Table of contents 目次

28×10153-19

c128

name 名前Jo Yeong Uk
date 日付February 23, 2007 23:55:30 UTC 2007 年 2 月 24 日 (土) 8 時 55 分 30 秒 (日本時間)
composite number 合成数
93098324693216579417753550046991752832637021075594278760522148525511109448795692087399923815341074215583301555795522034929280981<128>
prime factors 素因数
758789025710646472692249434850475074640894740293827<51>
122693293575279404068194860876165197135028729140976454096131624341950993818503<78>
factorization results 素因数分解の結果
Number: 31111_153
N=93098324693216579417753550046991752832637021075594278760522148525511109448795692087399923815341074215583301555795522034929280981
  ( 128 digits)
SNFS difficulty: 155 digits.
Divisors found:
 r1=758789025710646472692249434850475074640894740293827 (pp51)
 r2=122693293575279404068194860876165197135028729140976454096131624341950993818503 (pp78)
Version: GGNFS-0.77.1-20050930-k8
Total time: 19.61 hours.
Scaled time: 17.77 units (timescale=0.906).
Factorization parameters were as follows:
n: 93098324693216579417753550046991752832637021075594278760522148525511109448795692087399923815341074215583301555795522034929280981
m: 10000000000000000000000000000000
c5: 7
c0: -25
skew: 1.29
type: snfs
Factor base limits: 3000000/3000000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 48/48
Sieved algebraic special-q in [1500000, 2400001)
Primes: RFBsize:216816, AFBsize:216906, largePrimes:5406288 encountered
Relations: rels:5274106, finalFF:488668
Max relations in full relation-set: 28
Initial matrix: 433788 x 488668 with sparse part having weight 34023429.
Pruned matrix : 393569 x 395801 with weight 23880608.
Total sieving time: 18.36 hours.
Total relation processing time: 0.09 hours.
Matrix solve time: 1.12 hours.
Time per square root: 0.05 hours.
Prototype def-par.txt line would be:
snfs,155,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000
total time: 19.61 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM)2 CPU          6300  @ 1.86GHz stepping 06
Intel(R) Core(TM)2 CPU          6300  @ 1.86GHz stepping 06
Memory: 4037276k/5242880k available (2106k kernel code, 0k reserved, 1297k data, 196k init)
Calibrating delay using timer specific routine.. 4671.63 BogoMIPS (lpj=2335816)
Calibrating delay using timer specific routine.. 4668.47 BogoMIPS (lpj=2334238)
Total of 2 processors activated (9340.10 BogoMIPS).
execution environment 実行環境
Core 2 Duo E6300@2.33GHz

28×10155-19

c148

name 名前Robert Backstrom
date 日付April 4, 2007 14:43:50 UTC 2007 年 4 月 4 日 (水) 23 時 43 分 50 秒 (日本時間)
composite number 合成数
2197738613463458673765104938773203892054743135182716091261846294825289666128882382672101325759210236475583788427898222997958020616419230301091312461<148>
prime factors 素因数
1832323937877638424687563602099971871<37>
528132257091941690986148848873348959257<39>
2271072974612884347124933126129315615770172419175193664363341850801604363<73>
factorization results 素因数分解の結果
Number: n
N=2197738613463458673765104938773203892054743135182716091261846294825289666128882382672101325759210236475583788427898222997958020616419230301091312461
  ( 148 digits)
SNFS difficulty: 156 digits.
Divisors found:
 r1=1832323937877638424687563602099971871 (pp37)
 r2=528132257091941690986148848873348959257 (pp39)
 r3=2271072974612884347124933126129315615770172419175193664363341850801604363 (pp73)
Version: GGNFS-0.77.1-20051202-athlon
Total time: 32.07 hours.
Scaled time: 38.39 units (timescale=1.197).
Factorization parameters were as follows:
name: KA_3_1_155
n: 2197738613463458673765104938773203892054743135182716091261846294825289666128882382672101325759210236475583788427898222997958020616419230301091312461
type: snfs
skew: 1
deg: 5
c5: 28
c0: -1
m: 10000000000000000000000000000000
rlim: 3000000
alim: 3000000
lpbr: 28
lpba: 28
mfbr: 48
mfba: 48
qintsize: 100000
Factor base limits: 3000000/3000000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 48/48
Sieved algebraic special-q in [100000, 1300001)
Primes: RFBsize:216816, AFBsize:216531, largePrimes:6407029 encountered
Relations: rels:5912080, finalFF:529027
Max relations in full relation-set: 28
Initial matrix: 433413 x 529027 with sparse part having weight 28005595.
Pruned matrix : 346817 x 349048 with weight 14991508.
Total sieving time: 29.48 hours.
Total relation processing time: 0.21 hours.
Matrix solve time: 2.24 hours.
Total square root time: 0.15 hours, sqrts: 2.
Prototype def-par.txt line would be:
snfs,156,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.3,2.3,100000
total time: 32.07 hours.
 --------- CPU info (if available) ----------

Cygwin on AMD XP 2700+

28×10159-19

c134

name 名前Jo Yeong Uk
date 日付October 24, 2007 10:32:54 UTC 2007 年 10 月 24 日 (水) 19 時 32 分 54 秒 (日本時間)
composite number 合成数
12313964915655771746286044453350809950290851202515862861599384612499767983759056219534341024515693473314812267723013626438858554887137<134>
prime factors 素因数
691407189640250229701631872793975317289967702892453<51>
17810004148297787657731990085303963501623195591076357396769870762158063825273702029<83>
factorization results 素因数分解の結果
Number: 31111_159
N=12313964915655771746286044453350809950290851202515862861599384612499767983759056219534341024515693473314812267723013626438858554887137
  ( 134 digits)
SNFS difficulty: 161 digits.
Divisors found:
 r1=691407189640250229701631872793975317289967702892453 (pp51)
 r2=17810004148297787657731990085303963501623195591076357396769870762158063825273702029 (pp83)
Version: GGNFS-0.77.1-20050930-nocona
Total time: 31.18 hours.
Scaled time: 66.89 units (timescale=2.145).
Factorization parameters were as follows:
n: 12313964915655771746286044453350809950290851202515862861599384612499767983759056219534341024515693473314812267723013626438858554887137
m: 100000000000000000000000000000000
c5: 14
c0: -5
skew: 0.81
type: snfs
Factor base limits: 4000000/4000000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 48/48
Sieved algebraic special-q in [2000000, 3800001)
Primes: RFBsize:283146, AFBsize:284317, largePrimes:5680047 encountered
Relations: rels:5727480, finalFF:670051
Max relations in full relation-set: 28
Initial matrix: 567529 x 670051 with sparse part having weight 43786702.
Pruned matrix : 489700 x 492601 with weight 29899843.
Total sieving time: 29.75 hours.
Total relation processing time: 0.09 hours.
Matrix solve time: 1.29 hours.
Time per square root: 0.05 hours.
Prototype def-par.txt line would be:
snfs,161,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,48,48,2.3,2.3,100000
total time: 31.18 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Memory: 8167512k/8912896k available (2114k kernel code, 0k reserved, 1306k data, 208k init)
Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407679)
Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405127)
Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405115)
Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405125)
Total of 4 processors activated (19246.09 BogoMIPS).
execution environment 実行環境
Core 2 Quad Q6600

28×10160-19

c139

name 名前Robert Backstrom
date 日付October 1, 2007 23:04:08 UTC 2007 年 10 月 2 日 (火) 8 時 4 分 8 秒 (日本時間)
composite number 合成数
4024357646312174958831474608222302299118450594684435034315875112537932079099180653597254994891579763036098222505425488832273115077429825457<139>
prime factors 素因数
633091035242735539801967600647466189684568802167457<51>
6356680828325396531036158080960100862662205508268214943170736874990151494680541613194001<88>
factorization results 素因数分解の結果
Number: n
N=4024357646312174958831474608222302299118450594684435034315875112537932079099180653597254994891579763036098222505425488832273115077429825457
  ( 139 digits)
SNFS difficulty: 161 digits.
Divisors found:

Tue Oct 02 06:04:18 2007  prp51 factor: 633091035242735539801967600647466189684568802167457
Tue Oct 02 06:04:18 2007  prp88 factor: 6356680828325396531036158080960100862662205508268214943170736874990151494680541613194001
Tue Oct 02 06:04:18 2007  elapsed time 01:22:53 (Msieve 1.26)

Version: GGNFS-0.77.1-20060513-athlon-xp
Total time: 34.41 hours.
Scaled time: 44.59 units (timescale=1.296).
Factorization parameters were as follows:
name: KA_3_1_160
n: 4024357646312174958831474608222302299118450594684435034315875112537932079099180653597254994891579763036098222505425488832273115077429825457
skew: 0.51
deg: 5
c5: 28
c0: -1
m: 100000000000000000000000000000000
type: snfs
rlim: 3000000
alim: 3000000
lpbr: 28
lpba: 28
mfbr: 48
mfba: 48
rlambda: 2.5
alambda: 2.5
qintsize: 100000
Factor base limits: 3000000/3000000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 48/48
Sieved  special-q in [100000, 1700000)
Primes: RFBsize:216816, AFBsize:216531, largePrimes:7070916 encountered
Relations: rels:6546532, finalFF:488128
Max relations in full relation-set: 28
Initial matrix: 433413 x 488128 with sparse part having weight 35567073.
Pruned matrix : 391277 x 393508 with weight 24641110.
Total sieving time: 33.14 hours.
Total relation processing time: 0.21 hours.
Matrix solve time: 1.06 hours.
Total square root time: 0.00 hours, sqrts: 0.
Prototype def-par.txt line would be:
snfs,161,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000
total time: 34.41 hours.
 --------- CPU info (if available) ----------

Cygwin on AMD 64 3200+

28×10169-19

c153

name 名前Robert Backstrom
date 日付July 28, 2008 11:20:42 UTC 2008 年 7 月 28 日 (月) 20 時 20 分 42 秒 (日本時間)
composite number 合成数
817605737827795112675191444680284193664087344513277738051760753443865670302478953404332802895920027643909527487197553597209356778647497395851301805263123<153>
prime factors 素因数
44747666732132274776543864200416504217245710983578615464026424207<65>
18271471956786769290650039107080148906269339162611613818652179674703425122513940651184189<89>
factorization results 素因数分解の結果
Number: n
N=817605737827795112675191444680284193664087344513277738051760753443865670302478953404332802895920027643909527487197553597209356778647497395851301805263123
  ( 153 digits)
SNFS difficulty: 171 digits.
Divisors found:

Mon Jul 28 21:12:01 2008  prp65 factor: 44747666732132274776543864200416504217245710983578615464026424207
Mon Jul 28 21:12:01 2008  prp89 factor: 18271471956786769290650039107080148906269339162611613818652179674703425122513940651184189
Mon Jul 28 21:12:01 2008  elapsed time 02:26:33 (Msieve 1.36)

Version: GGNFS-0.77.1-20051202-athlon
Total time: 48.38 hours.
Scaled time: 88.49 units (timescale=1.829).
Factorization parameters were as follows:
name: KA_3_1_169
n: 817605737827795112675191444680284193664087344513277738051760753443865670302478953404332802895920027643909527487197553597209356778647497395851301805263123
skew: 0.81
deg: 5
c5: 14
c0: -5
m: 10000000000000000000000000000000000
type: snfs
rlim: 6000000
alim: 6000000
lpbr: 28
lpba: 28
mfbr: 50
mfba: 50
rlambda: 2.5
alambda: 2.5
qintsize: 100000
Factor base limits: 6000000/6000000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 50/50
Sieved  special-q in [100000, 3100001)
Primes: RFBsize:412849, AFBsize:414176, largePrimes:9904175 encountered
Relations: rels:9455000, finalFF:839308
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 
Total sieving time: 48.10 hours.
Total relation processing time: 0.29 hours.
Matrix solve time: 0.00 hours.
Total square root time: 0.00 hours, sqrts: 0.
Prototype def-par.txt line would be:
snfs,171,5,0,0,0,0,0,0,0,0,6000000,6000000,28,28,50,50,2.5,2.5,100000
total time: 48.38 hours.
 --------- CPU info (if available) ----------

Cygwin on AMD 64 X2 6000+

28×10170-19

c122

name 名前Jo Yeong Uk
date 日付September 14, 2009 15:41:32 UTC 2009 年 9 月 15 日 (火) 0 時 41 分 32 秒 (日本時間)
composite number 合成数
30275786718939073262198283789978155876672082056701271284678851780538889561037058996711978385933115010226062811804230797911<122>
prime factors 素因数
2034416473796509875496633128017420031802765447<46>
14881803754980492436345625472473603610295959695851442433011508052049006779313<77>
factorization results 素因数分解の結果
GMP-ECM 6.2.3 [powered by GMP 4.3.1] [ECM]
Input number is 30275786718939073262198283789978155876672082056701271284678851780538889561037058996711978385933115010226062811804230797911 (122 digits)
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=5560633114
Step 1 took 36482ms
Step 2 took 16064ms
********** Factor found in step 2: 2034416473796509875496633128017420031802765447
Found probable prime factor of 46 digits: 2034416473796509875496633128017420031802765447
Probable prime cofactor 14881803754980492436345625472473603610295959695851442433011508052049006779313 has 77 digits
execution environment 実行環境
Core 2 Quad Q6700

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Serge BatalovAugust 6, 2008 03:22:11 UTC 2008 年 8 月 6 日 (水) 12 時 22 分 11 秒 (日本時間)
403e62104Wataru SakaiJune 22, 2009 00:18:40 UTC 2009 年 6 月 22 日 (月) 9 時 18 分 40 秒 (日本時間)

28×10172-19

c148

name 名前Sinkiti Sibata
date 日付October 9, 2009 13:07:05 UTC 2009 年 10 月 9 日 (金) 22 時 7 分 5 秒 (日本時間)
composite number 合成数
1597185635087759228897797601527268513200647569431010321238582064646751736038007343385916525405877553475410220832933182429409759009145752755793865379<148>
prime factors 素因数
1724230517504569670736836635964441<34>
9768844483733605983857894729980673<34>
94823694499320570244033199429122419011801625776673637024727322019611784153183003<80>
factorization results 素因数分解の結果
Number: 31111_172
N=1597185635087759228897797601527268513200647569431010321238582064646751736038007343385916525405877553475410220832933182429409759009145752755793865379
  ( 148 digits)
SNFS difficulty: 175 digits.
Divisors found:
 r1=1724230517504569670736836635964441 (pp34)
 r2=9768844483733605983857894729980673 (pp34)
 r3=94823694499320570244033199429122419011801625776673637024727322019611784153183003 (pp80)
Version: Msieve-1.40
Total time: 79.64 hours.
Scaled time: 265.92 units (timescale=3.339).
Factorization parameters were as follows:
name: 31111_172
n: 1597185635087759228897797601527268513200647569431010321238582064646751736038007343385916525405877553475410220832933182429409759009145752755793865379
m: 50000000000000000000000000000000000
deg: 5
c5: 112
c0: -125
skew: 1.02
type: snfs
lss: 1
rlim: 5900000
alim: 5900000
lpbr: 28
lpba: 28
mfbr: 52
mfba: 52
rlambda: 2.5
alambda: 2.5
Factor base limits: 5900000/5900000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 52/52
Sieved rational special-q in [2950000, 6750001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1131674 x 1131922
Total sieving time: 76.63 hours.
Total relation processing time: 0.15 hours.
Matrix solve time: 2.46 hours.
Time per square root: 0.41 hours.
Prototype def-par.txt line would be:
snfs,175.000,5,0,0,0,0,0,0,0,0,5900000,5900000,28,28,52,52,2.5,2.5,100000
total time: 79.64 hours.
 --------- CPU info (if available) ----------

28×10173-19

c118

name 名前JMB
date 日付October 17, 2006 14:16:41 UTC 2006 年 10 月 17 日 (火) 23 時 16 分 41 秒 (日本時間)
composite number 合成数
1444029417786809326216074338636756742582966400392870610411306174183091069957309374175846325040369985779578551217496877<118>
prime factors 素因数
8534554809469539304814207677240295290372836899<46>
169197978104796095779666677633728972685095582295334772633741546037171823<72>
factorization results 素因数分解の結果
Number: (28*10^173-1)/9
N=1444029417786809326216074338636756742582966400392870610411306174183091069957309374175846325040369985779578551217496877
  ( 118 digits)
Divisors found:
 r1=8534554809469539304814207677240295290372836899 (pp46)
 r2=169197978104796095779666677633728972685095582295334772633741546037171823 (pp72)
Version: GGNFS-0.77.1-20060513-pentium4
Total time: 5.55 hours.
Scaled time: 7.57 units (timescale=1.362).
Factorization parameters were as follows:
name: (28*10^173-1) / 9
n: 1444029417786809326216074338636756742582966400392870610411306174183091069957309374175846325040369985779578551217496877
skew: 194611.937500
# norm 2.85E+016
c5: 1680
c4: 1335413090
c3: 321482727796697
c2: -68089523444144920932
c1: -2302372693675166477282388
c0: 251690766419023337740020717303
#alpha -6.140000
Y1: 3444533872571
Y0: -61213817829518135028194
# Murphy_E 3.67E-010
# M 239252686453123260267081379725652920492612042247994112100599700325613153692251770206633906010643691349709478943063231
type: gnfs
rlim: 3000000
alim: 3000000
lpbr: 27
lpba: 27
mfbr: 48
mfba: 48
rlambda: 2.5
alambda: 2.5
qintsize: 10000
Factor base limits: 3000000/3000000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 48/48
Sieved algebraic special-q in [1500000, 480000
)
Primes: RFBsize:216816, AFBsize:216947, largePrimes:4950686 encountered
Relations: rels:5036597, finalFF:488485
Max relations in full relation-set: 28
Initial matrix: 433843 x 488485 with sparse part having weight 51885627.
Pruned matrix : 394594 x 396827 with weight 39632489.
Total sieving time: 0.00 hours.
Total relation processing time: 0.97 hours.
Matrix solve time: 4.29 hours.
Time per square root: 0.29 hours.
Prototype def-par.txt line would be:
gnfs,117,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3000000,3000000,27,27,48,48,2.5,2.5,10000
total time: 5.55 hours.
 --------- CPU info (if available) ----------
execution environment 実行環境
Half dozen Win32 systems using a distributed version of GGNFS for stage-1 sieving.

28×10175-19

c133

name 名前Dmitry Domanov
date 日付May 17, 2011 21:19:16 UTC 2011 年 5 月 18 日 (水) 6 時 19 分 16 秒 (日本時間)
composite number 合成数
1611182187385176365938026838650019463313399236760514317047373179740638248900029502688187676819943071264201587174807637272709669953897<133>
prime factors 素因数
1479040098898126552607950872991118425537418096925300001<55>
1089343141261345549990530760606706805181401799514742667325043273654986775853897<79>
factorization results 素因数分解の結果
N=1611182187385176365938026838650019463313399236760514317047373179740638248900029502688187676819943071264201587174807637272709669953897
  ( 133 digits)
SNFS difficulty: 176 digits.
Divisors found:
 r1=1479040098898126552607950872991118425537418096925300001 (pp55)
 r2=1089343141261345549990530760606706805181401799514742667325043273654986775853897 (pp79)
Version: Msieve-1.40
Total time: 63.60 hours.
Scaled time: 119.38 units (timescale=1.877).
Factorization parameters were as follows:
n: 1611182187385176365938026838650019463313399236760514317047373179740638248900029502688187676819943071264201587174807637272709669953897
m: 100000000000000000000000000000000000
deg: 5
c5: 28
c0: -1
skew: 0.51
type: snfs
lss: 1
rlim: 6100000
alim: 6100000
lpbr: 28
lpba: 28
mfbr: 53
mfba: 53
rlambda: 2.5
alambda: 2.5
qintsize: 240000Factor base limits: 6100000/6100000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 53/53
Sieved rational special-q in [3050000, 6170001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1231365 x 1231594
Total sieving time: 61.21 hours.
Total relation processing time: 0.15 hours.
Matrix solve time: 1.71 hours.
Time per square root: 0.53 hours.
Prototype def-par.txt line would be:
snfs,176.000,5,0,0,0,0,0,0,0,0,6100000,6100000,28,28,53,53,2.5,2.5,100000
total time: 63.60 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374juno1369September 3, 2010 00:13:45 UTC 2010 年 9 月 3 日 (金) 9 時 13 分 45 秒 (日本時間)
255e4204juno1369September 3, 2010 00:14:48 UTC 2010 年 9 月 3 日 (金) 9 時 14 分 48 秒 (日本時間)
3025e40--
351e6902Wataru SakaiSeptember 3, 2010 06:16:10 UTC 2010 年 9 月 3 日 (金) 15 時 16 分 10 秒 (日本時間)
403e62350Wataru SakaiSeptember 4, 2010 03:45:41 UTC 2010 年 9 月 4 日 (土) 12 時 45 分 41 秒 (日本時間)

28×10176-19

c146

name 名前Warut Roonguthai
date 日付February 2, 2012 02:00:38 UTC 2012 年 2 月 2 日 (木) 11 時 0 分 38 秒 (日本時間)
composite number 合成数
89982596184081694442683801147236212178527793488622763336088166359074034084082348350860655963051365432130592986048400491220122427928420869084593371<146>
prime factors 素因数
270178976470481648584113208793532043856912004359925161424173<60>
333048105221143013142611194354689907341134869483745075418238821043779116346132714245927<87>
factorization results 素因数分解の結果
N = 89982596184081694442683801147236212178527793488622763336088166359074034084082348350860655963051365432130592986048400491220122427928420869084593371 (146 digits)
SNFS difficulty: 178 digits.
Divisors found:
r1=270178976470481648584113208793532043856912004359925161424173 (pp60)
r2=333048105221143013142611194354689907341134869483745075418238821043779116346132714245927 (pp87)
Version: Msieve v. 1.48
Total time: 31.09 hours.
Factorization parameters were as follows:
name: (28*10^176-1)/9
n: 89982596184081694442683801147236212178527793488622763336088166359074034084082348350860655963051365432130592986048400491220122427928420869084593371
Y0: 100000000000000000000000000000000000
Y1: -1
c0: -1
c1: 0
c2: 0
c3: 0
c4: 0
c5: 280
skew: 0.32
type: snfs
Factor base limits: 6500000/6500000
Large primes per side: 3
Large prime bits: 28/28
Sieved rational special-q in [0, 0)
Total raw relations: 20125828
Relations: 2412666 relations
Pruned matrix : 1367265 x 1367490
Polynomial selection time: 0.00 hours.
Total sieving time: 28.22 hours.
Total relation processing time: 0.12 hours.
Matrix solve time: 2.69 hours.
time per square root: 0.07 hours.
Prototype def-par.txt line would be: snfs,178,5,0,0,0,0,0,0,0,0,6500000,6500000,28,28,55,55,2.5,2.5,100000
total time: 31.09 hours.
Intel64 Family 6 Model 42 Stepping 7, GenuineIntel
Windows-7-6.1.7601-SP1
processors: 4, speed: 2.29GHz

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Ignacio SantosSeptember 8, 2010 07:28:37 UTC 2010 年 9 月 8 日 (水) 16 時 28 分 37 秒 (日本時間)
351e6300Ignacio SantosSeptember 8, 2010 07:28:52 UTC 2010 年 9 月 8 日 (水) 16 時 28 分 52 秒 (日本時間)
403e62144110Ignacio SantosSeptember 8, 2010 07:28:52 UTC 2010 年 9 月 8 日 (水) 16 時 28 分 52 秒 (日本時間)
2034Wataru SakaiOctober 6, 2011 13:59:40 UTC 2011 年 10 月 6 日 (木) 22 時 59 分 40 秒 (日本時間)
4511e632 / 3991Ignacio SantosSeptember 8, 2010 07:28:52 UTC 2010 年 9 月 8 日 (水) 16 時 28 分 52 秒 (日本時間)

28×10177-19

c144

name 名前Jo Yeong Uk
date 日付December 19, 2012 00:24:58 UTC 2012 年 12 月 19 日 (水) 9 時 24 分 58 秒 (日本時間)
composite number 合成数
129470141639261904582910502648673504954818042429594469935912076340715398455793050915999628425751324181879131033727312160885598364957151648245119<144>
prime factors 素因数
159600220063738292747896500529315636639369649<45>
811215307770605991737684691618215811310801779281031684567784011504376693880106071174307096542314031<99>
factorization results 素因数分解の結果
Number: 31111_177
N=129470141639261904582910502648673504954818042429594469935912076340715398455793050915999628425751324181879131033727312160885598364957151648245119
  ( 144 digits)
SNFS difficulty: 178 digits.
Divisors found:
 r1=159600220063738292747896500529315636639369649
 r2=811215307770605991737684691618215811310801779281031684567784011504376693880106071174307096542314031
Version: 
Total time: 51.95 hours.
Scaled time: 187.29 units (timescale=3.605).
Factorization parameters were as follows:
n: 129470141639261904582910502648673504954818042429594469935912076340715398455793050915999628425751324181879131033727312160885598364957151648245119
m: 200000000000000000000000000000000000
deg: 5
c5: 175
c0: -2
skew: 0.41
# Murphy_E = 1.208e-10
type: snfs
lss: 1
rlim: 8000000
alim: 8000000
lpbr: 28
lpba: 28
mfbr: 53
mfba: 53
rlambda: 2.5
alambda: 2.5
Factor base limits: 8000000/8000000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 53/53
Sieved rational special-q in [4000000, 8600001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 18765182
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1404030 x 1404278
Total sieving time: 45.77 hours.
Total relation processing time: 2.86 hours.
Matrix solve time: 3.23 hours.
Time per square root: 0.10 hours.
Prototype def-par.txt line would be:
snfs,178,5,0,0,0,0,0,0,0,0,8000000,8000000,28,28,53,53,2.5,2.5,100000
total time: 51.95 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz stepping 02
Memory: 36991608k/38797312k available (5154k kernel code, 1057684k absent, 748020k reserved, 7164k data, 1260k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 6666.81 BogoMIPS (lpj=3333405)
Total of 12 processors activated (80001.72 BogoMIPS).
x86info v1.25.  Dave Jones 2001-2009
Feedback to <davej@redhat.com>.

Found 12 CPUs
--------------------------------------------------------------------------
CPU #1
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)      Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x0 Package: 0  Core: 0   SMT ID 0
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #2
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x2 Package: 0  Core: 0   SMT ID 2
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #3
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x4 Package: 0  Core: 0   SMT ID 4
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #4
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x10        Package: 0  Core: 0   SMT ID 16
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #5
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x12        Package: 0  Core: 0   SMT ID 18
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #6
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x14        Package: 0  Core: 0   SMT ID 20
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #7
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x1 Package: 0  Core: 0   SMT ID 1
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #8
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x3 Package: 0  Core: 0   SMT ID 3
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #9
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x5 Package: 0  Core: 0   SMT ID 5
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #10
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM) Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x11        Package: 0  Core: 0   SMT ID 17
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #11
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM) Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x13        Package: 0  Core: 0   SMT ID 19
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #12
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM) Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x15        Package: 0  Core: 0   SMT ID 21
3.35GHz processor (estimate).

