 実行環境
Core 2 Quad Q6700

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaDecember 25, 2007 09:00:00 UTC 2007 年 12 月 25 日 (火) 18 時 0 分 0 秒 (日本時間)
351e6825Jo Yeong UkNovember 15, 2008 07:59:43 UTC 2008 年 11 月 15 日 (土) 16 時 59 分 43 秒 (日本時間)

7×10183-9

c163

name 名前Pipao
date 日付November 5, 2010 02:12:49 UTC 2010 年 11 月 5 日 (金) 11 時 12 分 49 秒 (日本時間)
composite number 合成数
4222237723821134696399627564215417733848679323756900695934179647850919897942264409777042228305769751642015107188284690412695147661002520593687233880815961401762273<163>
prime factors 素因数
2177844410694236710673789480452302228723381261719<49>
1938723309657920789206475056921505553905736789461719815906725083680072375291377040179661939044445917137710636720967<115>
factorization results 素因数分解の結果
GMP-ECM 6.2.3 [powered by GMP 4.2.1_MPIR_1.1.1] [ECM]
Input number is 4222237723821134696399627564215417733848679323756900695934179647850919897942264409777042228305769751642015107188284690412695147661002520593687233880815961401762273 (163 digits)
[Thu Nov 04 09:57:32 2010]
Using MODMULN
Using B1=110000000, B2=776278396540, polynomial Dickson(30), sigma=715931293
dF=131072, k=4, d=1345890, d2=11, i0=71
Expected number of curves to find a factor of n digits:
20 25      30      35      40      45      50      55      60      65
2       4       10      34      135     613     3133    17769   111196  751771
Step 1 took 589699ms
Using 20 small primes for NTT
Estimated memory usage: 471M
Initializing tables of differences for F took 390ms
Computing roots of F took 32698ms
Building F from its roots took 18377ms
Computing 1/F took 8252ms
Initializing table of differences for G took 327ms
Computing roots of G took 27176ms
Building G from its roots took 15959ms
Computing roots of G took 27363ms
Building G from its roots took 16208ms
Computing G * H took 4711ms
Reducing  G * H mod F took 4337ms
Computing roots of G took 27331ms
Building G from its roots took 16162ms
Computing G * H took 4618ms
Reducing  G * H mod F took 4415ms
Computing roots of G took 27347ms
Building G from its roots took 15943ms
Computing G * H took 4602ms
Reducing  G * H mod F took 4322ms
Computing polyeval(F,G) took 31746ms
Computing product of all F(g_i) took 141ms
Step 2 took 293438ms
********** Factor found in step 2: 2177844410694236710673789480452302228723381261719
Found probable prime factor of 49 digits: 2177844410694236710673789480452302228723381261719
Probable prime cofactor 1938723309657920789206475056921505553905736789461719815906725083680072375291377040179661939044445917137710636720967 has 115 digits
software ソフトウェア
GMP-ECM

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaDecember 25, 2007 09:00:00 UTC 2007 年 12 月 25 日 (火) 18 時 0 分 0 秒 (日本時間)
351e6825Jo Yeong UkNovember 15, 2008 07:59:57 UTC 2008 年 11 月 15 日 (土) 16 時 59 分 57 秒 (日本時間)
403e62111Jo Yeong UkFebruary 27, 2009 10:04:09 UTC 2009 年 2 月 27 日 (金) 19 時 4 分 9 秒 (日本時間)
4511e60--
5043e61145 / 3901yoyo@homeFebruary 14, 2010 15:30:32 UTC 2010 年 2 月 15 日 (月) 0 時 30 分 32 秒 (日本時間)
5511e71480 / 17343yoyo@homeNovember 3, 2010 21:20:13 UTC 2010 年 11 月 4 日 (木) 6 時 20 分 13 秒 (日本時間)

7×10185-9

c168

name 名前Dmitry Domanov
date 日付May 13, 2012 08:23:28 UTC 2012 年 5 月 13 日 (日) 17 時 23 分 28 秒 (日本時間)
composite number 合成数
519525621878462626981845328919262546963915820246272291450351321755991476381704041637641727964106798879810212328388482081851023459477322090604164425834795542661553954891<168>
prime factors 素因数
7962085544181486905582787097431331669084443869126091386612582637426287<70>
65249942241341562867665751014964663626829018890285536781847520007074741504860160218117892922974693<98>
factorization results 素因数分解の結果
N=519525621878462626981845328919262546963915820246272291450351321755991476381704041637641727964106798879810212328388482081851023459477322090604164425834795542661553954891
  ( 168 digits)
SNFS difficulty: 185 digits.
Divisors found:
 r1=7962085544181486905582787097431331669084443869126091386612582637426287 (pp70)
 r2=65249942241341562867665751014964663626829018890285536781847520007074741504860160218117892922974693 (pp98)
Version: Msieve-1.40
Total time: 201.54 hours.
Scaled time: 395.63 units (timescale=1.963).
Factorization parameters were as follows:
n: 519525621878462626981845328919262546963915820246272291450351321755991476381704041637641727964106798879810212328388482081851023459477322090604164425834795542661553954891
m: 10000000000000000000000000000000000000
deg: 5
c5: 7
c0: -9
skew: 1.05
type: snfs
lss: 1
rlim: 8800000
alim: 8800000
lpbr: 28
lpba: 28
mfbr: 54
mfba: 54
rlambda: 2.5
alambda: 2.5
qintsize: 400000Factor base limits: 8800000/8800000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 54/54
Sieved rational special-q in [4400000, 7600001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1356895 x 1357120
Total sieving time: 199.25 hours.
Total relation processing time: 0.21 hours.
Matrix solve time: 1.96 hours.
Time per square root: 0.13 hours.
Prototype def-par.txt line would be:
snfs,185.000,5,0,0,0,0,0,0,0,0,8800000,8800000,28,28,54,54,2.5,2.5,100000
total time: 201.54 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaDecember 25, 2007 09:00:00 UTC 2007 年 12 月 25 日 (火) 18 時 0 分 0 秒 (日本時間)
351e6825Jo Yeong UkNovember 15, 2008 08:00:12 UTC 2008 年 11 月 15 日 (土) 17 時 0 分 12 秒 (日本時間)
403e62111Jo Yeong UkFebruary 27, 2009 10:04:18 UTC 2009 年 2 月 27 日 (金) 19 時 4 分 18 秒 (日本時間)
4511e60--
5043e61145yoyo@homeFebruary 14, 2010 16:50:11 UTC 2010 年 2 月 15 日 (月) 1 時 50 分 11 秒 (日本時間)
5511e72635 / 17343yoyo@homeNovember 4, 2010 11:05:20 UTC 2010 年 11 月 4 日 (木) 20 時 5 分 20 秒 (日本時間)

7×10186-9

c111

name 名前Robert Backstrom
date 日付December 27, 2007 17:00:50 UTC 2007 年 12 月 28 日 (金) 2 時 0 分 50 秒 (日本時間)
composite number 合成数
595972239123669791995895721145326920898097780541200339694452957278131466762170631342974085756411616949220478823<111>
prime factors 素因数
2515472027805282686708792675704535850836383<43>
236922626264959098658721156310440198919184175106191358028227502394681<69>
factorization results 素因数分解の結果
Number: n
N=595972239123669791995895721145326920898097780541200339694452957278131466762170631342974085756411616949220478823
  ( 111 digits)
Divisors found:
 r1=2515472027805282686708792675704535850836383 (pp43)
 r2=236922626264959098658721156310440198919184175106191358028227502394681 (pp69)
Version: GGNFS-0.77.1-20051202-athlon
Total time: 19.07 hours.
Scaled time: 33.44 units (timescale=1.753).
Factorization parameters were as follows:
name: KA_6_9_185_1
n: 595972239123669791995895721145326920898097780541200339694452957278131466762170631342974085756411616949220478823
skew: 7691.60
# norm 7.39e+14
c5: 65280
c4: -3707517143
c3: -59981266406565
c2: 195444948138712791
c1: 464656384627185252258
c0: -666305598531814435117600
# alpha -4.72
Y1: 299854219969
Y0: -1556288568485250579843
# Murphy_E 8.93e-10
# M 261347015577692975215738963466108609772390237867217698520093975466862424241959027489401092781747038850578899133
type: gnfs
rlim: 3200000
alim: 3200000
lpbr: 27
lpba: 27
mfbr: 50
mfba: 50
rlambda: 2.6
alambda: 2.6
qintsize: 100000
Factor base limits: 3200000/3200000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 50/50
Sieved  special-q in [100000, 100000)
Primes: RFBsize:230209, AFBsize:229965, largePrimes:7449706 encountered
Relations: rels:7280948, finalFF:562779
Max relations in full relation-set: 28
Initial matrix: 460254 x 562779 with sparse part having weight 47426767.
Pruned matrix : 375082 x 377447 with weight 27995113.
Total sieving time: 16.82 hours.
Total relation processing time: 0.15 hours.
Matrix solve time: 1.45 hours.
Total square root time: 0.65 hours, sqrts: 4.
Prototype def-par.txt line would be:
gnfs,110,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,3200000,27,27,50,50,2.6,2.6,100000
total time: 19.07 hours.
 --------- CPU info (if available) ----------

Cygwin on AMD 64 3200+

7×10187-9

c156

name 名前Jo Yeong Uk
date 日付November 3, 2008 22:46:30 UTC 2008 年 11 月 4 日 (火) 7 時 46 分 30 秒 (日本時間)
composite number 合成数
347257179668169708309514689892335853744363566614245519657579625393249342784866390835895774677123656675961762660717974357244997314882524228703848091151563953<156>
prime factors 素因数
4690476648547345168326374837406127<34>
composite cofactor 合成数の残り
74034518384334417089817067969336107865932654799596895823511091185372389129149571176376292605794361402236374912345491675039<122>
factorization results 素因数分解の結果
GMP-ECM 6.2.1 [powered by GMP 4.2.3] [ECM]
Input number is 347257179668169708309514689892335853744363566614245519657579625393249342784866390835895774677123656675961762660717974357244997314882524228703848091151563953 (156 digits)
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=603318502
Step 1 took 5912ms
Step 2 took 4961ms
********** Factor found in step 2: 4690476648547345168326374837406127
Found probable prime factor of 34 digits: 4690476648547345168326374837406127
Composite cofactor 74034518384334417089817067969336107865932654799596895823511091185372389129149571176376292605794361402236374912345491675039 has 122 digits
execution environment 実行環境
Core 2 Quad Q6600

c122

name 名前Dmitry Domanov
date 日付May 11, 2009 22:29:59 UTC 2009 年 5 月 12 日 (火) 7 時 29 分 59 秒 (日本時間)
composite number 合成数
74034518384334417089817067969336107865932654799596895823511091185372389129149571176376292605794361402236374912345491675039<122>
prime factors 素因数
132247220045280786396912011749138627359993288829687<51>
559819090026885770857005522645932550743849730325918357433966783937734297<72>
factorization results 素因数分解の結果
Tue May 05 13:21:24 2009  Msieve v. 1.41
Tue May 05 13:21:24 2009  random seeds: 796211e0 c7c337b8
Tue May 05 13:21:24 2009  factoring 74034518384334417089817067969336107865932654799596895823511091185372389129149571176376292605794361402236374912345491675039 (122 digits)
Tue May 05 13:21:24 2009  searching for 15-digit factors
Tue May 05 13:21:26 2009  commencing number field sieve (122-digit input)
Tue May 05 13:21:26 2009  R0: -338415587465557897385425
Tue May 05 13:21:26 2009  R1:  25169084109103
Tue May 05 13:21:26 2009  A0: -19554326764852222388358345552
Tue May 05 13:21:26 2009  A1:  2374031057583121590915716
Tue May 05 13:21:26 2009  A2:  89638104094787780664
Tue May 05 13:21:26 2009  A3: -53426264244359
Tue May 05 13:21:26 2009  A4: -7014396274
Tue May 05 13:21:26 2009  A5:  16680
Tue May 05 13:21:26 2009  skew 105853.63, size 1.087434e-011, alpha -5.584116, combined = 2.285903e-010
Tue May 05 13:21:26 2009  
Tue May 05 13:21:26 2009  commencing relation filtering
Tue May 05 13:21:26 2009  commencing duplicate removal, pass 1
Tue May 05 13:23:26 2009  found 3680062 hash collisions in 14352905 relations
Tue May 05 13:23:49 2009  added 62650 free relations
Tue May 05 13:23:49 2009  commencing duplicate removal, pass 2
Tue May 05 13:24:22 2009  found 4221914 duplicates and 10193640 unique relations
Tue May 05 13:24:22 2009  memory use: 106.6 MB
Tue May 05 13:24:22 2009  reading rational ideals above 7929856
Tue May 05 13:24:22 2009  reading algebraic ideals above 7929856
Tue May 05 13:24:22 2009  commencing singleton removal, pass 1
Tue May 05 13:25:56 2009  relations with 0 large ideals: 319804
Tue May 05 13:25:56 2009  relations with 1 large ideals: 1789543
Tue May 05 13:25:56 2009  relations with 2 large ideals: 3700610
Tue May 05 13:25:56 2009  relations with 3 large ideals: 3267043
Tue May 05 13:25:56 2009  relations with 4 large ideals: 1046919
Tue May 05 13:25:56 2009  relations with 5 large ideals: 11575
Tue May 05 13:25:56 2009  relations with 6 large ideals: 58146
Tue May 05 13:25:56 2009  relations with 7+ large ideals: 0
Tue May 05 13:25:56 2009  10193640 relations and about 9206532 large ideals
Tue May 05 13:25:56 2009  commencing singleton removal, pass 2
Tue May 05 13:27:29 2009  found 3746144 singletons
Tue May 05 13:27:29 2009  current dataset: 6447496 relations and about 4826112 large ideals
Tue May 05 13:27:29 2009  commencing singleton removal, pass 3
Tue May 05 13:28:35 2009  found 907584 singletons
Tue May 05 13:28:35 2009  current dataset: 5539912 relations and about 3868151 large ideals
Tue May 05 13:28:35 2009  commencing singleton removal, pass 4
Tue May 05 13:29:33 2009  found 254745 singletons
Tue May 05 13:29:33 2009  current dataset: 5285167 relations and about 3608888 large ideals
Tue May 05 13:29:33 2009  commencing singleton removal, final pass
Tue May 05 13:30:30 2009  memory use: 81.1 MB
Tue May 05 13:30:30 2009  commencing in-memory singleton removal
Tue May 05 13:30:30 2009  begin with 5285167 relations and 3822070 unique ideals
Tue May 05 13:30:35 2009  reduce to 4716125 relations and 3242297 ideals in 13 passes
Tue May 05 13:30:35 2009  max relations containing the same ideal: 33
Tue May 05 13:30:36 2009  reading rational ideals above 720000
Tue May 05 13:30:36 2009  reading algebraic ideals above 720000
Tue May 05 13:30:36 2009  commencing singleton removal, final pass
Tue May 05 13:31:36 2009  keeping 3940660 ideals with weight <= 20, new excess is 380477
Tue May 05 13:31:40 2009  memory use: 128.6 MB
Tue May 05 13:31:40 2009  commencing in-memory singleton removal
Tue May 05 13:31:41 2009  begin with 4717910 relations and 3940660 unique ideals
Tue May 05 13:31:48 2009  reduce to 4695435 relations and 3909770 ideals in 13 passes
Tue May 05 13:31:48 2009  max relations containing the same ideal: 20
Tue May 05 13:31:51 2009  removing 982639 relations and 810483 ideals in 172156 cliques
Tue May 05 13:31:51 2009  commencing in-memory singleton removal
Tue May 05 13:31:51 2009  begin with 3712796 relations and 3909770 unique ideals
Tue May 05 13:31:55 2009  reduce to 3585555 relations and 2966547 ideals in 9 passes
Tue May 05 13:31:55 2009  max relations containing the same ideal: 20
Tue May 05 13:31:57 2009  removing 740278 relations and 568122 ideals in 172156 cliques
Tue May 05 13:31:58 2009  commencing in-memory singleton removal
Tue May 05 13:31:58 2009  begin with 2845277 relations and 2966547 unique ideals
Tue May 05 13:32:00 2009  reduce to 2743763 relations and 2292206 ideals in 8 passes
Tue May 05 13:32:00 2009  max relations containing the same ideal: 19
Tue May 05 13:32:01 2009  removing 74922 relations and 64719 ideals in 10203 cliques
Tue May 05 13:32:02 2009  commencing in-memory singleton removal
Tue May 05 13:32:02 2009  begin with 2668841 relations and 2292206 unique ideals
Tue May 05 13:32:03 2009  reduce to 2667656 relations and 2226298 ideals in 5 passes
Tue May 05 13:32:03 2009  max relations containing the same ideal: 19
Tue May 05 13:32:03 2009  relations with 0 large ideals: 28132
Tue May 05 13:32:03 2009  relations with 1 large ideals: 191693
Tue May 05 13:32:03 2009  relations with 2 large ideals: 536697
Tue May 05 13:32:03 2009  relations with 3 large ideals: 801502
Tue May 05 13:32:03 2009  relations with 4 large ideals: 682034
Tue May 05 13:32:03 2009  relations with 5 large ideals: 329226
Tue May 05 13:32:03 2009  relations with 6 large ideals: 86297
Tue May 05 13:32:03 2009  relations with 7+ large ideals: 12075
Tue May 05 13:32:03 2009  commencing 2-way merge
Tue May 05 13:32:05 2009  reduce to 1695103 relation sets and 1253745 unique ideals
Tue May 05 13:32:05 2009  commencing full merge
Tue May 05 13:32:27 2009  memory use: 100.0 MB
Tue May 05 13:32:27 2009  found 827118 cycles, need 767945
Tue May 05 13:32:27 2009  weight of 767945 cycles is about 53824455 (70.09/cycle)
Tue May 05 13:32:27 2009  distribution of cycle lengths:
Tue May 05 13:32:27 2009  1 relations: 74022
Tue May 05 13:32:27 2009  2 relations: 78780
Tue May 05 13:32:27 2009  3 relations: 82503
Tue May 05 13:32:27 2009  4 relations: 78536
Tue May 05 13:32:27 2009  5 relations: 74402
Tue May 05 13:32:27 2009  6 relations: 67129
Tue May 05 13:32:27 2009  7 relations: 60620
Tue May 05 13:32:27 2009  8 relations: 53361
Tue May 05 13:32:27 2009  9 relations: 45757
Tue May 05 13:32:27 2009  10+ relations: 152835
Tue May 05 13:32:27 2009  heaviest cycle: 17 relations
Tue May 05 13:32:27 2009  commencing cycle optimization
Tue May 05 13:32:29 2009  start with 4650542 relations
Tue May 05 13:32:39 2009  pruned 148029 relations
Tue May 05 13:32:39 2009  memory use: 118.4 MB
Tue May 05 13:32:39 2009  distribution of cycle lengths:
Tue May 05 13:32:39 2009  1 relations: 74022
Tue May 05 13:32:39 2009  2 relations: 80948
Tue May 05 13:32:39 2009  3 relations: 86351
Tue May 05 13:32:39 2009  4 relations: 81424
Tue May 05 13:32:39 2009  5 relations: 77632
Tue May 05 13:32:39 2009  6 relations: 69023
Tue May 05 13:32:39 2009  7 relations: 62318
Tue May 05 13:32:39 2009  8 relations: 53892
Tue May 05 13:32:39 2009  9 relations: 45856
Tue May 05 13:32:39 2009  10+ relations: 136479
Tue May 05 13:32:39 2009  heaviest cycle: 17 relations
Tue May 05 13:32:41 2009  RelProcTime: 643
Tue May 05 13:32:41 2009  
Tue May 05 13:32:41 2009  commencing linear algebra
Tue May 05 13:32:41 2009  read 767945 cycles
Tue May 05 13:32:43 2009  cycles contain 2401694 unique relations
Tue May 05 13:33:28 2009  read 2401694 relations
Tue May 05 13:33:32 2009  using 20 quadratic characters above 134216802
Tue May 05 13:33:44 2009  building initial matrix
Tue May 05 13:34:13 2009  memory use: 275.5 MB
Tue May 05 13:34:15 2009  read 767945 cycles
Tue May 05 13:34:29 2009  matrix is 767716 x 767945 (216.1 MB) with weight 72678072 (94.64/col)
Tue May 05 13:34:29 2009  sparse part has weight 51274069 (66.77/col)
Tue May 05 13:34:42 2009  filtering completed in 3 passes
Tue May 05 13:34:42 2009  matrix is 765071 x 765271 (215.7 MB) with weight 72511181 (94.75/col)
Tue May 05 13:34:42 2009  sparse part has weight 51186251 (66.89/col)
Tue May 05 13:34:46 2009  read 765271 cycles
Tue May 05 13:36:32 2009  matrix is 765071 x 765271 (215.7 MB) with weight 72511181 (94.75/col)
Tue May 05 13:36:32 2009  sparse part has weight 51186251 (66.89/col)
Tue May 05 13:36:32 2009  saving the first 48 matrix rows for later
Tue May 05 13:36:33 2009  matrix is 765023 x 765271 (208.1 MB) with weight 57393419 (75.00/col)
Tue May 05 13:36:33 2009  sparse part has weight 49962643 (65.29/col)
Tue May 05 13:36:33 2009  matrix includes 64 packed rows
Tue May 05 13:36:33 2009  using block size 65536 for processor cache size 6144 kB
Tue May 05 13:36:38 2009  commencing Lanczos iteration (4 threads)
Tue May 05 13:36:38 2009  memory use: 223.6 MB
Tue May 05 14:19:37 2009  lanczos halted after 12100 iterations (dim = 765022)
Tue May 05 14:19:38 2009  recovered 31 nontrivial dependencies
Tue May 05 14:19:38 2009  BLanczosTime: 2817
Tue May 05 14:19:38 2009  
Tue May 05 14:19:38 2009  commencing square root phase
Tue May 05 14:19:38 2009  reading relations for dependency 1
Tue May 05 14:19:39 2009  read 382671 cycles
Tue May 05 14:19:39 2009  cycles contain 1485452 unique relations
Tue May 05 14:20:40 2009  read 1485452 relations
Tue May 05 14:20:47 2009  multiplying 1199326 relations
Tue May 05 14:23:36 2009  multiply complete, coefficients have about 52.81 million bits
Tue May 05 14:23:38 2009  initial square root is modulo 38250617
Tue May 05 14:27:55 2009  reading relations for dependency 2
Tue May 05 14:27:55 2009  read 382694 cycles
Tue May 05 14:27:56 2009  cycles contain 1487123 unique relations
Tue May 05 14:28:56 2009  read 1487123 relations
Tue May 05 14:29:03 2009  multiplying 1199644 relations
Tue May 05 14:31:51 2009  multiply complete, coefficients have about 52.83 million bits
Tue May 05 14:31:53 2009  initial square root is modulo 38414923
Tue May 05 14:36:09 2009  sqrtTime: 991
Tue May 05 14:36:09 2009  prp51 factor: 132247220045280786396912011749138627359993288829687
Tue May 05 14:36:09 2009  prp72 factor: 559819090026885770857005522645932550743849730325918357433966783937734297
Tue May 05 14:36:09 2009  elapsed time 01:14:45
software ソフトウェア
Sieving done by gnfs-lasieve4I12e, postprocessing and linear algebra by msieve.

