Table of contents 目次

3×10116+7

c98

name 名前Sinkiti Sibata
date 日付September 3, 2007 12:00:12 UTC 2007 年 9 月 3 日 (月) 21 時 0 分 12 秒 (日本時間)
composite number 合成数
24806611999572640200041003401784198951563928958349169644810919349055407530420374739405603430515011<98>
prime factors 素因数
793456171721645674090119834605962552118405123<45>
31263997790510739426533319802087948467956549868101057<53>
factorization results 素因数分解の結果
Number: 30007_116
N=24806611999572640200041003401784198951563928958349169644810919349055407530420374739405603430515011
  ( 98 digits)
SNFS difficulty: 116 digits.
Divisors found:
 r1=793456171721645674090119834605962552118405123 (pp45)
 r2=31263997790510739426533319802087948467956549868101057 (pp53)
Version: GGNFS-0.77.1-20060722-pentium4
Total time: 2.15 hours.
Scaled time: 1.47 units (timescale=0.683).
Factorization parameters were as follows:
name: 30007_116
n: 24806611999572640200041003401784198951563928958349169644810919349055407530420374739405603430515011
m: 100000000000000000000000
c5: 30
c0: 7
skew: 0.75
type: snfs
Factor base limits: 600000/800000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 46/46
Sieved algebraic special-q in [400000, 550001)
Primes: RFBsize:49098, AFBsize:63528, largePrimes:2164983 encountered
Relations: rels:2305072, finalFF:137525
Max relations in full relation-set: 0
Initial matrix: 112693 x 137525 with sparse part having weight 6350152.
Pruned matrix : 99939 x 100566 with weight 4135837.
Total sieving time: 1.92 hours.
Total relation processing time: 0.07 hours.
Matrix solve time: 0.11 hours.
Time per square root: 0.04 hours.
Prototype def-par.txt line would be:
snfs,116,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000
total time: 2.15 hours.
 --------- CPU info (if available) ----------
execution environment 実行環境
Pentium 4 2.4GHz, Windows XP and Cygwin)

3×10128+7

c87

name 名前Sinkiti Sibata
date 日付September 3, 2007 16:59:06 UTC 2007 年 9 月 4 日 (火) 1 時 59 分 6 秒 (日本時間)
composite number 合成数
254307631694787959686868018280051591889464233755615179663625686766286102906651364112561<87>
prime factors 素因数
275313088291577407642928246977003907<36>
923703385381580265251720036954725538332661715176123<51>
factorization results 素因数分解の結果
Mon Sep 03 18:48:38 2007  
Mon Sep 03 18:48:38 2007  Msieve v. 1.26
Mon Sep 03 18:48:38 2007  random seeds: 07d98b2f 62ae921d
Mon Sep 03 18:48:38 2007  factoring 254307631694787959686868018280051591889464233755615179663625686766286102906651364112561 (87 digits)
Mon Sep 03 18:48:39 2007  commencing quadratic sieve (87-digit input)
Mon Sep 03 18:48:39 2007  using multiplier of 1
Mon Sep 03 18:48:39 2007  using 64kb Pentium 2 sieve core
Mon Sep 03 18:48:39 2007  sieve interval: 10 blocks of size 65536
Mon Sep 03 18:48:39 2007  processing polynomials in batches of 11
Mon Sep 03 18:48:39 2007  using a sieve bound of 1489667 (56613 primes)
Mon Sep 03 18:48:39 2007  using large prime bound of 119173360 (26 bits)
Mon Sep 03 18:48:40 2007  using double large prime bound of 344447000754720 (42-49 bits)
Mon Sep 03 18:48:40 2007  using trial factoring cutoff of 49 bits
Mon Sep 03 18:48:40 2007  polynomial 'A' values have 11 factors
Tue Sep 04 00:36:23 2007  56728 relations (16053 full + 40675 combined from 592602 partial), need 56709
Tue Sep 04 00:36:31 2007  begin with 608655 relations
Tue Sep 04 00:36:33 2007  reduce to 134614 relations in 8 passes
Tue Sep 04 00:36:33 2007  attempting to read 134614 relations
Tue Sep 04 00:36:45 2007  recovered 134614 relations
Tue Sep 04 00:36:45 2007  recovered 109845 polynomials
Tue Sep 04 00:36:57 2007  attempting to build 56728 cycles
Tue Sep 04 00:36:57 2007  found 56728 cycles in 5 passes
Tue Sep 04 00:37:01 2007  distribution of cycle lengths:
Tue Sep 04 00:37:01 2007     length 1 : 16053
Tue Sep 04 00:37:01 2007     length 2 : 11398
Tue Sep 04 00:37:01 2007     length 3 : 9968
Tue Sep 04 00:37:01 2007     length 4 : 7465
Tue Sep 04 00:37:01 2007     length 5 : 4987
Tue Sep 04 00:37:01 2007     length 6 : 3064
Tue Sep 04 00:37:01 2007     length 7 : 1814
Tue Sep 04 00:37:01 2007     length 9+: 1979
Tue Sep 04 00:37:01 2007  largest cycle: 20 relations
Tue Sep 04 00:37:03 2007  matrix is 56613 x 56728 with weight 3003083 (avg 52.94/col)
Tue Sep 04 00:37:07 2007  filtering completed in 3 passes
Tue Sep 04 00:37:07 2007  matrix is 52023 x 52087 with weight 2793711 (avg 53.64/col)
Tue Sep 04 00:37:10 2007  saving the first 48 matrix rows for later
Tue Sep 04 00:37:10 2007  matrix is 51975 x 52087 with weight 2063890 (avg 39.62/col)
Tue Sep 04 00:37:10 2007  matrix includes 64 packed rows
Tue Sep 04 00:37:10 2007  using block size 10922 for processor cache size 256 kB
Tue Sep 04 00:37:11 2007  commencing Lanczos iteration
Tue Sep 04 00:40:42 2007  lanczos halted after 824 iterations
Tue Sep 04 00:40:43 2007  recovered 15 nontrivial dependencies
Tue Sep 04 00:40:47 2007  prp36 factor: 275313088291577407642928246977003907
Tue Sep 04 00:40:47 2007  prp51 factor: 923703385381580265251720036954725538332661715176123
Tue Sep 04 00:40:47 2007  elapsed time 05:52:09
execution environment 実行環境
Pentium 3 750MHz, Windows Me)

3×10131+7

c99

name 名前Sinkiti Sibata
date 日付September 3, 2007 18:53:16 UTC 2007 年 9 月 4 日 (火) 3 時 53 分 16 秒 (日本時間)
composite number 合成数
115840605681828788775531586500134003303645081903753785388762305681265629442829309689100981194968421<99>
prime factors 素因数
367843730195277468720927798645873350770134361<45>
314917983297778113935616240983926140815612293301748461<54>
factorization results 素因数分解の結果
Number: 30007_131
N=115840605681828788775531586500134003303645081903753785388762305681265629442829309689100981194968421
  ( 99 digits)
SNFS difficulty: 131 digits.
Divisors found:
 r1=367843730195277468720927798645873350770134361 (pp45)
 r2=314917983297778113935616240983926140815612293301748461 (pp54)
Version: GGNFS-0.77.1-20060722-pentium4
Total time: 6.51 hours.
Scaled time: 4.44 units (timescale=0.682).
Factorization parameters were as follows:
name: 30007_131
n: 115840605681828788775531586500134003303645081903753785388762305681265629442829309689100981194968421
m: 100000000000000000000000000
c5: 30
c0: 7
skew: 0.75
type: snfs
Factor base limits: 800000/800000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 44/44
Sieved algebraic special-q in [400000, 1100001)
Primes: RFBsize:63951, AFBsize:63528, largePrimes:1493297 encountered
Relations: rels:1473265, finalFF:143512
Max relations in full relation-set: 0
Initial matrix: 127546 x 143512 with sparse part having weight 10871550.
Pruned matrix : 123368 x 124069 with weight 8318483.
Total sieving time: 6.09 hours.
Total relation processing time: 0.08 hours.
Matrix solve time: 0.28 hours.
Time per square root: 0.05 hours.
Prototype def-par.txt line would be:
snfs,131,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000
total time: 6.51 hours.
 --------- CPU info (if available) ----------
execution environment 実行環境
Pentium 4 2.4GHz, Windows XP and Cygwin)

3×10132+7

c133

name 名前Jo Yeong Uk
date 日付September 4, 2007 14:07:44 UTC 2007 年 9 月 4 日 (火) 23 時 7 分 44 秒 (日本時間)
composite number 合成数
3000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000007<133>
prime factors 素因数
20590611374091488546520676374415000816224551<44>
145697470827641601340741249542086188044830839410971692164392935223681417160709307626970657<90>
factorization results 素因数分解の結果
Number: 30007_132
N=3000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000007
  ( 133 digits)
SNFS difficulty: 132 digits.
Divisors found:
 r1=20590611374091488546520676374415000816224551 (pp44)
 r2=145697470827641601340741249542086188044830839410971692164392935223681417160709307626970657 (pp90)
Version: GGNFS-0.77.1-20050930-nocona
Total time: 2.88 hours.
Scaled time: 6.17 units (timescale=2.143).
Factorization parameters were as follows:
n: 3000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000007
m: 100000000000000000000000000
c5: 300
c0: 7
skew: 0.47
type: snfs
Factor base limits: 1000000/1000000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 44/44
Sieved algebraic special-q in [500000, 1100001)
Primes: RFBsize:78498, AFBsize:78821, largePrimes:1567294 encountered
Relations: rels:1589863, finalFF:196603
Max relations in full relation-set: 28
Initial matrix: 157385 x 196603 with sparse part having weight 11951565.
Pruned matrix : 143201 x 144051 with weight 6940341.
Total sieving time: 2.78 hours.
Total relation processing time: 0.03 hours.
Matrix solve time: 0.05 hours.
Time per square root: 0.01 hours.
Prototype def-par.txt line would be:
snfs,132,5,0,0,0,0,0,0,0,0,1000000,1000000,25,25,44,44,2.2,2.2,50000
total time: 2.88 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Memory: 8167564k/8912896k available (2106k kernel code, 0k reserved, 1299k data, 196k init)
Calibrating delay using timer specific routine.. 4815.37 BogoMIPS (lpj=2407685)
Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405122)
Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405118)
Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405130)
Total of 4 processors activated (19246.11 BogoMIPS).
execution environment 実行環境
Core 2 Quad Q6600

3×10133+7

c128

name 名前Jo Yeong Uk
date 日付September 4, 2007 23:03:45 UTC 2007 年 9 月 5 日 (水) 8 時 3 分 45 秒 (日本時間)
composite number 合成数
27409851283283553997863858923322768358433143261242378919266110368507177269558527798614340651459072066894655718562956316920009831<128>
prime factors 素因数
71206879090633339569010774993897538969<38>
384932630573456592303493441248187029453637827755687637553671267379325800269120529793395199<90>
factorization results 素因数分解の結果
Number: 30007_133
N=27409851283283553997863858923322768358433143261242378919266110368507177269558527798614340651459072066894655718562956316920009831
  ( 128 digits)
SNFS difficulty: 134 digits.
Divisors found:
 r1=71206879090633339569010774993897538969 (pp38)
 r2=384932630573456592303493441248187029453637827755687637553671267379325800269120529793395199 (pp90)
Version: GGNFS-0.77.1-20050930-nocona
Total time: 2.83 hours.
Scaled time: 6.02 units (timescale=2.128).
Factorization parameters were as follows:
n: 27409851283283553997863858923322768358433143261242378919266110368507177269558527798614340651459072066894655718562956316920009831
m: 200000000000000000000000000
c5: 375
c0: 28
skew: 0.6
type: snfs
Factor base limits: 1400000/1400000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 45/45
Sieved algebraic special-q in [700000, 1200001)
Primes: RFBsize:107126, AFBsize:107333, largePrimes:1824277 encountered
Relations: rels:1912873, finalFF:260803
Max relations in full relation-set: 28
Initial matrix: 214526 x 260803 with sparse part having weight 13896029.
Pruned matrix : 187120 x 188256 with weight 7957202.
Total sieving time: 2.68 hours.
Total relation processing time: 0.03 hours.
Matrix solve time: 0.09 hours.
Time per square root: 0.02 hours.
Prototype def-par.txt line would be:
snfs,134,5,0,0,0,0,0,0,0,0,1400000,1400000,25,25,45,45,2.3,2.3,50000
total time: 2.83 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Memory: 8167564k/8912896k available (2106k kernel code, 0k reserved, 1299k data, 196k init)
Calibrating delay using timer specific routine.. 4815.37 BogoMIPS (lpj=2407685)
Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405122)
Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405118)
Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405130)
Total of 4 processors activated (19246.11 BogoMIPS).
execution environment 実行環境
Core 2 Quad Q6600

3×10136+7

c135

name 名前Jo Yeong Uk
date 日付September 5, 2007 04:02:59 UTC 2007 年 9 月 5 日 (水) 13 時 2 分 59 秒 (日本時間)
composite number 合成数
810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810811<135>
prime factors 素因数
6556535936327394866605979149660371778651962509<46>
123664511059628497811157288760274150729201758246527989892496823924203364385516946923141479<90>
factorization results 素因数分解の結果
Number: 30007_136
N=810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810811
  ( 135 digits)
SNFS difficulty: 136 digits.
Divisors found:
 r1=6556535936327394866605979149660371778651962509 (pp46)
 r2=123664511059628497811157288760274150729201758246527989892496823924203364385516946923141479 (pp90)
Version: GGNFS-0.77.1-20050930-nocona
Total time: 4.25 hours.
Scaled time: 9.13 units (timescale=2.146).
Factorization parameters were as follows:
n: 810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810811
m: 1000000000000000000000000000
c5: 30
c0: 7
skew: 0.75
type: snfs
Factor base limits: 1400000/1400000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 45/45
Sieved algebraic special-q in [700000, 1500001)
Primes: RFBsize:107126, AFBsize:106593, largePrimes:1867694 encountered
Relations: rels:1959724, finalFF:256837
Max relations in full relation-set: 28
Initial matrix: 213786 x 256837 with sparse part having weight 17263562.
Pruned matrix : 196794 x 197926 with weight 10886320.
Total sieving time: 4.07 hours.
Total relation processing time: 0.04 hours.
Matrix solve time: 0.13 hours.
Time per square root: 0.02 hours.
Prototype def-par.txt line would be:
snfs,136,5,0,0,0,0,0,0,0,0,1400000,1400000,25,25,45,45,2.3,2.3,50000
total time: 4.25 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Memory: 8167564k/8912896k available (2106k kernel code, 0k reserved, 1299k data, 196k init)
Calibrating delay using timer specific routine.. 4815.37 BogoMIPS (lpj=2407685)
Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405122)
Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405118)
Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405130)
Total of 4 processors activated (19246.11 BogoMIPS).
execution environment 実行環境
Core 2 Quad Q6600

3×10138+7

c133

name 名前Sinkiti Sibata
date 日付September 6, 2007 21:18:31 UTC 2007 年 9 月 7 日 (金) 6 時 18 分 31 秒 (日本時間)
composite number 合成数
3188921262345111436853512649919160845999551425075763454324549272553911371374329396432872675940758346735660749800426677664901775910251<133>
prime factors 素因数
27582727203473715137972750799973321<35>
9338357328303256578758498008894337760073<40>
12380440690635148293553334360514326357608119969517531812347<59>
factorization results 素因数分解の結果
Number: 30007_138
N=3188921262345111436853512649919160845999551425075763454324549272553911371374329396432872675940758346735660749800426677664901775910251
  ( 133 digits)
SNFS difficulty: 138 digits.
Divisors found:
 r1=27582727203473715137972750799973321 (pp35)
 r2=9338357328303256578758498008894337760073 (pp40)
 r3=12380440690635148293553334360514326357608119969517531812347 (pp59)
Version: GGNFS-0.77.1-20060722-pentium4
Total time: 11.09 hours.
Scaled time: 7.53 units (timescale=0.679).
Factorization parameters were as follows:
name: 30007_138
n: 3188921262345111436853512649919160845999551425075763454324549272553911371374329396432872675940758346735660749800426677664901775910251
m: 1000000000000000000000000000
c5: 3000
c0: 7
skew: 0.3
type: snfs
Factor base limits: 1000000/800000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 43/43
Sieved algebraic special-q in [400000, 1525001)
Primes: RFBsize:78498, AFBsize:63898, largePrimes:1530665 encountered
Relations: rels:1508359, finalFF:159826
Max relations in full relation-set: 0
Initial matrix: 142463 x 159826 with sparse part having weight 16585980.
Pruned matrix : 138060 x 138836 with weight 12364485.
Total sieving time: 10.41 hours.
Total relation processing time: 0.10 hours.
Matrix solve time: 0.52 hours.
Time per square root: 0.06 hours.
Prototype def-par.txt line would be:
snfs,138,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000
total time: 11.09 hours.
 --------- CPU info (if available) ----------
execution environment 実行環境
Pentium 4 2.4GHz, Windows XP and Cygwin)

3×10140+7

c128

name 名前Sinkiti Sibata
date 日付September 7, 2007 09:40:42 UTC 2007 年 9 月 7 日 (金) 18 時 40 分 42 秒 (日本時間)
composite number 合成数
15852268549901230174324386508028804607528286278559127718419294725472196231167351989448701028316117068813288359277306912809088453<128>
prime factors 素因数
870020740547606992047908247418054629224598409723907992361<57>
18220563960260903608607526139448840316782587407515464316476336274810173<71>
factorization results 素因数分解の結果
Number: 30007_140
N=15852268549901230174324386508028804607528286278559127718419294725472196231167351989448701028316117068813288359277306912809088453
  ( 128 digits)
SNFS difficulty: 140 digits.
Divisors found:
 r1=870020740547606992047908247418054629224598409723907992361 (pp57)
 r2=18220563960260903608607526139448840316782587407515464316476336274810173 (pp71)
Version: GGNFS-0.77.1-20060722-pentium4
Total time: 12.05 hours.
Scaled time: 8.18 units (timescale=0.679).
Factorization parameters were as follows:
name: 30007_140
n: 15852268549901230174324386508028804607528286278559127718419294725472196231167351989448701028316117068813288359277306912809088453
m: 10000000000000000000000000000
c5: 3
c0: 7
skew: 1.18
type: snfs
Factor base limits: 1000000/800000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 43/43
Sieved algebraic special-q in [400000, 1675001)
Primes: RFBsize:78498, AFBsize:63643, largePrimes:1566102 encountered
Relations: rels:1559976, finalFF:160050
Max relations in full relation-set: 0
Initial matrix: 142206 x 160050 with sparse part having weight 15608362.
Pruned matrix : 137606 x 138381 with weight 12130130.
Total sieving time: 11.40 hours.
Total relation processing time: 0.10 hours.
Matrix solve time: 0.49 hours.
Time per square root: 0.06 hours.
Prototype def-par.txt line would be:
snfs,140,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000
total time: 12.05 hours.
 --------- CPU info (if available) ----------
execution environment 実行環境
Pentium 4 2.4GHz, Windows XP and Cygwin)

3×10144+7

c109

name 名前Robert Backstrom
date 日付September 9, 2007 12:41:58 UTC 2007 年 9 月 9 日 (日) 21 時 41 分 58 秒 (日本時間)
composite number 合成数
1637381286243073167428156705928812402202347963241767077546317363263128053960163775922772278248987696451657221<109>
prime factors 素因数
412360496428279684134266762455314955302583<42>
3970752049300281989132003305040428926587105565745390502436467127587<67>
factorization results 素因数分解の結果
Number: n
N=1637381286243073167428156705928812402202347963241767077546317363263128053960163775922772278248987696451657221
  ( 109 digits)
SNFS difficulty: 145 digits.
Divisors found:
 r1=412360496428279684134266762455314955302583 (pp42)
 r2=3970752049300281989132003305040428926587105565745390502436467127587 (pp67)
Version: GGNFS-0.77.1-20051202-athlon
Total time: 13.30 hours.
Scaled time: 15.91 units (timescale=1.196).
Factorization parameters were as follows:
name: KA_3_0_143_7
n: 1637381286243073167428156705928812402202347963241767077546317363263128053960163775922772278248987696451657221
type: snfs
skew: 1.00
deg: 5
c5: 3
c0: 70
m: 100000000000000000000000000000
rlim: 2000000
alim: 2000000
lpbr: 28
lpba: 28
mfbr: 48
mfba: 48
qintsize: 50000
Factor base limits: 2000000/2000000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 48/48
Sieved algebraic special-q in [100000, 1600001)
Primes: RFBsize:148933, AFBsize:148155, largePrimes:6391676 encountered
Relations: rels:5742559, finalFF:361324
Max relations in full relation-set: 28
Initial matrix: 297153 x 361324 with sparse part having weight 25349389.
Pruned matrix : 259545 x 261094 with weight 15462821.
Total sieving time: 11.30 hours.
Total relation processing time: 0.22 hours.
Matrix solve time: 1.71 hours.
Total square root time: 0.07 hours, sqrts: 1.
Prototype def-par.txt line would be:
snfs,145,5,0,0,0,0,0,0,0,0,2000000,2000000,28,28,48,48,2.3,2.3,100000
total time: 13.30 hours.
 --------- CPU info (if available) ----------

Cygwin on AMD XP 2700+

3×10151+7

c129

name 名前Robert Backstrom
date 日付September 11, 2007 00:02:27 UTC 2007 年 9 月 11 日 (火) 9 時 2 分 27 秒 (日本時間)
composite number 合成数
432514729573541165878814502602851075559541863386033196591231623575925857266862190179793058170814822307811485963457490435561939681<129>
prime factors 素因数
1197832543309205649377891301884244716228803440401897936550987217<64>
361081131072503212385537651948543045335365693158346674560705560593<66>
factorization results 素因数分解の結果
Number: n
N=432514729573541165878814502602851075559541863386033196591231623575925857266862190179793058170814822307811485963457490435561939681
  ( 129 digits)
SNFS difficulty: 151 digits.
Divisors found:
 r1=1197832543309205649377891301884244716228803440401897936550987217 (pp64)
 r2=361081131072503212385537651948543045335365693158346674560705560593 (pp66)
Version: GGNFS-0.77.1-20051202-athlon
Total time: 27.46 hours.
Scaled time: 32.81 units (timescale=1.195).
Factorization parameters were as follows:
name: KA_3_0_150_7
n: 432514729573541165878814502602851075559541863386033196591231623575925857266862190179793058170814822307811485963457490435561939681
type: snfs
skew: 1.00
deg: 5
c5: 30
c0: 7
m: 1000000000000000000000000000000
rlim: 2000000
alim: 2000000
lpbr: 28
lpba: 28
mfbr: 48
mfba: 48
qintsize: 50000
Factor base limits: 2000000/2000000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 48/48
Sieved algebraic special-q in [100000, 1150001)
Primes: RFBsize:148933, AFBsize:148635, largePrimes:6069369 encountered
Relations: rels:5430747, finalFF:346854
Max relations in full relation-set: 28
Initial matrix: 297635 x 346854 with sparse part having weight 25044237.
Pruned matrix : 262468 x 264020 with weight 16394510.
Total sieving time: 25.39 hours.
Total relation processing time: 0.22 hours.
Matrix solve time: 1.78 hours.
Total square root time: 0.07 hours, sqrts: 1.
Prototype def-par.txt line would be:
snfs,151,5,0,0,0,0,0,0,0,0,2000000,2000000,28,28,48,48,2.3,2.3,100000
total time: 27.46 hours.
 --------- CPU info (if available) ----------

Cygwin on AMD XP 2700+

3×10152+7

c98

name 名前Sinkiti Sibata
date 日付September 5, 2007 09:16:47 UTC 2007 年 9 月 5 日 (水) 18 時 16 分 47 秒 (日本時間)
composite number 合成数
21384584715152312399410371055118338529381577034286595544703207108885189504169973874072912200713047<98>
prime factors 素因数
577938539278524803843369748270872920429<39>
37001485905141343750684997572615954124281964070904019247443<59>
factorization results 素因数分解の結果
Number: 30007_152
N=21384584715152312399410371055118338529381577034286595544703207108885189504169973874072912200713047
  ( 98 digits)
SNFS difficulty: 152 digits.
Divisors found:
 r1=577938539278524803843369748270872920429 (pp39)
 r2=37001485905141343750684997572615954124281964070904019247443 (pp59)
Version: GGNFS-0.77.1-20060722-pentium4
Total time: 36.57 hours.
Scaled time: 24.97 units (timescale=0.683).
Factorization parameters were as follows:
name: 30007_152
n: 21384584715152312399410371055118338529381577034286595544703207108885189504169973874072912200713047
m: 1000000000000000000000000000000
c5: 300
c0: 7
skew: 0.47
type: snfs
Factor base limits: 2400000/2400000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 48/48
Sieved algebraic special-q in [1200000, 4000000
)
Primes: RFBsize:176302, AFBsize:176433, largePrimes:5580476 encountered
Relations: rels:5520272, finalFF:399263
Max relations in full relation-set: 0
Initial matrix: 352801 x 399263 with sparse part having weight 25768097.
Pruned matrix : 328424 x 330252 with weight 19913239.
Total sieving time: 33.78 hours.
Total relation processing time: 0.24 hours.
Matrix solve time: 2.40 hours.
Time per square root: 0.15 hours.
Prototype def-par.txt line would be:
snfs,152,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000
total time: 36.57 hours.
 --------- CPU info (if available) ----------
execution environment 実行環境
Pentium 4 2.4GHz, Windows XP and Cygwin)

3×10153+7

c129

name 名前Jo Yeong Uk
date 日付September 15, 2007 10:01:33 UTC 2007 年 9 月 15 日 (土) 19 時 1 分 33 秒 (日本時間)
composite number 合成数
210074325808026790448996368590420356086009745382036315917389148054666342924659655032019177558676920733305767288001767113996496067<129>
prime factors 素因数
12766708087797880775647643713694004841381361147278295433889<59>
16454854639373394037106403236176282020045812281709905847229481803749603<71>
factorization results 素因数分解の結果
Number: 30007_153
N=210074325808026790448996368590420356086009745382036315917389148054666342924659655032019177558676920733305767288001767113996496067
  ( 129 digits)
SNFS difficulty: 155 digits.
Divisors found:
 r1=12766708087797880775647643713694004841381361147278295433889 (pp59)
 r2=16454854639373394037106403236176282020045812281709905847229481803749603 (pp71)
Version: GGNFS-0.77.1-20050930-nocona
Total time: 16.75 hours.
Scaled time: 35.43 units (timescale=2.116).
Factorization parameters were as follows:
n: 210074325808026790448996368590420356086009745382036315917389148054666342924659655032019177558676920733305767288001767113996496067
m: 10000000000000000000000000000000
c5: 3
c0: 700
skew: 2.98
type: snfs
Factor base limits: 3000000/3000000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 48/48
Sieved algebraic special-q in [1500000, 2500001)
Primes: RFBsize:216816, AFBsize:216741, largePrimes:5443893 encountered
Relations: rels:5315927, finalFF:487026
Max relations in full relation-set: 28
Initial matrix: 433623 x 487026 with sparse part having weight 35101675.
Pruned matrix : 395950 x 398182 with weight 25217603.
Total sieving time: 15.90 hours.
Total relation processing time: 0.07 hours.
Matrix solve time: 0.73 hours.
Time per square root: 0.04 hours.
Prototype def-par.txt line would be:
snfs,155,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000
total time: 16.75 hours.
 --------- CPU info (if available) ----------
execution environment 実行環境
Core 2 Quad Q6600

3×10155+7

c123

name 名前Jo Yeong Uk
date 日付September 17, 2007 23:24:30 UTC 2007 年 9 月 18 日 (火) 8 時 24 分 30 秒 (日本時間)
composite number 合成数
713531748420933277541673822962652894654142637485514664700401998801446798784016564278662446558305517823810235223089640857209<123>
prime factors 素因数
81026516161317424585126385687853691355677579362917<50>
8806151149339157734770802696564069152769229056077368044884311562147487877<73>
factorization results 素因数分解の結果
Number: 30007_155
N=713531748420933277541673822962652894654142637485514664700401998801446798784016564278662446558305517823810235223089640857209
  ( 123 digits)
SNFS difficulty: 155 digits.
Divisors found:
 r1=81026516161317424585126385687853691355677579362917 (pp50)
 r2=8806151149339157734770802696564069152769229056077368044884311562147487877 (pp73)
Version: GGNFS-0.77.1-20050930-nocona
Total time: 16.65 hours.
Scaled time: 35.65 units (timescale=2.141).
Factorization parameters were as follows:
n: 713531748420933277541673822962652894654142637485514664700401998801446798784016564278662446558305517823810235223089640857209
m: 10000000000000000000000000000000
c5: 3
c0: 7
skew: 1.18
type: snfs
Factor base limits: 3000000/3000000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 48/48
Sieved algebraic special-q in [1500000, 2500001)
Primes: RFBsize:216816, AFBsize:216206, largePrimes:5559375 encountered
Relations: rels:5517505, finalFF:555907
Max relations in full relation-set: 28
Initial matrix: 433087 x 555907 with sparse part having weight 41903022.
Pruned matrix : 345203 x 347432 with weight 26197869.
Total sieving time: 15.98 hours.
Total relation processing time: 0.07 hours.
Matrix solve time: 0.56 hours.
Time per square root: 0.04 hours.
Prototype def-par.txt line would be:
snfs,155,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000
total time: 16.65 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Memory: 8167564k/8912896k available (2106k kernel code, 0k reserved, 1299k data, 196k init)
Calibrating delay using timer specific routine.. 4815.37 BogoMIPS (lpj=2407686)
Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124)
Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117)
Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405131)
Total of 4 processors activated (19246.11 BogoMIPS).
execution environment 実行環境
Core 2 Quad Q6600

3×10156+7

c139

name 名前Jo Yeong Uk
date 日付September 19, 2007 00:18:49 UTC 2007 年 9 月 19 日 (水) 9 時 18 分 49 秒 (日本時間)
composite number 合成数
2099869167965155124756908942201290754204400058585128654740282907304493380080285074505086695930477835539488663926721378385440839832137666711<139>
prime factors 素因数
23751015386450850890960912782656510193131256880878674102473<59>
88411764036120295668516229411892223895453769985635566390071101529293788597427807<80>
factorization results 素因数分解の結果
Number: 30007_156
N=2099869167965155124756908942201290754204400058585128654740282907304493380080285074505086695930477835539488663926721378385440839832137666711
  ( 139 digits)
SNFS difficulty: 156 digits.
Divisors found:
 r1=23751015386450850890960912782656510193131256880878674102473 (pp59)
 r2=88411764036120295668516229411892223895453769985635566390071101529293788597427807 (pp80)
Version: GGNFS-0.77.1-20050930-nocona
Total time: 24.47 hours.
Scaled time: 52.12 units (timescale=2.130).
Factorization parameters were as follows:
n: 2099869167965155124756908942201290754204400058585128654740282907304493380080285074505086695930477835539488663926721378385440839832137666711
m: 10000000000000000000000000000000
c5: 30
c0: 7
skew: 0.75
type: snfs
Factor base limits: 3000000/3000000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 48/48
Sieved algebraic special-q in [1500000, 3000001)
Primes: RFBsize:216816, AFBsize:216451, largePrimes:5637735 encountered
Relations: rels:5545407, finalFF:494569
Max relations in full relation-set: 28
Initial matrix: 433334 x 494569 with sparse part having weight 41922437.
Pruned matrix : 408265 x 410495 with weight 30955997.
Total sieving time: 23.46 hours.
Total relation processing time: 0.09 hours.
Matrix solve time: 0.88 hours.
Time per square root: 0.05 hours.
Prototype def-par.txt line would be:
snfs,156,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000
total time: 24.47 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Memory: 8167564k/8912896k available (2106k kernel code, 0k reserved, 1299k data, 196k init)
Calibrating delay using timer specific routine.. 4815.37 BogoMIPS (lpj=2407686)
Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124)
Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117)
Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405131)
Total of 4 processors activated (19246.11 BogoMIPS).
execution environment 実行環境
Core 2 Quad Q6600

3×10158+7

c139

name 名前Robert Backstrom
date 日付September 25, 2007 14:28:52 UTC 2007 年 9 月 25 日 (火) 23 時 28 分 52 秒 (日本時間)
composite number 合成数
6251359349339630621166108381490606750376571670303750482199645475819777412486638575944263953290323590162412366640843654132109482845536183747<139>
prime factors 素因数
252655059854571780687683274450095709673880513<45>
24742664377819752522172823349240990874103759568271850621675059742047926996980289580771977958019<95>
factorization results 素因数分解の結果
Number: n
N=6251359349339630621166108381490606750376571670303750482199645475819777412486638575944263953290323590162412366640843654132109482845536183747
  ( 139 digits)
SNFS difficulty: 158 digits.
Divisors found:
 r1=252655059854571780687683274450095709673880513 (pp45)
 r2=24742664377819752522172823349240990874103759568271850621675059742047926996980289580771977958019 (pp95)
Version: GGNFS-0.77.1-20051202-athlon
Total time: 32.13 hours.
Scaled time: 46.40 units (timescale=1.444).
Factorization parameters were as follows:
name: KA_3_0_157_7
n: 6251359349339630621166108381490606750376571670303750482199645475819777412486638575944263953290323590162412366640843654132109482845536183747
skew: 0.30
deg: 5
c5: 3000
c0: 7
m: 10000000000000000000000000000000
type: snfs
rlim: 2500000
alim: 2500000
lpbr: 28
lpba: 28
mfbr: 48
mfba: 48
rlambda: 2.5
alambda: 2.5
qintsize: 50000
Factor base limits: 2500000/2500000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 48/48
Sieved algebraic special-q in [100000, 1500001)
Primes: RFBsize:183072, AFBsize:183021, largePrimes:7139599 encountered
Relations: rels:6634469, finalFF:457174
Max relations in full relation-set: 28
Initial matrix: 366160 x 457174 with sparse part having weight 40338936.
Pruned matrix : 305523 x 307417 with weight 25494270.
Total sieving time: 28.79 hours.
Total relation processing time: 0.22 hours.
Matrix solve time: 2.99 hours.
Total square root time: 0.12 hours, sqrts: 2.
Prototype def-par.txt line would be:
snfs,158,5,0,0,0,0,0,0,0,0,2500000,2500000,28,28,48,48,2.5,2.5,100000
total time: 32.13 hours.
 --------- CPU info (if available) ----------

Cygwin on AMD 64 3400+

3×10160+7

c114

name 名前Sinkiti Sibata
date 日付September 10, 2007 03:26:16 UTC 2007 年 9 月 10 日 (月) 12 時 26 分 16 秒 (日本時間)
composite number 合成数
537246359061660705186390632240506481498326672090893936382168433356729665263223577193112313073083261784303227993949<114>
prime factors 素因数
168821492926505124753835321037510889107<39>
3182333894509189879957908738033612846872644789961813377047250471481774358607<76>
factorization results 素因数分解の結果
Number: 30007_160
N=537246359061660705186390632240506481498326672090893936382168433356729665263223577193112313073083261784303227993949
  ( 114 digits)
SNFS difficulty: 160 digits.
Divisors found:
 r1=168821492926505124753835321037510889107 (pp39)
 r2=3182333894509189879957908738033612846872644789961813377047250471481774358607 (pp76)
Version: GGNFS-0.77.1-20060722-pentium4
Total time: 62.61 hours.
Scaled time: 42.82 units (timescale=0.684).
Factorization parameters were as follows:
name: 30007_160
n: 537246359061660705186390632240506481498326672090893936382168433356729665263223577193112313073083261784303227993949
m: 100000000000000000000000000000000
c5: 3
c0: 7
skew: 1.18
type: snfs
Factor base limits: 4000000/4000000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 48/48
Sieved algebraic special-q in [2000000, 3500001)
Primes: RFBsize:283146, AFBsize:282807, largePrimes:5650728 encountered
Relations: rels:5709851, finalFF:639843
Max relations in full relation-set: 0
Initial matrix: 566018 x 639843 with sparse part having weight 34788105.
Pruned matrix : 505676 x 508570 with weight 25305535.
Total sieving time: 53.13 hours.
Total relation processing time: 0.27 hours.
Matrix solve time: 9.00 hours.
Time per square root: 0.20 hours.
Prototype def-par.txt line would be:
snfs,160,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,48,48,2.3,2.3,100000
total time: 62.61 hours.
 --------- CPU info (if available) ----------
execution environment 実行環境
Pentium 4 2.4GHz, Windows XP and Cygwin)

3×10162+7

c163

name 名前Jo Yeong Uk
date 日付September 13, 2007 23:20:42 UTC 2007 年 9 月 14 日 (金) 8 時 20 分 42 秒 (日本時間)
composite number 合成数
3000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000007<163>
prime factors 素因数
3733216672222512252402080024047876262175838601063<49>
1801107624738145935914817354265795383914325232132040341<55>
446167973934504101158694839309139582095409259666991720176029<60>
factorization results 素因数分解の結果
Number: 30007_162
N=3000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000007
  ( 163 digits)
SNFS difficulty: 162 digits.
Divisors found:
 r1=3733216672222512252402080024047876262175838601063 (pp49)
 r2=1801107624738145935914817354265795383914325232132040341 (pp55)
 r3=446167973934504101158694839309139582095409259666991720176029 (pp60)
Version: GGNFS-0.77.1-20050930-nocona
Total time: 43.21 hours.
Scaled time: 91.29 units (timescale=2.113).
Factorization parameters were as follows:
n: 3000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000007
m: 100000000000000000000000000000000
c5: 300
c0: 7
skew: 0.47
type: snfs
Factor base limits: 5000000/5000000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 48/48
Sieved algebraic special-q in [2500000, 4800001)
Primes: RFBsize:348513, AFBsize:348181, largePrimes:5776537 encountered
Relations: rels:5923973, finalFF:791467
Max relations in full relation-set: 28
Initial matrix: 696760 x 791467 with sparse part having weight 43570598.
Pruned matrix : 617703 x 621250 with weight 30629496.
Total sieving time: 41.23 hours.
Total relation processing time: 0.12 hours.
Matrix solve time: 1.80 hours.
Time per square root: 0.06 hours.
Prototype def-par.txt line would be:
snfs,162,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,48,48,2.5,2.5,100000
total time: 43.21 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Memory: 8167564k/8912896k available (2106k kernel code, 0k reserved, 1299k data, 196k init)
Calibrating delay using timer specific routine.. 4815.36 BogoMIPS (lpj=2407683)
Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124)
Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117)
Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405128)
Total of 4 processors activated (19246.10 BogoMIPS).
execution environment 実行環境
Core 2 Quad Q6600

3×10164+7

c102

name 名前JMB
date 日付September 4, 2007 23:16:14 UTC 2007 年 9 月 5 日 (水) 8 時 16 分 14 秒 (日本時間)
composite number 合成数
512814904614077776692574050997711484708618685356968634840171856531176627146078096975306329425623619881<102>
prime factors 素因数
85121969595848139659769186241637634013<38>
6024471790877011640388025283913980838326383051453673075231227837<64>
factorization results 素因数分解の結果
 r1=85121969595848139659769186241637634013 (pp38)
 r2=6024471790877011640388025283913980838326383051453673075231227837 (pp64)

3×10165+7

c132

name 名前matsui
date 日付March 9, 2008 00:46:11 UTC 2008 年 3 月 9 日 (日) 9 時 46 分 11 秒 (日本時間)
composite number 合成数
192812738483846806238630987193800388580669468550195254565079242547722043989395273633963041899135344900887963261307880863289858512843<132>
prime factors 素因数
7814625344423111337812529497145365416512918941<46>
24673318295604171900567002523536315906661600240732917021551158395138773289853506329223<86>
factorization results 素因数分解の結果
N=192812738483846806238630987193800388580669468550195254565079242547722043989395273633963041899135344900887963261307880863289858512843
  ( 132 digits)

SNFS difficulty: 165 digits.

