name 名前 | Robert Backstrom |
---|---|
date 日付 | November 21, 2008 14:48:22 UTC 2008 年 11 月 21 日 (金) 23 時 48 分 22 秒 (日本時間) |
composite number 合成数 | 988746036684509216134405657207346002014562016183139466236470434514002669418403739656765174448645339<99> |
prime factors 素因数 | 4969113507692915159830820858462998480110977<43> 198978356029457891142388803820629371983665753967882940507<57> |
factorization results 素因数分解の結果 | Number: n N=988746036684509216134405657207346002014562016183139466236470434514002669418403739656765174448645339 ( 99 digits) SNFS difficulty: 108 digits. Divisors found: r1=4969113507692915159830820858462998480110977 (pp43) r2=198978356029457891142388803820629371983665753967882940507 (pp57) Version: GGNFS-0.77.1-20051202-athlon Total time: 0.88 hours. Scaled time: 1.27 units (timescale=1.447). Factorization parameters were as follows: name: KA_3_5_106_1 n: 988746036684509216134405657207346002014562016183139466236470434514002669418403739656765174448645339 type: snfs skew: 0.84 deg: 5 c5: 100 c0: -41 m: 2000000000000000000000 rlim: 450000 alim: 450000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 20000 Factor base limits: 450000/450000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved algebraic special-q in [100000, 160001) Primes: RFBsize:37706, AFBsize:37550, largePrimes:3672853 encountered Relations: rels:3166359, finalFF:149304 Max relations in full relation-set: 28 Initial matrix: 75320 x 149304 with sparse part having weight 10857343. Pruned matrix : 56531 x 56971 with weight 2447010. Total sieving time: 0.79 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.02 hours. Total square root time: 0.01 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,108,5,0,0,0,0,0,0,0,0,450000,450000,28,28,56,56,2.5,2.5,50000 total time: 0.88 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間) |
name 名前 | Sinkiti Sibata |
---|---|
date 日付 | November 21, 2008 22:38:27 UTC 2008 年 11 月 22 日 (土) 7 時 38 分 27 秒 (日本時間) |
composite number 合成数 | 76364585248269496393816506554713280356615130143710070231171455531033722911050513054523245829788744839<101> |
prime factors 素因数 | 250725206151227572491375889110383529086023607868659<51> 304574822852910071162849414423941486520137105717021<51> |
factorization results 素因数分解の結果 | Number: 35551_111 N=76364585248269496393816506554713280356615130143710070231171455531033722911050513054523245829788744839 ( 101 digits) SNFS difficulty: 112 digits. Divisors found: r1=250725206151227572491375889110383529086023607868659 (pp51) r2=304574822852910071162849414423941486520137105717021 (pp51) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 1.54 hours. Scaled time: 0.73 units (timescale=0.473). Factorization parameters were as follows: name: 35551_111 n: 76364585248269496393816506554713280356615130143710070231171455531033722911050513054523245829788744839 m: 20000000000000000000000 deg: 5 c5: 10 c0: -41 skew: 1.33 type: snfs lss: 1 rlim: 530000 alim: 530000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 530000/530000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [265000, 415001) Primes: RFBsize:43825, AFBsize:43507, largePrimes:1230717 encountered Relations: rels:1219885, finalFF:156266 Max relations in full relation-set: 28 Initial matrix: 87398 x 156266 with sparse part having weight 7026889. Pruned matrix : 64055 x 64555 with weight 2168146. Total sieving time: 1.46 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.02 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,112,5,0,0,0,0,0,0,0,0,530000,530000,25,25,45,45,2.2,2.2,50000 total time: 1.54 hours. --------- CPU info (if available) ---------- |
execution environment 実行環境 | Pentium 4 2.4GHz, Windows XP and Cygwin) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間) |
name 名前 | Sinkiti Sibata |
---|---|
date 日付 | November 22, 2008 05:04:20 UTC 2008 年 11 月 22 日 (土) 14 時 4 分 20 秒 (日本時間) |
composite number 合成数 | 22881765858560605328444758333732016135351937111017680153991433819602314108836986599559243845282539971<101> |
prime factors 素因数 | 1874364695456994437787812330948654894281<40> 12207744796954647002836007977637501893348342131034571999208491<62> |
factorization results 素因数分解の結果 | Number: 35551_115 N=22881765858560605328444758333732016135351937111017680153991433819602314108836986599559243845282539971 ( 101 digits) SNFS difficulty: 116 digits. Divisors found: r1=1874364695456994437787812330948654894281 (pp40) r2=12207744796954647002836007977637501893348342131034571999208491 (pp62) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 1.63 hours. Scaled time: 0.77 units (timescale=0.473). Factorization parameters were as follows: name: 35551_115 n: 22881765858560605328444758333732016135351937111017680153991433819602314108836986599559243845282539971 m: 200000000000000000000000 deg: 5 c5: 1 c0: -41 skew: 2.10 type: snfs lss: 1 rlim: 610000 alim: 610000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 610000/610000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [305000, 455001) Primes: RFBsize:49861, AFBsize:49970, largePrimes:1339209 encountered Relations: rels:1376013, finalFF:204044 Max relations in full relation-set: 28 Initial matrix: 99895 x 204044 with sparse part having weight 8657884. Pruned matrix : 64281 x 64844 with weight 2194412. Total sieving time: 1.55 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.02 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,116,5,0,0,0,0,0,0,0,0,610000,610000,25,25,45,45,2.2,2.2,50000 total time: 1.63 hours. --------- CPU info (if available) ---------- |
execution environment 実行環境 | Pentium 4 2.4GHz, Windows XP and Cygwin) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間) |
name 名前 | Sinkiti Sibata |
---|---|
date 日付 | November 21, 2008 14:24:39 UTC 2008 年 11 月 21 日 (金) 23 時 24 分 39 秒 (日本時間) |
composite number 合成数 | 182067513124538441101462579812715985235713896251223737793957929646967334531924025154370350419725671352439<105> |
prime factors 素因数 | 5146035129801747950200491709940393<34> 35380153561359894771496352426470646393927511422671498242115915382113823<71> |
factorization results 素因数分解の結果 | Number: 35551_119 N=182067513124538441101462579812715985235713896251223737793957929646967334531924025154370350419725671352439 ( 105 digits) SNFS difficulty: 121 digits. Divisors found: r1=5146035129801747950200491709940393 (pp34) r2=35380153561359894771496352426470646393927511422671498242115915382113823 (pp71) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 2.15 hours. Scaled time: 1.02 units (timescale=0.473). Factorization parameters were as follows: name: 35551_119 n: 182067513124538441101462579812715985235713896251223737793957929646967334531924025154370350419725671352439 m: 1000000000000000000000000 deg: 5 c5: 16 c0: -205 skew: 1.67 type: snfs lss: 1 rlim: 730000 alim: 730000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 730000/730000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [365000, 565001) Primes: RFBsize:58789, AFBsize:58897, largePrimes:1264545 encountered Relations: rels:1228338, finalFF:140700 Max relations in full relation-set: 28 Initial matrix: 117750 x 140700 with sparse part having weight 5817576. Pruned matrix : 103103 x 103755 with weight 3356003. Total sieving time: 2.00 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.08 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,121,5,0,0,0,0,0,0,0,0,730000,730000,25,25,46,46,2.2,2.2,50000 total time: 2.15 hours. --------- CPU info (if available) ---------- |
execution environment 実行環境 | Pentium 4 2.4GHz, Windows XP and Cygwin) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間) |
name 名前 | Sinkiti Sibata |
---|---|
date 日付 | November 21, 2008 20:11:01 UTC 2008 年 11 月 22 日 (土) 5 時 11 分 1 秒 (日本時間) |
composite number 合成数 | 18930534916760935971590741741646619489241142175356386448608577960372293068418528062763830015741<95> |
prime factors 素因数 | 7302277230608177321336738676050278849209010349<46> 2592415258819787071229728638616500578052858667409<49> |
factorization results 素因数分解の結果 | Fri Nov 21 23:38:37 2008 Msieve v. 1.38 Fri Nov 21 23:38:37 2008 random seeds: 0d4af2ec 94d26f7d Fri Nov 21 23:38:37 2008 factoring 18930534916760935971590741741646619489241142175356386448608577960372293068418528062763830015741 (95 digits) Fri Nov 21 23:38:37 2008 searching for 15-digit factors Fri Nov 21 23:38:39 2008 commencing quadratic sieve (95-digit input) Fri Nov 21 23:38:39 2008 using multiplier of 1 Fri Nov 21 23:38:39 2008 using 32kb Intel Core sieve core Fri Nov 21 23:38:39 2008 sieve interval: 36 blocks of size 32768 Fri Nov 21 23:38:39 2008 processing polynomials in batches of 6 Fri Nov 21 23:38:39 2008 using a sieve bound of 2125181 (78824 primes) Fri Nov 21 23:38:39 2008 using large prime bound of 310276426 (28 bits) Fri Nov 21 23:38:39 2008 using double large prime bound of 1928180890905122 (43-51 bits) Fri Nov 21 23:38:39 2008 using trial factoring cutoff of 51 bits Fri Nov 21 23:38:39 2008 polynomial 'A' values have 12 factors Sat Nov 22 02:33:35 2008 78924 relations (20057 full + 58867 combined from 1153943 partial), need 78920 Sat Nov 22 02:33:36 2008 begin with 1174000 relations Sat Nov 22 02:33:37 2008 reduce to 202550 relations in 9 passes Sat Nov 22 02:33:37 2008 attempting to read 202550 relations Sat Nov 22 02:33:40 2008 recovered 202550 relations Sat Nov 22 02:33:40 2008 recovered 182655 polynomials Sat Nov 22 02:33:40 2008 attempting to build 78924 cycles Sat Nov 22 02:33:40 2008 found 78924 cycles in 6 passes Sat Nov 22 02:33:40 2008 distribution of cycle lengths: Sat Nov 22 02:33:40 2008 length 1 : 20057 Sat Nov 22 02:33:40 2008 length 2 : 14148 Sat Nov 22 02:33:40 2008 length 3 : 13467 Sat Nov 22 02:33:40 2008 length 4 : 10622 Sat Nov 22 02:33:40 2008 length 5 : 7732 Sat Nov 22 02:33:40 2008 length 6 : 5123 Sat Nov 22 02:33:40 2008 length 7 : 3320 Sat Nov 22 02:33:40 2008 length 9+: 4455 Sat Nov 22 02:33:40 2008 largest cycle: 20 relations Sat Nov 22 02:33:40 2008 matrix is 78824 x 78924 (20.4 MB) with weight 5044100 (63.91/col) Sat Nov 22 02:33:40 2008 sparse part has weight 5044100 (63.91/col) Sat Nov 22 02:33:41 2008 filtering completed in 3 passes Sat Nov 22 02:33:41 2008 matrix is 74614 x 74678 (19.5 MB) with weight 4821220 (64.56/col) Sat Nov 22 02:33:41 2008 sparse part has weight 4821220 (64.56/col) Sat Nov 22 02:33:42 2008 saving the first 48 matrix rows for later Sat Nov 22 02:33:42 2008 matrix is 74566 x 74678 (12.6 MB) with weight 3859562 (51.68/col) Sat Nov 22 02:33:42 2008 sparse part has weight 2866657 (38.39/col) Sat Nov 22 02:33:42 2008 matrix includes 64 packed rows Sat Nov 22 02:33:42 2008 using block size 29871 for processor cache size 1024 kB Sat Nov 22 02:33:43 2008 commencing Lanczos iteration Sat Nov 22 02:33:43 2008 memory use: 12.1 MB Sat Nov 22 02:34:22 2008 lanczos halted after 1180 iterations (dim = 74564) Sat Nov 22 02:34:22 2008 recovered 16 nontrivial dependencies Sat Nov 22 02:34:23 2008 prp46 factor: 7302277230608177321336738676050278849209010349 Sat Nov 22 02:34:23 2008 prp49 factor: 2592415258819787071229728638616500578052858667409 Sat Nov 22 02:34:23 2008 elapsed time 02:55:46 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間) |
name 名前 | Sinkiti Sibata |
---|---|
date 日付 | November 21, 2008 20:18:19 UTC 2008 年 11 月 22 日 (土) 5 時 18 分 19 秒 (日本時間) |
composite number 合成数 | 474609015111853860752833336137112158853448747727127472704320673550969428561212139271<84> |
prime factors 素因数 | 167982103839853336193445278263392698635919<42> 2825354631611978018062501736888645582464009<43> |
factorization results 素因数分解の結果 | Fri Nov 21 21:28:02 2008 Msieve v. 1.38 Fri Nov 21 21:28:02 2008 random seeds: b8cb3a44 4d4e9d2a Fri Nov 21 21:28:02 2008 factoring 474609015111853860752833336137112158853448747727127472704320673550969428561212139271 (84 digits) Fri Nov 21 21:28:04 2008 searching for 15-digit factors Fri Nov 21 21:28:09 2008 commencing quadratic sieve (84-digit input) Fri Nov 21 21:28:10 2008 using multiplier of 15 Fri Nov 21 21:28:10 2008 using 64kb Pentium 2 sieve core Fri Nov 21 21:28:10 2008 sieve interval: 6 blocks of size 65536 Fri Nov 21 21:28:10 2008 processing polynomials in batches of 17 Fri Nov 21 21:28:10 2008 using a sieve bound of 1390619 (53529 primes) Fri Nov 21 21:28:10 2008 using large prime bound of 119593234 (26 bits) Fri Nov 21 21:28:10 2008 using double large prime bound of 346634530714364 (41-49 bits) Fri Nov 21 21:28:10 2008 using trial factoring cutoff of 49 bits Fri Nov 21 21:28:10 2008 polynomial 'A' values have 11 factors Sat Nov 22 01:02:21 2008 53629 relations (17104 full + 36525 combined from 561999 partial), need 53625 Sat Nov 22 01:02:31 2008 begin with 579103 relations Sat Nov 22 01:02:32 2008 reduce to 121584 relations in 10 passes Sat Nov 22 01:02:32 2008 attempting to read 121584 relations Sat Nov 22 01:02:37 2008 recovered 121584 relations Sat Nov 22 01:02:37 2008 recovered 93293 polynomials Sat Nov 22 01:02:38 2008 attempting to build 53629 cycles Sat Nov 22 01:02:38 2008 found 53629 cycles in 4 passes Sat Nov 22 01:02:41 2008 distribution of cycle lengths: Sat Nov 22 01:02:41 2008 length 1 : 17104 Sat Nov 22 01:02:41 2008 length 2 : 11333 Sat Nov 22 01:02:41 2008 length 3 : 9269 Sat Nov 22 01:02:41 2008 length 4 : 6572 Sat Nov 22 01:02:41 2008 length 5 : 4225 Sat Nov 22 01:02:41 2008 length 6 : 2400 Sat Nov 22 01:02:41 2008 length 7 : 1329 Sat Nov 22 01:02:41 2008 length 9+: 1397 Sat Nov 22 01:02:41 2008 largest cycle: 16 relations Sat Nov 22 01:02:42 2008 matrix is 53529 x 53629 (11.4 MB) with weight 2782077 (51.88/col) Sat Nov 22 01:02:42 2008 sparse part has weight 2782077 (51.88/col) Sat Nov 22 01:02:46 2008 filtering completed in 3 passes Sat Nov 22 01:02:46 2008 matrix is 47011 x 47075 (10.2 MB) with weight 2486567 (52.82/col) Sat Nov 22 01:02:46 2008 sparse part has weight 2486567 (52.82/col) Sat Nov 22 01:02:48 2008 saving the first 48 matrix rows for later Sat Nov 22 01:02:48 2008 matrix is 46963 x 47075 (6.2 MB) with weight 1901594 (40.39/col) Sat Nov 22 01:02:48 2008 sparse part has weight 1340469 (28.48/col) Sat Nov 22 01:02:48 2008 matrix includes 64 packed rows Sat Nov 22 01:02:48 2008 using block size 5461 for processor cache size 128 kB Sat Nov 22 01:02:49 2008 commencing Lanczos iteration Sat Nov 22 01:02:49 2008 memory use: 6.4 MB Sat Nov 22 01:04:39 2008 lanczos halted after 744 iterations (dim = 46954) Sat Nov 22 01:04:40 2008 recovered 14 nontrivial dependencies Sat Nov 22 01:04:41 2008 prp42 factor: 167982103839853336193445278263392698635919 Sat Nov 22 01:04:41 2008 prp43 factor: 2825354631611978018062501736888645582464009 Sat Nov 22 01:04:41 2008 elapsed time 03:36:39 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間) |
name 名前 | Sinkiti Sibata |
---|---|
date 日付 | November 21, 2008 19:59:56 UTC 2008 年 11 月 22 日 (土) 4 時 59 分 56 秒 (日本時間) |
composite number 合成数 | 16931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931<125> |
prime factors 素因数 | 4101642359788017039736531885784855474095010630123<49> 4127911564696239905743837315670797719255008130849857537912706158500072765097<76> |
factorization results 素因数分解の結果 | Number: 35551_125 N=16931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931 ( 125 digits) SNFS difficulty: 126 digits. Divisors found: r1=4101642359788017039736531885784855474095010630123 (pp49) r2=4127911564696239905743837315670797719255008130849857537912706158500072765097 (pp76) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 2.61 hours. Scaled time: 1.23 units (timescale=0.473). Factorization parameters were as follows: name: 35551_125 n: 16931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931 m: 20000000000000000000000000 deg: 5 c5: 1 c0: -41 skew: 2.10 type: snfs lss: 1 rlim: 900000 alim: 900000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 900000/900000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [450000, 650001) Primes: RFBsize:71274, AFBsize:71351, largePrimes:2368602 encountered Relations: rels:2262222, finalFF:197699 Max relations in full relation-set: 28 Initial matrix: 142689 x 197699 with sparse part having weight 12662606. Pruned matrix : 119300 x 120077 with weight 5455752. Total sieving time: 2.36 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.15 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,900000,900000,26,26,46,46,2.3,2.3,50000 total time: 2.61 hours. --------- CPU info (if available) ---------- |
execution environment 実行環境 | Pentium 4 2.4GHz, Windows XP and Cygwin) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間) |
name 名前 | Sinkiti Sibata |
---|---|
date 日付 | November 21, 2008 14:13:31 UTC 2008 年 11 月 21 日 (金) 23 時 13 分 31 秒 (日本時間) |
composite number 合成数 | 8693289866883998913338766639500135832654170062483020918228742189622385221407226297201847324096712849769084487910893778864439<124> |
prime factors 素因数 | 171194598333615048222366566893522206348126341433869776357<57> 50780164511633549798402123157855699628021684842890883339859369480427<68> |
factorization results 素因数分解の結果 | Number: 35551_126 N=8693289866883998913338766639500135832654170062483020918228742189622385221407226297201847324096712849769084487910893778864439 ( 124 digits) SNFS difficulty: 127 digits. Divisors found: r1=171194598333615048222366566893522206348126341433869776357 (pp57) r2=50780164511633549798402123157855699628021684842890883339859369480427 (pp68) Version: GGNFS-0.77.1-20060513-k8 Total time: 2.84 hours. Scaled time: 5.41 units (timescale=1.902). Factorization parameters were as follows: name: 35551_126 n: 8693289866883998913338766639500135832654170062483020918228742189622385221407226297201847324096712849769084487910893778864439 m: 20000000000000000000000000 deg: 5 c5: 10 c0: -41 skew: 1.33 type: snfs lss: 1 rlim: 930000 alim: 930000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 930000/930000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [465000, 715001) Primes: RFBsize:73474, AFBsize:72978, largePrimes:2463207 encountered Relations: rels:2336543, finalFF:179494 Max relations in full relation-set: 28 Initial matrix: 146518 x 179494 with sparse part having weight 13010167. Pruned matrix : 134193 x 134989 with weight 7615669. Total sieving time: 2.63 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.10 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,127,5,0,0,0,0,0,0,0,0,930000,930000,26,26,46,46,2.3,2.3,50000 total time: 2.84 hours. --------- CPU info (if available) ---------- |
execution environment 実行環境 | Core 2 Duo E6300 1.86GHz, Windows Vista) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | November 21, 2008 08:39:34 UTC 2008 年 11 月 21 日 (金) 17 時 39 分 34 秒 (日本時間) |
composite number 合成数 | 252634779279652537693843677634751731140715269848712613595857696355762680242587759<81> |
prime factors 素因数 | 400338547831239941807329391891749<33> 631052844269568196604006040863340283212860511491<48> |
factorization results 素因数分解の結果 | Fri Nov 21 00:20:47 2008 Msieve v. 1.38 Fri Nov 21 00:20:47 2008 random seeds: b84c8010 b8809f02 Fri Nov 21 00:20:47 2008 factoring 252634779279652537693843677634751731140715269848712613595857696355762680242587759 (81 digits) Fri Nov 21 00:20:48 2008 no P-1/P+1/ECM available, skipping Fri Nov 21 00:20:48 2008 commencing quadratic sieve (81-digit input) Fri Nov 21 00:20:48 2008 using multiplier of 39 Fri Nov 21 00:20:48 2008 using 64kb Opteron sieve core Fri Nov 21 00:20:48 2008 sieve interval: 6 blocks of size 65536 Fri Nov 21 00:20:48 2008 processing polynomials in batches of 17 Fri Nov 21 00:20:48 2008 using a sieve bound of 1315507 (50588 primes) Fri Nov 21 00:20:48 2008 using large prime bound of 128919686 (26 bits) Fri Nov 21 00:20:48 2008 using trial factoring cutoff of 27 bits Fri Nov 21 00:20:48 2008 polynomial 'A' values have 10 factors Fri Nov 21 00:38:56 2008 50811 relations (26310 full + 24501 combined from 269737 partial), need 50684 Fri Nov 21 00:38:56 2008 begin with 296047 relations Fri Nov 21 00:38:57 2008 reduce to 72222 relations in 2 passes Fri Nov 21 00:38:57 2008 attempting to read 72222 relations Fri Nov 21 00:38:57 2008 recovered 72222 relations Fri Nov 21 00:38:57 2008 recovered 62442 polynomials Fri Nov 21 00:38:57 2008 attempting to build 50811 cycles Fri Nov 21 00:38:57 2008 found 50811 cycles in 1 passes Fri Nov 21 00:38:57 2008 distribution of cycle lengths: Fri Nov 21 00:38:57 2008 length 1 : 26310 Fri Nov 21 00:38:57 2008 length 2 : 24501 Fri Nov 21 00:38:57 2008 largest cycle: 2 relations Fri Nov 21 00:38:57 2008 matrix is 50588 x 50811 (7.6 MB) with weight 1577942 (31.06/col) Fri Nov 21 00:38:57 2008 sparse part has weight 1577942 (31.06/col) Fri Nov 21 00:38:58 2008 filtering completed in 3 passes Fri Nov 21 00:38:58 2008 matrix is 35841 x 35905 (5.9 MB) with weight 1254482 (34.94/col) Fri Nov 21 00:38:58 2008 sparse part has weight 1254482 (34.94/col) Fri Nov 21 00:38:58 2008 saving the first 48 matrix rows for later Fri Nov 21 00:38:58 2008 matrix is 35793 x 35905 (4.6 MB) with weight 1006660 (28.04/col) Fri Nov 21 00:38:58 2008 sparse part has weight 834359 (23.24/col) Fri Nov 21 00:38:58 2008 matrix includes 64 packed rows Fri Nov 21 00:38:58 2008 using block size 14362 for processor cache size 1024 kB Fri Nov 21 00:38:58 2008 commencing Lanczos iteration Fri Nov 21 00:38:58 2008 memory use: 4.2 MB Fri Nov 21 00:39:06 2008 lanczos halted after 567 iterations (dim = 35789) Fri Nov 21 00:39:06 2008 recovered 16 nontrivial dependencies Fri Nov 21 00:39:06 2008 prp33 factor: 400338547831239941807329391891749 Fri Nov 21 00:39:06 2008 prp48 factor: 631052844269568196604006040863340283212860511491 Fri Nov 21 00:39:06 2008 elapsed time 00:18:19 |
software ソフトウェア | Msieve-1.38 |
execution environment 実行環境 | Opteron-2.6GHz; Linux x86_64 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間) |
name 名前 | Robert Backstrom |
---|---|
date 日付 | November 21, 2008 20:12:36 UTC 2008 年 11 月 22 日 (土) 5 時 12 分 36 秒 (日本時間) |
composite number 合成数 | 135156183893466024666977800451768589430551510931312422361412184461027826326223292573670614332699251<99> |
prime factors 素因数 | 401832657422981661467753981794828719551127827<45> 336349426550456762380413783163560600207935723362612513<54> |
factorization results 素因数分解の結果 | Number: n N=135156183893466024666977800451768589430551510931312422361412184461027826326223292573670614332699251 ( 99 digits) SNFS difficulty: 131 digits. Divisors found: r1=401832657422981661467753981794828719551127827 (pp45) r2=336349426550456762380413783163560600207935723362612513 (pp54) Version: GGNFS-0.77.1-20051202-athlon Total time: 2.24 hours. Scaled time: 4.58 units (timescale=2.045). Factorization parameters were as follows: name: KA_3_5_127_1 n: 135156183893466024666977800451768589430551510931312422361412184461027826326223292573670614332699251 type: snfs skew: 5.28 deg: 5 c5: 1 c0: -4100 m: 200000000000000000000000000 rlim: 800000 alim: 800000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 20000 Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved algebraic special-q in [100000, 380001) Primes: RFBsize:63951, AFBsize:64074, largePrimes:5795056 encountered Relations: rels:4973051, finalFF:148600 Max relations in full relation-set: 28 Initial matrix: 128089 x 148600 with sparse part having weight 12143336. Pruned matrix : 120774 x 121478 with weight 8312350. Total sieving time: 2.07 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.04 hours. Total square root time: 0.02 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,800000,800000,28,28,56,56,2.5,2.5,50000 total time: 2.24 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間) |
name 名前 | Sinkiti Sibata |
---|---|
date 日付 | November 21, 2008 20:05:18 UTC 2008 年 11 月 22 日 (土) 5 時 5 分 18 秒 (日本時間) |
composite number 合成数 | 48706240487062404870624048706240487062404870624048706240487062404870624048706240487062404870624048706240487062404870624048706240487<131> |
prime factors 素因数 | 53253233532503110182693787985653<32> 20444379394590998327962375579649849<35> 44736777108005239501416276185226616696706068766867655030020027971<65> |
factorization results 素因数分解の結果 | Number: 35551_132 N=48706240487062404870624048706240487062404870624048706240487062404870624048706240487062404870624048706240487062404870624048706240487 ( 131 digits) SNFS difficulty: 133 digits. Divisors found: r1=53253233532503110182693787985653 (pp32) r2=20444379394590998327962375579649849 (pp35) r3=44736777108005239501416276185226616696706068766867655030020027971 (pp65) Version: GGNFS-0.77.1-20060513-k8 Total time: 6.33 hours. Scaled time: 12.59 units (timescale=1.991). Factorization parameters were as follows: name: 35551_132 n: 48706240487062404870624048706240487062404870624048706240487062404870624048706240487062404870624048706240487062404870624048706240487 m: 200000000000000000000000000 deg: 5 c5: 100 c0: -41 skew: 0.84 type: snfs lss: 1 rlim: 1180000 alim: 1180000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1180000/1180000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [590000, 1115001) Primes: RFBsize:91490, AFBsize:90768, largePrimes:3152382 encountered Relations: rels:3171737, finalFF:314254 Max relations in full relation-set: 28 Initial matrix: 182322 x 314254 with sparse part having weight 26946203. Pruned matrix : 151286 x 152261 with weight 9842261. Total sieving time: 6.01 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.17 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,133,5,0,0,0,0,0,0,0,0,1180000,1180000,26,26,47,47,2.3,2.3,75000 total time: 6.33 hours. --------- CPU info (if available) ---------- |
execution environment 実行環境 | Core 2 Duo E6300 1.86GHz, Windows Vista) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | November 21, 2008 20:09:57 UTC 2008 年 11 月 22 日 (土) 5 時 9 分 57 秒 (日本時間) |
composite number 合成数 | 14136762824986238572564321696749274769854880665085945554158885278298001836898244885757132890343104582008920690169<113> |
prime factors 素因数 | 395238694440067346506321051229<30> 4607584230616385795106992439653<31> 7762779182268771788520111353675163478851612794868937<52> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=978761011 Step 1 took 56903ms Step 2 took 20658ms ********** Factor found in step 2: 4607584230616385795106992439653 Found probable prime factor of 31 digits: 4607584230616385795106992439653 Composite cofactor 3068150709226442954934260179839783913836305853892991916706470823431308919117773573 has 82 digits Fri Nov 21 11:32:35 2008 Msieve v. 1.38 Fri Nov 21 11:32:35 2008 random seeds: f61d4527 abcf05c9 Fri Nov 21 11:32:35 2008 factoring 3068150709226442954934260179839783913836305853892991916706470823431308919117773573 (82 digits) Fri Nov 21 11:32:35 2008 no P-1/P+1/ECM available, skipping Fri Nov 21 11:32:35 2008 commencing quadratic sieve (82-digit input) Fri Nov 21 11:32:35 2008 using multiplier of 13 Fri Nov 21 11:32:35 2008 using 64kb Opteron sieve core Fri Nov 21 11:32:35 2008 sieve interval: 6 blocks of size 65536 Fri Nov 21 11:32:35 2008 processing polynomials in batches of 17 Fri Nov 21 11:32:35 2008 using a sieve bound of 1339157 (51471 primes) Fri Nov 21 11:32:35 2008 using large prime bound of 125880758 (26 bits) Fri Nov 21 11:32:35 2008 using trial factoring cutoff of 27 bits Fri Nov 21 11:32:35 2008 polynomial 'A' values have 11 factors Fri Nov 21 11:46:18 2008 51761 relations (27110 full + 24651 combined from 267857 partial), need 51567 Fri Nov 21 11:46:18 2008 begin with 294967 relations Fri Nov 21 11:46:18 2008 reduce to 73333 relations in 2 passes Fri Nov 21 11:46:18 2008 attempting to read 73333 relations Fri Nov 21 11:46:18 2008 recovered 73333 relations Fri Nov 21 11:46:18 2008 recovered 64668 polynomials Fri Nov 21 11:46:19 2008 attempting to build 51761 cycles Fri Nov 21 11:46:19 2008 found 51761 cycles in 1 passes Fri Nov 21 11:46:19 2008 distribution of cycle lengths: Fri Nov 21 11:46:19 2008 length 1 : 27110 Fri Nov 21 11:46:19 2008 length 2 : 24651 Fri Nov 21 11:46:19 2008 largest cycle: 2 relations Fri Nov 21 11:46:19 2008 matrix is 51471 x 51761 (7.9 MB) with weight 1651481 (31.91/col) Fri Nov 21 11:46:19 2008 sparse part has weight 1651481 (31.91/col) Fri Nov 21 11:46:19 2008 filtering completed in 3 passes Fri Nov 21 11:46:19 2008 matrix is 36514 x 36576 (6.1 MB) with weight 1302933 (35.62/col) Fri Nov 21 11:46:19 2008 sparse part has weight 1302933 (35.62/col) Fri Nov 21 11:46:19 2008 saving the first 48 matrix rows for later Fri Nov 21 11:46:19 2008 matrix is 36466 x 36576 (4.2 MB) with weight 993167 (27.15/col) Fri Nov 21 11:46:19 2008 sparse part has weight 731232 (19.99/col) Fri Nov 21 11:46:19 2008 matrix includes 64 packed rows Fri Nov 21 11:46:19 2008 using block size 14630 for processor cache size 1024 kB Fri Nov 21 11:46:19 2008 commencing Lanczos iteration Fri Nov 21 11:46:19 2008 memory use: 4.1 MB Fri Nov 21 11:46:24 2008 lanczos halted after 578 iterations (dim = 36464) Fri Nov 21 11:46:24 2008 recovered 17 nontrivial dependencies Fri Nov 21 11:46:24 2008 prp30 factor: 395238694440067346506321051229 Fri Nov 21 11:46:24 2008 prp52 factor: 7762779182268771788520111353675163478851612794868937 Fri Nov 21 11:46:24 2008 elapsed time 00:13:49 |
software ソフトウェア | GMP-ECM 6.2.1; Msieve-1.38 |
execution environment 実行環境 | Opteron-2.6GHz; Linux x86_64 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間) |
name 名前 | Sinkiti Sibata |
---|---|
date 日付 | November 22, 2008 05:09:23 UTC 2008 年 11 月 22 日 (土) 14 時 9 分 23 秒 (日本時間) |
composite number 合成数 | 12212949399178668390243576524554600576571890847483782236527906299510402361140498997671220687341868711013028609162572245802355191953<131> |
prime factors 素因数 | 3614408098329054255724340417243253779450081<43> 3378962493146452219447414756610095654554526360880050718178161743928515403049413915028913<88> |
factorization results 素因数分解の結果 | Number: 35551_138 N=12212949399178668390243576524554600576571890847483782236527906299510402361140498997671220687341868711013028609162572245802355191953 ( 131 digits) SNFS difficulty: 140 digits. Divisors found: r1=3614408098329054255724340417243253779450081 (pp43) r2=3378962493146452219447414756610095654554526360880050718178161743928515403049413915028913 (pp88) Version: GGNFS-0.77.1-20060513-k8 Total time: 8.53 hours. Scaled time: 16.67 units (timescale=1.955). Factorization parameters were as follows: name: 35551_138 n: 12212949399178668390243576524554600576571890847483782236527906299510402361140498997671220687341868711013028609162572245802355191953 m: 4000000000000000000000000000 deg: 5 c5: 125 c0: -164 skew: 1.06 type: snfs lss: 1 rlim: 1510000 alim: 1510000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1510000/1510000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [755000, 1430001) Primes: RFBsize:114886, AFBsize:114908, largePrimes:3334696 encountered Relations: rels:3259503, finalFF:260977 Max relations in full relation-set: 28 Initial matrix: 229860 x 260977 with sparse part having weight 20373065. Pruned matrix : 219199 x 220412 with weight 14602189. Total sieving time: 7.87 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.48 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,140,5,0,0,0,0,0,0,0,0,1510000,1510000,26,26,48,48,2.3,2.3,75000 total time: 8.53 hours. --------- CPU info (if available) ---------- |
execution environment 実行環境 | Core 2 Duo E6300 1.86GHz, Windows Vista) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | November 22, 2008 01:25:43 UTC 2008 年 11 月 22 日 (土) 10 時 25 分 43 秒 (日本時間) |
composite number 合成数 | 35555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555551<140> |
prime factors 素因数 | 464526285610532197573410910418540500603849191853171<51> 76541536306873319748687998204768071820486616615213271404046353568746662919813194493399781<89> |
factorization results 素因数分解の結果 | SNFS difficulty: 141 digits. Divisors found: r1=464526285610532197573410910418540500603849191853171 (pp51) r2=76541536306873319748687998204768071820486616615213271404046353568746662919813194493399781 (pp89) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.949). Factorization parameters were as follows: n: 35555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555551 m: 10000000000000000000000000000 deg: 5 c5: 16 c0: -205 skew: 1.67 type: snfs lss: 1 rlim: 1580000 alim: 1580000 lpbr: 25 lpba: 25 mfbr: 48 mfba: 48 rlambda: 2.4 alambda: 2.4 Factor base limits: 1580000/1580000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 48/48 Sieved rational special-q in [790000, 1590001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 220033 x 220275 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,1580000,1580000,25,25,48,48,2.4,2.4,200000 total time: 4.50 hours. |
software ソフトウェア | Msieve-1.38 |
execution environment 実行環境 | Opteron-2.6GHz; Linux x86_64 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間) |
name 名前 | Robert Backstrom |
---|---|
date 日付 | November 22, 2008 01:09:33 UTC 2008 年 11 月 22 日 (土) 10 時 9 分 33 秒 (日本時間) |
composite number 合成数 | 653214490021568591153880136071698042579076844847058983336996288582169963418227578858397724804353204253<102> |
prime factors 素因数 | 81534190191088785562703437179631417594742467373<47> 8011540784187013965767181696517537757246380887244496561<55> |
factorization results 素因数分解の結果 | Number: n N=653214490021568591153880136071698042579076844847058983336996288582169963418227578858397724804353204253 ( 102 digits) SNFS difficulty: 141 digits. Divisors found: r1=81534190191088785562703437179631417594742467373 (pp47) r2=8011540784187013965767181696517537757246380887244496561 (pp55) Version: GGNFS-0.77.1-20051202-athlon Total time: 4.74 hours. Scaled time: 6.86 units (timescale=1.448). Factorization parameters were as follows: name: KA_3_5_139_1 n: 653214490021568591153880136071698042579076844847058983336996288582169963418227578858397724804353204253 type: snfs skew: 2.10 deg: 5 c5: 1 c0: -41 m: 20000000000000000000000000000 rlim: 1200000 alim: 1200000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 1200000/1200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved algebraic special-q in [100000, 600001) Primes: RFBsize:92938, AFBsize:93090, largePrimes:7573396 encountered Relations: rels:6550842, finalFF:211514 Max relations in full relation-set: 28 Initial matrix: 186092 x 211514 with sparse part having weight 17096091. Pruned matrix : 174635 x 175629 with weight 12149381. Total sieving time: 3.84 hours. Total relation processing time: 0.15 hours. Matrix solve time: 0.64 hours. Total square root time: 0.10 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,1200000,1200000,28,28,56,56,2.5,2.5,100000 total time: 4.74 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間) |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | November 23, 2008 22:28:54 UTC 2008 年 11 月 24 日 (月) 7 時 28 分 54 秒 (日本時間) |
composite number 合成数 | 1411874324770932570133784077882139868858237151608737458865903660716993942523655638259947462944967839507201267607708351<118> |
prime factors 素因数 | 577085991676888579048591258886894351<36> 2446557956931734686843641738363522287338694689153264217316360714289132931884914001<82> |