--------------------------------------------------------------------------
software ソフトウェア
GGNFS / Msieve v1.39
execution environment 実行環境
Core i7 980

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Ignacio SantosSeptember 8, 2010 10:58:50 UTC 2010 年 9 月 8 日 (水) 19 時 58 分 50 秒 (日本時間)
351e6300Ignacio SantosSeptember 8, 2010 10:59:11 UTC 2010 年 9 月 8 日 (水) 19 時 59 分 11 秒 (日本時間)
403e62144110Ignacio SantosSeptember 8, 2010 10:59:11 UTC 2010 年 9 月 8 日 (水) 19 時 59 分 11 秒 (日本時間)
2034Wataru SakaiJanuary 8, 2012 03:20:15 UTC 2012 年 1 月 8 日 (日) 12 時 20 分 15 秒 (日本時間)
4511e632 / 3991Ignacio SantosSeptember 8, 2010 10:59:11 UTC 2010 年 9 月 8 日 (水) 19 時 59 分 11 秒 (日本時間)

28×10178-19

c165

name 名前Jo Yeong Uk
date 日付December 20, 2012 13:52:10 UTC 2012 年 12 月 20 日 (木) 22 時 52 分 10 秒 (日本時間)
composite number 合成数
230286332254322368897912076503128451696115203319006343097319882587362473414534851048472343697407500049770429999740604922982289836082512638717127182487712107738858037<165>
prime factors 素因数
960299372213330711602381265026795313701482333286721815910703856162140683939593<78>
239806813289433465100483117940345025105357455776354812060090736732232561128644715976909<87>
factorization results 素因数分解の結果
Number: 31111_178
N=230286332254322368897912076503128451696115203319006343097319882587362473414534851048472343697407500049770429999740604922982289836082512638717127182487712107738858037
  ( 165 digits)
SNFS difficulty: 180 digits.
Divisors found:
 r1=960299372213330711602381265026795313701482333286721815910703856162140683939593
 r2=239806813289433465100483117940345025105357455776354812060090736732232561128644715976909
Version: 
Total time: 45.54 hours.
Scaled time: 167.69 units (timescale=3.682).
Factorization parameters were as follows:
n: 230286332254322368897912076503128451696115203319006343097319882587362473414534851048472343697407500049770429999740604922982289836082512638717127182487712107738858037
m: 1000000000000000000000000000000000000
deg: 5
c5: 7
c0: -25
skew: 1.29
# Murphy_E = 1.394e-10
type: snfs
lss: 1
rlim: 4800000
alim: 4800000
lpbr: 28
lpba: 28
mfbr: 53
mfba: 53
rlambda: 2.5
alambda: 2.5
Factor base limits: 4800000/4800000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 53/53
Sieved rational special-q in [2400000, 4100001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 16987023
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1190882 x 1191130
Total sieving time: 42.38 hours.
Total relation processing time: 1.00 hours.
Matrix solve time: 2.08 hours.
Time per square root: 0.09 hours.
Prototype def-par.txt line would be:
snfs,180,5,0,0,0,0,0,0,0,0,4800000,4800000,28,28,53,53,2.5,2.5,100000
total time: 45.54 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz stepping 02
Memory: 36991608k/38797312k available (5154k kernel code, 1057684k absent, 748020k reserved, 7164k data, 1260k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 6666.81 BogoMIPS (lpj=3333405)
Total of 12 processors activated (80001.72 BogoMIPS).
x86info v1.25.  Dave Jones 2001-2009
Feedback to <davej@redhat.com>.

Found 12 CPUs
--------------------------------------------------------------------------
CPU #1
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)       Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x0 Package: 0  Core: 0   SMT ID 0
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #2
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x2 Package: 0  Core: 0   SMT ID 2
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #3
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x4 Package: 0  Core: 0   SMT ID 4
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #4
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x10        Package: 0  Core: 0   SMT ID 16
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #5
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x12        Package: 0  Core: 0   SMT ID 18
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #6
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x14        Package: 0  Core: 0   SMT ID 20
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #7
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x1 Package: 0  Core: 0   SMT ID 1
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #8
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x3 Package: 0  Core: 0   SMT ID 3
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #9
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x5 Package: 0  Core: 0   SMT ID 5
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #10
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM) Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x11        Package: 0  Core: 0   SMT ID 17
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #11
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM) Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x13        Package: 0  Core: 0   SMT ID 19
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #12
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM) Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x15        Package: 0  Core: 0   SMT ID 21
3.35GHz processor (estimate).

--------------------------------------------------------------------------
software ソフトウェア
GGNFS / Msieve v1.39
execution environment 実行環境
Core i7 980

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Ignacio SantosSeptember 8, 2010 10:59:34 UTC 2010 年 9 月 8 日 (水) 19 時 59 分 34 秒 (日本時間)
351e6300Ignacio SantosSeptember 8, 2010 10:59:46 UTC 2010 年 9 月 8 日 (水) 19 時 59 分 46 秒 (日本時間)
403e62144110Ignacio SantosSeptember 8, 2010 10:59:46 UTC 2010 年 9 月 8 日 (水) 19 時 59 分 46 秒 (日本時間)
2034Wataru SakaiMarch 21, 2012 12:40:45 UTC 2012 年 3 月 21 日 (水) 21 時 40 分 45 秒 (日本時間)
4511e632 / 3991Ignacio SantosSeptember 8, 2010 10:59:46 UTC 2010 年 9 月 8 日 (水) 19 時 59 分 46 秒 (日本時間)

28×10179-19

c123

name 名前Robert Backstrom
date 日付January 24, 2008 16:30:18 UTC 2008 年 1 月 25 日 (金) 1 時 30 分 18 秒 (日本時間)
composite number 合成数
881168868410478910122156183182007485081616751855695907325787140382716064689547642860087787997396259439449517750318095543657<123>
prime factors 素因数
7681520532229285847327407805697901<34>
114712818212665930084237933685466980822542837060511859279956130473398076525563656416693357<90>
factorization results 素因数分解の結果
GMP-ECM 6.0.1 [powered by GMP 4.1.4] [ECM]
Input number is 881168868410478910122156183182007485081616751855695907325787140382716064689547642860087787997396259439449517750318095543657 (123 digits)
Using B1=1060000, B2=912227113, polynomial Dickson(3), sigma=1014459517
Step 1 took 11437ms
Step 2 took 6516ms
********** Factor found in step 2: 7681520532229285847327407805697901
Found probable prime factor of 34 digits: 7681520532229285847327407805697901
Probable prime cofactor 114712818212665930084237933685466980822542837060511859279956130473398076525563656416693357 has 90 digits

28×10180-19

c143

name 名前Jo Yeong Uk
date 日付December 23, 2012 05:14:51 UTC 2012 年 12 月 23 日 (日) 14 時 14 分 51 秒 (日本時間)
composite number 合成数
11342244168776443253547048687136013501998667341012169838648430377492969813882859298302560004034681518189957533957265388542375194914002576010341<143>
prime factors 素因数
550672806996146042970197534192003347369925634590341414266499<60>
20597066033906815850781114480658202241082988085779509084563390462202477930781863159<83>
factorization results 素因数分解の結果
Number: 31111_180
N=11342244168776443253547048687136013501998667341012169838648430377492969813882859298302560004034681518189957533957265388542375194914002576010341
  ( 143 digits)
SNFS difficulty: 181 digits.
Divisors found:
 r1=550672806996146042970197534192003347369925634590341414266499
 r2=20597066033906815850781114480658202241082988085779509084563390462202477930781863159
Version: 
Total time: 55.33 hours.
Scaled time: 203.52 units (timescale=3.678).
Factorization parameters were as follows:
n: 11342244168776443253547048687136013501998667341012169838648430377492969813882859298302560004034681518189957533957265388542375194914002576010341
m: 1000000000000000000000000000000000000
deg: 5
c5: 28
c0: -1
skew: 0.51
# Murphy_E = 1.154e-10
type: snfs
lss: 1
rlim: 5400000
alim: 5400000
lpbr: 28
lpba: 28
mfbr: 53
mfba: 53
rlambda: 2.5
alambda: 2.5
Factor base limits: 5400000/5400000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 53/53
Sieved rational special-q in [2700000, 4800001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 17685871
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1238574 x 1238821
Total sieving time: 51.69 hours.
Total relation processing time: 1.27 hours.
Matrix solve time: 2.28 hours.
Time per square root: 0.09 hours.
Prototype def-par.txt line would be:
snfs,181,5,0,0,0,0,0,0,0,0,5400000,5400000,28,28,53,53,2.5,2.5,100000
total time: 55.33 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz stepping 02
Memory: 36991716k/38797312k available (5072k kernel code, 1057684k absent, 747912k reserved, 7246k data, 1252k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 6666.52 BogoMIPS (lpj=3333260)
Total of 12 processors activated (79998.24 BogoMIPS).
x86info v1.25.  Dave Jones 2001-2009
Feedback to <davej@redhat.com>.

Found 12 CPUs
--------------------------------------------------------------------------
CPU #1
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM) Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x0 Package: 0  Core: 0   SMT ID 0
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #2
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x2 Package: 0  Core: 0   SMT ID 2
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #3
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x4 Package: 0  Core: 0   SMT ID 4
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #4
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x10        Package: 0  Core: 0   SMT ID 16
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #5
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x12        Package: 0  Core: 0   SMT ID 18
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #6
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x14        Package: 0  Core: 0   SMT ID 20
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #7
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x1 Package: 0  Core: 0   SMT ID 1
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #8
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x3 Package: 0  Core: 0   SMT ID 3
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #9
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x5 Package: 0  Core: 0   SMT ID 5
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #10
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM) Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x11        Package: 0  Core: 0   SMT ID 17
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #11
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM) Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x13        Package: 0  Core: 0   SMT ID 19
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #12
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM) Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x15        Package: 0  Core: 0   SMT ID 21
3.35GHz processor (estimate).

--------------------------------------------------------------------------
software ソフトウェア
GGNFS / Msieve v1.39
execution environment 実行環境
Core i7 980

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Ignacio SantosSeptember 8, 2010 11:00:13 UTC 2010 年 9 月 8 日 (水) 20 時 0 分 13 秒 (日本時間)
351e6300Ignacio SantosSeptember 8, 2010 11:00:27 UTC 2010 年 9 月 8 日 (水) 20 時 0 分 27 秒 (日本時間)
403e62144110Ignacio SantosSeptember 8, 2010 11:00:27 UTC 2010 年 9 月 8 日 (水) 20 時 0 分 27 秒 (日本時間)
2034Jo Yeong UkDecember 18, 2012 01:24:44 UTC 2012 年 12 月 18 日 (火) 10 時 24 分 44 秒 (日本時間)
4511e632 / 3991Ignacio SantosSeptember 8, 2010 11:00:27 UTC 2010 年 9 月 8 日 (水) 20 時 0 分 27 秒 (日本時間)

28×10181-19

c150

name 名前Jo Yeong Uk
date 日付December 25, 2012 22:22:15 UTC 2012 年 12 月 26 日 (水) 7 時 22 分 15 秒 (日本時間)
composite number 合成数
247560798417130201669021813621204957783911569812446992938544257666848348600568846727717863609375671211279632715391478157110368252805983532093056299027<150>
prime factors 素因数
7563928137750457967474580790773668005253377255374658229968638820769147<70>
32729131465645542025078220639122168362578291227157689536679633954404750525012041<80>
factorization results 素因数分解の結果
Number: 31111_181
N=247560798417130201669021813621204957783911569812446992938544257666848348600568846727717863609375671211279632715391478157110368252805983532093056299027
  ( 150 digits)
SNFS difficulty: 183 digits.
Divisors found:
 r1=7563928137750457967474580790773668005253377255374658229968638820769147
 r2=32729131465645542025078220639122168362578291227157689536679633954404750525012041
Version: 
Total time: 61.73 hours.
Scaled time: 227.03 units (timescale=3.678).
Factorization parameters were as follows:
n: 247560798417130201669021813621204957783911569812446992938544257666848348600568846727717863609375671211279632715391478157110368252805983532093056299027
m: 2000000000000000000000000000000000000
deg: 5
c5: 35
c0: -4
skew: 0.65
# Murphy_E = 1.023e-10
type: snfs
lss: 1
rlim: 6000000
alim: 6000000
lpbr: 28
lpba: 28
mfbr: 53
mfba: 53
rlambda: 2.5
alambda: 2.5

Factor base limits: 6000000/6000000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 53/53
Sieved rational special-q in [3000000, 5300001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 18293253
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1201136 x 1201384
Total sieving time: 57.92 hours.
Total relation processing time: 1.45 hours.
Matrix solve time: 2.17 hours.
Time per square root: 0.18 hours.
Prototype def-par.txt line would be:
snfs,183,5,0,0,0,0,0,0,0,0,6000000,6000000,28,28,53,53,2.5,2.5,100000
total time: 61.73 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz stepping 02
Memory: 36991716k/38797312k available (5072k kernel code, 1057684k absent, 747912k reserved, 7246k data, 1252k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 6667.27 BogoMIPS (lpj=3333636)
Total of 12 processors activated (80007.26 BogoMIPS).
x86info v1.25.  Dave Jones 2001-2009
Feedback to <davej@redhat.com>.

Found 12 CPUs
--------------------------------------------------------------------------
CPU #1
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)   Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x0 Package: 0  Core: 0   SMT ID 0
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #2
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x2 Package: 0  Core: 0   SMT ID 2
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #3
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x4 Package: 0  Core: 0   SMT ID 4
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #4
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x10        Package: 0  Core: 0   SMT ID 16
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #5
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x12        Package: 0  Core: 0   SMT ID 18
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #6
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x14        Package: 0  Core: 0   SMT ID 20
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #7
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x1 Package: 0  Core: 0   SMT ID 1
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #8
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x3 Package: 0  Core: 0   SMT ID 3
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #9
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x5 Package: 0  Core: 0   SMT ID 5
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #10
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM) Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x11        Package: 0  Core: 0   SMT ID 17
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #11
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM) Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x13        Package: 0  Core: 0   SMT ID 19
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #12
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM) Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x15        Package: 0  Core: 0   SMT ID 21
3.35GHz processor (estimate).

--------------------------------------------------------------------------
software ソフトウェア
GGNFS / Msieve v1.39
execution environment 実行環境
Core i7 980

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Ignacio SantosSeptember 8, 2010 11:01:08 UTC 2010 年 9 月 8 日 (水) 20 時 1 分 8 秒 (日本時間)
351e6300Ignacio SantosSeptember 8, 2010 11:01:24 UTC 2010 年 9 月 8 日 (水) 20 時 1 分 24 秒 (日本時間)
403e62144110Ignacio SantosSeptember 8, 2010 11:01:24 UTC 2010 年 9 月 8 日 (水) 20 時 1 分 24 秒 (日本時間)
2034Jo Yeong UkDecember 18, 2012 01:24:55 UTC 2012 年 12 月 18 日 (火) 10 時 24 分 55 秒 (日本時間)
4511e632 / 3991Ignacio SantosSeptember 8, 2010 11:01:24 UTC 2010 年 9 月 8 日 (水) 20 時 1 分 24 秒 (日本時間)

28×10182-19

c154

name 名前Jo Yeong Uk
date 日付December 29, 2012 05:33:16 UTC 2012 年 12 月 29 日 (土) 14 時 33 分 16 秒 (日本時間)
composite number 合成数
1439889795800138916500653743916617107732777698349880555915395569006389188746397243567629279812794567990077777049728967532426533210645403275831386986233617<154>
prime factors 素因数
2896032052036682153468178837130972357090552404416820269983597<61>
497194012334052982862758872105915406506803949572603257202540316538701666764740742583793908661<93>
factorization results 素因数分解の結果
Number: 31111_182
N=1439889795800138916500653743916617107732777698349880555915395569006389188746397243567629279812794567990077777049728967532426533210645403275831386986233617
  ( 154 digits)
SNFS difficulty: 183 digits.
Divisors found:
 r1=2896032052036682153468178837130972357090552404416820269983597
 r2=497194012334052982862758872105915406506803949572603257202540316538701666764740742583793908661
Version: 
Total time: 79.30 hours.
Scaled time: 291.18 units (timescale=3.672).
Factorization parameters were as follows:
n: 1439889795800138916500653743916617107732777698349880555915395569006389188746397243567629279812794567990077777049728967532426533210645403275831386986233617
m: 2000000000000000000000000000000000000
deg: 5
c5: 175
c0: -2
skew: 0.41
# Murphy_E = 7.595e-11
type: snfs
lss: 1
rlim: 6000000
alim: 6000000
lpbr: 28
lpba: 28
mfbr: 53
mfba: 53
rlambda: 2.5
alambda: 2.5
Factor base limits: 6000000/6000000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 53/53
Sieved rational special-q in [3000000, 6000001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 18290704
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1420941 x 1421189
Total sieving time: 74.02 hours.
Total relation processing time: 1.86 hours.
Matrix solve time: 3.31 hours.
Time per square root: 0.10 hours.
Prototype def-par.txt line would be:
snfs,183,5,0,0,0,0,0,0,0,0,6000000,6000000,28,28,53,53,2.5,2.5,100000
total time: 79.30 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz stepping 02
Memory: 36991716k/38797312k available (5072k kernel code, 1057684k absent, 747912k reserved, 7246k data, 1252k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 6667.27 BogoMIPS (lpj=3333636)
Total of 12 processors activated (80007.26 BogoMIPS).
x86info v1.25.  Dave Jones 2001-2009
Feedback to <davej@redhat.com>.

Found 12 CPUs
--------------------------------------------------------------------------
CPU #1
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)       Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x0 Package: 0  Core: 0   SMT ID 0
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #2
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x2 Package: 0  Core: 0   SMT ID 2
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #3
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x4 Package: 0  Core: 0   SMT ID 4
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #4
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x10        Package: 0  Core: 0   SMT ID 16
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #5
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x12        Package: 0  Core: 0   SMT ID 18
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #6
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x14        Package: 0  Core: 0   SMT ID 20
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #7
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x1 Package: 0  Core: 0   SMT ID 1
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #8
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x3 Package: 0  Core: 0   SMT ID 3
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #9
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x5 Package: 0  Core: 0   SMT ID 5
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #10
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM) Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x11        Package: 0  Core: 0   SMT ID 17
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #11
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM) Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x13        Package: 0  Core: 0   SMT ID 19
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #12
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM) Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x15        Package: 0  Core: 0   SMT ID 21
3.35GHz processor (estimate).

--------------------------------------------------------------------------
software ソフトウェア
GGNFS / Msieve v1.39
execution environment 実行環境
Core i7 980

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Ignacio SantosSeptember 8, 2010 12:28:09 UTC 2010 年 9 月 8 日 (水) 21 時 28 分 9 秒 (日本時間)
351e6300Ignacio SantosSeptember 8, 2010 12:28:36 UTC 2010 年 9 月 8 日 (水) 21 時 28 分 36 秒 (日本時間)
403e62144110Ignacio SantosSeptember 8, 2010 12:28:36 UTC 2010 年 9 月 8 日 (水) 21 時 28 分 36 秒 (日本時間)
2034Jo Yeong UkDecember 18, 2012 01:25:05 UTC 2012 年 12 月 18 日 (火) 10 時 25 分 5 秒 (日本時間)
4511e632 / 3991Ignacio SantosSeptember 8, 2010 12:28:36 UTC 2010 年 9 月 8 日 (水) 21 時 28 分 36 秒 (日本時間)

28×10184-19

c148

name 名前Jo Yeong Uk
date 日付January 1, 2013 21:33:21 UTC 2013 年 1 月 2 日 (水) 6 時 33 分 21 秒 (日本時間)
composite number 合成数
6626889676815712289162670352735884566859443629605730193289299558595129014156875042856988503007227068830480933036721088402578766164333458199553626939<148>
prime factors 素因数
120051971280213158742792176985886666860528334687<48>
55200173775971551789404940786961459935369493318477328847189718797724435334312457263687136545737112997<101>
factorization results 素因数分解の結果
Number: 31111_184
N=6626889676815712289162670352735884566859443629605730193289299558595129014156875042856988503007227068830480933036721088402578766164333458199553626939
  ( 148 digits)
SNFS difficulty: 186 digits.
Divisors found:
 r1=120051971280213158742792176985886666860528334687
 r2=55200173775971551789404940786961459935369493318477328847189718797724435334312457263687136545737112997
Version: 
Total time: 83.52 hours.
Scaled time: 302.08 units (timescale=3.617).
Factorization parameters were as follows:
n: 6626889676815712289162670352735884566859443629605730193289299558595129014156875042856988503007227068830480933036721088402578766164333458199553626939
m: 10000000000000000000000000000000000000
deg: 5
c5: 14
c0: -5
skew: 0.81
# Murphy_E = 6.833e-11
type: snfs
lss: 1
rlim: 6800000
alim: 6800000
lpbr: 28
lpba: 28
mfbr: 54
mfba: 54
rlambda: 2.5
alambda: 2.5
Factor base limits: 6800000/6800000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 54/54
Sieved rational special-q in [3400000, 6400001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 19789627
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1629690 x 1629936
Total sieving time: 76.50 hours.
Total relation processing time: 2.12 hours.
Matrix solve time: 4.70 hours.
Time per square root: 0.21 hours.
Prototype def-par.txt line would be:
snfs,186,5,0,0,0,0,0,0,0,0,6800000,6800000,28,28,54,54,2.5,2.5,100000
total time: 83.52 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz stepping 02
Memory: 36991716k/38797312k available (5072k kernel code, 1057684k absent, 747912k reserved, 7246k data, 1252k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 6667.27 BogoMIPS (lpj=3333636)
Total of 12 processors activated (80007.26 BogoMIPS).
x86info v1.25.  Dave Jones 2001-2009
Feedback to <davej@redhat.com>.

Found 12 CPUs
--------------------------------------------------------------------------
CPU #1
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)        Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x0 Package: 0  Core: 0   SMT ID 0
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #2
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x2 Package: 0  Core: 0   SMT ID 2
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #3
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x4 Package: 0  Core: 0   SMT ID 4
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #4
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x10        Package: 0  Core: 0   SMT ID 16
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #5
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x12        Package: 0  Core: 0   SMT ID 18
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #6
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x14        Package: 0  Core: 0   SMT ID 20
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #7
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x1 Package: 0  Core: 0   SMT ID 1
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #8
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x3 Package: 0  Core: 0   SMT ID 3
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #9
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x5 Package: 0  Core: 0   SMT ID 5
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #10
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM) Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x11        Package: 0  Core: 0   SMT ID 17
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #11
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM) Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x13        Package: 0  Core: 0   SMT ID 19
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #12
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM) Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x15        Package: 0  Core: 0   SMT ID 21
3.35GHz processor (estimate).

--------------------------------------------------------------------------
software ソフトウェア
GGNFS / Msieve v1.39
execution environment 実行環境
Core i7 980

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Ignacio SantosSeptember 8, 2010 12:42:14 UTC 2010 年 9 月 8 日 (水) 21 時 42 分 14 秒 (日本時間)
351e6300Ignacio SantosSeptember 8, 2010 12:42:29 UTC 2010 年 9 月 8 日 (水) 21 時 42 分 29 秒 (日本時間)
403e62144110Ignacio SantosSeptember 8, 2010 12:42:29 UTC 2010 年 9 月 8 日 (水) 21 時 42 分 29 秒 (日本時間)
2034Jo Yeong UkDecember 18, 2012 01:25:16 UTC 2012 年 12 月 18 日 (火) 10 時 25 分 16 秒 (日本時間)
4511e632 / 3991Ignacio SantosSeptember 8, 2010 12:42:29 UTC 2010 年 9 月 8 日 (水) 21 時 42 分 29 秒 (日本時間)

28×10187-19

c142

name 名前Jo Yeong Uk
date 日付December 11, 2012 13:38:18 UTC 2012 年 12 月 11 日 (火) 22 時 38 分 18 秒 (日本時間)
composite number 合成数
4372907351289223229267778825845950022974115758147345589181819982954699556380698836382389471097593379123455797524271583494620312221578927889999<142>
prime factors 素因数
603671770861716180601638184485785997811411<42>
64651837698675086080094974611581348858089499083<47>
112043981813773783541314219659012496043499596950513823<54>
factorization results 素因数分解の結果
GMP-ECM 6.3 [configured with GMP 5.0.5 and --enable-asm-redc] [ECM]
Input number is 4372907351289223229267778825845950022974115758147345589181819982954699556380698836382389471097593379123455797524271583494620312221578927889999 (142 digits)
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=7924915071
Step 1 took 8822ms
Step 2 took 3785ms
********** Factor found in step 2: 603671770861716180601638184485785997811411
Found probable prime factor of 42 digits: 603671770861716180601638184485785997811411
Composite cofactor 7243849327337405646881323774204462012173137284399023986958588377310875876681623688552204717537324309 has 100 digits

Number: 31111_187
N=7243849327337405646881323774204462012173137284399023986958588377310875876681623688552204717537324309
  ( 100 digits)
Divisors found:
 r1=64651837698675086080094974611581348858089499083
 r2=112043981813773783541314219659012496043499596950513823
Version: 
Total time: 2.12 hours.
Scaled time: 7.74 units (timescale=3.650).
Factorization parameters were as follows:
name: 31111_187
n: 7243849327337405646881323774204462012173137284399023986958588377310875876681623688552204717537324309
skew: 47341.07
# norm 5.67e+13
c5: 360
c4: -44314710
c3: -2706107249612
c2: 99546881242417231
c1: 2357615395302396133580
c0: -29485715054599629417777913
# alpha -6.00
Y1: 1810330687
Y0: -28889102616208737570
# Murphy_E 3.52e-09
# M 5503569943980654390420915020386996572806371628714312840334575997729005323657929445569475440867410733
type: gnfs
rlim: 1200000
alim: 1200000
lpbr: 26
lpba: 26
mfbr: 51
mfba: 51
rlambda: 2.5
alambda: 2.5
qintsize: 30000
Factor base limits: 1200000/1200000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 51/51
Sieved algebraic special-q in [600000, 1080001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 4531140
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 195346 x 195594
Polynomial selection time: 0.17 hours.
Total sieving time: 1.66 hours.
Total relation processing time: 0.21 hours.
Matrix solve time: 0.05 hours.
Time per square root: 0.03 hours.
Prototype def-par.txt line would be:
gnfs,99,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1200000,1200000,26,26,51,51,2.5,2.5,30000
total time: 2.12 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz stepping 02
Memory: 36991608k/38797312k available (5154k kernel code, 1057684k absent, 748020k reserved, 7164k data, 1260k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 6666.81 BogoMIPS (lpj=3333405)
Total of 12 processors activated (80001.72 BogoMIPS).
x86info v1.25.  Dave Jones 2001-2009
Feedback to <davej@redhat.com>.

Found 12 CPUs
--------------------------------------------------------------------------
CPU #1
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)   Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x0 Package: 0  Core: 0   SMT ID 0
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #2
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x2 Package: 0  Core: 0   SMT ID 2
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #3
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x4 Package: 0  Core: 0   SMT ID 4
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #4
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x10        Package: 0  Core: 0   SMT ID 16
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #5
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x12        Package: 0  Core: 0   SMT ID 18
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #6
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x14        Package: 0  Core: 0   SMT ID 20
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #7
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x1 Package: 0  Core: 0   SMT ID 1
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #8
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x3 Package: 0  Core: 0   SMT ID 3
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #9
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x5 Package: 0  Core: 0   SMT ID 5
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #10
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM) Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x11        Package: 0  Core: 0   SMT ID 17
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #11
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM) Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x13        Package: 0  Core: 0   SMT ID 19
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #12
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM) Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x15        Package: 0  Core: 0   SMT ID 21
3.35GHz processor (estimate).

