name 名前 | Ignacio Santos |
---|---|
date 日付 | November 7, 2022 15:13:00 UTC 2022 年 11 月 8 日 (火) 0 時 13 分 0 秒 (日本時間) |
composite number 合成数 | 38774472412916348843122298499872870582252733282481566234426646325959827103991863717264174930078820239<101> |
prime factors 素因数 | 168527657054879998762195891898142139<36> 230077799042145821302675445515651103782094358345598413333885027901<66> |
factorization results 素因数分解の結果 | Number: 1 N=38774472412916348843122298499872870582252733282481566234426646325959827103991863717264174930078820239 ( 101 digits) SNFS difficulty: 104 digits. Divisors found: r1=168527657054879998762195891898142139 (pp36) r2=230077799042145821302675445515651103782094358345598413333885027901 (pp66) Version: Msieve v. 1.52 (SVN 927) Total time: 0.18 hours. Scaled time: 1.38 units (timescale=7.734). Factorization parameters were as follows: n: 38774472412916348843122298499872870582252733282481566234426646325959827103991863717264174930078820239 m: 50000000000000000000000000 deg: 4 c4: 122 c0: -65 skew: 0.85 # Murphy_E = 2.084e-07 type: snfs lss: 1 rlim: 390000 alim: 390000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2Factor base limits: 390000/390000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [195000, 295001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 37262 x 37508 Total sieving time: 0.17 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,104.000,4,0,0,0,0,0,0,0,0,390000,390000,25,25,44,44,2.2,2.2,10000 total time: 0.18 hours. --------- CPU info (if available) ---------- |
software ソフトウェア | GNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | November 7, 2022 15:31:48 UTC 2022 年 11 月 8 日 (火) 0 時 31 分 48 秒 (日本時間) |
composite number 合成数 | 40143199347179446681934244123298849667008870988970491458053647108373476532680512780015267577456632183<101> |
prime factors 素因数 | 192978430302308249759578567781984923<36> 208019099773449067405407485116719380107528922008677730526288065621<66> |
factorization results 素因数分解の結果 | N=40143199347179446681934244123298849667008870988970491458053647108373476532680512780015267577456632183 ( 101 digits) SNFS difficulty: 105 digits. Divisors found: r1=192978430302308249759578567781984923 (pp36) r2=208019099773449067405407485116719380107528922008677730526288065621 (pp66) Version: Msieve v. 1.54 (SVN 1043M) Total time: 0.23 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 40143199347179446681934244123298849667008870988970491458053647108373476532680512780015267577456632183 m: 100000000000000000000000000 deg: 4 c4: 61 c0: -52 skew: 0.96 # Murphy_E = 1.796e-07 type: snfs lss: 1 rlim: 410000 alim: 410000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2 Factor base limits: 410000/410000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [205000, 345001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 32949 x 33174 Total sieving time: 0.22 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,105.000,4,0,0,0,0,0,0,0,0,410000,410000,25,25,44,44,2.2,2.2,20000 total time: 0.23 hours. --------- CPU info (if available) ---------- [ 0.117346] smpboot: CPU0: 11th Gen Intel(R) Core(TM) i7-1165G7 @ 2.80GHz (family: 0x6, model: 0x8c, stepping: 0x1) [ 0.071557] Memory: 15863944K/16489528K available (16393K kernel code, 3514K rwdata, 5516K rodata, 2936K init, 5684K bss, 625324K reserved, 0K cma-reserved) [ 0.134106] x86/mm: Memory block size: 128MB [ 0.113352] Calibrating delay loop (skipped), value calculated using timer frequency.. 5606.40 BogoMIPS (lpj=11212800) [ 0.130780] smpboot: Total of 8 processors activated (44851.20 BogoMIPS) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | November 7, 2022 17:50:08 UTC 2022 年 11 月 8 日 (火) 2 時 50 分 8 秒 (日本時間) |
composite number 合成数 | 28768156951518581399735898887002452367477834370873420109413318241841162044897189209583097528768156951518581399735898887<119> |
prime factors 素因数 | 137899366779855403068601384130620337982012053973803695177<57> 208617034459951468551306767445930797092193711095924464506369231<63> |
factorization results 素因数分解の結果 | N=28768156951518581399735898887002452367477834370873420109413318241841162044897189209583097528768156951518581399735898887 ( 119 digits) SNFS difficulty: 122 digits. Divisors found: r1=137899366779855403068601384130620337982012053973803695177 (pp57) r2=208617034459951468551306767445930797092193711095924464506369231 (pp63) Version: Msieve v. 1.54 (SVN 1043M) Total time: 0.64 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 28768156951518581399735898887002452367477834370873420109413318241841162044897189209583097528768156951518581399735898887 m: 1000000000000000000000000000000 deg: 4 c4: 305 c0: -26 skew: 0.54 # Murphy_E = 2.999e-08 type: snfs lss: 1 rlim: 770000 alim: 770000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 770000/770000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [385000, 685001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 74348 x 74573 Total sieving time: 0.63 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,122.000,4,0,0,0,0,0,0,0,0,770000,770000,25,25,46,46,2.2,2.2,75000 total time: 0.64 hours. --------- CPU info (if available) ---------- [ 0.117346] smpboot: CPU0: 11th Gen Intel(R) Core(TM) i7-1165G7 @ 2.80GHz (family: 0x6, model: 0x8c, stepping: 0x1) [ 0.071557] Memory: 15863944K/16489528K available (16393K kernel code, 3514K rwdata, 5516K rodata, 2936K init, 5684K bss, 625324K reserved, 0K cma-reserved) [ 0.134106] x86/mm: Memory block size: 128MB [ 0.113352] Calibrating delay loop (skipped), value calculated using timer frequency.. 5606.40 BogoMIPS (lpj=11212800) [ 0.130780] smpboot: Total of 8 processors activated (44851.20 BogoMIPS) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | November 7, 2022 23:12:02 UTC 2022 年 11 月 8 日 (火) 8 時 12 分 2 秒 (日本時間) |
composite number 合成数 | 10275587898389596388383532107000875951755272555757698268310760730409002088808031803786806818947510275587898389596388383532107<125> |
prime factors 素因数 | 1792054812951180469267353339930352318686910882127849<52> 5733969644303243806892226658676585084239813368245397465472426200210855443<73> |
factorization results 素因数分解の結果 | N=10275587898389596388383532107000875951755272555757698268310760730409002088808031803786806818947510275587898389596388383532107 ( 125 digits) SNFS difficulty: 128 digits. Divisors found: r1=1792054812951180469267353339930352318686910882127849 (pp52) r2=5733969644303243806892226658676585084239813368245397465472426200210855443 (pp73) Version: Msieve v. 1.54 (SVN 1043M) Total time: 0.04 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 10275587898389596388383532107000875951755272555757698268310760730409002088808031803786806818947510275587898389596388383532107 m: 50000000000000000000000000000000 deg: 4 c4: 122 c0: -65 skew: 0.85 # Murphy_E = 1.572e-08 type: snfs lss: 1 rlim: 980000 alim: 980000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 980000/980000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [490000, 890001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 118868 x 119093 Total sieving time: 0.00 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.02 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,128.000,4,0,0,0,0,0,0,0,0,980000,980000,26,26,47,47,2.3,2.3,100000 total time: 0.04 hours. --------- CPU info (if available) ---------- [ 0.117346] smpboot: CPU0: 11th Gen Intel(R) Core(TM) i7-1165G7 @ 2.80GHz (family: 0x6, model: 0x8c, stepping: 0x1) [ 0.071557] Memory: 15863944K/16489528K available (16393K kernel code, 3514K rwdata, 5516K rodata, 2936K init, 5684K bss, 625324K reserved, 0K cma-reserved) [ 0.134106] x86/mm: Memory block size: 128MB [ 0.113352] Calibrating delay loop (skipped), value calculated using timer frequency.. 5606.40 BogoMIPS (lpj=11212800) [ 0.130780] smpboot: Total of 8 processors activated (44851.20 BogoMIPS) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) |
name 名前 | anonymous |
---|---|
date 日付 | November 7, 2022 22:52:49 UTC 2022 年 11 月 8 日 (火) 7 時 52 分 49 秒 (日本時間) |
composite number 合成数 | 2030055200196056740908114909377670271379110345946698604426904767514750514202998331627421373299728931055464968502195987253117<124> |
prime factors 素因数 | 70855941959438673235642306007346161<35> 28650458155762819949702560666101234345984253017598428434200666577289727522349353788395597<89> |
factorization results 素因数分解の結果 | p35:70855941959438673235642306007346161 p89:28650458155762819949702560666101234345984253017598428434200666577289727522349353788395597 |
software ソフトウェア | ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | November 8, 2022 14:21:00 UTC 2022 年 11 月 8 日 (火) 23 時 21 分 0 秒 (日本時間) |
composite number 合成数 | 90862160218022287450543921399463199661848041601563183498280632170340498781661448514518596273458724553922395926198267<116> |
prime factors 素因数 | 545616049906655128557501340451260430467244729<45> 166531318559208681585893682708770203253425894219204865792179617883645523<72> |
factorization results 素因数分解の結果 | N=90862160218022287450543921399463199661848041601563183498280632170340498781661448514518596273458724553922395926198267 ( 116 digits) SNFS difficulty: 132 digits. Divisors found: r1=545616049906655128557501340451260430467244729 (pp45) r2=166531318559208681585893682708770203253425894219204865792179617883645523 (pp72) Version: Msieve v. 1.54 (SVN 1043M) Total time: 0.03 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 90862160218022287450543921399463199661848041601563183498280632170340498781661448514518596273458724553922395926198267 m: 500000000000000000000000000000000 deg: 4 c4: 122 c0: -65 skew: 0.85 # Murphy_E = 1.003e-08 type: snfs lss: 1 rlim: 1150000 alim: 1150000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1150000/1150000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [575000, 1175001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 149815 x 150040 Total sieving time: 0.00 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.02 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,132.000,4,0,0,0,0,0,0,0,0,1150000,1150000,26,26,47,47,2.3,2.3,100000 total time: 0.03 hours. --------- CPU info (if available) ---------- [ 0.117346] smpboot: CPU0: 11th Gen Intel(R) Core(TM) i7-1165G7 @ 2.80GHz (family: 0x6, model: 0x8c, stepping: 0x1) [ 0.071557] Memory: 15863944K/16489528K available (16393K kernel code, 3514K rwdata, 5516K rodata, 2936K init, 5684K bss, 625324K reserved, 0K cma-reserved) [ 0.134106] x86/mm: Memory block size: 128MB [ 0.113352] Calibrating delay loop (skipped), value calculated using timer frequency.. 5606.40 BogoMIPS (lpj=11212800) [ 0.130780] smpboot: Total of 8 processors activated (44851.20 BogoMIPS) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) |
name 名前 | Norman Powell |
---|---|
date 日付 | November 12, 2022 23:27:36 UTC 2022 年 11 月 13 日 (日) 8 時 27 分 36 秒 (日本時間) |
composite number 合成数 | 532466479290564464158310016526326961944355990008106033092755714497842274038728448830500575218041390600711122550497254443<120> |
prime factors 素因数 | 945587198677935257549701742704640567485817<42> 563106691836594200591226696485566537052735019562042011055771778943540677859779<78> |
factorization results 素因数分解の結果 | n: 532466479290564464158310016526326961944355990008106033092755714497842274038728448830500575218041390600711122550497254443 skew: 503975.84 c0: 323233211526660897053456018293 c1: 146693816282703805505231084 c2: -741342414932130471173 c3: -212588994786176 c4: 2559280060 c5: 1872 Y0: -195342670571339568394302 Y1: 271219820179 rlim: 5500000 alim: 5500000 lpbr: 27 lpba: 27 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 prp78 = 563106691836594200591226696485566537052735019562042011055771778943540677859779 prp42 = 945587198677935257549701742704640567485817 NFS elapsed time = 24515.0274 seconds. |
software ソフトウェア | YAFU v1.34 |
execution environment 実行環境 | Windows 7 SP1, Xeon E5-1620 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | November 12, 2022 15:50:06 UTC 2022 年 11 月 13 日 (日) 0 時 50 分 6 秒 (日本時間) |
composite number 合成数 | 236055216923931140557362800782195845994957207030087177482313830836133640120232022907985451454784643653869607713357727<117> |
prime factors 素因数 | 23415304875188059137870923660325280911131<41> 10081236105281984802118885181897367350621305416921513038513319164739389613517<77> |
factorization results 素因数分解の結果 | Number: 1 N=236055216923931140557362800782195845994957207030087177482313830836133640120232022907985451454784643653869607713357727 ( 117 digits) SNFS difficulty: 138 digits. Divisors found: r1=23415304875188059137870923660325280911131 (pp41) r2=10081236105281984802118885181897367350621305416921513038513319164739389613517 (pp77) Version: Msieve v. 1.52 (SVN 927) Total time: 6.24 hours. Scaled time: 48.35 units (timescale=7.752). Factorization parameters were as follows: n: 236055216923931140557362800782195845994957207030087177482313830836133640120232022907985451454784643653869607713357727 m: 10000000000000000000000000000000000 deg: 4 c4: 305 c0: -26 skew: 0.54 # Murphy_E = 4.993e-09 type: snfs lss: 1 rlim: 1420000 alim: 1420000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3Factor base limits: 1420000/1420000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [710000, 1310001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 165793 x 166018 Total sieving time: 6.21 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.02 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,138.000,4,0,0,0,0,0,0,0,0,1420000,1420000,26,26,48,48,2.3,2.3,100000 total time: 6.24 hours. --------- CPU info (if available) ---------- |
software ソフトウェア | GNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | November 14, 2022 16:53:23 UTC 2022 年 11 月 15 日 (火) 1 時 53 分 23 秒 (日本時間) |
composite number 合成数 | 60548948502184945825132977581537235110815074213011156173408387569946331753922351773219040727997245106811934349715791709183323<125> |
prime factors 素因数 | 2634086365496443239588832316882551645811969<43> 22986698270530455772758927389780537442483441353841528483907872735999336932285400667<83> |
factorization results 素因数分解の結果 | Number: 1 N=60548948502184945825132977581537235110815074213011156173408387569946331753922351773219040727997245106811934349715791709183323 ( 125 digits) SNFS difficulty: 142 digits. Divisors found: r1=2634086365496443239588832316882551645811969 (pp43) r2=22986698270530455772758927389780537442483441353841528483907872735999336932285400667 (pp83) Version: Msieve v. 1.52 (SVN 927) Total time: 8.12 hours. Scaled time: 63.15 units (timescale=7.776). Factorization parameters were as follows: n: 60548948502184945825132977581537235110815074213011156173408387569946331753922351773219040727997245106811934349715791709183323 m: 100000000000000000000000000000000000 deg: 4 c4: 305 c0: -26 skew: 0.54 # Murphy_E = 3.151e-09 type: snfs lss: 1 rlim: 1660000 alim: 1660000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3Factor base limits: 1660000/1660000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [830000, 1630001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 203226 x 203451 Total sieving time: 8.09 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.02 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,142.000,4,0,0,0,0,0,0,0,0,1660000,1660000,26,26,48,48,2.3,2.3,100000 total time: 8.12 hours. --------- CPU info (if available) ---------- |
software ソフトウェア | GNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | November 8, 2022 02:24:35 UTC 2022 年 11 月 8 日 (火) 11 時 24 分 35 秒 (日本時間) |
composite number 合成数 | 3322440087145969498910675381263616557734204793028322440087145969498910675381263616557734204793028322440087145969498910675381263616557734204793<142> |
prime factors 素因数 | 104913372412511668701679139444915794712261642171<48> 31668413766000956400127848794513307610229518454848224975730078149023594484764166905684358062683<95> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 3322440087145969498910675381263616557734204793028322440087145969498910675381263616557734204793028322440087145969498910675381263616557734204793 (142 digits) Using B1=28220000, B2=144287213086, polynomial Dickson(12), sigma=1:1040073205 Step 1 took 54806ms Step 2 took 21638ms ********** Factor found in step 2: 104913372412511668701679139444915794712261642171 Found prime factor of 48 digits: 104913372412511668701679139444915794712261642171 Prime cofactor 31668413766000956400127848794513307610229518454848224975730078149023594484764166905684358062683 has 95 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | November 10, 2022 00:11:12 UTC 2022 年 11 月 10 日 (木) 9 時 11 分 12 秒 (日本時間) |
composite number 合成数 | 14361052668173682844831768138761223197404081058022337791024421810794107228001257633368619884189131152372894131170058881312959336344450537<137> |
prime factors 素因数 | 38498358937390976914385475462227691117078257<44> 373030255433192430848317351975598734312779425428311909922001629004897824123872942932857106041<93> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 14361052668173682844831768138761223197404081058022337791024421810794107228001257633368619884189131152372894131170058881312959336344450537 (137 digits) Using B1=30340000, B2=144289285156, polynomial Dickson(12), sigma=1:482542696 Step 1 took 61143ms Step 2 took 21985ms ********** Factor found in step 2: 38498358937390976914385475462227691117078257 Found prime factor of 44 digits: 38498358937390976914385475462227691117078257 Prime cofactor 373030255433192430848317351975598734312779425428311909922001629004897824123872942932857106041 has 93 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | November 21, 2022 12:54:33 UTC 2022 年 11 月 21 日 (月) 21 時 54 分 33 秒 (日本時間) |
composite number 合成数 | 33106757547006903729378170027136167877587430601175487009467712500940126352624456838983596355753121626991479901938106312507844650271266262929688911<146> |
prime factors 素因数 | 6586322385187753298630482862545349570254377230206167449573811139<64> 5026592324339001277055291995070643559130641702889545236318558759678526258405762949<82> |
factorization results 素因数分解の結果 | Number: 1 N=33106757547006903729378170027136167877587430601175487009467712500940126352624456838983596355753121626991479901938106312507844650271266262929688911 ( 146 digits) SNFS difficulty: 156 digits. Divisors found: r1=6586322385187753298630482862545349570254377230206167449573811139 (pp64) r2=5026592324339001277055291995070643559130641702889545236318558759678526258405762949 (pp82) Version: Msieve v. 1.52 (SVN 927) Total time: 12.52 hours. Scaled time: 98.29 units (timescale=7.849). Factorization parameters were as follows: n: 33106757547006903729378170027136167877587430601175487009467712500940126352624456838983596355753121626991479901938106312507844650271266262929688911 m: 10000000000000000000000000000000 deg: 5 c5: 61 c0: -52 skew: 0.97 # Murphy_E = 7.252e-10 type: snfs lss: 1 rlim: 2900000 alim: 2900000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4Factor base limits: 2900000/2900000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1450000, 2450001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 584106 x 584354 Total sieving time: 12.38 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.08 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,156.000,5,0,0,0,0,0,0,0,0,2900000,2900000,27,27,50,50,2.4,2.4,100000 total time: 12.52 hours. --------- CPU info (if available) ---------- |
software ソフトウェア | GNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | November 15, 2022 19:33:11 UTC 2022 年 11 月 16 日 (水) 4 時 33 分 11 秒 (日本時間) |
composite number 合成数 | 7658369048244646739559327384587681711806819693820807275538788720391767126094720852723384220042695109656755044704075267<118> |
prime factors 素因数 | 968941092803359787607225530063150743<36> 7903854119848813443200621464806531634248752205896679770250786703280608452313118069<82> |
factorization results 素因数分解の結果 | 7658369048244646739559327384587681711806819693820807275538788720391767126094720852723384220042695109656755044704075267=968941092803359787607225530063150743*7903854119848813443200621464806531634248752205896679770250786703280608452313118069 cado polynomial n: 7658369048244646739559327384587681711806819693820807275538788720391767126094720852723384220042695109656755044704075267 skew: 26425.062 c0: 121277274027443778359791224 c1: -74963671143099569074758 c2: -2156830613733255731 c3: 123663110510627 c4: 2874905160 c5: -42000 Y0: -82247086795889178606533 Y1: 36579357458655199 # MurphyE (Bf=1.342e+08,Bg=1.342e+08,area=8.389e+12) = 1.736e-06 # f(x) = -42000*x^5+2874905160*x^4+123663110510627*x^3-2156830613733255731*x^2-74963671143099569074758*x+121277274027443778359791224 # g(x) = 36579357458655199*x-82247086795889178606533 cado parameters (extracts) tasks.lim0 = 3000000 tasks.lim1 = 5500000 tasks.lpb0 = 27 tasks.lpb1 = 27 tasks.sieve.mfb0 = 54 tasks.sieve.mfb1 = 54 tasks.I = 12 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 968941092803359787607225530063150743 7903854119848813443200621464806531634248752205896679770250786703280608452313118069 Info:Square Root: Total cpu/real time for sqrt: 911.43/121.907 Info:Polynomial Selection (size optimized): Aggregate statistics: Info:Polynomial Selection (size optimized): potential collisions: 19893.3 Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 19895/34.340/42.056/46.800/1.042 Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 15699/33.600/37.231/42.600/0.838 Info:Polynomial Selection (size optimized): Total time: 3656.68 Info:Polynomial Selection (root optimized): Aggregate statistics: Info:Polynomial Selection (root optimized): Total time: 1420.01 Info:Polynomial Selection (root optimized): Rootsieve time: 1370.78 Info:Generate Factor Base: Total cpu/real time for makefb: 5.82/0.929026 Info:Generate Free Relations: Total cpu/real time for freerel: 152.41/19.1605 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 13457044 Info:Lattice Sieving: Average J: 1902.31 for 206410 special-q, max bucket fill -bkmult 1.0,1s:1.107620 Info:Lattice Sieving: Total time: 57412.4s Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 36.44/63.1104 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 62.9s Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 171.53/124.135 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 118.5s Info:Filtering - Singleton removal: Total cpu/real time for purge: 88.42/74.6774 Info:Filtering - Merging: Merged matrix has 570565 rows and total weight 57224536 (100.3 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 52.01/8.66144 Info:Filtering - Merging: Total cpu/real time for replay: 13.1/10.5328 Info:Linear Algebra: Total cpu/real time for bwc: 2515.61/668.39 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: WCT time 410.25, iteration CPU time 0.02, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (17920 iterations) Info:Linear Algebra: Lingen CPU time 60.54, WCT time 16.47 Info:Linear Algebra: Mksol: WCT time 227.44, iteration CPU time 0.02, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (8960 iterations) Info:Quadratic Characters: Total cpu/real time for characters: 21.52/5.35658 Info:Square Root: Total cpu/real time for sqrt: 911.43/121.907 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 129875/16326.4 Info:root: Cleaning up computation data in /tmp/cado._hpus7aw 968941092803359787607225530063150743 7903854119848813443200621464806531634248752205896679770250786703280608452313118069 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | November 21, 2022 16:57:43 UTC 2022 年 11 月 22 日 (火) 1 時 57 分 43 秒 (日本時間) |
composite number 合成数 | 3273932591777091830667405023017284893891802662866973515748367542785887670229426966766230509942824778671294651553862069257532315849756676947<139> |
prime factors 素因数 | 28134524697282685376566946397932296768976409883093283219<56> 116367083752202069688190701875012509017952255252843944153165855017058347701988142913<84> |
factorization results 素因数分解の結果 | Number: 1 N=3273932591777091830667405023017284893891802662866973515748367542785887670229426966766230509942824778671294651553862069257532315849756676947 ( 139 digits) SNFS difficulty: 161 digits. Divisors found: r1=28134524697282685376566946397932296768976409883093283219 (pp56) r2=116367083752202069688190701875012509017952255252843944153165855017058347701988142913 (pp84) Version: Msieve v. 1.52 (SVN 927) Total time: 19.07 hours. Scaled time: 149.70 units (timescale=7.849). Factorization parameters were as follows: n: 3273932591777091830667405023017284893891802662866973515748367542785887670229426966766230509942824778671294651553862069257532315849756676947 m: 100000000000000000000000000000000 deg: 5 c5: 61 c0: -52 skew: 0.97 # Murphy_E = 4.646e-10 type: snfs lss: 1 rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1750000, 3250001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 636374 x 636600 Total sieving time: 18.91 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.09 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,161.000,5,0,0,0,0,0,0,0,0,3500000,3500000,27,27,51,51,2.4,2.4,100000 total time: 19.07 hours. --------- CPU info (if available) ---------- |
software ソフトウェア | GNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | November 9, 2022 16:44:57 UTC 2022 年 11 月 10 日 (木) 1 時 44 分 57 秒 (日本時間) |
composite number 合成数 | 333448682487870710203849650876933336641920405588401607811783273994718827026253197741024291889307209078437253260946380371684034735067583734157215739<147> |
prime factors 素因数 | 3191022962244433208123047167628937996865931720944407<52> 104495858047143833866845032425618986720243790030230217641572365415542298826816731873891113945277<96> |
factorization results 素因数分解の結果 | Number: n N=333448682487870710203849650876933336641920405588401607811783273994718827026253197741024291889307209078437253260946380371684034735067583734157215739 ( 147 digits) SNFS difficulty: 162 digits. Divisors found: Thu Nov 10 03:39:10 2022 p52 factor: 3191022962244433208123047167628937996865931720944407 Thu Nov 10 03:39:10 2022 p96 factor: 104495858047143833866845032425618986720243790030230217641572365415542298826816731873891113945277 Thu Nov 10 03:39:10 2022 elapsed time 00:07:55 (Msieve 1.54 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.293). Factorization parameters were as follows: # # N = 61x10^161-52 = 67(160)2 # n: 333448682487870710203849650876933336641920405588401607811783273994718827026253197741024291889307209078437253260946380371684034735067583734157215739 m: 100000000000000000000000000000000 deg: 5 c5: 305 c0: -26 skew: 0.61 # Murphy_E = 4.377e-10 type: snfs lss: 1 rlim: 3600000 alim: 3600000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3600000/3600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved special-q in [100000, 14600000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1326342 hash collisions in 13928559 relations (13494197 unique) Msieve: matrix is 518583 x 518812 (176.4 MB) Sieving start time : 2022/11/10 02:10:39 Sieving end time : 2022/11/10 03:30:37 Total sieving time: 1hrs 19min 58secs. Total relation processing time: 0hrs 3min 34sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 1min 1sec. Prototype def-par.txt line would be: snfs,162,5,0,0,0,0,0,0,0,0,3600000,3600000,27,27,51,51,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | November 10, 2022 11:01:57 UTC 2022 年 11 月 10 日 (木) 20 時 1 分 57 秒 (日本時間) |
composite number 合成数 | 2681109576545308819837190002603993208213880433235838813309156897634522671279262787585890872998289658263294428619891438573763144877502763763<139> |
prime factors 素因数 | 1298849316537536220633553794561472636969217047122611357764363<61> 2064219107180648723076153494847138757069527436966459516693380926327768239343801<79> |
factorization results 素因数分解の結果 | Number: n N=2681109576545308819837190002603993208213880433235838813309156897634522671279262787585890872998289658263294428619891438573763144877502763763 ( 139 digits) SNFS difficulty: 163 digits. Divisors found: Thu Nov 10 21:57:32 2022 p61 factor: 1298849316537536220633553794561472636969217047122611357764363 Thu Nov 10 21:57:32 2022 p79 factor: 2064219107180648723076153494847138757069527436966459516693380926327768239343801 Thu Nov 10 21:57:32 2022 elapsed time 00:08:22 (Msieve 1.54 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.298). Factorization parameters were as follows: # # N = 61x10^162-52 = 67(161)2 # n: 2681109576545308819837190002603993208213880433235838813309156897634522671279262787585890872998289658263294428619891438573763144877502763763 m: 100000000000000000000000000000000 deg: 5 c5: 1525 c0: -13 skew: 0.39 # Murphy_E = 3.465e-10 type: snfs lss: 1 rlim: 3700000 alim: 3700000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3700000/3700000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved special-q in [100000, 7450000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1851530 hash collisions in 14772997 relations (13762114 unique) Msieve: matrix is 528080 x 528308 (179.2 MB) Sieving start time : 2022/11/10 21:03:18 Sieving end time : 2022/11/10 21:48:51 Total sieving time: 0hrs 45min 33secs. Total relation processing time: 0hrs 3min 50sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 1min 1sec. Prototype def-par.txt line would be: snfs,163,5,0,0,0,0,0,0,0,0,3700000,3700000,27,27,51,51,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) |