factorization results 素因数分解の結果 | Number: 35551_147 N=1411874324770932570133784077882139868858237151608737458865903660716993942523655638259947462944967839507201267607708351 ( 118 digits) SNFS difficulty: 148 digits. Divisors found: r1=577085991676888579048591258886894351 (pp36) r2=2446557956931734686843641738363522287338694689153264217316360714289132931884914001 (pp82) Version: GGNFS-0.77.1-20050930-nocona Total time: 11.61 hours. Scaled time: 27.56 units (timescale=2.374). Factorization parameters were as follows: n: 1411874324770932570133784077882139868858237151608737458865903660716993942523655638259947462944967839507201267607708351 m: 200000000000000000000000000000 deg: 5 c5: 100 c0: -41 skew: 0.84 type: snfs lss: 1 rlim: 1800000 alim: 1800000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [900000, 1800001) Primes: RFBsize:135072, AFBsize:134269, largePrimes:3907862 encountered Relations: rels:3974260, finalFF:333414 Max relations in full relation-set: 28 Initial matrix: 269405 x 333414 with sparse part having weight 32597540. Pruned matrix : 250682 x 252093 with weight 21205303. Total sieving time: 11.00 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.52 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,148,5,0,0,0,0,0,0,0,0,1800000,1800000,26,26,49,49,2.3,2.3,75000 total time: 11.61 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047068k/8912896k available (2460k kernel code, 339224k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672384) Calibrating delay using timer specific routine.. 5497.76 BogoMIPS (lpj=2748880) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347) |
execution environment 実行環境 | Core 2 Quad Q6700 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間) |
name 名前 | Sinkiti Sibata |
---|---|
date 日付 | November 24, 2008 05:10:05 UTC 2008 年 11 月 24 日 (月) 14 時 10 分 5 秒 (日本時間) |
composite number 合成数 | 5170324609644016527884881041706215829565526794526256285437584956636903529022585551794141982832094977765160463535536209979<121> |
prime factors 素因数 | 4843514337760459572815534254707218514959785263884641<52> 1067473790535875080479232281288764753614270973659955842797287456129819<70> |
factorization results 素因数分解の結果 | Number: 35551_148 N=5170324609644016527884881041706215829565526794526256285437584956636903529022585551794141982832094977765160463535536209979 ( 121 digits) SNFS difficulty: 150 digits. Divisors found: r1=4843514337760459572815534254707218514959785263884641 (pp52) r2=1067473790535875080479232281288764753614270973659955842797287456129819 (pp70) Version: GGNFS-0.77.1-20060513-k8 Total time: 23.00 hours. Scaled time: 45.79 units (timescale=1.991). Factorization parameters were as follows: name: 35551_148 n: 5170324609644016527884881041706215829565526794526256285437584956636903529022585551794141982832094977765160463535536209979 m: 400000000000000000000000000000 deg: 5 c5: 125 c0: -164 skew: 1.06 type: snfs lss: 1 rlim: 2200000 alim: 2200000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2200000/2200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1100000, 1800001) Primes: RFBsize:162662, AFBsize:162616, largePrimes:7413483 encountered Relations: rels:7905348, finalFF:907301 Max relations in full relation-set: 28 Initial matrix: 325344 x 907301 with sparse part having weight 102751201. Pruned matrix : 217844 x 219534 with weight 33552730. Total sieving time: 21.78 hours. Total relation processing time: 0.19 hours. Matrix solve time: 0.91 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: snfs,150,5,0,0,0,0,0,0,0,0,2200000,2200000,27,27,49,49,2.4,2.4,100000 total time: 23.00 hours. --------- CPU info (if available) ---------- |
execution environment 実行環境 | Core 2 Duo E6300 1.86GHz, Windows Vista) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間) |
name 名前 | Sinkiti Sibata |
---|---|
date 日付 | November 21, 2008 14:34:35 UTC 2008 年 11 月 21 日 (金) 23 時 34 分 35 秒 (日本時間) |
composite number 合成数 | 1645304867052464418756468820263549672476733372189469658647398655789212312830417506743281860111<94> |
prime factors 素因数 | 80114216324581510271381545232553255062473<41> 20536990094074404442694620736817421850163590286243607<53> |
factorization results 素因数分解の結果 | Fri Nov 21 20:27:25 2008 Msieve v. 1.38 Fri Nov 21 20:27:25 2008 random seeds: 57771344 631fd988 Fri Nov 21 20:27:25 2008 factoring 1645304867052464418756468820263549672476733372189469658647398655789212312830417506743281860111 (94 digits) Fri Nov 21 20:27:25 2008 searching for 15-digit factors Fri Nov 21 20:27:27 2008 commencing quadratic sieve (94-digit input) Fri Nov 21 20:27:27 2008 using multiplier of 31 Fri Nov 21 20:27:27 2008 using 32kb Intel Core sieve core Fri Nov 21 20:27:27 2008 sieve interval: 36 blocks of size 32768 Fri Nov 21 20:27:27 2008 processing polynomials in batches of 6 Fri Nov 21 20:27:27 2008 using a sieve bound of 1986293 (74118 primes) Fri Nov 21 20:27:27 2008 using large prime bound of 256231797 (27 bits) Fri Nov 21 20:27:27 2008 using double large prime bound of 1366278931731603 (42-51 bits) Fri Nov 21 20:27:27 2008 using trial factoring cutoff of 51 bits Fri Nov 21 20:27:27 2008 polynomial 'A' values have 12 factors Fri Nov 21 20:27:27 2008 restarting with 338 full and 17985 partial relations Fri Nov 21 23:26:19 2008 74250 relations (18366 full + 55884 combined from 1032480 partial), need 74214 Fri Nov 21 23:26:20 2008 begin with 1050846 relations Fri Nov 21 23:26:21 2008 reduce to 191860 relations in 12 passes Fri Nov 21 23:26:21 2008 attempting to read 191860 relations Fri Nov 21 23:26:24 2008 recovered 191860 relations Fri Nov 21 23:26:24 2008 recovered 175246 polynomials Fri Nov 21 23:26:24 2008 attempting to build 74250 cycles Fri Nov 21 23:26:24 2008 found 74250 cycles in 5 passes Fri Nov 21 23:26:24 2008 distribution of cycle lengths: Fri Nov 21 23:26:24 2008 length 1 : 18366 Fri Nov 21 23:26:24 2008 length 2 : 13089 Fri Nov 21 23:26:24 2008 length 3 : 12660 Fri Nov 21 23:26:24 2008 length 4 : 10071 Fri Nov 21 23:26:24 2008 length 5 : 7558 Fri Nov 21 23:26:24 2008 length 6 : 5099 Fri Nov 21 23:26:24 2008 length 7 : 3181 Fri Nov 21 23:26:24 2008 length 9+: 4226 Fri Nov 21 23:26:24 2008 largest cycle: 21 relations Fri Nov 21 23:26:24 2008 matrix is 74118 x 74250 (19.6 MB) with weight 4844671 (65.25/col) Fri Nov 21 23:26:24 2008 sparse part has weight 4844671 (65.25/col) Fri Nov 21 23:26:25 2008 filtering completed in 3 passes Fri Nov 21 23:26:25 2008 matrix is 70475 x 70539 (18.8 MB) with weight 4640189 (65.78/col) Fri Nov 21 23:26:25 2008 sparse part has weight 4640189 (65.78/col) Fri Nov 21 23:26:25 2008 saving the first 48 matrix rows for later Fri Nov 21 23:26:26 2008 matrix is 70427 x 70539 (12.2 MB) with weight 3705494 (52.53/col) Fri Nov 21 23:26:26 2008 sparse part has weight 2781041 (39.43/col) Fri Nov 21 23:26:26 2008 matrix includes 64 packed rows Fri Nov 21 23:26:26 2008 using block size 28215 for processor cache size 1024 kB Fri Nov 21 23:26:26 2008 commencing Lanczos iteration Fri Nov 21 23:26:26 2008 memory use: 11.5 MB Fri Nov 21 23:27:02 2008 lanczos halted after 1116 iterations (dim = 70427) Fri Nov 21 23:27:02 2008 recovered 18 nontrivial dependencies Fri Nov 21 23:27:02 2008 prp41 factor: 80114216324581510271381545232553255062473 Fri Nov 21 23:27:02 2008 prp53 factor: 20536990094074404442694620736817421850163590286243607 Fri Nov 21 23:27:02 2008 elapsed time 02:59:37 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | November 22, 2008 04:21:50 UTC 2008 年 11 月 22 日 (土) 13 時 21 分 50 秒 (日本時間) |
composite number 合成数 | 491846113647192634604448133290296798389203977805444121670432363474277985275356972687170501529334009621739598223205914449516607491431118488802815819<147> |
prime factors 素因数 | 151630060370265312596023804982270143882259787233401865167<57> 3243724314599321778834666368665223817246547329724430342376155329768224196716824187092053957<91> |
factorization results 素因数分解の結果 | SNFS difficulty: 151 digits. Divisors found: r1=151630060370265312596023804982270143882259787233401865167 (pp57) r2=3243724314599321778834666368665223817246547329724430342376155329768224196716824187092053957 (pp91) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.952). Factorization parameters were as follows: n: 491846113647192634604448133290296798389203977805444121670432363474277985275356972687170501529334009621739598223205914449516607491431118488802815819 m: 2000000000000000000000000000000 deg: 5 c5: 1 c0: -41 skew: 2.10 type: snfs lss: 1 rlim: 2300000 alim: 2300000 lpbr: 27 lpba: 27 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 53/53 Sieved rational special-q in [1150000, 1750001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 350251 x 350493 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2300000,2300000,27,27,53,53,2.5,2.5,200000 total time: 10.00 hours. |
software ソフトウェア | Msieve-1.38 |
execution environment 実行環境 | Opteron-2.8GHz; Linux x86_64 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間) |
name 名前 | Robert Backstrom |
---|---|
date 日付 | November 21, 2008 11:53:26 UTC 2008 年 11 月 21 日 (金) 20 時 53 分 26 秒 (日本時間) |
composite number 合成数 | 551992739033384950060268575515588763406213000287167928339052156947081662679297048315633<87> |
prime factors 素因数 | 180480728295344801238466336014947707069<39> 3058458065007834303252286311493510914433449868357<49> |
factorization results 素因数分解の結果 | Fri Nov 21 22:15:27 2008 Fri Nov 21 22:15:27 2008 Fri Nov 21 22:15:28 2008 Msieve v. 1.38 Fri Nov 21 22:15:28 2008 random seeds: a89c3cd0 547fa8f3 Fri Nov 21 22:15:28 2008 factoring 551992739033384950060268575515588763406213000287167928339052156947081662679297048315633 (87 digits) Fri Nov 21 22:15:29 2008 searching for 15-digit factors Fri Nov 21 22:15:31 2008 commencing quadratic sieve (87-digit input) Fri Nov 21 22:15:31 2008 using multiplier of 1 Fri Nov 21 22:15:31 2008 using 32kb Intel Core sieve core Fri Nov 21 22:15:31 2008 sieve interval: 22 blocks of size 32768 Fri Nov 21 22:15:31 2008 processing polynomials in batches of 10 Fri Nov 21 22:15:32 2008 using a sieve bound of 1499123 (56843 primes) Fri Nov 21 22:15:32 2008 using large prime bound of 119929840 (26 bits) Fri Nov 21 22:15:32 2008 using double large prime bound of 348392707234640 (42-49 bits) Fri Nov 21 22:15:32 2008 using trial factoring cutoff of 49 bits Fri Nov 21 22:15:32 2008 polynomial 'A' values have 11 factors Fri Nov 21 22:48:17 2008 56958 relations (16178 full + 40780 combined from 596856 partial), need 56939 Fri Nov 21 22:48:17 2008 begin with 613034 relations Fri Nov 21 22:48:18 2008 reduce to 135437 relations in 9 passes Fri Nov 21 22:48:18 2008 attempting to read 135437 relations Fri Nov 21 22:48:20 2008 recovered 135437 relations Fri Nov 21 22:48:20 2008 recovered 110021 polynomials Fri Nov 21 22:48:20 2008 attempting to build 56958 cycles Fri Nov 21 22:48:20 2008 found 56958 cycles in 5 passes Fri Nov 21 22:48:20 2008 distribution of cycle lengths: Fri Nov 21 22:48:21 2008 length 1 : 16178 Fri Nov 21 22:48:21 2008 length 2 : 11310 Fri Nov 21 22:48:21 2008 length 3 : 9937 Fri Nov 21 22:48:21 2008 length 4 : 7424 Fri Nov 21 22:48:21 2008 length 5 : 5053 Fri Nov 21 22:48:21 2008 length 6 : 3174 Fri Nov 21 22:48:22 2008 length 7 : 1914 Fri Nov 21 22:48:22 2008 length 9+: 1968 Fri Nov 21 22:48:22 2008 largest cycle: 17 relations Fri Nov 21 22:48:22 2008 matrix is 56843 x 56958 (12.9 MB) with weight 3155406 (55.40/col) Fri Nov 21 22:48:22 2008 sparse part has weight 3155406 (55.40/col) Fri Nov 21 22:48:23 2008 filtering completed in 4 passes Fri Nov 21 22:48:23 2008 matrix is 52253 x 52317 (12.0 MB) with weight 2938923 (56.18/col) Fri Nov 21 22:48:23 2008 sparse part has weight 2938923 (56.18/col) Fri Nov 21 22:48:24 2008 saving the first 48 matrix rows for later Fri Nov 21 22:48:24 2008 matrix is 52205 x 52317 (7.7 MB) with weight 2303617 (44.03/col) Fri Nov 21 22:48:24 2008 sparse part has weight 1692532 (32.35/col) Fri Nov 21 22:48:24 2008 matrix includes 64 packed rows Fri Nov 21 22:48:24 2008 using block size 20926 for processor cache size 4096 kB Fri Nov 21 22:48:25 2008 commencing Lanczos iteration Fri Nov 21 22:48:25 2008 memory use: 7.6 MB Fri Nov 21 22:48:37 2008 lanczos halted after 828 iterations (dim = 52203) Fri Nov 21 22:48:38 2008 recovered 16 nontrivial dependencies Fri Nov 21 22:48:38 2008 prp39 factor: 180480728295344801238466336014947707069 Fri Nov 21 22:48:38 2008 prp49 factor: 3058458065007834303252286311493510914433449868357 Fri Nov 21 22:48:38 2008 elapsed time 00:33:10 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | November 22, 2008 05:42:35 UTC 2008 年 11 月 22 日 (土) 14 時 42 分 35 秒 (日本時間) |
composite number 合成数 | 2102132801408072665433570017523700921622909350181134181486504199352195851104181023043039126755430419794153335805927625999552404687093187007757973<145> |
prime factors 素因数 | 177032885146535852618476212619<30> 183767390539545233362133693209<30> 64615655324137978437197139681674314373675816817502284960654218102416791281648499460663<86> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=524982478 Step 1 took 18886ms Step 2 took 14066ms ********** Factor found in step 2: 183767390539545233362133693209 Found probable prime factor of 30 digits: 183767390539545233362133693209 Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1337943101 Step 1 took 19191ms Step 2 took 14563ms ********** Factor found in step 2: 177032885146535852618476212619 Found probable prime factor of 30 digits: 177032885146535852618476212619 |
software ソフトウェア | GMP-ECM 6.2.1 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間) |
name 名前 | Robert Backstrom |
---|---|
date 日付 | November 21, 2008 16:15:30 UTC 2008 年 11 月 22 日 (土) 1 時 15 分 30 秒 (日本時間) |
composite number 合成数 | 24119714744167530175826743896080551920044617404588160851068750109106326746284237447175478123245774165863<104> |
prime factors 素因数 | 7152201341862591428684838599721619649<37> 3372348398945690607950846917414070323884300578481012329068619483687<67> |
factorization results 素因数分解の結果 | GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 24119714744167530175826743896080551920044617404588160851068750109106326746284237447175478123245774165863 (104 digits) Using B1=1766000, B2=2140281790, polynomial Dickson(6), sigma=647106178 Step 1 took 12632ms Step 2 took 5157ms ********** Factor found in step 2: 7152201341862591428684838599721619649 Found probable prime factor of 37 digits: 7152201341862591428684838599721619649 Probable prime cofactor 3372348398945690607950846917414070323884300578481012329068619483687 has 67 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間) |
name 名前 | Robert Backstrom |
---|---|
date 日付 | November 23, 2008 17:39:05 UTC 2008 年 11 月 24 日 (月) 2 時 39 分 5 秒 (日本時間) |
composite number 合成数 | 892652102578460163452218925109299370287832470891244205426080081902444565148626159311884218437879316318892518659927<114> |
prime factors 素因数 | 6589889674901733654324033821990327559794316422291<49> 135457821999390469099670401531267201792965530673937169973854234797<66> |
factorization results 素因数分解の結果 | Number: n N=892652102578460163452218925109299370287832470891244205426080081902444565148626159311884218437879316318892518659927 ( 114 digits) Divisors found: r1=6589889674901733654324033821990327559794316422291 (pp49) r2=135457821999390469099670401531267201792965530673937169973854234797 (pp66) Version: GGNFS-0.77.1-20051202-athlon Total time: 31.44 hours. Scaled time: 64.30 units (timescale=2.045). Factorization parameters were as follows: name: KA_3_5_154_1 n: 892652102578460163452218925109299370287832470891244205426080081902444565148626159311884218437879316318892518659927 skew: 17881.72 # norm 1.65e+15 c5: 124740 c4: -3305249242 c3: -66180629234238 c2: 941123426736639434 c1: 18068018182754986939935 c0: 56736548028175370430747650 # alpha -4.71 Y1: 627207758323 Y0: -5901134905459535117853 # Murphy_E 5.87e-10 # M 875948648962425620048330212363563760145461037216438232018025505669232687984754761478672507962506218253364299892481 type: gnfs rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [100000, 1700001) Primes: RFBsize:250150, AFBsize:250601, largePrimes:7261061 encountered Relations: rels:7091857, finalFF:612715 Max relations in full relation-set: 28 Initial matrix: 500833 x 612715 with sparse part having weight 46311257. Pruned matrix : 402233 x 404801 with weight 24686433. Total sieving time: 29.94 hours. Total relation processing time: 0.22 hours. Matrix solve time: 0.71 hours. Total square root time: 0.58 hours, sqrts: 3. Prototype def-par.txt line would be: gnfs,113,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3500000,3500000,27,27,50,50,2.6,2.6,100000 total time: 31.44 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間) |
name 名前 | Robert Backstrom |
---|---|
date 日付 | November 23, 2008 10:51:29 UTC 2008 年 11 月 23 日 (日) 19 時 51 分 29 秒 (日本時間) |
composite number 合成数 | 416271860748980805269299319690524959322893202639117708912412035001294381766873523256418067451244226313074070942399137<117> |
prime factors 素因数 | 277097866660463929160851656157857587<36> 1502255740059705391542146623564628296144683429311981707835983561439257940088530651<82> |
factorization results 素因数分解の結果 | GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 416271860748980805269299319690524959322893202639117708912412035001294381766873523256418067451244226313074070942399137 (117 digits) Using B1=2456000, B2=3567875230, polynomial Dickson(6), sigma=3741657175 Step 1 took 32438ms Step 2 took 11703ms ********** Factor found in step 2: 277097866660463929160851656157857587 Found probable prime factor of 36 digits: 277097866660463929160851656157857587 Probable prime cofactor 1502255740059705391542146623564628296144683429311981707835983561439257940088530651 has 82 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | November 22, 2008 02:41:24 UTC 2008 年 11 月 22 日 (土) 11 時 41 分 24 秒 (日本時間) |
composite number 合成数 | 139954548194732252772345103037177836269244519580093301897914837173705598226144679360384114914384268104259142427097644136911644161859417093496658226747<150> |
prime factors 素因数 | 82152423305033592348298831619<29> 1703596103003294419723782049965196114125342318793393470606475103127644906981867365346338961594764303306093223734477470313<121> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1517652325 Step 1 took 18518ms Step 2 took 14281ms ********** Factor found in step 2: 82152423305033592348298831619 Found probable prime factor of 29 digits: 82152423305033592348298831619 Probable prime cofactor 1703596103003294419723782049965196114125342318793393470606475103127644906981867365346338961594764303306093223734477470313 has 121 digits |
software ソフトウェア | GMP-ECM 6.2.1 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間) |
name 名前 | Robert Backstrom |
---|---|
date 日付 | November 24, 2008 11:00:31 UTC 2008 年 11 月 24 日 (月) 20 時 0 分 31 秒 (日本時間) |
composite number 合成数 | 28521065183715196355824844085452176849021322513407806760569274498363666847451583590806239126414388837306251084921249<116> |
prime factors 素因数 | 163875404876858976588551599658128966517628862360417550081<57> 174041157702382505971591718344739887639052132484582251616929<60> |
factorization results 素因数分解の結果 | Number: n N=28521065183715196355824844085452176849021322513407806760569274498363666847451583590806239126414388837306251084921249 ( 116 digits) Divisors found: Mon Nov 24 21:52:43 2008 prp57 factor: 163875404876858976588551599658128966517628862360417550081 Mon Nov 24 21:52:43 2008 prp60 factor: 174041157702382505971591718344739887639052132484582251616929 Mon Nov 24 21:52:43 2008 elapsed time 00:43:19 (Msieve 1.38) Version: GGNFS-0.77.1-20051202-athlon Total time: 36.70 hours. Scaled time: 53.17 units (timescale=1.449). Factorization parameters were as follows: name: KA_3_5_159_1 n: 28521065183715196355824844085452176849021322513407806760569274498363666847451583590806239126414388837306251084921249 skew: 115436.32 # norm 1.36e+16 c5: 4800 c4: -783522220 c3: -300581098722771 c2: 10441071344211345536 c1: -17790501904306421094330 c0: -14839347986275999951931807367 # alpha -6.62 Y1: 1602120061993 Y0: -22635281731215525167408 # Murphy_E 5.30e-10 # M 3583062506374066250087638677111738450689527918815593869953971918521088312084087884886850189552142664315250577447483 type: gnfs rlim: 4500000 alim: 4500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 60000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved special-q in [100000, 1720001) Primes: RFBsize:315948, AFBsize:316284, largePrimes:6170251 encountered Relations: rels:6123996, finalFF:749005 Max relations in full relation-set: 28 Initial matrix: 632311 x 749005 with sparse part having weight 34439405. Pruned matrix : 499348 x 502573 with weight 16557018. Total sieving time: 36.45 hours. Total relation processing time: 0.25 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: gnfs,115,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4500000,4500000,27,27,50,50,2.4,2.4,60000 total time: 36.70 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間) |
name 名前 | Robert Backstrom |
---|---|
date 日付 | November 23, 2008 02:58:38 UTC 2008 年 11 月 23 日 (日) 11 時 58 分 38 秒 (日本時間) |
composite number 合成数 | 80301982137501457226438683808161823698010328552916864791826396744849000596280781712481044585978795444664900507<110> |
prime factors 素因数 | 22564381405754882879509950206984140408804091429<47> 3558793866027322837892334872232527090837570341500904949191061183<64> |
factorization results 素因数分解の結果 | Number: n N=80301982137501457226438683808161823698010328552916864791826396744849000596280781712481044585978795444664900507 ( 110 digits) Divisors found: r1=22564381405754882879509950206984140408804091429 (pp47) r2=3558793866027322837892334872232527090837570341500904949191061183 (pp64) Version: GGNFS-0.77.1-20051202-athlon Total time: 17.19 hours. Scaled time: 35.03 units (timescale=2.038). Factorization parameters were as follows: name: KA_3_5_161_1 n: 80301982137501457226438683808161823698010328552916864791826396744849000596280781712481044585978795444664900507 skew: 20941.36 # norm 3.03e+15 c5: 80160 c4: -178494500 c3: -208866880738614 c2: 1010698957953137416 c1: 26388170788187158703673 c0: 67057988088281024513967838 # alpha -6.73 Y1: 2999771929 Y0: -1000353997470729914547 # Murphy_E 1.09e-09 # M 51387382130815976307384603189548897007283674985944576533889534954907903830011786739793269560296316131041848063 type: gnfs rlim: 3200000 alim: 3200000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [100000, 1000001) Primes: RFBsize:230209, AFBsize:229814, largePrimes:6650753 encountered Relations: rels:6415890, finalFF:611905 Max relations in full relation-set: 28 Initial matrix: 460107 x 611905 with sparse part having weight 37008769. Pruned matrix : 312942 x 315306 with weight 13812048. Total sieving time: 16.59 hours. Total relation processing time: 0.19 hours. Matrix solve time: 0.29 hours. Total square root time: 0.11 hours, sqrts: 1. Prototype def-par.txt line would be: gnfs,109,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,3200000,27,27,50,50,2.6,2.6,100000 total time: 17.19 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間) |
name 名前 | Robert Backstrom |
---|---|
date 日付 | November 24, 2008 17:26:22 UTC 2008 年 11 月 25 日 (火) 2 時 26 分 22 秒 (日本時間) |
composite number 合成数 | 1076885231038767992413352754329605253167257680508027092947125535368173098885445945137010069761323421743188297144152194724878946519747<133> |
prime factors 素因数 | 952732027174124881625503241681651225883485593<45> 1130312827031637517531129402173147614032500164417042066514785305877661651415227444360379<88> |
factorization results 素因数分解の結果 | GMP-ECM 6.0.1 [powered by GMP 4.1.4] [ECM] Input number is 1076885231038767992413352754329605253167257680508027092947125535368173098885445945137010069761323421743188297144152194724878946519747 (133 digits) Using B1=2114000, B2=2439300909, polynomial Dickson(6), sigma=2117395774 Step 1 took 28031ms Step 2 took 15469ms ********** Factor found in step 2: 952732027174124881625503241681651225883485593 Found probable prime factor of 45 digits: 952732027174124881625503241681651225883485593 Probable prime cofactor 1130312827031637517531129402173147614032500164417042066514785305877661651415227444360379 has 88 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間) |
name 名前 | Robert Backstrom |
---|---|
date 日付 | November 25, 2008 22:32:12 UTC 2008 年 11 月 26 日 (水) 7 時 32 分 12 秒 (日本時間) |
composite number 合成数 | 18814985910856850738989493552015668813724344381955732627780744427450386269838098108337739752472791134671475386080902144478651310281628482623249021352127677<155> |
prime factors 素因数 | 9792135022795704973814420716717552208387<40> 1921438569531190489372181741560709835825907604892997957330053823094539017344979860619343704918741149830171856900671<115> |
factorization results 素因数分解の結果 | Number: n N=18814985910856850738989493552015668813724344381955732627780744427450386269838098108337739752472791134671475386080902144478651310281628482623249021352127677 ( 155 digits) SNFS difficulty: 167 digits. Divisors found: Wed Nov 26 09:08:30 2008 prp40 factor: 9792135022795704973814420716717552208387 Wed Nov 26 09:08:30 2008 prp115 factor: 1921438569531190489372181741560709835825907604892997957330053823094539017344979860619343704918741149830171856900671 Wed Nov 26 09:08:30 2008 elapsed time 02:15:55 (Msieve 1.38) Version: GGNFS-0.77.1-20051202-athlon Total time: 37.41 hours. Scaled time: 68.08 units (timescale=1.820). Factorization parameters were as follows: name: KA_3_5_165_1 n: 18814985910856850738989493552015668813724344381955732627780744427450386269838098108337739752472791134671475386080902144478651310281628482623249021352127677 type: snfs skew: 1.33 deg: 5 c5: 10 c0: -41 m: 2000000000000000000000000000000000 rlim: 5200000 alim: 5200000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 5200000/5200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [100000, 2150001) Primes: RFBsize:361407, AFBsize:361403, largePrimes:15647474 encountered Relations: rels:14410609, finalFF:836059 Max relations in full relation-set: 28 Initial matrix: 722876 x 836059 with sparse part having weight 94388964. Pruned matrix : 631595 x 635273 with weight 62761233. Total sieving time: 36.91 hours. Total relation processing time: 0.49 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,167,5,0,0,0,0,0,0,0,0,5200000,5200000,28,28,56,56,2.5,2.5,100000 total time: 37.41 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間) |
name 名前 | Robert Backstrom |
---|---|
date 日付 | November 23, 2008 02:14:26 UTC 2008 年 11 月 23 日 (日) 11 時 14 分 26 秒 (日本時間) |
composite number 合成数 | 582147603270119562384365247265284317160054042945065077461924499567273313587978157167009251435134830933511703358975297967247902845095416448111173892091701273067667<162> |
prime factors 素因数 | 2071061672414038887327862478162760144139<40> 281086561073560727550682470459751650208883734024290695333856539193174433441099866200434115946299221513714137236518465529753<123> |
factorization results 素因数分解の結果 | GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 582147603270119562384365247265284317160054042945065077461924499567273313587978157167009251435134830933511703358975297967247902845095416448111173892091701273067667 (162 digits) Using B1=2658000, B2=4281434440, polynomial Dickson(6), sigma=79681721 Step 1 took 53859ms Step 2 took 19406ms ********** Factor found in step 2: 2071061672414038887327862478162760144139 Found probable prime factor of 40 digits: 2071061672414038887327862478162760144139 Probable prime cofactor 281086561073560727550682470459751650208883734024290695333856539193174433441099866200434115946299221513714137236518465529753 has 123 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間) |
name 名前 | Robert Backstrom |
---|---|
date 日付 | May 22, 2009 03:08:50 UTC 2009 年 5 月 22 日 (金) 12 時 8 分 50 秒 (日本時間) |
composite number 合成数 | 176077343280428722210294933173471602076330384241286510651480244704067065779074311519434584743655131635262384425494570149205597165806500457976278773<147> |
prime factors 素因数 | 140850378091982090577354915876165350338613087<45> 9786966886270901249855494260133478437860029027<46> 127731302497147884438978142065758231658906688736325985177<57> |
factorization results 素因数分解の結果 | Number: n N=176077343280428722210294933173471602076330384241286510651480244704067065779074311519434584743655131635262384425494570149205597165806500457976278773 ( 147 digits) SNFS difficulty: 171 digits. Divisors found: Fri May 22 13:03:18 2009 prp45 factor: 140850378091982090577354915876165350338613087 Fri May 22 13:03:18 2009 prp46 factor: 9786966886270901249855494260133478437860029027 Fri May 22 13:03:18 2009 prp57 factor: 127731302497147884438978142065758231658906688736325985177 Fri May 22 13:03:18 2009 elapsed time 01:14:43 (Msieve 1.39 - dependency 2) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 49.74 hours. Scaled time: 132.30 units (timescale=2.660). Factorization parameters were as follows: name: KA_3_5_168_1 n: 176077343280428722210294933173471602076330384241286510651480244704067065779074311519434584743655131635262384425494570149205597165806500457976278773 m: 10000000000000000000000000000000000 deg: 5 c5: 16 c0: -205 skew: 1.67 type: snfs lss: 1 rlim: 5000000 alim: 5000000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [2500000, 5261749) Primes: RFBsize:348513, AFBsize:348852, largePrimes:17302361 encountered Relations: rels:17224239, finalFF:733473 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1992447 hash collisions in 19178345 relations Msieve: matrix is 783206 x 783454 (206.8 MB) Total sieving time: 49.02 hours. Total relation processing time: 0.72 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,5000000,5000000,28,28,56,56,2.4,2.4,100000 total time: 49.74 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | November 23, 2008 19:32:08 UTC 2008 年 11 月 24 日 (月) 4 時 32 分 8 秒 (日本時間) |
composite number 合成数 | 9116809116809116809116809116809116809116809116809116809116809116809116809116809116809116809116809116809116809116809116809116809116809116809116809116809116809116809116809<169> |
prime factors 素因数 | 998043704380098602044869755178934572557337371599512013922099<60> 9134679249814733560138714436517929988836887392421258951330673846471491717924198918470826456585941620511614291<109> |
factorization results 素因数分解の結果 | SNFS difficulty: 171 digits. Divisors found: r1=998043704380098602044869755178934572557337371599512013922099 (pp60) r2=9134679249814733560138714436517929988836887392421258951330673846471491717924198918470826456585941620511614291 (pp109) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.950). Factorization parameters were as follows: n: 9116809116809116809116809116809116809116809116809116809116809116809116809116809116809116809116809116809116809116809116809116809116809116809116809116809116809116809116809 m: 20000000000000000000000000000000000 deg: 5 c5: 1 c0: -41 skew: 2.10 type: snfs lss: 1 rlim: 5100000 alim: 5100000 lpbr: 27 lpba: 27 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 5100000/5100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved rational special-q in [2550000, 4550001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 962406 x 962647 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,5100000,5100000,27,27,54,54,2.5,2.5,200000 total time: 42.00 hours. |
software ソフトウェア | Msieve-1.38 |
execution environment 実行環境 | Opteron-2.8GHz; Linux x86_64 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 400 / 2336 | Serge Batalov | November 22, 2008 04:00:52 UTC 2008 年 11 月 22 日 (土) 13 時 0 分 52 秒 (日本時間) |
name 名前 | Warut Roonguthai |
---|---|
date 日付 | October 4, 2011 01:05:33 UTC 2011 年 10 月 4 日 (火) 10 時 5 分 33 秒 (日本時間) |
composite number 合成数 | 51472895162412657665397436050098807721908592316317999381208421882056853748722492196537949973218407075869349136768656928328348015206363334966527204699<149> |
prime factors 素因数 | 398243059819026931610797278845172601116229452436728943011437537<63> 129249948977901630027341066758751705902213886712905995236019779628673269832748991037627<87> |
factorization results 素因数分解の結果 | N = 51472895162412657665397436050098807721908592316317999381208421882056853748722492196537949973218407075869349136768656928328348015206363334966527204699 (149 digits) SNFS difficulty: 177 digits. Divisors found: r1=398243059819026931610797278845172601116229452436728943011437537 (pp63) r2=129249948977901630027341066758751705902213886712905995236019779628673269832748991037627 (pp87) Version: Msieve v. 1.48 Total time: 31.17 hours. Factorization parameters were as follows: name: (32*10^174-41)/9 n: 51472895162412657665397436050098807721908592316317999381208421882056853748722492196537949973218407075869349136768656928328348015206363334966527204699 Y0: 200000000000000000000000000000000000 Y1: -1 c0: -410 c1: 0 c2: 0 c3: 0 c4: 0 c5: 1 skew: 3.33 type: snfs Factor base limits: 6200000/6200000 Large primes per side: 3 Large prime bits: 28/28 Sieved rational special-q in [0, 0) Total raw relations: 20173363 Relations: 2349918 relations Pruned matrix : 1341523 x 1341749 Polynomial selection time: 0.00 hours. Total sieving time: 28.65 hours. Total relation processing time: 0.11 hours. Matrix solve time: 2.20 hours. time per square root: 0.21 hours. Prototype def-par.txt line would be: snfs,177,5,0,0,0,0,0,0,0,0,6200000,6200000,28,28,55,55,2.5,2.5,100000 total time: 31.17 hours. Intel64 Family 6 Model 42 Stepping 7, GenuineIntel Windows-7-6.1.7601-SP1 processors: 4, speed: 2.29GHz |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 931 | 800 | Ignacio Santos | May 2, 2010 15:50:14 UTC 2010 年 5 月 3 日 (月) 0 時 50 分 14 秒 (日本時間) |
131 | Wataru Sakai | May 23, 2010 08:31:38 UTC 2010 年 5 月 23 日 (日) 17 時 31 分 38 秒 (日本時間) | |||
45 | 11e6 | 230 / 4049 | Ignacio Santos | May 2, 2010 15:50:14 UTC 2010 年 5 月 3 日 (月) 0 時 50 分 14 秒 (日本時間) | |
50 | 43e6 | 64 / 7467 | Ignacio Santos | May 2, 2010 15:50:14 UTC 2010 年 5 月 3 日 (月) 0 時 50 分 14 秒 (日本時間) |
name 名前 | Warut Roonguthai |
---|---|
date 日付 | January 30, 2012 00:42:47 UTC 2012 年 1 月 30 日 (月) 9 時 42 分 47 秒 (日本時間) |
composite number 合成数 | 2577549180543967150192137066454603104408390174631613931894687817090673552436015682819533445495866494083232804210400689288944890737318608798487<142> |
prime factors 素因数 | 106122547389897705385722782997778666889114396910004741333<57> 24288421677949053281947280069131348549505011355562339912080685164162559988358000340539<86> |
factorization results 素因数分解の結果 | N = 2577549180543967150192137066454603104408390174631613931894687817090673552436015682819533445495866494083232804210400689288944890737318608798487 (142 digits) SNFS difficulty: 178 digits. Divisors found: r1=106122547389897705385722782997778666889114396910004741333 (pp57) r2=24288421677949053281947280069131348549505011355562339912080685164162559988358000340539 (pp86) Version: Msieve v. 1.48 Total time: 35.43 hours. Factorization parameters were as follows: name: (32*10^176-41)/9 n: 2577549180543967150192137066454603104408390174631613931894687817090673552436015682819533445495866494083232804210400689288944890737318608798487 Y0: 200000000000000000000000000000000000 Y1: -1 c0: -41 c1: 0 c2: 0 c3: 0 c4: 0 c5: 10 skew: 1.33 type: snfs Factor base limits: 6500000/6500000 Large primes per side: 3 Large prime bits: 28/28 Sieved rational special-q in [0, 0) Total raw relations: 20571292 Relations: 2542854 relations Pruned matrix : 1442971 x 1443196 Polynomial selection time: 0.00 hours. Total sieving time: 32.44 hours. Total relation processing time: 0.12 hours. Matrix solve time: 2.66 hours. time per square root: 0.21 hours. Prototype def-par.txt line would be: snfs,178,5,0,0,0,0,0,0,0,0,6500000,6500000,28,28,55,55,2.5,2.5,100000 total time: 35.43 hours. Intel64 Family 6 Model 42 Stepping 7, GenuineIntel Windows-7-6.1.7601-SP1 processors: 4, speed: 2.29GHz |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 300 | Ignacio Santos | May 9, 2011 18:07:07 UTC 2011 年 5 月 10 日 (火) 3 時 7 分 7 秒 (日本時間) | |
40 | 3e6 | 2144 | 110 | Ignacio Santos | May 9, 2011 18:07:07 UTC 2011 年 5 月 10 日 (火) 3 時 7 分 7 秒 (日本時間) |
2034 | Wataru Sakai | October 6, 2011 14:00:26 UTC 2011 年 10 月 6 日 (木) 23 時 0 分 26 秒 (日本時間) | |||
