name 名前 | Sinkiti Sibata |
---|---|
date 日付 | October 26, 2006 22:54:14 UTC 2006 年 10 月 27 日 (金) 7 時 54 分 14 秒 (日本時間) |
composite number 合成数 | 20984441024199006214282702098464189974691210272294309386562281479507447360215780310022944469827007599041064432596741706279115742469976314177<140> |
prime factors 素因数 | 1430176486021512778804762093129<31> 2634124550304617716630218784122614557<37> 5570208680054061570851852839330927864723474994741869020269931636097026509<73> |
factorization results 素因数分解の結果 | Number: 47777_152 N=20984441024199006214282702098464189974691210272294309386562281479507447360215780310022944469827007599041064432596741706279115742469976314177 ( 140 digits) SNFS difficulty: 153 digits. Divisors found: r1=1430176486021512778804762093129 (pp31) r2=2634124550304617716630218784122614557 (pp37) r3=5570208680054061570851852839330927864723474994741869020269931636097026509 (pp73) Version: GGNFS-0.77.1 Total time: 55.54 hours. Scaled time: 33.10 units (timescale=0.596). Factorization parameters were as follows: name: 47777_152 n: 20984441024199006214282702098464189974691210272294309386562281479507447360215780310022944469827007599041064432596741706279115742469976314177 m: 1000000000000000000000000000000 c5: 4300 c0: -7 skew: 2 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [1200000, 2600001) Relations: rels:5441857, finalFF:403012 Initial matrix: 352762 x 403012 with sparse part having weight 38799169. Pruned matrix : 345979 x 347806 with weight 27944683. Total sieving time: 49.59 hours. Total relation processing time: 0.40 hours. Matrix solve time: 5.37 hours. Time per square root: 0.18 hours. Prototype def-par.txt line would be: snfs,153,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 55.54 hours. --------- CPU info (if available) ---------- |
execution environment 実行環境 | Pentium 4 2.4GHz, Windows XP and Cygwin |
name 名前 | Sinkiti Sibata |
---|---|
date 日付 | October 29, 2006 22:27:12 UTC 2006 年 10 月 30 日 (月) 7 時 27 分 12 秒 (日本時間) |
composite number 合成数 | 2514619883040935672514619883040935672514619883040935672514619883040935672514619883040935672514619883040935672514619883040935672514619883040935672514619883<154> |
prime factors 素因数 | 698263010678625674370967526486806265752943801620969881754577082577<66> 3601250309102059914245749920964728989234812179604000200365723315889504010401022986601979<88> |
factorization results 素因数分解の結果 | Number: 47777_154 N=2514619883040935672514619883040935672514619883040935672514619883040935672514619883040935672514619883040935672514619883040935672514619883040935672514619883 ( 154 digits) SNFS difficulty: 156 digits. Divisors found: r1=698263010678625674370967526486806265752943801620969881754577082577 (pp66) r2=3601250309102059914245749920964728989234812179604000200365723315889504010401022986601979 (pp88) Version: GGNFS-0.77.1 Total time: 68.58 hours. Scaled time: 40.26 units (timescale=0.587). Factorization parameters were as follows: name: 47777_154 n: 2514619883040935672514619883040935672514619883040935672514619883040935672514619883040935672514619883040935672514619883040935672514619883040935672514619883 m: 10000000000000000000000000000000 c5: 43 c0: -70 skew: 1.1 type: snfs Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [1500000, 3200001) Relations: rels:5765318, finalFF:550075 Initial matrix: 432277 x 550075 with sparse part having weight 49724344. Pruned matrix : 410491 x 412716 with weight 27468631. Total sieving time: 61.33 hours. Total relation processing time: 0.45 hours. Matrix solve time: 6.59 hours. Time per square root: 0.21 hours. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 68.58 hours. --------- CPU info (if available) ---------- |
execution environment 実行環境 | Pentium 4 2.4GHz, Windows XP and Cygwin |
name 名前 | Robert Backstrom |
---|---|
date 日付 | April 12, 2007 06:34:48 UTC 2007 年 4 月 12 日 (木) 15 時 34 分 48 秒 (日本時間) |
composite number 合成数 | 55532090147357078614709045295335410496884507949289740354906265287483458384991574448553960954638656267233942947332864511635639261192072916572233177<146> |
prime factors 素因数 | 19163362490036635820158997010258849551<38> 2897826003981773784334186754550525299012182064741398699239307009312692916090017208342332671221035127546930327<109> |
factorization results 素因数分解の結果 | Number: n N=55532090147357078614709045295335410496884507949289740354906265287483458384991574448553960954638656267233942947332864511635639261192072916572233177 ( 146 digits) SNFS difficulty: 157 digits. Divisors found: r1=19163362490036635820158997010258849551 (pp38) r2=2897826003981773784334186754550525299012182064741398699239307009312692916090017208342332671221035127546930327 (pp109) Version: GGNFS-0.77.1-20051202-athlon Total time: 29.34 hours. Scaled time: 42.51 units (timescale=1.449). Factorization parameters were as follows: name: KA_4_7_156 n: 55532090147357078614709045295335410496884507949289740354906265287483458384991574448553960954638656267233942947332864511635639261192072916572233177 skew: 0.44 deg: 5 c5: 430 c0: -7 m: 10000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1300001) Primes: RFBsize:216816, AFBsize:216651, largePrimes:6922881 encountered Relations: rels:6392211, finalFF:486337 Max relations in full relation-set: 28 Initial matrix: 433534 x 486337 with sparse part having weight 33091584. Pruned matrix : 388899 x 391130 with weight 22447641. Total sieving time: 25.47 hours. Total relation processing time: 0.26 hours. Matrix solve time: 3.53 hours. Total square root time: 0.07 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,157,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 29.34 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+ |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | July 12, 2007 09:52:41 UTC 2007 年 7 月 12 日 (木) 18 時 52 分 41 秒 (日本時間) |
composite number 合成数 | 1361420192801642844760463669804693004476351044512514200603381946512896191823153079084354130656684493321162606096630346339637421538262702081581801<145> |
prime factors 素因数 | 4421264001211142317908244507<28> |
composite cofactor 合成数の残り | 307925559846392608191890342655880287652240774038193999902100985083530393790025178760683643373658220133542015572724043<117> |
factorization results 素因数分解の結果 | GMP-ECM 6.1.2 [powered by GMP 4.2.1] [ECM] Input number is 1361420192801642844760463669804693004476351044512514200603381946512896191823153079084354130656684493321162606096630346339637421538262702081581801 (145 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2804776548 Step 1 took 7220ms ********** Factor found in step 1: 4421264001211142317908244507 Found probable prime factor of 28 digits: 4421264001211142317908244507 Composite cofactor 307925559846392608191890342655880287652240774038193999902100985083530393790025178760683643373658220133542015572724043 has 117 digits |
execution environment 実行環境 | Core 2 Quad Q6600 |
name 名前 | Sinkiti Sibata |
---|---|
date 日付 | August 1, 2007 05:06:51 UTC 2007 年 8 月 1 日 (水) 14 時 6 分 51 秒 (日本時間) |
composite number 合成数 | 307925559846392608191890342655880287652240774038193999902100985083530393790025178760683643373658220133542015572724043<117> |
prime factors 素因数 | 10962690224883063587814306144466516475374288984362790602653<59> 28088503235042124615343896925550058586948441134278026650631<59> |
factorization results 素因数分解の結果 | Number: 47777_160 N=307925559846392608191890342655880287652240774038193999902100985083530393790025178760683643373658220133542015572724043 ( 117 digits) SNFS difficulty: 161 digits. Divisors found: r1=10962690224883063587814306144466516475374288984362790602653 (pp59) r2=28088503235042124615343896925550058586948441134278026650631 (pp59) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 92.60 hours. Scaled time: 63.15 units (timescale=0.682). Factorization parameters were as follows: name: 47777_160 n: 307925559846392608191890342655880287652240774038193999902100985083530393790025178760683643373658220133542015572724043 m: 100000000000000000000000000000000 c5: 43 c0: -7 skew: 0.7 type: snfs Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2250000, 4450001) Primes: RFBsize:315948, AFBsize:316331, largePrimes:5787779 encountered Relations: rels:5898099, finalFF:709902 Max relations in full relation-set: 0 Initial matrix: 632346 x 709902 with sparse part having weight 39393248. Pruned matrix : 573683 x 576908 with weight 30096165. Total sieving time: 78.88 hours. Total relation processing time: 0.34 hours. Matrix solve time: 13.14 hours. Time per square root: 0.24 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,4500000,4500000,27,27,48,48,2.3,2.3,100000 total time: 92.60 hours. --------- CPU info (if available) ---------- |
execution environment 実行環境 | Pentium 4 2.4GHz, Windows XP and Cygwin) |
name 名前 | Sinkiti Sibata |
---|---|
date 日付 | May 12, 2008 06:11:32 UTC 2008 年 5 月 12 日 (月) 15 時 11 分 32 秒 (日本時間) |
composite number 合成数 | 1131179319877381526484592406638873153964107702611935425473131250001541648222905288588232080460486389335504040917062171767903<124> |
prime factors 素因数 | 4940707832454493415501651784634079823643014735022300729459783<61> 228950862555947401946978886763873337701268538465930614150009641<63> |
factorization results 素因数分解の結果 | Number: 47777_163 N=1131179319877381526484592406638873153964107702611935425473131250001541648222905288588232080460486389335504040917062171767903 ( 124 digits) SNFS difficulty: 164 digits. Divisors found: r1=4940707832454493415501651784634079823643014735022300729459783 (pp61) r2=228950862555947401946978886763873337701268538465930614150009641 (pp63) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 181.33 hours. Scaled time: 122.58 units (timescale=0.676). Factorization parameters were as follows: name: 47777_163 n: 1131179319877381526484592406638873153964107702611935425473131250001541648222905288588232080460486389335504040917062171767903 m: 100000000000000000000000000000000 c5: 43000 c0: -7 skew: 0.17 type: snfs Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2500000, 6700001) Primes: RFBsize:348513, AFBsize:348291, largePrimes:6066233 encountered Relations: rels:6239037, finalFF:799065 Max relations in full relation-set: 28 Initial matrix: 696871 x 799065 with sparse part having weight 64573761. Pruned matrix : 622367 x 625915 with weight 49390580. Total sieving time: 156.93 hours. Total relation processing time: 0.57 hours. Matrix solve time: 23.53 hours. Time per square root: 0.29 hours. Prototype def-par.txt line would be: snfs,164,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,48,48,2.5,2.5,100000 total time: 181.33 hours. --------- CPU info (if available) ---------- |
execution environment 実行環境 | Pentium 4 2.4GHz, Windows XP and Cygwin) |
name 名前 | Robert Backstrom |
---|---|
date 日付 | May 6, 2007 10:41:40 UTC 2007 年 5 月 6 日 (日) 19 時 41 分 40 秒 (日本時間) |
composite number 合成数 | 53086419753086419753086419753086419753086419753086419753086419753086419753086419753086419753086419753086419753086419753086419753086419753086419753086419753086419753<164> |
prime factors 素因数 | 2631129533782044843927495361912765542751<40> 215880931151977979223281199254244241548167819075235827<54> 93460247031749192280709130483295872291224585644076339206811461233287789<71> |
factorization results 素因数分解の結果 | Number: n N=53086419753086419753086419753086419753086419753086419753086419753086419753086419753086419753086419753086419753086419753086419753086419753086419753086419753086419753 ( 164 digits) SNFS difficulty: 166 digits. Divisors found: r1=2631129533782044843927495361912765542751 (pp40) r2=215880931151977979223281199254244241548167819075235827 (pp54) r3=93460247031749192280709130483295872291224585644076339206811461233287789 (pp71) Version: GGNFS-0.77.1-20051202-athlon Total time: 117.61 hours. Scaled time: 140.90 units (timescale=1.198). Factorization parameters were as follows: name: KA_4_7_164 n: 53086419753086419753086419753086419753086419753086419753086419753086419753086419753086419753086419753086419753086419753086419753086419753086419753086419753086419753 type: snfs skew: 1.10 deg: 5 c5: 43 c0: -70 m: 1000000000000000000000000000000000 rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 4500001) Primes: RFBsize:250150, AFBsize:248761, largePrimes:8106263 encountered Relations: rels:7638338, finalFF:562340 Max relations in full relation-set: 28 Initial matrix: 498976 x 562340 with sparse part having weight 56255595. Pruned matrix : 471675 x 474233 with weight 44274525. Total sieving time: 106.62 hours. Total relation processing time: 0.42 hours. Matrix solve time: 9.71 hours. Total square root time: 0.86 hours, sqrts: 5. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 117.61 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+ |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | September 5, 2008 16:18:21 UTC 2008 年 9 月 6 日 (土) 1 時 18 分 21 秒 (日本時間) |
composite number 合成数 | 1544577977188098720238620993157952890934508035999346072911447051418801275216503660329923388280907102934899877127344967702159349449<130> |
prime factors 素因数 | 385071591629280252011363710960963257145127<42> 4011144968271534743653930349805245289947412403901164321780638693543548253701599315974287<88> |
factorization results 素因数分解の結果 | GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] Input number is 1544577977188098720238620993157952890934508035999346072911447051418801275216503660329923388280907102934899877127344967702159349449 (130 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3941855257 Step 1 took 11715ms Step 2 took 5580ms ********** Factor found in step 2: 385071591629280252011363710960963257145127 Found probable prime factor of 42 digits: 385071591629280252011363710960963257145127 Probable prime cofactor 4011144968271534743653930349805245289947412403901164321780638693543548253701599315974287 has 88 digits |
execution environment 実行環境 | Core 2 Quad Q6700 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Jo Yeong Uk | August 5, 2008 11:41:36 UTC 2008 年 8 月 5 日 (火) 20 時 41 分 36 秒 (日本時間) | |
25 | 5e4 | 214 | Jo Yeong Uk | August 5, 2008 11:41:41 UTC 2008 年 8 月 5 日 (火) 20 時 41 分 41 秒 (日本時間) | |
30 | 25e4 | 430 | Jo Yeong Uk | August 5, 2008 11:41:46 UTC 2008 年 8 月 5 日 (火) 20 時 41 分 46 秒 (日本時間) | |
35 | 1e6 | 904 | Jo Yeong Uk | August 5, 2008 11:42:03 UTC 2008 年 8 月 5 日 (火) 20 時 42 分 3 秒 (日本時間) |
name 名前 | Robert Backstrom |
---|---|
date 日付 | February 9, 2008 16:14:27 UTC 2008 年 2 月 10 日 (日) 1 時 14 分 27 秒 (日本時間) |
composite number 合成数 | 890177903885214075436071470878082609272975849514979173383160933886046473812329845688925342329115567989763435282381737410131024269<129> |
prime factors 素因数 | 27530433290624738915011972223<29> 32334322329331329096070235876248176740375231051072784305900774570153124823803731961300200455222281203<101> |
factorization results 素因数分解の結果 | GMP-ECM 6.0 [powered by GMP 4.1.4] [ECM] Input number is 890177903885214075436071470878082609272975849514979173383160933886046473812329845688925342329115567989763435282381737410131024269 (129 digits) Using B1=546000, B2=354479377, polynomial Dickson(3), sigma=2702448369 Step 1 took 4956ms Step 2 took 2598ms ********** Factor found in step 2: 27530433290624738915011972223 Found probable prime factor of 29 digits: 27530433290624738915011972223 Probable prime cofactor 32334322329331329096070235876248176740375231051072784305900774570153124823803731961300200455222281203 has 101 digits |
name 名前 | Erik Branger |
---|---|
date 日付 | January 21, 2009 16:22:07 UTC 2009 年 1 月 22 日 (木) 1 時 22 分 7 秒 (日本時間) |
composite number 合成数 | 9002382959448748794439199014832033133711285895903932632389666139902386003239170475300347336941766288329532183182089193481662048433984619<136> |
prime factors 素因数 | 1308979129371218843055335143575659161498651650606112393<55> 6877407559410922828407190093693313130619469297610260690908537887846523454630592083<82> |
factorization results 素因数分解の結果 | Number: 47777_168 N=9002382959448748794439199014832033133711285895903932632389666139902386003239170475300347336941766288329532183182089193481662048433984619 ( 136 digits) SNFS difficulty: 171 digits. Divisors found: r1=1308979129371218843055335143575659161498651650606112393 r2=6877407559410922828407190093693313130619469297610260690908537887846523454630592083 Version: Total time: 116.36 hours. Scaled time: 242.96 units (timescale=2.088). Factorization parameters were as follows: n: 9002382959448748794439199014832033133711285895903932632389666139902386003239170475300347336941766288329532183182089193481662048433984619 m: 5000000000000000000000000000000000 deg: 5 c5: 344 c0: -175 skew: 0.87 type: snfs lss: 1 rlim: 5000000 alim: 5000000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2500000, 6300001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 998810 x 999058 Total sieving time: 116.36 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,52,52,2.4,2.4,100000 total time: 116.36 hours. --------- CPU info (if available) ---------- |
software ソフトウェア | GGNFS, Msieve |
name 名前 | Robert Backstrom |
---|---|
date 日付 | February 10, 2008 16:34:10 UTC 2008 年 2 月 11 日 (月) 1 時 34 分 10 秒 (日本時間) |
composite number 合成数 | 9474258348909698297300765641420130260059687955777652443081365287143667919310393304032500434762909523667744364610006682544113<124> |
prime factors 素因数 | 3156831836580797731306525780758247<34> 3001191966934602598099805375944976471798484695463390773319663402408270737672035770264235879<91> |
factorization results 素因数分解の結果 | GMP-ECM 6.0.1 [powered by GMP 4.1.4] [ECM] Input number is 9474258348909698297300765641420130260059687955777652443081365287143667919310393304032500434762909523667744364610006682544113 (124 digits) Using B1=1266000, B2=1174889278, polynomial Dickson(6), sigma=259918347 Step 1 took 13688ms Step 2 took 8734ms ********** Factor found in step 2: 3156831836580797731306525780758247 Found probable prime factor of 34 digits: 3156831836580797731306525780758247 Probable prime cofactor 3001191966934602598099805375944976471798484695463390773319663402408270737672035770264235879 has 91 digits |
name 名前 | Erik Branger |
---|---|
date 日付 | January 20, 2009 06:41:29 UTC 2009 年 1 月 20 日 (火) 15 時 41 分 29 秒 (日本時間) |
composite number 合成数 | 1215793462267647551285892538593877354317166737178594605321560408370658353862767905904353311381922334245683040902952768797380928615781640731<139> |
prime factors 素因数 | 19724348612725122674663619250491107143649597908233700859<56> 61639219937700802753408962418792264762496168162642674184908540680230576705040487009<83> |
factorization results 素因数分解の結果 | Number: 47777_170 N=1215793462267647551285892538593877354317166737178594605321560408370658353862767905904353311381922334245683040902952768797380928615781640731 ( 139 digits) SNFS difficulty: 171 digits. Divisors found: r1=19724348612725122674663619250491107143649597908233700859 r2=61639219937700802753408962418792264762496168162642674184908540680230576705040487009 Version: Total time: 109.07 hours. Scaled time: 86.17 units (timescale=0.790). Factorization parameters were as follows: n: 1215793462267647551285892538593877354317166737178594605321560408370658353862767905904353311381922334245683040902952768797380928615781640731 m: 10000000000000000000000000000000000 deg: 5 c5: 43 c0: -7 skew: 0.70 type: snfs lss: 1 rlim: 5100000 alim: 5100000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5100000/5100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2550000, 5450001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 915262 x 915510 Total sieving time: 109.07 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,5100000,5100000,27,27,52,52,2.4,2.4,100000 total time: 109.07 hours. --------- CPU info (if available) ---------- |
software ソフトウェア | GGNFS, Msieve |
name 名前 | Erik Branger |
---|---|
date 日付 | January 18, 2009 21:38:13 UTC 2009 年 1 月 19 日 (月) 6 時 38 分 13 秒 (日本時間) |
composite number 合成数 | 41178136890447562326026403306646311339851781446200174720208011694883423225884632443497443169775352122387018738833041769196401751763481244442735023304349902594361<161> |
prime factors 素因数 | 6941291317736286782073303602411662044216942598401706881620737753047439<70> 5932345295064880058048049218132535850826803648773363051774178987910528595746827458377686199<91> |
factorization results 素因数分解の結果 | Number: 47777_172 N=41178136890447562326026403306646311339851781446200174720208011694883423225884632443497443169775352122387018738833041769196401751763481244442735023304349902594361 ( 161 digits) SNFS difficulty: 175 digits. Divisors found: r1=6941291317736286782073303602411662044216942598401706881620737753047439 r2=5932345295064880058048049218132535850826803648773363051774178987910528595746827458377686199 Version: Total time: 126.49 hours. Scaled time: 254.24 units (timescale=2.010). Factorization parameters were as follows: n: 41178136890447562326026403306646311339851781446200174720208011694883423225884632443497443169775352122387018738833041769196401751763481244442735023304349902594361 m: 50000000000000000000000000000000000 deg: 5 c5: 172 c0: -875 skew: 1.38 type: snfs lss: 1 rlim: 5900000 alim: 5900000 lpbr: 28 lpba: 28 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 Factor base limits: 5900000/5900000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 52/52 Sieved rational special-q in [2950000, 6850001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1176953 x 1177201 Total sieving time: 126.49 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,175,5,0,0,0,0,0,0,0,0,5900000,5900000,28,28,52,52,2.5,2.5,100000 total time: 126.49 hours. --------- CPU info (if available) ---------- |
software ソフトウェア | GGNFS, Msieve |
name 名前 | JMB |
---|---|
date 日付 | October 18, 2006 20:08:57 UTC 2006 年 10 月 19 日 (木) 5 時 8 分 57 秒 (日本時間) |
composite number 合成数 | 2953939934998311490528636347565898394866912376577013806908991905371744510519282906721459264905889799112985767185239799<118> |
prime factors 素因数 | 763897337718851240158040328891174998761<39> 3866933145518429531145860572794691424526989665039376693712221630894313776948959<79> |
factorization results 素因数分解の結果 | Number: N N=2953939934998311490528636347565898394866912376577013806908991905371744510519282906721459264905889799112985767185239799 ( 118 digits) Divisors found: r1=763897337718851240158040328891174998761 (pp39) r2=3866933145518429531145860572794691424526989665039376693712221630894313776948959 (pp79) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 54.19 hours. Scaled time: 75.38 units (timescale=1.391). Factorization parameters were as follows: name: (43*10^175-7)/9 n: 2953939934998311490528636347565898394866912376577013806908991905371744510519282906721459264905889799112985767185239799 skew: 27933.439453 # norm 2.76E+016 c5: 46440 c4: 15919347198 c3: 794873662952672 c2: -16331705097650427727 c1: 72617376145568288769948 c0: -3166591147057956099235500 #alpha -6.130000 Y1: 2146726319689 Y0: -36366385004763909404629 # Murphy_E 4.21E-010 # M 1451513041968703703828818440282867894869931362701179822260165269419519531044952989144692605747778864404447562205796047 type: gnfs rlim: 3000000 alim: 3000000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 20000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 1500000) Primes: RFBsize:216816, AFBsize:216593, largePrimes:4196009 encountered Relations: rels:4469126, finalFF:496294 Max relations in full relation-set: 28 Initial matrix: 433493 x 496294 with sparse part having weight 55279533. Pruned matrix : .Bye386919 x 389150 with weight 41507429. Total sieving time: 41.95 hours. Total relation processing time: 0.49 hours. Matrix solve time: 4.16 hours. Time per square root: 7.59 hours. Prototype def-par.txt line would be: gnfs,117,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3000000,3000000,26,26,48,48,2.5,2.5,10000 total time: 54.19 hours. --------- CPU info (if available) ---------- |
