name 名前 | Dmitry Domanov |
---|---|
date 日付 | June 12, 2022 21:46:35 UTC 2022 年 6 月 13 日 (月) 6 時 46 分 35 秒 (日本時間) |
composite number 合成数 | 268518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518519<114> |
prime factors 素因数 | 8546942441003797530734370369187814832770555921<46> 31416909657693014974934296743007691860179188305964920252263280085639<68> |
factorization results 素因数分解の結果 | N=268518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518519 ( 114 digits) SNFS difficulty: 114 digits. Divisors found: p46 factor: 8546942441003797530734370369187814832770555921 p68 factor: 31416909657693014974934296743007691860179188305964920252263280085639 Version: Msieve v. 1.54 (SVN 1043M) Total time: 0.48 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 268518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518519 m: 10000000000000000000000000000 deg: 4 c4: 725 c0: 13 skew: 0.37 # Murphy_E = 5.895e-08 type: snfs lss: 1 rlim: 570000 alim: 570000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 570000/570000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [285000, 665001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 70147 x 70372 Total sieving time: 0.47 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.01 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,114.000,4,0,0,0,0,0,0,0,0,570000,570000,25,25,45,45,2.2,2.2,20000 total time: 0.48 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | June 12, 2022 21:55:33 UTC 2022 年 6 月 13 日 (月) 6 時 55 分 33 秒 (日本時間) |
composite number 合成数 | 8055555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555557<115> |
prime factors 素因数 | 4008691516862163533240502453057341578572667340743<49> 2009522439347268194513234656926567816250747723988816075440940954099<67> |
factorization results 素因数分解の結果 | N=8055555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555557 ( 115 digits) SNFS difficulty: 116 digits. Divisors found: p49 factor: 4008691516862163533240502453057341578572667340743 p67 factor: 2009522439347268194513234656926567816250747723988816075440940954099 Version: Msieve v. 1.54 (SVN 1043M) Total time: 0.50 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 8055555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555557 m: 50000000000000000000000000000 deg: 4 c4: 58 c0: 65 skew: 1.03 # Murphy_E = 5.605e-08 type: snfs lss: 1 rlim: 610000 alim: 610000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 610000/610000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [305000, 685001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 68855 x 69080 Total sieving time: 0.49 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.01 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,116.000,4,0,0,0,0,0,0,0,0,610000,610000,25,25,45,45,2.2,2.2,20000 total time: 0.50 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | June 12, 2022 22:06:56 UTC 2022 年 6 月 13 日 (月) 7 時 6 分 56 秒 (日本時間) |
composite number 合成数 | 15371605484733361190497926569048560221254874135289338002369998202695907732445948800780748358337<95> |
prime factors 素因数 | 8013263311168184738154105771777540077147<40> 1918270358507970585336414004075673570597110742120074771<55> |
factorization results 素因数分解の結果 | N=15371605484733361190497926569048560221254874135289338002369998202695907732445948800780748358337 ( 95 digits) SNFS difficulty: 117 digits. Divisors found: p40 factor: 8013263311168184738154105771777540077147 p55 factor: 1918270358507970585336414004075673570597110742120074771 Version: Msieve v. 1.54 (SVN 1043M) Total time: 0.53 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 15371605484733361190497926569048560221254874135289338002369998202695907732445948800780748358337 m: 100000000000000000000000000000 deg: 4 c4: 29 c0: 52 skew: 1.16 # Murphy_E = 5.247e-08 type: snfs lss: 1 rlim: 640000 alim: 640000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 640000/640000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [320000, 720001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 73612 x 73837 Total sieving time: 0.51 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.01 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,117.000,4,0,0,0,0,0,0,0,0,640000,640000,25,25,45,45,2.2,2.2,20000 total time: 0.53 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | June 12, 2022 22:33:22 UTC 2022 年 6 月 13 日 (月) 7 時 33 分 22 秒 (日本時間) |
composite number 合成数 | 22271981823212018585621695753736687894384382131862979486930277290566655404416658104241654701466831801277495687<110> |
prime factors 素因数 | 640061642831711702279854833858211073309649760849<48> 34796620095336477689666004538000214557972134463205709493067863<62> |
factorization results 素因数分解の結果 | N=22271981823212018585621695753736687894384382131862979486930277290566655404416658104241654701466831801277495687 ( 110 digits) SNFS difficulty: 118 digits. Divisors found: p48 factor: 640061642831711702279854833858211073309649760849 p62 factor: 34796620095336477689666004538000214557972134463205709493067863 Version: Msieve v. 1.54 (SVN 1043M) Total time: 0.78 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 22271981823212018585621695753736687894384382131862979486930277290566655404416658104241654701466831801277495687 m: 100000000000000000000000000000 deg: 4 c4: 145 c0: 26 skew: 0.65 # Murphy_E = 4.762e-08 type: snfs lss: 1 rlim: 650000 alim: 650000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 650000/650000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [325000, 575001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 56107 x 56332 Total sieving time: 0.77 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.01 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,118.000,4,0,0,0,0,0,0,0,0,650000,650000,25,25,45,45,2.2,2.2,50000 total time: 0.78 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | June 12, 2022 22:49:04 UTC 2022 年 6 月 13 日 (月) 7 時 49 分 4 秒 (日本時間) |
composite number 合成数 | 69531902181108262728710923786909447964127691647003783662157291199935160916956326079748185279697054926183993<107> |
prime factors 素因数 | 314028585754435067063972134264121273<36> 221419021501058537054264465896814397644698437676562577920277035294976641<72> |
factorization results 素因数分解の結果 | N=69531902181108262728710923786909447964127691647003783662157291199935160916956326079748185279697054926183993 ( 107 digits) SNFS difficulty: 118 digits. Divisors found: p36 factor: 314028585754435067063972134264121273 p72 factor: 221419021501058537054264465896814397644698437676562577920277035294976641 Version: Msieve v. 1.54 (SVN 1043M) Total time: 0.99 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 69531902181108262728710923786909447964127691647003783662157291199935160916956326079748185279697054926183993 m: 100000000000000000000000000000 deg: 4 c4: 725 c0: 13 skew: 0.37 # Murphy_E = 3.831e-08 type: snfs lss: 1 rlim: 670000 alim: 670000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 670000/670000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [335000, 635001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 61959 x 62184 Total sieving time: 0.97 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.01 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,118.000,4,0,0,0,0,0,0,0,0,670000,670000,25,25,45,45,2.2,2.2,50000 total time: 0.99 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | June 12, 2022 17:22:42 UTC 2022 年 6 月 13 日 (月) 2 時 22 分 42 秒 (日本時間) |
composite number 合成数 | 235273855583088329567080851040108424332610004395126012272647134295480955813<75> |
prime factors 素因数 | 1146983189168133389304101445768330689<37> 205124066163274974638892180949874226917<39> |
factorization results 素因数分解の結果 | 1146983189168133389304101445768 330689 (37 dígitos) × 205124066163274974638892180949874226917 (39 dígitos) |
software ソフトウェア | Alpertron |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | June 12, 2022 23:36:29 UTC 2022 年 6 月 13 日 (月) 8 時 36 分 29 秒 (日本時間) |
composite number 合成数 | 296518964258543176640644478834523560257431009230362645920127732271911246376333114430170035868561<96> |
prime factors 素因数 | 11247256364907772909195571<26> 26363670804526435394528469267326807198467920291022443574822617286299691<71> |
factorization results 素因数分解の結果 | N=296518964258543176640644478834523560257431009230362645920127732271911246376333114430170035868561 ( 96 digits) SNFS difficulty: 121 digits. Divisors found: p26 factor: 11247256364907772909195571 p71 factor: 26363670804526435394528469267326807198467920291022443574822617286299691 Version: Msieve v. 1.54 (SVN 1043M) Total time: 0.63 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 296518964258543176640644478834523560257431009230362645920127732271911246376333114430170035868561 m: 1000000000000000000000000000000 deg: 4 c4: 29 c0: 52 skew: 1.16 # Murphy_E = 3.397e-08 type: snfs lss: 1 rlim: 740000 alim: 740000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 740000/740000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [370000, 670001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 67878 x 68103 Total sieving time: 0.62 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.01 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,121.000,4,0,0,0,0,0,0,0,0,740000,740000,25,25,46,46,2.2,2.2,50000 total time: 0.63 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | June 13, 2022 14:29:00 UTC 2022 年 6 月 13 日 (月) 23 時 29 分 0 秒 (日本時間) |
composite number 合成数 | 104149315342029174533046957841923551207965569094838216313953664871158321693609209476179651749926505822197244699<111> |
prime factors 素因数 | 282773505946965298640188375562789<33> 416443111749576985658296049305175869<36> 884427056148505003502839787464001543229739<42> |
factorization results 素因数分解の結果 | N=104149315342029174533046957841923551207965569094838216313953664871158321693609209476179651749926505822197244699 ( 111 digits) SNFS difficulty: 134 digits. Divisors found: p33 factor: 282773505946965298640188375562789 p36 factor: 416443111749576985658296049305175869 p42 factor: 884427056148505003502839787464001543229739 Version: Msieve v. 1.54 (SVN 1043M) Total time: 3.18 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 104149315342029174533046957841923551207965569094838216313953664871158321693609209476179651749926505822197244699 m: 1000000000000000000000000000000000 deg: 4 c4: 725 c0: 13 skew: 0.37 # Murphy_E = 6.497e-09 type: snfs lss: 1 rlim: 1240000 alim: 1240000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1240000/1240000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [620000, 1620001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 178418 x 178643 Total sieving time: 3.11 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.05 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,134.000,4,0,0,0,0,0,0,0,0,1240000,1240000,26,26,47,47,2.3,2.3,100000 total time: 3.18 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) |
name 名前 | Florian Baur |
---|---|
date 日付 | June 14, 2022 09:52:11 UTC 2022 年 6 月 14 日 (火) 18 時 52 分 11 秒 (日本時間) |
composite number 合成数 | 3306600449971992721022035561093231486226826612597436952356764797477049331598996057947078217094320244998029<106> |
prime factors 素因数 | 401415769501747056102804579242367200214911<42> 8237345667999726194119650239537461809408757921067959836821751539<64> |
factorization results 素因数分解の結果 | PID408057 2022-06-14 09:19:18,086 Info:Square Root: finished PID408057 2022-06-14 09:19:18,086 Info:Square Root: Factors: 401415769501747056102804579242367200214911 8237345667999726194119650239537461809408757921067959836821751539 PID408057 2022-06-14 09:19:18,086 Debug:Square Root: Exit SqrtTask.run(sqrt) PID408057 2022-06-14 09:19:18,086 Info:Complete Factorization / Discrete logarithm: Square Root PID408057 2022-06-14 09:19:18,086 Info:Square Root: Total cpu/real time for sqrt: 206.76/21.5946 PID408057 2022-06-14 09:19:18,087 Info:HTTP server: Got notification to stop serving Workunits PID408057 2022-06-14 09:19:18,087 Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 227.34/59.7866 PID408057 2022-06-14 09:19:18,087 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: PID408057 2022-06-14 09:19:18,087 Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 48.599999999999994s PID408057 2022-06-14 09:19:18,087 Info:Polynomial Selection (root optimized): Aggregate statistics: PID408057 2022-06-14 09:19:18,087 Info:Polynomial Selection (root optimized): Total time: 59.86 PID408057 2022-06-14 09:19:18,087 Info:Polynomial Selection (root optimized): Rootsieve time: 59.61 PID408057 2022-06-14 09:19:18,087 Info:Lattice Sieving: Aggregate statistics: PID408057 2022-06-14 09:19:18,087 Info:Lattice Sieving: Total number of relations: 8409907 PID408057 2022-06-14 09:19:18,088 Info:Lattice Sieving: Average J: 1929.26 for 57717 special-q, max bucket fill -bkmult 1.0,1s:1.398490 PID408057 2022-06-14 09:19:18,088 Info:Lattice Sieving: Total time: 4833.47s PID408057 2022-06-14 09:19:18,088 Info:Linear Algebra: Total cpu/real time for bwc: 50907.5/2140.16 PID408057 2022-06-14 09:19:18,088 Info:Linear Algebra: Aggregate statistics: PID408057 2022-06-14 09:19:18,088 Info:Linear Algebra: Krylov: CPU time 400.04, WCT time 143.83, iteration CPU time 0.01, COMM 0.0, cpu-wait 0.01, comm-wait 0.0 (7000 iterations) PID408057 2022-06-14 09:19:18,088 Info:Linear Algebra: Lingen CPU time 50201.02, WCT time 1880.14 PID408057 2022-06-14 09:19:18,088 Info:Linear Algebra: Mksol: CPU time 195.84, WCT time 78.22, iteration CPU time 0.01, COMM 0.0, cpu-wait 0.01, comm-wait 0.0 (4000 iterations) PID408057 2022-06-14 09:19:18,088 Info:Polynomial Selection (size optimized): Aggregate statistics: PID408057 2022-06-14 09:19:18,088 Info:Polynomial Selection (size optimized): potential collisions: 3935.23 PID408057 2022-06-14 09:19:18,089 Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 2614/31.500/37.399/43.630/1.164 PID408057 2022-06-14 09:19:18,089 Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 2060/29.680/33.089/37.810/0.983 PID408057 2022-06-14 09:19:18,089 Info:Polynomial Selection (size optimized): Total time: 142.23 PID408057 2022-06-14 09:19:18,089 Info:Generate Free Relations: Total cpu/real time for freerel: 130.25/31.195 PID408057 2022-06-14 09:19:18,089 Info:Filtering - Merging: Total cpu/real time for merge: 48.79/15.8147 PID408057 2022-06-14 09:19:18,089 Info:Filtering - Merging: Total cpu/real time for replay: 10.09/8.1869 PID408057 2022-06-14 09:19:18,089 Info:Generate Factor Base: Total cpu/real time for makefb: 3.26/1.38856 PID408057 2022-06-14 09:19:18,089 Info:Quadratic Characters: Total cpu/real time for characters: 11.62/5.69917 PID408057 2022-06-14 09:19:18,089 Info:Filtering - Singleton removal: Total cpu/real time for purge: 48.22/19.8109 PID408057 2022-06-14 09:19:18,089 Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 85.86/29.0275 PID408057 2022-06-14 09:19:18,090 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: PID408057 2022-06-14 09:19:18,090 Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 28.7s PID408057 2022-06-14 09:19:18,090 Info:Square Root: Total cpu/real time for sqrt: 206.76/21.5946 PID408057 2022-06-14 09:19:18,091 Info:HTTP server: Shutting down HTTP server PID408057 2022-06-14 09:19:18,513 Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire Complete Factorization 61334/4901.95 |
software ソフトウェア | CADO |
execution environment 実行環境 | Epyc 7401P. 128 GB |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | June 12, 2022 21:13:06 UTC 2022 年 6 月 13 日 (月) 6 時 13 分 6 秒 (日本時間) |
composite number 合成数 | 1083108389350883666451381561607675265547388449061168164072177224903286106698081417599246483<91> |
prime factors 素因数 | 278603934667251755474201<24> 3887627756027512596472507038578951415832739463707144315185892127883<67> |
factorization results 素因数分解の結果 | Sun Jun 12 20:08:46 2022 Msieve v. 1.53 (SVN 1005) Sun Jun 12 20:08:46 2022 random seeds: 717add48 fdc34342 Sun Jun 12 20:08:46 2022 factoring 1083108389350883666451381561607675265547388449061168164072177224903286106698081417599246483 (91 digits) Sun Jun 12 20:08:46 2022 searching for 15-digit factors Sun Jun 12 20:08:47 2022 commencing quadratic sieve (91-digit input) Sun Jun 12 20:08:47 2022 using multiplier of 3 Sun Jun 12 20:08:47 2022 using generic 32kb sieve core Sun Jun 12 20:08:47 2022 sieve interval: 36 blocks of size 32768 Sun Jun 12 20:08:47 2022 processing polynomials in batches of 6 Sun Jun 12 20:08:47 2022 using a sieve bound of 1640299 (62353 primes) Sun Jun 12 20:08:47 2022 using large prime bound of 144346312 (27 bits) Sun Jun 12 20:08:47 2022 using double large prime bound of 486328996156784 (42-49 bits) Sun Jun 12 20:08:47 2022 using trial factoring cutoff of 49 bits Sun Jun 12 20:08:47 2022 polynomial 'A' values have 12 factors Sun Jun 12 23:08:56 2022 62680 relations (15909 full + 46771 combined from 698677 partial), need 62449 Sun Jun 12 23:08:56 2022 begin with 714586 relations Sun Jun 12 23:08:56 2022 reduce to 155766 relations in 9 passes Sun Jun 12 23:08:56 2022 attempting to read 155766 relations Sun Jun 12 23:08:57 2022 recovered 155766 relations Sun Jun 12 23:08:57 2022 recovered 136985 polynomials Sun Jun 12 23:08:57 2022 attempting to build 62680 cycles Sun Jun 12 23:08:57 2022 found 62680 cycles in 5 passes Sun Jun 12 23:08:57 2022 distribution of cycle lengths: Sun Jun 12 23:08:57 2022 length 1 : 15909 Sun Jun 12 23:08:57 2022 length 2 : 11710 Sun Jun 12 23:08:57 2022 length 3 : 11088 Sun Jun 12 23:08:57 2022 length 4 : 8460 Sun Jun 12 23:08:57 2022 length 5 : 6096 Sun Jun 12 23:08:57 2022 length 6 : 3963 Sun Jun 12 23:08:57 2022 length 7 : 2450 Sun Jun 12 23:08:57 2022 length 9+: 3004 Sun Jun 12 23:08:57 2022 largest cycle: 17 relations Sun Jun 12 23:08:57 2022 matrix is 62353 x 62680 (16.4 MB) with weight 3797246 (60.58/col) Sun Jun 12 23:08:57 2022 sparse part has weight 3797246 (60.58/col) Sun Jun 12 23:08:57 2022 filtering completed in 4 passes Sun Jun 12 23:08:57 2022 matrix is 58824 x 58888 (15.5 MB) with weight 3583207 (60.85/col) Sun Jun 12 23:08:57 2022 sparse part has weight 3583207 (60.85/col) Sun Jun 12 23:08:57 2022 saving the first 48 matrix rows for later Sun Jun 12 23:08:57 2022 matrix includes 64 packed rows Sun Jun 12 23:08:57 2022 matrix is 58776 x 58888 (10.0 MB) with weight 2805121 (47.63/col) Sun Jun 12 23:08:57 2022 sparse part has weight 2029723 (34.47/col) Sun Jun 12 23:08:57 2022 using block size 8192 and superblock size 1179648 for processor cache size 12288 kB Sun Jun 12 23:08:58 2022 commencing Lanczos iteration Sun Jun 12 23:08:58 2022 memory use: 6.3 MB Sun Jun 12 23:09:01 2022 lanczos halted after 931 iterations (dim = 58774) Sun Jun 12 23:09:01 2022 recovered 16 nontrivial dependencies Sun Jun 12 23:09:02 2022 p24 factor: 278603934667251755474201 Sun Jun 12 23:09:02 2022 p67 factor: 3887627756027512596472507038578951415832739463707144315185892127883 Sun Jun 12 23:09:02 2022 elapsed time 03:00:16 |
software ソフトウェア | Msieve 1.53 |
execution environment 実行環境 | Windows 10 21H2 Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz 2.59 GHz |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | June 17, 2022 12:11:00 UTC 2022 年 6 月 17 日 (金) 21 時 11 分 0 秒 (日本時間) |
composite number 合成数 | 1686639627072478737170929089436631458025901358136021375628366835798980968844274716632242220827111657961476897<109> |
prime factors 素因数 | 6148454774750223473<19> 979744607865121109026998943<27> 279990589449288939830455428661086012823853455244460886752111023<63> |
factorization results 素因数分解の結果 | 1686639627072478737170929089436631458025901358136021375628366835798980968844274716632242220827111657961476897=6148454774750223473*979744607865121109026998943*279990589449288939830455428661086012823853455244460886752111023 cado polynomial n: 1686639627072478737170929089436631458025901358136021375628366835798980968844274716632242220827111657961476897 skew: 1.03 type: snfs c0: 65 c4: 58 Y0: 50000000000000000000000000000000000 Y1: -1 # f(x) = 58*x^4+65 # g(x) = -x+50000000000000000000000000000000000 cado parameters (extracts) tasks.lim0 = 1540000 tasks.lim1 = 1540000 tasks.lpb0 = 26 tasks.lpb1 = 26 tasks.sieve.mfb0 = 48 tasks.sieve.mfb1 = 48 tasks.sieve.lambda0 = 2.3 tasks.sieve.lambda1 = 2.3 tasks.I = 12 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 6148454774750223473 279990589449288939830455428661086012823853455244460886752111023 979744607865121109026998943 Info:Square Root: Total cpu/real time for sqrt: 63.29/49.2902 Info:Filtering - Singleton removal: Total cpu/real time for purge: 44.43/63.3371 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 6076120 Info:Lattice Sieving: Average J: 1891.22 for 113183 special-q, max bucket fill -bkmult 1.0,1s:1.330970 Info:Lattice Sieving: Total time: 19359.2s Info:Linear Algebra: Total cpu/real time for bwc: 565.6/533.85 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 247.86, WCT time 242.87, iteration CPU time 0.03, COMM 0.01, cpu-wait 0.01, comm-wait 0.0 (5504 iterations) Info:Linear Algebra: Lingen CPU time 171.27, WCT time 146.23 Info:Linear Algebra: Mksol: CPU time 130.85, WCT time 130.38, iteration CPU time 0.03, COMM 0.01, cpu-wait 0.01, comm-wait 0.0 (2688 iterations) Info:Generate Free Relations: Total cpu/real time for freerel: 36.33/25.1988 Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 23.18/41.4521 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 41.3s Info:Filtering - Merging: Merged matrix has 171609 rows and total weight 29297596 (170.7 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 39.13/30.9198 Info:Filtering - Merging: Total cpu/real time for replay: 5.74/6.30812 Info:Generate Factor Base: Total cpu/real time for makefb: 0.8/1.1149 Info:Quadratic Characters: Total cpu/real time for characters: 5.4/4.40456 Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 50.8/76.3696 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 71.3s Info:Square Root: Total cpu/real time for sqrt: 63.29/49.2902 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 18651.8/10730.9 Info:root: Cleaning up computation data in /tmp/cado.kfo0ilx6 6148454774750223473 279990589449288939830455428661086012823853455244460886752111023 979744607865121109026998943 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 20.04.1 LTS [5.4.0-105-generic|libc 2.31 (Ubuntu GLIBC 2.31-0ubuntu9.7)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | June 17, 2022 21:25:55 UTC 2022 年 6 月 18 日 (土) 6 時 25 分 55 秒 (日本時間) |
composite number 合成数 | 38730711940618751241538449564306293562295970697650532791494248250794919079848468090754114030560274309384767136595263<116> |
prime factors 素因数 | 18092742041722735662029<23> 2140676733869518602345897758015589470908558718896220721819032099207771635884538705067765113147<94> |
factorization results 素因数分解の結果 | 38730711940618751241538449564306293562295970697650532791494248250794919079848468090754114030560274309384767136595263=18092742041722735662029*2140676733869518602345897758015589470908558718896220721819032099207771635884538705067765113147 cado polynomial n: 38730711940618751241538449564306293562295970697650532791494248250794919079848468090754114030560274309384767136595263 skew: 1.16 type: snfs c0: 52 c4: 29 Y0: 100000000000000000000000000000000000 Y1: -1 # f(x) = 29*x^4+52 # g(x) = -x+100000000000000000000000000000000000 cado parameters (extracts) tasks.lim0 = 1600000 tasks.lim1 = 1600000 tasks.lpb0 = 26 tasks.lpb1 = 26 tasks.sieve.mfb0 = 48 tasks.sieve.mfb1 = 48 tasks.sieve.lambda0 = 2.3 tasks.sieve.lambda1 = 2.3 tasks.I = 12 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 18092742041722735662029 2140676733869518602345897758015589470908558718896220721819032099207771635884538705067765113147 Info:Square Root: Total cpu/real time for sqrt: 25.95/20.7825 Info:Filtering - Singleton removal: Total cpu/real time for purge: 42.31/62.4404 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 6047135 Info:Lattice Sieving: Average J: 1890.98 for 121841 special-q, max bucket fill -bkmult 1.0,1s:1.319860 Info:Lattice Sieving: Total time: 20593s Info:Linear Algebra: Total cpu/real time for bwc: 478.56/420.7 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 280.32, WCT time 273.43, iteration CPU time 0.03, COMM 0.01, cpu-wait 0.01, comm-wait 0.0 (5760 iterations) Info:Linear Algebra: Lingen CPU time 25.9, WCT time 8.7 Info:Linear Algebra: Mksol: CPU time 155.92, WCT time 123.17, iteration CPU time 0.03, COMM 0.01, cpu-wait 0.01, comm-wait 0.0 (2816 iterations) Info:Generate Free Relations: Total cpu/real time for freerel: 36.22/25.6019 Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 22.96/39.8995 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 39.6s Info:Filtering - Merging: Merged matrix has 180210 rows and total weight 30727585 (170.5 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 40.4/31.981 Info:Filtering - Merging: Total cpu/real time for replay: 5.97/6.69313 Info:Generate Factor Base: Total cpu/real time for makefb: 0.82/1.09663 Info:Quadratic Characters: Total cpu/real time for characters: 5.65/4.59914 Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 50.5/74.426 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 69.9s Info:Square Root: Total cpu/real time for sqrt: 25.95/20.7825 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 19643.7/11148.1 Info:root: Cleaning up computation data in /tmp/cado.av0vho44 18092742041722735662029 2140676733869518602345897758015589470908558718896220721819032099207771635884538705067765113147 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 20.04.1 LTS [5.4.0-105-generic|libc 2.31 (Ubuntu GLIBC 2.31-0ubuntu9.7)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) |
