Table of contents 目次

32×10107-419

c99

name 名前Robert Backstrom
date 日付November 21, 2008 14:48:22 UTC 2008 年 11 月 21 日 (金) 23 時 48 分 22 秒 (日本時間)
composite number 合成数
988746036684509216134405657207346002014562016183139466236470434514002669418403739656765174448645339<99>
prime factors 素因数
4969113507692915159830820858462998480110977<43>
198978356029457891142388803820629371983665753967882940507<57>
factorization results 素因数分解の結果
Number: n
N=988746036684509216134405657207346002014562016183139466236470434514002669418403739656765174448645339
  ( 99 digits)
SNFS difficulty: 108 digits.
Divisors found:
 r1=4969113507692915159830820858462998480110977 (pp43)
 r2=198978356029457891142388803820629371983665753967882940507 (pp57)
Version: GGNFS-0.77.1-20051202-athlon
Total time: 0.88 hours.
Scaled time: 1.27 units (timescale=1.447).
Factorization parameters were as follows:
name: KA_3_5_106_1
n: 988746036684509216134405657207346002014562016183139466236470434514002669418403739656765174448645339
type: snfs
skew: 0.84
deg: 5
c5: 100
c0: -41
m: 2000000000000000000000
rlim: 450000
alim: 450000
lpbr: 28
lpba: 28
mfbr: 56
mfba: 56
rlambda: 2.5
alambda: 2.5
qintsize: 20000
Factor base limits: 450000/450000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 56/56
Sieved algebraic special-q in [100000, 160001)
Primes: RFBsize:37706, AFBsize:37550, largePrimes:3672853 encountered
Relations: rels:3166359, finalFF:149304
Max relations in full relation-set: 28
Initial matrix: 75320 x 149304 with sparse part having weight 10857343.
Pruned matrix : 56531 x 56971 with weight 2447010.
Total sieving time: 0.79 hours.
Total relation processing time: 0.06 hours.
Matrix solve time: 0.02 hours.
Total square root time: 0.01 hours, sqrts: 1.
Prototype def-par.txt line would be:
snfs,108,5,0,0,0,0,0,0,0,0,450000,450000,28,28,56,56,2.5,2.5,50000
total time: 0.88 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間)

32×10111-419

c101

name 名前Sinkiti Sibata
date 日付November 21, 2008 22:38:27 UTC 2008 年 11 月 22 日 (土) 7 時 38 分 27 秒 (日本時間)
composite number 合成数
76364585248269496393816506554713280356615130143710070231171455531033722911050513054523245829788744839<101>
prime factors 素因数
250725206151227572491375889110383529086023607868659<51>
304574822852910071162849414423941486520137105717021<51>
factorization results 素因数分解の結果
Number: 35551_111
N=76364585248269496393816506554713280356615130143710070231171455531033722911050513054523245829788744839
  ( 101 digits)
SNFS difficulty: 112 digits.
Divisors found:
 r1=250725206151227572491375889110383529086023607868659 (pp51)
 r2=304574822852910071162849414423941486520137105717021 (pp51)
Version: GGNFS-0.77.1-20050930-pentium4
Total time: 1.54 hours.
Scaled time: 0.73 units (timescale=0.473).
Factorization parameters were as follows:
name: 35551_111
n: 76364585248269496393816506554713280356615130143710070231171455531033722911050513054523245829788744839
m: 20000000000000000000000
deg: 5
c5: 10
c0: -41
skew: 1.33
type: snfs
lss: 1
rlim: 530000
alim: 530000
lpbr: 25
lpba: 25
mfbr: 45
mfba: 45
rlambda: 2.2
alambda: 2.2
Factor base limits: 530000/530000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 45/45
Sieved rational special-q in [265000, 415001)
Primes: RFBsize:43825, AFBsize:43507, largePrimes:1230717 encountered
Relations: rels:1219885, finalFF:156266
Max relations in full relation-set: 28
Initial matrix: 87398 x 156266 with sparse part having weight 7026889.
Pruned matrix : 64055 x 64555 with weight 2168146.
Total sieving time: 1.46 hours.
Total relation processing time: 0.04 hours.
Matrix solve time: 0.02 hours.
Time per square root: 0.02 hours.
Prototype def-par.txt line would be:
snfs,112,5,0,0,0,0,0,0,0,0,530000,530000,25,25,45,45,2.2,2.2,50000
total time: 1.54 hours.
 --------- CPU info (if available) ----------
execution environment 実行環境
Pentium 4 2.4GHz, Windows XP and Cygwin)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間)

32×10115-419

c101

name 名前Sinkiti Sibata
date 日付November 22, 2008 05:04:20 UTC 2008 年 11 月 22 日 (土) 14 時 4 分 20 秒 (日本時間)
composite number 合成数
22881765858560605328444758333732016135351937111017680153991433819602314108836986599559243845282539971<101>
prime factors 素因数
1874364695456994437787812330948654894281<40>
12207744796954647002836007977637501893348342131034571999208491<62>
factorization results 素因数分解の結果
Number: 35551_115
N=22881765858560605328444758333732016135351937111017680153991433819602314108836986599559243845282539971
  ( 101 digits)
SNFS difficulty: 116 digits.
Divisors found:
 r1=1874364695456994437787812330948654894281 (pp40)
 r2=12207744796954647002836007977637501893348342131034571999208491 (pp62)
Version: GGNFS-0.77.1-20050930-pentium4
Total time: 1.63 hours.
Scaled time: 0.77 units (timescale=0.473).
Factorization parameters were as follows:
name: 35551_115
n: 22881765858560605328444758333732016135351937111017680153991433819602314108836986599559243845282539971
m: 200000000000000000000000
deg: 5
c5: 1
c0: -41
skew: 2.10
type: snfs
lss: 1
rlim: 610000
alim: 610000
lpbr: 25
lpba: 25
mfbr: 45
mfba: 45
rlambda: 2.2
alambda: 2.2
Factor base limits: 610000/610000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 45/45
Sieved rational special-q in [305000, 455001)
Primes: RFBsize:49861, AFBsize:49970, largePrimes:1339209 encountered
Relations: rels:1376013, finalFF:204044
Max relations in full relation-set: 28
Initial matrix: 99895 x 204044 with sparse part having weight 8657884.
Pruned matrix : 64281 x 64844 with weight 2194412.
Total sieving time: 1.55 hours.
Total relation processing time: 0.04 hours.
Matrix solve time: 0.02 hours.
Time per square root: 0.02 hours.
Prototype def-par.txt line would be:
snfs,116,5,0,0,0,0,0,0,0,0,610000,610000,25,25,45,45,2.2,2.2,50000
total time: 1.63 hours.
 --------- CPU info (if available) ----------
execution environment 実行環境
Pentium 4 2.4GHz, Windows XP and Cygwin)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間)

32×10119-419

c105

name 名前Sinkiti Sibata
date 日付November 21, 2008 14:24:39 UTC 2008 年 11 月 21 日 (金) 23 時 24 分 39 秒 (日本時間)
composite number 合成数
182067513124538441101462579812715985235713896251223737793957929646967334531924025154370350419725671352439<105>
prime factors 素因数
5146035129801747950200491709940393<34>
35380153561359894771496352426470646393927511422671498242115915382113823<71>
factorization results 素因数分解の結果
Number: 35551_119
N=182067513124538441101462579812715985235713896251223737793957929646967334531924025154370350419725671352439
  ( 105 digits)
SNFS difficulty: 121 digits.
Divisors found:
 r1=5146035129801747950200491709940393 (pp34)
 r2=35380153561359894771496352426470646393927511422671498242115915382113823 (pp71)
Version: GGNFS-0.77.1-20050930-pentium4
Total time: 2.15 hours.
Scaled time: 1.02 units (timescale=0.473).
Factorization parameters were as follows:
name: 35551_119
n: 182067513124538441101462579812715985235713896251223737793957929646967334531924025154370350419725671352439
m: 1000000000000000000000000
deg: 5
c5: 16
c0: -205
skew: 1.67
type: snfs
lss: 1
rlim: 730000
alim: 730000
lpbr: 25
lpba: 25
mfbr: 46
mfba: 46
rlambda: 2.2
alambda: 2.2
Factor base limits: 730000/730000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 46/46
Sieved rational special-q in [365000, 565001)
Primes: RFBsize:58789, AFBsize:58897, largePrimes:1264545 encountered
Relations: rels:1228338, finalFF:140700
Max relations in full relation-set: 28
Initial matrix: 117750 x 140700 with sparse part having weight 5817576.
Pruned matrix : 103103 x 103755 with weight 3356003.
Total sieving time: 2.00 hours.
Total relation processing time: 0.04 hours.
Matrix solve time: 0.08 hours.
Time per square root: 0.02 hours.
Prototype def-par.txt line would be:
snfs,121,5,0,0,0,0,0,0,0,0,730000,730000,25,25,46,46,2.2,2.2,50000
total time: 2.15 hours.
 --------- CPU info (if available) ----------
execution environment 実行環境
Pentium 4  2.4GHz, Windows XP and Cygwin)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間)

32×10121-419

c95

name 名前Sinkiti Sibata
date 日付November 21, 2008 20:11:01 UTC 2008 年 11 月 22 日 (土) 5 時 11 分 1 秒 (日本時間)
composite number 合成数
18930534916760935971590741741646619489241142175356386448608577960372293068418528062763830015741<95>
prime factors 素因数
7302277230608177321336738676050278849209010349<46>
2592415258819787071229728638616500578052858667409<49>
factorization results 素因数分解の結果
Fri Nov 21 23:38:37 2008  Msieve v. 1.38
Fri Nov 21 23:38:37 2008  random seeds: 0d4af2ec 94d26f7d
Fri Nov 21 23:38:37 2008  factoring 18930534916760935971590741741646619489241142175356386448608577960372293068418528062763830015741 (95 digits)
Fri Nov 21 23:38:37 2008  searching for 15-digit factors
Fri Nov 21 23:38:39 2008  commencing quadratic sieve (95-digit input)
Fri Nov 21 23:38:39 2008  using multiplier of 1
Fri Nov 21 23:38:39 2008  using 32kb Intel Core sieve core
Fri Nov 21 23:38:39 2008  sieve interval: 36 blocks of size 32768
Fri Nov 21 23:38:39 2008  processing polynomials in batches of 6
Fri Nov 21 23:38:39 2008  using a sieve bound of 2125181 (78824 primes)
Fri Nov 21 23:38:39 2008  using large prime bound of 310276426 (28 bits)
Fri Nov 21 23:38:39 2008  using double large prime bound of 1928180890905122 (43-51 bits)
Fri Nov 21 23:38:39 2008  using trial factoring cutoff of 51 bits
Fri Nov 21 23:38:39 2008  polynomial 'A' values have 12 factors
Sat Nov 22 02:33:35 2008  78924 relations (20057 full + 58867 combined from 1153943 partial), need 78920
Sat Nov 22 02:33:36 2008  begin with 1174000 relations
Sat Nov 22 02:33:37 2008  reduce to 202550 relations in 9 passes
Sat Nov 22 02:33:37 2008  attempting to read 202550 relations
Sat Nov 22 02:33:40 2008  recovered 202550 relations
Sat Nov 22 02:33:40 2008  recovered 182655 polynomials
Sat Nov 22 02:33:40 2008  attempting to build 78924 cycles
Sat Nov 22 02:33:40 2008  found 78924 cycles in 6 passes
Sat Nov 22 02:33:40 2008  distribution of cycle lengths:
Sat Nov 22 02:33:40 2008     length 1 : 20057
Sat Nov 22 02:33:40 2008     length 2 : 14148
Sat Nov 22 02:33:40 2008     length 3 : 13467
Sat Nov 22 02:33:40 2008     length 4 : 10622
Sat Nov 22 02:33:40 2008     length 5 : 7732
Sat Nov 22 02:33:40 2008     length 6 : 5123
Sat Nov 22 02:33:40 2008     length 7 : 3320
Sat Nov 22 02:33:40 2008     length 9+: 4455
Sat Nov 22 02:33:40 2008  largest cycle: 20 relations
Sat Nov 22 02:33:40 2008  matrix is 78824 x 78924 (20.4 MB) with weight 5044100 (63.91/col)
Sat Nov 22 02:33:40 2008  sparse part has weight 5044100 (63.91/col)
Sat Nov 22 02:33:41 2008  filtering completed in 3 passes
Sat Nov 22 02:33:41 2008  matrix is 74614 x 74678 (19.5 MB) with weight 4821220 (64.56/col)
Sat Nov 22 02:33:41 2008  sparse part has weight 4821220 (64.56/col)
Sat Nov 22 02:33:42 2008  saving the first 48 matrix rows for later
Sat Nov 22 02:33:42 2008  matrix is 74566 x 74678 (12.6 MB) with weight 3859562 (51.68/col)
Sat Nov 22 02:33:42 2008  sparse part has weight 2866657 (38.39/col)
Sat Nov 22 02:33:42 2008  matrix includes 64 packed rows
Sat Nov 22 02:33:42 2008  using block size 29871 for processor cache size 1024 kB
Sat Nov 22 02:33:43 2008  commencing Lanczos iteration
Sat Nov 22 02:33:43 2008  memory use: 12.1 MB
Sat Nov 22 02:34:22 2008  lanczos halted after 1180 iterations (dim = 74564)
Sat Nov 22 02:34:22 2008  recovered 16 nontrivial dependencies
Sat Nov 22 02:34:23 2008  prp46 factor: 7302277230608177321336738676050278849209010349
Sat Nov 22 02:34:23 2008  prp49 factor: 2592415258819787071229728638616500578052858667409
Sat Nov 22 02:34:23 2008  elapsed time 02:55:46

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間)

32×10123-419

c84

name 名前Sinkiti Sibata
date 日付November 21, 2008 20:18:19 UTC 2008 年 11 月 22 日 (土) 5 時 18 分 19 秒 (日本時間)
composite number 合成数
474609015111853860752833336137112158853448747727127472704320673550969428561212139271<84>
prime factors 素因数
167982103839853336193445278263392698635919<42>
2825354631611978018062501736888645582464009<43>
factorization results 素因数分解の結果
Fri Nov 21 21:28:02 2008  Msieve v. 1.38
Fri Nov 21 21:28:02 2008  random seeds: b8cb3a44 4d4e9d2a
Fri Nov 21 21:28:02 2008  factoring 474609015111853860752833336137112158853448747727127472704320673550969428561212139271 (84 digits)
Fri Nov 21 21:28:04 2008  searching for 15-digit factors
Fri Nov 21 21:28:09 2008  commencing quadratic sieve (84-digit input)
Fri Nov 21 21:28:10 2008  using multiplier of 15
Fri Nov 21 21:28:10 2008  using 64kb Pentium 2 sieve core
Fri Nov 21 21:28:10 2008  sieve interval: 6 blocks of size 65536
Fri Nov 21 21:28:10 2008  processing polynomials in batches of 17
Fri Nov 21 21:28:10 2008  using a sieve bound of 1390619 (53529 primes)
Fri Nov 21 21:28:10 2008  using large prime bound of 119593234 (26 bits)
Fri Nov 21 21:28:10 2008  using double large prime bound of 346634530714364 (41-49 bits)
Fri Nov 21 21:28:10 2008  using trial factoring cutoff of 49 bits
Fri Nov 21 21:28:10 2008  polynomial 'A' values have 11 factors
Sat Nov 22 01:02:21 2008  53629 relations (17104 full + 36525 combined from 561999 partial), need 53625
Sat Nov 22 01:02:31 2008  begin with 579103 relations
Sat Nov 22 01:02:32 2008  reduce to 121584 relations in 10 passes
Sat Nov 22 01:02:32 2008  attempting to read 121584 relations
Sat Nov 22 01:02:37 2008  recovered 121584 relations
Sat Nov 22 01:02:37 2008  recovered 93293 polynomials
Sat Nov 22 01:02:38 2008  attempting to build 53629 cycles
Sat Nov 22 01:02:38 2008  found 53629 cycles in 4 passes
Sat Nov 22 01:02:41 2008  distribution of cycle lengths:
Sat Nov 22 01:02:41 2008     length 1 : 17104
Sat Nov 22 01:02:41 2008     length 2 : 11333
Sat Nov 22 01:02:41 2008     length 3 : 9269
Sat Nov 22 01:02:41 2008     length 4 : 6572
Sat Nov 22 01:02:41 2008     length 5 : 4225
Sat Nov 22 01:02:41 2008     length 6 : 2400
Sat Nov 22 01:02:41 2008     length 7 : 1329
Sat Nov 22 01:02:41 2008     length 9+: 1397
Sat Nov 22 01:02:41 2008  largest cycle: 16 relations
Sat Nov 22 01:02:42 2008  matrix is 53529 x 53629 (11.4 MB) with weight 2782077 (51.88/col)
Sat Nov 22 01:02:42 2008  sparse part has weight 2782077 (51.88/col)
Sat Nov 22 01:02:46 2008  filtering completed in 3 passes
Sat Nov 22 01:02:46 2008  matrix is 47011 x 47075 (10.2 MB) with weight 2486567 (52.82/col)
Sat Nov 22 01:02:46 2008  sparse part has weight 2486567 (52.82/col)
Sat Nov 22 01:02:48 2008  saving the first 48 matrix rows for later
Sat Nov 22 01:02:48 2008  matrix is 46963 x 47075 (6.2 MB) with weight 1901594 (40.39/col)
Sat Nov 22 01:02:48 2008  sparse part has weight 1340469 (28.48/col)
Sat Nov 22 01:02:48 2008  matrix includes 64 packed rows
Sat Nov 22 01:02:48 2008  using block size 5461 for processor cache size 128 kB
Sat Nov 22 01:02:49 2008  commencing Lanczos iteration
Sat Nov 22 01:02:49 2008  memory use: 6.4 MB
Sat Nov 22 01:04:39 2008  lanczos halted after 744 iterations (dim = 46954)
Sat Nov 22 01:04:40 2008  recovered 14 nontrivial dependencies
Sat Nov 22 01:04:41 2008  prp42 factor: 167982103839853336193445278263392698635919
Sat Nov 22 01:04:41 2008  prp43 factor: 2825354631611978018062501736888645582464009
Sat Nov 22 01:04:41 2008  elapsed time 03:36:39

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間)

32×10125-419

c125

name 名前Sinkiti Sibata
date 日付November 21, 2008 19:59:56 UTC 2008 年 11 月 22 日 (土) 4 時 59 分 56 秒 (日本時間)
composite number 合成数
16931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931<125>
prime factors 素因数
4101642359788017039736531885784855474095010630123<49>
4127911564696239905743837315670797719255008130849857537912706158500072765097<76>
factorization results 素因数分解の結果
Number: 35551_125
N=16931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931
  ( 125 digits)
SNFS difficulty: 126 digits.
Divisors found:
 r1=4101642359788017039736531885784855474095010630123 (pp49)
 r2=4127911564696239905743837315670797719255008130849857537912706158500072765097 (pp76)
Version: GGNFS-0.77.1-20050930-pentium4
Total time: 2.61 hours.
Scaled time: 1.23 units (timescale=0.473).
Factorization parameters were as follows:
name: 35551_125
n: 16931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931
m: 20000000000000000000000000
deg: 5
c5: 1
c0: -41
skew: 2.10
type: snfs
lss: 1
rlim: 900000
alim: 900000
lpbr: 26
lpba: 26
mfbr: 46
mfba: 46
rlambda: 2.3
alambda: 2.3
Factor base limits: 900000/900000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 46/46
Sieved rational special-q in [450000, 650001)
Primes: RFBsize:71274, AFBsize:71351, largePrimes:2368602 encountered
Relations: rels:2262222, finalFF:197699
Max relations in full relation-set: 28
Initial matrix: 142689 x 197699 with sparse part having weight 12662606.
Pruned matrix : 119300 x 120077 with weight 5455752.
Total sieving time: 2.36 hours.
Total relation processing time: 0.07 hours.
Matrix solve time: 0.15 hours.
Time per square root: 0.03 hours.
Prototype def-par.txt line would be:
snfs,126,5,0,0,0,0,0,0,0,0,900000,900000,26,26,46,46,2.3,2.3,50000
total time: 2.61 hours.
 --------- CPU info (if available) ----------
execution environment 実行環境
Pentium 4 2.4GHz, Windows XP and Cygwin)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間)

32×10126-419

c124

name 名前Sinkiti Sibata
date 日付November 21, 2008 14:13:31 UTC 2008 年 11 月 21 日 (金) 23 時 13 分 31 秒 (日本時間)
composite number 合成数
8693289866883998913338766639500135832654170062483020918228742189622385221407226297201847324096712849769084487910893778864439<124>
prime factors 素因数
171194598333615048222366566893522206348126341433869776357<57>
50780164511633549798402123157855699628021684842890883339859369480427<68>
factorization results 素因数分解の結果
Number: 35551_126
N=8693289866883998913338766639500135832654170062483020918228742189622385221407226297201847324096712849769084487910893778864439
  ( 124 digits)
SNFS difficulty: 127 digits.
Divisors found:
 r1=171194598333615048222366566893522206348126341433869776357 (pp57)
 r2=50780164511633549798402123157855699628021684842890883339859369480427 (pp68)
Version: GGNFS-0.77.1-20060513-k8
Total time: 2.84 hours.
Scaled time: 5.41 units (timescale=1.902).
Factorization parameters were as follows:
name: 35551_126
n: 8693289866883998913338766639500135832654170062483020918228742189622385221407226297201847324096712849769084487910893778864439
m: 20000000000000000000000000
deg: 5
c5: 10
c0: -41
skew: 1.33
type: snfs
lss: 1
rlim: 930000
alim: 930000
lpbr: 26
lpba: 26
mfbr: 46
mfba: 46
rlambda: 2.3
alambda: 2.3
Factor base limits: 930000/930000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 46/46
Sieved rational special-q in [465000, 715001)
Primes: RFBsize:73474, AFBsize:72978, largePrimes:2463207 encountered
Relations: rels:2336543, finalFF:179494
Max relations in full relation-set: 28
Initial matrix: 146518 x 179494 with sparse part having weight 13010167.
Pruned matrix : 134193 x 134989 with weight 7615669.
Total sieving time: 2.63 hours.
Total relation processing time: 0.05 hours.
Matrix solve time: 0.10 hours.
Time per square root: 0.06 hours.
Prototype def-par.txt line would be:
snfs,127,5,0,0,0,0,0,0,0,0,930000,930000,26,26,46,46,2.3,2.3,50000
total time: 2.84 hours.
 --------- CPU info (if available) ----------
execution environment 実行環境
Core 2 Duo E6300 1.86GHz, Windows Vista)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間)

32×10127-419

c81

name 名前Serge Batalov
date 日付November 21, 2008 08:39:34 UTC 2008 年 11 月 21 日 (金) 17 時 39 分 34 秒 (日本時間)
composite number 合成数
252634779279652537693843677634751731140715269848712613595857696355762680242587759<81>
prime factors 素因数
400338547831239941807329391891749<33>
631052844269568196604006040863340283212860511491<48>
factorization results 素因数分解の結果
Fri Nov 21 00:20:47 2008  Msieve v. 1.38
Fri Nov 21 00:20:47 2008  random seeds: b84c8010 b8809f02
Fri Nov 21 00:20:47 2008  factoring 252634779279652537693843677634751731140715269848712613595857696355762680242587759 (81 digits)
Fri Nov 21 00:20:48 2008  no P-1/P+1/ECM available, skipping
Fri Nov 21 00:20:48 2008  commencing quadratic sieve (81-digit input)
Fri Nov 21 00:20:48 2008  using multiplier of 39
Fri Nov 21 00:20:48 2008  using 64kb Opteron sieve core
Fri Nov 21 00:20:48 2008  sieve interval: 6 blocks of size 65536
Fri Nov 21 00:20:48 2008  processing polynomials in batches of 17
Fri Nov 21 00:20:48 2008  using a sieve bound of 1315507 (50588 primes)
Fri Nov 21 00:20:48 2008  using large prime bound of 128919686 (26 bits)
Fri Nov 21 00:20:48 2008  using trial factoring cutoff of 27 bits
Fri Nov 21 00:20:48 2008  polynomial 'A' values have 10 factors
Fri Nov 21 00:38:56 2008  50811 relations (26310 full + 24501 combined from 269737 partial), need 50684
Fri Nov 21 00:38:56 2008  begin with 296047 relations
Fri Nov 21 00:38:57 2008  reduce to 72222 relations in 2 passes
Fri Nov 21 00:38:57 2008  attempting to read 72222 relations
Fri Nov 21 00:38:57 2008  recovered 72222 relations
Fri Nov 21 00:38:57 2008  recovered 62442 polynomials
Fri Nov 21 00:38:57 2008  attempting to build 50811 cycles
Fri Nov 21 00:38:57 2008  found 50811 cycles in 1 passes
Fri Nov 21 00:38:57 2008  distribution of cycle lengths:
Fri Nov 21 00:38:57 2008     length 1 : 26310
Fri Nov 21 00:38:57 2008     length 2 : 24501
Fri Nov 21 00:38:57 2008  largest cycle: 2 relations
Fri Nov 21 00:38:57 2008  matrix is 50588 x 50811 (7.6 MB) with weight 1577942 (31.06/col)
Fri Nov 21 00:38:57 2008  sparse part has weight 1577942 (31.06/col)
Fri Nov 21 00:38:58 2008  filtering completed in 3 passes
Fri Nov 21 00:38:58 2008  matrix is 35841 x 35905 (5.9 MB) with weight 1254482 (34.94/col)
Fri Nov 21 00:38:58 2008  sparse part has weight 1254482 (34.94/col)
Fri Nov 21 00:38:58 2008  saving the first 48 matrix rows for later
Fri Nov 21 00:38:58 2008  matrix is 35793 x 35905 (4.6 MB) with weight 1006660 (28.04/col)
Fri Nov 21 00:38:58 2008  sparse part has weight 834359 (23.24/col)
Fri Nov 21 00:38:58 2008  matrix includes 64 packed rows
Fri Nov 21 00:38:58 2008  using block size 14362 for processor cache size 1024 kB
Fri Nov 21 00:38:58 2008  commencing Lanczos iteration
Fri Nov 21 00:38:58 2008  memory use: 4.2 MB
Fri Nov 21 00:39:06 2008  lanczos halted after 567 iterations (dim = 35789)
Fri Nov 21 00:39:06 2008  recovered 16 nontrivial dependencies
Fri Nov 21 00:39:06 2008  prp33 factor: 400338547831239941807329391891749
Fri Nov 21 00:39:06 2008  prp48 factor: 631052844269568196604006040863340283212860511491
Fri Nov 21 00:39:06 2008  elapsed time 00:18:19
software ソフトウェア
Msieve-1.38
execution environment 実行環境
Opteron-2.6GHz; Linux x86_64

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間)

32×10128-419

c99

name 名前Robert Backstrom
date 日付November 21, 2008 20:12:36 UTC 2008 年 11 月 22 日 (土) 5 時 12 分 36 秒 (日本時間)
composite number 合成数
135156183893466024666977800451768589430551510931312422361412184461027826326223292573670614332699251<99>
prime factors 素因数
401832657422981661467753981794828719551127827<45>
336349426550456762380413783163560600207935723362612513<54>
factorization results 素因数分解の結果
Number: n
N=135156183893466024666977800451768589430551510931312422361412184461027826326223292573670614332699251
  ( 99 digits)
SNFS difficulty: 131 digits.
Divisors found:
 r1=401832657422981661467753981794828719551127827 (pp45)
 r2=336349426550456762380413783163560600207935723362612513 (pp54)
Version: GGNFS-0.77.1-20051202-athlon
Total time: 2.24 hours.
Scaled time: 4.58 units (timescale=2.045).
Factorization parameters were as follows:
name: KA_3_5_127_1
n: 135156183893466024666977800451768589430551510931312422361412184461027826326223292573670614332699251
type: snfs
skew: 5.28
deg: 5
c5: 1
c0: -4100
m: 200000000000000000000000000
rlim: 800000
alim: 800000
lpbr: 28
lpba: 28
mfbr: 56
mfba: 56
rlambda: 2.5
alambda: 2.5
qintsize: 20000
Factor base limits: 800000/800000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 56/56
Sieved algebraic special-q in [100000, 380001)
Primes: RFBsize:63951, AFBsize:64074, largePrimes:5795056 encountered
Relations: rels:4973051, finalFF:148600
Max relations in full relation-set: 28
Initial matrix: 128089 x 148600 with sparse part having weight 12143336.
Pruned matrix : 120774 x 121478 with weight 8312350.
Total sieving time: 2.07 hours.
Total relation processing time: 0.10 hours.
Matrix solve time: 0.04 hours.
Total square root time: 0.02 hours, sqrts: 1.
Prototype def-par.txt line would be:
snfs,131,5,0,0,0,0,0,0,0,0,800000,800000,28,28,56,56,2.5,2.5,50000
total time: 2.24 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間)

32×10132-419

c131

name 名前Sinkiti Sibata
date 日付November 21, 2008 20:05:18 UTC 2008 年 11 月 22 日 (土) 5 時 5 分 18 秒 (日本時間)
composite number 合成数
48706240487062404870624048706240487062404870624048706240487062404870624048706240487062404870624048706240487062404870624048706240487<131>
prime factors 素因数
53253233532503110182693787985653<32>
20444379394590998327962375579649849<35>
44736777108005239501416276185226616696706068766867655030020027971<65>
factorization results 素因数分解の結果
Number: 35551_132
N=48706240487062404870624048706240487062404870624048706240487062404870624048706240487062404870624048706240487062404870624048706240487
  ( 131 digits)
SNFS difficulty: 133 digits.
Divisors found:
 r1=53253233532503110182693787985653 (pp32)
 r2=20444379394590998327962375579649849 (pp35)
 r3=44736777108005239501416276185226616696706068766867655030020027971 (pp65)
Version: GGNFS-0.77.1-20060513-k8
Total time: 6.33 hours.
Scaled time: 12.59 units (timescale=1.991).
Factorization parameters were as follows:
name: 35551_132
n: 48706240487062404870624048706240487062404870624048706240487062404870624048706240487062404870624048706240487062404870624048706240487
m: 200000000000000000000000000
deg: 5
c5: 100
c0: -41
skew: 0.84
type: snfs
lss: 1
rlim: 1180000
alim: 1180000
lpbr: 26
lpba: 26
mfbr: 47
mfba: 47
rlambda: 2.3
alambda: 2.3
Factor base limits: 1180000/1180000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 47/47
Sieved rational special-q in [590000, 1115001)
Primes: RFBsize:91490, AFBsize:90768, largePrimes:3152382 encountered
Relations: rels:3171737, finalFF:314254
Max relations in full relation-set: 28
Initial matrix: 182322 x 314254 with sparse part having weight 26946203.
Pruned matrix : 151286 x 152261 with weight 9842261.
Total sieving time: 6.01 hours.
Total relation processing time: 0.08 hours.
Matrix solve time: 0.17 hours.
Time per square root: 0.07 hours.
Prototype def-par.txt line would be:
snfs,133,5,0,0,0,0,0,0,0,0,1180000,1180000,26,26,47,47,2.3,2.3,75000
total time: 6.33 hours.
 --------- CPU info (if available) ----------
execution environment 実行環境
Core 2 Duo E6300 1.86GHz, Windows Vista)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間)

32×10135-419

c113

name 名前Serge Batalov
date 日付November 21, 2008 20:09:57 UTC 2008 年 11 月 22 日 (土) 5 時 9 分 57 秒 (日本時間)
composite number 合成数
14136762824986238572564321696749274769854880665085945554158885278298001836898244885757132890343104582008920690169<113>
prime factors 素因数
395238694440067346506321051229<30>
4607584230616385795106992439653<31>
7762779182268771788520111353675163478851612794868937<52>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=978761011
Step 1 took 56903ms
Step 2 took 20658ms
********** Factor found in step 2: 4607584230616385795106992439653
Found probable prime factor of 31 digits: 4607584230616385795106992439653
Composite cofactor 3068150709226442954934260179839783913836305853892991916706470823431308919117773573 has 82 digits

Fri Nov 21 11:32:35 2008  Msieve v. 1.38
Fri Nov 21 11:32:35 2008  random seeds: f61d4527 abcf05c9
Fri Nov 21 11:32:35 2008  factoring 3068150709226442954934260179839783913836305853892991916706470823431308919117773573 (82 digits)
Fri Nov 21 11:32:35 2008  no P-1/P+1/ECM available, skipping
Fri Nov 21 11:32:35 2008  commencing quadratic sieve (82-digit input)
Fri Nov 21 11:32:35 2008  using multiplier of 13
Fri Nov 21 11:32:35 2008  using 64kb Opteron sieve core
Fri Nov 21 11:32:35 2008  sieve interval: 6 blocks of size 65536
Fri Nov 21 11:32:35 2008  processing polynomials in batches of 17
Fri Nov 21 11:32:35 2008  using a sieve bound of 1339157 (51471 primes)
Fri Nov 21 11:32:35 2008  using large prime bound of 125880758 (26 bits)
Fri Nov 21 11:32:35 2008  using trial factoring cutoff of 27 bits
Fri Nov 21 11:32:35 2008  polynomial 'A' values have 11 factors
Fri Nov 21 11:46:18 2008  51761 relations (27110 full + 24651 combined from 267857 partial), need 51567
Fri Nov 21 11:46:18 2008  begin with 294967 relations
Fri Nov 21 11:46:18 2008  reduce to 73333 relations in 2 passes
Fri Nov 21 11:46:18 2008  attempting to read 73333 relations
Fri Nov 21 11:46:18 2008  recovered 73333 relations
Fri Nov 21 11:46:18 2008  recovered 64668 polynomials
Fri Nov 21 11:46:19 2008  attempting to build 51761 cycles
Fri Nov 21 11:46:19 2008  found 51761 cycles in 1 passes
Fri Nov 21 11:46:19 2008  distribution of cycle lengths:
Fri Nov 21 11:46:19 2008     length 1 : 27110
Fri Nov 21 11:46:19 2008     length 2 : 24651
Fri Nov 21 11:46:19 2008  largest cycle: 2 relations
Fri Nov 21 11:46:19 2008  matrix is 51471 x 51761 (7.9 MB) with weight 1651481 (31.91/col)
Fri Nov 21 11:46:19 2008  sparse part has weight 1651481 (31.91/col)
Fri Nov 21 11:46:19 2008  filtering completed in 3 passes
Fri Nov 21 11:46:19 2008  matrix is 36514 x 36576 (6.1 MB) with weight 1302933 (35.62/col)
Fri Nov 21 11:46:19 2008  sparse part has weight 1302933 (35.62/col)
Fri Nov 21 11:46:19 2008  saving the first 48 matrix rows for later
Fri Nov 21 11:46:19 2008  matrix is 36466 x 36576 (4.2 MB) with weight 993167 (27.15/col)
Fri Nov 21 11:46:19 2008  sparse part has weight 731232 (19.99/col)
Fri Nov 21 11:46:19 2008  matrix includes 64 packed rows
Fri Nov 21 11:46:19 2008  using block size 14630 for processor cache size 1024 kB
Fri Nov 21 11:46:19 2008  commencing Lanczos iteration
Fri Nov 21 11:46:19 2008  memory use: 4.1 MB
Fri Nov 21 11:46:24 2008  lanczos halted after 578 iterations (dim = 36464)
Fri Nov 21 11:46:24 2008  recovered 17 nontrivial dependencies
Fri Nov 21 11:46:24 2008  prp30 factor: 395238694440067346506321051229
Fri Nov 21 11:46:24 2008  prp52 factor: 7762779182268771788520111353675163478851612794868937
Fri Nov 21 11:46:24 2008  elapsed time 00:13:49
software ソフトウェア
GMP-ECM 6.2.1; Msieve-1.38
execution environment 実行環境
Opteron-2.6GHz; Linux x86_64

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間)

32×10138-419

c131

name 名前Sinkiti Sibata
date 日付November 22, 2008 05:09:23 UTC 2008 年 11 月 22 日 (土) 14 時 9 分 23 秒 (日本時間)
composite number 合成数
12212949399178668390243576524554600576571890847483782236527906299510402361140498997671220687341868711013028609162572245802355191953<131>
prime factors 素因数
3614408098329054255724340417243253779450081<43>
3378962493146452219447414756610095654554526360880050718178161743928515403049413915028913<88>
factorization results 素因数分解の結果
Number: 35551_138
N=12212949399178668390243576524554600576571890847483782236527906299510402361140498997671220687341868711013028609162572245802355191953
  ( 131 digits)
SNFS difficulty: 140 digits.
Divisors found:
 r1=3614408098329054255724340417243253779450081 (pp43)
 r2=3378962493146452219447414756610095654554526360880050718178161743928515403049413915028913 (pp88)
Version: GGNFS-0.77.1-20060513-k8
Total time: 8.53 hours.
Scaled time: 16.67 units (timescale=1.955).
Factorization parameters were as follows:
name: 35551_138
n: 12212949399178668390243576524554600576571890847483782236527906299510402361140498997671220687341868711013028609162572245802355191953
m: 4000000000000000000000000000
deg: 5
c5: 125
c0: -164
skew: 1.06
type: snfs
lss: 1
rlim: 1510000
alim: 1510000
lpbr: 26
lpba: 26
mfbr: 48
mfba: 48
rlambda: 2.3
alambda: 2.3
Factor base limits: 1510000/1510000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 48/48
Sieved rational special-q in [755000, 1430001)
Primes: RFBsize:114886, AFBsize:114908, largePrimes:3334696 encountered
Relations: rels:3259503, finalFF:260977
Max relations in full relation-set: 28
Initial matrix: 229860 x 260977 with sparse part having weight 20373065.
Pruned matrix : 219199 x 220412 with weight 14602189.
Total sieving time: 7.87 hours.
Total relation processing time: 0.08 hours.
Matrix solve time: 0.48 hours.
Time per square root: 0.10 hours.
Prototype def-par.txt line would be:
snfs,140,5,0,0,0,0,0,0,0,0,1510000,1510000,26,26,48,48,2.3,2.3,75000
total time: 8.53 hours.
 --------- CPU info (if available) ----------
execution environment 実行環境
Core 2 Duo E6300 1.86GHz, Windows Vista)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間)

32×10139-419

c140

name 名前Serge Batalov
date 日付November 22, 2008 01:25:43 UTC 2008 年 11 月 22 日 (土) 10 時 25 分 43 秒 (日本時間)
composite number 合成数
35555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555551<140>
prime factors 素因数
464526285610532197573410910418540500603849191853171<51>
76541536306873319748687998204768071820486616615213271404046353568746662919813194493399781<89>
factorization results 素因数分解の結果
SNFS difficulty: 141 digits.
Divisors found:
 r1=464526285610532197573410910418540500603849191853171 (pp51)
 r2=76541536306873319748687998204768071820486616615213271404046353568746662919813194493399781 (pp89)
Version:
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.949).
Factorization parameters were as follows:
n: 35555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555551
m: 10000000000000000000000000000
deg: 5
c5: 16
c0: -205
skew: 1.67
type: snfs
lss: 1
rlim: 1580000
alim: 1580000
lpbr: 25
lpba: 25
mfbr: 48
mfba: 48
rlambda: 2.4
alambda: 2.4
Factor base limits: 1580000/1580000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 48/48
Sieved rational special-q in [790000, 1590001)
Primes: rational ideals reading, algebraic ideals reading,
Relations: relations
Max relations in full relation-set:
Initial matrix:
Pruned matrix : 220033 x 220275
Total sieving time: 0.00 hours.
Total relation processing time: 0.00 hours.
Matrix solve time: 0.00 hours.
Time per square root: 0.00 hours.
Prototype def-par.txt line would be:
snfs,141,5,0,0,0,0,0,0,0,0,1580000,1580000,25,25,48,48,2.4,2.4,200000
total time: 4.50 hours.
software ソフトウェア
Msieve-1.38
execution environment 実行環境
Opteron-2.6GHz; Linux x86_64

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間)

32×10140-419

c102

name 名前Robert Backstrom
date 日付November 22, 2008 01:09:33 UTC 2008 年 11 月 22 日 (土) 10 時 9 分 33 秒 (日本時間)
composite number 合成数
653214490021568591153880136071698042579076844847058983336996288582169963418227578858397724804353204253<102>
prime factors 素因数
81534190191088785562703437179631417594742467373<47>
8011540784187013965767181696517537757246380887244496561<55>
factorization results 素因数分解の結果
Number: n
N=653214490021568591153880136071698042579076844847058983336996288582169963418227578858397724804353204253
  ( 102 digits)
SNFS difficulty: 141 digits.
Divisors found:
 r1=81534190191088785562703437179631417594742467373 (pp47)
 r2=8011540784187013965767181696517537757246380887244496561 (pp55)
Version: GGNFS-0.77.1-20051202-athlon
Total time: 4.74 hours.
Scaled time: 6.86 units (timescale=1.448).
Factorization parameters were as follows:
name: KA_3_5_139_1
n: 653214490021568591153880136071698042579076844847058983336996288582169963418227578858397724804353204253
type: snfs
skew: 2.10
deg: 5
c5: 1
c0: -41
m: 20000000000000000000000000000
rlim: 1200000
alim: 1200000
lpbr: 28
lpba: 28
mfbr: 56
mfba: 56
rlambda: 2.5
alambda: 2.5
qintsize: 50000
Factor base limits: 1200000/1200000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 56/56
Sieved algebraic special-q in [100000, 600001)
Primes: RFBsize:92938, AFBsize:93090, largePrimes:7573396 encountered
Relations: rels:6550842, finalFF:211514
Max relations in full relation-set: 28
Initial matrix: 186092 x 211514 with sparse part having weight 17096091.
Pruned matrix : 174635 x 175629 with weight 12149381.
Total sieving time: 3.84 hours.
Total relation processing time: 0.15 hours.
Matrix solve time: 0.64 hours.
Total square root time: 0.10 hours, sqrts: 3.
Prototype def-par.txt line would be:
snfs,141,5,0,0,0,0,0,0,0,0,1200000,1200000,28,28,56,56,2.5,2.5,100000
total time: 4.74 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間)