execution environment 実行環境 | Stage-1 was run on a half dozen various Win 2K/XP systems under a Win32 Service which did sieving and then reported the results via TCP to the server. The server was a Win XP system using the standard (unchanged factLat Perl script under Cygwin. After finishing enough sieving, the server then ran stage-2 to combine the relationships into a solution. The distributed solution is nearly ready for release and is undergoing final testing. This allows the usage of widely seperated sieving boxes connected via the Internet with no real limit to the number of boxes doing the sieving. The only real limit remains the ability of GGNFS running stage-2 on a single computer. |
name 名前 | Tyler Cadigan |
---|---|
date 日付 | January 29, 2009 03:33:16 UTC 2009 年 1 月 29 日 (木) 12 時 33 分 16 秒 (日本時間) |
composite number 合成数 | 114784494947366634262426183006958123861511699275635538429018736808936826291842714776329045547599116455771782266887863028084494441647275112045251159350246101<156> |
prime factors 素因数 | 3673652886587821683140672767941328687<37> 6902107741445885438068266121725096751735112138723<49> 4526925785659940824204341239430806891307484383858194682858972240819401<70> |
factorization results 素因数分解の結果 | Number: 47777_178 N=114784494947366634262426183006958123861511699275635538429018736808936826291842714776329045547599116455771782266887863028084494441647275112045251159350246101 ( 156 digits) SNFS difficulty: 181 digits. Divisors found: r1=3673652886587821683140672767941328687 (pp37) r2=6902107741445885438068266121725096751735112138723 (pp49) r3=4526925785659940824204341239430806891307484383858194682858972240819401 (pp70) Version: Msieve-1.39 Total time: 265.08 hours. Scaled time: 678.60 units (timescale=2.560). Factorization parameters were as follows: n: 114784494947366634262426183006958123861511699275635538429018736808936826291842714776329045547599116455771782266887863028084494441647275112045251159350246101 m: 500000000000000000000000000000000000 deg: 5 c5: 344 c0: -175 skew: 0.87 type: snfs lss: 1 rlim: 7300000 alim: 7300000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 qintsize: 1000000Factor base limits: 7300000/7300000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3650000, 7650001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1044036 x 1044284 Total sieving time: 265.08 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,181,5,0,0,0,0,0,0,0,0,7300000,7300000,28,28,53,53,2.5,2.5,100000 total time: 265.08 hours. --------- CPU info (if available) ---------- |
software ソフトウェア | GGNFS, Msieve |
execution environment 実行環境 | C2Q Q6600 2.40 GHz, 3Gb RAM, Windows Vista |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 1700 / 2350 | p37_x_c119 | January 23, 2009 20:26:19 UTC 2009 年 1 月 24 日 (土) 5 時 26 分 19 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | January 26, 2009 04:40:52 UTC 2009 年 1 月 26 日 (月) 13 時 40 分 52 秒 (日本時間) |
composite number 合成数 | 900028343642920268629193882313065164523095389608686033709901992697050423470050911286995509976226984775059263572750134624657136766028945840031740266801444602051289561<165> |
prime factors 素因数 | 14145656150669491298815154320590745375349211707577628084877873514139<68> 63625775577778579433341123264082604872882905945721415160648453020214286335148354296475720079558299<98> |
factorization results 素因数分解の結果 | SNFS difficulty: 181 digits. Divisors found: r1=14145656150669491298815154320590745375349211707577628084877873514139 (pp68) r2=63625775577778579433341123264082604872882905945721415160648453020214286335148354296475720079558299 (pp98) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.316). Factorization parameters were as follows: n: 900028343642920268629193882313065164523095389608686033709901992697050423470050911286995509976226984775059263572750134624657136766028945840031740266801444602051289561 m: 1000000000000000000000000000000000000 deg: 5 c5: 43 c0: -70 skew: 1.10 type: snfs lss: 1 rlim: 8000000 alim: 8000000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 Factor base limits: 8000000/8000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved rational special-q in [4000000, 6700001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1586574 x 1586822 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,181,5,0,0,0,0,0,0,0,0,8000000,8000000,28,28,55,55,2.5,2.5,100000 total time: 200.00 hours. |
software ソフトウェア | Msieve-1.39 |
execution environment 実行環境 | Opteron-2.2GHz; Linux x86_64 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Erik Branger | January 21, 2009 16:44:17 UTC 2009 年 1 月 22 日 (木) 1 時 44 分 17 秒 (日本時間) | |
25 | 5e4 | 214 | Erik Branger | January 21, 2009 16:44:17 UTC 2009 年 1 月 22 日 (木) 1 時 44 分 17 秒 (日本時間) | |
30 | 25e4 | 402 | Erik Branger | January 21, 2009 17:38:02 UTC 2009 年 1 月 22 日 (木) 2 時 38 分 2 秒 (日本時間) | |
35 | 1e6 | 828 | Erik Branger | January 21, 2009 21:37:45 UTC 2009 年 1 月 22 日 (木) 6 時 37 分 45 秒 (日本時間) | |
40 | 3e6 | 2111 | Erik Branger | January 22, 2009 21:25:04 UTC 2009 年 1 月 23 日 (金) 6 時 25 分 4 秒 (日本時間) | |
45 | 11e6 | 900 / 3974 | 400 | Erik Branger | January 23, 2009 10:03:27 UTC 2009 年 1 月 23 日 (金) 19 時 3 分 27 秒 (日本時間) |
500 | Serge Batalov | January 23, 2009 20:23:49 UTC 2009 年 1 月 24 日 (土) 5 時 23 分 49 秒 (日本時間) |
name 名前 | Robert Backstrom |
---|---|
date 日付 | September 21, 2008 10:22:28 UTC 2008 年 9 月 21 日 (日) 19 時 22 分 28 秒 (日本時間) |
composite number 合成数 | 619123723957208471916259916778252919240349588930643744690654111413473860020445481116726419305141606554072538263285963169337537615365786935049601889047269376412825939844211193181<177> |
prime factors 素因数 | 7974850129236699611743439999799043481<37> 77634527787228389847918815078532026524742425012288827865479837265962584100748133165695301835012008917167725311213692593828248802988299673701<140> |
factorization results 素因数分解の結果 | GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 619123723957208471916259916778252919240349588930643744690654111413473860020445481116726419305141606554072538263285963169337537615365786935049601889047269376412825939844211193181 (177 digits) Using B1=3834000, B2=8561443810, polynomial Dickson(6), sigma=936150032 Step 1 took 59850ms Step 2 took 21227ms ********** Factor found in step 2: 7974850129236699611743439999799043481 Found probable prime factor of 37 digits: 7974850129236699611743439999799043481 Probable prime cofactor 77634527787228389847918815078532026524742425012288827865479837265962584100748133165695301835012008917167725311213692593828248802988299673701 has 140 digits |
name 名前 | Tyler Cadigan |
---|---|
date 日付 | January 18, 2009 16:58:47 UTC 2009 年 1 月 19 日 (月) 1 時 58 分 47 秒 (日本時間) |
composite number 合成数 | 128611121862230446765269107714484784834155430912953973027917455389262678968963120276135652426748429840669621417121389597978273948148186906111154745216473478667<159> |
prime factors 素因数 | 11762494900496736764278874195216335838416155314149<50> 10934000222758789623278936927899822714858830939221261071656118922521895869107432990306817336243775060012500783<110> |
factorization results 素因数分解の結果 | Number: 47777_181 N=128611121862230446765269107714484784834155430912953973027917455389262678968963120276135652426748429840669621417121389597978273948148186906111154745216473478667 ( 159 digits) SNFS difficulty: 183 digits. Divisors found: r1=11762494900496736764278874195216335838416155314149 (pp50) r2=10934000222758789623278936927899822714858830939221261071656118922521895869107432990306817336243775060012500783 (pp110) Version: Msieve-1.39 Total time: 208.06 hours. Scaled time: 469.38 units (timescale=2.256). Factorization parameters were as follows: n: 128611121862230446765269107714484784834155430912953973027917455389262678968963120276135652426748429840669621417121389597978273948148186906111154745216473478667 m: 2000000000000000000000000000000000000 deg: 5 c5: 215 c0: -112 skew: 0.88 type: snfs lss: 1 rlim: 8100000 alim: 8100000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 qintsize: 1000000Factor base limits: 8100000/8100000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [4050000, 7050001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1150786 x 1151034 Total sieving time: 208.06 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,183,5,0,0,0,0,0,0,0,0,8100000,8100000,28,28,53,53,2.5,2.5,100000 total time: 208.06 hours. --------- CPU info (if available) ---------- |
software ソフトウェア | GGNFS msieve |
execution environment 実行環境 | C2Q Q6600 2.4 GHz, 4 Gb RAM, Windows vista |
name 名前 | Tyler Cadigan |
---|---|
date 日付 | January 13, 2009 04:24:05 UTC 2009 年 1 月 13 日 (火) 13 時 24 分 5 秒 (日本時間) |
composite number 合成数 | 1420851928525306131384810224137335708768862208498603709062388536173963432978334067142466657738746292096501148717730968627053157488992019955679761766260696175351159631<166> |
prime factors 素因数 | 9186931074291987184692831511277158395546328415501621<52> 154660127199746895179494726776156683293322589732934675735755785599291749630480175689205742714029631751147398445811<114> |
factorization results 素因数分解の結果 | Number: 47777_182 N=1420851928525306131384810224137335708768862208498603709062388536173963432978334067142466657738746292096501148717730968627053157488992019955679761766260696175351159631 ( 166 digits) SNFS difficulty: 185 digits. Divisors found: r1=9186931074291987184692831511277158395546328415501621 r2=154660127199746895179494726776156683293322589732934675735755785599291749630480175689205742714029631751147398445811 Version: Total time: 273.73 hours. Scaled time: 702.12 units (timescale=2.565). Factorization parameters were as follows: n: 1420851928525306131384810224137335708768862208498603709062388536173963432978334067142466657738746292096501148717730968627053157488992019955679761766260696175351159631 m: 5000000000000000000000000000000000000 deg: 5 c5: 172 c0: -875 skew: 1.38 type: snfs lss: 1 rlim: 8700000 alim: 8700000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 qintsize: 1000000Factor base limits: 8700000/8700000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [4350000, 8350001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1267000 x 1267248 Total sieving time: 273.73 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,185,5,0,0,0,0,0,0,0,0,8700000,8700000,28,28,54,54,2.5,2.5,100000 total time: 273.73 hours. --------- CPU info (if available) ---------- |
software ソフトウェア | GGNFS msieve |
execution environment 実行環境 | C2Q Q6600 2.4 GHz, 4 GB RAM, Windows Vista |
name 名前 | Tyler Cadigan |
---|---|
date 日付 | January 5, 2009 16:02:32 UTC 2009 年 1 月 6 日 (火) 1 時 2 分 32 秒 (日本時間) |
composite number 合成数 | 7004266842269483659952767910075690687168034383305029594855242179827887829067467896729417906148100412760492466019505809155804252673388696948980973408703058013905039<163> |
prime factors 素因数 | 100986265192381720719980286210366635840357108525083480574351389325029919037606947<81> 69358608608073139344127843528616553111361386937716623546623185659992381518608784037<83> |
factorization results 素因数分解の結果 | Number: 47777_184 N=7004266842269483659952767910075690687168034383305029594855242179827887829067467896729417906148100412760492466019505809155804252673388696948980973408703058013905039 ( 163 digits) SNFS difficulty: 186 digits. Divisors found: r1=100986265192381720719980286210366635840357108525083480574351389325029919037606947 r2=69358608608073139344127843528616553111361386937716623546623185659992381518608784037 Version: Total time: 347.18 hours. Scaled time: 889.14 units (timescale=2.561). Factorization parameters were as follows: n: 7004266842269483659952767910075690687168034383305029594855242179827887829067467896729417906148100412760492466019505809155804252673388696948980973408703058013905039 m: 10000000000000000000000000000000000000 deg: 5 c5: 43 c0: -70 skew: 1.10 type: snfs lss: 1 rlim: 9000000 alim: 9000000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 qintsize: 1000000Factor base limits: 9000000/9000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [4500000, 9500001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1331819 x 1332067 Total sieving time: 347.18 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,186,5,0,0,0,0,0,0,0,0,9000000,9000000,28,28,54,54,2.5,2.5,100000 total time: 347.18 hours. --------- CPU info (if available) ---------- |
software ソフトウェア | ggnfs, msieve |
execution environment 実行環境 | C2Q Q6600 2.4 ghz, 4 gb RAM, windows vista |
name 名前 | Tyler Cadigan |
---|---|
date 日付 | December 18, 2008 02:12:21 UTC 2008 年 12 月 18 日 (木) 11 時 12 分 21 秒 (日本時間) |
composite number 合成数 | 2008662548458999269449272053889738154785837004738744490237883895960497711975400967535628915609095715969831195102711489927429245865192787596589288254649018977<157> |
prime factors 素因数 | 711289181722006572964993391864934683586891620256502264874981119795063837321<75> 2823974552229371081708878262515141661878349230272684194999664683868033689289786137<82> |
factorization results 素因数分解の結果 | Number: 47777_185 N=2008662548458999269449272053889738154785837004738744490237883895960497711975400967535628915609095715969831195102711489927429245865192787596589288254649018977 ( 157 digits) SNFS difficulty: 186 digits. Divisors found: r1=711289181722006572964993391864934683586891620256502264874981119795063837321 r2=2823974552229371081708878262515141661878349230272684194999664683868033689289786137 Version: Total time: 284.19 hours. Scaled time: 728.96 units (timescale=2.565). Factorization parameters were as follows: n: 2008662548458999269449272053889738154785837004738744490237883895960497711975400967535628915609095715969831195102711489927429245865192787596589288254649018977 m: 10000000000000000000000000000000000000 deg: 5 c5: 43 c0: -7 skew: 0.70 type: snfs lss: 1 rlim: 9000000 alim: 9000000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Y0: 10000000000000000000000000000000000000 Y1: -1 qintsize: 1000000Factor base limits: 9000000/9000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [4500000, 8500001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1277651 x 1277899 Total sieving time: 284.19 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,186,5,0,0,0,0,0,0,0,0,9000000,9000000,28,28,54,54,2.5,2.5,100000 total time: 284.19 hours. --------- CPU info (if available) ---------- |
software ソフトウェア | GGNFS, Msieve |
execution environment 実行環境 | C2Q 6600 2.4 ghz 4 gb ram windows vista |
name 名前 | Serge Batalov |
---|---|
date 日付 | August 5, 2008 00:00:11 UTC 2008 年 8 月 5 日 (火) 9 時 0 分 11 秒 (日本時間) |
composite number 合成数 | 57209503534818849035270417576380246604448742971932990242819408029054548750235778687622316088255706644603417952941962964205387931603045077<137> |
prime factors 素因数 | 563109820432391065038572286966239<33> 101595641665225801482855126843463077933095944176748411552258185690480521896642701682667226673118857591243<105> |
factorization results 素因数分解の結果 | Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3325744018 Step 1 took 4776ms Step 2 took 2552ms ********** Factor found in step 2: 563109820432391065038572286966239 Found probable prime factor of 33 digits: 563109820432391065038572286966239 Probable prime cofactor 101595641665225801482855126843463077933095944176748411552258185690480521896642701682667226673118857591243 has 105 digits |
software ソフトウェア | GMP-ECM 6.2.1 |
name 名前 | Tyler Cadigan |
---|---|
date 日付 | December 9, 2008 18:10:33 UTC 2008 年 12 月 10 日 (水) 3 時 10 分 33 秒 (日本時間) |
composite number 合成数 | 48995547973812574793179189250193418592905049952135556886116149139211425752282423974271146284116043931349369118869012729947615449980688775331671793574450267<155> |
prime factors 素因数 | 29909335929237981822985403260970890761599739765839699<53> 1638135600527218522474084632256993846436678807085787257035715605380077124636341859263839470084034319833<103> |
factorization results 素因数分解の結果 | Number: 47777_189 N=48995547973812574793179189250193418592905049952135556886116149139211425752282423974271146284116043931349369118869012729947615449980688775331671793574450267 ( 155 digits) SNFS difficulty: 191 digits. Divisors found: r1=29909335929237981822985403260970890761599739765839699 r2=1638135600527218522474084632256993846436678807085787257035715605380077124636341859263839470084034319833 Version: Total time: 497.51 hours. Scaled time: 1275.61 units (timescale=2.564). Factorization parameters were as follows: n: 48995547973812574793179189250193418592905049952135556886116149139211425752282423974271146284116043931349369118869012729947615449980688775331671793574450267 m: 100000000000000000000000000000000000000 deg: 5 c5: 43 c0: -70 Y0: 100000000000000000000000000000000000000 Y1: -1 skew: 1.10 type: snfs lss: 1 rlim: 10900000 alim: 10900000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 qintsize: 1000000Factor base limits: 10900000/10900000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [5450000, 12450001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1711650 x 1711898 Total sieving time: 497.51 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,191,5,0,0,0,0,0,0,0,0,10900000,10900000,28,28,54,54,2.5,2.5,100000 total time: 497.51 hours. --------- CPU info (if available) ---------- |
software ソフトウェア | ggnfs, msieve |
execution environment 実行環境 | C2Q Q6600 2.4 ghz, 4 gb ram, windows vista |
name 名前 | Tyler Cadigan |
---|---|
date 日付 | November 28, 2008 03:08:18 UTC 2008 年 11 月 28 日 (金) 12 時 8 分 18 秒 (日本時間) |
composite number 合成数 | 5646469006574256973282355219285673016714439033035136874206463329954028779275555920105596499863540512205308966627980373468257697311316283963<139> |
prime factors 素因数 | 135427060717739009170914297860127597169429975010164729<54> 41693801642367404962648784775123910677444951042004634952791915483103489484160391387347<86> |
factorization results 素因数分解の結果 | Number: 47777_192 N=5646469006574256973282355219285673016714439033035136874206463329954028779275555920105596499863540512205308966627980373468257697311316283963 ( 139 digits) SNFS difficulty: 195 digits. Divisors found: r1=135427060717739009170914297860127597169429975010164729 r2=41693801642367404962648784775123910677444951042004634952791915483103489484160391387347 Version: Total time: 593.99 hours. Scaled time: 1495.67 units (timescale=2.518). Factorization parameters were as follows: n: 5646469006574256973282355219285673016714439033035136874206463329954028779275555920105596499863540512205308966627980373468257697311316283963 m: 500000000000000000000000000000000000000 deg: 5 c5: 172 c0: -875 Y0: 500000000000000000000000000000000000000 Y1: -1 skew: 1.38 type: snfs lss: 1 rlim: 12800000 alim: 12800000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 qintsize: 1000000 Factor base limits: 12800000/12800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved rational special-q in [6400000, 1 ) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 2014456 x 2014704 Total sieving time: 593.99 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,195,5,0,0,0,0,0,0,0,0,12800000,12800000,28,28,55,55,2.5,2.5,100000 total time: 593.99 hours. --------- CPU info (if available) ---------- |
software ソフトウェア | GGNFS, Msieve |
execution environment 実行環境 | C2Q Q6600 2.4 Ghz, 4 GB RAM, Windows vista |
name 名前 | Serge Batalov |
---|---|
date 日付 | August 2, 2008 05:03:57 UTC 2008 年 8 月 2 日 (土) 14 時 3 分 57 秒 (日本時間) |
composite number 合成数 | 130610243793194724788670911461737544751632010871657647274115113335430059619819285864745331097215876198538092238382708414298965562721428435506791574921031681<156> |
prime factors 素因数 | 4284288203992414224517391893<28> |
composite cofactor 合成数の残り | 30485867797475088755064300991906426987241836546815788111296849337158228409230973644957546968604924308437984135196279273180211517<128> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=2654238649 Step 1 took 26688ms Step 2 took 19224ms ********** Factor found in step 2: 4284288203992414224517391893 Found probable prime factor of 28 digits: 4284288203992414224517391893 Composite cofactor 30485867797475088755064300991906426987241836546815788111296849337158228409230973644957546968604924308437984135196279273180211517 has 128 digits |
software ソフトウェア | GMP-ECM 6.2.1 |
name 名前 | Serge Batalov |
---|---|
date 日付 | August 3, 2008 18:30:41 UTC 2008 年 8 月 4 日 (月) 3 時 30 分 41 秒 (日本時間) |
composite number 合成数 | 30485867797475088755064300991906426987241836546815788111296849337158228409230973644957546968604924308437984135196279273180211517<128> |
prime factors 素因数 | 150826515975256399552220025155339<33> 202125386244925252749734893061275680905056146225460546218343135651883483612166284107990237484503<96> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=275763691 Step 1 took 15783ms Step 2 took 14885ms ********** Factor found in step 2: 150826515975256399552220025155339 Found probable prime factor of 33 digits: 150826515975256399552220025155339 Probable prime cofactor 202125386244925252749734893061275680905056146225460546218343135651883483612166284107990237484503 has 96 digits |
software ソフトウェア | GMP-ECM 6.2.1 |
name 名前 | Serge Batalov |
---|---|
date 日付 | July 17, 2008 05:08:05 UTC 2008 年 7 月 17 日 (木) 14 時 8 分 5 秒 (日本時間) |
composite number 合成数 | 3930464781537337285941378732053306328694376475213919421165283362786476353249507803011069339308331278376012203040428721791991379231770558552691759461933537<154> |
prime factors 素因数 | 27984220393915439255871446690087<32> |
composite cofactor 合成数の残り | 140452895460755142568169629971827239108134551763753952081688857640992802509386073644380889037709828929708318820579567399351<123> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=96175819756, polynomial Dickson(12), sigma=4133533125 Step 1 took 75302ms Step 2 took 44387ms ********** Factor found in step 2: 27984220393915439255871446690087 Found probable prime factor of 32 digits: 27984220393915439255871446690087 Composite cofactor 140452895460755142568169629971827239108134551763753952081688857640992802509386073644380889037709828929708318820579567399351 has 123 digits |
software ソフトウェア | GMP-ECM 6.2.1 |
name 名前 | Serge Batalov |
---|---|
date 日付 | July 17, 2008 19:09:56 UTC 2008 年 7 月 18 日 (金) 4 時 9 分 56 秒 (日本時間) |
composite number 合成数 | 140452895460755142568169629971827239108134551763753952081688857640992802509386073644380889037709828929708318820579567399351<123> |