45 | 11e6 | 32 / 3991 | Ignacio Santos | May 9, 2011 18:07:07 UTC 2011 年 5 月 10 日 (火) 3 時 7 分 7 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | November 23, 2008 19:17:40 UTC 2008 年 11 月 24 日 (月) 4 時 17 分 40 秒 (日本時間) |
composite number 合成数 | 242357873625555011616820375510880350259158618482078274537803763119388387672119022907552345465776189182241780402153687635844539696308627<135> |
prime factors 素因数 | 125024948769124296559864649242229<33> 1938476088265407267608468946830297300218344442829662873259342913111548879306471757099239916369185285863<103> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3121908314 Step 1 took 11952ms Step 2 took 9541ms ********** Factor found in step 2: 125024948769124296559864649242229 Found probable prime factor of 33 digits: 125024948769124296559864649242229 Probable prime cofactor 1938476088265407267608468946830297300218344442829662873259342913111548879306471757099239916369185285863 has 103 digits |
software ソフトウェア | GMP-ECM 6.2.1 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | June 6, 2013 05:11:05 UTC 2013 年 6 月 6 日 (木) 14 時 11 分 5 秒 (日本時間) |
composite number 合成数 | 1886634450123065348165011511999841185954245202476519366921515350562397095983378900826046680950697251011586442749398746816071858481411331471850293718326580420501<160> |
prime factors 素因数 | 256050432430135091271406941640007254492098072868356519000716196027079127<72> 7368214270201808644261429959282917594297406300328044683833143930180587910078928136936563<88> |
factorization results 素因数分解の結果 | N=1886634450123065348165011511999841185954245202476519366921515350562397095983378900826046680950697251011586442749398746816071858481411331471850293718326580420501 ( 160 digits) SNFS difficulty: 181 digits. Divisors found: r1=256050432430135091271406941640007254492098072868356519000716196027079127 (pp72) r2=7368214270201808644261429959282917594297406300328044683833143930180587910078928136936563 (pp88) Version: Msieve v. 1.50 (SVN unknown) Total time: 102.32 hours. Scaled time: 193.69 units (timescale=1.893). Factorization parameters were as follows: n: 1886634450123065348165011511999841185954245202476519366921515350562397095983378900826046680950697251011586442749398746816071858481411331471850293718326580420501 m: 1000000000000000000000000000000000000 deg: 5 c5: 16 c0: -205 skew: 1.67 # Murphy_E = 9.775e-11 type: snfs lss: 1 rlim: 7300000 alim: 7300000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 qintsize: 400000 Factor base limits: 7300000/7300000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3650000, 8850001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1333172 x 1333402 Total sieving time: 99.83 hours. Total relation processing time: 0.20 hours. Matrix solve time: 1.99 hours. Time per square root: 0.29 hours. Prototype def-par.txt line would be: snfs,181.000,5,0,0,0,0,0,0,0,0,7300000,7300000,28,28,53,53,2.5,2.5,100000 total time: 102.32 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 300 | Ignacio Santos | May 9, 2011 19:27:03 UTC 2011 年 5 月 10 日 (火) 4 時 27 分 3 秒 (日本時間) | |
40 | 3e6 | 110 | Ignacio Santos | May 9, 2011 19:27:03 UTC 2011 年 5 月 10 日 (火) 4 時 27 分 3 秒 (日本時間) | |
45 | 11e6 | 632 / 4441 | 32 | Ignacio Santos | May 9, 2011 19:27:03 UTC 2011 年 5 月 10 日 (火) 4 時 27 分 3 秒 (日本時間) |
600 | Rich Dickerson | May 21, 2012 21:09:42 UTC 2012 年 5 月 22 日 (火) 6 時 9 分 42 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | November 23, 2008 19:13:54 UTC 2008 年 11 月 24 日 (月) 4 時 13 分 54 秒 (日本時間) |
composite number 合成数 | 126736524551892620483473147284986604761260725360576996860581826710322171493155908852628222639019046309474584548464318284016606968020853956484784585156918451624868584620395217<174> |
prime factors 素因数 | 1782454901553614650304098655062208111<37> |
composite cofactor 合成数の残り | 71102233465445408409612382583042372098046406252784713936200060362115527942842424757820993742113288336936350920262904289486346645532474047<137> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1778025856 Step 1 took 25039ms Step 2 took 16297ms ********** Factor found in step 2: 1782454901553614650304098655062208111 Found probable prime factor of 37 digits: 1782454901553614650304098655062208111 Composite cofactor 71102233465445408409612382583042372098046406252784713936200060362115527942842424757820993742113288336936350920262904289486346645532474047 has 137 digits |
software ソフトウェア | GMP-ECM 6.2.1 |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | June 6, 2013 11:20:15 UTC 2013 年 6 月 6 日 (木) 20 時 20 分 15 秒 (日本時間) |
composite number 合成数 | 71102233465445408409612382583042372098046406252784713936200060362115527942842424757820993742113288336936350920262904289486346645532474047<137> |
prime factors 素因数 | 68745930245655441416860735443469690343<38> 598783853054498941809960447586519280045119307<45> 1727293622050214086236016176837567804366642356356545947<55> |
factorization results 素因数分解の結果 | N=71102233465445408409612382583042372098046406252784713936200060362115527942842424757820993742113288336936350920262904289486346645532474047 ( 137 digits) SNFS difficulty: 181 digits. Divisors found: r1=68745930245655441416860735443469690343 (pp38) r2=598783853054498941809960447586519280045119307 (pp45) r3=1727293622050214086236016176837567804366642356356545947 (pp55) Version: Msieve v. 1.50 (SVN unknown) Total time: 86.89 hours. Scaled time: 56.83 units (timescale=0.654). Factorization parameters were as follows: n: 71102233465445408409612382583042372098046406252784713936200060362115527942842424757820993742113288336936350920262904289486346645532474047 m: 2000000000000000000000000000000000000 deg: 5 c5: 1 c0: -41 skew: 2.10 # Murphy_E = 1.239e-10 type: snfs lss: 1 rlim: 7400000 alim: 7400000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 qintsize: 400000 Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3700000, 8100001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1213773 x 1214000 Total sieving time: 84.98 hours. Total relation processing time: 0.20 hours. Matrix solve time: 1.48 hours. Time per square root: 0.24 hours. Prototype def-par.txt line would be: snfs,181.000,5,0,0,0,0,0,0,0,0,7400000,7400000,28,28,53,53,2.5,2.5,100000 total time: 86.89 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 300 | Ignacio Santos | May 9, 2011 21:03:58 UTC 2011 年 5 月 10 日 (火) 6 時 3 分 58 秒 (日本時間) | |
40 | 3e6 | 846 | 110 | Ignacio Santos | May 9, 2011 21:03:58 UTC 2011 年 5 月 10 日 (火) 6 時 3 分 58 秒 (日本時間) |
700 | Ignacio Santos | May 24, 2013 22:09:36 UTC 2013 年 5 月 25 日 (土) 7 時 9 分 36 秒 (日本時間) | |||
36 | Ignacio Santos | May 24, 2013 22:11:59 UTC 2013 年 5 月 25 日 (土) 7 時 11 分 59 秒 (日本時間) | |||
45 | 11e6 | 242 / 4068 | 32 | Ignacio Santos | May 9, 2011 21:03:58 UTC 2011 年 5 月 10 日 (火) 6 時 3 分 58 秒 (日本時間) |
210 | Ignacio Santos | May 24, 2013 22:09:36 UTC 2013 年 5 月 25 日 (土) 7 時 9 分 36 秒 (日本時間) | |||
50 | 43e6 | 60 / 7465 | Ignacio Santos | May 24, 2013 22:09:36 UTC 2013 年 5 月 25 日 (土) 7 時 9 分 36 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | July 12, 2010 10:28:37 UTC 2010 年 7 月 12 日 (月) 19 時 28 分 37 秒 (日本時間) |
composite number 合成数 | 10176847855583913978158131105850316822765201579026992212580612958542924719852845324220220499854327963742180881322020876467664449354137481772708944282107819823106666627231381226279<179> |
prime factors 素因数 | 4168006264942310865821203741779550495998061160548867<52> 2441658483381567360006049923510029539113678553500772114805960561753243102664989406595688432686567222249340919252011139174394637<127> |
factorization results 素因数分解の結果 | Number: 6 N=10176847855583913978158131105850316822765201579026992212580612958542924719852845324220220499854327963742180881322020876467664449354137481772708944282107819823106666627231381226279 ( 179 digits) SNFS difficulty: 185 digits. Divisors found: r1=4168006264942310865821203741779550495998061160548867 (pp52) r2=2441658483381567360006049923510029539113678553500772114805960561753243102664989406595688432686567222249340919252011139174394637 (pp127) Version: Msieve-1.40 Total time: 205.93 hours. Scaled time: 358.12 units (timescale=1.739). Factorization parameters were as follows: n: 10176847855583913978158131105850316822765201579026992212580612958542924719852845324220220499854327963742180881322020876467664449354137481772708944282107819823106666627231381226279 m: 2000000000000000000000000000000000000 deg: 5 c5: 10000 c0: -41 skew: 0.33 type: snfs lss: 1 rlim: 8600000 alim: 8600000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 8600000/8600000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [4300000, 7600001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1692771 x 1692997 Total sieving time: 200.65 hours. Total relation processing time: 0.24 hours. Matrix solve time: 4.22 hours. Time per square root: 0.82 hours. Prototype def-par.txt line would be: snfs,185.000,5,0,0,0,0,0,0,0,0,8600000,8600000,28,28,54,54,2.5,2.5,100000 total time: 205.93 hours. --------- CPU info (if available) ---------- |
software ソフトウェア | GGNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 300 | Ignacio Santos | June 19, 2010 20:26:12 UTC 2010 年 6 月 20 日 (日) 5 時 26 分 12 秒 (日本時間) | |
40 | 3e6 | 2144 | 110 | Ignacio Santos | June 19, 2010 20:26:12 UTC 2010 年 6 月 20 日 (日) 5 時 26 分 12 秒 (日本時間) |
2034 | Wataru Sakai | July 1, 2010 05:02:12 UTC 2010 年 7 月 1 日 (木) 14 時 2 分 12 秒 (日本時間) | |||
45 | 11e6 | 32 / 3991 | Ignacio Santos | June 19, 2010 20:26:12 UTC 2010 年 6 月 20 日 (日) 5 時 26 分 12 秒 (日本時間) |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | October 29, 2014 13:02:42 UTC 2014 年 10 月 29 日 (水) 22 時 2 分 42 秒 (日本時間) |
composite number 合成数 | 119812398488054643088802491682378346555526674221984627542385538764306958647863847688254538410523183532181214161323989115105979178082368078520566938160539077130051135227<168> |
prime factors 素因数 | 1608339809152205055322478744505364550860104313356184791633689321440827343<73> 74494455590955412553842461721029954259054093485684245878328726468556941981287757297487828851989<95> |
factorization results 素因数分解の結果 | Number: 35551_185 N=119812398488054643088802491682378346555526674221984627542385538764306958647863847688254538410523183532181214161323989115105979178082368078520566938160539077130051135227 ( 168 digits) SNFS difficulty: 186 digits. Divisors found: r1=1608339809152205055322478744505364550860104313356184791633689321440827343 r2=74494455590955412553842461721029954259054093485684245878328726468556941981287757297487828851989 Version: Total time: 57.09 hours. Scaled time: 299.93 units (timescale=5.254). Factorization parameters were as follows: n: 119812398488054643088802491682378346555526674221984627542385538764306958647863847688254538410523183532181214161323989115105979178082368078520566938160539077130051135227 m: 20000000000000000000000000000000000000 deg: 5 c5: 1 c0: -41 skew: 2.10 # Murphy_E = 7.759e-11 type: snfs lss: 1 rlim: 8400000 alim: 8400000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 8400000/8400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [4200000, 6700001) Primes: rational ideals reading, algebraic ideals reading, Relations: 19849582 Max relations in full relation-set: Initial matrix: Pruned matrix : 1531289 x 1531537 Total sieving time: 52.87 hours. Total relation processing time: 1.31 hours. Matrix solve time: 2.82 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,186,5,0,0,0,0,0,0,0,0,8400000,8400000,28,28,54,54,2.5,2.5,100000 total time: 57.09 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM) i7-4930K CPU @ 3.40GHz stepping 04 Memory: 49373664k/51380224k available (5220k kernel code, 1086460k absent, 920100k reserved, 7121k data, 1264k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 6799.70 BogoMIPS (lpj=3399852) Total of 12 processors activated (81596.44 BogoMIPS). |
software ソフトウェア | GGNFS / Msieve v1.39 |
execution environment 実行環境 | Core i7-4930K |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 300 | Ignacio Santos | May 9, 2011 21:23:07 UTC 2011 年 5 月 10 日 (火) 6 時 23 分 7 秒 (日本時間) | |
40 | 3e6 | 1610 | 110 | Ignacio Santos | May 9, 2011 21:23:07 UTC 2011 年 5 月 10 日 (火) 6 時 23 分 7 秒 (日本時間) |
1500 | Dmitry Domanov | August 21, 2013 13:12:04 UTC 2013 年 8 月 21 日 (水) 22 時 12 分 4 秒 (日本時間) | |||
45 | 11e6 | 832 / 4109 | 32 | Ignacio Santos | May 9, 2011 21:23:07 UTC 2011 年 5 月 10 日 (火) 6 時 23 分 7 秒 (日本時間) |
500 | Dmitry Domanov | September 18, 2013 15:39:23 UTC 2013 年 9 月 19 日 (木) 0 時 39 分 23 秒 (日本時間) | |||
300 | Serge Batalov | May 27, 2014 00:31:12 UTC 2014 年 5 月 27 日 (火) 9 時 31 分 12 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | November 23, 2008 19:22:22 UTC 2008 年 11 月 24 日 (月) 4 時 22 分 22 秒 (日本時間) |
composite number 合成数 | 2691586654416919354083464571313558969547245601385958529058996156103042785722206068496691573179661230679380948190969048831042654305487666590604110054503536294864260046702561161617473<181> |
prime factors 素因数 | 827294513452956265618762024603598903<36> 3253480605332184680921640377891870384597854099985062122053939956180523797724675112907904366651740113627813901481730040593855626571502160884709191<145> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3710936791 Step 1 took 28301ms Step 2 took 18753ms ********** Factor found in step 2: 827294513452956265618762024603598903 Found probable prime factor of 36 digits: 827294513452956265618762024603598903 Probable prime cofactor 3253480605332184680921640377891870384597854099985062122053939956180523797724675112907904366651740113627813901481730040593855626571502160884709191 has 145 digits |
software ソフトウェア | GMP-ECM 6.2.1 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | August 23, 2020 07:12:24 UTC 2020 年 8 月 23 日 (日) 16 時 12 分 24 秒 (日本時間) |
composite number 合成数 | 10689191651450009448437696061546982212129350245025331350683502905032049805478358151586676581008668820925348033338071486700528500150462014561357995830656156845213242026703<170> |
prime factors 素因数 | 2577634789889002293771388505180441779571431663<46> 4146899201306289688829019585685806242337680660849443740098338618537840822732365840114765777764949758991760852587154451074081<124> |
factorization results 素因数分解の結果 | 10689191651450009448437696061546982212129350245025331350683502905032049805478358151586676581008668820925348033338071486700528500150462014561357995830656156845213242026703=2577634789889002293771388505180441779571431663*4146899201306289688829019585685806242337680660849443740098338618537840822732365840114765777764949758991760852587154451074081 n: 10689191651450009448437696061546982212129350245025331350683502905032049805478358151586676581008668820925348033338071486700528500150462014561357995830656156845213242026703 skew: 1.67 type: snfs c0: -205 c5: 16 Y0: 100000000000000000000000000000000000000 Y1: -1 # f(x) = 16*x^5-205 # g(x) = -x+100000000000000000000000000000000000000 Info:Square Root: Factors: 4146899201306289688829019585685806242337680660849443740098338618537840822732365840114765777764949758991760852587154451074081 2577634789889002293771388505180441779571431663 Warning:Polynomial Selection (size optimized): some stats could not be displayed for polyselect1 (see log file for debug info) Warning:Polynomial Selection (root optimized): some stats could not be displayed for polyselect2 (see log file for debug info) Info:Generate Factor Base: Total cpu/real time for makefb: 4.75/2.04137 Info:Generate Free Relations: Total cpu/real time for freerel: 98.73/25.4243 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 25414627 Info:Lattice Sieving: Average J: 1893.92 for 2101578 special-q, max bucket fill -bkmult 1.0,1s:1.116860 Info:Lattice Sieving: Total time: 502110s Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 50.84/111.191 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 110.5s Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 417.55/385.365 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 331.2s Info:Filtering - Singleton removal: Total cpu/real time for purge: 332.83/346.198 Info:Filtering - Merging: Total cpu/real time for merge: 289.26/82.9831 Info:Filtering - Merging: Total cpu/real time for replay: 76.47/65.5695 Info:Linear Algebra: Total cpu/real time for bwc: 68232.4/17603.3 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: WCT time 11149.83, iteration CPU time 0.17, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (62464 iterations) Info:Linear Algebra: Lingen CPU time 408.48, WCT time 118.04 Info:Linear Algebra: Mksol: WCT time 6197.33, iteration CPU time 0.19, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (31232 iterations) Info:Quadratic Characters: Total cpu/real time for characters: 71.04/29.7088 Info:Square Root: Total cpu/real time for sqrt: 930.58/286.917 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 998914/269989 Info:root: Cleaning up computation data in /tmp/cado.z4irn5p7 4146899201306289688829019585685806242337680660849443740098338618537840822732365840114765777764949758991760852587154451074081 2577634789889002293771388505180441779571431663 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 18.04.4 LTS [5.3.0-51-generic|libc 2.27 (Ubuntu GLIBC 2.27-3ubuntu1.2)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 300 | Ignacio Santos | May 9, 2011 22:52:55 UTC 2011 年 5 月 10 日 (火) 7 時 52 分 55 秒 (日本時間) | |
40 | 3e6 | 1610 | 110 | Ignacio Santos | May 9, 2011 22:52:55 UTC 2011 年 5 月 10 日 (火) 7 時 52 分 55 秒 (日本時間) |
1500 | Dmitry Domanov | August 21, 2013 13:12:14 UTC 2013 年 8 月 21 日 (水) 22 時 12 分 14 秒 (日本時間) | |||
45 | 11e6 | 5332 | 32 | Ignacio Santos | May 9, 2011 22:52:55 UTC 2011 年 5 月 10 日 (火) 7 時 52 分 55 秒 (日本時間) |
1000 | Dmitry Domanov | September 16, 2013 15:43:45 UTC 2013 年 9 月 17 日 (火) 0 時 43 分 45 秒 (日本時間) | |||
300 | Serge Batalov | May 27, 2014 00:31:12 UTC 2014 年 5 月 27 日 (火) 9 時 31 分 12 秒 (日本時間) | |||
4000 | Robert Balfour | April 13, 2020 11:35:33 UTC 2020 年 4 月 13 日 (月) 20 時 35 分 33 秒 (日本時間) |
name 名前 | matsui |
---|---|
date 日付 | March 5, 2020 18:45:58 UTC 2020 年 3 月 6 日 (金) 3 時 45 分 58 秒 (日本時間) |
composite number 合成数 | 2078530729741953577539790809814630100361736066285341915739195470111817154475329453748352228897360853632187633873719310606314758467399064218686799253893776907464261221295682539<175> |
prime factors 素因数 | 2873677163351112782621801599077930081976585221959178445739593<61> 723300013046035295819627167459971006677294213882216899608021661996958720554399944818626706499804463829651207858323<114> |
factorization results 素因数分解の結果 | Wed Mar 04 13:41:59 2020 -> factmsieve.py (v0.86) ------------------------------------------------------------------------------------------------ ----------------------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------------- Fri Mar 6 03:11:57 2020 Msieve v. 1.54 (SVN Unversioned directory) Fri Mar 6 03:11:57 2020 random seeds: 37a0743c a191c74c Fri Mar 6 03:11:57 2020 factoring 2078530729741953577539790809814630100361736066285341915739195470111817154475329453748352228897360853632187633873719310606314758467399064218686799253893776907464261221295682539 (175 digits) Fri Mar 6 03:11:58 2020 searching for 15-digit factors Fri Mar 6 03:11:59 2020 commencing number field sieve (175-digit input) Fri Mar 6 03:11:59 2020 R0: -200000000000000000000000000000000000000 Fri Mar 6 03:11:59 2020 R1: 1 Fri Mar 6 03:11:59 2020 A0: -41 Fri Mar 6 03:11:59 2020 A1: 0 Fri Mar 6 03:11:59 2020 A2: 0 Fri Mar 6 03:11:59 2020 A3: 0 Fri Mar 6 03:11:59 2020 A4: 0 Fri Mar 6 03:11:59 2020 A5: 10 Fri Mar 6 03:11:59 2020 skew 1.33, size 2.035e-13, alpha 0.978, combined = 3.090e-11 rroots = 1 Fri Mar 6 03:11:59 2020 Fri Mar 6 03:11:59 2020 commencing square root phase Fri Mar 6 03:11:59 2020 reading relations for dependency 1 Fri Mar 6 03:11:59 2020 read 894577 cycles Fri Mar 6 03:12:01 2020 cycles contain 2921160 unique relations Fri Mar 6 03:12:15 2020 read 2921160 relations Fri Mar 6 03:12:29 2020 multiplying 2921160 relations Fri Mar 6 03:15:06 2020 multiply complete, coefficients have about 76.70 million bits Fri Mar 6 03:15:07 2020 initial square root is modulo 320081 Fri Mar 6 03:18:30 2020 sqrtTime: 391 Fri Mar 6 03:18:30 2020 p61 factor: 2873677163351112782621801599077930081976585221959178445739593 Fri Mar 6 03:18:30 2020 p114 factor: 723300013046035295819627167459971006677294213882216899608021661996958720554399944818626706499804463829651207858323 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 300 | Ignacio Santos | May 10, 2011 15:01:29 UTC 2011 年 5 月 11 日 (水) 0 時 1 分 29 秒 (日本時間) | |
40 | 3e6 | 1610 | 110 | Ignacio Santos | May 10, 2011 15:01:29 UTC 2011 年 5 月 11 日 (水) 0 時 1 分 29 秒 (日本時間) |
1500 | Dmitry Domanov | August 21, 2013 13:12:24 UTC 2013 年 8 月 21 日 (水) 22 時 12 分 24 秒 (日本時間) | |||
45 | 11e6 | 1332 / 4109 | 32 | Ignacio Santos | May 10, 2011 15:01:29 UTC 2011 年 5 月 11 日 (水) 0 時 1 分 29 秒 (日本時間) |
1000 | Dmitry Domanov | September 16, 2013 15:43:30 UTC 2013 年 9 月 17 日 (火) 0 時 43 分 30 秒 (日本時間) | |||
300 | Serge Batalov | May 27, 2014 00:31:13 UTC 2014 年 5 月 27 日 (火) 9 時 31 分 13 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | January 4, 2021 06:53:27 UTC 2021 年 1 月 4 日 (月) 15 時 53 分 27 秒 (日本時間) |
composite number 合成数 | 22337215591217995171257163497242287281421331745583076417177883428491743786040042148475670516229021030915939282120087241919644648089042737235128033571058839178934644377545489<173> |
prime factors 素因数 | 1705315778707777982340835836350254362298853890556055096519077<61> 13098580257167542881497700775817691486577894407793869069135002359139974347440115345954924689778299063058823055357<113> |
factorization results 素因数分解の結果 | 22337215591217995171257163497242287281421331745583076417177883428491743786040042148475670516229021030915939282120087241919644648089042737235128033571058839178934644377545489=1705315778707777982340835836350254362298853890556055096519077*13098580257167542881497700775817691486577894407793869069135002359139974347440115345954924689778299063058823055357 cado polynomial n: 22337215591217995171257163497242287281421331745583076417177883428491743786040042148475670516229021030915939282120087241919644648089042737235128033571058839178934644377545489 skew: 0.84 type: snfs c0: -41 c5: 100 Y0: 200000000000000000000000000000000000000 Y1: -1 # f(x) = 100*x^5-41 # g(x) = -x+200000000000000000000000000000000000000 cado parameters (extracts) tasks.lim0 = 11800000 tasks.lim1 = 11800000 tasks.lpb0 = 28 tasks.lpb1 = 28 tasks.sieve.mfb0 = 55 tasks.sieve.mfb1 = 55 tasks.sieve.lambda0 = 2.5 tasks.sieve.lambda1 = 2.5 tasks.I = 12 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 13098580257167542881497700775817691486577894407793869069135002359139974347440115345954924689778299063058823055357 1705315778707777982340835836350254362298853890556055096519077 Warning:Polynomial Selection (size optimized): some stats could not be displayed for polyselect1 (see log file for debug info) Warning:Polynomial Selection (root optimized): some stats could not be displayed for polyselect2 (see log file for debug info) Info:Generate Factor Base: Total cpu/real time for makefb: 5.07/2.05647 Info:Generate Free Relations: Total cpu/real time for freerel: 102.37/26.3926 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 29030957 Info:Lattice Sieving: Average J: 1893.67 for 3250386 special-q, max bucket fill -bkmult 1.0,1s:1.123110 Info:Lattice Sieving: Total time: 816725s Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 54.94/144.003 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 142.9s Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 475.19/426.787 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 363.2s Info:Filtering - Singleton removal: Total cpu/real time for purge: 409.9/456.764 Info:Filtering - Merging: Merged matrix has 2509995 rows and total weight 427296962 (170.2 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 354.32/102.003 Info:Filtering - Merging: Total cpu/real time for replay: 96.16/82.7624 Info:Linear Algebra: Total cpu/real time for bwc: 110149/28171.3 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: WCT time 17965.28, iteration CPU time 0.22, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (78848 iterations) Info:Linear Algebra: Lingen CPU time 512.27, WCT time 148.25 Info:Linear Algebra: Mksol: WCT time 9805.56, iteration CPU time 0.24, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (39424 iterations) Info:Quadratic Characters: Total cpu/real time for characters: 87.63/37.553 Info:Square Root: Total cpu/real time for sqrt: 690.29/216.659 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 1.63084e+06/61222.1 Info:root: Cleaning up computation data in /tmp/cado.79nttt_k 13098580257167542881497700775817691486577894407793869069135002359139974347440115345954924689778299063058823055357 1705315778707777982340835836350254362298853890556055096519077 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | 6 x Linux Ubuntu 20.04.1 LTS [5.4.0-48-generic|libc 2.31 (Ubuntu GLIBC 2.31-0ubuntu9.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 300 | Ignacio Santos | May 10, 2011 15:57:01 UTC 2011 年 5 月 11 日 (水) 0 時 57 分 1 秒 (日本時間) | |
40 | 3e6 | 1610 | 110 | Ignacio Santos | May 10, 2011 15:57:01 UTC 2011 年 5 月 11 日 (水) 0 時 57 分 1 秒 (日本時間) |
1500 | Dmitry Domanov | August 21, 2013 13:12:32 UTC 2013 年 8 月 21 日 (水) 22 時 12 分 32 秒 (日本時間) | |||
45 | 11e6 | 2300 / 4109 | 32 | Ignacio Santos | May 10, 2011 15:57:01 UTC 2011 年 5 月 11 日 (水) 0 時 57 分 1 秒 (日本時間) |
1000 | Dmitry Domanov | September 16, 2013 15:43:17 UTC 2013 年 9 月 17 日 (火) 0 時 43 分 17 秒 (日本時間) | |||
300 | Serge Batalov | May 27, 2014 00:31:13 UTC 2014 年 5 月 27 日 (火) 9 時 31 分 13 秒 (日本時間) | |||
968 | Eric Jeancolas | October 16, 2020 05:06:07 UTC 2020 年 10 月 16 日 (金) 14 時 6 分 7 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | November 23, 2008 19:25:24 UTC 2008 年 11 月 24 日 (月) 4 時 25 分 24 秒 (日本時間) |
composite number 合成数 | 3388289144214164194513495352248356504358590825291909179705355787030616297465265543839592981366091857308108833825305406640856246555672907<136> |
prime factors 素因数 | 10833599953333206062513961588376283<35> 312757454475848459879503203836292897307277646250554042188313990627705705745444626647351015419658382929<102> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2633261084 Step 1 took 18932ms Step 2 took 13679ms ********** Factor found in step 2: 10833599953333206062513961588376283 Found probable prime factor of 35 digits: 10833599953333206062513961588376283 Probable prime cofactor 312757454475848459879503203836292897307277646250554042188313990627705705745444626647351015419658382929 has 102 digits |
software ソフトウェア | GMP-ECM 6.2.1 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間) |
name 名前 | Wataru Sakai |
---|---|
date 日付 | June 21, 2010 07:11:08 UTC 2010 年 6 月 21 日 (月) 16 時 11 分 8 秒 (日本時間) |
composite number 合成数 | 31865507768735611335350182975380267559751693248689024879125639862756811483559447839699360246457237408192995072942243435568726486049722334869281677497040762320693273236419629347563457372979<188> |
prime factors 素因数 | 173690665906082128758412635894085027453199<42> 183461256265583678394791427302892111696335616687226930430156545818016288610654424891212645333241466206086605713656441639134973341751155969878584221<147> |
factorization results 素因数分解の結果 | Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=751017120 Step 1 took 6068ms ********** Factor found in step 1: 173690665906082128758412635894085027453199 Found probable prime factor of 42 digits: 173690665906082128758412635894085027453199 Probable prime cofactor 183461256265583678394791427302892111696335616687226930430156545818016288610654424891212645333241466206086605713656441639134973341751155969878584221 has 147 digits |
software ソフトウェア | GMP-ECM 6.2.3 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | November 23, 2008 07:57:04 UTC 2008 年 11 月 23 日 (日) 16 時 57 分 4 秒 (日本時間) |
composite number 合成数 | 104313501071886432014065048962810739114734049435162408508798429751325035150408811546896765895183088533985744637142526888305485731680702211<138> |
prime factors 素因数 | 2621005805007976677279163475247999795539713<43> 39799034734136717395774185493040870102947697545992386055866170111726118412127304962406603538947<95> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=983927123 Step 1 took 18737ms Step 2 took 14050ms ********** Factor found in step 2: 2621005805007976677279163475247999795539713 Found probable prime factor of 43 digits: 2621005805007976677279163475247999795539713 Probable prime cofactor 39799034734136717395774185493040870102947697545992386055866170111726118412127304962406603538947 has 95 digits |
software ソフトウェア | GMP-ECM 6.2.1 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | November 21, 2008 09:43:40 UTC 2008 年 11 月 21 日 (金) 18 時 43 分 40 秒 (日本時間) |
composite number 合成数 | 13021705509957449048184102551667074523446256759110289387511222543052818897794134790197191721597198781825067717675260820790645085499406930578011419<146> |
prime factors 素因数 | 25381539827219968939889818942099<32> 513038436540897283961126919502212025962143546345330531503056737906022207414185764428308211340282304133292693358681<114> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2785240796 Step 1 took 83890ms Step 2 took 28611ms ********** Factor found in step 2: 25381539827219968939889818942099 Found probable prime factor of 32 digits: 25381539827219968939889818942099 Probable prime cofactor 513038436540897283961126919502212025962143546345330531503056737906022207414185764428308211340282304133292693358681 has 114 digits |
software ソフトウェア | GMP-ECM 6.2.1 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間) |
name 名前 | matsui |
---|---|
date 日付 | June 3, 2011 13:40:04 UTC 2011 年 6 月 3 日 (金) 22 時 40 分 4 秒 (日本時間) |
composite number 合成数 | 17135539313918892241837837192061367434610257234457026053559821290415117828327616827161308282443951052716992427478035690435206836517383687369969030294436595317220207037833376001158948971147<188> |
prime factors 素因数 | 118864148303275244074462379613626047253516437587578399<54> 144160704119113523736083391114836662132585531159868880464352364911067041114081742713109140595310165251808666613955701531764292658284053<135> |
factorization results 素因数分解の結果 | N=17135539313918892241837837192061367434610257234457026053559821290415117828327616827161308282443951052716992427478035690435206836517383687369969030294436595317220207037833376001158948971147 ( 188 digits) SNFS difficulty: 200 digits. Divisors found: r1=118864148303275244074462379613626047253516437587578399 (pp54) r2=144160704119113523736083391114836662132585531159868880464352364911067041114081742713109140595310165251808666613955701531764292658284053 (pp135) Version: Msieve v. 1.49 Total time: Scaled time: 110.92 units (timescale=1.005). Factorization parameters were as follows: n: 17135539313918892241837837192061367434610257234457026053559821290415117828327616827161308282443951052716992427478035690435206836517383687369969030294436595317220207037833376001158948971147 m: 2000000000000000000000000000000000000000 deg: 5 c5: 10000 c0: -41 skew: 0.33 type: snfs lss: 1 rlim: 15400000 alim: 15400000 lpbr: 29 lpba: 29 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 qintsize: 320000 Factor base limits: 15400000/15400000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 56/56 Sieved rational special-q in [7700000, 16980001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 3054732 x 3054961 Total sieving time: Total relation processing time: Matrix solve time: Time per square root: Prototype def-par.txt line would be: snfs,200.000,5,0,0,0,0,0,0,0,0,15400000,15400000,29,29,56,56,2.6,2.6,100000 total time: |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 300 | Ignacio Santos | May 10, 2011 17:07:16 UTC 2011 年 5 月 11 日 (水) 2 時 7 分 16 秒 (日本時間) | |
40 | 3e6 | 110 / 2144 | Ignacio Santos | May 10, 2011 17:07:16 UTC 2011 年 5 月 11 日 (水) 2 時 7 分 16 秒 (日本時間) | |
45 | 11e6 | 32 / 4441 | Ignacio Santos | May 10, 2011 17:07:16 UTC 2011 年 5 月 11 日 (水) 2 時 7 分 16 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | May 10, 2011 18:30:05 UTC 2011 年 5 月 11 日 (水) 3 時 30 分 5 秒 (日本時間) |
composite number 合成数 | 176237223741001950317814911222913947974955500232674936349667348774811602998411361008132736503877375531366576209481182960344591742093377086135600501335633<153> |
prime factors 素因数 | 9669671262851918345772365671<28> 6731258125992126930464828994191341<34> 35869297964137395978056915833924717<35> 75486069289506485196010053653191738313664480847271627759<56> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=446330273 Step 1 took 21388ms Step 2 took 12901ms ********** Factor found in step 2: 9669671262851918345772365671 Found probable prime factor of 28 digits: 9669671262851918345772365671 Composite cofactor 18225771998894566017366677060927624579136738284209084428891597873283571049551321413500212479691052939338804608844119065721223 has 125 digits Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3184466193 Step 1 took 17799ms Step 2 took 10452ms ********** Factor found in step 2: 35869297964137395978056915833924717 Found probable prime factor of 35 digits: 35869297964137395978056915833924717 Composite cofactor 508116217304195267932888355270639897740864945698992247153298968286083863675756244973034819 has 90 digits Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2684505188 Step 1 took 12168ms Step 2 took 7894ms ********** Factor found in step 2: 6731258125992126930464828994191341 Found probable prime factor of 34 digits: 6731258125992126930464828994191341 Probable prime cofactor 75486069289506485196010053653191738313664480847271627759 has 56 digits |
software ソフトウェア | GMP-ECM 6.3 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | November 20, 2021 05:26:36 UTC 2021 年 11 月 20 日 (土) 14 時 26 分 36 秒 (日本時間) |
composite number 合成数 | 124041569205482088894853313167988202665280496683871986457484613906081202038015287698952661745493496229120493371245408915475727499757750786545761774008217589487266545719483099<174> |
prime factors 素因数 | 8471362294288735548241288925048570413339240152861072858476165401692321449<73> 14642458307928707111875683185120621286105424834015023788773055376870702781705019067030736962072570851<101> |
factorization results 素因数分解の結果 | Number: n N=124041569205482088894853313167988202665280496683871986457484613906081202038015287698952661745493496229120493371245408915475727499757750786545761774008217589487266545719483099 ( 174 digits) SNFS difficulty: 203 digits. Divisors found: Sat Nov 20 14:35:04 2021 p73 factor: 8471362294288735548241288925048570413339240152861072858476165401692321449 Sat Nov 20 14:35:04 2021 p101 factor: 14642458307928707111875683185120621286105424834015023788773055376870702781705019067030736962072570851 Sat Nov 20 14:35:04 2021 elapsed time 01:57:15 (Msieve 1.54 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.352). Factorization parameters were as follows: # # N = 32x10^202-41 = 35(201)1 # n: 124041569205482088894853313167988202665280496683871986457484613906081202038015287698952661745493496229120493371245408915475727499757750786545761774008217589487266545719483099 m: 20000000000000000000000000000000000000000 deg: 5 c5: 100 c0: -41 skew: 0.84 # Murphy_E = 1.052e-11 type: snfs lss: 1 rlim: 17300000 alim: 17300000 lpbr: 29 lpba: 29 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 17300000/17300000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 56/56 Sieved special-q in [100000, 35850000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 10254056 hash collisions in 65671346 relations (57812687 unique) Msieve: matrix is 2235682 x 2235908 (767.2 MB) Sieving start time : 2021/11/19 23:16:06 Sieving end time : 2021/11/20 12:36:36 Total sieving time: 13hrs 20min 30secs. Total relation processing time: 1hrs 35min 39sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 5min 13sec. Prototype def-par.txt line would be: snfs,203,5,0,0,0,0,0,0,0,0,17300000,17300000,29,29,56,56,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- [ 0.117806] smpboot: CPU0: AMD Ryzen 7 2700 Eight-Core Processor (family: 0x17, model: 0x8, stepping: 0x2) [ 0.000000] Memory: 16239948K/16727236K available (14339K kernel code, 2400K rwdata, 5020K rodata, 2736K init, 4964K bss, 487288K reserved, 0K cma-reserved) [ 0.152615] x86/mm: Memory block size: 128MB [ 0.000005] Calibrating delay loop (skipped), value calculated using timer frequency.. 6399.14 BogoMIPS (lpj=12798284) [ 0.150213] smpboot: Total of 16 processors activated (102386.27 BogoMIPS) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 300 | Ignacio Santos | May 10, 2011 19:21:57 UTC 2011 年 5 月 11 日 (水) 4 時 21 分 57 秒 (日本時間) | |