Divisors found:

 r1=7814625344423111337812529497145365416512918941 (pp46)

 r2=24673318295604171900567002523536315906661600240732917021551158395138773289853506329223 (pp86)

Version: GGNFS-0.77.1-20060513-prescott

Total time: 90.67 hours.

Scaled time: 154.22 units (timescale=1.701).

Factorization parameters were as follows:

n: 192812738483846806238630987193800388580669468550195254565079242547722043989395273633963041899135344900887963261307880863289858512843
m: 1000000000000000000000000000000000
c5: 3
c0: 7
skew: 1.18
type: snfs


Factor base limits: 5000000/5000000

Large primes per side: 3

Large prime bits: 27/27

Max factor residue bits: 48/48

Sieved algebraic special-q in [2500000, 5000001)

Primes: RFBsize:348513, AFBsize:347701, largePrimes:5840417 encountered

Relations: rels:6040079, finalFF:838247

Max relations in full relation-set: 28

Initial matrix: 696279 x 838247 with sparse part having weight 46329810.

Pruned matrix : 579285 x 582830 with weight 31436435.

Total sieving time: 86.39 hours.

Total relation processing time: 0.18 hours.

Matrix solve time: 3.93 hours.

Time per square root: 0.17 hours.

Prototype def-par.txt line would be:

snfs,165,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,48,48,2.5,2.5,100000

total time: 90.67 hours.

3×10167+7

c134

name 名前Robert Backstrom
date 日付February 6, 2008 18:07:08 UTC 2008 年 2 月 7 日 (木) 3 時 7 分 8 秒 (日本時間)
composite number 合成数
30451829822905436735059682563121102534892950342327345505533783229070793647665990526035086500981787191796384524371986129294169631268237<134>
prime factors 素因数
1357442863346680718028321638854705863851<40>
22433231368448594492739585313305402233259675370737675880559365524717784659590253895181940293287<95>
factorization results 素因数分解の結果
GMP-ECM 6.0 [powered by GMP 4.1.4] [ECM]
Input number is 30451829822905436735059682563121102534892950342327345505533783229070793647665990526035086500981787191796384524371986129294169631268237 (134 digits)
Using B1=2230000, B2=2632214237, polynomial Dickson(6), sigma=3075737986
Step 1 took 20183ms
Step 2 took 10181ms
********** Factor found in step 2: 1357442863346680718028321638854705863851
Found probable prime factor of 40 digits: 1357442863346680718028321638854705863851
Probable prime cofactor 22433231368448594492739585313305402233259675370737675880559365524717784659590253895181940293287 has 95 digits

3×10168+7

c152

name 名前Robert Backstrom
date 日付July 6, 2008 20:43:44 UTC 2008 年 7 月 7 日 (月) 5 時 43 分 44 秒 (日本時間)
composite number 合成数
14161253032867268200456854209951828454345061458914538796845639216326800017761514121711220530384697406593320683898998558239446506333949451311352948292037<152>
prime factors 素因数
68134668790873592384459578322644469894232860523283147276193<59>
207842105702935771469899396383940505601339931626765063877009064283675813950588095504388659109<93>
factorization results 素因数分解の結果
Number: n
N=14161253032867268200456854209951828454345061458914538796845639216326800017761514121711220530384697406593320683898998558239446506333949451311352948292037
  ( 152 digits)
SNFS difficulty: 168 digits.
Divisors found:

Mon Jul 07 06:38:48 2008  prp59 factor: 68134668790873592384459578322644469894232860523283147276193
Mon Jul 07 06:38:48 2008  prp93 factor: 207842105702935771469899396383940505601339931626765063877009064283675813950588095504388659109
Mon Jul 07 06:38:48 2008  elapsed time 01:31:51 (Msieve 1.36)

Version: GGNFS-0.77.1-20051202-athlon
Total time: 52.57 hours.
Scaled time: 96.15 units (timescale=1.829).
Factorization parameters were as follows:
name: KA_3_0_167_7
n: 14161253032867268200456854209951828454345061458914538796845639216326800017761514121711220530384697406593320683898998558239446506333949451311352948292037
skew: 0.30
deg: 5
c5: 3000
c0: 7
m: 1000000000000000000000000000000000
type: snfs
rlim: 5500000
alim: 5500000
lpbr: 28
lpba: 28
mfbr: 48
mfba: 48
rlambda: 2.5
alambda: 2.5
qintsize: 100000
Factor base limits: 5500000/5500000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 48/48
Sieved  special-q in [100000, 3200129)
Primes: RFBsize:380800, AFBsize:380817, largePrimes:7815275 encountered
Relations: rels:7399067, finalFF:765549
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 
Total sieving time: 52.37 hours.
Total relation processing time: 0.20 hours.
Matrix solve time: 0.00 hours.
Total square root time: 0.00 hours, sqrts: 0.
Prototype def-par.txt line would be:
snfs,168,5,0,0,0,0,0,0,0,0,5500000,5500000,28,28,48,48,2.5,2.5,100000
total time: 52.57 hours.
 --------- CPU info (if available) ----------

Cygwin on AMD 64 X2 6000+

3×10169+7

c168

name 名前Jo Yeong Uk
date 日付September 23, 2007 05:53:00 UTC 2007 年 9 月 23 日 (日) 14 時 53 分 0 秒 (日本時間)
composite number 合成数
810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810811<168>
prime factors 素因数
321485385345676762706421506544388644469<39>
2522076734340466176982866611144735500345304211081851607078673956180783695480227990278425308960588927381717464690492823021851851119<130>
factorization results 素因数分解の結果
GMP-ECM 6.1.3 [powered by GMP 4.2.2] [ECM]
Input number is 810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810811 (168 digits)
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=769407356
Step 1 took 8595ms
Step 2 took 4747ms
********** Factor found in step 2: 321485385345676762706421506544388644469
Found probable prime factor of 39 digits: 321485385345676762706421506544388644469
Probable prime cofactor 2522076734340466176982866611144735500345304211081851607078673956180783695480227990278425308960588927381717464690492823021851851119 has 130 digits
execution environment 実行環境
Core 2 Quad Q6600

3×10170+7

c141

name 名前Serge Batalov
date 日付November 5, 2008 18:43:57 UTC 2008 年 11 月 6 日 (木) 3 時 43 分 57 秒 (日本時間)
composite number 合成数
646693981236667522389584237654366407875221788717974285764394693434647990177604896070899093925014128846041367813074214479167782278715807632503<141>
prime factors 素因数
351770377281652245322691967098920378125785292375511986421626711343961<69>
1838398065903311066272707877014113500727599586799929165989126913413817423<73>
factorization results 素因数分解の結果
SNFS difficulty: 170 digits.
Divisors found:
 r1=351770377281652245322691967098920378125785292375511986421626711343961
 r2=1838398065903311066272707877014113500727599586799929165989126913413817423
Version:
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.529).
Factorization parameters were as follows:
n: 646693981236667522389584237654366407875221788717974285764394693434647990177604896070899093925014128846041367813074214479167782278715807632503
m: 10000000000000000000000000000000000
deg: 5
c5: 3
c0: 7
skew: 1.18
type: snfs
lss: 1
rlim: 5100000
alim: 5100000
lpbr: 27
lpba: 27
mfbr: 52
mfba: 52
rlambda: 2.6
alambda: 2.6
Factor base limits: 5100000/5100000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 52/52
Sieved rational special-q in [2550000, 4550001)
Primes: rational ideals reading, algebraic ideals reading,
Relations: relations
Max relations in full relation-set:
Initial matrix:
Pruned matrix : 944170 x 944418
Total sieving time: 0.00 hours.
Total relation processing time: 0.00 hours.
Matrix solve time: 0.00 hours.
Time per square root: 0.00 hours.
Prototype def-par.txt line would be:
snfs,170,5,0,0,0,0,0,0,0,0,5100000,5100000,27,27,52,52,2.6,2.6,100000
total time: 35.00 hours.
software ソフトウェア
Msieve-1.38
execution environment 実行環境
Opteron-2.6GHz; Linux x86_64

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaSeptember 3, 2007 09:00:00 UTC 2007 年 9 月 3 日 (月) 18 時 0 分 0 秒 (日本時間)

3×10171+7

c172

name 名前Jo Yeong Uk
date 日付September 6, 2007 23:30:03 UTC 2007 年 9 月 7 日 (金) 8 時 30 分 3 秒 (日本時間)
composite number 合成数
3000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000007<172>
prime factors 素因数
31620332097111024989233352721851562907652707<44>
composite cofactor 合成数の残り
94875663885708949340722098875716958576811202800602452263648706419261724778781975587671373398601569684090092604704674588003973901<128>
factorization results 素因数分解の結果
GMP-ECM 6.1.2 [powered by GMP 4.2.1] [ECM]
Input number is 3000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000007 (172 digits)
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=4020180606
Step 1 took 25701ms
Step 2 took 11522ms
********** Factor found in step 2: 31620332097111024989233352721851562907652707
Found probable prime factor of 44 digits: 31620332097111024989233352721851562907652707
Composite cofactor 94875663885708949340722098875716958576811202800602452263648706419261724778781975587671373398601569684090092604704674588003973901 has 128 digits
execution environment 実行環境
Core 2 Quad Q6600

c128

name 名前Jeff Gilchrist
date 日付April 13, 2009 10:33:22 UTC 2009 年 4 月 13 日 (月) 19 時 33 分 22 秒 (日本時間)
composite number 合成数
94875663885708949340722098875716958576811202800602452263648706419261724778781975587671373398601569684090092604704674588003973901<128>
prime factors 素因数
119542069001731768208656345412449977669924073427695871<54>
793659208661801859516537543036477671956372358203480550399351605739016658931<75>
factorization results 素因数分解の結果
Number: 30007_171
N=94875663885708949340722098875716958576811202800602452263648706419261724778781975587671373398601569684090092604704674588003973901
  ( 128 digits)
SNFS difficulty: 171 digits.
Divisors found:
 r1=119542069001731768208656345412449977669924073427695871 (pp54)
 r2=793659208661801859516537543036477671956372358203480550399351605739016658931 (pp75)
Version: Msieve-1.41
Total time: 44.42 hours.
Scaled time: 163.50 units (timescale=3.681).
Factorization parameters were as follows:
n: 94875663885708949340722098875716958576811202800602452263648706419261724778781975587671373398601569684090092604704674588003973901
m: 10000000000000000000000000000000000
deg: 5
c5: 30
c0: 7
skew: 0.75
type: snfs
lss: 1
rlim: 5000000
alim: 5000000
lpbr: 27
lpba: 27
mfbr: 52
mfba: 52
rlambda: 2.4
alambda: 2.4
Factor base limits: 5000000/5000000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 52/52
Sieved rational special-q in [2500000, 5700001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 982062 x 982310
Total sieving time: 43.42 hours.
Total relation processing time: 0.08 hours.
Matrix solve time: 0.84 hours.
Time per square root: 0.07 hours.
Prototype def-par.txt line would be:
snfs,171.000,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,52,52,2.4,2.4,100000
total time: 44.42 hours.
 --------- CPU info (if available) ----------
software ソフトウェア
GGNFS & Msieve 1.41
execution environment 実行環境
Intel Core2 Q9550 @ 3.4GHz in Vista 64bit 

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaSeptember 3, 2007 09:00:00 UTC 2007 年 9 月 3 日 (月) 18 時 0 分 0 秒 (日本時間)
351e6168 / 825Max DettweilerMarch 7, 2009 18:46:31 UTC 2009 年 3 月 8 日 (日) 3 時 46 分 31 秒 (日本時間)

3×10173+7

c153

name 名前Lionel Debroux
date 日付September 24, 2009 11:54:39 UTC 2009 年 9 月 24 日 (木) 20 時 54 分 39 秒 (日本時間)
composite number 合成数
351439531907436124055536444128806791254168353017680566366500535357910840702470719997506193679475389903251705103144679714049115729736189648524865875756409<153>
prime factors 素因数
273075549184718167710054152780236687<36>
1286968141075529714067699681620509401294955843542948675197022676011814934805266689072732719905213815274493968019250807<118>
factorization results 素因数分解の結果
GMP-ECM 6.2.3 [powered by GMP 4.2.2] [ECM]
Input number is 351439531907436124055536444128806791254168353017680566366500535357910840702470719997506193679475389903251705103144679714049115729736189648524865875756409 (153 digits)
Run 228 out of 900:
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=4028931106
Step 1 took 6076ms
********** Factor found in step 1: 273075549184718167710054152780236687
Found probable prime factor of 36 digits: 273075549184718167710054152780236687
Probable prime cofactor 1286968141075529714067699681620509401294955843542948675197022676011814934805266689072732719905213815274493968019250807 has 118 digits
software ソフトウェア
GMP-ECM 6.2.3
execution environment 実行環境
SimplyMEPIS 8 (~Debian Lenny) x86_64 running on a Core 2 Duo T7200.

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaSeptember 3, 2007 09:00:00 UTC 2007 年 9 月 3 日 (月) 18 時 0 分 0 秒 (日本時間)

3×10174+7

c111

name 名前JMB
date 日付September 6, 2007 01:04:17 UTC 2007 年 9 月 6 日 (木) 10 時 4 分 17 秒 (日本時間)
composite number 合成数
977838203636969263622248987068537357449295333609103753437784788553386921946103919242214810477100330081440276743<111>
prime factors 素因数
83101205384307732797112639371594904845329<41>
11766835380003014836384610732539311187782328395943642994305646727529367<71>
factorization results 素因数分解の結果
Number: N
N=977838203636969263622248987068537357449295333609103753437784788553386921946103919242214810477100330081440276743
  ( 111 digits)
Divisors found:
 r1=83101205384307732797112639371594904845329 (pp41)
 r2=11766835380003014836384610732539311187782328395943642994305646727529367 (pp71)
Version: GGNFS-0.77.1-20060513-pentium4
Total time: 48.39 hours.
Scaled time: 43.21 units (timescale=0.893).
Factorization parameters were as follows:
name: N
n: 977838203636969263622248987068537357449295333609103753437784788553386921946103919242214810477100330081440276743
skew: 37355.45
# norm 3.46e+15
c5: 34020
c4: -62247927
c3: 40964358765630
c2: -919130756124140464
c1: -117696980178055287871024
c0: -943686829374413022658503360
# alpha -6.74
Y1: 512727852197
Y0: -1957521676766462803349
# Murphy_E 8.69e-10
# M 429058690311523254003492787243369289356028090221678835208754814859752251708490910300982484190538642312749052680
type: gnfs
rlim: 3200000
alim: 3200000
lpbr: 27
lpba: 27
mfbr: 50
mfba: 50
rlambda: 2.6
alambda: 2.6
qintsize: 10000
Factor base limits: 3200000/3200000
Large primes per side: 3
Large prime bits: 27/27
Sieved special-q in [1600000, 1900001)
Relations: rels:7170449, finalFF:547721
Initial matrix: 460925 x 547721 with sparse part having weight 44666784.
Pruned matrix : 422725 x 425093 with weight 25906024.
Total sieving time: 40.38 hours.
Total relation processing time: 0.41 hours.
Matrix solve time: 7.33 hours.
Time per square root: 0.25 hours.
Prototype def-par.txt line would be:
gnfs,110,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,3200000,27,27,50,50,2.6,2.6,10000
total time: 48.39 hours.
 --------- CPU info (if available) ----------

3×10178+7

c140

name 名前Youcef Lemsafer
date 日付November 1, 2012 18:56:00 UTC 2012 年 11 月 2 日 (金) 3 時 56 分 0 秒 (日本時間)
composite number 合成数
14529675071403254841225278617910509689733028748277272282784208405123742248283980761855178227443398649366771148497951591335521236709103978551<140>
prime factors 素因数
142740304627110833486422688998330293019789397894891<51>
101790977042959291906914808841036511141159577020041503769999368278340596550847833365932261<90>
factorization results 素因数分解の結果
Wed Oct 31 17:09:39 2012 -> factmsieve.py (v0.76)
Wed Oct 31 17:09:39 2012 -> This is client 1 of 1
Wed Oct 31 17:09:39 2012 -> Running on 4 Cores with 2 hyper-threads per Core
Wed Oct 31 17:09:39 2012 -> Working with NAME = 30007_178
Wed Oct 31 17:09:39 2012 -> Selected lattice siever: gnfs-lasieve4I13e
Wed Oct 31 17:09:39 2012 -> Creating param file to detect parameter changes...
Wed Oct 31 17:09:39 2012 -> Running setup ...
Wed Oct 31 17:09:39 2012 -> Estimated minimum relations needed: 1.43596e+07
Wed Oct 31 17:09:39 2012 -> cleaning up before a restart
Wed Oct 31 17:09:39 2012 -> Running lattice siever ...
Wed Oct 31 17:43:52 2012 Found 464731 relations, 3.2% of the estimated minimum (14359617).
Wed Oct 31 18:49:29 2012 Found 1384035 relations, 9.6% of the estimated minimum (14359617).
Wed Oct 31 20:29:22 2012 Found 2768772 relations, 19.3% of the estimated minimum (14359617).
Wed Oct 31 21:35:37 2012 Found 3688989 relations, 25.7% of the estimated minimum (14359617).
Wed Oct 31 22:42:19 2012 Found 4596849 relations, 32.0% of the estimated minimum (14359617).
Wed Oct 31 23:49:39 2012 Found 5506432 relations, 38.3% of the estimated minimum (14359617).
Thu Nov 01 00:23:33 2012 Found 5956527 relations, 41.5% of the estimated minimum (14359617).
Thu Nov 01 00:57:33 2012 Found 6407467 relations, 44.6% of the estimated minimum (14359617).
Thu Nov 01 02:05:56 2012 Found 7307892 relations, 50.9% of the estimated minimum (14359617).
Thu Nov 01 02:40:02 2012 Found 7754863 relations, 54.0% of the estimated minimum (14359617).
Thu Nov 01 03:47:56 2012 Found 8637372 relations, 60.2% of the estimated minimum (14359617).
Thu Nov 01 04:58:13 2012 Found 9525073 relations, 66.3% of the estimated minimum (14359617).
Thu Nov 01 06:08:06 2012 Found 10401920 relations, 72.4% of the estimated minimum (14359617).
Thu Nov 01 07:16:23 2012 Found 11272022 relations, 78.5% of the estimated minimum (14359617).
Thu Nov 01 08:26:10 2012 Found 12146063 relations, 84.6% of the estimated minimum (14359617).
Thu Nov 01 09:35:21 2012 Found 13011790 relations, 90.6% of the estimated minimum (14359617).
Thu Nov 01 10:10:37 2012 Found 13444699 relations, 93.6% of the estimated minimum (14359617).
Thu Nov 01 11:38:09 2012 Found 14299495 relations, 99.6% of the estimated minimum (14359617).
Thu Nov 01 12:19:19 2012 Found 14728539 relations, 102.6% of the estimated minimum (14359617).
Thu Nov 01 13:07:45 2012 Found 15831024 relations, 110.2% of the estimated minimum (14359617).
Thu Nov 01 13:55:41 2012 Found 16258734 relations, 113.2% of the estimated minimum (14359617).
Thu Nov 01 14:44:43 2012 Found 16686826 relations, 116.2% of the estimated minimum (14359617).
Thu Nov 01 15:32:30 2012 Found 17112154 relations, 119.2% of the estimated minimum (14359617).
Thu Nov 01 16:22:43 2012 Found 17534510 relations, 122.1% of the estimated minimum (14359617).
Thu Nov 01 17:12:46 2012 Found 17951315 relations, 125.0% of the estimated minimum (14359617).
Thu Nov 01 17:12:46 2012  
Thu Nov 01 17:12:46 2012  
Thu Nov 01 17:12:46 2012  Msieve v. 1.50 (SVN 708)
Thu Nov 01 17:12:46 2012  random seeds: cc0ee700 b76afcb8
Thu Nov 01 17:12:46 2012  factoring 14529675071403254841225278617910509689733028748277272282784208405123742248283980761855178227443398649366771148497951591335521236709103978551 (140 digits)
Thu Nov 01 17:12:47 2012  searching for 15-digit factors
Thu Nov 01 17:12:48 2012  commencing number field sieve (140-digit input)
Thu Nov 01 17:12:48 2012  R0: -100000000000000000000000000000000000
Thu Nov 01 17:12:48 2012  R1: 1
Thu Nov 01 17:12:48 2012  A0: 7
Thu Nov 01 17:12:48 2012  A1: 0
Thu Nov 01 17:12:48 2012  A2: 0
Thu Nov 01 17:12:48 2012  A3: 0
Thu Nov 01 17:12:48 2012  A4: 0
Thu Nov 01 17:12:48 2012  A5: 3000
Thu Nov 01 17:12:48 2012  skew 0.30, size 2.137e-012, alpha -0.621, combined = 1.309e-010 rroots = 1
Thu Nov 01 17:12:48 2012  
Thu Nov 01 17:12:48 2012  commencing relation filtering
Thu Nov 01 17:12:48 2012  estimated available RAM is 4096.0 MB
Thu Nov 01 17:12:48 2012  commencing duplicate removal, pass 1
Thu Nov 01 17:14:26 2012  found 2268215 hash collisions in 17951314 relations
Thu Nov 01 17:14:56 2012  added 1993 free relations
Thu Nov 01 17:14:56 2012  commencing duplicate removal, pass 2
Thu Nov 01 17:15:06 2012  found 1547154 duplicates and 16406153 unique relations
Thu Nov 01 17:15:06 2012  memory use: 82.6 MB
Thu Nov 01 17:15:06 2012  reading ideals above 720000
Thu Nov 01 17:15:06 2012  commencing singleton removal, initial pass
Thu Nov 01 17:17:03 2012  memory use: 376.5 MB
Thu Nov 01 17:17:03 2012  reading all ideals from disk
Thu Nov 01 17:17:03 2012  memory use: 497.2 MB
Thu Nov 01 17:17:05 2012  keeping 18885636 ideals with weight <= 200, target excess is 115983
Thu Nov 01 17:17:06 2012  commencing in-memory singleton removal
Thu Nov 01 17:17:07 2012  begin with 16406153 relations and 18885636 unique ideals
Thu Nov 01 17:17:17 2012  reduce to 5539360 relations and 5342450 ideals in 19 passes
Thu Nov 01 17:17:17 2012  max relations containing the same ideal: 87
Thu Nov 01 17:17:20 2012  removing 424839 relations and 393654 ideals in 31185 cliques
Thu Nov 01 17:17:20 2012  commencing in-memory singleton removal
Thu Nov 01 17:17:20 2012  begin with 5114521 relations and 5342450 unique ideals
Thu Nov 01 17:17:24 2012  reduce to 5087107 relations and 4921132 ideals in 9 passes
Thu Nov 01 17:17:24 2012  max relations containing the same ideal: 86
Thu Nov 01 17:17:26 2012  removing 305969 relations and 274784 ideals in 31185 cliques
Thu Nov 01 17:17:26 2012  commencing in-memory singleton removal
Thu Nov 01 17:17:26 2012  begin with 4781138 relations and 4921132 unique ideals
Thu Nov 01 17:17:29 2012  reduce to 4765478 relations and 4630581 ideals in 9 passes
Thu Nov 01 17:17:29 2012  max relations containing the same ideal: 79
Thu Nov 01 17:17:32 2012  relations with 0 large ideals: 2877
Thu Nov 01 17:17:32 2012  relations with 1 large ideals: 1632
Thu Nov 01 17:17:32 2012  relations with 2 large ideals: 25790
Thu Nov 01 17:17:32 2012  relations with 3 large ideals: 170591
Thu Nov 01 17:17:32 2012  relations with 4 large ideals: 598711
Thu Nov 01 17:17:32 2012  relations with 5 large ideals: 1194366
Thu Nov 01 17:17:32 2012  relations with 6 large ideals: 1430757
Thu Nov 01 17:17:32 2012  relations with 7+ large ideals: 1340754
Thu Nov 01 17:17:32 2012  commencing 2-way merge
Thu Nov 01 17:17:35 2012  reduce to 2700755 relation sets and 2565858 unique ideals
Thu Nov 01 17:17:35 2012  commencing full merge
Thu Nov 01 17:18:15 2012  memory use: 255.7 MB
Thu Nov 01 17:18:15 2012  found 1352908 cycles, need 1338058
Thu Nov 01 17:18:15 2012  weight of 1338058 cycles is about 93877892 (70.16/cycle)
Thu Nov 01 17:18:15 2012  distribution of cycle lengths:
Thu Nov 01 17:18:15 2012  1 relations: 181629
Thu Nov 01 17:18:15 2012  2 relations: 164780
Thu Nov 01 17:18:15 2012  3 relations: 157756
Thu Nov 01 17:18:15 2012  4 relations: 137497
Thu Nov 01 17:18:15 2012  5 relations: 119485
Thu Nov 01 17:18:15 2012  6 relations: 101108
Thu Nov 01 17:18:15 2012  7 relations: 85893
Thu Nov 01 17:18:15 2012  8 relations: 71917
Thu Nov 01 17:18:15 2012  9 relations: 59485
Thu Nov 01 17:18:15 2012  10+ relations: 258508
Thu Nov 01 17:18:15 2012  heaviest cycle: 24 relations
Thu Nov 01 17:18:15 2012  commencing cycle optimization
Thu Nov 01 17:18:17 2012  start with 7923526 relations
Thu Nov 01 17:18:31 2012  pruned 152050 relations
Thu Nov 01 17:18:31 2012  memory use: 214.7 MB
Thu Nov 01 17:18:31 2012  distribution of cycle lengths:
Thu Nov 01 17:18:31 2012  1 relations: 181629
Thu Nov 01 17:18:31 2012  2 relations: 167983
Thu Nov 01 17:18:31 2012  3 relations: 162188
Thu Nov 01 17:18:31 2012  4 relations: 139882
Thu Nov 01 17:18:31 2012  5 relations: 121659
Thu Nov 01 17:18:31 2012  6 relations: 101602
Thu Nov 01 17:18:31 2012  7 relations: 86028
Thu Nov 01 17:18:31 2012  8 relations: 71336
Thu Nov 01 17:18:31 2012  9 relations: 58776
Thu Nov 01 17:18:31 2012  10+ relations: 246975
Thu Nov 01 17:18:31 2012  heaviest cycle: 24 relations
Thu Nov 01 17:18:32 2012  RelProcTime: 344
Thu Nov 01 17:18:32 2012  elapsed time 00:05:46
Thu Nov 01 17:18:32 2012 LatSieveTime: 3082.19
Thu Nov 01 17:18:32 2012 -> Running matrix solving step ...
Thu Nov 01 17:18:32 2012  
Thu Nov 01 17:18:32 2012  
Thu Nov 01 17:18:32 2012  Msieve v. 1.50 (SVN 708)
Thu Nov 01 17:18:32 2012  random seeds: 7106f8a8 20302700
Thu Nov 01 17:18:32 2012  factoring 14529675071403254841225278617910509689733028748277272282784208405123742248283980761855178227443398649366771148497951591335521236709103978551 (140 digits)
Thu Nov 01 17:18:33 2012  searching for 15-digit factors
Thu Nov 01 17:18:34 2012  commencing number field sieve (140-digit input)
Thu Nov 01 17:18:34 2012  R0: -100000000000000000000000000000000000
Thu Nov 01 17:18:34 2012  R1: 1
Thu Nov 01 17:18:34 2012  A0: 7
Thu Nov 01 17:18:34 2012  A1: 0
Thu Nov 01 17:18:34 2012  A2: 0
Thu Nov 01 17:18:34 2012  A3: 0
Thu Nov 01 17:18:34 2012  A4: 0
Thu Nov 01 17:18:34 2012  A5: 3000
Thu Nov 01 17:18:34 2012  skew 0.30, size 2.137e-012, alpha -0.621, combined = 1.309e-010 rroots = 1
Thu Nov 01 17:18:34 2012  
Thu Nov 01 17:18:34 2012  commencing linear algebra
Thu Nov 01 17:18:34 2012  read 1338058 cycles
Thu Nov 01 17:18:37 2012  cycles contain 4606816 unique relations
Thu Nov 01 17:19:01 2012  read 4606816 relations
Thu Nov 01 17:19:07 2012  using 20 quadratic characters above 268434822
Thu Nov 01 17:19:28 2012  building initial matrix
Thu Nov 01 17:20:18 2012  memory use: 522.8 MB
Thu Nov 01 17:20:19 2012  read 1338058 cycles
Thu Nov 01 17:20:20 2012  matrix is 1337876 x 1338058 (382.2 MB) with weight 121269102 (90.63/col)
Thu Nov 01 17:20:20 2012  sparse part has weight 90819253 (67.87/col)
Thu Nov 01 17:20:35 2012  filtering completed in 2 passes
Thu Nov 01 17:20:36 2012  matrix is 1334375 x 1334555 (381.9 MB) with weight 121135588 (90.77/col)
Thu Nov 01 17:20:36 2012  sparse part has weight 90770092 (68.02/col)
Thu Nov 01 17:20:39 2012  matrix starts at (0, 0)
Thu Nov 01 17:20:39 2012  matrix is 1334375 x 1334555 (381.9 MB) with weight 121135588 (90.77/col)
Thu Nov 01 17:20:39 2012  sparse part has weight 90770092 (68.02/col)
Thu Nov 01 17:20:39 2012  saving the first 48 matrix rows for later
Thu Nov 01 17:20:40 2012  matrix includes 64 packed rows
Thu Nov 01 17:20:40 2012  matrix is 1334327 x 1334555 (362.3 MB) with weight 96138470 (72.04/col)
Thu Nov 01 17:20:40 2012  sparse part has weight 86973689 (65.17/col)
Thu Nov 01 17:20:40 2012  using block size 65536 for processor cache size 8192 kB
Thu Nov 01 17:20:48 2012  commencing Lanczos iteration (8 threads)
Thu Nov 01 17:20:48 2012  memory use: 373.8 MB
Thu Nov 01 17:20:56 2012  linear algebra at 0.1%, ETA 1h57m
Thu Nov 01 17:20:59 2012  checkpointing every 670000 dimensions
Thu Nov 01 19:13:42 2012  lanczos halted after 21101 iterations (dim = 1334323)
Thu Nov 01 19:13:45 2012  recovered 35 nontrivial dependencies
Thu Nov 01 19:13:45 2012  BLanczosTime: 6911
Thu Nov 01 19:13:45 2012  elapsed time 01:55:13
Thu Nov 01 19:13:45 2012 -> Running square root step ...
Thu Nov 01 19:13:45 2012  
Thu Nov 01 19:13:45 2012  
Thu Nov 01 19:13:45 2012  Msieve v. 1.50 (SVN 708)
Thu Nov 01 19:13:45 2012  random seeds: 01b5fae8 82c59ebe
Thu Nov 01 19:13:45 2012  factoring 14529675071403254841225278617910509689733028748277272282784208405123742248283980761855178227443398649366771148497951591335521236709103978551 (140 digits)
Thu Nov 01 19:13:46 2012  searching for 15-digit factors
Thu Nov 01 19:13:47 2012  commencing number field sieve (140-digit input)
Thu Nov 01 19:13:47 2012  R0: -100000000000000000000000000000000000
Thu Nov 01 19:13:47 2012  R1: 1
Thu Nov 01 19:13:47 2012  A0: 7
Thu Nov 01 19:13:47 2012  A1: 0
Thu Nov 01 19:13:47 2012  A2: 0
Thu Nov 01 19:13:47 2012  A3: 0
Thu Nov 01 19:13:47 2012  A4: 0
Thu Nov 01 19:13:47 2012  A5: 3000
Thu Nov 01 19:13:47 2012  skew 0.30, size 2.137e-012, alpha -0.621, combined = 1.309e-010 rroots = 1
Thu Nov 01 19:13:47 2012  
Thu Nov 01 19:13:47 2012  commencing square root phase
Thu Nov 01 19:13:47 2012  reading relations for dependency 1
Thu Nov 01 19:13:47 2012  read 668132 cycles
Thu Nov 01 19:13:49 2012  cycles contain 2304782 unique relations
Thu Nov 01 19:14:04 2012  read 2304782 relations
Thu Nov 01 19:14:15 2012  multiplying 2304782 relations
Thu Nov 01 19:17:46 2012  multiply complete, coefficients have about 75.50 million bits
Thu Nov 01 19:17:47 2012  initial square root is modulo 263071
Thu Nov 01 19:22:24 2012  GCD is N, no factor found
Thu Nov 01 19:22:24 2012  reading relations for dependency 2
Thu Nov 01 19:22:24 2012  read 666890 cycles
Thu Nov 01 19:22:25 2012  cycles contain 2301214 unique relations
Thu Nov 01 19:22:39 2012  read 2301214 relations
Thu Nov 01 19:22:50 2012  multiplying 2301214 relations
Thu Nov 01 19:26:21 2012  multiply complete, coefficients have about 75.39 million bits
Thu Nov 01 19:26:21 2012  initial square root is modulo 257861
Thu Nov 01 19:30:45 2012  GCD is 1, no factor found
Thu Nov 01 19:30:45 2012  reading relations for dependency 3
Thu Nov 01 19:30:45 2012  read 668118 cycles
Thu Nov 01 19:30:46 2012  cycles contain 2306088 unique relations
Thu Nov 01 19:31:00 2012  read 2306088 relations
Thu Nov 01 19:31:11 2012  multiplying 2306088 relations
Thu Nov 01 19:34:43 2012  multiply complete, coefficients have about 75.55 million bits
Thu Nov 01 19:34:44 2012  initial square root is modulo 264731
Thu Nov 01 19:39:23 2012  sqrtTime: 1536
Thu Nov 01 19:39:23 2012  prp51 factor: 142740304627110833486422688998330293019789397894891
Thu Nov 01 19:39:23 2012  prp90 factor: 101790977042959291906914808841036511141159577020041503769999368278340596550847833365932261
Thu Nov 01 19:39:23 2012  elapsed time 00:25:38
Thu Nov 01 19:39:23 2012 -> Computing 1.3518e+09 scale for this machine...
Thu Nov 01 19:39:23 2012 -> procrels -speedtest> PIPE
Thu Nov 01 19:39:27 2012 -> Factorization summary written to s179-30007_178.txt



