name 名前 | Jo Yeong Uk |
---|---|
date 日付 | May 25, 2007 13:52:43 UTC 2007 年 5 月 25 日 (金) 22 時 52 分 43 秒 (日本時間) |
composite number 合成数 | 128202944905953414864392618133593516660075229232730226022631615760351226868770194151050202748479<96> |
prime factors 素因数 | 8789691551616868774948328182836667117193493269<46> 14585602253855018384156891160085996096225659769091<50> |
factorization results 素因数分解の結果 | Number: 40003_109 N=128202944905953414864392618133593516660075229232730226022631615760351226868770194151050202748479 ( 96 digits) SNFS difficulty: 110 digits. Divisors found: r1=8789691551616868774948328182836667117193493269 (pp46) r2=14585602253855018384156891160085996096225659769091 (pp50) Version: GGNFS-0.77.1-20050930-nocona Total time: 0.62 hours. Scaled time: 0.58 units (timescale=0.931). Factorization parameters were as follows: n: 128202944905953414864392618133593516660075229232730226022631615760351226868770194151050202748479 m: 10000000000000000000000 c5: 2 c0: 15 skew: 1.5 type: snfs Factor base limits: 360000/360000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [180000, 300001) Primes: RFBsize:30757, AFBsize:30809, largePrimes:1049595 encountered Relations: rels:976872, finalFF:96164 Max relations in full relation-set: 28 Initial matrix: 61631 x 96164 with sparse part having weight 4380179. Pruned matrix : 51415 x 51787 with weight 1652064. Total sieving time: 0.59 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,110,5,0,0,0,0,0,0,0,0,360000,360000,25,25,44,44,2.2,2.2,20000 total time: 0.62 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407676) Calibrating delay using timer specific routine.. 4810.30 BogoMIPS (lpj=2405150) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405148) Total of 4 processors activated (19246.21 BogoMIPS). |
execution environment 実行環境 | Core 2 Quad Q6600 |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | May 25, 2007 15:23:08 UTC 2007 年 5 月 26 日 (土) 0 時 23 分 8 秒 (日本時間) |
composite number 合成数 | 11309384315004623424899180326922060659645124717317858332549892278146483153678074568773937459<92> |
prime factors 素因数 | 213150967517384807318120724304052423803<39> 53058095146024700376361296298594029717899946692445353<53> |
factorization results 素因数分解の結果 | Number: 40003_113 N=11309384315004623424899180326922060659645124717317858332549892278146483153678074568773937459 ( 92 digits) SNFS difficulty: 113 digits. Divisors found: r1=213150967517384807318120724304052423803 (pp39) r2=53058095146024700376361296298594029717899946692445353 (pp53) Version: GGNFS-0.77.1-20050930-nocona Total time: 0.67 hours. Scaled time: 0.63 units (timescale=0.935). Factorization parameters were as follows: n: 11309384315004623424899180326922060659645124717317858332549892278146483153678074568773937459 m: 20000000000000000000000 c5: 125 c0: 3 skew: 1 type: snfs Factor base limits: 360000/360000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [180000, 300001) Primes: RFBsize:30757, AFBsize:30524, largePrimes:966239 encountered Relations: rels:870153, finalFF:70742 Max relations in full relation-set: 28 Initial matrix: 61346 x 70742 with sparse part having weight 3221294. Pruned matrix : 57493 x 57863 with weight 2097058. Total sieving time: 0.65 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.01 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,113,5,0,0,0,0,0,0,0,0,360000,360000,25,25,44,44,2.2,2.2,20000 total time: 0.67 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407676) Calibrating delay using timer specific routine.. 4810.30 BogoMIPS (lpj=2405150) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405148) Total of 4 processors activated (19246.21 BogoMIPS). |
execution environment 実行環境 | Core 2 Quad Q6600 |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | May 25, 2007 11:09:37 UTC 2007 年 5 月 25 日 (金) 20 時 9 分 37 秒 (日本時間) |
composite number 合成数 | 40000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003<119> |
prime factors 素因数 | 211621276763532507670415744223334748617<39> 189016910831212661627315911618686407924531685546937547055501093534558399895914859<81> |
factorization results 素因数分解の結果 | Number: 40003_118 N=40000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003 ( 119 digits) SNFS difficulty: 118 digits. Divisors found: r1=211621276763532507670415744223334748617 (pp39) r2=189016910831212661627315911618686407924531685546937547055501093534558399895914859 (pp81) Version: GGNFS-0.77.1-20050930-nocona Total time: 0.96 hours. Scaled time: 0.90 units (timescale=0.935). Factorization parameters were as follows: n: 40000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003 m: 200000000000000000000000 c5: 125 c0: 3 skew: 1 type: snfs Factor base limits: 600000/600000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [300000, 420001) Primes: RFBsize:49098, AFBsize:48756, largePrimes:1908722 encountered Relations: rels:1884500, finalFF:138422 Max relations in full relation-set: 28 Initial matrix: 97919 x 138422 with sparse part having weight 11276802. Pruned matrix : 86646 x 87199 with weight 5081607. Total sieving time: 0.90 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.03 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,118,5,0,0,0,0,0,0,0,0,600000,600000,25,25,46,46,2.4,2.4,30000 total time: 0.96 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407676) Calibrating delay using timer specific routine.. 4810.30 BogoMIPS (lpj=2405150) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405148) Total of 4 processors activated (19246.21 BogoMIPS). |
execution environment 実行環境 | Core 2 Quad Q6600 |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | May 26, 2007 02:13:48 UTC 2007 年 5 月 26 日 (土) 11 時 13 分 48 秒 (日本時間) |
composite number 合成数 | 571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571429<120> |
prime factors 素因数 | 5612274364620889506308759859628576707925837<43> 101817647232428482152474928700295254049026878546996061124502636639930949090617<78> |
factorization results 素因数分解の結果 | Number: 40003_120 N=571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571429 ( 120 digits) SNFS difficulty: 120 digits. Divisors found: r1=5612274364620889506308759859628576707925837 (pp43) r2=101817647232428482152474928700295254049026878546996061124502636639930949090617 (pp78) Version: GGNFS-0.77.1-20050930-nocona Total time: 0.81 hours. Scaled time: 0.76 units (timescale=0.927). Factorization parameters were as follows: n: 571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571429 m: 1000000000000000000000000 c5: 4 c0: 3 skew: 1 type: snfs Factor base limits: 600000/600000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [300000, 420001) Primes: RFBsize:49098, AFBsize:49031, largePrimes:1870291 encountered Relations: rels:1811935, finalFF:113613 Max relations in full relation-set: 28 Initial matrix: 98196 x 113613 with sparse part having weight 9031756. Pruned matrix : 93407 x 93961 with weight 6170340. Total sieving time: 0.75 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.03 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,120,5,0,0,0,0,0,0,0,0,600000,600000,25,25,46,46,2.4,2.4,30000 total time: 0.81 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407676) Calibrating delay using timer specific routine.. 4810.30 BogoMIPS (lpj=2405150) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405148) Total of 4 processors activated (19246.21 BogoMIPS). |
execution environment 実行環境 | Core 2 Quad Q6600 |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | May 26, 2007 05:17:05 UTC 2007 年 5 月 26 日 (土) 14 時 17 分 5 秒 (日本時間) |
composite number 合成数 | 33608501683390235777263910364754662400497207736229051883674130597789461249450276268990816255932401<98> |
prime factors 素因数 | 34585230048100307623332840382749782681057<41> 971758800986673748132478129675100273134597913849135461393<57> |
factorization results 素因数分解の結果 | Number: 40003_121 N=33608501683390235777263910364754662400497207736229051883674130597789461249450276268990816255932401 ( 98 digits) SNFS difficulty: 122 digits. Divisors found: r1=34585230048100307623332840382749782681057 (pp41) r2=971758800986673748132478129675100273134597913849135461393 (pp57) Version: GGNFS-0.77.1-20050930-nocona Total time: 0.97 hours. Scaled time: 0.91 units (timescale=0.929). Factorization parameters were as follows: n: 33608501683390235777263910364754662400497207736229051883674130597789461249450276268990816255932401 m: 2000000000000000000000000 c5: 5 c0: 12 skew: 1.19 type: snfs Factor base limits: 600000/600000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [300000, 450001) Primes: RFBsize:49098, AFBsize:49316, largePrimes:1946453 encountered Relations: rels:1937498, finalFF:144532 Max relations in full relation-set: 28 Initial matrix: 98480 x 144532 with sparse part having weight 12447254. Pruned matrix : 87105 x 87661 with weight 5405410. Total sieving time: 0.92 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.02 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,122,5,0,0,0,0,0,0,0,0,600000,600000,25,25,46,46,2.4,2.4,30000 total time: 0.97 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407676) Calibrating delay using timer specific routine.. 4810.30 BogoMIPS (lpj=2405150) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405148) Total of 4 processors activated (19246.21 BogoMIPS). |
execution environment 実行環境 | Core 2 Quad Q6600 |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | May 26, 2007 09:03:27 UTC 2007 年 5 月 26 日 (土) 18 時 3 分 27 秒 (日本時間) |
composite number 合成数 | 1321645580912794520457421535553918183530313593455211083319841534694848555936997155157887085209794715400144720191109951<118> |
prime factors 素因数 | 140302808583575220937569935644682059<36> 9419950992110895877545261702594558645655155927342812397620420321479963685240471389<82> |
factorization results 素因数分解の結果 | Number: 40003_122 N=1321645580912794520457421535553918183530313593455211083319841534694848555936997155157887085209794715400144720191109951 ( 118 digits) SNFS difficulty: 122 digits. Divisors found: r1=140302808583575220937569935644682059 (pp36) r2=9419950992110895877545261702594558645655155927342812397620420321479963685240471389 (pp82) Version: GGNFS-0.77.1-20050930-nocona Total time: 1.17 hours. Scaled time: 1.08 units (timescale=0.927). Factorization parameters were as follows: n: 1321645580912794520457421535553918183530313593455211083319841534694848555936997155157887085209794715400144720191109951 m: 2000000000000000000000000 c5: 25 c0: 6 skew: 1 type: snfs Factor base limits: 600000/600000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [300000, 480001) Primes: RFBsize:49098, AFBsize:49121, largePrimes:2076587 encountered Relations: rels:2174816, finalFF:224976 Max relations in full relation-set: 28 Initial matrix: 98283 x 224976 with sparse part having weight 21075220. Pruned matrix : 75996 x 76551 with weight 4950199. Total sieving time: 1.11 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.02 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,122,5,0,0,0,0,0,0,0,0,600000,600000,25,25,46,46,2.4,2.4,30000 total time: 1.17 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407676) Calibrating delay using timer specific routine.. 4810.30 BogoMIPS (lpj=2405150) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405148) Total of 4 processors activated (19246.21 BogoMIPS). |
execution environment 実行環境 | Core 2 Quad Q6600 |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | May 27, 2007 00:21:54 UTC 2007 年 5 月 27 日 (日) 9 時 21 分 54 秒 (日本時間) |
composite number 合成数 | 1911230501381351344749672587619391998018934950167832705841037082931427635475944060798992580228159562795706952583<112> |
prime factors 素因数 | 521293731281094645703485420673506602610925860757394203<54> 3666321666068084664903157915264085011548958113765261075461<58> |
factorization results 素因数分解の結果 | Number: 40003_127 N=1911230501381351344749672587619391998018934950167832705841037082931427635475944060798992580228159562795706952583 ( 112 digits) SNFS difficulty: 127 digits. Divisors found: r1=521293731281094645703485420673506602610925860757394203 (pp54) r2=3666321666068084664903157915264085011548958113765261075461 (pp58) Version: GGNFS-0.77.1-20050930-nocona Total time: 1.62 hours. Scaled time: 1.51 units (timescale=0.931). Factorization parameters were as follows: n: 1911230501381351344749672587619391998018934950167832705841037082931427635475944060798992580228159562795706952583 m: 20000000000000000000000000 c5: 25 c0: 6 skew: 1 type: snfs Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [500000, 800001) Primes: RFBsize:78498, AFBsize:78301, largePrimes:1453042 encountered Relations: rels:1464297, finalFF:189090 Max relations in full relation-set: 28 Initial matrix: 156863 x 189090 with sparse part having weight 8244070. Pruned matrix : 135788 x 136636 with weight 4723501. Total sieving time: 1.55 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.03 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,127,5,0,0,0,0,0,0,0,0,1000000,1000000,25,25,44,44,2.2,2.2,50000 total time: 1.62 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407676) Calibrating delay using timer specific routine.. 4810.30 BogoMIPS (lpj=2405150) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405148) Total of 4 processors activated (19246.21 BogoMIPS). |
execution environment 実行環境 | Core 2 Quad Q6600 |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | May 25, 2007 13:03:44 UTC 2007 年 5 月 25 日 (金) 22 時 3 分 44 秒 (日本時間) |
composite number 合成数 | 4000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003<130> |
prime factors 素因数 | 2125328766779684187720000305302944444700439100557051<52> 1882061760289836591422460816044047312356413460440607394774696364308476485811353<79> |
factorization results 素因数分解の結果 | Number: 40003_129 N=4000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003 ( 130 digits) SNFS difficulty: 130 digits. Divisors found: r1=2125328766779684187720000305302944444700439100557051 (pp52) r2=1882061760289836591422460816044047312356413460440607394774696364308476485811353 (pp79) Version: GGNFS-0.77.1-20050930-nocona Total time: 2.58 hours. Scaled time: 2.37 units (timescale=0.920). Factorization parameters were as follows: n: 4000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003 m: 100000000000000000000000000 c5: 2 c0: 15 skew: 1.5 type: snfs Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [500000, 1000001) Primes: RFBsize:78498, AFBsize:78671, largePrimes:1535768 encountered Relations: rels:1549847, finalFF:192091 Max relations in full relation-set: 28 Initial matrix: 157234 x 192091 with sparse part having weight 9975542. Pruned matrix : 143749 x 144599 with weight 5929322. Total sieving time: 2.49 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.05 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,130,5,0,0,0,0,0,0,0,0,1000000,1000000,25,25,44,44,2.2,2.2,50000 total time: 2.58 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407676) Calibrating delay using timer specific routine.. 4810.30 BogoMIPS (lpj=2405150) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405148) Total of 4 processors activated (19246.21 BogoMIPS). |
execution environment 実行環境 | Core 2 Quad Q6600 |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | May 27, 2007 02:48:41 UTC 2007 年 5 月 27 日 (日) 11 時 48 分 41 秒 (日本時間) |
composite number 合成数 | 564845176629818951808827035744745452246841772623803650887282390890456141189641461532135200682772613833908993808376037997<120> |
prime factors 素因数 | 17745113024976168939376435372018500870859981957<47> 31831027271271917917211409577687106292138046864406391959013403689139371721<74> |
factorization results 素因数分解の結果 | Number: 40003_131 N=564845176629818951808827035744745452246841772623803650887282390890456141189641461532135200682772613833908993808376037997 ( 120 digits) SNFS difficulty: 132 digits. Divisors found: r1=17745113024976168939376435372018500870859981957 (pp47) r2=31831027271271917917211409577687106292138046864406391959013403689139371721 (pp74) Version: GGNFS-0.77.1-20050930-nocona Total time: 2.30 hours. Scaled time: 2.15 units (timescale=0.935). Factorization parameters were as follows: n: 564845176629818951808827035744745452246841772623803650887282390890456141189641461532135200682772613833908993808376037997 m: 200000000000000000000000000 c5: 5 c0: 12 skew: 1.19 type: snfs Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [500000, 950001) Primes: RFBsize:78498, AFBsize:78441, largePrimes:1508956 encountered Relations: rels:1522496, finalFF:190629 Max relations in full relation-set: 28 Initial matrix: 157005 x 190629 with sparse part having weight 9748353. Pruned matrix : 142097 x 142946 with weight 5737145. Total sieving time: 2.22 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.04 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,132,5,0,0,0,0,0,0,0,0,1000000,1000000,25,25,44,44,2.2,2.2,50000 total time: 2.30 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407676) Calibrating delay using timer specific routine.. 4810.30 BogoMIPS (lpj=2405150) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405148) Total of 4 processors activated (19246.21 BogoMIPS). |
execution environment 実行環境 | Core 2 Quad Q6600 |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | May 27, 2007 05:25:02 UTC 2007 年 5 月 27 日 (日) 14 時 25 分 2 秒 (日本時間) |
composite number 合成数 | 20537509985512737778662764382555381457009554393279769385933028106871931241847355158296348401924213969431227<107> |
prime factors 素因数 | 1112013696695243458462948812197952325199534586937<49> 18468756317073684462309916330756661620043623970152551745171<59> |
factorization results 素因数分解の結果 | Number: 40003_132 N=20537509985512737778662764382555381457009554393279769385933028106871931241847355158296348401924213969431227 ( 107 digits) SNFS difficulty: 132 digits. Divisors found: r1=1112013696695243458462948812197952325199534586937 (pp49) r2=18468756317073684462309916330756661620043623970152551745171 (pp59) Version: GGNFS-0.77.1-20050930-nocona Total time: 2.52 hours. Scaled time: 2.35 units (timescale=0.934). Factorization parameters were as follows: n: 20537509985512737778662764382555381457009554393279769385933028106871931241847355158296348401924213969431227 m: 200000000000000000000000000 c5: 25 c0: 6 skew: 1 type: snfs Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [500000, 1000001) Primes: RFBsize:78498, AFBsize:78301, largePrimes:1515396 encountered Relations: rels:1524246, finalFF:186816 Max relations in full relation-set: 28 Initial matrix: 156863 x 186816 with sparse part having weight 9456577. Pruned matrix : 145417 x 146265 with weight 5828837. Total sieving time: 2.43 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.05 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,132,5,0,0,0,0,0,0,0,0,1000000,1000000,25,25,44,44,2.2,2.2,50000 total time: 2.52 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407676) Calibrating delay using timer specific routine.. 4810.30 BogoMIPS (lpj=2405150) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405148) Total of 4 processors activated (19246.21 BogoMIPS). |
execution environment 実行環境 | Core 2 Quad Q6600 |
name 名前 | suberi |
---|---|
date 日付 | May 26, 2007 03:13:10 UTC 2007 年 5 月 26 日 (土) 12 時 13 分 10 秒 (日本時間) |
composite number 合成数 | 353091042848215958955990997237680499037694499097543430860316035903356509935143354522032572119066183649889751735508680169515478761<129> |
prime factors 素因数 | 167209353214438072108071764699<30> 2111670406352169953615950969505952926778362473341224768552933956228839776053527035084886239827494539<100> |
factorization results 素因数分解の結果 | Input number is 353091042848215958955990997237680499037694499097543430860316035903356509935143354522032572119066183649889751735508680169515478761 (129 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1914283015 Step 1 took 18343ms Step 2 took 13328ms ********** Factor found in step 2: 167209353214438072108071764699 Found probable prime factor of 30 digits: 167209353214438072108071764699 Probable prime cofactor 2111670406352169953615950969505952926778362473341224768552933956228839776053527035084886239827494539 has 100 digits |
software ソフトウェア | GMP-ECM 6.1.2 |
execution environment 実行環境 | Pentium 4 2.4GHz, Windows 2000 |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | May 27, 2007 22:37:35 UTC 2007 年 5 月 28 日 (月) 7 時 37 分 35 秒 (日本時間) |
composite number 合成数 | 553173834877610289033328723551376019914258055593970405199834047849536716913290001382934587194025722583321808878440049785645138984926013<135> |
prime factors 素因数 | 930729119481891694801482963283168394796716926087<48> 594344609294641138185135993021839496344619029158623927721993187831394871362972952598299<87> |
factorization results 素因数分解の結果 | Number: 40003_138 N=553173834877610289033328723551376019914258055593970405199834047849536716913290001382934587194025722583321808878440049785645138984926013 ( 135 digits) SNFS difficulty: 138 digits. Divisors found: r1=930729119481891694801482963283168394796716926087 (pp48) r2=594344609294641138185135993021839496344619029158623927721993187831394871362972952598299 (pp87) Version: GGNFS-0.77.1-20050930-nocona Total time: 4.68 hours. Scaled time: 4.37 units (timescale=0.934). Factorization parameters were as follows: n: 553173834877610289033328723551376019914258055593970405199834047849536716913290001382934587194025722583321808878440049785645138984926013 m: 2000000000000000000000000000 c5: 125 c0: 3 skew: 1 type: snfs Factor base limits: 1400000/1400000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [700000, 1550001) Primes: RFBsize:107126, AFBsize:107023, largePrimes:1652918 encountered Relations: rels:1714233, finalFF:241604 Max relations in full relation-set: 28 Initial matrix: 214214 x 241604 with sparse part having weight 12448402. Pruned matrix : 201680 x 202815 with weight 8746891. Total sieving time: 4.51 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.11 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,138,5,0,0,0,0,0,0,0,0,1400000,1400000,25,25,44,44,2.3,2.3,50000 total time: 4.68 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407676) Calibrating delay using timer specific routine.. 4810.30 BogoMIPS (lpj=2405150) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405148) Total of 4 processors activated (19246.21 BogoMIPS). |
execution environment 実行環境 | Core 2 Quad Q6600 |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | May 28, 2007 12:04:03 UTC 2007 年 5 月 28 日 (月) 21 時 4 分 3 秒 (日本時間) |
composite number 合成数 | 10873704174143929896811554488954462461135888027735618494324499305001323585745628849144582691257986153007<104> |
prime factors 素因数 | 2443464119454710007355153216679458364521<40> 4450118210277028673112750346091921480847013205495714394729918167<64> |
factorization results 素因数分解の結果 | Number: 40003_139 N=10873704174143929896811554488954462461135888027735618494324499305001323585745628849144582691257986153007 ( 104 digits) SNFS difficulty: 140 digits. Divisors found: r1=2443464119454710007355153216679458364521 (pp40) r2=4450118210277028673112750346091921480847013205495714394729918167 (pp64) Version: GGNFS-0.77.1-20050930-nocona Total time: 8.54 hours. Scaled time: 7.97 units (timescale=0.934). Factorization parameters were as follows: n: 10873704174143929896811554488954462461135888027735618494324499305001323585745628849144582691257986153007 m: 10000000000000000000000000000 c5: 2 c0: 15 skew: 1.5 type: snfs Factor base limits: 1400000/1400000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [700000, 1250001) Primes: RFBsize:107126, AFBsize:107113, largePrimes:1679573 encountered Relations: rels:1762335, finalFF:255346 Max relations in full relation-set: 28 Initial matrix: 214304 x 255346 with sparse part having weight 13522951. Pruned matrix : 192825 x 193960 with weight 8429277. Total sieving time: 8.39 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.10 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,140,5,0,0,0,0,0,0,0,0,1400000,1400000,25,25,44,44,2.3,2.3,50000 total time: 8.54 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407676) Calibrating delay using timer specific routine.. 4810.30 BogoMIPS (lpj=2405150) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405148) Total of 4 processors activated (19246.21 BogoMIPS). |
execution environment 実行環境 | Core 2 Quad Q6600 |
name 名前 | Robert Backstrom |
---|---|
date 日付 | May 28, 2007 23:12:30 UTC 2007 年 5 月 29 日 (火) 8 時 12 分 30 秒 (日本時間) |
composite number 合成数 | 2954138935487585358037504212441582467115017534237517833386470674579036800877959937028708758566992431307387312823<112> |
prime factors 素因数 | 361944429343387970109181659326070203309043443208301<51> 8161857721768944819535587526816743204330570033059102272751923<61> |
factorization results 素因数分解の結果 | Number: n N=2954138935487585358037504212441582467115017534237517833386470674579036800877959937028708758566992431307387312823 ( 112 digits) SNFS difficulty: 142 digits. Divisors found: r1=361944429343387970109181659326070203309043443208301 (pp51) r2=8161857721768944819535587526816743204330570033059102272751923 (pp61) Version: GGNFS-0.77.1-20051202-athlon Total time: 6.94 hours. Scaled time: 10.04 units (timescale=1.447). Factorization parameters were as follows: name: KA_4_0_141_3 n: 2954138935487585358037504212441582467115017534237517833386470674579036800877959937028708758566992431307387312823 skew: 0.75 deg: 5 c5: 25 c0: 6 m: 20000000000000000000000000000 type: snfs rlim: 2500000 alim: 2500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 800001) Primes: RFBsize:183072, AFBsize:182381, largePrimes:6642527 encountered Relations: rels:6258535, finalFF:588785 Max relations in full relation-set: 28 Initial matrix: 365517 x 588785 with sparse part having weight 31133532. Pruned matrix : 183587 x 185478 with weight 13613993. Total sieving time: 5.76 hours. Total relation processing time: 0.15 hours. Matrix solve time: 0.93 hours. Total square root time: 0.10 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,142,5,0,0,0,0,0,0,0,0,2500000,2500000,28,28,48,48,2.5,2.5,100000 total time: 6.94 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+ |
name 名前 | Robert Backstrom |
---|---|
date 日付 | May 29, 2007 07:34:56 UTC 2007 年 5 月 29 日 (火) 16 時 34 分 56 秒 (日本時間) |
composite number 合成数 | 186450569069337016472379512674172687327990157379633781153481333472695354444304795726582573723536382949298211314787<114> |
prime factors 素因数 | 646714525652426822605941812765336474593578059<45> 288304285235034063465342910556093561504177705697017827218911974846793<69> |
factorization results 素因数分解の結果 | Number: n N=186450569069337016472379512674172687327990157379633781153481333472695354444304795726582573723536382949298211314787 ( 114 digits) SNFS difficulty: 145 digits. Divisors found: r1=646714525652426822605941812765336474593578059 (pp45) r2=288304285235034063465342910556093561504177705697017827218911974846793 (pp69) Version: GGNFS-0.77.1-20051202-athlon Total time: 7.95 hours. Scaled time: 11.52 units (timescale=1.449). Factorization parameters were as follows: name: KA_4_0_144_3 n: 186450569069337016472379512674172687327990157379633781153481333472695354444304795726582573723536382949298211314787 skew: 0.94 deg: 5 c5: 4 c0: 3 m: 100000000000000000000000000000 type: snfs rlim: 2500000 alim: 2500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 900001) Primes: RFBsize:183072, AFBsize:182816, largePrimes:6481222 encountered Relations: rels:5947081, finalFF:465397 Max relations in full relation-set: 28 Initial matrix: 365955 x 465397 with sparse part having weight 26481654. Pruned matrix : 278114 x 280007 with weight 12854649. Total sieving time: 6.13 hours. Total relation processing time: 0.15 hours. Matrix solve time: 1.30 hours. Total square root time: 0.37 hours, sqrts: 9. Prototype def-par.txt line would be: snfs,145,5,0,0,0,0,0,0,0,0,2500000,2500000,28,28,48,48,2.5,2.5,100000 total time: 7.95 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+ |
name 名前 | Sinkiti Sibata |
---|---|
date 日付 | May 29, 2007 01:19:59 UTC 2007 年 5 月 29 日 (火) 10 時 19 分 59 秒 (日本時間) |
composite number 合成数 | 132206125300983790896326376581325564446111856146621668386739588502853251960027942344108792674962899<99> |
prime factors 素因数 | 41503832743290556850451533494303423483207<41> 3185395578251891000053013244421171035550838420033010094357<58> |
factorization results 素因数分解の結果 | Number: 40003_146 N=132206125300983790896326376581325564446111856146621668386739588502853251960027942344108792674962899 ( 99 digits) SNFS difficulty: 146 digits. Divisors found: r1=41503832743290556850451533494303423483207 (pp41) r2=3185395578251891000053013244421171035550838420033010094357 (pp58) Version: GGNFS-0.77.1-20060513-k8 Total time: 14.41 hours. Scaled time: 28.87 units (timescale=2.003). Factorization parameters were as follows: name: 40003_146 n: 132206125300983790896326376581325564446111856146621668386739588502853251960027942344108792674962899 m: 100000000000000000000000000000 c5: 40 c0: 3 skew: 1 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [750000, 2450001) Primes: RFBsize:114155, AFBsize:113697, largePrimes:2764799 encountered Relations: rels:2738945, finalFF:275539 Max relations in full relation-set: 28 Initial matrix: 227918 x 275539 with sparse part having weight 25625759. Pruned matrix : 211958 x 213161 with weight 17651075. Total sieving time: 13.81 hours. Total relation processing time: 0.11 hours. Matrix solve time: 0.41 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,100000 total time: 14.41 hours. --------- CPU info (if available) ---------- |
execution environment 実行環境 | Core 2 Duo E6300 1.86GHz,Windows Vista and Cygwin) |
name 名前 | Sinkiti Sibata |
---|---|
date 日付 | May 30, 2007 02:23:31 UTC 2007 年 5 月 30 日 (水) 11 時 23 分 31 秒 (日本時間) |
composite number 合成数 | 251105640508617088508594586058925115736503829395097331809337690282772505242310817076184722144502554494278159<108> |
prime factors 素因数 | 653001312242351067783538309652220151840959811<45> 384540790042736112351657990250185253692610846424727214146899269<63> |
factorization results 素因数分解の結果 | Number: 40003_148 N=251105640508617088508594586058925115736503829395097331809337690282772505242310817076184722144502554494278159 ( 108 digits) SNFS difficulty: 148 digits. Divisors found: r1=653001312242351067783538309652220151840959811 (pp45) r2=384540790042736112351657990250185253692610846424727214146899269 (pp63) Version: GGNFS-0.77.1-20060513-k8 Total time: 20.03 hours. Scaled time: 40.12 units (timescale=2.003). Factorization parameters were as follows: name: 40003_148 n: 251105640508617088508594586058925115736503829395097331809337690282772505242310817076184722144502554494278159 m: 200000000000000000000000000000 c5: 125 c0: 3 skew: 1 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [750000, 3150001) Primes: RFBsize:114155, AFBsize:113877, largePrimes:2878785 encountered Relations: rels:2881700, finalFF:275946 Max relations in full relation-set: 28 Initial matrix: 228097 x 275946 with sparse part having weight 29748606. Pruned matrix : 213753 x 214957 with weight 21355785. Total sieving time: 19.28 hours. Total relation processing time: 0.14 hours. Matrix solve time: 0.52 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,148,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,100000 total time: 20.03 hours. --------- CPU info (if available) ---------- |
execution environment 実行環境 | Core 2 Duo E6300 1.86GHz, Windows Vista and Cygwin) |
name 名前 | Robert Backstrom |
---|---|
date 日付 | May 30, 2007 07:43:10 UTC 2007 年 5 月 30 日 (水) 16 時 43 分 10 秒 (日本時間) |
composite number 合成数 | 101684809290071168164673608485184602435969068234105883657731058672297789123043221176110896404625443994231824114694450958074636842233549627<138> |
prime factors 素因数 | 1297415475912073088053509540386798385058609<43> 78374900853242505310466623601273918272208107442148395944232718006339250364736934925355798428203<95> |
factorization results 素因数分解の結果 | Number: n N=101684809290071168164673608485184602435969068234105883657731058672297789123043221176110896404625443994231824114694450958074636842233549627 ( 138 digits) SNFS difficulty: 151 digits. Divisors found: r1=1297415475912073088053509540386798385058609 (pp43) r2=78374900853242505310466623601273918272208107442148395944232718006339250364736934925355798428203 (pp95) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 16.66 hours. Scaled time: 22.81 units (timescale=1.369). Factorization parameters were as follows: name: KA_4_0_150_3 n: 101684809290071168164673608485184602435969068234105883657731058672297789123043221176110896404625443994231824114694450958074636842233549627 skew: 0.60 deg: 5 c5: 40 c0: 3 m: 1000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 700001) Primes: RFBsize:216816, AFBsize:215821, largePrimes:6287333 encountered Relations: rels:5832658, finalFF:518542 Max relations in full relation-set: 28 Initial matrix: 432703 x 518542 with sparse part having weight 27684554. Pruned matrix : 351235 x 353462 with weight 14649647. Total sieving time: 14.75 hours. Total relation processing time: 0.16 hours. Matrix solve time: 1.66 hours. Total square root time: 0.08 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 16.66 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+ |
name 名前 | Robert Backstrom |
---|---|
date 日付 | May 30, 2007 05:40:08 UTC 2007 年 5 月 30 日 (水) 14 時 40 分 8 秒 (日本時間) |
composite number 合成数 | 944391847065184286264056682398660852360861568682077567624358698911352298295608814009108659364943702441016826701735083921020509829938638139736939651<147> |
prime factors 素因数 | 2801114324800249062766187692606357600549569364661409619095961178167<67> 337148626424781873328036805457958920928175121942812922349685550558244211164690453<81> |
factorization results 素因数分解の結果 | Number: n N=944391847065184286264056682398660852360861568682077567624358698911352298295608814009108659364943702441016826701735083921020509829938638139736939651 ( 147 digits) SNFS difficulty: 152 digits. Divisors found: r1=2801114324800249062766187692606357600549569364661409619095961178167 (pp67) r2=337148626424781873328036805457958920928175121942812922349685550558244211164690453 (pp81) Version: GGNFS-0.77.1-20051202-athlon Total time: 17.49 hours. Scaled time: 25.34 units (timescale=1.449). Factorization parameters were as follows: name: KA_4_0_151_3 n: 944391847065184286264056682398660852360861568682077567624358698911352298295608814009108659364943702441016826701735083921020509829938638139736939651 skew: 0.75 deg: 5 c5: 25 c0: 6 m: 2000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 800001) Primes: RFBsize:216816, AFBsize:215956, largePrimes:6769972 encountered Relations: rels:6408744, finalFF:619286 Max relations in full relation-set: 28 Initial matrix: 432836 x 619286 with sparse part having weight 33677825. Pruned matrix : 266552 x 268780 with weight 14872464. Total sieving time: 15.76 hours. Total relation processing time: 0.16 hours. Matrix solve time: 1.48 hours. Total square root time: 0.09 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,152,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 17.49 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+ |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | May 30, 2007 09:47:03 UTC 2007 年 5 月 30 日 (水) 18 時 47 分 3 秒 (日本時間) |
composite number 合成数 | 830623905647955297761358148882626558774270445628540572480336272874132992508238565769278537971704421868179492443<111> |
prime factors 素因数 | 3535740861654872658270519573725613482190542128854473<52> 234922167135062332183441254151884253123634863112124506309891<60> |
factorization results 素因数分解の結果 | Number: 40003_153 N=830623905647955297761358148882626558774270445628540572480336272874132992508238565769278537971704421868179492443 ( 111 digits) SNFS difficulty: 153 digits. Divisors found: r1=3535740861654872658270519573725613482190542128854473 (pp52) r2=234922167135062332183441254151884253123634863112124506309891 (pp60) Version: GGNFS-0.77.1-20050930-nocona Total time: 17.10 hours. Scaled time: 15.97 units (timescale=0.934). Factorization parameters were as follows: n: 830623905647955297761358148882626558774270445628540572480336272874132992508238565769278537971704421868179492443 m: 2000000000000000000000000000000 c5: 125 c0: 3 skew: 1 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 2200001) Primes: RFBsize:176302, AFBsize:175868, largePrimes:5638026 encountered Relations: rels:5620624, finalFF:535694 Max relations in full relation-set: 28 Initial matrix: 352235 x 535694 with sparse part having weight 48622419. Pruned matrix : 279893 x 281718 with weight 25069298. Total sieving time: 16.52 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.46 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,153,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 17.10 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407676) Calibrating delay using timer specific routine.. 4810.30 BogoMIPS (lpj=2405150) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405148) Total of 4 processors activated (19246.21 BogoMIPS). |
execution environment 実行環境 | Core 2 Quad Q6600 |
name 名前 | Robert Backstrom |
---|---|
date 日付 | May 31, 2007 13:32:39 UTC 2007 年 5 月 31 日 (木) 22 時 32 分 39 秒 (日本時間) |
composite number 合成数 | 34617270133071285415914354745753361151760004396813244310996447931454777677825544431616161322375402810136808065672456644101628679212529<134> |
prime factors 素因数 | 22208856755600059957457268067062121<35> 1894425688430070080563866230389466204449<40> 822790066767611381874600814825665810874654564700976063637801<60> |