name 名前 | Erik Branger |
---|---|
date 日付 | November 28, 2022 17:52:25 UTC 2022 年 11 月 29 日 (火) 2 時 52 分 25 秒 (日本時間) |
composite number 合成数 | 1911335656312824646854175396914098444548293924849236081348687914489532015863938273798511711422342658344144798280961857311334597775126617154242843007<148> |
prime factors 素因数 | 2856339768915333055282659974682898408407523343652328449197263459<64> 669155566544744629858535444783396272682511650833746609362949913531969701223525259573<84> |
factorization results 素因数分解の結果 | Number: 67772_165 N = 1911335656312824646854175396914098444548293924849236081348687914489532015863938273798511711422342658344144798280961857311334597775126617154242843007 (148 digits) SNFS difficulty: 167 digits. Divisors found: r1=2856339768915333055282659974682898408407523343652328449197263459 (pp64) r2=669155566544744629858535444783396272682511650833746609362949913531969701223525259573 (pp84) Version: Msieve v. 1.52 (SVN unknown) Total time: 1.59 hours. Factorization parameters were as follows: n: 1911335656312824646854175396914098444548293924849236081348687914489532015863938273798511711422342658344144798280961857311334597775126617154242843007 m: 10000000000000000000000000000000000000000000000000000000 deg: 3 c3: 61 c0: -52 skew: 1.00 type: snfs lss: 1 rlim: 536870912 alim: 44739242 lpbr: 29 lpba: 28 mfbr: 58 mfba: 56 rlambda: 2.8 alambda: 2.8 side: 1 Number of cores used: 6 Number of threads per core: 1 Factor base limits: 536870912/44739242 Large primes per side: 3 Large prime bits: 29/28 Total raw relations: 9765786 Relations: 1539240 relations Total pre-computation time approximately 1000 CPU-days. Pre-computation saved approximately 18 G rational relations. Total batch smoothness checking time: 0.73 hours. Total relation processing time: 0.09 hours. Pruned matrix : 1320913 x 1321139 Matrix solve time: 0.75 hours. time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,167,3,0,0,0,0,0,0,0,0,536870912,44739242,29,28,58,56,2.8,2.8,100000 total time: 1.59 hours. Intel64 Family 6 Model 158 Stepping 10, GenuineIntel Windows-10-10.0.22621-SP0 processors: 12, speed: 3.19GHz |
software ソフトウェア | GGNFS, NFS_factory, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | November 13, 2022 14:04:24 UTC 2022 年 11 月 13 日 (日) 23 時 4 分 24 秒 (日本時間) |
composite number 合成数 | 38734630065845783774725372320995188041894233728022087305727128288543239544491411649729818302703221511349694800623474106025443384048804074941967916116778463<155> |
prime factors 素因数 | 14704436436332663423818710747353511381614478024908867318048066598246843887<74> 2634213846518985161701827964952054635679369387071305111823289674615302767999244049<82> |
factorization results 素因数分解の結果 | Number: n N=38734630065845783774725372320995188041894233728022087305727128288543239544491411649729818302703221511349694800623474106025443384048804074941967916116778463 ( 155 digits) SNFS difficulty: 168 digits. Divisors found: Mon Nov 14 00:53:13 2022 p74 factor: 14704436436332663423818710747353511381614478024908867318048066598246843887 Mon Nov 14 00:53:13 2022 p82 factor: 2634213846518985161701827964952054635679369387071305111823289674615302767999244049 Mon Nov 14 00:53:13 2022 elapsed time 00:10:08 (Msieve 1.54 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.302). Factorization parameters were as follows: # # N = 61x10^167-52 = 67(166)2 # n: 38734630065845783774725372320995188041894233728022087305727128288543239544491411649729818302703221511349694800623474106025443384048804074941967916116778463 m: 1000000000000000000000000000000000 deg: 5 c5: 1525 c0: -13 skew: 0.39 # Murphy_E = 2.207e-10 type: snfs lss: 1 rlim: 4400000 alim: 4400000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 4400000/4400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved special-q in [100000, 15000000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1823322 hash collisions in 14321904 relations (13295420 unique) Msieve: matrix is 657726 x 657952 (227.1 MB) Sieving start time : 2022/11/13 23:47:42 Sieving end time : 2022/11/14 00:42:47 Total sieving time: 0hrs 55min 5secs. Total relation processing time: 0hrs 5min 55sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 41sec. Prototype def-par.txt line would be: snfs,168,5,0,0,0,0,0,0,0,0,4400000,4400000,27,27,52,52,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | November 18, 2022 09:59:29 UTC 2022 年 11 月 18 日 (金) 18 時 59 分 29 秒 (日本時間) |
composite number 合成数 | 455824816073156105009350218941826282312931043772780120684995258692039090534544415517167530163708543819994982946918437895817447<126> |
prime factors 素因数 | 36337123155549043633434808158610305083964020317783<50> 12544328677917009999275111861724360263769695388037095853721543171717959757809<77> |
factorization results 素因数分解の結果 | 455824816073156105009350218941826282312931043772780120684995258692039090534544415517167530163708543819994982946918437895817447=36337123155549043633434808158610305083964020317783*12544328677917009999275111861724360263769695388037095853721543171717959757809 cado polynomial n: 455824816073156105009350218941826282312931043772780120684995258692039090534544415517167530163708543819994982946918437895817447 skew: 26144.861 c0: -41226555723021696285329515040 c1: 1185771312832934267015706 c2: -87418786135012188905 c3: 446162690864601 c4: 155369402230 c5: 4354200 Y0: -1004091797061803600497125 Y1: 722044362822524587 # MurphyE (Bf=1.342e+08,Bg=1.342e+08,area=1.236e+14) = 2.286e-07 # f(x) = 4354200*x^5+155369402230*x^4+446162690864601*x^3-87418786135012188905*x^2+1185771312832934267015706*x-41226555723021696285329515040 # g(x) = 722044362822524587*x-1004091797061803600497125 cado parameters (extracts) tasks.lim0 = 2377918 tasks.lim1 = 9209388 tasks.lpb0 = 27 tasks.lpb1 = 27 tasks.sieve.mfb0 = 57 tasks.sieve.mfb1 = 53 tasks.I = 13 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 36337123155549043633434808158610305083964020317783 12544328677917009999275111861724360263769695388037095853721543171717959757809 Info:Square Root: Total cpu/real time for sqrt: 588.78/156.157 Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 129.4/56.1633 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 34.599999999999994s Info:Square Root: Total cpu/real time for sqrt: 588.78/156.157 Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 53.63/18.1661 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 18.1s Info:Filtering - Singleton removal: Total cpu/real time for purge: 55.86/24.2359 Info:Generate Factor Base: Total cpu/real time for makefb: 8.56/3.36413 Info:Filtering - Merging: Merged matrix has 789466 rows and total weight 134918994 (170.9 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 162.11/46.5674 Info:Filtering - Merging: Total cpu/real time for replay: 29.51/24.483 Info:Linear Algebra: Total cpu/real time for bwc: 9462.4/2488.11 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 5980.94, WCT time 1573.67, iteration CPU time 0.06, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (24832 iterations) Info:Linear Algebra: Lingen CPU time 161.76, WCT time 43.23 Info:Linear Algebra: Mksol: CPU time 3196.19, WCT time 826.12, iteration CPU time 0.06, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (12544 iterations) Info:Generate Free Relations: Total cpu/real time for freerel: 128.11/33.1016 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 12055670 Warning:Lattice Sieving: some stats could not be displayed for sieving (see log file for debug info) Info:Quadratic Characters: Total cpu/real time for characters: 29.32/13.1436 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 10647.3/2904.67 Info:root: Cleaning up computation data in /tmp/cado.lrtye_i6 36337123155549043633434808158610305083964020317783 12544328677917009999275111861724360263769695388037095853721543171717959757809 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | November 8, 2022 12:11:08 UTC 2022 年 11 月 8 日 (火) 21 時 11 分 8 秒 (日本時間) |
composite number 合成数 | 48755695252040032569004620966869629325246494746803021284040860321759319909977303571469107113529532980854508527<110> |
prime factors 素因数 | 4585202634003920061242705112030814257472872722729495767<55> 10633269485293231536037734038054577566357846543002394281<56> |
factorization results 素因数分解の結果 | Number: 1 N=48755695252040032569004620966869629325246494746803021284040860321759319909977303571469107113529532980854508527 ( 110 digits) Divisors found: r1=4585202634003920061242705112030814257472872722729495767 (pp55) r2=10633269485293231536037734038054577566357846543002394281 (pp56) Version: Msieve v. 1.52 (SVN 927) Total time: 11.21 hours. Scaled time: 87.98 units (timescale=7.849). Factorization parameters were as follows: name: 1 n: 48755695252040032569004620966869629325246494746803021284040860321759319909977303571469107113529532980854508527 skew: 34815.00 # norm 2.08e+015 c5: 9360 c4: 667540172 c3: 47519123938104 c2: -2228466565684835115 c1: -19415571740390910265592 c0: 1080727362144336875085951 # alpha -6.01 Y1: 525525289297 Y0: -1391065439087287393664 # Murphy_E 9.71e-010 # M 19814372376233548754889536529957728794633826197104136409562092257525318905468465549637225988561025899992717572 type: gnfs rlim: 3200000 alim: 3200000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1600000, 2400001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 369778 x 370003 Total sieving time: 11.14 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.05 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: gnfs,109,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,3200000,27,27,50,50,2.6,2.6,100000 total time: 11.21 hours. --------- CPU info (if available) ---------- |
software ソフトウェア | GNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | December 9, 2022 12:41:08 UTC 2022 年 12 月 9 日 (金) 21 時 41 分 8 秒 (日本時間) |
composite number 合成数 | 47426451808632726918961157735884409695737579722864193345995590343686676574577745113379242596540317235734340170835230138713573704466768607<137> |
prime factors 素因数 | 2064239927885254073888186531790559559836865487175340987683<58> 22975261338549713664347833398083737409385602711386709425094668547830046222052629<80> |
factorization results 素因数分解の結果 | 47426451808632726918961157735884409695737579722864193345995590343686676574577745113379242596540317235734340170835230138713573704466768607=2064239927885254073888186531790559559836865487175340987683*22975261338549713664347833398083737409385602711386709425094668547830046222052629 cado polynomial n: 47426451808632726918961157735884409695737579722864193345995590343686676574577745113379242596540317235734340170835230138713573704466768607 skew: 0.24 type: snfs c0: -13 c5: 15250 Y0: 10000000000000000000000000000000000 Y1: -1 # f(x) = 15250*x^5-13 # g(x) = -x+10000000000000000000000000000000000 cado parameters (extracts) tasks.lim0 = 5600000 tasks.lim1 = 5600000 tasks.lpb0 = 27 tasks.lpb1 = 27 tasks.sieve.mfb0 = 52 tasks.sieve.mfb1 = 52 tasks.sieve.lambda0 = 2.4 tasks.sieve.lambda1 = 2.4 tasks.I = 12 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 2064239927885254073888186531790559559836865487175340987683 22975261338549713664347833398083737409385602711386709425094668547830046222052629 Warning:Polynomial Selection (size optimized): some stats could not be displayed for polyselect1 (see log file for debug info) Warning:Polynomial Selection (root optimized): some stats could not be displayed for polyselect2 (see log file for debug info) Info:Generate Factor Base: Total cpu/real time for makefb: 2.56/0.6705 Info:Generate Free Relations: Total cpu/real time for freerel: 49.05/6.32396 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 12611852 Info:Lattice Sieving: Average J: 1894.73 for 731079 special-q, max bucket fill -bkmult 1.0,1s:1.129280 Info:Lattice Sieving: Total time: 97509.7s Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 31.28/23.3365 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 23.1s Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 223.14/103.306 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 87.50000000000001s Info:Filtering - Singleton removal: Total cpu/real time for purge: 178.21/86.6776 Info:Filtering - Merging: Merged matrix has 973075 rows and total weight 165745759 (170.3 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 211.36/31.2593 Info:Filtering - Merging: Total cpu/real time for replay: 31.42/26.015 Info:Linear Algebra: Total cpu/real time for bwc: 9610.27/2511.07 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: WCT time 1577.04, iteration CPU time 0.05, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (30464 iterations) Info:Linear Algebra: Lingen CPU time 103.19, WCT time 28.0 Info:Linear Algebra: Mksol: WCT time 873.01, iteration CPU time 0.05, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (15360 iterations) Info:Quadratic Characters: Total cpu/real time for characters: 41.89/10.5276 Info:Square Root: Total cpu/real time for sqrt: 319.86/58.8979 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 228593/51652.5 Info:root: Cleaning up computation data in /tmp/cado.uwsrfq_h 2064239927885254073888186531790559559836865487175340987683 22975261338549713664347833398083737409385602711386709425094668547830046222052629 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | December 12, 2022 04:33:26 UTC 2022 年 12 月 12 日 (月) 13 時 33 分 26 秒 (日本時間) |
composite number 合成数 | 174135446958759526532035137352872492207648256368730167051349895288935223793334550303176871965404494983201297520196134006261739126209223167<138> |
prime factors 素因数 | 21580895477739079578974096535638169732916494103423<50> 8068962992679431193773908724794867939591335503819607617902450275965053831517977545939329<88> |
factorization results 素因数分解の結果 | 174135446958759526532035137352872492207648256368730167051349895288935223793334550303176871965404494983201297520196134006261739126209223167=21580895477739079578974096535638169732916494103423*8068962992679431193773908724794867939591335503819607617902450275965053831517977545939329 cado polynomial n: 174135446958759526532035137352872492207648256368730167051349895288935223793334550303176871965404494983201297520196134006261739126209223167 skew: 0.76 type: snfs c0: -65 c5: 244 Y0: 50000000000000000000000000000000000 Y1: -1 # f(x) = 255*x^5-65 # g(x) = -x+50000000000000000000000000000000000 cado parameters (extracts) tasks.lim0 = 6000000 tasks.lim1 = 6000000 tasks.lpb0 = 28 tasks.lpb1 = 28 tasks.sieve.mfb0 = 52 tasks.sieve.mfb1 = 52 tasks.sieve.lambda0 = 2.5 tasks.sieve.lambda1 = 2.5 tasks.I = 12 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 21580895477739079578974096535638169732916494103423 8068962992679431193773908724794867939591335503819607617902450275965053831517977545939329 Info:Complete Factorization / Discrete logarithm: Square Root Info:Square Root: Total cpu/real time for sqrt: 383.06/119.84 Info:HTTP server: Got notification to stop serving Workunits Info:Square Root: Total cpu/real time for sqrt: 383.06/119.84 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 22418507 Info:Lattice Sieving: Average J: 1895.16 for 1114353 special-q, max bucket fill -bkmult 1.0,1s:1.229290 Info:Lattice Sieving: Total time: 167305s Info:Generate Factor Base: Total cpu/real time for makefb: 2.54/4.13635 Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 207.47/194.703 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 170.60000000000002s Info:Quadratic Characters: Total cpu/real time for characters: 28.96/13.3671 Info:Generate Free Relations: Total cpu/real time for freerel: 126.41/34.5252 Info:Filtering - Merging: Merged matrix has 892588 rows and total weight 151838418 (170.1 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 238.34/66.5109 Info:Filtering - Merging: Total cpu/real time for replay: 29.25/27.6692 Info:Linear Algebra: Total cpu/real time for bwc: 13434.4/3752.86 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 8565.64, WCT time 2316.56, iteration CPU time 0.07, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (28160 iterations) Info:Linear Algebra: Lingen CPU time 113.91, WCT time 116.74 Info:Linear Algebra: Mksol: CPU time 4587.94, WCT time 1256.98, iteration CPU time 0.08, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (14080 iterations) Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 86.38/87.9393 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 87.8s Info:Filtering - Singleton removal: Total cpu/real time for purge: 135.46/117.232 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire Complete Factorization 320547/14840.8 21580895477739079578974096535638169732916494103423 8068962992679431193773908724794867939591335503819607617902450275965053831517977545939329 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | December 13, 2022 04:31:15 UTC 2022 年 12 月 13 日 (火) 13 時 31 分 15 秒 (日本時間) |
composite number 合成数 | 46230868571839460489959155175404181238869201692217439351293019261391672441101406465142070005353658071529915174084184007392290158980930665046258941<146> |
prime factors 素因数 | 140551942202989083930063397418465580260574361580870008628149187284983571<72> 328923726326538658569884405506479023314196988904246669378971153359154007471<75> |
factorization results 素因数分解の結果 | 46230868571839460489959155175404181238869201692217439351293019261391672441101406465142070005353658071529915174084184007392290158980930665046258941=140551942202989083930063397418465580260574361580870008628149187284983571*328923726326538658569884405506479023314196988904246669378971153359154007471 cado polynomial n: 46230868571839460489959155175404181238869201692217439351293019261391672441101406465142070005353658071529915174084184007392290158980930665046258941 skew: 0.61 type: snfs c0: -26 c5: 305 Y0: 100000000000000000000000000000000000 Y1: -1 # f(x) = 305*x^5-26 # g(x) = -x+100000000000000000000000000000000000 cado parameters (extracts) tasks.lim0 = 6400000 tasks.lim1 = 6400000 tasks.lpb0 = 28 tasks.lpb1 = 28 tasks.sieve.mfb0 = 53 tasks.sieve.mfb1 = 53 tasks.sieve.lambda0 = 2.5 tasks.sieve.lambda1 = 2.5 tasks.I = 12 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 328923726326538658569884405506479023314196988904246669378971153359154007471 140551942202989083930063397418465580260574361580870008628149187284983571 Info:Square Root: Total cpu/real time for sqrt: 216.03/70.3304 Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 226.75/209.011 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 194.2s Info:Square Root: Total cpu/real time for sqrt: 216.03/70.3304 Info:Generate Free Relations: Total cpu/real time for freerel: 120.16/32.9337 Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 92.61/89.0306 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 88.9s Info:Filtering - Singleton removal: Total cpu/real time for purge: 128.76/110.752 Info:Filtering - Merging: Merged matrix has 959480 rows and total weight 163721811 (170.6 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 225.08/63.4912 Info:Filtering - Merging: Total cpu/real time for replay: 33.17/29.7006 Info:Generate Factor Base: Total cpu/real time for makefb: 2.79/1.62901 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 22413333 Info:Lattice Sieving: Average J: 1893.89 for 855034 special-q, max bucket fill -bkmult 1.0,1s:1.179190 Info:Lattice Sieving: Total time: 138190s Info:Linear Algebra: Total cpu/real time for bwc: 14361.3/3880.81 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 9090.17, WCT time 2442.82, iteration CPU time 0.07, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (30208 iterations) Info:Linear Algebra: Lingen CPU time 184.35, WCT time 48.34 Info:Linear Algebra: Mksol: CPU time 4930.56, WCT time 1330.61, iteration CPU time 0.08, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (15104 iterations) Info:Quadratic Characters: Total cpu/real time for characters: 31.75/12.7846 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 268886/73817.7 Info:root: Cleaning up computation data in /tmp/cado.xq5_h71f 328923726326538658569884405506479023314196988904246669378971153359154007471 140551942202989083930063397418465580260574361580870008628149187284983571 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | November 15, 2022 17:33:45 UTC 2022 年 11 月 16 日 (水) 2 時 33 分 45 秒 (日本時間) |
composite number 合成数 | 83473419380352823753595194592040145301209488907713185921407760336046071262227005990194739513170550351434394473240778019874703<125> |
prime factors 素因数 | 5486485211677151815669867117570864756560745936633163<52> 15214370614303727331754062405877734542645877195580543119419338433981589581<74> |
factorization results 素因数分解の結果 | 83473419380352823753595194592040145301209488907713185921407760336046071262227005990194739513170550351434394473240778019874703=5486485211677151815669867117570864756560745936633163*15214370614303727331754062405877734542645877195580543119419338433981589581 cado polynomial n: 83473419380352823753595194592040145301209488907713185921407760336046071262227005990194739513170550351434394473240778019874703 skew: 92785.392 c0: -189593398174639467066411546032 c1: 20705935805928440167623346 c2: -124746657659264277127 c3: -1273228177350751 c4: 32965616394 c5: 52920 Y0: -1942978472015653136677105 Y1: 79111083870217313 # MurphyE (Bf=1.342e+08,Bg=1.342e+08,area=1.236e+14) = 2.618e-07 # f(x) = 52920*x^5+32965616394*x^4-1273228177350751*x^3-124746657659264277127*x^2+20705935805928440167623346*x-189593398174639467066411546032 # g(x) = 79111083870217313*x-1942978472015653136677105 cado parameters (extracts) tasks.lim0 = 2377918 tasks.lim1 = 9209388 tasks.lpb0 = 27 tasks.lpb1 = 27 tasks.sieve.mfb0 = 57 tasks.sieve.mfb1 = 53 tasks.I = 13 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: finished Info:Square Root: Factors: 5486485211677151815669867117570864756560745936633163 15214370614303727331754062405877734542645877195580543119419338433981589581 Info:Square Root: Total cpu/real time for sqrt: 312.78/92.4582 Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 127.32/109.906 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 99.0s Info:Square Root: Total cpu/real time for sqrt: 312.78/92.4582 Info:Generate Free Relations: Total cpu/real time for freerel: 128.07/33.5998 Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 51.22/54.4664 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 54.3s Info:Filtering - Singleton removal: Total cpu/real time for purge: 50.65/59.5748 Info:Filtering - Merging: Merged matrix has 805944 rows and total weight 137222460 (170.3 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 165.66/47.951 Info:Filtering - Merging: Total cpu/real time for replay: 30.77/25.2555 Info:Generate Factor Base: Total cpu/real time for makefb: 8.24/2.28188 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 11629133 Info:Lattice Sieving: Average J: 3798.02 for 191997 special-q, max bucket fill -bkmult 1.0,1s:1.153600 Info:Lattice Sieving: Total time: 69007.8s Info:Linear Algebra: Total cpu/real time for bwc: 9753.34/2507.04 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 6135.68, WCT time 1569.35, iteration CPU time 0.06, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (25344 iterations) Info:Linear Algebra: Lingen CPU time 145.25, WCT time 36.91 Info:Linear Algebra: Mksol: CPU time 3344.85, WCT time 854.27, iteration CPU time 0.06, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (12800 iterations) Info:Polynomial Selection (root optimized): Aggregate statistics: Info:Polynomial Selection (root optimized): Total time: 3572.01 Info:Polynomial Selection (root optimized): Rootsieve time: 3569.22 Info:Polynomial Selection (size optimized): Aggregate statistics: Info:Polynomial Selection (size optimized): potential collisions: 19925.9 Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 20414/37.160/44.502/48.730/0.864 Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 16132/36.510/39.884/45.280/0.973 Info:Polynomial Selection (size optimized): Total time: 1995.17 Info:Quadratic Characters: Total cpu/real time for characters: 31.02/12.423 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 147902/22155 Info:root: Cleaning up computation data in /tmp/cado.vfik5qor 5486485211677151815669867117570864756560745936633163 15214370614303727331754062405877734542645877195580543119419338433981589581 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) |
name 名前 | ebina |
---|---|
date 日付 | December 10, 2022 01:38:36 UTC 2022 年 12 月 10 日 (土) 10 時 38 分 36 秒 (日本時間) |
composite number 合成数 | 570959298820349847779917068981370221642898582668903845446744852041016205510823579717069743327302696936647902780855790825237692766400617553171873<144> |
prime factors 素因数 | 5141035273562412155189155555910165464517<40> 111059206645884609945294829267486000059255552852785419555785118885847581104867741119549096834139280730669<105> |
factorization results 素因数分解の結果 | Z:\ALL\ECM>ecm70dev-svn2256-x64-nehalem\ecm -primetest -one -nn -sigma 1:3686554722 3e6 GMP-ECM 7.0-dev [configured with MPIR 2.6.0, --enable-openmp] [ECM] Input number is 570959298820349847779917068981370221642898582668903845446744852041016205510823579717069743327302696936647902780855790825237692766400617553171873 (144 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:3686554722 Step 1 took 2938ms Step 2 took 3016ms ********** Factor found in step 2: 5141035273562412155189155555910165464517 Found probable prime factor of 40 digits: 5141035273562412155189155555910165464517 Probable prime cofactor 111059206645884609945294829267486000059255552852785419555785118885847581104867741119549096834139280730669 has 105 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | November 16, 2022 14:40:18 UTC 2022 年 11 月 16 日 (水) 23 時 40 分 18 秒 (日本時間) |
composite number 合成数 | 56517438194488701923217771769452597527731469500158027801266306461654398272280991497268754727679303545847817850751968282797498187222190825482351829844599<152> |
prime factors 素因数 | 200739932166178523327398054390075539927711379<45> 1095368173535178051925647462099675942933178721<46> 257032817517650625614693751774432502212773641372345351822889261<63> |
factorization results 素因数分解の結果 | Number: n N=281545567862909683591930791962620547350939843856311502094268970468214696845469301162331406436237681104615181 ( 108 digits) Divisors found: Thu Nov 17 01:36:33 2022 p46 factor: 1095368173535178051925647462099675942933178721 Thu Nov 17 01:36:33 2022 p63 factor: 257032817517650625614693751774432502212773641372345351822889261 Thu Nov 17 01:36:33 2022 elapsed time 00:04:34 (Msieve 1.54 - dependency 3) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.324). Factorization parameters were as follows: # # N = 61x10^184-52 = 67(183)2 # # GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] # Input number is 56517438194488701923217771769452597527731469500158027801266306461654398272280991497268754727679303545847817850751968282797498187222190825482351829844599 (152 digits) # Using B1=25520000, B2=96190324246, polynomial Dickson(12), sigma=1:211516236 # Step 1 took 48598ms # Step 2 took 17504ms # ********** Factor found in step 2: 200739932166178523327398054390075539927711379 # Found prime factor of 45 digits: 200739932166178523327398054390075539927711379 # Composite cofactor 281545567862909683591930791962620547350939843856311502094268970468214696845469301162331406436237681104615181 has 108 digits # n: 281545567862909683591930791962620547350939843856311502094268970468214696845469301162331406436237681104615181 Y0: -68753390497452699242656763 Y1: 40158611349641 c0: 88877549283977112559511049594 c1: -146163264653400316309167 c2: -78882430809911504 c3: 82987624872 c4: 12600 # skew 2111818.47, size 7.402e-15, alpha -4.963, combined = 3.786e-09 rroots = 4 skew: 2111818.47 type: gnfs rlim: 2300000 alim: 2300000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved special-q in [100000, 9550000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 505500 hash collisions in 7817779 relations (7653603 unique) Msieve: matrix is 322726 x 322951 (110.0 MB) Sieving start time : 2022/11/17 01:15:41 Sieving end time : 2022/11/17 01:31:45 Total sieving time: 0hrs 16min 4secs. Total relation processing time: 0hrs 1min 51sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 53sec. Prototype def-par.txt line would be: gnfs,107,4,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2300000,2300000,26,26,49,49,2.6,2.6,150000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | November 23, 2022 19:43:50 UTC 2022 年 11 月 24 日 (木) 4 時 43 分 50 秒 (日本時間) |
composite number 合成数 | 2501409900545171007932080027847395914693822186183311140646828534610243219313949765244556844030628975311057883128424959940388240489343077011820364756061350652293<160> |
prime factors 素因数 | 2054380546234897758884954296488617794214381138632493244739627616684371<70> 1217598124714309837128960801951658226258188316940373941403642220838514626304206526181584583<91> |