prime factors 素因数 | 150253016357827367252162610270549921517<39> 750043144488989115802079916490146682858549<42> 1246296144452316719852297075309650379237447<43> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=1189677086 Step 1 took 21161ms Step 2 took 17730ms ********** Factor found in step 2: 150253016357827367252162610270549921517 Found probable prime factor of 39 digits: 150253016357827367252162610270549921517 Thu Jul 17 12:15:31 2008 Msieve v. 1.36 Thu Jul 17 12:15:31 2008 random seeds: c40b47a0 78880a05 Thu Jul 17 12:15:31 2008 factoring 934775879149519040345063733991838603284029386859630642611343691487753360644784884403 (84 digits) Thu Jul 17 12:15:32 2008 no P-1/P+1/ECM available, skipping Thu Jul 17 12:15:32 2008 commencing quadratic sieve (84-digit input) Thu Jul 17 12:15:32 2008 using multiplier of 2 Thu Jul 17 12:15:32 2008 using 64kb Opteron sieve core Thu Jul 17 12:15:32 2008 sieve interval: 6 blocks of size 65536 Thu Jul 17 12:15:32 2008 processing polynomials in batches of 17 Thu Jul 17 12:15:32 2008 using a sieve bound of 1409171 (53729 primes) Thu Jul 17 12:15:32 2008 using large prime bound of 119779535 (26 bits) Thu Jul 17 12:15:32 2008 using trial factoring cutoff of 27 bits Thu Jul 17 12:15:32 2008 polynomial 'A' values have 11 factors Thu Jul 17 12:52:32 2008 53862 relations (26979 full + 26883 combined from 284871 partial), need 53825 Thu Jul 17 12:52:32 2008 begin with 311850 relations Thu Jul 17 12:52:32 2008 reduce to 77390 relations in 2 passes Thu Jul 17 12:52:32 2008 attempting to read 77390 relations Thu Jul 17 12:52:32 2008 recovered 77390 relations Thu Jul 17 12:52:32 2008 recovered 72319 polynomials Thu Jul 17 12:52:33 2008 attempting to build 53862 cycles Thu Jul 17 12:52:33 2008 found 53862 cycles in 1 passes Thu Jul 17 12:52:33 2008 distribution of cycle lengths: Thu Jul 17 12:52:33 2008 length 1 : 26979 Thu Jul 17 12:52:33 2008 length 2 : 26883 Thu Jul 17 12:52:33 2008 largest cycle: 2 relations Thu Jul 17 12:52:33 2008 matrix is 53729 x 53862 (8.4 MB) with weight 1758571 (32.65/col) Thu Jul 17 12:52:33 2008 sparse part has weight 1758571 (32.65/col) Thu Jul 17 12:52:33 2008 filtering completed in 3 passes Thu Jul 17 12:52:33 2008 matrix is 39922 x 39986 (6.7 MB) with weight 1436413 (35.92/col) Thu Jul 17 12:52:33 2008 sparse part has weight 1436413 (35.92/col) Thu Jul 17 12:52:33 2008 saving the first 48 matrix rows for later Thu Jul 17 12:52:33 2008 matrix is 39874 x 39986 (4.4 MB) with weight 1075978 (26.91/col) Thu Jul 17 12:52:33 2008 sparse part has weight 761119 (19.03/col) Thu Jul 17 12:52:33 2008 matrix includes 64 packed rows Thu Jul 17 12:52:33 2008 using block size 15994 for processor cache size 1024 kB Thu Jul 17 12:52:34 2008 commencing Lanczos iteration Thu Jul 17 12:52:34 2008 memory use: 4.4 MB Thu Jul 17 12:52:40 2008 lanczos halted after 632 iterations (dim = 39872) Thu Jul 17 12:52:41 2008 recovered 17 nontrivial dependencies Thu Jul 17 12:52:41 2008 prp42 factor: 750043144488989115802079916490146682858549 Thu Jul 17 12:52:41 2008 prp43 factor: 1246296144452316719852297075309650379237447 Thu Jul 17 12:52:41 2008 elapsed time 00:37:10 |
software ソフトウェア | GMP-ECM 6.2.1+Msieve v. 1.36 |
name 名前 | Serge Batalov |
---|---|
date 日付 | January 27, 2009 16:19:17 UTC 2009 年 1 月 28 日 (水) 1 時 19 分 17 秒 (日本時間) |
composite number 合成数 | 1620475665754509628512199870326936517575062244459703135361427157918355426778703015892561725935428441318463956177498003715185107667479853399949029<145> |
prime factors 素因数 | 894140490812561508197748839283473<33> |
composite cofactor 合成数の残り | 1812327796811753621163200021922067097052888721647496808031500412932013350729735549051173339843739136511233703573<112> |
factorization results 素因数分解の結果 | Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=209624069 Step 1 took 3916ms Step 2 took 3799ms ********** Factor found in step 2: 894140490812561508197748839283473 Found probable prime factor of 33 digits: 894140490812561508197748839283473 Composite cofactor has 112 digits |
software ソフトウェア | GMP-ECM 6.2.1 |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | January 30, 2009 02:54:42 UTC 2009 年 1 月 30 日 (金) 11 時 54 分 42 秒 (日本時間) |
composite number 合成数 | 1812327796811753621163200021922067097052888721647496808031500412932013350729735549051173339843739136511233703573<112> |
prime factors 素因数 | 12468621839237019750134274632920275340919814102191<50> 145351091738832752462107761351113457049563025712898988930667003<63> |
factorization results 素因数分解の結果 | Number: 47777_202 N=1812327796811753621163200021922067097052888721647496808031500412932013350729735549051173339843739136511233703573 ( 112 digits) Divisors found: r1=12468621839237019750134274632920275340919814102191 r2=145351091738832752462107761351113457049563025712898988930667003 Version: Total time: 11.29 hours. Scaled time: 26.94 units (timescale=2.387). Factorization parameters were as follows: name: 47777_202 n: 1812327796811753621163200021922067097052888721647496808031500412932013350729735549051173339843739136511233703573 skew: 54094.49 # norm 4.44e+15 c5: 7680 c4: 3175216088 c3: -75687149631190 c2: -7247399479012978327 c1: 75161386214624790981960 c0: 3589599881379885118000877349 # alpha -6.21 Y1: 937728520817 Y0: -2982385752308822800816 # Murphy_E 7.94e-10 # M 452990686981099005718217834527867984953168050273452541942955949321535635220026936614575740434782683652135110614 type: gnfs rlim: 2400000 alim: 2400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.6 alambda: 2.6 qintsize: 60000 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved algebraic special-q in [1200000, 2040001) Primes: rational ideals reading, algebraic ideals reading, Relations: 8532087 Max relations in full relation-set: Initial matrix: Pruned matrix : 384054 x 384302 Polynomial selection time: 0.87 hours. Total sieving time: 9.47 hours. Total relation processing time: 0.57 hours. Matrix solve time: 0.30 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: gnfs,111,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2400000,2400000,27,27,51,51,2.6,2.6,60000 total time: 11.29 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046968k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803) Calibrating delay using timer specific routine.. 5344.72 BogoMIPS (lpj=2672360) Calibrating delay using timer specific routine.. 5344.08 BogoMIPS (lpj=2672043) Calibrating delay using timer specific routine.. 5237.82 BogoMIPS (lpj=2618912) |
software ソフトウェア | GGNFS / Msieve v1.39 |
execution environment 実行環境 | Core 2 Quad Q6700 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | January 27, 2009 13:00:00 UTC 2009 年 1 月 27 日 (火) 22 時 0 分 0 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | January 28, 2009 17:50:41 UTC 2009 年 1 月 29 日 (木) 2 時 50 分 41 秒 (日本時間) |
composite number 合成数 | 21863555755088029433730817494626466642214438152130570388670907894500227046563217432929076365045004043270948674389243385523071195421867008207311863136391377388444662813<167> |
prime factors 素因数 | 2334561165143153784276485597559959244336157<43> |
composite cofactor 合成数の残り | 9365167244931605937271157091977652941532850887100421862106964322653891953074392906416380032956187565261989128184595620958209<124> |
factorization results 素因数分解の結果 | Using B1=5000000, B2=23417929090, polynomial Dickson(12), sigma=3473665096 Step 1 took 22798ms Step 2 took 19003ms ********** Factor found in step 2: 2334561165143153784276485597559959244336157 Found probable prime factor of 43 digits: 2334561165143153784276485597559959244336157 Composite cofactor 9365167244931605937271157091977652941532850887100421862106964322653891953074392906416380032956187565261989128184595620958209 has 124 digits |
software ソフトウェア | GMP-ECM 6.2.1 |
name 名前 | Lionel Debroux |
---|---|
date 日付 | October 6, 2009 12:29:24 UTC 2009 年 10 月 6 日 (火) 21 時 29 分 24 秒 (日本時間) |
composite number 合成数 | 9365167244931605937271157091977652941532850887100421862106964322653891953074392906416380032956187565261989128184595620958209<124> |
prime factors 素因数 | 375528253117018963232975349935219398139299723906573412769943<60> 24938648869152625653899078805207205944348712733762951036782202663<65> |
factorization results 素因数分解の結果 | Number: 47777_203 N=9365167244931605937271157091977652941532850887100421862106964322653891953074392906416380032956187565261989128184595620958209 ( 124 digits) Divisors found: r1=375528253117018963232975349935219398139299723906573412769943 (pp60) r2=24938648869152625653899078805207205944348712733762951036782202663 (pp65) Version: Msieve v. 1.43 Total time: 124.36 hours. Scaled time: 263.27 units (timescale=2.117). Factorization parameters were as follows: # Murphy_E = 1.720399e-10, selected by Jeff Gilchrist n: 9365167244931605937271157091977652941532850887100421862106964322653891953074392906416380032956187565261989128184595620958209 Y0: -791009809091308516245887 Y1: 36802700256773 c0: 14133203719709143941404877603600 c1: 178200169790415316254562260 c2: -3251458876158126409286 c3: 3149167561132455 c4: 36525171834 c5: 30240 skew: 289012.3 type: gnfs # selected mechanically rlim: 6700000 alim: 6700000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 Factor base limits: 6700000/6700000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved algebraic special-q in [3350000, 6750001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 798924 x 799149 Total sieving time: 120.74 hours. Total relation processing time: 0.15 hours. Matrix solve time: 1.58 hours. Time per square root: 1.89 hours. Prototype def-par.txt line would be: gnfs,123,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,6700000,6700000,27,27,52,52,2.5,2.5,100000 total time: 124.36 hours. --------- CPU info (if available) ---------- [ 0.029439] CPU0: Intel(R) Core(TM)2 CPU T7200 @ 2.00GHz stepping 06 [ 0.101689] CPU1: Intel(R) Core(TM)2 CPU T7200 @ 2.00GHz stepping 06 [ 0.000000] Memory: 2043420k/2096800k available (7091k kernel code, 452k absent, 52268k reserved, 3271k data, 540k init) [ 0.000999] Calibrating delay loop (skipped), value calculated using timer frequency.. 3990.57 BogoMIPS (lpj=1995288) [ 0.000999] Calibrating delay using timer specific routine.. 3989.82 BogoMIPS (lpj=1994913) [ 0.102027] Total of 2 processors activated (7980.40 BogoMIPS). |
software ソフトウェア | GGNFS + Msieve |
execution environment 実行環境 | Core 2 Duo T7200, 2 GB RAM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | January 27, 2009 13:00:00 UTC 2009 年 1 月 27 日 (火) 22 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 300 / 2336 | Erik Branger | January 27, 2009 17:31:01 UTC 2009 年 1 月 28 日 (水) 2 時 31 分 1 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | January 27, 2009 16:36:57 UTC 2009 年 1 月 28 日 (水) 1 時 36 分 57 秒 (日本時間) |
composite number 合成数 | 69106161408526703164967068613428867322995617450218368629836212200192560941896832431130191192921493561896056136422990294289500958277687069562668017204720548884066757<164> |
prime factors 素因数 | 707556978655308658653936630923687<33> 97668687460140583325533653402275318211878194887345665390224627878545528890196304695329982444456944390617538106202072842223345362611<131> |
factorization results 素因数分解の結果 | Using B1=250000, B2=128992510, polynomial Dickson(3), sigma=4048053174 Step 1 took 900ms Step 2 took 592ms ********** Factor found in step 2: 707556978655308658653936630923687 Found probable prime factor of 33 digits: 707556978655308658653936630923687 Probable prime cofactor has 131 digits |
software ソフトウェア | GMP-ECM 6.2.1 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | January 27, 2009 13:00:00 UTC 2009 年 1 月 27 日 (火) 22 時 0 分 0 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | January 27, 2009 18:40:41 UTC 2009 年 1 月 28 日 (水) 3 時 40 分 41 秒 (日本時間) |
composite number 合成数 | 8723288610647517197527756171948341705321824313191321225094558710330342975466993680395931955903102859094355495091889584532606869797036104870227<142> |
prime factors 素因数 | 9979120019997928268416395684139<31> |
composite cofactor 合成数の残り | 874154093062940053723423566083923324074453222353223316638756093434022663299154755490033595932211400153439132793<111> |
factorization results 素因数分解の結果 | Using B1=250000, B2=128992510, polynomial Dickson(3), sigma=748490644 Step 1 took 1189ms Step 2 took 740ms ********** Factor found in step 2: 9979120019997928268416395684139 Found probable prime factor of 31 digits: 9979120019997928268416395684139 |
software ソフトウェア | GMP-ECM 6.2.1 |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | January 29, 2009 22:10:58 UTC 2009 年 1 月 30 日 (金) 7 時 10 分 58 秒 (日本時間) |
composite number 合成数 | 874154093062940053723423566083923324074453222353223316638756093434022663299154755490033595932211400153439132793<111> |
prime factors 素因数 | 2075634083079828998567220764778928732800821<43> 421150384930020461727145617061926763309795192374704172359381305111733<69> |
factorization results 素因数分解の結果 | Number: 47777_206 N=874154093062940053723423566083923324074453222353223316638756093434022663299154755490033595932211400153439132793 ( 111 digits) Divisors found: r1=2075634083079828998567220764778928732800821 r2=421150384930020461727145617061926763309795192374704172359381305111733 Version: Total time: 10.14 hours. Scaled time: 24.15 units (timescale=2.382). Factorization parameters were as follows: name: 47777_206 n: 874154093062940053723423566083923324074453222353223316638756093434022663299154755490033595932211400153439132793 skew: 30687.16 # norm 3.99e+15 c5: 113400 c4: 2920482650 c3: -302366368859399 c2: -2625363309198789138 c1: 137037003928894478826152 c0: 801887937814693936058974480 # alpha -6.60 Y1: 274783993297 Y0: -1504508271055678830873 # Murphy_E 8.66e-10 # M 33913588752037023001154899934271482323043432368019170082195613568306518138961385112480392869526368209010001248 type: gnfs rlim: 2100000 alim: 2100000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.6 alambda: 2.6 qintsize: 50000 Factor base limits: 2100000/2100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved algebraic special-q in [1050000, 1800001) Primes: rational ideals reading, algebraic ideals reading, Relations: 8166464 Max relations in full relation-set: Initial matrix: Pruned matrix : 386617 x 386865 Polynomial selection time: 0.76 hours. Total sieving time: 8.40 hours. Total relation processing time: 0.59 hours. Matrix solve time: 0.31 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: gnfs,110,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2100000,2100000,27,27,51,51,2.6,2.6,50000 total time: 10.14 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046968k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803) Calibrating delay using timer specific routine.. 5344.72 BogoMIPS (lpj=2672360) Calibrating delay using timer specific routine.. 5344.08 BogoMIPS (lpj=2672043) Calibrating delay using timer specific routine.. 5237.82 BogoMIPS (lpj=2618912) |
software ソフトウェア | GGNFS / Msieve v1.39 |
execution environment 実行環境 | Core 2 Quad Q6700 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | January 27, 2009 13:00:00 UTC 2009 年 1 月 27 日 (火) 22 時 0 分 0 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | September 14, 2010 20:12:53 UTC 2010 年 9 月 15 日 (水) 5 時 12 分 53 秒 (日本時間) |
composite number 合成数 | 5684985121785899474438592801062600816063596045496953098922302431650969220810279684174333749164582170291031297140419628406687748414986302427267303411675760804315075354205616922913<178> |
prime factors 素因数 | 16935236987912312958773394449117661612869<41> 335689729399335354230460703470719936240682720063041369072081708346441337221366204439071539256576878162993159346463986037560038256139628077<138> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=2971075792 Step 1 took 91104ms Step 2 took 41528ms ********** Factor found in step 2: 16935236987912312958773394449117661612869 Found probable prime factor of 41 digits: 16935236987912312958773394449117661612869 Probable prime cofactor 335689729399335354230460703470719936240682720063041369072081708346441337221366204439071539256576878162993159346463986037560038256139628077 has 138 digits |
software ソフトウェア | GMP-ECM 6.3 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | January 27, 2009 13:00:00 UTC 2009 年 1 月 27 日 (火) 22 時 0 分 0 秒 (日本時間) |
name 名前 | matsui |
---|---|
date 日付 | August 28, 2011 13:34:21 UTC 2011 年 8 月 28 日 (日) 22 時 34 分 21 秒 (日本時間) |
composite number 合成数 | 23337464674702995330480445674284920787852638705431550115158243499099314489973279985628316733133095019103724758105728594109159839196033151616765317050945483740092205462401572796273881<182> |
prime factors 素因数 | 447019218689256574067382428614332436304711730008251566727<57> 52206848607388243689553252029266731902286716640124312733282198343514613336900043929812018854706573321379695675389900069363103<125> |
factorization results 素因数分解の結果 | N=23337464674702995330480445674284920787852638705431550115158243499099314489973279985628316733133095019103724758105728594109159839196033151616765317050945483740092205462401572796273881 ( 182 digits) SNFS difficulty: 211 digits. Divisors found: r1=447019218689256574067382428614332436304711730008251566727 (pp57) r2=52206848607388243689553252029266731902286716640124312733282198343514613336900043929812018854706573321379695675389900069363103 (pp125) Version: Msieve v. 1.50 Total time: Scaled time: 209.10 units (timescale=1.484). Factorization parameters were as follows: n: 23337464674702995330480445674284920787852638705431550115158243499099314489973279985628316733133095019103724758105728594109159839196033151616765317050945483740092205462401572796273881 m: 1000000000000000000000000000000000000000000 deg: 5 c5: 43 c0: -7 skew: 0.70 type: snfs lss: 1 rlim: 24000000 alim: 24000000 lpbr: 29 lpba: 29 mfbr: 57 mfba: 57 rlambda: 2.6 alambda: 2.6 qintsize: 320000 Factor base limits: 24000000/24000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 57/57 Sieved rational special-q in [12000000, 30880001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 4748285 x 4748508 Total sieving time: Total relation processing time: Matrix solve time: Time per square root: Prototype def-par.txt line would be: snfs,211.000,5,0,0,0,0,0,0,0,0,24000000,24000000,29,29,57,57,2.6,2.6,100000 total time: --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | January 27, 2009 13:00:00 UTC 2009 年 1 月 27 日 (火) 22 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 300 | Ignacio Santos | September 14, 2010 21:28:17 UTC 2010 年 9 月 15 日 (水) 6 時 28 分 17 秒 (日本時間) | |
40 | 3e6 | 110 / 2144 | Ignacio Santos | September 14, 2010 21:28:17 UTC 2010 年 9 月 15 日 (水) 6 時 28 分 17 秒 (日本時間) | |
45 | 11e6 | 32 / 4441 | Ignacio Santos | September 14, 2010 21:28:17 UTC 2010 年 9 月 15 日 (水) 6 時 28 分 17 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | January 28, 2009 17:49:32 UTC 2009 年 1 月 29 日 (木) 2 時 49 分 32 秒 (日本時間) |
composite number 合成数 | 134685849692729957990131642317474515019929103925470657379372737015096256733245579874772589642182717175074950664718463649351359654504151751588005889573297<153> |
prime factors 素因数 | 3526680938895455431728898504444220551<37> 38190540064821716358063950502102091512430090081925348378008427894317449358648344734268599001413164789278233232637447<116> |
factorization results 素因数分解の結果 | Using B1=5000000, B2=11416314010, polynomial Dickson(12), sigma=2511989336 Step 1 took 15349ms Step 2 took 9332ms ********** Factor found in step 2: 3526680938895455431728898504444220551 Found probable prime factor of 37 digits: 3526680938895455431728898504444220551 Probable prime cofactor 38190540064821716358063950502102091512430090081925348378008427894317449358648344734268599001413164789278233232637447 has 116 digits |
software ソフトウェア | GMP-ECM 6.2.1 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | January 27, 2009 13:00:00 UTC 2009 年 1 月 27 日 (火) 22 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | August 8, 2011 07:20:27 UTC 2011 年 8 月 8 日 (月) 16 時 20 分 27 秒 (日本時間) |
composite number 合成数 | 2207841030190554585460252072204964640229072917619531868383189745070442478968228423473154639071982225639380156579222713767206159126954467<136> |
prime factors 素因数 | 311053808967088169326468088483439552202208701537264507<54> 7097939219976440665284178732062980622519382846959040322402546024602565986356804281<82> |
factorization results 素因数分解の結果 | N=2207841030190554585460252072204964640229072917619531868383189745070442478968228423473154639071982225639380156579222713767206159126954467 ( 136 digits) Divisors found: r1=311053808967088169326468088483439552202208701537264507 (pp54) r2=7097939219976440665284178732062980622519382846959040322402546024602565986356804281 (pp82) Version: Msieve-1.40 Total time: 325.20 hours. Scaled time: 634.80 units (timescale=1.952). Factorization parameters were as follows: # Murphy_E = 3.764431e-11, selected by Jeff Gilchrist n: 2207841030190554585460252072204964640229072917619531868383189745070442478968228423473154639071982225639380156579222713767206159126954467 Y0: -124262160057903236137264105 Y1: 1323277366671947 c0: 2841680698820019263896428682763856 c1: 6144454614164526235541628720 c2: -15087325150672164750400 c3: -97856575158651320 c4: 7415452329 c5: 74520 skew: 731103.49 type: gnfs # selected mechanically rlim: 13600000 alim: 13600000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.6 alambda: 2.6 qintsize: 360000Factor base limits: 13600000/13600000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved algebraic special-q in [6800000, 11120001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1706500 x 1706724 Total sieving time: 321.26 hours. Total relation processing time: 0.23 hours. Matrix solve time: 3.35 hours. Time per square root: 0.37 hours. Prototype def-par.txt line would be: gnfs,135,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,13600000,13600000,28,28,55,55,2.6,2.6,100000 total time: 325.20 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | January 27, 2009 13:00:00 UTC 2009 年 1 月 27 日 (火) 22 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2336 | 900 | Dmitry Domanov | May 6, 2009 18:30:52 UTC 2009 年 5 月 7 日 (木) 3 時 30 分 52 秒 (日本時間) |
300 | Dmitry Domanov | May 6, 2009 21:38:32 UTC 2009 年 5 月 7 日 (木) 6 時 38 分 32 秒 (日本時間) | |||
1136 | Wataru Sakai | November 30, 2009 15:09:11 UTC 2009 年 12 月 1 日 (火) 0 時 9 分 11 秒 (日本時間) | |||
45 | 11e6 | 4000 | Wataru Sakai | August 14, 2010 04:22:34 UTC 2010 年 8 月 14 日 (土) 13 時 22 分 34 秒 (日本時間) |
name 名前 | Erik Branger |
---|---|
date 日付 | October 1, 2019 18:19:58 UTC 2019 年 10 月 2 日 (水) 3 時 19 分 58 秒 (日本時間) |
composite number 合成数 | 262234777106876320316845055651816891203948889707215001801151882090192776892731892132821615376356151282087608726542216003438225771452366090093383210604866824413679298578631<171> |
prime factors 素因数 | 7266975670867377129078741075000541579644209447871674141220506516147771972519<76> 36085820151861923769599090998070089822965923650429274239364189587971488732939199066230808890849<95> |