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaDecember 25, 2007 09:00:00 UTC 2007 年 12 月 25 日 (火) 18 時 0 分 0 秒 (日本時間)
351e6825Jo Yeong UkNovember 15, 2008 08:00:33 UTC 2008 年 11 月 15 日 (土) 17 時 0 分 33 秒 (日本時間)
403e62111Jo Yeong UkDecember 17, 2008 15:43:25 UTC 2008 年 12 月 18 日 (木) 0 時 43 分 25 秒 (日本時間)
4511e63974Wataru SakaiMarch 30, 2009 02:54:02 UTC 2009 年 3 月 30 日 (月) 11 時 54 分 2 秒 (日本時間)
5043e66577Wataru SakaiApril 16, 2009 11:08:11 UTC 2009 年 4 月 16 日 (木) 20 時 8 分 11 秒 (日本時間)

7×10188-9

c135

name 名前Robert Backstrom
date 日付May 14, 2012 22:53:00 UTC 2012 年 5 月 15 日 (火) 7 時 53 分 0 秒 (日本時間)
composite number 合成数
400570317144526049142044662828299173225974856800363527761389035564887492131838307446010748630979837232443206977738630835531770344559391<135>
prime factors 素因数
5935197639708550652804657116360631605744747044741335669<55>
67490645040119700812655693745827992826945287817226716777168488006215732427500739<80>
factorization results 素因数分解の結果
Number: n
N=400570317144526049142044662828299173225974856800363527761389035564887492131838307446010748630979837232443206977738630835531770344559391
  ( 135 digits)
Divisors found:

Tue May 15 04:26:14 2012  prp55 factor: 5935197639708550652804657116360631605744747044741335669
Tue May 15 04:26:14 2012  prp80 factor: 67490645040119700812655693745827992826945287817226716777168488006215732427500739
Tue May 15 04:26:14 2012  elapsed time 02:09:05 (Msieve 1.44 - dependency 1)

Version: 
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=1.027).
Factorization parameters were as follows:
name: KA_69991_188
n: 400570317144526049142044662828299173225974856800363527761389035564887492131838307446010748630979837232443206977738630835531770344559391
skew: 424819.21
# norm 8.59e+17
c5: 24840
c4: 14161725767
c3: -711610121997906
c2: -4201294442974811224602
c1: -245187002850094484560808552
c0: 212066173013875126969977600661848
# alpha -5.31
Y1: 254643776256289
Y0: -110028532330988237817753587
# Murphy_E 4.06e-11
# M 264303133030283885986764515000530506532890515773000759666182319886090650143127760849452530699733366565339270879518851837682987213331340
type: gnfs
rlim: 5400000
alim: 5400000
lpbr: 27
lpba: 27
mfbr: 51
mfba: 51
rlambda: 2.5
alambda: 2.5
qintsize: 60000
Factor base limits: 5400000/5400000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 51/51
Sieved  special-q in [100000, 13260000)
Primes: , , 
Relations: 
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 

Msieve: found 2619955 hash collisions in 13378235 relations (10844844 unique)
Msieve: matrix is 1001046 x 1001273 (288.2 MB)

Total sieving time: 0.00 hours.
Total relation processing time: 0.00 hours.
Matrix solve time: 0.00 hours.
Total square root time: 0.00 hours, sqrts: 0.
Prototype def-par.txt line would be:
gnfs,134,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,5400000,5400000,27,27,51,51,2.5,2.5,60000
total time: 0.00 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM)2 Quad CPU    Q6600  @ 2.40GHz stepping 0b
CPU1: Intel(R) Core(TM)2 Quad CPU    Q6600  @ 2.40GHz stepping 0b
CPU2: Intel(R) Core(TM)2 Quad CPU    Q6600  @ 2.40GHz stepping 0b
CPU3: Intel(R) Core(TM)2 Quad CPU    Q6600  @ 2.40GHz stepping 0b
Memory: 4012828k/4980736k available (3972k kernel code, 787908k absent, 180000k reserved, 2498k data, 1292k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 4800.52 BogoMIPS (lpj=2400261)
Calibrating delay using timer specific routine.. 4799.90 BogoMIPS (lpj=2399952)
Calibrating delay using timer specific routine.. 4799.86 BogoMIPS (lpj=2399932)
Calibrating delay using timer specific routine.. 4799.90 BogoMIPS (lpj=2399953)
Total of 4 processors activated (19200.19 BogoMIPS).

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaDecember 25, 2007 09:00:00 UTC 2007 年 12 月 25 日 (火) 18 時 0 分 0 秒 (日本時間)
351e6825Jo Yeong UkNovember 15, 2008 08:00:46 UTC 2008 年 11 月 15 日 (土) 17 時 0 分 46 秒 (日本時間)
403e62111Jo Yeong UkFebruary 1, 2009 05:37:00 UTC 2009 年 2 月 1 日 (日) 14 時 37 分 0 秒 (日本時間)

7×10189-9

c171

name 名前He Jiahao
date 日付November 7, 2017 15:41:57 UTC 2017 年 11 月 8 日 (水) 0 時 41 分 57 秒 (日本時間)
composite number 合成数
175227073719843846125700722579501280469762853374437612178390545976726275159962841827917153222056198886245671078687047315895104890035221746578502288400450775103392784356659<171>
prime factors 素因数
3678442597154743878960862634350531636580393790963394244328757558451823823335050187799<85>
47636212633950322265615824829692335586306517833298148385227391512296278609903311523141<86>
factorization results 素因数分解の結果
Number: 69991_189
N = 175227073719843846125700722579501280469762853374437612178390545976726275159962841827917153222056198886245671078687047315895104890035221746578502288400450775103392784356659 (171 digits)
SNFS difficulty: 191 digits.
Divisors found:
r1=3678442597154743878960862634350531636580393790963394244328757558451823823335050187799 (pp85)
r2=47636212633950322265615824829692335586306517833298148385227391512296278609903311523141 (pp86)
Version: Msieve v. 1.53 (SVN 1005)
Total time: 122.53 hours.
Factorization parameters were as follows:
n: 175227073719843846125700722579501280469762853374437612178390545976726275159962841827917153222056198886245671078687047315895104890035221746578502288400450775103392784356659
m: 50000000000000000000000000000000000000
deg: 5
c5: 112
c0: -45
skew: 0.83
# Murphy_E = 3.984e-11
type: snfs
lss: 1
rlim: 10500000
alim: 10500000
lpbr: 28
lpba: 28
mfbr: 54
mfba: 54
rlambda: 2.5
alambda: 2.5
Factor base limits: 10500000/10500000
Large primes per side: 3
Large prime bits: 28/28
Sieved rational special-q in [0, 0)
Total raw relations: 22626021
Relations: 3664190 relations
Pruned matrix : 2243116 x 2243342
Total sieving time: 117.76 hours.
Total relation processing time: 0.13 hours.
Matrix solve time: 4.39 hours.
time per square root: 0.25 hours.
Prototype def-par.txt line would be: snfs,191,5,0,0,0,0,0,0,0,0,10500000,10500000,28,28,54,54,2.5,2.5,100000
total time: 122.53 hours.
Intel64 Family 6 Model 78 Stepping 3, GenuineIntel
processors: 4, speed: 2.40GHz
Windows-10-10.0.14393-SP0
Running Python 3.6

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaDecember 25, 2007 09:00:00 UTC 2007 年 12 月 25 日 (火) 18 時 0 分 0 秒 (日本時間)
351e6825Jo Yeong UkNovember 15, 2008 08:01:03 UTC 2008 年 11 月 15 日 (土) 17 時 1 分 3 秒 (日本時間)
403e62111Jo Yeong UkFebruary 27, 2009 10:04:36 UTC 2009 年 2 月 27 日 (金) 19 時 4 分 36 秒 (日本時間)
4511e60--
5043e61145yoyo@homeFebruary 14, 2010 18:20:12 UTC 2010 年 2 月 15 日 (月) 3 時 20 分 12 秒 (日本時間)
5511e72635 / 17343yoyo@homeNovember 10, 2010 10:35:11 UTC 2010 年 11 月 10 日 (水) 19 時 35 分 11 秒 (日本時間)

7×10192-9

c161

name 名前Grubix
date 日付November 12, 2010 02:47:25 UTC 2010 年 11 月 12 日 (金) 11 時 47 分 25 秒 (日本時間)
composite number 合成数
17723545342564791527039810827146200667238839506483869104658511326337675073788920465510515648677167752009851899630511111184185219839268866501343622738469417666259<161>
prime factors 素因数
164558127467128678980877276515560772170879<42>
107703858906058344934309942486907780929278544045522190161642686884258571375885827755865003911230798792755471060365538221<120>
factorization results 素因数分解の結果
GMP-ECM 6.2.3 [powered by GMP 4.2.1_MPIR_1.1.1] [ECM]
Input number is 17723545342564791527039810827146200667238839506483869104658511326337675073788920465510515648677167752009851899630511111184185219839268866501343622738469417666259 (161 digits)
[Wed Nov 10 19:05:21 2010]
Using MODMULN
Using B1=110000000, B2=776278396540, polynomial Dickson(30), sigma=1218408363
dF=131072, k=4, d=1345890, d2=11, i0=71
Expected number of curves to find a factor of n digits:
20  25      30      35      40      45      50      55      60      65
2       4       10      34      135     613     3133    17769   111196  751771
Step 1 took 349629ms
Using 20 small primes for NTT
Estimated memory usage: 471M
Initializing tables of differences for F took 218ms
Computing roots of F took 18923ms
Building F from its roots took 11747ms
Computing 1/F took 5304ms
Initializing table of differences for G took 187ms
Computing roots of G took 16427ms
Building G from its roots took 10686ms
Computing roots of G took 15975ms
Building G from its roots took 10608ms
Computing G * H took 2996ms
Reducing  G * H mod F took 2917ms
Computing roots of G took 16271ms
Building G from its roots took 10592ms
Computing G * H took 2964ms
Reducing  G * H mod F took 2917ms
Computing roots of G took 15959ms
Building G from its roots took 10733ms
Computing G * H took 3073ms
Reducing  G * H mod F took 2870ms
Computing polyeval(F,G) took 19999ms
Computing product of all F(g_i) took 94ms
Step 2 took 182178ms
********** Factor found in step 2: 164558127467128678980877276515560772170879
Found probable prime factor of 42 digits: 164558127467128678980877276515560772170879
Probable prime cofactor 107703858906058344934309942486907780929278544045522190161642686884258571375885827755865003911230798792755471060365538221 has 120 digits
software ソフトウェア
GMP-ECM

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaDecember 25, 2007 09:00:00 UTC 2007 年 12 月 25 日 (火) 18 時 0 分 0 秒 (日本時間)
351e6825Jo Yeong UkNovember 15, 2008 08:01:20 UTC 2008 年 11 月 15 日 (土) 17 時 1 分 20 秒 (日本時間)
403e62111Jo Yeong UkFebruary 27, 2009 10:04:46 UTC 2009 年 2 月 27 日 (金) 19 時 4 分 46 秒 (日本時間)
4511e60--
5043e61145 / 7179yoyo@homeFebruary 14, 2010 21:00:10 UTC 2010 年 2 月 15 日 (月) 6 時 0 分 10 秒 (日本時間)
5511e7120 / 17343yoyo@homeNovember 10, 2010 16:30:09 UTC 2010 年 11 月 11 日 (木) 1 時 30 分 9 秒 (日本時間)

7×10193-9

c136

name 名前Robert Backstrom
date 日付May 5, 2012 10:09:39 UTC 2012 年 5 月 5 日 (土) 19 時 9 分 39 秒 (日本時間)
composite number 合成数
5497668581305396532401907450640749152944535033751322787659919739277511451694105836805483559749328381395643428084855176167494056065079389<136>
prime factors 素因数
37884492928419836911819165511031793770820752008293983909175079<62>
145116594055854621090516235617703602703646727344434298837285228367717596891<75>
factorization results 素因数分解の結果
Number: n
N=5497668581305396532401907450640749152944535033751322787659919739277511451694105836805483559749328381395643428084855176167494056065079389
  ( 136 digits)
Divisors found:

Sat May  5 19:59:27 2012  prp62 factor: 37884492928419836911819165511031793770820752008293983909175079
Sat May  5 19:59:27 2012  prp75 factor: 145116594055854621090516235617703602703646727344434298837285228367717596891
Sat May  5 19:59:27 2012  elapsed time 04:47:34 (Msieve 1.44 - dependency 4)

Version:
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.078).
Factorization parameters were as follows:
name: KA_69991_193
# Murphy_E = 3.762873e-11, selected by Jeff Gilchrist
n: 5497668581305396532401907450640749152944535033751322787659919739277511451694105836805483559749328381395643428084855176167494056065079389
Y0: -143382507865235483658834141
Y1: 1403552824880639
c0: 658931677328103568891642171358336
c1: 14012452996056272554733098216
c2: 59480907608319418450354
c3: -116527973767666669
c4: -114106733592
c5: 90720
skew: 567017.3
type: gnfs
# selected mechanically
rlim: 14000000
alim: 14000000
lpbr: 28
lpba: 28
mfbr: 55
mfba: 55
rlambda: 2.6
alambda: 2.6
qintsize: 100000
Factor base limits: 14000000/14000000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 55/55
Sieved  special-q in [100000, 11600000)
Primes: , ,
Relations:
Max relations in full relation-set: 28
Initial matrix:
Pruned matrix :

Msieve: found 2402964 hash collisions in 24380201 relations (22844128 unique)
Msieve: matrix is 1433423 x 1433648 (417.4 MB)

Total sieving time: 0.00 hours.
Total relation processing time: 0.00 hours.
Matrix solve time: 0.00 hours.
Total square root time: 0.00 hours, sqrts: 0.
Prototype def-par.txt line would be:
gnfs,135,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,14000000,14000000,28,28,55,55,2.6,2.6,60000
total time: 0.00 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaDecember 25, 2007 09:00:00 UTC 2007 年 12 月 25 日 (火) 18 時 0 分 0 秒 (日本時間)
351e6825Jo Yeong UkNovember 15, 2008 08:01:39 UTC 2008 年 11 月 15 日 (土) 17 時 1 分 39 秒 (日本時間)
403e62111Jo Yeong UkFebruary 1, 2009 05:37:17 UTC 2009 年 2 月 1 日 (日) 14 時 37 分 17 秒 (日本時間)

7×10194-9

c109

name 名前Robert Backstrom
date 日付December 27, 2007 10:23:20 UTC 2007 年 12 月 27 日 (木) 19 時 23 分 20 秒 (日本時間)
composite number 合成数
4266295613839554521455940618914223009809176846224270626203668901679911671717662492929960969596044736169757523<109>
prime factors 素因数
52063286361231377503035962252713421659616793211<47>
81944416344344076297954674797070896167668217005498046483209993<62>
factorization results 素因数分解の結果
Number: n
N=4266295613839554521455940618914223009809176846224270626203668901679911671717662492929960969596044736169757523
  ( 109 digits)
Divisors found:

Thu Dec 27 21:14:40 2007  prp47 factor: 52063286361231377503035962252713421659616793211
Thu Dec 27 21:14:40 2007  prp62 factor: 81944416344344076297954674797070896167668217005498046483209993
Thu Dec 27 21:14:40 2007  elapsed time 01:21:04 (Msieve 1.32)