32×10147-419

c118

name 名前Jo Yeong Uk
date 日付November 23, 2008 22:28:54 UTC 2008 年 11 月 24 日 (月) 7 時 28 分 54 秒 (日本時間)
composite number 合成数
1411874324770932570133784077882139868858237151608737458865903660716993942523655638259947462944967839507201267607708351<118>
prime factors 素因数
577085991676888579048591258886894351<36>
2446557956931734686843641738363522287338694689153264217316360714289132931884914001<82>
factorization results 素因数分解の結果
Number: 35551_147
N=1411874324770932570133784077882139868858237151608737458865903660716993942523655638259947462944967839507201267607708351
  ( 118 digits)
SNFS difficulty: 148 digits.
Divisors found:
 r1=577085991676888579048591258886894351 (pp36)
 r2=2446557956931734686843641738363522287338694689153264217316360714289132931884914001 (pp82)
Version: GGNFS-0.77.1-20050930-nocona
Total time: 11.61 hours.
Scaled time: 27.56 units (timescale=2.374).
Factorization parameters were as follows:
n: 1411874324770932570133784077882139868858237151608737458865903660716993942523655638259947462944967839507201267607708351
m: 200000000000000000000000000000
deg: 5
c5: 100
c0: -41
skew: 0.84
type: snfs
lss: 1
rlim: 1800000
alim: 1800000
lpbr: 26
lpba: 26
mfbr: 49
mfba: 49
rlambda: 2.3
alambda: 2.3
Factor base limits: 1800000/1800000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 49/49
Sieved rational special-q in [900000, 1800001)
Primes: RFBsize:135072, AFBsize:134269, largePrimes:3907862 encountered
Relations: rels:3974260, finalFF:333414
Max relations in full relation-set: 28
Initial matrix: 269405 x 333414 with sparse part having weight 32597540.
Pruned matrix : 250682 x 252093 with weight 21205303.
Total sieving time: 11.00 hours.
Total relation processing time: 0.05 hours.
Matrix solve time: 0.52 hours.
Time per square root: 0.03 hours.
Prototype def-par.txt line would be:
snfs,148,5,0,0,0,0,0,0,0,0,1800000,1800000,26,26,49,49,2.3,2.3,75000
total time: 11.61 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Memory: 8047068k/8912896k available (2460k kernel code, 339224k reserved, 1251k data, 196k init)
Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803)
Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672384)
Calibrating delay using timer specific routine.. 5497.76 BogoMIPS (lpj=2748880)
Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
execution environment 実行環境
Core 2 Quad Q6700

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間)

32×10148-419

c121

name 名前Sinkiti Sibata
date 日付November 24, 2008 05:10:05 UTC 2008 年 11 月 24 日 (月) 14 時 10 分 5 秒 (日本時間)
composite number 合成数
5170324609644016527884881041706215829565526794526256285437584956636903529022585551794141982832094977765160463535536209979<121>
prime factors 素因数
4843514337760459572815534254707218514959785263884641<52>
1067473790535875080479232281288764753614270973659955842797287456129819<70>
factorization results 素因数分解の結果
Number: 35551_148
N=5170324609644016527884881041706215829565526794526256285437584956636903529022585551794141982832094977765160463535536209979
  ( 121 digits)
SNFS difficulty: 150 digits.
Divisors found:
 r1=4843514337760459572815534254707218514959785263884641 (pp52)
 r2=1067473790535875080479232281288764753614270973659955842797287456129819 (pp70)
Version: GGNFS-0.77.1-20060513-k8
Total time: 23.00 hours.
Scaled time: 45.79 units (timescale=1.991).
Factorization parameters were as follows:
name: 35551_148
n: 5170324609644016527884881041706215829565526794526256285437584956636903529022585551794141982832094977765160463535536209979
m: 400000000000000000000000000000
deg: 5
c5: 125
c0: -164
skew: 1.06
type: snfs
lss: 1
rlim: 2200000
alim: 2200000
lpbr: 27
lpba: 27
mfbr: 49
mfba: 49
rlambda: 2.4
alambda: 2.4
Factor base limits: 2200000/2200000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 49/49
Sieved rational special-q in [1100000, 1800001)
Primes: RFBsize:162662, AFBsize:162616, largePrimes:7413483 encountered
Relations: rels:7905348, finalFF:907301
Max relations in full relation-set: 28
Initial matrix: 325344 x 907301 with sparse part having weight 102751201.
Pruned matrix : 217844 x 219534 with weight 33552730.
Total sieving time: 21.78 hours.
Total relation processing time: 0.19 hours.
Matrix solve time: 0.91 hours.
Time per square root: 0.13 hours.
Prototype def-par.txt line would be:
snfs,150,5,0,0,0,0,0,0,0,0,2200000,2200000,27,27,49,49,2.4,2.4,100000
total time: 23.00 hours.
 --------- CPU info (if available) ----------
execution environment 実行環境
Core 2 Duo E6300 1.86GHz, Windows Vista)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間)

32×10149-419

c94

name 名前Sinkiti Sibata
date 日付November 21, 2008 14:34:35 UTC 2008 年 11 月 21 日 (金) 23 時 34 分 35 秒 (日本時間)
composite number 合成数
1645304867052464418756468820263549672476733372189469658647398655789212312830417506743281860111<94>
prime factors 素因数
80114216324581510271381545232553255062473<41>
20536990094074404442694620736817421850163590286243607<53>
factorization results 素因数分解の結果
Fri Nov 21 20:27:25 2008  Msieve v. 1.38
Fri Nov 21 20:27:25 2008  random seeds: 57771344 631fd988
Fri Nov 21 20:27:25 2008  factoring 1645304867052464418756468820263549672476733372189469658647398655789212312830417506743281860111 (94 digits)
Fri Nov 21 20:27:25 2008  searching for 15-digit factors
Fri Nov 21 20:27:27 2008  commencing quadratic sieve (94-digit input)
Fri Nov 21 20:27:27 2008  using multiplier of 31
Fri Nov 21 20:27:27 2008  using 32kb Intel Core sieve core
Fri Nov 21 20:27:27 2008  sieve interval: 36 blocks of size 32768
Fri Nov 21 20:27:27 2008  processing polynomials in batches of 6
Fri Nov 21 20:27:27 2008  using a sieve bound of 1986293 (74118 primes)
Fri Nov 21 20:27:27 2008  using large prime bound of 256231797 (27 bits)
Fri Nov 21 20:27:27 2008  using double large prime bound of 1366278931731603 (42-51 bits)
Fri Nov 21 20:27:27 2008  using trial factoring cutoff of 51 bits
Fri Nov 21 20:27:27 2008  polynomial 'A' values have 12 factors
Fri Nov 21 20:27:27 2008  restarting with 338 full and 17985 partial relations
Fri Nov 21 23:26:19 2008  74250 relations (18366 full + 55884 combined from 1032480 partial), need 74214
Fri Nov 21 23:26:20 2008  begin with 1050846 relations
Fri Nov 21 23:26:21 2008  reduce to 191860 relations in 12 passes
Fri Nov 21 23:26:21 2008  attempting to read 191860 relations
Fri Nov 21 23:26:24 2008  recovered 191860 relations
Fri Nov 21 23:26:24 2008  recovered 175246 polynomials
Fri Nov 21 23:26:24 2008  attempting to build 74250 cycles
Fri Nov 21 23:26:24 2008  found 74250 cycles in 5 passes
Fri Nov 21 23:26:24 2008  distribution of cycle lengths:
Fri Nov 21 23:26:24 2008     length 1 : 18366
Fri Nov 21 23:26:24 2008     length 2 : 13089
Fri Nov 21 23:26:24 2008     length 3 : 12660
Fri Nov 21 23:26:24 2008     length 4 : 10071
Fri Nov 21 23:26:24 2008     length 5 : 7558
Fri Nov 21 23:26:24 2008     length 6 : 5099
Fri Nov 21 23:26:24 2008     length 7 : 3181
Fri Nov 21 23:26:24 2008     length 9+: 4226
Fri Nov 21 23:26:24 2008  largest cycle: 21 relations
Fri Nov 21 23:26:24 2008  matrix is 74118 x 74250 (19.6 MB) with weight 4844671 (65.25/col)
Fri Nov 21 23:26:24 2008  sparse part has weight 4844671 (65.25/col)
Fri Nov 21 23:26:25 2008  filtering completed in 3 passes
Fri Nov 21 23:26:25 2008  matrix is 70475 x 70539 (18.8 MB) with weight 4640189 (65.78/col)
Fri Nov 21 23:26:25 2008  sparse part has weight 4640189 (65.78/col)
Fri Nov 21 23:26:25 2008  saving the first 48 matrix rows for later
Fri Nov 21 23:26:26 2008  matrix is 70427 x 70539 (12.2 MB) with weight 3705494 (52.53/col)
Fri Nov 21 23:26:26 2008  sparse part has weight 2781041 (39.43/col)
Fri Nov 21 23:26:26 2008  matrix includes 64 packed rows
Fri Nov 21 23:26:26 2008  using block size 28215 for processor cache size 1024 kB
Fri Nov 21 23:26:26 2008  commencing Lanczos iteration
Fri Nov 21 23:26:26 2008  memory use: 11.5 MB
Fri Nov 21 23:27:02 2008  lanczos halted after 1116 iterations (dim = 70427)
Fri Nov 21 23:27:02 2008  recovered 18 nontrivial dependencies
Fri Nov 21 23:27:02 2008  prp41 factor: 80114216324581510271381545232553255062473
Fri Nov 21 23:27:02 2008  prp53 factor: 20536990094074404442694620736817421850163590286243607
Fri Nov 21 23:27:02 2008  elapsed time 02:59:37

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間)

32×10150-419

c147

name 名前Serge Batalov
date 日付November 22, 2008 04:21:50 UTC 2008 年 11 月 22 日 (土) 13 時 21 分 50 秒 (日本時間)
composite number 合成数
491846113647192634604448133290296798389203977805444121670432363474277985275356972687170501529334009621739598223205914449516607491431118488802815819<147>
prime factors 素因数
151630060370265312596023804982270143882259787233401865167<57>
3243724314599321778834666368665223817246547329724430342376155329768224196716824187092053957<91>
factorization results 素因数分解の結果
SNFS difficulty: 151 digits.
Divisors found:
 r1=151630060370265312596023804982270143882259787233401865167 (pp57)
 r2=3243724314599321778834666368665223817246547329724430342376155329768224196716824187092053957 (pp91)
Version:
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.952).
Factorization parameters were as follows:
n: 491846113647192634604448133290296798389203977805444121670432363474277985275356972687170501529334009621739598223205914449516607491431118488802815819
m: 2000000000000000000000000000000
deg: 5
c5: 1
c0: -41
skew: 2.10
type: snfs
lss: 1
rlim: 2300000
alim: 2300000
lpbr: 27
lpba: 27
mfbr: 53
mfba: 53
rlambda: 2.5
alambda: 2.5
Factor base limits: 2300000/2300000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 53/53
Sieved rational special-q in [1150000, 1750001)
Primes: rational ideals reading, algebraic ideals reading,
Relations: relations
Max relations in full relation-set:
Initial matrix:
Pruned matrix : 350251 x 350493
Total sieving time: 0.00 hours.
Total relation processing time: 0.00 hours.
Matrix solve time: 0.00 hours.
Time per square root: 0.00 hours.
Prototype def-par.txt line would be:
snfs,151,5,0,0,0,0,0,0,0,0,2300000,2300000,27,27,53,53,2.5,2.5,200000
total time: 10.00 hours.
software ソフトウェア
Msieve-1.38
execution environment 実行環境
Opteron-2.8GHz; Linux x86_64

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間)

32×10151-419

c87

name 名前Robert Backstrom
date 日付November 21, 2008 11:53:26 UTC 2008 年 11 月 21 日 (金) 20 時 53 分 26 秒 (日本時間)
composite number 合成数
551992739033384950060268575515588763406213000287167928339052156947081662679297048315633<87>
prime factors 素因数
180480728295344801238466336014947707069<39>
3058458065007834303252286311493510914433449868357<49>
factorization results 素因数分解の結果
Fri Nov 21 22:15:27 2008  
Fri Nov 21 22:15:27 2008  
Fri Nov 21 22:15:28 2008  Msieve v. 1.38
Fri Nov 21 22:15:28 2008  random seeds: a89c3cd0 547fa8f3
Fri Nov 21 22:15:28 2008  factoring 551992739033384950060268575515588763406213000287167928339052156947081662679297048315633 (87 digits)
Fri Nov 21 22:15:29 2008  searching for 15-digit factors
Fri Nov 21 22:15:31 2008  commencing quadratic sieve (87-digit input)
Fri Nov 21 22:15:31 2008  using multiplier of 1
Fri Nov 21 22:15:31 2008  using 32kb Intel Core sieve core
Fri Nov 21 22:15:31 2008  sieve interval: 22 blocks of size 32768
Fri Nov 21 22:15:31 2008  processing polynomials in batches of 10
Fri Nov 21 22:15:32 2008  using a sieve bound of 1499123 (56843 primes)
Fri Nov 21 22:15:32 2008  using large prime bound of 119929840 (26 bits)
Fri Nov 21 22:15:32 2008  using double large prime bound of 348392707234640 (42-49 bits)
Fri Nov 21 22:15:32 2008  using trial factoring cutoff of 49 bits
Fri Nov 21 22:15:32 2008  polynomial 'A' values have 11 factors
Fri Nov 21 22:48:17 2008  56958 relations (16178 full + 40780 combined from 596856 partial), need 56939
Fri Nov 21 22:48:17 2008  begin with 613034 relations
Fri Nov 21 22:48:18 2008  reduce to 135437 relations in 9 passes
Fri Nov 21 22:48:18 2008  attempting to read 135437 relations
Fri Nov 21 22:48:20 2008  recovered 135437 relations
Fri Nov 21 22:48:20 2008  recovered 110021 polynomials
Fri Nov 21 22:48:20 2008  attempting to build 56958 cycles
Fri Nov 21 22:48:20 2008  found 56958 cycles in 5 passes
Fri Nov 21 22:48:20 2008  distribution of cycle lengths:
Fri Nov 21 22:48:21 2008     length 1 : 16178
Fri Nov 21 22:48:21 2008     length 2 : 11310
Fri Nov 21 22:48:21 2008     length 3 : 9937
Fri Nov 21 22:48:21 2008     length 4 : 7424
Fri Nov 21 22:48:21 2008     length 5 : 5053
Fri Nov 21 22:48:21 2008     length 6 : 3174
Fri Nov 21 22:48:22 2008     length 7 : 1914
Fri Nov 21 22:48:22 2008     length 9+: 1968
Fri Nov 21 22:48:22 2008  largest cycle: 17 relations
Fri Nov 21 22:48:22 2008  matrix is 56843 x 56958 (12.9 MB) with weight 3155406 (55.40/col)
Fri Nov 21 22:48:22 2008  sparse part has weight 3155406 (55.40/col)
Fri Nov 21 22:48:23 2008  filtering completed in 4 passes
Fri Nov 21 22:48:23 2008  matrix is 52253 x 52317 (12.0 MB) with weight 2938923 (56.18/col)
Fri Nov 21 22:48:23 2008  sparse part has weight 2938923 (56.18/col)
Fri Nov 21 22:48:24 2008  saving the first 48 matrix rows for later
Fri Nov 21 22:48:24 2008  matrix is 52205 x 52317 (7.7 MB) with weight 2303617 (44.03/col)
Fri Nov 21 22:48:24 2008  sparse part has weight 1692532 (32.35/col)
Fri Nov 21 22:48:24 2008  matrix includes 64 packed rows
Fri Nov 21 22:48:24 2008  using block size 20926 for processor cache size 4096 kB
Fri Nov 21 22:48:25 2008  commencing Lanczos iteration
Fri Nov 21 22:48:25 2008  memory use: 7.6 MB
Fri Nov 21 22:48:37 2008  lanczos halted after 828 iterations (dim = 52203)
Fri Nov 21 22:48:38 2008  recovered 16 nontrivial dependencies
Fri Nov 21 22:48:38 2008  prp39 factor: 180480728295344801238466336014947707069
Fri Nov 21 22:48:38 2008  prp49 factor: 3058458065007834303252286311493510914433449868357
Fri Nov 21 22:48:38 2008  elapsed time 00:33:10

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間)

32×10152-419

c145

name 名前Serge Batalov
date 日付November 22, 2008 05:42:35 UTC 2008 年 11 月 22 日 (土) 14 時 42 分 35 秒 (日本時間)
composite number 合成数
2102132801408072665433570017523700921622909350181134181486504199352195851104181023043039126755430419794153335805927625999552404687093187007757973<145>
prime factors 素因数
177032885146535852618476212619<30>
183767390539545233362133693209<30>
64615655324137978437197139681674314373675816817502284960654218102416791281648499460663<86>
factorization results 素因数分解の結果
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=524982478
Step 1 took 18886ms
Step 2 took 14066ms
********** Factor found in step 2: 183767390539545233362133693209
Found probable prime factor of 30 digits: 183767390539545233362133693209

Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1337943101
Step 1 took 19191ms
Step 2 took 14563ms
********** Factor found in step 2: 177032885146535852618476212619
Found probable prime factor of 30 digits: 177032885146535852618476212619
software ソフトウェア
GMP-ECM 6.2.1

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間)

32×10154-419

c104

name 名前Robert Backstrom
date 日付November 21, 2008 16:15:30 UTC 2008 年 11 月 22 日 (土) 1 時 15 分 30 秒 (日本時間)
composite number 合成数
24119714744167530175826743896080551920044617404588160851068750109106326746284237447175478123245774165863<104>
prime factors 素因数
7152201341862591428684838599721619649<37>
3372348398945690607950846917414070323884300578481012329068619483687<67>
factorization results 素因数分解の結果
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM]
Input number is 24119714744167530175826743896080551920044617404588160851068750109106326746284237447175478123245774165863 (104 digits)
Using B1=1766000, B2=2140281790, polynomial Dickson(6), sigma=647106178
Step 1 took 12632ms
Step 2 took 5157ms
********** Factor found in step 2: 7152201341862591428684838599721619649
Found probable prime factor of 37 digits: 7152201341862591428684838599721619649
Probable prime cofactor 3372348398945690607950846917414070323884300578481012329068619483687 has 67 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間)

32×10155-419

c114

name 名前Robert Backstrom
date 日付November 23, 2008 17:39:05 UTC 2008 年 11 月 24 日 (月) 2 時 39 分 5 秒 (日本時間)
composite number 合成数
892652102578460163452218925109299370287832470891244205426080081902444565148626159311884218437879316318892518659927<114>
prime factors 素因数
6589889674901733654324033821990327559794316422291<49>
135457821999390469099670401531267201792965530673937169973854234797<66>
factorization results 素因数分解の結果
Number: n
N=892652102578460163452218925109299370287832470891244205426080081902444565148626159311884218437879316318892518659927
  ( 114 digits)
Divisors found:
 r1=6589889674901733654324033821990327559794316422291 (pp49)
 r2=135457821999390469099670401531267201792965530673937169973854234797 (pp66)
Version: GGNFS-0.77.1-20051202-athlon
Total time: 31.44 hours.
Scaled time: 64.30 units (timescale=2.045).
Factorization parameters were as follows:
name: KA_3_5_154_1
n: 892652102578460163452218925109299370287832470891244205426080081902444565148626159311884218437879316318892518659927
skew: 17881.72
# norm 1.65e+15
c5: 124740
c4: -3305249242
c3: -66180629234238
c2: 941123426736639434
c1: 18068018182754986939935
c0: 56736548028175370430747650
# alpha -4.71
Y1: 627207758323
Y0: -5901134905459535117853
# Murphy_E 5.87e-10
# M 875948648962425620048330212363563760145461037216438232018025505669232687984754761478672507962506218253364299892481
type: gnfs
rlim: 3500000
alim: 3500000
lpbr: 27
lpba: 27
mfbr: 50
mfba: 50
rlambda: 2.6
alambda: 2.6
qintsize: 100000
Factor base limits: 3500000/3500000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 50/50
Sieved algebraic special-q in [100000, 1700001)
Primes: RFBsize:250150, AFBsize:250601, largePrimes:7261061 encountered
Relations: rels:7091857, finalFF:612715
Max relations in full relation-set: 28
Initial matrix: 500833 x 612715 with sparse part having weight 46311257.
Pruned matrix : 402233 x 404801 with weight 24686433.
Total sieving time: 29.94 hours.
Total relation processing time: 0.22 hours.
Matrix solve time: 0.71 hours.
Total square root time: 0.58 hours, sqrts: 3.
Prototype def-par.txt line would be:
gnfs,113,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3500000,3500000,27,27,50,50,2.6,2.6,100000
total time: 31.44 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間)

32×10156-419

c117

name 名前Robert Backstrom
date 日付November 23, 2008 10:51:29 UTC 2008 年 11 月 23 日 (日) 19 時 51 分 29 秒 (日本時間)
composite number 合成数
416271860748980805269299319690524959322893202639117708912412035001294381766873523256418067451244226313074070942399137<117>
prime factors 素因数
277097866660463929160851656157857587<36>
1502255740059705391542146623564628296144683429311981707835983561439257940088530651<82>
factorization results 素因数分解の結果
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM]
Input number is 416271860748980805269299319690524959322893202639117708912412035001294381766873523256418067451244226313074070942399137 (117 digits)
Using B1=2456000, B2=3567875230, polynomial Dickson(6), sigma=3741657175
Step 1 took 32438ms
Step 2 took 11703ms
********** Factor found in step 2: 277097866660463929160851656157857587
Found probable prime factor of 36 digits: 277097866660463929160851656157857587
Probable prime cofactor 1502255740059705391542146623564628296144683429311981707835983561439257940088530651 has 82 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間)

32×10157-419

c150

name 名前Serge Batalov
date 日付November 22, 2008 02:41:24 UTC 2008 年 11 月 22 日 (土) 11 時 41 分 24 秒 (日本時間)
composite number 合成数
139954548194732252772345103037177836269244519580093301897914837173705598226144679360384114914384268104259142427097644136911644161859417093496658226747<150>
prime factors 素因数
82152423305033592348298831619<29>
1703596103003294419723782049965196114125342318793393470606475103127644906981867365346338961594764303306093223734477470313<121>
factorization results 素因数分解の結果
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1517652325
Step 1 took 18518ms
Step 2 took 14281ms
********** Factor found in step 2: 82152423305033592348298831619
Found probable prime factor of 29 digits: 82152423305033592348298831619
Probable prime cofactor 1703596103003294419723782049965196114125342318793393470606475103127644906981867365346338961594764303306093223734477470313 has 121 digits
software ソフトウェア
GMP-ECM 6.2.1

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間)

32×10160-419

c116

name 名前Robert Backstrom
date 日付November 24, 2008 11:00:31 UTC 2008 年 11 月 24 日 (月) 20 時 0 分 31 秒 (日本時間)
composite number 合成数
28521065183715196355824844085452176849021322513407806760569274498363666847451583590806239126414388837306251084921249<116>
prime factors 素因数
163875404876858976588551599658128966517628862360417550081<57>
174041157702382505971591718344739887639052132484582251616929<60>
factorization results 素因数分解の結果
Number: n
N=28521065183715196355824844085452176849021322513407806760569274498363666847451583590806239126414388837306251084921249
  ( 116 digits)
Divisors found:

Mon Nov 24 21:52:43 2008  prp57 factor: 163875404876858976588551599658128966517628862360417550081
Mon Nov 24 21:52:43 2008  prp60 factor: 174041157702382505971591718344739887639052132484582251616929
Mon Nov 24 21:52:43 2008  elapsed time 00:43:19 (Msieve 1.38)

Version: GGNFS-0.77.1-20051202-athlon
Total time: 36.70 hours.
Scaled time: 53.17 units (timescale=1.449).
Factorization parameters were as follows:
name: KA_3_5_159_1
n: 28521065183715196355824844085452176849021322513407806760569274498363666847451583590806239126414388837306251084921249
skew: 115436.32
# norm 1.36e+16
c5: 4800
c4: -783522220
c3: -300581098722771
c2: 10441071344211345536
c1: -17790501904306421094330
c0: -14839347986275999951931807367
# alpha -6.62
Y1: 1602120061993
Y0: -22635281731215525167408
# Murphy_E 5.30e-10
# M 3583062506374066250087638677111738450689527918815593869953971918521088312084087884886850189552142664315250577447483
type: gnfs
rlim: 4500000
alim: 4500000
lpbr: 27
lpba: 27
mfbr: 50
mfba: 50
rlambda: 2.4
alambda: 2.4
qintsize: 60000
Factor base limits: 4500000/4500000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 50/50
Sieved  special-q in [100000, 1720001)
Primes: RFBsize:315948, AFBsize:316284, largePrimes:6170251 encountered
Relations: rels:6123996, finalFF:749005
Max relations in full relation-set: 28
Initial matrix: 632311 x 749005 with sparse part having weight 34439405.
Pruned matrix : 499348 x 502573 with weight 16557018.
Total sieving time: 36.45 hours.
Total relation processing time: 0.25 hours.
Matrix solve time: 0.00 hours.
Total square root time: 0.00 hours, sqrts: 0.
Prototype def-par.txt line would be:
gnfs,115,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4500000,4500000,27,27,50,50,2.4,2.4,60000
total time: 36.70 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間)

32×10162-419

c110

name 名前Robert Backstrom
date 日付November 23, 2008 02:58:38 UTC 2008 年 11 月 23 日 (日) 11 時 58 分 38 秒 (日本時間)
composite number 合成数
80301982137501457226438683808161823698010328552916864791826396744849000596280781712481044585978795444664900507<110>
prime factors 素因数
22564381405754882879509950206984140408804091429<47>
3558793866027322837892334872232527090837570341500904949191061183<64>
factorization results 素因数分解の結果
Number: n
N=80301982137501457226438683808161823698010328552916864791826396744849000596280781712481044585978795444664900507
  ( 110 digits)
Divisors found:
 r1=22564381405754882879509950206984140408804091429 (pp47)
 r2=3558793866027322837892334872232527090837570341500904949191061183 (pp64)
Version: GGNFS-0.77.1-20051202-athlon
Total time: 17.19 hours.
Scaled time: 35.03 units (timescale=2.038).
Factorization parameters were as follows:
name: KA_3_5_161_1
n: 80301982137501457226438683808161823698010328552916864791826396744849000596280781712481044585978795444664900507
skew: 20941.36
# norm 3.03e+15
c5: 80160
c4: -178494500
c3: -208866880738614
c2: 1010698957953137416
c1: 26388170788187158703673
c0: 67057988088281024513967838
# alpha -6.73
Y1: 2999771929
Y0: -1000353997470729914547
# Murphy_E 1.09e-09
# M 51387382130815976307384603189548897007283674985944576533889534954907903830011786739793269560296316131041848063
type: gnfs
rlim: 3200000
alim: 3200000
lpbr: 27
lpba: 27
mfbr: 50
mfba: 50
rlambda: 2.6
alambda: 2.6
qintsize: 100000
Factor base limits: 3200000/3200000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 50/50
Sieved algebraic special-q in [100000, 1000001)
Primes: RFBsize:230209, AFBsize:229814, largePrimes:6650753 encountered
Relations: rels:6415890, finalFF:611905
Max relations in full relation-set: 28
Initial matrix: 460107 x 611905 with sparse part having weight 37008769.
Pruned matrix : 312942 x 315306 with weight 13812048.
Total sieving time: 16.59 hours.
Total relation processing time: 0.19 hours.
Matrix solve time: 0.29 hours.
Total square root time: 0.11 hours, sqrts: 1.
Prototype def-par.txt line would be:
gnfs,109,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,3200000,27,27,50,50,2.6,2.6,100000
total time: 17.19 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間)

32×10165-419

c133

name 名前Robert Backstrom
date 日付November 24, 2008 17:26:22 UTC 2008 年 11 月 25 日 (火) 2 時 26 分 22 秒 (日本時間)
composite number 合成数
1076885231038767992413352754329605253167257680508027092947125535368173098885445945137010069761323421743188297144152194724878946519747<133>
prime factors 素因数
952732027174124881625503241681651225883485593<45>
1130312827031637517531129402173147614032500164417042066514785305877661651415227444360379<88>
factorization results 素因数分解の結果
GMP-ECM 6.0.1 [powered by GMP 4.1.4] [ECM]
Input number is 1076885231038767992413352754329605253167257680508027092947125535368173098885445945137010069761323421743188297144152194724878946519747 (133 digits)
Using B1=2114000, B2=2439300909, polynomial Dickson(6), sigma=2117395774
Step 1 took 28031ms
Step 2 took 15469ms
********** Factor found in step 2: 952732027174124881625503241681651225883485593
Found probable prime factor of 45 digits: 952732027174124881625503241681651225883485593
Probable prime cofactor 1130312827031637517531129402173147614032500164417042066514785305877661651415227444360379 has 88 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間)

32×10166-419

c155

name 名前Robert Backstrom
date 日付November 25, 2008 22:32:12 UTC 2008 年 11 月 26 日 (水) 7 時 32 分 12 秒 (日本時間)
composite number 合成数
18814985910856850738989493552015668813724344381955732627780744427450386269838098108337739752472791134671475386080902144478651310281628482623249021352127677<155>
prime factors 素因数
9792135022795704973814420716717552208387<40>
1921438569531190489372181741560709835825907604892997957330053823094539017344979860619343704918741149830171856900671<115>
factorization results 素因数分解の結果
Number: n
N=18814985910856850738989493552015668813724344381955732627780744427450386269838098108337739752472791134671475386080902144478651310281628482623249021352127677
  ( 155 digits)
SNFS difficulty: 167 digits.
Divisors found:

Wed Nov 26 09:08:30 2008  prp40 factor: 9792135022795704973814420716717552208387
Wed Nov 26 09:08:30 2008  prp115 factor: 1921438569531190489372181741560709835825907604892997957330053823094539017344979860619343704918741149830171856900671
Wed Nov 26 09:08:30 2008  elapsed time 02:15:55 (Msieve 1.38)

Version: GGNFS-0.77.1-20051202-athlon
Total time: 37.41 hours.
Scaled time: 68.08 units (timescale=1.820).
Factorization parameters were as follows:
name: KA_3_5_165_1
n: 18814985910856850738989493552015668813724344381955732627780744427450386269838098108337739752472791134671475386080902144478651310281628482623249021352127677
type: snfs
skew: 1.33
deg: 5
c5: 10
c0: -41
m: 2000000000000000000000000000000000
rlim: 5200000
alim: 5200000
lpbr: 28
lpba: 28
mfbr: 56
mfba: 56
rlambda: 2.5
alambda: 2.5
qintsize: 50000
Factor base limits: 5200000/5200000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 56/56
Sieved  special-q in [100000, 2150001)
Primes: RFBsize:361407, AFBsize:361403, largePrimes:15647474 encountered
Relations: rels:14410609, finalFF:836059
Max relations in full relation-set: 28
Initial matrix: 722876 x 836059 with sparse part having weight 94388964.
Pruned matrix : 631595 x 635273 with weight 62761233.
Total sieving time: 36.91 hours.
Total relation processing time: 0.49 hours.
Matrix solve time: 0.00 hours.
Total square root time: 0.00 hours, sqrts: 0.
Prototype def-par.txt line would be:
snfs,167,5,0,0,0,0,0,0,0,0,5200000,5200000,28,28,56,56,2.5,2.5,100000
total time: 37.41 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間)

32×10168-419

c162

name 名前Robert Backstrom
date 日付November 23, 2008 02:14:26 UTC 2008 年 11 月 23 日 (日) 11 時 14 分 26 秒 (日本時間)
composite number 合成数
582147603270119562384365247265284317160054042945065077461924499567273313587978157167009251435134830933511703358975297967247902845095416448111173892091701273067667<162>
prime factors 素因数
2071061672414038887327862478162760144139<40>
281086561073560727550682470459751650208883734024290695333856539193174433441099866200434115946299221513714137236518465529753<123>
factorization results 素因数分解の結果
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM]
Input number is 582147603270119562384365247265284317160054042945065077461924499567273313587978157167009251435134830933511703358975297967247902845095416448111173892091701273067667 (162 digits)
Using B1=2658000, B2=4281434440, polynomial Dickson(6), sigma=79681721
Step 1 took 53859ms
Step 2 took 19406ms
********** Factor found in step 2: 2071061672414038887327862478162760144139
Found probable prime factor of 40 digits: 2071061672414038887327862478162760144139
Probable prime cofactor 281086561073560727550682470459751650208883734024290695333856539193174433441099866200434115946299221513714137236518465529753 has 123 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間)

32×10169-419

c147

name 名前Robert Backstrom
date 日付May 22, 2009 03:08:50 UTC 2009 年 5 月 22 日 (金) 12 時 8 分 50 秒 (日本時間)
composite number 合成数
176077343280428722210294933173471602076330384241286510651480244704067065779074311519434584743655131635262384425494570149205597165806500457976278773<147>
prime factors 素因数
140850378091982090577354915876165350338613087<45>
9786966886270901249855494260133478437860029027<46>
127731302497147884438978142065758231658906688736325985177<57>
factorization results 素因数分解の結果
Number: n
N=176077343280428722210294933173471602076330384241286510651480244704067065779074311519434584743655131635262384425494570149205597165806500457976278773
  ( 147 digits)
SNFS difficulty: 171 digits.
Divisors found:

Fri May 22 13:03:18 2009  prp45 factor: 140850378091982090577354915876165350338613087
Fri May 22 13:03:18 2009  prp46 factor: 9786966886270901249855494260133478437860029027
Fri May 22 13:03:18 2009  prp57 factor: 127731302497147884438978142065758231658906688736325985177
Fri May 22 13:03:18 2009  elapsed time 01:14:43 (Msieve 1.39 - dependency 2)

Version: GGNFS-0.77.1-20060513-pentium-m
Total time: 49.74 hours.
Scaled time: 132.30 units (timescale=2.660).
Factorization parameters were as follows:
name: KA_3_5_168_1
n: 176077343280428722210294933173471602076330384241286510651480244704067065779074311519434584743655131635262384425494570149205597165806500457976278773
m: 10000000000000000000000000000000000
deg: 5
c5: 16
c0: -205
skew: 1.67
type: snfs
lss: 1
rlim: 5000000
alim: 5000000
lpbr: 28
lpba: 28
mfbr: 56
mfba: 56
rlambda: 2.4
alambda: 2.4
qintsize: 100000
Factor base limits: 5000000/5000000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 56/56
Sieved  special-q in [2500000, 5261749)
Primes: RFBsize:348513, AFBsize:348852, largePrimes:17302361 encountered
Relations: rels:17224239, finalFF:733473
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 

Msieve: found 1992447 hash collisions in 19178345 relations
Msieve: matrix is 783206 x 783454 (206.8 MB)

Total sieving time: 49.02 hours.
Total relation processing time: 0.72 hours.
Matrix solve time: 0.00 hours.
Total square root time: 0.00 hours, sqrts: 0.
Prototype def-par.txt line would be:
snfs,171,5,0,0,0,0,0,0,0,0,5000000,5000000,28,28,56,56,2.4,2.4,100000
total time: 49.74 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間)

32×10170-419

c169

name 名前Serge Batalov
date 日付November 23, 2008 19:32:08 UTC 2008 年 11 月 24 日 (月) 4 時 32 分 8 秒 (日本時間)
composite number 合成数
9116809116809116809116809116809116809116809116809116809116809116809116809116809116809116809116809116809116809116809116809116809116809116809116809116809116809116809116809<169>
prime factors 素因数
998043704380098602044869755178934572557337371599512013922099<60>
9134679249814733560138714436517929988836887392421258951330673846471491717924198918470826456585941620511614291<109>
factorization results 素因数分解の結果
SNFS difficulty: 171 digits.
Divisors found:
 r1=998043704380098602044869755178934572557337371599512013922099 (pp60)
 r2=9134679249814733560138714436517929988836887392421258951330673846471491717924198918470826456585941620511614291 (pp109)
Version:
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.950).
Factorization parameters were as follows:
n: 9116809116809116809116809116809116809116809116809116809116809116809116809116809116809116809116809116809116809116809116809116809116809116809116809116809116809116809116809
m: 20000000000000000000000000000000000
deg: 5
c5: 1
c0: -41
skew: 2.10
type: snfs
lss: 1
rlim: 5100000
alim: 5100000
lpbr: 27
lpba: 27
mfbr: 54
mfba: 54
rlambda: 2.5
alambda: 2.5
Factor base limits: 5100000/5100000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 54/54
Sieved rational special-q in [2550000, 4550001)
Primes: rational ideals reading, algebraic ideals reading,
Relations: relations
Max relations in full relation-set:
Initial matrix:
Pruned matrix : 962406 x 962647
Total sieving time: 0.00 hours.
Total relation processing time: 0.00 hours.
Matrix solve time: 0.00 hours.
Time per square root: 0.00 hours.
Prototype def-par.txt line would be:
snfs,171,5,0,0,0,0,0,0,0,0,5100000,5100000,27,27,54,54,2.5,2.5,200000
total time: 42.00 hours.
software ソフトウェア
Msieve-1.38
execution environment 実行環境
Opteron-2.8GHz; Linux x86_64

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間)
351e60--
403e6400 / 2336Serge BatalovNovember 22, 2008 04:00:52 UTC 2008 年 11 月 22 日 (土) 13 時 0 分 52 秒 (日本時間)

32×10174-419

c149

name 名前Warut Roonguthai
date 日付October 4, 2011 01:05:33 UTC 2011 年 10 月 4 日 (火) 10 時 5 分 33 秒 (日本時間)
composite number 合成数
51472895162412657665397436050098807721908592316317999381208421882056853748722492196537949973218407075869349136768656928328348015206363334966527204699<149>
prime factors 素因数
398243059819026931610797278845172601116229452436728943011437537<63>
129249948977901630027341066758751705902213886712905995236019779628673269832748991037627<87>
factorization results 素因数分解の結果
N = 51472895162412657665397436050098807721908592316317999381208421882056853748722492196537949973218407075869349136768656928328348015206363334966527204699 (149 digits)
SNFS difficulty: 177 digits.
Divisors found:
r1=398243059819026931610797278845172601116229452436728943011437537 (pp63)
r2=129249948977901630027341066758751705902213886712905995236019779628673269832748991037627 (pp87)
Version: Msieve v. 1.48
Total time: 31.17 hours.
Factorization parameters were as follows:
name: (32*10^174-41)/9
n: 51472895162412657665397436050098807721908592316317999381208421882056853748722492196537949973218407075869349136768656928328348015206363334966527204699
Y0: 200000000000000000000000000000000000
Y1: -1
c0: -410
c1: 0
c2: 0
c3: 0
c4: 0
c5: 1
skew: 3.33
type: snfs
Factor base limits: 6200000/6200000
Large primes per side: 3
Large prime bits: 28/28
Sieved rational special-q in [0, 0)
Total raw relations: 20173363
Relations: 2349918 relations
Pruned matrix : 1341523 x 1341749
Polynomial selection time: 0.00 hours.
Total sieving time: 28.65 hours.
Total relation processing time: 0.11 hours.
Matrix solve time: 2.20 hours.
time per square root: 0.21 hours.
Prototype def-par.txt line would be: snfs,177,5,0,0,0,0,0,0,0,0,6200000,6200000,28,28,55,55,2.5,2.5,100000
total time: 31.17 hours.
Intel64 Family 6 Model 42 Stepping 7, GenuineIntel
Windows-7-6.1.7601-SP1
processors: 4, speed: 2.29GHz

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間)
351e60--
403e6931800Ignacio SantosMay 2, 2010 15:50:14 UTC 2010 年 5 月 3 日 (月) 0 時 50 分 14 秒 (日本時間)
131Wataru SakaiMay 23, 2010 08:31:38 UTC 2010 年 5 月 23 日 (日) 17 時 31 分 38 秒 (日本時間)
4511e6230 / 4049Ignacio SantosMay 2, 2010 15:50:14 UTC 2010 年 5 月 3 日 (月) 0 時 50 分 14 秒 (日本時間)
5043e664 / 7467Ignacio SantosMay 2, 2010 15:50:14 UTC 2010 年 5 月 3 日 (月) 0 時 50 分 14 秒 (日本時間)

32×10176-419

c142

name 名前Warut Roonguthai
date 日付January 30, 2012 00:42:47 UTC 2012 年 1 月 30 日 (月) 9 時 42 分 47 秒 (日本時間)
composite number 合成数
2577549180543967150192137066454603104408390174631613931894687817090673552436015682819533445495866494083232804210400689288944890737318608798487<142>
prime factors 素因数
106122547389897705385722782997778666889114396910004741333<57>
24288421677949053281947280069131348549505011355562339912080685164162559988358000340539<86>
factorization results 素因数分解の結果
N = 2577549180543967150192137066454603104408390174631613931894687817090673552436015682819533445495866494083232804210400689288944890737318608798487 (142 digits)
SNFS difficulty: 178 digits.
Divisors found:
r1=106122547389897705385722782997778666889114396910004741333 (pp57)
r2=24288421677949053281947280069131348549505011355562339912080685164162559988358000340539 (pp86)
Version: Msieve v. 1.48
Total time: 35.43 hours.
Factorization parameters were as follows:
name: (32*10^176-41)/9
n: 2577549180543967150192137066454603104408390174631613931894687817090673552436015682819533445495866494083232804210400689288944890737318608798487
Y0: 200000000000000000000000000000000000
Y1: -1
c0: -41
c1: 0
c2: 0
c3: 0
c4: 0
c5: 10
skew: 1.33
type: snfs
Factor base limits: 6500000/6500000
Large primes per side: 3
Large prime bits: 28/28
Sieved rational special-q in [0, 0)
Total raw relations: 20571292
Relations: 2542854 relations
Pruned matrix : 1442971 x 1443196
Polynomial selection time: 0.00 hours.
Total sieving time: 32.44 hours.
Total relation processing time: 0.12 hours.
Matrix solve time: 2.66 hours.
time per square root: 0.21 hours.
Prototype def-par.txt line would be: snfs,178,5,0,0,0,0,0,0,0,0,6500000,6500000,28,28,55,55,2.5,2.5,100000
total time: 35.43 hours.
Intel64 Family 6 Model 42 Stepping 7, GenuineIntel
Windows-7-6.1.7601-SP1
processors: 4, speed: 2.29GHz