factorization results 素因数分解の結果 | Number: 47777_218 N = 262234777106876320316845055651816891203948889707215001801151882090192776892731892132821615376356151282087608726542216003438225771452366090093383210604866824413679298578631 (171 digits) SNFS difficulty: 222 digits. Divisors found: r1=7266975670867377129078741075000541579644209447871674141220506516147771972519 (pp76) r2=36085820151861923769599090998070089822965923650429274239364189587971488732939199066230808890849 (pp95) Version: Msieve v. 1.52 (SVN unknown) Total time: 53.11 hours. Factorization parameters were as follows: n: 262234777106876320316845055651816891203948889707215001801151882090192776892731892132821615376356151282087608726542216003438225771452366090093383210604866824413679298578631 m: 10000000000000000000000000000000000000000000000000000000 deg: 4 c4: 43 c0: -700 skew: 1.00 type: snfs lss: 1 rlim: 536870912 alim: 44739242 lpbr: 29 lpba: 28 mfbr: 58 mfba: 56 rlambda: 2.8 alambda: 2.8 side: 1 Number of cores used: 6 Number of threads per core: 1 Factor base limits: 536870912/44739242 Large primes per side: 3 Large prime bits: 29/28 Total raw relations: 33176999 Relations: 8051810 relations Total pre-computation time approximately 1000 CPU-days. Pre-computation saved approximately 18 G rational relations. Total batch smoothness checking time: 24.73 hours. Total relation processing time: 0.35 hours. Pruned matrix : 6952277 x 6952502 Matrix solve time: 27.86 hours. time per square root: 0.18 hours. Prototype def-par.txt line would be: snfs,222,4,0,0,0,0,0,0,0,0,536870912,44739242,29,28,58,56,2.8,2.8,100000 total time: 53.11 hours. Intel64 Family 6 Model 158 Stepping 10, GenuineIntel Windows-10-10.0.18362-SP0 processors: 12, speed: 3.19GHz |
software ソフトウェア | GGNFS, NFS_factory, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | January 27, 2009 13:00:00 UTC 2009 年 1 月 27 日 (火) 22 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 300 | Ignacio Santos | September 14, 2010 22:19:10 UTC 2010 年 9 月 15 日 (水) 7 時 19 分 10 秒 (日本時間) | |
40 | 3e6 | 2202 | 110 | Ignacio Santos | September 14, 2010 22:19:10 UTC 2010 年 9 月 15 日 (水) 7 時 19 分 10 秒 (日本時間) |
300 | Serge Batalov | January 9, 2014 04:38:18 UTC 2014 年 1 月 9 日 (木) 13 時 38 分 18 秒 (日本時間) | |||
1792 | Youcef Lemsafer | January 12, 2014 16:28:10 UTC 2014 年 1 月 13 日 (月) 1 時 28 分 10 秒 (日本時間) | |||
45 | 11e6 | 2141 | 32 | Ignacio Santos | September 14, 2010 22:19:10 UTC 2010 年 9 月 15 日 (水) 7 時 19 分 10 秒 (日本時間) |
2109 | Youcef Lemsafer | January 14, 2014 06:55:28 UTC 2014 年 1 月 14 日 (火) 15 時 55 分 28 秒 (日本時間) | |||
50 | 43e6 | 678 / 6988 | 640 | Youcef Lemsafer | January 16, 2014 19:37:49 UTC 2014 年 1 月 17 日 (金) 4 時 37 分 49 秒 (日本時間) |
38 | KTakahashi | April 12, 2014 11:04:24 UTC 2014 年 4 月 12 日 (土) 20 時 4 分 24 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | January 27, 2009 16:26:14 UTC 2009 年 1 月 28 日 (水) 1 時 26 分 14 秒 (日本時間) |
composite number 合成数 | 34279424892737131012994015785235495972981925535183248365424252776055587060151025021223575831013597252847825737932168354703821024629748951476405137596328920525315628014769854960572040910133135491259807032267<206> |
prime factors 素因数 | 3502562889301427433586357821611<31> 9786954860237792671607046950183269287102623628043042827218853752548798081325699178457017851643964035536282843620014130674361843688073589623733707551549094537798547254146976097<175> |
factorization results 素因数分解の結果 | Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=3982886919 Step 1 took 6067ms Step 2 took 5661ms ********** Factor found in step 2: 3502562889301427433586357821611 Found probable prime factor of 31 digits: 3502562889301427433586357821611 Probable prime cofactor has 175 digits |
software ソフトウェア | GMP-ECM 6.2.1 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | January 27, 2009 13:00:00 UTC 2009 年 1 月 27 日 (火) 22 時 0 分 0 秒 (日本時間) |
name 名前 | Youcef Lemsafer |
---|---|
date 日付 | January 14, 2014 07:06:16 UTC 2014 年 1 月 14 日 (火) 16 時 6 分 16 秒 (日本時間) |
composite number 合成数 | 11254477135017500619910604618310135349730785436492132313589352078210862452789045232021093406117000984456442566726308903603634553108623418240001719419282488225584773633006282227125197988646393374929738510009<206> |
prime factors 素因数 | 3041095278745226374546983608032050519555834420712241<52> |
composite cofactor 合成数の残り | 3700797279742305028890616540084401838466031695775780746121754731339938425476589293458852771981934939850490140042287124981715979677378300109040541841482249<154> |
factorization results 素因数分解の結果 | GMP-ECM 7.0-dev [configured with MPIR 2.6.0, --enable-gpu] [ECM] Input number is (43*10^221-7)/(9*3*8209*1723808875939) (206 digits) Using MODMULN [mulredc:0, sqrredc:1] Computing batch product (of zu bits) of primes below B1=0 took 0ms GPU: compiled for a NVIDIA GPU with compute capability 3.0. GPU: device 1 is required. GPU: will use device 1: GeForce GTX 660, compute capability 3.0, 5 MPs. GPU: Selection and initialization of the device took 16ms Using B1=31000000, B2=0, sigma=3:3272072172-3:3272072971 (800 curves) dF=0, k=0, d=3539504, d2=0, i0=0 Expected number of curves to find a factor of n digits: 35 40 45 50 55 60 65 70 75 80 775 4798 33258 254650 2131042 1.9e+007 1.9e+008 1.6e+009 2.9e+010 Inf Computing 800 Step 1 took 157607ms of CPU time / 29639112ms of GPU time Throughput: 0.027 curves by second (on average 37048.89ms by Step 1) Expected time to find a factor of n digits: 35 40 45 50 55 60 65 70 75 80 7.98h 2.06d 14.26d 109.19d 2.50y 22.74y 221.94y 1929y 34506y Inf Resuming ECM residue saved by ******@****** with GMP-ECM 7.0-dev on Tue Jan 14 06:48:00 2014 Input number is (43*10^221-7)/(9*3*8209*1723808875939) (206 digits) Using MODMULN [mulredc:0, sqrredc:1] Using B1=31000000-31000000, B2=144289975846, polynomial Dickson(12), sigma=3:3272072351 dF=65536, k=3, d=690690, d2=17, i0=28 Expected number of curves to find a factor of n digits: 35 40 45 50 55 60 65 70 75 80 76 364 2028 12790 89332 692068 5848035 5.3e+007 5.3e+008 5.6e+009 Step 1 took 0ms Using 25 small primes for NTT Estimated memory usage: 277M Initializing tables of differences for F took 125ms Computing roots of F took 7956ms Building F from its roots took 10358ms Computing 1/F took 5101ms Initializing table of differences for G took 156ms Computing roots of G took 6412ms Building G from its roots took 10920ms Computing roots of G took 6505ms Building G from its roots took 10951ms Computing G * H took 2683ms Reducing G * H mod F took 2714ms Computing roots of G took 6427ms Building G from its roots took 10983ms Computing G * H took 2590ms Reducing G * H mod F took 2683ms Computing polyeval(F,G) took 19142ms Computing product of all F(g_i) took 93ms Step 2 took 106299ms ********** Factor found in step 2: 3041095278745226374546983608032050519555834420712241 Found probable prime factor of 52 digits: 3041095278745226374546983608032050519555834420712241 Composite cofactor ((43*10^221-7)/(9*3*8209*1723808875939))/3041095278745226374546983608032050519555834420712241 has 154 digits |
execution environment 実行環境 | Windows 7 Pro 64-bit, 2x Intel Xeon E5-2620 @ 2.0 GHz, 2x NVIDIA GeForce GTX 660, 32GB RAM |
name 名前 | Erik Branger |
---|---|
date 日付 | December 30, 2017 13:44:40 UTC 2017 年 12 月 30 日 (土) 22 時 44 分 40 秒 (日本時間) |
composite number 合成数 | 3700797279742305028890616540084401838466031695775780746121754731339938425476589293458852771981934939850490140042287124981715979677378300109040541841482249<154> |
prime factors 素因数 | 2082226041630196162907901336629585217846193557558096807326775019064654483767<76> 1777327343790644752868336552643037929094411907465811227765848789748262479955647<79> |
factorization results 素因数分解の結果 | Number: 47777_221 N = 3700797279742305028890616540084401838466031695775780746121754731339938425476589293458852771981934939850490140042287124981715979677378300109040541841482249 (154 digits) SNFS difficulty: 223 digits. Divisors found: r1=2082226041630196162907901336629585217846193557558096807326775019064654483767 (pp76) r2=1777327343790644752868336552643037929094411907465811227765848789748262479955647 (pp79) Version: Msieve v. 1.52 (SVN unknown) Total time: 88.48 hours. Factorization parameters were as follows: n: 3700797279742305028890616540084401838466031695775780746121754731339938425476589293458852771981934939850490140042287124981715979677378300109040541841482249 m: 10000000000000000000000000000000000000000000000000000000 deg: 4 c4: 430 c0: -7 skew: 1.00 type: snfs lss: 1 rlim: 536870912 alim: 67108864 lpbr: 29 lpba: 27 mfbr: 58 mfba: 54 rlambda: 2.8 alambda: 2.8 side: 1 Number of cores used: 4 Number of threads per core: 1 Factor base limits: 536870912/67108864 Large primes per side: 3 Large prime bits: 29/27 Total raw relations: 28439285 Relations: 9602726 relations Total pre-computation time approximately 1000 CPU-days. Pre-computation saved approximately 18 G rational relations. Total batch smoothness checking time: 43.99 hours. Total relation processing time: 0.30 hours. Pruned matrix : 8308707 x 8308932 Matrix solve time: 44.00 hours. time per square root: 0.19 hours. Prototype def-par.txt line would be: snfs,223,4,0,0,0,0,0,0,0,0,536870912,67108864,29,27,58,54,2.8,2.8,100000 total time: 88.48 hours. Intel64 Family 6 Model 60 Stepping 3, GenuineIntel Windows-10-10.0.15063-SP0 processors: 8, speed: 3.50GHz |
software ソフトウェア | GGNFS, NFS_factory, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | January 27, 2009 13:00:00 UTC 2009 年 1 月 27 日 (火) 22 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 300 | Ignacio Santos | September 15, 2010 06:23:29 UTC 2010 年 9 月 15 日 (水) 15 時 23 分 29 秒 (日本時間) | |
40 | 3e6 | 2202 | 110 | Ignacio Santos | September 15, 2010 06:23:29 UTC 2010 年 9 月 15 日 (水) 15 時 23 分 29 秒 (日本時間) |
300 | Serge Batalov | January 9, 2014 04:38:19 UTC 2014 年 1 月 9 日 (木) 13 時 38 分 19 秒 (日本時間) | |||
1792 | Youcef Lemsafer | January 12, 2014 18:15:12 UTC 2014 年 1 月 13 日 (月) 3 時 15 分 12 秒 (日本時間) | |||
45 | 11e6 | 2141 | 32 | Ignacio Santos | September 15, 2010 06:23:29 UTC 2010 年 9 月 15 日 (水) 15 時 23 分 29 秒 (日本時間) |
2109 | Youcef Lemsafer | January 14, 2014 07:02:44 UTC 2014 年 1 月 14 日 (火) 16 時 2 分 44 秒 (日本時間) | |||
50 | 43e6 | 678 / 6988 | 640 | Youcef Lemsafer | January 16, 2014 19:38:25 UTC 2014 年 1 月 17 日 (金) 4 時 38 分 25 秒 (日本時間) |
38 | KTakahashi | April 7, 2014 12:09:43 UTC 2014 年 4 月 7 日 (月) 21 時 9 分 43 秒 (日本時間) |
name 名前 | Youcef Lemsafer |
---|---|
date 日付 | January 14, 2014 14:35:31 UTC 2014 年 1 月 14 日 (火) 23 時 35 分 31 秒 (日本時間) |
composite number 合成数 | 2159198266542998720753663309385483711956974983348243052070568126736393921110956019933472250460560684326464028916812409596839877775300353728502547239322499241742067695496659<172> |
prime factors 素因数 | 14247275286795522284436061281388491690632569943<47> 151551663253405321713682624536270436626459648630211246285215467933055195276055115822328897493576807216040347330165511355331813<126> |
factorization results 素因数分解の結果 | GMP-ECM 7.0-dev [configured with MPIR 2.6.0, --enable-gpu] [ECM] Input number is (43*10^223-7)/(9*53*28181*774131*1014447066673*18865021475463176645417058017) (172 digits) Using MODMULN [mulredc:0, sqrredc:1] Computing batch product (of zu bits) of primes below B1=0 took 0ms GPU: compiled for a NVIDIA GPU with compute capability 3.0. GPU: device 0 is required. GPU: will use device 0: GeForce GTX 660, compute capability 3.0, 5 MPs. GPU: Selection and initialization of the device took 0ms Using B1=31000000, B2=0, sigma=3:948049868-3:948050667 (800 curves) dF=0, k=0, d=7, d2=0, i0=0 Expected number of curves to find a factor of n digits: 35 40 45 50 55 60 65 70 75 80 775 4798 33258 254650 2131042 1.9e+007 1.9e+008 1.6e+009 2.9e+010 Inf Computing 800 Step 1 took 144503ms of CPU time / 29727436ms of GPU time Throughput: 0.027 curves by second (on average 37159.30ms by Step 1) Expected time to find a factor of n digits: 35 40 45 50 55 60 65 70 75 80 8.00h 2.06d 14.30d 109.52d 2.51y 22.81y 222.60y 1935y 34609y Inf Resuming ECM residue saved by ******@****** with GMP-ECM 7.0-dev on Tue Jan 14 13:01:22 2014 Input number is (43*10^223-7)/(9*53*28181*774131*1014447066673*18865021475463176645417058017) (172 digits) Using MODMULN [mulredc:0, sqrredc:1] Using B1=31000000-31000000, B2=144289975846, polynomial Dickson(12), sigma=3:948050268 dF=65536, k=3, d=690690, d2=17, i0=28 Expected number of curves to find a factor of n digits: 35 40 45 50 55 60 65 70 75 80 76 364 2028 12790 89332 692068 5848035 5.3e+007 5.3e+008 5.6e+009 Step 1 took 15ms Using 21 small primes for NTT Estimated memory usage: 234M Initializing tables of differences for F took 78ms Computing roots of F took 6489ms Building F from its roots took 8237ms Computing 1/F took 3962ms Initializing table of differences for G took 109ms Computing roots of G took 5133ms Building G from its roots took 8408ms Computing roots of G took 4977ms Building G from its roots took 8424ms Computing G * H took 2044ms Reducing G * H mod F took 2152ms Computing roots of G took 4977ms Building G from its roots took 8408ms Computing G * H took 2106ms Reducing G * H mod F took 2215ms Computing polyeval(F,G) took 15413ms Computing product of all F(g_i) took 78ms Step 2 took 83617ms ********** Factor found in step 2: 14247275286795522284436061281388491690632569943 Found probable prime factor of 47 digits: 14247275286795522284436061281388491690632569943 Probable prime cofactor ((43*10^223-7)/(9*53*28181*774131*1014447066673*18865021475463176645417058017))/14247275286795522284436061281388491690632569943 has 126 digits |
execution environment 実行環境 | Windows 7 Pro 64-bit, 2x Intel Xeon E5-2620 @ 2.0 GHz, 2x NVIDIA GeForce GTX 660, 32 GB RAM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | January 27, 2009 13:00:00 UTC 2009 年 1 月 27 日 (火) 22 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 300 | Ignacio Santos | September 15, 2010 06:23:56 UTC 2010 年 9 月 15 日 (水) 15 時 23 分 56 秒 (日本時間) | |
40 | 3e6 | 2202 | 110 | Ignacio Santos | September 15, 2010 06:23:56 UTC 2010 年 9 月 15 日 (水) 15 時 23 分 56 秒 (日本時間) |
300 | Serge Batalov | January 9, 2014 04:38:19 UTC 2014 年 1 月 9 日 (木) 13 時 38 分 19 秒 (日本時間) | |||
1792 | Youcef Lemsafer | January 12, 2014 19:34:37 UTC 2014 年 1 月 13 日 (月) 4 時 34 分 37 秒 (日本時間) | |||
45 | 11e6 | 1703 / 3978 | 32 | Ignacio Santos | September 15, 2010 06:23:56 UTC 2010 年 9 月 15 日 (水) 15 時 23 分 56 秒 (日本時間) |
1671 | Youcef Lemsafer | January 14, 2014 14:33:14 UTC 2014 年 1 月 14 日 (火) 23 時 33 分 14 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | January 27, 2009 13:00:00 UTC 2009 年 1 月 27 日 (火) 22 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 300 | Ignacio Santos | September 15, 2010 06:24:26 UTC 2010 年 9 月 15 日 (水) 15 時 24 分 26 秒 (日本時間) | |
40 | 3e6 | 2202 | 110 | Ignacio Santos | September 15, 2010 06:24:26 UTC 2010 年 9 月 15 日 (水) 15 時 24 分 26 秒 (日本時間) |
300 | Serge Batalov | January 9, 2014 04:38:20 UTC 2014 年 1 月 9 日 (木) 13 時 38 分 20 秒 (日本時間) | |||
1792 | Youcef Lemsafer | January 12, 2014 21:10:07 UTC 2014 年 1 月 13 日 (月) 6 時 10 分 7 秒 (日本時間) | |||
45 | 11e6 | 2141 | 32 | Ignacio Santos | September 15, 2010 06:24:26 UTC 2010 年 9 月 15 日 (水) 15 時 24 分 26 秒 (日本時間) |
2109 | Youcef Lemsafer | January 14, 2014 15:39:19 UTC 2014 年 1 月 15 日 (水) 0 時 39 分 19 秒 (日本時間) | |||
50 | 43e6 | 678 / 6988 | 640 | Youcef Lemsafer | January 17, 2014 07:06:47 UTC 2014 年 1 月 17 日 (金) 16 時 6 分 47 秒 (日本時間) |
38 | KTakahashi | April 14, 2014 09:04:37 UTC 2014 年 4 月 14 日 (月) 18 時 4 分 37 秒 (日本時間) |
name 名前 | RSALS + Jeff Gilchrist |
---|---|
date 日付 | February 24, 2011 13:27:28 UTC 2011 年 2 月 24 日 (木) 22 時 27 分 28 秒 (日本時間) |
composite number 合成数 | 2514619883040935672514619883040935672514619883040935672514619883040935672514619883040935672514619883040935672514619883040935672514619883040935672514619883040935672514619883040935672514619883040935672514619883040935672514619883<226> |
prime factors 素因数 | 1016460055011415796418611300341184448066783117227055235928466346212120820088385661<82> 2473899363426233351611258262985515245433202437016340358154253081542326756853623441434265747623213661187099697242209832348580931599291867712288903<145> |
factorization results 素因数分解の結果 | <sieving on the RSALS grid> <filtering by Jeff Gilchrist> Sat Feb 19 19:22:33 2011 Msieve v. 1.48 Sat Feb 19 19:22:33 2011 random seeds: 7b2cfd83 3a840734 Sat Feb 19 19:22:33 2011 MPI process 0 of 25 Sat Feb 19 19:22:33 2011 factoring 2514619883040935672514619883040935672514619883040935672514619883040935672514619883040935672514619883040935672514619883040935672514619883040935672514619883040935672514619883040935672514619883040935672514619883040935672514619883 (226 digits) Sat Feb 19 19:22:35 2011 no P-1/P+1/ECM available, skipping Sat Feb 19 19:22:35 2011 commencing number field sieve (226-digit input) Sat Feb 19 19:22:35 2011 R0: -10000000000000000000000000000000000000 Sat Feb 19 19:22:35 2011 R1: 1 Sat Feb 19 19:22:35 2011 A0: -7 Sat Feb 19 19:22:35 2011 A1: 0 Sat Feb 19 19:22:35 2011 A2: 0 Sat Feb 19 19:22:35 2011 A3: 0 Sat Feb 19 19:22:35 2011 A4: 0 Sat Feb 19 19:22:35 2011 A5: 0 Sat Feb 19 19:22:35 2011 A6: 430000 Sat Feb 19 19:22:35 2011 skew 0.16, size 2.179e-11, alpha -1.900, combined = 1.138e-12 rroots = 2 Sat Feb 19 19:22:35 2011 Sat Feb 19 19:22:35 2011 commencing linear algebra Sat Feb 19 19:22:35 2011 initialized process (0,0) of 5 x 5 grid Sat Feb 19 19:22:38 2011 read 5860705 cycles Sat Feb 19 19:22:54 2011 cycles contain 16443107 unique relations Sat Feb 19 19:27:05 2011 read 16443107 relations Sat Feb 19 19:27:48 2011 using 20 quadratic characters above 1073737242 Sat Feb 19 19:29:09 2011 building initial matrix Sat Feb 19 19:34:22 2011 memory use: 2172.4 MB Sat Feb 19 19:34:33 2011 read 5860705 cycles Sat Feb 19 19:34:34 2011 matrix is 5860526 x 5860705 (1952.9 MB) with weight 573681918 (97.89/col) Sat Feb 19 19:34:34 2011 sparse part has weight 447476324 (76.35/col) Sat Feb 19 19:35:42 2011 filtering completed in 1 passes Sat Feb 19 19:35:43 2011 matrix is 5860526 x 5860705 (1952.9 MB) with weight 573681918 (97.89/col) Sat Feb 19 19:35:43 2011 sparse part has weight 447476324 (76.35/col) Sat Feb 19 19:36:43 2011 matrix starts at (0, 0) Sat Feb 19 19:36:43 2011 matrix is 1172198 x 1039795 (122.5 MB) with weight 42759959 (41.12/col) Sat Feb 19 19:36:43 2011 sparse part has weight 20671663 (19.88/col) Sat Feb 19 19:36:43 2011 saving the first 48 matrix rows for later Sat Feb 19 19:36:43 2011 matrix includes 64 packed rows Sat Feb 19 19:37:36 2011 matrix is 1172150 x 1039795 (106.3 MB) with weight 24404657 (23.47/col) Sat Feb 19 19:37:36 2011 sparse part has weight 17480889 (16.81/col) Sat Feb 19 19:37:36 2011 using block size 262144 for processor cache size 6144 kB Sat Feb 19 19:37:37 2011 commencing Lanczos iteration Sat Feb 19 19:37:37 2011 memory use: 130.9 MB Sat Feb 19 19:38:23 2011 linear algebra at 0.0%, ETA 44h56m Sat Feb 19 19:38:38 2011 checkpointing every 130000 dimensions Mon Feb 21 09:04:07 2011 lanczos halted after 92679 iterations (dim = 5860478) Mon Feb 21 18:25:33 2011 Mon Feb 21 18:25:33 2011 Mon Feb 21 18:25:33 2011 Msieve v. 1.48 Mon Feb 21 18:25:33 2011 random seeds: f636a4cf 6b4b92eb Mon Feb 21 18:25:33 2011 MPI process 0 of 25 Mon Feb 21 18:25:33 2011 factoring 2514619883040935672514619883040935672514619883040935672514619883040935672514619883040935672514619883040935672514619883040935672514619883040935672514619883040935672514619883040935672514619883040935672514619883040935672514619883 (226 digits) Mon Feb 21 18:25:35 2011 no P-1/P+1/ECM available, skipping Mon Feb 21 18:25:35 2011 commencing number field sieve (226-digit input) Mon Feb 21 18:25:35 2011 R0: -10000000000000000000000000000000000000 Mon Feb 21 18:25:35 2011 R1: 1 Mon Feb 21 18:25:35 2011 A0: -7 Mon Feb 21 18:25:35 2011 A1: 0 Mon Feb 21 18:25:35 2011 A2: 0 Mon Feb 21 18:25:35 2011 A3: 0 Mon Feb 21 18:25:35 2011 A4: 0 Mon Feb 21 18:25:35 2011 A5: 0 Mon Feb 21 18:25:35 2011 A6: 430000 Mon Feb 21 18:25:35 2011 skew 0.16, size 2.179e-11, alpha -1.900, combined = 1.138e-12 rroots = 2 Mon Feb 21 18:25:35 2011 Mon Feb 21 18:25:35 2011 commencing linear algebra Mon Feb 21 18:25:36 2011 initialized process (0,0) of 5 x 5 grid Mon Feb 21 18:26:10 2011 matrix starts at (0, 0) Mon Feb 21 18:26:10 2011 matrix is 1172198 x 1039795 (122.5 MB) with weight 42759959 (41.12/col) Mon Feb 21 18:26:10 2011 sparse part has weight 20671663 (19.88/col) Mon Feb 21 18:26:10 2011 saving the first 48 matrix rows for later Mon Feb 21 18:26:10 2011 matrix includes 64 packed rows Mon Feb 21 18:27:01 2011 matrix is 1172150 x 1039795 (106.3 MB) with weight 24404657 (23.47/col) Mon Feb 21 18:27:01 2011 sparse part has weight 17480889 (16.81/col) Mon Feb 21 18:27:01 2011 using block size 262144 for processor cache size 6144 kB Mon Feb 21 18:27:02 2011 commencing Lanczos iteration Mon Feb 21 18:27:02 2011 memory use: 130.9 MB Mon Feb 21 18:27:13 2011 restarting at iteration 92512 (dim = 5850000) Mon Feb 21 18:27:43 2011 linear algebra at 99.8%, ETA 0h 3m Mon Feb 21 18:27:54 2011 checkpointing every 180000 dimensions Mon Feb 21 18:30:45 2011 lanczos halted after 92679 iterations (dim = 5860478) Mon Feb 21 18:30:55 2011 recovered 38 nontrivial dependencies Mon Feb 21 18:30:55 2011 BLanczosTime: 320 Mon Feb 21 18:30:55 2011 elapsed time 00:05:22 Tue Feb 22 07:21:15 2011 Msieve v. 1.48 Tue Feb 22 07:21:15 2011 random seeds: 3910e9ae 8a6c0b4f Tue Feb 22 07:21:15 2011 factoring 2514619883040935672514619883040935672514619883040935672514619883040935672514619883040935672514619883040935672514619883040935672514619883040935672514619883040935672514619883040935672514619883040935672514619883040935672514619883 (226 digits) Tue Feb 22 07:21:18 2011 no P-1/P+1/ECM available, skipping Tue Feb 22 07:21:18 2011 commencing number field sieve (226-digit input) Tue Feb 22 07:21:18 2011 R0: -10000000000000000000000000000000000000 Tue Feb 22 07:21:18 2011 R1: 1 Tue Feb 22 07:21:18 2011 A0: -7 Tue Feb 22 07:21:18 2011 A1: 0 Tue Feb 22 07:21:18 2011 A2: 0 Tue Feb 22 07:21:18 2011 A3: 0 Tue Feb 22 07:21:18 2011 A4: 0 Tue Feb 22 07:21:18 2011 A5: 0 Tue Feb 22 07:21:18 2011 A6: 430000 Tue Feb 22 07:21:18 2011 skew 0.16, size 2.179e-11, alpha -1.900, combined = 1.138e-12 rroots = 2 Tue Feb 22 07:21:18 2011 Tue Feb 22 07:21:18 2011 commencing square root phase Tue Feb 22 07:21:18 2011 reading relations for dependency 1 Tue Feb 22 07:21:21 2011 read 2929121 cycles Tue Feb 22 07:21:30 2011 cycles contain 8218314 unique relations Tue Feb 22 07:26:33 2011 read 8218314 relations Tue Feb 22 07:27:45 2011 multiplying 8218314 relations Tue Feb 22 07:48:08 2011 multiply complete, coefficients have about 344.51 million bits Tue Feb 22 07:48:11 2011 initial square root is modulo 1519201 Tue Feb 22 08:13:37 2011 sqrtTime: 3139 Tue Feb 22 08:13:37 2011 prp82 factor: 1016460055011415796418611300341184448066783117227055235928466346212120820088385661 Tue Feb 22 08:13:37 2011 prp145 factor: 2473899363426233351611258262985515245433202437016340358154253081542326756853623441434265747623213661187099697242209832348580931599291867712288903 Tue Feb 22 08:13:37 2011 elapsed time 00:52:22 |
software ソフトウェア | ggnfs-lasieve4I14e on the RSALS grid + msieve 1.48 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | January 27, 2009 13:00:00 UTC 2009 年 1 月 27 日 (火) 22 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 800 | Serge Batalov | January 28, 2009 23:34:47 UTC 2009 年 1 月 29 日 (木) 8 時 34 分 47 秒 (日本時間) | |