factorization results 素因数分解の結果 | Number: n N=2501409900545171007932080027847395914693822186183311140646828534610243219313949765244556844030628975311057883128424959940388240489343077011820364756061350652293 ( 160 digits) SNFS difficulty: 188 digits. Divisors found: Thu Nov 24 06:36:53 2022 p70 factor: 2054380546234897758884954296488617794214381138632493244739627616684371 Thu Nov 24 06:36:53 2022 p91 factor: 1217598124714309837128960801951658226258188316940373941403642220838514626304206526181584583 Thu Nov 24 06:36:53 2022 elapsed time 00:43:31 (Msieve 1.54 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.332). Factorization parameters were as follows: # # N = 61x10^187-52 = 67(186)2 # n: 2501409900545171007932080027847395914693822186183311140646828534610243219313949765244556844030628975311057883128424959940388240489343077011820364756061350652293 m: 10000000000000000000000000000000000000 deg: 5 c5: 1525 c0: -13 skew: 0.39 # Murphy_E = 3.469e-11 type: snfs lss: 1 rlim: 9600000 alim: 9600000 lpbr: 27 lpba: 27 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 9600000/9600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 53/53 Sieved special-q in [100000, 17629681) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1777728 hash collisions in 13859164 relations (12843539 unique) Msieve: matrix is 1426242 x 1426467 (496.0 MB) Sieving start time : 2022/11/24 01:07:45 Sieving end time : 2022/11/24 05:52:59 Total sieving time: 4hrs 45min 14secs. Total relation processing time: 0hrs 37min 19sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 2min 4sec. Prototype def-par.txt line would be: snfs,188,5,0,0,0,0,0,0,0,0,9600000,9600000,27,27,53,53,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | November 20, 2022 17:07:44 UTC 2022 年 11 月 21 日 (月) 2 時 7 分 44 秒 (日本時間) |
composite number 合成数 | 1404701587026548642531223831880237746978554763817232232466351008829774305641962089937936323936877561430842870859595663725832032600170886198342995115342891835742220665953566003<175> |
prime factors 素因数 | 150474863221027108451692908436349553131596495671135019<54> 9335124531485588129762907932585213257875213336454955114442006187020688327314804271283017541470110062490867221063838003737<121> |
factorization results 素因数分解の結果 | Number: n N=1404701587026548642531223831880237746978554763817232232466351008829774305641962089937936323936877561430842870859595663725832032600170886198342995115342891835742220665953566003 ( 175 digits) SNFS difficulty: 189 digits. Divisors found: Mon Nov 21 03:54:43 2022 p54 factor: 150474863221027108451692908436349553131596495671135019 Mon Nov 21 03:54:43 2022 p121 factor: 9335124531485588129762907932585213257875213336454955114442006187020688327314804271283017541470110062490867221063838003737 Mon Nov 21 03:54:43 2022 elapsed time 00:48:51 (Msieve 1.54 - dependency 4) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.329). Factorization parameters were as follows: # # N = 61x10^188-52 = 67(187)2 # n: 1404701587026548642531223831880237746978554763817232232466351008829774305641962089937936323936877561430842870859595663725832032600170886198342995115342891835742220665953566003 m: 10000000000000000000000000000000000000 deg: 5 c5: 15250 c0: -13 skew: 0.24 # Murphy_E = 3.176e-11 type: snfs lss: 1 rlim: 10000000 alim: 10000000 lpbr: 27 lpba: 27 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 10000000/10000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 53/53 Sieved special-q in [100000, 17821949) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1658181 hash collisions in 13599110 relations (12708435 unique) Msieve: matrix is 1404841 x 1405066 (493.7 MB) Sieving start time : 2022/11/20 22:38:06 Sieving end time : 2022/11/21 03:05:33 Total sieving time: 4hrs 27min 27secs. Total relation processing time: 0hrs 36min 22sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 8min 25sec. Prototype def-par.txt line would be: snfs,189,5,0,0,0,0,0,0,0,0,10000000,10000000,27,27,53,53,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | November 17, 2022 16:13:20 UTC 2022 年 11 月 18 日 (金) 1 時 13 分 20 秒 (日本時間) |
composite number 合成数 | 172879447350861810345539858905687609985251501658283899049598650101792675604315841747320792146233651829667776052682277279626933578481854998844280861<147> |
prime factors 素因数 | 425098521590710257523927033018743101<36> |
composite cofactor 合成数の残り | 406680895299165799622503091855194339162430988649829604841818217935795150635328641031388748756796636997629681761<111> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:2021913405 Step 1 took 3485ms ********** Factor found in step 2: 425098521590710257523927033018743101 Found prime factor of 36 digits: 425098521590710257523927033018743101 Composite cofactor 406680895299165799622503091855194339162430988649829604841818217935795150635328641031388748756796636997629681761 has 111 digits |
software ソフトウェア | GMP-ECM |
name 名前 | Ignacio Santos |
---|---|
date 日付 | November 18, 2022 16:41:25 UTC 2022 年 11 月 19 日 (土) 1 時 41 分 25 秒 (日本時間) |
composite number 合成数 | 406680895299165799622503091855194339162430988649829604841818217935795150635328641031388748756796636997629681761<111> |
prime factors 素因数 | 705106456432207071292111680985206131956694473<45> 576765241034587526130742367505197349824793662177927626593826781657<66> |
factorization results 素因数分解の結果 | Number: 1 N=406680895299165799622503091855194339162430988649829604841818217935795150635328641031388748756796636997629681761 ( 111 digits) Divisors found: r1=705106456432207071292111680985206131956694473 (pp45) r2=576765241034587526130742367505197349824793662177927626593826781657 (pp66) Version: Msieve v. 1.52 (SVN 927) Total time: 11.16 hours. Scaled time: 87.08 units (timescale=7.800). Factorization parameters were as follows: name: 1 n: 406680895299165799622503091855194339162430988649829604841818217935795150635328641031388748756796636997629681761 skew: 27983.89 # norm 1.23e+015 c5: 8100 c4: -2281670640 c3: -33222437124608 c2: 1957057186378668038 c1: 27628270859008641974491 c0: 82019143993320847330093440 # alpha -5.19 Y1: 276017260259 Y0: -2188551830310207227297 # Murphy_E 8.22e-010 # M 130586570765950499355626115466298302322697639087383902913453484787132209017041766540775084169627064437903016606 type: gnfs rlim: 3200000 alim: 3200000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1600000, 2400001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 486220 x 486448 Total sieving time: 11.05 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.07 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: gnfs,110,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,3200000,27,27,50,50,2.6,2.6,100000 total time: 11.16 hours. --------- CPU info (if available) ---------- |
software ソフトウェア | GNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | November 18, 2022 15:50:19 UTC 2022 年 11 月 19 日 (土) 0 時 50 分 19 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | November 18, 2022 04:52:52 UTC 2022 年 11 月 18 日 (金) 13 時 52 分 52 秒 (日本時間) |
composite number 合成数 | 7878049008208893561766870422408142339711678565642114827508225168308275025784551825922674086187009953312432938440593667518658103114673625139115157744736574893411326597877297<172> |
prime factors 素因数 | 1808182662288136184093186105238159726056049061<46> 4356887814774056567242858307256711629077367007110316578083694338121751146054732560426538350336133950800362333104087314904683677<127> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:3740943875 Step 1 took 7783ms Step 2 took 4025ms ********** Factor found in step 2: 1808182662288136184093186105238159726056049061 Found prime factor of 46 digits: 1808182662288136184093186105238159726056049061 Prime cofactor 4356887814774056567242858307256711629077367007110316578083694338121751146054732560426538350336133950800362333104087314904683677 has 127 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 / 2078 | Dmitry Domanov | November 17, 2022 21:09:46 UTC 2022 年 11 月 18 日 (金) 6 時 9 分 46 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | November 25, 2022 18:08:58 UTC 2022 年 11 月 26 日 (土) 3 時 8 分 58 秒 (日本時間) |
composite number 合成数 | 97425032617343091491714472785117544070308162044905591410463621290614281977738885676117386299428705721406203890013943148296461303732475486847059082136858170641040152319750442440369<179> |
prime factors 素因数 | 159362909869806376870237111430944035470936099159318077<54> 611340698390458306652707604809980203006273277636937799519517941472719040336223444671861011850354318751135244055209519642129797<126> |
factorization results 素因数分解の結果 | Number: n N=97425032617343091491714472785117544070308162044905591410463621290614281977738885676117386299428705721406203890013943148296461303732475486847059082136858170641040152319750442440369 ( 179 digits) SNFS difficulty: 195 digits. Divisors found: Sat Nov 26 03:18:18 2022 p54 factor: 159362909869806376870237111430944035470936099159318077 Sat Nov 26 03:18:18 2022 p126 factor: 611340698390458306652707604809980203006273277636937799519517941472719040336223444671861011850354318751135244055209519642129797 Sat Nov 26 03:18:18 2022 elapsed time 01:19:18 (Msieve 1.54 - dependency 6) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.325). Factorization parameters were as follows: # # N = 61x10^194-52 = 67(193)2 # n: 97425032617343091491714472785117544070308162044905591410463621290614281977738885676117386299428705721406203890013943148296461303732475486847059082136858170641040152319750442440369 m: 100000000000000000000000000000000 deg: 6 c6: 1525 c0: -13 skew: 0.45 # Murphy_E = 1.793e-11 type: snfs lss: 1 rlim: 12500000 alim: 12500000 lpbr: 27 lpba: 27 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 12500000/12500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved special-q in [100000, 26262979) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1950845 hash collisions in 14075285 relations (13107222 unique) Msieve: matrix is 1707628 x 1707853 (598.8 MB) Sieving start time : 2022/11/25 18:21:12 Sieving end time : 2022/11/26 01:58:37 Total sieving time: 7hrs 37min 25secs. Total relation processing time: 0hrs 56min 32sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 18min 12sec. Prototype def-par.txt line would be: snfs,195,6,0,0,0,0,0,0,0,0,12500000,12500000,27,27,54,54,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | November 17, 2022 21:09:54 UTC 2022 年 11 月 18 日 (金) 6 時 9 分 54 秒 (日本時間) |
2350 | Ignacio Santos | November 23, 2022 12:37:29 UTC 2022 年 11 月 23 日 (水) 21 時 37 分 29 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | November 7, 2022 16:36:40 UTC 2022 年 11 月 8 日 (火) 1 時 36 分 40 秒 (日本時間) |
composite number 合成数 | 10115076509667825366712691779947701789612686320195857682369563654688341843769612948963273760700873490419<104> |
prime factors 素因数 | 979316194112443602013590223522672794587042809197103<51> 10328713617194027124837452356461220642764295212757373<53> |
factorization results 素因数分解の結果 | Number: 1 N=10115076509667825366712691779947701789612686320195857682369563654688341843769612948963273760700873490419 ( 104 digits) Divisors found: r1=979316194112443602013590223522672794587042809197103 (pp51) r2=10328713617194027124837452356461220642764295212757373 (pp53) Version: Msieve v. 1.52 (SVN 927) Total time: 4.77 hours. Scaled time: 37.10 units (timescale=7.782). Factorization parameters were as follows: name: 1 n: 10115076509667825366712691779947701789612686320195857682369563654688341843769612948963273760700873490419 skew: 10011.12 # norm 3.27e+013 c5: 10320 c4: 646228 c3: -818909566510 c2: 17208181664040781 c1: -42577499894756359512 c0: -349913808727179971378727 # alpha -4.72 Y1: 62730825179 Y0: -62843141853572709008 # Murphy_E 2.33e-009 # M 7386200799193679033516818574957345786455821460072261503835716610649952484081741052217129407668211717250 type: gnfs rlim: 2300000 alim: 2300000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1150000, 1950001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 262193 x 262420 Total sieving time: 4.72 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.03 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: gnfs,103,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2300000,2300000,26,26,49,49,2.6,2.6,100000 total time: 4.77 hours. --------- CPU info (if available) ---------- |
software ソフトウェア | GNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | May 17, 2023 05:39:03 UTC 2023 年 5 月 17 日 (水) 14 時 39 分 3 秒 (日本時間) |
composite number 合成数 | 61450709593221008518071473554818486147274382793474635114060712225269279507233263140974386966387366647290228491761582646587568760055632615727855657332079689893731<161> |
prime factors 素因数 | 835622722606647246575765119379323609113000884321<48> 73538820727051610029791421511218785021291851594019295665155056259424471572333801024445127122830737796653707462211<113> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 61450709593221008518071473554818486147274382793474635114060712225269279507233263140974386966387366647290228491761582646587568760055632615727855657332079689893731 (161 digits) Using B1=33240000, B2=144292738606, polynomial Dickson(12), sigma=1:4243147839 Step 1 took 79714ms Step 2 took 24253ms ********** Factor found in step 2: 835622722606647246575765119379323609113000884321 Found prime factor of 48 digits: 835622722606647246575765119379323609113000884321 Prime cofactor 73538820727051610029791421511218785021291851594019295665155056259424471572333801024445127122830737796653707462211 has 113 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | November 17, 2022 21:10:03 UTC 2022 年 11 月 18 日 (金) 6 時 10 分 3 秒 (日本時間) | |
45 | 11e6 | 1200 / 4213 | Dmitry Domanov | December 6, 2022 22:41:53 UTC 2022 年 12 月 7 日 (水) 7 時 41 分 53 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | May 12, 2023 00:19:40 UTC 2023 年 5 月 12 日 (金) 9 時 19 分 40 秒 (日本時間) |
composite number 合成数 | 2341732977487527256856086804358827793173321577444367668509889547030884557863451781390978921925741255829375770012831662822327556021930672931659901028718888410022614631466189662888581216716103<190> |
prime factors 素因数 | 6764161506230695249131603757199641253642577282785293007978825718233<67> 346197082274052554934994470133545392864064439866740784831658650635998006686517326833575839152363489391648089634739770639391<123> |
factorization results 素因数分解の結果 | Number: n N=2341732977487527256856086804358827793173321577444367668509889547030884557863451781390978921925741255829375770012831662822327556021930672931659901028718888410022614631466189662888581216716103 ( 190 digits) SNFS difficulty: 200 digits. Divisors found: Thu May 11 20:07:01 2023 prp67 factor: 6764161506230695249131603757199641253642577282785293007978825718233 Thu May 11 20:07:01 2023 prp123 factor: 346197082274052554934994470133545392864064439866740784831658650635998006686517326833575839152363489391648089634739770639391 Thu May 11 20:07:01 2023 elapsed time 03:15:23 (Msieve 1.44 - dependency 3) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.114). Factorization parameters were as follows: # # N = 61x10^199-52 = 67(198)2 # n: 2341732977487527256856086804358827793173321577444367668509889547030884557863451781390978921925741255829375770012831662822327556021930672931659901028718888410022614631466189662888581216716103 m: 1000000000000000000000000000000000 deg: 6 c6: 305 c0: -26 skew: 0.66 # Murphy_E = 1.061e-11 type: snfs lss: 1 rlim: 15400000 alim: 15400000 lpbr: 27 lpba: 27 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 15400000/15400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 56/56 Sieved special-q in [100000, 47700000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2212864 hash collisions in 14863074 relations (13631210 unique) Msieve: matrix is 2395535 x 2395760 (684.9 MB) Sieving start time: 2023/05/10 19:07:13 Sieving end time : 2023/05/11 16:51:20 Total sieving time: 21hrs 44min 7secs. Total relation processing time: 2hrs 58min 41sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 12min 21sec. Prototype def-par.txt line would be: snfs,200,6,0,0,0,0,0,0,0,0,15400000,15400000,27,27,56,56,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | November 17, 2022 20:23:06 UTC 2022 年 11 月 18 日 (金) 5 時 23 分 6 秒 (日本時間) | |
45 | 11e6 | 1200 / 4213 | Dmitry Domanov | December 6, 2022 22:42:09 UTC 2022 年 12 月 7 日 (水) 7 時 42 分 9 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | July 2, 2023 02:52:15 UTC 2023 年 7 月 2 日 (日) 11 時 52 分 15 秒 (日本時間) |
composite number 合成数 | 73742797843164250355669770007910323352394624508646401208947834221916293702019095410396655439804832853581849749712659239906093600511362823812913365737356071124992224012150718416483245177323<188> |
prime factors 素因数 | 3999452723052338771026106514206883046641248737305717341148399310894584779378593142950737019<91> 18438222164277653962328175216156294570570851727397192241830969790519980105440243936077251925192017<98> |
factorization results 素因数分解の結果 | Number: n N=73742797843164250355669770007910323352394624508646401208947834221916293702019095410396655439804832853581849749712659239906093600511362823812913365737356071124992224012150718416483245177323 ( 188 digits) SNFS difficulty: 202 digits. Divisors found: Thu Jun 29 23:55:16 2023 prp91 factor: 3999452723052338771026106514206883046641248737305717341148399310894584779378593142950737019 Thu Jun 29 23:55:16 2023 prp98 factor: 18438222164277653962328175216156294570570851727397192241830969790519980105440243936077251925192017 Thu Jun 29 23:55:16 2023 elapsed time 03:40:43 (Msieve 1.44 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.100). Factorization parameters were as follows: # # N = 61x10^201-52 = 67(200)2 # n: 73742797843164250355669770007910323352394624508646401208947834221916293702019095410396655439804832853581849749712659239906093600511362823812913365737356071124992224012150718416483245177323 m: 10000000000000000000000000000000000000000 deg: 5 c5: 305 c0: -26 skew: 0.61 # Murphy_E = 1.049e-11 type: snfs lss: 1 rlim: 16600000 alim: 16600000 lpbr: 27 lpba: 27 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 16600000/16600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 56/56 Sieved special-q in [100000, 55500000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2385750 hash collisions in 15398164 relations (13737379 unique) Msieve: matrix is 2579906 x 2580132 (731.4 MB) Sieving start time: 2023/06/28 22:09:04 Sieving end time : 2023/06/29 20:14:18 Total sieving time: 22hrs 5min 14secs. Total relation processing time: 3hrs 29min 41sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 6min 37sec. Prototype def-par.txt line would be: snfs,202,5,0,0,0,0,0,0,0,0,16600000,16600000,27,27,56,56,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | December 6, 2022 22:54:56 UTC 2022 年 12 月 7 日 (水) 7 時 54 分 56 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | December 6, 2022 22:54:56 UTC 2022 年 12 月 7 日 (水) 7 時 54 分 56 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | July 12, 2023 15:42:39 UTC 2023 年 7 月 13 日 (木) 0 時 42 分 39 秒 (日本時間) |
composite number 合成数 | 71746188916896107567938509287542508658357130332745025404951474356918690426590000260549225469286775948852628383828962098916474423459164062401154187574688164916774060949288899316127135961141804907<194> |
prime factors 素因数 | 4297064065503563233364570193321311256233<40> 165419905546308115574418518691022619879322088034156034971<57> 100934407861877871676526683192108549018193571897447187874253834414378256358858034598415631162919049<99> |
factorization results 素因数分解の結果 | Number: n N=16696560214884376809975508148394269672267952390724290882349785610560603691176888359862476996739408521501990196869665685357951366352989580848012436086062579 ( 155 digits) SNFS difficulty: 203 digits. Divisors found: Thu Jul 13 01:28:40 2023 prp57 factor: 165419905546308115574418518691022619879322088034156034971 Thu Jul 13 01:28:40 2023 prp99 factor: 100934407861877871676526683192108549018193571897447187874253834414378256358858034598415631162919049 Thu Jul 13 01:28:40 2023 elapsed time 03:57:43 (Msieve 1.44 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.078). Factorization parameters were as follows: # # N = 61x10^202-52 = 67(201)2 # # GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] # Input number is 71746188916896107567938509287542508658357130332745025404951474356918690426590000260549225469286775948852628383828962098916474423459164062401154187574688164916774060949288899316127135961141804907 (194 digits) # Using B1=41300000, B2=192394462276, polynomial Dickson(12), sigma=1:1883590691 # Step 1 took 129052ms # Step 2 took 36927ms # ********** Factor found in step 2: 4297064065503563233364570193321311256233 # Found prime factor of 40 digits: 4297064065503563233364570193321311256233 # Composite cofactor 16696560214884376809975508148394269672267952390724290882349785610560603691176888359862476996739408521501990196869665685357951366352989580848012436086062579 has 155 digits # n: 16696560214884376809975508148394269672267952390724290882349785610560603691176888359862476996739408521501990196869665685357951366352989580848012436086062579 m: 10000000000000000000000000000000000000000 deg: 5 c5: 1525 c0: -13 skew: 0.39 # Murphy_E = 8.273e-12 type: snfs lss: 1 rlim: 17000000 alim: 17000000 lpbr: 27 lpba: 27 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 17000000/17000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 56/56 Sieved special-q in [100000, 12500000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 3507615 hash collisions in 17022501 relations (13887965 unique) Msieve: matrix is 2673915 x 2674141 (756.5 MB) Sieving start time: 2023/07/12 03:38:58 Sieving end time : 2023/07/12 21:30:34 Total sieving time: 17hrs 51min 36secs. Total relation processing time: 3hrs 46min 4sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 7min 2sec. Prototype def-par.txt line would be: snfs,203,5,0,0,0,0,0,0,0,0,17000000,17000000,27,27,56,56,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | December 6, 2022 22:55:04 UTC 2022 年 12 月 7 日 (水) 7 時 55 分 4 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | December 6, 2022 22:55:04 UTC 2022 年 12 月 7 日 (水) 7 時 55 分 4 秒 (日本時間) |
name 名前 | Thomas Kozlowski |
---|---|
date 日付 | September 18, 2024 03:33:18 UTC 2024 年 9 月 18 日 (水) 12 時 33 分 18 秒 (日本時間) |
composite number 合成数 | 3621562474383707653361891370568890723954354830308466969806264903133464034303346650693501565261259871482919350638398548883116660684253689025981185589317<151> |
prime factors 素因数 | 1084297524388606257126627713239146553464111208723965176352961517287114251823<76> 3340008063216567504716117113376259836648543197826343089247079469826136031179<76> |
factorization results 素因数分解の結果 | FACTORS 3340008063216567504716117113376259836648543197826343089247079469826136031179 1084297524388606257126627713239146553464111208723965176352961517287114251823 POLYNOMIAL n: 3621562474383707653361891370568890723954354830308466969806264903133464034303346650693501565261259871482919350638398548883116660684253689025981185589317 skew: 1644525.204 c0: 358567600482987512840385811010663600 c1: 364282362137494811265159050374 c2: -996183577674816120230393 c3: -161205788891542402 c4: 244171121700 c5: 10920 Y0: 153018352330905007150799726649 Y1: 37774109082134377600187 # MurphyE (Bf=2.147e+09,Bg=2.147e+09,area=4.027e+14) = 5.818e-07 # f(x) = 10920*x^5+244171121700*x^4-161205788891542402*x^3-996183577674816120230393*x^2+364282362137494811265159050374*x+358567600482987512840385811010663600 # g(x) = 37774109082134377600187*x+153018352330905007150799726649 |
software ソフトウェア | cado-nfs |
execution environment 実行環境 | 2x Xeon E5-2698v4, 256GB DDR4, Ubuntu Server 24.04 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | December 6, 2022 22:55:12 UTC 2022 年 12 月 7 日 (水) 7 時 55 分 12 秒 (日本時間) | |
45 | 11e6 | 6438 | 1000 | Dmitry Domanov | December 6, 2022 22:55:12 UTC 2022 年 12 月 7 日 (水) 7 時 55 分 12 秒 (日本時間) |
958 | Rytis Slatkevičius | August 13, 2023 15:25:54 UTC 2023 年 8 月 14 日 (月) 0 時 25 分 54 秒 (日本時間) | |||
4480 | Ignacio Santos | October 18, 2023 15:19:42 UTC 2023 年 10 月 19 日 (木) 0 時 19 分 42 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 1, 2023 04:39:19 UTC 2023 年 12 月 1 日 (金) 13 時 39 分 19 秒 (日本時間) |
composite number 合成数 | 20136583106187924652244242226517957225122804146106443671480928882245445295548937306194782226757041266323912536167695006130044129199169494898643010441556959669795658924914901169819374364450508367<194> |
prime factors 素因数 | 1284791284818994111987661513889192850754363771511516105603568040066321549<73> 15673038371384062494250239106810789432248045467178992708272524270751149279036845195537956747907105074970146129813252990283<122> |
factorization results 素因数分解の結果 | Number: n N=20136583106187924652244242226517957225122804146106443671480928882245445295548937306194782226757041266323912536167695006130044129199169494898643010441556959669795658924914901169819374364450508367 ( 194 digits) SNFS difficulty: 205 digits. Divisors found: Fri Dec 1 15:33:44 2023 prp73 factor: 1284791284818994111987661513889192850754363771511516105603568040066321549 Fri Dec 1 15:33:44 2023 prp122 factor: 15673038371384062494250239106810789432248045467178992708272524270751149279036845195537956747907105074970146129813252990283 Fri Dec 1 15:33:44 2023 elapsed time 03:52:48 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.090). Factorization parameters were as follows: # # N = 61x10^204-52 = 67(203)2 # n: 20136583106187924652244242226517957225122804146106443671480928882245445295548937306194782226757041266323912536167695006130044129199169494898643010441556959669795658924914901169819374364450508367 m: 50000000000000000000000000000000000000000 deg: 5 c5: 244 c0: -65 skew: 0.77 # Murphy_E = 6.397e-12 type: snfs lss: 1 rlim: 18900000 alim: 18900000 lpbr: 27 lpba: 27 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 18900000/18900000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 56/56 Sieved special-q in [100000, 78250000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 4143717 hash collisions in 20616846 relations (16694029 unique) Msieve: matrix is 2679762 x 2679987 (753.5 MB) Sieving start time: 2023/11/29 23:58:24 Sieving end time : 2023/12/01 11:40:29 Total sieving time: 35hrs 42min 5secs. Total relation processing time: 3hrs 43min 51sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 3min 18sec. Prototype def-par.txt line would be: snfs,205,5,0,0,0,0,0,0,0,0,18900000,18900000,27,27,56,56,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | December 6, 2022 22:55:18 UTC 2022 年 12 月 7 日 (水) 7 時 55 分 18 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | December 6, 2022 22:55:18 UTC 2022 年 12 月 7 日 (水) 7 時 55 分 18 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | April 12, 2024 16:23:32 UTC 2024 年 4 月 13 日 (土) 1 時 23 分 32 秒 (日本時間) |
composite number 合成数 | 1595254900330921852402549023514890519294269616616597480865153253470077911376709456384336548564504510060708555167463973355941802409882764497366332083396568194362344435589319810346343<181> |
prime factors 素因数 | 909750101795540506742482483335739941144544477652092794417346906389318828366455041333<84> 1753508900062144091446116628561357038694698281007977962850404518341595190298624624498189240364971<97> |
factorization results 素因数分解の結果 | Number: n N=1595254900330921852402549023514890519294269616616597480865153253470077911376709456384336548564504510060708555167463973355941802409882764497366332083396568194362344435589319810346343 ( 181 digits) SNFS difficulty: 206 digits. Divisors found: Fri Apr 12 21:53:19 2024 prp84 factor: 909750101795540506742482483335739941144544477652092794417346906389318828366455041333 Fri Apr 12 21:53:19 2024 prp97 factor: 1753508900062144091446116628561357038694698281007977962850404518341595190298624624498189240364971 Fri Apr 12 21:53:19 2024 elapsed time 03:13:01 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=1.947). Factorization parameters were as follows: # # N = 61x10^205-52 = 67(204)2 # n: 1595254900330921852402549023514890519294269616616597480865153253470077911376709456384336548564504510060708555167463973355941802409882764497366332083396568194362344435589319810346343 m: 100000000000000000000000000000000000000000 deg: 5 c5: 61 c0: -52 skew: 0.97 # Murphy_E = 6.877e-12 type: snfs lss: 1 rlim: 19600000 alim: 19600000 lpbr: 27 lpba: 27 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 19600000/19600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 56/56 Sieved special-q in [100000, 13800000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 4456830 hash collisions in 21186329 relations (16479530 unique) Msieve: matrix is 2471804 x 2472029 (695.8 MB) Sieving start time: 2024/04/11 21:52:45 Sieving end time : 2024/04/12 17:45:16 Total sieving time: 19hrs 52min 31secs. Total relation processing time: 3hrs 4min 12sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 3min 7sec. Prototype def-par.txt line would be: snfs,206,5,0,0,0,0,0,0,0,0,19600000,19600000,27,27,56,56,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | December 6, 2022 22:55:25 UTC 2022 年 12 月 7 日 (水) 7 時 55 分 25 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | December 6, 2022 22:55:25 UTC 2022 年 12 月 7 日 (水) 7 時 55 分 25 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | August 31, 2024 01:11:26 UTC 2024 年 8 月 31 日 (土) 10 時 11 分 26 秒 (日本時間) |