name 名前 | ebina |
---|---|
date 日付 | June 16, 2022 23:20:49 UTC 2022 年 6 月 17 日 (金) 8 時 20 分 49 秒 (日本時間) |
composite number 合成数 | 111155824424711605150451083848559198643096934293818723575407332714266281512731520746764959376096702865329<105> |
prime factors 素因数 | 603398281573269866087569730824657099049<39> 184216342371558607784575016112399333847250208746774754409541499721<66> |
factorization results 素因数分解の結果 | Z:\ALL\ECM>ecm70dev-svn2256-x64-nehalem\ecm -primetest -one -nn -sigma 1:1281620908 3e6 GMP-ECM 7.0-dev [configured with MPIR 2.6.0, --enable-openmp] [ECM] Input number is 111155824424711605150451083848559198643096934293818723575407332714266281512731520746764959376096702865329 (105 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:1281620908 Step 1 took 4250ms Step 2 took 4328ms ********** Factor found in step 2: 603398281573269866087569730824657099049 Found probable prime factor of 39 digits: 603398281573269866087569730824657099049 Probable prime cofactor 184216342371558607784575016112399333847250208746774754409541499721 has 66 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | June 18, 2022 04:49:54 UTC 2022 年 6 月 18 日 (土) 13 時 49 分 54 秒 (日本時間) |
composite number 合成数 | 168065150504591457877892330574547884042497332129817291831162525092858023218628500186108252622395309954156488175461<114> |
prime factors 素因数 | 11837538390045737729527<23> 4721931324907942879729231<25> 244044732739949371579178500198817<33> 12320466811537908440237043294937709<35> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 168065150504591457877892330574547884042497332129817291831162525092858023218628500186108252622395309954156488175461 (114 digits) Using B1=10000, B2=1873422, polynomial x^1, sigma=1:2952005409 Step 1 took 22ms Step 2 took 24ms ********** Factor found in step 2: 11837538390045737729527 Found prime factor of 23 digits: 11837538390045737729527 Composite cofactor 14197643544363794869816634377098810037588578129491034558019402256153690227602998221924685443 has 92 digits Using B1=300000, B2=172085560, polynomial Dickson(3), sigma=1:2709072158 Step 1 took 410ms Step 2 took 309ms ********** Factor found in step 2: 244044732739949371579178500198817 Found prime factor of 33 digits: 244044732739949371579178500198817 Composite cofactor 58176398174889534593875422059822359797332604954134931471779 has 59 digits Using B1=300000, B2=172085560, polynomial Dickson(3), sigma=1:3716831531 Step 1 took 321ms ********** Factor found in step 1: 4721931324907942879729231 Found prime factor of 25 digits: 4721931324907942879729231 Prime cofactor 12320466811537908440237043294937709 has 35 digits |
software ソフトウェア | GMP-ECM 7.0.4 |
execution environment 実行環境 | Linux Ubuntu 20.04.1 LTS [5.4.0-105-generic|libc 2.31 (Ubuntu GLIBC 2.31-0ubuntu9.7)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | June 19, 2022 02:20:17 UTC 2022 年 6 月 19 日 (日) 11 時 20 分 17 秒 (日本時間) |
composite number 合成数 | 781172086249259129004068803231333145506783902815249066324803434574524492874964210540327913197279376445188803461<111> |
prime factors 素因数 | 340771739830606455617626620324117308186453<42> 2292361704164700990401801381642817432493283192371275918975700482349937<70> |
factorization results 素因数分解の結果 | 781172086249259129004068803231333145506783902815249066324803434574524492874964210540327913197279376445188803461=340771739830606455617626620324117308186453*2292361704164700990401801381642817432493283192371275918975700482349937 cado polynomial n: 781172086249259129004068803231333145506783902815249066324803434574524492874964210540327913197279376445188803461 skew: 1.16 type: snfs c0: 52 c4: 29 Y0: 10000000000000000000000000000000000000 Y1: -1 # f(x) = 29*x^4+52 # g(x) = -x+10000000000000000000000000000000000000 cado parameters (extracts) tasks.lim0 = 2200000 tasks.lim1 = 2200000 tasks.lpb0 = 26 tasks.lpb1 = 26 tasks.sieve.mfb0 = 49 tasks.sieve.mfb1 = 49 tasks.sieve.lambda0 = 2.3 tasks.sieve.lambda1 = 2.3 tasks.I = 12 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 2292361704164700990401801381642817432493283192371275918975700482349937 340771739830606455617626620324117308186453 Info:Square Root: Total cpu/real time for sqrt: 92.75/29.0495 Info:Filtering - Singleton removal: Total cpu/real time for purge: 30.83/31.3582 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 6035707 Info:Lattice Sieving: Average J: 1892.07 for 218438 special-q, max bucket fill -bkmult 1.0,1s:1.312890 Info:Lattice Sieving: Total time: 18599.3s Info:Generate Free Relations: Total cpu/real time for freerel: 36.21/11.494 Info:Linear Algebra: Total cpu/real time for bwc: 1474.02/383.71 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 904.53, WCT time 230.84, iteration CPU time 0.02, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (9984 iterations) Info:Linear Algebra: Lingen CPU time 47.98, WCT time 12.24 Info:Linear Algebra: Mksol: CPU time 492.48, WCT time 128.89, iteration CPU time 0.02, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (4992 iterations) Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 23.16/22.3805 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 22.3s Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 50.48/45.7973 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 38.8s Info:Filtering - Merging: Merged matrix has 315980 rows and total weight 53919751 (170.6 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 63.25/17.8385 Info:Filtering - Merging: Total cpu/real time for replay: 10.32/8.52003 Info:Generate Factor Base: Total cpu/real time for makefb: 1.12/0.610017 Info:Quadratic Characters: Total cpu/real time for characters: 10.04/3.9869 Info:Square Root: Total cpu/real time for sqrt: 92.75/29.0495 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 35628.8/9949.26 Info:root: Cleaning up computation data in /tmp/cado.vwdbn5xw 2292361704164700990401801381642817432493283192371275918975700482349937 340771739830606455617626620324117308186453 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 20.04.1 LTS [5.4.0-105-generic|libc 2.31 (Ubuntu GLIBC 2.31-0ubuntu9.7)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | June 12, 2022 22:45:38 UTC 2022 年 6 月 13 日 (月) 7 時 45 分 38 秒 (日本時間) |
composite number 合成数 | 305849487459538222115913158994906867776415165578475283353730330186669434077201472971131605136077710237773719471475211215437425936964631565270179<144> |
prime factors 素因数 | 8686259257842114586461212221118446356241708777856221656629<58> 35210725167270557885062411697476515552598483236980563528506329073801926078564907704951<86> |
factorization results 素因数分解の結果 | Number: n N=305849487459538222115913158994906867776415165578475283353730330186669434077201472971131605136077710237773719471475211215437425936964631565270179 ( 144 digits) SNFS difficulty: 150 digits. Divisors found: Mon Jun 13 08:40:29 2022 p58 factor: 8686259257842114586461212221118446356241708777856221656629 Mon Jun 13 08:40:29 2022 p86 factor: 35210725167270557885062411697476515552598483236980563528506329073801926078564907704951 Mon Jun 13 08:40:29 2022 elapsed time 00:05:42 (Msieve 1.54 - dependency 3) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.348). Factorization parameters were as follows: # # N = 29x10^149+52 = 32(148)8 # n: 305849487459538222115913158994906867776415165578475283353730330186669434077201472971131605136077710237773719471475211215437425936964631565270179 m: 10000000000000000000000000000000000000 deg: 4 c4: 145 c0: 26 skew: 0.65 # Murphy_E = 1.275e-09 type: snfs lss: 1 rlim: 2200000 alim: 2200000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2200000/2200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved special-q in [100000, 6700000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1481906 hash collisions in 14139607 relations (14042770 unique) Msieve: matrix is 450399 x 450646 (78.8 MB) Sieving start time : 2022/06/13 07:49:10 Sieving end time : 2022/06/13 08:34:32 Total sieving time: 0hrs 45min 22secs. Total relation processing time: 0hrs 1min 42sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 37sec. Prototype def-par.txt line would be: snfs,150,4,0,0,0,0,0,0,0,0,2200000,2200000,27,27,49,49,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- [ 0.117895] smpboot: CPU0: AMD Ryzen 7 2700 Eight-Core Processor (family: 0x17, model: 0x8, stepping: 0x2) [ 0.000000] Memory: 16197196K/16727236K available (14339K kernel code, 2401K rwdata, 9504K rodata, 2752K init, 4948K bss, 530040K reserved, 0K cma-reserved) [ 0.154151] x86/mm: Memory block size: 128MB [ 0.000004] Calibrating delay loop (skipped), value calculated using timer frequency.. 6399.32 BogoMIPS (lpj=12798644) [ 0.152036] smpboot: Total of 16 processors activated (102389.15 BogoMIPS) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) |
name 名前 | Erik Branger |
---|---|
date 日付 | June 18, 2022 19:06:49 UTC 2022 年 6 月 19 日 (日) 4 時 6 分 49 秒 (日本時間) |
composite number 合成数 | 342154598799926550262661670548914851382417942517129063869147575577422535148334771230979644256933703365013144224112650149987<123> |
prime factors 素因数 | 378491774145768405069577802239<30> 191107076403262668234538571694253<33> 4730305257563902273925566599614444954326796936823554992208561<61> |
factorization results 素因数分解の結果 | Number: 32228_152 N = 342154598799926550262661670548914851382417942517129063869147575577422535148334771230979644256933703365013144224112650149987 (123 digits) SNFS difficulty: 153 digits. Divisors found: r1=378491774145768405069577802239 (pp30) r2=191107076403262668234538571694253 (pp33) r3=4730305257563902273925566599614444954326796936823554992208561 (pp61) Version: Msieve v. 1.52 (SVN unknown) Total time: 7.09 hours. Factorization parameters were as follows: n: 342154598799926550262661670548914851382417942517129063869147575577422535148334771230979644256933703365013144224112650149987 m: 1000000000000000000000000000000 deg: 5 c5: 725 c0: 13 skew: 0.45 # Murphy_E = 1.088e-09 type: snfs lss: 1 rlim: 2500000 alim: 2500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 27/27 Sieved rational special-q in [0, 0) Total raw relations: 7692671 Relations: 760506 relations Pruned matrix : 436914 x 437141 Polynomial selection time: 0.00 hours. Total sieving time: 6.96 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.06 hours. time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,153,5,0,0,0,0,0,0,0,0,2500000,2500000,27,27,50,50,2.4,2.4,100000 total time: 7.09 hours. Intel64 Family 6 Model 165 Stepping 5, GenuineIntel Windows-10-10.0.22000-SP0 processors: 16, speed: 3.79GHz |
software ソフトウェア | GGNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | June 19, 2022 09:55:03 UTC 2022 年 6 月 19 日 (日) 18 時 55 分 3 秒 (日本時間) |
composite number 合成数 | 271731121542229480869970622701539384461755802851947502019669830411404475503653498227370342450570135720179080447655251112992292742132723<135> |
prime factors 素因数 | 16929958860482015215930801463<29> 16050311981354276384492136403516812532137109317628060167208515108608798890504626376281774355555493790154021<107> |
factorization results 素因数分解の結果 | ********** Factor found in step 1: 16929958860482015215930801463 Found prime factor of 29 digits: 16929958860482015215930801463 Prime cofactor 16050311981354276384492136403516812532137109317628060167208515108608798890504626376281774355555493790154021 has 107 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | June 19, 2022 09:57:30 UTC 2022 年 6 月 19 日 (日) 18 時 57 分 30 秒 (日本時間) |
composite number 合成数 | 2200993769917292885835846461465770821552568020302111987468409157525753307020996159844042574133449225219166497556809952234431103282523779<136> |
prime factors 素因数 | 187158148159216108761194186335836281417<39> 11760074522883714266934529516743855522964501280030535905370674932376870684470504100910139782996587<98> |
factorization results 素因数分解の結果 | 2200993769917292885835846461465770821552568020302111987468409157525753307020996159844042574133449225219166497556809952234431103282523779=187158148159216108761194186335836281417*11760074522883714266934529516743855522964501280030535905370674932376870684470504100910139782996587 cado polynomial n: 2200993769917292885835846461465770821552568020302111987468409157525753307020996159844042574133449225219166497556809952234431103282523779 skew: 0.28 type: snfs c0: 13 c5: 7250 Y0: 10000000000000000000000000000000 Y1: -1 # f(x) = 7250*x^5+13 # g(x) = -x+10000000000000000000000000000000 cado parameters (extracts) tasks.lim0 = 3100000 tasks.lim1 = 3100000 tasks.lpb0 = 27 tasks.lpb1 = 27 tasks.sieve.mfb0 = 50 tasks.sieve.mfb1 = 50 tasks.sieve.lambda0 = 2.4 tasks.sieve.lambda1 = 2.4 tasks.I = 12 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 11760074522883714266934529516743855522964501280030535905370674932376870684470504100910139782996587 187158148159216108761194186335836281417 Info:Square Root: Total cpu/real time for sqrt: 81.24/26.094 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 11646907 Info:Lattice Sieving: Average J: 1895.53 for 352620 special-q, max bucket fill -bkmult 1.0,1s:1.234230 Info:Lattice Sieving: Total time: 41908.5s Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 44.62/49.0437 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 49.0s Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 100.5/85.2449 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 76.0s Info:Filtering - Merging: Merged matrix has 396003 rows and total weight 67559630 (170.6 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 80.64/22.5602 Info:Filtering - Merging: Total cpu/real time for replay: 12.55/10.5443 Info:Linear Algebra: Total cpu/real time for bwc: 2149.85/556.6 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 1322.5, WCT time 339.0, iteration CPU time 0.03, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (12416 iterations) Info:Linear Algebra: Lingen CPU time 64.38, WCT time 16.41 Info:Linear Algebra: Mksol: CPU time 727.71, WCT time 186.28, iteration CPU time 0.03, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (6272 iterations) Info:Generate Free Relations: Total cpu/real time for freerel: 61.84/31.1579 Info:Generate Factor Base: Total cpu/real time for makefb: 1.37/1.57103 Info:Quadratic Characters: Total cpu/real time for characters: 12.24/4.8432 Info:Square Root: Total cpu/real time for sqrt: 81.24/26.094 Info:Filtering - Singleton removal: Total cpu/real time for purge: 77.05/70.4618 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 75372/21987.9 Info:root: Cleaning up computation data in /tmp/cado.022kjdro 11760074522883714266934529516743855522964501280030535905370674932376870684470504100910139782996587 187158148159216108761194186335836281417 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 20.04.1 LTS [5.4.0-105-generic|libc 2.31 (Ubuntu GLIBC 2.31-0ubuntu9.7)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | June 13, 2022 00:47:19 UTC 2022 年 6 月 13 日 (月) 9 時 47 分 19 秒 (日本時間) |
composite number 合成数 | 6183081467999654936382752831228358300098931275028080193734601680428351690584059625539168955850053490508275462915891440801101222103888280804193<142> |
prime factors 素因数 | 2311123058442422501401660214729193383<37> 679954406860509130604139523540689794597<39> 3934613750176162492436739095389208188091758985250043505229048803243<67> |
factorization results 素因数分解の結果 | Number: n N=6183081467999654936382752831228358300098931275028080193734601680428351690584059625539168955850053490508275462915891440801101222103888280804193 ( 142 digits) SNFS difficulty: 160 digits. Divisors found: Mon Jun 13 10:18:20 2022 found factor: 3934613750176162492436739095389208188091758985250043505229048803243 Mon Jun 13 10:19:17 2022 p37 factor: 2311123058442422501401660214729193383 Mon Jun 13 10:19:17 2022 p39 factor: 679954406860509130604139523540689794597 Mon Jun 13 10:19:17 2022 p67 factor: 3934613750176162492436739095389208188091758985250043505229048803243 Mon Jun 13 10:19:17 2022 elapsed time 00:08:42 (Msieve 1.54 - dependency 4) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.344). Factorization parameters were as follows: # # N = 29x10^159+52 = 32(158)8 # n: 6183081467999654936382752831228358300098931275028080193734601680428351690584059625539168955850053490508275462915891440801101222103888280804193 m: 50000000000000000000000000000000 deg: 5 c5: 116 c0: 65 skew: 0.89 # Murphy_E = 5.089e-10 type: snfs lss: 1 rlim: 3300000 alim: 3300000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3300000/3300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved special-q in [100000, 14450000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1103646 hash collisions in 12948450 relations (12690583 unique) Msieve: matrix is 490161 x 490387 (168.9 MB) Sieving start time : 2022/06/13 08:43:37 Sieving end time : 2022/06/13 10:10:04 Total sieving time: 1hrs 26min 27secs. Total relation processing time: 0hrs 3min 49sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 1min 54sec. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,3300000,3300000,27,27,51,51,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- [ 0.117895] smpboot: CPU0: AMD Ryzen 7 2700 Eight-Core Processor (family: 0x17, model: 0x8, stepping: 0x2) [ 0.000000] Memory: 16197196K/16727236K available (14339K kernel code, 2401K rwdata, 9504K rodata, 2752K init, 4948K bss, 530040K reserved, 0K cma-reserved) [ 0.154151] x86/mm: Memory block size: 128MB [ 0.000004] Calibrating delay loop (skipped), value calculated using timer frequency.. 6399.32 BogoMIPS (lpj=12798644) [ 0.152036] smpboot: Total of 16 processors activated (102389.15 BogoMIPS) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | June 20, 2022 05:16:55 UTC 2022 年 6 月 20 日 (月) 14 時 16 分 55 秒 (日本時間) |
composite number 合成数 | 475623476081938863015760099272406236651578885398728255131890091543489134308215543495631333165938789913632370358802953436985098819<129> |
prime factors 素因数 | 4686141321868323186232231489170047403401<40> 101495760245726430812035741087497529484873417305278882429980723627037283347626664480154219<90> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 475623476081938863015760099272406236651578885398728255131890091543489134308215543495631333165938789913632370358802953436985098819 (129 digits) Using B1=20190000, B2=70272629710, polynomial Dickson(12), sigma=1:983492798 Step 1 took 29772ms Step 2 took 13927ms ********** Factor found in step 2: 4686141321868323186232231489170047403401 Found prime factor of 40 digits: 4686141321868323186232231489170047403401 Prime cofactor 101495760245726430812035741087497529484873417305278882429980723627037283347626664480154219 has 90 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | June 20, 2022 00:19:21 UTC 2022 年 6 月 20 日 (月) 9 時 19 分 21 秒 (日本時間) |
composite number 合成数 | 52021185887957417472178884087160396487819927832367040007260806963944861850100517208080536772568570638310968250908510708263715209<128> |
prime factors 素因数 | 106084086264062090442048381169<30> 490376904962611138896460849853519353052591562401900991339446828413734500248035703444115666190363161<99> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 52021185887957417472178884087160396487819927832367040007260806963944861850100517208080536772568570638310968250908510708263715209 (128 digits) Using B1=15680000, B2=46848203230, polynomial Dickson(12), sigma=1:4012793397 Step 1 took 22393ms Step 2 took 10138ms ********** Factor found in step 2: 106084086264062090442048381169 Found prime factor of 30 digits: 106084086264062090442048381169 Prime cofactor 490376904962611138896460849853519353052591562401900991339446828413734500248035703444115666190363161 has 99 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | June 19, 2022 07:36:36 UTC 2022 年 6 月 19 日 (日) 16 時 36 分 36 秒 (日本時間) |
composite number 合成数 | 16881326263404108257921778559565575544185981449998369738883193063220638270068624005135937060707398788826523605252512878597901370749344515169721311<146> |
prime factors 素因数 | 8596991161179303813082512746895944921069<40> 1963631920390201918820523287035305148713335866114039996206864727222276259938145662162526091647684471409019<106> |
factorization results 素因数分解の結果 | Number: n N=16881326263404108257921778559565575544185981449998369738883193063220638270068624005135937060707398788826523605252512878597901370749344515169721311 ( 146 digits) SNFS difficulty: 162 digits. Divisors found: Sun Jun 19 17:28:57 2022 p40 factor: 8596991161179303813082512746895944921069 Sun Jun 19 17:28:57 2022 p106 factor: 1963631920390201918820523287035305148713335866114039996206864727222276259938145662162526091647684471409019 Sun Jun 19 17:28:57 2022 elapsed time 00:07:54 (Msieve 1.54 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.315). Factorization parameters were as follows: # # N = 29x10^162+52 = 32(161)8 # n: 16881326263404108257921778559565575544185981449998369738883193063220638270068624005135937060707398788826523605252512878597901370749344515169721311 m: 100000000000000000000000000000000 deg: 5 c5: 725 c0: 13 skew: 0.45 # Murphy_E = 4.48e-10 type: snfs lss: 1 rlim: 3600000 alim: 3600000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3600000/3600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved special-q in [100000, 7400000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1053272 hash collisions in 12326370 relations (12067796 unique) Msieve: matrix is 500233 x 500458 (172.2 MB) Sieving start time : 2022/06/19 16:37:28 Sieving end time : 2022/06/19 17:20:49 Total sieving time: 0hrs 43min 21secs. Total relation processing time: 0hrs 4min 0sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 1min 0sec. Prototype def-par.txt line would be: snfs,162,5,0,0,0,0,0,0,0,0,3600000,3600000,27,27,51,51,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- [ 0.118494] smpboot: CPU0: AMD Ryzen 7 2700 Eight-Core Processor (family: 0x17, model: 0x8, stepping: 0x2) [ 0.000000] Memory: 16197192K/16727236K available (14339K kernel code, 2401K rwdata, 9504K rodata, 2752K init, 4948K bss, 530044K reserved, 0K cma-reserved) [ 0.153548] x86/mm: Memory block size: 128MB [ 0.000005] Calibrating delay loop (skipped), value calculated using timer frequency.. 6399.34 BogoMIPS (lpj=12798684) [ 0.152038] smpboot: Total of 16 processors activated (102389.47 BogoMIPS) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | June 14, 2022 14:53:03 UTC 2022 年 6 月 14 日 (火) 23 時 53 分 3 秒 (日本時間) |
composite number 合成数 | 81991221850151712033257901409231193758262736064036840635075731616154419439949063660246471267448580194765906579767280639554148699279947435144943516529995781693<158> |
prime factors 素因数 | 68465256354173896597161255528828166929958003<44> 649665115943665715545338694493150029779242561289637<51> 1843349018452722442617719373551158479208881762084693976178179363<64> |
factorization results 素因数分解の結果 | Number: n N=81991221850151712033257901409231193758262736064036840635075731616154419439949063660246471267448580194765906579767280639554148699279947435144943516529995781693 ( 158 digits) SNFS difficulty: 163 digits. Divisors found: Wed Jun 15 00:48:05 2022 found factor: 68465256354173896597161255528828166929958003 Wed Jun 15 00:48:46 2022 found factor: 68465256354173896597161255528828166929958003 Wed Jun 15 00:49:28 2022 p44 factor: 68465256354173896597161255528828166929958003 Wed Jun 15 00:49:28 2022 p51 factor: 649665115943665715545338694493150029779242561289637 Wed Jun 15 00:49:28 2022 p64 factor: 1843349018452722442617719373551158479208881762084693976178179363 Wed Jun 15 00:49:28 2022 elapsed time 00:10:38 (Msieve 1.54 - dependency 3) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.328). Factorization parameters were as follows: # # N = 29x10^163+52 = 32(162)8 # n: 81991221850151712033257901409231193758262736064036840635075731616154419439949063660246471267448580194765906579767280639554148699279947435144943516529995781693 m: 100000000000000000000000000000000 deg: 5 c5: 7250 c0: 13 skew: 0.28 # Murphy_E = 2.993e-10 type: snfs lss: 1 rlim: 3800000 alim: 3800000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3800000/3800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved special-q in [100000, 14700000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1199220 hash collisions in 12158860 relations (11705001 unique) Msieve: matrix is 610097 x 610324 (210.2 MB) Sieving start time : 2022/06/14 23:40:14 Sieving end time : 2022/06/15 00:38:35 Total sieving time: 0hrs 58min 21secs. Total relation processing time: 0hrs 5min 42sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 2min 4sec. Prototype def-par.txt line would be: snfs,163,5,0,0,0,0,0,0,0,0,3800000,3800000,27,27,51,51,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- [ 0.117895] smpboot: CPU0: AMD Ryzen 7 2700 Eight-Core Processor (family: 0x17, model: 0x8, stepping: 0x2) [ 0.000000] Memory: 16197196K/16727236K available (14339K kernel code, 2401K rwdata, 9504K rodata, 2752K init, 4948K bss, 530040K reserved, 0K cma-reserved) [ 0.154151] x86/mm: Memory block size: 128MB [ 0.000004] Calibrating delay loop (skipped), value calculated using timer frequency.. 6399.32 BogoMIPS (lpj=12798644) [ 0.152036] smpboot: Total of 16 processors activated (102389.15 BogoMIPS) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | June 21, 2022 06:33:19 UTC 2022 年 6 月 21 日 (火) 15 時 33 分 19 秒 (日本時間) |
