name 名前 | Robert Backstrom |
---|---|
date 日付 | December 27, 2007 10:50:01 UTC 2007 年 12 月 27 日 (木) 19 時 50 分 1 秒 (日本時間) |
composite number 合成数 | 45703847612105192551412600444051943138121632548159102877835632289400552214113597792942597220103<95> |
prime factors 素因数 | 2663967441313171836581746263544242756268412123<46> 17156308633252668896929507566790813539577265672261<50> |
factorization results 素因数分解の結果 | Number: n N=45703847612105192551412600444051943138121632548159102877835632289400552214113597792942597220103 ( 95 digits) Divisors found: r1=2663967441313171836581746263544242756268412123 (pp46) r2=17156308633252668896929507566790813539577265672261 (pp50) Version: GGNFS-0.77.1-20051202-athlon Total time: 4.81 hours. Scaled time: 8.43 units (timescale=1.754). Factorization parameters were as follows: name: KA_6_9_107_1 n: 45703847612105192551412600444051943138121632548159102877835632289400552214113597792942597220103 m: 5492465041505502450157 deg: 4 c4: 50220792 c3: 473490998762 c2: -150320131923816106 c1: -1840155014132418213 c0: 240325391527681110358680 skew: 1635.250 type: gnfs # adj. I(F,S) = 54.908 # E(F1,F2) = 4.085225e-05 # GGNFS version 0.77.1-20050930-k8 polyselect. # Options were: # lcd=1, enumLCD=24, maxS1=60.00000000, seed=1198729570. # maxskew=2000.0 # These parameters should be manually set: rlim: 1200000 alim: 1200000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.4 alambda: 2.4 qintsize: 60000 type: gnfs Factor base limits: 1200000/1200000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved special-q in [100000, 100000) Primes: RFBsize:92938, AFBsize:92993, largePrimes:1857627 encountered Relations: rels:1908164, finalFF:212612 Max relations in full relation-set: 28 Initial matrix: 186005 x 212612 with sparse part having weight 16282353. Pruned matrix : 174218 x 175212 with weight 11293718. Total sieving time: 4.41 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.30 hours. Total square root time: 0.04 hours, sqrts: 14. Prototype def-par.txt line would be: gnfs,94,4,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1200000,1200000,25,25,45,45,2.4,2.4,60000 total time: 4.81 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+ |
name 名前 | Sinkiti Sibata |
---|---|
date 日付 | December 26, 2007 15:55:31 UTC 2007 年 12 月 27 日 (木) 0 時 55 分 31 秒 (日本時間) |
composite number 合成数 | 146954483345879750650262027109056915485927149646071893433452883477538598863216027684838960521344430819<102> |
prime factors 素因数 | 184432465107840005841929350652158018855881137453<48> 796792925041443202307060294296189274485989498333919823<54> |
factorization results 素因数分解の結果 | Number: 69991_113 N=146954483345879750650262027109056915485927149646071893433452883477538598863216027684838960521344430819 ( 102 digits) SNFS difficulty: 113 digits. Divisors found: r1=184432465107840005841929350652158018855881137453 (pp48) r2=796792925041443202307060294296189274485989498333919823 (pp54) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 2.40 hours. Scaled time: 1.62 units (timescale=0.675). Factorization parameters were as follows: name: 69991_113 n: 146954483345879750650262027109056915485927149646071893433452883477538598863216027684838960521344430819 m: 10000000000000000000000 c5: 7000 c0: -9 skew: 0.26 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 550001) Primes: RFBsize:49098, AFBsize:63823, largePrimes:2223893 encountered Relations: rels:2457553, finalFF:359535 Max relations in full relation-set: 28 Initial matrix: 112989 x 359535 with sparse part having weight 31384555. Pruned matrix : 71414 x 72042 with weight 5203701. Total sieving time: 2.19 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.09 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,113,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 2.40 hours. --------- CPU info (if available) ---------- |
execution environment 実行環境 | (上の枠に貼り付けた素因数分解ソフトウェアの出力結果に実行環境の情報が含まれていない場合は Pentium 4 2.4GHz, Windows XP and Cygwin) |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | December 25, 2007 23:10:22 UTC 2007 年 12 月 26 日 (水) 8 時 10 分 22 秒 (日本時間) |
composite number 合成数 | 6999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999991<118> |
prime factors 素因数 | 965127703405741647531200158987421082342396773977<48> 7252926193392239386243000349720048960099140101219877063658000208088783<70> |
factorization results 素因数分解の結果 | Number: 69991_117 N=6999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999991 ( 118 digits) SNFS difficulty: 117 digits. Divisors found: r1=965127703405741647531200158987421082342396773977 (pp48) r2=7252926193392239386243000349720048960099140101219877063658000208088783 (pp70) Version: GGNFS-0.77.1-20050930-nocona Total time: 1.05 hours. Scaled time: 2.25 units (timescale=2.145). Factorization parameters were as follows: n: 6999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999991 m: 100000000000000000000000 c5: 700 c0: -9 skew: 0.42 type: snfs Factor base limits: 600000/600000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved algebraic special-q in [300000, 450001) Primes: RFBsize:49098, AFBsize:49186, largePrimes:1878131 encountered Relations: rels:1929377, finalFF:194599 Max relations in full relation-set: 28 Initial matrix: 98352 x 194599 with sparse part having weight 16935639. Pruned matrix : 78199 x 78754 with weight 4525630. Total sieving time: 1.00 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.02 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,117,5,0,0,0,0,0,0,0,0,600000,600000,25,25,45,45,2.4,2.4,30000 total time: 1.05 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2115k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.36 BogoMIPS (lpj=2407681) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Total of 4 processors activated (19246.11 BogoMIPS). |
execution environment 実行環境 | Core 2 Quad Q6600 |
name 名前 | Sinkiti Sibata |
---|---|
date 日付 | December 26, 2007 07:35:35 UTC 2007 年 12 月 26 日 (水) 16 時 35 分 35 秒 (日本時間) |
composite number 合成数 | 31745882381597551712985680104483070892222684616727431250512197757342182638804213346559326046812565481941879<107> |
prime factors 素因数 | 1984136958064167375045366373528421<34> 15999844291278446970836451631567805232288393575182670206207520554418064299<74> |
factorization results 素因数分解の結果 | Number: 69991_118 N=31745882381597551712985680104483070892222684616727431250512197757342182638804213346559326046812565481941879 ( 107 digits) SNFS difficulty: 118 digits. Divisors found: r1=1984136958064167375045366373528421 (pp34) r2=15999844291278446970836451631567805232288393575182670206207520554418064299 (pp74) Version: GGNFS-0.77.1-20060513-k8 Total time: 2.24 hours. Scaled time: 4.45 units (timescale=1.991). Factorization parameters were as follows: name: 69991_118 n: 31745882381597551712985680104483070892222684616727431250512197757342182638804213346559326046812565481941879 m: 100000000000000000000000 c5: 7000 c0: -9 skew: 0.26 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 550001) Primes: RFBsize:49098, AFBsize:63823, largePrimes:2167506 encountered Relations: rels:2281489, finalFF:242097 Max relations in full relation-set: 28 Initial matrix: 112989 x 242097 with sparse part having weight 22238741. Pruned matrix : 87145 x 87773 with weight 5534433. Total sieving time: 2.10 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.04 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,118,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 2.24 hours. --------- CPU info (if available) ---------- |
execution environment 実行環境 | Core 2 Duo E6300 1.86GHz , Windows Vista) |
name 名前 | Robert Backstrom |
---|---|
date 日付 | December 26, 2007 05:33:08 UTC 2007 年 12 月 26 日 (水) 14 時 33 分 8 秒 (日本時間) |
composite number 合成数 | 84804283827823074034139781689543631804029414971590564917679270198563173134002883345650145984517160752577444483481337<116> |
prime factors 素因数 | 1323129079639263647678527821934298050401138159281717<52> 64093734415499366088944419295581630353010019359658087508532919861<65> |
factorization results 素因数分解の結果 | Number: n N=84804283827823074034139781689543631804029414971590564917679270198563173134002883345650145984517160752577444483481337 ( 116 digits) SNFS difficulty: 120 digits. Divisors found: r1=1323129079639263647678527821934298050401138159281717 (pp52) r2=64093734415499366088944419295581630353010019359658087508532919861 (pp65) Version: GGNFS-0.77.1-20051202-athlon Total time: 1.47 hours. Scaled time: 2.59 units (timescale=1.755). Factorization parameters were as follows: name: KA_6_9_119_1 n: 84804283827823074034139781689543631804029414971590564917679270198563173134002883345650145984517160752577444483481337 type: snfs skew: 1.05 deg: 5 c5: 7 c0: -9 m: 1000000000000000000000000 rlim: 1000000 alim: 1000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 20000 Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 220001) Primes: RFBsize:78498, AFBsize:78361, largePrimes:4117883 encountered Relations: rels:3508482, finalFF:209284 Max relations in full relation-set: 28 Initial matrix: 156925 x 209284 with sparse part having weight 9419779. Pruned matrix : 113353 x 114201 with weight 3874739. Total sieving time: 1.28 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.10 hours. Total square root time: 0.02 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,120,5,0,0,0,0,0,0,0,0,1000000,1000000,28,28,48,48,2.4,2.4,50000 total time: 1.47 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+ |
name 名前 | Sinkiti Sibata |
---|---|
date 日付 | December 26, 2007 07:40:08 UTC 2007 年 12 月 26 日 (水) 16 時 40 分 8 秒 (日本時間) |
composite number 合成数 | 2376607354879214865611819176528989671083739593311572594941837848584100495761234335579813189929281<97> |
prime factors 素因数 | 82895830946665960950649287503567133316049651<44> 28669805558837951631417683899953649248910278323675131<53> |
factorization results 素因数分解の結果 | Number: 69991_122 N=2376607354879214865611819176528989671083739593311572594941837848584100495761234335579813189929281 ( 97 digits) SNFS difficulty: 122 digits. Divisors found: r1=82895830946665960950649287503567133316049651 (pp44) r2=28669805558837951631417683899953649248910278323675131 (pp53) Version: GGNFS-0.77.1-20060513-k8 Total time: 3.38 hours. Scaled time: 6.77 units (timescale=2.003). Factorization parameters were as follows: name: 69991_122 n: 2376607354879214865611819176528989671083739593311572594941837848584100495761234335579813189929281 m: 1000000000000000000000000 c5: 700 c0: -9 skew: 0.42 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 650001) Primes: RFBsize:49098, AFBsize:63803, largePrimes:2446192 encountered Relations: rels:2891407, finalFF:532620 Max relations in full relation-set: 28 Initial matrix: 112969 x 532620 with sparse part having weight 52760048. Pruned matrix : 76482 x 77110 with weight 9438717. Total sieving time: 3.23 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.04 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,122,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 3.38 hours. --------- CPU info (if available) ---------- |
execution environment 実行環境 | Core 2 Duo E6300 1.86GHz, Windows Vista) |
name 名前 | Sinkiti Sibata |
---|---|
date 日付 | December 26, 2007 10:58:03 UTC 2007 年 12 月 26 日 (水) 19 時 58 分 3 秒 (日本時間) |
composite number 合成数 | 28406398199217797464553546226922521246087029329926717717175210835294924586217098258316437679183181636843102569417679<116> |
prime factors 素因数 | 10653299394346279999189253853948866948741<41> 2666441366915221621544897168193843156735547511317187784920639757035112567619<76> |
factorization results 素因数分解の結果 | Number: 69991_132 N=28406398199217797464553546226922521246087029329926717717175210835294924586217098258316437679183181636843102569417679 ( 116 digits) SNFS difficulty: 132 digits. Divisors found: r1=10653299394346279999189253853948866948741 (pp41) r2=2666441366915221621544897168193843156735547511317187784920639757035112567619 (pp76) Version: GGNFS-0.77.1-20060513-k8 Total time: 5.77 hours. Scaled time: 11.49 units (timescale=1.991). Factorization parameters were as follows: name: 69991_132 n: 28406398199217797464553546226922521246087029329926717717175210835294924586217098258316437679183181636843102569417679 m: 100000000000000000000000000 c5: 700 c0: -9 skew: 0.42 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [400000, 1150001) Primes: RFBsize:63951, AFBsize:63803, largePrimes:1538473 encountered Relations: rels:1545151, finalFF:170046 Max relations in full relation-set: 28 Initial matrix: 127822 x 170046 with sparse part having weight 14925657. Pruned matrix : 117194 x 117897 with weight 8533990. Total sieving time: 5.57 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.08 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,132,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 5.77 hours. --------- CPU info (if available) ---------- |
execution environment 実行環境 | Core 2 Duo E6300 1.86GHz, Windows Vista) |
name 名前 | Sinkiti Sibata |
---|---|
date 日付 | December 26, 2007 15:28:56 UTC 2007 年 12 月 27 日 (木) 0 時 28 分 56 秒 (日本時間) |
composite number 合成数 | 12168159188131852215584768023354461103145336764833774484034596076561291835579447472592128168069219417276360481<110> |
prime factors 素因数 | 85173022756831337810382828011673697322037311<44> 142864005459473961587757841830261127716190760624346731496837517471<66> |
factorization results 素因数分解の結果 | Number: 69991_133 N=12168159188131852215584768023354461103145336764833774484034596076561291835579447472592128168069219417276360481 ( 110 digits) SNFS difficulty: 133 digits. Divisors found: r1=85173022756831337810382828011673697322037311 (pp44) r2=142864005459473961587757841830261127716190760624346731496837517471 (pp66) Version: GGNFS-0.77.1-20060513-k8 Total time: 8.35 hours. Scaled time: 16.72 units (timescale=2.003). Factorization parameters were as follows: name: 69991_133 n: 12168159188131852215584768023354461103145336764833774484034596076561291835579447472592128168069219417276360481 m: 100000000000000000000000000 c5: 7000 c0: -9 skew: 0.26 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 1375001) Primes: RFBsize:78498, AFBsize:63823, largePrimes:1568311 encountered Relations: rels:1565951, finalFF:168189 Max relations in full relation-set: 28 Initial matrix: 142389 x 168189 with sparse part having weight 15197800. Pruned matrix : 134600 x 135375 with weight 10638770. Total sieving time: 8.08 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.15 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,133,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 8.35 hours. --------- CPU info (if available) ---------- |
execution environment 実行環境 | Core 2 Duo E6300 1.86GHz, Windows Vista) |
name 名前 | Sinkiti Sibata |
---|---|
date 日付 | December 26, 2007 22:40:18 UTC 2007 年 12 月 27 日 (木) 7 時 40 分 18 秒 (日本時間) |
composite number 合成数 | 5861567143499528535945249491745181774451528037501922335500468042836092047603598088439983509779689035584096179<109> |
prime factors 素因数 | 2619090469168430611738435623980583053<37> 2238016293251830424874207565385593578321653128229251831899397482529153343<73> |
factorization results 素因数分解の結果 | Number: 69991_135 N=5861567143499528535945249491745181774451528037501922335500468042836092047603598088439983509779689035584096179 ( 109 digits) SNFS difficulty: 135 digits. Divisors found: r1=2619090469168430611738435623980583053 (pp37) r2=2238016293251830424874207565385593578321653128229251831899397482529153343 (pp73) Version: GGNFS-0.77.1-20060513-k8 Total time: 6.83 hours. Scaled time: 13.67 units (timescale=2.003). Factorization parameters were as follows: name: 69991_135 n: 5861567143499528535945249491745181774451528037501922335500468042836092047603598088439983509779689035584096179 m: 1000000000000000000000000000 c5: 7 c0: -9 skew: 1.05 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 1225001) Primes: RFBsize:78498, AFBsize:63908, largePrimes:1579365 encountered Relations: rels:1604122, finalFF:195607 Max relations in full relation-set: 28 Initial matrix: 142472 x 195607 with sparse part having weight 16386599. Pruned matrix : 126424 x 127200 with weight 8919279. Total sieving time: 6.60 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.11 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,135,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 6.83 hours. --------- CPU info (if available) ---------- |
execution environment 実行環境 | Core 2 Duo E6300 1.86GHz, Windows Vista) |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | December 26, 2007 23:37:09 UTC 2007 年 12 月 27 日 (木) 8 時 37 分 9 秒 (日本時間) |
composite number 合成数 | 477550566505190610831339497667016508356659514844638240871039919937869611141038512390547786684479527858687496804388001769097<123> |
prime factors 素因数 | 63195768153342995547599618615921084920365446753767<50> 7556685842419476053247753995520570438772601000514461987314342496480958991<73> |
factorization results 素因数分解の結果 | Number: 69991_137 N=477550566505190610831339497667016508356659514844638240871039919937869611141038512390547786684479527858687496804388001769097 ( 123 digits) SNFS difficulty: 137 digits. Divisors found: r1=63195768153342995547599618615921084920365446753767 (pp50) r2=7556685842419476053247753995520570438772601000514461987314342496480958991 (pp73) Version: GGNFS-0.77.1-20050930-nocona Total time: 4.07 hours. Scaled time: 8.67 units (timescale=2.130). Factorization parameters were as follows: n: 477550566505190610831339497667016508356659514844638240871039919937869611141038512390547786684479527858687496804388001769097 m: 1000000000000000000000000000 c5: 700 c0: -9 skew: 0.42 type: snfs Factor base limits: 1400000/1400000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 47/47 Sieved algebraic special-q in [700000, 1450001) Primes: RFBsize:107126, AFBsize:107093, largePrimes:2316731 encountered Relations: rels:2429777, finalFF:264060 Max relations in full relation-set: 28 Initial matrix: 214287 x 264060 with sparse part having weight 22014166. Pruned matrix : 198204 x 199339 with weight 13643617. Total sieving time: 3.87 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.14 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,137,5,0,0,0,0,0,0,0,0,1400000,1400000,25,25,47,47,2.3,2.3,50000 total time: 4.07 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2115k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.36 BogoMIPS (lpj=2407681) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Total of 4 processors activated (19246.11 BogoMIPS). |
execution environment 実行環境 | Core 2 Quad Q6600 |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | December 27, 2007 17:21:21 UTC 2007 年 12 月 28 日 (金) 2 時 21 分 21 秒 (日本時間) |
composite number 合成数 | 538754496546039129594575511841279608916142932610183608764794445522735349555460282454684421134028742368503726717312519097<120> |
prime factors 素因数 | 3072384756632832193294930209979933326902287322161<49> 175353850256855514724412620180648233024414774451978568104314670271200777<72> |
factorization results 素因数分解の結果 | Number: 70009_140 N=538754496546039129594575511841279608916142932610183608764794445522735349555460282454684421134028742368503726717312519097 ( 120 digits) SNFS difficulty: 140 digits. Divisors found: r1=3072384756632832193294930209979933326902287322161 (pp49) r2=175353850256855514724412620180648233024414774451978568104314670271200777 (pp72) Version: GGNFS-0.77.1-20050930-nocona Total time: 6.12 hours. Scaled time: 13.11 units (timescale=2.144). Factorization parameters were as follows: n: 538754496546039129594575511841279608916142932610183608764794445522735349555460282454684421134028742368503726717312519097 m: 10000000000000000000000000000 c5: 7 c0: -9 skew: 1.05 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved algebraic special-q in [750000, 1150001) Primes: RFBsize:114155, AFBsize:113992, largePrimes:3368951 encountered Relations: rels:3483950, finalFF:405792 Max relations in full relation-set: 28 Initial matrix: 228213 x 405792 with sparse part having weight 35387880. Pruned matrix : 168806 x 170011 with weight 13391873. Total sieving time: 5.95 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.10 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,140,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,47,47,2.3,2.3,50000 total time: 6.12 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2115k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.36 BogoMIPS (lpj=2407681) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Total of 4 processors activated (19246.11 BogoMIPS). |
execution environment 実行環境 | Core 2 Quad Q6600 |
name 名前 | Robert Backstrom |
---|---|
date 日付 | December 27, 2007 08:42:12 UTC 2007 年 12 月 27 日 (木) 17 時 42 分 12 秒 (日本時間) |
composite number 合成数 | 39868595387807238075146492882117277574103046308113959709594872989761346018457223189921629162943461946194596677613254006978940667499388729<137> |
prime factors 素因数 | 11669963674208858774803484401760836297661604636382205067928038771673<68> 3416342715437805134104596866257027736379971208960481691857755728114273<70> |
factorization results 素因数分解の結果 | Number: n N=39868595387807238075146492882117277574103046308113959709594872989761346018457223189921629162943461946194596677613254006978940667499388729 ( 137 digits) SNFS difficulty: 143 digits. Divisors found: Thu Dec 27 16:03:21 2007 prp68 factor: 11669963674208858774803484401760836297661604636382205067928038771673 Thu Dec 27 16:03:21 2007 prp70 factor: 3416342715437805134104596866257027736379971208960481691857755728114273 Thu Dec 27 16:03:21 2007 elapsed time 00:58:19 (Msieve 1.32) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 10.12 hours. Scaled time: 13.24 units (timescale=1.309). Factorization parameters were as follows: name: KA_6_9_142_1 n: 39868595387807238075146492882117277574103046308113959709594872989761346018457223189921629162943461946194596677613254006978940667499388729 skew: 0.26 deg: 5 c5: 7000 c0: -9 m: 10000000000000000000000000000 type: snfs rlim: 2800000 alim: 2800000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 1100001) Primes: RFBsize:203362, AFBsize:202857, largePrimes:6879960 encountered Relations: rels:6390626, finalFF:531267 Max relations in full relation-set: 28 Initial matrix: 406287 x 531267 with sparse part having weight 31643740. Pruned matrix : Total sieving time: 9.91 hours. Total relation processing time: 0.20 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,143,5,0,0,0,0,0,0,0,0,2800000,2800000,28,28,48,48,2.5,2.5,100000 total time: 10.12 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+ |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | December 28, 2007 10:07:30 UTC 2007 年 12 月 28 日 (金) 19 時 7 分 30 秒 (日本時間) |
composite number 合成数 | 225985242350882492390817091181539241057870132922821577330562232474083020570409647436082746217322496695164359587616913392907587<126> |
prime factors 素因数 | 2066420873807475272508154570496764559275489805725499291<55> 109360704402145490620976185805347880615820804660378980898198273592328057<72> |
factorization results 素因数分解の結果 | Number: 69991_144 N=225985242350882492390817091181539241057870132922821577330562232474083020570409647436082746217322496695164359587616913392907587 ( 126 digits) SNFS difficulty: 145 digits. Divisors found: r1=2066420873807475272508154570496764559275489805725499291 (pp55) r2=109360704402145490620976185805347880615820804660378980898198273592328057 (pp72) Version: GGNFS-0.77.1-20050930-nocona Total time: 10.14 hours. Scaled time: 21.75 units (timescale=2.144). Factorization parameters were as follows: n: 225985242350882492390817091181539241057870132922821577330562232474083020570409647436082746217322496695164359587616913392907587 m: 100000000000000000000000000000 c5: 7 c0: -90 skew: 1.67 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved algebraic special-q in [750000, 1450001) Primes: RFBsize:114155, AFBsize:114352, largePrimes:3482197 encountered Relations: rels:3539168, finalFF:329576 Max relations in full relation-set: 28 Initial matrix: 228573 x 329576 with sparse part having weight 32251907. Pruned matrix : 200812 x 202018 with weight 16980012. Total sieving time: 9.89 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.17 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,145,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,47,47,2.3,2.3,50000 total time: 10.14 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2115k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.36 BogoMIPS (lpj=2407681) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Total of 4 processors activated (19246.11 BogoMIPS). |