composite number 合成数 | 66239528990993843428873885396675766848620354620203020724932615613051379848224780840220148573135174720135926814607029737556770914089906639054208636629477015202692936994562803189454604437144109941772761<200> |
prime factors 素因数 | 2701173000498323679579821335536302954577610861891596324659<58> 332882393316622647950448507680428105390089643591260462771302569<63> 73667174074743384099760672573768660370537492032103575100346148798133065840068491<80> |
factorization results 素因数分解の結果 | 08/28/24 22:07:50 v1.34.5 @ RYZEN-9, 08/28/24 22:07:50 v1.34.5 @ RYZEN-9, **************************** 08/28/24 22:07:50 v1.34.5 @ RYZEN-9, Starting factorization of 60999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999948 08/28/24 22:07:50 v1.34.5 @ RYZEN-9, using pretesting plan: normal 08/28/24 22:07:50 v1.34.5 @ RYZEN-9, no tune info: using qs/gnfs crossover of 125 digits 08/28/24 22:07:50 v1.34.5 @ RYZEN-9, **************************** 08/28/24 22:07:50 v1.34.5 @ RYZEN-9, div: found prime factor = 2 08/28/24 22:07:50 v1.34.5 @ RYZEN-9, div: found prime factor = 2 08/28/24 22:07:50 v1.34.5 @ RYZEN-9, div: found prime factor = 3 08/28/24 22:07:50 v1.34.5 @ RYZEN-9, div: found prime factor = 3 08/28/24 22:07:50 v1.34.5 @ RYZEN-9, div: found prime factor = 17 08/28/24 22:07:50 v1.34.5 @ RYZEN-9, rho: x^2 + 3, starting 1000 iterations on C206 08/28/24 22:07:50 v1.34.5 @ RYZEN-9, rho: x^2 + 2, starting 1000 iterations on C206 08/28/24 22:07:50 v1.34.5 @ RYZEN-9, prp7 = 1504739 08/28/24 22:07:50 v1.34.5 @ RYZEN-9, rho: x^2 + 2, starting 1000 iterations on C200 08/28/24 22:07:50 v1.34.5 @ RYZEN-9, rho: x^2 + 1, starting 1000 iterations on C200 08/28/24 22:07:50 v1.34.5 @ RYZEN-9, pm1: starting B1 = 150K, B2 = gmp-ecm default on C200 08/28/24 22:07:50 v1.34.5 @ RYZEN-9, current ECM pretesting depth: 0.00 08/28/24 22:07:50 v1.34.5 @ RYZEN-9, scheduled 30 curves at B1=2000 toward target pretesting depth of 61.54 08/28/24 22:07:50 v1.34.5 @ RYZEN-9, Finished 30 curves using Lenstra ECM method on C200 input, B1=2K, B2=gmp-ecm default 08/28/24 22:07:50 v1.34.5 @ RYZEN-9, current ECM pretesting depth: 15.18 08/28/24 22:07:50 v1.34.5 @ RYZEN-9, scheduled 74 curves at B1=11000 toward target pretesting depth of 61.54 08/28/24 22:07:53 v1.34.5 @ RYZEN-9, Finished 74 curves using Lenstra ECM method on C200 input, B1=11K, B2=gmp-ecm default 08/28/24 22:07:53 v1.34.5 @ RYZEN-9, current ECM pretesting depth: 20.24 08/28/24 22:07:53 v1.34.5 @ RYZEN-9, scheduled 214 curves at B1=50000 toward target pretesting depth of 61.54 08/28/24 22:08:23 v1.34.5 @ RYZEN-9, nfs: commencing nfs on c209: 60999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999948 08/28/24 22:08:23 v1.34.5 @ RYZEN-9, nfs: input divides 61*10^207 - 52 08/28/24 22:08:23 v1.34.5 @ RYZEN-9, nfs: using supplied cofactor: 66239528990993843428873885396675766848620354620203020724932615613051379848224780840220148573135174720135926814607029737556770914089906639054208636629477015202692936994562803189454604437144109941772761 08/28/24 22:08:23 v1.34.5 @ RYZEN-9, nfs: commencing snfs on c200: 66239528990993843428873885396675766848620354620203020724932615613051379848224780840220148573135174720135926814607029737556770914089906639054208636629477015202692936994562803189454604437144109941772761 08/28/24 22:08:23 v1.34.5 @ RYZEN-9, gen: best 3 polynomials: n: 66239528990993843428873885396675766848620354620203020724932615613051379848224780840220148573135174720135926814607029737556770914089906639054208636629477015202692936994562803189454604437144109941772761 # 61*10^207-52, difficulty: 210.79, anorm: 1.16e+025, rnorm: 1.61e+047 # scaled difficulty: 214.48, suggest sieving rational side # size = 1.069e-014, alpha = 1.045, combined = 5.086e-012, rroots = 1 type: snfs size: 210 skew: 0.3856 c5: 1525 c0: -13 Y1: -1 Y0: 100000000000000000000000000000000000000000 m: 100000000000000000000000000000000000000000 n: 66239528990993843428873885396675766848620354620203020724932615613051379848224780840220148573135174720135926814607029737556770914089906639054208636629477015202692936994562803189454604437144109941772761 # 61*10^207-52, difficulty: 209.69, anorm: 2.86e+026, rnorm: 2.28e+047 # scaled difficulty: 213.17, suggest sieving rational side # size = 7.274e-015, alpha = 0.121, combined = 4.060e-012, rroots = 1 type: snfs size: 209 skew: 0.7712 c5: 1525 c0: -416 Y1: -1 Y0: 200000000000000000000000000000000000000000 m: 200000000000000000000000000000000000000000 n: 66239528990993843428873885396675766848620354620203020724932615613051379848224780840220148573135174720135926814607029737556770914089906639054208636629477015202692936994562803189454604437144109941772761 # 61*10^207-52, difficulty: 211.79, anorm: -1.43e+033, rnorm: 1.80e+040 # scaled difficulty: 212.97, suggest sieving rational side # size = 1.158e-010, alpha = 0.284, combined = 3.706e-012, rroots = 2 type: snfs size: 211 skew: 0.3079 c6: 15250 c0: -13 Y1: -1 Y0: 10000000000000000000000000000000000 m: 10000000000000000000000000000000000 08/28/24 22:08:25 v1.34.5 @ RYZEN-9, test: fb generation took 1.8446 seconds 08/28/24 22:08:25 v1.34.5 @ RYZEN-9, test: commencing test sieving of polynomial 0 on the rational side over range 22600000-22602000 skew: 0.3856 c5: 1525 c0: -13 Y1: -1 Y0: 100000000000000000000000000000000000000000 m: 100000000000000000000000000000000000000000 rlim: 22600000 alim: 22600000 mfbr: 58 mfba: 58 lpbr: 29 lpba: 29 rlambda: 2.60 alambda: 2.60 08/28/24 22:11:36 v1.34.5 @ RYZEN-9, nfs: parsing special-q from .dat file 08/28/24 22:11:38 v1.34.5 @ RYZEN-9, test: fb generation took 1.7821 seconds 08/28/24 22:11:38 v1.34.5 @ RYZEN-9, test: commencing test sieving of polynomial 1 on the rational side over range 21400000-21402000 skew: 0.7712 c5: 1525 c0: -416 Y1: -1 Y0: 200000000000000000000000000000000000000000 m: 200000000000000000000000000000000000000000 rlim: 21400000 alim: 21400000 mfbr: 56 mfba: 56 lpbr: 28 lpba: 28 rlambda: 2.60 alambda: 2.60 08/28/24 22:14:48 v1.34.5 @ RYZEN-9, nfs: parsing special-q from .dat file 08/28/24 22:14:51 v1.34.5 @ RYZEN-9, test: fb generation took 2.6891 seconds 08/28/24 22:14:51 v1.34.5 @ RYZEN-9, test: commencing test sieving of polynomial 2 on the rational side over range 22600000-22602000 skew: 0.3079 c6: 15250 c0: -13 Y1: -1 Y0: 10000000000000000000000000000000000 m: 10000000000000000000000000000000000 rlim: 22600000 alim: 22600000 mfbr: 58 mfba: 58 lpbr: 29 lpba: 29 rlambda: 2.60 alambda: 2.60 08/28/24 22:17:52 v1.34.5 @ RYZEN-9, nfs: parsing special-q from .dat file 08/28/24 22:17:52 v1.34.5 @ RYZEN-9, gen: selected polynomial: n: 66239528990993843428873885396675766848620354620203020724932615613051379848224780840220148573135174720135926814607029737556770914089906639054208636629477015202692936994562803189454604437144109941772761 # 61*10^207-52, difficulty: 209.69, anorm: 2.86e+026, rnorm: 2.28e+047 # scaled difficulty: 213.17, suggest sieving rational side # size = 7.274e-015, alpha = 0.121, combined = 4.060e-012, rroots = 1 type: snfs size: 209 skew: 0.7712 c5: 1525 c0: -416 Y1: -1 Y0: 200000000000000000000000000000000000000000 m: 200000000000000000000000000000000000000000 08/30/24 12:18:20 v1.34.5 @ RYZEN-9, nfs: commencing msieve filtering 08/30/24 12:20:29 v1.34.5 @ RYZEN-9, nfs: raising min_rels by 5.00 percent to 22175627 08/30/24 14:41:28 v1.34.5 @ RYZEN-9, nfs: commencing msieve filtering 08/30/24 14:43:45 v1.34.5 @ RYZEN-9, nfs: raising min_rels by 5.00 percent to 23370929 08/30/24 17:06:02 v1.34.5 @ RYZEN-9, nfs: commencing msieve filtering 08/30/24 17:08:25 v1.34.5 @ RYZEN-9, nfs: raising min_rels by 5.00 percent to 24558144 08/30/24 19:42:07 v1.34.5 @ RYZEN-9, nfs: commencing msieve filtering 08/30/24 19:44:35 v1.34.5 @ RYZEN-9, nfs: raising min_rels by 5.00 percent to 25827061 08/30/24 22:29:34 v1.34.5 @ RYZEN-9, nfs: commencing msieve filtering 08/30/24 22:32:08 v1.34.5 @ RYZEN-9, nfs: raising min_rels by 5.00 percent to 27186687 08/31/24 01:31:09 v1.34.5 @ RYZEN-9, nfs: commencing msieve filtering 08/31/24 01:33:55 v1.34.5 @ RYZEN-9, nfs: raising min_rels by 5.00 percent to 28629329 08/31/24 04:45:24 v1.34.5 @ RYZEN-9, nfs: commencing msieve filtering 08/31/24 04:50:20 v1.34.5 @ RYZEN-9, nfs: commencing msieve linear algebra 08/31/24 10:47:26 v1.34.5 @ RYZEN-9, nfs: commencing msieve sqrt 08/31/24 10:55:40 v1.34.5 @ RYZEN-9, prp63 = 332882393316622647950448507680428105390089643591260462771302569 08/31/24 10:55:40 v1.34.5 @ RYZEN-9, prp80 = 73667174074743384099760672573768660370537492032103575100346148798133065840068491 08/31/24 10:55:40 v1.34.5 @ RYZEN-9, prp58 = 2701173000498323679579821335536302954577610861891596324659 08/31/24 10:55:40 v1.34.5 @ RYZEN-9, NFS elapsed time = 218837.5267 seconds. 08/31/24 10:55:40 v1.34.5 @ RYZEN-9, 08/31/24 10:55:40 v1.34.5 @ RYZEN-9, 08/28/24 22:17:52 v1.34.5 @ RYZEN-9, test: test sieving took 568.79 seconds |
software ソフトウェア | YAFU |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | December 6, 2022 22:54:44 UTC 2022 年 12 月 7 日 (水) 7 時 54 分 44 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | December 6, 2022 22:54:44 UTC 2022 年 12 月 7 日 (水) 7 時 54 分 44 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 5, 2022 20:59:08 UTC 2022 年 12 月 6 日 (火) 5 時 59 分 8 秒 (日本時間) |
composite number 合成数 | 45842596586993159507315580447317981938367276365875528348136754758991583786292492543777538381073040062686614304399783839262980056030552736830637455089139132785816048198491<170> |
prime factors 素因数 | 229681719895553548771931916796748546233<39> |
composite cofactor 合成数の残り | 199591837817305698779255375399023415809594538371286371494465876149131750111548918532655516161919347551156574770847999304947245429427<132> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @8e07609ca4f5 with GMP-ECM 7.0.5-dev on Mon Dec 5 11:56:14 2022 Input number is 45842596586993159507315580447317981938367276365875528348136754758991583786292492543777538381073040062686614304399783839262980056030552736830637455089139132785816048198491 (170 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:1670137615 Step 1 took 0ms Step 2 took 4692ms ********** Factor found in step 2: 229681719895553548771931916796748546233 Found prime factor of 39 digits: 229681719895553548771931916796748546233 Composite cofactor 199591837817305698779255375399023415809594538371286371494465876149131750111548918532655516161919347551156574770847999304947245429427 has 132 digits |
name 名前 | Ignacio Santos |
---|---|
date 日付 | December 7, 2022 14:24:32 UTC 2022 年 12 月 7 日 (水) 23 時 24 分 32 秒 (日本時間) |
composite number 合成数 | 199591837817305698779255375399023415809594538371286371494465876149131750111548918532655516161919347551156574770847999304947245429427<132> |
prime factors 素因数 | 151206526457756980104100353060582723621930947<45> 1319994860625716892842934366251932490858405768874011330384417856007573097284812183349841<88> |
factorization results 素因数分解の結果 | Using B1=43000000, B2=240490660426, polynomial Dickson(12), sigma=1:498257956 Step 1 took 63469ms Step 2 took 24359ms ********** Factor found in step 2: 151206526457756980104100353060582723621930947 Found prime factor of 45 digits: 151206526457756980104100353060582723621930947 Prime cofactor 1319994860625716892842934366251932490858405768874011330384417856007573097284812183349841 has 88 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 / 2078 | Dmitry Domanov | December 5, 2022 20:58:58 UTC 2022 年 12 月 6 日 (火) 5 時 58 分 58 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | December 8, 2022 13:36:51 UTC 2022 年 12 月 8 日 (木) 22 時 36 分 51 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | December 8, 2022 13:36:51 UTC 2022 年 12 月 8 日 (木) 22 時 36 分 51 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 8, 2022 06:18:40 UTC 2022 年 12 月 8 日 (木) 15 時 18 分 40 秒 (日本時間) |
composite number 合成数 | 165312385268880433374287115547940736161010259938469650117270380764980327838996176014583918783573987145692051972667704907908140880348170116409640071432360124519872183<165> |
prime factors 素因数 | 232952827282990348064783143673184803127500287759<48> |
composite cofactor 合成数の残り | 709638887825385684236730123500494498506819526796995454148854246606168802031146797602128996052314459040185629240638937<117> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:3697124482 Step 1 took 46801ms Step 2 took 18967ms ********** Factor found in step 2: 232952827282990348064783143673184803127500287759 Found prime factor of 48 digits: 232952827282990348064783143673184803127500287759 Composite cofactor 709638887825385684236730123500494498506819526796995454148854246606168802031146797602128996052314459040185629240638937 has 117 digits |
name 名前 | anonymous |
---|---|
date 日付 | December 9, 2022 03:36:07 UTC 2022 年 12 月 9 日 (金) 12 時 36 分 7 秒 (日本時間) |
composite number 合成数 | 709638887825385684236730123500494498506819526796995454148854246606168802031146797602128996052314459040185629240638937<117> |
prime factors 素因数 | 2593534563695904052120139313966274946051701<43> 273618442475707042036086545654836307728625443654338195780299596941642526037<75> |
factorization results 素因数分解の結果 | Fri Dec 09 09:34:05 2022 -> factmsieve.py (v0.86) Fri Dec 09 09:34:05 2022 -> This is client 1 of 1 Fri Dec 09 09:34:05 2022 -> Running on 10 Cores with 1 hyper-thread per Core Fri Dec 09 09:34:05 2022 -> Working with NAME = c4 Fri Dec 09 09:34:05 2022 -> Running polynomial selection ... Fri Dec 09 09:34:05 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T0 -l c4\c4.log.T0 -i c4\c4.ini.T0 -nf c4\c4.fb.T0 -np 1,100 -v > c4\c4.msp.T0 Fri Dec 09 09:34:05 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T1 -l c4\c4.log.T1 -i c4\c4.ini.T1 -nf c4\c4.fb.T1 -np 101,200 -v > c4\c4.msp.T1 Fri Dec 09 09:34:05 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T2 -l c4\c4.log.T2 -i c4\c4.ini.T2 -nf c4\c4.fb.T2 -np 201,300 -v > c4\c4.msp.T2 Fri Dec 09 09:34:05 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T3 -l c4\c4.log.T3 -i c4\c4.ini.T3 -nf c4\c4.fb.T3 -np 301,400 -v > c4\c4.msp.T3 Fri Dec 09 09:34:05 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T4 -l c4\c4.log.T4 -i c4\c4.ini.T4 -nf c4\c4.fb.T4 -np 401,500 -v > c4\c4.msp.T4 Fri Dec 09 09:34:05 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T5 -l c4\c4.log.T5 -i c4\c4.ini.T5 -nf c4\c4.fb.T5 -np 501,600 -v > c4\c4.msp.T5 Fri Dec 09 09:34:05 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T6 -l c4\c4.log.T6 -i c4\c4.ini.T6 -nf c4\c4.fb.T6 -np 601,700 -v > c4\c4.msp.T6 Fri Dec 09 09:34:05 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T7 -l c4\c4.log.T7 -i c4\c4.ini.T7 -nf c4\c4.fb.T7 -np 701,800 -v > c4\c4.msp.T7 Fri Dec 09 09:34:05 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T8 -l c4\c4.log.T8 -i c4\c4.ini.T8 -nf c4\c4.fb.T8 -np 801,900 -v > c4\c4.msp.T8 Fri Dec 09 09:34:05 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T9 -l c4\c4.log.T9 -i c4\c4.ini.T9 -nf c4\c4.fb.T9 -np 901,1000 -v > c4\c4.msp.T9 Fri Dec 09 09:34:21 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T0 -l c4\c4.log.T0 -i c4\c4.ini.T0 -nf c4\c4.fb.T0 -np 1001,1100 -v >> c4\c4.msp.T0 Fri Dec 09 09:34:22 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T0 -l c4\c4.log.T0 -i c4\c4.ini.T0 -nf c4\c4.fb.T0 -np 1101,1200 -v >> c4\c4.msp.T0 Fri Dec 09 09:34:23 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T0 -l c4\c4.log.T0 -i c4\c4.ini.T0 -nf c4\c4.fb.T0 -np 1201,1300 -v >> c4\c4.msp.T0 Fri Dec 09 09:34:24 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T1 -l c4\c4.log.T1 -i c4\c4.ini.T1 -nf c4\c4.fb.T1 -np 1301,1400 -v >> c4\c4.msp.T1 Fri Dec 09 09:34:25 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T0 -l c4\c4.log.T0 -i c4\c4.ini.T0 -nf c4\c4.fb.T0 -np 1401,1500 -v >> c4\c4.msp.T0 Fri Dec 09 09:34:25 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T1 -l c4\c4.log.T1 -i c4\c4.ini.T1 -nf c4\c4.fb.T1 -np 1501,1600 -v >> c4\c4.msp.T1 Fri Dec 09 09:34:27 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T0 -l c4\c4.log.T0 -i c4\c4.ini.T0 -nf c4\c4.fb.T0 -np 1601,1700 -v >> c4\c4.msp.T0 Fri Dec 09 09:34:27 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T1 -l c4\c4.log.T1 -i c4\c4.ini.T1 -nf c4\c4.fb.T1 -np 1701,1800 -v >> c4\c4.msp.T1 Fri Dec 09 09:34:28 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T0 -l c4\c4.log.T0 -i c4\c4.ini.T0 -nf c4\c4.fb.T0 -np 1801,1900 -v >> c4\c4.msp.T0 Fri Dec 09 09:34:28 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T1 -l c4\c4.log.T1 -i c4\c4.ini.T1 -nf c4\c4.fb.T1 -np 1901,2000 -v >> c4\c4.msp.T1 Fri Dec 09 09:34:29 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T1 -l c4\c4.log.T1 -i c4\c4.ini.T1 -nf c4\c4.fb.T1 -np 2001,2100 -v >> c4\c4.msp.T1 Fri Dec 09 09:34:30 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T0 -l c4\c4.log.T0 -i c4\c4.ini.T0 -nf c4\c4.fb.T0 -np 2101,2200 -v >> c4\c4.msp.T0 Fri Dec 09 09:34:30 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T1 -l c4\c4.log.T1 -i c4\c4.ini.T1 -nf c4\c4.fb.T1 -np 2201,2300 -v >> c4\c4.msp.T1 Fri Dec 09 09:34:32 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T0 -l c4\c4.log.T0 -i c4\c4.ini.T0 -nf c4\c4.fb.T0 -np 2301,2400 -v >> c4\c4.msp.T0 Fri Dec 09 09:34:32 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T1 -l c4\c4.log.T1 -i c4\c4.ini.T1 -nf c4\c4.fb.T1 -np 2401,2500 -v >> c4\c4.msp.T1 Fri Dec 09 09:34:32 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T5 -l c4\c4.log.T5 -i c4\c4.ini.T5 -nf c4\c4.fb.T5 -np 2501,2600 -v >> c4\c4.msp.T5 Fri Dec 09 09:34:33 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T6 -l c4\c4.log.T6 -i c4\c4.ini.T6 -nf c4\c4.fb.T6 -np 2601,2700 -v >> c4\c4.msp.T6 Fri Dec 09 09:34:34 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T0 -l c4\c4.log.T0 -i c4\c4.ini.T0 -nf c4\c4.fb.T0 -np 2701,2800 -v >> c4\c4.msp.T0 Fri Dec 09 09:34:34 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T1 -l c4\c4.log.T1 -i c4\c4.ini.T1 -nf c4\c4.fb.T1 -np 2801,2900 -v >> c4\c4.msp.T1 Fri Dec 09 09:34:34 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T5 -l c4\c4.log.T5 -i c4\c4.ini.T5 -nf c4\c4.fb.T5 -np 2901,3000 -v >> c4\c4.msp.T5 Fri Dec 09 09:34:36 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T0 -l c4\c4.log.T0 -i c4\c4.ini.T0 -nf c4\c4.fb.T0 -np 3001,3100 -v >> c4\c4.msp.T0 Fri Dec 09 09:34:36 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T5 -l c4\c4.log.T5 -i c4\c4.ini.T5 -nf c4\c4.fb.T5 -np 3101,3200 -v >> c4\c4.msp.T5 Fri Dec 09 09:34:37 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T0 -l c4\c4.log.T0 -i c4\c4.ini.T0 -nf c4\c4.fb.T0 -np 3201,3300 -v >> c4\c4.msp.T0 Fri Dec 09 09:34:37 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T1 -l c4\c4.log.T1 -i c4\c4.ini.T1 -nf c4\c4.fb.T1 -np 3301,3400 -v >> c4\c4.msp.T1 Fri Dec 09 09:34:37 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T5 -l c4\c4.log.T5 -i c4\c4.ini.T5 -nf c4\c4.fb.T5 -np 3401,3500 -v >> c4\c4.msp.T5 Fri Dec 09 09:34:39 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T0 -l c4\c4.log.T0 -i c4\c4.ini.T0 -nf c4\c4.fb.T0 -np 3501,3600 -v >> c4\c4.msp.T0 Fri Dec 09 09:34:39 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T1 -l c4\c4.log.T1 -i c4\c4.ini.T1 -nf c4\c4.fb.T1 -np 3601,3700 -v >> c4\c4.msp.T1 Fri Dec 09 09:34:39 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T5 -l c4\c4.log.T5 -i c4\c4.ini.T5 -nf c4\c4.fb.T5 -np 3701,3800 -v >> c4\c4.msp.T5 Fri Dec 09 09:34:41 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T0 -l c4\c4.log.T0 -i c4\c4.ini.T0 -nf c4\c4.fb.T0 -np 3801,3900 -v >> c4\c4.msp.T0 Fri Dec 09 09:34:41 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T1 -l c4\c4.log.T1 -i c4\c4.ini.T1 -nf c4\c4.fb.T1 -np 3901,4000 -v >> c4\c4.msp.T1 Fri Dec 09 09:34:41 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T5 -l c4\c4.log.T5 -i c4\c4.ini.T5 -nf c4\c4.fb.T5 -np 4001,4100 -v >> c4\c4.msp.T5 Fri Dec 09 09:34:42 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T4 -l c4\c4.log.T4 -i c4\c4.ini.T4 -nf c4\c4.fb.T4 -np 4101,4200 -v >> c4\c4.msp.T4 Fri Dec 09 09:34:43 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T0 -l c4\c4.log.T0 -i c4\c4.ini.T0 -nf c4\c4.fb.T0 -np 4201,4300 -v >> c4\c4.msp.T0 Fri Dec 09 09:34:43 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T1 -l c4\c4.log.T1 -i c4\c4.ini.T1 -nf c4\c4.fb.T1 -np 4301,4400 -v >> c4\c4.msp.T1 Fri Dec 09 09:34:43 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T3 -l c4\c4.log.T3 -i c4\c4.ini.T3 -nf c4\c4.fb.T3 -np 4401,4500 -v >> c4\c4.msp.T3 Fri Dec 09 09:34:43 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T4 -l c4\c4.log.T4 -i c4\c4.ini.T4 -nf c4\c4.fb.T4 -np 4501,4600 -v >> c4\c4.msp.T4 Fri Dec 09 09:34:43 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T5 -l c4\c4.log.T5 -i c4\c4.ini.T5 -nf c4\c4.fb.T5 -np 4601,4700 -v >> c4\c4.msp.T5 Fri Dec 09 09:34:43 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T9 -l c4\c4.log.T9 -i c4\c4.ini.T9 -nf c4\c4.fb.T9 -np 4701,4800 -v >> c4\c4.msp.T9 Fri Dec 09 09:34:45 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T0 -l c4\c4.log.T0 -i c4\c4.ini.T0 -nf c4\c4.fb.T0 -np 4801,4900 -v >> c4\c4.msp.T0 Fri Dec 09 09:34:45 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T1 -l c4\c4.log.T1 -i c4\c4.ini.T1 -nf c4\c4.fb.T1 -np 4901,5000 -v >> c4\c4.msp.T1 Fri Dec 09 09:34:45 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T3 -l c4\c4.log.T3 -i c4\c4.ini.T3 -nf c4\c4.fb.T3 -np 5001,5100 -v >> c4\c4.msp.T3 Fri Dec 09 09:34:45 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T4 -l c4\c4.log.T4 -i c4\c4.ini.T4 -nf c4\c4.fb.T4 -np 5101,5200 -v >> c4\c4.msp.T4 Fri Dec 09 09:34:45 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T5 -l c4\c4.log.T5 -i c4\c4.ini.T5 -nf c4\c4.fb.T5 -np 5201,5300 -v >> c4\c4.msp.T5 Fri Dec 09 09:34:45 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T9 -l c4\c4.log.T9 -i c4\c4.ini.T9 -nf c4\c4.fb.T9 -np 5301,5400 -v >> c4\c4.msp.T9 Fri Dec 09 09:34:47 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T0 -l c4\c4.log.T0 -i c4\c4.ini.T0 -nf c4\c4.fb.T0 -np 5401,5500 -v >> c4\c4.msp.T0 Fri Dec 09 09:34:47 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T1 -l c4\c4.log.T1 -i c4\c4.ini.T1 -nf c4\c4.fb.T1 -np 5501,5600 -v >> c4\c4.msp.T1 Fri Dec 09 09:34:47 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T3 -l c4\c4.log.T3 -i c4\c4.ini.T3 -nf c4\c4.fb.T3 -np 5601,5700 -v >> c4\c4.msp.T3 Fri Dec 09 09:34:47 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T4 -l c4\c4.log.T4 -i c4\c4.ini.T4 -nf c4\c4.fb.T4 -np 5701,5800 -v >> c4\c4.msp.T4 Fri Dec 09 09:34:47 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T5 -l c4\c4.log.T5 -i c4\c4.ini.T5 -nf c4\c4.fb.T5 -np 5801,5900 -v >> c4\c4.msp.T5 Fri Dec 09 09:34:47 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T9 -l c4\c4.log.T9 -i c4\c4.ini.T9 -nf c4\c4.fb.T9 -np 5901,6000 -v >> c4\c4.msp.T9 Fri Dec 09 09:34:48 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T0 -l c4\c4.log.T0 -i c4\c4.ini.T0 -nf c4\c4.fb.T0 -np 6001,6100 -v >> c4\c4.msp.T0 Fri Dec 09 09:34:48 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T3 -l c4\c4.log.T3 -i c4\c4.ini.T3 -nf c4\c4.fb.T3 -np 6101,6200 -v >> c4\c4.msp.T3 Fri Dec 09 09:34:49 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T0 -l c4\c4.log.T0 -i c4\c4.ini.T0 -nf c4\c4.fb.T0 -np 6201,6300 -v >> c4\c4.msp.T0 Fri Dec 09 09:34:49 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T1 -l c4\c4.log.T1 -i c4\c4.ini.T1 -nf c4\c4.fb.T1 -np 6301,6400 -v >> c4\c4.msp.T1 Fri Dec 09 09:34:49 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T3 -l c4\c4.log.T3 -i c4\c4.ini.T3 -nf c4\c4.fb.T3 -np 6401,6500 -v >> c4\c4.msp.T3 Fri Dec 09 09:34:49 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T4 -l c4\c4.log.T4 -i c4\c4.ini.T4 -nf c4\c4.fb.T4 -np 6501,6600 -v >> c4\c4.msp.T4 Fri Dec 09 09:34:49 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T5 -l c4\c4.log.T5 -i c4\c4.ini.T5 -nf c4\c4.fb.T5 -np 6601,6700 -v >> c4\c4.msp.T5 Fri Dec 09 09:34:49 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T9 -l c4\c4.log.T9 -i c4\c4.ini.T9 -nf c4\c4.fb.T9 -np 6701,6800 -v >> c4\c4.msp.T9 Fri Dec 09 09:34:51 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T0 -l c4\c4.log.T0 -i c4\c4.ini.T0 -nf c4\c4.fb.T0 -np 6801,6900 -v >> c4\c4.msp.T0 Fri Dec 09 09:34:51 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T1 -l c4\c4.log.T1 -i c4\c4.ini.T1 -nf c4\c4.fb.T1 -np 6901,7000 -v >> c4\c4.msp.T1 Fri Dec 09 09:34:51 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T3 -l c4\c4.log.T3 -i c4\c4.ini.T3 -nf c4\c4.fb.T3 -np 7001,7100 -v >> c4\c4.msp.T3 Fri Dec 09 09:34:51 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T4 -l c4\c4.log.T4 -i c4\c4.ini.T4 -nf c4\c4.fb.T4 -np 7101,7200 -v >> c4\c4.msp.T4 Fri Dec 09 09:34:51 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T5 -l c4\c4.log.T5 -i c4\c4.ini.T5 -nf c4\c4.fb.T5 -np 7201,7300 -v >> c4\c4.msp.T5 Fri Dec 09 09:34:52 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T7 -l c4\c4.log.T7 -i c4\c4.ini.T7 -nf c4\c4.fb.T7 -np 7301,7400 -v >> c4\c4.msp.T7 Fri Dec 09 09:34:52 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T9 -l c4\c4.log.T9 -i c4\c4.ini.T9 -nf c4\c4.fb.T9 -np 7401,7500 -v >> c4\c4.msp.T9 Fri Dec 09 09:34:54 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T0 -l c4\c4.log.T0 -i c4\c4.ini.T0 -nf c4\c4.fb.T0 -np 7501,7600 -v >> c4\c4.msp.T0 Fri Dec 09 09:34:54 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T1 -l c4\c4.log.T1 -i c4\c4.ini.T1 -nf c4\c4.fb.T1 -np 7601,7700 -v >> c4\c4.msp.T1 Fri Dec 09 09:34:54 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T3 -l c4\c4.log.T3 -i c4\c4.ini.T3 -nf c4\c4.fb.T3 -np 7701,7800 -v >> c4\c4.msp.T3 Fri Dec 09 09:34:54 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T4 -l c4\c4.log.T4 -i c4\c4.ini.T4 -nf c4\c4.fb.T4 -np 7801,7900 -v >> c4\c4.msp.T4 Fri Dec 09 09:34:54 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T5 -l c4\c4.log.T5 -i c4\c4.ini.T5 -nf c4\c4.fb.T5 -np 7901,8000 -v >> c4\c4.msp.T5 Fri Dec 09 09:34:54 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T7 -l c4\c4.log.T7 -i c4\c4.ini.T7 -nf c4\c4.fb.T7 -np 8001,8100 -v >> c4\c4.msp.T7 Fri Dec 09 09:34:54 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T9 -l c4\c4.log.T9 -i c4\c4.ini.T9 -nf c4\c4.fb.T9 -np 8101,8200 -v >> c4\c4.msp.T9 Fri Dec 09 09:34:55 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T8 -l c4\c4.log.T8 -i c4\c4.ini.T8 -nf c4\c4.fb.T8 -np 8201,8300 -v >> c4\c4.msp.T8 Fri Dec 09 09:34:56 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T0 -l c4\c4.log.T0 -i c4\c4.ini.T0 -nf c4\c4.fb.T0 -np 8301,8400 -v >> c4\c4.msp.T0 Fri Dec 09 09:34:56 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T1 -l c4\c4.log.T1 -i c4\c4.ini.T1 -nf c4\c4.fb.T1 -np 8401,8500 -v >> c4\c4.msp.T1 Fri Dec 09 09:34:56 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T2 -l c4\c4.log.T2 -i c4\c4.ini.T2 -nf c4\c4.fb.T2 -np 8501,8600 -v >> c4\c4.msp.T2 Fri Dec 09 09:34:56 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T3 -l c4\c4.log.T3 -i c4\c4.ini.T3 -nf c4\c4.fb.T3 -np 8601,8700 -v >> c4\c4.msp.T3 Fri Dec 09 09:34:56 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T4 -l c4\c4.log.T4 -i c4\c4.ini.T4 -nf c4\c4.fb.T4 -np 8701,8800 -v >> c4\c4.msp.T4 Fri Dec 09 09:34:56 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T5 -l c4\c4.log.T5 -i c4\c4.ini.T5 -nf c4\c4.fb.T5 -np 8801,8900 -v >> c4\c4.msp.T5 Fri Dec 09 09:34:56 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T7 -l c4\c4.log.T7 -i c4\c4.ini.T7 -nf c4\c4.fb.T7 -np 8901,9000 -v >> c4\c4.msp.T7 Fri Dec 09 09:34:56 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T8 -l c4\c4.log.T8 -i c4\c4.ini.T8 -nf c4\c4.fb.T8 -np 9001,9100 -v >> c4\c4.msp.T8 Fri Dec 09 09:34:56 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T9 -l c4\c4.log.T9 -i c4\c4.ini.T9 -nf c4\c4.fb.T9 -np 9101,9200 -v >> c4\c4.msp.T9 Fri Dec 09 09:34:58 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T0 -l c4\c4.log.T0 -i c4\c4.ini.T0 -nf c4\c4.fb.T0 -np 9201,9300 -v >> c4\c4.msp.T0 Fri Dec 09 09:34:58 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T1 -l c4\c4.log.T1 -i c4\c4.ini.T1 -nf c4\c4.fb.T1 -np 9301,9400 -v >> c4\c4.msp.T1 Fri Dec 09 09:34:58 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T2 -l c4\c4.log.T2 -i c4\c4.ini.T2 -nf c4\c4.fb.T2 -np 9401,9500 -v >> c4\c4.msp.T2 Fri Dec 09 09:34:58 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T3 -l c4\c4.log.T3 -i c4\c4.ini.T3 -nf c4\c4.fb.T3 -np 9501,9600 -v >> c4\c4.msp.T3 Fri Dec 09 09:34:58 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T4 -l c4\c4.log.T4 -i c4\c4.ini.T4 -nf c4\c4.fb.T4 -np 9601,9700 -v >> c4\c4.msp.T4 Fri Dec 09 09:34:58 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T5 -l c4\c4.log.T5 -i c4\c4.ini.T5 -nf c4\c4.fb.T5 -np 9701,9800 -v >> c4\c4.msp.T5 Fri Dec 09 09:34:58 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T7 -l c4\c4.log.T7 -i c4\c4.ini.T7 -nf c4\c4.fb.T7 -np 9801,9900 -v >> c4\c4.msp.T7 Fri Dec 09 09:34:58 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T8 -l c4\c4.log.T8 -i c4\c4.ini.T8 -nf c4\c4.fb.T8 -np 9901,10000 -v >> c4\c4.msp.T8 Fri Dec 09 09:34:58 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat.T9 -l c4\c4.log.T9 -i c4\c4.ini.T9 -nf c4\c4.fb.T9 -np 10001,10100 -v >> c4\c4.msp.T9 Fri Dec 09 09:34:59 2022 deleted c4.fb.T0 Fri Dec 09 09:34:59 2022 Best score so far: # norm 2.965046e-11 alpha -6.504381 e 3.505e-10 rroots 5 Fri Dec 09 09:34:59 2022 Best score so far: # norm 3.331535e-11 alpha -6.906577 e 3.782e-10 rroots 5 Fri Dec 09 09:34:59 2022 deleted c4.fb.T1 Fri Dec 09 09:34:59 2022 Best score so far: # norm 3.513239e-11 alpha -6.980317 e 3.952e-10 rroots 3 Fri Dec 09 09:34:59 2022 deleted c4.fb.T2 Fri Dec 09 09:34:59 2022 deleted c4.fb.T3 Fri Dec 09 09:34:59 2022 deleted c4.fb.T4 Fri Dec 09 09:34:59 2022 deleted c4.fb.T5 Fri Dec 09 09:34:59 2022 deleted c4.fb.T7 Fri Dec 09 09:34:59 2022 deleted c4.fb.T8 Fri Dec 09 09:34:59 2022 deleted c4.fb.T9 Fri Dec 09 09:34:59 2022 -> Selected lattice siever: gnfs-lasieve4I12e Fri Dec 09 09:34:59 2022 -> Creating param file to detect parameter changes... Fri Dec 09 09:34:59 2022 -> Running setup ... Fri Dec 09 09:34:59 2022 -> Estimated minimum relations needed: 8.4e+06 Fri Dec 09 09:34:59 2022 -> cleaning up before a restart Fri Dec 09 09:34:59 2022 -> Running lattice siever ... Fri Dec 09 09:34:59 2022 -> entering sieving loop Fri Dec 09 09:34:59 2022 -> making sieve job for q = 1800000 in 1800000 .. 