composite number 合成数 | 3416206901478786272904951077961374734446254258483565625842960825115900381956366077273376333349235205846144693567565834302609375662489<133> |
prime factors 素因数 | 1235300662402169183509184723888878195758613<43> 1438971331700147440383946449559837048923971<43> 1921849387937337482029143947015718860061410490343<49> |
factorization results 素因数分解の結果 | Number: n N=2765486173087303790879446813773840236437791853365272205511001269701309560486659139636712053 ( 91 digits) SNFS difficulty: 166 digits. Divisors found: Tue Jun 21 16:29:44 2022 p43 factor: 1438971331700147440383946449559837048923971 Tue Jun 21 16:29:44 2022 p49 factor: 1921849387937337482029143947015718860061410490343 Tue Jun 21 16:29:44 2022 elapsed time 00:09:23 (Msieve 1.54 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.328). Factorization parameters were as follows: # # N = 29x10^165+52 = 32(164)8 # # n: 3416206901478786272904951077961374734446254258483565625842960825115900381956366077273376333349235205846144693567565834302609375662489 # # GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] # Input number is 3416206901478786272904951077961374734446254258483565625842960825115900381956366077273376333349235205846144693567565834302609375662489 (133 digits) # Using B1=31880000, B2=144291357226, polynomial Dickson(12), sigma=1:1382352291 # Step 1 took 46332ms # Step 2 took 17957ms # ********** Factor found in step 2: 1235300662402169183509184723888878195758613 # Found prime factor of 43 digits: 1235300662402169183509184723888878195758613 # Composite cofactor 2765486173087303790879446813773840236437791853365272205511001269701309560486659139636712053 has 91 digits # n: 2765486173087303790879446813773840236437791853365272205511001269701309560486659139636712053 m: 1000000000000000000000000000000000 deg: 5 c5: 29 c0: 52 skew: 1.12 # Murphy_E = 3.221e-10 type: snfs lss: 1 rlim: 4200000 alim: 4200000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4200000/4200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved special-q in [100000, 14900000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1092025 hash collisions in 11849757 relations (11498296 unique) Msieve: matrix is 623425 x 623651 (215.6 MB) Sieving start time : 2022/06/21 15:14:13 Sieving end time : 2022/06/21 16:19:59 Total sieving time: 1hrs 5min 46secs. Total relation processing time: 0hrs 5min 57sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 36sec. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4200000,4200000,27,27,51,51,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- [ 0.118494] smpboot: CPU0: AMD Ryzen 7 2700 Eight-Core Processor (family: 0x17, model: 0x8, stepping: 0x2) [ 0.000000] Memory: 16197192K/16727236K available (14339K kernel code, 2401K rwdata, 9504K rodata, 2752K init, 4948K bss, 530044K reserved, 0K cma-reserved) [ 0.153548] x86/mm: Memory block size: 128MB [ 0.000005] Calibrating delay loop (skipped), value calculated using timer frequency.. 6399.34 BogoMIPS (lpj=12798684) [ 0.152038] smpboot: Total of 16 processors activated (102389.47 BogoMIPS) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | June 22, 2022 15:08:17 UTC 2022 年 6 月 23 日 (木) 0 時 8 分 17 秒 (日本時間) |
composite number 合成数 | 59757765844137296389684372938107143465395719630100674322003769751388160972859373117519782585038368316107106659393258881594441<125> |
prime factors 素因数 | 14338038370193176131920847266134466730360415770446849<53> 4167778346050846918614488538663366185419254915665871631810743361238747209<73> |
factorization results 素因数分解の結果 | 59757765844137296389684372938107143465395719630100674322003769751388160972859373117519782585038368316107106659393258881594441=14338038370193176131920847266134466730360415770446849*4167778346050846918614488538663366185419254915665871631810743361238747209 cado polynomial n: 59757765844137296389684372938107143465395719630100674322003769751388160972859373117519782585038368316107106659393258881594441 skew: 0.71 type: snfs c0: 26 c5: 145 Y0: 1000000000000000000000000000000000 Y1: -1 # f(x) = 145*x^5+26 # g(x) = -x+1000000000000000000000000000000000 cado parameters (extracts) tasks.lim0 = 4300000 tasks.lim1 = 4300000 tasks.lpb0 = 27 tasks.lpb1 = 27 tasks.sieve.mfb0 = 51 tasks.sieve.mfb1 = 51 tasks.sieve.lambda0 = 2.4 tasks.sieve.lambda1 = 2.4 tasks.I = 12 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 14338038370193176131920847266134466730360415770446849 4167778346050846918614488538663366185419254915665871631810743361238747209 Info:Square Root: Total cpu/real time for sqrt: 242.66/75.2564 Info:Filtering - Singleton removal: Total cpu/real time for purge: 57.45/58.4392 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 11642000 Info:Lattice Sieving: Average J: 1893.33 for 469393 special-q, max bucket fill -bkmult 1.0,1s:1.246460 Info:Lattice Sieving: Total time: 57362.9s Info:Linear Algebra: Total cpu/real time for bwc: 6115.22/1573.29 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 3828.61, WCT time 978.91, iteration CPU time 0.05, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (19968 iterations) Info:Linear Algebra: Lingen CPU time 105.54, WCT time 26.85 Info:Linear Algebra: Mksol: CPU time 2084.2, WCT time 532.53, iteration CPU time 0.05, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (9984 iterations) Info:Generate Free Relations: Total cpu/real time for freerel: 59.38/16.8788 Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 45.66/50.1874 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 50.1s Info:Filtering - Merging: Merged matrix has 632719 rows and total weight 107868383 (170.5 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 135.83/38.1551 Info:Filtering - Merging: Total cpu/real time for replay: 21.29/17.9065 Info:Generate Factor Base: Total cpu/real time for makefb: 1.89/1.05266 Info:Quadratic Characters: Total cpu/real time for characters: 20.74/8.17562 Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 103.74/89.4551 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 80.5s Info:Square Root: Total cpu/real time for sqrt: 242.66/75.2564 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 112680/30798.6 Info:root: Cleaning up computation data in /tmp/cado.9x632mxf 14338038370193176131920847266134466730360415770446849 4167778346050846918614488538663366185419254915665871631810743361238747209 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 20.04.1 LTS [5.4.0-105-generic|libc 2.31 (Ubuntu GLIBC 2.31-0ubuntu9.7)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | June 15, 2022 01:15:58 UTC 2022 年 6 月 15 日 (水) 10 時 15 分 58 秒 (日本時間) |
composite number 合成数 | 249482337858170817644603649974958460869370349201355717121608184860592035261097004096718372081637367914503625236790283217217089245355091933221801039541760591<156> |
prime factors 素因数 | 1802601506524963667388809<25> 138401270028404813370450721008707497354156625272036305559195982399067663289220371634754900244344502040528041933857320439525867896599<132> |
factorization results 素因数分解の結果 | Number: n N=249482337858170817644603649974958460869370349201355717121608184860592035261097004096718372081637367914503625236790283217217089245355091933221801039541760591 ( 156 digits) SNFS difficulty: 167 digits. Divisors found: Wed Jun 15 11:08:41 2022 p25 factor: 1802601506524963667388809 Wed Jun 15 11:08:41 2022 p132 factor: 138401270028404813370450721008707497354156625272036305559195982399067663289220371634754900244344502040528041933857320439525867896599 Wed Jun 15 11:08:41 2022 elapsed time 00:09:19 (Msieve 1.54 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.352). Factorization parameters were as follows: # # N = 29x10^167+52 = 32(166)8 # n: 249482337858170817644603649974958460869370349201355717121608184860592035261097004096718372081637367914503625236790283217217089245355091933221801039541760591 m: 1000000000000000000000000000000000 deg: 5 c5: 725 c0: 13 skew: 0.45 # Murphy_E = 2.854e-10 type: snfs lss: 1 rlim: 4400000 alim: 4400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4400000/4400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved special-q in [100000, 15000000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1208877 hash collisions in 12168546 relations (11693838 unique) Msieve: matrix is 583979 x 584205 (201.9 MB) Sieving start time : 2022/06/15 09:43:55 Sieving end time : 2022/06/15 10:59:07 Total sieving time: 1hrs 15min 12secs. Total relation processing time: 0hrs 5min 12sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 1min 14sec. Prototype def-par.txt line would be: snfs,167,5,0,0,0,0,0,0,0,0,4400000,4400000,27,27,51,51,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- [ 0.118494] smpboot: CPU0: AMD Ryzen 7 2700 Eight-Core Processor (family: 0x17, model: 0x8, stepping: 0x2) [ 0.000000] Memory: 16197192K/16727236K available (14339K kernel code, 2401K rwdata, 9504K rodata, 2752K init, 4948K bss, 530044K reserved, 0K cma-reserved) [ 0.153548] x86/mm: Memory block size: 128MB [ 0.000005] Calibrating delay loop (skipped), value calculated using timer frequency.. 6399.34 BogoMIPS (lpj=12798684) [ 0.152038] smpboot: Total of 16 processors activated (102389.47 BogoMIPS) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | June 17, 2022 18:32:25 UTC 2022 年 6 月 18 日 (土) 3 時 32 分 25 秒 (日本時間) |
composite number 合成数 | 26637572969774624100069352762249995742251439038532076589488611641111344281390369550080303775143600381441101293251977125581046564472414479347<140> |
prime factors 素因数 | 43945292827836625902022698196310437140122520719221<50> 606153042923891238809183346904926291418126273415328472245585046086983304597841291994308807<90> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 26637572969774624100069352762249995742251439038532076589488611641111344281390369550080303775143600381441101293251977125581046564472414479347 (140 digits) Using B1=38260000, B2=192391699516, polynomial Dickson(12), sigma=1:1348519592 Step 1 took 75186ms Step 2 took 25863ms ********** Factor found in step 2: 43945292827836625902022698196310437140122520719221 Found prime factor of 50 digits: 43945292827836625902022698196310437140122520719221 Prime cofactor 606153042923891238809183346904926291418126273415328472245585046086983304597841291994308807 has 90 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | June 13, 2022 07:21:49 UTC 2022 年 6 月 13 日 (月) 16 時 21 分 49 秒 (日本時間) |
composite number 合成数 | 60285425340377470937456182914450093111701666484784473810603534017111118160007793767944931148002103350444931221<110> |
prime factors 素因数 | 3101933370231560179003605107729441<34> 62714196107637411153813423502269193<35> 309894597283500599883234896102869873087117<42> |
factorization results 素因数分解の結果 | 60285425340377470937456182914450093111701666484784473810603534017111118160007793767944931148002103350444931221=3101933370231560179003605107729441*62714196107637411153813423502269193*309894597283500599883234896102869873087117 cado polynomial n: 60285425340377470937456182914450093111701666484784473810603534017111118160007793767944931148002103350444931221 skew: 10891.651 c0: 20319497796484474694856049 c1: 2093345971410893656710 c2: -672912139365935570 c3: -29970367492041 c4: 5977974130 c5: 29400 Y0: 732429658379926861788 Y1: 46715242286561501 # MurphyE (Bf=6.711e+07,Bg=3.355e+07,area=4.194e+12) = 1.505e-06 # f(x) = 29400*x^5+5977974130*x^4-29970367492041*x^3-672912139365935570*x^2+2093345971410893656710*x+20319497796484474694856049 # g(x) = 46715242286561501*x+732429658379926861788 cado parameters (extracts) tasks.lim0 = 1400000 tasks.lim1 = 2500000 tasks.lpb0 = 25 tasks.lpb1 = 26 tasks.sieve.mfb0 = 50 tasks.sieve.mfb1 = 52 tasks.I = 12 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 62714196107637411153813423502269193 3101933370231560179003605107729441 309894597283500599883234896102869873087117 Info:Square Root: Total cpu/real time for sqrt: 177.32/135.633 Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 85.93/140.354 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 108.09999999999998s Info:Square Root: Total cpu/real time for sqrt: 177.32/135.633 Info:Filtering - Singleton removal: Total cpu/real time for purge: 62.5/102.873 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 5193694 Info:Lattice Sieving: Average J: 1896.73 for 88425 special-q, max bucket fill -bkmult 1.0,1s:1.309820 Info:Lattice Sieving: Total time: 17569.9s Info:Generate Factor Base: Total cpu/real time for makefb: 2.26/1.93163 Info:Linear Algebra: Total cpu/real time for bwc: 1440.08/1407.66 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 711.05, WCT time 704.15, iteration CPU time 0.05, COMM 0.01, cpu-wait 0.01, comm-wait 0.0 (9472 iterations) Info:Linear Algebra: Lingen CPU time 312.39, WCT time 284.4 Info:Linear Algebra: Mksol: CPU time 390.96, WCT time 395.14, iteration CPU time 0.06, COMM 0.01, cpu-wait 0.01, comm-wait 0.0 (4736 iterations) Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 20.88/36.9237 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 35.5s Info:Polynomial Selection (root optimized): Aggregate statistics: Info:Polynomial Selection (root optimized): Total time: 243.79 Info:Polynomial Selection (root optimized): Rootsieve time: 242.75 Info:Generate Free Relations: Total cpu/real time for freerel: 63.67/43.6904 Info:Filtering - Merging: Merged matrix has 299810 rows and total weight 46843631 (156.2 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 49.09/39.9257 Info:Filtering - Merging: Total cpu/real time for replay: 10.93/12.382 Info:Quadratic Characters: Total cpu/real time for characters: 11.6/10.1798 Info:Polynomial Selection (size optimized): Aggregate statistics: Info:Polynomial Selection (size optimized): potential collisions: 11711.3 Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 11926/31.790/39.013/44.280/1.113 Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 9249/31.010/34.550/39.620/0.865 Info:Polynomial Selection (size optimized): Total time: 724.51 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 18329.2/11149.8 Info:root: Cleaning up computation data in /tmp/cado.3rf03cy9 62714196107637411153813423502269193 3101933370231560179003605107729441 309894597283500599883234896102869873087117 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 20.04.1 LTS [5.4.0-105-generic|libc 2.31 (Ubuntu GLIBC 2.31-0ubuntu9.7)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | June 19, 2022 04:26:32 UTC 2022 年 6 月 19 日 (日) 13 時 26 分 32 秒 (日本時間) |
composite number 合成数 | 11092462707271321357723934455518688513901571337597305093684202374958939875270371802040581336105846757383905291792420754164502365684113664117143<143> |
prime factors 素因数 | 1580257406356779113045695703<28> 40311983064047705026953961759842146711698215520628107169<56> 174126944765782738804030756904058867863274976344801558418849<60> |
factorization results 素因数分解の結果 | Number: n N=11092462707271321357723934455518688513901571337597305093684202374958939875270371802040581336105846757383905291792420754164502365684113664117143 ( 143 digits) SNFS difficulty: 173 digits. Divisors found: Sun Jun 19 14:18:32 2022 found factor: 40311983064047705026953961759842146711698215520628107169 Sun Jun 19 14:21:25 2022 p28 factor: 1580257406356779113045695703 Sun Jun 19 14:21:25 2022 p56 factor: 40311983064047705026953961759842146711698215520628107169 Sun Jun 19 14:21:25 2022 p60 factor: 174126944765782738804030756904058867863274976344801558418849 Sun Jun 19 14:21:25 2022 elapsed time 00:24:57 (Msieve 1.54 - dependency 3) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.322). Factorization parameters were as follows: # # N = 29x10^173+52 = 32(172)8 # n: 11092462707271321357723934455518688513901571337597305093684202374958939875270371802040581336105846757383905291792420754164502365684113664117143 m: 10000000000000000000000000000000000 deg: 5 c5: 7250 c0: 13 skew: 0.28 # Murphy_E = 1.208e-10 type: snfs lss: 1 rlim: 5500000 alim: 5500000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5500000/5500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved special-q in [100000, 22750000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1325716 hash collisions in 11840934 relations (11200525 unique) Msieve: matrix is 1051537 x 1051762 (365.1 MB) Sieving start time : 2022/06/19 12:01:14 Sieving end time : 2022/06/19 13:56:14 Total sieving time: 1hrs 55min 0secs. Total relation processing time: 0hrs 17min 22sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 4min 22sec. Prototype def-par.txt line would be: snfs,173,5,0,0,0,0,0,0,0,0,5500000,5500000,27,27,52,52,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- [ 0.118494] smpboot: CPU0: AMD Ryzen 7 2700 Eight-Core Processor (family: 0x17, model: 0x8, stepping: 0x2) [ 0.000000] Memory: 16197192K/16727236K available (14339K kernel code, 2401K rwdata, 9504K rodata, 2752K init, 4948K bss, 530044K reserved, 0K cma-reserved) [ 0.153548] x86/mm: Memory block size: 128MB [ 0.000005] Calibrating delay loop (skipped), value calculated using timer frequency.. 6399.34 BogoMIPS (lpj=12798684) [ 0.152038] smpboot: Total of 16 processors activated (102389.47 BogoMIPS) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | June 15, 2022 09:44:42 UTC 2022 年 6 月 15 日 (水) 18 時 44 分 42 秒 (日本時間) |
composite number 合成数 | 65726050025488206355261287554287394998431941847825319454158676106715825077819639522898874217229914511537236328767602520449225123232946810219339<143> |
prime factors 素因数 | 36413006399357441889114542071565618193303684113<47> 1805015749170550055574834814290696546092781797117883360346372705030299505356248099136043960559003<97> |
factorization results 素因数分解の結果 | Number: n N=65726050025488206355261287554287394998431941847825319454158676106715825077819639522898874217229914511537236328767602520449225123232946810219339 ( 143 digits) SNFS difficulty: 176 digits. Divisors found: Wed Jun 15 19:40:15 2022 p47 factor: 36413006399357441889114542071565618193303684113 Wed Jun 15 19:40:15 2022 p97 factor: 1805015749170550055574834814290696546092781797117883360346372705030299505356248099136043960559003 Wed Jun 15 19:40:15 2022 elapsed time 00:21:10 (Msieve 1.54 - dependency 3) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.326). Factorization parameters were as follows: # # N = 29x10^175+52 = 32(174)8 # n: 65726050025488206355261287554287394998431941847825319454158676106715825077819639522898874217229914511537236328767602520449225123232946810219339 m: 100000000000000000000000000000000000 deg: 5 c5: 29 c0: 52 skew: 1.12 # Murphy_E = 1.291e-10 type: snfs lss: 1 rlim: 6100000 alim: 6100000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 6100000/6100000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved special-q in [100000, 15850000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 4328256 hash collisions in 30466490 relations (27696152 unique) Msieve: matrix is 887242 x 887469 (302.4 MB) Sieving start time : 2022/06/15 17:35:19 Sieving end time : 2022/06/15 19:18:38 Total sieving time: 1hrs 43min 19secs. Total relation processing time: 0hrs 11min 56sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 2min 15sec. Prototype def-par.txt line would be: snfs,176,5,0,0,0,0,0,0,0,0,6100000,6100000,28,28,53,53,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- [ 0.118494] smpboot: CPU0: AMD Ryzen 7 2700 Eight-Core Processor (family: 0x17, model: 0x8, stepping: 0x2) [ 0.000000] Memory: 16197192K/16727236K available (14339K kernel code, 2401K rwdata, 9504K rodata, 2752K init, 4948K bss, 530044K reserved, 0K cma-reserved) [ 0.153548] x86/mm: Memory block size: 128MB [ 0.000005] Calibrating delay loop (skipped), value calculated using timer frequency.. 6399.34 BogoMIPS (lpj=12798684) [ 0.152038] smpboot: Total of 16 processors activated (102389.47 BogoMIPS) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | June 14, 2022 17:38:21 UTC 2022 年 6 月 15 日 (水) 2 時 38 分 21 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | June 14, 2022 17:54:55 UTC 2022 年 6 月 15 日 (水) 2 時 54 分 55 秒 (日本時間) |
composite number 合成数 | 56546415214450296434223034934187599579305446630063216300849380697810684279191240335987275857864831411755312823719792604453470574648027848242179280252497<152> |
prime factors 素因数 | 10903834119838187198487257250483474833<38> 5185920346272604955391171899880977912035874421850967295976309767480972920165497191103990403779827095617761206563009<115> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:1070683018 Step 1 took 5938ms Step 2 took 3391ms ********** Factor found in step 2: 10903834119838187198487257250483474833 Found prime factor of 38 digits: 10903834119838187198487257250483474833 Prime cofactor 5185920346272604955391171899880977912035874421850967295976309767480972920165497191103990403779827095617761206563009 has 115 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | June 26, 2022 15:10:02 UTC 2022 年 6 月 27 日 (月) 0 時 10 分 2 秒 (日本時間) |
composite number 合成数 | 1963572979301207759388818689095660686394531188756848765827655025352909198977684998334129551456354882607226938000973647032701106105006994568426574147<148> |
prime factors 素因数 | 7249925402808864151778839927317299534920666111127653<52> 270840439067201127233794187044211790001458240807831000656544967422425879945903866213350551870599<96> |
factorization results 素因数分解の結果 | 1963572979301207759388818689095660686394531188756848765827655025352909198977684998334129551456354882607226938000973647032701106105006994568426574147=7249925402808864151778839927317299534920666111127653*270840439067201127233794187044211790001458240807831000656544967422425879945903866213350551870599 cado polynomial n: 1963572979301207759388818689095660686394531188756848765827655025352909198977684998334129551456354882607226938000973647032701106105006994568426574147 skew: 0.28 type: snfs c0: 13 c5: 7250 Y0: 100000000000000000000000000000000000 Y1: -1 # f(x) = 7250*x^5+13 # g(x) = -x+100000000000000000000000000000000000 cado parameters (extracts) tasks.lim0 = 6700000 tasks.lim1 = 6700000 tasks.lpb0 = 28 tasks.lpb1 = 28 tasks.sieve.mfb0 = 53 tasks.sieve.mfb1 = 53 tasks.sieve.lambda0 = 2.5 tasks.sieve.lambda1 = 2.5 tasks.I = 12 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 7249925402808864151778839927317299534920666111127653 270840439067201127233794187044211790001458240807831000656544967422425879945903866213350551870599 Info:Square Root: Total cpu/real time for sqrt: 316.83/99.5847 Info:Generate Free Relations: Total cpu/real time for freerel: 119.4/32.5643 Info:Filtering - Singleton removal: Total cpu/real time for purge: 108.11/114.076 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 22423202 Info:Lattice Sieving: Average J: 1895.36 for 1181992 special-q, max bucket fill -bkmult 1.0,1s:1.167220 Info:Lattice Sieving: Total time: 185010s Info:Linear Algebra: Total cpu/real time for bwc: 21827.8/5610.2 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 13879.0, WCT time 3557.2, iteration CPU time 0.09, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (37120 iterations) Info:Linear Algebra: Lingen CPU time 227.8, WCT time 57.81 Info:Linear Algebra: Mksol: CPU time 7525.68, WCT time 1922.29, iteration CPU time 0.1, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (18688 iterations) Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 91.37/105.72 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 105.6s Info:Filtering - Merging: Merged matrix has 1180355 rows and total weight 200828198 (170.1 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 283.43/79.0577 Info:Filtering - Merging: Total cpu/real time for replay: 42.35/35.7171 Info:Generate Factor Base: Total cpu/real time for makefb: 2.92/1.59246 Info:Quadratic Characters: Total cpu/real time for characters: 39.85/15.8055 Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 214.55/179.444 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 165.8s Info:Square Root: Total cpu/real time for sqrt: 316.83/99.5847 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 366805/99117.3 Info:root: Cleaning up computation data in /tmp/cado.bl_w3kv0 7249925402808864151778839927317299534920666111127653 270840439067201127233794187044211790001458240807831000656544967422425879945903866213350551870599 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 20.04.1 LTS [5.4.0-105-generic|libc 2.31 (Ubuntu GLIBC 2.31-0ubuntu9.7)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | June 15, 2022 19:20:58 UTC 2022 年 6 月 16 日 (木) 4 時 20 分 58 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | June 15, 2022 19:43:48 UTC 2022 年 6 月 16 日 (木) 4 時 43 分 48 秒 (日本時間) |