execution environment 実行環境 | Core 2 Quad Q6600 |
name 名前 | Robert Backstrom |
---|---|
date 日付 | December 27, 2007 11:57:33 UTC 2007 年 12 月 27 日 (木) 20 時 57 分 33 秒 (日本時間) |
composite number 合成数 | 742618898590084976819681522580918937842798188009887440192656559977084902557791663572421255874645929917993655912837758988340883292135665863931<141> |
prime factors 素因数 | 1021695068102849396044532089064863<34> 726849841772289840962937682508573633040889067399121266108989206433699098743911136797514039693842951036128037<108> |
factorization results 素因数分解の結果 | GMP-ECM 6.0.1 [powered by GMP 4.1.4] [ECM] Input number is 742618898590084976819681522580918937842798188009887440192656559977084902557791663572421255874645929917993655912837758988340883292135665863931 (141 digits) Using B1=672000, B2=476515716, polynomial Dickson(3), sigma=2836317521 Step 1 took 9672ms Step 2 took 5562ms ********** Factor found in step 2: 1021695068102849396044532089064863 Found probable prime factor of 34 digits: 1021695068102849396044532089064863 Probable prime cofactor 726849841772289840962937682508573633040889067399121266108989206433699098743911136797514039693842951036128037 has 108 digits |
name 名前 | Sinkiti Sibata |
---|---|
date 日付 | December 27, 2007 10:26:12 UTC 2007 年 12 月 27 日 (木) 19 時 26 分 12 秒 (日本時間) |
composite number 合成数 | 103589823377869076072607851794326081481578050618794143412322232850520425835300380055682643364099<96> |
prime factors 素因数 | 345533806013666402094028972113839143<36> 299796493353162488095487968396822078060268288441471385866693<60> |
factorization results 素因数分解の結果 | Number: 69991_147 N=103589823377869076072607851794326081481578050618794143412322232850520425835300380055682643364099 ( 96 digits) Divisors found: r1=345533806013666402094028972113839143 (pp36) r2=299796493353162488095487968396822078060268288441471385866693 (pp60) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 11.00 hours. Scaled time: 7.42 units (timescale=0.675). Factorization parameters were as follows: name: 69991_147 n: 103589823377869076072607851794326081481578050618794143412322232850520425835300380055682643364099 m: 7455843658268344282957 deg: 4 c4: 33522000 c3: 140814788 c2: 77276617925738599 c1: 69424401729227304416 c0: 2357246899800669557952 skew: 1635.250 type: gnfs # adj. I(F,S) = 55.016 # E(F1,F2) = 2.812171e-05 # GGNFS version 0.77.1-20060513-pentium4 polyselect. # Options were: # lcd=1, enumLCD=24, maxS1=60.00000000, seed=1198709841. # maxskew=2000.0 # These parameters should be manually set: rlim: 1200000 alim: 1200000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.4 alambda: 2.4 qintsize: 60000 type: gnfs Factor base limits: 1200000/1200000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved algebraic special-q in [600000, 1500001) Primes: RFBsize:92938, AFBsize:92936, largePrimes:1911524 encountered Relations: rels:2002935, finalFF:233843 Max relations in full relation-set: 28 Initial matrix: 185950 x 233843 with sparse part having weight 21496159. Pruned matrix : 166071 x 167064 with weight 13108251. Polynomial selection time: 0.17 hours. Total sieving time: 9.92 hours. Total relation processing time: 0.13 hours. Matrix solve time: 0.72 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: gnfs,95,4,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1200000,1200000,25,25,45,45,2.4,2.4,60000 total time: 11.00 hours. --------- CPU info (if available) ---------- |
execution environment 実行環境 | Pentium 4 2.4GHz, Windows XP and Cygwin) |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | December 28, 2007 15:47:55 UTC 2007 年 12 月 29 日 (土) 0 時 47 分 55 秒 (日本時間) |
composite number 合成数 | 518085453711788532865190630641573477595982123762441212022596337954685562506751479459950679549038087281476496982221376227399<123> |
prime factors 素因数 | 2814258676699625279171724231993155814622006129842908123<55> 184093046599172102452699913165893938014185229449403497478166109476613<69> |
factorization results 素因数分解の結果 | Number: 69991_148 N=518085453711788532865190630641573477595982123762441212022596337954685562506751479459950679549038087281476496982221376227399 ( 123 digits) SNFS difficulty: 150 digits. Divisors found: r1=2814258676699625279171724231993155814622006129842908123 (pp55) r2=184093046599172102452699913165893938014185229449403497478166109476613 (pp69) Version: GGNFS-0.77.1-20050930-nocona Total time: 15.54 hours. Scaled time: 33.21 units (timescale=2.137). Factorization parameters were as follows: n: 518085453711788532865190630641573477595982123762441212022596337954685562506751479459950679549038087281476496982221376227399 m: 1000000000000000000000000000000 c5: 7 c0: -900 skew: 2.64 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 2200001) Primes: RFBsize:176302, AFBsize:175703, largePrimes:5573819 encountered Relations: rels:5511681, finalFF:495649 Max relations in full relation-set: 28 Initial matrix: 352073 x 495649 with sparse part having weight 44562981. Pruned matrix : 293821 x 295645 with weight 24414844. Total sieving time: 15.02 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.40 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,150,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 15.54 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2115k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.36 BogoMIPS (lpj=2407681) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Total of 4 processors activated (19246.11 BogoMIPS). |
execution environment 実行環境 | Core 2 Quad Q6600 |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | December 26, 2007 11:48:21 UTC 2007 年 12 月 26 日 (水) 20 時 48 分 21 秒 (日本時間) |
composite number 合成数 | 1089089097704044454562209370522213230901345185140697701040463384518222351927760818446156586438176084903071161505525643102442665266840569<136> |
prime factors 素因数 | 12499425996572633795685838286539<32> 87131128901653143200613872829832683606052695848751370614553206443217691319643034696885938619060585421771<104> |
factorization results 素因数分解の結果 | GMP-ECM 6.1.3 [powered by GMP 4.2.2] [ECM] Input number is 1089089097704044454562209370522213230901345185140697701040463384518222351927760818446156586438176084903071161505525643102442665266840569 (136 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1541462935 Step 1 took 7494ms Step 2 took 4074ms ********** Factor found in step 2: 12499425996572633795685838286539 Found probable prime factor of 32 digits: 12499425996572633795685838286539 Probable prime cofactor 87131128901653143200613872829832683606052695848751370614553206443217691319643034696885938619060585421771 has 104 digits |
execution environment 実行環境 | Core 2 Quad Q6600 |
name 名前 | Robert Backstrom |
---|---|
date 日付 | December 29, 2007 03:06:12 UTC 2007 年 12 月 29 日 (土) 12 時 6 分 12 秒 (日本時間) |
composite number 合成数 | 50744501927508504704520288732689404486764733105785265684820848287220516154517642636391409055776827484170513313682188589474831888859301<134> |
prime factors 素因数 | 772167558584103691869638283989203<33> 65716956589780721844302884925214520835046088468765165698360498247128407329527151604691722545317100967<101> |
factorization results 素因数分解の結果 | GMP-ECM 6.1.3 [powered by GMP 4.2.1] [ECM] Input number is 50744501927508504704520288732689404486764733105785265684820848287220516154517642636391409055776827484170513313682188589474831888859301 (134 digits) Using B1=1170000, B2=1426247560, polynomial Dickson(6), sigma=4085508329 Step 1 took 11486ms Step 2 took 5548ms ********** Factor found in step 2: 772167558584103691869638283989203 Found probable prime factor of 33 digits: 772167558584103691869638283989203 Probable prime cofactor 65716956589780721844302884925214520835046088468765165698360498247128407329527151604691722545317100967 has 101 digits |
name 名前 | Robert Backstrom |
---|---|
date 日付 | December 31, 2007 06:32:10 UTC 2007 年 12 月 31 日 (月) 15 時 32 分 10 秒 (日本時間) |
composite number 合成数 | 8095115504289729358554699371036659244322933458092801207869536333525253075152226722512930578942278905980957430591842680221<121> |
prime factors 素因数 | 87307807817705591131142443529365687<35> 92719261960991305708767306625668063796197431975684064005420378748486361040936361668683<86> |
factorization results 素因数分解の結果 | GMP-ECM 6.0.1 [powered by GMP 4.1.4] [ECM] Input number is 8095115504289729358554699371036659244322933458092801207869536333525253075152226722512930578942278905980957430591842680221 (121 digits) Using B1=2160000, B2=2515276721, polynomial Dickson(6), sigma=4055603832 Step 1 took 26812ms Step 2 took 15500ms ********** Factor found in step 2: 87307807817705591131142443529365687 Found probable prime factor of 35 digits: 87307807817705591131142443529365687 Probable prime cofactor 92719261960991305708767306625668063796197431975684064005420378748486361040936361668683 has 86 digits |
name 名前 | JMB |
---|---|
date 日付 | January 4, 2008 02:15:20 UTC 2008 年 1 月 4 日 (金) 11 時 15 分 20 秒 (日本時間) |
composite number 合成数 | 234098782427839665196883000012361900130395680636725922006376080346982807010226027831376517657752445555625517266741812986297<123> |
prime factors 素因数 | 15854608314307477257889614412447463<35> 14765346313638338741527800132362791570551309344130945927519948485674768514606278097831519<89> |
factorization results 素因数分解の結果 | Number: 7*10^156-9 N=234098782427839665196883000012361900130395680636725922006376080346982807010226027831376517657752445555625517266741812986297 ( 123 digits) SNFS difficulty: 156 digits. Divisors found: r1=15854608314307477257889614412447463 (pp35) r2=14765346313638338741527800132362791570551309344130945927519948485674768514606278097831519 (pp89) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 42.32 hours. |
name 名前 | Robert Backstrom |
---|---|
date 日付 | December 27, 2007 17:10:15 UTC 2007 年 12 月 28 日 (金) 2 時 10 分 15 秒 (日本時間) |
composite number 合成数 | 219685253774800485536656511120941272163807852863521628505826223167203129043779566214842475162722576220425528921066221984547130854785299026329077<144> |
prime factors 素因数 | 4551229532797823713440523924237357<34> 48269429654485286004700435874371392955763120608188765913835335149678303496468383067863156974558912669025897961<110> |
factorization results 素因数分解の結果 | GMP-ECM 6.1.3 [powered by GMP 4.2.1] [ECM] Input number is 219685253774800485536656511120941272163807852863521628505826223167203129043779566214842475162722576220425528921066221984547130854785299026329077 (144 digits) Using B1=460000, B2=347971482, polynomial Dickson(3), sigma=4264591698 Step 1 took 4982ms Step 2 took 2343ms ********** Factor found in step 2: 4551229532797823713440523924237357 Found probable prime factor of 34 digits: 4551229532797823713440523924237357 Probable prime cofactor 48269429654485286004700435874371392955763120608188765913835335149678303496468383067863156974558912669025897961 has 110 digits |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | January 16, 2008 02:30:24 UTC 2008 年 1 月 16 日 (水) 11 時 30 分 24 秒 (日本時間) |
composite number 合成数 | 5855963333799973007377401720154288941846324648597714697526451329295574137165874677067427392461665343120490471244481528370789<124> |
prime factors 素因数 | 1154734515303355813588848626575829<34> 5071263789375496111006719685471610072718773087775179235920085143775708329815366365895324241<91> |
factorization results 素因数分解の結果 | GMP-ECM 6.1.3 [powered by GMP 4.2.2] [ECM] Input number is 5855963333799973007377401720154288941846324648597714697526451329295574137165874677067427392461665343120490471244481528370789 (124 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=223357812 Step 1 took 6614ms Step 2 took 4224ms ********** Factor found in step 2: 1154734515303355813588848626575829 Found probable prime factor of 34 digits: 1154734515303355813588848626575829 Probable prime cofactor 5071263789375496111006719685471610072718773087775179235920085143775708329815366365895324241 has 91 digits |
execution environment 実行環境 | Core 2 Quad Q6600 |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | December 26, 2007 23:41:33 UTC 2007 年 12 月 27 日 (木) 8 時 41 分 33 秒 (日本時間) |
composite number 合成数 | 377136843251446087800377155004344918975642748847262279155360596990712022331970934996803125039350096705096062786937436849241007926096847<135> |
prime factors 素因数 | 436977788659416077831566216483<30> 863057237779628902143622988929371538585971609219344275040457451654589439284920068001169478963439353329509<105> |
factorization results 素因数分解の結果 | GMP-ECM 6.1.3 [powered by GMP 4.2.2] [ECM] Input number is 377136843251446087800377155004344918975642748847262279155360596990712022331970934996803125039350096705096062786937436849241007926096847 (135 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2029589823 Step 1 took 6872ms Step 2 took 3803ms ********** Factor found in step 2: 436977788659416077831566216483 Found probable prime factor of 30 digits: 436977788659416077831566216483 Probable prime cofactor 863057237779628902143622988929371538585971609219344275040457451654589439284920068001169478963439353329509 has 105 digits |
execution environment 実行環境 | Core 2 Quad Q6600 |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | March 11, 2008 13:07:30 UTC 2008 年 3 月 11 日 (火) 22 時 7 分 30 秒 (日本時間) |
composite number 合成数 | 583438505740065243072122705696906658894648914815647966933605230597057392094515772905107543503016394593082146796990143221414907706289<132> |
prime factors 素因数 | 129176060038429313134294565540217914223913<42> 120256406964389982245302914445931857545867029<45> 37558205196955967532214995487858032886370144357<47> |
factorization results 素因数分解の結果 | GMP-ECM 6.1.3 [powered by GMP 4.2.2] [ECM] Input number is 583438505740065243072122705696906658894648914815647966933605230597057392094515772905107543503016394593082146796990143221414907706289 (132 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1287683819 Step 1 took 20192ms Step 2 took 10349ms ********** Factor found in step 2: 129176060038429313134294565540217914223913 Found probable prime factor of 42 digits: 129176060038429313134294565540217914223913 Composite cofactor 4516614809017203638734673756033070566719308001891393690896873800964334745942246243456705353 has 91 digits Tue Mar 11 20:26:37 2008 Tue Mar 11 20:26:37 2008 Tue Mar 11 20:26:37 2008 Msieve v. 1.32 Tue Mar 11 20:26:37 2008 random seeds: d1acc543 915d5279 Tue Mar 11 20:26:37 2008 factoring 4516614809017203638734673756033070566719308001891393690896873800964334745942246243456705353 (91 digits) Tue Mar 11 20:26:37 2008 no P-1/P+1/ECM available, skipping Tue Mar 11 20:26:37 2008 commencing quadratic sieve (91-digit input) Tue Mar 11 20:26:38 2008 using multiplier of 1 Tue Mar 11 20:26:38 2008 using 32kb Intel Core sieve core Tue Mar 11 20:26:38 2008 sieve interval: 36 blocks of size 32768 Tue Mar 11 20:26:38 2008 processing polynomials in batches of 6 Tue Mar 11 20:26:38 2008 using a sieve bound of 1714723 (64706 primes) Tue Mar 11 20:26:38 2008 using large prime bound of 164613408 (27 bits) Tue Mar 11 20:26:38 2008 using double large prime bound of 616080330033312 (42-50 bits) Tue Mar 11 20:26:38 2008 using trial factoring cutoff of 50 bits Tue Mar 11 20:26:38 2008 polynomial 'A' values have 12 factors Tue Mar 11 22:05:45 2008 65009 relations (16375 full + 48634 combined from 767780 partial), need 64802 Tue Mar 11 22:05:45 2008 begin with 784155 relations Tue Mar 11 22:05:46 2008 reduce to 163081 relations in 12 passes Tue Mar 11 22:05:46 2008 attempting to read 163081 relations Tue Mar 11 22:05:47 2008 recovered 163081 relations Tue Mar 11 22:05:47 2008 recovered 143891 polynomials Tue Mar 11 22:05:47 2008 attempting to build 65009 cycles Tue Mar 11 22:05:47 2008 found 65009 cycles in 5 passes Tue Mar 11 22:05:48 2008 distribution of cycle lengths: Tue Mar 11 22:05:48 2008 length 1 : 16375 Tue Mar 11 22:05:48 2008 length 2 : 12106 Tue Mar 11 22:05:48 2008 length 3 : 11255 Tue Mar 11 22:05:48 2008 length 4 : 8787 Tue Mar 11 22:05:48 2008 length 5 : 6474 Tue Mar 11 22:05:48 2008 length 6 : 4192 Tue Mar 11 22:05:48 2008 length 7 : 2595 Tue Mar 11 22:05:48 2008 length 9+: 3225 Tue Mar 11 22:05:48 2008 largest cycle: 23 relations Tue Mar 11 22:05:48 2008 matrix is 64706 x 65009 with weight 3948865 (avg 60.74/col) Tue Mar 11 22:05:48 2008 filtering completed in 3 passes Tue Mar 11 22:05:48 2008 matrix is 61147 x 61211 with weight 3734333 (avg 61.01/col) Tue Mar 11 22:05:49 2008 saving the first 48 matrix rows for later Tue Mar 11 22:05:49 2008 matrix is 61099 x 61211 with weight 2944184 (avg 48.10/col) Tue Mar 11 22:05:49 2008 matrix includes 64 packed rows Tue Mar 11 22:05:49 2008 using block size 24484 for processor cache size 4096 kB Tue Mar 11 22:05:50 2008 commencing Lanczos iteration Tue Mar 11 22:06:05 2008 lanczos halted after 968 iterations (dim = 61099) Tue Mar 11 22:06:06 2008 recovered 17 nontrivial dependencies Tue Mar 11 22:06:06 2008 prp45 factor: 120256406964389982245302914445931857545867029 Tue Mar 11 22:06:06 2008 prp47 factor: 37558205196955967532214995487858032886370144357 Tue Mar 11 22:06:06 2008 elapsed time 01:39:29 |
execution environment 実行環境 | Core 2 Quad Q6600 |
name 名前 | Robert Backstrom |
---|---|
date 日付 | December 31, 2007 13:41:35 UTC 2007 年 12 月 31 日 (月) 22 時 41 分 35 秒 (日本時間) |
composite number 合成数 | 835708819297501087161209256684919312616575197394475766671782482860339428847159691345411763978143923133144396640238950619922829764501373132545436100561<150> |
prime factors 素因数 | 119720935477183205712026361015748167111027951799849560997421<60> 6980473515066820668028752248342210383473908035017528053560574089914810233581451339796380341<91> |
factorization results 素因数分解の結果 | Number: n N=835708819297501087161209256684919312616575197394475766671782482860339428847159691345411763978143923133144396640238950619922829764501373132545436100561 ( 150 digits) SNFS difficulty: 165 digits. Divisors found: Mon Dec 31 23:17:09 2007 prp60 factor: 119720935477183205712026361015748167111027951799849560997421 Mon Dec 31 23:17:09 2007 prp91 factor: 6980473515066820668028752248342210383473908035017528053560574089914810233581451339796380341 Mon Dec 31 23:17:09 2007 elapsed time 02:16:22 (Msieve 1.32) Version: GGNFS-0.77.1-20051202-athlon Total time: 58.35 hours. Scaled time: 102.75 units (timescale=1.761). Factorization parameters were as follows: name: KA_6_9_164_1 n: 835708819297501087161209256684919312616575197394475766671782482860339428847159691345411763978143923133144396640238950619922829764501373132545436100561 type: snfs skew: 1.05 deg: 5 c5: 7 c0: -9 m: 1000000000000000000000000000000000 rlim: 3200000 alim: 3200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 2800001) Primes: RFBsize:230209, AFBsize:230717, largePrimes:7456900 encountered Relations: rels:6921697, finalFF:489538 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 58.10 hours. Total relation processing time: 0.25 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,3200000,3200000,28,28,48,48,2.5,2.5,100000 total time: 58.35 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+ |
name 名前 | Markus Tervooren |
---|---|
date 日付 | November 22, 2008 09:16:22 UTC 2008 年 11 月 22 日 (土) 18 時 16 分 22 秒 (日本時間) |
composite number 合成数 | 181994511619460886722571958133515667928438683353276929634860147537918477950452863619794044389350713131234957248455222391689631344117<132> |
prime factors 素因数 | 32171713835165356860545627602731658117138163<44> 5656972847387801199256068528668241589373474506207018297434013731023661520263653791197559<88> |
factorization results 素因数分解の結果 | N=181994511619460886722571958133515667928438683353276929634860147537918477950452863619794044389350713131234957248455222391689631344117 ( 132 digits) SNFS difficulty: 168 digits. Divisors found: r1=32171713835165356860545627602731658117138163 (pp44) r2=5656972847387801199256068528668241589373474506207018297434013731023661520263653791197559 (pp88) Version: GGNFS-0.77.1-20060722-nocona Total time: 76.94 hours. Scaled time: 157.33 units (timescale=2.045). Factorization parameters were as follows: n: 181994511619460886722571958133515667928438683353276929634860147537918477950452863619794044389350713131234957248455222391689631344117 m: 2000000000000000000000000000000000 deg: 5 c5: 175 c0: -72 skew: 0.84 type: snfs lss: 1 rlim: 4500000 alim: 4500000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2250000, 5150001) Primes: RFBsize:315948, AFBsize:315881, largePrimes:10450786 encountered Relations: rels:11438283, finalFF:947465 Max relations in full relation-set: 32 Initial matrix: 631897 x 947465 with sparse part having weight 126994170. Pruned matrix : 515741 x 518964 with weight 79936325. Total sieving time: 72.97 hours. Total relation processing time: 0.21 hours. Matrix solve time: 3.65 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,168,5,0,0,0,0,0,0,0,0,4500000,4500000,27,27,52,52,2.4,2.4,100000 total time: 76.94 hours. --------- CPU info (if available) ---------- |
execution environment 実行環境 | Q6700, Linux2.6.22 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | December 25, 2007 09:00:00 UTC 2007 年 12 月 25 日 (火) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 904 | Jo Yeong Uk | July 24, 2008 07:52:14 UTC 2008 年 7 月 24 日 (木) 16 時 52 分 14 秒 (日本時間) | |
40 | 3e6 | 2089 | 1000 | Markus Tervooren | November 20, 2008 09:51:18 UTC 2008 年 11 月 20 日 (木) 18 時 51 分 18 秒 (日本時間) |
1089 | Markus Tervooren | November 21, 2008 20:31:23 UTC 2008 年 11 月 22 日 (土) 5 時 31 分 23 秒 (日本時間) |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | January 4, 2008 10:19:17 UTC 2008 年 1 月 4 日 (金) 19 時 19 分 17 秒 (日本時間) |
composite number 合成数 | 172975677141036546015229400354180589109448912005422828633671122239020593886199741604134349538195365917741806140785729931<120> |
prime factors 素因数 | 1537937361615581169410967292004327295366166873569433<52> 112472511207691888590129843674497489028548891319841138462050561658307<69> |
factorization results 素因数分解の結果 | Number: 69991_168 N=172975677141036546015229400354180589109448912005422828633671122239020593886199741604134349538195365917741806140785729931 ( 120 digits) Divisors found: r1=1537937361615581169410967292004327295366166873569433 (pp52) r2=112472511207691888590129843674497489028548891319841138462050561658307 (pp69) Version: GGNFS-0.77.1-20050930-nocona Total time: 45.59 hours. Scaled time: 97.92 units (timescale=2.148). Factorization parameters were as follows: name: 69991_168 n: 172975677141036546015229400354180589109448912005422828633671122239020593886199741604134349538195365917741806140785729931 skew: 67391.34 # norm 5.09e+16 c5: 17280 c4: -30345414866 c3: -366826887495445 c2: 155289263798816555595 c1: 1928173509479924180946865 c0: -5273396086403893411410733594 # alpha -6.54 Y1: 1609298589041 Y0: -100020889963331680840305 # Murphy_E 2.83e-10 # M 2243431063636352947101853464256196889266586342162306354589158668527910371904618647504604110166117078652154422036894215 type: gnfs rlim: 4500000 alim: 4500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 75000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [2250000, 4500001) Primes: RFBsize:315948, AFBsize:316323, largePrimes:7733678 encountered Relations: rels:7843528, finalFF:762917 Max relations in full relation-set: 28 Initial matrix: 632354 x 762917 with sparse part having weight 66957880. Pruned matrix : 527399 x 530624 with weight 44323563. Polynomial selection time: 2.69 hours. Total sieving time: 40.77 hours. Total relation processing time: 0.18 hours. Matrix solve time: 1.78 hours. Time per square root: 0.17 hours. Prototype def-par.txt line would be: gnfs,119,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4500000,4500000,27,27,50,50,2.4,2.4,75000 total time: 45.59 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory for crash kernel (0x0 to 0x0) notwithin permissible range Memory: 8178280k/8912896k available (2434k kernel code, 208060k reserved, 1235k data, 192k init) Calibrating delay using timer specific routine.. 4812.90 BogoMIPS (lpj=2406450) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117) Calibrating delay using timer specific routine.. 4809.83 BogoMIPS (lpj=2404916) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117) |