--------------------------------------------------------------------------
software ソフトウェア
GMP-ECM 6.3/GGNFS/Msieve v1.39
execution environment 実行環境
Core i7 980

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Ignacio SantosSeptember 8, 2010 13:34:27 UTC 2010 年 9 月 8 日 (水) 22 時 34 分 27 秒 (日本時間)
351e6300Ignacio SantosSeptember 8, 2010 13:34:40 UTC 2010 年 9 月 8 日 (水) 22 時 34 分 40 秒 (日本時間)
403e6110 / 2144Ignacio SantosSeptember 8, 2010 13:34:40 UTC 2010 年 9 月 8 日 (水) 22 時 34 分 40 秒 (日本時間)
4511e632 / 4441Ignacio SantosSeptember 8, 2010 13:34:40 UTC 2010 年 9 月 8 日 (水) 22 時 34 分 40 秒 (日本時間)

28×10188-19

c185

name 名前Dmitry Domanov
date 日付December 14, 2009 13:59:43 UTC 2009 年 12 月 14 日 (月) 22 時 59 分 43 秒 (日本時間)
composite number 合成数
32553218699498912955018427447013823491797751502679827467940892655761338402334530826735493471917035796914419913268924464906467626986618301884598839710276353574459674700335995721576970923<185>
prime factors 素因数
2416629624381304027373196419958393926957531<43>
13470503866653980725975346962207094079095769556923068819279584548159094120699797381682796572270886434971475080102868213043108034624212177560433<143>
factorization results 素因数分解の結果
N=32553218699498912955018427447013823491797751502679827467940892655761338402334530826735493471917035796914419913268924464906467626986618301884598839710276353574459674700335995721576970923
  ( 185 digits)
SNFS difficulty: 189 digits.
Divisors found:
 r1=2416629624381304027373196419958393926957531 (pp43)
 r2=13470503866653980725975346962207094079095769556923068819279584548159094120699797381682796572270886434971475080102868213043108034624212177560433 (pp143)
Version: Msieve-1.40
Total time: 215.19 hours.
Scaled time: 419.84 units (timescale=1.951).
Factorization parameters were as follows:
n: 32553218699498912955018427447013823491797751502679827467940892655761338402334530826735493471917035796914419913268924464906467626986618301884598839710276353574459674700335995721576970923
m: 20000000000000000000000000000000000000
deg: 5
c5: 875
c0: -1
skew: 0.26
type: snfs
lss: 1
rlim: 10100000
alim: 10100000
lpbr: 28
lpba: 28
mfbr: 54
mfba: 54
rlambda: 2.5
alambda: 2.5
qintsize: 300000Factor base limits: 10100000/10100000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 54/54
Sieved rational special-q in [5050000, 8350001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1713525 x 1713749
Total sieving time: 210.31 hours.
Total relation processing time: 0.22 hours.
Matrix solve time: 3.72 hours.
Time per square root: 0.94 hours.
Prototype def-par.txt line would be:
snfs,189.000,5,0,0,0,0,0,0,0,0,10100000,10100000,28,28,54,54,2.5,2.5,100000
total time: 215.19 hours.
 --------- CPU info (if available) ----------
software ソフトウェア
GGNFS/msieve

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e445850Makoto KamadaFebruary 5, 2009 04:45:46 UTC 2009 年 2 月 5 日 (木) 13 時 45 分 46 秒 (日本時間)
408Max DettweilerApril 3, 2009 02:28:33 UTC 2009 年 4 月 3 日 (金) 11 時 28 分 33 秒 (日本時間)
351e61204Max DettweilerApril 3, 2009 02:50:02 UTC 2009 年 4 月 3 日 (金) 11 時 50 分 2 秒 (日本時間)
403e612 / 2007Max DettweilerApril 3, 2009 02:50:02 UTC 2009 年 4 月 3 日 (金) 11 時 50 分 2 秒 (日本時間)

28×10190-19

c127

name 名前Robert Backstrom
date 日付January 28, 2008 22:46:40 UTC 2008 年 1 月 29 日 (火) 7 時 46 分 40 秒 (日本時間)
composite number 合成数
1588454372151137782431299079923378345490586516193561314734793776650480511869381554666264913341679710672838851953281851897773251<127>
prime factors 素因数
566411654175336073779051055434185692429273<42>
2804416823774290398535475890197371140903510729229348762350392625035735079960933230587<85>
factorization results 素因数分解の結果
GMP-ECM 6.0.1 [powered by GMP 4.1.4] [ECM]
Input number is 1588454372151137782431299079923378345490586516193561314734793776650480511869381554666264913341679710672838851953281851897773251 (127 digits)
Using B1=2328000, B2=2798558219, polynomial Dickson(6), sigma=500482026
Step 1 took 28219ms
Step 2 took 14141ms
********** Factor found in step 2: 566411654175336073779051055434185692429273
Found probable prime factor of 42 digits: 566411654175336073779051055434185692429273
Probable prime cofactor 2804416823774290398535475890197371140903510729229348762350392625035735079960933230587 has 85 digits

28×10194-19

c185

name 名前matsui
date 日付December 27, 2010 00:52:17 UTC 2010 年 12 月 27 日 (月) 9 時 52 分 17 秒 (日本時間)
composite number 合成数
51256223718707313967337806508972907027974183522177488684306595167029507726168051050616992470100642444477474064843544549080669714111269104960928925393671737104373080741353617143560835473<185>
prime factors 素因数
6983867049876129211051936820597921994926448841288461842847937<61>
7339232455694647062603795354941115636271084095536001041829548564143692027854067676349447431085465657472466954675490150046929<124>
factorization results 素因数分解の結果
N=51256223718707313967337806508972907027974183522177488684306595167029507726168051050616992470100642444477474064843544549080669714111269104960928925393671737104373080741353617143560835473
  ( 185 digits)
SNFS difficulty: 195 digits.
Divisors found:
 r1=6983867049876129211051936820597921994926448841288461842847937 (pp61)
 r2=7339232455694647062603795354941115636271084095536001041829548564143692027854067676349447431085465657472466954675490150046929 (pp124)
Version: Msieve v. 1.48
Total time:
Scaled time: 88.63 units (timescale=1.123).
Factorization parameters were as follows:
n: 51256223718707313967337806508972907027974183522177488684306595167029507726168051050616992470100642444477474064843544549080669714111269104960928925393671737104373080741353617143560835473
m: 200000000000000000000000000000000000000
deg: 5
c5: 8750
c0: -1
skew: 0.16
type: snfs
lss: 1
rlim: 12700000
alim: 12700000
lpbr: 28
lpba: 28
mfbr: 55
mfba: 55
rlambda: 2.5
alambda: 2.5
qintsize: 320000
Factor base limits: 12700000/12700000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 55/55
Sieved rational special-q in [6350000, 13390001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 2456785 x 2457008
Total sieving time:
Total relation processing time:
Matrix solve time:
Time per square root:
Prototype def-par.txt line would be:
snfs,195.000,5,0,0,0,0,0,0,0,0,12700000,12700000,28,28,55,55,2.5,2.5,100000
total time:

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Ignacio SantosMarch 27, 2010 21:52:19 UTC 2010 年 3 月 28 日 (日) 6 時 52 分 19 秒 (日本時間)
351e6410Ignacio SantosMarch 27, 2010 22:06:10 UTC 2010 年 3 月 28 日 (日) 7 時 6 分 10 秒 (日本時間)
403e6150Ignacio SantosMarch 27, 2010 22:06:10 UTC 2010 年 3 月 28 日 (日) 7 時 6 分 10 秒 (日本時間)
4511e63000 / 4427Ignacio SantosApril 9, 2010 11:31:00 UTC 2010 年 4 月 9 日 (金) 20 時 31 分 0 秒 (日本時間)

28×10196-19

c147

name 名前Jo Yeong Uk
date 日付January 9, 2013 11:50:53 UTC 2013 年 1 月 9 日 (水) 20 時 50 分 53 秒 (日本時間)
composite number 合成数
128572394897148510391687344018293339062704351283073772194423653674766313839566448773093321032205151794477084400938916879320447760622049076349967239<147>
prime factors 素因数
244473869388239300149683099080893014032473258915007<51>
525914672266947949730846370666001151872850812010507485852635658665589663679558681856930889573177<96>
factorization results 素因数分解の結果
Number: 31111_196
N=128572394897148510391687344018293339062704351283073772194423653674766313839566448773093321032205151794477084400938916879320447760622049076349967239
  ( 147 digits)
SNFS difficulty: 198 digits.
Divisors found:
 r1=244473869388239300149683099080893014032473258915007
 r2=525914672266947949730846370666001151872850812010507485852635658665589663679558681856930889573177
Version: 
Total time: 186.41 hours.
Scaled time: 685.98 units (timescale=3.680).
Factorization parameters were as follows:
n: 128572394897148510391687344018293339062704351283073772194423653674766313839566448773093321032205151794477084400938916879320447760622049076349967239
m: 2000000000000000000000000000000000000000
deg: 5
c5: 35
c0: -4
skew: 0.65
# Murphy_E = 2.478e-11
type: snfs
lss: 1
rlim: 13000000
alim: 13000000
lpbr: 29
lpba: 29
mfbr: 55
mfba: 55
rlambda: 2.5
alambda: 2.5

Factor base limits: 13000000/13000000
Large primes per side: 3
Large prime bits: 29/29
Max factor residue bits: 55/55
Sieved rational special-q in [6500000, 12400001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 33872693
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 2471747 x 2471994
Total sieving time: 166.54 hours.
Total relation processing time: 6.82 hours.
Matrix solve time: 12.83 hours.
Time per square root: 0.22 hours.
Prototype def-par.txt line would be:
snfs,198,5,0,0,0,0,0,0,0,0,13000000,13000000,29,29,55,55,2.5,2.5,100000
total time: 186.41 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz stepping 02
Memory: 36991716k/38797312k available (5072k kernel code, 1057684k absent, 747912k reserved, 7246k data, 1252k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 6667.27 BogoMIPS (lpj=3333636)
Total of 12 processors activated (80007.26 BogoMIPS).
x86info v1.25.  Dave Jones 2001-2009
Feedback to <davej@redhat.com>.

Found 12 CPUs
--------------------------------------------------------------------------
CPU #1
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)      Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x0 Package: 0  Core: 0   SMT ID 0
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #2
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x2 Package: 0  Core: 0   SMT ID 2
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #3
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x4 Package: 0  Core: 0   SMT ID 4
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #4
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x10        Package: 0  Core: 0   SMT ID 16
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #5
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x12        Package: 0  Core: 0   SMT ID 18
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #6
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x14        Package: 0  Core: 0   SMT ID 20
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #7
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x1 Package: 0  Core: 0   SMT ID 1
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #8
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x3 Package: 0  Core: 0   SMT ID 3
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #9
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x5 Package: 0  Core: 0   SMT ID 5
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #10
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM) Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x11        Package: 0  Core: 0   SMT ID 17
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #11
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM) Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x13        Package: 0  Core: 0   SMT ID 19
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #12
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM) Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x15        Package: 0  Core: 0   SMT ID 21
3.35GHz processor (estimate).

--------------------------------------------------------------------------
software ソフトウェア
GGNFS / Msieve v1.39
execution environment 実行環境
Core i7 980

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Ignacio SantosSeptember 8, 2010 14:36:13 UTC 2010 年 9 月 8 日 (水) 23 時 36 分 13 秒 (日本時間)
351e6300Ignacio SantosSeptember 8, 2010 14:36:27 UTC 2010 年 9 月 8 日 (水) 23 時 36 分 27 秒 (日本時間)
403e62144110Ignacio SantosSeptember 8, 2010 14:36:27 UTC 2010 年 9 月 8 日 (水) 23 時 36 分 27 秒 (日本時間)
2034Jo Yeong UkDecember 18, 2012 01:25:40 UTC 2012 年 12 月 18 日 (火) 10 時 25 分 40 秒 (日本時間)
4511e632 / 3991Ignacio SantosSeptember 8, 2010 14:36:27 UTC 2010 年 9 月 8 日 (水) 23 時 36 分 27 秒 (日本時間)

28×10197-19

c161

name 名前Jo Yeong Uk
date 日付January 8, 2013 00:04:55 UTC 2013 年 1 月 8 日 (火) 9 時 4 分 55 秒 (日本時間)
composite number 合成数
33686260987127952326976311533181686501338066307271344629792208018308696268952289981225333192206043378794003339015120579589293781989186972713813944487952027071561<161>
prime factors 素因数
4177240849049899311583039641602719171031742224309<49>
6383872830522353817383869843235528566867561352034422827<55>
1263220211218358051729777565891527308022345673393713669327<58>
factorization results 素因数分解の結果
GMP-ECM 6.3 [configured with GMP 5.0.5 and --enable-asm-redc] [ECM]
Input number is 33686260987127952326976311533181686501338066307271344629792208018308696268952289981225333192206043378794003339015120579589293781989186972713813944487952027071561 (161 digits)
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=5283046705
Step 1 took 40077ms
Step 2 took 3286ms
********** Factor found in step 2: 4177240849049899311583039641602719171031742224309
Found probable prime factor of 49 digits: 4177240849049899311583039641602719171031742224309
Composite cofactor 8064237185363585063175829198084531063012995486355368531933478539096625487593186943522816071593643358630778527429 has 112 digits

Number: 31111_197
N=8064237185363585063175829198084531063012995486355368531933478539096625487593186943522816071593643358630778527429
  ( 112 digits)
Divisors found:
 r1=6383872830522353817383869843235528566867561352034422827
 r2=1263220211218358051729777565891527308022345673393713669327
Version: 
Total time: 8.55 hours.
Scaled time: 31.20 units (timescale=3.649).
Factorization parameters were as follows:
name: 31111_197
n: 8064237185363585063175829198084531063012995486355368531933478539096625487593186943522816071593643358630778527429
skew: 28414.07
# norm 7.38e+15
c5: 206280
c4: -11218270434
c3: -407422973037338
c2: 8454054143654033743
c1: 158627976637006260592342
c0: -1324662043172904541243192593
# alpha -7.07
Y1: 874436538547
Y0: -2081724331178900614988
# Murphy_E 8.20e-10
# M 5569642920719080300774883607489724301991072575973735515493269604921334771414234234500734835946081197595720974581
type: gnfs
rlim: 2400000
alim: 2400000
lpbr: 27
lpba: 27
mfbr: 53
mfba: 53
rlambda: 2.6
alambda: 2.6
qintsize: 60000
Factor base limits: 2400000/2400000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 53/53
Sieved algebraic special-q in [1200000, 1920001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 9052065
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 432520 x 432768
Polynomial selection time: 0.87 hours.
Total sieving time: 6.98 hours.
Total relation processing time: 0.36 hours.
Matrix solve time: 0.25 hours.
Time per square root: 0.10 hours.
Prototype def-par.txt line would be:
gnfs,111,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2400000,2400000,27,27,53,53,2.6,2.6,60000
total time: 8.55 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz stepping 02
Memory: 36991716k/38797312k available (5072k kernel code, 1057684k absent, 747912k reserved, 7246k data, 1252k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 6667.27 BogoMIPS (lpj=3333636)
Total of 12 processors activated (80007.26 BogoMIPS).
x86info v1.25.  Dave Jones 2001-2009
Feedback to <davej@redhat.com>.

Found 12 CPUs
--------------------------------------------------------------------------
CPU #1
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)     Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x0 Package: 0  Core: 0   SMT ID 0
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #2
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x2 Package: 0  Core: 0   SMT ID 2
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #3
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x4 Package: 0  Core: 0   SMT ID 4
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #4
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x10        Package: 0  Core: 0   SMT ID 16
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #5
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x12        Package: 0  Core: 0   SMT ID 18
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #6
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x14        Package: 0  Core: 0   SMT ID 20
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #7
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x1 Package: 0  Core: 0   SMT ID 1
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #8
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x3 Package: 0  Core: 0   SMT ID 3
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #9
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x5 Package: 0  Core: 0   SMT ID 5
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #10
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM) Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x11        Package: 0  Core: 0   SMT ID 17
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #11
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM) Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x13        Package: 0  Core: 0   SMT ID 19
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #12
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM) Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x15        Package: 0  Core: 0   SMT ID 21
3.35GHz processor (estimate).

--------------------------------------------------------------------------
software ソフトウェア
GMP-ECM v6.3/GGNFS/Msieve v1.39
execution environment 実行環境
Core i7 980

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Ignacio SantosSeptember 8, 2010 15:44:59 UTC 2010 年 9 月 9 日 (木) 0 時 44 分 59 秒 (日本時間)
351e6300Ignacio SantosSeptember 8, 2010 15:45:16 UTC 2010 年 9 月 9 日 (木) 0 時 45 分 16 秒 (日本時間)
403e62144110Ignacio SantosSeptember 8, 2010 15:45:16 UTC 2010 年 9 月 9 日 (木) 0 時 45 分 16 秒 (日本時間)
2034Jo Yeong UkDecember 20, 2012 09:17:04 UTC 2012 年 12 月 20 日 (木) 18 時 17 分 4 秒 (日本時間)
4511e632 / 3991Ignacio SantosSeptember 8, 2010 15:45:16 UTC 2010 年 9 月 9 日 (木) 0 時 45 分 16 秒 (日本時間)

28×10198-19

c169

name 名前Ignacio Santos
date 日付September 8, 2010 16:23:06 UTC 2010 年 9 月 9 日 (木) 1 時 23 分 6 秒 (日本時間)
composite number 合成数
1495090318613611717590067020570524128240724161258308014749723311830182831049922633861417910151161548297941691595794553998752814528104483719442191022284986626625141474991<169>
prime factors 素因数
11677129665096260974090620195773<32>
37372288595954645332787364142970066370599<41>
3425954829813547496322385057911265268910960458106209163395919512377952502103000289354283313996333<97>
factorization results 素因数分解の結果
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3448535475
Step 1 took 6786ms
Step 2 took 5101ms
********** Factor found in step 2: 11677129665096260974090620195773
Found probable prime factor of 32 digits: 11677129665096260974090620195773
Composite cofactor 128035772616496578861921707079130349005993700264312512204591295586733154937831058490133492374084563765749279984679751755374494651705013467 has 138 digits

Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=80390821
Step 1 took 17534ms
Step 2 took 9688ms
********** Factor found in step 2: 37372288595954645332787364142970066370599
Found probable prime factor of 41 digits: 37372288595954645332787364142970066370599
Probable prime cofactor 3425954829813547496322385057911265268910960458106209163395919512377952502103000289354283313996333 has 97 digits
software ソフトウェア
GMP-ECM 6.3

28×10199-19

c169

name 名前Jo Yeong Uk
date 日付January 20, 2013 14:09:57 UTC 2013 年 1 月 20 日 (日) 23 時 9 分 57 秒 (日本時間)
composite number 合成数
4027503774469177203664181961432844331925525684325974184659304398606129118647200902794763414309664611235552695579919316325509614832427004319304439311261062695721134036863<169>
prime factors 素因数
129788055635717129060443309006877407646875937495784717097132897171<66>
31031390020768791310619114222088110006504935770084369487978389644026009875299893719346861201492880250853<104>
factorization results 素因数分解の結果
Number: 31111_199
N=4027503774469177203664181961432844331925525684325974184659304398606129118647200902794763414309664611235552695579919316325509614832427004319304439311261062695721134036863
  ( 169 digits)
SNFS difficulty: 201 digits.
Divisors found:
 r1=129788055635717129060443309006877407646875937495784717097132897171
 r2=31031390020768791310619114222088110006504935770084369487978389644026009875299893719346861201492880250853
Version: 
Total time: 262.96 hours.
Scaled time: 966.92 units (timescale=3.677).
Factorization parameters were as follows:
n: 4027503774469177203664181961432844331925525684325974184659304398606129118647200902794763414309664611235552695579919316325509614832427004319304439311261062695721134036863
m: 10000000000000000000000000000000000000000
deg: 5
c5: 14
c0: -5
skew: 0.81
# Murphy_E = 1.638e-11
type: snfs
lss: 1
rlim: 15000000
alim: 15000000
lpbr: 29
lpba: 29
mfbr: 56
mfba: 56
rlambda: 2.6
alambda: 2.6
Factor base limits: 15000000/15000000
Large primes per side: 3
Large prime bits: 29/29
Max factor residue bits: 56/56
Sieved rational special-q in [7500000, 15400001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 38151616
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 3009568 x 3009816
Total sieving time: 231.73 hours.
Total relation processing time: 10.46 hours.
Matrix solve time: 20.33 hours.
Time per square root: 0.44 hours.
Prototype def-par.txt line would be:
snfs,201,5,0,0,0,0,0,0,0,0,15000000,15000000,29,29,56,56,2.6,2.6,100000
total time: 262.96 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz stepping 02
Memory: 36991716k/38797312k available (5072k kernel code, 1057684k absent, 747912k reserved, 7246k data, 1252k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 6666.82 BogoMIPS (lpj=3333414)
Total of 12 processors activated (80001.93 BogoMIPS).
x86info v1.25.  Dave Jones 2001-2009
Feedback to <davej@redhat.com>.

Found 12 CPUs
--------------------------------------------------------------------------
CPU #1
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x0 Package: 0  Core: 0   SMT ID 0
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #2
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x2 Package: 0  Core: 0   SMT ID 2
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #3
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x4 Package: 0  Core: 0   SMT ID 4
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #4
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x10        Package: 0  Core: 0   SMT ID 16
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #5
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x12        Package: 0  Core: 0   SMT ID 18
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #6
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x14        Package: 0  Core: 0   SMT ID 20
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #7
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x1 Package: 0  Core: 0   SMT ID 1
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #8
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x3 Package: 0  Core: 0   SMT ID 3
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #9
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x5 Package: 0  Core: 0   SMT ID 5
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #10
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM) Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x11        Package: 0  Core: 0   SMT ID 17
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #11
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM) Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x13        Package: 0  Core: 0   SMT ID 19
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #12
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM) Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x15        Package: 0  Core: 0   SMT ID 21
3.35GHz processor (estimate).

--------------------------------------------------------------------------
software ソフトウェア
GGNFS / Msieve v1.39
execution environment 実行環境
Core i7 980

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Ignacio SantosSeptember 8, 2010 17:20:24 UTC 2010 年 9 月 9 日 (木) 2 時 20 分 24 秒 (日本時間)
351e6300Ignacio SantosSeptember 8, 2010 17:20:36 UTC 2010 年 9 月 9 日 (木) 2 時 20 分 36 秒 (日本時間)
403e62144110Ignacio SantosSeptember 8, 2010 17:20:36 UTC 2010 年 9 月 9 日 (木) 2 時 20 分 36 秒 (日本時間)
2034Jo Yeong UkDecember 20, 2012 13:53:33 UTC 2012 年 12 月 20 日 (木) 22 時 53 分 33 秒 (日本時間)
4511e632 / 3991Ignacio SantosSeptember 8, 2010 17:20:36 UTC 2010 年 9 月 9 日 (木) 2 時 20 分 36 秒 (日本時間)

28×10200-19

c195

name 名前Robert Backstrom
date 日付April 25, 2010 07:50:54 UTC 2010 年 4 月 25 日 (日) 16 時 50 分 54 秒 (日本時間)
composite number 合成数
182574478813438029364105479275286255591098894270271651914974804395897890527951272436528797505145829082771248457979212200252643955575195353062201103571437187826168491335569479467771920397266416657<195>
prime factors 素因数
8739212203807295182262848218418072616613215494473923<52>
20891411554682040882505879096746006799492064955579448890853550439847309304822422247355291185317884580441859522081321587495869998526968664482459<143>
factorization results 素因数分解の結果
Number: n
N=182574478813438029364105479275286255591098894270271651914974804395897890527951272436528797505145829082771248457979212200252643955575195353062201103571437187826168491335569479467771920397266416657
  ( 195 digits)
SNFS difficulty: 201 digits.
Divisors found:

Sun Apr 25 17:32:32 2010  prp52 factor: 8739212203807295182262848218418072616613215494473923
Sun Apr 25 17:32:32 2010  prp143 factor: 20891411554682040882505879096746006799492064955579448890853550439847309304822422247355291185317884580441859522081321587495869998526968664482459
Sun Apr 25 17:32:32 2010  elapsed time 06:04:56 (Msieve 1.42 - dependency 1)

Version: 
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.030).
Factorization parameters were as follows:
name: KA_3_1_200
n: 182574478813438029364105479275286255591098894270271651914974804395897890527951272436528797505145829082771248457979212200252643955575195353062201103571437187826168491335569479467771920397266416657
m: 10000000000000000000000000000000000000000
deg: 5
c5: 28
c0: -1
skew: 0.51
type: snfs
lss: 1
rlim: 15900000
alim: 15900000
lpbr: 28
lpba: 28
mfbr: 56
mfba: 56
rlambda: 2.6
alambda: 2.6
qintsize: 100000
Factor base limits: 15900000/15900000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 56/56
Sieved  special-q in [100000, 17550000)
Primes: , , 
Relations: 
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 

Msieve: found 5074670 hash collisions in 34039078 relations
Msieve: matrix is 1893840 x 1894065 (533.3 MB)

Total sieving time: 0.00 hours.
Total relation processing time: 0.00 hours.
Matrix solve time: 0.00 hours.
Total square root time: 0.00 hours, sqrts: 0.
Prototype def-par.txt line would be:
snfs,201,5,0,0,0,0,0,0,0,0,15900000,15900000,28,28,56,56,2.6,2.6,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM) i7 CPU         930  @ 2.80GHz stepping 05
CPU1: Intel(R) Core(TM) i7 CPU         930  @ 2.80GHz stepping 05
CPU2: Intel(R) Core(TM) i7 CPU         930  @ 2.80GHz stepping 05
CPU3: Intel(R) Core(TM) i7 CPU         930  @ 2.80GHz stepping 05
CPU4: Intel(R) Core(TM) i7 CPU         930  @ 2.80GHz stepping 05
CPU5: Intel(R) Core(TM) i7 CPU         930  @ 2.80GHz stepping 05
CPU6: Intel(R) Core(TM) i7 CPU         930  @ 2.80GHz stepping 05
CPU7: Intel(R) Core(TM) i7 CPU         930  @ 2.80GHz stepping 05
Memory: 6060216k/7077888k available (3972k kernel code, 787972k absent, 229700k reserved, 2498k data, 1292k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 5596.79 BogoMIPS (lpj=2798398)
Calibrating delay using timer specific routine.. 5595.11 BogoMIPS (lpj=2797555)
Calibrating delay using timer specific routine.. 5595.10 BogoMIPS (lpj=2797554)
Calibrating delay using timer specific routine.. 5595.11 BogoMIPS (lpj=2797555)
Calibrating delay using timer specific routine.. 5595.10 BogoMIPS (lpj=2797551)
Calibrating delay using timer specific routine.. 5595.11 BogoMIPS (lpj=2797556)
Calibrating delay using timer specific routine.. 5595.11 BogoMIPS (lpj=2797555)
Calibrating delay using timer specific routine.. 5595.11 BogoMIPS (lpj=2797555)
Total of 8 processors activated (44762.55 BogoMIPS).