composite number 合成数 | 149165208499856135639621887790730604738223769343369787758460783607053892510899919199608233196873003821215879484151287708132958658510473604055965636151893909<156> |
prime factors 素因数 | 125832832831326201560773<24> 1185423590517158867524010252057699503989564558278307015532898644711741142909421629153061159690681738529555855415203733538093901490833<133> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:3274113837 Step 1 took 7109ms Step 2 took 3719ms ********** Factor found in step 2: 125832832831326201560773 Found prime factor of 24 digits: 125832832831326201560773 Prime cofactor 1185423590517158867524010252057699503989564558278307015532898644711741142909421629153061159690681738529555855415203733538093901490833 has 133 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) |
name 名前 | Erik Branger |
---|---|
date 日付 | August 15, 2022 15:58:56 UTC 2022 年 8 月 16 日 (火) 0 時 58 分 56 秒 (日本時間) |
composite number 合成数 | 1714680345881411504270561172643175931517614389388933339748341377262785627560239531292617303274255883783450720862390237601369511476208679137062084063<148> |
prime factors 素因数 | 133118723249419087638622038378406282274161262022706556285321485809559033<72> 12880835272651205665055216225135276297476611781841459761805122425737092085911<77> |
factorization results 素因数分解の結果 | Number: 32228_181 N = 1714680345881411504270561172643175931517614389388933339748341377262785627560239531292617303274255883783450720862390237601369511476208679137062084063 (148 digits) SNFS difficulty: 183 digits. Divisors found: r1=133118723249419087638622038378406282274161262022706556285321485809559033 (pp72) r2=12880835272651205665055216225135276297476611781841459761805122425737092085911 (pp77) Version: Msieve v. 1.52 (SVN unknown) Total time: 8.02 hours. Factorization parameters were as follows: n: 1714680345881411504270561172643175931517614389388933339748341377262785627560239531292617303274255883783450720862390237601369511476208679137062084063 m: 1000000000000000000000000000000000000000000000000000000000000 deg: 3 c3: 145 c0: 26 skew: 1.00 type: snfs lss: 1 rlim: 10000000 alim: 10000000 lpbr: 29 lpba: 26 mfbr: 58 mfba: 52 rlambda: 2.8 alambda: 2.8 side: 1 maxa: 10000000 maxb: 10000000 Number of cores used: 8 Number of threads per core: 1 Factor base limits: 10000000/10000000 Large primes per side: 3 Large prime bits: 29/26 Total raw relations: 17838718 Relations: 4547126 relations Total pre-computation time approximately 1000 CPU-days. Pre-computation saved approximately 18 G rational relations. Total batch smoothness checking time: 1.67 hours. Total relation processing time: 0.28 hours. Pruned matrix : 3486049 x 3486297 Matrix solve time: 5.87 hours. time per square root: 0.20 hours. Prototype def-par.txt line would be: snfs,183,3,0,0,0,0,0,0,0,0,10000000,10000000,29,26,58,52,2.8,2.8,100000 total time: 8.02 hours. Intel64 Family 6 Model 165 Stepping 5, GenuineIntel Windows-10-10.0.22000-SP0 processors: 16, speed: 3.79GHz |
software ソフトウェア | GGNFS, NFS_factory, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | June 16, 2022 15:00:39 UTC 2022 年 6 月 17 日 (金) 0 時 0 分 39 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | June 29, 2022 14:38:40 UTC 2022 年 6 月 29 日 (水) 23 時 38 分 40 秒 (日本時間) |
composite number 合成数 | 6273911682435574131977866923878047848995458192452667234303182677243598571793820669058324192627549642144110240741701371572127499231053784182397496543337<151> |
prime factors 素因数 | 3628229375894985145233928377998177997209474439223914053085460310479<67> 1729193783644941517068444112537794807671966350952916388435743374033622622872211116103<85> |
factorization results 素因数分解の結果 | 6273911682435574131977866923878047848995458192452667234303182677243598571793820669058324192627549642144110240741701371572127499231053784182397496543337=3628229375894985145233928377998177997209474439223914053085460310479*1729193783644941517068444112537794807671966350952916388435743374033622622872211116103 cado polynomial n: 6273911682435574131977866923878047848995458192452667234303182677243598571793820669058324192627549642144110240741701371572127499231053784182397496543337 skew: 0.45 type: snfs c0: 13 c5: 725 Y0: 1000000000000000000000000000000000000 Y1: -1 # f(x) = 725*x^5+13 # g(x) = -x+1000000000000000000000000000000000000 cado parameters (extracts) tasks.lim0 = 7800000 tasks.lim1 = 7800000 tasks.lpb0 = 28 tasks.lpb1 = 28 tasks.sieve.mfb0 = 53 tasks.sieve.mfb1 = 53 tasks.sieve.lambda0 = 2.5 tasks.sieve.lambda1 = 2.5 tasks.I = 12 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 3628229375894985145233928377998177997209474439223914053085460310479 1729193783644941517068444112537794807671966350952916388435743374033622622872211116103 Info:Square Root: Total cpu/real time for sqrt: 306.33/96.5447 Info:Quadratic Characters: Total cpu/real time for characters: 41.85/17.1679 Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 215.78/182.381 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 168.2s Info:Square Root: Total cpu/real time for sqrt: 306.33/96.5447 Info:Linear Algebra: Total cpu/real time for bwc: 24261.8/6226.56 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 15433.8, WCT time 3947.4, iteration CPU time 0.09, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (39168 iterations) Info:Linear Algebra: Lingen CPU time 238.85, WCT time 60.65 Info:Linear Algebra: Mksol: CPU time 8378.46, WCT time 2140.09, iteration CPU time 0.1, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (19712 iterations) Info:Filtering - Singleton removal: Total cpu/real time for purge: 109.45/114.439 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 22420031 Info:Lattice Sieving: Average J: 1894.06 for 1182266 special-q, max bucket fill -bkmult 1.0,1s:1.156320 Info:Lattice Sieving: Total time: 202172s Info:Generate Free Relations: Total cpu/real time for freerel: 118.9/32.518 Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 91.77/106.456 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 106.4s Info:Filtering - Merging: Merged matrix has 1245785 rows and total weight 211871289 (170.1 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 305.28/84.8445 Info:Filtering - Merging: Total cpu/real time for replay: 44.67/38.1513 Info:Generate Factor Base: Total cpu/real time for makefb: 3.37/1.83464 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 402745/108425 Info:root: Cleaning up computation data in /tmp/cado.5s29ufb_ 3628229375894985145233928377998177997209474439223914053085460310479 1729193783644941517068444112537794807671966350952916388435743374033622622872211116103 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 20.04.1 LTS [5.4.0-105-generic|libc 2.31 (Ubuntu GLIBC 2.31-0ubuntu9.7)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | June 18, 2022 08:11:59 UTC 2022 年 6 月 18 日 (土) 17 時 11 分 59 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | June 19, 2022 13:26:48 UTC 2022 年 6 月 19 日 (日) 22 時 26 分 48 秒 (日本時間) |
composite number 合成数 | 39253704198357664469893656180920935240079826819067499481318199880478849911206620754249470861293608254030679713630539047098719936521378825414079953255037117839<158> |
prime factors 素因数 | 1977861703337093556615781<25> 55144100812190177796308017<26> 205622808386748564421747979<27> 1750307598392327003194394014691299063003286209415075003191797206434997642835740633<82> |
factorization results 素因数分解の結果 | Number: n N=39253704198357664469893656180920935240079826819067499481318199880478849911206620754249470861293608254030679713630539047098719936521378825414079953255037117839 ( 158 digits) SNFS difficulty: 183 digits. Divisors found: Sun Jun 19 23:13:56 2022 found factor: 1977861703337093556615781 Sun Jun 19 23:17:53 2022 found factor: 55144100812190177796308017 Sun Jun 19 23:23:09 2022 p25 factor: 1977861703337093556615781 Sun Jun 19 23:23:09 2022 p26 factor: 55144100812190177796308017 Sun Jun 19 23:23:09 2022 p27 factor: 205622808386748564421747979 Sun Jun 19 23:23:09 2022 p82 factor: 1750307598392327003194394014691299063003286209415075003191797206434997642835740633 Sun Jun 19 23:23:09 2022 elapsed time 00:34:38 (Msieve 1.54 - dependency 8) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.347). Factorization parameters were as follows: # # N = 29x10^183+52 = 32(182)8 # n: 39253704198357664469893656180920935240079826819067499481318199880478849911206620754249470861293608254030679713630539047098719936521378825414079953255037117839 m: 1000000000000000000000000000000000000 deg: 5 c5: 7250 c0: 13 skew: 0.28 # Murphy_E = 4.785e-11 type: snfs lss: 1 rlim: 8100000 alim: 8100000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 8100000/8100000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved special-q in [100000, 16850000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 3579338 hash collisions in 28545562 relations (26544524 unique) Msieve: matrix is 1029780 x 1030008 (353.6 MB) Sieving start time : 2022/06/19 18:24:09 Sieving end time : 2022/06/19 22:48:03 Total sieving time: 4hrs 23min 54secs. Total relation processing time: 0hrs 17min 8sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 10min 33sec. Prototype def-par.txt line would be: snfs,183,5,0,0,0,0,0,0,0,0,8100000,8100000,28,28,53,53,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- [ 0.118494] smpboot: CPU0: AMD Ryzen 7 2700 Eight-Core Processor (family: 0x17, model: 0x8, stepping: 0x2) [ 0.000000] Memory: 16197192K/16727236K available (14339K kernel code, 2401K rwdata, 9504K rodata, 2752K init, 4948K bss, 530044K reserved, 0K cma-reserved) [ 0.153548] x86/mm: Memory block size: 128MB [ 0.000005] Calibrating delay loop (skipped), value calculated using timer frequency.. 6399.34 BogoMIPS (lpj=12798684) [ 0.152038] smpboot: Total of 16 processors activated (102389.47 BogoMIPS) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | June 20, 2022 17:34:01 UTC 2022 年 6 月 21 日 (火) 2 時 34 分 1 秒 (日本時間) |
composite number 合成数 | 282680787102595723463992269835962628412872885190744636772832864552958381714150533323258822464099046779492075787266276613562728632362192663306144672924204972069286441165300159<174> |
prime factors 素因数 | 291964884849321744303734518355082069081029863251841273299648784391<66> 968201320677596587091331548462317370258882466989060131546345838260439717289048178234723035106762620999015049<108> |
factorization results 素因数分解の結果 | Number: n N=282680787102595723463992269835962628412872885190744636772832864552958381714150533323258822464099046779492075787266276613562728632362192663306144672924204972069286441165300159 ( 174 digits) SNFS difficulty: 185 digits. Divisors found: Tue Jun 21 03:26:43 2022 p66 factor: 291964884849321744303734518355082069081029863251841273299648784391 Tue Jun 21 03:26:43 2022 p108 factor: 968201320677596587091331548462317370258882466989060131546345838260439717289048178234723035106762620999015049 Tue Jun 21 03:26:43 2022 elapsed time 00:29:26 (Msieve 1.54 - dependency 4) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.351). Factorization parameters were as follows: # # N = 29x10^184+52 = 32(183)8 # n: 282680787102595723463992269835962628412872885190744636772832864552958381714150533323258822464099046779492075787266276613562728632362192663306144672924204972069286441165300159 m: 5000000000000000000000000000000000000 deg: 5 c5: 116 c0: 65 skew: 0.89 # Murphy_E = 5.151e-11 type: snfs lss: 1 rlim: 8700000 alim: 8700000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 8700000/8700000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved special-q in [100000, 17150000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 3213323 hash collisions in 28985567 relations (27499574 unique) Msieve: matrix is 1051098 x 1051325 (363.3 MB) Sieving start time : 2022/06/20 23:44:34 Sieving end time : 2022/06/21 02:56:24 Total sieving time: 3hrs 11min 50secs. Total relation processing time: 0hrs 17min 32sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 4min 35sec. Prototype def-par.txt line would be: snfs,185,5,0,0,0,0,0,0,0,0,8700000,8700000,28,28,54,54,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- [ 0.118494] smpboot: CPU0: AMD Ryzen 7 2700 Eight-Core Processor (family: 0x17, model: 0x8, stepping: 0x2) [ 0.000000] Memory: 16197192K/16727236K available (14339K kernel code, 2401K rwdata, 9504K rodata, 2752K init, 4948K bss, 530044K reserved, 0K cma-reserved) [ 0.153548] x86/mm: Memory block size: 128MB [ 0.000005] Calibrating delay loop (skipped), value calculated using timer frequency.. 6399.34 BogoMIPS (lpj=12798684) [ 0.152038] smpboot: Total of 16 processors activated (102389.47 BogoMIPS) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | June 18, 2022 20:16:32 UTC 2022 年 6 月 19 日 (日) 5 時 16 分 32 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | June 18, 2022 20:18:25 UTC 2022 年 6 月 19 日 (日) 5 時 18 分 25 秒 (日本時間) |
composite number 合成数 | 10540685977299650195175149545117472089546980454608343770245828618318323302111416062013662773463402050581113082803750181424420577420690075294740173832626418163<158> |
prime factors 素因数 | 11873341675734810007721<23> 887760688201311679765464463154740610789935377344056689054267553044277677225266121633520415706355488905233991451907279702563848034995003<135> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:857112806 Step 1 took 7188ms Step 2 took 3703ms ********** Factor found in step 2: 11873341675734810007721 Found prime factor of 23 digits: 11873341675734810007721 Prime cofactor 887760688201311679765464463154740610789935377344056689054267553044277677225266121633520415706355488905233991451907279702563848034995003 has 135 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | July 10, 2022 07:11:13 UTC 2022 年 7 月 10 日 (日) 16 時 11 分 13 秒 (日本時間) |
composite number 合成数 | 148406256892789058204351384954189012242053559641391182501003647139648130417728221124849543223107059494695773823184523875177705435352073646464073923114912409287581<162> |
prime factors 素因数 | 1096699369490975711340382058505806570409888532931<49> 98793880894941014892501046687147760804207025054373<50> 1369728750295124540626394815433644774530728816134876224156463987<64> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 148406256892789058204351384954189012242053559641391182501003647139648130417728221124849543223107059494695773823184523875177705435352073646464073923114912409287581 (162 digits) Using B1=15510000, B2=46847878360, polynomial Dickson(12), sigma=1:792625371 Step 1 took 36094ms Step 2 took 13567ms ********** Factor found in step 2: 98793880894941014892501046687147760804207025054373 Found prime factor of 50 digits: 98793880894941014892501046687147760804207025054373 Composite cofactor 1502180656822325195000903381618582665555561496248672260870784401219724734316803391636808295935760316631965055897 has 112 digits CADO STA:Sun 10 Jul 2022 11:35:21 AEST (1,502,180,656,822,325,195,000,903,381,618,582,665,555,561,496,248,672,260,870,784,401,219,724,734,316,803,391,636,808,295,935,760,316,631,965,055,897 - C112) /home/bob/cado-nfs/cado-nfs-2.3.0/cado-nfs.py -t 16 --no-colors --screenlog DEBUG 1502180656822325195000903381618582665555561496248672260870784401219724734316803391636808295935760316631965055897 2>&1 | tee -a log169 Debug:root: Looking for parameter file for c112 in directory /home/bob/cado-nfs/cado-nfs-2.3.0/parameters/factor Info:root: Using default parameter file /home/bob/cado-nfs/cado-nfs-2.3.0/parameters/factor/params.c110 Debug:Parameters: Reading parameter file /home/bob/cado-nfs/cado-nfs-2.3.0/parameters/factor/params.c110 Info:root: No database exists yet Info:root: Created temporary directory /tmp/cado.86q2jr4t Info:Database: Opened connection to database /tmp/cado.86q2jr4t/c110.db Info:root: tasks.polyselect.threads = 2 Info:root: tasks.sieve.las.threads = 2 Info:root: slaves.scriptpath is /home/bob/cado-nfs/cado-nfs-2.3.0 Info:root: Command line parameters: /home/bob/cado-nfs/cado-nfs-2.3.0/cado-nfs.py -t 16 --no-colors --screenlog DEBUG 1502180656822325195000903381618582665555561496248672260870784401219724734316803391636808295935760316631965055897 Debug:root: Root parameter dictionary: N = 1502180656822325195000903381618582665555561496248672260870784401219724734316803391636808295935760316631965055897 lim0 = 2910696 lim1 = 3533488 lpb0 = 25 lpb1 = 25 name = c110 === Debug:Polynomial Selection (root optimized): New best polynomial is: n: 1502180656822325195000903381618582665555561496248672260870784401219724734316803391636808295935760316631965055897 skew: 5396.079 c0: -4819342868921260406130516 c1: -1507557462790854026007 c2: -697885148910913366 c3: -555127668877448 c4: 37125583992 c5: 231840 Y0: 1058279210066822377235 Y1: 101612472427696271 # MurphyE (Bf=3.53e+06,Bg=2.91e+06,area=2.96e+13) = 3.84e-09 # f(x) = 231840*x^5+37125583992*x^4-555127668877448*x^3-697885148910913366*x^2-1507557462790854026007*x-4819342868921260406130516 # g(x) = 101612472427696271*x+1058279210066822377235 === Info:Square Root: finished Info:Square Root: Factors: 1096699369490975711340382058505806570409888532931 1369728750295124540626394815433644774530728816134876224156463987 Debug:Square Root: Exit SqrtTask.run(sqrt) Info:Polynomial Selection (size optimized): Aggregate statistics: Info:Polynomial Selection (size optimized): potential collisions: 27840.2 Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 28438/31.950/39.309/44.560/0.930 Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 28438/31.950/35.701/40.080/1.238 Info:Polynomial Selection (size optimized): Total time: 985.89 Info:Polynomial Selection (root optimized): Aggregate statistics: Info:Polynomial Selection (root optimized): Total time: 269.87 Info:Polynomial Selection (root optimized): Rootsieve time: 268.99 Info:Generate Factor Base: Total cpu/real time for makefb: 3.27/0.55829 Info:Generate Free Relations: Total cpu/real time for freerel: 30.22/3.48567 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 3859495 Info:Lattice Sieving: Average J: 1901.22 for 110651 special-q, max bucket fill: 0.796035 Info:Lattice Sieving: Total CPU time: 27953.7s Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 10.11/18.3935 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 17.6s Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 70.71/53.185 Info:Filtering - Singleton removal: Total cpu/real time for purge: 55.2/48.9201 Info:Filtering - Merging: Total cpu/real time for merge: 152.2/156.763 Info:Filtering - Merging: Total cpu/real time for replay: 14.94/12.7962 Info:Linear Algebra: Total cpu/real time for bwc: 4386.97/0.000196457 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: WCT time 183.85 Info:Linear Algebra: Lingen CPU time 2518.3, WCT time 330.54 Info:Linear Algebra: Mksol: WCT time 102.23 Info:Quadratic Characters: Total cpu/real time for characters: 10.99/3.68916 Info:Square Root: Total cpu/real time for sqrt: 412.4/61.4996 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization: Total cpu/elapsed time for entire factorization: 34356.5/4245.44 Info:root: Cleaning up computation data in /tmp/cado.86q2jr4t 1096699369490975711340382058505806570409888532931 1369728750295124540626394815433644774530728816134876224156463987 END:Sun 10 Jul 2022 12:46:07 AEST (1,502,180,656,822,325,195,000,903,381,618,582,665,555,561,496,248,672,260,870,784,401,219,724,734,316,803,391,636,808,295,935,760,316,631,965,055,897 - C112) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | June 19, 2022 14:51:36 UTC 2022 年 6 月 19 日 (日) 23 時 51 分 36 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | June 19, 2022 15:19:02 UTC 2022 年 6 月 20 日 (月) 0 時 19 分 2 秒 (日本時間) |
composite number 合成数 | 179040958035402203198488831234182291786901230054268405542778257699835985090740995930201668555466315620809356022631307765391243911770991865338343364306329<153> |
prime factors 素因数 | 22152734639753515536623<23> |
composite cofactor 合成数の残り | 8082115411345635975108007791085858247652559925602690122142896386804730645749073631620233936759289848188542817993222011411404268023<130> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:3491432633 Step 1 took 4906ms ********** Factor found in step 2: 22152734639753515536623 Found prime factor of 23 digits: 22152734639753515536623 Composite cofactor 8082115411345635975108007791085858247652559925602690122142896386804730645749073631620233936759289848188542817993222011411404268023 has 130 digits |
software ソフトウェア | GMP-ECM |
name 名前 | Ignacio Santos |
---|---|
date 日付 | June 21, 2022 18:51:09 UTC 2022 年 6 月 22 日 (水) 3 時 51 分 9 秒 (日本時間) |
composite number 合成数 | 8082115411345635975108007791085858247652559925602690122142896386804730645749073631620233936759289848188542817993222011411404268023<130> |
prime factors 素因数 | 63751868050448584659837198312569<32> 126774566118596533415457913923103415889639312926882023478433756540832802572009184420493571481501167<99> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:3453767738 Step 1 took 4797ms Step 2 took 2985ms ********** Factor found in step 2: 63751868050448584659837198312569 Found prime factor of 32 digits: 63751868050448584659837198312569 Prime cofactor 126774566118596533415457913923103415889639312926882023478433756540832802572009184420493571481501167 has 99 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | June 20, 2022 13:46:45 UTC 2022 年 6 月 20 日 (月) 22 時 46 分 45 秒 (日本時間) |
composite number 合成数 | 6259374654585032595853119905486666139343989682018018868242275328827393030047898487214404735229148761364742162843507431797728899973903282309192018399720640028039781413464669587<175> |
prime factors 素因数 | 1034562983993748972936493825698843375185517842860429<52> 6050259627907635377498108254600683957484757782755926603939579855647259094684636229239787177796404571861724187337001860172703<124> |
factorization results 素因数分解の結果 | Number: n N=6259374654585032595853119905486666139343989682018018868242275328827393030047898487214404735229148761364742162843507431797728899973903282309192018399720640028039781413464669587 ( 175 digits) SNFS difficulty: 188 digits. Divisors found: Mon Jun 20 23:42:52 2022 p52 factor: 1034562983993748972936493825698843375185517842860429 Mon Jun 20 23:42:52 2022 p124 factor: 6050259627907635377498108254600683957484757782755926603939579855647259094684636229239787177796404571861724187337001860172703 Mon Jun 20 23:42:52 2022 elapsed time 00:38:57 (Msieve 1.54 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.328). Factorization parameters were as follows: # # N = 29x10^188+52 = 32(187)8 # n: 6259374654585032595853119905486666139343989682018018868242275328827393030047898487214404735229148761364742162843507431797728899973903282309192018399720640028039781413464669587 m: 10000000000000000000000000000000000000 deg: 5 c5: 7250 c0: 13 skew: 0.28 # Murphy_E = 2.992e-11 type: snfs lss: 1 rlim: 9800000 alim: 9800000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 9800000/9800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved special-q in [100000, 24900000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 3666128 hash collisions in 28892659 relations (26812129 unique) Msieve: matrix is 1307135 x 1307360 (452.8 MB) Sieving start time : 2022/06/20 16:53:06 Sieving end time : 2022/06/20 23:03:04 Total sieving time: 6hrs 9min 58secs. Total relation processing time: 0hrs 29min 47sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 1min 52sec. Prototype def-par.txt line would be: snfs,188,5,0,0,0,0,0,0,0,0,9800000,9800000,28,28,54,54,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- [ 0.118494] smpboot: CPU0: AMD Ryzen 7 2700 Eight-Core Processor (family: 0x17, model: 0x8, stepping: 0x2) [ 0.000000] Memory: 16197192K/16727236K available (14339K kernel code, 2401K rwdata, 9504K rodata, 2752K init, 4948K bss, 530044K reserved, 0K cma-reserved) [ 0.153548] x86/mm: Memory block size: 128MB [ 0.000005] Calibrating delay loop (skipped), value calculated using timer frequency.. 6399.34 BogoMIPS (lpj=12798684) [ 0.152038] smpboot: Total of 16 processors activated (102389.47 BogoMIPS) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | June 19, 2022 15:50:10 UTC 2022 年 6 月 20 日 (月) 0 時 50 分 10 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | July 11, 2022 03:38:40 UTC 2022 年 7 月 11 日 (月) 12 時 38 分 40 秒 (日本時間) |
composite number 合成数 | 6102266008982856541794011700653379085781620335309847058796611271005356447446627315248408783398463352689146797267534570922736436599885395212350796268325387647<157> |