Number: 30007_178
N = 14529675071403254841225278617910509689733028748277272282784208405123742248283980761855178227443398649366771148497951591335521236709103978551 (140 digits)
SNFS difficulty: 179 digits.
Divisors found:
r1=142740304627110833486422688998330293019789397894891 (pp51)
r2=101790977042959291906914808841036511141159577020041503769999368278340596550847833365932261 (pp90)
Version: Msieve v. 1.50 (SVN 708)
Total time: 26.58 hours.
Factorization parameters were as follows:
n: 14529675071403254841225278617910509689733028748277272282784208405123742248283980761855178227443398649366771148497951591335521236709103978551
m: 100000000000000000000000000000000000
deg: 5
c5: 3000
c0: 7
skew: 0.30
# Murphy_E = 1.309e-10
type: snfs
lss: 1
rlim: 6600000
alim: 6600000
lpbr: 28
lpba: 28
mfbr: 53
mfba: 53
rlambda: 2.5
alambda: 2.5
Factor base limits: 6600000/6600000
Large primes per side: 3
Large prime bits: 28/28
Sieved rational special-q in [0, 0)
Total raw relations: 17951315
Relations: 2306088 relations
Pruned matrix : 1334327 x 1334555
Polynomial selection time: 0.00 hours.
Total sieving time: 24.14 hours.
Total relation processing time: 0.10 hours.
Matrix solve time: 1.92 hours.
time per square root: 0.43 hours.
Prototype def-par.txt line would be: snfs,179,5,0,0,0,0,0,0,0,0,6600000,6600000,28,28,53,53,2.5,2.5,100000
total time: 26.58 hours.
Intel64 Family 6 Model 26 Stepping 5, GenuineIntel
Windows-7-6.1.7601-SP1
processors: 4, speed: 2.80GHz
software ソフトウェア
GGNFS-SVN430, msieve 1.50 (SVN 408)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaSeptember 3, 2007 09:00:00 UTC 2007 年 9 月 3 日 (月) 18 時 0 分 0 秒 (日本時間)
351e60--
403e62336400Dmitry DomanovApril 5, 2011 06:29:02 UTC 2011 年 4 月 5 日 (火) 15 時 29 分 2 秒 (日本時間)
1936Wataru SakaiJanuary 9, 2012 03:12:19 UTC 2012 年 1 月 9 日 (月) 12 時 12 分 19 秒 (日本時間)
4511e614311331Youcef LemsaferOctober 29, 2012 20:22:39 UTC 2012 年 10 月 30 日 (火) 5 時 22 分 39 秒 (日本時間)
100Youcef LemsaferOctober 31, 2012 19:15:29 UTC 2012 年 11 月 1 日 (木) 4 時 15 分 29 秒 (日本時間)
5043e6720 / 6782120Youcef LemsaferOctober 29, 2012 20:22:39 UTC 2012 年 10 月 30 日 (火) 5 時 22 分 39 秒 (日本時間)
400Youcef LemsaferOctober 31, 2012 04:56:55 UTC 2012 年 10 月 31 日 (水) 13 時 56 分 55 秒 (日本時間)
200Youcef LemsaferOctober 31, 2012 19:15:29 UTC 2012 年 11 月 1 日 (木) 4 時 15 分 29 秒 (日本時間)
5511e7150 / 17405100Youcef LemsaferOctober 31, 2012 04:56:55 UTC 2012 年 10 月 31 日 (水) 13 時 56 分 55 秒 (日本時間)
50Youcef LemsaferOctober 31, 2012 19:15:29 UTC 2012 年 11 月 1 日 (木) 4 時 15 分 29 秒 (日本時間)

3×10180+7

c170

name 名前Robert Backstrom
date 日付February 8, 2012 06:42:54 UTC 2012 年 2 月 8 日 (水) 15 時 42 分 54 秒 (日本時間)
composite number 合成数
21563583241368222576866427340532072240026033917032500767196586027964193736357290116859765943842176993522090981000847861268042428797264078318638652795978758110890108360793<170>
prime factors 素因数
3357886592224964813424893960925970858540249084816807<52>
6421772340762707259521884513510240331991395754693705229521694663499363397052934796480061189870059727049936465643276799<118>
factorization results 素因数分解の結果
Number: n
N=21563583241368222576866427340532072240026033917032500767196586027964193736357290116859765943842176993522090981000847861268042428797264078318638652795978758110890108360793
  ( 170 digits)
SNFS difficulty: 180 digits.
Divisors found:

Wed Feb  8 17:34:33 2012  prp52 factor: 3357886592224964813424893960925970858540249084816807
Wed Feb  8 17:34:33 2012  prp118 factor: 6421772340762707259521884513510240331991395754693705229521694663499363397052934796480061189870059727049936465643276799
Wed Feb  8 17:34:33 2012  elapsed time 02:09:40 (Msieve 1.44 - dependency 2)

Version: 
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=1.650).
Factorization parameters were as follows:
name: KA_30007_180
n: 21563583241368222576866427340532072240026033917032500767196586027964193736357290116859765943842176993522090981000847861268042428797264078318638652795978758110890108360793
m: 1000000000000000000000000000000000000
#  c170, diff: 180.48
skew: 1.18
deg: 5
c5: 3
c0: 7
type: snfs
lss: 1
rlim: 15000000
alim: 15000000
lpbr: 29
lpba: 29
mfbr: 57
mfba: 57
rlambda: 2.5
alambda: 2.5
Factor base limits: 15000000/15000000
Large primes per side: 3
Large prime bits: 29/29
Max factor residue bits: 57/57
Sieved  special-q in [100000, 9000000)
Primes: , , 
Relations: 
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 

Msieve: found 5044380 hash collisions in 76423335 relations (74303456 unique)
Msieve: matrix is 972238 x 972486 (266.6 MB)

Total sieving time: 0.00 hours.
Total relation processing time: 0.00 hours.
Matrix solve time: 0.00 hours.
Total square root time: 0.00 hours, sqrts: 0.
Prototype def-par.txt line would be:
snfs,180,5,0,0,0,0,0,0,0,0,15000000,15000000,29,29,57,57,2.5,2.5,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM) i7 CPU         930  @ 2.80GHz stepping 05
CPU1: Intel(R) Core(TM) i7 CPU         930  @ 2.80GHz stepping 05
CPU2: Intel(R) Core(TM) i7 CPU         930  @ 2.80GHz stepping 05
CPU3: Intel(R) Core(TM) i7 CPU         930  @ 2.80GHz stepping 05
CPU4: Intel(R) Core(TM) i7 CPU         930  @ 2.80GHz stepping 05
CPU5: Intel(R) Core(TM) i7 CPU         930  @ 2.80GHz stepping 05
CPU6: Intel(R) Core(TM) i7 CPU         930  @ 2.80GHz stepping 05
CPU7: Intel(R) Core(TM) i7 CPU         930  @ 2.80GHz stepping 05
Memory: 6059348k/6815744k available (3972k kernel code, 525828k absent, 230568k reserved, 2498k data, 1292k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 5595.06 BogoMIPS (lpj=2797533)
Calibrating delay using timer specific routine.. 5595.11 BogoMIPS (lpj=2797555)
Calibrating delay using timer specific routine.. 5595.11 BogoMIPS (lpj=2797555)
Calibrating delay using timer specific routine.. 5595.11 BogoMIPS (lpj=2797555)
Calibrating delay using timer specific routine.. 5595.10 BogoMIPS (lpj=2797553)
Calibrating delay using timer specific routine.. 5595.10 BogoMIPS (lpj=2797554)
Calibrating delay using timer specific routine.. 5595.10 BogoMIPS (lpj=2797554)
Calibrating delay using timer specific routine.. 5595.11 BogoMIPS (lpj=2797555)
Total of 8 processors activated (44760.82 BogoMIPS).

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaSeptember 3, 2007 09:00:00 UTC 2007 年 9 月 3 日 (月) 18 時 0 分 0 秒 (日本時間)
351e60--
403e6400 / 2336Dmitry DomanovApril 5, 2011 06:29:26 UTC 2011 年 4 月 5 日 (火) 15 時 29 分 26 秒 (日本時間)

3×10182+7

c163

name 名前Youcef Lemsafer
date 日付May 8, 2013 07:55:09 UTC 2013 年 5 月 8 日 (水) 16 時 55 分 9 秒 (日本時間)
composite number 合成数
7087282300014958535979322779394916011998265509434662659349419414458025595938094592333381108061480730014286132862608875574839650142235970941578503922641840774549831<163>
prime factors 素因数
269704249852213941977849110996392473758794465820651509487583869814723723<72>
26277977836457813672653924866477178778975794876037608850035378717787586434503082719743426997<92>
factorization results 素因数分解の結果
Mon May 06 17:24:03 2013 -> factmsieve.py (v0.76)
Mon May 06 17:24:03 2013 -> This is client 1 of 1
Mon May 06 17:24:03 2013 -> Running on 4 Cores with 2 hyper-threads per Core
Mon May 06 17:24:03 2013 -> Working with NAME = 30007_182
Mon May 06 17:24:03 2013 -> Selected lattice siever: gnfs-lasieve4I13e
Mon May 06 17:24:03 2013 -> Creating param file to detect parameter changes...
Mon May 06 17:24:03 2013 -> Running setup ...
Mon May 06 17:24:03 2013 -> Estimated minimum relations needed: 1.63789e+07
Mon May 06 17:24:03 2013 -> cleaning up before a restart
Mon May 06 17:24:03 2013 -> Running lattice siever ...
Mon May 06 17:24:03 2013 -> entering sieving loop
Mon May 06 17:54:44 2013 Found 335161 relations, 2.0% of the estimated minimum (16378937).
Mon May 06 18:25:52 2013 Found 668142 relations, 4.1% of the estimated minimum (16378937).
Mon May 06 19:59:49 2013 Found 1660194 relations, 10.1% of the estimated minimum (16378937).
Mon May 06 23:51:05 2013 Found 3965568 relations, 24.2% of the estimated minimum (16378937).
Tue May 07 01:33:31 2013 Found 4943738 relations, 30.2% of the estimated minimum (16378937).
Tue May 07 03:56:23 2013 Found 6234447 relations, 38.1% of the estimated minimum (16378937).
Tue May 07 05:42:39 2013 Found 7195860 relations, 43.9% of the estimated minimum (16378937).
Tue May 07 06:17:16 2013 Found 7516689 relations, 45.9% of the estimated minimum (16378937).
Tue May 07 08:00:08 2013 Found 8469352 relations, 51.7% of the estimated minimum (16378937).
Tue May 07 09:09:21 2013 Found 9103824 relations, 55.6% of the estimated minimum (16378937).
Tue May 07 10:53:48 2013 Found 10056083 relations, 61.4% of the estimated minimum (16378937).
Tue May 07 12:03:05 2013 Found 10682216 relations, 65.2% of the estimated minimum (16378937).
Tue May 07 12:37:25 2013 Found 10993796 relations, 67.1% of the estimated minimum (16378937).
Tue May 07 14:22:07 2013 Found 11924908 relations, 72.8% of the estimated minimum (16378937).
Tue May 07 15:32:29 2013 Found 12542689 relations, 76.6% of the estimated minimum (16378937).
Tue May 07 16:42:01 2013 Found 13156861 relations, 80.3% of the estimated minimum (16378937).
Tue May 07 17:51:27 2013 Found 13761121 relations, 84.0% of the estimated minimum (16378937).
Tue May 07 19:35:21 2013 Found 14661256 relations, 89.5% of the estimated minimum (16378937).
Tue May 07 21:19:49 2013 Found 15557661 relations, 95.0% of the estimated minimum (16378937).
Tue May 07 22:28:33 2013 Found 16145197 relations, 98.6% of the estimated minimum (16378937).
Tue May 07 23:02:51 2013 Found 16435903 relations, 100.3% of the estimated minimum (16378937).
Tue May 07 23:41:05 2013 Found 17413008 relations, 106.3% of the estimated minimum (16378937).
Wed May 08 00:19:43 2013 Found 17707099 relations, 108.1% of the estimated minimum (16378937).
Wed May 08 01:36:30 2013 Found 18284286 relations, 111.6% of the estimated minimum (16378937).
Wed May 08 02:55:30 2013 Found 18861859 relations, 115.2% of the estimated minimum (16378937).
Wed May 08 02:55:30 2013  Msieve v. 1.50 (SVN 708)
Wed May 08 02:55:30 2013  random seeds: fa3475cc eb501db7
Wed May 08 02:55:30 2013  factoring 7087282300014958535979322779394916011998265509434662659349419414458025595938094592333381108061480730014286132862608875574839650142235970941578503922641840774549831 (163 digits)
Wed May 08 02:55:31 2013  searching for 15-digit factors
Wed May 08 02:55:32 2013  commencing number field sieve (163-digit input)
Wed May 08 02:55:32 2013  R0: -1000000000000000000000000000000000000
Wed May 08 02:55:32 2013  R1: 1
Wed May 08 02:55:32 2013  A0: 7
Wed May 08 02:55:32 2013  A1: 0
Wed May 08 02:55:32 2013  A2: 0
Wed May 08 02:55:32 2013  A3: 0
Wed May 08 02:55:32 2013  A4: 0
Wed May 08 02:55:32 2013  A5: 300
Wed May 08 02:55:32 2013  skew 0.47, size 1.087e-012, alpha 0.487, combined = 8.686e-011 rroots = 1
Wed May 08 02:55:32 2013  
Wed May 08 02:55:32 2013  commencing relation filtering
Wed May 08 02:55:32 2013  estimated available RAM is 4096.0 MB
Wed May 08 02:55:32 2013  commencing duplicate removal, pass 1
Wed May 08 02:57:09 2013  skipped 1 relations with b > 2^32
Wed May 08 02:57:09 2013  found 2696975 hash collisions in 18861857 relations
Wed May 08 02:57:40 2013  added 1270 free relations
Wed May 08 02:57:40 2013  commencing duplicate removal, pass 2
Wed May 08 02:57:50 2013  found 2000867 duplicates and 16862260 unique relations
Wed May 08 02:57:50 2013  memory use: 82.6 MB
Wed May 08 02:57:50 2013  reading ideals above 720000
Wed May 08 02:57:50 2013  commencing singleton removal, initial pass
Wed May 08 02:59:45 2013  memory use: 376.5 MB
Wed May 08 02:59:45 2013  reading all ideals from disk
Wed May 08 02:59:45 2013  memory use: 520.9 MB
Wed May 08 02:59:47 2013  keeping 19246204 ideals with weight <= 200, target excess is 116362
Wed May 08 02:59:48 2013  commencing in-memory singleton removal
Wed May 08 02:59:49 2013  begin with 16862260 relations and 19246204 unique ideals
Wed May 08 03:00:00 2013  reduce to 6054008 relations and 5871777 ideals in 20 passes
Wed May 08 03:00:00 2013  max relations containing the same ideal: 90
Wed May 08 03:00:03 2013  removing 342261 relations and 318635 ideals in 23626 cliques
Wed May 08 03:00:03 2013  commencing in-memory singleton removal
Wed May 08 03:00:04 2013  begin with 5711747 relations and 5871777 unique ideals
Wed May 08 03:00:08 2013  reduce to 5695361 relations and 5536653 ideals in 10 passes
Wed May 08 03:00:08 2013  max relations containing the same ideal: 88
Wed May 08 03:00:10 2013  removing 246054 relations and 222428 ideals in 23626 cliques
Wed May 08 03:00:10 2013  commencing in-memory singleton removal
Wed May 08 03:00:10 2013  begin with 5449307 relations and 5536653 unique ideals
Wed May 08 03:00:13 2013  reduce to 5440451 relations and 5305340 ideals in 7 passes
Wed May 08 03:00:13 2013  max relations containing the same ideal: 85
Wed May 08 03:00:16 2013  relations with 0 large ideals: 2955
Wed May 08 03:00:16 2013  relations with 1 large ideals: 1290
Wed May 08 03:00:16 2013  relations with 2 large ideals: 21510
Wed May 08 03:00:16 2013  relations with 3 large ideals: 151463
Wed May 08 03:00:16 2013  relations with 4 large ideals: 571707
Wed May 08 03:00:16 2013  relations with 5 large ideals: 1238497
Wed May 08 03:00:16 2013  relations with 6 large ideals: 1640747
Wed May 08 03:00:16 2013  relations with 7+ large ideals: 1812282
Wed May 08 03:00:16 2013  commencing 2-way merge
Wed May 08 03:00:20 2013  reduce to 3125810 relation sets and 2990699 unique ideals
Wed May 08 03:00:20 2013  commencing full merge
Wed May 08 03:01:06 2013  memory use: 309.2 MB
Wed May 08 03:01:07 2013  found 1591487 cycles, need 1576899
Wed May 08 03:01:07 2013  weight of 1576899 cycles is about 110696001 (70.20/cycle)
Wed May 08 03:01:07 2013  distribution of cycle lengths:
Wed May 08 03:01:07 2013  1 relations: 226100
Wed May 08 03:01:07 2013  2 relations: 200111
Wed May 08 03:01:07 2013  3 relations: 189606
Wed May 08 03:01:07 2013  4 relations: 165838
Wed May 08 03:01:07 2013  5 relations: 142283
Wed May 08 03:01:07 2013  6 relations: 119146
Wed May 08 03:01:07 2013  7 relations: 100102
Wed May 08 03:01:07 2013  8 relations: 81741
Wed May 08 03:01:07 2013  9 relations: 67558
Wed May 08 03:01:07 2013  10+ relations: 284414
Wed May 08 03:01:07 2013  heaviest cycle: 25 relations
Wed May 08 03:01:07 2013  commencing cycle optimization
Wed May 08 03:01:09 2013  start with 9082089 relations
Wed May 08 03:01:24 2013  pruned 182466 relations
Wed May 08 03:01:24 2013  memory use: 246.0 MB
Wed May 08 03:01:24 2013  distribution of cycle lengths:
Wed May 08 03:01:24 2013  1 relations: 226100
Wed May 08 03:01:24 2013  2 relations: 204164
Wed May 08 03:01:24 2013  3 relations: 195328
Wed May 08 03:01:24 2013  4 relations: 168680
Wed May 08 03:01:24 2013  5 relations: 144597
Wed May 08 03:01:24 2013  6 relations: 119990
Wed May 08 03:01:24 2013  7 relations: 99926
Wed May 08 03:01:24 2013  8 relations: 80798
Wed May 08 03:01:24 2013  9 relations: 66432
Wed May 08 03:01:24 2013  10+ relations: 270884
Wed May 08 03:01:24 2013  heaviest cycle: 25 relations
Wed May 08 03:01:26 2013  RelProcTime: 354
Wed May 08 03:01:26 2013  elapsed time 00:05:56
Wed May 08 03:01:26 2013 LatSieveTime: 2532.66
Wed May 08 03:01:26 2013 -> Running matrix solving step ...
Wed May 08 03:01:26 2013  
Wed May 08 03:01:26 2013  
Wed May 08 03:01:26 2013  Msieve v. 1.50 (SVN 708)
Wed May 08 03:01:26 2013  random seeds: e86b7834 3ea89e79
Wed May 08 03:01:26 2013  factoring 7087282300014958535979322779394916011998265509434662659349419414458025595938094592333381108061480730014286132862608875574839650142235970941578503922641840774549831 (163 digits)
Wed May 08 03:01:27 2013  searching for 15-digit factors
Wed May 08 03:01:28 2013  commencing number field sieve (163-digit input)
Wed May 08 03:01:28 2013  R0: -1000000000000000000000000000000000000
Wed May 08 03:01:28 2013  R1: 1
Wed May 08 03:01:28 2013  A0: 7
Wed May 08 03:01:28 2013  A1: 0
Wed May 08 03:01:28 2013  A2: 0
Wed May 08 03:01:28 2013  A3: 0
Wed May 08 03:01:28 2013  A4: 0
Wed May 08 03:01:28 2013  A5: 300
Wed May 08 03:01:28 2013  skew 0.47, size 1.087e-012, alpha 0.487, combined = 8.686e-011 rroots = 1
Wed May 08 03:01:28 2013  
Wed May 08 03:01:28 2013  commencing linear algebra
Wed May 08 03:01:28 2013  read 1576899 cycles
Wed May 08 03:01:31 2013  cycles contain 5282624 unique relations
Wed May 08 03:01:57 2013  read 5282624 relations
Wed May 08 03:02:04 2013  using 20 quadratic characters above 268434182
Wed May 08 03:02:27 2013  building initial matrix
Wed May 08 03:03:22 2013  memory use: 578.8 MB
Wed May 08 03:03:23 2013  read 1576899 cycles
Wed May 08 03:03:24 2013  matrix is 1576717 x 1576899 (450.3 MB) with weight 138231632 (87.66/col)
Wed May 08 03:03:24 2013  sparse part has weight 107009152 (67.86/col)
Wed May 08 03:03:39 2013  filtering completed in 2 passes
Wed May 08 03:03:40 2013  matrix is 1573458 x 1573640 (450.1 MB) with weight 138120104 (87.77/col)
Wed May 08 03:03:40 2013  sparse part has weight 106965932 (67.97/col)
Wed May 08 03:03:43 2013  matrix starts at (0, 0)
Wed May 08 03:03:44 2013  matrix is 1573458 x 1573640 (450.1 MB) with weight 138120104 (87.77/col)
Wed May 08 03:03:44 2013  sparse part has weight 106965932 (67.97/col)
Wed May 08 03:03:44 2013  saving the first 48 matrix rows for later
Wed May 08 03:03:44 2013  matrix includes 64 packed rows
Wed May 08 03:03:44 2013  matrix is 1573410 x 1573640 (423.8 MB) with weight 110484697 (70.21/col)
Wed May 08 03:03:44 2013  sparse part has weight 101652164 (64.60/col)
Wed May 08 03:03:44 2013  using block size 65536 for processor cache size 8192 kB
Wed May 08 03:03:53 2013  commencing Lanczos iteration (8 threads)
Wed May 08 03:03:53 2013  memory use: 438.3 MB
Wed May 08 03:04:02 2013  linear algebra at 0.1%, ETA 2h35m
Wed May 08 03:04:05 2013  checkpointing every 610000 dimensions
Wed May 08 05:36:42 2013  lanczos halted after 24884 iterations (dim = 1573408)
Wed May 08 05:36:45 2013  recovered 39 nontrivial dependencies
Wed May 08 05:36:45 2013  BLanczosTime: 9317
Wed May 08 05:36:45 2013  elapsed time 02:35:19
Wed May 08 05:36:45 2013 -> Running square root step ...
Wed May 08 05:36:45 2013  
Wed May 08 05:36:45 2013  
Wed May 08 05:36:45 2013  Msieve v. 1.50 (SVN 708)
Wed May 08 05:36:45 2013  random seeds: 8cc096c8 aafcce70
Wed May 08 05:36:45 2013  factoring 7087282300014958535979322779394916011998265509434662659349419414458025595938094592333381108061480730014286132862608875574839650142235970941578503922641840774549831 (163 digits)
Wed May 08 05:36:46 2013  searching for 15-digit factors
Wed May 08 05:36:47 2013  commencing number field sieve (163-digit input)
Wed May 08 05:36:47 2013  R0: -1000000000000000000000000000000000000
Wed May 08 05:36:47 2013  R1: 1
Wed May 08 05:36:47 2013  A0: 7
Wed May 08 05:36:47 2013  A1: 0
Wed May 08 05:36:47 2013  A2: 0
Wed May 08 05:36:47 2013  A3: 0
Wed May 08 05:36:47 2013  A4: 0
Wed May 08 05:36:47 2013  A5: 300
Wed May 08 05:36:47 2013  skew 0.47, size 1.087e-012, alpha 0.487, combined = 8.686e-011 rroots = 1
Wed May 08 05:36:47 2013  
Wed May 08 05:36:47 2013  commencing square root phase
Wed May 08 05:36:47 2013  reading relations for dependency 1
Wed May 08 05:36:47 2013  read 786823 cycles
Wed May 08 05:36:49 2013  cycles contain 2639960 unique relations
Wed May 08 05:37:04 2013  read 2639960 relations
Wed May 08 05:37:16 2013  multiplying 2639960 relations
Wed May 08 05:40:49 2013  multiply complete, coefficients have about 79.08 million bits
Wed May 08 05:40:50 2013  initial square root is modulo 474571
Wed May 08 05:45:23 2013  sqrtTime: 516
Wed May 08 05:45:23 2013  prp72 factor: 269704249852213941977849110996392473758794465820651509487583869814723723
Wed May 08 05:45:23 2013  prp92 factor: 26277977836457813672653924866477178778975794876037608850035378717787586434503082719743426997
Wed May 08 05:45:23 2013  elapsed time 00:08:38
Wed May 08 05:45:23 2013 -> Computing 1.36798e+09 scale for this machine...
Wed May 08 05:45:23 2013 -> procrels -speedtest> PIPE
Wed May 08 05:45:28 2013 -> Factorization summary written to s183-30007_182.txt



Number: 30007_182
N = 7087282300014958535979322779394916011998265509434662659349419414458025595938094592333381108061480730014286132862608875574839650142235970941578503922641840774549831 (163 digits)
SNFS difficulty: 183 digits.
Divisors found:
r1=269704249852213941977849110996392473758794465820651509487583869814723723 (pp72)
r2=26277977836457813672653924866477178778975794876037608850035378717787586434503082719743426997 (pp92)
Version: Msieve v. 1.50 (SVN 708)
Total time: 36.44 hours.
Factorization parameters were as follows:
n: 7087282300014958535979322779394916011998265509434662659349419414458025595938094592333381108061480730014286132862608875574839650142235970941578503922641840774549831
m: 1000000000000000000000000000000000000
deg: 5
c5: 300
c0: 7
skew: 0.47
# Murphy_E = 8.686e-11
type: snfs
lss: 1
rlim: 7700000
alim: 7700000
lpbr: 28
lpba: 28
mfbr: 53
mfba: 53
rlambda: 2.5
alambda: 2.5
Factor base limits: 7700000/7700000
Large primes per side: 3
Large prime bits: 28/28
Sieved rational special-q in [0, 0)
Total raw relations: 18861859
Relations: 2639960 relations
Pruned matrix : 1573410 x 1573640
Polynomial selection time: 0.00 hours.
Total sieving time: 33.62 hours.
Total relation processing time: 0.10 hours.
Matrix solve time: 2.59 hours.
time per square root: 0.14 hours.
Prototype def-par.txt line would be: snfs,183,5,0,0,0,0,0,0,0,0,7700000,7700000,28,28,53,53,2.5,2.5,100000
total time: 36.44 hours.
Intel64 Family 6 Model 26 Stepping 5, GenuineIntel
Windows-7-6.1.7601-SP1
processors: 4, speed: 2.80GHz
software ソフトウェア
GGNFS-SVN430, msieve 1.50 (SVN 408).
execution environment 実行環境
Windows 7 64bits, Intel Xeon W3530@2.8GHz, 8GB RAM. 

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaSeptember 3, 2007 09:00:00 UTC 2007 年 9 月 3 日 (月) 18 時 0 分 0 秒 (日本時間)
351e60--
403e62800400Dmitry DomanovApril 5, 2011 06:29:37 UTC 2011 年 4 月 5 日 (火) 15 時 29 分 37 秒 (日本時間)
2400Youcef LemsaferFebruary 5, 2013 20:22:18 UTC 2013 年 2 月 6 日 (水) 5 時 22 分 18 秒 (日本時間)
4511e64496Youcef LemsaferFebruary 5, 2013 20:22:18 UTC 2013 年 2 月 6 日 (水) 5 時 22 分 18 秒 (日本時間)
5043e662811877Youcef LemsaferFebruary 7, 2013 04:55:52 UTC 2013 年 2 月 7 日 (木) 13 時 55 分 52 秒 (日本時間)
4020Youcef LemsaferFebruary 14, 2013 11:10:24 UTC 2013 年 2 月 14 日 (木) 20 時 10 分 24 秒 (日本時間)
384Youcef LemsaferFebruary 14, 2013 14:41:19 UTC 2013 年 2 月 14 日 (木) 23 時 41 分 19 秒 (日本時間)
5511e71684 / 15225148Youcef LemsaferFebruary 7, 2013 04:55:52 UTC 2013 年 2 月 7 日 (木) 13 時 55 分 52 秒 (日本時間)
1280Youcef LemsaferFebruary 15, 2013 05:45:30 UTC 2013 年 2 月 15 日 (金) 14 時 45 分 30 秒 (日本時間)
256Youcef LemsaferFebruary 15, 2013 10:04:13 UTC 2013 年 2 月 15 日 (金) 19 時 4 分 13 秒 (日本時間)

3×10183+7

c176

name 名前Wataru Sakai
date 日付June 27, 2010 05:31:10 UTC 2010 年 6 月 27 日 (日) 14 時 31 分 10 秒 (日本時間)
composite number 合成数
42236399917943122239420102113254625614368913356404075131178162835147065243876281644197160021653757509931079909705897951423381459974654499561241238252420522323197409230492073347<176>
prime factors 素因数
18897703666390959239523719317917845075054654445979389633511<59>
2235001705157404158463405732593419570696376461969687718092389576575647380791201282404260098119332443793067631748163077<118>
factorization results 素因数分解の結果
Number: 30007_183
N=42236399917943122239420102113254625614368913356404075131178162835147065243876281644197160021653757509931079909705897951423381459974654499561241238252420522323197409230492073347
  ( 176 digits)
SNFS difficulty: 183 digits.
Divisors found:
 r1=18897703666390959239523719317917845075054654445979389633511
 r2=2235001705157404158463405732593419570696376461969687718092389576575647380791201282404260098119332443793067631748163077
Version: 
Total time: 241.80 hours.
Scaled time: 484.81 units (timescale=2.005).
Factorization parameters were as follows:
n: 42236399917943122239420102113254625614368913356404075131178162835147065243876281644197160021653757509931079909705897951423381459974654499561241238252420522323197409230492073347
m: 1000000000000000000000000000000000000
deg: 5
c5: 3000
c0: 7
skew: 0.30
type: snfs
lss: 1
rlim: 8000000
alim: 8000000
lpbr: 28
lpba: 28
mfbr: 53
mfba: 53
rlambda: 2.5
alambda: 2.5Factor base limits: 8000000/8000000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 53/53
Sieved rational special-q in [4000000, 6500001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1031875 x 1032123
Total sieving time: 241.80 hours.
Total relation processing time: 0.00 hours.
Matrix solve time: 0.00 hours.
Time per square root: 0.00 hours.
Prototype def-par.txt line would be:
snfs,183,5,0,0,0,0,0,0,0,0,8000000,8000000,28,28,53,53,2.5,2.5,100000
total time: 241.80 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaSeptember 3, 2007 09:00:00 UTC 2007 年 9 月 3 日 (月) 18 時 0 分 0 秒 (日本時間)
351e6300Ignacio SantosJune 19, 2010 12:48:27 UTC 2010 年 6 月 19 日 (土) 21 時 48 分 27 秒 (日本時間)
403e62446110Ignacio SantosJune 19, 2010 12:48:27 UTC 2010 年 6 月 19 日 (土) 21 時 48 分 27 秒 (日本時間)
2336Wataru SakaiJune 20, 2010 03:02:39 UTC 2010 年 6 月 20 日 (日) 12 時 2 分 39 秒 (日本時間)
4511e632 / 3924Ignacio SantosJune 19, 2010 12:48:27 UTC 2010 年 6 月 19 日 (土) 21 時 48 分 27 秒 (日本時間)

3×10187+7

c163

name 名前Youcef Lemsafer
date 日付February 4, 2013 14:34:45 UTC 2013 年 2 月 4 日 (月) 23 時 34 分 45 秒 (日本時間)
composite number 合成数
1338141929367805895967360500835579070435592801372201595261241832469144297770866170357968880712414491519599464760605770592478114351590825472065548113875419967404841<163>
prime factors 素因数
4806057246094980532459373243264236165811<40>
278428212742383267914444914208047124305927368854314682108586270515137640422520152091667989368583141234316043633289010327731<123>
factorization results 素因数分解の結果
GMP-ECM 6.4.2 [configured with GMP 5.0.5, --enable-asm-redc] [ECM]
Input number is (10^187*3+7)/(37*605922879342007975663171) (163 digits)
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1133709058
Step 1 took 16489ms
Step 2 took 7113ms
********** Factor found in step 2: 4806057246094980532459373243264236165811
Found probable prime factor of 40 digits: 4806057246094980532459373243264236165811
Probable prime cofactor ((10^187*3+7)/(37*605922879342007975663171))/4806057246094980532459373243264236165811 has 123 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaSeptember 3, 2007 09:00:00 UTC 2007 年 9 月 3 日 (月) 18 時 0 分 0 秒 (日本時間)
351e60--
403e6960 / 2336400Dmitry DomanovApril 5, 2011 06:29:49 UTC 2011 年 4 月 5 日 (火) 15 時 29 分 49 秒 (日本時間)
560Youcef LemsaferFebruary 4, 2013 13:23:36 UTC 2013 年 2 月 4 日 (月) 22 時 23 分 36 秒 (日本時間)