45 | 11e6 | 4540 | 310 | Serge Batalov | January 28, 2009 23:34:47 UTC 2009 年 1 月 29 日 (木) 8 時 34 分 47 秒 (日本時間) |
700 | Dmitry Domanov | April 8, 2010 03:18:16 UTC 2010 年 4 月 8 日 (木) 12 時 18 分 16 秒 (日本時間) | |||
3530 | Dmitry Domanov | April 11, 2010 19:36:47 UTC 2010 年 4 月 12 日 (月) 4 時 36 分 47 秒 (日本時間) | |||
50 | 43e6 | 0 | - | - | |
55 | 11e7 | 2710 / 17479 | yoyo@home | September 13, 2010 06:10:36 UTC 2010 年 9 月 13 日 (月) 15 時 10 分 36 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | January 27, 2009 13:00:00 UTC 2009 年 1 月 27 日 (火) 22 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 300 | Ignacio Santos | September 15, 2010 06:25:10 UTC 2010 年 9 月 15 日 (水) 15 時 25 分 10 秒 (日本時間) | |
40 | 3e6 | 2202 | 110 | Ignacio Santos | September 15, 2010 06:25:10 UTC 2010 年 9 月 15 日 (水) 15 時 25 分 10 秒 (日本時間) |
300 | Serge Batalov | January 9, 2014 04:38:21 UTC 2014 年 1 月 9 日 (木) 13 時 38 分 21 秒 (日本時間) | |||
1792 | Youcef Lemsafer | January 12, 2014 22:35:46 UTC 2014 年 1 月 13 日 (月) 7 時 35 分 46 秒 (日本時間) | |||
45 | 11e6 | 2141 | 32 | Ignacio Santos | September 15, 2010 06:25:10 UTC 2010 年 9 月 15 日 (水) 15 時 25 分 10 秒 (日本時間) |
2109 | Youcef Lemsafer | January 14, 2014 21:26:32 UTC 2014 年 1 月 15 日 (水) 6 時 26 分 32 秒 (日本時間) | |||
50 | 43e6 | 678 / 6988 | 640 | Youcef Lemsafer | January 17, 2014 07:07:24 UTC 2014 年 1 月 17 日 (金) 16 時 7 分 24 秒 (日本時間) |
38 | KTakahashi | April 15, 2014 09:17:20 UTC 2014 年 4 月 15 日 (火) 18 時 17 分 20 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | January 27, 2009 18:45:12 UTC 2009 年 1 月 28 日 (水) 3 時 45 分 12 秒 (日本時間) |
composite number 合成数 | 2181633688483003551496702181633688483003551496702181633688483003551496702181633688483003551496702181633688483003551496702181633688483003551496702181633688483003551496702181633688483003551496702181633688483003551496702181633688483<229> |
prime factors 素因数 | 692730088823719508465086751<27> |
composite cofactor 合成数の残り | 3149327167508337424894687917653959013981952149120694102773275999128510834233614653207416330576776052801668066525911784723885214992039134786270169083745020741277257567117346186246575033521599505550100733<202> |
factorization results 素因数分解の結果 | Using B1=250000, B2=128992510, polynomial Dickson(3), sigma=3170109874 Step 1 took 1812ms ********** Factor found in step 1: 692730088823719508465086751 Found probable prime factor of 27 digits: 692730088823719508465086751 |
software ソフトウェア | GMP-ECM 6.2.1 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | January 27, 2009 13:00:00 UTC 2009 年 1 月 27 日 (火) 22 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 300 | Ignacio Santos | September 15, 2010 06:26:35 UTC 2010 年 9 月 15 日 (水) 15 時 26 分 35 秒 (日本時間) | |
40 | 3e6 | 2202 | 110 | Ignacio Santos | September 15, 2010 06:26:35 UTC 2010 年 9 月 15 日 (水) 15 時 26 分 35 秒 (日本時間) |
300 | Serge Batalov | January 9, 2014 04:38:21 UTC 2014 年 1 月 9 日 (木) 13 時 38 分 21 秒 (日本時間) | |||
1792 | Youcef Lemsafer | January 13, 2014 07:04:36 UTC 2014 年 1 月 13 日 (月) 16 時 4 分 36 秒 (日本時間) | |||
45 | 11e6 | 2141 | 32 | Ignacio Santos | September 15, 2010 06:26:35 UTC 2010 年 9 月 15 日 (水) 15 時 26 分 35 秒 (日本時間) |
2109 | Youcef Lemsafer | January 14, 2014 23:17:34 UTC 2014 年 1 月 15 日 (水) 8 時 17 分 34 秒 (日本時間) | |||
50 | 43e6 | 678 / 6988 | 640 | Youcef Lemsafer | January 17, 2014 15:59:51 UTC 2014 年 1 月 18 日 (土) 0 時 59 分 51 秒 (日本時間) |
38 | KTakahashi | April 15, 2014 09:17:37 UTC 2014 年 4 月 15 日 (火) 18 時 17 分 37 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | January 27, 2009 13:00:00 UTC 2009 年 1 月 27 日 (火) 22 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 300 | Ignacio Santos | September 15, 2010 06:27:12 UTC 2010 年 9 月 15 日 (水) 15 時 27 分 12 秒 (日本時間) | |
40 | 3e6 | 2202 | 110 | Ignacio Santos | September 15, 2010 06:27:12 UTC 2010 年 9 月 15 日 (水) 15 時 27 分 12 秒 (日本時間) |
300 | Serge Batalov | January 9, 2014 04:38:22 UTC 2014 年 1 月 9 日 (木) 13 時 38 分 22 秒 (日本時間) | |||
1792 | Youcef Lemsafer | January 13, 2014 07:05:22 UTC 2014 年 1 月 13 日 (月) 16 時 5 分 22 秒 (日本時間) | |||
45 | 11e6 | 2141 | 32 | Ignacio Santos | September 15, 2010 06:27:12 UTC 2010 年 9 月 15 日 (水) 15 時 27 分 12 秒 (日本時間) |
2109 | Youcef Lemsafer | January 15, 2014 08:10:55 UTC 2014 年 1 月 15 日 (水) 17 時 10 分 55 秒 (日本時間) | |||
50 | 43e6 | 678 / 6988 | 640 | Youcef Lemsafer | January 17, 2014 16:00:15 UTC 2014 年 1 月 18 日 (土) 1 時 0 分 15 秒 (日本時間) |
38 | KTakahashi | April 15, 2014 09:17:51 UTC 2014 年 4 月 15 日 (火) 18 時 17 分 51 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | January 27, 2009 13:00:00 UTC 2009 年 1 月 27 日 (火) 22 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 300 | Ignacio Santos | September 15, 2010 13:17:45 UTC 2010 年 9 月 15 日 (水) 22 時 17 分 45 秒 (日本時間) | |
40 | 3e6 | 2202 | 110 | Ignacio Santos | September 15, 2010 13:17:45 UTC 2010 年 9 月 15 日 (水) 22 時 17 分 45 秒 (日本時間) |
300 | Serge Batalov | January 9, 2014 04:38:22 UTC 2014 年 1 月 9 日 (木) 13 時 38 分 22 秒 (日本時間) | |||
1792 | Youcef Lemsafer | January 13, 2014 07:06:13 UTC 2014 年 1 月 13 日 (月) 16 時 6 分 13 秒 (日本時間) | |||
45 | 11e6 | 2141 | 32 | Ignacio Santos | September 15, 2010 13:17:45 UTC 2010 年 9 月 15 日 (水) 22 時 17 分 45 秒 (日本時間) |
2109 | Youcef Lemsafer | January 15, 2014 08:12:24 UTC 2014 年 1 月 15 日 (水) 17 時 12 分 24 秒 (日本時間) | |||
50 | 43e6 | 678 / 6988 | 640 | Youcef Lemsafer | January 18, 2014 07:50:26 UTC 2014 年 1 月 18 日 (土) 16 時 50 分 26 秒 (日本時間) |
38 | KTakahashi | April 14, 2014 09:05:00 UTC 2014 年 4 月 14 日 (月) 18 時 5 分 0 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | January 28, 2009 06:10:03 UTC 2009 年 1 月 28 日 (水) 15 時 10 分 3 秒 (日本時間) |
composite number 合成数 | 14790905787019117226178863844880653666357468350762679635947866974423951580519090573214009308982960975461138312966079186620819278624457612421365928952374487412934990503811509818270710362407812109755969<200> |
prime factors 素因数 | 192264712908627279576854165210309221783217<42> |
composite cofactor 合成数の残り | 76929903377789411516700093310652483045899848288680400340995715116837047878585117428117743576767502256527687059432257791095117914169589812646186467347998067857<158> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=3778725536 Step 1 took 14404ms Step 2 took 2805ms ********** Factor found in step 2: 192264712908627279576854165210309221783217 Found probable prime factor of 42 digits: 192264712908627279576854165210309221783217 Composite cofactor has 158 digits |
software ソフトウェア | GMP-ECM 6.2.1 |
name 名前 | Serge Batalov |
---|---|
date 日付 | January 28, 2009 17:51:14 UTC 2009 年 1 月 29 日 (木) 2 時 51 分 14 秒 (日本時間) |
composite number 合成数 | 76929903377789411516700093310652483045899848288680400340995715116837047878585117428117743576767502256527687059432257791095117914169589812646186467347998067857<158> |
prime factors 素因数 | 41012255466950321646301229829861542741<38> 1875778410670032148125989730595334818323781272326288536827048138746736685097497248156417793124849522779165277155797324877<121> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=58553269330, polynomial Dickson(12), sigma=227219622 Step 1 took 50881ms Step 2 took 33448ms ********** Factor found in step 2: 41012255466950321646301229829861542741 Found probable prime factor of 38 digits: 41012255466950321646301229829861542741 Probable prime cofactor 1875778410670032148125989730595334818323781272326288536827048138746736685097497248156417793124849522779165277155797324877 has 121 digits |
software ソフトウェア | GMP-ECM 6.2.1 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | January 27, 2009 13:00:00 UTC 2009 年 1 月 27 日 (火) 22 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | January 27, 2009 13:00:00 UTC 2009 年 1 月 27 日 (火) 22 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 300 | Ignacio Santos | September 15, 2010 13:18:11 UTC 2010 年 9 月 15 日 (水) 22 時 18 分 11 秒 (日本時間) | |
40 | 3e6 | 2202 | 110 | Ignacio Santos | September 15, 2010 13:18:11 UTC 2010 年 9 月 15 日 (水) 22 時 18 分 11 秒 (日本時間) |
300 | Serge Batalov | January 9, 2014 04:38:23 UTC 2014 年 1 月 9 日 (木) 13 時 38 分 23 秒 (日本時間) | |||
1792 | Youcef Lemsafer | January 13, 2014 07:06:40 UTC 2014 年 1 月 13 日 (月) 16 時 6 分 40 秒 (日本時間) | |||
45 | 11e6 | 2141 | 32 | Ignacio Santos | September 15, 2010 13:18:11 UTC 2010 年 9 月 15 日 (水) 22 時 18 分 11 秒 (日本時間) |
2109 | Youcef Lemsafer | January 15, 2014 13:59:47 UTC 2014 年 1 月 15 日 (水) 22 時 59 分 47 秒 (日本時間) | |||
50 | 43e6 | 678 / 6988 | 640 | Youcef Lemsafer | January 18, 2014 07:51:19 UTC 2014 年 1 月 18 日 (土) 16 時 51 分 19 秒 (日本時間) |
38 | KTakahashi | April 14, 2014 09:05:14 UTC 2014 年 4 月 14 日 (月) 18 時 5 分 14 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | January 27, 2009 16:20:08 UTC 2009 年 1 月 28 日 (水) 1 時 20 分 8 秒 (日本時間) |
composite number 合成数 | 551497211552436177122963727925917283256492494376646749823943495887707130691105323808857050163217781014486437474998825927754684111786042248963128053847897469515245292151253709303080061880906278488907291329339354806178008389717<225> |
prime factors 素因数 | 16019823933833801017304935568263<32> 34425922146851837576638249702876396349794779344942534097092159794838474557251330373243197269039118582961540438685946281867896688525526005977130309937227882149560857611922657828168430494238139459<194> |
factorization results 素因数分解の結果 | Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=1194573843 Step 1 took 7395ms Step 2 took 5997ms ********** Factor found in step 2: 16019823933833801017304935568263 Found probable prime factor of 32 digits: 16019823933833801017304935568263 Probable prime cofactor has 194 digits |
software ソフトウェア | GMP-ECM 6.2.1 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | January 27, 2009 13:00:00 UTC 2009 年 1 月 27 日 (火) 22 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | January 27, 2009 13:00:00 UTC 2009 年 1 月 27 日 (火) 22 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 300 | Ignacio Santos | September 15, 2010 13:18:40 UTC 2010 年 9 月 15 日 (水) 22 時 18 分 40 秒 (日本時間) | |
40 | 3e6 | 410 | 110 | Ignacio Santos | September 15, 2010 13:18:40 UTC 2010 年 9 月 15 日 (水) 22 時 18 分 40 秒 (日本時間) |
300 | Serge Batalov | January 9, 2014 04:38:24 UTC 2014 年 1 月 9 日 (木) 13 時 38 分 24 秒 (日本時間) | |||
45 | 11e6 | 4432 | 32 | Ignacio Santos | September 15, 2010 13:18:40 UTC 2010 年 9 月 15 日 (水) 22 時 18 分 40 秒 (日本時間) |
400 | KTakahashi | February 24, 2014 15:31:58 UTC 2014 年 2 月 25 日 (火) 0 時 31 分 58 秒 (日本時間) | |||
4000 | ebina | October 3, 2024 21:35:51 UTC 2024 年 10 月 4 日 (金) 6 時 35 分 51 秒 (日本時間) | |||
50 | 43e6 | 38 / 6541 | Cyp | January 12, 2014 16:08:46 UTC 2014 年 1 月 13 日 (月) 1 時 8 分 46 秒 (日本時間) |
name 名前 | Erik Branger |
---|---|
date 日付 | May 2, 2023 15:07:23 UTC 2023 年 5 月 3 日 (水) 0 時 7 分 23 秒 (日本時間) |
composite number 合成数 | 14177382129904385097263435542367293109132871744147708539399934058687767886580942960764919221892515661061655126937026046818331684800527530497856907352456313880646224859874711506758984503791625453346521595779756017144741180349488954830201121<239> |
prime factors 素因数 | 263832203327468992120221641595681161406325814411671685673943063<63> 53736359516004168779759115189861723116916568594202649743106406736257828614948441978201921657195715501991083966523760484107384924658461493286211386762261850560814464303312319367<176> |
factorization results 素因数分解の結果 | Number: 47777_240 N = 14177382129904385097263435542367293109132871744147708539399934058687767886580942960764919221892515661061655126937026046818331684800527530497856907352456313880646224859874711506758984503791625453346521595779756017144741180349488954830201121 (239 digits) SNFS difficulty: 242 digits. Divisors found: r1=263832203327468992120221641595681161406325814411671685673943063 (pp63) r2=53736359516004168779759115189861723116916568594202649743106406736257828614948441978201921657195715501991083966523760484107384924658461493286211386762261850560814464303312319367 (pp176) Version: Msieve v. 1.52 (SVN unknown) Total time: 77.71 hours. Factorization parameters were as follows: n: 14177382129904385097263435542367293109132871744147708539399934058687767886580942960764919221892515661061655126937026046818331684800527530497856907352456313880646224859874711506758984503791625453346521595779756017144741180349488954830201121 m: 1000000000000000000000000000000000000000000000000000000000000 deg: 4 c4: 43 c0: -7 skew: 1.00 type: snfs lss: 1 rlim: 500000000 alim: 150000000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.8 alambda: 2.8 side: 1 Number of cores used: 8 Number of threads per core: 1 Factor base limits: 500000000/150000000 Large primes per side: 3 Large prime bits: 29/29 Total raw relations: 60053871 Relations: 15405942 relations Total pre-computation time approximately 1000 CPU-days. Pre-computation saved approximately 18 G rational relations. Total batch smoothness checking time: 17.87 hours. Total relation processing time: 0.62 hours. Pruned matrix : 11674895 x 11675120 Matrix solve time: 58.97 hours. time per square root: 0.26 hours. Prototype def-par.txt line would be: snfs,242,4,0,0,0,0,0,0,0,0,500000000,150000000,29,29,58,58,2.8,2.8,100000 total time: 77.71 hours. Intel64 Family 6 Model 165 Stepping 5, GenuineIntel Windows-10-10.0.22621-SP0 processors: 16, speed: 3.79GHz |
software ソフトウェア | GGNFS, NFS_factory, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | January 27, 2009 13:00:00 UTC 2009 年 1 月 27 日 (火) 22 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 810 | Serge Batalov | January 28, 2009 23:33:51 UTC 2009 年 1 月 29 日 (木) 8 時 33 分 51 秒 (日本時間) | |
45 | 11e6 | 914 | 314 | Serge Batalov | January 28, 2009 23:33:51 UTC 2009 年 1 月 29 日 (木) 8 時 33 分 51 秒 (日本時間) |
600 | Serge Batalov | November 28, 2009 07:06:07 UTC 2009 年 11 月 28 日 (土) 16 時 6 分 7 秒 (日本時間) | |||
50 | 43e6 | 1010 | yoyo@home | January 28, 2010 17:15:11 UTC 2010 年 1 月 29 日 (金) 2 時 15 分 11 秒 (日本時間) | |
55 | 11e7 | 2635 / 17345 | 2630 | yoyo@home | September 13, 2010 17:10:40 UTC 2010 年 9 月 14 日 (火) 2 時 10 分 40 秒 (日本時間) |
5 | KTakahashi | March 23, 2014 08:29:29 UTC 2014 年 3 月 23 日 (日) 17 時 29 分 29 秒 (日本時間) |
name 名前 | Youcef Lemsafer |
---|---|
date 日付 | January 18, 2014 08:50:45 UTC 2014 年 1 月 18 日 (土) 17 時 50 分 45 秒 (日本時間) |
composite number 合成数 | 198223532756400302423637525534117173338210316114197781973050289877433828713313297290713944681056203369162992488600070742658514300826633740713236889577183394140618186908901800210841008013753846190911<198> |
prime factors 素因数 | 2368884861192029909316320615641774428922524629389<49> |
composite cofactor 合成数の残り | 83677993812098419611677626571961675492350825844304867197025377147545710865967756493037457448386233950685356484601862597828300901108683887440008232699<149> |
factorization results 素因数分解の結果 | GMP-ECM 7.0-dev [configured with MPIR 2.6.0, --enable-gpu] [ECM] Input number is (43*10^241-7)/(9*29*1663*3557*7590571*205100619677*902516608090556639) (198 digits) Using MODMULN [mulredc:0, sqrredc:1] Computing batch product (of zu bits) of primes below B1=0 took 0ms GPU: compiled for a NVIDIA GPU with compute capability 3.0. GPU: device 1 is required. GPU: will use device 1: GeForce GTX 660, compute capability 3.0, 5 MPs. GPU: Selection and initialization of the device took 0ms Using B1=43000000, B2=0, sigma=3:736593124-3:736593763 (640 curves) dF=0, k=0, d=1638960, d2=0, i0=0 Expected number of curves to find a factor of n digits: 35 40 45 50 55 60 65 70 75 80 621 3658 24066 174580 1382162 1.2e+007 1.1e+008 9.9e+008 5.2e+009 Inf Computing 640 Step 1 took 254485ms of CPU time / 35970720ms of GPU time Throughput: 0.018 curves by second (on average 56204.25ms by Step 1) ********** Factor found in step 1: 2368884861192029909316320615641774428922524629389 Found probable prime factor of 49 digits: 2368884861192029909316320615641774428922524629389 Composite cofactor ((43*10^241-7)/(9*29*1663*3557*7590571*205100619677*902516608090556639))/2368884861192029909316320615641774428922524629389 has 149 digits |
execution environment 実行環境 | Windows 7 Pro 64-bit, 2x Intel Xeon E5-2620 @ 2.0 GHz, 2x NVIDIA GeForce GTX 660, 32 GB RAM |
name 名前 | Ignacio Santos |
---|---|
date 日付 | November 24, 2023 15:47:06 UTC 2023 年 11 月 25 日 (土) 0 時 47 分 6 秒 (日本時間) |
composite number 合成数 | 83677993812098419611677626571961675492350825844304867197025377147545710865967756493037457448386233950685356484601862597828300901108683887440008232699<149> |
prime factors 素因数 | 883869099544109096494901333234307890579733899<45> 94672382884817104458134734756400346031801403645834693638353818781155699419103848681958591567838954181201<104> |
factorization results 素因数分解の結果 | Using B1=43000000, B2=240490660426, polynomial Dickson(12), sigma=1:144744938 Step 1 took 82938ms Step 2 took 29031ms ********** Factor found in step 2: 883869099544109096494901333234307890579733899 Found prime factor of 45 digits: 883869099544109096494901333234307890579733899 Prime cofactor 94672382884817104458134734756400346031801403645834693638353818781155699419103848681958591567838954181201 has 104 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | January 27, 2009 13:00:00 UTC 2009 年 1 月 27 日 (火) 22 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 300 | Ignacio Santos | September 15, 2010 13:19:10 UTC 2010 年 9 月 15 日 (水) 22 時 19 分 10 秒 (日本時間) | |
40 | 3e6 | 2202 | 110 | Ignacio Santos | September 15, 2010 13:19:10 UTC 2010 年 9 月 15 日 (水) 22 時 19 分 10 秒 (日本時間) |
300 | Serge Batalov | January 9, 2014 04:38:24 UTC 2014 年 1 月 9 日 (木) 13 時 38 分 24 秒 (日本時間) | |||
1792 | Youcef Lemsafer | January 13, 2014 07:07:11 UTC 2014 年 1 月 13 日 (月) 16 時 7 分 11 秒 (日本時間) | |||
45 | 11e6 | 2141 | 32 | Ignacio Santos | September 15, 2010 13:19:10 UTC 2010 年 9 月 15 日 (水) 22 時 19 分 10 秒 (日本時間) |
2109 | Youcef Lemsafer | January 15, 2014 21:53:08 UTC 2014 年 1 月 16 日 (木) 6 時 53 分 8 秒 (日本時間) | |||
50 | 43e6 | 678 / 6988 | 640 | Youcef Lemsafer | January 18, 2014 08:49:02 UTC 2014 年 1 月 18 日 (土) 17 時 49 分 2 秒 (日本時間) |
38 | KTakahashi | April 7, 2014 12:10:13 UTC 2014 年 4 月 7 日 (月) 21 時 10 分 13 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | January 27, 2009 13:00:00 UTC 2009 年 1 月 27 日 (火) 22 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 300 | Ignacio Santos | September 15, 2010 13:19:43 UTC 2010 年 9 月 15 日 (水) 22 時 19 分 43 秒 (日本時間) | |
40 | 3e6 | 2202 | 110 | Ignacio Santos | September 15, 2010 13:19:43 UTC 2010 年 9 月 15 日 (水) 22 時 19 分 43 秒 (日本時間) |
300 | Serge Batalov | January 9, 2014 04:38:25 UTC 2014 年 1 月 9 日 (木) 13 時 38 分 25 秒 (日本時間) | |||
1792 | Youcef Lemsafer | January 13, 2014 07:58:42 UTC 2014 年 1 月 13 日 (月) 16 時 58 分 42 秒 (日本時間) | |||
45 | 11e6 | 2141 | 32 | Ignacio Santos | September 15, 2010 13:19:43 UTC 2010 年 9 月 15 日 (水) 22 時 19 分 43 秒 (日本時間) |
2109 | Youcef Lemsafer | January 15, 2014 22:25:07 UTC 2014 年 1 月 16 日 (木) 7 時 25 分 7 秒 (日本時間) | |||
50 | 43e6 | 678 / 6988 | 640 | Youcef Lemsafer | January 18, 2014 10:51:15 UTC 2014 年 1 月 18 日 (土) 19 時 51 分 15 秒 (日本時間) |
38 | KTakahashi | April 14, 2014 09:05:31 UTC 2014 年 4 月 14 日 (月) 18 時 5 分 31 秒 (日本時間) |
name 名前 | Youcef Lemsafer |
---|---|
date 日付 | January 15, 2014 23:09:25 UTC 2014 年 1 月 16 日 (木) 8 時 9 分 25 秒 (日本時間) |
composite number 合成数 | 66328868983150052035365562676535637510278958055717901183165153062867411884374816141527575937460282996244280551811527859913031002126086752300747235755286267422223171302077315691995804639779609201951305578907<206> |
prime factors 素因数 | 211919860709385004570876039298616407115014111<45> 312990338711621455288720636506827899738062069053884342736885019341630358868648620530814063815945894571637503187666067067513661540157121997733933485147355827088837<162> |
factorization results 素因数分解の結果 | GMP-ECM 7.0-dev [configured with MPIR 2.6.0, --enable-gpu] [ECM] Input number is (43*10^244-7)/(9*19*2058839*9946901*18366793*100792041100876547) (206 digits) Using MODMULN [mulredc:0, sqrredc:1] Computing batch product (of zu bits) of primes below B1=0 took 0ms GPU: compiled for a NVIDIA GPU with compute capability 3.0. GPU: device 1 is required. GPU: will use device 1: GeForce GTX 660, compute capability 3.0, 5 MPs. GPU: Selection and initialization of the device took 0ms Using B1=31000000, B2=0, sigma=3:854223959-3:854224758 (800 curves) dF=0, k=0, d=2884144, d2=0, i0=0 Expected number of curves to find a factor of n digits: 35 40 45 50 55 60 65 70 75 80 775 4798 33258 254650 2131042 1.9e+007 1.9e+008 1.6e+009 2.9e+010 Inf Computing 800 Step 1 took 142974ms of CPU time / 29687404ms of GPU time Throughput: 0.027 curves by second (on average 37109.25ms by Step 1) Expected time to find a factor of n digits: 35 40 45 50 55 60 65 70 75 80 7.99h 2.06d 14.28d 109.37d 2.51y 22.78y 222.30y 1932y 34563y Inf Resuming ECM residue saved by ******@****** with GMP-ECM 7.0-dev on Wed Jan 15 23:00:34 2014 Input number is (43*10^244-7)/(9*19*2058839*9946901*18366793*100792041100876547) (206 digits) Using MODMULN [mulredc:0, sqrredc:1] Using B1=31000000-31000000, B2=144289975846, polynomial Dickson(12), sigma=3:854224183 dF=65536, k=3, d=690690, d2=17, i0=28 Expected number of curves to find a factor of n digits: 35 40 45 50 55 60 65 70 75 80 76 364 2028 12790 89332 692068 5848035 5.3e+007 5.3e+008 5.6e+009 Step 1 took 31ms Using 25 small primes for NTT Estimated memory usage: 277M Initializing tables of differences for F took 109ms Computing roots of F took 7893ms Building F from its roots took 10327ms Computing 1/F took 4883ms Initializing table of differences for G took 141ms Computing roots of G took 6022ms Building G from its roots took 10764ms Computing roots of G took 6318ms Building G from its roots took 10873ms Computing G * H took 2465ms Reducing G * H mod F took 2668ms Computing roots of G took 6240ms Building G from its roots took 10982ms Computing G * H took 2668ms Reducing G * H mod F took 2870ms Computing polyeval(F,G) took 19672ms Computing product of all F(g_i) took 93ms Step 2 took 105441ms ********** Factor found in step 2: 211919860709385004570876039298616407115014111 Found probable prime factor of 45 digits: 211919860709385004570876039298616407115014111 Probable prime cofactor ((43*10^244-7)/(9*19*2058839*9946901*18366793*100792041100876547))/211919860709385004570876039298616407115014111 has 162 digits |
execution environment 実行環境 | Windows 7 Pro 64-bit, 2x Intel Xeon E5-2620 @ 2.0 GHz, 2x NVIDIA GeForce GTX 660, 32GB RAM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | January 27, 2009 13:00:00 UTC 2009 年 1 月 27 日 (火) 22 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 300 | Ignacio Santos | September 15, 2010 15:21:59 UTC 2010 年 9 月 16 日 (木) 0 時 21 分 59 秒 (日本時間) | |
40 | 3e6 | 2202 | 110 | Ignacio Santos | September 15, 2010 15:21:59 UTC 2010 年 9 月 16 日 (木) 0 時 21 分 59 秒 (日本時間) |
300 | Serge Batalov | January 9, 2014 04:38:25 UTC 2014 年 1 月 9 日 (木) 13 時 38 分 25 秒 (日本時間) | |||
1792 | Youcef Lemsafer | January 13, 2014 10:57:28 UTC 2014 年 1 月 13 日 (月) 19 時 57 分 28 秒 (日本時間) | |||
45 | 11e6 | 1935 / 3978 | 32 | Ignacio Santos | September 15, 2010 15:21:59 UTC 2010 年 9 月 16 日 (木) 0 時 21 分 59 秒 (日本時間) |
