Table of contents 目次

14×10104-173

c96

name 名前Serge Batalov
date 日付February 5, 2009 07:59:37 UTC 2009 年 2 月 5 日 (木) 16 時 59 分 37 秒 (日本時間)
composite number 合成数
140765857523432907458126111147801899452995712050675798798584661681986173213919818396294106255499<96>
prime factors 素因数
1048186020905847339687889653549342847<37>
134294728908693501313898247253393131921162318436945997859317<60>
factorization results 素因数分解の結果
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1343043597
Step 1 took 5472ms
Step 2 took 6340ms
********** Factor found in step 2: 1048186020905847339687889653549342847
Found probable prime factor of 37 digits: 1048186020905847339687889653549342847
Probable prime cofactor has 60 digits
software ソフトウェア
GMP-ECM 6.2.1

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaFebruary 5, 2009 05:00:00 UTC 2009 年 2 月 5 日 (木) 14 時 0 分 0 秒 (日本時間)

14×10108-173

c90

name 名前Sinkiti Sibata
date 日付February 5, 2009 09:16:59 UTC 2009 年 2 月 5 日 (木) 18 時 16 分 59 秒 (日本時間)
composite number 合成数
480958710449722285681960117310286212508354971043812209689150467311885349813017173570943883<90>
prime factors 素因数
69465947887975644559852068056851351<35>
6923661521546369811565028929358579000131701666180044333<55>
factorization results 素因数分解の結果
Thu Feb 05 16:45:53 2009  Msieve v. 1.39
Thu Feb 05 16:45:53 2009  random seeds: 37737dfc 756aaded
Thu Feb 05 16:45:53 2009  factoring 480958710449722285681960117310286212508354971043812209689150467311885349813017173570943883 (90 digits)
Thu Feb 05 16:45:54 2009  searching for 15-digit factors
Thu Feb 05 16:45:56 2009  commencing quadratic sieve (90-digit input)
Thu Feb 05 16:45:56 2009  using multiplier of 3
Thu Feb 05 16:45:56 2009  using 32kb Intel Core sieve core
Thu Feb 05 16:45:56 2009  sieve interval: 36 blocks of size 32768
Thu Feb 05 16:45:56 2009  processing polynomials in batches of 6
Thu Feb 05 16:45:56 2009  using a sieve bound of 1583807 (60000 primes)
Thu Feb 05 16:45:56 2009  using large prime bound of 126704560 (26 bits)
Thu Feb 05 16:45:56 2009  using double large prime bound of 384614732789440 (42-49 bits)
Thu Feb 05 16:45:56 2009  using trial factoring cutoff of 49 bits
Thu Feb 05 16:45:56 2009  polynomial 'A' values have 12 factors
Thu Feb 05 18:07:35 2009  60536 relations (16049 full + 44487 combined from 637026 partial), need 60096
Thu Feb 05 18:07:36 2009  begin with 653075 relations
Thu Feb 05 18:07:36 2009  reduce to 147583 relations in 10 passes
Thu Feb 05 18:07:37 2009  attempting to read 147583 relations
Thu Feb 05 18:07:38 2009  recovered 147583 relations
Thu Feb 05 18:07:38 2009  recovered 127631 polynomials
Thu Feb 05 18:07:39 2009  attempting to build 60536 cycles
Thu Feb 05 18:07:39 2009  found 60536 cycles in 5 passes
Thu Feb 05 18:07:39 2009  distribution of cycle lengths:
Thu Feb 05 18:07:39 2009     length 1 : 16049
Thu Feb 05 18:07:39 2009     length 2 : 11747
Thu Feb 05 18:07:39 2009     length 3 : 10567
Thu Feb 05 18:07:39 2009     length 4 : 8067
Thu Feb 05 18:07:39 2009     length 5 : 5731
Thu Feb 05 18:07:39 2009     length 6 : 3589
Thu Feb 05 18:07:39 2009     length 7 : 2197
Thu Feb 05 18:07:39 2009     length 9+: 2589
Thu Feb 05 18:07:39 2009  largest cycle: 17 relations
Thu Feb 05 18:07:39 2009  matrix is 60000 x 60536 (14.8 MB) with weight 3627676 (59.93/col)
Thu Feb 05 18:07:39 2009  sparse part has weight 3627676 (59.93/col)
Thu Feb 05 18:07:40 2009  filtering completed in 3 passes
Thu Feb 05 18:07:40 2009  matrix is 56066 x 56128 (13.7 MB) with weight 3361309 (59.89/col)
Thu Feb 05 18:07:40 2009  sparse part has weight 3361309 (59.89/col)
Thu Feb 05 18:07:40 2009  saving the first 48 matrix rows for later
Thu Feb 05 18:07:40 2009  matrix is 56018 x 56128 (8.6 MB) with weight 2637423 (46.99/col)
Thu Feb 05 18:07:40 2009  sparse part has weight 1924355 (34.29/col)
Thu Feb 05 18:07:40 2009  matrix includes 64 packed rows
Thu Feb 05 18:07:40 2009  using block size 22451 for processor cache size 1024 kB
Thu Feb 05 18:07:40 2009  commencing Lanczos iteration
Thu Feb 05 18:07:40 2009  memory use: 8.4 MB
Thu Feb 05 18:07:59 2009  lanczos halted after 887 iterations (dim = 56014)
Thu Feb 05 18:07:59 2009  recovered 14 nontrivial dependencies
Thu Feb 05 18:08:00 2009  prp35 factor: 69465947887975644559852068056851351
Thu Feb 05 18:08:00 2009  prp55 factor: 6923661521546369811565028929358579000131701666180044333
Thu Feb 05 18:08:00 2009  elapsed time 01:22:07

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaFebruary 5, 2009 05:00:00 UTC 2009 年 2 月 5 日 (木) 14 時 0 分 0 秒 (日本時間)

14×10109-173

c110

name 名前Jo Yeong Uk
date 日付February 5, 2009 13:01:28 UTC 2009 年 2 月 5 日 (木) 22 時 1 分 28 秒 (日本時間)
composite number 合成数
46666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666661<110>
prime factors 素因数
20787052726234940370216484139571950095666873157<47>
2244987169718849182365886078043557243840241223173465926322376673<64>
factorization results 素因数分解の結果
Number: 46661_109
N=46666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666661
  ( 110 digits)
SNFS difficulty: 110 digits.
Divisors found:
 r1=20787052726234940370216484139571950095666873157
 r2=2244987169718849182365886078043557243840241223173465926322376673
Version: 
Total time: 0.35 hours.
Scaled time: 0.82 units (timescale=2.357).
Factorization parameters were as follows:
n: 46666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666661
m: 10000000000000000000000
deg: 5
c5: 7
c0: -85
skew: 1.65
type: snfs
lss: 1
rlim: 320000
alim: 320000
lpbr: 25
lpba: 25
mfbr: 44
mfba: 44
rlambda: 2.2
alambda: 2.2
Factor base limits: 320000/320000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 44/44
Sieved rational special-q in [160000, 280001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 943417
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 42297 x 42527
Total sieving time: 0.31 hours.
Total relation processing time: 0.03 hours.
Matrix solve time: 0.00 hours.
Time per square root: 0.01 hours.
Prototype def-par.txt line would be:
snfs,110,5,0,0,0,0,0,0,0,0,320000,320000,25,25,44,44,2.2,2.2,20000
total time: 0.35 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init)
Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673797)
Calibrating delay using timer specific routine.. 5148.57 BogoMIPS (lpj=2574285)
Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672337)
Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672389)
software ソフトウェア
GGNFS / Msieve v1.39
execution environment 実行環境
Core 2 Quad Q6700

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaFebruary 5, 2009 05:00:00 UTC 2009 年 2 月 5 日 (木) 14 時 0 分 0 秒 (日本時間)

14×10119-173

c95

name 名前Sinkiti Sibata
date 日付February 5, 2009 13:03:06 UTC 2009 年 2 月 5 日 (木) 22 時 3 分 6 秒 (日本時間)
composite number 合成数
20214218845514468376829031884492141202780645129534194815969814747284526402923001349089943334157<95>
prime factors 素因数
44357599571637221207700789302449841<35>
455710386511529836317128544802766863224130000687759052360477<60>
factorization results 素因数分解の結果
Thu Feb 05 18:19:03 2009  Msieve v. 1.39
Thu Feb 05 18:19:03 2009  random seeds: f5622540 4dc7e8cd
Thu Feb 05 18:19:03 2009  factoring 20214218845514468376829031884492141202780645129534194815969814747284526402923001349089943334157 (95 digits)
Thu Feb 05 18:19:04 2009  searching for 15-digit factors
Thu Feb 05 18:19:06 2009  commencing quadratic sieve (95-digit input)
Thu Feb 05 18:19:06 2009  using multiplier of 37
Thu Feb 05 18:19:06 2009  using 32kb Intel Core sieve core
Thu Feb 05 18:19:06 2009  sieve interval: 36 blocks of size 32768
Thu Feb 05 18:19:06 2009  processing polynomials in batches of 6
Thu Feb 05 18:19:06 2009  using a sieve bound of 2128183 (78772 primes)
Thu Feb 05 18:19:06 2009  using large prime bound of 310714718 (28 bits)
Thu Feb 05 18:19:06 2009  using double large prime bound of 1933086450144842 (43-51 bits)
Thu Feb 05 18:19:06 2009  using trial factoring cutoff of 51 bits
Thu Feb 05 18:19:06 2009  polynomial 'A' values have 12 factors
Thu Feb 05 21:54:39 2009  78919 relations (19582 full + 59337 combined from 1161867 partial), need 78868
Thu Feb 05 21:54:42 2009  begin with 1181449 relations
Thu Feb 05 21:54:43 2009  reduce to 204186 relations in 10 passes
Thu Feb 05 21:54:43 2009  attempting to read 204186 relations
Thu Feb 05 21:54:46 2009  recovered 204186 relations
Thu Feb 05 21:54:46 2009  recovered 188215 polynomials
Thu Feb 05 21:54:46 2009  attempting to build 78919 cycles
Thu Feb 05 21:54:46 2009  found 78919 cycles in 6 passes
Thu Feb 05 21:54:46 2009  distribution of cycle lengths:
Thu Feb 05 21:54:46 2009     length 1 : 19582
Thu Feb 05 21:54:46 2009     length 2 : 14025
Thu Feb 05 21:54:46 2009     length 3 : 13434
Thu Feb 05 21:54:46 2009     length 4 : 10578
Thu Feb 05 21:54:46 2009     length 5 : 7884
Thu Feb 05 21:54:46 2009     length 6 : 5442
Thu Feb 05 21:54:46 2009     length 7 : 3407
Thu Feb 05 21:54:46 2009     length 9+: 4567
Thu Feb 05 21:54:46 2009  largest cycle: 21 relations
Thu Feb 05 21:54:46 2009  matrix is 78772 x 78919 (21.5 MB) with weight 5330814 (67.55/col)
Thu Feb 05 21:54:46 2009  sparse part has weight 5330814 (67.55/col)
Thu Feb 05 21:54:48 2009  filtering completed in 3 passes
Thu Feb 05 21:54:48 2009  matrix is 74850 x 74914 (20.6 MB) with weight 5106202 (68.16/col)
Thu Feb 05 21:54:48 2009  sparse part has weight 5106202 (68.16/col)
Thu Feb 05 21:54:48 2009  saving the first 48 matrix rows for later
Thu Feb 05 21:54:48 2009  matrix is 74802 x 74914 (14.8 MB) with weight 4233713 (56.51/col)
Thu Feb 05 21:54:48 2009  sparse part has weight 3424377 (45.71/col)
Thu Feb 05 21:54:48 2009  matrix includes 64 packed rows
Thu Feb 05 21:54:48 2009  using block size 29965 for processor cache size 1024 kB
Thu Feb 05 21:54:49 2009  commencing Lanczos iteration
Thu Feb 05 21:54:49 2009  memory use: 13.2 MB
Thu Feb 05 21:55:29 2009  lanczos halted after 1184 iterations (dim = 74800)
Thu Feb 05 21:55:29 2009  recovered 17 nontrivial dependencies
Thu Feb 05 21:55:33 2009  prp35 factor: 44357599571637221207700789302449841
Thu Feb 05 21:55:33 2009  prp60 factor: 455710386511529836317128544802766863224130000687759052360477
Thu Feb 05 21:55:33 2009  elapsed time 03:36:30

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaFebruary 5, 2009 05:00:00 UTC 2009 年 2 月 5 日 (木) 14 時 0 分 0 秒 (日本時間)

14×10127-173

c88

name 名前Sinkiti Sibata
date 日付February 5, 2009 23:34:11 UTC 2009 年 2 月 6 日 (金) 8 時 34 分 11 秒 (日本時間)
composite number 合成数
1535295185794484367616350693774708322882980721452664621333563416031092169180374845344583<88>
prime factors 素因数
5261974045839364868774416996076713797221377<43>
291771713889094533014889494807646277268465479<45>
factorization results 素因数分解の結果
Fri Feb 06 07:38:10 2009  Msieve v. 1.39
Fri Feb 06 07:38:10 2009  random seeds: d1fb9c90 fabe24e3
Fri Feb 06 07:38:10 2009  factoring 1535295185794484367616350693774708322882980721452664621333563416031092169180374845344583 (88 digits)
Fri Feb 06 07:38:11 2009  searching for 15-digit factors
Fri Feb 06 07:38:12 2009  commencing quadratic sieve (88-digit input)
Fri Feb 06 07:38:12 2009  using multiplier of 7
Fri Feb 06 07:38:12 2009  using 32kb Intel Core sieve core
Fri Feb 06 07:38:12 2009  sieve interval: 24 blocks of size 32768
Fri Feb 06 07:38:12 2009  processing polynomials in batches of 9
Fri Feb 06 07:38:12 2009  using a sieve bound of 1508383 (57325 primes)
Fri Feb 06 07:38:12 2009  using large prime bound of 120670640 (26 bits)
Fri Feb 06 07:38:12 2009  using double large prime bound of 352275850752880 (42-49 bits)
Fri Feb 06 07:38:12 2009  using trial factoring cutoff of 49 bits
Fri Feb 06 07:38:12 2009  polynomial 'A' values have 11 factors
Fri Feb 06 08:28:48 2009  57685 relations (15938 full + 41747 combined from 607295 partial), need 57421
Fri Feb 06 08:28:49 2009  begin with 623233 relations
Fri Feb 06 08:28:50 2009  reduce to 138855 relations in 10 passes
Fri Feb 06 08:28:50 2009  attempting to read 138855 relations
Fri Feb 06 08:28:51 2009  recovered 138855 relations
Fri Feb 06 08:28:51 2009  recovered 116994 polynomials
Fri Feb 06 08:28:52 2009  attempting to build 57685 cycles
Fri Feb 06 08:28:52 2009  found 57685 cycles in 5 passes
Fri Feb 06 08:28:52 2009  distribution of cycle lengths:
Fri Feb 06 08:28:52 2009     length 1 : 15938
Fri Feb 06 08:28:52 2009     length 2 : 11180
Fri Feb 06 08:28:52 2009     length 3 : 10089
Fri Feb 06 08:28:52 2009     length 4 : 7707
Fri Feb 06 08:28:52 2009     length 5 : 5129
Fri Feb 06 08:28:52 2009     length 6 : 3437
Fri Feb 06 08:28:52 2009     length 7 : 1986
Fri Feb 06 08:28:52 2009     length 9+: 2219
Fri Feb 06 08:28:52 2009  largest cycle: 18 relations
Fri Feb 06 08:28:52 2009  matrix is 57325 x 57685 (13.7 MB) with weight 3362837 (58.30/col)
Fri Feb 06 08:28:52 2009  sparse part has weight 3362837 (58.30/col)
Fri Feb 06 08:28:53 2009  filtering completed in 3 passes
Fri Feb 06 08:28:53 2009  matrix is 53023 x 53087 (12.7 MB) with weight 3111841 (58.62/col)
Fri Feb 06 08:28:53 2009  sparse part has weight 3111841 (58.62/col)
Fri Feb 06 08:28:53 2009  saving the first 48 matrix rows for later
Fri Feb 06 08:28:53 2009  matrix is 52975 x 53087 (8.8 MB) with weight 2527280 (47.61/col)
Fri Feb 06 08:28:53 2009  sparse part has weight 1998012 (37.64/col)
Fri Feb 06 08:28:53 2009  matrix includes 64 packed rows
Fri Feb 06 08:28:53 2009  using block size 21234 for processor cache size 1024 kB
Fri Feb 06 08:28:53 2009  commencing Lanczos iteration
Fri Feb 06 08:28:53 2009  memory use: 8.2 MB
Fri Feb 06 08:29:11 2009  lanczos halted after 840 iterations (dim = 52971)
Fri Feb 06 08:29:11 2009  recovered 15 nontrivial dependencies
Fri Feb 06 08:29:11 2009  prp43 factor: 5261974045839364868774416996076713797221377
Fri Feb 06 08:29:11 2009  prp45 factor: 291771713889094533014889494807646277268465479
Fri Feb 06 08:29:11 2009  elapsed time 00:51:01

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaFebruary 5, 2009 05:00:00 UTC 2009 年 2 月 5 日 (木) 14 時 0 分 0 秒 (日本時間)

14×10128-173

c129

name 名前Serge Batalov
date 日付February 5, 2009 21:58:20 UTC 2009 年 2 月 6 日 (金) 6 時 58 分 20 秒 (日本時間)
composite number 合成数
466666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666661<129>
prime factors 素因数
34738831090628376848964014280911856883289<41>
13433574245754085320082529574069024061482425726692517836889920164527496860879649497269549<89>
factorization results 素因数分解の結果
SNFS difficulty: 130 digits.
Divisors found:
 r1=34738831090628376848964014280911856883289 (pp41)
 r2=13433574245754085320082529574069024061482425726692517836889920164527496860879649497269549 (pp89)
Version: Msieve-1.39
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.530).
Factorization parameters were as follows:
n: 466666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666661
m: 50000000000000000000000000
deg: 5
c5: 112
c0: -425
skew: 1.31
type: snfs
lss: 1
rlim: 1050000
alim: 1050000
lpbr: 26
lpba: 26
mfbr: 49
mfba: 49
rlambda: 2.3
alambda: 2.3
Factor base limits: 1050000/1050000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 49/49
Sieved rational special-q in [525000, 1025001)
Primes: rational ideals reading, algebraic ideals reading,
Relations: relations
Max relations in full relation-set:
Initial matrix:
Pruned matrix : 124141 x 124389
Total sieving time: 0.00 hours.
Total relation processing time: 0.00 hours.
Matrix solve time: 0.00 hours.
Time per square root: 0.00 hours.
Prototype def-par.txt line would be:
snfs,130,5,0,0,0,0,0,0,0,0,1050000,1050000,26,26,49,49,2.3,2.3,50000
total time: 2.00 hours.

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaFebruary 5, 2009 05:00:00 UTC 2009 年 2 月 5 日 (木) 14 時 0 分 0 秒 (日本時間)

14×10129-173

c130

name 名前Serge Batalov
date 日付February 5, 2009 21:57:33 UTC 2009 年 2 月 6 日 (金) 6 時 57 分 33 秒 (日本時間)
composite number 合成数
4666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666661<130>
prime factors 素因数
30756232585203612651027937491020501863669<41>
21962830987637620960120313531065216680029647<44>
6908524863886151706440987531973173393945771327<46>
factorization results 素因数分解の結果
SNFS difficulty: 130 digits.
Divisors found:
 r1=30756232585203612651027937491020501863669 (pp41)
 r2=21962830987637620960120313531065216680029647 (pp44)
 r3=6908524863886151706440987531973173393945771327 (pp46)
Version: Msieve-1.39
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.541).
Factorization parameters were as follows:
n: 4666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666661
m: 100000000000000000000000000
deg: 5
c5: 7
c0: -85
skew: 1.65
type: snfs
lss: 1
rlim: 1060000
alim: 1060000
lpbr: 26
lpba: 26
mfbr: 49
mfba: 49
rlambda: 2.3
alambda: 2.3
Factor base limits: 1060000/1060000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 49/49
Sieved rational special-q in [530000, 1030001)
Primes: rational ideals reading, algebraic ideals reading,
Relations: relations
Max relations in full relation-set:
Initial matrix:
Pruned matrix : 130792 x 131040
Total sieving time: 0.00 hours.
Total relation processing time: 0.00 hours.
Matrix solve time: 0.00 hours.
Time per square root: 0.00 hours.
Prototype def-par.txt line would be:
snfs,130,5,0,0,0,0,0,0,0,0,1060000,1060000,26,26,49,49,2.3,2.3,50000
total time: 2.00 hours.

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaFebruary 5, 2009 05:00:00 UTC 2009 年 2 月 5 日 (木) 14 時 0 分 0 秒 (日本時間)

14×10131-173

c129

name 名前Serge Batalov
date 日付February 5, 2009 21:59:03 UTC 2009 年 2 月 6 日 (金) 6 時 59 分 3 秒 (日本時間)
composite number 合成数
875547217010631644777986241400875547217010631644777986241400875547217010631644777986241400875547217010631644777986241400875547217<129>
prime factors 素因数
288828715094532057700386432700031725817336707<45>
3031371782837000235560081497627944101257914587605168405618276781202903817139350539931<85>
factorization results 素因数分解の結果
SNFS difficulty: 133 digits.
Divisors found:
 r1=288828715094532057700386432700031725817336707 (pp45)
 r2=3031371782837000235560081497627944101257914587605168405618276781202903817139350539931 (pp85)
Version: Msieve-1.39
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.714).
Factorization parameters were as follows:
n: 875547217010631644777986241400875547217010631644777986241400875547217010631644777986241400875547217010631644777986241400875547217
m: 200000000000000000000000000
deg: 5
c5: 35
c0: -136
skew: 1.31
type: snfs
lss: 1
rlim: 1160000
alim: 1160000
lpbr: 26
lpba: 26
mfbr: 49
mfba: 49
rlambda: 2.3
alambda: 2.3
Factor base limits: 1160000/1160000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 49/49
Sieved rational special-q in [580000, 1130001)
Primes: rational ideals reading, algebraic ideals reading,
Relations: relations
Max relations in full relation-set:
Initial matrix:
Pruned matrix : 137843 x 138091
Total sieving time: 0.00 hours.
Total relation processing time: 0.00 hours.
Matrix solve time: 0.00 hours.
Time per square root: 0.00 hours.
Prototype def-par.txt line would be:
snfs,133,5,0,0,0,0,0,0,0,0,1160000,1160000,26,26,49,49,2.3,2.3,50000
total time: 2.00 hours.

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaFebruary 5, 2009 05:00:00 UTC 2009 年 2 月 5 日 (木) 14 時 0 分 0 秒 (日本時間)

14×10132-173

c132

name 名前Serge Batalov
date 日付February 5, 2009 08:56:16 UTC 2009 年 2 月 5 日 (木) 17 時 56 分 16 秒 (日本時間)
composite number 合成数
108527131782945736434108527131782945736434108527131782945736434108527131782945736434108527131782945736434108527131782945736434108527<132>
prime factors 素因数
242477283479484920079946834362098068307<39>
composite cofactor 合成数の残り
447576491395854011724077485504451312282020626085064397979685957809662700075420254722086217461<93>
factorization results 素因数分解の結果
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=456477673
Step 1 took 9730ms
Step 2 took 10894ms
********** Factor found in step 2: 242477283479484920079946834362098068307
Found probable prime factor of 39 digits: 242477283479484920079946834362098068307
Composite cofactor has 93 digits
software ソフトウェア
GMP-ECM 6.2.1

c93

name 名前Jo Yeong Uk
date 日付February 5, 2009 22:56:25 UTC 2009 年 2 月 6 日 (金) 7 時 56 分 25 秒 (日本時間)
composite number 合成数
447576491395854011724077485504451312282020626085064397979685957809662700075420254722086217461<93>
prime factors 素因数
92660912312177449516990491215937950320787587<44>
4830262083843456169427769670141277271595721208103<49>
factorization results 素因数分解の結果
Fri Feb 06 00:12:50 2009  
Fri Feb 06 00:12:50 2009  
Fri Feb 06 00:12:50 2009  Msieve v. 1.39
Fri Feb 06 00:12:50 2009  random seeds: 660a05d0 5cd60cef
Fri Feb 06 00:12:50 2009  factoring 447576491395854011724077485504451312282020626085064397979685957809662700075420254722086217461 (93 digits)
Fri Feb 06 00:12:51 2009  searching for 15-digit factors
Fri Feb 06 00:12:52 2009  commencing quadratic sieve (93-digit input)
Fri Feb 06 00:12:53 2009  using multiplier of 1
Fri Feb 06 00:12:53 2009  using VC8 32kb sieve core
Fri Feb 06 00:12:53 2009  sieve interval: 36 blocks of size 32768
Fri Feb 06 00:12:53 2009  processing polynomials in batches of 6
Fri Feb 06 00:12:53 2009  using a sieve bound of 1921417 (71765 primes)
Fri Feb 06 00:12:53 2009  using large prime bound of 232491457 (27 bits)
Fri Feb 06 00:12:53 2009  using double large prime bound of 1146918485979948 (42-51 bits)
Fri Feb 06 00:12:53 2009  using trial factoring cutoff of 51 bits
Fri Feb 06 00:12:53 2009  polynomial 'A' values have 12 factors
Fri Feb 06 02:14:34 2009  72152 relations (18323 full + 53829 combined from 965521 partial), need 71861
Fri Feb 06 02:14:40 2009  begin with 983844 relations
Fri Feb 06 02:14:41 2009  reduce to 184485 relations in 11 passes
Fri Feb 06 02:14:41 2009  attempting to read 184485 relations
Fri Feb 06 02:14:43 2009  recovered 184485 relations
Fri Feb 06 02:14:43 2009  recovered 164103 polynomials
Fri Feb 06 02:14:43 2009  attempting to build 72152 cycles
Fri Feb 06 02:14:43 2009  found 72152 cycles in 6 passes
Fri Feb 06 02:14:43 2009  distribution of cycle lengths:
Fri Feb 06 02:14:43 2009     length 1 : 18323
Fri Feb 06 02:14:43 2009     length 2 : 12755
Fri Feb 06 02:14:43 2009     length 3 : 12311
Fri Feb 06 02:14:43 2009     length 4 : 9774
Fri Feb 06 02:14:43 2009     length 5 : 7136
Fri Feb 06 02:14:43 2009     length 6 : 4780
Fri Feb 06 02:14:43 2009     length 7 : 3028
Fri Feb 06 02:14:43 2009     length 9+: 4045
Fri Feb 06 02:14:43 2009  largest cycle: 23 relations
Fri Feb 06 02:14:44 2009  matrix is 71765 x 72152 (18.7 MB) with weight 4323305 (59.92/col)
Fri Feb 06 02:14:44 2009  sparse part has weight 4323305 (59.92/col)
Fri Feb 06 02:14:45 2009  filtering completed in 3 passes
Fri Feb 06 02:14:45 2009  matrix is 67870 x 67934 (17.6 MB) with weight 4081009 (60.07/col)
Fri Feb 06 02:14:45 2009  sparse part has weight 4081009 (60.07/col)
Fri Feb 06 02:14:45 2009  saving the first 48 matrix rows for later
Fri Feb 06 02:14:45 2009  matrix is 67822 x 67934 (10.4 MB) with weight 3095781 (45.57/col)
Fri Feb 06 02:14:45 2009  sparse part has weight 2042670 (30.07/col)
Fri Feb 06 02:14:45 2009  matrix includes 64 packed rows
Fri Feb 06 02:14:45 2009  using block size 27173 for processor cache size 4096 kB
Fri Feb 06 02:14:45 2009  commencing Lanczos iteration
Fri Feb 06 02:14:45 2009  memory use: 9.8 MB
Fri Feb 06 02:15:08 2009  lanczos halted after 1074 iterations (dim = 67818)
Fri Feb 06 02:15:08 2009  recovered 14 nontrivial dependencies
Fri Feb 06 02:15:08 2009  prp44 factor: 92660912312177449516990491215937950320787587
Fri Feb 06 02:15:08 2009  prp49 factor: 4830262083843456169427769670141277271595721208103
Fri Feb 06 02:15:08 2009  elapsed time 02:02:18
execution environment 実行環境
Core 2 Quad Q6600, Windows Vista Ultimate K x64

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaFebruary 5, 2009 05:00:00 UTC 2009 年 2 月 5 日 (木) 14 時 0 分 0 秒 (日本時間)

14×10133-173

c93

name 名前Serge Batalov
date 日付February 5, 2009 06:50:39 UTC 2009 年 2 月 5 日 (木) 15 時 50 分 39 秒 (日本時間)
composite number 合成数
182398822801684891085419530096000519009892658996013464930666332347585036430549275737839118153<93>
prime factors 素因数
115751464003827661828457840765689<33>
1575779834591580964906843212112016937196963642469575467360977<61>
factorization results 素因数分解の結果
Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=805836458
Step 1 took 1800ms
********** Factor found in step 1: 115751464003827661828457840765689
Found probable prime factor of 33 digits: 115751464003827661828457840765689
Probable prime cofactor 1575779834591580964906843212112016937196963642469575467360977 has 61 digits
software ソフトウェア
GMP-ECM 6.2.1

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaFebruary 5, 2009 05:00:00 UTC 2009 年 2 月 5 日 (木) 14 時 0 分 0 秒 (日本時間)

14×10137-173

c128

name 名前Jo Yeong Uk
date 日付February 5, 2009 16:13:14 UTC 2009 年 2 月 6 日 (金) 1 時 13 分 14 秒 (日本時間)
composite number 合成数
15507779652717925762978812460724967482128140727375939557997598641655050637148977744817023024039883436393222293563772349495607561<128>
prime factors 素因数
2818644549300440001732463462728060471607712298207676717<55>
5501857144976582782595579223104339161632838489649970345026741343782422733<73>
factorization results 素因数分解の結果
Number: 46661_137
N=15507779652717925762978812460724967482128140727375939557997598641655050637148977744817023024039883436393222293563772349495607561
  ( 128 digits)
SNFS difficulty: 138 digits.
Divisors found:
 r1=2818644549300440001732463462728060471607712298207676717
 r2=5501857144976582782595579223104339161632838489649970345026741343782422733
Version: 
Total time: 3.11 hours.
Scaled time: 7.42 units (timescale=2.384).
Factorization parameters were as follows:
n: 15507779652717925762978812460724967482128140727375939557997598641655050637148977744817023024039883436393222293563772349495607561
m: 2000000000000000000000000000
deg: 5
c5: 175
c0: -68
skew: 0.83
type: snfs
lss: 1
rlim: 1700000
alim: 1700000
lpbr: 26
lpba: 26
mfbr: 48
mfba: 48
rlambda: 2.3
alambda: 2.3
Factor base limits: 1700000/1700000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 48/48
Sieved rational special-q in [850000, 1600001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 3895980
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 244627 x 244875
Total sieving time: 2.70 hours.
Total relation processing time: 0.26 hours.
Matrix solve time: 0.13 hours.
Time per square root: 0.03 hours.
Prototype def-par.txt line would be:
snfs,138,5,0,0,0,0,0,0,0,0,1700000,1700000,26,26,48,48,2.3,2.3,50000
total time: 3.11 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init)
Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673797)
Calibrating delay using timer specific routine.. 5148.57 BogoMIPS (lpj=2574285)
Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672337)
Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672389)
software ソフトウェア
GGNFS / Msieve v1.39
execution environment 実行環境
Core 2 Quad Q6700

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaFebruary 5, 2009 05:00:00 UTC 2009 年 2 月 5 日 (木) 14 時 0 分 0 秒 (日本時間)

14×10139-173

c132

name 名前Jo Yeong Uk
date 日付February 5, 2009 22:58:20 UTC 2009 年 2 月 6 日 (金) 7 時 58 分 20 秒 (日本時間)
composite number 合成数
421284307539602778669721916758499875069643185943437423989214592112428119079704791280572763941231332602699958767400234286434613099067<132>
prime factors 素因数
867544928525630775815933587141684050103818013<45>
485605175809815527350504843798878617019451230961361043265636180271974040650810199695159<87>
factorization results 素因数分解の結果
Number: 46661_139
N=421284307539602778669721916758499875069643185943437423989214592112428119079704791280572763941231332602699958767400234286434613099067
  ( 132 digits)
SNFS difficulty: 140 digits.
Divisors found:
 r1=867544928525630775815933587141684050103818013
 r2=485605175809815527350504843798878617019451230961361043265636180271974040650810199695159
Version: 
Total time: 3.57 hours.
Scaled time: 8.49 units (timescale=2.380).
Factorization parameters were as follows:
n: 421284307539602778669721916758499875069643185943437423989214592112428119079704791280572763941231332602699958767400234286434613099067
m: 10000000000000000000000000000
deg: 5
c5: 7
c0: -85
skew: 1.65
type: snfs
lss: 1
rlim: 1000000
alim: 1000000
lpbr: 26
lpba: 26
mfbr: 48
mfba: 48
rlambda: 2.3
alambda: 2.3
Factor base limits: 1000000/1000000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 48/48
Sieved rational special-q in [500000, 900001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 2811844
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 186156 x 186404
Total sieving time: 3.32 hours.
Total relation processing time: 0.11 hours.
Matrix solve time: 0.07 hours.
Time per square root: 0.07 hours.
Prototype def-par.txt line would be:
snfs,140,5,0,0,0,0,0,0,0,0,1000000,1000000,26,26,48,48,2.3,2.3,50000
total time: 3.57 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init)
Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673797)
Calibrating delay using timer specific routine.. 5148.57 BogoMIPS (lpj=2574285)
Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672337)
Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672389)
software ソフトウェア
GGNFS / Msieve v1.39
execution environment 実行環境
Core 2 Quad Q6700

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaFebruary 5, 2009 05:00:00 UTC 2009 年 2 月 5 日 (木) 14 時 0 分 0 秒 (日本時間)

14×10142-173

c98

name 名前Sinkiti Sibata
date 日付February 5, 2009 22:35:19 UTC 2009 年 2 月 6 日 (金) 7 時 35 分 19 秒 (日本時間)
composite number 合成数
13242004510892868113458993218395334183291843600653289491957333697295603953723418924379752924689751<98>
prime factors 素因数
79231793353124078236648743941235412967<38>
167129935477735101894427739732000701586771138451062866657553<60>
factorization results 素因数分解の結果
Thu Feb 05 22:04:54 2009  Msieve v. 1.39
Thu Feb 05 22:04:54 2009  random seeds: 985e3b90 8cf72a5a
Thu Feb 05 22:04:54 2009  factoring 13242004510892868113458993218395334183291843600653289491957333697295603953723418924379752924689751 (98 digits)
Thu Feb 05 22:04:55 2009  searching for 15-digit factors
Thu Feb 05 22:04:56 2009  commencing quadratic sieve (98-digit input)
Thu Feb 05 22:04:57 2009  using multiplier of 19
Thu Feb 05 22:04:57 2009  using 32kb Intel Core sieve core
Thu Feb 05 22:04:57 2009  sieve interval: 36 blocks of size 32768
Thu Feb 05 22:04:57 2009  processing polynomials in batches of 6
Thu Feb 05 22:04:57 2009  using a sieve bound of 2439067 (89290 primes)
Thu Feb 05 22:04:57 2009  using large prime bound of 365860050 (28 bits)
Thu Feb 05 22:04:57 2009  using double large prime bound of 2593981779484650 (43-52 bits)
Thu Feb 05 22:04:57 2009  using trial factoring cutoff of 52 bits
Thu Feb 05 22:04:57 2009  polynomial 'A' values have 13 factors
Fri Feb 06 04:46:34 2009  89401 relations (21588 full + 67813 combined from 1343759 partial), need 89386
Fri Feb 06 04:46:35 2009  begin with 1365347 relations
Fri Feb 06 04:46:37 2009  reduce to 234933 relations in 11 passes
Fri Feb 06 04:46:37 2009  attempting to read 234933 relations
Fri Feb 06 04:46:41 2009  recovered 234933 relations
Fri Feb 06 04:46:41 2009  recovered 223383 polynomials
Fri Feb 06 04:46:41 2009  attempting to build 89401 cycles
Fri Feb 06 04:46:41 2009  found 89401 cycles in 6 passes
Fri Feb 06 04:46:41 2009  distribution of cycle lengths:
Fri Feb 06 04:46:41 2009     length 1 : 21588
Fri Feb 06 04:46:41 2009     length 2 : 15332
Fri Feb 06 04:46:41 2009     length 3 : 15003
Fri Feb 06 04:46:41 2009     length 4 : 12199
Fri Feb 06 04:46:41 2009     length 5 : 9254
Fri Feb 06 04:46:41 2009     length 6 : 6387
Fri Feb 06 04:46:41 2009     length 7 : 4096
Fri Feb 06 04:46:41 2009     length 9+: 5542
Fri Feb 06 04:46:41 2009  largest cycle: 20 relations
Fri Feb 06 04:46:42 2009  matrix is 89290 x 89401 (24.5 MB) with weight 6054518 (67.72/col)
Fri Feb 06 04:46:42 2009  sparse part has weight 6054518 (67.72/col)
Fri Feb 06 04:46:43 2009  filtering completed in 3 passes
Fri Feb 06 04:46:43 2009  matrix is 85516 x 85580 (23.6 MB) with weight 5838893 (68.23/col)
Fri Feb 06 04:46:43 2009  sparse part has weight 5838893 (68.23/col)
Fri Feb 06 04:46:43 2009  saving the first 48 matrix rows for later
Fri Feb 06 04:46:43 2009  matrix is 85468 x 85580 (14.8 MB) with weight 4648295 (54.32/col)
Fri Feb 06 04:46:43 2009  sparse part has weight 3377193 (39.46/col)
Fri Feb 06 04:46:43 2009  matrix includes 64 packed rows
Fri Feb 06 04:46:43 2009  using block size 34232 for processor cache size 1024 kB
Fri Feb 06 04:46:44 2009  commencing Lanczos iteration
Fri Feb 06 04:46:44 2009  memory use: 14.2 MB
Fri Feb 06 04:47:32 2009  lanczos halted after 1354 iterations (dim = 85466)
Fri Feb 06 04:47:32 2009  recovered 17 nontrivial dependencies
Fri Feb 06 04:47:33 2009  prp38 factor: 79231793353124078236648743941235412967
Fri Feb 06 04:47:33 2009  prp60 factor: 167129935477735101894427739732000701586771138451062866657553
Fri Feb 06 04:47:33 2009  elapsed time 06:42:39

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaFebruary 5, 2009 05:00:00 UTC 2009 年 2 月 5 日 (木) 14 時 0 分 0 秒 (日本時間)

14×10145-173

c105

name 名前Serge Batalov
date 日付February 5, 2009 08:47:30 UTC 2009 年 2 月 5 日 (木) 17 時 47 分 30 秒 (日本時間)
composite number 合成数
660372545050425170316139489774111148457254039686926878820508717980618887529370047625549396083688652657903<105>
prime factors 素因数
153263613785359808010712420969640040613<39>
4308736618824956231372711263088119074543145711353357387045343555331<67>
factorization results 素因数分解の結果
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=746015315
Step 1 took 8338ms
Step 2 took 9009ms
********** Factor found in step 2: 153263613785359808010712420969640040613
Found probable prime factor of 39 digits: 153263613785359808010712420969640040613
Probable prime cofactor 4308736618824956231372711263088119074543145711353357387045343555331 has 67 digits
software ソフトウェア
GMP-ECM 6.2.1

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaFebruary 5, 2009 05:00:00 UTC 2009 年 2 月 5 日 (木) 14 時 0 分 0 秒 (日本時間)