prime factors 素因数 | 7893989892228190122792531039213672154781323<43> 773026833362261347796409853056749357654697194047609632791176156924495332998506779214045568485892178984092988311389<114> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 6102266008982856541794011700653379085781620335309847058796611271005356447446627315248408783398463352689146797267534570922736436599885395212350796268325387647 (157 digits) Using B1=23220000, B2=96188942866, polynomial Dickson(12), sigma=1:1797517603 Step 1 took 54167ms Step 2 took 18955ms ********** Factor found in step 2: 7893989892228190122792531039213672154781323 Found prime factor of 43 digits: 7893989892228190122792531039213672154781323 Prime cofactor 773026833362261347796409853056749357654697194047609632791176156924495332998506779214045568485892178984092988311389 has 114 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | June 21, 2022 19:43:57 UTC 2022 年 6 月 22 日 (水) 4 時 43 分 57 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | June 20, 2022 18:53:52 UTC 2022 年 6 月 21 日 (火) 3 時 53 分 52 秒 (日本時間) |
composite number 合成数 | 13128918373166486811216284957635292676993176798903546204387186281751626943875016095397533637829006650034394060473898371541829805284392935591599700243533780145777282661<167> |
prime factors 素因数 | 52898022658084369060199<23> |
composite cofactor 合成数の残り | 248192989330197639955015116781898072416857442703360987648457164477724175387374876420844051367748504332121181924138330185043362984258179439085139<144> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 13128918373166486811216284957635292676993176798903546204387186281751626943875016095397533637829006650034394060473898371541829805284392935591599700243533780145777282661 (167 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1:3944290519 Step 1 took 3038ms Step 2 took 1805ms ********** Factor found in step 2: 52898022658084369060199 Found prime factor of 23 digits: 52898022658084369060199 Composite cofactor 248192989330197639955015116781898072416857442703360987648457164477724175387374876420844051367748504332121181924138330185043362984258179439085139 has 144 digits |
software ソフトウェア | GMP-ECM 7.0.4 |
execution environment 実行環境 | Linux Ubuntu 20.04.1 LTS [5.4.0-105-generic|libc 2.31 (Ubuntu GLIBC 2.31-0ubuntu9.7)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | June 22, 2022 16:26:11 UTC 2022 年 6 月 23 日 (木) 1 時 26 分 11 秒 (日本時間) |
composite number 合成数 | 248192989330197639955015116781898072416857442703360987648457164477724175387374876420844051367748504332121181924138330185043362984258179439085139<144> |
prime factors 素因数 | 6621989659379195474836750790880699611<37> 37480123361211269263946854715922533390063549142745249426736992493081303983317216986810292789953852579062249<107> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:2534718562 Step 1 took 5953ms Step 2 took 3391ms ********** Factor found in step 2: 6621989659379195474836750790880699611 Found prime factor of 37 digits: 6621989659379195474836750790880699611 Prime cofactor 37480123361211269263946854715922533390063549142745249426736992493081303983317216986810292789953852579062249 has 107 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | June 24, 2022 18:25:27 UTC 2022 年 6 月 25 日 (土) 3 時 25 分 27 秒 (日本時間) |
composite number 合成数 | 9608817799019415483864460483008489460929516691240972124409165023468806486385630193388807827206329734153428210993576939657397964538450596722875696539996344819803684054966165471<175> |
prime factors 素因数 | 479460395783501307261298297055457402553254785892125575513858491851164192637<75> 20040899902310688689336291392557507527801532164706328636484271014809565856853387246042639581899391883<101> |
factorization results 素因数分解の結果 | Number: n N=9608817799019415483864460483008489460929516691240972124409165023468806486385630193388807827206329734153428210993576939657397964538450596722875696539996344819803684054966165471 ( 175 digits) SNFS difficulty: 192 digits. Divisors found: Thu Jun 23 22:35:25 2022 p75 factor: 479460395783501307261298297055457402553254785892125575513858491851164192637 Thu Jun 23 22:35:25 2022 p101 factor: 20040899902310688689336291392557507527801532164706328636484271014809565856853387246042639581899391883 Thu Jun 23 22:35:25 2022 elapsed time 00:54:42 (Msieve 1.54 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.349). Factorization parameters were as follows: # # N = 29x10^191+52 = 32(190)8 # n: 9608817799019415483864460483008489460929516691240972124409165023468806486385630193388807827206329734153428210993576939657397964538450596722875696539996344819803684054966165471 m: 100000000000000000000000000000000000000 deg: 5 c5: 145 c0: 26 skew: 0.71 # Murphy_E = 2.526e-11 type: snfs lss: 1 rlim: 11200000 alim: 11200000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 Factor base limits: 11200000/11200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved special-q in [100000, 18400000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 3539899 hash collisions in 28846635 relations (26924340 unique) Msieve: matrix is 1498785 x 1499010 (520.3 MB) Sieving start time : 2022/06/23 16:06:38 Sieving end time : 2022/06/23 21:39:56 Total sieving time: 5hrs 33min 18secs. Total relation processing time: 0hrs 42min 39sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 3min 53sec. Prototype def-par.txt line would be: snfs,192,5,0,0,0,0,0,0,0,0,11200000,11200000,28,28,55,55,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- [ 0.116178] smpboot: CPU0: AMD Ryzen 7 2700 Eight-Core Processor (family: 0x17, model: 0x8, stepping: 0x2) [ 0.000000] Memory: 16196800K/16727236K available (14339K kernel code, 2401K rwdata, 9504K rodata, 2756K init, 4944K bss, 530436K reserved, 0K cma-reserved) [ 0.153523] x86/mm: Memory block size: 128MB [ 0.000005] Calibrating delay loop (skipped), value calculated using timer frequency.. 6399.13 BogoMIPS (lpj=12798268) [ 0.152034] smpboot: Total of 16 processors activated (102386.14 BogoMIPS) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | November 5, 2022 06:49:28 UTC 2022 年 11 月 5 日 (土) 15 時 49 分 28 秒 (日本時間) |
composite number 合成数 | 725077008414258041389212894238778862868899152559916849358254461700341346259446049984528935622631466569152002442959871307294282157783184391253125517413125309<156> |
prime factors 素因数 | 32542264946163908604530559711125939888793878000014942549<56> 22281086138711753196749707692843881799814476419433521466509382274608288993692526934703138157119479241<101> |
factorization results 素因数分解の結果 | Number: n N=725077008414258041389212894238778862868899152559916849358254461700341346259446049984528935622631466569152002442959871307294282157783184391253125517413125309 ( 156 digits) SNFS difficulty: 192 digits. Divisors found: Sat Nov 5 17:32:08 2022 p56 factor: 32542264946163908604530559711125939888793878000014942549 Sat Nov 5 17:32:08 2022 p101 factor: 22281086138711753196749707692843881799814476419433521466509382274608288993692526934703138157119479241 Sat Nov 5 17:32:08 2022 elapsed time 00:51:23 (Msieve 1.54 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.353). Factorization parameters were as follows: # # N = 29x10^192+52 = 32(191)8 # n: 725077008414258041389212894238778862868899152559916849358254461700341346259446049984528935622631466569152002442959871307294282157783184391253125517413125309 m: 100000000000000000000000000000000000000 deg: 5 c5: 725 c0: 13 skew: 0.45 # Murphy_E = 2.795e-11 type: snfs lss: 1 rlim: 11500000 alim: 11500000 lpbr: 27 lpba: 27 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 11500000/11500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved special-q in [100000, 18550000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1722599 hash collisions in 14043720 relations (13115203 unique) Msieve: matrix is 1540777 x 1541003 (539.7 MB) Sieving start time : 2022/11/05 11:38:22 Sieving end time : 2022/11/05 16:40:23 Total sieving time: 5hrs 2min 1secs. Total relation processing time: 0hrs 45min 1sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 2min 7sec. Prototype def-par.txt line would be: snfs,192,5,0,0,0,0,0,0,0,0,11500000,11500000,27,27,54,54,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | June 24, 2022 18:24:31 UTC 2022 年 6 月 25 日 (土) 3 時 24 分 31 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | July 14, 2022 19:23:07 UTC 2022 年 7 月 15 日 (金) 4 時 23 分 7 秒 (日本時間) |
composite number 合成数 | 702771780105062439149176817436125256329685482327027936998379926280886788559207318160508805077490959099305460805501394599304971952604451586113248480733161517825461025100030821144016421<183> |
prime factors 素因数 | 78057899415552159874055584931078153089<38> 9003211531016975509833666643696740343023893774039440838466020128075328219777127279285824148185407695260300070052435504453207195346742977157223589<145> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 702771780105062439149176817436125256329685482327027936998379926280886788559207318160508805077490959099305460805501394599304971952604451586113248480733161517825461025100030821144016421 (183 digits) Using B1=16830000, B2=58559116990, polynomial Dickson(12), sigma=1:757180634 Step 1 took 44431ms Step 2 took 18236ms ********** Factor found in step 2: 78057899415552159874055584931078153089 Found prime factor of 38 digits: 78057899415552159874055584931078153089 Prime cofactor 9003211531016975509833666643696740343023893774039440838466020128075328219777127279285824148185407695260300070052435504453207195346742977157223589 has 145 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) |
name 名前 | Rytis Slatkevičius |
---|---|
date 日付 | April 19, 2023 15:36:31 UTC 2023 年 4 月 20 日 (木) 0 時 36 分 31 秒 (日本時間) |
composite number 合成数 | 47009032166344769218816361455644147414142171583752540052525497313109410146452179649233443226645614300121490651490701680972548861448596693149416061545237<152> |
prime factors 素因数 | 160659070937633526948308513707818533070061267325588125153136959<63> 292601170242004400844616621537926939597216896995758051877725111660663119368770269251984043<90> |
factorization results 素因数分解の結果 | NFS elapsed time = 65261.4135 seconds. pretesting / nfs ratio was 0.00 Total factoring time = 65261.4153 seconds ***factors found*** P63 = 160659070937633526948308513707818533070061267325588125153136959 P90 = 292601170242004400844616621537926939597216896995758051877725111660663119368770269251984043 |
software ソフトウェア | yafu2 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | July 26, 2022 09:40:12 UTC 2022 年 7 月 26 日 (火) 18 時 40 分 12 秒 (日本時間) | |
45 | 11e6 | 4479 | Rytis Slatkevičius | April 17, 2023 05:15:37 UTC 2023 年 4 月 17 日 (月) 14 時 15 分 37 秒 (日本時間) | |
50 | 43e6 | 1548 / 6453 | Rytis Slatkevičius | April 17, 2023 05:16:12 UTC 2023 年 4 月 17 日 (月) 14 時 16 分 12 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | August 17, 2022 14:25:25 UTC 2022 年 8 月 17 日 (水) 23 時 25 分 25 秒 (日本時間) |
composite number 合成数 | 53665954769005074260278609397251844385023567487989476907472336583410106149485460816827629967702934174130675913237548165279816066018617610407798638391124673<155> |
prime factors 素因数 | 2556324613706381411580682135926372044103904757<46> 20993403764632032698397614538615065704633349686817108295278254188017375468029503474198451997742606552502760989<110> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 53665954769005074260278609397251844385023567487989476907472336583410106149485460816827629967702934174130675913237548165279816066018617610407798638391124673 (155 digits) Using B1=22800000, B2=96188942866, polynomial Dickson(12), sigma=1:1911844051 Step 1 took 53323ms ********** Factor found in step 1: 2556324613706381411580682135926372044103904757 Found prime factor of 46 digits: 2556324613706381411580682135926372044103904757 Prime cofactor 20993403764632032698397614538615065704633349686817108295278254188017375468029503474198451997742606552502760989 has 110 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | July 26, 2022 10:00:19 UTC 2022 年 7 月 26 日 (火) 19 時 0 分 19 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | July 28, 2022 12:33:33 UTC 2022 年 7 月 28 日 (木) 21 時 33 分 33 秒 (日本時間) |
composite number 合成数 | 40920195990727122871679489579489210615313039184913794530530378916945059168258983504809509809700447587140749261128284618263416819289277952255786381912508149697592289356149<170> |
prime factors 素因数 | 947772704213507232625603364075511734291815159590585110699837<60> 43175115519584454543230096428619512017791011940055598061385410217414322446407954684056203624859027291139905177<110> |
factorization results 素因数分解の結果 | Number: n N=40920195990727122871679489579489210615313039184913794530530378916945059168258983504809509809700447587140749261128284618263416819289277952255786381912508149697592289356149 ( 170 digits) SNFS difficulty: 197 digits. Divisors found: Thu Jul 28 22:27:15 2022 p60 factor: 947772704213507232625603364075511734291815159590585110699837 Thu Jul 28 22:27:15 2022 p110 factor: 43175115519584454543230096428619512017791011940055598061385410217414322446407954684056203624859027291139905177 Thu Jul 28 22:27:15 2022 elapsed time 01:16:02 (Msieve 1.54 - dependency 3) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.343). Factorization parameters were as follows: # # N = 29x10^197+52 = 32(196)8 # n: 40920195990727122871679489579489210615313039184913794530530378916945059168258983504809509809700447587140749261128284618263416819289277952255786381912508149697592289356149 m: 1000000000000000000000000000000000000000 deg: 5 c5: 725 c0: 13 skew: 0.45 # Murphy_E = 1.733e-11 type: snfs lss: 1 rlim: 13900000 alim: 13900000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 Factor base limits: 13900000/13900000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved special-q in [100000, 26950000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 3061921 hash collisions in 28781854 relations (26850969 unique) Msieve: matrix is 1767050 x 1767275 (618.6 MB) Sieving start time : 2022/07/28 11:59:57 Sieving end time : 2022/07/28 21:10:24 Total sieving time: 9hrs 10min 27secs. Total relation processing time: 1hrs 0min 39sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 7min 2sec. Prototype def-par.txt line would be: snfs,197,5,0,0,0,0,0,0,0,0,13900000,13900000,28,28,55,55,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- [ 0.118312] smpboot: CPU0: AMD Ryzen 7 2700 Eight-Core Processor (family: 0x17, model: 0x8, stepping: 0x2) [ 0.000000] Memory: 16196812K/16727236K available (14339K kernel code, 2400K rwdata, 9496K rodata, 2756K init, 4944K bss, 530424K reserved, 0K cma-reserved) [ 0.153549] x86/mm: Memory block size: 128MB [ 0.000005] Calibrating delay loop (skipped), value calculated using timer frequency.. 6399.21 BogoMIPS (lpj=12798428) [ 0.152036] smpboot: Total of 16 processors activated (102387.42 BogoMIPS) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | August 9, 2023 10:05:56 UTC 2023 年 8 月 9 日 (水) 19 時 5 分 56 秒 (日本時間) |
composite number 合成数 | 2106875372340813569032731221138714689532427047090857273840200470184146659350658646602612825808739870386246442580935780412738307922837236864789327517511083323711668981446753149<175> |
prime factors 素因数 | 50308869087673044389760847966671210561825972533778542305743934529690209<71> 41878806074316064332295617213523923107054876152122854789642038445841367584107801230907385170272880725661<104> |
factorization results 素因数分解の結果 | Number: n N=2106875372340813569032731221138714689532427047090857273840200470184146659350658646602612825808739870386246442580935780412738307922837236864789327517511083323711668981446753149 ( 175 digits) SNFS difficulty: 202 digits. Divisors found: Wed Aug 9 15:47:17 2023 prp71 factor: 50308869087673044389760847966671210561825972533778542305743934529690209 Wed Aug 9 15:47:17 2023 prp104 factor: 41878806074316064332295617213523923107054876152122854789642038445841367584107801230907385170272880725661 Wed Aug 9 15:47:17 2023 elapsed time 03:02:35 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.004). Factorization parameters were as follows: # # N = 29x10^201+52 = 32(200)8 # n: 2106875372340813569032731221138714689532427047090857273840200470184146659350658646602612825808739870386246442580935780412738307922837236864789327517511083323711668981446753149 m: 10000000000000000000000000000000000000000 deg: 5 c5: 145 c0: 26 skew: 0.71 # Murphy_E = 9.683e-12 type: snfs lss: 1 rlim: 16400000 alim: 16400000 lpbr: 27 lpba: 27 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 16400000/16400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 56/56 Sieved special-q in [100000, 33800000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 3166535 hash collisions in 17333190 relations (14821963 unique) Msieve: matrix is 2397465 x 2397691 (675.2 MB) Sieving start time: 2023/08/08 22:03:14 Sieving end time : 2023/08/09 12:44:20 Total sieving time: 14hrs 41min 6secs. Total relation processing time: 2hrs 54min 50sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 3min 0sec. Prototype def-par.txt line would be: snfs,202,5,0,0,0,0,0,0,0,0,16400000,16400000,27,27,56,56,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | July 9, 2023 14:00:44 UTC 2023 年 7 月 9 日 (日) 23 時 0 分 44 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | June 21, 2022 05:31:22 UTC 2022 年 6 月 21 日 (火) 14 時 31 分 22 秒 (日本時間) |
composite number 合成数 | 1262686124276642358738249191073214738457552942483282705031046744117744362239504998987563408642937344887203700169915539266841377337647589173554824599979339687503032892798873135430267<181> |
prime factors 素因数 | 7421575617227597237<19> 5793667687159288785191477<25> 29366061900297385053887121898142834883044771761447108061940597070857212400933712497613655111575960182818059678694794075974915389548180883<137> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 1262686124276642358738249191073214738457552942483282705031046744117744362239504998987563408642937344887203700169915539266841377337647589173554824599979339687503032892798873135430267 (181 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1:828268014 Step 1 took 3978ms Step 2 took 2183ms ********** Factor found in step 2: 7421575617227597237 Found prime factor of 19 digits: 7421575617227597237 Composite cofactor 170137203930872459803258658925094329344738128693252696727446415210429111238152942703540488618077799147229148933020327503297128062268998159632607926857814185934191 has 162 digits Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1:944251072 Step 1 took 3412ms Step 2 took 1976ms ********** Factor found in step 2: 5793667687159288785191477 Found prime factor of 25 digits: 5793667687159288785191477 Prime cofactor 29366061900297385053887121898142834883044771761447108061940597070857212400933712497613655111575960182818059678694794075974915389548180883 has 137 digits |
software ソフトウェア | GMP-ECM 7.0.4 |
execution environment 実行環境 | Linux Ubuntu 20.04.1 LTS [5.4.0-105-generic|libc 2.31 (Ubuntu GLIBC 2.31-0ubuntu9.7)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | February 16, 2024 14:55:26 UTC 2024 年 2 月 16 日 (金) 23 時 55 分 26 秒 (日本時間) |
composite number 合成数 | 8055555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555557<205> |
prime factors 素因数 | 3566657368678532854401166116392311992057020799303949445607577730801707493097487359766143929<91> 2258572866095120707947691644048292272167943831985271602547601498644242712160147399256512088502021074798269043797133<115> |
factorization results 素因数分解の結果 | Number: n N=8055555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555557 ( 205 digits) SNFS difficulty: 206 digits. Divisors found: Fri Feb 16 21:31:32 2024 prp91 factor: 3566657368678532854401166116392311992057020799303949445607577730801707493097487359766143929 Fri Feb 16 21:31:32 2024 prp115 factor: 2258572866095120707947691644048292272167943831985271602547601498644242712160147399256512088502021074798269043797133 Fri Feb 16 21:31:32 2024 elapsed time 03:36:56 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.095). Factorization parameters were as follows: # # N = 29x10^205+52 = 32(204)8 # n: 8055555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555557 m: 100000000000000000000000000000000000000000 deg: 5 c5: 29 c0: 52 skew: 1.12 # Murphy_E = 7.486e-12 type: snfs lss: 1 rlim: 19300000 alim: 19300000 lpbr: 27 lpba: 27 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 19300000/19300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 56/56 Sieved special-q in [100000, 56850000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 3691898 hash collisions in 19495094 relations (16109259 unique) Msieve: matrix is 2594774 x 2594999 (732.2 MB) Sieving start time: 2024/02/15 18:13:49 Sieving end time : 2024/02/16 17:53:23 Total sieving time: 23hrs 39min 34secs. Total relation processing time: 3hrs 28min 45sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 2min 52sec. Prototype def-par.txt line would be: snfs,206,5,0,0,0,0,0,0,0,0,19300000,19300000,27,27,56,56,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4192 | 1792 | Dmitry Domanov | September 11, 2023 19:32:02 UTC 2023 年 9 月 12 日 (火) 4 時 32 分 2 秒 (日本時間) |
2400 | ccc | September 22, 2023 05:17:59 UTC 2023 年 9 月 22 日 (金) 14 時 17 分 59 秒 (日本時間) | |||
45 | 11e6 | 2048 / 3508 | 1024 | ccc | September 24, 2023 17:41:18 UTC 2023 年 9 月 25 日 (月) 2 時 41 分 18 秒 (日本時間) |
1024 | ccc | September 24, 2023 17:41:21 UTC 2023 年 9 月 25 日 (月) 2 時 41 分 21 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | June 9, 2024 05:09:23 UTC 2024 年 6 月 9 日 (日) 14 時 9 分 23 秒 (日本時間) |
composite number 合成数 | 3730015911124462162927820443044555467240829088155565897711389792193100391189763947272635000805037076466996547955813583357807134939871735612504506043563409856380113262576654582067034352945099<190> |
prime factors 素因数 | 42557910012759674447242065781535090678953615045370678256674996700123785630230353635171<86> 87645655296656535403812965196585829161332216834674192656953284845066383944698840180772973993915935477369<104> |
factorization results 素因数分解の結果 | Number: n N=3730015911124462162927820443044555467240829088155565897711389792193100391189763947272635000805037076466996547955813583357807134939871735612504506043563409856380113262576654582067034352945099 ( 190 digits) SNFS difficulty: 207 digits. Divisors found: Sun Jun 9 10:41:23 2024 prp86 factor: 42557910012759674447242065781535090678953615045370678256674996700123785630230353635171 Sun Jun 9 10:41:23 2024 prp104 factor: 87645655296656535403812965196585829161332216834674192656953284845066383944698840180772973993915935477369 Sun Jun 9 10:41:23 2024 elapsed time 03:48:06 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=1.948). Factorization parameters were as follows: # # N = 29x10^206+52 = 32(205)8 # n: 3730015911124462162927820443044555467240829088155565897711389792193100391189763947272635000805037076466996547955813583357807134939871735612504506043563409856380113262576654582067034352945099 m: 100000000000000000000000000000000000000000 deg: 5 c5: 145 c0: 26 skew: 0.71 # Murphy_E = 5.959e-12 type: snfs lss: 1 rlim: 19900000 alim: 19900000 lpbr: 27 lpba: 27 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 19900000/19900000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 56/56 Sieved special-q in [100000, 57150000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 4790680 hash collisions in 21190716 relations (16371606 unique) Msieve: matrix is 2656400 x 2656625 (744.7 MB) Sieving start time: 2024/06/08 07:28:56 Sieving end time : 2024/06/09 06:52:54 Total sieving time: 23hrs 23min 58secs. Total relation processing time: 3hrs 38min 54sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 3min 30sec. Prototype def-par.txt line would be: snfs,207,5,0,0,0,0,0,0,0,0,19900000,19900000,27,27,56,56,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | September 12, 2023 05:43:33 UTC 2023 年 9 月 12 日 (火) 14 時 43 分 33 秒 (日本時間) |
2350 | Ignacio Santos | May 29, 2024 14:48:10 UTC 2024 年 5 月 29 日 (水) 23 時 48 分 10 秒 (日本時間) | |||
45 | 11e6 | 4480 | Ignacio Santos | May 29, 2024 17:12:50 UTC 2024 年 5 月 30 日 (木) 2 時 12 分 50 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | August 10, 2024 09:18:03 UTC 2024 年 8 月 10 日 (土) 18 時 18 分 3 秒 (日本時間) |
composite number 合成数 | 2183077386329418849744052996085516410719662752183077386329418849744052996085516410719662752183077386329418849744052996085516410719662752183077386329418849744052996085516410719662752183077386329418849744053<205> |
prime factors 素因数 | 146909667658388527490402581598026128226629120452601956951556689<63> 14859998127596100017066386860638253197641070400372530603492489515277962183017043705050264602194627396998134584759662770871283905798377766711077<143> |