1903 | Youcef Lemsafer | January 15, 2014 23:06:32 UTC 2014 年 1 月 16 日 (木) 8 時 6 分 32 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | January 28, 2009 01:38:26 UTC 2009 年 1 月 28 日 (水) 10 時 38 分 26 秒 (日本時間) |
composite number 合成数 | 53086419753086419753086419753086419753086419753086419753086419753086419753086419753086419753086419753086419753086419753086419753086419753086419753086419753086419753086419753086419753086419753086419753086419753086419753086419753086419753086419753<245> |
prime factors 素因数 | 53598747618551486853933977572595599339<38> 27976147881343907065273464547470440058178217281<47> |
composite cofactor 合成数の残り | 35403066396506894069278844750214201009889285722256175087036574343440723864063382620752845855264935086210428287407910294761124301971887380413930153470653666732667<161> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=45451499 Step 1 took 24228ms Step 2 took 20220ms ********** Factor found in step 2: 27976147881343907065273464547470440058178217281 Found probable prime factor of 47 digits: 27976147881343907065273464547470440058178217281 Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2389133407 Step 1 took 24160ms Step 2 took 20492ms ********** Factor found in step 2: 53598747618551486853933977572595599339 Found probable prime factor of 38 digits: 53598747618551486853933977572595599339 Composite cofactor ... |
software ソフトウェア | GMP-ECM 6.2.1 |
name 名前 | RSALS + Zeta-Flux |
---|---|
date 日付 | January 24, 2011 05:25:19 UTC 2011 年 1 月 24 日 (月) 14 時 25 分 19 秒 (日本時間) |
composite number 合成数 | 35403066396506894069278844750214201009889285722256175087036574343440723864063382620752845855264935086210428287407910294761124301971887380413930153470653666732667<161> |
prime factors 素因数 | 7619148933983485897381658037418901522858622090190425682916126139631<67> 4646590676105509023054028423452911246227813181144711256771836192467772909424222026994037672757<94> |
factorization results 素因数分解の結果 | <sieving on the RSALS grid> Tue Jan 18 15:12:45 2011 Tue Jan 18 15:12:45 2011 Tue Jan 18 15:12:45 2011 Msieve v. 1.44 Tue Jan 18 15:12:45 2011 random seeds: 594046bf 919a49a5 Tue Jan 18 15:12:45 2011 factoring 35403066396506894069278844750214201009889285722256175087036574343440723864063382620752845855264935086210428287407910294761124301971887380413930153470653666732667 (161 digits) Tue Jan 18 15:12:46 2011 no P-1/P+1/ECM available, skipping Tue Jan 18 15:12:46 2011 commencing number field sieve (161-digit input) Tue Jan 18 15:12:46 2011 R0: -36751936325396603214191421804951 Tue Jan 18 15:12:46 2011 R1: 189129907528914661 Tue Jan 18 15:12:46 2011 A0: 481634814592034308689660663959465223894740 Tue Jan 18 15:12:46 2011 A1: 7818571617594079554516994632782892 Tue Jan 18 15:12:46 2011 A2: -2144661413444549536896147223 Tue Jan 18 15:12:46 2011 A3: -29380725812329151874 Tue Jan 18 15:12:46 2011 A4: 1377333927404 Tue Jan 18 15:12:46 2011 A5: 528 Tue Jan 18 15:12:46 2011 skew 45466989.17, size 9.355509e-16, alpha -7.032281, combined = 1.040893e-12 Tue Jan 18 15:12:46 2011 Tue Jan 18 15:12:46 2011 commencing relation filtering Tue Jan 18 15:12:46 2011 estimated available RAM is 24097.6 MB Tue Jan 18 15:12:46 2011 commencing duplicate removal, pass 1 <snip errors reading relations> Tue Jan 18 15:26:55 2011 found 25342683 hash collisions in 118111973 relations Tue Jan 18 15:27:32 2011 added 122086 free relations Tue Jan 18 15:27:32 2011 commencing duplicate removal, pass 2 Tue Jan 18 15:28:38 2011 found 25545873 duplicates and 92688186 unique relations Tue Jan 18 15:28:38 2011 memory use: 660.8 MB Tue Jan 18 15:28:39 2011 reading ideals above 87359488 Tue Jan 18 15:28:39 2011 commencing singleton removal, initial pass Tue Jan 18 15:40:05 2011 memory use: 1506.0 MB Tue Jan 18 15:40:06 2011 reading all ideals from disk Tue Jan 18 15:40:20 2011 memory use: 1529.1 MB Tue Jan 18 15:40:24 2011 commencing in-memory singleton removal Tue Jan 18 15:40:28 2011 begin with 92688186 relations and 78769806 unique ideals Tue Jan 18 15:41:09 2011 reduce to 55704899 relations and 37592792 ideals in 14 passes Tue Jan 18 15:41:09 2011 max relations containing the same ideal: 36 Tue Jan 18 15:41:14 2011 reading ideals above 720000 Tue Jan 18 15:41:14 2011 commencing singleton removal, initial pass Tue Jan 18 15:49:31 2011 memory use: 1378.0 MB Tue Jan 18 15:49:31 2011 reading all ideals from disk Tue Jan 18 15:49:50 2011 memory use: 2076.4 MB Tue Jan 18 15:49:57 2011 keeping 47436700 ideals with weight <= 200, target excess is 294384 Tue Jan 18 15:50:04 2011 commencing in-memory singleton removal Tue Jan 18 15:50:10 2011 begin with 55704899 relations and 47436700 unique ideals Tue Jan 18 15:51:14 2011 reduce to 55638960 relations and 47370742 ideals in 11 passes Tue Jan 18 15:51:14 2011 max relations containing the same ideal: 200 Tue Jan 18 15:51:43 2011 removing 3173725 relations and 2773725 ideals in 400000 cliques Tue Jan 18 15:51:45 2011 commencing in-memory singleton removal Tue Jan 18 15:51:50 2011 begin with 52465235 relations and 47370742 unique ideals Tue Jan 18 15:52:29 2011 reduce to 52363660 relations and 44494564 ideals in 7 passes Tue Jan 18 15:52:29 2011 max relations containing the same ideal: 197 Tue Jan 18 15:52:57 2011 removing 2357272 relations and 1957272 ideals in 400000 cliques Tue Jan 18 15:52:58 2011 commencing in-memory singleton removal Tue Jan 18 15:53:03 2011 begin with 50006388 relations and 44494564 unique ideals Tue Jan 18 15:53:45 2011 reduce to 49943492 relations and 42473959 ideals in 8 passes Tue Jan 18 15:53:45 2011 max relations containing the same ideal: 193 Tue Jan 18 15:54:12 2011 removing 2096426 relations and 1696426 ideals in 400000 cliques Tue Jan 18 15:54:13 2011 commencing in-memory singleton removal Tue Jan 18 15:54:18 2011 begin with 47847066 relations and 42473959 unique ideals Tue Jan 18 15:54:48 2011 reduce to 47794111 relations and 40724178 ideals in 6 passes Tue Jan 18 15:54:48 2011 max relations containing the same ideal: 189 Tue Jan 18 15:55:13 2011 removing 1943416 relations and 1543416 ideals in 400000 cliques Tue Jan 18 15:55:14 2011 commencing in-memory singleton removal Tue Jan 18 15:55:18 2011 begin with 45850695 relations and 40724178 unique ideals Tue Jan 18 15:55:47 2011 reduce to 45801775 relations and 39131505 ideals in 6 passes Tue Jan 18 15:55:47 2011 max relations containing the same ideal: 185 Tue Jan 18 15:56:11 2011 removing 1838838 relations and 1438838 ideals in 400000 cliques Tue Jan 18 15:56:12 2011 commencing in-memory singleton removal Tue Jan 18 15:56:16 2011 begin with 43962937 relations and 39131505 unique ideals Tue Jan 18 15:56:44 2011 reduce to 43914854 relations and 37644210 ideals in 6 passes Tue Jan 18 15:56:44 2011 max relations containing the same ideal: 179 Tue Jan 18 15:57:06 2011 removing 1772420 relations and 1372420 ideals in 400000 cliques Tue Jan 18 15:57:07 2011 commencing in-memory singleton removal Tue Jan 18 15:57:11 2011 begin with 42142434 relations and 37644210 unique ideals Tue Jan 18 15:57:42 2011 reduce to 42098694 relations and 36227721 ideals in 7 passes Tue Jan 18 15:57:42 2011 max relations containing the same ideal: 174 Tue Jan 18 15:58:03 2011 removing 1711805 relations and 1311805 ideals in 400000 cliques Tue Jan 18 15:58:05 2011 commencing in-memory singleton removal Tue Jan 18 15:58:08 2011 begin with 40386889 relations and 36227721 unique ideals Tue Jan 18 15:58:38 2011 reduce to 40342569 relations and 34871274 ideals in 7 passes Tue Jan 18 15:58:38 2011 max relations containing the same ideal: 170 Tue Jan 18 15:58:58 2011 removing 1665361 relations and 1265361 ideals in 400000 cliques Tue Jan 18 15:59:00 2011 commencing in-memory singleton removal Tue Jan 18 15:59:03 2011 begin with 38677208 relations and 34871274 unique ideals Tue Jan 18 15:59:27 2011 reduce to 38632567 relations and 33560885 ideals in 6 passes Tue Jan 18 15:59:27 2011 max relations containing the same ideal: 167 Tue Jan 18 15:59:47 2011 removing 1634479 relations and 1234479 ideals in 400000 cliques Tue Jan 18 15:59:48 2011 commencing in-memory singleton removal Tue Jan 18 15:59:51 2011 begin with 36998088 relations and 33560885 unique ideals Tue Jan 18 16:00:18 2011 reduce to 36956154 relations and 32284121 ideals in 7 passes Tue Jan 18 16:00:18 2011 max relations containing the same ideal: 164 Tue Jan 18 16:00:36 2011 removing 1587949 relations and 1187949 ideals in 400000 cliques Tue Jan 18 16:00:37 2011 commencing in-memory singleton removal Tue Jan 18 16:00:41 2011 begin with 35368205 relations and 32284121 unique ideals Tue Jan 18 16:01:02 2011 reduce to 35321201 relations and 31048743 ideals in 6 passes Tue Jan 18 16:01:02 2011 max relations containing the same ideal: 159 Tue Jan 18 16:01:20 2011 removing 1579948 relations and 1179948 ideals in 400000 cliques Tue Jan 18 16:01:21 2011 commencing in-memory singleton removal Tue Jan 18 16:01:24 2011 begin with 33741253 relations and 31048743 unique ideals Tue Jan 18 16:01:48 2011 reduce to 33696076 relations and 29823198 ideals in 7 passes Tue Jan 18 16:01:48 2011 max relations containing the same ideal: 152 Tue Jan 18 16:02:05 2011 removing 1549450 relations and 1149450 ideals in 400000 cliques Tue Jan 18 16:02:06 2011 commencing in-memory singleton removal Tue Jan 18 16:02:09 2011 begin with 32146626 relations and 29823198 unique ideals Tue Jan 18 16:02:29 2011 reduce to 32098527 relations and 28625159 ideals in 6 passes Tue Jan 18 16:02:29 2011 max relations containing the same ideal: 146 Tue Jan 18 16:02:45 2011 removing 1531072 relations and 1131072 ideals in 400000 cliques Tue Jan 18 16:02:46 2011 commencing in-memory singleton removal Tue Jan 18 16:02:49 2011 begin with 30567455 relations and 28625159 unique ideals Tue Jan 18 16:03:04 2011 reduce to 30515112 relations and 27441168 ideals in 5 passes Tue Jan 18 16:03:04 2011 max relations containing the same ideal: 143 Tue Jan 18 16:03:20 2011 removing 1518000 relations and 1118000 ideals in 400000 cliques Tue Jan 18 16:03:21 2011 commencing in-memory singleton removal Tue Jan 18 16:03:23 2011 begin with 28997112 relations and 27441168 unique ideals Tue Jan 18 16:03:40 2011 reduce to 28945208 relations and 26270606 ideals in 6 passes Tue Jan 18 16:03:40 2011 max relations containing the same ideal: 139 Tue Jan 18 16:03:55 2011 removing 1507810 relations and 1107810 ideals in 400000 cliques Tue Jan 18 16:03:56 2011 commencing in-memory singleton removal Tue Jan 18 16:03:59 2011 begin with 27437398 relations and 26270606 unique ideals Tue Jan 18 16:04:15 2011 reduce to 27384659 relations and 25109458 ideals in 6 passes Tue Jan 18 16:04:15 2011 max relations containing the same ideal: 133 Tue Jan 18 16:04:29 2011 removing 1494396 relations and 1094396 ideals in 400000 cliques Tue Jan 18 16:04:30 2011 commencing in-memory singleton removal Tue Jan 18 16:04:32 2011 begin with 25890263 relations and 25109458 unique ideals Tue Jan 18 16:04:50 2011 reduce to 25833619 relations and 23957710 ideals in 7 passes Tue Jan 18 16:04:50 2011 max relations containing the same ideal: 129 Tue Jan 18 16:05:03 2011 removing 1491883 relations and 1091883 ideals in 400000 cliques Tue Jan 18 16:05:04 2011 commencing in-memory singleton removal Tue Jan 18 16:05:06 2011 begin with 24341736 relations and 23957710 unique ideals Tue Jan 18 16:05:21 2011 reduce to 24281472 relations and 22804794 ideals in 6 passes Tue Jan 18 16:05:21 2011 max relations containing the same ideal: 122 Tue Jan 18 16:05:33 2011 removing 1489642 relations and 1089642 ideals in 400000 cliques Tue Jan 18 16:05:34 2011 commencing in-memory singleton removal Tue Jan 18 16:05:36 2011 begin with 22791830 relations and 22804794 unique ideals Tue Jan 18 16:05:49 2011 reduce to 22726499 relations and 21648936 ideals in 6 passes Tue Jan 18 16:05:49 2011 max relations containing the same ideal: 116 Tue Jan 18 16:06:01 2011 removing 1489697 relations and 1089697 ideals in 400000 cliques Tue Jan 18 16:06:02 2011 commencing in-memory singleton removal Tue Jan 18 16:06:04 2011 begin with 21236802 relations and 21648936 unique ideals Tue Jan 18 16:06:16 2011 reduce to 21166501 relations and 20487873 ideals in 6 passes Tue Jan 18 16:06:16 2011 max relations containing the same ideal: 108 Tue Jan 18 16:06:27 2011 removing 1300130 relations and 962988 ideals in 337142 cliques Tue Jan 18 16:06:28 2011 commencing in-memory singleton removal Tue Jan 18 16:06:29 2011 begin with 19866371 relations and 20487873 unique ideals Tue Jan 18 16:06:41 2011 reduce to 19808181 relations and 19465856 ideals in 6 passes Tue Jan 18 16:06:41 2011 max relations containing the same ideal: 106 Tue Jan 18 16:06:56 2011 relations with 0 large ideals: 1008 Tue Jan 18 16:06:56 2011 relations with 1 large ideals: 2261 Tue Jan 18 16:06:56 2011 relations with 2 large ideals: 34209 Tue Jan 18 16:06:56 2011 relations with 3 large ideals: 274757 Tue Jan 18 16:06:56 2011 relations with 4 large ideals: 1180720 Tue Jan 18 16:06:56 2011 relations with 5 large ideals: 3061248 Tue Jan 18 16:06:56 2011 relations with 6 large ideals: 5030676 Tue Jan 18 16:06:56 2011 relations with 7+ large ideals: 10223302 Tue Jan 18 16:06:56 2011 commencing 2-way merge Tue Jan 18 16:07:10 2011 reduce to 13352937 relation sets and 13010612 unique ideals Tue Jan 18 16:07:10 2011 commencing full merge Tue Jan 18 16:10:41 2011 memory use: 1523.6 MB Tue Jan 18 16:10:42 2011 found 7136334 cycles, need 7088812 Tue Jan 18 16:10:45 2011 weight of 7088812 cycles is about 496480382 (70.04/cycle) Tue Jan 18 16:10:45 2011 distribution of cycle lengths: Tue Jan 18 16:10:45 2011 1 relations: 783095 Tue Jan 18 16:10:45 2011 2 relations: 879681 Tue Jan 18 16:10:45 2011 3 relations: 917856 Tue Jan 18 16:10:45 2011 4 relations: 866747 Tue Jan 18 16:10:45 2011 5 relations: 802338 Tue Jan 18 16:10:45 2011 6 relations: 691878 Tue Jan 18 16:10:45 2011 7 relations: 577898 Tue Jan 18 16:10:45 2011 8 relations: 458673 Tue Jan 18 16:10:45 2011 9 relations: 351544 Tue Jan 18 16:10:45 2011 10+ relations: 759102 Tue Jan 18 16:10:45 2011 heaviest cycle: 18 relations Tue Jan 18 16:10:47 2011 commencing cycle optimization Tue Jan 18 16:10:57 2011 start with 36589452 relations Tue Jan 18 16:11:48 2011 pruned 976848 relations Tue Jan 18 16:11:49 2011 memory use: 1199.4 MB Tue Jan 18 16:11:49 2011 distribution of cycle lengths: Tue Jan 18 16:11:49 2011 1 relations: 783095 Tue Jan 18 16:11:49 2011 2 relations: 899553 Tue Jan 18 16:11:49 2011 3 relations: 952059 Tue Jan 18 16:11:49 2011 4 relations: 891340 Tue Jan 18 16:11:49 2011 5 relations: 825064 Tue Jan 18 16:11:49 2011 6 relations: 705013 Tue Jan 18 16:11:49 2011 7 relations: 583187 Tue Jan 18 16:11:49 2011 8 relations: 453476 Tue Jan 18 16:11:49 2011 9 relations: 339688 Tue Jan 18 16:11:49 2011 10+ relations: 656337 Tue Jan 18 16:11:49 2011 heaviest cycle: 18 relations Tue Jan 18 16:12:01 2011 RelProcTime: 3555 Tue Jan 18 16:12:04 2011 Tue Jan 18 16:12:04 2011 commencing linear algebra Tue Jan 18 16:12:06 2011 read 7088812 cycles Tue Jan 18 16:12:17 2011 cycles contain 19629851 unique relations Tue Jan 18 16:14:42 2011 read 19629851 relations Tue Jan 18 16:15:16 2011 using 20 quadratic characters above 1073741214 Tue Jan 18 16:16:45 2011 building initial matrix Tue Jan 18 16:21:06 2011 memory use: 2696.0 MB Tue Jan 18 16:21:08 2011 read 7088812 cycles Tue Jan 18 16:21:28 2011 matrix is 7088633 x 7088812 (2152.9 MB) with weight 665729892 (93.91/col) Tue Jan 18 16:21:28 2011 sparse part has weight 479307541 (67.61/col) Tue Jan 18 16:22:44 2011 filtering completed in 2 passes Tue Jan 18 16:22:46 2011 matrix is 7087510 x 7087689 (2152.8 MB) with weight 665693914 (93.92/col) Tue Jan 18 16:22:46 2011 sparse part has weight 479299019 (67.62/col) Tue Jan 18 16:23:19 2011 read 7087689 cycles Tue Jan 18 16:23:38 2011 matrix is 7087510 x 7087689 (2152.8 MB) with weight 665693914 (93.92/col) Tue Jan 18 16:23:38 2011 sparse part has weight 479299019 (67.62/col) Tue Jan 18 16:23:38 2011 saving the first 48 matrix rows for later Tue Jan 18 16:23:41 2011 matrix is 7087462 x 7087689 (2076.3 MB) with weight 532559688 (75.14/col) Tue Jan 18 16:23:41 2011 sparse part has weight 473409268 (66.79/col) Tue Jan 18 16:23:41 2011 matrix includes 64 packed rows Tue Jan 18 16:23:41 2011 using block size 10922 for processor cache size 256 kB Tue Jan 18 16:24:53 2011 commencing Lanczos iteration (4 threads) Tue Jan 18 16:24:53 2011 memory use: 2234.3 MB Tue Jan 18 16:25:22 2011 linear algebra at 0.0%, ETA 70h24m Fri Jan 21 15:02:48 2011 lanczos halted after 112076 iterations (dim = 7087461) Fri Jan 21 15:02:58 2011 recovered 28 nontrivial dependencies Fri Jan 21 15:02:59 2011 BLanczosTime: 255055 Fri Jan 21 15:02:59 2011 Fri Jan 21 15:02:59 2011 commencing square root phase Fri Jan 21 15:02:59 2011 reading relations for dependency 1 Fri Jan 21 15:03:01 2011 read 3543761 cycles Fri Jan 21 15:03:07 2011 cycles contain 9813506 unique relations Fri Jan 21 15:05:39 2011 read 9813506 relations Fri Jan 21 15:06:33 2011 multiplying 9813506 relations Fri Jan 21 15:19:04 2011 multiply complete, coefficients have about 501.81 million bits Fri Jan 21 15:19:08 2011 initial square root is modulo 1009471193 Fri Jan 21 15:45:39 2011 sqrtTime: 2560 Fri Jan 21 15:45:39 2011 prp67 factor: 7619148933983485897381658037418901522858622090190425682916126139631 Fri Jan 21 15:45:39 2011 prp94 factor: 4646590676105509023054028423452911246227813181144711256771836192467772909424222026994037672757 Fri Jan 21 15:45:39 2011 elapsed time 72:32:54 |
software ソフトウェア | ggnfs-lasieve4I14e on the RSALS grid + msieve 1.44 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | January 27, 2009 13:00:00 UTC 2009 年 1 月 27 日 (火) 22 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 356 | Serge Batalov | January 29, 2009 03:32:23 UTC 2009 年 1 月 29 日 (木) 12 時 32 分 23 秒 (日本時間) | |
45 | 11e6 | 1790 | 400 | Serge Batalov | January 29, 2009 03:30:29 UTC 2009 年 1 月 29 日 (木) 12 時 30 分 29 秒 (日本時間) |
20 | Serge Batalov | January 29, 2009 03:32:23 UTC 2009 年 1 月 29 日 (木) 12 時 32 分 23 秒 (日本時間) | |||
800 | Serge Batalov | January 31, 2009 18:14:15 UTC 2009 年 2 月 1 日 (日) 3 時 14 分 15 秒 (日本時間) | |||
570 | Serge Batalov | February 1, 2009 00:44:08 UTC 2009 年 2 月 1 日 (日) 9 時 44 分 8 秒 (日本時間) | |||
50 | 43e6 | 3860 | 1010 | yoyo@home | January 28, 2010 18:05:07 UTC 2010 年 1 月 29 日 (金) 3 時 5 分 7 秒 (日本時間) |
430 | Wataru Sakai | September 6, 2010 00:26:08 UTC 2010 年 9 月 6 日 (月) 9 時 26 分 8 秒 (日本時間) | |||
1936 | Wataru Sakai | September 21, 2010 03:20:39 UTC 2010 年 9 月 21 日 (火) 12 時 20 分 39 秒 (日本時間) | |||
484 | Wataru Sakai | September 21, 2010 03:22:12 UTC 2010 年 9 月 21 日 (火) 12 時 22 分 12 秒 (日本時間) | |||
55 | 11e7 | 2555 / 16277 | yoyo@home | September 14, 2010 03:36:04 UTC 2010 年 9 月 14 日 (火) 12 時 36 分 4 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | January 27, 2009 13:00:00 UTC 2009 年 1 月 27 日 (火) 22 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 300 | Ignacio Santos | September 15, 2010 15:36:50 UTC 2010 年 9 月 16 日 (木) 0 時 36 分 50 秒 (日本時間) | |
40 | 3e6 | 2202 | 110 | Ignacio Santos | September 15, 2010 15:36:50 UTC 2010 年 9 月 16 日 (木) 0 時 36 分 50 秒 (日本時間) |
300 | Serge Batalov | January 9, 2014 04:38:26 UTC 2014 年 1 月 9 日 (木) 13 時 38 分 26 秒 (日本時間) | |||
1792 | Youcef Lemsafer | January 13, 2014 10:58:03 UTC 2014 年 1 月 13 日 (月) 19 時 58 分 3 秒 (日本時間) | |||
45 | 11e6 | 2141 | 32 | Ignacio Santos | September 15, 2010 15:36:50 UTC 2010 年 9 月 16 日 (木) 0 時 36 分 50 秒 (日本時間) |
2109 | Youcef Lemsafer | January 16, 2014 07:30:46 UTC 2014 年 1 月 16 日 (木) 16 時 30 分 46 秒 (日本時間) | |||
50 | 43e6 | 678 / 6988 | 640 | Youcef Lemsafer | January 19, 2014 15:01:42 UTC 2014 年 1 月 20 日 (月) 0 時 1 分 42 秒 (日本時間) |
38 | KTakahashi | April 15, 2014 09:18:15 UTC 2014 年 4 月 15 日 (火) 18 時 18 分 15 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | January 27, 2009 13:00:00 UTC 2009 年 1 月 27 日 (火) 22 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 300 | Ignacio Santos | September 15, 2010 17:12:48 UTC 2010 年 9 月 16 日 (木) 2 時 12 分 48 秒 (日本時間) | |
40 | 3e6 | 2202 | 110 | Ignacio Santos | September 15, 2010 17:12:48 UTC 2010 年 9 月 16 日 (木) 2 時 12 分 48 秒 (日本時間) |
300 | Serge Batalov | January 9, 2014 04:38:27 UTC 2014 年 1 月 9 日 (木) 13 時 38 分 27 秒 (日本時間) | |||
1792 | Youcef Lemsafer | January 13, 2014 13:55:43 UTC 2014 年 1 月 13 日 (月) 22 時 55 分 43 秒 (日本時間) | |||
45 | 11e6 | 2141 | 32 | Ignacio Santos | September 15, 2010 17:12:48 UTC 2010 年 9 月 16 日 (木) 2 時 12 分 48 秒 (日本時間) |
2109 | Youcef Lemsafer | January 16, 2014 07:31:07 UTC 2014 年 1 月 16 日 (木) 16 時 31 分 7 秒 (日本時間) | |||
50 | 43e6 | 678 / 6988 | 38 | Cyp | January 12, 2014 19:31:36 UTC 2014 年 1 月 13 日 (月) 4 時 31 分 36 秒 (日本時間) |
640 | Youcef Lemsafer | January 18, 2014 17:55:26 UTC 2014 年 1 月 19 日 (日) 2 時 55 分 26 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | January 27, 2009 13:00:00 UTC 2009 年 1 月 27 日 (火) 22 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 1232 | 800 | Serge Batalov | January 28, 2009 18:03:30 UTC 2009 年 1 月 29 日 (木) 3 時 3 分 30 秒 (日本時間) |
432 | Serge Batalov | August 19, 2009 06:47:47 UTC 2009 年 8 月 19 日 (水) 15 時 47 分 47 秒 (日本時間) | |||
45 | 11e6 | 320 | Serge Batalov | January 28, 2009 18:03:30 UTC 2009 年 1 月 29 日 (木) 3 時 3 分 30 秒 (日本時間) | |
50 | 43e6 | 1120 | yoyo@home | January 29, 2010 08:31:27 UTC 2010 年 1 月 29 日 (金) 17 時 31 分 27 秒 (日本時間) | |
55 | 11e7 | 2630 / 17340 | yoyo@home | September 20, 2010 19:25:36 UTC 2010 年 9 月 21 日 (火) 4 時 25 分 36 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | January 28, 2009 18:01:22 UTC 2009 年 1 月 29 日 (木) 3 時 1 分 22 秒 (日本時間) |
composite number 合成数 | 102010530661431612118861508384053798132375651128623476073572488694946144408482498178000249318666654741521760125037983986135281863744302612642490864206175832286192193570352409676416637215567547853425070503302364005366054165368108226069701657<240> |
prime factors 素因数 | 25422133258858709804303131627232676780973<41> |
composite cofactor 合成数の残り | 4012666034857030268082611148502973012917801084731203623422488400448065571628447168512039491797916152679691062964730175869111228899299131087507442826326840156446022996606392734495211546245324030097309<199> |
factorization results 素因数分解の結果 | Using B1=5000000, B2=23417929090, polynomial Dickson(12), sigma=907905841 Step 1 took 40103ms Step 2 took 28475ms ********** Factor found in step 2: 25422133258858709804303131627232676780973 Found probable prime factor of 41 digits: 25422133258858709804303131627232676780973 Composite cofactor has 199 digits |
software ソフトウェア | GMP-ECM 6.2.1 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | January 27, 2009 13:00:00 UTC 2009 年 1 月 27 日 (火) 22 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 300 | Ignacio Santos | September 15, 2010 18:49:24 UTC 2010 年 9 月 16 日 (木) 3 時 49 分 24 秒 (日本時間) | |
40 | 3e6 | 110 | Ignacio Santos | September 15, 2010 18:49:24 UTC 2010 年 9 月 16 日 (木) 3 時 49 分 24 秒 (日本時間) | |
45 | 11e6 | 4632 | 32 | Ignacio Santos | September 15, 2010 18:49:24 UTC 2010 年 9 月 16 日 (木) 3 時 49 分 24 秒 (日本時間) |