14×10155-173

c107

name 名前Andreas Tete
date 日付February 5, 2009 23:36:52 UTC 2009 年 2 月 6 日 (金) 8 時 36 分 52 秒 (日本時間)
composite number 合成数
32041094511527285925771939862536179270622749029683467024592163859076668364555480887662733657021368733203333<107>
prime factors 素因数
140562441090611118741109961262705922783769<42>
227949189434413385400660055310324153026565342740516563531969876557<66>
factorization results 素因数分解の結果
Thu Feb 05 23:23:07 2009  
Thu Feb 05 23:23:07 2009  
Thu Feb 05 23:23:07 2009  Msieve v. 1.39
Thu Feb 05 23:23:07 2009  random seeds: 1e3e56b4 f2204d78
Thu Feb 05 23:23:07 2009  factoring 32041094511527285925771939862536179270622749029683467024592163859076668364555480887662733657021368733203333 (107 digits)
Thu Feb 05 23:23:08 2009  searching for 15-digit factors
Thu Feb 05 23:23:10 2009  commencing number field sieve (107-digit input)
Thu Feb 05 23:23:10 2009  R0: -417696951770538278410
Thu Feb 05 23:23:10 2009  R1:  109521462829
Thu Feb 05 23:23:10 2009  A0: -65569852078498172292350013
Thu Feb 05 23:23:10 2009  A1:  6114587653619319208227
Thu Feb 05 23:23:10 2009  A2:  16211690701126034
Thu Feb 05 23:23:10 2009  A3: -7509391818145
Thu Feb 05 23:23:10 2009  A4:  6034581
Thu Feb 05 23:23:10 2009  A5:  2520
Thu Feb 05 23:23:10 2009  skew 34711.60, size 7.223162e-011, alpha -5.300903, combined = 4.227773e-010
Thu Feb 05 23:23:11 2009  
Thu Feb 05 23:23:11 2009  commencing relation filtering
Thu Feb 05 23:23:11 2009  commencing duplicate removal, pass 1
Thu Feb 05 23:23:46 2009  error -15 reading relation 2573525
Thu Feb 05 23:23:53 2009  error -15 reading relation 3299075
Thu Feb 05 23:24:07 2009  found 321328 hash collisions in 4785439 relations
Thu Feb 05 23:24:21 2009  added 31972 free relations
Thu Feb 05 23:24:21 2009  commencing duplicate removal, pass 2
Thu Feb 05 23:24:27 2009  found 295093 duplicates and 4522317 unique relations
Thu Feb 05 23:24:27 2009  memory use: 43.3 MB
Thu Feb 05 23:24:27 2009  reading rational ideals above 2949120
Thu Feb 05 23:24:27 2009  reading algebraic ideals above 2949120
Thu Feb 05 23:24:27 2009  commencing singleton removal, pass 1
Thu Feb 05 23:25:15 2009  relations with 0 large ideals: 114789
Thu Feb 05 23:25:15 2009  relations with 1 large ideals: 709847
Thu Feb 05 23:25:15 2009  relations with 2 large ideals: 1600072
Thu Feb 05 23:25:15 2009  relations with 3 large ideals: 1520566
Thu Feb 05 23:25:15 2009  relations with 4 large ideals: 521434
Thu Feb 05 23:25:15 2009  relations with 5 large ideals: 25444
Thu Feb 05 23:25:15 2009  relations with 6 large ideals: 30165
Thu Feb 05 23:25:15 2009  relations with 7+ large ideals: 0
Thu Feb 05 23:25:15 2009  4522317 relations and about 4381735 large ideals
Thu Feb 05 23:25:15 2009  commencing singleton removal, pass 2
Thu Feb 05 23:26:04 2009  found 1977858 singletons
Thu Feb 05 23:26:04 2009  current dataset: 2544459 relations and about 2016860 large ideals
Thu Feb 05 23:26:04 2009  commencing singleton removal, pass 3
Thu Feb 05 23:26:37 2009  found 454942 singletons
Thu Feb 05 23:26:37 2009  current dataset: 2089517 relations and about 1529923 large ideals
Thu Feb 05 23:26:37 2009  commencing singleton removal, final pass
Thu Feb 05 23:27:05 2009  memory use: 37.3 MB
Thu Feb 05 23:27:05 2009  commencing in-memory singleton removal
Thu Feb 05 23:27:05 2009  begin with 2089517 relations and 1573278 unique ideals
Thu Feb 05 23:27:07 2009  reduce to 1778301 relations and 1253915 ideals in 16 passes
Thu Feb 05 23:27:07 2009  max relations containing the same ideal: 50
Thu Feb 05 23:27:08 2009  reading rational ideals above 720000
Thu Feb 05 23:27:08 2009  reading algebraic ideals above 720000
Thu Feb 05 23:27:08 2009  commencing singleton removal, final pass
Thu Feb 05 23:27:32 2009  keeping 1516991 ideals with weight <= 20, new excess is 189911
Thu Feb 05 23:27:34 2009  memory use: 47.1 MB
Thu Feb 05 23:27:34 2009  commencing in-memory singleton removal
Thu Feb 05 23:27:34 2009  begin with 1782859 relations and 1516991 unique ideals
Thu Feb 05 23:27:36 2009  reduce to 1767800 relations and 1479938 ideals in 9 passes
Thu Feb 05 23:27:36 2009  max relations containing the same ideal: 20
Thu Feb 05 23:27:37 2009  removing 259209 relations and 225427 ideals in 33783 cliques
Thu Feb 05 23:27:37 2009  commencing in-memory singleton removal
Thu Feb 05 23:27:37 2009  begin with 1508591 relations and 1479938 unique ideals
Thu Feb 05 23:27:38 2009  reduce to 1483922 relations and 1229289 ideals in 8 passes
Thu Feb 05 23:27:38 2009  max relations containing the same ideal: 20
Thu Feb 05 23:27:39 2009  removing 192769 relations and 158986 ideals in 33783 cliques
Thu Feb 05 23:27:39 2009  commencing in-memory singleton removal
Thu Feb 05 23:27:39 2009  begin with 1291153 relations and 1229289 unique ideals
Thu Feb 05 23:27:40 2009  reduce to 1273620 relations and 1052357 ideals in 8 passes
Thu Feb 05 23:27:40 2009  max relations containing the same ideal: 20
Thu Feb 05 23:27:41 2009  relations with 0 large ideals: 17696
Thu Feb 05 23:27:41 2009  relations with 1 large ideals: 115178
Thu Feb 05 23:27:41 2009  relations with 2 large ideals: 305321
Thu Feb 05 23:27:41 2009  relations with 3 large ideals: 409159
Thu Feb 05 23:27:41 2009  relations with 4 large ideals: 288047
Thu Feb 05 23:27:41 2009  relations with 5 large ideals: 110539
Thu Feb 05 23:27:41 2009  relations with 6 large ideals: 24923
Thu Feb 05 23:27:41 2009  relations with 7+ large ideals: 2757
Thu Feb 05 23:27:41 2009  commencing 2-way merge
Thu Feb 05 23:27:42 2009  reduce to 773554 relation sets and 552291 unique ideals
Thu Feb 05 23:27:42 2009  commencing full merge
Thu Feb 05 23:27:51 2009  memory use: 41.2 MB
Thu Feb 05 23:27:51 2009  found 360431 cycles, need 332491
Thu Feb 05 23:27:51 2009  weight of 332491 cycles is about 23593800 (70.96/cycle)
Thu Feb 05 23:27:51 2009  distribution of cycle lengths:
Thu Feb 05 23:27:51 2009  1 relations: 35680
Thu Feb 05 23:27:51 2009  2 relations: 32523
Thu Feb 05 23:27:51 2009  3 relations: 32986
Thu Feb 05 23:27:51 2009  4 relations: 30726
Thu Feb 05 23:27:51 2009  5 relations: 28831
Thu Feb 05 23:27:51 2009  6 relations: 26149
Thu Feb 05 23:27:51 2009  7 relations: 23584
Thu Feb 05 23:27:51 2009  8 relations: 21305
Thu Feb 05 23:27:51 2009  9 relations: 18931
Thu Feb 05 23:27:51 2009  10+ relations: 81776
Thu Feb 05 23:27:51 2009  heaviest cycle: 19 relations
Thu Feb 05 23:27:51 2009  commencing cycle optimization
Thu Feb 05 23:27:52 2009  start with 2159557 relations
Thu Feb 05 23:27:58 2009  pruned 72796 relations
Thu Feb 05 23:27:58 2009  memory use: 54.5 MB
Thu Feb 05 23:27:58 2009  distribution of cycle lengths:
Thu Feb 05 23:27:58 2009  1 relations: 35680
Thu Feb 05 23:27:58 2009  2 relations: 33458
Thu Feb 05 23:27:58 2009  3 relations: 34546
Thu Feb 05 23:27:58 2009  4 relations: 31823
Thu Feb 05 23:27:58 2009  5 relations: 30091
Thu Feb 05 23:27:58 2009  6 relations: 26865
Thu Feb 05 23:27:58 2009  7 relations: 24369
Thu Feb 05 23:27:58 2009  8 relations: 21642
Thu Feb 05 23:27:58 2009  9 relations: 19118
Thu Feb 05 23:27:58 2009  10+ relations: 74899
Thu Feb 05 23:27:58 2009  heaviest cycle: 18 relations
Thu Feb 05 23:27:58 2009  
Thu Feb 05 23:27:58 2009  commencing linear algebra
Thu Feb 05 23:27:58 2009  read 332491 cycles
Thu Feb 05 23:27:59 2009  cycles contain 1110974 unique relations
Thu Feb 05 23:28:13 2009  read 1110974 relations
Thu Feb 05 23:28:14 2009  using 20 quadratic characters above 67107810
Thu Feb 05 23:28:21 2009  building initial matrix
Thu Feb 05 23:28:35 2009  memory use: 130.5 MB
Thu Feb 05 23:28:35 2009  read 332491 cycles
Thu Feb 05 23:28:36 2009  matrix is 332253 x 332491 (93.9 MB) with weight 31306746 (94.16/col)
Thu Feb 05 23:28:36 2009  sparse part has weight 22286145 (67.03/col)
Thu Feb 05 23:28:40 2009  filtering completed in 3 passes
Thu Feb 05 23:28:41 2009  matrix is 330616 x 330816 (93.6 MB) with weight 31190739 (94.28/col)
Thu Feb 05 23:28:41 2009  sparse part has weight 22219842 (67.17/col)
Thu Feb 05 23:28:42 2009  read 330816 cycles
Thu Feb 05 23:28:42 2009  matrix is 330616 x 330816 (93.6 MB) with weight 31190739 (94.28/col)
Thu Feb 05 23:28:42 2009  sparse part has weight 22219842 (67.17/col)
Thu Feb 05 23:28:42 2009  saving the first 48 matrix rows for later
Thu Feb 05 23:28:43 2009  matrix is 330568 x 330816 (89.5 MB) with weight 24527269 (74.14/col)
Thu Feb 05 23:28:43 2009  sparse part has weight 21468133 (64.89/col)
Thu Feb 05 23:28:43 2009  matrix includes 64 packed rows
Thu Feb 05 23:28:43 2009  using block size 65536 for processor cache size 3072 kB
Thu Feb 05 23:28:45 2009  commencing Lanczos iteration
Thu Feb 05 23:28:45 2009  memory use: 87.5 MB
Thu Feb 05 23:43:59 2009  lanczos halted after 5229 iterations (dim = 330567)
Thu Feb 05 23:44:00 2009  recovered 30 nontrivial dependencies
Thu Feb 05 23:44:00 2009  
Thu Feb 05 23:44:00 2009  commencing square root phase
Thu Feb 05 23:44:00 2009  reading relations for dependency 1
Thu Feb 05 23:44:00 2009  read 165222 cycles
Thu Feb 05 23:44:01 2009  cycles contain 686041 unique relations
Thu Feb 05 23:44:16 2009  read 686041 relations
Thu Feb 05 23:44:19 2009  multiplying 553752 relations
Thu Feb 05 23:45:48 2009  multiply complete, coefficients have about 21.63 million bits
Thu Feb 05 23:45:49 2009  initial square root is modulo 1629293
Thu Feb 05 23:47:56 2009  reading relations for dependency 2
Thu Feb 05 23:47:56 2009  read 164877 cycles
Thu Feb 05 23:47:56 2009  cycles contain 686198 unique relations
Thu Feb 05 23:48:11 2009  read 686198 relations
Thu Feb 05 23:48:15 2009  multiplying 553800 relations
Thu Feb 05 23:49:43 2009  multiply complete, coefficients have about 21.63 million bits
Thu Feb 05 23:49:44 2009  initial square root is modulo 1629581
Thu Feb 05 23:51:48 2009  reading relations for dependency 3
Thu Feb 05 23:51:49 2009  read 164910 cycles
Thu Feb 05 23:51:49 2009  cycles contain 684575 unique relations
Thu Feb 05 23:51:58 2009  read 684575 relations
Thu Feb 05 23:52:01 2009  multiplying 552312 relations
Thu Feb 05 23:53:30 2009  multiply complete, coefficients have about 21.57 million bits
Thu Feb 05 23:53:31 2009  initial square root is modulo 1571417
Thu Feb 05 23:55:35 2009  prp42 factor: 140562441090611118741109961262705922783769
Thu Feb 05 23:55:35 2009  prp66 factor: 227949189434413385400660055310324153026565342740516563531969876557
Thu Feb 05 23:55:35 2009  elapsed time 00:32:28
software ソフトウェア
Msieve v 1.39 Polynomial search ~ 40 Minutes
For Sieving i used gnfs.ub script from Mersenneforum.
After sieving started automatically Msieve to finish the factorization.
execution environment 実行環境
Core 2 Duo T8100 (2,1 GHz) with Windows Vista Home Premium (32 bit)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaFebruary 5, 2009 05:00:00 UTC 2009 年 2 月 5 日 (木) 14 時 0 分 0 秒 (日本時間)

14×10157-173

c135

name 名前Serge Batalov
date 日付February 8, 2009 19:04:29 UTC 2009 年 2 月 9 日 (月) 4 時 4 分 29 秒 (日本時間)
composite number 合成数
938226432988272075613869989547150629966908036890822199766480366690506401506901213714078973070685006525883063074112294164616654497155617<135>
prime factors 素因数
6364827987763412741265319171442647020667<40>
147407979413118889989841788857004121650104020896717420967838755485153730188771108947439999704851<96>
factorization results 素因数分解の結果
SNFS difficulty: 158 digits.
Divisors found:
 r1=6364827987763412741265319171442647020667 (pp40)
 r2=147407979413118889989841788857004121650104020896717420967838755485153730188771108947439999704851 (pp96)
Version: Msieve-1.39
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.950).
Factorization parameters were as follows:
n: 938226432988272075613869989547150629966908036890822199766480366690506401506901213714078973070685006525883063074112294164616654497155617
m: 20000000000000000000000000000000
deg: 5
c5: 175
c0: -68
skew: 0.83
type: snfs
lss: 1
rlim: 3100000
alim: 3100000
lpbr: 27
lpba: 27
mfbr: 52
mfba: 52
rlambda: 2.4
alambda: 2.4
Factor base limits: 3100000/3100000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 52/52
Sieved rational special-q in [1550000, 2950001)
Primes: rational ideals reading, algebraic ideals reading,
Relations: relations
Max relations in full relation-set:
Initial matrix:
Pruned matrix : 524520 x 524768
Total sieving time: 0.00 hours.
Total relation processing time: 0.00 hours.
Matrix solve time: 0.00 hours.
Time per square root: 0.00 hours.
Prototype def-par.txt line would be:
snfs,158,5,0,0,0,0,0,0,0,0,3100000,3100000,27,27,52,52,2.4,2.4,200000
total time: 22.00 hours.
software ソフトウェア
Msieve-1.39
execution environment 実行環境
Opteron-2.6GHz; Linux x86_64

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaFebruary 5, 2009 05:00:00 UTC 2009 年 2 月 5 日 (木) 14 時 0 分 0 秒 (日本時間)

14×10161-173

c109

name 名前Jo Yeong Uk
date 日付February 6, 2009 01:29:29 UTC 2009 年 2 月 6 日 (金) 10 時 29 分 29 秒 (日本時間)
composite number 合成数
8214488854607361552562394585386053901344629054961773047084840017735290069003506936168427706337309270878561961<109>
prime factors 素因数
250324450930278353820829206543780882674057<42>
32815367512362198271629357660350079777521673182900499191564513469473<68>
factorization results 素因数分解の結果
Number: 46661_161
N=8214488854607361552562394585386053901344629054961773047084840017735290069003506936168427706337309270878561961
  ( 109 digits)
Divisors found:
 r1=250324450930278353820829206543780882674057
 r2=32815367512362198271629357660350079777521673182900499191564513469473
Version: 
Total time: 8.58 hours.
Scaled time: 20.50 units (timescale=2.388).
Factorization parameters were as follows:
name: 46661_161
n: 8214488854607361552562394585386053901344629054961773047084840017735290069003506936168427706337309270878561961
skew: 18354.32
# norm 1.68e+15
c5: 22440
c4: 91497934
c3: -98957537020339
c2: -142166828582838284
c1: 5528770218687941854244
c0: 17899750049926615259981280
# alpha -5.65
Y1: 90997625029
Y0: -817921264128797702543
# Murphy_E 1.11e-09
# M 5826943395806438051439883087651505012647109574972570195839436233128308131774899666095698190388894654990385360
type: gnfs
rlim: 1800000
alim: 1800000
lpbr: 26
lpba: 26
mfbr: 51
mfba: 51
rlambda: 2.6
alambda: 2.6
qintsize: 50000
Factor base limits: 1800000/1800000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 51/51
Sieved algebraic special-q in [900000, 1550001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 5462762
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 317048 x 317296
Polynomial selection time: 0.58 hours.
Total sieving time: 7.37 hours.
Total relation processing time: 0.35 hours.
Matrix solve time: 0.22 hours.
Time per square root: 0.06 hours.
Prototype def-par.txt line would be:
gnfs,108,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,26,26,51,51,2.6,2.6,50000
total time: 8.58 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init)
Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673797)
Calibrating delay using timer specific routine.. 5148.57 BogoMIPS (lpj=2574285)
Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672337)
Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672389)
software ソフトウェア
GGNFS / Msieve v1.39
execution environment 実行環境
Core 2 Quad Q6700

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaFebruary 5, 2009 05:00:00 UTC 2009 年 2 月 5 日 (木) 14 時 0 分 0 秒 (日本時間)

14×10163-173

c112

name 名前Jo Yeong Uk
date 日付February 7, 2009 00:36:59 UTC 2009 年 2 月 7 日 (土) 9 時 36 分 59 秒 (日本時間)
composite number 合成数
1866752226358640258544889293860773927262146021843474161287748794725834827673734517799791108691807542626556700923<112>
prime factors 素因数
533378067555167994638532653261545026277626203<45>
3499866867258391013568251576377228303516047175484132830549381462241<67>
factorization results 素因数分解の結果
Number: 46661_163
N=1866752226358640258544889293860773927262146021843474161287748794725834827673734517799791108691807542626556700923
  ( 112 digits)
Divisors found:
 r1=533378067555167994638532653261545026277626203
 r2=3499866867258391013568251576377228303516047175484132830549381462241
Version: 
Total time: 12.19 hours.
Scaled time: 29.10 units (timescale=2.388).
Factorization parameters were as follows:
name: 46661_163
n: 1866752226358640258544889293860773927262146021843474161287748794725834827673734517799791108691807542626556700923
skew: 23720.01
# norm 2.55e+15
c5: 14400
c4: -2094460356
c3: -15775499728857
c2: -1176969688500835859
c1: 2468827411660161501747
c0: 67206418064965898205875705
# alpha -5.63
Y1: 154891682693
Y0: -2645730334848852522966
# Murphy_E 7.89e-10
# M 1361559699571845916487310165643954984042140026411175833540923279969064349616331700765422401167513410905746795998
type: gnfs
rlim: 2400000
alim: 2400000
lpbr: 27
lpba: 27
mfbr: 51
mfba: 51
rlambda: 2.6
alambda: 2.6
qintsize: 60000
Factor base limits: 2400000/2400000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 51/51
Sieved algebraic special-q in [1200000, 2100001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 8502252
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 409481 x 409729
Polynomial selection time: 0.87 hours.
Total sieving time: 10.17 hours.
Total relation processing time: 0.61 hours.
Matrix solve time: 0.38 hours.
Time per square root: 0.16 hours.
Prototype def-par.txt line would be:
gnfs,111,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2400000,2400000,27,27,51,51,2.6,2.6,60000
total time: 12.19 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init)
Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673797)
Calibrating delay using timer specific routine.. 5148.57 BogoMIPS (lpj=2574285)
Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672337)
Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672389)
software ソフトウェア
GGNFS / Msieve v1.39
execution environment 実行環境
Core 2 Quad Q6700

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaFebruary 5, 2009 05:00:00 UTC 2009 年 2 月 5 日 (木) 14 時 0 分 0 秒 (日本時間)

14×10164-173

c145

name 名前Serge Batalov
date 日付February 5, 2009 10:16:29 UTC 2009 年 2 月 5 日 (木) 19 時 16 分 29 秒 (日本時間)
composite number 合成数
3405190238733901433109849804630572467519807953935427695278974890542249240825299792732051638968785096211239486669611945207470525019166274763820539<145>
prime factors 素因数
7375632163441432727253479391156161<34>
461681136379374003491287880045920544178410299268405105269544565799988405783938430548888977576093818499029824699<111>
factorization results 素因数分解の結果
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2326954712
Step 1 took 9217ms
Step 2 took 9096ms
********** Factor found in step 2: 7375632163441432727253479391156161
Found probable prime factor of 34 digits: 7375632163441432727253479391156161
Probable prime cofactor 461681136379374003491287880045920544178410299268405105269544565799988405783938430548888977576093818499029824699 has 111 digits
software ソフトウェア
GMP-ECM 6.2.1

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaFebruary 5, 2009 05:00:00 UTC 2009 年 2 月 5 日 (木) 14 時 0 分 0 秒 (日本時間)

14×10165-173

c146

name 名前Erik Branger
date 日付February 11, 2009 22:49:54 UTC 2009 年 2 月 12 日 (木) 7 時 49 分 54 秒 (日本時間)
composite number 合成数
11283034218676076335450062104328480022556931502317869197767600548494780149843252727291425682419289464184378251077512205365756428650696865215799211<146>
prime factors 素因数
192291543504650266312924830780127324976051701536760368444962051931847<69>
58676705241607330640162008428812640085749921181414466216785690293885780591613<77>
factorization results 素因数分解の結果
Number: 46661_165
N=11283034218676076335450062104328480022556931502317869197767600548494780149843252727291425682419289464184378251077512205365756428650696865215799211
  ( 146 digits)
SNFS difficulty: 166 digits.
Divisors found:
 r1=192291543504650266312924830780127324976051701536760368444962051931847
 r2=58676705241607330640162008428812640085749921181414466216785690293885780591613
Version: 
Total time: 64.10 hours.
Scaled time: 49.17 units (timescale=0.767).
Factorization parameters were as follows:
n: 11283034218676076335450062104328480022556931502317869197767600548494780149843252727291425682419289464184378251077512205365756428650696865215799211
m: 1000000000000000000000000000000000
deg: 5
c5: 14
c0: -17
skew: 1.04
type: snfs
lss: 1
rlim: 4100000
alim: 4100000
lpbr: 27
lpba: 27
mfbr: 51
mfba: 51
rlambda: 2.4
alambda: 2.4

Factor base limits: 4100000/4100000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 51/51
Sieved rational special-q in [2050000, 3750001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 751250 x 751498
Total sieving time: 64.10 hours.
Total relation processing time: 0.00 hours.
Matrix solve time: 0.00 hours.
Time per square root: 0.00 hours.
Prototype def-par.txt line would be:
snfs,166,5,0,0,0,0,0,0,0,0,4100000,4100000,27,27,51,51,2.4,2.4,100000
total time: 64.10 hours.
 --------- CPU info (if available) ----------
software ソフトウェア
GGNFS, Msieve

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaFebruary 5, 2009 05:00:00 UTC 2009 年 2 月 5 日 (木) 14 時 0 分 0 秒 (日本時間)
351e6825Jo Yeong UkFebruary 7, 2009 04:28:06 UTC 2009 年 2 月 7 日 (土) 13 時 28 分 6 秒 (日本時間)

14×10169-173

c170

name 名前Serge Batalov
date 日付February 5, 2009 07:52:50 UTC 2009 年 2 月 5 日 (木) 16 時 52 分 50 秒 (日本時間)
composite number 合成数
46666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666661<170>
prime factors 素因数
215880244364499579382801212799<30>
composite cofactor 合成数の残り
216169232177971192501955249216876153564299586479509590522860815653381675214844760678296009204006289701356974365633658790823919329922476632539<141>
factorization results 素因数分解の結果
Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=3927306547
Step 1 took 3572ms
Step 2 took 3373ms
********** Factor found in step 2: 215880244364499579382801212799
Found probable prime factor of 30 digits: 215880244364499579382801212799
Composite cofactor has 141 digits
software ソフトウェア
GMP-ECM 6.2.1

c141

name 名前Jo Yeong Uk
date 日付June 26, 2009 23:21:13 UTC 2009 年 6 月 27 日 (土) 8 時 21 分 13 秒 (日本時間)
composite number 合成数
216169232177971192501955249216876153564299586479509590522860815653381675214844760678296009204006289701356974365633658790823919329922476632539<141>
prime factors 素因数
164987940471911919931720360662845119279<39>
32526795988018253979416672362657704392943753593<47>
40281013844684900168945533327602460233451320127931079037<56>
factorization results 素因数分解の結果
GMP-ECM 6.2.3 [powered by GMP 4.3.1] [ECM]
Input number is 216169232177971192501955249216876153564299586479509590522860815653381675214844760678296009204006289701356974365633658790823919329922476632539 (141 digits)
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=5538504349
Step 1 took 4012ms
Step 2 took 2371ms
********** Factor found in step 2: 164987940471911919931720360662845119279
Found probable prime factor of 39 digits: 164987940471911919931720360662845119279
Composite cofactor 1310212319516604554737041668268993579654865949023704998524458434780684269585853050111262206001535729941 has 103 digits

Number: 46661_169
N=1310212319516604554737041668268993579654865949023704998524458434780684269585853050111262206001535729941
  ( 103 digits)
Divisors found:
 r1=32526795988018253979416672362657704392943753593
 r2=40281013844684900168945533327602460233451320127931079037
Version: 
Total time: 3.63 hours.
Scaled time: 8.68 units (timescale=2.390).
Factorization parameters were as follows:
name: 46661_169
n: 1310212319516604554737041668268993579654865949023704998524458434780684269585853050111262206001535729941
skew: 7580.79
# norm 2.17e+13
c5: 11640
c4: 80574174
c3: -2644906284335
c2: -10484031778600973
c1: 62593522390370734919
c0: -62150029590737475022585
# alpha -4.06
Y1: 57271184329
Y0: -40764009580135475262
# Murphy_E 2.53e-09
# M 1010454591132022271215501380240311892732052755553949690211722162287652266129439944490048921978649313790
type: gnfs
rlim: 1500000
alim: 1500000
lpbr: 26
lpba: 26
mfbr: 50
mfba: 50
rlambda: 2.6
alambda: 2.6
qintsize: 50000
Factor base limits: 1500000/1500000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 50/50
Sieved algebraic special-q in [750000, 1400001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 4804835
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 257647 x 257895
Polynomial selection time: 0.25 hours.
Total sieving time: 2.93 hours.
Total relation processing time: 0.29 hours.
Matrix solve time: 0.13 hours.
Time per square root: 0.04 hours.
Prototype def-par.txt line would be:
gnfs,102,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1500000,1500000,26,26,50,50,2.6,2.6,50000
total time: 3.63 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init)
Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673793)
Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672386)
Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672342)
Calibrating delay using timer specific routine.. 5237.73 BogoMIPS (lpj=2618866)
software ソフトウェア
GGNFS / Msieve v1.39
execution environment 実行環境
Core 2 Quad Q6700

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaFebruary 5, 2009 05:00:00 UTC 2009 年 2 月 5 日 (木) 14 時 0 分 0 秒 (日本時間)

14×10173-173

c156

name 名前Serge Batalov
date 日付February 5, 2009 08:48:24 UTC 2009 年 2 月 5 日 (木) 17 時 48 分 24 秒 (日本時間)
composite number 合成数
503140519660881974795324821181457082436994891623855485009116067336796221103560886082058540576625351399077098242073591505584121525239300320543802391616868229<156>
prime factors 素因数
409103341929942277576340139824293<33>
composite cofactor 合成数の残り
1229861670861254617548494925913918290044304120418280776400992158432398260682671962391119989681635502520909226281982831769953<124>
factorization results 素因数分解の結果
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1580869394
Step 1 took 10961ms
Step 2 took 10200ms
********** Factor found in step 2: 409103341929942277576340139824293
Found probable prime factor of 33 digits: 409103341929942277576340139824293
Composite cofactor has 124 digits
software ソフトウェア
GMP-ECM 6.2.1

c124

name 名前Robert Backstrom
date 日付October 27, 2009 14:29:03 UTC 2009 年 10 月 27 日 (火) 23 時 29 分 3 秒 (日本時間)
composite number 合成数
1229861670861254617548494925913918290044304120418280776400992158432398260682671962391119989681635502520909226281982831769953<124>
prime factors 素因数
4187044847170696975495032484814703095237037002928822757<55>
293730235942494492861511218837078094643977016140350496314412187630029<69>
factorization results 素因数分解の結果
Number: n
N=1229861670861254617548494925913918290044304120418280776400992158432398260682671962391119989681635502520909226281982831769953
  ( 124 digits)
Divisors found:

Wed Oct 28 01:20:11 2009  prp55 factor: 4187044847170696975495032484814703095237037002928822757
Wed Oct 28 01:20:11 2009  prp69 factor: 293730235942494492861511218837078094643977016140350496314412187630029
Wed Oct 28 01:20:11 2009  elapsed time 02:55:22 (Msieve 1.43 - dependency 1)

Version: GGNFS-0.77.1-20051202-athlon
Total time: 24.12 hours.
Scaled time: 44.11 units (timescale=1.829).
Factorization parameters were as follows:
name: KA_4_6_172_1
n: 1229861670861254617548494925913918290044304120418280776400992158432398260682671962391119989681635502520909226281982831769953
Y0: -679980794164857001434425
Y1:  20228359617079
c0:  574058941022120395736367581472
c1:  15189963738966010296654600
c2: -20437377482172436876
c3: -1303581716936282
c4:  1749624141
c5:  8460
skew: 186678.04
type: gnfs
rlim: 5000000
alim: 5000000
lpbr: 28
lpba: 28
mfbr: 56
mfba: 56
rlambda: 2.4
alambda: 2.4
qintsize: 50000
Factor base limits: 5000000/5000000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 56/56
Sieved  special-q in [2500000, 5100269)
Primes: RFBsize:348513, AFBsize:349151, largePrimes:15654479 encountered
Relations: rels:14625624, finalFF:735763
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 

Msieve: found 1637074 hash collisions in 15982632 relations
Msieve: matrix is 846990 x 847215 (231.9 MB)

Total sieving time: 23.66 hours.
Total relation processing time: 0.46 hours.
Matrix solve time: 0.00 hours.
Total square root time: 0.00 hours, sqrts: 0.
Prototype def-par.txt line would be:
gnfs,123,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,5000000,5000000,28,28,56,56,2.4,2.4,60000
total time: 24.12 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaFebruary 5, 2009 05:00:00 UTC 2009 年 2 月 5 日 (木) 14 時 0 分 0 秒 (日本時間)

14×10174-173

c117

name 名前Serge Batalov
date 日付February 5, 2009 06:57:53 UTC 2009 年 2 月 5 日 (木) 15 時 57 分 53 秒 (日本時間)
composite number 合成数
118789223446484106151414818383268520604983033896733701910334084665610895275866115989260834466349486100079363287217253<117>
prime factors 素因数
424978918630483693742771562901<30>
279517920157753837998752384235868465539820566237989946548788294559504855551561157233553<87>
factorization results 素因数分解の結果
Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=1507051256
Step 1 took 2796ms
********** Factor found in step 1: 424978918630483693742771562901
Found probable prime factor of 30 digits: 424978918630483693742771562901
Probable prime cofactor has 87 digits
software ソフトウェア
GMP-ECM 6.2.1

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaFebruary 5, 2009 05:00:00 UTC 2009 年 2 月 5 日 (木) 14 時 0 分 0 秒 (日本時間)

14×10176-173

c162

name 名前Robert Backstrom
date 日付January 6, 2012 04:44:06 UTC 2012 年 1 月 6 日 (金) 13 時 44 分 6 秒 (日本時間)
composite number 合成数
661558371750172316611680742225125406521680935117335130780633953025905724403117908788526593583991775340988387384110924622942899857648735367775426099509467098353133<162>
prime factors 素因数
615237836316015779177521087104644798362824198808587649<54>
1075288827669506463667521353358912409775416419721312776432891587675450247106624225192805175160849471039671917<109>
factorization results 素因数分解の結果
Number: n
N=661558371750172316611680742225125406521680935117335130780633953025905724403117908788526593583991775340988387384110924622942899857648735367775426099509467098353133
  ( 162 digits)
SNFS difficulty: 177 digits.
Divisors found:

Fri Jan  6 15:38:37 2012  prp54 factor: 615237836316015779177521087104644798362824198808587649
Fri Jan  6 15:38:37 2012  prp109 factor: 1075288827669506463667521353358912409775416419721312776432891587675450247106624225192805175160849471039671917
Fri Jan  6 15:38:37 2012  elapsed time 03:21:06 (Msieve 1.44 - dependency 2)

Version: 
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=1.646).
Factorization parameters were as follows:
name: KA_46661_176
n: 661558371750172316611680742225125406521680935117335130780633953025905724403117908788526593583991775340988387384110924622942899857648735367775426099509467098353133
m: 100000000000000000000000000000000000
deg: 5
c5: 140
c0: -17
skew: 0.66
type: snfs
lss: 1
rlim: 15000000
alim: 15000000
lpbr: 29
lpba: 29
mfbr: 57
mfba: 57
rlambda: 2.5
alambda: 2.5
Factor base limits: 15000000/15000000
Large primes per side: 3
Large prime bits: 29/29
Max factor residue bits: 57/57
Sieved  special-q in [100000, 17200000)
Primes: , , 
Relations: 
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 

Msieve: found 6154690 hash collisions in 75000096 relations
Msieve: matrix is 1149552 x 1149793 (316.1 MB)

Total sieving time: 0.00 hours.
Total relation processing time: 0.00 hours.
Matrix solve time: 0.00 hours.
Total square root time: 0.00 hours, sqrts: 0.
Prototype def-par.txt line would be:
snfs,177,5,0,0,0,0,0,0,0,0,15000000,15000000,29,29,57,57,2.5,2.5,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM) i7 CPU         930  @ 2.80GHz stepping 05
CPU1: Intel(R) Core(TM) i7 CPU         930  @ 2.80GHz stepping 05
CPU2: Intel(R) Core(TM) i7 CPU         930  @ 2.80GHz stepping 05
CPU3: Intel(R) Core(TM) i7 CPU         930  @ 2.80GHz stepping 05
CPU4: Intel(R) Core(TM) i7 CPU         930  @ 2.80GHz stepping 05
CPU5: Intel(R) Core(TM) i7 CPU         930  @ 2.80GHz stepping 05
CPU6: Intel(R) Core(TM) i7 CPU         930  @ 2.80GHz stepping 05
CPU7: Intel(R) Core(TM) i7 CPU         930  @ 2.80GHz stepping 05
Memory: 6059348k/6815744k available (3972k kernel code, 525828k absent, 230568k reserved, 2498k data, 1292k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 5595.66 BogoMIPS (lpj=2797831)
Calibrating delay using timer specific routine.. 5595.11 BogoMIPS (lpj=2797555)
Calibrating delay using timer specific routine.. 5595.10 BogoMIPS (lpj=2797554)
Calibrating delay using timer specific routine.. 5595.11 BogoMIPS (lpj=2797555)
Calibrating delay using timer specific routine.. 5595.11 BogoMIPS (lpj=2797556)
Calibrating delay using timer specific routine.. 5595.10 BogoMIPS (lpj=2797554)
Calibrating delay using timer specific routine.. 5595.11 BogoMIPS (lpj=2797556)
Calibrating delay using timer specific routine.. 5595.11 BogoMIPS (lpj=2797555)
Total of 8 processors activated (44761.43 BogoMIPS).

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaFebruary 5, 2009 05:00:00 UTC 2009 年 2 月 5 日 (木) 14 時 0 分 0 秒 (日本時間)
351e60--
403e62336300Dmitry DomanovMay 16, 2011 06:00:46 UTC 2011 年 5 月 16 日 (月) 15 時 0 分 46 秒 (日本時間)
2036Wataru SakaiSeptember 27, 2011 01:55:20 UTC 2011 年 9 月 27 日 (火) 10 時 55 分 20 秒 (日本時間)

14×10177-173

c154

name 名前Robert Backstrom
date 日付January 17, 2012 21:36:12 UTC 2012 年 1 月 18 日 (水) 6 時 36 分 12 秒 (日本時間)
composite number 合成数
1541436090645075442586037884833744992991266372913818068269239882074584500561359981652487593935644098837219082812578542806172001877885348507162583433789659<154>
prime factors 素因数
22299458134450749677447801798559660219612956457645674609<56>
69124374294265425542519894406726726235887282756068988189027745409783827796918736816338818044349451<98>
factorization results 素因数分解の結果
Number: n
N=1541436090645075442586037884833744992991266372913818068269239882074584500561359981652487593935644098837219082812578542806172001877885348507162583433789659
  ( 154 digits)
SNFS difficulty: 178 digits.
Divisors found:

Wed Jan 18 08:33:11 2012  prp56 factor: 22299458134450749677447801798559660219612956457645674609
Wed Jan 18 08:33:11 2012  prp98 factor: 69124374294265425542519894406726726235887282756068988189027745409783827796918736816338818044349451
Wed Jan 18 08:33:11 2012  elapsed time 02:52:43 (Msieve 1.44 - dependency 2)

Version: 
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=1.649).
Factorization parameters were as follows:
name: KA_46661_177
n: 1541436090645075442586037884833744992991266372913818068269239882074584500561359981652487593935644098837219082812578542806172001877885348507162583433789659
m: 100000000000000000000000000000000000
deg: 5
c5: 1400
c0: -17
skew: 0.41
type: snfs
lss: 1
rlim: 15000000
alim: 15000000
lpbr: 29
lpba: 29
mfbr: 57
mfba: 57
rlambda: 2.5
alambda: 2.5
Factor base limits: 15000000/15000000
Large primes per side: 3
Large prime bits: 29/29
Max factor residue bits: 57/57
Sieved  special-q in [100000, 21300000)
Primes: , , 
Relations: 
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 

Msieve: found 7264374 hash collisions in 76000095 relations
Msieve: matrix is 1231024 x 1231262 (337.1 MB)

Total sieving time: 0.00 hours.
Total relation processing time: 0.00 hours.
Matrix solve time: 0.00 hours.
Total square root time: 0.00 hours, sqrts: 0.
Prototype def-par.txt line would be:
snfs,178,5,0,0,0,0,0,0,0,0,15000000,15000000,29,29,57,57,2.5,2.5,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM) i7 CPU         930  @ 2.80GHz stepping 05
CPU1: Intel(R) Core(TM) i7 CPU         930  @ 2.80GHz stepping 05
CPU2: Intel(R) Core(TM) i7 CPU         930  @ 2.80GHz stepping 05
CPU3: Intel(R) Core(TM) i7 CPU         930  @ 2.80GHz stepping 05
CPU4: Intel(R) Core(TM) i7 CPU         930  @ 2.80GHz stepping 05
CPU5: Intel(R) Core(TM) i7 CPU         930  @ 2.80GHz stepping 05
CPU6: Intel(R) Core(TM) i7 CPU         930  @ 2.80GHz stepping 05
CPU7: Intel(R) Core(TM) i7 CPU         930  @ 2.80GHz stepping 05
Memory: 6059348k/6815744k available (3972k kernel code, 525828k absent, 230568k reserved, 2498k data, 1292k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 5595.06 BogoMIPS (lpj=2797533)
Calibrating delay using timer specific routine.. 5595.11 BogoMIPS (lpj=2797555)
Calibrating delay using timer specific routine.. 5595.11 BogoMIPS (lpj=2797555)
Calibrating delay using timer specific routine.. 5595.11 BogoMIPS (lpj=2797555)
Calibrating delay using timer specific routine.. 5595.10 BogoMIPS (lpj=2797553)
Calibrating delay using timer specific routine.. 5595.10 BogoMIPS (lpj=2797554)
Calibrating delay using timer specific routine.. 5595.10 BogoMIPS (lpj=2797554)
Calibrating delay using timer specific routine.. 5595.11 BogoMIPS (lpj=2797555)
Total of 8 processors activated (44760.82 BogoMIPS).