1810000 as file c4.job.T0 Fri Dec 09 09:34:59 2022 -> making sieve job for q = 1810000 in 1810000 .. 1820000 as file c4.job.T1 Fri Dec 09 09:34:59 2022 -> making sieve job for q = 1820000 in 1820000 .. 1830000 as file c4.job.T2 Fri Dec 09 09:34:59 2022 -> making sieve job for q = 1830000 in 1830000 .. 1840000 as file c4.job.T3 Fri Dec 09 09:34:59 2022 -> making sieve job for q = 1840000 in 1840000 .. 1850000 as file c4.job.T4 Fri Dec 09 09:34:59 2022 -> making sieve job for q = 1850000 in 1850000 .. 1860000 as file c4.job.T5 Fri Dec 09 09:34:59 2022 -> making sieve job for q = 1860000 in 1860000 .. 1870000 as file c4.job.T6 Fri Dec 09 09:34:59 2022 -> making sieve job for q = 1870000 in 1870000 .. 1880000 as file c4.job.T7 Fri Dec 09 09:34:59 2022 -> making sieve job for q = 1880000 in 1880000 .. 1890000 as file c4.job.T8 Fri Dec 09 09:34:59 2022 -> making sieve job for q = 1890000 in 1890000 .. 1900000 as file c4.job.T9 Fri Dec 09 09:34:59 2022 -> Lattice sieving algebraic q from 1800000 to 1900000. Fri Dec 09 09:34:59 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T0 -v -n 0 -a c4.job.T0 Fri Dec 09 09:34:59 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T1 -v -n 1 -a c4.job.T1 Fri Dec 09 09:34:59 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T2 -v -n 2 -a c4.job.T2 Fri Dec 09 09:34:59 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T3 -v -n 3 -a c4.job.T3 Fri Dec 09 09:34:59 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T4 -v -n 4 -a c4.job.T4 Fri Dec 09 09:34:59 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T5 -v -n 5 -a c4.job.T5 Fri Dec 09 09:34:59 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T6 -v -n 6 -a c4.job.T6 Fri Dec 09 09:34:59 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T7 -v -n 7 -a c4.job.T7 Fri Dec 09 09:34:59 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T8 -v -n 8 -a c4.job.T8 Fri Dec 09 09:34:59 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T9 -v -n 9 -a c4.job.T9 Fri Dec 09 09:39:09 2022 Found 382352 relations, 4.6% of the estimated minimum (8400000). Fri Dec 09 09:39:09 2022 LatSieveTime: 249.835 Fri Dec 09 09:39:09 2022 -> making sieve job for q = 1900000 in 1900000 .. 1910000 as file c4.job.T0 Fri Dec 09 09:39:09 2022 -> making sieve job for q = 1910000 in 1910000 .. 1920000 as file c4.job.T1 Fri Dec 09 09:39:09 2022 -> making sieve job for q = 1920000 in 1920000 .. 1930000 as file c4.job.T2 Fri Dec 09 09:39:09 2022 -> making sieve job for q = 1930000 in 1930000 .. 1940000 as file c4.job.T3 Fri Dec 09 09:39:09 2022 -> making sieve job for q = 1940000 in 1940000 .. 1950000 as file c4.job.T4 Fri Dec 09 09:39:09 2022 -> making sieve job for q = 1950000 in 1950000 .. 1960000 as file c4.job.T5 Fri Dec 09 09:39:09 2022 -> making sieve job for q = 1960000 in 1960000 .. 1970000 as file c4.job.T6 Fri Dec 09 09:39:09 2022 -> making sieve job for q = 1970000 in 1970000 .. 1980000 as file c4.job.T7 Fri Dec 09 09:39:09 2022 -> making sieve job for q = 1980000 in 1980000 .. 1990000 as file c4.job.T8 Fri Dec 09 09:39:09 2022 -> making sieve job for q = 1990000 in 1990000 .. 2000000 as file c4.job.T9 Fri Dec 09 09:39:09 2022 -> Lattice sieving algebraic q from 1900000 to 2000000. Fri Dec 09 09:39:09 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T0 -v -n 0 -a c4.job.T0 Fri Dec 09 09:39:09 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T1 -v -n 1 -a c4.job.T1 Fri Dec 09 09:39:09 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T2 -v -n 2 -a c4.job.T2 Fri Dec 09 09:39:09 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T3 -v -n 3 -a c4.job.T3 Fri Dec 09 09:39:09 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T4 -v -n 4 -a c4.job.T4 Fri Dec 09 09:39:09 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T5 -v -n 5 -a c4.job.T5 Fri Dec 09 09:39:09 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T6 -v -n 6 -a c4.job.T6 Fri Dec 09 09:39:09 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T7 -v -n 7 -a c4.job.T7 Fri Dec 09 09:39:09 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T8 -v -n 8 -a c4.job.T8 Fri Dec 09 09:39:09 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T9 -v -n 9 -a c4.job.T9 Fri Dec 09 09:42:14 2022 Found 760648 relations, 9.1% of the estimated minimum (8400000). Fri Dec 09 09:42:14 2022 LatSieveTime: 185.61 Fri Dec 09 09:42:14 2022 -> making sieve job for q = 2000000 in 2000000 .. 2010000 as file c4.job.T0 Fri Dec 09 09:42:14 2022 -> making sieve job for q = 2010000 in 2010000 .. 2020000 as file c4.job.T1 Fri Dec 09 09:42:14 2022 -> making sieve job for q = 2020000 in 2020000 .. 2030000 as file c4.job.T2 Fri Dec 09 09:42:14 2022 -> making sieve job for q = 2030000 in 2030000 .. 2040000 as file c4.job.T3 Fri Dec 09 09:42:14 2022 -> making sieve job for q = 2040000 in 2040000 .. 2050000 as file c4.job.T4 Fri Dec 09 09:42:14 2022 -> making sieve job for q = 2050000 in 2050000 .. 2060000 as file c4.job.T5 Fri Dec 09 09:42:14 2022 -> making sieve job for q = 2060000 in 2060000 .. 2070000 as file c4.job.T6 Fri Dec 09 09:42:14 2022 -> making sieve job for q = 2070000 in 2070000 .. 2080000 as file c4.job.T7 Fri Dec 09 09:42:14 2022 -> making sieve job for q = 2080000 in 2080000 .. 2090000 as file c4.job.T8 Fri Dec 09 09:42:14 2022 -> making sieve job for q = 2090000 in 2090000 .. 2100000 as file c4.job.T9 Fri Dec 09 09:42:14 2022 -> Lattice sieving algebraic q from 2000000 to 2100000. Fri Dec 09 09:42:14 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T0 -v -n 0 -a c4.job.T0 Fri Dec 09 09:42:14 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T1 -v -n 1 -a c4.job.T1 Fri Dec 09 09:42:14 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T2 -v -n 2 -a c4.job.T2 Fri Dec 09 09:42:14 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T3 -v -n 3 -a c4.job.T3 Fri Dec 09 09:42:14 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T4 -v -n 4 -a c4.job.T4 Fri Dec 09 09:42:14 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T5 -v -n 5 -a c4.job.T5 Fri Dec 09 09:42:14 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T6 -v -n 6 -a c4.job.T6 Fri Dec 09 09:42:14 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T7 -v -n 7 -a c4.job.T7 Fri Dec 09 09:42:14 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T8 -v -n 8 -a c4.job.T8 Fri Dec 09 09:42:14 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T9 -v -n 9 -a c4.job.T9 Fri Dec 09 09:45:20 2022 Found 1144132 relations, 13.6% of the estimated minimum (8400000). Fri Dec 09 09:45:20 2022 LatSieveTime: 186.044 Fri Dec 09 09:45:20 2022 -> making sieve job for q = 2100000 in 2100000 .. 2110000 as file c4.job.T0 Fri Dec 09 09:45:20 2022 -> making sieve job for q = 2110000 in 2110000 .. 2120000 as file c4.job.T1 Fri Dec 09 09:45:20 2022 -> making sieve job for q = 2120000 in 2120000 .. 2130000 as file c4.job.T2 Fri Dec 09 09:45:20 2022 -> making sieve job for q = 2130000 in 2130000 .. 2140000 as file c4.job.T3 Fri Dec 09 09:45:20 2022 -> making sieve job for q = 2140000 in 2140000 .. 2150000 as file c4.job.T4 Fri Dec 09 09:45:20 2022 -> making sieve job for q = 2150000 in 2150000 .. 2160000 as file c4.job.T5 Fri Dec 09 09:45:20 2022 -> making sieve job for q = 2160000 in 2160000 .. 2170000 as file c4.job.T6 Fri Dec 09 09:45:20 2022 -> making sieve job for q = 2170000 in 2170000 .. 2180000 as file c4.job.T7 Fri Dec 09 09:45:20 2022 -> making sieve job for q = 2180000 in 2180000 .. 2190000 as file c4.job.T8 Fri Dec 09 09:45:20 2022 -> making sieve job for q = 2190000 in 2190000 .. 2200000 as file c4.job.T9 Fri Dec 09 09:45:20 2022 -> Lattice sieving algebraic q from 2100000 to 2200000. Fri Dec 09 09:45:20 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T0 -v -n 0 -a c4.job.T0 Fri Dec 09 09:45:20 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T1 -v -n 1 -a c4.job.T1 Fri Dec 09 09:45:20 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T2 -v -n 2 -a c4.job.T2 Fri Dec 09 09:45:20 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T3 -v -n 3 -a c4.job.T3 Fri Dec 09 09:45:20 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T4 -v -n 4 -a c4.job.T4 Fri Dec 09 09:45:20 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T5 -v -n 5 -a c4.job.T5 Fri Dec 09 09:45:20 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T6 -v -n 6 -a c4.job.T6 Fri Dec 09 09:45:20 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T7 -v -n 7 -a c4.job.T7 Fri Dec 09 09:45:20 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T8 -v -n 8 -a c4.job.T8 Fri Dec 09 09:45:20 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T9 -v -n 9 -a c4.job.T9 Fri Dec 09 09:48:26 2022 Found 1534387 relations, 18.3% of the estimated minimum (8400000). Fri Dec 09 09:48:26 2022 LatSieveTime: 185.096 Fri Dec 09 09:48:26 2022 -> making sieve job for q = 2200000 in 2200000 .. 2210000 as file c4.job.T0 Fri Dec 09 09:48:26 2022 -> making sieve job for q = 2210000 in 2210000 .. 2220000 as file c4.job.T1 Fri Dec 09 09:48:26 2022 -> making sieve job for q = 2220000 in 2220000 .. 2230000 as file c4.job.T2 Fri Dec 09 09:48:26 2022 -> making sieve job for q = 2230000 in 2230000 .. 2240000 as file c4.job.T3 Fri Dec 09 09:48:26 2022 -> making sieve job for q = 2240000 in 2240000 .. 2250000 as file c4.job.T4 Fri Dec 09 09:48:26 2022 -> making sieve job for q = 2250000 in 2250000 .. 2260000 as file c4.job.T5 Fri Dec 09 09:48:26 2022 -> making sieve job for q = 2260000 in 2260000 .. 2270000 as file c4.job.T6 Fri Dec 09 09:48:26 2022 -> making sieve job for q = 2270000 in 2270000 .. 2280000 as file c4.job.T7 Fri Dec 09 09:48:26 2022 -> making sieve job for q = 2280000 in 2280000 .. 2290000 as file c4.job.T8 Fri Dec 09 09:48:26 2022 -> making sieve job for q = 2290000 in 2290000 .. 2300000 as file c4.job.T9 Fri Dec 09 09:48:26 2022 -> Lattice sieving algebraic q from 2200000 to 2300000. Fri Dec 09 09:48:26 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T0 -v -n 0 -a c4.job.T0 Fri Dec 09 09:48:26 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T1 -v -n 1 -a c4.job.T1 Fri Dec 09 09:48:26 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T2 -v -n 2 -a c4.job.T2 Fri Dec 09 09:48:26 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T3 -v -n 3 -a c4.job.T3 Fri Dec 09 09:48:26 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T4 -v -n 4 -a c4.job.T4 Fri Dec 09 09:48:26 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T5 -v -n 5 -a c4.job.T5 Fri Dec 09 09:48:26 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T6 -v -n 6 -a c4.job.T6 Fri Dec 09 09:48:26 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T7 -v -n 7 -a c4.job.T7 Fri Dec 09 09:48:26 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T8 -v -n 8 -a c4.job.T8 Fri Dec 09 09:48:26 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T9 -v -n 9 -a c4.job.T9 Fri Dec 09 09:51:27 2022 Found 1913563 relations, 22.8% of the estimated minimum (8400000). Fri Dec 09 09:51:27 2022 LatSieveTime: 181.209 Fri Dec 09 09:51:27 2022 -> making sieve job for q = 2300000 in 2300000 .. 2310000 as file c4.job.T0 Fri Dec 09 09:51:27 2022 -> making sieve job for q = 2310000 in 2310000 .. 2320000 as file c4.job.T1 Fri Dec 09 09:51:27 2022 -> making sieve job for q = 2320000 in 2320000 .. 2330000 as file c4.job.T2 Fri Dec 09 09:51:27 2022 -> making sieve job for q = 2330000 in 2330000 .. 2340000 as file c4.job.T3 Fri Dec 09 09:51:27 2022 -> making sieve job for q = 2340000 in 2340000 .. 2350000 as file c4.job.T4 Fri Dec 09 09:51:27 2022 -> making sieve job for q = 2350000 in 2350000 .. 2360000 as file c4.job.T5 Fri Dec 09 09:51:27 2022 -> making sieve job for q = 2360000 in 2360000 .. 2370000 as file c4.job.T6 Fri Dec 09 09:51:27 2022 -> making sieve job for q = 2370000 in 2370000 .. 2380000 as file c4.job.T7 Fri Dec 09 09:51:27 2022 -> making sieve job for q = 2380000 in 2380000 .. 2390000 as file c4.job.T8 Fri Dec 09 09:51:27 2022 -> making sieve job for q = 2390000 in 2390000 .. 2400000 as file c4.job.T9 Fri Dec 09 09:51:27 2022 -> Lattice sieving algebraic q from 2300000 to 2400000. Fri Dec 09 09:51:27 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T0 -v -n 0 -a c4.job.T0 Fri Dec 09 09:51:27 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T1 -v -n 1 -a c4.job.T1 Fri Dec 09 09:51:27 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T2 -v -n 2 -a c4.job.T2 Fri Dec 09 09:51:27 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T3 -v -n 3 -a c4.job.T3 Fri Dec 09 09:51:27 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T4 -v -n 4 -a c4.job.T4 Fri Dec 09 09:51:27 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T5 -v -n 5 -a c4.job.T5 Fri Dec 09 09:51:27 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T6 -v -n 6 -a c4.job.T6 Fri Dec 09 09:51:27 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T7 -v -n 7 -a c4.job.T7 Fri Dec 09 09:51:27 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T8 -v -n 8 -a c4.job.T8 Fri Dec 09 09:51:27 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T9 -v -n 9 -a c4.job.T9 Fri Dec 09 09:54:39 2022 Found 2296922 relations, 27.3% of the estimated minimum (8400000). Fri Dec 09 09:54:39 2022 LatSieveTime: 192.432 Fri Dec 09 09:54:39 2022 -> making sieve job for q = 2400000 in 2400000 .. 2410000 as file c4.job.T0 Fri Dec 09 09:54:39 2022 -> making sieve job for q = 2410000 in 2410000 .. 2420000 as file c4.job.T1 Fri Dec 09 09:54:39 2022 -> making sieve job for q = 2420000 in 2420000 .. 2430000 as file c4.job.T2 Fri Dec 09 09:54:39 2022 -> making sieve job for q = 2430000 in 2430000 .. 2440000 as file c4.job.T3 Fri Dec 09 09:54:39 2022 -> making sieve job for q = 2440000 in 2440000 .. 2450000 as file c4.job.T4 Fri Dec 09 09:54:39 2022 -> making sieve job for q = 2450000 in 2450000 .. 2460000 as file c4.job.T5 Fri Dec 09 09:54:39 2022 -> making sieve job for q = 2460000 in 2460000 .. 2470000 as file c4.job.T6 Fri Dec 09 09:54:39 2022 -> making sieve job for q = 2470000 in 2470000 .. 2480000 as file c4.job.T7 Fri Dec 09 09:54:39 2022 -> making sieve job for q = 2480000 in 2480000 .. 2490000 as file c4.job.T8 Fri Dec 09 09:54:39 2022 -> making sieve job for q = 2490000 in 2490000 .. 2500000 as file c4.job.T9 Fri Dec 09 09:54:39 2022 -> Lattice sieving algebraic q from 2400000 to 2500000. Fri Dec 09 09:54:39 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T0 -v -n 0 -a c4.job.T0 Fri Dec 09 09:54:39 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T1 -v -n 1 -a c4.job.T1 Fri Dec 09 09:54:39 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T2 -v -n 2 -a c4.job.T2 Fri Dec 09 09:54:39 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T3 -v -n 3 -a c4.job.T3 Fri Dec 09 09:54:39 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T4 -v -n 4 -a c4.job.T4 Fri Dec 09 09:54:39 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T5 -v -n 5 -a c4.job.T5 Fri Dec 09 09:54:39 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T6 -v -n 6 -a c4.job.T6 Fri Dec 09 09:54:39 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T7 -v -n 7 -a c4.job.T7 Fri Dec 09 09:54:39 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T8 -v -n 8 -a c4.job.T8 Fri Dec 09 09:54:39 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T9 -v -n 9 -a c4.job.T9 Fri Dec 09 09:57:47 2022 Found 2686500 relations, 32.0% of the estimated minimum (8400000). Fri Dec 09 09:57:47 2022 LatSieveTime: 187.703 Fri Dec 09 09:57:47 2022 -> making sieve job for q = 2500000 in 2500000 .. 2510000 as file c4.job.T0 Fri Dec 09 09:57:47 2022 -> making sieve job for q = 2510000 in 2510000 .. 2520000 as file c4.job.T1 Fri Dec 09 09:57:47 2022 -> making sieve job for q = 2520000 in 2520000 .. 2530000 as file c4.job.T2 Fri Dec 09 09:57:47 2022 -> making sieve job for q = 2530000 in 2530000 .. 2540000 as file c4.job.T3 Fri Dec 09 09:57:47 2022 -> making sieve job for q = 2540000 in 2540000 .. 2550000 as file c4.job.T4 Fri Dec 09 09:57:47 2022 -> making sieve job for q = 2550000 in 2550000 .. 2560000 as file c4.job.T5 Fri Dec 09 09:57:47 2022 -> making sieve job for q = 2560000 in 2560000 .. 2570000 as file c4.job.T6 Fri Dec 09 09:57:47 2022 -> making sieve job for q = 2570000 in 2570000 .. 2580000 as file c4.job.T7 Fri Dec 09 09:57:47 2022 -> making sieve job for q = 2580000 in 2580000 .. 2590000 as file c4.job.T8 Fri Dec 09 09:57:47 2022 -> making sieve job for q = 2590000 in 2590000 .. 2600000 as file c4.job.T9 Fri Dec 09 09:57:47 2022 -> Lattice sieving algebraic q from 2500000 to 2600000. Fri Dec 09 09:57:47 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T0 -v -n 0 -a c4.job.T0 Fri Dec 09 09:57:47 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T1 -v -n 1 -a c4.job.T1 Fri Dec 09 09:57:47 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T2 -v -n 2 -a c4.job.T2 Fri Dec 09 09:57:47 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T3 -v -n 3 -a c4.job.T3 Fri Dec 09 09:57:47 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T4 -v -n 4 -a c4.job.T4 Fri Dec 09 09:57:47 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T5 -v -n 5 -a c4.job.T5 Fri Dec 09 09:57:47 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T6 -v -n 6 -a c4.job.T6 Fri Dec 09 09:57:47 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T7 -v -n 7 -a c4.job.T7 Fri Dec 09 09:57:47 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T8 -v -n 8 -a c4.job.T8 Fri Dec 09 09:57:47 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T9 -v -n 9 -a c4.job.T9 Fri Dec 09 10:00:55 2022 Found 3077612 relations, 36.6% of the estimated minimum (8400000). Fri Dec 09 10:00:55 2022 LatSieveTime: 187.86 Fri Dec 09 10:00:55 2022 -> making sieve job for q = 2600000 in 2600000 .. 2610000 as file c4.job.T0 Fri Dec 09 10:00:55 2022 -> making sieve job for q = 2610000 in 2610000 .. 2620000 as file c4.job.T1 Fri Dec 09 10:00:55 2022 -> making sieve job for q = 2620000 in 2620000 .. 2630000 as file c4.job.T2 Fri Dec 09 10:00:55 2022 -> making sieve job for q = 2630000 in 2630000 .. 2640000 as file c4.job.T3 Fri Dec 09 10:00:55 2022 -> making sieve job for q = 2640000 in 2640000 .. 2650000 as file c4.job.T4 Fri Dec 09 10:00:55 2022 -> making sieve job for q = 2650000 in 2650000 .. 2660000 as file c4.job.T5 Fri Dec 09 10:00:55 2022 -> making sieve job for q = 2660000 in 2660000 .. 2670000 as file c4.job.T6 Fri Dec 09 10:00:55 2022 -> making sieve job for q = 2670000 in 2670000 .. 2680000 as file c4.job.T7 Fri Dec 09 10:00:55 2022 -> making sieve job for q = 2680000 in 2680000 .. 2690000 as file c4.job.T8 Fri Dec 09 10:00:55 2022 -> making sieve job for q = 2690000 in 2690000 .. 2700000 as file c4.job.T9 Fri Dec 09 10:00:55 2022 -> Lattice sieving algebraic q from 2600000 to 2700000. Fri Dec 09 10:00:55 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T0 -v -n 0 -a c4.job.T0 Fri Dec 09 10:00:55 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T1 -v -n 1 -a c4.job.T1 Fri Dec 09 10:00:55 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T2 -v -n 2 -a c4.job.T2 Fri Dec 09 10:00:55 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T3 -v -n 3 -a c4.job.T3 Fri Dec 09 10:00:55 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T4 -v -n 4 -a c4.job.T4 Fri Dec 09 10:00:55 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T5 -v -n 5 -a c4.job.T5 Fri Dec 09 10:00:55 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T6 -v -n 6 -a c4.job.T6 Fri Dec 09 10:00:55 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T7 -v -n 7 -a c4.job.T7 Fri Dec 09 10:00:55 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T8 -v -n 8 -a c4.job.T8 Fri Dec 09 10:00:55 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T9 -v -n 9 -a c4.job.T9 Fri Dec 09 10:04:08 2022 Found 3470685 relations, 41.3% of the estimated minimum (8400000). Fri Dec 09 10:04:08 2022 LatSieveTime: 193.091 Fri Dec 09 10:04:08 2022 -> making sieve job for q = 2700000 in 2700000 .. 2710000 as file c4.job.T0 Fri Dec 09 10:04:08 2022 -> making sieve job for q = 2710000 in 2710000 .. 2720000 as file c4.job.T1 Fri Dec 09 10:04:08 2022 -> making sieve job for q = 2720000 in 2720000 .. 2730000 as file c4.job.T2 Fri Dec 09 10:04:08 2022 -> making sieve job for q = 2730000 in 2730000 .. 2740000 as file c4.job.T3 Fri Dec 09 10:04:08 2022 -> making sieve job for q = 2740000 in 2740000 .. 2750000 as file c4.job.T4 Fri Dec 09 10:04:08 2022 -> making sieve job for q = 2750000 in 2750000 .. 2760000 as file c4.job.T5 Fri Dec 09 10:04:08 2022 -> making sieve job for q = 2760000 in 2760000 .. 2770000 as file c4.job.T6 Fri Dec 09 10:04:08 2022 -> making sieve job for q = 2770000 in 2770000 .. 2780000 as file c4.job.T7 Fri Dec 09 10:04:08 2022 -> making sieve job for q = 2780000 in 2780000 .. 2790000 as file c4.job.T8 Fri Dec 09 10:04:08 2022 -> making sieve job for q = 2790000 in 2790000 .. 2800000 as file c4.job.T9 Fri Dec 09 10:04:08 2022 -> Lattice sieving algebraic q from 2700000 to 2800000. Fri Dec 09 10:04:08 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T0 -v -n 0 -a c4.job.T0 Fri Dec 09 10:04:08 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T1 -v -n 1 -a c4.job.T1 Fri Dec 09 10:04:08 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T2 -v -n 2 -a c4.job.T2 Fri Dec 09 10:04:08 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T3 -v -n 3 -a c4.job.T3 Fri Dec 09 10:04:08 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T4 -v -n 4 -a c4.job.T4 Fri Dec 09 10:04:08 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T5 -v -n 5 -a c4.job.T5 Fri Dec 09 10:04:08 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T6 -v -n 6 -a c4.job.T6 Fri Dec 09 10:04:08 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T7 -v -n 7 -a c4.job.T7 Fri Dec 09 10:04:08 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T8 -v -n 8 -a c4.job.T8 Fri Dec 09 10:04:08 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T9 -v -n 9 -a c4.job.T9 Fri Dec 09 10:07:35 2022 Found 3858648 relations, 45.9% of the estimated minimum (8400000). Fri Dec 09 10:07:35 2022 LatSieveTime: 207.268 Fri Dec 09 10:07:35 2022 -> making sieve job for q = 2800000 in 2800000 .. 2810000 as file c4.job.T0 Fri Dec 09 10:07:35 2022 -> making sieve job for q = 2810000 in 2810000 .. 2820000 as file c4.job.T1 Fri Dec 09 10:07:35 2022 -> making sieve job for q = 2820000 in 2820000 .. 2830000 as file c4.job.T2 Fri Dec 09 10:07:35 2022 -> making sieve job for q = 2830000 in 2830000 .. 2840000 as file c4.job.T3 Fri Dec 09 10:07:35 2022 -> making sieve job for q = 2840000 in 2840000 .. 2850000 as file c4.job.T4 Fri Dec 09 10:07:35 2022 -> making sieve job for q = 2850000 in 2850000 .. 2860000 as file c4.job.T5 Fri Dec 09 10:07:35 2022 -> making sieve job for q = 2860000 in 2860000 .. 2870000 as file c4.job.T6 Fri Dec 09 10:07:35 2022 -> making sieve job for q = 2870000 in 2870000 .. 2880000 as file c4.job.T7 Fri Dec 09 10:07:35 2022 -> making sieve job for q = 2880000 in 2880000 .. 2890000 as file c4.job.T8 Fri Dec 09 10:07:35 2022 -> making sieve job for q = 2890000 in 2890000 .. 2900000 as file c4.job.T9 Fri Dec 09 10:07:35 2022 -> Lattice sieving algebraic q from 2800000 to 2900000. Fri Dec 09 10:07:35 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T0 -v -n 0 -a c4.job.T0 Fri Dec 09 10:07:35 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T1 -v -n 1 -a c4.job.T1 Fri Dec 09 10:07:35 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T2 -v -n 2 -a c4.job.T2 Fri Dec 09 10:07:35 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T3 -v -n 3 -a c4.job.T3 Fri Dec 09 10:07:35 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T4 -v -n 4 -a c4.job.T4 Fri Dec 09 10:07:35 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T5 -v -n 5 -a c4.job.T5 Fri Dec 09 10:07:35 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T6 -v -n 6 -a c4.job.T6 Fri Dec 09 10:07:35 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T7 -v -n 7 -a c4.job.T7 Fri Dec 09 10:07:35 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T8 -v -n 8 -a c4.job.T8 Fri Dec 09 10:07:35 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T9 -v -n 9 -a c4.job.T9 Fri Dec 09 10:10:52 2022 Found 4244285 relations, 50.5% of the estimated minimum (8400000). Fri Dec 09 10:10:52 2022 LatSieveTime: 196.397 Fri Dec 09 10:10:52 2022 -> making sieve job for q = 2900000 in 2900000 .. 2910000 as file c4.job.T0 Fri Dec 09 10:10:52 2022 -> making sieve job for q = 2910000 in 2910000 .. 2920000 as file c4.job.T1 Fri Dec 09 10:10:52 2022 -> making sieve job for q = 2920000 in 2920000 .. 2930000 as file c4.job.T2 Fri Dec 09 10:10:52 2022 -> making sieve job for q = 2930000 in 2930000 .. 2940000 as file c4.job.T3 Fri Dec 09 10:10:52 2022 -> making sieve job for q = 2940000 in 2940000 .. 2950000 as file c4.job.T4 Fri Dec 09 10:10:52 2022 -> making sieve job for q = 2950000 in 2950000 .. 2960000 as file c4.job.T5 Fri Dec 09 10:10:52 2022 -> making sieve job for q = 2960000 in 2960000 .. 2970000 as file c4.job.T6 Fri Dec 09 10:10:52 2022 -> making sieve job for q = 2970000 in 2970000 .. 2980000 as file c4.job.T7 Fri Dec 09 10:10:52 2022 -> making sieve job for q = 2980000 in 2980000 .. 2990000 as file c4.job.T8 Fri Dec 09 10:10:52 2022 -> making sieve job for q = 2990000 in 2990000 .. 3000000 as file c4.job.T9 Fri Dec 09 10:10:52 2022 -> Lattice sieving algebraic q from 2900000 to 3000000. Fri Dec 09 10:10:52 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T0 -v -n 0 -a c4.job.T0 Fri Dec 09 10:10:52 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T1 -v -n 1 -a c4.job.T1 Fri Dec 09 10:10:52 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T2 -v -n 2 -a c4.job.T2 Fri Dec 09 10:10:52 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T3 -v -n 3 -a c4.job.T3 Fri Dec 09 10:10:52 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T4 -v -n 4 -a c4.job.T4 Fri Dec 09 10:10:52 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T5 -v -n 5 -a c4.job.T5 Fri Dec 09 10:10:52 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T6 -v -n 6 -a c4.job.T6 Fri Dec 09 10:10:52 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T7 -v -n 7 -a c4.job.T7 Fri Dec 09 10:10:52 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T8 -v -n 8 -a c4.job.T8 Fri Dec 09 10:10:52 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T9 -v -n 9 -a c4.job.T9 Fri Dec 09 10:14:19 2022 Found 4628785 relations, 55.1% of the estimated minimum (8400000). Fri Dec 09 10:14:19 2022 LatSieveTime: 207.763 Fri Dec 09 10:14:19 2022 -> making sieve job for q = 3000000 in 3000000 .. 3010000 as file c4.job.T0 Fri Dec 09 10:14:19 2022 -> making sieve job for q = 3010000 in 3010000 .. 3020000 as file c4.job.T1 Fri Dec 09 10:14:19 2022 -> making sieve job for q = 3020000 in 3020000 .. 3030000 as file c4.job.T2 Fri Dec 09 10:14:19 2022 -> making sieve job for q = 3030000 in 3030000 .. 3040000 as file c4.job.T3 Fri Dec 09 10:14:19 2022 -> making sieve job for q = 3040000 in 3040000 .. 3050000 as file c4.job.T4 Fri Dec 09 10:14:19 2022 -> making sieve job for q = 3050000 in 3050000 .. 3060000 as file c4.job.T5 Fri Dec 09 10:14:19 2022 -> making sieve job for q = 3060000 in 3060000 .. 3070000 as file c4.job.T6 Fri Dec 09 10:14:19 2022 -> making sieve job for q = 3070000 in 3070000 .. 3080000 as file c4.job.T7 Fri Dec 09 10:14:19 2022 -> making sieve job for q = 3080000 in 3080000 .. 3090000 as file c4.job.T8 Fri Dec 09 10:14:19 2022 -> making sieve job for q = 3090000 in 3090000 .. 