execution environment 実行環境 | Core 2 Quad Q6600 |
name 名前 | Robert Backstrom |
---|---|
date 日付 | July 22, 2008 04:47:49 UTC 2008 年 7 月 22 日 (火) 13 時 47 分 49 秒 (日本時間) |
composite number 合成数 | 1389339220359877542274357801042835125646101146451738583460851033141648832587493612920864982552675488236762722326237405531715310872085039395485860784835768541<157> |
prime factors 素因数 | 260261239348850539688922265966919165310599<42> 5338248691337501107137922770641624082752782783076792345043666099791736776212975427477023032244417290856029907636859<115> |
factorization results 素因数分解の結果 | Number: n N=1389339220359877542274357801042835125646101146451738583460851033141648832587493612920864982552675488236762722326237405531715310872085039395485860784835768541 ( 157 digits) SNFS difficulty: 170 digits. Divisors found: Tue Jul 22 11:26:18 2008 prp42 factor: 260261239348850539688922265966919165310599 Tue Jul 22 11:26:18 2008 prp115 factor: 5338248691337501107137922770641624082752782783076792345043666099791736776212975427477023032244417290856029907636859 Tue Jul 22 11:26:18 2008 elapsed time 04:16:58 (Msieve 1.36) Version: GGNFS-0.77.1-20051202-athlon Total time: 76.95 hours. Scaled time: 111.43 units (timescale=1.448). Factorization parameters were as follows: name: KA_6_9_168_1 n: 1389339220359877542274357801042835125646101146451738583460851033141648832587493612920864982552675488236762722326237405531715310872085039395485860784835768541 skew: 1.67 deg: 5 c5: 7 c0: -90 m: 10000000000000000000000000000000000 type: snfs rlim: 6200000 alim: 6200000 lpbr: 28 lpba: 28 mfbr: 50 mfba: 50 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 6200000/6200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 50/50 Sieved special-q in [100000, 3500001) Primes: RFBsize:425648, AFBsize:426372, largePrimes:10109777 encountered Relations: rels:9700992, finalFF:871192 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 76.51 hours. Total relation processing time: 0.44 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,6200000,6200000,28,28,50,50,2.5,2.5,100000 total time: 76.95 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+ |
name 名前 | Serge Batalov |
---|---|
date 日付 | August 7, 2008 18:55:46 UTC 2008 年 8 月 8 日 (金) 3 時 55 分 46 秒 (日本時間) |
composite number 合成数 | 13601434031470790196663340755116322235682559339754756053615772155826339457385452410053081531053896111300813447663911576564826844789925908881<140> |
prime factors 素因数 | 121675574481606991533348359183<30> 37422933325867189106477419970456951426047763<44> 2987056712446451498387325795625445621950302093418101807281997373189<67> |
factorization results 素因数分解の結果 | #ECM, then gnfs/Msieve # Using B1=1000000, B2=2852890960, polynomial Dickson(6), sigma=3791932801 Step 1 took 4752ms Step 2 took 4028ms ********** Factor found in step 2: 121675574481606991533348359183 Found probable prime factor of 30 digits: 121675574481606991533348359183 Composite cofactor 111784424190467595098459056149911917007502961485656473196420609707893662179624033360420585864758177758049626207 has 111 digits Number: 69991_171 N=111784424190467595098459056149911917007502961485656473196420609707893662179624033360420585864758177758049626207 ( 111 digits) Divisors found: r1=37422933325867189106477419970456951426047763 r2=2987056712446451498387325795625445621950302093418101807281997373189 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.731). Factorization parameters were as follows: name: 69991_171 n: 111784424190467595098459056149911917007502961485656473196420609707893662179624033360420585864758177758049626207 skew: 16193.65 # norm 1.24e+15 c5: 11520 c4: 3427171552 c3: -6558936108298 c2: -63252626562105279 c1: 1972660268393096151002 c0: -13877734259057275740107961 # alpha -5.84 Y1: 104053675033 Y0: -1575375388115067456790 # Murphy_E 9.89e-10 # M 37041568271832547269366268052856747176849485994032370674464185504456218729408930988297991607542039622190059088 type: gnfs rlim: 3200000 alim: 3200000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1600000, 3100001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 416881 x 417129 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.60 hours. Time per square root: 0.30 hours. Prototype def-par.txt line would be: gnfs,110,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,3200000,27,27,50,50,2.6,2.6,100000 total time: 12.00 hours. |
software ソフトウェア | GMP-ECM 6.2.1+pol51+Msieve 1.36 |
execution environment 実行環境 | Opteron-2.6GHz; Linux x86_64 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | December 25, 2007 09:00:00 UTC 2007 年 12 月 25 日 (火) 18 時 0 分 0 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | October 15, 2008 06:16:53 UTC 2008 年 10 月 15 日 (水) 15 時 16 分 53 秒 (日本時間) |
composite number 合成数 | 6604584784308756592809399333404107371973103803302616752748256819882053383173887637991171460740665429743736952188103699060096321723041245359586061437788090649683739<163> |
prime factors 素因数 | 223245829680143568677436140783698003000608237638667397220569703726322445019<75> 29584359061808698085356769885290337868193171920464425723391688951441403237695049377138881<89> |
factorization results 素因数分解の結果 | SNFS difficulty: 172 digits. Divisors found: r1=223245829680143568677436140783698003000608237638667397220569703726322445019 r2=29584359061808698085356769885290337868193171920464425723391688951441403237695049377138881 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.731). Factorization parameters were as follows: n: 6604584784308756592809399333404107371973103803302616752748256819882053383173887637991171460740665429743736952188103699060096321723041245359586061437788090649683739 m: 10000000000000000000000000000000000 c5: 700 c0: -9 skew: 0.42 type: snfs Factor base limits: 9000000/9000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved rational special-q in [4500000, 7600001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1249370 x 1249618 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,172,5,0,0,0,0,0,0,0,0,9000000,9000000,27,27,54,54,2.6,2.6,100000 total time: 34.00 hours. |
software ソフトウェア | Msieve-1.38 |
execution environment 実行環境 | Opteron-2.6GHz; Linux x86_64 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | December 25, 2007 09:00:00 UTC 2007 年 12 月 25 日 (火) 18 時 0 分 0 秒 (日本時間) |
name 名前 | Wataru Sakai |
---|---|
date 日付 | October 27, 2009 13:07:21 UTC 2009 年 10 月 27 日 (火) 22 時 7 分 21 秒 (日本時間) |
composite number 合成数 | 118335266289699330717287805739976609910028642379095256867623958931583444124800011987668345641662168237014794505569635206720802429547119302389<141> |
prime factors 素因数 | 5822198849636541604216008139984546047314947195596463077900521<61> 20324841068780494305293498995060419802226786782151713853158153045709315773873709<80> |
factorization results 素因数分解の結果 | Number: 69991_173 N=118335266289699330717287805739976609910028642379095256867623958931583444124800011987668345641662168237014794505569635206720802429547119302389 ( 141 digits) SNFS difficulty: 175 digits. Divisors found: r1=5822198849636541604216008139984546047314947195596463077900521 r2=20324841068780494305293498995060419802226786782151713853158153045709315773873709 Version: Total time: 117.44 hours. Scaled time: 236.63 units (timescale=2.015). Factorization parameters were as follows: n: 118335266289699330717287805739976609910028642379095256867623958931583444124800011987668345641662168237014794505569635206720802429547119302389 m: 50000000000000000000000000000000000 deg: 5 c5: 56 c0: -225 skew: 1.32 type: snfs lss: 1 rlim: 5800000 alim: 5800000 lpbr: 28 lpba: 28 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5Factor base limits: 5800000/5800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 52/52 Sieved rational special-q in [2900000, 6500001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1100358 x 1100606 Total sieving time: 117.44 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,175,5,0,0,0,0,0,0,0,0,5800000,5800000,28,28,52,52,2.5,2.5,100000 total time: 117.44 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | December 25, 2007 09:00:00 UTC 2007 年 12 月 25 日 (火) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 825 | Jo Yeong Uk | November 15, 2008 07:58:42 UTC 2008 年 11 月 15 日 (土) 16 時 58 分 42 秒 (日本時間) | |
40 | 3e6 | 2111 | Jo Yeong Uk | February 1, 2009 05:36:21 UTC 2009 年 2 月 1 日 (日) 14 時 36 分 21 秒 (日本時間) |
name 名前 | matsui |
---|---|
date 日付 | July 6, 2008 09:08:19 UTC 2008 年 7 月 6 日 (日) 18 時 8 分 19 秒 (日本時間) |
composite number 合成数 | 76770838746934130507392324931250151067188852114401986823165103555542800872777834759409606762117612554266824567026809163243163420541346739870235062843495421078448688459<167> |
prime factors 素因数 | 2998263129687771495713319147093796698599357538666071288999<58> 25605103830539641054955333281714615256570243024259263526043334000070733816061239428491153704128112278858660541<110> |
factorization results 素因数分解の結果 | N=76770838746934130507392324931250151067188852114401986823165103555542800872777834759409606762117612554266824567026809163243163420541346739870235062843495421078448688459 ( 167 digits) SNFS difficulty: 175 digits. Divisors found: r1=2998263129687771495713319147093796698599357538666071288999 (pp58) r2=25605103830539641054955333281714615256570243024259263526043334000070733816061239428491153704128112278858660541 (pp110) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 120.77 hours. Scaled time: 343.95 units (timescale=2.848). Factorization parameters were as follows: n: 76770838746934130507392324931250151067188852114401986823165103555542800872777834759409606762117612554266824567026809163243163420541346739870235062843495421078448688459 m: 100000000000000000000000000000000000 c5: 7 c0: -9 skew: 1.05 type: snfs Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 12000001) Primes: RFBsize:501962, AFBsize:502356, largePrimes:6549781 encountered Relations: rels:7030593, finalFF:1152542 Max relations in full relation-set: 28 Initial matrix: 1004384 x 1152542 with sparse part having weight 76779199. Pruned matrix : 878852 x 883937 with weight 58230885. Total sieving time: 112.93 hours. Total relation processing time: 0.11 hours. Matrix solve time: 7.52 hours. Time per square root: 0.22 hours. Prototype def-par.txt line would be: snfs,175,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 120.77 hours. |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | November 3, 2008 22:45:16 UTC 2008 年 11 月 4 日 (火) 7 時 45 分 16 秒 (日本時間) |
composite number 合成数 | 79445813245364875893722838753259122620867441596261597811926110399944978099626638725952461668246314253362004949020189110543968888111580963739001436493797495118905981214243<170> |
prime factors 素因数 | 1471607402359269526317161020368119<34> 53985739075515634697915501772688348506596820268762244897523775610785131164014476184599853349601190834688415144297768454969091079778009397<137> |
factorization results 素因数分解の結果 | GMP-ECM 6.2.1 [powered by GMP 4.2.3] [ECM] Input number is 79445813245364875893722838753259122620867441596261597811926110399944978099626638725952461668246314253362004949020189110543968888111580963739001436493797495118905981214243 (170 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3920796782 Step 1 took 5865ms Step 2 took 5148ms ********** Factor found in step 2: 1471607402359269526317161020368119 Found probable prime factor of 34 digits: 1471607402359269526317161020368119 Probable prime cofactor 53985739075515634697915501772688348506596820268762244897523775610785131164014476184599853349601190834688415144297768454969091079778009397 has 137 digits |
execution environment 実行環境 | Core 2 Quad Q6600 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | December 25, 2007 09:00:00 UTC 2007 年 12 月 25 日 (火) 18 時 0 分 0 秒 (日本時間) |
name 名前 | Warut Roonguthai |
---|---|
date 日付 | April 2, 2012 12:34:50 UTC 2012 年 4 月 2 日 (月) 21 時 34 分 50 秒 (日本時間) |
composite number 合成数 | 7975505127159272454394969903948159716142691004791684092830287499572352708024456452769522140725323266745618487784796297242877042038978987020247<142> |
prime factors 素因数 | 16355013078228492064453493967087754617300913502022018300051109<62> 487648960536517434429738499186995203200651167075800879123844409853127228376999883<81> |
factorization results 素因数分解の結果 | N = 7975505127159272454394969903948159716142691004791684092830287499572352708024456452769522140725323266745618487784796297242877042038978987020247 (142 digits) SNFS difficulty: 178 digits. Divisors found: r1=16355013078228492064453493967087754617300913502022018300051109 (pp62) r2=487648960536517434429738499186995203200651167075800879123844409853127228376999883 (pp81) Version: Msieve v. 1.48 Total time: 37.60 hours. Factorization parameters were as follows: name: 7*10^177-9 n: 7975505127159272454394969903948159716142691004791684092830287499572352708024456452769522140725323266745618487784796297242877042038978987020247 Y0: 100000000000000000000000000000000000 Y1: -1 c0: -9 c1: 0 c2: 0 c3: 0 c4: 0 c5: 700 skew: 0.42 type: snfs Factor base limits: 6500000/6500000 Large primes per side: 3 Large prime bits: 28/28 Sieved rational special-q in [0, 0) Total raw relations: 20749616 Relations: 2550858 relations Pruned matrix : 1457814 x 1458038 Polynomial selection time: 0.00 hours. Total sieving time: 34.50 hours. Total relation processing time: 0.12 hours. Matrix solve time: 2.84 hours. time per square root: 0.14 hours. Prototype def-par.txt line would be: snfs,178,5,0,0,0,0,0,0,0,0,6500000,6500000,28,28,55,55,2.5,2.5,100000 total time: 37.60 hours. Intel64 Family 6 Model 42 Stepping 7, GenuineIntel Windows-7-6.1.7601-SP1 processors: 4, speed: 2.29GHz |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | December 25, 2007 09:00:00 UTC 2007 年 12 月 25 日 (火) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 825 | Jo Yeong Uk | November 15, 2008 07:59:03 UTC 2008 年 11 月 15 日 (土) 16 時 59 分 3 秒 (日本時間) | |
40 | 3e6 | 2111 | Jo Yeong Uk | February 1, 2009 05:36:30 UTC 2009 年 2 月 1 日 (日) 14 時 36 分 30 秒 (日本時間) |
name 名前 | Robert Backstrom |
---|---|
date 日付 | September 22, 2008 10:47:13 UTC 2008 年 9 月 22 日 (月) 19 時 47 分 13 秒 (日本時間) |
composite number 合成数 | 1451047863850251860450654008001492506374245973342177815551087249435127795858294811467423975456561845732882817520366493231898177898468108040878091250181380982981281482556331751<175> |
prime factors 素因数 | 12897341641762311482225721924377786620072960817038184469508152023<65> 112507515436489482196909605851330785043044214218396095102143177575566128872215934971677861051720757848691700337<111> |
factorization results 素因数分解の結果 | Number: n N=1451047863850251860450654008001492506374245973342177815551087249435127795858294811467423975456561845732882817520366493231898177898468108040878091250181380982981281482556331751 ( 175 digits) SNFS difficulty: 178 digits. Divisors found: Mon Sep 22 18:53:36 2008 prp65 factor: 12897341641762311482225721924377786620072960817038184469508152023 Mon Sep 22 18:53:36 2008 prp111 factor: 112507515436489482196909605851330785043044214218396095102143177575566128872215934971677861051720757848691700337 Mon Sep 22 18:53:36 2008 elapsed time 05:54:33 (Msieve 1.36) Version: GGNFS-0.77.1-20051202-athlon Total time: 57.99 hours. Scaled time: 118.94 units (timescale=2.051). Factorization parameters were as follows: name: KA_6_9_177_1 n: 1451047863850251860450654008001492506374245973342177815551087249435127795858294811467423975456561845732882817520366493231898177898468108040878091250181380982981281482556331751 type: snfs skew: 0.26 deg: 5 c5: 7000 c0: -9 m: 100000000000000000000000000000000000 rlim: 8000000 alim: 8000000 lpbr: 28 lpba: 28 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 8000000/8000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 52/52 Sieved special-q in [100000, 11400001) Primes: RFBsize:539777, AFBsize:539075, largePrimes:15392040 encountered Relations: rels:15911037, finalFF:1641017 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 57.50 hours. Total relation processing time: 0.49 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,178,5,0,0,0,0,0,0,0,0,8000000,8000000,28,28,52,52,2.5,2.5,100000 total time: 57.99 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | December 25, 2007 09:00:00 UTC 2007 年 12 月 25 日 (火) 18 時 0 分 0 秒 (日本時間) |
name 名前 | Robert Backstrom |
---|---|
date 日付 | February 8, 2012 03:54:13 UTC 2012 年 2 月 8 日 (水) 12 時 54 分 13 秒 (日本時間) |
composite number 合成数 | 9619157088519491680156965693395507601477580817741972083854967345169761985995395182281502397170631753532302442717445004234770902741776409518599118392080480975715276856547<169> |
prime factors 素因数 | 1257951721263604352139589829106892400427551425645294710182642789568763<70> 7646682242190591161556198373637317987171335314757235302755083444223092418917335695838897522440941369<100> |
factorization results 素因数分解の結果 | Number: n N=9619157088519491680156965693395507601477580817741972083854967345169761985995395182281502397170631753532302442717445004234770902741776409518599118392080480975715276856547 ( 169 digits) SNFS difficulty: 179 digits. Divisors found: Wed Feb 8 10:08:09 2012 prp70 factor: 1257951721263604352139589829106892400427551425645294710182642789568763 Wed Feb 8 10:08:09 2012 prp100 factor: 7646682242190591161556198373637317987171335314757235302755083444223092418917335695838897522440941369 Wed Feb 8 10:08:09 2012 elapsed time 02:44:47 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=1.653). Factorization parameters were as follows: name: KA_69991_179 n: 9619157088519491680156965693395507601477580817741972083854967345169761985995395182281502397170631753532302442717445004234770902741776409518599118392080480975715276856547 m: 100000000000000000000000000000000000 # c169, diff: 179.85 skew: 0.17 deg: 5 c5: 70000 c0: -9 type: snfs lss: 1 rlim: 15000000 alim: 15000000 lpbr: 29 lpba: 29 mfbr: 57 mfba: 57 rlambda: 2.5 alambda: 2.5 Factor base limits: 15000000/15000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 57/57 Sieved special-q in [100000, 17200000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 8377272 hash collisions in 76934803 relations (70851072 unique) Msieve: matrix is 1223226 x 1223474 (341.0 MB) Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,179,5,0,0,0,0,0,0,0,0,15000000,15000000,29,29,57,57,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM) i7 CPU 930 @ 2.80GHz stepping 05 CPU1: Intel(R) Core(TM) i7 CPU 930 @ 2.80GHz stepping 05 CPU2: Intel(R) Core(TM) i7 CPU 930 @ 2.80GHz stepping 05 CPU3: Intel(R) Core(TM) i7 CPU 930 @ 2.80GHz stepping 05 CPU4: Intel(R) Core(TM) i7 CPU 930 @ 2.80GHz stepping 05 CPU5: Intel(R) Core(TM) i7 CPU 930 @ 2.80GHz stepping 05 CPU6: Intel(R) Core(TM) i7 CPU 930 @ 2.80GHz stepping 05 CPU7: Intel(R) Core(TM) i7 CPU 930 @ 2.80GHz stepping 05 Memory: 6059348k/6815744k available (3972k kernel code, 525828k absent, 230568k reserved, 2498k data, 1292k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 5595.06 BogoMIPS (lpj=2797533) Calibrating delay using timer specific routine.. 5595.11 BogoMIPS (lpj=2797555) Calibrating delay using timer specific routine.. 5595.11 BogoMIPS (lpj=2797555) Calibrating delay using timer specific routine.. 5595.11 BogoMIPS (lpj=2797555) Calibrating delay using timer specific routine.. 5595.10 BogoMIPS (lpj=2797553) Calibrating delay using timer specific routine.. 5595.10 BogoMIPS (lpj=2797554) Calibrating delay using timer specific routine.. 5595.10 BogoMIPS (lpj=2797554) Calibrating delay using timer specific routine.. 5595.11 BogoMIPS (lpj=2797555) Total of 8 processors activated (44760.82 BogoMIPS). |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | December 25, 2007 09:00:00 UTC 2007 年 12 月 25 日 (火) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 825 | Jo Yeong Uk | November 15, 2008 07:59:26 UTC 2008 年 11 月 15 日 (土) 16 時 59 分 26 秒 (日本時間) | |
40 | 3e6 | 2111 | Jo Yeong Uk | February 27, 2009 10:03:59 UTC 2009 年 2 月 27 日 (金) 19 時 3 分 59 秒 (日本時間) | |
45 | 11e6 | 0 | - | - | |
50 | 43e6 | 1145 | yoyo@home | February 7, 2010 02:07:12 UTC 2010 年 2 月 7 日 (日) 11 時 7 分 12 秒 (日本時間) | |
55 | 11e7 | 2635 / 17343 | yoyo@home | November 3, 2010 19:55:11 UTC 2010 年 11 月 4 日 (木) 4 時 55 分 11 秒 (日本時間) |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | December 1, 2008 09:41:46 UTC 2008 年 12 月 1 日 (月) 18 時 41 分 46 秒 (日本時間) |
composite number 合成数 | 3080877024860949836881803991296662808651953686327894352408272117230457204223004198843440055196469778697272230530749827753879009022633410147845378287601<151> |
prime factors 素因数 | 551024823684035448740408536106657207<36> |
composite cofactor 合成数の残り | 5591176463272303316615780966074659214096793163110886821777133410508295180383174336519509049157089247339837301301143<115> |
factorization results 素因数分解の結果 | GMP-ECM 6.2.1 [powered by GMP 4.2.3] [ECM] Input number is 3080877024860949836881803991296662808651953686327894352408272117230457204223004198843440055196469778697272230530749827753879009022633410147845378287601 (151 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=820661537 Step 1 took 14820ms Step 2 took 10654ms ********** Factor found in step 2: 551024823684035448740408536106657207 Found probable prime factor of 36 digits: 551024823684035448740408536106657207 Composite cofactor 5591176463272303316615780966074659214096793163110886821777133410508295180383174336519509049157089247339837301301143 has 115 digits |
execution environment 実行環境 | Core 2 Quad Q6600,Windows Vista(tm) Ultimate K x64 |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | December 2, 2008 12:59:17 UTC 2008 年 12 月 2 日 (火) 21 時 59 分 17 秒 (日本時間) |
composite number 合成数 | 5591176463272303316615780966074659214096793163110886821777133410508295180383174336519509049157089247339837301301143<115> |
prime factors 素因数 | 120505114541548280042487841757872247892709036654778083<54> 46397835349507535301741903585430930023363737967949935765765821<62> |
factorization results 素因数分解の結果 | Number: 69991_182 N=5591176463272303316615780966074659214096793163110886821777133410508295180383174336519509049157089247339837301301143 ( 115 digits) Divisors found: r1=120505114541548280042487841757872247892709036654778083 (pp54) r2=46397835349507535301741903585430930023363737967949935765765821 (pp62) Version: GGNFS-0.77.1-20050930-nocona Total time: 22.15 hours. Scaled time: 52.61 units (timescale=2.375). Factorization parameters were as follows: name: 69991_182 n: 5591176463272303316615780966074659214096793163110886821777133410508295180383174336519509049157089247339837301301143 skew: 17333.97 # norm 9.01e+15 c5: 97740 c4: 18416313678 c3: -212611237858754 c2: 202852738603153717 c1: 15507418452815452722844 c0: 58012158724999932663752355 # alpha -6.24 Y1: 2422555194829 Y0: -8942969295094779062108 # Murphy_E 5.46e-10 # M 2950275471248039864803529724056229443825261945017915189784971355597025064217620201603167612787728815854960471712106 type: gnfs rlim: 2800000 alim: 2800000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.6 alambda: 2.6 qintsize: 70000 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved algebraic special-q in [1400000, 2660001) Primes: RFBsize:203362, AFBsize:203456, largePrimes:9573195 encountered Relations: rels:9505229, finalFF:506003 Max relations in full relation-set: 28 Initial matrix: 406897 x 506003 with sparse part having weight 54243052. Pruned matrix : 348124 x 350222 with weight 36935690. Polynomial selection time: 1.31 hours. Total sieving time: 19.78 hours. Total relation processing time: 0.16 hours. Matrix solve time: 0.76 hours. Time per square root: 0.14 hours. Prototype def-par.txt line would be: gnfs,114,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2800000,2800000,27,27,52,52,2.6,2.6,70000 total time: 22.15 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047068k/8912896k available (2460k kernel code, 339224k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672384) Calibrating delay using timer specific routine.. 5497.76 BogoMIPS (lpj=2748880) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347) |
execution environment 実行環境 | Core 2 Quad Q6700 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | December 25, 2007 09:00:00 UTC 2007 年 12 月 25 日 (火) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 825 | Jo Yeong Uk | November 15, 2008 07:59:43 UTC 2008 年 11 月 15 日 (土) 16 時 59 分 43 秒 (日本時間) |