factorization results 素因数分解の結果 | Number: n N=2183077386329418849744052996085516410719662752183077386329418849744052996085516410719662752183077386329418849744052996085516410719662752183077386329418849744052996085516410719662752183077386329418849744053 ( 205 digits) SNFS difficulty: 207 digits. Divisors found: Fri Aug 9 13:23:56 2024 prp63 factor: 146909667658388527490402581598026128226629120452601956951556689 Fri Aug 9 13:23:56 2024 prp143 factor: 14859998127596100017066386860638253197641070400372530603492489515277962183017043705050264602194627396998134584759662770871283905798377766711077 Fri Aug 9 13:23:56 2024 elapsed time 03:01:54 (Msieve 1.44 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=1.927). Factorization parameters were as follows: # # N = 29x10^207+52 = 32(206)8 # n: 2183077386329418849744052996085516410719662752183077386329418849744052996085516410719662752183077386329418849744052996085516410719662752183077386329418849744052996085516410719662752183077386329418849744053 m: 100000000000000000000000000000000000000000 deg: 5 c5: 725 c0: 13 skew: 0.45 # Murphy_E = 6.587e-12 type: snfs lss: 1 rlim: 20000000 alim: 20000000 lpbr: 27 lpba: 27 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 q0: 50000 qintsize: 50000 Factor base limits: 20000000/20000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 56/56 Sieved special-q in [50000, 45250000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 7592648 hash collisions in 25519628 relations (16304258 unique) Msieve: matrix is 2359997 x 2360222 (667.5 MB) Sieving start time: 2024/08/08 09:31:07 Sieving end time : 2024/08/09 10:13:16 Total sieving time: 24hrs 42min 9secs. Total relation processing time: 2hrs 49min 24sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 6min 21sec. Prototype def-par.txt line would be: snfs,207,5,0,0,0,0,0,0,0,0,20000000,20000000,27,27,56,56,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 / 2078 | Dmitry Domanov | September 21, 2023 09:46:34 UTC 2023 年 9 月 21 日 (木) 18 時 46 分 34 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 24, 2024 07:04:59 UTC 2024 年 12 月 24 日 (火) 16 時 4 分 59 秒 (日本時間) |
composite number 合成数 | 5025299785125112636029666597352186871837526859360920496291675330976641020309142579884937963540583627919872461357177514382754557427046510015942330352810702155680321619186248007208705898662230539959797601719<205> |
prime factors 素因数 | 18279862384828942680328007930045563976840669628169005150124153851238020968291451170151697<89> 274909059999038818966833760908510370540298521287138215936109722758207353083981958734454162796043006669601355247494727<117> |
factorization results 素因数分解の結果 | 12/22/24 09:58:17 v1.34.5 @ TRIGKEY, 12/22/24 09:58:17 v1.34.5 @ TRIGKEY, **************************** 12/22/24 09:58:17 v1.34.5 @ TRIGKEY, Starting factorization of 290000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000052 12/22/24 09:58:17 v1.34.5 @ TRIGKEY, using pretesting plan: normal 12/22/24 09:58:17 v1.34.5 @ TRIGKEY, no tune info: using qs/gnfs crossover of 100 digits 12/22/24 09:58:17 v1.34.5 @ TRIGKEY, **************************** 12/22/24 09:58:17 v1.34.5 @ TRIGKEY, div: found prime factor = 2 12/22/24 09:58:17 v1.34.5 @ TRIGKEY, div: found prime factor = 2 12/22/24 09:58:17 v1.34.5 @ TRIGKEY, div: found prime factor = 3 12/22/24 09:58:17 v1.34.5 @ TRIGKEY, div: found prime factor = 3 12/22/24 09:58:17 v1.34.5 @ TRIGKEY, div: found prime factor = 7 12/22/24 09:58:17 v1.34.5 @ TRIGKEY, div: found prime factor = 229 12/22/24 09:58:17 v1.34.5 @ TRIGKEY, rho: x^2 + 3, starting 1000 iterations on C205 12/22/24 09:58:17 v1.34.5 @ TRIGKEY, rho: x^2 + 2, starting 1000 iterations on C205 12/22/24 09:58:17 v1.34.5 @ TRIGKEY, rho: x^2 + 1, starting 1000 iterations on C205 12/22/24 09:58:17 v1.34.5 @ TRIGKEY, pm1: starting B1 = 150K, B2 = gmp-ecm default on C205 12/22/24 09:58:17 v1.34.5 @ TRIGKEY, current ECM pretesting depth: 0.00 12/22/24 09:58:17 v1.34.5 @ TRIGKEY, scheduled 30 curves at B1=2000 toward target pretesting depth of 63.08 12/22/24 09:58:17 v1.34.5 @ TRIGKEY, Finished 30 curves using Lenstra ECM method on C205 input, B1=2K, B2=gmp-ecm default 12/22/24 09:58:17 v1.34.5 @ TRIGKEY, current ECM pretesting depth: 15.18 12/22/24 09:58:17 v1.34.5 @ TRIGKEY, scheduled 74 curves at B1=11000 toward target pretesting depth of 63.08 12/22/24 09:58:20 v1.34.5 @ TRIGKEY, Finished 74 curves using Lenstra ECM method on C205 input, B1=11K, B2=gmp-ecm default 12/22/24 09:58:20 v1.34.5 @ TRIGKEY, current ECM pretesting depth: 20.24 12/22/24 09:58:20 v1.34.5 @ TRIGKEY, scheduled 214 curves at B1=50000 toward target pretesting depth of 63.08 12/22/24 09:59:00 v1.34.5 @ TRIGKEY, nfs: commencing nfs on c210: 290000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000052 12/22/24 09:59:00 v1.34.5 @ TRIGKEY, nfs: input divides 29*10^208 + 52 12/22/24 09:59:00 v1.34.5 @ TRIGKEY, nfs: using supplied cofactor: 5025299785125112636029666597352186871837526859360920496291675330976641020309142579884937963540583627919872461357177514382754557427046510015942330352810702155680321619186248007208705898662230539959797601719 12/22/24 09:59:00 v1.34.5 @ TRIGKEY, nfs: commencing snfs on c205: 5025299785125112636029666597352186871837526859360920496291675330976641020309142579884937963540583627919872461357177514382754557427046510015942330352810702155680321619186248007208705898662230539959797601719 12/22/24 09:59:00 v1.34.5 @ TRIGKEY, gen: best 3 polynomials: n: 5025299785125112636029666597352186871837526859360920496291675330976641020309142579884937963540583627919872461357177514382754557427046510015942330352810702155680321619186248007208705898662230539959797601719 # 29*10^208+52, difficulty: 210.86, anorm: 3.88e+038, rnorm: 4.59e+040 # scaled difficulty: 210.86, suggest sieving algebraic side # size = 1.884e-010, alpha = -1.882, combined = 5.258e-012, rroots = 0 type: snfs size: 210 skew: 1.1873 c6: 116 c0: 325 Y1: -1 Y0: 50000000000000000000000000000000000 m: 50000000000000000000000000000000000 n: 5025299785125112636029666597352186871837526859360920496291675330976641020309142579884937963540583627919872461357177514382754557427046510015942330352810702155680321619186248007208705898662230539959797601719 # 29*10^208+52, difficulty: 212.46, anorm: 6.14e+032, rnorm: 1.88e+047 # scaled difficulty: 214.88, suggest sieving rational side # size = 8.272e-015, alpha = 0.879, combined = 4.385e-012, rroots = 1 type: snfs size: 212 skew: 0.2823 c5: 7250 c0: 13 Y1: -1 Y0: 100000000000000000000000000000000000000000 m: 100000000000000000000000000000000000000000 n: 5025299785125112636029666597352186871837526859360920496291675330976641020309142579884937963540583627919872461357177514382754557427046510015942330352810702155680321619186248007208705898662230539959797601719 # 29*10^208+52, difficulty: 210.86, anorm: 2.75e+032, rnorm: 4.21e+047 # scaled difficulty: 213.39, suggest sieving rational side # size = 7.564e-015, alpha = 1.148, combined = 4.088e-012, rroots = 1 type: snfs size: 210 skew: 1.4115 c5: 58 c0: 325 Y1: -1 Y0: 500000000000000000000000000000000000000000 m: 500000000000000000000000000000000000000000 12/22/24 09:59:02 v1.34.5 @ TRIGKEY, test: fb generation took 2.4115 seconds 12/22/24 09:59:02 v1.34.5 @ TRIGKEY, test: commencing test sieving of polynomial 0 on the algebraic side over range 22600000-22602000 skew: 1.1873 c6: 116 c0: 325 Y1: -1 Y0: 50000000000000000000000000000000000 m: 50000000000000000000000000000000000 rlim: 22600000 alim: 22600000 mfbr: 58 mfba: 58 lpbr: 29 lpba: 29 rlambda: 2.60 alambda: 2.60 12/22/24 10:02:02 v1.34.5 @ TRIGKEY, nfs: parsing special-q from .dat file 12/22/24 10:02:03 v1.34.5 @ TRIGKEY, test: fb generation took 1.7153 seconds 12/22/24 10:02:03 v1.34.5 @ TRIGKEY, test: commencing test sieving of polynomial 1 on the rational side over range 22600000-22602000 skew: 0.2823 c5: 7250 c0: 13 Y1: -1 Y0: 100000000000000000000000000000000000000000 m: 100000000000000000000000000000000000000000 rlim: 22600000 alim: 22600000 mfbr: 58 mfba: 58 lpbr: 29 lpba: 29 rlambda: 2.60 alambda: 2.60 12/22/24 10:05:02 v1.34.5 @ TRIGKEY, nfs: parsing special-q from .dat file 12/22/24 10:05:04 v1.34.5 @ TRIGKEY, test: fb generation took 1.6331 seconds 12/22/24 10:05:04 v1.34.5 @ TRIGKEY, test: commencing test sieving of polynomial 2 on the rational side over range 22600000-22602000 skew: 1.4115 c5: 58 c0: 325 Y1: -1 Y0: 500000000000000000000000000000000000000000 m: 500000000000000000000000000000000000000000 rlim: 22600000 alim: 22600000 mfbr: 58 mfba: 58 lpbr: 29 lpba: 29 rlambda: 2.60 alambda: 2.60 12/22/24 10:07:58 v1.34.5 @ TRIGKEY, nfs: parsing special-q from .dat file 12/22/24 10:07:58 v1.34.5 @ TRIGKEY, gen: selected polynomial: n: 5025299785125112636029666597352186871837526859360920496291675330976641020309142579884937963540583627919872461357177514382754557427046510015942330352810702155680321619186248007208705898662230539959797601719 # 29*10^208+52, difficulty: 210.86, anorm: 3.88e+038, rnorm: 4.59e+040 # scaled difficulty: 210.86, suggest sieving algebraic side # size = 1.884e-010, alpha = -1.882, combined = 5.258e-012, rroots = 0 type: snfs size: 210 skew: 1.1873 c6: 116 c0: 325 Y1: -1 Y0: 50000000000000000000000000000000000 m: 50000000000000000000000000000000000 12/24/24 03:36:11 v1.34.5 @ TRIGKEY, nfs: commencing msieve filtering 12/24/24 03:42:10 v1.34.5 @ TRIGKEY, nfs: commencing msieve linear algebra 12/24/24 06:50:45 v1.34.5 @ TRIGKEY, nfs: commencing msieve sqrt 12/24/24 07:00:04 v1.34.5 @ TRIGKEY, prp89 = 18279862384828942680328007930045563976840669628169005150124153851238020968291451170151697 12/24/24 07:00:04 v1.34.5 @ TRIGKEY, prp117 = 274909059999038818966833760908510370540298521287138215936109722758207353083981958734454162796043006669601355247494727 12/24/24 07:00:05 v1.34.5 @ TRIGKEY, NFS elapsed time = 162064.8297 seconds. 12/24/24 07:00:05 v1.34.5 @ TRIGKEY, 12/24/24 07:00:05 v1.34.5 @ TRIGKEY, 12/22/24 10:07:58 v1.34.5 @ TRIGKEY, test: test sieving took 538.13 seconds12/22/24 09:58:17 v1.34.5 @ TRIGKEY, 12/22/24 09:58:17 v1.34.5 @ TRIGKEY, **************************** 12/22/24 09:58:17 v1.34.5 @ TRIGKEY, Starting factorization of 290000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000052 12/22/24 09:58:17 v1.34.5 @ TRIGKEY, using pretesting plan: normal 12/22/24 09:58:17 v1.34.5 @ TRIGKEY, no tune info: using qs/gnfs crossover of 100 digits 12/22/24 09:58:17 v1.34.5 @ TRIGKEY, **************************** 12/22/24 09:58:17 v1.34.5 @ TRIGKEY, div: found prime factor = 2 12/22/24 09:58:17 v1.34.5 @ TRIGKEY, div: found prime factor = 2 12/22/24 09:58:17 v1.34.5 @ TRIGKEY, div: found prime factor = 3 12/22/24 09:58:17 v1.34.5 @ TRIGKEY, div: found prime factor = 3 12/22/24 09:58:17 v1.34.5 @ TRIGKEY, div: found prime factor = 7 12/22/24 09:58:17 v1.34.5 @ TRIGKEY, div: found prime factor = 229 12/22/24 09:58:17 v1.34.5 @ TRIGKEY, rho: x^2 + 3, starting 1000 iterations on C205 12/22/24 09:58:17 v1.34.5 @ TRIGKEY, rho: x^2 + 2, starting 1000 iterations on C205 12/22/24 09:58:17 v1.34.5 @ TRIGKEY, rho: x^2 + 1, starting 1000 iterations on C205 12/22/24 09:58:17 v1.34.5 @ TRIGKEY, pm1: starting B1 = 150K, B2 = gmp-ecm default on C205 12/22/24 09:58:17 v1.34.5 @ TRIGKEY, current ECM pretesting depth: 0.00 12/22/24 09:58:17 v1.34.5 @ TRIGKEY, scheduled 30 curves at B1=2000 toward target pretesting depth of 63.08 12/22/24 09:58:17 v1.34.5 @ TRIGKEY, Finished 30 curves using Lenstra ECM method on C205 input, B1=2K, B2=gmp-ecm default 12/22/24 09:58:17 v1.34.5 @ TRIGKEY, current ECM pretesting depth: 15.18 12/22/24 09:58:17 v1.34.5 @ TRIGKEY, scheduled 74 curves at B1=11000 toward target pretesting depth of 63.08 12/22/24 09:58:20 v1.34.5 @ TRIGKEY, Finished 74 curves using Lenstra ECM method on C205 input, B1=11K, B2=gmp-ecm default 12/22/24 09:58:20 v1.34.5 @ TRIGKEY, current ECM pretesting depth: 20.24 12/22/24 09:58:20 v1.34.5 @ TRIGKEY, scheduled 214 curves at B1=50000 toward target pretesting depth of 63.08 12/22/24 09:59:00 v1.34.5 @ TRIGKEY, nfs: commencing nfs on c210: 290000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000052 12/22/24 09:59:00 v1.34.5 @ TRIGKEY, nfs: input divides 29*10^208 + 52 12/22/24 09:59:00 v1.34.5 @ TRIGKEY, nfs: using supplied cofactor: 5025299785125112636029666597352186871837526859360920496291675330976641020309142579884937963540583627919872461357177514382754557427046510015942330352810702155680321619186248007208705898662230539959797601719 12/22/24 09:59:00 v1.34.5 @ TRIGKEY, nfs: commencing snfs on c205: 5025299785125112636029666597352186871837526859360920496291675330976641020309142579884937963540583627919872461357177514382754557427046510015942330352810702155680321619186248007208705898662230539959797601719 12/22/24 09:59:00 v1.34.5 @ TRIGKEY, gen: best 3 polynomials: n: 5025299785125112636029666597352186871837526859360920496291675330976641020309142579884937963540583627919872461357177514382754557427046510015942330352810702155680321619186248007208705898662230539959797601719 # 29*10^208+52, difficulty: 210.86, anorm: 3.88e+038, rnorm: 4.59e+040 # scaled difficulty: 210.86, suggest sieving algebraic side # size = 1.884e-010, alpha = -1.882, combined = 5.258e-012, rroots = 0 type: snfs size: 210 skew: 1.1873 c6: 116 c0: 325 Y1: -1 Y0: 50000000000000000000000000000000000 m: 50000000000000000000000000000000000 n: 5025299785125112636029666597352186871837526859360920496291675330976641020309142579884937963540583627919872461357177514382754557427046510015942330352810702155680321619186248007208705898662230539959797601719 # 29*10^208+52, difficulty: 212.46, anorm: 6.14e+032, rnorm: 1.88e+047 # scaled difficulty: 214.88, suggest sieving rational side # size = 8.272e-015, alpha = 0.879, combined = 4.385e-012, rroots = 1 type: snfs size: 212 skew: 0.2823 c5: 7250 c0: 13 Y1: -1 Y0: 100000000000000000000000000000000000000000 m: 100000000000000000000000000000000000000000 n: 5025299785125112636029666597352186871837526859360920496291675330976641020309142579884937963540583627919872461357177514382754557427046510015942330352810702155680321619186248007208705898662230539959797601719 # 29*10^208+52, difficulty: 210.86, anorm: 2.75e+032, rnorm: 4.21e+047 # scaled difficulty: 213.39, suggest sieving rational side # size = 7.564e-015, alpha = 1.148, combined = 4.088e-012, rroots = 1 type: snfs size: 210 skew: 1.4115 c5: 58 c0: 325 Y1: -1 Y0: 500000000000000000000000000000000000000000 m: 500000000000000000000000000000000000000000 12/22/24 09:59:02 v1.34.5 @ TRIGKEY, test: fb generation took 2.4115 seconds 12/22/24 09:59:02 v1.34.5 @ TRIGKEY, test: commencing test sieving of polynomial 0 on the algebraic side over range 22600000-22602000 skew: 1.1873 c6: 116 c0: 325 Y1: -1 Y0: 50000000000000000000000000000000000 m: 50000000000000000000000000000000000 rlim: 22600000 alim: 22600000 mfbr: 58 mfba: 58 lpbr: 29 lpba: 29 rlambda: 2.60 alambda: 2.60 12/22/24 10:02:02 v1.34.5 @ TRIGKEY, nfs: parsing special-q from .dat file 12/22/24 10:02:03 v1.34.5 @ TRIGKEY, test: fb generation took 1.7153 seconds 12/22/24 10:02:03 v1.34.5 @ TRIGKEY, test: commencing test sieving of polynomial 1 on the rational side over range 22600000-22602000 skew: 0.2823 c5: 7250 c0: 13 Y1: -1 Y0: 100000000000000000000000000000000000000000 m: 100000000000000000000000000000000000000000 rlim: 22600000 alim: 22600000 mfbr: 58 mfba: 58 lpbr: 29 lpba: 29 rlambda: 2.60 alambda: 2.60 12/22/24 10:05:02 v1.34.5 @ TRIGKEY, nfs: parsing special-q from .dat file 12/22/24 10:05:04 v1.34.5 @ TRIGKEY, test: fb generation took 1.6331 seconds 12/22/24 10:05:04 v1.34.5 @ TRIGKEY, test: commencing test sieving of polynomial 2 on the rational side over range 22600000-22602000 skew: 1.4115 c5: 58 c0: 325 Y1: -1 Y0: 500000000000000000000000000000000000000000 m: 500000000000000000000000000000000000000000 rlim: 22600000 alim: 22600000 mfbr: 58 mfba: 58 lpbr: 29 lpba: 29 rlambda: 2.60 alambda: 2.60 12/22/24 10:07:58 v1.34.5 @ TRIGKEY, nfs: parsing special-q from .dat file 12/22/24 10:07:58 v1.34.5 @ TRIGKEY, gen: selected polynomial: n: 5025299785125112636029666597352186871837526859360920496291675330976641020309142579884937963540583627919872461357177514382754557427046510015942330352810702155680321619186248007208705898662230539959797601719 # 29*10^208+52, difficulty: 210.86, anorm: 3.88e+038, rnorm: 4.59e+040 # scaled difficulty: 210.86, suggest sieving algebraic side # size = 1.884e-010, alpha = -1.882, combined = 5.258e-012, rroots = 0 type: snfs size: 210 skew: 1.1873 c6: 116 c0: 325 Y1: -1 Y0: 50000000000000000000000000000000000 m: 50000000000000000000000000000000000 12/24/24 03:36:11 v1.34.5 @ TRIGKEY, nfs: commencing msieve filtering 12/24/24 03:42:10 v1.34.5 @ TRIGKEY, nfs: commencing msieve linear algebra 12/24/24 06:50:45 v1.34.5 @ TRIGKEY, nfs: commencing msieve sqrt 12/24/24 07:00:04 v1.34.5 @ TRIGKEY, prp89 = 18279862384828942680328007930045563976840669628169005150124153851238020968291451170151697 12/24/24 07:00:04 v1.34.5 @ TRIGKEY, prp117 = 274909059999038818966833760908510370540298521287138215936109722758207353083981958734454162796043006669601355247494727 12/24/24 07:00:05 v1.34.5 @ TRIGKEY, NFS elapsed time = 162064.8297 seconds. 12/24/24 07:00:05 v1.34.5 @ TRIGKEY, 12/24/24 07:00:05 v1.34.5 @ TRIGKEY, 12/22/24 10:07:58 v1.34.5 @ TRIGKEY, test: test sieving took 538.13 seconds |
software ソフトウェア | YAFU |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | September 21, 2023 09:46:57 UTC 2023 年 9 月 21 日 (木) 18 時 46 分 57 秒 (日本時間) |
2350 | Ignacio Santos | August 29, 2024 05:38:09 UTC 2024 年 8 月 29 日 (木) 14 時 38 分 9 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | June 21, 2022 05:37:26 UTC 2022 年 6 月 21 日 (火) 14 時 37 分 26 秒 (日本時間) |
composite number 合成数 | 12317127482634105126183425575698191855440587759522463780670749900403459629283080755513680000789866529430764614241139026219019745445194571010052949540158118911373831859765417182541394430099<188> |
prime factors 素因数 | 3418273808121264012382237<25> 2742820169197451273436006495809903831<37> 615462800379827996965510784308608598361<39> 2134535815008012175680328228028654977348530485808733978886851999112604688613071033462097<88> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 12317127482634105126183425575698191855440587759522463780670749900403459629283080755513680000789866529430764614241139026219019745445194571010052949540158118911373831859765417182541394430099 (188 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1:1579833153 Step 1 took 3685ms Step 2 took 2157ms ********** Factor found in step 2: 3418273808121264012382237 Found prime factor of 25 digits: 3418273808121264012382237 Composite cofactor 3603317982711217711121049909435636585354665379449154762492048973172912099189270019203784265386176928368860258463203338812666207456361815138517747368633773880278127 has 163 digits Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1:2059440605 Step 1 took 3146ms Step 2 took 1911ms ********** Factor found in step 2: 2742820169197451273436006495809903831 Found prime factor of 37 digits: 2742820169197451273436006495809903831 Composite cofactor 1313727390215869659143944053657014388110855065645727034768108598361828317929458947780946923179831080394048217454515484389823017 has 127 digits Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1:2271580733 Step 1 took 2759ms Step 2 took 1722ms ********** Factor found in step 2: 615462800379827996965510784308608598361 Found prime factor of 39 digits: 615462800379827996965510784308608598361 Prime cofactor 2134535815008012175680328228028654977348530485808733978886851999112604688613071033462097 has 88 digits |
software ソフトウェア | GMP-ECM 7.0.4 |
execution environment 実行環境 | Linux Ubuntu 20.04.1 LTS [5.4.0-105-generic|libc 2.31 (Ubuntu GLIBC 2.31-0ubuntu9.7)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | August 29, 2024 05:39:03 UTC 2024 年 8 月 29 日 (木) 14 時 39 分 3 秒 (日本時間) |
composite number 合成数 | 1617324325172941939712151293767071499513105337600772852414763767858757584343639692017233309504701600252654904235502940031686720086685897270468471329114431541595953295723499212007155157<184> |
prime factors 素因数 | 12332001666956033028460815954661578816863<41> |
composite cofactor 合成数の残り | 131148565241165252021167637777286979192820002848529448548609689383764885898521545200898040250875418645741413044258087040817120066598010626782539<144> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:4120369953 Step 1 took 7344ms ********** Factor found in step 1: 12332001666956033028460815954661578816863 Found prime factor of 41 digits: 12332001666956033028460815954661578816863 Composite cofactor 131148565241165252021167637777286979192820002848529448548609689383764885898521545200898040250875418645741413044258087040817120066598010626782539 has 144 digits |
software ソフトウェア | GMP-ECM |
name 名前 | Bob Backstrom |
---|---|
date 日付 | September 6, 2024 23:20:15 UTC 2024 年 9 月 7 日 (土) 8 時 20 分 15 秒 (日本時間) |
composite number 合成数 | 131148565241165252021167637777286979192820002848529448548609689383764885898521545200898040250875418645741413044258087040817120066598010626782539<144> |
prime factors 素因数 | 17898807011801399532463330202646744963283513<44> 7327223828643649610589035289712104008628197198265016401939024377735167086498592559850197288741764003<100> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 131148565241165252021167637777286979192820002848529448548609689383764885898521545200898040250875418645741413044258087040817120066598010626782539 (144 digits) Using B1=63940000, B2=388133141770, polynomial Dickson(30), sigma=1:2118119523 Step 1 took 124338ms Step 2 took 52081ms ********** Factor found in step 2: 17898807011801399532463330202646744963283513 Found prime factor of 44 digits: 17898807011801399532463330202646744963283513 Prime cofactor 7327223828643649610589035289712104008628197198265016401939024377735167086498592559850197288741764003 has 100 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | September 12, 2023 05:43:44 UTC 2023 年 9 月 12 日 (火) 14 時 43 分 44 秒 (日本時間) |
2350 | Ignacio Santos | September 5, 2024 14:52:19 UTC 2024 年 9 月 5 日 (木) 23 時 52 分 19 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | September 12, 2023 05:43:53 UTC 2023 年 9 月 12 日 (火) 14 時 43 分 53 秒 (日本時間) |
2350 | Ignacio Santos | August 29, 2024 05:43:51 UTC 2024 年 8 月 29 日 (木) 14 時 43 分 51 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | June 21, 2022 05:40:24 UTC 2022 年 6 月 21 日 (火) 14 時 40 分 24 秒 (日本時間) |
composite number 合成数 | 3948510806185262444239002339410743412759118414668034520566237108482131478542167671020366644179226537839378405748246631339001327837895713975051406422341488266570082740704656349<175> |
prime factors 素因数 | 14754029338336407115730766821<29> |
composite cofactor 合成数の残り | 267622539961038019556238980151283894633166151420532798285914912311088865927974474628148985979280090671238690271753391191466624267709936046855151769<147> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 3948510806185262444239002339410743412759118414668034520566237108482131478542167671020366644179226537839378405748246631339001327837895713975051406422341488266570082740704656349 (175 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1:2803823759 Step 1 took 3273ms Step 2 took 1816ms ********** Factor found in step 2: 14754029338336407115730766821 Found prime factor of 29 digits: 14754029338336407115730766821 Composite cofactor 267622539961038019556238980151283894633166151420532798285914912311088865927974474628148985979280090671238690271753391191466624267709936046855151769 has 147 digits |
software ソフトウェア | GMP-ECM 7.0.4 |
execution environment 実行環境 | Linux Ubuntu 20.04.1 LTS [5.4.0-105-generic|libc 2.31 (Ubuntu GLIBC 2.31-0ubuntu9.7)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | June 23, 2022 22:05:09 UTC 2022 年 6 月 24 日 (金) 7 時 5 分 9 秒 (日本時間) |
composite number 合成数 | 267622539961038019556238980151283894633166151420532798285914912311088865927974474628148985979280090671238690271753391191466624267709936046855151769<147> |
prime factors 素因数 | 350898424736132612468253587583408580379599081541<48> 762678088858004690077779144591026943076923544942569339937436306427146839755267613759649069857891909<99> |
factorization results 素因数分解の結果 | Using B1=43000000, B2=240490660426, polynomial Dickson(12), sigma=1:2343767414 Step 1 took 84656ms ********** Factor found in step 1: 350898424736132612468253587583408580379599081541 Found prime factor of 48 digits: 350898424736132612468253587583408580379599081541 Prime cofactor 762678088858004690077779144591026943076923544942569339937436306427146839755267613759649069857891909 has 99 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | June 21, 2022 17:53:11 UTC 2022 年 6 月 22 日 (水) 2 時 53 分 11 秒 (日本時間) | |
45 | 11e6 | 4480 | Ignacio Santos | June 22, 2022 15:27:10 UTC 2022 年 6 月 23 日 (木) 0 時 27 分 10 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | September 21, 2023 09:47:08 UTC 2023 年 9 月 21 日 (木) 18 時 47 分 8 秒 (日本時間) |
2350 | Ignacio Santos | August 29, 2024 05:52:53 UTC 2024 年 8 月 29 日 (木) 14 時 52 分 53 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | September 12, 2023 05:44:04 UTC 2023 年 9 月 12 日 (火) 14 時 44 分 4 秒 (日本時間) |
2350 | Ignacio Santos | August 29, 2024 06:04:35 UTC 2024 年 8 月 29 日 (木) 15 時 4 分 35 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | September 21, 2023 09:51:00 UTC 2023 年 9 月 21 日 (木) 18 時 51 分 0 秒 (日本時間) |