3×10188+7

c158

name 名前Youcef Lemsafer
date 日付May 10, 2013 19:18:40 UTC 2013 年 5 月 11 日 (土) 4 時 18 分 40 秒 (日本時間)
composite number 合成数
38912717001846026754258020463033828834444274163370357307458462274902236077930708456817497645207834366947010742330673777264064269788519083038610590538311951971<158>
prime factors 素因数
2433152966732430024183070123007353531902806309832285192601048887931<67>
15992712967036895948718699514895828611711981478735377666486535908861535915202603440781142841<92>
factorization results 素因数分解の結果
Wed May 08 10:01:24 2013 -> factmsieve.py (v0.76)
Wed May 08 10:01:24 2013 -> This is client 1 of 1
Wed May 08 10:01:24 2013 -> Running on 4 Cores with 2 hyper-threads per Core
Wed May 08 10:01:24 2013 -> Working with NAME = 30007_188
Wed May 08 10:01:24 2013 -> Selected lattice siever: gnfs-lasieve4I13e
Wed May 08 10:01:24 2013 -> Creating param file to detect parameter changes...
Wed May 08 10:01:24 2013 -> Running setup ...
Wed May 08 10:01:24 2013 -> Estimated minimum relations needed: 1.99526e+07
Wed May 08 10:01:24 2013 -> cleaning up before a restart
Wed May 08 10:01:24 2013 -> Running lattice siever ...
Wed May 08 10:01:24 2013 -> entering sieving loop
Wed May 08 10:34:38 2013 Found 260126 relations, 1.3% of the estimated minimum (19952623).
Wed May 08 11:40:12 2013 Found 774749 relations, 3.9% of the estimated minimum (19952623).
Wed May 08 17:48:35 2013 Found 3576387 relations, 17.9% of the estimated minimum (19952623).
Wed May 08 20:13:00 2013 Found 4586705 relations, 23.0% of the estimated minimum (19952623).
Wed May 08 22:03:59 2013 Found 5342399 relations, 26.8% of the estimated minimum (19952623).
Thu May 09 00:30:41 2013 Found 6342803 relations, 31.8% of the estimated minimum (19952623).
Thu May 09 02:59:58 2013 Found 7336092 relations, 36.8% of the estimated minimum (19952623).
Thu May 09 05:28:07 2013 Found 8323278 relations, 41.7% of the estimated minimum (19952623).
Thu May 09 07:36:00 2013 Found 9060566 relations, 45.4% of the estimated minimum (19952623).
Thu May 09 11:22:06 2013 Found 10526843 relations, 52.8% of the estimated minimum (19952623).
Thu May 09 15:09:06 2013 Found 11977369 relations, 60.0% of the estimated minimum (19952623).
Thu May 09 16:24:43 2013 Found 12457874 relations, 62.4% of the estimated minimum (19952623).
Thu May 09 18:56:16 2013 Found 13405696 relations, 67.2% of the estimated minimum (19952623).
Thu May 09 20:49:56 2013 Found 14114157 relations, 70.7% of the estimated minimum (19952623).
Fri May 10 00:00:59 2013 Found 15272669 relations, 76.5% of the estimated minimum (19952623).
Fri May 10 01:16:31 2013 Found 15732742 relations, 78.9% of the estimated minimum (19952623).
Fri May 10 04:25:39 2013 Found 16869041 relations, 84.5% of the estimated minimum (19952623).
Fri May 10 08:10:07 2013 Found 18208566 relations, 91.3% of the estimated minimum (19952623).
Fri May 10 10:40:13 2013 Found 19091514 relations, 95.7% of the estimated minimum (19952623).
Fri May 10 12:31:28 2013 Found 19742410 relations, 98.9% of the estimated minimum (19952623).
Fri May 10 13:08:16 2013 Found 19957406 relations, 100.0% of the estimated minimum (19952623).
Fri May 10 13:51:17 2013 Found 20884581 relations, 104.7% of the estimated minimum (19952623).
Fri May 10 15:17:05 2013 Found 21317048 relations, 106.8% of the estimated minimum (19952623).
Fri May 10 15:59:42 2013 Found 21529876 relations, 107.9% of the estimated minimum (19952623).
Fri May 10 15:59:42 2013  
Fri May 10 15:59:42 2013  
Fri May 10 15:59:42 2013  Msieve v. 1.50 (SVN 708)
Fri May 10 15:59:42 2013  random seeds: e953ba80 67b5dad0
Fri May 10 15:59:42 2013  factoring 38912717001846026754258020463033828834444274163370357307458462274902236077930708456817497645207834366947010742330673777264064269788519083038610590538311951971 (158 digits)
Fri May 10 15:59:43 2013  searching for 15-digit factors
Fri May 10 15:59:44 2013  commencing number field sieve (158-digit input)
Fri May 10 15:59:44 2013  R0: -10000000000000000000000000000000000000
Fri May 10 15:59:44 2013  R1: 1
Fri May 10 15:59:44 2013  A0: 7
Fri May 10 15:59:44 2013  A1: 0
Fri May 10 15:59:44 2013  A2: 0
Fri May 10 15:59:44 2013  A3: 0
Fri May 10 15:59:44 2013  A4: 0
Fri May 10 15:59:44 2013  A5: 3000
Fri May 10 15:59:44 2013  skew 0.30, size 4.603e-013, alpha -0.621, combined = 5.150e-011 rroots = 1
Fri May 10 15:59:44 2013  
Fri May 10 15:59:44 2013  commencing relation filtering
Fri May 10 15:59:44 2013  estimated available RAM is 4096.0 MB
Fri May 10 15:59:44 2013  commencing duplicate removal, pass 1
Fri May 10 16:01:38 2013  found 2914364 hash collisions in 21529875 relations
Fri May 10 16:02:12 2013  added 466 free relations
Fri May 10 16:02:12 2013  commencing duplicate removal, pass 2
Fri May 10 16:02:24 2013  found 2548110 duplicates and 18982231 unique relations
Fri May 10 16:02:24 2013  memory use: 98.6 MB
Fri May 10 16:02:24 2013  reading ideals above 13434880
Fri May 10 16:02:28 2013  commencing singleton removal, initial pass
Fri May 10 16:04:25 2013  memory use: 376.5 MB
Fri May 10 16:04:25 2013  reading all ideals from disk
Fri May 10 16:04:26 2013  memory use: 333.7 MB
Fri May 10 16:04:26 2013  commencing in-memory singleton removal
Fri May 10 16:04:27 2013  begin with 18982231 relations and 19590547 unique ideals
Fri May 10 16:04:35 2013  reduce to 7474775 relations and 5673100 ideals in 20 passes
Fri May 10 16:04:35 2013  max relations containing the same ideal: 32
Fri May 10 16:04:35 2013  reading ideals above 100000
Fri May 10 16:04:35 2013  commencing singleton removal, initial pass
Fri May 10 16:05:32 2013  memory use: 188.3 MB
Fri May 10 16:05:32 2013  reading all ideals from disk
Fri May 10 16:05:32 2013  memory use: 288.2 MB
Fri May 10 16:05:32 2013  keeping 7386467 ideals with weight <= 200, target excess is 39428
Fri May 10 16:05:33 2013  commencing in-memory singleton removal
Fri May 10 16:05:34 2013  begin with 7475243 relations and 7386467 unique ideals
Fri May 10 16:05:44 2013  reduce to 7451867 relations and 7360773 ideals in 16 passes
Fri May 10 16:05:44 2013  max relations containing the same ideal: 200
Fri May 10 16:05:47 2013  removing 358634 relations and 335955 ideals in 22679 cliques
Fri May 10 16:05:47 2013  commencing in-memory singleton removal
Fri May 10 16:05:48 2013  begin with 7093233 relations and 7360773 unique ideals
Fri May 10 16:05:54 2013  reduce to 7078623 relations and 7010128 ideals in 9 passes
Fri May 10 16:05:54 2013  max relations containing the same ideal: 199
Fri May 10 16:05:56 2013  removing 256966 relations and 234287 ideals in 22679 cliques
Fri May 10 16:05:57 2013  commencing in-memory singleton removal
Fri May 10 16:05:57 2013  begin with 6821657 relations and 7010128 unique ideals
Fri May 10 16:06:02 2013  reduce to 6813770 relations and 6767926 ideals in 8 passes
Fri May 10 16:06:02 2013  max relations containing the same ideal: 193
Fri May 10 16:06:07 2013  relations with 0 large ideals: 885
Fri May 10 16:06:07 2013  relations with 1 large ideals: 65
Fri May 10 16:06:07 2013  relations with 2 large ideals: 932
Fri May 10 16:06:07 2013  relations with 3 large ideals: 12464
Fri May 10 16:06:07 2013  relations with 4 large ideals: 96115
Fri May 10 16:06:07 2013  relations with 5 large ideals: 427768
Fri May 10 16:06:07 2013  relations with 6 large ideals: 1239972
Fri May 10 16:06:07 2013  relations with 7+ large ideals: 5035569
Fri May 10 16:06:07 2013  commencing 2-way merge
Fri May 10 16:06:12 2013  reduce to 3936645 relation sets and 3890802 unique ideals
Fri May 10 16:06:12 2013  ignored 1 oversize relation sets
Fri May 10 16:06:12 2013  commencing full merge
Fri May 10 16:07:21 2013  memory use: 417.1 MB
Fri May 10 16:07:22 2013  found 2017509 cycles, need 2017002
Fri May 10 16:07:22 2013  weight of 2017002 cycles is about 141469874 (70.14/cycle)
Fri May 10 16:07:22 2013  distribution of cycle lengths:
Fri May 10 16:07:22 2013  1 relations: 309115
Fri May 10 16:07:22 2013  2 relations: 263286
Fri May 10 16:07:22 2013  3 relations: 244236
Fri May 10 16:07:22 2013  4 relations: 210021
Fri May 10 16:07:22 2013  5 relations: 177864
Fri May 10 16:07:22 2013  6 relations: 146698
Fri May 10 16:07:22 2013  7 relations: 123241
Fri May 10 16:07:22 2013  8 relations: 100569
Fri May 10 16:07:22 2013  9 relations: 81258
Fri May 10 16:07:22 2013  10+ relations: 360714
Fri May 10 16:07:22 2013  heaviest cycle: 28 relations
Fri May 10 16:07:22 2013  commencing cycle optimization
Fri May 10 16:07:25 2013  start with 11675875 relations
Fri May 10 16:07:46 2013  pruned 230535 relations
Fri May 10 16:07:46 2013  memory use: 314.3 MB
Fri May 10 16:07:46 2013  distribution of cycle lengths:
Fri May 10 16:07:46 2013  1 relations: 309115
Fri May 10 16:07:46 2013  2 relations: 268460
Fri May 10 16:07:46 2013  3 relations: 251529
Fri May 10 16:07:46 2013  4 relations: 213354
Fri May 10 16:07:46 2013  5 relations: 180310
Fri May 10 16:07:46 2013  6 relations: 147474
Fri May 10 16:07:46 2013  7 relations: 123083
Fri May 10 16:07:46 2013  8 relations: 99189
Fri May 10 16:07:46 2013  9 relations: 79790
Fri May 10 16:07:46 2013  10+ relations: 344698
Fri May 10 16:07:46 2013  heaviest cycle: 28 relations
Fri May 10 16:07:48 2013  RelProcTime: 484
Fri May 10 16:07:48 2013  elapsed time 00:08:06
Fri May 10 16:07:48 2013 LatSieveTime: 2685.66
Fri May 10 16:07:48 2013 -> Running matrix solving step ...
Fri May 10 16:07:48 2013  
Fri May 10 16:07:48 2013  
Fri May 10 16:07:48 2013  Msieve v. 1.50 (SVN 708)
Fri May 10 16:07:48 2013  random seeds: 25c69588 213e952b
Fri May 10 16:07:48 2013  factoring 38912717001846026754258020463033828834444274163370357307458462274902236077930708456817497645207834366947010742330673777264064269788519083038610590538311951971 (158 digits)
Fri May 10 16:07:49 2013  searching for 15-digit factors
Fri May 10 16:07:50 2013  commencing number field sieve (158-digit input)
Fri May 10 16:07:50 2013  R0: -10000000000000000000000000000000000000
Fri May 10 16:07:50 2013  R1: 1
Fri May 10 16:07:50 2013  A0: 7
Fri May 10 16:07:50 2013  A1: 0
Fri May 10 16:07:50 2013  A2: 0
Fri May 10 16:07:50 2013  A3: 0
Fri May 10 16:07:50 2013  A4: 0
Fri May 10 16:07:50 2013  A5: 3000
Fri May 10 16:07:50 2013  skew 0.30, size 4.603e-013, alpha -0.621, combined = 5.150e-011 rroots = 1
Fri May 10 16:07:50 2013  
Fri May 10 16:07:50 2013  commencing linear algebra
Fri May 10 16:07:51 2013  read 2017002 cycles
Fri May 10 16:07:55 2013  cycles contain 6748552 unique relations
Fri May 10 16:08:29 2013  read 6748552 relations
Fri May 10 16:08:38 2013  using 20 quadratic characters above 268435400
Fri May 10 16:09:08 2013  building initial matrix
Fri May 10 16:10:20 2013  memory use: 755.4 MB
Fri May 10 16:10:22 2013  read 2017002 cycles
Fri May 10 16:10:23 2013  matrix is 2016825 x 2017002 (575.7 MB) with weight 181719537 (90.09/col)
Fri May 10 16:10:23 2013  sparse part has weight 136795170 (67.82/col)
Fri May 10 16:10:41 2013  filtering completed in 2 passes
Fri May 10 16:10:42 2013  matrix is 2016437 x 2016613 (575.7 MB) with weight 181705581 (90.10/col)
Fri May 10 16:10:42 2013  sparse part has weight 136791348 (67.83/col)
Fri May 10 16:10:46 2013  matrix starts at (0, 0)
Fri May 10 16:10:47 2013  matrix is 2016437 x 2016613 (575.7 MB) with weight 181705581 (90.10/col)
Fri May 10 16:10:47 2013  sparse part has weight 136791348 (67.83/col)
Fri May 10 16:10:47 2013  saving the first 48 matrix rows for later
Fri May 10 16:10:48 2013  matrix includes 64 packed rows
Fri May 10 16:10:48 2013  matrix is 2016389 x 2016613 (547.0 MB) with weight 144455852 (71.63/col)
Fri May 10 16:10:48 2013  sparse part has weight 131289662 (65.10/col)
Fri May 10 16:10:48 2013  using block size 65536 for processor cache size 8192 kB
Fri May 10 16:10:59 2013  commencing Lanczos iteration (8 threads)
Fri May 10 16:10:59 2013  memory use: 567.7 MB
Fri May 10 16:11:12 2013  linear algebra at 0.1%, ETA 4h47m
Fri May 10 16:11:16 2013  checkpointing every 430000 dimensions
Fri May 10 20:36:11 2013  lanczos halted after 31891 iterations (dim = 2016389)
Fri May 10 20:36:15 2013  recovered 39 nontrivial dependencies
Fri May 10 20:36:15 2013  BLanczosTime: 16105
Fri May 10 20:36:15 2013  elapsed time 04:28:27
Fri May 10 20:36:15 2013 -> Running square root step ...
Fri May 10 20:36:15 2013  
Fri May 10 20:36:15 2013  
Fri May 10 20:36:15 2013  Msieve v. 1.50 (SVN 708)
Fri May 10 20:36:15 2013  random seeds: 58ad6e00 862442da
Fri May 10 20:36:15 2013  factoring 38912717001846026754258020463033828834444274163370357307458462274902236077930708456817497645207834366947010742330673777264064269788519083038610590538311951971 (158 digits)
Fri May 10 20:36:16 2013  searching for 15-digit factors
Fri May 10 20:36:17 2013  commencing number field sieve (158-digit input)
Fri May 10 20:36:17 2013  R0: -10000000000000000000000000000000000000
Fri May 10 20:36:17 2013  R1: 1
Fri May 10 20:36:17 2013  A0: 7
Fri May 10 20:36:17 2013  A1: 0
Fri May 10 20:36:17 2013  A2: 0
Fri May 10 20:36:17 2013  A3: 0
Fri May 10 20:36:17 2013  A4: 0
Fri May 10 20:36:17 2013  A5: 3000
Fri May 10 20:36:17 2013  skew 0.30, size 4.603e-013, alpha -0.621, combined = 5.150e-011 rroots = 1
Fri May 10 20:36:17 2013  
Fri May 10 20:36:17 2013  commencing square root phase
Fri May 10 20:36:17 2013  reading relations for dependency 1
Fri May 10 20:36:17 2013  read 1008198 cycles
Fri May 10 20:36:19 2013  cycles contain 3374656 unique relations
Fri May 10 20:36:52 2013  read 3374656 relations
Fri May 10 20:37:10 2013  multiplying 3374656 relations
Fri May 10 20:42:30 2013  multiply complete, coefficients have about 112.03 million bits
Fri May 10 20:42:31 2013  initial square root is modulo 109996031
Fri May 10 20:49:21 2013  sqrtTime: 784
Fri May 10 20:49:21 2013  prp67 factor: 2433152966732430024183070123007353531902806309832285192601048887931
Fri May 10 20:49:21 2013  prp92 factor: 15992712967036895948718699514895828611711981478735377666486535908861535915202603440781142841
Fri May 10 20:49:21 2013  elapsed time 00:13:06
Fri May 10 20:49:21 2013 -> Computing 1.36821e+09 scale for this machine...
Fri May 10 20:49:21 2013 -> procrels -speedtest> PIPE
Fri May 10 20:49:26 2013 -> Factorization summary written to s189-30007_188.txt



Number: 30007_188
N = 38912717001846026754258020463033828834444274163370357307458462274902236077930708456817497645207834366947010742330673777264064269788519083038610590538311951971 (158 digits)
SNFS difficulty: 189 digits.
Divisors found:
r1=2433152966732430024183070123007353531902806309832285192601048887931 (pp67)
r2=15992712967036895948718699514895828611711981478735377666486535908861535915202603440781142841 (pp92)
Version: Msieve v. 1.50 (SVN 708)
Total time: 58.92 hours.
Factorization parameters were as follows:
n: 38912717001846026754258020463033828834444274163370357307458462274902236077930708456817497645207834366947010742330673777264064269788519083038610590538311951971
m: 10000000000000000000000000000000000000
deg: 5
c5: 3000
c0: 7
skew: 0.30
# Murphy_E = 5.15e-11
type: snfs
lss: 1
rlim: 9700000
alim: 9700000
lpbr: 28
lpba: 28
mfbr: 54
mfba: 54
rlambda: 2.5
alambda: 2.5
Factor base limits: 9700000/9700000
Large primes per side: 3
Large prime bits: 28/28
Sieved rational special-q in [0, 0)
Total raw relations: 21529876
Relations: 3374656 relations
Pruned matrix : 2016389 x 2016613
Polynomial selection time: 0.00 hours.
Total sieving time: 54.09 hours.
Total relation processing time: 0.13 hours.
Matrix solve time: 4.47 hours.
time per square root: 0.22 hours.
Prototype def-par.txt line would be: snfs,189,5,0,0,0,0,0,0,0,0,9700000,9700000,28,28,54,54,2.5,2.5,100000
total time: 58.92 hours.
Intel64 Family 6 Model 26 Stepping 5, GenuineIntel
Windows-7-6.1.7601-SP1
processors: 4, speed: 2.80GHz
software ソフトウェア
GGNFS (SVN 430), msieve 1.50 (SVN 708)
execution environment 実行環境
Windows 7 64bit, Intel Xeon W3530@2.8GHz, 8GB RAM

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaSeptember 3, 2007 09:00:00 UTC 2007 年 9 月 3 日 (月) 18 時 0 分 0 秒 (日本時間)
351e60--
403e62800400Dmitry DomanovApril 5, 2011 06:29:59 UTC 2011 年 4 月 5 日 (火) 15 時 29 分 59 秒 (日本時間)
2400Youcef LemsaferFebruary 11, 2013 19:52:27 UTC 2013 年 2 月 12 日 (火) 4 時 52 分 27 秒 (日本時間)
4511e64500Youcef LemsaferFebruary 11, 2013 19:52:27 UTC 2013 年 2 月 12 日 (火) 4 時 52 分 27 秒 (日本時間)
5043e676164008Youcef LemsaferFebruary 11, 2013 19:52:27 UTC 2013 年 2 月 12 日 (火) 4 時 52 分 27 秒 (日本時間)
3608Youcef LemsaferFebruary 16, 2013 02:54:10 UTC 2013 年 2 月 16 日 (土) 11 時 54 分 10 秒 (日本時間)
5511e7645 / 14748Youcef LemsaferFebruary 18, 2013 07:10:47 UTC 2013 年 2 月 18 日 (月) 16 時 10 分 47 秒 (日本時間)

3×10189+7

c137

name 名前Youcef Lemsafer
date 日付February 11, 2013 05:35:58 UTC 2013 年 2 月 11 日 (月) 14 時 35 分 58 秒 (日本時間)
composite number 合成数
77353805957831029443400701300491980678738106648753718474718063531025980672929252284922122088072505980457039510003287718292675141464283923<137>
prime factors 素因数
43954143253151000858584551069129739498328693<44>
1759875184287334760567985008578206708383415261155223604501023422877699018454009608577912043111<94>
factorization results 素因数分解の結果
GMP-ECM 6.4.2 [configured with GMP 5.0.5, --enable-asm-redc] [ECM]
Input number is (3*10^189+7)/(33521*8814854900159220551*131252454624516158629116042379) (137 digits)
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=71571980
Step 1 took 54600ms
Step 2 took 26037ms
********** Factor found in step 2: 43954143253151000858584551069129739498328693
Found probable prime factor of 44 digits: 43954143253151000858584551069129739498328693
Probable prime cofactor ((3*10^189+7)/(33521*8814854900159220551*131252454624516158629116042379))/43954143253151000858584551069129739498328693 has 94 digits   

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaSeptember 3, 2007 09:00:00 UTC 2007 年 9 月 3 日 (月) 18 時 0 分 0 秒 (日本時間)
351e60--
403e62800400Dmitry DomanovApril 5, 2011 06:30:09 UTC 2011 年 4 月 5 日 (火) 15 時 30 分 9 秒 (日本時間)
2400Youcef LemsaferFebruary 11, 2013 05:34:56 UTC 2013 年 2 月 11 日 (月) 14 時 34 分 56 秒 (日本時間)
4511e61068 / 3860Youcef LemsaferFebruary 11, 2013 05:34:56 UTC 2013 年 2 月 11 日 (月) 14 時 34 分 56 秒 (日本時間)

3×10190+7

c130

name 名前Erik Branger
date 日付September 27, 2010 07:00:15 UTC 2010 年 9 月 27 日 (月) 16 時 0 分 15 秒 (日本時間)
composite number 合成数
3266840841063151058420879085287406367732093771133291648378125740962470904735039604161264439172945385996578548253451059715354049947<130>
prime factors 素因数
1533754569246596800343579035700691859618492126401129432620297<61>
2129963233079639445425492414094497020193914553913848036384671909368451<70>
factorization results 素因数分解の結果
Number: 30007_190
N = 3266840841063151058420879085287406367732093771133291648378125740962470904735039604161264439172945385996578548253451059715354049947 (130 digits)
Divisors found:
r1=1533754569246596800343579035700691859618492126401129432620297 (pp61)
r2=2129963233079639445425492414094497020193914553913848036384671909368451 (pp70)
Version: Msieve v. 1.47
Total time: 148.60 hours.
Factorization parameters were as follows:
# Murphy_E = 7.90429e-11, selected by Jeff Gilchrist
n: 3266840841063151058420879085287406367732093771133291648378125740962470904735039604161264439172945385996578548253451059715354049947
Y0: -9080301456770988916836882
Y1: 188959493757617
c0: -507672440029235748477026160029075
c1: 7269192220397240716415596321
c2: -19001601296387986080923
c3: -65778446313196129
c4: 39856705462
c5: 52920
skew: 573252.62
type: gnfs
# selected mechanically
rlim: 9500000
alim: 9500000
lpbr: 28
lpba: 28
mfbr: 53
mfba: 53
rlambda: 2.5
alambda: 2.5
Factor base limits: 9500000/9500000
Large primes per side: 3
Large prime bits: 28/28
Sieved algebraic special-q in [4750000, 10350000)
Relations: 17790663
Relations in full relation-set: 2519700 relations
Pruned matrix : 1471024 x 1471249
Polynomial selection time: 0.00 hours.
Total sieving time: 145.31 hours.
Total relation processing time: 0.13 hours.
Matrix solve time: 1.70 hours.
time per square root: 1.46 hours.
Prototype def-par.txt line would be: gnfs,129,5,65,2000,1e-05,0.28,250,20,50000,3600,9500000,9500000,28,28,53,53,2.5,2.5,100000
total time: 148.60 hours.
 --------- CPU info (if available) ----------
software ソフトウェア
GGNFS, Msieve

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaSeptember 3, 2007 09:00:00 UTC 2007 年 9 月 3 日 (月) 18 時 0 分 0 秒 (日本時間)
351e60--
403e62336Wataru SakaiMay 2, 2009 06:18:36 UTC 2009 年 5 月 2 日 (土) 15 時 18 分 36 秒 (日本時間)

3×10192+7

c168

name 名前Youcef Lemsafer
date 日付February 10, 2013 15:55:06 UTC 2013 年 2 月 11 日 (月) 0 時 55 分 6 秒 (日本時間)
composite number 合成数
326330481942069015309153576337615530981481633470580102594486170987408719390752537442941989296097827807520324771547864897004319563501689749792424269813720039996207288019<168>
prime factors 素因数
642068743400393347285001478997421167763<39>
1681024249843140161747771597374151664910161406779701<52>
302344543644923459390790323502278773143278762026603255174869342665706773115613<78>
factorization results 素因数分解の結果
GMP-ECM 6.4 [configured with GMP 5.0.1] [ECM]
Input number is (3*10^192+7)/(22039*375097*1112059787454691) (168 digits)
Using MODMULN
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=484142988
dF=16384, k=2, d=158340, d2=11, i0=8
Expected number of curves to find a factor of n digits:
35      40      45      50      55      60      65      70      75      80
324     2351    20272   201449  2247436 2.8e+007        3.9e+008        6e+009  1.1e+011        7.4e+015
Step 1 took 93922ms
Using 39 small primes for NTT
Estimated memory usage: 55M
Initializing tables of differences for F took 78ms
Computing roots of F took 1828ms
Building F from its roots took 2453ms
Computing 1/F took 1297ms
Initializing table of differences for G took 62ms
Computing roots of G took 1672ms
Building G from its roots took 2422ms
Computing roots of G took 1656ms
Building G from its roots took 2438ms
Computing G * H took 625ms
Reducing  G * H mod F took 625ms
Computing polyeval(F,G) took 4750ms
Computing product of all F(g_i) took 47ms
Step 2 took 20187ms
********** Factor found in step 2: 642068743400393347285001478997421167763
Found probable prime factor of 39 digits: 642068743400393347285001478997421167763
Composite cofactor ((3*10^192+7)/(22039*375097*1112059787454691))/642068743400393347285001478997421167763 has 129 digits


Fri Feb 08 21:35:00 2013 -> factmsieve.py (v0.76)
Fri Feb 08 21:35:00 2013 -> This is client 1 of 1
Fri Feb 08 21:35:00 2013 -> Running on 16 Cores with 1 hyper-thread per Core
Fri Feb 08 21:35:00 2013 -> Working with NAME = 30007_192
Fri Feb 08 21:35:00 2013 -> Selected lattice siever: gnfs-lasieve4I13e
Fri Feb 08 21:35:00 2013 -> Creating param file to detect parameter changes...
Fri Feb 08 21:35:00 2013 -> Running setup ...
Fri Feb 08 21:35:00 2013 -> Estimated minimum relations needed: 2.27585e+07
Fri Feb 08 21:35:00 2013 -> cleaning up before a restart
Fri Feb 08 21:35:00 2013 -> Running lattice siever ...
Fri Feb 08 21:35:00 2013 -> entering sieving loop
Fri Feb 08 21:35:00 2013 -> making sieve job for q = 5750000 in 5750000 .. 5756250 as file 30007_192.job.T0
Fri Feb 08 21:35:00 2013 -> making sieve job for q = 5756250 in 5756250 .. 5762500 as file 30007_192.job.T1
Fri Feb 08 21:35:00 2013 -> making sieve job for q = 5762500 in 5762500 .. 5768750 as file 30007_192.job.T2
Fri Feb 08 21:35:00 2013 -> making sieve job for q = 5768750 in 5768750 .. 5775000 as file 30007_192.job.T3
Fri Feb 08 21:35:00 2013 -> making sieve job for q = 5775000 in 5775000 .. 5781250 as file 30007_192.job.T4
Fri Feb 08 21:35:00 2013 -> making sieve job for q = 5781250 in 5781250 .. 5787500 as file 30007_192.job.T5
Fri Feb 08 21:35:00 2013 -> making sieve job for q = 5787500 in 5787500 .. 5793750 as file 30007_192.job.T6
Fri Feb 08 21:35:00 2013 -> making sieve job for q = 5793750 in 5793750 .. 5800000 as file 30007_192.job.T7
Fri Feb 08 21:35:00 2013 -> making sieve job for q = 5800000 in 5800000 .. 5806250 as file 30007_192.job.T8
Fri Feb 08 21:35:00 2013 -> making sieve job for q = 5806250 in 5806250 .. 5812500 as file 30007_192.job.T9
Fri Feb 08 21:35:00 2013 -> making sieve job for q = 5812500 in 5812500 .. 5818750 as file 30007_192.job.T10
Fri Feb 08 21:35:00 2013 -> making sieve job for q = 5818750 in 5818750 .. 5825000 as file 30007_192.job.T11
Fri Feb 08 21:35:00 2013 -> making sieve job for q = 5825000 in 5825000 .. 5831250 as file 30007_192.job.T12
Fri Feb 08 21:35:00 2013 -> making sieve job for q = 5831250 in 5831250 .. 5837500 as file 30007_192.job.T13
Fri Feb 08 21:35:00 2013 -> making sieve job for q = 5837500 in 5837500 .. 5843750 as file 30007_192.job.T14
Fri Feb 08 21:35:00 2013 -> making sieve job for q = 5843750 in 5843750 .. 5850000 as file 30007_192.job.T15
Fri Feb 08 21:35:00 2013 -> Lattice sieving rational q from 5750000 to 5850000.
Fri Feb 08 21:35:00 2013 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -r 30007_192.job.T0
Fri Feb 08 21:48:54 2013 Found 203484 relations, 0.9% of the estimated minimum (22758459).
Fri Feb 08 22:39:57 2013 Found 1024033 relations, 4.5% of the estimated minimum (22758459).
Fri Feb 08 23:17:55 2013 Found 1638525 relations, 7.2% of the estimated minimum (22758459).
Sat Feb 09 00:21:46 2013 Found 2663045 relations, 11.7% of the estimated minimum (22758459).
Sat Feb 09 02:44:18 2013 Found 4885554 relations, 21.5% of the estimated minimum (22758459).
Sat Feb 09 03:10:38 2013 Found 5290086 relations, 23.2% of the estimated minimum (22758459).
Sat Feb 09 10:43:05 2013 Found 11609500 relations, 51.0% of the estimated minimum (22758459).
Sat Feb 09 13:27:04 2013 Found 13712482 relations, 60.3% of the estimated minimum (22758459).
Sat Feb 09 16:23:02 2013 Found 15931571 relations, 70.0% of the estimated minimum (22758459).
Sat Feb 09 19:32:43 2013 Found 18261675 relations, 80.2% of the estimated minimum (22758459).
Sat Feb 09 22:40:41 2013 Found 20526227 relations, 90.2% of the estimated minimum (22758459).
Sun Feb 10 00:07:01 2013 Found 21550392 relations, 94.7% of the estimated minimum (22758459).
Sun Feb 10 01:47:23 2013 Found 22729317 relations, 99.9% of the estimated minimum (22758459).
Sun Feb 10 02:01:52 2013 Found 22896081 relations, 100.6% of the estimated minimum (22758459).
Sun Feb 10 02:01:52 2013  Msieve v. 1.50 (SVN 708)
Sun Feb 10 02:01:52 2013  random seeds: 338e6788 6fc5bfce
Sun Feb 10 02:01:52 2013  factoring 508248509674874008417222255824036470239441958945503487266303326239746637288730993380755405006072424991254334278455565336894571713 (129 digits)
Sun Feb 10 02:01:53 2013  searching for 15-digit factors
Sun Feb 10 02:01:54 2013  commencing number field sieve (129-digit input)


// Crash in msieve due to skew=0.0 in fb file for an unknown reason (processing stopped until I fixed the issue)