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間)
351e6300Ignacio SantosMay 9, 2011 18:07:07 UTC 2011 年 5 月 10 日 (火) 3 時 7 分 7 秒 (日本時間)
403e62144110Ignacio SantosMay 9, 2011 18:07:07 UTC 2011 年 5 月 10 日 (火) 3 時 7 分 7 秒 (日本時間)
2034Wataru SakaiOctober 6, 2011 14:00:26 UTC 2011 年 10 月 6 日 (木) 23 時 0 分 26 秒 (日本時間)
4511e632 / 3991Ignacio SantosMay 9, 2011 18:07:07 UTC 2011 年 5 月 10 日 (火) 3 時 7 分 7 秒 (日本時間)

32×10178-419

c135

name 名前Serge Batalov
date 日付November 23, 2008 19:17:40 UTC 2008 年 11 月 24 日 (月) 4 時 17 分 40 秒 (日本時間)
composite number 合成数
242357873625555011616820375510880350259158618482078274537803763119388387672119022907552345465776189182241780402153687635844539696308627<135>
prime factors 素因数
125024948769124296559864649242229<33>
1938476088265407267608468946830297300218344442829662873259342913111548879306471757099239916369185285863<103>
factorization results 素因数分解の結果
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3121908314
Step 1 took 11952ms
Step 2 took 9541ms
********** Factor found in step 2: 125024948769124296559864649242229
Found probable prime factor of 33 digits: 125024948769124296559864649242229
Probable prime cofactor 1938476088265407267608468946830297300218344442829662873259342913111548879306471757099239916369185285863 has 103 digits
software ソフトウェア
GMP-ECM 6.2.1

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間)

32×10179-419

c160

name 名前Dmitry Domanov
date 日付June 6, 2013 05:11:05 UTC 2013 年 6 月 6 日 (木) 14 時 11 分 5 秒 (日本時間)
composite number 合成数
1886634450123065348165011511999841185954245202476519366921515350562397095983378900826046680950697251011586442749398746816071858481411331471850293718326580420501<160>
prime factors 素因数
256050432430135091271406941640007254492098072868356519000716196027079127<72>
7368214270201808644261429959282917594297406300328044683833143930180587910078928136936563<88>
factorization results 素因数分解の結果
N=1886634450123065348165011511999841185954245202476519366921515350562397095983378900826046680950697251011586442749398746816071858481411331471850293718326580420501
  ( 160 digits)
SNFS difficulty: 181 digits.
Divisors found:
 r1=256050432430135091271406941640007254492098072868356519000716196027079127 (pp72)
 r2=7368214270201808644261429959282917594297406300328044683833143930180587910078928136936563 (pp88)
Version: Msieve v. 1.50 (SVN unknown)
Total time: 102.32 hours.
Scaled time: 193.69 units (timescale=1.893).
Factorization parameters were as follows:
n: 1886634450123065348165011511999841185954245202476519366921515350562397095983378900826046680950697251011586442749398746816071858481411331471850293718326580420501
m: 1000000000000000000000000000000000000
deg: 5
c5: 16
c0: -205
skew: 1.67
# Murphy_E = 9.775e-11
type: snfs
lss: 1
rlim: 7300000
alim: 7300000
lpbr: 28
lpba: 28
mfbr: 53
mfba: 53
rlambda: 2.5
alambda: 2.5
qintsize: 400000
Factor base limits: 7300000/7300000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 53/53
Sieved rational special-q in [3650000, 8850001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1333172 x 1333402
Total sieving time: 99.83 hours.
Total relation processing time: 0.20 hours.
Matrix solve time: 1.99 hours.
Time per square root: 0.29 hours.
Prototype def-par.txt line would be:
snfs,181.000,5,0,0,0,0,0,0,0,0,7300000,7300000,28,28,53,53,2.5,2.5,100000
total time: 102.32 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間)
351e6300Ignacio SantosMay 9, 2011 19:27:03 UTC 2011 年 5 月 10 日 (火) 4 時 27 分 3 秒 (日本時間)
403e6110Ignacio SantosMay 9, 2011 19:27:03 UTC 2011 年 5 月 10 日 (火) 4 時 27 分 3 秒 (日本時間)
4511e6632 / 444132Ignacio SantosMay 9, 2011 19:27:03 UTC 2011 年 5 月 10 日 (火) 4 時 27 分 3 秒 (日本時間)
600Rich DickersonMay 21, 2012 21:09:42 UTC 2012 年 5 月 22 日 (火) 6 時 9 分 42 秒 (日本時間)

32×10180-419

c174

name 名前Serge Batalov
date 日付November 23, 2008 19:13:54 UTC 2008 年 11 月 24 日 (月) 4 時 13 分 54 秒 (日本時間)
composite number 合成数
126736524551892620483473147284986604761260725360576996860581826710322171493155908852628222639019046309474584548464318284016606968020853956484784585156918451624868584620395217<174>
prime factors 素因数
1782454901553614650304098655062208111<37>
composite cofactor 合成数の残り
71102233465445408409612382583042372098046406252784713936200060362115527942842424757820993742113288336936350920262904289486346645532474047<137>
factorization results 素因数分解の結果
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1778025856
Step 1 took 25039ms
Step 2 took 16297ms
********** Factor found in step 2: 1782454901553614650304098655062208111
Found probable prime factor of 37 digits: 1782454901553614650304098655062208111
Composite cofactor 71102233465445408409612382583042372098046406252784713936200060362115527942842424757820993742113288336936350920262904289486346645532474047 has 137 digits
software ソフトウェア
GMP-ECM 6.2.1

c137

name 名前Dmitry Domanov
date 日付June 6, 2013 11:20:15 UTC 2013 年 6 月 6 日 (木) 20 時 20 分 15 秒 (日本時間)
composite number 合成数
71102233465445408409612382583042372098046406252784713936200060362115527942842424757820993742113288336936350920262904289486346645532474047<137>
prime factors 素因数
68745930245655441416860735443469690343<38>
598783853054498941809960447586519280045119307<45>
1727293622050214086236016176837567804366642356356545947<55>
factorization results 素因数分解の結果
N=71102233465445408409612382583042372098046406252784713936200060362115527942842424757820993742113288336936350920262904289486346645532474047
  ( 137 digits)
SNFS difficulty: 181 digits.
Divisors found:
 r1=68745930245655441416860735443469690343 (pp38)
 r2=598783853054498941809960447586519280045119307 (pp45)
 r3=1727293622050214086236016176837567804366642356356545947 (pp55)
Version: Msieve v. 1.50 (SVN unknown)
Total time: 86.89 hours.
Scaled time: 56.83 units (timescale=0.654).
Factorization parameters were as follows:
n: 71102233465445408409612382583042372098046406252784713936200060362115527942842424757820993742113288336936350920262904289486346645532474047
m: 2000000000000000000000000000000000000
deg: 5
c5: 1
c0: -41
skew: 2.10
# Murphy_E = 1.239e-10
type: snfs
lss: 1
rlim: 7400000
alim: 7400000
lpbr: 28
lpba: 28
mfbr: 53
mfba: 53
rlambda: 2.5
alambda: 2.5
qintsize: 400000
Factor base limits: 7400000/7400000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 53/53
Sieved rational special-q in [3700000, 8100001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1213773 x 1214000
Total sieving time: 84.98 hours.
Total relation processing time: 0.20 hours.
Matrix solve time: 1.48 hours.
Time per square root: 0.24 hours.
Prototype def-par.txt line would be:
snfs,181.000,5,0,0,0,0,0,0,0,0,7400000,7400000,28,28,53,53,2.5,2.5,100000
total time: 86.89 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間)
351e6300Ignacio SantosMay 9, 2011 21:03:58 UTC 2011 年 5 月 10 日 (火) 6 時 3 分 58 秒 (日本時間)
403e6846110Ignacio SantosMay 9, 2011 21:03:58 UTC 2011 年 5 月 10 日 (火) 6 時 3 分 58 秒 (日本時間)
700Ignacio SantosMay 24, 2013 22:09:36 UTC 2013 年 5 月 25 日 (土) 7 時 9 分 36 秒 (日本時間)
36Ignacio SantosMay 24, 2013 22:11:59 UTC 2013 年 5 月 25 日 (土) 7 時 11 分 59 秒 (日本時間)
4511e6242 / 406832Ignacio SantosMay 9, 2011 21:03:58 UTC 2011 年 5 月 10 日 (火) 6 時 3 分 58 秒 (日本時間)
210Ignacio SantosMay 24, 2013 22:09:36 UTC 2013 年 5 月 25 日 (土) 7 時 9 分 36 秒 (日本時間)
5043e660 / 7465Ignacio SantosMay 24, 2013 22:09:36 UTC 2013 年 5 月 25 日 (土) 7 時 9 分 36 秒 (日本時間)

32×10184-419

c179

name 名前Ignacio Santos
date 日付July 12, 2010 10:28:37 UTC 2010 年 7 月 12 日 (月) 19 時 28 分 37 秒 (日本時間)
composite number 合成数
10176847855583913978158131105850316822765201579026992212580612958542924719852845324220220499854327963742180881322020876467664449354137481772708944282107819823106666627231381226279<179>
prime factors 素因数
4168006264942310865821203741779550495998061160548867<52>
2441658483381567360006049923510029539113678553500772114805960561753243102664989406595688432686567222249340919252011139174394637<127>
factorization results 素因数分解の結果
Number: 6
N=10176847855583913978158131105850316822765201579026992212580612958542924719852845324220220499854327963742180881322020876467664449354137481772708944282107819823106666627231381226279
  ( 179 digits)
SNFS difficulty: 185 digits.
Divisors found:
 r1=4168006264942310865821203741779550495998061160548867 (pp52)
 r2=2441658483381567360006049923510029539113678553500772114805960561753243102664989406595688432686567222249340919252011139174394637 (pp127)
Version: Msieve-1.40
Total time: 205.93 hours.
Scaled time: 358.12 units (timescale=1.739).
Factorization parameters were as follows:
n: 10176847855583913978158131105850316822765201579026992212580612958542924719852845324220220499854327963742180881322020876467664449354137481772708944282107819823106666627231381226279
m: 2000000000000000000000000000000000000
deg: 5
c5: 10000
c0: -41
skew: 0.33
type: snfs
lss: 1
rlim: 8600000
alim: 8600000
lpbr: 28
lpba: 28
mfbr: 54
mfba: 54
rlambda: 2.5
alambda: 2.5
Factor base limits: 8600000/8600000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 54/54
Sieved rational special-q in [4300000, 7600001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1692771 x 1692997
Total sieving time: 200.65 hours.
Total relation processing time: 0.24 hours.
Matrix solve time: 4.22 hours.
Time per square root: 0.82 hours.
Prototype def-par.txt line would be:
snfs,185.000,5,0,0,0,0,0,0,0,0,8600000,8600000,28,28,54,54,2.5,2.5,100000
total time: 205.93 hours.
 --------- CPU info (if available) ----------
software ソフトウェア
GGNFS, Msieve

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間)
351e6300Ignacio SantosJune 19, 2010 20:26:12 UTC 2010 年 6 月 20 日 (日) 5 時 26 分 12 秒 (日本時間)
403e62144110Ignacio SantosJune 19, 2010 20:26:12 UTC 2010 年 6 月 20 日 (日) 5 時 26 分 12 秒 (日本時間)
2034Wataru SakaiJuly 1, 2010 05:02:12 UTC 2010 年 7 月 1 日 (木) 14 時 2 分 12 秒 (日本時間)
4511e632 / 3991Ignacio SantosJune 19, 2010 20:26:12 UTC 2010 年 6 月 20 日 (日) 5 時 26 分 12 秒 (日本時間)

32×10185-419

c168

name 名前Jo Yeong Uk
date 日付October 29, 2014 13:02:42 UTC 2014 年 10 月 29 日 (水) 22 時 2 分 42 秒 (日本時間)
composite number 合成数
119812398488054643088802491682378346555526674221984627542385538764306958647863847688254538410523183532181214161323989115105979178082368078520566938160539077130051135227<168>
prime factors 素因数
1608339809152205055322478744505364550860104313356184791633689321440827343<73>
74494455590955412553842461721029954259054093485684245878328726468556941981287757297487828851989<95>
factorization results 素因数分解の結果
Number: 35551_185
N=119812398488054643088802491682378346555526674221984627542385538764306958647863847688254538410523183532181214161323989115105979178082368078520566938160539077130051135227
  ( 168 digits)
SNFS difficulty: 186 digits.
Divisors found:
 r1=1608339809152205055322478744505364550860104313356184791633689321440827343
 r2=74494455590955412553842461721029954259054093485684245878328726468556941981287757297487828851989
Version: 
Total time: 57.09 hours.
Scaled time: 299.93 units (timescale=5.254).
Factorization parameters were as follows:
n: 119812398488054643088802491682378346555526674221984627542385538764306958647863847688254538410523183532181214161323989115105979178082368078520566938160539077130051135227
m: 20000000000000000000000000000000000000
deg: 5
c5: 1
c0: -41
skew: 2.10
# Murphy_E = 7.759e-11
type: snfs
lss: 1
rlim: 8400000
alim: 8400000
lpbr: 28
lpba: 28
mfbr: 54
mfba: 54
rlambda: 2.5
alambda: 2.5

Factor base limits: 8400000/8400000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 54/54
Sieved rational special-q in [4200000, 6700001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 19849582
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1531289 x 1531537
Total sieving time: 52.87 hours.
Total relation processing time: 1.31 hours.
Matrix solve time: 2.82 hours.
Time per square root: 0.09 hours.
Prototype def-par.txt line would be:
snfs,186,5,0,0,0,0,0,0,0,0,8400000,8400000,28,28,54,54,2.5,2.5,100000
total time: 57.09 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM) i7-4930K CPU @ 3.40GHz stepping 04
Memory: 49373664k/51380224k available (5220k kernel code, 1086460k absent, 920100k reserved, 7121k data, 1264k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 6799.70 BogoMIPS (lpj=3399852)
Total of 12 processors activated (81596.44 BogoMIPS).
software ソフトウェア
GGNFS / Msieve v1.39
execution environment 実行環境
Core i7-4930K

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間)
351e6300Ignacio SantosMay 9, 2011 21:23:07 UTC 2011 年 5 月 10 日 (火) 6 時 23 分 7 秒 (日本時間)
403e61610110Ignacio SantosMay 9, 2011 21:23:07 UTC 2011 年 5 月 10 日 (火) 6 時 23 分 7 秒 (日本時間)
1500Dmitry DomanovAugust 21, 2013 13:12:04 UTC 2013 年 8 月 21 日 (水) 22 時 12 分 4 秒 (日本時間)
4511e6832 / 410932Ignacio SantosMay 9, 2011 21:23:07 UTC 2011 年 5 月 10 日 (火) 6 時 23 分 7 秒 (日本時間)
500Dmitry DomanovSeptember 18, 2013 15:39:23 UTC 2013 年 9 月 19 日 (木) 0 時 39 分 23 秒 (日本時間)
300Serge BatalovMay 27, 2014 00:31:12 UTC 2014 年 5 月 27 日 (火) 9 時 31 分 12 秒 (日本時間)

32×10187-419

c181

name 名前Serge Batalov
date 日付November 23, 2008 19:22:22 UTC 2008 年 11 月 24 日 (月) 4 時 22 分 22 秒 (日本時間)
composite number 合成数
2691586654416919354083464571313558969547245601385958529058996156103042785722206068496691573179661230679380948190969048831042654305487666590604110054503536294864260046702561161617473<181>
prime factors 素因数
827294513452956265618762024603598903<36>
3253480605332184680921640377891870384597854099985062122053939956180523797724675112907904366651740113627813901481730040593855626571502160884709191<145>
factorization results 素因数分解の結果
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3710936791
Step 1 took 28301ms
Step 2 took 18753ms
********** Factor found in step 2: 827294513452956265618762024603598903
Found probable prime factor of 36 digits: 827294513452956265618762024603598903
Probable prime cofactor 3253480605332184680921640377891870384597854099985062122053939956180523797724675112907904366651740113627813901481730040593855626571502160884709191 has 145 digits
software ソフトウェア
GMP-ECM 6.2.1

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間)

32×10189-419

c170

name 名前Eric Jeancolas
date 日付August 23, 2020 07:12:24 UTC 2020 年 8 月 23 日 (日) 16 時 12 分 24 秒 (日本時間)
composite number 合成数
10689191651450009448437696061546982212129350245025331350683502905032049805478358151586676581008668820925348033338071486700528500150462014561357995830656156845213242026703<170>
prime factors 素因数
2577634789889002293771388505180441779571431663<46>
4146899201306289688829019585685806242337680660849443740098338618537840822732365840114765777764949758991760852587154451074081<124>
factorization results 素因数分解の結果
10689191651450009448437696061546982212129350245025331350683502905032049805478358151586676581008668820925348033338071486700528500150462014561357995830656156845213242026703=2577634789889002293771388505180441779571431663*4146899201306289688829019585685806242337680660849443740098338618537840822732365840114765777764949758991760852587154451074081

n: 10689191651450009448437696061546982212129350245025331350683502905032049805478358151586676581008668820925348033338071486700528500150462014561357995830656156845213242026703
skew: 1.67
type: snfs
c0: -205
c5: 16
Y0: 100000000000000000000000000000000000000
Y1: -1
# f(x) = 16*x^5-205
# g(x) = -x+100000000000000000000000000000000000000

Info:Square Root: Factors: 4146899201306289688829019585685806242337680660849443740098338618537840822732365840114765777764949758991760852587154451074081 2577634789889002293771388505180441779571431663
Warning:Polynomial Selection (size optimized): some stats could not be displayed for polyselect1 (see log file for debug info)
Warning:Polynomial Selection (root optimized): some stats could not be displayed for polyselect2 (see log file for debug info)
Info:Generate Factor Base: Total cpu/real time for makefb: 4.75/2.04137
Info:Generate Free Relations: Total cpu/real time for freerel: 98.73/25.4243
Info:Lattice Sieving: Aggregate statistics:
Info:Lattice Sieving: Total number of relations: 25414627
Info:Lattice Sieving: Average J: 1893.92 for 2101578 special-q, max bucket fill -bkmult 1.0,1s:1.116860
Info:Lattice Sieving: Total time: 502110s
Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 50.84/111.191
Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics:
Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 110.5s
Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 417.55/385.365
Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics:
Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 331.2s
Info:Filtering - Singleton removal: Total cpu/real time for purge: 332.83/346.198
Info:Filtering - Merging: Total cpu/real time for merge: 289.26/82.9831
Info:Filtering - Merging: Total cpu/real time for replay: 76.47/65.5695
Info:Linear Algebra: Total cpu/real time for bwc: 68232.4/17603.3
Info:Linear Algebra: Aggregate statistics:
Info:Linear Algebra: Krylov: WCT time 11149.83, iteration CPU time 0.17, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (62464 iterations)
Info:Linear Algebra: Lingen CPU time 408.48, WCT time 118.04
Info:Linear Algebra: Mksol: WCT time 6197.33, iteration CPU time 0.19, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (31232 iterations)
Info:Quadratic Characters: Total cpu/real time for characters: 71.04/29.7088
Info:Square Root: Total cpu/real time for sqrt: 930.58/286.917
Info:HTTP server: Shutting down HTTP server
Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 998914/269989
Info:root: Cleaning up computation data in /tmp/cado.z4irn5p7
4146899201306289688829019585685806242337680660849443740098338618537840822732365840114765777764949758991760852587154451074081 2577634789889002293771388505180441779571431663
software ソフトウェア
cado-nfs-3.0.0
execution environment 実行環境
Linux Ubuntu 18.04.4 LTS [5.3.0-51-generic|libc 2.27 (Ubuntu GLIBC 2.27-3ubuntu1.2)]
GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間)
351e6300Ignacio SantosMay 9, 2011 22:52:55 UTC 2011 年 5 月 10 日 (火) 7 時 52 分 55 秒 (日本時間)
403e61610110Ignacio SantosMay 9, 2011 22:52:55 UTC 2011 年 5 月 10 日 (火) 7 時 52 分 55 秒 (日本時間)
1500Dmitry DomanovAugust 21, 2013 13:12:14 UTC 2013 年 8 月 21 日 (水) 22 時 12 分 14 秒 (日本時間)
4511e6533232Ignacio SantosMay 9, 2011 22:52:55 UTC 2011 年 5 月 10 日 (火) 7 時 52 分 55 秒 (日本時間)
1000Dmitry DomanovSeptember 16, 2013 15:43:45 UTC 2013 年 9 月 17 日 (火) 0 時 43 分 45 秒 (日本時間)
300Serge BatalovMay 27, 2014 00:31:12 UTC 2014 年 5 月 27 日 (火) 9 時 31 分 12 秒 (日本時間)
4000Robert BalfourApril 13, 2020 11:35:33 UTC 2020 年 4 月 13 日 (月) 20 時 35 分 33 秒 (日本時間)

32×10191-419

c175

name 名前matsui
date 日付March 5, 2020 18:45:58 UTC 2020 年 3 月 6 日 (金) 3 時 45 分 58 秒 (日本時間)
composite number 合成数
2078530729741953577539790809814630100361736066285341915739195470111817154475329453748352228897360853632187633873719310606314758467399064218686799253893776907464261221295682539<175>
prime factors 素因数
2873677163351112782621801599077930081976585221959178445739593<61>
723300013046035295819627167459971006677294213882216899608021661996958720554399944818626706499804463829651207858323<114>
factorization results 素因数分解の結果
Wed Mar 04 13:41:59 2020 -> factmsieve.py (v0.86)
------------------------------------------------------------------------------------------------
-----------------------------------------------------------------------------------------------
-------------------------------------------------------------------------------------------------
Fri Mar  6 03:11:57 2020  Msieve v. 1.54 (SVN Unversioned directory)
Fri Mar  6 03:11:57 2020  random seeds: 37a0743c a191c74c
Fri Mar  6 03:11:57 2020  factoring 2078530729741953577539790809814630100361736066285341915739195470111817154475329453748352228897360853632187633873719310606314758467399064218686799253893776907464261221295682539 (175 digits)
Fri Mar  6 03:11:58 2020  searching for 15-digit factors
Fri Mar  6 03:11:59 2020  commencing number field sieve (175-digit input)
Fri Mar  6 03:11:59 2020  R0: -200000000000000000000000000000000000000
Fri Mar  6 03:11:59 2020  R1: 1
Fri Mar  6 03:11:59 2020  A0: -41
Fri Mar  6 03:11:59 2020  A1: 0
Fri Mar  6 03:11:59 2020  A2: 0
Fri Mar  6 03:11:59 2020  A3: 0
Fri Mar  6 03:11:59 2020  A4: 0
Fri Mar  6 03:11:59 2020  A5: 10
Fri Mar  6 03:11:59 2020  skew 1.33, size 2.035e-13, alpha 0.978, combined = 3.090e-11 rroots = 1
Fri Mar  6 03:11:59 2020  
Fri Mar  6 03:11:59 2020  commencing square root phase
Fri Mar  6 03:11:59 2020  reading relations for dependency 1
Fri Mar  6 03:11:59 2020  read 894577 cycles
Fri Mar  6 03:12:01 2020  cycles contain 2921160 unique relations
Fri Mar  6 03:12:15 2020  read 2921160 relations
Fri Mar  6 03:12:29 2020  multiplying 2921160 relations
Fri Mar  6 03:15:06 2020  multiply complete, coefficients have about 76.70 million bits
Fri Mar  6 03:15:07 2020  initial square root is modulo 320081
Fri Mar  6 03:18:30 2020  sqrtTime: 391
Fri Mar  6 03:18:30 2020  p61 factor: 2873677163351112782621801599077930081976585221959178445739593
Fri Mar  6 03:18:30 2020  p114 factor: 723300013046035295819627167459971006677294213882216899608021661996958720554399944818626706499804463829651207858323

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間)
351e6300Ignacio SantosMay 10, 2011 15:01:29 UTC 2011 年 5 月 11 日 (水) 0 時 1 分 29 秒 (日本時間)
403e61610110Ignacio SantosMay 10, 2011 15:01:29 UTC 2011 年 5 月 11 日 (水) 0 時 1 分 29 秒 (日本時間)
1500Dmitry DomanovAugust 21, 2013 13:12:24 UTC 2013 年 8 月 21 日 (水) 22 時 12 分 24 秒 (日本時間)
4511e61332 / 410932Ignacio SantosMay 10, 2011 15:01:29 UTC 2011 年 5 月 11 日 (水) 0 時 1 分 29 秒 (日本時間)
1000Dmitry DomanovSeptember 16, 2013 15:43:30 UTC 2013 年 9 月 17 日 (火) 0 時 43 分 30 秒 (日本時間)
300Serge BatalovMay 27, 2014 00:31:13 UTC 2014 年 5 月 27 日 (火) 9 時 31 分 13 秒 (日本時間)

32×10192-419

c173

name 名前Eric Jeancolas
date 日付January 4, 2021 06:53:27 UTC 2021 年 1 月 4 日 (月) 15 時 53 分 27 秒 (日本時間)
composite number 合成数
22337215591217995171257163497242287281421331745583076417177883428491743786040042148475670516229021030915939282120087241919644648089042737235128033571058839178934644377545489<173>
prime factors 素因数
1705315778707777982340835836350254362298853890556055096519077<61>
13098580257167542881497700775817691486577894407793869069135002359139974347440115345954924689778299063058823055357<113>
factorization results 素因数分解の結果
22337215591217995171257163497242287281421331745583076417177883428491743786040042148475670516229021030915939282120087241919644648089042737235128033571058839178934644377545489=1705315778707777982340835836350254362298853890556055096519077*13098580257167542881497700775817691486577894407793869069135002359139974347440115345954924689778299063058823055357

cado polynomial
n: 22337215591217995171257163497242287281421331745583076417177883428491743786040042148475670516229021030915939282120087241919644648089042737235128033571058839178934644377545489
skew: 0.84
type: snfs
c0: -41
c5: 100
Y0: 200000000000000000000000000000000000000
Y1: -1
# f(x) = 100*x^5-41
# g(x) = -x+200000000000000000000000000000000000000

cado parameters (extracts)
tasks.lim0 = 11800000
tasks.lim1 = 11800000
tasks.lpb0 = 28
tasks.lpb1 = 28
tasks.sieve.mfb0 = 55
tasks.sieve.mfb1 = 55
tasks.sieve.lambda0 = 2.5
tasks.sieve.lambda1 = 2.5
tasks.I = 12
tasks.linalg.m = 64
tasks.linalg.n = 64
tasks.linalg.characters.nchar = 50

cado log (extracts)
Info:Square Root: Factors: 13098580257167542881497700775817691486577894407793869069135002359139974347440115345954924689778299063058823055357 1705315778707777982340835836350254362298853890556055096519077
Warning:Polynomial Selection (size optimized): some stats could not be displayed for polyselect1 (see log file for debug info)
Warning:Polynomial Selection (root optimized): some stats could not be displayed for polyselect2 (see log file for debug info)
Info:Generate Factor Base: Total cpu/real time for makefb: 5.07/2.05647
Info:Generate Free Relations: Total cpu/real time for freerel: 102.37/26.3926
Info:Lattice Sieving: Aggregate statistics:
Info:Lattice Sieving: Total number of relations: 29030957
Info:Lattice Sieving: Average J: 1893.67 for 3250386 special-q, max bucket fill -bkmult 1.0,1s:1.123110
Info:Lattice Sieving: Total time: 816725s
Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 54.94/144.003
Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics:
Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 142.9s
Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 475.19/426.787
Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics:
Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 363.2s
Info:Filtering - Singleton removal: Total cpu/real time for purge: 409.9/456.764
Info:Filtering - Merging: Merged matrix has 2509995 rows and total weight 427296962 (170.2 entries per row on average)
Info:Filtering - Merging: Total cpu/real time for merge: 354.32/102.003
Info:Filtering - Merging: Total cpu/real time for replay: 96.16/82.7624
Info:Linear Algebra: Total cpu/real time for bwc: 110149/28171.3
Info:Linear Algebra: Aggregate statistics:
Info:Linear Algebra: Krylov: WCT time 17965.28, iteration CPU time 0.22, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (78848 iterations)
Info:Linear Algebra: Lingen CPU time 512.27, WCT time 148.25
Info:Linear Algebra: Mksol: WCT time 9805.56, iteration CPU time 0.24, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (39424 iterations)
Info:Quadratic Characters: Total cpu/real time for characters: 87.63/37.553
Info:Square Root: Total cpu/real time for sqrt: 690.29/216.659
Info:HTTP server: Shutting down HTTP server
Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 1.63084e+06/61222.1
Info:root: Cleaning up computation data in /tmp/cado.79nttt_k
13098580257167542881497700775817691486577894407793869069135002359139974347440115345954924689778299063058823055357 1705315778707777982340835836350254362298853890556055096519077
software ソフトウェア
cado-nfs-3.0.0
execution environment 実行環境
6 x Linux Ubuntu 20.04.1 LTS [5.4.0-48-generic|libc 2.31 (Ubuntu GLIBC 2.31-0ubuntu9.1)]
GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間)
351e6300Ignacio SantosMay 10, 2011 15:57:01 UTC 2011 年 5 月 11 日 (水) 0 時 57 分 1 秒 (日本時間)
403e61610110Ignacio SantosMay 10, 2011 15:57:01 UTC 2011 年 5 月 11 日 (水) 0 時 57 分 1 秒 (日本時間)
1500Dmitry DomanovAugust 21, 2013 13:12:32 UTC 2013 年 8 月 21 日 (水) 22 時 12 分 32 秒 (日本時間)
4511e62300 / 410932Ignacio SantosMay 10, 2011 15:57:01 UTC 2011 年 5 月 11 日 (水) 0 時 57 分 1 秒 (日本時間)
1000Dmitry DomanovSeptember 16, 2013 15:43:17 UTC 2013 年 9 月 17 日 (火) 0 時 43 分 17 秒 (日本時間)
300Serge BatalovMay 27, 2014 00:31:13 UTC 2014 年 5 月 27 日 (火) 9 時 31 分 13 秒 (日本時間)
968Eric JeancolasOctober 16, 2020 05:06:07 UTC 2020 年 10 月 16 日 (金) 14 時 6 分 7 秒 (日本時間)

32×10194-419

c136

name 名前Serge Batalov
date 日付November 23, 2008 19:25:24 UTC 2008 年 11 月 24 日 (月) 4 時 25 分 24 秒 (日本時間)
composite number 合成数
3388289144214164194513495352248356504358590825291909179705355787030616297465265543839592981366091857308108833825305406640856246555672907<136>
prime factors 素因数
10833599953333206062513961588376283<35>
312757454475848459879503203836292897307277646250554042188313990627705705745444626647351015419658382929<102>
factorization results 素因数分解の結果
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2633261084
Step 1 took 18932ms
Step 2 took 13679ms
********** Factor found in step 2: 10833599953333206062513961588376283
Found probable prime factor of 35 digits: 10833599953333206062513961588376283
Probable prime cofactor 312757454475848459879503203836292897307277646250554042188313990627705705745444626647351015419658382929 has 102 digits
software ソフトウェア
GMP-ECM 6.2.1

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間)

32×10195-419

c188

name 名前Wataru Sakai
date 日付June 21, 2010 07:11:08 UTC 2010 年 6 月 21 日 (月) 16 時 11 分 8 秒 (日本時間)
composite number 合成数
31865507768735611335350182975380267559751693248689024879125639862756811483559447839699360246457237408192995072942243435568726486049722334869281677497040762320693273236419629347563457372979<188>
prime factors 素因数
173690665906082128758412635894085027453199<42>
183461256265583678394791427302892111696335616687226930430156545818016288610654424891212645333241466206086605713656441639134973341751155969878584221<147>
factorization results 素因数分解の結果
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=751017120
Step 1 took 6068ms
********** Factor found in step 1: 173690665906082128758412635894085027453199
Found probable prime factor of 42 digits: 173690665906082128758412635894085027453199
Probable prime cofactor 183461256265583678394791427302892111696335616687226930430156545818016288610654424891212645333241466206086605713656441639134973341751155969878584221 has 147 digits
software ソフトウェア
GMP-ECM 6.2.3

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間)

32×10196-419

c138

name 名前Serge Batalov
date 日付November 23, 2008 07:57:04 UTC 2008 年 11 月 23 日 (日) 16 時 57 分 4 秒 (日本時間)
composite number 合成数
104313501071886432014065048962810739114734049435162408508798429751325035150408811546896765895183088533985744637142526888305485731680702211<138>
prime factors 素因数
2621005805007976677279163475247999795539713<43>
39799034734136717395774185493040870102947697545992386055866170111726118412127304962406603538947<95>
factorization results 素因数分解の結果
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=983927123
Step 1 took 18737ms
Step 2 took 14050ms
********** Factor found in step 2: 2621005805007976677279163475247999795539713
Found probable prime factor of 43 digits: 2621005805007976677279163475247999795539713
Probable prime cofactor 39799034734136717395774185493040870102947697545992386055866170111726118412127304962406603538947 has 95 digits
software ソフトウェア
GMP-ECM 6.2.1

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間)

32×10197-419

c146

name 名前Serge Batalov
date 日付November 21, 2008 09:43:40 UTC 2008 年 11 月 21 日 (金) 18 時 43 分 40 秒 (日本時間)
composite number 合成数
13021705509957449048184102551667074523446256759110289387511222543052818897794134790197191721597198781825067717675260820790645085499406930578011419<146>
prime factors 素因数
25381539827219968939889818942099<32>
513038436540897283961126919502212025962143546345330531503056737906022207414185764428308211340282304133292693358681<114>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2785240796
Step 1 took 83890ms
Step 2 took 28611ms
********** Factor found in step 2: 25381539827219968939889818942099
Found probable prime factor of 32 digits: 25381539827219968939889818942099
Probable prime cofactor 513038436540897283961126919502212025962143546345330531503056737906022207414185764428308211340282304133292693358681 has 114 digits
software ソフトウェア
GMP-ECM 6.2.1

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間)

32×10199-419

c188

name 名前matsui
date 日付June 3, 2011 13:40:04 UTC 2011 年 6 月 3 日 (金) 22 時 40 分 4 秒 (日本時間)
composite number 合成数
17135539313918892241837837192061367434610257234457026053559821290415117828327616827161308282443951052716992427478035690435206836517383687369969030294436595317220207037833376001158948971147<188>
prime factors 素因数
118864148303275244074462379613626047253516437587578399<54>
144160704119113523736083391114836662132585531159868880464352364911067041114081742713109140595310165251808666613955701531764292658284053<135>
factorization results 素因数分解の結果
N=17135539313918892241837837192061367434610257234457026053559821290415117828327616827161308282443951052716992427478035690435206836517383687369969030294436595317220207037833376001158948971147
  ( 188 digits)
SNFS difficulty: 200 digits.
Divisors found:
 r1=118864148303275244074462379613626047253516437587578399 (pp54)
 r2=144160704119113523736083391114836662132585531159868880464352364911067041114081742713109140595310165251808666613955701531764292658284053 (pp135)
Version: Msieve v. 1.49
Total time:
Scaled time: 110.92 units (timescale=1.005).
Factorization parameters were as follows:
n: 17135539313918892241837837192061367434610257234457026053559821290415117828327616827161308282443951052716992427478035690435206836517383687369969030294436595317220207037833376001158948971147
m: 2000000000000000000000000000000000000000
deg: 5
c5: 10000
c0: -41
skew: 0.33
type: snfs
lss: 1
rlim: 15400000
alim: 15400000
lpbr: 29
lpba: 29
mfbr: 56
mfba: 56
rlambda: 2.6
alambda: 2.6
qintsize: 320000
Factor base limits: 15400000/15400000
Large primes per side: 3
Large prime bits: 29/29
Max factor residue bits: 56/56
Sieved rational special-q in [7700000, 16980001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 3054732 x 3054961
Total sieving time:
Total relation processing time:
Matrix solve time:
Time per square root:
Prototype def-par.txt line would be:
snfs,200.000,5,0,0,0,0,0,0,0,0,15400000,15400000,29,29,56,56,2.6,2.6,100000
total time:

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間)
351e6300Ignacio SantosMay 10, 2011 17:07:16 UTC 2011 年 5 月 11 日 (水) 2 時 7 分 16 秒 (日本時間)
403e6110 / 2144Ignacio SantosMay 10, 2011 17:07:16 UTC 2011 年 5 月 11 日 (水) 2 時 7 分 16 秒 (日本時間)
4511e632 / 4441Ignacio SantosMay 10, 2011 17:07:16 UTC 2011 年 5 月 11 日 (水) 2 時 7 分 16 秒 (日本時間)

32×10200-419

c153

name 名前Ignacio Santos
date 日付May 10, 2011 18:30:05 UTC 2011 年 5 月 11 日 (水) 3 時 30 分 5 秒 (日本時間)
composite number 合成数
176237223741001950317814911222913947974955500232674936349667348774811602998411361008132736503877375531366576209481182960344591742093377086135600501335633<153>
prime factors 素因数
9669671262851918345772365671<28>
6731258125992126930464828994191341<34>
35869297964137395978056915833924717<35>
75486069289506485196010053653191738313664480847271627759<56>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=446330273
Step 1 took 21388ms
Step 2 took 12901ms
********** Factor found in step 2: 9669671262851918345772365671
Found probable prime factor of 28 digits: 9669671262851918345772365671
Composite cofactor 18225771998894566017366677060927624579136738284209084428891597873283571049551321413500212479691052939338804608844119065721223 has 125 digits

Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3184466193
Step 1 took 17799ms
Step 2 took 10452ms
********** Factor found in step 2: 35869297964137395978056915833924717
Found probable prime factor of 35 digits: 35869297964137395978056915833924717
Composite cofactor 508116217304195267932888355270639897740864945698992247153298968286083863675756244973034819 has 90 digits

Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2684505188
Step 1 took 12168ms
Step 2 took 7894ms
********** Factor found in step 2: 6731258125992126930464828994191341
Found probable prime factor of 34 digits: 6731258125992126930464828994191341
Probable prime cofactor 75486069289506485196010053653191738313664480847271627759 has 56 digits
software ソフトウェア
GMP-ECM 6.3

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間)

32×10202-419

c174

name 名前Bob Backstrom
date 日付November 20, 2021 05:26:36 UTC 2021 年 11 月 20 日 (土) 14 時 26 分 36 秒 (日本時間)
composite number 合成数
124041569205482088894853313167988202665280496683871986457484613906081202038015287698952661745493496229120493371245408915475727499757750786545761774008217589487266545719483099<174>
prime factors 素因数
8471362294288735548241288925048570413339240152861072858476165401692321449<73>
14642458307928707111875683185120621286105424834015023788773055376870702781705019067030736962072570851<101>
factorization results 素因数分解の結果
Number: n
N=124041569205482088894853313167988202665280496683871986457484613906081202038015287698952661745493496229120493371245408915475727499757750786545761774008217589487266545719483099  ( 174 digits)
SNFS difficulty: 203 digits.
Divisors found:

Sat Nov 20 14:35:04 2021  p73 factor: 8471362294288735548241288925048570413339240152861072858476165401692321449
Sat Nov 20 14:35:04 2021  p101 factor: 14642458307928707111875683185120621286105424834015023788773055376870702781705019067030736962072570851
Sat Nov 20 14:35:04 2021  elapsed time 01:57:15 (Msieve 1.54 - dependency 2)

Version: 
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.352).
Factorization parameters were as follows:
#
# N = 32x10^202-41 = 35(201)1
#
n: 124041569205482088894853313167988202665280496683871986457484613906081202038015287698952661745493496229120493371245408915475727499757750786545761774008217589487266545719483099
m: 20000000000000000000000000000000000000000
deg: 5
c5: 100
c0: -41
skew: 0.84
# Murphy_E = 1.052e-11
type: snfs
lss: 1
rlim: 17300000
alim: 17300000
lpbr: 29
lpba: 29
mfbr: 56
mfba: 56
rlambda: 2.6
alambda: 2.6
Factor base limits: 17300000/17300000
Large primes per side: 3
Large prime bits: 29/29
Max factor residue bits: 56/56
Sieved  special-q in [100000, 35850000)
Primes: , , 
Relations: 
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 

Msieve: found 10254056 hash collisions in 65671346 relations (57812687 unique)
Msieve: matrix is 2235682 x 2235908 (767.2 MB)

Sieving start time : 2021/11/19 23:16:06
Sieving end time  : 2021/11/20 12:36:36

Total sieving time: 13hrs 20min 30secs.

Total relation processing time: 1hrs 35min 39sec.
Matrix solve time: 0.00 hours.
Total square root time: 0hrs 5min 13sec.