3100000 as file c4.job.T9 Fri Dec 09 10:14:19 2022 -> Lattice sieving algebraic q from 3000000 to 3100000. Fri Dec 09 10:14:19 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T0 -v -n 0 -a c4.job.T0 Fri Dec 09 10:14:19 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T1 -v -n 1 -a c4.job.T1 Fri Dec 09 10:14:19 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T2 -v -n 2 -a c4.job.T2 Fri Dec 09 10:14:19 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T3 -v -n 3 -a c4.job.T3 Fri Dec 09 10:14:19 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T4 -v -n 4 -a c4.job.T4 Fri Dec 09 10:14:19 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T5 -v -n 5 -a c4.job.T5 Fri Dec 09 10:14:19 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T6 -v -n 6 -a c4.job.T6 Fri Dec 09 10:14:19 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T7 -v -n 7 -a c4.job.T7 Fri Dec 09 10:14:19 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T8 -v -n 8 -a c4.job.T8 Fri Dec 09 10:14:19 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T9 -v -n 9 -a c4.job.T9 Fri Dec 09 10:17:47 2022 Found 5013043 relations, 59.7% of the estimated minimum (8400000). Fri Dec 09 10:17:47 2022 LatSieveTime: 207.817 Fri Dec 09 10:17:47 2022 -> making sieve job for q = 3100000 in 3100000 .. 3110000 as file c4.job.T0 Fri Dec 09 10:17:47 2022 -> making sieve job for q = 3110000 in 3110000 .. 3120000 as file c4.job.T1 Fri Dec 09 10:17:47 2022 -> making sieve job for q = 3120000 in 3120000 .. 3130000 as file c4.job.T2 Fri Dec 09 10:17:47 2022 -> making sieve job for q = 3130000 in 3130000 .. 3140000 as file c4.job.T3 Fri Dec 09 10:17:47 2022 -> making sieve job for q = 3140000 in 3140000 .. 3150000 as file c4.job.T4 Fri Dec 09 10:17:47 2022 -> making sieve job for q = 3150000 in 3150000 .. 3160000 as file c4.job.T5 Fri Dec 09 10:17:47 2022 -> making sieve job for q = 3160000 in 3160000 .. 3170000 as file c4.job.T6 Fri Dec 09 10:17:47 2022 -> making sieve job for q = 3170000 in 3170000 .. 3180000 as file c4.job.T7 Fri Dec 09 10:17:47 2022 -> making sieve job for q = 3180000 in 3180000 .. 3190000 as file c4.job.T8 Fri Dec 09 10:17:47 2022 -> making sieve job for q = 3190000 in 3190000 .. 3200000 as file c4.job.T9 Fri Dec 09 10:17:47 2022 -> Lattice sieving algebraic q from 3100000 to 3200000. Fri Dec 09 10:17:47 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T0 -v -n 0 -a c4.job.T0 Fri Dec 09 10:17:47 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T1 -v -n 1 -a c4.job.T1 Fri Dec 09 10:17:47 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T2 -v -n 2 -a c4.job.T2 Fri Dec 09 10:17:47 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T3 -v -n 3 -a c4.job.T3 Fri Dec 09 10:17:47 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T4 -v -n 4 -a c4.job.T4 Fri Dec 09 10:17:47 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T5 -v -n 5 -a c4.job.T5 Fri Dec 09 10:17:47 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T6 -v -n 6 -a c4.job.T6 Fri Dec 09 10:17:47 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T7 -v -n 7 -a c4.job.T7 Fri Dec 09 10:17:47 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T8 -v -n 8 -a c4.job.T8 Fri Dec 09 10:17:47 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T9 -v -n 9 -a c4.job.T9 Fri Dec 09 10:21:26 2022 Found 5392943 relations, 64.2% of the estimated minimum (8400000). Fri Dec 09 10:21:26 2022 LatSieveTime: 218.918 Fri Dec 09 10:21:26 2022 -> making sieve job for q = 3200000 in 3200000 .. 3210000 as file c4.job.T0 Fri Dec 09 10:21:26 2022 -> making sieve job for q = 3210000 in 3210000 .. 3220000 as file c4.job.T1 Fri Dec 09 10:21:26 2022 -> making sieve job for q = 3220000 in 3220000 .. 3230000 as file c4.job.T2 Fri Dec 09 10:21:26 2022 -> making sieve job for q = 3230000 in 3230000 .. 3240000 as file c4.job.T3 Fri Dec 09 10:21:26 2022 -> making sieve job for q = 3240000 in 3240000 .. 3250000 as file c4.job.T4 Fri Dec 09 10:21:26 2022 -> making sieve job for q = 3250000 in 3250000 .. 3260000 as file c4.job.T5 Fri Dec 09 10:21:26 2022 -> making sieve job for q = 3260000 in 3260000 .. 3270000 as file c4.job.T6 Fri Dec 09 10:21:26 2022 -> making sieve job for q = 3270000 in 3270000 .. 3280000 as file c4.job.T7 Fri Dec 09 10:21:26 2022 -> making sieve job for q = 3280000 in 3280000 .. 3290000 as file c4.job.T8 Fri Dec 09 10:21:26 2022 -> making sieve job for q = 3290000 in 3290000 .. 3300000 as file c4.job.T9 Fri Dec 09 10:21:26 2022 -> Lattice sieving algebraic q from 3200000 to 3300000. Fri Dec 09 10:21:26 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T0 -v -n 0 -a c4.job.T0 Fri Dec 09 10:21:26 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T1 -v -n 1 -a c4.job.T1 Fri Dec 09 10:21:26 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T2 -v -n 2 -a c4.job.T2 Fri Dec 09 10:21:26 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T3 -v -n 3 -a c4.job.T3 Fri Dec 09 10:21:26 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T4 -v -n 4 -a c4.job.T4 Fri Dec 09 10:21:26 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T5 -v -n 5 -a c4.job.T5 Fri Dec 09 10:21:26 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T6 -v -n 6 -a c4.job.T6 Fri Dec 09 10:21:26 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T7 -v -n 7 -a c4.job.T7 Fri Dec 09 10:21:26 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T8 -v -n 8 -a c4.job.T8 Fri Dec 09 10:21:26 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T9 -v -n 9 -a c4.job.T9 Fri Dec 09 10:25:03 2022 Found 5763446 relations, 68.6% of the estimated minimum (8400000). Fri Dec 09 10:25:03 2022 LatSieveTime: 216.861 Fri Dec 09 10:25:03 2022 -> making sieve job for q = 3300000 in 3300000 .. 3310000 as file c4.job.T0 Fri Dec 09 10:25:03 2022 -> making sieve job for q = 3310000 in 3310000 .. 3320000 as file c4.job.T1 Fri Dec 09 10:25:03 2022 -> making sieve job for q = 3320000 in 3320000 .. 3330000 as file c4.job.T2 Fri Dec 09 10:25:03 2022 -> making sieve job for q = 3330000 in 3330000 .. 3340000 as file c4.job.T3 Fri Dec 09 10:25:03 2022 -> making sieve job for q = 3340000 in 3340000 .. 3350000 as file c4.job.T4 Fri Dec 09 10:25:03 2022 -> making sieve job for q = 3350000 in 3350000 .. 3360000 as file c4.job.T5 Fri Dec 09 10:25:03 2022 -> making sieve job for q = 3360000 in 3360000 .. 3370000 as file c4.job.T6 Fri Dec 09 10:25:03 2022 -> making sieve job for q = 3370000 in 3370000 .. 3380000 as file c4.job.T7 Fri Dec 09 10:25:03 2022 -> making sieve job for q = 3380000 in 3380000 .. 3390000 as file c4.job.T8 Fri Dec 09 10:25:03 2022 -> making sieve job for q = 3390000 in 3390000 .. 3400000 as file c4.job.T9 Fri Dec 09 10:25:03 2022 -> Lattice sieving algebraic q from 3300000 to 3400000. Fri Dec 09 10:25:03 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T0 -v -n 0 -a c4.job.T0 Fri Dec 09 10:25:03 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T1 -v -n 1 -a c4.job.T1 Fri Dec 09 10:25:03 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T2 -v -n 2 -a c4.job.T2 Fri Dec 09 10:25:03 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T3 -v -n 3 -a c4.job.T3 Fri Dec 09 10:25:03 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T4 -v -n 4 -a c4.job.T4 Fri Dec 09 10:25:03 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T5 -v -n 5 -a c4.job.T5 Fri Dec 09 10:25:03 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T6 -v -n 6 -a c4.job.T6 Fri Dec 09 10:25:03 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T7 -v -n 7 -a c4.job.T7 Fri Dec 09 10:25:03 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T8 -v -n 8 -a c4.job.T8 Fri Dec 09 10:25:03 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T9 -v -n 9 -a c4.job.T9 Fri Dec 09 10:28:26 2022 Found 6151518 relations, 73.2% of the estimated minimum (8400000). Fri Dec 09 10:28:26 2022 LatSieveTime: 203.449 Fri Dec 09 10:28:26 2022 -> making sieve job for q = 3400000 in 3400000 .. 3410000 as file c4.job.T0 Fri Dec 09 10:28:26 2022 -> making sieve job for q = 3410000 in 3410000 .. 3420000 as file c4.job.T1 Fri Dec 09 10:28:26 2022 -> making sieve job for q = 3420000 in 3420000 .. 3430000 as file c4.job.T2 Fri Dec 09 10:28:26 2022 -> making sieve job for q = 3430000 in 3430000 .. 3440000 as file c4.job.T3 Fri Dec 09 10:28:26 2022 -> making sieve job for q = 3440000 in 3440000 .. 3450000 as file c4.job.T4 Fri Dec 09 10:28:26 2022 -> making sieve job for q = 3450000 in 3450000 .. 3460000 as file c4.job.T5 Fri Dec 09 10:28:26 2022 -> making sieve job for q = 3460000 in 3460000 .. 3470000 as file c4.job.T6 Fri Dec 09 10:28:26 2022 -> making sieve job for q = 3470000 in 3470000 .. 3480000 as file c4.job.T7 Fri Dec 09 10:28:26 2022 -> making sieve job for q = 3480000 in 3480000 .. 3490000 as file c4.job.T8 Fri Dec 09 10:28:26 2022 -> making sieve job for q = 3490000 in 3490000 .. 3500000 as file c4.job.T9 Fri Dec 09 10:28:26 2022 -> Lattice sieving algebraic q from 3400000 to 3500000. Fri Dec 09 10:28:26 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T0 -v -n 0 -a c4.job.T0 Fri Dec 09 10:28:26 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T1 -v -n 1 -a c4.job.T1 Fri Dec 09 10:28:26 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T2 -v -n 2 -a c4.job.T2 Fri Dec 09 10:28:26 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T3 -v -n 3 -a c4.job.T3 Fri Dec 09 10:28:26 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T4 -v -n 4 -a c4.job.T4 Fri Dec 09 10:28:26 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T5 -v -n 5 -a c4.job.T5 Fri Dec 09 10:28:26 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T6 -v -n 6 -a c4.job.T6 Fri Dec 09 10:28:26 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T7 -v -n 7 -a c4.job.T7 Fri Dec 09 10:28:26 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T8 -v -n 8 -a c4.job.T8 Fri Dec 09 10:28:26 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T9 -v -n 9 -a c4.job.T9 Fri Dec 09 10:31:45 2022 Found 6528312 relations, 77.7% of the estimated minimum (8400000). Fri Dec 09 10:31:45 2022 LatSieveTime: 198.758 Fri Dec 09 10:31:45 2022 -> making sieve job for q = 3500000 in 3500000 .. 3510000 as file c4.job.T0 Fri Dec 09 10:31:45 2022 -> making sieve job for q = 3510000 in 3510000 .. 3520000 as file c4.job.T1 Fri Dec 09 10:31:45 2022 -> making sieve job for q = 3520000 in 3520000 .. 3530000 as file c4.job.T2 Fri Dec 09 10:31:45 2022 -> making sieve job for q = 3530000 in 3530000 .. 3540000 as file c4.job.T3 Fri Dec 09 10:31:45 2022 -> making sieve job for q = 3540000 in 3540000 .. 3550000 as file c4.job.T4 Fri Dec 09 10:31:45 2022 -> making sieve job for q = 3550000 in 3550000 .. 3560000 as file c4.job.T5 Fri Dec 09 10:31:45 2022 -> making sieve job for q = 3560000 in 3560000 .. 3570000 as file c4.job.T6 Fri Dec 09 10:31:45 2022 -> making sieve job for q = 3570000 in 3570000 .. 3580000 as file c4.job.T7 Fri Dec 09 10:31:45 2022 -> making sieve job for q = 3580000 in 3580000 .. 3590000 as file c4.job.T8 Fri Dec 09 10:31:45 2022 -> making sieve job for q = 3590000 in 3590000 .. 3600000 as file c4.job.T9 Fri Dec 09 10:31:45 2022 -> Lattice sieving algebraic q from 3500000 to 3600000. Fri Dec 09 10:31:45 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T0 -v -n 0 -a c4.job.T0 Fri Dec 09 10:31:45 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T1 -v -n 1 -a c4.job.T1 Fri Dec 09 10:31:45 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T2 -v -n 2 -a c4.job.T2 Fri Dec 09 10:31:45 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T3 -v -n 3 -a c4.job.T3 Fri Dec 09 10:31:45 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T4 -v -n 4 -a c4.job.T4 Fri Dec 09 10:31:45 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T5 -v -n 5 -a c4.job.T5 Fri Dec 09 10:31:45 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T6 -v -n 6 -a c4.job.T6 Fri Dec 09 10:31:45 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T7 -v -n 7 -a c4.job.T7 Fri Dec 09 10:31:45 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T8 -v -n 8 -a c4.job.T8 Fri Dec 09 10:31:45 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T9 -v -n 9 -a c4.job.T9 Fri Dec 09 10:35:11 2022 Found 6905590 relations, 82.2% of the estimated minimum (8400000). Fri Dec 09 10:35:11 2022 LatSieveTime: 205.68 Fri Dec 09 10:35:11 2022 -> making sieve job for q = 3600000 in 3600000 .. 3610000 as file c4.job.T0 Fri Dec 09 10:35:11 2022 -> making sieve job for q = 3610000 in 3610000 .. 3620000 as file c4.job.T1 Fri Dec 09 10:35:11 2022 -> making sieve job for q = 3620000 in 3620000 .. 3630000 as file c4.job.T2 Fri Dec 09 10:35:11 2022 -> making sieve job for q = 3630000 in 3630000 .. 3640000 as file c4.job.T3 Fri Dec 09 10:35:11 2022 -> making sieve job for q = 3640000 in 3640000 .. 3650000 as file c4.job.T4 Fri Dec 09 10:35:11 2022 -> making sieve job for q = 3650000 in 3650000 .. 3660000 as file c4.job.T5 Fri Dec 09 10:35:11 2022 -> making sieve job for q = 3660000 in 3660000 .. 3670000 as file c4.job.T6 Fri Dec 09 10:35:11 2022 -> making sieve job for q = 3670000 in 3670000 .. 3680000 as file c4.job.T7 Fri Dec 09 10:35:11 2022 -> making sieve job for q = 3680000 in 3680000 .. 3690000 as file c4.job.T8 Fri Dec 09 10:35:11 2022 -> making sieve job for q = 3690000 in 3690000 .. 3700000 as file c4.job.T9 Fri Dec 09 10:35:11 2022 -> Lattice sieving algebraic q from 3600000 to 3700000. Fri Dec 09 10:35:11 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T0 -v -n 0 -a c4.job.T0 Fri Dec 09 10:35:11 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T1 -v -n 1 -a c4.job.T1 Fri Dec 09 10:35:11 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T2 -v -n 2 -a c4.job.T2 Fri Dec 09 10:35:11 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T3 -v -n 3 -a c4.job.T3 Fri Dec 09 10:35:11 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T4 -v -n 4 -a c4.job.T4 Fri Dec 09 10:35:11 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T5 -v -n 5 -a c4.job.T5 Fri Dec 09 10:35:11 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T6 -v -n 6 -a c4.job.T6 Fri Dec 09 10:35:11 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T7 -v -n 7 -a c4.job.T7 Fri Dec 09 10:35:11 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T8 -v -n 8 -a c4.job.T8 Fri Dec 09 10:35:11 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T9 -v -n 9 -a c4.job.T9 Fri Dec 09 10:38:38 2022 Found 7286702 relations, 86.7% of the estimated minimum (8400000). Fri Dec 09 10:38:38 2022 LatSieveTime: 206.918 Fri Dec 09 10:38:38 2022 -> making sieve job for q = 3700000 in 3700000 .. 3710000 as file c4.job.T0 Fri Dec 09 10:38:38 2022 -> making sieve job for q = 3710000 in 3710000 .. 3720000 as file c4.job.T1 Fri Dec 09 10:38:38 2022 -> making sieve job for q = 3720000 in 3720000 .. 3730000 as file c4.job.T2 Fri Dec 09 10:38:38 2022 -> making sieve job for q = 3730000 in 3730000 .. 3740000 as file c4.job.T3 Fri Dec 09 10:38:38 2022 -> making sieve job for q = 3740000 in 3740000 .. 3750000 as file c4.job.T4 Fri Dec 09 10:38:38 2022 -> making sieve job for q = 3750000 in 3750000 .. 3760000 as file c4.job.T5 Fri Dec 09 10:38:38 2022 -> making sieve job for q = 3760000 in 3760000 .. 3770000 as file c4.job.T6 Fri Dec 09 10:38:38 2022 -> making sieve job for q = 3770000 in 3770000 .. 3780000 as file c4.job.T7 Fri Dec 09 10:38:38 2022 -> making sieve job for q = 3780000 in 3780000 .. 3790000 as file c4.job.T8 Fri Dec 09 10:38:38 2022 -> making sieve job for q = 3790000 in 3790000 .. 3800000 as file c4.job.T9 Fri Dec 09 10:38:38 2022 -> Lattice sieving algebraic q from 3700000 to 3800000. Fri Dec 09 10:38:38 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T0 -v -n 0 -a c4.job.T0 Fri Dec 09 10:38:38 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T1 -v -n 1 -a c4.job.T1 Fri Dec 09 10:38:38 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T2 -v -n 2 -a c4.job.T2 Fri Dec 09 10:38:38 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T3 -v -n 3 -a c4.job.T3 Fri Dec 09 10:38:38 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T4 -v -n 4 -a c4.job.T4 Fri Dec 09 10:38:38 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T5 -v -n 5 -a c4.job.T5 Fri Dec 09 10:38:38 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T6 -v -n 6 -a c4.job.T6 Fri Dec 09 10:38:38 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T7 -v -n 7 -a c4.job.T7 Fri Dec 09 10:38:38 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T8 -v -n 8 -a c4.job.T8 Fri Dec 09 10:38:38 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T9 -v -n 9 -a c4.job.T9 Fri Dec 09 10:42:01 2022 Found 7665244 relations, 91.3% of the estimated minimum (8400000). Fri Dec 09 10:42:01 2022 LatSieveTime: 203.388 Fri Dec 09 10:42:01 2022 -> making sieve job for q = 3800000 in 3800000 .. 3810000 as file c4.job.T0 Fri Dec 09 10:42:01 2022 -> making sieve job for q = 3810000 in 3810000 .. 3820000 as file c4.job.T1 Fri Dec 09 10:42:01 2022 -> making sieve job for q = 3820000 in 3820000 .. 3830000 as file c4.job.T2 Fri Dec 09 10:42:01 2022 -> making sieve job for q = 3830000 in 3830000 .. 3840000 as file c4.job.T3 Fri Dec 09 10:42:01 2022 -> making sieve job for q = 3840000 in 3840000 .. 3850000 as file c4.job.T4 Fri Dec 09 10:42:01 2022 -> making sieve job for q = 3850000 in 3850000 .. 3860000 as file c4.job.T5 Fri Dec 09 10:42:01 2022 -> making sieve job for q = 3860000 in 3860000 .. 3870000 as file c4.job.T6 Fri Dec 09 10:42:01 2022 -> making sieve job for q = 3870000 in 3870000 .. 3880000 as file c4.job.T7 Fri Dec 09 10:42:01 2022 -> making sieve job for q = 3880000 in 3880000 .. 3890000 as file c4.job.T8 Fri Dec 09 10:42:01 2022 -> making sieve job for q = 3890000 in 3890000 .. 3900000 as file c4.job.T9 Fri Dec 09 10:42:01 2022 -> Lattice sieving algebraic q from 3800000 to 3900000. Fri Dec 09 10:42:01 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T0 -v -n 0 -a c4.job.T0 Fri Dec 09 10:42:01 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T1 -v -n 1 -a c4.job.T1 Fri Dec 09 10:42:01 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T2 -v -n 2 -a c4.job.T2 Fri Dec 09 10:42:01 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T3 -v -n 3 -a c4.job.T3 Fri Dec 09 10:42:01 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T4 -v -n 4 -a c4.job.T4 Fri Dec 09 10:42:01 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T5 -v -n 5 -a c4.job.T5 Fri Dec 09 10:42:01 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T6 -v -n 6 -a c4.job.T6 Fri Dec 09 10:42:01 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T7 -v -n 7 -a c4.job.T7 Fri Dec 09 10:42:01 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T8 -v -n 8 -a c4.job.T8 Fri Dec 09 10:42:01 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T9 -v -n 9 -a c4.job.T9 Fri Dec 09 10:45:17 2022 Found 8030492 relations, 95.6% of the estimated minimum (8400000). Fri Dec 09 10:45:17 2022 LatSieveTime: 196.108 Fri Dec 09 10:45:17 2022 -> making sieve job for q = 3900000 in 3900000 .. 3910000 as file c4.job.T0 Fri Dec 09 10:45:17 2022 -> making sieve job for q = 3910000 in 3910000 .. 3920000 as file c4.job.T1 Fri Dec 09 10:45:17 2022 -> making sieve job for q = 3920000 in 3920000 .. 3930000 as file c4.job.T2 Fri Dec 09 10:45:17 2022 -> making sieve job for q = 3930000 in 3930000 .. 3940000 as file c4.job.T3 Fri Dec 09 10:45:17 2022 -> making sieve job for q = 3940000 in 3940000 .. 3950000 as file c4.job.T4 Fri Dec 09 10:45:17 2022 -> making sieve job for q = 3950000 in 3950000 .. 3960000 as file c4.job.T5 Fri Dec 09 10:45:17 2022 -> making sieve job for q = 3960000 in 3960000 .. 3970000 as file c4.job.T6 Fri Dec 09 10:45:17 2022 -> making sieve job for q = 3970000 in 3970000 .. 3980000 as file c4.job.T7 Fri Dec 09 10:45:17 2022 -> making sieve job for q = 3980000 in 3980000 .. 3990000 as file c4.job.T8 Fri Dec 09 10:45:17 2022 -> making sieve job for q = 3990000 in 3990000 .. 4000000 as file c4.job.T9 Fri Dec 09 10:45:17 2022 -> Lattice sieving algebraic q from 3900000 to 4000000. Fri Dec 09 10:45:17 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T0 -v -n 0 -a c4.job.T0 Fri Dec 09 10:45:17 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T1 -v -n 1 -a c4.job.T1 Fri Dec 09 10:45:17 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T2 -v -n 2 -a c4.job.T2 Fri Dec 09 10:45:17 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T3 -v -n 3 -a c4.job.T3 Fri Dec 09 10:45:17 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T4 -v -n 4 -a c4.job.T4 Fri Dec 09 10:45:17 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T5 -v -n 5 -a c4.job.T5 Fri Dec 09 10:45:17 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T6 -v -n 6 -a c4.job.T6 Fri Dec 09 10:45:17 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T7 -v -n 7 -a c4.job.T7 Fri Dec 09 10:45:17 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T8 -v -n 8 -a c4.job.T8 Fri Dec 09 10:45:17 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T9 -v -n 9 -a c4.job.T9 Fri Dec 09 10:48:30 2022 Found 8392446 relations, 99.9% of the estimated minimum (8400000). Fri Dec 09 10:48:30 2022 LatSieveTime: 193.205 Fri Dec 09 10:48:30 2022 -> making sieve job for q = 4000000 in 4000000 .. 4010000 as file c4.job.T0 Fri Dec 09 10:48:30 2022 -> making sieve job for q = 4010000 in 4010000 .. 4020000 as file c4.job.T1 Fri Dec 09 10:48:30 2022 -> making sieve job for q = 4020000 in 4020000 .. 4030000 as file c4.job.T2 Fri Dec 09 10:48:30 2022 -> making sieve job for q = 4030000 in 4030000 .. 4040000 as file c4.job.T3 Fri Dec 09 10:48:30 2022 -> making sieve job for q = 4040000 in 4040000 .. 4050000 as file c4.job.T4 Fri Dec 09 10:48:30 2022 -> making sieve job for q = 4050000 in 4050000 .. 4060000 as file c4.job.T5 Fri Dec 09 10:48:30 2022 -> making sieve job for q = 4060000 in 4060000 .. 4070000 as file c4.job.T6 Fri Dec 09 10:48:30 2022 -> making sieve job for q = 4070000 in 4070000 .. 4080000 as file c4.job.T7 Fri Dec 09 10:48:30 2022 -> making sieve job for q = 4080000 in 4080000 .. 4090000 as file c4.job.T8 Fri Dec 09 10:48:30 2022 -> making sieve job for q = 4090000 in 4090000 .. 4100000 as file c4.job.T9 Fri Dec 09 10:48:31 2022 -> Lattice sieving algebraic q from 4000000 to 4100000. Fri Dec 09 10:48:31 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T0 -v -n 0 -a c4.job.T0 Fri Dec 09 10:48:31 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T1 -v -n 1 -a c4.job.T1 Fri Dec 09 10:48:31 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T2 -v -n 2 -a c4.job.T2 Fri Dec 09 10:48:31 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T3 -v -n 3 -a c4.job.T3 Fri Dec 09 10:48:31 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T4 -v -n 4 -a c4.job.T4 Fri Dec 09 10:48:31 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T5 -v -n 5 -a c4.job.T5 Fri Dec 09 10:48:31 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T6 -v -n 6 -a c4.job.T6 Fri Dec 09 10:48:31 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T7 -v -n 7 -a c4.job.T7 Fri Dec 09 10:48:31 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T8 -v -n 8 -a c4.job.T8 Fri Dec 09 10:48:31 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T9 -v -n 9 -a c4.job.T9 Fri Dec 09 10:51:52 2022 Found 8767668 relations, 104.4% of the estimated minimum (8400000). Fri Dec 09 10:51:52 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat -l c4\c4.log -i c4\c4.ini -nf c4\c4.fb -t 10 -nc1 Fri Dec 9 10:51:52 2022 Fri Dec 9 10:51:52 2022 Fri Dec 9 10:51:52 2022 Msieve v. 1.53 (SVN unknown) Fri Dec 9 10:51:52 2022 random seeds: 13d766d0 7bbd30fe Fri Dec 9 10:51:52 2022 factoring 709638887825385684236730123500494498506819526796995454148854246606168802031146797602128996052314459040185629240638937 (117 digits) Fri Dec 9 10:51:52 2022 searching for 15-digit factors Fri Dec 9 10:51:53 2022 commencing number field sieve (117-digit input) Fri Dec 9 10:51:53 2022 R0: -88326924942441618886544 Fri Dec 9 10:51:53 2022 R1: 232834790743 Fri Dec 9 10:51:53 2022 A0: -956987691744525550067952533745 Fri Dec 9 10:51:53 2022 A1: -19452045871710965657597654 Fri Dec 9 10:51:53 2022 A2: 111686372802223257880 Fri Dec 9 10:51:53 2022 A3: 240695254457314 Fri Dec 9 10:51:53 2022 A4: -239758743 Fri Dec 9 10:51:53 2022 A5: 132 Fri Dec 9 10:51:53 2022 skew 495843.26, size 2.905e-11, alpha -6.980, combined = 3.952e-10 rroots = 3 Fri Dec 9 10:51:53 2022 Fri Dec 9 10:51:53 2022 commencing relation filtering Fri Dec 9 10:51:53 2022 estimated available RAM is 15734.8 MB Fri Dec 9 10:51:53 2022 commencing duplicate removal, pass 1 Fri Dec 9 10:52:45 2022 skipped 2 relations with composite factors Fri Dec 9 10:52:45 2022 found 998821 hash collisions in 8767665 relations Fri Dec 9 10:52:55 2022 added 61497 free relations Fri Dec 9 10:52:55 2022 commencing duplicate removal, pass 2 Fri Dec 9 10:52:58 2022 found 849023 duplicates and 7980139 unique relations Fri Dec 9 10:52:58 2022 memory use: 34.6 MB Fri Dec 9 10:52:58 2022 reading ideals above 100000 Fri Dec 9 10:52:58 2022 commencing singleton removal, initial pass Fri Dec 9 10:53:44 2022 memory use: 188.3 MB Fri Dec 9 10:53:44 2022 reading all ideals from disk Fri Dec 9 10:53:44 2022 memory use: 271.7 MB Fri Dec 9 10:53:44 2022 keeping 9664689 ideals with weight <= 200, target excess is 39379 Fri Dec 9 10:53:45 2022 commencing in-memory singleton removal Fri Dec 9 10:53:45 2022 begin with 7980139 relations and 9664689 unique ideals Fri Dec 9 10:53:49 2022 reduce to 1400054 relations and 1598488 ideals in 40 passes Fri Dec 9 10:53:49 2022 max relations containing the same ideal: 60 Fri Dec 9 10:53:49 2022 filtering wants 1000000 more relations Fri Dec 9 10:53:49 2022 elapsed time 00:01:57 Fri Dec 09 10:53:49 2022 LatSieveTime: 318.785 Fri Dec 09 10:53:49 2022 -> making sieve job for q = 4100000 in 4100000 .. 4110000 as file c4.job.T0 Fri Dec 09 10:53:49 2022 -> making sieve job for q = 4110000 in 4110000 .. 4120000 as file c4.job.T1 Fri Dec 09 10:53:49 2022 -> making sieve job for q = 4120000 in 4120000 .. 4130000 as file c4.job.T2 Fri Dec 09 10:53:49 2022 -> making sieve job for q = 4130000 in 4130000 .. 4140000 as file c4.job.T3 Fri Dec 09 10:53:49 2022 -> making sieve job for q = 4140000 in 4140000 .. 4150000 as file c4.job.T4 Fri Dec 09 10:53:49 2022 -> making sieve job for q = 4150000 in 4150000 .. 4160000 as file c4.job.T5 Fri Dec 09 10:53:49 2022 -> making sieve job for q = 4160000 in 4160000 .. 4170000 as file c4.job.T6 Fri Dec 09 10:53:49 2022 -> making sieve job for q = 4170000 in 4170000 .. 4180000 as file c4.job.T7 Fri Dec 09 10:53:49 2022 -> making sieve job for q = 4180000 in 4180000 .. 4190000 as file c4.job.T8 Fri Dec 09 10:53:49 2022 -> making sieve job for q = 4190000 in 4190000 .. 4200000 as file c4.job.T9 Fri Dec 09 10:53:49 2022 -> Lattice sieving algebraic q from 4100000 to 4200000. Fri Dec 09 10:53:49 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T0 -v -n 0 -a c4.job.T0 Fri Dec 09 10:53:49 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T1 -v -n 1 -a c4.job.T1 Fri Dec 09 10:53:49 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T2 -v -n 2 -a c4.job.T2 Fri Dec 09 10:53:49 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T3 -v -n 3 -a c4.job.T3 Fri Dec 09 10:53:49 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T4 -v -n 4 -a c4.job.T4 Fri Dec 09 10:53:49 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T5 -v -n 5 -a c4.job.T5 Fri Dec 09 10:53:49 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T6 -v -n 6 -a c4.job.T6 Fri Dec 09 10:53:49 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T7 -v -n 7 -a c4.job.T7 Fri Dec 09 10:53:49 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T8 -v -n 8 -a c4.job.T8 Fri Dec 09 10:53:49 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T9 -v -n 9 -a c4.job.T9 Fri Dec 09 10:57:07 2022 Found 9185714 relations, 109.4% of the estimated minimum (8400000). Fri Dec 09 10:57:07 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat -l c4\c4.log -i c4\c4.ini -nf c4\c4.fb -t 10 -nc1 Fri Dec 9 10:57:08 2022 Fri Dec 9 10:57:08 2022 Fri Dec 9 10:57:08 2022 Msieve v. 1.53 (SVN unknown) Fri Dec 9 10:57:08 2022 random seeds: 75b00f10 47011509 Fri Dec 9 10:57:08 2022 factoring 709638887825385684236730123500494498506819526796995454148854246606168802031146797602128996052314459040185629240638937 (117 digits) Fri Dec 9 10:57:08 2022 searching for 15-digit factors Fri Dec 9 10:57:08 2022 commencing number field sieve (117-digit input) Fri Dec 9 10:57:08 2022 R0: -88326924942441618886544 Fri Dec 9 10:57:08 2022 R1: 232834790743 Fri Dec 9 10:57:08 2022 A0: -956987691744525550067952533745 Fri Dec 9 10:57:08 2022 A1: -19452045871710965657597654 Fri Dec 9 10:57:08 2022 A2: 111686372802223257880 Fri Dec 9 10:57:08 2022 A3: 240695254457314 Fri Dec 9 10:57:08 2022 A4: -239758743 Fri Dec 9 10:57:08 2022 A5: 132 Fri Dec 9 10:57:08 2022 skew 495843.26, size 2.905e-11, alpha -6.980, combined = 3.952e-10 rroots = 3 Fri Dec 9 10:57:08 2022 Fri Dec 9 10:57:08 2022 commencing relation filtering Fri Dec 9 10:57:08 2022 estimated available RAM is 15734.8 MB Fri Dec 9 10:57:08 2022 commencing duplicate removal, pass 1 Fri Dec 9 10:58:03 2022 skipped 2 relations with composite factors Fri Dec 9 10:58:03 2022 found 1070516 hash collisions in 9185711 relations Fri Dec 9 10:58:13 2022 added 183 free relations Fri Dec 9 10:58:13 2022 commencing duplicate removal, pass 2 Fri Dec 9 10:58:16 2022 found 908370 duplicates and 8277524 unique relations Fri Dec 9 10:58:16 2022 memory use: 49.3 MB Fri Dec 9 10:58:16 2022 reading ideals above 100000 Fri Dec 9 10:58:16 2022 commencing singleton removal, initial pass Fri Dec 9 10:59:03 2022 memory use: 188.3 MB Fri Dec 9 10:59:03 2022 reading all ideals from disk Fri Dec 9 10:59:04 2022 memory use: 282.0 MB Fri Dec 9 10:59:04 2022 keeping 9823824 ideals with weight <= 200, target excess is 40886 Fri Dec 9 10:59:05 2022 commencing in-memory singleton removal Fri Dec 9 10:59:05 2022 begin with 8277524 relations and 9823824 unique ideals Fri Dec 9 10:59:09 2022 reduce to 1823942 relations and 1966653 ideals in 31 passes Fri Dec 9 10:59:09 2022 max relations containing the same ideal: 69 Fri Dec 9 10:59:09 2022 filtering wants 1000000 more relations Fri Dec 9 10:59:09 2022 elapsed time 00:02:01 Fri Dec 09 10:59:09 2022 LatSieveTime: 319.833 Fri Dec 09 10:59:09 2022 -> making sieve job for q = 4200000 in 4200000 .. 