Version: GGNFS-0.77.1-20051202-athlon
Total time: 15.97 hours.
Scaled time: 28.00 units (timescale=1.753).
Factorization parameters were as follows:
name: KA_6_9_193_1
n: 4266295613839554521455940618914223009809176846224270626203668901679911671717662492929960969596044736169757523
skew: 20303.21
# norm 3.02e+15
c5: 64260
c4: -5524240892
c3: 33370301956429
c2: 2960552805759545129
c1: 13268125763144698600299
c0: -427943730192357035630844
# alpha -6.40
Y1: 410046852743
Y0: -581336125346552761433
# Murphy_E 1.18e-09
# M 835049287715849898352208609708011149328452835128639575533350171456753898162996679714302558410477726301170271
type: gnfs
rlim: 3200000
alim: 3200000
lpbr: 27
lpba: 27
mfbr: 50
mfba: 50
rlambda: 2.6
alambda: 2.6
qintsize: 100000
Factor base limits: 3200000/3200000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 50/50
Sieved  special-q in [100000, 1700000)
Primes: RFBsize:230209, AFBsize:229921, largePrimes:6992043 encountered
Relations: rels:6742934, finalFF:579789
Max relations in full relation-set: 28
Initial matrix: 460216 x 579789 with sparse part having weight 39572835.
Pruned matrix : 350884 x 353249 with weight 18553288.
Total sieving time: 15.64 hours.
Total relation processing time: 0.33 hours.
Matrix solve time: 0.00 hours.
Total square root time: 0.00 hours, sqrts: 0.
Prototype def-par.txt line would be:
gnfs,108,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,3200000,27,27,50,50,2.6,2.6,100000
total time: 15.97 hours.
 --------- CPU info (if available) ----------

Cygwin on AMD 64 3200+

7×10195-9

c170

name 名前Edwin Hall
date 日付December 20, 2020 22:18:28 UTC 2020 年 12 月 21 日 (月) 7 時 18 分 28 秒 (日本時間)
composite number 合成数
26501268828979351686493807189887728475618581590367686628199290125264705758664427403096679774204229195517235053113223283322785171453699281428219526186683109221083305442943<170>
prime factors 素因数
1341467057112725360034735254941189429843767461998225036182884798539<67>
19755437666891892122588030430816283724945098586040970476334110297579887934205298310196123340334588523037<104>
factorization results 素因数分解の結果
p67 factor: 1341467057112725360034735254941189429843767461998225036182884798539
p104 factor: 19755437666891892122588030430816283724945098586040970476334110297579887934205298310196123340334588523037


Msieve v. 1.54 (SVN 1032M)
random seeds: cd764e7c 241a9347
factoring 26501268828979351686493807189887728475618581590367686628199290125264705758664427403096679774204229195517235053113223283322785171453699281428219526186683109221083305442943 (170 digits)
searching for 15-digit factors
commencing number field sieve (170-digit input)
R0: -1000000000000000000000000000000000000000
R1: 1
A0: -9
A1: 0
A2: 0
A3: 0
A4: 0
A5: 7
skew 1.00, size 1.484e-13, alpha 1.137, combined = 2.489e-11 rroots = 1

commencing relation filtering
estimated available RAM is 48213.5 MB
commencing duplicate removal, pass 1
found 2058975 hash collisions in 34664461 relations
added 725413 free relations
commencing duplicate removal, pass 2
found 0 duplicates and 35389874 unique relations
memory use: 98.6 MB
reading ideals above 720000
commencing singleton removal, initial pass
memory use: 753.0 MB
reading all ideals from disk
memory use: 1159.7 MB
keeping 38948654 ideals with weight <= 200, target excess is 187875
commencing in-memory singleton removal
begin with 35389874 relations and 38948654 unique ideals
reduce to 12405724 relations and 11781571 ideals in 16 passes
max relations containing the same ideal: 98
removing 1446585 relations and 1243476 ideals in 203109 cliques
commencing in-memory singleton removal
begin with 10959139 relations and 11781571 unique ideals
reduce to 10803402 relations and 10378874 ideals in 10 passes
max relations containing the same ideal: 92
removing 1129281 relations and 926172 ideals in 203109 cliques
commencing in-memory singleton removal
begin with 9674121 relations and 10378874 unique ideals
reduce to 9564007 relations and 9340375 ideals in 10 passes
max relations containing the same ideal: 84
relations with 0 large ideals: 3783
relations with 1 large ideals: 8477
relations with 2 large ideals: 75835
relations with 3 large ideals: 378380
relations with 4 large ideals: 1139726
relations with 5 large ideals: 2168179
relations with 6 large ideals: 2711710
relations with 7+ large ideals: 3077917
commencing 2-way merge
reduce to 5825667 relation sets and 5602035 unique ideals
commencing full merge
memory use: 628.2 MB
found 2671383 cycles, need 2654235
weight of 2654235 cycles is about 239253872 (90.14/cycle)
distribution of cycle lengths:
1 relations: 233007
2 relations: 240916
3 relations: 249374
4 relations: 234495
5 relations: 221360
6 relations: 200814
7 relations: 180133
8 relations: 159379
9 relations: 143037
10+ relations: 791720
heaviest cycle: 28 relations
commencing cycle optimization
start with 19800922 relations
pruned 620933 relations
memory use: 590.2 MB
distribution of cycle lengths:
1 relations: 233007
2 relations: 247042
3 relations: 258655
4 relations: 241885
5 relations: 228558
6 relations: 205930
7 relations: 184023
8 relations: 161721
9 relations: 144394
10+ relations: 749020
heaviest cycle: 28 relations
RelProcTime: 670
elapsed time 00:11:12


Msieve v. 1.54 (SVN 1032M)
random seeds: d2d7c2d4 329512a0
factoring 26501268828979351686493807189887728475618581590367686628199290125264705758664427403096679774204229195517235053113223283322785171453699281428219526186683109221083305442943 (170 digits)
searching for 15-digit factors
commencing number field sieve (170-digit input)
R0: -1000000000000000000000000000000000000000
R1: 1
A0: -9
A1: 0
A2: 0
A3: 0
A4: 0
A5: 7
skew 1.00, size 1.484e-13, alpha 1.137, combined = 2.489e-11 rroots = 1

commencing linear algebra
read 2654235 cycles
cycles contain 9329461 unique relations
read 9329461 relations
using 20 quadratic characters above 4294917295
building initial matrix
memory use: 1153.5 MB
read 2654235 cycles
matrix is 2654056 x 2654235 (978.3 MB) with weight 284215775 (107.08/col)
sparse part has weight 227245882 (85.62/col)
filtering completed in 2 passes
matrix is 2652727 x 2652906 (978.1 MB) with weight 284166526 (107.12/col)
sparse part has weight 227226928 (85.65/col)
matrix starts at (0, 0)
matrix is 2652727 x 2652906 (978.1 MB) with weight 284166526 (107.12/col)
sparse part has weight 227226928 (85.65/col)
saving the first 48 matrix rows for later
matrix includes 64 packed rows
matrix is 2652679 x 2652906 (928.6 MB) with weight 234404593 (88.36/col)
sparse part has weight 216908476 (81.76/col)
using block size 8192 and superblock size 1474560 for processor cache size 15360 kB
commencing Lanczos iteration (8 threads)
memory use: 884.5 MB
linear algebra at 0.1%, ETA 3h23m
checkpointing every 810000 dimensions
lanczos halted after 41946 iterations (dim = 2652677)
recovered 38 nontrivial dependencies
BLanczosTime: 9425
elapsed time 02:37:07


Msieve v. 1.54 (SVN 1032M)
random seeds: 869db05a 22017a0c
factoring 26501268828979351686493807189887728475618581590367686628199290125264705758664427403096679774204229195517235053113223283322785171453699281428219526186683109221083305442943 (170 digits)
searching for 15-digit factors
commencing number field sieve (170-digit input)
R0: -1000000000000000000000000000000000000000
R1: 1
A0: -9
A1: 0
A2: 0
A3: 0
A4: 0
A5: 7
skew 1.00, size 1.484e-13, alpha 1.137, combined = 2.489e-11 rroots = 1

commencing square root phase
reading relations for dependency 1
read 1326083 cycles
cycles contain 4663206 unique relations
read 4663206 relations
multiplying 4663206 relations
multiply complete, coefficients have about 116.70 million bits
initial square root is modulo 237788491
sqrtTime: 389
p67 factor: 1341467057112725360034735254941189429843767461998225036182884798539
p104 factor: 19755437666891892122588030430816283724945098586040970476334110297579887934205298310196123340334588523037
elapsed time 00:06:31
software ソフトウェア
CADO-NFS/Msieve

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaDecember 25, 2007 09:00:00 UTC 2007 年 12 月 25 日 (火) 18 時 0 分 0 秒 (日本時間)
351e6825Jo Yeong UkNovember 15, 2008 08:01:53 UTC 2008 年 11 月 15 日 (土) 17 時 1 分 53 秒 (日本時間)
403e62111Jo Yeong UkFebruary 27, 2009 10:04:58 UTC 2009 年 2 月 27 日 (金) 19 時 4 分 58 秒 (日本時間)
4511e60--
5043e61145yoyo@homeFebruary 15, 2010 00:00:11 UTC 2010 年 2 月 15 日 (月) 9 時 0 分 11 秒 (日本時間)
5511e72635 / 17343yoyo@homeNovember 10, 2010 18:25:33 UTC 2010 年 11 月 11 日 (木) 3 時 25 分 33 秒 (日本時間)

7×10198-9

c181

name 名前Serge Batalov
date 日付October 21, 2008 10:41:23 UTC 2008 年 10 月 21 日 (火) 19 時 41 分 23 秒 (日本時間)
composite number 合成数
7492498100419740943969687809887885133881872008027484581849110305142482016637970629311540281144116665591293572591235900147076772803736305837239935481786382639360000898508976048036507<181>
prime factors 素因数
264988857469403991211956741757711<33>
28274766614610714157255420998775798591008627434112116606543963199796112209476723290238538742147137438714006318672046665431077283855690553184035469237<149>
factorization results 素因数分解の結果
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3404709547
Step 1 took 29350ms
Step 2 took 18701ms
********** Factor found in step 2: 264988857469403991211956741757711
Found probable prime factor of 33 digits: 264988857469403991211956741757711
Probable prime cofactor 28274766614610714157255420998775798591008627434112116606543963199796112209476723290238538742147137438714006318672046665431077283855690553184035469237 has 149 digits
software ソフトウェア
GMP-ECM 6.2.1

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaDecember 25, 2007 09:00:00 UTC 2007 年 12 月 25 日 (火) 18 時 0 分 0 秒 (日本時間)

7×10200-9

c194

name 名前Serge Batalov
date 日付September 10, 2008 03:00:18 UTC 2008 年 9 月 10 日 (水) 12 時 0 分 18 秒 (日本時間)
composite number 合成数
44403167823485482479429756757543670039806171291816921171880793225801970371542238101076960775700505961410729238934143822241178850821912151377249884726204675387152806080392189076808028803193171351<194>
prime factors 素因数
11284635217137977617526487653933<32>
3934834132347528894029161821328170864341780603433105197044385991837432909415350859571119308115656096581344079723625343143220426630178141030835445756037523722590547<163>
factorization results 素因数分解の結果
Using B1=1000000, B2=2852890960, polynomial Dickson(6), sigma=13078247
Step 1 took 8353ms
********** Factor found in step 1: 11284635217137977617526487653933
Found probable prime factor of 32 digits: 11284635217137977617526487653933
Probable prime cofactor 3934834132347528894029161821328170864341780603433105197044385991837432909415350859571119308115656096581344079723625343143220426630178141030835445756037523722590547 has 163 digits
software ソフトウェア
GMP-ECM 6.2.1

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaDecember 25, 2007 09:00:00 UTC 2007 年 12 月 25 日 (火) 18 時 0 分 0 秒 (日本時間)

7×10201-9

c171

name 名前Bob Backstrom
date 日付August 6, 2021 01:39:32 UTC 2021 年 8 月 6 日 (金) 10 時 39 分 32 秒 (日本時間)
composite number 合成数
325992395164676216164840041590839865892320717591158424645647735476658609574183523089452986097973476641718296930931138612258288161671209027994385437961634744266698409961061<171>
prime factors 素因数
2164702224590238107814457753085378061639030406328831<52>
150594567447439165021861599843106153419373059765368237073068522634140776663296846377660784161248682153742638925807378331<120>
factorization results 素因数分解の結果
#
# N = 7x10^201-9 = 69(200)1
#
n: 325992395164676216164840041590839865892320717591158424645647735476658609574183523089452986097973476641718296930931138612258288161671209027994385437961634744266698409961061
m: 10000000000000000000000000000000000000000
deg: 5
c5: 70
c0: -9
skew: 0.66
# Murphy_E = 1.486e-11
type: snfs
lss: 1
rlim: 16200000
alim: 16200000
lpbr: 29
lpba: 29
mfbr: 56
mfba: 56
rlambda: 2.6
alambda: 2.6



GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM]
Input number is 325992395164676216164840041590839865892320717591158424645647735476658609574183523089452986097973476641718296930931138612258288161671209027994385437961634744266698409961061 (171 digits)
Using B1=44310000, B2=240492041806, polynomial Dickson(12), sigma=1:1245514746
Step 1 took 102397ms
Step 2 took 35720ms
********** Factor found in step 2: 2164702224590238107814457753085378061639030406328831
Found prime factor of 52 digits: 2164702224590238107814457753085378061639030406328831
Prime cofactor 150594567447439165021861599843106153419373059765368237073068522634140776663296846377660784161248682153742638925807378331 has 120 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaApril 9, 2012 09:00:00 UTC 2012 年 4 月 9 日 (月) 18 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovApril 12, 2012 11:18:48 UTC 2012 年 4 月 12 日 (木) 20 時 18 分 48 秒 (日本時間)
4511e64880400Dmitry DomanovApril 13, 2012 21:32:04 UTC 2012 年 4 月 14 日 (土) 6 時 32 分 4 秒 (日本時間)
4480Ignacio SantosAugust 5, 2021 21:45:35 UTC 2021 年 8 月 6 日 (金) 6 時 45 分 35 秒 (日本時間)

7×10202-9

c193

name 名前Bob Backstrom
date 日付May 12, 2021 06:03:38 UTC 2021 年 5 月 12 日 (水) 15 時 3 分 38 秒 (日本時間)
composite number 合成数
1605696878895639762815053491855164664924763460963756290311473037214360471008590480343620561612659663189135999173199701349069639378513664145112547263868557923617695012945300391300592221763817351<193>
prime factors 素因数
301949660263946327492866162889736514043919868555715763229322713912434227<72>
5317763489092968739866486835644054975796562280075563449386590213780625216704057616583493840055210715254155037460219301213<121>
factorization results 素因数分解の結果
Number: n
N=1605696878895639762815053491855164664924763460963756290311473037214360471008590480343620561612659663189135999173199701349069639378513664145112547263868557923617695012945300391300592221763817351
  ( 193 digits)
SNFS difficulty: 202 digits.
Divisors found:

Wed May 12 15:54:39 2021  p72 factor: 301949660263946327492866162889736514043919868555715763229322713912434227
Wed May 12 15:54:39 2021  p121 factor: 5317763489092968739866486835644054975796562280075563449386590213780625216704057616583493840055210715254155037460219301213
Wed May 12 15:54:39 2021  elapsed time 01:42:07 (Msieve 1.54 - dependency 2)

Version: 
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.337).
Factorization parameters were as follows:
#
# N = 7x10^202-9 = 69(201)1
#
n: 1605696878895639762815053491855164664924763460963756290311473037214360471008590480343620561612659663189135999173199701349069639378513664145112547263868557923617695012945300391300592221763817351
m: 10000000000000000000000000000000000000000
deg: 5
c5: 700
c0: -9
skew: 0.42
# Murphy_E = 1.18e-11
type: snfs
lss: 1
rlim: 16800000
alim: 16800000
lpbr: 29
lpba: 29
mfbr: 56
mfba: 56
rlambda: 2.6
alambda: 2.6
Factor base limits: 16800000/16800000
Large primes per side: 3
Large prime bits: 29/29
Max factor residue bits: 56/56
Sieved  special-q in [100000, 28400000)
Primes: , , 
Relations: 
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 

Msieve: found 7676316 hash collisions in 56652823 relations (51200403 unique)
Msieve: matrix is 2039082 x 2039308 (709.6 MB)

Sieving start time : 2021/05/12 04:37:55
Sieving end time  : 2021/05/12 14:11:27

Total sieving time: 9hrs 33min 32secs.

Total relation processing time: 1hrs 18min 45sec.
Matrix solve time: 0.00 hours.
Total square root time: 0hrs 5min 34sec.

Prototype def-par.txt line would be:
snfs,202,5,0,0,0,0,0,0,0,0,16800000,16800000,29,29,56,56,2.6,2.6,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------
[    0.118393] smpboot: CPU0: AMD Ryzen 7 2700 Eight-Core Processor (family: 0x17, model: 0x8, stepping: 0x2)
[    0.000000] Memory: 16241108K/16727236K available (14339K kernel code, 2400K rwdata, 5008K rodata, 2732K init, 4972K bss, 486128K reserved, 0K cma-reserved)
[    0.153523] x86/mm: Memory block size: 128MB
[    0.000004] Calibrating delay loop (skipped), value calculated using timer frequency.. 6399.30 BogoMIPS (lpj=12798612)
[    0.152049] smpboot: Total of 16 processors activated (102388.89 BogoMIPS)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaApril 9, 2012 09:00:00 UTC 2012 年 4 月 9 日 (月) 18 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovApril 12, 2012 11:19:00 UTC 2012 年 4 月 12 日 (木) 20 時 19 分 0 秒 (日本時間)
4511e6400 / 4254Dmitry DomanovApril 13, 2012 21:32:16 UTC 2012 年 4 月 14 日 (土) 6 時 32 分 16 秒 (日本時間)

7×10204-9

c199

name 名前Wataru Sakai
date 日付April 11, 2012 05:05:01 UTC 2012 年 4 月 11 日 (水) 14 時 5 分 1 秒 (日本時間)
composite number 合成数
1200548753684612755281685611611844751209424239113638285293946644526260889191579625452799825474512607219722889336674517683825881327127753994525840697127790010988451235510448461556799590852984744283973<199>
prime factors 素因数
48304432805902352254277294970553080841<38>
composite cofactor 合成数の残り
24853800861479463800671588109305432383960604575404456721434845284823347979705323170549903368554863325470657170318538591079273583716935548560087873886550822543453<161>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=511449929
Step 1 took 19514ms
Step 2 took 7736ms
********** Factor found in step 2: 48304432805902352254277294970553080841
Found probable prime factor of 38 digits: 48304432805902352254277294970553080841
Composite cofactor 24853800861479463800671588109305432383960604575404456721434845284823347979705323170549903368554863325470657170318538591079273583716935548560087873886550822543453 has 161 digits
software ソフトウェア
GMP-ECM 6.4.2

c161

name 名前Bob Backstrom
date 日付December 15, 2023 19:07:39 UTC 2023 年 12 月 16 日 (土) 4 時 7 分 39 秒 (日本時間)
composite number 合成数
24853800861479463800671588109305432383960604575404456721434845284823347979705323170549903368554863325470657170318538591079273583716935548560087873886550822543453<161>
prime factors 素因数
3054636829035901115849488199234335927440524883970408677326515385450413597012139<79>
8136417601343389463129511751629601223022450158483422071822316242806453439385666327<82>
factorization results 素因数分解の結果
Number: n
N=24853800861479463800671588109305432383960604575404456721434845284823347979705323170549903368554863325470657170318538591079273583716935548560087873886550822543453  ( 161 digits)
SNFS difficulty: 205 digits.
Divisors found:

Sat Dec 16 05:54:29 2023  prp79 factor: 3054636829035901115849488199234335927440524883970408677326515385450413597012139
Sat Dec 16 05:54:29 2023  prp82 factor: 8136417601343389463129511751629601223022450158483422071822316242806453439385666327
Sat Dec 16 05:54:29 2023  elapsed time 03:21:11 (Msieve 1.44 - dependency 6)

Version: 
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.087).
Factorization parameters were as follows:
#
# N = 7x10^204-9 = 69(203)1
#
n: 24853800861479463800671588109305432383960604575404456721434845284823347979705323170549903368554863325470657170318538591079273583716935548560087873886550822543453
m: 50000000000000000000000000000000000000000
deg: 5
c5: 112
c0: -45
skew: 0.83
# Murphy_E = 9.469e-12
type: snfs
lss: 1
rlim: 18700000
alim: 18700000
lpbr: 27
lpba: 27
mfbr: 56
mfba: 56
rlambda: 2.6
alambda: 2.6
Factor base limits: 18700000/18700000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 56/56
Sieved  special-q in [100000, 56550000)
Primes: , , 
Relations: 
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 

Msieve: found 3892592 hash collisions in 20523225 relations (16953422 unique)
Msieve: matrix is 2432103 x 2432328 (684.8 MB)

Sieving start time: 2023/12/15 03:10:47
Sieving end time  : 2023/12/16 02:32:54

Total sieving time: 23hrs 22min 7secs.