Prototype def-par.txt line would be:
snfs,203,5,0,0,0,0,0,0,0,0,17300000,17300000,29,29,56,56,2.6,2.6,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------
[    0.117806] smpboot: CPU0: AMD Ryzen 7 2700 Eight-Core Processor (family: 0x17, model: 0x8, stepping: 0x2)
[    0.000000] Memory: 16239948K/16727236K available (14339K kernel code, 2400K rwdata, 5020K rodata, 2736K init, 4964K bss, 487288K reserved, 0K cma-reserved)
[    0.152615] x86/mm: Memory block size: 128MB
[    0.000005] Calibrating delay loop (skipped), value calculated using timer frequency.. 6399.14 BogoMIPS (lpj=12798284)
[    0.150213] smpboot: Total of 16 processors activated (102386.27 BogoMIPS)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間)
351e6300Ignacio SantosMay 10, 2011 19:21:57 UTC 2011 年 5 月 11 日 (水) 4 時 21 分 57 秒 (日本時間)
403e61610110Ignacio SantosMay 10, 2011 19:21:57 UTC 2011 年 5 月 11 日 (水) 4 時 21 分 57 秒 (日本時間)
1500Dmitry DomanovAugust 21, 2013 13:12:42 UTC 2013 年 8 月 21 日 (水) 22 時 12 分 42 秒 (日本時間)
4511e61332 / 410932Ignacio SantosMay 10, 2011 19:21:57 UTC 2011 年 5 月 11 日 (水) 4 時 21 分 57 秒 (日本時間)
1000Dmitry DomanovSeptember 16, 2013 15:42:30 UTC 2013 年 9 月 17 日 (火) 0 時 42 分 30 秒 (日本時間)
300Serge BatalovMay 27, 2014 00:31:13 UTC 2014 年 5 月 27 日 (火) 9 時 31 分 13 秒 (日本時間)

32×10203-419

c164

name 名前Serge Batalov
date 日付November 23, 2008 19:27:50 UTC 2008 年 11 月 24 日 (月) 4 時 27 分 50 秒 (日本時間)
composite number 合成数
59891966943390175341010848534861479390395690007706570181848333252978014562462421536500719655020203026211172428217722127510894825479491970956487010851263022758767223<164>
prime factors 素因数
354102979541164110880003592212481<33>
169137144852597308225618316511538561476577202292669595418051665587776733341784913636767253699943916968786779942651786094067252427383<132>
factorization results 素因数分解の結果
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=4180862736
Step 1 took 24856ms
Step 2 took 16720ms
********** Factor found in step 2: 354102979541164110880003592212481
Found probable prime factor of 33 digits: 354102979541164110880003592212481
Probable prime cofactor 169137144852597308225618316511538561476577202292669595418051665587776733341784913636767253699943916968786779942651786094067252427383 has 132 digits
software ソフトウェア
GMP-ECM 6.2.1

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間)

32×10204-419

c200

name 名前Robert Backstrom
date 日付December 6, 2008 17:46:46 UTC 2008 年 12 月 7 日 (日) 2 時 46 分 46 秒 (日本時間)
composite number 合成数
56438285616526540985659384364125709226425110804227933071248044501588208631177567192424571113121725036199869133725226679083089502302505683511731226774322696480191043596811942341236457016072565525731449<200>
prime factors 素因数
14248427654041308826650517475730475139675651291<47>
39913387700709211382964131171098547802886843448472175066153267<62>
99240348514737227891488012650045657725921855844817056668365570013539644495922325704459609817<92>
factorization results 素因数分解の結果
Number: n
N=56438285616526540985659384364125709226425110804227933071248044501588208631177567192424571113121725036199869133725226679083089502302505683511731226774322696480191043596811942341236457016072565525731449
  ( 200 digits)
SNFS difficulty: 206 digits.
Divisors found:

Sun Dec 07 04:22:58 2008  prp47 factor: 14248427654041308826650517475730475139675651291
Sun Dec 07 04:22:58 2008  prp62 factor: 39913387700709211382964131171098547802886843448472175066153267
Sun Dec 07 04:22:58 2008  prp92 factor: 99240348514737227891488012650045657725921855844817056668365570013539644495922325704459609817
Sun Dec 07 04:22:59 2008  elapsed time 28:19:21 (Msieve 1.39 - dependency 5)

Version: GGNFS-0.77.1-20051202-athlon
Total time: 153.01 hours.
Scaled time: 312.90 units (timescale=2.045).
Factorization parameters were as follows:
name: KA_3_5_203_1
n: 56438285616526540985659384364125709226425110804227933071248044501588208631177567192424571113121725036199869133725226679083089502302505683511731226774322696480191043596811942341236457016072565525731449
type: snfs
skew: 3.33
deg: 5
c5: 1
c0: -410
m: 200000000000000000000000000000000000000000
rlim: 10000000
alim: 10000000
lpbr: 29
lpba: 29
mfbr: 58
mfba: 58
rlambda: 2.5
alambda: 2.5
qintsize: 100000
Factor base limits: 10000000/10000000
Large primes per side: 3
Large prime bits: 29/29
Max factor residue bits: 58/58
Sieved  special-q in [100000, 25400001)
Primes: RFBsize:664579, AFBsize:665006, largePrimes:36354193 encountered
Relations: rels:27543760, finalFF:133156
Max relations in full relation-set: 28

Msieve: found 9558761 hash collisions in 45411678 relations
Msieve: matrix is 2874359 x 2874607 (781.1 MB)

Initial matrix: 
Pruned matrix : 
Total sieving time: 150.52 hours.
Total relation processing time: 2.49 hours.
Matrix solve time: 0.00 hours.
Total square root time: 0.00 hours, sqrts: 0.
Prototype def-par.txt line would be:
snfs,206,5,0,0,0,0,0,0,0,0,10000000,10000000,29,29,58,58,2.5,2.5,100000
total time: 153.01 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間)
351e60--
403e6376 / 2336Serge BatalovNovember 25, 2008 04:56:30 UTC 2008 年 11 月 25 日 (火) 13 時 56 分 30 秒 (日本時間)

32×10206-419

c177

name 名前Serge Batalov
date 日付May 27, 2014 08:08:49 UTC 2014 年 5 月 27 日 (火) 17 時 8 分 49 秒 (日本時間)
composite number 合成数
143100219432359990259774429247332332575294567499484861388133244070405946451962483467893127605011780720664711988283203334637101791951699036237643184950973195391183121221613545291<177>
prime factors 素因数
504095780030821510766486387252850614935953773<45>
283875059266734056103877370806869829179499637366612148956493080898546094650515680668492885560518806854364098451538708245626755772567<132>
factorization results 素因数分解の結果
Using B1=11000000, B2=58553269330, polynomial Dickson(12), sigma=3421781296
Step 1 took 58387ms
Step 2 took 30112ms
********** Factor found in step 2: 504095780030821510766486387252850614935953773
Found probable prime factor of 45 digits: 504095780030821510766486387252850614935953773
Probable prime cofactor

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaJune 1, 2013 09:00:00 UTC 2013 年 6 月 1 日 (土) 18 時 0 分 0 秒 (日本時間)
403e61500Dmitry DomanovAugust 21, 2013 13:12:52 UTC 2013 年 8 月 21 日 (水) 22 時 12 分 52 秒 (日本時間)
4511e61300 / 41431000Dmitry DomanovSeptember 16, 2013 15:42:14 UTC 2013 年 9 月 17 日 (火) 0 時 42 分 14 秒 (日本時間)
300Serge BatalovMay 27, 2014 00:31:14 UTC 2014 年 5 月 27 日 (火) 9 時 31 分 14 秒 (日本時間)

32×10207-419

c166

name 名前Bob Backstrom
date 日付September 20, 2024 06:00:51 UTC 2024 年 9 月 20 日 (金) 15 時 0 分 51 秒 (日本時間)
composite number 合成数
3553659697422181141550180707443793269395985014269547271560605571365869985872971018215605563863708543612388601681857070758398707143594219866160741619672771087073034317<166>
prime factors 素因数
993862791911989669132858600192853754826671743<45>
3575603922736319950531011447698010745753303851250978981583967036050356965617400625131888650090493975613277157682763418419<121>
factorization results 素因数分解の結果
GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM]
Input number is 3553659697422181141550180707443793269395985014269547271560605571365869985872971018215605563863708543612388601681857070758398707143594219866160741619672771087073034317 (166 digits)
Using B1=51390000, B2=288593074786, polynomial Dickson(12), sigma=1:1808222963
Step 1 took 121297ms
Step 2 took 41835ms
********** Factor found in step 2: 993862791911989669132858600192853754826671743
Found prime factor of 45 digits: 993862791911989669132858600192853754826671743
Prime cofactor 3575603922736319950531011447698010745753303851250978981583967036050356965617400625131888650090493975613277157682763418419 has 121 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaJune 1, 2013 09:00:00 UTC 2013 年 6 月 1 日 (土) 18 時 0 分 0 秒 (日本時間)
403e61500Dmitry DomanovAugust 21, 2013 13:13:01 UTC 2013 年 8 月 21 日 (水) 22 時 13 分 1 秒 (日本時間)
4511e61300 / 41431000Dmitry DomanovSeptember 13, 2013 12:44:46 UTC 2013 年 9 月 13 日 (金) 21 時 44 分 46 秒 (日本時間)
300Serge BatalovMay 27, 2014 00:31:14 UTC 2014 年 5 月 27 日 (火) 9 時 31 分 14 秒 (日本時間)

32×10208-419

c156

name 名前Bob Backstrom
date 日付October 9, 2021 19:16:14 UTC 2021 年 10 月 10 日 (日) 4 時 16 分 14 秒 (日本時間)
composite number 合成数
597948495519619180339697497217306770993687729773803618974401235592805262055814535327668968948122103512023740841077972446374673064163738202683668096799537389<156>
prime factors 素因数
91670216917237399700835344831257975760691305131<47>
6522821867646117597761809861051260898867550640761859384410971149180203073395527914302954398221695729012062919<109>
factorization results 素因数分解の結果
#
# N = 32x10^208-41 = 35(207)1
#
n: 597948495519619180339697497217306770993687729773803618974401235592805262055814535327668968948122103512023740841077972446374673064163738202683668096799537389
m: 200000000000000000000000000000000000000000
deg: 5
c5: 1000
c0: -41
skew: 0.53
# Murphy_E = 5.949e-12
type: snfs
lss: 1
rlim: 22000000
alim: 22000000
lpbr: 29
lpba: 29
mfbr: 57
mfba: 57
rlambda: 2.6
alambda: 2.6



GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM]
Input number is 597948495519619180339697497217306770993687729773803618974401235592805262055814535327668968948122103512023740841077972446374673064163738202683668096799537389 (156 digits)
Using B1=44030000, B2=240491351116, polynomial Dickson(12), sigma=1:2498978323
Step 1 took 104829ms
Step 2 took 35570ms
********** Factor found in step 2: 91670216917237399700835344831257975760691305131
Found prime factor of 47 digits: 91670216917237399700835344831257975760691305131
Prime cofactor 6522821867646117597761809861051260898867550640761859384410971149180203073395527914302954398221695729012062919 has 109 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaJune 1, 2013 09:00:00 UTC 2013 年 6 月 1 日 (土) 18 時 0 分 0 秒 (日本時間)
403e61500Dmitry DomanovAugust 21, 2013 13:13:11 UTC 2013 年 8 月 21 日 (水) 22 時 13 分 11 秒 (日本時間)
4511e61300 / 41431000Dmitry DomanovSeptember 13, 2013 12:44:59 UTC 2013 年 9 月 13 日 (金) 21 時 44 分 59 秒 (日本時間)
300Serge BatalovMay 27, 2014 00:31:14 UTC 2014 年 5 月 27 日 (火) 9 時 31 分 14 秒 (日本時間)

32×10209-419

c181

name 名前Dmitry Domanov
date 日付June 17, 2013 07:08:26 UTC 2013 年 6 月 17 日 (月) 16 時 8 分 26 秒 (日本時間)
composite number 合成数
6847946244106680683311867340687631517007053792875810644205775981779457300076334852155353394302849448861504411760152220434420953232480285091498826240501740785625855342335401822947929<181>
prime factors 素因数
128439553485958538033296999264803629255212100263<48>
53316490584462535974571701405092897234045665437641876524597080021757955676662454764951140949395422428976806961976917626697535016534783<134>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1410950226
Step 1 took 22972ms
Step 2 took 8917ms
********** Factor found in step 2: 128439553485958538033296999264803629255212100263
Found probable prime factor of 48 digits: 128439553485958538033296999264803629255212100263

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaJune 1, 2013 09:00:00 UTC 2013 年 6 月 1 日 (土) 18 時 0 分 0 秒 (日本時間)

32×10210-419

c166

composite cofactor 合成数の残り
1728212945709287495572077730689753632236518823672575710319890945966943874033564515682786981811827274563755701433534342390392511695489409790626890345101466376113883569<166>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaJune 1, 2013 09:00:00 UTC 2013 年 6 月 1 日 (土) 18 時 0 分 0 秒 (日本時間)
403e61500Dmitry DomanovAugust 21, 2013 13:13:21 UTC 2013 年 8 月 21 日 (水) 22 時 13 分 21 秒 (日本時間)
4511e61300 / 41431000Dmitry DomanovSeptember 16, 2013 15:40:04 UTC 2013 年 9 月 17 日 (火) 0 時 40 分 4 秒 (日本時間)
300Serge BatalovMay 27, 2014 00:31:15 UTC 2014 年 5 月 27 日 (火) 9 時 31 分 15 秒 (日本時間)

32×10211-419

c197

name 名前Dmitry Domanov
date 日付June 18, 2013 05:00:04 UTC 2013 年 6 月 18 日 (火) 14 時 0 分 4 秒 (日本時間)
composite number 合成数
95103618126090226530916718735503461766729637599724822948077504920105015015063745504344062130973633179017602257291722485566061469421361338857546813196530959981025024614983624386909058004985592066961<197>
prime factors 素因数
8510040526926193497888613639910655685259<40>
composite cofactor 合成数の残り
11175460072743205650349701808023959960180515759481429218420753188970103066534471029961208319566812803422342837609638557618285978825879165930567226488613978579<158>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3192644790
Step 1 took 26812ms
********** Factor found in step 1: 8510040526926193497888613639910655685259
Found probable prime factor of 40 digits: 8510040526926193497888613639910655685259

c158

name 名前Dmitry Domanov
date 日付September 13, 2013 10:43:56 UTC 2013 年 9 月 13 日 (金) 19 時 43 分 56 秒 (日本時間)
composite number 合成数
11175460072743205650349701808023959960180515759481429218420753188970103066534471029961208319566812803422342837609638557618285978825879165930567226488613978579<158>
prime factors 素因数
13856658527083259444889964835320800143917<41>
806504688767528616003525733536824575834539721968585440513480925978860612662617878204379307020944236671714049951423487<117>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=665539441
Step 1 took 62105ms
Step 2 took 21302ms
********** Factor found in step 2: 13856658527083259444889964835320800143917
Found probable prime factor of 41 digits: 13856658527083259444889964835320800143917

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaJune 1, 2013 09:00:00 UTC 2013 年 6 月 1 日 (土) 18 時 0 分 0 秒 (日本時間)
403e61500Dmitry DomanovAugust 21, 2013 13:13:30 UTC 2013 年 8 月 21 日 (水) 22 時 13 分 30 秒 (日本時間)
4511e61500 / 4143Dmitry DomanovSeptember 12, 2013 15:24:03 UTC 2013 年 9 月 13 日 (金) 0 時 24 分 3 秒 (日本時間)

32×10212-419

c153

name 名前Dmitry Domanov
date 日付June 17, 2013 07:06:32 UTC 2013 年 6 月 17 日 (月) 16 時 6 分 32 秒 (日本時間)
composite number 合成数
363555833267302875231588588958287320832132764878937968658993050714840564756445701762403295922463038677557379630076916733043363105619857078012306137013517<153>
prime factors 素因数
496966596620352906159995185436266867<36>
731549838036767781480037159031529021206776161372058111256231915238014707723599142937614480512787039322717773380269951<117>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=102658214
Step 1 took 16545ms
Step 2 took 7322ms
********** Factor found in step 2: 496966596620352906159995185436266867
Found probable prime factor of 36 digits: 496966596620352906159995185436266867

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaJune 1, 2013 09:00:00 UTC 2013 年 6 月 1 日 (土) 18 時 0 分 0 秒 (日本時間)

32×10213-419

c184

composite cofactor 合成数の残り
6367566328128111461949705156920936450729931823233795118666324575432226597715216073563002969007471797583493844424066429454272755407062652057177359872918353329029754949779561113647100897<184>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaJune 1, 2013 09:00:00 UTC 2013 年 6 月 1 日 (土) 18 時 0 分 0 秒 (日本時間)
403e61500Dmitry DomanovAugust 21, 2013 13:13:41 UTC 2013 年 8 月 21 日 (水) 22 時 13 分 41 秒 (日本時間)
4511e61300 / 41431000Dmitry DomanovSeptember 26, 2013 13:32:02 UTC 2013 年 9 月 26 日 (木) 22 時 32 分 2 秒 (日本時間)
300Serge BatalovMay 27, 2014 00:31:15 UTC 2014 年 5 月 27 日 (火) 9 時 31 分 15 秒 (日本時間)

32×10214-419

c202

composite cofactor 合成数の残り
1893152441414976952823331267940766370930466653695488851429872031794516333496972213805439926304653992377543098291772456705380256609796564731422765709128251214274534177816691269478293608206268058427317821<202>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaJune 1, 2013 09:00:00 UTC 2013 年 6 月 1 日 (土) 18 時 0 分 0 秒 (日本時間)
403e61500Dmitry DomanovAugust 21, 2013 13:13:50 UTC 2013 年 8 月 21 日 (水) 22 時 13 分 50 秒 (日本時間)
4511e61800 / 41431500Dmitry DomanovSeptember 20, 2013 13:22:41 UTC 2013 年 9 月 20 日 (金) 22 時 22 分 41 秒 (日本時間)
300Serge BatalovMay 27, 2014 00:31:16 UTC 2014 年 5 月 27 日 (火) 9 時 31 分 16 秒 (日本時間)

32×10215-419

c179

composite cofactor 合成数の残り
36937159374497061406796482230365777936370664519492910914811820393275181441825845900512034739331016914398645335981417529776834258172795341641640240700730307685834131655595768168489<179>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaJune 1, 2013 09:00:00 UTC 2013 年 6 月 1 日 (土) 18 時 0 分 0 秒 (日本時間)
403e61500Dmitry DomanovAugust 21, 2013 13:13:59 UTC 2013 年 8 月 21 日 (水) 22 時 13 分 59 秒 (日本時間)
4511e61300 / 41431000Dmitry DomanovSeptember 12, 2013 15:23:43 UTC 2013 年 9 月 13 日 (金) 0 時 23 分 43 秒 (日本時間)
300Serge BatalovMay 27, 2014 00:31:16 UTC 2014 年 5 月 27 日 (火) 9 時 31 分 16 秒 (日本時間)

32×10216-419

c192

composite cofactor 合成数の残り
248559843035664825958527255100723136229900761354249440748791995535007924142704646100238777132311779955734261520513697822546443558370869298463353841870802634123647036363779350684363553473503231<192>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaJune 1, 2013 09:00:00 UTC 2013 年 6 月 1 日 (土) 18 時 0 分 0 秒 (日本時間)
403e631001500Dmitry DomanovAugust 21, 2013 13:14:07 UTC 2013 年 8 月 21 日 (水) 22 時 14 分 7 秒 (日本時間)
300Serge BatalovJanuary 9, 2014 04:41:08 UTC 2014 年 1 月 9 日 (木) 13 時 41 分 8 秒 (日本時間)
1300Serge BatalovMay 26, 2014 18:02:08 UTC 2014 年 5 月 27 日 (火) 3 時 2 分 8 秒 (日本時間)

32×10217-419

c176

name 名前Dmitry Domanov
date 日付September 13, 2013 10:44:41 UTC 2013 年 9 月 13 日 (金) 19 時 44 分 41 秒 (日本時間)
composite number 合成数
58238535666519579806504174992262485315547643718447459470063242054538362639255458305888250438428708928188225779677976583892497243458883367498026939590507031752039351104693665551<176>
prime factors 素因数
128673108223920709473800869111304785255462243<45>
4279251267812188031576985816046612055004068473<46>
105768139924251569916559533873482304791045655012311712453022616687265105537557028824909<87>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=2047183978
Step 1 took 75618ms
Step 2 took 27124ms
********** Factor found in step 2: 4279251267812188031576985816046612055004068473
Found probable prime factor of 46 digits: 4279251267812188031576985816046612055004068473

Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=479279418
Step 1 took 40688ms
Step 2 took 17736ms
********** Factor found in step 2: 128673108223920709473800869111304785255462243
Found probable prime factor of 45 digits: 128673108223920709473800869111304785255462243

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaJune 1, 2013 09:00:00 UTC 2013 年 6 月 1 日 (土) 18 時 0 分 0 秒 (日本時間)
403e61500Dmitry DomanovAugust 21, 2013 13:14:16 UTC 2013 年 8 月 21 日 (水) 22 時 14 分 16 秒 (日本時間)
4511e61000 / 4143Dmitry DomanovSeptember 12, 2013 15:23:29 UTC 2013 年 9 月 13 日 (金) 0 時 23 分 29 秒 (日本時間)

32×10218-419

c187

composite cofactor 合成数の残り
1317564250734007754031563086288524547996999950484430656917474425982020065576420101491408762516216105577111979334223130930327666994785993317469284273654980139192886972627399957591110216019<187>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaJune 1, 2013 09:00:00 UTC 2013 年 6 月 1 日 (土) 18 時 0 分 0 秒 (日本時間)
403e61500Dmitry DomanovAugust 21, 2013 13:14:24 UTC 2013 年 8 月 21 日 (水) 22 時 14 分 24 秒 (日本時間)
4511e61300 / 41431000Dmitry DomanovSeptember 26, 2013 13:32:32 UTC 2013 年 9 月 26 日 (木) 22 時 32 分 32 秒 (日本時間)
300Serge BatalovMay 27, 2014 00:31:16 UTC 2014 年 5 月 27 日 (火) 9 時 31 分 16 秒 (日本時間)

32×10219-419

c196

name 名前Cyp
date 日付March 7, 2014 16:32:44 UTC 2014 年 3 月 8 日 (土) 1 時 32 分 44 秒 (日本時間)
composite number 合成数
2497443544776339104404740138309148264448725951642974304925170249024540958804983818204653503064789747848686396462004920523022232536333616000075528133774830128413857928419490213174614067004899649203<196>
prime factors 素因数
6189466912311116502014039548727270197<37>
403498973362118833675422935029305139443708401223204671087455149092561569004427040349244645038166302483049857763667472215771478204374503508282892250180545040199<159>
factorization results 素因数分解の結果
Run 148 out of 151:
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=2898420316
Step 1 took 68866ms
Step 2 took 20685ms
********** Factor found in step 2: 6189466912311116502014039548727270197
Found probable prime factor of 37 digits: 6189466912311116502014039548727270197
Probable prime cofactor 403498973362118833675422935029305139443708401223204671087455149092561569004427040349244645038166302483049857763667472215771478204374503508282892250180545040199 has 159 digits
software ソフトウェア
GMP-ECM 6.4.4
execution environment 実行環境
Gentoo Linux, Intel(R) Core(TM) i7-3770K CPU

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaJune 1, 2013 09:00:00 UTC 2013 年 6 月 1 日 (土) 18 時 0 分 0 秒 (日本時間)
403e61800 / 18081500Dmitry DomanovAugust 21, 2013 13:14:34 UTC 2013 年 8 月 21 日 (水) 22 時 14 分 34 秒 (日本時間)
300Serge BatalovJanuary 9, 2014 04:41:10 UTC 2014 年 1 月 9 日 (木) 13 時 41 分 10 秒 (日本時間)
4511e6148 / 4077CypMarch 7, 2014 16:32:43 UTC 2014 年 3 月 8 日 (土) 1 時 32 分 43 秒 (日本時間)

32×10220-419

c217

name 名前Dmitry Domanov
date 日付June 17, 2013 07:07:45 UTC 2013 年 6 月 17 日 (月) 16 時 7 分 45 秒 (日本時間)
composite number 合成数
6672087737953754091866308041950751652384228852609411813765351014365838910781676779049644502825212151539792748274639811513521402806446904776797814891265820145534913784116261128833844165050770417630991847542795187756719<217>
prime factors 素因数
258281085818216672237523444600614569<36>
25832661020519718494355394381003778519280567759329793924211225146631925705003544618120319677968007143079679995208394153382441564592635246829884109994014002892373636809398734881747351<182>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1863376843
Step 1 took 30763ms
Step 2 took 11078ms
********** Factor found in step 2: 258281085818216672237523444600614569
Found probable prime factor of 36 digits: 258281085818216672237523444600614569

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaJune 1, 2013 09:00:00 UTC 2013 年 6 月 1 日 (土) 18 時 0 分 0 秒 (日本時間)

32×10221-419

c187

name 名前Dmitry Domanov
date 日付June 17, 2013 07:07:15 UTC 2013 年 6 月 17 日 (月) 16 時 7 分 15 秒 (日本時間)
composite number 合成数
6090326660249865824455749209426903734169953217922016732979193024486943742295924353284617598511057615207336673478166455284583094047771611271054248939764514012623156933072470472478047311003<187>
prime factors 素因数
226862783427403557470633449307701<33>
26845860604539306470179902984840143455915491859464340011155578661758069631277247323887656862434562644532296877280587314862016645078985488756062094833557903<155>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1194649530
Step 1 took 23159ms
Step 2 took 9228ms
********** Factor found in step 2: 226862783427403557470633449307701
Found probable prime factor of 33 digits: 226862783427403557470633449307701

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaJune 1, 2013 09:00:00 UTC 2013 年 6 月 1 日 (土) 18 時 0 分 0 秒 (日本時間)

32×10222-419

c185

name 名前Erik Branger
date 日付October 26, 2020 08:23:33 UTC 2020 年 10 月 26 日 (月) 17 時 23 分 33 秒 (日本時間)
composite number 合成数
30133984553356330541455128953890889320122905888526500519870038029382894321818611214639051458394520734088690180081192355146006964256660827983562986855588738211540330256507398215381408363<185>
prime factors 素因数
167928449286845039090084425070603702208479074686197522361000483148786402147<75>
179445380942470999839204995425564684038990912352272099824245739061887277408372670751856867196932749289372266329<111>
factorization results 素因数分解の結果
Number: 35551_222
N = 30133984553356330541455128953890889320122905888526500519870038029382894321818611214639051458394520734088690180081192355146006964256660827983562986855588738211540330256507398215381408363 (185 digits)
SNFS difficulty: 224 digits.
Divisors found:
r1=167928449286845039090084425070603702208479074686197522361000483148786402147 (pp75)
r2=179445380942470999839204995425564684038990912352272099824245739061887277408372670751856867196932749289372266329 (pp111)
Version: Msieve v. 1.52 (SVN unknown)
Total time: 46.50 hours.
Factorization parameters were as follows:
n: 30133984553356330541455128953890889320122905888526500519870038029382894321818611214639051458394520734088690180081192355146006964256660827983562986855588738211540330256507398215381408363
m: 10000000000000000000000000000000000000000000000000000000
deg: 4
c4: 3200
c0: -41
skew: 1.00
type: snfs
lss: 1
rlim: 536870912
alim: 44739242
lpbr: 29
lpba: 28
mfbr: 58
mfba: 56
rlambda: 2.8
alambda: 2.8
side: 1
Number of cores used: 6
Number of threads per core: 1
Factor base limits: 536870912/44739242
Large primes per side: 3
Large prime bits: 29/28
Total raw relations: 36739376
Relations: 8195988 relations
Total pre-computation time approximately 1000 CPU-days.
Pre-computation saved approximately 18 G rational relations.
Total batch smoothness checking time: 25.84 hours.
Total relation processing time: 0.31 hours.
Pruned matrix : 7250124 x 7250349
Matrix solve time: 20.03 hours.
time per square root: 0.31 hours.
Prototype def-par.txt line would be: snfs,224,4,0,0,0,0,0,0,0,0,536870912,44739242,29,28,58,56,2.8,2.8,100000
total time: 46.50 hours.
Intel64 Family 6 Model 158 Stepping 10, GenuineIntel
Windows-10-10.0.18362-SP0
processors: 12, speed: 3.19GHz
software ソフトウェア
GGNFS, NFS_factory, Msieve

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaJune 1, 2013 09:00:00 UTC 2013 年 6 月 1 日 (土) 18 時 0 分 0 秒 (日本時間)
403e61500Dmitry DomanovAugust 21, 2013 13:14:43 UTC 2013 年 8 月 21 日 (水) 22 時 14 分 43 秒 (日本時間)
4511e61300 / 41431000Dmitry DomanovSeptember 26, 2013 13:32:52 UTC 2013 年 9 月 26 日 (木) 22 時 32 分 52 秒 (日本時間)
300Serge BatalovMay 27, 2014 00:31:17 UTC 2014 年 5 月 27 日 (火) 9 時 31 分 17 秒 (日本時間)

32×10223-419

c209

name 名前Bob Backstrom
date 日付May 22, 2020 23:55:46 UTC 2020 年 5 月 23 日 (土) 8 時 55 分 46 秒 (日本時間)
composite number 合成数
38534169136601940030791350170888712730387334331972430899147407695771976021945758780772686762628405555692496910362065162958326509825426661448406514492743221718395360286064085814126661010234874901026123505099929<209>
prime factors 素因数
45583690525732963705138077918085541248837021526989738563999308670677470669<74>
845349919942278065940609368783381118176979183440504482486717888659100401158747458885499709103544098958737761116930825951184623273772541<135>
factorization results 素因数分解の結果
Number: n
N=38534169136601940030791350170888712730387334331972430899147407695771976021945758780772686762628405555692496910362065162958326509825426661448406514492743221718395360286064085814126661010234874901026123505099929   ( 209 digits)
SNFS difficulty: 224 digits.
Divisors found:

Sat May 23 09:45:01 2020  p74 factor: 45583690525732963705138077918085541248837021526989738563999308670677470669
Sat May 23 09:45:01 2020  p135 factor: 845349919942278065940609368783381118176979183440504482486717888659100401158747458885499709103544098958737761116930825951184623273772541
Sat May 23 09:45:01 2020  elapsed time 13:29:47 (Msieve 1.54 - dependency 1)

Version:
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.122).
Factorization parameters were as follows:
#
# N = 32x10^223-41 = 35(222)1
#
n: 38534169136601940030791350170888712730387334331972430899147407695771976021945758780772686762628405555692496910362065162958326509825426661448406514492743221718395360286064085814126661010234874901026123505099929
m: 20000000000000000000000000000000000000
deg: 6
c6: 5
c0: -41
skew: 1.42
# Murphy_E = 2.102e-12
type: snfs
lss: 1
rlim: 39000000
alim: 39000000
lpbr: 29
lpba: 29
mfbr: 59
mfba: 59
rlambda: 2.6
alambda: 2.6
Factor base limits: 39000000/39000000
Large primes per side: 3
Large prime bits: 29/29
Max factor residue bits: 59/59
Sieved  special-q in [100000, 102700000)
Primes: , ,
Relations:
Max relations in full relation-set: 28
Initial matrix:
Pruned matrix :

Msieve: found 10058292 hash collisions in 59007615 relations (51065334 unique)
Msieve: matrix is 5281131 x 5281357 (1853.9 MB)

Sieving start time: 2020/05/20 16:26:51
Sieving end time  : 2020/05/22 20:14:13

Total sieving time: 51hrs 47min 22secs.

Total relation processing time: 13hrs 0min 23sec.
Matrix solve time: 0.00 hours.
Total square root time: 0hrs 9min 50sec.

Prototype def-par.txt line would be:
snfs,224,6,0,0,0,0,0,0,0,0,39000000,39000000,29,29,59,59,2.6,2.6,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------
[    0.149449] smpboot: CPU0: AMD Ryzen 7 1700 Eight-Core Processor (family: 0x17, model: 0x1, stepping: 0x1)
[    0.000000] Memory: 16283224K/16703460K available (12300K kernel code, 2481K rwdata, 4268K rodata, 2432K init, 2712K bss, 420236K reserved, 0K cma-reserved)
[    0.184573] x86/mm: Memory block size: 128MB
[    0.024000] Calibrating delay loop (skipped), value calculated using timer frequency.. 5988.29 BogoMIPS (lpj=11976580)
[    0.182230] smpboot: Total of 16 processors activated (95812.64 BogoMIPS)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaJune 1, 2013 09:00:00 UTC 2013 年 6 月 1 日 (土) 18 時 0 分 0 秒 (日本時間)
403e631001500Dmitry DomanovAugust 21, 2013 13:14:52 UTC 2013 年 8 月 21 日 (水) 22 時 14 分 52 秒 (日本時間)
300Serge BatalovJanuary 9, 2014 04:41:11 UTC 2014 年 1 月 9 日 (木) 13 時 41 分 11 秒 (日本時間)
1300Serge BatalovMay 26, 2014 18:02:08 UTC 2014 年 5 月 27 日 (火) 3 時 2 分 8 秒 (日本時間)

32×10224-419

c194

name 名前Dmitry Domanov
date 日付June 17, 2013 07:02:54 UTC 2013 年 6 月 17 日 (月) 16 時 2 分 54 秒 (日本時間)
composite number 合成数
14435207041193063672504266501377730303710468425077577367350200979863729377490005016558818119359215497976594112725893522259054973960294094778608824987938455969747992077157523729794770957617050219<194>
prime factors 素因数
2174315388828953167946784636583057<34>
composite cofactor 合成数の残り
6638966506587438710145398340416763707858547024517418715774097399456122634356561529579191783013244072820367039784401114873873542246286739353478295840525869182267<160>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=456772845
Step 1 took 27676ms
********** Factor found in step 1: 2174315388828953167946784636583057
Found probable prime factor of 34 digits: 2174315388828953167946784636583057

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaJune 1, 2013 09:00:00 UTC 2013 年 6 月 1 日 (土) 18 時 0 分 0 秒 (日本時間)
403e61500Dmitry DomanovAugust 21, 2013 13:15:02 UTC 2013 年 8 月 21 日 (水) 22 時 15 分 2 秒 (日本時間)
4511e61800 / 41431500Dmitry DomanovSeptember 12, 2013 15:23:03 UTC 2013 年 9 月 13 日 (金) 0 時 23 分 3 秒 (日本時間)
300Serge BatalovMay 27, 2014 00:31:17 UTC 2014 年 5 月 27 日 (火) 9 時 31 分 17 秒 (日本時間)

32×10226-419

c216

composite cofactor 合成数の残り
501151972576927125690168762704801939355426534568129533496354255932876434044339276100565743972393878135276223008866507097188978180246051149244196979387841990579905391512871237388331391500310737079442894111562079274027<216>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaJune 1, 2013 09:00:00 UTC 2013 年 6 月 1 日 (土) 18 時 0 分 0 秒 (日本時間)
403e631001500Dmitry DomanovAugust 21, 2013 13:15:11 UTC 2013 年 8 月 21 日 (水) 22 時 15 分 11 秒 (日本時間)
300Serge BatalovJanuary 9, 2014 04:41:11 UTC 2014 年 1 月 9 日 (木) 13 時 41 分 11 秒 (日本時間)
1300Serge BatalovMay 26, 2014 18:02:08 UTC 2014 年 5 月 27 日 (火) 3 時 2 分 8 秒 (日本時間)

32×10227-419

c194

composite cofactor 合成数の残り
21666285531830231133275784594916621522743654348351470274155949712575932921459204295087916878201697861306902899658052709906116239869818709810727084897326294480959393333546272303255029205365534479<194>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaJune 1, 2013 09:00:00 UTC 2013 年 6 月 1 日 (土) 18 時 0 分 0 秒 (日本時間)
403e631001500Dmitry DomanovAugust 21, 2013 13:15:19 UTC 2013 年 8 月 21 日 (水) 22 時 15 分 19 秒 (日本時間)
300Serge BatalovJanuary 9, 2014 04:41:12 UTC 2014 年 1 月 9 日 (木) 13 時 41 分 12 秒 (日本時間)
1300Serge BatalovMay 26, 2014 18:02:09 UTC 2014 年 5 月 27 日 (火) 3 時 2 分 9 秒 (日本時間)
4511e60 / 3695--
5043e627 / 7436CypFebruary 14, 2014 05:53:54 UTC 2014 年 2 月 14 日 (金) 14 時 53 分 54 秒 (日本時間)

32×10229-419

c176

name 名前Dmitry Domanov
date 日付September 13, 2013 10:42:43 UTC 2013 年 9 月 13 日 (金) 19 時 42 分 43 秒 (日本時間)
composite number 合成数
59015843949075492813072625003386140753508075282130875746292581300866998586961473634055274218698006802924927086644154189398180289513219449953354405074163091757962822852738964917<176>
prime factors 素因数
201621346377251576673080542868004871031<39>
composite cofactor 合成数の残り
292706328022686492055887018802965197731608846014497836330676131046610894720508759277007780614229616692043642356732688007992552745184166707<138>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=3044797730
Step 1 took 98184ms
Step 2 took 32795ms
********** Factor found in step 2: 201621346377251576673080542868004871031
Found probable prime factor of 39 digits: 201621346377251576673080542868004871031

c138

name 名前Serge Batalov
date 日付November 8, 2013 01:02:34 UTC 2013 年 11 月 8 日 (金) 10 時 2 分 34 秒 (日本時間)
composite number 合成数
292706328022686492055887018802965197731608846014497836330676131046610894720508759277007780614229616692043642356732688007992552745184166707<138>
prime factors 素因数
28518104294086746463539403805835872063970211<44>
10263877465494065177976013665172683011577786437386657483978208446285658901654393368621312389937<95>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=862973936
Step 1 took 36330ms
Step 2 took 15341ms
********** Factor found in step 2: 28518104294086746463539403805835872063970211
Found probable prime factor of 44 digits: 28518104294086746463539403805835872063970211
Probable prime cofactor

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaJune 1, 2013 09:00:00 UTC 2013 年 6 月 1 日 (土) 18 時 0 分 0 秒 (日本時間)
403e61500Dmitry DomanovAugust 21, 2013 13:15:28 UTC 2013 年 8 月 21 日 (水) 22 時 15 分 28 秒 (日本時間)
4511e61000 / 4143Dmitry DomanovSeptember 12, 2013 15:22:44 UTC 2013 年 9 月 13 日 (金) 0 時 22 分 44 秒 (日本時間)

32×10230-419

c213

name 名前Dmitry Domanov
date 日付June 17, 2013 07:04:53 UTC 2013 年 6 月 17 日 (月) 16 時 4 分 53 秒 (日本時間)
composite number 合成数
802357526284134562793813376154894373408844830289875573417048294321710657981031118963608818620039174648536082375533119308731083725524809026796016197528715186886462601066339626717590362228733112214197236217130428203<213>
prime factors 素因数
5399711952946941640810172101800251<34>
composite cofactor 合成数の残り
148592653325931707373604459334572135231025984983210144649453845358104024366179908216245556462921276135179691418427613735278449570952383083675637253728325302403705102914945155039953<180>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=427114332
Step 1 took 30839ms
Step 2 took 11128ms
********** Factor found in step 2: 5399711952946941640810172101800251
Found probable prime factor of 34 digits: 5399711952946941640810172101800251

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaJune 1, 2013 09:00:00 UTC 2013 年 6 月 1 日 (土) 18 時 0 分 0 秒 (日本時間)
403e61500Dmitry DomanovAugust 21, 2013 13:15:43 UTC 2013 年 8 月 21 日 (水) 22 時 15 分 43 秒 (日本時間)
4511e61300 / 41431000Dmitry DomanovSeptember 12, 2013 15:22:30 UTC 2013 年 9 月 13 日 (金) 0 時 22 分 30 秒 (日本時間)
300Serge BatalovMay 27, 2014 00:31:17 UTC 2014 年 5 月 27 日 (火) 9 時 31 分 17 秒 (日本時間)

32×10231-419

c227

composite cofactor 合成数の残り
81097451259164645566123567172765448430891032902756553054206043280696018875431780570571255515260259461158122289887908116587723366456573581998393256746927800459721176825389584552962971410614135792613542767501210126030507847445557<227>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6418118Makoto KamadaJune 1, 2013 09:00:00 UTC 2013 年 6 月 1 日 (土) 18 時 0 分 0 秒 (日本時間)
300Ignacio SantosJuly 27, 2013 06:56:33 UTC 2013 年 7 月 27 日 (土) 15 時 56 分 33 秒 (日本時間)
403e61610110Ignacio SantosJuly 27, 2013 06:56:33 UTC 2013 年 7 月 27 日 (土) 15 時 56 分 33 秒 (日本時間)
1500Dmitry DomanovAugust 21, 2013 13:15:54 UTC 2013 年 8 月 21 日 (水) 22 時 15 分 54 秒 (日本時間)
4511e6428232Ignacio SantosJuly 27, 2013 06:56:33 UTC 2013 年 7 月 27 日 (土) 15 時 56 分 33 秒 (日本時間)
850Serge BatalovNovember 8, 2013 17:16:01 UTC 2013 年 11 月 9 日 (土) 2 時 16 分 1 秒 (日本時間)
400Serge BatalovJanuary 6, 2014 02:28:53 UTC 2014 年 1 月 6 日 (月) 11 時 28 分 53 秒 (日本時間)
800Serge BatalovFebruary 23, 2014 19:24:45 UTC 2014 年 2 月 24 日 (月) 4 時 24 分 45 秒 (日本時間)
900Serge BatalovMay 24, 2014 19:03:59 UTC 2014 年 5 月 25 日 (日) 4 時 3 分 59 秒 (日本時間)
300Serge BatalovMay 27, 2014 00:31:18 UTC 2014 年 5 月 27 日 (火) 9 時 31 分 18 秒 (日本時間)
1000Serge BatalovDecember 18, 2014 00:18:48 UTC 2014 年 12 月 18 日 (木) 9 時 18 分 48 秒 (日本時間)