40 | 3e6 | 1610 | 110 | Ignacio Santos | May 10, 2011 19:21:57 UTC 2011 年 5 月 11 日 (水) 4 時 21 分 57 秒 (日本時間) |
1500 | Dmitry Domanov | August 21, 2013 13:12:42 UTC 2013 年 8 月 21 日 (水) 22 時 12 分 42 秒 (日本時間) | |||
45 | 11e6 | 1332 / 4109 | 32 | Ignacio Santos | May 10, 2011 19:21:57 UTC 2011 年 5 月 11 日 (水) 4 時 21 分 57 秒 (日本時間) |
1000 | Dmitry Domanov | September 16, 2013 15:42:30 UTC 2013 年 9 月 17 日 (火) 0 時 42 分 30 秒 (日本時間) | |||
300 | Serge Batalov | May 27, 2014 00:31:13 UTC 2014 年 5 月 27 日 (火) 9 時 31 分 13 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | November 23, 2008 19:27:50 UTC 2008 年 11 月 24 日 (月) 4 時 27 分 50 秒 (日本時間) |
composite number 合成数 | 59891966943390175341010848534861479390395690007706570181848333252978014562462421536500719655020203026211172428217722127510894825479491970956487010851263022758767223<164> |
prime factors 素因数 | 354102979541164110880003592212481<33> 169137144852597308225618316511538561476577202292669595418051665587776733341784913636767253699943916968786779942651786094067252427383<132> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=4180862736 Step 1 took 24856ms Step 2 took 16720ms ********** Factor found in step 2: 354102979541164110880003592212481 Found probable prime factor of 33 digits: 354102979541164110880003592212481 Probable prime cofactor 169137144852597308225618316511538561476577202292669595418051665587776733341784913636767253699943916968786779942651786094067252427383 has 132 digits |
software ソフトウェア | GMP-ECM 6.2.1 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間) |
name 名前 | Robert Backstrom |
---|---|
date 日付 | December 6, 2008 17:46:46 UTC 2008 年 12 月 7 日 (日) 2 時 46 分 46 秒 (日本時間) |
composite number 合成数 | 56438285616526540985659384364125709226425110804227933071248044501588208631177567192424571113121725036199869133725226679083089502302505683511731226774322696480191043596811942341236457016072565525731449<200> |
prime factors 素因数 | 14248427654041308826650517475730475139675651291<47> 39913387700709211382964131171098547802886843448472175066153267<62> 99240348514737227891488012650045657725921855844817056668365570013539644495922325704459609817<92> |
factorization results 素因数分解の結果 | Number: n N=56438285616526540985659384364125709226425110804227933071248044501588208631177567192424571113121725036199869133725226679083089502302505683511731226774322696480191043596811942341236457016072565525731449 ( 200 digits) SNFS difficulty: 206 digits. Divisors found: Sun Dec 07 04:22:58 2008 prp47 factor: 14248427654041308826650517475730475139675651291 Sun Dec 07 04:22:58 2008 prp62 factor: 39913387700709211382964131171098547802886843448472175066153267 Sun Dec 07 04:22:58 2008 prp92 factor: 99240348514737227891488012650045657725921855844817056668365570013539644495922325704459609817 Sun Dec 07 04:22:59 2008 elapsed time 28:19:21 (Msieve 1.39 - dependency 5) Version: GGNFS-0.77.1-20051202-athlon Total time: 153.01 hours. Scaled time: 312.90 units (timescale=2.045). Factorization parameters were as follows: name: KA_3_5_203_1 n: 56438285616526540985659384364125709226425110804227933071248044501588208631177567192424571113121725036199869133725226679083089502302505683511731226774322696480191043596811942341236457016072565525731449 type: snfs skew: 3.33 deg: 5 c5: 1 c0: -410 m: 200000000000000000000000000000000000000000 rlim: 10000000 alim: 10000000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 10000000/10000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved special-q in [100000, 25400001) Primes: RFBsize:664579, AFBsize:665006, largePrimes:36354193 encountered Relations: rels:27543760, finalFF:133156 Max relations in full relation-set: 28 Msieve: found 9558761 hash collisions in 45411678 relations Msieve: matrix is 2874359 x 2874607 (781.1 MB) Initial matrix: Pruned matrix : Total sieving time: 150.52 hours. Total relation processing time: 2.49 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,206,5,0,0,0,0,0,0,0,0,10000000,10000000,29,29,58,58,2.5,2.5,100000 total time: 153.01 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2008 06:00:00 UTC 2008 年 11 月 20 日 (木) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 376 / 2336 | Serge Batalov | November 25, 2008 04:56:30 UTC 2008 年 11 月 25 日 (火) 13 時 56 分 30 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | May 27, 2014 08:08:49 UTC 2014 年 5 月 27 日 (火) 17 時 8 分 49 秒 (日本時間) |
composite number 合成数 | 143100219432359990259774429247332332575294567499484861388133244070405946451962483467893127605011780720664711988283203334637101791951699036237643184950973195391183121221613545291<177> |
prime factors 素因数 | 504095780030821510766486387252850614935953773<45> 283875059266734056103877370806869829179499637366612148956493080898546094650515680668492885560518806854364098451538708245626755772567<132> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=58553269330, polynomial Dickson(12), sigma=3421781296 Step 1 took 58387ms Step 2 took 30112ms ********** Factor found in step 2: 504095780030821510766486387252850614935953773 Found probable prime factor of 45 digits: 504095780030821510766486387252850614935953773 Probable prime cofactor |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | June 1, 2013 09:00:00 UTC 2013 年 6 月 1 日 (土) 18 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1500 | Dmitry Domanov | August 21, 2013 13:12:52 UTC 2013 年 8 月 21 日 (水) 22 時 12 分 52 秒 (日本時間) | |
45 | 11e6 | 1300 / 4143 | 1000 | Dmitry Domanov | September 16, 2013 15:42:14 UTC 2013 年 9 月 17 日 (火) 0 時 42 分 14 秒 (日本時間) |
300 | Serge Batalov | May 27, 2014 00:31:14 UTC 2014 年 5 月 27 日 (火) 9 時 31 分 14 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | September 20, 2024 06:00:51 UTC 2024 年 9 月 20 日 (金) 15 時 0 分 51 秒 (日本時間) |
composite number 合成数 | 3553659697422181141550180707443793269395985014269547271560605571365869985872971018215605563863708543612388601681857070758398707143594219866160741619672771087073034317<166> |
prime factors 素因数 | 993862791911989669132858600192853754826671743<45> 3575603922736319950531011447698010745753303851250978981583967036050356965617400625131888650090493975613277157682763418419<121> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 3553659697422181141550180707443793269395985014269547271560605571365869985872971018215605563863708543612388601681857070758398707143594219866160741619672771087073034317 (166 digits) Using B1=51390000, B2=288593074786, polynomial Dickson(12), sigma=1:1808222963 Step 1 took 121297ms Step 2 took 41835ms ********** Factor found in step 2: 993862791911989669132858600192853754826671743 Found prime factor of 45 digits: 993862791911989669132858600192853754826671743 Prime cofactor 3575603922736319950531011447698010745753303851250978981583967036050356965617400625131888650090493975613277157682763418419 has 121 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | June 1, 2013 09:00:00 UTC 2013 年 6 月 1 日 (土) 18 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1500 | Dmitry Domanov | August 21, 2013 13:13:01 UTC 2013 年 8 月 21 日 (水) 22 時 13 分 1 秒 (日本時間) | |
45 | 11e6 | 1300 / 4143 | 1000 | Dmitry Domanov | September 13, 2013 12:44:46 UTC 2013 年 9 月 13 日 (金) 21 時 44 分 46 秒 (日本時間) |
300 | Serge Batalov | May 27, 2014 00:31:14 UTC 2014 年 5 月 27 日 (火) 9 時 31 分 14 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | October 9, 2021 19:16:14 UTC 2021 年 10 月 10 日 (日) 4 時 16 分 14 秒 (日本時間) |
composite number 合成数 | 597948495519619180339697497217306770993687729773803618974401235592805262055814535327668968948122103512023740841077972446374673064163738202683668096799537389<156> |
prime factors 素因数 | 91670216917237399700835344831257975760691305131<47> 6522821867646117597761809861051260898867550640761859384410971149180203073395527914302954398221695729012062919<109> |
factorization results 素因数分解の結果 | # # N = 32x10^208-41 = 35(207)1 # n: 597948495519619180339697497217306770993687729773803618974401235592805262055814535327668968948122103512023740841077972446374673064163738202683668096799537389 m: 200000000000000000000000000000000000000000 deg: 5 c5: 1000 c0: -41 skew: 0.53 # Murphy_E = 5.949e-12 type: snfs lss: 1 rlim: 22000000 alim: 22000000 lpbr: 29 lpba: 29 mfbr: 57 mfba: 57 rlambda: 2.6 alambda: 2.6 GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 597948495519619180339697497217306770993687729773803618974401235592805262055814535327668968948122103512023740841077972446374673064163738202683668096799537389 (156 digits) Using B1=44030000, B2=240491351116, polynomial Dickson(12), sigma=1:2498978323 Step 1 took 104829ms Step 2 took 35570ms ********** Factor found in step 2: 91670216917237399700835344831257975760691305131 Found prime factor of 47 digits: 91670216917237399700835344831257975760691305131 Prime cofactor 6522821867646117597761809861051260898867550640761859384410971149180203073395527914302954398221695729012062919 has 109 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | June 1, 2013 09:00:00 UTC 2013 年 6 月 1 日 (土) 18 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1500 | Dmitry Domanov | August 21, 2013 13:13:11 UTC 2013 年 8 月 21 日 (水) 22 時 13 分 11 秒 (日本時間) | |
45 | 11e6 | 1300 / 4143 | 1000 | Dmitry Domanov | September 13, 2013 12:44:59 UTC 2013 年 9 月 13 日 (金) 21 時 44 分 59 秒 (日本時間) |
300 | Serge Batalov | May 27, 2014 00:31:14 UTC 2014 年 5 月 27 日 (火) 9 時 31 分 14 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | June 17, 2013 07:08:26 UTC 2013 年 6 月 17 日 (月) 16 時 8 分 26 秒 (日本時間) |
composite number 合成数 | 6847946244106680683311867340687631517007053792875810644205775981779457300076334852155353394302849448861504411760152220434420953232480285091498826240501740785625855342335401822947929<181> |
prime factors 素因数 | 128439553485958538033296999264803629255212100263<48> 53316490584462535974571701405092897234045665437641876524597080021757955676662454764951140949395422428976806961976917626697535016534783<134> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1410950226 Step 1 took 22972ms Step 2 took 8917ms ********** Factor found in step 2: 128439553485958538033296999264803629255212100263 Found probable prime factor of 48 digits: 128439553485958538033296999264803629255212100263 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | June 1, 2013 09:00:00 UTC 2013 年 6 月 1 日 (土) 18 時 0 分 0 秒 (日本時間) |
composite cofactor 合成数の残り | 1728212945709287495572077730689753632236518823672575710319890945966943874033564515682786981811827274563755701433534342390392511695489409790626890345101466376113883569<166> |
---|
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | June 1, 2013 09:00:00 UTC 2013 年 6 月 1 日 (土) 18 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1500 | Dmitry Domanov | August 21, 2013 13:13:21 UTC 2013 年 8 月 21 日 (水) 22 時 13 分 21 秒 (日本時間) | |
45 | 11e6 | 1300 / 4143 | 1000 | Dmitry Domanov | September 16, 2013 15:40:04 UTC 2013 年 9 月 17 日 (火) 0 時 40 分 4 秒 (日本時間) |
300 | Serge Batalov | May 27, 2014 00:31:15 UTC 2014 年 5 月 27 日 (火) 9 時 31 分 15 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | June 18, 2013 05:00:04 UTC 2013 年 6 月 18 日 (火) 14 時 0 分 4 秒 (日本時間) |
composite number 合成数 | 95103618126090226530916718735503461766729637599724822948077504920105015015063745504344062130973633179017602257291722485566061469421361338857546813196530959981025024614983624386909058004985592066961<197> |
prime factors 素因数 | 8510040526926193497888613639910655685259<40> |
composite cofactor 合成数の残り | 11175460072743205650349701808023959960180515759481429218420753188970103066534471029961208319566812803422342837609638557618285978825879165930567226488613978579<158> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3192644790 Step 1 took 26812ms ********** Factor found in step 1: 8510040526926193497888613639910655685259 Found probable prime factor of 40 digits: 8510040526926193497888613639910655685259 |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | September 13, 2013 10:43:56 UTC 2013 年 9 月 13 日 (金) 19 時 43 分 56 秒 (日本時間) |
composite number 合成数 | 11175460072743205650349701808023959960180515759481429218420753188970103066534471029961208319566812803422342837609638557618285978825879165930567226488613978579<158> |
prime factors 素因数 | 13856658527083259444889964835320800143917<41> 806504688767528616003525733536824575834539721968585440513480925978860612662617878204379307020944236671714049951423487<117> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=665539441 Step 1 took 62105ms Step 2 took 21302ms ********** Factor found in step 2: 13856658527083259444889964835320800143917 Found probable prime factor of 41 digits: 13856658527083259444889964835320800143917 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | June 1, 2013 09:00:00 UTC 2013 年 6 月 1 日 (土) 18 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1500 | Dmitry Domanov | August 21, 2013 13:13:30 UTC 2013 年 8 月 21 日 (水) 22 時 13 分 30 秒 (日本時間) | |
45 | 11e6 | 1500 / 4143 | Dmitry Domanov | September 12, 2013 15:24:03 UTC 2013 年 9 月 13 日 (金) 0 時 24 分 3 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | June 17, 2013 07:06:32 UTC 2013 年 6 月 17 日 (月) 16 時 6 分 32 秒 (日本時間) |
composite number 合成数 | 363555833267302875231588588958287320832132764878937968658993050714840564756445701762403295922463038677557379630076916733043363105619857078012306137013517<153> |
prime factors 素因数 | 496966596620352906159995185436266867<36> 731549838036767781480037159031529021206776161372058111256231915238014707723599142937614480512787039322717773380269951<117> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=102658214 Step 1 took 16545ms Step 2 took 7322ms ********** Factor found in step 2: 496966596620352906159995185436266867 Found probable prime factor of 36 digits: 496966596620352906159995185436266867 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | June 1, 2013 09:00:00 UTC 2013 年 6 月 1 日 (土) 18 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | June 1, 2013 09:00:00 UTC 2013 年 6 月 1 日 (土) 18 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1500 | Dmitry Domanov | August 21, 2013 13:13:41 UTC 2013 年 8 月 21 日 (水) 22 時 13 分 41 秒 (日本時間) | |
45 | 11e6 | 1300 / 4143 | 1000 | Dmitry Domanov | September 26, 2013 13:32:02 UTC 2013 年 9 月 26 日 (木) 22 時 32 分 2 秒 (日本時間) |
300 | Serge Batalov | May 27, 2014 00:31:15 UTC 2014 年 5 月 27 日 (火) 9 時 31 分 15 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | June 1, 2013 09:00:00 UTC 2013 年 6 月 1 日 (土) 18 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1500 | Dmitry Domanov | August 21, 2013 13:13:50 UTC 2013 年 8 月 21 日 (水) 22 時 13 分 50 秒 (日本時間) | |
45 | 11e6 | 1800 / 4143 | 1500 | Dmitry Domanov | September 20, 2013 13:22:41 UTC 2013 年 9 月 20 日 (金) 22 時 22 分 41 秒 (日本時間) |
300 | Serge Batalov | May 27, 2014 00:31:16 UTC 2014 年 5 月 27 日 (火) 9 時 31 分 16 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | June 1, 2013 09:00:00 UTC 2013 年 6 月 1 日 (土) 18 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1500 | Dmitry Domanov | August 21, 2013 13:13:59 UTC 2013 年 8 月 21 日 (水) 22 時 13 分 59 秒 (日本時間) | |
45 | 11e6 | 1300 / 4143 | 1000 | Dmitry Domanov | September 12, 2013 15:23:43 UTC 2013 年 9 月 13 日 (金) 0 時 23 分 43 秒 (日本時間) |
300 | Serge Batalov | May 27, 2014 00:31:16 UTC 2014 年 5 月 27 日 (火) 9 時 31 分 16 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | June 1, 2013 09:00:00 UTC 2013 年 6 月 1 日 (土) 18 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3100 | 1500 | Dmitry Domanov | August 21, 2013 13:14:07 UTC 2013 年 8 月 21 日 (水) 22 時 14 分 7 秒 (日本時間) |
300 | Serge Batalov | January 9, 2014 04:41:08 UTC 2014 年 1 月 9 日 (木) 13 時 41 分 8 秒 (日本時間) | |||
1300 | Serge Batalov | May 26, 2014 18:02:08 UTC 2014 年 5 月 27 日 (火) 3 時 2 分 8 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | September 13, 2013 10:44:41 UTC 2013 年 9 月 13 日 (金) 19 時 44 分 41 秒 (日本時間) |
composite number 合成数 | 58238535666519579806504174992262485315547643718447459470063242054538362639255458305888250438428708928188225779677976583892497243458883367498026939590507031752039351104693665551<176> |
prime factors 素因数 | 128673108223920709473800869111304785255462243<45> 4279251267812188031576985816046612055004068473<46> 105768139924251569916559533873482304791045655012311712453022616687265105537557028824909<87> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=2047183978 Step 1 took 75618ms Step 2 took 27124ms ********** Factor found in step 2: 4279251267812188031576985816046612055004068473 Found probable prime factor of 46 digits: 4279251267812188031576985816046612055004068473 Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=479279418 Step 1 took 40688ms Step 2 took 17736ms ********** Factor found in step 2: 128673108223920709473800869111304785255462243 Found probable prime factor of 45 digits: 128673108223920709473800869111304785255462243 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | June 1, 2013 09:00:00 UTC 2013 年 6 月 1 日 (土) 18 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1500 | Dmitry Domanov | August 21, 2013 13:14:16 UTC 2013 年 8 月 21 日 (水) 22 時 14 分 16 秒 (日本時間) | |
45 | 11e6 | 1000 / 4143 | Dmitry Domanov | September 12, 2013 15:23:29 UTC 2013 年 9 月 13 日 (金) 0 時 23 分 29 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | June 1, 2013 09:00:00 UTC 2013 年 6 月 1 日 (土) 18 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1500 | Dmitry Domanov | August 21, 2013 13:14:24 UTC 2013 年 8 月 21 日 (水) 22 時 14 分 24 秒 (日本時間) | |
45 | 11e6 | 1300 / 4143 | 1000 | Dmitry Domanov | September 26, 2013 13:32:32 UTC 2013 年 9 月 26 日 (木) 22 時 32 分 32 秒 (日本時間) |
300 | Serge Batalov | May 27, 2014 00:31:16 UTC 2014 年 5 月 27 日 (火) 9 時 31 分 16 秒 (日本時間) |
name 名前 | Cyp |
---|---|
date 日付 | March 7, 2014 16:32:44 UTC 2014 年 3 月 8 日 (土) 1 時 32 分 44 秒 (日本時間) |
composite number 合成数 | 2497443544776339104404740138309148264448725951642974304925170249024540958804983818204653503064789747848686396462004920523022232536333616000075528133774830128413857928419490213174614067004899649203<196> |
prime factors 素因数 | 6189466912311116502014039548727270197<37> 403498973362118833675422935029305139443708401223204671087455149092561569004427040349244645038166302483049857763667472215771478204374503508282892250180545040199<159> |
factorization results 素因数分解の結果 | Run 148 out of 151: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=2898420316 Step 1 took 68866ms Step 2 took 20685ms ********** Factor found in step 2: 6189466912311116502014039548727270197 Found probable prime factor of 37 digits: 6189466912311116502014039548727270197 Probable prime cofactor 403498973362118833675422935029305139443708401223204671087455149092561569004427040349244645038166302483049857763667472215771478204374503508282892250180545040199 has 159 digits |
software ソフトウェア | GMP-ECM 6.4.4 |
execution environment 実行環境 | Gentoo Linux, Intel(R) Core(TM) i7-3770K CPU |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | June 1, 2013 09:00:00 UTC 2013 年 6 月 1 日 (土) 18 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1800 / 1808 | 1500 | Dmitry Domanov | August 21, 2013 13:14:34 UTC 2013 年 8 月 21 日 (水) 22 時 14 分 34 秒 (日本時間) |
300 | Serge Batalov | January 9, 2014 04:41:10 UTC 2014 年 1 月 9 日 (木) 13 時 41 分 10 秒 (日本時間) | |||
45 | 11e6 | 148 / 4077 | Cyp | March 7, 2014 16:32:43 UTC 2014 年 3 月 8 日 (土) 1 時 32 分 43 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | June 17, 2013 07:07:45 UTC 2013 年 6 月 17 日 (月) 16 時 7 分 45 秒 (日本時間) |
composite number 合成数 | 6672087737953754091866308041950751652384228852609411813765351014365838910781676779049644502825212151539792748274639811513521402806446904776797814891265820145534913784116261128833844165050770417630991847542795187756719<217> |
prime factors 素因数 | 258281085818216672237523444600614569<36> 25832661020519718494355394381003778519280567759329793924211225146631925705003544618120319677968007143079679995208394153382441564592635246829884109994014002892373636809398734881747351<182> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1863376843 Step 1 took 30763ms Step 2 took 11078ms ********** Factor found in step 2: 258281085818216672237523444600614569 Found probable prime factor of 36 digits: 258281085818216672237523444600614569 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | June 1, 2013 09:00:00 UTC 2013 年 6 月 1 日 (土) 18 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | June 17, 2013 07:07:15 UTC 2013 年 6 月 17 日 (月) 16 時 7 分 15 秒 (日本時間) |
composite number 合成数 | 6090326660249865824455749209426903734169953217922016732979193024486943742295924353284617598511057615207336673478166455284583094047771611271054248939764514012623156933072470472478047311003<187> |
prime factors 素因数 | 226862783427403557470633449307701<33> 26845860604539306470179902984840143455915491859464340011155578661758069631277247323887656862434562644532296877280587314862016645078985488756062094833557903<155> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1194649530 Step 1 took 23159ms Step 2 took 9228ms ********** Factor found in step 2: 226862783427403557470633449307701 Found probable prime factor of 33 digits: 226862783427403557470633449307701 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | June 1, 2013 09:00:00 UTC 2013 年 6 月 1 日 (土) 18 時 0 分 0 秒 (日本時間) |
name 名前 | Erik Branger |
---|---|
date 日付 | October 26, 2020 08:23:33 UTC 2020 年 10 月 26 日 (月) 17 時 23 分 33 秒 (日本時間) |
composite number 合成数 | 30133984553356330541455128953890889320122905888526500519870038029382894321818611214639051458394520734088690180081192355146006964256660827983562986855588738211540330256507398215381408363<185> |
prime factors 素因数 | 167928449286845039090084425070603702208479074686197522361000483148786402147<75> 179445380942470999839204995425564684038990912352272099824245739061887277408372670751856867196932749289372266329<111> |
factorization results 素因数分解の結果 | Number: 35551_222 N = 30133984553356330541455128953890889320122905888526500519870038029382894321818611214639051458394520734088690180081192355146006964256660827983562986855588738211540330256507398215381408363 (185 digits) SNFS difficulty: 224 digits. Divisors found: r1=167928449286845039090084425070603702208479074686197522361000483148786402147 (pp75) r2=179445380942470999839204995425564684038990912352272099824245739061887277408372670751856867196932749289372266329 (pp111) Version: Msieve v. 1.52 (SVN unknown) Total time: 46.50 hours. Factorization parameters were as follows: n: 30133984553356330541455128953890889320122905888526500519870038029382894321818611214639051458394520734088690180081192355146006964256660827983562986855588738211540330256507398215381408363 m: 10000000000000000000000000000000000000000000000000000000 deg: 4 c4: 3200 c0: -41 skew: 1.00 type: snfs lss: 1 rlim: 536870912 alim: 44739242 lpbr: 29 lpba: 28 mfbr: 58 mfba: 56 rlambda: 2.8 alambda: 2.8 side: 1 Number of cores used: 6 Number of threads per core: 1 Factor base limits: 536870912/44739242 Large primes per side: 3 Large prime bits: 29/28 Total raw relations: 36739376 Relations: 8195988 relations Total pre-computation time approximately 1000 CPU-days. Pre-computation saved approximately 18 G rational relations. Total batch smoothness checking time: 25.84 hours. Total relation processing time: 0.31 hours. Pruned matrix : 7250124 x 7250349 Matrix solve time: 20.03 hours. time per square root: 0.31 hours. Prototype def-par.txt line would be: snfs,224,4,0,0,0,0,0,0,0,0,536870912,44739242,29,28,58,56,2.8,2.8,100000 total time: 46.50 hours. Intel64 Family 6 Model 158 Stepping 10, GenuineIntel Windows-10-10.0.18362-SP0 processors: 12, speed: 3.19GHz |
software ソフトウェア | GGNFS, NFS_factory, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | June 1, 2013 09:00:00 UTC 2013 年 6 月 1 日 (土) 18 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1500 | Dmitry Domanov | August 21, 2013 13:14:43 UTC 2013 年 8 月 21 日 (水) 22 時 14 分 43 秒 (日本時間) | |
45 | 11e6 | 1300 / 4143 | 1000 | Dmitry Domanov | September 26, 2013 13:32:52 UTC 2013 年 9 月 26 日 (木) 22 時 32 分 52 秒 (日本時間) |
300 | Serge Batalov | May 27, 2014 00:31:17 UTC 2014 年 5 月 27 日 (火) 9 時 31 分 17 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | May 22, 2020 23:55:46 UTC 2020 年 5 月 23 日 (土) 8 時 55 分 46 秒 (日本時間) |
composite number 合成数 | 38534169136601940030791350170888712730387334331972430899147407695771976021945758780772686762628405555692496910362065162958326509825426661448406514492743221718395360286064085814126661010234874901026123505099929<209> |
prime factors 素因数 | 45583690525732963705138077918085541248837021526989738563999308670677470669<74> 845349919942278065940609368783381118176979183440504482486717888659100401158747458885499709103544098958737761116930825951184623273772541<135> |
factorization results 素因数分解の結果 | Number: n N=38534169136601940030791350170888712730387334331972430899147407695771976021945758780772686762628405555692496910362065162958326509825426661448406514492743221718395360286064085814126661010234874901026123505099929 ( 209 digits) SNFS difficulty: 224 digits. Divisors found: Sat May 23 09:45:01 2020 p74 factor: 45583690525732963705138077918085541248837021526989738563999308670677470669 Sat May 23 09:45:01 2020 p135 factor: 845349919942278065940609368783381118176979183440504482486717888659100401158747458885499709103544098958737761116930825951184623273772541 Sat May 23 09:45:01 2020 elapsed time 13:29:47 (Msieve 1.54 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.122). Factorization parameters were as follows: # # N = 32x10^223-41 = 35(222)1 # n: 38534169136601940030791350170888712730387334331972430899147407695771976021945758780772686762628405555692496910362065162958326509825426661448406514492743221718395360286064085814126661010234874901026123505099929 m: 20000000000000000000000000000000000000 deg: 6 c6: 5 c0: -41 skew: 1.42 # Murphy_E = 2.102e-12 type: snfs lss: 1 rlim: 39000000 alim: 39000000 lpbr: 29 lpba: 29 mfbr: 59 mfba: 59 rlambda: 2.6 alambda: 2.6 Factor base limits: 39000000/39000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 59/59 Sieved special-q in [100000, 102700000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 10058292 hash collisions in 59007615 relations (51065334 unique) Msieve: matrix is 5281131 x 5281357 (1853.9 MB) Sieving start time: 2020/05/20 16:26:51 Sieving end time : 2020/05/22 20:14:13 Total sieving time: 51hrs 47min 22secs. Total relation processing time: 13hrs 0min 23sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 9min 50sec. Prototype def-par.txt line would be: snfs,224,6,0,0,0,0,0,0,0,0,39000000,39000000,29,29,59,59,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- [ 0.149449] smpboot: CPU0: AMD Ryzen 7 1700 Eight-Core Processor (family: 0x17, model: 0x1, stepping: 0x1) [ 0.000000] Memory: 16283224K/16703460K available (12300K kernel code, 2481K rwdata, 4268K rodata, 2432K init, 2712K bss, 420236K reserved, 0K cma-reserved) [ 0.184573] x86/mm: Memory block size: 128MB [ 0.024000] Calibrating delay loop (skipped), value calculated using timer frequency.. 5988.29 BogoMIPS (lpj=11976580) [ 0.182230] smpboot: Total of 16 processors activated (95812.64 BogoMIPS) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | June 1, 2013 09:00:00 UTC 2013 年 6 月 1 日 (土) 18 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3100 | 1500 | Dmitry Domanov | August 21, 2013 13:14:52 UTC 2013 年 8 月 21 日 (水) 22 時 14 分 52 秒 (日本時間) |
300 | Serge Batalov | January 9, 2014 04:41:11 UTC 2014 年 1 月 9 日 (木) 13 時 41 分 11 秒 (日本時間) | |||
1300 | Serge Batalov | May 26, 2014 18:02:08 UTC 2014 年 5 月 27 日 (火) 3 時 2 分 8 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | June 17, 2013 07:02:54 UTC 2013 年 6 月 17 日 (月) 16 時 2 分 54 秒 (日本時間) |
composite number 合成数 | 14435207041193063672504266501377730303710468425077577367350200979863729377490005016558818119359215497976594112725893522259054973960294094778608824987938455969747992077157523729794770957617050219<194> |
prime factors 素因数 | 2174315388828953167946784636583057<34> |
composite cofactor 合成数の残り | 6638966506587438710145398340416763707858547024517418715774097399456122634356561529579191783013244072820367039784401114873873542246286739353478295840525869182267<160> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=456772845 Step 1 took 27676ms ********** Factor found in step 1: 2174315388828953167946784636583057 Found probable prime factor of 34 digits: 2174315388828953167946784636583057 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | June 1, 2013 09:00:00 UTC 2013 年 6 月 1 日 (土) 18 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1500 | Dmitry Domanov | August 21, 2013 13:15:02 UTC 2013 年 8 月 21 日 (水) 22 時 15 分 2 秒 (日本時間) | |
45 | 11e6 | 1800 / 4143 | 1500 | Dmitry Domanov | September 12, 2013 15:23:03 UTC 2013 年 9 月 13 日 (金) 0 時 23 分 3 秒 (日本時間) |
300 | Serge Batalov | May 27, 2014 00:31:17 UTC 2014 年 5 月 27 日 (火) 9 時 31 分 17 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | June 1, 2013 09:00:00 UTC 2013 年 6 月 1 日 (土) 18 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3100 | 1500 | Dmitry Domanov | August 21, 2013 13:15:11 UTC 2013 年 8 月 21 日 (水) 22 時 15 分 11 秒 (日本時間) |
300 | Serge Batalov | January 9, 2014 04:41:11 UTC 2014 年 1 月 9 日 (木) 13 時 41 分 11 秒 (日本時間) | |||
1300 | Serge Batalov | May 26, 2014 18:02:08 UTC 2014 年 5 月 27 日 (火) 3 時 2 分 8 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | June 1, 2013 09:00:00 UTC 2013 年 6 月 1 日 (土) 18 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3100 | 1500 | Dmitry Domanov | August 21, 2013 13:15:19 UTC 2013 年 8 月 21 日 (水) 22 時 15 分 19 秒 (日本時間) |
300 | Serge Batalov | January 9, 2014 04:41:12 UTC 2014 年 1 月 9 日 (木) 13 時 41 分 12 秒 (日本時間) | |||
1300 | Serge Batalov | May 26, 2014 18:02:09 UTC 2014 年 5 月 27 日 (火) 3 時 2 分 9 秒 (日本時間) | |||
45 | 11e6 | 0 / 3695 | - | - | |
50 | 43e6 | 27 / 7436 | Cyp | February 14, 2014 05:53:54 UTC 2014 年 2 月 14 日 (金) 14 時 53 分 54 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | September 13, 2013 10:42:43 UTC 2013 年 9 月 13 日 (金) 19 時 42 分 43 秒 (日本時間) |
composite number 合成数 | 59015843949075492813072625003386140753508075282130875746292581300866998586961473634055274218698006802924927086644154189398180289513219449953354405074163091757962822852738964917<176> |
prime factors 素因数 | 201621346377251576673080542868004871031<39> |
composite cofactor 合成数の残り | 292706328022686492055887018802965197731608846014497836330676131046610894720508759277007780614229616692043642356732688007992552745184166707<138> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=3044797730 Step 1 took 98184ms Step 2 took 32795ms ********** Factor found in step 2: 201621346377251576673080542868004871031 Found probable prime factor of 39 digits: 201621346377251576673080542868004871031 |
name 名前 | Serge Batalov |
---|---|
date 日付 | November 8, 2013 01:02:34 UTC 2013 年 11 月 8 日 (金) 10 時 2 分 34 秒 (日本時間) |
composite number 合成数 | 292706328022686492055887018802965197731608846014497836330676131046610894720508759277007780614229616692043642356732688007992552745184166707<138> |
prime factors 素因数 | 28518104294086746463539403805835872063970211<44> 10263877465494065177976013665172683011577786437386657483978208446285658901654393368621312389937<95> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=862973936 Step 1 took 36330ms Step 2 took 15341ms ********** Factor found in step 2: 28518104294086746463539403805835872063970211 Found probable prime factor of 44 digits: 28518104294086746463539403805835872063970211 Probable prime cofactor |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | June 1, 2013 09:00:00 UTC 2013 年 6 月 1 日 (土) 18 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1500 | Dmitry Domanov | August 21, 2013 13:15:28 UTC 2013 年 8 月 21 日 (水) 22 時 15 分 28 秒 (日本時間) | |
45 | 11e6 | 1000 / 4143 | Dmitry Domanov | September 12, 2013 15:22:44 UTC 2013 年 9 月 13 日 (金) 0 時 22 分 44 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | June 17, 2013 07:04:53 UTC 2013 年 6 月 17 日 (月) 16 時 4 分 53 秒 (日本時間) |
composite number 合成数 | 802357526284134562793813376154894373408844830289875573417048294321710657981031118963608818620039174648536082375533119308731083725524809026796016197528715186886462601066339626717590362228733112214197236217130428203<213> |
prime factors 素因数 | 5399711952946941640810172101800251<34> |
composite cofactor 合成数の残り | 148592653325931707373604459334572135231025984983210144649453845358104024366179908216245556462921276135179691418427613735278449570952383083675637253728325302403705102914945155039953<180> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=427114332 Step 1 took 30839ms Step 2 took 11128ms ********** Factor found in step 2: 5399711952946941640810172101800251 Found probable prime factor of 34 digits: 5399711952946941640810172101800251 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | June 1, 2013 09:00:00 UTC 2013 年 6 月 1 日 (土) 18 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1500 | Dmitry Domanov | August 21, 2013 13:15:43 UTC 2013 年 8 月 21 日 (水) 22 時 15 分 43 秒 (日本時間) | |
45 | 11e6 | 1300 / 4143 | 1000 | Dmitry Domanov | September 12, 2013 15:22:30 UTC 2013 年 9 月 13 日 (金) 0 時 22 分 30 秒 (日本時間) |
300 | Serge Batalov | May 27, 2014 00:31:17 UTC 2014 年 5 月 27 日 (火) 9 時 31 分 17 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 418 | 118 | Makoto Kamada | June 1, 2013 09:00:00 UTC 2013 年 6 月 1 日 (土) 18 時 0 分 0 秒 (日本時間) |
300 | Ignacio Santos | July 27, 2013 06:56:33 UTC 2013 年 7 月 27 日 (土) 15 時 56 分 33 秒 (日本時間) | |||
40 | 3e6 | 1610 | 110 | Ignacio Santos | July 27, 2013 06:56:33 UTC 2013 年 7 月 27 日 (土) 15 時 56 分 33 秒 (日本時間) |
1500 | Dmitry Domanov | August 21, 2013 13:15:54 UTC 2013 年 8 月 21 日 (水) 22 時 15 分 54 秒 (日本時間) | |||
45 | 11e6 | 4282 | 32 | Ignacio Santos | July 27, 2013 06:56:33 UTC 2013 年 7 月 27 日 (土) 15 時 56 分 33 秒 (日本時間) |
850 | Serge Batalov | November 8, 2013 17:16:01 UTC 2013 年 11 月 9 日 (土) 2 時 16 分 1 秒 (日本時間) | |||
400 | Serge Batalov | January 6, 2014 02:28:53 UTC 2014 年 1 月 6 日 (月) 11 時 28 分 53 秒 (日本時間) | |||
800 | Serge Batalov | February 23, 2014 19:24:45 UTC 2014 年 2 月 24 日 (月) 4 時 24 分 45 秒 (日本時間) | |||
900 | Serge Batalov | May 24, 2014 19:03:59 UTC 2014 年 5 月 25 日 (日) 4 時 3 分 59 秒 (日本時間) | |||
300 | Serge Batalov | May 27, 2014 00:31:18 UTC 2014 年 5 月 27 日 (火) 9 時 31 分 18 秒 (日本時間) | |||
1000 | Serge Batalov | December 18, 2014 00:18:48 UTC 2014 年 12 月 18 日 (木) 9 時 18 分 48 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | June 1, 2013 09:00:00 UTC 2013 年 6 月 1 日 (土) 18 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1500 | Dmitry Domanov | August 21, 2013 13:16:02 UTC 2013 年 8 月 21 日 (水) 22 時 16 分 2 秒 (日本時間) | |
45 | 11e6 | 1300 / 4143 | 1000 | Dmitry Domanov | September 16, 2013 15:41:36 UTC 2013 年 9 月 17 日 (火) 0 時 41 分 36 秒 (日本時間) |
300 | Serge Batalov | May 27, 2014 00:31:18 UTC 2014 年 5 月 27 日 (火) 9 時 31 分 18 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | June 18, 2013 05:00:32 UTC 2013 年 6 月 18 日 (火) 14 時 0 分 32 秒 (日本時間) |