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaFebruary 5, 2009 05:00:00 UTC 2009 年 2 月 5 日 (木) 14 時 0 分 0 秒 (日本時間)
351e60--
403e62336300Dmitry DomanovMay 16, 2011 06:00:54 UTC 2011 年 5 月 16 日 (月) 15 時 0 分 54 秒 (日本時間)
2036Wataru SakaiNovember 18, 2011 10:10:23 UTC 2011 年 11 月 18 日 (金) 19 時 10 分 23 秒 (日本時間)
4511e64000Wataru SakaiNovember 25, 2011 02:23:47 UTC 2011 年 11 月 25 日 (金) 11 時 23 分 47 秒 (日本時間)
5043e60--
5511e72735 / 17501yoyo@homeJanuary 8, 2012 05:25:05 UTC 2012 年 1 月 8 日 (日) 14 時 25 分 5 秒 (日本時間)

14×10178-173

c168

name 名前Robert Backstrom
date 日付February 7, 2012 14:43:22 UTC 2012 年 2 月 7 日 (火) 23 時 43 分 22 秒 (日本時間)
composite number 合成数
708897462805176470890816559729041088413877509929656553042216496952596901092301772882459200979508423616582577203297203886065564373130382659039541380817530693085102800539<168>
prime factors 素因数
28546821019147319808650585282197294410198331762531797916032908379099041809097<77>
24832798801999526689331064181452647365336077731458037938999856817608909966198557805360440387<92>
factorization results 素因数分解の結果
Number: n
N=708897462805176470890816559729041088413877509929656553042216496952596901092301772882459200979508423616582577203297203886065564373130382659039541380817530693085102800539
  ( 168 digits)
SNFS difficulty: 179 digits.
Divisors found:

Wed Feb  8 01:39:03 2012  prp77 factor: 28546821019147319808650585282197294410198331762531797916032908379099041809097
Wed Feb  8 01:39:03 2012  prp92 factor: 24832798801999526689331064181452647365336077731458037938999856817608909966198557805360440387
Wed Feb  8 01:39:03 2012  elapsed time 02:27:54 (Msieve 1.44 - dependency 1)

Version: 
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=1.649).
Factorization parameters were as follows:
name: KA_46661_178
n: 708897462805176470890816559729041088413877509929656553042216496952596901092301772882459200979508423616582577203297203886065564373130382659039541380817530693085102800539
m: 100000000000000000000000000000000000
#  c168, diff: 179.15
skew: 0.26
deg: 5
c5: 14000
c0: -17
type: snfs
lss: 1
rlim: 15000000
alim: 15000000
lpbr: 29
lpba: 29
mfbr: 57
mfba: 57
rlambda: 2.5
alambda: 2.5
Factor base limits: 15000000/15000000
Large primes per side: 3
Large prime bits: 29/29
Max factor residue bits: 57/57
Sieved  special-q in [100000, 13100000)
Primes: , , 
Relations: 
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 

Msieve: found 7693225 hash collisions in 76385186 relations (71096370 unique)
Msieve: matrix is 1135311 x 1135557 (314.5 MB)

Total sieving time: 0.00 hours.
Total relation processing time: 0.00 hours.
Matrix solve time: 0.00 hours.
Total square root time: 0.00 hours, sqrts: 0.
Prototype def-par.txt line would be:
snfs,179,5,0,0,0,0,0,0,0,0,15000000,15000000,29,29,57,57,2.5,2.5,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM) i7 CPU         930  @ 2.80GHz stepping 05
CPU1: Intel(R) Core(TM) i7 CPU         930  @ 2.80GHz stepping 05
CPU2: Intel(R) Core(TM) i7 CPU         930  @ 2.80GHz stepping 05
CPU3: Intel(R) Core(TM) i7 CPU         930  @ 2.80GHz stepping 05
CPU4: Intel(R) Core(TM) i7 CPU         930  @ 2.80GHz stepping 05
CPU5: Intel(R) Core(TM) i7 CPU         930  @ 2.80GHz stepping 05
CPU6: Intel(R) Core(TM) i7 CPU         930  @ 2.80GHz stepping 05
CPU7: Intel(R) Core(TM) i7 CPU         930  @ 2.80GHz stepping 05
Memory: 6059348k/6815744k available (3972k kernel code, 525828k absent, 230568k reserved, 2498k data, 1292k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 5595.06 BogoMIPS (lpj=2797533)
Calibrating delay using timer specific routine.. 5595.11 BogoMIPS (lpj=2797555)
Calibrating delay using timer specific routine.. 5595.11 BogoMIPS (lpj=2797555)
Calibrating delay using timer specific routine.. 5595.11 BogoMIPS (lpj=2797555)
Calibrating delay using timer specific routine.. 5595.10 BogoMIPS (lpj=2797553)
Calibrating delay using timer specific routine.. 5595.10 BogoMIPS (lpj=2797554)
Calibrating delay using timer specific routine.. 5595.10 BogoMIPS (lpj=2797554)
Calibrating delay using timer specific routine.. 5595.11 BogoMIPS (lpj=2797555)
Total of 8 processors activated (44760.82 BogoMIPS).

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaFebruary 5, 2009 05:00:00 UTC 2009 年 2 月 5 日 (木) 14 時 0 分 0 秒 (日本時間)
351e60--
403e6300 / 2336Dmitry DomanovMay 16, 2011 06:01:08 UTC 2011 年 5 月 16 日 (月) 15 時 1 分 8 秒 (日本時間)

14×10179-173

c155

name 名前Dmitry Domanov
date 日付August 28, 2013 14:27:29 UTC 2013 年 8 月 28 日 (水) 23 時 27 分 29 秒 (日本時間)
composite number 合成数
34977478408743374680242148620681971499844327693627553067603500378212794179244850114273062793094454594112500522595814727635590726257380311875731143959016277<155>
prime factors 素因数
26841117124528291350679472758851190480668128910491731609637767<62>
1303130501106446500363663694900545547901752373686331558196371067366447190279949595392520286531<94>
factorization results 素因数分解の結果
N=34977478408743374680242148620681971499844327693627553067603500378212794179244850114273062793094454594112500522595814727635590726257380311875731143959016277
  ( 155 digits)
SNFS difficulty: 180 digits.
Divisors found:
 r1=26841117124528291350679472758851190480668128910491731609637767 (pp62)
 r2=1303130501106446500363663694900545547901752373686331558196371067366447190279949595392520286531 (pp94)
Version: Msieve v. 1.50 (SVN unknown)
Total time: 99.77 hours.
Scaled time: 185.97 units (timescale=1.864).
Factorization parameters were as follows:
n: 34977478408743374680242148620681971499844327693627553067603500378212794179244850114273062793094454594112500522595814727635590726257380311875731143959016277
m: 1000000000000000000000000000000000000
deg: 5
c5: 7
c0: -85
skew: 1.65
# Murphy_E = 9.992e-11
type: snfs
lss: 1
rlim: 7200000
alim: 7200000
lpbr: 28
lpba: 28
mfbr: 53
mfba: 53
rlambda: 2.5
alambda: 2.5
qintsize: 400000
Factor base limits: 7200000/7200000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 53/53
Sieved rational special-q in [3600000, 8800001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1414488 x 1414716
Total sieving time: 97.57 hours.
Total relation processing time: 0.20 hours.
Matrix solve time: 1.93 hours.
Time per square root: 0.07 hours.
Prototype def-par.txt line would be:
snfs,180.000,5,0,0,0,0,0,0,0,0,7200000,7200000,28,28,53,53,2.5,2.5,100000
total time: 99.77 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaFebruary 5, 2009 05:00:00 UTC 2009 年 2 月 5 日 (木) 14 時 0 分 0 秒 (日本時間)
351e60--
403e62336300Dmitry DomanovMay 16, 2011 06:01:16 UTC 2011 年 5 月 16 日 (月) 15 時 1 分 16 秒 (日本時間)
2036Wataru SakaiApril 12, 2012 05:59:35 UTC 2012 年 4 月 12 日 (木) 14 時 59 分 35 秒 (日本時間)

14×10180-173

c124

name 名前Serge Batalov
date 日付February 5, 2009 18:26:25 UTC 2009 年 2 月 6 日 (金) 3 時 26 分 25 秒 (日本時間)
composite number 合成数
4110838370407917879632882292347371580146620173462032164358596819247614331499675081460915142930119782330045299233145450088591<124>
prime factors 素因数
161485093949478888156665341696665738479<39>
25456457124730078165396640183259087880093460044467293671285886996120689261101704351329<86>
factorization results 素因数分解の結果
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=21286820
Step 1 took 7797ms
Step 2 took 8008ms
********** Factor found in step 2: 161485093949478888156665341696665738479
Found probable prime factor of 39 digits: 161485093949478888156665341696665738479
Probable prime cofactor 25456457124730078165396640183259087880093460044467293671285886996120689261101704351329 has 86 digits
software ソフトウェア
GMP-ECM 6.2.1

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaFebruary 5, 2009 05:00:00 UTC 2009 年 2 月 5 日 (木) 14 時 0 分 0 秒 (日本時間)

14×10181-173

c139

name 名前Dmitry Domanov
date 日付August 28, 2013 14:27:55 UTC 2013 年 8 月 28 日 (水) 23 時 27 分 55 秒 (日本時間)
composite number 合成数
8045020100846376112907207718539143591765498670425130738267010981077139012746134473628676407586996400347558395461087434464268786142628942319<139>
prime factors 素因数
1371254708388718939039640201599104521113427910638635106177<58>
5866904267770652066554117299667272600807696105775794081983351438731021881173576047<82>
factorization results 素因数分解の結果
N=8045020100846376112907207718539143591765498670425130738267010981077139012746134473628676407586996400347558395461087434464268786142628942319
  ( 139 digits)
SNFS difficulty: 182 digits.
Divisors found:
 r1=1371254708388718939039640201599104521113427910638635106177 (pp58)
 r2=5866904267770652066554117299667272600807696105775794081983351438731021881173576047 (pp82)
Version: Msieve v. 1.50 (SVN unknown)
Total time: 116.60 hours.
Scaled time: 224.33 units (timescale=1.924).
Factorization parameters were as follows:
n: 8045020100846376112907207718539143591765498670425130738267010981077139012746134473628676407586996400347558395461087434464268786142628942319
m: 1000000000000000000000000000000000000
deg: 5
c5: 140
c0: -17
skew: 0.66
# Murphy_E = 8.693e-11
type: snfs
lss: 1
rlim: 7600000
alim: 7600000
lpbr: 28
lpba: 28
mfbr: 53
mfba: 53
rlambda: 2.5
alambda: 2.5
qintsize: 400000
Factor base limits: 7600000/7600000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 53/53
Sieved rational special-q in [3800000, 9800001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1454307 x 1454537
Total sieving time: 113.97 hours.
Total relation processing time: 0.20 hours.
Matrix solve time: 2.33 hours.
Time per square root: 0.09 hours.
Prototype def-par.txt line would be:
snfs,182.000,5,0,0,0,0,0,0,0,0,7600000,7600000,28,28,53,53,2.5,2.5,100000
total time: 116.60 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaFebruary 5, 2009 05:00:00 UTC 2009 年 2 月 5 日 (木) 14 時 0 分 0 秒 (日本時間)
351e60--
403e62336300Dmitry DomanovMay 16, 2011 06:01:24 UTC 2011 年 5 月 16 日 (月) 15 時 1 分 24 秒 (日本時間)
2036JPascoaAugust 17, 2013 11:41:12 UTC 2013 年 8 月 17 日 (土) 20 時 41 分 12 秒 (日本時間)
4511e690 / 3962JPascoaAugust 17, 2013 12:06:22 UTC 2013 年 8 月 17 日 (土) 21 時 6 分 22 秒 (日本時間)

14×10182-173

c164

name 名前Serge Batalov
date 日付February 5, 2009 07:53:32 UTC 2009 年 2 月 5 日 (木) 16 時 53 分 32 秒 (日本時間)
composite number 合成数
23998482479282556547265086844838706702948248868529600255913937580227405205004362026616778919710158139605909643532712114461052240421630366805342117289363386782443009<164>
prime factors 素因数
40139161552591513443366540237002969<35>
597882007272101010985678287128299619443541305065912651420531019621137283657335574509787903281386890063449376162669440326865485161<129>
factorization results 素因数分解の結果
Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=3815980854
Step 1 took 4532ms
Step 2 took 4245ms
********** Factor found in step 2: 40139161552591513443366540237002969
Found probable prime factor of 35 digits: 40139161552591513443366540237002969
Probable prime cofactor 597882007272101010985678287128299619443541305065912651420531019621137283657335574509787903281386890063449376162669440326865485161 has 129 digits
software ソフトウェア
GMP-ECM 6.2.1

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaFebruary 5, 2009 05:00:00 UTC 2009 年 2 月 5 日 (木) 14 時 0 分 0 秒 (日本時間)

14×10183-173

c136

name 名前Robert Backstrom
date 日付May 27, 2012 09:31:56 UTC 2012 年 5 月 27 日 (日) 18 時 31 分 56 秒 (日本時間)
composite number 合成数
6486227147325636098456295624603433552767803312268942893159559982968703216589175054761341584439758397954239577226422813929073079358958991<136>
prime factors 素因数
2788467252184648338458753063474843889361639<43>
2326090486536625589538246869376739223898432692945991892328173391326315155883210868469391078169<94>
factorization results 素因数分解の結果
Number: n
N=6486227147325636098456295624603433552767803312268942893159559982968703216589175054761341584439758397954239577226422813929073079358958991
  ( 136 digits)
Divisors found:

Sun May 27 19:26:11 2012  prp43 factor: 2788467252184648338458753063474843889361639
Sun May 27 19:26:11 2012  prp94 factor: 2326090486536625589538246869376739223898432692945991892328173391326315155883210868469391078169
Sun May 27 19:26:11 2012  elapsed time 03:29:54 (Msieve 1.44 - dependency 1)

Version: 
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.087).
Factorization parameters were as follows:
name: KA_46661_183
n: 6486227147325636098456295624603433552767803312268942893159559982968703216589175054761341584439758397954239577226422813929073079358958991
skew: 243030.01
# norm 1.13e+19
c5: 62640
c4: -528258593532
c3: 85826921573731866
c2: 9740516312664743530715
c1: -1900661227495105338688633188
c0: -153531204379747883567149530863780
# alpha -6.28
Y1: 736372292660771
Y0: -159599475820236163865185581
# Murphy_E 3.07e-11
# M 4155059090531888172733559439403713314476144524341405912816996451498656246844328239153915814966734153942075291528123717045889330056275395
type: gnfs
rlim: 15000000
alim: 15000000
lpbr: 28
lpba: 28
mfbr: 55
mfba: 55
rlambda: 2.5
alambda: 2.5
qintsize: 60000
Factor base limits: 15000000/15000000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 55/55
Sieved  special-q in [100000, 16740000)
Primes: , , 
Relations: 
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 

Msieve: found 3167367 hash collisions in 26915431 relations (24663704 unique)
Msieve: matrix is 1556296 x 1556521 (449.5 MB)

Total sieving time: 0.00 hours.
Total relation processing time: 0.00 hours.
Matrix solve time: 0.00 hours.
Total square root time: 0.00 hours, sqrts: 0.
Prototype def-par.txt line would be:
gnfs,135,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,15000000,15000000,28,28,55,55,2.5,2.5,60000
total time: 0.00 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM)2 Quad  CPU   Q9550  @ 2.83GHz stepping 07
CPU1: Intel(R) Core(TM)2 Quad  CPU   Q9550  @ 2.83GHz stepping 07
CPU2: Intel(R) Core(TM)2 Quad  CPU   Q9550  @ 2.83GHz stepping 07
CPU3: Intel(R) Core(TM)2 Quad  CPU   Q9550  @ 2.83GHz stepping 07
Memory: 4015340k/5242880k available (3972k kernel code, 1049604k absent, 177936k reserved, 2498k data, 1292k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 5661.43 BogoMIPS (lpj=2830715)
Calibrating delay using timer specific routine.. 5660.89 BogoMIPS (lpj=2830448)
Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830459)
Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830456)
Total of 4 processors activated (22644.15 BogoMIPS).

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaFebruary 5, 2009 05:00:00 UTC 2009 年 2 月 5 日 (木) 14 時 0 分 0 秒 (日本時間)
351e60--
403e6300 / 2336Dmitry DomanovMay 16, 2011 06:01:34 UTC 2011 年 5 月 16 日 (月) 15 時 1 分 34 秒 (日本時間)

14×10184-173

c135

name 名前Robert Backstrom
date 日付June 3, 2012 13:54:11 UTC 2012 年 6 月 3 日 (日) 22 時 54 分 11 秒 (日本時間)
composite number 合成数
347801615046495932279184636044985919898441408366334598397092156001015509841913706820483179322457271961283705449096910527016260626062569<135>
prime factors 素因数
350242673893994057343322235182248400727976898422049361103893<60>
993030378564786350522387773206937764192445631615913280121123573104129113733<75>
factorization results 素因数分解の結果
Number: n
N=347801615046495932279184636044985919898441408366334598397092156001015509841913706820483179322457271961283705449096910527016260626062569
  ( 135 digits)
Divisors found:

Sun Jun  3 23:48:35 2012  prp60 factor: 350242673893994057343322235182248400727976898422049361103893
Sun Jun  3 23:48:35 2012  prp75 factor: 993030378564786350522387773206937764192445631615913280121123573104129113733
Sun Jun  3 23:48:35 2012  elapsed time 08:36:02 (Msieve 1.44 - dependency 3)

Version: GGNFS-0.77.1-20060513-nocona
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.096).
Factorization parameters were as follows:
name: n
n: 347801615046495932279184636044985919898441408366334598397092156001015509841913706820483179322457271961283705449096910527016260626062569
#
# Ggnfs polyselect:
#
# skew: 160376.88
# # norm 5.18e+18
# c5: 68040
# c4: 696005845398
# c3: 25037613616875024
# c2: -17063825401155374745079
# c1: -1419936599302504364202828266
# c0: -22741511994793766016300285024736
# # alpha -6.62
# Y1: 496805719771801
# Y0: -87439649840510666593787295
# # Murphy_E 4.07e-11
# # M 261941517893500186371712294729034110342981655580767733839462748581050511323785049241625515436134500679750522537106520364181203527968650
#

#
# Msieve polyselect:
#
# norm 4.321909e-13 alpha -6.989778 e 3.659e-11
skew: 880827.98
c0:  536970540625925432381923754732480
c1:  7492468121165320238302374976
c2: -39134851545344357212196
c3:  120212677613375984
c4:  38792673441
c5:  9240
Y0: -130355783966620227336654909
Y1:  578661210272773

type: gnfs
rlim: 20000000
alim: 20000000
lpbr: 28
lpba: 28
mfbr: 56
mfba: 56
rlambda: 2.5
alambda: 2.5
qintsize: 60000
Factor base limits: 20000000/20000000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 56/56
Sieved  special-q in [100000, 14560000)
Primes: RFBsize:1270607, AFBsize:1270047, 
Relations: 
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 

Msieve: found 1845579 hash collisions in 21792673 relations (20712179 unique)
Msieve: matrix is 2144557 x 2144782 (629.3 MB)

Total sieving time: 0.00 hours.
Total relation processing time: 0.00 hours.
Matrix solve time: 0.00 hours.
Total square root time: 0.00 hours, sqrts: 0.
Prototype def-par.txt line would be:
gnfs,134,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,20000000,20000000,28,28,56,56,2.5,2.5,60000
total time: 0.00 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM)2 Quad  CPU   Q9550  @ 2.83GHz stepping 07
CPU1: Intel(R) Core(TM)2 Quad  CPU   Q9550  @ 2.83GHz stepping 07
CPU2: Intel(R) Core(TM)2 Quad  CPU   Q9550  @ 2.83GHz stepping 07
CPU3: Intel(R) Core(TM)2 Quad  CPU   Q9550  @ 2.83GHz stepping 07
Memory: 8109188k/9175040k available (3972k kernel code, 787464k absent, 278388k reserved, 2498k data, 1292k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 5662.06 BogoMIPS (lpj=2831031)
Calibrating delay using timer specific routine.. 5660.90 BogoMIPS (lpj=2830451)
Calibrating delay using timer specific routine.. 5660.92 BogoMIPS (lpj=2830460)
Calibrating delay using timer specific routine.. 5660.92 BogoMIPS (lpj=2830460)
Total of 4 processors activated (22644.80 BogoMIPS).

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaFebruary 5, 2009 05:00:00 UTC 2009 年 2 月 5 日 (木) 14 時 0 分 0 秒 (日本時間)
351e60--
403e61070300Dmitry DomanovMay 16, 2011 06:01:42 UTC 2011 年 5 月 16 日 (月) 15 時 1 分 42 秒 (日本時間)
770Ignacio SantosJuly 17, 2011 20:43:40 UTC 2011 年 7 月 18 日 (月) 5 時 43 分 40 秒 (日本時間)
4511e6220 / 4028Ignacio SantosJuly 17, 2011 20:43:40 UTC 2011 年 7 月 18 日 (月) 5 時 43 分 40 秒 (日本時間)
5043e661 / 7464Ignacio SantosJuly 17, 2011 20:43:40 UTC 2011 年 7 月 18 日 (月) 5 時 43 分 40 秒 (日本時間)

14×10186-173

c167

name 名前Jo Yeong Uk
date 日付October 7, 2016 01:40:45 UTC 2016 年 10 月 7 日 (金) 10 時 40 分 45 秒 (日本時間)
composite number 合成数
11951468798030005140737335262650050047237518730710390784661426564972613703187348342609838444474087128758329006282060395193734419224566472192131686662268162779226275301<167>
prime factors 素因数
152296195397831206859942257157314463942551<42>
9205586619836843674669156814911907860370082902601063451<55>
8524732480700450450466504735914783203503364002064406473412197715171801<70>
factorization results 素因数分解の結果
GMP-ECM 6.4.4 [configured with GMP 6.0.0, --enable-asm-redc] [ECM]
Input number is 11951468798030005140737335262650050047237518730710390784661426564972613703187348342609838444474087128758329006282060395193734419224566472192131686662268162779226275301 (167 digits)
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=3259990527
Step 1 took 29384ms
Step 2 took 10043ms
********** Factor found in step 2: 152296195397831206859942257157314463942551
Found probable prime factor of 42 digits: 152296195397831206859942257157314463942551
Composite cofactor 78475163262024610868807860187822202288099776440300414269149622814857944741712829662059676731919195834060284846821979766945251 has 125 digits

Number: 46661_186
N=78475163262024610868807860187822202288099776440300414269149622814857944741712829662059676731919195834060284846821979766945251
  ( 125 digits)
Divisors found:
 r1=9205586619836843674669156814911907860370082902601063451
 r2=8524732480700450450466504735914783203503364002064406473412197715171801
Version: 
Total time: 36.62 hours.
Scaled time: 192.17 units (timescale=5.248).
Factorization parameters were as follows:
name: 46661_186
n: 78475163262024610868807860187822202288099776440300414269149622814857944741712829662059676731919195834060284846821979766945251
skew: 38310.15
# norm 5.72e+16
c5: 755880
c4: 36835619026
c3: -2880123918913931
c2: -47550418879362797217
c1: 906235081175504372146211
c0: 15639412109645116207013588591
# alpha -5.14
Y1: 1973507946601
Y0: -635705342909404895560260
# Murphy_E 1.42e-10
# M 77368560038614338951897776941535231051361639433043471512582073073519301868695388169755361080712879664475508734577473065572403
type: gnfs
rlim: 6800000
alim: 6800000
lpbr: 28
lpba: 28
mfbr: 54
mfba: 54
rlambda: 2.5
alambda: 2.5
qintsize: 100000
Factor base limits: 6800000/6800000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 54/54
Sieved algebraic special-q in [3400000, 6800001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 18128306
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1172792 x 1173039
Polynomial selection time: 5.20 hours.
Total sieving time: 27.51 hours.
Total relation processing time: 1.48 hours.
Matrix solve time: 1.46 hours.
Time per square root: 0.97 hours.
Prototype def-par.txt line would be:
gnfs,124,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,6800000,6800000,28,28,54,54,2.5,2.5,100000
total time: 36.62 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM) i7-4930K CPU @ 3.40GHz stepping 04
Memory: 49368528k/51380224k available (5398k kernel code, 1086460k absent, 925236k reserved, 7010k data, 1296k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 6799.87 BogoMIPS (lpj=3399935)
Total of 12 processors activated (81598.44 BogoMIPS).
software ソフトウェア
GMP-ECM v6.4.4 / GGNFS / Msieve v1.39
execution environment 実行環境
Core i7-4930K

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaFebruary 5, 2009 05:00:00 UTC 2009 年 2 月 5 日 (木) 14 時 0 分 0 秒 (日本時間)
351e60--
403e61800300Dmitry DomanovMay 16, 2011 06:01:49 UTC 2011 年 5 月 16 日 (月) 15 時 1 分 49 秒 (日本時間)
1500Dmitry DomanovOctober 1, 2013 12:04:10 UTC 2013 年 10 月 1 日 (火) 21 時 4 分 10 秒 (日本時間)
4511e61000 / 4081Dmitry DomanovOctober 22, 2013 16:09:50 UTC 2013 年 10 月 23 日 (水) 1 時 9 分 50 秒 (日本時間)

14×10187-173

c162

name 名前LegionMammal978
date 日付August 1, 2017 21:22:30 UTC 2017 年 8 月 2 日 (水) 6 時 22 分 30 秒 (日本時間)
composite number 合成数
402130716813436356606293635297191090785278590105581689179816291378383762176171929195185108053696878692758043372781300550649178159695583039507540466607944639063591<162>
prime factors 素因数
2052373792680280322359627301040211855984159719633847270607<58>
195934443446715972417273748085878158094819444772773353563904473751664670809067771739598457780616176355113<105>
factorization results 素因数分解の結果
Sun Jul 30 22:20:57 2017  Msieve v. 1.53 (SVN Unversioned directory)
Sun Jul 30 22:20:57 2017  random seeds: 7756820e a2c345b6
Sun Jul 30 22:20:57 2017  factoring 402130716813436356606293635297191090785278590105581689179816291378383762176171929195185108053696878692758043372781300550649178159695583039507540466607944639063591 (162 digits)
Sun Jul 30 22:20:58 2017  no P-1/P+1/ECM available, skipping
Sun Jul 30 22:20:58 2017  commencing number field sieve (162-digit input)
Sun Jul 30 22:20:58 2017  R0: -10000000000000000000000000000000000000
Sun Jul 30 22:20:58 2017  R1: 1
Sun Jul 30 22:20:58 2017  A0: -17
Sun Jul 30 22:20:58 2017  A1: 0
Sun Jul 30 22:20:58 2017  A2: 0
Sun Jul 30 22:20:58 2017  A3: 0
Sun Jul 30 22:20:58 2017  A4: 0
Sun Jul 30 22:20:58 2017  A5: 1400
Sun Jul 30 22:20:58 2017  skew 0.41, size 2.725e-13, alpha 0.485, combined = 3.811e-11 rroots = 1
Sun Jul 30 22:20:58 2017  
Sun Jul 30 22:20:58 2017  commencing relation filtering
Sun Jul 30 22:20:58 2017  estimated available RAM is 15929.4 MB
Sun Jul 30 22:20:58 2017  commencing duplicate removal, pass 1
Sun Jul 30 22:23:41 2017  found 3474176 hash collisions in 22512910 relations
Sun Jul 30 22:24:00 2017  added 310 free relations
Sun Jul 30 22:24:00 2017  commencing duplicate removal, pass 2
Sun Jul 30 22:24:06 2017  found 3187623 duplicates and 19325597 unique relations
Sun Jul 30 22:24:06 2017  memory use: 106.6 MB
Sun Jul 30 22:24:06 2017  reading ideals above 720000
Sun Jul 30 22:24:06 2017  commencing singleton removal, initial pass
Sun Jul 30 22:26:05 2017  memory use: 689.0 MB
Sun Jul 30 22:26:05 2017  reading all ideals from disk
Sun Jul 30 22:26:06 2017  memory use: 618.4 MB
Sun Jul 30 22:26:06 2017  keeping 21457777 ideals with weight <= 200, target excess is 116016
Sun Jul 30 22:26:07 2017  commencing in-memory singleton removal
Sun Jul 30 22:26:08 2017  begin with 19325597 relations and 21457777 unique ideals
Sun Jul 30 22:26:17 2017  reduce to 7920784 relations and 7735987 ideals in 20 passes
Sun Jul 30 22:26:17 2017  max relations containing the same ideal: 107
Sun Jul 30 22:26:19 2017  removing 370015 relations and 344906 ideals in 25109 cliques
Sun Jul 30 22:26:19 2017  commencing in-memory singleton removal
Sun Jul 30 22:26:19 2017  begin with 7550769 relations and 7735987 unique ideals
Sun Jul 30 22:26:22 2017  reduce to 7535258 relations and 7375483 ideals in 9 passes
Sun Jul 30 22:26:22 2017  max relations containing the same ideal: 103
Sun Jul 30 22:26:24 2017  removing 265698 relations and 240589 ideals in 25109 cliques
Sun Jul 30 22:26:24 2017  commencing in-memory singleton removal
Sun Jul 30 22:26:25 2017  begin with 7269560 relations and 7375483 unique ideals
Sun Jul 30 22:26:28 2017  reduce to 7261348 relations and 7126656 ideals in 8 passes
Sun Jul 30 22:26:28 2017  max relations containing the same ideal: 101
Sun Jul 30 22:26:30 2017  relations with 0 large ideals: 2864
Sun Jul 30 22:26:30 2017  relations with 1 large ideals: 829
Sun Jul 30 22:26:30 2017  relations with 2 large ideals: 15093
Sun Jul 30 22:26:30 2017  relations with 3 large ideals: 123411
Sun Jul 30 22:26:30 2017  relations with 4 large ideals: 535217
Sun Jul 30 22:26:30 2017  relations with 5 large ideals: 1356138
Sun Jul 30 22:26:30 2017  relations with 6 large ideals: 2127131
Sun Jul 30 22:26:30 2017  relations with 7+ large ideals: 3100665
Sun Jul 30 22:26:30 2017  commencing 2-way merge
Sun Jul 30 22:26:33 2017  reduce to 4251265 relation sets and 4116575 unique ideals
Sun Jul 30 22:26:33 2017  ignored 2 oversize relation sets
Sun Jul 30 22:26:33 2017  commencing full merge
Sun Jul 30 22:27:17 2017  memory use: 498.2 MB
Sun Jul 30 22:27:18 2017  found 2184068 cycles, need 2170775
Sun Jul 30 22:27:18 2017  weight of 2170775 cycles is about 152243369 (70.13/cycle)
Sun Jul 30 22:27:18 2017  distribution of cycle lengths:
Sun Jul 30 22:27:18 2017  1 relations: 327375
Sun Jul 30 22:27:18 2017  2 relations: 287325
Sun Jul 30 22:27:18 2017  3 relations: 262418
Sun Jul 30 22:27:18 2017  4 relations: 226013
Sun Jul 30 22:27:18 2017  5 relations: 192486
Sun Jul 30 22:27:18 2017  6 relations: 158170
Sun Jul 30 22:27:18 2017  7 relations: 133349
Sun Jul 30 22:27:18 2017  8 relations: 109117
Sun Jul 30 22:27:18 2017  9 relations: 89109
Sun Jul 30 22:27:18 2017  10+ relations: 385413
Sun Jul 30 22:27:18 2017  heaviest cycle: 27 relations
Sun Jul 30 22:27:19 2017  commencing cycle optimization
Sun Jul 30 22:27:21 2017  start with 12402229 relations
Sun Jul 30 22:27:32 2017  pruned 264756 relations
Sun Jul 30 22:27:32 2017  memory use: 418.0 MB
Sun Jul 30 22:27:32 2017  distribution of cycle lengths:
Sun Jul 30 22:27:32 2017  1 relations: 327375
Sun Jul 30 22:27:32 2017  2 relations: 293259
Sun Jul 30 22:27:32 2017  3 relations: 270889
Sun Jul 30 22:27:32 2017  4 relations: 229974
Sun Jul 30 22:27:32 2017  5 relations: 195620
Sun Jul 30 22:27:32 2017  6 relations: 158892
Sun Jul 30 22:27:32 2017  7 relations: 133259
Sun Jul 30 22:27:32 2017  8 relations: 107900
Sun Jul 30 22:27:32 2017  9 relations: 87288
Sun Jul 30 22:27:32 2017  10+ relations: 366319
Sun Jul 30 22:27:32 2017  heaviest cycle: 27 relations
Sun Jul 30 22:27:34 2017  RelProcTime: 396
Sun Jul 30 22:27:35 2017  elapsed time 00:06:38
Sun Jul 30 22:27:35 2017 LatSieveTime: 1459.01
Sun Jul 30 22:27:35 2017 -> Running matrix solving step ...
Sun Jul 30 22:27:35 2017 -> ./msieve -s 46661_187/46661_187.dat -l 46661_187/46661_187.log -i 46661_187/46661_187.ini -nf 46661_187/46661_187.fb -t 3 -nc2
Sun Jul 30 22:27:35 2017  
Sun Jul 30 22:27:35 2017  
Sun Jul 30 22:27:35 2017  Msieve v. 1.53 (SVN Unversioned directory)
Sun Jul 30 22:27:35 2017  random seeds: 6250f63a 60f9bcb9
Sun Jul 30 22:27:35 2017  factoring 402130716813436356606293635297191090785278590105581689179816291378383762176171929195185108053696878692758043372781300550649178159695583039507540466607944639063591 (162 digits)
Sun Jul 30 22:27:35 2017  no P-1/P+1/ECM available, skipping
Sun Jul 30 22:27:35 2017  commencing number field sieve (162-digit input)
Sun Jul 30 22:27:35 2017  R0: -10000000000000000000000000000000000000
Sun Jul 30 22:27:35 2017  R1: 1
Sun Jul 30 22:27:35 2017  A0: -17
Sun Jul 30 22:27:35 2017  A1: 0
Sun Jul 30 22:27:35 2017  A2: 0
Sun Jul 30 22:27:35 2017  A3: 0
Sun Jul 30 22:27:35 2017  A4: 0
Sun Jul 30 22:27:35 2017  A5: 1400
Sun Jul 30 22:27:35 2017  skew 0.41, size 2.725e-13, alpha 0.485, combined = 3.811e-11 rroots = 1
Sun Jul 30 22:27:35 2017  
Sun Jul 30 22:27:35 2017  commencing linear algebra
Sun Jul 30 22:27:36 2017  read 2170775 cycles
Sun Jul 30 22:27:38 2017  cycles contain 7096556 unique relations
Sun Jul 30 22:28:11 2017  read 7096556 relations
Sun Jul 30 22:28:16 2017  using 20 quadratic characters above 4294917295
Sun Jul 30 22:28:44 2017  building initial matrix
Sun Jul 30 22:29:25 2017  memory use: 867.0 MB
Sun Jul 30 22:29:25 2017  read 2170775 cycles
Sun Jul 30 22:29:26 2017  matrix is 2170596 x 2170775 (651.9 MB) with weight 190578597 (87.79/col)
Sun Jul 30 22:29:26 2017  sparse part has weight 147008914 (67.72/col)
Sun Jul 30 22:29:38 2017  filtering completed in 2 passes
Sun Jul 30 22:29:38 2017  matrix is 2167870 x 2168048 (651.6 MB) with weight 190485159 (87.86/col)
Sun Jul 30 22:29:38 2017  sparse part has weight 146974099 (67.79/col)
Sun Jul 30 22:29:43 2017  matrix starts at (0, 0)
Sun Jul 30 22:29:43 2017  matrix is 2167870 x 2168048 (651.6 MB) with weight 190485159 (87.86/col)
Sun Jul 30 22:29:43 2017  sparse part has weight 146974099 (67.79/col)
Sun Jul 30 22:29:43 2017  saving the first 48 matrix rows for later
Sun Jul 30 22:29:43 2017  matrix includes 64 packed rows
Sun Jul 30 22:29:43 2017  matrix is 2167822 x 2168048 (616.5 MB) with weight 151760684 (70.00/col)
Sun Jul 30 22:29:43 2017  sparse part has weight 139943561 (64.55/col)
Sun Jul 30 22:29:43 2017  using block size 8192 and superblock size 786432 for processor cache size 8192 kB
Sun Jul 30 22:29:48 2017  commencing Lanczos iteration (3 threads)
Sun Jul 30 22:29:48 2017  memory use: 496.0 MB
Sun Jul 30 22:29:54 2017  linear algebra at 0.1%, ETA 1h59m
Sun Jul 30 22:29:56 2017  checkpointing every 1040000 dimensions
Mon Jul 31 00:45:12 2017  lanczos halted after 34285 iterations (dim = 2167817)
Mon Jul 31 00:45:14 2017  recovered 36 nontrivial dependencies
Mon Jul 31 00:45:14 2017  BLanczosTime: 8259
Mon Jul 31 00:45:14 2017  elapsed time 02:17:39
Mon Jul 31 00:45:14 2017 -> Running square root step ...
Mon Jul 31 00:45:14 2017 -> ./msieve -s 46661_187/46661_187.dat -l 46661_187/46661_187.log -i 46661_187/46661_187.ini -nf 46661_187/46661_187.fb -t 3 -nc3
Mon Jul 31 00:45:14 2017  
Mon Jul 31 00:45:14 2017  
Mon Jul 31 00:45:14 2017  Msieve v. 1.53 (SVN Unversioned directory)
Mon Jul 31 00:45:14 2017  random seeds: 12091f4a 3f3cfedc
Mon Jul 31 00:45:14 2017  factoring 402130716813436356606293635297191090785278590105581689179816291378383762176171929195185108053696878692758043372781300550649178159695583039507540466607944639063591 (162 digits)
Mon Jul 31 00:45:14 2017  no P-1/P+1/ECM available, skipping
Mon Jul 31 00:45:14 2017  commencing number field sieve (162-digit input)
Mon Jul 31 00:45:14 2017  R0: -10000000000000000000000000000000000000
Mon Jul 31 00:45:14 2017  R1: 1
Mon Jul 31 00:45:14 2017  A0: -17
Mon Jul 31 00:45:14 2017  A1: 0
Mon Jul 31 00:45:14 2017  A2: 0
Mon Jul 31 00:45:14 2017  A3: 0
Mon Jul 31 00:45:14 2017  A4: 0
Mon Jul 31 00:45:14 2017  A5: 1400
Mon Jul 31 00:45:14 2017  skew 0.41, size 2.725e-13, alpha 0.485, combined = 3.811e-11 rroots = 1
Mon Jul 31 00:45:14 2017  
Mon Jul 31 00:45:14 2017  commencing square root phase
Mon Jul 31 00:45:14 2017  reading relations for dependency 1
Mon Jul 31 00:45:15 2017  read 1084463 cycles
Mon Jul 31 00:45:16 2017  cycles contain 3550606 unique relations
Mon Jul 31 00:45:33 2017  read 3550606 relations
Mon Jul 31 00:45:43 2017  multiplying 3550606 relations
Mon Jul 31 00:47:30 2017  multiply complete, coefficients have about 115.09 million bits
Mon Jul 31 00:47:31 2017  initial square root is modulo 182363381
Mon Jul 31 00:49:45 2017  sqrtTime: 271
Mon Jul 31 00:49:45 2017  p58 factor: 2052373792680280322359627301040211855984159719633847270607
Mon Jul 31 00:49:45 2017  p105 factor: 195934443446715972417273748085878158094819444772773353563904473751664670809067771739598457780616176355113
Mon Jul 31 00:49:45 2017  elapsed time 00:04:31
software ソフトウェア
Msieve 1.53 snfs
execution environment 実行環境
Core i7-2600K 3.4GHz, Ubuntu 16.04.2 LTS