Total relation processing time: 2hrs 58min 39sec.
Matrix solve time: 0.00 hours.
Total square root time: 0hrs 16min 59sec.

Prototype def-par.txt line would be:
snfs,205,5,0,0,0,0,0,0,0,0,18700000,18700000,27,27,56,56,2.6,2.6,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaApril 9, 2012 09:00:00 UTC 2012 年 4 月 9 日 (月) 18 時 0 分 0 秒 (日本時間)
403e62318Wataru SakaiApril 11, 2012 05:04:41 UTC 2012 年 4 月 11 日 (水) 14 時 4 分 41 秒 (日本時間)
4511e64480Ignacio SantosOctober 21, 2023 09:07:36 UTC 2023 年 10 月 21 日 (土) 18 時 7 分 36 秒 (日本時間)

7×10205-9

c182

name 名前Warut Roonguthai
date 日付April 9, 2012 13:29:19 UTC 2012 年 4 月 9 日 (月) 22 時 29 分 19 秒 (日本時間)
composite number 合成数
11942213048848558762668131592491249555527785233576906488908602985823362149474155753103647260847043590248992453116875009373036874809013259449805067314398177789793610228251963560743151<182>
prime factors 素因数
361049740018879647609362842810658413<36>
composite cofactor 合成数の残り
33076365179556945931825063552855658369320392686040124089280645618846549818258908445502561687628573225468580788091163085448203997559556628738782027<146>
factorization results 素因数分解の結果
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1557939850
Step 1 took 12793ms
Step 2 took 7737ms
********** Factor found in step 2: 361049740018879647609362842810658413
Found probable prime factor of 36 digits: 361049740018879647609362842810658413
Composite cofactor 33076365179556945931825063552855658369320392686040124089280645618846549818258908445502561687628573225468580788091163085448203997559556628738782027 has 146 digits
software ソフトウェア
GMP-ECM 6.3

c146

name 名前Dmitry Domanov
date 日付April 13, 2012 20:22:03 UTC 2012 年 4 月 14 日 (土) 5 時 22 分 3 秒 (日本時間)
composite number 合成数
33076365179556945931825063552855658369320392686040124089280645618846549818258908445502561687628573225468580788091163085448203997559556628738782027<146>
prime factors 素因数
1952513626146037296567604737036445649<37>
composite cofactor 合成数の残り
16940401714299235042931058383292938058074143822656060978730595511807936618323173743083893506057448067119352923<110>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=460151510
Step 1 took 16483ms
Step 2 took 7439ms
********** Factor found in step 2: 1952513626146037296567604737036445649
Found probable prime factor of 37 digits: 1952513626146037296567604737036445649
Composite cofactor 16940401714299235042931058383292938058074143822656060978730595511807936618323173743083893506057448067119352923 has 110 digits

n: 16940401714299235042931058383292938058074143822656060978730595511807936618323173743083893506057448067119352923
skew: 25167.71
# norm 3.78e+15
c5: 43680
c4: 4497035666
c3: -227413839545539
c2: -2381245431518108916
c1: 45775246435020696642444
c0: -1816615081573056352931280
# alpha -6.75
Y1: 43058977081
Y0: -827423306290204234237
# Murphy_E 1.07e-09
# M 2557571032342537711576379997194805099737642399861234081023434560938430180356343573904196665564319937188146671
type: gnfs
rlim: 3200000
alim: 3200000
lpbr: 27
lpba: 27
mfbr: 50
mfba: 50
rlambda: 2.6
alambda: 2.6
qintsize: 100000
Factor base limits: 3200000/3200000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 50/50
Sieved algebraic special-q in [1600000, 2300001)
Primes: , ,
Relations: relations
Max relations in full relation-set:
Initial matrix:
Pruned matrix : 346727 x 346953
Polynomial selection time: 1.46 hours.
Total sieving time: 0.00 hours.
Total relation processing time: 0.10 hours.
Matrix solve time: 0.15 hours.
Time per square root: 0.05 hours.
Prototype def-par.txt line would be:
gnfs,109,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,3200000,27,27,50,50,2.6,2.6,100000
total time: 1.75 hours.

c110

name 名前Warut Roonguthai
date 日付April 15, 2012 04:51:12 UTC 2012 年 4 月 15 日 (日) 13 時 51 分 12 秒 (日本時間)
composite number 合成数
16940401714299235042931058383292938058074143822656060978730595511807936618323173743083893506057448067119352923<110>
prime factors 素因数
3603955538038514578257936804040418599602942413<46>
4700502416164435260236574042336835880822079821813200907141443271<64>
factorization results 素因数分解の結果
N = 16940401714299235042931058383292938058074143822656060978730595511807936618323173743083893506057448067119352923 (110 digits)
Divisors found:
r1=3603955538038514578257936804040418599602942413 (pp46)
r2=4700502416164435260236574042336835880822079821813200907141443271 (pp64)
Version: Msieve v. 1.48
Total time: 8.33 hours.
Factorization parameters were as follows:
n: 16940401714299235042931058383292938058074143822656060978730595511807936618323173743083893506057448067119352923
Y0: -1125978080895456880801
Y1: 294308082509
c0: 4460077270447553600778240
c1: 4574146475084022825912
c2: 147005118356398018
c3: -51988834291313
c4: -150513622
c5: 9360
skew: 22968.02  
type: gnfs
Factor base limits: 3200000/3200000
Large primes per side: 3
Large prime bits: 27/27
Sieved algebraic special-q in [0, 0)
Total raw relations: 7629933
Relations: 628994 relations
Pruned matrix : 367476 x 367715
Polynomial selection time: 0.00 hours.
Total sieving time: 7.74 hours.
Total relation processing time: 0.09 hours.
Matrix solve time: 0.37 hours.
time per square root: 0.13 hours.
Prototype def-par.txt line would be: gnfs,109,5,61,2000,0.00015,0.3,250,15,50000,2400,3200000,3200000,27,27,50,50,2.6,2.6,100000
total time: 8.33 hours.
Intel64 Family 6 Model 42 Stepping 7, GenuineIntel
Windows-7-6.1.7601-SP1
processors: 4, speed: 2.29GHz

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaApril 9, 2012 09:00:00 UTC 2012 年 4 月 9 日 (月) 18 時 0 分 0 秒 (日本時間)
403e61000 / 2318Dmitry DomanovApril 12, 2012 11:19:17 UTC 2012 年 4 月 12 日 (木) 20 時 19 分 17 秒 (日本時間)

7×10206-9

c202

name 名前Robert Backstrom
date 日付August 12, 2012 05:21:15 UTC 2012 年 8 月 12 日 (日) 14 時 21 分 15 秒 (日本時間)
composite number 合成数
8341575604466317909362822789184551401980528379231860052194430210803532061441662595183335915249591858622210040873720461884957755877831667004301869704589058236114255752708032937307101064146716398345984723<202>
prime factors 素因数
592276642926138123615982107802672014513103526993394041821956036274258673568861513233040422084827<96>
14083917885491531212085391871325978765324985847874073744051414575336044347969150442226196207274686199116649<107>
factorization results 素因数分解の結果
Number: n
N=8341575604466317909362822789184551401980528379231860052194430210803532061441662595183335915249591858622210040873720461884957755877831667004301869704589058236114255752708032937307101064146716398345984723
  ( 202 digits)
SNFS difficulty: 206 digits.
Divisors found:

Sun Aug 12 14:54:00 2012  prp96 factor: 592276642926138123615982107802672014513103526993394041821956036274258673568861513233040422084827
Sun Aug 12 14:54:00 2012  prp107 factor: 14083917885491531212085391871325978765324985847874073744051414575336044347969150442226196207274686199116649
Sun Aug 12 14:54:00 2012  elapsed time 10:08:40 (Msieve 1.44 - dependency 1)

Version: GGNFS-0.77.1-20060513-nocona
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.081).
Factorization parameters were as follows:
name: KA_69991_206
n: 8341575604466317909362822789184551401980528379231860052194430210803532061441662595183335915249591858622210040873720461884957755877831667004301869704589058236114255752708032937307101064146716398345984723
m: 100000000000000000000000000000000000000000
#  c202, diff: 206.85
skew: 0.663
deg: 5
c5: 70
c0: -9
# Murphy_E = 9.156e-12
type: snfs
lss: 1
rlim: 19600000
alim: 19600000
lpbr: 29
lpba: 29
mfbr: 56
mfba: 56
rlambda: 2.6
alambda: 2.6
qintsize: 100000
Factor base limits: 19600000/19600000
Large primes per side: 3
Large prime bits: 29/29
Max factor residue bits: 56/56
Sieved  special-q in [100000, 32600000)
Primes: RFBsize:1246718, AFBsize:1247686,
Relations:
Max relations in full relation-set: 28
Initial matrix:
Pruned matrix :

Msieve: found 8148296 hash collisions in 57332136 relations (51332117 unique)
Msieve: matrix is 2571615 x 2571840 (730.8 MB)

Total sieving time: 0.00 hours.
Total relation processing time: 0.00 hours.
Matrix solve time: 0.00 hours.
Total square root time: 0.00 hours, sqrts: 0.
Prototype def-par.txt line would be:
snfs,206,5,0,0,0,0,0,0,0,0,19600000,19600000,29,29,56,56,2.6,2.6,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM)2 Quad  CPU   Q9550  @ 2.83GHz stepping 07
CPU1: Intel(R) Core(TM)2 Quad  CPU   Q9550  @ 2.83GHz stepping 07
CPU2: Intel(R) Core(TM)2 Quad  CPU   Q9550  @ 2.83GHz stepping 07
CPU3: Intel(R) Core(TM)2 Quad  CPU   Q9550  @ 2.83GHz stepping 07
Memory: 8109188k/9175040k available (3972k kernel code, 787464k absent, 278388k reserved, 2498k data, 1292k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 5662.11 BogoMIPS (lpj=2831056)
Calibrating delay using timer specific routine.. 5660.89 BogoMIPS (lpj=2830449)
Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830455)
Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830458)
Total of 4 processors activated (22644.83 BogoMIPS).

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaApril 9, 2012 09:00:00 UTC 2012 年 4 月 9 日 (月) 18 時 0 分 0 秒 (日本時間)
403e62318Wataru SakaiApril 11, 2012 10:26:59 UTC 2012 年 4 月 11 日 (水) 19 時 26 分 59 秒 (日本時間)

7×10208-9

c197

name 名前Bob Backstrom
date 日付June 8, 2021 15:09:32 UTC 2021 年 6 月 9 日 (水) 0 時 9 分 32 秒 (日本時間)
composite number 合成数
82752103240024515229109500758315343838310696745425049581962643318157307616099212995418388807541924702766586343539059593851800149308793064247574640082968801302226805299982787751791956739802700769277<197>
prime factors 素因数
25910525220968384298318182824331214290171241276903113618648272783473343165585799869<83>
3193764021929452972228846620791678693308591077343275422376741353001388778795979127515158780483134051719281138554433<115>
factorization results 素因数分解の結果
Number: n
N=82752103240024515229109500758315343838310696745425049581962643318157307616099212995418388807541924702766586343539059593851800149308793064247574640082968801302226805299982787751791956739802700769277
  ( 197 digits)
SNFS difficulty: 208 digits.
Divisors found:

Wed Jun  9 01:02:45 2021  p83 factor: 25910525220968384298318182824331214290171241276903113618648272783473343165585799869
Wed Jun  9 01:02:45 2021  p115 factor: 3193764021929452972228846620791678693308591077343275422376741353001388778795979127515158780483134051719281138554433
Wed Jun  9 01:02:45 2021  elapsed time 03:27:14 (Msieve 1.54 - dependency 1)

Version: 
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.349).
Factorization parameters were as follows:
#
# N = 7x10^208-9 = 69(207)1
#
n: 82752103240024515229109500758315343838310696745425049581962643318157307616099212995418388807541924702766586343539059593851800149308793064247574640082968801302226805299982787751791956739802700769277
m: 100000000000000000000000000000000000000000
deg: 5
c5: 7000
c0: -9
skew: 0.26
# Murphy_E = 5.693e-12
type: snfs
lss: 1
rlim: 21000000
alim: 21000000
lpbr: 29
lpba: 29
mfbr: 57
mfba: 57
rlambda: 2.6
alambda: 2.6
Factor base limits: 21000000/21000000
Large primes per side: 3
Large prime bits: 29/29
Max factor residue bits: 57/57
Sieved  special-q in [100000, 52100000)
Primes: , , 
Relations: 
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 

Msieve: found 10095122 hash collisions in 62294327 relations (54211609 unique)
Msieve: matrix is 2932931 x 2933156 (1022.3 MB)

Sieving start time : 2021/06/08 01:55:18
Sieving end time  : 2021/06/08 21:27:18

Total sieving time: 19hrs 32min 0secs.

Total relation processing time: 3hrs 5min 37sec.
Matrix solve time: 0.00 hours.
Total square root time: 0hrs 4min 37sec.

Prototype def-par.txt line would be:
snfs,208,5,0,0,0,0,0,0,0,0,21000000,21000000,29,29,57,57,2.6,2.6,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------
[    0.119993] smpboot: CPU0: AMD Ryzen 7 2700 Eight-Core Processor (family: 0x17, model: 0x8, stepping: 0x2)
[    0.000000] Memory: 16241092K/16727236K available (14339K kernel code, 2400K rwdata, 5008K rodata, 2736K init, 4964K bss, 486144K reserved, 0K cma-reserved)
[    0.154044] x86/mm: Memory block size: 128MB
[    0.000005] Calibrating delay loop (skipped), value calculated using timer frequency.. 6399.33 BogoMIPS (lpj=12798672)
[    0.150212] smpboot: Total of 16 processors activated (102389.37 BogoMIPS)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaApril 9, 2012 09:00:00 UTC 2012 年 4 月 9 日 (月) 18 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovApril 12, 2012 11:19:33 UTC 2012 年 4 月 12 日 (木) 20 時 19 分 33 秒 (日本時間)
4511e6400 / 4254Dmitry DomanovApril 13, 2012 21:32:41 UTC 2012 年 4 月 14 日 (土) 6 時 32 分 41 秒 (日本時間)

7×10211-9

c212

name 名前Serge Batalov
date 日付April 10, 2012 15:45:01 UTC 2012 年 4 月 11 日 (水) 0 時 45 分 1 秒 (日本時間)
composite number 合成数
69999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999991<212>
prime factors 素因数
139654125536833359470539767777495855976117<42>
501238325261917941587887013470493749402120334825925708560215940938915470428557696100312962051174450354977953824590071285788378534730113432445251068074902706576853429932923<171>
factorization results 素因数分解の結果
Using B1=2000000, B2=5705781910, polynomial Dickson(6), sigma=98502713
Step 1 took 10853ms
Step 2 took 7488ms
********** Factor found in step 2: 139654125536833359470539767777495855976117
Found probable prime factor of 42 digits: 139654125536833359470539767777495855976117
Probable prime cofactor 501238325261... has 171 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaApril 9, 2012 09:00:00 UTC 2012 年 4 月 9 日 (月) 18 時 0 分 0 秒 (日本時間)
403e6800 / 2318600Serge BatalovApril 10, 2012 02:18:09 UTC 2012 年 4 月 10 日 (火) 11 時 18 分 9 秒 (日本時間)
200Serge BatalovApril 10, 2012 05:18:23 UTC 2012 年 4 月 10 日 (火) 14 時 18 分 23 秒 (日本時間)

7×10212-9

c170

name 名前Warut Roonguthai
date 日付April 9, 2012 11:57:20 UTC 2012 年 4 月 9 日 (月) 20 時 57 分 20 秒 (日本時間)
composite number 合成数
14040310169864776606529863275223063243833816258117658623005013249532045852081573441103235564449246676420523237002067477700281315602770395272522561052616526907192385827313<170>
prime factors 素因数
721206381419646846727738708427<30>
19467811893493453065741202158422142810686981027755018008026601661568202259398357343165250464113885685870830273948484806548768782646500893619<140>
factorization results 素因数分解の結果
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1860997204
Step 1 took 7894ms
Step 2 took 5803ms
********** Factor found in step 2: 721206381419646846727738708427
Found probable prime factor of 30 digits: 721206381419646846727738708427
Probable prime cofactor 19467811893493453065741202158422142810686981027755018008026601661568202259398357343165250464113885685870830273948484806548768782646500893619 has 140 digits
software ソフトウェア
GMP-ECM 6.3

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaApril 9, 2012 09:00:00 UTC 2012 年 4 月 9 日 (月) 18 時 0 分 0 秒 (日本時間)

7×10213-9

c211

name 名前Bob Backstrom
date 日付September 12, 2017 07:15:34 UTC 2017 年 9 月 12 日 (火) 16 時 15 分 34 秒 (日本時間)
composite number 合成数
1462293712137037810737413829120534781700438688113641111343221224148736160434510131606434092333402966367244620848130353039481930227700020889910173386254439105911844579068310006266973052015876331731773553373720493<211>
prime factors 素因数
771498992168517952697042399993102610596570961768860968409655526142194457020881629048494769<90>
1895392900030684783665579794111218864118106543746116272832983123968073976237137443601385254204358838951772548163821579197<121>
factorization results 素因数分解の結果
Number: n
N=1462293712137037810737413829120534781700438688113641111343221224148736160434510131606434092333402966367244620848130353039481930227700020889910173386254439105911844579068310006266973052015876331731773553373720493
  ( 211 digits)
SNFS difficulty: 213 digits.
Divisors found:

Tue Sep 12 15:55:33 2017  prp90 factor: 771498992168517952697042399993102610596570961768860968409655526142194457020881629048494769
Tue Sep 12 15:55:33 2017  prp121 factor: 1895392900030684783665579794111218864118106543746116272832983123968073976237137443601385254204358838951772548163821579197
Tue Sep 12 15:55:33 2017  elapsed time 22:34:27 (Msieve 1.44 - dependency 4)

Version: GGNFS-0.77.1-20060513-nocona
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=3.824).
Factorization parameters were as follows:
#
# 7x10^213-9 = 69(212)1
#
n: 1462293712137037810737413829120534781700438688113641111343221224148736160434510131606434092333402966367244620848130353039481930227700020889910173386254439105911844579068310006266973052015876331731773553373720493
m: 100000000000000000000000000000000000
deg: 6
c6: 7000
c0: -9
skew: 0.33
# Murphy_E = 2.719e-12
type: snfs
lss: 1
rlim: 26000000
alim: 26000000
lpbr: 29
lpba: 29
mfbr: 57
mfba: 57
rlambda: 2.6
alambda: 2.6
Factor base limits: 26000000/26000000
Large primes per side: 3
Large prime bits: 29/29
Max factor residue bits: 57/57
Sieved  special-q in [100000, 63400000)
Primes: RFBsize:1624527, AFBsize:1623356,
Relations:
Max relations in full relation-set: 28
Initial matrix:
Pruned matrix :

Msieve: found 14515024 hash collisions in 70413730 relations (56349282 unique)
Msieve: matrix is 4119724 x 4119949 (1170.9 MB)

Total sieving time: 0.00 hours.
Total relation processing time: 21hrs 39min 44sec.
Matrix solve time: 0.00 hours.
Total square root time: 0hrs 35min 40sec.