composite number 合成数 | 2037274031631454091629225679033997297163367095689157796033435320382301432817838753418351562006009001357988516418422599136841765003657749732829595489867757951711829013364108713953389653276138788326439003599279811379001948793<223> |
prime factors 素因数 | 25539457673030325932698747355698591333399<41> 79769666909678196050358288440097543247856218171958763771979587652156534122093561484145746753237747431946422668620514562494969327098962790547581389308058465762433717735530900896385007<182> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3259487713 Step 1 took 30550ms Step 2 took 11384ms ********** Factor found in step 2: 25539457673030325932698747355698591333399 Found probable prime factor of 41 digits: 25539457673030325932698747355698591333399 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | June 1, 2013 09:00:00 UTC 2013 年 6 月 1 日 (土) 18 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | June 1, 2013 09:00:00 UTC 2013 年 6 月 1 日 (土) 18 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1500 | Dmitry Domanov | August 21, 2013 13:16:11 UTC 2013 年 8 月 21 日 (水) 22 時 16 分 11 秒 (日本時間) | |
45 | 11e6 | 1800 / 4143 | 1500 | Dmitry Domanov | September 18, 2013 15:37:48 UTC 2013 年 9 月 19 日 (木) 0 時 37 分 48 秒 (日本時間) |
300 | Serge Batalov | May 27, 2014 00:31:19 UTC 2014 年 5 月 27 日 (火) 9 時 31 分 19 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | June 1, 2013 09:00:00 UTC 2013 年 6 月 1 日 (土) 18 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1500 | Dmitry Domanov | August 21, 2013 13:16:19 UTC 2013 年 8 月 21 日 (水) 22 時 16 分 19 秒 (日本時間) | |
45 | 11e6 | 3550 | 1500 | Dmitry Domanov | September 18, 2013 15:38:03 UTC 2013 年 9 月 19 日 (木) 0 時 38 分 3 秒 (日本時間) |
850 | Serge Batalov | November 8, 2013 17:17:24 UTC 2013 年 11 月 9 日 (土) 2 時 17 分 24 秒 (日本時間) | |||
400 | Serge Batalov | January 6, 2014 02:29:56 UTC 2014 年 1 月 6 日 (月) 11 時 29 分 56 秒 (日本時間) | |||
800 | Serge Batalov | February 23, 2014 19:24:46 UTC 2014 年 2 月 24 日 (月) 4 時 24 分 46 秒 (日本時間) | |||
50 | 43e6 | 760 / 6699 | Serge Batalov | February 24, 2014 02:26:52 UTC 2014 年 2 月 24 日 (月) 11 時 26 分 52 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | June 1, 2013 09:00:00 UTC 2013 年 6 月 1 日 (土) 18 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1500 | Dmitry Domanov | August 21, 2013 13:16:28 UTC 2013 年 8 月 21 日 (水) 22 時 16 分 28 秒 (日本時間) | |
45 | 11e6 | 1800 / 4143 | 1500 | Dmitry Domanov | September 18, 2013 15:38:22 UTC 2013 年 9 月 19 日 (木) 0 時 38 分 22 秒 (日本時間) |
300 | Serge Batalov | May 27, 2014 00:31:19 UTC 2014 年 5 月 27 日 (火) 9 時 31 分 19 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | June 17, 2013 07:05:22 UTC 2013 年 6 月 17 日 (月) 16 時 5 分 22 秒 (日本時間) |
composite number 合成数 | 1627129951242034054812923276246495950226094791506178263272676979619688882583760327826006926488811193433717081762771571802448118707265592862594468876817618563112048744745514333235197058149048154402428898234716546335321991220616956829700003<238> |
prime factors 素因数 | 10563699547582617591385281990829853<35> |
composite cofactor 合成数の残り | 154030313330369588621173139999027672427075458256116763367360498865215956542350622294697545307697607626113054593845863438269687651245876306280333244296098904242733535768239766894298104857641109874549167551<204> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=67843005 Step 1 took 35035ms Step 2 took 12235ms ********** Factor found in step 2: 10563699547582617591385281990829853 Found probable prime factor of 35 digits: 10563699547582617591385281990829853 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | June 1, 2013 09:00:00 UTC 2013 年 6 月 1 日 (土) 18 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1500 | Dmitry Domanov | August 21, 2013 13:16:36 UTC 2013 年 8 月 21 日 (水) 22 時 16 分 36 秒 (日本時間) | |
45 | 11e6 | 1800 / 4143 | 1500 | Dmitry Domanov | September 18, 2013 15:38:38 UTC 2013 年 9 月 19 日 (木) 0 時 38 分 38 秒 (日本時間) |
300 | Serge Batalov | May 27, 2014 00:31:20 UTC 2014 年 5 月 27 日 (火) 9 時 31 分 20 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | June 17, 2013 07:02:25 UTC 2013 年 6 月 17 日 (月) 16 時 2 分 25 秒 (日本時間) |
composite number 合成数 | 363780254638325367943411860461178883919925833028264170818067562524865495192067678610850761625820529039498943116450647767766506859522997053334771837324580074400206035650657007794069179353300950194612847779761112614363099386302390980609<234> |
prime factors 素因数 | 2990247510903236643186453839763947<34> 479584301289329896651208715745922348029<39> |
composite cofactor 合成数の残り | 253668783737700455657786270929101021038480617986343887863537642883247325568713325952872737909148943757055876279881732613853424454596271327031578703425930742378943<162> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=245200887 Step 1 took 34955ms Step 2 took 12255ms ********** Factor found in step 2: 2990247510903236643186453839763947 Found probable prime factor of 34 digits: 2990247510903236643186453839763947 Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2298618975 Step 1 took 26706ms Step 2 took 9962ms ********** Factor found in step 2: 479584301289329896651208715745922348029 Found probable prime factor of 39 digits: 479584301289329896651208715745922348029 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 418 | 118 | Makoto Kamada | June 1, 2013 09:00:00 UTC 2013 年 6 月 1 日 (土) 18 時 0 分 0 秒 (日本時間) |
300 | Ignacio Santos | June 28, 2013 22:51:25 UTC 2013 年 6 月 29 日 (土) 7 時 51 分 25 秒 (日本時間) | |||
40 | 3e6 | 1610 | 110 | Ignacio Santos | June 28, 2013 22:51:25 UTC 2013 年 6 月 29 日 (土) 7 時 51 分 25 秒 (日本時間) |
1500 | Dmitry Domanov | August 21, 2013 13:16:47 UTC 2013 年 8 月 21 日 (水) 22 時 16 分 47 秒 (日本時間) | |||
45 | 11e6 | 2782 | 32 | Ignacio Santos | June 28, 2013 22:51:25 UTC 2013 年 6 月 29 日 (土) 7 時 51 分 25 秒 (日本時間) |
1500 | Dmitry Domanov | September 12, 2013 15:22:08 UTC 2013 年 9 月 13 日 (金) 0 時 22 分 8 秒 (日本時間) | |||
850 | Serge Batalov | November 8, 2013 17:12:58 UTC 2013 年 11 月 9 日 (土) 2 時 12 分 58 秒 (日本時間) | |||
400 | Serge Batalov | January 6, 2014 02:26:40 UTC 2014 年 1 月 6 日 (月) 11 時 26 分 40 秒 (日本時間) | |||
50 | 43e6 | 400 / 6866 | Erik Branger | March 20, 2014 07:43:49 UTC 2014 年 3 月 20 日 (木) 16 時 43 分 49 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | June 17, 2013 07:03:23 UTC 2013 年 6 月 17 日 (月) 16 時 3 分 23 秒 (日本時間) |
composite number 合成数 | 9763477560204844267150507887202829260793083089494291074981618571578453040149310665811059022703745934429126047792247556455821797363398086030860713503237254601005869418715653322456176426001270484054924531072357<208> |
prime factors 素因数 | 29155209689452034783237689640149379<35> |
composite cofactor 合成数の残り | 334879346236948519120750599705261129346162599349380975214578576766743267775174660853581177191064673174139178469005253589815259547413252972363612795288050078953720636662184183<174> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2382675642 Step 1 took 26706ms Step 2 took 10288ms ********** Factor found in step 2: 29155209689452034783237689640149379 Found probable prime factor of 35 digits: 29155209689452034783237689640149379 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | June 1, 2013 09:00:00 UTC 2013 年 6 月 1 日 (土) 18 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1500 | Dmitry Domanov | August 21, 2013 13:16:56 UTC 2013 年 8 月 21 日 (水) 22 時 16 分 56 秒 (日本時間) | |
45 | 11e6 | 1300 / 4143 | 1000 | Dmitry Domanov | September 12, 2013 15:21:54 UTC 2013 年 9 月 13 日 (金) 0 時 21 分 54 秒 (日本時間) |
300 | Serge Batalov | May 27, 2014 00:31:20 UTC 2014 年 5 月 27 日 (火) 9 時 31 分 20 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | June 2, 2013 12:03:31 UTC 2013 年 6 月 2 日 (日) 21 時 3 分 31 秒 (日本時間) |
composite number 合成数 | 188243887038019923286645964279770330576170740592096267920758242707723212418469388875146406513002961627149702288462944999256106556216549573277625757514291<153> |
prime factors 素因数 | 4773528371284073483508444699576726703<37> |
composite cofactor 合成数の残り | 39434957204911833469741877034134068020673891287845438401420158127477807862731014834870691349702997395425117223844797<116> |
factorization results 素因数分解の結果 | Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1:1317164148 Step 1 took 2516ms Step 2 took 2187ms ********** Factor found in step 2: 4773528371284073483508444699576726703 Found probable prime factor of 37 digits: 4773528371284073483508444699576726703 Composite cofactor 39434957204911833469741877034134068020673891287845438401420158127477807862731014834870691349702997395425117223844797 has 116 digits |
software ソフトウェア | GMP-ECM 7.0 |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | June 3, 2013 07:38:59 UTC 2013 年 6 月 3 日 (月) 16 時 38 分 59 秒 (日本時間) |
composite number 合成数 | 39434957204911833469741877034134068020673891287845438401420158127477807862731014834870691349702997395425117223844797<116> |
prime factors 素因数 | 22953905551970465014509603719102243141<38> 1718006424467776984279931676067461580660078765899402448857360700635089837755417<79> |
factorization results 素因数分解の結果 | N=39434957204911833469741877034134068020673891287845438401420158127477807862731014834870691349702997395425117223844797 ( 116 digits) Divisors found: r1=22953905551970465014509603719102243141 (pp38) r2=1718006424467776984279931676067461580660078765899402448857360700635089837755417 (pp79) Version: Msieve v. 1.50 (SVN unknown) Total time: 25.04 hours. Scaled time: 42.89 units (timescale=1.713). Factorization parameters were as follows: n: 39434957204911833469741877034134068020673891287845438401420158127477807862731014834870691349702997395425117223844797 skew: 23049.43 c0: -114486489301369977040434675 c1: 10307311475614903905000 c2: 3368202636977146413 c3: 61570867383926 c4: -6229513748 c5: 50184 Y0: -15103007900255434148312 Y1: 321757353649 rlim: 4600000 alim: 4600000 lpbr: 27 lpba: 27 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 type: gnfs qintsize: 400000 Factor base limits: 4600000/4600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved algebraic special-q in [2300000, 3500001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 539415 x 539642 Total sieving time: 24.53 hours. Total relation processing time: 0.11 hours. Matrix solve time: 0.31 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: gnfs,115,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4600000,4600000,27,27,54,54,2.5,2.5,100000 total time: 25.04 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | June 1, 2013 09:00:00 UTC 2013 年 6 月 1 日 (土) 18 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | September 20, 2013 05:06:13 UTC 2013 年 9 月 20 日 (金) 14 時 6 分 13 秒 (日本時間) |
composite number 合成数 | 14702578690775196066167800872270854420103768101054627447604113932414547169540717979235846293481311171337980797324884711299871543798406947032189575709205320580868870300097735474531235721736408572090331350718273851292207<218> |
prime factors 素因数 | 304191996869042264749043453906680229262059<42> 48333219946956083423218815455238567027652845904858327276198705943444298283224151943038694641445069774651387198349245022435612064146374754680092648071119139124002260531664084173<176> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=4227359217 Step 1 took 86705ms Step 2 took 34816ms ********** Factor found in step 2: 304191996869042264749043453906680229262059 Found probable prime factor of 42 digits: 304191996869042264749043453906680229262059 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | June 1, 2013 09:00:00 UTC 2013 年 6 月 1 日 (土) 18 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1500 | Dmitry Domanov | August 21, 2013 13:17:04 UTC 2013 年 8 月 21 日 (水) 22 時 17 分 4 秒 (日本時間) | |
45 | 11e6 | 1500 / 4143 | Dmitry Domanov | September 18, 2013 15:37:27 UTC 2013 年 9 月 19 日 (木) 0 時 37 分 27 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | June 17, 2013 07:05:58 UTC 2013 年 6 月 17 日 (月) 16 時 5 分 58 秒 (日本時間) |
composite number 合成数 | 5277293113441036165318623238541704384781395444316314640323463850269461165710857697063385750152550226247044859796825993780793235060647240771667383971580139136193118674543248920132030740333192342380801790851071659366807<217> |
prime factors 素因数 | 8933783329613918459795116462935503<34> 590712010660448731546742455868236384551360416950346724358022273596437535219488450431769010062049665507193115321314505576015192645496028071047498893642325681173969122166277225053155769<183> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1207633685 Step 1 took 30451ms Step 2 took 11074ms ********** Factor found in step 2: 8933783329613918459795116462935503 Found probable prime factor of 34 digits: 8933783329613918459795116462935503 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | June 1, 2013 09:00:00 UTC 2013 年 6 月 1 日 (土) 18 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | June 1, 2013 09:00:00 UTC 2013 年 6 月 1 日 (土) 18 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1500 | Dmitry Domanov | June 28, 2013 17:14:49 UTC 2013 年 6 月 29 日 (土) 2 時 14 分 49 秒 (日本時間) | |
45 | 11e6 | 1500 | Dmitry Domanov | June 28, 2013 17:14:49 UTC 2013 年 6 月 29 日 (土) 2 時 14 分 49 秒 (日本時間) | |
50 | 43e6 | 800 / 7159 | 400 | Dmitry Domanov | August 1, 2013 12:05:58 UTC 2013 年 8 月 1 日 (木) 21 時 5 分 58 秒 (日本時間) |
400 | Dmitry Domanov | August 13, 2013 08:09:31 UTC 2013 年 8 月 13 日 (火) 17 時 9 分 31 秒 (日本時間) |
name 名前 | Lionel Debroux |
---|---|
date 日付 | July 16, 2020 11:56:39 UTC 2020 年 7 月 16 日 (木) 20 時 56 分 39 秒 (日本時間) |
composite number 合成数 | 507822344555177290965698700547104061755134702435068286032526993594742929522486738204589810604914069850694586438832467900038391291665320760883508366476119070368710141803561711163517669694357108510004032397380651447887492135941978789742431<237> |
prime factors 素因数 | 1798879502768922118258055361945947339<37> 282299255605232389469437182553311333292079104596343066107561036072861245976008095132396482176442969043455461276143275269102178252147047564919805466278179832146640643466498040497076013812344185263706429<201> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 507822344555177290965698700547104061755134702435068286032526993594742929522486738204589810604914069850694586438832467900038391291665320760883508366476119070368710141803561711163517669694357108510004032397380651447887492135941978789742431 (237 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:274780646 Step 1 took 64403ms Step 2 took 22462ms ********** Factor found in step 2: 1798879502768922118258055361945947339 Found prime factor of 37 digits: 1798879502768922118258055361945947339 Prime cofactor 282299255605232389469437182553311333292079104596343066107561036072861245976008095132396482176442969043455461276143275269102178252147047564919805466278179832146640643466498040497076013812344185263706429 has 201 digits |
execution environment 実行環境 | Core i7-2670QM @ 2.2 GHz, Debian sid amd64 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | Makoto Kamada | April 2, 2017 07:00:00 UTC 2017 年 4 月 2 日 (日) 16 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | Makoto Kamada | April 2, 2017 07:00:00 UTC 2017 年 4 月 2 日 (日) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2402 | 610 | Marlon Trifunovic | February 19, 2022 05:45:54 UTC 2022 年 2 月 19 日 (土) 14 時 45 分 54 秒 (日本時間) |
1792 | Dmitry Domanov | January 7, 2024 17:53:31 UTC 2024 年 1 月 8 日 (月) 2 時 53 分 31 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 8, 2024 11:50:19 UTC 2024 年 1 月 8 日 (月) 20 時 50 分 19 秒 (日本時間) |
composite number 合成数 | 10306430163603203249104738998783431474552616405841999421790643227890487611895396223464716745548886110118926837134150575861396928102619775763267754963456910602284697748477615664376434375674675899433334476063011284900763840142925583<230> |
prime factors 素因数 | 599970891438678550680119119264304306009<39> |
composite cofactor 合成数の残り | 17178216994643308311146083466771069485281493466147801065744875671133735265415141558308430653354874243189179279062820395380806353309722937291575068918970806231294067581937217150803160374789287<191> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @0f5471867fa3 with GMP-ECM 7.0.5-dev on Sun Jan 7 20:42:24 2024 Input number is 10306430163603203249104738998783431474552616405841999421790643227890487611895396223464716745548886110118926837134150575861396928102619775763267754963456910602284697748477615664376434375674675899433334476063011284900763840142925583 (230 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:1237124381 Step 1 took 0ms Step 2 took 3009ms ********** Factor found in step 2: 599970891438678550680119119264304306009 Found prime factor of 39 digits: 599970891438678550680119119264304306009 Composite cofactor 17178216994643308311146083466771069485281493466147801065744875671133735265415141558308430653354874243189179279062820395380806353309722937291575068918970806231294067581937217150803160374789287 has 191 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | Makoto Kamada | April 2, 2017 07:00:00 UTC 2017 年 4 月 2 日 (日) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2402 | 610 | Marlon Trifunovic | February 19, 2022 06:02:13 UTC 2022 年 2 月 19 日 (土) 15 時 2 分 13 秒 (日本時間) |
1792 | Dmitry Domanov | January 7, 2024 17:53:41 UTC 2024 年 1 月 8 日 (月) 2 時 53 分 41 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | Makoto Kamada | April 2, 2017 07:00:00 UTC 2017 年 4 月 2 日 (日) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2106 | 610 | Marlon Trifunovic | March 7, 2022 05:25:12 UTC 2022 年 3 月 7 日 (月) 14 時 25 分 12 秒 (日本時間) |
1496 | ebina | January 27, 2024 22:44:16 UTC 2024 年 1 月 28 日 (日) 7 時 44 分 16 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | Makoto Kamada | April 2, 2017 07:00:00 UTC 2017 年 4 月 2 日 (日) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2106 | 610 | Marlon Trifunovic | March 4, 2022 07:42:46 UTC 2022 年 3 月 4 日 (金) 16 時 42 分 46 秒 (日本時間) |
1496 | ebina | January 28, 2024 00:21:26 UTC 2024 年 1 月 28 日 (日) 9 時 21 分 26 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 8, 2024 11:50:39 UTC 2024 年 1 月 8 日 (月) 20 時 50 分 39 秒 (日本時間) |
composite number 合成数 | 1174079843474260461212006503865357500856205302407758877770511053488543310360898355008638356931550498918895759683489772191371930442656103215464343368619444850600804042915647421012093566021379515190421743500250850302633<217> |
prime factors 素因数 | 97922963619981622701517591081079467828091<41> |
composite cofactor 合成数の残り | 11989831598955856866518868271927515778800031892327478309369930565713039538168320711062474310420677753332568289911722111048091737485553798841003036130152638840260264402301361963<176> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @0f5471867fa3 with GMP-ECM 7.0.5-dev on Sun Jan 7 20:45:20 2024 Input number is 1174079843474260461212006503865357500856205302407758877770511053488543310360898355008638356931550498918895759683489772191371930442656103215464343368619444850600804042915647421012093566021379515190421743500250850302633 (217 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:3045369343 Step 1 took 0ms Step 2 took 2937ms ********** Factor found in step 2: 97922963619981622701517591081079467828091 Found prime factor of 41 digits: 97922963619981622701517591081079467828091 Composite cofactor 11989831598955856866518868271927515778800031892327478309369930565713039538168320711062474310420677753332568289911722111048091737485553798841003036130152638840260264402301361963 has 176 digits |
name 名前 | Bob Backstrom |
---|---|
date 日付 | September 17, 2024 14:51:15 UTC 2024 年 9 月 17 日 (火) 23 時 51 分 15 秒 (日本時間) |
composite number 合成数 | 11989831598955856866518868271927515778800031892327478309369930565713039538168320711062474310420677753332568289911722111048091737485553798841003036130152638840260264402301361963<176> |
prime factors 素因数 | 31014116028955251178713732198725364875656659600101<50> 145369651530211861027183990882408493187479888035182780723547<60> 2659377111788057611948199762200765324396707646821007485734088502429<67> |
factorization results 素因数分解の結果 | ECM GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 11989831598955856866518868271927515778800031892327478309369930565713039538168320711062474310420677753332568289911722111048091737485553798841003036130152638840260264402301361963 (176 digits) Using B1=56620000, B2=388127758210, polynomial Dickson(30), sigma=1:239200605 Step 1 took 150770ms Step 2 took 63218ms ********** Factor found in step 2: 31014116028955251178713732198725364875656659600101 Found prime factor of 50 digits: 31014116028955251178713732198725364875656659600101 Composite cofactor 386592724028051208631046776675411468929472333211458712771586509269317847479629523882182131373275073197811725513931506286995663 has 126 digits === CADO-NFS STA:Tue Sep 17 08:14:47 PM AEST 2024 (386592724028051208631046776675411468929472333211458712771586509269317847479629523882182131373275073197811725513931506286995663 - C126) /home/bob/Downloads/Math/cado-nfs/cado-nfs.py -t 18 --no-colors 386592724028051208631046776675411468929472333211458712771586509269317847479629523882182131373275073197811725513931506286995663 2>&1 | tee -a log-67 /home/bob/Downloads/Math/cado-nfs/cado-nfs.py:93: DeprecationWarning: 'locale.getdefaultlocale' is deprecated and slated for removal in Python 3.15. Use setlocale(), getencoding() and getlocale() instead. loc = locale.getdefaultlocale()[1] Info:root: Using default parameter file /home/bob/Downloads/Math/cado-nfs/parameters/factor/params.c125 Info:root: No database exists yet Info:root: Created temporary directory /tmp/cado.bvj0hoeh Info:Database: Opened connection to database /tmp/cado.bvj0hoeh/c125.db Info:root: Set tasks.threads=18 based on --server-threads 18 Info:root: tasks.threads = 18 [via tasks.threads] Info:root: tasks.polyselect.threads = 2 [via tasks.polyselect.threads] Info:root: tasks.sieve.las.threads = 2 [via tasks.sieve.las.threads] Info:root: tasks.linalg.bwc.threads = 18 [via tasks.threads] Info:root: tasks.sqrt.threads = 8 [via tasks.sqrt.threads] Info:root: slaves.scriptpath is /home/bob/Downloads/Math/cado-nfs/build/VM9 Info:root: Command line parameters: /home/bob/Downloads/Math/cado-nfs/cado-nfs.py -t 18 --no-colors 386592724028051208631046776675411468929472333211458712771586509269317847479629523882182131373275073197811725513931506286995663 Info:root: If this computation gets interrupted, it can be resumed with /home/bob/Downloads/Math/cado-nfs/cado-nfs.py /tmp/cado.bvj0hoeh/c125.parameters_snapshot.0 Info:Server Launcher: Adding VM9 to whitelist to allow clients on localhost to connect Info:HTTP server: Using non-threaded HTTPS server Info:HTTP server: Using whitelist: localhost,VM9 Info:Lattice Sieving: param rels_wanted is 27000000 === Info:Polynomial Selection (root optimized): Best polynomial is: n: 386592724028051208631046776675411468929472333211458712771586509269317847479629523882182131373275073197811725513931506286995663 skew: 160738.028 c0: 126150557227838530910095020765 c1: -9220974593327566328149649 c2: -130702174192489743435 c3: 832419392315137 c4: 2083304302 c5: 1680 Y0: -2922065343329734874456056 Y1: 184327339715223107 # MurphyE (Bf=5.369e+08,Bg=2.684e+08,area=1.342e+13) = 2.980e-06 # f(x) = 1680*x^5+2083304302*x^4+832419392315137*x^3-130702174192489743435*x^2-9220974593327566328149649*x+126150557227838530910095020765 # g(x) = 184327339715223107*x-2922065343329734874456056 Info:Polynomial Selection (root optimized): Best overall polynomial was 1-th in list after size optimization === Info:Square Root: finished Info:Square Root: Factors: 145369651530211861027183990882408493187479888035182780723547 2659377111788057611948199762200765324396707646821007485734088502429 Info:Complete Factorization / Discrete logarithm: Square Root Info:Square Root: Total cpu/real time for sqrt: 787.54/97.0167 Info:HTTP server: Got notification to stop serving Workunits Info:Polynomial Selection (root optimized): Aggregate statistics: Info:Polynomial Selection (root optimized): Total time: 563.42 Info:Polynomial Selection (root optimized): Rootsieve time: 563.04 Info:Polynomial Selection (size optimized): Aggregate statistics: Info:Polynomial Selection (size optimized): potential collisions: 39657.6 Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 27041/36.600/46.386/58.330/2.517 Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 22352/35.670/40.742/53.170/1.870 Info:Polynomial Selection (size optimized): Total time: 2365.26 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 29983413 Info:Lattice Sieving: Average J: 3943.24 for 143297 special-q, max bucket fill -bkmult 1.0,1s:1.274170 Info:Lattice Sieving: Total time: 67339.6s Info:Filtering - Singleton removal: Total cpu/real time for purge: 293.81/340.252 Info:Linear Algebra: Total cpu/real time for bwc: 7422.04/1116.31 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 4355.49, WCT time 634.76, iteration CPU time 0.01, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (33000 iterations) Info:Linear Algebra: Lingen CPU time 39.3, WCT time 39.7 Info:Linear Algebra: Mksol: CPU time 2337.99, WCT time 345.21, iteration CPU time 0.02, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (15000 iterations) Info:Generate Free Relations: Total cpu/real time for freerel: 211.95/25.3725 Info:Square Root: Total cpu/real time for sqrt: 787.54/97.0167 Info:Quadratic Characters: Total cpu/real time for characters: 27.48/7.06555 Info:Generate Factor Base: Total cpu/real time for makefb: 1.6/0.299309 Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 116.13/102.796 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 101.8s Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 522.62/592.881 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 392.6s Info:Filtering - Merging: Total cpu/real time for merge: 53.61/10.1381 Info:Filtering - Merging: Total cpu/real time for replay: 14.9/12.8267 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire Complete Factorization 75844.7/9456.79 [02:37:37] Info:root: Cleaning up computation data in /tmp/cado.bvj0hoeh 145369651530211861027183990882408493187479888035182780723547 2659377111788057611948199762200765324396707646821007485734088502429 END:Tue Sep 17 10:52:25 PM AEST 2024 (386592724028051208631046776675411468929472333211458712771586509269317847479629523882182131373275073197811725513931506286995663 - C126) |
software ソフトウェア | ECM, CADO_NFS |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | Makoto Kamada | April 2, 2017 07:00:00 UTC 2017 年 4 月 2 日 (日) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2792 | 1000 | Dmitry Domanov | April 7, 2017 07:58:16 UTC 2017 年 4 月 7 日 (金) 16 時 58 分 16 秒 (日本時間) |
1792 | Dmitry Domanov | January 7, 2024 17:53:50 UTC 2024 年 1 月 8 日 (月) 2 時 53 分 50 秒 (日本時間) | |||
45 | 11e6 | 4480 | Ignacio Santos | January 14, 2024 15:16:19 UTC 2024 年 1 月 15 日 (月) 0 時 16 分 19 秒 (日本時間) | |
50 | 43e6 | 1792 / 6437 | Dmitry Domanov | May 12, 2024 08:20:43 UTC 2024 年 5 月 12 日 (日) 17 時 20 分 43 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | Makoto Kamada | April 2, 2017 07:00:00 UTC 2017 年 4 月 2 日 (日) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2104 | ebina | October 23, 2021 22:22:55 UTC 2021 年 10 月 24 日 (日) 7 時 22 分 55 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | April 7, 2017 09:30:34 UTC 2017 年 4 月 7 日 (金) 18 時 30 分 34 秒 (日本時間) |
composite number 合成数 | 8487232710939640972620248504488486312281711844743686849528188184038357987650988012303530455013724156103384232011960997266022440800419572343291848326498770544210363658296550909065522388307589762339590893971<205> |
prime factors 素因数 | 314606507817607224185732308496627<33> |
composite cofactor 合成数の残り | 26977295446984538454485385095456582474305169188113205237163930300503893485474770971828900300873859483628161219268738920492908594572635749249348018885495032259857699577832673<173> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=453528456 Step 1 took 35010ms Step 2 took 10707ms ********** Factor found in step 2: 314606507817607224185732308496627 Found probable prime factor of 33 digits: 314606507817607224185732308496627 |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | April 7, 2017 20:43:07 UTC 2017 年 4 月 8 日 (土) 5 時 43 分 7 秒 (日本時間) |
composite number 合成数 | 26977295446984538454485385095456582474305169188113205237163930300503893485474770971828900300873859483628161219268738920492908594572635749249348018885495032259857699577832673<173> |
prime factors 素因数 | 109874887915686289256071499226101402579<39> |
composite cofactor 合成数の残り | 245527399014830982623900013544870486404967868753115226505336323366843356620082327747267727904394697435731556676413348329990841713057787<135> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2494186432 Step 1 took 22224ms Step 2 took 8246ms ********** Factor found in step 2: 109874887915686289256071499226101402579 Found probable prime factor of 39 digits: 109874887915686289256071499226101402579 Composite cofactor 245527399014830982623900013544870486404967868753115226505336323366843356620082327747267727904394697435731556676413348329990841713057787 has 135 digits |
name 名前 | Erik Branger |
---|---|
date 日付 | April 20, 2017 06:29:44 UTC 2017 年 4 月 20 日 (木) 15 時 29 分 44 秒 (日本時間) |
composite number 合成数 | 245527399014830982623900013544870486404967868753115226505336323366843356620082327747267727904394697435731556676413348329990841713057787<135> |
prime factors 素因数 | 787449987256670916020368269558651160405732504278791<51> 311800626056522914538124146410462757851806729057715123986218638376967318983646043757<84> |
factorization results 素因数分解の結果 | Mon Apr 17 22:22:14 2017 -> factmsieve.py (v0.76) Mon Apr 17 22:22:14 2017 -> This is client 1 of 1 Mon Apr 17 22:22:14 2017 -> Running on 4 Cores with 1 hyper-thread per Core Mon Apr 17 22:22:14 2017 -> Working with NAME = 35551_268 Mon Apr 17 22:22:14 2017 -> Running polynomial selection ... Mon Apr 17 22:22:14 2017 Mon Apr 17 22:22:15 2017 Mon Apr 17 22:22:15 2017 Msieve v. 1.51 (SVN 845) Mon Apr 17 22:22:15 2017 random seeds: 6b083908 73664c21 Mon Apr 17 22:22:15 2017 factoring 245527399014830982623900013544870486404967868753115226505336323366843356620082327747267727904394697435731556676413348329990841713057787 (135 digits) Mon Apr 17 22:22:15 2017 searching for 15-digit factors Mon Apr 17 22:22:16 2017 commencing number field sieve (135-digit input) Mon Apr 17 22:22:16 2017 commencing number field sieve polynomial selection Mon Apr 17 22:22:16 2017 polynomial degree: 5 Mon Apr 17 22:22:16 2017 max stage 1 norm: 2.75e+020 Mon Apr 17 22:22:16 2017 max stage 2 norm: 5.79e+018 Mon Apr 17 22:22:16 2017 min E-value: 3.31e-011 Mon Apr 17 22:22:16 2017 poly select deadline: 106189 Mon Apr 17 22:22:16 2017 time limit set to 29.50 CPU-hours Mon Apr 17 22:22:16 2017 expecting poly E from 4.50e-011 to > 5.18e-011 Mon Apr 17 22:22:16 2017 searching leading coefficients from 1 to 1747365 Mon Apr 17 22:22:16 2017 using GPU 0 (GeForce GT 630M) Mon Apr 17 22:22:16 2017 selected card has CUDA arch 2.1 Tue Apr 18 08:19:38 2017 polynomial selection complete Tue Apr 18 08:19:38 2017 R0: -154291249074857749406767620 Tue Apr 18 08:19:38 2017 R1: 36686555400721 Tue Apr 18 08:19:38 2017 A0: -3812760784881918934330972817864753 Tue Apr 18 08:19:38 2017 A1: 8158332078726734238518201747 Tue Apr 18 08:19:38 2017 A2: 45137649547438786538735 Tue Apr 18 08:19:38 2017 A3: -18022645475278295 Tue Apr 18 08:19:38 2017 A4: -98296253322 Tue Apr 18 08:19:38 2017 A5: 2808 Tue Apr 18 08:19:38 2017 skew 848829.07, size 5.408e-013, alpha -7.800, combined = 4.297e-011 rroots = 3 Tue Apr 18 08:19:38 2017 elapsed time 09:57:23 Tue Apr 18 08:19:59 2017 -> factmsieve.py (v0.76) Tue Apr 18 08:19:59 2017 -> This is client 1 of 1 Tue Apr 18 08:19:59 2017 -> Running on 4 Cores with 1 hyper-thread per Core Tue Apr 18 08:19:59 2017 -> Working with NAME = 35551_268 Tue Apr 18 08:19:59 2017 -> Converting msieve polynomial (*.fb) to ggnfs (*.poly) format. Tue Apr 18 08:19:59 2017 -> Selected lattice siever: gnfs-lasieve4I13e Tue Apr 18 08:19:59 2017 -> Creating param file to detect parameter changes... Tue Apr 18 08:19:59 2017 -> Running setup ... Tue Apr 18 08:19:59 2017 -> Estimated minimum relations needed: 2.024e+07 Tue Apr 18 08:19:59 2017 -> cleaning up before a restart Tue Apr 18 08:19:59 2017 -> Running lattice siever ... Tue Apr 18 08:19:59 2017 -> entering sieving loop Tue Apr 18 08:19:59 2017 -> making sieve job for q = 4650000 in 4650000 .. 4675000 as file 35551_268.job.T0 Tue Apr 18 08:19:59 2017 -> making sieve job for q = 4675000 in 4675000 .. 4700000 as file 35551_268.job.T1 Tue Apr 18 08:19:59 2017 -> making sieve job for q = 4700000 in 4700000 .. 4725000 as file 35551_268.job.T2 Tue Apr 18 08:19:59 2017 -> making sieve job for q = 4725000 in 4725000 .. 4750000 as file 35551_268.job.T3 Tue Apr 18 08:19:59 2017 -> Lattice sieving algebraic q from 4650000 to 4750000. Tue Apr 18 08:19:59 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Tue Apr 18 08:19:59 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Tue Apr 18 08:19:59 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Tue Apr 18 08:19:59 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Tue Apr 18 08:47:53 2017 Found 289028 relations, 1.3% of the estimated minimum (23000000). Tue Apr 18 08:47:53 2017 LatSieveTime: 1673.81 Tue Apr 18 08:47:53 2017 -> making sieve job for q = 4750000 in 4750000 .. 4775000 as file 35551_268.job.T0 Tue Apr 18 08:47:53 2017 -> making sieve job for q = 4775000 in 4775000 .. 4800000 as file 35551_268.job.T1 Tue Apr 18 08:47:53 2017 -> making sieve job for q = 4800000 in 4800000 .. 4825000 as file 35551_268.job.T2 Tue Apr 18 08:47:53 2017 -> making sieve job for q = 4825000 in 4825000 .. 4850000 as file 35551_268.job.T3 Tue Apr 18 08:47:53 2017 -> Lattice sieving algebraic q from 4750000 to 4850000. Tue Apr 18 08:47:53 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Tue Apr 18 08:47:53 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Tue Apr 18 08:47:53 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Tue Apr 18 08:47:53 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Tue Apr 18 09:14:18 2017 Found 583064 relations, 2.5% of the estimated minimum (23000000). Tue Apr 18 09:14:18 2017 LatSieveTime: 1585 Tue Apr 18 09:14:18 2017 -> making sieve job for q = 4850000 in 4850000 .. 4875000 as file 35551_268.job.T0 Tue Apr 18 09:14:18 2017 -> making sieve job for q = 4875000 in 4875000 .. 4900000 as file 35551_268.job.T1 Tue Apr 18 09:14:18 2017 -> making sieve job for q = 4900000 in 4900000 .. 4925000 as file 35551_268.job.T2 Tue Apr 18 09:14:18 2017 -> making sieve job for q = 4925000 in 4925000 .. 4950000 as file 35551_268.job.T3 Tue Apr 18 09:14:18 2017 -> Lattice sieving algebraic q from 4850000 to 4950000. Tue Apr 18 09:14:18 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Tue Apr 18 09:14:18 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Tue Apr 18 09:14:18 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Tue Apr 18 09:14:18 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Tue Apr 18 09:41:27 2017 Found 877733 relations, 3.8% of the estimated minimum (23000000). Tue Apr 18 09:41:27 2017 LatSieveTime: 1628.93 Tue Apr 18 09:41:27 2017 -> making sieve job for q = 4950000 in 4950000 .. 4975000 as file 35551_268.job.T0 Tue Apr 18 09:41:27 2017 -> making sieve job for q = 4975000 in 4975000 .. 5000000 as file 35551_268.job.T1 Tue Apr 18 09:41:27 2017 -> making sieve job for q = 5000000 in 5000000 .. 5025000 as file 35551_268.job.T2 Tue Apr 18 09:41:27 2017 -> making sieve job for q = 5025000 in 5025000 .. 