factorization results 素因数分解の結果 | Number: n N=34617270133071285415914354745753361151760004396813244310996447931454777677825544431616161322375402810136808065672456644101628679212529 ( 134 digits) SNFS difficulty: 155 digits. Divisors found: r1=22208856755600059957457268067062121 (pp35) r2=1894425688430070080563866230389466204449 (pp40) r3=822790066767611381874600814825665810874654564700976063637801 (pp60) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 28.57 hours. Scaled time: 38.97 units (timescale=1.364). Factorization parameters were as follows: name: KA_4_0_153_3 n: 34617270133071285415914354745753361151760004396813244310996447931454777677825544431616161322375402810136808065672456644101628679212529 skew: 1.50 deg: 5 c5: 2 c0: 15 m: 10000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1200001) Primes: RFBsize:216816, AFBsize:216721, largePrimes:6921372 encountered Relations: rels:6417283, finalFF:508343 Max relations in full relation-set: 28 Initial matrix: 433602 x 508343 with sparse part having weight 33814808. Pruned matrix : 369514 x 371746 with weight 20585563. Total sieving time: 25.59 hours. Total relation processing time: 0.19 hours. Matrix solve time: 2.38 hours. Total square root time: 0.41 hours, sqrts: 4. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 28.57 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+ |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | May 31, 2007 06:33:46 UTC 2007 年 5 月 31 日 (木) 15 時 33 分 46 秒 (日本時間) |
composite number 合成数 | 95572473521318661498662645987832126295159614647710436217024143597699587551562764245776486857662364971023065753927621965341421<125> |
prime factors 素因数 | 492825456187630481531157139782940959270957733499511907<54> 193927631621634265976915268190761855606404319236001612241209942831445103<72> |
factorization results 素因数分解の結果 | Number: 40003_155 N=95572473521318661498662645987832126295159614647710436217024143597699587551562764245776486857662364971023065753927621965341421 ( 125 digits) SNFS difficulty: 155 digits. Divisors found: r1=492825456187630481531157139782940959270957733499511907 (pp54) r2=193927631621634265976915268190761855606404319236001612241209942831445103 (pp72) Version: GGNFS-0.77.1-20050930-nocona Total time: 17.81 hours. Scaled time: 16.60 units (timescale=0.932). Factorization parameters were as follows: n: 95572473521318661498662645987832126295159614647710436217024143597699587551562764245776486857662364971023065753927621965341421 m: 10000000000000000000000000000000 c5: 4 c0: 3 skew: 1 type: snfs Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 2500001) Primes: RFBsize:216816, AFBsize:216936, largePrimes:5532285 encountered Relations: rels:5477183, finalFF:544684 Max relations in full relation-set: 28 Initial matrix: 433819 x 544684 with sparse part having weight 40709982. Pruned matrix : 354442 x 356675 with weight 25742292. Total sieving time: 16.97 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.72 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 17.81 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407676) Calibrating delay using timer specific routine.. 4810.30 BogoMIPS (lpj=2405150) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405148) Total of 4 processors activated (19246.21 BogoMIPS). |
execution environment 実行環境 | Core 2 Quad Q6600 |
name 名前 | suberi |
---|---|
date 日付 | June 6, 2007 03:43:28 UTC 2007 年 6 月 6 日 (水) 12 時 43 分 28 秒 (日本時間) |
composite number 合成数 | 295564123102898950311660474914445041677616327778146529912494750618347587616670084876648878655123855189918992709638755596563428263071<132> |
prime factors 素因数 | 3210493232143522115233150147270451<34> |
composite cofactor 合成数の残り | 92061905050509083573242674474131090797477960189592323155314191961704503438069174058130179979963621<98> |
factorization results 素因数分解の結果 | Input number is 295564123102898950311660474914445041677616327778146529912494750618347587616670084876648878655123855189918992709638755596563428263071 (132 digits) Using B1=5000000, B2=11416314010, polynomial Dickson(12), sigma=1671372949 Step 1 took 89217ms Step 2 took 43665ms ********** Factor found in step 2: 3210493232143522115233150147270451 Found probable prime factor of 34 digits: 3210493232143522115233150147270451 Composite cofactor 92061905050509083573242674474131090797477960189592323155314191961704503438069174058130179979963621 has 98 digits |
software ソフトウェア | GMP-ECM 6.1.2 |
execution environment 実行環境 | Sempron 3400+ 1.80GHz, Windows Vista |
name 名前 | suberi |
---|---|
date 日付 | June 6, 2007 12:28:44 UTC 2007 年 6 月 6 日 (水) 21 時 28 分 44 秒 (日本時間) |
composite number 合成数 | 92061905050509083573242674474131090797477960189592323155314191961704503438069174058130179979963621<98> |
prime factors 素因数 | 2111007970395248522288822270407200076593257339<46> 43610401448779057354383384061999544768111674794916639<53> |
factorization results 素因数分解の結果 | Wed Jun 06 13:02:36 2007 Wed Jun 06 13:02:36 2007 Wed Jun 06 13:02:36 2007 Msieve v. 1.22 Wed Jun 06 13:02:36 2007 random seeds: 1e082aa8 9c72287f Wed Jun 06 13:02:36 2007 factoring 92061905050509083573242674474131090797477960189592323155314191961704503438069174058130179979963621 (98 digits) Wed Jun 06 13:02:37 2007 commencing quadratic sieve (98-digit input) Wed Jun 06 13:02:37 2007 using multiplier of 5 Wed Jun 06 13:02:37 2007 using 64kb Opteron sieve core Wed Jun 06 13:02:37 2007 sieve interval: 18 blocks of size 65536 Wed Jun 06 13:02:37 2007 processing polynomials in batches of 6 Wed Jun 06 13:02:37 2007 using a sieve bound of 2542703 (92941 primes) Wed Jun 06 13:02:37 2007 using large prime bound of 381405450 (28 bits) Wed Jun 06 13:02:37 2007 using double large prime bound of 2795737419206850 (43-52 bits) Wed Jun 06 13:02:37 2007 using trial factoring cutoff of 52 bits Wed Jun 06 13:02:37 2007 polynomial 'A' values have 13 factors Wed Jun 06 21:05:02 2007 93287 relations (22735 full + 70552 combined from 1389878 partial), need 93037 Wed Jun 06 21:05:26 2007 begin with 1412613 relations Wed Jun 06 21:05:28 2007 reduce to 242711 relations in 10 passes Wed Jun 06 21:05:28 2007 attempting to read 242711 relations Wed Jun 06 21:05:33 2007 recovered 242711 relations Wed Jun 06 21:05:33 2007 recovered 229853 polynomials Wed Jun 06 21:05:34 2007 attempting to build 93287 cycles Wed Jun 06 21:05:34 2007 found 93287 cycles in 6 passes Wed Jun 06 21:05:34 2007 distribution of cycle lengths: Wed Jun 06 21:05:34 2007 length 1 : 22735 Wed Jun 06 21:05:34 2007 length 2 : 16342 Wed Jun 06 21:05:34 2007 length 3 : 15825 Wed Jun 06 21:05:34 2007 length 4 : 12688 Wed Jun 06 21:05:34 2007 length 5 : 9623 Wed Jun 06 21:05:34 2007 length 6 : 6425 Wed Jun 06 21:05:34 2007 length 7 : 4104 Wed Jun 06 21:05:34 2007 length 9+: 5545 Wed Jun 06 21:05:34 2007 largest cycle: 20 relations Wed Jun 06 21:05:34 2007 matrix is 92941 x 93287 with weight 6011165 (avg 64.44/col) Wed Jun 06 21:05:35 2007 filtering completed in 3 passes Wed Jun 06 21:05:35 2007 matrix is 91290 x 91354 with weight 5815830 (avg 63.66/col) Wed Jun 06 21:05:36 2007 saving the first 48 matrix rows for later Wed Jun 06 21:05:36 2007 matrix is 91242 x 91354 with weight 4375853 (avg 47.90/col) Wed Jun 06 21:05:36 2007 matrix includes 64 packed rows Wed Jun 06 21:05:36 2007 using block size 10922 for processor cache size 256 kB Wed Jun 06 21:05:36 2007 commencing Lanczos iteration Wed Jun 06 21:07:07 2007 lanczos halted after 1445 iterations Wed Jun 06 21:07:07 2007 recovered 15 nontrivial dependencies Wed Jun 06 21:07:08 2007 prp46 factor: 2111007970395248522288822270407200076593257339 Wed Jun 06 21:07:08 2007 prp53 factor: 43610401448779057354383384061999544768111674794916639 Wed Jun 06 21:07:08 2007 elapsed time 08:04:32 |
execution environment 実行環境 | Sempron 3400+ 1.80GHz, Windows Vista |
name 名前 | suberi |
---|---|
date 日付 | June 6, 2007 03:51:56 UTC 2007 年 6 月 6 日 (水) 12 時 51 分 56 秒 (日本時間) |
composite number 合成数 | 496506028143019469904453934941335968226252665797544486891077894248911404188479090842393455819108389263117435770083051157315862517<129> |
prime factors 素因数 | 5565980346411937268388128381439563107<37> |
composite cofactor 合成数の残り | 89203697685186390047288507359292435046300468270991492132748857979599129994346738197714706631<92> |
factorization results 素因数分解の結果 | Input number is 496506028143019469904453934941335968226252665797544486891077894248911404188479090842393455819108389263117435770083051157315862517 (129 digits) Using B1=5000000, B2=11416314010, polynomial Dickson(12), sigma=883745355 Step 1 took 90746ms Step 2 took 43493ms ********** Factor found in step 2: 5565980346411937268388128381439563107 Found probable prime factor of 37 digits: 5565980346411937268388128381439563107 Composite cofactor 89203697685186390047288507359292435046300468270991492132748857979599129994346738197714706631 has 92 digits |
software ソフトウェア | GMP-ECM 6.1.2 |
execution environment 実行環境 | Sempron 3400+ 1.80GHz, Windows Vista |
name 名前 | suberi |
---|---|
date 日付 | June 6, 2007 12:29:32 UTC 2007 年 6 月 6 日 (水) 21 時 29 分 32 秒 (日本時間) |
composite number 合成数 | 89203697685186390047288507359292435046300468270991492132748857979599129994346738197714706631<92> |
prime factors 素因数 | 700131433832122433345260550981903682611<39> 127409931013861119158868865095362078118650478133953821<54> |
factorization results 素因数分解の結果 | Wed Jun 06 13:03:32 2007 Wed Jun 06 13:03:32 2007 Wed Jun 06 13:03:32 2007 Msieve v. 1.22 Wed Jun 06 13:03:32 2007 random seeds: 42a4d6dc 17b79130 Wed Jun 06 13:03:32 2007 factoring 89203697685186390047288507359292435046300468270991492132748857979599129994346738197714706631 (92 digits) Wed Jun 06 13:03:33 2007 commencing quadratic sieve (92-digit input) Wed Jun 06 13:03:33 2007 using multiplier of 31 Wed Jun 06 13:03:33 2007 using 64kb Pentium 4 sieve core Wed Jun 06 13:03:33 2007 sieve interval: 18 blocks of size 65536 Wed Jun 06 13:03:33 2007 processing polynomials in batches of 6 Wed Jun 06 13:03:33 2007 using a sieve bound of 1854623 (69412 primes) Wed Jun 06 13:03:33 2007 using large prime bound of 209572399 (27 bits) Wed Jun 06 13:03:33 2007 using double large prime bound of 951483630575481 (42-50 bits) Wed Jun 06 13:03:33 2007 using trial factoring cutoff of 50 bits Wed Jun 06 13:03:33 2007 polynomial 'A' values have 12 factors Wed Jun 06 17:47:55 2007 69664 relations (17315 full + 52349 combined from 897404 partial), need 69508 Wed Jun 06 17:47:58 2007 begin with 914719 relations Wed Jun 06 17:47:59 2007 reduce to 178248 relations in 10 passes Wed Jun 06 17:47:59 2007 attempting to read 178248 relations Wed Jun 06 17:48:03 2007 recovered 178248 relations Wed Jun 06 17:48:03 2007 recovered 161681 polynomials Wed Jun 06 17:48:03 2007 attempting to build 69664 cycles Wed Jun 06 17:48:03 2007 found 69664 cycles in 6 passes Wed Jun 06 17:48:03 2007 distribution of cycle lengths: Wed Jun 06 17:48:03 2007 length 1 : 17315 Wed Jun 06 17:48:03 2007 length 2 : 12552 Wed Jun 06 17:48:03 2007 length 3 : 12009 Wed Jun 06 17:48:03 2007 length 4 : 9448 Wed Jun 06 17:48:03 2007 length 5 : 6958 Wed Jun 06 17:48:03 2007 length 6 : 4647 Wed Jun 06 17:48:03 2007 length 7 : 2820 Wed Jun 06 17:48:03 2007 length 9+: 3915 Wed Jun 06 17:48:03 2007 largest cycle: 19 relations Wed Jun 06 17:48:04 2007 matrix is 69412 x 69664 with weight 4316925 (avg 61.97/col) Wed Jun 06 17:48:05 2007 filtering completed in 3 passes Wed Jun 06 17:48:05 2007 matrix is 68116 x 68180 with weight 4166475 (avg 61.11/col) Wed Jun 06 17:48:05 2007 saving the first 48 matrix rows for later Wed Jun 06 17:48:05 2007 matrix is 68068 x 68180 with weight 3190313 (avg 46.79/col) Wed Jun 06 17:48:05 2007 matrix includes 64 packed rows Wed Jun 06 17:48:05 2007 using block size 21845 for processor cache size 512 kB Wed Jun 06 17:48:06 2007 commencing Lanczos iteration Wed Jun 06 17:49:11 2007 lanczos halted after 1078 iterations Wed Jun 06 17:49:11 2007 recovered 17 nontrivial dependencies Wed Jun 06 17:49:13 2007 prp39 factor: 700131433832122433345260550981903682611 Wed Jun 06 17:49:13 2007 prp54 factor: 127409931013861119158868865095362078118650478133953821 Wed Jun 06 17:49:13 2007 elapsed time 04:45:41 |
execution environment 実行環境 | Pentium 4 2.26GHz, Windows XP |
name 名前 | Robert Backstrom |
---|---|
date 日付 | October 8, 2007 21:24:08 UTC 2007 年 10 月 9 日 (火) 6 時 24 分 8 秒 (日本時間) |
composite number 合成数 | 39459218261793484031429986564259843918054327571537121376310544925094790528770124732699157255927616425625128819829539343779063155819583908887247<143> |
prime factors 素因数 | 52633384675921297349532423419308829377260438229<47> 749699425654555588156813979006319175064153379838686656191939648186729452596767342041598941114643<96> |
factorization results 素因数分解の結果 | Number: n N=39459218261793484031429986564259843918054327571537121376310544925094790528770124732699157255927616425625128819829539343779063155819583908887247 ( 143 digits) SNFS difficulty: 162 digits. Divisors found: Tue Oct 09 03:46:58 2007 prp47 factor: 52633384675921297349532423419308829377260438229 Tue Oct 09 03:46:58 2007 prp96 factor: 749699425654555588156813979006319175064153379838686656191939648186729452596767342041598941114643 Tue Oct 09 03:46:58 2007 elapsed time 01:16:25 (Msieve 1.28) Version: GGNFS-0.77.1-20051202-athlon Total time: 36.15 hours. Scaled time: 52.53 units (timescale=1.453). Factorization parameters were as follows: name: KA_4_0_161_3 n: 39459218261793484031429986564259843918054327571537121376310544925094790528770124732699157255927616425625128819829539343779063155819583908887247 skew: 0.75 deg: 5 c5: 25 c0: 6 m: 200000000000000000000000000000000 type: snfs rlim: 2800000 alim: 2800000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 1900000) Primes: RFBsize:203362, AFBsize:202562, largePrimes:7139160 encountered Relations: rels:6577562, finalFF:434257 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 35.92 hours. Total relation processing time: 0.23 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,162,5,0,0,0,0,0,0,0,0,2800000,2800000,28,28,48,48,2.5,2.5,100000 total time: 36.15 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+ |
name 名前 | suberi |
---|---|
date 日付 | June 8, 2007 06:19:31 UTC 2007 年 6 月 8 日 (金) 15 時 19 分 31 秒 (日本時間) |
composite number 合成数 | 30372292949732050461283898465920300433029597971511941253232256303250268636420306777112618045661362408294742274349764457777466836309002530679755453<146> |
prime factors 素因数 | 9122825587223042642884812944337703070033<40> 3329263796544560932998781161768664065173476621162459775686753155158211188126981055831370511645586167117741<106> |
factorization results 素因数分解の結果 | Input number is 30372292949732050461283898465920300433029597971511941253232256303250268636420306777112618045661362408294742274349764457777466836309002530679755453 (146 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=2575813498 Step 1 took 241427ms Step 2 took 90028ms ********** Factor found in step 2: 9122825587223042642884812944337703070033 Found probable prime factor of 40 digits: 9122825587223042642884812944337703070033 Probable prime cofactor 3329263796544560932998781161768664065173476621162459775686753155158211188126981055831370511645586167117741 has 106 digits |
software ソフトウェア | GMP-ECM 6.1.2 |
execution environment 実行環境 | Sempron 3400+ 1.80GHz, Windows Vista |
name 名前 | Justin Card |
---|---|
date 日付 | May 3, 2008 12:48:30 UTC 2008 年 5 月 3 日 (土) 21 時 48 分 30 秒 (日本時間) |
composite number 合成数 | 281757056083773741232137178028737834794104880024291453340088245329928734185858405370672594988276144001927978351950713117289357114693<132> |
prime factors 素因数 | 31445722457122043977687400352333915199796312519950578127<56> 8960107578000945594964516537852622453791282510444775001014858922521752127659<76> |
factorization results 素因数分解の結果 | [04/28 05:48:36] GGNFS-0.77.1-20060722-k8 : makefb [04/28 05:48:45] name: [04/28 05:48:45] n=281757056083773741232137178028737834794104880024291453340088245329928734185858405370672594988276144001927978351950713117289357114693 (132 digits) [04/28 05:48:45] c0: 15 [04/28 05:48:45] c1: 0 [04/28 05:48:45] c2: 0 [04/28 05:48:45] c3: 0 [04/28 05:48:45] c4: 0 [04/28 05:48:45] c5: 2 [04/28 05:48:45] RFBsize: 348513 (upto 4999999) [04/28 05:48:45] AFBsize: 348286 (upto 4999999) [04/28 05:48:45] maxNumLargeRatPrimes: 3 [04/28 05:48:45] maxLargeRatPrime: 134217728 [04/28 05:48:45] maxNumLargeAlgPrimes: 3 [04/28 05:48:45] maxLargeAlgPrime: 134217728 -> minimum number of FF's: 780486 [04/28 05:48:45] GGNFS-0.77.1-20060722-k8 : sieve [04/28 05:48:45] [04/28 05:48:45] hashtable: 62 bins of size 65536 [04/28 05:48:45] hashtable cache: 130 entries per bin [04/28 05:48:45] Rational factor base: [04/28 05:48:45] base of logs: 1.516 [04/28 05:48:45] factor base entries: 348513 (7.0 MB) [04/28 05:48:45] maximum factor base prime: 4999999 [04/28 05:48:45] primes at infinity: 0 [04/28 05:48:45] hashed RFB entries: 341970 (98.1%, max=4999999) [04/28 05:48:45] sieved RFB entries: 6488 (1.862%, max=65537) [04/28 05:48:45] unsieved RFB entries: 55 [04/28 05:48:45] large prime cutoff: 27 bits [04/28 05:48:45] trial factoring cutoff: 56 bits [04/28 05:48:45] 2-large prime cutoff: 44-27 bits [04/28 05:48:45] Algebraic factor base: [04/28 05:48:45] base of logs: 1.580 [04/28 05:48:45] factor base entries: 348285 (7.0 MB) [04/28 05:48:45] maximum factor base prime: 4999999 [04/28 05:48:45] primes at infinity: 1 [04/28 05:48:45] hashed AFB entries: 341683 (98.1%, max=4999999) [04/28 05:48:45] sieved AFB entries: 6556 (1.882%, max=65537) [04/28 05:48:45] unsieved AFB entries: 46 [04/28 05:48:45] large prime cutoff: 27 bits [04/28 05:48:45] trial factoring cutoff: 57 bits [04/28 05:48:45] 2-large prime cutoff: 44-27 bits [04/28 05:48:45] [04/28 05:54:29] Classical sieved [-4000000, 4000000]x[1, 400] [04/28 05:54:29] Found 5405 relations in 344.2 sec -> makeJobFile(): Adjusted to q0=2500000, q1=2600000. -> client 1 q0: 2500000 LatSieveTime: 10126 [04/28 08:43:16] GGNFS-0.77.1-20060722-k8 : procrels [04/28 08:43:31] There were 1434/253164 duplicates. [04/28 08:43:31] RelProcTime: 15.5 [04/28 08:43:32] largePrimes: 461714 , relations: 251730 [04/28 08:43:32] GGNFS-0.77.1-20060722-k8 : matbuild [04/28 08:43:33] largePrimes: 461714 , relations: 251730 [04/28 08:43:33] Heap stats for matbuild run. [04/28 08:43:33] Max heap usage: 68 MB [04/28 08:43:33] malloc/realloc errors: 0 [04/28 08:43:33] total malloc's : 52 [04/28 08:43:33] total realloc's: 18 [04/28 08:43:33] rels:251730, initialFF:0, finalFF:9313 -> makeJobFile(): Adjusted to q0=2600001, q1=2700000. -> client 1 q0: 2600001 LatSieveTime: 10859 [04/28 11:44:32] GGNFS-0.77.1-20060722-k8 : procrels [04/28 11:44:48] There were 3930/247263 duplicates. [04/28 11:44:48] RelProcTime: 15.8 [04/28 11:44:49] largePrimes: 868408 , relations: 495063 [04/28 11:44:49] GGNFS-0.77.1-20060722-k8 : matbuild [04/28 11:44:51] largePrimes: 868408 , relations: 495063 [04/28 11:44:51] Heap stats for matbuild run. [04/28 11:44:51] Max heap usage: 106 MB [04/28 11:44:51] malloc/realloc errors: 0 [04/28 11:44:51] total malloc's : 67 [04/28 11:44:51] total realloc's: 25 [04/28 11:44:51] rels:495063, initialFF:0, finalFF:18831 -> makeJobFile(): Adjusted to q0=2700001, q1=2800000. -> client 1 q0: 2700001 LatSieveTime: 10388 [04/28 14:37:59] GGNFS-0.77.1-20060722-k8 : procrels [04/28 14:38:14] There were 6158/238621 duplicates. [04/28 14:38:14] RelProcTime: 14.5 [04/28 14:38:15] largePrimes: 1225006 , relations: 727526 [04/28 14:38:16] GGNFS-0.77.1-20060722-k8 : matbuild [04/28 14:38:19] largePrimes: 1225006 , relations: 727526 [04/28 14:38:19] Heap stats for matbuild run. [04/28 14:38:19] Max heap usage: 143 MB [04/28 14:38:19] malloc/realloc errors: 0 [04/28 14:38:19] total malloc's : 70 [04/28 14:38:19] total realloc's: 28 [04/28 14:38:19] rels:727526, initialFF:0, finalFF:28233 -> makeJobFile(): Adjusted to q0=2800001, q1=2900000. -> client 1 q0: 2800001 LatSieveTime: 10346 [04/28 17:30:46] GGNFS-0.77.1-20060722-k8 : procrels [04/28 17:31:01] There were 8268/236776 duplicates. [04/28 17:31:01] RelProcTime: 15.4 [04/28 17:31:03] largePrimes: 1550549 , relations: 956034 [04/28 17:31:03] GGNFS-0.77.1-20060722-k8 : matbuild [04/28 17:31:06] largePrimes: 1550549 , relations: 956034 [04/28 17:31:07] Heap stats for matbuild run. [04/28 17:31:07] Max heap usage: 178 MB [04/28 17:31:07] malloc/realloc errors: 0 [04/28 17:31:07] total malloc's : 72 [04/28 17:31:07] total realloc's: 31 [04/28 17:31:07] rels:956034, initialFF:0, finalFF:37995 -> makeJobFile(): Adjusted to q0=2900001, q1=3000000. -> client 1 q0: 2900001 LatSieveTime: 10456 [04/28 20:25:24] GGNFS-0.77.1-20060722-k8 : procrels [04/28 20:25:40] There were 10417/239631 duplicates. [04/28 20:25:40] RelProcTime: 15.4 [04/28 20:25:43] largePrimes: 1854333 , relations: 1185248 [04/28 20:25:43] GGNFS-0.77.1-20060722-k8 : matbuild [04/28 20:25:48] largePrimes: 1854333 , relations: 1185248 [04/28 20:25:49] Heap stats for matbuild run. [04/28 20:25:49] Max heap usage: 80 MB [04/28 20:25:49] malloc/realloc errors: 0 [04/28 20:25:49] total malloc's : 101 [04/28 20:25:49] total realloc's: 36 [04/28 20:25:49] rels:1185248, initialFF:0, finalFF:48555 -> makeJobFile(): Adjusted to q0=3000001, q1=3100000. -> client 1 q0: 3000001 LatSieveTime: 10079 [04/28 23:13:49] GGNFS-0.77.1-20060722-k8 : procrels [04/28 23:14:04] There were 11958/231025 duplicates. [04/28 23:14:04] RelProcTime: 14.7 [04/28 23:14:06] largePrimes: 2126504 , relations: 1404315 [04/28 23:14:06] GGNFS-0.77.1-20060722-k8 : matbuild [04/28 23:14:13] largePrimes: 2126504 , relations: 1404315 [04/28 23:14:14] Heap stats for matbuild run. [04/28 23:14:14] Max heap usage: 96 MB [04/28 23:14:14] malloc/realloc errors: 0 [04/28 23:14:14] total malloc's : 116 [04/28 23:14:14] total realloc's: 43 [04/28 23:14:14] rels:1404315, initialFF:0, finalFF:59278 -> makeJobFile(): Adjusted to q0=3100001, q1=3200000. -> client 1 q0: 3100001 LatSieveTime: 10272 [04/29 02:05:26] GGNFS-0.77.1-20060722-k8 : procrels [04/29 02:05:41] There were 13594/232219 duplicates. [04/29 02:05:41] RelProcTime: 14.7 [04/29 02:05:43] largePrimes: 2383566 , relations: 1622940 [04/29 02:05:44] GGNFS-0.77.1-20060722-k8 : matbuild [04/29 02:05:51] largePrimes: 2383566 , relations: 1622940 [04/29 02:05:52] Heap stats for matbuild run. [04/29 02:05:52] Max heap usage: 104 MB [04/29 02:05:52] malloc/realloc errors: 0 [04/29 02:05:52] total malloc's : 116 [04/29 02:05:52] total realloc's: 46 [04/29 02:05:52] rels:1622940, initialFF:0, finalFF:70501 -> makeJobFile(): Adjusted to q0=3200001, q1=3300000. -> client 1 q0: 3200001 LatSieveTime: 10489 [04/29 05:00:41] GGNFS-0.77.1-20060722-k8 : procrels [04/29 05:00:57] There were 15348/233656 duplicates. [04/29 05:00:57] RelProcTime: 15.3 [04/29 05:01:00] largePrimes: 2626900 , relations: 1841248 [04/29 05:01:00] GGNFS-0.77.1-20060722-k8 : matbuild [04/29 05:01:08] largePrimes: 2626900 , relations: 1841248 [04/29 05:01:10] Heap stats for matbuild run. [04/29 05:01:10] Max heap usage: 113 MB [04/29 05:01:10] malloc/realloc errors: 0 [04/29 05:01:10] total malloc's : 129 [04/29 05:01:10] total realloc's: 51 [04/29 05:01:10] rels:1841248, initialFF:0, finalFF:82296 -> makeJobFile(): Adjusted to q0=3300001, q1=3400000. -> client 1 q0: 3300001 LatSieveTime: 10381 [04/29 07:54:11] GGNFS-0.77.1-20060722-k8 : procrels [04/29 07:54:27] There were 16708/230298 duplicates. [04/29 07:54:27] RelProcTime: 16.0 [04/29 07:54:31] largePrimes: 2853210 , relations: 2054838 [04/29 07:54:31] GGNFS-0.77.1-20060722-k8 : matbuild [04/29 07:54:40] largePrimes: 2853210 , relations: 2054838 [04/29 07:54:42] Heap stats for matbuild run. [04/29 07:54:42] Max heap usage: 121 MB [04/29 07:54:42] malloc/realloc errors: 0 [04/29 07:54:42] total malloc's : 146 [04/29 07:54:42] total realloc's: 58 [04/29 07:54:42] rels:2054838, initialFF:0, finalFF:94701 -> makeJobFile(): Adjusted to q0=3400001, q1=3500000. -> client 1 q0: 3400001 LatSieveTime: 10490 [04/29 10:49:32] GGNFS-0.77.1-20060722-k8 : procrels [04/29 10:49:48] There were 17763/227219 duplicates. [04/29 10:49:48] RelProcTime: 16.0 [04/29 10:49:53] largePrimes: 3064765 , relations: 2264294 [04/29 10:49:53] GGNFS-0.77.1-20060722-k8 : matbuild [04/29 10:50:03] largePrimes: 3064765 , relations: 2264294 [04/29 10:50:06] Heap stats for matbuild run. [04/29 10:50:06] Max heap usage: 130 MB [04/29 10:50:06] malloc/realloc errors: 0 [04/29 10:50:06] total malloc's : 148 [04/29 10:50:06] total realloc's: 62 [04/29 10:50:06] rels:2264294, initialFF:0, finalFF:108128 -> makeJobFile(): Adjusted to q0=3500001, q1=3600000. -> client 1 q0: 3500001 LatSieveTime: 10909 [04/29 13:51:55] GGNFS-0.77.1-20060722-k8 : procrels [04/29 13:52:12] There were 19089/224182 duplicates. [04/29 13:52:12] RelProcTime: 16.3 [04/29 13:52:16] largePrimes: 3263490 , relations: 2469387 [04/29 13:52:16] GGNFS-0.77.1-20060722-k8 : matbuild [04/29 13:52:28] largePrimes: 3263490 , relations: 2469387 [04/29 13:52:31] Heap stats for matbuild run. [04/29 13:52:31] Max heap usage: 138 MB [04/29 13:52:31] malloc/realloc errors: 0 [04/29 13:52:31] total malloc's : 150 [04/29 13:52:31] total realloc's: 65 [04/29 13:52:31] rels:2469387, initialFF:0, finalFF:121873 -> makeJobFile(): Adjusted to q0=3600001, q1=3700000. -> client 1 q0: 3600001 LatSieveTime: 11027 [04/29 16:56:18] GGNFS-0.77.1-20060722-k8 : procrels [04/29 16:56:34] There were 20438/225727 duplicates. [04/29 16:56:34] RelProcTime: 15.4 [04/29 16:56:38] largePrimes: 3454616 , relations: 2674676 [04/29 16:56:38] GGNFS-0.77.1-20060722-k8 : matbuild [04/29 16:56:51] largePrimes: 3454616 , relations: 2674676 [04/29 16:56:54] Heap stats for matbuild run. [04/29 16:56:54] Max heap usage: 150 MB [04/29 16:56:54] malloc/realloc errors: 0 [04/29 16:56:54] total malloc's : 165 [04/29 16:56:54] total realloc's: 71 [04/29 16:56:54] rels:2674676, initialFF:0, finalFF:136991 -> makeJobFile(): Adjusted to q0=3700001, q1=3800000. -> client 1 q0: 3700001 LatSieveTime: 10429 [04/29 19:50:43] GGNFS-0.77.1-20060722-k8 : procrels [04/29 19:50:59] There were 20638/216554 duplicates. [04/29 19:50:59] RelProcTime: 15.7 [04/29 19:51:05] largePrimes: 3629509 , relations: 2870592 [04/29 19:51:05] GGNFS-0.77.1-20060722-k8 : matbuild [04/29 19:51:18] largePrimes: 3629509 , relations: 2870592 [04/29 19:51:22] Heap stats for matbuild run. [04/29 19:51:22] Max heap usage: 157 MB [04/29 19:51:22] malloc/realloc errors: 0 [04/29 19:51:22] total malloc's : 176 [04/29 19:51:22] total realloc's: 76 [04/29 19:51:22] rels:2870592, initialFF:0, finalFF:152673 -> makeJobFile(): Adjusted to q0=3800001, q1=3900000. -> client 1 q0: 3800001 LatSieveTime: 10815 [04/29 22:51:37] GGNFS-0.77.1-20060722-k8 : procrels [04/29 22:51:53] There were 23108/228221 duplicates. [04/29 22:51:53] RelProcTime: 15.9 [04/29 22:51:58] largePrimes: 3807084 , relations: 3075705 [04/29 22:51:58] GGNFS-0.77.1-20060722-k8 : matbuild [04/29 22:52:11] largePrimes: 3807084 , relations: 3075705 [04/29 22:52:16] Heap stats for matbuild run. [04/29 22:52:16] Max heap usage: 173 MB [04/29 22:52:16] malloc/realloc errors: 0 [04/29 22:52:16] total malloc's : 184 [04/29 22:52:16] total realloc's: 84 [04/29 22:52:16] rels:3075705, initialFF:0, finalFF:170779 -> makeJobFile(): Adjusted to q0=3900001, q1=4000000. -> client 1 q0: 3900001 LatSieveTime: 10412 [04/30 01:45:48] GGNFS-0.77.1-20060722-k8 : procrels [04/30 01:46:04] There were 23195/218119 duplicates. [04/30 01:46:04] RelProcTime: 15.6 [04/30 01:46:09] largePrimes: 3970731 , relations: 3270629 [04/30 01:46:09] GGNFS-0.77.1-20060722-k8 : matbuild [04/30 01:46:23] largePrimes: 3970731 , relations: 3270629 [04/30 01:46:28] Heap stats for matbuild run. [04/30 01:46:28] Max heap usage: 181 MB [04/30 01:46:28] malloc/realloc errors: 0 [04/30 01:46:28] total malloc's : 186 [04/30 01:46:28] total realloc's: 86 [04/30 01:46:28] rels:3270629, initialFF:0, finalFF:189710 -> makeJobFile(): Adjusted to q0=4000001, q1=4100000. -> client 1 q0: 4000001 LatSieveTime: 10519 [04/30 04:41:48] GGNFS-0.77.1-20060722-k8 : procrels [04/30 04:42:14] There were 24380/219826 duplicates. [04/30 04:42:14] RelProcTime: 16.6 [04/30 04:42:21] largePrimes: 4129017 , relations: 3466075 [04/30 04:42:21] GGNFS-0.77.1-20060722-k8 : matbuild [04/30 04:42:38] largePrimes: 4129017 , relations: 3466075 [04/30 04:42:44] Heap stats for matbuild run. [04/30 04:42:44] Max heap usage: 141 MB [04/30 04:42:44] malloc/realloc errors: 0 [04/30 04:42:44] total malloc's : 262 [04/30 04:42:44] total realloc's: 103 [04/30 04:42:44] rels:3466075, initialFF:0, finalFF:210824 -> makeJobFile(): Adjusted to q0=4100001, q1=4200000. -> client 1 q0: 4100001 LatSieveTime: 10364 [04/30 07:35:29] GGNFS-0.77.1-20060722-k8 : procrels [04/30 07:35:44] There were 24528/213008 duplicates. [04/30 07:35:44] RelProcTime: 15.7 [04/30 07:35:52] largePrimes: 4277683 , relations: 3654555 [04/30 07:35:52] GGNFS-0.77.1-20060722-k8 : matbuild [04/30 07:36:09] largePrimes: 4277683 , relations: 3654555 [04/30 07:36:17] Heap stats for matbuild run. [04/30 07:36:17] Max heap usage: 146 MB [04/30 07:36:17] malloc/realloc errors: 0 [04/30 07:36:17] total malloc's : 270 [04/30 07:36:17] total realloc's: 109 [04/30 07:36:17] rels:3654555, initialFF:0, finalFF:233618 -> makeJobFile(): Adjusted to q0=4200001, q1=4300000. -> client 1 q0: 4200001 LatSieveTime: 10455 [04/30 10:30:32] GGNFS-0.77.1-20060722-k8 : procrels [04/30 10:30:48] There were 24891/211431 duplicates. [04/30 10:30:48] RelProcTime: 15.9 [04/30 10:30:56] largePrimes: 4420984 , relations: 3841095 [04/30 10:30:56] GGNFS-0.77.1-20060722-k8 : matbuild [04/30 10:31:14] largePrimes: 4420984 , relations: 3841095 [04/30 10:31:23] Heap stats for matbuild run. [04/30 10:31:23] Max heap usage: 151 MB [04/30 10:31:23] malloc/realloc errors: 0 [04/30 10:31:23] total malloc's : 296 [04/30 10:31:23] total realloc's: 116 [04/30 10:31:23] rels:3841095, initialFF:0, finalFF:258876 -> makeJobFile(): Adjusted to q0=4300001, q1=4400000. -> client 1 q0: 4300001 LatSieveTime: 10694 [04/30 13:29:38] GGNFS-0.77.1-20060722-k8 : procrels [04/30 13:29:55] There were 26113/212289 duplicates. [04/30 13:29:55] RelProcTime: 16.9 [04/30 13:30:04] largePrimes: 4560331 , relations: 4027271 [04/30 13:30:04] GGNFS-0.77.1-20060722-k8 : matbuild [04/30 13:30:24] largePrimes: 4560331 , relations: 4027271 [04/30 13:30:34] Heap stats for matbuild run. [04/30 13:30:34] Max heap usage: 156 MB [04/30 13:30:34] malloc/realloc errors: 0 [04/30 13:30:34] total malloc's : 277 [04/30 13:30:34] total realloc's: 112 [04/30 13:30:34] rels:4027271, initialFF:0, finalFF:286615 -> makeJobFile(): Adjusted to q0=4400001, q1=4500000. -> client 1 q0: 4400001 LatSieveTime: 11213 [04/30 16:37:28] GGNFS-0.77.1-20060722-k8 : procrels [04/30 16:37:44] There were 27033/215365 duplicates. [04/30 16:37:44] RelProcTime: 16.6 [04/30 16:37:53] largePrimes: 4698008 , relations: 4215603 [04/30 16:37:53] GGNFS-0.77.1-20060722-k8 : matbuild [04/30 16:38:13] largePrimes: 4698008 , relations: 4215603 [04/30 16:38:25] Heap stats for matbuild run. [04/30 16:38:25] Max heap usage: 161 MB [04/30 16:38:25] malloc/realloc errors: 0 [04/30 16:38:25] total malloc's : 298 [04/30 16:38:25] total realloc's: 120 [04/30 16:38:25] rels:4215603, initialFF:0, finalFF:317802 -> makeJobFile(): Adjusted to q0=4500001, q1=4600000. -> client 1 q0: 4500001 LatSieveTime: 10742 [04/30 19:37:27] GGNFS-0.77.1-20060722-k8 : procrels [04/30 19:37:44] There were 27144/209674 duplicates. [04/30 19:37:44] RelProcTime: 16.4 [04/30 19:37:53] largePrimes: 4828529 , relations: 4398133 [04/30 19:37:53] GGNFS-0.77.1-20060722-k8 : matbuild [04/30 19:38:15] largePrimes: 4828529 , relations: 4398133 [04/30 19:38:29] Heap stats for matbuild run. [04/30 19:38:29] Max heap usage: 166 MB [04/30 19:38:29] malloc/realloc errors: 0 [04/30 19:38:29] total malloc's : 299 [04/30 19:38:29] total realloc's: 121 [04/30 19:38:29] rels:4398133, initialFF:0, finalFF:351398 -> makeJobFile(): Adjusted to q0=4600001, q1=4700000. -> client 1 q0: 4600001 LatSieveTime: 176 -> makeJobFile(): Adjusted to q0=4601537, q1=4700000. -> minimum number of FF's: 780486 -> makeJobFile(): Adjusted to q0=4700000, q1=4800000. -> client 1 q0: 4700000 -> minimum number of FF's: 780486 -> makeJobFile(): Adjusted to q0=4800000, q1=4900000. -> client 2 q0: 4800000 LatSieveTime: 11054 [04/30 22:46:02] GGNFS-0.77.1-20060722-k8 : procrels [04/30 22:46:20] There were 27918/212060 duplicates. [04/30 22:46:20] RelProcTime: 18.1 [04/30 22:46:30] largePrimes: 4957115 , relations: 4582275 [04/30 22:46:30] GGNFS-0.77.1-20060722-k8 : matbuild [04/30 22:46:52] largePrimes: 4957115 , relations: 4582275 [04/30 22:47:08] Heap stats for matbuild run. [04/30 22:47:08] Max heap usage: 171 MB [04/30 22:47:08] malloc/realloc errors: 0 [04/30 22:47:08] total malloc's : 292 [04/30 22:47:08] total realloc's: 119 [04/30 22:47:08] rels:4582275, initialFF:0, finalFF:388745 -> makeJobFile(): Adjusted to q0=4900000, q1=5000000. -> client 1 q0: 4900000 LatSieveTime: 11117 -> makeJobFile(): Adjusted to q0=5000000, q1=5100000. -> client 2 q0: 5000000 LatSieveTime: 10630 [05/01 01:44:19] GGNFS-0.77.1-20060722-k8 : procrels [05/01 01:44:48] There were 56158/412942 duplicates. [05/01 01:44:48] RelProcTime: 29.1 [05/01 01:44:58] largePrimes: 5198471 , relations: 4939059 [05/01 01:44:58] GGNFS-0.77.1-20060722-k8 : matbuild [05/01 01:45:22] largePrimes: 5198471 , relations: 4939059 [05/01 01:45:40] Heap stats for matbuild run. [05/01 01:45:40] Max heap usage: 180 MB [05/01 01:45:40] malloc/realloc errors: 0 [05/01 01:45:40] total malloc's : 263 [05/01 01:45:40] total realloc's: 111 [05/01 01:45:40] rels:4939059, initialFF:0, finalFF:471350 -> makeJobFile(): Adjusted to q0=5100000, q1=5200000. -> client 1 q0: 5100000 LatSieveTime: 10712 -> makeJobFile(): Adjusted to q0=5200000, q1=5300000. -> client 2 q0: 5200000 LatSieveTime: 10796 [05/01 04:45:37] GGNFS-0.77.1-20060722-k8 : procrels [05/01 04:46:06] There were 58137/409481 duplicates. [05/01 04:46:06] RelProcTime: 29.1 [05/01 04:46:17] largePrimes: 5427423 , relations: 5290403 [05/01 04:46:17] GGNFS-0.77.1-20060722-k8 : matbuild LatSieveTime: 10796 -> makeJobFile(): Adjusted to q0=5400000, q1=5500000. -> client 2 q0: 5400000 [05/01 04:46:44] largePrimes: 5427423 , relations: 5290403 [05/01 04:47:10] Heap stats for matbuild run. [05/01 04:47:10] Max heap usage: 192 MB [05/01 04:47:10] malloc/realloc errors: 0 [05/01 04:47:10] total malloc's : 288 [05/01 04:47:10] total realloc's: 126 [05/01 04:47:10] rels:5290403, initialFF:0, finalFF:563606 -> makeJobFile(): Adjusted to q0=5300000, q1=5400000. -> client 1 q0: 5300000 LatSieveTime: 10688 -> makeJobFile(): Adjusted to q0=5600000, q1=5700000. -> client 2 q0: 5600000 LatSieveTime: 10897 [05/01 07:48:48] GGNFS-0.77.1-20060722-k8 : procrels [05/01 07:49:30] There were 90260/605038 duplicates. [05/01 07:49:30] RelProcTime: 41.8 [05/01 07:49:42] largePrimes: 5746380 , relations: 5805181 [05/01 07:49:42] GGNFS-0.77.1-20060722-k8 : matbuild [05/01 07:50:12] largePrimes: 5746380 , relations: 5805181 [05/01 07:50:44] Heap stats for matbuild run. [05/01 07:50:44] Max heap usage: 210 MB [05/01 07:50:44] malloc/realloc errors: 0 [05/01 07:50:44] total malloc's : 266 [05/01 07:50:44] total realloc's: 122 [05/01 07:50:44] rels:5805181, initialFF:0, finalFF:721470 -> makeJobFile(): Adjusted to q0=5500000, q1=5600000. -> client 1 q0: 5500000 LatSieveTime: 10544 -> makeJobFile(): Adjusted to q0=5800000, q1=5900000. -> client 2 q0: 5800000 LatSieveTime: 10665 [05/01 10:48:29] GGNFS-0.77.1-20060722-k8 : procrels [05/01 10:48:59] There were 60297/389624 duplicates. [05/01 10:48:59] RelProcTime: 29.7 [05/01 10:49:12] largePrimes: 5941492 , relations: 6134508 [05/01 10:49:12] GGNFS-0.77.1-20060722-k8 : matbuild [05/01 10:49:44] largePrimes: 5941492 , relations: 6134508 [05/01 10:50:43] reduceRelSets dropped relation-set weight from 5763372 to 5457116. [05/01 10:50:43] After removing heavy rel-sets, weight is 5285905. [05/01 10:51:38] Heap stats for matbuild run. [05/01 10:51:38] Max heap usage: 221 MB [05/01 10:51:38] malloc/realloc errors: 0 [05/01 10:51:38] total malloc's : 296 [05/01 10:51:38] total realloc's: 125 [05/01 10:51:38] rels:6134508, initialFF:0, finalFF:829668 [05/01 10:51:38] depinf file written. Run matprune. [05/01 10:51:38] GGNFS-0.77.1-20060722-k8 : matprune [05/01 10:51:44] Pruning matrix with wt=0.050 [05/01 10:51:44] Initial matrix is 696864 x 829668 with sparse part having weight 55904624. [05/01 10:51:44] (total weight is 97480142) [05/01 11:11:38] Matrix pruned to 591601 x 595149 with weight 39156497. [05/01 11:11:39] Matrix is pruned. Run matsolve. [05/01 11:11:39] Heap stats for matprune run: [05/01 11:11:39] Max heap usage: 319 MB [05/01 11:11:39] malloc/realloc errors: 0 [05/01 11:11:39] total malloc's : 11 [05/01 11:11:39] total realloc's: 0 [05/01 11:11:39] GGNFS-0.77.1-20060722-k8 : matsolve (seed=1758920902) LatSieveTime: 11859 [05/02 03:43:39] GGNFS-0.77.1-20060722-k8 : matsolve (seed=860810583) [05/02 16:09:46] GGNFS-0.77.1-20060722-k8 : sqrt [05/02 16:10:08] GGNFS-0.77.1-20060722-k8 : sqrt [05/02 16:10:21] GGNFS-0.77.1-20060722-k8 : matsolve (seed=2161365188) [05/02 16:12:43] GGNFS-0.77.1-20060722-k8 : matsolve (seed=2207730478) [05/02 16:22:21] GGNFS-0.77.1-20060722-k8 : matsolve (seed=2923046969) [05/02 16:22:33] GGNFS-0.77.1-20060722-k8 : matsolve (seed=3488979225) [05/02 22:46:03] BLanczosTime: 23008.5 [05/02 22:46:03] Heap stats for matsolve run: [05/02 22:46:03] Max heap usage: 180 MB [05/02 22:46:03] malloc/realloc errors: 0 [05/02 22:46:03] total malloc's : 9 [05/02 22:46:03] total realloc's: 0 [05/02 22:46:32] GGNFS-0.77.1-20060722-k8 : sqrt [05/02 22:46:32] bmultiplier=1 [05/02 22:52:16] From dependence 1, sqrt obtained: [05/02 22:52:16] r1=281757056083773741232137178028737834794104880024291453340088245329928734185858405370672594988276144001927978351950713117289357114693 [05/02 22:52:16] r2=1 [05/02 22:52:16] sqrtTime: 343.5 [05/02 22:52:28] GGNFS-0.77.1-20060722-k8 : sqrt [05/02 22:52:28] bmultiplier=1 [05/02 22:58:20] From dependence 2, sqrt obtained: [05/02 22:58:20] r1=31445722457122043977687400352333915199796312519950578127 (pp56) [05/02 22:58:20] r2=8960107578000945594964516537852622453791282510444775001014858922521752127659 (pp76) [05/02 22:58:20] (pp=probable prime, c=composite) [05/02 22:58:20] sqrtTime: 352.3 |