600 | Dmitry Domanov | July 11, 2011 21:24:26 UTC 2011 年 7 月 12 日 (火) 6 時 24 分 26 秒 (日本時間) | |||
4000 | ebina | October 4, 2024 05:06:12 UTC 2024 年 10 月 4 日 (金) 14 時 6 分 12 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | January 27, 2009 20:04:44 UTC 2009 年 1 月 28 日 (水) 5 時 4 分 44 秒 (日本時間) |
composite number 合成数 | 47777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777<251> |
prime factors 素因数 | 382055559643912628237678729323622320324517<42> |
composite cofactor 合成数の残り | 125054528253189447289899294516188810544311061053758161563935547216828629946964499418093698568954568490304175173591891013243054655738225373622583204023990174911869851275001232783069648585566026456246963123490781<210> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=2259809016 Step 1 took 79929ms Step 2 took 29982ms ********** Factor found in step 2: 382055559643912628237678729323622320324517 Found probable prime factor of 42 digits: 382055559643912628237678729323622320324517 Composite cofactor has 210 digits |
software ソフトウェア | GMP-ECM 6.2.1 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | January 27, 2009 13:00:00 UTC 2009 年 1 月 27 日 (火) 22 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 300 | Ignacio Santos | September 15, 2010 19:41:27 UTC 2010 年 9 月 16 日 (木) 4 時 41 分 27 秒 (日本時間) | |
40 | 3e6 | 110 | Ignacio Santos | September 15, 2010 19:41:27 UTC 2010 年 9 月 16 日 (木) 4 時 41 分 27 秒 (日本時間) | |
45 | 11e6 | 1532 | 32 | Ignacio Santos | September 15, 2010 19:41:27 UTC 2010 年 9 月 16 日 (木) 4 時 41 分 27 秒 (日本時間) |
1500 | Dmitry Domanov | February 23, 2011 10:38:00 UTC 2011 年 2 月 23 日 (水) 19 時 38 分 0 秒 (日本時間) | |||
50 | 43e6 | 832 | Dmitry Domanov | July 21, 2011 21:22:55 UTC 2011 年 7 月 22 日 (金) 6 時 22 分 55 秒 (日本時間) | |
55 | 11e7 | 2666 / 17376 | 2655 | yoyo@home | October 4, 2011 04:40:06 UTC 2011 年 10 月 4 日 (火) 13 時 40 分 6 秒 (日本時間) |
11 | KTakahashi | March 24, 2014 08:23:06 UTC 2014 年 3 月 24 日 (月) 17 時 23 分 6 秒 (日本時間) |
name 名前 | KTakahashi |
---|---|
date 日付 | October 4, 2015 22:17:56 UTC 2015 年 10 月 5 日 (月) 7 時 17 分 56 秒 (日本時間) |
composite number 合成数 | 1322733298240158600403782026906379941981307172112506615046728829478710943626073736536502609377041056783033908163543497644206820301698622500423678238285762614657791219707974111303501305956511966335404580989315005333<214> |
prime factors 素因数 | 3900620557700174774853235015829327<34> |
composite cofactor 合成数の残り | 339108426126956761175041204606096058772685624090643099160414109414326487686221571156231637484213753710090152995439813455583372402169559506824845727213041290829245419602885228975579<180> |
factorization results 素因数分解の結果 | Input number is 1322733298240158600403782026906379941981307172112506615046728829478710943626073736536502609377041056783033908163543497644206820301698622500423678238285762614657791219707974111303501305956511966335404580989315005333 (214 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3553907879 Step 1 took 6412ms Step 2 took 3291ms ********** Factor found in step 2: 3900620557700174774853235015829327 Found probable prime factor of 34 digits: 3900620557700174774853235015829327 Composite cofactor 339108426126956761175041204606096058772685624090643099160414109414326487686221571156231637484213753710090152995439813455583372402169559506824845727213041290829245419602885228975579 has 180 digits |
software ソフトウェア | GMP-ECM 6.4.4 |
name 名前 | KTakahashi |
---|---|
date 日付 | October 5, 2015 14:55:10 UTC 2015 年 10 月 5 日 (月) 23 時 55 分 10 秒 (日本時間) |
composite number 合成数 | 339108426126956761175041204606096058772685624090643099160414109414326487686221571156231637484213753710090152995439813455583372402169559506824845727213041290829245419602885228975579<180> |
prime factors 素因数 | 58275089821191600222952028514910242449<38> 5819097442276970537073371903943005111579234397543678079398402030884835872264721943169204725939276026114336076034049274494962818802255682323371<142> |
factorization results 素因数分解の結果 | Input number is 339108426126956761175041204606096058772685624090643099160414109414326487686221571156231637484213753710090152995439813455583372402169559506824845727213041290829245419602885228975579 (180 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1623901086 Step 1 took 16177ms Step 2 took 6864ms ********** Factor found in step 2: 58275089821191600222952028514910242449 Found probable prime factor of 38 digits: 58275089821191600222952028514910242449 Probable prime cofactor 5819097442276970537073371903943005111579234397543678079398402030884835872264721943169204725939276026114336076034049274494962818802255682323371 has 142 digits |
software ソフトウェア | GMP-ECM 6.4.4 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | 118 | Makoto Kamada | October 4, 2015 10:00:00 UTC 2015 年 10 月 4 日 (日) 19 時 0 分 0 秒 (日本時間) |
786 | KTakahashi | October 4, 2015 21:10:25 UTC 2015 年 10 月 5 日 (月) 6 時 10 分 25 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | 118 | Makoto Kamada | October 4, 2015 10:00:00 UTC 2015 年 10 月 4 日 (日) 19 時 0 分 0 秒 (日本時間) |
786 | KTakahashi | October 4, 2015 21:11:15 UTC 2015 年 10 月 5 日 (月) 6 時 11 分 15 秒 (日本時間) | |||
40 | 3e6 | 2104 | KTakahashi | October 4, 2015 21:11:15 UTC 2015 年 10 月 5 日 (月) 6 時 11 分 15 秒 (日本時間) | |
45 | 11e6 | 165 / 3974 | KTakahashi | October 4, 2015 21:14:32 UTC 2015 年 10 月 5 日 (月) 6 時 14 分 32 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | 118 | Makoto Kamada | October 4, 2015 10:00:00 UTC 2015 年 10 月 4 日 (日) 19 時 0 分 0 秒 (日本時間) |
786 | KTakahashi | October 4, 2015 21:11:57 UTC 2015 年 10 月 5 日 (月) 6 時 11 分 57 秒 (日本時間) | |||
40 | 3e6 | 2104 | KTakahashi | October 4, 2015 21:11:57 UTC 2015 年 10 月 5 日 (月) 6 時 11 分 57 秒 (日本時間) | |
45 | 11e6 | 3974 | KTakahashi | October 4, 2015 21:11:57 UTC 2015 年 10 月 5 日 (月) 6 時 11 分 57 秒 (日本時間) | |
50 | 43e6 | 267 / 6577 | KTakahashi | October 4, 2015 21:11:57 UTC 2015 年 10 月 5 日 (月) 6 時 11 分 57 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | 118 | Makoto Kamada | October 4, 2015 10:00:00 UTC 2015 年 10 月 4 日 (日) 19 時 0 分 0 秒 (日本時間) |
786 | KTakahashi | October 4, 2015 21:12:25 UTC 2015 年 10 月 5 日 (月) 6 時 12 分 25 秒 (日本時間) | |||
40 | 3e6 | 2104 | KTakahashi | October 4, 2015 21:12:25 UTC 2015 年 10 月 5 日 (月) 6 時 12 分 25 秒 (日本時間) | |
45 | 11e6 | 3974 | KTakahashi | October 4, 2015 21:12:25 UTC 2015 年 10 月 5 日 (月) 6 時 12 分 25 秒 (日本時間) | |
50 | 43e6 | 267 / 6577 | KTakahashi | October 4, 2015 21:12:25 UTC 2015 年 10 月 5 日 (月) 6 時 12 分 25 秒 (日本時間) |
name 名前 | KTakahashi |
---|---|
date 日付 | October 4, 2015 22:19:28 UTC 2015 年 10 月 5 日 (月) 7 時 19 分 28 秒 (日本時間) |
composite number 合成数 | 330759841433890428394548241041338631786826376876688554630355966141360152420693514313480776233351225857698248337054767871131183927431115879600885055879110438194483695905509903568086281601662954737435395482536641<210> |
prime factors 素因数 | 58136151782513017598570216768118047<35> |
composite cofactor 合成数の残り | 5689400335117827181837006213661685679741252261707057877849285593411540027135393409858019501701245348137400174402724811015717994281307391943240592829857259694697157309473897503<175> |
factorization results 素因数分解の結果 | Input number is 330759841433890428394548241041338631786826376876688554630355966141360152420693514313480776233351225857698248337054767871131183927431115879600885055879110438194483695905509903568086281601662954737435395482536641 (210 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2815319980 Step 1 took 6708ms ********** Factor found in step 1: 58136151782513017598570216768118047 Found probable prime factor of 35 digits: 58136151782513017598570216768118047 Composite cofactor 5689400335117827181837006213661685679741252261707057877849285593411540027135393409858019501701245348137400174402724811015717994281307391943240592829857259694697157309473897503 has 175 digits |
software ソフトウェア | GMP-ECM 6.4.4 |
name 名前 | KTakahashi |
---|---|
date 日付 | October 5, 2015 14:55:59 UTC 2015 年 10 月 5 日 (月) 23 時 55 分 59 秒 (日本時間) |
composite number 合成数 | 5689400335117827181837006213661685679741252261707057877849285593411540027135393409858019501701245348137400174402724811015717994281307391943240592829857259694697157309473897503<175> |
prime factors 素因数 | 584515555826298964166940853110093646181<39> 9733531089818508807063752913217355459880433740663176042345446460611302430791783524566955092223214687641808997727456254920113394494970163<136> |
factorization results 素因数分解の結果 | Input number is 5689400335117827181837006213661685679741252261707057877849285593411540027135393409858019501701245348137400174402724811015717994281307391943240592829857259694697157309473897503 (175 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=342527982 Step 1 took 15023ms Step 2 took 6552ms ********** Factor found in step 2: 584515555826298964166940853110093646181 Found probable prime factor of 39 digits: 584515555826298964166940853110093646181 Probable prime cofactor 9733531089818508807063752913217355459880433740663176042345446460611302430791783524566955092223214687641808997727456254920113394494970163 has 136 digits |
software ソフトウェア | GMP-ECM 6.4.4 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | 118 | Makoto Kamada | October 4, 2015 10:00:00 UTC 2015 年 10 月 4 日 (日) 19 時 0 分 0 秒 (日本時間) |
786 | KTakahashi | October 4, 2015 21:12:38 UTC 2015 年 10 月 5 日 (月) 6 時 12 分 38 秒 (日本時間) |
name 名前 | KTakahashi |
---|---|
date 日付 | October 4, 2015 22:20:31 UTC 2015 年 10 月 5 日 (月) 7 時 20 分 31 秒 (日本時間) |
composite number 合成数 | 56681163552220974740055176127291385895069047447146348561033895760474080444166581964508215842861139087250273233660478832559532672122156301558974267838922831298539370535281295045819500456543427908821572827499113257663470951903758772206923132443911<245> |
prime factors 素因数 | 7356415015408647843164932349297<31> |
composite cofactor 合成数の残り | 7704998077663831190745823031546163958814204159234736137241356504000919859686500470354374409520072517916997163940897693605736704490432911414189346807165490756655267389620213223995474695881853660339843158219516380663<214> |
factorization results 素因数分解の結果 | Input number is 56681163552220974740055176127291385895069047447146348561033895760474080444166581964508215842861139087250273233660478832559532672122156301558974267838922831298539370535281295045819500456543427908821572827499113257663470951903758772206923132443911 (245 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=4083200388 Step 1 took 6661ms Step 2 took 3338ms ********** Factor found in step 2: 7356415015408647843164932349297 Found probable prime factor of 31 digits: 7356415015408647843164932349297 Composite cofactor 7704998077663831190745823031546163958814204159234736137241356504000919859686500470354374409520072517916997163940897693605736704490432911414189346807165490756655267389620213223995474695881853660339843158219516380663 has 214 digits |
software ソフトウェア | GMP-ECM 6.4.4 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | 118 | Makoto Kamada | October 4, 2015 10:00:00 UTC 2015 年 10 月 4 日 (日) 19 時 0 分 0 秒 (日本時間) |
786 | KTakahashi | October 4, 2015 21:13:01 UTC 2015 年 10 月 5 日 (月) 6 時 13 分 1 秒 (日本時間) | |||
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 610 / 4439 | Cyp | May 23, 2017 20:46:57 UTC 2017 年 5 月 24 日 (水) 5 時 46 分 57 秒 (日本時間) |
name 名前 | Cyp |
---|---|
date 日付 | May 23, 2017 11:26:57 UTC 2017 年 5 月 23 日 (火) 20 時 26 分 57 秒 (日本時間) |
composite number 合成数 | 1612248175714129032327027936689220290233259974870770308367766219499669672506102081870274562102965430158206043460137303434079054568648999274589004386429030146816691057876199668829515932760324802714164338405076147226032440648618770289<232> |
prime factors 素因数 | 278596464127203307282395188787444300827<39> 5787037465694463111791546785873864186510329115305313910355985194454541871713053515019384361196434923439286079238849541346389176026524692691406886816735610630986967626436183131295711167942513507<193> |
factorization results 素因数分解の結果 | Run 488 out of 494: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=3758257296 Step 1 took 104369ms ********** Factor found in step 1: 278596464127203307282395188787444300827 Found probable prime factor of 39 digits: 278596464127203307282395188787444300827 Probable prime cofactor 5787037465694463111791546785873864186510329115305313910355985194454541871713053515019384361196434923439286079238849541346389176026524692691406886816735610630986967626436183131295711167942513507 has 193 digits |
software ソフトウェア | GMP-ECM 6.4.4 |
execution environment 実行環境 | Gentoo Linux, Intel(R) Core(TM) i7-3770K CPU |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | 118 | Makoto Kamada | October 4, 2015 10:00:00 UTC 2015 年 10 月 4 日 (日) 19 時 0 分 0 秒 (日本時間) |
786 | KTakahashi | October 4, 2015 21:13:17 UTC 2015 年 10 月 5 日 (月) 6 時 13 分 17 秒 (日本時間) | |||
40 | 3e6 | 400 / 420 | Erik Branger | October 6, 2015 07:15:47 UTC 2015 年 10 月 6 日 (火) 16 時 15 分 47 秒 (日本時間) | |
45 | 11e6 | 488 / 4350 | Cyp | May 23, 2017 11:26:57 UTC 2017 年 5 月 23 日 (火) 20 時 26 分 57 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | 118 | Makoto Kamada | October 4, 2015 10:00:00 UTC 2015 年 10 月 4 日 (日) 19 時 0 分 0 秒 (日本時間) |
786 | KTakahashi | October 4, 2015 21:13:28 UTC 2015 年 10 月 5 日 (月) 6 時 13 分 28 秒 (日本時間) | |||
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 610 / 4439 | Cyp | May 23, 2017 16:15:43 UTC 2017 年 5 月 24 日 (水) 1 時 15 分 43 秒 (日本時間) |
name 名前 | KTakahashi |
---|---|
date 日付 | October 4, 2015 22:21:30 UTC 2015 年 10 月 5 日 (月) 7 時 21 分 30 秒 (日本時間) |
composite number 合成数 | 6687511404665677820491688122456845239145969985297957620959008164487653456900081654711644326062764748839570887996535368640961138125296862924333985565399651833401740737944464957380026159100494379384742423417854181584334136509355438843<232> |
prime factors 素因数 | 62647990243068175288837974170111503<35> 106747421245578300621297425031199834589026109395339266095638334488284310408021149951085298468353090736957276397902290127364482232534504964333294827881449762380362928935328241522991029564480240285781<198> |
factorization results 素因数分解の結果 | Input number is 6687511404665677820491688122456845239145969985297957620959008164487653456900081654711644326062764748839570887996535368640961138125296862924333985565399651833401740737944464957380026159100494379384742423417854181584334136509355438843 (232 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=181043222 Step 1 took 8674ms Step 2 took 4306ms ********** Factor found in step 2: 62647990243068175288837974170111503 Found probable prime factor of 35 digits: 62647990243068175288837974170111503 Probable prime cofactor 106747421245578300621297425031199834589026109395339266095638334488284310408021149951085298468353090736957276397902290127364482232534504964333294827881449762380362928935328241522991029564480240285781 has 198 digits |
software ソフトウェア | GMP-ECM 6.4.4 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | 118 | Makoto Kamada | October 4, 2015 10:00:00 UTC 2015 年 10 月 4 日 (日) 19 時 0 分 0 秒 (日本時間) |
786 | KTakahashi | October 4, 2015 21:13:38 UTC 2015 年 10 月 5 日 (月) 6 時 13 分 38 秒 (日本時間) |
name 名前 | KTakahashi |
---|---|
date 日付 | October 4, 2015 14:38:39 UTC 2015 年 10 月 4 日 (日) 23 時 38 分 39 秒 (日本時間) |
composite number 合成数 | 52721177609793052177658670770114524956292541589415476091908562967202294923896584527520571048333775683569358168580619755480066658926243908056478723391159415152013726329061198611252328923338347221172483804908719822869836671835752656317051224725739534989079<254> |
prime factors 素因数 | 42468530143263390327375787314719807<35> |
composite cofactor 合成数の残り | 1241417525681801763250615196770001795926372101405033683804648406837777159717675472155110824215026506876964675222453776892937970694714004778003328344229793476296899484699890529295442957268322596666196240901029873218035497<220> |
factorization results 素因数分解の結果 | GMP-ECM 6.4.4 [configured with GMP 6.0.0] [P-1] Input number is 52721177609793052177658670770114524956292541589415476091908562967202294923896584527520571048333775683569358168580619755480066658926243908056478723391159415152013726329061198611252328923338347221172483804908719822869836671835752656317051224725739534989079 (254 digits) Using B1=30000000, B2=2962295938, polynomial x^1, x0=2270268000 Step 1 took 26348ms Step 2 took 2059ms ********** Factor found in step 2: 42468530143263390327375787314719807 Found probable prime factor of 35 digits: 42468530143263390327375787314719807 Composite cofactor 1241417525681801763250615196770001795926372101405033683804648406837777159717675472155110824215026506876964675222453776892937970694714004778003328344229793476296899484699890529295442957268322596666196240901029873218035497 has 220 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | 118 | Makoto Kamada | October 4, 2015 10:00:00 UTC 2015 年 10 月 4 日 (日) 19 時 0 分 0 秒 (日本時間) |
786 | KTakahashi | October 4, 2015 14:35:50 UTC 2015 年 10 月 4 日 (日) 23 時 35 分 50 秒 (日本時間) | |||
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 610 / 4439 | Cyp | May 23, 2017 07:54:44 UTC 2017 年 5 月 23 日 (火) 16 時 54 分 44 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | 118 | Makoto Kamada | October 4, 2015 10:00:00 UTC 2015 年 10 月 4 日 (日) 19 時 0 分 0 秒 (日本時間) |
786 | KTakahashi | October 4, 2015 21:14:18 UTC 2015 年 10 月 5 日 (月) 6 時 14 分 18 秒 (日本時間) | |||
40 | 3e6 | 2104 | KTakahashi | October 4, 2015 21:14:18 UTC 2015 年 10 月 5 日 (月) 6 時 14 分 18 秒 (日本時間) | |
45 | 11e6 | 165 / 3974 | KTakahashi | October 4, 2015 21:14:18 UTC 2015 年 10 月 5 日 (月) 6 時 14 分 18 秒 (日本時間) |
name 名前 | KTakahashi |
---|---|
date 日付 | October 4, 2015 22:22:40 UTC 2015 年 10 月 5 日 (月) 7 時 22 分 40 秒 (日本時間) |
composite number 合成数 | 105094190927083193763268380213646471606372655674628990838388628250264783709151183860581263989379049137232050592218715819327766072720152882394867028014085090245127508750536535881321458614203101970106899451122682061215010649140706507<231> |
prime factors 素因数 | 52819196787292425596346914359376891791<38> |
composite cofactor 合成数の残り | 1989696877639143026055708966448855935471882660172021196111880165506867506393885441182197442290912798748402617362597704234078381176233900428671765063564505126424173022110557674874321380335804677<193> |
factorization results 素因数分解の結果 | Input number is 105094190927083193763268380213646471606372655674628990838388628250264783709151183860581263989379049137232050592218715819327766072720152882394867028014085090245127508750536535881321458614203101970106899451122682061215010649140706507 (231 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2416649225 Step 1 took 7176ms Step 2 took 3978ms ********** Factor found in step 2: 52819196787292425596346914359376891791 Found probable prime factor of 38 digits: 52819196787292425596346914359376891791 Composite cofactor 1989696877639143026055708966448855935471882660172021196111880165506867506393885441182197442290912798748402617362597704234078381176233900428671765063564505126424173022110557674874321380335804677 has 193 digits |
software ソフトウェア | GMP-ECM 6.4.4 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | 118 | Makoto Kamada | October 4, 2015 10:00:00 UTC 2015 年 10 月 4 日 (日) 19 時 0 分 0 秒 (日本時間) |
786 | KTakahashi | October 4, 2015 21:15:13 UTC 2015 年 10 月 5 日 (月) 6 時 15 分 13 秒 (日本時間) | |||
40 | 3e6 | 2104 | KTakahashi | October 4, 2015 21:15:13 UTC 2015 年 10 月 5 日 (月) 6 時 15 分 13 秒 (日本時間) | |
45 | 11e6 | 3974 | KTakahashi | October 4, 2015 21:15:13 UTC 2015 年 10 月 5 日 (月) 6 時 15 分 13 秒 (日本時間) | |
50 | 43e6 | 267 / 6577 | KTakahashi | October 4, 2015 21:15:13 UTC 2015 年 10 月 5 日 (月) 6 時 15 分 13 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | 118 | Makoto Kamada | October 4, 2015 10:00:00 UTC 2015 年 10 月 4 日 (日) 19 時 0 分 0 秒 (日本時間) |
786 | KTakahashi | October 4, 2015 21:15:35 UTC 2015 年 10 月 5 日 (月) 6 時 15 分 35 秒 (日本時間) | |||
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 610 / 4439 | Cyp | May 23, 2017 07:21:40 UTC 2017 年 5 月 23 日 (火) 16 時 21 分 40 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | 118 | Makoto Kamada | October 4, 2015 10:00:00 UTC 2015 年 10 月 4 日 (日) 19 時 0 分 0 秒 (日本時間) |
786 | KTakahashi | October 4, 2015 21:15:55 UTC 2015 年 10 月 5 日 (月) 6 時 15 分 55 秒 (日本時間) | |||
40 | 3e6 | 2104 | KTakahashi | October 4, 2015 21:15:55 UTC 2015 年 10 月 5 日 (月) 6 時 15 分 55 秒 (日本時間) | |
45 | 11e6 | 165 / 3974 | KTakahashi | October 4, 2015 21:15:55 UTC 2015 年 10 月 5 日 (月) 6 時 15 分 55 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | 118 | Makoto Kamada | October 4, 2015 10:00:00 UTC 2015 年 10 月 4 日 (日) 19 時 0 分 0 秒 (日本時間) |
786 | KTakahashi | October 4, 2015 21:16:12 UTC 2015 年 10 月 5 日 (月) 6 時 16 分 12 秒 (日本時間) | |||
40 | 3e6 | 400 | Erik Branger | October 6, 2015 07:15:42 UTC 2015 年 10 月 6 日 (火) 16 時 15 分 42 秒 (日本時間) | |
45 | 11e6 | 494 / 4350 | Cyp | May 22, 2017 11:01:58 UTC 2017 年 5 月 22 日 (月) 20 時 1 分 58 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | 118 | Makoto Kamada | October 4, 2015 10:00:00 UTC 2015 年 10 月 4 日 (日) 19 時 0 分 0 秒 (日本時間) |
786 | KTakahashi | October 4, 2015 21:16:39 UTC 2015 年 10 月 5 日 (月) 6 時 16 分 39 秒 (日本時間) | |||
40 | 3e6 | 400 | Erik Branger | October 6, 2015 07:15:37 UTC 2015 年 10 月 6 日 (火) 16 時 15 分 37 秒 (日本時間) | |
45 | 11e6 | 494 / 4350 | Cyp | May 22, 2017 11:13:39 UTC 2017 年 5 月 22 日 (月) 20 時 13 分 39 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | 118 | Makoto Kamada | October 4, 2015 10:00:00 UTC 2015 年 10 月 4 日 (日) 19 時 0 分 0 秒 (日本時間) |
786 | KTakahashi | October 4, 2015 21:16:50 UTC 2015 年 10 月 5 日 (月) 6 時 16 分 50 秒 (日本時間) | |||
40 | 3e6 | 400 | Erik Branger | October 6, 2015 07:14:44 UTC 2015 年 10 月 6 日 (火) 16 時 14 分 44 秒 (日本時間) | |
45 | 11e6 | 494 / 4350 | Cyp | May 22, 2017 08:43:12 UTC 2017 年 5 月 22 日 (月) 17 時 43 分 12 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | 118 | Makoto Kamada | October 4, 2015 10:00:00 UTC 2015 年 10 月 4 日 (日) 19 時 0 分 0 秒 (日本時間) |
786 | KTakahashi | October 4, 2015 21:17:08 UTC 2015 年 10 月 5 日 (月) 6 時 17 分 8 秒 (日本時間) | |||
40 | 3e6 | 2104 | KTakahashi | October 4, 2015 21:17:08 UTC 2015 年 10 月 5 日 (月) 6 時 17 分 8 秒 (日本時間) | |
45 | 11e6 | 165 | KTakahashi | October 4, 2015 21:17:08 UTC 2015 年 10 月 5 日 (月) 6 時 17 分 8 秒 (日本時間) | |
50 | 43e6 | 0 | - | - | |
55 | 11e7 | 3800 | Erik Branger | August 20, 2019 17:42:31 UTC 2019 年 8 月 21 日 (水) 2 時 42 分 31 秒 (日本時間) | |
60 | 26e7 | 6700 / 40576 | Erik Branger | December 8, 2020 11:56:51 UTC 2020 年 12 月 8 日 (火) 20 時 56 分 51 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | 118 | Makoto Kamada | October 4, 2015 10:00:00 UTC 2015 年 10 月 4 日 (日) 19 時 0 分 0 秒 (日本時間) |
786 | KTakahashi | October 4, 2015 22:23:46 UTC 2015 年 10 月 5 日 (月) 7 時 23 分 46 秒 (日本時間) | |||
40 | 3e6 | 400 | Erik Branger | October 6, 2015 07:14:28 UTC 2015 年 10 月 6 日 (火) 16 時 14 分 28 秒 (日本時間) | |
45 | 11e6 | 494 / 4350 | Cyp | May 22, 2017 10:45:08 UTC 2017 年 5 月 22 日 (月) 19 時 45 分 8 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | March 9, 2017 05:59:18 UTC 2017 年 3 月 9 日 (木) 14 時 59 分 18 秒 (日本時間) |
composite number 合成数 | 467186788760740530564631446625888409052202961773237400155107534941831588791045525126365361674570157923008962275589229857778595767520852629709525451553442193743841086070475068414588887919421978165147550696282749762655801918468649841773232706557601845641617544121628260387<270> |