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e6400Serge BatalovNovember 25, 2008 00:45:31 UTC 2008 年 11 月 25 日 (火) 9 時 45 分 31 秒 (日本時間)
4511e62740 / 4392690Dmitry DomanovJanuary 9, 2010 13:32:07 UTC 2010 年 1 月 9 日 (土) 22 時 32 分 7 秒 (日本時間)
2050Ignacio SantosApril 12, 2010 07:38:33 UTC 2010 年 4 月 12 日 (月) 16 時 38 分 33 秒 (日本時間)

28×10201-19

c198

name 名前Warut Roonguthai
date 日付January 6, 2013 10:27:21 UTC 2013 年 1 月 6 日 (日) 19 時 27 分 21 秒 (日本時間)
composite number 合成数
728768121600166575570651466645844720335233335936076624762499674657088571354207334530595247390749850342260742822935373884073813799744931157439941698550271986673954347882668332422373181333125113870019<198>
prime factors 素因数
465664409819295204536418479658396523<36>
composite cofactor 合成数の残り
1565007130098198547993163466898016739854197536465941252087255300810070900575518192002024509099192406250403851413239698370841215240924086784197537126352958925574153<163>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=413114658
Step 1 took 36301ms
Step 2 took 16458ms
********** Factor found in step 2: 465664409819295204536418479658396523
Found probable prime factor of 36 digits: 465664409819295204536418479658396523
Composite cofactor 1565007130098198547993163466898016739854197536465941252087255300810070900575518192002024509099192406250403851413239698370841215240924086784197537126352958925574153 has 163 digits
software ソフトウェア
GMP-ECM 6.3

c163

name 名前Dylan Delgado
date 日付October 18, 2019 20:22:13 UTC 2019 年 10 月 19 日 (土) 5 時 22 分 13 秒 (日本時間)
composite number 合成数
1565007130098198547993163466898016739854197536465941252087255300810070900575518192002024509099192406250403851413239698370841215240924086784197537126352958925574153<163>
prime factors 素因数
13745912135010010655173532016798878980991092496813287549375396020518260620191<77>
113852548650607158081328333815433758565016971001414269058916229620915646607726531351383<87>
factorization results 素因数分解の結果
__Polynomial__
n: 1565007130098198547993163466898016739854197536465941252087255300810070900575518192002024509099192406250403851413239698370841215240924086784197537126352958925574153
skew: 0.46341
c0: -1
c5: 280
Y0: 10000000000000000000000000000000000000000
Y1: -1
# f(x) = 280*x^5-1
# g(x) = -x+10000000000000000000000000000000000000000

__Parameters__
#General parameters
name = 31111_201
N = 1565007130098198547993163466898016739854197536465941252087255300810070900575518192002024509099192406250403851413239698370841215240924086784197537126352958925574153
tasks.wutimeout = 14400 # 4 hours

#Polyselect - We are supplying the polynomial here.
tasks.polyselect.admin = 0
tasks.polyselect.admax = 0
tasks.polyselect.adrange = 0
#Import the poly
tasks.polyselect.import = /home/dylan/Desktop/factoring/31111_201.poly

#Sieving
tasks.lim0 = 2e7
tasks.lim1 = 2e7
tasks.lpb0 = 28
tasks.lpb1 = 28
tasks.sieve.sqside = 0
tasks.sieve.mfb0 = 60
tasks.sieve.mfb1 = 60
tasks.sieve.lambda0 = 2.15
tasks.sieve.lambda1 = 2.15
tasks.sieve.ncurves0 = 18
tasks.sieve.ncurves1 = 18
tasks.I = 14
tasks.qmin = 2e6
tasks.sieve.qrange = 2e4
tasks.sieve.threads = 2

#Filtering
tasks.filter.purge.keep = 140
tasks.filter.merge.keep = 100
tasks.filter.add_ratio = 0.025
tasks.filter.target_density = 170

#Linear algebra and square root
tasks.linalg.m = 64
tasks.linalg.n = 64
tasks.linalg.characters.nchar = 50

__Timing and Factors__
Info:Square Root: Factors: 113852548650607158081328333815433758565016971001414269058916229620915646607726531351383 13745912135010010655173532016798878980991092496813287549375396020518260620191
Warning:Polynomial Selection (size optimized): some stats could not be displayed for polyselect1 (see log file for debug info)
Warning:Polynomial Selection (root optimized): some stats could not be displayed for polyselect2 (see log file for debug info)
Info:Generate Factor Base: Total cpu/real time for makefb: 8.14/4.76882
Info:Generate Free Relations: Total cpu/real time for freerel: 94.24/44.4976
Info:Lattice Sieving: Aggregate statistics:
Info:Lattice Sieving: Total number of relations: 29028497
Info:Lattice Sieving: Average J: 7581.72 for 475993 special-q, max bucket fill -bkmult 1.0,1s:1.076820
Info:Lattice Sieving: Total time: 546415s
Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 55.15/147.791
Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics:
Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 146.50000000000003s
Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 490.76/537.294
Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics:
Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 482.90000000000003s
Info:Filtering - Singleton removal: Total cpu/real time for purge: 366.21/455.56
Info:Filtering - Merging: Total cpu/real time for merge: 1376.74/1389.46
Info:Filtering - Merging: Total cpu/real time for replay: 95.35/108.693
Info:Linear Algebra: Total cpu/real time for bwc: 65296.7/22634.7
Info:Linear Algebra: Aggregate statistics:
Info:Linear Algebra: Krylov: WCT time 14227.14, iteration CPU time 0.16, COMM 0.01, cpu-wait 0.03, comm-wait 0.0 (70656 iterations)
Info:Linear Algebra: Lingen CPU time 481.21, WCT time 151.47
Info:Linear Algebra: Mksol: WCT time 7875.65, iteration CPU time 0.19, COMM 0.01, cpu-wait 0.03, comm-wait 0.0 (35328 iterations)
Info:Quadratic Characters: Total cpu/real time for characters: 94.07/41.3826
Info:Square Root: Total cpu/real time for sqrt: 1111.78/364.562
Info:HTTP server: Shutting down HTTP server
Info:Complete Factorization: Total cpu/elapsed time for entire factorization: 1.0377e+06/299556
software ソフトウェア
CADO-NFS commit 50ad0f1fd
execution environment 実行環境
Intel Core i5-6400, Ubuntu 19.04

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6418118Makoto KamadaJanuary 4, 2013 12:00:00 UTC 2013 年 1 月 4 日 (金) 21 時 0 分 0 秒 (日本時間)
300Ignacio SantosJanuary 4, 2013 17:11:54 UTC 2013 年 1 月 5 日 (土) 2 時 11 分 54 秒 (日本時間)
403e62410110Ignacio SantosJanuary 4, 2013 17:11:54 UTC 2013 年 1 月 5 日 (土) 2 時 11 分 54 秒 (日本時間)
2300Warut RoonguthaiJanuary 7, 2013 14:57:31 UTC 2013 年 1 月 7 日 (月) 23 時 57 分 31 秒 (日本時間)
4511e61032 / 392832Ignacio SantosJanuary 4, 2013 17:11:54 UTC 2013 年 1 月 5 日 (土) 2 時 11 分 54 秒 (日本時間)
1000Dmitry DomanovJanuary 8, 2013 14:06:02 UTC 2013 年 1 月 8 日 (火) 23 時 6 分 2 秒 (日本時間)

28×10203-19

c173

name 名前Dylan Delgado
date 日付October 22, 2019 20:59:10 UTC 2019 年 10 月 23 日 (水) 5 時 59 分 10 秒 (日本時間)
composite number 合成数
54663117448603443453415646953122872585083673211882419904996845400471902463390934905024378304695813148853968494021216869048153719829964637721343144056624828222171361864272869<173>
prime factors 素因数
51837214663626645120924981038244388893217406515043558585268890792650973<71>
1054514942658747629201414613812571737766422527442516674673136028922599809669180101203760344235112938153<103>
factorization results 素因数分解の結果
__Polynomial__
n: 54663117448603443453415646953122872585083673211882419904996845400471902463390934905024378304695813148853968494021216869048153719829964637721343144056624828222171361864272869
skew: 0.36943
c0: -1
c5: 875
Y0: 20000000000000000000000000000000000000000
Y1: -1
# f(x) = 875*x^5-1
# g(x) = -x+20000000000000000000000000000000000000000

__Parameters__
#General parameters
name = 31111_203
N = 54663117448603443453415646953122872585083673211882419904996845400471902463390934905024378304695813148853968494021216869048153719829964637721343144056624828222171361864272869
tasks.wutimeout = 14400 # 4 hours

#Polyselect - We are supplying the polynomial here.
tasks.polyselect.admin = 0
tasks.polyselect.admax = 0
tasks.polyselect.adrange = 0
#Import the poly
tasks.polyselect.import = /home/dylan/Desktop/factoring/31111_203.poly

#Sieving
tasks.lim0 = 225e5
tasks.lim1 = 225e5
tasks.lpb0 = 28
tasks.lpb1 = 28
tasks.sieve.sqside = 0
tasks.sieve.mfb0 = 61
tasks.sieve.mfb1 = 61
tasks.sieve.lambda0 = 2.15
tasks.sieve.lambda1 = 2.15
tasks.sieve.ncurves0 = 18
tasks.sieve.ncurves1 = 18
tasks.I = 14
tasks.qmin = 2e6
tasks.sieve.qrange = 2e4
tasks.sieve.threads = 2
tasks.sieve.rels_wanted = 30e6

#Filtering
tasks.filter.purge.keep = 140
tasks.filter.merge.keep = 100
tasks.filter.add_ratio = 0.025
tasks.filter.target_density = 170

#Linear algebra and square root
tasks.linalg.m = 64
tasks.linalg.n = 64
tasks.linalg.characters.nchar = 50

__Factors and timing__
Info:Square Root: Factors: 51837214663626645120924981038244388893217406515043558585268890792650973 1054514942658747629201414613812571737766422527442516674673136028922599809669180101203760344235112938153
Info:Square Root: Total cpu/real time for sqrt: 1147.17/372.995
Warning:Polynomial Selection (size optimized): some stats could not be displayed for polyselect1 (see log file for debug info)
Warning:Polynomial Selection (root optimized): some stats could not be displayed for polyselect2 (see log file for debug info)
Info:Generate Factor Base: Total cpu/real time for makefb: 9.09/5.01582
Info:Generate Free Relations: Total cpu/real time for freerel: 95.54/45.5149
Info:Lattice Sieving: Aggregate statistics:
Info:Lattice Sieving: Total number of relations: 30018007
Info:Lattice Sieving: Average J: 7582.34 for 528037 special-q, max bucket fill -bkmult 1.0,1s:1.073760
Info:Lattice Sieving: Total time: 626065s
Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 56.3/153.937
Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics:
Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 153.8s
Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 327.77/319.496
Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics:
Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 310.2s
Info:Filtering - Singleton removal: Total cpu/real time for purge: 121.68/149.532
Info:Filtering - Merging: Total cpu/real time for merge: 1320.96/1335.2
Info:Filtering - Merging: Total cpu/real time for replay: 93.85/107.074
Info:Linear Algebra: Total cpu/real time for bwc: 66177/22995.9
Info:Linear Algebra: Aggregate statistics:
Info:Linear Algebra: Krylov: WCT time 14484.69, iteration CPU time 0.17, COMM 0.01, cpu-wait 0.03, comm-wait 0.0 (70656 iterations)
Info:Linear Algebra: Lingen CPU time 498.06, WCT time 157.07
Info:Linear Algebra: Mksol: WCT time 8042.15, iteration CPU time 0.19, COMM 0.01, cpu-wait 0.03, comm-wait 0.0 (35328 iterations)
Info:Quadratic Characters: Total cpu/real time for characters: 91.57/40.7031
Info:Square Root: Total cpu/real time for sqrt: 1147.17/372.995
Info:HTTP server: Shutting down HTTP server
Info:Complete Factorization: Total cpu/elapsed time for entire factorization: 1.1692e+06/340218
software ソフトウェア
CADO-NFS commit 50ad0f1fd
execution environment 実行環境
Intel Core i5-6400, Ubuntu 19.04

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61418118Makoto KamadaJanuary 4, 2013 12:00:00 UTC 2013 年 1 月 4 日 (金) 21 時 0 分 0 秒 (日本時間)
1300Warut RoonguthaiJanuary 7, 2013 15:07:20 UTC 2013 年 1 月 8 日 (火) 0 時 7 分 20 秒 (日本時間)
403e62300Warut RoonguthaiJanuary 7, 2013 15:07:20 UTC 2013 年 1 月 8 日 (火) 0 時 7 分 20 秒 (日本時間)
4511e61000 / 3907Dmitry DomanovJanuary 8, 2013 14:06:20 UTC 2013 年 1 月 8 日 (火) 23 時 6 分 20 秒 (日本時間)

28×10204-19

c169

name 名前Warut Roonguthai
date 日付January 4, 2013 15:13:35 UTC 2013 年 1 月 5 日 (土) 0 時 13 分 35 秒 (日本時間)
composite number 合成数
3897042074776179163951934776439213100772453266948945231217659297468775560776766360532657408444927255793318098086401585358696213403468424013906002655727409570017186988677<169>
prime factors 素因数
274253494021193202811878603342987811<36>
composite cofactor 合成数の残り
14209635099398337967601597895830426771276416838863204918602233048683106561341418627357719988453793250294873202029560619317958845534007<134>
factorization results 素因数分解の結果
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3230854732
Step 1 took 3681ms
********** Factor found in step 1: 274253494021193202811878603342987811
Found probable prime factor of 36 digits: 274253494021193202811878603342987811
Composite cofactor 14209635099398337967601597895830426771276416838863204918602233048683106561341418627357719988453793250294873202029560619317958845534007 has 134 digits
software ソフトウェア
GMP-ECM 6.3

c134

name 名前Dmitry Domanov
date 日付February 1, 2013 14:43:27 UTC 2013 年 2 月 1 日 (金) 23 時 43 分 27 秒 (日本時間)
composite number 合成数
14209635099398337967601597895830426771276416838863204918602233048683106561341418627357719988453793250294873202029560619317958845534007<134>
prime factors 素因数
158539863928713775111950047670699085600521460918271446241<57>
89628152486541748276368185176744795863066145626385809230767990397717259765527<77>
factorization results 素因数分解の結果
Fri Feb  1 16:11:56 2013  commencing relation filtering
Fri Feb  1 16:11:56 2013  estimated available RAM is 48157.8 MB
Fri Feb  1 16:11:56 2013  commencing duplicate removal, pass 1
Fri Feb  1 16:14:33 2013  found 1471575 hash collisions in 12318245 relations
Fri Feb  1 16:14:54 2013  added 65 free relations
Fri Feb  1 16:14:54 2013  commencing duplicate removal, pass 2
Fri Feb  1 16:14:59 2013  found 1156637 duplicates and 11161673 unique relations
Fri Feb  1 16:14:59 2013  memory use: 49.3 MB
Fri Feb  1 16:14:59 2013  reading ideals above 720000
Fri Feb  1 16:14:59 2013  commencing singleton removal, initial pass
Fri Feb  1 16:17:44 2013  memory use: 344.5 MB
Fri Feb  1 16:17:44 2013  reading all ideals from disk
Fri Feb  1 16:17:44 2013  memory use: 345.4 MB
Fri Feb  1 16:17:45 2013  commencing in-memory singleton removal
Fri Feb  1 16:17:45 2013  begin with 11161673 relations and 11833248 unique ideals
Fri Feb  1 16:17:54 2013  reduce to 5142313 relations and 4928301 ideals in 17 passes
Fri Feb  1 16:17:54 2013  max relations containing the same ideal: 98
Fri Feb  1 16:17:56 2013  removing 441299 relations and 401874 ideals in 39425 cliques
Fri Feb  1 16:17:57 2013  commencing in-memory singleton removal
Fri Feb  1 16:17:57 2013  begin with 4701014 relations and 4928301 unique ideals
Fri Feb  1 16:18:00 2013  reduce to 4672880 relations and 4498000 ideals in 8 passes
Fri Feb  1 16:18:00 2013  max relations containing the same ideal: 88
Fri Feb  1 16:18:02 2013  removing 322314 relations and 282889 ideals in 39425 cliques
Fri Feb  1 16:18:02 2013  commencing in-memory singleton removal
Fri Feb  1 16:18:02 2013  begin with 4350566 relations and 4498000 unique ideals
Fri Feb  1 16:18:05 2013  reduce to 4333477 relations and 4197871 ideals in 7 passes
Fri Feb  1 16:18:05 2013  max relations containing the same ideal: 85
Fri Feb  1 16:18:09 2013  relations with 0 large ideals: 503
Fri Feb  1 16:18:09 2013  relations with 1 large ideals: 1307
Fri Feb  1 16:18:09 2013  relations with 2 large ideals: 19623
Fri Feb  1 16:18:09 2013  relations with 3 large ideals: 132922
Fri Feb  1 16:18:09 2013  relations with 4 large ideals: 479903
Fri Feb  1 16:18:09 2013  relations with 5 large ideals: 1002004
Fri Feb  1 16:18:09 2013  relations with 6 large ideals: 1249622
Fri Feb  1 16:18:09 2013  relations with 7+ large ideals: 1447593
Fri Feb  1 16:18:09 2013  commencing 2-way merge
Fri Feb  1 16:18:12 2013  reduce to 2574137 relation sets and 2438531 unique ideals
Fri Feb  1 16:18:12 2013  commencing full merge
Fri Feb  1 16:19:00 2013  memory use: 276.6 MB
Fri Feb  1 16:19:01 2013  found 1302077 cycles, need 1284731
Fri Feb  1 16:19:02 2013  weight of 1284731 cycles is about 90150407 (70.17/cycle)
Fri Feb  1 16:19:02 2013  distribution of cycle lengths:
Fri Feb  1 16:19:02 2013  1 relations: 164334
Fri Feb  1 16:19:02 2013  2 relations: 162307
Fri Feb  1 16:19:02 2013  3 relations: 163133
Fri Feb  1 16:19:02 2013  4 relations: 142930
Fri Feb  1 16:19:02 2013  5 relations: 122408
Fri Feb  1 16:19:02 2013  6 relations: 103336
Fri Feb  1 16:19:02 2013  7 relations: 86040
Fri Feb  1 16:19:02 2013  8 relations: 70641
Fri Feb  1 16:19:02 2013  9 relations: 57516
Fri Feb  1 16:19:02 2013  10+ relations: 212086
Fri Feb  1 16:19:02 2013  heaviest cycle: 21 relations
Fri Feb  1 16:19:02 2013  commencing cycle optimization
Fri Feb  1 16:19:04 2013  start with 7161330 relations
Fri Feb  1 16:19:16 2013  pruned 148997 relations
Fri Feb  1 16:19:16 2013  memory use: 246.5 MB
Fri Feb  1 16:19:16 2013  distribution of cycle lengths:
Fri Feb  1 16:19:16 2013  1 relations: 164334
Fri Feb  1 16:19:16 2013  2 relations: 166154
Fri Feb  1 16:19:16 2013  3 relations: 168536
Fri Feb  1 16:19:16 2013  4 relations: 145487
Fri Feb  1 16:19:16 2013  5 relations: 124382
Fri Feb  1 16:19:16 2013  6 relations: 103779
Fri Feb  1 16:19:16 2013  7 relations: 85807
Fri Feb  1 16:19:16 2013  8 relations: 69644
Fri Feb  1 16:19:16 2013  9 relations: 56493
Fri Feb  1 16:19:16 2013  10+ relations: 200115
Fri Feb  1 16:19:16 2013  heaviest cycle: 21 relations
Fri Feb  1 16:19:18 2013  RelProcTime: 442
Fri Feb  1 16:19:18 2013  
Fri Feb  1 16:19:18 2013  commencing linear algebra
Fri Feb  1 16:19:18 2013  read 1284731 cycles
Fri Feb  1 16:19:20 2013  cycles contain 4195480 unique relations
Fri Feb  1 16:20:15 2013  read 4195480 relations
Fri Feb  1 16:20:20 2013  using 20 quadratic characters above 134217044
Fri Feb  1 16:20:42 2013  building initial matrix
Fri Feb  1 16:21:38 2013  memory use: 561.9 MB
Fri Feb  1 16:21:39 2013  read 1284731 cycles
Fri Feb  1 16:21:40 2013  matrix is 1284550 x 1284731 (390.9 MB) with weight 122824748 (95.60/col)
Fri Feb  1 16:21:40 2013  sparse part has weight 87062531 (67.77/col)
Fri Feb  1 16:21:53 2013  filtering completed in 2 passes
Fri Feb  1 16:21:54 2013  matrix is 1281223 x 1281403 (390.6 MB) with weight 122687966 (95.75/col)
Fri Feb  1 16:21:54 2013  sparse part has weight 87022723 (67.91/col)
Fri Feb  1 16:21:57 2013  matrix starts at (0, 0)
Fri Feb  1 16:21:57 2013  matrix is 1281223 x 1281403 (390.6 MB) with weight 122687966 (95.75/col)
Fri Feb  1 16:21:57 2013  sparse part has weight 87022723 (67.91/col)
Fri Feb  1 16:21:57 2013  saving the first 48 matrix rows for later
Fri Feb  1 16:21:57 2013  matrix includes 64 packed rows
Fri Feb  1 16:21:58 2013  matrix is 1281175 x 1281403 (375.8 MB) with weight 97597181 (76.16/col)
Fri Feb  1 16:21:58 2013  sparse part has weight 85705399 (66.88/col)
Fri Feb  1 16:21:58 2013  using block size 262144 for processor cache size 12288 kB
Fri Feb  1 16:22:01 2013  commencing Lanczos iteration (16 threads)
Fri Feb  1 16:22:01 2013  memory use: 553.8 MB
Fri Feb  1 16:22:09 2013  linear algebra at 0.1%, ETA 1h38m
Fri Feb  1 16:22:11 2013  checkpointing every 820000 dimensions
Fri Feb  1 18:02:14 2013  lanczos halted after 20261 iterations (dim = 1281175)
Fri Feb  1 18:02:16 2013  recovered 32 nontrivial dependencies
Fri Feb  1 18:02:16 2013  BLanczosTime: 6178
Fri Feb  1 18:02:16 2013  
Fri Feb  1 18:02:16 2013  commencing square root phase
Fri Feb  1 18:02:16 2013  reading relations for dependency 1
Fri Feb  1 18:02:16 2013  read 641578 cycles
Fri Feb  1 18:02:17 2013  cycles contain 2099622 unique relations
Fri Feb  1 18:02:45 2013  read 2099622 relations
Fri Feb  1 18:02:55 2013  multiplying 2099622 relations
Fri Feb  1 18:06:01 2013  multiply complete, coefficients have about 103.02 million bits
Fri Feb  1 18:06:02 2013  initial square root is modulo 24791497
Fri Feb  1 18:09:59 2013  sqrtTime: 463


prp77 = 89628152486541748276368185176744795863066145626385809230767990397717259765527
prp57 = 158539863928713775111950047670699085600521460918271446241
NFS elapsed time = 81123.4733 seconds.

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61418118Makoto KamadaJanuary 4, 2013 12:00:00 UTC 2013 年 1 月 4 日 (金) 21 時 0 分 0 秒 (日本時間)
1300Warut RoonguthaiJanuary 5, 2013 17:53:23 UTC 2013 年 1 月 6 日 (日) 2 時 53 分 23 秒 (日本時間)
403e68000Warut RoonguthaiJanuary 5, 2013 17:53:23 UTC 2013 年 1 月 6 日 (日) 2 時 53 分 23 秒 (日本時間)

28×10205-19

c159

name 名前ebina
date 日付July 9, 2023 09:31:40 UTC 2023 年 7 月 9 日 (日) 18 時 31 分 40 秒 (日本時間)
composite number 合成数
547094904103780383248138003361459407551504443850965268348224998599325952669134488664809244255411177109946353463360861241286923802236161342638426552785322715853<159>
prime factors 素因数
12908522103188139143260012364587417663680386920469355298768310281<65>
42382458637047164979464964735661048765699926870599425841390802732284627582047463350300563746213<95>
factorization results 素因数分解の結果
Number: 31111_205
N = 547094904103780383248138003361459407551504443850965268348224998599325952669134488664809244255411177109946353463360861241286923802236161342638426552785322715853 (159 digits)
SNFS difficulty: 207 digits.
Divisors found:
r1=12908522103188139143260012364587417663680386920469355298768310281 (pp65)
r2=42382458637047164979464964735661048765699926870599425841390802732284627582047463350300563746213 (pp95)
Version: Msieve v. 1.53 (SVN unknown)
Total time: 108.41 hours.
Factorization parameters were as follows:
n: 547094904103780383248138003361459407551504443850965268348224998599325952669134488664809244255411177109946353463360861241286923802236161342638426552785322715853
m: 100000000000000000000000000000000000000000
deg: 5
c5: 28
c0: -1
skew: 0.51
# Murphy_E = 1.066e-11
type: snfs
lss: 1
rlim: 19300000
alim: 19300000
lpbr: 29
lpba: 29
mfbr: 56
mfba: 56
rlambda: 2.6
alambda: 2.6
Factor base limits: 19300000/19300000
Large primes per side: 3
Large prime bits: 29/29
Sieved rational special-q in [0, 0)
Total raw relations: 39194322
Relations: 6164524 relations
Pruned matrix : 3702974 x 3703201
Total sieving time: 98.92 hours.
Total relation processing time: 0.35 hours.
Matrix solve time: 8.33 hours.
time per square root: 0.81 hours.
Prototype def-par.txt line would be: snfs,207,5,0,0,0,0,0,0,0,0,19300000,19300000,29,29,56,56,2.6,2.6,100000
total time: 108.41 hours.
Intel64 Family 6 Model 60 Stepping 3, GenuineIntel
processors: 8, speed: 2.19GHz
Windows-post2008Server-6.2.9200
Running Python 3.2

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61418118Makoto KamadaJanuary 4, 2013 12:00:00 UTC 2013 年 1 月 4 日 (金) 21 時 0 分 0 秒 (日本時間)
1300Warut RoonguthaiJanuary 6, 2013 00:54:59 UTC 2013 年 1 月 6 日 (日) 9 時 54 分 59 秒 (日本時間)
403e63500Warut RoonguthaiJanuary 6, 2013 00:54:59 UTC 2013 年 1 月 6 日 (日) 9 時 54 分 59 秒 (日本時間)
4511e636421234KTakahashiJuly 5, 2014 11:14:23 UTC 2014 年 7 月 5 日 (土) 20 時 14 分 23 秒 (日本時間)
2408ebinaAugust 12, 2022 06:24:33 UTC 2022 年 8 月 12 日 (金) 15 時 24 分 33 秒 (日本時間)

28×10206-19

c141

name 名前Warut Roonguthai
date 日付January 5, 2013 21:51:14 UTC 2013 年 1 月 6 日 (日) 6 時 51 分 14 秒 (日本時間)
composite number 合成数
706673884601639426702680745115906677635583127067884259135175598171920361632148054757200100137540555288534888965299888333200913688792172840701<141>
prime factors 素因数
2233307340414219729577544728861855871263245211<46>
316424825107398796806476322146502768315695070231055605731533095545077686080635673706035961611591<96>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2775275096
Step 1 took 16318ms
Step 2 took 9594ms
********** Factor found in step 2: 2233307340414219729577544728861855871263245211
Found probable prime factor of 46 digits: 2233307340414219729577544728861855871263245211
Probable prime cofactor 316424825107398796806476322146502768315695070231055605731533095545077686080635673706035961611591 has 96 digits
software ソフトウェア
GMP-ECM 6.3

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6418118Makoto KamadaJanuary 4, 2013 12:00:00 UTC 2013 年 1 月 4 日 (金) 21 時 0 分 0 秒 (日本時間)
300Ignacio SantosJanuary 4, 2013 15:44:49 UTC 2013 年 1 月 5 日 (土) 0 時 44 分 49 秒 (日本時間)
403e6110 / 2126Ignacio SantosJanuary 4, 2013 15:44:49 UTC 2013 年 1 月 5 日 (土) 0 時 44 分 49 秒 (日本時間)
4511e632 / 4437Ignacio SantosJanuary 4, 2013 15:44:49 UTC 2013 年 1 月 5 日 (土) 0 時 44 分 49 秒 (日本時間)

28×10208-19

c172

name 名前Jo Yeong Uk
date 日付April 23, 2024 09:53:40 UTC 2024 年 4 月 23 日 (火) 18 時 53 分 40 秒 (日本時間)
composite number 合成数
5877989214813694915846133062257514715334128072129503160235493365070506233679438856974578033531063932567727140135777374658391230016864476561878087633739099404640501296650519<172>
prime factors 素因数
5981244472560739626634597595427608452591807594728739815421310299814613877<73>
982736827056520861493786881302059779190245694448041083066836333354497165071220469221410754198217947<99>
factorization results 素因数分解の結果
Number: 31111_208
N=5877989214813694915846133062257514715334128072129503160235493365070506233679438856974578033531063932567727140135777374658391230016864476561878087633739099404640501296650519
  ( 172 digits)
SNFS difficulty: 209 digits.
Divisors found:
 r1=5981244472560739626634597595427608452591807594728739815421310299814613877
 r2=982736827056520861493786881302059779190245694448041083066836333354497165071220469221410754198217947
Version: 
Total time: 419.47 hours.
Scaled time: 2918.29 units (timescale=6.957).
Factorization parameters were as follows:
n: 5877989214813694915846133062257514715334128072129503160235493365070506233679438856974578033531063932567727140135777374658391230016864476561878087633739099404640501296650519
m: 200000000000000000000000000000000000000000
deg: 5
c5: 875
c0: -1
skew: 0.26
# Murphy_E = 8.006e-12
type: snfs
lss: 1
rlim: 20000000
alim: 20000000
lpbr: 29
lpba: 29
mfbr: 57
mfba: 57
rlambda: 2.6
alambda: 2.6
Factor base limits: 20000000/20000000
Large primes per side: 3
Large prime bits: 29/29
Max factor residue bits: 57/57
Sieved rational special-q in [10000000, 23200001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 42771779
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 3937994 x 3938240
Total sieving time: 347.49 hours.
Total relation processing time: 15.05 hours.
Matrix solve time: 55.97 hours.
Time per square root: 0.97 hours.
Prototype def-par.txt line would be:
snfs,209,5,0,0,0,0,0,0,0,0,20000000,20000000,29,29,57,57,2.6,2.6,100000
total time: 419.47 hours.
 --------- CPU info (if available) ----------
software ソフトウェア
GGNFS / Msieve v1.39