name 名前 | suberi |
---|---|
date 日付 | June 5, 2007 11:36:53 UTC 2007 年 6 月 5 日 (火) 20 時 36 分 53 秒 (日本時間) |
composite number 合成数 | 105146485196365567623014507999853467350064984081021819135992918418043204012887121735462651935806516946465904815546455640164689463671064379077<141> |
prime factors 素因数 | 17162193244336712083651773667387<32> 6126634498248786631325750859569676596678356085694049608225501662771812141931771359526911934006293383097455871<109> |
factorization results 素因数分解の結果 | Input number is 105146485196365567623014507999853467350064984081021819135992918418043204012887121735462651935806516946465904815546455640164689463671064379077 (141 digits) Using B1=5000000, B2=11416314010, polynomial Dickson(12), sigma=943201141 Step 1 took 103990ms Step 2 took 48563ms ********** Factor found in step 2: 17162193244336712083651773667387 Found probable prime factor of 32 digits: 17162193244336712083651773667387 Probable prime cofactor 6126634498248786631325750859569676596678356085694049608225501662771812141931771359526911934006293383097455871 has 109 digits |
software ソフトウェア | GMP-ECM 6.1.2 |
execution environment 実行環境 | Sempron 3400+ 1.80GHz, Windows Vista |
name 名前 | suberi |
---|---|
date 日付 | September 1, 2008 09:22:33 UTC 2008 年 9 月 1 日 (月) 18 時 22 分 33 秒 (日本時間) |
composite number 合成数 | 74223632824287101220549315945782000862835222389763578613791663462566236830006268443320120891440306051384873701485049523314547213213<131> |
prime factors 素因数 | 9040172761574724472563661611963885082577<40> 8210421944564469678826128815336450569971653908303104793893829949559207978039441352980000269<91> |
factorization results 素因数分解の結果 | Run 691 out of 904: Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=4208089882 Step 1 took 18313ms Step 2 took 9062ms ********** Factor found in step 2: 9040172761574724472563661611963885082577 Found probable prime factor of 40 digits: 9040172761574724472563661611963885082577 Probable prime cofactor 8210421944564469678826128815336450569971653908303104793893829949559207978039441352980000269 has 91 digits |
software ソフトウェア | GMP-ECM 6.2.1 |
execution environment 実行環境 | Pentium 4 2.4GHz, Windows 2000 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | May 25, 2007 09:00:00 UTC 2007 年 5 月 25 日 (金) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 904 | Jo Yeong Uk | July 24, 2008 07:50:29 UTC 2008 年 7 月 24 日 (木) 16 時 50 分 29 秒 (日本時間) |
name 名前 | suberi |
---|---|
date 日付 | June 8, 2007 06:20:44 UTC 2007 年 6 月 8 日 (金) 15 時 20 分 44 秒 (日本時間) |
composite number 合成数 | 15003238618515511364433399371609053541609765088583966304046554857283775996711979691678670461068144582965292604928883210537114188713021327893612607173626123649<158> |
prime factors 素因数 | 1095863878505531791352248008590604473<37> 13690786705166299346121105341688039593329430814257896520268003985603036085194932170203623925361810203165403423559971573513<122> |
factorization results 素因数分解の結果 | Input number is 15003238618515511364433399371609053541609765088583966304046554857283775996711979691678670461068144582965292604928883210537114188713021327893612607173626123649 (158 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1598264602 Step 1 took 264484ms ********** Factor found in step 1: 1095863878505531791352248008590604473 Found probable prime factor of 37 digits: 1095863878505531791352248008590604473 Probable prime cofactor 13690786705166299346121105341688039593329430814257896520268003985603036085194932170203623925361810203165403423559971573513 has 122 digits |
software ソフトウェア | GMP-ECM 6.1.2 |
execution environment 実行環境 | Sempron 3400+ 1.80GHz, Windows Vista |
name 名前 | suberi |
---|---|
date 日付 | June 6, 2007 03:44:56 UTC 2007 年 6 月 6 日 (水) 12 時 44 分 56 秒 (日本時間) |
composite number 合成数 | 13194225802718954484884746970493675759978654136708034201864760227887138084319494195644053211995397412415417223957508105089242497281224540704868071<146> |
prime factors 素因数 | 9091674957193157331925985427613<31> |
composite cofactor 合成数の残り | 1451242577945435488202684730983697729965218073649465682642517742785018455031453318180555507115689620266670700586067<115> |
factorization results 素因数分解の結果 | Input number is 13194225802718954484884746970493675759978654136708034201864760227887138084319494195644053211995397412415417223957508105089242497281224540704868071 (146 digits) Using B1=5000000, B2=11416314010, polynomial Dickson(12), sigma=1435742688 Step 1 took 110870ms Step 2 took 49702ms ********** Factor found in step 2: 9091674957193157331925985427613 Found probable prime factor of 31 digits: 9091674957193157331925985427613 Composite cofactor 1451242577945435488202684730983697729965218073649465682642517742785018455031453318180555507115689620266670700586067 has 115 digits |
software ソフトウェア | GMP-ECM 6.1.2 |
execution environment 実行環境 | Sempron 3400+ 1.80GHz, Windows Vista |
name 名前 | honeycrack7 |
---|---|
date 日付 | July 28, 2007 10:38:44 UTC 2007 年 7 月 28 日 (土) 19 時 38 分 44 秒 (日本時間) |
composite number 合成数 | 1451242577945435488202684730983697729965218073649465682642517742785018455031453318180555507115689620266670700586067<115> |
prime factors 素因数 | 5519848976962319518553726010848147162459426482482457<52> 262913457234491688131920560141939578410279343647748980394630731<63> |
factorization results 素因数分解の結果 | [06/15 22:34:21] GGNFS-0.77.1-20060513-k8 : makefb [06/15 22:34:31] name: [06/15 22:34:31] n=1451242577945435488202684730983697729965218073649465682642517742785018455031453318180555507115689620266670700586067 (115 digits) [06/15 22:34:31] c0: 3 [06/15 22:34:31] c1: 0 [06/15 22:34:31] c2: 0 [06/15 22:34:31] c3: 0 [06/15 22:34:31] c4: 0 [06/15 22:34:31] c5: 4 [06/15 22:34:31] RFBsize: 412849 (upto 5999993) [06/15 22:34:31] AFBsize: 412766 (upto 5999993) [06/15 22:34:31] maxNumLargeRatPrimes: 3 [06/15 22:34:31] maxLargeRatPrime: 134217728 [06/15 22:34:31] maxNumLargeAlgPrimes: 3 [06/15 22:34:31] maxLargeAlgPrime: 134217728 -> minimum number of FF's: 924760 -> makeJobFile(): Adjusted to q0=3000000, q1=3100000. -> client 1 q0: 3000000 LatSieveTime: 12 -> makeJobFile(): Adjusted to q0=3000077, q1=3100000. -> minimum number of FF's: 924760 -> makeJobFile(): Adjusted to q0=3000077, q1=3100000. -> client 1 q0: 3000077 LatSieveTime: 16760 [06/16 03:14:24] GGNFS-0.77.1-20060513-k8 : procrels [06/16 03:14:46] There were 827/195440 duplicates. [06/16 03:14:46] RelProcTime: 20.2 [06/16 03:14:48] largePrimes: 341049 , relations: 194613 [06/16 03:14:48] GGNFS-0.77.1-20060513-k8 : matbuild [06/16 03:14:51] largePrimes: 341049 , relations: 194613 [06/16 03:14:51] Heap stats for matbuild run, after cycle-building [06/16 03:14:51] Max heap usage: 61 MB [06/16 03:14:51] malloc/realloc errors: 0 [06/16 03:14:51] total malloc's : 52 [06/16 03:14:51] total realloc's: 18 [06/16 03:14:51] rels:194613, initialFF:0, finalFF:8900 -> makeJobFile(): Adjusted to q0=3100001, q1=3200000. -> client 1 q0: 3100001 LatSieveTime: 15960 [06/16 07:40:53] GGNFS-0.77.1-20060513-k8 : procrels [06/16 07:41:16] There were 2467/193983 duplicates. [06/16 07:41:16] RelProcTime: 21.1 [06/16 07:41:18] largePrimes: 654762 , relations: 386129 [06/16 07:41:19] GGNFS-0.77.1-20060513-k8 : matbuild [06/16 07:41:24] largePrimes: 654762 , relations: 386129 [06/16 07:41:24] Heap stats for matbuild run, after cycle-building [06/16 07:41:24] Max heap usage: 91 MB [06/16 07:41:24] malloc/realloc errors: 0 [06/16 07:41:24] total malloc's : 54 [06/16 07:41:24] total realloc's: 20 [06/16 07:41:24] rels:386129, initialFF:0, finalFF:18263 -> makeJobFile(): Adjusted to q0=3200001, q1=3300000. -> client 1 q0: 3200001 LatSieveTime: 17044 [06/16 12:25:32] GGNFS-0.77.1-20060513-k8 : procrels [06/16 12:25:57] There were 3925/190064 duplicates. [06/16 12:25:57] RelProcTime: 22.4 [06/16 12:26:00] largePrimes: 941244 , relations: 572268 [06/16 12:26:01] GGNFS-0.77.1-20060513-k8 : matbuild [06/16 12:26:08] largePrimes: 941244 , relations: 572268 [06/16 12:26:08] Heap stats for matbuild run, after cycle-building [06/16 12:26:08] Max heap usage: 121 MB [06/16 12:26:08] malloc/realloc errors: 0 [06/16 12:26:08] total malloc's : 67 [06/16 12:26:08] total realloc's: 25 [06/16 12:26:08] rels:572268, initialFF:0, finalFF:27657 -> makeJobFile(): Adjusted to q0=3300001, q1=3400000. -> client 1 q0: 3300001 LatSieveTime: 15807 [06/16 16:49:37] GGNFS-0.77.1-20060513-k8 : procrels [06/16 16:50:04] There were 5191/186364 duplicates. [06/16 16:50:04] RelProcTime: 23.9 [06/16 16:50:08] largePrimes: 1205485 , relations: 753441 [06/16 16:50:09] GGNFS-0.77.1-20060513-k8 : matbuild [06/16 16:50:18] largePrimes: 1205485 , relations: 753441 [06/16 16:50:18] Heap stats for matbuild run, after cycle-building [06/16 16:50:18] Max heap usage: 150 MB [06/16 16:50:18] malloc/realloc errors: 0 [06/16 16:50:18] total malloc's : 69 [06/16 16:50:18] total realloc's: 28 [06/16 16:50:18] rels:753441, initialFF:0, finalFF:37193 -> makeJobFile(): Adjusted to q0=3400001, q1=3500000. -> client 1 q0: 3400001 LatSieveTime: 15897 [06/16 21:15:17] GGNFS-0.77.1-20060513-k8 : procrels [06/16 21:15:43] There were 6808/192448 duplicates. [06/16 21:15:43] RelProcTime: 24.1 [06/16 21:15:48] largePrimes: 1462328 , relations: 939081 [06/16 21:15:48] GGNFS-0.77.1-20060513-k8 : matbuild [06/16 21:15:59] largePrimes: 1462328 , relations: 939081 [06/16 21:16:00] Heap stats for matbuild run, after cycle-building [06/16 21:16:00] Max heap usage: 179 MB [06/16 21:16:00] malloc/realloc errors: 0 [06/16 21:16:00] total malloc's : 75 [06/16 21:16:00] total realloc's: 32 [06/16 21:16:00] rels:939081, initialFF:0, finalFF:47224 -> makeJobFile(): Adjusted to q0=3500001, q1=3600000. -> client 1 q0: 3500001 LatSieveTime: 15024 [06/17 01:26:25] GGNFS-0.77.1-20060513-k8 : procrels [06/17 01:27:10] There were 7543/181975 duplicates. [06/17 01:27:10] RelProcTime: 27.2 [06/17 01:27:19] largePrimes: 1691413 , relations: 1113513 [06/17 01:27:19] GGNFS-0.77.1-20060513-k8 : matbuild [06/17 01:27:39] largePrimes: 1691413 , relations: 1113513 [06/17 01:27:40] Heap stats for matbuild run, after cycle-building [06/17 01:27:40] Max heap usage: 90 MB [06/17 01:27:40] malloc/realloc errors: 0 [06/17 01:27:40] total malloc's : 104 [06/17 01:27:40] total realloc's: 36 [06/17 01:27:40] rels:1113513, initialFF:0, finalFF:57285 -> makeJobFile(): Adjusted to q0=3600001, q1=3700000. -> client 1 q0: 3600001 LatSieveTime: 16061 [06/17 05:55:23] GGNFS-0.77.1-20060513-k8 : procrels [06/17 05:55:53] There were 9050/185330 duplicates. [06/17 05:55:53] RelProcTime: 27.1 [06/17 05:56:01] largePrimes: 1912836 , relations: 1289793 [06/17 05:56:01] GGNFS-0.77.1-20060513-k8 : matbuild [06/17 05:56:19] largePrimes: 1912836 , relations: 1289793 [06/17 05:56:20] Heap stats for matbuild run, after cycle-building [06/17 05:56:20] Max heap usage: 96 MB [06/17 05:56:20] malloc/realloc errors: 0 [06/17 05:56:20] total malloc's : 115 [06/17 05:56:20] total realloc's: 41 [06/17 05:56:20] rels:1289793, initialFF:0, finalFF:67802 -> makeJobFile(): Adjusted to q0=3700001, q1=3800000. -> client 1 q0: 3700001 LatSieveTime: 15787 [06/17 10:19:31] GGNFS-0.77.1-20060513-k8 : procrels [06/17 10:20:03] There were 9852/180004 duplicates. [06/17 10:20:03] RelProcTime: 28.7 [06/17 10:20:13] largePrimes: 2117852 , relations: 1459945 [06/17 10:20:13] GGNFS-0.77.1-20060513-k8 : matbuild [06/17 10:20:33] largePrimes: 2117852 , relations: 1459945 [06/17 10:20:34] Heap stats for matbuild run, after cycle-building [06/17 10:20:34] Max heap usage: 102 MB [06/17 10:20:34] malloc/realloc errors: 0 [06/17 10:20:34] total malloc's : 115 [06/17 10:20:34] total realloc's: 42 [06/17 10:20:34] rels:1459945, initialFF:0, finalFF:78503 -> makeJobFile(): Adjusted to q0=3800001, q1=3900000. -> client 1 q0: 3800001 LatSieveTime: 17047 [06/17 15:04:43] GGNFS-0.77.1-20060513-k8 : procrels [06/17 15:05:18] There were 10814/179202 duplicates. [06/17 15:05:18] RelProcTime: 32.4 [06/17 15:05:29] largePrimes: 2312550 , relations: 1628333 [06/17 15:05:29] GGNFS-0.77.1-20060513-k8 : matbuild [06/17 15:05:54] largePrimes: 2312550 , relations: 1628333 [06/17 15:05:56] Heap stats for matbuild run, after cycle-building [06/17 15:05:56] Max heap usage: 107 MB [06/17 15:05:56] malloc/realloc errors: 0 [06/17 15:05:56] total malloc's : 115 [06/17 15:05:56] total realloc's: 46 [06/17 15:05:56] rels:1628333, initialFF:0, finalFF:89382 -> makeJobFile(): Adjusted to q0=3900001, q1=4000000. -> client 1 q0: 3900001 LatSieveTime: 19325 [06/17 20:28:02] GGNFS-0.77.1-20060513-k8 : procrels [06/17 20:28:37] There were 11679/177612 duplicates. [06/17 20:28:37] RelProcTime: 32.0 [06/17 20:28:49] largePrimes: 2497625 , relations: 1794266 [06/17 20:28:49] GGNFS-0.77.1-20060513-k8 : matbuild [06/17 20:30:02] largePrimes: 2497625 , relations: 1794266 [06/17 20:30:04] Heap stats for matbuild run, after cycle-building [06/17 20:30:04] Max heap usage: 114 MB [06/17 20:30:04] malloc/realloc errors: 0 [06/17 20:30:04] total malloc's : 130 [06/17 20:30:04] total realloc's: 52 [06/17 20:30:04] rels:1794266, initialFF:0, finalFF:100775 -> makeJobFile(): Adjusted to q0=4000001, q1=4100000. -> client 1 q0: 4000001 LatSieveTime: 11023 -> makeJobFile(): Adjusted to q0=4058321, q1=4100000. -> minimum number of FF's: 924760 -> makeJobFile(): Adjusted to q0=4058321, q1=4100000. -> client 1 q0: 4058321 LatSieveTime: 7186 [06/22 21:28:57] GGNFS-0.77.1-20060513-k8 : procrels [06/22 21:29:43] There were 12659/179169 duplicates. [06/22 21:29:43] RelProcTime: 42.1 [06/22 21:30:00] largePrimes: 2676555 , relations: 1960776 [06/22 21:30:00] GGNFS-0.77.1-20060513-k8 : matbuild [06/22 21:30:42] largePrimes: 2676555 , relations: 1960776 [06/22 21:30:43] Heap stats for matbuild run, after cycle-building [06/22 21:30:43] Max heap usage: 120 MB [06/22 21:30:43] malloc/realloc errors: 0 [06/22 21:30:43] total malloc's : 136 [06/22 21:30:43] total realloc's: 56 [06/22 21:30:43] rels:1960776, initialFF:0, finalFF:112743 -> makeJobFile(): Adjusted to q0=4200000, q1=4300000. -> client 1 q0: 4200000 -> minimum number of FF's: 924760 -> makeJobFile(): Adjusted to q0=100000, q1=200000. -> client 2 q0: 100000 LatSieveTime: 768 -> makeJobFile(): Adjusted to q0=102913, q1=200000. -> minimum number of FF's: 924760 -> makeJobFile(): Adjusted to q0=102913, q1=200000. -> client 2 q0: 102913 LatSieveTime: 19219 [06/23 02:51:05] GGNFS-0.77.1-20060513-k8 : procrels [06/23 02:52:14] There were 13695/184051 duplicates. [06/23 02:52:14] RelProcTime: 60.1 [06/23 02:52:38] largePrimes: 2852391 , relations: 2131132 [06/23 02:52:39] GGNFS-0.77.1-20060513-k8 : matbuild [06/23 02:53:23] largePrimes: 2852391 , relations: 2131132 [06/23 02:53:26] Heap stats for matbuild run, after cycle-building [06/23 02:53:26] Max heap usage: 127 MB [06/23 02:53:26] malloc/realloc errors: 0 [06/23 02:53:26] total malloc's : 136 [06/23 02:53:26] total realloc's: 57 [06/23 02:53:26] rels:2131132, initialFF:0, finalFF:126263 -> makeJobFile(): Adjusted to q0=4400000, q1=4500000. -> client 1 q0: 4400000 LatSieveTime: 19959 -> makeJobFile(): Adjusted to q0=300000, q1=400000. -> client 2 q0: 300000 LatSieveTime: 23186 [06/23 09:20:25] GGNFS-0.77.1-20060513-k8 : procrels [06/23 09:25:25] There were 48681/403484 duplicates. [06/23 09:25:25] RelProcTime: 283.9 [06/23 09:25:53] largePrimes: 3165524 , relations: 2485935 [06/23 09:25:53] GGNFS-0.77.1-20060513-k8 : matbuild [06/23 09:26:55] largePrimes: 3165524 , relations: 2485935 [06/23 09:26:58] Heap stats for matbuild run, after cycle-building [06/23 09:26:58] Max heap usage: 141 MB [06/23 09:26:58] malloc/realloc errors: 0 [06/23 09:26:58] total malloc's : 147 [06/23 09:26:58] total realloc's: 64 [06/23 09:26:58] rels:2485935, initialFF:0, finalFF:167964 -> makeJobFile(): Adjusted to q0=4600000, q1=4700000. -> client 1 q0: 4600000 LatSieveTime: 9878 -> makeJobFile(): Adjusted to q0=341839, q1=400000. -> minimum number of FF's: 924760 -> makeJobFile(): Adjusted to q0=341839, q1=400000. -> client 2 q0: 341839 LatSieveTime: 12540 -> makeJobFile(): Adjusted to q0=500000, q1=600000. -> client 2 q0: 500000 LatSieveTime: 20287 [06/23 15:05:16] GGNFS-0.77.1-20060513-k8 : procrels [06/23 15:08:07] There were 72402/500356 duplicates. [06/23 15:08:07] RelProcTime: 168.6 [06/23 15:08:32] largePrimes: 3553619 , relations: 2913889 [06/23 15:08:32] GGNFS-0.77.1-20060513-k8 : matbuild [06/23 15:09:25] largePrimes: 3553619 , relations: 2913889 [06/23 15:09:30] Heap stats for matbuild run, after cycle-building [06/23 15:09:30] Max heap usage: 162 MB [06/23 15:09:30] malloc/realloc errors: 0 [06/23 15:09:30] total malloc's : 169 [06/23 15:09:30] total realloc's: 75 [06/23 15:09:30] rels:2913889, initialFF:0, finalFF:213806 -> makeJobFile(): Adjusted to q0=4800000, q1=4900000. -> client 1 q0: 4800000 LatSieveTime: 10755 -> makeJobFile(): Adjusted to q0=556769, q1=600000. LatSieveTime: 15832 -> makeJobFile(): Adjusted to q0=4884511, q1=4900000. -> minimum number of FF's: 924760 -> makeJobFile(): Adjusted to q0=4884511, q1=4900000. -> client 1 q0: 4884511 -> minimum number of FF's: 924760 -> makeJobFile(): Adjusted to q0=556769, q1=600000. -> client 2 q0: 556769 LatSieveTime: 3767 [06/24 02:10:13] GGNFS-0.77.1-20060513-k8 : procrels [06/24 02:12:10] There were 51861/348924 duplicates. [06/24 02:12:10] RelProcTime: 114.5 [06/24 02:12:42] largePrimes: 3812076 , relations: 3210952 [06/24 02:12:43] GGNFS-0.77.1-20060513-k8 : matbuild [06/24 02:14:04] largePrimes: 3812076 , relations: 3210952 [06/24 02:14:11] Heap stats for matbuild run, after cycle-building [06/24 02:14:11] Max heap usage: 174 MB [06/24 02:14:11] malloc/realloc errors: 0 [06/24 02:14:11] total malloc's : 179 [06/24 02:14:11] total realloc's: 79 [06/24 02:14:11] rels:3210952, initialFF:0, finalFF:248720 -> makeJobFile(): Adjusted to q0=5000000, q1=5100000. -> client 1 q0: 5000000 LatSieveTime: 9535 -> makeJobFile(): Adjusted to q0=700000, q1=800000. -> client 2 q0: 700000 LatSieveTime: 24874 [06/24 09:08:59] GGNFS-0.77.1-20060513-k8 : procrels [06/24 09:15:12] There were 45689/300342 duplicates. [06/24 09:15:12] RelProcTime: 98.0 [06/24 09:15:59] largePrimes: 4024865 , relations: 3465605 [06/24 09:16:07] GGNFS-0.77.1-20060513-k8 : matbuild [06/24 09:18:21] largePrimes: 4024865 , relations: 3465605 [06/24 09:18:32] Heap stats for matbuild run, after cycle-building [06/24 09:18:32] Max heap usage: 163 MB [06/24 09:18:32] malloc/realloc errors: 0 [06/24 09:18:32] total malloc's : 231 [06/24 09:18:32] total realloc's: 92 [06/24 09:18:32] rels:3465605, initialFF:0, finalFF:282296 -> makeJobFile(): Adjusted to q0=5200000, q1=5300000. -> client 1 q0: 5200000 LatSieveTime: 25202 -> makeJobFile(): Adjusted to q0=900000, q1=1000000. -> client 2 q0: 900000 LatSieveTime: 9000 -> makeJobFile(): Adjusted to q0=941513, q1=1000000. LatSieveTime: 23903 [06/24 15:57:07] GGNFS-0.77.1-20060513-k8 : procrels [06/24 15:59:52] There were 108990/567606 duplicates. [06/24 15:59:52] RelProcTime: 159.6 [06/24 16:01:13] largePrimes: 4386628 , relations: 3924221 [06/24 16:01:16] GGNFS-0.77.1-20060513-k8 : matbuild [06/24 16:02:57] largePrimes: 4386628 , relations: 3924221 [06/24 16:03:09] Heap stats for matbuild run, after cycle-building [06/24 16:03:09] Max heap usage: 178 MB [06/24 16:03:09] malloc/realloc errors: 0 [06/24 16:03:09] total malloc's : 242 [06/24 16:03:09] total realloc's: 99 [06/24 16:03:09] rels:3924221, initialFF:0, finalFF:353764 -> makeJobFile(): Adjusted to q0=5400000, q1=5500000. -> client 1 q0: 5400000 LatSieveTime: 18345 [06/24 21:08:59] GGNFS-0.77.1-20060513-k8 : procrels [06/24 21:10:05] There were 20313/165826 duplicates. [06/24 21:10:05] RelProcTime: 64.3 [06/24 21:10:39] largePrimes: 4498336 , relations: 4069734 [06/24 21:10:39] GGNFS-0.77.1-20060513-k8 : matbuild [06/24 21:11:44] largePrimes: 4498336 , relations: 4069734 [06/24 21:11:53] Heap stats for matbuild run, after cycle-building [06/24 21:11:53] Max heap usage: 183 MB [06/24 21:11:53] malloc/realloc errors: 0 [06/24 21:11:53] total malloc's : 234 [06/24 21:11:53] total realloc's: 96 [06/24 21:11:53] rels:4069734, initialFF:0, finalFF:378537 -> makeJobFile(): Adjusted to q0=5600000, q1=5700000. -> client 1 q0: 5600000 -> minimum number of FF's: 924760 -> makeJobFile(): Adjusted to q0=5600000, q1=5700000. -> client 1 q0: 5600000 LatSieveTime: 17178 [06/30 21:15:20] GGNFS-0.77.1-20060513-k8 : procrels [06/30 21:16:35] There were 20448/163592 duplicates. [06/30 21:16:35] RelProcTime: 71.2 [06/30 21:17:12] largePrimes: 4606828 , relations: 4212878 [06/30 21:17:12] GGNFS-0.77.1-20060513-k8 : matbuild [06/30 21:18:28] largePrimes: 4606828 , relations: 4212878 [06/30 21:18:37] Heap stats for matbuild run, after cycle-building [06/30 21:18:37] Max heap usage: 188 MB [06/30 21:18:37] malloc/realloc errors: 0 [06/30 21:18:37] total malloc's : 235 [06/30 21:18:37] total realloc's: 97 [06/30 21:18:37] rels:4212878, initialFF:0, finalFF:404511 -> makeJobFile(): Adjusted to q0=5800000, q1=5900000. -> client 1 q0: 5800000 LatSieveTime: 26 -> makeJobFile(): Adjusted to q0=5800159, q1=5900000. -> minimum number of FF's: 924760 -> makeJobFile(): Adjusted to q0=5800159, q1=5900000. -> client 1 q0: 5800159 -> minimum number of FF's: 924760 -> makeJobFile(): Adjusted to q0=941513, q1=1000000. -> client 2 q0: 941513 LatSieveTime: 12893 -> makeJobFile(): Adjusted to q0=1100000, q1=1200000. -> client 2 q0: 1100000 LatSieveTime: 26542 [07/01 10:30:18] GGNFS-0.77.1-20060513-k8 : procrels [07/01 10:36:45] There were 60638/323689 duplicates. [07/01 10:36:45] RelProcTime: 373.2 [07/01 10:42:50] largePrimes: 4798789 , relations: 4475929 [07/01 10:42:54] GGNFS-0.77.1-20060513-k8 : matbuild [07/01 10:51:28] largePrimes: 4798789 , relations: 4475929 [07/01 10:51:47] Heap stats for matbuild run, after cycle-building [07/01 10:51:47] Max heap usage: 197 MB [07/01 10:51:47] malloc/realloc errors: 0 [07/01 10:51:47] total malloc's : 264 [07/01 10:51:47] total realloc's: 109 [07/01 10:51:47] rels:4475929, initialFF:0, finalFF:457205 -> makeJobFile(): Adjusted to q0=6000000, q1=6100000. -> client 1 q0: 6000000 LatSieveTime: 23765 -> makeJobFile(): Adjusted to q0=1197407, q1=1200000. LatSieveTime: 21690 [07/01 16:53:29] GGNFS-0.77.1-20060513-k8 : procrels [07/01 16:54:57] There were 85304/411245 duplicates. [07/01 16:54:57] RelProcTime: 84.4 [07/01 16:55:41] largePrimes: 5026969 , relations: 4801870 [07/01 16:55:41] GGNFS-0.77.1-20060513-k8 : matbuild [07/01 16:57:03] largePrimes: 5026969 , relations: 4801870 [07/01 16:57:19] Heap stats for matbuild run, after cycle-building [07/01 16:57:19] Max heap usage: 209 MB [07/01 16:57:19] malloc/realloc errors: 0 [07/01 16:57:19] total malloc's : 252 [07/01 16:57:19] total realloc's: 106 [07/01 16:57:19] rels:4801870, initialFF:0, finalFF:529957 -> makeJobFile(): Adjusted to q0=6200000, q1=6300000. -> client 1 q0: 6200000 LatSieveTime: 19407 [07/01 22:20:48] GGNFS-0.77.1-20060513-k8 : procrels [07/01 22:21:32] There were 21958/159038 duplicates. [07/01 22:21:32] RelProcTime: 42.4 [07/01 22:22:10] largePrimes: 5123060 , relations: 4938950 [07/01 22:22:10] GGNFS-0.77.1-20060513-k8 : matbuild [07/01 22:23:25] largePrimes: 5123060 , relations: 4938950 [07/01 22:23:42] Heap stats for matbuild run, after cycle-building [07/01 22:23:42] Max heap usage: 215 MB [07/01 22:23:42] malloc/realloc errors: 0 [07/01 22:23:42] total malloc's : 263 [07/01 22:23:42] total realloc's: 112 [07/01 22:23:42] rels:4938950, initialFF:0, finalFF:561492 -> makeJobFile(): Adjusted to q0=6400000, q1=6500000. -> client 1 q0: 6400000 -> minimum number of FF's: 924760 -> makeJobFile(): Adjusted to q0=6400000, q1=6500000. -> client 1 q0: 6400000 LatSieveTime: 16307 [07/02 23:59:39] GGNFS-0.77.1-20060513-k8 : procrels [07/03 00:00:23] There were 21870/159076 duplicates. [07/03 00:00:23] RelProcTime: 42.9 [07/03 00:01:01] largePrimes: 5217330 , relations: 5076156 [07/03 00:01:01] GGNFS-0.77.1-20060513-k8 : matbuild [07/03 00:02:14] largePrimes: 5217330 , relations: 5076156 [07/03 00:02:29] Heap stats for matbuild run, after cycle-building [07/03 00:02:29] Max heap usage: 217 MB [07/03 00:02:29] malloc/realloc errors: 0 [07/03 00:02:29] total malloc's : 254 [07/03 00:02:29] total realloc's: 110 [07/03 00:02:29] rels:5076156, initialFF:0, finalFF:594879 -> makeJobFile(): Adjusted to q0=6600000, q1=6700000. -> client 1 q0: 6600000 -> minimum number of FF's: 924760 -> makeJobFile(): Adjusted to q0=6600000, q1=6700000. -> client 1 q0: 6600000 LatSieveTime: 16429 [07/04 23:34:09] GGNFS-0.77.1-20060513-k8 : procrels [07/04 23:35:23] There were 21472/155553 duplicates. [07/04 23:35:23] RelProcTime: 69.6 [07/04 23:36:10] largePrimes: 5307821 , relations: 5210237 [07/04 23:36:12] GGNFS-0.77.1-20060513-k8 : matbuild [07/04 23:38:02] largePrimes: 5307821 , relations: 5210237 [07/04 23:38:23] Heap stats for matbuild run, after cycle-building [07/04 23:38:23] Max heap usage: 224 MB [07/04 23:38:23] malloc/realloc errors: 0 [07/04 23:38:23] total malloc's : 269 [07/04 23:38:23] total realloc's: 115 [07/04 23:38:23] rels:5210237, initialFF:0, finalFF:629203 -> makeJobFile(): Adjusted to q0=6700001, q1=6800000. -> client 1 q0: 6700001 -> minimum number of FF's: 924760 -> makeJobFile(): Adjusted to q0=6700001, q1=6800000. -> client 1 q0: 6700001 LatSieveTime: 16944 -> makeJobFile(): Adjusted to q0=6785197, q1=6800000. -> minimum number of FF's: 924760 -> makeJobFile(): Adjusted to q0=6800000, q1=6900000. -> client 1 q0: 6800000 LatSieveTime: 21265 [07/07 01:38:29] GGNFS-0.77.1-20060513-k8 : procrels [07/07 01:39:51] There were 41687/295243 duplicates. [07/07 01:39:51] RelProcTime: 80.7 [07/07 01:40:46] largePrimes: 5475379 , relations: 5463793 [07/07 01:40:46] GGNFS-0.77.1-20060513-k8 : matbuild [07/07 01:42:33] largePrimes: 5475379 , relations: 5463793 [07/07 01:42:59] Heap stats for matbuild run, after cycle-building [07/07 01:42:59] Max heap usage: 231 MB [07/07 01:42:59] malloc/realloc errors: 0 [07/07 01:42:59] total malloc's : 237 [07/07 01:42:59] total realloc's: 109 [07/07 01:42:59] rels:5463793, initialFF:0, finalFF:697972 -> makeJobFile(): Adjusted to q0=7000000, q1=7100000. -> client 1 q0: 7000000 -> minimum number of FF's: 924760 -> makeJobFile(): Adjusted to q0=7000000, q1=7100000. -> client 1 q0: 7000000 LatSieveTime: 16872 [07/10 12:17:44] GGNFS-0.77.1-20060513-k8 : procrels [07/10 12:18:41] There were 21582/153177 duplicates. [07/10 12:18:41] RelProcTime: 55.2 [07/10 12:19:23] largePrimes: 5560364 , relations: 5595388 [07/10 12:19:25] GGNFS-0.77.1-20060513-k8 : matbuild [07/10 12:20:47] largePrimes: 5560364 , relations: 5595388 [07/10 12:21:07] Heap stats for matbuild run, after cycle-building [07/10 12:21:07] Max heap usage: 237 MB [07/10 12:21:07] malloc/realloc errors: 0 [07/10 12:21:07] total malloc's : 246 [07/10 12:21:07] total realloc's: 111 [07/10 12:21:07] rels:5595388, initialFF:0, finalFF:735972 -> makeJobFile(): Adjusted to q0=7100001, q1=7200000. -> client 1 q0: 7100001 LatSieveTime: 14258 [07/10 16:18:46] GGNFS-0.77.1-20060513-k8 : procrels [07/10 16:19:26] There were 21067/146129 duplicates. [07/10 16:19:26] RelProcTime: 39.3 [07/10 16:20:08] largePrimes: 5639640 , relations: 5720450 [07/10 16:20:08] GGNFS-0.77.1-20060513-k8 : matbuild [07/10 16:21:31] largePrimes: 5639640 , relations: 5720450 [07/10 16:21:53] Heap stats for matbuild run, after cycle-building [07/10 16:21:53] Max heap usage: 243 MB [07/10 16:21:53] malloc/realloc errors: 0 [07/10 16:21:53] total malloc's : 266 [07/10 16:21:53] total realloc's: 118 [07/10 16:21:53] rels:5720450, initialFF:0, finalFF:773660 -> makeJobFile(): Adjusted to q0=7200001, q1=7300000. -> client 1 q0: 7200001 LatSieveTime: 15439 [07/10 20:39:14] GGNFS-0.77.1-20060513-k8 : procrels [07/10 20:40:18] There were 22257/152859 duplicates. [07/10 20:40:18] RelProcTime: 57.2 [07/10 20:41:04] largePrimes: 5721648 , relations: 5851052 [07/10 20:41:05] GGNFS-0.77.1-20060513-k8 : matbuild [07/10 20:43:42] largePrimes: 5721648 , relations: 5851052 [07/10 20:44:20] Heap stats for matbuild run, after cycle-building [07/10 20:44:20] Max heap usage: 244 MB [07/10 20:44:20] malloc/realloc errors: 0 [07/10 20:44:20] total malloc's : 247 [07/10 20:44:20] total realloc's: 115 [07/10 20:44:20] rels:5851052, initialFF:0, finalFF:814304 -> makeJobFile(): Adjusted to q0=7300001, q1=7400000. -> client 1 q0: 7300001 -> minimum number of FF's: 924760 -> makeJobFile(): Adjusted to q0=7400000, q1=7500000. -> client 1 q0: 7400000 -> minimum number of FF's: 924760 -> makeJobFile(): Adjusted to q0=1197407, q1=1200000. -> client 2 q0: 1197407 LatSieveTime: 467 -> makeJobFile(): Adjusted to q0=1300000, q1=1400000. -> client 2 q0: 1300000 LatSieveTime: 18811 -> makeJobFile(): Adjusted to q0=1500000, q1=1600000. -> client 2 q0: 1500000 LatSieveTime: 20022 [07/11 19:21:38] GGNFS-0.77.1-20060513-k8 : procrels [07/11 19:23:29] There were 96140/398579 duplicates. [07/11 19:23:29] RelProcTime: 107.4 [07/11 19:24:29] largePrimes: 5903634 , relations: 6153491 [07/11 19:24:30] GGNFS-0.77.1-20060513-k8 : matbuild [07/11 19:26:30] largePrimes: 5903634 , relations: 6153491 [07/11 19:27:10] Heap stats for matbuild run, after cycle-building [07/11 19:27:10] Max heap usage: 256 MB [07/11 19:27:10] malloc/realloc errors: 0 [07/11 19:27:10] total malloc's : 266 [07/11 19:27:10] total realloc's: 123 [07/11 19:27:10] rels:6153491, initialFF:0, finalFF:916340 -> makeJobFile(): Adjusted to q0=7600000, q1=7700000. -> client 1 q0: 7600000 LatSieveTime: 18729 -> makeJobFile(): Adjusted to q0=1700000, q1=1800000. -> client 2 q0: 1700000 -> minimum number of FF's: 924760 -> makeJobFile(): Adjusted to q0=7600000, q1=7700000. -> client 1 q0: 7600000 -> minimum number of FF's: 924760 -> makeJobFile(): Adjusted to q0=1700000, q1=1800000. -> client 2 q0: 1700000 LatSieveTime: 20709 [07/13 12:57:32] GGNFS-0.77.1-20060513-k8 : procrels LatSieveTime: 20666 -> makeJobFile(): Adjusted to q0=1900000, q1=2000000. -> client 2 q0: 1900000 [07/13 13:05:43] There were 93399/381069 duplicates. [07/13 13:05:43] RelProcTime: 440.4 [07/13 13:10:14] largePrimes: 6071282 , relations: 6441161 [07/13 13:10:16] GGNFS-0.77.1-20060513-k8 : matbuild [07/13 13:16:15] largePrimes: 6071282 , relations: 6441161 [07/13 13:17:48] reduceRelSets dropped relation-set weight from 5480905 to 5251146. [07/13 13:17:49] After removing heavy rel-sets, weight is 5186636. [07/13 13:23:44] Heap stats for matbuild run, after cycle-building [07/13 13:23:44] Max heap usage: 288 MB [07/13 13:23:44] malloc/realloc errors: 0 [07/13 13:23:44] total malloc's : 299 [07/13 13:23:44] total realloc's: 124 [07/13 13:23:44] rels:6441161, initialFF:0, finalFF:1018049 [07/13 13:24:15] Pruning matrix with wt=0.050 [07/13 13:24:15] Initial matrix is 825682 x 1018049 with sparse part having weight 58012594. [07/13 13:24:15] (total weight is 104401763) [07/13 13:45:23] Matrix pruned to 650609 x 654801 with weight 35863420. [07/13 13:45:35] depinf file written. Run matsolve. [07/13 13:45:35] Heap stats for matbuild run: [07/13 13:45:35] Max heap usage: 333 MB [07/13 13:45:35] malloc/realloc errors: 0 [07/13 13:45:35] total malloc's : 308 [07/13 13:45:35] total realloc's: 124 [07/13 13:45:38] GGNFS-0.77.1-20060513-k8 : matsolve (seed=-201371912) LatSieveTime: 19348 [07/13 20:49:14] BLanczosTime: 25411.6 [07/13 20:49:14] Heap stats for matsolve run: [07/13 20:49:14] Max heap usage: 160 MB [07/13 20:49:14] malloc/realloc errors: 0 [07/13 20:49:14] total malloc's : 7 [07/13 20:49:14] total realloc's: 0 [07/13 20:49:16] GGNFS-0.77.1-20060513-k8 : sqrt [07/13 20:49:20] bmultiplier=2 [07/13 21:07:33] From dependence 0, sqrt obtained: [07/13 21:07:33] r1=1 [07/13 21:07:33] r2=1451242577945435488202684730983697729965218073649465682642517742785018455031453318180555507115689620266670700586067 [07/13 21:07:33] sqrtTime: 1097.4 [07/13 21:07:35] GGNFS-0.77.1-20060513-k8 : sqrt [07/13 21:07:40] bmultiplier=2 [07/13 21:25:52] From dependence 1, sqrt obtained: [07/13 21:25:52] r1=1451242577945435488202684730983697729965218073649465682642517742785018455031453318180555507115689620266670700586067 [07/13 21:25:52] r2=1 [07/13 21:25:52] sqrtTime: 1096.0 [07/13 21:25:53] GGNFS-0.77.1-20060513-k8 : sqrt [07/13 21:25:56] bmultiplier=2 [07/13 21:30:17] GGNFS-0.77.1-20060513-k8 : sqrt [07/13 21:30:19] bmultiplier=2 [07/13 21:48:35] From dependence 3, sqrt obtained: [07/13 21:48:35] r1=262913457234491688131920560141939578410279343647748980394630731 (pp63) [07/13 21:48:35] r2=5519848976962319518553726010848147162459426482482457 (pp52) [07/13 21:48:35] (pp=probable prime, c=composite) [07/13 21:48:35] sqrtTime: 1098.4 -> p: 262913457234491688131920560141939578410279343647748980394630731 (pp63) -> p: 5519848976962319518553726010848147162459426482482457 (pp52) |
software ソフトウェア | GGNFS-0.77.1-20060513-k8 |
execution environment 実行環境 | DualCore Intel Core 2 Duo E6400, 1600 MHz, Windows XP and Cygwin |
name 名前 | Erik Branger |
---|---|
date 日付 | September 25, 2009 12:01:58 UTC 2009 年 9 月 25 日 (金) 21 時 1 分 58 秒 (日本時間) |
composite number 合成数 | 13009760588936549424115996217884317573935345630505968615454955194796197691159254066522117811387603269907811985842646853086028926492340905051407<143> |
prime factors 素因数 | 756250231338276927304375103001690458827<39> 17202983946086459938373724428120076924823810662429126159556894474473395321848053399384538121207658238541<104> |
factorization results 素因数分解の結果 | Input number is 13009760588936549424115996217884317573935345630505968615454955194796197691159254066522117811387603269907811985842646853086028926492340905051407 (143 digits) Run 277 out of 500: Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3099713956 Step 1 took 46328ms Step 2 took 21563ms ********** Factor found in step 2: 756250231338276927304375103001690458827 Found probable prime factor of 39 digits: 756250231338276927304375103001690458827 Probable prime cofactor 17202983946086459938373724428120076924823810662429126159556894474473395321848053399384538121207658238541 has 104 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | May 25, 2007 09:00:00 UTC 2007 年 5 月 25 日 (金) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 904 | suberi | September 1, 2008 09:22:47 UTC 2008 年 9 月 1 日 (月) 18 時 22 分 47 秒 (日本時間) |
name 名前 | suberi |
---|---|
date 日付 | June 10, 2007 13:06:00 UTC 2007 年 6 月 10 日 (日) 22 時 6 分 0 秒 (日本時間) |
composite number 合成数 | 103736032075844786326095729661820168589957534866789327315767162412140637427025351394977727164037953346107851714153697456415892512043028702361940961<147> |
prime factors 素因数 | 7869296226745426570552208159293<31> 13182377316446225748087882274614574555076488881805882086115583209285537401151576878380413502502112486527863046837877<116> |
factorization results 素因数分解の結果 | Input number is 103736032075844786326095729661820168589957534866789327315767162412140637427025351394977727164037953346107851714153697456415892512043028702361940961 (147 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1958534315 Step 1 took 242940ms Step 2 took 93663ms ********** Factor found in step 2: 7869296226745426570552208159293 Found probable prime factor of 31 digits: 7869296226745426570552208159293 Probable prime cofactor 13182377316446225748087882274614574555076488881805882086115583209285537401151576878380413502502112486527863046837877 has 116 digits |
software ソフトウェア | GMP-ECM 6.1.2 |
execution environment 実行環境 | Sempron 3400+ 1.80GHz, Windows Vista |
name 名前 | suberi |
---|---|
date 日付 | June 8, 2007 06:22:18 UTC 2007 年 6 月 8 日 (金) 15 時 22 分 18 秒 (日本時間) |
composite number 合成数 | 94608780854554228065447844460551352773627427913271116504652529996362969025238720266814221568383970683670413838121218378916685234383317578661262389961245456019360027<164> |
prime factors 素因数 | 30175961085952909008534878737421283007<38> |
composite cofactor 合成数の残り | 3135236706631199341096636684750581017076426724373352960266683033160613553116178668067537726925834017042340630910117649030813861<127> |
factorization results 素因数分解の結果 | Input number is 94608780854554228065447844460551352773627427913271116504652529996362969025238720266814221568383970683670413838121218378916685234383317578661262389961245456019360027 (164 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1337949521 Step 1 took 288477ms Step 2 took 101432ms ********** Factor found in step 2: 30175961085952909008534878737421283007 Found probable prime factor of 38 digits: 30175961085952909008534878737421283007 Composite cofactor 3135236706631199341096636684750581017076426724373352960266683033160613553116178668067537726925834017042340630910117649030813861 has 127 digits |
software ソフトウェア | GMP-ECM 6.1.2 |
execution environment 実行環境 | Sempron 3400+ 1.80GHz, Windows Vista |
name 名前 | Robert Backstrom |
---|---|
date 日付 | February 11, 2008 09:20:32 UTC 2008 年 2 月 11 日 (月) 18 時 20 分 32 秒 (日本時間) |
composite number 合成数 | 3135236706631199341096636684750581017076426724373352960266683033160613553116178668067537726925834017042340630910117649030813861<127> |
prime factors 素因数 | 3661730251935283360279392267311779<34> 856217277330621580192849824402420828954681540263284216581477838361242201893253167019116379159<93> |
factorization results 素因数分解の結果 | GMP-ECM 6.0.1 [powered by GMP 4.1.4] [ECM] Input number is 3135236706631199341096636684750581017076426724373352960266683033160613553116178668067537726925834017042340630910117649030813861 (127 digits) Using B1=1178000, B2=1060269593, polynomial Dickson(6), sigma=1375184272 Step 1 took 14172ms Step 2 took 8766ms ********** Factor found in step 2: 3661730251935283360279392267311779 Found probable prime factor of 34 digits: 3661730251935283360279392267311779 Probable prime cofactor 856217277330621580192849824402420828954681540263284216581477838361242201893253167019116379159 has 93 digits |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | May 25, 2007 14:32:32 UTC 2007 年 5 月 25 日 (金) 23 時 32 分 32 秒 (日本時間) |