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaFebruary 5, 2009 05:00:00 UTC 2009 年 2 月 5 日 (木) 14 時 0 分 0 秒 (日本時間)
351e60--
403e61800300Dmitry DomanovMay 16, 2011 06:01:58 UTC 2011 年 5 月 16 日 (月) 15 時 1 分 58 秒 (日本時間)
1500Dmitry DomanovOctober 1, 2013 12:04:20 UTC 2013 年 10 月 1 日 (火) 21 時 4 分 20 秒 (日本時間)
4511e61000 / 4081Dmitry DomanovOctober 22, 2013 16:09:31 UTC 2013 年 10 月 23 日 (水) 1 時 9 分 31 秒 (日本時間)

14×10188-173

c158

name 名前Dmitry Domanov
date 日付September 23, 2013 09:22:10 UTC 2013 年 9 月 23 日 (月) 18 時 22 分 10 秒 (日本時間)
composite number 合成数
56057502357455688255386526990567578557752783279557305979627017919921483149795148193835602874217647065913025906018654987384854849271230187685367452727017921289<158>
prime factors 素因数
583679160883968946475135532290949137<36>
96041637451228964864664241193732643835623079543649147140137169443402014872700331985237366531613555514798946760911992415097<122>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1599346474
Step 1 took 20215ms
Step 2 took 7927ms
********** Factor found in step 2: 583679160883968946475135532290949137
Found probable prime factor of 36 digits: 583679160883968946475135532290949137

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaFebruary 5, 2009 05:00:00 UTC 2009 年 2 月 5 日 (木) 14 時 0 分 0 秒 (日本時間)
351e60--
403e6300 / 2336Dmitry DomanovMay 16, 2011 06:02:05 UTC 2011 年 5 月 16 日 (月) 15 時 2 分 5 秒 (日本時間)

14×10190-173

c148

name 名前Eric Jeancolas
date 日付September 23, 2020 02:18:25 UTC 2020 年 9 月 23 日 (水) 11 時 18 分 25 秒 (日本時間)
composite number 合成数
2285785355490616854042800872401651794398794630112926948335786605411839756779948426582577010074985849260803367404919598134706802460110320818421629593<148>
prime factors 素因数
3517228088006768361830445919287551741267817033101<49>
649882605931872739388444477298660791184981618441082286624271515141378653553403004427885389124831293<99>
factorization results 素因数分解の結果
2285785355490616854042800872401651794398794630112926948335786605411839756779948426582577010074985849260803367404919598134706802460110320818421629593=3517228088006768361830445919287551741267817033101*649882605931872739388444477298660791184981618441082286624271515141378653553403004427885389124831293

cado polynomial
n: 2285785355490616854042800872401651794398794630112926948335786605411839756779948426582577010074985849260803367404919598134706802460110320818421629593
skew: 1.04
type: snfs
c0: -17
c5: 14
Y0: 100000000000000000000000000000000000000
Y1: -1
# f(x) = 14*x^5-17
# g(x) = -x+100000000000000000000000000000000000000

cado parameters (extracts)
tasks.lim0 = 10700000
tasks.lim1 = 10700000
tasks.lpb0 = 28
tasks.lpb1 = 28
tasks.sieve.mfb0 = 54
tasks.sieve.mfb1 = 54
tasks.sieve.lambda0 = 2.5
tasks.sieve.lambda1 = 2.5
tasks.linalg.m = 64
tasks.linalg.n = 64
tasks.linalg.characters.nchar = 50

cado log (extracts)
Info:Square Root: Factors: 649882605931872739388444477298660791184981618441082286624271515141378653553403004427885389124831293 3517228088006768361830445919287551741267817033101
Warning:Polynomial Selection (size optimized): some stats could not be displayed for polyselect1 (see log file for debug info)
Warning:Polynomial Selection (root optimized): some stats could not be displayed for polyselect2 (see log file for debug info)
Info:Generate Factor Base: Total cpu/real time for makefb: 4.62/2.26597
Info:Generate Free Relations: Total cpu/real time for freerel: 101.72/26.1384
Info:Lattice Sieving: Aggregate statistics:
Info:Lattice Sieving: Total number of relations: 24849173
Info:Lattice Sieving: Average J: 1893.95 for 1904329 special-q, max bucket fill -bkmult 1.0,1s:1.080880
Info:Lattice Sieving: Total time: 458182s
Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 48.7/103.517
Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics:
Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 103.10000000000001s
Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 383.28/350.567
Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics:
Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 305.8s
Info:Filtering - Singleton removal: Total cpu/real time for purge: 290.73/302.482
Info:Filtering - Merging: Merged matrix has 2004167 rows and total weight 344335030 (171.8 entries per row on average)
Info:Filtering - Merging: Total cpu/real time for merge: 306.9/87.5827
Info:Filtering - Merging: Total cpu/real time for replay: 78.2/68.0237
Info:Linear Algebra: Total cpu/real time for bwc: 67880.6/17403.1
Info:Linear Algebra: Aggregate statistics:
Info:Linear Algebra: Krylov: WCT time 11085.86, iteration CPU time 0.17, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (62720 iterations)
Info:Linear Algebra: Lingen CPU time 412.7, WCT time 119.21
Info:Linear Algebra: Mksol: WCT time 6073.96, iteration CPU time 0.18, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (31488 iterations)
Info:Quadratic Characters: Total cpu/real time for characters: 72.89/31.5478
Info:Square Root: Total cpu/real time for sqrt: 521.2/167.652
Info:HTTP server: Shutting down HTTP server
Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 918311/247700
Info:root: Cleaning up computation data in /tmp/cado.pm9jl8es
649882605931872739388444477298660791184981618441082286624271515141378653553403004427885389124831293 3517228088006768361830445919287551741267817033101
software ソフトウェア
cado-nfs-3.0.0
execution environment 実行環境
Linux Ubuntu 18.04.4 LTS [5.3.0-51-generic|libc 2.27 (Ubuntu GLIBC 2.27-3ubuntu1.2)]
GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaFebruary 5, 2009 05:00:00 UTC 2009 年 2 月 5 日 (木) 14 時 0 分 0 秒 (日本時間)
351e60--
403e61800300Dmitry DomanovMay 16, 2011 06:02:13 UTC 2011 年 5 月 16 日 (月) 15 時 2 分 13 秒 (日本時間)
1500Dmitry DomanovOctober 1, 2013 12:04:31 UTC 2013 年 10 月 1 日 (火) 21 時 4 分 31 秒 (日本時間)
4511e640811000Dmitry DomanovOctober 22, 2013 16:09:11 UTC 2013 年 10 月 23 日 (水) 1 時 9 分 11 秒 (日本時間)
3081shunJanuary 17, 2019 09:53:57 UTC 2019 年 1 月 17 日 (木) 18 時 53 分 57 秒 (日本時間)

14×10193-173

c186

name 名前Robert Backstrom
date 日付October 27, 2010 20:46:28 UTC 2010 年 10 月 28 日 (木) 5 時 46 分 28 秒 (日本時間)
composite number 合成数
547275813261533561194745475134326014258153308225022661225509803154232749781342789759020034794154379728519220078333072615045008490612877022265732734236755136655532848430544509216752107953<186>
prime factors 素因数
18189157151236192409312052517397573888918875690560653610274149774330379<71>
30088024899182256677747398273948851653376970761420658984586601001225679457281152137221011262484608943119557106070707<116>
factorization results 素因数分解の結果
Number: n
N=547275813261533561194745475134326014258153308225022661225509803154232749781342789759020034794154379728519220078333072615045008490612877022265732734236755136655532848430544509216752107953
  ( 186 digits)
SNFS difficulty: 194 digits.
Divisors found:

Thu Oct 28 06:21:00 2010  prp71 factor: 18189157151236192409312052517397573888918875690560653610274149774330379
Thu Oct 28 06:21:00 2010  prp116 factor: 30088024899182256677747398273948851653376970761420658984586601001225679457281152137221011262484608943119557106070707
Thu Oct 28 06:21:00 2010  elapsed time 03:32:22 (Msieve 1.44 - dependency 5)

Version: 
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.101).
Factorization parameters were as follows:
name: KA_4_6_192_1
n: 547275813261533561194745475134326014258153308225022661225509803154232749781342789759020034794154379728519220078333072615045008490612877022265732734236755136655532848430544509216752107953
m: 100000000000000000000000000000000000000
deg: 5
c5: 14000
c0: -17
skew: 0.26
type: snfs
lss: 1
rlim: 12000000
alim: 12000000
lpbr: 28
lpba: 28
mfbr: 56
mfba: 56
rlambda: 2.5
alambda: 2.5
Factor base limits: 12000000/12000000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 56/56
Sieved  special-q in [100000, 13500000)
Primes: , , 
Relations: 
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 

Msieve: found 6942637 hash collisions in 41629910 relations
Msieve: matrix is 1385813 x 1386042 (389.3 MB)

Total sieving time: 0.00 hours.
Total relation processing time: 0.00 hours.
Matrix solve time: 0.00 hours.
Total square root time: 0.00 hours, sqrts: 0.
Prototype def-par.txt line would be:
snfs,194,5,0,0,0,0,0,0,0,0,12000000,12000000,28,28,56,56,2.5,2.5,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM)2 Quad  CPU   Q9550  @ 2.83GHz stepping 07
CPU1: Intel(R) Core(TM)2 Quad  CPU   Q9550  @ 2.83GHz stepping 07
CPU2: Intel(R) Core(TM)2 Quad  CPU   Q9550  @ 2.83GHz stepping 07
CPU3: Intel(R) Core(TM)2 Quad  CPU   Q9550  @ 2.83GHz stepping 07
Memory: 8109188k/9175040k available (3972k kernel code, 787464k absent, 278388k reserved, 2498k data, 1292k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 5660.99 BogoMIPS (lpj=2830498)
Calibrating delay using timer specific routine.. 5660.89 BogoMIPS (lpj=2830448)
Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830458)
Calibrating delay using timer specific routine.. 5660.90 BogoMIPS (lpj=2830450)
Total of 4 processors activated (22643.70 BogoMIPS).

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaFebruary 5, 2009 05:00:00 UTC 2009 年 2 月 5 日 (木) 14 時 0 分 0 秒 (日本時間)
351e6825Wataru SakaiJune 21, 2010 07:11:35 UTC 2010 年 6 月 21 日 (月) 16 時 11 分 35 秒 (日本時間)
403e61738Wataru SakaiJune 24, 2010 05:26:48 UTC 2010 年 6 月 24 日 (木) 14 時 26 分 48 秒 (日本時間)
4511e6108 / 4057Dmitry DomanovJune 21, 2010 12:54:47 UTC 2010 年 6 月 21 日 (月) 21 時 54 分 47 秒 (日本時間)

14×10197-173

c173

name 名前Bob Backstrom
date 日付March 15, 2021 01:41:11 UTC 2021 年 3 月 15 日 (月) 10 時 41 分 11 秒 (日本時間)
composite number 合成数
65057078388695725086166068424291371200219033030584460872997516169640928608713093856541276357012529657283632594205517458182163194511803273114990112893604185191840494634142703<173>
prime factors 素因数
3278040511918615470222405257651016686288267903581082643038765017038853<70>
19846331414195441595604255703320139463879340050686281378029845721264858227757581393511091921439973540451<104>
factorization results 素因数分解の結果
Number: n
N=65057078388695725086166068424291371200219033030584460872997516169640928608713093856541276357012529657283632594205517458182163194511803273114990112893604185191840494634142703  ( 173 digits)
SNFS difficulty: 198 digits.
Divisors found:

Mon Mar 15 12:37:28 2021  p70 factor: 3278040511918615470222405257651016686288267903581082643038765017038853
Mon Mar 15 12:37:28 2021  p104 factor: 19846331414195441595604255703320139463879340050686281378029845721264858227757581393511091921439973540451
Mon Mar 15 12:37:28 2021  elapsed time 01:33:03 (Msieve 1.54 - dependency 2)

Version: 
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.333).
Factorization parameters were as follows:
#
# N = 14x10^197-17 = 46(196)1
#
n: 65057078388695725086166068424291371200219033030584460872997516169640928608713093856541276357012529657283632594205517458182163194511803273114990112893604185191840494634142703
m: 1000000000000000000000000000000000000000
deg: 5
c5: 1400
c0: -17
skew: 0.41
# Murphy_E = 1.657e-11
type: snfs
lss: 1
rlim: 14000000
alim: 14000000
lpbr: 28
lpba: 28
mfbr: 55
mfba: 55
rlambda: 2.5
alambda: 2.5
Factor base limits: 14000000/14000000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 55/55
Sieved  special-q in [100000, 27000000)
Primes: , , 
Relations: 
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 

Msieve: found 4106451 hash collisions in 29117442 relations (26479835 unique)
Msieve: matrix is 1886515 x 1886740 (656.0 MB)

Sieving start time : 2021/03/15 03:57:46
Sieving end time  : 2021/03/15 11:03:54

Total sieving time: 7hrs 6min 8secs.

Total relation processing time: 1hrs 12min 8sec.
Matrix solve time: 0.00 hours.
Total square root time: 0hrs 5min 3sec.

Prototype def-par.txt line would be:
snfs,198,5,0,0,0,0,0,0,0,0,14000000,14000000,28,28,55,55,2.5,2.5,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------
[    0.116745] smpboot: CPU0: AMD Ryzen 7 2700 Eight-Core Processor (family: 0x17, model: 0x8, stepping: 0x2)
[    0.000000] Memory: 16241916K/16727236K available (14339K kernel code, 2400K rwdata, 4964K rodata, 2732K init, 4968K bss, 485320K reserved, 0K cma-reserved)
[    0.152613] x86/mm: Memory block size: 128MB
[    0.000005] Calibrating delay loop (skipped), value calculated using timer frequency.. 6399.17 BogoMIPS (lpj=12798352)
[    0.150217] smpboot: Total of 16 processors activated (102386.81 BogoMIPS)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaFebruary 5, 2009 05:00:00 UTC 2009 年 2 月 5 日 (木) 14 時 0 分 0 秒 (日本時間)
351e60--
403e61800300Dmitry DomanovMay 16, 2011 06:02:23 UTC 2011 年 5 月 16 日 (月) 15 時 2 分 23 秒 (日本時間)
1500Dmitry DomanovOctober 1, 2013 12:04:42 UTC 2013 年 10 月 1 日 (火) 21 時 4 分 42 秒 (日本時間)
4511e61000 / 4081Dmitry DomanovOctober 22, 2013 16:08:49 UTC 2013 年 10 月 23 日 (水) 1 時 8 分 49 秒 (日本時間)

14×10198-173

c181

name 名前matsui
date 日付March 30, 2011 14:27:01 UTC 2011 年 3 月 30 日 (水) 23 時 27 分 1 秒 (日本時間)
composite number 合成数
1568722456496033177660962539881983104816993317813328472019856578129008453711279828485860637876785895625976694059810607444396158286199805890145663928780874511351094091357385363651947<181>
prime factors 素因数
2159906691585297841342646377363541237573349821<46>
726291771124911141745532313375558242540030734233619042412474792390260283934082274289373382766924354412826730585092710638853422904859207<135>
factorization results 素因数分解の結果
N=1568722456496033177660962539881983104816993317813328472019856578129008453711279828485860637876785895625976694059810607444396158286199805890145663928780874511351094091357385363651947
  ( 181 digits)
SNFS difficulty: 199 digits.
Divisors found:
 r1=2159906691585297841342646377363541237573349821 (pp46)
 r2=726291771124911141745532313375558242540030734233619042412474792390260283934082274289373382766924354412826730585092710638853422904859207 (pp135)
Version: Msieve v. 1.48
Total time:
Scaled time: 87.69 units (timescale=0.664).
Factorization parameters were as follows:
n: 1568722456496033177660962539881983104816993317813328472019856578129008453711279828485860637876785895625976694059810607444396158286199805890145663928780874511351094091357385363651947
m: 1000000000000000000000000000000000000000
deg: 5
c5: 14000
c0: -17
skew: 0.26
type: snfs
lss: 1
rlim: 14600000
alim: 14600000
lpbr: 28
lpba: 28
mfbr: 55
mfba: 55
rlambda: 2.5
alambda: 2.5
qintsize: 320000
Factor base limits: 14600000/14600000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 55/55
Sieved rational special-q in [7300000, 16260001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 2736932 x 2737157
Total sieving time:
Total relation processing time:
Matrix solve time:
Time per square root:
Prototype def-par.txt line would be:
snfs,199.000,5,0,0,0,0,0,0,0,0,14600000,14600000,28,28,55,55,2.5,2.5,100000
total time:

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaFebruary 5, 2009 05:00:00 UTC 2009 年 2 月 5 日 (木) 14 時 0 分 0 秒 (日本時間)

14×10199-173

c176

name 名前Bob Backstrom
date 日付April 11, 2021 00:36:25 UTC 2021 年 4 月 11 日 (日) 9 時 36 分 25 秒 (日本時間)
composite number 合成数
57728689100985220958547193892815663753029003717843672095889515518786607303173620051178927154337083263872430107918699080302730303652711060621746883865393000821451475783933424727<176>
prime factors 素因数
11419888268233005958759810296145285336984798640679691472844688024039247006309<77>
5055101043463847687908673206210550579483684127871117956394726851069316289465829576989788397727816203<100>
factorization results 素因数分解の結果
Number: n
N=57728689100985220958547193892815663753029003717843672095889515518786607303173620051178927154337083263872430107918699080302730303652711060621746883865393000821451475783933424727  ( 176 digits)
SNFS difficulty: 200 digits.
Divisors found:

Sun Apr 11 09:49:49 2021  p77 factor: 11419888268233005958759810296145285336984798640679691472844688024039247006309
Sun Apr 11 09:49:49 2021  p100 factor: 5055101043463847687908673206210550579483684127871117956394726851069316289465829576989788397727816203
Sun Apr 11 09:49:49 2021  elapsed time 01:40:28 (Msieve 1.54 - dependency 3)

Version: 
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.355).
Factorization parameters were as follows:
#
# N = 14x10^199-17 = 46(198)1
#
n: 57728689100985220958547193892815663753029003717843672095889515518786607303173620051178927154337083263872430107918699080302730303652711060621746883865393000821451475783933424727
m: 10000000000000000000000000000000000000000
deg: 5
c5: 7
c0: -85
skew: 1.65
# Murphy_E = 1.505e-11
type: snfs
lss: 1
rlim: 15600000
alim: 15600000
lpbr: 29
lpba: 29
mfbr: 56
mfba: 56
rlambda: 2.6
alambda: 2.6
Factor base limits: 15600000/15600000
Large primes per side: 3
Large prime bits: 29/29
Max factor residue bits: 56/56
Sieved  special-q in [100000, 20600000)
Primes: , , 
Relations: 
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 

Msieve: found 5491533 hash collisions in 47470253 relations (43917377 unique)
Msieve: matrix is 2041197 x 2041423 (714.7 MB)

Sieving start time : 2021/04/11 01:53:58
Sieving end time  : 2021/04/11 08:08:03

Total sieving time: 6hrs 14min 5secs.

Total relation processing time: 1hrs 20min 50sec.
Matrix solve time: 0.00 hours.
Total square root time: 0hrs 7min 44sec.

Prototype def-par.txt line would be:
snfs,200,5,0,0,0,0,0,0,0,0,15600000,15600000,29,29,56,56,2.6,2.6,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------
[    0.119768] smpboot: CPU0: AMD Ryzen 7 2700 Eight-Core Processor (family: 0x17, model: 0x8, stepping: 0x2)
[    0.000000] Memory: 16241112K/16727236K available (14339K kernel code, 2400K rwdata, 5008K rodata, 2732K init, 4972K bss, 486124K reserved, 0K cma-reserved)
[    0.153507] x86/mm: Memory block size: 128MB
[    0.000005] Calibrating delay loop (skipped), value calculated using timer frequency.. 6399.05 BogoMIPS (lpj=12798104)
[    0.152038] smpboot: Total of 16 processors activated (102384.83 BogoMIPS)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaFebruary 5, 2009 05:00:00 UTC 2009 年 2 月 5 日 (木) 14 時 0 分 0 秒 (日本時間)
351e60--
403e61800300Dmitry DomanovMay 16, 2011 06:02:31 UTC 2011 年 5 月 16 日 (月) 15 時 2 分 31 秒 (日本時間)
1500Dmitry DomanovOctober 1, 2013 12:04:54 UTC 2013 年 10 月 1 日 (火) 21 時 4 分 54 秒 (日本時間)
4511e61500 / 4081Dmitry DomanovOctober 10, 2013 13:50:41 UTC 2013 年 10 月 10 日 (木) 22 時 50 分 41 秒 (日本時間)

14×10202-173

c148

name 名前Ignacio Santos
date 日付September 25, 2021 14:02:07 UTC 2021 年 9 月 25 日 (土) 23 時 2 分 7 秒 (日本時間)
composite number 合成数
2770284318050125130688141491465081456447365424138724485263049262235477073399911571212595158565506817698694654316028512552810617586783519672463446853<148>
prime factors 素因数
3187323264254980206188669781203464117772860349<46>
869156997383402934395610865074807061123014247284362855354086573697739895354118627700578185214158957097<102>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:1402191439
Step 1 took 21953ms
Step 2 took 10797ms
********** Factor found in step 2: 3187323264254980206188669781203464117772860349
Found prime factor of 46 digits: 3187323264254980206188669781203464117772860349
Prime cofactor 869156997383402934395610865074807061123014247284362855354086573697739895354118627700578185214158957097 has 102 digits
 
software ソフトウェア
GMP-ECM

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaFebruary 5, 2009 05:00:00 UTC 2009 年 2 月 5 日 (木) 14 時 0 分 0 秒 (日本時間)
351e60--
403e61800300Dmitry DomanovMay 16, 2011 06:02:38 UTC 2011 年 5 月 16 日 (月) 15 時 2 分 38 秒 (日本時間)
1500Dmitry DomanovOctober 1, 2013 12:05:08 UTC 2013 年 10 月 1 日 (火) 21 時 5 分 8 秒 (日本時間)
4511e61500 / 4081Dmitry DomanovOctober 1, 2013 12:05:08 UTC 2013 年 10 月 1 日 (火) 21 時 5 分 8 秒 (日本時間)

14×10203-173

c201

name 名前Ignacio Santos
date 日付March 11, 2010 13:34:22 UTC 2010 年 3 月 11 日 (木) 22 時 34 分 22 秒 (日本時間)
composite number 合成数
505597688696280245576020223907547851209823040808956301914048392921632358252076561935716865294330083062477428674611773203322499097146984470928132899963885879378837125315998555435175153485012639942217407<201>
prime factors 素因数
88312275302352116942331262098505397451691847<44>
composite cofactor 合成数の残り
5725112244761902449459000516813150922234346394075007367674537369656685406842892369237089712558181426980645196810559483919019976246466286335732555067258337481<157>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=3315364315
Step 1 took 132741ms
Step 2 took 72790ms
********** Factor found in step 2: 88312275302352116942331262098505397451691847
Found probable prime factor of 44 digits: 88312275302352116942331262098505397451691847
Composite cofactor 5725112244761902449459000516813150922234346394075007367674537369656685406842892369237089712558181426980645196810559483919019976246466286335732555067258337481 has 157 digits
software ソフトウェア
GMP-ECM 6.2.3

c157

name 名前Bob Backstrom
date 日付July 31, 2024 07:24:57 UTC 2024 年 7 月 31 日 (水) 16 時 24 分 57 秒 (日本時間)
composite number 合成数
5725112244761902449459000516813150922234346394075007367674537369656685406842892369237089712558181426980645196810559483919019976246466286335732555067258337481<157>
prime factors 素因数
27977364142061463600455339601030113742083261854042555044908631900337<68>
204633725167651103589643096037857415681620592408616645889710414075311509164776895362236313<90>
factorization results 素因数分解の結果
07/29/24 13:02:21 v1.34.5 @ TRIGKEY,
07/29/24 13:02:21 v1.34.5 @ TRIGKEY, ****************************
07/29/24 13:02:21 v1.34.5 @ TRIGKEY, Starting factorization of 1399999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999983
07/29/24 13:02:21 v1.34.5 @ TRIGKEY, using pretesting plan: normal
07/29/24 13:02:21 v1.34.5 @ TRIGKEY, no tune info: using qs/gnfs crossover of 100 digits
07/29/24 13:02:21 v1.34.5 @ TRIGKEY, ****************************
07/29/24 13:02:21 v1.34.5 @ TRIGKEY, div: found prime factor = 3
07/29/24 13:02:21 v1.34.5 @ TRIGKEY, div: found prime factor = 13
07/29/24 13:02:21 v1.34.5 @ TRIGKEY, div: found prime factor = 71
07/29/24 13:02:21 v1.34.5 @ TRIGKEY, rho: x^2 + 3, starting 1000 iterations on C201
07/29/24 13:02:21 v1.34.5 @ TRIGKEY, rho: x^2 + 2, starting 1000 iterations on C201
07/29/24 13:02:21 v1.34.5 @ TRIGKEY, rho: x^2 + 1, starting 1000 iterations on C201
07/29/24 13:02:21 v1.34.5 @ TRIGKEY, pm1: starting B1 = 150K, B2 = gmp-ecm default on C201
07/29/24 13:02:21 v1.34.5 @ TRIGKEY, current ECM pretesting depth: 0.00
07/29/24 13:02:21 v1.34.5 @ TRIGKEY, scheduled 30 curves at B1=2000 toward target pretesting depth of 61.85
07/29/24 13:02:22 v1.34.5 @ TRIGKEY, Finished 30 curves using Lenstra ECM method on C201 input, B1=2K, B2=gmp-ecm default
07/29/24 13:02:22 v1.34.5 @ TRIGKEY, current ECM pretesting depth: 15.18
07/29/24 13:02:22 v1.34.5 @ TRIGKEY, scheduled 74 curves at B1=11000 toward target pretesting depth of 61.85
07/29/24 13:02:24 v1.34.5 @ TRIGKEY, Finished 74 curves using Lenstra ECM method on C201 input, B1=11K, B2=gmp-ecm default
07/29/24 13:02:24 v1.34.5 @ TRIGKEY, current ECM pretesting depth: 20.24
07/29/24 13:02:24 v1.34.5 @ TRIGKEY, scheduled 214 curves at B1=50000 toward target pretesting depth of 61.85
07/29/24 13:02:53 v1.34.5 @ TRIGKEY, Finished 214 curves using Lenstra ECM method on C201 input, B1=50K, B2=gmp-ecm default
07/29/24 13:02:53 v1.34.5 @ TRIGKEY, pm1: starting B1 = 3750K, B2 = gmp-ecm default on C201
07/29/24 13:02:55 v1.34.5 @ TRIGKEY, current ECM pretesting depth: 25.33
07/29/24 13:02:55 v1.34.5 @ TRIGKEY, scheduled 430 curves at B1=250000 toward target pretesting depth of 61.85
07/29/24 13:03:40 v1.34.5 @ TRIGKEY, nfs: commencing nfs on c205: 1399999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999983
07/29/24 13:03:40 v1.34.5 @ TRIGKEY, nfs: input divides 14*10^203 - 17
07/29/24 13:03:40 v1.34.5 @ TRIGKEY, nfs: using supplied cofactor: 5725112244761902449459000516813150922234346394075007367674537369656685406842892369237089712558181426980645196810559483919019976246466286335732555067258337481
07/29/24 13:03:40 v1.34.5 @ TRIGKEY, nfs: commencing snfs on c157: 5725112244761902449459000516813150922234346394075007367674537369656685406842892369237089712558181426980645196810559483919019976246466286335732555067258337481
07/29/24 13:03:40 v1.34.5 @ TRIGKEY, gen: best 3 polynomials:
n: 5725112244761902449459000516813150922234346394075007367674537369656685406842892369237089712558181426980645196810559483919019976246466286335732555067258337481
# 14*10^203-17, difficulty: 207.15, anorm: 1.46e+026, rnorm: 1.96e+046
# scaled difficulty: 210.50, suggest sieving rational side
# size = 2.460e-014, alpha = -0.590, combined = 8.541e-012, rroots = 1
type: snfs
size: 207
skew: 0.2611
c5: 14000
c0: -17
Y1: -1
Y0: 10000000000000000000000000000000000000000
m: 10000000000000000000000000000000000000000
n: 5725112244761902449459000516813150922234346394075007367674537369656685406842892369237089712558181426980645196810559483919019976246466286335732555067258337481
# 14*10^203-17, difficulty: 204.75, anorm: -2.94e+026, rnorm: 2.77e+046
# scaled difficulty: 208.08, suggest sieving rational side
# size = 2.460e-014, alpha = 0.103, combined = 8.471e-012, rroots = 1
type: snfs
size: 204
skew: 0.5223
c5: 875
c0: -34
Y1: -1
Y0: 20000000000000000000000000000000000000000
m: 20000000000000000000000000000000000000000
n: 5725112244761902449459000516813150922234346394075007367674537369656685406842892369237089712558181426980645196810559483919019976246466286335732555067258337481
# 14*10^203-17, difficulty: 204.00, anorm: 1.33e+032, rnorm: 8.12e+039
# scaled difficulty: 205.30, suggest sieving rational side
# size = 3.221e-010, alpha = 0.403, combined = 7.586e-012, rroots = 2
type: snfs
size: 204
skew: 1.5161
c6: 7
c0: -85
Y1: -1
Y0: 10000000000000000000000000000000000
m: 10000000000000000000000000000000000
07/29/24 13:03:41 v1.34.5 @ TRIGKEY, test: fb generation took 1.5670 seconds
07/29/24 13:03:41 v1.34.5 @ TRIGKEY, test: commencing test sieving of polynomial 0 on the rational side over range 20200000-20202000
skew: 0.2611
c5: 14000
c0: -17
Y1: -1
Y0: 10000000000000000000000000000000000000000
m: 10000000000000000000000000000000000000000
rlim: 20200000
alim: 20200000
mfbr: 56
mfba: 56
lpbr: 28
lpba: 28
rlambda: 2.60
alambda: 2.60
07/29/24 13:06:59 v1.34.5 @ TRIGKEY, nfs: parsing special-q from .dat file
07/29/24 13:07:00 v1.34.5 @ TRIGKEY, test: fb generation took 1.3509 seconds
07/29/24 13:07:00 v1.34.5 @ TRIGKEY, test: commencing test sieving of polynomial 1 on the rational side over range 18000000-18002000
skew: 0.5223
c5: 875
c0: -34
Y1: -1
Y0: 20000000000000000000000000000000000000000
m: 20000000000000000000000000000000000000000
rlim: 18000000
alim: 18000000
mfbr: 56
mfba: 56
lpbr: 28
lpba: 28
rlambda: 2.60
alambda: 2.60
07/29/24 13:10:09 v1.34.5 @ TRIGKEY, nfs: parsing special-q from .dat file
07/29/24 13:10:11 v1.34.5 @ TRIGKEY, test: fb generation took 1.8798 seconds
07/29/24 13:10:11 v1.34.5 @ TRIGKEY, test: commencing test sieving of polynomial 2 on the rational side over range 18000000-18002000
skew: 1.5161
c6: 7
c0: -85
Y1: -1
Y0: 10000000000000000000000000000000000
m: 10000000000000000000000000000000000
rlim: 18000000
alim: 18000000
mfbr: 56
mfba: 56
lpbr: 28
lpba: 28
rlambda: 2.60
alambda: 2.60
07/29/24 13:13:09 v1.34.5 @ TRIGKEY, nfs: parsing special-q from .dat file
07/29/24 13:13:09 v1.34.5 @ TRIGKEY, gen: selected polynomial:
n: 5725112244761902449459000516813150922234346394075007367674537369656685406842892369237089712558181426980645196810559483919019976246466286335732555067258337481
# 14*10^203-17, difficulty: 204.75, anorm: -2.94e+026, rnorm: 2.77e+046
# scaled difficulty: 208.08, suggest sieving rational side
# size = 2.460e-014, alpha = 0.103, combined = 8.471e-012, rroots = 1
type: snfs
size: 204
skew: 0.5223
c5: 875
c0: -34
Y1: -1
Y0: 20000000000000000000000000000000000000000
m: 20000000000000000000000000000000000000000
07/29/24 13:13:09 v1.34.5 @ TRIGKEY, test: test sieving took 569.63 seconds
07/30/24 03:27:22 v1.34.5 @ TRIGKEY, nfs: previous data file found - commencing search for last special-q
07/30/24 03:27:24 v1.34.5 @ TRIGKEY, nfs: parsing special-q from .dat file
07/30/24 03:27:24 v1.34.5 @ TRIGKEY, nfs: commencing nfs on c157: 5725112244761902449459000516813150922234346394075007367674537369656685406842892369237089712558181426980645196810559483919019976246466286335732555067258337481
07/30/24 03:27:24 v1.34.5 @ TRIGKEY, nfs: resuming with filtering
07/30/24 03:27:24 v1.34.5 @ TRIGKEY, nfs: commencing msieve filtering
07/30/24 03:28:52 v1.34.5 @ TRIGKEY,
07/30/24 03:28:52 v1.34.5 @ TRIGKEY, ****************************
07/30/24 03:28:52 v1.34.5 @ TRIGKEY, Starting factorization of 1399999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999983
07/30/24 03:28:52 v1.34.5 @ TRIGKEY, using pretesting plan: normal
07/30/24 03:28:52 v1.34.5 @ TRIGKEY, no tune info: using qs/gnfs crossover of 100 digits
07/30/24 03:28:52 v1.34.5 @ TRIGKEY, ****************************
07/30/24 03:28:52 v1.34.5 @ TRIGKEY, nfs: commencing nfs on c157: 5725112244761902449459000516813150922234346394075007367674537369656685406842892369237089712558181426980645196810559483919019976246466286335732555067258337481
07/30/24 03:28:52 v1.34.5 @ TRIGKEY, nfs: continuing with sieving - could not determine last special q; using default startq
07/31/24 05:52:16 v1.34.5 @ TRIGKEY, nfs: commencing msieve filtering
07/31/24 05:54:09 v1.34.5 @ TRIGKEY, nfs: raising min_rels by 5.00 percent to 22169576
07/31/24 07:28:19 v1.34.5 @ TRIGKEY, nfs: commencing msieve filtering
07/31/24 07:30:20 v1.34.5 @ TRIGKEY, nfs: raising min_rels by 5.00 percent to 23367869
07/31/24 09:04:32 v1.34.5 @ TRIGKEY, nfs: commencing msieve filtering
07/31/24 09:06:38 v1.34.5 @ TRIGKEY, nfs: raising min_rels by 5.00 percent to 24559203
07/31/24 10:52:13 v1.34.5 @ TRIGKEY, nfs: commencing msieve filtering
07/31/24 10:54:25 v1.34.5 @ TRIGKEY, nfs: raising min_rels by 5.00 percent to 25884451
07/31/24 12:40:03 v1.34.5 @ TRIGKEY, nfs: commencing msieve filtering
07/31/24 12:43:51 v1.34.5 @ TRIGKEY, nfs: commencing msieve linear algebra
07/31/24 14:32:15 v1.34.5 @ TRIGKEY, nfs: commencing msieve sqrt
07/31/24 14:35:11 v1.34.5 @ TRIGKEY, prp68 = 27977364142061463600455339601030113742083261854042555044908631900337
07/31/24 14:35:11 v1.34.5 @ TRIGKEY, prp90 = 204633725167651103589643096037857415681620592408616645889710414075311509164776895362236313
07/31/24 14:35:11 v1.34.5 @ TRIGKEY, NFS elapsed time = 126378.4185 seconds.
07/31/24 14:35:11 v1.34.5 @ TRIGKEY,
07/31/24 14:35:11 v1.34.5 @ TRIGKEY,
07/31/24 14:35:11 v1.34.5 @ TRIGKEY, Total factoring time = 126378.4226 seconds
software ソフトウェア
YAFU

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaFebruary 5, 2009 05:00:00 UTC 2009 年 2 月 5 日 (木) 14 時 0 分 0 秒 (日本時間)
351e60--
403e6300Serge BatalovFebruary 17, 2009 10:57:40 UTC 2009 年 2 月 17 日 (火) 19 時 57 分 40 秒 (日本時間)
4511e664801000Ignacio SantosMarch 11, 2010 12:46:09 UTC 2010 年 3 月 11 日 (木) 21 時 46 分 9 秒 (日本時間)
1000Dmitry DomanovOctober 1, 2013 12:05:36 UTC 2013 年 10 月 1 日 (火) 21 時 5 分 36 秒 (日本時間)
4480Ignacio SantosDecember 13, 2021 20:31:32 UTC 2021 年 12 月 14 日 (火) 5 時 31 分 32 秒 (日本時間)

14×10204-173

c126

name 名前Robert Backstrom
date 日付March 8, 2009 23:14:46 UTC 2009 年 3 月 9 日 (月) 8 時 14 分 46 秒 (日本時間)
composite number 合成数
531412081905760891258313848288852999676582475963092517114464340668350919020889228921749982581663250527798455996226636019716273<126>
prime factors 素因数
49351688284424227009747656018018277788269<41>
10767860236981571264712003983278864892088044356372016005085807037138655167068407215317<86>
factorization results 素因数分解の結果
GMP-ECM 6.0 [powered by GMP 4.1.4] [ECM]
Input number is 531412081905760891258313848288852999676582475963092517114464340668350919020889228921749982581663250527798455996226636019716273 (126 digits)
Using B1=3000000, B2=4016636513, polynomial Dickson(6), sigma=3154146542
Step 1 took 38963ms
Step 2 took 15980ms
********** Factor found in step 2: 49351688284424227009747656018018277788269
Found probable prime factor of 41 digits: 49351688284424227009747656018018277788269
Probable prime cofactor 10767860236981571264712003983278864892088044356372016005085807037138655167068407215317 has 86 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaFebruary 5, 2009 05:00:00 UTC 2009 年 2 月 5 日 (木) 14 時 0 分 0 秒 (日本時間)

14×10205-173

c148

name 名前Dmitry Domanov
date 日付October 2, 2013 08:36:32 UTC 2013 年 10 月 2 日 (水) 17 時 36 分 32 秒 (日本時間)
composite number 合成数
2126362837847466260867454535781486570347640928185057323192438289779591628561249758885001041345607976137241650886228956604499967994280264099978912709<148>
prime factors 素因数
249276880463873888333666640533902071370829<42>
1968294754312741086830775810041742694673811560233<49>
4333763798095219087039151289799785237024054600119235458737<58>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=98397504
Step 1 took 63724ms
Step 2 took 24804ms
********** Factor found in step 2: 249276880463873888333666640533902071370829
Found probable prime factor of 42 digits: 249276880463873888333666640533902071370829
Composite cofactor 8530124550221280921784000554905938764426096873002956714647737057802341713754520309096131169764675461605721 has 106 digits

N=8530124550221280921784000554905938764426096873002956714647737057802341713754520309096131169764675461605721
  ( 106 digits)
Divisors found:
 r1=1968294754312741086830775810041742694673811560233 (pp49)
 r2=4333763798095219087039151289799785237024054600119235458737 (pp58)
Version: Msieve v. 1.50 (SVN unknown)
Total time: 12.82 hours.
Scaled time: 8.45 units (timescale=0.659).
Factorization parameters were as follows:
name: c106
n: 8530124550221280921784000554905938764426096873002956714647737057802341713754520309096131169764675461605721
skew: 12585.11
# norm 6.18e+14
c5: 123120
c4: -1958375631
c3: -64731334966574
c2: 293411340649512792
c1: 2996781476571435928062
c0: -59245735941486036031369
# alpha -6.03
Y1: 186070346371
Y0: -147274344615709040270
# Murphy_E 1.57e-09
# M 5232187329211317775792737777047806887378067661560485715046420768803087982614379025007099126333023762041715
type: gnfs
rlim: 2500000
alim: 2500000
lpbr: 26
lpba: 26
mfbr: 49
mfba: 49
rlambda: 2.6
alambda: 2.6
qintsize: 150000
Factor base limits: 2500000/2500000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 49/49
Sieved algebraic special-q in [1250000, 2300001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 262739 x 262964
Polynomial selection time: 0.84 hours.
Total sieving time: 11.62 hours.
Total relation processing time: 0.15 hours.
Matrix solve time: 0.14 hours.
Time per square root: 0.07 hours.
Prototype def-par.txt line would be:
gnfs,105,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,2500000,26,26,49,49,2.6,2.6,150000
total time: 12.82 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaFebruary 5, 2009 05:00:00 UTC 2009 年 2 月 5 日 (木) 14 時 0 分 0 秒 (日本時間)
351e60--
403e61800300Dmitry DomanovMay 16, 2011 06:02:52 UTC 2011 年 5 月 16 日 (月) 15 時 2 分 52 秒 (日本時間)
1500Dmitry DomanovOctober 1, 2013 12:06:03 UTC 2013 年 10 月 1 日 (火) 21 時 6 分 3 秒 (日本時間)
4511e61500 / 4081Dmitry DomanovOctober 1, 2013 12:06:03 UTC 2013 年 10 月 1 日 (火) 21 時 6 分 3 秒 (日本時間)