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61418118Makoto KamadaJanuary 4, 2013 12:00:00 UTC 2013 年 1 月 4 日 (金) 21 時 0 分 0 秒 (日本時間)
1300Warut RoonguthaiJanuary 6, 2013 04:22:17 UTC 2013 年 1 月 6 日 (日) 13 時 22 分 17 秒 (日本時間)
403e64200Warut RoonguthaiJanuary 6, 2013 04:22:17 UTC 2013 年 1 月 6 日 (日) 13 時 22 分 17 秒 (日本時間)
4511e634961080KTakahashiJuly 24, 2014 11:32:41 UTC 2014 年 7 月 24 日 (木) 20 時 32 分 41 秒 (日本時間)
2416ebinaAugust 12, 2022 12:08:12 UTC 2022 年 8 月 12 日 (金) 21 時 8 分 12 秒 (日本時間)

28×10209-19

c205

name 名前Warut Roonguthai
date 日付January 4, 2013 18:40:44 UTC 2013 年 1 月 5 日 (土) 3 時 40 分 44 秒 (日本時間)
composite number 合成数
4212914689982140250939254284007625375588867673854200050254053801929815850489676102090959837381492966689386313744784637305660502269707789227878060193523245509108171098502459288950277074371485789688289451313<205>
prime factors 素因数
39624731941895735396453387224531<32>
2376927267350671487969812469603518472531<40>
44730158272530920584279713790372872758382852215252146225715298287952697370549994217001706831020733178086759594437893213510990436042633<134>
factorization results 素因数分解の結果
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1866622188
Step 1 took 12293ms
Step 2 took 7301ms
********** Factor found in step 2: 39624731941895735396453387224531
Found probable prime factor of 32 digits: 39624731941895735396453387224531
Composite cofactor 106320332870889953395939657698100943182717132454454709223843350130799648258906480248549460399877880445079863695305346210129617347656947695207863658683007498532276516555414123 has 174 digits

Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=654300476
Step 1 took 7863ms
Step 2 took 5725ms
********** Factor found in step 2: 2376927267350671487969812469603518472531
Found probable prime factor of 40 digits: 2376927267350671487969812469603518472531
Probable prime cofactor 44730158272530920584279713790372872758382852215252146225715298287952697370549994217001706831020733178086759594437893213510990436042633 has 134 digits
software ソフトウェア
GMP-ECM 6.3

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaJanuary 4, 2013 12:00:00 UTC 2013 年 1 月 4 日 (金) 21 時 0 分 0 秒 (日本時間)

28×10210-19

c205

name 名前Bob Backstrom
date 日付July 2, 2020 10:24:24 UTC 2020 年 7 月 2 日 (木) 19 時 24 分 24 秒 (日本時間)
composite number 合成数
5368547940078568699103049852911373134597357945824832333537146421201316137874281261677790106264654458205183217995832856395369013853346225517743722010452179371622967645103702131486092680694298966381961065373<205>
prime factors 素因数
1643923233447221340548565238108382472677<40>
3265692600998772596740135002755506260641962730717557498009149980938361703488578175983260447537771690917506554036280404072870432831417310623117980451291104232176674649<166>
factorization results 素因数分解の結果
#
# N = 28x10^210-1 = 31(210)
#
n: 5368547940078568699103049852911373134597357945824832333537146421201316137874281261677790106264654458205183217995832856395369013853346225517743722010452179371622967645103702131486092680694298966381961065373
m: 1000000000000000000000000000000000000000000
deg: 5
c5: 28
c0: -1
skew: 0.51
# Murphy_E = 6.54e-12
# type: snfs
# lss: 1
# rlim: 23000000
# alim: 23000000
# lpbr: 29
# lpba: 29
# mfbr: 57
# mfba: 57
# rlambda: 2.6
# alambda: 2.6



GMP-ECM 6.2.3 [powered by GMP 6.1.2] [ECM]
Input number is 5368547940078568699103049852911373134597357945824832333537146421201316137874281261677790106264654458205183217995832856395369013853346225517743722010452179371622967645103702131486092680694298966381961065373 (205 digits)
Using B1=11840000, B2=35134365640, polynomial Dickson(12), sigma=1174119072
Step 1 took 63685ms
Step 2 took 19889ms
********** Factor found in step 2: 1643923233447221340548565238108382472677
Found probable prime factor of 40 digits: 1643923233447221340548565238108382472677
Probable prime cofactor 3265692600998772596740135002755506260641962730717557498009149980938361703488578175983260447537771690917506554036280404072870432831417310623117980451291104232176674649 has 166 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61418118Makoto KamadaJanuary 4, 2013 12:00:00 UTC 2013 年 1 月 4 日 (金) 21 時 0 分 0 秒 (日本時間)
1300Warut RoonguthaiJanuary 7, 2013 10:16:47 UTC 2013 年 1 月 7 日 (月) 19 時 16 分 47 秒 (日本時間)
403e62000Warut RoonguthaiJanuary 7, 2013 10:16:47 UTC 2013 年 1 月 7 日 (月) 19 時 16 分 47 秒 (日本時間)

28×10211-19

c86

name 名前Ignacio Santos
date 日付January 4, 2013 14:26:53 UTC 2013 年 1 月 4 日 (金) 23 時 26 分 53 秒 (日本時間)
composite number 合成数
41385699463592544137998544576184330302974452885832791822972897737767836106954980078479<86>
prime factors 素因数
7497821736227014333372387930329571<34>
5519696375766100761939483051252243654377800414664549<52>
factorization results 素因数分解の結果
prp52 = 5519696375766100761939483051252243654377800414664549
prp34 = 7497821736227014333372387930329571
software ソフトウェア
Yafu 1.33

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaJanuary 4, 2013 12:00:00 UTC 2013 年 1 月 4 日 (金) 21 時 0 分 0 秒 (日本時間)

28×10215-19

c200

name 名前Bob Backstrom
date 日付October 29, 2020 23:55:59 UTC 2020 年 10 月 30 日 (金) 8 時 55 分 59 秒 (日本時間)
composite number 合成数
26560136878379484645203617180818249507058941694410181548767603456735692737130653089565753505413243928686403609584818827435883810900065051522354672447361189994640102783876618464268965843625936758880091<200>
prime factors 素因数
31476631436671145014339292861538845485544511163100742600236161713080506605525681974374009<89>
843804932933077190267567900832779081764055174507515265566217522422912792362269279193158518979526732011982294899<111>
factorization results 素因数分解の結果
Number: n
N=26560136878379484645203617180818249507058941694410181548767603456735692737130653089565753505413243928686403609584818827435883810900065051522354672447361189994640102783876618464268965843625936758880091  ( 200 digits)
SNFS difficulty: 217 digits.
Divisors found:

Fri Oct 30 10:46:14 2020  p89 factor: 31476631436671145014339292861538845485544511163100742600236161713080506605525681974374009
Fri Oct 30 10:46:14 2020  p111 factor: 843804932933077190267567900832779081764055174507515265566217522422912792362269279193158518979526732011982294899
Fri Oct 30 10:46:14 2020  elapsed time 06:18:26 (Msieve 1.54 - dependency 3)

Version: 
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.349).
Factorization parameters were as follows:
#
# N = 28x10^215-1 = 31(215)
#
n: 26560136878379484645203617180818249507058941694410181548767603456735692737130653089565753505413243928686403609584818827435883810900065051522354672447361189994640102783876618464268965843625936758880091
m: 1000000000000000000000000000000000000
deg: 6
c6: 14
c0: -5
skew: 0.84
# Murphy_E = 3.563e-12
type: snfs
lss: 1
rlim: 29000000
alim: 29000000
lpbr: 29
lpba: 29
mfbr: 58
mfba: 58
rlambda: 2.6
alambda: 2.6
Factor base limits: 29000000/29000000
Large primes per side: 3
Large prime bits: 29/29
Max factor residue bits: 58/58
Sieved  special-q in [100000, 48900000)
Primes: , , 
Relations: 
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 

Msieve: found 8596440 hash collisions in 54513887 relations (48085619 unique)
Msieve: matrix is 3872727 x 3872952 (1359.4 MB)

Sieving start time: 2020/10/29 10:54:56
Sieving end time  : 2020/10/30 04:26:57

Total sieving time: 17hrs 32min 1sec.

Total relation processing time: 5hrs 42min 19sec.
Matrix solve time: 0.00 hours.
Total square root time: 0hrs 19min 43sec.

Prototype def-par.txt line would be:
snfs,217,6,0,0,0,0,0,0,0,0,29000000,29000000,29,29,58,58,2.6,2.6,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------
[    0.118294] smpboot: CPU0: AMD Ryzen 7 2700 Eight-Core Processor (family: 0x17, model: 0x8, stepping: 0x2)
[    0.000000] Memory: 16242460K/16727236K available (14339K kernel code, 2398K rwdata, 4956K rodata, 2716K init, 4988K bss, 484776K reserved, 0K cma-reserved)
[    0.153523] x86/mm: Memory block size: 128MB
[    0.000005] Calibrating delay loop (skipped), value calculated using timer frequency.. 6399.28 BogoMIPS (lpj=12798568)
[    0.152036] smpboot: Total of 16 processors activated (102388.54 BogoMIPS)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61418118Makoto KamadaJanuary 4, 2013 12:00:00 UTC 2013 年 1 月 4 日 (金) 21 時 0 分 0 秒 (日本時間)
1300Warut RoonguthaiJanuary 7, 2013 10:17:55 UTC 2013 年 1 月 7 日 (月) 19 時 17 分 55 秒 (日本時間)
403e62000Warut RoonguthaiJanuary 7, 2013 10:17:55 UTC 2013 年 1 月 7 日 (月) 19 時 17 分 55 秒 (日本時間)

28×10216-19

c175

composite cofactor 合成数の残り
9834867377294291784229477564719769367807390751002050288504692047434391376247838874789169138168774717182931882205356839768170605634692710867726663565447888052745932504493765781<175>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61418118Makoto KamadaJanuary 4, 2013 12:00:00 UTC 2013 年 1 月 4 日 (金) 21 時 0 分 0 秒 (日本時間)
1300Warut RoonguthaiJanuary 7, 2013 15:09:04 UTC 2013 年 1 月 8 日 (火) 0 時 9 分 4 秒 (日本時間)
403e62300Warut RoonguthaiJanuary 7, 2013 15:09:04 UTC 2013 年 1 月 8 日 (火) 0 時 9 分 4 秒 (日本時間)
4511e61500 / 3907Dmitry DomanovJanuary 8, 2013 14:05:14 UTC 2013 年 1 月 8 日 (火) 23 時 5 分 14 秒 (日本時間)

28×10217-19

c187

composite cofactor 合成数の残り
1656073133027918825912645778021480834766522163764948180275410933037826159827875931402597969703059428722189411746417337093842658170999899546989620565351830324104599473475488662984510622851<187>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61418118Makoto KamadaJanuary 4, 2013 12:00:00 UTC 2013 年 1 月 4 日 (金) 21 時 0 分 0 秒 (日本時間)
1300Warut RoonguthaiJanuary 7, 2013 10:26:35 UTC 2013 年 1 月 7 日 (月) 19 時 26 分 35 秒 (日本時間)
403e62300Warut RoonguthaiJanuary 7, 2013 10:26:35 UTC 2013 年 1 月 7 日 (月) 19 時 26 分 35 秒 (日本時間)

28×10218-19

c198

name 名前Warut Roonguthai
date 日付January 4, 2013 21:44:29 UTC 2013 年 1 月 5 日 (土) 6 時 44 分 29 秒 (日本時間)
composite number 合成数
312225341827061535537959574004689705833860929343604412740536281834203190864150655420479347062891529659972287730952886900153789761363801361364588729083890288785291995573228936367067751087703697052133<198>
prime factors 素因数
3701636701609387926125351832973409057<37>
84347916069481647894268302158954223260128558351316579210166165451913071110579662567179259912732372736185579210040495555492942340569022787224203226037990021849669<161>
factorization results 素因数分解の結果
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1598690375
Step 1 took 12168ms
Step 2 took 7098ms
********** Factor found in step 2: 3701636701609387926125351832973409057
Found probable prime factor of 37 digits: 3701636701609387926125351832973409057
Probable prime cofactor 84347916069481647894268302158954223260128558351316579210166165451913071110579662567179259912732372736185579210040495555492942340569022787224203226037990021849669 has 161 digits
software ソフトウェア
GMP-ECM 6.3

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaJanuary 4, 2013 12:00:00 UTC 2013 年 1 月 4 日 (金) 21 時 0 分 0 秒 (日本時間)

28×10219-19

c174

name 名前Warut Roonguthai
date 日付January 4, 2013 21:08:18 UTC 2013 年 1 月 5 日 (土) 6 時 8 分 18 秒 (日本時間)
composite number 合成数
514273714919574896732370339242647741962546799096911386238881869408875271052498384595193696768983684056777543024193180328318738438910880709104163201518758264058125403193644997<174>
prime factors 素因数
25513616252162509996404023<26>
composite cofactor 合成数の残り
20156833505559430164304776889354448211373999559140627078610885383909005060825246905219931117196595747457822055835829557893790741818041500021443264739<149>
factorization results 素因数分解の結果
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2678719152
Step 1 took 11122ms
Step 2 took 6272ms
********** Factor found in step 2: 25513616252162509996404023
Found probable prime factor of 26 digits: 25513616252162509996404023
Composite cofactor 20156833505559430164304776889354448211373999559140627078610885383909005060825246905219931117196595747457822055835829557893790741818041500021443264739 has 149 digits
software ソフトウェア
GMP-ECM 6.3

c149

name 名前Warut Roonguthai
date 日付January 5, 2013 17:32:45 UTC 2013 年 1 月 6 日 (日) 2 時 32 分 45 秒 (日本時間)
composite number 合成数
20156833505559430164304776889354448211373999559140627078610885383909005060825246905219931117196595747457822055835829557893790741818041500021443264739<149>
prime factors 素因数
63846372655084681913264383563293<32>
315708358475618952552935814264357622283722072764730079230901413220507657578513798457880557377348249573508038364513023<117>
factorization results 素因数分解の結果
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2760527677
Step 1 took 6630ms
Step 2 took 5211ms
********** Factor found in step 2: 63846372655084681913264383563293
Found probable prime factor of 32 digits: 63846372655084681913264383563293
Probable prime cofactor 315708358475618952552935814264357622283722072764730079230901413220507657578513798457880557377348249573508038364513023 has 117 digits
software ソフトウェア
GMP-ECM 6.3

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaJanuary 4, 2013 12:00:00 UTC 2013 年 1 月 4 日 (金) 21 時 0 分 0 秒 (日本時間)

28×10220-19

c172

name 名前Warut Roonguthai
date 日付January 6, 2013 21:50:11 UTC 2013 年 1 月 7 日 (月) 6 時 50 分 11 秒 (日本時間)
composite number 合成数
6861365196714412057128868495618636115739248334704509494374276095567398588586999543599556151808389910775058702275629574024638046996957790586325165376788111922942098578378217<172>
prime factors 素因数
32044307384035905885521059094895033319<38>
composite cofactor 合成数の残り
214121188967643684185618009856622781702027222455641388710015019787555962479818301116066388906890347600776673280414311410702959480794543<135>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3467035402
Step 1 took 23494ms
Step 2 took 13744ms
********** Factor found in step 2: 32044307384035905885521059094895033319
Found probable prime factor of 38 digits: 32044307384035905885521059094895033319
Composite cofactor 214121188967643684185618009856622781702027222455641388710015019787555962479818301116066388906890347600776673280414311410702959480794543 has 135 digits
software ソフトウェア
GMP-ECM 6.3

c135

name 名前Dmitry Domanov
date 日付February 7, 2013 14:50:37 UTC 2013 年 2 月 7 日 (木) 23 時 50 分 37 秒 (日本時間)
composite number 合成数
214121188967643684185618009856622781702027222455641388710015019787555962479818301116066388906890347600776673280414311410702959480794543<135>
prime factors 素因数
6074612084991743987696516208865512406747666657<46>
35248537021263094619636993967511409024084458362471130555161085525196612609107637245331599<89>
factorization results 素因数分解の結果
Thu Feb  7 16:43:42 2013  commencing relation filtering
Thu Feb  7 16:43:42 2013  estimated available RAM is 48289.8 MB
Thu Feb  7 16:43:42 2013  commencing duplicate removal, pass 1
Thu Feb  7 16:46:17 2013  found 1519161 hash collisions in 12517551 relations
Thu Feb  7 16:46:37 2013  added 51 free relations
Thu Feb  7 16:46:37 2013  commencing duplicate removal, pass 2
Thu Feb  7 16:46:42 2013  found 1196341 duplicates and 11321261 unique relations
Thu Feb  7 16:46:42 2013  memory use: 49.3 MB
Thu Feb  7 16:46:42 2013  reading ideals above 720000
Thu Feb  7 16:46:42 2013  commencing singleton removal, initial pass
Thu Feb  7 16:49:23 2013  memory use: 344.5 MB
Thu Feb  7 16:49:23 2013  reading all ideals from disk
Thu Feb  7 16:49:24 2013  memory use: 349.7 MB
Thu Feb  7 16:49:25 2013  commencing in-memory singleton removal
Thu Feb  7 16:49:26 2013  begin with 11321261 relations and 11887435 unique ideals
Thu Feb  7 16:49:37 2013  reduce to 5379757 relations and 5090280 ideals in 17 passes
Thu Feb  7 16:49:37 2013  max relations containing the same ideal: 98
Thu Feb  7 16:49:39 2013  removing 682255 relations and 604871 ideals in 77384 cliques
Thu Feb  7 16:49:39 2013  commencing in-memory singleton removal
Thu Feb  7 16:49:40 2013  begin with 4697502 relations and 5090280 unique ideals
Thu Feb  7 16:49:43 2013  reduce to 4634296 relations and 4420989 ideals in 9 passes
Thu Feb  7 16:49:43 2013  max relations containing the same ideal: 88
Thu Feb  7 16:49:45 2013  removing 506560 relations and 429176 ideals in 77384 cliques
Thu Feb  7 16:49:45 2013  commencing in-memory singleton removal
Thu Feb  7 16:49:45 2013  begin with 4127736 relations and 4420989 unique ideals
Thu Feb  7 16:49:48 2013  reduce to 4084815 relations and 3948137 ideals in 8 passes
Thu Feb  7 16:49:48 2013  max relations containing the same ideal: 78
Thu Feb  7 16:49:51 2013  relations with 0 large ideals: 483
Thu Feb  7 16:49:51 2013  relations with 1 large ideals: 1305
Thu Feb  7 16:49:51 2013  relations with 2 large ideals: 20128
Thu Feb  7 16:49:51 2013  relations with 3 large ideals: 133695
Thu Feb  7 16:49:51 2013  relations with 4 large ideals: 472500
Thu Feb  7 16:49:51 2013  relations with 5 large ideals: 959371
Thu Feb  7 16:49:51 2013  relations with 6 large ideals: 1172787
Thu Feb  7 16:49:51 2013  relations with 7+ large ideals: 1324546
Thu Feb  7 16:49:51 2013  commencing 2-way merge
Thu Feb  7 16:49:53 2013  reduce to 2464670 relation sets and 2327992 unique ideals
Thu Feb  7 16:49:53 2013  commencing full merge
Thu Feb  7 16:50:28 2013  memory use: 265.0 MB
Thu Feb  7 16:50:28 2013  found 1247227 cycles, need 1228192
Thu Feb  7 16:50:29 2013  weight of 1228192 cycles is about 86179902 (70.17/cycle)
Thu Feb  7 16:50:29 2013  distribution of cycle lengths:
Thu Feb  7 16:50:29 2013  1 relations: 155154
Thu Feb  7 16:50:29 2013  2 relations: 152531
Thu Feb  7 16:50:29 2013  3 relations: 152263
Thu Feb  7 16:50:29 2013  4 relations: 134661
Thu Feb  7 16:50:29 2013  5 relations: 118710
Thu Feb  7 16:50:29 2013  6 relations: 100308
Thu Feb  7 16:50:29 2013  7 relations: 85838
Thu Feb  7 16:50:29 2013  8 relations: 71079
Thu Feb  7 16:50:29 2013  9 relations: 58675
Thu Feb  7 16:50:29 2013  10+ relations: 198973
Thu Feb  7 16:50:29 2013  heaviest cycle: 20 relations
Thu Feb  7 16:50:29 2013  commencing cycle optimization
Thu Feb  7 16:50:31 2013  start with 6813627 relations
Thu Feb  7 16:50:39 2013  pruned 146809 relations
Thu Feb  7 16:50:39 2013  memory use: 232.9 MB
Thu Feb  7 16:50:39 2013  distribution of cycle lengths:
Thu Feb  7 16:50:39 2013  1 relations: 155154
Thu Feb  7 16:50:39 2013  2 relations: 156081
Thu Feb  7 16:50:39 2013  3 relations: 157360
Thu Feb  7 16:50:39 2013  4 relations: 137448
Thu Feb  7 16:50:39 2013  5 relations: 120726
Thu Feb  7 16:50:39 2013  6 relations: 101095
Thu Feb  7 16:50:39 2013  7 relations: 85972
Thu Feb  7 16:50:39 2013  8 relations: 70393
Thu Feb  7 16:50:39 2013  9 relations: 57850
Thu Feb  7 16:50:39 2013  10+ relations: 186113
Thu Feb  7 16:50:39 2013  heaviest cycle: 20 relations
Thu Feb  7 16:50:41 2013  RelProcTime: 419
Thu Feb  7 16:50:41 2013  
Thu Feb  7 16:50:41 2013  commencing linear algebra
Thu Feb  7 16:50:41 2013  read 1228192 cycles
Thu Feb  7 16:50:43 2013  cycles contain 3947182 unique relations
Thu Feb  7 16:51:33 2013  read 3947182 relations
Thu Feb  7 16:51:38 2013  using 20 quadratic characters above 134217368
Thu Feb  7 16:51:58 2013  building initial matrix
Thu Feb  7 16:52:49 2013  memory use: 522.9 MB
Thu Feb  7 16:52:50 2013  read 1228192 cycles
Thu Feb  7 16:52:50 2013  matrix is 1228010 x 1228192 (374.0 MB) with weight 119540612 (97.33/col)
Thu Feb  7 16:52:50 2013  sparse part has weight 83294623 (67.82/col)
Thu Feb  7 16:53:04 2013  filtering completed in 2 passes
Thu Feb  7 16:53:04 2013  matrix is 1225043 x 1225221 (373.7 MB) with weight 119410003 (97.46/col)
Thu Feb  7 16:53:04 2013  sparse part has weight 83255504 (67.95/col)
Thu Feb  7 16:53:07 2013  matrix starts at (0, 0)
Thu Feb  7 16:53:09 2013  matrix is 1225043 x 1225221 (373.7 MB) with weight 119410003 (97.46/col)
Thu Feb  7 16:53:09 2013  sparse part has weight 83255504 (67.95/col)
Thu Feb  7 16:53:09 2013  saving the first 48 matrix rows for later
Thu Feb  7 16:53:10 2013  matrix includes 64 packed rows
Thu Feb  7 16:53:10 2013  matrix is 1224995 x 1225221 (361.2 MB) with weight 95220721 (77.72/col)
Thu Feb  7 16:53:10 2013  sparse part has weight 82426855 (67.28/col)
Thu Feb  7 16:53:10 2013  using block size 262144 for processor cache size 12288 kB
Thu Feb  7 16:53:13 2013  commencing Lanczos iteration (16 threads)
Thu Feb  7 16:53:13 2013  memory use: 528.1 MB
Thu Feb  7 16:53:20 2013  linear algebra at 0.1%, ETA 1h34m
Thu Feb  7 16:53:22 2013  checkpointing every 810000 dimensions
Thu Feb  7 18:24:55 2013  lanczos halted after 19373 iterations (dim = 1224992)
Thu Feb  7 18:24:57 2013  recovered 28 nontrivial dependencies
Thu Feb  7 18:24:57 2013  BLanczosTime: 5656
Thu Feb  7 18:24:57 2013  
Thu Feb  7 18:24:57 2013  commencing square root phase
Thu Feb  7 18:24:57 2013  reading relations for dependency 1
Thu Feb  7 18:24:58 2013  read 611690 cycles
Thu Feb  7 18:24:59 2013  cycles contain 1969818 unique relations
Thu Feb  7 18:25:25 2013  read 1969818 relations
Thu Feb  7 18:25:35 2013  multiplying 1969818 relations
Thu Feb  7 18:28:09 2013  multiply complete, coefficients have about 90.36 million bits
Thu Feb  7 18:28:10 2013  initial square root is modulo 3059843
Thu Feb  7 18:31:32 2013  GCD is 1, no factor found
Thu Feb  7 18:31:32 2013  reading relations for dependency 2
Thu Feb  7 18:31:33 2013  read 613308 cycles
Thu Feb  7 18:31:33 2013  cycles contain 1975076 unique relations
Thu Feb  7 18:31:59 2013  read 1975076 relations
Thu Feb  7 18:32:10 2013  multiplying 1975076 relations
Thu Feb  7 18:34:44 2013  multiply complete, coefficients have about 90.59 million bits
Thu Feb  7 18:34:45 2013  initial square root is modulo 3182503
Thu Feb  7 18:38:05 2013  GCD is N, no factor found
Thu Feb  7 18:38:05 2013  reading relations for dependency 3
Thu Feb  7 18:38:06 2013  read 612627 cycles
Thu Feb  7 18:38:06 2013  cycles contain 1973664 unique relations
Thu Feb  7 18:38:32 2013  read 1973664 relations
Thu Feb  7 18:38:43 2013  multiplying 1973664 relations
Thu Feb  7 18:41:17 2013  multiply complete, coefficients have about 90.53 million bits
Thu Feb  7 18:41:17 2013  initial square root is modulo 3147971
Thu Feb  7 18:44:37 2013  sqrtTime: 1180


prp89 = 35248537021263094619636993967511409024084458362471130555161085525196612609107637245331599
prp46 = 6074612084991743987696516208865512406747666657
NFS elapsed time = 7258.2896 seconds.