2350 | Ignacio Santos | August 29, 2024 06:22:56 UTC 2024 年 8 月 29 日 (木) 15 時 22 分 56 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | September 12, 2023 05:44:16 UTC 2023 年 9 月 12 日 (火) 14 時 44 分 16 秒 (日本時間) |
2350 | Ignacio Santos | August 29, 2024 06:30:59 UTC 2024 年 8 月 29 日 (木) 15 時 30 分 59 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | June 21, 2022 07:41:58 UTC 2022 年 6 月 21 日 (火) 16 時 41 分 58 秒 (日本時間) |
composite number 合成数 | 119139387818393106303320669749227461204354096824742507120417467323911154864415558327938934635710005108610418616725785316681025620996876883097878122900469882171847543137128887676022401112300652724812147502983<207> |
prime factors 素因数 | 49480244418995819557109<23> |
composite cofactor 合成数の残り | 2407817285814672403184354621965369866039988426024981386669951844255813367524630413894007521983966348037841066167863210553900859973197323872343741061413616744156933799354391525761720587<184> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 119139387818393106303320669749227461204354096824742507120417467323911154864415558327938934635710005108610418616725785316681025620996876883097878122900469882171847543137128887676022401112300652724812147502983 (207 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1:4025835612 Step 1 took 4240ms ********** Factor found in step 1: 49480244418995819557109 Found prime factor of 23 digits: 49480244418995819557109 Composite cofactor 2407817285814672403184354621965369866039988426024981386669951844255813367524630413894007521983966348037841066167863210553900859973197323872343741061413616744156933799354391525761720587 has 184 digits |
software ソフトウェア | GMP-ECM 7.0.4 |
execution environment 実行環境 | Linux Ubuntu 20.04.1 LTS [5.4.0-105-generic|libc 2.31 (Ubuntu GLIBC 2.31-0ubuntu9.7)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
name 名前 | Erik Branger |
---|---|
date 日付 | August 15, 2022 15:56:09 UTC 2022 年 8 月 16 日 (火) 0 時 56 分 9 秒 (日本時間) |
composite number 合成数 | 2407817285814672403184354621965369866039988426024981386669951844255813367524630413894007521983966348037841066167863210553900859973197323872343741061413616744156933799354391525761720587<184> |
prime factors 素因数 | 285811445314342862672474065823770245308534939<45> 8424495678143652767805687776439693688318316667131432209161371935466471954412189773098330086737666493544143405012804636335498877590800228433<139> |
factorization results 素因数分解の結果 | Number: 32228_220 N = 2407817285814672403184354621965369866039988426024981386669951844255813367524630413894007521983966348037841066167863210553900859973197323872343741061413616744156933799354391525761720587 (184 digits) SNFS difficulty: 222 digits. Divisors found: r1=285811445314342862672474065823770245308534939 (pp45) r2=8424495678143652767805687776439693688318316667131432209161371935466471954412189773098330086737666493544143405012804636335498877590800228433 (pp139) Version: Msieve v. 1.52 (SVN unknown) Total time: 58.21 hours. Factorization parameters were as follows: n: 2407817285814672403184354621965369866039988426024981386669951844255813367524630413894007521983966348037841066167863210553900859973197323872343741061413616744156933799354391525761720587 m: 10000000000000000000000000000000000000000000000000000000 deg: 4 c4: 29 c0: 52 skew: 1.00 type: snfs lss: 1 rlim: 536870912 alim: 60000000 lpbr: 29 lpba: 28 mfbr: 58 mfba: 56 rlambda: 2.8 alambda: 2.8 side: 1 Number of cores used: 6 Number of threads per core: 1 Factor base limits: 536870912/60000000 Large primes per side: 3 Large prime bits: 29/28 Total raw relations: 30017715 Relations: 7897916 relations Total pre-computation time approximately 1000 CPU-days. Pre-computation saved approximately 18 G rational relations. Total batch smoothness checking time: 20.43 hours. Total relation processing time: 0.42 hours. Pruned matrix : 6750834 x 6751059 Matrix solve time: 36.49 hours. time per square root: 0.87 hours. Prototype def-par.txt line would be: snfs,222,4,0,0,0,0,0,0,0,0,536870912,60000000,29,28,58,56,2.8,2.8,100000 total time: 58.21 hours. Intel64 Family 6 Model 158 Stepping 10, GenuineIntel Windows-10-10.0.22000-SP0 processors: 12, speed: 3.19GHz |
software ソフトウェア | GGNFS, NFS_factory, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) |
name 名前 | Erik Branger |
---|---|
date 日付 | August 15, 2022 15:57:24 UTC 2022 年 8 月 16 日 (火) 0 時 57 分 24 秒 (日本時間) |
composite number 合成数 | 24964606366590483570691089082437123448776414614162992572834243524867891172130187489275632839455787314245719171716156184169036327501615147360092057629060303271923375958642971468270535104974877845767784619<203> |
prime factors 素因数 | 2478265007818829414117850620119029333589238467404711637<55> 8836453248855038614855922397905069201523917661836043719139645200191<67> 1139984624168482389007150899989015627232225664901670497699402226870537812405777857<82> |
factorization results 素因数分解の結果 | Number: 32228_221 N = 24964606366590483570691089082437123448776414614162992572834243524867891172130187489275632839455787314245719171716156184169036327501615147360092057629060303271923375958642971468270535104974877845767784619 (203 digits) SNFS difficulty: 223 digits. Divisors found: r1=2478265007818829414117850620119029333589238467404711637 (pp55) r2=8836453248855038614855922397905069201523917661836043719139645200191 (pp67) r3=1139984624168482389007150899989015627232225664901670497699402226870537812405777857 (pp82) Version: Msieve v. 1.52 (SVN unknown) Total time: 54.73 hours. Factorization parameters were as follows: n: 24964606366590483570691089082437123448776414614162992572834243524867891172130187489275632839455787314245719171716156184169036327501615147360092057629060303271923375958642971468270535104974877845767784619 m: 10000000000000000000000000000000000000000000000000000000 deg: 4 c4: 145 c0: 26 skew: 1.00 type: snfs lss: 1 rlim: 536870912 alim: 60000000 lpbr: 29 lpba: 28 mfbr: 58 mfba: 56 rlambda: 2.8 alambda: 2.8 side: 1 Number of cores used: 6 Number of threads per core: 1 Factor base limits: 536870912/60000000 Large primes per side: 3 Large prime bits: 29/28 Total raw relations: 31371531 Relations: 8314600 relations Total pre-computation time approximately 1000 CPU-days. Pre-computation saved approximately 18 G rational relations. Total batch smoothness checking time: 24.25 hours. Total relation processing time: 0.34 hours. Pruned matrix : 7146522 x 7146747 Matrix solve time: 29.27 hours. time per square root: 0.86 hours. Prototype def-par.txt line would be: snfs,223,4,0,0,0,0,0,0,0,0,536870912,60000000,29,28,58,56,2.8,2.8,100000 total time: 54.73 hours. Intel64 Family 6 Model 158 Stepping 10, GenuineIntel Windows-10-10.0.22000-SP0 processors: 12, speed: 3.19GHz |
software ソフトウェア | GGNFS, NFS_factory, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) |
composite cofactor 合成数の残り | 531290990217975794350180596348011287759056737205152642183697099899271541173496413279523836686190717563850163633370960295698570572491604423721541927773422561<156> |
---|
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | September 12, 2023 05:44:26 UTC 2023 年 9 月 12 日 (火) 14 時 44 分 26 秒 (日本時間) |
2350 | Ignacio Santos | August 29, 2024 06:33:46 UTC 2024 年 8 月 29 日 (木) 15 時 33 分 46 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | June 21, 2022 09:17:28 UTC 2022 年 6 月 21 日 (火) 18 時 17 分 28 秒 (日本時間) |
composite number 合成数 | 6218221559708029266963102213240070730248769600194146758988828785767711691696374019977792825081527940038851894720390159924951754822650917142592725144825448672524686181672971<172> |
prime factors 素因数 | 1616244262554486528224839396943<31> 3847327847512406392600825631024040300751108050705795118884027330739341490928931871727011489080031412190419190311471036575400031797539552286597<142> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 6218221559708029266963102213240070730248769600194146758988828785767711691696374019977792825081527940038851894720390159924951754822650917142592725144825448672524686181672971 (172 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1:1688008294 Step 1 took 2767ms ********** Factor found in step 1: 1616244262554486528224839396943 Found prime factor of 31 digits: 1616244262554486528224839396943 Prime cofactor 3847327847512406392600825631024040300751108050705795118884027330739341490928931871727011489080031412190419190311471036575400031797539552286597 has 142 digits |
software ソフトウェア | GMP-ECM 7.0.4 |
execution environment 実行環境 | Linux Ubuntu 20.04.1 LTS [5.4.0-105-generic|libc 2.31 (Ubuntu GLIBC 2.31-0ubuntu9.7)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | June 23, 2022 16:14:32 UTC 2022 年 6 月 24 日 (金) 1 時 14 分 32 秒 (日本時間) |
composite number 合成数 | 417900139780192976139696151460998190707942400453631397950264100060889759936888934469474047227234582197441442580727838689151890619252234694211516296964837429993592953352921783309<177> |
prime factors 素因数 | 2080606548216135330411283<25> |
composite cofactor 合成数の残り | 200854957482706684021945673285629389572450209233292195155357842827699289452180929948345407134314534157919353205019031122806501581299617620693259119638623<153> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 417900139780192976139696151460998190707942400453631397950264100060889759936888934469474047227234582197441442580727838689151890619252234694211516296964837429993592953352921783309 (177 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1:2894922047 Step 1 took 2404ms Step 2 took 1329ms ********** Factor found in step 2: 2080606548216135330411283 Found prime factor of 25 digits: 2080606548216135330411283 Composite cofactor 200854957482706684021945673285629389572450209233292195155357842827699289452180929948345407134314534157919353205019031122806501581299617620693259119638623 has 153 digits |
software ソフトウェア | GMP-ECM 7.0.4 |
execution environment 実行環境 | Linux Ubuntu 20.04.1 LTS [5.4.0-105-generic|libc 2.31 (Ubuntu GLIBC 2.31-0ubuntu9.7)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | February 28, 2024 09:39:49 UTC 2024 年 2 月 28 日 (水) 18 時 39 分 49 秒 (日本時間) |
composite number 合成数 | 200854957482706684021945673285629389572450209233292195155357842827699289452180929948345407134314534157919353205019031122806501581299617620693259119638623<153> |
prime factors 素因数 | 2761074064221742174118547102282810918765534282912379<52> 72745226245613670505833161977512704430620571485675801348605789200185575017931917489525804860876451437<101> |
factorization results 素因数分解の結果 | Using B1=43000000, B2=240490660426, polynomial Dickson(12), sigma=1:2508820893 Step 1 took 80094ms Step 2 took 29187ms ********** Factor found in step 2: 2761074064221742174118547102282810918765534282912379 Found prime factor of 52 digits: 2761074064221742174118547102282810918765534282912379 Prime cofactor 72745226245613670505833161977512704430620571485675801348605789200185575017931917489525804860876451437 has 101 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | June 24, 2022 16:12:37 UTC 2022 年 6 月 25 日 (土) 1 時 12 分 37 秒 (日本時間) | |
45 | 11e6 | 4480 | Ignacio Santos | June 25, 2022 09:50:22 UTC 2022 年 6 月 25 日 (土) 18 時 50 分 22 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | September 21, 2023 19:34:17 UTC 2023 年 9 月 22 日 (金) 4 時 34 分 17 秒 (日本時間) |
2350 | Ignacio Santos | August 29, 2024 06:49:55 UTC 2024 年 8 月 29 日 (木) 15 時 49 分 55 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | August 29, 2024 06:59:37 UTC 2024 年 8 月 29 日 (木) 15 時 59 分 37 秒 (日本時間) |
composite number 合成数 | 81163837247846621758858487220889510233404247702274497364875257053731574510044082562844985036921737283603546402209861397090986570868600709164157282958188779749263295752707802500141369582159126443499<197> |
prime factors 素因数 | 7184018748087734380734539704819426369849<40> |
composite cofactor 合成数の残り | 11297832048315725450617472523661637511475058700673858926972595346848840686118967218865050472281274470061809540591554236164910346418524222110514430829284598851<158> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:4222527973 Step 1 took 8750ms Step 2 took 31ms ********** Factor found in step 2: 7184018748087734380734539704819426369849 Found prime factor of 40 digits: 7184018748087734380734539704819426369849 Composite cofactor 11297832048315725450617472523661637511475058700673858926972595346848840686118967218865050472281274470061809540591554236164910346418524222110514430829284598851 has 158 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | September 12, 2023 05:44:39 UTC 2023 年 9 月 12 日 (火) 14 時 44 分 39 秒 (日本時間) |
2350 | Ignacio Santos | September 5, 2024 14:52:40 UTC 2024 年 9 月 5 日 (木) 23 時 52 分 40 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | June 21, 2022 11:42:12 UTC 2022 年 6 月 21 日 (火) 20 時 42 分 12 秒 (日本時間) |
composite number 合成数 | 89309030543004507652571128383223420303246762064107533289239056003268628240177621572865060082316512968588024797785782696207964567367930484420053047986466094546919290663184873023498916618363837<191> |
prime factors 素因数 | 30165132982819384971346258273<29> |
composite cofactor 合成数の残り | 2960670871030824034964495854795810792793327738552179713989122441113221464209592388477927825350568201675589219174282455592127224001178812441742792970961281186991069<163> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 89309030543004507652571128383223420303246762064107533289239056003268628240177621572865060082316512968588024797785782696207964567367930484420053047986466094546919290663184873023498916618363837 (191 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1:3369955862 Step 1 took 3590ms Step 2 took 1941ms ********** Factor found in step 2: 30165132982819384971346258273 Found prime factor of 29 digits: 30165132982819384971346258273 Composite cofactor 2960670871030824034964495854795810792793327738552179713989122441113221464209592388477927825350568201675589219174282455592127224001178812441742792970961281186991069 has 163 digits |
software ソフトウェア | GMP-ECM 7.0.4 |
execution environment 実行環境 | Linux Ubuntu 20.04.1 LTS [5.4.0-105-generic|libc 2.31 (Ubuntu GLIBC 2.31-0ubuntu9.7)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | June 21, 2022 15:25:26 UTC 2022 年 6 月 22 日 (水) 0 時 25 分 26 秒 (日本時間) |
composite number 合成数 | 2960670871030824034964495854795810792793327738552179713989122441113221464209592388477927825350568201675589219174282455592127224001178812441742792970961281186991069<163> |
prime factors 素因数 | 36968176677144348223404233703193741<35> 80087013673608223456580401898154888285984150190175571127734262833111628194957381154275494687174942953050179174978715366505611409<128> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1:3632767142 Step 1 took 3120ms Step 2 took 1735ms ********** Factor found in step 2: 36968176677144348223404233703193741 Found prime factor of 35 digits: 36968176677144348223404233703193741 Prime cofactor 80087013673608223456580401898154888285984150190175571127734262833111628194957381154275494687174942953050179174978715366505611409 has 128 digits |
software ソフトウェア | GMP-ECM 7.0.4 |
execution environment 実行環境 | Linux Ubuntu 20.04.1 LTS [5.4.0-105-generic|libc 2.31 (Ubuntu GLIBC 2.31-0ubuntu9.7)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | September 12, 2023 05:44:48 UTC 2023 年 9 月 12 日 (火) 14 時 44 分 48 秒 (日本時間) |
2350 | Ignacio Santos | August 29, 2024 07:08:11 UTC 2024 年 8 月 29 日 (木) 16 時 8 分 11 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | September 21, 2023 09:51:13 UTC 2023 年 9 月 21 日 (木) 18 時 51 分 13 秒 (日本時間) |
2350 | Ignacio Santos | August 29, 2024 07:18:12 UTC 2024 年 8 月 29 日 (木) 16 時 18 分 12 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | September 25, 2023 07:34:45 UTC 2023 年 9 月 25 日 (月) 16 時 34 分 45 秒 (日本時間) |
composite number 合成数 | 139609454644815248695343805373466309413003791866369075546748158198413007443246707513749682184172246172622101627207116200078141590442454613921989085274169087030630220548849773100371131603875011086352372393030263413521525803221<225> |
prime factors 素因数 | 22889360062789448277176567663020464555860551<44> |
composite cofactor 合成数の残り | 6099316637155539612315221238048189240060990210969189117691143125911766871334078376234702937763031205411930100790914972636468153653019474540383434493539415234168624236007163024199171<181> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @3bfd4d9d1ff1 with GMP-ECM 7.0.5-dev on Sun Sep 24 21:08:30 2023 Input number is 139609454644815248695343805373466309413003791866369075546748158198413007443246707513749682184172246172622101627207116200078141590442454613921989085274169087030630220548849773100371131603875011086352372393030263413521525803221 (225 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:399700126 Step 1 took 0ms Step 2 took 5370ms ********** Factor found in step 2: 22889360062789448277176567663020464555860551 Found prime factor of 44 digits: 22889360062789448277176567663020464555860551 Composite cofactor 6099316637155539612315221238048189240060990210969189117691143125911766871334078376234702937763031205411930100790914972636468153653019474540383434493539415234168624236007163024199171 has 181 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | September 21, 2023 19:34:07 UTC 2023 年 9 月 22 日 (金) 4 時 34 分 7 秒 (日本時間) |
2350 | Ignacio Santos | August 29, 2024 07:36:37 UTC 2024 年 8 月 29 日 (木) 16 時 36 分 37 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | June 23, 2022 12:22:26 UTC 2022 年 6 月 23 日 (木) 21 時 22 分 26 秒 (日本時間) |
composite number 合成数 | 3314979898420659780442239957565967344785572515219223827958592274541672718587706513050048485754558132755204178769376817939598983236051546174586749622595972888802631827975183226957083537275535189014825671<202> |
prime factors 素因数 | 1230278371390158748315197916639<31> 2694495795024733206266231237995784388376220996555192364582731010585952840409936347125322683466514789399158543887514329117671470583334782558998754102139933791529990853003289<172> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 3314979898420659780442239957565967344785572515219223827958592274541672718587706513050048485754558132755204178769376817939598983236051546174586749622595972888802631827975183226957083537275535189014825671 (202 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1:956671031 Step 1 took 3160ms Step 2 took 1693ms ********** Factor found in step 2: 1230278371390158748315197916639 Found prime factor of 31 digits: 1230278371390158748315197916639 Prime cofactor 2694495795024733206266231237995784388376220996555192364582731010585952840409936347125322683466514789399158543887514329117671470583334782558998754102139933791529990853003289 has 172 digits |
software ソフトウェア | GMP-ECM 7.0.4 |
execution environment 実行環境 | Linux Ubuntu 20.04.1 LTS [5.4.0-105-generic|libc 2.31 (Ubuntu GLIBC 2.31-0ubuntu9.7)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | September 24, 2023 21:03:24 UTC 2023 年 9 月 25 日 (月) 6 時 3 分 24 秒 (日本時間) |
2350 | Ignacio Santos | August 29, 2024 07:51:24 UTC 2024 年 8 月 29 日 (木) 16 時 51 分 24 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | September 23, 2023 01:01:56 UTC 2023 年 9 月 23 日 (土) 10 時 1 分 56 秒 (日本時間) |
composite number 合成数 | 122269775475643742447138124865679877637245309346316253602535045332380898928587016966177490868156303008299422042219979273189916090172119089544162294289684329016329703678704740031065689946269892366853775638097794287727611919273<225> |
prime factors 素因数 | 4274913331101378339390167777322857<34> |
composite cofactor 合成数の残り | 28601696924728636073760969353790892737974819679031579350297795676282230588816175672908389554905664760225420097673962954870942523060732321507438399942031758548174281832497642341124400288705089<191> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @e9c9b1a0316d with GMP-ECM 7.0.5-dev on Fri Sep 22 12:22:10 2023 Input number is 122269775475643742447138124865679877637245309346316253602535045332380898928587016966177490868156303008299422042219979273189916090172119089544162294289684329016329703678704740031065689946269892366853775638097794287727611919273 (225 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:1418092275 Step 1 took 0ms Step 2 took 5234ms ********** Factor found in step 2: 4274913331101378339390167777322857 Found prime factor of 34 digits: 4274913331101378339390167777322857 Composite cofactor 28601696924728636073760969353790892737974819679031579350297795676282230588816175672908389554905664760225420097673962954870942523060732321507438399942031758548174281832497642341124400288705089 has 191 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | September 21, 2023 19:33:54 UTC 2023 年 9 月 22 日 (金) 4 時 33 分 54 秒 (日本時間) |
2350 | Ignacio Santos | August 29, 2024 07:58:22 UTC 2024 年 8 月 29 日 (木) 16 時 58 分 22 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | September 21, 2023 09:51:28 UTC 2023 年 9 月 21 日 (木) 18 時 51 分 28 秒 (日本時間) |
2350 | Ignacio Santos | August 29, 2024 08:02:50 UTC 2024 年 8 月 29 日 (木) 17 時 2 分 50 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | September 21, 2023 19:28:43 UTC 2023 年 9 月 22 日 (金) 4 時 28 分 43 秒 (日本時間) |
2350 | Ignacio Santos | August 29, 2024 08:25:15 UTC 2024 年 8 月 29 日 (木) 17 時 25 分 15 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | August 29, 2024 08:31:44 UTC 2024 年 8 月 29 日 (木) 17 時 31 分 44 秒 (日本時間) |
composite number 合成数 | 196476964769647696476964769647696476964769647696476964769647696476964769647696476964769647696476964769647696476964769647696476964769647696476964769647696476964769647696476964769647696476964769647696476964769647696476964769647696476964769647696477<246> |
prime factors 素因数 | 36939507888183644835999274139503995411666377<44> |
composite cofactor 合成数の残り | 5318884197493532966927784507545635935994618017384021736259096966452122040126893406893362980978316104086029226863597956802531688419476425922797403709960058059978840839182519368063087199495217543708621301<202> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:215772553 Step 1 took 8844ms ********** Factor found in step 2: 36939507888183644835999274139503995411666377 Found prime factor of 44 digits: 36939507888183644835999274139503995411666377 Composite cofactor 5318884197493532966927784507545635935994618017384021736259096966452122040126893406893362980978316104086029226863597956802531688419476425922797403709960058059978840839182519368063087199495217543708621301 has 202 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | September 24, 2023 21:03:31 UTC 2023 年 9 月 25 日 (月) 6 時 3 分 31 秒 (日本時間) |
2350 | Ignacio Santos | September 5, 2024 14:52:53 UTC 2024 年 9 月 5 日 (木) 23 時 52 分 53 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | September 21, 2023 19:32:55 UTC 2023 年 9 月 22 日 (金) 4 時 32 分 55 秒 (日本時間) |
2350 | Ignacio Santos | August 29, 2024 08:37:24 UTC 2024 年 8 月 29 日 (木) 17 時 37 分 24 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2272 | 1792 | Dmitry Domanov | September 24, 2023 21:03:40 UTC 2023 年 9 月 25 日 (月) 6 時 3 分 40 秒 (日本時間) |
480 | Thomas Kozlowski | September 28, 2024 12:10:14 UTC 2024 年 9 月 28 日 (土) 21 時 10 分 14 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2272 | 1792 | Dmitry Domanov | September 21, 2023 19:28:57 UTC 2023 年 9 月 22 日 (金) 4 時 28 分 57 秒 (日本時間) |
480 | Thomas Kozlowski | September 28, 2024 12:11:49 UTC 2024 年 9 月 28 日 (土) 21 時 11 分 49 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | September 25, 2023 16:34:33 UTC 2023 年 9 月 26 日 (火) 1 時 34 分 33 秒 (日本時間) |
composite number 合成数 | 139425937696241332574154406370887597906851025682723279066581413654078793941307796939868075375545173781839028349001706658634161165471593561840070330910865512267820935157794718923617602456232992252300175754226372204610705076262981940942793<237> |
prime factors 素因数 | 769597684981287785442008705486526653<36> 181167303926637167621057045920436759629633263406094646751126869164909398381396897058717519218600755566250733024398489635718273750883524129491812138435530840342628334311916479628100334409638355145296381<201> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @3bfd4d9d1ff1 with GMP-ECM 7.0.5-dev on Sun Sep 24 21:26:22 2023 Input number is 139425937696241332574154406370887597906851025682723279066581413654078793941307796939868075375545173781839028349001706658634161165471593561840070330910865512267820935157794718923617602456232992252300175754226372204610705076262981940942793 (237 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:258952273 Step 1 took 0ms Step 2 took 5870ms ********** Factor found in step 2: 769597684981287785442008705486526653 Found prime factor of 36 digits: 769597684981287785442008705486526653 Prime cofactor 181167303926637167621057045920436759629633263406094646751126869164909398381396897058717519218600755566250733024398489635718273750883524129491812138435530840342628334311916479628100334409638355145296381 has 201 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 / 2078 | Dmitry Domanov | September 24, 2023 21:03:47 UTC 2023 年 9 月 25 日 (月) 6 時 3 分 47 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2272 | 1792 | Dmitry Domanov | September 21, 2023 19:32:16 UTC 2023 年 9 月 22 日 (金) 4 時 32 分 16 秒 (日本時間) |