14×10207-173

c185

name 名前Bob Backstrom
date 日付September 4, 2024 20:39:43 UTC 2024 年 9 月 5 日 (木) 5 時 39 分 43 秒 (日本時間)
composite number 合成数
38401593798949290587852883278717368091003979745585341245957462393141305694326410983107393093299909323979512844035794882176521135836239552999628753163609370190028264606192032755659606407<185>
prime factors 素因数
89830973283506378103017231589843530535268064286278082544954211171078733791406269221473065411<92>
427487228461322964424376720604362268667278002283281193079424297022168751098369737525348864237<93>
factorization results 素因数分解の結果
09/01/24 13:38:05 v1.34.5 @ GEEKOM,
09/01/24 13:38:05 v1.34.5 @ GEEKOM, ****************************
09/01/24 13:38:05 v1.34.5 @ GEEKOM, Starting factorization of 13999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999983
09/01/24 13:38:05 v1.34.5 @ GEEKOM, using pretesting plan: normal
09/01/24 13:38:05 v1.34.5 @ GEEKOM, no tune info: using qs/gnfs crossover of 100 digits
09/01/24 13:38:05 v1.34.5 @ GEEKOM, ****************************
09/01/24 13:38:05 v1.34.5 @ GEEKOM, div: found prime factor = 3
09/01/24 13:38:05 v1.34.5 @ GEEKOM, rho: x^2 + 3, starting 1000 iterations on C208
09/01/24 13:38:05 v1.34.5 @ GEEKOM, rho: x^2 + 2, starting 1000 iterations on C208
09/01/24 13:38:05 v1.34.5 @ GEEKOM, prp5 = 65543
09/01/24 13:38:05 v1.34.5 @ GEEKOM, rho: x^2 + 2, starting 1000 iterations on C203
09/01/24 13:38:05 v1.34.5 @ GEEKOM, rho: x^2 + 1, starting 1000 iterations on C203
09/01/24 13:38:05 v1.34.5 @ GEEKOM, pm1: starting B1 = 150K, B2 = gmp-ecm default on C203
09/01/24 13:38:05 v1.34.5 @ GEEKOM, current ECM pretesting depth: 0.00
09/01/24 13:38:05 v1.34.5 @ GEEKOM, scheduled 30 curves at B1=2000 toward target pretesting depth of 62.46
09/01/24 13:38:05 v1.34.5 @ GEEKOM, Finished 30 curves using Lenstra ECM method on C203 input, B1=2K, B2=gmp-ecm default
09/01/24 13:38:05 v1.34.5 @ GEEKOM, current ECM pretesting depth: 15.18
09/01/24 13:38:05 v1.34.5 @ GEEKOM, scheduled 74 curves at B1=11000 toward target pretesting depth of 62.46
09/01/24 13:38:06 v1.34.5 @ GEEKOM, prp19 = 1854091725351492661 (curve 28 stg2 B1=11000 sigma=1112734144 thread=0)
09/01/24 13:38:06 v1.34.5 @ GEEKOM, Finished 28 curves using Lenstra ECM method on C203 input, B1=11K, B2=gmp-ecm default
09/01/24 13:38:06 v1.34.5 @ GEEKOM, current ECM pretesting depth: 17.07
09/01/24 13:38:06 v1.34.5 @ GEEKOM, scheduled 46 curves at B1=11000 toward target pretesting depth of 56.92
09/01/24 13:38:07 v1.34.5 @ GEEKOM, Finished 46 curves using Lenstra ECM method on C185 input, B1=11K, B2=gmp-ecm default
09/01/24 13:38:07 v1.34.5 @ GEEKOM, current ECM pretesting depth: 20.24
09/01/24 13:38:07 v1.34.5 @ GEEKOM, scheduled 214 curves at B1=50000 toward target pretesting depth of 56.92
09/01/24 13:38:39 v1.34.5 @ GEEKOM, nfs: commencing nfs on c209: 13999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999983
09/01/24 13:38:39 v1.34.5 @ GEEKOM, nfs: input divides 14*10^207 - 17
09/01/24 13:38:39 v1.34.5 @ GEEKOM, nfs: using supplied cofactor: 38401593798949290587852883278717368091003979745585341245957462393141305694326410983107393093299909323979512844035794882176521135836239552999628753163609370190028264606192032755659606407
09/01/24 13:38:39 v1.34.5 @ GEEKOM, nfs: commencing snfs on c185: 38401593798949290587852883278717368091003979745585341245957462393141305694326410983107393093299909323979512844035794882176521135836239552999628753163609370190028264606192032755659606407
09/01/24 13:38:39 v1.34.5 @ GEEKOM, gen: best 3 polynomials:
n: 38401593798949290587852883278717368091003979745585341245957462393141305694326410983107393093299909323979512844035794882176521135836239552999628753163609370190028264606192032755659606407
# 14*10^207-17, difficulty: 210.15, anorm: -3.82e+026, rnorm: 1.55e+047
# scaled difficulty: 213.58, suggest sieving rational side
# size = 1.265e-014, alpha = 0.485, combined = 5.594e-012, rroots = 1
type: snfs
size: 210
skew: 0.4139
c5: 1400
c0: -17
Y1: -1
Y0: 100000000000000000000000000000000000000000
m: 100000000000000000000000000000000000000000
n: 38401593798949290587852883278717368091003979745585341245957462393141305694326410983107393093299909323979512844035794882176521135836239552999628753163609370190028264606192032755659606407
# 14*10^207-17, difficulty: 209.05, anorm: 1.21e+026, rnorm: 2.20e+047
# scaled difficulty: 212.59, suggest sieving rational side
# size = 1.171e-014, alpha = 0.716, combined = 5.311e-012, rroots = 1
type: snfs
size: 209
skew: 0.8277
c5: 175
c0: -68
Y1: -1
Y0: 200000000000000000000000000000000000000000
m: 200000000000000000000000000000000000000000
n: 38401593798949290587852883278717368091003979745585341245957462393141305694326410983107393093299909323979512844035794882176521135836239552999628753163609370190028264606192032755659606407
# 14*10^207-17, difficulty: 211.15, anorm: -2.64e+033, rnorm: 1.75e+040
# scaled difficulty: 212.28, suggest sieving rational side
# size = 1.871e-010, alpha = -1.458, combined = 5.192e-012, rroots = 2
type: snfs
size: 211
skew: 0.3266
c6: 14000
c0: -17
Y1: -1
Y0: 10000000000000000000000000000000000
m: 10000000000000000000000000000000000
09/01/24 13:38:41 v1.34.5 @ GEEKOM, test: fb generation took 2.0699 seconds
09/01/24 13:38:41 v1.34.5 @ GEEKOM, test: commencing test sieving of polynomial 0 on the rational side over range 21400000-21402000
skew: 0.4139
c5: 1400
c0: -17
Y1: -1
Y0: 100000000000000000000000000000000000000000
m: 100000000000000000000000000000000000000000
rlim: 21400000
alim: 21400000
mfbr: 56
mfba: 56
lpbr: 28
lpba: 28
rlambda: 2.60
alambda: 2.60
09/01/24 13:42:02 v1.34.5 @ GEEKOM, nfs: parsing special-q from .dat file
09/01/24 13:42:04 v1.34.5 @ GEEKOM, test: fb generation took 2.0129 seconds
09/01/24 13:42:04 v1.34.5 @ GEEKOM, test: commencing test sieving of polynomial 1 on the rational side over range 21400000-21402000
skew: 0.8277
c5: 175
c0: -68
Y1: -1
Y0: 200000000000000000000000000000000000000000
m: 200000000000000000000000000000000000000000
rlim: 21400000
alim: 21400000
mfbr: 56
mfba: 56
lpbr: 28
lpba: 28
rlambda: 2.60
alambda: 2.60
09/01/24 13:46:33 v1.34.5 @ GEEKOM, nfs: parsing special-q from .dat file
09/01/24 13:46:36 v1.34.5 @ GEEKOM, test: fb generation took 3.1641 seconds
09/01/24 13:46:36 v1.34.5 @ GEEKOM, test: commencing test sieving of polynomial 2 on the rational side over range 22600000-22602000
skew: 0.3266
c6: 14000
c0: -17
Y1: -1
Y0: 10000000000000000000000000000000000
m: 10000000000000000000000000000000000
rlim: 22600000
alim: 22600000
mfbr: 58
mfba: 58
lpbr: 29
lpba: 29
rlambda: 2.60
alambda: 2.60
09/01/24 13:51:08 v1.34.5 @ GEEKOM, nfs: parsing special-q from .dat file
09/01/24 13:51:08 v1.34.5 @ GEEKOM, gen: selected polynomial:
n: 38401593798949290587852883278717368091003979745585341245957462393141305694326410983107393093299909323979512844035794882176521135836239552999628753163609370190028264606192032755659606407
# 14*10^207-17, difficulty: 210.15, anorm: -3.82e+026, rnorm: 1.55e+047
# scaled difficulty: 213.58, suggest sieving rational side
# size = 1.265e-014, alpha = 0.485, combined = 5.594e-012, rroots = 1
type: snfs
size: 210
skew: 0.4139
c5: 1400
c0: -17
Y1: -1
Y0: 100000000000000000000000000000000000000000
m: 100000000000000000000000000000000000000000
09/04/24 03:28:53 v1.34.5 @ GEEKOM, nfs: commencing msieve filtering
09/04/24 03:30:42 v1.34.5 @ GEEKOM, nfs: raising min_rels by 5.00 percent to 22165364
09/01/24 13:51:08 v1.34.5 @ GEEKOM, test: test sieving took 748.57 seconds
09/04/24 07:17:39 v1.34.5 @ GEEKOM, nfs: previous data file found - commencing search for last special-q
09/04/24 07:17:41 v1.34.5 @ GEEKOM, nfs: parsing special-q from .dat file
09/04/24 07:17:41 v1.34.5 @ GEEKOM, nfs: commencing nfs on c185: 38401593798949290587852883278717368091003979745585341245957462393141305694326410983107393093299909323979512844035794882176521135836239552999628753163609370190028264606192032755659606407
09/04/24 07:17:41 v1.34.5 @ GEEKOM, nfs: resuming with filtering
09/04/24 07:17:41 v1.34.5 @ GEEKOM, nfs: commencing msieve filtering
09/04/24 07:19:38 v1.34.5 @ GEEKOM, nfs: raising min_rels by 5.00 percent to 23855493
09/04/24 11:31:44 v1.34.5 @ GEEKOM, nfs: commencing msieve filtering
09/04/24 11:33:43 v1.34.5 @ GEEKOM, nfs: raising min_rels by 5.00 percent to 25166930
09/04/24 15:47:22 v1.34.5 @ GEEKOM, nfs: commencing msieve filtering
09/04/24 15:49:28 v1.34.5 @ GEEKOM, nfs: raising min_rels by 5.00 percent to 26468686
09/04/24 20:28:02 v1.34.5 @ GEEKOM, nfs: commencing msieve filtering
09/04/24 20:30:14 v1.34.5 @ GEEKOM, nfs: raising min_rels by 5.00 percent to 27875560
09/05/24 01:34:11 v1.34.5 @ GEEKOM, nfs: commencing msieve filtering
09/05/24 01:38:12 v1.34.5 @ GEEKOM, nfs: commencing msieve linear algebra
09/05/24 06:20:58 v1.34.5 @ GEEKOM, nfs: commencing msieve sqrt
09/05/24 06:24:26 v1.34.5 @ GEEKOM, prp93 = 427487228461322964424376720604362268667278002283281193079424297022168751098369737525348864237
09/05/24 06:24:26 v1.34.5 @ GEEKOM, prp92 = 89830973283506378103017231589843530535268064286278082544954211171078733791406269221473065411
09/05/24 06:24:27 v1.34.5 @ GEEKOM, NFS elapsed time = 83207.6664 seconds.
09/05/24 06:24:27 v1.34.5 @ GEEKOM,
09/05/24 06:24:27 v1.34.5 @ GEEKOM,
software ソフトウェア
YAFU

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaAugust 26, 2013 14:00:00 UTC 2013 年 8 月 26 日 (月) 23 時 0 分 0 秒 (日本時間)
403e61500Dmitry DomanovOctober 1, 2013 12:06:21 UTC 2013 年 10 月 1 日 (火) 21 時 6 分 21 秒 (日本時間)
4511e61500 / 4143Dmitry DomanovOctober 2, 2013 13:40:07 UTC 2013 年 10 月 2 日 (水) 22 時 40 分 7 秒 (日本時間)

14×10208-173

c204

name 名前Bob Backstrom
date 日付August 16, 2017 21:28:48 UTC 2017 年 8 月 17 日 (木) 6 時 28 分 48 秒 (日本時間)
composite number 合成数
536910692576442659855571023696936924498851394625523967309808974845734052793661385766497539798505087228812161794202131535449528477359626616964076839590260440036663330150219941630137564189590835701492995233<204>
prime factors 素因数
1416542797531374034088933136233155277168246469803956827113<58>
379028924161079569124878248424247891452475242705870540169269097218188532488183096159720567812853249284739751611882991966248844250250981736082997241<147>
factorization results 素因数分解の結果
Number: n
N=536910692576442659855571023696936924498851394625523967309808974845734052793661385766497539798505087228812161794202131535449528477359626616964076839590260440036663330150219941630137564189590835701492995233
  ( 204 digits)
SNFS difficulty: 209 digits.
Divisors found:

Thu Aug 17 07:18:30 2017  prp58 factor: 1416542797531374034088933136233155277168246469803956827113
Thu Aug 17 07:18:30 2017  prp147 factor: 379028924161079569124878248424247891452475242705870540169269097218188532488183096159720567812853249284739751611882991966248844250250981736082997241
Thu Aug 17 07:18:30 2017  elapsed time 08:41:51 (Msieve 1.44 - dependency 1)

Version: GGNFS-0.77.1-20060513-nocona
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=3.822).
Factorization parameters were as follows:
#
# 14x10^208-17 46(207)1
#
n: 536910692576442659855571023696936924498851394625523967309808974845734052793661385766497539798505087228812161794202131535449528477359626616964076839590260440036663330150219941630137564189590835701492995233
m: 100000000000000000000000000000000000000000
deg: 5
c5: 14000
c0: -17
skew: 0.26
# Murphy_E = 5.251e-12
type: snfs
lss: 1
rlim: 21000000
alim: 21000000
lpbr: 29
lpba: 29
mfbr: 57
mfba: 57
rlambda: 2.6
alambda: 2.6
Factor base limits: 21000000/21000000
Large primes per side: 3
Large prime bits: 29/29
Max factor residue bits: 57/57
Sieved  special-q in [100000, 27300000)
Primes: RFBsize:1329943, AFBsize:1330187,
Relations:
Max relations in full relation-set: 28
Initial matrix:
Pruned matrix :

Msieve: found 11377906 hash collisions in 67369958 relations (58139285 unique)
Msieve: matrix is 2768078 x 2768303 (782.5 MB)

Total sieving time: 0.00 hours.
Total relation processing time: 8hrs 18min 55sec.
Matrix solve time: 0.00 hours.
Total square root time: 0hrs 4min 0sec.

Prototype def-par.txt line would be:
snfs,209,5,0,0,0,0,0,0,0,0,21000000,21000000,29,29,57,57,2.6,2.6,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6418118Makoto KamadaAugust 26, 2013 14:00:00 UTC 2013 年 8 月 26 日 (月) 23 時 0 分 0 秒 (日本時間)
300Ignacio SantosSeptember 7, 2013 11:19:37 UTC 2013 年 9 月 7 日 (土) 20 時 19 分 37 秒 (日本時間)
403e61610110Ignacio SantosSeptember 7, 2013 11:19:37 UTC 2013 年 9 月 7 日 (土) 20 時 19 分 37 秒 (日本時間)
1500Dmitry DomanovOctober 1, 2013 12:06:32 UTC 2013 年 10 月 1 日 (火) 21 時 6 分 32 秒 (日本時間)
4511e6458232Ignacio SantosSeptember 7, 2013 11:19:37 UTC 2013 年 9 月 7 日 (土) 20 時 19 分 37 秒 (日本時間)
1500Dmitry DomanovNovember 8, 2013 13:11:52 UTC 2013 年 11 月 8 日 (金) 22 時 11 分 52 秒 (日本時間)
850Serge BatalovNovember 8, 2013 17:13:57 UTC 2013 年 11 月 9 日 (土) 2 時 13 分 57 秒 (日本時間)
400Serge BatalovJanuary 6, 2014 02:27:21 UTC 2014 年 1 月 6 日 (月) 11 時 27 分 21 秒 (日本時間)
1800Serge BatalovMay 24, 2014 03:26:02 UTC 2014 年 5 月 24 日 (土) 12 時 26 分 2 秒 (日本時間)

14×10209-173

c201

name 名前Bob Backstrom
date 日付September 29, 2020 14:04:24 UTC 2020 年 9 月 29 日 (火) 23 時 4 分 24 秒 (日本時間)
composite number 合成数
101256184814649901679278994926891486429082801286742390686436911003725778529999463409483519410967105936847934105128413274758183977236807126076199705848772454915001859361174054480969363998227617816375457<201>
prime factors 素因数
1272898707122100814355960840740188282039732566383073406872627919691113884265028595724356062108877023<100>
79547715971509004588061909942830465909808085413408920376943646552659279882433564716691442949843205759<101>
factorization results 素因数分解の結果
Number: n
N=101256184814649901679278994926891486429082801286742390686436911003725778529999463409483519410967105936847934105128413274758183977236807126076199705848772454915001859361174054480969363998227617816375457  ( 201 digits)
SNFS difficulty: 210 digits.
Divisors found:

Tue Sep 29 23:59:21 2020  p100 factor: 1272898707122100814355960840740188282039732566383073406872627919691113884265028595724356062108877023
Tue Sep 29 23:59:21 2020  p101 factor: 79547715971509004588061909942830465909808085413408920376943646552659279882433564716691442949843205759
Tue Sep 29 23:59:21 2020  elapsed time 03:39:10 (Msieve 1.54 - dependency 9)

Version: 
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.117).
Factorization parameters were as follows:
#
# N = 14x10^209-17 = 46(208)1
#
n: 101256184814649901679278994926891486429082801286742390686436911003725778529999463409483519410967105936847934105128413274758183977236807126076199705848772454915001859361174054480969363998227617816375457
m: 1000000000000000000000000000000000000000000
deg: 5
c5: 7
c0: -85
skew: 1.65
# Murphy_E = 5.045e-12
type: snfs
lss: 1
rlim: 23000000
alim: 23000000
lpbr: 29
lpba: 29
mfbr: 57
mfba: 57
rlambda: 2.6
alambda: 2.6
Factor base limits: 23000000/23000000
Large primes per side: 3
Large prime bits: 29/29
Max factor residue bits: 57/57
Sieved  special-q in [100000, 37100000)
Primes: , , 
Relations: 
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 

Msieve: found 10637422 hash collisions in 65547410 relations (57121274 unique)
Msieve: matrix is 2731728 x 2731954 (951.4 MB)

Sieving start time: 2020/09/29 04:39:45
Sieving end time  : 2020/09/29 20:19:11

Total sieving time: 15hrs 39min 26secs.

Total relation processing time: 2hrs 49min 28sec.
Matrix solve time: 0.00 hours.
Total square root time: 0hrs 31min 24sec.

Prototype def-par.txt line would be:
snfs,210,5,0,0,0,0,0,0,0,0,23000000,23000000,29,29,57,57,2.6,2.6,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------
[    0.153144] smpboot: CPU0: AMD Ryzen 7 1700 Eight-Core Processor (family: 0x17, model: 0x1, stepping: 0x1)
[    0.000000] Memory: 16283120K/16703460K available (12300K kernel code, 2482K rwdata, 4272K rodata, 2436K init, 2724K bss, 420340K reserved, 0K cma-reserved)
[    0.188717] x86/mm: Memory block size: 128MB
[    0.028000] Calibrating delay loop (skipped), value calculated using timer frequency.. 5988.74 BogoMIPS (lpj=11977488)
[    0.186225] smpboot: Total of 16 processors activated (95819.90 BogoMIPS)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaAugust 26, 2013 14:00:00 UTC 2013 年 8 月 26 日 (月) 23 時 0 分 0 秒 (日本時間)
403e61500Dmitry DomanovOctober 1, 2013 12:06:42 UTC 2013 年 10 月 1 日 (火) 21 時 6 分 42 秒 (日本時間)
4511e61000 / 4143Dmitry DomanovNovember 15, 2013 06:34:53 UTC 2013 年 11 月 15 日 (金) 15 時 34 分 53 秒 (日本時間)

14×10211-173

c196

composite cofactor 合成数の残り
2344061462879903189918357353617378084850368302253658656070356196531745055597852779417163355937783048898698036573766192686492802196345124158709883169474197944362466595606241818245320946558623276339<196>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaAugust 26, 2013 14:00:00 UTC 2013 年 8 月 26 日 (月) 23 時 0 分 0 秒 (日本時間)
403e61500Dmitry DomanovOctober 1, 2013 12:06:53 UTC 2013 年 10 月 1 日 (火) 21 時 6 分 53 秒 (日本時間)
4511e61000 / 4143Dmitry DomanovNovember 15, 2013 06:35:07 UTC 2013 年 11 月 15 日 (金) 15 時 35 分 7 秒 (日本時間)

14×10212-173

c186

composite cofactor 合成数の残り
863805154243744033834552873645621714805821216267324354351732808229381254377929794235389213691626020989026501352962450741746748033279965655481049007658914157817663888407483965168763884327<186>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaAugust 26, 2013 14:00:00 UTC 2013 年 8 月 26 日 (月) 23 時 0 分 0 秒 (日本時間)
403e61500Dmitry DomanovOctober 1, 2013 12:07:04 UTC 2013 年 10 月 1 日 (火) 21 時 7 分 4 秒 (日本時間)
4511e61000 / 4143Dmitry DomanovNovember 15, 2013 06:35:20 UTC 2013 年 11 月 15 日 (金) 15 時 35 分 20 秒 (日本時間)

14×10213-173

c181

name 名前Dmitry Domanov
date 日付September 23, 2013 09:18:39 UTC 2013 年 9 月 23 日 (月) 18 時 18 分 39 秒 (日本時間)
composite number 合成数
7536141161501999935589055722494179608359572584923867922467140934486760794692504847718479084918611511067134014282889889668753143727033167345383124051634816294392753926494697620788581<181>
prime factors 素因数
40799083323257463304062187242631<32>
184713492256480004482571230694069311140757407799435331161496195081550796586745323019592491034663061161310087805641814848037263809568162673869446102451<150>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=453210828
Step 1 took 22792ms
Step 2 took 8904ms
********** Factor found in step 2: 40799083323257463304062187242631
Found probable prime factor of 32 digits: 40799083323257463304062187242631

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaAugust 26, 2013 14:00:00 UTC 2013 年 8 月 26 日 (月) 23 時 0 分 0 秒 (日本時間)

14×10214-173

c101

name 名前Dmitry Domanov
date 日付August 27, 2013 09:15:18 UTC 2013 年 8 月 27 日 (火) 18 時 15 分 18 秒 (日本時間)
composite number 合成数
44603640865070302557849394778125331135436513614462656647808697016788840619148092491932188943148488769<101>
prime factors 素因数
5410762326340660480146797993314871709923729<43>
8243503997196654268282922548763682156959084329887035939761<58>
factorization results 素因数分解の結果
N=44603640865070302557849394778125331135436513614462656647808697016788840619148092491932188943148488769
  ( 101 digits)
Divisors found:
 r1=5410762326340660480146797993314871709923729 (pp43)
 r2=8243503997196654268282922548763682156959084329887035939761 (pp58)
Version: Msieve v. 1.50 (SVN unknown)
Total time: 7.19 hours.
Scaled time: 5.64 units (timescale=0.784).
Factorization parameters were as follows:
name: c101
n: 44603640865070302557849394778125331135436513614462656647808697016788840619148092491932188943148488769
skew: 3255.27
# norm 1.42e+14
c5: 221400
c4: -1319296536
c3: -24717441145558
c2: 12770617823875676
c1: 81400111395029523483
c0: -415576384333655228295
# alpha -5.95
Y1: 23577959669
Y0: -11503754360091974732
# Murphy_E 3.03e-09
# M 21578987666641041738409235380764659301655908428274210923119973786382110856567140676213208296410465263
type: gnfs
rlim: 1800000
alim: 1800000
lpbr: 26
lpba: 26
mfbr: 48
mfba: 48
rlambda: 2.5
alambda: 2.5
qintsize: 100000
Factor base limits: 1800000/1800000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 48/48
Sieved algebraic special-q in [900000, 1500001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 190888 x 191117
Polynomial selection time: 0.43 hours.
Total sieving time: 6.21 hours.
Total relation processing time: 0.10 hours.
Matrix solve time: 0.24 hours.
Time per square root: 0.20 hours.
Prototype def-par.txt line would be:
gnfs,100,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,26,26,48,48,2.5,2.5,100000
total time: 7.19 hours.

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaAugust 26, 2013 14:00:00 UTC 2013 年 8 月 26 日 (月) 23 時 0 分 0 秒 (日本時間)

14×10215-173

c184

name 名前Dmitry Domanov
date 日付September 23, 2013 09:19:49 UTC 2013 年 9 月 23 日 (月) 18 時 19 分 49 秒 (日本時間)
composite number 合成数
6675778932801992267867137366186270744322575502283733958326797606438898886773526303830949329046803518996173558451972619091043411995655102687706343220172257818693055526978721442902033549<184>
prime factors 素因数
382310979831411041709213492795473471<36>
composite cofactor 合成数の残り
17461645845865669228396919583466003484739054162091719951896041861185647834192144358746007088829152230536739696413262482294518777563547024710274605619<149>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3862343348
Step 1 took 22900ms
Step 2 took 9253ms
********** Factor found in step 2: 382310979831411041709213492795473471
Found probable prime factor of 36 digits: 382310979831411041709213492795473471

c149

name 名前yoyo@Home
date 日付August 15, 2021 16:33:41 UTC 2021 年 8 月 16 日 (月) 1 時 33 分 41 秒 (日本時間)
composite number 合成数
17461645845865669228396919583466003484739054162091719951896041861185647834192144358746007088829152230536739696413262482294518777563547024710274605619<149>
prime factors 素因数
3562942363245293033958539775618752810124389958497<49>
4900906067411315884364133916663142170027810580604754947741686142424288237661866053669286801861124627<100>
factorization results 素因数分解の結果
GMP-ECM 7.0.5-dev [configured with GMP 6.0.0, --enable-asm-redc, --enable-assert] [ECM]
Tuned for x86_64/core2/params.h
Running on GONDOLIN
Input number is 17461645845865669228396919583466003484739054162091719951896041861185647834192144358746007088829152230536739696413262482294518777563547024710274605619 (149 digits)
[Sun Aug 15 11:02:56 2021]
Using MODMULN [mulredc:0, sqrredc:1]
Using B1=43000000, B2=240490660426, polynomial Dickson(12), sigma=0:10021164736123155369
dF=65536, k=5, d=690690, d2=17, i0=46
Expected number of curves to find a factor of n digits:
35        40      45      50      55      60      65      70      75      80
55      246     1286    7557    49831   361851  2844041 2.4e+07 2.2e+08 2.2e+09
Writing checkpoint to checkpnt at p = 43000000
Step 1 took 139180ms
Using 19 small primes for NTT
Estimated memory usage: 212.58MB
Initializing tables of differences for F took 48ms
Computing roots of F took 2383ms
Building F from its roots took 2202ms
Computing 1/F took 1016ms
Initializing table of differences for G took 64ms
Computing roots of G took 1873ms
Building G from its roots took 2510ms
Computing roots of G took 1919ms
Building G from its roots took 2478ms
Computing G * H took 524ms
Reducing  G * H mod F took 586ms
Computing roots of G took 1889ms
Building G from its roots took 2479ms
Computing G * H took 530ms
Reducing  G * H mod F took 590ms
Computing roots of G took 1892ms
Building G from its roots took 2476ms
Computing G * H took 515ms
Reducing  G * H mod F took 586ms
Computing roots of G took 1890ms
Building G from its roots took 2466ms
Computing G * H took 502ms
Reducing  G * H mod F took 601ms
Computing polyeval(F,G) took 4621ms
Computing product of all F(g_i) took 22ms
Step 2 took 36878ms
********** Factor found in step 2: 3562942363245293033958539775618752810124389958497
Found prime factor of 49 digits: 3562942363245293033958539775618752810124389958497
Prime cofactor 4900906067411315884364133916663142170027810580604754947741686142424288237661866053669286801861124627 has 100 digits
Peak memory usage: 298MB
software ソフトウェア
GMP-ECM 7.0.5-dev

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6418118Makoto KamadaAugust 26, 2013 14:00:00 UTC 2013 年 8 月 26 日 (月) 23 時 0 分 0 秒 (日本時間)
300Ignacio SantosSeptember 23, 2013 19:24:58 UTC 2013 年 9 月 24 日 (火) 4 時 24 分 58 秒 (日本時間)
403e61610110Ignacio SantosSeptember 23, 2013 19:24:58 UTC 2013 年 9 月 24 日 (火) 4 時 24 分 58 秒 (日本時間)
1500Dmitry DomanovOctober 1, 2013 12:07:19 UTC 2013 年 10 月 1 日 (火) 21 時 7 分 19 秒 (日本時間)
4511e6415832Ignacio SantosSeptember 23, 2013 19:24:58 UTC 2013 年 9 月 24 日 (火) 4 時 24 分 58 秒 (日本時間)
1500Dmitry DomanovOctober 1, 2013 12:07:19 UTC 2013 年 10 月 1 日 (火) 21 時 7 分 19 秒 (日本時間)
850Serge BatalovNovember 8, 2013 17:10:48 UTC 2013 年 11 月 9 日 (土) 2 時 10 分 48 秒 (日本時間)
400Serge BatalovJanuary 6, 2014 02:24:53 UTC 2014 年 1 月 6 日 (月) 11 時 24 分 53 秒 (日本時間)
900Serge BatalovMay 24, 2014 19:01:54 UTC 2014 年 5 月 25 日 (日) 4 時 1 分 54 秒 (日本時間)
476Ignacio SantosDecember 22, 2015 20:07:14 UTC 2015 年 12 月 23 日 (水) 5 時 7 分 14 秒 (日本時間)

14×10216-173

c207

name 名前Bob Backstrom
date 日付December 23, 2019 23:11:18 UTC 2019 年 12 月 24 日 (火) 8 時 11 分 18 秒 (日本時間)
composite number 合成数
297472343839648406941991628885039463180356104794274876116780269381899947999609628658029095953661376356225862374111218805611613391849848172154452199982687139335766846680816781398053591746849592736583681637491<207>
prime factors 素因数
109013186510753774620057362375982651522062411037759<51>
2728773952592458040539244685300831270457594785598002900214061887537303205603174973925515588948338084484179800437978025250489281171034544714240453361421484749<157>
factorization results 素因数分解の結果
#
# N = 14x10^216-17 = 46(215)1
#
n: 297472343839648406941991628885039463180356104794274876116780269381899947999609628658029095953661376356225862374111218805611613391849848172154452199982687139335766846680816781398053591746849592736583681637491
m: 1000000000000000000000000000000000000
deg: 6
c6: 14
c0: -17
skew: 1.03
# Murphy_E = 2.875e-12
type: snfs
lss: 1
rlim: 29000000
alim: 29000000
lpbr: 29
lpba: 29
mfbr: 58
mfba: 58
rlambda: 2.6
alambda: 2.6



GMP-ECM 6.2.3 [powered by GMP 6.1.2] [ECM]
Input number is 297472343839648406941991628885039463180356104794274876116780269381899947999609628658029095953661376356225862374111218805611613391849848172154452199982687139335766846680816781398053591746849592736583681637491 (207 digits)
Using B1=400310000, B2=4767896883766, polynomial Dickson(30), sigma=188925494
Step 1 took 2204201ms
Step 2 took 432921ms
********** Factor found in step 2: 109013186510753774620057362375982651522062411037759
Found probable prime factor of 51 digits: 109013186510753774620057362375982651522062411037759
Probable prime cofactor 2728773952592458040539244685300831270457594785598002900214061887537303205603174973925515588948338084484179800437978025250489281171034544714240453361421484749 has 157 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaAugust 26, 2013 14:00:00 UTC 2013 年 8 月 26 日 (月) 23 時 0 分 0 秒 (日本時間)
403e61500Dmitry DomanovOctober 1, 2013 12:07:49 UTC 2013 年 10 月 1 日 (火) 21 時 7 分 49 秒 (日本時間)
4511e61500 / 4143Dmitry DomanovNovember 21, 2013 09:32:56 UTC 2013 年 11 月 21 日 (木) 18 時 32 分 56 秒 (日本時間)

14×10218-173

c181

name 名前Dmitry Domanov
date 日付September 23, 2013 09:19:13 UTC 2013 年 9 月 23 日 (月) 18 時 19 分 13 秒 (日本時間)
composite number 合成数
3269180514427581326023041982347389098685546077846968753877553800387649622433127479214889120246230850162532489131814273585348429946933991713988695676273486045184483180418340523902707<181>
prime factors 素因数
1527886314916639031367774165189229<34>
composite cofactor 合成数の残り
2139675237948542478055260794088038379735645005438796595917692330169590958027058949936159653087421250230619094525919997833104543449335998559755932383<148>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=73556991
Step 1 took 24872ms
Step 2 took 8911ms
********** Factor found in step 2: 1527886314916639031367774165189229
Found probable prime factor of 34 digits: 1527886314916639031367774165189229

c148

name 名前Dmitry Domanov
date 日付October 2, 2013 05:15:00 UTC 2013 年 10 月 2 日 (水) 14 時 15 分 0 秒 (日本時間)
composite number 合成数
2139675237948542478055260794088038379735645005438796595917692330169590958027058949936159653087421250230619094525919997833104543449335998559755932383<148>
prime factors 素因数
1390735620918670651702469043129402329130043<43>
1538520482084976628498706653231565374918955501110666207747848770489472953889831848392381218980792351102381<106>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1389434456
Step 1 took 59643ms
Step 2 took 21667ms
********** Factor found in step 2: 1390735620918670651702469043129402329130043
Found probable prime factor of 43 digits: 1390735620918670651702469043129402329130043

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6418118Makoto KamadaAugust 26, 2013 14:00:00 UTC 2013 年 8 月 26 日 (月) 23 時 0 分 0 秒 (日本時間)
300Ignacio SantosSeptember 23, 2013 19:24:24 UTC 2013 年 9 月 24 日 (火) 4 時 24 分 24 秒 (日本時間)
403e61610110Ignacio SantosSeptember 23, 2013 19:24:24 UTC 2013 年 9 月 24 日 (火) 4 時 24 分 24 秒 (日本時間)
1500Dmitry DomanovOctober 1, 2013 12:08:05 UTC 2013 年 10 月 1 日 (火) 21 時 8 分 5 秒 (日本時間)
4511e61532 / 410532Ignacio SantosSeptember 23, 2013 19:24:24 UTC 2013 年 9 月 24 日 (火) 4 時 24 分 24 秒 (日本時間)
1500Dmitry DomanovOctober 1, 2013 12:08:05 UTC 2013 年 10 月 1 日 (火) 21 時 8 分 5 秒 (日本時間)

14×10219-173

c206

name 名前Bob Backstrom
date 日付July 2, 2020 19:16:48 UTC 2020 年 7 月 3 日 (金) 4 時 16 分 48 秒 (日本時間)
composite number 合成数
18681312855112240469972027656731017081049833223975019219788109940991275976875081978950553277175786682139109383049105341317481634452944500022189690352425784515861592267821990009180377047559495107235786727311<206>
prime factors 素因数
118916979464161989735432999265615948595822893432443141954574077780503288071<75>
157095420177084364565405422446242947765057001378307000452163962443275635602422611488837366031001669608972505629725788194703551728441<132>
factorization results 素因数分解の結果
Number: n
N=18681312855112240469972027656731017081049833223975019219788109940991275976875081978950553277175786682139109383049105341317481634452944500022189690352425784515861592267821990009180377047559495107235786727311  ( 206 digits)
SNFS difficulty: 220 digits.
Divisors found:

Fri Jul  3 05:05:09 2020  p75 factor: 118916979464161989735432999265615948595822893432443141954574077780503288071
Fri Jul  3 05:05:09 2020  p132 factor: 157095420177084364565405422446242947765057001378307000452163962443275635602422611488837366031001669608972505629725788194703551728441
Fri Jul  3 05:05:09 2020  elapsed time 09:37:50 (Msieve 1.54 - dependency 1)

Version:
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.101).
Factorization parameters were as follows:
#
# N = 14x10^219-17 = 46(218)1
#
n: 18681312855112240469972027656731017081049833223975019219788109940991275976875081978950553277175786682139109383049105341317481634452944500022189690352425784515861592267821990009180377047559495107235786727311
m: 1000000000000000000000000000000000000
deg: 6
c6: 14000
c0: -17
skew: 0.33
# Murphy_E = 2.058e-12
type: snfs
lss: 1
rlim: 33000000
alim: 33000000
lpbr: 29
lpba: 29
mfbr: 58
mfba: 58
rlambda: 2.6
alambda: 2.6
Factor base limits: 33000000/33000000
Large primes per side: 3
Large prime bits: 29/29
Max factor residue bits: 58/58
Sieved  special-q in [100000, 92500000)
Primes: , ,
Relations:
Max relations in full relation-set: 28
Initial matrix:
Pruned matrix :

Msieve: found 10182479 hash collisions in 60201126 relations (52231683 unique)
Msieve: matrix is 4491318 x 4491543 (1589.7 MB)

Sieving start time: 2020/06/30 23:22:00
Sieving end time  : 2020/07/02 19:26:24

Total sieving time:  44hrs 4min 24secs.

Total relation processing time: 9hrs 6min 49sec.
Matrix solve time: 0.00 hours.
Total square root time: 0hrs 11min 1sec.