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61418118Makoto KamadaJanuary 4, 2013 12:00:00 UTC 2013 年 1 月 4 日 (金) 21 時 0 分 0 秒 (日本時間)
1300Warut RoonguthaiJanuary 7, 2013 15:04:35 UTC 2013 年 1 月 8 日 (火) 0 時 4 分 35 秒 (日本時間)
403e64200Warut RoonguthaiJanuary 7, 2013 15:04:35 UTC 2013 年 1 月 8 日 (火) 0 時 4 分 35 秒 (日本時間)

28×10221-19

c191

name 名前Erik Branger
date 日付March 2, 2020 16:49:28 UTC 2020 年 3 月 3 日 (火) 1 時 49 分 28 秒 (日本時間)
composite number 合成数
73710257761336629111741847670181859922188774406081035819928876438895758450598126413815877789675641508279963177144559221002141366396975071513749724023935478381120011470213515432076836134596421<191>
prime factors 素因数
2268051266070704790443342215241077257172414561561036249<55>
12958148327336218933057517624266817427819517426394093478119<59>
2508026471962204179857532405335574678374820481022093606315647689682198827634091<79>
factorization results 素因数分解の結果
Number: 31111_221
N = 73710257761336629111741847670181859922188774406081035819928876438895758450598126413815877789675641508279963177144559221002141366396975071513749724023935478381120011470213515432076836134596421 (191 digits)
SNFS difficulty: 223 digits.
Divisors found:
r1=2268051266070704790443342215241077257172414561561036249 (pp55)
r2=12958148327336218933057517624266817427819517426394093478119 (pp59)
r3=2508026471962204179857532405335574678374820481022093606315647689682198827634091 (pp79)
Version: Msieve v. 1.52 (SVN unknown)
Total time: 87.42 hours.
Factorization parameters were as follows:
n: 73710257761336629111741847670181859922188774406081035819928876438895758450598126413815877789675641508279963177144559221002141366396975071513749724023935478381120011470213515432076836134596421
m: 10000000000000000000000000000000000000000000000000000000
deg: 4
c4: 280
c0: -1
skew: 1.00
type: snfs
lss: 1
rlim: 536870912
alim: 44739242
lpbr: 29
lpba: 28
mfbr: 58
mfba: 56
rlambda: 2.8
alambda: 2.8
side: 1
Factor base limits: 536870912/44739242
Large primes per side: 3
Large prime bits: 29/28
Relations: 8186368 relations
Pruned matrix : 7096522 x 7096747
Total pre-computation time approximately 1000 CPU-days.
Pre-computation saved approximately 18 G relations.
Total batch smoothness checking time: 43.41 hours.
Total relation processing time: 0.42 hours.
Matrix solve time: 43.08 hours.
time per square root: 0.51 hours.
Prototype def-par.txt line would be: snfs,223,4,0,0,0,0,0,0,0,0,536870912,44739242,29,28,58,56,2.8,2.8,100000
total time: 87.42 hours.
Intel64 Family 6 Model 60 Stepping 3, GenuineIntel
Windows-10-10.0.17763-SP0
processors: 8, speed: 3.50GHz
software ソフトウェア
GGNFS, NFS_factory, Msieve

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61418118Makoto KamadaJanuary 4, 2013 12:00:00 UTC 2013 年 1 月 4 日 (金) 21 時 0 分 0 秒 (日本時間)
1300Warut RoonguthaiJanuary 7, 2013 10:22:09 UTC 2013 年 1 月 7 日 (月) 19 時 22 分 9 秒 (日本時間)
403e62300Warut RoonguthaiJanuary 7, 2013 10:22:09 UTC 2013 年 1 月 7 日 (月) 19 時 22 分 9 秒 (日本時間)

28×10222-19

c202

name 名前Erik Branger
date 日付July 3, 2019 16:24:34 UTC 2019 年 7 月 4 日 (木) 1 時 24 分 34 秒 (日本時間)
composite number 合成数
1010860968197685817818980601184837465656542469501041829307733697441749728220782880337723896976868010969751998678046591484658277723870516156094371091133873197351580646771919831078405716752191196848160867<202>
prime factors 素因数
188925232255636934591541231367809926907820924176016871418529938406433048901908496393265087<90>
5350587405021040574057850151195514371207236270817351941132349644412033114433716343712588881965885142768137422941<112>
factorization results 素因数分解の結果
Number: 31111_222
N = 1010860968197685817818980601184837465656542469501041829307733697441749728220782880337723896976868010969751998678046591484658277723870516156094371091133873197351580646771919831078405716752191196848160867 (202 digits)
SNFS difficulty: 224 digits.
Divisors found:
r1=188925232255636934591541231367809926907820924176016871418529938406433048901908496393265087 (pp90)
r2=5350587405021040574057850151195514371207236270817351941132349644412033114433716343712588881965885142768137422941 (pp112)
Version: Msieve v. 1.52 (SVN unknown)
Total time: 70.08 hours.
Factorization parameters were as follows:
n: 1010860968197685817818980601184837465656542469501041829307733697441749728220782880337723896976868010969751998678046591484658277723870516156094371091133873197351580646771919831078405716752191196848160867
m: 10000000000000000000000000000000000000000000000000000000
deg: 4
c4: 2800
c0: -1
skew: 1.00
type: snfs
lss: 1
rlim: 536870912
alim: 22369622
lpbr: 29
lpba: 28
mfbr: 58
mfba: 56
rlambda: 2.8
alambda: 2.8
side: 1
Number of cores used: 6
Number of threads per core: 1
Factor base limits: 536870912/22369622
Large primes per side: 3
Large prime bits: 29/28
Total raw relations: 34134791
Relations: 9013572 relations
Total pre-computation time approximately 1000 CPU-days.
Pre-computation saved approximately 18 G rational relations.
Total batch smoothness checking time: 35.01 hours.
Total relation processing time: 0.28 hours.
Pruned matrix : 7787596 x 7787821
Matrix solve time: 34.49 hours.
time per square root: 0.30 hours.
Prototype def-par.txt line would be: snfs,224,4,0,0,0,0,0,0,0,0,536870912,22369622,29,28,58,56,2.8,2.8,100000
total time: 70.08 hours.
Intel64 Family 6 Model 158 Stepping 10, GenuineIntel
Windows-10-10.0.17763-SP0
processors: 12, speed: 3.19GHz
software ソフトウェア
GGNFS, NFS_factory, Msieve

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61418118Makoto KamadaJanuary 4, 2013 12:00:00 UTC 2013 年 1 月 4 日 (金) 21 時 0 分 0 秒 (日本時間)
1300Warut RoonguthaiJanuary 7, 2013 10:07:17 UTC 2013 年 1 月 7 日 (月) 19 時 7 分 17 秒 (日本時間)
403e62400Warut RoonguthaiJanuary 7, 2013 10:07:17 UTC 2013 年 1 月 7 日 (月) 19 時 7 分 17 秒 (日本時間)

28×10223-19

c224

name 名前matsui
date 日付May 9, 2013 01:43:15 UTC 2013 年 5 月 9 日 (木) 10 時 43 分 15 秒 (日本時間)
composite number 合成数
31111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111<224>
prime factors 素因数
277103779072150517821031319575967383053690384115168582319071040267829786000848323192717284755067<96>
112272417270103696666129659133164734324599692680892959476257867256368451563452061118606154152322817101943440878936918610043741733<129>
factorization results 素因数分解の結果
N=31111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111
  ( 224 digits)
SNFS difficulty: 224 digits.
Divisors found:
 r1=277103779072150517821031319575967383053690384115168582319071040267829786000848323192717284755067 (pp96)
 r2=112272417270103696666129659133164734324599692680892959476257867256368451563452061118606154152322817101943440878936918610043741733 (pp129)
Version: Msieve v. 1.52 (SVN Unversioned directory)
Total time:
Scaled time: 126.26 units (timescale=1.653).
Factorization parameters were as follows:
n: 31111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111
m: 10000000000000000000000000000000000000
deg: 6
c6: 280
c0: -1
skew: 0.39
# Murphy_E = 2.275e-12
type: snfs
lss: 1
rlim: 39000000
alim: 39000000
lpbr: 29
lpba: 29
mfbr: 59
mfba: 59
rlambda: 2.6
alambda: 2.6
Factor base limits: 39000000/39000000
Large primes per side: 3
Large prime bits: 29/29
Max factor residue bits: 59/59
Sieved rational special-q in [19500000, 59800001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 6658486 x 6658711
Total sieving time:
Total relation processing time:
Matrix solve time:
Time per square root:
Prototype def-par.txt line would be:
snfs,224.000,6,0,0,0,0,0,0,0,0,39000000,39000000,29,29,59,59,2.6,2.6,100000
total time:

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6418118Makoto KamadaJanuary 4, 2013 12:00:00 UTC 2013 年 1 月 4 日 (金) 21 時 0 分 0 秒 (日本時間)
300Ignacio SantosJanuary 4, 2013 18:19:52 UTC 2013 年 1 月 5 日 (土) 3 時 19 分 52 秒 (日本時間)
403e62190110Ignacio SantosJanuary 4, 2013 18:19:52 UTC 2013 年 1 月 5 日 (土) 3 時 19 分 52 秒 (日本時間)
2080Warut RoonguthaiJanuary 7, 2013 10:08:22 UTC 2013 年 1 月 7 日 (月) 19 時 8 分 22 秒 (日本時間)
4511e632 / 3977Ignacio SantosJanuary 4, 2013 18:19:52 UTC 2013 年 1 月 5 日 (土) 3 時 19 分 52 秒 (日本時間)

28×10224-19

c218

name 名前Warut Roonguthai
date 日付January 5, 2013 12:18:05 UTC 2013 年 1 月 5 日 (土) 21 時 18 分 5 秒 (日本時間)
composite number 合成数
67139853970338044129251604276837472133663555909382585979237048116711510094489033699962495198001783666134799130625213753512763154357905249024955476085946973950432036567817379021716217917070914528496108274332388267953143<218>
prime factors 素因数
50372987082231229176171564381777593293<38>
1332854330451672326348791491900002008052559135441858559196776502460297608315761751520877735995558898906561531380146468150147742318919211345326591171941638050050273921001783158346451<181>
factorization results 素因数分解の結果
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=501057529
Step 1 took 12417ms
Step 2 took 7145ms
********** Factor found in step 2: 50372987082231229176171564381777593293
Found probable prime factor of 38 digits: 50372987082231229176171564381777593293
Probable prime cofactor 1332854330451672326348791491900002008052559135441858559196776502460297608315761751520877735995558898906561531380146468150147742318919211345326591171941638050050273921001783158346451 has 181 digits
software ソフトウェア
GMP-ECM 6.3

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaJanuary 4, 2013 12:00:00 UTC 2013 年 1 月 4 日 (金) 21 時 0 分 0 秒 (日本時間)

28×10226-19

c189

composite cofactor 合成数の残り
170919663799015719723983214254676421074313864514007929049582985168333748425763055041869373165371963798861542367830750886532146615721111901444079972154790774187120619703860380352855333882731<189>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61418118Makoto KamadaJanuary 4, 2013 12:00:00 UTC 2013 年 1 月 4 日 (金) 21 時 0 分 0 秒 (日本時間)
1300Warut RoonguthaiJanuary 7, 2013 10:09:39 UTC 2013 年 1 月 7 日 (月) 19 時 9 分 39 秒 (日本時間)
403e62700Warut RoonguthaiJanuary 7, 2013 10:09:39 UTC 2013 年 1 月 7 日 (月) 19 時 9 分 39 秒 (日本時間)

28×10230-19

c197

name 名前Warut Roonguthai
date 日付January 5, 2013 05:00:50 UTC 2013 年 1 月 5 日 (土) 14 時 0 分 50 秒 (日本時間)
composite number 合成数
97724796165365156116793771895252092841304548445075838939972011701874091007754345424711845788575409752257257011299775320888916815564929490929617955739255590146106988123474986801619685666663391041021<197>
prime factors 素因数
67202546406808465825974162834714089<35>
1454182934881533020301415884039831917687558994490914182104161643629697775933075573976405306869598704871213791555105268494112194667988512398014164142437434400863989<163>
factorization results 素因数分解の結果
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2029712269
Step 1 took 12028ms
Step 2 took 6973ms
********** Factor found in step 2: 67202546406808465825974162834714089
Found probable prime factor of 35 digits: 67202546406808465825974162834714089
Probable prime cofactor 1454182934881533020301415884039831917687558994490914182104161643629697775933075573976405306869598704871213791555105268494112194667988512398014164142437434400863989 has 163 digits
software ソフトウェア
GMP-ECM 6.3

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaJanuary 4, 2013 12:00:00 UTC 2013 年 1 月 4 日 (金) 21 時 0 分 0 秒 (日本時間)

28×10231-19

c216

composite cofactor 合成数の残り
956916259611796258632060897300051622201507137248462782491370851984306509188688375494295018429372983493668893441917588722602276420885386568488990702403682246091600654644453739983747706998233990811156560314891857421273<216>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61418118Makoto KamadaJanuary 4, 2013 12:00:00 UTC 2013 年 1 月 4 日 (金) 21 時 0 分 0 秒 (日本時間)
1300Warut RoonguthaiJanuary 7, 2013 10:12:02 UTC 2013 年 1 月 7 日 (月) 19 時 12 分 2 秒 (日本時間)
403e62100Warut RoonguthaiJanuary 7, 2013 10:12:02 UTC 2013 年 1 月 7 日 (月) 19 時 12 分 2 秒 (日本時間)

28×10233-19

c221

composite cofactor 合成数の残り
62018230749017066065241161425025076339662544548154717890233559934648106988931597498985109826622469357274337733783654564060262949101588850624565923990417397251280002254376064173168189466708403671878596783913154683960967309<221>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61418118Makoto KamadaJanuary 4, 2013 12:00:00 UTC 2013 年 1 月 4 日 (金) 21 時 0 分 0 秒 (日本時間)
1300Warut RoonguthaiJanuary 7, 2013 15:10:01 UTC 2013 年 1 月 8 日 (火) 0 時 10 分 1 秒 (日本時間)
403e624001400Warut RoonguthaiJanuary 7, 2013 15:10:01 UTC 2013 年 1 月 8 日 (火) 0 時 10 分 1 秒 (日本時間)
1000Dmitry DomanovJanuary 8, 2013 13:46:09 UTC 2013 年 1 月 8 日 (火) 22 時 46 分 9 秒 (日本時間)

28×10234-19

c215

composite cofactor 合成数の残り
21883933224801798964571302597382456542953720225499218542851785556564931317084729750336614808773381269300968790637910961443252833159777768119898253261906873214172831966546869354808011971215304134499442095304057985697<215>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61418118Makoto KamadaJanuary 4, 2013 12:00:00 UTC 2013 年 1 月 4 日 (金) 21 時 0 分 0 秒 (日本時間)
1300Warut RoonguthaiJanuary 7, 2013 15:10:44 UTC 2013 年 1 月 8 日 (火) 0 時 10 分 44 秒 (日本時間)
403e61700700Warut RoonguthaiJanuary 7, 2013 15:10:44 UTC 2013 年 1 月 8 日 (火) 0 時 10 分 44 秒 (日本時間)
1000Dmitry DomanovJanuary 8, 2013 13:46:23 UTC 2013 年 1 月 8 日 (火) 22 時 46 分 23 秒 (日本時間)
4511e61000 / 4039Dmitry DomanovJanuary 9, 2013 19:48:45 UTC 2013 年 1 月 10 日 (木) 4 時 48 分 45 秒 (日本時間)

28×10235-19

c198

composite cofactor 合成数の残り
255891645297538064414339770129613443750506456520344856783405701060648080543471613908003600935509452181323530936978625125570540101174323689975609100074987717731380838608074942507994476091733049153991<198>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61418118Makoto KamadaJanuary 4, 2013 12:00:00 UTC 2013 年 1 月 4 日 (金) 21 時 0 分 0 秒 (日本時間)
1300Warut RoonguthaiJanuary 7, 2013 15:11:25 UTC 2013 年 1 月 8 日 (火) 0 時 11 分 25 秒 (日本時間)
403e61000Dmitry DomanovJanuary 8, 2013 13:46:35 UTC 2013 年 1 月 8 日 (火) 22 時 46 分 35 秒 (日本時間)
4511e61000 / 4194Dmitry DomanovJanuary 9, 2013 19:40:59 UTC 2013 年 1 月 10 日 (木) 4 時 40 分 59 秒 (日本時間)

28×10236-19

c222

name 名前Warut Roonguthai
date 日付January 5, 2013 05:11:35 UTC 2013 年 1 月 5 日 (土) 14 時 11 分 35 秒 (日本時間)
composite number 合成数
440589230435433667040538516420239498148363970109553635757498830831524344168497009529107889686452512349419348841979212332696803405009064517556398197199724943736233416603886841060040039521427051979326615099486905334682933557<222>
prime factors 素因数
4942484692588816930724637586231<31>
composite cofactor 合成数の残り
89143266563089357653005357658334087718484254645488939221765412229975115404685173714499307020072730024711418854580058655976400399309723907258372878158114529594008288616242488156080263049749747<191>
factorization results 素因数分解の結果
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=79160468
Step 1 took 11466ms
Step 2 took 6567ms
********** Factor found in step 2: 4942484692588816930724637586231
Found probable prime factor of 31 digits: 4942484692588816930724637586231
Composite cofactor 89143266563089357653005357658334087718484254645488939221765412229975115404685173714499307020072730024711418854580058655976400399309723907258372878158114529594008288616242488156080263049749747 has 191 digits
software ソフトウェア
GMP-ECM 6.3

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61418118Makoto KamadaJanuary 4, 2013 12:00:00 UTC 2013 年 1 月 4 日 (金) 21 時 0 分 0 秒 (日本時間)
1300Warut RoonguthaiJanuary 7, 2013 15:11:38 UTC 2013 年 1 月 8 日 (火) 0 時 11 分 38 秒 (日本時間)
403e61000Dmitry DomanovJanuary 8, 2013 13:46:46 UTC 2013 年 1 月 8 日 (火) 22 時 46 分 46 秒 (日本時間)
4511e61000 / 4194Dmitry DomanovJanuary 9, 2013 19:41:17 UTC 2013 年 1 月 10 日 (木) 4 時 41 分 17 秒 (日本時間)

28×10237-19

c188

composite cofactor 合成数の残り
22256076067857169213168780317955834828770913745138442494218817502431433712516553377946405036165091775443493383877323089901833176795230762001156806103355136056069030383319120444001427839941<188>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61418118Makoto KamadaJanuary 4, 2013 12:00:00 UTC 2013 年 1 月 4 日 (金) 21 時 0 分 0 秒 (日本時間)
1300Warut RoonguthaiJanuary 7, 2013 15:11:46 UTC 2013 年 1 月 8 日 (火) 0 時 11 分 46 秒 (日本時間)
403e61000Dmitry DomanovJanuary 8, 2013 13:46:58 UTC 2013 年 1 月 8 日 (火) 22 時 46 分 58 秒 (日本時間)
4511e61000 / 4194Dmitry DomanovJanuary 9, 2013 19:41:34 UTC 2013 年 1 月 10 日 (木) 4 時 41 分 34 秒 (日本時間)

28×10238-19

c236

name 名前Ignacio Santos
date 日付January 6, 2013 12:08:09 UTC 2013 年 1 月 6 日 (日) 21 時 8 分 9 秒 (日本時間)
composite number 合成数
20241451601243403455504951926552447046916793175739174437938263572616207619460709896624015036506903780813995517964288296103520566760644834815296754138653943468517313670208920696884262271380033253813344899877105472421022193305862791874503<236>
prime factors 素因数
8105776919364303511941205155846456139<37>
composite cofactor 合成数の残り
2497163665198775495980444731973814086249411894193222424269816809150125594493514330031572275299418313105936084007286799192995806970464362851557176949603657654946593625769087636956976160871078552716277<199>
factorization results 素因数分解の結果
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1155665703
Step 1 took 16988ms
Step 2 took 9891ms
********** Factor found in step 2: 8105776919364303511941205155846456139
Found probable prime factor of 37 digits: 8105776919364303511941205155846456139
Composite cofactor 2497163665198775495980444731973814086249411894193222424269816809150125594493514330031572275299418313105936084007286799192995806970464362851557176949603657654946593625769087636956976160871078552716277 has 199 digits
software ソフトウェア
GMP-ECM 6.4

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61418118Makoto KamadaJanuary 4, 2013 12:00:00 UTC 2013 年 1 月 4 日 (金) 21 時 0 分 0 秒 (日本時間)
1300Warut RoonguthaiJanuary 7, 2013 15:11:54 UTC 2013 年 1 月 8 日 (火) 0 時 11 分 54 秒 (日本時間)
403e61000Dmitry DomanovJanuary 8, 2013 13:47:13 UTC 2013 年 1 月 8 日 (火) 22 時 47 分 13 秒 (日本時間)
4511e61000 / 4194Dmitry DomanovJanuary 9, 2013 19:41:49 UTC 2013 年 1 月 10 日 (木) 4 時 41 分 49 秒 (日本時間)

28×10239-19

c217

name 名前Dmitry Domanov
date 日付February 11, 2013 09:31:29 UTC 2013 年 2 月 11 日 (月) 18 時 31 分 29 秒 (日本時間)
composite number 合成数
3204501085757443852893981276363674494575565895411165405795215304996752300028945671093113852815314498137058647073449944030233759170825184886314491978245538959298771718094147252143732219985164780576007727943420570320703<217>
prime factors 素因数
14303569955173795605457491219306680258156333333<47>
224035055290398483237682319614037585720728884770822231892131764133727477347693538042040345873527335981586319647745419174671691957355614892497127103465967258947143168037891<171>
factorization results 素因数分解の結果
Using B1=43000000, B2=240490660426, polynomial Dickson(12), sigma=3138683912
Step 1 took 492718ms
Step 2 took 143185ms
********** Factor found in step 2: 14303569955173795605457491219306680258156333333
Found probable prime factor of 47 digits: 14303569955173795605457491219306680258156333333

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61418118Makoto KamadaJanuary 4, 2013 12:00:00 UTC 2013 年 1 月 4 日 (金) 21 時 0 分 0 秒 (日本時間)
1300Warut RoonguthaiJanuary 7, 2013 15:12:00 UTC 2013 年 1 月 8 日 (火) 0 時 12 分 0 秒 (日本時間)
403e61000Dmitry DomanovJanuary 8, 2013 13:47:24 UTC 2013 年 1 月 8 日 (火) 22 時 47 分 24 秒 (日本時間)
4511e61200 / 2440Dmitry DomanovJanuary 8, 2013 13:51:29 UTC 2013 年 1 月 8 日 (火) 22 時 51 分 29 秒 (日本時間)
5043e6500 / 7238Dmitry DomanovFebruary 8, 2013 11:10:21 UTC 2013 年 2 月 8 日 (金) 20 時 10 分 21 秒 (日本時間)

28×10242-19

c234

name 名前Warut Roonguthai
date 日付January 5, 2013 00:56:44 UTC 2013 年 1 月 5 日 (土) 9 時 56 分 44 秒 (日本時間)
composite number 合成数
762640924558984221098997586866022213676994085594066664283904046585628894160148563301903977491995359668804526492220459402238562419591073281767960989711736147153895716937015615715455324142871208251496548739448751476770055627952377594543<234>
prime factors 素因数
16462995831485766635960942323669<32>
composite cofactor 合成数の残り
46324553098678440573909813932687166677039918251362218566692783680582722976866200053393026735648736344987640197431225104549788278703107694595906454386219961511656214280822270120093713615049940247467320947<203>
factorization results 素因数分解の結果
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=4105959296
Step 1 took 13182ms
********** Factor found in step 1: 16462995831485766635960942323669
Found probable prime factor of 32 digits: 16462995831485766635960942323669
Composite cofactor 46324553098678440573909813932687166677039918251362218566692783680582722976866200053393026735648736344987640197431225104549788278703107694595906454386219961511656214280822270120093713615049940247467320947 has 203 digits
software ソフトウェア
GMP-ECM 6.3

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61418118Makoto KamadaJanuary 4, 2013 12:00:00 UTC 2013 年 1 月 4 日 (金) 21 時 0 分 0 秒 (日本時間)
1300Warut RoonguthaiJanuary 7, 2013 15:12:21 UTC 2013 年 1 月 8 日 (火) 0 時 12 分 21 秒 (日本時間)
403e61000Dmitry DomanovJanuary 8, 2013 13:47:36 UTC 2013 年 1 月 8 日 (火) 22 時 47 分 36 秒 (日本時間)
4511e61000 / 4194Dmitry DomanovJanuary 9, 2013 19:49:34 UTC 2013 年 1 月 10 日 (木) 4 時 49 分 34 秒 (日本時間)

28×10243-19

c216

name 名前Warut Roonguthai
date 日付January 5, 2013 05:06:35 UTC 2013 年 1 月 5 日 (土) 14 時 6 分 35 秒 (日本時間)
composite number 合成数
231711584003087291884291947653618042306714043175823246724002710453629297000265353869708876975313333779659084069895173031664914893446363683303361759574274190193305768552340573666633362031264221362995870170088150308149<216>
prime factors 素因数
1014582197124291915960990117625253437<37>
composite cofactor 合成数の残り
228381283113231430608789891059631270025561765921740183986487459422155770681305564635030434726142933813991595755469887241236136061306803217924492735133012061435846114622203694975577<180>
factorization results 素因数分解の結果
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1231443411
Step 1 took 11576ms
Step 2 took 6333ms
********** Factor found in step 2: 1014582197124291915960990117625253437
Found probable prime factor of 37 digits: 1014582197124291915960990117625253437
Composite cofactor 228381283113231430608789891059631270025561765921740183986487459422155770681305564635030434726142933813991595755469887241236136061306803217924492735133012061435846114622203694975577 has 180 digits
software ソフトウェア
GMP-ECM 6.3

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61418118Makoto KamadaJanuary 4, 2013 12:00:00 UTC 2013 年 1 月 4 日 (金) 21 時 0 分 0 秒 (日本時間)
1300Warut RoonguthaiJanuary 7, 2013 15:12:32 UTC 2013 年 1 月 8 日 (火) 0 時 12 分 32 秒 (日本時間)
403e61000Dmitry DomanovJanuary 8, 2013 13:47:52 UTC 2013 年 1 月 8 日 (火) 22 時 47 分 52 秒 (日本時間)
4511e61000 / 4194Dmitry DomanovJanuary 8, 2013 14:07:02 UTC 2013 年 1 月 8 日 (火) 23 時 7 分 2 秒 (日本時間)

28×10244-19

c227

composite cofactor 合成数の残り
31488990024207298739081897043740598463484344977880925957090362206667470138213554373708001476871613170601081409421697441943998240481815315108201389612709418547628563992531252294930466884142124445207965068413294294490035689761769<227>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61418118Makoto KamadaJanuary 4, 2013 12:00:00 UTC 2013 年 1 月 4 日 (金) 21 時 0 分 0 秒 (日本時間)
1300Warut RoonguthaiJanuary 7, 2013 15:12:41 UTC 2013 年 1 月 8 日 (火) 0 時 12 分 41 秒 (日本時間)
403e61000Dmitry DomanovJanuary 8, 2013 13:48:04 UTC 2013 年 1 月 8 日 (火) 22 時 48 分 4 秒 (日本時間)
4511e61200 / 2440Dmitry DomanovJanuary 8, 2013 13:51:05 UTC 2013 年 1 月 8 日 (火) 22 時 51 分 5 秒 (日本時間)
5043e6500 / 7238Dmitry DomanovFebruary 8, 2013 11:10:07 UTC 2013 年 2 月 8 日 (金) 20 時 10 分 7 秒 (日本時間)

28×10245-19

c242

composite cofactor 合成数の残り
51279233741735802062157756899804040071058366756405325714704320275442741241323736791018808490375986667399227148691463838983206050949581524824643334615314176876728384887277255828434335109792502243466476200941340219401864366426753108803545592733<242>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6418118Makoto KamadaJanuary 4, 2013 12:00:00 UTC 2013 年 1 月 4 日 (金) 21 時 0 分 0 秒 (日本時間)
300Ignacio SantosJanuary 6, 2013 15:17:19 UTC 2013 年 1 月 7 日 (月) 0 時 17 分 19 秒 (日本時間)
403e61110110Ignacio SantosJanuary 6, 2013 15:17:19 UTC 2013 年 1 月 7 日 (月) 0 時 17 分 19 秒 (日本時間)
1000Dmitry DomanovJanuary 8, 2013 13:48:16 UTC 2013 年 1 月 8 日 (火) 22 時 48 分 16 秒 (日本時間)
4511e6123232Ignacio SantosJanuary 6, 2013 15:17:19 UTC 2013 年 1 月 7 日 (月) 0 時 17 分 19 秒 (日本時間)
1200Dmitry DomanovJanuary 8, 2013 13:50:49 UTC 2013 年 1 月 8 日 (火) 22 時 50 分 49 秒 (日本時間)
5043e6840 / 7208Dmitry DomanovJanuary 25, 2013 09:48:54 UTC 2013 年 1 月 25 日 (金) 18 時 48 分 54 秒 (日本時間)
5511e710 / 17383Dmitry DomanovJanuary 25, 2013 09:48:54 UTC 2013 年 1 月 25 日 (金) 18 時 48 分 54 秒 (日本時間)

28×10247-19

c248

name 名前Dmitry Domanov
date 日付January 9, 2013 19:39:14 UTC 2013 年 1 月 10 日 (木) 4 時 39 分 14 秒 (日本時間)
composite number 合成数
31111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111<248>
prime factors 素因数
7829114507385116798162128077524194285901<40>
composite cofactor 合成数の残り
3973771373731262378001058673014213920557120090005553966081167599317853576982872351817637640895453020876592480138777372865502465187591796234106410234202876880909587307799896089768049434234886425362403659386211<208>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=2422811890
Step 1 took 123635ms
Step 2 took 32161ms
********** Factor found in step 2: 7829114507385116798162128077524194285901
Found probable prime factor of 40 digits: 7829114507385116798162128077524194285901