Sun Feb 10 09:46:03 2013  Msieve v. 1.50 (SVN 708)
Sun Feb 10 09:46:03 2013  random seeds: 29eecd20 6813637a
Sun Feb 10 09:46:03 2013  factoring 508248509674874008417222255824036470239441958945503487266303326239746637288730993380755405006072424991254334278455565336894571713 (129 digits)
Sun Feb 10 09:46:04 2013  searching for 15-digit factors
Sun Feb 10 09:46:05 2013  commencing number field sieve (129-digit input)
Sun Feb 10 09:46:05 2013  R0: -100000000000000000000000000000000000000
Sun Feb 10 09:46:05 2013  R1: 1
Sun Feb 10 09:46:05 2013  A0: 7
Sun Feb 10 09:46:05 2013  A1: 0
Sun Feb 10 09:46:05 2013  A2: 0
Sun Feb 10 09:46:05 2013  A3: 0
Sun Feb 10 09:46:05 2013  A4: 0
Sun Feb 10 09:46:05 2013  A5: 300
Sun Feb 10 09:46:05 2013  skew 0.47, size 2.341e-013, alpha 0.487, combined = 3.392e-011 rroots = 1
Sun Feb 10 09:46:05 2013  
Sun Feb 10 09:46:05 2013  commencing relation filtering
Sun Feb 10 09:46:05 2013  estimated available RAM is 4096.0 MB
Sun Feb 10 09:46:05 2013  commencing duplicate removal, pass 1
Sun Feb 10 09:48:05 2013  skipped 1 relations with b > 2^32
Sun Feb 10 09:48:05 2013  found 3582411 hash collisions in 23729003 relations
Sun Feb 10 09:48:50 2013  added 726526 free relations
Sun Feb 10 09:48:50 2013  commencing duplicate removal, pass 2
Sun Feb 10 09:49:06 2013  found 3225562 duplicates and 21229967 unique relations
Sun Feb 10 09:49:06 2013  memory use: 106.6 MB
Sun Feb 10 09:49:06 2013  reading ideals above 18284544
Sun Feb 10 09:49:11 2013  commencing singleton removal, initial pass
Sun Feb 10 09:51:30 2013  memory use: 689.0 MB
Sun Feb 10 09:51:30 2013  reading all ideals from disk
Sun Feb 10 09:51:31 2013  memory use: 365.6 MB
Sun Feb 10 09:51:32 2013  commencing in-memory singleton removal
Sun Feb 10 09:51:33 2013  begin with 21229967 relations and 21143777 unique ideals
Sun Feb 10 09:51:44 2013  reduce to 9023210 relations and 6641827 ideals in 19 passes
Sun Feb 10 09:51:44 2013  max relations containing the same ideal: 28
Sun Feb 10 09:51:45 2013  reading ideals above 100000
Sun Feb 10 09:51:45 2013  commencing singleton removal, initial pass
Sun Feb 10 09:53:01 2013  memory use: 188.3 MB
Sun Feb 10 09:53:01 2013  reading all ideals from disk
Sun Feb 10 09:53:01 2013  memory use: 354.2 MB
Sun Feb 10 09:53:02 2013  keeping 8929766 ideals with weight <= 200, target excess is 47562
Sun Feb 10 09:53:04 2013  commencing in-memory singleton removal
Sun Feb 10 09:53:05 2013  begin with 9023935 relations and 8929766 unique ideals
Sun Feb 10 09:53:22 2013  reduce to 8974427 relations and 8876824 ideals in 16 passes
Sun Feb 10 09:53:22 2013  max relations containing the same ideal: 200
Sun Feb 10 09:53:28 2013  removing 370668 relations and 349452 ideals in 21216 cliques
Sun Feb 10 09:53:28 2013  commencing in-memory singleton removal
Sun Feb 10 09:53:29 2013  begin with 8603759 relations and 8876824 unique ideals
Sun Feb 10 09:53:39 2013  reduce to 8591098 relations and 8514651 ideals in 10 passes
Sun Feb 10 09:53:39 2013  max relations containing the same ideal: 198
Sun Feb 10 09:53:44 2013  removing 262158 relations and 240942 ideals in 21216 cliques
Sun Feb 10 09:53:45 2013  commencing in-memory singleton removal
Sun Feb 10 09:53:45 2013  begin with 8328940 relations and 8514651 unique ideals
Sun Feb 10 09:53:53 2013  reduce to 8321980 relations and 8266731 ideals in 7 passes
Sun Feb 10 09:53:53 2013  max relations containing the same ideal: 196
Sun Feb 10 09:53:56 2013  relations with 0 large ideals: 1033
Sun Feb 10 09:53:56 2013  relations with 1 large ideals: 89
Sun Feb 10 09:53:56 2013  relations with 2 large ideals: 1192
Sun Feb 10 09:53:56 2013  relations with 3 large ideals: 16420
Sun Feb 10 09:53:56 2013  relations with 4 large ideals: 120998
Sun Feb 10 09:53:56 2013  relations with 5 large ideals: 532929
Sun Feb 10 09:53:56 2013  relations with 6 large ideals: 1526029
Sun Feb 10 09:53:56 2013  relations with 7+ large ideals: 6123290
Sun Feb 10 09:53:56 2013  commencing 2-way merge
Sun Feb 10 09:54:04 2013  reduce to 4845605 relation sets and 4790358 unique ideals
Sun Feb 10 09:54:04 2013  ignored 2 oversize relation sets
Sun Feb 10 09:54:04 2013  commencing full merge
Sun Feb 10 09:59:18 2013  memory use: 147.2 MB
Sun Feb 10 09:59:19 2013  found 12759 cycles, need 996143
Sun Feb 10 09:59:19 2013  too few cycles, matrix probably cannot build
Sun Feb 10 09:59:19 2013 LatSieveTime: 1667.61
Sun Feb 10 09:59:19 2013 -> making sieve job for q = 18350000 in 18350000 .. 18356250 as file 30007_192.job.T0
Sun Feb 10 09:59:19 2013 -> making sieve job for q = 18356250 in 18356250 .. 18362500 as file 30007_192.job.T1
Sun Feb 10 09:59:19 2013 -> making sieve job for q = 18362500 in 18362500 .. 18368750 as file 30007_192.job.T2
Sun Feb 10 09:59:19 2013 -> making sieve job for q = 18368750 in 18368750 .. 18375000 as file 30007_192.job.T3
Sun Feb 10 09:59:19 2013 -> making sieve job for q = 18375000 in 18375000 .. 18381250 as file 30007_192.job.T4
Sun Feb 10 09:59:19 2013 -> making sieve job for q = 18381250 in 18381250 .. 18387500 as file 30007_192.job.T5
Sun Feb 10 09:59:19 2013 -> making sieve job for q = 18387500 in 18387500 .. 18393750 as file 30007_192.job.T6
Sun Feb 10 09:59:19 2013 -> making sieve job for q = 18393750 in 18393750 .. 18400000 as file 30007_192.job.T7
Sun Feb 10 09:59:19 2013 -> making sieve job for q = 18400000 in 18400000 .. 18406250 as file 30007_192.job.T8
Sun Feb 10 09:59:19 2013 -> making sieve job for q = 18406250 in 18406250 .. 18412500 as file 30007_192.job.T9
Sun Feb 10 09:59:19 2013 -> making sieve job for q = 18412500 in 18412500 .. 18418750 as file 30007_192.job.T10
Sun Feb 10 09:59:19 2013 -> making sieve job for q = 18418750 in 18418750 .. 18425000 as file 30007_192.job.T11
Sun Feb 10 09:59:19 2013 -> making sieve job for q = 18425000 in 18425000 .. 18431250 as file 30007_192.job.T12
Sun Feb 10 09:59:19 2013 -> making sieve job for q = 18431250 in 18431250 .. 18437500 as file 30007_192.job.T13
Sun Feb 10 09:59:19 2013 -> making sieve job for q = 18437500 in 18437500 .. 18443750 as file 30007_192.job.T14
Sun Feb 10 09:59:19 2013 -> making sieve job for q = 18443750 in 18443750 .. 18450000 as file 30007_192.job.T15
Sun Feb 10 09:59:19 2013 -> Lattice sieving rational q from 18350000 to 18450000.
Sun Feb 10 09:59:19 2013 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -r 30007_192.job.T0
Sun Feb 10 09:59:19 2013 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -r 30007_192.job.T1
Sun Feb 10 09:59:19 2013 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -r 30007_192.job.T2
Sun Feb 10 09:59:19 2013 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -r 30007_192.job.T3
Sun Feb 10 09:59:19 2013 -> gnfs-lasieve4I13e -k -o spairs.out.T4 -v -n4 -r 30007_192.job.T4
Sun Feb 10 09:59:19 2013 -> gnfs-lasieve4I13e -k -o spairs.out.T5 -v -n5 -r 30007_192.job.T5
Sun Feb 10 09:59:19 2013 -> gnfs-lasieve4I13e -k -o spairs.out.T6 -v -n6 -r 30007_192.job.T6
Sun Feb 10 09:59:19 2013 -> gnfs-lasieve4I13e -k -o spairs.out.T7 -v -n7 -r 30007_192.job.T7
Sun Feb 10 09:59:19 2013 -> gnfs-lasieve4I13e -k -o spairs.out.T8 -v -n8 -r 30007_192.job.T8
Sun Feb 10 09:59:19 2013 -> gnfs-lasieve4I13e -k -o spairs.out.T9 -v -n9 -r 30007_192.job.T9
Sun Feb 10 09:59:19 2013 -> gnfs-lasieve4I13e -k -o spairs.out.T10 -v -n10 -r 30007_192.job.T10
Sun Feb 10 09:59:19 2013 -> gnfs-lasieve4I13e -k -o spairs.out.T11 -v -n11 -r 30007_192.job.T11
Sun Feb 10 09:59:19 2013 -> gnfs-lasieve4I13e -k -o spairs.out.T12 -v -n12 -r 30007_192.job.T12
Sun Feb 10 09:59:19 2013 -> gnfs-lasieve4I13e -k -o spairs.out.T13 -v -n13 -r 30007_192.job.T13
Sun Feb 10 09:59:19 2013 -> gnfs-lasieve4I13e -k -o spairs.out.T14 -v -n14 -r 30007_192.job.T14
Sun Feb 10 09:59:19 2013 -> gnfs-lasieve4I13e -k -o spairs.out.T15 -v -n15 -r 30007_192.job.T15
Sun Feb 10 10:13:45 2013 Found 24620026 relations, 108.2% of the estimated minimum (22758459).
Sun Feb 10 10:13:45 2013  
Sun Feb 10 10:13:45 2013  
Sun Feb 10 10:13:45 2013  Msieve v. 1.50 (SVN 708)
Sun Feb 10 10:13:45 2013  random seeds: 7388dd00 c28d67ee
Sun Feb 10 10:13:45 2013  factoring 508248509674874008417222255824036470239441958945503487266303326239746637288730993380755405006072424991254334278455565336894571713 (129 digits)
Sun Feb 10 10:13:46 2013  searching for 15-digit factors
Sun Feb 10 10:13:47 2013  commencing number field sieve (129-digit input)
Sun Feb 10 10:13:47 2013  R0: -100000000000000000000000000000000000000
Sun Feb 10 10:13:47 2013  R1: 1
Sun Feb 10 10:13:47 2013  A0: 7
Sun Feb 10 10:13:47 2013  A1: 0
Sun Feb 10 10:13:47 2013  A2: 0
Sun Feb 10 10:13:47 2013  A3: 0
Sun Feb 10 10:13:47 2013  A4: 0
Sun Feb 10 10:13:47 2013  A5: 300
Sun Feb 10 10:13:47 2013  skew 0.47, size 2.341e-013, alpha 0.487, combined = 3.392e-011 rroots = 1
Sun Feb 10 10:13:47 2013  
Sun Feb 10 10:13:47 2013  commencing relation filtering
Sun Feb 10 10:13:47 2013  estimated available RAM is 4096.0 MB
Sun Feb 10 10:13:47 2013  commencing duplicate removal, pass 1
Sun Feb 10 10:16:03 2013  skipped 1 relations with b > 2^32
Sun Feb 10 10:16:03 2013  found 3667034 hash collisions in 24620024 relations
Sun Feb 10 10:16:42 2013  added 114 free relations
Sun Feb 10 10:16:42 2013  commencing duplicate removal, pass 2
Sun Feb 10 10:16:58 2013  found 3262655 duplicates and 21357483 unique relations
Sun Feb 10 10:16:58 2013  memory use: 106.6 MB
Sun Feb 10 10:16:58 2013  reading ideals above 18415616
Sun Feb 10 10:17:03 2013  commencing singleton removal, initial pass
Sun Feb 10 10:19:23 2013  memory use: 689.0 MB
Sun Feb 10 10:19:23 2013  reading all ideals from disk
Sun Feb 10 10:19:24 2013  memory use: 367.2 MB
Sun Feb 10 10:19:25 2013  commencing in-memory singleton removal
Sun Feb 10 10:19:26 2013  begin with 21357483 relations and 21171416 unique ideals
Sun Feb 10 10:19:37 2013  reduce to 9217573 relations and 6766885 ideals in 19 passes
Sun Feb 10 10:19:37 2013  max relations containing the same ideal: 32
Sun Feb 10 10:19:39 2013  reading ideals above 100000
Sun Feb 10 10:19:39 2013  commencing singleton removal, initial pass
Sun Feb 10 10:20:53 2013  memory use: 188.3 MB
Sun Feb 10 10:20:53 2013  reading all ideals from disk
Sun Feb 10 10:20:54 2013  memory use: 361.8 MB
Sun Feb 10 10:20:55 2013  keeping 9066304 ideals with weight <= 200, target excess is 48572
Sun Feb 10 10:20:56 2013  commencing in-memory singleton removal
Sun Feb 10 10:20:57 2013  begin with 9217689 relations and 9066304 unique ideals
Sun Feb 10 10:21:15 2013  reduce to 9171452 relations and 9019456 ideals in 16 passes
Sun Feb 10 10:21:15 2013  max relations containing the same ideal: 200
Sun Feb 10 10:21:21 2013  removing 648636 relations and 600810 ideals in 47826 cliques
Sun Feb 10 10:21:21 2013  commencing in-memory singleton removal
Sun Feb 10 10:21:22 2013  begin with 8522816 relations and 9019456 unique ideals
Sun Feb 10 10:21:33 2013  reduce to 8485671 relations and 8381149 ideals in 11 passes
Sun Feb 10 10:21:33 2013  max relations containing the same ideal: 195
Sun Feb 10 10:21:38 2013  removing 461934 relations and 414108 ideals in 47826 cliques
Sun Feb 10 10:21:39 2013  commencing in-memory singleton removal
Sun Feb 10 10:21:40 2013  begin with 8023737 relations and 8381149 unique ideals
Sun Feb 10 10:21:47 2013  reduce to 8003162 relations and 7946329 ideals in 8 passes
Sun Feb 10 10:21:48 2013  max relations containing the same ideal: 190
Sun Feb 10 10:21:55 2013  relations with 0 large ideals: 1050
Sun Feb 10 10:21:55 2013  relations with 1 large ideals: 97
Sun Feb 10 10:21:55 2013  relations with 2 large ideals: 1267
Sun Feb 10 10:21:55 2013  relations with 3 large ideals: 17139
Sun Feb 10 10:21:55 2013  relations with 4 large ideals: 123764
Sun Feb 10 10:21:55 2013  relations with 5 large ideals: 533328
Sun Feb 10 10:21:55 2013  relations with 6 large ideals: 1492752
Sun Feb 10 10:21:55 2013  relations with 7+ large ideals: 5833765
Sun Feb 10 10:21:55 2013  commencing 2-way merge
Sun Feb 10 10:22:02 2013  reduce to 4712402 relation sets and 4655570 unique ideals
Sun Feb 10 10:22:02 2013  ignored 1 oversize relation sets
Sun Feb 10 10:22:02 2013  commencing full merge
Sun Feb 10 10:23:55 2013  memory use: 499.2 MB
Sun Feb 10 10:23:56 2013  found 2447239 cycles, need 2443770
Sun Feb 10 10:23:56 2013  weight of 2443770 cycles is about 171322295 (70.11/cycle)
Sun Feb 10 10:23:56 2013  distribution of cycle lengths:
Sun Feb 10 10:23:56 2013  1 relations: 379022
Sun Feb 10 10:23:56 2013  2 relations: 326284
Sun Feb 10 10:23:56 2013  3 relations: 298760
Sun Feb 10 10:23:56 2013  4 relations: 256872
Sun Feb 10 10:23:56 2013  5 relations: 215378
Sun Feb 10 10:23:56 2013  6 relations: 179276
Sun Feb 10 10:23:56 2013  7 relations: 149059
Sun Feb 10 10:23:56 2013  8 relations: 121028
Sun Feb 10 10:23:56 2013  9 relations: 97948
Sun Feb 10 10:23:56 2013  10+ relations: 420143
Sun Feb 10 10:23:56 2013  heaviest cycle: 28 relations
Sun Feb 10 10:23:56 2013  commencing cycle optimization
Sun Feb 10 10:24:01 2013  start with 13761380 relations
Sun Feb 10 10:24:30 2013  pruned 285735 relations
Sun Feb 10 10:24:30 2013  memory use: 369.8 MB
Sun Feb 10 10:24:30 2013  distribution of cycle lengths:
Sun Feb 10 10:24:30 2013  1 relations: 379022
Sun Feb 10 10:24:30 2013  2 relations: 333008
Sun Feb 10 10:24:30 2013  3 relations: 308141
Sun Feb 10 10:24:30 2013  4 relations: 261195
Sun Feb 10 10:24:30 2013  5 relations: 218812
Sun Feb 10 10:24:30 2013  6 relations: 179875
Sun Feb 10 10:24:30 2013  7 relations: 148550
Sun Feb 10 10:24:30 2013  8 relations: 119118
Sun Feb 10 10:24:30 2013  9 relations: 96311
Sun Feb 10 10:24:30 2013  10+ relations: 399738
Sun Feb 10 10:24:30 2013  heaviest cycle: 28 relations
Sun Feb 10 10:24:33 2013  RelProcTime: 646
Sun Feb 10 10:24:33 2013  elapsed time 00:10:48
Sun Feb 10 10:24:33 2013 LatSieveTime: 1514.08
Sun Feb 10 10:24:33 2013 -> Running matrix solving step ...
Sun Feb 10 10:24:33 2013  
Sun Feb 10 10:24:33 2013  
Sun Feb 10 10:24:33 2013  Msieve v. 1.50 (SVN 708)
Sun Feb 10 10:24:33 2013  random seeds: 2d5db250 a3eb55fc
Sun Feb 10 10:24:33 2013  factoring 508248509674874008417222255824036470239441958945503487266303326239746637288730993380755405006072424991254334278455565336894571713 (129 digits)
Sun Feb 10 10:24:34 2013  searching for 15-digit factors
Sun Feb 10 10:24:35 2013  commencing number field sieve (129-digit input)
Sun Feb 10 10:24:35 2013  R0: -100000000000000000000000000000000000000
Sun Feb 10 10:24:35 2013  R1: 1
Sun Feb 10 10:24:35 2013  A0: 7
Sun Feb 10 10:24:35 2013  A1: 0
Sun Feb 10 10:24:35 2013  A2: 0
Sun Feb 10 10:24:35 2013  A3: 0
Sun Feb 10 10:24:35 2013  A4: 0
Sun Feb 10 10:24:35 2013  A5: 300
Sun Feb 10 10:24:35 2013  skew 0.47, size 2.341e-013, alpha 0.487, combined = 3.392e-011 rroots = 1
Sun Feb 10 10:24:35 2013  
Sun Feb 10 10:24:35 2013  commencing linear algebra
Sun Feb 10 10:24:35 2013  read 2443770 cycles
Sun Feb 10 10:24:41 2013  cycles contain 7923449 unique relations
Sun Feb 10 10:25:23 2013  read 7923449 relations
Sun Feb 10 10:25:36 2013  using 20 quadratic characters above 268435122
Sun Feb 10 10:26:12 2013  building initial matrix
Sun Feb 10 10:27:47 2013  memory use: 857.1 MB
Sun Feb 10 10:27:50 2013  read 2443770 cycles
Sun Feb 10 10:27:51 2013  matrix is 2443593 x 2443770 (697.0 MB) with weight 213133712 (87.22/col)
Sun Feb 10 10:27:51 2013  sparse part has weight 165595730 (67.76/col)
Sun Feb 10 10:28:21 2013  filtering completed in 2 passes
Sun Feb 10 10:28:22 2013  matrix is 2442615 x 2442792 (696.9 MB) with weight 213104952 (87.24/col)
Sun Feb 10 10:28:22 2013  sparse part has weight 165587367 (67.79/col)
Sun Feb 10 10:28:31 2013  matrix starts at (0, 0)
Sun Feb 10 10:28:32 2013  matrix is 2442615 x 2442792 (696.9 MB) with weight 213104952 (87.24/col)
Sun Feb 10 10:28:32 2013  sparse part has weight 165587367 (67.79/col)
Sun Feb 10 10:28:32 2013  saving the first 48 matrix rows for later
Sun Feb 10 10:28:33 2013  matrix includes 64 packed rows
Sun Feb 10 10:28:33 2013  matrix is 2442567 x 2442792 (657.3 MB) with weight 170882358 (69.95/col)
Sun Feb 10 10:28:33 2013  sparse part has weight 157643295 (64.53/col)
Sun Feb 10 10:28:33 2013  using block size 65536 for processor cache size 8192 kB
Sun Feb 10 10:28:47 2013  commencing Lanczos iteration (16 threads)
Sun Feb 10 10:28:47 2013  memory use: 832.8 MB
Sun Feb 10 10:28:58 2013  linear algebra at 0.1%, ETA 4h27m
Sun Feb 10 10:29:01 2013  checkpointing every 570000 dimensions
Sun Feb 10 14:59:35 2013  lanczos halted after 38624 iterations (dim = 2442565)
Sun Feb 10 14:59:40 2013  recovered 40 nontrivial dependencies
Sun Feb 10 14:59:40 2013  BLanczosTime: 16505
Sun Feb 10 14:59:40 2013  elapsed time 04:35:07
Sun Feb 10 14:59:40 2013 -> Running square root step ...
Sun Feb 10 14:59:40 2013  
Sun Feb 10 14:59:40 2013  
Sun Feb 10 14:59:40 2013  Msieve v. 1.50 (SVN 708)
Sun Feb 10 14:59:40 2013  random seeds: de008340 703e571c
Sun Feb 10 14:59:40 2013  factoring 508248509674874008417222255824036470239441958945503487266303326239746637288730993380755405006072424991254334278455565336894571713 (129 digits)
Sun Feb 10 14:59:41 2013  searching for 15-digit factors
Sun Feb 10 14:59:42 2013  commencing number field sieve (129-digit input)
Sun Feb 10 14:59:42 2013  R0: -100000000000000000000000000000000000000
Sun Feb 10 14:59:42 2013  R1: 1
Sun Feb 10 14:59:42 2013  A0: 7
Sun Feb 10 14:59:42 2013  A1: 0
Sun Feb 10 14:59:42 2013  A2: 0
Sun Feb 10 14:59:42 2013  A3: 0
Sun Feb 10 14:59:42 2013  A4: 0
Sun Feb 10 14:59:42 2013  A5: 300
Sun Feb 10 14:59:42 2013  skew 0.47, size 2.341e-013, alpha 0.487, combined = 3.392e-011 rroots = 1
Sun Feb 10 14:59:42 2013  
Sun Feb 10 14:59:42 2013  commencing square root phase
Sun Feb 10 14:59:42 2013  reading relations for dependency 1
Sun Feb 10 14:59:42 2013  read 1221804 cycles
Sun Feb 10 14:59:45 2013  cycles contain 3962242 unique relations
Sun Feb 10 15:00:09 2013  read 3962242 relations
Sun Feb 10 15:00:33 2013  multiplying 3962242 relations
Sun Feb 10 15:06:42 2013  multiply complete, coefficients have about 120.49 million bits
Sun Feb 10 15:06:43 2013  initial square root is modulo 444849121
Sun Feb 10 15:14:27 2013  sqrtTime: 885
Sun Feb 10 15:14:27 2013  prp52 factor: 1681024249843140161747771597374151664910161406779701
Sun Feb 10 15:14:27 2013  prp78 factor: 302344543644923459390790323502278773143278762026603255174869342665706773115613
Sun Feb 10 15:14:27 2013  elapsed time 00:14:47
Sun Feb 10 15:14:27 2013 -> Computing 1.36051e+09 scale for this machine...
Sun Feb 10 15:14:27 2013 -> procrels -speedtest> PIPE
Sun Feb 10 15:14:32 2013 -> Factorization summary written to s193-30007_192.txt




Number: 30007_192
N = 508248509674874008417222255824036470239441958945503487266303326239746637288730993380755405006072424991254334278455565336894571713 (129 digits)
SNFS difficulty: 193 digits.
Divisors found:
r1=1681024249843140161747771597374151664910161406779701 (pp52)
r2=302344543644923459390790323502278773143278762026603255174869342665706773115613 (pp78)
Version: Msieve v. 1.50 (SVN 708)
Total time: 34.07 hours.
Factorization parameters were as follows:
n: 508248509674874008417222255824036470239441958945503487266303326239746637288730993380755405006072424991254334278455565336894571713
m: 100000000000000000000000000000000000000
deg: 5
c5: 300
c0: 7
skew: 0.47
type: snfs
Factor base limits: 11500000/11500000
Large primes per side: 3
Large prime bits: 28/28
Sieved rational special-q in [0, 0)
Total raw relations: 24620026
Relations: 3962242 relations
Pruned matrix : 2442567 x 2442792
Polynomial selection time: 0.00 hours.
Total sieving time: 29.06 hours.
Total relation processing time: 0.18 hours.
Matrix solve time: 4.58 hours.
time per square root: 0.25 hours.
Prototype def-par.txt line would be: snfs,193,5,0,0,0,0,0,0,0,0,11500000,11500000,28,28,56,56,2.5,2.5,100000
total time: 34.07 hours.
Intel64 Family 6 Model 26 Stepping 5, GenuineIntel
Windows-2008ServerR2-6.1.7601-SP1
processors: 16, speed: 3.06GHz

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaSeptember 3, 2007 09:00:00 UTC 2007 年 9 月 3 日 (月) 18 時 0 分 0 秒 (日本時間)
351e60--
403e62800400Dmitry DomanovApril 5, 2011 06:30:19 UTC 2011 年 4 月 5 日 (火) 15 時 30 分 19 秒 (日本時間)
2400Youcef LemsaferFebruary 10, 2013 15:35:54 UTC 2013 年 2 月 11 日 (月) 0 時 35 分 54 秒 (日本時間)
4511e64492Youcef LemsaferFebruary 10, 2013 15:35:54 UTC 2013 年 2 月 11 日 (月) 0 時 35 分 54 秒 (日本時間)
5043e65580Youcef LemsaferFebruary 10, 2013 15:35:54 UTC 2013 年 2 月 11 日 (月) 0 時 35 分 54 秒 (日本時間)
5511e7492 / 15475Youcef LemsaferFebruary 10, 2013 15:35:54 UTC 2013 年 2 月 11 日 (月) 0 時 35 分 54 秒 (日本時間)

3×10194+7

c97

name 名前JMB
date 日付September 3, 2007 22:59:47 UTC 2007 年 9 月 4 日 (火) 7 時 59 分 47 秒 (日本時間)
composite number 合成数
3663658012063473814576599107224265692750366113212948291865400212936523277001269445564703157262997<97>
prime factors 素因数
2181760916727482904956744337987008327579<40>
1679220662527382761557265816940310453170712534544646764943<58>
factorization results 素因数分解の結果
prp40: 2181760916727482904956744337987008327579
prp58: 1679220662527382761557265816940310453170712534544646764943

3×10195+7

c163

name 名前Youcef Lemsafer
date 日付February 13, 2013 04:56:28 UTC 2013 年 2 月 13 日 (水) 13 時 56 分 28 秒 (日本時間)
composite number 合成数
4780983007353680036102140571096017639779659729616985292014830648238947513982041515182759800486993865331730311764870486166875314250668701282753411675708926920814469<163>
prime factors 素因数
11924605305477772589540332494963999896302871<44>
400934277057996480858505066557758567993715884073205231275836329565022162411055295222107073259669869072646637934767577539<120>
factorization results 素因数分解の結果
GMP-ECM 6.4.2 [configured with GMP 5.0.5, --enable-asm-redc] [ECM]
Input number is (3*10^195+7)/(97*48305287*2620757107*51098821185311) (163 digits)
Using MODMULN [mulredc:0, sqrredc:2]
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=3479621926
dF=32768, k=3, d=324870, d2=11, i0=23
Expected number of curves to find a factor of n digits:
35      40      45      50      55      60      65      70      75      80
122     686     4482    33676   284176  2657998 2.7e+007        3e+008  3.7e+009        4.4e+010
Step 1 took 81682ms
Using 20 small primes for NTT
Estimated memory usage: 113M
Initializing tables of differences for F took 78ms
Computing roots of F took 2278ms
Building F from its roots took 2480ms
Computing 1/F took 1202ms
Initializing table of differences for G took 46ms
Computing roots of G took 1982ms
Building G from its roots took 3432ms
Computing roots of G took 1982ms
Building G from its roots took 3432ms
Computing G * H took 561ms
Reducing  G * H mod F took 718ms
Computing roots of G took 1981ms
Building G from its roots took 3432ms
Computing G * H took 562ms
Reducing  G * H mod F took 733ms
Computing polyeval(F,G) took 5600ms
Computing product of all F(g_i) took 31ms
Step 2 took 30717ms
********** Factor found in step 2: 11924605305477772589540332494963999896302871
Found probable prime factor of 44 digits: 11924605305477772589540332494963999896302871
Probable prime cofactor ((3*10^195+7)/(97*48305287*2620757107*51098821185311))/11924605305477772589540332494963999896302871 has 120 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaSeptember 3, 2007 09:00:00 UTC 2007 年 9 月 3 日 (月) 18 時 0 分 0 秒 (日本時間)
351e60--
403e62379400Dmitry DomanovApril 5, 2011 06:30:33 UTC 2011 年 4 月 5 日 (火) 15 時 30 分 33 秒 (日本時間)
1629Youcef LemsaferFebruary 6, 2013 08:04:26 UTC 2013 年 2 月 6 日 (水) 17 時 4 分 26 秒 (日本時間)
350Youcef LemsaferFebruary 7, 2013 22:19:20 UTC 2013 年 2 月 8 日 (金) 7 時 19 分 20 秒 (日本時間)
4511e6528 / 3953Youcef LemsaferFebruary 13, 2013 04:51:42 UTC 2013 年 2 月 13 日 (水) 13 時 51 分 42 秒 (日本時間)

3×10196+7

c186

name 名前Robert Backstrom
date 日付September 10, 2012 06:28:22 UTC 2012 年 9 月 10 日 (月) 15 時 28 分 22 秒 (日本時間)
composite number 合成数
985807409815500749900689934051483172167635728664392044245387506030601661731327405585290743952476880143633787880107670777784357344870832264688389953340247710050937916568745280232817773199<186>
prime factors 素因数
36091254020598556209326577995494244927464115130739574091707<59>
27314301942871410508815654558572642467742232077001241089872808230959660848582635043807507801145627359640160760847685024248893757<128>
factorization results 素因数分解の結果
Number: n
N=985807409815500749900689934051483172167635728664392044245387506030601661731327405585290743952476880143633787880107670777784357344870832264688389953340247710050937916568745280232817773199
  ( 186 digits)
SNFS difficulty: 196 digits.
Divisors found:

Mon Sep 10 16:20:52 2012  prp59 factor: 36091254020598556209326577995494244927464115130739574091707
Mon Sep 10 16:20:52 2012  prp128 factor: 27314301942871410508815654558572642467742232077001241089872808230959660848582635043807507801145627359640160760847685024248893757
Mon Sep 10 16:20:52 2012  elapsed time 03:31:52 (Msieve 1.44 - dependency 1)

Version: GGNFS-0.77.1-20060513-nocona
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.100).
Factorization parameters were as follows:
name: KA_30007_196
n: 985807409815500749900689934051483172167635728664392044245387506030601661731327405585290743952476880143633787880107670777784357344870832264688389953340247710050937916568745280232817773199
m: 1000000000000000000000000000000000000000
#  c186, diff: 196.48
skew: 0.747
deg: 5
c5: 30
c0: 7
# Murphy_E = 2.283e-11
type: snfs
lss: 1
rlim: 13200000
alim: 13200000
lpbr: 28
lpba: 28
mfbr: 55
mfba: 55
rlambda: 2.5
alambda: 2.5
qintsize: 100000
Factor base limits: 13200000/13200000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 55/55
Sieved  special-q in [100000, 18000000)
Primes: RFBsize:861401, AFBsize:862029,
Relations:
Max relations in full relation-set: 28
Initial matrix:
Pruned matrix :

Msieve: found 5533374 hash collisions in 36096191 relations (32381635 unique)
Msieve: matrix is 1617188 x 1617415 (454.1 MB)

Total sieving time: 0.00 hours.
Total relation processing time: 0.00 hours.
Matrix solve time: 0.00 hours.
Total square root time: 0.00 hours, sqrts: 0.
Prototype def-par.txt line would be:
snfs,196,5,0,0,0,0,0,0,0,0,13200000,13200000,28,28,55,55,2.5,2.5,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM)2 Quad  CPU   Q9550  @ 2.83GHz stepping 07
CPU1: Intel(R) Core(TM)2 Quad  CPU   Q9550  @ 2.83GHz stepping 07
CPU2: Intel(R) Core(TM)2 Quad  CPU   Q9550  @ 2.83GHz stepping 07
CPU3: Intel(R) Core(TM)2 Quad  CPU   Q9550  @ 2.83GHz stepping 07
Memory: 8109188k/9175040k available (3972k kernel code, 787464k absent, 278388k reserved, 2498k data, 1292k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 5661.42 BogoMIPS (lpj=2830713)
Calibrating delay using timer specific routine.. 5660.89 BogoMIPS (lpj=2830448)
Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830455)
Calibrating delay using timer specific routine.. 5660.92 BogoMIPS (lpj=2830461)
Total of 4 processors activated (22644.15 BogoMIPS).

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaSeptember 3, 2007 09:00:00 UTC 2007 年 9 月 3 日 (月) 18 時 0 分 0 秒 (日本時間)
351e60--
403e6400 / 2336Dmitry DomanovApril 5, 2011 06:30:42 UTC 2011 年 4 月 5 日 (火) 15 時 30 分 42 秒 (日本時間)

3×10197+7

c175

name 名前Serge Batalov
date 日付October 21, 2008 10:08:17 UTC 2008 年 10 月 21 日 (火) 19 時 8 分 17 秒 (日本時間)
composite number 合成数
7907514958556370502018093864132060303507491452901096645553907018119103506545591991705769131565773118988800873695125855283977831408028297269465122968132720244919799057197261293<175>
prime factors 素因数
97148865973080265245073984193<29>
81395854489413446318803739695291383680562514323245286068600107617125030508665056235124237334794958273834035260731457900762605517868916643151494701<146>
factorization results 素因数分解の結果
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1336248685
Step 1 took 21957ms
Step 2 took 14189ms
********** Factor found in step 2: 97148865973080265245073984193
Found probable prime factor of 29 digits: 97148865973080265245073984193
Probable prime cofactor 81395854489413446318803739695291383680562514323245286068600107617125030508665056235124237334794958273834035260731457900762605517868916643151494701 has 146 digits
software ソフトウェア
GMP-ECM 6.2.1

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaSeptember 3, 2007 09:00:00 UTC 2007 年 9 月 3 日 (月) 18 時 0 分 0 秒 (日本時間)

3×10198+7

c193

name 名前matsui
date 日付October 21, 2009 23:50:19 UTC 2009 年 10 月 22 日 (木) 8 時 50 分 19 秒 (日本時間)
composite number 合成数
8029054471781888058922554416916682501746319347612560652815655585679378444129824458105731941987405089885264811598236819637996697382260607050045096522616508271264281680641682033384808493669090549<193>
prime factors 素因数
353042910133991541918917440370516843496015546212267909038130357<63>
22742432269025299197225941631406058277981194146870968014849567950717154661158756620175583489442241367223874181066482274509852878657<131>
factorization results 素因数分解の結果
N=8029054471781888058922554416916682501746319347612560652815655585679378444129824458105731941987405089885264811598236819637996697382260607050045096522616508271264281680641682033384808493669090549
  ( 193 digits)
SNFS difficulty: 199 digits.
Divisors found:
 r1=353042910133991541918917440370516843496015546212267909038130357 (pp63)
 r2=22742432269025299197225941631406058277981194146870968014849567950717154661158756620175583489442241367223874181066482274509852878657 (pp131)
Version: Msieve v. 1.43
Total time: 1205.18 hours.
Scaled time: 2272.97 units (timescale=1.886).
Factorization parameters were as follows:
n: 8029054471781888058922554416916682501746319347612560652815655585679378444129824458105731941987405089885264811598236819637996697382260607050045096522616508271264281680641682033384808493669090549
m: 5000000000000000000000000000000000000000
deg: 5
c5: 24
c0: 175
skew: 1.49
type: snfs
lss: 1
rlim: 15000000
alim: 15000000
lpbr: 28
lpba: 28
mfbr: 55
mfba: 55
rlambda: 2.5
alambda: 2.5
qintsize: 800000
Factor base limits: 15000000/15000000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 55/55
Sieved rational special-q in [7500000, 16300001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 2316723 x 2316948
Total sieving time: 1197.29 hours.
Total relation processing time: 0.18 hours.
Matrix solve time: 6.39 hours.
Time per square root: 1.33 hours.
Prototype def-par.txt line would be:
snfs,199.000,5,0,0,0,0,0,0,0,0,15000000,15000000,28,28,55,55,2.5,2.5,100000
total time: 1205.18 hours.