Prototype def-par.txt line would be:
snfs,213,6,0,0,0,0,0,0,0,0,26000000,26000000,29,29,57,57,2.6,2.6,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaApril 9, 2012 09:00:00 UTC 2012 年 4 月 9 日 (月) 18 時 0 分 0 秒 (日本時間)
403e62318Wataru SakaiApril 11, 2012 10:26:46 UTC 2012 年 4 月 11 日 (水) 19 時 26 分 46 秒 (日本時間)
4511e63950850Serge BatalovNovember 8, 2013 17:14:19 UTC 2013 年 11 月 9 日 (土) 2 時 14 分 19 秒 (日本時間)
400Serge BatalovJanuary 6, 2014 02:27:34 UTC 2014 年 1 月 6 日 (月) 11 時 27 分 34 秒 (日本時間)
1800Serge BatalovMay 24, 2014 09:17:11 UTC 2014 年 5 月 24 日 (土) 18 時 17 分 11 秒 (日本時間)
900Serge BatalovMay 24, 2014 19:03:26 UTC 2014 年 5 月 25 日 (日) 4 時 3 分 26 秒 (日本時間)
5043e64 / 6579KTakahashiMay 25, 2014 07:10:41 UTC 2014 年 5 月 25 日 (日) 16 時 10 分 41 秒 (日本時間)

7×10215-9

c169

composite cofactor 合成数の残り
1643060910173575198967355226948363052328384018001232208370662626363212460104939785676288781771247874911051458857039419183025447627487381198824250466829140912498243279581<169>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaApril 9, 2012 09:00:00 UTC 2012 年 4 月 9 日 (月) 18 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovApril 12, 2012 11:19:48 UTC 2012 年 4 月 12 日 (木) 20 時 19 分 48 秒 (日本時間)
4511e6400 / 4254Dmitry DomanovApril 13, 2012 21:32:59 UTC 2012 年 4 月 14 日 (土) 6 時 32 分 59 秒 (日本時間)

7×10216-9

c164

name 名前Serge Batalov
date 日付April 10, 2012 05:50:09 UTC 2012 年 4 月 10 日 (火) 14 時 50 分 9 秒 (日本時間)
composite number 合成数
46190566970893004976666678498027742923522803232473087357024460503829153185455701364542430236024876094904154101872741021615938489829446513115785711106703264838996313<164>
prime factors 素因数
227954867848321575193998924030404849<36>
202630316285360715213030585524118580086527966342358763050630639817465527803518361244966841282127887378409254419673004466926268137<129>
factorization results 素因数分解の結果
Using B1=2000000, B2=5705781910, polynomial Dickson(6), sigma=3776467598
Step 1 took 7616ms
Step 2 took 5820ms
********** Factor found in step 2: 227954867848321575193998924030404849
Found probable prime factor of 36 digits: 227954867848321575193998924030404849
Probable prime cofactor 202630316285... has 129 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaApril 9, 2012 09:00:00 UTC 2012 年 4 月 9 日 (月) 18 時 0 分 0 秒 (日本時間)

7×10217-9

c190

composite cofactor 合成数の残り
2399602250972360151901966221000602879953610275871121931216634762972141971180083052646222566229727177916461629412998462694714823522611280154164875199066136158285512369413384151654094901977249<190>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaApril 9, 2012 09:00:00 UTC 2012 年 4 月 9 日 (月) 18 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovApril 12, 2012 11:19:59 UTC 2012 年 4 月 12 日 (木) 20 時 19 分 59 秒 (日本時間)
4511e6400 / 4254Dmitry DomanovApril 13, 2012 21:33:10 UTC 2012 年 4 月 14 日 (土) 6 時 33 分 10 秒 (日本時間)

7×10219-9

c188

name 名前Warut Roonguthai
date 日付April 9, 2012 14:01:01 UTC 2012 年 4 月 9 日 (月) 23 時 1 分 1 秒 (日本時間)
composite number 合成数
57653973869825070524706881916522621303381606175534489400056126868553832476808466068754693250854295118765320087056496495626963432840047785241650162366280087793922993847749638516790631896881<188>
prime factors 素因数
6145583130131402681630181873643<31>
composite cofactor 合成数の残り
9381367503947885524303351816083340087912613218329956970415790184787073158797506765178860279704169936331233073640594999074958464310781485005341955432900739667<157>
factorization results 素因数分解の結果
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=903785568
Step 1 took 12917ms
Step 2 took 8081ms
********** Factor found in step 2: 6145583130131402681630181873643
Found probable prime factor of 31 digits: 6145583130131402681630181873643
Composite cofactor 9381367503947885524303351816083340087912613218329956970415790184787073158797506765178860279704169936331233073640594999074958464310781485005341955432900739667 has 157 digits
software ソフトウェア
GMP-ECM 6.3

c157

name 名前Erik Branger
date 日付April 1, 2021 20:52:48 UTC 2021 年 4 月 2 日 (金) 5 時 52 分 48 秒 (日本時間)
composite number 合成数
9381367503947885524303351816083340087912613218329956970415790184787073158797506765178860279704169936331233073640594999074958464310781485005341955432900739667<157>
prime factors 素因数
10098818456790186560606944271021327722244839<44>
55396293550281494869150192478159021960620658987<47>
16769297758443538780171259784786361363065522595555069964441109276319<68>
factorization results 素因数分解の結果
Number: 69991_219
N = 9381367503947885524303351816083340087912613218329956970415790184787073158797506765178860279704169936331233073640594999074958464310781485005341955432900739667 (157 digits)
SNFS difficulty: 221 digits.
Divisors found:
r1=10098818456790186560606944271021327722244839 (pp44)
r2=55396293550281494869150192478159021960620658987 (pp47)
r3=16769297758443538780171259784786361363065522595555069964441109276319 (pp68)
Version: Msieve v. 1.52 (SVN unknown)
Total time: 51.38 hours.
Factorization parameters were as follows:
n: 9381367503947885524303351816083340087912613218329956970415790184787073158797506765178860279704169936331233073640594999074958464310781485005341955432900739667
m: 10000000000000000000000000000000000000000000000000000000
deg: 4
c4: 7
c0: -90
skew: 1.00
type: snfs
lss: 1
rlim: 536870912
alim: 44739242
lpbr: 29
lpba: 28
mfbr: 58
mfba: 56
rlambda: 2.8
alambda: 2.8
side: 1
Factor base limits: 536870912/44739242
Large primes per side: 3
Large prime bits: 29/28
Relations: 8000108 relations
Pruned matrix : 6875921 x 6876146
Total pre-computation time approximately 1000 CPU-days.
Pre-computation saved approximately 18 G relations.
Total batch smoothness checking time: 24.92 hours.
Total relation processing time: 0.28 hours.
Matrix solve time: 25.90 hours.
time per square root: 0.28 hours.
Prototype def-par.txt line would be: snfs,221,4,0,0,0,0,0,0,0,0,536870912,44739242,29,28,58,56,2.8,2.8,100000
total time: 51.38 hours.
Intel64 Family 6 Model 60 Stepping 3, GenuineIntel
Windows-10-10.0.19041-SP0
processors: 8, speed: 3.50GHz
software ソフトウェア
GGNFS, NFS_factory, Msieve

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaApril 9, 2012 09:00:00 UTC 2012 年 4 月 9 日 (月) 18 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovApril 12, 2012 11:20:13 UTC 2012 年 4 月 12 日 (木) 20 時 20 分 13 秒 (日本時間)
4511e6400 / 4254Dmitry DomanovApril 13, 2012 21:33:38 UTC 2012 年 4 月 14 日 (土) 6 時 33 分 38 秒 (日本時間)

7×10220-9

c210

name 名前Erik Branger
date 日付January 9, 2019 18:42:07 UTC 2019 年 1 月 10 日 (木) 3 時 42 分 7 秒 (日本時間)
composite number 合成数
960291824845199259833230733392906264946577428562426807621147936977497905308000203524304231510093711869769248477319101707045728230941174472243542893019050857866449238383072205347584748144223382923405454226329593<210>
prime factors 素因数
756246066144505103931977906067945417413047943<45>
1269813977004813482377668273703623291607022336807444598400756458569107704830218708774614657368866112048040144696234964797790035483726180676871704442498079522198791551<166>
factorization results 素因数分解の結果
Number: 69991_220
N = 960291824845199259833230733392906264946577428562426807621147936977497905308000203524304231510093711869769248477319101707045728230941174472243542893019050857866449238383072205347584748144223382923405454226329593 (210 digits)
SNFS difficulty: 221 digits.
Divisors found:
r1=756246066144505103931977906067945417413047943 (pp45)
r2=1269813977004813482377668273703623291607022336807444598400756458569107704830218708774614657368866112048040144696234964797790035483726180676871704442498079522198791551 (pp166)
Version: Msieve v. 1.52 (SVN unknown)
Total time: 67.52 hours.
Factorization parameters were as follows:
n: 960291824845199259833230733392906264946577428562426807621147936977497905308000203524304231510093711869769248477319101707045728230941174472243542893019050857866449238383072205347584748144223382923405454226329593
m: 10000000000000000000000000000000000000000000000000000000
deg: 4
c4: 7
c0: -9
skew: 1.00
type: snfs
lss: 1
rlim: 536870912
alim: 536870912
lpbr: 29
lpba: 28
mfbr: 58
mfba: 56
rlambda: 2.8
alambda: 2.8
side: 1
Factor base limits: 536870912/536870912
Large primes per side: 3
Large prime bits: 29/28
Relations: 7660594 relations
Pruned matrix : 6677070 x 6677295
Total pre-computation time approximately 300 CPU-days.
Pre-computation saved approximately 8 G relations.
Total batch smoothness checking time: 31.59 hours.
Total relation processing time: 0.37 hours.
Matrix solve time: 35.35 hours.
time per square root: 0.19 hours.
Prototype def-par.txt line would be: snfs,221,4,0,0,0,0,0,0,0,0,536870912,536870912,29,28,58,56,2.8,2.8,100000
total time: 67.52 hours.
Intel64 Family 6 Model 60 Stepping 3, GenuineIntel
Windows-10-10.0.17134-SP0
processors: 8, speed: 3.50GHz
software ソフトウェア
GGNFS, NFS_factory, Msieve

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaApril 9, 2012 09:00:00 UTC 2012 年 4 月 9 日 (月) 18 時 0 分 0 秒 (日本時間)
403e62318Wataru SakaiApril 11, 2012 10:33:15 UTC 2012 年 4 月 11 日 (水) 19 時 33 分 15 秒 (日本時間)

7×10222-9

c155

name 名前Wataru Sakai
date 日付April 11, 2012 04:31:34 UTC 2012 年 4 月 11 日 (水) 13 時 31 分 34 秒 (日本時間)
composite number 合成数
30873583284349910086927869715725943820223882545823971340813151427174699908290793796131858666367658607246304757825022160297714193254634348029937449517751247<155>
prime factors 素因数
298929440520726130389031357251224413<36>
103280504023187053380573323540918475719481910744761144663905763763181024989548445190214312039300911824147855181879489819<120>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=559976036
Step 1 took 22519ms
Step 2 took 8603ms
********** Factor found in step 2: 298929440520726130389031357251224413
Found probable prime factor of 36 digits: 298929440520726130389031357251224413
Probable prime cofactor 103280504023187053380573323540918475719481910744761144663905763763181024989548445190214312039300911824147855181879489819 has 120 digits
software ソフトウェア
GMP-ECM 6.4.2

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaApril 9, 2012 09:00:00 UTC 2012 年 4 月 9 日 (月) 18 時 0 分 0 秒 (日本時間)

7×10226-9

c183

composite cofactor 合成数の残り
385526101567642625713037847807126717319064626439197589530735410847803818144036130095357037023765080533377288646658398760080031694595919583528840259664783582332038100121755929196153713<183>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaApril 9, 2012 09:00:00 UTC 2012 年 4 月 9 日 (月) 18 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovApril 12, 2012 11:20:30 UTC 2012 年 4 月 12 日 (木) 20 時 20 分 30 秒 (日本時間)
4511e6400 / 4254Dmitry DomanovApril 13, 2012 21:33:58 UTC 2012 年 4 月 14 日 (土) 6 時 33 分 58 秒 (日本時間)

7×10227-9

c222

name 名前Bob Backstrom
date 日付August 12, 2018 19:20:47 UTC 2018 年 8 月 13 日 (月) 4 時 20 分 47 秒 (日本時間)
composite number 合成数
456201109090067784967652082786163550704472269815583960229690741268147843048570428653079259728977438248292015633360292646494322577197374106416077569829726194611482842602145057614941498724917900093260541015412428612672875781<222>
prime factors 素因数
298494443006004641806601127159132965602758203214669455643936366229<66>
1528340375438381774010373496637848407832095373163139240021668916473689296847026211300363175784588797942213622286413593981699236871266668668419418446668736689<157>
factorization results 素因数分解の結果
Number: n
N=456201109090067784967652082786163550704472269815583960229690741268147843048570428653079259728977438248292015633360292646494322577197374106416077569829726194611482842602145057614941498724917900093260541015412428612672875781
  ( 222 digits)
SNFS difficulty: 228 digits.
Divisors found:

Mon Aug 13 05:01:44 2018  p66 factor: 298494443006004641806601127159132965602758203214669455643936366229
Mon Aug 13 05:01:44 2018  p157 factor: 1528340375438381774010373496637848407832095373163139240021668916473689296847026211300363175784588797942213622286413593981699236871266668668419418446668736689
Mon Aug 13 05:01:44 2018  elapsed time 18:46:19 (Msieve 1.53 - dependency 3)

Version:
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.123).
Factorization parameters were as follows:
#
# 7x10^227-9 = 69(226)1
#
n: 456201109090067784967652082786163550704472269815583960229690741268147843048570428653079259728977438248292015633360292646494322577197374106416077569829726194611482842602145057614941498724917900093260541015412428612672875781
m: 100000000000000000000000000000000000000
deg: 6
c6: 7
c0: -90
skew: 1.53
# Murphy_E = 1.218e-12
type: snfs
lss: 1
rlim: 46000000
alim: 46000000
lpbr: 30
lpba: 30
mfbr: 59
mfba: 59
rlambda: 2.7
alambda: 2.7
Factor base limits: 46000000/46000000
Large primes per side: 3
Large prime bits: 30/30
Max factor residue bits: 59/59
Sieved  special-q in [100000, 99000000)
Primes: , ,
Relations:
Max relations in full relation-set: 28
Initial matrix:
Pruned matrix :

Msieve: found 23354840 hash collisions in 123541456 relations (102597896 unique)
Msieve: matrix is 6346928 x 6347153 (1824.9 MB)

Sieving start time: 2018/08/09 13:21:19
Sieving end time  : 2018/08/12 10:11:25

Total sieving time: 68hrs 50min 6secs.

Total relation processing time: 17hrs 32min 5sec.
Matrix solve time: 0.00 hours.
Total square root time: 0hrs 33min 29sec.

Prototype def-par.txt line would be:
snfs,228,6,0,0,0,0,0,0,0,0,46000000,46000000,30,30,59,59,2.7,2.7,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------
[    0.040000] smpboot: CPU0: AMD Ryzen 7 1700 Eight-Core Processor (family: 0x17, model: 0x1, stepping: 0x1)
[    0.000000] Memory: 16285184K/16703460K available (12300K kernel code, 2470K rwdata, 4240K rodata, 2408K init, 2416K bss, 418276K reserved, 0K cma-reserved)
[    0.072652] x86/mm: Memory block size: 128MB
[    0.028000] Calibrating delay loop (skipped), value calculated using timer frequency.. 5988.85 BogoMIPS (lpj=11977704)
[    0.070214] smpboot: Total of 16 processors activated (95821.63 BogoMIPS)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaApril 9, 2012 09:00:00 UTC 2012 年 4 月 9 日 (月) 18 時 0 分 0 秒 (日本時間)
403e62318Wataru SakaiApril 11, 2012 12:36:00 UTC 2012 年 4 月 11 日 (水) 21 時 36 分 0 秒 (日本時間)

7×10228-9

c211

composite cofactor 合成数の残り
1024787011699124635063165772477709592678237006039551169028724966515948411902637917424609344072873081879858583416334837648079386986710860891718106129117103411978998086851638731417183046395044555209407067386850951<211>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaApril 9, 2012 09:00:00 UTC 2012 年 4 月 9 日 (月) 18 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovApril 12, 2012 11:20:43 UTC 2012 年 4 月 12 日 (木) 20 時 20 分 43 秒 (日本時間)
4511e6400 / 4254Dmitry DomanovApril 13, 2012 21:34:15 UTC 2012 年 4 月 14 日 (土) 6 時 34 分 15 秒 (日本時間)

7×10229-9

c192

composite cofactor 合成数の残り
478022038801598601161324458326081507170824682651708210320295238096362921970260658304771744869778644063101950567292436195511337135226610152894667424238682275704789748815090206737862062629489099<192>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaApril 9, 2012 09:00:00 UTC 2012 年 4 月 9 日 (月) 18 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovApril 12, 2012 11:20:55 UTC 2012 年 4 月 12 日 (木) 20 時 20 分 55 秒 (日本時間)
4511e6400 / 4254Dmitry DomanovApril 13, 2012 21:34:29 UTC 2012 年 4 月 14 日 (土) 6 時 34 分 29 秒 (日本時間)

7×10230-9

c182

composite cofactor 合成数の残り
98240341381592586865180163947619175992820360778528365317352233019478192807308064688581438408233226173794890027813733562265623485113445007407249726632514265798861935454343354776820591<182>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaApril 9, 2012 09:00:00 UTC 2012 年 4 月 9 日 (月) 18 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovApril 12, 2012 11:21:06 UTC 2012 年 4 月 12 日 (木) 20 時 21 分 6 秒 (日本時間)
4511e6400 / 4254Dmitry DomanovApril 13, 2012 21:34:41 UTC 2012 年 4 月 14 日 (土) 6 時 34 分 41 秒 (日本時間)