5050000 as file 35551_268.job.T3 Tue Apr 18 09:41:27 2017 -> Lattice sieving algebraic q from 4950000 to 5050000. Tue Apr 18 09:41:27 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Tue Apr 18 09:41:27 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Tue Apr 18 09:41:27 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Tue Apr 18 09:41:27 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Tue Apr 18 10:08:22 2017 Found 1170681 relations, 5.1% of the estimated minimum (23000000). Tue Apr 18 10:08:22 2017 LatSieveTime: 1615.06 Tue Apr 18 10:08:22 2017 -> making sieve job for q = 5050000 in 5050000 .. 5075000 as file 35551_268.job.T0 Tue Apr 18 10:08:22 2017 -> making sieve job for q = 5075000 in 5075000 .. 5100000 as file 35551_268.job.T1 Tue Apr 18 10:08:22 2017 -> making sieve job for q = 5100000 in 5100000 .. 5125000 as file 35551_268.job.T2 Tue Apr 18 10:08:22 2017 -> making sieve job for q = 5125000 in 5125000 .. 5150000 as file 35551_268.job.T3 Tue Apr 18 10:08:22 2017 -> Lattice sieving algebraic q from 5050000 to 5150000. Tue Apr 18 10:08:22 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Tue Apr 18 10:08:22 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Tue Apr 18 10:08:22 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Tue Apr 18 10:08:22 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Tue Apr 18 10:34:46 2017 Found 1463430 relations, 6.4% of the estimated minimum (23000000). Tue Apr 18 10:34:46 2017 LatSieveTime: 1583.88 Tue Apr 18 10:34:46 2017 -> making sieve job for q = 5150000 in 5150000 .. 5175000 as file 35551_268.job.T0 Tue Apr 18 10:34:46 2017 -> making sieve job for q = 5175000 in 5175000 .. 5200000 as file 35551_268.job.T1 Tue Apr 18 10:34:46 2017 -> making sieve job for q = 5200000 in 5200000 .. 5225000 as file 35551_268.job.T2 Tue Apr 18 10:34:46 2017 -> making sieve job for q = 5225000 in 5225000 .. 5250000 as file 35551_268.job.T3 Tue Apr 18 10:34:46 2017 -> Lattice sieving algebraic q from 5150000 to 5250000. Tue Apr 18 10:34:46 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Tue Apr 18 10:34:46 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Tue Apr 18 10:34:46 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Tue Apr 18 10:34:46 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Tue Apr 18 11:02:31 2017 Found 1764027 relations, 7.7% of the estimated minimum (23000000). Tue Apr 18 11:02:31 2017 LatSieveTime: 1665.23 Tue Apr 18 11:02:31 2017 -> making sieve job for q = 5250000 in 5250000 .. 5275000 as file 35551_268.job.T0 Tue Apr 18 11:02:31 2017 -> making sieve job for q = 5275000 in 5275000 .. 5300000 as file 35551_268.job.T1 Tue Apr 18 11:02:31 2017 -> making sieve job for q = 5300000 in 5300000 .. 5325000 as file 35551_268.job.T2 Tue Apr 18 11:02:31 2017 -> making sieve job for q = 5325000 in 5325000 .. 5350000 as file 35551_268.job.T3 Tue Apr 18 11:02:31 2017 -> Lattice sieving algebraic q from 5250000 to 5350000. Tue Apr 18 11:02:31 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Tue Apr 18 11:02:31 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Tue Apr 18 11:02:31 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Tue Apr 18 11:02:31 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Tue Apr 18 11:29:06 2017 Found 2056587 relations, 8.9% of the estimated minimum (23000000). Tue Apr 18 11:29:06 2017 LatSieveTime: 1595.28 Tue Apr 18 11:29:06 2017 -> making sieve job for q = 5350000 in 5350000 .. 5375000 as file 35551_268.job.T0 Tue Apr 18 11:29:06 2017 -> making sieve job for q = 5375000 in 5375000 .. 5400000 as file 35551_268.job.T1 Tue Apr 18 11:29:06 2017 -> making sieve job for q = 5400000 in 5400000 .. 5425000 as file 35551_268.job.T2 Tue Apr 18 11:29:06 2017 -> making sieve job for q = 5425000 in 5425000 .. 5450000 as file 35551_268.job.T3 Tue Apr 18 11:29:06 2017 -> Lattice sieving algebraic q from 5350000 to 5450000. Tue Apr 18 11:29:06 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Tue Apr 18 11:29:06 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Tue Apr 18 11:29:06 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Tue Apr 18 11:29:06 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Tue Apr 18 11:55:55 2017 Found 2348322 relations, 10.2% of the estimated minimum (23000000). Tue Apr 18 11:55:55 2017 LatSieveTime: 1608.61 Tue Apr 18 11:55:55 2017 -> making sieve job for q = 5450000 in 5450000 .. 5475000 as file 35551_268.job.T0 Tue Apr 18 11:55:55 2017 -> making sieve job for q = 5475000 in 5475000 .. 5500000 as file 35551_268.job.T1 Tue Apr 18 11:55:55 2017 -> making sieve job for q = 5500000 in 5500000 .. 5525000 as file 35551_268.job.T2 Tue Apr 18 11:55:55 2017 -> making sieve job for q = 5525000 in 5525000 .. 5550000 as file 35551_268.job.T3 Tue Apr 18 11:55:55 2017 -> Lattice sieving algebraic q from 5450000 to 5550000. Tue Apr 18 11:55:55 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Tue Apr 18 11:55:55 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Tue Apr 18 11:55:55 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Tue Apr 18 11:55:55 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Tue Apr 18 12:21:47 2017 Found 2632393 relations, 11.4% of the estimated minimum (23000000). Tue Apr 18 12:21:47 2017 LatSieveTime: 1551.57 Tue Apr 18 12:21:47 2017 -> making sieve job for q = 5550000 in 5550000 .. 5575000 as file 35551_268.job.T0 Tue Apr 18 12:21:47 2017 -> making sieve job for q = 5575000 in 5575000 .. 5600000 as file 35551_268.job.T1 Tue Apr 18 12:21:47 2017 -> making sieve job for q = 5600000 in 5600000 .. 5625000 as file 35551_268.job.T2 Tue Apr 18 12:21:47 2017 -> making sieve job for q = 5625000 in 5625000 .. 5650000 as file 35551_268.job.T3 Tue Apr 18 12:21:47 2017 -> Lattice sieving algebraic q from 5550000 to 5650000. Tue Apr 18 12:21:47 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Tue Apr 18 12:21:47 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Tue Apr 18 12:21:47 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Tue Apr 18 12:21:47 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Tue Apr 18 12:48:41 2017 Found 2923585 relations, 12.7% of the estimated minimum (23000000). Tue Apr 18 12:48:41 2017 LatSieveTime: 1614.91 Tue Apr 18 12:48:41 2017 -> making sieve job for q = 5650000 in 5650000 .. 5675000 as file 35551_268.job.T0 Tue Apr 18 12:48:41 2017 -> making sieve job for q = 5675000 in 5675000 .. 5700000 as file 35551_268.job.T1 Tue Apr 18 12:48:41 2017 -> making sieve job for q = 5700000 in 5700000 .. 5725000 as file 35551_268.job.T2 Tue Apr 18 12:48:41 2017 -> making sieve job for q = 5725000 in 5725000 .. 5750000 as file 35551_268.job.T3 Tue Apr 18 12:48:41 2017 -> Lattice sieving algebraic q from 5650000 to 5750000. Tue Apr 18 12:48:41 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Tue Apr 18 12:48:41 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Tue Apr 18 12:48:41 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Tue Apr 18 12:48:42 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Tue Apr 18 13:15:35 2017 Found 3217309 relations, 14.0% of the estimated minimum (23000000). Tue Apr 18 13:15:35 2017 LatSieveTime: 1613.22 Tue Apr 18 13:15:35 2017 -> making sieve job for q = 5750000 in 5750000 .. 5775000 as file 35551_268.job.T0 Tue Apr 18 13:15:35 2017 -> making sieve job for q = 5775000 in 5775000 .. 5800000 as file 35551_268.job.T1 Tue Apr 18 13:15:35 2017 -> making sieve job for q = 5800000 in 5800000 .. 5825000 as file 35551_268.job.T2 Tue Apr 18 13:15:35 2017 -> making sieve job for q = 5825000 in 5825000 .. 5850000 as file 35551_268.job.T3 Tue Apr 18 13:15:35 2017 -> Lattice sieving algebraic q from 5750000 to 5850000. Tue Apr 18 13:15:35 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Tue Apr 18 13:15:35 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Tue Apr 18 13:15:35 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Tue Apr 18 13:15:35 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Tue Apr 18 13:42:00 2017 Found 3502297 relations, 15.2% of the estimated minimum (23000000). Tue Apr 18 13:42:00 2017 LatSieveTime: 1585.38 Tue Apr 18 13:42:00 2017 -> making sieve job for q = 5850000 in 5850000 .. 5875000 as file 35551_268.job.T0 Tue Apr 18 13:42:00 2017 -> making sieve job for q = 5875000 in 5875000 .. 5900000 as file 35551_268.job.T1 Tue Apr 18 13:42:00 2017 -> making sieve job for q = 5900000 in 5900000 .. 5925000 as file 35551_268.job.T2 Tue Apr 18 13:42:00 2017 -> making sieve job for q = 5925000 in 5925000 .. 5950000 as file 35551_268.job.T3 Tue Apr 18 13:42:00 2017 -> Lattice sieving algebraic q from 5850000 to 5950000. Tue Apr 18 13:42:00 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Tue Apr 18 13:42:00 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Tue Apr 18 13:42:00 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Tue Apr 18 13:42:00 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Tue Apr 18 14:09:34 2017 Found 3796678 relations, 16.5% of the estimated minimum (23000000). Tue Apr 18 14:09:34 2017 LatSieveTime: 1653.46 Tue Apr 18 14:09:34 2017 -> making sieve job for q = 5950000 in 5950000 .. 5975000 as file 35551_268.job.T0 Tue Apr 18 14:09:34 2017 -> making sieve job for q = 5975000 in 5975000 .. 6000000 as file 35551_268.job.T1 Tue Apr 18 14:09:34 2017 -> making sieve job for q = 6000000 in 6000000 .. 6025000 as file 35551_268.job.T2 Tue Apr 18 14:09:34 2017 -> making sieve job for q = 6025000 in 6025000 .. 6050000 as file 35551_268.job.T3 Tue Apr 18 14:09:34 2017 -> Lattice sieving algebraic q from 5950000 to 6050000. Tue Apr 18 14:09:34 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Tue Apr 18 14:09:34 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Tue Apr 18 14:09:34 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Tue Apr 18 14:09:34 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Tue Apr 18 14:36:29 2017 Found 4086827 relations, 17.8% of the estimated minimum (23000000). Tue Apr 18 14:36:29 2017 LatSieveTime: 1615.48 Tue Apr 18 14:36:29 2017 -> making sieve job for q = 6050000 in 6050000 .. 6075000 as file 35551_268.job.T0 Tue Apr 18 14:36:29 2017 -> making sieve job for q = 6075000 in 6075000 .. 6100000 as file 35551_268.job.T1 Tue Apr 18 14:36:29 2017 -> making sieve job for q = 6100000 in 6100000 .. 6125000 as file 35551_268.job.T2 Tue Apr 18 14:36:29 2017 -> making sieve job for q = 6125000 in 6125000 .. 6150000 as file 35551_268.job.T3 Tue Apr 18 14:36:29 2017 -> Lattice sieving algebraic q from 6050000 to 6150000. Tue Apr 18 14:36:29 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Tue Apr 18 14:36:29 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Tue Apr 18 14:36:29 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Tue Apr 18 14:36:29 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Tue Apr 18 15:03:13 2017 Found 4377872 relations, 19.0% of the estimated minimum (23000000). Tue Apr 18 15:03:13 2017 LatSieveTime: 1604.13 Tue Apr 18 15:03:13 2017 -> making sieve job for q = 6150000 in 6150000 .. 6175000 as file 35551_268.job.T0 Tue Apr 18 15:03:13 2017 -> making sieve job for q = 6175000 in 6175000 .. 6200000 as file 35551_268.job.T1 Tue Apr 18 15:03:13 2017 -> making sieve job for q = 6200000 in 6200000 .. 6225000 as file 35551_268.job.T2 Tue Apr 18 15:03:13 2017 -> making sieve job for q = 6225000 in 6225000 .. 6250000 as file 35551_268.job.T3 Tue Apr 18 15:03:13 2017 -> Lattice sieving algebraic q from 6150000 to 6250000. Tue Apr 18 15:03:13 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Tue Apr 18 15:03:13 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Tue Apr 18 15:03:13 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Tue Apr 18 15:03:13 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Tue Apr 18 15:29:46 2017 Found 4664669 relations, 20.3% of the estimated minimum (23000000). Tue Apr 18 15:29:46 2017 LatSieveTime: 1592.85 Tue Apr 18 15:29:46 2017 -> making sieve job for q = 6250000 in 6250000 .. 6275000 as file 35551_268.job.T0 Tue Apr 18 15:29:46 2017 -> making sieve job for q = 6275000 in 6275000 .. 6300000 as file 35551_268.job.T1 Tue Apr 18 15:29:46 2017 -> making sieve job for q = 6300000 in 6300000 .. 6325000 as file 35551_268.job.T2 Tue Apr 18 15:29:46 2017 -> making sieve job for q = 6325000 in 6325000 .. 6350000 as file 35551_268.job.T3 Tue Apr 18 15:29:46 2017 -> Lattice sieving algebraic q from 6250000 to 6350000. Tue Apr 18 15:29:46 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Tue Apr 18 15:29:46 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Tue Apr 18 15:29:46 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Tue Apr 18 15:29:46 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Tue Apr 18 15:56:27 2017 Found 4954950 relations, 21.5% of the estimated minimum (23000000). Tue Apr 18 15:56:27 2017 LatSieveTime: 1600.45 Tue Apr 18 15:56:27 2017 -> making sieve job for q = 6350000 in 6350000 .. 6375000 as file 35551_268.job.T0 Tue Apr 18 15:56:27 2017 -> making sieve job for q = 6375000 in 6375000 .. 6400000 as file 35551_268.job.T1 Tue Apr 18 15:56:27 2017 -> making sieve job for q = 6400000 in 6400000 .. 6425000 as file 35551_268.job.T2 Tue Apr 18 15:56:27 2017 -> making sieve job for q = 6425000 in 6425000 .. 6450000 as file 35551_268.job.T3 Tue Apr 18 15:56:27 2017 -> Lattice sieving algebraic q from 6350000 to 6450000. Tue Apr 18 15:56:27 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Tue Apr 18 15:56:27 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Tue Apr 18 15:56:27 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Tue Apr 18 15:56:27 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Tue Apr 18 16:24:09 2017 Found 5246833 relations, 22.8% of the estimated minimum (23000000). Tue Apr 18 16:24:09 2017 LatSieveTime: 1662.87 Tue Apr 18 16:24:09 2017 -> making sieve job for q = 6450000 in 6450000 .. 6475000 as file 35551_268.job.T0 Tue Apr 18 16:24:09 2017 -> making sieve job for q = 6475000 in 6475000 .. 6500000 as file 35551_268.job.T1 Tue Apr 18 16:24:09 2017 -> making sieve job for q = 6500000 in 6500000 .. 6525000 as file 35551_268.job.T2 Tue Apr 18 16:24:09 2017 -> making sieve job for q = 6525000 in 6525000 .. 6550000 as file 35551_268.job.T3 Tue Apr 18 16:24:09 2017 -> Lattice sieving algebraic q from 6450000 to 6550000. Tue Apr 18 16:24:09 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Tue Apr 18 16:24:09 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Tue Apr 18 16:24:09 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Tue Apr 18 16:24:09 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Tue Apr 18 16:51:22 2017 Found 5539478 relations, 24.1% of the estimated minimum (23000000). Tue Apr 18 16:51:22 2017 LatSieveTime: 1632.73 Tue Apr 18 16:51:22 2017 -> making sieve job for q = 6550000 in 6550000 .. 6575000 as file 35551_268.job.T0 Tue Apr 18 16:51:22 2017 -> making sieve job for q = 6575000 in 6575000 .. 6600000 as file 35551_268.job.T1 Tue Apr 18 16:51:22 2017 -> making sieve job for q = 6600000 in 6600000 .. 6625000 as file 35551_268.job.T2 Tue Apr 18 16:51:22 2017 -> making sieve job for q = 6625000 in 6625000 .. 6650000 as file 35551_268.job.T3 Tue Apr 18 16:51:22 2017 -> Lattice sieving algebraic q from 6550000 to 6650000. Tue Apr 18 16:51:22 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Tue Apr 18 16:51:22 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Tue Apr 18 16:51:22 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Tue Apr 18 16:51:22 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Tue Apr 18 17:18:40 2017 Found 5829996 relations, 25.3% of the estimated minimum (23000000). Tue Apr 18 17:18:40 2017 LatSieveTime: 1637.76 Tue Apr 18 17:18:40 2017 -> making sieve job for q = 6650000 in 6650000 .. 6675000 as file 35551_268.job.T0 Tue Apr 18 17:18:40 2017 -> making sieve job for q = 6675000 in 6675000 .. 6700000 as file 35551_268.job.T1 Tue Apr 18 17:18:40 2017 -> making sieve job for q = 6700000 in 6700000 .. 6725000 as file 35551_268.job.T2 Tue Apr 18 17:18:40 2017 -> making sieve job for q = 6725000 in 6725000 .. 6750000 as file 35551_268.job.T3 Tue Apr 18 17:18:40 2017 -> Lattice sieving algebraic q from 6650000 to 6750000. Tue Apr 18 17:18:40 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Tue Apr 18 17:18:40 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Tue Apr 18 17:18:40 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Tue Apr 18 17:18:40 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Tue Apr 18 17:45:49 2017 Found 6119276 relations, 26.6% of the estimated minimum (23000000). Tue Apr 18 17:45:49 2017 LatSieveTime: 1628.71 Tue Apr 18 17:45:49 2017 -> making sieve job for q = 6750000 in 6750000 .. 6775000 as file 35551_268.job.T0 Tue Apr 18 17:45:49 2017 -> making sieve job for q = 6775000 in 6775000 .. 6800000 as file 35551_268.job.T1 Tue Apr 18 17:45:49 2017 -> making sieve job for q = 6800000 in 6800000 .. 6825000 as file 35551_268.job.T2 Tue Apr 18 17:45:49 2017 -> making sieve job for q = 6825000 in 6825000 .. 6850000 as file 35551_268.job.T3 Tue Apr 18 17:45:49 2017 -> Lattice sieving algebraic q from 6750000 to 6850000. Tue Apr 18 17:45:49 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Tue Apr 18 17:45:49 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Tue Apr 18 17:45:49 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Tue Apr 18 17:45:49 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Tue Apr 18 18:12:54 2017 Found 6403208 relations, 27.8% of the estimated minimum (23000000). Tue Apr 18 18:12:54 2017 LatSieveTime: 1625.38 Tue Apr 18 18:12:54 2017 -> making sieve job for q = 6850000 in 6850000 .. 6875000 as file 35551_268.job.T0 Tue Apr 18 18:12:54 2017 -> making sieve job for q = 6875000 in 6875000 .. 6900000 as file 35551_268.job.T1 Tue Apr 18 18:12:54 2017 -> making sieve job for q = 6900000 in 6900000 .. 6925000 as file 35551_268.job.T2 Tue Apr 18 18:12:54 2017 -> making sieve job for q = 6925000 in 6925000 .. 6950000 as file 35551_268.job.T3 Tue Apr 18 18:12:54 2017 -> Lattice sieving algebraic q from 6850000 to 6950000. Tue Apr 18 18:12:54 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Tue Apr 18 18:12:54 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Tue Apr 18 18:12:54 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Tue Apr 18 18:12:54 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Tue Apr 18 18:40:04 2017 Found 6692602 relations, 29.1% of the estimated minimum (23000000). Tue Apr 18 18:40:04 2017 LatSieveTime: 1630.11 Tue Apr 18 18:40:04 2017 -> making sieve job for q = 6950000 in 6950000 .. 6975000 as file 35551_268.job.T0 Tue Apr 18 18:40:04 2017 -> making sieve job for q = 6975000 in 6975000 .. 7000000 as file 35551_268.job.T1 Tue Apr 18 18:40:04 2017 -> making sieve job for q = 7000000 in 7000000 .. 7025000 as file 35551_268.job.T2 Tue Apr 18 18:40:04 2017 -> making sieve job for q = 7025000 in 7025000 .. 7050000 as file 35551_268.job.T3 Tue Apr 18 18:40:04 2017 -> Lattice sieving algebraic q from 6950000 to 7050000. Tue Apr 18 18:40:04 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Tue Apr 18 18:40:04 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Tue Apr 18 18:40:04 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Tue Apr 18 18:40:04 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Tue Apr 18 19:08:21 2017 Found 6984122 relations, 30.4% of the estimated minimum (23000000). Tue Apr 18 19:08:21 2017 LatSieveTime: 1697.29 Tue Apr 18 19:08:21 2017 -> making sieve job for q = 7050000 in 7050000 .. 7075000 as file 35551_268.job.T0 Tue Apr 18 19:08:21 2017 -> making sieve job for q = 7075000 in 7075000 .. 7100000 as file 35551_268.job.T1 Tue Apr 18 19:08:21 2017 -> making sieve job for q = 7100000 in 7100000 .. 7125000 as file 35551_268.job.T2 Tue Apr 18 19:08:21 2017 -> making sieve job for q = 7125000 in 7125000 .. 7150000 as file 35551_268.job.T3 Tue Apr 18 19:08:21 2017 -> Lattice sieving algebraic q from 7050000 to 7150000. Tue Apr 18 19:08:21 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Tue Apr 18 19:08:21 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Tue Apr 18 19:08:21 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Tue Apr 18 19:08:21 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Tue Apr 18 19:36:15 2017 Found 7274364 relations, 31.6% of the estimated minimum (23000000). Tue Apr 18 19:36:15 2017 LatSieveTime: 1673.43 Tue Apr 18 19:36:15 2017 -> making sieve job for q = 7150000 in 7150000 .. 7175000 as file 35551_268.job.T0 Tue Apr 18 19:36:15 2017 -> making sieve job for q = 7175000 in 7175000 .. 7200000 as file 35551_268.job.T1 Tue Apr 18 19:36:15 2017 -> making sieve job for q = 7200000 in 7200000 .. 7225000 as file 35551_268.job.T2 Tue Apr 18 19:36:15 2017 -> making sieve job for q = 7225000 in 7225000 .. 7250000 as file 35551_268.job.T3 Tue Apr 18 19:36:15 2017 -> Lattice sieving algebraic q from 7150000 to 7250000. Tue Apr 18 19:36:15 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Tue Apr 18 19:36:15 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Tue Apr 18 19:36:15 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Tue Apr 18 19:36:15 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Tue Apr 18 20:04:01 2017 Found 7567917 relations, 32.9% of the estimated minimum (23000000). Tue Apr 18 20:04:01 2017 LatSieveTime: 1665.64 Tue Apr 18 20:04:01 2017 -> making sieve job for q = 7250000 in 7250000 .. 7275000 as file 35551_268.job.T0 Tue Apr 18 20:04:01 2017 -> making sieve job for q = 7275000 in 7275000 .. 7300000 as file 35551_268.job.T1 Tue Apr 18 20:04:01 2017 -> making sieve job for q = 7300000 in 7300000 .. 7325000 as file 35551_268.job.T2 Tue Apr 18 20:04:01 2017 -> making sieve job for q = 7325000 in 7325000 .. 7350000 as file 35551_268.job.T3 Tue Apr 18 20:04:01 2017 -> Lattice sieving algebraic q from 7250000 to 7350000. Tue Apr 18 20:04:01 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Tue Apr 18 20:04:01 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Tue Apr 18 20:04:01 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Tue Apr 18 20:04:01 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Tue Apr 18 20:31:02 2017 Found 7849496 relations, 34.1% of the estimated minimum (23000000). Tue Apr 18 20:31:02 2017 LatSieveTime: 1621.67 Tue Apr 18 20:31:02 2017 -> making sieve job for q = 7350000 in 7350000 .. 7375000 as file 35551_268.job.T0 Tue Apr 18 20:31:02 2017 -> making sieve job for q = 7375000 in 7375000 .. 7400000 as file 35551_268.job.T1 Tue Apr 18 20:31:02 2017 -> making sieve job for q = 7400000 in 7400000 .. 7425000 as file 35551_268.job.T2 Tue Apr 18 20:31:02 2017 -> making sieve job for q = 7425000 in 7425000 .. 7450000 as file 35551_268.job.T3 Tue Apr 18 20:31:02 2017 -> Lattice sieving algebraic q from 7350000 to 7450000. Tue Apr 18 20:31:02 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Tue Apr 18 20:31:02 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Tue Apr 18 20:31:02 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Tue Apr 18 20:31:02 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Tue Apr 18 20:59:10 2017 Found 8139515 relations, 35.4% of the estimated minimum (23000000). Tue Apr 18 20:59:10 2017 LatSieveTime: 1688.16 Tue Apr 18 20:59:10 2017 -> making sieve job for q = 7450000 in 7450000 .. 7475000 as file 35551_268.job.T0 Tue Apr 18 20:59:10 2017 -> making sieve job for q = 7475000 in 7475000 .. 7500000 as file 35551_268.job.T1 Tue Apr 18 20:59:10 2017 -> making sieve job for q = 7500000 in 7500000 .. 7525000 as file 35551_268.job.T2 Tue Apr 18 20:59:10 2017 -> making sieve job for q = 7525000 in 7525000 .. 7550000 as file 35551_268.job.T3 Tue Apr 18 20:59:10 2017 -> Lattice sieving algebraic q from 7450000 to 7550000. Tue Apr 18 20:59:10 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Tue Apr 18 20:59:10 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Tue Apr 18 20:59:10 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Tue Apr 18 20:59:10 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Tue Apr 18 21:26:45 2017 Found 8430110 relations, 36.7% of the estimated minimum (23000000). Tue Apr 18 21:26:45 2017 LatSieveTime: 1654.31 Tue Apr 18 21:26:45 2017 -> making sieve job for q = 7550000 in 7550000 .. 7575000 as file 35551_268.job.T0 Tue Apr 18 21:26:45 2017 -> making sieve job for q = 7575000 in 7575000 .. 7600000 as file 35551_268.job.T1 Tue Apr 18 21:26:45 2017 -> making sieve job for q = 7600000 in 7600000 .. 7625000 as file 35551_268.job.T2 Tue Apr 18 21:26:45 2017 -> making sieve job for q = 7625000 in 7625000 .. 7650000 as file 35551_268.job.T3 Tue Apr 18 21:26:45 2017 -> Lattice sieving algebraic q from 7550000 to 7650000. Tue Apr 18 21:26:45 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Tue Apr 18 21:26:45 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Tue Apr 18 21:26:45 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Tue Apr 18 21:26:45 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Tue Apr 18 21:54:15 2017 Found 8718611 relations, 37.9% of the estimated minimum (23000000). Tue Apr 18 21:54:15 2017 LatSieveTime: 1650.42 Tue Apr 18 21:54:15 2017 -> making sieve job for q = 7650000 in 7650000 .. 7675000 as file 35551_268.job.T0 Tue Apr 18 21:54:15 2017 -> making sieve job for q = 7675000 in 7675000 .. 7700000 as file 35551_268.job.T1 Tue Apr 18 21:54:15 2017 -> making sieve job for q = 7700000 in 7700000 .. 7725000 as file 35551_268.job.T2 Tue Apr 18 21:54:15 2017 -> making sieve job for q = 7725000 in 7725000 .. 7750000 as file 35551_268.job.T3 Tue Apr 18 21:54:15 2017 -> Lattice sieving algebraic q from 7650000 to 7750000. Tue Apr 18 21:54:15 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Tue Apr 18 21:54:15 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Tue Apr 18 21:54:15 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Tue Apr 18 21:54:15 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Tue Apr 18 22:21:41 2017 Found 9007004 relations, 39.2% of the estimated minimum (23000000). Tue Apr 18 22:21:41 2017 LatSieveTime: 1645.5 Tue Apr 18 22:21:41 2017 -> making sieve job for q = 7750000 in 7750000 .. 7775000 as file 35551_268.job.T0 Tue Apr 18 22:21:41 2017 -> making sieve job for q = 7775000 in 7775000 .. 7800000 as file 35551_268.job.T1 Tue Apr 18 22:21:41 2017 -> making sieve job for q = 7800000 in 7800000 .. 7825000 as file 35551_268.job.T2 Tue Apr 18 22:21:41 2017 -> making sieve job for q = 7825000 in 7825000 .. 7850000 as file 35551_268.job.T3 Tue Apr 18 22:21:41 2017 -> Lattice sieving algebraic q from 7750000 to 7850000. Tue Apr 18 22:21:41 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Tue Apr 18 22:21:41 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Tue Apr 18 22:21:41 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Tue Apr 18 22:21:41 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Tue Apr 18 22:49:18 2017 Found 9296055 relations, 40.4% of the estimated minimum (23000000). Tue Apr 18 22:49:18 2017 LatSieveTime: 1657.64 Tue Apr 18 22:49:18 2017 -> making sieve job for q = 7850000 in 7850000 .. 7875000 as file 35551_268.job.T0 Tue Apr 18 22:49:18 2017 -> making sieve job for q = 7875000 in 7875000 .. 7900000 as file 35551_268.job.T1 Tue Apr 18 22:49:18 2017 -> making sieve job for q = 7900000 in 7900000 .. 7925000 as file 35551_268.job.T2 Tue Apr 18 22:49:18 2017 -> making sieve job for q = 7925000 in 7925000 .. 7950000 as file 35551_268.job.T3 Tue Apr 18 22:49:18 2017 -> Lattice sieving algebraic q from 7850000 to 7950000. Tue Apr 18 22:49:18 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Tue Apr 18 22:49:18 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Tue Apr 18 22:49:18 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Tue Apr 18 22:49:18 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Tue Apr 18 23:17:48 2017 Found 9589131 relations, 41.7% of the estimated minimum (23000000). Tue Apr 18 23:17:48 2017 LatSieveTime: 1709.93 Tue Apr 18 23:17:48 2017 -> making sieve job for q = 7950000 in 7950000 .. 7975000 as file 35551_268.job.T0 Tue Apr 18 23:17:48 2017 -> making sieve job for q = 7975000 in 7975000 .. 8000000 as file 35551_268.job.T1 Tue Apr 18 23:17:48 2017 -> making sieve job for q = 8000000 in 8000000 .. 8025000 as file 35551_268.job.T2 Tue Apr 18 23:17:48 2017 -> making sieve job for q = 8025000 in 8025000 .. 8050000 as file 35551_268.job.T3 Tue Apr 18 23:17:48 2017 -> Lattice sieving algebraic q from 7950000 to 8050000. Tue Apr 18 23:17:48 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Tue Apr 18 23:17:48 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Tue Apr 18 23:17:48 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Tue Apr 18 23:17:48 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Tue Apr 18 23:45:46 2017 Found 9877367 relations, 42.9% of the estimated minimum (23000000). Tue Apr 18 23:45:46 2017 LatSieveTime: 1677.32 Tue Apr 18 23:45:46 2017 -> making sieve job for q = 8050000 in 8050000 .. 8075000 as file 35551_268.job.T0 Tue Apr 18 23:45:46 2017 -> making sieve job for q = 8075000 in 8075000 .. 8100000 as file 35551_268.job.T1 Tue Apr 18 23:45:46 2017 -> making sieve job for q = 8100000 in 8100000 .. 8125000 as file 35551_268.job.T2 Tue Apr 18 23:45:46 2017 -> making sieve job for q = 8125000 in 8125000 .. 8150000 as file 35551_268.job.T3 Tue Apr 18 23:45:46 2017 -> Lattice sieving algebraic q from 8050000 to 8150000. Tue Apr 18 23:45:46 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Tue Apr 18 23:45:46 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Tue Apr 18 23:45:46 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Tue Apr 18 23:45:46 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Wed Apr 19 00:12:48 2017 Found 10157776 relations, 44.2% of the estimated minimum (23000000). Wed Apr 19 00:12:48 2017 LatSieveTime: 1622.14 Wed Apr 19 00:12:48 2017 -> making sieve job for q = 8150000 in 8150000 .. 8175000 as file 35551_268.job.T0 Wed Apr 19 00:12:48 2017 -> making sieve job for q = 8175000 in 8175000 .. 8200000 as file 35551_268.job.T1 Wed Apr 19 00:12:48 2017 -> making sieve job for q = 8200000 in 8200000 .. 8225000 as file 35551_268.job.T2 Wed Apr 19 00:12:48 2017 -> making sieve job for q = 8225000 in 8225000 .. 8250000 as file 35551_268.job.T3 Wed Apr 19 00:12:48 2017 -> Lattice sieving algebraic q from 8150000 to 8250000. Wed Apr 19 00:12:48 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Wed Apr 19 00:12:48 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Wed Apr 19 00:12:48 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Wed Apr 19 00:12:48 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Wed Apr 19 00:40:42 2017 Found 10445127 relations, 45.4% of the estimated minimum (23000000). Wed Apr 19 00:40:42 2017 LatSieveTime: 1674.4 Wed Apr 19 00:40:42 2017 -> making sieve job for q = 8250000 in 8250000 .. 8275000 as file 35551_268.job.T0 Wed Apr 19 00:40:42 2017 -> making sieve job for q = 8275000 in 8275000 .. 8300000 as file 35551_268.job.T1 Wed Apr 19 00:40:42 2017 -> making sieve job for q = 8300000 in 8300000 .. 8325000 as file 35551_268.job.T2 Wed Apr 19 00:40:42 2017 -> making sieve job for q = 8325000 in 8325000 .. 8350000 as file 35551_268.job.T3 Wed Apr 19 00:40:42 2017 -> Lattice sieving algebraic q from 8250000 to 8350000. Wed Apr 19 00:40:42 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Wed Apr 19 00:40:42 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Wed Apr 19 00:40:42 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Wed Apr 19 00:40:42 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Wed Apr 19 01:08:13 2017 Found 10725356 relations, 46.6% of the estimated minimum (23000000). Wed Apr 19 01:08:13 2017 LatSieveTime: 1650.51 Wed Apr 19 01:08:13 2017 -> making sieve job for q = 8350000 in 8350000 .. 8375000 as file 35551_268.job.T0 Wed Apr 19 01:08:13 2017 -> making sieve job for q = 8375000 in 8375000 .. 8400000 as file 35551_268.job.T1 Wed Apr 19 01:08:13 2017 -> making sieve job for q = 8400000 in 8400000 .. 8425000 as file 35551_268.job.T2 Wed Apr 19 01:08:13 2017 -> making sieve job for q = 8425000 in 8425000 .. 8450000 as file 35551_268.job.T3 Wed Apr 19 01:08:13 2017 -> Lattice sieving algebraic q from 8350000 to 8450000. Wed Apr 19 01:08:13 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Wed Apr 19 01:08:13 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Wed Apr 19 01:08:13 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Wed Apr 19 01:08:13 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Wed Apr 19 01:35:24 2017 Found 11002289 relations, 47.8% of the estimated minimum (23000000). Wed Apr 19 01:35:24 2017 LatSieveTime: 1631.49 Wed Apr 19 01:35:24 2017 -> making sieve job for q = 8450000 in 8450000 .. 8475000 as file 35551_268.job.T0 Wed Apr 19 01:35:24 2017 -> making sieve job for q = 8475000 in 8475000 .. 8500000 as file 35551_268.job.T1 Wed Apr 19 01:35:24 2017 -> making sieve job for q = 8500000 in 8500000 .. 8525000 as file 35551_268.job.T2 Wed Apr 19 01:35:24 2017 -> making sieve job for q = 8525000 in 8525000 .. 8550000 as file 35551_268.job.T3 Wed Apr 19 01:35:24 2017 -> Lattice sieving algebraic q from 8450000 to 8550000. Wed Apr 19 01:35:24 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Wed Apr 19 01:35:24 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Wed Apr 19 01:35:24 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Wed Apr 19 01:35:24 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Wed Apr 19 02:03:35 2017 Found 11292793 relations, 49.1% of the estimated minimum (23000000). Wed Apr 19 02:03:35 2017 LatSieveTime: 1690.75 Wed Apr 19 02:03:35 2017 -> making sieve job for q = 8550000 in 8550000 .. 8575000 as file 35551_268.job.T0 Wed Apr 19 02:03:35 2017 -> making sieve job for q = 8575000 in 8575000 .. 8600000 as file 35551_268.job.T1 Wed Apr 19 02:03:35 2017 -> making sieve job for q = 8600000 in 8600000 .. 8625000 as file 35551_268.job.T2 Wed Apr 19 02:03:35 2017 -> making sieve job for q = 8625000 in 8625000 .. 8650000 as file 35551_268.job.T3 Wed Apr 19 02:03:35 2017 -> Lattice sieving algebraic q from 8550000 to 8650000. Wed Apr 19 02:03:35 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Wed Apr 19 02:03:35 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Wed Apr 19 02:03:35 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Wed Apr 19 02:03:35 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Wed Apr 19 02:32:11 2017 Found 11581644 relations, 50.4% of the estimated minimum (23000000). Wed Apr 19 02:32:11 2017 LatSieveTime: 1716.21 Wed Apr 19 02:32:11 2017 -> making sieve job for q = 8650000 in 8650000 .. 8675000 as file 35551_268.job.T0 Wed Apr 19 02:32:11 2017 -> making sieve job for q = 8675000 in 8675000 .. 8700000 as file 35551_268.job.T1 Wed Apr 19 02:32:11 2017 -> making sieve job for q = 8700000 in 8700000 .. 8725000 as file 35551_268.job.T2 Wed Apr 19 02:32:11 2017 -> making sieve job for q = 8725000 in 8725000 .. 8750000 as file 35551_268.job.T3 Wed Apr 19 02:32:11 2017 -> Lattice sieving algebraic q from 8650000 to 8750000. Wed Apr 19 02:32:11 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Wed Apr 19 02:32:11 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Wed Apr 19 02:32:11 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Wed Apr 19 02:32:11 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Wed Apr 19 03:00:13 2017 Found 11866365 relations, 51.6% of the estimated minimum (23000000). Wed Apr 19 03:00:13 2017 LatSieveTime: 1682.22 Wed Apr 19 03:00:13 2017 -> making sieve job for q = 8750000 in 8750000 .. 