32×10233-419

c183

composite cofactor 合成数の残り
539224688129767308029802373284028340354507942120689975800757892950659942236615690869186638829429270835133084760297567149808140559694646833381281965536556565292232813304307111697876871<183>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaJune 1, 2013 09:00:00 UTC 2013 年 6 月 1 日 (土) 18 時 0 分 0 秒 (日本時間)
403e61500Dmitry DomanovAugust 21, 2013 13:16:02 UTC 2013 年 8 月 21 日 (水) 22 時 16 分 2 秒 (日本時間)
4511e61300 / 41431000Dmitry DomanovSeptember 16, 2013 15:41:36 UTC 2013 年 9 月 17 日 (火) 0 時 41 分 36 秒 (日本時間)
300Serge BatalovMay 27, 2014 00:31:18 UTC 2014 年 5 月 27 日 (火) 9 時 31 分 18 秒 (日本時間)

32×10234-419

c223

name 名前Dmitry Domanov
date 日付June 18, 2013 05:00:32 UTC 2013 年 6 月 18 日 (火) 14 時 0 分 32 秒 (日本時間)
composite number 合成数
2037274031631454091629225679033997297163367095689157796033435320382301432817838753418351562006009001357988516418422599136841765003657749732829595489867757951711829013364108713953389653276138788326439003599279811379001948793<223>
prime factors 素因数
25539457673030325932698747355698591333399<41>
79769666909678196050358288440097543247856218171958763771979587652156534122093561484145746753237747431946422668620514562494969327098962790547581389308058465762433717735530900896385007<182>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3259487713
Step 1 took 30550ms
Step 2 took 11384ms
********** Factor found in step 2: 25539457673030325932698747355698591333399
Found probable prime factor of 41 digits: 25539457673030325932698747355698591333399

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaJune 1, 2013 09:00:00 UTC 2013 年 6 月 1 日 (土) 18 時 0 分 0 秒 (日本時間)

32×10236-419

c231

composite cofactor 合成数の残り
115958956472305323121262882904174671005415971773560712902619009129992200673062020539157690809285167026737345100123492664925615409582797430827855269162299090689724235469011037879406381460540018686061092034050912722005686989597140829<231>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaJune 1, 2013 09:00:00 UTC 2013 年 6 月 1 日 (土) 18 時 0 分 0 秒 (日本時間)
403e61500Dmitry DomanovAugust 21, 2013 13:16:11 UTC 2013 年 8 月 21 日 (水) 22 時 16 分 11 秒 (日本時間)
4511e61800 / 41431500Dmitry DomanovSeptember 18, 2013 15:37:48 UTC 2013 年 9 月 19 日 (木) 0 時 37 分 48 秒 (日本時間)
300Serge BatalovMay 27, 2014 00:31:19 UTC 2014 年 5 月 27 日 (火) 9 時 31 分 19 秒 (日本時間)

32×10239-419

c239

composite cofactor 合成数の残り
16931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931<239>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaJune 1, 2013 09:00:00 UTC 2013 年 6 月 1 日 (土) 18 時 0 分 0 秒 (日本時間)
403e61500Dmitry DomanovAugust 21, 2013 13:16:19 UTC 2013 年 8 月 21 日 (水) 22 時 16 分 19 秒 (日本時間)
4511e635501500Dmitry DomanovSeptember 18, 2013 15:38:03 UTC 2013 年 9 月 19 日 (木) 0 時 38 分 3 秒 (日本時間)
850Serge BatalovNovember 8, 2013 17:17:24 UTC 2013 年 11 月 9 日 (土) 2 時 17 分 24 秒 (日本時間)
400Serge BatalovJanuary 6, 2014 02:29:56 UTC 2014 年 1 月 6 日 (月) 11 時 29 分 56 秒 (日本時間)
800Serge BatalovFebruary 23, 2014 19:24:46 UTC 2014 年 2 月 24 日 (月) 4 時 24 分 46 秒 (日本時間)
5043e6760 / 6699Serge BatalovFebruary 24, 2014 02:26:52 UTC 2014 年 2 月 24 日 (月) 11 時 26 分 52 秒 (日本時間)

32×10241-419

c201

composite cofactor 合成数の残り
152944165103269209020093961094625276282055063583868457582175290903029894109508090473747325442594317399345108543241145234130106317761354861746994016479324750945581079484839551626892818737372379766455381<201>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaJune 1, 2013 09:00:00 UTC 2013 年 6 月 1 日 (土) 18 時 0 分 0 秒 (日本時間)
403e61500Dmitry DomanovAugust 21, 2013 13:16:28 UTC 2013 年 8 月 21 日 (水) 22 時 16 分 28 秒 (日本時間)
4511e61800 / 41431500Dmitry DomanovSeptember 18, 2013 15:38:22 UTC 2013 年 9 月 19 日 (木) 0 時 38 分 22 秒 (日本時間)
300Serge BatalovMay 27, 2014 00:31:19 UTC 2014 年 5 月 27 日 (火) 9 時 31 分 19 秒 (日本時間)

32×10242-419

c238

name 名前Dmitry Domanov
date 日付June 17, 2013 07:05:22 UTC 2013 年 6 月 17 日 (月) 16 時 5 分 22 秒 (日本時間)
composite number 合成数
1627129951242034054812923276246495950226094791506178263272676979619688882583760327826006926488811193433717081762771571802448118707265592862594468876817618563112048744745514333235197058149048154402428898234716546335321991220616956829700003<238>
prime factors 素因数
10563699547582617591385281990829853<35>
composite cofactor 合成数の残り
154030313330369588621173139999027672427075458256116763367360498865215956542350622294697545307697607626113054593845863438269687651245876306280333244296098904242733535768239766894298104857641109874549167551<204>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=67843005
Step 1 took 35035ms
Step 2 took 12235ms
********** Factor found in step 2: 10563699547582617591385281990829853
Found probable prime factor of 35 digits: 10563699547582617591385281990829853

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaJune 1, 2013 09:00:00 UTC 2013 年 6 月 1 日 (土) 18 時 0 分 0 秒 (日本時間)
403e61500Dmitry DomanovAugust 21, 2013 13:16:36 UTC 2013 年 8 月 21 日 (水) 22 時 16 分 36 秒 (日本時間)
4511e61800 / 41431500Dmitry DomanovSeptember 18, 2013 15:38:38 UTC 2013 年 9 月 19 日 (木) 0 時 38 分 38 秒 (日本時間)
300Serge BatalovMay 27, 2014 00:31:20 UTC 2014 年 5 月 27 日 (火) 9 時 31 分 20 秒 (日本時間)

32×10243-419

c234

name 名前Dmitry Domanov
date 日付June 17, 2013 07:02:25 UTC 2013 年 6 月 17 日 (月) 16 時 2 分 25 秒 (日本時間)
composite number 合成数
363780254638325367943411860461178883919925833028264170818067562524865495192067678610850761625820529039498943116450647767766506859522997053334771837324580074400206035650657007794069179353300950194612847779761112614363099386302390980609<234>
prime factors 素因数
2990247510903236643186453839763947<34>
479584301289329896651208715745922348029<39>
composite cofactor 合成数の残り
253668783737700455657786270929101021038480617986343887863537642883247325568713325952872737909148943757055876279881732613853424454596271327031578703425930742378943<162>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=245200887
Step 1 took 34955ms
Step 2 took 12255ms
********** Factor found in step 2: 2990247510903236643186453839763947
Found probable prime factor of 34 digits: 2990247510903236643186453839763947

Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2298618975
Step 1 took 26706ms
Step 2 took 9962ms
********** Factor found in step 2: 479584301289329896651208715745922348029
Found probable prime factor of 39 digits: 479584301289329896651208715745922348029

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6418118Makoto KamadaJune 1, 2013 09:00:00 UTC 2013 年 6 月 1 日 (土) 18 時 0 分 0 秒 (日本時間)
300Ignacio SantosJune 28, 2013 22:51:25 UTC 2013 年 6 月 29 日 (土) 7 時 51 分 25 秒 (日本時間)
403e61610110Ignacio SantosJune 28, 2013 22:51:25 UTC 2013 年 6 月 29 日 (土) 7 時 51 分 25 秒 (日本時間)
1500Dmitry DomanovAugust 21, 2013 13:16:47 UTC 2013 年 8 月 21 日 (水) 22 時 16 分 47 秒 (日本時間)
4511e6278232Ignacio SantosJune 28, 2013 22:51:25 UTC 2013 年 6 月 29 日 (土) 7 時 51 分 25 秒 (日本時間)
1500Dmitry DomanovSeptember 12, 2013 15:22:08 UTC 2013 年 9 月 13 日 (金) 0 時 22 分 8 秒 (日本時間)
850Serge BatalovNovember 8, 2013 17:12:58 UTC 2013 年 11 月 9 日 (土) 2 時 12 分 58 秒 (日本時間)
400Serge BatalovJanuary 6, 2014 02:26:40 UTC 2014 年 1 月 6 日 (月) 11 時 26 分 40 秒 (日本時間)
5043e6400 / 6866Erik BrangerMarch 20, 2014 07:43:49 UTC 2014 年 3 月 20 日 (木) 16 時 43 分 49 秒 (日本時間)

32×10245-419

c208

name 名前Dmitry Domanov
date 日付June 17, 2013 07:03:23 UTC 2013 年 6 月 17 日 (月) 16 時 3 分 23 秒 (日本時間)
composite number 合成数
9763477560204844267150507887202829260793083089494291074981618571578453040149310665811059022703745934429126047792247556455821797363398086030860713503237254601005869418715653322456176426001270484054924531072357<208>
prime factors 素因数
29155209689452034783237689640149379<35>
composite cofactor 合成数の残り
334879346236948519120750599705261129346162599349380975214578576766743267775174660853581177191064673174139178469005253589815259547413252972363612795288050078953720636662184183<174>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2382675642
Step 1 took 26706ms
Step 2 took 10288ms
********** Factor found in step 2: 29155209689452034783237689640149379
Found probable prime factor of 35 digits: 29155209689452034783237689640149379

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaJune 1, 2013 09:00:00 UTC 2013 年 6 月 1 日 (土) 18 時 0 分 0 秒 (日本時間)
403e61500Dmitry DomanovAugust 21, 2013 13:16:56 UTC 2013 年 8 月 21 日 (水) 22 時 16 分 56 秒 (日本時間)
4511e61300 / 41431000Dmitry DomanovSeptember 12, 2013 15:21:54 UTC 2013 年 9 月 13 日 (金) 0 時 21 分 54 秒 (日本時間)
300Serge BatalovMay 27, 2014 00:31:20 UTC 2014 年 5 月 27 日 (火) 9 時 31 分 20 秒 (日本時間)

32×10246-419

c153

name 名前Ignacio Santos
date 日付June 2, 2013 12:03:31 UTC 2013 年 6 月 2 日 (日) 21 時 3 分 31 秒 (日本時間)
composite number 合成数
188243887038019923286645964279770330576170740592096267920758242707723212418469388875146406513002961627149702288462944999256106556216549573277625757514291<153>
prime factors 素因数
4773528371284073483508444699576726703<37>
composite cofactor 合成数の残り
39434957204911833469741877034134068020673891287845438401420158127477807862731014834870691349702997395425117223844797<116>
factorization results 素因数分解の結果
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1:1317164148
Step 1 took 2516ms
Step 2 took 2187ms
********** Factor found in step 2: 4773528371284073483508444699576726703
Found probable prime factor of 37 digits: 4773528371284073483508444699576726703
Composite cofactor 39434957204911833469741877034134068020673891287845438401420158127477807862731014834870691349702997395425117223844797 has 116 digits
software ソフトウェア
GMP-ECM 7.0

c116

name 名前Dmitry Domanov
date 日付June 3, 2013 07:38:59 UTC 2013 年 6 月 3 日 (月) 16 時 38 分 59 秒 (日本時間)
composite number 合成数
39434957204911833469741877034134068020673891287845438401420158127477807862731014834870691349702997395425117223844797<116>
prime factors 素因数
22953905551970465014509603719102243141<38>
1718006424467776984279931676067461580660078765899402448857360700635089837755417<79>
factorization results 素因数分解の結果
N=39434957204911833469741877034134068020673891287845438401420158127477807862731014834870691349702997395425117223844797
  ( 116 digits)
Divisors found:
 r1=22953905551970465014509603719102243141 (pp38)
 r2=1718006424467776984279931676067461580660078765899402448857360700635089837755417 (pp79)
Version: Msieve v. 1.50 (SVN unknown)
Total time: 25.04 hours.
Scaled time: 42.89 units (timescale=1.713).
Factorization parameters were as follows:
n: 39434957204911833469741877034134068020673891287845438401420158127477807862731014834870691349702997395425117223844797
skew: 23049.43
c0: -114486489301369977040434675
c1: 10307311475614903905000
c2: 3368202636977146413
c3: 61570867383926
c4: -6229513748
c5: 50184
Y0: -15103007900255434148312
Y1: 321757353649
rlim: 4600000
alim: 4600000
lpbr: 27
lpba: 27
mfbr: 54
mfba: 54
rlambda: 2.5
alambda: 2.5
type: gnfs
qintsize: 400000
Factor base limits: 4600000/4600000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 54/54
Sieved algebraic special-q in [2300000, 3500001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 539415 x 539642
Total sieving time: 24.53 hours.
Total relation processing time: 0.11 hours.
Matrix solve time: 0.31 hours.
Time per square root: 0.09 hours.
Prototype def-par.txt line would be:
gnfs,115,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4600000,4600000,27,27,54,54,2.5,2.5,100000
total time: 25.04 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaJune 1, 2013 09:00:00 UTC 2013 年 6 月 1 日 (土) 18 時 0 分 0 秒 (日本時間)

32×10247-419

c218

name 名前Dmitry Domanov
date 日付September 20, 2013 05:06:13 UTC 2013 年 9 月 20 日 (金) 14 時 6 分 13 秒 (日本時間)
composite number 合成数
14702578690775196066167800872270854420103768101054627447604113932414547169540717979235846293481311171337980797324884711299871543798406947032189575709205320580868870300097735474531235721736408572090331350718273851292207<218>
prime factors 素因数
304191996869042264749043453906680229262059<42>
48333219946956083423218815455238567027652845904858327276198705943444298283224151943038694641445069774651387198349245022435612064146374754680092648071119139124002260531664084173<176>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=4227359217
Step 1 took 86705ms
Step 2 took 34816ms
********** Factor found in step 2: 304191996869042264749043453906680229262059
Found probable prime factor of 42 digits: 304191996869042264749043453906680229262059

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaJune 1, 2013 09:00:00 UTC 2013 年 6 月 1 日 (土) 18 時 0 分 0 秒 (日本時間)
403e61500Dmitry DomanovAugust 21, 2013 13:17:04 UTC 2013 年 8 月 21 日 (水) 22 時 17 分 4 秒 (日本時間)
4511e61500 / 4143Dmitry DomanovSeptember 18, 2013 15:37:27 UTC 2013 年 9 月 19 日 (木) 0 時 37 分 27 秒 (日本時間)

32×10248-419

c217

name 名前Dmitry Domanov
date 日付June 17, 2013 07:05:58 UTC 2013 年 6 月 17 日 (月) 16 時 5 分 58 秒 (日本時間)
composite number 合成数
5277293113441036165318623238541704384781395444316314640323463850269461165710857697063385750152550226247044859796825993780793235060647240771667383971580139136193118674543248920132030740333192342380801790851071659366807<217>
prime factors 素因数
8933783329613918459795116462935503<34>
590712010660448731546742455868236384551360416950346724358022273596437535219488450431769010062049665507193115321314505576015192645496028071047498893642325681173969122166277225053155769<183>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1207633685
Step 1 took 30451ms
Step 2 took 11074ms
********** Factor found in step 2: 8933783329613918459795116462935503
Found probable prime factor of 34 digits: 8933783329613918459795116462935503

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaJune 1, 2013 09:00:00 UTC 2013 年 6 月 1 日 (土) 18 時 0 分 0 秒 (日本時間)

32×10250-419

c236

composite cofactor 合成数の残り
42385973269351953264260650948325598885504513138586508356981998135990878261005497698251685692089853076929863288963282607738424798538719216037609335302412769119194715496078246359488942263576105885599409515838867679080612402353535544789991<236>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaJune 1, 2013 09:00:00 UTC 2013 年 6 月 1 日 (土) 18 時 0 分 0 秒 (日本時間)
403e61500Dmitry DomanovJune 28, 2013 17:14:49 UTC 2013 年 6 月 29 日 (土) 2 時 14 分 49 秒 (日本時間)
4511e61500Dmitry DomanovJune 28, 2013 17:14:49 UTC 2013 年 6 月 29 日 (土) 2 時 14 分 49 秒 (日本時間)
5043e6800 / 7159400Dmitry DomanovAugust 1, 2013 12:05:58 UTC 2013 年 8 月 1 日 (木) 21 時 5 分 58 秒 (日本時間)
400Dmitry DomanovAugust 13, 2013 08:09:31 UTC 2013 年 8 月 13 日 (火) 17 時 9 分 31 秒 (日本時間)

32×10251-419

c237

name 名前Lionel Debroux
date 日付July 16, 2020 11:56:39 UTC 2020 年 7 月 16 日 (木) 20 時 56 分 39 秒 (日本時間)
composite number 合成数
507822344555177290965698700547104061755134702435068286032526993594742929522486738204589810604914069850694586438832467900038391291665320760883508366476119070368710141803561711163517669694357108510004032397380651447887492135941978789742431<237>
prime factors 素因数
1798879502768922118258055361945947339<37>
282299255605232389469437182553311333292079104596343066107561036072861245976008095132396482176442969043455461276143275269102178252147047564919805466278179832146640643466498040497076013812344185263706429<201>
factorization results 素因数分解の結果
GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM]
Input number is 507822344555177290965698700547104061755134702435068286032526993594742929522486738204589810604914069850694586438832467900038391291665320760883508366476119070368710141803561711163517669694357108510004032397380651447887492135941978789742431 (237 digits)
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:274780646
Step 1 took 64403ms
Step 2 took 22462ms
********** Factor found in step 2: 1798879502768922118258055361945947339
Found prime factor of 37 digits: 1798879502768922118258055361945947339
Prime cofactor 282299255605232389469437182553311333292079104596343066107561036072861245976008095132396482176442969043455461276143275269102178252147047564919805466278179832146640643466498040497076013812344185263706429 has 201 digits
execution environment 実行環境
Core i7-2670QM @ 2.2 GHz, Debian sid amd64

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaApril 2, 2017 07:00:00 UTC 2017 年 4 月 2 日 (日) 16 時 0 分 0 秒 (日本時間)

32×10252-419

c229

composite cofactor 合成数の残り
2426074128737859967853343276192951420604779289602161131048467327723720114444326080436390118702015907234394112350905498341313457289721403670702757250012683847056325737950032604683682918832380893977984483587600198592502416414457473<229>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaApril 2, 2017 07:00:00 UTC 2017 年 4 月 2 日 (日) 16 時 0 分 0 秒 (日本時間)
403e62402610Marlon TrifunovicFebruary 19, 2022 05:45:54 UTC 2022 年 2 月 19 日 (土) 14 時 45 分 54 秒 (日本時間)
1792Dmitry DomanovJanuary 7, 2024 17:53:31 UTC 2024 年 1 月 8 日 (月) 2 時 53 分 31 秒 (日本時間)

32×10254-419

c230

name 名前Dmitry Domanov
date 日付January 8, 2024 11:50:19 UTC 2024 年 1 月 8 日 (月) 20 時 50 分 19 秒 (日本時間)
composite number 合成数
10306430163603203249104738998783431474552616405841999421790643227890487611895396223464716745548886110118926837134150575861396928102619775763267754963456910602284697748477615664376434375674675899433334476063011284900763840142925583<230>
prime factors 素因数
599970891438678550680119119264304306009<39>
composite cofactor 合成数の残り
17178216994643308311146083466771069485281493466147801065744875671133735265415141558308430653354874243189179279062820395380806353309722937291575068918970806231294067581937217150803160374789287<191>
factorization results 素因数分解の結果
Resuming ECM residue saved by @0f5471867fa3 with GMP-ECM 7.0.5-dev on Sun Jan  7 20:42:24 2024 
Input number is 10306430163603203249104738998783431474552616405841999421790643227890487611895396223464716745548886110118926837134150575861396928102619775763267754963456910602284697748477615664376434375674675899433334476063011284900763840142925583 (230 digits)
Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:1237124381
Step 1 took 0ms
Step 2 took 3009ms
********** Factor found in step 2: 599970891438678550680119119264304306009
Found prime factor of 39 digits: 599970891438678550680119119264304306009
Composite cofactor 17178216994643308311146083466771069485281493466147801065744875671133735265415141558308430653354874243189179279062820395380806353309722937291575068918970806231294067581937217150803160374789287 has 191 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaApril 2, 2017 07:00:00 UTC 2017 年 4 月 2 日 (日) 16 時 0 分 0 秒 (日本時間)
403e62402610Marlon TrifunovicFebruary 19, 2022 06:02:13 UTC 2022 年 2 月 19 日 (土) 15 時 2 分 13 秒 (日本時間)
1792Dmitry DomanovJanuary 7, 2024 17:53:41 UTC 2024 年 1 月 8 日 (月) 2 時 53 分 41 秒 (日本時間)

32×10258-419

c253

composite cofactor 合成数の残り
1045763629510913670937859450610038043246835935928546108486407801605828877318167930619073441005810230045449214139678530299481539804590568996396004411684591545478185060227324829771740192183250206562826913472112049389847576356186307888695063136181725483191<253>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaApril 2, 2017 07:00:00 UTC 2017 年 4 月 2 日 (日) 16 時 0 分 0 秒 (日本時間)
403e62106610Marlon TrifunovicMarch 7, 2022 05:25:12 UTC 2022 年 3 月 7 日 (月) 14 時 25 分 12 秒 (日本時間)
1496ebinaJanuary 27, 2024 22:44:16 UTC 2024 年 1 月 28 日 (日) 7 時 44 分 16 秒 (日本時間)

32×10262-419

c237

composite cofactor 合成数の残り
200528872420967325449817221036413902776572894528623071300767789615539861174790466525401114251387840034755283739476607072319358064233576485176697886893340068040450366416010222880947642543768603350312150798686875144974529396303130751369731<237>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaApril 2, 2017 07:00:00 UTC 2017 年 4 月 2 日 (日) 16 時 0 分 0 秒 (日本時間)
403e62106610Marlon TrifunovicMarch 4, 2022 07:42:46 UTC 2022 年 3 月 4 日 (金) 16 時 42 分 46 秒 (日本時間)
1496ebinaJanuary 28, 2024 00:21:26 UTC 2024 年 1 月 28 日 (日) 9 時 21 分 26 秒 (日本時間)

32×10263-419

c217

name 名前Dmitry Domanov
date 日付January 8, 2024 11:50:39 UTC 2024 年 1 月 8 日 (月) 20 時 50 分 39 秒 (日本時間)
composite number 合成数
1174079843474260461212006503865357500856205302407758877770511053488543310360898355008638356931550498918895759683489772191371930442656103215464343368619444850600804042915647421012093566021379515190421743500250850302633<217>
prime factors 素因数
97922963619981622701517591081079467828091<41>
composite cofactor 合成数の残り
11989831598955856866518868271927515778800031892327478309369930565713039538168320711062474310420677753332568289911722111048091737485553798841003036130152638840260264402301361963<176>
factorization results 素因数分解の結果
Resuming ECM residue saved by @0f5471867fa3 with GMP-ECM 7.0.5-dev on Sun Jan  7 20:45:20 2024 
Input number is 1174079843474260461212006503865357500856205302407758877770511053488543310360898355008638356931550498918895759683489772191371930442656103215464343368619444850600804042915647421012093566021379515190421743500250850302633 (217 digits)
Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:3045369343
Step 1 took 0ms
Step 2 took 2937ms
********** Factor found in step 2: 97922963619981622701517591081079467828091
Found prime factor of 41 digits: 97922963619981622701517591081079467828091
Composite cofactor 11989831598955856866518868271927515778800031892327478309369930565713039538168320711062474310420677753332568289911722111048091737485553798841003036130152638840260264402301361963 has 176 digits

c176

name 名前Bob Backstrom
date 日付September 17, 2024 14:51:15 UTC 2024 年 9 月 17 日 (火) 23 時 51 分 15 秒 (日本時間)
composite number 合成数
11989831598955856866518868271927515778800031892327478309369930565713039538168320711062474310420677753332568289911722111048091737485553798841003036130152638840260264402301361963<176>
prime factors 素因数
31014116028955251178713732198725364875656659600101<50>
145369651530211861027183990882408493187479888035182780723547<60>
2659377111788057611948199762200765324396707646821007485734088502429<67>
factorization results 素因数分解の結果
ECM

GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM]
Input number is 11989831598955856866518868271927515778800031892327478309369930565713039538168320711062474310420677753332568289911722111048091737485553798841003036130152638840260264402301361963 (176 digits)
Using B1=56620000, B2=388127758210, polynomial Dickson(30), sigma=1:239200605
Step 1 took 150770ms
Step 2 took 63218ms
********** Factor found in step 2: 31014116028955251178713732198725364875656659600101
Found prime factor of 50 digits: 31014116028955251178713732198725364875656659600101
Composite cofactor 386592724028051208631046776675411468929472333211458712771586509269317847479629523882182131373275073197811725513931506286995663 has 126 digits
===

CADO-NFS

STA:Tue Sep 17 08:14:47 PM AEST 2024 (386592724028051208631046776675411468929472333211458712771586509269317847479629523882182131373275073197811725513931506286995663 - C126)

/home/bob/Downloads/Math/cado-nfs/cado-nfs.py -t 18 --no-colors 386592724028051208631046776675411468929472333211458712771586509269317847479629523882182131373275073197811725513931506286995663 2>&1 | tee -a log-67

/home/bob/Downloads/Math/cado-nfs/cado-nfs.py:93: DeprecationWarning: 'locale.getdefaultlocale' is deprecated and slated for removal in Python 3.15. Use setlocale(), getencoding() and getlocale() instead.
  loc = locale.getdefaultlocale()[1]
Info:root: Using default parameter file /home/bob/Downloads/Math/cado-nfs/parameters/factor/params.c125
Info:root: No database exists yet
Info:root: Created temporary directory /tmp/cado.bvj0hoeh
Info:Database: Opened connection to database /tmp/cado.bvj0hoeh/c125.db
Info:root: Set tasks.threads=18 based on --server-threads 18
Info:root: tasks.threads = 18 [via tasks.threads]
Info:root: tasks.polyselect.threads = 2 [via tasks.polyselect.threads]
Info:root: tasks.sieve.las.threads = 2 [via tasks.sieve.las.threads]
Info:root: tasks.linalg.bwc.threads = 18 [via tasks.threads]
Info:root: tasks.sqrt.threads = 8 [via tasks.sqrt.threads]
Info:root: slaves.scriptpath is /home/bob/Downloads/Math/cado-nfs/build/VM9
Info:root: Command line parameters: /home/bob/Downloads/Math/cado-nfs/cado-nfs.py -t 18 --no-colors 386592724028051208631046776675411468929472333211458712771586509269317847479629523882182131373275073197811725513931506286995663
Info:root: If this computation gets interrupted, it can be resumed with /home/bob/Downloads/Math/cado-nfs/cado-nfs.py /tmp/cado.bvj0hoeh/c125.parameters_snapshot.0
Info:Server Launcher: Adding VM9 to whitelist to allow clients on localhost to connect
Info:HTTP server: Using non-threaded HTTPS server
Info:HTTP server: Using whitelist: localhost,VM9
Info:Lattice Sieving: param rels_wanted is 27000000
===
Info:Polynomial Selection (root optimized): Best polynomial is:
n: 386592724028051208631046776675411468929472333211458712771586509269317847479629523882182131373275073197811725513931506286995663
skew: 160738.028
c0: 126150557227838530910095020765
c1: -9220974593327566328149649
c2: -130702174192489743435
c3: 832419392315137
c4: 2083304302 
c5: 1680
Y0: -2922065343329734874456056
Y1: 184327339715223107
# MurphyE (Bf=5.369e+08,Bg=2.684e+08,area=1.342e+13) = 2.980e-06
# f(x) = 1680*x^5+2083304302*x^4+832419392315137*x^3-130702174192489743435*x^2-9220974593327566328149649*x+126150557227838530910095020765
# g(x) = 184327339715223107*x-2922065343329734874456056
Info:Polynomial Selection (root optimized): Best overall polynomial was 1-th in list after size optimization
===
Info:Square Root: finished
Info:Square Root: Factors: 145369651530211861027183990882408493187479888035182780723547 2659377111788057611948199762200765324396707646821007485734088502429
Info:Complete Factorization / Discrete logarithm: Square Root
Info:Square Root: Total cpu/real time for sqrt: 787.54/97.0167
Info:HTTP server: Got notification to stop serving Workunits
Info:Polynomial Selection (root optimized): Aggregate statistics:
Info:Polynomial Selection (root optimized): Total time: 563.42
Info:Polynomial Selection (root optimized): Rootsieve time: 563.04
Info:Polynomial Selection (size optimized): Aggregate statistics:
Info:Polynomial Selection (size optimized): potential collisions: 39657.6
Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 27041/36.600/46.386/58.330/2.517
Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 22352/35.670/40.742/53.170/1.870
Info:Polynomial Selection (size optimized): Total time: 2365.26
Info:Lattice Sieving: Aggregate statistics:
Info:Lattice Sieving: Total number of relations: 29983413
Info:Lattice Sieving: Average J: 3943.24 for 143297 special-q, max bucket fill -bkmult 1.0,1s:1.274170
Info:Lattice Sieving: Total time: 67339.6s
Info:Filtering - Singleton removal: Total cpu/real time for purge: 293.81/340.252
Info:Linear Algebra: Total cpu/real time for bwc: 7422.04/1116.31
Info:Linear Algebra: Aggregate statistics:
Info:Linear Algebra: Krylov: CPU time 4355.49, WCT time 634.76, iteration CPU time 0.01, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (33000 iterations)
Info:Linear Algebra: Lingen CPU time 39.3, WCT time 39.7
Info:Linear Algebra: Mksol: CPU time 2337.99,  WCT time 345.21, iteration CPU time 0.02, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (15000 iterations)
Info:Generate Free Relations: Total cpu/real time for freerel: 211.95/25.3725
Info:Square Root: Total cpu/real time for sqrt: 787.54/97.0167
Info:Quadratic Characters: Total cpu/real time for characters: 27.48/7.06555
Info:Generate Factor Base: Total cpu/real time for makefb: 1.6/0.299309
Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 116.13/102.796
Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics:
Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 101.8s
Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 522.62/592.881
Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics:
Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 392.6s
Info:Filtering - Merging: Total cpu/real time for merge: 53.61/10.1381
Info:Filtering - Merging: Total cpu/real time for replay: 14.9/12.8267
Info:HTTP server: Shutting down HTTP server
Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire Complete Factorization 75844.7/9456.79 [02:37:37]
Info:root: Cleaning up computation data in /tmp/cado.bvj0hoeh
145369651530211861027183990882408493187479888035182780723547 2659377111788057611948199762200765324396707646821007485734088502429

END:Tue Sep 17 10:52:25 PM AEST 2024 (386592724028051208631046776675411468929472333211458712771586509269317847479629523882182131373275073197811725513931506286995663 - C126)
software ソフトウェア
ECM, CADO_NFS

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaApril 2, 2017 07:00:00 UTC 2017 年 4 月 2 日 (日) 16 時 0 分 0 秒 (日本時間)
403e627921000Dmitry DomanovApril 7, 2017 07:58:16 UTC 2017 年 4 月 7 日 (金) 16 時 58 分 16 秒 (日本時間)
1792Dmitry DomanovJanuary 7, 2024 17:53:50 UTC 2024 年 1 月 8 日 (月) 2 時 53 分 50 秒 (日本時間)
4511e64480Ignacio SantosJanuary 14, 2024 15:16:19 UTC 2024 年 1 月 15 日 (月) 0 時 16 分 19 秒 (日本時間)
5043e61792 / 6437Dmitry DomanovMay 12, 2024 08:20:43 UTC 2024 年 5 月 12 日 (日) 17 時 20 分 43 秒 (日本時間)

32×10264-419

c257

composite cofactor 合成数の残り
90127303379619815376528538997910958950311406591222058610185327675513002287242255733299835267849713138453262088601284777665476341288540874699392701669537038208222567933659117060155291202598717146552450813594517414184914903729436550940308154657292210396590581<257>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaApril 2, 2017 07:00:00 UTC 2017 年 4 月 2 日 (日) 16 時 0 分 0 秒 (日本時間)
403e62104ebinaOctober 23, 2021 22:22:55 UTC 2021 年 10 月 24 日 (日) 7 時 22 分 55 秒 (日本時間)

32×10268-419

c205

name 名前Dmitry Domanov
date 日付April 7, 2017 09:30:34 UTC 2017 年 4 月 7 日 (金) 18 時 30 分 34 秒 (日本時間)
composite number 合成数
8487232710939640972620248504488486312281711844743686849528188184038357987650988012303530455013724156103384232011960997266022440800419572343291848326498770544210363658296550909065522388307589762339590893971<205>
prime factors 素因数
314606507817607224185732308496627<33>
composite cofactor 合成数の残り
26977295446984538454485385095456582474305169188113205237163930300503893485474770971828900300873859483628161219268738920492908594572635749249348018885495032259857699577832673<173>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=453528456
Step 1 took 35010ms
Step 2 took 10707ms
********** Factor found in step 2: 314606507817607224185732308496627
Found probable prime factor of 33 digits: 314606507817607224185732308496627

c173

name 名前Dmitry Domanov
date 日付April 7, 2017 20:43:07 UTC 2017 年 4 月 8 日 (土) 5 時 43 分 7 秒 (日本時間)
composite number 合成数
26977295446984538454485385095456582474305169188113205237163930300503893485474770971828900300873859483628161219268738920492908594572635749249348018885495032259857699577832673<173>
prime factors 素因数
109874887915686289256071499226101402579<39>
composite cofactor 合成数の残り
245527399014830982623900013544870486404967868753115226505336323366843356620082327747267727904394697435731556676413348329990841713057787<135>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2494186432
Step 1 took 22224ms
Step 2 took 8246ms
********** Factor found in step 2: 109874887915686289256071499226101402579
Found probable prime factor of 39 digits: 109874887915686289256071499226101402579
Composite cofactor 245527399014830982623900013544870486404967868753115226505336323366843356620082327747267727904394697435731556676413348329990841713057787 has 135 digits