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaSeptember 3, 2007 09:00:00 UTC 2007 年 9 月 3 日 (月) 18 時 0 分 0 秒 (日本時間)
351e6825Wataru SakaiAugust 27, 2009 13:26:45 UTC 2009 年 8 月 27 日 (木) 22 時 26 分 45 秒 (日本時間)

3×10199+7

c177

name 名前Robert Backstrom
date 日付September 11, 2012 12:35:31 UTC 2012 年 9 月 11 日 (火) 21 時 35 分 31 秒 (日本時間)
composite number 合成数
324720816411515690650673408536444899754714392456839282470432568075122659691357063562042955277261678198937357539352722026601892496240523919921494184109021141367880004401453969543<177>
prime factors 素因数
2818428660441879356444251135174380528389149<43>
115213424050479694234130033057298575833274994888455285113974117573080141096803655508144418190494874414193245252957994580865763147179507<135>
factorization results 素因数分解の結果
Number: n
N=324720816411515690650673408536444899754714392456839282470432568075122659691357063562042955277261678198937357539352722026601892496240523919921494184109021141367880004401453969543
  ( 177 digits)
SNFS difficulty: 200 digits.
Divisors found:

Tue Sep 11 22:30:23 2012  prp43 factor: 2818428660441879356444251135174380528389149
Tue Sep 11 22:30:23 2012  prp135 factor: 115213424050479694234130033057298575833274994888455285113974117573080141096803655508144418190494874414193245252957994580865763147179507
Tue Sep 11 22:30:23 2012  elapsed time 06:59:17 (Msieve 1.44 - dependency 5)

Version: GGNFS-0.77.1-20060513-nocona
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.100).
Factorization parameters were as follows:
name: KA_30007_199
n: 324720816411515690650673408536444899754714392456839282470432568075122659691357063562042955277261678198937357539352722026601892496240523919921494184109021141367880004401453969543
m: 5000000000000000000000000000000000000000
#  c177, diff: 200.18
skew: 0.939
deg: 5
c5: 48
c0: 35
# Murphy_E = 1.498e-11
type: snfs
lss: 1
rlim: 15200000
alim: 15200000
lpbr: 29
lpba: 29
mfbr: 56
mfba: 56
rlambda: 2.6
alambda: 2.6
qintsize: 100000
Factor base limits: 15200000/15200000
Large primes per side: 3
Large prime bits: 29/29
Max factor residue bits: 56/56
Sieved  special-q in [100000, 26600000)
Primes: RFBsize:982776, AFBsize:981338,
Relations:
Max relations in full relation-set: 28
Initial matrix:
Pruned matrix :

Msieve: found 9096222 hash collisions in 62723301 relations (55337069 unique)
Msieve: matrix is 1991652 x 1991877 (560.5 MB)

Total sieving time: 0.00 hours.
Total relation processing time: 0.00 hours.
Matrix solve time: 0.00 hours.
Total square root time: 0.00 hours, sqrts: 0.
Prototype def-par.txt line would be:
snfs,200,5,0,0,0,0,0,0,0,0,15200000,15200000,29,29,56,56,2.6,2.6,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM)2 Quad  CPU   Q9550  @ 2.83GHz stepping 07
CPU1: Intel(R) Core(TM)2 Quad  CPU   Q9550  @ 2.83GHz stepping 07
CPU2: Intel(R) Core(TM)2 Quad  CPU   Q9550  @ 2.83GHz stepping 07
CPU3: Intel(R) Core(TM)2 Quad  CPU   Q9550  @ 2.83GHz stepping 07
Memory: 8109188k/9175040k available (3972k kernel code, 787464k absent, 278388k reserved, 2498k data, 1292k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 5661.42 BogoMIPS (lpj=2830713)
Calibrating delay using timer specific routine.. 5660.89 BogoMIPS (lpj=2830448)
Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830455)
Calibrating delay using timer specific routine.. 5660.92 BogoMIPS (lpj=2830461)
Total of 4 processors activated (22644.15 BogoMIPS).

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaSeptember 3, 2007 09:00:00 UTC 2007 年 9 月 3 日 (月) 18 時 0 分 0 秒 (日本時間)
351e60--
403e6400 / 2336Dmitry DomanovApril 5, 2011 06:30:51 UTC 2011 年 4 月 5 日 (火) 15 時 30 分 51 秒 (日本時間)

3×10200+7

c152

name 名前Youcef Lemsafer
date 日付May 16, 2013 18:01:56 UTC 2013 年 5 月 17 日 (金) 3 時 1 分 56 秒 (日本時間)
composite number 合成数
44275884662845995953373372136213144952289737390869534839615907525960586741800046846773330040655828415052963543919809282412565145533157406014804922827257<152>
prime factors 素因数
28695538725855189461541207724094731927846842107655409102635929051<65>
1542953595882576632076367515659010122547109956089668180409524374435450128767744409278907<88>
factorization results 素因数分解の結果
Sat May 11 08:37:49 2013 -> factmsieve.py (v0.76)
Sat May 11 08:37:49 2013 -> This is client 1 of 1
Sat May 11 08:37:49 2013 -> Running on 4 Cores with 2 hyper-threads per Core
Sat May 11 08:37:49 2013 -> Working with NAME = 30007_200
Sat May 11 08:37:49 2013 -> Selected lattice siever: gnfs-lasieve4I14e
Sat May 11 08:37:49 2013 -> Creating param file to detect parameter changes...
Sat May 11 08:37:50 2013 -> Running setup ...
Sat May 11 08:37:50 2013 -> Estimated minimum relations needed: 2.96093e+07
Sat May 11 08:37:50 2013 -> cleaning up before a restart
Sat May 11 08:37:50 2013 -> Running lattice siever ...
Sat May 11 08:37:50 2013 -> entering sieving loop
Sat May 11 10:11:40 2013 Found 548559 relations, 1.9% of the estimated minimum (29609329).
Sat May 11 11:46:26 2013 Found 1105728 relations, 3.7% of the estimated minimum (29609329).
Sat May 11 13:19:59 2013 Found 1657038 relations, 5.6% of the estimated minimum (29609329).
Sat May 11 14:53:15 2013 Found 2205440 relations, 7.4% of the estimated minimum (29609329).
Sat May 11 16:27:16 2013 Found 2760039 relations, 9.3% of the estimated minimum (29609329).
Sat May 11 18:00:37 2013 Found 3311582 relations, 11.2% of the estimated minimum (29609329).
Sat May 11 19:34:18 2013 Found 3862567 relations, 13.0% of the estimated minimum (29609329).
Sat May 11 21:07:59 2013 Found 4414015 relations, 14.9% of the estimated minimum (29609329).
Sat May 11 22:42:32 2013 Found 4970672 relations, 16.8% of the estimated minimum (29609329).
Sun May 12 00:18:22 2013 Found 5525639 relations, 18.7% of the estimated minimum (29609329).
Sun May 12 01:53:04 2013 Found 6080668 relations, 20.5% of the estimated minimum (29609329).
Sun May 12 03:27:41 2013 Found 6631195 relations, 22.4% of the estimated minimum (29609329).
Sun May 12 05:02:32 2013 Found 7187260 relations, 24.3% of the estimated minimum (29609329).
Sun May 12 06:36:41 2013 Found 7734904 relations, 26.1% of the estimated minimum (29609329).
Sun May 12 08:12:01 2013 Found 8287660 relations, 28.0% of the estimated minimum (29609329).
Sun May 12 09:46:52 2013 Found 8842340 relations, 29.9% of the estimated minimum (29609329).
Sun May 12 11:21:11 2013 Found 9395470 relations, 31.7% of the estimated minimum (29609329).
Sun May 12 12:55:36 2013 Found 9944874 relations, 33.6% of the estimated minimum (29609329).
Sun May 12 14:32:18 2013 Found 10500084 relations, 35.5% of the estimated minimum (29609329).
Sun May 12 16:07:32 2013 Found 11048628 relations, 37.3% of the estimated minimum (29609329).
Sun May 12 17:43:11 2013 Found 11600132 relations, 39.2% of the estimated minimum (29609329).
Sun May 12 19:18:01 2013 Found 12149289 relations, 41.0% of the estimated minimum (29609329).
Sun May 12 20:52:35 2013 Found 12694589 relations, 42.9% of the estimated minimum (29609329).
Sun May 12 22:28:43 2013 Found 13247287 relations, 44.7% of the estimated minimum (29609329).
Mon May 13 00:03:32 2013 Found 13794236 relations, 46.6% of the estimated minimum (29609329).
Mon May 13 01:40:20 2013 Found 14345650 relations, 48.4% of the estimated minimum (29609329).
Mon May 13 03:17:19 2013 Found 14896051 relations, 50.3% of the estimated minimum (29609329).
Mon May 13 04:54:30 2013 Found 15447939 relations, 52.2% of the estimated minimum (29609329).
Mon May 13 06:30:09 2013 Found 15997316 relations, 54.0% of the estimated minimum (29609329).
Mon May 13 08:07:12 2013 Found 16548505 relations, 55.9% of the estimated minimum (29609329).
Mon May 13 09:43:04 2013 Found 17092469 relations, 57.7% of the estimated minimum (29609329).
Mon May 13 11:26:35 2013 Found 17645195 relations, 59.6% of the estimated minimum (29609329).
Mon May 13 13:29:13 2013 Found 18194526 relations, 61.4% of the estimated minimum (29609329).
Mon May 13 15:14:40 2013 Found 18744974 relations, 63.3% of the estimated minimum (29609329).
Mon May 13 17:03:38 2013 Found 19292027 relations, 65.2% of the estimated minimum (29609329).
Mon May 13 19:11:17 2013 Found 19836899 relations, 67.0% of the estimated minimum (29609329).
Mon May 13 20:48:39 2013 Found 20381364 relations, 68.8% of the estimated minimum (29609329).
Mon May 13 22:26:43 2013 Found 20927948 relations, 70.7% of the estimated minimum (29609329).
Tue May 14 00:04:44 2013 Found 21475547 relations, 72.5% of the estimated minimum (29609329).
Tue May 14 01:42:17 2013 Found 22024494 relations, 74.4% of the estimated minimum (29609329).
Tue May 14 03:21:06 2013 Found 22572070 relations, 76.2% of the estimated minimum (29609329).
Tue May 14 04:57:31 2013 Found 23117814 relations, 78.1% of the estimated minimum (29609329).
Tue May 14 06:35:22 2013 Found 23665886 relations, 79.9% of the estimated minimum (29609329).
Tue May 14 08:11:51 2013 Found 24208985 relations, 81.8% of the estimated minimum (29609329).
Tue May 14 09:48:50 2013 Found 24752314 relations, 83.6% of the estimated minimum (29609329).
Tue May 14 11:27:53 2013 Found 25299512 relations, 85.4% of the estimated minimum (29609329).
Tue May 14 13:43:56 2013 Found 25849469 relations, 87.3% of the estimated minimum (29609329).
Tue May 14 15:42:58 2013 Found 26392379 relations, 89.1% of the estimated minimum (29609329).
Tue May 14 18:02:02 2013 Found 26934935 relations, 91.0% of the estimated minimum (29609329).
Tue May 14 20:06:09 2013 Found 27482447 relations, 92.8% of the estimated minimum (29609329).
Tue May 14 22:27:31 2013 Found 28029898 relations, 94.7% of the estimated minimum (29609329).
Wed May 15 00:45:43 2013 Found 28571021 relations, 96.5% of the estimated minimum (29609329).
Wed May 15 03:03:47 2013 Found 29109503 relations, 98.3% of the estimated minimum (29609329).
Wed May 15 05:20:13 2013 Found 29645813 relations, 100.1% of the estimated minimum (29609329).
Wed May 15 07:47:08 2013 Found 30922050 relations, 104.4% of the estimated minimum (29609329).
Wed May 15 10:15:28 2013 Found 31461786 relations, 106.3% of the estimated minimum (29609329).
Wed May 15 12:19:47 2013 Found 32004807 relations, 108.1% of the estimated minimum (29609329).
Wed May 15 14:50:01 2013 Found 32541012 relations, 109.9% of the estimated minimum (29609329).
Wed May 15 17:31:27 2013 Found 33079965 relations, 111.7% of the estimated minimum (29609329).
Wed May 15 19:30:25 2013 Found 33625043 relations, 113.6% of the estimated minimum (29609329).
Wed May 15 21:19:43 2013 Found 34167722 relations, 115.4% of the estimated minimum (29609329).
Wed May 15 23:10:05 2013 Found 34710883 relations, 117.2% of the estimated minimum (29609329).
Thu May 16 00:58:52 2013 Found 35244024 relations, 119.0% of the estimated minimum (29609329).
Thu May 16 02:50:24 2013 Found 35783675 relations, 120.9% of the estimated minimum (29609329).
Thu May 16 04:40:55 2013 Found 36319723 relations, 122.7% of the estimated minimum (29609329).
Thu May 16 06:38:30 2013 Found 36861472 relations, 124.5% of the estimated minimum (29609329).
Thu May 16 06:38:30 2013  Msieve v. 1.50 (SVN 708)
Thu May 16 06:38:30 2013  random seeds: bfa33cd8 3ad9dae2
Thu May 16 06:38:30 2013  factoring 44275884662845995953373372136213144952289737390869534839615907525960586741800046846773330040655828415052963543919809282412565145533157406014804922827257 (152 digits)
Thu May 16 06:38:31 2013  searching for 15-digit factors
Thu May 16 06:38:31 2013  commencing number field sieve (152-digit input)
Thu May 16 06:38:31 2013  R0: -10000000000000000000000000000000000000000
Thu May 16 06:38:31 2013  R1: 1
Thu May 16 06:38:31 2013  A0: 7
Thu May 16 06:38:32 2013  A1: 0
Thu May 16 06:38:32 2013  A2: 0
Thu May 16 06:38:32 2013  A3: 0
Thu May 16 06:38:32 2013  A4: 0
Thu May 16 06:38:32 2013  A5: 3
Thu May 16 06:38:32 2013  skew 1.18, size 1.123e-013, alpha 0.848, combined = 2.054e-011 rroots = 1
Thu May 16 06:38:32 2013  
Thu May 16 06:38:32 2013  commencing relation filtering
Thu May 16 06:38:32 2013  estimated available RAM is 4096.0 MB
Thu May 16 06:38:32 2013  commencing duplicate removal, pass 1
Thu May 16 06:41:45 2013  found 3378690 hash collisions in 36861471 relations
Thu May 16 06:42:28 2013  added 80 free relations
Thu May 16 06:42:28 2013  commencing duplicate removal, pass 2
Thu May 16 06:42:53 2013  found 2536686 duplicates and 34324865 unique relations
Thu May 16 06:42:53 2013  memory use: 138.6 MB
Thu May 16 06:42:53 2013  reading ideals above 14352384
Thu May 16 06:42:57 2013  commencing singleton removal, initial pass
Thu May 16 06:46:30 2013  memory use: 753.0 MB
Thu May 16 06:46:30 2013  reading all ideals from disk
Thu May 16 06:46:30 2013  memory use: 640.9 MB
Thu May 16 06:46:32 2013  commencing in-memory singleton removal
Thu May 16 06:46:33 2013  begin with 34324865 relations and 36072222 unique ideals
Thu May 16 06:46:52 2013  reduce to 12272982 relations and 10276172 ideals in 23 passes
Thu May 16 06:46:52 2013  max relations containing the same ideal: 45
Thu May 16 06:46:53 2013  reading ideals above 720000
Thu May 16 06:46:53 2013  commencing singleton removal, initial pass
Thu May 16 06:48:29 2013  memory use: 344.5 MB
Thu May 16 06:48:29 2013  reading all ideals from disk
Thu May 16 06:48:29 2013  memory use: 409.2 MB
Thu May 16 06:48:30 2013  commencing in-memory singleton removal
Thu May 16 06:48:31 2013  begin with 12273062 relations and 12023095 unique ideals
Thu May 16 06:48:46 2013  reduce to 12271838 relations and 12021475 ideals in 13 passes
Thu May 16 06:48:46 2013  max relations containing the same ideal: 170
Thu May 16 06:48:52 2013  removing 879731 relations and 821691 ideals in 58040 cliques
Thu May 16 06:48:53 2013  commencing in-memory singleton removal
Thu May 16 06:48:54 2013  begin with 11392107 relations and 12021475 unique ideals
Thu May 16 06:49:03 2013  reduce to 11335094 relations and 11142318 ideals in 9 passes
Thu May 16 06:49:03 2013  max relations containing the same ideal: 156
Thu May 16 06:49:08 2013  removing 631220 relations and 573180 ideals in 58040 cliques
Thu May 16 06:49:09 2013  commencing in-memory singleton removal
Thu May 16 06:49:10 2013  begin with 10703874 relations and 11142318 unique ideals
Thu May 16 06:49:18 2013  reduce to 10673508 relations and 10538560 ideals in 8 passes
Thu May 16 06:49:18 2013  max relations containing the same ideal: 148
Thu May 16 06:49:25 2013  relations with 0 large ideals: 2834
Thu May 16 06:49:25 2013  relations with 1 large ideals: 317
Thu May 16 06:49:25 2013  relations with 2 large ideals: 7827
Thu May 16 06:49:25 2013  relations with 3 large ideals: 79820
Thu May 16 06:49:25 2013  relations with 4 large ideals: 435002
Thu May 16 06:49:25 2013  relations with 5 large ideals: 1385357
Thu May 16 06:49:25 2013  relations with 6 large ideals: 2756045
Thu May 16 06:49:25 2013  relations with 7+ large ideals: 6006306
Thu May 16 06:49:25 2013  commencing 2-way merge
Thu May 16 06:49:33 2013  reduce to 5982998 relation sets and 5848059 unique ideals
Thu May 16 06:49:33 2013  ignored 9 oversize relation sets
Thu May 16 06:49:33 2013  commencing full merge
Thu May 16 06:51:18 2013  memory use: 580.4 MB
Thu May 16 06:51:19 2013  found 3093134 cycles, need 3080259
Thu May 16 06:51:19 2013  weight of 3080259 cycles is about 215646969 (70.01/cycle)
Thu May 16 06:51:19 2013  distribution of cycle lengths:
Thu May 16 06:51:19 2013  1 relations: 444508
Thu May 16 06:51:19 2013  2 relations: 419687
Thu May 16 06:51:19 2013  3 relations: 388740
Thu May 16 06:51:19 2013  4 relations: 336969
Thu May 16 06:51:19 2013  5 relations: 282137
Thu May 16 06:51:19 2013  6 relations: 235932
Thu May 16 06:51:19 2013  7 relations: 191969
Thu May 16 06:51:19 2013  8 relations: 154055
Thu May 16 06:51:19 2013  9 relations: 123926
Thu May 16 06:51:19 2013  10+ relations: 502336
Thu May 16 06:51:19 2013  heaviest cycle: 27 relations
Thu May 16 06:51:20 2013  commencing cycle optimization
Thu May 16 06:51:24 2013  start with 17103011 relations
Thu May 16 06:51:54 2013  pruned 264502 relations
Thu May 16 06:51:54 2013  memory use: 478.6 MB
Thu May 16 06:51:54 2013  distribution of cycle lengths:
Thu May 16 06:51:54 2013  1 relations: 444508
Thu May 16 06:51:54 2013  2 relations: 426751
Thu May 16 06:51:54 2013  3 relations: 398896
Thu May 16 06:51:54 2013  4 relations: 341004
Thu May 16 06:51:54 2013  5 relations: 285154
Thu May 16 06:51:54 2013  6 relations: 235527
Thu May 16 06:51:54 2013  7 relations: 191014
Thu May 16 06:51:54 2013  8 relations: 151847
Thu May 16 06:51:54 2013  9 relations: 121910
Thu May 16 06:51:54 2013  10+ relations: 483648
Thu May 16 06:51:54 2013  heaviest cycle: 27 relations
Thu May 16 06:51:57 2013  RelProcTime: 805
Thu May 16 06:51:57 2013  elapsed time 00:13:27
Thu May 16 06:51:57 2013 LatSieveTime: 7252
Thu May 16 06:51:57 2013 -> Running matrix solving step ...
Thu May 16 06:51:57 2013  
Thu May 16 06:51:57 2013  
Thu May 16 06:51:57 2013  Msieve v. 1.50 (SVN 708)
Thu May 16 06:51:57 2013  random seeds: 18973140 a947db4d
Thu May 16 06:51:57 2013  factoring 44275884662845995953373372136213144952289737390869534839615907525960586741800046846773330040655828415052963543919809282412565145533157406014804922827257 (152 digits)
Thu May 16 06:51:58 2013  searching for 15-digit factors
Thu May 16 06:51:59 2013  commencing number field sieve (152-digit input)
Thu May 16 06:51:59 2013  R0: -10000000000000000000000000000000000000000
Thu May 16 06:51:59 2013  R1: 1
Thu May 16 06:51:59 2013  A0: 7
Thu May 16 06:51:59 2013  A1: 0
Thu May 16 06:51:59 2013  A2: 0
Thu May 16 06:51:59 2013  A3: 0
Thu May 16 06:51:59 2013  A4: 0
Thu May 16 06:51:59 2013  A5: 3
Thu May 16 06:51:59 2013  skew 1.18, size 1.123e-013, alpha 0.848, combined = 2.054e-011 rroots = 1
Thu May 16 06:51:59 2013  
Thu May 16 06:51:59 2013  commencing linear algebra
Thu May 16 06:52:00 2013  read 3080259 cycles
Thu May 16 06:52:06 2013  cycles contain 10475008 unique relations
Thu May 16 06:53:06 2013  read 10475008 relations
Thu May 16 06:53:22 2013  using 20 quadratic characters above 536869694
Thu May 16 06:54:09 2013  building initial matrix
Thu May 16 06:56:08 2013  memory use: 1180.6 MB
Thu May 16 06:56:14 2013  read 3080259 cycles
Thu May 16 06:56:15 2013  matrix is 3080079 x 3080259 (883.6 MB) with weight 274528029 (89.12/col)
Thu May 16 06:56:15 2013  sparse part has weight 210059353 (68.20/col)
Thu May 16 06:56:51 2013  filtering completed in 2 passes
Thu May 16 06:56:53 2013  matrix is 3074708 x 3074888 (883.2 MB) with weight 274360343 (89.23/col)
Thu May 16 06:56:53 2013  sparse part has weight 210007345 (68.30/col)
Thu May 16 06:56:59 2013  matrix starts at (0, 0)
Thu May 16 06:57:00 2013  matrix is 3074708 x 3074888 (883.2 MB) with weight 274360343 (89.23/col)
Thu May 16 06:57:00 2013  sparse part has weight 210007345 (68.30/col)
Thu May 16 06:57:00 2013  saving the first 48 matrix rows for later
Thu May 16 06:57:01 2013  matrix includes 64 packed rows
Thu May 16 06:57:02 2013  matrix is 3074660 x 3074888 (837.5 MB) with weight 218716055 (71.13/col)
Thu May 16 06:57:02 2013  sparse part has weight 201090347 (65.40/col)
Thu May 16 06:57:02 2013  using block size 65536 for processor cache size 8192 kB
Thu May 16 06:57:19 2013  commencing Lanczos iteration (8 threads)
Thu May 16 06:57:19 2013  memory use: 874.1 MB
Thu May 16 06:57:42 2013  linear algebra at 0.0%, ETA 12h21m
Thu May 16 06:57:50 2013  checkpointing every 250000 dimensions
Thu May 16 18:46:19 2013  lanczos halted after 48621 iterations (dim = 3074658)
Thu May 16 18:46:24 2013  recovered 37 nontrivial dependencies
Thu May 16 18:46:25 2013  BLanczosTime: 42866
Thu May 16 18:46:25 2013  elapsed time 11:54:28
Thu May 16 18:46:25 2013 -> Running square root step ...
Thu May 16 18:46:25 2013  
Thu May 16 18:46:25 2013  
Thu May 16 18:46:25 2013  Msieve v. 1.50 (SVN 708)
Thu May 16 18:46:25 2013  random seeds: 69552680 9871bb04
Thu May 16 18:46:25 2013  factoring 44275884662845995953373372136213144952289737390869534839615907525960586741800046846773330040655828415052963543919809282412565145533157406014804922827257 (152 digits)
Thu May 16 18:46:26 2013  searching for 15-digit factors
Thu May 16 18:46:27 2013  commencing number field sieve (152-digit input)
Thu May 16 18:46:27 2013  R0: -10000000000000000000000000000000000000000
Thu May 16 18:46:27 2013  R1: 1
Thu May 16 18:46:27 2013  A0: 7
Thu May 16 18:46:27 2013  A1: 0
Thu May 16 18:46:27 2013  A2: 0
Thu May 16 18:46:27 2013  A3: 0
Thu May 16 18:46:27 2013  A4: 0
Thu May 16 18:46:27 2013  A5: 3
Thu May 16 18:46:27 2013  skew 1.18, size 1.123e-013, alpha 0.848, combined = 2.054e-011 rroots = 1
Thu May 16 18:46:27 2013  
Thu May 16 18:46:27 2013  commencing square root phase
Thu May 16 18:46:27 2013  reading relations for dependency 1
Thu May 16 18:46:28 2013  read 1536231 cycles
Thu May 16 18:46:31 2013  cycles contain 5232592 unique relations
Thu May 16 18:47:06 2013  read 5232592 relations
Thu May 16 18:47:35 2013  multiplying 5232592 relations
Thu May 16 18:54:39 2013  multiply complete, coefficients have about 132.66 million bits
Thu May 16 18:54:40 2013  initial square root is modulo 57731
Thu May 16 19:02:52 2013  GCD is 1, no factor found
Thu May 16 19:02:52 2013  reading relations for dependency 2
Thu May 16 19:02:53 2013  read 1536098 cycles
Thu May 16 19:02:56 2013  cycles contain 5233678 unique relations
Thu May 16 19:03:31 2013  read 5233678 relations
Thu May 16 19:04:00 2013  multiplying 5233678 relations
Thu May 16 19:11:05 2013  multiply complete, coefficients have about 132.68 million bits
Thu May 16 19:11:06 2013  initial square root is modulo 57791
Thu May 16 19:19:24 2013  GCD is 1, no factor found
Thu May 16 19:19:24 2013  reading relations for dependency 3
Thu May 16 19:19:27 2013  read 1536117 cycles
Thu May 16 19:19:30 2013  cycles contain 5237142 unique relations
Thu May 16 19:20:07 2013  read 5237142 relations
Thu May 16 19:20:36 2013  multiplying 5237142 relations
Thu May 16 19:28:03 2013  multiply complete, coefficients have about 132.77 million bits
Thu May 16 19:28:04 2013  initial square root is modulo 58231
Thu May 16 19:36:24 2013  GCD is N, no factor found
Thu May 16 19:36:24 2013  reading relations for dependency 4
Thu May 16 19:36:25 2013  read 1537689 cycles
Thu May 16 19:36:28 2013  cycles contain 5238762 unique relations
Thu May 16 19:37:05 2013  read 5238762 relations
Thu May 16 19:37:34 2013  multiplying 5238762 relations
Thu May 16 19:44:52 2013  multiply complete, coefficients have about 132.81 million bits
Thu May 16 19:44:53 2013  initial square root is modulo 58411
Thu May 16 19:53:59 2013  sqrtTime: 4052
Thu May 16 19:53:59 2013  prp65 factor: 28695538725855189461541207724094731927846842107655409102635929051
Thu May 16 19:53:59 2013  prp88 factor: 1542953595882576632076367515659010122547109956089668180409524374435450128767744409278907
Thu May 16 19:53:59 2013  elapsed time 01:07:34
Thu May 16 19:53:59 2013 -> Computing 1.36873e+09 scale for this machine...
Thu May 16 19:53:59 2013 -> procrels -speedtest> PIPE
Thu May 16 19:54:04 2013 -> Factorization summary written to s201-30007_200.txt





Number: 30007_200
N = 44275884662845995953373372136213144952289737390869534839615907525960586741800046846773330040655828415052963543919809282412565145533157406014804922827257 (152 digits)
SNFS difficulty: 201 digits.
Divisors found:
r1=28695538725855189461541207724094731927846842107655409102635929051 (pp65)
r2=1542953595882576632076367515659010122547109956089668180409524374435450128767744409278907 (pp88)
Version: Msieve v. 1.50 (SVN 708)
Total time: 131.48 hours.
Factorization parameters were as follows:
n: 44275884662845995953373372136213144952289737390869534839615907525960586741800046846773330040655828415052963543919809282412565145533157406014804922827257
m: 10000000000000000000000000000000000000000
deg: 5
c5: 3
c0: 7
skew: 1.18
# Murphy_E = 2.054e-11
type: snfs
lss: 1
rlim: 15400000
alim: 15400000
lpbr: 29
lpba: 29
mfbr: 56
mfba: 56
rlambda: 2.6
alambda: 2.6

Factor base limits: 15400000/15400000
Large primes per side: 3
Large prime bits: 29/29
Sieved rational special-q in [0, 0)
Total raw relations: 36861472
Relations: 5238762 relations
Pruned matrix : 3074660 x 3074888
Polynomial selection time: 0.00 hours.
Total sieving time: 118.23 hours.
Total relation processing time: 0.22 hours.
Matrix solve time: 11.91 hours.
time per square root: 1.13 hours.
Prototype def-par.txt line would be: snfs,201,5,0,0,0,0,0,0,0,0,15400000,15400000,29,29,56,56,2.6,2.6,100000
total time: 131.48 hours.
Intel64 Family 6 Model 26 Stepping 5, GenuineIntel
Windows-7-6.1.7601-SP1
processors: 4, speed: 2.80GHz
software ソフトウェア
GGNFS (SVN 430), msieve 1.50 (SVN 708)
execution environment 実行環境
Windows 7 64bits, Intel Xeon W3530@2.8GHz, 8GB RAM

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaSeptember 3, 2007 09:00:00 UTC 2007 年 9 月 3 日 (月) 18 時 0 分 0 秒 (日本時間)
351e6904suberiAugust 19, 2008 10:16:43 UTC 2008 年 8 月 19 日 (火) 19 時 16 分 43 秒 (日本時間)
403e62400400Dmitry DomanovApril 5, 2011 06:31:08 UTC 2011 年 4 月 5 日 (火) 15 時 31 分 8 秒 (日本時間)
2000Youcef LemsaferFebruary 5, 2013 07:08:22 UTC 2013 年 2 月 5 日 (火) 16 時 8 分 22 秒 (日本時間)
4511e640002000Youcef LemsaferFebruary 6, 2013 15:49:07 UTC 2013 年 2 月 7 日 (木) 0 時 49 分 7 秒 (日本時間)
2000Youcef LemsaferFebruary 8, 2013 14:48:15 UTC 2013 年 2 月 8 日 (金) 23 時 48 分 15 秒 (日本時間)
5043e66262541Youcef LemsaferFebruary 10, 2013 17:40:12 UTC 2013 年 2 月 11 日 (月) 2 時 40 分 12 秒 (日本時間)
1232Youcef LemsaferFebruary 14, 2013 20:14:23 UTC 2013 年 2 月 15 日 (金) 5 時 14 分 23 秒 (日本時間)
2890Youcef LemsaferFebruary 17, 2013 08:39:28 UTC 2013 年 2 月 17 日 (日) 17 時 39 分 28 秒 (日本時間)
1599Youcef LemsaferApril 22, 2013 10:49:35 UTC 2013 年 4 月 22 日 (月) 19 時 49 分 35 秒 (日本時間)
5511e7233 / 15265143Youcef LemsaferFebruary 14, 2013 20:14:23 UTC 2013 年 2 月 15 日 (金) 5 時 14 分 23 秒 (日本時間)
90Youcef LemsaferApril 22, 2013 10:50:07 UTC 2013 年 4 月 22 日 (月) 19 時 50 分 7 秒 (日本時間)

3×10204+7

c160

name 名前Youcef Lemsafer
date 日付October 23, 2013 19:14:33 UTC 2013 年 10 月 24 日 (木) 4 時 14 分 33 秒 (日本時間)
composite number 合成数
1299770789741391453151982132394104429462768499649660378346823161384387668694005052948600195666255547742162978298642197070332239061305362058704502159873662250253<160>
prime factors 素因数
4269986142493572515510539041322472993083083125849142037361<58>
304396957359293809435131697777670257413950147980070263033236390457958665868388838721348354477163418973<102>
factorization results 素因数分解の結果
GMP-ECM 6.4.4 [configured with MPIR 2.6.0] [ECM]
Input number is (3*10^204+7)/(2111*12379*80141*360193*36529453*83762087274812203759) (160 digits)
Using MODMULN [mulredc:0, sqrredc:0]
Using B1=260000000, B2=3178559884516, polynomial Dickson(30), sigma=2078429522
dF=262144, k=4, d=2852850, d2=17, i0=75
Expected number of curves to find a factor of n digits:
35      40      45      50      55      60      65      70      75      80
23      82      335     1521    7650    42057   250476  1603736 1.1e+007        7.9e+007
Step 1 took 1093707ms
Using 20 small primes for NTT
Estimated memory usage: 963M
Initializing tables of differences for F took 312ms
Computing roots of F took 32604ms
Building F from its roots took 26020ms
Computing 1/F took 11295ms
Initializing table of differences for G took 406ms
Computing roots of G took 25771ms
Building G from its roots took 25631ms
Computing roots of G took 25850ms
Building G from its roots took 25662ms
Computing G * H took 6194ms
Reducing  G * H mod F took 6302ms
Computing roots of G took 25849ms
Building G from its roots took 25616ms
Computing G * H took 6193ms
Reducing  G * H mod F took 6272ms
Computing roots of G took 25896ms
Building G from its roots took 25615ms
Computing G * H took 6177ms
Reducing  G * H mod F took 6272ms
Computing polyeval(F,G) took 48407ms
Computing product of all F(g_i) took 156ms
Step 2 took 363420ms
********** Factor found in step 2: 4269986142493572515510539041322472993083083125849142037361
Found probable prime factor of 58 digits: 4269986142493572515510539041322472993083083125849142037361
Probable prime cofactor ((3*10^204+7)/(2111*12379*80141*360193*36529453*83762087274812203759))/4269986142493572515510539041322472993083083125849142037361 has 102 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61418118Makoto KamadaFebruary 16, 2013 02:00:00 UTC 2013 年 2 月 16 日 (土) 11 時 0 分 0 秒 (日本時間)
1300Warut RoonguthaiFebruary 18, 2013 23:22:39 UTC 2013 年 2 月 19 日 (火) 8 時 22 分 39 秒 (日本時間)
403e63600Warut RoonguthaiFebruary 18, 2013 23:22:39 UTC 2013 年 2 月 19 日 (火) 8 時 22 分 39 秒 (日本時間)
4511e63624Youcef LemsaferMay 21, 2013 09:52:34 UTC 2013 年 5 月 21 日 (火) 18 時 52 分 34 秒 (日本時間)
5043e61260 / 3403Youcef LemsaferMay 21, 2013 09:52:34 UTC 2013 年 5 月 21 日 (火) 18 時 52 分 34 秒 (日本時間)
5511e71200 / 16924Youcef LemsaferOctober 23, 2013 18:53:12 UTC 2013 年 10 月 24 日 (木) 3 時 53 分 12 秒 (日本時間)
6026e760 / 41354Youcef LemsaferOctober 23, 2013 18:53:12 UTC 2013 年 10 月 24 日 (木) 3 時 53 分 12 秒 (日本時間)

3×10206+7

c132

name 名前Warut Roonguthai
date 日付February 18, 2013 05:24:28 UTC 2013 年 2 月 18 日 (月) 14 時 24 分 28 秒 (日本時間)
composite number 合成数
252533571131276605961743488403998130151421991810391491021535756507378112359245310277838934916199137325368101131613935091597355081019<132>
prime factors 素因数
3111798304100902138163965386768954663591679<43>
81153579522963849609520526889367170542293005842928107070828858437001152440449294513323461<89>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=221886097
Step 1 took 16504ms
Step 2 took 10733ms
********** Factor found in step 2: 3111798304100902138163965386768954663591679
Found probable prime factor of 43 digits: 3111798304100902138163965386768954663591679
Probable prime cofactor 81153579522963849609520526889367170542293005842928107070828858437001152440449294513323461 has 89 digits
software ソフトウェア
GMP-ECM 6.3

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaFebruary 16, 2013 02:00:00 UTC 2013 年 2 月 16 日 (土) 11 時 0 分 0 秒 (日本時間)