4210000 as file c4.job.T0 Fri Dec 09 10:59:09 2022 -> making sieve job for q = 4210000 in 4210000 .. 4220000 as file c4.job.T1 Fri Dec 09 10:59:09 2022 -> making sieve job for q = 4220000 in 4220000 .. 4230000 as file c4.job.T2 Fri Dec 09 10:59:09 2022 -> making sieve job for q = 4230000 in 4230000 .. 4240000 as file c4.job.T3 Fri Dec 09 10:59:09 2022 -> making sieve job for q = 4240000 in 4240000 .. 4250000 as file c4.job.T4 Fri Dec 09 10:59:09 2022 -> making sieve job for q = 4250000 in 4250000 .. 4260000 as file c4.job.T5 Fri Dec 09 10:59:09 2022 -> making sieve job for q = 4260000 in 4260000 .. 4270000 as file c4.job.T6 Fri Dec 09 10:59:09 2022 -> making sieve job for q = 4270000 in 4270000 .. 4280000 as file c4.job.T7 Fri Dec 09 10:59:09 2022 -> making sieve job for q = 4280000 in 4280000 .. 4290000 as file c4.job.T8 Fri Dec 09 10:59:09 2022 -> making sieve job for q = 4290000 in 4290000 .. 4300000 as file c4.job.T9 Fri Dec 09 10:59:09 2022 -> Lattice sieving algebraic q from 4200000 to 4300000. Fri Dec 09 10:59:09 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T0 -v -n 0 -a c4.job.T0 Fri Dec 09 10:59:09 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T1 -v -n 1 -a c4.job.T1 Fri Dec 09 10:59:09 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T2 -v -n 2 -a c4.job.T2 Fri Dec 09 10:59:09 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T3 -v -n 3 -a c4.job.T3 Fri Dec 09 10:59:09 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T4 -v -n 4 -a c4.job.T4 Fri Dec 09 10:59:09 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T5 -v -n 5 -a c4.job.T5 Fri Dec 09 10:59:09 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T6 -v -n 6 -a c4.job.T6 Fri Dec 09 10:59:09 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T7 -v -n 7 -a c4.job.T7 Fri Dec 09 10:59:09 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T8 -v -n 8 -a c4.job.T8 Fri Dec 09 10:59:09 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T9 -v -n 9 -a c4.job.T9 Fri Dec 09 11:02:25 2022 Found 9539598 relations, 113.6% of the estimated minimum (8400000). Fri Dec 09 11:02:25 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat -l c4\c4.log -i c4\c4.ini -nf c4\c4.fb -t 10 -nc1 Fri Dec 9 11:02:25 2022 Fri Dec 9 11:02:25 2022 Fri Dec 9 11:02:25 2022 Msieve v. 1.53 (SVN unknown) Fri Dec 9 11:02:25 2022 random seeds: 23edc7ac ef166342 Fri Dec 9 11:02:25 2022 factoring 709638887825385684236730123500494498506819526796995454148854246606168802031146797602128996052314459040185629240638937 (117 digits) Fri Dec 9 11:02:25 2022 searching for 15-digit factors Fri Dec 9 11:02:25 2022 commencing number field sieve (117-digit input) Fri Dec 9 11:02:25 2022 R0: -88326924942441618886544 Fri Dec 9 11:02:25 2022 R1: 232834790743 Fri Dec 9 11:02:25 2022 A0: -956987691744525550067952533745 Fri Dec 9 11:02:25 2022 A1: -19452045871710965657597654 Fri Dec 9 11:02:25 2022 A2: 111686372802223257880 Fri Dec 9 11:02:25 2022 A3: 240695254457314 Fri Dec 9 11:02:25 2022 A4: -239758743 Fri Dec 9 11:02:25 2022 A5: 132 Fri Dec 9 11:02:25 2022 skew 495843.26, size 2.905e-11, alpha -6.980, combined = 3.952e-10 rroots = 3 Fri Dec 9 11:02:25 2022 Fri Dec 9 11:02:25 2022 commencing relation filtering Fri Dec 9 11:02:25 2022 estimated available RAM is 15734.8 MB Fri Dec 9 11:02:25 2022 commencing duplicate removal, pass 1 Fri Dec 9 11:03:22 2022 skipped 2 relations with composite factors Fri Dec 9 11:03:22 2022 found 1139496 hash collisions in 9539595 relations Fri Dec 9 11:03:32 2022 added 157 free relations Fri Dec 9 11:03:32 2022 commencing duplicate removal, pass 2 Fri Dec 9 11:03:36 2022 found 968175 duplicates and 8571577 unique relations Fri Dec 9 11:03:36 2022 memory use: 49.3 MB Fri Dec 9 11:03:36 2022 reading ideals above 100000 Fri Dec 9 11:03:36 2022 commencing singleton removal, initial pass Fri Dec 9 11:04:25 2022 memory use: 188.3 MB Fri Dec 9 11:04:25 2022 reading all ideals from disk Fri Dec 9 11:04:25 2022 memory use: 292.1 MB Fri Dec 9 11:04:26 2022 keeping 9975573 ideals with weight <= 200, target excess is 42382 Fri Dec 9 11:04:26 2022 commencing in-memory singleton removal Fri Dec 9 11:04:26 2022 begin with 8571577 relations and 9975573 unique ideals Fri Dec 9 11:04:30 2022 reduce to 2216574 relations and 2292017 ideals in 25 passes Fri Dec 9 11:04:30 2022 max relations containing the same ideal: 82 Fri Dec 9 11:04:31 2022 filtering wants 1000000 more relations Fri Dec 9 11:04:31 2022 elapsed time 00:02:06 Fri Dec 09 11:04:31 2022 LatSieveTime: 321.419 Fri Dec 09 11:04:31 2022 -> making sieve job for q = 4300000 in 4300000 .. 4310000 as file c4.job.T0 Fri Dec 09 11:04:31 2022 -> making sieve job for q = 4310000 in 4310000 .. 4320000 as file c4.job.T1 Fri Dec 09 11:04:31 2022 -> making sieve job for q = 4320000 in 4320000 .. 4330000 as file c4.job.T2 Fri Dec 09 11:04:31 2022 -> making sieve job for q = 4330000 in 4330000 .. 4340000 as file c4.job.T3 Fri Dec 09 11:04:31 2022 -> making sieve job for q = 4340000 in 4340000 .. 4350000 as file c4.job.T4 Fri Dec 09 11:04:31 2022 -> making sieve job for q = 4350000 in 4350000 .. 4360000 as file c4.job.T5 Fri Dec 09 11:04:31 2022 -> making sieve job for q = 4360000 in 4360000 .. 4370000 as file c4.job.T6 Fri Dec 09 11:04:31 2022 -> making sieve job for q = 4370000 in 4370000 .. 4380000 as file c4.job.T7 Fri Dec 09 11:04:31 2022 -> making sieve job for q = 4380000 in 4380000 .. 4390000 as file c4.job.T8 Fri Dec 09 11:04:31 2022 -> making sieve job for q = 4390000 in 4390000 .. 4400000 as file c4.job.T9 Fri Dec 09 11:04:31 2022 -> Lattice sieving algebraic q from 4300000 to 4400000. Fri Dec 09 11:04:31 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T0 -v -n 0 -a c4.job.T0 Fri Dec 09 11:04:31 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T1 -v -n 1 -a c4.job.T1 Fri Dec 09 11:04:31 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T2 -v -n 2 -a c4.job.T2 Fri Dec 09 11:04:31 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T3 -v -n 3 -a c4.job.T3 Fri Dec 09 11:04:31 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T4 -v -n 4 -a c4.job.T4 Fri Dec 09 11:04:31 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T5 -v -n 5 -a c4.job.T5 Fri Dec 09 11:04:31 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T6 -v -n 6 -a c4.job.T6 Fri Dec 09 11:04:31 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T7 -v -n 7 -a c4.job.T7 Fri Dec 09 11:04:31 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T8 -v -n 8 -a c4.job.T8 Fri Dec 09 11:04:31 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T9 -v -n 9 -a c4.job.T9 Fri Dec 09 11:07:46 2022 Found 9896168 relations, 117.8% of the estimated minimum (8400000). Fri Dec 09 11:07:46 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat -l c4\c4.log -i c4\c4.ini -nf c4\c4.fb -t 10 -nc1 Fri Dec 9 11:07:46 2022 Fri Dec 9 11:07:46 2022 Fri Dec 9 11:07:46 2022 Msieve v. 1.53 (SVN unknown) Fri Dec 9 11:07:46 2022 random seeds: 80825920 a8c1f098 Fri Dec 9 11:07:46 2022 factoring 709638887825385684236730123500494498506819526796995454148854246606168802031146797602128996052314459040185629240638937 (117 digits) Fri Dec 9 11:07:47 2022 searching for 15-digit factors Fri Dec 9 11:07:47 2022 commencing number field sieve (117-digit input) Fri Dec 9 11:07:47 2022 R0: -88326924942441618886544 Fri Dec 9 11:07:47 2022 R1: 232834790743 Fri Dec 9 11:07:47 2022 A0: -956987691744525550067952533745 Fri Dec 9 11:07:47 2022 A1: -19452045871710965657597654 Fri Dec 9 11:07:47 2022 A2: 111686372802223257880 Fri Dec 9 11:07:47 2022 A3: 240695254457314 Fri Dec 9 11:07:47 2022 A4: -239758743 Fri Dec 9 11:07:47 2022 A5: 132 Fri Dec 9 11:07:47 2022 skew 495843.26, size 2.905e-11, alpha -6.980, combined = 3.952e-10 rroots = 3 Fri Dec 9 11:07:47 2022 Fri Dec 9 11:07:47 2022 commencing relation filtering Fri Dec 9 11:07:47 2022 estimated available RAM is 15734.8 MB Fri Dec 9 11:07:47 2022 commencing duplicate removal, pass 1 Fri Dec 9 11:08:46 2022 skipped 2 relations with composite factors Fri Dec 9 11:08:46 2022 found 1210955 hash collisions in 9896165 relations Fri Dec 9 11:08:56 2022 added 131 free relations Fri Dec 9 11:08:56 2022 commencing duplicate removal, pass 2 Fri Dec 9 11:09:00 2022 found 1030165 duplicates and 8866131 unique relations Fri Dec 9 11:09:00 2022 memory use: 49.3 MB Fri Dec 9 11:09:00 2022 reading ideals above 100000 Fri Dec 9 11:09:00 2022 commencing singleton removal, initial pass Fri Dec 9 11:09:52 2022 memory use: 188.3 MB Fri Dec 9 11:09:52 2022 reading all ideals from disk Fri Dec 9 11:09:52 2022 memory use: 302.2 MB Fri Dec 9 11:09:52 2022 keeping 10121442 ideals with weight <= 200, target excess is 43939 Fri Dec 9 11:09:53 2022 commencing in-memory singleton removal Fri Dec 9 11:09:53 2022 begin with 8866131 relations and 10121442 unique ideals Fri Dec 9 11:09:58 2022 reduce to 2596041 relations and 2593700 ideals in 23 passes Fri Dec 9 11:09:58 2022 max relations containing the same ideal: 89 Fri Dec 9 11:09:58 2022 filtering wants 1000000 more relations Fri Dec 9 11:09:58 2022 elapsed time 00:02:12 Fri Dec 09 11:09:58 2022 LatSieveTime: 327.757 Fri Dec 09 11:09:58 2022 -> making sieve job for q = 4400000 in 4400000 .. 4410000 as file c4.job.T0 Fri Dec 09 11:09:58 2022 -> making sieve job for q = 4410000 in 4410000 .. 4420000 as file c4.job.T1 Fri Dec 09 11:09:58 2022 -> making sieve job for q = 4420000 in 4420000 .. 4430000 as file c4.job.T2 Fri Dec 09 11:09:58 2022 -> making sieve job for q = 4430000 in 4430000 .. 4440000 as file c4.job.T3 Fri Dec 09 11:09:58 2022 -> making sieve job for q = 4440000 in 4440000 .. 4450000 as file c4.job.T4 Fri Dec 09 11:09:58 2022 -> making sieve job for q = 4450000 in 4450000 .. 4460000 as file c4.job.T5 Fri Dec 09 11:09:58 2022 -> making sieve job for q = 4460000 in 4460000 .. 4470000 as file c4.job.T6 Fri Dec 09 11:09:58 2022 -> making sieve job for q = 4470000 in 4470000 .. 4480000 as file c4.job.T7 Fri Dec 09 11:09:58 2022 -> making sieve job for q = 4480000 in 4480000 .. 4490000 as file c4.job.T8 Fri Dec 09 11:09:58 2022 -> making sieve job for q = 4490000 in 4490000 .. 4500000 as file c4.job.T9 Fri Dec 09 11:09:58 2022 -> Lattice sieving algebraic q from 4400000 to 4500000. Fri Dec 09 11:09:58 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T0 -v -n 0 -a c4.job.T0 Fri Dec 09 11:09:58 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T1 -v -n 1 -a c4.job.T1 Fri Dec 09 11:09:58 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T2 -v -n 2 -a c4.job.T2 Fri Dec 09 11:09:58 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T3 -v -n 3 -a c4.job.T3 Fri Dec 09 11:09:58 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T4 -v -n 4 -a c4.job.T4 Fri Dec 09 11:09:58 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T5 -v -n 5 -a c4.job.T5 Fri Dec 09 11:09:58 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T6 -v -n 6 -a c4.job.T6 Fri Dec 09 11:09:58 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T7 -v -n 7 -a c4.job.T7 Fri Dec 09 11:09:58 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T8 -v -n 8 -a c4.job.T8 Fri Dec 09 11:09:58 2022 -> gnfs-lasieve4I12e -k -o spairs.out.T9 -v -n 9 -a c4.job.T9 Fri Dec 09 11:13:27 2022 Found 10257339 relations, 122.1% of the estimated minimum (8400000). Fri Dec 09 11:13:27 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat -l c4\c4.log -i c4\c4.ini -nf c4\c4.fb -t 10 -nc1 Fri Dec 9 11:13:27 2022 Fri Dec 9 11:13:27 2022 Fri Dec 9 11:13:27 2022 Msieve v. 1.53 (SVN unknown) Fri Dec 9 11:13:27 2022 random seeds: bb6b775c 2f427422 Fri Dec 9 11:13:27 2022 factoring 709638887825385684236730123500494498506819526796995454148854246606168802031146797602128996052314459040185629240638937 (117 digits) Fri Dec 9 11:13:28 2022 searching for 15-digit factors Fri Dec 9 11:13:28 2022 commencing number field sieve (117-digit input) Fri Dec 9 11:13:28 2022 R0: -88326924942441618886544 Fri Dec 9 11:13:28 2022 R1: 232834790743 Fri Dec 9 11:13:28 2022 A0: -956987691744525550067952533745 Fri Dec 9 11:13:28 2022 A1: -19452045871710965657597654 Fri Dec 9 11:13:28 2022 A2: 111686372802223257880 Fri Dec 9 11:13:28 2022 A3: 240695254457314 Fri Dec 9 11:13:28 2022 A4: -239758743 Fri Dec 9 11:13:28 2022 A5: 132 Fri Dec 9 11:13:28 2022 skew 495843.26, size 2.905e-11, alpha -6.980, combined = 3.952e-10 rroots = 3 Fri Dec 9 11:13:28 2022 Fri Dec 9 11:13:28 2022 commencing relation filtering Fri Dec 9 11:13:28 2022 estimated available RAM is 15734.8 MB Fri Dec 9 11:13:28 2022 commencing duplicate removal, pass 1 Fri Dec 9 11:14:30 2022 skipped 2 relations with composite factors Fri Dec 9 11:14:30 2022 found 1284768 hash collisions in 10257336 relations Fri Dec 9 11:14:41 2022 added 116 free relations Fri Dec 9 11:14:41 2022 commencing duplicate removal, pass 2 Fri Dec 9 11:14:44 2022 found 1094577 duplicates and 9162875 unique relations Fri Dec 9 11:14:44 2022 memory use: 49.3 MB Fri Dec 9 11:14:44 2022 reading ideals above 100000 Fri Dec 9 11:14:44 2022 commencing singleton removal, initial pass Fri Dec 9 11:15:40 2022 memory use: 344.5 MB Fri Dec 9 11:15:40 2022 reading all ideals from disk Fri Dec 9 11:15:40 2022 memory use: 312.4 MB Fri Dec 9 11:15:41 2022 keeping 10263104 ideals with weight <= 200, target excess is 45419 Fri Dec 9 11:15:42 2022 commencing in-memory singleton removal Fri Dec 9 11:15:42 2022 begin with 9162875 relations and 10263104 unique ideals Fri Dec 9 11:15:47 2022 reduce to 2976126 relations and 2885481 ideals in 21 passes Fri Dec 9 11:15:47 2022 max relations containing the same ideal: 94 Fri Dec 9 11:15:48 2022 removing 262332 relations and 243353 ideals in 18979 cliques Fri Dec 9 11:15:48 2022 commencing in-memory singleton removal Fri Dec 9 11:15:48 2022 begin with 2713794 relations and 2885481 unique ideals Fri Dec 9 11:15:50 2022 reduce to 2694165 relations and 2622292 ideals in 10 passes Fri Dec 9 11:15:50 2022 max relations containing the same ideal: 90 Fri Dec 9 11:15:51 2022 removing 188196 relations and 169217 ideals in 18979 cliques Fri Dec 9 11:15:51 2022 commencing in-memory singleton removal Fri Dec 9 11:15:51 2022 begin with 2505969 relations and 2622292 unique ideals Fri Dec 9 11:15:52 2022 reduce to 2494247 relations and 2441249 ideals in 9 passes Fri Dec 9 11:15:52 2022 max relations containing the same ideal: 85 Fri Dec 9 11:15:53 2022 relations with 0 large ideals: 152 Fri Dec 9 11:15:53 2022 relations with 1 large ideals: 519 Fri Dec 9 11:15:53 2022 relations with 2 large ideals: 8957 Fri Dec 9 11:15:53 2022 relations with 3 large ideals: 68180 Fri Dec 9 11:15:53 2022 relations with 4 large ideals: 270788 Fri Dec 9 11:15:53 2022 relations with 5 large ideals: 599167 Fri Dec 9 11:15:53 2022 relations with 6 large ideals: 755241 Fri Dec 9 11:15:53 2022 relations with 7+ large ideals: 791243 Fri Dec 9 11:15:53 2022 commencing 2-way merge Fri Dec 9 11:15:55 2022 reduce to 1368291 relation sets and 1315295 unique ideals Fri Dec 9 11:15:55 2022 ignored 2 oversize relation sets Fri Dec 9 11:15:55 2022 commencing full merge Fri Dec 9 11:16:13 2022 memory use: 153.8 MB Fri Dec 9 11:16:13 2022 found 674142 cycles, need 669495 Fri Dec 9 11:16:13 2022 weight of 669495 cycles is about 47140166 (70.41/cycle) Fri Dec 9 11:16:13 2022 distribution of cycle lengths: Fri Dec 9 11:16:13 2022 1 relations: 91511 Fri Dec 9 11:16:13 2022 2 relations: 78713 Fri Dec 9 11:16:13 2022 3 relations: 74119 Fri Dec 9 11:16:13 2022 4 relations: 63885 Fri Dec 9 11:16:13 2022 5 relations: 57849 Fri Dec 9 11:16:13 2022 6 relations: 48048 Fri Dec 9 11:16:13 2022 7 relations: 41660 Fri Dec 9 11:16:13 2022 8 relations: 36091 Fri Dec 9 11:16:13 2022 9 relations: 30118 Fri Dec 9 11:16:13 2022 10+ relations: 147501 Fri Dec 9 11:16:13 2022 heaviest cycle: 27 relations Fri Dec 9 11:16:13 2022 commencing cycle optimization Fri Dec 9 11:16:14 2022 start with 4217515 relations Fri Dec 9 11:16:20 2022 pruned 83511 relations Fri Dec 9 11:16:20 2022 memory use: 142.4 MB Fri Dec 9 11:16:20 2022 distribution of cycle lengths: Fri Dec 9 11:16:20 2022 1 relations: 91511 Fri Dec 9 11:16:20 2022 2 relations: 80260 Fri Dec 9 11:16:20 2022 3 relations: 76291 Fri Dec 9 11:16:20 2022 4 relations: 65131 Fri Dec 9 11:16:20 2022 5 relations: 58654 Fri Dec 9 11:16:20 2022 6 relations: 48479 Fri Dec 9 11:16:20 2022 7 relations: 41871 Fri Dec 9 11:16:20 2022 8 relations: 36040 Fri Dec 9 11:16:20 2022 9 relations: 29798 Fri Dec 9 11:16:20 2022 10+ relations: 141460 Fri Dec 9 11:16:20 2022 heaviest cycle: 26 relations Fri Dec 9 11:16:21 2022 RelProcTime: 173 Fri Dec 9 11:16:21 2022 elapsed time 00:02:54 Fri Dec 09 11:16:21 2022 LatSieveTime: 382.208 Fri Dec 09 11:16:21 2022 -> Running matrix solving step ... Fri Dec 09 11:16:21 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat -l c4\c4.log -i c4\c4.ini -nf c4\c4.fb -t 10 -nc2 Fri Dec 9 11:16:21 2022 Fri Dec 9 11:16:21 2022 Fri Dec 9 11:16:21 2022 Msieve v. 1.53 (SVN unknown) Fri Dec 9 11:16:21 2022 random seeds: a4ddc8c0 01c2a1f3 Fri Dec 9 11:16:21 2022 factoring 709638887825385684236730123500494498506819526796995454148854246606168802031146797602128996052314459040185629240638937 (117 digits) Fri Dec 9 11:16:21 2022 searching for 15-digit factors Fri Dec 9 11:16:21 2022 commencing number field sieve (117-digit input) Fri Dec 9 11:16:21 2022 R0: -88326924942441618886544 Fri Dec 9 11:16:21 2022 R1: 232834790743 Fri Dec 9 11:16:21 2022 A0: -956987691744525550067952533745 Fri Dec 9 11:16:21 2022 A1: -19452045871710965657597654 Fri Dec 9 11:16:21 2022 A2: 111686372802223257880 Fri Dec 9 11:16:21 2022 A3: 240695254457314 Fri Dec 9 11:16:21 2022 A4: -239758743 Fri Dec 9 11:16:21 2022 A5: 132 Fri Dec 9 11:16:21 2022 skew 495843.26, size 2.905e-11, alpha -6.980, combined = 3.952e-10 rroots = 3 Fri Dec 9 11:16:21 2022 Fri Dec 9 11:16:21 2022 commencing linear algebra Fri Dec 9 11:16:21 2022 read 669495 cycles Fri Dec 9 11:16:22 2022 cycles contain 2422963 unique relations Fri Dec 9 11:16:33 2022 read 2422963 relations Fri Dec 9 11:16:36 2022 using 20 quadratic characters above 4294917295 Fri Dec 9 11:16:43 2022 building initial matrix Fri Dec 9 11:16:59 2022 memory use: 305.9 MB Fri Dec 9 11:16:59 2022 read 669495 cycles Fri Dec 9 11:16:59 2022 matrix is 669316 x 669495 (204.0 MB) with weight 64405566 (96.20/col) Fri Dec 9 11:16:59 2022 sparse part has weight 45430419 (67.86/col) Fri Dec 9 11:17:03 2022 filtering completed in 2 passes Fri Dec 9 11:17:04 2022 matrix is 668272 x 668451 (203.9 MB) with weight 64359736 (96.28/col) Fri Dec 9 11:17:04 2022 sparse part has weight 45417177 (67.94/col) Fri Dec 9 11:17:05 2022 matrix starts at (0, 0) Fri Dec 9 11:17:05 2022 matrix is 668272 x 668451 (203.9 MB) with weight 64359736 (96.28/col) Fri Dec 9 11:17:05 2022 sparse part has weight 45417177 (67.94/col) Fri Dec 9 11:17:05 2022 saving the first 48 matrix rows for later Fri Dec 9 11:17:05 2022 matrix includes 64 packed rows Fri Dec 9 11:17:05 2022 matrix is 668224 x 668451 (195.9 MB) with weight 51421791 (76.93/col) Fri Dec 9 11:17:05 2022 sparse part has weight 44672591 (66.83/col) Fri Dec 9 11:17:05 2022 using block size 8192 and superblock size 786432 for processor cache size 8192 kB Fri Dec 9 11:17:08 2022 commencing Lanczos iteration (10 threads) Fri Dec 9 11:17:08 2022 memory use: 151.7 MB Fri Dec 9 11:17:10 2022 linear algebra at 0.5%, ETA 0h 7m Fri Dec 9 11:25:00 2022 lanczos halted after 10569 iterations (dim = 668223) Fri Dec 9 11:25:00 2022 recovered 30 nontrivial dependencies Fri Dec 9 11:25:00 2022 BLanczosTime: 519 Fri Dec 9 11:25:00 2022 elapsed time 00:08:39 Fri Dec 09 11:25:00 2022 -> Running square root step ... Fri Dec 09 11:25:00 2022 -> msieve-1.53-SVN998-win64-core2 -s c4\c4.dat -l c4\c4.log -i c4\c4.ini -nf c4\c4.fb -t 10 -nc3 Fri Dec 9 11:25:00 2022 Fri Dec 9 11:25:00 2022 Fri Dec 9 11:25:00 2022 Msieve v. 1.53 (SVN unknown) Fri Dec 9 11:25:00 2022 random seeds: 10cb2ed4 c9064293 Fri Dec 9 11:25:00 2022 factoring 709638887825385684236730123500494498506819526796995454148854246606168802031146797602128996052314459040185629240638937 (117 digits) Fri Dec 9 11:25:00 2022 searching for 15-digit factors Fri Dec 9 11:25:01 2022 commencing number field sieve (117-digit input) Fri Dec 9 11:25:01 2022 R0: -88326924942441618886544 Fri Dec 9 11:25:01 2022 R1: 232834790743 Fri Dec 9 11:25:01 2022 A0: -956987691744525550067952533745 Fri Dec 9 11:25:01 2022 A1: -19452045871710965657597654 Fri Dec 9 11:25:01 2022 A2: 111686372802223257880 Fri Dec 9 11:25:01 2022 A3: 240695254457314 Fri Dec 9 11:25:01 2022 A4: -239758743 Fri Dec 9 11:25:01 2022 A5: 132 Fri Dec 9 11:25:01 2022 skew 495843.26, size 2.905e-11, alpha -6.980, combined = 3.952e-10 rroots = 3 Fri Dec 9 11:25:01 2022 Fri Dec 9 11:25:01 2022 commencing square root phase Fri Dec 9 11:25:01 2022 reading relations for dependency 1 Fri Dec 9 11:25:01 2022 read 333832 cycles Fri Dec 9 11:25:01 2022 cycles contain 1209730 unique relations Fri Dec 9 11:25:07 2022 read 1209730 relations Fri Dec 9 11:25:11 2022 multiplying 1209730 relations Fri Dec 9 11:25:39 2022 multiply complete, coefficients have about 45.99 million bits Fri Dec 9 11:25:40 2022 initial square root is modulo 4005301 Fri Dec 9 11:26:19 2022 GCD is 1, no factor found Fri Dec 9 11:26:19 2022 reading relations for dependency 2 Fri Dec 9 11:26:19 2022 read 333953 cycles Fri Dec 9 11:26:20 2022 cycles contain 1210950 unique relations Fri Dec 9 11:26:26 2022 read 1210950 relations Fri Dec 9 11:26:29 2022 multiplying 1210950 relations Fri Dec 9 11:26:58 2022 multiply complete, coefficients have about 46.03 million bits Fri Dec 9 11:26:58 2022 initial square root is modulo 4067579 Fri Dec 9 11:27:37 2022 GCD is N, no factor found Fri Dec 9 11:27:37 2022 reading relations for dependency 3 Fri Dec 9 11:27:37 2022 read 334602 cycles Fri Dec 9 11:27:38 2022 cycles contain 1212770 unique relations Fri Dec 9 11:27:43 2022 read 1212770 relations Fri Dec 9 11:27:47 2022 multiplying 1212770 relations Fri Dec 9 11:28:15 2022 multiply complete, coefficients have about 46.10 million bits Fri Dec 9 11:28:15 2022 initial square root is modulo 4161299 Fri Dec 9 11:28:55 2022 GCD is N, no factor found Fri Dec 9 11:28:55 2022 reading relations for dependency 4 Fri Dec 9 11:28:55 2022 read 334195 cycles Fri Dec 9 11:28:56 2022 cycles contain 1213408 unique relations Fri Dec 9 11:29:01 2022 read 1213408 relations Fri Dec 9 11:29:05 2022 multiplying 1213408 relations Fri Dec 9 11:29:33 2022 multiply complete, coefficients have about 46.13 million bits Fri Dec 9 11:29:34 2022 initial square root is modulo 4196183 Fri Dec 9 11:30:15 2022 GCD is N, no factor found Fri Dec 9 11:30:15 2022 reading relations for dependency 5 Fri Dec 9 11:30:15 2022 read 334092 cycles Fri Dec 9 11:30:15 2022 cycles contain 1210998 unique relations Fri Dec 9 11:30:21 2022 read 1210998 relations Fri Dec 9 11:30:24 2022 multiplying 1210998 relations Fri Dec 9 11:30:53 2022 multiply complete, coefficients have about 46.04 million bits Fri Dec 9 11:30:53 2022 initial square root is modulo 4072433 Fri Dec 9 11:31:32 2022 GCD is N, no factor found Fri Dec 9 11:31:32 2022 reading relations for dependency 6 Fri Dec 9 11:31:32 2022 read 334320 cycles Fri Dec 9 11:31:32 2022 cycles contain 1210660 unique relations Fri Dec 9 11:31:38 2022 read 1210660 relations Fri Dec 9 11:31:41 2022 multiplying 1210660 relations Fri Dec 9 11:32:10 2022 multiply complete, coefficients have about 46.02 million bits Fri Dec 9 11:32:10 2022 initial square root is modulo 4051987 Fri Dec 9 11:32:49 2022 sqrtTime: 468 Fri Dec 9 11:32:49 2022 p43 factor: 2593534563695904052120139313966274946051701 Fri Dec 9 11:32:49 2022 p75 factor: 273618442475707042036086545654836307728625443654338195780299596941642526037 Fri Dec 9 11:32:49 2022 elapsed time 00:07:49 Fri Dec 09 11:32:49 2022 -> Computing time scale for this machine... Fri Dec 09 11:32:49 2022 -> procrels -speedtest> PIPE |
software ソフトウェア | GGNFS, Msieve gnfs |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | December 7, 2022 09:14:36 UTC 2022 年 12 月 7 日 (水) 18 時 14 分 36 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | December 7, 2022 09:14:36 UTC 2022 年 12 月 7 日 (水) 18 時 14 分 36 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | November 8, 2022 10:27:28 UTC 2022 年 11 月 8 日 (火) 19 時 27 分 28 秒 (日本時間) |
composite number 合成数 | 88254800052990783830632135195761811768105303702683806954744946918796280201188682465552239188967734776803424393503206352639340544333695741227<140> |
prime factors 素因数 | 18837217063569932167644706151140570680187<41> 4685129430486330530565116374901451079205441962998456012784358165054079573796521974522124529551547921<100> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:1962246507 Step 1 took 5687ms Step 2 took 2672ms ********** Factor found in step 2: 18837217063569932167644706151140570680187 Found prime factor of 41 digits: 18837217063569932167644706151140570680187 Prime cofactor 4685129430486330530565116374901451079205441962998456012784358165054079573796521974522124529551547921 has 100 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | December 8, 2022 13:36:57 UTC 2022 年 12 月 8 日 (木) 22 時 36 分 57 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | December 8, 2022 13:36:57 UTC 2022 年 12 月 8 日 (木) 22 時 36 分 57 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | December 7, 2022 09:12:51 UTC 2022 年 12 月 7 日 (水) 18 時 12 分 51 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | December 7, 2022 09:12:51 UTC 2022 年 12 月 7 日 (水) 18 時 12 分 51 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 5, 2022 13:55:04 UTC 2022 年 12 月 5 日 (月) 22 時 55 分 4 秒 (日本時間) |
composite number 合成数 | 192789578321492200392929368863674676169679505339111330602994876079558763478989461393577622529649286791196537361158385173299750710356659112372519529159478082066528676676487529808076061453<186> |
prime factors 素因数 | 679537523553833977015707272412977<33> 283707038447626096700670991174360330484488343254908873647061302049967219626056378411837807521873507623562486766526502538089250131507305098643952426834589<153> |
factorization results 素因数分解の結果 | GPU: factor 679537523553833977015707272412977 found in Step 1 with curve 88 (-sigma 3:-1306032932) GPU: factor 679537523553833977015707272412977 found in Step 1 with curve 698 (-sigma 3:-1306032322) Computing 1792 Step 1 took 205ms of CPU time / 178400ms of GPU time Throughput: 10.045 curves per second (on average 99.55ms per Step 1) ********** Factor found in step 1: 679537523553833977015707272412977 Found prime factor of 33 digits: 679537523553833977015707272412977 Prime cofactor 283707038447626096700670991174360330484488343254908873647061302049967219626056378411837807521873507623562486766526502538089250131507305098643952426834589 has 153 digits Peak memory usage: 9428MB |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | December 7, 2022 09:14:48 UTC 2022 年 12 月 7 日 (水) 18 時 14 分 48 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | December 7, 2022 09:14:48 UTC 2022 年 12 月 7 日 (水) 18 時 14 分 48 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | December 7, 2022 09:15:04 UTC 2022 年 12 月 7 日 (水) 18 時 15 分 4 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | December 7, 2022 09:15:04 UTC 2022 年 12 月 7 日 (水) 18 時 15 分 4 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 6, 2022 07:46:33 UTC 2022 年 12 月 6 日 (火) 16 時 46 分 33 秒 (日本時間) |
composite number 合成数 | 974227906505816370862049071432123094080332332883484988737492683534545516865446051371000776354178226384655086880862752219638475023607241851806933222613389493086966756412476850772570455499<186> |
prime factors 素因数 | 45632187324967107096235748081157054148583<41> |