c135

name 名前Erik Branger
date 日付April 20, 2017 06:29:44 UTC 2017 年 4 月 20 日 (木) 15 時 29 分 44 秒 (日本時間)
composite number 合成数
245527399014830982623900013544870486404967868753115226505336323366843356620082327747267727904394697435731556676413348329990841713057787<135>
prime factors 素因数
787449987256670916020368269558651160405732504278791<51>
311800626056522914538124146410462757851806729057715123986218638376967318983646043757<84>
factorization results 素因数分解の結果
Mon Apr 17 22:22:14 2017 -> factmsieve.py (v0.76)
Mon Apr 17 22:22:14 2017 -> This is client 1 of 1
Mon Apr 17 22:22:14 2017 -> Running on 4 Cores with 1 hyper-thread per Core
Mon Apr 17 22:22:14 2017 -> Working with NAME = 35551_268
Mon Apr 17 22:22:14 2017 -> Running polynomial selection ...
Mon Apr 17 22:22:14 2017  
Mon Apr 17 22:22:15 2017  
Mon Apr 17 22:22:15 2017  Msieve v. 1.51 (SVN 845)
Mon Apr 17 22:22:15 2017  random seeds: 6b083908 73664c21
Mon Apr 17 22:22:15 2017  factoring 245527399014830982623900013544870486404967868753115226505336323366843356620082327747267727904394697435731556676413348329990841713057787 (135 digits)
Mon Apr 17 22:22:15 2017  searching for 15-digit factors
Mon Apr 17 22:22:16 2017  commencing number field sieve (135-digit input)
Mon Apr 17 22:22:16 2017  commencing number field sieve polynomial selection
Mon Apr 17 22:22:16 2017  polynomial degree: 5
Mon Apr 17 22:22:16 2017  max stage 1 norm: 2.75e+020
Mon Apr 17 22:22:16 2017  max stage 2 norm: 5.79e+018
Mon Apr 17 22:22:16 2017  min E-value: 3.31e-011
Mon Apr 17 22:22:16 2017  poly select deadline: 106189
Mon Apr 17 22:22:16 2017  time limit set to 29.50 CPU-hours
Mon Apr 17 22:22:16 2017  expecting poly E from 4.50e-011 to > 5.18e-011
Mon Apr 17 22:22:16 2017  searching leading coefficients from 1 to 1747365
Mon Apr 17 22:22:16 2017  using GPU 0 (GeForce GT 630M)
Mon Apr 17 22:22:16 2017  selected card has CUDA arch 2.1
Tue Apr 18 08:19:38 2017  polynomial selection complete
Tue Apr 18 08:19:38 2017  R0: -154291249074857749406767620
Tue Apr 18 08:19:38 2017  R1: 36686555400721
Tue Apr 18 08:19:38 2017  A0: -3812760784881918934330972817864753
Tue Apr 18 08:19:38 2017  A1: 8158332078726734238518201747
Tue Apr 18 08:19:38 2017  A2: 45137649547438786538735
Tue Apr 18 08:19:38 2017  A3: -18022645475278295
Tue Apr 18 08:19:38 2017  A4: -98296253322
Tue Apr 18 08:19:38 2017  A5: 2808
Tue Apr 18 08:19:38 2017  skew 848829.07, size 5.408e-013, alpha -7.800, combined = 4.297e-011 rroots = 3
Tue Apr 18 08:19:38 2017  elapsed time 09:57:23
Tue Apr 18 08:19:59 2017 -> factmsieve.py (v0.76)
Tue Apr 18 08:19:59 2017 -> This is client 1 of 1
Tue Apr 18 08:19:59 2017 -> Running on 4 Cores with 1 hyper-thread per Core
Tue Apr 18 08:19:59 2017 -> Working with NAME = 35551_268
Tue Apr 18 08:19:59 2017 -> Converting msieve polynomial (*.fb) to ggnfs (*.poly) format.
Tue Apr 18 08:19:59 2017 -> Selected lattice siever: gnfs-lasieve4I13e
Tue Apr 18 08:19:59 2017 -> Creating param file to detect parameter changes...
Tue Apr 18 08:19:59 2017 -> Running setup ...
Tue Apr 18 08:19:59 2017 -> Estimated minimum relations needed: 2.024e+07
Tue Apr 18 08:19:59 2017 -> cleaning up before a restart
Tue Apr 18 08:19:59 2017 -> Running lattice siever ...
Tue Apr 18 08:19:59 2017 -> entering sieving loop
Tue Apr 18 08:19:59 2017 -> making sieve job for q = 4650000 in 4650000 .. 4675000 as file 35551_268.job.T0
Tue Apr 18 08:19:59 2017 -> making sieve job for q = 4675000 in 4675000 .. 4700000 as file 35551_268.job.T1
Tue Apr 18 08:19:59 2017 -> making sieve job for q = 4700000 in 4700000 .. 4725000 as file 35551_268.job.T2
Tue Apr 18 08:19:59 2017 -> making sieve job for q = 4725000 in 4725000 .. 4750000 as file 35551_268.job.T3
Tue Apr 18 08:19:59 2017 -> Lattice sieving algebraic q from 4650000 to 4750000.
Tue Apr 18 08:19:59 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Tue Apr 18 08:19:59 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Tue Apr 18 08:19:59 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Tue Apr 18 08:19:59 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Tue Apr 18 08:47:53 2017 Found 289028 relations, 1.3% of the estimated minimum (23000000).
Tue Apr 18 08:47:53 2017 LatSieveTime: 1673.81
Tue Apr 18 08:47:53 2017 -> making sieve job for q = 4750000 in 4750000 .. 4775000 as file 35551_268.job.T0
Tue Apr 18 08:47:53 2017 -> making sieve job for q = 4775000 in 4775000 .. 4800000 as file 35551_268.job.T1
Tue Apr 18 08:47:53 2017 -> making sieve job for q = 4800000 in 4800000 .. 4825000 as file 35551_268.job.T2
Tue Apr 18 08:47:53 2017 -> making sieve job for q = 4825000 in 4825000 .. 4850000 as file 35551_268.job.T3
Tue Apr 18 08:47:53 2017 -> Lattice sieving algebraic q from 4750000 to 4850000.
Tue Apr 18 08:47:53 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Tue Apr 18 08:47:53 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Tue Apr 18 08:47:53 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Tue Apr 18 08:47:53 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Tue Apr 18 09:14:18 2017 Found 583064 relations, 2.5% of the estimated minimum (23000000).
Tue Apr 18 09:14:18 2017 LatSieveTime: 1585
Tue Apr 18 09:14:18 2017 -> making sieve job for q = 4850000 in 4850000 .. 4875000 as file 35551_268.job.T0
Tue Apr 18 09:14:18 2017 -> making sieve job for q = 4875000 in 4875000 .. 4900000 as file 35551_268.job.T1
Tue Apr 18 09:14:18 2017 -> making sieve job for q = 4900000 in 4900000 .. 4925000 as file 35551_268.job.T2
Tue Apr 18 09:14:18 2017 -> making sieve job for q = 4925000 in 4925000 .. 4950000 as file 35551_268.job.T3
Tue Apr 18 09:14:18 2017 -> Lattice sieving algebraic q from 4850000 to 4950000.
Tue Apr 18 09:14:18 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Tue Apr 18 09:14:18 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Tue Apr 18 09:14:18 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Tue Apr 18 09:14:18 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Tue Apr 18 09:41:27 2017 Found 877733 relations, 3.8% of the estimated minimum (23000000).
Tue Apr 18 09:41:27 2017 LatSieveTime: 1628.93
Tue Apr 18 09:41:27 2017 -> making sieve job for q = 4950000 in 4950000 .. 4975000 as file 35551_268.job.T0
Tue Apr 18 09:41:27 2017 -> making sieve job for q = 4975000 in 4975000 .. 5000000 as file 35551_268.job.T1
Tue Apr 18 09:41:27 2017 -> making sieve job for q = 5000000 in 5000000 .. 5025000 as file 35551_268.job.T2
Tue Apr 18 09:41:27 2017 -> making sieve job for q = 5025000 in 5025000 .. 5050000 as file 35551_268.job.T3
Tue Apr 18 09:41:27 2017 -> Lattice sieving algebraic q from 4950000 to 5050000.
Tue Apr 18 09:41:27 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Tue Apr 18 09:41:27 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Tue Apr 18 09:41:27 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Tue Apr 18 09:41:27 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Tue Apr 18 10:08:22 2017 Found 1170681 relations, 5.1% of the estimated minimum (23000000).
Tue Apr 18 10:08:22 2017 LatSieveTime: 1615.06
Tue Apr 18 10:08:22 2017 -> making sieve job for q = 5050000 in 5050000 .. 5075000 as file 35551_268.job.T0
Tue Apr 18 10:08:22 2017 -> making sieve job for q = 5075000 in 5075000 .. 5100000 as file 35551_268.job.T1
Tue Apr 18 10:08:22 2017 -> making sieve job for q = 5100000 in 5100000 .. 5125000 as file 35551_268.job.T2
Tue Apr 18 10:08:22 2017 -> making sieve job for q = 5125000 in 5125000 .. 5150000 as file 35551_268.job.T3
Tue Apr 18 10:08:22 2017 -> Lattice sieving algebraic q from 5050000 to 5150000.
Tue Apr 18 10:08:22 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Tue Apr 18 10:08:22 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Tue Apr 18 10:08:22 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Tue Apr 18 10:08:22 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Tue Apr 18 10:34:46 2017 Found 1463430 relations, 6.4% of the estimated minimum (23000000).
Tue Apr 18 10:34:46 2017 LatSieveTime: 1583.88
Tue Apr 18 10:34:46 2017 -> making sieve job for q = 5150000 in 5150000 .. 5175000 as file 35551_268.job.T0
Tue Apr 18 10:34:46 2017 -> making sieve job for q = 5175000 in 5175000 .. 5200000 as file 35551_268.job.T1
Tue Apr 18 10:34:46 2017 -> making sieve job for q = 5200000 in 5200000 .. 5225000 as file 35551_268.job.T2
Tue Apr 18 10:34:46 2017 -> making sieve job for q = 5225000 in 5225000 .. 5250000 as file 35551_268.job.T3
Tue Apr 18 10:34:46 2017 -> Lattice sieving algebraic q from 5150000 to 5250000.
Tue Apr 18 10:34:46 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Tue Apr 18 10:34:46 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Tue Apr 18 10:34:46 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Tue Apr 18 10:34:46 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Tue Apr 18 11:02:31 2017 Found 1764027 relations, 7.7% of the estimated minimum (23000000).
Tue Apr 18 11:02:31 2017 LatSieveTime: 1665.23
Tue Apr 18 11:02:31 2017 -> making sieve job for q = 5250000 in 5250000 .. 5275000 as file 35551_268.job.T0
Tue Apr 18 11:02:31 2017 -> making sieve job for q = 5275000 in 5275000 .. 5300000 as file 35551_268.job.T1
Tue Apr 18 11:02:31 2017 -> making sieve job for q = 5300000 in 5300000 .. 5325000 as file 35551_268.job.T2
Tue Apr 18 11:02:31 2017 -> making sieve job for q = 5325000 in 5325000 .. 5350000 as file 35551_268.job.T3
Tue Apr 18 11:02:31 2017 -> Lattice sieving algebraic q from 5250000 to 5350000.
Tue Apr 18 11:02:31 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Tue Apr 18 11:02:31 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Tue Apr 18 11:02:31 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Tue Apr 18 11:02:31 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Tue Apr 18 11:29:06 2017 Found 2056587 relations, 8.9% of the estimated minimum (23000000).
Tue Apr 18 11:29:06 2017 LatSieveTime: 1595.28
Tue Apr 18 11:29:06 2017 -> making sieve job for q = 5350000 in 5350000 .. 5375000 as file 35551_268.job.T0
Tue Apr 18 11:29:06 2017 -> making sieve job for q = 5375000 in 5375000 .. 5400000 as file 35551_268.job.T1
Tue Apr 18 11:29:06 2017 -> making sieve job for q = 5400000 in 5400000 .. 5425000 as file 35551_268.job.T2
Tue Apr 18 11:29:06 2017 -> making sieve job for q = 5425000 in 5425000 .. 5450000 as file 35551_268.job.T3
Tue Apr 18 11:29:06 2017 -> Lattice sieving algebraic q from 5350000 to 5450000.
Tue Apr 18 11:29:06 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Tue Apr 18 11:29:06 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Tue Apr 18 11:29:06 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Tue Apr 18 11:29:06 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Tue Apr 18 11:55:55 2017 Found 2348322 relations, 10.2% of the estimated minimum (23000000).
Tue Apr 18 11:55:55 2017 LatSieveTime: 1608.61
Tue Apr 18 11:55:55 2017 -> making sieve job for q = 5450000 in 5450000 .. 5475000 as file 35551_268.job.T0
Tue Apr 18 11:55:55 2017 -> making sieve job for q = 5475000 in 5475000 .. 5500000 as file 35551_268.job.T1
Tue Apr 18 11:55:55 2017 -> making sieve job for q = 5500000 in 5500000 .. 5525000 as file 35551_268.job.T2
Tue Apr 18 11:55:55 2017 -> making sieve job for q = 5525000 in 5525000 .. 5550000 as file 35551_268.job.T3
Tue Apr 18 11:55:55 2017 -> Lattice sieving algebraic q from 5450000 to 5550000.
Tue Apr 18 11:55:55 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Tue Apr 18 11:55:55 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Tue Apr 18 11:55:55 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Tue Apr 18 11:55:55 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Tue Apr 18 12:21:47 2017 Found 2632393 relations, 11.4% of the estimated minimum (23000000).
Tue Apr 18 12:21:47 2017 LatSieveTime: 1551.57
Tue Apr 18 12:21:47 2017 -> making sieve job for q = 5550000 in 5550000 .. 5575000 as file 35551_268.job.T0
Tue Apr 18 12:21:47 2017 -> making sieve job for q = 5575000 in 5575000 .. 5600000 as file 35551_268.job.T1
Tue Apr 18 12:21:47 2017 -> making sieve job for q = 5600000 in 5600000 .. 5625000 as file 35551_268.job.T2
Tue Apr 18 12:21:47 2017 -> making sieve job for q = 5625000 in 5625000 .. 5650000 as file 35551_268.job.T3
Tue Apr 18 12:21:47 2017 -> Lattice sieving algebraic q from 5550000 to 5650000.
Tue Apr 18 12:21:47 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Tue Apr 18 12:21:47 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Tue Apr 18 12:21:47 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Tue Apr 18 12:21:47 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Tue Apr 18 12:48:41 2017 Found 2923585 relations, 12.7% of the estimated minimum (23000000).
Tue Apr 18 12:48:41 2017 LatSieveTime: 1614.91
Tue Apr 18 12:48:41 2017 -> making sieve job for q = 5650000 in 5650000 .. 5675000 as file 35551_268.job.T0
Tue Apr 18 12:48:41 2017 -> making sieve job for q = 5675000 in 5675000 .. 5700000 as file 35551_268.job.T1
Tue Apr 18 12:48:41 2017 -> making sieve job for q = 5700000 in 5700000 .. 5725000 as file 35551_268.job.T2
Tue Apr 18 12:48:41 2017 -> making sieve job for q = 5725000 in 5725000 .. 5750000 as file 35551_268.job.T3
Tue Apr 18 12:48:41 2017 -> Lattice sieving algebraic q from 5650000 to 5750000.
Tue Apr 18 12:48:41 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Tue Apr 18 12:48:41 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Tue Apr 18 12:48:41 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Tue Apr 18 12:48:42 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Tue Apr 18 13:15:35 2017 Found 3217309 relations, 14.0% of the estimated minimum (23000000).
Tue Apr 18 13:15:35 2017 LatSieveTime: 1613.22
Tue Apr 18 13:15:35 2017 -> making sieve job for q = 5750000 in 5750000 .. 5775000 as file 35551_268.job.T0
Tue Apr 18 13:15:35 2017 -> making sieve job for q = 5775000 in 5775000 .. 5800000 as file 35551_268.job.T1
Tue Apr 18 13:15:35 2017 -> making sieve job for q = 5800000 in 5800000 .. 5825000 as file 35551_268.job.T2
Tue Apr 18 13:15:35 2017 -> making sieve job for q = 5825000 in 5825000 .. 5850000 as file 35551_268.job.T3
Tue Apr 18 13:15:35 2017 -> Lattice sieving algebraic q from 5750000 to 5850000.
Tue Apr 18 13:15:35 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Tue Apr 18 13:15:35 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Tue Apr 18 13:15:35 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Tue Apr 18 13:15:35 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Tue Apr 18 13:42:00 2017 Found 3502297 relations, 15.2% of the estimated minimum (23000000).
Tue Apr 18 13:42:00 2017 LatSieveTime: 1585.38
Tue Apr 18 13:42:00 2017 -> making sieve job for q = 5850000 in 5850000 .. 5875000 as file 35551_268.job.T0
Tue Apr 18 13:42:00 2017 -> making sieve job for q = 5875000 in 5875000 .. 5900000 as file 35551_268.job.T1
Tue Apr 18 13:42:00 2017 -> making sieve job for q = 5900000 in 5900000 .. 5925000 as file 35551_268.job.T2
Tue Apr 18 13:42:00 2017 -> making sieve job for q = 5925000 in 5925000 .. 5950000 as file 35551_268.job.T3
Tue Apr 18 13:42:00 2017 -> Lattice sieving algebraic q from 5850000 to 5950000.
Tue Apr 18 13:42:00 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Tue Apr 18 13:42:00 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Tue Apr 18 13:42:00 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Tue Apr 18 13:42:00 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Tue Apr 18 14:09:34 2017 Found 3796678 relations, 16.5% of the estimated minimum (23000000).
Tue Apr 18 14:09:34 2017 LatSieveTime: 1653.46
Tue Apr 18 14:09:34 2017 -> making sieve job for q = 5950000 in 5950000 .. 5975000 as file 35551_268.job.T0
Tue Apr 18 14:09:34 2017 -> making sieve job for q = 5975000 in 5975000 .. 6000000 as file 35551_268.job.T1
Tue Apr 18 14:09:34 2017 -> making sieve job for q = 6000000 in 6000000 .. 6025000 as file 35551_268.job.T2
Tue Apr 18 14:09:34 2017 -> making sieve job for q = 6025000 in 6025000 .. 6050000 as file 35551_268.job.T3
Tue Apr 18 14:09:34 2017 -> Lattice sieving algebraic q from 5950000 to 6050000.
Tue Apr 18 14:09:34 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Tue Apr 18 14:09:34 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Tue Apr 18 14:09:34 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Tue Apr 18 14:09:34 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Tue Apr 18 14:36:29 2017 Found 4086827 relations, 17.8% of the estimated minimum (23000000).
Tue Apr 18 14:36:29 2017 LatSieveTime: 1615.48
Tue Apr 18 14:36:29 2017 -> making sieve job for q = 6050000 in 6050000 .. 6075000 as file 35551_268.job.T0
Tue Apr 18 14:36:29 2017 -> making sieve job for q = 6075000 in 6075000 .. 6100000 as file 35551_268.job.T1
Tue Apr 18 14:36:29 2017 -> making sieve job for q = 6100000 in 6100000 .. 6125000 as file 35551_268.job.T2
Tue Apr 18 14:36:29 2017 -> making sieve job for q = 6125000 in 6125000 .. 6150000 as file 35551_268.job.T3
Tue Apr 18 14:36:29 2017 -> Lattice sieving algebraic q from 6050000 to 6150000.
Tue Apr 18 14:36:29 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Tue Apr 18 14:36:29 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Tue Apr 18 14:36:29 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Tue Apr 18 14:36:29 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Tue Apr 18 15:03:13 2017 Found 4377872 relations, 19.0% of the estimated minimum (23000000).
Tue Apr 18 15:03:13 2017 LatSieveTime: 1604.13
Tue Apr 18 15:03:13 2017 -> making sieve job for q = 6150000 in 6150000 .. 6175000 as file 35551_268.job.T0
Tue Apr 18 15:03:13 2017 -> making sieve job for q = 6175000 in 6175000 .. 6200000 as file 35551_268.job.T1
Tue Apr 18 15:03:13 2017 -> making sieve job for q = 6200000 in 6200000 .. 6225000 as file 35551_268.job.T2
Tue Apr 18 15:03:13 2017 -> making sieve job for q = 6225000 in 6225000 .. 6250000 as file 35551_268.job.T3
Tue Apr 18 15:03:13 2017 -> Lattice sieving algebraic q from 6150000 to 6250000.
Tue Apr 18 15:03:13 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Tue Apr 18 15:03:13 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Tue Apr 18 15:03:13 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Tue Apr 18 15:03:13 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Tue Apr 18 15:29:46 2017 Found 4664669 relations, 20.3% of the estimated minimum (23000000).
Tue Apr 18 15:29:46 2017 LatSieveTime: 1592.85
Tue Apr 18 15:29:46 2017 -> making sieve job for q = 6250000 in 6250000 .. 6275000 as file 35551_268.job.T0
Tue Apr 18 15:29:46 2017 -> making sieve job for q = 6275000 in 6275000 .. 6300000 as file 35551_268.job.T1
Tue Apr 18 15:29:46 2017 -> making sieve job for q = 6300000 in 6300000 .. 6325000 as file 35551_268.job.T2
Tue Apr 18 15:29:46 2017 -> making sieve job for q = 6325000 in 6325000 .. 6350000 as file 35551_268.job.T3
Tue Apr 18 15:29:46 2017 -> Lattice sieving algebraic q from 6250000 to 6350000.
Tue Apr 18 15:29:46 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Tue Apr 18 15:29:46 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Tue Apr 18 15:29:46 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Tue Apr 18 15:29:46 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Tue Apr 18 15:56:27 2017 Found 4954950 relations, 21.5% of the estimated minimum (23000000).
Tue Apr 18 15:56:27 2017 LatSieveTime: 1600.45
Tue Apr 18 15:56:27 2017 -> making sieve job for q = 6350000 in 6350000 .. 6375000 as file 35551_268.job.T0
Tue Apr 18 15:56:27 2017 -> making sieve job for q = 6375000 in 6375000 .. 6400000 as file 35551_268.job.T1
Tue Apr 18 15:56:27 2017 -> making sieve job for q = 6400000 in 6400000 .. 6425000 as file 35551_268.job.T2
Tue Apr 18 15:56:27 2017 -> making sieve job for q = 6425000 in 6425000 .. 6450000 as file 35551_268.job.T3
Tue Apr 18 15:56:27 2017 -> Lattice sieving algebraic q from 6350000 to 6450000.
Tue Apr 18 15:56:27 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Tue Apr 18 15:56:27 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Tue Apr 18 15:56:27 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Tue Apr 18 15:56:27 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Tue Apr 18 16:24:09 2017 Found 5246833 relations, 22.8% of the estimated minimum (23000000).
Tue Apr 18 16:24:09 2017 LatSieveTime: 1662.87
Tue Apr 18 16:24:09 2017 -> making sieve job for q = 6450000 in 6450000 .. 6475000 as file 35551_268.job.T0
Tue Apr 18 16:24:09 2017 -> making sieve job for q = 6475000 in 6475000 .. 6500000 as file 35551_268.job.T1
Tue Apr 18 16:24:09 2017 -> making sieve job for q = 6500000 in 6500000 .. 6525000 as file 35551_268.job.T2
Tue Apr 18 16:24:09 2017 -> making sieve job for q = 6525000 in 6525000 .. 6550000 as file 35551_268.job.T3
Tue Apr 18 16:24:09 2017 -> Lattice sieving algebraic q from 6450000 to 6550000.
Tue Apr 18 16:24:09 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Tue Apr 18 16:24:09 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Tue Apr 18 16:24:09 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Tue Apr 18 16:24:09 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Tue Apr 18 16:51:22 2017 Found 5539478 relations, 24.1% of the estimated minimum (23000000).
Tue Apr 18 16:51:22 2017 LatSieveTime: 1632.73
Tue Apr 18 16:51:22 2017 -> making sieve job for q = 6550000 in 6550000 .. 6575000 as file 35551_268.job.T0
Tue Apr 18 16:51:22 2017 -> making sieve job for q = 6575000 in 6575000 .. 6600000 as file 35551_268.job.T1
Tue Apr 18 16:51:22 2017 -> making sieve job for q = 6600000 in 6600000 .. 6625000 as file 35551_268.job.T2
Tue Apr 18 16:51:22 2017 -> making sieve job for q = 6625000 in 6625000 .. 6650000 as file 35551_268.job.T3
Tue Apr 18 16:51:22 2017 -> Lattice sieving algebraic q from 6550000 to 6650000.
Tue Apr 18 16:51:22 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Tue Apr 18 16:51:22 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Tue Apr 18 16:51:22 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Tue Apr 18 16:51:22 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Tue Apr 18 17:18:40 2017 Found 5829996 relations, 25.3% of the estimated minimum (23000000).
Tue Apr 18 17:18:40 2017 LatSieveTime: 1637.76
Tue Apr 18 17:18:40 2017 -> making sieve job for q = 6650000 in 6650000 .. 6675000 as file 35551_268.job.T0
Tue Apr 18 17:18:40 2017 -> making sieve job for q = 6675000 in 6675000 .. 6700000 as file 35551_268.job.T1
Tue Apr 18 17:18:40 2017 -> making sieve job for q = 6700000 in 6700000 .. 6725000 as file 35551_268.job.T2
Tue Apr 18 17:18:40 2017 -> making sieve job for q = 6725000 in 6725000 .. 6750000 as file 35551_268.job.T3
Tue Apr 18 17:18:40 2017 -> Lattice sieving algebraic q from 6650000 to 6750000.
Tue Apr 18 17:18:40 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Tue Apr 18 17:18:40 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Tue Apr 18 17:18:40 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Tue Apr 18 17:18:40 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Tue Apr 18 17:45:49 2017 Found 6119276 relations, 26.6% of the estimated minimum (23000000).
Tue Apr 18 17:45:49 2017 LatSieveTime: 1628.71
Tue Apr 18 17:45:49 2017 -> making sieve job for q = 6750000 in 6750000 .. 6775000 as file 35551_268.job.T0
Tue Apr 18 17:45:49 2017 -> making sieve job for q = 6775000 in 6775000 .. 6800000 as file 35551_268.job.T1
Tue Apr 18 17:45:49 2017 -> making sieve job for q = 6800000 in 6800000 .. 6825000 as file 35551_268.job.T2
Tue Apr 18 17:45:49 2017 -> making sieve job for q = 6825000 in 6825000 .. 6850000 as file 35551_268.job.T3
Tue Apr 18 17:45:49 2017 -> Lattice sieving algebraic q from 6750000 to 6850000.
Tue Apr 18 17:45:49 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Tue Apr 18 17:45:49 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Tue Apr 18 17:45:49 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Tue Apr 18 17:45:49 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Tue Apr 18 18:12:54 2017 Found 6403208 relations, 27.8% of the estimated minimum (23000000).
Tue Apr 18 18:12:54 2017 LatSieveTime: 1625.38
Tue Apr 18 18:12:54 2017 -> making sieve job for q = 6850000 in 6850000 .. 6875000 as file 35551_268.job.T0
Tue Apr 18 18:12:54 2017 -> making sieve job for q = 6875000 in 6875000 .. 6900000 as file 35551_268.job.T1
Tue Apr 18 18:12:54 2017 -> making sieve job for q = 6900000 in 6900000 .. 6925000 as file 35551_268.job.T2
Tue Apr 18 18:12:54 2017 -> making sieve job for q = 6925000 in 6925000 .. 6950000 as file 35551_268.job.T3
Tue Apr 18 18:12:54 2017 -> Lattice sieving algebraic q from 6850000 to 6950000.
Tue Apr 18 18:12:54 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Tue Apr 18 18:12:54 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Tue Apr 18 18:12:54 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Tue Apr 18 18:12:54 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Tue Apr 18 18:40:04 2017 Found 6692602 relations, 29.1% of the estimated minimum (23000000).
Tue Apr 18 18:40:04 2017 LatSieveTime: 1630.11
Tue Apr 18 18:40:04 2017 -> making sieve job for q = 6950000 in 6950000 .. 6975000 as file 35551_268.job.T0
Tue Apr 18 18:40:04 2017 -> making sieve job for q = 6975000 in 6975000 .. 7000000 as file 35551_268.job.T1
Tue Apr 18 18:40:04 2017 -> making sieve job for q = 7000000 in 7000000 .. 7025000 as file 35551_268.job.T2
Tue Apr 18 18:40:04 2017 -> making sieve job for q = 7025000 in 7025000 .. 7050000 as file 35551_268.job.T3
Tue Apr 18 18:40:04 2017 -> Lattice sieving algebraic q from 6950000 to 7050000.
Tue Apr 18 18:40:04 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Tue Apr 18 18:40:04 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Tue Apr 18 18:40:04 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Tue Apr 18 18:40:04 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Tue Apr 18 19:08:21 2017 Found 6984122 relations, 30.4% of the estimated minimum (23000000).
Tue Apr 18 19:08:21 2017 LatSieveTime: 1697.29
Tue Apr 18 19:08:21 2017 -> making sieve job for q = 7050000 in 7050000 .. 7075000 as file 35551_268.job.T0
Tue Apr 18 19:08:21 2017 -> making sieve job for q = 7075000 in 7075000 .. 7100000 as file 35551_268.job.T1
Tue Apr 18 19:08:21 2017 -> making sieve job for q = 7100000 in 7100000 .. 7125000 as file 35551_268.job.T2
Tue Apr 18 19:08:21 2017 -> making sieve job for q = 7125000 in 7125000 .. 7150000 as file 35551_268.job.T3
Tue Apr 18 19:08:21 2017 -> Lattice sieving algebraic q from 7050000 to 7150000.
Tue Apr 18 19:08:21 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Tue Apr 18 19:08:21 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Tue Apr 18 19:08:21 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Tue Apr 18 19:08:21 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Tue Apr 18 19:36:15 2017 Found 7274364 relations, 31.6% of the estimated minimum (23000000).
Tue Apr 18 19:36:15 2017 LatSieveTime: 1673.43
Tue Apr 18 19:36:15 2017 -> making sieve job for q = 7150000 in 7150000 .. 7175000 as file 35551_268.job.T0
Tue Apr 18 19:36:15 2017 -> making sieve job for q = 7175000 in 7175000 .. 7200000 as file 35551_268.job.T1
Tue Apr 18 19:36:15 2017 -> making sieve job for q = 7200000 in 7200000 .. 7225000 as file 35551_268.job.T2
Tue Apr 18 19:36:15 2017 -> making sieve job for q = 7225000 in 7225000 .. 7250000 as file 35551_268.job.T3
Tue Apr 18 19:36:15 2017 -> Lattice sieving algebraic q from 7150000 to 7250000.
Tue Apr 18 19:36:15 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Tue Apr 18 19:36:15 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Tue Apr 18 19:36:15 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Tue Apr 18 19:36:15 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Tue Apr 18 20:04:01 2017 Found 7567917 relations, 32.9% of the estimated minimum (23000000).
Tue Apr 18 20:04:01 2017 LatSieveTime: 1665.64
Tue Apr 18 20:04:01 2017 -> making sieve job for q = 7250000 in 7250000 .. 7275000 as file 35551_268.job.T0
Tue Apr 18 20:04:01 2017 -> making sieve job for q = 7275000 in 7275000 .. 7300000 as file 35551_268.job.T1
Tue Apr 18 20:04:01 2017 -> making sieve job for q = 7300000 in 7300000 .. 7325000 as file 35551_268.job.T2
Tue Apr 18 20:04:01 2017 -> making sieve job for q = 7325000 in 7325000 .. 7350000 as file 35551_268.job.T3
Tue Apr 18 20:04:01 2017 -> Lattice sieving algebraic q from 7250000 to 7350000.
Tue Apr 18 20:04:01 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Tue Apr 18 20:04:01 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Tue Apr 18 20:04:01 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Tue Apr 18 20:04:01 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Tue Apr 18 20:31:02 2017 Found 7849496 relations, 34.1% of the estimated minimum (23000000).
Tue Apr 18 20:31:02 2017 LatSieveTime: 1621.67
Tue Apr 18 20:31:02 2017 -> making sieve job for q = 7350000 in 7350000 .. 7375000 as file 35551_268.job.T0
Tue Apr 18 20:31:02 2017 -> making sieve job for q = 7375000 in 7375000 .. 7400000 as file 35551_268.job.T1
Tue Apr 18 20:31:02 2017 -> making sieve job for q = 7400000 in 7400000 .. 7425000 as file 35551_268.job.T2
Tue Apr 18 20:31:02 2017 -> making sieve job for q = 7425000 in 7425000 .. 7450000 as file 35551_268.job.T3
Tue Apr 18 20:31:02 2017 -> Lattice sieving algebraic q from 7350000 to 7450000.
Tue Apr 18 20:31:02 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Tue Apr 18 20:31:02 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Tue Apr 18 20:31:02 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Tue Apr 18 20:31:02 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Tue Apr 18 20:59:10 2017 Found 8139515 relations, 35.4% of the estimated minimum (23000000).
Tue Apr 18 20:59:10 2017 LatSieveTime: 1688.16
Tue Apr 18 20:59:10 2017 -> making sieve job for q = 7450000 in 7450000 .. 7475000 as file 35551_268.job.T0
Tue Apr 18 20:59:10 2017 -> making sieve job for q = 7475000 in 7475000 .. 7500000 as file 35551_268.job.T1
Tue Apr 18 20:59:10 2017 -> making sieve job for q = 7500000 in 7500000 .. 7525000 as file 35551_268.job.T2
Tue Apr 18 20:59:10 2017 -> making sieve job for q = 7525000 in 7525000 .. 7550000 as file 35551_268.job.T3
Tue Apr 18 20:59:10 2017 -> Lattice sieving algebraic q from 7450000 to 7550000.
Tue Apr 18 20:59:10 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Tue Apr 18 20:59:10 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Tue Apr 18 20:59:10 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Tue Apr 18 20:59:10 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Tue Apr 18 21:26:45 2017 Found 8430110 relations, 36.7% of the estimated minimum (23000000).
Tue Apr 18 21:26:45 2017 LatSieveTime: 1654.31
Tue Apr 18 21:26:45 2017 -> making sieve job for q = 7550000 in 7550000 .. 7575000 as file 35551_268.job.T0
Tue Apr 18 21:26:45 2017 -> making sieve job for q = 7575000 in 7575000 .. 7600000 as file 35551_268.job.T1
Tue Apr 18 21:26:45 2017 -> making sieve job for q = 7600000 in 7600000 .. 7625000 as file 35551_268.job.T2
Tue Apr 18 21:26:45 2017 -> making sieve job for q = 7625000 in 7625000 .. 7650000 as file 35551_268.job.T3
Tue Apr 18 21:26:45 2017 -> Lattice sieving algebraic q from 7550000 to 7650000.
Tue Apr 18 21:26:45 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Tue Apr 18 21:26:45 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Tue Apr 18 21:26:45 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Tue Apr 18 21:26:45 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Tue Apr 18 21:54:15 2017 Found 8718611 relations, 37.9% of the estimated minimum (23000000).
Tue Apr 18 21:54:15 2017 LatSieveTime: 1650.42
Tue Apr 18 21:54:15 2017 -> making sieve job for q = 7650000 in 7650000 .. 7675000 as file 35551_268.job.T0
Tue Apr 18 21:54:15 2017 -> making sieve job for q = 7675000 in 7675000 .. 7700000 as file 35551_268.job.T1
Tue Apr 18 21:54:15 2017 -> making sieve job for q = 7700000 in 7700000 .. 7725000 as file 35551_268.job.T2
Tue Apr 18 21:54:15 2017 -> making sieve job for q = 7725000 in 7725000 .. 7750000 as file 35551_268.job.T3
Tue Apr 18 21:54:15 2017 -> Lattice sieving algebraic q from 7650000 to 7750000.
Tue Apr 18 21:54:15 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Tue Apr 18 21:54:15 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Tue Apr 18 21:54:15 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Tue Apr 18 21:54:15 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Tue Apr 18 22:21:41 2017 Found 9007004 relations, 39.2% of the estimated minimum (23000000).
Tue Apr 18 22:21:41 2017 LatSieveTime: 1645.5
Tue Apr 18 22:21:41 2017 -> making sieve job for q = 7750000 in 7750000 .. 7775000 as file 35551_268.job.T0
Tue Apr 18 22:21:41 2017 -> making sieve job for q = 7775000 in 7775000 .. 7800000 as file 35551_268.job.T1
Tue Apr 18 22:21:41 2017 -> making sieve job for q = 7800000 in 7800000 .. 7825000 as file 35551_268.job.T2
Tue Apr 18 22:21:41 2017 -> making sieve job for q = 7825000 in 7825000 .. 7850000 as file 35551_268.job.T3
Tue Apr 18 22:21:41 2017 -> Lattice sieving algebraic q from 7750000 to 7850000.
Tue Apr 18 22:21:41 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Tue Apr 18 22:21:41 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Tue Apr 18 22:21:41 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Tue Apr 18 22:21:41 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Tue Apr 18 22:49:18 2017 Found 9296055 relations, 40.4% of the estimated minimum (23000000).
Tue Apr 18 22:49:18 2017 LatSieveTime: 1657.64
Tue Apr 18 22:49:18 2017 -> making sieve job for q = 7850000 in 7850000 .. 7875000 as file 35551_268.job.T0
Tue Apr 18 22:49:18 2017 -> making sieve job for q = 7875000 in 7875000 .. 7900000 as file 35551_268.job.T1
Tue Apr 18 22:49:18 2017 -> making sieve job for q = 7900000 in 7900000 .. 7925000 as file 35551_268.job.T2
Tue Apr 18 22:49:18 2017 -> making sieve job for q = 7925000 in 7925000 .. 7950000 as file 35551_268.job.T3
Tue Apr 18 22:49:18 2017 -> Lattice sieving algebraic q from 7850000 to 7950000.
Tue Apr 18 22:49:18 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Tue Apr 18 22:49:18 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Tue Apr 18 22:49:18 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Tue Apr 18 22:49:18 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Tue Apr 18 23:17:48 2017 Found 9589131 relations, 41.7% of the estimated minimum (23000000).
Tue Apr 18 23:17:48 2017 LatSieveTime: 1709.93
Tue Apr 18 23:17:48 2017 -> making sieve job for q = 7950000 in 7950000 .. 7975000 as file 35551_268.job.T0
Tue Apr 18 23:17:48 2017 -> making sieve job for q = 7975000 in 7975000 .. 8000000 as file 35551_268.job.T1
Tue Apr 18 23:17:48 2017 -> making sieve job for q = 8000000 in 8000000 .. 8025000 as file 35551_268.job.T2
Tue Apr 18 23:17:48 2017 -> making sieve job for q = 8025000 in 8025000 .. 8050000 as file 35551_268.job.T3
Tue Apr 18 23:17:48 2017 -> Lattice sieving algebraic q from 7950000 to 8050000.
Tue Apr 18 23:17:48 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Tue Apr 18 23:17:48 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Tue Apr 18 23:17:48 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Tue Apr 18 23:17:48 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Tue Apr 18 23:45:46 2017 Found 9877367 relations, 42.9% of the estimated minimum (23000000).
Tue Apr 18 23:45:46 2017 LatSieveTime: 1677.32
Tue Apr 18 23:45:46 2017 -> making sieve job for q = 8050000 in 8050000 .. 8075000 as file 35551_268.job.T0
Tue Apr 18 23:45:46 2017 -> making sieve job for q = 8075000 in 8075000 .. 8100000 as file 35551_268.job.T1
Tue Apr 18 23:45:46 2017 -> making sieve job for q = 8100000 in 8100000 .. 8125000 as file 35551_268.job.T2
Tue Apr 18 23:45:46 2017 -> making sieve job for q = 8125000 in 8125000 .. 8150000 as file 35551_268.job.T3
Tue Apr 18 23:45:46 2017 -> Lattice sieving algebraic q from 8050000 to 8150000.
Tue Apr 18 23:45:46 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Tue Apr 18 23:45:46 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Tue Apr 18 23:45:46 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Tue Apr 18 23:45:46 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Wed Apr 19 00:12:48 2017 Found 10157776 relations, 44.2% of the estimated minimum (23000000).
Wed Apr 19 00:12:48 2017 LatSieveTime: 1622.14
Wed Apr 19 00:12:48 2017 -> making sieve job for q = 8150000 in 8150000 .. 8175000 as file 35551_268.job.T0
Wed Apr 19 00:12:48 2017 -> making sieve job for q = 8175000 in 8175000 .. 8200000 as file 35551_268.job.T1
Wed Apr 19 00:12:48 2017 -> making sieve job for q = 8200000 in 8200000 .. 8225000 as file 35551_268.job.T2
Wed Apr 19 00:12:48 2017 -> making sieve job for q = 8225000 in 8225000 .. 8250000 as file 35551_268.job.T3
Wed Apr 19 00:12:48 2017 -> Lattice sieving algebraic q from 8150000 to 8250000.
Wed Apr 19 00:12:48 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Wed Apr 19 00:12:48 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Wed Apr 19 00:12:48 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Wed Apr 19 00:12:48 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Wed Apr 19 00:40:42 2017 Found 10445127 relations, 45.4% of the estimated minimum (23000000).
Wed Apr 19 00:40:42 2017 LatSieveTime: 1674.4
Wed Apr 19 00:40:42 2017 -> making sieve job for q = 8250000 in 8250000 .. 8275000 as file 35551_268.job.T0
Wed Apr 19 00:40:42 2017 -> making sieve job for q = 8275000 in 8275000 .. 8300000 as file 35551_268.job.T1
Wed Apr 19 00:40:42 2017 -> making sieve job for q = 8300000 in 8300000 .. 8325000 as file 35551_268.job.T2
Wed Apr 19 00:40:42 2017 -> making sieve job for q = 8325000 in 8325000 .. 8350000 as file 35551_268.job.T3
Wed Apr 19 00:40:42 2017 -> Lattice sieving algebraic q from 8250000 to 8350000.
Wed Apr 19 00:40:42 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Wed Apr 19 00:40:42 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Wed Apr 19 00:40:42 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Wed Apr 19 00:40:42 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Wed Apr 19 01:08:13 2017 Found 10725356 relations, 46.6% of the estimated minimum (23000000).
Wed Apr 19 01:08:13 2017 LatSieveTime: 1650.51
Wed Apr 19 01:08:13 2017 -> making sieve job for q = 8350000 in 8350000 .. 8375000 as file 35551_268.job.T0
Wed Apr 19 01:08:13 2017 -> making sieve job for q = 8375000 in 8375000 .. 8400000 as file 35551_268.job.T1
Wed Apr 19 01:08:13 2017 -> making sieve job for q = 8400000 in 8400000 .. 8425000 as file 35551_268.job.T2
Wed Apr 19 01:08:13 2017 -> making sieve job for q = 8425000 in 8425000 .. 8450000 as file 35551_268.job.T3
Wed Apr 19 01:08:13 2017 -> Lattice sieving algebraic q from 8350000 to 8450000.
Wed Apr 19 01:08:13 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Wed Apr 19 01:08:13 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Wed Apr 19 01:08:13 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Wed Apr 19 01:08:13 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Wed Apr 19 01:35:24 2017 Found 11002289 relations, 47.8% of the estimated minimum (23000000).
Wed Apr 19 01:35:24 2017 LatSieveTime: 1631.49
Wed Apr 19 01:35:24 2017 -> making sieve job for q = 8450000 in 8450000 .. 8475000 as file 35551_268.job.T0
Wed Apr 19 01:35:24 2017 -> making sieve job for q = 8475000 in 8475000 .. 8500000 as file 35551_268.job.T1
Wed Apr 19 01:35:24 2017 -> making sieve job for q = 8500000 in 8500000 .. 8525000 as file 35551_268.job.T2
Wed Apr 19 01:35:24 2017 -> making sieve job for q = 8525000 in 8525000 .. 8550000 as file 35551_268.job.T3
Wed Apr 19 01:35:24 2017 -> Lattice sieving algebraic q from 8450000 to 8550000.
Wed Apr 19 01:35:24 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Wed Apr 19 01:35:24 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Wed Apr 19 01:35:24 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Wed Apr 19 01:35:24 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Wed Apr 19 02:03:35 2017 Found 11292793 relations, 49.1% of the estimated minimum (23000000).
Wed Apr 19 02:03:35 2017 LatSieveTime: 1690.75
Wed Apr 19 02:03:35 2017 -> making sieve job for q = 8550000 in 8550000 .. 8575000 as file 35551_268.job.T0
Wed Apr 19 02:03:35 2017 -> making sieve job for q = 8575000 in 8575000 .. 8600000 as file 35551_268.job.T1
Wed Apr 19 02:03:35 2017 -> making sieve job for q = 8600000 in 8600000 .. 8625000 as file 35551_268.job.T2
Wed Apr 19 02:03:35 2017 -> making sieve job for q = 8625000 in 8625000 .. 8650000 as file 35551_268.job.T3
Wed Apr 19 02:03:35 2017 -> Lattice sieving algebraic q from 8550000 to 8650000.
Wed Apr 19 02:03:35 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Wed Apr 19 02:03:35 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Wed Apr 19 02:03:35 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Wed Apr 19 02:03:35 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Wed Apr 19 02:32:11 2017 Found 11581644 relations, 50.4% of the estimated minimum (23000000).
Wed Apr 19 02:32:11 2017 LatSieveTime: 1716.21
Wed Apr 19 02:32:11 2017 -> making sieve job for q = 8650000 in 8650000 .. 8675000 as file 35551_268.job.T0
Wed Apr 19 02:32:11 2017 -> making sieve job for q = 8675000 in 8675000 .. 8700000 as file 35551_268.job.T1
Wed Apr 19 02:32:11 2017 -> making sieve job for q = 8700000 in 8700000 .. 8725000 as file 35551_268.job.T2
Wed Apr 19 02:32:11 2017 -> making sieve job for q = 8725000 in 8725000 .. 8750000 as file 35551_268.job.T3
Wed Apr 19 02:32:11 2017 -> Lattice sieving algebraic q from 8650000 to 8750000.
Wed Apr 19 02:32:11 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Wed Apr 19 02:32:11 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Wed Apr 19 02:32:11 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Wed Apr 19 02:32:11 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Wed Apr 19 03:00:13 2017 Found 11866365 relations, 51.6% of the estimated minimum (23000000).
Wed Apr 19 03:00:13 2017 LatSieveTime: 1682.22
Wed Apr 19 03:00:13 2017 -> making sieve job for q = 8750000 in 8750000 .. 8775000 as file 35551_268.job.T0
Wed Apr 19 03:00:13 2017 -> making sieve job for q = 8775000 in 8775000 .. 8800000 as file 35551_268.job.T1
Wed Apr 19 03:00:13 2017 -> making sieve job for q = 8800000 in 8800000 .. 8825000 as file 35551_268.job.T2
Wed Apr 19 03:00:13 2017 -> making sieve job for q = 8825000 in 8825000 .. 8850000 as file 35551_268.job.T3
Wed Apr 19 03:00:13 2017 -> Lattice sieving algebraic q from 8750000 to 8850000.
Wed Apr 19 03:00:13 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Wed Apr 19 03:00:13 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Wed Apr 19 03:00:13 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Wed Apr 19 03:00:13 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Wed Apr 19 03:28:59 2017 Found 12158441 relations, 52.9% of the estimated minimum (23000000).
Wed Apr 19 03:28:59 2017 LatSieveTime: 1725.42
Wed Apr 19 03:28:59 2017 -> making sieve job for q = 8850000 in 8850000 .. 8875000 as file 35551_268.job.T0
Wed Apr 19 03:28:59 2017 -> making sieve job for q = 8875000 in 8875000 .. 8900000 as file 35551_268.job.T1
Wed Apr 19 03:28:59 2017 -> making sieve job for q = 8900000 in 8900000 .. 8925000 as file 35551_268.job.T2
Wed Apr 19 03:28:59 2017 -> making sieve job for q = 8925000 in 8925000 .. 8950000 as file 35551_268.job.T3
Wed Apr 19 03:28:59 2017 -> Lattice sieving algebraic q from 8850000 to 8950000.
Wed Apr 19 03:28:59 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Wed Apr 19 03:28:59 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Wed Apr 19 03:28:59 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Wed Apr 19 03:28:59 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Wed Apr 19 03:56:27 2017 Found 12437339 relations, 54.1% of the estimated minimum (23000000).
Wed Apr 19 03:56:27 2017 LatSieveTime: 1648.38
Wed Apr 19 03:56:27 2017 -> making sieve job for q = 8950000 in 8950000 .. 8975000 as file 35551_268.job.T0
Wed Apr 19 03:56:27 2017 -> making sieve job for q = 8975000 in 8975000 .. 9000000 as file 35551_268.job.T1
Wed Apr 19 03:56:27 2017 -> making sieve job for q = 9000000 in 9000000 .. 9025000 as file 35551_268.job.T2
Wed Apr 19 03:56:27 2017 -> making sieve job for q = 9025000 in 9025000 .. 9050000 as file 35551_268.job.T3
Wed Apr 19 03:56:27 2017 -> Lattice sieving algebraic q from 8950000 to 9050000.
Wed Apr 19 03:56:27 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Wed Apr 19 03:56:27 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Wed Apr 19 03:56:27 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Wed Apr 19 03:56:27 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Wed Apr 19 04:25:05 2017 Found 12724399 relations, 55.3% of the estimated minimum (23000000).
Wed Apr 19 04:25:05 2017 LatSieveTime: 1717.9
Wed Apr 19 04:25:05 2017 -> making sieve job for q = 9050000 in 9050000 .. 9075000 as file 35551_268.job.T0
Wed Apr 19 04:25:05 2017 -> making sieve job for q = 9075000 in 9075000 .. 9100000 as file 35551_268.job.T1
Wed Apr 19 04:25:05 2017 -> making sieve job for q = 9100000 in 9100000 .. 9125000 as file 35551_268.job.T2
Wed Apr 19 04:25:05 2017 -> making sieve job for q = 9125000 in 9125000 .. 9150000 as file 35551_268.job.T3
Wed Apr 19 04:25:05 2017 -> Lattice sieving algebraic q from 9050000 to 9150000.
Wed Apr 19 04:25:05 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Wed Apr 19 04:25:05 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Wed Apr 19 04:25:05 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Wed Apr 19 04:25:05 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Wed Apr 19 04:53:42 2017 Found 13010359 relations, 56.6% of the estimated minimum (23000000).
Wed Apr 19 04:53:42 2017 LatSieveTime: 1716.97
Wed Apr 19 04:53:42 2017 -> making sieve job for q = 9150000 in 9150000 .. 9175000 as file 35551_268.job.T0
Wed Apr 19 04:53:42 2017 -> making sieve job for q = 9175000 in 9175000 .. 9200000 as file 35551_268.job.T1
Wed Apr 19 04:53:42 2017 -> making sieve job for q = 9200000 in 9200000 .. 9225000 as file 35551_268.job.T2
Wed Apr 19 04:53:42 2017 -> making sieve job for q = 9225000 in 9225000 .. 9250000 as file 35551_268.job.T3
Wed Apr 19 04:53:42 2017 -> Lattice sieving algebraic q from 9150000 to 9250000.
Wed Apr 19 04:53:42 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Wed Apr 19 04:53:42 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Wed Apr 19 04:53:42 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Wed Apr 19 04:53:42 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Wed Apr 19 05:22:00 2017 Found 13294411 relations, 57.8% of the estimated minimum (23000000).
Wed Apr 19 05:22:00 2017 LatSieveTime: 1698
Wed Apr 19 05:22:00 2017 -> making sieve job for q = 9250000 in 9250000 .. 9275000 as file 35551_268.job.T0
Wed Apr 19 05:22:00 2017 -> making sieve job for q = 9275000 in 9275000 .. 9300000 as file 35551_268.job.T1