name 名前 | Pipao |
---|---|
date 日付 | November 5, 2010 02:12:49 UTC 2010 年 11 月 5 日 (金) 11 時 12 分 49 秒 (日本時間) |
composite number 合成数 | 4222237723821134696399627564215417733848679323756900695934179647850919897942264409777042228305769751642015107188284690412695147661002520593687233880815961401762273<163> |
prime factors 素因数 | 2177844410694236710673789480452302228723381261719<49> 1938723309657920789206475056921505553905736789461719815906725083680072375291377040179661939044445917137710636720967<115> |
factorization results 素因数分解の結果 | GMP-ECM 6.2.3 [powered by GMP 4.2.1_MPIR_1.1.1] [ECM] Input number is 4222237723821134696399627564215417733848679323756900695934179647850919897942264409777042228305769751642015107188284690412695147661002520593687233880815961401762273 (163 digits) [Thu Nov 04 09:57:32 2010] Using MODMULN Using B1=110000000, B2=776278396540, polynomial Dickson(30), sigma=715931293 dF=131072, k=4, d=1345890, d2=11, i0=71 Expected number of curves to find a factor of n digits: 20 25 30 35 40 45 50 55 60 65 2 4 10 34 135 613 3133 17769 111196 751771 Step 1 took 589699ms Using 20 small primes for NTT Estimated memory usage: 471M Initializing tables of differences for F took 390ms Computing roots of F took 32698ms Building F from its roots took 18377ms Computing 1/F took 8252ms Initializing table of differences for G took 327ms Computing roots of G took 27176ms Building G from its roots took 15959ms Computing roots of G took 27363ms Building G from its roots took 16208ms Computing G * H took 4711ms Reducing G * H mod F took 4337ms Computing roots of G took 27331ms Building G from its roots took 16162ms Computing G * H took 4618ms Reducing G * H mod F took 4415ms Computing roots of G took 27347ms Building G from its roots took 15943ms Computing G * H took 4602ms Reducing G * H mod F took 4322ms Computing polyeval(F,G) took 31746ms Computing product of all F(g_i) took 141ms Step 2 took 293438ms ********** Factor found in step 2: 2177844410694236710673789480452302228723381261719 Found probable prime factor of 49 digits: 2177844410694236710673789480452302228723381261719 Probable prime cofactor 1938723309657920789206475056921505553905736789461719815906725083680072375291377040179661939044445917137710636720967 has 115 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | December 25, 2007 09:00:00 UTC 2007 年 12 月 25 日 (火) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 825 | Jo Yeong Uk | November 15, 2008 07:59:57 UTC 2008 年 11 月 15 日 (土) 16 時 59 分 57 秒 (日本時間) | |
40 | 3e6 | 2111 | Jo Yeong Uk | February 27, 2009 10:04:09 UTC 2009 年 2 月 27 日 (金) 19 時 4 分 9 秒 (日本時間) | |
45 | 11e6 | 0 | - | - | |
50 | 43e6 | 1145 / 3901 | yoyo@home | February 14, 2010 15:30:32 UTC 2010 年 2 月 15 日 (月) 0 時 30 分 32 秒 (日本時間) | |
55 | 11e7 | 1480 / 17343 | yoyo@home | November 3, 2010 21:20:13 UTC 2010 年 11 月 4 日 (木) 6 時 20 分 13 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | May 13, 2012 08:23:28 UTC 2012 年 5 月 13 日 (日) 17 時 23 分 28 秒 (日本時間) |
composite number 合成数 | 519525621878462626981845328919262546963915820246272291450351321755991476381704041637641727964106798879810212328388482081851023459477322090604164425834795542661553954891<168> |
prime factors 素因数 | 7962085544181486905582787097431331669084443869126091386612582637426287<70> 65249942241341562867665751014964663626829018890285536781847520007074741504860160218117892922974693<98> |
factorization results 素因数分解の結果 | N=519525621878462626981845328919262546963915820246272291450351321755991476381704041637641727964106798879810212328388482081851023459477322090604164425834795542661553954891 ( 168 digits) SNFS difficulty: 185 digits. Divisors found: r1=7962085544181486905582787097431331669084443869126091386612582637426287 (pp70) r2=65249942241341562867665751014964663626829018890285536781847520007074741504860160218117892922974693 (pp98) Version: Msieve-1.40 Total time: 201.54 hours. Scaled time: 395.63 units (timescale=1.963). Factorization parameters were as follows: n: 519525621878462626981845328919262546963915820246272291450351321755991476381704041637641727964106798879810212328388482081851023459477322090604164425834795542661553954891 m: 10000000000000000000000000000000000000 deg: 5 c5: 7 c0: -9 skew: 1.05 type: snfs lss: 1 rlim: 8800000 alim: 8800000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 qintsize: 400000Factor base limits: 8800000/8800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [4400000, 7600001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1356895 x 1357120 Total sieving time: 199.25 hours. Total relation processing time: 0.21 hours. Matrix solve time: 1.96 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: snfs,185.000,5,0,0,0,0,0,0,0,0,8800000,8800000,28,28,54,54,2.5,2.5,100000 total time: 201.54 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | December 25, 2007 09:00:00 UTC 2007 年 12 月 25 日 (火) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 825 | Jo Yeong Uk | November 15, 2008 08:00:12 UTC 2008 年 11 月 15 日 (土) 17 時 0 分 12 秒 (日本時間) | |
40 | 3e6 | 2111 | Jo Yeong Uk | February 27, 2009 10:04:18 UTC 2009 年 2 月 27 日 (金) 19 時 4 分 18 秒 (日本時間) | |
45 | 11e6 | 0 | - | - | |
50 | 43e6 | 1145 | yoyo@home | February 14, 2010 16:50:11 UTC 2010 年 2 月 15 日 (月) 1 時 50 分 11 秒 (日本時間) | |
55 | 11e7 | 2635 / 17343 | yoyo@home | November 4, 2010 11:05:20 UTC 2010 年 11 月 4 日 (木) 20 時 5 分 20 秒 (日本時間) |
name 名前 | Robert Backstrom |
---|---|
date 日付 | December 27, 2007 17:00:50 UTC 2007 年 12 月 28 日 (金) 2 時 0 分 50 秒 (日本時間) |
composite number 合成数 | 595972239123669791995895721145326920898097780541200339694452957278131466762170631342974085756411616949220478823<111> |
prime factors 素因数 | 2515472027805282686708792675704535850836383<43> 236922626264959098658721156310440198919184175106191358028227502394681<69> |
factorization results 素因数分解の結果 | Number: n N=595972239123669791995895721145326920898097780541200339694452957278131466762170631342974085756411616949220478823 ( 111 digits) Divisors found: r1=2515472027805282686708792675704535850836383 (pp43) r2=236922626264959098658721156310440198919184175106191358028227502394681 (pp69) Version: GGNFS-0.77.1-20051202-athlon Total time: 19.07 hours. Scaled time: 33.44 units (timescale=1.753). Factorization parameters were as follows: name: KA_6_9_185_1 n: 595972239123669791995895721145326920898097780541200339694452957278131466762170631342974085756411616949220478823 skew: 7691.60 # norm 7.39e+14 c5: 65280 c4: -3707517143 c3: -59981266406565 c2: 195444948138712791 c1: 464656384627185252258 c0: -666305598531814435117600 # alpha -4.72 Y1: 299854219969 Y0: -1556288568485250579843 # Murphy_E 8.93e-10 # M 261347015577692975215738963466108609772390237867217698520093975466862424241959027489401092781747038850578899133 type: gnfs rlim: 3200000 alim: 3200000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved special-q in [100000, 100000) Primes: RFBsize:230209, AFBsize:229965, largePrimes:7449706 encountered Relations: rels:7280948, finalFF:562779 Max relations in full relation-set: 28 Initial matrix: 460254 x 562779 with sparse part having weight 47426767. Pruned matrix : 375082 x 377447 with weight 27995113. Total sieving time: 16.82 hours. Total relation processing time: 0.15 hours. Matrix solve time: 1.45 hours. Total square root time: 0.65 hours, sqrts: 4. Prototype def-par.txt line would be: gnfs,110,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,3200000,27,27,50,50,2.6,2.6,100000 total time: 19.07 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+ |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | November 3, 2008 22:46:30 UTC 2008 年 11 月 4 日 (火) 7 時 46 分 30 秒 (日本時間) |
composite number 合成数 | 347257179668169708309514689892335853744363566614245519657579625393249342784866390835895774677123656675961762660717974357244997314882524228703848091151563953<156> |
prime factors 素因数 | 4690476648547345168326374837406127<34> |
composite cofactor 合成数の残り | 74034518384334417089817067969336107865932654799596895823511091185372389129149571176376292605794361402236374912345491675039<122> |
factorization results 素因数分解の結果 | GMP-ECM 6.2.1 [powered by GMP 4.2.3] [ECM] Input number is 347257179668169708309514689892335853744363566614245519657579625393249342784866390835895774677123656675961762660717974357244997314882524228703848091151563953 (156 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=603318502 Step 1 took 5912ms Step 2 took 4961ms ********** Factor found in step 2: 4690476648547345168326374837406127 Found probable prime factor of 34 digits: 4690476648547345168326374837406127 Composite cofactor 74034518384334417089817067969336107865932654799596895823511091185372389129149571176376292605794361402236374912345491675039 has 122 digits |
execution environment 実行環境 | Core 2 Quad Q6600 |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | May 11, 2009 22:29:59 UTC 2009 年 5 月 12 日 (火) 7 時 29 分 59 秒 (日本時間) |
composite number 合成数 | 74034518384334417089817067969336107865932654799596895823511091185372389129149571176376292605794361402236374912345491675039<122> |
prime factors 素因数 | 132247220045280786396912011749138627359993288829687<51> 559819090026885770857005522645932550743849730325918357433966783937734297<72> |
factorization results 素因数分解の結果 | Tue May 05 13:21:24 2009 Msieve v. 1.41 Tue May 05 13:21:24 2009 random seeds: 796211e0 c7c337b8 Tue May 05 13:21:24 2009 factoring 74034518384334417089817067969336107865932654799596895823511091185372389129149571176376292605794361402236374912345491675039 (122 digits) Tue May 05 13:21:24 2009 searching for 15-digit factors Tue May 05 13:21:26 2009 commencing number field sieve (122-digit input) Tue May 05 13:21:26 2009 R0: -338415587465557897385425 Tue May 05 13:21:26 2009 R1: 25169084109103 Tue May 05 13:21:26 2009 A0: -19554326764852222388358345552 Tue May 05 13:21:26 2009 A1: 2374031057583121590915716 Tue May 05 13:21:26 2009 A2: 89638104094787780664 Tue May 05 13:21:26 2009 A3: -53426264244359 Tue May 05 13:21:26 2009 A4: -7014396274 Tue May 05 13:21:26 2009 A5: 16680 Tue May 05 13:21:26 2009 skew 105853.63, size 1.087434e-011, alpha -5.584116, combined = 2.285903e-010 Tue May 05 13:21:26 2009 Tue May 05 13:21:26 2009 commencing relation filtering Tue May 05 13:21:26 2009 commencing duplicate removal, pass 1 Tue May 05 13:23:26 2009 found 3680062 hash collisions in 14352905 relations Tue May 05 13:23:49 2009 added 62650 free relations Tue May 05 13:23:49 2009 commencing duplicate removal, pass 2 Tue May 05 13:24:22 2009 found 4221914 duplicates and 10193640 unique relations Tue May 05 13:24:22 2009 memory use: 106.6 MB Tue May 05 13:24:22 2009 reading rational ideals above 7929856 Tue May 05 13:24:22 2009 reading algebraic ideals above 7929856 Tue May 05 13:24:22 2009 commencing singleton removal, pass 1 Tue May 05 13:25:56 2009 relations with 0 large ideals: 319804 Tue May 05 13:25:56 2009 relations with 1 large ideals: 1789543 Tue May 05 13:25:56 2009 relations with 2 large ideals: 3700610 Tue May 05 13:25:56 2009 relations with 3 large ideals: 3267043 Tue May 05 13:25:56 2009 relations with 4 large ideals: 1046919 Tue May 05 13:25:56 2009 relations with 5 large ideals: 11575 Tue May 05 13:25:56 2009 relations with 6 large ideals: 58146 Tue May 05 13:25:56 2009 relations with 7+ large ideals: 0 Tue May 05 13:25:56 2009 10193640 relations and about 9206532 large ideals Tue May 05 13:25:56 2009 commencing singleton removal, pass 2 Tue May 05 13:27:29 2009 found 3746144 singletons Tue May 05 13:27:29 2009 current dataset: 6447496 relations and about 4826112 large ideals Tue May 05 13:27:29 2009 commencing singleton removal, pass 3 Tue May 05 13:28:35 2009 found 907584 singletons Tue May 05 13:28:35 2009 current dataset: 5539912 relations and about 3868151 large ideals Tue May 05 13:28:35 2009 commencing singleton removal, pass 4 Tue May 05 13:29:33 2009 found 254745 singletons Tue May 05 13:29:33 2009 current dataset: 5285167 relations and about 3608888 large ideals Tue May 05 13:29:33 2009 commencing singleton removal, final pass Tue May 05 13:30:30 2009 memory use: 81.1 MB Tue May 05 13:30:30 2009 commencing in-memory singleton removal Tue May 05 13:30:30 2009 begin with 5285167 relations and 3822070 unique ideals Tue May 05 13:30:35 2009 reduce to 4716125 relations and 3242297 ideals in 13 passes Tue May 05 13:30:35 2009 max relations containing the same ideal: 33 Tue May 05 13:30:36 2009 reading rational ideals above 720000 Tue May 05 13:30:36 2009 reading algebraic ideals above 720000 Tue May 05 13:30:36 2009 commencing singleton removal, final pass Tue May 05 13:31:36 2009 keeping 3940660 ideals with weight <= 20, new excess is 380477 Tue May 05 13:31:40 2009 memory use: 128.6 MB Tue May 05 13:31:40 2009 commencing in-memory singleton removal Tue May 05 13:31:41 2009 begin with 4717910 relations and 3940660 unique ideals Tue May 05 13:31:48 2009 reduce to 4695435 relations and 3909770 ideals in 13 passes Tue May 05 13:31:48 2009 max relations containing the same ideal: 20 Tue May 05 13:31:51 2009 removing 982639 relations and 810483 ideals in 172156 cliques Tue May 05 13:31:51 2009 commencing in-memory singleton removal Tue May 05 13:31:51 2009 begin with 3712796 relations and 3909770 unique ideals Tue May 05 13:31:55 2009 reduce to 3585555 relations and 2966547 ideals in 9 passes Tue May 05 13:31:55 2009 max relations containing the same ideal: 20 Tue May 05 13:31:57 2009 removing 740278 relations and 568122 ideals in 172156 cliques Tue May 05 13:31:58 2009 commencing in-memory singleton removal Tue May 05 13:31:58 2009 begin with 2845277 relations and 2966547 unique ideals Tue May 05 13:32:00 2009 reduce to 2743763 relations and 2292206 ideals in 8 passes Tue May 05 13:32:00 2009 max relations containing the same ideal: 19 Tue May 05 13:32:01 2009 removing 74922 relations and 64719 ideals in 10203 cliques Tue May 05 13:32:02 2009 commencing in-memory singleton removal Tue May 05 13:32:02 2009 begin with 2668841 relations and 2292206 unique ideals Tue May 05 13:32:03 2009 reduce to 2667656 relations and 2226298 ideals in 5 passes Tue May 05 13:32:03 2009 max relations containing the same ideal: 19 Tue May 05 13:32:03 2009 relations with 0 large ideals: 28132 Tue May 05 13:32:03 2009 relations with 1 large ideals: 191693 Tue May 05 13:32:03 2009 relations with 2 large ideals: 536697 Tue May 05 13:32:03 2009 relations with 3 large ideals: 801502 Tue May 05 13:32:03 2009 relations with 4 large ideals: 682034 Tue May 05 13:32:03 2009 relations with 5 large ideals: 329226 Tue May 05 13:32:03 2009 relations with 6 large ideals: 86297 Tue May 05 13:32:03 2009 relations with 7+ large ideals: 12075 Tue May 05 13:32:03 2009 commencing 2-way merge Tue May 05 13:32:05 2009 reduce to 1695103 relation sets and 1253745 unique ideals Tue May 05 13:32:05 2009 commencing full merge Tue May 05 13:32:27 2009 memory use: 100.0 MB Tue May 05 13:32:27 2009 found 827118 cycles, need 767945 Tue May 05 13:32:27 2009 weight of 767945 cycles is about 53824455 (70.09/cycle) Tue May 05 13:32:27 2009 distribution of cycle lengths: Tue May 05 13:32:27 2009 1 relations: 74022 Tue May 05 13:32:27 2009 2 relations: 78780 Tue May 05 13:32:27 2009 3 relations: 82503 Tue May 05 13:32:27 2009 4 relations: 78536 Tue May 05 13:32:27 2009 5 relations: 74402 Tue May 05 13:32:27 2009 6 relations: 67129 Tue May 05 13:32:27 2009 7 relations: 60620 Tue May 05 13:32:27 2009 8 relations: 53361 Tue May 05 13:32:27 2009 9 relations: 45757 Tue May 05 13:32:27 2009 10+ relations: 152835 Tue May 05 13:32:27 2009 heaviest cycle: 17 relations Tue May 05 13:32:27 2009 commencing cycle optimization Tue May 05 13:32:29 2009 start with 4650542 relations Tue May 05 13:32:39 2009 pruned 148029 relations Tue May 05 13:32:39 2009 memory use: 118.4 MB Tue May 05 13:32:39 2009 distribution of cycle lengths: Tue May 05 13:32:39 2009 1 relations: 74022 Tue May 05 13:32:39 2009 2 relations: 80948 Tue May 05 13:32:39 2009 3 relations: 86351 Tue May 05 13:32:39 2009 4 relations: 81424 Tue May 05 13:32:39 2009 5 relations: 77632 Tue May 05 13:32:39 2009 6 relations: 69023 Tue May 05 13:32:39 2009 7 relations: 62318 Tue May 05 13:32:39 2009 8 relations: 53892 Tue May 05 13:32:39 2009 9 relations: 45856 Tue May 05 13:32:39 2009 10+ relations: 136479 Tue May 05 13:32:39 2009 heaviest cycle: 17 relations Tue May 05 13:32:41 2009 RelProcTime: 643 Tue May 05 13:32:41 2009 Tue May 05 13:32:41 2009 commencing linear algebra Tue May 05 13:32:41 2009 read 767945 cycles Tue May 05 13:32:43 2009 cycles contain 2401694 unique relations Tue May 05 13:33:28 2009 read 2401694 relations Tue May 05 13:33:32 2009 using 20 quadratic characters above 134216802 Tue May 05 13:33:44 2009 building initial matrix Tue May 05 13:34:13 2009 memory use: 275.5 MB Tue May 05 13:34:15 2009 read 767945 cycles Tue May 05 13:34:29 2009 matrix is 767716 x 767945 (216.1 MB) with weight 72678072 (94.64/col) Tue May 05 13:34:29 2009 sparse part has weight 51274069 (66.77/col) Tue May 05 13:34:42 2009 filtering completed in 3 passes Tue May 05 13:34:42 2009 matrix is 765071 x 765271 (215.7 MB) with weight 72511181 (94.75/col) Tue May 05 13:34:42 2009 sparse part has weight 51186251 (66.89/col) Tue May 05 13:34:46 2009 read 765271 cycles Tue May 05 13:36:32 2009 matrix is 765071 x 765271 (215.7 MB) with weight 72511181 (94.75/col) Tue May 05 13:36:32 2009 sparse part has weight 51186251 (66.89/col) Tue May 05 13:36:32 2009 saving the first 48 matrix rows for later Tue May 05 13:36:33 2009 matrix is 765023 x 765271 (208.1 MB) with weight 57393419 (75.00/col) Tue May 05 13:36:33 2009 sparse part has weight 49962643 (65.29/col) Tue May 05 13:36:33 2009 matrix includes 64 packed rows Tue May 05 13:36:33 2009 using block size 65536 for processor cache size 6144 kB Tue May 05 13:36:38 2009 commencing Lanczos iteration (4 threads) Tue May 05 13:36:38 2009 memory use: 223.6 MB Tue May 05 14:19:37 2009 lanczos halted after 12100 iterations (dim = 765022) Tue May 05 14:19:38 2009 recovered 31 nontrivial dependencies Tue May 05 14:19:38 2009 BLanczosTime: 2817 Tue May 05 14:19:38 2009 Tue May 05 14:19:38 2009 commencing square root phase Tue May 05 14:19:38 2009 reading relations for dependency 1 Tue May 05 14:19:39 2009 read 382671 cycles Tue May 05 14:19:39 2009 cycles contain 1485452 unique relations Tue May 05 14:20:40 2009 read 1485452 relations Tue May 05 14:20:47 2009 multiplying 1199326 relations Tue May 05 14:23:36 2009 multiply complete, coefficients have about 52.81 million bits Tue May 05 14:23:38 2009 initial square root is modulo 38250617 Tue May 05 14:27:55 2009 reading relations for dependency 2 Tue May 05 14:27:55 2009 read 382694 cycles Tue May 05 14:27:56 2009 cycles contain 1487123 unique relations Tue May 05 14:28:56 2009 read 1487123 relations Tue May 05 14:29:03 2009 multiplying 1199644 relations Tue May 05 14:31:51 2009 multiply complete, coefficients have about 52.83 million bits Tue May 05 14:31:53 2009 initial square root is modulo 38414923 Tue May 05 14:36:09 2009 sqrtTime: 991 Tue May 05 14:36:09 2009 prp51 factor: 132247220045280786396912011749138627359993288829687 Tue May 05 14:36:09 2009 prp72 factor: 559819090026885770857005522645932550743849730325918357433966783937734297 Tue May 05 14:36:09 2009 elapsed time 01:14:45 |
software ソフトウェア | Sieving done by gnfs-lasieve4I12e, postprocessing and linear algebra by msieve. |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | December 25, 2007 09:00:00 UTC 2007 年 12 月 25 日 (火) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 825 | Jo Yeong Uk | November 15, 2008 08:00:33 UTC 2008 年 11 月 15 日 (土) 17 時 0 分 33 秒 (日本時間) | |
40 | 3e6 | 2111 | Jo Yeong Uk | December 17, 2008 15:43:25 UTC 2008 年 12 月 18 日 (木) 0 時 43 分 25 秒 (日本時間) | |
45 | 11e6 | 3974 | Wataru Sakai | March 30, 2009 02:54:02 UTC 2009 年 3 月 30 日 (月) 11 時 54 分 2 秒 (日本時間) | |
50 | 43e6 | 6577 | Wataru Sakai | April 16, 2009 11:08:11 UTC 2009 年 4 月 16 日 (木) 20 時 8 分 11 秒 (日本時間) |
name 名前 | Robert Backstrom |
---|---|
date 日付 | May 14, 2012 22:53:00 UTC 2012 年 5 月 15 日 (火) 7 時 53 分 0 秒 (日本時間) |
composite number 合成数 | 400570317144526049142044662828299173225974856800363527761389035564887492131838307446010748630979837232443206977738630835531770344559391<135> |
prime factors 素因数 | 5935197639708550652804657116360631605744747044741335669<55> 67490645040119700812655693745827992826945287817226716777168488006215732427500739<80> |
factorization results 素因数分解の結果 | Number: n N=400570317144526049142044662828299173225974856800363527761389035564887492131838307446010748630979837232443206977738630835531770344559391 ( 135 digits) Divisors found: Tue May 15 04:26:14 2012 prp55 factor: 5935197639708550652804657116360631605744747044741335669 Tue May 15 04:26:14 2012 prp80 factor: 67490645040119700812655693745827992826945287817226716777168488006215732427500739 Tue May 15 04:26:14 2012 elapsed time 02:09:05 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=1.027). Factorization parameters were as follows: name: KA_69991_188 n: 400570317144526049142044662828299173225974856800363527761389035564887492131838307446010748630979837232443206977738630835531770344559391 skew: 424819.21 # norm 8.59e+17 c5: 24840 c4: 14161725767 c3: -711610121997906 c2: -4201294442974811224602 c1: -245187002850094484560808552 c0: 212066173013875126969977600661848 # alpha -5.31 Y1: 254643776256289 Y0: -110028532330988237817753587 # Murphy_E 4.06e-11 # M 264303133030283885986764515000530506532890515773000759666182319886090650143127760849452530699733366565339270879518851837682987213331340 type: gnfs rlim: 5400000 alim: 5400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.5 alambda: 2.5 qintsize: 60000 Factor base limits: 5400000/5400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved special-q in [100000, 13260000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2619955 hash collisions in 13378235 relations (10844844 unique) Msieve: matrix is 1001046 x 1001273 (288.2 MB) Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: gnfs,134,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,5400000,5400000,27,27,51,51,2.5,2.5,60000 total time: 0.00 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz stepping 0b CPU1: Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz stepping 0b CPU2: Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz stepping 0b CPU3: Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz stepping 0b Memory: 4012828k/4980736k available (3972k kernel code, 787908k absent, 180000k reserved, 2498k data, 1292k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 4800.52 BogoMIPS (lpj=2400261) Calibrating delay using timer specific routine.. 4799.90 BogoMIPS (lpj=2399952) Calibrating delay using timer specific routine.. 4799.86 BogoMIPS (lpj=2399932) Calibrating delay using timer specific routine.. 4799.90 BogoMIPS (lpj=2399953) Total of 4 processors activated (19200.19 BogoMIPS). |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | December 25, 2007 09:00:00 UTC 2007 年 12 月 25 日 (火) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 825 | Jo Yeong Uk | November 15, 2008 08:00:46 UTC 2008 年 11 月 15 日 (土) 17 時 0 分 46 秒 (日本時間) | |
40 | 3e6 | 2111 | Jo Yeong Uk | February 1, 2009 05:37:00 UTC 2009 年 2 月 1 日 (日) 14 時 37 分 0 秒 (日本時間) |
name 名前 | He Jiahao |
---|---|
date 日付 | November 7, 2017 15:41:57 UTC 2017 年 11 月 8 日 (水) 0 時 41 分 57 秒 (日本時間) |
composite number 合成数 | 175227073719843846125700722579501280469762853374437612178390545976726275159962841827917153222056198886245671078687047315895104890035221746578502288400450775103392784356659<171> |
prime factors 素因数 | 3678442597154743878960862634350531636580393790963394244328757558451823823335050187799<85> 47636212633950322265615824829692335586306517833298148385227391512296278609903311523141<86> |