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6418118Makoto KamadaJanuary 4, 2013 12:00:00 UTC 2013 年 1 月 4 日 (金) 21 時 0 分 0 秒 (日本時間)
300Ignacio SantosJanuary 6, 2013 16:42:00 UTC 2013 年 1 月 7 日 (月) 1 時 42 分 0 秒 (日本時間)
403e61110110Ignacio SantosJanuary 6, 2013 16:42:00 UTC 2013 年 1 月 7 日 (月) 1 時 42 分 0 秒 (日本時間)
1000Dmitry DomanovJanuary 8, 2013 13:48:27 UTC 2013 年 1 月 8 日 (火) 22 時 48 分 27 秒 (日本時間)
4511e61232 / 246232Ignacio SantosJanuary 6, 2013 16:42:00 UTC 2013 年 1 月 7 日 (月) 1 時 42 分 0 秒 (日本時間)
1200Dmitry DomanovJanuary 8, 2013 13:50:31 UTC 2013 年 1 月 8 日 (火) 22 時 50 分 31 秒 (日本時間)
5043e6500 / 7233Dmitry DomanovFebruary 8, 2013 11:09:49 UTC 2013 年 2 月 8 日 (金) 20 時 9 分 49 秒 (日本時間)

28×10248-19

c228

name 名前Warut Roonguthai
date 日付January 4, 2013 15:36:27 UTC 2013 年 1 月 5 日 (土) 0 時 36 分 27 秒 (日本時間)
composite number 合成数
418718886567678014669540941826878091207827822981136339207675320563096935779406829512957051521698285674340379003783129152692818646044876061152741588955980564697134299556776670847591162152893383115057073567040930746829809596221423<228>
prime factors 素因数
3614204976287221970362008347<28>
composite cofactor 合成数の残り
115853663340870320690720944224507785236582770774248101056156318825322532572159654585853294619206122604294116788276327018452472734100919562209017096143891950826575449467101320993998047225041374001022909<201>
factorization results 素因数分解の結果
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=388368575
Step 1 took 11544ms
Step 2 took 6646ms
********** Factor found in step 2: 3614204976287221970362008347
Found probable prime factor of 28 digits: 3614204976287221970362008347
Composite cofactor 115853663340870320690720944224507785236582770774248101056156318825322532572159654585853294619206122604294116788276327018452472734100919562209017096143891950826575449467101320993998047225041374001022909 has 201 digits
software ソフトウェア
GMP-ECM 6.3

c201

name 名前Warut Roonguthai
date 日付January 5, 2013 17:38:09 UTC 2013 年 1 月 6 日 (日) 2 時 38 分 9 秒 (日本時間)
composite number 合成数
115853663340870320690720944224507785236582770774248101056156318825322532572159654585853294619206122604294116788276327018452472734100919562209017096143891950826575449467101320993998047225041374001022909<201>
prime factors 素因数
79170748666404898630475491736689991<35>
1463339241984853818405348268999368941789916908649665950015293490827118081942414407237363719780064875284669840190553376572013087916798858467922869665011320718297031899<166>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=910401038
Step 1 took 29968ms
Step 2 took 13463ms
********** Factor found in step 2: 79170748666404898630475491736689991
Found probable prime factor of 35 digits: 79170748666404898630475491736689991
Probable prime cofactor 1463339241984853818405348268999368941789916908649665950015293490827118081942414407237363719780064875284669840190553376572013087916798858467922869665011320718297031899 has 166 digits
software ソフトウェア
GMP-ECM 6.3

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaJanuary 4, 2013 12:00:00 UTC 2013 年 1 月 4 日 (金) 21 時 0 分 0 秒 (日本時間)

28×10249-19

c234

name 名前Dmitry Domanov
date 日付February 12, 2013 11:06:24 UTC 2013 年 2 月 12 日 (火) 20 時 6 分 24 秒 (日本時間)
composite number 合成数
852475589485152528015395090147573657720892160093785227472956188568759729481427384361940947366182244455327513444869013285977542786591413978167126357027653159230114731659318282302613849962392916604671703407019691188889584480904034569517<234>
prime factors 素因数
93648336670552099024153543206145473835159<41>
composite cofactor 合成数の残り
9102944267810099070371593868323161409168327022750931183601200978040752054141275785366150137547860971289006114457856583377512936909687727646517517442917340159501266224885960936513779367549625563<193>
factorization results 素因数分解の結果
Using B1=43000000, B2=240490660426, polynomial Dickson(12), sigma=2209327258
Step 1 took 652969ms
Step 2 took 139644ms
********** Factor found in step 2: 93648336670552099024153543206145473835159
Found probable prime factor of 41 digits: 93648336670552099024153543206145473835159

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61418118Makoto KamadaJanuary 4, 2013 12:00:00 UTC 2013 年 1 月 4 日 (金) 21 時 0 分 0 秒 (日本時間)
1300Warut RoonguthaiJanuary 7, 2013 15:13:07 UTC 2013 年 1 月 8 日 (火) 0 時 13 分 7 秒 (日本時間)
403e61000Dmitry DomanovJanuary 8, 2013 13:48:44 UTC 2013 年 1 月 8 日 (火) 22 時 48 分 44 秒 (日本時間)
4511e61200 / 2440Dmitry DomanovJanuary 8, 2013 13:50:09 UTC 2013 年 1 月 8 日 (火) 22 時 50 分 9 秒 (日本時間)
5043e6500 / 7238Dmitry DomanovFebruary 8, 2013 11:09:32 UTC 2013 年 2 月 8 日 (金) 20 時 9 分 32 秒 (日本時間)

28×10252-19

c218

composite cofactor 合成数の残り
13103829063658512213897054572420945956212465948908043850043957444382953710966959567461550051651807564073203921215057089866266639338257212425965872553832958970545572724113375752057095530981521285275732633356235792166767<218>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaSeptember 21, 2015 07:00:00 UTC 2015 年 9 月 21 日 (月) 16 時 0 分 0 秒 (日本時間)
403e6300Dmitry DomanovSeptember 21, 2015 14:10:13 UTC 2015 年 9 月 21 日 (月) 23 時 10 分 13 秒 (日本時間)
4511e6600 / 4409Dmitry DomanovSeptember 27, 2015 19:03:48 UTC 2015 年 9 月 28 日 (月) 4 時 3 分 48 秒 (日本時間)

28×10253-19

c177

composite cofactor 合成数の残り
725215294819502125351172735747790571786678119839541065209797513552189647189579487891435196755207461436862545105460860728846292810339225114604615962124111594091707300596091159219<177>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaSeptember 21, 2015 07:00:00 UTC 2015 年 9 月 21 日 (月) 16 時 0 分 0 秒 (日本時間)
403e6300Dmitry DomanovSeptember 21, 2015 14:10:27 UTC 2015 年 9 月 21 日 (月) 23 時 10 分 27 秒 (日本時間)
4511e6600 / 4409Dmitry DomanovSeptember 27, 2015 17:56:17 UTC 2015 年 9 月 28 日 (月) 2 時 56 分 17 秒 (日本時間)

28×10258-19

c236

name 名前Dmitry Domanov
date 日付September 21, 2015 16:56:56 UTC 2015 年 9 月 22 日 (火) 1 時 56 分 56 秒 (日本時間)
composite number 合成数
35836924114025846002675416643143855528608014729597227802621702445533849741205124631833667794722143520444496401510332680488337690446329238547492897097800998632797824880864205401859571962462460441385556815098553030679917606730523876410343<236>
prime factors 素因数
606055951416654850040836594343911<33>
composite cofactor 合成数の残り
59131378926742805274830983366670150952962413520753393170615839831013406056668811760344294296386966561364391815402204337364806670934502878816687181614613172601970442865992372562701110236554924710266944513<203>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=547781861
Step 1 took 41075ms
Step 2 took 13133ms
********** Factor found in step 2: 606055951416654850040836594343911
Found probable prime factor of 33 digits: 606055951416654850040836594343911

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaSeptember 21, 2015 07:00:00 UTC 2015 年 9 月 21 日 (月) 16 時 0 分 0 秒 (日本時間)
403e6300Dmitry DomanovSeptember 21, 2015 14:11:22 UTC 2015 年 9 月 21 日 (月) 23 時 11 分 22 秒 (日本時間)
4511e6600 / 4409Dmitry DomanovSeptember 27, 2015 17:57:17 UTC 2015 年 9 月 28 日 (月) 2 時 57 分 17 秒 (日本時間)

28×10259-19

c234

composite cofactor 合成数の残り
136879984634150642597201878880407028319666921211659840889781151126343767120657775046346294818410564496504395253562998339364829249740760509504553341536310845177614373979179027898583946596500790152507587649049151889643079485603315518803<234>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaSeptember 21, 2015 07:00:00 UTC 2015 年 9 月 21 日 (月) 16 時 0 分 0 秒 (日本時間)
403e6300Dmitry DomanovSeptember 21, 2015 14:11:51 UTC 2015 年 9 月 21 日 (月) 23 時 11 分 51 秒 (日本時間)
4511e6600 / 4409Dmitry DomanovSeptember 27, 2015 19:04:06 UTC 2015 年 9 月 28 日 (月) 4 時 4 分 6 秒 (日本時間)

28×10260-19

c241

composite cofactor 合成数の残り
9560033803597347794659145508511654034893116515553598910745084814026723188214365708257076513209815382380134084812027920984896883657482223115595044737327884252403306150265248730927126688892489441466504435530677132914329596958855010441943133241<241>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaSeptember 21, 2015 07:00:00 UTC 2015 年 9 月 21 日 (月) 16 時 0 分 0 秒 (日本時間)
403e6300Dmitry DomanovSeptember 21, 2015 14:12:06 UTC 2015 年 9 月 21 日 (月) 23 時 12 分 6 秒 (日本時間)
4511e6600 / 4409Dmitry DomanovSeptember 28, 2015 07:30:16 UTC 2015 年 9 月 28 日 (月) 16 時 30 分 16 秒 (日本時間)

28×10261-19

c255

composite cofactor 合成数の残り
177931337605884158832111570981007844147501189804613153346634590476061203626827833822018574722579784777177189611761002144371288610456848050698331886719785144351214142760527048635809013408035009363287133525070871799308346575396532854103236130650990458285863<255>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6404118Makoto KamadaSeptember 21, 2015 07:00:00 UTC 2015 年 9 月 21 日 (月) 16 時 0 分 0 秒 (日本時間)
286KTakahashiSeptember 21, 2015 23:12:37 UTC 2015 年 9 月 22 日 (火) 8 時 12 分 37 秒 (日本時間)
403e6600Dmitry DomanovSeptember 22, 2015 14:18:43 UTC 2015 年 9 月 22 日 (火) 23 時 18 分 43 秒 (日本時間)
4511e6600 / 4329Dmitry DomanovSeptember 29, 2015 07:17:11 UTC 2015 年 9 月 29 日 (火) 16 時 17 分 11 秒 (日本時間)

28×10262-19

c260

composite cofactor 合成数の残り
10291469107215054949093983166096960341088690410556106884257727790642114161796596464145256735398978204138640790972911383099937516080420480023523357959348697026500532951078766493917006652699672878303377807181975226963649060903443966626235895174036093652368875657<260>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6404118Makoto KamadaSeptember 21, 2015 07:00:00 UTC 2015 年 9 月 21 日 (月) 16 時 0 分 0 秒 (日本時間)
286KTakahashiSeptember 21, 2015 23:12:50 UTC 2015 年 9 月 22 日 (火) 8 時 12 分 50 秒 (日本時間)
403e6600Dmitry DomanovSeptember 22, 2015 14:18:55 UTC 2015 年 9 月 22 日 (火) 23 時 18 分 55 秒 (日本時間)
4511e6600 / 4329Dmitry DomanovSeptember 29, 2015 07:17:46 UTC 2015 年 9 月 29 日 (火) 16 時 17 分 46 秒 (日本時間)

28×10263-19

c244

composite cofactor 合成数の残り
2055789963101849110790921794936318539500024885016360005152589056415816050116306797705121293424919298619577463354808714918598324176801174271529958953219549889050077974620471980505035458688851856741767265931043464043079703445810373294608999852847<244>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaSeptember 21, 2015 07:00:00 UTC 2015 年 9 月 21 日 (月) 16 時 0 分 0 秒 (日本時間)
403e6300Dmitry DomanovSeptember 21, 2015 14:12:21 UTC 2015 年 9 月 21 日 (月) 23 時 12 分 21 秒 (日本時間)
4511e6600 / 4409Dmitry DomanovSeptember 28, 2015 07:30:41 UTC 2015 年 9 月 28 日 (月) 16 時 30 分 41 秒 (日本時間)

28×10264-19

c224

name 名前Dmitry Domanov
date 日付September 28, 2015 06:24:44 UTC 2015 年 9 月 28 日 (月) 15 時 24 分 44 秒 (日本時間)
composite number 合成数
27181104713763627881101823804550467680185770418844767206334384861304098517337642697363764651516227550535776304734155908358592470944210722108520000452623738597418330358402992749684936606880848460792581080690708349325553953797<224>
prime factors 素因数
33708677441520222277661430034122010891<38>
composite cofactor 合成数の残り
806353342130345875911307276957210353450558971918947364689508726002938136590369297824190383528446369701622361807728775684955235115132097744650045000552977546937488484316122762662056485167<186>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=3667437401
Step 1 took 131794ms
Step 2 took 41514ms
********** Factor found in step 2: 33708677441520222277661430034122010891
Found probable prime factor of 38 digits: 33708677441520222277661430034122010891

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaSeptember 21, 2015 07:00:00 UTC 2015 年 9 月 21 日 (月) 16 時 0 分 0 秒 (日本時間)
403e6300Dmitry DomanovSeptember 21, 2015 14:12:32 UTC 2015 年 9 月 21 日 (月) 23 時 12 分 32 秒 (日本時間)
4511e6600 / 4409Dmitry DomanovSeptember 27, 2015 19:04:25 UTC 2015 年 9 月 28 日 (月) 4 時 4 分 25 秒 (日本時間)

28×10265-19

c253

name 名前Dmitry Domanov
date 日付September 29, 2015 13:20:16 UTC 2015 年 9 月 29 日 (火) 22 時 20 分 16 秒 (日本時間)
composite number 合成数
1182042332519821806524667052465602987856889765240629695554022095796218913353444487921149298414497970350620435167021333903422094942139086718181753483994092875634420386339801088388983313118647128299324326281992865079783060889606384367083174061473173929071<253>
prime factors 素因数
2379086357865086947982333975447439386509<40>
composite cofactor 合成数の残り
496847173542934070783190651777268139980254038873660631820404164723344865283547888919634313937872448272577799625190394052652037909635467930086822359335392622901125643888486024068966959406476479289859118632301520619<213>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=3483236925
Step 1 took 115853ms
Step 2 took 8844ms
********** Factor found in step 2: 2379086357865086947982333975447439386509
Found probable prime factor of 40 digits: 2379086357865086947982333975447439386509

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6404118Makoto KamadaSeptember 21, 2015 07:00:00 UTC 2015 年 9 月 21 日 (月) 16 時 0 分 0 秒 (日本時間)
286KTakahashiSeptember 21, 2015 23:14:03 UTC 2015 年 9 月 22 日 (火) 8 時 14 分 3 秒 (日本時間)
403e6300Dmitry DomanovSeptember 22, 2015 14:19:10 UTC 2015 年 9 月 22 日 (火) 23 時 19 分 10 秒 (日本時間)
4511e6600 / 4396Dmitry DomanovSeptember 29, 2015 07:18:04 UTC 2015 年 9 月 29 日 (火) 16 時 18 分 4 秒 (日本時間)

28×10267-19

c264

composite cofactor 合成数の残り
136686046795444449326088972853174777519050617772115070124823650591411234616717679851988537898647296301177940824705026629370902469623966921976675502443263086468569531703840389750499148153029792676556878481222754321475818773828527354295114938320421383555692241602351<264>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6404118Makoto KamadaSeptember 21, 2015 07:00:00 UTC 2015 年 9 月 21 日 (月) 16 時 0 分 0 秒 (日本時間)
286KTakahashiSeptember 21, 2015 23:14:18 UTC 2015 年 9 月 22 日 (火) 8 時 14 分 18 秒 (日本時間)
403e6600Dmitry DomanovSeptember 22, 2015 14:19:22 UTC 2015 年 9 月 22 日 (火) 23 時 19 分 22 秒 (日本時間)
4511e6600 / 4329Dmitry DomanovSeptember 29, 2015 08:50:31 UTC 2015 年 9 月 29 日 (火) 17 時 50 分 31 秒 (日本時間)

28×10268-19

c242

composite cofactor 合成数の残り
22186295085083179074709133622905489861576054218407322198325672276941804265526927261423013692604387759931015146333337368195211637212372533370220209191242825006862399310054345504307575240134969956180713641372255450907430354218139799475605894357<242>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaSeptember 21, 2015 07:00:00 UTC 2015 年 9 月 21 日 (月) 16 時 0 分 0 秒 (日本時間)
403e6300Dmitry DomanovSeptember 21, 2015 14:12:48 UTC 2015 年 9 月 21 日 (月) 23 時 12 分 48 秒 (日本時間)
4511e6600 / 4409Dmitry DomanovSeptember 28, 2015 07:31:00 UTC 2015 年 9 月 28 日 (月) 16 時 31 分 0 秒 (日本時間)

28×10269-19

c243

composite cofactor 合成数の残り
277559815305043696616612168545749328711703795020851938055026126703063895642771810977028415870720104591349062853165791710911794846687784107113165473325494546617760421943297023090892799131034585292399795156078199752394271576377189834611818973781<243>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaSeptember 21, 2015 07:00:00 UTC 2015 年 9 月 21 日 (月) 16 時 0 分 0 秒 (日本時間)
403e6300Dmitry DomanovSeptember 21, 2015 14:13:03 UTC 2015 年 9 月 21 日 (月) 23 時 13 分 3 秒 (日本時間)
4511e6600 / 4409Dmitry DomanovSeptember 28, 2015 07:31:15 UTC 2015 年 9 月 28 日 (月) 16 時 31 分 15 秒 (日本時間)

28×10270-19

c244

name 名前Dmitry Domanov
date 日付September 28, 2015 20:28:40 UTC 2015 年 9 月 29 日 (火) 5 時 28 分 40 秒 (日本時間)
composite number 合成数
3602579430034640573877127548657431531377415795972315033557144881784981271959382765174509653900298378487526287081866964225181422352368738113535780723170410213457600301550820166189858379749996907844814196075139121193893955970258803300462397211789<244>
prime factors 素因数
11820371060010816993957254273776245619<38>
304777186075184326819013016533894859281898162762609010070711579005351255101559397362502810413684838731915705492511504300612557892665871465444772523031553331377216541570449332134346824710122989375797157650431<207>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=2878339613
Step 1 took 165572ms
Step 2 took 52789ms
********** Factor found in step 2: 11820371060010816993957254273776245619
Found probable prime factor of 38 digits: 11820371060010816993957254273776245619

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaSeptember 21, 2015 07:00:00 UTC 2015 年 9 月 21 日 (月) 16 時 0 分 0 秒 (日本時間)
403e6300Dmitry DomanovSeptember 21, 2015 14:13:14 UTC 2015 年 9 月 21 日 (月) 23 時 13 分 14 秒 (日本時間)
4511e6600 / 4409Dmitry DomanovSeptember 28, 2015 07:31:29 UTC 2015 年 9 月 28 日 (月) 16 時 31 分 29 秒 (日本時間)

28×10272-19

c237

composite cofactor 合成数の残り
127031177260232769682324174647092414300321545166680736241523412909823045502332424126798593270310961530972646273641804040302160953758184414428386593042651244309734150020508625219813407464505984786797068090802573384413467997504326150752097<237>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaSeptember 21, 2015 07:00:00 UTC 2015 年 9 月 21 日 (月) 16 時 0 分 0 秒 (日本時間)
403e6300Dmitry DomanovSeptember 21, 2015 14:13:29 UTC 2015 年 9 月 21 日 (月) 23 時 13 分 29 秒 (日本時間)
4511e6600 / 4409Dmitry DomanovSeptember 27, 2015 19:04:59 UTC 2015 年 9 月 28 日 (月) 4 時 4 分 59 秒 (日本時間)

28×10273-19

c239

composite cofactor 合成数の残り
54049466435469321168351077380065397865263728261121420883183524881645498225998698330967241129006665475298678527768717870980114583482261517419031124156556004834934553837117507695956444042298213720405794063603040595735194396934208866176490161<239>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaSeptember 21, 2015 07:00:00 UTC 2015 年 9 月 21 日 (月) 16 時 0 分 0 秒 (日本時間)
403e6300Dmitry DomanovSeptember 21, 2015 14:13:40 UTC 2015 年 9 月 21 日 (月) 23 時 13 分 40 秒 (日本時間)
4511e6600 / 4409Dmitry DomanovSeptember 27, 2015 19:05:14 UTC 2015 年 9 月 28 日 (月) 4 時 5 分 14 秒 (日本時間)

28×10275-19

c226

name 名前Erik Branger
date 日付August 20, 2019 17:41:05 UTC 2019 年 8 月 21 日 (水) 2 時 41 分 5 秒 (日本時間)
composite number 合成数
2871863340451882296334612744694748885558741917375992171996787949887713045451269865612152966686643927040024375661079234810426844596690945360476190201369315418423607718737862298945513717303843483354831943090743177693170604319991<226>
prime factors 素因数
562393521880559240715015076901015847699898631177<48>
composite cofactor 合成数の残り
5106501459776428057754536525477763645585599238646110708737991784016981562934023442854778627644900598444938268603811596812349222000845368934717926341199331130436698351939608649983<178>
factorization results 素因数分解の結果
Resuming ECM residue saved by erik_@ALTISSA with GMP-ECM 7.0.1-dev on Mon Jun 24 10:58:25 2019 
Input number is 2871863340451882296334612744694748885558741917375992171996787949887713045451269865612152966686643927040024375661079234810426844596690945360476190201369315418423607718737862298945513717303843483354831943090743177693170604319991 (226 digits)
Using B1=110000000-110000000, B2=776278396540, polynomial Dickson(30), sigma=3:92998487
Step 1 took 0ms
Step 2 took 311875ms
********** Factor found in step 2: 562393521880559240715015076901015847699898631177
Found probable prime factor of 48 digits: 562393521880559240715015076901015847699898631177
Composite cofactor 5106501459776428057754536525477763645585599238646110708737991784016981562934023442854778627644900598444938268603811596812349222000845368934717926341199331130436698351939608649983 has 178 digits
software ソフトウェア
GMP-ECM GPU

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaSeptember 21, 2015 07:00:00 UTC 2015 年 9 月 21 日 (月) 16 時 0 分 0 秒 (日本時間)
403e6300Dmitry DomanovSeptember 21, 2015 14:13:54 UTC 2015 年 9 月 21 日 (月) 23 時 13 分 54 秒 (日本時間)
4511e6600Dmitry DomanovSeptember 27, 2015 19:04:45 UTC 2015 年 9 月 28 日 (月) 4 時 4 分 45 秒 (日本時間)
5043e60--
5511e73800Erik BrangerAugust 20, 2019 17:40:45 UTC 2019 年 8 月 21 日 (水) 2 時 40 分 45 秒 (日本時間)
6026e76700 / 40572Erik BrangerApril 13, 2020 08:24:33 UTC 2020 年 4 月 13 日 (月) 17 時 24 分 33 秒 (日本時間)

28×10276-19

c266

composite cofactor 合成数の残り
65739103574750967052766419929372775551159040150168010100949193944077651300006385171278069371776158494333827979158097883694919378111980483870941655704908099827952972808930445262733913059914604702120828991225658541675670853368123085456143178397470193502302627368006383<266>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6404118Makoto KamadaSeptember 21, 2015 07:00:00 UTC 2015 年 9 月 21 日 (月) 16 時 0 分 0 秒 (日本時間)
286KTakahashiSeptember 21, 2015 23:15:34 UTC 2015 年 9 月 22 日 (火) 8 時 15 分 34 秒 (日本時間)
403e6600Dmitry DomanovSeptember 22, 2015 14:19:44 UTC 2015 年 9 月 22 日 (火) 23 時 19 分 44 秒 (日本時間)
4511e6600 / 4329Dmitry DomanovSeptember 29, 2015 09:44:25 UTC 2015 年 9 月 29 日 (火) 18 時 44 分 25 秒 (日本時間)

28×10278-19

c278

composite cofactor 合成数の残り
16374269005847953216374269005847953216374269005847953216374269005847953216374269005847953216374269005847953216374269005847953216374269005847953216374269005847953216374269005847953216374269005847953216374269005847953216374269005847953216374269005847953216374269005847953216374269<278>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6404118Makoto KamadaSeptember 21, 2015 07:00:00 UTC 2015 年 9 月 21 日 (月) 16 時 0 分 0 秒 (日本時間)
286KTakahashiSeptember 21, 2015 23:15:49 UTC 2015 年 9 月 22 日 (火) 8 時 15 分 49 秒 (日本時間)
403e6750600Dmitry DomanovSeptember 23, 2015 06:17:57 UTC 2015 年 9 月 23 日 (水) 15 時 17 分 57 秒 (日本時間)
150Serge BatalovSeptember 26, 2015 05:29:50 UTC 2015 年 9 月 26 日 (土) 14 時 29 分 50 秒 (日本時間)
4511e6600 / 4296Dmitry DomanovSeptember 29, 2015 14:02:37 UTC 2015 年 9 月 29 日 (火) 23 時 2 分 37 秒 (日本時間)

28×10279-19

c280

name 名前Serge Batalov
date 日付September 26, 2015 05:29:04 UTC 2015 年 9 月 26 日 (土) 14 時 29 分 4 秒 (日本時間)
composite number 合成数
1037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037<280>
prime factors 素因数
1978315215736060230746550414639836867<37>
composite cofactor 合成数の残り
524202123497893990092648339421171993669448184796398503509255095105486289212127112557364518545700418030289036450089954738267402415510487179771643646876312211788021140044561882667205692489441342762076982948098187020110317952287252951682424794511<243>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:3673062555
Step 1 took 16412ms
********** Factor found in step 1: 1978315215736060230746550414639836867
Found probable prime factor of 37 digits: 1978315215736060230746550414639836867
Composite cofactor 
execution environment 実行環境
Win7 x64

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6404118Makoto KamadaSeptember 21, 2015 07:00:00 UTC 2015 年 9 月 21 日 (月) 16 時 0 分 0 秒 (日本時間)
286KTakahashiSeptember 21, 2015 23:15:59 UTC 2015 年 9 月 22 日 (火) 8 時 15 分 59 秒 (日本時間)
403e6780600Dmitry DomanovSeptember 23, 2015 06:18:37 UTC 2015 年 9 月 23 日 (水) 15 時 18 分 37 秒 (日本時間)
180Serge BatalovSeptember 26, 2015 00:05:42 UTC 2015 年 9 月 26 日 (土) 9 時 5 分 42 秒 (日本時間)
4511e6600 / 4289Dmitry DomanovSeptember 28, 2015 07:31:58 UTC 2015 年 9 月 28 日 (月) 16 時 31 分 58 秒 (日本時間)

28×10280-19

c265

composite cofactor 合成数の残り
8213227254860404240564696761559511202719467279270649088097553717984585894601189455751622348888947477697188616145462065141884149424682446750103832609050392934250644045963064243551830486992262288238159269446513327680605710936513545342219318312791222848551260687589669<265>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6404118Makoto KamadaSeptember 21, 2015 07:00:00 UTC 2015 年 9 月 21 日 (月) 16 時 0 分 0 秒 (日本時間)
286KTakahashiSeptember 21, 2015 23:16:15 UTC 2015 年 9 月 22 日 (火) 8 時 16 分 15 秒 (日本時間)
403e6300Dmitry DomanovSeptember 23, 2015 06:18:55 UTC 2015 年 9 月 23 日 (水) 15 時 18 分 55 秒 (日本時間)
4511e6600 / 4396Dmitry DomanovSeptember 29, 2015 13:21:21 UTC 2015 年 9 月 29 日 (火) 22 時 21 分 21 秒 (日本時間)