Prototype def-par.txt line would be:
snfs,220,6,0,0,0,0,0,0,0,0,33000000,33000000,29,29,58,58,2.6,2.6,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------
[    0.149789] smpboot: CPU0: AMD Ryzen 7 1700 Eight-Core Processor (family: 0x17, model: 0x1, stepping: 0x1)
[    0.000000] Memory: 16283132K/16703460K available (12300K kernel code, 2481K rwdata, 4272K rodata, 2436K init, 2720K bss, 420328K reserved, 0K cma-reserved)
[    0.184561] x86/mm: Memory block size: 128MB
[    0.024000] Calibrating delay loop (skipped), value calculated using timer frequency.. 5988.43 BogoMIPS (lpj=11976876)
[    0.182228] smpboot: Total of 16 processors activated (95815.00 BogoMIPS)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaAugust 26, 2013 14:00:00 UTC 2013 年 8 月 26 日 (月) 23 時 0 分 0 秒 (日本時間)
403e61500Dmitry DomanovOctober 1, 2013 12:08:23 UTC 2013 年 10 月 1 日 (火) 21 時 8 分 23 秒 (日本時間)
4511e61500 / 4143Dmitry DomanovNovember 21, 2013 09:33:09 UTC 2013 年 11 月 21 日 (木) 18 時 33 分 9 秒 (日本時間)

14×10220-173

c193

name 名前Dmitry Domanov
date 日付September 23, 2013 09:17:25 UTC 2013 年 9 月 23 日 (月) 18 時 17 分 25 秒 (日本時間)
composite number 合成数
2080112800887485199170802174534191183403602824352514179380407123468068671398815761649784709575618097728121863213954327228800713768292396183068049780689584895436242693191429757467627899262160219<193>
prime factors 素因数
45311694363311552659577782080971<32>
composite cofactor 合成数の残り
45906753877024133561373189096656065395595221799219875975120558468312161467188665332590173011227884777394408795983414668189496805005071132572685569778220508787889<161>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1652151466
Step 1 took 23058ms
Step 2 took 9575ms
********** Factor found in step 2: 45311694363311552659577782080971
Found probable prime factor of 32 digits: 45311694363311552659577782080971

c161

name 名前Erik Branger
date 日付January 26, 2019 09:51:20 UTC 2019 年 1 月 26 日 (土) 18 時 51 分 20 秒 (日本時間)
composite number 合成数
45906753877024133561373189096656065395595221799219875975120558468312161467188665332590173011227884777394408795983414668189496805005071132572685569778220508787889<161>
prime factors 素因数
320007345991159111736040307213348713905898940122577<51>
143455312673642204299873355528819526295991273437255522705629256118156079315187789035536011960579757747617913057<111>
factorization results 素因数分解の結果
Number: 46661_220
N = 45906753877024133561373189096656065395595221799219875975120558468312161467188665332590173011227884777394408795983414668189496805005071132572685569778220508787889 (161 digits)
SNFS difficulty: 222 digits.
Divisors found:
r1=320007345991159111736040307213348713905898940122577 (pp51)
r2=143455312673642204299873355528819526295991273437255522705629256118156079315187789035536011960579757747617913057 (pp111)
Version: Msieve v. 1.52 (SVN unknown)
Total time: 39.05 hours.
Factorization parameters were as follows:
n: 45906753877024133561373189096656065395595221799219875975120558468312161467188665332590173011227884777394408795983414668189496805005071132572685569778220508787889
m: 10000000000000000000000000000000000000000000000000000000
deg: 4
c4: 14
c0: -17
skew: 1.00
type: snfs
lss: 1
rlim: 536870912
alim: 536870912
lpbr: 29
lpba: 28
mfbr: 58
mfba: 56
rlambda: 2.8
alambda: 2.8
side: 1
Number of cores used: 6
Number of threads per core: 1
Factor base limits: 536870912/536870912
Large primes per side: 3
Large prime bits: 29/28
Total raw relations: 31212890
Relations: 7285552 relations
Total pre-computation time approximately 1000 CPU-days.
Pre-computation saved approximately 18 G rational relations.
Total batch smoothness checking time: 18.86 hours.
Total relation processing time: 0.32 hours.
Pruned matrix : 6440673 x 6440898
Matrix solve time: 19.70 hours.
time per square root: 0.16 hours.
Prototype def-par.txt line would be: snfs,222,4,0,0,0,0,0,0,0,0,536870912,536870912,29,28,58,56,2.8,2.8,100000
total time: 39.05 hours.
Intel64 Family 6 Model 158 Stepping 10, GenuineIntel
Windows-10-10.0.17134-SP0
processors: 12, speed: 3.19GHz
software ソフトウェア
GGNFS, NFS_factory, Msieve

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaAugust 26, 2013 14:00:00 UTC 2013 年 8 月 26 日 (月) 23 時 0 分 0 秒 (日本時間)
403e61500Dmitry DomanovOctober 1, 2013 12:09:00 UTC 2013 年 10 月 1 日 (火) 21 時 9 分 0 秒 (日本時間)
4511e61500 / 4143Dmitry DomanovOctober 1, 2013 12:09:00 UTC 2013 年 10 月 1 日 (火) 21 時 9 分 0 秒 (日本時間)

14×10221-173

c208

name 名前Erik Branger
date 日付September 6, 2021 18:39:08 UTC 2021 年 9 月 7 日 (火) 3 時 39 分 8 秒 (日本時間)
composite number 合成数
3653621543018516710863100324844345105164008196433063848479834477589917017118622436675882778551665982455995329858882601395760908401360682463728192641203174775597870333785697893538206618433561593005516581911913<208>
prime factors 素因数
1753573993119551145720111936654845404390016368352258824028268301807242871<73>
2083528586392207335398881405169987031243039961460924577363671304027076091380960071191740137988682209760059371095927178003925339128982303<136>
factorization results 素因数分解の結果
Number: 46661_221
N = 3653621543018516710863100324844345105164008196433063848479834477589917017118622436675882778551665982455995329858882601395760908401360682463728192641203174775597870333785697893538206618433561593005516581911913 (208 digits)
SNFS difficulty: 223 digits.
Divisors found:
r1=1753573993119551145720111936654845404390016368352258824028268301807242871 (pp73)
r2=2083528586392207335398881405169987031243039961460924577363671304027076091380960071191740137988682209760059371095927178003925339128982303 (pp136)
Version: Msieve v. 1.52 (SVN unknown)
Total time: 50.45 hours.
Factorization parameters were as follows:
n: 3653621543018516710863100324844345105164008196433063848479834477589917017118622436675882778551665982455995329858882601395760908401360682463728192641203174775597870333785697893538206618433561593005516581911913
m: 10000000000000000000000000000000000000000000000000000000
deg: 4
c4: 140
c0: -17
skew: 1.00
type: snfs
lss: 1
rlim: 536870912
alim: 44739242
lpbr: 29
lpba: 28
mfbr: 58
mfba: 56
rlambda: 2.8
alambda: 2.8
side: 1
Factor base limits: 536870912/44739242
Large primes per side: 3
Large prime bits: 29/28
Relations: 7570606 relations
Pruned matrix : 6572489 x 6572715
Total pre-computation time approximately 1000 CPU-days.
Pre-computation saved approximately 18 G relations.
Total batch smoothness checking time: 25.90 hours.
Total relation processing time: 0.29 hours.
Matrix solve time: 23.82 hours.
time per square root: 0.43 hours.
Prototype def-par.txt line would be: snfs,223,4,0,0,0,0,0,0,0,0,536870912,44739242,29,28,58,56,2.8,2.8,100000
total time: 50.45 hours.
Intel64 Family 6 Model 60 Stepping 3, GenuineIntel
Windows-10-10.0.19041-SP0
processors: 8, speed: 3.50GHz
software ソフトウェア
GGNFS, NFS_factory, Msieve

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaAugust 26, 2013 14:00:00 UTC 2013 年 8 月 26 日 (月) 23 時 0 分 0 秒 (日本時間)
403e61500Dmitry DomanovOctober 1, 2013 12:08:36 UTC 2013 年 10 月 1 日 (火) 21 時 8 分 36 秒 (日本時間)
4511e61500 / 4143Dmitry DomanovNovember 21, 2013 09:33:28 UTC 2013 年 11 月 21 日 (木) 18 時 33 分 28 秒 (日本時間)

14×10222-173

c194

name 名前Erik Branger
date 日付November 26, 2021 16:53:56 UTC 2021 年 11 月 27 日 (土) 1 時 53 分 56 秒 (日本時間)
composite number 合成数
29964090627586924123988426578215634290368350674077655715968588014162666076191344499653352647727633870276976053052088104393180864923082644135626871353965999564617710937108309136423373816819648931<194>
prime factors 素因数
6059854390901908932355754105065884963483375481464889642647971162777<67>
4944688220986654045620769496540559098632805387637549341520247791758335702279689452418351024771832268747383252369379587424507803<127>
factorization results 素因数分解の結果
Number: 46661_222
N = 29964090627586924123988426578215634290368350674077655715968588014162666076191344499653352647727633870276976053052088104393180864923082644135626871353965999564617710937108309136423373816819648931 (194 digits)
SNFS difficulty: 224 digits.
Divisors found:
r1=6059854390901908932355754105065884963483375481464889642647971162777 (pp67)
r2=4944688220986654045620769496540559098632805387637549341520247791758335702279689452418351024771832268747383252369379587424507803 (pp127)
Version: Msieve v. 1.52 (SVN unknown)
Total time: 61.44 hours.
Factorization parameters were as follows:
n: 29964090627586924123988426578215634290368350674077655715968588014162666076191344499653352647727633870276976053052088104393180864923082644135626871353965999564617710937108309136423373816819648931
m: 10000000000000000000000000000000000000000000000000000000
deg: 4
c4: 1400
c0: -17
skew: 1.00
type: snfs
lss: 1
rlim: 536870912
alim: 60000000
lpbr: 29
lpba: 28
mfbr: 58
mfba: 56
rlambda: 2.8
alambda: 2.8
side: 1
Number of cores used: 6
Number of threads per core: 1
Factor base limits: 536870912/60000000
Large primes per side: 3
Large prime bits: 29/28
Total raw relations: 33042396
Relations: 10023450 relations
Total pre-computation time approximately 1000 CPU-days.
Pre-computation saved approximately 18 G rational relations.
Total batch smoothness checking time: 24.60 hours.
Total relation processing time: 0.39 hours.
Pruned matrix : 8513818 x 8514043
Matrix solve time: 36.05 hours.
time per square root: 0.40 hours.
Prototype def-par.txt line would be: snfs,224,4,0,0,0,0,0,0,0,0,536870912,60000000,29,28,58,56,2.8,2.8,100000
total time: 61.44 hours.
Intel64 Family 6 Model 158 Stepping 10, GenuineIntel
Windows-10-10.0.22000-SP0
processors: 12, speed: 3.19GHz
software ソフトウェア
GGNFS, NFS_factory, Msieve

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaAugust 26, 2013 14:00:00 UTC 2013 年 8 月 26 日 (月) 23 時 0 分 0 秒 (日本時間)
403e61500Dmitry DomanovOctober 1, 2013 12:08:46 UTC 2013 年 10 月 1 日 (火) 21 時 8 分 46 秒 (日本時間)
4511e61500 / 4143Dmitry DomanovNovember 21, 2013 09:33:42 UTC 2013 年 11 月 21 日 (木) 18 時 33 分 42 秒 (日本時間)

14×10225-173

c194

name 名前Dmitry Domanov
date 日付September 23, 2013 09:21:03 UTC 2013 年 9 月 23 日 (月) 18 時 21 分 3 秒 (日本時間)
composite number 合成数
19362269406515127127600852569715301969346748495830628955489635083284782729547163080864177378127607224981167312378215324232097638958977425324822470121572949425355443592721863625917362944649096293<194>
prime factors 素因数
922431281080593721997663642005993<33>
composite cofactor 合成数の残り
20990473549241471070378817086183476845144490821083373491126392597771829631276035231457397437193531516008442298476470246719898032393057847538136439852303130787101<161>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3341017799
Step 1 took 27546ms
Step 2 took 10073ms
********** Factor found in step 2: 922431281080593721997663642005993
Found probable prime factor of 33 digits: 922431281080593721997663642005993

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaAugust 26, 2013 14:00:00 UTC 2013 年 8 月 26 日 (月) 23 時 0 分 0 秒 (日本時間)
403e61500Dmitry DomanovOctober 1, 2013 12:11:36 UTC 2013 年 10 月 1 日 (火) 21 時 11 分 36 秒 (日本時間)
4511e61500 / 4143Dmitry DomanovOctober 2, 2013 13:29:05 UTC 2013 年 10 月 2 日 (水) 22 時 29 分 5 秒 (日本時間)

14×10226-173

c213

composite cofactor 合成数の残り
250506477311167770964856972536144700274369033498255546832793241827365307245185436908633575857401935465317103486027190791945230571295668366017481747236858650352587589650718277204068957334984254626295498832094561611<213>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaAugust 26, 2013 14:00:00 UTC 2013 年 8 月 26 日 (月) 23 時 0 分 0 秒 (日本時間)
403e61500Dmitry DomanovOctober 1, 2013 12:11:46 UTC 2013 年 10 月 1 日 (火) 21 時 11 分 46 秒 (日本時間)
4511e61500 / 4143Dmitry DomanovNovember 21, 2013 09:34:00 UTC 2013 年 11 月 21 日 (木) 18 時 34 分 0 秒 (日本時間)

14×10227-173

c222

name 名前Dmitry Domanov
date 日付October 21, 2013 09:56:09 UTC 2013 年 10 月 21 日 (月) 18 時 56 分 9 秒 (日本時間)
composite number 合成数
631185903635044703741624952041142500587228313917604090445333214309705790724903484912628091289318936884565566013704849356212920645955653780104749809178975918905235100969456463276026161754011524552906227866226459583588625489<222>
prime factors 素因数
52278010823958401702040634504576829441520769<44>
12073640402281327371732771195250133638160318491614867052796473480296226357655309017964149356429745770308251218550182164038040186766744022751552961735971711287748400838984108412881<179>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=4086378085
Step 1 took 134899ms
Step 2 took 40067ms
********** Factor found in step 2: 52278010823958401702040634504576829441520769
Found probable prime factor of 44 digits: 52278010823958401702040634504576829441520769

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaAugust 26, 2013 14:00:00 UTC 2013 年 8 月 26 日 (月) 23 時 0 分 0 秒 (日本時間)
403e61500Dmitry DomanovOctober 1, 2013 12:11:55 UTC 2013 年 10 月 1 日 (火) 21 時 11 分 55 秒 (日本時間)
4511e61500 / 4143Dmitry DomanovOctober 18, 2013 13:31:25 UTC 2013 年 10 月 18 日 (金) 22 時 31 分 25 秒 (日本時間)

14×10228-173

c217

composite cofactor 合成数の残り
1081623049609542672172749720632806813624929238975426476728862456770057431739698723553991985574268374601596138415178874847830181881722043177501144618325636967976214529743285855881916349709426084653991876905477968909809<217>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaAugust 26, 2013 14:00:00 UTC 2013 年 8 月 26 日 (月) 23 時 0 分 0 秒 (日本時間)
403e61500Dmitry DomanovOctober 1, 2013 12:12:06 UTC 2013 年 10 月 1 日 (火) 21 時 12 分 6 秒 (日本時間)
4511e61500 / 4143Dmitry DomanovOctober 18, 2013 13:31:08 UTC 2013 年 10 月 18 日 (金) 22 時 31 分 8 秒 (日本時間)

14×10229-173

c167

name 名前Dmitry Domanov
date 日付September 23, 2013 09:21:36 UTC 2013 年 9 月 23 日 (月) 18 時 21 分 36 秒 (日本時間)
composite number 合成数
99929455977550961319367936022230043940262453442297792498226094340054300281434216805382017136690000120849985356338846820937045528018884337567075037620270594673303300181<167>
prime factors 素因数
1706780255070445468534929150076277<34>
58548518873876053525866219385213105900496652062081464310718219427944630068314649093945698872171385458826579054078593016034394559347553<134>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1420782650
Step 1 took 19991ms
Step 2 took 8278ms
********** Factor found in step 2: 1706780255070445468534929150076277
Found probable prime factor of 34 digits: 1706780255070445468534929150076277

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaAugust 26, 2013 14:00:00 UTC 2013 年 8 月 26 日 (月) 23 時 0 分 0 秒 (日本時間)

14×10230-173

c211

composite cofactor 合成数の残り
2859372100514941570321844264201876418733119562511494933057780473485674330188906667366607343906282718465504020302142834568053313346796679288448304065997715399926401669058796066729637495455182496034661254802143801<211>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaAugust 26, 2013 14:00:00 UTC 2013 年 8 月 26 日 (月) 23 時 0 分 0 秒 (日本時間)
403e61500Dmitry DomanovOctober 1, 2013 12:12:21 UTC 2013 年 10 月 1 日 (火) 21 時 12 分 21 秒 (日本時間)
4511e61500 / 4143Dmitry DomanovNovember 21, 2013 09:34:12 UTC 2013 年 11 月 21 日 (木) 18 時 34 分 12 秒 (日本時間)

14×10233-173

c230

composite cofactor 合成数の残り
62213927031951295382837843843043149802248589077011953961693996356041416699995556148069146336044083011154068346442696529351642003288450428831711327378571745989423632404568279784917566546682664533617739856907967826512020619472959161<230>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6418118Makoto KamadaAugust 26, 2013 14:00:00 UTC 2013 年 8 月 26 日 (月) 23 時 0 分 0 秒 (日本時間)
300Ignacio SantosSeptember 12, 2013 17:43:55 UTC 2013 年 9 月 13 日 (金) 2 時 43 分 55 秒 (日本時間)
403e61610110Ignacio SantosSeptember 12, 2013 17:43:55 UTC 2013 年 9 月 13 日 (金) 2 時 43 分 55 秒 (日本時間)
1500Dmitry DomanovOctober 1, 2013 12:12:31 UTC 2013 年 10 月 1 日 (火) 21 時 12 分 31 秒 (日本時間)
4511e6448232Ignacio SantosSeptember 12, 2013 17:43:55 UTC 2013 年 9 月 13 日 (金) 2 時 43 分 55 秒 (日本時間)
1500Dmitry DomanovOctober 18, 2013 13:30:48 UTC 2013 年 10 月 18 日 (金) 22 時 30 分 48 秒 (日本時間)
850Serge BatalovNovember 8, 2013 17:16:18 UTC 2013 年 11 月 9 日 (土) 2 時 16 分 18 秒 (日本時間)
400Serge BatalovJanuary 6, 2014 02:29:05 UTC 2014 年 1 月 6 日 (月) 11 時 29 分 5 秒 (日本時間)
800Serge BatalovFebruary 23, 2014 19:25:01 UTC 2014 年 2 月 24 日 (月) 4 時 25 分 1 秒 (日本時間)
900Serge BatalovMay 24, 2014 19:04:04 UTC 2014 年 5 月 25 日 (日) 4 時 4 分 4 秒 (日本時間)

14×10234-173

c140

name 名前Serge Batalov
date 日付November 8, 2013 01:24:28 UTC 2013 年 11 月 8 日 (金) 10 時 24 分 28 秒 (日本時間)
composite number 合成数
41384459753963790055504655247794631458521306829183305633411627715512015392644017059993087043205263384969022446934182324843601083937900247289<140>
prime factors 素因数
4298022460110706550898830188948454744774909<43>
9628721147468789064378634989610592036741743898363424979644065732303657369169432293857996251483821<97>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1653564496
Step 1 took 33611ms
Step 2 took 13295ms
********** Factor found in step 2: 4298022460110706550898830188948454744774909
Found probable prime factor of 43 digits: 4298022460110706550898830188948454744774909
Probable prime cofactor 

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6418118Makoto KamadaAugust 26, 2013 14:00:00 UTC 2013 年 8 月 26 日 (月) 23 時 0 分 0 秒 (日本時間)
300Ignacio SantosAugust 29, 2013 09:56:56 UTC 2013 年 8 月 29 日 (木) 18 時 56 分 56 秒 (日本時間)
403e61610110Ignacio SantosAugust 29, 2013 09:56:56 UTC 2013 年 8 月 29 日 (木) 18 時 56 分 56 秒 (日本時間)
1500Dmitry DomanovOctober 1, 2013 12:12:41 UTC 2013 年 10 月 1 日 (火) 21 時 12 分 41 秒 (日本時間)
4511e61532 / 410532Ignacio SantosAugust 29, 2013 09:56:56 UTC 2013 年 8 月 29 日 (木) 18 時 56 分 56 秒 (日本時間)
1500Dmitry DomanovOctober 2, 2013 13:28:45 UTC 2013 年 10 月 2 日 (水) 22 時 28 分 45 秒 (日本時間)

14×10236-173

c212

composite cofactor 合成数の残り
34630655592673401143287967524826461027623701825610392377997512391461589876036312209582923560094294854094112466607763514413803880221803886635947987798338231488870415810543108479966009782122393480646112778090313343<212>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaAugust 26, 2013 14:00:00 UTC 2013 年 8 月 26 日 (月) 23 時 0 分 0 秒 (日本時間)
403e61500Dmitry DomanovOctober 1, 2013 12:13:00 UTC 2013 年 10 月 1 日 (火) 21 時 13 分 0 秒 (日本時間)
4511e61500 / 4143Dmitry DomanovOctober 21, 2013 14:21:37 UTC 2013 年 10 月 21 日 (月) 23 時 21 分 37 秒 (日本時間)

14×10237-173

c194

composite cofactor 合成数の残り
95915596343514095014601598997942985678627498128607552139225807852089482317349977434781023822664479567375797843301236996852615522967848213490371782665668021976876662532595110868379827483783599171<194>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaAugust 26, 2013 14:00:00 UTC 2013 年 8 月 26 日 (月) 23 時 0 分 0 秒 (日本時間)
403e61500Dmitry DomanovOctober 1, 2013 12:13:10 UTC 2013 年 10 月 1 日 (火) 21 時 13 分 10 秒 (日本時間)
4511e61500 / 4143Dmitry DomanovNovember 21, 2013 09:35:22 UTC 2013 年 11 月 21 日 (木) 18 時 35 分 22 秒 (日本時間)

14×10238-173

c166

name 名前Dmitry Domanov
date 日付September 23, 2013 09:16:51 UTC 2013 年 9 月 23 日 (月) 18 時 16 分 51 秒 (日本時間)
composite number 合成数
1547086541603478043494742328529579967478518964434819636247644692772718072825200384130865249981776999085019204297000616459008928986853514838706147250997935160995706417<166>
prime factors 素因数
54996580497864352732624017756407206432871<41>
composite cofactor 合成数の残り
28130595167886030154087455296979033401962678715595994404240727736007734402835547034299580627592039860366604790144971390485927<125>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3487167039
Step 1 took 19415ms
Step 2 took 8220ms
********** Factor found in step 2: 54996580497864352732624017756407206432871
Found probable prime factor of 41 digits: 54996580497864352732624017756407206432871

c125

name 名前anonymous
date 日付October 20, 2013 20:16:20 UTC 2013 年 10 月 21 日 (月) 5 時 16 分 20 秒 (日本時間)
composite number 合成数
28130595167886030154087455296979033401962678715595994404240727736007734402835547034299580627592039860366604790144971390485927<125>
prime factors 素因数
249112974267122437135891587984243552485977345814723<51>
112923043252342817085552293916521517783418188727010780174128111415258761549<75>
factorization results 素因数分解の結果
Number: 46661_238
N = 28130595167886030154087455296979033401962678715595994404240727736007734402835547034299580627592039860366604790144971390485927 (125 digits)
Divisors found:
r1=249112974267122437135891587984243552485977345814723 (pp51)
r2=112923043252342817085552293916521517783418188727010780174128111415258761549 (pp75)
Version: Msieve v. 1.51 (SVN 845)
Total time: 30.73 hours.
Factorization parameters were as follows:
# Murphy_E = 1.596e-10, selected by Dmitry Domanov
n: 28130595167886030154087455296979033401962678715595994404240727736007734402835547034299580627592039860366604790144971390485927
Y0: -910804597531800700474351
Y1: 1123897718723
c0: 253449036358442716522298101344
c1: -8047256287015069488171708
c2: -180713784885442360280
c3: -101979205596179
c4: 141038008
c5: 44880
skew: 115520.99
type: gnfs
# selected mechanically
rlim: 6900000
alim: 6900000
lpbr: 27
lpba: 27
mfbr: 52
mfba: 52
rlambda: 2.5
alambda: 2.5
Factor base limits: 6900000/6900000
Large primes per side: 3
Large prime bits: 27/27
Sieved algebraic special-q in [0, 0)
Total raw relations: 10635808
Relations: 1663822 relations
Pruned matrix : 984262 x 984487
Polynomial selection time: 0.00 hours.
Total sieving time: 29.92 hours.
Total relation processing time: 0.05 hours.
Matrix solve time: 0.67 hours.
time per square root: 0.09 hours.
Prototype def-par.txt line would be: gnfs,124,5,65,2000,1e-05,0.28,250,20,50000,3600,6900000,6900000,27,27,52,52,2.5,2.5,100000
total time: 30.73 hours.
Intel64 Family 6 Model 60 Stepping 3, GenuineIntel
Windows-7-6.1.7601-SP1
processors: 8, speed: 3.50GHz
software ソフトウェア
GGNFS, Msieve

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6418118Makoto KamadaAugust 26, 2013 14:00:00 UTC 2013 年 8 月 26 日 (月) 23 時 0 分 0 秒 (日本時間)
300Ignacio SantosAugust 29, 2013 12:51:19 UTC 2013 年 8 月 29 日 (木) 21 時 51 分 19 秒 (日本時間)
403e61610110Ignacio SantosAugust 29, 2013 12:51:19 UTC 2013 年 8 月 29 日 (木) 21 時 51 分 19 秒 (日本時間)
1500Dmitry DomanovOctober 1, 2013 12:13:21 UTC 2013 年 10 月 1 日 (火) 21 時 13 分 21 秒 (日本時間)
4511e6262 / 410532Ignacio SantosAugust 29, 2013 12:51:19 UTC 2013 年 8 月 29 日 (木) 21 時 51 分 19 秒 (日本時間)
230Ignacio SantosSeptember 23, 2013 18:13:52 UTC 2013 年 9 月 24 日 (火) 3 時 13 分 52 秒 (日本時間)

14×10239-173

c208

composite cofactor 合成数の残り
4542504605859217561331385294120099105251655295969395079547708999886394183469617767488802015613863439602636440905026825285495977820695548863719649682831986326855265852037092835218010498476794841559082061561671<208>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaAugust 26, 2013 14:00:00 UTC 2013 年 8 月 26 日 (月) 23 時 0 分 0 秒 (日本時間)
403e61500Dmitry DomanovOctober 1, 2013 12:13:32 UTC 2013 年 10 月 1 日 (火) 21 時 13 分 32 秒 (日本時間)
4511e61500 / 4143Dmitry DomanovNovember 21, 2013 09:35:50 UTC 2013 年 11 月 21 日 (木) 18 時 35 分 50 秒 (日本時間)

14×10242-173

c208

composite cofactor 合成数の残り
3039813789788961010797098224389102932275730705722692965957948714324867211580274184227923984367458176323781701806285556105258954529591355607272481640043835784903333050728221443441332002170496238483861589856341<208>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaAugust 26, 2013 14:00:00 UTC 2013 年 8 月 26 日 (月) 23 時 0 分 0 秒 (日本時間)
403e61500Dmitry DomanovOctober 1, 2013 12:13:42 UTC 2013 年 10 月 1 日 (火) 21 時 13 分 42 秒 (日本時間)
4511e61500 / 4143Dmitry DomanovNovember 21, 2013 09:36:08 UTC 2013 年 11 月 21 日 (木) 18 時 36 分 8 秒 (日本時間)

14×10245-173

c226

composite cofactor 合成数の残り
9043447957636648129867043525720848336212469792637950419402224697556616562101199009772536883633795618447329967157062452230606331664253812685581966356720934113308982464020346533568563705728584091549678387883235271343602381919363<226>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaAugust 26, 2013 14:00:00 UTC 2013 年 8 月 26 日 (月) 23 時 0 分 0 秒 (日本時間)
403e61500Dmitry DomanovOctober 1, 2013 12:13:55 UTC 2013 年 10 月 1 日 (火) 21 時 13 分 55 秒 (日本時間)
4511e61500 / 4143Dmitry DomanovOctober 18, 2013 13:30:21 UTC 2013 年 10 月 18 日 (金) 22 時 30 分 21 秒 (日本時間)

14×10246-173

c208

name 名前Dmitry Domanov
date 日付September 23, 2013 09:18:06 UTC 2013 年 9 月 23 日 (月) 18 時 18 分 6 秒 (日本時間)
composite number 合成数
1580599929231734378151971466233061104364811403846906316222001860122505407446213867792641229801809633849260380284018048052246337217312655211995121542084624177225297910537457696125901531663049665085480246600913<208>
prime factors 素因数
1536024544123323093338900181307<31>
composite cofactor 合成数の残り
1029019969296032585030675552183978434635823397005872072173615071646415877594254979587624461015770975356565700744262749908261301805638500550653404152396870094972007506113300783459<178>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3160405571
Step 1 took 26647ms
Step 2 took 10277ms
********** Factor found in step 2: 1536024544123323093338900181307
Found probable prime factor of 31 digits: 1536024544123323093338900181307

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaAugust 26, 2013 14:00:00 UTC 2013 年 8 月 26 日 (月) 23 時 0 分 0 秒 (日本時間)
403e61500Dmitry DomanovOctober 1, 2013 12:14:04 UTC 2013 年 10 月 1 日 (火) 21 時 14 分 4 秒 (日本時間)
4511e61500 / 4143Dmitry DomanovOctober 10, 2013 13:46:24 UTC 2013 年 10 月 10 日 (木) 22 時 46 分 24 秒 (日本時間)

14×10247-173

c214

composite cofactor 合成数の残り
1854536702385461934360837246551858972901654458201642274058148814038227563656122634253283230767167007759340978171281791702383109894848769919693702371206278645514200887288590980014888883976777661419639346421005572157<214>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaAugust 26, 2013 14:00:00 UTC 2013 年 8 月 26 日 (月) 23 時 0 分 0 秒 (日本時間)
403e61500Dmitry DomanovOctober 1, 2013 12:14:14 UTC 2013 年 10 月 1 日 (火) 21 時 14 分 14 秒 (日本時間)
4511e61500 / 4143Dmitry DomanovOctober 21, 2013 14:20:56 UTC 2013 年 10 月 21 日 (月) 23 時 20 分 56 秒 (日本時間)

14×10249-173

c249

name 名前Tapio Rajala
date 日付September 5, 2013 15:42:43 UTC 2013 年 9 月 6 日 (金) 0 時 42 分 43 秒 (日本時間)
composite number 合成数
245614035087719298245614035087719298245614035087719298245614035087719298245614035087719298245614035087719298245614035087719298245614035087719298245614035087719298245614035087719298245614035087719298245614035087719298245614035087719298245614035087719<249>
prime factors 素因数
9377124921281891098556560837377101<34>
composite cofactor 合成数の残り
26192893573411290454304703192661173199288528975868897812025620919367972684243185878272374699114839160151117495416191215898640172858169257994239651415414168434616980252982496752248096364555995857733205621984885042819<215>
factorization results 素因数分解の結果
Resuming ECM residue saved by **** with GMP-ECM 7.0-dev on Thu Sep  5 17:50:12 2013 
Input number is 245614035087719298245614035087719298245614035087719298245614035087719298245614035087719298245614035087719298245614035087719298245614035087719298245614035087719298245614035087719298245614035087719298245614035087719298245614035087719298245614035087719 (249 digits)
Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:146411943
Step 1 took 0ms
Step 2 took 6944ms
********** Factor found in step 2: 9377124921281891098556560837377101
Found probable prime factor of 34 digits: 9377124921281891098556560837377101
Composite cofactor 26192893573411290454304703192661173199288528975868897812025620919367972684243185878272374699114839160151117495416191215898640172858169257994239651415414168434616980252982496752248096364555995857733205621984885042819 has 215 digits
execution environment 実行環境
Step 1: Nvidia GeForce GTX 580, Ubuntu 12.04
Step 2: AMD Athlon II X4 640, Ubuntu 12.04

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaAugust 26, 2013 14:00:00 UTC 2013 年 8 月 26 日 (月) 23 時 0 分 0 秒 (日本時間)
403e6158989Tapio RajalaSeptember 5, 2013 15:38:24 UTC 2013 年 9 月 6 日 (金) 0 時 38 分 24 秒 (日本時間)
1500Dmitry DomanovOctober 1, 2013 12:14:26 UTC 2013 年 10 月 1 日 (火) 21 時 14 分 26 秒 (日本時間)
4511e61500 / 4124Dmitry DomanovOctober 21, 2013 14:20:39 UTC 2013 年 10 月 21 日 (月) 23 時 20 分 39 秒 (日本時間)

14×10250-173

c226

composite cofactor 合成数の残り
8831151832839108666031590802060248743442504818543446035849879611253683607722462377065404841116575600442807381696843431038425670479469704018000076464919148462378862556729611442135862102468624882001150499242331845635771632495569<226>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaAugust 26, 2013 14:00:00 UTC 2013 年 8 月 26 日 (月) 23 時 0 分 0 秒 (日本時間)
403e61500Dmitry DomanovSeptember 27, 2013 12:08:59 UTC 2013 年 9 月 27 日 (金) 21 時 8 分 59 秒 (日本時間)
4511e62000Dmitry DomanovSeptember 27, 2013 12:08:59 UTC 2013 年 9 月 27 日 (金) 21 時 8 分 59 秒 (日本時間)
5043e6640 / 7047Dmitry DomanovOctober 9, 2013 06:23:20 UTC 2013 年 10 月 9 日 (水) 15 時 23 分 20 秒 (日本時間)

14×10251-173

c161

composite cofactor 合成数の残り
13489403527373839431897712762566437998244906592523236843348901611412928497115855914240759768185794866130301204614585464715160377495870616055745608955747060992363<161>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Makoto KamadaJanuary 9, 2021 08:00:00 UTC 2021 年 1 月 9 日 (土) 17 時 0 分 0 秒 (日本時間)
255e4214Makoto KamadaJanuary 9, 2021 08:00:00 UTC 2021 年 1 月 9 日 (土) 17 時 0 分 0 秒 (日本時間)
3025e40--
351e60--
403e61200Dmitry DomanovJanuary 13, 2021 21:02:56 UTC 2021 年 1 月 14 日 (木) 6 時 2 分 56 秒 (日本時間)
4511e64480Ignacio SantosFebruary 26, 2021 11:17:50 UTC 2021 年 2 月 26 日 (金) 20 時 17 分 50 秒 (日本時間)

14×10252-173

c222

name 名前Ignacio Santos
date 日付April 28, 2021 18:54:56 UTC 2021 年 4 月 29 日 (木) 3 時 54 分 56 秒 (日本時間)
composite number 合成数
169114875785370805862948412117827622665106591273669488886995681325594682833001584146663926133039929286142238737969028484632944919511891733432573283130632420097214169572096852591705781831377366387116622846355279106235117617<222>
prime factors 素因数
2863738778470773267516464048646929670511<40>
composite cofactor 合成数の残り
59053876371949529652181292914351334458191019577676910566440377124054776921358854569641198006775306928838974427182448343999665662812981514963137974168902978105763785887034361989527647<182>
factorization results 素因数分解の結果
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1:2042542887
Step 1 took 2735ms
Step 2 took 1609ms
********** Factor found in step 2: 2863738778470773267516464048646929670511
Found prime factor of 40 digits: 2863738778470773267516464048646929670511
Composite cofactor 59053876371949529652181292914351334458191019577676910566440377124054776921358854569641198006775306928838974427182448343999665662812981514963137974168902978105763785887034361989527647 has 182 digits
 
software ソフトウェア
GMP-ECM

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Makoto KamadaJanuary 9, 2021 08:00:00 UTC 2021 年 1 月 9 日 (土) 17 時 0 分 0 秒 (日本時間)
255e4214Makoto KamadaJanuary 9, 2021 08:00:00 UTC 2021 年 1 月 9 日 (土) 17 時 0 分 0 秒 (日本時間)
3025e40--
351e6904Ignacio SantosApril 29, 2021 17:56:17 UTC 2021 年 4 月 30 日 (金) 2 時 56 分 17 秒 (日本時間)
403e62106610Marlon TrifunovicFebruary 17, 2022 12:34:03 UTC 2022 年 2 月 17 日 (木) 21 時 34 分 3 秒 (日本時間)
1496ebinaMay 2, 2024 03:00:45 UTC 2024 年 5 月 2 日 (木) 12 時 0 分 45 秒 (日本時間)

14×10254-173

c255

name 名前NFS@home + Dmitry Domanov
date 日付May 4, 2024 21:47:16 UTC 2024 年 5 月 5 日 (日) 6 時 47 分 16 秒 (日本時間)
composite number 合成数
466666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666661<255>
prime factors 素因数
40522011798079777612979842633178661218615954933187583855216199041393274351409545369588540146012412429<101>
11516374581599146243661161100859385786366220397010202494121887919946751257929440886256940686143361804513398273554247616115744444269708205883026229166761209<155>
factorization results 素因数分解の結果
Sieving by NFS@home, filtering, linear algebra and square root by Dmitry Domanov
---------------------------------