composite number 合成数 | 400000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003<180> |
prime factors 素因数 | 9679838127597185553923930374350132743<37> |
composite cofactor 合成数の残り | 41323005067574566304410175051619336014247547874804676702862982021554231126531999977945569827460087540832516415965598056089191661607896947926821<143> |
factorization results 素因数分解の結果 | GMP-ECM 6.1.2 [powered by GMP 4.2.1] [ECM] Input number is 400000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003 (180 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2524219083 Step 1 took 29883ms Step 2 took 12288ms ********** Factor found in step 2: 9679838127597185553923930374350132743 Found probable prime factor of 37 digits: 9679838127597185553923930374350132743 Composite cofactor 41323005067574566304410175051619336014247547874804676702862982021554231126531999977945569827460087540832516415965598056089191661607896947926821 has 143 digits |
execution environment 実行環境 | Core 2 Quad Q6600 |
name 名前 | matsui |
---|---|
date 日付 | December 24, 2009 06:44:11 UTC 2009 年 12 月 24 日 (木) 15 時 44 分 11 秒 (日本時間) |
composite number 合成数 | 41323005067574566304410175051619336014247547874804676702862982021554231126531999977945569827460087540832516415965598056089191661607896947926821<143> |
prime factors 素因数 | 191036532994880646588869280641375529254981954340701<51> 216309437884752288522244329757285002058432970681423732981110681293149999573768732312881302121<93> |
factorization results 素因数分解の結果 | N=41323005067574566304410175051619336014247547874804676702862982021554231126531999977945569827460087540832516415965598056089191661607896947926821 ( 143 digits) SNFS difficulty: 179 digits. Divisors found: r1=191036532994880646588869280641375529254981954340701 (pp51) r2=216309437884752288522244329757285002058432970681423732981110681293149999573768732312881302121 (pp93) Version: Msieve v. 1.43 Total time: 10.99 hours. Scaled time: 20.72 units (timescale=1.886). Factorization parameters were as follows: n: 41323005067574566304410175051619336014247547874804676702862982021554231126531999977945569827460087540832516415965598056089191661607896947926821 m: 200000000000000000000000000000000000 deg: 5 c5: 1250 c0: 3 skew: 0.30 type: snfs lss: 1 rlim: 6900000 alim: 6900000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 6900000/6900000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3450000, 9050001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1522746 x 1522973 Total sieving time: Total relation processing time: Matrix solve time: Time per square root: Prototype def-par.txt line would be: snfs,179.000,5,0,0,0,0,0,0,0,0,6900000,6900000,28,28,53,53,2.5,2.5,100000 total time: |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | May 25, 2007 09:00:00 UTC 2007 年 5 月 25 日 (金) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 904 | suberi | September 6, 2008 07:51:00 UTC 2008 年 9 月 6 日 (土) 16 時 51 分 0 秒 (日本時間) |
name 名前 | Sinkiti Sibata |
---|---|
date 日付 | June 16, 2007 21:49:04 UTC 2007 年 6 月 17 日 (日) 6 時 49 分 4 秒 (日本時間) |
composite number 合成数 | 571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571429<180> |
prime factors 素因数 | 83826283922298951250679670902394172492665030066721447476491438645405060824416416839171<86> 6816818600216674079721080459803918316770769056707557617751767138646831184079876164364702748599<94> |
factorization results 素因数分解の結果 | Number: 40003_180 N=571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571429 ( 180 digits) SNFS difficulty: 180 digits. Divisors found: r1=83826283922298951250679670902394172492665030066721447476491438645405060824416416839171 (pp86) r2=6816818600216674079721080459803918316770769056707557617751767138646831184079876164364702748599 (pp94) Version: GGNFS-0.77.1-20060513-k8 Total time: 402.02 hours. Scaled time: 805.24 units (timescale=2.003). Factorization parameters were as follows: name: 40003_180 n: 571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571429 m: 1000000000000000000000000000000000000 c5: 4 c0: 3 skew: 1 type: snfs Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 8200001) Primes: RFBsize:501962, AFBsize:502056, largePrimes:6501623 encountered Relations: rels:7055323, finalFF:1224296 Max relations in full relation-set: 28 Initial matrix: 1004085 x 1224296 with sparse part having weight 64791188. Pruned matrix : 810729 x 815813 with weight 46491843. Total sieving time: 393.70 hours. Total relation processing time: 0.32 hours. Matrix solve time: 7.71 hours. Time per square root: 0.28 hours. Prototype def-par.txt line would be: snfs,180,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 402.02 hours. --------- CPU info (if available) ---------- |
execution environment 実行環境 | Core 2 Duo E6300 1.86GHz, Windows Vista and Cygwin) |
name 名前 | suberi |
---|---|
date 日付 | June 10, 2007 13:07:30 UTC 2007 年 6 月 10 日 (日) 22 時 7 分 30 秒 (日本時間) |
composite number 合成数 | 8693381950814622138690494684993780540320386557031261673489444653679565247623341574402181127150053297359074770829038907038067810771<130> |
prime factors 素因数 | 5986920270178566508580072759197219<34> |
composite cofactor 合成数の残り | 1452062422497457515275178568841712183672090367974976058364101164379409367802639948011198401368209<97> |
factorization results 素因数分解の結果 | Input number is 8693381950814622138690494684993780540320386557031261673489444653679565247623341574402181127150053297359074770829038907038067810771 (130 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=3847881528 Step 1 took 198855ms Step 2 took 77345ms ********** Factor found in step 2: 5986920270178566508580072759197219 Found probable prime factor of 34 digits: 5986920270178566508580072759197219 Composite cofactor 1452062422497457515275178568841712183672090367974976058364101164379409367802639948011198401368209 has 97 digits |
software ソフトウェア | GMP-ECM 6.1.2 |
execution environment 実行環境 | Sempron 3400+ 1.80GHz, Windows Vista |
name 名前 | suberi |
---|---|
date 日付 | June 11, 2007 06:36:17 UTC 2007 年 6 月 11 日 (月) 15 時 36 分 17 秒 (日本時間) |
composite number 合成数 | 1452062422497457515275178568841712183672090367974976058364101164379409367802639948011198401368209<97> |
prime factors 素因数 | 598460262591086976314911215354850882063724060041<48> 2426330557371719231339466672548563551076810498249<49> |
factorization results 素因数分解の結果 | Thu Jun 07 01:51:11 2007 Thu Jun 07 01:51:11 2007 Thu Jun 07 01:51:11 2007 Msieve v. 1.23 Thu Jun 07 01:51:11 2007 random seeds: 37e514e8 67c1b05e Thu Jun 07 01:51:11 2007 factoring 1451242577945435488202684730983697729965218073649465682642517742785018455031453318180555507115689620266670700586067 (115 digits) Thu Jun 07 01:51:12 2007 commencing quadratic sieve (114-digit input) Thu Jun 07 01:51:14 2007 using multiplier of 3 Thu Jun 07 01:51:14 2007 using 64kb Pentium 4 sieve core Thu Jun 07 01:51:14 2007 sieve interval: 35 blocks of size 65536 Thu Jun 07 01:51:14 2007 processing polynomials in batches of 3 Thu Jun 07 01:51:14 2007 using a sieve bound of 9160121 (306250 primes) Thu Jun 07 01:51:14 2007 using large prime bound of 1374018150 (30 bits) Thu Jun 07 01:51:14 2007 using double large prime bound of 28079309877748350 (47-55 bits) Thu Jun 07 01:51:14 2007 using trial factoring cutoff of 55 bits Thu Jun 07 01:51:14 2007 polynomial 'A' values have 15 factors Thu Jun 07 17:03:36 2007 2573 relations (2507 full + 66 combined from 147158 partial), need 306346 Thu Jun 07 17:03:36 2007 c115 factor: 1451242577945435488202684730983697729965218073649465682642517742785018455031453318180555507115689620266670700586067 Thu Jun 07 17:03:36 2007 elapsed time 15:12:25 Sun Jun 10 22:09:11 2007 Sun Jun 10 22:09:11 2007 Sun Jun 10 22:09:11 2007 Msieve v. 1.23 Sun Jun 10 22:09:11 2007 random seeds: c6371880 07cdeec2 Sun Jun 10 22:09:11 2007 factoring 1452062422497457515275178568841712183672090367974976058364101164379409367802639948011198401368209 (97 digits) Sun Jun 10 22:09:11 2007 commencing quadratic sieve (96-digit input) Sun Jun 10 22:09:12 2007 using multiplier of 1 Sun Jun 10 22:09:12 2007 using 64kb Pentium 4 sieve core Sun Jun 10 22:09:12 2007 sieve interval: 18 blocks of size 65536 Sun Jun 10 22:09:12 2007 processing polynomials in batches of 6 Sun Jun 10 22:09:12 2007 using a sieve bound of 2328947 (85882 primes) Sun Jun 10 22:09:12 2007 using large prime bound of 349342050 (28 bits) Sun Jun 10 22:09:12 2007 using double large prime bound of 2386995188843550 (43-52 bits) Sun Jun 10 22:09:12 2007 using trial factoring cutoff of 52 bits Sun Jun 10 22:09:12 2007 polynomial 'A' values have 12 factors Mon Jun 11 07:51:47 2007 86181 relations (21034 full + 65147 combined from 1292570 partial), need 85978 Mon Jun 11 07:51:49 2007 begin with 1313604 relations Mon Jun 11 07:51:52 2007 reduce to 225635 relations in 14 passes Mon Jun 11 07:51:52 2007 attempting to read 225635 relations Mon Jun 11 07:51:57 2007 recovered 225635 relations Mon Jun 11 07:51:57 2007 recovered 210860 polynomials Mon Jun 11 07:51:57 2007 attempting to build 86181 cycles Mon Jun 11 07:51:57 2007 found 86181 cycles in 6 passes Mon Jun 11 07:51:57 2007 distribution of cycle lengths: Mon Jun 11 07:51:57 2007 length 1 : 21034 Mon Jun 11 07:51:57 2007 length 2 : 15162 Mon Jun 11 07:51:57 2007 length 3 : 14263 Mon Jun 11 07:51:57 2007 length 4 : 11625 Mon Jun 11 07:51:57 2007 length 5 : 8916 Mon Jun 11 07:51:57 2007 length 6 : 6072 Mon Jun 11 07:51:57 2007 length 7 : 3792 Mon Jun 11 07:51:57 2007 length 9+: 5317 Mon Jun 11 07:51:57 2007 largest cycle: 20 relations Mon Jun 11 07:51:58 2007 matrix is 85882 x 86181 with weight 5832332 (avg 67.68/col) Mon Jun 11 07:52:00 2007 filtering completed in 3 passes Mon Jun 11 07:52:00 2007 matrix is 82073 x 82137 with weight 5580342 (avg 67.94/col) Mon Jun 11 07:52:01 2007 saving the first 48 matrix rows for later Mon Jun 11 07:52:02 2007 matrix is 82025 x 82137 with weight 4657748 (avg 56.71/col) Mon Jun 11 07:52:02 2007 matrix includes 64 packed rows Mon Jun 11 07:52:02 2007 using block size 21845 for processor cache size 512 kB Mon Jun 11 07:52:02 2007 commencing Lanczos iteration Mon Jun 11 07:53:56 2007 lanczos halted after 1299 iterations Mon Jun 11 07:53:57 2007 recovered 17 nontrivial dependencies Mon Jun 11 07:53:59 2007 prp48 factor: 598460262591086976314911215354850882063724060041 Mon Jun 11 07:53:59 2007 prp49 factor: 2426330557371719231339466672548563551076810498249 Mon Jun 11 07:53:59 2007 elapsed time 09:44:48 |
execution environment 実行環境 | Pentium 4 2.26GHz, Windows XP |
name 名前 | Sinkiti Sibata |
---|---|
date 日付 | November 21, 2007 04:25:58 UTC 2007 年 11 月 21 日 (水) 13 時 25 分 58 秒 (日本時間) |
composite number 合成数 | 6779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661017<184> |
prime factors 素因数 | 11020580464970018963281153740355391062570795450373519356122648057289<68> 615181844413636911986288389296689173200938369983514842349545281535581167010170014581500501046126500380108078763742353<117> |
factorization results 素因数分解の結果 | Number: 40003_185 N=6779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661017 ( 184 digits) SNFS difficulty: 185 digits. Divisors found: r1=11020580464970018963281153740355391062570795450373519356122648057289 (pp68) r2=615181844413636911986288389296689173200938369983514842349545281535581167010170014581500501046126500380108078763742353 (pp117) Version: GGNFS-0.77.1-20060513-k8 Total time: 676.35 hours. Scaled time: 1350.68 units (timescale=1.997). Factorization parameters were as follows: name: 40003_185 n: 6779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661017 m: 10000000000000000000000000000000000000 c5: 4 c0: 3 skew: 0.94 type: snfs Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 11400001) Primes: RFBsize:501962, AFBsize:502056, largePrimes:6651477 encountered Relations: rels:7134496, finalFF:1151991 Max relations in full relation-set: 28 Initial matrix: 1004085 x 1151991 with sparse part having weight 85952580. Pruned matrix : 882609 x 887693 with weight 67545486. Total sieving time: 663.68 hours. Total relation processing time: 0.62 hours. Matrix solve time: 11.72 hours. Time per square root: 0.33 hours. Prototype def-par.txt line would be: snfs,185,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 676.35 hours. --------- CPU info (if available) ---------- |
execution environment 実行環境 | Core 2 Duo E6300 1.86GHz, Windows Vista) |
name 名前 | Robert Backstrom |
---|---|
date 日付 | October 5, 2008 05:10:23 UTC 2008 年 10 月 5 日 (日) 14 時 10 分 23 秒 (日本時間) |
composite number 合成数 | 4050202544047648688833499443952755480878371070909903214031140974559533638618025124682194528939826171179603163787365865012439741466256147587274599773413443774526317927554290357785071<181> |
prime factors 素因数 | 24875180711963832920631823391799924802362043<44> 1752874383582602263485228831981881536452332411343350533<55> 92888019522893020037527962353614086664215590109173413876816904217403183939544249209<83> |
factorization results 素因数分解の結果 | Number: n N=4050202544047648688833499443952755480878371070909903214031140974559533638618025124682194528939826171179603163787365865012439741466256147587274599773413443774526317927554290357785071 ( 181 digits) SNFS difficulty: 188 digits. Divisors found: Sun Oct 05 10:57:16 2008 prp44 factor: 24875180711963832920631823391799924802362043 Sun Oct 05 10:57:16 2008 prp55 factor: 1752874383582602263485228831981881536452332411343350533 Sun Oct 05 10:57:16 2008 prp83 factor: 92888019522893020037527962353614086664215590109173413876816904217403183939544249209 Sun Oct 05 10:57:17 2008 elapsed time 06:48:28 (Msieve 1.38) Version: GGNFS-0.77.1-20051202-athlon Total time: 69.83 hours. Scaled time: 137.98 units (timescale=1.976). Factorization parameters were as follows: name: KA_4_0_187_3 n: 4050202544047648688833499443952755480878371070909903214031140974559533638618025124682194528939826171179603163787365865012439741466256147587274599773413443774526317927554290357785071 type: snfs skew: 0.47 deg: 5 c5: 125 c0: 3 m: 20000000000000000000000000000000000000 rlim: 9000000 alim: 9000000 lpbr: 28 lpba: 28 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 9000000/9000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 52/52 Sieved special-q in [100000, 6900001) Primes: RFBsize:602489, AFBsize:601580, largePrimes:14186992 encountered Relations: rels:13935264, finalFF:1227975 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 69.46 hours. Total relation processing time: 0.37 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,188,5,0,0,0,0,0,0,0,0,9000000,9000000,28,28,52,52,2.5,2.5,100000 total time: 69.83 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | May 25, 2007 09:00:00 UTC 2007 年 5 月 25 日 (金) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 904 | suberi | September 6, 2008 07:51:15 UTC 2008 年 9 月 6 日 (土) 16 時 51 分 15 秒 (日本時間) |
name 名前 | Youcef Lemsafer |
---|---|
date 日付 | November 2, 2012 17:16:47 UTC 2012 年 11 月 3 日 (土) 2 時 16 分 47 秒 (日本時間) |
composite number 合成数 | 46328118373450985108210439675675568593035608934536210921248060212004753468711546090114223716940730507414425052507999107293200292545902578496519<143> |
prime factors 素因数 | 83854417267246524902406054576857546895613097<44> 3818365928839740457687318687141989113011278407<46> 144690884061596303738959983223805952509795639618444761<54> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=3223465856 Step 1 took 38453ms Step 2 took 18093ms ********** Factor found in step 2: 83854417267246524902406054576857546895613097 Found probable prime factor of 44 digits: 83854417267246524902406054576857546895613097 Composite cofactor 552482741914500368692651450823127441462699846028470825307827111020767673414667583764329137721575727 has 99 digits Fri Nov 02 16:01:39 2012 -> factmsieve.py (v0.76) Fri Nov 02 16:01:39 2012 -> This is client 1 of 1 Fri Nov 02 16:01:39 2012 -> Running on 2 Cores with 2 hyper-threads per Core Fri Nov 02 16:01:39 2012 -> Working with NAME = 40003_189 Fri Nov 02 16:01:39 2012 -> Running polynomial selection ... Fri Nov 02 16:01:39 2012 Fri Nov 02 16:01:39 2012 Fri Nov 02 16:01:39 2012 Msieve v. 1.50 (SVN 708) Fri Nov 02 16:01:39 2012 random seeds: 23052ec0 82fe5c19 Fri Nov 02 16:01:39 2012 factoring 552482741914500368692651450823127441462699846028470825307827111020767673414667583764329137721575727 (99 digits) Fri Nov 02 16:01:40 2012 searching for 15-digit factors Fri Nov 02 16:01:41 2012 commencing number field sieve (99-digit input) Fri Nov 02 16:01:41 2012 commencing number field sieve polynomial selection Fri Nov 02 16:01:41 2012 time limit set to 0.33 CPU-hours Fri Nov 02 16:01:41 2012 expecting poly E from 1.38e-008 to 1.58e-008 Fri Nov 02 16:01:41 2012 searching leading coefficients from 1 to 56416391 Fri Nov 02 16:22:52 2012 polynomial selection complete Fri Nov 02 16:22:52 2012 R0: -616848035706917018422337 Fri Nov 02 16:22:52 2012 R1: 8453486905309 Fri Nov 02 16:22:52 2012 A0: -1342871965022917508493864480 Fri Nov 02 16:22:52 2012 A1: -11755000270818875609900 Fri Nov 02 16:22:52 2012 A2: -8057523591289136 Fri Nov 02 16:22:52 2012 A3: -1534871345 Fri Nov 02 16:22:52 2012 A4: 3816 Fri Nov 02 16:22:52 2012 skew 1406796.01, size 1.331e-013, alpha -5.231, combined = 1.368e-008 rroots = 2 Fri Nov 02 16:22:52 2012 elapsed time 00:21:13 Fri Nov 02 16:22:52 2012 -> Selected lattice siever: gnfs-lasieve4I12e Fri Nov 02 16:22:52 2012 -> Creating param file to detect parameter changes... Fri Nov 02 16:22:52 2012 -> Running setup ... Fri Nov 02 16:22:52 2012 -> Estimated minimum relations needed: 4.004e+06 Fri Nov 02 16:22:52 2012 -> cleaning up before a restart Fri Nov 02 16:22:52 2012 -> Running lattice siever ... Fri Nov 02 16:22:52 2012 -> entering sieving loop Fri Nov 02 16:22:52 2012 -> making sieve job for q = 900000 in 900000 .. 925000 as file 40003_189.job.T0 Fri Nov 02 16:22:52 2012 -> making sieve job for q = 925000 in 925000 .. 950000 as file 40003_189.job.T1 Fri Nov 02 16:22:52 2012 -> making sieve job for q = 950000 in 950000 .. 975000 as file 40003_189.job.T2 Fri Nov 02 16:22:52 2012 -> making sieve job for q = 975000 in 975000 .. 1000000 as file 40003_189.job.T3 Fri Nov 02 16:22:52 2012 -> Lattice sieving algebraic q from 900000 to 1000000. Fri Nov 02 16:22:52 2012 -> gnfs-lasieve4I12e -k -o spairs.out.T0 -v -n0 -a 40003_189.job.T0 Fri Nov 02 16:22:52 2012 -> gnfs-lasieve4I12e -k -o spairs.out.T1 -v -n1 -a 40003_189.job.T1 Fri Nov 02 16:22:52 2012 -> gnfs-lasieve4I12e -k -o spairs.out.T2 -v -n2 -a 40003_189.job.T2 Fri Nov 02 16:22:52 2012 -> gnfs-lasieve4I12e -k -o spairs.out.T3 -v -n3 -a 40003_189.job.T3 Fri Nov 02 16:48:24 2012 Found 1341994 relations, 33.5% of the estimated minimum (4004000). Fri Nov 02 16:48:24 2012 LatSieveTime: 1531.67 Fri Nov 02 16:48:24 2012 -> making sieve job for q = 1000000 in 1000000 .. 1025000 as file 40003_189.job.T0 Fri Nov 02 16:48:24 2012 -> making sieve job for q = 1025000 in 1025000 .. 1050000 as file 40003_189.job.T1 Fri Nov 02 16:48:24 2012 -> making sieve job for q = 1050000 in 1050000 .. 1075000 as file 40003_189.job.T2 Fri Nov 02 16:48:24 2012 -> making sieve job for q = 1075000 in 1075000 .. 1100000 as file 40003_189.job.T3 Fri Nov 02 16:48:24 2012 -> Lattice sieving algebraic q from 1000000 to 1100000. Fri Nov 02 16:48:24 2012 -> gnfs-lasieve4I12e -k -o spairs.out.T0 -v -n0 -a 40003_189.job.T0 Fri Nov 02 16:48:24 2012 -> gnfs-lasieve4I12e -k -o spairs.out.T1 -v -n1 -a 40003_189.job.T1 Fri Nov 02 16:48:24 2012 -> gnfs-lasieve4I12e -k -o spairs.out.T2 -v -n2 -a 40003_189.job.T2 Fri Nov 02 16:48:24 2012 -> gnfs-lasieve4I12e -k -o spairs.out.T3 -v -n3 -a 40003_189.job.T3 Fri Nov 02 17:13:52 2012 Found 2674595 relations, 66.8% of the estimated minimum (4004000). Fri Nov 02 17:13:52 2012 LatSieveTime: 1528.19 Fri Nov 02 17:13:52 2012 -> making sieve job for q = 1100000 in 1100000 .. 1125000 as file 40003_189.job.T0 Fri Nov 02 17:13:52 2012 -> making sieve job for q = 1125000 in 1125000 .. 1150000 as file 40003_189.job.T1 Fri Nov 02 17:13:52 2012 -> making sieve job for q = 1150000 in 1150000 .. 1175000 as file 40003_189.job.T2 Fri Nov 02 17:13:52 2012 -> making sieve job for q = 1175000 in 1175000 .. 1200000 as file 40003_189.job.T3 Fri Nov 02 17:13:52 2012 -> Lattice sieving algebraic q from 1100000 to 1200000. Fri Nov 02 17:13:52 2012 -> gnfs-lasieve4I12e -k -o spairs.out.T0 -v -n0 -a 40003_189.job.T0 Fri Nov 02 17:13:52 2012 -> gnfs-lasieve4I12e -k -o spairs.out.T1 -v -n1 -a 40003_189.job.T1 Fri Nov 02 17:13:52 2012 -> gnfs-lasieve4I12e -k -o spairs.out.T2 -v -n2 -a 40003_189.job.T2 Fri Nov 02 17:13:52 2012 -> gnfs-lasieve4I12e -k -o spairs.out.T3 -v -n3 -a 40003_189.job.T3 Fri Nov 02 17:39:36 2012 Found 3997877 relations, 99.8% of the estimated minimum (4004000). Fri Nov 02 17:39:36 2012 LatSieveTime: 1544 Fri Nov 02 17:39:36 2012 -> making sieve job for q = 1200000 in 1200000 .. 1225000 as file 40003_189.job.T0 Fri Nov 02 17:39:36 2012 -> making sieve job for q = 1225000 in 1225000 .. 1250000 as file 40003_189.job.T1 Fri Nov 02 17:39:36 2012 -> making sieve job for q = 1250000 in 1250000 .. 1275000 as file 40003_189.job.T2 Fri Nov 02 17:39:36 2012 -> making sieve job for q = 1275000 in 1275000 .. 1300000 as file 40003_189.job.T3 Fri Nov 02 17:39:36 2012 -> Lattice sieving algebraic q from 1200000 to 1300000. Fri Nov 02 17:39:36 2012 -> gnfs-lasieve4I12e -k -o spairs.out.T0 -v -n0 -a 40003_189.job.T0 Fri Nov 02 17:39:36 2012 -> gnfs-lasieve4I12e -k -o spairs.out.T1 -v -n1 -a 40003_189.job.T1 Fri Nov 02 17:39:36 2012 -> gnfs-lasieve4I12e -k -o spairs.out.T2 -v -n2 -a 40003_189.job.T2 Fri Nov 02 17:39:36 2012 -> gnfs-lasieve4I12e -k -o spairs.out.T3 -v -n3 -a 40003_189.job.T3 Fri Nov 02 18:05:43 2012 Found 5325565 relations, 133.0% of the estimated minimum (4004000). Fri Nov 02 18:05:43 2012 Fri Nov 02 18:05:43 2012 Fri Nov 02 18:05:43 2012 Msieve v. 1.50 (SVN 708) Fri Nov 02 18:05:43 2012 random seeds: 0614e730 c4d81269 Fri Nov 02 18:05:43 2012 factoring 552482741914500368692651450823127441462699846028470825307827111020767673414667583764329137721575727 (99 digits) Fri Nov 02 18:05:43 2012 searching for 15-digit factors Fri Nov 02 18:05:44 2012 commencing number field sieve (99-digit input) Fri Nov 02 18:05:44 2012 R0: -616848035706917018422337 Fri Nov 02 18:05:44 2012 R1: 8453486905309 Fri Nov 02 18:05:44 2012 A0: -1342871965022917508493864480 Fri Nov 02 18:05:44 2012 A1: -11755000270818875609900 Fri Nov 02 18:05:44 2012 A2: -8057523591289136 Fri Nov 02 18:05:44 2012 A3: -1534871345 Fri Nov 02 18:05:44 2012 A4: 3816 Fri Nov 02 18:05:44 2012 skew 1406796.01, size 1.331e-013, alpha -5.231, combined = 1.368e-008 rroots = 2 Fri Nov 02 18:05:44 2012 Fri Nov 02 18:05:44 2012 commencing relation filtering Fri Nov 02 18:05:44 2012 estimated available RAM is 4095.6 MB Fri Nov 02 18:05:44 2012 commencing duplicate removal, pass 1 Fri Nov 02 18:06:08 2012 found 467987 hash collisions in 5325564 relations Fri Nov 02 18:06:14 2012 added 152222 free relations Fri Nov 02 18:06:14 2012 commencing duplicate removal, pass 2 Fri Nov 02 18:06:17 2012 found 316600 duplicates and 5161186 unique relations Fri Nov 02 18:06:17 2012 memory use: 24.6 MB Fri Nov 02 18:06:17 2012 reading ideals above 100000 Fri Nov 02 18:06:17 2012 commencing singleton removal, initial pass Fri Nov 02 18:06:49 2012 memory use: 94.1 MB Fri Nov 02 18:06:49 2012 reading all ideals from disk Fri Nov 02 18:06:49 2012 memory use: 158.5 MB Fri Nov 02 18:06:50 2012 keeping 4958876 ideals with weight <= 200, target excess is 33596 Fri Nov 02 18:06:50 2012 commencing in-memory singleton removal Fri Nov 02 18:06:50 2012 begin with 5161186 relations and 4958876 unique ideals Fri Nov 02 18:06:53 2012 reduce to 2632975 relations and 1985615 ideals in 12 passes Fri Nov 02 18:06:53 2012 max relations containing the same ideal: 136 Fri Nov 02 18:06:54 2012 removing 912438 relations and 608244 ideals in 304194 cliques Fri Nov 02 18:06:54 2012 commencing in-memory singleton removal Fri Nov 02 18:06:54 2012 begin with 1720537 relations and 1985615 unique ideals Fri Nov 02 18:06:54 2012 reduce to 1572296 relations and 1208725 ideals in 7 passes Fri Nov 02 18:06:54 2012 max relations containing the same ideal: 94 Fri Nov 02 18:06:55 2012 removing 724414 relations and 420220 ideals in 304194 cliques Fri Nov 02 18:06:55 2012 commencing in-memory singleton removal Fri Nov 02 18:06:55 2012 begin with 847882 relations and 1208725 unique ideals Fri Nov 02 18:06:55 2012 reduce to 708881 relations and 627533 ideals in 10 passes Fri Nov 02 18:06:55 2012 max relations containing the same ideal: 51 Fri Nov 02 18:06:56 2012 removing 160904 relations and 118528 ideals in 42376 cliques Fri Nov 02 18:06:56 2012 commencing in-memory singleton removal Fri Nov 02 18:06:56 2012 begin with 547977 relations and 627533 unique ideals Fri Nov 02 18:06:56 2012 reduce to 517844 relations and 476858 ideals in 9 passes Fri Nov 02 18:06:56 2012 max relations containing the same ideal: 45 Fri Nov 02 18:06:56 2012 relations with 0 large ideals: 597 Fri Nov 02 18:06:56 2012 relations with 1 large ideals: 2430 Fri Nov 02 18:06:56 2012 relations with 2 large ideals: 15435 Fri Nov 02 18:06:56 2012 relations with 3 large ideals: 53675 Fri Nov 02 18:06:56 2012 relations with 4 large ideals: 112295 Fri Nov 02 18:06:56 2012 relations with 5 large ideals: 148102 Fri Nov 02 18:06:56 2012 relations with 6 large ideals: 114728 Fri Nov 02 18:06:56 2012 relations with 7+ large ideals: 70582 Fri Nov 02 18:06:56 2012 commencing 2-way merge Fri Nov 02 18:06:56 2012 reduce to 347642 relation sets and 306656 unique ideals Fri Nov 02 18:06:56 2012 commencing full merge Fri Nov 02 18:07:01 2012 memory use: 29.9 MB Fri Nov 02 18:07:01 2012 found 163111 cycles, need 156856 Fri Nov 02 18:07:01 2012 weight of 156856 cycles is about 11105239 (70.80/cycle) Fri Nov 02 18:07:01 2012 distribution of cycle lengths: Fri Nov 02 18:07:01 2012 1 relations: 12360 Fri Nov 02 18:07:01 2012 2 relations: 14515 Fri Nov 02 18:07:01 2012 3 relations: 16125 Fri Nov 02 18:07:01 2012 4 relations: 16029 Fri Nov 02 18:07:01 2012 5 relations: 14867 Fri Nov 02 18:07:01 2012 6 relations: 13625 Fri Nov 02 18:07:01 2012 7 relations: 12172 Fri Nov 02 18:07:01 2012 8 relations: 10628 Fri Nov 02 18:07:01 2012 9 relations: 9205 Fri Nov 02 18:07:01 2012 10+ relations: 37330 Fri Nov 02 18:07:01 2012 heaviest cycle: 22 relations Fri Nov 02 18:07:01 2012 commencing cycle optimization Fri Nov 02 18:07:01 2012 start with 1041446 relations Fri Nov 02 18:07:03 2012 pruned 41297 relations Fri Nov 02 18:07:03 2012 memory use: 25.0 MB Fri Nov 02 18:07:03 2012 distribution of cycle lengths: Fri Nov 02 18:07:03 2012 1 relations: 12360 Fri Nov 02 18:07:03 2012 2 relations: 14907 Fri Nov 02 18:07:03 2012 3 relations: 16864 Fri Nov 02 18:07:03 2012 4 relations: 16707 Fri Nov 02 18:07:03 2012 5 relations: 15587 Fri Nov 02 18:07:03 2012 6 relations: 14268 Fri Nov 02 18:07:03 2012 7 relations: 12588 Fri Nov 02 18:07:03 2012 8 relations: 10866 Fri Nov 02 18:07:03 2012 9 relations: 9170 Fri Nov 02 18:07:03 2012 10+ relations: 33539 Fri Nov 02 18:07:03 2012 heaviest cycle: 21 relations Fri Nov 02 18:07:03 2012 RelProcTime: 79 Fri Nov 02 18:07:03 2012 elapsed time 00:01:20 Fri Nov 02 18:07:03 2012 LatSieveTime: 1646.77 Fri Nov 02 18:07:03 2012 -> Running matrix solving step ... Fri Nov 02 18:07:03 2012 Fri Nov 02 18:07:03 2012 Fri Nov 02 18:07:03 2012 Msieve v. 1.50 (SVN 708) Fri Nov 02 18:07:03 2012 random seeds: 73c77b80 8d334bbb Fri Nov 02 18:07:03 2012 factoring 552482741914500368692651450823127441462699846028470825307827111020767673414667583764329137721575727 (99 digits) Fri Nov 02 18:07:03 2012 searching for 15-digit factors Fri Nov 02 18:07:04 2012 commencing number field sieve (99-digit input) Fri Nov 02 18:07:04 2012 R0: -616848035706917018422337 Fri Nov 02 18:07:04 2012 R1: 8453486905309 Fri Nov 02 18:07:04 2012 A0: -1342871965022917508493864480 Fri Nov 02 18:07:04 2012 A1: -11755000270818875609900 Fri Nov 02 18:07:04 2012 A2: -8057523591289136 Fri Nov 02 18:07:04 2012 A3: -1534871345 Fri Nov 02 18:07:04 2012 A4: 3816 Fri Nov 02 18:07:04 2012 skew 1406796.01, size 1.331e-013, alpha -5.231, combined = 1.368e-008 rroots = 2 Fri Nov 02 18:07:04 2012 Fri Nov 02 18:07:04 2012 commencing linear algebra Fri Nov 02 18:07:04 2012 read 156856 cycles Fri Nov 02 18:07:04 2012 cycles contain 483824 unique relations Fri Nov 02 18:07:07 2012 read 483824 relations Fri Nov 02 18:07:08 2012 using 20 quadratic characters above 67089830 Fri Nov 02 18:07:10 2012 building initial matrix Fri Nov 02 18:07:15 2012 memory use: 54.5 MB Fri Nov 02 18:07:15 2012 read 156856 cycles Fri Nov 02 18:07:15 2012 matrix is 156675 x 156856 (44.5 MB) with weight 15013355 (95.71/col) Fri Nov 02 18:07:15 2012 sparse part has weight 10403429 (66.32/col) Fri Nov 02 18:07:17 2012 filtering completed in 2 passes Fri Nov 02 18:07:17 2012 matrix is 156469 x 156650 (44.4 MB) with weight 14999415 (95.75/col) Fri Nov 02 18:07:17 2012 sparse part has weight 10396272 (66.37/col) Fri Nov 02 18:07:17 2012 matrix starts at (0, 0) Fri Nov 02 18:07:17 2012 matrix is 156469 x 156650 (44.4 MB) with weight 14999415 (95.75/col) Fri Nov 02 18:07:17 2012 sparse part has weight 10396272 (66.37/col) Fri Nov 02 18:07:17 2012 saving the first 48 matrix rows for later Fri Nov 02 18:07:17 2012 matrix includes 64 packed rows Fri Nov 02 18:07:17 2012 matrix is 156421 x 156650 (42.3 MB) with weight 11811211 (75.40/col) Fri Nov 02 18:07:17 2012 sparse part has weight 10151256 (64.80/col) Fri Nov 02 18:07:17 2012 using block size 62568 for processor cache size 12288 kB Fri Nov 02 18:07:18 2012 commencing Lanczos iteration Fri Nov 02 18:07:18 2012 memory use: 33.3 MB Fri Nov 02 18:07:31 2012 linear algebra at 7.8%, ETA 0h 2m Fri Nov 02 18:09:56 2012 lanczos halted after 2475 iterations (dim = 156420) Fri Nov 02 18:09:56 2012 recovered 33 nontrivial dependencies Fri Nov 02 18:09:56 2012 BLanczosTime: 172 Fri Nov 02 18:09:56 2012 elapsed time 00:02:53 Fri Nov 02 18:09:56 2012 -> Running square root step ... Fri Nov 02 18:09:56 2012 Fri Nov 02 18:09:56 2012 Fri Nov 02 18:09:56 2012 Msieve v. 1.50 (SVN 708) Fri Nov 02 18:09:56 2012 random seeds: 46070340 54565a65 Fri Nov 02 18:09:56 2012 factoring 552482741914500368692651450823127441462699846028470825307827111020767673414667583764329137721575727 (99 digits) Fri Nov 02 18:09:57 2012 searching for 15-digit factors Fri Nov 02 18:09:57 2012 commencing number field sieve (99-digit input) Fri Nov 02 18:09:57 2012 R0: -616848035706917018422337 Fri Nov 02 18:09:57 2012 R1: 8453486905309 Fri Nov 02 18:09:57 2012 A0: -1342871965022917508493864480 Fri Nov 02 18:09:57 2012 A1: -11755000270818875609900 Fri Nov 02 18:09:57 2012 A2: -8057523591289136 Fri Nov 02 18:09:57 2012 A3: -1534871345 Fri Nov 02 18:09:57 2012 A4: 3816 Fri Nov 02 18:09:57 2012 skew 1406796.01, size 1.331e-013, alpha -5.231, combined = 1.368e-008 rroots = 2 Fri Nov 02 18:09:57 2012 Fri Nov 02 18:09:57 2012 commencing square root phase Fri Nov 02 18:09:57 2012 reading relations for dependency 1 Fri Nov 02 18:09:57 2012 read 78428 cycles Fri Nov 02 18:09:57 2012 cycles contain 242164 unique relations Fri Nov 02 18:10:00 2012 read 242164 relations Fri Nov 02 18:10:00 2012 multiplying 242164 relations Fri Nov 02 18:10:12 2012 multiply complete, coefficients have about 10.11 million bits Fri Nov 02 18:10:13 2012 initial square root is modulo 646421 Fri Nov 02 18:10:30 2012 sqrtTime: 33 Fri Nov 02 18:10:30 2012 prp46 factor: 3818365928839740457687318687141989113011278407 Fri Nov 02 18:10:30 2012 prp54 factor: 144690884061596303738959983223805952509795639618444761 Fri Nov 02 18:10:30 2012 elapsed time 00:00:34 Fri Nov 02 18:10:30 2012 -> Computing 1.35188e+09 scale for this machine... Fri Nov 02 18:10:30 2012 -> procrels -speedtest> PIPE Fri Nov 02 18:10:35 2012 -> Factorization summary written to g99-40003_189.txt Number: 40003_189 N = 552482741914500368692651450823127441462699846028470825307827111020767673414667583764329137721575727 (99 digits) Divisors found: r1=3818365928839740457687318687141989113011278407 (pp46) r2=144690884061596303738959983223805952509795639618444761 (pp54) Version: Msieve v. 1.50 (SVN 708) Total time: 2.17 hours. Factorization parameters were as follows: n: 552482741914500368692651450823127441462699846028470825307827111020767673414667583764329137721575727 Y0: -616848035706917018422337 Y1: 8453486905309 c0: -1342871965022917508493864480 c1: -11755000270818875609900 c2: -8057523591289136 c3: -1534871345 c4: 3816 skew: 1406796.01 type: gnfs Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Sieved algebraic special-q in [0, 0) Total raw relations: 5325565 Relations: 242164 relations Pruned matrix : 156421 x 156650 Polynomial selection time: 0.35 hours. Total sieving time: 1.74 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.05 hours. time per square root: 0.01 hours. Prototype def-par.txt line would be: gnfs,98,4,58,1500,0.003,0.4,220,15,10000,2000,1800000,1800000,26,26,48,48,2.5,2.5,100000 total time: 2.17 hours. Intel64 Family 6 Model 44 Stepping 2, GenuineIntel Windows-7-6.1.7601-SP1 processors: 2, speed: 2.79GHz |
software ソフトウェア | GMP-ECM 6.4.2 [configured with GMP 5.0.5, --enable-asm-redc] GGNFS-SVN 430, msieve 1.50 (SVN 408) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | May 25, 2007 09:00:00 UTC 2007 年 5 月 25 日 (金) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 904 | suberi | September 6, 2008 07:51:24 UTC 2008 年 9 月 6 日 (土) 16 時 51 分 24 秒 (日本時間) | |
40 | 3e6 | 2000 | Youcef Lemsafer | November 2, 2012 14:54:20 UTC 2012 年 11 月 2 日 (金) 23 時 54 分 20 秒 (日本時間) | |
45 | 11e6 | 1240 / 3771 | Youcef Lemsafer | November 2, 2012 14:54:20 UTC 2012 年 11 月 2 日 (金) 23 時 54 分 20 秒 (日本時間) | |
50 | 43e6 | 64 / 7194 | Youcef Lemsafer | November 2, 2012 14:54:20 UTC 2012 年 11 月 2 日 (金) 23 時 54 分 20 秒 (日本時間) |
name 名前 | Youcef Lemsafer |
---|---|
date 日付 | November 7, 2012 05:28:18 UTC 2012 年 11 月 7 日 (水) 14 時 28 分 18 秒 (日本時間) |
composite number 合成数 | 63012286164902784862115566256894294516558531998452560198459491066024731451192780286328215103179379574403277357162667406511048462390811100211451421533<149> |
prime factors 素因数 | 629589472322495446334663675031264845997425910079012360357<57> 100084720178780115237981541387311663053886915308400483818855627013027077953155995355273351769<93> |