3×10207+7

c158

name 名前Youcef Lemsafer
date 日付May 6, 2013 15:01:03 UTC 2013 年 5 月 7 日 (火) 0 時 1 分 3 秒 (日本時間)
composite number 合成数
11898122469604318965550541131901088895823807829792207816406304832545194511356284042215535234130734798898258479960585758298600523650939879437538225780901636057<158>
prime factors 素因数
9432433874058054019969977334241830982668833401295286097283153632918611<70>
1261405341237284280025488123184306749297634328292156828106939370955274955045833298797987<88>
factorization results 素因数分解の結果
Sun Apr 14 12:34:19 2013 -> factmsieve.py (v0.76)
Sun Apr 14 12:34:19 2013 -> This is client 1 of 1
Sun Apr 14 12:34:19 2013 -> Running on 2 Cores with 2 hyper-threads per Core
Sun Apr 14 12:34:19 2013 -> Working with NAME = 30007_207
Sun Apr 14 12:34:19 2013 -> Selected lattice siever: gnfs-lasieve4I14e
Sun Apr 14 12:34:19 2013 -> Creating param file to detect parameter changes...
Sun Apr 14 12:34:19 2013 -> Running setup ...
Sun Apr 14 12:34:19 2013 -> Estimated minimum relations needed: 3.72759e+07
Sun Apr 14 12:34:19 2013 -> cleaning up before a restart
Sun Apr 14 12:34:19 2013 -> Running lattice siever ...
Sun Apr 14 12:34:19 2013 -> entering sieving loop
Sun Apr 14 12:34:19 2013 -> making sieve job for q = 10250000 in 10250000 .. 10275000 as file 30007_207.job.T0
Sun Apr 14 12:34:19 2013 -> making sieve job for q = 10275000 in 10275000 .. 10300000 as file 30007_207.job.T1
Sun Apr 14 12:34:19 2013 -> making sieve job for q = 10300000 in 10300000 .. 10325000 as file 30007_207.job.T2
Sun Apr 14 12:34:19 2013 -> making sieve job for q = 10325000 in 10325000 .. 10350000 as file 30007_207.job.T3
Sun Apr 14 12:34:19 2013 -> Lattice sieving rational q from 10250000 to 10350000.
Sun Apr 14 12:34:19 2013 -> gnfs-lasieve4I14e -k -o spairs.out.T0 -v -n0 -r 30007_207.job.T0
Sun Apr 14 12:34:19 2013 -> gnfs-lasieve4I14e -k -o spairs.out.T1 -v -n1 -r 30007_207.job.T1
Sun Apr 14 12:34:19 2013 -> gnfs-lasieve4I14e -k -o spairs.out.T2 -v -n2 -r 30007_207.job.T2
Sun Apr 14 12:34:19 2013 -> gnfs-lasieve4I14e -k -o spairs.out.T3 -v -n3 -r 30007_207.job.T3
Sun Apr 14 15:58:52 2013 Found 324748 relations, 0.9% of the estimated minimum (37275937).
Sun Apr 14 19:23:32 2013 Found 651453 relations, 1.7% of the estimated minimum (37275937).
Sun Apr 14 22:50:18 2013 Found 979462 relations, 2.6% of the estimated minimum (37275937).
Mon Apr 15 16:49:38 2013 Found 2605724 relations, 7.0% of the estimated minimum (37275937).
Tue Apr 16 14:23:20 2013 Found 4560225 relations, 12.2% of the estimated minimum (37275937).
Wed Apr 17 07:38:56 2013 Found 6189221 relations, 16.6% of the estimated minimum (37275937).
Fri Apr 19 05:53:06 2013 Found 10414060 relations, 27.9% of the estimated minimum (37275937).
Sat Apr 20 03:24:48 2013 Found 12358091 relations, 33.2% of the estimated minimum (37275937).
Mon Apr 22 08:52:00 2013 Found 17206129 relations, 46.2% of the estimated minimum (37275937).
Tue Apr 23 03:07:43 2013 Found 18819093 relations, 50.5% of the estimated minimum (37275937).
Fri Apr 26 02:12:57 2013 Found 24918069 relations, 66.8% of the estimated minimum (37275937).
Mon Apr 29 08:44:04 2013 Found 31600039 relations, 84.8% of the estimated minimum (37275937).
Thu May 02 17:09:10 2013 Found 38899214 relations, 104.4% of the estimated minimum (37275937).
Fri May 03 01:16:26 2013 Found 39509366 relations, 106.0% of the estimated minimum (37275937).
Sun May 05 11:21:39 2013 Found 43470679 relations, 116.6% of the estimated minimum (37275937).
Sun May 05 11:21:40 2013  
Sun May 05 11:21:40 2013  
Sun May 05 11:21:40 2013  Msieve v. 1.50 (SVN 708)
Sun May 05 11:21:40 2013  random seeds: ed2114d8 7a76bbca
Sun May 05 11:21:40 2013  factoring 11898122469604318965550541131901088895823807829792207816406304832545194511356284042215535234130734798898258479960585758298600523650939879437538225780901636057 (158 digits)
Sun May 05 11:21:41 2013  searching for 15-digit factors
Sun May 05 11:21:42 2013  commencing number field sieve (158-digit input)
Sun May 05 11:21:42 2013  R0: -100000000000000000000000000000000000000000
Sun May 05 11:21:42 2013  R1: 1
Sun May 05 11:21:42 2013  A0: 7
Sun May 05 11:21:42 2013  A1: 0
Sun May 05 11:21:42 2013  A2: 0
Sun May 05 11:21:42 2013  A3: 0
Sun May 05 11:21:42 2013  A4: 0
Sun May 05 11:21:42 2013  A5: 300
Sun May 05 11:21:42 2013  skew 0.47, size 2.341e-014, alpha 0.487, combined = 8.019e-012 rroots = 1
Sun May 05 11:21:42 2013  
Sun May 05 11:21:42 2013  commencing relation filtering
Sun May 05 11:21:42 2013  estimated available RAM is 4095.6 MB
Sun May 05 11:21:42 2013  commencing duplicate removal, pass 1
Sun May 05 11:26:14 2013  skipped 1 relations with b > 2^32
Sun May 05 11:26:14 2013  found 5052330 hash collisions in 43470677 relations
Sun May 05 11:27:00 2013  added 7 free relations
Sun May 05 11:27:00 2013  commencing duplicate removal, pass 2
Sun May 05 11:31:34 2013  found 4091206 duplicates and 39379478 unique relations
Sun May 05 11:31:34 2013  memory use: 197.2 MB
Sun May 05 11:31:34 2013  reading ideals above 23658496
Sun May 05 11:31:34 2013  commencing singleton removal, initial pass
Sun May 05 11:37:29 2013  memory use: 753.0 MB
Sun May 05 11:37:29 2013  reading all ideals from disk
Sun May 05 11:37:29 2013  memory use: 710.2 MB
Sun May 05 11:37:32 2013  commencing in-memory singleton removal
Sun May 05 11:37:34 2013  begin with 39379478 relations and 40024468 unique ideals
Sun May 05 11:38:01 2013  reduce to 15993318 relations and 12865239 ideals in 23 passes
Sun May 05 11:38:01 2013  max relations containing the same ideal: 18
Sun May 05 11:38:03 2013  reading ideals above 720000
Sun May 05 11:38:03 2013  commencing singleton removal, initial pass
Sun May 05 11:42:20 2013  memory use: 376.5 MB
Sun May 05 11:42:20 2013  reading all ideals from disk
Sun May 05 11:42:20 2013  memory use: 552.8 MB
Sun May 05 11:42:22 2013  commencing in-memory singleton removal
Sun May 05 11:42:24 2013  begin with 15993325 relations and 15720062 unique ideals
Sun May 05 11:42:49 2013  reduce to 15980320 relations and 15707020 ideals in 13 passes
Sun May 05 11:42:49 2013  max relations containing the same ideal: 200
Sun May 05 11:42:59 2013  removing 1052502 relations and 983341 ideals in 69161 cliques
Sun May 05 11:42:59 2013  commencing in-memory singleton removal
Sun May 05 11:43:01 2013  begin with 14927818 relations and 15707020 unique ideals
Sun May 05 11:43:21 2013  reduce to 14866573 relations and 14661967 ideals in 11 passes
Sun May 05 11:43:21 2013  max relations containing the same ideal: 191
Sun May 05 11:43:30 2013  removing 753389 relations and 684228 ideals in 69161 cliques
Sun May 05 11:43:31 2013  commencing in-memory singleton removal
Sun May 05 11:43:32 2013  begin with 14113184 relations and 14661967 unique ideals
Sun May 05 11:43:49 2013  reduce to 14079149 relations and 13943504 ideals in 10 passes
Sun May 05 11:43:49 2013  max relations containing the same ideal: 182
Sun May 05 11:44:02 2013  relations with 0 large ideals: 2955
Sun May 05 11:44:02 2013  relations with 1 large ideals: 174
Sun May 05 11:44:02 2013  relations with 2 large ideals: 5282
Sun May 05 11:44:02 2013  relations with 3 large ideals: 59562
Sun May 05 11:44:02 2013  relations with 4 large ideals: 366830
Sun May 05 11:44:02 2013  relations with 5 large ideals: 1332071
Sun May 05 11:44:02 2013  relations with 6 large ideals: 3110039
Sun May 05 11:44:02 2013  relations with 7+ large ideals: 9202236
Sun May 05 11:44:02 2013  commencing 2-way merge
Sun May 05 11:44:15 2013  reduce to 8057883 relation sets and 7922245 unique ideals
Sun May 05 11:44:15 2013  ignored 8 oversize relation sets
Sun May 05 11:44:15 2013  commencing full merge
Sun May 05 11:47:10 2013  memory use: 820.6 MB
Sun May 05 11:47:11 2013  found 4220590 cycles, need 4208445
Sun May 05 11:47:12 2013  weight of 4208445 cycles is about 294704472 (70.03/cycle)
Sun May 05 11:47:12 2013  distribution of cycle lengths:
Sun May 05 11:47:12 2013  1 relations: 654597
Sun May 05 11:47:12 2013  2 relations: 590512
Sun May 05 11:47:12 2013  3 relations: 538731
Sun May 05 11:47:12 2013  4 relations: 458366
Sun May 05 11:47:12 2013  5 relations: 385898
Sun May 05 11:47:12 2013  6 relations: 317264
Sun May 05 11:47:12 2013  7 relations: 254798
Sun May 05 11:47:12 2013  8 relations: 203201
Sun May 05 11:47:12 2013  9 relations: 162892
Sun May 05 11:47:12 2013  10+ relations: 642186
Sun May 05 11:47:12 2013  heaviest cycle: 28 relations
Sun May 05 11:47:12 2013  commencing cycle optimization
Sun May 05 11:47:19 2013  start with 22676741 relations
Sun May 05 11:48:02 2013  pruned 373764 relations
Sun May 05 11:48:02 2013  memory use: 633.2 MB
Sun May 05 11:48:02 2013  distribution of cycle lengths:
Sun May 05 11:48:02 2013  1 relations: 654597
Sun May 05 11:48:02 2013  2 relations: 601234
Sun May 05 11:48:02 2013  3 relations: 553540
Sun May 05 11:48:02 2013  4 relations: 464151
Sun May 05 11:48:02 2013  5 relations: 389699
Sun May 05 11:48:02 2013  6 relations: 316558
Sun May 05 11:48:02 2013  7 relations: 252974
Sun May 05 11:48:02 2013  8 relations: 199945
Sun May 05 11:48:02 2013  9 relations: 159724
Sun May 05 11:48:02 2013  10+ relations: 616023
Sun May 05 11:48:02 2013  heaviest cycle: 27 relations
Sun May 05 11:48:08 2013  RelProcTime: 1586
Sun May 05 11:48:08 2013  elapsed time 00:26:28
Sun May 05 11:48:08 2013 LatSieveTime: 14812.9
Sun May 05 11:48:08 2013 -> Running matrix solving step ...
Sun May 05 11:48:08 2013  
Sun May 05 11:48:08 2013  
Sun May 05 11:48:08 2013  Msieve v. 1.50 (SVN 708)
Sun May 05 11:48:08 2013  random seeds: 26b3e680 5f7078b2
Sun May 05 11:48:08 2013  factoring 11898122469604318965550541131901088895823807829792207816406304832545194511356284042215535234130734798898258479960585758298600523650939879437538225780901636057 (158 digits)
Sun May 05 11:48:09 2013  searching for 15-digit factors
Sun May 05 11:48:10 2013  commencing number field sieve (158-digit input)
Sun May 05 11:48:10 2013  R0: -100000000000000000000000000000000000000000
Sun May 05 11:48:10 2013  R1: 1
Sun May 05 11:48:10 2013  A0: 7
Sun May 05 11:48:10 2013  A1: 0
Sun May 05 11:48:10 2013  A2: 0
Sun May 05 11:48:10 2013  A3: 0
Sun May 05 11:48:10 2013  A4: 0
Sun May 05 11:48:10 2013  A5: 300
Sun May 05 11:48:10 2013  skew 0.47, size 2.341e-014, alpha 0.487, combined = 8.019e-012 rroots = 1
Sun May 05 11:48:10 2013  
Sun May 05 11:48:10 2013  commencing linear algebra
Sun May 05 11:48:11 2013  read 4208445 cycles
Sun May 05 11:48:19 2013  cycles contain 13877984 unique relations
Sun May 05 11:51:44 2013  read 13877984 relations
Sun May 05 11:52:08 2013  using 20 quadratic characters above 536870724
Sun May 05 11:53:10 2013  building initial matrix
Sun May 05 11:55:50 2013  memory use: 1538.0 MB
Sun May 05 11:55:55 2013  read 4208445 cycles
Sun May 05 11:55:56 2013  matrix is 4208267 x 4208445 (1206.4 MB) with weight 368422052 (87.54/col)
Sun May 05 11:55:56 2013  sparse part has weight 286791661 (68.15/col)
Sun May 05 11:56:58 2013  filtering completed in 2 passes
Sun May 05 11:56:59 2013  matrix is 4203220 x 4203397 (1206.1 MB) with weight 368276796 (87.61/col)
Sun May 05 11:56:59 2013  sparse part has weight 286748172 (68.22/col)
Sun May 05 11:57:18 2013  matrix starts at (0, 0)
Sun May 05 11:57:19 2013  matrix is 4203220 x 4203397 (1206.1 MB) with weight 368276796 (87.61/col)
Sun May 05 11:57:19 2013  sparse part has weight 286748172 (68.22/col)
Sun May 05 11:57:19 2013  saving the first 48 matrix rows for later
Sun May 05 11:57:21 2013  matrix includes 64 packed rows
Sun May 05 11:57:22 2013  matrix is 4203172 x 4203397 (1140.0 MB) with weight 296125926 (70.45/col)
Sun May 05 11:57:22 2013  sparse part has weight 273626994 (65.10/col)
Sun May 05 11:57:22 2013  using block size 65536 for processor cache size 12288 kB
Sun May 05 11:57:44 2013  commencing Lanczos iteration (4 threads)
Sun May 05 11:57:44 2013  memory use: 1064.4 MB
Sun May 05 11:58:20 2013  linear algebra at 0.0%, ETA 26h 6m
Sun May 05 11:58:31 2013  checkpointing every 170000 dimensions
Mon May 06 16:03:39 2013  lanczos halted after 66474 iterations (dim = 4203169)
Mon May 06 16:03:56 2013  recovered 39 nontrivial dependencies
Mon May 06 16:03:57 2013  BLanczosTime: 101747
Mon May 06 16:03:57 2013  elapsed time 28:15:49
Mon May 06 16:03:57 2013 -> Running square root step ...
Mon May 06 16:03:57 2013  
Mon May 06 16:03:57 2013  
Mon May 06 16:03:57 2013  Msieve v. 1.50 (SVN 708)
Mon May 06 16:03:57 2013  random seeds: 3b755b00 0edd753f
Mon May 06 16:03:57 2013  factoring 11898122469604318965550541131901088895823807829792207816406304832545194511356284042215535234130734798898258479960585758298600523650939879437538225780901636057 (158 digits)
Mon May 06 16:03:58 2013  searching for 15-digit factors
Mon May 06 16:03:59 2013  commencing number field sieve (158-digit input)
Mon May 06 16:03:59 2013  R0: -100000000000000000000000000000000000000000
Mon May 06 16:03:59 2013  R1: 1
Mon May 06 16:03:59 2013  A0: 7
Mon May 06 16:03:59 2013  A1: 0
Mon May 06 16:03:59 2013  A2: 0
Mon May 06 16:03:59 2013  A3: 0
Mon May 06 16:03:59 2013  A4: 0
Mon May 06 16:03:59 2013  A5: 300
Mon May 06 16:03:59 2013  skew 0.47, size 2.341e-014, alpha 0.487, combined = 8.019e-012 rroots = 1
Mon May 06 16:03:59 2013  
Mon May 06 16:03:59 2013  commencing square root phase
Mon May 06 16:03:59 2013  reading relations for dependency 1
Mon May 06 16:04:02 2013  read 2102750 cycles
Mon May 06 16:04:06 2013  cycles contain 6941498 unique relations
Mon May 06 16:08:35 2013  read 6941498 relations
Mon May 06 16:09:17 2013  multiplying 6941498 relations
Mon May 06 16:21:41 2013  multiply complete, coefficients have about 219.83 million bits
Mon May 06 16:21:42 2013  initial square root is modulo 77437861
Mon May 06 16:36:48 2013  sqrtTime: 1969
Mon May 06 16:36:48 2013  prp70 factor: 9432433874058054019969977334241830982668833401295286097283153632918611
Mon May 06 16:36:48 2013  prp88 factor: 1261405341237284280025488123184306749297634328292156828106939370955274955045833298797987
Mon May 06 16:36:48 2013  elapsed time 00:32:51
Mon May 06 16:36:49 2013 -> Computing 1.36785e+09 scale for this machine...
Mon May 06 16:36:49 2013 -> procrels -speedtest> PIPE
Mon May 06 16:36:54 2013 -> Factorization summary written to s208-30007_207.txt



Number: 30007_207
N = 11898122469604318965550541131901088895823807829792207816406304832545194511356284042215535234130734798898258479960585758298600523650939879437538225780901636057 (158 digits)
SNFS difficulty: 208 digits.
Divisors found:
r1=9432433874058054019969977334241830982668833401295286097283153632918611 (pp70)
r2=1261405341237284280025488123184306749297634328292156828106939370955274955045833298797987 (pp88)
Version: Msieve v. 1.50 (SVN 708)
Total time: 532.46 hours.
Factorization parameters were as follows:
n: 11898122469604318965550541131901088895823807829792207816406304832545194511356284042215535234130734798898258479960585758298600523650939879437538225780901636057
m: 100000000000000000000000000000000000000000
deg: 5
c5: 300
c0: 7
skew: 0.47
type: snfs
Factor base limits: 20500000/20500000
Large primes per side: 3
Large prime bits: 29/29
Sieved rational special-q in [0, 0)
Total raw relations: 43470679
Relations: 6941498 relations
Pruned matrix : 4203172 x 4203397
Polynomial selection time: 0.00 hours.
Total sieving time: 503.21 hours.
Total relation processing time: 0.44 hours.
Matrix solve time: 28.26 hours.
time per square root: 0.55 hours.
Prototype def-par.txt line would be: snfs,208,5,0,0,0,0,0,0,0,0,20500000,20500000,29,29,58,58,2.6,2.6,100000
total time: 532.46 hours.
Intel64 Family 6 Model 44 Stepping 2, GenuineIntel
Windows-7-6.1.7601-SP1
processors: 2, speed: 2.79GHz
software ソフトウェア
GGNFS-SVN430, msieve1.50 (SVN708)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6916118Makoto KamadaFebruary 16, 2013 02:00:00 UTC 2013 年 2 月 16 日 (土) 11 時 0 分 0 秒 (日本時間)
798Youcef LemsaferFebruary 18, 2013 13:07:54 UTC 2013 年 2 月 18 日 (月) 22 時 7 分 54 秒 (日本時間)
403e62349Youcef LemsaferFebruary 18, 2013 13:07:54 UTC 2013 年 2 月 18 日 (月) 22 時 7 分 54 秒 (日本時間)
4511e64500Youcef LemsaferMarch 11, 2013 11:32:56 UTC 2013 年 3 月 11 日 (月) 20 時 32 分 56 秒 (日本時間)
5043e67692Youcef LemsaferMarch 11, 2013 11:32:56 UTC 2013 年 3 月 11 日 (月) 20 時 32 分 56 秒 (日本時間)
5511e79158 / 14724999Youcef LemsaferMarch 11, 2013 11:32:56 UTC 2013 年 3 月 11 日 (月) 20 時 32 分 56 秒 (日本時間)
1200Youcef LemsaferMarch 16, 2013 08:37:36 UTC 2013 年 3 月 16 日 (土) 17 時 37 分 36 秒 (日本時間)
3999Youcef LemsaferApril 5, 2013 07:36:39 UTC 2013 年 4 月 5 日 (金) 16 時 36 分 39 秒 (日本時間)
2960Youcef LemsaferApril 14, 2013 09:59:17 UTC 2013 年 4 月 14 日 (日) 18 時 59 分 17 秒 (日本時間)

3×10208+7

c166

name 名前Bob Backstrom
date 日付October 24, 2024 04:07:33 UTC 2024 年 10 月 24 日 (木) 13 時 7 分 33 秒 (日本時間)
composite number 合成数
2526132448373684387392587442344985993571181769024482685734617685264512434954640425855956007563497816454094811479119801134117885819013830191666184455099488766990498651<166>
prime factors 素因数
56242836773569802705847085915084397458601445774440567551<56>
44914741028155070837083211811236068646096217841251804128424917756221683102878724360237887538744878280394376101<110>
factorization results 素因数分解の結果
10/22/24 07:55:51 v1.34.5 @ TRIGKEY,
10/22/24 07:55:51 v1.34.5 @ TRIGKEY, ****************************
10/22/24 07:55:51 v1.34.5 @ TRIGKEY, Starting factorization of 30000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000007
10/22/24 07:55:51 v1.34.5 @ TRIGKEY, using pretesting plan: normal
10/22/24 07:55:51 v1.34.5 @ TRIGKEY, no tune info: using qs/gnfs crossover of 100 digits
10/22/24 07:55:51 v1.34.5 @ TRIGKEY, ****************************
10/22/24 07:55:51 v1.34.5 @ TRIGKEY, div: found prime factor = 37
10/22/24 07:55:51 v1.34.5 @ TRIGKEY, div: found prime factor = 431
10/22/24 07:55:51 v1.34.5 @ TRIGKEY, rho: x^2 + 3, starting 1000 iterations on C205
10/22/24 07:55:51 v1.34.5 @ TRIGKEY, rho: x^2 + 2, starting 1000 iterations on C205
10/22/24 07:55:51 v1.34.5 @ TRIGKEY, prp7 = 3930569
10/22/24 07:55:51 v1.34.5 @ TRIGKEY, rho: x^2 + 2, starting 1000 iterations on C198
10/22/24 07:55:51 v1.34.5 @ TRIGKEY, rho: x^2 + 1, starting 1000 iterations on C198
10/22/24 07:55:51 v1.34.5 @ TRIGKEY, pm1: starting B1 = 150K, B2 = gmp-ecm default on C198
10/22/24 07:55:51 v1.34.5 @ TRIGKEY, prp9 = 409705217
10/22/24 07:55:51 v1.34.5 @ TRIGKEY, current ECM pretesting depth: 0.00
10/22/24 07:55:51 v1.34.5 @ TRIGKEY, scheduled 30 curves at B1=2000 toward target pretesting depth of 58.46
10/22/24 07:55:51 v1.34.5 @ TRIGKEY, prp9 = 649507979 (curve 1 stg2 B1=2000 sigma=3936454452 thread=0)
10/22/24 07:55:51 v1.34.5 @ TRIGKEY, Finished 1 curves using Lenstra ECM method on C190 input, B1=2K, B2=gmp-ecm default
10/22/24 07:55:51 v1.34.5 @ TRIGKEY, current ECM pretesting depth: 0.00
10/22/24 07:55:51 v1.34.5 @ TRIGKEY, scheduled 29 curves at B1=2000 toward target pretesting depth of 55.69
10/22/24 07:55:51 v1.34.5 @ TRIGKEY, Finished 29 curves using Lenstra ECM method on C181 input, B1=2K, B2=gmp-ecm default
10/22/24 07:55:51 v1.34.5 @ TRIGKEY, current ECM pretesting depth: 15.18
10/22/24 07:55:51 v1.34.5 @ TRIGKEY, scheduled 74 curves at B1=11000 toward target pretesting depth of 55.69
10/22/24 07:55:51 v1.34.5 @ TRIGKEY, prp15 = 711991376789893 (curve 2 stg1 B1=11000 sigma=251503772 thread=0)
10/22/24 07:55:51 v1.34.5 @ TRIGKEY, Finished 2 curves using Lenstra ECM method on C181 input, B1=11K, B2=gmp-ecm default
10/22/24 07:55:51 v1.34.5 @ TRIGKEY, current ECM pretesting depth: 15.31
10/22/24 07:55:51 v1.34.5 @ TRIGKEY, scheduled 72 curves at B1=11000 toward target pretesting depth of 51.08
10/22/24 07:55:53 v1.34.5 @ TRIGKEY, Finished 72 curves using Lenstra ECM method on C166 input, B1=11K, B2=gmp-ecm default
10/22/24 07:55:53 v1.34.5 @ TRIGKEY, current ECM pretesting depth: 20.24
10/22/24 07:55:53 v1.34.5 @ TRIGKEY, scheduled 214 curves at B1=50000 toward target pretesting depth of 51.08
10/22/24 07:56:29 v1.34.5 @ TRIGKEY, nfs: commencing nfs on c209: 30000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000007
10/22/24 07:56:29 v1.34.5 @ TRIGKEY, nfs: input divides 3*10^208 + 7
10/22/24 07:56:29 v1.34.5 @ TRIGKEY, nfs: using supplied cofactor: 2526132448373684387392587442344985993571181769024482685734617685264512434954640425855956007563497816454094811479119801134117885819013830191666184455099488766990498651
10/22/24 07:56:29 v1.34.5 @ TRIGKEY, nfs: commencing snfs on c166: 2526132448373684387392587442344985993571181769024482685734617685264512434954640425855956007563497816454094811479119801134117885819013830191666184455099488766990498651
10/22/24 07:56:29 v1.34.5 @ TRIGKEY, gen: best 3 polynomials:
n: 2526132448373684387392587442344985993571181769024482685734617685264512434954640425855956007563497816454094811479119801134117885819013830191666184455099488766990498651
# 3*10^208+7, difficulty: 211.48, anorm: 2.90e+032, rnorm: 1.83e+047
# scaled difficulty: 213.94, suggest sieving rational side
# size = 1.767e-014, alpha = -0.621, combined = 6.715e-012, rroots = 1
type: snfs
size: 211
skew: 0.2976
c5: 3000
c0: 7
Y1: -1
Y0: 100000000000000000000000000000000000000000
m: 100000000000000000000000000000000000000000
n: 2526132448373684387392587442344985993571181769024482685734617685264512434954640425855956007563497816454094811479119801134117885819013830191666184455099488766990498651
# 3*10^208+7, difficulty: 209.08, anorm: 2.05e+032, rnorm: 2.59e+047
# scaled difficulty: 211.60, suggest sieving rational side
# size = 1.636e-014, alpha = -0.389, combined = 6.375e-012, rroots = 1
type: snfs
size: 209
skew: 0.5951
c5: 375
c0: 28
Y1: -1
Y0: 200000000000000000000000000000000000000000
m: 200000000000000000000000000000000000000000
n: 2526132448373684387392587442344985993571181769024482685734617685264512434954640425855956007563497816454094811479119801134117885819013830191666184455099488766990498651
# 3*10^208+7, difficulty: 209.88, anorm: 1.83e+038, rnorm: 4.49e+040
# scaled difficulty: 209.88, suggest sieving algebraic side
# size = 1.757e-010, alpha = -0.865, combined = 5.007e-012, rroots = 0
type: snfs
size: 209
skew: 1.2406
c6: 48
c0: 175
Y1: -1
Y0: 50000000000000000000000000000000000
m: 50000000000000000000000000000000000
10/22/24 07:56:31 v1.34.5 @ TRIGKEY, test: fb generation took 1.7429 seconds
10/22/24 07:56:31 v1.34.5 @ TRIGKEY, test: commencing test sieving of polynomial 0 on the rational side over range 22600000-22602000
skew: 0.2976
c5: 3000
c0: 7
Y1: -1
Y0: 100000000000000000000000000000000000000000
m: 100000000000000000000000000000000000000000
rlim: 22600000
alim: 22600000
mfbr: 58
mfba: 58
lpbr: 29
lpba: 29
rlambda: 2.60
alambda: 2.60
10/22/24 07:59:32 v1.34.5 @ TRIGKEY, nfs: parsing special-q from .dat file
10/22/24 07:59:34 v1.34.5 @ TRIGKEY, test: fb generation took 1.5800 seconds
10/22/24 07:59:34 v1.34.5 @ TRIGKEY, test: commencing test sieving of polynomial 1 on the rational side over range 21400000-21402000
skew: 0.5951
c5: 375
c0: 28
Y1: -1
Y0: 200000000000000000000000000000000000000000
m: 200000000000000000000000000000000000000000
rlim: 21400000
alim: 21400000
mfbr: 56
mfba: 56
lpbr: 28
lpba: 28
rlambda: 2.60
alambda: 2.60
10/22/24 08:02:28 v1.34.5 @ TRIGKEY, nfs: parsing special-q from .dat file
10/22/24 08:02:30 v1.34.5 @ TRIGKEY, test: fb generation took 2.2725 seconds
10/22/24 08:02:30 v1.34.5 @ TRIGKEY, test: commencing test sieving of polynomial 2 on the algebraic side over range 21400000-21402000
skew: 1.2406
c6: 48
c0: 175
Y1: -1
Y0: 50000000000000000000000000000000000
m: 50000000000000000000000000000000000
rlim: 21400000
alim: 21400000
mfbr: 56
mfba: 56
lpbr: 28
lpba: 28
rlambda: 2.60
alambda: 2.60
10/22/24 08:05:51 v1.34.5 @ TRIGKEY, nfs: parsing special-q from .dat file
10/22/24 08:05:51 v1.34.5 @ TRIGKEY, gen: selected polynomial:
n: 2526132448373684387392587442344985993571181769024482685734617685264512434954640425855956007563497816454094811479119801134117885819013830191666184455099488766990498651
# 3*10^208+7, difficulty: 209.08, anorm: 2.05e+032, rnorm: 2.59e+047
# scaled difficulty: 211.60, suggest sieving rational side
# size = 1.636e-014, alpha = -0.389, combined = 6.375e-012, rroots = 1
type: snfs
size: 209
skew: 0.5951
c5: 375
c0: 28
Y1: -1
Y0: 200000000000000000000000000000000000000000
m: 200000000000000000000000000000000000000000
10/23/24 18:04:01 v1.34.5 @ TRIGKEY, nfs: commencing msieve filtering
10/23/24 18:05:57 v1.34.5 @ TRIGKEY, nfs: raising min_rels by 5.00 percent to 22113218
10/23/24 20:02:58 v1.34.5 @ TRIGKEY, nfs: commencing msieve filtering
10/23/24 20:05:00 v1.34.5 @ TRIGKEY, nfs: raising min_rels by 5.00 percent to 23271469
10/23/24 22:19:11 v1.34.5 @ TRIGKEY, nfs: commencing msieve filtering
10/23/24 22:21:19 v1.34.5 @ TRIGKEY, nfs: raising min_rels by 5.00 percent to 24585739
10/24/24 00:38:57 v1.34.5 @ TRIGKEY, nfs: commencing msieve filtering
10/24/24 00:41:09 v1.34.5 @ TRIGKEY, nfs: raising min_rels by 5.00 percent to 25887637
10/24/24 03:16:49 v1.34.5 @ TRIGKEY, nfs: commencing msieve filtering
10/24/24 03:20:58 v1.34.5 @ TRIGKEY, nfs: commencing msieve linear algebra
10/24/24 06:06:55 v1.34.5 @ TRIGKEY, nfs: commencing msieve sqrt
10/24/24 06:13:50 v1.34.5 @ TRIGKEY, prp56 = 56242836773569802705847085915084397458601445774440567551
10/24/24 06:13:50 v1.34.5 @ TRIGKEY, prp110 = 44914741028155070837083211811236068646096217841251804128424917756221683102878724360237887538744878280394376101
10/24/24 06:13:50 v1.34.5 @ TRIGKEY, NFS elapsed time = 166640.9897 seconds.
10/24/24 06:13:50 v1.34.5 @ TRIGKEY,
10/24/24 06:13:50 v1.34.5 @ TRIGKEY,
10/22/24 08:05:51 v1.34.5 @ TRIGKEY, test: test sieving took 561.44 seconds
software ソフトウェア
YAFU

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61418118Makoto KamadaFebruary 16, 2013 02:00:00 UTC 2013 年 2 月 16 日 (土) 11 時 0 分 0 秒 (日本時間)
1300Warut RoonguthaiFebruary 19, 2013 06:53:11 UTC 2013 年 2 月 19 日 (火) 15 時 53 分 11 秒 (日本時間)
403e63400Warut RoonguthaiFebruary 19, 2013 06:53:11 UTC 2013 年 2 月 19 日 (火) 15 時 53 分 11 秒 (日本時間)
4511e64480Ignacio SantosSeptember 18, 2024 06:06:01 UTC 2024 年 9 月 18 日 (水) 15 時 6 分 1 秒 (日本時間)

3×10209+7

c164

name 名前ebina
date 日付October 22, 2024 21:37:20 UTC 2024 年 10 月 23 日 (水) 6 時 37 分 20 秒 (日本時間)
composite number 合成数
73246823695618669062791828070732995680694584415532410034186585090636713022538597833293320486263958295290158307621663069174543585611064749029324637932363295858165137<164>
prime factors 素因数
534085099279488122221029677918903579780585984478043131182848090921973<69>
137144480897207011618673834049679740733237533277501436901766300545838901510914796016536259313069<96>
factorization results 素因数分解の結果
Number: 30007_209
N = 73246823695618669062791828070732995680694584415532410034186585090636713022538597833293320486263958295290158307621663069174543585611064749029324637932363295858165137 (164 digits)
SNFS difficulty: 211 digits.
Divisors found:
r1=534085099279488122221029677918903579780585984478043131182848090921973 (pp69)
r2=137144480897207011618673834049679740733237533277501436901766300545838901510914796016536259313069 (pp96)
Version: Msieve v. 1.54 (SVN 1018)
Total time: 186.25 hours.
Factorization parameters were as follows:
n: 73246823695618669062791828070732995680694584415532410034186585090636713022538597833293320486263958295290158307621663069174543585611064749029324637932363295858165137
m: 500000000000000000000000000000000000000000
deg: 5
c5: 48
c0: 35
skew: 0.94
# Murphy_E = 5.678e-12
type: snfs
lss: 1
rlim: 22000000
alim: 22000000
lpbr: 29
lpba: 29
mfbr: 57
mfba: 57
rlambda: 2.6
alambda: 2.6
Factor base limits: 22000000/22000000
Large primes per side: 3
Large prime bits: 29/29
Sieved rational special-q in [0, 0)
Total raw relations: 44858269
Relations: 7963534 relations
Pruned matrix : 4848404 x 4848628
Total sieving time: 167.65 hours.
Total relation processing time: 0.26 hours.
Matrix solve time: 17.41 hours.
time per square root: 0.93 hours.
Prototype def-par.txt line would be: snfs,211,5,0,0,0,0,0,0,0,0,22000000,22000000,29,29,57,57,2.6,2.6,100000
total time: 186.25 hours.
Intel64 Family 6 Model 60 Stepping 3, GenuineIntel
processors: 8, speed: 3.19GHz
Windows-post2008Server-6.2.9200
Running Python 3.2

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61418118Makoto KamadaFebruary 16, 2013 02:00:00 UTC 2013 年 2 月 16 日 (土) 11 時 0 分 0 秒 (日本時間)
1300Warut RoonguthaiFebruary 19, 2013 13:12:25 UTC 2013 年 2 月 19 日 (火) 22 時 12 分 25 秒 (日本時間)
403e62900Warut RoonguthaiFebruary 19, 2013 13:12:25 UTC 2013 年 2 月 19 日 (火) 22 時 12 分 25 秒 (日本時間)