prime factors 素因数 | 119386830857697291646371069514135777423<39> 24322363812196844280972417002994471942126821<44> |
composite cofactor 合成数の残り | 160889739648124158437019622698590927397045701779680321244862372583200527417611926787118151839340687148929321140352309380590432588195360500170844989598335837582232974984602113387203360888489<189> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=3323734738 Step 1 took 130070ms Step 2 took 40904ms ********** Factor found in step 2: 119386830857697291646371069514135777423 Found probable prime factor of 39 digits: 119386830857697291646371069514135777423 Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=171728506 Step 1 took 119085ms Step 2 took 31166ms ********** Factor found in step 2: 24322363812196844280972417002994471942126821 Found probable prime factor of 44 digits: 24322363812196844280972417002994471942126821 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | 118 | Makoto Kamada | October 4, 2015 10:00:00 UTC 2015 年 10 月 4 日 (日) 19 時 0 分 0 秒 (日本時間) |
786 | KTakahashi | October 4, 2015 22:23:56 UTC 2015 年 10 月 5 日 (月) 7 時 23 分 56 秒 (日本時間) | |||
40 | 3e6 | 400 | Erik Branger | October 6, 2015 07:14:21 UTC 2015 年 10 月 6 日 (火) 16 時 14 分 21 秒 (日本時間) | |
45 | 11e6 | 2100 | 600 | Dmitry Domanov | March 7, 2017 19:47:57 UTC 2017 年 3 月 8 日 (水) 4 時 47 分 57 秒 (日本時間) |
1500 | Dmitry Domanov | March 9, 2017 23:40:47 UTC 2017 年 3 月 10 日 (金) 8 時 40 分 47 秒 (日本時間) | |||
50 | 43e6 | 2436 / 7062 | 644 | Dmitry Domanov | March 11, 2017 17:11:51 UTC 2017 年 3 月 12 日 (日) 2 時 11 分 51 秒 (日本時間) |
1792 | Dmitry Domanov | April 14, 2024 21:04:12 UTC 2024 年 4 月 15 日 (月) 6 時 4 分 12 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | 118 | Makoto Kamada | October 4, 2015 10:00:00 UTC 2015 年 10 月 4 日 (日) 19 時 0 分 0 秒 (日本時間) |
786 | KTakahashi | October 4, 2015 22:24:05 UTC 2015 年 10 月 5 日 (月) 7 時 24 分 5 秒 (日本時間) | |||
40 | 3e6 | 400 | Erik Branger | October 6, 2015 07:14:15 UTC 2015 年 10 月 6 日 (火) 16 時 14 分 15 秒 (日本時間) | |
45 | 11e6 | 494 / 4350 | Cyp | May 20, 2017 18:19:09 UTC 2017 年 5 月 21 日 (日) 3 時 19 分 9 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | 118 | Makoto Kamada | October 4, 2015 10:00:00 UTC 2015 年 10 月 4 日 (日) 19 時 0 分 0 秒 (日本時間) |
786 | KTakahashi | October 4, 2015 22:24:25 UTC 2015 年 10 月 5 日 (月) 7 時 24 分 25 秒 (日本時間) | |||
40 | 3e6 | 400 | Erik Branger | October 6, 2015 07:13:38 UTC 2015 年 10 月 6 日 (火) 16 時 13 分 38 秒 (日本時間) | |
45 | 11e6 | 494 / 4350 | Cyp | May 20, 2017 17:59:52 UTC 2017 年 5 月 21 日 (日) 2 時 59 分 52 秒 (日本時間) |
name 名前 | Erik Branger |
---|---|
date 日付 | October 6, 2015 07:01:48 UTC 2015 年 10 月 6 日 (火) 16 時 1 分 48 秒 (日本時間) |
composite number 合成数 | 16747270664105026149898084964117070579456994352089683491305505455991934347344206488652854430201815304677375203345611394770894942521382831315189883046473844640712376446961080984118992967438675278789674970927625517640170843897224400516799522710554958250825431812675849<266> |
prime factors 素因数 | 5681860282751947183087273702498695179<37> 2947497796618411020015103712798920593521902918748731250867179124500917127086625738038026164669904695145028367639179618169339528615102576984139997966589171041935843666771206739647392188116816957405459657324016801832010026663500731<229> |
factorization results 素因数分解の結果 | Mon 2015/10/05 21:23:25 UTC GMP-ECM 6.4.4 [configured with MPIR 2.7.0, --enable-asm-redc] [ECM] Mon 2015/10/05 21:23:25 UTC Input number is 16747270664105026149898084964117070579456994352089683491305505455991934347344206488652854430201815304677375203345611394770894942521382831315189883046473844640712376446961080984118992967438675278789674970927625517640170843897224400516799522710554958250825431812675849 (266 digits) Mon 2015/10/05 21:23:25 UTC Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=351524650 Mon 2015/10/05 21:23:25 UTC Step 1 took 20545ms Mon 2015/10/05 21:23:25 UTC Step 2 took 7769ms Mon 2015/10/05 21:23:25 UTC ********** Factor found in step 2: 5681860282751947183087273702498695179 Mon 2015/10/05 21:23:25 UTC Found probable prime factor of 37 digits: 5681860282751947183087273702498695179 Mon 2015/10/05 21:23:25 UTC Probable prime cofactor 2947497796618411020015103712798920593521902918748731250867179124500917127086625738038026164669904695145028367639179618169339528615102576984139997966589171041935843666771206739647392188116816957405459657324016801832010026663500731 has 229 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | 118 | Makoto Kamada | October 4, 2015 10:00:00 UTC 2015 年 10 月 4 日 (日) 19 時 0 分 0 秒 (日本時間) |
786 | KTakahashi | October 4, 2015 22:24:37 UTC 2015 年 10 月 5 日 (月) 7 時 24 分 37 秒 (日本時間) |
name 名前 | KTakahashi |
---|---|
date 日付 | October 4, 2015 22:25:52 UTC 2015 年 10 月 5 日 (月) 7 時 25 分 52 秒 (日本時間) |
composite number 合成数 | 177982980419410148017493242902497249694458015794631470564501511605800172249410136381060355742214590467343032205238121365669953403310410536558832570117607013763562444970409192856275555379641635267423638215552795043250217081095497697936152718895465707188524406122399183<267> |
prime factors 素因数 | 86257779897875495531059026611151893<35> |
composite cofactor 合成数の残り | 2063384666636821451080581899730747194831496496104952127646052030561561876192568733318781295404560653401314148490423442813344161699330959353652921087220159301100266926547169132528215022566389900578091389676711644665809247180299208531<232> |
factorization results 素因数分解の結果 | Input number is 177982980419410148017493242902497249694458015794631470564501511605800172249410136381060355742214590467343032205238121365669953403310410536558832570117607013763562444970409192856275555379641635267423638215552795043250217081095497697936152718895465707188524406122399183 (267 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2095819016 Step 1 took 7988ms Step 2 took 4149ms ********** Factor found in step 2: 86257779897875495531059026611151893 Found probable prime factor of 35 digits: 86257779897875495531059026611151893 Composite cofactor 2063384666636821451080581899730747194831496496104952127646052030561561876192568733318781295404560653401314148490423442813344161699330959353652921087220159301100266926547169132528215022566389900578091389676711644665809247180299208531 has 232 digits |
software ソフトウェア | GMP-ECM 6.4.4 |
name 名前 | Cyp |
---|---|
date 日付 | May 19, 2017 16:03:05 UTC 2017 年 5 月 20 日 (土) 1 時 3 分 5 秒 (日本時間) |
composite number 合成数 | 2063384666636821451080581899730747194831496496104952127646052030561561876192568733318781295404560653401314148490423442813344161699330959353652921087220159301100266926547169132528215022566389900578091389676711644665809247180299208531<232> |
prime factors 素因数 | 152331665844516257860073028147543383<36> 13545343019769127138432429372544758319371163142330693602968287070880302675623589716099996041710540735964990607880785908999076997930240918618482223376419716783093389587521515646635730596786105977957<197> |
factorization results 素因数分解の結果 | Run 285 out of 610: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=4178401126 Step 1 took 103180ms Step 2 took 29127ms ********** Factor found in step 2: 152331665844516257860073028147543383 Found probable prime factor of 36 digits: 152331665844516257860073028147543383 Probable prime cofactor 13545343019769127138432429372544758319371163142330693602968287070880302675623589716099996041710540735964990607880785908999076997930240918618482223376419716783093389587521515646635730596786105977957 has 197 digits |
software ソフトウェア | GMP-ECM 6.4.4 |
execution environment 実行環境 | Gentoo Linux, Intel(R) Core(TM) i7-3770K CPU |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | 118 | Makoto Kamada | October 4, 2015 10:00:00 UTC 2015 年 10 月 4 日 (日) 19 時 0 分 0 秒 (日本時間) |
786 | KTakahashi | October 4, 2015 22:24:52 UTC 2015 年 10 月 5 日 (月) 7 時 24 分 52 秒 (日本時間) | |||
40 | 3e6 | 0 / 1120 | - | - | |
45 | 11e6 | 285 / 4439 | Cyp | May 19, 2017 16:03:04 UTC 2017 年 5 月 20 日 (土) 1 時 3 分 4 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | 118 | Makoto Kamada | October 4, 2015 10:00:00 UTC 2015 年 10 月 4 日 (日) 19 時 0 分 0 秒 (日本時間) |
786 | KTakahashi | October 4, 2015 22:25:06 UTC 2015 年 10 月 5 日 (月) 7 時 25 分 6 秒 (日本時間) | |||
40 | 3e6 | 400 | Erik Branger | October 6, 2015 07:13:31 UTC 2015 年 10 月 6 日 (火) 16 時 13 分 31 秒 (日本時間) | |
45 | 11e6 | 600 / 4350 | Dmitry Domanov | March 7, 2017 19:47:41 UTC 2017 年 3 月 8 日 (水) 4 時 47 分 41 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | 118 | Makoto Kamada | October 4, 2015 10:00:00 UTC 2015 年 10 月 4 日 (日) 19 時 0 分 0 秒 (日本時間) |
786 | KTakahashi | October 4, 2015 22:26:14 UTC 2015 年 10 月 5 日 (月) 7 時 26 分 14 秒 (日本時間) | |||
40 | 3e6 | 400 | Erik Branger | October 6, 2015 07:13:25 UTC 2015 年 10 月 6 日 (火) 16 時 13 分 25 秒 (日本時間) | |
45 | 11e6 | 800 / 4350 | Dmitry Domanov | January 21, 2016 17:53:33 UTC 2016 年 1 月 22 日 (金) 2 時 53 分 33 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | 118 | Makoto Kamada | October 4, 2015 10:00:00 UTC 2015 年 10 月 4 日 (日) 19 時 0 分 0 秒 (日本時間) |
786 | KTakahashi | October 4, 2015 22:26:42 UTC 2015 年 10 月 5 日 (月) 7 時 26 分 42 秒 (日本時間) | |||
40 | 3e6 | 400 | Erik Branger | October 6, 2015 07:12:47 UTC 2015 年 10 月 6 日 (火) 16 時 12 分 47 秒 (日本時間) | |
45 | 11e6 | 494 / 4350 | Cyp | May 20, 2017 12:05:47 UTC 2017 年 5 月 20 日 (土) 21 時 5 分 47 秒 (日本時間) |
name 名前 | Erik Branger |
---|---|
date 日付 | October 6, 2015 07:03:17 UTC 2015 年 10 月 6 日 (火) 16 時 3 分 17 秒 (日本時間) |
composite number 合成数 | 196283478967789252617937588238206664683512548254105660290265391134970373005899556049903659203266391954375836792251414755381555776872027298569954878083307746480275796336345349734194415788653078371349828194058439523080370847210923406991198354293949780220978829<258> |
prime factors 素因数 | 204325830470860301459026496870460591347<39> 960639575111292648059049629484295370187828828079297995276989511437747191398846610359919813401432857915191750885035587678499615012086243075327611519121176716480163104956513590823502973404921089673121199184722226163310207<219> |
factorization results 素因数分解の結果 | Mon 2015/10/05 23:48:30 UTC GMP-ECM 6.4.4 [configured with MPIR 2.7.0, --enable-asm-redc] [ECM] Mon 2015/10/05 23:48:30 UTC Input number is 196283478967789252617937588238206664683512548254105660290265391134970373005899556049903659203266391954375836792251414755381555776872027298569954878083307746480275796336345349734194415788653078371349828194058439523080370847210923406991198354293949780220978829 (258 digits) Mon 2015/10/05 23:48:30 UTC Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2722661671 Mon 2015/10/05 23:48:30 UTC Step 1 took 20124ms Mon 2015/10/05 23:48:30 UTC Step 2 took 7410ms Mon 2015/10/05 23:48:30 UTC ********** Factor found in step 2: 204325830470860301459026496870460591347 Mon 2015/10/05 23:48:30 UTC Found probable prime factor of 39 digits: 204325830470860301459026496870460591347 Mon 2015/10/05 23:48:30 UTC Probable prime cofactor 960639575111292648059049629484295370187828828079297995276989511437747191398846610359919813401432857915191750885035587678499615012086243075327611519121176716480163104956513590823502973404921089673121199184722226163310207 has 219 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | 118 | Makoto Kamada | October 4, 2015 10:00:00 UTC 2015 年 10 月 4 日 (日) 19 時 0 分 0 秒 (日本時間) |
786 | KTakahashi | October 4, 2015 22:27:04 UTC 2015 年 10 月 5 日 (月) 7 時 27 分 4 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | 118 | Makoto Kamada | October 4, 2015 10:00:00 UTC 2015 年 10 月 4 日 (日) 19 時 0 分 0 秒 (日本時間) |
786 | KTakahashi | October 4, 2015 22:27:14 UTC 2015 年 10 月 5 日 (月) 7 時 27 分 14 秒 (日本時間) | |||
40 | 3e6 | 400 | Erik Branger | October 6, 2015 07:11:26 UTC 2015 年 10 月 6 日 (火) 16 時 11 分 26 秒 (日本時間) | |
45 | 11e6 | 600 / 4350 | Dmitry Domanov | March 7, 2017 19:47:19 UTC 2017 年 3 月 8 日 (水) 4 時 47 分 19 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | 118 | Makoto Kamada | October 4, 2015 10:00:00 UTC 2015 年 10 月 4 日 (日) 19 時 0 分 0 秒 (日本時間) |
786 | KTakahashi | October 4, 2015 22:27:26 UTC 2015 年 10 月 5 日 (月) 7 時 27 分 26 秒 (日本時間) | |||
40 | 3e6 | 400 | Erik Branger | October 6, 2015 07:11:19 UTC 2015 年 10 月 6 日 (火) 16 時 11 分 19 秒 (日本時間) | |
45 | 11e6 | 494 / 4350 | Cyp | May 20, 2017 08:21:28 UTC 2017 年 5 月 20 日 (土) 17 時 21 分 28 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | 118 | Makoto Kamada | October 4, 2015 10:00:00 UTC 2015 年 10 月 4 日 (日) 19 時 0 分 0 秒 (日本時間) |
786 | KTakahashi | October 4, 2015 22:27:44 UTC 2015 年 10 月 5 日 (月) 7 時 27 分 44 秒 (日本時間) | |||
40 | 3e6 | 400 | Erik Branger | October 6, 2015 07:10:44 UTC 2015 年 10 月 6 日 (火) 16 時 10 分 44 秒 (日本時間) | |
45 | 11e6 | 600 / 4350 | Dmitry Domanov | March 7, 2017 19:47:07 UTC 2017 年 3 月 8 日 (水) 4 時 47 分 7 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | 118 | Makoto Kamada | October 4, 2015 10:00:00 UTC 2015 年 10 月 4 日 (日) 19 時 0 分 0 秒 (日本時間) |
786 | KTakahashi | October 4, 2015 22:27:58 UTC 2015 年 10 月 5 日 (月) 7 時 27 分 58 秒 (日本時間) | |||
40 | 3e6 | 400 | Erik Branger | October 6, 2015 07:10:20 UTC 2015 年 10 月 6 日 (火) 16 時 10 分 20 秒 (日本時間) | |
45 | 11e6 | 600 / 4350 | Dmitry Domanov | March 7, 2017 19:46:55 UTC 2017 年 3 月 8 日 (水) 4 時 46 分 55 秒 (日本時間) |
name 名前 | KTakahashi |
---|---|
date 日付 | October 4, 2015 22:29:44 UTC 2015 年 10 月 5 日 (月) 7 時 29 分 44 秒 (日本時間) |
composite number 合成数 | 1549714029829861562543888113573550104430795984932863602979769532451281934432695185073230777620925040154707885559089865142439993606232339294728815930798648766351271935242145514497246392588454775477166729950395161461164998495713496704883222086465023538716711<256> |
prime factors 素因数 | 42043563029903191869231636674869471<35> |
composite cofactor 合成数の残り | 36859721635096393572617339517715646197965765595917343392155151403486277293310699053342182932391154584931226128301381569562393657421740017147433610925190621673499221895641692926560217206400204839104692827313134809511680441<221> |
factorization results 素因数分解の結果 | Input number is 1549714029829861562543888113573550104430795984932863602979769532451281934432695185073230777620925040154707885559089865142439993606232339294728815930798648766351271935242145514497246392588454775477166729950395161461164998495713496704883222086465023538716711 (256 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2115895334 Step 1 took 7254ms Step 2 took 3604ms ********** Factor found in step 2: 42043563029903191869231636674869471 Found probable prime factor of 35 digits: 42043563029903191869231636674869471 Composite cofactor 36859721635096393572617339517715646197965765595917343392155151403486277293310699053342182932391154584931226128301381569562393657421740017147433610925190621673499221895641692926560217206400204839104692827313134809511680441 has 221 digits |
software ソフトウェア | GMP-ECM 6.4.4 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | 118 | Makoto Kamada | October 4, 2015 10:00:00 UTC 2015 年 10 月 4 日 (日) 19 時 0 分 0 秒 (日本時間) |
786 | KTakahashi | October 4, 2015 22:28:15 UTC 2015 年 10 月 5 日 (月) 7 時 28 分 15 秒 (日本時間) | |||
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 610 / 4439 | Cyp | May 19, 2017 18:40:54 UTC 2017 年 5 月 20 日 (土) 3 時 40 分 54 秒 (日本時間) |
name 名前 | KTakahashi |
---|---|
date 日付 | October 4, 2015 22:30:37 UTC 2015 年 10 月 5 日 (月) 7 時 30 分 37 秒 (日本時間) |
composite number 合成数 | 34958963162294965463040669892072140675993816293919164153788280861816101472564855173884787577448047131925376533802870747157687160134577179613652427563045472906461862021976522019996402462441692087642899345642314878971879118910089397321146296589259016211171135171532693511<269> |
prime factors 素因数 | 9684376011642011687861057117620280275483<40> |
composite cofactor 合成数の残り | 3609831249867752745336839909492111289953523900292812911795923897364070133553069195626320165938439328170689359751635792686557374538437077127496229535899603581499580980956821897682787864009760779453557204598426708862044273503914117<229> |
factorization results 素因数分解の結果 | Input number is 34958963162294965463040669892072140675993816293919164153788280861816101472564855173884787577448047131925376533802870747157687160134577179613652427563045472906461862021976522019996402462441692087642899345642314878971879118910089397321146296589259016211171135171532693511 (269 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3291235673 Step 1 took 8019ms Step 2 took 4196ms ********** Factor found in step 2: 9684376011642011687861057117620280275483 Found probable prime factor of 40 digits: 9684376011642011687861057117620280275483 Composite cofactor 3609831249867752745336839909492111289953523900292812911795923897364070133553069195626320165938439328170689359751635792686557374538437077127496229535899603581499580980956821897682787864009760779453557204598426708862044273503914117 has 229 digits |
software ソフトウェア | GMP-ECM 6.4.4 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | 118 | Makoto Kamada | October 4, 2015 10:00:00 UTC 2015 年 10 月 4 日 (日) 19 時 0 分 0 秒 (日本時間) |
786 | KTakahashi | October 4, 2015 22:28:34 UTC 2015 年 10 月 5 日 (月) 7 時 28 分 34 秒 (日本時間) | |||
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 610 / 4439 | Cyp | May 19, 2017 16:22:38 UTC 2017 年 5 月 20 日 (土) 1 時 22 分 38 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | 118 | Makoto Kamada | October 4, 2015 10:00:00 UTC 2015 年 10 月 4 日 (日) 19 時 0 分 0 秒 (日本時間) |
786 | KTakahashi | October 4, 2015 22:30:56 UTC 2015 年 10 月 5 日 (月) 7 時 30 分 56 秒 (日本時間) | |||
40 | 3e6 | 400 | Erik Branger | October 6, 2015 07:10:09 UTC 2015 年 10 月 6 日 (火) 16 時 10 分 9 秒 (日本時間) | |
45 | 11e6 | 600 / 4350 | Dmitry Domanov | March 7, 2017 19:46:38 UTC 2017 年 3 月 8 日 (水) 4 時 46 分 38 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | October 4, 2015 10:00:00 UTC 2015 年 10 月 4 日 (日) 19 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 600 | Dmitry Domanov | October 4, 2015 22:23:32 UTC 2015 年 10 月 5 日 (月) 7 時 23 分 32 秒 (日本時間) | |
45 | 11e6 | 600 / 4342 | Dmitry Domanov | October 5, 2015 20:13:27 UTC 2015 年 10 月 6 日 (火) 5 時 13 分 27 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | 118 | Makoto Kamada | October 4, 2015 10:00:00 UTC 2015 年 10 月 4 日 (日) 19 時 0 分 0 秒 (日本時間) |
786 | KTakahashi | October 4, 2015 22:31:14 UTC 2015 年 10 月 5 日 (月) 7 時 31 分 14 秒 (日本時間) | |||
40 | 3e6 | 400 | Erik Branger | October 6, 2015 07:09:53 UTC 2015 年 10 月 6 日 (火) 16 時 9 分 53 秒 (日本時間) | |
45 | 11e6 | 494 / 4350 | Cyp | May 19, 2017 16:31:18 UTC 2017 年 5 月 20 日 (土) 1 時 31 分 18 秒 (日本時間) |
name 名前 | KTakahashi |
---|---|
date 日付 | October 4, 2015 22:32:16 UTC 2015 年 10 月 5 日 (月) 7 時 32 分 16 秒 (日本時間) |
composite number 合成数 | 46752179448796052856249766717322509244068285978139953779149922433982140973401823616671316476764520128159817187997881748732116301954383082294647262354329220617777676229995617176901398106047850067347336698301920448895479396241170846111249744507835025961907448909260439737331595630061177793<287> |
prime factors 素因数 | 404142354040809837299992665514843<33> |
composite cofactor 合成数の残り | 115682454415740525708620922654847652421851936071964822891351351134532037429919368232876094514460934010393908926611305528666383908868069070080963927057116219550385098033215729285886305424957126288516039272411317088453658243828280553034038025651312017605651<255> |
factorization results 素因数分解の結果 | Input number is 46752179448796052856249766717322509244068285978139953779149922433982140973401823616671316476764520128159817187997881748732116301954383082294647262354329220617777676229995617176901398106047850067347336698301920448895479396241170846111249744507835025961907448909260439737331595630061177793 (287 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2941652184 Step 1 took 9750ms Step 2 took 4727ms ********** Factor found in step 2: 404142354040809837299992665514843 Found probable prime factor of 33 digits: 404142354040809837299992665514843 Composite cofactor 115682454415740525708620922654847652421851936071964822891351351134532037429919368232876094514460934010393908926611305528666383908868069070080963927057116219550385098033215729285886305424957126288516039272411317088453658243828280553034038025651312017605651 has 255 digits |
software ソフトウェア | GMP-ECM 6.4.4 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | 118 | Makoto Kamada | October 4, 2015 10:00:00 UTC 2015 年 10 月 4 日 (日) 19 時 0 分 0 秒 (日本時間) |
786 | KTakahashi | October 4, 2015 22:31:24 UTC 2015 年 10 月 5 日 (月) 7 時 31 分 24 秒 (日本時間) | |||
40 | 3e6 | 400 | Erik Branger | October 6, 2015 07:05:00 UTC 2015 年 10 月 6 日 (火) 16 時 5 分 0 秒 (日本時間) | |
45 | 11e6 | 494 / 4350 | Cyp | May 18, 2017 13:36:52 UTC 2017 年 5 月 18 日 (木) 22 時 36 分 52 秒 (日本時間) |
name 名前 | Erik Branger |
---|---|
date 日付 | October 6, 2015 07:06:26 UTC 2015 年 10 月 6 日 (火) 16 時 6 分 26 秒 (日本時間) |
composite number 合成数 | 29860442858661544088416916912349357723769106309074312904111196337127433223071618262040096491659206177549962562208313470849888185679049764841601889994614567257720219229502432970631955156593170120695760663052777528680400985789874934664346707446580156447556191917175410658125603419833628013131<290> |
prime factors 素因数 | 29608883991140328987201973393757501861<38> |
composite cofactor 合成数の残り | 1008496060425529290515981144064769103147704445898852129872176294616852217753035791160231205291679447079117673471999731578269201559624254073036892616716290958923357447248351635018973646842867861166253364999404833117503058858145258587212771965020268321071<253> |
factorization results 素因数分解の結果 | Tue 2015/10/06 05:23:08 UTC GMP-ECM 6.4.4 [configured with MPIR 2.7.0, --enable-asm-redc] [ECM] Tue 2015/10/06 05:23:08 UTC Input number is 29860442858661544088416916912349357723769106309074312904111196337127433223071618262040096491659206177549962562208313470849888185679049764841601889994614567257720219229502432970631955156593170120695760663052777528680400985789874934664346707446580156447556191917175410658125603419833628013131 (290 digits) Tue 2015/10/06 05:23:08 UTC Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3749227647 Tue 2015/10/06 05:23:08 UTC Step 1 took 27128ms Tue 2015/10/06 05:23:08 UTC Step 2 took 8362ms Tue 2015/10/06 05:23:08 UTC ********** Factor found in step 2: 29608883991140328987201973393757501861 Tue 2015/10/06 05:23:08 UTC Found probable prime factor of 38 digits: 29608883991140328987201973393757501861 Tue 2015/10/06 05:23:08 UTC Composite cofactor 1008496060425529290515981144064769103147704445898852129872176294616852217753035791160231205291679447079117673471999731578269201559624254073036892616716290958923357447248351635018973646842867861166253364999404833117503058858145258587212771965020268321071 has 253 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | 118 | Makoto Kamada | October 4, 2015 10:00:00 UTC 2015 年 10 月 4 日 (日) 19 時 0 分 0 秒 (日本時間) |
786 | KTakahashi | October 4, 2015 22:31:35 UTC 2015 年 10 月 5 日 (月) 7 時 31 分 35 秒 (日本時間) | |||
40 | 3e6 | 400 | Erik Branger | October 6, 2015 07:06:00 UTC 2015 年 10 月 6 日 (火) 16 時 6 分 0 秒 (日本時間) | |
45 | 11e6 | 494 / 4350 | Cyp | May 18, 2017 13:23:13 UTC 2017 年 5 月 18 日 (木) 22 時 23 分 13 秒 (日本時間) |