factorization results 素因数分解の結果 | Number: 69991_189 N = 175227073719843846125700722579501280469762853374437612178390545976726275159962841827917153222056198886245671078687047315895104890035221746578502288400450775103392784356659 (171 digits) SNFS difficulty: 191 digits. Divisors found: r1=3678442597154743878960862634350531636580393790963394244328757558451823823335050187799 (pp85) r2=47636212633950322265615824829692335586306517833298148385227391512296278609903311523141 (pp86) Version: Msieve v. 1.53 (SVN 1005) Total time: 122.53 hours. Factorization parameters were as follows: n: 175227073719843846125700722579501280469762853374437612178390545976726275159962841827917153222056198886245671078687047315895104890035221746578502288400450775103392784356659 m: 50000000000000000000000000000000000000 deg: 5 c5: 112 c0: -45 skew: 0.83 # Murphy_E = 3.984e-11 type: snfs lss: 1 rlim: 10500000 alim: 10500000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 10500000/10500000 Large primes per side: 3 Large prime bits: 28/28 Sieved rational special-q in [0, 0) Total raw relations: 22626021 Relations: 3664190 relations Pruned matrix : 2243116 x 2243342 Total sieving time: 117.76 hours. Total relation processing time: 0.13 hours. Matrix solve time: 4.39 hours. time per square root: 0.25 hours. Prototype def-par.txt line would be: snfs,191,5,0,0,0,0,0,0,0,0,10500000,10500000,28,28,54,54,2.5,2.5,100000 total time: 122.53 hours. Intel64 Family 6 Model 78 Stepping 3, GenuineIntel processors: 4, speed: 2.40GHz Windows-10-10.0.14393-SP0 Running Python 3.6 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | December 25, 2007 09:00:00 UTC 2007 年 12 月 25 日 (火) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 825 | Jo Yeong Uk | November 15, 2008 08:01:03 UTC 2008 年 11 月 15 日 (土) 17 時 1 分 3 秒 (日本時間) | |
40 | 3e6 | 2111 | Jo Yeong Uk | February 27, 2009 10:04:36 UTC 2009 年 2 月 27 日 (金) 19 時 4 分 36 秒 (日本時間) | |
45 | 11e6 | 0 | - | - | |
50 | 43e6 | 1145 | yoyo@home | February 14, 2010 18:20:12 UTC 2010 年 2 月 15 日 (月) 3 時 20 分 12 秒 (日本時間) | |
55 | 11e7 | 2635 / 17343 | yoyo@home | November 10, 2010 10:35:11 UTC 2010 年 11 月 10 日 (水) 19 時 35 分 11 秒 (日本時間) |
name 名前 | Grubix |
---|---|
date 日付 | November 12, 2010 02:47:25 UTC 2010 年 11 月 12 日 (金) 11 時 47 分 25 秒 (日本時間) |
composite number 合成数 | 17723545342564791527039810827146200667238839506483869104658511326337675073788920465510515648677167752009851899630511111184185219839268866501343622738469417666259<161> |
prime factors 素因数 | 164558127467128678980877276515560772170879<42> 107703858906058344934309942486907780929278544045522190161642686884258571375885827755865003911230798792755471060365538221<120> |
factorization results 素因数分解の結果 | GMP-ECM 6.2.3 [powered by GMP 4.2.1_MPIR_1.1.1] [ECM] Input number is 17723545342564791527039810827146200667238839506483869104658511326337675073788920465510515648677167752009851899630511111184185219839268866501343622738469417666259 (161 digits) [Wed Nov 10 19:05:21 2010] Using MODMULN Using B1=110000000, B2=776278396540, polynomial Dickson(30), sigma=1218408363 dF=131072, k=4, d=1345890, d2=11, i0=71 Expected number of curves to find a factor of n digits: 20 25 30 35 40 45 50 55 60 65 2 4 10 34 135 613 3133 17769 111196 751771 Step 1 took 349629ms Using 20 small primes for NTT Estimated memory usage: 471M Initializing tables of differences for F took 218ms Computing roots of F took 18923ms Building F from its roots took 11747ms Computing 1/F took 5304ms Initializing table of differences for G took 187ms Computing roots of G took 16427ms Building G from its roots took 10686ms Computing roots of G took 15975ms Building G from its roots took 10608ms Computing G * H took 2996ms Reducing G * H mod F took 2917ms Computing roots of G took 16271ms Building G from its roots took 10592ms Computing G * H took 2964ms Reducing G * H mod F took 2917ms Computing roots of G took 15959ms Building G from its roots took 10733ms Computing G * H took 3073ms Reducing G * H mod F took 2870ms Computing polyeval(F,G) took 19999ms Computing product of all F(g_i) took 94ms Step 2 took 182178ms ********** Factor found in step 2: 164558127467128678980877276515560772170879 Found probable prime factor of 42 digits: 164558127467128678980877276515560772170879 Probable prime cofactor 107703858906058344934309942486907780929278544045522190161642686884258571375885827755865003911230798792755471060365538221 has 120 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | December 25, 2007 09:00:00 UTC 2007 年 12 月 25 日 (火) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 825 | Jo Yeong Uk | November 15, 2008 08:01:20 UTC 2008 年 11 月 15 日 (土) 17 時 1 分 20 秒 (日本時間) | |
40 | 3e6 | 2111 | Jo Yeong Uk | February 27, 2009 10:04:46 UTC 2009 年 2 月 27 日 (金) 19 時 4 分 46 秒 (日本時間) | |
45 | 11e6 | 0 | - | - | |
50 | 43e6 | 1145 / 7179 | yoyo@home | February 14, 2010 21:00:10 UTC 2010 年 2 月 15 日 (月) 6 時 0 分 10 秒 (日本時間) | |
55 | 11e7 | 120 / 17343 | yoyo@home | November 10, 2010 16:30:09 UTC 2010 年 11 月 11 日 (木) 1 時 30 分 9 秒 (日本時間) |
name 名前 | Robert Backstrom |
---|---|
date 日付 | May 5, 2012 10:09:39 UTC 2012 年 5 月 5 日 (土) 19 時 9 分 39 秒 (日本時間) |
composite number 合成数 | 5497668581305396532401907450640749152944535033751322787659919739277511451694105836805483559749328381395643428084855176167494056065079389<136> |
prime factors 素因数 | 37884492928419836911819165511031793770820752008293983909175079<62> 145116594055854621090516235617703602703646727344434298837285228367717596891<75> |
factorization results 素因数分解の結果 | Number: n N=5497668581305396532401907450640749152944535033751322787659919739277511451694105836805483559749328381395643428084855176167494056065079389 ( 136 digits) Divisors found: Sat May 5 19:59:27 2012 prp62 factor: 37884492928419836911819165511031793770820752008293983909175079 Sat May 5 19:59:27 2012 prp75 factor: 145116594055854621090516235617703602703646727344434298837285228367717596891 Sat May 5 19:59:27 2012 elapsed time 04:47:34 (Msieve 1.44 - dependency 4) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.078). Factorization parameters were as follows: name: KA_69991_193 # Murphy_E = 3.762873e-11, selected by Jeff Gilchrist n: 5497668581305396532401907450640749152944535033751322787659919739277511451694105836805483559749328381395643428084855176167494056065079389 Y0: -143382507865235483658834141 Y1: 1403552824880639 c0: 658931677328103568891642171358336 c1: 14012452996056272554733098216 c2: 59480907608319418450354 c3: -116527973767666669 c4: -114106733592 c5: 90720 skew: 567017.3 type: gnfs # selected mechanically rlim: 14000000 alim: 14000000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 14000000/14000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved special-q in [100000, 11600000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2402964 hash collisions in 24380201 relations (22844128 unique) Msieve: matrix is 1433423 x 1433648 (417.4 MB) Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: gnfs,135,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,14000000,14000000,28,28,55,55,2.6,2.6,60000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | December 25, 2007 09:00:00 UTC 2007 年 12 月 25 日 (火) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 825 | Jo Yeong Uk | November 15, 2008 08:01:39 UTC 2008 年 11 月 15 日 (土) 17 時 1 分 39 秒 (日本時間) | |
40 | 3e6 | 2111 | Jo Yeong Uk | February 1, 2009 05:37:17 UTC 2009 年 2 月 1 日 (日) 14 時 37 分 17 秒 (日本時間) |
name 名前 | Robert Backstrom |
---|---|
date 日付 | December 27, 2007 10:23:20 UTC 2007 年 12 月 27 日 (木) 19 時 23 分 20 秒 (日本時間) |
composite number 合成数 | 4266295613839554521455940618914223009809176846224270626203668901679911671717662492929960969596044736169757523<109> |
prime factors 素因数 | 52063286361231377503035962252713421659616793211<47> 81944416344344076297954674797070896167668217005498046483209993<62> |
factorization results 素因数分解の結果 | Number: n N=4266295613839554521455940618914223009809176846224270626203668901679911671717662492929960969596044736169757523 ( 109 digits) Divisors found: Thu Dec 27 21:14:40 2007 prp47 factor: 52063286361231377503035962252713421659616793211 Thu Dec 27 21:14:40 2007 prp62 factor: 81944416344344076297954674797070896167668217005498046483209993 Thu Dec 27 21:14:40 2007 elapsed time 01:21:04 (Msieve 1.32) Version: GGNFS-0.77.1-20051202-athlon Total time: 15.97 hours. Scaled time: 28.00 units (timescale=1.753). Factorization parameters were as follows: name: KA_6_9_193_1 n: 4266295613839554521455940618914223009809176846224270626203668901679911671717662492929960969596044736169757523 skew: 20303.21 # norm 3.02e+15 c5: 64260 c4: -5524240892 c3: 33370301956429 c2: 2960552805759545129 c1: 13268125763144698600299 c0: -427943730192357035630844 # alpha -6.40 Y1: 410046852743 Y0: -581336125346552761433 # Murphy_E 1.18e-09 # M 835049287715849898352208609708011149328452835128639575533350171456753898162996679714302558410477726301170271 type: gnfs rlim: 3200000 alim: 3200000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved special-q in [100000, 1700000) Primes: RFBsize:230209, AFBsize:229921, largePrimes:6992043 encountered Relations: rels:6742934, finalFF:579789 Max relations in full relation-set: 28 Initial matrix: 460216 x 579789 with sparse part having weight 39572835. Pruned matrix : 350884 x 353249 with weight 18553288. Total sieving time: 15.64 hours. Total relation processing time: 0.33 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: gnfs,108,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,3200000,27,27,50,50,2.6,2.6,100000 total time: 15.97 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+ |
name 名前 | Edwin Hall |
---|---|
date 日付 | December 20, 2020 22:18:28 UTC 2020 年 12 月 21 日 (月) 7 時 18 分 28 秒 (日本時間) |
composite number 合成数 | 26501268828979351686493807189887728475618581590367686628199290125264705758664427403096679774204229195517235053113223283322785171453699281428219526186683109221083305442943<170> |
prime factors 素因数 | 1341467057112725360034735254941189429843767461998225036182884798539<67> 19755437666891892122588030430816283724945098586040970476334110297579887934205298310196123340334588523037<104> |
factorization results 素因数分解の結果 | p67 factor: 1341467057112725360034735254941189429843767461998225036182884798539 p104 factor: 19755437666891892122588030430816283724945098586040970476334110297579887934205298310196123340334588523037 Msieve v. 1.54 (SVN 1032M) random seeds: cd764e7c 241a9347 factoring 26501268828979351686493807189887728475618581590367686628199290125264705758664427403096679774204229195517235053113223283322785171453699281428219526186683109221083305442943 (170 digits) searching for 15-digit factors commencing number field sieve (170-digit input) R0: -1000000000000000000000000000000000000000 R1: 1 A0: -9 A1: 0 A2: 0 A3: 0 A4: 0 A5: 7 skew 1.00, size 1.484e-13, alpha 1.137, combined = 2.489e-11 rroots = 1 commencing relation filtering estimated available RAM is 48213.5 MB commencing duplicate removal, pass 1 found 2058975 hash collisions in 34664461 relations added 725413 free relations commencing duplicate removal, pass 2 found 0 duplicates and 35389874 unique relations memory use: 98.6 MB reading ideals above 720000 commencing singleton removal, initial pass memory use: 753.0 MB reading all ideals from disk memory use: 1159.7 MB keeping 38948654 ideals with weight <= 200, target excess is 187875 commencing in-memory singleton removal begin with 35389874 relations and 38948654 unique ideals reduce to 12405724 relations and 11781571 ideals in 16 passes max relations containing the same ideal: 98 removing 1446585 relations and 1243476 ideals in 203109 cliques commencing in-memory singleton removal begin with 10959139 relations and 11781571 unique ideals reduce to 10803402 relations and 10378874 ideals in 10 passes max relations containing the same ideal: 92 removing 1129281 relations and 926172 ideals in 203109 cliques commencing in-memory singleton removal begin with 9674121 relations and 10378874 unique ideals reduce to 9564007 relations and 9340375 ideals in 10 passes max relations containing the same ideal: 84 relations with 0 large ideals: 3783 relations with 1 large ideals: 8477 relations with 2 large ideals: 75835 relations with 3 large ideals: 378380 relations with 4 large ideals: 1139726 relations with 5 large ideals: 2168179 relations with 6 large ideals: 2711710 relations with 7+ large ideals: 3077917 commencing 2-way merge reduce to 5825667 relation sets and 5602035 unique ideals commencing full merge memory use: 628.2 MB found 2671383 cycles, need 2654235 weight of 2654235 cycles is about 239253872 (90.14/cycle) distribution of cycle lengths: 1 relations: 233007 2 relations: 240916 3 relations: 249374 4 relations: 234495 5 relations: 221360 6 relations: 200814 7 relations: 180133 8 relations: 159379 9 relations: 143037 10+ relations: 791720 heaviest cycle: 28 relations commencing cycle optimization start with 19800922 relations pruned 620933 relations memory use: 590.2 MB distribution of cycle lengths: 1 relations: 233007 2 relations: 247042 3 relations: 258655 4 relations: 241885 5 relations: 228558 6 relations: 205930 7 relations: 184023 8 relations: 161721 9 relations: 144394 10+ relations: 749020 heaviest cycle: 28 relations RelProcTime: 670 elapsed time 00:11:12 Msieve v. 1.54 (SVN 1032M) random seeds: d2d7c2d4 329512a0 factoring 26501268828979351686493807189887728475618581590367686628199290125264705758664427403096679774204229195517235053113223283322785171453699281428219526186683109221083305442943 (170 digits) searching for 15-digit factors commencing number field sieve (170-digit input) R0: -1000000000000000000000000000000000000000 R1: 1 A0: -9 A1: 0 A2: 0 A3: 0 A4: 0 A5: 7 skew 1.00, size 1.484e-13, alpha 1.137, combined = 2.489e-11 rroots = 1 commencing linear algebra read 2654235 cycles cycles contain 9329461 unique relations read 9329461 relations using 20 quadratic characters above 4294917295 building initial matrix memory use: 1153.5 MB read 2654235 cycles matrix is 2654056 x 2654235 (978.3 MB) with weight 284215775 (107.08/col) sparse part has weight 227245882 (85.62/col) filtering completed in 2 passes matrix is 2652727 x 2652906 (978.1 MB) with weight 284166526 (107.12/col) sparse part has weight 227226928 (85.65/col) matrix starts at (0, 0) matrix is 2652727 x 2652906 (978.1 MB) with weight 284166526 (107.12/col) sparse part has weight 227226928 (85.65/col) saving the first 48 matrix rows for later matrix includes 64 packed rows matrix is 2652679 x 2652906 (928.6 MB) with weight 234404593 (88.36/col) sparse part has weight 216908476 (81.76/col) using block size 8192 and superblock size 1474560 for processor cache size 15360 kB commencing Lanczos iteration (8 threads) memory use: 884.5 MB linear algebra at 0.1%, ETA 3h23m checkpointing every 810000 dimensions lanczos halted after 41946 iterations (dim = 2652677) recovered 38 nontrivial dependencies BLanczosTime: 9425 elapsed time 02:37:07 Msieve v. 1.54 (SVN 1032M) random seeds: 869db05a 22017a0c factoring 26501268828979351686493807189887728475618581590367686628199290125264705758664427403096679774204229195517235053113223283322785171453699281428219526186683109221083305442943 (170 digits) searching for 15-digit factors commencing number field sieve (170-digit input) R0: -1000000000000000000000000000000000000000 R1: 1 A0: -9 A1: 0 A2: 0 A3: 0 A4: 0 A5: 7 skew 1.00, size 1.484e-13, alpha 1.137, combined = 2.489e-11 rroots = 1 commencing square root phase reading relations for dependency 1 read 1326083 cycles cycles contain 4663206 unique relations read 4663206 relations multiplying 4663206 relations multiply complete, coefficients have about 116.70 million bits initial square root is modulo 237788491 sqrtTime: 389 p67 factor: 1341467057112725360034735254941189429843767461998225036182884798539 p104 factor: 19755437666891892122588030430816283724945098586040970476334110297579887934205298310196123340334588523037 elapsed time 00:06:31 |
software ソフトウェア | CADO-NFS/Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | December 25, 2007 09:00:00 UTC 2007 年 12 月 25 日 (火) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 825 | Jo Yeong Uk | November 15, 2008 08:01:53 UTC 2008 年 11 月 15 日 (土) 17 時 1 分 53 秒 (日本時間) | |
40 | 3e6 | 2111 | Jo Yeong Uk | February 27, 2009 10:04:58 UTC 2009 年 2 月 27 日 (金) 19 時 4 分 58 秒 (日本時間) | |
45 | 11e6 | 0 | - | - | |
50 | 43e6 | 1145 | yoyo@home | February 15, 2010 00:00:11 UTC 2010 年 2 月 15 日 (月) 9 時 0 分 11 秒 (日本時間) | |
55 | 11e7 | 2635 / 17343 | yoyo@home | November 10, 2010 18:25:33 UTC 2010 年 11 月 11 日 (木) 3 時 25 分 33 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | October 21, 2008 10:41:23 UTC 2008 年 10 月 21 日 (火) 19 時 41 分 23 秒 (日本時間) |
composite number 合成数 | 7492498100419740943969687809887885133881872008027484581849110305142482016637970629311540281144116665591293572591235900147076772803736305837239935481786382639360000898508976048036507<181> |
prime factors 素因数 | 264988857469403991211956741757711<33> 28274766614610714157255420998775798591008627434112116606543963199796112209476723290238538742147137438714006318672046665431077283855690553184035469237<149> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3404709547 Step 1 took 29350ms Step 2 took 18701ms ********** Factor found in step 2: 264988857469403991211956741757711 Found probable prime factor of 33 digits: 264988857469403991211956741757711 Probable prime cofactor 28274766614610714157255420998775798591008627434112116606543963199796112209476723290238538742147137438714006318672046665431077283855690553184035469237 has 149 digits |
software ソフトウェア | GMP-ECM 6.2.1 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | December 25, 2007 09:00:00 UTC 2007 年 12 月 25 日 (火) 18 時 0 分 0 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | September 10, 2008 03:00:18 UTC 2008 年 9 月 10 日 (水) 12 時 0 分 18 秒 (日本時間) |
composite number 合成数 | 44403167823485482479429756757543670039806171291816921171880793225801970371542238101076960775700505961410729238934143822241178850821912151377249884726204675387152806080392189076808028803193171351<194> |
prime factors 素因数 | 11284635217137977617526487653933<32> 3934834132347528894029161821328170864341780603433105197044385991837432909415350859571119308115656096581344079723625343143220426630178141030835445756037523722590547<163> |
factorization results 素因数分解の結果 | Using B1=1000000, B2=2852890960, polynomial Dickson(6), sigma=13078247 Step 1 took 8353ms ********** Factor found in step 1: 11284635217137977617526487653933 Found probable prime factor of 32 digits: 11284635217137977617526487653933 Probable prime cofactor 3934834132347528894029161821328170864341780603433105197044385991837432909415350859571119308115656096581344079723625343143220426630178141030835445756037523722590547 has 163 digits |
software ソフトウェア | GMP-ECM 6.2.1 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | December 25, 2007 09:00:00 UTC 2007 年 12 月 25 日 (火) 18 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | August 6, 2021 01:39:32 UTC 2021 年 8 月 6 日 (金) 10 時 39 分 32 秒 (日本時間) |
composite number 合成数 | 325992395164676216164840041590839865892320717591158424645647735476658609574183523089452986097973476641718296930931138612258288161671209027994385437961634744266698409961061<171> |
prime factors 素因数 | 2164702224590238107814457753085378061639030406328831<52> 150594567447439165021861599843106153419373059765368237073068522634140776663296846377660784161248682153742638925807378331<120> |
factorization results 素因数分解の結果 | # # N = 7x10^201-9 = 69(200)1 # n: 325992395164676216164840041590839865892320717591158424645647735476658609574183523089452986097973476641718296930931138612258288161671209027994385437961634744266698409961061 m: 10000000000000000000000000000000000000000 deg: 5 c5: 70 c0: -9 skew: 0.66 # Murphy_E = 1.486e-11 type: snfs lss: 1 rlim: 16200000 alim: 16200000 lpbr: 29 lpba: 29 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 325992395164676216164840041590839865892320717591158424645647735476658609574183523089452986097973476641718296930931138612258288161671209027994385437961634744266698409961061 (171 digits) Using B1=44310000, B2=240492041806, polynomial Dickson(12), sigma=1:1245514746 Step 1 took 102397ms Step 2 took 35720ms ********** Factor found in step 2: 2164702224590238107814457753085378061639030406328831 Found prime factor of 52 digits: 2164702224590238107814457753085378061639030406328831 Prime cofactor 150594567447439165021861599843106153419373059765368237073068522634140776663296846377660784161248682153742638925807378331 has 120 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | April 9, 2012 09:00:00 UTC 2012 年 4 月 9 日 (月) 18 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | April 12, 2012 11:18:48 UTC 2012 年 4 月 12 日 (木) 20 時 18 分 48 秒 (日本時間) | |
45 | 11e6 | 4880 | 400 | Dmitry Domanov | April 13, 2012 21:32:04 UTC 2012 年 4 月 14 日 (土) 6 時 32 分 4 秒 (日本時間) |
4480 | Ignacio Santos | August 5, 2021 21:45:35 UTC 2021 年 8 月 6 日 (金) 6 時 45 分 35 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | May 12, 2021 06:03:38 UTC 2021 年 5 月 12 日 (水) 15 時 3 分 38 秒 (日本時間) |
composite number 合成数 | 1605696878895639762815053491855164664924763460963756290311473037214360471008590480343620561612659663189135999173199701349069639378513664145112547263868557923617695012945300391300592221763817351<193> |
prime factors 素因数 | 301949660263946327492866162889736514043919868555715763229322713912434227<72> 5317763489092968739866486835644054975796562280075563449386590213780625216704057616583493840055210715254155037460219301213<121> |
factorization results 素因数分解の結果 | Number: n N=1605696878895639762815053491855164664924763460963756290311473037214360471008590480343620561612659663189135999173199701349069639378513664145112547263868557923617695012945300391300592221763817351 ( 193 digits) SNFS difficulty: 202 digits. Divisors found: Wed May 12 15:54:39 2021 p72 factor: 301949660263946327492866162889736514043919868555715763229322713912434227 Wed May 12 15:54:39 2021 p121 factor: 5317763489092968739866486835644054975796562280075563449386590213780625216704057616583493840055210715254155037460219301213 Wed May 12 15:54:39 2021 elapsed time 01:42:07 (Msieve 1.54 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.337). Factorization parameters were as follows: # # N = 7x10^202-9 = 69(201)1 # n: 1605696878895639762815053491855164664924763460963756290311473037214360471008590480343620561612659663189135999173199701349069639378513664145112547263868557923617695012945300391300592221763817351 m: 10000000000000000000000000000000000000000 deg: 5 c5: 700 c0: -9 skew: 0.42 # Murphy_E = 1.18e-11 type: snfs lss: 1 rlim: 16800000 alim: 16800000 lpbr: 29 lpba: 29 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 16800000/16800000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 56/56 Sieved special-q in [100000, 28400000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 7676316 hash collisions in 56652823 relations (51200403 unique) Msieve: matrix is 2039082 x 2039308 (709.6 MB) Sieving start time : 2021/05/12 04:37:55 Sieving end time : 2021/05/12 14:11:27 Total sieving time: 9hrs 33min 32secs. Total relation processing time: 1hrs 18min 45sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 5min 34sec. Prototype def-par.txt line would be: snfs,202,5,0,0,0,0,0,0,0,0,16800000,16800000,29,29,56,56,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- [ 0.118393] smpboot: CPU0: AMD Ryzen 7 2700 Eight-Core Processor (family: 0x17, model: 0x8, stepping: 0x2) [ 0.000000] Memory: 16241108K/16727236K available (14339K kernel code, 2400K rwdata, 5008K rodata, 2732K init, 4972K bss, 486128K reserved, 0K cma-reserved) [ 0.153523] x86/mm: Memory block size: 128MB [ 0.000004] Calibrating delay loop (skipped), value calculated using timer frequency.. 6399.30 BogoMIPS (lpj=12798612) [ 0.152049] smpboot: Total of 16 processors activated (102388.89 BogoMIPS) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | April 9, 2012 09:00:00 UTC 2012 年 4 月 9 日 (月) 18 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | April 12, 2012 11:19:00 UTC 2012 年 4 月 12 日 (木) 20 時 19 分 0 秒 (日本時間) | |
45 | 11e6 | 400 / 4254 | Dmitry Domanov | April 13, 2012 21:32:16 UTC 2012 年 4 月 14 日 (土) 6 時 32 分 16 秒 (日本時間) |
name 名前 | Wataru Sakai |
---|---|
date 日付 | April 11, 2012 05:05:01 UTC 2012 年 4 月 11 日 (水) 14 時 5 分 1 秒 (日本時間) |
composite number 合成数 | 1200548753684612755281685611611844751209424239113638285293946644526260889191579625452799825474512607219722889336674517683825881327127753994525840697127790010988451235510448461556799590852984744283973<199> |