8775000 as file 35551_268.job.T0 Wed Apr 19 03:00:13 2017 -> making sieve job for q = 8775000 in 8775000 .. 8800000 as file 35551_268.job.T1 Wed Apr 19 03:00:13 2017 -> making sieve job for q = 8800000 in 8800000 .. 8825000 as file 35551_268.job.T2 Wed Apr 19 03:00:13 2017 -> making sieve job for q = 8825000 in 8825000 .. 8850000 as file 35551_268.job.T3 Wed Apr 19 03:00:13 2017 -> Lattice sieving algebraic q from 8750000 to 8850000. Wed Apr 19 03:00:13 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Wed Apr 19 03:00:13 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Wed Apr 19 03:00:13 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Wed Apr 19 03:00:13 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Wed Apr 19 03:28:59 2017 Found 12158441 relations, 52.9% of the estimated minimum (23000000). Wed Apr 19 03:28:59 2017 LatSieveTime: 1725.42 Wed Apr 19 03:28:59 2017 -> making sieve job for q = 8850000 in 8850000 .. 8875000 as file 35551_268.job.T0 Wed Apr 19 03:28:59 2017 -> making sieve job for q = 8875000 in 8875000 .. 8900000 as file 35551_268.job.T1 Wed Apr 19 03:28:59 2017 -> making sieve job for q = 8900000 in 8900000 .. 8925000 as file 35551_268.job.T2 Wed Apr 19 03:28:59 2017 -> making sieve job for q = 8925000 in 8925000 .. 8950000 as file 35551_268.job.T3 Wed Apr 19 03:28:59 2017 -> Lattice sieving algebraic q from 8850000 to 8950000. Wed Apr 19 03:28:59 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Wed Apr 19 03:28:59 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Wed Apr 19 03:28:59 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Wed Apr 19 03:28:59 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Wed Apr 19 03:56:27 2017 Found 12437339 relations, 54.1% of the estimated minimum (23000000). Wed Apr 19 03:56:27 2017 LatSieveTime: 1648.38 Wed Apr 19 03:56:27 2017 -> making sieve job for q = 8950000 in 8950000 .. 8975000 as file 35551_268.job.T0 Wed Apr 19 03:56:27 2017 -> making sieve job for q = 8975000 in 8975000 .. 9000000 as file 35551_268.job.T1 Wed Apr 19 03:56:27 2017 -> making sieve job for q = 9000000 in 9000000 .. 9025000 as file 35551_268.job.T2 Wed Apr 19 03:56:27 2017 -> making sieve job for q = 9025000 in 9025000 .. 9050000 as file 35551_268.job.T3 Wed Apr 19 03:56:27 2017 -> Lattice sieving algebraic q from 8950000 to 9050000. Wed Apr 19 03:56:27 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Wed Apr 19 03:56:27 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Wed Apr 19 03:56:27 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Wed Apr 19 03:56:27 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Wed Apr 19 04:25:05 2017 Found 12724399 relations, 55.3% of the estimated minimum (23000000). Wed Apr 19 04:25:05 2017 LatSieveTime: 1717.9 Wed Apr 19 04:25:05 2017 -> making sieve job for q = 9050000 in 9050000 .. 9075000 as file 35551_268.job.T0 Wed Apr 19 04:25:05 2017 -> making sieve job for q = 9075000 in 9075000 .. 9100000 as file 35551_268.job.T1 Wed Apr 19 04:25:05 2017 -> making sieve job for q = 9100000 in 9100000 .. 9125000 as file 35551_268.job.T2 Wed Apr 19 04:25:05 2017 -> making sieve job for q = 9125000 in 9125000 .. 9150000 as file 35551_268.job.T3 Wed Apr 19 04:25:05 2017 -> Lattice sieving algebraic q from 9050000 to 9150000. Wed Apr 19 04:25:05 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Wed Apr 19 04:25:05 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Wed Apr 19 04:25:05 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Wed Apr 19 04:25:05 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Wed Apr 19 04:53:42 2017 Found 13010359 relations, 56.6% of the estimated minimum (23000000). Wed Apr 19 04:53:42 2017 LatSieveTime: 1716.97 Wed Apr 19 04:53:42 2017 -> making sieve job for q = 9150000 in 9150000 .. 9175000 as file 35551_268.job.T0 Wed Apr 19 04:53:42 2017 -> making sieve job for q = 9175000 in 9175000 .. 9200000 as file 35551_268.job.T1 Wed Apr 19 04:53:42 2017 -> making sieve job for q = 9200000 in 9200000 .. 9225000 as file 35551_268.job.T2 Wed Apr 19 04:53:42 2017 -> making sieve job for q = 9225000 in 9225000 .. 9250000 as file 35551_268.job.T3 Wed Apr 19 04:53:42 2017 -> Lattice sieving algebraic q from 9150000 to 9250000. Wed Apr 19 04:53:42 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Wed Apr 19 04:53:42 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Wed Apr 19 04:53:42 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Wed Apr 19 04:53:42 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Wed Apr 19 05:22:00 2017 Found 13294411 relations, 57.8% of the estimated minimum (23000000). Wed Apr 19 05:22:00 2017 LatSieveTime: 1698 Wed Apr 19 05:22:00 2017 -> making sieve job for q = 9250000 in 9250000 .. 9275000 as file 35551_268.job.T0 Wed Apr 19 05:22:00 2017 -> making sieve job for q = 9275000 in 9275000 .. 9300000 as file 35551_268.job.T1 Wed Apr 19 05:22:00 2017 -> making sieve job for q = 9300000 in 9300000 .. 9325000 as file 35551_268.job.T2 Wed Apr 19 05:22:00 2017 -> making sieve job for q = 9325000 in 9325000 .. 9350000 as file 35551_268.job.T3 Wed Apr 19 05:22:00 2017 -> Lattice sieving algebraic q from 9250000 to 9350000. Wed Apr 19 05:22:00 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Wed Apr 19 05:22:00 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Wed Apr 19 05:22:00 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Wed Apr 19 05:22:00 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Wed Apr 19 05:50:04 2017 Found 13573686 relations, 59.0% of the estimated minimum (23000000). Wed Apr 19 05:50:04 2017 LatSieveTime: 1684.29 Wed Apr 19 05:50:04 2017 -> making sieve job for q = 9350000 in 9350000 .. 9375000 as file 35551_268.job.T0 Wed Apr 19 05:50:04 2017 -> making sieve job for q = 9375000 in 9375000 .. 9400000 as file 35551_268.job.T1 Wed Apr 19 05:50:04 2017 -> making sieve job for q = 9400000 in 9400000 .. 9425000 as file 35551_268.job.T2 Wed Apr 19 05:50:04 2017 -> making sieve job for q = 9425000 in 9425000 .. 9450000 as file 35551_268.job.T3 Wed Apr 19 05:50:04 2017 -> Lattice sieving algebraic q from 9350000 to 9450000. Wed Apr 19 05:50:04 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Wed Apr 19 05:50:04 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Wed Apr 19 05:50:04 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Wed Apr 19 05:50:04 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Wed Apr 19 06:18:28 2017 Found 13857785 relations, 60.3% of the estimated minimum (23000000). Wed Apr 19 06:18:28 2017 LatSieveTime: 1703.34 Wed Apr 19 06:18:28 2017 -> making sieve job for q = 9450000 in 9450000 .. 9475000 as file 35551_268.job.T0 Wed Apr 19 06:18:28 2017 -> making sieve job for q = 9475000 in 9475000 .. 9500000 as file 35551_268.job.T1 Wed Apr 19 06:18:28 2017 -> making sieve job for q = 9500000 in 9500000 .. 9525000 as file 35551_268.job.T2 Wed Apr 19 06:18:28 2017 -> making sieve job for q = 9525000 in 9525000 .. 9550000 as file 35551_268.job.T3 Wed Apr 19 06:18:28 2017 -> Lattice sieving algebraic q from 9450000 to 9550000. Wed Apr 19 06:18:28 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Wed Apr 19 06:18:28 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Wed Apr 19 06:18:28 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Wed Apr 19 06:18:28 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Wed Apr 19 06:46:33 2017 Found 14140252 relations, 61.5% of the estimated minimum (23000000). Wed Apr 19 06:46:33 2017 LatSieveTime: 1685.66 Wed Apr 19 06:46:33 2017 -> making sieve job for q = 9550000 in 9550000 .. 9575000 as file 35551_268.job.T0 Wed Apr 19 06:46:33 2017 -> making sieve job for q = 9575000 in 9575000 .. 9600000 as file 35551_268.job.T1 Wed Apr 19 06:46:33 2017 -> making sieve job for q = 9600000 in 9600000 .. 9625000 as file 35551_268.job.T2 Wed Apr 19 06:46:33 2017 -> making sieve job for q = 9625000 in 9625000 .. 9650000 as file 35551_268.job.T3 Wed Apr 19 06:46:33 2017 -> Lattice sieving algebraic q from 9550000 to 9650000. Wed Apr 19 06:46:33 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Wed Apr 19 06:46:33 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Wed Apr 19 06:46:33 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Wed Apr 19 06:46:33 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Wed Apr 19 07:14:57 2017 Found 14425429 relations, 62.7% of the estimated minimum (23000000). Wed Apr 19 07:14:57 2017 LatSieveTime: 1703.85 Wed Apr 19 07:14:57 2017 -> making sieve job for q = 9650000 in 9650000 .. 9675000 as file 35551_268.job.T0 Wed Apr 19 07:14:57 2017 -> making sieve job for q = 9675000 in 9675000 .. 9700000 as file 35551_268.job.T1 Wed Apr 19 07:14:57 2017 -> making sieve job for q = 9700000 in 9700000 .. 9725000 as file 35551_268.job.T2 Wed Apr 19 07:14:57 2017 -> making sieve job for q = 9725000 in 9725000 .. 9750000 as file 35551_268.job.T3 Wed Apr 19 07:14:57 2017 -> Lattice sieving algebraic q from 9650000 to 9750000. Wed Apr 19 07:14:57 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Wed Apr 19 07:14:57 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Wed Apr 19 07:14:57 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Wed Apr 19 07:14:57 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Wed Apr 19 07:43:03 2017 Found 14705607 relations, 63.9% of the estimated minimum (23000000). Wed Apr 19 07:43:03 2017 LatSieveTime: 1685.84 Wed Apr 19 07:43:03 2017 -> making sieve job for q = 9750000 in 9750000 .. 9775000 as file 35551_268.job.T0 Wed Apr 19 07:43:03 2017 -> making sieve job for q = 9775000 in 9775000 .. 9800000 as file 35551_268.job.T1 Wed Apr 19 07:43:03 2017 -> making sieve job for q = 9800000 in 9800000 .. 9825000 as file 35551_268.job.T2 Wed Apr 19 07:43:03 2017 -> making sieve job for q = 9825000 in 9825000 .. 9850000 as file 35551_268.job.T3 Wed Apr 19 07:43:03 2017 -> Lattice sieving algebraic q from 9750000 to 9850000. Wed Apr 19 07:43:03 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Wed Apr 19 07:43:03 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Wed Apr 19 07:43:03 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Wed Apr 19 07:43:03 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Wed Apr 19 08:11:41 2017 Found 14985352 relations, 65.2% of the estimated minimum (23000000). Wed Apr 19 08:11:41 2017 LatSieveTime: 1717.98 Wed Apr 19 08:11:41 2017 -> making sieve job for q = 9850000 in 9850000 .. 9875000 as file 35551_268.job.T0 Wed Apr 19 08:11:41 2017 -> making sieve job for q = 9875000 in 9875000 .. 9900000 as file 35551_268.job.T1 Wed Apr 19 08:11:41 2017 -> making sieve job for q = 9900000 in 9900000 .. 9925000 as file 35551_268.job.T2 Wed Apr 19 08:11:41 2017 -> making sieve job for q = 9925000 in 9925000 .. 9950000 as file 35551_268.job.T3 Wed Apr 19 08:11:41 2017 -> Lattice sieving algebraic q from 9850000 to 9950000. Wed Apr 19 08:11:41 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Wed Apr 19 08:11:41 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Wed Apr 19 08:11:41 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Wed Apr 19 08:11:41 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Wed Apr 19 08:40:37 2017 Found 15263350 relations, 66.4% of the estimated minimum (23000000). Wed Apr 19 08:40:37 2017 LatSieveTime: 1736.34 Wed Apr 19 08:40:37 2017 -> making sieve job for q = 9950000 in 9950000 .. 9975000 as file 35551_268.job.T0 Wed Apr 19 08:40:37 2017 -> making sieve job for q = 9975000 in 9975000 .. 10000000 as file 35551_268.job.T1 Wed Apr 19 08:40:37 2017 -> making sieve job for q = 10000000 in 10000000 .. 10025000 as file 35551_268.job.T2 Wed Apr 19 08:40:37 2017 -> making sieve job for q = 10025000 in 10025000 .. 10050000 as file 35551_268.job.T3 Wed Apr 19 08:40:37 2017 -> Lattice sieving algebraic q from 9950000 to 10050000. Wed Apr 19 08:40:37 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Wed Apr 19 08:40:37 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Wed Apr 19 08:40:37 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Wed Apr 19 08:40:37 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Wed Apr 19 09:10:08 2017 Found 15543479 relations, 67.6% of the estimated minimum (23000000). Wed Apr 19 09:10:08 2017 LatSieveTime: 1770.71 Wed Apr 19 09:10:08 2017 -> making sieve job for q = 10050000 in 10050000 .. 10075000 as file 35551_268.job.T0 Wed Apr 19 09:10:08 2017 -> making sieve job for q = 10075000 in 10075000 .. 10100000 as file 35551_268.job.T1 Wed Apr 19 09:10:08 2017 -> making sieve job for q = 10100000 in 10100000 .. 10125000 as file 35551_268.job.T2 Wed Apr 19 09:10:08 2017 -> making sieve job for q = 10125000 in 10125000 .. 10150000 as file 35551_268.job.T3 Wed Apr 19 09:10:08 2017 -> Lattice sieving algebraic q from 10050000 to 10150000. Wed Apr 19 09:10:08 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Wed Apr 19 09:10:08 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Wed Apr 19 09:10:08 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Wed Apr 19 09:10:08 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Wed Apr 19 09:38:44 2017 Found 15824598 relations, 68.8% of the estimated minimum (23000000). Wed Apr 19 09:38:44 2017 LatSieveTime: 1715.63 Wed Apr 19 09:38:44 2017 -> making sieve job for q = 10150000 in 10150000 .. 10175000 as file 35551_268.job.T0 Wed Apr 19 09:38:44 2017 -> making sieve job for q = 10175000 in 10175000 .. 10200000 as file 35551_268.job.T1 Wed Apr 19 09:38:44 2017 -> making sieve job for q = 10200000 in 10200000 .. 10225000 as file 35551_268.job.T2 Wed Apr 19 09:38:44 2017 -> making sieve job for q = 10225000 in 10225000 .. 10250000 as file 35551_268.job.T3 Wed Apr 19 09:38:44 2017 -> Lattice sieving algebraic q from 10150000 to 10250000. Wed Apr 19 09:38:44 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Wed Apr 19 09:38:44 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Wed Apr 19 09:38:44 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Wed Apr 19 09:38:44 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Wed Apr 19 10:07:18 2017 Found 16099175 relations, 70.0% of the estimated minimum (23000000). Wed Apr 19 10:07:18 2017 LatSieveTime: 1714.59 Wed Apr 19 10:07:18 2017 -> making sieve job for q = 10250000 in 10250000 .. 10275000 as file 35551_268.job.T0 Wed Apr 19 10:07:18 2017 -> making sieve job for q = 10275000 in 10275000 .. 10300000 as file 35551_268.job.T1 Wed Apr 19 10:07:18 2017 -> making sieve job for q = 10300000 in 10300000 .. 10325000 as file 35551_268.job.T2 Wed Apr 19 10:07:18 2017 -> making sieve job for q = 10325000 in 10325000 .. 10350000 as file 35551_268.job.T3 Wed Apr 19 10:07:18 2017 -> Lattice sieving algebraic q from 10250000 to 10350000. Wed Apr 19 10:07:18 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Wed Apr 19 10:07:18 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Wed Apr 19 10:07:18 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Wed Apr 19 10:07:18 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Wed Apr 19 10:35:43 2017 Found 16375257 relations, 71.2% of the estimated minimum (23000000). Wed Apr 19 10:35:43 2017 LatSieveTime: 1704.74 Wed Apr 19 10:35:43 2017 -> making sieve job for q = 10350000 in 10350000 .. 10375000 as file 35551_268.job.T0 Wed Apr 19 10:35:43 2017 -> making sieve job for q = 10375000 in 10375000 .. 10400000 as file 35551_268.job.T1 Wed Apr 19 10:35:43 2017 -> making sieve job for q = 10400000 in 10400000 .. 10425000 as file 35551_268.job.T2 Wed Apr 19 10:35:43 2017 -> making sieve job for q = 10425000 in 10425000 .. 10450000 as file 35551_268.job.T3 Wed Apr 19 10:35:43 2017 -> Lattice sieving algebraic q from 10350000 to 10450000. Wed Apr 19 10:35:43 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Wed Apr 19 10:35:43 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Wed Apr 19 10:35:43 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Wed Apr 19 10:35:43 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Wed Apr 19 11:03:54 2017 Found 16647775 relations, 72.4% of the estimated minimum (23000000). Wed Apr 19 11:03:54 2017 LatSieveTime: 1691.1 Wed Apr 19 11:03:54 2017 -> making sieve job for q = 10450000 in 10450000 .. 10475000 as file 35551_268.job.T0 Wed Apr 19 11:03:54 2017 -> making sieve job for q = 10475000 in 10475000 .. 10500000 as file 35551_268.job.T1 Wed Apr 19 11:03:54 2017 -> making sieve job for q = 10500000 in 10500000 .. 10525000 as file 35551_268.job.T2 Wed Apr 19 11:03:54 2017 -> making sieve job for q = 10525000 in 10525000 .. 10550000 as file 35551_268.job.T3 Wed Apr 19 11:03:54 2017 -> Lattice sieving algebraic q from 10450000 to 10550000. Wed Apr 19 11:03:54 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Wed Apr 19 11:03:54 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Wed Apr 19 11:03:54 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Wed Apr 19 11:03:54 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Wed Apr 19 11:32:23 2017 Found 16924628 relations, 73.6% of the estimated minimum (23000000). Wed Apr 19 11:32:23 2017 LatSieveTime: 1709.13 Wed Apr 19 11:32:23 2017 -> making sieve job for q = 10550000 in 10550000 .. 10575000 as file 35551_268.job.T0 Wed Apr 19 11:32:23 2017 -> making sieve job for q = 10575000 in 10575000 .. 10600000 as file 35551_268.job.T1 Wed Apr 19 11:32:23 2017 -> making sieve job for q = 10600000 in 10600000 .. 10625000 as file 35551_268.job.T2 Wed Apr 19 11:32:23 2017 -> making sieve job for q = 10625000 in 10625000 .. 10650000 as file 35551_268.job.T3 Wed Apr 19 11:32:23 2017 -> Lattice sieving algebraic q from 10550000 to 10650000. Wed Apr 19 11:32:23 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Wed Apr 19 11:32:23 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Wed Apr 19 11:32:23 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Wed Apr 19 11:32:23 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Wed Apr 19 12:01:14 2017 Found 17200253 relations, 74.8% of the estimated minimum (23000000). Wed Apr 19 12:01:14 2017 LatSieveTime: 1730.43 Wed Apr 19 12:01:14 2017 -> making sieve job for q = 10650000 in 10650000 .. 10675000 as file 35551_268.job.T0 Wed Apr 19 12:01:14 2017 -> making sieve job for q = 10675000 in 10675000 .. 10700000 as file 35551_268.job.T1 Wed Apr 19 12:01:14 2017 -> making sieve job for q = 10700000 in 10700000 .. 10725000 as file 35551_268.job.T2 Wed Apr 19 12:01:14 2017 -> making sieve job for q = 10725000 in 10725000 .. 10750000 as file 35551_268.job.T3 Wed Apr 19 12:01:14 2017 -> Lattice sieving algebraic q from 10650000 to 10750000. Wed Apr 19 12:01:14 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Wed Apr 19 12:01:14 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Wed Apr 19 12:01:14 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Wed Apr 19 12:01:14 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Wed Apr 19 12:29:52 2017 Found 17474911 relations, 76.0% of the estimated minimum (23000000). Wed Apr 19 12:29:52 2017 LatSieveTime: 1718.54 Wed Apr 19 12:29:52 2017 -> making sieve job for q = 10750000 in 10750000 .. 10775000 as file 35551_268.job.T0 Wed Apr 19 12:29:52 2017 -> making sieve job for q = 10775000 in 10775000 .. 10800000 as file 35551_268.job.T1 Wed Apr 19 12:29:52 2017 -> making sieve job for q = 10800000 in 10800000 .. 10825000 as file 35551_268.job.T2 Wed Apr 19 12:29:52 2017 -> making sieve job for q = 10825000 in 10825000 .. 10850000 as file 35551_268.job.T3 Wed Apr 19 12:29:52 2017 -> Lattice sieving algebraic q from 10750000 to 10850000. Wed Apr 19 12:29:52 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Wed Apr 19 12:29:52 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Wed Apr 19 12:29:52 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Wed Apr 19 12:29:52 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Wed Apr 19 12:58:20 2017 Found 17745222 relations, 77.2% of the estimated minimum (23000000). Wed Apr 19 12:58:20 2017 LatSieveTime: 1707.7 Wed Apr 19 12:58:20 2017 -> making sieve job for q = 10850000 in 10850000 .. 10875000 as file 35551_268.job.T0 Wed Apr 19 12:58:20 2017 -> making sieve job for q = 10875000 in 10875000 .. 10900000 as file 35551_268.job.T1 Wed Apr 19 12:58:20 2017 -> making sieve job for q = 10900000 in 10900000 .. 10925000 as file 35551_268.job.T2 Wed Apr 19 12:58:20 2017 -> making sieve job for q = 10925000 in 10925000 .. 10950000 as file 35551_268.job.T3 Wed Apr 19 12:58:20 2017 -> Lattice sieving algebraic q from 10850000 to 10950000. Wed Apr 19 12:58:20 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Wed Apr 19 12:58:20 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Wed Apr 19 12:58:20 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Wed Apr 19 12:58:20 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Wed Apr 19 13:26:38 2017 Found 18014113 relations, 78.3% of the estimated minimum (23000000). Wed Apr 19 13:26:38 2017 LatSieveTime: 1697.71 Wed Apr 19 13:26:38 2017 -> making sieve job for q = 10950000 in 10950000 .. 10975000 as file 35551_268.job.T0 Wed Apr 19 13:26:38 2017 -> making sieve job for q = 10975000 in 10975000 .. 11000000 as file 35551_268.job.T1 Wed Apr 19 13:26:38 2017 -> making sieve job for q = 11000000 in 11000000 .. 11025000 as file 35551_268.job.T2 Wed Apr 19 13:26:38 2017 -> making sieve job for q = 11025000 in 11025000 .. 11050000 as file 35551_268.job.T3 Wed Apr 19 13:26:38 2017 -> Lattice sieving algebraic q from 10950000 to 11050000. Wed Apr 19 13:26:38 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Wed Apr 19 13:26:38 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Wed Apr 19 13:26:38 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Wed Apr 19 13:26:38 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Wed Apr 19 13:54:54 2017 Found 18276943 relations, 79.5% of the estimated minimum (23000000). Wed Apr 19 13:54:54 2017 LatSieveTime: 1695.91 Wed Apr 19 13:54:54 2017 -> making sieve job for q = 11050000 in 11050000 .. 11075000 as file 35551_268.job.T0 Wed Apr 19 13:54:54 2017 -> making sieve job for q = 11075000 in 11075000 .. 11100000 as file 35551_268.job.T1 Wed Apr 19 13:54:54 2017 -> making sieve job for q = 11100000 in 11100000 .. 11125000 as file 35551_268.job.T2 Wed Apr 19 13:54:54 2017 -> making sieve job for q = 11125000 in 11125000 .. 11150000 as file 35551_268.job.T3 Wed Apr 19 13:54:54 2017 -> Lattice sieving algebraic q from 11050000 to 11150000. Wed Apr 19 13:54:54 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Wed Apr 19 13:54:54 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Wed Apr 19 13:54:54 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Wed Apr 19 13:54:54 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Wed Apr 19 14:23:19 2017 Found 18543249 relations, 80.6% of the estimated minimum (23000000). Wed Apr 19 14:23:19 2017 LatSieveTime: 1705.06 Wed Apr 19 14:23:19 2017 -> making sieve job for q = 11150000 in 11150000 .. 11175000 as file 35551_268.job.T0 Wed Apr 19 14:23:19 2017 -> making sieve job for q = 11175000 in 11175000 .. 11200000 as file 35551_268.job.T1 Wed Apr 19 14:23:19 2017 -> making sieve job for q = 11200000 in 11200000 .. 11225000 as file 35551_268.job.T2 Wed Apr 19 14:23:19 2017 -> making sieve job for q = 11225000 in 11225000 .. 11250000 as file 35551_268.job.T3 Wed Apr 19 14:23:19 2017 -> Lattice sieving algebraic q from 11150000 to 11250000. Wed Apr 19 14:23:19 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Wed Apr 19 14:23:19 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Wed Apr 19 14:23:19 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Wed Apr 19 14:23:19 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Wed Apr 19 14:51:22 2017 Found 18810741 relations, 81.8% of the estimated minimum (23000000). Wed Apr 19 14:51:22 2017 LatSieveTime: 1683.19 Wed Apr 19 14:51:22 2017 -> making sieve job for q = 11250000 in 11250000 .. 11275000 as file 35551_268.job.T0 Wed Apr 19 14:51:22 2017 -> making sieve job for q = 11275000 in 11275000 .. 11300000 as file 35551_268.job.T1 Wed Apr 19 14:51:22 2017 -> making sieve job for q = 11300000 in 11300000 .. 11325000 as file 35551_268.job.T2 Wed Apr 19 14:51:22 2017 -> making sieve job for q = 11325000 in 11325000 .. 11350000 as file 35551_268.job.T3 Wed Apr 19 14:51:22 2017 -> Lattice sieving algebraic q from 11250000 to 11350000. Wed Apr 19 14:51:22 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Wed Apr 19 14:51:22 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Wed Apr 19 14:51:22 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Wed Apr 19 14:51:22 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Wed Apr 19 15:19:12 2017 Found 19075532 relations, 82.9% of the estimated minimum (23000000). Wed Apr 19 15:19:12 2017 LatSieveTime: 1669.97 Wed Apr 19 15:19:12 2017 -> making sieve job for q = 11350000 in 11350000 .. 11375000 as file 35551_268.job.T0 Wed Apr 19 15:19:12 2017 -> making sieve job for q = 11375000 in 11375000 .. 11400000 as file 35551_268.job.T1 Wed Apr 19 15:19:12 2017 -> making sieve job for q = 11400000 in 11400000 .. 11425000 as file 35551_268.job.T2 Wed Apr 19 15:19:12 2017 -> making sieve job for q = 11425000 in 11425000 .. 11450000 as file 35551_268.job.T3 Wed Apr 19 15:19:12 2017 -> Lattice sieving algebraic q from 11350000 to 11450000. Wed Apr 19 15:19:12 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Wed Apr 19 15:19:12 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Wed Apr 19 15:19:12 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Wed Apr 19 15:19:12 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Wed Apr 19 15:47:13 2017 Found 19341066 relations, 84.1% of the estimated minimum (23000000). Wed Apr 19 15:47:13 2017 LatSieveTime: 1681.5 Wed Apr 19 15:47:13 2017 -> making sieve job for q = 11450000 in 11450000 .. 11475000 as file 35551_268.job.T0 Wed Apr 19 15:47:13 2017 -> making sieve job for q = 11475000 in 11475000 .. 11500000 as file 35551_268.job.T1 Wed Apr 19 15:47:13 2017 -> making sieve job for q = 11500000 in 11500000 .. 11525000 as file 35551_268.job.T2 Wed Apr 19 15:47:13 2017 -> making sieve job for q = 11525000 in 11525000 .. 11550000 as file 35551_268.job.T3 Wed Apr 19 15:47:13 2017 -> Lattice sieving algebraic q from 11450000 to 11550000. Wed Apr 19 15:47:13 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Wed Apr 19 15:47:13 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Wed Apr 19 15:47:13 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Wed Apr 19 15:47:13 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Wed Apr 19 16:15:47 2017 Found 19607044 relations, 85.2% of the estimated minimum (23000000). Wed Apr 19 16:15:47 2017 LatSieveTime: 1714.12 Wed Apr 19 16:15:47 2017 -> making sieve job for q = 11550000 in 11550000 .. 11575000 as file 35551_268.job.T0 Wed Apr 19 16:15:47 2017 -> making sieve job for q = 11575000 in 11575000 .. 11600000 as file 35551_268.job.T1 Wed Apr 19 16:15:47 2017 -> making sieve job for q = 11600000 in 11600000 .. 11625000 as file 35551_268.job.T2 Wed Apr 19 16:15:47 2017 -> making sieve job for q = 11625000 in 11625000 .. 11650000 as file 35551_268.job.T3 Wed Apr 19 16:15:47 2017 -> Lattice sieving algebraic q from 11550000 to 11650000. Wed Apr 19 16:15:47 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Wed Apr 19 16:15:47 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Wed Apr 19 16:15:47 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Wed Apr 19 16:15:47 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Wed Apr 19 16:43:50 2017 Found 19869838 relations, 86.4% of the estimated minimum (23000000). Wed Apr 19 16:43:50 2017 LatSieveTime: 1682.85 Wed Apr 19 16:43:50 2017 -> making sieve job for q = 11650000 in 11650000 .. 11675000 as file 35551_268.job.T0 Wed Apr 19 16:43:50 2017 -> making sieve job for q = 11675000 in 11675000 .. 11700000 as file 35551_268.job.T1 Wed Apr 19 16:43:50 2017 -> making sieve job for q = 11700000 in 11700000 .. 11725000 as file 35551_268.job.T2 Wed Apr 19 16:43:50 2017 -> making sieve job for q = 11725000 in 11725000 .. 11750000 as file 35551_268.job.T3 Wed Apr 19 16:43:50 2017 -> Lattice sieving algebraic q from 11650000 to 11750000. Wed Apr 19 16:43:50 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Wed Apr 19 16:43:50 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Wed Apr 19 16:43:50 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Wed Apr 19 16:43:50 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Wed Apr 19 17:11:28 2017 Found 20127721 relations, 87.5% of the estimated minimum (23000000). Wed Apr 19 17:11:28 2017 LatSieveTime: 1657.97 Wed Apr 19 17:11:28 2017 -> making sieve job for q = 11750000 in 11750000 .. 11775000 as file 35551_268.job.T0 Wed Apr 19 17:11:28 2017 -> making sieve job for q = 11775000 in 11775000 .. 11800000 as file 35551_268.job.T1 Wed Apr 19 17:11:28 2017 -> making sieve job for q = 11800000 in 11800000 .. 11825000 as file 35551_268.job.T2 Wed Apr 19 17:11:28 2017 -> making sieve job for q = 11825000 in 11825000 .. 11850000 as file 35551_268.job.T3 Wed Apr 19 17:11:28 2017 -> Lattice sieving algebraic q from 11750000 to 11850000. Wed Apr 19 17:11:28 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Wed Apr 19 17:11:28 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Wed Apr 19 17:11:28 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Wed Apr 19 17:11:28 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Wed Apr 19 17:39:54 2017 Found 20386649 relations, 88.6% of the estimated minimum (23000000). Wed Apr 19 17:39:54 2017 LatSieveTime: 1706.14 Wed Apr 19 17:39:54 2017 -> making sieve job for q = 11850000 in 11850000 .. 11875000 as file 35551_268.job.T0 Wed Apr 19 17:39:54 2017 -> making sieve job for q = 11875000 in 11875000 .. 11900000 as file 35551_268.job.T1 Wed Apr 19 17:39:54 2017 -> making sieve job for q = 11900000 in 11900000 .. 11925000 as file 35551_268.job.T2 Wed Apr 19 17:39:54 2017 -> making sieve job for q = 11925000 in 11925000 .. 11950000 as file 35551_268.job.T3 Wed Apr 19 17:39:54 2017 -> Lattice sieving algebraic q from 11850000 to 11950000. Wed Apr 19 17:39:54 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Wed Apr 19 17:39:54 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Wed Apr 19 17:39:54 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Wed Apr 19 17:39:54 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Wed Apr 19 18:07:59 2017 Found 20643510 relations, 89.8% of the estimated minimum (23000000). Wed Apr 19 18:07:59 2017 LatSieveTime: 1684.52 Wed Apr 19 18:07:59 2017 -> making sieve job for q = 11950000 in 11950000 .. 11975000 as file 35551_268.job.T0 Wed Apr 19 18:07:59 2017 -> making sieve job for q = 11975000 in 11975000 .. 12000000 as file 35551_268.job.T1 Wed Apr 19 18:07:59 2017 -> making sieve job for q = 12000000 in 12000000 .. 12025000 as file 35551_268.job.T2 Wed Apr 19 18:07:59 2017 -> making sieve job for q = 12025000 in 12025000 .. 12050000 as file 35551_268.job.T3 Wed Apr 19 18:07:59 2017 -> Lattice sieving algebraic q from 11950000 to 12050000. Wed Apr 19 18:07:59 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Wed Apr 19 18:07:59 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Wed Apr 19 18:07:59 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Wed Apr 19 18:07:59 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Wed Apr 19 18:36:10 2017 Found 20900251 relations, 90.9% of the estimated minimum (23000000). Wed Apr 19 18:36:10 2017 LatSieveTime: 1690.94 Wed Apr 19 18:36:10 2017 -> making sieve job for q = 12050000 in 12050000 .. 12075000 as file 35551_268.job.T0 Wed Apr 19 18:36:10 2017 -> making sieve job for q = 12075000 in 12075000 .. 12100000 as file 35551_268.job.T1 Wed Apr 19 18:36:10 2017 -> making sieve job for q = 12100000 in 12100000 .. 12125000 as file 35551_268.job.T2 Wed Apr 19 18:36:10 2017 -> making sieve job for q = 12125000 in 12125000 .. 12150000 as file 35551_268.job.T3 Wed Apr 19 18:36:10 2017 -> Lattice sieving algebraic q from 12050000 to 12150000. Wed Apr 19 18:36:10 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Wed Apr 19 18:36:10 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Wed Apr 19 18:36:10 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Wed Apr 19 18:36:10 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Wed Apr 19 19:04:27 2017 Found 21163932 relations, 92.0% of the estimated minimum (23000000). Wed Apr 19 19:04:27 2017 LatSieveTime: 1697.3 Wed Apr 19 19:04:27 2017 -> making sieve job for q = 12150000 in 12150000 .. 12175000 as file 35551_268.job.T0 Wed Apr 19 19:04:27 2017 -> making sieve job for q = 12175000 in 12175000 .. 12200000 as file 35551_268.job.T1 Wed Apr 19 19:04:27 2017 -> making sieve job for q = 12200000 in 12200000 .. 12225000 as file 35551_268.job.T2 Wed Apr 19 19:04:27 2017 -> making sieve job for q = 12225000 in 12225000 .. 12250000 as file 35551_268.job.T3 Wed Apr 19 19:04:27 2017 -> Lattice sieving algebraic q from 12150000 to 12250000. Wed Apr 19 19:04:27 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Wed Apr 19 19:04:27 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Wed Apr 19 19:04:27 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Wed Apr 19 19:04:27 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Wed Apr 19 19:33:11 2017 Found 21418206 relations, 93.1% of the estimated minimum (23000000). Wed Apr 19 19:33:11 2017 LatSieveTime: 1723.87 Wed Apr 19 19:33:11 2017 -> making sieve job for q = 12250000 in 12250000 .. 12275000 as file 35551_268.job.T0 Wed Apr 19 19:33:11 2017 -> making sieve job for q = 12275000 in 12275000 .. 12300000 as file 35551_268.job.T1 Wed Apr 19 19:33:11 2017 -> making sieve job for q = 12300000 in 12300000 .. 12325000 as file 35551_268.job.T2 Wed Apr 19 19:33:11 2017 -> making sieve job for q = 12325000 in 12325000 .. 12350000 as file 35551_268.job.T3 Wed Apr 19 19:33:11 2017 -> Lattice sieving algebraic q from 12250000 to 12350000. Wed Apr 19 19:33:11 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Wed Apr 19 19:33:11 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Wed Apr 19 19:33:11 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Wed Apr 19 19:33:11 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Wed Apr 19 20:00:53 2017 Found 21676377 relations, 94.2% of the estimated minimum (23000000). Wed Apr 19 20:00:53 2017 LatSieveTime: 1661.84 Wed Apr 19 20:00:53 2017 -> making sieve job for q = 12350000 in 12350000 .. 12375000 as file 35551_268.job.T0 Wed Apr 19 20:00:53 2017 -> making sieve job for q = 12375000 in 12375000 .. 12400000 as file 35551_268.job.T1 Wed Apr 19 20:00:53 2017 -> making sieve job for q = 12400000 in 12400000 .. 12425000 as file 35551_268.job.T2 Wed Apr 19 20:00:53 2017 -> making sieve job for q = 12425000 in 12425000 .. 12450000 as file 35551_268.job.T3 Wed Apr 19 20:00:53 2017 -> Lattice sieving algebraic q from 12350000 to 12450000. Wed Apr 19 20:00:53 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Wed Apr 19 20:00:53 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Wed Apr 19 20:00:53 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Wed Apr 19 20:00:53 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Wed Apr 19 20:30:16 2017 Found 21936700 relations, 95.4% of the estimated minimum (23000000). Wed Apr 19 20:30:16 2017 LatSieveTime: 1763.13 Wed Apr 19 20:30:16 2017 -> making sieve job for q = 12450000 in 12450000 .. 12475000 as file 35551_268.job.T0 Wed Apr 19 20:30:16 2017 -> making sieve job for q = 12475000 in 12475000 .. 12500000 as file 35551_268.job.T1 Wed Apr 19 20:30:16 2017 -> making sieve job for q = 12500000 in 12500000 .. 