factorization results 素因数分解の結果 | Sun Nov 04 14:16:33 2012 -> factmsieve.py (v0.76) Sun Nov 04 14:16:33 2012 -> This is client 1 of 1 Sun Nov 04 14:16:33 2012 -> Running on 4 Cores with 2 hyper-threads per Core Sun Nov 04 14:16:33 2012 -> Working with NAME = 40003_190 Sun Nov 04 14:16:33 2012 -> Selected lattice siever: gnfs-lasieve4I13e Sun Nov 04 14:16:33 2012 -> Creating param file to detect parameter changes... Sun Nov 04 14:16:33 2012 -> Running setup ... Sun Nov 04 14:16:33 2012 -> Estimated minimum relations needed: 2.13094e+07 Sun Nov 04 14:16:33 2012 -> cleaning up before a restart Sun Nov 04 14:16:33 2012 -> Running lattice siever ... Sun Nov 04 14:16:33 2012 -> entering sieving loop Sun Nov 04 14:53:55 2012 Found 257445 relations, 1.2% of the estimated minimum (21309410). Sun Nov 04 15:29:15 2012 Found 515175 relations, 2.4% of the estimated minimum (21309410). Sun Nov 04 16:04:04 2012 Found 770731 relations, 3.6% of the estimated minimum (21309410). Sun Nov 04 16:38:50 2012 Found 1025909 relations, 4.8% of the estimated minimum (21309410). Sun Nov 04 17:13:55 2012 Found 1285020 relations, 6.0% of the estimated minimum (21309410). Sun Nov 04 17:49:23 2012 Found 1540823 relations, 7.2% of the estimated minimum (21309410). Sun Nov 04 18:25:04 2012 Found 1798997 relations, 8.4% of the estimated minimum (21309410). Sun Nov 04 18:59:56 2012 Found 2053515 relations, 9.6% of the estimated minimum (21309410). Sun Nov 04 19:35:11 2012 Found 2308990 relations, 10.8% of the estimated minimum (21309410). Sun Nov 04 20:10:21 2012 Found 2564022 relations, 12.0% of the estimated minimum (21309410). Sun Nov 04 20:46:13 2012 Found 2822381 relations, 13.2% of the estimated minimum (21309410). Sun Nov 04 21:21:09 2012 Found 3075150 relations, 14.4% of the estimated minimum (21309410). Sun Nov 04 21:56:43 2012 Found 3330959 relations, 15.6% of the estimated minimum (21309410). Sun Nov 04 22:32:13 2012 Found 3584854 relations, 16.8% of the estimated minimum (21309410). Sun Nov 04 23:08:06 2012 Found 3840487 relations, 18.0% of the estimated minimum (21309410). Sun Nov 04 23:43:44 2012 Found 4093821 relations, 19.2% of the estimated minimum (21309410). Mon Nov 05 00:19:54 2012 Found 4350780 relations, 20.4% of the estimated minimum (21309410). Mon Nov 05 00:56:12 2012 Found 4606563 relations, 21.6% of the estimated minimum (21309410). Mon Nov 05 01:31:40 2012 Found 4858906 relations, 22.8% of the estimated minimum (21309410). Mon Nov 05 02:07:29 2012 Found 5111559 relations, 24.0% of the estimated minimum (21309410). Mon Nov 05 02:43:36 2012 Found 5363951 relations, 25.2% of the estimated minimum (21309410). Mon Nov 05 03:20:17 2012 Found 5616553 relations, 26.4% of the estimated minimum (21309410). Mon Nov 05 03:56:35 2012 Found 5866642 relations, 27.5% of the estimated minimum (21309410). Mon Nov 05 04:33:54 2012 Found 6118467 relations, 28.7% of the estimated minimum (21309410). Mon Nov 05 05:10:32 2012 Found 6369085 relations, 29.9% of the estimated minimum (21309410). Mon Nov 05 05:47:17 2012 Found 6619428 relations, 31.1% of the estimated minimum (21309410). Mon Nov 05 06:24:10 2012 Found 6871407 relations, 32.2% of the estimated minimum (21309410). Mon Nov 05 07:00:36 2012 Found 7119761 relations, 33.4% of the estimated minimum (21309410). Mon Nov 05 07:37:38 2012 Found 7368289 relations, 34.6% of the estimated minimum (21309410). Mon Nov 05 08:14:50 2012 Found 7618559 relations, 35.8% of the estimated minimum (21309410). Mon Nov 05 08:52:08 2012 Found 7869291 relations, 36.9% of the estimated minimum (21309410). Mon Nov 05 09:28:54 2012 Found 8115947 relations, 38.1% of the estimated minimum (21309410). Mon Nov 05 10:06:42 2012 Found 8365613 relations, 39.3% of the estimated minimum (21309410). Mon Nov 05 10:44:11 2012 Found 8615776 relations, 40.4% of the estimated minimum (21309410). Mon Nov 05 11:21:45 2012 Found 8865360 relations, 41.6% of the estimated minimum (21309410). Mon Nov 05 11:59:28 2012 Found 9113022 relations, 42.8% of the estimated minimum (21309410). Mon Nov 05 12:37:10 2012 Found 9361190 relations, 43.9% of the estimated minimum (21309410). Mon Nov 05 13:15:13 2012 Found 9606517 relations, 45.1% of the estimated minimum (21309410). Mon Nov 05 13:53:04 2012 Found 9853185 relations, 46.2% of the estimated minimum (21309410). Mon Nov 05 14:31:27 2012 Found 10102258 relations, 47.4% of the estimated minimum (21309410). Mon Nov 05 15:09:32 2012 Found 10347341 relations, 48.6% of the estimated minimum (21309410). Mon Nov 05 15:47:47 2012 Found 10592489 relations, 49.7% of the estimated minimum (21309410). Mon Nov 05 16:26:25 2012 Found 10837188 relations, 50.9% of the estimated minimum (21309410). Mon Nov 05 17:04:49 2012 Found 11084233 relations, 52.0% of the estimated minimum (21309410). Mon Nov 05 17:43:12 2012 Found 11329166 relations, 53.2% of the estimated minimum (21309410). Mon Nov 05 18:21:29 2012 Found 11573703 relations, 54.3% of the estimated minimum (21309410). Mon Nov 05 18:59:39 2012 Found 11818025 relations, 55.5% of the estimated minimum (21309410). Mon Nov 05 19:37:55 2012 Found 12061458 relations, 56.6% of the estimated minimum (21309410). Mon Nov 05 20:16:32 2012 Found 12305025 relations, 57.7% of the estimated minimum (21309410). Mon Nov 05 20:54:40 2012 Found 12545916 relations, 58.9% of the estimated minimum (21309410). Mon Nov 05 21:33:15 2012 Found 12789235 relations, 60.0% of the estimated minimum (21309410). Mon Nov 05 22:12:24 2012 Found 13032507 relations, 61.2% of the estimated minimum (21309410). Mon Nov 05 22:51:26 2012 Found 13276103 relations, 62.3% of the estimated minimum (21309410). Mon Nov 05 23:30:11 2012 Found 13518650 relations, 63.4% of the estimated minimum (21309410). Tue Nov 06 00:09:31 2012 Found 13760499 relations, 64.6% of the estimated minimum (21309410). Tue Nov 06 00:48:31 2012 Found 14000000 relations, 65.7% of the estimated minimum (21309410). Tue Nov 06 01:27:43 2012 Found 14240053 relations, 66.8% of the estimated minimum (21309410). Tue Nov 06 02:06:18 2012 Found 14476914 relations, 67.9% of the estimated minimum (21309410). Tue Nov 06 02:45:13 2012 Found 14716449 relations, 69.1% of the estimated minimum (21309410). Tue Nov 06 03:24:09 2012 Found 14953145 relations, 70.2% of the estimated minimum (21309410). Tue Nov 06 04:02:43 2012 Found 15188691 relations, 71.3% of the estimated minimum (21309410). Tue Nov 06 04:41:55 2012 Found 15422990 relations, 72.4% of the estimated minimum (21309410). Tue Nov 06 05:21:05 2012 Found 15661043 relations, 73.5% of the estimated minimum (21309410). Tue Nov 06 06:00:07 2012 Found 15897338 relations, 74.6% of the estimated minimum (21309410). Tue Nov 06 06:38:41 2012 Found 16130397 relations, 75.7% of the estimated minimum (21309410). Tue Nov 06 07:17:21 2012 Found 16363163 relations, 76.8% of the estimated minimum (21309410). Tue Nov 06 07:56:12 2012 Found 16597383 relations, 77.9% of the estimated minimum (21309410). Tue Nov 06 08:34:55 2012 Found 16828631 relations, 79.0% of the estimated minimum (21309410). Tue Nov 06 09:13:59 2012 Found 17060961 relations, 80.1% of the estimated minimum (21309410). Tue Nov 06 09:52:16 2012 Found 17290090 relations, 81.1% of the estimated minimum (21309410). Tue Nov 06 10:30:45 2012 Found 17519778 relations, 82.2% of the estimated minimum (21309410). Tue Nov 06 11:10:07 2012 Found 17752181 relations, 83.3% of the estimated minimum (21309410). Tue Nov 06 11:49:13 2012 Found 17979033 relations, 84.4% of the estimated minimum (21309410). Tue Nov 06 12:28:43 2012 Found 18208199 relations, 85.4% of the estimated minimum (21309410). Tue Nov 06 13:07:36 2012 Found 18436695 relations, 86.5% of the estimated minimum (21309410). Tue Nov 06 13:46:37 2012 Found 18665669 relations, 87.6% of the estimated minimum (21309410). Tue Nov 06 14:26:35 2012 Found 18888465 relations, 88.6% of the estimated minimum (21309410). Tue Nov 06 15:06:23 2012 Found 19112780 relations, 89.7% of the estimated minimum (21309410). Tue Nov 06 15:45:44 2012 Found 19335797 relations, 90.7% of the estimated minimum (21309410). Tue Nov 06 16:27:28 2012 Found 19560681 relations, 91.8% of the estimated minimum (21309410). Tue Nov 06 17:06:26 2012 Found 19784681 relations, 92.8% of the estimated minimum (21309410). Tue Nov 06 17:45:23 2012 Found 20007527 relations, 93.9% of the estimated minimum (21309410). Tue Nov 06 18:24:13 2012 Found 20227853 relations, 94.9% of the estimated minimum (21309410). Tue Nov 06 19:03:07 2012 Found 20451169 relations, 96.0% of the estimated minimum (21309410). Tue Nov 06 19:42:08 2012 Found 20672875 relations, 97.0% of the estimated minimum (21309410). Tue Nov 06 20:21:20 2012 Found 20894888 relations, 98.1% of the estimated minimum (21309410). Tue Nov 06 21:00:16 2012 Found 21116683 relations, 99.1% of the estimated minimum (21309410). Tue Nov 06 21:38:40 2012 Found 21335117 relations, 100.1% of the estimated minimum (21309410). Tue Nov 06 21:38:40 2012 Tue Nov 06 21:38:42 2012 commencing relation filtering Tue Nov 06 21:38:42 2012 estimated available RAM is 4096.0 MB Tue Nov 06 21:38:42 2012 commencing duplicate removal, pass 1 Tue Nov 06 21:40:29 2012 found 2909251 hash collisions in 21335116 relations Tue Nov 06 21:41:15 2012 added 714853 free relations Tue Nov 06 21:41:15 2012 commencing duplicate removal, pass 2 Tue Nov 06 21:41:55 2012 found 2549370 duplicates and 19500599 unique relations Tue Nov 06 21:41:55 2012 memory use: 98.6 MB Tue Nov 06 21:41:55 2012 reading ideals above 13959168 Tue Nov 06 21:41:59 2012 commencing singleton removal, initial pass Tue Nov 06 21:44:08 2012 memory use: 376.5 MB Tue Nov 06 21:44:08 2012 reading all ideals from disk Tue Nov 06 21:44:08 2012 memory use: 341.5 MB Tue Nov 06 21:44:09 2012 commencing in-memory singleton removal Tue Nov 06 21:44:09 2012 begin with 19500599 relations and 19758544 unique ideals Tue Nov 06 21:44:17 2012 reduce to 8186727 relations and 6149515 ideals in 19 passes Tue Nov 06 21:44:17 2012 max relations containing the same ideal: 35 Tue Nov 06 21:44:18 2012 reading ideals above 100000 Tue Nov 06 21:44:18 2012 commencing singleton removal, initial pass Tue Nov 06 21:45:33 2012 memory use: 188.3 MB Tue Nov 06 21:45:33 2012 reading all ideals from disk Tue Nov 06 21:45:33 2012 memory use: 316.7 MB Tue Nov 06 21:45:34 2012 keeping 7934503 ideals with weight <= 200, target excess is 43006 Tue Nov 06 21:45:35 2012 commencing in-memory singleton removal Tue Nov 06 21:45:35 2012 begin with 8189223 relations and 7934503 unique ideals Tue Nov 06 21:45:45 2012 reduce to 8169462 relations and 7902799 ideals in 13 passes Tue Nov 06 21:45:45 2012 max relations containing the same ideal: 200 Tue Nov 06 21:45:49 2012 removing 1010336 relations and 901948 ideals in 108388 cliques Tue Nov 06 21:45:49 2012 commencing in-memory singleton removal Tue Nov 06 21:45:50 2012 begin with 7159126 relations and 7902799 unique ideals Tue Nov 06 21:45:56 2012 reduce to 7060431 relations and 6900403 ideals in 10 passes Tue Nov 06 21:45:56 2012 max relations containing the same ideal: 187 Tue Nov 06 21:45:59 2012 removing 745068 relations and 636680 ideals in 108388 cliques Tue Nov 06 21:45:59 2012 commencing in-memory singleton removal Tue Nov 06 21:46:00 2012 begin with 6315363 relations and 6900403 unique ideals Tue Nov 06 21:46:05 2012 reduce to 6253410 relations and 6200776 ideals in 9 passes Tue Nov 06 21:46:05 2012 max relations containing the same ideal: 171 Tue Nov 06 21:46:10 2012 relations with 0 large ideals: 921 Tue Nov 06 21:46:10 2012 relations with 1 large ideals: 90 Tue Nov 06 21:46:10 2012 relations with 2 large ideals: 1202 Tue Nov 06 21:46:10 2012 relations with 3 large ideals: 14645 Tue Nov 06 21:46:10 2012 relations with 4 large ideals: 105060 Tue Nov 06 21:46:10 2012 relations with 5 large ideals: 442754 Tue Nov 06 21:46:10 2012 relations with 6 large ideals: 1198437 Tue Nov 06 21:46:10 2012 relations with 7+ large ideals: 4490301 Tue Nov 06 21:46:10 2012 commencing 2-way merge Tue Nov 06 21:46:14 2012 reduce to 3732794 relation sets and 3680161 unique ideals Tue Nov 06 21:46:14 2012 ignored 1 oversize relation sets Tue Nov 06 21:46:14 2012 commencing full merge Tue Nov 06 21:47:19 2012 memory use: 402.7 MB Tue Nov 06 21:47:20 2012 found 1916660 cycles, need 1910361 Tue Nov 06 21:47:20 2012 weight of 1910361 cycles is about 133858896 (70.07/cycle) Tue Nov 06 21:47:20 2012 distribution of cycle lengths: Tue Nov 06 21:47:20 2012 1 relations: 278035 Tue Nov 06 21:47:20 2012 2 relations: 237582 Tue Nov 06 21:47:20 2012 3 relations: 220020 Tue Nov 06 21:47:20 2012 4 relations: 192719 Tue Nov 06 21:47:20 2012 5 relations: 171052 Tue Nov 06 21:47:20 2012 6 relations: 143446 Tue Nov 06 21:47:20 2012 7 relations: 124278 Tue Nov 06 21:47:20 2012 8 relations: 105147 Tue Nov 06 21:47:20 2012 9 relations: 87867 Tue Nov 06 21:47:20 2012 10+ relations: 350215 Tue Nov 06 21:47:20 2012 heaviest cycle: 27 relations Tue Nov 06 21:47:20 2012 commencing cycle optimization Tue Nov 06 21:47:23 2012 start with 11036892 relations Tue Nov 06 21:47:43 2012 pruned 240443 relations Tue Nov 06 21:47:43 2012 memory use: 291.9 MB Tue Nov 06 21:47:43 2012 distribution of cycle lengths: Tue Nov 06 21:47:43 2012 1 relations: 278035 Tue Nov 06 21:47:43 2012 2 relations: 242323 Tue Nov 06 21:47:43 2012 3 relations: 226709 Tue Nov 06 21:47:43 2012 4 relations: 196437 Tue Nov 06 21:47:43 2012 5 relations: 174191 Tue Nov 06 21:47:43 2012 6 relations: 144917 Tue Nov 06 21:47:43 2012 7 relations: 124814 Tue Nov 06 21:47:43 2012 8 relations: 104586 Tue Nov 06 21:47:43 2012 9 relations: 87082 Tue Nov 06 21:47:43 2012 10+ relations: 331267 Tue Nov 06 21:47:43 2012 heaviest cycle: 27 relations Tue Nov 06 21:47:44 2012 RelProcTime: 542 Tue Nov 06 21:47:44 2012 elapsed time 00:09:04 Tue Nov 06 21:47:44 2012 LatSieveTime: 2848.83 Tue Nov 06 21:47:45 2012 -> Running matrix solving step ... Tue Nov 06 21:47:45 2012 Tue Nov 06 21:47:46 2012 commencing linear algebra Tue Nov 06 21:47:47 2012 read 1910361 cycles Tue Nov 06 21:47:50 2012 cycles contain 6173914 unique relations Tue Nov 06 21:48:42 2012 read 6173914 relations Tue Nov 06 21:48:50 2012 using 20 quadratic characters above 268435244 Tue Nov 06 21:49:18 2012 building initial matrix Tue Nov 06 21:50:24 2012 memory use: 675.1 MB Tue Nov 06 21:50:29 2012 read 1910361 cycles Tue Nov 06 21:50:29 2012 matrix is 1910183 x 1910361 (543.6 MB) with weight 167685440 (87.78/col) Tue Nov 06 21:50:29 2012 sparse part has weight 129141365 (67.60/col) Tue Nov 06 21:50:49 2012 filtering completed in 2 passes Tue Nov 06 21:50:50 2012 matrix is 1909142 x 1909320 (543.6 MB) with weight 167653776 (87.81/col) Tue Nov 06 21:50:50 2012 sparse part has weight 129131755 (67.63/col) Tue Nov 06 21:50:54 2012 matrix starts at (0, 0) Tue Nov 06 21:50:55 2012 matrix is 1909142 x 1909320 (543.6 MB) with weight 167653776 (87.81/col) Tue Nov 06 21:50:55 2012 sparse part has weight 129131755 (67.63/col) Tue Nov 06 21:50:55 2012 saving the first 48 matrix rows for later Tue Nov 06 21:50:56 2012 matrix includes 64 packed rows Tue Nov 06 21:50:56 2012 matrix is 1909094 x 1909320 (512.1 MB) with weight 133715440 (70.03/col) Tue Nov 06 21:50:56 2012 sparse part has weight 122790098 (64.31/col) Tue Nov 06 21:50:56 2012 using block size 65536 for processor cache size 8192 kB Tue Nov 06 21:51:06 2012 commencing Lanczos iteration (8 threads) Tue Nov 06 21:51:06 2012 memory use: 534.3 MB Tue Nov 06 21:51:18 2012 linear algebra at 0.1%, ETA 3h50m Tue Nov 06 21:51:22 2012 checkpointing every 490000 dimensions Wed Nov 07 01:52:26 2012 lanczos halted after 30192 iterations (dim = 1909092) Wed Nov 07 01:52:31 2012 recovered 37 nontrivial dependencies Wed Nov 07 01:52:31 2012 BLanczosTime: 14685 Wed Nov 07 01:52:31 2012 elapsed time 04:04:46 Wed Nov 07 01:52:31 2012 -> Running square root step ... Wed Nov 07 01:52:31 2012 Wed Nov 07 01:52:32 2012 commencing square root phase Wed Nov 07 01:52:32 2012 reading relations for dependency 1 Wed Nov 07 01:52:33 2012 read 954416 cycles Wed Nov 07 01:52:35 2012 cycles contain 3083920 unique relations Wed Nov 07 01:53:14 2012 read 3083920 relations Wed Nov 07 01:53:30 2012 multiplying 3083920 relations Wed Nov 07 01:57:07 2012 multiply complete, coefficients have about 75.57 million bits Wed Nov 07 01:57:07 2012 initial square root is modulo 265711 Wed Nov 07 02:01:45 2012 GCD is 1, no factor found Wed Nov 07 02:01:45 2012 reading relations for dependency 2 Wed Nov 07 02:01:45 2012 read 954158 cycles Wed Nov 07 02:01:47 2012 cycles contain 3087784 unique relations Wed Nov 07 02:02:24 2012 read 3087784 relations Wed Nov 07 02:02:40 2012 multiplying 3087784 relations Wed Nov 07 02:06:17 2012 multiply complete, coefficients have about 75.66 million bits Wed Nov 07 02:06:17 2012 initial square root is modulo 269981 Wed Nov 07 02:10:54 2012 sqrtTime: 1102 Wed Nov 07 02:10:54 2012 prp57 factor: 629589472322495446334663675031264845997425910079012360357 Wed Nov 07 02:10:54 2012 prp93 factor: 100084720178780115237981541387311663053886915308400483818855627013027077953155995355273351769 Wed Nov 07 02:10:54 2012 elapsed time 00:18:23 Wed Nov 07 02:10:54 2012 -> Computing 1.35225e+09 scale for this machine... Wed Nov 07 02:10:54 2012 -> procrels -speedtest> PIPE Wed Nov 07 02:10:58 2012 -> Factorization summary written to s191-40003_190.txt Number: 40003_190 N = 63012286164902784862115566256894294516558531998452560198459491066024731451192780286328215103179379574403277357162667406511048462390811100211451421533 (149 digits) SNFS difficulty: 191 digits. Divisors found: r1=629589472322495446334663675031264845997425910079012360357 (pp57) r2=100084720178780115237981541387311663053886915308400483818855627013027077953155995355273351769 (pp93) Version: Msieve v. 1.50 (SVN 708) Total time: 60.04 hours. Factorization parameters were as follows: n: 63012286164902784862115566256894294516558531998452560198459491066024731451192780286328215103179379574403277357162667406511048462390811100211451421533 m: 100000000000000000000000000000000000000 deg: 5 c5: 4 c0: 3 skew: 0.94 # Murphy_E = 5.387e-11 type: snfs lss: 1 rlim: 10500000 alim: 10500000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 10500000/10500000 Large primes per side: 3 Large prime bits: 28/28 Sieved rational special-q in [0, 0) Total raw relations: 21335117 Relations: 3087784 relations Pruned matrix : 1909094 x 1909320 Polynomial selection time: 0.00 hours. Total sieving time: 55.51 hours. Total relation processing time: 0.15 hours. Matrix solve time: 4.08 hours. time per square root: 0.31 hours. Prototype def-par.txt line would be: snfs,191,5,0,0,0,0,0,0,0,0,10500000,10500000,28,28,54,54,2.5,2.5,100000 total time: 60.04 hours. Intel64 Family 6 Model 26 Stepping 5, GenuineIntel Windows-7-6.1.7601-SP1 processors: 4, speed: 2.80GHz |
software ソフトウェア | GGNFS-SVN430, msieve 1.50 (SVN 408) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | May 25, 2007 09:00:00 UTC 2007 年 5 月 25 日 (金) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 904 | suberi | September 6, 2008 07:51:36 UTC 2008 年 9 月 6 日 (土) 16 時 51 分 36 秒 (日本時間) | |
40 | 3e6 | 2100 | Youcef Lemsafer | November 4, 2012 11:26:38 UTC 2012 年 11 月 4 日 (日) 20 時 26 分 38 秒 (日本時間) | |
45 | 11e6 | 2000 | Youcef Lemsafer | November 4, 2012 11:26:38 UTC 2012 年 11 月 4 日 (日) 20 時 26 分 38 秒 (日本時間) | |
50 | 43e6 | 671 / 7020 | Youcef Lemsafer | November 4, 2012 11:26:38 UTC 2012 年 11 月 4 日 (日) 20 時 26 分 38 秒 (日本時間) |
name 名前 | Youcef Lemsafer |
---|---|
date 日付 | January 9, 2014 20:24:37 UTC 2014 年 1 月 10 日 (金) 5 時 24 分 37 秒 (日本時間) |
composite number 合成数 | 4398494470727862035136007069942900812170257219436438393714402359879483082450124049631605456308415670106421827950293978769072580707443477867388157187996552963<157> |
prime factors 素因数 | 496857887136613356073364815759143715926429945989<48> 8852620808892333828220623190726176571486957207475902564329512905997388043044240977592574442388795812594875367<109> |
factorization results 素因数分解の結果 | Tue Jan 07 07:41:34 2014 -> factmsieve.py (v0.76) Tue Jan 07 07:41:34 2014 -> This is client 1 of 1 Tue Jan 07 07:41:34 2014 -> Running on 4 Cores with 2 hyper-threads per Core Tue Jan 07 07:41:34 2014 -> Working with NAME = 40003_191 Tue Jan 07 07:41:34 2014 -> Selected lattice siever: gnfs-lasieve4I13e Tue Jan 07 07:41:34 2014 -> Creating param file to detect parameter changes... Tue Jan 07 07:41:34 2014 -> Running setup ... Tue Jan 07 07:41:34 2014 -> Estimated minimum relations needed: 2.2022e+07 Tue Jan 07 07:41:34 2014 -> cleaning up before a restart Tue Jan 07 07:41:35 2014 -> Running lattice siever ... Tue Jan 07 07:41:35 2014 -> entering sieving loop <...snipped...> Tue Jan 07 07:41:35 2014 -> Lattice sieving rational q from 4500000 to 4600000. <...snipped...> Tue Jan 07 08:12:02 2014 Found 235868 relations, 1.1% of the estimated minimum (22022019). <...snipped...> Thu Jan 09 15:55:12 2014 -> Lattice sieving rational q from 14300000 to 14400000. <...snipped...> Thu Jan 09 16:30:49 2014 Found 22111717 relations, 100.4% of the estimated minimum (22022019). Thu Jan 09 16:30:49 2014 Thu Jan 09 16:30:49 2014 Thu Jan 09 16:30:49 2014 Msieve v. 1.51 (SVN Official Release) Thu Jan 09 16:30:49 2014 random seeds: fbcf37e0 3dedf81b Thu Jan 09 16:30:49 2014 factoring 4398494470727862035136007069942900812170257219436438393714402359879483082450124049631605456308415670106421827950293978769072580707443477867388157187996552963 (157 digits) Thu Jan 09 16:30:50 2014 searching for 15-digit factors Thu Jan 09 16:30:50 2014 commencing number field sieve (157-digit input) Thu Jan 09 16:30:51 2014 R0: -100000000000000000000000000000000000000 Thu Jan 09 16:30:51 2014 R1: 1 Thu Jan 09 16:30:51 2014 A0: 3 Thu Jan 09 16:30:51 2014 A1: 0 Thu Jan 09 16:30:51 2014 A2: 0 Thu Jan 09 16:30:51 2014 A3: 0 Thu Jan 09 16:30:51 2014 A4: 0 Thu Jan 09 16:30:51 2014 A5: 40 Thu Jan 09 16:30:51 2014 skew 0.60, size 3.292e-013, alpha 0.443, combined = 4.062e-011 rroots = 1 Thu Jan 09 16:30:51 2014 Thu Jan 09 16:30:51 2014 commencing relation filtering Thu Jan 09 16:30:51 2014 estimated available RAM is 8189.6 MB Thu Jan 09 16:30:51 2014 commencing duplicate removal, pass 1 Thu Jan 09 16:32:21 2014 found 3307831 hash collisions in 22111716 relations Thu Jan 09 16:33:01 2014 added 715753 free relations Thu Jan 09 16:33:01 2014 commencing duplicate removal, pass 2 Thu Jan 09 16:33:11 2014 found 2994488 duplicates and 19832981 unique relations Thu Jan 09 16:33:11 2014 memory use: 98.6 MB Thu Jan 09 16:33:11 2014 reading ideals above 720000 Thu Jan 09 16:33:12 2014 commencing singleton removal, initial pass Thu Jan 09 16:35:32 2014 memory use: 689.0 MB Thu Jan 09 16:35:32 2014 reading all ideals from disk Thu Jan 09 16:35:32 2014 memory use: 631.8 MB Thu Jan 09 16:35:34 2014 keeping 21617762 ideals with weight <= 200, target excess is 116926 Thu Jan 09 16:35:35 2014 commencing in-memory singleton removal Thu Jan 09 16:35:37 2014 begin with 19832981 relations and 21617762 unique ideals Thu Jan 09 16:35:53 2014 reduce to 8612983 relations and 8172646 ideals in 20 passes Thu Jan 09 16:35:53 2014 max relations containing the same ideal: 115 Thu Jan 09 16:35:57 2014 removing 1207905 relations and 1055554 ideals in 152351 cliques Thu Jan 09 16:35:57 2014 commencing in-memory singleton removal Thu Jan 09 16:35:58 2014 begin with 7405078 relations and 8172646 unique ideals Thu Jan 09 16:36:03 2014 reduce to 7256740 relations and 6965005 ideals in 10 passes Thu Jan 09 16:36:03 2014 max relations containing the same ideal: 99 Thu Jan 09 16:36:07 2014 removing 911978 relations and 759627 ideals in 152351 cliques Thu Jan 09 16:36:07 2014 commencing in-memory singleton removal Thu Jan 09 16:36:07 2014 begin with 6344762 relations and 6965005 unique ideals Thu Jan 09 16:36:12 2014 reduce to 6247721 relations and 6106118 ideals in 9 passes Thu Jan 09 16:36:12 2014 max relations containing the same ideal: 92 Thu Jan 09 16:36:15 2014 relations with 0 large ideals: 2964 Thu Jan 09 16:36:16 2014 relations with 1 large ideals: 945 Thu Jan 09 16:36:16 2014 relations with 2 large ideals: 17214 Thu Jan 09 16:36:16 2014 relations with 3 large ideals: 131875 Thu Jan 09 16:36:16 2014 relations with 4 large ideals: 532649 Thu Jan 09 16:36:16 2014 relations with 5 large ideals: 1254995 Thu Jan 09 16:36:16 2014 relations with 6 large ideals: 1832451 Thu Jan 09 16:36:16 2014 relations with 7+ large ideals: 2474628 Thu Jan 09 16:36:16 2014 commencing 2-way merge Thu Jan 09 16:36:19 2014 reduce to 3727404 relation sets and 3585801 unique ideals Thu Jan 09 16:36:19 2014 commencing full merge Thu Jan 09 16:37:15 2014 memory use: 440.1 MB Thu Jan 09 16:37:16 2014 found 1909709 cycles, need 1888001 Thu Jan 09 16:37:16 2014 weight of 1888001 cycles is about 132481592 (70.17/cycle) Thu Jan 09 16:37:16 2014 distribution of cycle lengths: Thu Jan 09 16:37:16 2014 1 relations: 258993 Thu Jan 09 16:37:16 2014 2 relations: 228712 Thu Jan 09 16:37:16 2014 3 relations: 214572 Thu Jan 09 16:37:16 2014 4 relations: 190488 Thu Jan 09 16:37:16 2014 5 relations: 172081 Thu Jan 09 16:37:16 2014 6 relations: 145581 Thu Jan 09 16:37:16 2014 7 relations: 127426 Thu Jan 09 16:37:16 2014 8 relations: 108620 Thu Jan 09 16:37:16 2014 9 relations: 91993 Thu Jan 09 16:37:16 2014 10+ relations: 349535 Thu Jan 09 16:37:16 2014 heaviest cycle: 23 relations Thu Jan 09 16:37:16 2014 commencing cycle optimization Thu Jan 09 16:37:18 2014 start with 10907086 relations Thu Jan 09 16:37:35 2014 pruned 250639 relations Thu Jan 09 16:37:35 2014 memory use: 361.9 MB Thu Jan 09 16:37:35 2014 distribution of cycle lengths: Thu Jan 09 16:37:35 2014 1 relations: 258993 Thu Jan 09 16:37:35 2014 2 relations: 233468 Thu Jan 09 16:37:35 2014 3 relations: 221533 Thu Jan 09 16:37:35 2014 4 relations: 194712 Thu Jan 09 16:37:35 2014 5 relations: 175609 Thu Jan 09 16:37:35 2014 6 relations: 147339 Thu Jan 09 16:37:35 2014 7 relations: 128695 Thu Jan 09 16:37:35 2014 8 relations: 108318 Thu Jan 09 16:37:35 2014 9 relations: 91539 Thu Jan 09 16:37:35 2014 10+ relations: 327795 Thu Jan 09 16:37:35 2014 heaviest cycle: 23 relations Thu Jan 09 16:37:36 2014 RelProcTime: 405 Thu Jan 09 16:37:36 2014 elapsed time 00:06:47 Thu Jan 09 16:37:36 2014 LatSieveTime: 2544.92 Thu Jan 09 16:37:36 2014 -> Running matrix solving step ... <...snipped...> Thu Jan 09 16:37:38 2014 commencing linear algebra Thu Jan 09 16:37:38 2014 read 1888001 cycles Thu Jan 09 16:37:41 2014 cycles contain 6072323 unique relations Thu Jan 09 16:38:24 2014 read 6072323 relations Thu Jan 09 16:38:32 2014 using 20 quadratic characters above 268434162 Thu Jan 09 16:39:01 2014 building initial matrix Thu Jan 09 16:40:04 2014 memory use: 760.8 MB Thu Jan 09 16:40:05 2014 read 1888001 cycles Thu Jan 09 16:40:06 2014 matrix is 1887822 x 1888001 (566.7 MB) with weight 169809493 (89.94/col) Thu Jan 09 16:40:06 2014 sparse part has weight 127782809 (67.68/col) Thu Jan 09 16:40:25 2014 filtering completed in 2 passes Thu Jan 09 16:40:25 2014 matrix is 1885342 x 1885521 (566.5 MB) with weight 169724574 (90.01/col) Thu Jan 09 16:40:25 2014 sparse part has weight 127754531 (67.76/col) Thu Jan 09 16:40:29 2014 matrix starts at (0, 0) Thu Jan 09 16:40:29 2014 matrix is 1885342 x 1885521 (566.5 MB) with weight 169724574 (90.01/col) Thu Jan 09 16:40:29 2014 sparse part has weight 127754531 (67.76/col) Thu Jan 09 16:40:29 2014 saving the first 48 matrix rows for later Thu Jan 09 16:40:30 2014 matrix includes 64 packed rows Thu Jan 09 16:40:30 2014 matrix is 1885294 x 1885521 (540.0 MB) with weight 134588379 (71.38/col) Thu Jan 09 16:40:30 2014 sparse part has weight 122705922 (65.08/col) Thu Jan 09 16:40:30 2014 using block size 65536 for processor cache size 8192 kB Thu Jan 09 16:40:38 2014 commencing Lanczos iteration (8 threads) Thu Jan 09 16:40:38 2014 memory use: 531.1 MB Thu Jan 09 16:40:50 2014 linear algebra at 0.1%, ETA 3h46m Thu Jan 09 16:40:53 2014 checkpointing every 530000 dimensions Thu Jan 09 20:39:16 2014 lanczos halted after 29816 iterations (dim = 1885292) Thu Jan 09 20:39:19 2014 recovered 38 nontrivial dependencies Thu Jan 09 20:39:19 2014 BLanczosTime: 14501 Thu Jan 09 20:39:19 2014 elapsed time 04:01:42 Thu Jan 09 20:39:19 2014 -> Running square root step ... <...snipped...> Thu Jan 09 20:39:20 2014 commencing square root phase Thu Jan 09 20:39:20 2014 reading relations for dependency 1 Thu Jan 09 20:39:20 2014 read 943202 cycles Thu Jan 09 20:39:22 2014 cycles contain 3038684 unique relations Thu Jan 09 20:39:53 2014 read 3038684 relations Thu Jan 09 20:40:08 2014 multiplying 3038684 relations Thu Jan 09 20:41:55 2014 multiply complete, coefficients have about 83.50 million bits Thu Jan 09 20:41:56 2014 initial square root is modulo 985571 Thu Jan 09 20:44:15 2014 sqrtTime: 295 Thu Jan 09 20:44:15 2014 prp48 factor: 496857887136613356073364815759143715926429945989 Thu Jan 09 20:44:15 2014 prp109 factor: 8852620808892333828220623190726176571486957207475902564329512905997388043044240977592574442388795812594875367 Thu Jan 09 20:44:15 2014 elapsed time 00:04:56 Thu Jan 09 20:44:15 2014 -> Computing 1.3893e+09 scale for this machine... Thu Jan 09 20:44:15 2014 -> procrels -speedtest> PIPE Thu Jan 09 20:44:18 2014 -> Factorization summary written to s192-40003_191.txt Number: 40003_191 N = 4398494470727862035136007069942900812170257219436438393714402359879483082450124049631605456308415670106421827950293978769072580707443477867388157187996552963 (157 digits) SNFS difficulty: 192 digits. Divisors found: r1=496857887136613356073364815759143715926429945989 (pp48) r2=8852620808892333828220623190726176571486957207475902564329512905997388043044240977592574442388795812594875367 (pp109) Version: Msieve v. 1.51 (SVN Official Release) Total time: 61.14 hours. Factorization parameters were as follows: # # 40003_191, SNFS_diff 191.6 # n: 4398494470727862035136007069942900812170257219436438393714402359879483082450124049631605456308415670106421827950293978769072580707443477867388157187996552963 m: 100000000000000000000000000000000000000 deg: 5 c5: 40 c0: 3 skew: 0.60 # Murphy_E = 4.568e-11 type: snfs lss: 1 rlim: 10900000 alim: 10900000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 q0: 4500000 Factor base limits: 10900000/10900000 Large primes per side: 3 Large prime bits: 28/28 Sieved rational special-q in [0, 0) Total raw relations: 22111717 Relations: 3038684 relations Pruned matrix : 1885294 x 1885521 Polynomial selection time: 0.00 hours. Total sieving time: 56.92 hours. Total relation processing time: 0.11 hours. Matrix solve time: 4.03 hours. time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,192,5,0,0,0,0,0,0,0,0,10900000,10900000,28,28,54,54,2.5,2.5,100000 total time: 61.14 hours. Intel64 Family 6 Model 26 Stepping 5, GenuineIntel Windows-7-6.1.7601-SP1 processors: 4, speed: 2.80GHz |
software ソフトウェア | GGNFS (SVN 440), msieve 1.51 |
execution environment 実行環境 | Windows 7 Pro 64-bit, Intel Xeon W3530 @ 2.8 GHz, 8GB RAM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | May 25, 2007 09:00:00 UTC 2007 年 5 月 25 日 (金) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 904 | suberi | September 6, 2008 07:51:47 UTC 2008 年 9 月 6 日 (土) 16 時 51 分 47 秒 (日本時間) | |
40 | 3e6 | 2352 | Youcef Lemsafer | November 12, 2012 19:54:06 UTC 2012 年 11 月 13 日 (火) 4 時 54 分 6 秒 (日本時間) | |
45 | 11e6 | 4500 | Youcef Lemsafer | November 12, 2012 19:54:06 UTC 2012 年 11 月 13 日 (火) 4 時 54 分 6 秒 (日本時間) | |
50 | 43e6 | 400 / 6449 | Youcef Lemsafer | November 12, 2012 19:54:06 UTC 2012 年 11 月 13 日 (火) 4 時 54 分 6 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | January 6, 2021 08:17:21 UTC 2021 年 1 月 6 日 (水) 17 時 17 分 21 秒 (日本時間) |
composite number 合成数 | 4335547469834061658147640270649033830947751346180887685982242725322739227885527197088689212274797976410149229278074449718558275634579825277633238195596546383299247872616363363<175> |
prime factors 素因数 | 269425138015309831058086976915810358735031420146135064645409746829<66> 16091844665168913209987577377995010161597650476066713168848866293234817097876780567727234264626032821889385647<110> |
factorization results 素因数分解の結果 | 4335547469834061658147640270649033830947751346180887685982242725322739227885527197088689212274797976410149229278074449718558275634579825277633238195596546383299247872616363363=269425138015309831058086976915810358735031420146135064645409746829*16091844665168913209987577377995010161597650476066713168848866293234817097876780567727234264626032821889385647 cado polynomial n: 4335547469834061658147640270649033830947751346180887685982242725322739227885527197088689212274797976410149229278074449718558275634579825277633238195596546383299247872616363363 skew: 0.47 type: snfs c0: 3 c5: 125 Y0: 200000000000000000000000000000000000000 Y1: -1 # f(x) = 125*x^5+3 # g(x) = -x+200000000000000000000000000000000000000 cado parameters (extracts) tasks.lim0 = 11800000 tasks.lim1 = 11800000 tasks.lpb0 = 28 tasks.lpb1 = 28 tasks.sieve.mfb0 = 55 tasks.sieve.mfb1 = 55 tasks.sieve.lambda0 = 2.5 tasks.sieve.lambda1 = 2.5 tasks.I = 12 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 269425138015309831058086976915810358735031420146135064645409746829 16091844665168913209987577377995010161597650476066713168848866293234817097876780567727234264626032821889385647 Warning:Polynomial Selection (size optimized): some stats could not be displayed for polyselect1 (see log file for debug info) Warning:Polynomial Selection (root optimized): some stats could not be displayed for polyselect2 (see log file for debug info) Info:Generate Factor Base: Total cpu/real time for makefb: 5.12/2.04482 Info:Generate Free Relations: Total cpu/real time for freerel: 98.9/25.389 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 27291537 Info:Lattice Sieving: Average J: 1895.11 for 2293551 special-q, max bucket fill -bkmult 1.0,1s:1.166530 Info:Lattice Sieving: Total time: 590517s Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 50.89/138.326 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 137.20000000000002s Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 459.45/401.131 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 336.4s Info:Filtering - Singleton removal: Total cpu/real time for purge: 399.11/421.151 Info:Filtering - Merging: Merged matrix has 2200461 rows and total weight 374825669 (170.3 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 316.96/91.0465 Info:Filtering - Merging: Total cpu/real time for replay: 84.42/72.7824 Info:Linear Algebra: Total cpu/real time for bwc: 83029.1/21226.6 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: WCT time 13520.86, iteration CPU time 0.18, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (69120 iterations) Info:Linear Algebra: Lingen CPU time 447.81, WCT time 129.82 Info:Linear Algebra: Mksol: WCT time 7364.45, iteration CPU time 0.2, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (34816 iterations) Info:Quadratic Characters: Total cpu/real time for characters: 77.06/31.6642 Info:Square Root: Total cpu/real time for sqrt: 597.74/189.469 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 1.18843e+06/45744.4 Info:root: Cleaning up computation data in /tmp/cado.q_yeq419 269425138015309831058086976915810358735031420146135064645409746829 16091844665168913209987577377995010161597650476066713168848866293234817097876780567727234264626032821889385647 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | 6 x Linux Ubuntu 20.04.1 LTS [5.4.0-48-generic|libc 2.31 (Ubuntu GLIBC 2.31-0ubuntu9.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | May 25, 2007 09:00:00 UTC 2007 年 5 月 25 日 (金) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 904 | suberi | September 6, 2008 07:52:05 UTC 2008 年 9 月 6 日 (土) 16 時 52 分 5 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | November 16, 2012 14:47:31 UTC 2012 年 11 月 16 日 (金) 23 時 47 分 31 秒 (日本時間) | |
45 | 11e6 | 2100 / 4216 | 600 | Dmitry Domanov | November 27, 2012 15:57:01 UTC 2012 年 11 月 28 日 (水) 0 時 57 分 1 秒 (日本時間) |
1500 | Eric Jeancolas | October 16, 2020 05:09:16 UTC 2020 年 10 月 16 日 (金) 14 時 9 分 16 秒 (日本時間) |
name 名前 | Robert Backstrom |
---|---|
date 日付 | April 14, 2008 23:50:44 UTC 2008 年 4 月 15 日 (火) 8 時 50 分 44 秒 (日本時間) |
composite number 合成数 | 97351190657200399666172376858653433454439311965255604504585451599228087215506048301091684626851628945893217106392383861289160925526283<134> |
prime factors 素因数 | 1097437743804222790112801602356295333<37> 88707711400317344925950831681572035023026603223066152620648506409066689217254920192657566027207151<98> |
factorization results 素因数分解の結果 | GMP-ECM 6.0.1 [powered by GMP 4.1.4] [ECM] Input number is 97351190657200399666172376858653433454439311965255604504585451599228087215506048301091684626851628945893217106392383861289160925526283 (134 digits) Using B1=3962000, B2=5969970420, polynomial Dickson(6), sigma=529594722 Step 1 took 47547ms Step 2 took 24265ms ********** Factor found in step 2: 1097437743804222790112801602356295333 Found probable prime factor of 37 digits: 1097437743804222790112801602356295333 Probable prime cofactor 88707711400317344925950831681572035023026603223066152620648506409066689217254920192657566027207151 has 98 digits |
name 名前 | matsui |
---|---|
date 日付 | May 16, 2008 23:41:55 UTC 2008 年 5 月 17 日 (土) 8 時 41 分 55 秒 (日本時間) |
composite number 合成数 | 11953893831491935604373929752942899237640420896601806831052630006066601119482157319219769349618521363102513605025416966759209728078800068137194839504032944931399591774525654550399110630298937<191> |
prime factors 素因数 | 1899148878726749048488989889567829<34> |
composite cofactor 合成数の残り | 6294342673917283095296597333781389878764955396535221356317197348749861635004950569207387365842036953134093517964225806435213623451826519913911915772485876053<157> |
factorization results 素因数分解の結果 | Input number is 11953893831491935604373929752942899237640420896601806831052630006066601119482157319219769349618521363102513605025416966759209728078800068137194839504032944931399591774525654550399110630298937 (191 digits) Using B1=80000000, B2=582199712650, polynomial Dickson(30), sigma=1533119823 Step 1 took 2292664ms Step 2 took 403747ms ********** Factor found in step 2: 1899148878726749048488989889567829 Found probable prime factor of 34 digits: 1899148878726749048488989889567829 Composite cofactor 6294342673917283095296597333781389878764955396535221356317197348749861635004950569207387365842036953134093517964225806435213623451826519913911915772485876053 has 157 digits |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | November 18, 2012 13:26:52 UTC 2012 年 11 月 18 日 (日) 22 時 26 分 52 秒 (日本時間) |
composite number 合成数 | 6294342673917283095296597333781389878764955396535221356317197348749861635004950569207387365842036953134093517964225806435213623451826519913911915772485876053<157> |
prime factors 素因数 | 32601858539276085142790225160966382602241<41> 193066989304746770344432769201893486686057553632642714382109333422062514555086259523145588633095270924396313597858133<117> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=545160739 Step 1 took 103279ms ********** Factor found in step 1: 32601858539276085142790225160966382602241 Found probable prime factor of 41 digits: 32601858539276085142790225160966382602241 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | May 25, 2007 09:00:00 UTC 2007 年 5 月 25 日 (金) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 904 | suberi | September 6, 2008 07:52:33 UTC 2008 年 9 月 6 日 (土) 16 時 52 分 33 秒 (日本時間) | |
40 | 3e6 | 1000 / 2089 | Dmitry Domanov | November 16, 2012 14:47:40 UTC 2012 年 11 月 16 日 (金) 23 時 47 分 40 秒 (日本時間) |
name 名前 | matsui |
---|---|
date 日付 | September 29, 2008 20:30:27 UTC 2008 年 9 月 30 日 (火) 5 時 30 分 27 秒 (日本時間) |
composite number 合成数 | 2638566529232341089643546066807989595166818810117536594989975833327270688254378755998477840372259078317921239139584373535543895418449639572065879395910130094201<160> |
prime factors 素因数 | 22355415272513896662048780081754279783<38> 118028070472771437685486920896484037107828428621451610964475648743976065340805709497284979806314122890506877033820039746847<123> |
factorization results 素因数分解の結果 | GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] 2638566529232341089643546066807989595166818810117536594989975833327270688254378755998477840372259078317921239139584373535543895418449639572065879395910130094201 =22355415272513896662048780081754279783* 118028070472771437685486920896484037107828428621451610964475648743976065340805709497284979806314122890506877033820039746847 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | May 25, 2007 09:00:00 UTC 2007 年 5 月 25 日 (金) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 904 | suberi | September 6, 2008 07:52:44 UTC 2008 年 9 月 6 日 (土) 16 時 52 分 44 秒 (日本時間) |
name 名前 | Youcef Lemsafer |
---|---|
date 日付 | November 4, 2012 04:32:04 UTC 2012 年 11 月 4 日 (日) 13 時 32 分 4 秒 (日本時間) |
composite number 合成数 | 91731846444149282395183045329358971581786594897232060962151261769801087003729907341616894523281414484963839531410779527315328140564686878844874943589901734834104821<164> |