prime factors 素因数 | 48304432805902352254277294970553080841<38> |
composite cofactor 合成数の残り | 24853800861479463800671588109305432383960604575404456721434845284823347979705323170549903368554863325470657170318538591079273583716935548560087873886550822543453<161> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=511449929 Step 1 took 19514ms Step 2 took 7736ms ********** Factor found in step 2: 48304432805902352254277294970553080841 Found probable prime factor of 38 digits: 48304432805902352254277294970553080841 Composite cofactor 24853800861479463800671588109305432383960604575404456721434845284823347979705323170549903368554863325470657170318538591079273583716935548560087873886550822543453 has 161 digits |
software ソフトウェア | GMP-ECM 6.4.2 |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 15, 2023 19:07:39 UTC 2023 年 12 月 16 日 (土) 4 時 7 分 39 秒 (日本時間) |
composite number 合成数 | 24853800861479463800671588109305432383960604575404456721434845284823347979705323170549903368554863325470657170318538591079273583716935548560087873886550822543453<161> |
prime factors 素因数 | 3054636829035901115849488199234335927440524883970408677326515385450413597012139<79> 8136417601343389463129511751629601223022450158483422071822316242806453439385666327<82> |
factorization results 素因数分解の結果 | Number: n N=24853800861479463800671588109305432383960604575404456721434845284823347979705323170549903368554863325470657170318538591079273583716935548560087873886550822543453 ( 161 digits) SNFS difficulty: 205 digits. Divisors found: Sat Dec 16 05:54:29 2023 prp79 factor: 3054636829035901115849488199234335927440524883970408677326515385450413597012139 Sat Dec 16 05:54:29 2023 prp82 factor: 8136417601343389463129511751629601223022450158483422071822316242806453439385666327 Sat Dec 16 05:54:29 2023 elapsed time 03:21:11 (Msieve 1.44 - dependency 6) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.087). Factorization parameters were as follows: # # N = 7x10^204-9 = 69(203)1 # n: 24853800861479463800671588109305432383960604575404456721434845284823347979705323170549903368554863325470657170318538591079273583716935548560087873886550822543453 m: 50000000000000000000000000000000000000000 deg: 5 c5: 112 c0: -45 skew: 0.83 # Murphy_E = 9.469e-12 type: snfs lss: 1 rlim: 18700000 alim: 18700000 lpbr: 27 lpba: 27 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 18700000/18700000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 56/56 Sieved special-q in [100000, 56550000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 3892592 hash collisions in 20523225 relations (16953422 unique) Msieve: matrix is 2432103 x 2432328 (684.8 MB) Sieving start time: 2023/12/15 03:10:47 Sieving end time : 2023/12/16 02:32:54 Total sieving time: 23hrs 22min 7secs. Total relation processing time: 2hrs 58min 39sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 16min 59sec. Prototype def-par.txt line would be: snfs,205,5,0,0,0,0,0,0,0,0,18700000,18700000,27,27,56,56,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | April 9, 2012 09:00:00 UTC 2012 年 4 月 9 日 (月) 18 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2318 | Wataru Sakai | April 11, 2012 05:04:41 UTC 2012 年 4 月 11 日 (水) 14 時 4 分 41 秒 (日本時間) | |
45 | 11e6 | 4480 | Ignacio Santos | October 21, 2023 09:07:36 UTC 2023 年 10 月 21 日 (土) 18 時 7 分 36 秒 (日本時間) |
name 名前 | Warut Roonguthai |
---|---|
date 日付 | April 9, 2012 13:29:19 UTC 2012 年 4 月 9 日 (月) 22 時 29 分 19 秒 (日本時間) |
composite number 合成数 | 11942213048848558762668131592491249555527785233576906488908602985823362149474155753103647260847043590248992453116875009373036874809013259449805067314398177789793610228251963560743151<182> |
prime factors 素因数 | 361049740018879647609362842810658413<36> |
composite cofactor 合成数の残り | 33076365179556945931825063552855658369320392686040124089280645618846549818258908445502561687628573225468580788091163085448203997559556628738782027<146> |
factorization results 素因数分解の結果 | Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1557939850 Step 1 took 12793ms Step 2 took 7737ms ********** Factor found in step 2: 361049740018879647609362842810658413 Found probable prime factor of 36 digits: 361049740018879647609362842810658413 Composite cofactor 33076365179556945931825063552855658369320392686040124089280645618846549818258908445502561687628573225468580788091163085448203997559556628738782027 has 146 digits |
software ソフトウェア | GMP-ECM 6.3 |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | April 13, 2012 20:22:03 UTC 2012 年 4 月 14 日 (土) 5 時 22 分 3 秒 (日本時間) |
composite number 合成数 | 33076365179556945931825063552855658369320392686040124089280645618846549818258908445502561687628573225468580788091163085448203997559556628738782027<146> |
prime factors 素因数 | 1952513626146037296567604737036445649<37> |
composite cofactor 合成数の残り | 16940401714299235042931058383292938058074143822656060978730595511807936618323173743083893506057448067119352923<110> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=460151510 Step 1 took 16483ms Step 2 took 7439ms ********** Factor found in step 2: 1952513626146037296567604737036445649 Found probable prime factor of 37 digits: 1952513626146037296567604737036445649 Composite cofactor 16940401714299235042931058383292938058074143822656060978730595511807936618323173743083893506057448067119352923 has 110 digits n: 16940401714299235042931058383292938058074143822656060978730595511807936618323173743083893506057448067119352923 skew: 25167.71 # norm 3.78e+15 c5: 43680 c4: 4497035666 c3: -227413839545539 c2: -2381245431518108916 c1: 45775246435020696642444 c0: -1816615081573056352931280 # alpha -6.75 Y1: 43058977081 Y0: -827423306290204234237 # Murphy_E 1.07e-09 # M 2557571032342537711576379997194805099737642399861234081023434560938430180356343573904196665564319937188146671 type: gnfs rlim: 3200000 alim: 3200000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1600000, 2300001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 346727 x 346953 Polynomial selection time: 1.46 hours. Total sieving time: 0.00 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.15 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: gnfs,109,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,3200000,27,27,50,50,2.6,2.6,100000 total time: 1.75 hours. |
name 名前 | Warut Roonguthai |
---|---|
date 日付 | April 15, 2012 04:51:12 UTC 2012 年 4 月 15 日 (日) 13 時 51 分 12 秒 (日本時間) |
composite number 合成数 | 16940401714299235042931058383292938058074143822656060978730595511807936618323173743083893506057448067119352923<110> |
prime factors 素因数 | 3603955538038514578257936804040418599602942413<46> 4700502416164435260236574042336835880822079821813200907141443271<64> |
factorization results 素因数分解の結果 | N = 16940401714299235042931058383292938058074143822656060978730595511807936618323173743083893506057448067119352923 (110 digits) Divisors found: r1=3603955538038514578257936804040418599602942413 (pp46) r2=4700502416164435260236574042336835880822079821813200907141443271 (pp64) Version: Msieve v. 1.48 Total time: 8.33 hours. Factorization parameters were as follows: n: 16940401714299235042931058383292938058074143822656060978730595511807936618323173743083893506057448067119352923 Y0: -1125978080895456880801 Y1: 294308082509 c0: 4460077270447553600778240 c1: 4574146475084022825912 c2: 147005118356398018 c3: -51988834291313 c4: -150513622 c5: 9360 skew: 22968.02 type: gnfs Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 27/27 Sieved algebraic special-q in [0, 0) Total raw relations: 7629933 Relations: 628994 relations Pruned matrix : 367476 x 367715 Polynomial selection time: 0.00 hours. Total sieving time: 7.74 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.37 hours. time per square root: 0.13 hours. Prototype def-par.txt line would be: gnfs,109,5,61,2000,0.00015,0.3,250,15,50000,2400,3200000,3200000,27,27,50,50,2.6,2.6,100000 total time: 8.33 hours. Intel64 Family 6 Model 42 Stepping 7, GenuineIntel Windows-7-6.1.7601-SP1 processors: 4, speed: 2.29GHz |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | April 9, 2012 09:00:00 UTC 2012 年 4 月 9 日 (月) 18 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 / 2318 | Dmitry Domanov | April 12, 2012 11:19:17 UTC 2012 年 4 月 12 日 (木) 20 時 19 分 17 秒 (日本時間) |
name 名前 | Robert Backstrom |
---|---|
date 日付 | August 12, 2012 05:21:15 UTC 2012 年 8 月 12 日 (日) 14 時 21 分 15 秒 (日本時間) |
composite number 合成数 | 8341575604466317909362822789184551401980528379231860052194430210803532061441662595183335915249591858622210040873720461884957755877831667004301869704589058236114255752708032937307101064146716398345984723<202> |
prime factors 素因数 | 592276642926138123615982107802672014513103526993394041821956036274258673568861513233040422084827<96> 14083917885491531212085391871325978765324985847874073744051414575336044347969150442226196207274686199116649<107> |
factorization results 素因数分解の結果 | Number: n N=8341575604466317909362822789184551401980528379231860052194430210803532061441662595183335915249591858622210040873720461884957755877831667004301869704589058236114255752708032937307101064146716398345984723 ( 202 digits) SNFS difficulty: 206 digits. Divisors found: Sun Aug 12 14:54:00 2012 prp96 factor: 592276642926138123615982107802672014513103526993394041821956036274258673568861513233040422084827 Sun Aug 12 14:54:00 2012 prp107 factor: 14083917885491531212085391871325978765324985847874073744051414575336044347969150442226196207274686199116649 Sun Aug 12 14:54:00 2012 elapsed time 10:08:40 (Msieve 1.44 - dependency 1) Version: GGNFS-0.77.1-20060513-nocona Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.081). Factorization parameters were as follows: name: KA_69991_206 n: 8341575604466317909362822789184551401980528379231860052194430210803532061441662595183335915249591858622210040873720461884957755877831667004301869704589058236114255752708032937307101064146716398345984723 m: 100000000000000000000000000000000000000000 # c202, diff: 206.85 skew: 0.663 deg: 5 c5: 70 c0: -9 # Murphy_E = 9.156e-12 type: snfs lss: 1 rlim: 19600000 alim: 19600000 lpbr: 29 lpba: 29 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 19600000/19600000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 56/56 Sieved special-q in [100000, 32600000) Primes: RFBsize:1246718, AFBsize:1247686, Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 8148296 hash collisions in 57332136 relations (51332117 unique) Msieve: matrix is 2571615 x 2571840 (730.8 MB) Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,206,5,0,0,0,0,0,0,0,0,19600000,19600000,29,29,56,56,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU1: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU2: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU3: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 Memory: 8109188k/9175040k available (3972k kernel code, 787464k absent, 278388k reserved, 2498k data, 1292k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 5662.11 BogoMIPS (lpj=2831056) Calibrating delay using timer specific routine.. 5660.89 BogoMIPS (lpj=2830449) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830455) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830458) Total of 4 processors activated (22644.83 BogoMIPS). |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | April 9, 2012 09:00:00 UTC 2012 年 4 月 9 日 (月) 18 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2318 | Wataru Sakai | April 11, 2012 10:26:59 UTC 2012 年 4 月 11 日 (水) 19 時 26 分 59 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | June 8, 2021 15:09:32 UTC 2021 年 6 月 9 日 (水) 0 時 9 分 32 秒 (日本時間) |
composite number 合成数 | 82752103240024515229109500758315343838310696745425049581962643318157307616099212995418388807541924702766586343539059593851800149308793064247574640082968801302226805299982787751791956739802700769277<197> |
prime factors 素因数 | 25910525220968384298318182824331214290171241276903113618648272783473343165585799869<83> 3193764021929452972228846620791678693308591077343275422376741353001388778795979127515158780483134051719281138554433<115> |
factorization results 素因数分解の結果 | Number: n N=82752103240024515229109500758315343838310696745425049581962643318157307616099212995418388807541924702766586343539059593851800149308793064247574640082968801302226805299982787751791956739802700769277 ( 197 digits) SNFS difficulty: 208 digits. Divisors found: Wed Jun 9 01:02:45 2021 p83 factor: 25910525220968384298318182824331214290171241276903113618648272783473343165585799869 Wed Jun 9 01:02:45 2021 p115 factor: 3193764021929452972228846620791678693308591077343275422376741353001388778795979127515158780483134051719281138554433 Wed Jun 9 01:02:45 2021 elapsed time 03:27:14 (Msieve 1.54 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.349). Factorization parameters were as follows: # # N = 7x10^208-9 = 69(207)1 # n: 82752103240024515229109500758315343838310696745425049581962643318157307616099212995418388807541924702766586343539059593851800149308793064247574640082968801302226805299982787751791956739802700769277 m: 100000000000000000000000000000000000000000 deg: 5 c5: 7000 c0: -9 skew: 0.26 # Murphy_E = 5.693e-12 type: snfs lss: 1 rlim: 21000000 alim: 21000000 lpbr: 29 lpba: 29 mfbr: 57 mfba: 57 rlambda: 2.6 alambda: 2.6 Factor base limits: 21000000/21000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 57/57 Sieved special-q in [100000, 52100000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 10095122 hash collisions in 62294327 relations (54211609 unique) Msieve: matrix is 2932931 x 2933156 (1022.3 MB) Sieving start time : 2021/06/08 01:55:18 Sieving end time : 2021/06/08 21:27:18 Total sieving time: 19hrs 32min 0secs. Total relation processing time: 3hrs 5min 37sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 4min 37sec. Prototype def-par.txt line would be: snfs,208,5,0,0,0,0,0,0,0,0,21000000,21000000,29,29,57,57,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- [ 0.119993] smpboot: CPU0: AMD Ryzen 7 2700 Eight-Core Processor (family: 0x17, model: 0x8, stepping: 0x2) [ 0.000000] Memory: 16241092K/16727236K available (14339K kernel code, 2400K rwdata, 5008K rodata, 2736K init, 4964K bss, 486144K reserved, 0K cma-reserved) [ 0.154044] x86/mm: Memory block size: 128MB [ 0.000005] Calibrating delay loop (skipped), value calculated using timer frequency.. 6399.33 BogoMIPS (lpj=12798672) [ 0.150212] smpboot: Total of 16 processors activated (102389.37 BogoMIPS) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | April 9, 2012 09:00:00 UTC 2012 年 4 月 9 日 (月) 18 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | April 12, 2012 11:19:33 UTC 2012 年 4 月 12 日 (木) 20 時 19 分 33 秒 (日本時間) | |
45 | 11e6 | 400 / 4254 | Dmitry Domanov | April 13, 2012 21:32:41 UTC 2012 年 4 月 14 日 (土) 6 時 32 分 41 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | April 10, 2012 15:45:01 UTC 2012 年 4 月 11 日 (水) 0 時 45 分 1 秒 (日本時間) |
composite number 合成数 | 69999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999991<212> |
prime factors 素因数 | 139654125536833359470539767777495855976117<42> 501238325261917941587887013470493749402120334825925708560215940938915470428557696100312962051174450354977953824590071285788378534730113432445251068074902706576853429932923<171> |
factorization results 素因数分解の結果 | Using B1=2000000, B2=5705781910, polynomial Dickson(6), sigma=98502713 Step 1 took 10853ms Step 2 took 7488ms ********** Factor found in step 2: 139654125536833359470539767777495855976117 Found probable prime factor of 42 digits: 139654125536833359470539767777495855976117 Probable prime cofactor 501238325261... has 171 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | April 9, 2012 09:00:00 UTC 2012 年 4 月 9 日 (月) 18 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 800 / 2318 | 600 | Serge Batalov | April 10, 2012 02:18:09 UTC 2012 年 4 月 10 日 (火) 11 時 18 分 9 秒 (日本時間) |
200 | Serge Batalov | April 10, 2012 05:18:23 UTC 2012 年 4 月 10 日 (火) 14 時 18 分 23 秒 (日本時間) |
name 名前 | Warut Roonguthai |
---|---|
date 日付 | April 9, 2012 11:57:20 UTC 2012 年 4 月 9 日 (月) 20 時 57 分 20 秒 (日本時間) |
composite number 合成数 | 14040310169864776606529863275223063243833816258117658623005013249532045852081573441103235564449246676420523237002067477700281315602770395272522561052616526907192385827313<170> |
prime factors 素因数 | 721206381419646846727738708427<30> 19467811893493453065741202158422142810686981027755018008026601661568202259398357343165250464113885685870830273948484806548768782646500893619<140> |
factorization results 素因数分解の結果 | Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1860997204 Step 1 took 7894ms Step 2 took 5803ms ********** Factor found in step 2: 721206381419646846727738708427 Found probable prime factor of 30 digits: 721206381419646846727738708427 Probable prime cofactor 19467811893493453065741202158422142810686981027755018008026601661568202259398357343165250464113885685870830273948484806548768782646500893619 has 140 digits |
software ソフトウェア | GMP-ECM 6.3 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | April 9, 2012 09:00:00 UTC 2012 年 4 月 9 日 (月) 18 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | September 12, 2017 07:15:34 UTC 2017 年 9 月 12 日 (火) 16 時 15 分 34 秒 (日本時間) |
composite number 合成数 | 1462293712137037810737413829120534781700438688113641111343221224148736160434510131606434092333402966367244620848130353039481930227700020889910173386254439105911844579068310006266973052015876331731773553373720493<211> |
prime factors 素因数 | 771498992168517952697042399993102610596570961768860968409655526142194457020881629048494769<90> 1895392900030684783665579794111218864118106543746116272832983123968073976237137443601385254204358838951772548163821579197<121> |
factorization results 素因数分解の結果 | Number: n N=1462293712137037810737413829120534781700438688113641111343221224148736160434510131606434092333402966367244620848130353039481930227700020889910173386254439105911844579068310006266973052015876331731773553373720493 ( 211 digits) SNFS difficulty: 213 digits. Divisors found: Tue Sep 12 15:55:33 2017 prp90 factor: 771498992168517952697042399993102610596570961768860968409655526142194457020881629048494769 Tue Sep 12 15:55:33 2017 prp121 factor: 1895392900030684783665579794111218864118106543746116272832983123968073976237137443601385254204358838951772548163821579197 Tue Sep 12 15:55:33 2017 elapsed time 22:34:27 (Msieve 1.44 - dependency 4) Version: GGNFS-0.77.1-20060513-nocona Total time: 0.00 hours. Scaled time: 0.00 units (timescale=3.824). Factorization parameters were as follows: # # 7x10^213-9 = 69(212)1 # n: 1462293712137037810737413829120534781700438688113641111343221224148736160434510131606434092333402966367244620848130353039481930227700020889910173386254439105911844579068310006266973052015876331731773553373720493 m: 100000000000000000000000000000000000 deg: 6 c6: 7000 c0: -9 skew: 0.33 # Murphy_E = 2.719e-12 type: snfs lss: 1 rlim: 26000000 alim: 26000000 lpbr: 29 lpba: 29 mfbr: 57 mfba: 57 rlambda: 2.6 alambda: 2.6 Factor base limits: 26000000/26000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 57/57 Sieved special-q in [100000, 63400000) Primes: RFBsize:1624527, AFBsize:1623356, Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 14515024 hash collisions in 70413730 relations (56349282 unique) Msieve: matrix is 4119724 x 4119949 (1170.9 MB) Total sieving time: 0.00 hours. Total relation processing time: 21hrs 39min 44sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 35min 40sec. Prototype def-par.txt line would be: snfs,213,6,0,0,0,0,0,0,0,0,26000000,26000000,29,29,57,57,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | April 9, 2012 09:00:00 UTC 2012 年 4 月 9 日 (月) 18 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2318 | Wataru Sakai | April 11, 2012 10:26:46 UTC 2012 年 4 月 11 日 (水) 19 時 26 分 46 秒 (日本時間) | |
45 | 11e6 | 3950 | 850 | Serge Batalov | November 8, 2013 17:14:19 UTC 2013 年 11 月 9 日 (土) 2 時 14 分 19 秒 (日本時間) |
400 | Serge Batalov | January 6, 2014 02:27:34 UTC 2014 年 1 月 6 日 (月) 11 時 27 分 34 秒 (日本時間) | |||
1800 | Serge Batalov | May 24, 2014 09:17:11 UTC 2014 年 5 月 24 日 (土) 18 時 17 分 11 秒 (日本時間) | |||
900 | Serge Batalov | May 24, 2014 19:03:26 UTC 2014 年 5 月 25 日 (日) 4 時 3 分 26 秒 (日本時間) | |||
50 | 43e6 | 4 / 6579 | KTakahashi | May 25, 2014 07:10:41 UTC 2014 年 5 月 25 日 (日) 16 時 10 分 41 秒 (日本時間) |
composite cofactor 合成数の残り | 1643060910173575198967355226948363052328384018001232208370662626363212460104939785676288781771247874911051458857039419183025447627487381198824250466829140912498243279581<169> |
---|
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | April 9, 2012 09:00:00 UTC 2012 年 4 月 9 日 (月) 18 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | April 12, 2012 11:19:48 UTC 2012 年 4 月 12 日 (木) 20 時 19 分 48 秒 (日本時間) | |
45 | 11e6 | 400 / 4254 | Dmitry Domanov | April 13, 2012 21:32:59 UTC 2012 年 4 月 14 日 (土) 6 時 32 分 59 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | April 10, 2012 05:50:09 UTC 2012 年 4 月 10 日 (火) 14 時 50 分 9 秒 (日本時間) |
composite number 合成数 | 46190566970893004976666678498027742923522803232473087357024460503829153185455701364542430236024876094904154101872741021615938489829446513115785711106703264838996313<164> |
prime factors 素因数 | 227954867848321575193998924030404849<36> 202630316285360715213030585524118580086527966342358763050630639817465527803518361244966841282127887378409254419673004466926268137<129> |
factorization results 素因数分解の結果 | Using B1=2000000, B2=5705781910, polynomial Dickson(6), sigma=3776467598 Step 1 took 7616ms Step 2 took 5820ms ********** Factor found in step 2: 227954867848321575193998924030404849 Found probable prime factor of 36 digits: 227954867848321575193998924030404849 Probable prime cofactor 202630316285... has 129 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | April 9, 2012 09:00:00 UTC 2012 年 4 月 9 日 (月) 18 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | April 9, 2012 09:00:00 UTC 2012 年 4 月 9 日 (月) 18 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | April 12, 2012 11:19:59 UTC 2012 年 4 月 12 日 (木) 20 時 19 分 59 秒 (日本時間) | |
45 | 11e6 | 400 / 4254 | Dmitry Domanov | April 13, 2012 21:33:10 UTC 2012 年 4 月 14 日 (土) 6 時 33 分 10 秒 (日本時間) |
name 名前 | Warut Roonguthai |
---|---|
date 日付 | April 9, 2012 14:01:01 UTC 2012 年 4 月 9 日 (月) 23 時 1 分 1 秒 (日本時間) |
composite number 合成数 | 57653973869825070524706881916522621303381606175534489400056126868553832476808466068754693250854295118765320087056496495626963432840047785241650162366280087793922993847749638516790631896881<188> |
prime factors 素因数 | 6145583130131402681630181873643<31> |
composite cofactor 合成数の残り | 9381367503947885524303351816083340087912613218329956970415790184787073158797506765178860279704169936331233073640594999074958464310781485005341955432900739667<157> |
factorization results 素因数分解の結果 | Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=903785568 Step 1 took 12917ms Step 2 took 8081ms ********** Factor found in step 2: 6145583130131402681630181873643 Found probable prime factor of 31 digits: 6145583130131402681630181873643 Composite cofactor 9381367503947885524303351816083340087912613218329956970415790184787073158797506765178860279704169936331233073640594999074958464310781485005341955432900739667 has 157 digits |
software ソフトウェア | GMP-ECM 6.3 |
name 名前 | Erik Branger |
---|---|
date 日付 | April 1, 2021 20:52:48 UTC 2021 年 4 月 2 日 (金) 5 時 52 分 48 秒 (日本時間) |
composite number 合成数 | 9381367503947885524303351816083340087912613218329956970415790184787073158797506765178860279704169936331233073640594999074958464310781485005341955432900739667<157> |
prime factors 素因数 | 10098818456790186560606944271021327722244839<44> 55396293550281494869150192478159021960620658987<47> 16769297758443538780171259784786361363065522595555069964441109276319<68> |