480 | Thomas Kozlowski | September 28, 2024 12:13:21 UTC 2024 年 9 月 28 日 (土) 21 時 13 分 21 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2272 | 1792 | Dmitry Domanov | September 24, 2023 21:03:55 UTC 2023 年 9 月 25 日 (月) 6 時 3 分 55 秒 (日本時間) |
480 | Thomas Kozlowski | September 28, 2024 12:15:05 UTC 2024 年 9 月 28 日 (土) 21 時 15 分 5 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2272 | 1792 | Dmitry Domanov | September 24, 2023 21:04:02 UTC 2023 年 9 月 25 日 (月) 6 時 4 分 2 秒 (日本時間) |
480 | Thomas Kozlowski | September 28, 2024 12:16:51 UTC 2024 年 9 月 28 日 (土) 21 時 16 分 51 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | June 21, 2022 19:28:44 UTC 2022 年 6 月 22 日 (水) 4 時 28 分 44 秒 (日本時間) |
composite number 合成数 | 39433301515682025499399820877133365848710127642276711063947322790732997079418554708896769772359203351400635836158205427957410838175979902268236659643597788080565539833666105661586094882650314498295955620960378605454443259957027<227> |
prime factors 素因数 | 274415740206962603282171<24> 143699124131661254852740470729590177298197997167257812698408598733810222624125111093410246273522196334010467123162505405621811667279113119468545284389018834584634415542890905761691575027838631551099807737<204> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 39433301515682025499399820877133365848710127642276711063947322790732997079418554708896769772359203351400635836158205427957410838175979902268236659643597788080565539833666105661586094882650314498295955620960378605454443259957027 (227 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1:1557376241 Step 1 took 4790ms Step 2 took 2461ms ********** Factor found in step 2: 274415740206962603282171 Found prime factor of 24 digits: 274415740206962603282171 Prime cofactor 143699124131661254852740470729590177298197997167257812698408598733810222624125111093410246273522196334010467123162505405621811667279113119468545284389018834584634415542890905761691575027838631551099807737 has 204 digits |
software ソフトウェア | GMP-ECM 7.0.4 |
execution environment 実行環境 | Linux Ubuntu 20.04.1 LTS [5.4.0-105-generic|libc 2.31 (Ubuntu GLIBC 2.31-0ubuntu9.7)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2272 | 1792 | Dmitry Domanov | September 21, 2023 19:32:43 UTC 2023 年 9 月 22 日 (金) 4 時 32 分 43 秒 (日本時間) |
480 | Thomas Kozlowski | September 28, 2024 12:18:25 UTC 2024 年 9 月 28 日 (土) 21 時 18 分 25 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | June 21, 2022 20:13:49 UTC 2022 年 6 月 22 日 (水) 5 時 13 分 49 秒 (日本時間) |
composite number 合成数 | 44182126359069439500881098278167039140603227320295603930564798691766568875495864339797138782457452826537533704916054124004165425712026894306963704126089934632120636612416861172462109882781862081<194> |
prime factors 素因数 | 188513182481058422770459<24> 627030741431653533744981880641749449<36> 373779995644809214692839668065110354356962239627779248681737831030066237932196893031414159355017456527700863132383888504236292086264891<135> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 44182126359069439500881098278167039140603227320295603930564798691766568875495864339797138782457452826537533704916054124004165425712026894306963704126089934632120636612416861172462109882781862081 (194 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1:4188637905 Step 1 took 4005ms ********** Factor found in step 1: 188513182481058422770459 Found prime factor of 24 digits: 188513182481058422770459 Composite cofactor 234371547801484950655745179195914821517544801808865115790700249395761705296434715385877071832157144233509920580436709297221125257094311763498527320735718287338634267295059 has 171 digits Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1:3864597262 Step 1 took 2688ms Step 2 took 1795ms ********** Factor found in step 2: 627030741431653533744981880641749449 Found prime factor of 36 digits: 627030741431653533744981880641749449 Prime cofactor 373779995644809214692839668065110354356962239627779248681737831030066237932196893031414159355017456527700863132383888504236292086264891 has 135 digits |
software ソフトウェア | GMP-ECM 7.0.4 |
execution environment 実行環境 | Linux Ubuntu 20.04.1 LTS [5.4.0-105-generic|libc 2.31 (Ubuntu GLIBC 2.31-0ubuntu9.7)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2272 | 1792 | Dmitry Domanov | September 21, 2023 19:32:29 UTC 2023 年 9 月 22 日 (金) 4 時 32 分 29 秒 (日本時間) |
480 | Thomas Kozlowski | September 28, 2024 12:19:57 UTC 2024 年 9 月 28 日 (土) 21 時 19 分 57 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | June 22, 2022 03:18:30 UTC 2022 年 6 月 22 日 (水) 12 時 18 分 30 秒 (日本時間) |
composite number 合成数 | 505778553486862391219102156234056022884290249677597060380788836349502563952325918937659081673590573832321846493554188250669523516571038796279070056889222357112572078860074496033045184814959304868096800646908286011293787<219> |
prime factors 素因数 | 10769877770663025378596107<26> 46962329959267975482149154285311818590040839005317089482585451354524422461527730604344776861092342629651431097744841077329391982165588446293942447629093754766736209456496341281979999850116576241<194> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 505778553486862391219102156234056022884290249677597060380788836349502563952325918937659081673590573832321846493554188250669523516571038796279070056889222357112572078860074496033045184814959304868096800646908286011293787 (219 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1:3889598311 Step 1 took 4894ms Step 2 took 2359ms ********** Factor found in step 2: 10769877770663025378596107 Found prime factor of 26 digits: 10769877770663025378596107 Prime cofactor 46962329959267975482149154285311818590040839005317089482585451354524422461527730604344776861092342629651431097744841077329391982165588446293942447629093754766736209456496341281979999850116576241 has 194 digits |
software ソフトウェア | GMP-ECM 7.0.4 |
execution environment 実行環境 | Linux Ubuntu 20.04.1 LTS [5.4.0-105-generic|libc 2.31 (Ubuntu GLIBC 2.31-0ubuntu9.7)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2272 | 1792 | Dmitry Domanov | September 24, 2023 21:04:10 UTC 2023 年 9 月 25 日 (月) 6 時 4 分 10 秒 (日本時間) |
480 | Thomas Kozlowski | September 28, 2024 12:21:44 UTC 2024 年 9 月 28 日 (土) 21 時 21 分 44 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2203 | Thomas Kozlowski | September 28, 2024 12:29:33 UTC 2024 年 9 月 28 日 (土) 21 時 29 分 33 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2200 | Thomas Kozlowski | September 28, 2024 12:37:19 UTC 2024 年 9 月 28 日 (土) 21 時 37 分 19 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2272 | 1792 | Dmitry Domanov | September 24, 2023 21:04:18 UTC 2023 年 9 月 25 日 (月) 6 時 4 分 18 秒 (日本時間) |
480 | Thomas Kozlowski | September 28, 2024 12:39:05 UTC 2024 年 9 月 28 日 (土) 21 時 39 分 5 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2202 | Thomas Kozlowski | September 28, 2024 12:46:53 UTC 2024 年 9 月 28 日 (土) 21 時 46 分 53 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2272 | 1792 | Dmitry Domanov | September 24, 2023 21:04:25 UTC 2023 年 9 月 25 日 (月) 6 時 4 分 25 秒 (日本時間) |
480 | Thomas Kozlowski | September 28, 2024 12:48:39 UTC 2024 年 9 月 28 日 (土) 21 時 48 分 39 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | June 22, 2022 04:08:42 UTC 2022 年 6 月 22 日 (水) 13 時 8 分 42 秒 (日本時間) |
composite number 合成数 | 41976750603562435902944511500299256887034633173348210441132276170522589242591512574346705679700877913850331260300614699697183013973392970044111074186164022100102680712111301502670906865407444760886522545363055299<212> |
prime factors 素因数 | 17281807533080535725655648313<29> 2428956029235441327637448183723133509690417418421466434930280951819952440771974176365040593245082995023400545672167559809497354383562334693478582423429554579135522645338357453805525723<184> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 41976750603562435902944511500299256887034633173348210441132276170522589242591512574346705679700877913850331260300614699697183013973392970044111074186164022100102680712111301502670906865407444760886522545363055299 (212 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1:273767340 Step 1 took 4010ms Step 2 took 2375ms ********** Factor found in step 2: 17281807533080535725655648313 Found prime factor of 29 digits: 17281807533080535725655648313 Prime cofactor 2428956029235441327637448183723133509690417418421466434930280951819952440771974176365040593245082995023400545672167559809497354383562334693478582423429554579135522645338357453805525723 has 184 digits |
software ソフトウェア | GMP-ECM 7.0.4 |
execution environment 実行環境 | Linux Ubuntu 20.04.1 LTS [5.4.0-105-generic|libc 2.31 (Ubuntu GLIBC 2.31-0ubuntu9.7)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | June 22, 2022 12:52:46 UTC 2022 年 6 月 22 日 (水) 21 時 52 分 46 秒 (日本時間) |
composite number 合成数 | 199462628359989659288668566908521041354817348480709189508857666596624586394772203902604098453134205396334798671512982145803959708708274858566971514632539327210679542607716752599182202489364791547496316149204464477200833619058092838997510574121223<246> |
prime factors 素因数 | 3735293769829290749693076727<28> 53399448785284012389099812435376460852725969539173419438034677575544028839854426586859778852706305761601014507588615822236351899317936944953055016760085863094817227006300789340753449804750065825619227647484779962740849<218> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 199462628359989659288668566908521041354817348480709189508857666596624586394772203902604098453134205396334798671512982145803959708708274858566971514632539327210679542607716752599182202489364791547496316149204464477200833619058092838997510574121223 (246 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1:3452869317 Step 1 took 5401ms Step 2 took 3357ms ********** Factor found in step 2: 3735293769829290749693076727 Found prime factor of 28 digits: 3735293769829290749693076727 Prime cofactor 53399448785284012389099812435376460852725969539173419438034677575544028839854426586859778852706305761601014507588615822236351899317936944953055016760085863094817227006300789340753449804750065825619227647484779962740849 has 218 digits |
software ソフトウェア | GMP-ECM 7.0.4 |
execution environment 実行環境 | Linux Ubuntu 20.04.1 LTS [5.4.0-105-generic|libc 2.31 (Ubuntu GLIBC 2.31-0ubuntu9.7)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2201 | Thomas Kozlowski | September 28, 2024 12:56:28 UTC 2024 年 9 月 28 日 (土) 21 時 56 分 28 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2272 | 1792 | Dmitry Domanov | September 24, 2023 21:04:33 UTC 2023 年 9 月 25 日 (月) 6 時 4 分 33 秒 (日本時間) |
480 | Thomas Kozlowski | September 28, 2024 12:58:15 UTC 2024 年 9 月 28 日 (土) 21 時 58 分 15 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | June 22, 2022 13:00:10 UTC 2022 年 6 月 22 日 (水) 22 時 0 分 10 秒 (日本時間) |
composite number 合成数 | 90704579066912440037928600035727312957834934047314455126408536729027966810748912862269476377736003213794815790798397734035651524475304765693937803628668796396232353386358552015006309169012795360635897167905503960723149185528891361718152336291644460303877289<257> |
prime factors 素因数 | 649736529360634191474181<24> 22526312197761826977099931969<29> 6197290140788122190484804848819349778408041427540983425483137733429414051734319373323613997418858245287431930861820579000177091560161622141183996964102017173389561628350340568470780580101454622746220814101<205> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 90704579066912440037928600035727312957834934047314455126408536729027966810748912862269476377736003213794815790798397734035651524475304765693937803628668796396232353386358552015006309169012795360635897167905503960723149185528891361718152336291644460303877289 (257 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1:1413408392 Step 1 took 5414ms Step 2 took 2511ms ********** Factor found in step 2: 649736529360634191474181 Found prime factor of 24 digits: 649736529360634191474181 Composite cofactor 139602092491504586906412043741240961267681037726011229676725987354312609277984044582706999022214094702851865075736765816522483102992242701642396217169196945071970276011909649208337228969416584802807089511224555311093225835938895894869 has 234 digits Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1:103057779 Step 1 took 5457ms Step 2 took 2391ms ********** Factor found in step 2: 22526312197761826977099931969 Found prime factor of 29 digits: 22526312197761826977099931969 Prime cofactor 6197290140788122190484804848819349778408041427540983425483137733429414051734319373323613997418858245287431930861820579000177091560161622141183996964102017173389561628350340568470780580101454622746220814101 has 205 digits |
software ソフトウェア | GMP-ECM 7.0.4 |
execution environment 実行環境 | Linux Ubuntu 20.04.1 LTS [5.4.0-105-generic|libc 2.31 (Ubuntu GLIBC 2.31-0ubuntu9.7)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2200 | Thomas Kozlowski | September 28, 2024 13:06:55 UTC 2024 年 9 月 28 日 (土) 22 時 6 分 55 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2203 | Thomas Kozlowski | September 28, 2024 13:14:45 UTC 2024 年 9 月 28 日 (土) 22 時 14 分 45 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | June 22, 2022 14:41:30 UTC 2022 年 6 月 22 日 (水) 23 時 41 分 30 秒 (日本時間) |
composite number 合成数 | 2675908958185741078281757042249174384314604105259186172033100561473862402578413649439716429638257085787409548990326818137422256655857326078373744957325751468057046712924276849747495796459877992537046420319459536949631591635078809865668044164638570170910075313<259> |
prime factors 素因数 | 114614487466139242092416789910674974457<39> |
composite cofactor 合成数の残り | 23347039430563169671712364426228098450140479683234854851545917269712693094610763117135848981031109400284039216194949103777369210365537034265048534202912794172762330407065771450661382130920550466652471014241171143325183609<221> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 2675908958185741078281757042249174384314604105259186172033100561473862402578413649439716429638257085787409548990326818137422256655857326078373744957325751468057046712924276849747495796459877992537046420319459536949631591635078809865668044164638570170910075313 (259 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1:2426702888 Step 1 took 6148ms Step 2 took 756ms ********** Factor found in step 2: 114614487466139242092416789910674974457 Found prime factor of 39 digits: 114614487466139242092416789910674974457 Composite cofactor 23347039430563169671712364426228098450140479683234854851545917269712693094610763117135848981031109400284039216194949103777369210365537034265048534202912794172762330407065771450661382130920550466652471014241171143325183609 has 221 digits |
software ソフトウェア | GMP-ECM 7.0.4 |
execution environment 実行環境 | Linux Ubuntu 20.04.1 LTS [5.4.0-105-generic|libc 2.31 (Ubuntu GLIBC 2.31-0ubuntu9.7)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2272 | 1792 | Dmitry Domanov | September 21, 2023 19:32:05 UTC 2023 年 9 月 22 日 (金) 4 時 32 分 5 秒 (日本時間) |
480 | Thomas Kozlowski | September 28, 2024 13:16:17 UTC 2024 年 9 月 28 日 (土) 22 時 16 分 17 秒 (日本時間) |
name 名前 | anonymous |
---|---|
date 日付 | September 9, 2023 12:35:15 UTC 2023 年 9 月 9 日 (土) 21 時 35 分 15 秒 (日本時間) |
composite number 合成数 | 829162745823911410932759508775685711677893017417856904393732477061758611028634294871209417036165143397036554771375125512908273503602887160621803641347292458558238867430227871202901145370306628424337643718213503278914189988767165373921348717875907604166623760843387058721<270> |
prime factors 素因数 | 11079749054192718967<20> |
composite cofactor 合成数の残り | 74835877759356436582741223313328916943233139692852128027263469975029693236426892146140328965860400087153071382222324800430369467799813329721563552449255890259386731444357629425551619993292089665233481674183261775240217567002694361524601383296470631463<251> |
factorization results 素因数分解の結果 | 11079749054192718967 http://factordb.com/index.php?id=1100000003600302657 |
software ソフトウェア | factordb.com |
name 名前 | Thomas Kozlowski |
---|---|
date 日付 | September 28, 2024 17:13:18 UTC 2024 年 9 月 29 日 (日) 2 時 13 分 18 秒 (日本時間) |
composite number 合成数 | 74835877759356436582741223313328916943233139692852128027263469975029693236426892146140328965860400087153071382222324800430369467799813329721563552449255890259386731444357629425551619993292089665233481674183261775240217567002694361524601383296470631463<251> |
prime factors 素因数 | 1119148772991464420772206867<28> |
composite cofactor 合成数の残り | 66868569724936113169895442287292437889693606511781639245509776049182322018930921715363357293884876113035425139641188055534386483795494627936198526365815326970046829956157645008889568483805883489790221723559325092662602120989<224> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.6 [configured with GMP 6.3.0, --enable-asm-redc] [ECM] Input number is 74835877759356436582741223313328916943233139692852128027263469975029693236426892146140328965860400087153071382222324800430369467799813329721563552449255890259386731444357629425551619993292089665233481674183261775240217567002694361524601383296470631463 (251 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:4276449874 Step 1 took 13937ms Step 2 took 5837ms ** Factor found in step 2: 1119148772991464420772206867 Found prime factor of 28 digits: 1119148772991464420772206867 Composite cofactor 66868569724936113169895442287292437889693606511781639245509776049182322018930921715363357293884876113035425139641188055534386483795494627936198526365815326970046829956157645008889568483805883489790221723559325092662602120989 has 224 digits |
execution environment 実行環境 | 4x Xeon E7-8890v4, 1024GB DDR4, Ubuntu Server 24.04 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | October 5, 2024 08:03:13 UTC 2024 年 10 月 5 日 (土) 17 時 3 分 13 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | June 22, 2022 21:54:05 UTC 2022 年 6 月 23 日 (木) 6 時 54 分 5 秒 (日本時間) |
composite number 合成数 | 21391470492817013548291410767389428452067553813511305716482572527369200528466873023016098036571201902116070609150937872199814781742790764220148077588284608569686867204421331619592153737389285871019728582987113545309936661343343254076000515317<242> |
prime factors 素因数 | 2247335145648120784268862353909<31> |
composite cofactor 合成数の残り | 9518593848470168893337961016768328923939198920739142273784226221750698013005610327491054117777660468013167561926339950651086334330222514791562242671695462235073244740799059090158973103842700747586875208177440513<211> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 21391470492817013548291410767389428452067553813511305716482572527369200528466873023016098036571201902116070609150937872199814781742790764220148077588284608569686867204421331619592153737389285871019728582987113545309936661343343254076000515317 (242 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1:1224343031 Step 1 took 5232ms Step 2 took 2472ms ********** Factor found in step 2: 2247335145648120784268862353909 Found prime factor of 31 digits: 2247335145648120784268862353909 Composite cofactor 9518593848470168893337961016768328923939198920739142273784226221750698013005610327491054117777660468013167561926339950651086334330222514791562242671695462235073244740799059090158973103842700747586875208177440513 has 211 digits |
software ソフトウェア | GMP-ECM 7.0.4 |
execution environment 実行環境 | Linux Ubuntu 20.04.1 LTS [5.4.0-105-generic|libc 2.31 (Ubuntu GLIBC 2.31-0ubuntu9.7)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2272 | 1792 | Dmitry Domanov | September 21, 2023 19:30:09 UTC 2023 年 9 月 22 日 (金) 4 時 30 分 9 秒 (日本時間) |
480 | Thomas Kozlowski | September 28, 2024 13:18:04 UTC 2024 年 9 月 28 日 (土) 22 時 18 分 4 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2201 | Thomas Kozlowski | September 28, 2024 13:26:50 UTC 2024 年 9 月 28 日 (土) 22 時 26 分 50 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2204 | Thomas Kozlowski | September 28, 2024 13:35:40 UTC 2024 年 9 月 28 日 (土) 22 時 35 分 40 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2201 | Thomas Kozlowski | September 28, 2024 13:44:22 UTC 2024 年 9 月 28 日 (土) 22 時 44 分 22 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | June 22, 2022 21:45:46 UTC 2022 年 6 月 23 日 (木) 6 時 45 分 46 秒 (日本時間) |
composite number 合成数 | 1635140837028320566226365988382771141466864231425927411337562528377371414280146874817727856198544132925015362111430141388234193702731543004512851863939964436472687639491367404232363509231839209496874279933333804507577982369677281284498598978349157618855447148309841357<268> |
prime factors 素因数 | 23983477204829422754797<23> 68177805205788138276855675879067812677128869824529636816508133513609977744206828241239125073406839398258100328285739679881967520428820825955921713299253876120003856381393195411575767485226722097898344060767936878208784882952168550277845780272481<245> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 1635140837028320566226365988382771141466864231425927411337562528377371414280146874817727856198544132925015362111430141388234193702731543004512851863939964436472687639491367404232363509231839209496874279933333804507577982369677281284498598978349157618855447148309841357 (268 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1:2864696283 Step 1 took 6086ms Step 2 took 2892ms ********** Factor found in step 2: 23983477204829422754797 Found prime factor of 23 digits: 23983477204829422754797 Prime cofactor 68177805205788138276855675879067812677128869824529636816508133513609977744206828241239125073406839398258100328285739679881967520428820825955921713299253876120003856381393195411575767485226722097898344060767936878208784882952168550277845780272481 has 245 digits |
software ソフトウェア | GMP-ECM 7.0.4 |
execution environment 実行環境 | Linux Ubuntu 20.04.1 LTS [5.4.0-105-generic|libc 2.31 (Ubuntu GLIBC 2.31-0ubuntu9.7)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2203 | Thomas Kozlowski | September 28, 2024 13:52:12 UTC 2024 年 9 月 28 日 (土) 22 時 52 分 12 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2272 | 1792 | Dmitry Domanov | September 24, 2023 21:04:41 UTC 2023 年 9 月 25 日 (月) 6 時 4 分 41 秒 (日本時間) |
480 | Thomas Kozlowski | September 28, 2024 13:53:59 UTC 2024 年 9 月 28 日 (土) 22 時 53 分 59 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2201 | Thomas Kozlowski | September 28, 2024 14:02:54 UTC 2024 年 9 月 28 日 (土) 23 時 2 分 54 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2204 | Thomas Kozlowski | September 28, 2024 14:11:43 UTC 2024 年 9 月 28 日 (土) 23 時 11 分 43 秒 (日本時間) |
name 名前 | Thomas Kozlowski |
---|---|
date 日付 | September 28, 2024 17:14:27 UTC 2024 年 9 月 29 日 (日) 2 時 14 分 27 秒 (日本時間) |
composite number 合成数 | 116578228010934233799646245377070268531918314841614407461006592699790963177359704132497186042772149863322077504421932786621643351021064479819906737417591252612960283003698343785174465348126708474031194725840167229458112236694002251165782280109342337996462453770702685319183148416144074610065927<294> |
prime factors 素因数 | 86997736018116940415732943865314617<35> |
composite cofactor 合成数の残り | 1340014503212557978390683074709796438519692745359703380065996755542776989121899942563234229121588207727677723220646379226885137628175669860257681818629332202935934040620967836231435597435333462923668830685225927735679582997958514346663313070335441109131098431<259> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.6 [configured with GMP 6.3.0, --enable-asm-redc] [ECM] Input number is 116578228010934233799646245377070268531918314841614407461006592699790963177359704132497186042772149863322077504421932786621643351021064479819906737417591252612960283003698343785174465348126708474031194725840167229458112236694002251165782280109342337996462453770702685319183148416144074610065927 (294 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:17320247 Step 1 took 17516ms Step 2 took 6776ms Run 2 out of 0: Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:2979992764 Step 1 took 17387ms Step 2 took 6735ms ** Factor found in step 2: 86997736018116940415732943865314617 Found prime factor of 35 digits: 86997736018116940415732943865314617 Composite cofactor 1340014503212557978390683074709796438519692745359703380065996755542776989121899942563234229121588207727677723220646379226885137628175669860257681818629332202935934040620967836231435597435333462923668830685225927735679582997958514346663313070335441109131098431 has 259 digits |
execution environment 実行環境 | 4x Xeon E7-8890v4, 1024GB DDR4, Ubuntu Server 24.04 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | October 5, 2024 08:37:26 UTC 2024 年 10 月 5 日 (土) 17 時 37 分 26 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2205 | Thomas Kozlowski | September 28, 2024 14:21:15 UTC 2024 年 9 月 28 日 (土) 23 時 21 分 15 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | June 12, 2022 04:00:00 UTC 2022 年 6 月 12 日 (日) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2203 | Thomas Kozlowski | September 28, 2024 14:29:04 UTC 2024 年 9 月 28 日 (土) 23 時 29 分 4 秒 (日本時間) |