7×10232-9

c147

name 名前ebina
date 日付June 21, 2022 21:12:56 UTC 2022 年 6 月 22 日 (水) 6 時 12 分 56 秒 (日本時間)
composite number 合成数
410622292271483379810643091100667793132394370325483570800212471721109240910412439089658383759749875109159298906176909449765665669086581838774195871<147>
prime factors 素因数
40243850070814973016603184856087163985477033510934812750537982070191<68>
10203355085284660010595134523732580438288362623618364594216918439932510917374481<80>
factorization results 素因数分解の結果
Number: 69991_232
N = 410622292271483379810643091100667793132394370325483570800212471721109240910412439089658383759749875109159298906176909449765665669086581838774195871 (147 digits)
Divisors found:
r1=40243850070814973016603184856087163985477033510934812750537982070191 (pp68)
r2=10203355085284660010595134523732580438288362623618364594216918439932510917374481 (pp80)
Version: Msieve v. 1.53 (SVN unknown)
Total time: 131.62 hours.
Factorization parameters were as follows:
n:  410622292271483379810643091100667793132394370325483570800212471721109240910412439089658383759749875109159298906176909449765665669086581838774195871
# norm 3.605889e-14 alpha -7.853027 e 8.261e-12 rroots 3
skew: 20679191.20
c0: 466844358883419754190087196576623164920
c1: -14731967671217289010721932935282
c2: -14972883412843318778339663
c3: -249289293664338280
c4: 5805709120
c5: 456
Y0: -61786764960345824355739564747
Y1: 4420717150832701
type: gnfs
Factor base limits: 17700000/17700000
Large primes per side: 3
Large prime bits: 29/29
Sieved algebraic special-q in [0, 0)
Total raw relations: 42150662
Relations: 6197390 relations
Pruned matrix : 3627535 x 3627760
Polynomial selection time: 0.73 hours.
Total sieving time: 118.90 hours.
Total relation processing time: 0.55 hours.
Matrix solve time: 9.08 hours.
time per square root: 2.37 hours.
Prototype def-par.txt line would be: gnfs,146,5,65,2000,1e-05,0.28,250,20,50000,3600,17700000,17700000,29,29,58,58,2.6,2.6,100000
total time: 131.62 hours.
Intel64 Family 6 Model 42 Stepping 7, GenuineIntel
processors: 8, speed: 3.39GHz
Windows-7-6.1.7601-SP1
Running Python 3.2

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaApril 9, 2012 09:00:00 UTC 2012 年 4 月 9 日 (月) 18 時 0 分 0 秒 (日本時間)
403e62318Wataru SakaiApril 11, 2012 04:33:31 UTC 2012 年 4 月 11 日 (水) 13 時 33 分 31 秒 (日本時間)
4511e61250850Serge BatalovNovember 8, 2013 17:10:30 UTC 2013 年 11 月 9 日 (土) 2 時 10 分 30 秒 (日本時間)
400Serge BatalovJanuary 6, 2014 02:24:38 UTC 2014 年 1 月 6 日 (月) 11 時 24 分 38 秒 (日本時間)
5043e67254800Dmitry DomanovApril 19, 2012 21:22:27 UTC 2012 年 4 月 20 日 (金) 6 時 22 分 27 秒 (日本時間)
6454Ignacio SantosJune 17, 2021 14:02:25 UTC 2021 年 6 月 17 日 (木) 23 時 2 分 25 秒 (日本時間)
5511e70 / 14550--
6026e7230 / 41145Ignacio SantosDecember 11, 2021 10:03:12 UTC 2021 年 12 月 11 日 (土) 19 時 3 分 12 秒 (日本時間)

7×10233-9

c214

composite cofactor 合成数の残り
1873928884375628629293843065310239401172555486837756916428509125256046746109657548346913918074820821134172510267188859225005229808127904928470882993587833640311513890518859811796016507162989380631986609905785822207<214>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaApril 9, 2012 09:00:00 UTC 2012 年 4 月 9 日 (月) 18 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovApril 12, 2012 11:21:23 UTC 2012 年 4 月 12 日 (木) 20 時 21 分 23 秒 (日本時間)
4511e6400 / 4254Dmitry DomanovApril 13, 2012 21:34:56 UTC 2012 年 4 月 14 日 (土) 6 時 34 分 56 秒 (日本時間)

7×10234-9

c224

composite cofactor 合成数の残り
13235912842124442981230650260740579799508716727006949290945932800927285750827930557232183327015205665426887670291887096985346828394883711485735076895899811740859764669255629719871234748123918574072655207782925695558311879499<224>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaApril 9, 2012 09:00:00 UTC 2012 年 4 月 9 日 (月) 18 時 0 分 0 秒 (日本時間)
403e62318Wataru SakaiApril 11, 2012 12:35:43 UTC 2012 年 4 月 11 日 (水) 21 時 35 分 43 秒 (日本時間)

7×10235-9

c181

name 名前Serge Batalov
date 日付April 10, 2012 15:44:32 UTC 2012 年 4 月 11 日 (水) 0 時 44 分 32 秒 (日本時間)
composite number 合成数
2739754552009227217507885914836708358589024792931388355256923049533241698754364943338948653712909730358231946503936117171860745824708912784542550083510156654731559054734532848375253<181>
prime factors 素因数
316188143641271607137124213659163904245529<42>
composite cofactor 合成数の残り
8664950306035481567672815466092400879720895896037974091528554453894124099069928106291920874411067356982942368844940012985753874133738876957<139>
factorization results 素因数分解の結果
Using B1=2000000, B2=5705781910, polynomial Dickson(6), sigma=1111106710
Step 1 took 8885ms
Step 2 took 6476ms
********** Factor found in step 2: 316188143641271607137124213659163904245529
Found probable prime factor of 42 digits: 316188143641271607137124213659163904245529
Composite cofactor 866495030603... has 139 digits

c139

name 名前Dmitry Domanov
date 日付April 12, 2012 13:38:52 UTC 2012 年 4 月 12 日 (木) 22 時 38 分 52 秒 (日本時間)
composite number 合成数
8664950306035481567672815466092400879720895896037974091528554453894124099069928106291920874411067356982942368844940012985753874133738876957<139>
prime factors 素因数
1827577457767759582475882242136071<34>
4741221921515178223597897064678032431599875207961169208833078366212395819341801159416213090256929131726267<106>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3009347335
Step 1 took 16359ms
Step 2 took 7041ms
********** Factor found in step 2: 1827577457767759582475882242136071
Found probable prime factor of 34 digits: 1827577457767759582475882242136071

Nice find after Serge Batalov's p42 factor =)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaApril 9, 2012 09:00:00 UTC 2012 年 4 月 9 日 (月) 18 時 0 分 0 秒 (日本時間)
403e61000 / 2318Dmitry DomanovApril 12, 2012 11:21:39 UTC 2012 年 4 月 12 日 (木) 20 時 21 分 39 秒 (日本時間)

7×10236-9

c226

composite cofactor 合成数の残り
3762020367095686231983845604090447071146589467197465614768082315236961573746549224456076003680042654216007425331811931072302367532580223117584374952348318635981145311064584157856154533405593086205794681625601852948590016832543<226>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaApril 9, 2012 09:00:00 UTC 2012 年 4 月 9 日 (月) 18 時 0 分 0 秒 (日本時間)
403e62318Wataru SakaiApril 11, 2012 12:35:29 UTC 2012 年 4 月 11 日 (水) 21 時 35 分 29 秒 (日本時間)

7×10237-9

c221

composite cofactor 合成数の残り
54555565306518059364821657044923099481078186769722182697080744535993993771452719980551306100788235215096688150190449192184585417153271853246499113545802021729891857549555062840162534267098706093176677836995665682849258501<221>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaApril 9, 2012 09:00:00 UTC 2012 年 4 月 9 日 (月) 18 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovApril 12, 2012 11:21:56 UTC 2012 年 4 月 12 日 (木) 20 時 21 分 56 秒 (日本時間)
4511e6400 / 4254Dmitry DomanovApril 13, 2012 21:36:32 UTC 2012 年 4 月 14 日 (土) 6 時 36 分 32 秒 (日本時間)

7×10238-9

c231

name 名前Wataru Sakai
date 日付April 12, 2012 05:58:41 UTC 2012 年 4 月 12 日 (木) 14 時 58 分 41 秒 (日本時間)
composite number 合成数
107599696302624035177156759093888631304609564687336487370438763754686299180183925909788134860669622084980312568110127403773948981268901913756977327285244582955928039026262283663951102935084994083792098344671361836801336361174440663<231>
prime factors 素因数
11891187412751194272046478217589522793<38>
composite cofactor 合成数の残り
9048692327163425362005443839788677649612422026947506678164073426406397578545081309077303518330959578510625574524433636174789600429693817014236282588606445648489496653502712630836379093320790591<193>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1467907849
Step 1 took 26202ms
Step 2 took 11012ms
********** Factor found in step 2: 11891187412751194272046478217589522793
Found probable prime factor of 38 digits: 11891187412751194272046478217589522793
Composite cofactor 9048692327163425362005443839788677649612422026947506678164073426406397578545081309077303518330959578510625574524433636174789600429693817014236282588606445648489496653502712630836379093320790591 has 193 digits
software ソフトウェア
GMP-ECM 6.4.2

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaApril 9, 2012 09:00:00 UTC 2012 年 4 月 9 日 (月) 18 時 0 分 0 秒 (日本時間)
403e61722Wataru SakaiApril 12, 2012 05:57:53 UTC 2012 年 4 月 12 日 (木) 14 時 57 分 53 秒 (日本時間)
4511e6400 / 4094Dmitry DomanovApril 13, 2012 21:36:48 UTC 2012 年 4 月 14 日 (土) 6 時 36 分 48 秒 (日本時間)

7×10239-9

c230

composite cofactor 合成数の残り
45576597454634578291426661929493291651557370803313246407501095271234580491122539594989539858033374550683333737794166187829872746638972881492122801431304837659917005957517394995811315040097152002292510144223712029591287723319421289<230>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaApril 9, 2012 09:00:00 UTC 2012 年 4 月 9 日 (月) 18 時 0 分 0 秒 (日本時間)
403e62318Wataru SakaiApril 11, 2012 13:00:18 UTC 2012 年 4 月 11 日 (水) 22 時 0 分 18 秒 (日本時間)
4511e60 / 1156--
5043e6800 / 7465Domanov DmitryMay 4, 2012 22:20:53 UTC 2012 年 5 月 5 日 (土) 7 時 20 分 53 秒 (日本時間)

7×10243-9

c220

composite cofactor 合成数の残り
2575664517059589864575416765804690647334109223273960277626292029323352266981029361524908151899462975624003981613541982508773156341504795180638509120356897408026254077534903430214517222659734227320894818869773842308857373<220>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaApril 9, 2012 09:00:00 UTC 2012 年 4 月 9 日 (月) 18 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovApril 12, 2012 11:22:15 UTC 2012 年 4 月 12 日 (木) 20 時 22 分 15 秒 (日本時間)
4511e6400 / 4254Dmitry DomanovApril 13, 2012 21:37:07 UTC 2012 年 4 月 14 日 (土) 6 時 37 分 7 秒 (日本時間)

7×10244-9

c208

composite cofactor 合成数の残り
1381523335048062046516787950379089724819201574035164247148832929784051696134453433037710692492384762674399091327101857614100916957798430968633106867032814652324057183446675761126022091379549689267556766260987<208>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaApril 9, 2012 09:00:00 UTC 2012 年 4 月 9 日 (月) 18 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovApril 12, 2012 11:22:27 UTC 2012 年 4 月 12 日 (木) 20 時 22 分 27 秒 (日本時間)
4511e6400 / 4254Dmitry DomanovApril 13, 2012 21:37:20 UTC 2012 年 4 月 14 日 (土) 6 時 37 分 20 秒 (日本時間)

7×10245-9

c226

composite cofactor 合成数の残り
1546128156779539563876591245771215747407539600555924059841448089358537751216948580192286899422486246108767817304352323790543719286587307935052085757580157773146525248142487216796408390939536031625696777295716023313660098366579<226>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaApril 9, 2012 09:00:00 UTC 2012 年 4 月 9 日 (月) 18 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovApril 12, 2012 11:22:40 UTC 2012 年 4 月 12 日 (木) 20 時 22 分 40 秒 (日本時間)
4511e6400 / 4254Dmitry DomanovApril 13, 2012 21:37:34 UTC 2012 年 4 月 14 日 (土) 6 時 37 分 34 秒 (日本時間)

7×10246-9

c247

name 名前NFS@home + Dmitry Domanov
date 日付April 8, 2022 00:06:43 UTC 2022 年 4 月 8 日 (金) 9 時 6 分 43 秒 (日本時間)
composite number 合成数
6999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999991<247>
prime factors 素因数
901982132264511124601298823276651902852309016959939774557079450903704410101098623<81>
7760685882353168665187416708750291996052921794618811461914480193769422576834175059893641734916448557971308621179111257517626010825189413824054292014432806970315975817<166>
factorization results 素因数分解の結果
Sieving by NFS@home, postprocessing, linear algebra and square root by Dmitry Domanov