Wed Apr 19 05:22:00 2017 -> making sieve job for q = 9300000 in 9300000 .. 9325000 as file 35551_268.job.T2
Wed Apr 19 05:22:00 2017 -> making sieve job for q = 9325000 in 9325000 .. 9350000 as file 35551_268.job.T3
Wed Apr 19 05:22:00 2017 -> Lattice sieving algebraic q from 9250000 to 9350000.
Wed Apr 19 05:22:00 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Wed Apr 19 05:22:00 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Wed Apr 19 05:22:00 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Wed Apr 19 05:22:00 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Wed Apr 19 05:50:04 2017 Found 13573686 relations, 59.0% of the estimated minimum (23000000).
Wed Apr 19 05:50:04 2017 LatSieveTime: 1684.29
Wed Apr 19 05:50:04 2017 -> making sieve job for q = 9350000 in 9350000 .. 9375000 as file 35551_268.job.T0
Wed Apr 19 05:50:04 2017 -> making sieve job for q = 9375000 in 9375000 .. 9400000 as file 35551_268.job.T1
Wed Apr 19 05:50:04 2017 -> making sieve job for q = 9400000 in 9400000 .. 9425000 as file 35551_268.job.T2
Wed Apr 19 05:50:04 2017 -> making sieve job for q = 9425000 in 9425000 .. 9450000 as file 35551_268.job.T3
Wed Apr 19 05:50:04 2017 -> Lattice sieving algebraic q from 9350000 to 9450000.
Wed Apr 19 05:50:04 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Wed Apr 19 05:50:04 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Wed Apr 19 05:50:04 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Wed Apr 19 05:50:04 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Wed Apr 19 06:18:28 2017 Found 13857785 relations, 60.3% of the estimated minimum (23000000).
Wed Apr 19 06:18:28 2017 LatSieveTime: 1703.34
Wed Apr 19 06:18:28 2017 -> making sieve job for q = 9450000 in 9450000 .. 9475000 as file 35551_268.job.T0
Wed Apr 19 06:18:28 2017 -> making sieve job for q = 9475000 in 9475000 .. 9500000 as file 35551_268.job.T1
Wed Apr 19 06:18:28 2017 -> making sieve job for q = 9500000 in 9500000 .. 9525000 as file 35551_268.job.T2
Wed Apr 19 06:18:28 2017 -> making sieve job for q = 9525000 in 9525000 .. 9550000 as file 35551_268.job.T3
Wed Apr 19 06:18:28 2017 -> Lattice sieving algebraic q from 9450000 to 9550000.
Wed Apr 19 06:18:28 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Wed Apr 19 06:18:28 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Wed Apr 19 06:18:28 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Wed Apr 19 06:18:28 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Wed Apr 19 06:46:33 2017 Found 14140252 relations, 61.5% of the estimated minimum (23000000).
Wed Apr 19 06:46:33 2017 LatSieveTime: 1685.66
Wed Apr 19 06:46:33 2017 -> making sieve job for q = 9550000 in 9550000 .. 9575000 as file 35551_268.job.T0
Wed Apr 19 06:46:33 2017 -> making sieve job for q = 9575000 in 9575000 .. 9600000 as file 35551_268.job.T1
Wed Apr 19 06:46:33 2017 -> making sieve job for q = 9600000 in 9600000 .. 9625000 as file 35551_268.job.T2
Wed Apr 19 06:46:33 2017 -> making sieve job for q = 9625000 in 9625000 .. 9650000 as file 35551_268.job.T3
Wed Apr 19 06:46:33 2017 -> Lattice sieving algebraic q from 9550000 to 9650000.
Wed Apr 19 06:46:33 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Wed Apr 19 06:46:33 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Wed Apr 19 06:46:33 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Wed Apr 19 06:46:33 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Wed Apr 19 07:14:57 2017 Found 14425429 relations, 62.7% of the estimated minimum (23000000).
Wed Apr 19 07:14:57 2017 LatSieveTime: 1703.85
Wed Apr 19 07:14:57 2017 -> making sieve job for q = 9650000 in 9650000 .. 9675000 as file 35551_268.job.T0
Wed Apr 19 07:14:57 2017 -> making sieve job for q = 9675000 in 9675000 .. 9700000 as file 35551_268.job.T1
Wed Apr 19 07:14:57 2017 -> making sieve job for q = 9700000 in 9700000 .. 9725000 as file 35551_268.job.T2
Wed Apr 19 07:14:57 2017 -> making sieve job for q = 9725000 in 9725000 .. 9750000 as file 35551_268.job.T3
Wed Apr 19 07:14:57 2017 -> Lattice sieving algebraic q from 9650000 to 9750000.
Wed Apr 19 07:14:57 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Wed Apr 19 07:14:57 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Wed Apr 19 07:14:57 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Wed Apr 19 07:14:57 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Wed Apr 19 07:43:03 2017 Found 14705607 relations, 63.9% of the estimated minimum (23000000).
Wed Apr 19 07:43:03 2017 LatSieveTime: 1685.84
Wed Apr 19 07:43:03 2017 -> making sieve job for q = 9750000 in 9750000 .. 9775000 as file 35551_268.job.T0
Wed Apr 19 07:43:03 2017 -> making sieve job for q = 9775000 in 9775000 .. 9800000 as file 35551_268.job.T1
Wed Apr 19 07:43:03 2017 -> making sieve job for q = 9800000 in 9800000 .. 9825000 as file 35551_268.job.T2
Wed Apr 19 07:43:03 2017 -> making sieve job for q = 9825000 in 9825000 .. 9850000 as file 35551_268.job.T3
Wed Apr 19 07:43:03 2017 -> Lattice sieving algebraic q from 9750000 to 9850000.
Wed Apr 19 07:43:03 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Wed Apr 19 07:43:03 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Wed Apr 19 07:43:03 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Wed Apr 19 07:43:03 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Wed Apr 19 08:11:41 2017 Found 14985352 relations, 65.2% of the estimated minimum (23000000).
Wed Apr 19 08:11:41 2017 LatSieveTime: 1717.98
Wed Apr 19 08:11:41 2017 -> making sieve job for q = 9850000 in 9850000 .. 9875000 as file 35551_268.job.T0
Wed Apr 19 08:11:41 2017 -> making sieve job for q = 9875000 in 9875000 .. 9900000 as file 35551_268.job.T1
Wed Apr 19 08:11:41 2017 -> making sieve job for q = 9900000 in 9900000 .. 9925000 as file 35551_268.job.T2
Wed Apr 19 08:11:41 2017 -> making sieve job for q = 9925000 in 9925000 .. 9950000 as file 35551_268.job.T3
Wed Apr 19 08:11:41 2017 -> Lattice sieving algebraic q from 9850000 to 9950000.
Wed Apr 19 08:11:41 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Wed Apr 19 08:11:41 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Wed Apr 19 08:11:41 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Wed Apr 19 08:11:41 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Wed Apr 19 08:40:37 2017 Found 15263350 relations, 66.4% of the estimated minimum (23000000).
Wed Apr 19 08:40:37 2017 LatSieveTime: 1736.34
Wed Apr 19 08:40:37 2017 -> making sieve job for q = 9950000 in 9950000 .. 9975000 as file 35551_268.job.T0
Wed Apr 19 08:40:37 2017 -> making sieve job for q = 9975000 in 9975000 .. 10000000 as file 35551_268.job.T1
Wed Apr 19 08:40:37 2017 -> making sieve job for q = 10000000 in 10000000 .. 10025000 as file 35551_268.job.T2
Wed Apr 19 08:40:37 2017 -> making sieve job for q = 10025000 in 10025000 .. 10050000 as file 35551_268.job.T3
Wed Apr 19 08:40:37 2017 -> Lattice sieving algebraic q from 9950000 to 10050000.
Wed Apr 19 08:40:37 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Wed Apr 19 08:40:37 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Wed Apr 19 08:40:37 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Wed Apr 19 08:40:37 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Wed Apr 19 09:10:08 2017 Found 15543479 relations, 67.6% of the estimated minimum (23000000).
Wed Apr 19 09:10:08 2017 LatSieveTime: 1770.71
Wed Apr 19 09:10:08 2017 -> making sieve job for q = 10050000 in 10050000 .. 10075000 as file 35551_268.job.T0
Wed Apr 19 09:10:08 2017 -> making sieve job for q = 10075000 in 10075000 .. 10100000 as file 35551_268.job.T1
Wed Apr 19 09:10:08 2017 -> making sieve job for q = 10100000 in 10100000 .. 10125000 as file 35551_268.job.T2
Wed Apr 19 09:10:08 2017 -> making sieve job for q = 10125000 in 10125000 .. 10150000 as file 35551_268.job.T3
Wed Apr 19 09:10:08 2017 -> Lattice sieving algebraic q from 10050000 to 10150000.
Wed Apr 19 09:10:08 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Wed Apr 19 09:10:08 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Wed Apr 19 09:10:08 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Wed Apr 19 09:10:08 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Wed Apr 19 09:38:44 2017 Found 15824598 relations, 68.8% of the estimated minimum (23000000).
Wed Apr 19 09:38:44 2017 LatSieveTime: 1715.63
Wed Apr 19 09:38:44 2017 -> making sieve job for q = 10150000 in 10150000 .. 10175000 as file 35551_268.job.T0
Wed Apr 19 09:38:44 2017 -> making sieve job for q = 10175000 in 10175000 .. 10200000 as file 35551_268.job.T1
Wed Apr 19 09:38:44 2017 -> making sieve job for q = 10200000 in 10200000 .. 10225000 as file 35551_268.job.T2
Wed Apr 19 09:38:44 2017 -> making sieve job for q = 10225000 in 10225000 .. 10250000 as file 35551_268.job.T3
Wed Apr 19 09:38:44 2017 -> Lattice sieving algebraic q from 10150000 to 10250000.
Wed Apr 19 09:38:44 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Wed Apr 19 09:38:44 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Wed Apr 19 09:38:44 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Wed Apr 19 09:38:44 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Wed Apr 19 10:07:18 2017 Found 16099175 relations, 70.0% of the estimated minimum (23000000).
Wed Apr 19 10:07:18 2017 LatSieveTime: 1714.59
Wed Apr 19 10:07:18 2017 -> making sieve job for q = 10250000 in 10250000 .. 10275000 as file 35551_268.job.T0
Wed Apr 19 10:07:18 2017 -> making sieve job for q = 10275000 in 10275000 .. 10300000 as file 35551_268.job.T1
Wed Apr 19 10:07:18 2017 -> making sieve job for q = 10300000 in 10300000 .. 10325000 as file 35551_268.job.T2
Wed Apr 19 10:07:18 2017 -> making sieve job for q = 10325000 in 10325000 .. 10350000 as file 35551_268.job.T3
Wed Apr 19 10:07:18 2017 -> Lattice sieving algebraic q from 10250000 to 10350000.
Wed Apr 19 10:07:18 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Wed Apr 19 10:07:18 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Wed Apr 19 10:07:18 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Wed Apr 19 10:07:18 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Wed Apr 19 10:35:43 2017 Found 16375257 relations, 71.2% of the estimated minimum (23000000).
Wed Apr 19 10:35:43 2017 LatSieveTime: 1704.74
Wed Apr 19 10:35:43 2017 -> making sieve job for q = 10350000 in 10350000 .. 10375000 as file 35551_268.job.T0
Wed Apr 19 10:35:43 2017 -> making sieve job for q = 10375000 in 10375000 .. 10400000 as file 35551_268.job.T1
Wed Apr 19 10:35:43 2017 -> making sieve job for q = 10400000 in 10400000 .. 10425000 as file 35551_268.job.T2
Wed Apr 19 10:35:43 2017 -> making sieve job for q = 10425000 in 10425000 .. 10450000 as file 35551_268.job.T3
Wed Apr 19 10:35:43 2017 -> Lattice sieving algebraic q from 10350000 to 10450000.
Wed Apr 19 10:35:43 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Wed Apr 19 10:35:43 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Wed Apr 19 10:35:43 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Wed Apr 19 10:35:43 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Wed Apr 19 11:03:54 2017 Found 16647775 relations, 72.4% of the estimated minimum (23000000).
Wed Apr 19 11:03:54 2017 LatSieveTime: 1691.1
Wed Apr 19 11:03:54 2017 -> making sieve job for q = 10450000 in 10450000 .. 10475000 as file 35551_268.job.T0
Wed Apr 19 11:03:54 2017 -> making sieve job for q = 10475000 in 10475000 .. 10500000 as file 35551_268.job.T1
Wed Apr 19 11:03:54 2017 -> making sieve job for q = 10500000 in 10500000 .. 10525000 as file 35551_268.job.T2
Wed Apr 19 11:03:54 2017 -> making sieve job for q = 10525000 in 10525000 .. 10550000 as file 35551_268.job.T3
Wed Apr 19 11:03:54 2017 -> Lattice sieving algebraic q from 10450000 to 10550000.
Wed Apr 19 11:03:54 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Wed Apr 19 11:03:54 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Wed Apr 19 11:03:54 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Wed Apr 19 11:03:54 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Wed Apr 19 11:32:23 2017 Found 16924628 relations, 73.6% of the estimated minimum (23000000).
Wed Apr 19 11:32:23 2017 LatSieveTime: 1709.13
Wed Apr 19 11:32:23 2017 -> making sieve job for q = 10550000 in 10550000 .. 10575000 as file 35551_268.job.T0
Wed Apr 19 11:32:23 2017 -> making sieve job for q = 10575000 in 10575000 .. 10600000 as file 35551_268.job.T1
Wed Apr 19 11:32:23 2017 -> making sieve job for q = 10600000 in 10600000 .. 10625000 as file 35551_268.job.T2
Wed Apr 19 11:32:23 2017 -> making sieve job for q = 10625000 in 10625000 .. 10650000 as file 35551_268.job.T3
Wed Apr 19 11:32:23 2017 -> Lattice sieving algebraic q from 10550000 to 10650000.
Wed Apr 19 11:32:23 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Wed Apr 19 11:32:23 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Wed Apr 19 11:32:23 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Wed Apr 19 11:32:23 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Wed Apr 19 12:01:14 2017 Found 17200253 relations, 74.8% of the estimated minimum (23000000).
Wed Apr 19 12:01:14 2017 LatSieveTime: 1730.43
Wed Apr 19 12:01:14 2017 -> making sieve job for q = 10650000 in 10650000 .. 10675000 as file 35551_268.job.T0
Wed Apr 19 12:01:14 2017 -> making sieve job for q = 10675000 in 10675000 .. 10700000 as file 35551_268.job.T1
Wed Apr 19 12:01:14 2017 -> making sieve job for q = 10700000 in 10700000 .. 10725000 as file 35551_268.job.T2
Wed Apr 19 12:01:14 2017 -> making sieve job for q = 10725000 in 10725000 .. 10750000 as file 35551_268.job.T3
Wed Apr 19 12:01:14 2017 -> Lattice sieving algebraic q from 10650000 to 10750000.
Wed Apr 19 12:01:14 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Wed Apr 19 12:01:14 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Wed Apr 19 12:01:14 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Wed Apr 19 12:01:14 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Wed Apr 19 12:29:52 2017 Found 17474911 relations, 76.0% of the estimated minimum (23000000).
Wed Apr 19 12:29:52 2017 LatSieveTime: 1718.54
Wed Apr 19 12:29:52 2017 -> making sieve job for q = 10750000 in 10750000 .. 10775000 as file 35551_268.job.T0
Wed Apr 19 12:29:52 2017 -> making sieve job for q = 10775000 in 10775000 .. 10800000 as file 35551_268.job.T1
Wed Apr 19 12:29:52 2017 -> making sieve job for q = 10800000 in 10800000 .. 10825000 as file 35551_268.job.T2
Wed Apr 19 12:29:52 2017 -> making sieve job for q = 10825000 in 10825000 .. 10850000 as file 35551_268.job.T3
Wed Apr 19 12:29:52 2017 -> Lattice sieving algebraic q from 10750000 to 10850000.
Wed Apr 19 12:29:52 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Wed Apr 19 12:29:52 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Wed Apr 19 12:29:52 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Wed Apr 19 12:29:52 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Wed Apr 19 12:58:20 2017 Found 17745222 relations, 77.2% of the estimated minimum (23000000).
Wed Apr 19 12:58:20 2017 LatSieveTime: 1707.7
Wed Apr 19 12:58:20 2017 -> making sieve job for q = 10850000 in 10850000 .. 10875000 as file 35551_268.job.T0
Wed Apr 19 12:58:20 2017 -> making sieve job for q = 10875000 in 10875000 .. 10900000 as file 35551_268.job.T1
Wed Apr 19 12:58:20 2017 -> making sieve job for q = 10900000 in 10900000 .. 10925000 as file 35551_268.job.T2
Wed Apr 19 12:58:20 2017 -> making sieve job for q = 10925000 in 10925000 .. 10950000 as file 35551_268.job.T3
Wed Apr 19 12:58:20 2017 -> Lattice sieving algebraic q from 10850000 to 10950000.
Wed Apr 19 12:58:20 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Wed Apr 19 12:58:20 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Wed Apr 19 12:58:20 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Wed Apr 19 12:58:20 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Wed Apr 19 13:26:38 2017 Found 18014113 relations, 78.3% of the estimated minimum (23000000).
Wed Apr 19 13:26:38 2017 LatSieveTime: 1697.71
Wed Apr 19 13:26:38 2017 -> making sieve job for q = 10950000 in 10950000 .. 10975000 as file 35551_268.job.T0
Wed Apr 19 13:26:38 2017 -> making sieve job for q = 10975000 in 10975000 .. 11000000 as file 35551_268.job.T1
Wed Apr 19 13:26:38 2017 -> making sieve job for q = 11000000 in 11000000 .. 11025000 as file 35551_268.job.T2
Wed Apr 19 13:26:38 2017 -> making sieve job for q = 11025000 in 11025000 .. 11050000 as file 35551_268.job.T3
Wed Apr 19 13:26:38 2017 -> Lattice sieving algebraic q from 10950000 to 11050000.
Wed Apr 19 13:26:38 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Wed Apr 19 13:26:38 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Wed Apr 19 13:26:38 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Wed Apr 19 13:26:38 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Wed Apr 19 13:54:54 2017 Found 18276943 relations, 79.5% of the estimated minimum (23000000).
Wed Apr 19 13:54:54 2017 LatSieveTime: 1695.91
Wed Apr 19 13:54:54 2017 -> making sieve job for q = 11050000 in 11050000 .. 11075000 as file 35551_268.job.T0
Wed Apr 19 13:54:54 2017 -> making sieve job for q = 11075000 in 11075000 .. 11100000 as file 35551_268.job.T1
Wed Apr 19 13:54:54 2017 -> making sieve job for q = 11100000 in 11100000 .. 11125000 as file 35551_268.job.T2
Wed Apr 19 13:54:54 2017 -> making sieve job for q = 11125000 in 11125000 .. 11150000 as file 35551_268.job.T3
Wed Apr 19 13:54:54 2017 -> Lattice sieving algebraic q from 11050000 to 11150000.
Wed Apr 19 13:54:54 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Wed Apr 19 13:54:54 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Wed Apr 19 13:54:54 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Wed Apr 19 13:54:54 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Wed Apr 19 14:23:19 2017 Found 18543249 relations, 80.6% of the estimated minimum (23000000).
Wed Apr 19 14:23:19 2017 LatSieveTime: 1705.06
Wed Apr 19 14:23:19 2017 -> making sieve job for q = 11150000 in 11150000 .. 11175000 as file 35551_268.job.T0
Wed Apr 19 14:23:19 2017 -> making sieve job for q = 11175000 in 11175000 .. 11200000 as file 35551_268.job.T1
Wed Apr 19 14:23:19 2017 -> making sieve job for q = 11200000 in 11200000 .. 11225000 as file 35551_268.job.T2
Wed Apr 19 14:23:19 2017 -> making sieve job for q = 11225000 in 11225000 .. 11250000 as file 35551_268.job.T3
Wed Apr 19 14:23:19 2017 -> Lattice sieving algebraic q from 11150000 to 11250000.
Wed Apr 19 14:23:19 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Wed Apr 19 14:23:19 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Wed Apr 19 14:23:19 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Wed Apr 19 14:23:19 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Wed Apr 19 14:51:22 2017 Found 18810741 relations, 81.8% of the estimated minimum (23000000).
Wed Apr 19 14:51:22 2017 LatSieveTime: 1683.19
Wed Apr 19 14:51:22 2017 -> making sieve job for q = 11250000 in 11250000 .. 11275000 as file 35551_268.job.T0
Wed Apr 19 14:51:22 2017 -> making sieve job for q = 11275000 in 11275000 .. 11300000 as file 35551_268.job.T1
Wed Apr 19 14:51:22 2017 -> making sieve job for q = 11300000 in 11300000 .. 11325000 as file 35551_268.job.T2
Wed Apr 19 14:51:22 2017 -> making sieve job for q = 11325000 in 11325000 .. 11350000 as file 35551_268.job.T3
Wed Apr 19 14:51:22 2017 -> Lattice sieving algebraic q from 11250000 to 11350000.
Wed Apr 19 14:51:22 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Wed Apr 19 14:51:22 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Wed Apr 19 14:51:22 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Wed Apr 19 14:51:22 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Wed Apr 19 15:19:12 2017 Found 19075532 relations, 82.9% of the estimated minimum (23000000).
Wed Apr 19 15:19:12 2017 LatSieveTime: 1669.97
Wed Apr 19 15:19:12 2017 -> making sieve job for q = 11350000 in 11350000 .. 11375000 as file 35551_268.job.T0
Wed Apr 19 15:19:12 2017 -> making sieve job for q = 11375000 in 11375000 .. 11400000 as file 35551_268.job.T1
Wed Apr 19 15:19:12 2017 -> making sieve job for q = 11400000 in 11400000 .. 11425000 as file 35551_268.job.T2
Wed Apr 19 15:19:12 2017 -> making sieve job for q = 11425000 in 11425000 .. 11450000 as file 35551_268.job.T3
Wed Apr 19 15:19:12 2017 -> Lattice sieving algebraic q from 11350000 to 11450000.
Wed Apr 19 15:19:12 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Wed Apr 19 15:19:12 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Wed Apr 19 15:19:12 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Wed Apr 19 15:19:12 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Wed Apr 19 15:47:13 2017 Found 19341066 relations, 84.1% of the estimated minimum (23000000).
Wed Apr 19 15:47:13 2017 LatSieveTime: 1681.5
Wed Apr 19 15:47:13 2017 -> making sieve job for q = 11450000 in 11450000 .. 11475000 as file 35551_268.job.T0
Wed Apr 19 15:47:13 2017 -> making sieve job for q = 11475000 in 11475000 .. 11500000 as file 35551_268.job.T1
Wed Apr 19 15:47:13 2017 -> making sieve job for q = 11500000 in 11500000 .. 11525000 as file 35551_268.job.T2
Wed Apr 19 15:47:13 2017 -> making sieve job for q = 11525000 in 11525000 .. 11550000 as file 35551_268.job.T3
Wed Apr 19 15:47:13 2017 -> Lattice sieving algebraic q from 11450000 to 11550000.
Wed Apr 19 15:47:13 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Wed Apr 19 15:47:13 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Wed Apr 19 15:47:13 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Wed Apr 19 15:47:13 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Wed Apr 19 16:15:47 2017 Found 19607044 relations, 85.2% of the estimated minimum (23000000).
Wed Apr 19 16:15:47 2017 LatSieveTime: 1714.12
Wed Apr 19 16:15:47 2017 -> making sieve job for q = 11550000 in 11550000 .. 11575000 as file 35551_268.job.T0
Wed Apr 19 16:15:47 2017 -> making sieve job for q = 11575000 in 11575000 .. 11600000 as file 35551_268.job.T1
Wed Apr 19 16:15:47 2017 -> making sieve job for q = 11600000 in 11600000 .. 11625000 as file 35551_268.job.T2
Wed Apr 19 16:15:47 2017 -> making sieve job for q = 11625000 in 11625000 .. 11650000 as file 35551_268.job.T3
Wed Apr 19 16:15:47 2017 -> Lattice sieving algebraic q from 11550000 to 11650000.
Wed Apr 19 16:15:47 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Wed Apr 19 16:15:47 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Wed Apr 19 16:15:47 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Wed Apr 19 16:15:47 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Wed Apr 19 16:43:50 2017 Found 19869838 relations, 86.4% of the estimated minimum (23000000).
Wed Apr 19 16:43:50 2017 LatSieveTime: 1682.85
Wed Apr 19 16:43:50 2017 -> making sieve job for q = 11650000 in 11650000 .. 11675000 as file 35551_268.job.T0
Wed Apr 19 16:43:50 2017 -> making sieve job for q = 11675000 in 11675000 .. 11700000 as file 35551_268.job.T1
Wed Apr 19 16:43:50 2017 -> making sieve job for q = 11700000 in 11700000 .. 11725000 as file 35551_268.job.T2
Wed Apr 19 16:43:50 2017 -> making sieve job for q = 11725000 in 11725000 .. 11750000 as file 35551_268.job.T3
Wed Apr 19 16:43:50 2017 -> Lattice sieving algebraic q from 11650000 to 11750000.
Wed Apr 19 16:43:50 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Wed Apr 19 16:43:50 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Wed Apr 19 16:43:50 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Wed Apr 19 16:43:50 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Wed Apr 19 17:11:28 2017 Found 20127721 relations, 87.5% of the estimated minimum (23000000).
Wed Apr 19 17:11:28 2017 LatSieveTime: 1657.97
Wed Apr 19 17:11:28 2017 -> making sieve job for q = 11750000 in 11750000 .. 11775000 as file 35551_268.job.T0
Wed Apr 19 17:11:28 2017 -> making sieve job for q = 11775000 in 11775000 .. 11800000 as file 35551_268.job.T1
Wed Apr 19 17:11:28 2017 -> making sieve job for q = 11800000 in 11800000 .. 11825000 as file 35551_268.job.T2
Wed Apr 19 17:11:28 2017 -> making sieve job for q = 11825000 in 11825000 .. 11850000 as file 35551_268.job.T3
Wed Apr 19 17:11:28 2017 -> Lattice sieving algebraic q from 11750000 to 11850000.
Wed Apr 19 17:11:28 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Wed Apr 19 17:11:28 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Wed Apr 19 17:11:28 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Wed Apr 19 17:11:28 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Wed Apr 19 17:39:54 2017 Found 20386649 relations, 88.6% of the estimated minimum (23000000).
Wed Apr 19 17:39:54 2017 LatSieveTime: 1706.14
Wed Apr 19 17:39:54 2017 -> making sieve job for q = 11850000 in 11850000 .. 11875000 as file 35551_268.job.T0
Wed Apr 19 17:39:54 2017 -> making sieve job for q = 11875000 in 11875000 .. 11900000 as file 35551_268.job.T1
Wed Apr 19 17:39:54 2017 -> making sieve job for q = 11900000 in 11900000 .. 11925000 as file 35551_268.job.T2
Wed Apr 19 17:39:54 2017 -> making sieve job for q = 11925000 in 11925000 .. 11950000 as file 35551_268.job.T3
Wed Apr 19 17:39:54 2017 -> Lattice sieving algebraic q from 11850000 to 11950000.
Wed Apr 19 17:39:54 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Wed Apr 19 17:39:54 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Wed Apr 19 17:39:54 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Wed Apr 19 17:39:54 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Wed Apr 19 18:07:59 2017 Found 20643510 relations, 89.8% of the estimated minimum (23000000).
Wed Apr 19 18:07:59 2017 LatSieveTime: 1684.52
Wed Apr 19 18:07:59 2017 -> making sieve job for q = 11950000 in 11950000 .. 11975000 as file 35551_268.job.T0
Wed Apr 19 18:07:59 2017 -> making sieve job for q = 11975000 in 11975000 .. 12000000 as file 35551_268.job.T1
Wed Apr 19 18:07:59 2017 -> making sieve job for q = 12000000 in 12000000 .. 12025000 as file 35551_268.job.T2
Wed Apr 19 18:07:59 2017 -> making sieve job for q = 12025000 in 12025000 .. 12050000 as file 35551_268.job.T3
Wed Apr 19 18:07:59 2017 -> Lattice sieving algebraic q from 11950000 to 12050000.
Wed Apr 19 18:07:59 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Wed Apr 19 18:07:59 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Wed Apr 19 18:07:59 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Wed Apr 19 18:07:59 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Wed Apr 19 18:36:10 2017 Found 20900251 relations, 90.9% of the estimated minimum (23000000).
Wed Apr 19 18:36:10 2017 LatSieveTime: 1690.94
Wed Apr 19 18:36:10 2017 -> making sieve job for q = 12050000 in 12050000 .. 12075000 as file 35551_268.job.T0
Wed Apr 19 18:36:10 2017 -> making sieve job for q = 12075000 in 12075000 .. 12100000 as file 35551_268.job.T1
Wed Apr 19 18:36:10 2017 -> making sieve job for q = 12100000 in 12100000 .. 12125000 as file 35551_268.job.T2
Wed Apr 19 18:36:10 2017 -> making sieve job for q = 12125000 in 12125000 .. 12150000 as file 35551_268.job.T3
Wed Apr 19 18:36:10 2017 -> Lattice sieving algebraic q from 12050000 to 12150000.
Wed Apr 19 18:36:10 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Wed Apr 19 18:36:10 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Wed Apr 19 18:36:10 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Wed Apr 19 18:36:10 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Wed Apr 19 19:04:27 2017 Found 21163932 relations, 92.0% of the estimated minimum (23000000).
Wed Apr 19 19:04:27 2017 LatSieveTime: 1697.3
Wed Apr 19 19:04:27 2017 -> making sieve job for q = 12150000 in 12150000 .. 12175000 as file 35551_268.job.T0
Wed Apr 19 19:04:27 2017 -> making sieve job for q = 12175000 in 12175000 .. 12200000 as file 35551_268.job.T1
Wed Apr 19 19:04:27 2017 -> making sieve job for q = 12200000 in 12200000 .. 12225000 as file 35551_268.job.T2
Wed Apr 19 19:04:27 2017 -> making sieve job for q = 12225000 in 12225000 .. 12250000 as file 35551_268.job.T3
Wed Apr 19 19:04:27 2017 -> Lattice sieving algebraic q from 12150000 to 12250000.
Wed Apr 19 19:04:27 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Wed Apr 19 19:04:27 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Wed Apr 19 19:04:27 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Wed Apr 19 19:04:27 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Wed Apr 19 19:33:11 2017 Found 21418206 relations, 93.1% of the estimated minimum (23000000).
Wed Apr 19 19:33:11 2017 LatSieveTime: 1723.87
Wed Apr 19 19:33:11 2017 -> making sieve job for q = 12250000 in 12250000 .. 12275000 as file 35551_268.job.T0
Wed Apr 19 19:33:11 2017 -> making sieve job for q = 12275000 in 12275000 .. 12300000 as file 35551_268.job.T1
Wed Apr 19 19:33:11 2017 -> making sieve job for q = 12300000 in 12300000 .. 12325000 as file 35551_268.job.T2
Wed Apr 19 19:33:11 2017 -> making sieve job for q = 12325000 in 12325000 .. 12350000 as file 35551_268.job.T3
Wed Apr 19 19:33:11 2017 -> Lattice sieving algebraic q from 12250000 to 12350000.
Wed Apr 19 19:33:11 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Wed Apr 19 19:33:11 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Wed Apr 19 19:33:11 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Wed Apr 19 19:33:11 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Wed Apr 19 20:00:53 2017 Found 21676377 relations, 94.2% of the estimated minimum (23000000).
Wed Apr 19 20:00:53 2017 LatSieveTime: 1661.84
Wed Apr 19 20:00:53 2017 -> making sieve job for q = 12350000 in 12350000 .. 12375000 as file 35551_268.job.T0
Wed Apr 19 20:00:53 2017 -> making sieve job for q = 12375000 in 12375000 .. 12400000 as file 35551_268.job.T1
Wed Apr 19 20:00:53 2017 -> making sieve job for q = 12400000 in 12400000 .. 12425000 as file 35551_268.job.T2
Wed Apr 19 20:00:53 2017 -> making sieve job for q = 12425000 in 12425000 .. 12450000 as file 35551_268.job.T3
Wed Apr 19 20:00:53 2017 -> Lattice sieving algebraic q from 12350000 to 12450000.
Wed Apr 19 20:00:53 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Wed Apr 19 20:00:53 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Wed Apr 19 20:00:53 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Wed Apr 19 20:00:53 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Wed Apr 19 20:30:16 2017 Found 21936700 relations, 95.4% of the estimated minimum (23000000).
Wed Apr 19 20:30:16 2017 LatSieveTime: 1763.13
Wed Apr 19 20:30:16 2017 -> making sieve job for q = 12450000 in 12450000 .. 12475000 as file 35551_268.job.T0
Wed Apr 19 20:30:16 2017 -> making sieve job for q = 12475000 in 12475000 .. 12500000 as file 35551_268.job.T1
Wed Apr 19 20:30:16 2017 -> making sieve job for q = 12500000 in 12500000 .. 12525000 as file 35551_268.job.T2
Wed Apr 19 20:30:16 2017 -> making sieve job for q = 12525000 in 12525000 .. 12550000 as file 35551_268.job.T3
Wed Apr 19 20:30:16 2017 -> Lattice sieving algebraic q from 12450000 to 12550000.
Wed Apr 19 20:30:16 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Wed Apr 19 20:30:16 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Wed Apr 19 20:30:16 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Wed Apr 19 20:30:16 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Wed Apr 19 20:58:18 2017 Found 22189920 relations, 96.5% of the estimated minimum (23000000).
Wed Apr 19 20:58:18 2017 LatSieveTime: 1682.15
Wed Apr 19 20:58:18 2017 -> making sieve job for q = 12550000 in 12550000 .. 12575000 as file 35551_268.job.T0
Wed Apr 19 20:58:18 2017 -> making sieve job for q = 12575000 in 12575000 .. 12600000 as file 35551_268.job.T1
Wed Apr 19 20:58:18 2017 -> making sieve job for q = 12600000 in 12600000 .. 12625000 as file 35551_268.job.T2
Wed Apr 19 20:58:18 2017 -> making sieve job for q = 12625000 in 12625000 .. 12650000 as file 35551_268.job.T3
Wed Apr 19 20:58:18 2017 -> Lattice sieving algebraic q from 12550000 to 12650000.
Wed Apr 19 20:58:18 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Wed Apr 19 20:58:18 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Wed Apr 19 20:58:18 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Wed Apr 19 20:58:18 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Wed Apr 19 21:26:32 2017 Found 22448164 relations, 97.6% of the estimated minimum (23000000).
Wed Apr 19 21:26:32 2017 LatSieveTime: 1694.24
Wed Apr 19 21:26:32 2017 -> making sieve job for q = 12650000 in 12650000 .. 12675000 as file 35551_268.job.T0
Wed Apr 19 21:26:32 2017 -> making sieve job for q = 12675000 in 12675000 .. 12700000 as file 35551_268.job.T1
Wed Apr 19 21:26:32 2017 -> making sieve job for q = 12700000 in 12700000 .. 12725000 as file 35551_268.job.T2
Wed Apr 19 21:26:32 2017 -> making sieve job for q = 12725000 in 12725000 .. 12750000 as file 35551_268.job.T3
Wed Apr 19 21:26:32 2017 -> Lattice sieving algebraic q from 12650000 to 12750000.
Wed Apr 19 21:26:32 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Wed Apr 19 21:26:32 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Wed Apr 19 21:26:32 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Wed Apr 19 21:26:32 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Wed Apr 19 21:54:07 2017 Found 22698566 relations, 98.7% of the estimated minimum (23000000).
Wed Apr 19 21:54:07 2017 LatSieveTime: 1654.48
Wed Apr 19 21:54:07 2017 -> making sieve job for q = 12750000 in 12750000 .. 12775000 as file 35551_268.job.T0
Wed Apr 19 21:54:07 2017 -> making sieve job for q = 12775000 in 12775000 .. 12800000 as file 35551_268.job.T1
Wed Apr 19 21:54:07 2017 -> making sieve job for q = 12800000 in 12800000 .. 12825000 as file 35551_268.job.T2
Wed Apr 19 21:54:07 2017 -> making sieve job for q = 12825000 in 12825000 .. 12850000 as file 35551_268.job.T3
Wed Apr 19 21:54:07 2017 -> Lattice sieving algebraic q from 12750000 to 12850000.
Wed Apr 19 21:54:07 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Wed Apr 19 21:54:07 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Wed Apr 19 21:54:07 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Wed Apr 19 21:54:07 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Wed Apr 19 22:21:23 2017 Found 22948246 relations, 99.8% of the estimated minimum (23000000).
Wed Apr 19 22:21:23 2017 LatSieveTime: 1635.68
Wed Apr 19 22:21:23 2017 -> making sieve job for q = 12850000 in 12850000 .. 12875000 as file 35551_268.job.T0
Wed Apr 19 22:21:23 2017 -> making sieve job for q = 12875000 in 12875000 .. 12900000 as file 35551_268.job.T1
Wed Apr 19 22:21:23 2017 -> making sieve job for q = 12900000 in 12900000 .. 12925000 as file 35551_268.job.T2
Wed Apr 19 22:21:23 2017 -> making sieve job for q = 12925000 in 12925000 .. 12950000 as file 35551_268.job.T3
Wed Apr 19 22:21:23 2017 -> Lattice sieving algebraic q from 12850000 to 12950000.
Wed Apr 19 22:21:23 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0
Wed Apr 19 22:21:23 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1
Wed Apr 19 22:21:23 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2
Wed Apr 19 22:21:23 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3
Wed Apr 19 22:49:29 2017 Found 23196975 relations, 100.9% of the estimated minimum (23000000).
Wed Apr 19 22:49:31 2017  
Wed Apr 19 22:49:31 2017  
Wed Apr 19 22:49:31 2017  Msieve v. 1.51 (SVN 845)
Wed Apr 19 22:49:31 2017  random seeds: dbdaacc0 f2ca7b1e
Wed Apr 19 22:49:31 2017  factoring 245527399014830982623900013544870486404967868753115226505336323366843356620082327747267727904394697435731556676413348329990841713057787 (135 digits)
Wed Apr 19 22:49:31 2017  searching for 15-digit factors
Wed Apr 19 22:49:32 2017  commencing number field sieve (135-digit input)
Wed Apr 19 22:49:32 2017  R0: -154291249074857749406767620
Wed Apr 19 22:49:32 2017  R1: 36686555400721
Wed Apr 19 22:49:32 2017  A0: -3812760784881918934330972817864753
Wed Apr 19 22:49:32 2017  A1: 8158332078726734238518201747
Wed Apr 19 22:49:32 2017  A2: 45137649547438786538735
Wed Apr 19 22:49:32 2017  A3: -18022645475278295
Wed Apr 19 22:49:32 2017  A4: -98296253322
Wed Apr 19 22:49:32 2017  A5: 2808
Wed Apr 19 22:49:32 2017  skew 848829.07, size 5.408e-013, alpha -7.800, combined = 4.297e-011 rroots = 3
Wed Apr 19 22:49:32 2017  
Wed Apr 19 22:49:32 2017  commencing relation filtering
Wed Apr 19 22:49:32 2017  estimated available RAM is 4096.0 MB
Wed Apr 19 22:49:32 2017  commencing duplicate removal, pass 1
Wed Apr 19 22:52:12 2017  found 3268342 hash collisions in 23196974 relations
Wed Apr 19 22:52:50 2017  added 121230 free relations
Wed Apr 19 22:52:50 2017  commencing duplicate removal, pass 2
Wed Apr 19 22:53:03 2017  found 2855200 duplicates and 20463004 unique relations
Wed Apr 19 22:53:03 2017  memory use: 98.6 MB
Wed Apr 19 22:53:03 2017  reading ideals above 720000
Wed Apr 19 22:53:03 2017  commencing singleton removal, initial pass
Wed Apr 19 22:56:11 2017  memory use: 689.0 MB
Wed Apr 19 22:56:11 2017  reading all ideals from disk
Wed Apr 19 22:56:11 2017  memory use: 638.9 MB
Wed Apr 19 22:56:12 2017  keeping 21452964 ideals with weight <= 200, target excess is 123868
Wed Apr 19 22:56:13 2017  commencing in-memory singleton removal
Wed Apr 19 22:56:15 2017  begin with 20463004 relations and 21452964 unique ideals
Wed Apr 19 22:56:29 2017  reduce to 9063664 relations and 8274137 ideals in 19 passes
Wed Apr 19 22:56:29 2017  max relations containing the same ideal: 114
Wed Apr 19 22:56:33 2017  removing 1936611 relations and 1613691 ideals in 322920 cliques
Wed Apr 19 22:56:33 2017  commencing in-memory singleton removal
Wed Apr 19 22:56:33 2017  begin with 7127053 relations and 8274137 unique ideals
Wed Apr 19 22:56:38 2017  reduce to 6791762 relations and 6309745 ideals in 10 passes
Wed Apr 19 22:56:38 2017  max relations containing the same ideal: 93
Wed Apr 19 22:56:41 2017  removing 1487778 relations and 1164858 ideals in 322920 cliques
Wed Apr 19 22:56:42 2017  commencing in-memory singleton removal
Wed Apr 19 22:56:42 2017  begin with 5303984 relations and 6309745 unique ideals
Wed Apr 19 22:56:45 2017  reduce to 5042316 relations and 4870159 ideals in 9 passes
Wed Apr 19 22:56:45 2017  max relations containing the same ideal: 75
Wed Apr 19 22:56:47 2017  removing 217481 relations and 189011 ideals in 28470 cliques
Wed Apr 19 22:56:47 2017  commencing in-memory singleton removal
Wed Apr 19 22:56:47 2017  begin with 4824835 relations and 4870159 unique ideals
Wed Apr 19 22:56:49 2017  reduce to 4818881 relations and 4675158 ideals in 6 passes
Wed Apr 19 22:56:49 2017  max relations containing the same ideal: 70
Wed Apr 19 22:56:50 2017  relations with 0 large ideals: 531
Wed Apr 19 22:56:50 2017  relations with 1 large ideals: 1745
Wed Apr 19 22:56:50 2017  relations with 2 large ideals: 27484
Wed Apr 19 22:56:50 2017  relations with 3 large ideals: 180141
Wed Apr 19 22:56:50 2017  relations with 4 large ideals: 614463
Wed Apr 19 22:56:50 2017  relations with 5 large ideals: 1194417
Wed Apr 19 22:56:50 2017  relations with 6 large ideals: 1380514
Wed Apr 19 22:56:50 2017  relations with 7+ large ideals: 1419586
Wed Apr 19 22:56:50 2017  commencing 2-way merge
Wed Apr 19 22:56:53 2017  reduce to 2846414 relation sets and 2702691 unique ideals
Wed Apr 19 22:56:53 2017  commencing full merge
Wed Apr 19 22:57:31 2017  memory use: 286.2 MB
Wed Apr 19 22:57:31 2017  found 1488229 cycles, need 1468891
Wed Apr 19 22:57:32 2017  weight of 1468891 cycles is about 102895077 (70.05/cycle)
Wed Apr 19 22:57:32 2017  distribution of cycle lengths:
Wed Apr 19 22:57:32 2017  1 relations: 190237
Wed Apr 19 22:57:32 2017  2 relations: 173895
Wed Apr 19 22:57:32 2017  3 relations: 166971
Wed Apr 19 22:57:32 2017  4 relations: 150937
Wed Apr 19 22:57:32 2017  5 relations: 139014
Wed Apr 19 22:57:32 2017  6 relations: 121832
Wed Apr 19 22:57:32 2017  7 relations: 107481
Wed Apr 19 22:57:32 2017  8 relations: 91551
Wed Apr 19 22:57:32 2017  9 relations: 77230
Wed Apr 19 22:57:32 2017  10+ relations: 249743
Wed Apr 19 22:57:32 2017  heaviest cycle: 20 relations
Wed Apr 19 22:57:32 2017  commencing cycle optimization
Wed Apr 19 22:57:34 2017  start with 8306823 relations
Wed Apr 19 22:57:46 2017  pruned 186630 relations
Wed Apr 19 22:57:46 2017  memory use: 222.4 MB
Wed Apr 19 22:57:46 2017  distribution of cycle lengths:
Wed Apr 19 22:57:46 2017  1 relations: 190237
Wed Apr 19 22:57:46 2017  2 relations: 177577
Wed Apr 19 22:57:46 2017  3 relations: 172305
Wed Apr 19 22:57:46 2017  4 relations: 154409
Wed Apr 19 22:57:46 2017  5 relations: 142201
Wed Apr 19 22:57:46 2017  6 relations: 123465
Wed Apr 19 22:57:46 2017  7 relations: 108540
Wed Apr 19 22:57:46 2017  8 relations: 91522
Wed Apr 19 22:57:46 2017  9 relations: 76683
Wed Apr 19 22:57:46 2017  10+ relations: 231952
Wed Apr 19 22:57:46 2017  heaviest cycle: 19 relations
Wed Apr 19 22:57:47 2017  RelProcTime: 495
Wed Apr 19 22:57:47 2017  elapsed time 00:08:16
Wed Apr 19 22:57:47 2017 LatSieveTime: 2184.31
Wed Apr 19 22:57:47 2017 -> Running matrix solving step ...
Wed Apr 19 22:57:47 2017  
Wed Apr 19 22:57:47 2017  
Wed Apr 19 22:57:47 2017  Msieve v. 1.51 (SVN 845)
Wed Apr 19 22:57:47 2017  random seeds: ba398a50 4d33deb6
Wed Apr 19 22:57:47 2017  factoring 245527399014830982623900013544870486404967868753115226505336323366843356620082327747267727904394697435731556676413348329990841713057787 (135 digits)
Wed Apr 19 22:57:48 2017  searching for 15-digit factors
Wed Apr 19 22:57:48 2017  commencing number field sieve (135-digit input)
Wed Apr 19 22:57:48 2017  R0: -154291249074857749406767620
Wed Apr 19 22:57:48 2017  R1: 36686555400721
Wed Apr 19 22:57:48 2017  A0: -3812760784881918934330972817864753
Wed Apr 19 22:57:48 2017  A1: 8158332078726734238518201747
Wed Apr 19 22:57:48 2017  A2: 45137649547438786538735
Wed Apr 19 22:57:48 2017  A3: -18022645475278295
Wed Apr 19 22:57:48 2017  A4: -98296253322
Wed Apr 19 22:57:48 2017  A5: 2808
Wed Apr 19 22:57:48 2017  skew 848829.07, size 5.408e-013, alpha -7.800, combined = 4.297e-011 rroots = 3
Wed Apr 19 22:57:48 2017  
Wed Apr 19 22:57:48 2017  commencing linear algebra
Wed Apr 19 22:57:49 2017  read 1468891 cycles
Wed Apr 19 22:57:51 2017  cycles contain 4707154 unique relations
Wed Apr 19 22:58:33 2017  read 4707154 relations
Wed Apr 19 22:58:39 2017  using 20 quadratic characters above 268435292
Wed Apr 19 22:58:58 2017  building initial matrix
Wed Apr 19 22:59:44 2017  memory use: 567.8 MB
Wed Apr 19 22:59:46 2017  read 1468891 cycles
Wed Apr 19 22:59:47 2017  matrix is 1468713 x 1468891 (422.5 MB) with weight 140080101 (95.36/col)
Wed Apr 19 22:59:47 2017  sparse part has weight 99012662 (67.41/col)
Wed Apr 19 22:59:58 2017  filtering completed in 2 passes
Wed Apr 19 22:59:59 2017  matrix is 1467718 x 1467896 (422.5 MB) with weight 140040741 (95.40/col)
Wed Apr 19 22:59:59 2017  sparse part has weight 99002176 (67.44/col)
Wed Apr 19 23:00:02 2017  matrix starts at (0, 0)
Wed Apr 19 23:00:02 2017  matrix is 1467718 x 1467896 (422.5 MB) with weight 140040741 (95.40/col)
Wed Apr 19 23:00:02 2017  sparse part has weight 99002176 (67.44/col)
Wed Apr 19 23:00:02 2017  saving the first 48 matrix rows for later
Wed Apr 19 23:00:03 2017  matrix includes 64 packed rows
Wed Apr 19 23:00:03 2017  matrix is 1467670 x 1467896 (404.1 MB) with weight 110992910 (75.61/col)
Wed Apr 19 23:00:03 2017  sparse part has weight 97133265 (66.17/col)
Wed Apr 19 23:00:03 2017  using block size 65536 for processor cache size 6144 kB
Wed Apr 19 23:00:11 2017  commencing Lanczos iteration (4 threads)
Wed Apr 19 23:00:11 2017  memory use: 367.4 MB
Wed Apr 19 23:00:17 2017  linear algebra at 0.1%, ETA 1h36m
Wed Apr 19 23:00:19 2017  checkpointing every 910000 dimensions
Thu Apr 20 01:04:34 2017  lanczos halted after 23210 iterations (dim = 1467668)
Thu Apr 20 01:04:36 2017  recovered 27 nontrivial dependencies
Thu Apr 20 01:04:36 2017  BLanczosTime: 7608
Thu Apr 20 01:04:36 2017  elapsed time 02:06:49
Thu Apr 20 01:04:36 2017 -> Running square root step ...
Thu Apr 20 01:04:37 2017  
Thu Apr 20 01:04:37 2017  
Thu Apr 20 01:04:37 2017  Msieve v. 1.51 (SVN 845)
Thu Apr 20 01:04:37 2017  random seeds: e5e9bc90 10a69e72
Thu Apr 20 01:04:37 2017  factoring 245527399014830982623900013544870486404967868753115226505336323366843356620082327747267727904394697435731556676413348329990841713057787 (135 digits)
Thu Apr 20 01:04:37 2017  searching for 15-digit factors
Thu Apr 20 01:04:38 2017  commencing number field sieve (135-digit input)
Thu Apr 20 01:04:38 2017  R0: -154291249074857749406767620
Thu Apr 20 01:04:38 2017  R1: 36686555400721
Thu Apr 20 01:04:38 2017  A0: -3812760784881918934330972817864753
Thu Apr 20 01:04:38 2017  A1: 8158332078726734238518201747
Thu Apr 20 01:04:38 2017  A2: 45137649547438786538735
Thu Apr 20 01:04:38 2017  A3: -18022645475278295
Thu Apr 20 01:04:38 2017  A4: -98296253322
Thu Apr 20 01:04:38 2017  A5: 2808
Thu Apr 20 01:04:38 2017  skew 848829.07, size 5.408e-013, alpha -7.800, combined = 4.297e-011 rroots = 3
Thu Apr 20 01:04:38 2017  
Thu Apr 20 01:04:38 2017  commencing square root phase
Thu Apr 20 01:04:38 2017  reading relations for dependency 1
Thu Apr 20 01:04:39 2017  read 733673 cycles
Thu Apr 20 01:04:40 2017  cycles contain 2353664 unique relations
Thu Apr 20 01:05:12 2017  read 2353664 relations
Thu Apr 20 01:05:22 2017  multiplying 2353664 relations
Thu Apr 20 01:10:25 2017  multiply complete, coefficients have about 112.54 million bits
Thu Apr 20 01:10:26 2017  initial square root is modulo 119684197
Thu Apr 20 01:16:34 2017  GCD is 1, no factor found
Thu Apr 20 01:16:34 2017  reading relations for dependency 2
Thu Apr 20 01:16:34 2017  read 735234 cycles
Thu Apr 20 01:16:35 2017  cycles contain 2354674 unique relations
Thu Apr 20 01:16:56 2017  read 2354674 relations
Thu Apr 20 01:17:05 2017  multiplying 2354674 relations
Thu Apr 20 01:21:49 2017  multiply complete, coefficients have about 112.59 million bits
Thu Apr 20 01:21:50 2017  initial square root is modulo 120718193
Thu Apr 20 01:27:55 2017  GCD is 1, no factor found
Thu Apr 20 01:27:55 2017  reading relations for dependency 3
Thu Apr 20 01:27:56 2017  read 733198 cycles
Thu Apr 20 01:27:57 2017  cycles contain 2351570 unique relations
Thu Apr 20 01:28:19 2017  read 2351570 relations
Thu Apr 20 01:28:28 2017  multiplying 2351570 relations
Thu Apr 20 01:33:13 2017  multiply complete, coefficients have about 112.45 million bits
Thu Apr 20 01:33:15 2017  initial square root is modulo 117884071
Thu Apr 20 01:39:13 2017  sqrtTime: 2075
Thu Apr 20 01:39:13 2017  prp51 factor: 787449987256670916020368269558651160405732504278791
Thu Apr 20 01:39:13 2017  prp84 factor: 311800626056522914538124146410462757851806729057715123986218638376967318983646043757
Thu Apr 20 01:39:13 2017  elapsed time 00:34:36
Thu Apr 20 01:39:13 2017 -> Computing 1.49265e+09 scale for this machine...
Thu Apr 20 01:39:13 2017 -> procrels -speedtest> PIPE
Thu Apr 20 01:39:16 2017 -> Factorization summary written to g135-35551_268.txt
software ソフトウェア
GGNFS, Msieve