28×10281-19

c263

name 名前KTakahashi
date 日付September 21, 2015 22:31:14 UTC 2015 年 9 月 22 日 (火) 7 時 31 分 14 秒 (日本時間)
composite number 合成数
82761581497580379509258087116286476603431977528646081599622366111890192395438386877827928953224357015720531835645932477273733140067685901107340540376633204257364909576697712770471723055423158635536077924157025425732469614702789697411749103764704995798351925457047<263>
prime factors 素因数
249099877106309113004848752116479888099073<42>
composite cofactor 合成数の残り
332242562537515694491638799897973811785852777419366729831015737392698067212701062546109105781329440957544061059381430972409536728351359464285804071559202917764427446918666945866979074316143427848549241137476885959881068439<222>
factorization results 素因数分解の結果
// Factor found by p+1 method

Input number is 82761581497580379509258087116286476603431977528646081599622366111890192395438386877827928953224357015720531835645932477273733140067685901107340540376633204257364909576697712770471723055423158635536077924157025425732469614702789697411749103764704995798351925457047 (263 digits)
Using B1=30000000, B2=756268978042, polynomial x^1, x0=2270268000
Step 1 took 46737ms
Step 2 took 33478ms
********** Factor found in step 2: 249099877106309113004848752116479888099073
Found probable prime factor of 42 digits: 249099877106309113004848752116479888099073
Composite cofactor
software ソフトウェア
GMP-ECM 6.4.4

c222

name 名前Dmitry Domanov
date 日付August 8, 2021 22:59:40 UTC 2021 年 8 月 9 日 (月) 7 時 59 分 40 秒 (日本時間)
composite number 合成数
332242562537515694491638799897973811785852777419366729831015737392698067212701062546109105781329440957544061059381430972409536728351359464285804071559202917764427446918666945866979074316143427848549241137476885959881068439<222>
prime factors 素因数
838787948262033552367484441645979715007507<42>
593545100234745661377154693233453372686320549085549441253863<60>
667343387733543809890431731838298435589831475513502958622216770928398255360670860754180140271690361459025564256032736779<120>
factorization results 素因数分解の結果
838787948262033552367484441645979715007507
593545100234745661377154693233453372686320549085549441253863
software ソフトウェア
factordb.com

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6404118Makoto KamadaSeptember 21, 2015 07:00:00 UTC 2015 年 9 月 21 日 (月) 16 時 0 分 0 秒 (日本時間)
286KTakahashiSeptember 21, 2015 22:29:03 UTC 2015 年 9 月 22 日 (火) 7 時 29 分 3 秒 (日本時間)
403e6300Dmitry DomanovSeptember 22, 2015 14:26:31 UTC 2015 年 9 月 22 日 (火) 23 時 26 分 31 秒 (日本時間)
4511e6600 / 4396Dmitry DomanovSeptember 27, 2015 19:05:34 UTC 2015 年 9 月 28 日 (月) 4 時 5 分 34 秒 (日本時間)

28×10282-19

c283

name 名前Serge Batalov
date 日付September 28, 2015 03:12:09 UTC 2015 年 9 月 28 日 (月) 12 時 12 分 9 秒 (日本時間)
composite number 合成数
1037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037<283>
prime factors 素因数
24328164040495428640090757791693753981<38>
42627015968440436103071655177054425409410074382415513342583700487958376369888604244590016563622740311279370508813828652312544583216279094393793238171772480448773689973396722812999650982904581578686652179647495954349859472198984419616868416790577<245>
factorization results 素因数分解の結果
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1:1374701821
Step 1 took 16177ms
Step 2 took 15584ms
********** Factor found in step 2: 24328164040495428640090757791693753981
Found probable prime factor of 38 digits: 24328164040495428640090757791693753981
Probable prime cofactor

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6404118Makoto KamadaSeptember 21, 2015 07:00:00 UTC 2015 年 9 月 21 日 (月) 16 時 0 分 0 秒 (日本時間)
286KTakahashiSeptember 21, 2015 23:16:31 UTC 2015 年 9 月 22 日 (火) 8 時 16 分 31 秒 (日本時間)
403e6600 / 2240Dmitry DomanovSeptember 23, 2015 06:19:11 UTC 2015 年 9 月 23 日 (水) 15 時 19 分 11 秒 (日本時間)

28×10283-19

c245

name 名前Dmitry Domanov
date 日付September 21, 2015 16:56:26 UTC 2015 年 9 月 22 日 (火) 1 時 56 分 26 秒 (日本時間)
composite number 合成数
34977189773325798840530187296308494720589617189588905053332185264837250822669850113290064464990958598361803330878905518694524630507226879146162801224079748943961481624779182339767516464340017734866828685179080026603100519336711921218059234190227<245>
prime factors 素因数
407829509003410572569465392421<30>
composite cofactor 合成数の残り
85764244619761670213984217309592054754161248896078570681259934274532568130225258518469954531837122201099922858619339436485109036703287582338339263671570070981950180472319110228776000123590535672115463003103909657687<215>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2578001563
Step 1 took 48003ms
Step 2 took 16002ms
********** Factor found in step 2: 407829509003410572569465392421
Found probable prime factor of 30 digits: 407829509003410572569465392421

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaSeptember 21, 2015 07:00:00 UTC 2015 年 9 月 21 日 (月) 16 時 0 分 0 秒 (日本時間)
403e6300Dmitry DomanovSeptember 21, 2015 14:14:08 UTC 2015 年 9 月 21 日 (月) 23 時 14 分 8 秒 (日本時間)
4511e6600 / 4409Dmitry DomanovSeptember 27, 2015 19:07:16 UTC 2015 年 9 月 28 日 (月) 4 時 7 分 16 秒 (日本時間)

28×10284-19

c277

composite cofactor 合成数の残り
2289109023183704585653808259753009992579763172066967940065886983543270669374417758477449362821639040141563211017956555197693419188689058418831575787718120890579729458396290065205278700777193635579391328379703042241670312624624869090862390112149100239823330293568233722112421429<277>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6404118Makoto KamadaSeptember 21, 2015 07:00:00 UTC 2015 年 9 月 21 日 (月) 16 時 0 分 0 秒 (日本時間)
286KTakahashiSeptember 21, 2015 23:16:45 UTC 2015 年 9 月 22 日 (火) 8 時 16 分 45 秒 (日本時間)
403e6750Dmitry DomanovSeptember 23, 2015 16:49:30 UTC 2015 年 9 月 24 日 (木) 1 時 49 分 30 秒 (日本時間)
4511e6600 / 4296Dmitry DomanovSeptember 29, 2015 14:03:18 UTC 2015 年 9 月 29 日 (火) 23 時 3 分 18 秒 (日本時間)

28×10285-19

c233

composite cofactor 合成数の残り
31546182740330756269595382051221523901597777185691021203539861839727801543130876816895179378689278341958280559622446339828012066956248242659631902506745868663512940625465930668979454233570988221518340207923946174562332636840280305993<233>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaSeptember 21, 2015 07:00:00 UTC 2015 年 9 月 21 日 (月) 16 時 0 分 0 秒 (日本時間)
403e6300Dmitry DomanovSeptember 21, 2015 14:14:23 UTC 2015 年 9 月 21 日 (月) 23 時 14 分 23 秒 (日本時間)
4511e6600 / 4409Dmitry DomanovSeptember 27, 2015 19:05:59 UTC 2015 年 9 月 28 日 (月) 4 時 5 分 59 秒 (日本時間)

28×10286-19

c276

composite cofactor 合成数の残り
723784260692137049647711760294864464092405671021001223422097554991755787193784447128441882724297900288034677248062698478787467428243155026486177895730778054891524797309895557574175538037339235454255625292389568948092572292351337869865070640224394870945187290218925159228497279<276>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6404118Makoto KamadaSeptember 21, 2015 07:00:00 UTC 2015 年 9 月 21 日 (月) 16 時 0 分 0 秒 (日本時間)
286KTakahashiSeptember 21, 2015 23:17:00 UTC 2015 年 9 月 22 日 (火) 8 時 17 分 0 秒 (日本時間)
403e6600Dmitry DomanovSeptember 23, 2015 06:19:31 UTC 2015 年 9 月 23 日 (水) 15 時 19 分 31 秒 (日本時間)
4511e6600 / 4329Dmitry DomanovSeptember 29, 2015 14:03:34 UTC 2015 年 9 月 29 日 (火) 23 時 3 分 34 秒 (日本時間)

28×10287-19

c288

name 名前Dmitry Domanov
date 日付September 22, 2015 22:38:42 UTC 2015 年 9 月 23 日 (水) 7 時 38 分 42 秒 (日本時間)
composite number 合成数
311111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111<288>
prime factors 素因数
2738426465902615115336612500243194007966547<43>
113609445053535702212396432836603749231701718276355102909370939218786467522450706655664485565312568535146059424482779933881969212683013422325010168784250695582776885801026364050005081723150106002143091186457897553472898356911657597506862265118013<246>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=286569100
Step 1 took 36862ms
Step 2 took 12529ms
********** Factor found in step 2: 2738426465902615115336612500243194007966547
Found probable prime factor of 43 digits: 2738426465902615115336612500243194007966547

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6404118Makoto KamadaSeptember 21, 2015 07:00:00 UTC 2015 年 9 月 21 日 (月) 16 時 0 分 0 秒 (日本時間)
286KTakahashiSeptember 21, 2015 23:17:14 UTC 2015 年 9 月 22 日 (火) 8 時 17 分 14 秒 (日本時間)
403e61200 / 2240Dmitry DomanovSeptember 22, 2015 20:15:31 UTC 2015 年 9 月 23 日 (水) 5 時 15 分 31 秒 (日本時間)

28×10288-19

c264

name 名前KTakahashi
date 日付September 21, 2015 22:48:36 UTC 2015 年 9 月 22 日 (火) 7 時 48 分 36 秒 (日本時間)
composite number 合成数
515426619990516379222239604968099314626750029602483080327671387492994766128323318632909257581034415398542352603438810097684072848221663082430882361280608878109083944887410480333926321717231561575844986583536410845283038800809556844452294504641975332690599547576733<264>
prime factors 素因数
744745332422358714370577027369<30>
composite cofactor 合成数の残り
692084391202613815802957115958909759088018107967381970733712637101728292200459854686915275584259138627431234659470215279915383290681030282894380380067226445084707612983296356462715365500108750230417605285613779029739189313780631574357<234>
factorization results 素因数分解の結果
Input number is 515426619990516379222239604968099314626750029602483080327671387492994766128323318632909257581034415398542352603438810097684072848221663082430882361280608878109083944887410480333926321717231561575844986583536410845283038800809556844452294504641975332690599547576733 (264 digits)
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1596298729
Step 1 took 9002ms
Step 2 took 4430ms
********** Factor found in step 2: 744745332422358714370577027369
Found probable prime factor of 30 digits: 744745332422358714370577027369
Composite cofactor
software ソフトウェア
GMP-ECM 6.4.4

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6404118Makoto KamadaSeptember 21, 2015 07:00:00 UTC 2015 年 9 月 21 日 (月) 16 時 0 分 0 秒 (日本時間)
286KTakahashiSeptember 21, 2015 22:46:49 UTC 2015 年 9 月 22 日 (火) 7 時 46 分 49 秒 (日本時間)
403e6300Dmitry DomanovSeptember 22, 2015 14:27:15 UTC 2015 年 9 月 22 日 (火) 23 時 27 分 15 秒 (日本時間)
4511e6600 / 4396Dmitry DomanovSeptember 27, 2015 19:07:32 UTC 2015 年 9 月 28 日 (月) 4 時 7 分 32 秒 (日本時間)

28×10289-19

c270

composite cofactor 合成数の残り
120424974287392079326870317636234982445229084718597915484053877241880507508903741380732260582739887690419065137621831702331314145408303194267725607213808777830970730407761202641495213434117282211264652657253696175675215427398820294811334878573711149784390901879602827859<270>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6404118Makoto KamadaSeptember 21, 2015 07:00:00 UTC 2015 年 9 月 21 日 (月) 16 時 0 分 0 秒 (日本時間)
286KTakahashiSeptember 21, 2015 23:17:28 UTC 2015 年 9 月 22 日 (火) 8 時 17 分 28 秒 (日本時間)
403e6300Dmitry DomanovSeptember 23, 2015 06:20:54 UTC 2015 年 9 月 23 日 (水) 15 時 20 分 54 秒 (日本時間)
4511e6600 / 4396Dmitry DomanovSeptember 29, 2015 14:03:55 UTC 2015 年 9 月 29 日 (火) 23 時 3 分 55 秒 (日本時間)

28×10290-19

c252

name 名前Dmitry Domanov
date 日付September 30, 2015 10:31:35 UTC 2015 年 9 月 30 日 (水) 19 時 31 分 35 秒 (日本時間)
composite number 合成数
167194701744720599276132169971365308853338684582305749733242165156364348021625283570393547488318957889272038704563913303298062925347175051185633418008147730148526444630915354140169677847280371501987614470795035312578700113269693847524997613862389527367<252>
prime factors 素因数
460781691231933928442711454837632693<36>
362850141240883940812095438639952968993915006224358345014123385705306236404426278226441358661437967713646185292719755366037800705890166518023858308828693773550802298088371177727806007834519803958547794822906005953419<216>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=325840790
Step 1 took 145685ms
Step 2 took 44017ms
********** Factor found in step 2: 460781691231933928442711454837632693
Found probable prime factor of 36 digits: 460781691231933928442711454837632693

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6404118Makoto KamadaSeptember 21, 2015 07:00:00 UTC 2015 年 9 月 21 日 (月) 16 時 0 分 0 秒 (日本時間)
286KTakahashiSeptember 21, 2015 23:17:44 UTC 2015 年 9 月 22 日 (火) 8 時 17 分 44 秒 (日本時間)
403e6300Dmitry DomanovSeptember 23, 2015 06:20:08 UTC 2015 年 9 月 23 日 (水) 15 時 20 分 8 秒 (日本時間)
4511e6600 / 4396Dmitry DomanovSeptember 29, 2015 18:06:12 UTC 2015 年 9 月 30 日 (水) 3 時 6 分 12 秒 (日本時間)

28×10291-19

c258

name 名前Dmitry Domanov
date 日付September 30, 2015 10:32:03 UTC 2015 年 9 月 30 日 (水) 19 時 32 分 3 秒 (日本時間)
composite number 合成数
225348318265652760509596685874365115387654696513760168018477801546926378601459620464583534382303367352429330787593130799176021358737100665042280703656870850839012477576366423505656846509823724340637619982820114789644663868390907327159770085004073891893017791<258>
prime factors 素因数
311296709105738140488713922706427088714719<42>
composite cofactor 合成数の残り
723902025540233727408145769430748998839525650619663325195387001954192352507995405861805410726233470716857295265895184219571051055374331773673953047254948183723041620066866569776752702136567764747785821419206945856289<216>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=3518330838
Step 1 took 132204ms
Step 2 took 39043ms
********** Factor found in step 2: 311296709105738140488713922706427088714719
Found probable prime factor of 42 digits: 311296709105738140488713922706427088714719

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6404118Makoto KamadaSeptember 21, 2015 07:00:00 UTC 2015 年 9 月 21 日 (月) 16 時 0 分 0 秒 (日本時間)
286KTakahashiSeptember 21, 2015 23:17:53 UTC 2015 年 9 月 22 日 (火) 8 時 17 分 53 秒 (日本時間)
403e6300Dmitry DomanovSeptember 23, 2015 06:20:42 UTC 2015 年 9 月 23 日 (水) 15 時 20 分 42 秒 (日本時間)
4511e6600 / 4396Dmitry DomanovSeptember 29, 2015 18:05:58 UTC 2015 年 9 月 30 日 (水) 3 時 5 分 58 秒 (日本時間)

28×10292-19

c257

name 名前Dmitry Domanov
date 日付September 23, 2015 07:31:20 UTC 2015 年 9 月 23 日 (水) 16 時 31 分 20 秒 (日本時間)
composite number 合成数
12722620593956237951187546985699236932811475079462530636170192478024747702612598398527493155814794633371543208894398264582877232021391501319242386765816898067574080936757740829326968582604013212308226674055091881050725945033458600858826809535974291297584629<257>
prime factors 素因数
67646341929133030440493741425534191<35>
188075514967011516236062192957925393718910528591217081839408774568474505830680115492254192240300859386614362878240566831901055495732566381586636409614421863787319815533944840193871945165214131283267801058435288963848285019<222>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1355759420
Step 1 took 29501ms
Step 2 took 8983ms
********** Factor found in step 2: 67646341929133030440493741425534191
Found probable prime factor of 35 digits: 67646341929133030440493741425534191

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6404118Makoto KamadaSeptember 21, 2015 07:00:00 UTC 2015 年 9 月 21 日 (月) 16 時 0 分 0 秒 (日本時間)
286KTakahashiSeptember 21, 2015 23:18:17 UTC 2015 年 9 月 22 日 (火) 8 時 18 分 17 秒 (日本時間)
403e6300 / 2240Dmitry DomanovSeptember 23, 2015 06:21:09 UTC 2015 年 9 月 23 日 (水) 15 時 21 分 9 秒 (日本時間)

28×10293-19

c290

composite cofactor 合成数の残り
20714502371070717831487523211339710440848998675751455563693395772761908989354225388581870371603376463886484527006532466283448372801858386784147487256882023510960191165264738738338844870571350363613496977902064792004202084766702917045816040422871769832286511159938152414349231713903130109269<290>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6404118Makoto KamadaSeptember 21, 2015 07:00:00 UTC 2015 年 9 月 21 日 (月) 16 時 0 分 0 秒 (日本時間)
286KTakahashiSeptember 21, 2015 23:18:26 UTC 2015 年 9 月 22 日 (火) 8 時 18 分 26 秒 (日本時間)
403e6800Dmitry DomanovSeptember 22, 2015 12:58:00 UTC 2015 年 9 月 22 日 (火) 21 時 58 分 0 秒 (日本時間)
4511e62000 / 4285800Dmitry DomanovSeptember 29, 2015 14:36:38 UTC 2015 年 9 月 29 日 (火) 23 時 36 分 38 秒 (日本時間)
1200Dmitry DomanovMay 29, 2019 10:16:45 UTC 2019 年 5 月 29 日 (水) 19 時 16 分 45 秒 (日本時間)

28×10294-19

c235

composite cofactor 合成数の残り
2091761433142545119428111246933588829997484051556132181293671972507724071957411759796219936346609767291485465830614758629198469203683829075730999574542662957170460638547537532878486329659877791106236955987965901912815117732425003742393<235>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaSeptember 21, 2015 07:00:00 UTC 2015 年 9 月 21 日 (月) 16 時 0 分 0 秒 (日本時間)
403e6300Dmitry DomanovSeptember 21, 2015 14:14:43 UTC 2015 年 9 月 21 日 (月) 23 時 14 分 43 秒 (日本時間)
4511e6600 / 4409Dmitry DomanovSeptember 27, 2015 19:07:44 UTC 2015 年 9 月 28 日 (月) 4 時 7 分 44 秒 (日本時間)

28×10295-19

c249

composite cofactor 合成数の残り
297694891716055283222535375472159491942666972444569606795924449195091139893991743541473083852153587035713953207193480357671411273438030209632010494557909676814526042508930783434511830364066963089987370873921127583957013715049562263350944447474279537<249>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaSeptember 21, 2015 07:00:00 UTC 2015 年 9 月 21 日 (月) 16 時 0 分 0 秒 (日本時間)
403e6300Dmitry DomanovSeptember 21, 2015 14:15:13 UTC 2015 年 9 月 21 日 (月) 23 時 15 分 13 秒 (日本時間)
4511e6600 / 4409Dmitry DomanovSeptember 28, 2015 07:32:53 UTC 2015 年 9 月 28 日 (月) 16 時 32 分 53 秒 (日本時間)

28×10296-19

c232

composite cofactor 合成数の残り
1465568082911936318169261565216644848147460927818744998700558889010005454103148473852200282652349515995675585799712172273156709000778812885464159682677497241951255030157165599505877767472921551072269063653614270732490149955198250379<232>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaSeptember 21, 2015 07:00:00 UTC 2015 年 9 月 21 日 (月) 16 時 0 分 0 秒 (日本時間)
403e6300Dmitry DomanovSeptember 21, 2015 14:14:56 UTC 2015 年 9 月 21 日 (月) 23 時 14 分 56 秒 (日本時間)
4511e6600 / 4409Dmitry DomanovSeptember 27, 2015 19:07:58 UTC 2015 年 9 月 28 日 (月) 4 時 7 分 58 秒 (日本時間)

28×10297-19

c268

composite cofactor 合成数の残り
3536691075087655408489495529186603363147873429677701956268343346076170803372231463852647209455372671520254657214501096966104699440835152581050116026563374186608105807804944620333561317731918152102497539385849975364159296844933572611843048169436322962115047453053670151<268>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6404118Makoto KamadaSeptember 21, 2015 07:00:00 UTC 2015 年 9 月 21 日 (月) 16 時 0 分 0 秒 (日本時間)
286KTakahashiSeptember 21, 2015 23:18:59 UTC 2015 年 9 月 22 日 (火) 8 時 18 分 59 秒 (日本時間)
403e6300Dmitry DomanovSeptember 23, 2015 06:21:30 UTC 2015 年 9 月 23 日 (水) 15 時 21 分 30 秒 (日本時間)
4511e6600 / 4396Dmitry DomanovSeptember 29, 2015 18:05:39 UTC 2015 年 9 月 30 日 (水) 3 時 5 分 39 秒 (日本時間)

28×10298-19

c282

name 名前Dmitry Domanov
date 日付September 23, 2015 09:54:16 UTC 2015 年 9 月 23 日 (水) 18 時 54 分 16 秒 (日本時間)
composite number 合成数
750438689415851683390346817436352526923664629360836288205325938833011764220181679493164510704050211440081715818949325492328544777227928106173034410385703280130976134208053898332828542975535911139305289819996200129822181605857498455916763337220252336956639725362645571034960270209069<282>
prime factors 素因数
6423149479910145538241676541230862711873<40>
composite cofactor 合成数の残り
116833446234284071155868294601677097278840309282348385007656938355114785774786591690539212754379906951023429265231007407973802640133412455358347848085473978545949237227395983259110919167312664730751584400344965642971543465080764073977136572653<243>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=35641354
Step 1 took 33626ms
Step 2 took 10094ms
********** Factor found in step 2: 6423149479910145538241676541230862711873
Found probable prime factor of 40 digits: 6423149479910145538241676541230862711873

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6404118Makoto KamadaSeptember 21, 2015 07:00:00 UTC 2015 年 9 月 21 日 (月) 16 時 0 分 0 秒 (日本時間)
286KTakahashiSeptember 21, 2015 23:19:09 UTC 2015 年 9 月 22 日 (火) 8 時 19 分 9 秒 (日本時間)
403e6600Dmitry DomanovSeptember 23, 2015 06:21:57 UTC 2015 年 9 月 23 日 (水) 15 時 21 分 57 秒 (日本時間)
4511e6600 / 4329Dmitry DomanovSeptember 27, 2015 19:08:32 UTC 2015 年 9 月 28 日 (月) 4 時 8 分 32 秒 (日本時間)

28×10299-19

c297

name 名前KTakahashi
date 日付September 21, 2015 22:55:56 UTC 2015 年 9 月 22 日 (火) 7 時 55 分 56 秒 (日本時間)
composite number 合成数
222381065840679850686998649829243110158049400365340322452545468985783496148042252402509729171630529743467556190930029386069414661265983639107298864268128027956476848542609800651258835676276705583353188785640536891430386784210944325311730601223095862123739178778492574060837105869271702009371773489<297>
prime factors 素因数
20542805450537843832532488543951103133<38>
composite cofactor 合成数の残り
10825252976090349681922557884271702740521564608111605447227220950503928027926233706921811541621609930852775768143620508581913667422382545717001365493481724153299862264208988938672802618448626527466456896840873453840347171636141896628386244557553920803309069733<260>
factorization results 素因数分解の結果
Input number is 222381065840679850686998649829243110158049400365340322452545468985783496148042252402509729171630529743467556190930029386069414661265983639107298864268128027956476848542609800651258835676276705583353188785640536891430386784210944325311730601223095862123739178778492574060837105869271702009371773489 (297 digits)
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3607260267
Step 1 took 10749ms
Step 2 took 5132ms
********** Factor found in step 2: 20542805450537843832532488543951103133
Found probable prime factor of 38 digits: 20542805450537843832532488543951103133
Composite cofactor
software ソフトウェア
GMP-ECM 6.4.4

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6404118Makoto KamadaSeptember 21, 2015 07:00:00 UTC 2015 年 9 月 21 日 (月) 16 時 0 分 0 秒 (日本時間)
286KTakahashiSeptember 21, 2015 22:54:23 UTC 2015 年 9 月 22 日 (火) 7 時 54 分 23 秒 (日本時間)
403e6600Dmitry DomanovSeptember 22, 2015 14:27:49 UTC 2015 年 9 月 22 日 (火) 23 時 27 分 49 秒 (日本時間)
4511e6600 / 4329Dmitry DomanovSeptember 29, 2015 18:05:17 UTC 2015 年 9 月 30 日 (水) 3 時 5 分 17 秒 (日本時間)

28×10300-19

c297

name 名前Dmitry Domanov
date 日付September 21, 2015 21:43:24 UTC 2015 年 9 月 22 日 (火) 6 時 43 分 24 秒 (日本時間)
composite number 合成数
928412745780695646407374249809343811134321429755628502271295467356344706389469146855001823667893497795019728770847839782486156702808448555986604330382307105673265028681322325010776219370668788752942736828144169236380516595377830829934679531814715342020624025995556881859478099406478994661626711761<297>
prime factors 素因数
205823763712702181<18>
32041290578881094286845356523<29>
composite cofactor 合成数の残り
140778255122991742209716858817689310806225664606528447613872113350257164931407727774723876292097006740400323757914915101348014246731885247996650754181827880983853012332872134947174266101783591079549515291774721172456461791532886328758510991050927752247<252>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2141133357
Step 1 took 50172ms
********** Factor found in step 1: 205823763712702181
Found probable prime factor of 18 digits: 205823763712702181

Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3826725582
Step 1 took 47917ms
Step 2 took 13484ms
********** Factor found in step 2: 32041290578881094286845356523
Found probable prime factor of 29 digits: 32041290578881094286845356523

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaSeptember 21, 2015 07:00:00 UTC 2015 年 9 月 21 日 (月) 16 時 0 分 0 秒 (日本時間)
403e61200Dmitry DomanovSeptember 21, 2015 20:15:26 UTC 2015 年 9 月 22 日 (火) 5 時 15 分 26 秒 (日本時間)
4511e61200Dmitry DomanovSeptember 22, 2015 14:37:42 UTC 2015 年 9 月 22 日 (火) 23 時 37 分 42 秒 (日本時間)
5043e626253800Dmitry DomanovSeptember 25, 2015 22:58:56 UTC 2015 年 9 月 26 日 (土) 7 時 58 分 56 秒 (日本時間)
35May 25, 2018 02:36:37 UTC 2018 年 5 月 25 日 (金) 11 時 36 分 37 秒 (日本時間)
2545026464March 21, 2024 04:56:49 UTC 2024 年 3 月 21 日 (木) 13 時 56 分 49 秒 (日本時間)
5511e74108 / 827732Dmitry DomanovSeptember 27, 2015 14:46:45 UTC 2015 年 9 月 27 日 (日) 23 時 46 分 45 秒 (日本時間)
765May 25, 2018 02:36:37 UTC 2018 年 5 月 25 日 (金) 11 時 36 分 37 秒 (日本時間)
4000Bob BackstromJuly 15, 2024 01:32:04 UTC 2024 年 7 月 15 日 (月) 10 時 32 分 4 秒 (日本時間)
6026e74 / 373565May 25, 2018 02:36:37 UTC 2018 年 5 月 25 日 (金) 11 時 36 分 37 秒 (日本時間)
6585e75 / 683845May 25, 2018 02:36:37 UTC 2018 年 5 月 25 日 (金) 11 時 36 分 37 秒 (日本時間)