Thu Apr  7 07:42:45 2022  
Thu Apr  7 07:42:45 2022  
Thu Apr  7 07:42:45 2022  Msieve v. 1.54 (SVN 1043M)
Thu Apr  7 07:42:45 2022  random seeds: 753dc9e7 ee48ba62
Thu Apr  7 07:42:45 2022  factoring 6999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999991 (247 digits)
Thu Apr  7 07:42:47 2022  searching for 15-digit factors
Thu Apr  7 07:42:48 2022  commencing number field sieve (247-digit input)
Thu Apr  7 07:42:48 2022  R0: -100000000000000000000000000000000000000000
Thu Apr  7 07:42:48 2022  R1: 1
Thu Apr  7 07:42:48 2022  A0: -9
Thu Apr  7 07:42:48 2022  A1: 0
Thu Apr  7 07:42:48 2022  A2: 0
Thu Apr  7 07:42:48 2022  A3: 0
Thu Apr  7 07:42:48 2022  A4: 0
Thu Apr  7 07:42:48 2022  A5: 0
Thu Apr  7 07:42:48 2022  A6: 7
Thu Apr  7 07:42:48 2022  skew 1.00, size 2.173e-12, alpha 2.716, combined = 2.106e-13 rroots = 2
Thu Apr  7 07:42:48 2022  
Thu Apr  7 07:42:48 2022  commencing relation filtering
Thu Apr  7 07:42:48 2022  setting target matrix density to 130.0
Thu Apr  7 07:42:48 2022  estimated available RAM is 63624.2 MB
Thu Apr  7 07:42:48 2022  commencing duplicate removal, pass 1
Thu Apr  7 07:51:01 2022  error -15 reading relation 54439650
Thu Apr  7 07:51:06 2022  error -5 reading relation 54957229
Thu Apr  7 07:51:07 2022  error -1 reading relation 55060031
Thu Apr  7 07:51:12 2022  error -15 reading relation 55608361
Thu Apr  7 07:51:47 2022  error -1 reading relation 58987557
Thu Apr  7 07:51:55 2022  error -6 reading relation 59653098
Thu Apr  7 07:51:55 2022  error -11 reading relation 59653147
Thu Apr  7 07:53:11 2022  error -15 reading relation 67995819
Thu Apr  7 08:08:14 2022  skipped 349 relations with b > 2^32
Thu Apr  7 08:08:14 2022  skipped 5 relations with composite factors
Thu Apr  7 08:08:14 2022  found 6363117 hash collisions in 169595488 relations
Thu Apr  7 08:08:34 2022  added 1218088 free relations
Thu Apr  7 08:08:34 2022  commencing duplicate removal, pass 2
Thu Apr  7 08:09:31 2022  found 0 duplicates and 170813576 unique relations
Thu Apr  7 08:09:31 2022  memory use: 506.4 MB
Thu Apr  7 08:09:31 2022  reading ideals above 720000
Thu Apr  7 08:09:31 2022  commencing singleton removal, initial pass
Thu Apr  7 08:34:31 2022  memory use: 3012.0 MB
Thu Apr  7 08:34:31 2022  reading all ideals from disk
Thu Apr  7 08:34:36 2022  memory use: 6899.6 MB
Thu Apr  7 08:35:01 2022  keeping 137007863 ideals with weight <= 200, target excess is 949362
Thu Apr  7 08:35:33 2022  commencing in-memory singleton removal
Thu Apr  7 08:35:54 2022  begin with 170813576 relations and 137007863 unique ideals
Thu Apr  7 08:39:53 2022  reduce to 129924086 relations and 93328208 ideals in 11 passes
Thu Apr  7 08:39:53 2022  max relations containing the same ideal: 175
Thu Apr  7 08:41:15 2022  removing 8024693 relations and 6024693 ideals in 2000000 cliques
Thu Apr  7 08:41:21 2022  commencing in-memory singleton removal
Thu Apr  7 08:41:33 2022  begin with 121899393 relations and 93328208 unique ideals
Thu Apr  7 08:43:30 2022  reduce to 121511243 relations and 86907680 ideals in 8 passes
Thu Apr  7 08:43:30 2022  max relations containing the same ideal: 168
Thu Apr  7 08:44:30 2022  removing 6354259 relations and 4354259 ideals in 2000000 cliques
Thu Apr  7 08:44:35 2022  commencing in-memory singleton removal
Thu Apr  7 08:44:47 2022  begin with 115156984 relations and 86907680 unique ideals
Thu Apr  7 08:46:07 2022  reduce to 114892664 relations and 82284550 ideals in 6 passes
Thu Apr  7 08:46:07 2022  max relations containing the same ideal: 163
Thu Apr  7 08:47:05 2022  removing 5907151 relations and 3907151 ideals in 2000000 cliques
Thu Apr  7 08:47:10 2022  commencing in-memory singleton removal
Thu Apr  7 08:47:22 2022  begin with 108985513 relations and 82284550 unique ideals
Thu Apr  7 08:48:43 2022  reduce to 108756877 relations and 78144905 ideals in 6 passes
Thu Apr  7 08:48:43 2022  max relations containing the same ideal: 158
Thu Apr  7 08:49:39 2022  removing 5671368 relations and 3671368 ideals in 2000000 cliques
Thu Apr  7 08:49:44 2022  commencing in-memory singleton removal
Thu Apr  7 08:49:54 2022  begin with 103085509 relations and 78144905 unique ideals
Thu Apr  7 08:51:16 2022  reduce to 102875751 relations and 74260170 ideals in 6 passes
Thu Apr  7 08:51:16 2022  max relations containing the same ideal: 153
Thu Apr  7 08:52:09 2022  removing 5521881 relations and 3521881 ideals in 2000000 cliques
Thu Apr  7 08:52:14 2022  commencing in-memory singleton removal
Thu Apr  7 08:52:24 2022  begin with 97353870 relations and 74260170 unique ideals
Thu Apr  7 08:53:41 2022  reduce to 97154161 relations and 70534960 ideals in 6 passes
Thu Apr  7 08:53:41 2022  max relations containing the same ideal: 146
Thu Apr  7 08:54:32 2022  removing 5414370 relations and 3414370 ideals in 2000000 cliques
Thu Apr  7 08:54:36 2022  commencing in-memory singleton removal
Thu Apr  7 08:54:45 2022  begin with 91739791 relations and 70534960 unique ideals
Thu Apr  7 08:55:48 2022  reduce to 91544808 relations and 66921979 ideals in 6 passes
Thu Apr  7 08:55:48 2022  max relations containing the same ideal: 139
Thu Apr  7 08:56:33 2022  removing 5337093 relations and 3337093 ideals in 2000000 cliques
Thu Apr  7 08:56:38 2022  commencing in-memory singleton removal
Thu Apr  7 08:56:46 2022  begin with 86207715 relations and 66921979 unique ideals
Thu Apr  7 08:57:47 2022  reduce to 86012665 relations and 63386046 ideals in 6 passes
Thu Apr  7 08:57:47 2022  max relations containing the same ideal: 135
Thu Apr  7 08:58:32 2022  removing 5274384 relations and 3274384 ideals in 2000000 cliques
Thu Apr  7 08:58:37 2022  commencing in-memory singleton removal
Thu Apr  7 08:58:46 2022  begin with 80738281 relations and 63386046 unique ideals
Thu Apr  7 08:59:32 2022  reduce to 80541977 relations and 59911316 ideals in 5 passes
Thu Apr  7 08:59:32 2022  max relations containing the same ideal: 127
Thu Apr  7 09:00:14 2022  removing 5226887 relations and 3226887 ideals in 2000000 cliques
Thu Apr  7 09:00:18 2022  commencing in-memory singleton removal
Thu Apr  7 09:00:25 2022  begin with 75315090 relations and 59911316 unique ideals
Thu Apr  7 09:01:05 2022  reduce to 75115465 relations and 56480444 ideals in 5 passes
Thu Apr  7 09:01:05 2022  max relations containing the same ideal: 121
Thu Apr  7 09:01:44 2022  removing 5196073 relations and 3196073 ideals in 2000000 cliques
Thu Apr  7 09:01:47 2022  commencing in-memory singleton removal
Thu Apr  7 09:01:54 2022  begin with 69919392 relations and 56480444 unique ideals
Thu Apr  7 09:02:37 2022  reduce to 69712017 relations and 53072182 ideals in 6 passes
Thu Apr  7 09:02:37 2022  max relations containing the same ideal: 116
Thu Apr  7 09:03:11 2022  removing 5168218 relations and 3168218 ideals in 2000000 cliques
Thu Apr  7 09:03:15 2022  commencing in-memory singleton removal
Thu Apr  7 09:03:21 2022  begin with 64543799 relations and 53072182 unique ideals
Thu Apr  7 09:04:07 2022  reduce to 64328027 relations and 49682740 ideals in 6 passes
Thu Apr  7 09:04:07 2022  max relations containing the same ideal: 110
Thu Apr  7 09:04:44 2022  removing 5148564 relations and 3148564 ideals in 2000000 cliques
Thu Apr  7 09:04:48 2022  commencing in-memory singleton removal
Thu Apr  7 09:04:54 2022  begin with 59179463 relations and 49682740 unique ideals
Thu Apr  7 09:05:41 2022  reduce to 58951177 relations and 46299878 ideals in 6 passes
Thu Apr  7 09:05:41 2022  max relations containing the same ideal: 109
Thu Apr  7 09:06:13 2022  removing 5138325 relations and 3138325 ideals in 2000000 cliques
Thu Apr  7 09:06:16 2022  commencing in-memory singleton removal
Thu Apr  7 09:06:21 2022  begin with 53812852 relations and 46299878 unique ideals
Thu Apr  7 09:07:00 2022  reduce to 53567912 relations and 42909706 ideals in 6 passes
Thu Apr  7 09:07:00 2022  max relations containing the same ideal: 100
Thu Apr  7 09:07:32 2022  removing 5134328 relations and 3134328 ideals in 2000000 cliques
Thu Apr  7 09:07:35 2022  commencing in-memory singleton removal
Thu Apr  7 09:07:40 2022  begin with 48433584 relations and 42909706 unique ideals
Thu Apr  7 09:08:12 2022  reduce to 48166179 relations and 39499806 ideals in 6 passes
Thu Apr  7 09:08:12 2022  max relations containing the same ideal: 91
Thu Apr  7 09:08:36 2022  removing 5141009 relations and 3141009 ideals in 2000000 cliques
Thu Apr  7 09:08:39 2022  commencing in-memory singleton removal
Thu Apr  7 09:08:43 2022  begin with 43025170 relations and 39499806 unique ideals
Thu Apr  7 09:09:10 2022  reduce to 42727878 relations and 36051377 ideals in 6 passes
Thu Apr  7 09:09:10 2022  max relations containing the same ideal: 82
Thu Apr  7 09:09:32 2022  removing 5157802 relations and 3157802 ideals in 2000000 cliques
Thu Apr  7 09:09:35 2022  commencing in-memory singleton removal
Thu Apr  7 09:09:39 2022  begin with 37570076 relations and 36051377 unique ideals
Thu Apr  7 09:10:03 2022  reduce to 37226134 relations and 32536655 ideals in 6 passes
Thu Apr  7 09:10:03 2022  max relations containing the same ideal: 76
Thu Apr  7 09:10:22 2022  removing 5200967 relations and 3200967 ideals in 2000000 cliques
Thu Apr  7 09:10:25 2022  commencing in-memory singleton removal
Thu Apr  7 09:10:28 2022  begin with 32025167 relations and 32536655 unique ideals
Thu Apr  7 09:10:52 2022  reduce to 31605828 relations and 28898348 ideals in 7 passes
Thu Apr  7 09:10:52 2022  max relations containing the same ideal: 68
Thu Apr  7 09:11:09 2022  removing 4363532 relations and 2757312 ideals in 1606220 cliques
Thu Apr  7 09:11:11 2022  commencing in-memory singleton removal
Thu Apr  7 09:11:14 2022  begin with 27242296 relations and 28898348 unique ideals
Thu Apr  7 09:11:32 2022  reduce to 26835039 relations and 25716293 ideals in 7 passes
Thu Apr  7 09:11:32 2022  max relations containing the same ideal: 61
Thu Apr  7 09:11:45 2022  removing 94071 relations and 76585 ideals in 17486 cliques
Thu Apr  7 09:11:47 2022  commencing in-memory singleton removal
Thu Apr  7 09:11:49 2022  begin with 26740968 relations and 25716293 unique ideals
Thu Apr  7 09:11:59 2022  reduce to 26740636 relations and 25639376 ideals in 4 passes
Thu Apr  7 09:11:59 2022  max relations containing the same ideal: 61
Thu Apr  7 09:12:05 2022  relations with 0 large ideals: 36477
Thu Apr  7 09:12:05 2022  relations with 1 large ideals: 19639
Thu Apr  7 09:12:05 2022  relations with 2 large ideals: 240302
Thu Apr  7 09:12:05 2022  relations with 3 large ideals: 1305708
Thu Apr  7 09:12:05 2022  relations with 4 large ideals: 3767861
Thu Apr  7 09:12:05 2022  relations with 5 large ideals: 6439537
Thu Apr  7 09:12:05 2022  relations with 6 large ideals: 6904851
Thu Apr  7 09:12:05 2022  relations with 7+ large ideals: 8026261
Thu Apr  7 09:12:05 2022  commencing 2-way merge
Thu Apr  7 09:12:25 2022  reduce to 19119927 relation sets and 18018667 unique ideals
Thu Apr  7 09:12:25 2022  commencing full merge
Thu Apr  7 09:21:19 2022  memory use: 2338.3 MB
Thu Apr  7 09:21:21 2022  found 8407165 cycles, need 8348867
Thu Apr  7 09:21:25 2022  weight of 8348867 cycles is about 1086174084 (130.10/cycle)
Thu Apr  7 09:21:26 2022  distribution of cycle lengths:
Thu Apr  7 09:21:26 2022  1 relations: 214400
Thu Apr  7 09:21:26 2022  2 relations: 373084
Thu Apr  7 09:21:26 2022  3 relations: 502555
Thu Apr  7 09:21:26 2022  4 relations: 570239
Thu Apr  7 09:21:26 2022  5 relations: 623726
Thu Apr  7 09:21:26 2022  6 relations: 644427
Thu Apr  7 09:21:26 2022  7 relations: 645893
Thu Apr  7 09:21:26 2022  8 relations: 625276
Thu Apr  7 09:21:26 2022  9 relations: 586470
Thu Apr  7 09:21:26 2022  10+ relations: 3562797
Thu Apr  7 09:21:26 2022  heaviest cycle: 28 relations
Thu Apr  7 09:21:29 2022  commencing cycle optimization
Thu Apr  7 09:21:55 2022  start with 77804905 relations
Thu Apr  7 09:25:40 2022  pruned 4791259 relations
Thu Apr  7 09:25:41 2022  memory use: 1907.8 MB
Thu Apr  7 09:25:41 2022  distribution of cycle lengths:
Thu Apr  7 09:25:41 2022  1 relations: 214400
Thu Apr  7 09:25:41 2022  2 relations: 384640
Thu Apr  7 09:25:41 2022  3 relations: 528329
Thu Apr  7 09:25:41 2022  4 relations: 603299
Thu Apr  7 09:25:41 2022  5 relations: 668561
Thu Apr  7 09:25:41 2022  6 relations: 691530
Thu Apr  7 09:25:41 2022  7 relations: 698177
Thu Apr  7 09:25:41 2022  8 relations: 671674
Thu Apr  7 09:25:41 2022  9 relations: 628817
Thu Apr  7 09:25:41 2022  10+ relations: 3259440
Thu Apr  7 09:25:41 2022  heaviest cycle: 28 relations
Thu Apr  7 09:26:02 2022  RelProcTime: 6194
Thu Apr  7 09:26:02 2022  elapsed time 01:43:17
Thu Apr  7 09:31:06 2022  
Thu Apr  7 09:31:06 2022  
Thu Apr  7 09:31:06 2022  Msieve v. 1.54 (SVN 1043M)
Thu Apr  7 09:31:06 2022  random seeds: b5157923 4790cdf2
Thu Apr  7 09:31:06 2022  factoring 6999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999991 (247 digits)
Thu Apr  7 09:31:08 2022  searching for 15-digit factors
Thu Apr  7 09:31:09 2022  commencing number field sieve (247-digit input)
Thu Apr  7 09:31:09 2022  R0: -100000000000000000000000000000000000000000
Thu Apr  7 09:31:09 2022  R1: 1
Thu Apr  7 09:31:09 2022  A0: -9
Thu Apr  7 09:31:09 2022  A1: 0
Thu Apr  7 09:31:09 2022  A2: 0
Thu Apr  7 09:31:09 2022  A3: 0
Thu Apr  7 09:31:09 2022  A4: 0
Thu Apr  7 09:31:09 2022  A5: 0
Thu Apr  7 09:31:09 2022  A6: 7
Thu Apr  7 09:31:09 2022  skew 1.00, size 2.173e-12, alpha 2.716, combined = 2.106e-13 rroots = 2
Thu Apr  7 09:31:09 2022  
Thu Apr  7 09:31:09 2022  commencing linear algebra
Thu Apr  7 09:31:10 2022  read 8348867 cycles
Thu Apr  7 09:31:34 2022  cycles contain 26286809 unique relations
Thu Apr  7 09:35:52 2022  read 26286809 relations
Thu Apr  7 09:36:52 2022  using 20 quadratic characters above 4294917295
Thu Apr  7 09:39:08 2022  building initial matrix
Thu Apr  7 09:46:02 2022  memory use: 3451.1 MB
Thu Apr  7 09:46:07 2022  read 8348867 cycles
Thu Apr  7 09:46:08 2022  matrix is 8348690 x 8348867 (4104.6 MB) with weight 1166561968 (139.73/col)
Thu Apr  7 09:46:08 2022  sparse part has weight 992520000 (118.88/col)
Thu Apr  7 09:48:20 2022  filtering completed in 2 passes
Thu Apr  7 09:48:22 2022  matrix is 8348527 x 8348704 (4104.6 MB) with weight 1166556074 (139.73/col)
Thu Apr  7 09:48:22 2022  sparse part has weight 992517616 (118.88/col)
Thu Apr  7 09:49:04 2022  matrix starts at (0, 0)
Thu Apr  7 09:49:05 2022  matrix is 8348527 x 8348704 (4104.6 MB) with weight 1166556074 (139.73/col)
Thu Apr  7 09:49:05 2022  sparse part has weight 992517616 (118.88/col)
Thu Apr  7 09:49:05 2022  saving the first 48 matrix rows for later
Thu Apr  7 09:49:07 2022  matrix includes 64 packed rows
Thu Apr  7 09:49:09 2022  matrix is 8348479 x 8348704 (3956.5 MB) with weight 1010451368 (121.03/col)
Thu Apr  7 09:49:09 2022  sparse part has weight 953696590 (114.23/col)
Thu Apr  7 09:49:09 2022  using block size 8192 and superblock size 3244032 for processor cache size 33792 kB
Thu Apr  7 09:49:40 2022  commencing Lanczos iteration
Thu Apr  7 09:49:40 2022  memory use: 3776.0 MB
Thu Apr  7 09:52:24 2022  linear algebra at 0.0%, ETA 241h10m
Thu Apr  7 09:53:16 2022  checkpointing every 40000 dimensions

Thu Apr  7 10:42:40 2022  
Thu Apr  7 10:42:40 2022  
Thu Apr  7 10:42:40 2022  Msieve v. 1.54 (SVN unknown)
Thu Apr  7 10:42:40 2022  random seeds: b1417723 41168745
Thu Apr  7 10:42:40 2022  factoring 6999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999991 (247 digits)
Thu Apr  7 10:42:41 2022  no P-1/P+1/ECM available, skipping
Thu Apr  7 10:42:41 2022  commencing number field sieve (247-digit input)
Thu Apr  7 10:42:41 2022  R0: -100000000000000000000000000000000000000000
Thu Apr  7 10:42:41 2022  R1: 1
Thu Apr  7 10:42:41 2022  A0: -9
Thu Apr  7 10:42:41 2022  A1: 0
Thu Apr  7 10:42:41 2022  A2: 0
Thu Apr  7 10:42:41 2022  A3: 0
Thu Apr  7 10:42:41 2022  A4: 0
Thu Apr  7 10:42:41 2022  A5: 0
Thu Apr  7 10:42:41 2022  A6: 7
Thu Apr  7 10:42:41 2022  skew 1.00, size 2.173e-12, alpha 2.716, combined = 2.106e-13 rroots = 2
Thu Apr  7 10:42:41 2022  
Thu Apr  7 10:42:41 2022  commencing linear algebra
Thu Apr  7 10:42:41 2022  using VBITS=128
Thu Apr  7 10:42:41 2022  skipping matrix build
Thu Apr  7 10:42:45 2022  matrix starts at (0, 0)
Thu Apr  7 10:42:46 2022  matrix is 8348527 x 8348704 (4104.6 MB) with weight 1166556074 (139.73/col)
Thu Apr  7 10:42:46 2022  sparse part has weight 992517616 (118.88/col)
Thu Apr  7 10:42:46 2022  saving the first 112 matrix rows for later
Thu Apr  7 10:42:49 2022  matrix includes 128 packed rows
Thu Apr  7 10:42:51 2022  matrix is 8348415 x 8348704 (3839.6 MB) with weight 953696590 (114.23/col)
Thu Apr  7 10:42:51 2022  sparse part has weight 906337674 (108.56/col)
Thu Apr  7 10:42:51 2022  using GPU 0 (Tesla P100-PCIE-16GB)
Thu Apr  7 10:42:51 2022  selected card has CUDA arch 6.0
Thu Apr  7 10:44:16 2022  commencing Lanczos iteration
Thu Apr  7 10:44:16 2022  memory use: 8188.7 MB
Thu Apr  7 10:44:21 2022  linear algebra at 0.0%, ETA 6h 4m
Thu Apr  7 10:44:23 2022  checkpointing every 1230000 dimensions
Thu Apr  7 17:19:25 2022  lanczos halted after 65617 iterations (dim = 8348415)
Thu Apr  7 17:19:40 2022  recovered 37 nontrivial dependencies
Thu Apr  7 17:19:40 2022  BLanczosTime: 23819
Thu Apr  7 17:19:40 2022  elapsed time 06:37:00

Thu Apr  7 17:23:17 2022  
Thu Apr  7 17:23:17 2022  
Thu Apr  7 17:23:17 2022  Msieve v. 1.54 (SVN 1043M)
Thu Apr  7 17:23:17 2022  random seeds: cdc07f3c 5e68aa8f
Thu Apr  7 17:23:17 2022  factoring 6999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999991 (247 digits)
Thu Apr  7 17:23:19 2022  searching for 15-digit factors
Thu Apr  7 17:23:19 2022  commencing number field sieve (247-digit input)
Thu Apr  7 17:23:19 2022  R0: -100000000000000000000000000000000000000000
Thu Apr  7 17:23:19 2022  R1: 1
Thu Apr  7 17:23:19 2022  A0: -9
Thu Apr  7 17:23:19 2022  A1: 0
Thu Apr  7 17:23:19 2022  A2: 0
Thu Apr  7 17:23:19 2022  A3: 0
Thu Apr  7 17:23:19 2022  A4: 0
Thu Apr  7 17:23:19 2022  A5: 0
Thu Apr  7 17:23:19 2022  A6: 7
Thu Apr  7 17:23:19 2022  skew 1.00, size 2.173e-12, alpha 2.716, combined = 2.106e-13 rroots = 2
Thu Apr  7 17:23:19 2022  
Thu Apr  7 17:23:19 2022  commencing square root phase
Thu Apr  7 17:23:19 2022  reading relations for dependency 1
Thu Apr  7 17:23:46 2022  read 4173471 cycles
Thu Apr  7 17:23:58 2022  cycles contain 13138470 unique relations
Thu Apr  7 17:45:43 2022  read 13138470 relations
Thu Apr  7 17:47:15 2022  multiplying 13138470 relations
Thu Apr  7 17:58:05 2022  multiply complete, coefficients have about 375.67 million bits
Thu Apr  7 17:58:06 2022  initial square root is modulo 5505673
Thu Apr  7 18:11:03 2022  GCD is N, no factor found
Thu Apr  7 18:11:03 2022  reading relations for dependency 2
Thu Apr  7 18:11:04 2022  read 4174192 cycles
Thu Apr  7 18:11:15 2022  cycles contain 13143100 unique relations
Thu Apr  7 18:12:40 2022  read 13143100 relations
Thu Apr  7 18:13:58 2022  multiplying 13143100 relations
Thu Apr  7 18:25:10 2022  multiply complete, coefficients have about 375.81 million bits
Thu Apr  7 18:25:12 2022  initial square root is modulo 5536117
Thu Apr  7 18:37:53 2022  sqrtTime: 4474
Thu Apr  7 18:37:53 2022  p81 factor: 901982132264511124601298823276651902852309016959939774557079450903704410101098623
Thu Apr  7 18:37:53 2022  p166 factor: 7760685882353168665187416708750291996052921794618811461914480193769422576834175059893641734916448557971308621179111257517626010825189413824054292014432806970315975817
Thu Apr  7 18:37:53 2022  elapsed time 01:14:36

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaApril 9, 2012 09:00:00 UTC 2012 年 4 月 9 日 (月) 18 時 0 分 0 秒 (日本時間)
403e6515400Serge BatalovApril 10, 2012 05:18:41 UTC 2012 年 4 月 10 日 (火) 14 時 18 分 41 秒 (日本時間)
115Serge BatalovApril 10, 2012 07:00:15 UTC 2012 年 4 月 10 日 (火) 16 時 0 分 15 秒 (日本時間)
4511e6600Dmitry DomanovApril 12, 2012 11:23:09 UTC 2012 年 4 月 12 日 (木) 20 時 23 分 9 秒 (日本時間)
5043e615001000Dmitry DomanovApril 20, 2012 19:50:19 UTC 2012 年 4 月 21 日 (土) 4 時 50 分 19 秒 (日本時間)
500Dmitry DomanovApril 27, 2012 14:51:43 UTC 2012 年 4 月 27 日 (金) 23 時 51 分 43 秒 (日本時間)
5511e72460 / 17193yoyo@homeMarch 19, 2013 21:50:23 UTC 2013 年 3 月 20 日 (水) 6 時 50 分 23 秒 (日本時間)