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaApril 2, 2017 07:00:00 UTC 2017 年 4 月 2 日 (日) 16 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovApril 7, 2017 08:17:44 UTC 2017 年 4 月 7 日 (金) 17 時 17 分 44 秒 (日本時間)
4511e6320 / 4218Dmitry DomanovApril 14, 2017 12:10:42 UTC 2017 年 4 月 14 日 (金) 21 時 10 分 42 秒 (日本時間)

32×10269-419

c242

composite cofactor 合成数の残り
21704367201358849137908122210486083792693203223551814738196548000850216034031348949810854726243160339047245586350883579541679698168036820134920165994392549096800284079716606325022106218356027608457169461360618739702233156279302108502996741557<242>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaApril 2, 2017 07:00:00 UTC 2017 年 4 月 2 日 (日) 16 時 0 分 0 秒 (日本時間)
403e62106610Marlon TrifunovicMarch 4, 2022 14:44:22 UTC 2022 年 3 月 4 日 (金) 23 時 44 分 22 秒 (日本時間)
1496ebinaJanuary 28, 2024 01:53:49 UTC 2024 年 1 月 28 日 (日) 10 時 53 分 49 秒 (日本時間)

32×10270-419

c248

name 名前Marlon Trifunovic
date 日付April 15, 2022 00:31:25 UTC 2022 年 4 月 15 日 (金) 9 時 31 分 25 秒 (日本時間)
composite number 合成数
69443535415558517918054470963977163563384316226576442486699741940555488866965002976435031281700134696709448226802828858926698149474106561255119304396806986943789258269370667498202870158790274441767800268402270356420667373552924146471718826522907943<248>
prime factors 素因数
104652402873839421682540194469900363943<39>
composite cofactor 合成数の残り
663563697617856875775660114901588307536794179101539189485777229548599640834906599475132939006735518264321711501166411475443010987531662199653752925726734497299626465541723831382038933397798334719992590777008001<210>
factorization results 素因数分解の結果
Run 512 out of 610:
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:374702917
Step 1 took 24704ms
Step 2 took 9363ms
********** Factor found in step 2: 104652402873839421682540194469900363943
Found prime factor of 39 digits: 104652402873839421682540194469900363943
Composite cofactor 663563697617856875775660114901588307536794179101539189485777229548599640834906599475132939006735518264321711501166411475443010987531662199653752925726734497299626465541723831382038933397798334719992590777008001 has 210 digits
software ソフトウェア
GMP-ECM 7.0.5-dev
execution environment 実行環境
Intel Xeon CPU E5-2695 v4 @ 2.10GHz

c210

name 名前ebina
date 日付January 28, 2024 02:51:33 UTC 2024 年 1 月 28 日 (日) 11 時 51 分 33 秒 (日本時間)
composite number 合成数
663563697617856875775660114901588307536794179101539189485777229548599640834906599475132939006735518264321711501166411475443010987531662199653752925726734497299626465541723831382038933397798334719992590777008001<210>
prime factors 素因数
6025266754585033798845569219023853888719<40>
composite cofactor 合成数の残り
110130177574778127345554956621332544011138537969368972363354456124651325417940089720589237080295048980712779833081768452760997886303015901091587102597342256044690092296879<171>
factorization results 素因数分解の結果
Y:\ALL\ECM>ecm-svn3038-skylake\ecm -primetest -one -sigma 1:1397209076 11e6      
GMP-ECM 7.0.5-dev [configured with GMP 6.1.2, --enable-asm-redc] [ECM]
Input number is 663563697617856875775660114901588307536794179101539189485777229548599640834906599475132939006735518264321711501166411475443010987531662199653752925726734497299626465541723831382038933397798334719992590777008001 (210 digits)
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:1397209076
Step 1 took 17969ms
Step 2 took 7734ms
********** Factor found in step 2: 6025266754585033798845569219023853888719
Found prime factor of 40 digits: 6025266754585033798845569219023853888719
Composite cofactor 110130177574778127345554956621332544011138537969368972363354456124651325417940089720589237080295048980712779833081768452760997886303015901091587102597342256044690092296879 has 171 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaApril 2, 2017 07:00:00 UTC 2017 年 4 月 2 日 (日) 16 時 0 分 0 秒 (日本時間)
403e62402610Marlon TrifunovicMarch 4, 2022 02:35:13 UTC 2022 年 3 月 4 日 (金) 11 時 35 分 13 秒 (日本時間)
1792Dmitry DomanovJanuary 7, 2024 17:53:59 UTC 2024 年 1 月 8 日 (月) 2 時 53 分 59 秒 (日本時間)
4511e64992512ebinaJanuary 28, 2024 02:50:57 UTC 2024 年 1 月 28 日 (日) 11 時 50 分 57 秒 (日本時間)
4480Ignacio SantosFebruary 4, 2024 15:16:29 UTC 2024 年 2 月 5 日 (月) 0 時 16 分 29 秒 (日本時間)
5043e61792 / 6337Dmitry DomanovJune 2, 2024 19:16:02 UTC 2024 年 6 月 3 日 (月) 4 時 16 分 2 秒 (日本時間)

32×10272-419

c238

name 名前Ignacio Santos
date 日付March 25, 2024 15:43:09 UTC 2024 年 3 月 26 日 (火) 0 時 43 分 9 秒 (日本時間)
composite number 合成数
1911690776494824871790920269064255174465537637124826285185261610935484837377244899930977242374792675653328667436115049942696591806939991837656967857075187466979860033580943801629011300033789246106439184587176071587109634390975800640839999<238>
prime factors 素因数
4492634336925064065519854227886940527<37>
composite cofactor 合成数の残り
425516664194678562075732737787670203659467054241016739635365982918265862835466897238614750063220601631759327124126884545269982336043846080679552776402455265495460124737347406281574708294849211334751537<201>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:325043331
Step 1 took 11391ms
Step 2 took 4641ms
********** Factor found in step 2: 4492634336925064065519854227886940527
Found prime factor of 37 digits: 4492634336925064065519854227886940527
Composite cofactor 425516664194678562075732737787670203659467054241016739635365982918265862835466897238614750063220601631759327124126884545269982336043846080679552776402455265495460124737347406281574708294849211334751537 has 201 digits
software ソフトウェア
GMP-ECM

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaApril 2, 2017 07:00:00 UTC 2017 年 4 月 2 日 (日) 16 時 0 分 0 秒 (日本時間)
403e62960610Marlon TrifunovicMarch 1, 2022 23:02:57 UTC 2022 年 3 月 2 日 (水) 8 時 2 分 57 秒 (日本時間)
2350Ignacio SantosMarch 26, 2024 08:37:17 UTC 2024 年 3 月 26 日 (火) 17 時 37 分 17 秒 (日本時間)

32×10274-419

c258

composite cofactor 合成数の残り
252065772229876877047283561411675739217939353162877789245986619976054085904087256675665487064946845666569713049104649585555270085410258821493304455954316311175133965488005518017349660628940764202040706160442223672633795706083259593970592111033890993992801841<258>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaApril 2, 2017 07:00:00 UTC 2017 年 4 月 2 日 (日) 16 時 0 分 0 秒 (日本時間)
403e62960610Marlon TrifunovicMarch 7, 2022 08:13:04 UTC 2022 年 3 月 7 日 (月) 17 時 13 分 4 秒 (日本時間)
2350Ignacio SantosMarch 25, 2024 15:43:59 UTC 2024 年 3 月 26 日 (火) 0 時 43 分 59 秒 (日本時間)

32×10275-419

c262

composite cofactor 合成数の残り
5181671832090265695016274553526861708768636998317983120620566429960816349701225451253593925120039554036913245492494062498439391892118681021136436724532054215877804927797875490666393480691528078367970117421974193863888052424814128102575534798302754750666948578647<262>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaApril 2, 2017 07:00:00 UTC 2017 年 4 月 2 日 (日) 16 時 0 分 0 秒 (日本時間)
403e62960610Marlon TrifunovicMarch 8, 2022 05:07:04 UTC 2022 年 3 月 8 日 (火) 14 時 7 分 4 秒 (日本時間)
2350Ignacio SantosMarch 25, 2024 16:07:42 UTC 2024 年 3 月 26 日 (火) 1 時 7 分 42 秒 (日本時間)

32×10276-419

c179

name 名前Serge Batalov
date 日付April 3, 2017 04:34:59 UTC 2017 年 4 月 3 日 (月) 13 時 34 分 59 秒 (日本時間)
composite number 合成数
11530776690857173396038604587271888690910102745184654441769333576435821383054341931338573126252429843856106103499660735638654001294964077632970093570903305488024679724787072010129<179>
prime factors 素因数
2790881175811668152252344882655493812942329<43>
composite cofactor 合成数の残り
4131589976238846282719475051326861562109118271263447165958556168132673509082950086453560544999700963305103369847905189661960745054938201<136>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:4204056723
Step 1 took 71326ms
Step 2 took 31536ms
********** Factor found in step 2: 2790881175811668152252344882655493812942329
Found prime factor of 43 digits: 2790881175811668152252344882655493812942329
Composite cofactor 

c136

name 名前Erik Branger
date 日付April 23, 2017 07:54:13 UTC 2017 年 4 月 23 日 (日) 16 時 54 分 13 秒 (日本時間)
composite number 合成数
4131589976238846282719475051326861562109118271263447165958556168132673509082950086453560544999700963305103369847905189661960745054938201<136>
prime factors 素因数
15673481075617888541900076529895239262954488856401<50>
263603851391128724308882738973371765275524917979912760200769792117860266913695040561801<87>
factorization results 素因数分解の結果
Number: 35551_276
N = 4131589976238846282719475051326861562109118271263447165958556168132673509082950086453560544999700963305103369847905189661960745054938201 (136 digits)
Divisors found:
r1=15673481075617888541900076529895239262954488856401 (pp50)
r2=263603851391128724308882738973371765275524917979912760200769792117860266913695040561801 (pp87)
Version: Msieve v. 1.51 (SVN 845)
Total time: 205.43 hours.
Factorization parameters were as follows:
# Murphy_E = 3.457e-11, selected by Erik Branger
# expecting poly E from 3.79e-011 to > 4.36e-011
n: 4131589976238846282719475051326861562109118271263447165958556168132673509082950086453560544999700963305103369847905189661960745054938201
Y0: -224929762465668715996441983
Y1: 348396968046197
c0: 8705468690043008090938616755967440
c1: 75299189220187273274103694676
c2: 1201721440115805392920
c3: -63794579071592351
c4: 1727918254
c5: 7176
skew: 1697200.72
type: gnfs
# selected mechanically
rlim: 13900000
alim: 13900000
lpbr: 28
lpba: 28
mfbr: 55
mfba: 55
rlambda: 2.6
alambda: 2.6
Factor base limits: 13900000/13900000
Large primes per side: 3
Large prime bits: 28/28
Sieved algebraic special-q in [0, 0)
Total raw relations: 22091152
Relations: 3557770 relations
Pruned matrix : 2128167 x 2128394
Polynomial selection time: 0.00 hours.
Total sieving time: 199.97 hours.
Total relation processing time: 0.15 hours.
Matrix solve time: 4.45 hours.
time per square root: 0.87 hours.
Prototype def-par.txt line would be: gnfs,135,5,65,2000,1e-05,0.28,250,20,50000,3600,13900000,13900000,28,28,55,55,2.6,2.6,100000
total time: 205.43 hours.
Intel64 Family 6 Model 58 Stepping 9, GenuineIntel
Windows-post2008Server-6.2.9200
processors: 8, speed: 2.29GHz
software ソフトウェア
GGNFS, Msieve

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaApril 2, 2017 07:00:00 UTC 2017 年 4 月 2 日 (日) 16 時 0 分 0 秒 (日本時間)
403e61000Serge BatalovApril 3, 2017 04:34:28 UTC 2017 年 4 月 3 日 (月) 13 時 34 分 28 秒 (日本時間)
4511e6600 / 4218Dmitry DomanovApril 4, 2017 08:26:02 UTC 2017 年 4 月 4 日 (火) 17 時 26 分 2 秒 (日本時間)

32×10277-419

c141

name 名前Erik Branger
date 日付April 27, 2017 15:15:01 UTC 2017 年 4 月 28 日 (金) 0 時 15 分 1 秒 (日本時間)
composite number 合成数
366293693489894317045560402272579760283504184893522485185958809921754539541697920108501423740777442729832172593769524048238737332975061868813<141>
prime factors 素因数
13576459801119212331341909136040495140450672670519631<53>
26980059518881196240251815224764064292082915374370756305377496325609240318364391011588323<89>
factorization results 素因数分解の結果
Number: 35551_277
N = 366293693489894317045560402272579760283504184893522485185958809921754539541697920108501423740777442729832172593769524048238737332975061868813 (141 digits)
Divisors found:
r1=13576459801119212331341909136040495140450672670519631 (pp53)
r2=26980059518881196240251815224764064292082915374370756305377496325609240318364391011588323 (pp89)
Version: Msieve v. 1.51 (SVN 845)
Total time: 381.49 hours.
Factorization parameters were as follows:
Murphy_E = 1.917e-11, selected by Erik Branger
# expecting poly E from 1.90e-011 to > 2.18e-011
n: 366293693489894317045560402272579760283504184893522485185958809921754539541697920108501423740777442729832172593769524048238737332975061868813
Y0: -2681915622814830395649347993
Y1: 17889177322661
c0: 107757608613480550618740067426757568
c1: 546132615763444518491000395164
c2: 566369085652178796222348
c3: -112891675109343589
c4: -33009584926
c5: 2640
skew: 3472882.2
type: gnfs
# selected mechanically
rlim: 18900000
alim: 18900000
lpbr: 28
lpba: 28
mfbr: 56
mfba: 56
rlambda: 2.6
alambda: 2.6
Factor base limits: 18900000/18900000
Large primes per side: 3
Large prime bits: 28/28
Sieved algebraic special-q in [0, 0)
Total raw relations: 23276566
Relations: 3669956 relations
Pruned matrix : 2279076 x 2279300
Polynomial selection time: 0.00 hours.
Total sieving time: 375.53 hours.
Total relation processing time: 0.18 hours.
Matrix solve time: 5.14 hours.
time per square root: 0.63 hours.
Prototype def-par.txt line would be: gnfs,140,5,65,2000,1e-05,0.28,250,20,50000,3600,18900000,18900000,28,28,56,56,2.6,2.6,100000
total time: 381.49 hours.
Intel64 Family 6 Model 58 Stepping 9, GenuineIntel
Windows-post2008Server-6.2.9200
processors: 8, speed: 2.29GHz
software ソフトウェア
GGNFS, Msieve

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaApril 2, 2017 07:00:00 UTC 2017 年 4 月 2 日 (日) 16 時 0 分 0 秒 (日本時間)
403e61200Dmitry DomanovApril 3, 2017 23:39:23 UTC 2017 年 4 月 4 日 (火) 8 時 39 分 23 秒 (日本時間)
4511e6600 / 4173Dmitry DomanovApril 4, 2017 09:57:54 UTC 2017 年 4 月 4 日 (火) 18 時 57 分 54 秒 (日本時間)

32×10278-419

c249

composite cofactor 合成数の残り
602218472204677707285072690008621128851317688846415593779002292007951173370263142678092030373644228208381270271041343697908326623738368073149526996293392673514061756148415534701924931597499360281546885795921138405137843908963076577091538401551159333<249>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaApril 2, 2017 07:00:00 UTC 2017 年 4 月 2 日 (日) 16 時 0 分 0 秒 (日本時間)
403e62960610Marlon TrifunovicMarch 1, 2022 18:04:15 UTC 2022 年 3 月 2 日 (水) 3 時 4 分 15 秒 (日本時間)
2350Ignacio SantosMarch 25, 2024 16:18:48 UTC 2024 年 3 月 26 日 (火) 1 時 18 分 48 秒 (日本時間)

32×10279-419

c262

composite cofactor 合成数の残り
2820692253667500923046879521758521319317696758058460433725960217009336784210932407466438920908194022570192931380336039262656708281535936262887997862218444254249714108980858154858330084004844128690397857133718746719704391104865527500030748619389243353733838276913<262>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaApril 2, 2017 07:00:00 UTC 2017 年 4 月 2 日 (日) 16 時 0 分 0 秒 (日本時間)
403e62960610Marlon TrifunovicMarch 1, 2022 18:18:38 UTC 2022 年 3 月 2 日 (水) 3 時 18 分 38 秒 (日本時間)
2350Ignacio SantosMarch 25, 2024 16:30:54 UTC 2024 年 3 月 26 日 (火) 1 時 30 分 54 秒 (日本時間)

32×10281-419

c264

composite cofactor 合成数の残り
866664680234836793340750836608986612523585977587516212614261759335985755736584223344457389021534779197602807901899768467204163765277576957472434156179137517588991970313312964225814352896894745223759996910242001388323209213656408390109101415055561445895293285671829<264>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaApril 2, 2017 07:00:00 UTC 2017 年 4 月 2 日 (日) 16 時 0 分 0 秒 (日本時間)
403e62960610Marlon TrifunovicMarch 7, 2022 03:53:42 UTC 2022 年 3 月 7 日 (月) 12 時 53 分 42 秒 (日本時間)
2350Ignacio SantosMarch 25, 2024 17:06:58 UTC 2024 年 3 月 26 日 (火) 2 時 6 分 58 秒 (日本時間)

32×10282-419

c274

composite cofactor 合成数の残り
1368456185731976842774538076001224621006133129870275507968360666404000653366155794291230137701614858854192390903373290379599375162375318007402448119339364336387574058973024644378329887181980175070122760084941254031273764296071417948313968280555524903206101554377384314320261<274>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaApril 2, 2017 07:00:00 UTC 2017 年 4 月 2 日 (日) 16 時 0 分 0 秒 (日本時間)
403e62960610Marlon TrifunovicMarch 9, 2022 21:27:50 UTC 2022 年 3 月 10 日 (木) 6 時 27 分 50 秒 (日本時間)
2350Ignacio SantosMarch 25, 2024 17:07:14 UTC 2024 年 3 月 26 日 (火) 2 時 7 分 14 秒 (日本時間)

32×10283-419

c267

composite cofactor 合成数の残り
242530738171357865104246904939061074122326078421470870506548297350695977553854500715431052479019690403007011321190997865523466814412727207655578349354159335833153094155810935606500355270879682318195838792661869760587225037656268062712436069940695725027227586678073083<267>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaApril 2, 2017 07:00:00 UTC 2017 年 4 月 2 日 (日) 16 時 0 分 0 秒 (日本時間)
403e62960610Marlon TrifunovicMarch 7, 2022 14:16:18 UTC 2022 年 3 月 7 日 (月) 23 時 16 分 18 秒 (日本時間)
2350Ignacio SantosMarch 25, 2024 17:34:50 UTC 2024 年 3 月 26 日 (火) 2 時 34 分 50 秒 (日本時間)

32×10284-419

c234

composite cofactor 合成数の残り
116169983836511461632216617558464226976518446470729396975353029600669635033962331957720087316837688024496495864786712701540053042959535263337937945285822042779705064928711488808990818126865872930429458810750131276097653706303484834233<234>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaApril 2, 2017 07:00:00 UTC 2017 年 4 月 2 日 (日) 16 時 0 分 0 秒 (日本時間)
403e62960610Marlon TrifunovicMarch 3, 2022 01:39:15 UTC 2022 年 3 月 3 日 (木) 10 時 39 分 15 秒 (日本時間)
2350Ignacio SantosMarch 25, 2024 17:35:16 UTC 2024 年 3 月 26 日 (火) 2 時 35 分 16 秒 (日本時間)

32×10286-419

c241

composite cofactor 合成数の残り
3191868179897290561649214096751232869151607103076475758493626339621987622802779714597302973094048647127874615750117724223795088411483233410448774254634651573036345665719979848714994837642112475839783128389383245986970766087424113557801706031<241>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaApril 2, 2017 07:00:00 UTC 2017 年 4 月 2 日 (日) 16 時 0 分 0 秒 (日本時間)
403e62960610Marlon TrifunovicMarch 1, 2022 18:09:48 UTC 2022 年 3 月 2 日 (水) 3 時 9 分 48 秒 (日本時間)
2350Ignacio SantosMarch 25, 2024 17:56:42 UTC 2024 年 3 月 26 日 (火) 2 時 56 分 42 秒 (日本時間)

32×10290-419

c247

composite cofactor 合成数の残り
1457809415443498289832849509249749759797761880937194794796126662040186063333123370548680746093749823825339387217197126753140948331808804996343237018867755320584398960054797990897378895761565610668351620250035885824210230670983571775711930593355399<247>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaApril 2, 2017 07:00:00 UTC 2017 年 4 月 2 日 (日) 16 時 0 分 0 秒 (日本時間)
403e62960610Marlon TrifunovicMarch 2, 2022 08:22:00 UTC 2022 年 3 月 2 日 (水) 17 時 22 分 0 秒 (日本時間)
2350Ignacio SantosMarch 26, 2024 07:36:21 UTC 2024 年 3 月 26 日 (火) 16 時 36 分 21 秒 (日本時間)

32×10291-419

c239

composite cofactor 合成数の残り
26741931048408696620841414737839323616834515388903038875223102110434690120733679716923291579332247483765262944449096489125560136573658750050854398435696348296436393275285160743694437436066224851624303023035763424475948438871670179935201851<239>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaApril 2, 2017 07:00:00 UTC 2017 年 4 月 2 日 (日) 16 時 0 分 0 秒 (日本時間)
403e62960610Marlon TrifunovicMarch 1, 2022 21:55:43 UTC 2022 年 3 月 2 日 (水) 6 時 55 分 43 秒 (日本時間)
2350Ignacio SantosMarch 26, 2024 07:36:48 UTC 2024 年 3 月 26 日 (火) 16 時 36 分 48 秒 (日本時間)

32×10292-419

c233

composite cofactor 合成数の残り
25582584078508775411708344476956713945966886813379632561588171803891701169373734389422616241303454426282173161194322149642067054641158110630214609097772250507753208487209506412127444998359636404209596736699220517601911736767884827083<233>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaApril 2, 2017 07:00:00 UTC 2017 年 4 月 2 日 (日) 16 時 0 分 0 秒 (日本時間)
403e62960610Marlon TrifunovicFebruary 23, 2022 23:35:53 UTC 2022 年 2 月 24 日 (木) 8 時 35 分 53 秒 (日本時間)
2350Ignacio SantosMarch 26, 2024 07:37:16 UTC 2024 年 3 月 26 日 (火) 16 時 37 分 16 秒 (日本時間)

32×10293-419

c272

composite cofactor 合成数の残り
38253965386078516825371127768300208329449104964471819004077491380865135910999007902261894137207756013761894578267476166936919501328604979736344424727710421164954212061280088146270045436518422870687902904914948777971290565441617426482133836617410043054687298604439916280557<272>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaApril 2, 2017 07:00:00 UTC 2017 年 4 月 2 日 (日) 16 時 0 分 0 秒 (日本時間)
403e62960610Marlon TrifunovicMarch 9, 2022 16:18:21 UTC 2022 年 3 月 10 日 (木) 1 時 18 分 21 秒 (日本時間)
2350Ignacio SantosMarch 26, 2024 07:55:56 UTC 2024 年 3 月 26 日 (火) 16 時 55 分 56 秒 (日本時間)

32×10295-419

c295

name 名前Marlon Trifunovic
date 日付April 15, 2022 00:31:30 UTC 2022 年 4 月 15 日 (金) 9 時 31 分 30 秒 (日本時間)
composite number 合成数
2091503267973856209150326797385620915032679738562091503267973856209150326797385620915032679738562091503267973856209150326797385620915032679738562091503267973856209150326797385620915032679738562091503267973856209150326797385620915032679738562091503267973856209150326797385620915032679738562091503<295>
prime factors 素因数
80102982773466842532093965302949152617023<41>
composite cofactor 合成数の残り
26110179615766339682556307662730535493137876935221649973720380294071000542227810245279212548852029181256363568965410264120675932308719515532268683649906470210488337317694792549136299431743066952996462379252627959683986936917968121263584490368147947719761<254>
factorization results 素因数分解の結果
Run 45 out of 610:
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:3227232315
Step 1 took 34906ms
Step 2 took 11923ms
********** Factor found in step 2: 80102982773466842532093965302949152617023
Found prime factor of 41 digits: 80102982773466842532093965302949152617023
Composite cofactor 26110179615766339682556307662730535493137876935221649973720380294071000542227810245279212548852029181256363568965410264120675932308719515532268683649906470210488337317694792549136299431743066952996462379252627959683986936917968121263584490368147947719761 has 254 digits
software ソフトウェア
GMP-ECM 7.0.5-dev
execution environment 実行環境
Intel Xeon CPU E5-2695 v4 @ 2.10GHz

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaApril 2, 2017 07:00:00 UTC 2017 年 4 月 2 日 (日) 16 時 0 分 0 秒 (日本時間)
403e62960610Marlon TrifunovicMarch 11, 2022 02:18:17 UTC 2022 年 3 月 11 日 (金) 11 時 18 分 17 秒 (日本時間)
2350Ignacio SantosMarch 26, 2024 08:12:54 UTC 2024 年 3 月 26 日 (火) 17 時 12 分 54 秒 (日本時間)

32×10297-419

c233

composite cofactor 合成数の残り
76985366368006616788489729163281475726095640833473144934639934112531785728754547180376147910837218918873335867134833935303284857975118758083758777340574951547005644805480441774623490041141764391456768986062724402984655876538245540253<233>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaApril 2, 2017 07:00:00 UTC 2017 年 4 月 2 日 (日) 16 時 0 分 0 秒 (日本時間)
403e62960610Marlon TrifunovicMarch 2, 2022 17:23:28 UTC 2022 年 3 月 3 日 (木) 2 時 23 分 28 秒 (日本時間)
2350Ignacio SantosMarch 26, 2024 08:22:25 UTC 2024 年 3 月 26 日 (火) 17 時 22 分 25 秒 (日本時間)

32×10299-419

c232

composite cofactor 合成数の残り
9763126711206921022140362288018723788760850849573783428292722314745591436180884787137589170123785098025851763408087514768544383282657420123580138725693531183585973147702339793641794766834288404252731449053153364581257412009166982843<232>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaApril 2, 2017 07:00:00 UTC 2017 年 4 月 2 日 (日) 16 時 0 分 0 秒 (日本時間)
403e62400ebinaOctober 15, 2021 03:57:06 UTC 2021 年 10 月 15 日 (金) 12 時 57 分 6 秒 (日本時間)

32×10300-419

c286

composite cofactor 合成数の残り
8609209606759430390814553136273162149300104639368833097725542279653926870223071295575554593382583849029408750000074887486537033872559625845158107692862423244345632536909535919680557813942425002601582565485281778808692771043258512739334158069608384792780204306216466570847750254015103609<286>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaApril 2, 2017 07:00:00 UTC 2017 年 4 月 2 日 (日) 16 時 0 分 0 秒 (日本時間)
403e61200Dmitry DomanovApril 6, 2017 08:53:15 UTC 2017 年 4 月 6 日 (木) 17 時 53 分 15 秒 (日本時間)
4511e63000Dmitry DomanovApril 11, 2017 14:02:05 UTC 2017 年 4 月 11 日 (火) 23 時 2 分 5 秒 (日本時間)
5043e6340 / 6829Dmitry DomanovApril 13, 2017 12:05:17 UTC 2017 年 4 月 13 日 (木) 21 時 5 分 17 秒 (日本時間)