Fri May  3 21:07:26 2024  
Fri May  3 21:07:26 2024  
Fri May  3 21:07:26 2024  Msieve v. 1.54 (SVN Unversioned directory)
Fri May  3 21:07:26 2024  random seeds: 876fca1f d083494e
Fri May  3 21:07:26 2024  Using 32 OpenMP threads
Fri May  3 21:07:26 2024  factoring 466666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666661 (255 digits)
Fri May  3 21:07:27 2024  searching for 15-digit factors
Fri May  3 21:07:27 2024  commencing number field sieve (255-digit input)
Fri May  3 21:07:27 2024  R0: -1000000000000000000000000000000000000000000
Fri May  3 21:07:27 2024  R1: 1
Fri May  3 21:07:27 2024  A0: -17
Fri May  3 21:07:27 2024  A1: 0
Fri May  3 21:07:27 2024  A2: 0
Fri May  3 21:07:27 2024  A3: 0
Fri May  3 21:07:27 2024  A4: 0
Fri May  3 21:07:27 2024  A5: 0
Fri May  3 21:07:27 2024  A6: 1400
Fri May  3 21:07:27 2024  skew 1.00, size 9.935e-13, alpha -0.203, combined = 1.168e-13 rroots = 2
Fri May  3 21:07:27 2024  
Fri May  3 21:07:27 2024  commencing relation filtering
Fri May  3 21:07:27 2024  setting target matrix density to 130.0
Fri May  3 21:07:27 2024  estimated available RAM is 515996.3 MB
Fri May  3 21:07:27 2024  commencing duplicate removal, pass 1
Fri May  3 21:08:27 2024  error -1 reading relation 42892162
Fri May  3 21:08:56 2024  error -1 reading relation 62853247
Fri May  3 21:09:04 2024  error -5 reading relation 68580926
Fri May  3 21:09:04 2024  error -1 reading relation 68597184
Fri May  3 21:09:19 2024  error -1 reading relation 78636921
Fri May  3 21:09:24 2024  error -1 reading relation 82538319
Fri May  3 21:09:47 2024  error -1 reading relation 98537085
Fri May  3 21:09:54 2024  error -15 reading relation 103453466
Fri May  3 21:09:54 2024  error -1 reading relation 103453467
Fri May  3 21:10:11 2024  error -1 reading relation 115144445
Fri May  3 21:10:23 2024  error -5 reading relation 123371797
Fri May  3 21:10:23 2024  error -1 reading relation 123372525
Fri May  3 21:10:23 2024  error -5 reading relation 123674642
Fri May  3 21:10:23 2024  error -5 reading relation 123743447
Fri May  3 21:10:42 2024  error -1 reading relation 136662144
Fri May  3 21:11:02 2024  error -1 reading relation 150662405
Fri May  3 21:11:23 2024  error -1 reading relation 164649532
Fri May  3 21:11:26 2024  error -1 reading relation 166934731
Fri May  3 21:12:04 2024  error -1 reading relation 193007796
Fri May  3 21:12:34 2024  error -15 reading relation 213525648
Fri May  3 21:12:37 2024  error -1 reading relation 215596120
Fri May  3 21:12:37 2024  error -11 reading relation 215606573
Fri May  3 21:12:49 2024  error -1 reading relation 224182366
Fri May  3 21:12:49 2024  error -1 reading relation 224294259
Fri May  3 21:13:01 2024  error -11 reading relation 232308928
Fri May  3 21:13:01 2024  error -11 reading relation 232361365
Fri May  3 21:13:01 2024  error -5 reading relation 232365747
Fri May  3 21:13:06 2024  error -11 reading relation 236120655
Fri May  3 21:13:06 2024  error -11 reading relation 236125173
Fri May  3 21:13:06 2024  error -5 reading relation 236125209
Fri May  3 21:13:06 2024  error -11 reading relation 236157027
Fri May  3 21:13:06 2024  error -11 reading relation 236158403
Fri May  3 21:13:06 2024  error -1 reading relation 236206101
Fri May  3 21:13:06 2024  error -1 reading relation 236251282
Fri May  3 21:13:06 2024  error -5 reading relation 236288695
Fri May  3 21:13:07 2024  error -11 reading relation 236299817
Fri May  3 21:13:07 2024  error -5 reading relation 236326447
Fri May  3 21:13:07 2024  error -5 reading relation 236333419
Fri May  3 21:13:07 2024  error -1 reading relation 236402825
Fri May  3 21:13:08 2024  error -1 reading relation 237096582
Fri May  3 21:13:12 2024  error -1 reading relation 240425654
Fri May  3 21:13:24 2024  error -1 reading relation 248753215
Fri May  3 21:13:24 2024  error -5 reading relation 248753251
Fri May  3 21:13:24 2024  error -5 reading relation 248915425
Fri May  3 21:13:25 2024  error -15 reading relation 249117452
Fri May  3 21:13:26 2024  error -1 reading relation 250490837
Fri May  3 21:13:34 2024  error -1 reading relation 255504543
Fri May  3 21:13:37 2024  skipped 1250 relations with b > 2^32
Fri May  3 21:13:37 2024  skipped 1 relations with composite factors
Fri May  3 21:13:37 2024  skipped 378 malformed relations
Fri May  3 21:13:37 2024  found 54637517 hash collisions in 258021140 relations
Fri May  3 21:13:49 2024  added 1217286 free relations
Fri May  3 21:13:49 2024  commencing duplicate removal, pass 2
Fri May  3 21:18:41 2024  found 56512556 duplicates and 202725870 unique relations
Fri May  3 21:18:41 2024  memory use: 1449.5 MB
Fri May  3 21:18:42 2024  reading ideals above 720000
Fri May  3 21:18:42 2024  commencing singleton removal, initial pass
Fri May  3 21:29:28 2024  memory use: 5512.0 MB
Fri May  3 21:29:28 2024  reading all ideals from disk
Fri May  3 21:29:32 2024  memory use: 9864.5 MB
Fri May  3 21:29:56 2024  keeping 180665663 ideals with weight <= 200, target excess is 1063654
Fri May  3 21:30:24 2024  commencing in-memory singleton removal
Fri May  3 21:30:28 2024  begin with 202725870 relations and 180665663 unique ideals
Fri May  3 21:30:41 2024  reduce to 141361988 relations and 113856260 ideals in 12 passes
Fri May  3 21:30:41 2024  max relations containing the same ideal: 166
Fri May  3 21:31:29 2024  removing 10549576 relations and 8549576 ideals in 2000000 cliques
Fri May  3 21:31:35 2024  commencing in-memory singleton removal
Fri May  3 21:31:37 2024  begin with 130812412 relations and 113856260 unique ideals
Fri May  3 21:31:44 2024  reduce to 130182008 relations and 104664605 ideals in 8 passes
Fri May  3 21:31:44 2024  max relations containing the same ideal: 157
Fri May  3 21:32:29 2024  removing 8120400 relations and 6120400 ideals in 2000000 cliques
Fri May  3 21:32:35 2024  commencing in-memory singleton removal
Fri May  3 21:32:36 2024  begin with 122061608 relations and 104664605 unique ideals
Fri May  3 21:32:43 2024  reduce to 121634640 relations and 98110416 ideals in 8 passes
Fri May  3 21:32:43 2024  max relations containing the same ideal: 152
Fri May  3 21:33:24 2024  removing 7408482 relations and 5408482 ideals in 2000000 cliques
Fri May  3 21:33:29 2024  commencing in-memory singleton removal
Fri May  3 21:33:30 2024  begin with 114226158 relations and 98110416 unique ideals
Fri May  3 21:33:35 2024  reduce to 113847621 relations and 92317371 ideals in 7 passes
Fri May  3 21:33:35 2024  max relations containing the same ideal: 147
Fri May  3 21:34:14 2024  removing 7051878 relations and 5051878 ideals in 2000000 cliques
Fri May  3 21:34:19 2024  commencing in-memory singleton removal
Fri May  3 21:34:20 2024  begin with 106795743 relations and 92317371 unique ideals
Fri May  3 21:34:25 2024  reduce to 106437505 relations and 86901389 ideals in 7 passes
Fri May  3 21:34:25 2024  max relations containing the same ideal: 139
Fri May  3 21:35:03 2024  removing 6838019 relations and 4838019 ideals in 2000000 cliques
Fri May  3 21:35:07 2024  commencing in-memory singleton removal
Fri May  3 21:35:08 2024  begin with 99599486 relations and 86901389 unique ideals
Fri May  3 21:35:12 2024  reduce to 99247236 relations and 81705150 ideals in 7 passes
Fri May  3 21:35:12 2024  max relations containing the same ideal: 133
Fri May  3 21:35:46 2024  removing 6705630 relations and 4705630 ideals in 2000000 cliques
Fri May  3 21:35:50 2024  commencing in-memory singleton removal
Fri May  3 21:35:51 2024  begin with 92541606 relations and 81705150 unique ideals
Fri May  3 21:35:55 2024  reduce to 92186828 relations and 76638201 ideals in 7 passes
Fri May  3 21:35:55 2024  max relations containing the same ideal: 128
Fri May  3 21:36:28 2024  removing 6617898 relations and 4617898 ideals in 2000000 cliques
Fri May  3 21:36:32 2024  commencing in-memory singleton removal
Fri May  3 21:36:33 2024  begin with 85568930 relations and 76638201 unique ideals
Fri May  3 21:36:36 2024  reduce to 85202183 relations and 71646422 ideals in 8 passes
Fri May  3 21:36:36 2024  max relations containing the same ideal: 120
Fri May  3 21:37:06 2024  removing 6569692 relations and 4569692 ideals in 2000000 cliques
Fri May  3 21:37:09 2024  commencing in-memory singleton removal
Fri May  3 21:37:10 2024  begin with 78632491 relations and 71646422 unique ideals
Fri May  3 21:37:13 2024  reduce to 78247228 relations and 66683533 ideals in 7 passes
Fri May  3 21:37:13 2024  max relations containing the same ideal: 113
Fri May  3 21:37:41 2024  removing 6554666 relations and 4554666 ideals in 2000000 cliques
Fri May  3 21:37:44 2024  commencing in-memory singleton removal
Fri May  3 21:37:45 2024  begin with 71692562 relations and 66683533 unique ideals
Fri May  3 21:37:47 2024  reduce to 71279427 relations and 61706615 ideals in 7 passes
Fri May  3 21:37:47 2024  max relations containing the same ideal: 108
Fri May  3 21:38:13 2024  removing 6559314 relations and 4559314 ideals in 2000000 cliques
Fri May  3 21:38:16 2024  commencing in-memory singleton removal
Fri May  3 21:38:16 2024  begin with 64720113 relations and 61706615 unique ideals
Fri May  3 21:38:19 2024  reduce to 64270952 relations and 56687313 ideals in 7 passes
Fri May  3 21:38:19 2024  max relations containing the same ideal: 99
Fri May  3 21:38:41 2024  removing 6588272 relations and 4588272 ideals in 2000000 cliques
Fri May  3 21:38:44 2024  commencing in-memory singleton removal
Fri May  3 21:38:45 2024  begin with 57682680 relations and 56687313 unique ideals
Fri May  3 21:38:47 2024  reduce to 57184103 relations and 51587287 ideals in 7 passes
Fri May  3 21:38:47 2024  max relations containing the same ideal: 92
Fri May  3 21:39:08 2024  removing 6640512 relations and 4640512 ideals in 2000000 cliques
Fri May  3 21:39:11 2024  commencing in-memory singleton removal
Fri May  3 21:39:11 2024  begin with 50543591 relations and 51587287 unique ideals
Fri May  3 21:39:13 2024  reduce to 49978195 relations and 46364703 ideals in 8 passes
Fri May  3 21:39:13 2024  max relations containing the same ideal: 84
Fri May  3 21:39:32 2024  removing 6714661 relations and 4714661 ideals in 2000000 cliques
Fri May  3 21:39:34 2024  commencing in-memory singleton removal
Fri May  3 21:39:35 2024  begin with 43263534 relations and 46364703 unique ideals
Fri May  3 21:39:36 2024  reduce to 42602370 relations and 40966396 ideals in 7 passes
Fri May  3 21:39:36 2024  max relations containing the same ideal: 76
Fri May  3 21:39:53 2024  removing 1866916 relations and 1464781 ideals in 402135 cliques
Fri May  3 21:39:54 2024  commencing in-memory singleton removal
Fri May  3 21:39:55 2024  begin with 40735454 relations and 40966396 unique ideals
Fri May  3 21:39:56 2024  reduce to 40677508 relations and 39443121 ideals in 7 passes
Fri May  3 21:39:56 2024  max relations containing the same ideal: 74
Fri May  3 21:40:16 2024  relations with 0 large ideals: 39448
Fri May  3 21:40:16 2024  relations with 1 large ideals: 20056
Fri May  3 21:40:16 2024  relations with 2 large ideals: 220328
Fri May  3 21:40:16 2024  relations with 3 large ideals: 1338181
Fri May  3 21:40:16 2024  relations with 4 large ideals: 4422630
Fri May  3 21:40:16 2024  relations with 5 large ideals: 8736141
Fri May  3 21:40:16 2024  relations with 6 large ideals: 10829465
Fri May  3 21:40:16 2024  relations with 7+ large ideals: 15071259
Fri May  3 21:40:16 2024  commencing 2-way merge
Fri May  3 21:40:39 2024  reduce to 26787016 relation sets and 25552629 unique ideals
Fri May  3 21:40:39 2024  commencing full merge
Fri May  3 21:50:26 2024  memory use: 3501.6 MB
Fri May  3 21:50:27 2024  found 11904312 cycles, need 11860829
Fri May  3 21:50:31 2024  weight of 11860829 cycles is about 1542277682 (130.03/cycle)
Fri May  3 21:50:31 2024  distribution of cycle lengths:
Fri May  3 21:50:31 2024  1 relations: 470995
Fri May  3 21:50:31 2024  2 relations: 669890
Fri May  3 21:50:31 2024  3 relations: 779288
Fri May  3 21:50:31 2024  4 relations: 803298
Fri May  3 21:50:31 2024  5 relations: 826113
Fri May  3 21:50:31 2024  6 relations: 821857
Fri May  3 21:50:31 2024  7 relations: 806658
Fri May  3 21:50:31 2024  8 relations: 781928
Fri May  3 21:50:31 2024  9 relations: 743657
Fri May  3 21:50:31 2024  10+ relations: 5157145
Fri May  3 21:50:31 2024  heaviest cycle: 28 relations
Fri May  3 21:50:33 2024  commencing cycle optimization
Fri May  3 21:50:55 2024  start with 111200725 relations
Fri May  3 21:54:39 2024  pruned 5633618 relations
Fri May  3 21:54:39 2024  memory use: 2825.9 MB
Fri May  3 21:54:39 2024  distribution of cycle lengths:
Fri May  3 21:54:39 2024  1 relations: 470995
Fri May  3 21:54:39 2024  2 relations: 687174
Fri May  3 21:54:39 2024  3 relations: 813636
Fri May  3 21:54:39 2024  4 relations: 839289
Fri May  3 21:54:39 2024  5 relations: 870117
Fri May  3 21:54:39 2024  6 relations: 865539
Fri May  3 21:54:39 2024  7 relations: 854174
Fri May  3 21:54:39 2024  8 relations: 825058
Fri May  3 21:54:39 2024  9 relations: 784886
Fri May  3 21:54:39 2024  10+ relations: 4849961
Fri May  3 21:54:39 2024  heaviest cycle: 28 relations
Fri May  3 21:54:53 2024  RelProcTime: 2846
Fri May  3 21:54:53 2024  elapsed time 00:47:27
Sat May  4 02:36:54 2024  
Sat May  4 02:36:54 2024  
Sat May  4 02:36:54 2024  Msieve v. 1.54 (SVN Unversioned directory)
Sat May  4 02:36:54 2024  random seeds: c6d75204 3b345169
Sat May  4 02:36:54 2024  Using 64 OpenMP threads
Sat May  4 02:36:54 2024  factoring 466666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666661 (255 digits)
Sat May  4 02:36:54 2024  searching for 15-digit factors
Sat May  4 02:36:55 2024  commencing number field sieve (255-digit input)
Sat May  4 02:36:55 2024  R0: -1000000000000000000000000000000000000000000
Sat May  4 02:36:55 2024  R1: 1
Sat May  4 02:36:55 2024  A0: -17
Sat May  4 02:36:55 2024  A1: 0
Sat May  4 02:36:55 2024  A2: 0
Sat May  4 02:36:55 2024  A3: 0
Sat May  4 02:36:55 2024  A4: 0
Sat May  4 02:36:55 2024  A5: 0
Sat May  4 02:36:55 2024  A6: 1400
Sat May  4 02:36:55 2024  skew 1.00, size 9.935e-13, alpha -0.203, combined = 1.168e-13 rroots = 2
Sat May  4 02:36:55 2024  
Sat May  4 02:36:55 2024  commencing linear algebra
Sat May  4 02:36:55 2024  using VBITS=256
Sat May  4 02:36:56 2024  read 11860829 cycles
Sat May  4 02:37:15 2024  cycles contain 40064994 unique relations
Sat May  4 02:40:52 2024  read 40064994 relations
Sat May  4 02:40:55 2024  using 20 quadratic characters above 4294917295
Sat May  4 02:40:59 2024  building initial matrix
Sat May  4 02:48:41 2024  memory use: 5457.3 MB
Sat May  4 02:48:47 2024  read 11860829 cycles
Sat May  4 02:48:48 2024  matrix is 11860652 x 11860829 (5945.0 MB) with weight 1727195688 (145.62/col)
Sat May  4 02:48:48 2024  sparse part has weight 1427988688 (120.40/col)
Sat May  4 02:51:33 2024  filtering completed in 2 passes
Sat May  4 02:51:35 2024  matrix is 11860490 x 11860663 (5945.0 MB) with weight 1727188983 (145.62/col)
Sat May  4 02:51:35 2024  sparse part has weight 1427986158 (120.40/col)
Sat May  4 02:52:14 2024  matrix starts at (0, 0)
Sat May  4 02:52:15 2024  matrix is 11860490 x 11860663 (5945.0 MB) with weight 1727188983 (145.62/col)
Sat May  4 02:52:15 2024  sparse part has weight 1427986158 (120.40/col)
Sat May  4 02:52:15 2024  saving the first 240 matrix rows for later
Sat May  4 02:52:17 2024  matrix includes 256 packed rows
Sat May  4 02:52:21 2024  matrix is 11860250 x 11860663 (5475.2 MB) with weight 1310751273 (110.51/col)
Sat May  4 02:52:21 2024  sparse part has weight 1245515634 (105.01/col)
Sat May  4 02:52:21 2024  using block size 8192 and superblock size 1032192 for processor cache size 43008 kB
Sat May  4 02:52:45 2024  commencing Lanczos iteration (64 threads)
Sat May  4 02:52:45 2024  memory use: 7374.3 MB
Sat May  4 02:54:44 2024  linear algebra at 0.3%, ETA 12h33m
Sat May  4 02:57:36 2024  checking every 10000 dimensions, checkpointing every 960000 dimensions
Sat May  4 15:12:36 2024  lanczos halted after 46469 iterations (dim = 11860247)
Sat May  4 15:13:29 2024  recovered 34 nontrivial dependencies
Sat May  4 15:13:30 2024  BLanczosTime: 45395
Sat May  4 15:13:30 2024  
Sat May  4 15:13:30 2024  commencing square root phase
Sat May  4 15:13:30 2024  reading relations for dependency 1
Sat May  4 15:13:31 2024  read 5927657 cycles
Sat May  4 15:13:41 2024  cycles contain 20022776 unique relations
Sat May  4 15:17:07 2024  read 20022776 relations
Sat May  4 15:18:20 2024  multiplying 20022776 relations
Sat May  4 15:26:16 2024  multiply complete, coefficients have about 717.52 million bits
Sat May  4 15:26:18 2024  initial square root is modulo 2736571
Sat May  4 15:30:51 2024  sqrtTime: 1041
Sat May  4 15:30:51 2024  p101 factor: 40522011798079777612979842633178661218615954933187583855216199041393274351409545369588540146012412429
Sat May  4 15:30:51 2024  p155 factor: 11516374581599146243661161100859385786366220397010202494121887919946751257929440886256940686143361804513398273554247616115744444269708205883026229166761209
Sat May  4 15:30:51 2024  elapsed time 12:53:57

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Makoto KamadaJanuary 9, 2021 08:00:00 UTC 2021 年 1 月 9 日 (土) 17 時 0 分 0 秒 (日本時間)
255e4214Makoto KamadaJanuary 9, 2021 08:00:00 UTC 2021 年 1 月 9 日 (土) 17 時 0 分 0 秒 (日本時間)
3025e40--
351e60--
403e62352iveliveJanuary 15, 2021 15:19:07 UTC 2021 年 1 月 16 日 (土) 0 時 19 分 7 秒 (日本時間)
4511e640001000Dmitry DomanovApril 21, 2021 11:53:14 UTC 2021 年 4 月 21 日 (水) 20 時 53 分 14 秒 (日本時間)
1000Dmitry DomanovJune 9, 2021 23:09:44 UTC 2021 年 6 月 10 日 (木) 8 時 9 分 44 秒 (日本時間)
1000Ignacio SantosJune 23, 2021 13:31:55 UTC 2021 年 6 月 23 日 (水) 22 時 31 分 55 秒 (日本時間)
1000Ignacio SantosJune 26, 2021 21:53:01 UTC 2021 年 6 月 27 日 (日) 6 時 53 分 1 秒 (日本時間)
5043e672001800Dmitry DomanovDecember 3, 2021 05:47:20 UTC 2021 年 12 月 3 日 (金) 14 時 47 分 20 秒 (日本時間)
1800Dmitry DomanovDecember 29, 2021 17:24:58 UTC 2021 年 12 月 30 日 (木) 2 時 24 分 58 秒 (日本時間)
1800Dmitry DomanovJuly 1, 2022 14:49:25 UTC 2022 年 7 月 1 日 (金) 23 時 49 分 25 秒 (日本時間)
1800Dmitry DomanovJuly 1, 2022 19:48:51 UTC 2022 年 7 月 2 日 (土) 4 時 48 分 51 秒 (日本時間)
5511e710000yoyo@HomeSeptember 23, 2022 13:14:15 UTC 2022 年 9 月 23 日 (金) 22 時 14 分 15 秒 (日本時間)
6026e79000 / 37329yoyo@HomeNovember 29, 2022 10:32:34 UTC 2022 年 11 月 29 日 (火) 19 時 32 分 34 秒 (日本時間)

14×10255-173

c204

name 名前Marlon Trifunovic
date 日付February 16, 2022 19:25:00 UTC 2022 年 2 月 17 日 (木) 4 時 25 分 0 秒 (日本時間)
composite number 合成数
128126180318609426052859662010730240733259044927401018908928530854527983204352730772823172488140757513570339522132683866816645341567058579152952499979002045348617794475597151152853126854102566719887056303<204>
prime factors 素因数
63018869224414534830896888434546861<35>
composite cofactor 合成数の残り
2033139945154256434131688273363153978829914723374732515557943867308984223032766868150468275290222260881709059376766632876497513495623203093618379423225745583319482568523<169>
factorization results 素因数分解の結果
Run 329 out of 610:
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:2167250068
Step 1 took 19074ms
Step 2 took 7687ms
********** Factor found in step 2: 63018869224414534830896888434546861
Found prime factor of 35 digits: 63018869224414534830896888434546861
Composite cofactor 2033139945154256434131688273363153978829914723374732515557943867308984223032766868150468275290222260881709059376766632876497513495623203093618379423225745583319482568523 has 169 digits
software ソフトウェア
GMP-ECM 7.0.5-dev
execution environment 実行環境
Intel Xeon CPU E5-2695 v4 @ 2.10GHz

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Makoto KamadaJanuary 9, 2021 08:00:00 UTC 2021 年 1 月 9 日 (土) 17 時 0 分 0 秒 (日本時間)
255e4214Makoto KamadaJanuary 9, 2021 08:00:00 UTC 2021 年 1 月 9 日 (土) 17 時 0 分 0 秒 (日本時間)
3025e40--
351e6904Ignacio SantosApril 28, 2021 22:03:02 UTC 2021 年 4 月 29 日 (木) 7 時 3 分 2 秒 (日本時間)
403e62960610Marlon TrifunovicFebruary 18, 2022 11:43:47 UTC 2022 年 2 月 18 日 (金) 20 時 43 分 47 秒 (日本時間)
2350Ignacio SantosFebruary 19, 2022 10:58:58 UTC 2022 年 2 月 19 日 (土) 19 時 58 分 58 秒 (日本時間)
4511e64480Ignacio SantosMarch 2, 2022 22:57:35 UTC 2022 年 3 月 3 日 (木) 7 時 57 分 35 秒 (日本時間)
5043e61792 / 6431Dmitry DomanovJune 12, 2024 23:33:13 UTC 2024 年 6 月 13 日 (木) 8 時 33 分 13 秒 (日本時間)

14×10256-173

c231

name 名前Ignacio Santos
date 日付April 28, 2021 18:56:09 UTC 2021 年 4 月 29 日 (木) 3 時 56 分 9 秒 (日本時間)
composite number 合成数
446335890346851567749325736359136919058095750353459035529035979211371036644143393244403803132368725167766570064303578912665306501719468490212675264185931813246289762326548099585535271500931748723987269605721412970528995841010706993<231>
prime factors 素因数
2260512785511285990895364070585395328851<40>
composite cofactor 合成数の残り
197448956364075013379525805869815737037102436990417909465522527176634538945646761592785518045652217350571027196652729477984759410584494840459558178516698978018690845602644761102311024964926443<192>
factorization results 素因数分解の結果
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1:3780369166
Step 1 took 2547ms
********** Factor found in step 2: 2260512785511285990895364070585395328851
Found prime factor of 40 digits: 2260512785511285990895364070585395328851
Composite cofactor 197448956364075013379525805869815737037102436990417909465522527176634538945646761592785518045652217350571027196652729477984759410584494840459558178516698978018690845602644761102311024964926443 has 192 digits
 
software ソフトウェア
GMP-ECM

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Makoto KamadaJanuary 9, 2021 08:00:00 UTC 2021 年 1 月 9 日 (土) 17 時 0 分 0 秒 (日本時間)
255e4214Makoto KamadaJanuary 9, 2021 08:00:00 UTC 2021 年 1 月 9 日 (土) 17 時 0 分 0 秒 (日本時間)
3025e40--
351e6904Ignacio SantosApril 29, 2021 17:56:34 UTC 2021 年 4 月 30 日 (金) 2 時 56 分 34 秒 (日本時間)
403e62104610Marlon TrifunovicFebruary 16, 2022 21:15:41 UTC 2022 年 2 月 17 日 (木) 6 時 15 分 41 秒 (日本時間)
1494ebinaMay 2, 2024 11:08:20 UTC 2024 年 5 月 2 日 (木) 20 時 8 分 20 秒 (日本時間)

14×10257-173

c237

name 名前Seth Troisi
date 日付November 14, 2023 02:23:43 UTC 2023 年 11 月 14 日 (火) 11 時 23 分 43 秒 (日本時間)
composite number 合成数
526434864815958496185694533534068206631591923798653257042574391352654413759410094000382617925674779058626128871963044258865864645021023423260499538867335799616369272001632519641036808832619620813313950840283729540848273062887437573823789<237>
prime factors 素因数
7404060493192154517976641971746184393<37>
composite cofactor 合成数の残り
71100832482392867720226278249107750820429978909445387577320075612422431463213800141838680430574672356703015522621924405248637332007623400416773942776578262280540496625716983292427324756422298511016773<200>
factorization results 素因数分解の結果
$ ecm -chkpnt "$fn" -save "resume.${fn%.*}.pm1.1e9.txt" -x0 12 -cgbn -pm1 -v 1e9 0

GMP-ECM 7.0.6-dev [configured with GMP 6.3.0, --enable-asm-redc, --enable-gpu, --enable-assert] [P-1]
Tuned for x86_64/params.h
Running on five
Input number is 123 (3 digits)
GPU: will use device -1: NVIDIA GeForce GTX 1080 Ti, compute capability 6.1, 28 MPs.
GPU: maxSharedPerBlock = 49152 maxThreadsPerBlock = 1024 maxRegsPerBlock = 65536
GPU: Selection and initialization of the device took 3ms
GPU P-1: Loading numbers from 'pm1_stdkmd_batch_11_799.txt'
Computing batch product (of 1442697344 bits) of primes up to B1=1000000000 took 47051ms
GPU: Large B1, S = 1442697344 bits = 171 MB
GPU P-1: Largest number line 1792, 799 bits
GPU: Using device code targeted for architecture compile_61
GPU: Ptx version is 61
GPU: maxThreadsPerBlock = 1024
GPU: numRegsPerThread = 48 sharedMemPerBlock = 0 bytes
Copying 917504 bytes of instances data to GPU
CGBN<1024, 8> running kernel<56 block x 256 threads> input number is 799 bits
Computing 2000 bits/call, 0/1442697344 (0.0%)
Computing 2200 bits/call, 2000/1442697344 (0.0%)
Computing 2420 bits/call, 4200/1442697344 (0.0%)
Computing 5184 bits/call, 31866/1442697344 (0.0%)
Computing 13438 bits/call, 114459/1442697344 (0.0%)
Computing 13438 bits/call, 1189499/1442697344 (0.1%), ETA 9244 + 8 = 9252 seconds (~5163 ms/instances)
Computing 13438 bits/call, 2533299/1442697344 (0.2%), ETA 9202 + 16 = 9218 seconds (~5144 ms/instances)
Computing 13438 bits/call, 3877099/1442697344 (0.3%), ETA 9190 + 25 = 9215 seconds (~5142 ms/instances)
Computing 13438 bits/call, 5220899/1442697344 (0.4%), ETA 9182 + 33 = 9216 seconds (~5143 ms/instances)
Computing 13438 bits/call, 13283699/1442697344 (0.9%), ETA 9163 + 85 = 9248 seconds (~5161 ms/instances)
Computing 13438 bits/call, 26721699/1442697344 (1.9%), ETA 9117 + 172 = 9289 seconds (~5184 ms/instances)
Computing 13438 bits/call, 40159699/1442697344 (2.8%), ETA 9050 + 259 = 9309 seconds (~5195 ms/instances)
Computing 13438 bits/call, 53597699/1442697344 (3.7%), ETA 8973 + 346 = 9319 seconds (~5200 ms/instances)
Computing 13438 bits/call, 134225699/1442697344 (9.3%), ETA 8465 + 868 = 9333 seconds (~5208 ms/instances)
Computing 13438 bits/call, 268605699/1442697344 (18.6%), ETA 7599 + 1738 = 9337 seconds (~5211 ms/instances)
Computing 13438 bits/call, 402985699/1442697344 (27.9%), ETA 6730 + 2609 = 9339 seconds (~5211 ms/instances)
Computing 13303 bits/call, 536062145/1442697344 (37.2%), ETA 5869 + 3470 = 9340 seconds (~5212 ms/instances)
Computing 13303 bits/call, 669092145/1442697344 (46.4%), ETA 5008 + 4332 = 9340 seconds (~5212 ms/instances)
Computing 13303 bits/call, 802122145/1442697344 (55.6%), ETA 4147 + 5193 = 9340 seconds (~5212 ms/instances)
Computing 13303 bits/call, 935152145/1442697344 (64.8%), ETA 3286 + 6054 = 9340 seconds (~5212 ms/instances)
Computing 13303 bits/call, 1068182145/1442697344 (74.0%), ETA 2425 + 6915 = 9340 seconds (~5212 ms/instances)
Computing 13303 bits/call, 1201212145/1442697344 (83.3%), ETA 1563 + 7776 = 9340 seconds (~5212 ms/instances)
Computing 13303 bits/call, 1334242145/1442697344 (92.5%), ETA 702 + 8638 = 9340 seconds (~5212 ms/instances)
Copying results back to CPU ...
GPU P-1: factor 7404060493192154517976641971746184393 found in Step 1 with curve 646
********** Factor found in step 1: 7404060493192154517976641971746184393
Found prime factor of 37 digits: 7404060493192154517976641971746184393
Composite cofactor 71100832482392867720226278249107750820429978909445387577320075612422431463213800141838680430574672356703015522621924405248637332007623400416773942776578262280540496625716983292427324756422298511016773 has 200 digits
Peak memory usage: 10608MB
software ソフトウェア
gmp-ecm 7.0.6

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Makoto KamadaJanuary 9, 2021 08:00:00 UTC 2021 年 1 月 9 日 (土) 17 時 0 分 0 秒 (日本時間)
255e4214Makoto KamadaJanuary 9, 2021 08:00:00 UTC 2021 年 1 月 9 日 (土) 17 時 0 分 0 秒 (日本時間)
3025e40--
351e6904Ignacio SantosApril 28, 2021 22:03:18 UTC 2021 年 4 月 29 日 (木) 7 時 3 分 18 秒 (日本時間)
403e62960610Marlon TrifunovicMarch 1, 2022 21:09:13 UTC 2022 年 3 月 2 日 (水) 6 時 9 分 13 秒 (日本時間)
2350Ignacio SantosMay 4, 2024 07:19:36 UTC 2024 年 5 月 4 日 (土) 16 時 19 分 36 秒 (日本時間)

14×10258-173

c249

composite cofactor 合成数の残り
264616239934282482719773763817449024219282665949414368512316475743943019800378542728530444807377500043563251798481054218136726610230562868065788847158258281387369351505128033090283031546178943836257626368161144339331796718206533272130326364037117251<249>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Makoto KamadaJanuary 9, 2021 08:00:00 UTC 2021 年 1 月 9 日 (土) 17 時 0 分 0 秒 (日本時間)
255e4214Makoto KamadaJanuary 9, 2021 08:00:00 UTC 2021 年 1 月 9 日 (土) 17 時 0 分 0 秒 (日本時間)
3025e40--
351e6904Ignacio SantosApril 28, 2021 22:03:30 UTC 2021 年 4 月 29 日 (木) 7 時 3 分 30 秒 (日本時間)
403e62960610Marlon TrifunovicMarch 4, 2022 10:34:45 UTC 2022 年 3 月 4 日 (金) 19 時 34 分 45 秒 (日本時間)
2350Ignacio SantosMay 4, 2024 07:19:52 UTC 2024 年 5 月 4 日 (土) 16 時 19 分 52 秒 (日本時間)

14×10259-173

c248

composite cofactor 合成数の残り
30046850317182646687696665114989774422793792861129177607994858984877380147927382534037295104438502439186198248043599336387750657884459054750318582616944694735448205666150003790603851655939033077957960366195918592064471276928084008068139231502238459<248>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Makoto KamadaJanuary 9, 2021 08:00:00 UTC 2021 年 1 月 9 日 (土) 17 時 0 分 0 秒 (日本時間)
255e4214Makoto KamadaJanuary 9, 2021 08:00:00 UTC 2021 年 1 月 9 日 (土) 17 時 0 分 0 秒 (日本時間)
3025e40--
351e6904Ignacio SantosApril 28, 2021 22:03:41 UTC 2021 年 4 月 29 日 (木) 7 時 3 分 41 秒 (日本時間)
403e62960610Marlon TrifunovicMarch 3, 2022 07:15:45 UTC 2022 年 3 月 3 日 (木) 16 時 15 分 45 秒 (日本時間)
2350Ignacio SantosMay 4, 2024 07:20:23 UTC 2024 年 5 月 4 日 (土) 16 時 20 分 23 秒 (日本時間)

14×10260-173

c216

composite cofactor 合成数の残り
102702114282129533194917511214672682602968242138415172063454318621424253264124770927366463330030603735371372129053834973759204071145248644980236183626734312650391499936460799926636163297358081242562586112936873985841<216>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Makoto KamadaJanuary 9, 2021 08:00:00 UTC 2021 年 1 月 9 日 (土) 17 時 0 分 0 秒 (日本時間)
255e4214Makoto KamadaJanuary 9, 2021 08:00:00 UTC 2021 年 1 月 9 日 (土) 17 時 0 分 0 秒 (日本時間)
3025e40--
351e6904Ignacio SantosApril 28, 2021 22:03:51 UTC 2021 年 4 月 29 日 (木) 7 時 3 分 51 秒 (日本時間)
403e62960610Marlon TrifunovicFebruary 18, 2022 19:42:58 UTC 2022 年 2 月 19 日 (土) 4 時 42 分 58 秒 (日本時間)
2350Ignacio SantosMay 4, 2024 07:20:36 UTC 2024 年 5 月 4 日 (土) 16 時 20 分 36 秒 (日本時間)

14×10261-173

c144

name 名前Dmitry Domanov
date 日付January 12, 2021 12:43:16 UTC 2021 年 1 月 12 日 (火) 21 時 43 分 16 秒 (日本時間)
composite number 合成数
519863982049235887392211337570857177762819013954335945034924200969753656132027184765838980751143312394714347313942630790580513901644746777862583<144>
prime factors 素因数
302869958394658708643965715181918697235257<42>
1716459383442118229775458184549980485999170397108916184562505214194529252287715995421639026461762731119<103>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:74974446
Step 1 took 6266ms
Step 2 took 3249ms
********** Factor found in step 2: 302869958394658708643965715181918697235257
Found prime factor of 42 digits: 302869958394658708643965715181918697235257
Prime cofactor 1716459383442118229775458184549980485999170397108916184562505214194529252287715995421639026461762731119 has 103 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Makoto KamadaJanuary 9, 2021 08:00:00 UTC 2021 年 1 月 9 日 (土) 17 時 0 分 0 秒 (日本時間)
255e4214Makoto KamadaJanuary 9, 2021 08:00:00 UTC 2021 年 1 月 9 日 (土) 17 時 0 分 0 秒 (日本時間)
3025e40--
351e60--
403e61200 / 2350Dmitry DomanovJanuary 12, 2021 12:41:59 UTC 2021 年 1 月 12 日 (火) 21 時 41 分 59 秒 (日本時間)

14×10262-173

c213

composite cofactor 合成数の残り
575626223210891355861932316537576792920505196621737897123582037056352527514464385719694054260528510765800243874483752641120058779619100749944895294434670501994064000548119506173750948662699357784128230859097383417<213>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Makoto KamadaJanuary 9, 2021 08:00:00 UTC 2021 年 1 月 9 日 (土) 17 時 0 分 0 秒 (日本時間)
255e4214Makoto KamadaJanuary 9, 2021 08:00:00 UTC 2021 年 1 月 9 日 (土) 17 時 0 分 0 秒 (日本時間)
3025e40--
351e6904Ignacio SantosApril 28, 2021 22:04:11 UTC 2021 年 4 月 29 日 (木) 7 時 4 分 11 秒 (日本時間)
403e62960610Marlon TrifunovicFebruary 19, 2022 14:00:33 UTC 2022 年 2 月 19 日 (土) 23 時 0 分 33 秒 (日本時間)
2350Ignacio SantosMay 4, 2024 07:36:33 UTC 2024 年 5 月 4 日 (土) 16 時 36 分 33 秒 (日本時間)

14×10263-173

c242

composite cofactor 合成数の残り
19397865684565042400913065593279591228889427864191081955634702375790480401157481264791612060505995038989058780019927327308669938509967105890823696378232927309581195725546850354858686403533299889836460804322681873760528839234085001789457440411<242>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Makoto KamadaJanuary 9, 2021 08:00:00 UTC 2021 年 1 月 9 日 (土) 17 時 0 分 0 秒 (日本時間)
255e4214Makoto KamadaJanuary 9, 2021 08:00:00 UTC 2021 年 1 月 9 日 (土) 17 時 0 分 0 秒 (日本時間)
3025e40--
351e6904Ignacio SantosApril 28, 2021 22:04:22 UTC 2021 年 4 月 29 日 (木) 7 時 4 分 22 秒 (日本時間)
403e62104Marlon TrifunovicFebruary 15, 2022 23:58:56 UTC 2022 年 2 月 16 日 (水) 8 時 58 分 56 秒 (日本時間)

14×10264-173

c227

composite cofactor 合成数の残り
17816488678435344950141621888984784786236758806995215304074306846652075486672090571887894799987098809921692887532470286941086689697070156490457407193192988162871427583833065393743516591431788715299381936457168690366515611684531<227>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Makoto KamadaJanuary 9, 2021 08:00:00 UTC 2021 年 1 月 9 日 (土) 17 時 0 分 0 秒 (日本時間)
255e4214Makoto KamadaJanuary 9, 2021 08:00:00 UTC 2021 年 1 月 9 日 (土) 17 時 0 分 0 秒 (日本時間)
3025e40--
351e6904Ignacio SantosApril 28, 2021 22:04:32 UTC 2021 年 4 月 29 日 (木) 7 時 4 分 32 秒 (日本時間)
403e62960610Marlon TrifunovicFebruary 19, 2022 16:42:59 UTC 2022 年 2 月 20 日 (日) 1 時 42 分 59 秒 (日本時間)
2350Ignacio SantosMay 4, 2024 08:08:19 UTC 2024 年 5 月 4 日 (土) 17 時 8 分 19 秒 (日本時間)

14×10265-173

c227

composite cofactor 合成数の残り
41689251065777534080557749439419489381793362429404328621989608918892191051596905289489638223364613821950446666339730639496425165693944114992215414803151541498042972678954743830527584082059651756678203566432100816499337408380017<227>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Makoto KamadaJanuary 9, 2021 08:00:00 UTC 2021 年 1 月 9 日 (土) 17 時 0 分 0 秒 (日本時間)
255e4214Makoto KamadaJanuary 9, 2021 08:00:00 UTC 2021 年 1 月 9 日 (土) 17 時 0 分 0 秒 (日本時間)
3025e40--
351e6904Ignacio SantosApril 28, 2021 22:04:44 UTC 2021 年 4 月 29 日 (木) 7 時 4 分 44 秒 (日本時間)
403e62960610Marlon TrifunovicFebruary 19, 2022 19:07:22 UTC 2022 年 2 月 20 日 (日) 4 時 7 分 22 秒 (日本時間)
2350Ignacio SantosMay 4, 2024 08:08:34 UTC 2024 年 5 月 4 日 (土) 17 時 8 分 34 秒 (日本時間)

14×10266-173

c219

composite cofactor 合成数の残り
300110181816152388033597529661081223680016551087399514306386800724609762572545617321893751782225964677409828832769334871771866935702150457567707698283068147170883604514042684723426773452792838823923637335883012546860547<219>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Makoto KamadaJanuary 9, 2021 08:00:00 UTC 2021 年 1 月 9 日 (土) 17 時 0 分 0 秒 (日本時間)
255e4214Makoto KamadaJanuary 9, 2021 08:00:00 UTC 2021 年 1 月 9 日 (土) 17 時 0 分 0 秒 (日本時間)
3025e40--
351e6904Ignacio SantosApril 28, 2021 22:04:56 UTC 2021 年 4 月 29 日 (木) 7 時 4 分 56 秒 (日本時間)
403e62960610Marlon TrifunovicFebruary 19, 2022 19:00:48 UTC 2022 年 2 月 20 日 (日) 4 時 0 分 48 秒 (日本時間)
2350Ignacio SantosMay 4, 2024 08:16:39 UTC 2024 年 5 月 4 日 (土) 17 時 16 分 39 秒 (日本時間)

14×10267-173

c230

composite cofactor 合成数の残り
12118443709614685477574726561357047639493271217235971273560198781662800108963313901285662946182811504353935840255610312085301002348121189391506084612907254425504301984535106535207082117915539705333716248453604589393067233605406687<230>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Makoto KamadaJanuary 9, 2021 08:00:00 UTC 2021 年 1 月 9 日 (土) 17 時 0 分 0 秒 (日本時間)
255e4214Makoto KamadaJanuary 9, 2021 08:00:00 UTC 2021 年 1 月 9 日 (土) 17 時 0 分 0 秒 (日本時間)
3025e40--
351e6904Ignacio SantosApril 28, 2021 22:05:07 UTC 2021 年 4 月 29 日 (木) 7 時 5 分 7 秒 (日本時間)
403e62960610Marlon TrifunovicFebruary 20, 2022 02:17:32 UTC 2022 年 2 月 20 日 (日) 11 時 17 分 32 秒 (日本時間)
2350Ignacio SantosMay 4, 2024 08:35:39 UTC 2024 年 5 月 4 日 (土) 17 時 35 分 39 秒 (日本時間)