factorization results 素因数分解の結果 | Number: 69991_219 N = 9381367503947885524303351816083340087912613218329956970415790184787073158797506765178860279704169936331233073640594999074958464310781485005341955432900739667 (157 digits) SNFS difficulty: 221 digits. Divisors found: r1=10098818456790186560606944271021327722244839 (pp44) r2=55396293550281494869150192478159021960620658987 (pp47) r3=16769297758443538780171259784786361363065522595555069964441109276319 (pp68) Version: Msieve v. 1.52 (SVN unknown) Total time: 51.38 hours. Factorization parameters were as follows: n: 9381367503947885524303351816083340087912613218329956970415790184787073158797506765178860279704169936331233073640594999074958464310781485005341955432900739667 m: 10000000000000000000000000000000000000000000000000000000 deg: 4 c4: 7 c0: -90 skew: 1.00 type: snfs lss: 1 rlim: 536870912 alim: 44739242 lpbr: 29 lpba: 28 mfbr: 58 mfba: 56 rlambda: 2.8 alambda: 2.8 side: 1 Factor base limits: 536870912/44739242 Large primes per side: 3 Large prime bits: 29/28 Relations: 8000108 relations Pruned matrix : 6875921 x 6876146 Total pre-computation time approximately 1000 CPU-days. Pre-computation saved approximately 18 G relations. Total batch smoothness checking time: 24.92 hours. Total relation processing time: 0.28 hours. Matrix solve time: 25.90 hours. time per square root: 0.28 hours. Prototype def-par.txt line would be: snfs,221,4,0,0,0,0,0,0,0,0,536870912,44739242,29,28,58,56,2.8,2.8,100000 total time: 51.38 hours. Intel64 Family 6 Model 60 Stepping 3, GenuineIntel Windows-10-10.0.19041-SP0 processors: 8, speed: 3.50GHz |
software ソフトウェア | GGNFS, NFS_factory, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | April 9, 2012 09:00:00 UTC 2012 年 4 月 9 日 (月) 18 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | April 12, 2012 11:20:13 UTC 2012 年 4 月 12 日 (木) 20 時 20 分 13 秒 (日本時間) | |
45 | 11e6 | 400 / 4254 | Dmitry Domanov | April 13, 2012 21:33:38 UTC 2012 年 4 月 14 日 (土) 6 時 33 分 38 秒 (日本時間) |
name 名前 | Erik Branger |
---|---|
date 日付 | January 9, 2019 18:42:07 UTC 2019 年 1 月 10 日 (木) 3 時 42 分 7 秒 (日本時間) |
composite number 合成数 | 960291824845199259833230733392906264946577428562426807621147936977497905308000203524304231510093711869769248477319101707045728230941174472243542893019050857866449238383072205347584748144223382923405454226329593<210> |
prime factors 素因数 | 756246066144505103931977906067945417413047943<45> 1269813977004813482377668273703623291607022336807444598400756458569107704830218708774614657368866112048040144696234964797790035483726180676871704442498079522198791551<166> |
factorization results 素因数分解の結果 | Number: 69991_220 N = 960291824845199259833230733392906264946577428562426807621147936977497905308000203524304231510093711869769248477319101707045728230941174472243542893019050857866449238383072205347584748144223382923405454226329593 (210 digits) SNFS difficulty: 221 digits. Divisors found: r1=756246066144505103931977906067945417413047943 (pp45) r2=1269813977004813482377668273703623291607022336807444598400756458569107704830218708774614657368866112048040144696234964797790035483726180676871704442498079522198791551 (pp166) Version: Msieve v. 1.52 (SVN unknown) Total time: 67.52 hours. Factorization parameters were as follows: n: 960291824845199259833230733392906264946577428562426807621147936977497905308000203524304231510093711869769248477319101707045728230941174472243542893019050857866449238383072205347584748144223382923405454226329593 m: 10000000000000000000000000000000000000000000000000000000 deg: 4 c4: 7 c0: -9 skew: 1.00 type: snfs lss: 1 rlim: 536870912 alim: 536870912 lpbr: 29 lpba: 28 mfbr: 58 mfba: 56 rlambda: 2.8 alambda: 2.8 side: 1 Factor base limits: 536870912/536870912 Large primes per side: 3 Large prime bits: 29/28 Relations: 7660594 relations Pruned matrix : 6677070 x 6677295 Total pre-computation time approximately 300 CPU-days. Pre-computation saved approximately 8 G relations. Total batch smoothness checking time: 31.59 hours. Total relation processing time: 0.37 hours. Matrix solve time: 35.35 hours. time per square root: 0.19 hours. Prototype def-par.txt line would be: snfs,221,4,0,0,0,0,0,0,0,0,536870912,536870912,29,28,58,56,2.8,2.8,100000 total time: 67.52 hours. Intel64 Family 6 Model 60 Stepping 3, GenuineIntel Windows-10-10.0.17134-SP0 processors: 8, speed: 3.50GHz |
software ソフトウェア | GGNFS, NFS_factory, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | April 9, 2012 09:00:00 UTC 2012 年 4 月 9 日 (月) 18 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2318 | Wataru Sakai | April 11, 2012 10:33:15 UTC 2012 年 4 月 11 日 (水) 19 時 33 分 15 秒 (日本時間) |
name 名前 | Wataru Sakai |
---|---|
date 日付 | April 11, 2012 04:31:34 UTC 2012 年 4 月 11 日 (水) 13 時 31 分 34 秒 (日本時間) |
composite number 合成数 | 30873583284349910086927869715725943820223882545823971340813151427174699908290793796131858666367658607246304757825022160297714193254634348029937449517751247<155> |
prime factors 素因数 | 298929440520726130389031357251224413<36> 103280504023187053380573323540918475719481910744761144663905763763181024989548445190214312039300911824147855181879489819<120> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=559976036 Step 1 took 22519ms Step 2 took 8603ms ********** Factor found in step 2: 298929440520726130389031357251224413 Found probable prime factor of 36 digits: 298929440520726130389031357251224413 Probable prime cofactor 103280504023187053380573323540918475719481910744761144663905763763181024989548445190214312039300911824147855181879489819 has 120 digits |
software ソフトウェア | GMP-ECM 6.4.2 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | April 9, 2012 09:00:00 UTC 2012 年 4 月 9 日 (月) 18 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | April 9, 2012 09:00:00 UTC 2012 年 4 月 9 日 (月) 18 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | April 12, 2012 11:20:30 UTC 2012 年 4 月 12 日 (木) 20 時 20 分 30 秒 (日本時間) | |
45 | 11e6 | 400 / 4254 | Dmitry Domanov | April 13, 2012 21:33:58 UTC 2012 年 4 月 14 日 (土) 6 時 33 分 58 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | August 12, 2018 19:20:47 UTC 2018 年 8 月 13 日 (月) 4 時 20 分 47 秒 (日本時間) |
composite number 合成数 | 456201109090067784967652082786163550704472269815583960229690741268147843048570428653079259728977438248292015633360292646494322577197374106416077569829726194611482842602145057614941498724917900093260541015412428612672875781<222> |
prime factors 素因数 | 298494443006004641806601127159132965602758203214669455643936366229<66> 1528340375438381774010373496637848407832095373163139240021668916473689296847026211300363175784588797942213622286413593981699236871266668668419418446668736689<157> |
factorization results 素因数分解の結果 | Number: n N=456201109090067784967652082786163550704472269815583960229690741268147843048570428653079259728977438248292015633360292646494322577197374106416077569829726194611482842602145057614941498724917900093260541015412428612672875781 ( 222 digits) SNFS difficulty: 228 digits. Divisors found: Mon Aug 13 05:01:44 2018 p66 factor: 298494443006004641806601127159132965602758203214669455643936366229 Mon Aug 13 05:01:44 2018 p157 factor: 1528340375438381774010373496637848407832095373163139240021668916473689296847026211300363175784588797942213622286413593981699236871266668668419418446668736689 Mon Aug 13 05:01:44 2018 elapsed time 18:46:19 (Msieve 1.53 - dependency 3) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.123). Factorization parameters were as follows: # # 7x10^227-9 = 69(226)1 # n: 456201109090067784967652082786163550704472269815583960229690741268147843048570428653079259728977438248292015633360292646494322577197374106416077569829726194611482842602145057614941498724917900093260541015412428612672875781 m: 100000000000000000000000000000000000000 deg: 6 c6: 7 c0: -90 skew: 1.53 # Murphy_E = 1.218e-12 type: snfs lss: 1 rlim: 46000000 alim: 46000000 lpbr: 30 lpba: 30 mfbr: 59 mfba: 59 rlambda: 2.7 alambda: 2.7 Factor base limits: 46000000/46000000 Large primes per side: 3 Large prime bits: 30/30 Max factor residue bits: 59/59 Sieved special-q in [100000, 99000000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 23354840 hash collisions in 123541456 relations (102597896 unique) Msieve: matrix is 6346928 x 6347153 (1824.9 MB) Sieving start time: 2018/08/09 13:21:19 Sieving end time : 2018/08/12 10:11:25 Total sieving time: 68hrs 50min 6secs. Total relation processing time: 17hrs 32min 5sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 33min 29sec. Prototype def-par.txt line would be: snfs,228,6,0,0,0,0,0,0,0,0,46000000,46000000,30,30,59,59,2.7,2.7,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- [ 0.040000] smpboot: CPU0: AMD Ryzen 7 1700 Eight-Core Processor (family: 0x17, model: 0x1, stepping: 0x1) [ 0.000000] Memory: 16285184K/16703460K available (12300K kernel code, 2470K rwdata, 4240K rodata, 2408K init, 2416K bss, 418276K reserved, 0K cma-reserved) [ 0.072652] x86/mm: Memory block size: 128MB [ 0.028000] Calibrating delay loop (skipped), value calculated using timer frequency.. 5988.85 BogoMIPS (lpj=11977704) [ 0.070214] smpboot: Total of 16 processors activated (95821.63 BogoMIPS) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | April 9, 2012 09:00:00 UTC 2012 年 4 月 9 日 (月) 18 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2318 | Wataru Sakai | April 11, 2012 12:36:00 UTC 2012 年 4 月 11 日 (水) 21 時 36 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | April 9, 2012 09:00:00 UTC 2012 年 4 月 9 日 (月) 18 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | April 12, 2012 11:20:43 UTC 2012 年 4 月 12 日 (木) 20 時 20 分 43 秒 (日本時間) | |
45 | 11e6 | 400 / 4254 | Dmitry Domanov | April 13, 2012 21:34:15 UTC 2012 年 4 月 14 日 (土) 6 時 34 分 15 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | April 9, 2012 09:00:00 UTC 2012 年 4 月 9 日 (月) 18 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | April 12, 2012 11:20:55 UTC 2012 年 4 月 12 日 (木) 20 時 20 分 55 秒 (日本時間) | |
45 | 11e6 | 400 / 4254 | Dmitry Domanov | April 13, 2012 21:34:29 UTC 2012 年 4 月 14 日 (土) 6 時 34 分 29 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | April 9, 2012 09:00:00 UTC 2012 年 4 月 9 日 (月) 18 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | April 12, 2012 11:21:06 UTC 2012 年 4 月 12 日 (木) 20 時 21 分 6 秒 (日本時間) | |
45 | 11e6 | 400 / 4254 | Dmitry Domanov | April 13, 2012 21:34:41 UTC 2012 年 4 月 14 日 (土) 6 時 34 分 41 秒 (日本時間) |
name 名前 | ebina |
---|---|
date 日付 | June 21, 2022 21:12:56 UTC 2022 年 6 月 22 日 (水) 6 時 12 分 56 秒 (日本時間) |
composite number 合成数 | 410622292271483379810643091100667793132394370325483570800212471721109240910412439089658383759749875109159298906176909449765665669086581838774195871<147> |
prime factors 素因数 | 40243850070814973016603184856087163985477033510934812750537982070191<68> 10203355085284660010595134523732580438288362623618364594216918439932510917374481<80> |
factorization results 素因数分解の結果 | Number: 69991_232 N = 410622292271483379810643091100667793132394370325483570800212471721109240910412439089658383759749875109159298906176909449765665669086581838774195871 (147 digits) Divisors found: r1=40243850070814973016603184856087163985477033510934812750537982070191 (pp68) r2=10203355085284660010595134523732580438288362623618364594216918439932510917374481 (pp80) Version: Msieve v. 1.53 (SVN unknown) Total time: 131.62 hours. Factorization parameters were as follows: n: 410622292271483379810643091100667793132394370325483570800212471721109240910412439089658383759749875109159298906176909449765665669086581838774195871 # norm 3.605889e-14 alpha -7.853027 e 8.261e-12 rroots 3 skew: 20679191.20 c0: 466844358883419754190087196576623164920 c1: -14731967671217289010721932935282 c2: -14972883412843318778339663 c3: -249289293664338280 c4: 5805709120 c5: 456 Y0: -61786764960345824355739564747 Y1: 4420717150832701 type: gnfs Factor base limits: 17700000/17700000 Large primes per side: 3 Large prime bits: 29/29 Sieved algebraic special-q in [0, 0) Total raw relations: 42150662 Relations: 6197390 relations Pruned matrix : 3627535 x 3627760 Polynomial selection time: 0.73 hours. Total sieving time: 118.90 hours. Total relation processing time: 0.55 hours. Matrix solve time: 9.08 hours. time per square root: 2.37 hours. Prototype def-par.txt line would be: gnfs,146,5,65,2000,1e-05,0.28,250,20,50000,3600,17700000,17700000,29,29,58,58,2.6,2.6,100000 total time: 131.62 hours. Intel64 Family 6 Model 42 Stepping 7, GenuineIntel processors: 8, speed: 3.39GHz Windows-7-6.1.7601-SP1 Running Python 3.2 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | April 9, 2012 09:00:00 UTC 2012 年 4 月 9 日 (月) 18 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2318 | Wataru Sakai | April 11, 2012 04:33:31 UTC 2012 年 4 月 11 日 (水) 13 時 33 分 31 秒 (日本時間) | |
45 | 11e6 | 1250 | 850 | Serge Batalov | November 8, 2013 17:10:30 UTC 2013 年 11 月 9 日 (土) 2 時 10 分 30 秒 (日本時間) |
400 | Serge Batalov | January 6, 2014 02:24:38 UTC 2014 年 1 月 6 日 (月) 11 時 24 分 38 秒 (日本時間) | |||
50 | 43e6 | 7254 | 800 | Dmitry Domanov | April 19, 2012 21:22:27 UTC 2012 年 4 月 20 日 (金) 6 時 22 分 27 秒 (日本時間) |
6454 | Ignacio Santos | June 17, 2021 14:02:25 UTC 2021 年 6 月 17 日 (木) 23 時 2 分 25 秒 (日本時間) | |||
55 | 11e7 | 0 / 14550 | - | - | |
60 | 26e7 | 230 / 41145 | Ignacio Santos | December 11, 2021 10:03:12 UTC 2021 年 12 月 11 日 (土) 19 時 3 分 12 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | April 9, 2012 09:00:00 UTC 2012 年 4 月 9 日 (月) 18 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | April 12, 2012 11:21:23 UTC 2012 年 4 月 12 日 (木) 20 時 21 分 23 秒 (日本時間) | |
45 | 11e6 | 400 / 4254 | Dmitry Domanov | April 13, 2012 21:34:56 UTC 2012 年 4 月 14 日 (土) 6 時 34 分 56 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | April 9, 2012 09:00:00 UTC 2012 年 4 月 9 日 (月) 18 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2318 | Wataru Sakai | April 11, 2012 12:35:43 UTC 2012 年 4 月 11 日 (水) 21 時 35 分 43 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | April 10, 2012 15:44:32 UTC 2012 年 4 月 11 日 (水) 0 時 44 分 32 秒 (日本時間) |
composite number 合成数 | 2739754552009227217507885914836708358589024792931388355256923049533241698754364943338948653712909730358231946503936117171860745824708912784542550083510156654731559054734532848375253<181> |
prime factors 素因数 | 316188143641271607137124213659163904245529<42> |
composite cofactor 合成数の残り | 8664950306035481567672815466092400879720895896037974091528554453894124099069928106291920874411067356982942368844940012985753874133738876957<139> |
factorization results 素因数分解の結果 | Using B1=2000000, B2=5705781910, polynomial Dickson(6), sigma=1111106710 Step 1 took 8885ms Step 2 took 6476ms ********** Factor found in step 2: 316188143641271607137124213659163904245529 Found probable prime factor of 42 digits: 316188143641271607137124213659163904245529 Composite cofactor 866495030603... has 139 digits |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | April 12, 2012 13:38:52 UTC 2012 年 4 月 12 日 (木) 22 時 38 分 52 秒 (日本時間) |
composite number 合成数 | 8664950306035481567672815466092400879720895896037974091528554453894124099069928106291920874411067356982942368844940012985753874133738876957<139> |
prime factors 素因数 | 1827577457767759582475882242136071<34> 4741221921515178223597897064678032431599875207961169208833078366212395819341801159416213090256929131726267<106> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3009347335 Step 1 took 16359ms Step 2 took 7041ms ********** Factor found in step 2: 1827577457767759582475882242136071 Found probable prime factor of 34 digits: 1827577457767759582475882242136071 Nice find after Serge Batalov's p42 factor =) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | April 9, 2012 09:00:00 UTC 2012 年 4 月 9 日 (月) 18 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 / 2318 | Dmitry Domanov | April 12, 2012 11:21:39 UTC 2012 年 4 月 12 日 (木) 20 時 21 分 39 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | April 9, 2012 09:00:00 UTC 2012 年 4 月 9 日 (月) 18 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2318 | Wataru Sakai | April 11, 2012 12:35:29 UTC 2012 年 4 月 11 日 (水) 21 時 35 分 29 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | April 9, 2012 09:00:00 UTC 2012 年 4 月 9 日 (月) 18 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | April 12, 2012 11:21:56 UTC 2012 年 4 月 12 日 (木) 20 時 21 分 56 秒 (日本時間) | |
45 | 11e6 | 400 / 4254 | Dmitry Domanov | April 13, 2012 21:36:32 UTC 2012 年 4 月 14 日 (土) 6 時 36 分 32 秒 (日本時間) |
name 名前 | Wataru Sakai |
---|---|
date 日付 | April 12, 2012 05:58:41 UTC 2012 年 4 月 12 日 (木) 14 時 58 分 41 秒 (日本時間) |
composite number 合成数 | 107599696302624035177156759093888631304609564687336487370438763754686299180183925909788134860669622084980312568110127403773948981268901913756977327285244582955928039026262283663951102935084994083792098344671361836801336361174440663<231> |
prime factors 素因数 | 11891187412751194272046478217589522793<38> |
composite cofactor 合成数の残り | 9048692327163425362005443839788677649612422026947506678164073426406397578545081309077303518330959578510625574524433636174789600429693817014236282588606445648489496653502712630836379093320790591<193> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1467907849 Step 1 took 26202ms Step 2 took 11012ms ********** Factor found in step 2: 11891187412751194272046478217589522793 Found probable prime factor of 38 digits: 11891187412751194272046478217589522793 Composite cofactor 9048692327163425362005443839788677649612422026947506678164073426406397578545081309077303518330959578510625574524433636174789600429693817014236282588606445648489496653502712630836379093320790591 has 193 digits |
software ソフトウェア | GMP-ECM 6.4.2 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | April 9, 2012 09:00:00 UTC 2012 年 4 月 9 日 (月) 18 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1722 | Wataru Sakai | April 12, 2012 05:57:53 UTC 2012 年 4 月 12 日 (木) 14 時 57 分 53 秒 (日本時間) | |
45 | 11e6 | 400 / 4094 | Dmitry Domanov | April 13, 2012 21:36:48 UTC 2012 年 4 月 14 日 (土) 6 時 36 分 48 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | April 9, 2012 09:00:00 UTC 2012 年 4 月 9 日 (月) 18 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2318 | Wataru Sakai | April 11, 2012 13:00:18 UTC 2012 年 4 月 11 日 (水) 22 時 0 分 18 秒 (日本時間) | |
45 | 11e6 | 0 / 1156 | - | - | |
50 | 43e6 | 800 / 7465 | Domanov Dmitry | May 4, 2012 22:20:53 UTC 2012 年 5 月 5 日 (土) 7 時 20 分 53 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | April 9, 2012 09:00:00 UTC 2012 年 4 月 9 日 (月) 18 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | April 12, 2012 11:22:15 UTC 2012 年 4 月 12 日 (木) 20 時 22 分 15 秒 (日本時間) | |
45 | 11e6 | 400 / 4254 | Dmitry Domanov | April 13, 2012 21:37:07 UTC 2012 年 4 月 14 日 (土) 6 時 37 分 7 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | April 9, 2012 09:00:00 UTC 2012 年 4 月 9 日 (月) 18 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | April 12, 2012 11:22:27 UTC 2012 年 4 月 12 日 (木) 20 時 22 分 27 秒 (日本時間) | |
45 | 11e6 | 400 / 4254 | Dmitry Domanov | April 13, 2012 21:37:20 UTC 2012 年 4 月 14 日 (土) 6 時 37 分 20 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | April 9, 2012 09:00:00 UTC 2012 年 4 月 9 日 (月) 18 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | April 12, 2012 11:22:40 UTC 2012 年 4 月 12 日 (木) 20 時 22 分 40 秒 (日本時間) | |
45 | 11e6 | 400 / 4254 | Dmitry Domanov | April 13, 2012 21:37:34 UTC 2012 年 4 月 14 日 (土) 6 時 37 分 34 秒 (日本時間) |
name 名前 | NFS@home + Dmitry Domanov |
---|---|
date 日付 | April 8, 2022 00:06:43 UTC 2022 年 4 月 8 日 (金) 9 時 6 分 43 秒 (日本時間) |
composite number 合成数 | 6999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999991<247> |
prime factors 素因数 | 901982132264511124601298823276651902852309016959939774557079450903704410101098623<81> 7760685882353168665187416708750291996052921794618811461914480193769422576834175059893641734916448557971308621179111257517626010825189413824054292014432806970315975817<166> |
factorization results 素因数分解の結果 | Sieving by NFS@home, postprocessing, linear algebra and square root by Dmitry Domanov Thu Apr 7 07:42:45 2022 Thu Apr 7 07:42:45 2022 Thu Apr 7 07:42:45 2022 Msieve v. 1.54 (SVN 1043M) Thu Apr 7 07:42:45 2022 random seeds: 753dc9e7 ee48ba62 Thu Apr 7 07:42:45 2022 factoring 6999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999991 (247 digits) Thu Apr 7 07:42:47 2022 searching for 15-digit factors Thu Apr 7 07:42:48 2022 commencing number field sieve (247-digit input) Thu Apr 7 07:42:48 2022 R0: -100000000000000000000000000000000000000000 Thu Apr 7 07:42:48 2022 R1: 1 Thu Apr 7 07:42:48 2022 A0: -9 Thu Apr 7 07:42:48 2022 A1: 0 Thu Apr 7 07:42:48 2022 A2: 0 Thu Apr 7 07:42:48 2022 A3: 0 Thu Apr 7 07:42:48 2022 A4: 0 Thu Apr 7 07:42:48 2022 A5: 0 Thu Apr 7 07:42:48 2022 A6: 7 Thu Apr 7 07:42:48 2022 skew 1.00, size 2.173e-12, alpha 2.716, combined = 2.106e-13 rroots = 2 Thu Apr 7 07:42:48 2022 Thu Apr 7 07:42:48 2022 commencing relation filtering Thu Apr 7 07:42:48 2022 setting target matrix density to 130.0 Thu Apr 7 07:42:48 2022 estimated available RAM is 63624.2 MB Thu Apr 7 07:42:48 2022 commencing duplicate removal, pass 1 Thu Apr 7 07:51:01 2022 error -15 reading relation 54439650 Thu Apr 7 07:51:06 2022 error -5 reading relation 54957229 Thu Apr 7 07:51:07 2022 error -1 reading relation 55060031 Thu Apr 7 07:51:12 2022 error -15 reading relation 55608361 Thu Apr 7 07:51:47 2022 error -1 reading relation 58987557 Thu Apr 7 07:51:55 2022 error -6 reading relation 59653098 Thu Apr 7 07:51:55 2022 error -11 reading relation 59653147 Thu Apr 7 07:53:11 2022 error -15 reading relation 67995819 Thu Apr 7 08:08:14 2022 skipped 349 relations with b > 2^32 Thu Apr 7 08:08:14 2022 skipped 5 relations with composite factors Thu Apr 7 08:08:14 2022 found 6363117 hash collisions in 169595488 relations Thu Apr 7 08:08:34 2022 added 1218088 free relations Thu Apr 7 08:08:34 2022 commencing duplicate removal, pass 2 Thu Apr 7 08:09:31 2022 found 0 duplicates and 170813576 unique relations Thu Apr 7 08:09:31 2022 memory use: 506.4 MB Thu Apr 7 08:09:31 2022 reading ideals above 720000 Thu Apr 7 08:09:31 2022 commencing singleton removal, initial pass Thu Apr 7 08:34:31 2022 memory use: 3012.0 MB Thu Apr 7 08:34:31 2022 reading all ideals from disk Thu Apr 7 08:34:36 2022 memory use: 6899.6 MB Thu Apr 7 08:35:01 2022 keeping 137007863 ideals with weight <= 200, target excess is 949362 Thu Apr 7 08:35:33 2022 commencing in-memory singleton removal Thu Apr 7 08:35:54 2022 begin with 170813576 relations and 137007863 unique ideals Thu Apr 7 08:39:53 2022 reduce to 129924086 relations and 93328208 ideals in 11 passes Thu Apr 7 08:39:53 2022 max relations containing the same ideal: 175 Thu Apr 7 08:41:15 2022 removing 8024693 relations and 6024693 ideals in 2000000 cliques Thu Apr 7 08:41:21 2022 commencing in-memory singleton removal Thu Apr 7 08:41:33 2022 begin with 121899393 relations and 93328208 unique ideals Thu Apr 7 08:43:30 2022 reduce to 121511243 relations and 86907680 ideals in 8 passes Thu Apr 7 08:43:30 2022 max relations containing the same ideal: 168 Thu Apr 7 08:44:30 2022 removing 6354259 relations and 4354259 ideals in 2000000 cliques Thu Apr 7 08:44:35 2022 commencing in-memory singleton removal Thu Apr 7 08:44:47 2022 begin with 115156984 relations and 86907680 unique ideals Thu Apr 7 08:46:07 2022 reduce to 114892664 relations and 82284550 ideals in 6 passes Thu Apr 7 08:46:07 2022 max relations containing the same ideal: 163 Thu Apr 7 08:47:05 2022 removing 5907151 relations and 3907151 ideals in 2000000 cliques Thu Apr 7 08:47:10 2022 commencing in-memory singleton removal Thu Apr 7 08:47:22 2022 begin with 108985513 relations and 82284550 unique ideals Thu Apr 7 08:48:43 2022 reduce to 108756877 relations and 78144905 ideals in 6 passes Thu Apr 7 08:48:43 2022 max relations containing the same ideal: 158 Thu Apr 7 08:49:39 2022 removing 5671368 relations and 3671368 ideals in 2000000 cliques Thu Apr 7 08:49:44 2022 commencing in-memory singleton removal Thu Apr 7 08:49:54 2022 begin with 103085509 relations and 78144905 unique ideals Thu Apr 7 08:51:16 2022 reduce to 102875751 relations and 74260170 ideals in 6 passes Thu Apr 7 08:51:16 2022 max relations containing the same ideal: 153 Thu Apr 7 08:52:09 2022 removing 5521881 relations and 3521881 ideals in 2000000 cliques Thu Apr 7 08:52:14 2022 commencing in-memory singleton removal Thu Apr 7 08:52:24 2022 begin with 97353870 relations and 74260170 unique ideals Thu Apr 7 08:53:41 2022 reduce to 97154161 relations and 70534960 ideals in 6 passes Thu Apr 7 08:53:41 2022 max relations containing the same ideal: 146 Thu Apr 7 08:54:32 2022 removing 5414370 relations and 3414370 ideals in 2000000 cliques Thu Apr 7 08:54:36 2022 commencing in-memory singleton removal Thu Apr 7 08:54:45 2022 begin with 91739791 relations and 70534960 