7×10247-9

c248

name 名前Warut Roonguthai
date 日付April 9, 2012 13:52:26 UTC 2012 年 4 月 9 日 (月) 22 時 52 分 26 秒 (日本時間)
composite number 合成数
69999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999991<248>
prime factors 素因数
83104605854927725917557188201<29>
composite cofactor 合成数の残り
842311918573997035907674602866616788682293718408127307342877996294084471061061626071686429186040576046143957258050375447709439602415342358820031025238616900491292767746132762015016288999955981996194580767686596353533791<219>
factorization results 素因数分解の結果
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3193638921
Step 1 took 12792ms
Step 2 took 7269ms
********** Factor found in step 2: 83104605854927725917557188201
Found probable prime factor of 29 digits: 83104605854927725917557188201
Composite cofactor 842311918573997035907674602866616788682293718408127307342877996294084471061061626071686429186040576046143957258050375447709439602415342358820031025238616900491292767746132762015016288999955981996194580767686596353533791 has 219 digits
software ソフトウェア
GMP-ECM 6.3

c219

name 名前Serge Batalov
date 日付April 10, 2012 06:25:37 UTC 2012 年 4 月 10 日 (火) 15 時 25 分 37 秒 (日本時間)
composite number 合成数
842311918573997035907674602866616788682293718408127307342877996294084471061061626071686429186040576046143957258050375447709439602415342358820031025238616900491292767746132762015016288999955981996194580767686596353533791<219>
prime factors 素因数
217068505770770066227857390473659<33>
composite cofactor 合成数の残り
3880396723527917586771515933380418318467025074962412952755736361786009813399332218219544042145947073252637449138610244046133058796110369068051827052138965659728912611200810842443432805549<187>
factorization results 素因数分解の結果
Using B1=2000000, B2=5705781910, polynomial Dickson(6), sigma=1747604101
Step 1 took 11293ms
Step 2 took 7876ms
********** Factor found in step 2: 217068505770770066227857390473659
Found probable prime factor of 33 digits: 217068505770770066227857390473659
Composite cofactor 388039672352... has 187 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaApril 9, 2012 09:00:00 UTC 2012 年 4 月 9 日 (月) 18 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovApril 12, 2012 11:24:23 UTC 2012 年 4 月 12 日 (木) 20 時 24 分 23 秒 (日本時間)
4511e6400 / 4254Dmitry DomanovApril 13, 2012 21:38:41 UTC 2012 年 4 月 14 日 (土) 6 時 38 分 41 秒 (日本時間)

7×10248-9

c224

name 名前Warut Roonguthai
date 日付April 9, 2012 11:48:08 UTC 2012 年 4 月 9 日 (月) 20 時 48 分 8 秒 (日本時間)
composite number 合成数
80221895257813902321582843111573500908800069494392770496709163609876559561000584322693854154028371146592527493813205011355591572903684490088625746849550037212552747421700648830671317077355348181280506821133307875998588162767<224>
prime factors 素因数
88704096371036838820034799341<29>
composite cofactor 合成数の残り
904376444152668275655197037801911554785095354035952153464186605822696580197534003809616295703150797439832320273263829518351114842219610005633827911879149040959266389388590881613710367004171046187<195>
factorization results 素因数分解の結果
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=340158212
Step 1 took 37815ms
Step 2 took 22012ms
********** Factor found in step 2: 88704096371036838820034799341
Found probable prime factor of 29 digits: 88704096371036838820034799341
Composite cofactor 904376444152668275655197037801911554785095354035952153464186605822696580197534003809616295703150797439832320273263829518351114842219610005633827911879149040959266389388590881613710367004171046187 has 195 digits
software ソフトウェア
GMP-ECM 6.3

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaApril 9, 2012 09:00:00 UTC 2012 年 4 月 9 日 (月) 18 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovApril 12, 2012 11:24:45 UTC 2012 年 4 月 12 日 (木) 20 時 24 分 45 秒 (日本時間)
4511e6400 / 4254Dmitry DomanovApril 13, 2012 21:38:56 UTC 2012 年 4 月 14 日 (土) 6 時 38 分 56 秒 (日本時間)

7×10252-9

c238

composite cofactor 合成数の残り
6969375909543124883730407683383471751475035655851860584338569898447321225724735048221460935150401648386101617841986613451626579401281456066246749747428788499402767816625465841549671914629493084035240719948155340208108398680939702487022949<238>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 15, 2019 00:00:00 UTC 2019 年 4 月 15 日 (月) 9 時 0 分 0 秒 (日本時間)

7×10253-9

c210

composite cofactor 合成数の残り
895947021911686153036490992028480566597597472359877445050369757705719282470770947993186478408521388702892532938883335105657211065934967367129153955400694940859559001674981189446241723116985740702521569921614107<210>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 15, 2019 00:00:00 UTC 2019 年 4 月 15 日 (月) 9 時 0 分 0 秒 (日本時間)

7×10254-9

c210

composite cofactor 合成数の残り
123457365806778513980436745723614802572312037235220207689526939221295072498230305309874077486915191301808985015825486833091181769190218422124965867518871164109646617970105544724964939657480215214245488405458803<210>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 15, 2019 00:00:00 UTC 2019 年 4 月 15 日 (月) 9 時 0 分 0 秒 (日本時間)

7×10255-9

c255

composite cofactor 合成数の残り
132075471698113207547169811320754716981132075471698113207547169811320754716981132075471698113207547169811320754716981132075471698113207547169811320754716981132075471698113207547169811320754716981132075471698113207547169811320754716981132075471698113207547<255>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 15, 2019 00:00:00 UTC 2019 年 4 月 15 日 (月) 9 時 0 分 0 秒 (日本時間)

7×10256-9

c166

composite cofactor 合成数の残り
3759065114973012357551714650254621315971908052505284095657802295080557059970977322682909882782012526757843468518652345966818655302319987582933994528800968262354711317<166>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 15, 2019 00:00:00 UTC 2019 年 4 月 15 日 (月) 9 時 0 分 0 秒 (日本時間)
4511e62000Dmitry DomanovApril 17, 2019 09:13:39 UTC 2019 年 4 月 17 日 (水) 18 時 13 分 39 秒 (日本時間)
5043e62392 / 6996600Dmitry DomanovApril 18, 2019 16:54:37 UTC 2019 年 4 月 19 日 (金) 1 時 54 分 37 秒 (日本時間)
1792Dmitry DomanovSeptember 12, 2024 20:58:47 UTC 2024 年 9 月 13 日 (金) 5 時 58 分 47 秒 (日本時間)

7×10259-9

c191

composite cofactor 合成数の残り
73956203168033602922085351417757849427665775726711619295928089819374399503243894744839269556099668420152711809816673341203264749760288371840679396739856171881585608368944511332243189418470037<191>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 15, 2019 00:00:00 UTC 2019 年 4 月 15 日 (月) 9 時 0 分 0 秒 (日本時間)

7×10261-9

c243

composite cofactor 合成数の残り
125434250856522450459874851386752705665701057615197772440985899002590286844589833150917327284566156942584765036519750221772866574589388021669533287549181435342973352362921385509333936990269472623432058581437823349221013309731911247257474355493<243>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 15, 2019 00:00:00 UTC 2019 年 4 月 15 日 (月) 9 時 0 分 0 秒 (日本時間)

7×10263-9

c233

composite cofactor 合成数の残り
33104628705423618437095875307911824348450858818013463860978387802333251546207014899645662174181485441754311048212943232333085830455127939310530430271015935965516003741182421742829207210377666377174810969306239202371001091723629849851<233>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 15, 2019 00:00:00 UTC 2019 年 4 月 15 日 (月) 9 時 0 分 0 秒 (日本時間)

7×10266-9

c257

composite cofactor 合成数の残り
13472820817515274617699934166102331791935689690439649395793036063314785969871491789204138399477400967198297347971916507125498631699191830266103192730206881863301801854457556310792049702608991736474164166668913756749231794630017117234053693793311883406333673<257>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 15, 2019 00:00:00 UTC 2019 年 4 月 15 日 (月) 9 時 0 分 0 秒 (日本時間)

7×10267-9

c245

composite cofactor 合成数の残り
10096819570389926247482359004488059861892056811126857335895225845078156077657331744660023890969072263528940157813879487037619549754636952196928627732349159531005548074697741484059587614725038901827762877769504427953299092784244187288168618756629<245>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 15, 2019 00:00:00 UTC 2019 年 4 月 15 日 (月) 9 時 0 分 0 秒 (日本時間)

7×10268-9

c205

composite cofactor 合成数の残り
4035295552477768724935816356204620235535581459465723241484274954795523890024531892608700647161673176212622926944396584379932599540582780542726205746730406181615015192718009114252432823068394355395967754121<205>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 15, 2019 00:00:00 UTC 2019 年 4 月 15 日 (月) 9 時 0 分 0 秒 (日本時間)

7×10270-9

c254

composite cofactor 合成数の残り
44304419254999251365650380435063962104929941214967934156381786145705132635109054442411164425537024317753017775541163488233380766025524244833406789442780941750298090417797348299022025997600161096516307470051445162544300276555626844398676477487077849491471<254>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 15, 2019 00:00:00 UTC 2019 年 4 月 15 日 (月) 9 時 0 分 0 秒 (日本時間)

7×10271-9

c218

composite cofactor 合成数の残り
21889922158308355490279667394761098975613421595901049850369827354909745454322591116879711768499829857295099314869732423110006604414234426674283160488191820886605939382243999904829032553146080356619891241275629730197607<218>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 15, 2019 00:00:00 UTC 2019 年 4 月 15 日 (月) 9 時 0 分 0 秒 (日本時間)

7×10273-9

c164

composite cofactor 合成数の残り
11654082482884000491306163150937614530000382247314603442221829477981184168886962963256880908312618742564547515093350641399157010292897394673049522423104759683942927<164>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 15, 2019 00:00:00 UTC 2019 年 4 月 15 日 (月) 9 時 0 分 0 秒 (日本時間)
4511e62000Dmitry DomanovApril 17, 2019 15:08:44 UTC 2019 年 4 月 18 日 (木) 0 時 8 分 44 秒 (日本時間)
5043e62392 / 6996600Dmitry DomanovApril 18, 2019 09:36:31 UTC 2019 年 4 月 18 日 (木) 18 時 36 分 31 秒 (日本時間)
1792Dmitry DomanovJanuary 6, 2025 23:47:11 UTC 2025 年 1 月 7 日 (火) 8 時 47 分 11 秒 (日本時間)

7×10274-9

c268

composite cofactor 合成数の残り
4206868048638846808522657920868451416413408201962359709214068704285242000384988524565435037934230666301189996764918470596726804246076058852160860778089092690945383614381166404648901703943824609180455828576617614384892487777696111117087534767510742688298061649487720663<268>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 15, 2019 00:00:00 UTC 2019 年 4 月 15 日 (月) 9 時 0 分 0 秒 (日本時間)

7×10275-9

c244

composite cofactor 合成数の残り
2799767899071400188431459032900012090737609893911100832353603279136335403511300432860561570538615966353893482134085202300703625680657084683048774000033809729463354150795275553248910269892421203538629087451846959711419766707288146249854299282133<244>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 15, 2019 00:00:00 UTC 2019 年 4 月 15 日 (月) 9 時 0 分 0 秒 (日本時間)

7×10276-9

c277

name 名前Dmitry Domanov
date 日付April 19, 2019 04:35:33 UTC 2019 年 4 月 19 日 (金) 13 時 35 分 33 秒 (日本時間)
composite number 合成数
6999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999991<277>
prime factors 素因数
1267958157294395937018297863335466697336937<43>
composite cofactor 合成数の残り
5520686908893581260719492131385853755717215368278469511346946526645180966888156524535145965972517275843958976647573060154837112505558031102954120734915980111411822409308502186738295272538218333738147647604569501201707358672144510114143<235>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:539871492
Step 1 took 80815ms
Step 2 took 26730ms
********** Factor found in step 2: 1267958157294395937018297863335466697336937
Found prime factor of 43 digits: 1267958157294395937018297863335466697336937

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 15, 2019 00:00:00 UTC 2019 年 4 月 15 日 (月) 9 時 0 分 0 秒 (日本時間)
4511e62000 / 3844Dmitry DomanovApril 18, 2019 19:00:39 UTC 2019 年 4 月 19 日 (金) 4 時 0 分 39 秒 (日本時間)

7×10277-9

c227

composite cofactor 合成数の残り
23951965753037967612212740056239254349043947554215645734428422907117826095471680408815512029723494292018964587399331133689857934613394169824475143188546712173129330665591007674052969189696535260463865229654734656454406233427123<227>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 15, 2019 00:00:00 UTC 2019 年 4 月 15 日 (月) 9 時 0 分 0 秒 (日本時間)

7×10278-9

c269

composite cofactor 合成数の残り
97478214079041622763076679755018660316489444173807710239618535352120533918352195806177500257122811050513186723224215321372774754604615335732095514160078701715395055512367515616822097867633695594549303517805306039174563334200513915421613563197023740134324123977727291431<269>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 15, 2019 00:00:00 UTC 2019 年 4 月 15 日 (月) 9 時 0 分 0 秒 (日本時間)

7×10279-9

c246

composite cofactor 合成数の残り
520389001808248462103143940910663432381513446626347338731262147743563782704106329117612629697498067557055505774709896653930626092206464792871974622062090831603231970702774696328675044731644676512635918179134305007807159184574501629366311149189597<246>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 15, 2019 00:00:00 UTC 2019 年 4 月 15 日 (月) 9 時 0 分 0 秒 (日本時間)

7×10280-9

c250

composite cofactor 合成数の残り
4033006618240923998667230768893473091883789831212021937811337087103787390245466966271401202800458418088749191119403633649854691160852096656303979846703031203395213757103996952687996264157087388057799354749593042933837894619299350265372917910121953507<250>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 15, 2019 00:00:00 UTC 2019 年 4 月 15 日 (月) 9 時 0 分 0 秒 (日本時間)

7×10281-9

c261

composite cofactor 合成数の残り
615408808454586734440654184987847172319727900322583958645788287314859378737085896695511906996160888310649008996145572034437461043761295478478300855732611452246708479854969766743959271074339694704829815220174589748387225460848815631768685958580847856400653120483<261>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 15, 2019 00:00:00 UTC 2019 年 4 月 15 日 (月) 9 時 0 分 0 秒 (日本時間)

7×10282-9

c239

composite cofactor 合成数の残り
68086320334433542618984427249884888845539607075970328840731091406730638617268245239962535821181479673983400023691652551774907981164858354611435888864258844179557009200257553096993484110078339872768897771403474116064193707640050991130910193<239>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 15, 2019 00:00:00 UTC 2019 年 4 月 15 日 (月) 9 時 0 分 0 秒 (日本時間)

7×10283-9

c265

composite cofactor 合成数の残り
1397971269695580363153125497002114296829287541960633129726065146749979545164284441592022184316419659634054162340571480580258640429906251180325090240314176166437107236410203362367310925419367614085150978191870314527195200150717631937843133484984782258214507667466577<265>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 15, 2019 00:00:00 UTC 2019 年 4 月 15 日 (月) 9 時 0 分 0 秒 (日本時間)

7×10284-9

c234

composite cofactor 合成数の残り
120842490647234946511096090102184765316958036189344066999327454154549605347554056365436078989197906534980780969919459920730720859669031682557596324646606827649497614391735555528892278963338978588201929094408318659642884673082432461577<234>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 15, 2019 00:00:00 UTC 2019 年 4 月 15 日 (月) 9 時 0 分 0 秒 (日本時間)

7×10285-9

c285

composite cofactor 合成数の残り
411764705882352941176470588235294117647058823529411764705882352941176470588235294117647058823529411764705882352941176470588235294117647058823529411764705882352941176470588235294117647058823529411764705882352941176470588235294117647058823529411764705882352941176470588235294117647058823<285>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 15, 2019 00:00:00 UTC 2019 年 4 月 15 日 (月) 9 時 0 分 0 秒 (日本時間)

7×10286-9

c251

composite cofactor 合成数の残り
14603082653176670760829723428083453054092257232035289954881697591197126813909585305960822265018789673731646772435667853944455095131612096410372859889001818888131586752229291992182840149960951227839531014307334671634166467406552290662078322252220735019<251>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 15, 2019 00:00:00 UTC 2019 年 4 月 15 日 (月) 9 時 0 分 0 秒 (日本時間)

7×10287-9

c262

composite cofactor 合成数の残り
4214074748983747358391803111516926569990827357742610337880452654723092330333199715679946396530500061762806781877377028118468060626900678211346193027354183606526118678553708817944298046724766150128938602812290297621243982784742735261848618604402355548585250878649<262>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 15, 2019 00:00:00 UTC 2019 年 4 月 15 日 (月) 9 時 0 分 0 秒 (日本時間)

7×10292-9

c261

composite cofactor 合成数の残り
858767444671292717111369970939793300141704745422384206044761930310732514659551914215194719523051806561711024010505433535950992043237853457092448086844935267860064482900628242843646094924585606573833583672626423298568736798534367388652539642212355346646101226999<261>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 15, 2019 00:00:00 UTC 2019 年 4 月 15 日 (月) 9 時 0 分 0 秒 (日本時間)

7×10293-9

c243

composite cofactor 合成数の残り
161287282610614553509894829663431150065406573066244706628633154252629650896870606068388362224793319190337384839454540077216080986432694063741481016406268802919797287939747784000152334951321813671514768558167768356064615102669655352938077425531<243>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 15, 2019 00:00:00 UTC 2019 年 4 月 15 日 (月) 9 時 0 分 0 秒 (日本時間)

7×10294-9

c294

composite cofactor 合成数の残り
132075471698113207547169811320754716981132075471698113207547169811320754716981132075471698113207547169811320754716981132075471698113207547169811320754716981132075471698113207547169811320754716981132075471698113207547169811320754716981132075471698113207547169811320754716981132075471698113207547<294>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 15, 2019 00:00:00 UTC 2019 年 4 月 15 日 (月) 9 時 0 分 0 秒 (日本時間)

7×10297-9

c263

composite cofactor 合成数の残り
38339634197934890045394665649349248439526714022883888704885428519807280133429540922899781581312476289982397602574700055601312680022707942953117633906974668608807160207219201983079674396434869547406668612029896192924040495283906212118234981504583483354906805859953<263>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 15, 2019 00:00:00 UTC 2019 年 4 月 15 日 (月) 9 時 0 分 0 秒 (日本時間)

7×10298-9

c280

composite cofactor 合成数の残り
3273954071414773390536386396020021136071169777544587527150703589603203654223692307418035384317638659247024077319199817931066811233699707173063170514196942520276345947352527120646557473436581358171757813358870534441437883535727820437759354368856612357383529174847889884985280517617<280>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 15, 2019 00:00:00 UTC 2019 年 4 月 15 日 (月) 9 時 0 分 0 秒 (日本時間)

7×10299-9

c224

composite cofactor 合成数の残り
34549028071762296677595291079006308687817478446713074554111694707367385046742892509673741397391835357482032557631718441199497416718292404485308954803287188803501695689777506255160112302444181469776932839612119828020501163793<224>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerApril 15, 2019 00:00:00 UTC 2019 年 4 月 15 日 (月) 9 時 0 分 0 秒 (日本時間)