14×10268-173

c205

composite cofactor 合成数の残り
3106749012735718097105932044274758552173231926419364807216016031748825600635094964908855075212577750334891808768342709671127277640958257177494113789128735647107238829704957917430806524669521488267392829033<205>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Makoto KamadaJanuary 9, 2021 08:00:00 UTC 2021 年 1 月 9 日 (土) 17 時 0 分 0 秒 (日本時間)
255e4214Makoto KamadaJanuary 9, 2021 08:00:00 UTC 2021 年 1 月 9 日 (土) 17 時 0 分 0 秒 (日本時間)
3025e40--
351e6904Ignacio SantosApril 28, 2021 22:05:17 UTC 2021 年 4 月 29 日 (木) 7 時 5 分 17 秒 (日本時間)
403e62960610Marlon TrifunovicFebruary 20, 2022 00:38:19 UTC 2022 年 2 月 20 日 (日) 9 時 38 分 19 秒 (日本時間)
2350Ignacio SantosMay 4, 2024 08:43:58 UTC 2024 年 5 月 4 日 (土) 17 時 43 分 58 秒 (日本時間)

14×10269-173

c174

name 名前Ignacio Santos
date 日付February 27, 2021 09:17:37 UTC 2021 年 2 月 27 日 (土) 18 時 17 分 37 秒 (日本時間)
composite number 合成数
145203000362769171637077730759517464779381818575805822776349782699759937326880446801269701592795585694487080124632445964255986162101426222752512757038051778312340834079661773<174>
prime factors 素因数
24446694125604948650426200721862931<35>
composite cofactor 合成数の残り
5939576108603029084860962700971072926450515784852030575917037110770473832654128409546027448015569698231578630392765068723804763172801383583<139>
factorization results 素因数分解の結果
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1:1352655727
Step 1 took 2437ms
Step 2 took 1594ms
********** Factor found in step 2: 24446694125604948650426200721862931
Found prime factor of 35 digits: 24446694125604948650426200721862931
Composite cofactor 5939576108603029084860962700971072926450515784852030575917037110770473832654128409546027448015569698231578630392765068723804763172801383583 has 139 digits
 
software ソフトウェア
GMP-ECM

c139

name 名前Eric Jeancolas
date 日付March 1, 2021 03:50:56 UTC 2021 年 3 月 1 日 (月) 12 時 50 分 56 秒 (日本時間)
composite number 合成数
5939576108603029084860962700971072926450515784852030575917037110770473832654128409546027448015569698231578630392765068723804763172801383583<139>
prime factors 素因数
1276318624426333963199651325137135847249880419522315531732119<61>
4653678160712170279471593162182985767019324800929298093137835615931406708691257<79>
factorization results 素因数分解の結果
5939576108603029084860962700971072926450515784852030575917037110770473832654128409546027448015569698231578630392765068723804763172801383583=1276318624426333963199651325137135847249880419522315531732119*4653678160712170279471593162182985767019324800929298093137835615931406708691257

polynomial
# Murphy_E = 2.934e-07, selected by Eric Jeancolas
n: 5939576108603029084860962700971072926450515784852030575917037110770473832654128409546027448015569698231578630392765068723804763172801383583
Y0: -693009886956137675120627165
Y1: 4765678519232385131
c0: -22789763053236003432441219924032
c1: 200347606725725486013348922
c2: -6783931915270448182339
c3: -1374764908536007
c4: 173210513916
c5: 221760
skew: 175461.974
type: gnfs

parameters
# selected mechanically
rlim: 16900000
alim: 16900000
lpbr: 28
lpba: 28
mfbr: 55
mfba: 55
rlambda: 2.6
alambda: 2.6

cado log (extracts)
Info:Square Root: Factors: 1276318624426333963199651325137135847249880419522315531732119 4653678160712170279471593162182985767019324800929298093137835615931406708691257
Info:Square Root: Total cpu/real time for sqrt: 1509.32/399.138
Info:Polynomial Selection (size optimized): Aggregate statistics:
Info:Polynomial Selection (size optimized): potential collisions: 65655.1
Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 67089/41.040/49.935/55.630/0.935
Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 55186/40.270/44.579/50.770/1.042
Info:Polynomial Selection (size optimized): Total time: 23542.1
Info:Polynomial Selection (root optimized): Aggregate statistics:
Info:Polynomial Selection (root optimized): Total time: 6373.98
Info:Polynomial Selection (root optimized): Rootsieve time: 6369.23
Info:Generate Factor Base: Total cpu/real time for makefb: 11.92/3.18129
Info:Generate Free Relations: Total cpu/real time for freerel: 441.9/111.234
Info:Lattice Sieving: Aggregate statistics:
Info:Lattice Sieving: Total number of relations: 32849286
Info:Lattice Sieving: Average J: 3817.18 for 773089 special-q, max bucket fill -bkmult 1.0,1s:1.079400
Info:Lattice Sieving: Total time: 319232s
Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 63.78/169.335
Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics:
Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 169.2s
Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 370.04/308.698
Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics:
Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 294.8s
Info:Filtering - Singleton removal: Total cpu/real time for purge: 139.39/101.237
Info:Filtering - Merging: Merged matrix has 1812080 rows and total weight 309755800 (170.9 entries per row on average)
Info:Filtering - Merging: Total cpu/real time for merge: 253.95/120.345
Info:Filtering - Merging: Total cpu/real time for replay: 71.89/63.3423
Info:Linear Algebra: Total cpu/real time for bwc: 54034.6/13850.5
Info:Linear Algebra: Aggregate statistics:
Info:Linear Algebra: Krylov: WCT time 8811.42, iteration CPU time 0.15, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (56832 iterations)
Info:Linear Algebra: Lingen CPU time 358.52, WCT time 104.1
Info:Linear Algebra: Mksol: WCT time 4833.53, iteration CPU time 0.16, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (28416 iterations)
Info:Quadratic Characters: Total cpu/real time for characters: 72.11/28.8219
Info:Square Root: Total cpu/real time for sqrt: 1509.32/399.138
Info:HTTP server: Shutting down HTTP server
Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 706072/80410.7
Info:root: Cleaning up computation data in /tmp/cado.ba490m18
1276318624426333963199651325137135847249880419522315531732119 4653678160712170279471593162182985767019324800929298093137835615931406708691257
software ソフトウェア
cado-nfs-3.0.0
execution environment 実行環境
3 x Linux Ubuntu 20.04.1 LTS [5.4.0-48-generic|libc 2.31 (Ubuntu GLIBC 2.31-0ubuntu9.1)]
GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Makoto KamadaJanuary 9, 2021 08:00:00 UTC 2021 年 1 月 9 日 (土) 17 時 0 分 0 秒 (日本時間)
255e4214Makoto KamadaJanuary 9, 2021 08:00:00 UTC 2021 年 1 月 9 日 (土) 17 時 0 分 0 秒 (日本時間)
3025e40--
351e6904Ignacio SantosFebruary 27, 2021 17:33:33 UTC 2021 年 2 月 28 日 (日) 2 時 33 分 33 秒 (日本時間)
403e60--
4511e64480Ignacio SantosFebruary 27, 2021 22:55:25 UTC 2021 年 2 月 28 日 (日) 7 時 55 分 25 秒 (日本時間)

14×10270-173

c243

name 名前Ignacio Santos
date 日付April 28, 2021 18:57:24 UTC 2021 年 4 月 29 日 (木) 3 時 57 分 24 秒 (日本時間)
composite number 合成数
153364821845528765443912117455699341497903047785829618213222942218217139751215542990338847368375954014434523361238458735308377407808780932880690272920122549647445454222236027872614901603976558364123061373403237810321226518678286293303268243287<243>
prime factors 素因数
3667101308524764045547967466244648369<37>
composite cofactor 合成数の残り
41821812091476089140715449929399926170821815640466619609611898587875949070177196696900292702822326471349167113304634108966278856688049663481306088013232346770654176599950250109786240241042514771710864953223<206>
factorization results 素因数分解の結果
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1:1983701456
Step 1 took 2469ms
********** Factor found in step 2: 3667101308524764045547967466244648369
Found prime factor of 37 digits: 3667101308524764045547967466244648369
Composite cofactor 41821812091476089140715449929399926170821815640466619609611898587875949070177196696900292702822326471349167113304634108966278856688049663481306088013232346770654176599950250109786240241042514771710864953223 has 206 digits
 
software ソフトウェア
GMP-ECM

c206

name 名前Ignacio Santos
date 日付April 29, 2021 17:56:01 UTC 2021 年 4 月 30 日 (金) 2 時 56 分 1 秒 (日本時間)
composite number 合成数
41821812091476089140715449929399926170821815640466619609611898587875949070177196696900292702822326471349167113304634108966278856688049663481306088013232346770654176599950250109786240241042514771710864953223<206>
prime factors 素因数
482102781342343392187214454395457913<36>
composite cofactor 合成数の残り
86748746761073400459268350830848116677299115216336184255831320679112584859684397665639286203703530932290502809763936610436174629883288785466298546972090102884033118447871<170>
factorization results 素因数分解の結果
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1:3173902424
Step 1 took 2344ms
Step 2 took 1641ms
********** Factor found in step 2: 482102781342343392187214454395457913
Found prime factor of 36 digits: 482102781342343392187214454395457913
Composite cofactor 86748746761073400459268350830848116677299115216336184255831320679112584859684397665639286203703530932290502809763936610436174629883288785466298546972090102884033118447871 has 170 digits
 
software ソフトウェア
GMP-ECM

c170

name 名前Ignacio Santos
date 日付May 2, 2021 20:49:07 UTC 2021 年 5 月 3 日 (月) 5 時 49 分 7 秒 (日本時間)
composite number 合成数
86748746761073400459268350830848116677299115216336184255831320679112584859684397665639286203703530932290502809763936610436174629883288785466298546972090102884033118447871<170>
prime factors 素因数
225816575612957942709851542679807495232853<42>
composite cofactor 合成数の残り
384155797800059862566252916986586118459660014541725362750839679545471777460970294223278080425614118716336633162881844420084354307<129>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:2350062898
Step 1 took 26125ms
Step 2 took 12000ms
********** Factor found in step 2: 225816575612957942709851542679807495232853
Found prime factor of 42 digits: 225816575612957942709851542679807495232853
Composite cofactor 384155797800059862566252916986586118459660014541725362750839679545471777460970294223278080425614118716336633162881844420084354307 has 129 digits
 
software ソフトウェア
GMP-ECM

c129

name 名前Eric Jeancolas
date 日付May 4, 2021 00:24:02 UTC 2021 年 5 月 4 日 (火) 9 時 24 分 2 秒 (日本時間)
composite number 合成数
384155797800059862566252916986586118459660014541725362750839679545471777460970294223278080425614118716336633162881844420084354307<129>
prime factors 素因数
24556107108656789904162263690943273875399467445606893119221<59>
15644002369766216762874853372333269236278630499280782628783604077836567<71>
factorization results 素因数分解の結果
384155797800059862566252916986586118459660014541725362750839679545471777460970294223278080425614118716336633162881844420084354307=24556107108656789904162263690943273875399467445606893119221*15644002369766216762874853372333269236278630499280782628783604077836567

cado polynomial
n: 384155797800059862566252916986586118459660014541725362750839679545471777460970294223278080425614118716336633162881844420084354307
skew: 18336.317
c0: 3305633615937081737806232910
c1: 1790819972434935142665926
c2: 67051736399411306229
c3: -5720865511349231
c4: 164775841020
c5: -3816000
Y0: -4178756598293615483079329
Y1: 5250086298383593883
# MurphyE (Bf=2.684e+08,Bg=2.684e+08,area=9.547e+13) = 5.232e-07
# f(x) = -3816000*x^5+164775841020*x^4-5720865511349231*x^3+67051736399411306229*x^2+1790819972434935142665926*x+3305633615937081737806232910
# g(x) = 5250086298383593883*x-4178756598293615483079329

cado parameters (extracts)
tasks.lim0 = 13124945
tasks.lim1 = 44217255
tasks.lpb0 = 28
tasks.lpb1 = 28
tasks.sieve.mfb0 = 56
tasks.sieve.mfb1 = 56
tasks.I = 14

cado log (extracts)
Info:Square Root: Factors: 15644002369766216762874853372333269236278630499280782628783604077836567 24556107108656789904162263690943273875399467445606893119221
Info:Square Root: Total cpu/real time for sqrt: 1031.83/274.024
Info:Lattice Sieving: Aggregate statistics:
Info:Lattice Sieving: Total number of relations: 25558532
Info:Lattice Sieving: Average J: 7603.38 for 61397 special-q, max bucket fill -bkmult 1.0,1s:1.069620
Info:Lattice Sieving: Total time: 95452.9s
Info:Polynomial Selection (root optimized): Aggregate statistics:
Info:Polynomial Selection (root optimized): Total time: 5258.02
Info:Polynomial Selection (root optimized): Rootsieve time: 5255.63
Info:Filtering - Merging: Total cpu/real time for merge: 324.32/154.132
Info:Filtering - Merging: Total cpu/real time for replay: 54.41/49.5034
Info:Linear Algebra: Total cpu/real time for bwc: 26758.4/7129.08
Info:Linear Algebra: Aggregate statistics:
Info:Linear Algebra: Krylov: CPU time 17034.54, WCT time 4560.49, iteration CPU time 0.1, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (41216 iterations)
Info:Linear Algebra: Lingen CPU time 256.19, WCT time 64.98
Info:Linear Algebra: Mksol: CPU time 9251.2,  WCT time 2374.49, iteration CPU time 0.11, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (20736 iterations)
Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 110.04/149.268
Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics:
Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 148.9s
Info:Polynomial Selection (size optimized): Aggregate statistics:
Info:Polynomial Selection (size optimized): potential collisions: 38210.8
Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 38674/38.400/45.885/50.830/0.852
Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 30589/37.510/41.148/46.690/0.937
Info:Polynomial Selection (size optimized): Total time: 5071.42
Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 348.87/429.002
Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics:
Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 396.8s
Info:Filtering - Singleton removal: Total cpu/real time for purge: 217.33/266.467
Info:Square Root: Total cpu/real time for sqrt: 1031.83/274.024
Info:Generate Factor Base: Total cpu/real time for makefb: 40.56/10.7512
Info:Quadratic Characters: Total cpu/real time for characters: 48.91/20.1788
Info:Generate Free Relations: Total cpu/real time for freerel: 254.62/64.3327
Info:HTTP server: Shutting down HTTP server
Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 213649/14759.5
Info:root: Cleaning up computation data in /tmp/cado.hh4ccv7x
15644002369766216762874853372333269236278630499280782628783604077836567 24556107108656789904162263690943273875399467445606893119221
software ソフトウェア
cado-nfs-3.0.0
execution environment 実行環境
6 x Linux Ubuntu 20.04.1 LTS [5.4.0-72-generic|libc 2.31 (Ubuntu GLIBC 2.31-0ubuntu9.3)]
GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Makoto KamadaJanuary 9, 2021 08:00:00 UTC 2021 年 1 月 9 日 (土) 17 時 0 分 0 秒 (日本時間)
255e4214Makoto KamadaJanuary 9, 2021 08:00:00 UTC 2021 年 1 月 9 日 (土) 17 時 0 分 0 秒 (日本時間)
3025e40--
351e6904Ignacio SantosApril 30, 2021 14:33:48 UTC 2021 年 4 月 30 日 (金) 23 時 33 分 48 秒 (日本時間)

14×10272-173

c250

composite cofactor 合成数の残り
1438672515131563882608255877133611360167911407180685310138808708585558978948038297726787354739153145757844358494418940696793877067092081046454915214515854491935984452733935525525120360852831379026447075526299888083258005217284692641607940480135736961<250>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Makoto KamadaJanuary 9, 2021 08:00:00 UTC 2021 年 1 月 9 日 (土) 17 時 0 分 0 秒 (日本時間)
255e4214Makoto KamadaJanuary 9, 2021 08:00:00 UTC 2021 年 1 月 9 日 (土) 17 時 0 分 0 秒 (日本時間)
3025e40--
351e6904Ignacio SantosApril 28, 2021 22:07:01 UTC 2021 年 4 月 29 日 (木) 7 時 7 分 1 秒 (日本時間)
403e62960610Marlon TrifunovicMarch 4, 2022 12:48:45 UTC 2022 年 3 月 4 日 (金) 21 時 48 分 45 秒 (日本時間)
2350Ignacio SantosMay 4, 2024 09:17:48 UTC 2024 年 5 月 4 日 (土) 18 時 17 分 48 秒 (日本時間)

14×10273-173

c246

name 名前Marlon Trifunovic
date 日付February 28, 2022 23:26:27 UTC 2022 年 3 月 1 日 (火) 8 時 26 分 27 秒 (日本時間)
composite number 合成数
235245052832371922434733336608572395235673383142639112225694676294697524748066305650569539709980613866578278699363148263308158955170917158477681769115522846257403580262007827410303531662273376681902419342676350195179110020537265943688869940493371<246>
prime factors 素因数
180101263928982889699160305597431121<36>
composite cofactor 合成数の残り
1306182131654185408445576134554435626851505687110687921625566446492922994058326597909837739575273684468908932972958438708250013207251409016408752767136067321701610148098285524265628607568160441030382619774242251<211>
factorization results 素因数分解の結果
Run 234 out of 610:
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:1714152970
Step 1 took 24683ms
Step 2 took 9385ms
********** Factor found in step 2: 180101263928982889699160305597431121
Found prime factor of 36 digits: 180101263928982889699160305597431121
Composite cofactor 1306182131654185408445576134554435626851505687110687921625566446492922994058326597909837739575273684468908932972958438708250013207251409016408752767136067321701610148098285524265628607568160441030382619774242251 has 211 digits
software ソフトウェア
GMP-ECM 7.0.5-dev
execution environment 実行環境
Intel Xeon CPU E5-2695 v4 @ 2.10GHz

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Makoto KamadaJanuary 9, 2021 08:00:00 UTC 2021 年 1 月 9 日 (土) 17 時 0 分 0 秒 (日本時間)
255e4214Makoto KamadaJanuary 9, 2021 08:00:00 UTC 2021 年 1 月 9 日 (土) 17 時 0 分 0 秒 (日本時間)
3025e40--
351e6904Ignacio SantosApril 28, 2021 22:07:11 UTC 2021 年 4 月 29 日 (木) 7 時 7 分 11 秒 (日本時間)
403e62960610Marlon TrifunovicMarch 1, 2022 18:24:37 UTC 2022 年 3 月 2 日 (水) 3 時 24 分 37 秒 (日本時間)
2350Ignacio SantosMay 4, 2024 09:17:58 UTC 2024 年 5 月 4 日 (土) 18 時 17 分 58 秒 (日本時間)

14×10276-173

c215

composite cofactor 合成数の残り
10129890790140001352278892944909911293323157170844872856943108005755763429110695846036160397158780250454483876962713206025653899069125061877944414486328222211765553476142077035771038076722618554868718545366591419309<215>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Makoto KamadaJanuary 9, 2021 08:00:00 UTC 2021 年 1 月 9 日 (土) 17 時 0 分 0 秒 (日本時間)
255e4214Makoto KamadaJanuary 9, 2021 08:00:00 UTC 2021 年 1 月 9 日 (土) 17 時 0 分 0 秒 (日本時間)
3025e40--
351e6904Ignacio SantosApril 28, 2021 22:07:24 UTC 2021 年 4 月 29 日 (木) 7 時 7 分 24 秒 (日本時間)
403e62960610Marlon TrifunovicFebruary 22, 2022 16:32:29 UTC 2022 年 2 月 23 日 (水) 1 時 32 分 29 秒 (日本時間)
2350Ignacio SantosMay 4, 2024 09:27:11 UTC 2024 年 5 月 4 日 (土) 18 時 27 分 11 秒 (日本時間)

14×10277-173

c268

composite cofactor 合成数の残り
3818315458424487988499931827291242175042503123736807407841578360875755175975319417566593498008506202678951557289815272464847621787748977567685537320562880079230534506686804095836113407567168411130345257938592024060954710202111998150402755392263607644248794382187719563<268>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Makoto KamadaJanuary 9, 2021 08:00:00 UTC 2021 年 1 月 9 日 (土) 17 時 0 分 0 秒 (日本時間)
255e4214Makoto KamadaJanuary 9, 2021 08:00:00 UTC 2021 年 1 月 9 日 (土) 17 時 0 分 0 秒 (日本時間)
3025e40--
351e6904Ignacio SantosApril 28, 2021 22:07:36 UTC 2021 年 4 月 29 日 (木) 7 時 7 分 36 秒 (日本時間)
403e62960610Marlon TrifunovicMarch 8, 2022 04:51:24 UTC 2022 年 3 月 8 日 (火) 13 時 51 分 24 秒 (日本時間)
2350Ignacio SantosMay 4, 2024 10:05:32 UTC 2024 年 5 月 4 日 (土) 19 時 5 分 32 秒 (日本時間)

14×10278-173

c203

composite cofactor 合成数の残り
74092184981410962925589537049838780130611749431286161353272498145144813587779367989544095360905758443998240391252952863834914452742716674809738919660284462554486829329754102930899731478944556329195567621<203>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Makoto KamadaJanuary 9, 2021 08:00:00 UTC 2021 年 1 月 9 日 (土) 17 時 0 分 0 秒 (日本時間)
255e4214Makoto KamadaJanuary 9, 2021 08:00:00 UTC 2021 年 1 月 9 日 (土) 17 時 0 分 0 秒 (日本時間)
3025e40--
351e6904Ignacio SantosApril 28, 2021 22:07:46 UTC 2021 年 4 月 29 日 (木) 7 時 7 分 46 秒 (日本時間)
403e62960610Marlon TrifunovicFebruary 22, 2022 02:54:02 UTC 2022 年 2 月 22 日 (火) 11 時 54 分 2 秒 (日本時間)
2350Ignacio SantosMay 4, 2024 10:05:43 UTC 2024 年 5 月 4 日 (土) 19 時 5 分 43 秒 (日本時間)

14×10280-173

c251

composite cofactor 合成数の残り
13861744810184111787510000749801151749842207222414088192772137710561187670082183551551963142090927252219720174622143353425517760004033284109519027462431383229223199982964821748281568481515920433057974472387895472165072278444074325252356388700044923597<251>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Makoto KamadaJanuary 9, 2021 08:00:00 UTC 2021 年 1 月 9 日 (土) 17 時 0 分 0 秒 (日本時間)
255e4214Makoto KamadaJanuary 9, 2021 08:00:00 UTC 2021 年 1 月 9 日 (土) 17 時 0 分 0 秒 (日本時間)
3025e40--
351e6904Ignacio SantosApril 28, 2021 22:08:04 UTC 2021 年 4 月 29 日 (木) 7 時 8 分 4 秒 (日本時間)
403e62960610Marlon TrifunovicMarch 4, 2022 19:16:41 UTC 2022 年 3 月 5 日 (土) 4 時 16 分 41 秒 (日本時間)
2350Ignacio SantosMay 4, 2024 10:33:55 UTC 2024 年 5 月 4 日 (土) 19 時 33 分 55 秒 (日本時間)

14×10284-173

c248

composite cofactor 合成数の残り
18348046408276042149261127597463626434302707673997952845516720900400571008849462353924902036637776827888068340960402110962753761285767342302980183954464584260454500803166893222159236165772949470383156681928416931246293560887986711419103918471944813<248>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Makoto KamadaJanuary 9, 2021 08:00:00 UTC 2021 年 1 月 9 日 (土) 17 時 0 分 0 秒 (日本時間)
255e4214Makoto KamadaJanuary 9, 2021 08:00:00 UTC 2021 年 1 月 9 日 (土) 17 時 0 分 0 秒 (日本時間)
3025e40--
351e6904Ignacio SantosApril 28, 2021 22:09:02 UTC 2021 年 4 月 29 日 (木) 7 時 9 分 2 秒 (日本時間)
403e62960610Marlon TrifunovicMarch 4, 2022 07:57:38 UTC 2022 年 3 月 4 日 (金) 16 時 57 分 38 秒 (日本時間)
2350Ignacio SantosMay 4, 2024 10:35:29 UTC 2024 年 5 月 4 日 (土) 19 時 35 分 29 秒 (日本時間)

14×10285-173

c236

composite cofactor 合成数の残り
46923381715419534742403316671366551638772538454365915379985590974472898262453083559056783026374715750547570419374716919031946600805247788575520752504299722948051022277058630520624298482516779322354228810530979836928569359059097857943039<236>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Makoto KamadaJanuary 9, 2021 08:00:00 UTC 2021 年 1 月 9 日 (土) 17 時 0 分 0 秒 (日本時間)
255e4214Makoto KamadaJanuary 9, 2021 08:00:00 UTC 2021 年 1 月 9 日 (土) 17 時 0 分 0 秒 (日本時間)
3025e40--
351e6904Ignacio SantosApril 28, 2021 22:09:10 UTC 2021 年 4 月 29 日 (木) 7 時 9 分 10 秒 (日本時間)
403e62960610Marlon TrifunovicMarch 3, 2022 09:24:24 UTC 2022 年 3 月 3 日 (木) 18 時 24 分 24 秒 (日本時間)
2350Ignacio SantosMay 4, 2024 10:53:46 UTC 2024 年 5 月 4 日 (土) 19 時 53 分 46 秒 (日本時間)

14×10286-173

c267

composite cofactor 合成数の残り
706353986487183960901832434737875401375865119545294607486661393592597685574430456797068895941915167294877317692495514903321913421803929838234581026830191439418045885031649306809092350260771066318054851151927767208061050366112838152613702571192226552352857808495268113<267>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Makoto KamadaJanuary 9, 2021 08:00:00 UTC 2021 年 1 月 9 日 (土) 17 時 0 分 0 秒 (日本時間)
255e4214Makoto KamadaJanuary 9, 2021 08:00:00 UTC 2021 年 1 月 9 日 (土) 17 時 0 分 0 秒 (日本時間)
3025e40--
351e6904Ignacio SantosApril 28, 2021 22:09:19 UTC 2021 年 4 月 29 日 (木) 7 時 9 分 19 秒 (日本時間)
403e62960610Marlon TrifunovicMarch 8, 2022 03:08:58 UTC 2022 年 3 月 8 日 (火) 12 時 8 分 58 秒 (日本時間)
2350Ignacio SantosMay 4, 2024 11:10:08 UTC 2024 年 5 月 4 日 (土) 20 時 10 分 8 秒 (日本時間)

14×10287-173

c235

composite cofactor 合成数の残り
1108102144812141355822193163097236307657270904119089296842755695706047656249195920441040143517316005315999674188714467645831519289355478121351669860696331253795818160738194827453745338680669490952312065315559053008227425209780927399031<235>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Makoto KamadaJanuary 9, 2021 08:00:00 UTC 2021 年 1 月 9 日 (土) 17 時 0 分 0 秒 (日本時間)
255e4214Makoto KamadaJanuary 9, 2021 08:00:00 UTC 2021 年 1 月 9 日 (土) 17 時 0 分 0 秒 (日本時間)
3025e40--
351e6904Ignacio SantosApril 28, 2021 22:09:29 UTC 2021 年 4 月 29 日 (木) 7 時 9 分 29 秒 (日本時間)
403e62960610Marlon TrifunovicMarch 3, 2022 12:52:39 UTC 2022 年 3 月 3 日 (木) 21 時 52 分 39 秒 (日本時間)
2350Ignacio SantosMay 4, 2024 12:08:32 UTC 2024 年 5 月 4 日 (土) 21 時 8 分 32 秒 (日本時間)

14×10288-173

c217

composite cofactor 合成数の残り
5706630662258664839200856422138787822532384208746457254315409968190388422106642278115857454575828306669491936298331880195951171637544826874733766158591101292746714483058146493426556548334459461375857934867158241529169<217>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Makoto KamadaJanuary 9, 2021 08:00:00 UTC 2021 年 1 月 9 日 (土) 17 時 0 分 0 秒 (日本時間)
255e4214Makoto KamadaJanuary 9, 2021 08:00:00 UTC 2021 年 1 月 9 日 (土) 17 時 0 分 0 秒 (日本時間)
3025e40--
351e6904Ignacio SantosApril 28, 2021 22:09:38 UTC 2021 年 4 月 29 日 (木) 7 時 9 分 38 秒 (日本時間)
403e62960610Marlon TrifunovicFebruary 16, 2022 22:07:14 UTC 2022 年 2 月 17 日 (木) 7 時 7 分 14 秒 (日本時間)
2350Ignacio SantosMay 4, 2024 12:08:44 UTC 2024 年 5 月 4 日 (土) 21 時 8 分 44 秒 (日本時間)

14×10289-173

c258

composite cofactor 合成数の残り
279110844775892181430846995358095993423550752226106332123880339619046378711494632435455383249192652409770042135075206354724889082466600272606363436972568351153092200665357579892985449802353477504148444668472542605491339939358928679075738190203042240060613483<258>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Makoto KamadaJanuary 9, 2021 08:00:00 UTC 2021 年 1 月 9 日 (土) 17 時 0 分 0 秒 (日本時間)
255e4214Makoto KamadaJanuary 9, 2021 08:00:00 UTC 2021 年 1 月 9 日 (土) 17 時 0 分 0 秒 (日本時間)
3025e40--
351e6904Ignacio SantosApril 28, 2021 22:09:50 UTC 2021 年 4 月 29 日 (木) 7 時 9 分 50 秒 (日本時間)
403e62960610Marlon TrifunovicMarch 8, 2022 07:53:23 UTC 2022 年 3 月 8 日 (火) 16 時 53 分 23 秒 (日本時間)
2350Ignacio SantosMay 4, 2024 12:08:59 UTC 2024 年 5 月 4 日 (土) 21 時 8 分 59 秒 (日本時間)

14×10290-173

c246

composite cofactor 合成数の残り
588896069217978366238359223199572976505489061689256660542090936148322172356867209129784222649268833573198011633970477593909562291646246808132661931150706590146568881300135097221918496086073965335788394972010868451062002320959987236787566074645833<246>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Makoto KamadaJanuary 9, 2021 08:00:00 UTC 2021 年 1 月 9 日 (土) 17 時 0 分 0 秒 (日本時間)
255e4214Makoto KamadaJanuary 9, 2021 08:00:00 UTC 2021 年 1 月 9 日 (土) 17 時 0 分 0 秒 (日本時間)
3025e40--
351e6904Ignacio SantosApril 28, 2021 22:10:02 UTC 2021 年 4 月 29 日 (木) 7 時 10 分 2 秒 (日本時間)
403e62960610Marlon TrifunovicMarch 3, 2022 12:59:34 UTC 2022 年 3 月 3 日 (木) 21 時 59 分 34 秒 (日本時間)
2350Ignacio SantosMay 4, 2024 12:09:23 UTC 2024 年 5 月 4 日 (土) 21 時 9 分 23 秒 (日本時間)

14×10291-173

c285

composite cofactor 合成数の残り
837899737276537376941705459928253039496259465947844452053372058665191005529360216269104188822381594742250968567208805751678956561063170278642959131500164318123478052383456675167159501337138355740268557638793752356218948707548632748126201825029417762026060716728662269727945326802742781<285>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Makoto KamadaJanuary 9, 2021 08:00:00 UTC 2021 年 1 月 9 日 (土) 17 時 0 分 0 秒 (日本時間)
255e4214Makoto KamadaJanuary 9, 2021 08:00:00 UTC 2021 年 1 月 9 日 (土) 17 時 0 分 0 秒 (日本時間)
3025e40--
351e6904Ignacio SantosApril 28, 2021 22:10:12 UTC 2021 年 4 月 29 日 (木) 7 時 10 分 12 秒 (日本時間)
403e62960610Marlon TrifunovicMarch 10, 2022 14:06:37 UTC 2022 年 3 月 10 日 (木) 23 時 6 分 37 秒 (日本時間)
2350Ignacio SantosMay 4, 2024 13:16:29 UTC 2024 年 5 月 4 日 (土) 22 時 16 分 29 秒 (日本時間)

14×10293-173

c287

composite cofactor 合成数の残り
24451678531756346778106239504226149522747772046013238522997755528031116088308494532333965286964986576115813489093320058167748749501862545482960210324955297528635666374521504666174943411393046532958950190236678799764208970821340439969181802997960922130782841621430624745800786620977657401<287>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Makoto KamadaJanuary 9, 2021 08:00:00 UTC 2021 年 1 月 9 日 (土) 17 時 0 分 0 秒 (日本時間)
255e4214Makoto KamadaJanuary 9, 2021 08:00:00 UTC 2021 年 1 月 9 日 (土) 17 時 0 分 0 秒 (日本時間)
3025e40--
351e6904Ignacio SantosApril 28, 2021 22:10:50 UTC 2021 年 4 月 29 日 (木) 7 時 10 分 50 秒 (日本時間)
403e62960610Marlon TrifunovicMarch 2, 2022 12:22:23 UTC 2022 年 3 月 2 日 (水) 21 時 22 分 23 秒 (日本時間)
2350Ignacio SantosMay 4, 2024 13:45:36 UTC 2024 年 5 月 4 日 (土) 22 時 45 分 36 秒 (日本時間)

14×10294-173

c287

composite cofactor 合成数の残り
27277023421628532092264617451446406348900215646886602592432075969128823483938216037817005553580536696594997281289333772205053316809769822389734059990899254938431539940548129798331633205172433622693258358771544413551332005928162260834108814238313192924192828503081981193260004160564382501<287>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Makoto KamadaJanuary 9, 2021 08:00:00 UTC 2021 年 1 月 9 日 (土) 17 時 0 分 0 秒 (日本時間)
255e4214Makoto KamadaJanuary 9, 2021 08:00:00 UTC 2021 年 1 月 9 日 (土) 17 時 0 分 0 秒 (日本時間)
3025e40--
351e6904Ignacio SantosApril 28, 2021 22:10:59 UTC 2021 年 4 月 29 日 (木) 7 時 10 分 59 秒 (日本時間)
403e62960610Marlon TrifunovicFebruary 24, 2022 03:44:53 UTC 2022 年 2 月 24 日 (木) 12 時 44 分 53 秒 (日本時間)
2350Ignacio SantosMay 4, 2024 14:09:45 UTC 2024 年 5 月 4 日 (土) 23 時 9 分 45 秒 (日本時間)

14×10295-173

c248

name 名前Ignacio Santos
date 日付April 28, 2021 18:59:02 UTC 2021 年 4 月 29 日 (木) 3 時 59 分 2 秒 (日本時間)
composite number 合成数
12638573020031526876636905861344009161322534635573462832937987741533022911618547588404397415027159588350177049451733394170076079700896895204755821206156596166787887650254114361718137062386740086982914403748655417160412912882878349706884717532565379<248>
prime factors 素因数
4976730466874600898677006815472210572117<40>
composite cofactor 合成数の残り
2539533355112273569133948175008072500705764658547706538760344287172036020448435635908078886524991645774666599022900837398532970056552595977605728072900372317372916791043330271310887944457632229599234696013687<208>
factorization results 素因数分解の結果
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1:895543165
Step 1 took 3329ms
Step 2 took 1953ms
********** Factor found in step 2: 4976730466874600898677006815472210572117
Found prime factor of 40 digits: 4976730466874600898677006815472210572117
Composite cofactor 2539533355112273569133948175008072500705764658547706538760344287172036020448435635908078886524991645774666599022900837398532970056552595977605728072900372317372916791043330271310887944457632229599234696013687 has 208 digits
 
software ソフトウェア
GMP-ECM

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Makoto KamadaJanuary 9, 2021 08:00:00 UTC 2021 年 1 月 9 日 (土) 17 時 0 分 0 秒 (日本時間)
255e4214Makoto KamadaJanuary 9, 2021 08:00:00 UTC 2021 年 1 月 9 日 (土) 17 時 0 分 0 秒 (日本時間)
3025e40--
351e6904Ignacio SantosApril 29, 2021 17:56:50 UTC 2021 年 4 月 30 日 (金) 2 時 56 分 50 秒 (日本時間)
403e62960610Marlon TrifunovicFebruary 22, 2022 15:25:28 UTC 2022 年 2 月 23 日 (水) 0 時 25 分 28 秒 (日本時間)
2350Ignacio SantosMay 4, 2024 14:09:56 UTC 2024 年 5 月 4 日 (土) 23 時 9 分 56 秒 (日本時間)

14×10296-173

c272

composite cofactor 合成数の残り
45962473423874921307943790868042633727165152082537231927394451980967478844384733591135499249127173082700842730746464975714649438019988999294463955993141895684622767499821922605079015073841615077169330843677123091197617505862398147815588258056421455825955971077274036584553<272>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Makoto KamadaJanuary 9, 2021 08:00:00 UTC 2021 年 1 月 9 日 (土) 17 時 0 分 0 秒 (日本時間)
255e4214Makoto KamadaJanuary 9, 2021 08:00:00 UTC 2021 年 1 月 9 日 (土) 17 時 0 分 0 秒 (日本時間)
3025e40--
351e6904Ignacio SantosApril 28, 2021 22:11:14 UTC 2021 年 4 月 29 日 (木) 7 時 11 分 14 秒 (日本時間)
403e62960610Marlon TrifunovicMarch 10, 2022 09:12:07 UTC 2022 年 3 月 10 日 (木) 18 時 12 分 7 秒 (日本時間)
2350Ignacio SantosMay 4, 2024 14:20:10 UTC 2024 年 5 月 4 日 (土) 23 時 20 分 10 秒 (日本時間)

14×10298-173

c234

composite cofactor 合成数の残り
272720012212852037218759453562986864751085402564096032610653239020065110883697432135145478946339168042309605883338480728402948810763287810686133572650927772199117111830676930795553384082812287691659616238994830916105131566524123717141<234>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Makoto KamadaJanuary 9, 2021 08:00:00 UTC 2021 年 1 月 9 日 (土) 17 時 0 分 0 秒 (日本時間)
255e4214Makoto KamadaJanuary 9, 2021 08:00:00 UTC 2021 年 1 月 9 日 (土) 17 時 0 分 0 秒 (日本時間)
3025e40--
351e6904Ignacio SantosApril 28, 2021 22:11:24 UTC 2021 年 4 月 29 日 (木) 7 時 11 分 24 秒 (日本時間)
403e62960610Marlon TrifunovicFebruary 17, 2022 00:56:32 UTC 2022 年 2 月 17 日 (木) 9 時 56 分 32 秒 (日本時間)
2350Ignacio SantosMay 4, 2024 14:35:43 UTC 2024 年 5 月 4 日 (土) 23 時 35 分 43 秒 (日本時間)

14×10300-173

c235

composite cofactor 合成数の残り
1179996112264050667575077787047064826279382635140518750241371071603183610044053445809388028368771046913492131786992364204137143485247741179692373860680557792138785200984018482314751396550041394713519951207782946160506503226032144821617<235>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Makoto KamadaJanuary 9, 2021 08:00:00 UTC 2021 年 1 月 9 日 (土) 17 時 0 分 0 秒 (日本時間)
255e4214Makoto KamadaJanuary 9, 2021 08:00:00 UTC 2021 年 1 月 9 日 (土) 17 時 0 分 0 秒 (日本時間)
3025e40--
351e60--
403e61200Dmitry DomanovJanuary 18, 2021 09:38:47 UTC 2021 年 1 月 18 日 (月) 18 時 38 分 47 秒 (日本時間)
4511e62000Dmitry DomanovApril 22, 2021 23:21:21 UTC 2021 年 4 月 23 日 (金) 8 時 21 分 21 秒 (日本時間)
5043e6640 / 7059Dmitry DomanovApril 29, 2021 21:02:19 UTC 2021 年 4 月 30 日 (金) 6 時 2 分 19 秒 (日本時間)