unique ideals Thu Apr 7 08:55:48 2022 reduce to 91544808 relations and 66921979 ideals in 6 passes Thu Apr 7 08:55:48 2022 max relations containing the same ideal: 139 Thu Apr 7 08:56:33 2022 removing 5337093 relations and 3337093 ideals in 2000000 cliques Thu Apr 7 08:56:38 2022 commencing in-memory singleton removal Thu Apr 7 08:56:46 2022 begin with 86207715 relations and 66921979 unique ideals Thu Apr 7 08:57:47 2022 reduce to 86012665 relations and 63386046 ideals in 6 passes Thu Apr 7 08:57:47 2022 max relations containing the same ideal: 135 Thu Apr 7 08:58:32 2022 removing 5274384 relations and 3274384 ideals in 2000000 cliques Thu Apr 7 08:58:37 2022 commencing in-memory singleton removal Thu Apr 7 08:58:46 2022 begin with 80738281 relations and 63386046 unique ideals Thu Apr 7 08:59:32 2022 reduce to 80541977 relations and 59911316 ideals in 5 passes Thu Apr 7 08:59:32 2022 max relations containing the same ideal: 127 Thu Apr 7 09:00:14 2022 removing 5226887 relations and 3226887 ideals in 2000000 cliques Thu Apr 7 09:00:18 2022 commencing in-memory singleton removal Thu Apr 7 09:00:25 2022 begin with 75315090 relations and 59911316 unique ideals Thu Apr 7 09:01:05 2022 reduce to 75115465 relations and 56480444 ideals in 5 passes Thu Apr 7 09:01:05 2022 max relations containing the same ideal: 121 Thu Apr 7 09:01:44 2022 removing 5196073 relations and 3196073 ideals in 2000000 cliques Thu Apr 7 09:01:47 2022 commencing in-memory singleton removal Thu Apr 7 09:01:54 2022 begin with 69919392 relations and 56480444 unique ideals Thu Apr 7 09:02:37 2022 reduce to 69712017 relations and 53072182 ideals in 6 passes Thu Apr 7 09:02:37 2022 max relations containing the same ideal: 116 Thu Apr 7 09:03:11 2022 removing 5168218 relations and 3168218 ideals in 2000000 cliques Thu Apr 7 09:03:15 2022 commencing in-memory singleton removal Thu Apr 7 09:03:21 2022 begin with 64543799 relations and 53072182 unique ideals Thu Apr 7 09:04:07 2022 reduce to 64328027 relations and 49682740 ideals in 6 passes Thu Apr 7 09:04:07 2022 max relations containing the same ideal: 110 Thu Apr 7 09:04:44 2022 removing 5148564 relations and 3148564 ideals in 2000000 cliques Thu Apr 7 09:04:48 2022 commencing in-memory singleton removal Thu Apr 7 09:04:54 2022 begin with 59179463 relations and 49682740 unique ideals Thu Apr 7 09:05:41 2022 reduce to 58951177 relations and 46299878 ideals in 6 passes Thu Apr 7 09:05:41 2022 max relations containing the same ideal: 109 Thu Apr 7 09:06:13 2022 removing 5138325 relations and 3138325 ideals in 2000000 cliques Thu Apr 7 09:06:16 2022 commencing in-memory singleton removal Thu Apr 7 09:06:21 2022 begin with 53812852 relations and 46299878 unique ideals Thu Apr 7 09:07:00 2022 reduce to 53567912 relations and 42909706 ideals in 6 passes Thu Apr 7 09:07:00 2022 max relations containing the same ideal: 100 Thu Apr 7 09:07:32 2022 removing 5134328 relations and 3134328 ideals in 2000000 cliques Thu Apr 7 09:07:35 2022 commencing in-memory singleton removal Thu Apr 7 09:07:40 2022 begin with 48433584 relations and 42909706 unique ideals Thu Apr 7 09:08:12 2022 reduce to 48166179 relations and 39499806 ideals in 6 passes Thu Apr 7 09:08:12 2022 max relations containing the same ideal: 91 Thu Apr 7 09:08:36 2022 removing 5141009 relations and 3141009 ideals in 2000000 cliques Thu Apr 7 09:08:39 2022 commencing in-memory singleton removal Thu Apr 7 09:08:43 2022 begin with 43025170 relations and 39499806 unique ideals Thu Apr 7 09:09:10 2022 reduce to 42727878 relations and 36051377 ideals in 6 passes Thu Apr 7 09:09:10 2022 max relations containing the same ideal: 82 Thu Apr 7 09:09:32 2022 removing 5157802 relations and 3157802 ideals in 2000000 cliques Thu Apr 7 09:09:35 2022 commencing in-memory singleton removal Thu Apr 7 09:09:39 2022 begin with 37570076 relations and 36051377 unique ideals Thu Apr 7 09:10:03 2022 reduce to 37226134 relations and 32536655 ideals in 6 passes Thu Apr 7 09:10:03 2022 max relations containing the same ideal: 76 Thu Apr 7 09:10:22 2022 removing 5200967 relations and 3200967 ideals in 2000000 cliques Thu Apr 7 09:10:25 2022 commencing in-memory singleton removal Thu Apr 7 09:10:28 2022 begin with 32025167 relations and 32536655 unique ideals Thu Apr 7 09:10:52 2022 reduce to 31605828 relations and 28898348 ideals in 7 passes Thu Apr 7 09:10:52 2022 max relations containing the same ideal: 68 Thu Apr 7 09:11:09 2022 removing 4363532 relations and 2757312 ideals in 1606220 cliques Thu Apr 7 09:11:11 2022 commencing in-memory singleton removal Thu Apr 7 09:11:14 2022 begin with 27242296 relations and 28898348 unique ideals Thu Apr 7 09:11:32 2022 reduce to 26835039 relations and 25716293 ideals in 7 passes Thu Apr 7 09:11:32 2022 max relations containing the same ideal: 61 Thu Apr 7 09:11:45 2022 removing 94071 relations and 76585 ideals in 17486 cliques Thu Apr 7 09:11:47 2022 commencing in-memory singleton removal Thu Apr 7 09:11:49 2022 begin with 26740968 relations and 25716293 unique ideals Thu Apr 7 09:11:59 2022 reduce to 26740636 relations and 25639376 ideals in 4 passes Thu Apr 7 09:11:59 2022 max relations containing the same ideal: 61 Thu Apr 7 09:12:05 2022 relations with 0 large ideals: 36477 Thu Apr 7 09:12:05 2022 relations with 1 large ideals: 19639 Thu Apr 7 09:12:05 2022 relations with 2 large ideals: 240302 Thu Apr 7 09:12:05 2022 relations with 3 large ideals: 1305708 Thu Apr 7 09:12:05 2022 relations with 4 large ideals: 3767861 Thu Apr 7 09:12:05 2022 relations with 5 large ideals: 6439537 Thu Apr 7 09:12:05 2022 relations with 6 large ideals: 6904851 Thu Apr 7 09:12:05 2022 relations with 7+ large ideals: 8026261 Thu Apr 7 09:12:05 2022 commencing 2-way merge Thu Apr 7 09:12:25 2022 reduce to 19119927 relation sets and 18018667 unique ideals Thu Apr 7 09:12:25 2022 commencing full merge Thu Apr 7 09:21:19 2022 memory use: 2338.3 MB Thu Apr 7 09:21:21 2022 found 8407165 cycles, need 8348867 Thu Apr 7 09:21:25 2022 weight of 8348867 cycles is about 1086174084 (130.10/cycle) Thu Apr 7 09:21:26 2022 distribution of cycle lengths: Thu Apr 7 09:21:26 2022 1 relations: 214400 Thu Apr 7 09:21:26 2022 2 relations: 373084 Thu Apr 7 09:21:26 2022 3 relations: 502555 Thu Apr 7 09:21:26 2022 4 relations: 570239 Thu Apr 7 09:21:26 2022 5 relations: 623726 Thu Apr 7 09:21:26 2022 6 relations: 644427 Thu Apr 7 09:21:26 2022 7 relations: 645893 Thu Apr 7 09:21:26 2022 8 relations: 625276 Thu Apr 7 09:21:26 2022 9 relations: 586470 Thu Apr 7 09:21:26 2022 10+ relations: 3562797 Thu Apr 7 09:21:26 2022 heaviest cycle: 28 relations Thu Apr 7 09:21:29 2022 commencing cycle optimization Thu Apr 7 09:21:55 2022 start with 77804905 relations Thu Apr 7 09:25:40 2022 pruned 4791259 relations Thu Apr 7 09:25:41 2022 memory use: 1907.8 MB Thu Apr 7 09:25:41 2022 distribution of cycle lengths: Thu Apr 7 09:25:41 2022 1 relations: 214400 Thu Apr 7 09:25:41 2022 2 relations: 384640 Thu Apr 7 09:25:41 2022 3 relations: 528329 Thu Apr 7 09:25:41 2022 4 relations: 603299 Thu Apr 7 09:25:41 2022 5 relations: 668561 Thu Apr 7 09:25:41 2022 6 relations: 691530 Thu Apr 7 09:25:41 2022 7 relations: 698177 Thu Apr 7 09:25:41 2022 8 relations: 671674 Thu Apr 7 09:25:41 2022 9 relations: 628817 Thu Apr 7 09:25:41 2022 10+ relations: 3259440 Thu Apr 7 09:25:41 2022 heaviest cycle: 28 relations Thu Apr 7 09:26:02 2022 RelProcTime: 6194 Thu Apr 7 09:26:02 2022 elapsed time 01:43:17 Thu Apr 7 09:31:06 2022 Thu Apr 7 09:31:06 2022 Thu Apr 7 09:31:06 2022 Msieve v. 1.54 (SVN 1043M) Thu Apr 7 09:31:06 2022 random seeds: b5157923 4790cdf2 Thu Apr 7 09:31:06 2022 factoring 6999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999991 (247 digits) Thu Apr 7 09:31:08 2022 searching for 15-digit factors Thu Apr 7 09:31:09 2022 commencing number field sieve (247-digit input) Thu Apr 7 09:31:09 2022 R0: -100000000000000000000000000000000000000000 Thu Apr 7 09:31:09 2022 R1: 1 Thu Apr 7 09:31:09 2022 A0: -9 Thu Apr 7 09:31:09 2022 A1: 0 Thu Apr 7 09:31:09 2022 A2: 0 Thu Apr 7 09:31:09 2022 A3: 0 Thu Apr 7 09:31:09 2022 A4: 0 Thu Apr 7 09:31:09 2022 A5: 0 Thu Apr 7 09:31:09 2022 A6: 7 Thu Apr 7 09:31:09 2022 skew 1.00, size 2.173e-12, alpha 2.716, combined = 2.106e-13 rroots = 2 Thu Apr 7 09:31:09 2022 Thu Apr 7 09:31:09 2022 commencing linear algebra Thu Apr 7 09:31:10 2022 read 8348867 cycles Thu Apr 7 09:31:34 2022 cycles contain 26286809 unique relations Thu Apr 7 09:35:52 2022 read 26286809 relations Thu Apr 7 09:36:52 2022 using 20 quadratic characters above 4294917295 Thu Apr 7 09:39:08 2022 building initial matrix Thu Apr 7 09:46:02 2022 memory use: 3451.1 MB Thu Apr 7 09:46:07 2022 read 8348867 cycles Thu Apr 7 09:46:08 2022 matrix is 8348690 x 8348867 (4104.6 MB) with weight 1166561968 (139.73/col) Thu Apr 7 09:46:08 2022 sparse part has weight 992520000 (118.88/col) Thu Apr 7 09:48:20 2022 filtering completed in 2 passes Thu Apr 7 09:48:22 2022 matrix is 8348527 x 8348704 (4104.6 MB) with weight 1166556074 (139.73/col) Thu Apr 7 09:48:22 2022 sparse part has weight 992517616 (118.88/col) Thu Apr 7 09:49:04 2022 matrix starts at (0, 0) Thu Apr 7 09:49:05 2022 matrix is 8348527 x 8348704 (4104.6 MB) with weight 1166556074 (139.73/col) Thu Apr 7 09:49:05 2022 sparse part has weight 992517616 (118.88/col) Thu Apr 7 09:49:05 2022 saving the first 48 matrix rows for later Thu Apr 7 09:49:07 2022 matrix includes 64 packed rows Thu Apr 7 09:49:09 2022 matrix is 8348479 x 8348704 (3956.5 MB) with weight 1010451368 (121.03/col) Thu Apr 7 09:49:09 2022 sparse part has weight 953696590 (114.23/col) Thu Apr 7 09:49:09 2022 using block size 8192 and superblock size 3244032 for processor cache size 33792 kB Thu Apr 7 09:49:40 2022 commencing Lanczos iteration Thu Apr 7 09:49:40 2022 memory use: 3776.0 MB Thu Apr 7 09:52:24 2022 linear algebra at 0.0%, ETA 241h10m Thu Apr 7 09:53:16 2022 checkpointing every 40000 dimensions Thu Apr 7 10:42:40 2022 Thu Apr 7 10:42:40 2022 Thu Apr 7 10:42:40 2022 Msieve v. 1.54 (SVN unknown) Thu Apr 7 10:42:40 2022 random seeds: b1417723 41168745 Thu Apr 7 10:42:40 2022 factoring 6999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999991 (247 digits) Thu Apr 7 10:42:41 2022 no P-1/P+1/ECM available, skipping Thu Apr 7 10:42:41 2022 commencing number field sieve (247-digit input) Thu Apr 7 10:42:41 2022 R0: -100000000000000000000000000000000000000000 Thu Apr 7 10:42:41 2022 R1: 1 Thu Apr 7 10:42:41 2022 A0: -9 Thu Apr 7 10:42:41 2022 A1: 0 Thu Apr 7 10:42:41 2022 A2: 0 Thu Apr 7 10:42:41 2022 A3: 0 Thu Apr 7 10:42:41 2022 A4: 0 Thu Apr 7 10:42:41 2022 A5: 0 Thu Apr 7 10:42:41 2022 A6: 7 Thu Apr 7 10:42:41 2022 skew 1.00, size 2.173e-12, alpha 2.716, combined = 2.106e-13 rroots = 2 Thu Apr 7 10:42:41 2022 Thu Apr 7 10:42:41 2022 commencing linear algebra Thu Apr 7 10:42:41 2022 using VBITS=128 Thu Apr 7 10:42:41 2022 skipping matrix build Thu Apr 7 10:42:45 2022 matrix starts at (0, 0) Thu Apr 7 10:42:46 2022 matrix is 8348527 x 8348704 (4104.6 MB) with weight 1166556074 (139.73/col) Thu Apr 7 10:42:46 2022 sparse part has weight 992517616 (118.88/col) Thu Apr 7 10:42:46 2022 saving the first 112 matrix rows for later Thu Apr 7 10:42:49 2022 matrix includes 128 packed rows Thu Apr 7 10:42:51 2022 matrix is 8348415 x 8348704 (3839.6 MB) with weight 953696590 (114.23/col) Thu Apr 7 10:42:51 2022 sparse part has weight 906337674 (108.56/col) Thu Apr 7 10:42:51 2022 using GPU 0 (Tesla P100-PCIE-16GB) Thu Apr 7 10:42:51 2022 selected card has CUDA arch 6.0 Thu Apr 7 10:44:16 2022 commencing Lanczos iteration Thu Apr 7 10:44:16 2022 memory use: 8188.7 MB Thu Apr 7 10:44:21 2022 linear algebra at 0.0%, ETA 6h 4m Thu Apr 7 10:44:23 2022 checkpointing every 1230000 dimensions Thu Apr 7 17:19:25 2022 lanczos halted after 65617 iterations (dim = 8348415) Thu Apr 7 17:19:40 2022 recovered 37 nontrivial dependencies Thu Apr 7 17:19:40 2022 BLanczosTime: 23819 Thu Apr 7 17:19:40 2022 elapsed time 06:37:00 Thu Apr 7 17:23:17 2022 Thu Apr 7 17:23:17 2022 Thu Apr 7 17:23:17 2022 Msieve v. 1.54 (SVN 1043M) Thu Apr 7 17:23:17 2022 random seeds: cdc07f3c 5e68aa8f Thu Apr 7 17:23:17 2022 factoring 6999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999991 (247 digits) Thu Apr 7 17:23:19 2022 searching for 15-digit factors Thu Apr 7 17:23:19 2022 commencing number field sieve (247-digit input) Thu Apr 7 17:23:19 2022 R0: -100000000000000000000000000000000000000000 Thu Apr 7 17:23:19 2022 R1: 1 Thu Apr 7 17:23:19 2022 A0: -9 Thu Apr 7 17:23:19 2022 A1: 0 Thu Apr 7 17:23:19 2022 A2: 0 Thu Apr 7 17:23:19 2022 A3: 0 Thu Apr 7 17:23:19 2022 A4: 0 Thu Apr 7 17:23:19 2022 A5: 0 Thu Apr 7 17:23:19 2022 A6: 7 Thu Apr 7 17:23:19 2022 skew 1.00, size 2.173e-12, alpha 2.716, combined = 2.106e-13 rroots = 2 Thu Apr 7 17:23:19 2022 Thu Apr 7 17:23:19 2022 commencing square root phase Thu Apr 7 17:23:19 2022 reading relations for dependency 1 Thu Apr 7 17:23:46 2022 read 4173471 cycles Thu Apr 7 17:23:58 2022 cycles contain 13138470 unique relations Thu Apr 7 17:45:43 2022 read 13138470 relations Thu Apr 7 17:47:15 2022 multiplying 13138470 relations Thu Apr 7 17:58:05 2022 multiply complete, coefficients have about 375.67 million bits Thu Apr 7 17:58:06 2022 initial square root is modulo 5505673 Thu Apr 7 18:11:03 2022 GCD is N, no factor found Thu Apr 7 18:11:03 2022 reading relations for dependency 2 Thu Apr 7 18:11:04 2022 read 4174192 cycles Thu Apr 7 18:11:15 2022 cycles contain 13143100 unique relations Thu Apr 7 18:12:40 2022 read 13143100 relations Thu Apr 7 18:13:58 2022 multiplying 13143100 relations Thu Apr 7 18:25:10 2022 multiply complete, coefficients have about 375.81 million bits Thu Apr 7 18:25:12 2022 initial square root is modulo 5536117 Thu Apr 7 18:37:53 2022 sqrtTime: 4474 Thu Apr 7 18:37:53 2022 p81 factor: 901982132264511124601298823276651902852309016959939774557079450903704410101098623 Thu Apr 7 18:37:53 2022 p166 factor: 7760685882353168665187416708750291996052921794618811461914480193769422576834175059893641734916448557971308621179111257517626010825189413824054292014432806970315975817 Thu Apr 7 18:37:53 2022 elapsed time 01:14:36 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | April 9, 2012 09:00:00 UTC 2012 年 4 月 9 日 (月) 18 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 515 | 400 | Serge Batalov | April 10, 2012 05:18:41 UTC 2012 年 4 月 10 日 (火) 14 時 18 分 41 秒 (日本時間) |
115 | Serge Batalov | April 10, 2012 07:00:15 UTC 2012 年 4 月 10 日 (火) 16 時 0 分 15 秒 (日本時間) | |||
45 | 11e6 | 600 | Dmitry Domanov | April 12, 2012 11:23:09 UTC 2012 年 4 月 12 日 (木) 20 時 23 分 9 秒 (日本時間) | |
50 | 43e6 | 1500 | 1000 | Dmitry Domanov | April 20, 2012 19:50:19 UTC 2012 年 4 月 21 日 (土) 4 時 50 分 19 秒 (日本時間) |
500 | Dmitry Domanov | April 27, 2012 14:51:43 UTC 2012 年 4 月 27 日 (金) 23 時 51 分 43 秒 (日本時間) | |||
55 | 11e7 | 2460 / 17193 | yoyo@home | March 19, 2013 21:50:23 UTC 2013 年 3 月 20 日 (水) 6 時 50 分 23 秒 (日本時間) |
name 名前 | Warut Roonguthai |
---|---|
date 日付 | April 9, 2012 13:52:26 UTC 2012 年 4 月 9 日 (月) 22 時 52 分 26 秒 (日本時間) |
composite number 合成数 | 69999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999991<248> |
prime factors 素因数 | 83104605854927725917557188201<29> |
composite cofactor 合成数の残り | 842311918573997035907674602866616788682293718408127307342877996294084471061061626071686429186040576046143957258050375447709439602415342358820031025238616900491292767746132762015016288999955981996194580767686596353533791<219> |
factorization results 素因数分解の結果 | Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3193638921 Step 1 took 12792ms Step 2 took 7269ms ********** Factor found in step 2: 83104605854927725917557188201 Found probable prime factor of 29 digits: 83104605854927725917557188201 Composite cofactor 842311918573997035907674602866616788682293718408127307342877996294084471061061626071686429186040576046143957258050375447709439602415342358820031025238616900491292767746132762015016288999955981996194580767686596353533791 has 219 digits |
software ソフトウェア | GMP-ECM 6.3 |
name 名前 | Serge Batalov |
---|---|
date 日付 | April 10, 2012 06:25:37 UTC 2012 年 4 月 10 日 (火) 15 時 25 分 37 秒 (日本時間) |
composite number 合成数 | 842311918573997035907674602866616788682293718408127307342877996294084471061061626071686429186040576046143957258050375447709439602415342358820031025238616900491292767746132762015016288999955981996194580767686596353533791<219> |
prime factors 素因数 | 217068505770770066227857390473659<33> |
composite cofactor 合成数の残り | 3880396723527917586771515933380418318467025074962412952755736361786009813399332218219544042145947073252637449138610244046133058796110369068051827052138965659728912611200810842443432805549<187> |
factorization results 素因数分解の結果 | Using B1=2000000, B2=5705781910, polynomial Dickson(6), sigma=1747604101 Step 1 took 11293ms Step 2 took 7876ms ********** Factor found in step 2: 217068505770770066227857390473659 Found probable prime factor of 33 digits: 217068505770770066227857390473659 Composite cofactor 388039672352... has 187 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | April 9, 2012 09:00:00 UTC 2012 年 4 月 9 日 (月) 18 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | April 12, 2012 11:24:23 UTC 2012 年 4 月 12 日 (木) 20 時 24 分 23 秒 (日本時間) | |
45 | 11e6 | 400 / 4254 | Dmitry Domanov | April 13, 2012 21:38:41 UTC 2012 年 4 月 14 日 (土) 6 時 38 分 41 秒 (日本時間) |
name 名前 | Warut Roonguthai |
---|---|
date 日付 | April 9, 2012 11:48:08 UTC 2012 年 4 月 9 日 (月) 20 時 48 分 8 秒 (日本時間) |
composite number 合成数 | 80221895257813902321582843111573500908800069494392770496709163609876559561000584322693854154028371146592527493813205011355591572903684490088625746849550037212552747421700648830671317077355348181280506821133307875998588162767<224> |
prime factors 素因数 | 88704096371036838820034799341<29> |
composite cofactor 合成数の残り | 904376444152668275655197037801911554785095354035952153464186605822696580197534003809616295703150797439832320273263829518351114842219610005633827911879149040959266389388590881613710367004171046187<195> |
factorization results 素因数分解の結果 | Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=340158212 Step 1 took 37815ms Step 2 took 22012ms ********** Factor found in step 2: 88704096371036838820034799341 Found probable prime factor of 29 digits: 88704096371036838820034799341 Composite cofactor 904376444152668275655197037801911554785095354035952153464186605822696580197534003809616295703150797439832320273263829518351114842219610005633827911879149040959266389388590881613710367004171046187 has 195 digits |
software ソフトウェア | GMP-ECM 6.3 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | April 9, 2012 09:00:00 UTC 2012 年 4 月 9 日 (月) 18 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | April 12, 2012 11:24:45 UTC 2012 年 4 月 12 日 (木) 20 時 24 分 45 秒 (日本時間) | |
45 | 11e6 | 400 / 4254 | Dmitry Domanov | April 13, 2012 21:38:56 UTC 2012 年 4 月 14 日 (土) 6 時 38 分 56 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 15, 2019 00:00:00 UTC 2019 年 4 月 15 日 (月) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 15, 2019 00:00:00 UTC 2019 年 4 月 15 日 (月) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 15, 2019 00:00:00 UTC 2019 年 4 月 15 日 (月) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 15, 2019 00:00:00 UTC 2019 年 4 月 15 日 (月) 9 時 0 分 0 秒 (日本時間) |
composite cofactor 合成数の残り | 3759065114973012357551714650254621315971908052505284095657802295080557059970977322682909882782012526757843468518652345966818655302319987582933994528800968262354711317<166> |
---|
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 15, 2019 00:00:00 UTC 2019 年 4 月 15 日 (月) 9 時 0 分 0 秒 (日本時間) | |
45 | 11e6 | 2000 | Dmitry Domanov | April 17, 2019 09:13:39 UTC 2019 年 4 月 17 日 (水) 18 時 13 分 39 秒 (日本時間) | |
50 | 43e6 | 2392 / 6996 | 600 | Dmitry Domanov | April 18, 2019 16:54:37 UTC 2019 年 4 月 19 日 (金) 1 時 54 分 37 秒 (日本時間) |
1792 | Dmitry Domanov | September 12, 2024 20:58:47 UTC 2024 年 9 月 13 日 (金) 5 時 58 分 47 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 15, 2019 00:00:00 UTC 2019 年 4 月 15 日 (月) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 15, 2019 00:00:00 UTC 2019 年 4 月 15 日 (月) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 15, 2019 00:00:00 UTC 2019 年 4 月 15 日 (月) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 15, 2019 00:00:00 UTC 2019 年 4 月 15 日 (月) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 15, 2019 00:00:00 UTC 2019 年 4 月 15 日 (月) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 15, 2019 00:00:00 UTC 2019 年 4 月 15 日 (月) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 15, 2019 00:00:00 UTC 2019 年 4 月 15 日 (月) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 15, 2019 00:00:00 UTC 2019 年 4 月 15 日 (月) 9 時 0 分 0 秒 (日本時間) |
composite cofactor 合成数の残り | 11654082482884000491306163150937614530000382247314603442221829477981184168886962963256880908312618742564547515093350641399157010292897394673049522423104759683942927<164> |
---|
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 15, 2019 00:00:00 UTC 2019 年 4 月 15 日 (月) 9 時 0 分 0 秒 (日本時間) | |
45 | 11e6 | 2000 | Dmitry Domanov | April 17, 2019 15:08:44 UTC 2019 年 4 月 18 日 (木) 0 時 8 分 44 秒 (日本時間) | |
50 | 43e6 | 2392 / 6996 | 600 | Dmitry Domanov | April 18, 2019 09:36:31 UTC 2019 年 4 月 18 日 (木) 18 時 36 分 31 秒 (日本時間) |
1792 | Dmitry Domanov | January 6, 2025 23:47:11 UTC 2025 年 1 月 7 日 (火) 8 時 47 分 11 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 15, 2019 00:00:00 UTC 2019 年 4 月 15 日 (月) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 15, 2019 00:00:00 UTC 2019 年 4 月 15 日 (月) 9 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | April 19, 2019 04:35:33 UTC 2019 年 4 月 19 日 (金) 13 時 35 分 33 秒 (日本時間) |
composite number 合成数 | 6999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999991<277> |
prime factors 素因数 | 1267958157294395937018297863335466697336937<43> |
composite cofactor 合成数の残り | 5520686908893581260719492131385853755717215368278469511346946526645180966888156524535145965972517275843958976647573060154837112505558031102954120734915980111411822409308502186738295272538218333738147647604569501201707358672144510114143<235> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:539871492 Step 1 took 80815ms Step 2 took 26730ms ********** Factor found in step 2: 1267958157294395937018297863335466697336937 Found prime factor of 43 digits: 1267958157294395937018297863335466697336937 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 15, 2019 00:00:00 UTC 2019 年 4 月 15 日 (月) 9 時 0 分 0 秒 (日本時間) | |
45 | 11e6 | 2000 / 3844 | Dmitry Domanov | April 18, 2019 19:00:39 UTC 2019 年 4 月 19 日 (金) 4 時 0 分 39 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 15, 2019 00:00:00 UTC 2019 年 4 月 15 日 (月) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 15, 2019 00:00:00 UTC 2019 年 4 月 15 日 (月) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 15, 2019 00:00:00 UTC 2019 年 4 月 15 日 (月) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 15, 2019 00:00:00 UTC 2019 年 4 月 15 日 (月) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 15, 2019 00:00:00 UTC 2019 年 4 月 15 日 (月) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 15, 2019 00:00:00 UTC 2019 年 4 月 15 日 (月) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 15, 2019 00:00:00 UTC 2019 年 4 月 15 日 (月) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 15, 2019 00:00:00 UTC 2019 年 4 月 15 日 (月) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 15, 2019 00:00:00 UTC 2019 年 4 月 15 日 (月) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 15, 2019 00:00:00 UTC 2019 年 4 月 15 日 (月) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 15, 2019 00:00:00 UTC 2019 年 4 月 15 日 (月) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 15, 2019 00:00:00 UTC 2019 年 4 月 15 日 (月) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 15, 2019 00:00:00 UTC 2019 年 4 月 15 日 (月) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 15, 2019 00:00:00 UTC 2019 年 4 月 15 日 (月) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 15, 2019 00:00:00 UTC 2019 年 4 月 15 日 (月) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 15, 2019 00:00:00 UTC 2019 年 4 月 15 日 (月) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | April 15, 2019 00:00:00 UTC 2019 年 4 月 15 日 (月) 9 時 0 分 0 秒 (日本時間) |