prime factors 素因数 | 4991400986540152551808517427177441442627<40> 18377975781051058172783152369408940453134121073012417417787451223164907643698737199603426353365174187001561474880862157637223<125> |
factorization results 素因数分解の結果 | GMP-ECM 6.4.2 [configured with GMP 5.0.5, --enable-asm-redc] [ECM] Input number is (10^199*4+3)/436053579542344711567417124370558743 (164 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3465487454 Step 1 took 16552ms Step 2 took 7051ms ********** Factor found in step 2: 4991400986540152551808517427177441442627 Found probable prime factor of 40 digits: 4991400986540152551808517427177441442627 Probable prime cofactor ((10^199*4+3)/436053579542344711567417124370558743)/4991400986540152551808517427177441442627 has 125 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | May 25, 2007 09:00:00 UTC 2007 年 5 月 25 日 (金) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 904 | suberi | September 6, 2008 07:52:52 UTC 2008 年 9 月 6 日 (土) 16 時 52 分 52 秒 (日本時間) | |
40 | 3e6 | 615 / 2089 | Youcef Lemsafer | November 4, 2012 04:30:10 UTC 2012 年 11 月 4 日 (日) 13 時 30 分 10 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | October 18, 2020 03:16:56 UTC 2020 年 10 月 18 日 (日) 12 時 16 分 56 秒 (日本時間) |
composite number 合成数 | 1510533456914556659284000396935645808300129721824648349906140727379221285272794845339437152159459642112098507021131327692168684883902682243075699276411538793<157> |
prime factors 素因数 | 91411332317318462584478045153997760981495491017113267<53> 16524575439629342518710831485015416686955712259196821814738208614902744274813214754072691374556403192179<104> |
factorization results 素因数分解の結果 | 1510533456914556659284000396935645808300129721824648349906140727379221285272794845339437152159459642112098507021131327692168684883902682243075699276411538793=91411332317318462584478045153997760981495491017113267*16524575439629342518710831485015416686955712259196821814738208614902744274813214754072691374556403192179 cado polynomial n: 1510533456914556659284000396935645808300129721824648349906140727379221285272794845339437152159459642112098507021131327692168684883902682243075699276411538793 skew: 0.94 type: snfs c0: 3 c5: 4 Y0: 10000000000000000000000000000000000000000 Y1: -1 # f(x) = 4*x^5+3 # g(x) = -x+10000000000000000000000000000000000000000 cado parameters (extracts) tasks.lim0 = 15400000 tasks.lim1 = 15400000 tasks.lpb0 = 29 tasks.lpb1 = 29 tasks.sieve.mfb0 = 56 tasks.sieve.mfb1 = 56 tasks.sieve.lambda0 = 2.6 tasks.sieve.lambda1 = 2.6 tasks.I = 12 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 16524575439629342518710831485015416686955712259196821814738208614902744274813214754072691374556403192179 91411332317318462584478045153997760981495491017113267 Warning:Polynomial Selection (size optimized): some stats could not be displayed for polyselect1 (see log file for debug info) Warning:Polynomial Selection (root optimized): some stats could not be displayed for polyselect2 (see log file for debug info) Info:Generate Factor Base: Total cpu/real time for makefb: 6.57/2.45639 Info:Generate Free Relations: Total cpu/real time for freerel: 202.08/52.3653 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 45376708 Info:Lattice Sieving: Average J: 1894.46 for 3111540 special-q, max bucket fill -bkmult 1.0,1s:1.104850 Info:Lattice Sieving: Total time: 1.04234e+06s Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 89.86/195.798 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 195.4s Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 683.31/614.788 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 542.0999999999999s Info:Filtering - Singleton removal: Total cpu/real time for purge: 476.11/495.541 Info:Filtering - Merging: Merged matrix has 3051692 rows and total weight 522561536 (171.2 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 456.87/131.707 Info:Filtering - Merging: Total cpu/real time for replay: 122.53/108.694 Info:Linear Algebra: Total cpu/real time for bwc: 176569/45553.2 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: WCT time 28814.05, iteration CPU time 0.28, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (95744 iterations) Info:Linear Algebra: Lingen CPU time 647.75, WCT time 186.81 Info:Linear Algebra: Mksol: WCT time 16199.31, iteration CPU time 0.32, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (48128 iterations) Info:Quadratic Characters: Total cpu/real time for characters: 115.01/47.1086 Info:Square Root: Total cpu/real time for sqrt: 803.77/257.779 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 1.9949e+06/568811 Info:root: Cleaning up computation data in /tmp/cado.m6usxyhb 16524575439629342518710831485015416686955712259196821814738208614902744274813214754072691374556403192179 91411332317318462584478045153997760981495491017113267 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 20.04.1 LTS [5.4.0-48-generic|libc 2.31 (Ubuntu GLIBC 2.31-0ubuntu9.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | May 25, 2007 09:00:00 UTC 2007 年 5 月 25 日 (金) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 904 | suberi | September 6, 2008 07:53:01 UTC 2008 年 9 月 6 日 (土) 16 時 53 分 1 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | November 16, 2012 14:47:55 UTC 2012 年 11 月 16 日 (金) 23 時 47 分 55 秒 (日本時間) | |
45 | 11e6 | 600 / 4216 | Dmitry Domanov | November 27, 2012 15:56:50 UTC 2012 年 11 月 28 日 (水) 0 時 56 分 50 秒 (日本時間) |
name 名前 | Youcef Lemsafer |
---|---|
date 日付 | January 11, 2014 10:37:07 UTC 2014 年 1 月 11 日 (土) 19 時 37 分 7 秒 (日本時間) |
composite number 合成数 | 5664877838262052359511066294628064534767972840953739675106092220952422125973353139059527703430926618948641104199159765942978825358620507099076764560971231458793344791553333904099<178> |
prime factors 素因数 | 55666002587068831184719813551787647635352501345999778360804123<62> 101765486562492975664464010218464694031797606985557466323154868219064829799187863546776410364117597258832751486743513<117> |
factorization results 素因数分解の結果 | Thu Jan 09 16:40:56 2014 -> factmsieve.py (v0.76) Thu Jan 09 16:40:56 2014 -> This is client 1 of 1 Thu Jan 09 16:40:56 2014 -> Running on 12 Cores with 2 hyper-threads per Core Thu Jan 09 16:40:56 2014 -> Working with NAME = 40003_201 Thu Jan 09 16:40:56 2014 -> Selected lattice siever: gnfs-lasieve4I14e Thu Jan 09 16:40:56 2014 -> Creating param file to detect parameter changes... Thu Jan 09 16:40:56 2014 -> Running setup ... Thu Jan 09 16:40:56 2014 -> Estimated minimum relations needed: 3.05995e+07 Thu Jan 09 16:40:56 2014 -> cleaning up before a restart Thu Jan 09 16:40:56 2014 -> Running lattice siever ... Thu Jan 09 16:40:56 2014 -> entering sieving loop <...snipped...> Thu Jan 09 16:40:56 2014 -> Lattice sieving rational q from 6500000 to 6600000. <...snipped...> Thu Jan 09 17:04:28 2014 Found 492351 relations, 1.6% of the estimated minimum (30599496). <...snipped...> Sat Jan 11 01:01:27 2014 -> Lattice sieving rational q from 13900000 to 14000000. <...snipped...> Sat Jan 11 01:26:55 2014 Found 37360207 relations, 122.1% of the estimated minimum (30599496). Sat Jan 11 01:26:55 2014 Sat Jan 11 01:26:55 2014 Sat Jan 11 01:26:55 2014 Msieve v. 1.51 (SVN Official Release) Sat Jan 11 01:26:55 2014 random seeds: 884817c0 51f4d0c8 Sat Jan 11 01:26:55 2014 factoring 5664877838262052359511066294628064534767972840953739675106092220952422125973353139059527703430926618948641104199159765942978825358620507099076764560971231458793344791553333904099 (178 digits) Sat Jan 11 01:26:56 2014 searching for 15-digit factors Sat Jan 11 01:26:56 2014 commencing number field sieve (178-digit input) Sat Jan 11 01:26:56 2014 R0: -10000000000000000000000000000000000000000 Sat Jan 11 01:26:56 2014 R1: 1 Sat Jan 11 01:26:56 2014 A0: 3 Sat Jan 11 01:26:56 2014 A1: 0 Sat Jan 11 01:26:56 2014 A2: 0 Sat Jan 11 01:26:56 2014 A3: 0 Sat Jan 11 01:26:56 2014 A4: 0 Sat Jan 11 01:26:56 2014 A5: 40 Sat Jan 11 01:26:56 2014 skew 0.60, size 7.091e-014, alpha 0.443, combined = 1.557e-011 rroots = 1 Sat Jan 11 01:26:56 2014 Sat Jan 11 01:26:56 2014 commencing relation filtering Sat Jan 11 01:26:56 2014 estimated available RAM is 32739.1 MB Sat Jan 11 01:26:56 2014 commencing duplicate removal, pass 1 Sat Jan 11 01:30:18 2014 skipped 1 relations with b > 2^32 Sat Jan 11 01:30:18 2014 found 3840856 hash collisions in 37360205 relations Sat Jan 11 01:31:16 2014 added 65 free relations Sat Jan 11 01:31:16 2014 commencing duplicate removal, pass 2 Sat Jan 11 01:31:39 2014 found 3057732 duplicates and 34302538 unique relations Sat Jan 11 01:31:39 2014 memory use: 138.6 MB Sat Jan 11 01:31:39 2014 reading ideals above 720000 Sat Jan 11 01:31:39 2014 commencing singleton removal, initial pass Sat Jan 11 01:36:49 2014 memory use: 753.0 MB Sat Jan 11 01:36:50 2014 reading all ideals from disk Sat Jan 11 01:36:51 2014 memory use: 1157.2 MB Sat Jan 11 01:36:55 2014 keeping 37796984 ideals with weight <= 200, target excess is 183356 Sat Jan 11 01:36:59 2014 commencing in-memory singleton removal Sat Jan 11 01:37:02 2014 begin with 34302538 relations and 37796984 unique ideals Sat Jan 11 01:37:37 2014 reduce to 12212070 relations and 11961754 ideals in 23 passes Sat Jan 11 01:37:37 2014 max relations containing the same ideal: 102 Sat Jan 11 01:37:44 2014 removing 396529 relations and 377717 ideals in 18812 cliques Sat Jan 11 01:37:44 2014 commencing in-memory singleton removal Sat Jan 11 01:37:45 2014 begin with 11815541 relations and 11961754 unique ideals Sat Jan 11 01:37:56 2014 reduce to 11802963 relations and 11571430 ideals in 10 passes Sat Jan 11 01:37:56 2014 max relations containing the same ideal: 99 Sat Jan 11 01:38:03 2014 removing 282436 relations and 263624 ideals in 18812 cliques Sat Jan 11 01:38:03 2014 commencing in-memory singleton removal Sat Jan 11 01:38:04 2014 begin with 11520527 relations and 11571430 unique ideals Sat Jan 11 01:38:14 2014 reduce to 11513802 relations and 11301065 ideals in 9 passes Sat Jan 11 01:38:14 2014 max relations containing the same ideal: 96 Sat Jan 11 01:38:17 2014 relations with 0 large ideals: 3784 Sat Jan 11 01:38:17 2014 relations with 1 large ideals: 1547 Sat Jan 11 01:38:17 2014 relations with 2 large ideals: 25627 Sat Jan 11 01:38:17 2014 relations with 3 large ideals: 206125 Sat Jan 11 01:38:17 2014 relations with 4 large ideals: 892428 Sat Jan 11 01:38:17 2014 relations with 5 large ideals: 2238527 Sat Jan 11 01:38:17 2014 relations with 6 large ideals: 3410753 Sat Jan 11 01:38:17 2014 relations with 7+ large ideals: 4735011 Sat Jan 11 01:38:17 2014 commencing 2-way merge Sat Jan 11 01:38:27 2014 reduce to 6380964 relation sets and 6168249 unique ideals Sat Jan 11 01:38:27 2014 ignored 23 oversize relation sets Sat Jan 11 01:38:27 2014 commencing full merge Sat Jan 11 01:40:39 2014 memory use: 679.9 MB Sat Jan 11 01:40:40 2014 found 3259981 cycles, need 3246449 Sat Jan 11 01:40:40 2014 weight of 3246449 cycles is about 227402646 (70.05/cycle) Sat Jan 11 01:40:40 2014 distribution of cycle lengths: Sat Jan 11 01:40:40 2014 1 relations: 462088 Sat Jan 11 01:40:40 2014 2 relations: 450588 Sat Jan 11 01:40:40 2014 3 relations: 419675 Sat Jan 11 01:40:40 2014 4 relations: 358475 Sat Jan 11 01:40:40 2014 5 relations: 303693 Sat Jan 11 01:40:40 2014 6 relations: 248464 Sat Jan 11 01:40:40 2014 7 relations: 198862 Sat Jan 11 01:40:40 2014 8 relations: 157935 Sat Jan 11 01:40:40 2014 9 relations: 126956 Sat Jan 11 01:40:40 2014 10+ relations: 519713 Sat Jan 11 01:40:40 2014 heaviest cycle: 28 relations Sat Jan 11 01:40:41 2014 commencing cycle optimization Sat Jan 11 01:40:47 2014 start with 18134438 relations Sat Jan 11 01:41:24 2014 pruned 283825 relations Sat Jan 11 01:41:24 2014 memory use: 643.9 MB Sat Jan 11 01:41:24 2014 distribution of cycle lengths: Sat Jan 11 01:41:24 2014 1 relations: 462088 Sat Jan 11 01:41:24 2014 2 relations: 458302 Sat Jan 11 01:41:24 2014 3 relations: 430983 Sat Jan 11 01:41:24 2014 4 relations: 362884 Sat Jan 11 01:41:24 2014 5 relations: 306344 Sat Jan 11 01:41:24 2014 6 relations: 248118 Sat Jan 11 01:41:24 2014 7 relations: 197163 Sat Jan 11 01:41:24 2014 8 relations: 155739 Sat Jan 11 01:41:24 2014 9 relations: 124424 Sat Jan 11 01:41:24 2014 10+ relations: 500404 Sat Jan 11 01:41:24 2014 heaviest cycle: 28 relations Sat Jan 11 01:41:29 2014 RelProcTime: 873 Sat Jan 11 01:41:29 2014 elapsed time 00:14:34 Sat Jan 11 01:41:29 2014 LatSieveTime: 2402.33 Sat Jan 11 01:41:29 2014 -> Running matrix solving step ... <...snipped...> Sat Jan 11 01:41:31 2014 commencing linear algebra Sat Jan 11 01:41:31 2014 read 3246449 cycles Sat Jan 11 01:41:39 2014 cycles contain 11160248 unique relations Sat Jan 11 01:42:49 2014 read 11160248 relations Sat Jan 11 01:43:08 2014 using 20 quadratic characters above 536869952 Sat Jan 11 01:44:23 2014 building initial matrix Sat Jan 11 01:47:11 2014 memory use: 1393.6 MB Sat Jan 11 01:47:14 2014 read 3246449 cycles Sat Jan 11 01:47:16 2014 matrix is 3246263 x 3246449 (981.9 MB) with weight 291669711 (89.84/col) Sat Jan 11 01:47:16 2014 sparse part has weight 221683207 (68.28/col) Sat Jan 11 01:48:00 2014 filtering completed in 2 passes Sat Jan 11 01:48:01 2014 matrix is 3237683 x 3237868 (981.1 MB) with weight 291370221 (89.99/col) Sat Jan 11 01:48:01 2014 sparse part has weight 221580505 (68.43/col) Sat Jan 11 01:48:24 2014 matrix starts at (0, 0) Sat Jan 11 01:48:25 2014 matrix is 3237683 x 3237868 (981.1 MB) with weight 291370221 (89.99/col) Sat Jan 11 01:48:25 2014 sparse part has weight 221580505 (68.43/col) Sat Jan 11 01:48:25 2014 saving the first 48 matrix rows for later Sat Jan 11 01:48:27 2014 matrix includes 64 packed rows Sat Jan 11 01:48:27 2014 matrix is 3237635 x 3237868 (937.8 MB) with weight 232779591 (71.89/col) Sat Jan 11 01:48:27 2014 sparse part has weight 213466204 (65.93/col) Sat Jan 11 01:48:27 2014 using block size 65536 for processor cache size 15360 kB Sat Jan 11 01:48:46 2014 commencing Lanczos iteration (24 threads) Sat Jan 11 01:48:46 2014 memory use: 1322.6 MB Sat Jan 11 01:49:01 2014 linear algebra at 0.0%, ETA 8h19m Sat Jan 11 01:49:06 2014 checkpointing every 390000 dimensions Sat Jan 11 10:16:22 2014 lanczos halted after 51201 iterations (dim = 3237630) Sat Jan 11 10:16:28 2014 recovered 35 nontrivial dependencies Sat Jan 11 10:16:29 2014 BLanczosTime: 30898 Sat Jan 11 10:16:29 2014 elapsed time 08:35:00 Sat Jan 11 10:16:29 2014 -> Running square root step ... <...snipped...> Sat Jan 11 10:16:30 2014 commencing square root phase Sat Jan 11 10:16:30 2014 reading relations for dependency 1 Sat Jan 11 10:16:31 2014 read 1617539 cycles Sat Jan 11 10:16:35 2014 cycles contain 5575916 unique relations Sat Jan 11 10:17:07 2014 read 5575916 relations Sat Jan 11 10:17:44 2014 multiplying 5575916 relations Sat Jan 11 10:22:07 2014 multiply complete, coefficients have about 159.22 million bits Sat Jan 11 10:22:08 2014 initial square root is modulo 517711 Sat Jan 11 10:27:43 2014 GCD is 1, no factor found Sat Jan 11 10:27:43 2014 reading relations for dependency 2 Sat Jan 11 10:27:44 2014 read 1619479 cycles Sat Jan 11 10:27:47 2014 cycles contain 5575768 unique relations Sat Jan 11 10:28:29 2014 read 5575768 relations Sat Jan 11 10:29:11 2014 multiplying 5575768 relations Sat Jan 11 10:34:14 2014 multiply complete, coefficients have about 159.22 million bits Sat Jan 11 10:34:15 2014 initial square root is modulo 517571 Sat Jan 11 10:40:27 2014 GCD is 1, no factor found Sat Jan 11 10:40:27 2014 reading relations for dependency 3 Sat Jan 11 10:40:28 2014 read 1617916 cycles Sat Jan 11 10:40:32 2014 cycles contain 5576654 unique relations Sat Jan 11 10:41:13 2014 read 5576654 relations Sat Jan 11 10:41:54 2014 multiplying 5576654 relations Sat Jan 11 10:46:54 2014 multiply complete, coefficients have about 159.24 million bits Sat Jan 11 10:46:56 2014 initial square root is modulo 518741 Sat Jan 11 10:53:10 2014 GCD is N, no factor found Sat Jan 11 10:53:10 2014 reading relations for dependency 4 Sat Jan 11 10:53:11 2014 read 1618991 cycles Sat Jan 11 10:53:15 2014 cycles contain 5574732 unique relations Sat Jan 11 10:53:55 2014 read 5574732 relations Sat Jan 11 10:54:36 2014 multiplying 5574732 relations Sat Jan 11 10:59:38 2014 multiply complete, coefficients have about 159.19 million bits Sat Jan 11 10:59:40 2014 initial square root is modulo 516361 Sat Jan 11 11:05:56 2014 GCD is N, no factor found Sat Jan 11 11:05:56 2014 reading relations for dependency 5 Sat Jan 11 11:05:57 2014 read 1618111 cycles Sat Jan 11 11:06:01 2014 cycles contain 5575966 unique relations Sat Jan 11 11:06:42 2014 read 5575966 relations Sat Jan 11 11:07:23 2014 multiplying 5575966 relations Sat Jan 11 11:12:19 2014 multiply complete, coefficients have about 159.22 million bits Sat Jan 11 11:12:21 2014 initial square root is modulo 517711 Sat Jan 11 11:18:20 2014 sqrtTime: 3710 Sat Jan 11 11:18:20 2014 prp62 factor: 55666002587068831184719813551787647635352501345999778360804123 Sat Jan 11 11:18:20 2014 prp117 factor: 101765486562492975664464010218464694031797606985557466323154868219064829799187863546776410364117597258832751486743513 Sat Jan 11 11:18:20 2014 elapsed time 01:01:51 Sat Jan 11 11:18:20 2014 -> Computing 1.38944e+09 scale for this machine... Sat Jan 11 11:18:20 2014 -> procrels -speedtest> PIPE Sat Jan 11 11:18:24 2014 -> Factorization summary written to s202-40003_201.txt Number: 40003_201 N = 5664877838262052359511066294628064534767972840953739675106092220952422125973353139059527703430926618948641104199159765942978825358620507099076764560971231458793344791553333904099 (178 digits) SNFS difficulty: 202 digits. Divisors found: r1=55666002587068831184719813551787647635352501345999778360804123 (pp62) r2=101765486562492975664464010218464694031797606985557466323154868219064829799187863546776410364117597258832751486743513 (pp117) Version: Msieve v. 1.51 (SVN Official Release) Total time: 42.85 hours. Factorization parameters were as follows: # # 40003_201, SNFS_diff = 201.6 # n: 5664877838262052359511066294628064534767972840953739675106092220952422125973353139059527703430926618948641104199159765942978825358620507099076764560971231458793344791553333904099 m: 10000000000000000000000000000000000000000 deg: 5 c5: 40 c0: 3 skew: 0.60 # Murphy_E = 1.755e-11 type: snfs lss: 1 rlim: 16000000 alim: 16000000 lpbr: 29 lpba: 29 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 q0: 6500000 Factor base limits: 16000000/16000000 Large primes per side: 3 Large prime bits: 29/29 Sieved rational special-q in [0, 0) Total raw relations: 37360207 Relations: 5575966 relations Pruned matrix : 3237635 x 3237868 Polynomial selection time: 0.00 hours. Total sieving time: 33.00 hours. Total relation processing time: 0.24 hours. Matrix solve time: 8.58 hours. time per square root: 1.03 hours. Prototype def-par.txt line would be: snfs,202,5,0,0,0,0,0,0,0,0,16000000,16000000,29,29,56,56,2.6,2.6,100000 total time: 42.85 hours. Intel64 Family 6 Model 45 Stepping 7, GenuineIntel Windows-7-6.1.7601-SP1 processors: 24, speed: 2.00GHz |
software ソフトウェア | GGNFS (SVN 440), msieve 1.51 |
execution environment 実行環境 | Windows 7 Pro 64-bit, 2x Intel Xeon E5-2620 @ 2.0 GHz, 32 GB RAM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1118 | 118 | Makoto Kamada | November 12, 2012 06:00:00 UTC 2012 年 11 月 12 日 (月) 15 時 0 分 0 秒 (日本時間) |
1000 | Warut Roonguthai | November 14, 2012 14:53:33 UTC 2012 年 11 月 14 日 (水) 23 時 53 分 33 秒 (日本時間) | |||
40 | 3e6 | 2352 | Youcef Lemsafer | November 16, 2012 08:01:58 UTC 2012 年 11 月 16 日 (金) 17 時 1 分 58 秒 (日本時間) | |
45 | 11e6 | 4500 | Youcef Lemsafer | November 16, 2012 08:01:58 UTC 2012 年 11 月 16 日 (金) 17 時 1 分 58 秒 (日本時間) | |
50 | 43e6 | 400 / 6448 | Youcef Lemsafer | November 16, 2012 08:01:58 UTC 2012 年 11 月 16 日 (金) 17 時 1 分 58 秒 (日本時間) |
name 名前 | Markus Tervooren |
---|---|
date 日付 | March 15, 2013 21:10:09 UTC 2013 年 3 月 16 日 (土) 6 時 10 分 9 秒 (日本時間) |
composite number 合成数 | 40000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003<203> |
prime factors 素因数 | 1935408417379470350634773280499850478044062847264770421674284584576922879097177760442893509<91> 20667472374724774699183660392381951388966816047820142983688470223957706120195325118454188853859825490527108976167<113> |
factorization results 素因数分解の結果 | Msieve v. 1.51 (SVN 838M) Fri Mar 15 13:11:55 2013 random seeds: 02f76506 9d939049 factoring 40000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003 (203 digits) searching for 15-digit factors commencing number field sieve (203-digit input) R0: -10000000000000000000000000000000000000000 R1: 1 A0: 3 A1: 0 A2: 0 A3: 0 A4: 0 A5: 400 skew 0.38, size 5.510e-14, alpha -0.182, combined = 1.346e-11 rroots = 1 commencing relation filtering estimated available RAM is 16079.7 MB commencing duplicate removal, pass 1 error -15 reading relation 3449792 error -9 reading relation 6875988 read 10M relations error -15 reading relation 10280355 error -11 reading relation 13658894 error -15 reading relation 17013255 read 20M relations error -9 reading relation 20322730 error -15 reading relation 23604020 error -11 reading relation 26826747 read 30M relations error -9 reading relation 30388115 error -9 reading relation 33894508 error -9 reading relation 37448263 error -9 reading relation 37639364 error -15 reading relation 37715835 error -5 reading relation 38060981 error -9 reading relation 38214459 error -11 reading relation 38403402 error -15 reading relation 38554854 error -5 reading relation 38745909 error -1 reading relation 38898670 error -15 reading relation 39087655 error -11 reading relation 39239085 error -11 reading relation 39428618 error -11 reading relation 39507898 error -15 reading relation 39698663 error -15 reading relation 39887162 read 40M relations error -5 reading relation 40073045 error -15 reading relation 40260448 error -11 reading relation 40410059 error -15 reading relation 40596056 error -11 reading relation 40676185 error -15 reading relation 40861543 error -11 reading relation 41046530 error -15 reading relation 41231427 error -15 reading relation 41417265 error -15 reading relation 41599296 error -11 reading relation 41680918 error -9 reading relation 41862415 error -9 reading relation 42045937 error -15 reading relation 42228195 error -11 reading relation 42410260 error -11 reading relation 42589208 error -11 reading relation 42851116 error -15 reading relation 43210806 error -9 reading relation 43389854 error -11 reading relation 43567571 error -9 reading relation 43652615 error -9 reading relation 43830406 error -11 reading relation 44008780 error -15 reading relation 44184864 error -9 reading relation 44362712 error -9 reading relation 44540330 error -11 reading relation 44626085 error -5 reading relation 44802181 error -15 reading relation 44833915 error -9 reading relation 44857042 error -9 reading relation 44889332 error -15 reading relation 44922064 error -15 reading relation 44953973 error -15 reading relation 44986135 error -11 reading relation 45018155 error -15 reading relation 45042753 error -9 reading relation 45074872 error -15 reading relation 45107289 error -1 reading relation 45138321 error -1 reading relation 45169923 error -1 reading relation 45202251 error -9 reading relation 45225664 error -11 reading relation 45257855 error -11 reading relation 45289591 error -11 reading relation 45321671 error -9 reading relation 45353455 error -11 reading relation 45385537 error -15 reading relation 45408802 error -11 reading relation 45440775 error -11 reading relation 45471806 error -11 reading relation 45503317 error -15 reading relation 45535536 error -15 reading relation 45566957 error -11 reading relation 45590146 error -11 reading relation 45652558 error -11 reading relation 45683666 error -15 reading relation 45715114 error -6 reading relation 45746132 error -15 reading relation 45770249 error -15 reading relation 45802340 error -9 reading relation 45834373 error -11 reading relation 45865432 error -11 reading relation 45896193 error -15 reading relation 45927289 error -9 reading relation 45935902 error -9 reading relation 45967494 error -15 reading relation 45991761 error -9 reading relation 46000622 error -15 reading relation 46008933 error -9 reading relation 46017280 error -15 reading relation 46025709 error -11 reading relation 46040543 read 50M relations error -15 reading relation 50635250 error -1 reading relation 55395866 read 60M relations error -5 reading relation 60185136 error -1 reading relation 64990955 error -9 reading relation 65055053 error -1 reading relation 65118085 error -11 reading relation 65181314 error -11 reading relation 65244026 error -11 reading relation 65308142 error -11 reading relation 65371120 read 70M relations error -15 reading relation 70130998 error -15 reading relation 74882212 error -15 reading relation 75644516 error -9 reading relation 75653129 error -11 reading relation 75684721 error -9 reading relation 75707844 error -11 reading relation 75730007 error -15 reading relation 75752341 error -1 reading relation 75785122 error -15 reading relation 75809389 error -1 reading relation 75831838 skipped 14 relations with b > 2^32 found 8166520 hash collisions in 75854166 relations added 2 free relations commencing duplicate removal, pass 2 found 6624744 duplicates and 69229424 unique relations memory use: 394.4 MB reading ideals above 720000 commencing singleton removal, initial pass memory use: 1506.0 MB reading all ideals from disk memory use: 2354.1 MB keeping 67719656 ideals with weight <= 200, target excess is 442290 commencing in-memory singleton removal begin with 69229424 relations and 67719656 unique ideals reduce to 32786922 relations and 26387063 ideals in 16 passes max relations containing the same ideal: 127 removing 4963758 relations and 3963758 ideals in 1000000 cliques commencing in-memory singleton removal begin with 27823164 relations and 26387063 unique ideals reduce to 27211408 relations and 21787663 ideals in 9 passes max relations containing the same ideal: 112 removing 3869384 relations and 2869384 ideals in 1000000 cliques commencing in-memory singleton removal begin with 23342024 relations and 21787663 unique ideals reduce to 22919608 relations and 18480005 ideals in 8 passes max relations containing the same ideal: 99 removing 3543175 relations and 2543175 ideals in 1000000 cliques commencing in-memory singleton removal begin with 19376433 relations and 18480005 unique ideals reduce to 18976583 relations and 15520552 ideals in 8 passes max relations containing the same ideal: 87 removing 3385359 relations and 2385359 ideals in 1000000 cliques commencing in-memory singleton removal begin with 15591224 relations and 15520552 unique ideals reduce to 15169848 relations and 12693522 ideals in 7 passes max relations containing the same ideal: 72 removing 3298352 relations and 2298352 ideals in 1000000 cliques commencing in-memory singleton removal begin with 11871496 relations and 12693522 unique ideals reduce to 11387357 relations and 9882398 ideals in 9 passes max relations containing the same ideal: 63 removing 3218690 relations and 2226788 ideals in 991902 cliques commencing in-memory singleton removal begin with 8168667 relations and 9882398 unique ideals reduce to 7557450 relations and 6995117 ideals in 10 passes max relations containing the same ideal: 46 removing 314490 relations and 265214 ideals in 49276 cliques commencing in-memory singleton removal begin with 7242960 relations and 6995117 unique ideals reduce to 7233822 relations and 6720706 ideals in 6 passes max relations containing the same ideal: 46 relations with 0 large ideals: 10029 relations with 1 large ideals: 39785 relations with 2 large ideals: 266281 relations with 3 large ideals: 923358 relations with 4 large ideals: 1798473 relations with 5 large ideals: 2043436 relations with 6 large ideals: 1432721 relations with 7+ large ideals: 719739 commencing 2-way merge reduce to 4276025 relation sets and 3762909 unique ideals commencing full merge memory use: 439.4 MB found 2285536 cycles, need 2215109 weight of 2215109 cycles is about 155164686 (70.05/cycle) distribution of cycle lengths: 1 relations: 247401 2 relations: 245228 3 relations: 256755 4 relations: 250376 5 relations: 241786 6 relations: 215621 7 relations: 188325 8 relations: 155992 9 relations: 125461 10+ relations: 288164 heaviest cycle: 17 relations commencing cycle optimization start with 11987960 relations pruned 279635 relations memory use: 410.5 MB distribution of cycle lengths: 1 relations: 247401 2 relations: 250356 3 relations: 265394 4 relations: 257215 5 relations: 249038 6 relations: 220175 7 relations: 191258 8 relations: 155601 9 relations: 123368 10+ relations: 255303 heaviest cycle: 17 relations RelProcTime: 3334 commencing linear algebra read 2215109 cycles cycles contain 6898124 unique relations read 6898124 relations using 20 quadratic characters above 1073723070 building initial matrix memory use: 859.1 MB read 2215109 cycles matrix is 2214927 x 2215109 (665.1 MB) with weight 195502566 (88.26/col) sparse part has weight 149976879 (67.71/col) filtering completed in 2 passes matrix is 2212707 x 2212889 (664.9 MB) with weight 195429262 (88.31/col) sparse part has weight 149947881 (67.76/col) matrix starts at (0, 0) matrix is 2212707 x 2212889 (664.9 MB) with weight 195429262 (88.31/col) sparse part has weight 149947881 (67.76/col) saving the first 48 matrix rows for later matrix includes 64 packed rows matrix is 2212659 x 2212889 (632.9 MB) with weight 156650034 (70.79/col) sparse part has weight 143773602 (64.97/col) using block size 65536 for processor cache size 6144 kB commencing Lanczos iteration (6 threads) memory use: 590.3 MB linear algebra at 0.1%, ETA 6h 4m2212889 dimensions (0.1%, ETA 6h 4m) checkpointing every 390000 dimensions889 dimensions (0.1%, ETA 5h45m) linear algebra completed 2212557 of 2212889 dimensions (100.0%, ETA 0h 0m) lanczos halted after 34991 iterations (dim = 2212658) recovered 38 nontrivial dependencies BLanczosTime: 20093 commencing square root phase reading relations for dependency 1 read 1104570 cycles cycles contain 3443632 unique relations read 3443632 relations multiplying 3443632 relations multiply complete, coefficients have about 108.72 million bits initial square root is modulo 63620071 Newton iteration failed to converge algebraic square root failed reading relations for dependency 2 read 1106068 cycles cycles contain 3449604 unique relations read 3449604 relations multiplying 3449604 relations multiply complete, coefficients have about 108.91 million bits initial square root is modulo 65620741 GCD is 1, no factor found reading relations for dependency 3 read 1106753 cycles cycles contain 3451672 unique relations read 3451672 relations multiplying 3451672 relations multiply complete, coefficients have about 108.97 million bits initial square root is modulo 66349531 GCD is N, no factor found reading relations for dependency 4 read 1106213 cycles cycles contain 3446662 unique relations read 3446662 relations multiplying 3446662 relations multiply complete, coefficients have about 108.81 million bits initial square root is modulo 64633181 sqrtTime: 2436 prp91 factor: 1935408417379470350634773280499850478044062847264770421674284584576922879097177760442893509 prp113 factor: 20667472374724774699183660392381951388966816047820142983688470223957706120195325118454188853859825490527108976167 elapsed time 07:11:04 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1118 | 118 | Makoto Kamada | November 12, 2012 06:00:00 UTC 2012 年 11 月 12 日 (月) 15 時 0 分 0 秒 (日本時間) |
1000 | Warut Roonguthai | November 14, 2012 14:53:44 UTC 2012 年 11 月 14 日 (水) 23 時 53 分 44 秒 (日本時間) | |||
40 | 3e6 | 3352 | 1000 | Dmitry Domanov | November 16, 2012 14:48:14 UTC 2012 年 11 月 16 日 (金) 23 時 48 分 14 秒 (日本時間) |
2352 | Youcef Lemsafer | November 21, 2012 08:20:08 UTC 2012 年 11 月 21 日 (水) 17 時 20 分 8 秒 (日本時間) | |||
45 | 11e6 | 4500 | Youcef Lemsafer | November 21, 2012 08:20:08 UTC 2012 年 11 月 21 日 (水) 17 時 20 分 8 秒 (日本時間) | |
50 | 43e6 | 400 / 6410 | Youcef Lemsafer | November 21, 2012 08:20:08 UTC 2012 年 11 月 21 日 (水) 17 時 20 分 8 秒 (日本時間) |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | February 19, 2013 22:16:08 UTC 2013 年 2 月 20 日 (水) 7 時 16 分 8 秒 (日本時間) |
composite number 合成数 | 400000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003<204> |
prime factors 素因数 | 9896088083509053881090350733303341204003835574556922907569044035648109238086645674926237903<91> 40420012092107813948890213218430549985946501942513337640305126159736863950316376207107962721816976355668689410701<113> |
factorization results 素因数分解の結果 | Number: 40003_203 N=400000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003 ( 204 digits) SNFS difficulty: 205 digits. Divisors found: r1=9896088083509053881090350733303341204003835574556922907569044035648109238086645674926237903 r2=40420012092107813948890213218430549985946501942513337640305126159736863950316376207107962721816976355668689410701 Version: Total time: 338.76 hours. Scaled time: 1244.59 units (timescale=3.674). Factorization parameters were as follows: n: 400000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003 m: 100000000000000000000000000000000000000000 deg: 5 c5: 1 c0: 75 skew: 2.37 # Murphy_E = 1.332e-11 type: snfs lss: 1 rlim: 20000000 alim: 20000000 lpbr: 29 lpba: 29 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 20000000/20000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 56/56 Sieved rational special-q in [10000000, 19500001) Primes: rational ideals reading, algebraic ideals reading, Relations: 38831104 Max relations in full relation-set: Initial matrix: Pruned matrix : 3545964 x 3546211 Total sieving time: 299.39 hours. Total relation processing time: 6.80 hours. Matrix solve time: 32.32 hours. Time per square root: 0.25 hours. Prototype def-par.txt line would be: snfs,205,5,0,0,0,0,0,0,0,0,20000000,20000000,29,29,56,56,2.6,2.6,100000 total time: 338.76 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM) i7 CPU 980 @ 3.33GHz stepping 02 Memory: 36991712k/38797312k available (5073k kernel code, 1057684k absent, 747916k reserved, 7245k data, 1252k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 6666.73 BogoMIPS (lpj=3333367) Total of 12 processors activated (80000.80 BogoMIPS). x86info v1.25. Dave Jones 2001-2009 Feedback to <davej@redhat.com>. Found 12 CPUs -------------------------------------------------------------------------- CPU #1 EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2 CPU Model: Unknown model. Processor name string: Intel(R) Core(TM) i7 CPU 980 @ 3.33GHz Type: 0 (Original OEM) Brand: 0 (Unsupported) Number of cores per physical package=16 Number of logical processors per socket=32 Number of logical processors per core=2 APIC ID: 0x0 Package: 0 Core: 0 SMT ID 0 3.35GHz processor (estimate). -------------------------------------------------------------------------- CPU #2 EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2 CPU Model: Unknown model. Processor name string: Intel(R) Core(TM) i7 CPU 980 @ 3.33GHz Type: 0 (Original OEM) Brand: 0 (Unsupported) Number of cores per physical package=16 Number of logical processors per socket=32 Number of logical processors per core=2 APIC ID: 0x2 Package: 0 Core: 0 SMT ID 2 3.35GHz processor (estimate). -------------------------------------------------------------------------- CPU #3 EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2 CPU Model: Unknown model. Processor name string: Intel(R) Core(TM) i7 CPU 980 @ 3.33GHz Type: 0 (Original OEM) Brand: 0 (Unsupported) Number of cores per physical package=16 Number of logical processors per socket=32 Number of logical processors per core=2 APIC ID: 0x4 Package: 0 Core: 0 SMT ID 4 3.35GHz processor (estimate). -------------------------------------------------------------------------- CPU #4 EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2 CPU Model: Unknown model. Processor name string: Intel(R) Core(TM) i7 CPU 980 @ 3.33GHz Type: 0 (Original OEM) Brand: 0 (Unsupported) Number of cores per physical package=16 Number of logical processors per socket=32 Number of logical processors per core=2 APIC ID: 0x10 Package: 0 Core: 0 SMT ID 16 3.35GHz processor (estimate). -------------------------------------------------------------------------- CPU #5 EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2 CPU Model: Unknown model. Processor name string: Intel(R) Core(TM) i7 CPU 980 @ 3.33GHz Type: 0 (Original OEM) Brand: 0 (Unsupported) Number of cores per physical package=16 Number of logical processors per socket=32 Number of logical processors per core=2 APIC ID: 0x12 Package: 0 Core: 0 SMT ID 18 3.35GHz processor (estimate). -------------------------------------------------------------------------- CPU #6 EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2 CPU Model: Unknown model. Processor name string: Intel(R) Core(TM) i7 CPU 980 @ 3.33GHz Type: 0 (Original OEM) Brand: 0 (Unsupported) Number of cores per physical package=16 Number of logical processors per socket=32 Number of logical processors per core=2 APIC ID: 0x14 Package: 0 Core: 0 SMT ID 20 3.35GHz processor (estimate). -------------------------------------------------------------------------- CPU #7 EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2 CPU Model: Unknown model. Processor name string: Intel(R) Core(TM) i7 CPU 980 @ 3.33GHz Type: 0 (Original OEM) Brand: 0 (Unsupported) Number of cores per physical package=16 Number of logical processors per socket=32 Number of logical processors per core=2 APIC ID: 0x1 Package: 0 Core: 0 SMT ID 1 3.35GHz processor (estimate). -------------------------------------------------------------------------- CPU #8 EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2 CPU Model: Unknown model. Processor name string: Intel(R) Core(TM) i7 CPU 980 @ 3.33GHz Type: 0 (Original OEM) Brand: 0 (Unsupported) Number of cores per physical package=16 Number of logical processors per socket=32 Number of logical processors per core=2 APIC ID: 0x3 Package: 0 Core: 0 SMT ID 3 3.35GHz processor (estimate). -------------------------------------------------------------------------- CPU #9 EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2 CPU Model: Unknown model. Processor name string: Intel(R) Core(TM) i7 CPU 980 @ 3.33GHz Type: 0 (Original OEM) Brand: 0 (Unsupported) Number of cores per physical package=16 Number of logical processors per socket=32 Number of logical processors per core=2 APIC ID: 0x5 Package: 0 Core: 0 SMT ID 5 3.35GHz processor (estimate). -------------------------------------------------------------------------- CPU #10 EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2 CPU Model: Unknown model. Processor name string: Intel(R) Core(TM) i7 CPU 980 @ 3.33GHz Type: 0 (Original OEM) Brand: 0 (Unsupported) Number of cores per physical package=16 Number of logical processors per socket=32 Number of logical processors per core=2 APIC ID: 0x11 Package: 0 Core: 0 SMT ID 17 3.35GHz processor (estimate). -------------------------------------------------------------------------- CPU #11 EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2 CPU Model: Unknown model. Processor name string: Intel(R) Core(TM) i7 CPU 980 @ 3.33GHz Type: 0 (Original OEM) Brand: 0 (Unsupported) Number of cores per physical package=16 Number of logical processors per socket=32 Number of logical processors per core=2 APIC ID: 0x13 Package: 0 Core: 0 SMT ID 19 3.35GHz processor (estimate). -------------------------------------------------------------------------- CPU #12 EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2 CPU Model: Unknown model. Processor name string: Intel(R) Core(TM) i7 CPU 980 @ 3.33GHz Type: 0 (Original OEM) Brand: 0 (Unsupported) Number of cores per physical package=16 Number of logical processors per socket=32 Number of logical processors per core=2 APIC ID: 0x15 Package: 0 Core: 0 SMT ID 21 3.35GHz processor (estimate). -------------------------------------------------------------------------- |