12525000 as file 35551_268.job.T2 Wed Apr 19 20:30:16 2017 -> making sieve job for q = 12525000 in 12525000 .. 12550000 as file 35551_268.job.T3 Wed Apr 19 20:30:16 2017 -> Lattice sieving algebraic q from 12450000 to 12550000. Wed Apr 19 20:30:16 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Wed Apr 19 20:30:16 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Wed Apr 19 20:30:16 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Wed Apr 19 20:30:16 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Wed Apr 19 20:58:18 2017 Found 22189920 relations, 96.5% of the estimated minimum (23000000). Wed Apr 19 20:58:18 2017 LatSieveTime: 1682.15 Wed Apr 19 20:58:18 2017 -> making sieve job for q = 12550000 in 12550000 .. 12575000 as file 35551_268.job.T0 Wed Apr 19 20:58:18 2017 -> making sieve job for q = 12575000 in 12575000 .. 12600000 as file 35551_268.job.T1 Wed Apr 19 20:58:18 2017 -> making sieve job for q = 12600000 in 12600000 .. 12625000 as file 35551_268.job.T2 Wed Apr 19 20:58:18 2017 -> making sieve job for q = 12625000 in 12625000 .. 12650000 as file 35551_268.job.T3 Wed Apr 19 20:58:18 2017 -> Lattice sieving algebraic q from 12550000 to 12650000. Wed Apr 19 20:58:18 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Wed Apr 19 20:58:18 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Wed Apr 19 20:58:18 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Wed Apr 19 20:58:18 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Wed Apr 19 21:26:32 2017 Found 22448164 relations, 97.6% of the estimated minimum (23000000). Wed Apr 19 21:26:32 2017 LatSieveTime: 1694.24 Wed Apr 19 21:26:32 2017 -> making sieve job for q = 12650000 in 12650000 .. 12675000 as file 35551_268.job.T0 Wed Apr 19 21:26:32 2017 -> making sieve job for q = 12675000 in 12675000 .. 12700000 as file 35551_268.job.T1 Wed Apr 19 21:26:32 2017 -> making sieve job for q = 12700000 in 12700000 .. 12725000 as file 35551_268.job.T2 Wed Apr 19 21:26:32 2017 -> making sieve job for q = 12725000 in 12725000 .. 12750000 as file 35551_268.job.T3 Wed Apr 19 21:26:32 2017 -> Lattice sieving algebraic q from 12650000 to 12750000. Wed Apr 19 21:26:32 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Wed Apr 19 21:26:32 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Wed Apr 19 21:26:32 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Wed Apr 19 21:26:32 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Wed Apr 19 21:54:07 2017 Found 22698566 relations, 98.7% of the estimated minimum (23000000). Wed Apr 19 21:54:07 2017 LatSieveTime: 1654.48 Wed Apr 19 21:54:07 2017 -> making sieve job for q = 12750000 in 12750000 .. 12775000 as file 35551_268.job.T0 Wed Apr 19 21:54:07 2017 -> making sieve job for q = 12775000 in 12775000 .. 12800000 as file 35551_268.job.T1 Wed Apr 19 21:54:07 2017 -> making sieve job for q = 12800000 in 12800000 .. 12825000 as file 35551_268.job.T2 Wed Apr 19 21:54:07 2017 -> making sieve job for q = 12825000 in 12825000 .. 12850000 as file 35551_268.job.T3 Wed Apr 19 21:54:07 2017 -> Lattice sieving algebraic q from 12750000 to 12850000. Wed Apr 19 21:54:07 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Wed Apr 19 21:54:07 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Wed Apr 19 21:54:07 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Wed Apr 19 21:54:07 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Wed Apr 19 22:21:23 2017 Found 22948246 relations, 99.8% of the estimated minimum (23000000). Wed Apr 19 22:21:23 2017 LatSieveTime: 1635.68 Wed Apr 19 22:21:23 2017 -> making sieve job for q = 12850000 in 12850000 .. 12875000 as file 35551_268.job.T0 Wed Apr 19 22:21:23 2017 -> making sieve job for q = 12875000 in 12875000 .. 12900000 as file 35551_268.job.T1 Wed Apr 19 22:21:23 2017 -> making sieve job for q = 12900000 in 12900000 .. 12925000 as file 35551_268.job.T2 Wed Apr 19 22:21:23 2017 -> making sieve job for q = 12925000 in 12925000 .. 12950000 as file 35551_268.job.T3 Wed Apr 19 22:21:23 2017 -> Lattice sieving algebraic q from 12850000 to 12950000. Wed Apr 19 22:21:23 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 35551_268.job.T0 Wed Apr 19 22:21:23 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 35551_268.job.T1 Wed Apr 19 22:21:23 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 35551_268.job.T2 Wed Apr 19 22:21:23 2017 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 35551_268.job.T3 Wed Apr 19 22:49:29 2017 Found 23196975 relations, 100.9% of the estimated minimum (23000000). Wed Apr 19 22:49:31 2017 Wed Apr 19 22:49:31 2017 Wed Apr 19 22:49:31 2017 Msieve v. 1.51 (SVN 845) Wed Apr 19 22:49:31 2017 random seeds: dbdaacc0 f2ca7b1e Wed Apr 19 22:49:31 2017 factoring 245527399014830982623900013544870486404967868753115226505336323366843356620082327747267727904394697435731556676413348329990841713057787 (135 digits) Wed Apr 19 22:49:31 2017 searching for 15-digit factors Wed Apr 19 22:49:32 2017 commencing number field sieve (135-digit input) Wed Apr 19 22:49:32 2017 R0: -154291249074857749406767620 Wed Apr 19 22:49:32 2017 R1: 36686555400721 Wed Apr 19 22:49:32 2017 A0: -3812760784881918934330972817864753 Wed Apr 19 22:49:32 2017 A1: 8158332078726734238518201747 Wed Apr 19 22:49:32 2017 A2: 45137649547438786538735 Wed Apr 19 22:49:32 2017 A3: -18022645475278295 Wed Apr 19 22:49:32 2017 A4: -98296253322 Wed Apr 19 22:49:32 2017 A5: 2808 Wed Apr 19 22:49:32 2017 skew 848829.07, size 5.408e-013, alpha -7.800, combined = 4.297e-011 rroots = 3 Wed Apr 19 22:49:32 2017 Wed Apr 19 22:49:32 2017 commencing relation filtering Wed Apr 19 22:49:32 2017 estimated available RAM is 4096.0 MB Wed Apr 19 22:49:32 2017 commencing duplicate removal, pass 1 Wed Apr 19 22:52:12 2017 found 3268342 hash collisions in 23196974 relations Wed Apr 19 22:52:50 2017 added 121230 free relations Wed Apr 19 22:52:50 2017 commencing duplicate removal, pass 2 Wed Apr 19 22:53:03 2017 found 2855200 duplicates and 20463004 unique relations Wed Apr 19 22:53:03 2017 memory use: 98.6 MB Wed Apr 19 22:53:03 2017 reading ideals above 720000 Wed Apr 19 22:53:03 2017 commencing singleton removal, initial pass Wed Apr 19 22:56:11 2017 memory use: 689.0 MB Wed Apr 19 22:56:11 2017 reading all ideals from disk Wed Apr 19 22:56:11 2017 memory use: 638.9 MB Wed Apr 19 22:56:12 2017 keeping 21452964 ideals with weight <= 200, target excess is 123868 Wed Apr 19 22:56:13 2017 commencing in-memory singleton removal Wed Apr 19 22:56:15 2017 begin with 20463004 relations and 21452964 unique ideals Wed Apr 19 22:56:29 2017 reduce to 9063664 relations and 8274137 ideals in 19 passes Wed Apr 19 22:56:29 2017 max relations containing the same ideal: 114 Wed Apr 19 22:56:33 2017 removing 1936611 relations and 1613691 ideals in 322920 cliques Wed Apr 19 22:56:33 2017 commencing in-memory singleton removal Wed Apr 19 22:56:33 2017 begin with 7127053 relations and 8274137 unique ideals Wed Apr 19 22:56:38 2017 reduce to 6791762 relations and 6309745 ideals in 10 passes Wed Apr 19 22:56:38 2017 max relations containing the same ideal: 93 Wed Apr 19 22:56:41 2017 removing 1487778 relations and 1164858 ideals in 322920 cliques Wed Apr 19 22:56:42 2017 commencing in-memory singleton removal Wed Apr 19 22:56:42 2017 begin with 5303984 relations and 6309745 unique ideals Wed Apr 19 22:56:45 2017 reduce to 5042316 relations and 4870159 ideals in 9 passes Wed Apr 19 22:56:45 2017 max relations containing the same ideal: 75 Wed Apr 19 22:56:47 2017 removing 217481 relations and 189011 ideals in 28470 cliques Wed Apr 19 22:56:47 2017 commencing in-memory singleton removal Wed Apr 19 22:56:47 2017 begin with 4824835 relations and 4870159 unique ideals Wed Apr 19 22:56:49 2017 reduce to 4818881 relations and 4675158 ideals in 6 passes Wed Apr 19 22:56:49 2017 max relations containing the same ideal: 70 Wed Apr 19 22:56:50 2017 relations with 0 large ideals: 531 Wed Apr 19 22:56:50 2017 relations with 1 large ideals: 1745 Wed Apr 19 22:56:50 2017 relations with 2 large ideals: 27484 Wed Apr 19 22:56:50 2017 relations with 3 large ideals: 180141 Wed Apr 19 22:56:50 2017 relations with 4 large ideals: 614463 Wed Apr 19 22:56:50 2017 relations with 5 large ideals: 1194417 Wed Apr 19 22:56:50 2017 relations with 6 large ideals: 1380514 Wed Apr 19 22:56:50 2017 relations with 7+ large ideals: 1419586 Wed Apr 19 22:56:50 2017 commencing 2-way merge Wed Apr 19 22:56:53 2017 reduce to 2846414 relation sets and 2702691 unique ideals Wed Apr 19 22:56:53 2017 commencing full merge Wed Apr 19 22:57:31 2017 memory use: 286.2 MB Wed Apr 19 22:57:31 2017 found 1488229 cycles, need 1468891 Wed Apr 19 22:57:32 2017 weight of 1468891 cycles is about 102895077 (70.05/cycle) Wed Apr 19 22:57:32 2017 distribution of cycle lengths: Wed Apr 19 22:57:32 2017 1 relations: 190237 Wed Apr 19 22:57:32 2017 2 relations: 173895 Wed Apr 19 22:57:32 2017 3 relations: 166971 Wed Apr 19 22:57:32 2017 4 relations: 150937 Wed Apr 19 22:57:32 2017 5 relations: 139014 Wed Apr 19 22:57:32 2017 6 relations: 121832 Wed Apr 19 22:57:32 2017 7 relations: 107481 Wed Apr 19 22:57:32 2017 8 relations: 91551 Wed Apr 19 22:57:32 2017 9 relations: 77230 Wed Apr 19 22:57:32 2017 10+ relations: 249743 Wed Apr 19 22:57:32 2017 heaviest cycle: 20 relations Wed Apr 19 22:57:32 2017 commencing cycle optimization Wed Apr 19 22:57:34 2017 start with 8306823 relations Wed Apr 19 22:57:46 2017 pruned 186630 relations Wed Apr 19 22:57:46 2017 memory use: 222.4 MB Wed Apr 19 22:57:46 2017 distribution of cycle lengths: Wed Apr 19 22:57:46 2017 1 relations: 190237 Wed Apr 19 22:57:46 2017 2 relations: 177577 Wed Apr 19 22:57:46 2017 3 relations: 172305 Wed Apr 19 22:57:46 2017 4 relations: 154409 Wed Apr 19 22:57:46 2017 5 relations: 142201 Wed Apr 19 22:57:46 2017 6 relations: 123465 Wed Apr 19 22:57:46 2017 7 relations: 108540 Wed Apr 19 22:57:46 2017 8 relations: 91522 Wed Apr 19 22:57:46 2017 9 relations: 76683 Wed Apr 19 22:57:46 2017 10+ relations: 231952 Wed Apr 19 22:57:46 2017 heaviest cycle: 19 relations Wed Apr 19 22:57:47 2017 RelProcTime: 495 Wed Apr 19 22:57:47 2017 elapsed time 00:08:16 Wed Apr 19 22:57:47 2017 LatSieveTime: 2184.31 Wed Apr 19 22:57:47 2017 -> Running matrix solving step ... Wed Apr 19 22:57:47 2017 Wed Apr 19 22:57:47 2017 Wed Apr 19 22:57:47 2017 Msieve v. 1.51 (SVN 845) Wed Apr 19 22:57:47 2017 random seeds: ba398a50 4d33deb6 Wed Apr 19 22:57:47 2017 factoring 245527399014830982623900013544870486404967868753115226505336323366843356620082327747267727904394697435731556676413348329990841713057787 (135 digits) Wed Apr 19 22:57:48 2017 searching for 15-digit factors Wed Apr 19 22:57:48 2017 commencing number field sieve (135-digit input) Wed Apr 19 22:57:48 2017 R0: -154291249074857749406767620 Wed Apr 19 22:57:48 2017 R1: 36686555400721 Wed Apr 19 22:57:48 2017 A0: -3812760784881918934330972817864753 Wed Apr 19 22:57:48 2017 A1: 8158332078726734238518201747 Wed Apr 19 22:57:48 2017 A2: 45137649547438786538735 Wed Apr 19 22:57:48 2017 A3: -18022645475278295 Wed Apr 19 22:57:48 2017 A4: -98296253322 Wed Apr 19 22:57:48 2017 A5: 2808 Wed Apr 19 22:57:48 2017 skew 848829.07, size 5.408e-013, alpha -7.800, combined = 4.297e-011 rroots = 3 Wed Apr 19 22:57:48 2017 Wed Apr 19 22:57:48 2017 commencing linear algebra Wed Apr 19 22:57:49 2017 read 1468891 cycles Wed Apr 19 22:57:51 2017 cycles contain 4707154 unique relations Wed Apr 19 22:58:33 2017 read 4707154 relations Wed Apr 19 22:58:39 2017 using 20 quadratic characters above 268435292 Wed Apr 19 22:58:58 2017 building initial matrix Wed Apr 19 22:59:44 2017 memory use: 567.8 MB Wed Apr 19 22:59:46 2017 read 1468891 cycles Wed Apr 19 22:59:47 2017 matrix is 1468713 x 1468891 (422.5 MB) with weight 140080101 (95.36/col) Wed Apr 19 22:59:47 2017 sparse part has weight 99012662 (67.41/col) Wed Apr 19 22:59:58 2017 filtering completed in 2 passes Wed Apr 19 22:59:59 2017 matrix is 1467718 x 1467896 (422.5 MB) with weight 140040741 (95.40/col) Wed Apr 19 22:59:59 2017 sparse part has weight 99002176 (67.44/col) Wed Apr 19 23:00:02 2017 matrix starts at (0, 0) Wed Apr 19 23:00:02 2017 matrix is 1467718 x 1467896 (422.5 MB) with weight 140040741 (95.40/col) Wed Apr 19 23:00:02 2017 sparse part has weight 99002176 (67.44/col) Wed Apr 19 23:00:02 2017 saving the first 48 matrix rows for later Wed Apr 19 23:00:03 2017 matrix includes 64 packed rows Wed Apr 19 23:00:03 2017 matrix is 1467670 x 1467896 (404.1 MB) with weight 110992910 (75.61/col) Wed Apr 19 23:00:03 2017 sparse part has weight 97133265 (66.17/col) Wed Apr 19 23:00:03 2017 using block size 65536 for processor cache size 6144 kB Wed Apr 19 23:00:11 2017 commencing Lanczos iteration (4 threads) Wed Apr 19 23:00:11 2017 memory use: 367.4 MB Wed Apr 19 23:00:17 2017 linear algebra at 0.1%, ETA 1h36m Wed Apr 19 23:00:19 2017 checkpointing every 910000 dimensions Thu Apr 20 01:04:34 2017 lanczos halted after 23210 iterations (dim = 1467668) Thu Apr 20 01:04:36 2017 recovered 27 nontrivial dependencies Thu Apr 20 01:04:36 2017 BLanczosTime: 7608 Thu Apr 20 01:04:36 2017 elapsed time 02:06:49 Thu Apr 20 01:04:36 2017 -> Running square root step ... Thu Apr 20 01:04:37 2017 Thu Apr 20 01:04:37 2017 Thu Apr 20 01:04:37 2017 Msieve v. 1.51 (SVN 845) Thu Apr 20 01:04:37 2017 random seeds: e5e9bc90 10a69e72 Thu Apr 20 01:04:37 2017 factoring 245527399014830982623900013544870486404967868753115226505336323366843356620082327747267727904394697435731556676413348329990841713057787 (135 digits) Thu Apr 20 01:04:37 2017 searching for 15-digit factors Thu Apr 20 01:04:38 2017 commencing number field sieve (135-digit input) Thu Apr 20 01:04:38 2017 R0: -154291249074857749406767620 Thu Apr 20 01:04:38 2017 R1: 36686555400721 Thu Apr 20 01:04:38 2017 A0: -3812760784881918934330972817864753 Thu Apr 20 01:04:38 2017 A1: 8158332078726734238518201747 Thu Apr 20 01:04:38 2017 A2: 45137649547438786538735 Thu Apr 20 01:04:38 2017 A3: -18022645475278295 Thu Apr 20 01:04:38 2017 A4: -98296253322 Thu Apr 20 01:04:38 2017 A5: 2808 Thu Apr 20 01:04:38 2017 skew 848829.07, size 5.408e-013, alpha -7.800, combined = 4.297e-011 rroots = 3 Thu Apr 20 01:04:38 2017 Thu Apr 20 01:04:38 2017 commencing square root phase Thu Apr 20 01:04:38 2017 reading relations for dependency 1 Thu Apr 20 01:04:39 2017 read 733673 cycles Thu Apr 20 01:04:40 2017 cycles contain 2353664 unique relations Thu Apr 20 01:05:12 2017 read 2353664 relations Thu Apr 20 01:05:22 2017 multiplying 2353664 relations Thu Apr 20 01:10:25 2017 multiply complete, coefficients have about 112.54 million bits Thu Apr 20 01:10:26 2017 initial square root is modulo 119684197 Thu Apr 20 01:16:34 2017 GCD is 1, no factor found Thu Apr 20 01:16:34 2017 reading relations for dependency 2 Thu Apr 20 01:16:34 2017 read 735234 cycles Thu Apr 20 01:16:35 2017 cycles contain 2354674 unique relations Thu Apr 20 01:16:56 2017 read 2354674 relations Thu Apr 20 01:17:05 2017 multiplying 2354674 relations Thu Apr 20 01:21:49 2017 multiply complete, coefficients have about 112.59 million bits Thu Apr 20 01:21:50 2017 initial square root is modulo 120718193 Thu Apr 20 01:27:55 2017 GCD is 1, no factor found Thu Apr 20 01:27:55 2017 reading relations for dependency 3 Thu Apr 20 01:27:56 2017 read 733198 cycles Thu Apr 20 01:27:57 2017 cycles contain 2351570 unique relations Thu Apr 20 01:28:19 2017 read 2351570 relations Thu Apr 20 01:28:28 2017 multiplying 2351570 relations Thu Apr 20 01:33:13 2017 multiply complete, coefficients have about 112.45 million bits Thu Apr 20 01:33:15 2017 initial square root is modulo 117884071 Thu Apr 20 01:39:13 2017 sqrtTime: 2075 Thu Apr 20 01:39:13 2017 prp51 factor: 787449987256670916020368269558651160405732504278791 Thu Apr 20 01:39:13 2017 prp84 factor: 311800626056522914538124146410462757851806729057715123986218638376967318983646043757 Thu Apr 20 01:39:13 2017 elapsed time 00:34:36 Thu Apr 20 01:39:13 2017 -> Computing 1.49265e+09 scale for this machine... Thu Apr 20 01:39:13 2017 -> procrels -speedtest> PIPE Thu Apr 20 01:39:16 2017 -> Factorization summary written to g135-35551_268.txt |
software ソフトウェア | GGNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | Makoto Kamada | April 2, 2017 07:00:00 UTC 2017 年 4 月 2 日 (日) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | April 7, 2017 08:17:44 UTC 2017 年 4 月 7 日 (金) 17 時 17 分 44 秒 (日本時間) | |
45 | 11e6 | 320 / 4218 | Dmitry Domanov | April 14, 2017 12:10:42 UTC 2017 年 4 月 14 日 (金) 21 時 10 分 42 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | Makoto Kamada | April 2, 2017 07:00:00 UTC 2017 年 4 月 2 日 (日) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2106 | 610 | Marlon Trifunovic | March 4, 2022 14:44:22 UTC 2022 年 3 月 4 日 (金) 23 時 44 分 22 秒 (日本時間) |
1496 | ebina | January 28, 2024 01:53:49 UTC 2024 年 1 月 28 日 (日) 10 時 53 分 49 秒 (日本時間) |
name 名前 | Marlon Trifunovic |
---|---|
date 日付 | April 15, 2022 00:31:25 UTC 2022 年 4 月 15 日 (金) 9 時 31 分 25 秒 (日本時間) |
composite number 合成数 | 69443535415558517918054470963977163563384316226576442486699741940555488866965002976435031281700134696709448226802828858926698149474106561255119304396806986943789258269370667498202870158790274441767800268402270356420667373552924146471718826522907943<248> |
prime factors 素因数 | 104652402873839421682540194469900363943<39> |
composite cofactor 合成数の残り | 663563697617856875775660114901588307536794179101539189485777229548599640834906599475132939006735518264321711501166411475443010987531662199653752925726734497299626465541723831382038933397798334719992590777008001<210> |
factorization results 素因数分解の結果 | Run 512 out of 610: Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:374702917 Step 1 took 24704ms Step 2 took 9363ms ********** Factor found in step 2: 104652402873839421682540194469900363943 Found prime factor of 39 digits: 104652402873839421682540194469900363943 Composite cofactor 663563697617856875775660114901588307536794179101539189485777229548599640834906599475132939006735518264321711501166411475443010987531662199653752925726734497299626465541723831382038933397798334719992590777008001 has 210 digits |
software ソフトウェア | GMP-ECM 7.0.5-dev |
execution environment 実行環境 | Intel Xeon CPU E5-2695 v4 @ 2.10GHz |
name 名前 | ebina |
---|---|
date 日付 | January 28, 2024 02:51:33 UTC 2024 年 1 月 28 日 (日) 11 時 51 分 33 秒 (日本時間) |
composite number 合成数 | 663563697617856875775660114901588307536794179101539189485777229548599640834906599475132939006735518264321711501166411475443010987531662199653752925726734497299626465541723831382038933397798334719992590777008001<210> |
prime factors 素因数 | 6025266754585033798845569219023853888719<40> |
composite cofactor 合成数の残り | 110130177574778127345554956621332544011138537969368972363354456124651325417940089720589237080295048980712779833081768452760997886303015901091587102597342256044690092296879<171> |
factorization results 素因数分解の結果 | Y:\ALL\ECM>ecm-svn3038-skylake\ecm -primetest -one -sigma 1:1397209076 11e6 GMP-ECM 7.0.5-dev [configured with GMP 6.1.2, --enable-asm-redc] [ECM] Input number is 663563697617856875775660114901588307536794179101539189485777229548599640834906599475132939006735518264321711501166411475443010987531662199653752925726734497299626465541723831382038933397798334719992590777008001 (210 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:1397209076 Step 1 took 17969ms Step 2 took 7734ms ********** Factor found in step 2: 6025266754585033798845569219023853888719 Found prime factor of 40 digits: 6025266754585033798845569219023853888719 Composite cofactor 110130177574778127345554956621332544011138537969368972363354456124651325417940089720589237080295048980712779833081768452760997886303015901091587102597342256044690092296879 has 171 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | Makoto Kamada | April 2, 2017 07:00:00 UTC 2017 年 4 月 2 日 (日) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2402 | 610 | Marlon Trifunovic | March 4, 2022 02:35:13 UTC 2022 年 3 月 4 日 (金) 11 時 35 分 13 秒 (日本時間) |
1792 | Dmitry Domanov | January 7, 2024 17:53:59 UTC 2024 年 1 月 8 日 (月) 2 時 53 分 59 秒 (日本時間) | |||
45 | 11e6 | 4992 | 512 | ebina | January 28, 2024 02:50:57 UTC 2024 年 1 月 28 日 (日) 11 時 50 分 57 秒 (日本時間) |
4480 | Ignacio Santos | February 4, 2024 15:16:29 UTC 2024 年 2 月 5 日 (月) 0 時 16 分 29 秒 (日本時間) | |||
50 | 43e6 | 1792 / 6337 | Dmitry Domanov | June 2, 2024 19:16:02 UTC 2024 年 6 月 3 日 (月) 4 時 16 分 2 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | March 25, 2024 15:43:09 UTC 2024 年 3 月 26 日 (火) 0 時 43 分 9 秒 (日本時間) |
composite number 合成数 | 1911690776494824871790920269064255174465537637124826285185261610935484837377244899930977242374792675653328667436115049942696591806939991837656967857075187466979860033580943801629011300033789246106439184587176071587109634390975800640839999<238> |
prime factors 素因数 | 4492634336925064065519854227886940527<37> |
composite cofactor 合成数の残り | 425516664194678562075732737787670203659467054241016739635365982918265862835466897238614750063220601631759327124126884545269982336043846080679552776402455265495460124737347406281574708294849211334751537<201> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:325043331 Step 1 took 11391ms Step 2 took 4641ms ********** Factor found in step 2: 4492634336925064065519854227886940527 Found prime factor of 37 digits: 4492634336925064065519854227886940527 Composite cofactor 425516664194678562075732737787670203659467054241016739635365982918265862835466897238614750063220601631759327124126884545269982336043846080679552776402455265495460124737347406281574708294849211334751537 has 201 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | Makoto Kamada | April 2, 2017 07:00:00 UTC 2017 年 4 月 2 日 (日) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2960 | 610 | Marlon Trifunovic | March 1, 2022 23:02:57 UTC 2022 年 3 月 2 日 (水) 8 時 2 分 57 秒 (日本時間) |
2350 | Ignacio Santos | March 26, 2024 08:37:17 UTC 2024 年 3 月 26 日 (火) 17 時 37 分 17 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | Makoto Kamada | April 2, 2017 07:00:00 UTC 2017 年 4 月 2 日 (日) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2960 | 610 | Marlon Trifunovic | March 7, 2022 08:13:04 UTC 2022 年 3 月 7 日 (月) 17 時 13 分 4 秒 (日本時間) |
2350 | Ignacio Santos | March 25, 2024 15:43:59 UTC 2024 年 3 月 26 日 (火) 0 時 43 分 59 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | Makoto Kamada | April 2, 2017 07:00:00 UTC 2017 年 4 月 2 日 (日) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2960 | 610 | Marlon Trifunovic | March 8, 2022 05:07:04 UTC 2022 年 3 月 8 日 (火) 14 時 7 分 4 秒 (日本時間) |
2350 | Ignacio Santos | March 25, 2024 16:07:42 UTC 2024 年 3 月 26 日 (火) 1 時 7 分 42 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | April 3, 2017 04:34:59 UTC 2017 年 4 月 3 日 (月) 13 時 34 分 59 秒 (日本時間) |
composite number 合成数 | 11530776690857173396038604587271888690910102745184654441769333576435821383054341931338573126252429843856106103499660735638654001294964077632970093570903305488024679724787072010129<179> |
prime factors 素因数 | 2790881175811668152252344882655493812942329<43> |
composite cofactor 合成数の残り | 4131589976238846282719475051326861562109118271263447165958556168132673509082950086453560544999700963305103369847905189661960745054938201<136> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:4204056723 Step 1 took 71326ms Step 2 took 31536ms ********** Factor found in step 2: 2790881175811668152252344882655493812942329 Found prime factor of 43 digits: 2790881175811668152252344882655493812942329 Composite cofactor |
name 名前 | Erik Branger |
---|---|
date 日付 | April 23, 2017 07:54:13 UTC 2017 年 4 月 23 日 (日) 16 時 54 分 13 秒 (日本時間) |
composite number 合成数 | 4131589976238846282719475051326861562109118271263447165958556168132673509082950086453560544999700963305103369847905189661960745054938201<136> |
prime factors 素因数 | 15673481075617888541900076529895239262954488856401<50> 263603851391128724308882738973371765275524917979912760200769792117860266913695040561801<87> |
factorization results 素因数分解の結果 | Number: 35551_276 N = 4131589976238846282719475051326861562109118271263447165958556168132673509082950086453560544999700963305103369847905189661960745054938201 (136 digits) Divisors found: r1=15673481075617888541900076529895239262954488856401 (pp50) r2=263603851391128724308882738973371765275524917979912760200769792117860266913695040561801 (pp87) Version: Msieve v. 1.51 (SVN 845) Total time: 205.43 hours. Factorization parameters were as follows: # Murphy_E = 3.457e-11, selected by Erik Branger # expecting poly E from 3.79e-011 to > 4.36e-011 n: 4131589976238846282719475051326861562109118271263447165958556168132673509082950086453560544999700963305103369847905189661960745054938201 Y0: -224929762465668715996441983 Y1: 348396968046197 c0: 8705468690043008090938616755967440 c1: 75299189220187273274103694676 c2: 1201721440115805392920 c3: -63794579071592351 c4: 1727918254 c5: 7176 skew: 1697200.72 type: gnfs # selected mechanically rlim: 13900000 alim: 13900000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.6 alambda: 2.6 Factor base limits: 13900000/13900000 Large primes per side: 3 Large prime bits: 28/28 Sieved algebraic special-q in [0, 0) Total raw relations: 22091152 Relations: 3557770 relations Pruned matrix : 2128167 x 2128394 Polynomial selection time: 0.00 hours. Total sieving time: 199.97 hours. Total relation processing time: 0.15 hours. Matrix solve time: 4.45 hours. time per square root: 0.87 hours. Prototype def-par.txt line would be: gnfs,135,5,65,2000,1e-05,0.28,250,20,50000,3600,13900000,13900000,28,28,55,55,2.6,2.6,100000 total time: 205.43 hours. Intel64 Family 6 Model 58 Stepping 9, GenuineIntel Windows-post2008Server-6.2.9200 processors: 8, speed: 2.29GHz |
software ソフトウェア | GGNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | Makoto Kamada | April 2, 2017 07:00:00 UTC 2017 年 4 月 2 日 (日) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Serge Batalov | April 3, 2017 04:34:28 UTC 2017 年 4 月 3 日 (月) 13 時 34 分 28 秒 (日本時間) | |
45 | 11e6 | 600 / 4218 | Dmitry Domanov | April 4, 2017 08:26:02 UTC 2017 年 4 月 4 日 (火) 17 時 26 分 2 秒 (日本時間) |
name 名前 | Erik Branger |
---|---|
date 日付 | April 27, 2017 15:15:01 UTC 2017 年 4 月 28 日 (金) 0 時 15 分 1 秒 (日本時間) |
composite number 合成数 | 366293693489894317045560402272579760283504184893522485185958809921754539541697920108501423740777442729832172593769524048238737332975061868813<141> |
prime factors 素因数 | 13576459801119212331341909136040495140450672670519631<53> 26980059518881196240251815224764064292082915374370756305377496325609240318364391011588323<89> |
factorization results 素因数分解の結果 | Number: 35551_277 N = 366293693489894317045560402272579760283504184893522485185958809921754539541697920108501423740777442729832172593769524048238737332975061868813 (141 digits) Divisors found: r1=13576459801119212331341909136040495140450672670519631 (pp53) r2=26980059518881196240251815224764064292082915374370756305377496325609240318364391011588323 (pp89) Version: Msieve v. 1.51 (SVN 845) Total time: 381.49 hours. Factorization parameters were as follows: Murphy_E = 1.917e-11, selected by Erik Branger # expecting poly E from 1.90e-011 to > 2.18e-011 n: 366293693489894317045560402272579760283504184893522485185958809921754539541697920108501423740777442729832172593769524048238737332975061868813 Y0: -2681915622814830395649347993 Y1: 17889177322661 c0: 107757608613480550618740067426757568 c1: 546132615763444518491000395164 c2: 566369085652178796222348 c3: -112891675109343589 c4: -33009584926 c5: 2640 skew: 3472882.2 type: gnfs # selected mechanically rlim: 18900000 alim: 18900000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 18900000/18900000 Large primes per side: 3 Large prime bits: 28/28 Sieved algebraic special-q in [0, 0) Total raw relations: 23276566 Relations: 3669956 relations Pruned matrix : 2279076 x 2279300 Polynomial selection time: 0.00 hours. Total sieving time: 375.53 hours. Total relation processing time: 0.18 hours. Matrix solve time: 5.14 hours. time per square root: 0.63 hours. Prototype def-par.txt line would be: gnfs,140,5,65,2000,1e-05,0.28,250,20,50000,3600,18900000,18900000,28,28,56,56,2.6,2.6,100000 total time: 381.49 hours. Intel64 Family 6 Model 58 Stepping 9, GenuineIntel Windows-post2008Server-6.2.9200 processors: 8, speed: 2.29GHz |
software ソフトウェア | GGNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | Makoto Kamada | April 2, 2017 07:00:00 UTC 2017 年 4 月 2 日 (日) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1200 | Dmitry Domanov | April 3, 2017 23:39:23 UTC 2017 年 4 月 4 日 (火) 8 時 39 分 23 秒 (日本時間) | |
45 | 11e6 | 600 / 4173 | Dmitry Domanov | April 4, 2017 09:57:54 UTC 2017 年 4 月 4 日 (火) 18 時 57 分 54 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | Makoto Kamada | April 2, 2017 07:00:00 UTC 2017 年 4 月 2 日 (日) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2960 | 610 | Marlon Trifunovic | March 1, 2022 18:04:15 UTC 2022 年 3 月 2 日 (水) 3 時 4 分 15 秒 (日本時間) |
2350 | Ignacio Santos | March 25, 2024 16:18:48 UTC 2024 年 3 月 26 日 (火) 1 時 18 分 48 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | Makoto Kamada | April 2, 2017 07:00:00 UTC 2017 年 4 月 2 日 (日) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2960 | 610 | Marlon Trifunovic | March 1, 2022 18:18:38 UTC 2022 年 3 月 2 日 (水) 3 時 18 分 38 秒 (日本時間) |
2350 | Ignacio Santos | March 25, 2024 16:30:54 UTC 2024 年 3 月 26 日 (火) 1 時 30 分 54 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | Makoto Kamada | April 2, 2017 07:00:00 UTC 2017 年 4 月 2 日 (日) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2960 | 610 | Marlon Trifunovic | March 7, 2022 03:53:42 UTC 2022 年 3 月 7 日 (月) 12 時 53 分 42 秒 (日本時間) |
2350 | Ignacio Santos | March 25, 2024 17:06:58 UTC 2024 年 3 月 26 日 (火) 2 時 6 分 58 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | Makoto Kamada | April 2, 2017 07:00:00 UTC 2017 年 4 月 2 日 (日) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2960 | 610 | Marlon Trifunovic | March 9, 2022 21:27:50 UTC 2022 年 3 月 10 日 (木) 6 時 27 分 50 秒 (日本時間) |
2350 | Ignacio Santos | March 25, 2024 17:07:14 UTC 2024 年 3 月 26 日 (火) 2 時 7 分 14 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | Makoto Kamada | April 2, 2017 07:00:00 UTC 2017 年 4 月 2 日 (日) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2960 | 610 | Marlon Trifunovic | March 7, 2022 14:16:18 UTC 2022 年 3 月 7 日 (月) 23 時 16 分 18 秒 (日本時間) |
2350 | Ignacio Santos | March 25, 2024 17:34:50 UTC 2024 年 3 月 26 日 (火) 2 時 34 分 50 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | Makoto Kamada | April 2, 2017 07:00:00 UTC 2017 年 4 月 2 日 (日) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2960 | 610 | Marlon Trifunovic | March 3, 2022 01:39:15 UTC 2022 年 3 月 3 日 (木) 10 時 39 分 15 秒 (日本時間) |
2350 | Ignacio Santos | March 25, 2024 17:35:16 UTC 2024 年 3 月 26 日 (火) 2 時 35 分 16 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | Makoto Kamada | April 2, 2017 07:00:00 UTC 2017 年 4 月 2 日 (日) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2960 | 610 | Marlon Trifunovic | March 1, 2022 18:09:48 UTC 2022 年 3 月 2 日 (水) 3 時 9 分 48 秒 (日本時間) |
2350 | Ignacio Santos | March 25, 2024 17:56:42 UTC 2024 年 3 月 26 日 (火) 2 時 56 分 42 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | Makoto Kamada | April 2, 2017 07:00:00 UTC 2017 年 4 月 2 日 (日) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2960 | 610 | Marlon Trifunovic | March 2, 2022 08:22:00 UTC 2022 年 3 月 2 日 (水) 17 時 22 分 0 秒 (日本時間) |
2350 | Ignacio Santos | March 26, 2024 07:36:21 UTC 2024 年 3 月 26 日 (火) 16 時 36 分 21 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | Makoto Kamada | April 2, 2017 07:00:00 UTC 2017 年 4 月 2 日 (日) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2960 | 610 | Marlon Trifunovic | March 1, 2022 21:55:43 UTC 2022 年 3 月 2 日 (水) 6 時 55 分 43 秒 (日本時間) |
2350 | Ignacio Santos | March 26, 2024 07:36:48 UTC 2024 年 3 月 26 日 (火) 16 時 36 分 48 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | Makoto Kamada | April 2, 2017 07:00:00 UTC 2017 年 4 月 2 日 (日) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2960 | 610 | Marlon Trifunovic | February 23, 2022 23:35:53 UTC 2022 年 2 月 24 日 (木) 8 時 35 分 53 秒 (日本時間) |
2350 | Ignacio Santos | March 26, 2024 07:37:16 UTC 2024 年 3 月 26 日 (火) 16 時 37 分 16 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | Makoto Kamada | April 2, 2017 07:00:00 UTC 2017 年 4 月 2 日 (日) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2960 | 610 | Marlon Trifunovic | March 9, 2022 16:18:21 UTC 2022 年 3 月 10 日 (木) 1 時 18 分 21 秒 (日本時間) |
2350 | Ignacio Santos | March 26, 2024 07:55:56 UTC 2024 年 3 月 26 日 (火) 16 時 55 分 56 秒 (日本時間) |
name 名前 | Marlon Trifunovic |
---|---|
date 日付 | April 15, 2022 00:31:30 UTC 2022 年 4 月 15 日 (金) 9 時 31 分 30 秒 (日本時間) |
composite number 合成数 | 2091503267973856209150326797385620915032679738562091503267973856209150326797385620915032679738562091503267973856209150326797385620915032679738562091503267973856209150326797385620915032679738562091503267973856209150326797385620915032679738562091503267973856209150326797385620915032679738562091503<295> |
prime factors 素因数 | 80102982773466842532093965302949152617023<41> |
composite cofactor 合成数の残り | 26110179615766339682556307662730535493137876935221649973720380294071000542227810245279212548852029181256363568965410264120675932308719515532268683649906470210488337317694792549136299431743066952996462379252627959683986936917968121263584490368147947719761<254> |
factorization results 素因数分解の結果 | Run 45 out of 610: Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:3227232315 Step 1 took 34906ms Step 2 took 11923ms ********** Factor found in step 2: 80102982773466842532093965302949152617023 Found prime factor of 41 digits: 80102982773466842532093965302949152617023 Composite cofactor 26110179615766339682556307662730535493137876935221649973720380294071000542227810245279212548852029181256363568965410264120675932308719515532268683649906470210488337317694792549136299431743066952996462379252627959683986936917968121263584490368147947719761 has 254 digits |
software ソフトウェア | GMP-ECM 7.0.5-dev |
execution environment 実行環境 | Intel Xeon CPU E5-2695 v4 @ 2.10GHz |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | Makoto Kamada | April 2, 2017 07:00:00 UTC 2017 年 4 月 2 日 (日) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2960 | 610 | Marlon Trifunovic | March 11, 2022 02:18:17 UTC 2022 年 3 月 11 日 (金) 11 時 18 分 17 秒 (日本時間) |
2350 | Ignacio Santos | March 26, 2024 08:12:54 UTC 2024 年 3 月 26 日 (火) 17 時 12 分 54 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | Makoto Kamada | April 2, 2017 07:00:00 UTC 2017 年 4 月 2 日 (日) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2960 | 610 | Marlon Trifunovic | March 2, 2022 17:23:28 UTC 2022 年 3 月 3 日 (木) 2 時 23 分 28 秒 (日本時間) |
2350 | Ignacio Santos | March 26, 2024 08:22:25 UTC 2024 年 3 月 26 日 (火) 17 時 22 分 25 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | Makoto Kamada | April 2, 2017 07:00:00 UTC 2017 年 4 月 2 日 (日) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2400 | ebina | October 15, 2021 03:57:06 UTC 2021 年 10 月 15 日 (金) 12 時 57 分 6 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | Makoto Kamada | April 2, 2017 07:00:00 UTC 2017 年 4 月 2 日 (日) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1200 | Dmitry Domanov | April 6, 2017 08:53:15 UTC 2017 年 4 月 6 日 (木) 17 時 53 分 15 秒 (日本時間) | |
45 | 11e6 | 3000 | Dmitry Domanov | April 11, 2017 14:02:05 UTC 2017 年 4 月 11 日 (火) 23 時 2 分 5 秒 (日本時間) | |
50 | 43e6 | 340 / 6829 | Dmitry Domanov | April 13, 2017 12:05:17 UTC 2017 年 4 月 13 日 (木) 21 時 5 分 17 秒 (日本時間) |