composite cofactor 合成数の残り | 21349577208909711637422351080804029154435223924925711147077428089195937017378399475141310764191332835908772006442056398650309432907592376503408253<146> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @8e07609ca4f5 with GMP-ECM 7.0.5-dev on Mon Dec 5 12:18:26 2022 Input number is 974227906505816370862049071432123094080332332883484988737492683534545516865446051371000776354178226384655086880862752219638475023607241851806933222613389493086966756412476850772570455499 (186 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:3011690628 Step 1 took 0ms Step 2 took 5441ms ********** Factor found in step 2: 45632187324967107096235748081157054148583 Found prime factor of 41 digits: 45632187324967107096235748081157054148583 Composite cofactor 21349577208909711637422351080804029154435223924925711147077428089195937017378399475141310764191332835908772006442056398650309432907592376503408253 has 146 digits |
name 名前 | Erik Branger |
---|---|
date 日付 | September 3, 2023 17:36:54 UTC 2023 年 9 月 4 日 (月) 2 時 36 分 54 秒 (日本時間) |
composite number 合成数 | 21349577208909711637422351080804029154435223924925711147077428089195937017378399475141310764191332835908772006442056398650309432907592376503408253<146> |
prime factors 素因数 | 2705048734463495693151258587822045986840807969559530066984415894894684089<73> 7892492633092641093155209444760518524995477119370448796944395182484520677<73> |
factorization results 素因数分解の結果 | Number: 67772_222 N = 21349577208909711637422351080804029154435223924925711147077428089195937017378399475141310764191332835908772006442056398650309432907592376503408253 (146 digits) SNFS difficulty: 224 digits. Divisors found: r1=2705048734463495693151258587822045986840807969559530066984415894894684089 (pp73) r2=7892492633092641093155209444760518524995477119370448796944395182484520677 (pp73) Version: Msieve v. 1.52 (SVN unknown) Total time: 34.20 hours. Factorization parameters were as follows: n: 21349577208909711637422351080804029154435223924925711147077428089195937017378399475141310764191332835908772006442056398650309432907592376503408253 m: 10000000000000000000000000000000000000000000000000000000 deg: 4 c4: 1525 c0: -13 skew: 1.00 type: snfs lss: 1 rlim: 536870912 alim: 44739242 lpbr: 29 lpba: 28 mfbr: 58 mfba: 56 rlambda: 2.8 alambda: 2.8 side: 1 Number of cores used: 6 Number of threads per core: 1 Factor base limits: 536870912/44739242 Large primes per side: 3 Large prime bits: 29/28 Total raw relations: 30229127 Relations: 9290118 relations Total pre-computation time approximately 1000 CPU-days. Pre-computation saved approximately 18 G rational relations. Total batch smoothness checking time: 10.46 hours. Total relation processing time: 0.29 hours. Pruned matrix : 7860114 x 7860339 Matrix solve time: 22.93 hours. time per square root: 0.52 hours. Prototype def-par.txt line would be: snfs,224,4,0,0,0,0,0,0,0,0,536870912,44739242,29,28,58,56,2.8,2.8,100000 total time: 34.20 hours. Intel64 Family 6 Model 158 Stepping 10, GenuineIntel Windows-10-10.0.22621-SP0 processors: 12, speed: 3.19GHz |
software ソフトウェア | GGNFS, NFS_factory, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | December 6, 2022 07:46:27 UTC 2022 年 12 月 6 日 (火) 16 時 46 分 27 秒 (日本時間) |
2350 | Ignacio Santos | December 7, 2022 14:34:46 UTC 2022 年 12 月 7 日 (水) 23 時 34 分 46 秒 (日本時間) | |||
45 | 11e6 | 4480 | Ignacio Santos | December 8, 2022 08:39:31 UTC 2022 年 12 月 8 日 (木) 17 時 39 分 31 秒 (日本時間) | |
50 | 43e6 | 6454 | Ignacio Santos | December 9, 2022 16:43:09 UTC 2022 年 12 月 10 日 (土) 1 時 43 分 9 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | December 8, 2022 21:47:58 UTC 2022 年 12 月 9 日 (金) 6 時 47 分 58 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | December 8, 2022 21:47:58 UTC 2022 年 12 月 9 日 (金) 6 時 47 分 58 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 8, 2022 19:03:34 UTC 2022 年 12 月 9 日 (金) 4 時 3 分 34 秒 (日本時間) |
composite number 合成数 | 179107490579445147544111561722067902033863624221162821968763395258368192642520322622270840803730594099781147089166790896796607917882938656177756186222979007157499410912527295834754888932743798385521556490837254231197187<219> |
prime factors 素因数 | 25648873611653344208809579906600468941389<41> |
composite cofactor 合成数の残り | 6983054823041788706940242688889928094950884622585388650031949637195780080471756765655471351781892041353837676818183298327517125633411228602043413374481311467673516484609426807183<178> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:3918172448 Step 1 took 74264ms Step 2 took 28208ms ********** Factor found in step 2: 25648873611653344208809579906600468941389 Found prime factor of 41 digits: 25648873611653344208809579906600468941389 Composite cofactor 6983054823041788706940242688889928094950884622585388650031949637195780080471756765655471351781892041353837676818183298327517125633411228602043413374481311467673516484609426807183 has 178 digits |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 10, 2022 17:44:09 UTC 2022 年 12 月 11 日 (日) 2 時 44 分 9 秒 (日本時間) |
composite number 合成数 | 6983054823041788706940242688889928094950884622585388650031949637195780080471756765655471351781892041353837676818183298327517125633411228602043413374481311467673516484609426807183<178> |
prime factors 素因数 | 2429325314645023706605054177252678524167<40> |
composite cofactor 合成数の残り | 2874483207722289800221142976518721015715937107582286489459041693294481539062945124922710831520367662075950272622433334033349947807034869049<139> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:1117147976 Step 1 took 53188ms Step 2 took 22228ms ********** Factor found in step 2: 2429325314645023706605054177252678524167 Found prime factor of 40 digits: 2429325314645023706605054177252678524167 Composite cofactor 2874483207722289800221142976518721015715937107582286489459041693294481539062945124922710831520367662075950272622433334033349947807034869049 has 139 digits |
name 名前 | Ignacio Santos |
---|---|
date 日付 | December 11, 2022 17:21:08 UTC 2022 年 12 月 12 日 (月) 2 時 21 分 8 秒 (日本時間) |
composite number 合成数 | 2874483207722289800221142976518721015715937107582286489459041693294481539062945124922710831520367662075950272622433334033349947807034869049<139> |
prime factors 素因数 | 2738945880237790496905443339251077870988736629<46> 1049485215630741922254189448914035277642239661025934992834628068264395582691369222676870684981<94> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:174935398 Step 1 took 20750ms Step 2 took 9032ms ********** Factor found in step 2: 2738945880237790496905443339251077870988736629 Found prime factor of 46 digits: 2738945880237790496905443339251077870988736629 Prime cofactor 1049485215630741922254189448914035277642239661025934992834628068264395582691369222676870684981 has 94 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | December 8, 2022 13:37:03 UTC 2022 年 12 月 8 日 (木) 22 時 37 分 3 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | December 8, 2022 13:37:03 UTC 2022 年 12 月 8 日 (木) 22 時 37 分 3 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | November 12, 2022 14:09:23 UTC 2022 年 11 月 12 日 (土) 23 時 9 分 23 秒 (日本時間) |
composite number 合成数 | 452033330650629618185923852135136821543366367413299775214649781320872314405993728614056593436577879377253084885748327678358754900114425006466343959<147> |
prime factors 素因数 | 57464186970048986779155730110201473713539887<44> 7866348668366868762137897392741202483341508612102156975934086858026624626325724136785929151456513039257<103> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:2862447698 Step 1 took 20719ms Step 2 took 9234ms ********** Factor found in step 2: 57464186970048986779155730110201473713539887 Found prime factor of 44 digits: 57464186970048986779155730110201473713539887 Prime cofactor 7866348668366868762137897392741202483341508612102156975934086858026624626325724136785929151456513039257 has 103 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | November 9, 2022 11:40:41 UTC 2022 年 11 月 9 日 (水) 20 時 40 分 41 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | December 7, 2022 09:15:38 UTC 2022 年 12 月 7 日 (水) 18 時 15 分 38 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | December 7, 2022 09:15:38 UTC 2022 年 12 月 7 日 (水) 18 時 15 分 38 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 6, 2022 22:43:42 UTC 2022 年 12 月 7 日 (水) 7 時 43 分 42 秒 (日本時間) |
composite number 合成数 | 835068221788205781180037368344650013599291336465633164331952814976644647697311699097704679464949613078668738073925276781308665253785993972943022994055245156590623985426334634780312168761976041920096182336406986733805056527<222> |
prime factors 素因数 | 3052676335520872559660812258918197418931<40> 273552820543524678433063176654382346357796354211147574400472725047626449436754388308024727126745966592941656092425652461242965770167275013356920996232442642954370275988012710342193717<183> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @8e07609ca4f5 with GMP-ECM 7.0.5-dev on Mon Dec 5 10:43:34 2022 Input number is 835068221788205781180037368344650013599291336465633164331952814976644647697311699097704679464949613078668738073925276781308665253785993972943022994055245156590623985426334634780312168761976041920096182336406986733805056527 (222 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:2285474662 Step 1 took 0ms Step 2 took 4661ms ********** Factor found in step 2: 3052676335520872559660812258918197418931 Found prime factor of 40 digits: 3052676335520872559660812258918197418931 Prime cofactor 273552820543524678433063176654382346357796354211147574400472725047626449436754388308024727126745966592941656092425652461242965770167275013356920996232442642954370275988012710342193717 has 183 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | December 7, 2022 09:15:36 UTC 2022 年 12 月 7 日 (水) 18 時 15 分 36 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | December 7, 2022 09:15:36 UTC 2022 年 12 月 7 日 (水) 18 時 15 分 36 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | December 9, 2022 19:40:42 UTC 2022 年 12 月 10 日 (土) 4 時 40 分 42 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | December 9, 2022 19:40:42 UTC 2022 年 12 月 10 日 (土) 4 時 40 分 42 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | December 8, 2022 13:37:09 UTC 2022 年 12 月 8 日 (木) 22 時 37 分 9 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | December 8, 2022 13:37:09 UTC 2022 年 12 月 8 日 (木) 22 時 37 分 9 秒 (日本時間) |
composite cofactor 合成数の残り | 12248990711804812387084686221262462081991482702790161212773401584916000270116298119737108290740374046097425513066112751592840084720754044919155126700997<152> |
---|
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | November 9, 2022 12:29:02 UTC 2022 年 11 月 9 日 (水) 21 時 29 分 2 秒 (日本時間) | |
45 | 11e6 | 4480 | Ignacio Santos | November 13, 2022 10:33:14 UTC 2022 年 11 月 13 日 (日) 19 時 33 分 14 秒 (日本時間) | |
50 | 43e6 | 6454 | Ignacio Santos | January 23, 2024 12:11:07 UTC 2024 年 1 月 23 日 (火) 21 時 11 分 7 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | December 9, 2022 19:41:44 UTC 2022 年 12 月 10 日 (土) 4 時 41 分 44 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | December 9, 2022 19:41:44 UTC 2022 年 12 月 10 日 (土) 4 時 41 分 44 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | December 7, 2022 09:25:33 UTC 2022 年 12 月 7 日 (水) 18 時 25 分 33 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | December 7, 2022 09:25:33 UTC 2022 年 12 月 7 日 (水) 18 時 25 分 33 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | December 9, 2022 19:41:34 UTC 2022 年 12 月 10 日 (土) 4 時 41 分 34 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | December 9, 2022 19:41:34 UTC 2022 年 12 月 10 日 (土) 4 時 41 分 34 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | December 7, 2022 09:25:40 UTC 2022 年 12 月 7 日 (水) 18 時 25 分 40 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | December 7, 2022 09:25:40 UTC 2022 年 12 月 7 日 (水) 18 時 25 分 40 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | December 7, 2022 09:25:47 UTC 2022 年 12 月 7 日 (水) 18 時 25 分 47 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | December 7, 2022 09:25:47 UTC 2022 年 12 月 7 日 (水) 18 時 25 分 47 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | December 9, 2022 19:41:26 UTC 2022 年 12 月 10 日 (土) 4 時 41 分 26 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | December 9, 2022 19:41:26 UTC 2022 年 12 月 10 日 (土) 4 時 41 分 26 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | December 7, 2022 09:25:58 UTC 2022 年 12 月 7 日 (水) 18 時 25 分 58 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | December 7, 2022 09:25:58 UTC 2022 年 12 月 7 日 (水) 18 時 25 分 58 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | December 9, 2022 19:42:59 UTC 2022 年 12 月 10 日 (土) 4 時 42 分 59 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | December 9, 2022 19:42:59 UTC 2022 年 12 月 10 日 (土) 4 時 42 分 59 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 6, 2022 07:46:00 UTC 2022 年 12 月 6 日 (火) 16 時 46 分 0 秒 (日本時間) |
composite number 合成数 | 8819958611131865853747364731421967497847504072775372572355482098245899296497459441532398888954764131907495622185511162077594573357692687471019917419492813958089735770010458445350063510587309<190> |
prime factors 素因数 | 44130075650521506766161918850947777701<38> |
composite cofactor 合成数の残り | 199862757566508637366739960120266615571116053265122913313025760157681811371262142639445043365328101118984331733475451472698596875580619040489528212988009<153> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @8e07609ca4f5 with GMP-ECM 7.0.5-dev on Mon Dec 5 11:08:50 2022 Input number is 8819958611131865853747364731421967497847504072775372572355482098245899296497459441532398888954764131907495622185511162077594573357692687471019917419492813958089735770010458445350063510587309 (190 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:136521310 Step 1 took 0ms Step 2 took 3002ms ********** Factor found in step 2: 44130075650521506766161918850947777701 Found prime factor of 38 digits: 44130075650521506766161918850947777701 Composite cofactor 199862757566508637366739960120266615571116053265122913313025760157681811371262142639445043365328101118984331733475451472698596875580619040489528212988009 has 153 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | December 6, 2022 07:45:50 UTC 2022 年 12 月 6 日 (火) 16 時 45 分 50 秒 (日本時間) |
2350 | Ignacio Santos | December 7, 2022 14:40:44 UTC 2022 年 12 月 7 日 (水) 23 時 40 分 44 秒 (日本時間) | |||
45 | 11e6 | 4480 | Ignacio Santos | December 8, 2022 10:07:34 UTC 2022 年 12 月 8 日 (木) 19 時 7 分 34 秒 (日本時間) | |
50 | 43e6 | 6454 | Ignacio Santos | February 26, 2024 13:48:34 UTC 2024 年 2 月 26 日 (月) 22 時 48 分 34 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | December 8, 2022 13:37:16 UTC 2022 年 12 月 8 日 (木) 22 時 37 分 16 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | December 8, 2022 13:37:16 UTC 2022 年 12 月 8 日 (木) 22 時 37 分 16 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2078 | ebina | November 9, 2022 08:24:22 UTC 2022 年 11 月 9 日 (水) 17 時 24 分 22 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | October 25, 2023 15:02:24 UTC 2023 年 10 月 26 日 (木) 0 時 2 分 24 秒 (日本時間) |
composite number 合成数 | 56481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481<251> |
prime factors 素因数 | 376892257555910735257702791215326307776171<42> 149861081911725496789442761992910631288658582132268487891071244437383611427456716157183043338148562407924096700798559185333322011974158119569628971665405995745121473280312494456181337984689019982344947355171611<210> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:2097445679 Step 1 took 12625ms Step 2 took 5062ms ********** Factor found in step 2: 376892257555910735257702791215326307776171 Found prime factor of 42 digits: 376892257555910735257702791215326307776171 Prime cofactor 149861081911725496789442761992910631288658582132268487891071244437383611427456716157183043338148562407924096700798559185333322011974158119569628971665405995745121473280312494456181337984689019982344947355171611 has 210 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 / 2078 | Dmitry Domanov | December 11, 2022 22:12:37 UTC 2022 年 12 月 12 日 (月) 7 時 12 分 37 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | December 9, 2022 19:43:07 UTC 2022 年 12 月 10 日 (土) 4 時 43 分 7 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | December 9, 2022 19:43:07 UTC 2022 年 12 月 10 日 (土) 4 時 43 分 7 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | December 7, 2022 09:26:03 UTC 2022 年 12 月 7 日 (水) 18 時 26 分 3 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | December 7, 2022 09:26:03 UTC 2022 年 12 月 7 日 (水) 18 時 26 分 3 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | December 11, 2022 22:08:45 UTC 2022 年 12 月 12 日 (月) 7 時 8 分 45 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | December 11, 2022 22:08:45 UTC 2022 年 12 月 12 日 (月) 7 時 8 分 45 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | December 8, 2022 13:37:22 UTC 2022 年 12 月 8 日 (木) 22 時 37 分 22 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | December 8, 2022 13:37:22 UTC 2022 年 12 月 8 日 (木) 22 時 37 分 22 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | December 11, 2022 22:12:31 UTC 2022 年 12 月 12 日 (月) 7 時 12 分 31 秒 (日本時間) |
2350 | Ignacio Santos | October 25, 2023 15:02:58 UTC 2023 年 10 月 26 日 (木) 0 時 2 分 58 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | December 11, 2022 22:08:51 UTC 2022 年 12 月 12 日 (月) 7 時 8 分 51 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | December 11, 2022 22:08:51 UTC 2022 年 12 月 12 日 (月) 7 時 8 分 51 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | December 8, 2022 13:37:28 UTC 2022 年 12 月 8 日 (木) 22 時 37 分 28 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | December 8, 2022 13:37:28 UTC 2022 年 12 月 8 日 (木) 22 時 37 分 28 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | December 9, 2022 19:43:14 UTC 2022 年 12 月 10 日 (土) 4 時 43 分 14 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | December 9, 2022 19:43:14 UTC 2022 年 12 月 10 日 (土) 4 時 43 分 14 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | December 11, 2022 22:12:26 UTC 2022 年 12 月 12 日 (月) 7 時 12 分 26 秒 (日本時間) |
2350 | Ignacio Santos | October 25, 2023 15:33:47 UTC 2023 年 10 月 26 日 (木) 0 時 33 分 47 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 7, 2022 09:16:59 UTC 2022 年 12 月 7 日 (水) 18 時 16 分 59 秒 (日本時間) |
composite number 合成数 | 200546367701935808216159998791362086706628930378039078005659141689006921103153462167799983807505756450675048670104331163266573186906834578073579843936569996152613179985838455686087880476082653098858963828356478174681<216> |
prime factors 素因数 | 27362950947888128216417023508712787915727<41> 7329120608514410658904392664832417832659287529009314074953197769200522739845706586041477840631930351717553385290526706933833060717536308538205418567025004694109298182437932503<175> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @8e07609ca4f5 with GMP-ECM 7.0.5-dev on Mon Dec 5 12:47:56 2022 Input number is 200546367701935808216159998791362086706628930378039078005659141689006921103153462167799983807505756450675048670104331163266573186906834578073579843936569996152613179985838455686087880476082653098858963828356478174681 (216 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:281428370 Step 1 took 0ms Step 2 took 3993ms ********** Factor found in step 2: 27362950947888128216417023508712787915727 Found prime factor of 41 digits: 27362950947888128216417023508712787915727 Prime cofactor 7329120608514410658904392664832417832659287529009314074953197769200522739845706586041477840631930351717553385290526706933833060717536308538205418567025004694109298182437932503 has 175 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | December 9, 2022 19:43:20 UTC 2022 年 12 月 10 日 (土) 4 時 43 分 20 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | December 9, 2022 19:43:20 UTC 2022 年 12 月 10 日 (土) 4 時 43 分 20 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | December 11, 2022 22:08:57 UTC 2022 年 12 月 12 日 (月) 7 時 8 分 57 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | December 11, 2022 22:08:57 UTC 2022 年 12 月 12 日 (月) 7 時 8 分 57 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | December 11, 2022 22:12:20 UTC 2022 年 12 月 12 日 (月) 7 時 12 分 20 秒 (日本時間) |
2350 | Ignacio Santos | October 25, 2023 15:34:05 UTC 2023 年 10 月 26 日 (木) 0 時 34 分 5 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | December 11, 2022 22:09:14 UTC 2022 年 12 月 12 日 (月) 7 時 9 分 14 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | December 11, 2022 22:09:14 UTC 2022 年 12 月 12 日 (月) 7 時 9 分 14 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | November 9, 2022 14:28:22 UTC 2022 年 11 月 9 日 (水) 23 時 28 分 22 秒 (日本時間) | |
45 | 11e6 | 4480 | Ignacio Santos | November 15, 2022 15:02:13 UTC 2022 年 11 月 16 日 (水) 0 時 2 分 13 秒 (日本時間) | |
50 | 43e6 | 1792 / 6453 | Dmitry Domanov | May 12, 2024 08:19:59 UTC 2024 年 5 月 12 日 (日) 17 時 19 分 59 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | December 8, 2022 21:48:37 UTC 2022 年 12 月 9 日 (金) 6 時 48 分 37 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | December 8, 2022 21:48:37 UTC 2022 年 12 月 9 日 (金) 6 時 48 分 37 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 13, 2022 15:28:42 UTC 2022 年 12 月 14 日 (水) 0 時 28 分 42 秒 (日本時間) |
composite number 合成数 | 212516181433384644805102028352228156100834489887812025273900962161015244365001565243680297480681035169471525371145569777548883178194402805540003964716067504708322948265534817611055474238855134681204558651270019323806002035122716440294934249052851<246> |
prime factors 素因数 | 85847059569266285191431864190234490582611<41> 2475520798262339028576066570797316891263521638987967113205838633466224407265285268839422192045474923345498088967117388297426515491657152828532583424123432372000944732358843482640020113611665009419482807841<205> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=4176369334 Step 1 took 62944ms Step 2 took 19596ms ********** Factor found in step 2: 85847059569266285191431864190234490582611 Found probable prime factor of 41 digits: 85847059569266285191431864190234490582611 Probable prime cofactor 2475520798262339028576066570797316891263521638987967113205838633466224407265285268839422192045474923345498088967117388297426515491657152828532583424123432372000944732358843482640020113611665009419482807841 has 205 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | December 11, 2022 22:09:33 UTC 2022 年 12 月 12 日 (月) 7 時 9 分 33 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | December 11, 2022 22:09:33 UTC 2022 年 12 月 12 日 (月) 7 時 9 分 33 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | December 11, 2022 22:12:15 UTC 2022 年 12 月 12 日 (月) 7 時 12 分 15 秒 (日本時間) |
2350 | Ignacio Santos | October 26, 2023 07:03:12 UTC 2023 年 10 月 26 日 (木) 16 時 3 分 12 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | December 11, 2022 22:12:08 UTC 2022 年 12 月 12 日 (月) 7 時 12 分 8 秒 (日本時間) |
2350 | Ignacio Santos | October 26, 2023 07:03:22 UTC 2023 年 10 月 26 日 (木) 16 時 3 分 22 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | December 11, 2022 22:12:02 UTC 2022 年 12 月 12 日 (月) 7 時 12 分 2 秒 (日本時間) |
2350 | Ignacio Santos | October 26, 2023 07:03:45 UTC 2023 年 10 月 26 日 (木) 16 時 3 分 45 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | December 11, 2022 22:11:56 UTC 2022 年 12 月 12 日 (月) 7 時 11 分 56 秒 (日本時間) |
2350 | Ignacio Santos | October 26, 2023 07:14:10 UTC 2023 年 10 月 26 日 (木) 16 時 14 分 10 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | December 9, 2022 19:45:43 UTC 2022 年 12 月 10 日 (土) 4 時 45 分 43 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | December 9, 2022 19:45:43 UTC 2022 年 12 月 10 日 (土) 4 時 45 分 43 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | December 7, 2022 09:26:12 UTC 2022 年 12 月 7 日 (水) 18 時 26 分 12 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | December 7, 2022 09:26:12 UTC 2022 年 12 月 7 日 (水) 18 時 26 分 12 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | December 8, 2022 13:37:34 UTC 2022 年 12 月 8 日 (木) 22 時 37 分 34 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | December 8, 2022 13:37:34 UTC 2022 年 12 月 8 日 (木) 22 時 37 分 34 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 10, 2022 09:00:42 UTC 2022 年 12 月 10 日 (土) 18 時 0 分 42 秒 (日本時間) |
composite number 合成数 | 3357869199817583083726645832164135741567612714196582303461927622064184081115329888829677045099688894913351805793208102446374704714983318574335565061661226979659290316104182497533061153925677415792536118158203191027064778386068266304789711<238> |
prime factors 素因数 | 931974276033164389022258647954902247445274047<45> |
composite cofactor 合成数の残り | 3602963393056240324949024328424276109029243704005071385661757010870041246956265293710123164231126969843413335194599229871089366206747802184411894532841296007921061738913851695110722321886979313<193> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:1608835213 Step 1 took 49064ms Step 2 took 14427ms ********** Factor found in step 2: 931974276033164389022258647954902247445274047 Found prime factor of 45 digits: 931974276033164389022258647954902247445274047 Composite cofactor 3602963393056240324949024328424276109029243704005071385661757010870041246956265293710123164231126969843413335194599229871089366206747802184411894532841296007921061738913851695110722321886979313 has 193 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | December 9, 2022 19:45:49 UTC 2022 年 12 月 10 日 (土) 4 時 45 分 49 秒 (日本時間) | |
45 | 11e6 | 4584 | 1000 | Dmitry Domanov | December 9, 2022 19:45:49 UTC 2022 年 12 月 10 日 (土) 4 時 45 分 49 秒 (日本時間) |
3584 | Dmitry Domanov | June 23, 2024 18:06:01 UTC 2024 年 6 月 24 日 (月) 3 時 6 分 1 秒 (日本時間) | |||
50 | 43e6 | 1792 / 6451 | Dmitry Domanov | June 24, 2024 05:36:38 UTC 2024 年 6 月 24 日 (月) 14 時 36 分 38 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 10, 2022 09:00:08 UTC 2022 年 12 月 10 日 (土) 18 時 0 分 8 秒 (日本時間) |
composite number 合成数 | 7078923271545781172262607346172149838005794143667654558448778031395952895303157774731648065203307846295280242671759319621728789210398525013348530228593143346015364996133815585000299384031122152634233267177981542818577062880107931663151<235> |
prime factors 素因数 | 1589656592176297735802400196223171243<37> |
composite cofactor 合成数の残り | 4453114783649264493873181639523507823811703512405001436580051209731465867403194232582865654158107271615621729579700758291934295162121552303503204237673350901850866951695595989327781712546034176246157<199> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:129821163 Step 1 took 56784ms Step 2 took 21383ms ********** Factor found in step 2: 1589656592176297735802400196223171243 Found prime factor of 37 digits: 1589656592176297735802400196223171243 Composite cofactor 4453114783649264493873181639523507823811703512405001436580051209731465867403194232582865654158107271615621729579700758291934295162121552303503204237673350901850866951695595989327781712546034176246157 has 199 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | December 9, 2022 19:45:55 UTC 2022 年 12 月 10 日 (土) 4 時 45 分 55 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | December 9, 2022 19:45:55 UTC 2022 年 12 月 10 日 (土) 4 時 45 分 55 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | December 8, 2022 21:49:06 UTC 2022 年 12 月 9 日 (金) 6 時 49 分 6 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | December 8, 2022 21:49:06 UTC 2022 年 12 月 9 日 (金) 6 時 49 分 6 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | December 11, 2022 22:10:59 UTC 2022 年 12 月 12 日 (月) 7 時 10 分 59 秒 (日本時間) |
2350 | Ignacio Santos | October 25, 2023 15:56:41 UTC 2023 年 10 月 26 日 (木) 0 時 56 分 41 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | December 10, 2022 09:07:07 UTC 2022 年 12 月 10 日 (土) 18 時 7 分 7 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | December 10, 2022 09:07:07 UTC 2022 年 12 月 10 日 (土) 18 時 7 分 7 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | December 10, 2022 09:07:12 UTC 2022 年 12 月 10 日 (土) 18 時 7 分 12 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | December 10, 2022 09:07:12 UTC 2022 年 12 月 10 日 (土) 18 時 7 分 12 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | December 10, 2022 09:07:18 UTC 2022 年 12 月 10 日 (土) 18 時 7 分 18 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | December 10, 2022 09:07:18 UTC 2022 年 12 月 10 日 (土) 18 時 7 分 18 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | December 10, 2022 09:07:27 UTC 2022 年 12 月 10 日 (土) 18 時 7 分 27 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | December 10, 2022 09:07:27 UTC 2022 年 12 月 10 日 (土) 18 時 7 分 27 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | December 9, 2022 19:46:02 UTC 2022 年 12 月 10 日 (土) 4 時 46 分 2 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | December 9, 2022 19:46:02 UTC 2022 年 12 月 10 日 (土) 4 時 46 分 2 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | December 11, 2022 22:10:09 UTC 2022 年 12 月 12 日 (月) 7 時 10 分 9 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | December 11, 2022 22:10:09 UTC 2022 年 12 月 12 日 (月) 7 時 10 分 9 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | November 7, 2022 07:00:00 UTC 2022 年 11 月 7 日 (月) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | December 11, 2022 22:10:38 UTC 2022 年 12 月 12 日 (月) 7 時 10 分 38 秒 (日本時間) |
2350 | Ignacio Santos | October 25, 2023 16:06:29 UTC 2023 年 10 月 26 日 (木) 1 時 6 分 29 秒 (日本時間) |