software ソフトウェア | GGNFS / Msieve v1.39 |
execution environment 実行環境 | Core i7 980 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1118 | 118 | Makoto Kamada | November 12, 2012 06:00:00 UTC 2012 年 11 月 12 日 (月) 15 時 0 分 0 秒 (日本時間) |
1000 | Warut Roonguthai | November 14, 2012 14:53:55 UTC 2012 年 11 月 14 日 (水) 23 時 53 分 55 秒 (日本時間) | |||
40 | 3e6 | 1000 | Dmitry Domanov | November 16, 2012 14:48:23 UTC 2012 年 11 月 16 日 (金) 23 時 48 分 23 秒 (日本時間) | |
45 | 11e6 | 5100 | 600 | Dmitry Domanov | November 27, 2012 15:56:26 UTC 2012 年 11 月 28 日 (水) 0 時 56 分 26 秒 (日本時間) |
4500 | Youcef Lemsafer | November 29, 2012 07:23:22 UTC 2012 年 11 月 29 日 (木) 16 時 23 分 22 秒 (日本時間) | |||
50 | 43e6 | 840 / 6364 | 440 | Dmitry Domanov | November 28, 2012 07:10:10 UTC 2012 年 11 月 28 日 (水) 16 時 10 分 10 秒 (日本時間) |
400 | Youcef Lemsafer | November 29, 2012 07:23:22 UTC 2012 年 11 月 29 日 (木) 16 時 23 分 22 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | November 18, 2012 16:27:44 UTC 2012 年 11 月 19 日 (月) 1 時 27 分 44 秒 (日本時間) |
composite number 合成数 | 32062648619894952022133936472366561809247808900714698080025276909665980384376169510157354902667938602624967439378368727304504272295826796995027652311067296076765419330508330769857778988107138013679<197> |
prime factors 素因数 | 1185445304240320581173227980358111768949628211<46> |
composite cofactor 合成数の残り | 27046923637225036925607576082718640325076170892478783217466311435980784433816843293370872332964682149571857324094177865675107335525401497727742252283989<152> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1653578623 Step 1 took 143647ms Step 2 took 43868ms ********** Factor found in step 2: 1185445304240320581173227980358111768949628211 Found probable prime factor of 46 digits: 1185445304240320581173227980358111768949628211 |
name 名前 | ebina |
---|---|
date 日付 | August 29, 2022 05:29:40 UTC 2022 年 8 月 29 日 (月) 14 時 29 分 40 秒 (日本時間) |
composite number 合成数 | 27046923637225036925607576082718640325076170892478783217466311435980784433816843293370872332964682149571857324094177865675107335525401497727742252283989<152> |
prime factors 素因数 | 752755928093336406131299491375783839572478130977047901389201773229543897<72> 35930535553180538840872232460421218300976363254673030171459553247522344369033437<80> |
factorization results 素因数分解の結果 | Mon Aug 29 14:02:50 2022 Msieve v. 1.53 (SVN unknown) Mon Aug 29 14:02:50 2022 random seeds: b68f38c0 799e46f7 Mon Aug 29 14:02:50 2022 factoring 27046923637225036925607576082718640325076170892478783217466311435980784433816843293370872332964682149571857324094177865675107335525401497727742252283989 (152 digits) Mon Aug 29 14:02:51 2022 searching for 15-digit factors Mon Aug 29 14:02:51 2022 commencing number field sieve (152-digit input) Mon Aug 29 14:02:51 2022 R0: -100000000000000000000000000000000000000000 Mon Aug 29 14:02:51 2022 R1: 1 Mon Aug 29 14:02:51 2022 A0: 15 Mon Aug 29 14:02:51 2022 A1: 0 Mon Aug 29 14:02:51 2022 A2: 0 Mon Aug 29 14:02:51 2022 A3: 0 Mon Aug 29 14:02:51 2022 A4: 0 Mon Aug 29 14:02:51 2022 A5: 2 Mon Aug 29 14:02:51 2022 skew 1.50, size 3.027e-14, alpha 1.848, combined = 9.256e-12 rroots = 1 Mon Aug 29 14:02:51 2022 Mon Aug 29 14:02:51 2022 commencing square root phase Mon Aug 29 14:02:51 2022 reading relations for dependency 1 Mon Aug 29 14:02:52 2022 read 1942605 cycles Mon Aug 29 14:02:54 2022 cycles contain 6544524 unique relations Mon Aug 29 14:03:44 2022 read 6544524 relations Mon Aug 29 14:04:11 2022 multiplying 6544524 relations Mon Aug 29 14:06:20 2022 multiply complete, coefficients have about 164.74 million bits Mon Aug 29 14:06:21 2022 initial square root is modulo 817051 Mon Aug 29 14:08:43 2022 sqrtTime: 352 Mon Aug 29 14:08:43 2022 p72 factor: 752755928093336406131299491375783839572478130977047901389201773229543897 Mon Aug 29 14:08:43 2022 p80 factor: 35930535553180538840872232460421218300976363254673030171459553247522344369033437 Mon Aug 29 14:08:43 2022 elapsed time 00:05:53 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1118 | 118 | Makoto Kamada | November 12, 2012 06:00:00 UTC 2012 年 11 月 12 日 (月) 15 時 0 分 0 秒 (日本時間) |
1000 | Warut Roonguthai | November 14, 2012 14:54:04 UTC 2012 年 11 月 14 日 (水) 23 時 54 分 4 秒 (日本時間) | |||
40 | 3e6 | 1000 | Dmitry Domanov | November 16, 2012 14:48:33 UTC 2012 年 11 月 16 日 (金) 23 時 48 分 33 秒 (日本時間) | |
45 | 11e6 | 5080 | 600 | Dmitry Domanov | November 27, 2012 15:56:17 UTC 2012 年 11 月 28 日 (水) 0 時 56 分 17 秒 (日本時間) |
4480 | Ignacio Santos | February 14, 2022 19:45:40 UTC 2022 年 2 月 15 日 (火) 4 時 45 分 40 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | October 28, 2023 22:11:16 UTC 2023 年 10 月 29 日 (日) 7 時 11 分 16 秒 (日本時間) |
composite number 合成数 | 302537656150620145033462389948283306434073008912523303684940773900164327016875621125645026517331542798449771462297991035960648741249636736937120097405573072364433357133<168> |
prime factors 素因数 | 32494200552335699648978400282039001227799506734400830616987140219<65> 9310512368610145251359034266441719339376583540554750411033922152321523984571242845150089916091166152407<103> |
factorization results 素因数分解の結果 | Number: n N=302537656150620145033462389948283306434073008912523303684940773900164327016875621125645026517331542798449771462297991035960648741249636736937120097405573072364433357133 ( 168 digits) SNFS difficulty: 205 digits. Divisors found: Sun Oct 29 06:30:24 2023 prp65 factor: 32494200552335699648978400282039001227799506734400830616987140219 Sun Oct 29 06:30:24 2023 prp103 factor: 9310512368610145251359034266441719339376583540554750411033922152321523984571242845150089916091166152407 Sun Oct 29 06:30:24 2023 elapsed time 02:29:50 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.088). Factorization parameters were as follows: # # N = 4x10^205+3 = 40(204)3 # n: 302537656150620145033462389948283306434073008912523303684940773900164327016875621125645026517331542798449771462297991035960648741249636736937120097405573072364433357133 m: 100000000000000000000000000000000000000000 deg: 5 c5: 4 c0: 3 skew: 0.94 # Murphy_E = 1.276e-11 type: snfs lss: 1 rlim: 18700000 alim: 18700000 lpbr: 27 lpba: 27 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 18700000/18700000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 56/56 Sieved special-q in [100000, 42150000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 3309716 hash collisions in 19662180 relations (16817120 unique) Msieve: matrix is 2184458 x 2184683 (613.4 MB) Sieving start time: 2023/10/28 11:33:19 Sieving end time : 2023/10/29 04:00:11 Total sieving time: 16hrs 26min 52secs. Total relation processing time: 2hrs 22min 24sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 2min 12sec. Prototype def-par.txt line would be: snfs,205,5,0,0,0,0,0,0,0,0,18700000,18700000,27,27,56,56,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1118 | 118 | Makoto Kamada | November 12, 2012 06:00:00 UTC 2012 年 11 月 12 日 (月) 15 時 0 分 0 秒 (日本時間) |
1000 | Warut Roonguthai | November 14, 2012 14:54:32 UTC 2012 年 11 月 14 日 (水) 23 時 54 分 32 秒 (日本時間) | |||
40 | 3e6 | 1000 | Dmitry Domanov | November 16, 2012 14:48:42 UTC 2012 年 11 月 16 日 (金) 23 時 48 分 42 秒 (日本時間) | |
45 | 11e6 | 5100 | 600 | Dmitry Domanov | November 27, 2012 15:56:08 UTC 2012 年 11 月 28 日 (水) 0 時 56 分 8 秒 (日本時間) |
4500 | Youcef Lemsafer | December 4, 2012 09:20:09 UTC 2012 年 12 月 4 日 (火) 18 時 20 分 9 秒 (日本時間) | |||
50 | 43e6 | 400 / 6364 | Youcef Lemsafer | December 4, 2012 09:20:09 UTC 2012 年 12 月 4 日 (火) 18 時 20 分 9 秒 (日本時間) |
name 名前 | Youcef Lemsafer |
---|---|
date 日付 | January 7, 2014 06:10:41 UTC 2014 年 1 月 7 日 (火) 15 時 10 分 41 秒 (日本時間) |
composite number 合成数 | 4586261852620475366041024112271690152149236960684270268410974924613320797550936170700666154534093124046917458752307462994599676668539390256486694107800084845844273478794271758946077026267814760883772659<202> |
prime factors 素因数 | 866312595789617760669426916944551384531202932191<48> 5294003428912673529266570585609495497354764027914788498546054399779378241104358759547273015549120607126864090024554790755276735041006354519268387991018349<154> |
factorization results 素因数分解の結果 | <Sieving rational q from 8000000 to 18900000 (using gnfs-lasieve4I14e)> <took 632.35 core.hours on Intel Xeon W3530 @ 2.8 GHz> <Post-processing using msieve 1.51; 8 threads on Intel Xeon W3530 @ 2.8 GHz> Mon Jan 06 14:43:18 2014 Msieve v. 1.51 (SVN Official Release) Mon Jan 06 14:43:18 2014 random seeds: e3c5d5c8 86637cc9 Mon Jan 06 14:43:18 2014 factoring 4586261852620475366041024112271690152149236960684270268410974924613320797550936170700666154534093124046917458752307462994599676668539390256486694107800084845844273478794271758946077026267814760883772659 (202 digits) Mon Jan 06 14:43:21 2014 searching for 15-digit factors Mon Jan 06 14:43:22 2014 commencing number field sieve (202-digit input) Mon Jan 06 14:43:22 2014 R0: -100000000000000000000000000000000000000000 Mon Jan 06 14:43:22 2014 R1: 1 Mon Jan 06 14:43:22 2014 A0: 3 Mon Jan 06 14:43:22 2014 A1: 0 Mon Jan 06 14:43:22 2014 A2: 0 Mon Jan 06 14:43:22 2014 A3: 0 Mon Jan 06 14:43:22 2014 A4: 0 Mon Jan 06 14:43:22 2014 A5: 40 Mon Jan 06 14:43:22 2014 skew 0.60, size 3.292e-014, alpha 0.443, combined = 9.580e-012 rroots = 1 Mon Jan 06 14:43:22 2014 Mon Jan 06 14:43:22 2014 commencing relation filtering Mon Jan 06 14:43:22 2014 estimated available RAM is 8189.6 MB Mon Jan 06 14:43:22 2014 commencing duplicate removal, pass 1 Mon Jan 06 14:49:03 2014 skipped 3 relations with b > 2^32 Mon Jan 06 14:49:03 2014 found 4550519 hash collisions in 38882853 relations Mon Jan 06 14:49:56 2014 added 730386 free relations Mon Jan 06 14:49:56 2014 commencing duplicate removal, pass 2 Mon Jan 06 14:57:30 2014 found 3810739 duplicates and 35802500 unique relations Mon Jan 06 14:57:30 2014 memory use: 197.2 MB Mon Jan 06 14:57:31 2014 reading ideals above 18939904 Mon Jan 06 14:57:37 2014 commencing singleton removal, initial pass Mon Jan 06 15:04:28 2014 memory use: 753.0 MB Mon Jan 06 15:04:28 2014 reading all ideals from disk Mon Jan 06 15:04:29 2014 memory use: 653.1 MB Mon Jan 06 15:04:31 2014 commencing in-memory singleton removal Mon Jan 06 15:04:33 2014 begin with 35802500 relations and 36562739 unique ideals Mon Jan 06 15:04:52 2014 reduce to 14148225 relations and 11505182 ideals in 21 passes Mon Jan 06 15:04:52 2014 max relations containing the same ideal: 20 Mon Jan 06 15:04:54 2014 reading ideals above 720000 Mon Jan 06 15:04:54 2014 commencing singleton removal, initial pass Mon Jan 06 15:09:43 2014 memory use: 376.5 MB Mon Jan 06 15:09:43 2014 reading all ideals from disk Mon Jan 06 15:09:44 2014 memory use: 481.9 MB Mon Jan 06 15:09:47 2014 commencing in-memory singleton removal Mon Jan 06 15:09:48 2014 begin with 14148754 relations and 13805405 unique ideals Mon Jan 06 15:10:02 2014 reduce to 14145623 relations and 13799939 ideals in 10 passes Mon Jan 06 15:10:02 2014 max relations containing the same ideal: 189 Mon Jan 06 15:10:12 2014 removing 1249046 relations and 1143725 ideals in 105321 cliques Mon Jan 06 15:10:13 2014 commencing in-memory singleton removal Mon Jan 06 15:10:14 2014 begin with 12896577 relations and 13799939 unique ideals Mon Jan 06 15:10:27 2014 reduce to 12795421 relations and 12553907 ideals in 10 passes Mon Jan 06 15:10:27 2014 max relations containing the same ideal: 180 Mon Jan 06 15:10:34 2014 removing 916631 relations and 811310 ideals in 105321 cliques Mon Jan 06 15:10:35 2014 commencing in-memory singleton removal Mon Jan 06 15:10:37 2014 begin with 11878790 relations and 12553907 unique ideals Mon Jan 06 15:10:47 2014 reduce to 11818738 relations and 11681945 ideals in 9 passes Mon Jan 06 15:10:47 2014 max relations containing the same ideal: 167 Mon Jan 06 15:10:57 2014 relations with 0 large ideals: 2964 Mon Jan 06 15:10:57 2014 relations with 1 large ideals: 226 Mon Jan 06 15:10:57 2014 relations with 2 large ideals: 6250 Mon Jan 06 15:10:57 2014 relations with 3 large ideals: 67436 Mon Jan 06 15:10:57 2014 relations with 4 large ideals: 387105 Mon Jan 06 15:10:57 2014 relations with 5 large ideals: 1307628 Mon Jan 06 15:10:57 2014 relations with 6 large ideals: 2809246 Mon Jan 06 15:10:57 2014 relations with 7+ large ideals: 7237883 Mon Jan 06 15:10:57 2014 commencing 2-way merge Mon Jan 06 15:11:06 2014 reduce to 6776427 relation sets and 6639641 unique ideals Mon Jan 06 15:11:06 2014 ignored 7 oversize relation sets Mon Jan 06 15:11:06 2014 commencing full merge Mon Jan 06 15:13:08 2014 memory use: 791.2 MB Mon Jan 06 15:13:09 2014 found 3517513 cycles, need 3501841 Mon Jan 06 15:13:09 2014 weight of 3501841 cycles is about 245348836 (70.06/cycle) Mon Jan 06 15:13:09 2014 distribution of cycle lengths: Mon Jan 06 15:13:09 2014 1 relations: 498915 Mon Jan 06 15:13:09 2014 2 relations: 463337 Mon Jan 06 15:13:09 2014 3 relations: 440499 Mon Jan 06 15:13:09 2014 4 relations: 383454 Mon Jan 06 15:13:09 2014 5 relations: 320682 Mon Jan 06 15:13:09 2014 6 relations: 272090 Mon Jan 06 15:13:09 2014 7 relations: 223589 Mon Jan 06 15:13:09 2014 8 relations: 181167 Mon Jan 06 15:13:09 2014 9 relations: 147230 Mon Jan 06 15:13:09 2014 10+ relations: 570878 Mon Jan 06 15:13:09 2014 heaviest cycle: 25 relations Mon Jan 06 15:13:10 2014 commencing cycle optimization Mon Jan 06 15:13:15 2014 start with 19345015 relations Mon Jan 06 15:13:47 2014 pruned 331917 relations Mon Jan 06 15:13:47 2014 memory use: 675.9 MB Mon Jan 06 15:13:47 2014 distribution of cycle lengths: Mon Jan 06 15:13:47 2014 1 relations: 498915 Mon Jan 06 15:13:47 2014 2 relations: 471998 Mon Jan 06 15:13:47 2014 3 relations: 452665 Mon Jan 06 15:13:47 2014 4 relations: 388975 Mon Jan 06 15:13:47 2014 5 relations: 324813 Mon Jan 06 15:13:47 2014 6 relations: 272037 Mon Jan 06 15:13:47 2014 7 relations: 222786 Mon Jan 06 15:13:47 2014 8 relations: 179062 Mon Jan 06 15:13:47 2014 9 relations: 144250 Mon Jan 06 15:13:47 2014 10+ relations: 546340 Mon Jan 06 15:13:47 2014 heaviest cycle: 25 relations Mon Jan 06 15:13:50 2014 RelProcTime: 1828 Mon Jan 06 15:13:50 2014 elapsed time 00:30:32 <...snipped...> Mon Jan 06 15:16:10 2014 commencing linear algebra Mon Jan 06 15:16:12 2014 read 3501841 cycles Mon Jan 06 15:16:18 2014 cycles contain 11622120 unique relations Mon Jan 06 15:17:22 2014 read 11622120 relations Mon Jan 06 15:17:39 2014 using 20 quadratic characters above 536870744 Mon Jan 06 15:18:39 2014 building initial matrix Mon Jan 06 15:20:54 2014 memory use: 1471.8 MB Mon Jan 06 15:20:57 2014 read 3501841 cycles Mon Jan 06 15:20:58 2014 matrix is 3501662 x 3501841 (1058.1 MB) with weight 314870228 (89.92/col) Mon Jan 06 15:20:58 2014 sparse part has weight 238846334 (68.21/col) Mon Jan 06 15:21:32 2014 filtering completed in 2 passes Mon Jan 06 15:21:33 2014 matrix is 3497035 x 3497214 (1057.7 MB) with weight 314733292 (90.00/col) Mon Jan 06 15:21:33 2014 sparse part has weight 238810338 (68.29/col) Mon Jan 06 15:21:41 2014 matrix starts at (0, 0) Mon Jan 06 15:21:42 2014 matrix is 3497035 x 3497214 (1057.7 MB) with weight 314733292 (90.00/col) Mon Jan 06 15:21:42 2014 sparse part has weight 238810338 (68.29/col) Mon Jan 06 15:21:42 2014 saving the first 48 matrix rows for later Mon Jan 06 15:21:43 2014 matrix includes 64 packed rows Mon Jan 06 15:21:44 2014 matrix is 3496987 x 3497214 (1011.3 MB) with weight 250877308 (71.74/col) Mon Jan 06 15:21:44 2014 sparse part has weight 230121158 (65.80/col) Mon Jan 06 15:21:44 2014 using block size 65536 for processor cache size 8192 kB Mon Jan 06 15:21:58 2014 commencing Lanczos iteration (8 threads) Mon Jan 06 15:21:58 2014 memory use: 1001.5 MB Mon Jan 06 15:22:23 2014 linear algebra at 0.0%, ETA 15h22m Mon Jan 06 15:22:31 2014 checkpointing every 230000 dimensions Tue Jan 07 06:48:48 2014 lanczos halted after 55303 iterations (dim = 3496987) Tue Jan 07 06:48:53 2014 recovered 37 nontrivial dependencies Tue Jan 07 06:48:53 2014 BLanczosTime: 55963 Tue Jan 07 06:48:53 2014 Tue Jan 07 06:48:53 2014 commencing square root phase Tue Jan 07 06:48:53 2014 reading relations for dependency 1 Tue Jan 07 06:48:54 2014 read 1748334 cycles Tue Jan 07 06:48:57 2014 cycles contain 5811504 unique relations Tue Jan 07 06:49:34 2014 read 5811504 relations Tue Jan 07 06:50:06 2014 multiplying 5811504 relations Tue Jan 07 06:53:59 2014 multiply complete, coefficients have about 167.12 million bits Tue Jan 07 06:54:00 2014 initial square root is modulo 994391 Tue Jan 07 06:58:54 2014 sqrtTime: 601 Tue Jan 07 06:58:54 2014 prp48 factor: 866312595789617760669426916944551384531202932191 Tue Jan 07 06:58:54 2014 prp154 factor: 5294003428912673529266570585609495497354764027914788498546054399779378241104358759547273015549120607126864090024554790755276735041006354519268387991018349 Tue Jan 07 06:58:54 2014 elapsed time 15:42:46 |
software ソフトウェア | GGNFS (SVN 440), msieve 1.51 |
execution environment 実行環境 | Windows 7 Pro 64-bit, Intel Xeon W3530 @ 2.8 GHz, 8GB RAM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1118 | 118 | Makoto Kamada | November 12, 2012 06:00:00 UTC 2012 年 11 月 12 日 (月) 15 時 0 分 0 秒 (日本時間) |
1000 | Warut Roonguthai | November 14, 2012 14:54:40 UTC 2012 年 11 月 14 日 (水) 23 時 54 分 40 秒 (日本時間) | |||
40 | 3e6 | 1000 | Dmitry Domanov | November 16, 2012 14:48:50 UTC 2012 年 11 月 16 日 (金) 23 時 48 分 50 秒 (日本時間) | |
45 | 11e6 | 5100 | 600 | Dmitry Domanov | November 27, 2012 15:55:59 UTC 2012 年 11 月 28 日 (水) 0 時 55 分 59 秒 (日本時間) |
4500 | Youcef Lemsafer | December 10, 2012 09:40:50 UTC 2012 年 12 月 10 日 (月) 18 時 40 分 50 秒 (日本時間) | |||
50 | 43e6 | 400 / 6364 | Youcef Lemsafer | December 10, 2012 09:40:50 UTC 2012 年 12 月 10 日 (月) 18 時 40 分 50 秒 (日本時間) |
name 名前 | Youcef Lemsafer |
---|---|
date 日付 | March 11, 2014 23:02:53 UTC 2014 年 3 月 12 日 (水) 8 時 2 分 53 秒 (日本時間) |
composite number 合成数 | 3252772530177220941383556594890994549240800612560136024457364831255962045832802195737004091494652143524485974536544704496473908955410433433724905108891098199132338539565998289824680438124142259833<196> |
prime factors 素因数 | 4854732424700303185200088823854916154542218011789913375796818755559<67> 670020970389119662358800621319621735065052739737946123244511313431686131877002715722478883422393858963285149176604600699366281887<129> |
factorization results 素因数分解の結果 | <Sieving took ~3.2 days on Intel Xeon W3530 @ 2.8GHz + 2x Intel Xeon E5-2620 @ 2.0GHz> <Post-processing using 16 threads on 2x Intel Xeon E5-2620 @ 2.0GHz> Tue Mar 11 20:32:14 2014 Tue Mar 11 20:32:14 2014 Tue Mar 11 20:32:14 2014 Msieve v. 1.52 (SVN 959) Tue Mar 11 20:32:14 2014 random seeds: b816ac00 85ae752e Tue Mar 11 20:32:14 2014 factoring 3252772530177220941383556594890994549240800612560136024457364831255962045832802195737004091494652143524485974536544704496473908955410433433724905108891098199132338539565998289824680438124142259833 (196 digits) Tue Mar 11 20:32:15 2014 no P-1/P+1/ECM available, skipping Tue Mar 11 20:32:15 2014 commencing number field sieve (196-digit input) Tue Mar 11 20:32:15 2014 R0: -200000000000000000000000000000000000000000 Tue Mar 11 20:32:15 2014 R1: 1 Tue Mar 11 20:32:15 2014 A0: 3 Tue Mar 11 20:32:15 2014 A1: 0 Tue Mar 11 20:32:15 2014 A2: 0 Tue Mar 11 20:32:15 2014 A3: 0 Tue Mar 11 20:32:15 2014 A4: 0 Tue Mar 11 20:32:15 2014 A5: 125 Tue Mar 11 20:32:15 2014 skew 0.47, size 2.080e-014, alpha 0.443, combined = 7.260e-012 rroots = 1 Tue Mar 11 20:32:15 2014 Tue Mar 11 20:32:15 2014 commencing relation filtering Tue Mar 11 20:32:15 2014 estimated available RAM is 32739.1 MB Tue Mar 11 20:32:15 2014 commencing duplicate removal, pass 1 Tue Mar 11 20:43:18 2014 skipped 12 relations with b > 2^32 Tue Mar 11 20:43:18 2014 found 8831147 hash collisions in 58820242 relations Tue Mar 11 20:44:01 2014 added 731969 free relations Tue Mar 11 20:44:01 2014 commencing duplicate removal, pass 2 Tue Mar 11 20:44:37 2014 found 7495555 duplicates and 52056656 unique relations Tue Mar 11 20:44:37 2014 memory use: 330.4 MB Tue Mar 11 20:44:37 2014 reading ideals above 720000 Tue Mar 11 20:44:37 2014 commencing singleton removal, initial pass Tue Mar 11 20:57:18 2014 memory use: 1378.0 MB Tue Mar 11 20:57:18 2014 reading all ideals from disk Tue Mar 11 20:57:19 2014 memory use: 1818.7 MB Tue Mar 11 20:57:25 2014 keeping 45959985 ideals with weight <= 200, target excess is 282007 Tue Mar 11 20:57:31 2014 commencing in-memory singleton removal Tue Mar 11 20:57:36 2014 begin with 52056656 relations and 45959985 unique ideals Tue Mar 11 20:58:25 2014 reduce to 34457948 relations and 26691130 ideals in 14 passes Tue Mar 11 20:58:25 2014 max relations containing the same ideal: 160 Tue Mar 11 20:58:43 2014 removing 4265879 relations and 3265879 ideals in 1000000 cliques Tue Mar 11 20:58:44 2014 commencing in-memory singleton removal Tue Mar 11 20:58:47 2014 begin with 30192069 relations and 26691130 unique ideals Tue Mar 11 20:59:09 2014 reduce to 29749008 relations and 22966044 ideals in 8 passes Tue Mar 11 20:59:09 2014 max relations containing the same ideal: 150 Tue Mar 11 20:59:24 2014 removing 3380855 relations and 2380855 ideals in 1000000 cliques Tue Mar 11 20:59:25 2014 commencing in-memory singleton removal Tue Mar 11 20:59:28 2014 begin with 26368153 relations and 22966044 unique ideals Tue Mar 11 20:59:44 2014 reduce to 26070877 relations and 20278119 ideals in 7 passes Tue Mar 11 20:59:44 2014 max relations containing the same ideal: 135 Tue Mar 11 20:59:58 2014 removing 3133394 relations and 2133394 ideals in 1000000 cliques Tue Mar 11 20:59:59 2014 commencing in-memory singleton removal Tue Mar 11 21:00:01 2014 begin with 22937483 relations and 20278119 unique ideals Tue Mar 11 21:00:14 2014 reduce to 22666408 relations and 17863902 ideals in 7 passes Tue Mar 11 21:00:14 2014 max relations containing the same ideal: 121 Tue Mar 11 21:00:26 2014 removing 3019093 relations and 2019093 ideals in 1000000 cliques Tue Mar 11 21:00:27 2014 commencing in-memory singleton removal Tue Mar 11 21:00:29 2014 begin with 19647315 relations and 17863902 unique ideals Tue Mar 11 21:00:42 2014 reduce to 19374891 relations and 15561843 ideals in 8 passes Tue Mar 11 21:00:42 2014 max relations containing the same ideal: 107 Tue Mar 11 21:00:52 2014 removing 2953744 relations and 1953744 ideals in 1000000 cliques Tue Mar 11 21:00:53 2014 commencing in-memory singleton removal Tue Mar 11 21:00:54 2014 begin with 16421147 relations and 15561843 unique ideals Tue Mar 11 21:01:04 2014 reduce to 16128932 relations and 13302829 ideals in 7 passes Tue Mar 11 21:01:04 2014 max relations containing the same ideal: 96 Tue Mar 11 21:01:12 2014 removing 2919181 relations and 1919181 ideals in 1000000 cliques Tue Mar 11 21:01:13 2014 commencing in-memory singleton removal Tue Mar 11 21:01:14 2014 begin with 13209751 relations and 13302829 unique ideals Tue Mar 11 21:01:21 2014 reduce to 12880420 relations and 11036723 ideals in 7 passes Tue Mar 11 21:01:21 2014 max relations containing the same ideal: 86 Tue Mar 11 21:01:28 2014 removing 2901926 relations and 1901926 ideals in 1000000 cliques Tue Mar 11 21:01:29 2014 commencing in-memory singleton removal Tue Mar 11 21:01:29 2014 begin with 9978494 relations and 11036723 unique ideals Tue Mar 11 21:01:35 2014 reduce to 9581952 relations and 8712170 ideals in 7 passes Tue Mar 11 21:01:35 2014 max relations containing the same ideal: 71 Tue Mar 11 21:01:40 2014 removing 1761523 relations and 1218870 ideals in 542653 cliques Tue Mar 11 21:01:40 2014 commencing in-memory singleton removal Tue Mar 11 21:01:41 2014 begin with 7820429 relations and 8712170 unique ideals Tue Mar 11 21:01:46 2014 reduce to 7605931 relations and 7267925 ideals in 9 passes Tue Mar 11 21:01:46 2014 max relations containing the same ideal: 59 Tue Mar 11 21:01:50 2014 removing 68652 relations and 57775 ideals in 10877 cliques Tue Mar 11 21:01:50 2014 commencing in-memory singleton removal Tue Mar 11 21:01:50 2014 begin with 7537279 relations and 7267925 unique ideals Tue Mar 11 21:01:52 2014 reduce to 7536925 relations and 7209796 ideals in 4 passes Tue Mar 11 21:01:52 2014 max relations containing the same ideal: 59 Tue Mar 11 21:01:54 2014 relations with 0 large ideals: 5832 Tue Mar 11 21:01:54 2014 relations with 1 large ideals: 4515 Tue Mar 11 21:01:54 2014 relations with 2 large ideals: 63223 Tue Mar 11 21:01:54 2014 relations with 3 large ideals: 368471 Tue Mar 11 21:01:54 2014 relations with 4 large ideals: 1113756 Tue Mar 11 21:01:54 2014 relations with 5 large ideals: 1928744 Tue Mar 11 21:01:54 2014 relations with 6 large ideals: 2089337 Tue Mar 11 21:01:54 2014 relations with 7+ large ideals: 1963047 Tue Mar 11 21:01:54 2014 commencing 2-way merge Tue Mar 11 21:01:59 2014 reduce to 4876004 relation sets and 4548875 unique ideals Tue Mar 11 21:01:59 2014 commencing full merge Tue Mar 11 21:03:28 2014 memory use: 567.4 MB Tue Mar 11 21:03:28 2014 found 2641937 cycles, need 2597075 Tue Mar 11 21:03:29 2014 weight of 2597075 cycles is about 182014529 (70.08/cycle) Tue Mar 11 21:03:29 2014 distribution of cycle lengths: Tue Mar 11 21:03:29 2014 1 relations: 252559 Tue Mar 11 21:03:29 2014 2 relations: 291616 Tue Mar 11 21:03:29 2014 3 relations: 316077 Tue Mar 11 21:03:29 2014 4 relations: 314339 Tue Mar 11 21:03:29 2014 5 relations: 304174 Tue Mar 11 21:03:29 2014 6 relations: 270282 Tue Mar 11 21:03:29 2014 7 relations: 229277 Tue Mar 11 21:03:29 2014 8 relations: 183052 Tue Mar 11 21:03:29 2014 9 relations: 140533 Tue Mar 11 21:03:29 2014 10+ relations: 295166 Tue Mar 11 21:03:29 2014 heaviest cycle: 18 relations Tue Mar 11 21:03:29 2014 commencing cycle optimization Tue Mar 11 21:03:33 2014 start with 13885235 relations Tue Mar 11 21:03:55 2014 pruned 404773 relations Tue Mar 11 21:03:55 2014 memory use: 453.0 MB Tue Mar 11 21:03:55 2014 distribution of cycle lengths: Tue Mar 11 21:03:55 2014 1 relations: 252559 Tue Mar 11 21:03:55 2014 2 relations: 298260 Tue Mar 11 21:03:55 2014 3 relations: 328605 Tue Mar 11 21:03:55 2014 4 relations: 325214 Tue Mar 11 21:03:55 2014 5 relations: 315743 Tue Mar 11 21:03:55 2014 6 relations: 277376 Tue Mar 11 21:03:55 2014 7 relations: 233486 Tue Mar 11 21:03:55 2014 8 relations: 181476 Tue Mar 11 21:03:55 2014 9 relations: 135654 Tue Mar 11 21:03:55 2014 10+ relations: 248702 Tue Mar 11 21:03:55 2014 heaviest cycle: 17 relations Tue Mar 11 21:03:57 2014 RelProcTime: 1902 Tue Mar 11 21:03:57 2014 Tue Mar 11 21:03:57 2014 commencing linear algebra Tue Mar 11 21:03:57 2014 read 2597075 cycles Tue Mar 11 21:04:02 2014 cycles contain 7364386 unique relations Tue Mar 11 21:05:35 2014 read 7364386 relations Tue Mar 11 21:05:46 2014 using 20 quadratic characters above 536868468 Tue Mar 11 21:06:25 2014 building initial matrix Tue Mar 11 21:07:57 2014 memory use: 980.9 MB Tue Mar 11 21:07:59 2014 read 2597075 cycles Tue Mar 11 21:08:00 2014 matrix is 2596897 x 2597075 (776.7 MB) with weight 229865400 (88.51/col) Tue Mar 11 21:08:00 2014 sparse part has weight 175052376 (67.40/col) Tue Mar 11 21:08:27 2014 filtering completed in 2 passes Tue Mar 11 21:08:27 2014 matrix is 2596364 x 2596541 (776.7 MB) with weight 229849052 (88.52/col) Tue Mar 11 21:08:27 2014 sparse part has weight 175047005 (67.42/col) Tue Mar 11 21:08:37 2014 matrix starts at (0, 0) Tue Mar 11 21:08:38 2014 matrix is 2596364 x 2596541 (776.7 MB) with weight 229849052 (88.52/col) Tue Mar 11 21:08:38 2014 sparse part has weight 175047005 (67.42/col) Tue Mar 11 21:08:38 2014 saving the first 48 matrix rows for later Tue Mar 11 21:08:39 2014 matrix includes 64 packed rows Tue Mar 11 21:08:39 2014 matrix is 2596316 x 2596541 (739.3 MB) with weight 182267015 (70.20/col) Tue Mar 11 21:08:39 2014 sparse part has weight 167846808 (64.64/col) Tue Mar 11 21:08:39 2014 using block size 8192 and superblock size 1474560 for processor cache size 15360 kB Tue Mar 11 21:08:51 2014 commencing Lanczos iteration (16 threads) Tue Mar 11 21:08:51 2014 memory use: 598.5 MB Tue Mar 11 21:08:56 2014 linear algebra at 0.1%, ETA 2h23m Tue Mar 11 21:08:58 2014 checkpointing every 1040000 dimensions Tue Mar 11 23:23:55 2014 lanczos halted after 41061 iterations (dim = 2596316) Tue Mar 11 23:23:59 2014 recovered 37 nontrivial dependencies Tue Mar 11 23:24:06 2014 BLanczosTime: 8409 Tue Mar 11 23:24:06 2014 Tue Mar 11 23:24:06 2014 commencing square root phase Tue Mar 11 23:24:06 2014 reading relations for dependency 1 Tue Mar 11 23:24:07 2014 read 1297988 cycles Tue Mar 11 23:24:08 2014 cycles contain 3680792 unique relations Tue Mar 11 23:25:01 2014 read 3680792 relations Tue Mar 11 23:25:20 2014 multiplying 3680792 relations Tue Mar 11 23:28:19 2014 multiply complete, coefficients have about 111.91 million bits Tue Mar 11 23:28:20 2014 initial square root is modulo 107869001 Tue Mar 11 23:32:14 2014 GCD is 1, no factor found Tue Mar 11 23:32:14 2014 reading relations for dependency 2 Tue Mar 11 23:32:15 2014 read 1298236 cycles Tue Mar 11 23:32:17 2014 cycles contain 3683066 unique relations Tue Mar 11 23:33:09 2014 read 3683066 relations Tue Mar 11 23:33:29 2014 multiplying 3683066 relations Tue Mar 11 23:36:28 2014 multiply complete, coefficients have about 111.98 million bits Tue Mar 11 23:36:29 2014 initial square root is modulo 109121531 Tue Mar 11 23:40:24 2014 sqrtTime: 978 Tue Mar 11 23:40:24 2014 prp67 factor: 4854732424700303185200088823854916154542218011789913375796818755559 Tue Mar 11 23:40:24 2014 prp129 factor: 670020970389119662358800621319621735065052739737946123244511313431686131877002715722478883422393858963285149176604600699366281887 Tue Mar 11 23:40:24 2014 elapsed time 03:08:10 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1118 | 118 | Makoto Kamada | November 12, 2012 06:00:00 UTC 2012 年 11 月 12 日 (月) 15 時 0 分 0 秒 (日本時間) |
1000 | Warut Roonguthai | November 14, 2012 14:54:49 UTC 2012 年 11 月 14 日 (水) 23 時 54 分 49 秒 (日本時間) | |||
40 | 3e6 | 1000 | Dmitry Domanov | November 16, 2012 14:48:59 UTC 2012 年 11 月 16 日 (金) 23 時 48 分 59 秒 (日本時間) | |
45 | 11e6 | 4400 | 600 | Dmitry Domanov | November 27, 2012 15:55:51 UTC 2012 年 11 月 28 日 (水) 0 時 55 分 51 秒 (日本時間) |
3800 | Youcef Lemsafer | December 17, 2012 13:27:26 UTC 2012 年 12 月 17 日 (月) 22 時 27 分 26 秒 (日本時間) | |||
50 | 43e6 | 800 / 6521 | Youcef Lemsafer | December 17, 2012 13:27:26 UTC 2012 年 12 月 17 日 (月) 22 時 27 分 26 秒 (日本時間) |
name 名前 | Warut Roonguthai |
---|---|
date 日付 | November 13, 2012 10:07:52 UTC 2012 年 11 月 13 日 (火) 19 時 7 分 52 秒 (日本時間) |
composite number 合成数 | 783589086631574303379302916657882695404910589258134640223186961214895920365213597596457309420328166215139152731<111> |
prime factors 素因数 | 547537132141098581614384437938530709<36> 1431115883533622852243182912912449320404780896252482479061754714077393530159<76> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1281610126 Step 1 took 11279ms Step 2 took 8315ms ********** Factor found in step 2: 547537132141098581614384437938530709 Found probable prime factor of 36 digits: 547537132141098581614384437938530709 Probable prime cofactor 1431115883533622852243182912912449320404780896252482479061754714077393530159 has 76 digits |
software ソフトウェア | GMP-ECM 6.3 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | November 12, 2012 06:00:00 UTC 2012 年 11 月 12 日 (月) 15 時 0 分 0 秒 (日本時間) |
name 名前 | Warut Roonguthai |
---|---|
date 日付 | November 12, 2012 20:54:06 UTC 2012 年 11 月 13 日 (火) 5 時 54 分 6 秒 (日本時間) |
composite number 合成数 | 542064935188499763211581901395205130505956251750848671559876962484574267948455759472371958977401866973092236468976337087055287282348598176084683341052518013482939853423525013072614851297403<189> |
prime factors 素因数 | 6885162880115627766614886699397<31> |
composite cofactor 合成数の残り | 78729427992761800180667811906040635731138680336615941223032691152879109390428140559524833346300843430211335246184011142589273124837034213824575355970956454399<158> |
factorization results 素因数分解の結果 | Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=4189573765 Step 1 took 10593ms Step 2 took 6193ms ********** Factor found in step 2: 6885162880115627766614886699397 Found probable prime factor of 31 digits: 6885162880115627766614886699397 Composite cofactor 78729427992761800180667811906040635731138680336615941223032691152879109390428140559524833346300843430211335246184011142589273124837034213824575355970956454399 has 158 digits |
software ソフトウェア | GMP-ECM 6.3 |
name 名前 | Warut Roonguthai |
---|---|
date 日付 | November 13, 2012 19:10:35 UTC 2012 年 11 月 14 日 (水) 4 時 10 分 35 秒 (日本時間) |
composite number 合成数 | 78729427992761800180667811906040635731138680336615941223032691152879109390428140559524833346300843430211335246184011142589273124837034213824575355970956454399<158> |
prime factors 素因数 | 13172134203721447991809798666141279729<38> 5976968255494908613149824165626636098792982465473980149747406702545319769592165236194992254738446246620064123122728853231<121> |
factorization results 素因数分解の結果 | Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=359660146 Step 1 took 7519ms Step 2 took 5616ms ********** Factor found in step 2: 13172134203721447991809798666141279729 Found probable prime factor of 38 digits: 13172134203721447991809798666141279729 Probable prime cofactor 5976968255494908613149824165626636098792982465473980149747406702545319769592165236194992254738446246620064123122728853231 has 121 digits |
software ソフトウェア | GMP-ECM 6.3 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | November 12, 2012 06:00:00 UTC 2012 年 11 月 12 日 (月) 15 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1118 | 118 | Makoto Kamada | November 12, 2012 06:00:00 UTC 2012 年 11 月 12 日 (月) 15 時 0 分 0 秒 (日本時間) |
1000 | Warut Roonguthai | November 14, 2012 14:55:08 UTC 2012 年 11 月 14 日 (水) 23 時 55 分 8 秒 (日本時間) | |||
40 | 3e6 | 1000 | Dmitry Domanov | November 16, 2012 14:49:09 UTC 2012 年 11 月 16 日 (金) 23 時 49 分 9 秒 (日本時間) | |
45 | 11e6 | 4808 | 600 | Dmitry Domanov | November 27, 2012 15:55:40 UTC 2012 年 11 月 28 日 (水) 0 時 55 分 40 秒 (日本時間) |
4208 | Youcef Lemsafer | December 24, 2012 16:08:26 UTC 2012 年 12 月 25 日 (火) 1 時 8 分 26 秒 (日本時間) | |||
50 | 43e6 | 1000 / 6430 | Youcef Lemsafer | December 24, 2012 16:08:26 UTC 2012 年 12 月 25 日 (火) 1 時 8 分 26 秒 (日本時間) |
name 名前 | Warut Roonguthai |
---|---|
date 日付 | November 13, 2012 04:53:29 UTC 2012 年 11 月 13 日 (火) 13 時 53 分 29 秒 (日本時間) |
composite number 合成数 | 1936213216291355876871653597517735244192957470872290557564896374704699527335611202268498450836907101113622809696074161570803841385210845063758151692053612117438728598980231<172> |
prime factors 素因数 | 79559650917036464525130975647656407670223<41> 24336622822923244695728408198999044559436821571037487563080120158375447090272196962709447592778289276135511000668845129957953188297<131> |
factorization results 素因数分解の結果 | Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1541059630 Step 1 took 7924ms Step 2 took 5523ms ********** Factor found in step 2: 79559650917036464525130975647656407670223 Found probable prime factor of 41 digits: 79559650917036464525130975647656407670223 Probable prime cofactor 24336622822923244695728408198999044559436821571037487563080120158375447090272196962709447592778289276135511000668845129957953188297 has 131 digits |
software ソフトウェア | GMP-ECM 6.3 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | November 12, 2012 06:00:00 UTC 2012 年 11 月 12 日 (月) 15 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1118 | 118 | Makoto Kamada | November 12, 2012 06:00:00 UTC 2012 年 11 月 12 日 (月) 15 時 0 分 0 秒 (日本時間) |
1000 | Warut Roonguthai | November 14, 2012 14:55:17 UTC 2012 年 11 月 14 日 (水) 23 時 55 分 17 秒 (日本時間) | |||
40 | 3e6 | 1000 | Dmitry Domanov | November 16, 2012 14:49:17 UTC 2012 年 11 月 16 日 (金) 23 時 49 分 17 秒 (日本時間) | |
45 | 11e6 | 600 / 4208 | Dmitry Domanov | November 27, 2012 15:55:30 UTC 2012 年 11 月 28 日 (水) 0 時 55 分 30 秒 (日本時間) |
name 名前 | Erik Branger |
---|---|
date 日付 | January 6, 2021 22:33:38 UTC 2021 年 1 月 7 日 (木) 7 時 33 分 38 秒 (日本時間) |
composite number 合成数 | 726776310698164533654015319622307234195032645329537091172950440930029047255459749538850654453019997909136480915859750105787582721597320839712793449932515869562345256274997699341571757<183> |
prime factors 素因数 | 1196941162972636524501118602258185023120446907593938710231<58> 607194683565895118689991726848110464792506823454436787001072071654128285812016167478361680528887826483221542719179168936593947<126> |
factorization results 素因数分解の結果 | Number: 40003_219 N = 726776310698164533654015319622307234195032645329537091172950440930029047255459749538850654453019997909136480915859750105787582721597320839712793449932515869562345256274997699341571757 (183 digits) SNFS difficulty: 221 digits. Divisors found: r1=1196941162972636524501118602258185023120446907593938710231 (pp58) r2=607194683565895118689991726848110464792506823454436787001072071654128285812016167478361680528887826483221542719179168936593947 (pp126) Version: Msieve v. 1.52 (SVN unknown) Total time: 57.20 hours. Factorization parameters were as follows: n: 726776310698164533654015319622307234195032645329537091172950440930029047255459749538850654453019997909136480915859750105787582721597320839712793449932515869562345256274997699341571757 m: 10000000000000000000000000000000000000000000000000000000 deg: 4 c4: 2 c0: 15 skew: 1.00 type: snfs lss: 1 rlim: 536870912 alim: 44739242 lpbr: 29 lpba: 28 mfbr: 58 mfba: 56 rlambda: 2.8 alambda: 2.8 side: 1 Factor base limits: 536870912/44739242 Large primes per side: 3 Large prime bits: 29/28 Relations: 6919362 relations Pruned matrix : 6074547 x 6074772 Total pre-computation time approximately 1000 CPU-days. Pre-computation saved approximately 18 G relations. Total batch smoothness checking time: 30.38 hours. Total relation processing time: 0.36 hours. Matrix solve time: 26.14 hours. time per square root: 0.33 hours. Prototype def-par.txt line would be: snfs,221,4,0,0,0,0,0,0,0,0,536870912,44739242,29,28,58,56,2.8,2.8,100000 total time: 57.20 hours. Intel64 Family 6 Model 60 Stepping 3, GenuineIntel Windows-10-10.0.18362-SP0 processors: 8, speed: 3.50GHz |
software ソフトウェア | GGNFS, NFS_factory, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1118 | 118 | Makoto Kamada | November 12, 2012 06:00:00 UTC 2012 年 11 月 12 日 (月) 15 時 0 分 0 秒 (日本時間) |
1000 | Warut Roonguthai | November 14, 2012 14:55:42 UTC 2012 年 11 月 14 日 (水) 23 時 55 分 42 秒 (日本時間) | |||
40 | 3e6 | 1000 | Dmitry Domanov | November 16, 2012 14:49:26 UTC 2012 年 11 月 16 日 (金) 23 時 49 分 26 秒 (日本時間) | |
45 | 11e6 | 600 / 4208 | Dmitry Domanov | November 27, 2012 15:55:20 UTC 2012 年 11 月 28 日 (水) 0 時 55 分 20 秒 (日本時間) |
name 名前 | Erik Branger |
---|---|
date 日付 | December 4, 2018 15:54:59 UTC 2018 年 12 月 5 日 (水) 0 時 54 分 59 秒 (日本時間) |
composite number 合成数 | 50456044105776872268620790750917146599661989289005346566724573410061575089462916040238170526613044298553468881209667519459713028315974240062532171893134828772820328909665545453401312153936283891489454195263<206> |
prime factors 素因数 | 437667338233489953014117097940287281219257<42> 1695672299782584909714502297209011812363001602468719867046231862684741413<73> 67987196670768537260478268857916235331809766693280058741723993040526139448545156829060451243<92> |
factorization results 素因数分解の結果 | Number: 40003_220 N = 50456044105776872268620790750917146599661989289005346566724573410061575089462916040238170526613044298553468881209667519459713028315974240062532171893134828772820328909665545453401312153936283891489454195263 (206 digits) SNFS difficulty: 221 digits. Divisors found: r1=437667338233489953014117097940287281219257 (pp42) r2=1695672299782584909714502297209011812363001602468719867046231862684741413 (pp73) r3=67987196670768537260478268857916235331809766693280058741723993040526139448545156829060451243 (pp92) Version: Msieve v. 1.52 (SVN unknown) Total time: 67.77 hours. Factorization parameters were as follows: n: 50456044105776872268620790750917146599661989289005346566724573410061575089462916040238170526613044298553468881209667519459713028315974240062532171893134828772820328909665545453401312153936283891489454195263 m: 10000000000000000000000000000000000000000000000000000000 deg: 4 c4: 4 c0: 3 skew: 1.00 type: snfs lss: 1 rlim: 536870912 alim: 536870912 lpbr: 29 lpba: 28 mfbr: 58 mfba: 56 rlambda: 2.8 alambda: 2.8 side: 1 Factor base limits: 536870912/536870912 Large primes per side: 3 Large prime bits: 29/28 Relations: 7244496 relations Pruned matrix : 6436275 x 6436500 Total pre-computation time approximately 300 CPU-days. Pre-computation saved approximately 8 G relations. Total batch smoothness checking time: 32.02 hours. Total relation processing time: 0.39 hours. Matrix solve time: 34.61 hours. time per square root: 0.75 hours. Prototype def-par.txt line would be: snfs,221,4,0,0,0,0,0,0,0,0,536870912,536870912,29,28,58,56,2.8,2.8,100000 total time: 67.77 hours. Intel64 Family 6 Model 60 Stepping 3, GenuineIntel Windows-10-10.0.17134-SP0 processors: 8, speed: 3.50GHz |
software ソフトウェア | GGNFS, NFS_factory, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1118 | 118 | Makoto Kamada | November 12, 2012 06:00:00 UTC 2012 年 11 月 12 日 (月) 15 時 0 分 0 秒 (日本時間) |
1000 | Warut Roonguthai | November 14, 2012 14:55:49 UTC 2012 年 11 月 14 日 (水) 23 時 55 分 49 秒 (日本時間) | |||
40 | 3e6 | 1000 | Dmitry Domanov | November 16, 2012 14:49:35 UTC 2012 年 11 月 16 日 (金) 23 時 49 分 35 秒 (日本時間) | |
45 | 11e6 | 600 / 4208 | Dmitry Domanov | November 27, 2012 15:55:09 UTC 2012 年 11 月 28 日 (水) 0 時 55 分 9 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | August 8, 2021 23:06:39 UTC 2021 年 8 月 9 日 (月) 8 時 6 分 39 秒 (日本時間) |
composite number 合成数 | 2527254124006785496935897300421828041775488180446373620104067652768999602371856288415110302830606284916348732501653286167614439840018527358798216709765998485587368666947854307273136043735528887219273<199> |
prime factors 素因数 | 226388192311970151388017908864763506261<39> 11163365448513095099781081247561534215880201818165844886950242119363550896731913719174840730012590381045266968707323310434188443851615413561386144409895172717093<161> |
factorization results 素因数分解の結果 | 226388192311970151388017908864763506261 |
software ソフトウェア | factordb.com |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1118 | 118 | Makoto Kamada | November 12, 2012 06:00:00 UTC 2012 年 11 月 12 日 (月) 15 時 0 分 0 秒 (日本時間) |
1000 | Warut Roonguthai | November 14, 2012 14:55:56 UTC 2012 年 11 月 14 日 (水) 23 時 55 分 56 秒 (日本時間) | |||
40 | 3e6 | 1000 | Dmitry Domanov | November 16, 2012 14:49:43 UTC 2012 年 11 月 16 日 (金) 23 時 49 分 43 秒 (日本時間) | |
45 | 11e6 | 600 / 4208 | Dmitry Domanov | November 27, 2012 15:55:01 UTC 2012 年 11 月 28 日 (水) 0 時 55 分 1 秒 (日本時間) |
name 名前 | Mehrshad Alipour |
---|---|
date 日付 | August 15, 2024 12:57:26 UTC 2024 年 8 月 15 日 (木) 21 時 57 分 26 秒 (日本時間) |
composite number 合成数 | 103188635587358061084206600902265939372824315276457080413201084880605241845779194121787497224997655745203172530226045869895228318051777636820734441028807910850535969769877573831911484288741127<192> |
prime factors 素因数 | 40098031686256231223095275397773029007633072072608824055667582591983826787<74> 2573408999093748517739759792504885751922922636910115576809921381286753613120755263329227170691270405636248980495127821<118> |
factorization results 素因数分解の結果 | ***factors found*** P74 = 40098031686256231223095275397773029007633072072608824055667582591983826787 C33 = 387639586203623725112318868401189 P118 = 2573408999093748517739759792504885751922922636910115576809921381286753613120755263329227170691270405636248980495127821 ans = 0 |
software ソフトウェア | yafu 2.11 |
execution environment 実行環境 | ubuntu + wine |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1118 | 118 | Makoto Kamada | November 12, 2012 06:00:00 UTC 2012 年 11 月 12 日 (月) 15 時 0 分 0 秒 (日本時間) |
1000 | Warut Roonguthai | November 14, 2012 14:56:13 UTC 2012 年 11 月 14 日 (水) 23 時 56 分 13 秒 (日本時間) | |||
40 | 3e6 | 1000 | Dmitry Domanov | November 16, 2012 14:49:51 UTC 2012 年 11 月 16 日 (金) 23 時 49 分 51 秒 (日本時間) | |
45 | 11e6 | 600 / 4208 | Dmitry Domanov | November 27, 2012 15:54:52 UTC 2012 年 11 月 28 日 (水) 0 時 54 分 52 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | November 15, 2012 11:17:29 UTC 2012 年 11 月 15 日 (木) 20 時 17 分 29 秒 (日本時間) |
composite number 合成数 | 1943027131409346042315436854680011969918242391124599199704390271942609442294360232128543688407004547400167659177464123737900461048084209352567564610569103360558232303979323477873579948016356615297102651163<205> |
prime factors 素因数 | 38964228161899290209200976212201111<35> |
composite cofactor 合成数の残り | 49866947789544876656836053379654506842017782006392645051965526525548592563589069077149471328034354361262368322683502565467767362957442889554457127724956079670980894869533<170> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3048405199 Step 1 took 39036ms Step 2 took 13522ms ********** Factor found in step 2: 38964228161899290209200976212201111 Found probable prime factor of 35 digits: 38964228161899290209200976212201111 |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | August 8, 2021 23:08:24 UTC 2021 年 8 月 9 日 (月) 8 時 8 分 24 秒 (日本時間) |
composite number 合成数 | 49866947789544876656836053379654506842017782006392645051965526525548592563589069077149471328034354361262368322683502565467767362957442889554457127724956079670980894869533<170> |
prime factors 素因数 | 2705761647651954828879432325875664482174688177<46> 18429911530758498787508802186051653582703380589339910023255814591225864381953336165312711255965034945364429313116937750301229<125> |
factorization results 素因数分解の結果 | 2705761647651954828879432325875664482174688177 |
software ソフトウェア | factordb.com |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1118 | 118 | Makoto Kamada | November 12, 2012 06:00:00 UTC 2012 年 11 月 12 日 (月) 15 時 0 分 0 秒 (日本時間) |
1000 | Warut Roonguthai | November 14, 2012 14:56:20 UTC 2012 年 11 月 14 日 (水) 23 時 56 分 20 秒 (日本時間) | |||
40 | 3e6 | 1000 | Dmitry Domanov | November 16, 2012 14:50:01 UTC 2012 年 11 月 16 日 (金) 23 時 50 分 1 秒 (日本時間) | |
45 | 11e6 | 600 / 4208 | Dmitry Domanov | November 27, 2012 15:54:43 UTC 2012 年 11 月 28 日 (水) 0 時 54 分 43 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1118 | 118 | Makoto Kamada | November 12, 2012 06:00:00 UTC 2012 年 11 月 12 日 (月) 15 時 0 分 0 秒 (日本時間) |
1000 | Warut Roonguthai | November 14, 2012 14:56:30 UTC 2012 年 11 月 14 日 (水) 23 時 56 分 30 秒 (日本時間) | |||
40 | 3e6 | 1000 | Dmitry Domanov | November 16, 2012 14:50:09 UTC 2012 年 11 月 16 日 (金) 23 時 50 分 9 秒 (日本時間) | |
45 | 11e6 | 600 / 4208 | Dmitry Domanov | November 27, 2012 15:54:33 UTC 2012 年 11 月 28 日 (水) 0 時 54 分 33 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | June 9, 2020 10:22:32 UTC 2020 年 6 月 9 日 (火) 19 時 22 分 32 秒 (日本時間) |
composite number 合成数 | 4574098276559816112101085742272661312150989154469928905934011999918123640849579291593390565213319362512497294134988272583781185201465586828792530680478308882681583411026298434983709920750316784893765995764613700819438271<220> |
prime factors 素因数 | 14278845318591903262180338322157012141629123525270963331968662043910409137191459910979922562870650453<101> 320340908140805260844743259174756369399086165280889578082178054170581301354733223491897366204255570791447879142571456707<120> |
factorization results 素因数分解の結果 | Number: n N=4574098276559816112101085742272661312150989154469928905934011999918123640849579291593390565213319362512497294134988272583781185201465586828792530680478308882681583411026298434983709920750316784893765995764613700819438271 ( 220 digits) SNFS difficulty: 228 digits. Divisors found: Tue Jun 9 20:10:29 2020 p101 factor: 14278845318591903262180338322157012141629123525270963331968662043910409137191459910979922562870650453 Tue Jun 9 20:10:29 2020 p120 factor: 320340908140805260844743259174756369399086165280889578082178054170581301354733223491897366204255570791447879142571456707 Tue Jun 9 20:10:29 2020 elapsed time 18:47:06 (Msieve 1.54 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.126). Factorization parameters were as follows: # # N = 4x10^226+3 = 40(225)3 # n: 4574098276559816112101085742272661312150989154469928905934011999918123640849579291593390565213319362512497294134988272583781185201465586828792530680478308882681583411026298434983709920750316784893765995764613700819438271 m: 100000000000000000000000000000000000000 deg: 6 c6: 1 c0: 75 skew: 2.05 # Murphy_E = 1.452e-12 type: snfs lss: 1 rlim: 44000000 alim: 44000000 lpbr: 29 lpba: 29 mfbr: 59 mfba: 59 rlambda: 2.7 alambda: 2.7 Factor base limits: 44000000/44000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 59/59 Sieved special-q in [100000, 119600000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 10571022 hash collisions in 58620136 relations (51134689 unique) Msieve: matrix is 6094541 x 6094766 (2151.1 MB) Sieving start time: 2020/06/05 23:06:26 Sieving end time : 2020/06/09 01:22:24 Total sieving time: 74hrs 15min 58secs. Total relation processing time: 17hrs 57min 30sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 28min 40sec. Prototype def-par.txt line would be: snfs,228,6,0,0,0,0,0,0,0,0,44000000,44000000,29,29,59,59,2.7,2.7,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- [ 0.149558] smpboot: CPU0: AMD Ryzen 7 1700 Eight-Core Processor (family: 0x17, model: 0x1, stepping: 0x1) [ 0.000000] Memory: 16283204K/16703460K available (12300K kernel code, 2481K rwdata, 4268K rodata, 2432K init, 2712K bss, 420256K reserved, 0K cma-reserved) [ 0.184558] x86/mm: Memory block size: 128MB [ 0.024000] Calibrating delay loop (skipped), value calculated using timer frequency.. 5988.59 BogoMIPS (lpj=11977184) [ 0.182227] smpboot: Total of 16 processors activated (95817.47 BogoMIPS) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1118 | 118 | Makoto Kamada | November 12, 2012 06:00:00 UTC 2012 年 11 月 12 日 (月) 15 時 0 分 0 秒 (日本時間) |
1000 | Warut Roonguthai | November 14, 2012 14:56:37 UTC 2012 年 11 月 14 日 (水) 23 時 56 分 37 秒 (日本時間) | |||
40 | 3e6 | 1000 | Dmitry Domanov | November 16, 2012 14:50:17 UTC 2012 年 11 月 16 日 (金) 23 時 50 分 17 秒 (日本時間) | |
45 | 11e6 | 600 / 2454 | Dmitry Domanov | November 27, 2012 15:54:24 UTC 2012 年 11 月 28 日 (水) 0 時 54 分 24 秒 (日本時間) | |
50 | 43e6 | 500 / 7374 | Dmitry Domanov | February 19, 2013 11:28:46 UTC 2013 年 2 月 19 日 (火) 20 時 28 分 46 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | November 8, 2013 04:11:58 UTC 2013 年 11 月 8 日 (金) 13 時 11 分 58 秒 (日本時間) |
composite number 合成数 | 6865905338243759190353952029167195759388724355835671841072006570160779407764277429269865375922900531965527947492221331091276450957926628461920196704610953<154> |
prime factors 素因数 | 37635681547262713872561260075603056075831<41> 182430742741342074398495203790393781209274230241582506726513847300833155308269026632975854256330834779184929785663<114> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=2937954692 Step 1 took 34402ms Step 2 took 13131ms ********** Factor found in step 2: 37635681547262713872561260075603056075831 Found probable prime factor of 41 digits: 37635681547262713872561260075603056075831 Probable prime cofactor |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1118 | 118 | Makoto Kamada | November 12, 2012 06:00:00 UTC 2012 年 11 月 12 日 (月) 15 時 0 分 0 秒 (日本時間) |
1000 | Warut Roonguthai | November 14, 2012 14:56:55 UTC 2012 年 11 月 14 日 (水) 23 時 56 分 55 秒 (日本時間) | |||
40 | 3e6 | 1000 | Dmitry Domanov | November 16, 2012 14:50:27 UTC 2012 年 11 月 16 日 (金) 23 時 50 分 27 秒 (日本時間) | |
45 | 11e6 | 600 / 4208 | Dmitry Domanov | November 27, 2012 15:54:13 UTC 2012 年 11 月 28 日 (水) 0 時 54 分 13 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1118 | 118 | Makoto Kamada | November 12, 2012 06:00:00 UTC 2012 年 11 月 12 日 (月) 15 時 0 分 0 秒 (日本時間) |
1000 | Warut Roonguthai | November 14, 2012 14:57:05 UTC 2012 年 11 月 14 日 (水) 23 時 57 分 5 秒 (日本時間) | |||
40 | 3e6 | 1000 | Dmitry Domanov | November 16, 2012 14:50:36 UTC 2012 年 11 月 16 日 (金) 23 時 50 分 36 秒 (日本時間) | |
45 | 11e6 | 1000 / 4208 | Dmitry Domanov | November 27, 2012 15:44:20 UTC 2012 年 11 月 28 日 (水) 0 時 44 分 20 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1118 | 118 | Makoto Kamada | November 12, 2012 06:00:00 UTC 2012 年 11 月 12 日 (月) 15 時 0 分 0 秒 (日本時間) |
1000 | Warut Roonguthai | November 14, 2012 14:57:13 UTC 2012 年 11 月 14 日 (水) 23 時 57 分 13 秒 (日本時間) | |||
40 | 3e6 | 1000 | Dmitry Domanov | November 16, 2012 14:50:46 UTC 2012 年 11 月 16 日 (金) 23 時 50 分 46 秒 (日本時間) | |
45 | 11e6 | 1000 / 2454 | Dmitry Domanov | November 27, 2012 15:44:07 UTC 2012 年 11 月 28 日 (水) 0 時 44 分 7 秒 (日本時間) | |
50 | 43e6 | 500 / 7285 | Dmitry Domanov | February 19, 2013 11:28:20 UTC 2013 年 2 月 19 日 (火) 20 時 28 分 20 秒 (日本時間) |
name 名前 | matsui |
---|---|
date 日付 | July 18, 2014 18:04:56 UTC 2014 年 7 月 19 日 (土) 3 時 4 分 56 秒 (日本時間) |
composite number 合成数 | 4000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003<232> |
prime factors 素因数 | 56338254721451307043371061741100902240009948361674152187800504974183<68> 70999714488439119583106494321955650859298420103679844265377294091692079810671374033164800530385005016837314507585797819716507939054639835730410533537638889678049541<164> |
factorization results 素因数分解の結果 | N=4000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003 ( 232 digits) SNFS difficulty: 231 digits. Divisors found: r1=56338254721451307043371061741100902240009948361674152187800504974183 (pp68) r2=70999714488439119583106494321955650859298420103679844265377294091692079810671374033164800530385005016837314507585797819716507939054639835730410533537638889678049541 (pp164) Version: Msieve v. 1.53 (SVN Unversioned directory) Total time: Scaled time: 158.90 units (timescale=1.901). Factorization parameters were as follows: n: 4000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003 m: 200000000000000000000000000000000000000 deg: 6 c6: 125 c0: 6 skew: 0.60 # Murphy_E = 8.757e-13 type: snfs lss: 1 rlim: 51000000 alim: 51000000 lpbr: 30 lpba: 30 mfbr: 59 mfba: 59 rlambda: 2.7 alambda: 2.7 qintsize: 80000 Factor base limits: 51000000/51000000 Large primes per side: 3 Large prime bits: 30/30 Max factor residue bits: 59/59 Sieved rational special-q in [25500000, 60140001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 7177964 x 7178189 Total sieving time: Total relation processing time: Matrix solve time: Time per square root: Prototype def-par.txt line would be: snfs,231.000,6,0,0,0,0,0,0,0,0,51000000,51000000,30,30,59,59,2.7,2.7,100000 total time: |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1118 | 118 | Makoto Kamada | November 12, 2012 06:00:00 UTC 2012 年 11 月 12 日 (月) 15 時 0 分 0 秒 (日本時間) |
1000 | Warut Roonguthai | November 14, 2012 14:57:25 UTC 2012 年 11 月 14 日 (水) 23 時 57 分 25 秒 (日本時間) | |||
40 | 3e6 | 1000 | Dmitry Domanov | November 16, 2012 14:50:54 UTC 2012 年 11 月 16 日 (金) 23 時 50 分 54 秒 (日本時間) | |
45 | 11e6 | 1000 | Dmitry Domanov | November 27, 2012 15:43:48 UTC 2012 年 11 月 28 日 (水) 0 時 43 分 48 秒 (日本時間) | |
50 | 43e6 | 1100 | 600 | Dmitry Domanov | November 28, 2012 07:09:25 UTC 2012 年 11 月 28 日 (水) 16 時 9 分 25 秒 (日本時間) |
500 | Dmitry Domanov | February 19, 2013 11:28:01 UTC 2013 年 2 月 19 日 (火) 20 時 28 分 1 秒 (日本時間) | |||
55 | 11e7 | 0 | - | - | |
60 | 26e7 | 7455 / 41871 | yoyo@home | May 14, 2013 00:41:49 UTC 2013 年 5 月 14 日 (火) 9 時 41 分 49 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1118 | 118 | Makoto Kamada | November 12, 2012 06:00:00 UTC 2012 年 11 月 12 日 (月) 15 時 0 分 0 秒 (日本時間) |
1000 | Warut Roonguthai | November 14, 2012 14:57:41 UTC 2012 年 11 月 14 日 (水) 23 時 57 分 41 秒 (日本時間) | |||
40 | 3e6 | 1000 | Dmitry Domanov | November 16, 2012 14:51:03 UTC 2012 年 11 月 16 日 (金) 23 時 51 分 3 秒 (日本時間) | |
45 | 11e6 | 1000 / 2454 | Dmitry Domanov | November 27, 2012 15:43:34 UTC 2012 年 11 月 28 日 (水) 0 時 43 分 34 秒 (日本時間) | |
50 | 43e6 | 500 / 7285 | Dmitry Domanov | February 19, 2013 11:27:33 UTC 2013 年 2 月 19 日 (火) 20 時 27 分 33 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1118 | 118 | Makoto Kamada | November 12, 2012 06:00:00 UTC 2012 年 11 月 12 日 (月) 15 時 0 分 0 秒 (日本時間) |
1000 | Warut Roonguthai | November 14, 2012 14:57:48 UTC 2012 年 11 月 14 日 (水) 23 時 57 分 48 秒 (日本時間) | |||
40 | 3e6 | 1000 | Dmitry Domanov | November 16, 2012 14:51:13 UTC 2012 年 11 月 16 日 (金) 23 時 51 分 13 秒 (日本時間) | |
45 | 11e6 | 1000 / 4208 | Dmitry Domanov | November 27, 2012 15:43:21 UTC 2012 年 11 月 28 日 (水) 0 時 43 分 21 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1118 | 118 | Makoto Kamada | November 12, 2012 06:00:00 UTC 2012 年 11 月 12 日 (月) 15 時 0 分 0 秒 (日本時間) |
1000 | Warut Roonguthai | November 14, 2012 14:57:55 UTC 2012 年 11 月 14 日 (水) 23 時 57 分 55 秒 (日本時間) | |||
40 | 3e6 | 1000 | Dmitry Domanov | November 16, 2012 14:51:22 UTC 2012 年 11 月 16 日 (金) 23 時 51 分 22 秒 (日本時間) | |
45 | 11e6 | 1000 / 4208 | Dmitry Domanov | November 27, 2012 15:42:20 UTC 2012 年 11 月 28 日 (水) 0 時 42 分 20 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1118 | 118 | Makoto Kamada | November 12, 2012 06:00:00 UTC 2012 年 11 月 12 日 (月) 15 時 0 分 0 秒 (日本時間) |
1000 | Warut Roonguthai | November 14, 2012 14:58:13 UTC 2012 年 11 月 14 日 (水) 23 時 58 分 13 秒 (日本時間) | |||
40 | 3e6 | 1000 | Dmitry Domanov | November 16, 2012 14:51:31 UTC 2012 年 11 月 16 日 (金) 23 時 51 分 31 秒 (日本時間) | |
45 | 11e6 | 1000 / 2454 | Dmitry Domanov | November 27, 2012 15:41:56 UTC 2012 年 11 月 28 日 (水) 0 時 41 分 56 秒 (日本時間) | |
50 | 43e6 | 500 / 7285 | Dmitry Domanov | February 19, 2013 11:27:00 UTC 2013 年 2 月 19 日 (火) 20 時 27 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1118 | 118 | Makoto Kamada | November 12, 2012 06:00:00 UTC 2012 年 11 月 12 日 (月) 15 時 0 分 0 秒 (日本時間) |
1000 | Warut Roonguthai | November 14, 2012 14:58:21 UTC 2012 年 11 月 14 日 (水) 23 時 58 分 21 秒 (日本時間) | |||
40 | 3e6 | 1000 | Dmitry Domanov | November 16, 2012 14:51:39 UTC 2012 年 11 月 16 日 (金) 23 時 51 分 39 秒 (日本時間) | |
45 | 11e6 | 1000 / 4208 | Dmitry Domanov | November 27, 2012 15:41:43 UTC 2012 年 11 月 28 日 (水) 0 時 41 分 43 秒 (日本時間) |
name 名前 | Erik Branger |
---|---|
date 日付 | March 15, 2014 11:46:09 UTC 2014 年 3 月 15 日 (土) 20 時 46 分 9 秒 (日本時間) |
composite number 合成数 | 74295425256872398816305813378538229934615338305432374033202781806646635613861300245828829888274580372659071160836254020348852439836441578623151799542223861631159<161> |
prime factors 素因数 | 2478728759293106448748854625123302953535308503<46> 29973196937473811552413113073914261720238907936405144396898407226787396141025175835517884241393390414646059256843553<116> |
factorization results 素因数分解の結果 | GMP-ECM 7.0-dev [configured with MPIR 2.6.0, --enable-openmp] [ECM] Input number is 74295425256872398816305813378538229934615338305432374033202781806646635613861300245828829888274580372659071160836254020348852439836441578623151799542223861631159 (161 digits) Using B1=43000000, B2=240490660426, polynomial Dickson(12), sigma=1:286669524 Step 1 took 141743ms Step 2 took 65255ms ********** Factor found in step 2: 2478728759293106448748854625123302953535308503 Found probable prime factor of 46 digits: 2478728759293106448748854625123302953535308503 Probable prime cofactor 29973196937473811552413113073914261720238907936405144396898407226787396141025175835517884241393390414646059256843553 has 116 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1118 | 118 | Makoto Kamada | November 12, 2012 06:00:00 UTC 2012 年 11 月 12 日 (月) 15 時 0 分 0 秒 (日本時間) |
1000 | Warut Roonguthai | November 14, 2012 14:58:29 UTC 2012 年 11 月 14 日 (水) 23 時 58 分 29 秒 (日本時間) | |||
40 | 3e6 | 1000 | Dmitry Domanov | November 16, 2012 14:51:48 UTC 2012 年 11 月 16 日 (金) 23 時 51 分 48 秒 (日本時間) | |
45 | 11e6 | 1850 / 4208 | 600 | Dmitry Domanov | November 27, 2012 15:41:07 UTC 2012 年 11 月 28 日 (水) 0 時 41 分 7 秒 (日本時間) |
850 | Serge Batalov | November 8, 2013 17:12:53 UTC 2013 年 11 月 9 日 (土) 2 時 12 分 53 秒 (日本時間) | |||
400 | Serge Batalov | January 6, 2014 02:26:36 UTC 2014 年 1 月 6 日 (月) 11 時 26 分 36 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1118 | 118 | Makoto Kamada | November 12, 2012 06:00:00 UTC 2012 年 11 月 12 日 (月) 15 時 0 分 0 秒 (日本時間) |
1000 | Warut Roonguthai | November 14, 2012 15:00:36 UTC 2012 年 11 月 15 日 (木) 0 時 0 分 36 秒 (日本時間) | |||
40 | 3e6 | 1000 | Dmitry Domanov | November 16, 2012 14:51:56 UTC 2012 年 11 月 16 日 (金) 23 時 51 分 56 秒 (日本時間) | |
45 | 11e6 | 1000 / 4208 | Dmitry Domanov | November 27, 2012 15:40:27 UTC 2012 年 11 月 28 日 (水) 0 時 40 分 27 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1118 | 118 | Makoto Kamada | November 12, 2012 06:00:00 UTC 2012 年 11 月 12 日 (月) 15 時 0 分 0 秒 (日本時間) |
1000 | Warut Roonguthai | November 14, 2012 15:00:45 UTC 2012 年 11 月 15 日 (木) 0 時 0 分 45 秒 (日本時間) | |||
40 | 3e6 | 1000 | Dmitry Domanov | November 16, 2012 14:52:06 UTC 2012 年 11 月 16 日 (金) 23 時 52 分 6 秒 (日本時間) | |
45 | 11e6 | 600 / 4208 | Dmitry Domanov | November 27, 2012 15:40:52 UTC 2012 年 11 月 28 日 (水) 0 時 40 分 52 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1118 | 118 | Makoto Kamada | November 12, 2012 06:00:00 UTC 2012 年 11 月 12 日 (月) 15 時 0 分 0 秒 (日本時間) |
1000 | Warut Roonguthai | November 14, 2012 15:00:52 UTC 2012 年 11 月 15 日 (木) 0 時 0 分 52 秒 (日本時間) | |||
40 | 3e6 | 1000 | Dmitry Domanov | November 16, 2012 14:52:14 UTC 2012 年 11 月 16 日 (金) 23 時 52 分 14 秒 (日本時間) | |
45 | 11e6 | 1000 / 4208 | Dmitry Domanov | November 27, 2012 15:39:45 UTC 2012 年 11 月 28 日 (水) 0 時 39 分 45 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1118 | 118 | Makoto Kamada | November 12, 2012 06:00:00 UTC 2012 年 11 月 12 日 (月) 15 時 0 分 0 秒 (日本時間) |
1000 | Warut Roonguthai | November 14, 2012 15:00:59 UTC 2012 年 11 月 15 日 (木) 0 時 0 分 59 秒 (日本時間) | |||
40 | 3e6 | 1000 | Dmitry Domanov | November 16, 2012 14:52:22 UTC 2012 年 11 月 16 日 (金) 23 時 52 分 22 秒 (日本時間) | |
45 | 11e6 | 1000 / 4208 | Dmitry Domanov | November 27, 2012 15:39:32 UTC 2012 年 11 月 28 日 (水) 0 時 39 分 32 秒 (日本時間) |
name 名前 | Warut Roonguthai |
---|---|
date 日付 | November 12, 2012 19:32:50 UTC 2012 年 11 月 13 日 (火) 4 時 32 分 50 秒 (日本時間) |
composite number 合成数 | 45455641104387851349411215971574919934496563879959612358935350953004460152909740531453881050225890102367862519181860918331157245193027078033962845486236549276635725822332392389581114257<185> |
prime factors 素因数 | 159641445028726199077868609267443<33> |
composite cofactor 合成数の残り | 284735840972928257427252310894822484528031658866536455450332799101470700003641780506112547935521828498901112400964496721474372084202450499027372347681899<153> |
factorization results 素因数分解の結果 | Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1339124700 Step 1 took 8565ms Step 2 took 5398ms ********** Factor found in step 2: 159641445028726199077868609267443 Found probable prime factor of 33 digits: 159641445028726199077868609267443 Composite cofactor 284735840972928257427252310894822484528031658866536455450332799101470700003641780506112547935521828498901112400964496721474372084202450499027372347681899 has 153 digits |
software ソフトウェア | GMP-ECM 6.3 |
name 名前 | Mehrshad Alipour |
---|---|
date 日付 | May 31, 2024 12:58:54 UTC 2024 年 5 月 31 日 (金) 21 時 58 分 54 秒 (日本時間) |
composite number 合成数 | 284735840972928257427252310894822484528031658866536455450332799101470700003641780506112547935521828498901112400964496721474372084202450499027372347681899<153> |
prime factors 素因数 | 76726817853520239037649304234848477795120773537969<50> 3711034146059851616226553455458471907374496901584533520195444698194629604418108218714150923882870506971<103> |
factorization results 素因数分解の結果 | mpiexec -hosts localhost,localhost,localhost,localhost,localhost,localhost,localhost,localhost ./ecmpi -N 284735840972928257427252310894822484528031658866536455450332799101470700003641780506112547935521828498901112400964496721474372084202450499027372347681899 -nb 5208 -B1 11e6 # 0: N = 284735840972928257427252310894822484528031658866536455450332799101470700003641780506112547935521828498901112400964496721474372084202450499027372347681899 # 0: B1 = 11000000 # 0: #curves = 5208 # 1: N = 284735840972928257427252310894822484528031658866536455450332799101470700003641780506112547935521828498901112400964496721474372084202450499027372347681899 # 1: B1 = 11000000 # 1: #curves = 5208 # 2: N = 284735840972928257427252310894822484528031658866536455450332799101470700003641780506112547935521828498901112400964496721474372084202450499027372347681899 # 2: B1 = 11000000 # 2: #curves = 5208 # 3: N = 284735840972928257427252310894822484528031658866536455450332799101470700003641780506112547935521828498901112400964496721474372084202450499027372347681899 # 3: B1 = 11000000 # 3: #curves = 5208 # 4: N = # 5: N = 284735840972928257427252310894822484528031658866536455450332799101470700003641780506112547935521828498901112400964496721474372084202450499027372347681899 # 5: B1 = 11000000 # 5: #curves = 5208 # 6: N = 284735840972928257427252310894822484528031658866536455450332799101470700003641780506112547935521828498901112400964496721474372084202450499027372347681899 # 6: B1 = 11000000 # 6: #curves = 5208 # 7: N = 284735840972928257427252310894822484528031658866536455450332799101470700003641780506112547935521828498901112400964496721474372084202450499027372347681899 # 7: B1 = 11000000 # 7: #curves = 5208 284735840972928257427252310894822484528031658866536455450332799101470700003641780506112547935521828498901112400964496721474372084202450499027372347681899 # 4: B1 = 11000000 # 4: #curves = 5208 # 8 curves done (0.2%) # 16 curves done (0.3%) # 24 curves done (0.5%) # 32 curves done (0.6%) # 40 curves done (0.8%) # 48 curves done (0.9%) # 56 curves done (1.1%) # 64 curves done (1.2%) # 72 curves done (1.4%) # 80 curves done (1.5%) # 88 curves done (1.7%) # 96 curves done (1.8%) # 104 curves done (2.0%) # 112 curves done (2.2%) # 120 curves done (2.3%) # 128 curves done (2.5%) # 136 curves done (2.6%) # 144 curves done (2.8%) # 152 curves done (2.9%) # 160 curves done (3.1%) # 168 curves done (3.2%) # 176 curves done (3.4%) # 184 curves done (3.5%) # 192 curves done (3.7%) # 200 curves done (3.8%) # 208 curves done (4.0%) # 216 curves done (4.1%) # 224 curves done (4.3%) # 232 curves done (4.5%) # 240 curves done (4.6%) # 248 curves done (4.8%) # 256 curves done (4.9%) # 264 curves done (5.1%) # 272 curves done (5.2%) # 280 curves done (5.4%) # 288 curves done (5.5%) # 296 curves done (5.7%) # 304 curves done (5.8%) # 312 curves done (6.0%) # 320 curves done (6.1%) # 328 curves done (6.3%) # 336 curves done (6.5%) # 344 curves done (6.6%) # 352 curves done (6.8%) # 360 curves done (6.9%) # 368 curves done (7.1%) # 376 curves done (7.2%) # 384 curves done (7.4%) # 392 curves done (7.5%) # 400 curves done (7.7%) # 5: curve 50 found factor 76726817853520239037649304234848477795120773537969 using sigma 1:3867142394 # 408 curves done (7.8%) Results: 284735840972928257427252310894822484528031658866536455450332799101470700003641780506112547935521828498901112400964496721474372084202450499027372347681899 = 3711034146059851616226553455458471907374496901584533520195444698194629604418108218714150923882870506971 * 76726817853520239037649304234848477795120773537969 |
software ソフトウェア | ecmpi |
execution environment 実行環境 | core i3-12100 ubuntu 23.10 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1118 | 118 | Makoto Kamada | November 12, 2012 06:00:00 UTC 2012 年 11 月 12 日 (月) 15 時 0 分 0 秒 (日本時間) |
1000 | Warut Roonguthai | November 14, 2012 15:01:06 UTC 2012 年 11 月 15 日 (木) 0 時 1 分 6 秒 (日本時間) | |||
40 | 3e6 | 1000 | Dmitry Domanov | November 16, 2012 14:52:31 UTC 2012 年 11 月 16 日 (金) 23 時 52 分 31 秒 (日本時間) | |
45 | 11e6 | 600 | Dmitry Domanov | November 27, 2012 15:40:42 UTC 2012 年 11 月 28 日 (水) 0 時 40 分 42 秒 (日本時間) | |
50 | 43e6 | 7483 | 1029 | Dmitry Domanov | November 28, 2012 07:08:03 UTC 2012 年 11 月 28 日 (水) 16 時 8 分 3 秒 (日本時間) |
6454 | Ignacio Santos | March 1, 2024 11:46:15 UTC 2024 年 3 月 1 日 (金) 20 時 46 分 15 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | March 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間) | |
45 | 11e6 | 5216 | Mehrshad Alipour | August 15, 2024 16:45:39 UTC 2024 年 8 月 16 日 (金) 1 時 45 分 39 秒 (日本時間) | |
50 | 43e6 | 8704 | Mehrshad Alipour | December 21, 2024 07:19:26 UTC 2024 年 12 月 21 日 (土) 16 時 19 分 26 秒 (日本時間) | |
55 | 11e7 | 16525 | yoyo@Home | December 21, 2024 07:38:11 UTC 2024 年 12 月 21 日 (土) 16 時 38 分 11 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | March 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | March 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間) |
composite cofactor 合成数の残り | 12114647009580859025702937149515421298885359241708610812123104648484956587828021666626922004191404087831846687694024857954581342475359068443736482446891281206544639<164> |
---|
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | March 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間) | |
45 | 11e6 | 1000 | Dmitry Domanov | March 11, 2019 14:25:54 UTC 2019 年 3 月 11 日 (月) 23 時 25 分 54 秒 (日本時間) | |
50 | 43e6 | 812 / 7220 | Dmitry Domanov | March 13, 2019 14:57:17 UTC 2019 年 3 月 13 日 (水) 23 時 57 分 17 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | March 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | March 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | March 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | March 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | March 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | March 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | March 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | March 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | March 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | March 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | March 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | March 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | March 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | March 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | March 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間) |
name 名前 | Seth Troisi |
---|---|
date 日付 | November 18, 2023 01:52:00 UTC 2023 年 11 月 18 日 (土) 10 時 52 分 0 秒 (日本時間) |
composite number 合成数 | 53851514151254567709578035267219808658556968956868385899911424483586481711874992321423647501949813570498114375637365051272902080304527939523297095872221734180498412738739838987065578877891921556555234382481443667225871430830768802334725750403<242> |
prime factors 素因数 | 39985231475407748778705421355244134881<38> 1346785104504773102055364824320979962421378244949486140561129783145661500487358615865153528688033642429498949837832341077451692418322177820323148757162850174379140632376940427765173121072249488859651060963<205> |
factorization results 素因数分解の結果 | Resuming P-1 residue saved by five@five with GMP-ECM 7.0.6-dev on Thu Nov 16 23:56:02 2023 Input number is 53851514151254567709578035267219808658556968956868385899911424483586481711874992321423647501949813570498114375637365051272902080304527939523297095872221734180498412738739838987065578877891921556555234382481443667225871430830768802334725750403 (242 digits) Using mpz_mod Using lmax = 8388608 with NTT which takes about 2880MB of memory Using B1=4000000000-4000000000, B2=205705378426380, polynomial x^1 P = 24249225, l = 8388608, s_1 = 4147200, k = s_2 = 2, m_1 = 79 Probability of finding a factor of n digits (assuming one exists): 20 25 30 35 40 45 50 55 60 65 0.71 0.43 0.21 0.087 0.032 0.01 0.003 0.00079 0.00019 4.5e-05 Step 1 took 0ms Computing F from factored S_1 took 29744ms Computing h took 4187ms Computing DCT-I of h took 8786ms Multi-point evaluation 1 of 2: Computing g_i took 14220ms Computing g*h took 16989ms Computing gcd of coefficients and N took 3967ms Multi-point evaluation 2 of 2: Computing g_i took 14128ms Computing g*h took 17053ms Computing gcd of coefficients and N took 3955ms Step 2 took 113378ms ********** Factor found in step 2: 39985231475407748778705421355244134881 Found prime factor of 38 digits: 39985231475407748778705421355244134881 Prime cofactor 1346785104504773102055364824320979962421378244949486140561129783145661500487358615865153528688033642429498949837832341077451692418322177820323148757162850174379140632376940427765173121072249488859651060963 has 205 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | March 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | March 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | March 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | March 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | March 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | March 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | March 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間) | |
45 | 11e6 | 2000 | Dmitry Domanov | March 13, 2019 13:32:50 UTC 2019 年 3 月 13 日 (水) 22 時 32 分 50 秒 (日本時間) | |
50 | 43e6 | 1600 | Dmitry Domanov | March 20, 2019 18:11:47 UTC 2019 年 3 月 21 日 (木) 3 時 11 分 47 秒 (日本時間) | |
55 | 11e7 | 2880 / 17051 | Erik Branger | May 3, 2019 14:38:25 UTC 2019 年 5 月 3 日 (金) 23 時 38 分 25 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | March 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | March 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | March 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間) | |
45 | 11e6 | 2400 | Dmitry Domanov | March 11, 2019 19:17:42 UTC 2019 年 3 月 12 日 (火) 4 時 17 分 42 秒 (日本時間) | |
50 | 43e6 | 412 / 6906 | Dmitry Domanov | March 12, 2019 10:26:57 UTC 2019 年 3 月 12 日 (火) 19 時 26 分 57 秒 (日本時間) |