3×10211+7

c196

composite cofactor 合成数の残り
2036142295109864932825841359544354720031301730205960408838992758337733914959486494412302211704800888168388909197283925554541820786709309625846382028580199017846105544560821910089896952489781225431<196>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61418118Makoto KamadaFebruary 16, 2013 02:00:00 UTC 2013 年 2 月 16 日 (土) 11 時 0 分 0 秒 (日本時間)
1300Warut RoonguthaiFebruary 19, 2013 15:14:10 UTC 2013 年 2 月 20 日 (水) 0 時 14 分 10 秒 (日本時間)
403e60--
4511e61000 / 4415Dmitry DomanovMarch 29, 2013 14:52:29 UTC 2013 年 3 月 29 日 (金) 23 時 52 分 29 秒 (日本時間)

3×10212+7

c123

name 名前Dmitry Domanov
date 日付February 17, 2013 12:59:29 UTC 2013 年 2 月 17 日 (日) 21 時 59 分 29 秒 (日本時間)
composite number 合成数
576211472623786235125580839349241437558424887149148656079279543925743162592521849442769139689402462119087083194809573900427<123>
prime factors 素因数
1175632029747201560722147952723780985322274976581<49>
490129103362120975472383181391068484852476506979787990886015367023341959567<75>
factorization results 素因数分解の結果
Sun Feb 17 15:44:11 2013  commencing relation filtering
Sun Feb 17 15:44:11 2013  estimated available RAM is 48289.8 MB
Sun Feb 17 15:44:11 2013  commencing duplicate removal, pass 1
Sun Feb 17 15:46:28 2013  found 1193371 hash collisions in 11042977 relations
Sun Feb 17 15:46:48 2013  added 96 free relations
Sun Feb 17 15:46:48 2013  commencing duplicate removal, pass 2
Sun Feb 17 15:46:52 2013  found 920772 duplicates and 10122301 unique relations
Sun Feb 17 15:46:52 2013  memory use: 49.3 MB
Sun Feb 17 15:46:52 2013  reading ideals above 720000
Sun Feb 17 15:46:52 2013  commencing singleton removal, initial pass
Sun Feb 17 15:49:12 2013  memory use: 344.5 MB
Sun Feb 17 15:49:12 2013  reading all ideals from disk
Sun Feb 17 15:49:12 2013  memory use: 292.7 MB
Sun Feb 17 15:49:13 2013  commencing in-memory singleton removal
Sun Feb 17 15:49:14 2013  begin with 10122301 relations and 11063665 unique ideals
Sun Feb 17 15:49:23 2013  reduce to 3789115 relations and 3618773 ideals in 19 passes
Sun Feb 17 15:49:23 2013  max relations containing the same ideal: 82
Sun Feb 17 15:49:25 2013  removing 262822 relations and 245136 ideals in 17686 cliques
Sun Feb 17 15:49:25 2013  commencing in-memory singleton removal
Sun Feb 17 15:49:25 2013  begin with 3526293 relations and 3618773 unique ideals
Sun Feb 17 15:49:27 2013  reduce to 3511538 relations and 3358775 ideals in 10 passes
Sun Feb 17 15:49:27 2013  max relations containing the same ideal: 78
Sun Feb 17 15:49:29 2013  removing 189509 relations and 171823 ideals in 17686 cliques
Sun Feb 17 15:49:29 2013  commencing in-memory singleton removal
Sun Feb 17 15:49:29 2013  begin with 3322029 relations and 3358775 unique ideals
Sun Feb 17 15:49:31 2013  reduce to 3313589 relations and 3178462 ideals in 8 passes
Sun Feb 17 15:49:31 2013  max relations containing the same ideal: 71
Sun Feb 17 15:49:33 2013  relations with 0 large ideals: 481
Sun Feb 17 15:49:33 2013  relations with 1 large ideals: 2908
Sun Feb 17 15:49:33 2013  relations with 2 large ideals: 38462
Sun Feb 17 15:49:33 2013  relations with 3 large ideals: 212498
Sun Feb 17 15:49:33 2013  relations with 4 large ideals: 608790
Sun Feb 17 15:49:33 2013  relations with 5 large ideals: 966855
Sun Feb 17 15:49:33 2013  relations with 6 large ideals: 877932
Sun Feb 17 15:49:33 2013  relations with 7+ large ideals: 605663
Sun Feb 17 15:49:33 2013  commencing 2-way merge
Sun Feb 17 15:49:35 2013  reduce to 1864433 relation sets and 1729307 unique ideals
Sun Feb 17 15:49:35 2013  ignored 1 oversize relation sets
Sun Feb 17 15:49:35 2013  commencing full merge
Sun Feb 17 15:50:00 2013  memory use: 187.1 MB
Sun Feb 17 15:50:00 2013  found 914613 cycles, need 899507
Sun Feb 17 15:50:01 2013  weight of 899507 cycles is about 63244112 (70.31/cycle)
Sun Feb 17 15:50:01 2013  distribution of cycle lengths:
Sun Feb 17 15:50:01 2013  1 relations: 116146
Sun Feb 17 15:50:01 2013  2 relations: 110361
Sun Feb 17 15:50:01 2013  3 relations: 107004
Sun Feb 17 15:50:01 2013  4 relations: 93014
Sun Feb 17 15:50:01 2013  5 relations: 81373
Sun Feb 17 15:50:01 2013  6 relations: 67330
Sun Feb 17 15:50:01 2013  7 relations: 58254
Sun Feb 17 15:50:01 2013  8 relations: 48183
Sun Feb 17 15:50:01 2013  9 relations: 40360
Sun Feb 17 15:50:01 2013  10+ relations: 177482
Sun Feb 17 15:50:01 2013  heaviest cycle: 23 relations
Sun Feb 17 15:50:01 2013  commencing cycle optimization
Sun Feb 17 15:50:02 2013  start with 5383476 relations
Sun Feb 17 15:50:10 2013  pruned 107001 relations
Sun Feb 17 15:50:10 2013  memory use: 184.8 MB
Sun Feb 17 15:50:10 2013  distribution of cycle lengths:
Sun Feb 17 15:50:10 2013  1 relations: 116146
Sun Feb 17 15:50:10 2013  2 relations: 112763
Sun Feb 17 15:50:10 2013  3 relations: 110405
Sun Feb 17 15:50:10 2013  4 relations: 94629
Sun Feb 17 15:50:10 2013  5 relations: 82625
Sun Feb 17 15:50:10 2013  6 relations: 67533
Sun Feb 17 15:50:10 2013  7 relations: 58445
Sun Feb 17 15:50:10 2013  8 relations: 47794
Sun Feb 17 15:50:10 2013  9 relations: 39716
Sun Feb 17 15:50:10 2013  10+ relations: 169451
Sun Feb 17 15:50:10 2013  heaviest cycle: 23 relations
Sun Feb 17 15:50:11 2013  RelProcTime: 360
Sun Feb 17 15:50:11 2013  
Sun Feb 17 15:50:11 2013  commencing linear algebra
Sun Feb 17 15:50:11 2013  read 899507 cycles
Sun Feb 17 15:50:13 2013  cycles contain 3154061 unique relations
Sun Feb 17 15:50:52 2013  read 3154061 relations
Sun Feb 17 15:50:56 2013  using 20 quadratic characters above 134216838
Sun Feb 17 15:51:12 2013  building initial matrix
Sun Feb 17 15:51:45 2013  memory use: 402.8 MB
Sun Feb 17 15:51:46 2013  read 899507 cycles
Sun Feb 17 15:51:46 2013  matrix is 899321 x 899507 (274.0 MB) with weight 86054482 (95.67/col)
Sun Feb 17 15:51:46 2013  sparse part has weight 61033980 (67.85/col)
Sun Feb 17 15:51:55 2013  filtering completed in 2 passes
Sun Feb 17 15:51:56 2013  matrix is 895430 x 895613 (273.6 MB) with weight 85867520 (95.88/col)
Sun Feb 17 15:51:56 2013  sparse part has weight 60967323 (68.07/col)
Sun Feb 17 15:51:58 2013  matrix starts at (0, 0)
Sun Feb 17 15:51:58 2013  matrix is 895430 x 895613 (273.6 MB) with weight 85867520 (95.88/col)
Sun Feb 17 15:51:58 2013  sparse part has weight 60967323 (68.07/col)
Sun Feb 17 15:51:58 2013  saving the first 48 matrix rows for later
Sun Feb 17 15:51:58 2013  matrix includes 64 packed rows
Sun Feb 17 15:51:59 2013  matrix is 895382 x 895613 (262.0 MB) with weight 68314257 (76.28/col)
Sun Feb 17 15:51:59 2013  sparse part has weight 59728450 (66.69/col)
Sun Feb 17 15:51:59 2013  using block size 262144 for processor cache size 12288 kB
Sun Feb 17 15:52:01 2013  commencing Lanczos iteration (16 threads)
Sun Feb 17 15:52:01 2013  memory use: 382.8 MB
Sun Feb 17 15:52:11 2013  linear algebra at 0.3%, ETA 0h48m
Sun Feb 17 16:40:11 2013  lanczos halted after 14162 iterations (dim = 895380)
Sun Feb 17 16:40:12 2013  recovered 29 nontrivial dependencies
Sun Feb 17 16:40:13 2013  BLanczosTime: 3002
Sun Feb 17 16:40:13 2013  
Sun Feb 17 16:40:13 2013  commencing square root phase
Sun Feb 17 16:40:13 2013  reading relations for dependency 1
Sun Feb 17 16:40:13 2013  read 447924 cycles
Sun Feb 17 16:40:13 2013  cycles contain 1577042 unique relations
Sun Feb 17 16:40:34 2013  read 1577042 relations
Sun Feb 17 16:40:43 2013  multiplying 1577042 relations
Sun Feb 17 16:42:41 2013  multiply complete, coefficients have about 68.17 million bits
Sun Feb 17 16:42:42 2013  initial square root is modulo 78341
Sun Feb 17 16:45:13 2013  sqrtTime: 300


prp49 = 1175632029747201560722147952723780985322274976581
prp75 = 490129103362120975472383181391068484852476506979787990886015367023341959567
NFS elapsed time = 20135.5205 seconds.

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaFebruary 16, 2013 02:00:00 UTC 2013 年 2 月 16 日 (土) 11 時 0 分 0 秒 (日本時間)

3×10214+7

c208

name 名前Bob Backstrom
date 日付November 28, 2019 12:48:50 UTC 2019 年 11 月 28 日 (木) 21 時 48 分 50 秒 (日本時間)
composite number 合成数
3675329704639478946057553457976831456607893652619842394511605649863835159992615037513477740304388355918438553326522539020669196681961347047540267218521505517956252060481715663507884133515907378261135360800379<208>
prime factors 素因数
4203804056816289073472794303279470241000729095124703<52>
132529256046524403310704082852968707296003826722941373<54>
6596933095852949776565774399108017101273378542196582965177686649514960025136222473057240305364592397641<103>
factorization results 素因数分解の結果
#
# N = 3x10^214+7 = 30(213)7
#
n: 3675329704639478946057553457976831456607893652619842394511605649863835159992615037513477740304388355918438553326522539020669196681961347047540267218521505517956252060481715663507884133515907378261135360800379
m: 500000000000000000000000000000000000
deg: 6
c6: 48
c0: 175
skew: 1.24
# Murphy_E = 3.537e-12
type: snfs
lss: 1
rlim: 28000000
alim: 28000000
lpbr: 29
lpba: 29
mfbr: 57
mfba: 57
rlambda: 2.6
alambda: 2.6




GMP-ECM 6.2.3 [powered by GMP 6.1.2] [ECM]
Input number is 3675329704639478946057553457976831456607893652619842394511605649863835159992615037513477740304388355918438553326522539020669196681961347047540267218521505517956252060481715663507884133515907378261135360800379 (208 digits)
Using B1=900100000, B2=15892679602816, polynomial Dickson(30), sigma=3738441443
Step 1 took 4454879ms
Step 2 took 821898ms
********** Factor found in step 2: 132529256046524403310704082852968707296003826722941373
Found probable prime factor of 54 digits: 132529256046524403310704082852968707296003826722941373
Composite cofactor 27732214110892271454867313074014752242494537594033386053190676754251105966457741915079731708036122151280802216876492609388487689136594936775038830658025623 has 155 digits




Number: n
N=3675329704639478946057553457976831456607893652619842394511605649863835159992615037513477740304388355918438553326522539020669196681961347047540267218521505517956252060481715663507884133515907378261135360800379
  ( 208 digits)
SNFS difficulty: 215 digits.
Divisors found:

Thu Nov 28 23:11:11 2019  found factor: 132529256046524403310704082852968707296003826722941373
Thu Nov 28 23:30:43 2019  p52 factor: 4203804056816289073472794303279470241000729095124703
Thu Nov 28 23:30:43 2019  p54 factor: 132529256046524403310704082852968707296003826722941373
Thu Nov 28 23:30:43 2019  p103 factor: 6596933095852949776565774399108017101273378542196582965177686649514960025136222473057240305364592397641
Thu Nov 28 23:30:43 2019  elapsed time 05:39:50 (Msieve 1.54 - dependency 5)

Version:
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.131).
Factorization parameters were as follows:
#
# N = 3x10^214+7 = 30(213)7
#
n: 3675329704639478946057553457976831456607893652619842394511605649863835159992615037513477740304388355918438553326522539020669196681961347047540267218521505517956252060481715663507884133515907378261135360800379
m: 500000000000000000000000000000000000
deg: 6
c6: 48
c0: 175
skew: 1.24
# Murphy_E = 3.537e-12
type: snfs
lss: 1
rlim: 28000000
alim: 28000000
lpbr: 29
lpba: 29
mfbr: 57
mfba: 57
rlambda: 2.6
alambda: 2.6
Factor base limits: 28000000/28000000
Large primes per side: 3
Large prime bits: 29/29
Max factor residue bits: 57/57
Sieved  special-q in [100000, 82800000)
Primes: , ,
Relations:
Max relations in full relation-set: 28
Initial matrix:
Pruned matrix :

Msieve: found 11100478 hash collisions in 65897600 relations (57356392 unique)
Msieve: matrix is 3447090 x 3447316 (1201.8 MB)

Sieving start time: 2019/11/27 02:57:20
Sieving end time  : 2019/11/28 17:49:54

Total sieving time: 38hrs 52min 34secs.

Total relation processing time: 4hrs 48min 11sec.
Matrix solve time: 0.00 hours.
Total square root time: 0hrs 32min 29sec.

Prototype def-par.txt line would be:
snfs,215,6,0,0,0,0,0,0,0,0,28000000,28000000,29,29,57,57,2.6,2.6,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------
[    0.149711] smpboot: CPU0: AMD Ryzen 7 1700 Eight-Core Processor (family: 0x17, model: 0x1, stepping: 0x1)
[    0.000000] Memory: 16283564K/16703460K available (12300K kernel code, 2481K rwdata, 4264K rodata, 2432K init, 2388K bss, 419896K reserved, 0K cma-reserved)
[    0.184572] x86/mm: Memory block size: 128MB
[    0.024000] Calibrating delay loop (skipped), value calculated using timer frequency.. 5988.54 BogoMIPS (lpj=11977084)
[    0.182221] smpboot: Total of 16 processors activated (95816.67 BogoMIPS)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61418118Makoto KamadaFebruary 16, 2013 02:00:00 UTC 2013 年 2 月 16 日 (土) 11 時 0 分 0 秒 (日本時間)
1300Warut RoonguthaiFebruary 19, 2013 15:14:30 UTC 2013 年 2 月 20 日 (水) 0 時 14 分 30 秒 (日本時間)
403e60--
4511e61000 / 4415Dmitry DomanovMarch 29, 2013 14:52:41 UTC 2013 年 3 月 29 日 (金) 23 時 52 分 41 秒 (日本時間)

3×10215+7

c189

name 名前Warut Roonguthai
date 日付February 16, 2013 13:40:37 UTC 2013 年 2 月 16 日 (土) 22 時 40 分 37 秒 (日本時間)
composite number 合成数
134030414320979403709252004594791342991615002471622500558659965049345213174656664982574796404844581334930280001077762600613828579627095481994060971582380045941610406459084594876194038681359<189>
prime factors 素因数
15309508366871707406062728790691<32>
composite cofactor 合成数の残り
8754717075762421775231424542651575458767002223696730955674548040144847596210534439410783205068425790309448952154842664887461409055717081296197300982407312549<157>
factorization results 素因数分解の結果
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1469045866
Step 1 took 10530ms
Step 2 took 6568ms
********** Factor found in step 2: 15309508366871707406062728790691
Found probable prime factor of 32 digits: 15309508366871707406062728790691
Composite cofactor 8754717075762421775231424542651575458767002223696730955674548040144847596210534439410783205068425790309448952154842664887461409055717081296197300982407312549 has 157 digits
software ソフトウェア
GMP-ECM 6.3

c157

name 名前Warut Roonguthai
date 日付February 18, 2013 23:44:30 UTC 2013 年 2 月 19 日 (火) 8 時 44 分 30 秒 (日本時間)
composite number 合成数
8754717075762421775231424542651575458767002223696730955674548040144847596210534439410783205068425790309448952154842664887461409055717081296197300982407312549<157>
prime factors 素因数
36984778148192734600624644012817451<35>
119170281303569645345574388800989299473635468109349386201137<60>
1986328771028970138601686290970375607792144439596114344242848927<64>
factorization results 素因数分解の結果
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3311041823
Step 1 took 7753ms
********** Factor found in step 1: 36984778148192734600624644012817451
Found probable prime factor of 35 digits: 36984778148192734600624644012817451
Composite cofactor 236711358404896151118747003065858704355754244299326958503948182405328110009176298823465520935244777868734651916182726629999 has 123 digits

N = 236711358404896151118747003065858704355754244299326958503948182405328110009176298823465520935244777868734651916182726629999 (123 digits)
Divisors found:
r1=119170281303569645345574388800989299473635468109349386201137 (pp60)
r2=1986328771028970138601686290970375607792144439596114344242848927 (pp64)
Version: Msieve v. 1.49 (SVN unknown)
Total time: 10.63 hours.
Factorization parameters were as follows:
n: 236711358404896151118747003065858704355754244299326958503948182405328110009176298823465520935244777868734651916182726629999
Y0: -1230242732969288989801112
Y1: 6143358061843
c0: -122525783513517743693697081649875
c1: 264321219525536352851679599
c2: 504292945584831276147
c3: -796287221211387
c4: -551158568
c5: 84
skew: 1129583.21
type: gnfs
Factor base limits: 4900000/4900000
Large primes per side: 3
Large prime bits: 27/27
Sieved algebraic special-q in [0, 0)
Total raw relations: 10788088
Relations: 1445516 relations
Pruned matrix : 824946 x 825175
Polynomial selection time: 0.00 hours.
Total sieving time: 9.94 hours.
Total relation processing time: 0.05 hours.
Matrix solve time: 0.52 hours.
time per square root: 0.12 hours.
Prototype def-par.txt line would be: gnfs,122,5,65,2000,1e-05,0.28,250,20,50000,3600,4900000,4900000,27,27,53,53,2.5,2.5,100000
total time: 10.63 hours.
Intel64 Family 6 Model 42 Stepping 7, GenuineIntel
Windows-7-6.1.7601-SP1
processors: 8, speed: 2.19GHz
software ソフトウェア
GMP-ECM 6.3

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaFebruary 16, 2013 02:00:00 UTC 2013 年 2 月 16 日 (土) 11 時 0 分 0 秒 (日本時間)

3×10216+7

c205

name 名前Warut Roonguthai
date 日付February 17, 2013 06:50:30 UTC 2013 年 2 月 17 日 (日) 15 時 50 分 30 秒 (日本時間)
composite number 合成数
6097355496600863493962713593926619942588665679305811698160360545488264286080404430204322173206284590799023758286850992270573692708947227988683105416524595068087697020385295637647132513757694921732787875743<205>
prime factors 素因数
6896459787426653543771836220821139<34>
884128333165563487895755529159740581457857083087773846312080545210327786496677455819207427860083287674188394628305072186699618138489176451577048455649585476961328510842437<171>
factorization results 素因数分解の結果
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=931395692
Step 1 took 12152ms
Step 2 took 7286ms
********** Factor found in step 2: 6896459787426653543771836220821139
Found probable prime factor of 34 digits: 6896459787426653543771836220821139
Probable prime cofactor 884128333165563487895755529159740581457857083087773846312080545210327786496677455819207427860083287674188394628305072186699618138489176451577048455649585476961328510842437 has 171 digits
software ソフトウェア
GMP-ECM 6.3

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaFebruary 16, 2013 02:00:00 UTC 2013 年 2 月 16 日 (土) 11 時 0 分 0 秒 (日本時間)

3×10217+7

c173

composite cofactor 合成数の残り
51018103471605800367956575474397215392279971283523577894215462369142805159398799263389400274521100136221923061939892322343984851084475557057226939774919166562890444245464551<173>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61418118Makoto KamadaFebruary 16, 2013 02:00:00 UTC 2013 年 2 月 16 日 (土) 11 時 0 分 0 秒 (日本時間)
1300Warut RoonguthaiFebruary 19, 2013 15:14:39 UTC 2013 年 2 月 20 日 (水) 0 時 14 分 39 秒 (日本時間)
403e62000Dmitry DomanovMarch 5, 2013 21:51:39 UTC 2013 年 3 月 6 日 (水) 6 時 51 分 39 秒 (日本時間)

3×10218+7

c168

name 名前Warut Roonguthai
date 日付February 16, 2013 14:26:28 UTC 2013 年 2 月 16 日 (土) 23 時 26 分 28 秒 (日本時間)
composite number 合成数
531840815538737412051992717557968833161359941644129107709930784396144075328833505272955975105679722995485547930305879018718272203040825890025561835947931366100178347349<168>
prime factors 素因数
50522099578618355254635154907<29>
10526894566428900590332689956307222395822960377469595363110611604105377687280750588331237820655499100206812622234672040951724197041238309007<140>
factorization results 素因数分解の結果
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2966099369
Step 1 took 7769ms
Step 2 took 5818ms
********** Factor found in step 2: 50522099578618355254635154907
Found probable prime factor of 29 digits: 50522099578618355254635154907
Probable prime cofactor 10526894566428900590332689956307222395822960377469595363110611604105377687280750588331237820655499100206812622234672040951724197041238309007 has 140 digits
software ソフトウェア
GMP-ECM 6.3

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaFebruary 16, 2013 02:00:00 UTC 2013 年 2 月 16 日 (土) 11 時 0 分 0 秒 (日本時間)

3×10219+7

c167

name 名前Erik Branger
date 日付December 16, 2020 11:34:54 UTC 2020 年 12 月 16 日 (水) 20 時 34 分 54 秒 (日本時間)
composite number 合成数
34407696821797101766113904263400743735925452155933542921749306039902080682063962327672834181999210627999604555892397479530839440952058361443892758277973985647855740481<167>
prime factors 素因数
1799238761569059182807683896651713913868734425786131807632242843<64>
19123474636457497325474709993591955484189686213476891086121709092614837586069221001500251087622197290067<104>
factorization results 素因数分解の結果
Number: 30007_219
N = 34407696821797101766113904263400743735925452155933542921749306039902080682063962327672834181999210627999604555892397479530839440952058361443892758277973985647855740481 (167 digits)
SNFS difficulty: 221 digits.
Divisors found:
r1=1799238761569059182807683896651713913868734425786131807632242843 (pp64)
r2=19123474636457497325474709993591955484189686213476891086121709092614837586069221001500251087622197290067 (pp104)
Version: Msieve v. 1.52 (SVN unknown)
Total time: 64.23 hours.
Factorization parameters were as follows:
n: 34407696821797101766113904263400743735925452155933542921749306039902080682063962327672834181999210627999604555892397479530839440952058361443892758277973985647855740481
m: 10000000000000000000000000000000000000000000000000000000
deg: 4
c4: 3
c0: 70
skew: 1.00
type: snfs
lss: 1
rlim: 536870912
alim: 44739242
lpbr: 29
lpba: 28
mfbr: 58
mfba: 56
rlambda: 2.8
alambda: 2.8
side: 1
Factor base limits: 536870912/44739242
Large primes per side: 3
Large prime bits: 29/28
Relations: 7446410 relations
Pruned matrix : 6417062 x 6417287
Total pre-computation time approximately 1000 CPU-days.
Pre-computation saved approximately 18 G relations.
Total batch smoothness checking time: 33.26 hours.
Total relation processing time: 0.36 hours.
Matrix solve time: 30.06 hours.
time per square root: 0.55 hours.
Prototype def-par.txt line would be: snfs,221,4,0,0,0,0,0,0,0,0,536870912,44739242,29,28,58,56,2.8,2.8,100000
total time: 64.23 hours.
Intel64 Family 6 Model 60 Stepping 3, GenuineIntel
Windows-10-10.0.18362-SP0
processors: 8, speed: 3.50GHz
software ソフトウェア
GGNFS, NFS_factory, Msieve

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61418118Makoto KamadaFebruary 16, 2013 02:00:00 UTC 2013 年 2 月 16 日 (土) 11 時 0 分 0 秒 (日本時間)
1300Warut RoonguthaiFebruary 19, 2013 15:14:54 UTC 2013 年 2 月 20 日 (水) 0 時 14 分 54 秒 (日本時間)
403e62000Dmitry DomanovMarch 2, 2013 22:37:55 UTC 2013 年 3 月 3 日 (日) 7 時 37 分 55 秒 (日本時間)

3×10220+7

c215

name 名前Bob Backstrom
date 日付April 24, 2018 02:29:36 UTC 2018 年 4 月 24 日 (火) 11 時 29 分 36 秒 (日本時間)
composite number 合成数
68706957953631964309025575019982273604847962953208271401644844573409949225558072265978375630100060233099806017355377579087434184459860250047522312584595441980409356055487739243353174375969054386137684163275214881011<215>
prime factors 素因数
139024810376199218392715794966308012198369755129297552949636349522328522960053<78>
494206449681261094435562424256838679222486167579750700800096967311654756544017661813095496416164047495382275165707303694647392488054138887<138>
factorization results 素因数分解の結果
Number: n
N=68706957953631964309025575019982273604847962953208271401644844573409949225558072265978375630100060233099806017355377579087434184459860250047522312584595441980409356055487739243353174375969054386137684163275214881011
  ( 215 digits)
SNFS difficulty: 221 digits.
Divisors found:

Tue Apr 24 10:44:23 2018  p78 factor: 139024810376199218392715794966308012198369755129297552949636349522328522960053
Tue Apr 24 10:44:23 2018  p138 factor: 494206449681261094435562424256838679222486167579750700800096967311654756544017661813095496416164047495382275165707303694647392488054138887
Tue Apr 24 10:44:23 2018  elapsed time 10:29:43 (Msieve 1.53 - dependency 1)

Version:
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=1.754).
Factorization parameters were as follows:
#
# 3x10^220+7 = 30(219)7
#
n: 68706957953631964309025575019982273604847962953208271401644844573409949225558072265978375630100060233099806017355377579087434184459860250047522312584595441980409356055487739243353174375969054386137684163275214881011
m: 5000000000000000000000000000000000000
deg: 6
c6: 48
c0: 175
skew: 1.24
# Murphy_E = 2.22e-12
type: snfs
lss: 1
rlim: 35000000
alim: 35000000
lpbr: 29
lpba: 29
mfbr: 58
mfba: 58
rlambda: 2.6
alambda: 2.6
Factor base limits: 35000000/35000000
Large primes per side: 3
Large prime bits: 29/29
Max factor residue bits: 58/58
Sieved  special-q in [100000, 171900000)
Primes: , ,
Relations:
Max relations in full relation-set: 28
Initial matrix:
Pruned matrix :

Msieve: found 14436478 hash collisions in 72135823 relations (59619196 unique)
Msieve: matrix is 4575042 x 4575269 (1302.7 MB)

Sieving start time: 2018/04/21 17:58:54
Sieving end time  : 2018/04/24 00:12:41

Total sieving time: 54hrs 13min 47secs.

Total relation processing time: 9hrs 50min 57sec.
Matrix solve time: 0.00 hours.
Total square root time: 0hrs 11min 29sec.

Prototype def-par.txt line would be:
snfs,221,6,0,0,0,0,0,0,0,0,35000000,35000000,29,29,58,58,2.6,2.6,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------
[    0.068000] smpboot: CPU0: AMD Ryzen 7 1700 Eight-Core Processor (family: 0x17, model: 0x1, stepping: 0x1)
[    0.000000] Memory: 16292580K/16703460K available (12300K kernel code, 2482K rwdata, 4000K rodata, 2376K init, 2372K bss, 410880K reserved, 0K cma-reserved)
[    0.100643] x86/mm: Memory block size: 128MB
[    0.004000] Calibrating delay loop (skipped), value calculated using timer frequency.. 5988.48 BogoMIPS (lpj=11976968)
[    0.098224] smpboot: Total of 16 processors activated (95815.74 BogoMIPS)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61418118Makoto KamadaFebruary 16, 2013 02:00:00 UTC 2013 年 2 月 16 日 (土) 11 時 0 分 0 秒 (日本時間)
1300Warut RoonguthaiFebruary 19, 2013 15:15:00 UTC 2013 年 2 月 20 日 (水) 0 時 15 分 0 秒 (日本時間)
403e62000Dmitry DomanovMarch 6, 2013 23:25:06 UTC 2013 年 3 月 7 日 (木) 8 時 25 分 6 秒 (日本時間)

3×10221+7

c196

name 名前Warut Roonguthai
date 日付February 16, 2013 15:51:37 UTC 2013 年 2 月 17 日 (日) 0 時 51 分 37 秒 (日本時間)
composite number 合成数
6147342938183911321041919907280648114185067578940945217542830321560493629659555864954520449171984768969261317825042247013251973896463502853669195215870873629951985561065554689926491010277991154969<196>
prime factors 素因数
83360122622417570220171590970859<32>
composite cofactor 合成数の残り
73744408534863897433454438006877228981969196503495657627654475097830576513296510509157772922029750110636731850544245669235621804478264077367067755055510735399265291<164>
factorization results 素因数分解の結果
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1811546908
Step 1 took 12012ms
Step 2 took 7067ms
********** Factor found in step 2: 83360122622417570220171590970859
Found probable prime factor of 32 digits: 83360122622417570220171590970859
Composite cofactor 73744408534863897433454438006877228981969196503495657627654475097830576513296510509157772922029750110636731850544245669235621804478264077367067755055510735399265291 has 164 digits
software ソフトウェア
GMP-ECM 6.3

c164

name 名前Erik Branger
date 日付June 17, 2021 20:07:30 UTC 2021 年 6 月 18 日 (金) 5 時 7 分 30 秒 (日本時間)
composite number 合成数
73744408534863897433454438006877228981969196503495657627654475097830576513296510509157772922029750110636731850544245669235621804478264077367067755055510735399265291<164>
prime factors 素因数
4750364721408905675428950139070656528735597436347<49>
15523946656666842390118678740483270319932677240057492029640131258967469988699028608387495140465320370608660582368753<116>
factorization results 素因数分解の結果
Number: 30007_221
N = 73744408534863897433454438006877228981969196503495657627654475097830576513296510509157772922029750110636731850544245669235621804478264077367067755055510735399265291 (164 digits)
SNFS difficulty: 222 digits.
Divisors found:
r1=4750364721408905675428950139070656528735597436347 (pp49)
r2=15523946656666842390118678740483270319932677240057492029640131258967469988699028608387495140465320370608660582368753 (pp116)
Version: Msieve v. 1.52 (SVN unknown)
Total time: 79.91 hours.
Factorization parameters were as follows:
n: 73744408534863897433454438006877228981969196503495657627654475097830576513296510509157772922029750110636731850544245669235621804478264077367067755055510735399265291
m: 10000000000000000000000000000000000000000000000000000000
deg: 4
c4: 30
c0: 7
skew: 1.00
type: snfs
lss: 1
rlim: 536870912
alim: 44739242
lpbr: 29
lpba: 28
mfbr: 58
mfba: 56
rlambda: 2.8
alambda: 2.8
side: 1
Factor base limits: 536870912/44739242
Large primes per side: 3
Large prime bits: 29/28
Relations: 8274354 relations
Pruned matrix : 7116452 x 7116677
Total pre-computation time approximately 1000 CPU-days.
Pre-computation saved approximately 18 G relations.
Total batch smoothness checking time: 34.48 hours.
Total relation processing time: 0.37 hours.
Matrix solve time: 44.56 hours.
time per square root: 0.50 hours.
Prototype def-par.txt line would be: snfs,222,4,0,0,0,0,0,0,0,0,536870912,44739242,29,28,58,56,2.8,2.8,100000
total time: 79.91 hours.
Intel64 Family 6 Model 60 Stepping 3, GenuineIntel
Windows-10-10.0.19041-SP0
processors: 8, speed: 3.50GHz
software ソフトウェア
GGNFS, NFS_factory, Msieve

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61418118Makoto KamadaFebruary 16, 2013 02:00:00 UTC 2013 年 2 月 16 日 (土) 11 時 0 分 0 秒 (日本時間)
1300Warut RoonguthaiFebruary 19, 2013 15:15:07 UTC 2013 年 2 月 20 日 (水) 0 時 15 分 7 秒 (日本時間)
403e62000Dmitry DomanovFebruary 25, 2013 23:04:39 UTC 2013 年 2 月 26 日 (火) 8 時 4 分 39 秒 (日本時間)

3×10222+7

c201

name 名前Dmitry Domanov
date 日付April 2, 2013 09:06:06 UTC 2013 年 4 月 2 日 (火) 18 時 6 分 6 秒 (日本時間)
composite number 合成数
464167347617847709027173939596181749235194923595410681723081538211382561317760815449835348491552587526596287548316137568093229492121705431609656908438561550944215630697624313864384641793690010632209761<201>
prime factors 素因数
298009268733479068836827661738322101452083<42>
1557560104054918098210221476103358154732756144608676124558729843062905037802321758707828086704645286945471069207955746633796104752130875535100550181090568989467<160>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=338538793
Step 1 took 112594ms
Step 2 took 30983ms
********** Factor found in step 2: 298009268733479068836827661738322101452083
Found probable prime factor of 42 digits: 298009268733479068836827661738322101452083

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61418118Makoto KamadaFebruary 16, 2013 02:00:00 UTC 2013 年 2 月 16 日 (土) 11 時 0 分 0 秒 (日本時間)
1300Warut RoonguthaiFebruary 19, 2013 15:15:16 UTC 2013 年 2 月 20 日 (水) 0 時 15 分 16 秒 (日本時間)
403e60--
4511e61000 / 4415Dmitry DomanovMarch 29, 2013 14:53:03 UTC 2013 年 3 月 29 日 (金) 23 時 53 分 3 秒 (日本時間)

3×10223+7

c179

composite cofactor 合成数の残り
10756333845761009575202805557939182309032300414644855034455578374703369976350990972857893234381917274615022081844352184956122968220187330184669108504209735593653324693961964658847<179>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61418118Makoto KamadaFebruary 16, 2013 02:00:00 UTC 2013 年 2 月 16 日 (土) 11 時 0 分 0 秒 (日本時間)
1300Warut RoonguthaiFebruary 19, 2013 15:15:25 UTC 2013 年 2 月 20 日 (水) 0 時 15 分 25 秒 (日本時間)
403e60--
4511e61000 / 4415Dmitry DomanovMarch 29, 2013 14:53:14 UTC 2013 年 3 月 29 日 (金) 23 時 53 分 14 秒 (日本時間)

3×10224+7

c179

name 名前Dmitry Domanov
date 日付April 2, 2013 09:31:20 UTC 2013 年 4 月 2 日 (火) 18 時 31 分 20 秒 (日本時間)
composite number 合成数
79067537975819658272254108383456647284232123929120189043000105006307944759061622939390813677165759059667054387893845375848158682194394748664961139819388481085256889318574211794441<179>
prime factors 素因数
270373237759043910478489482172585012737937<42>
composite cofactor 合成数の残り
292438477384675513663412983438107939563625910414370816328318936790210071271901534256984775349764023407913785221616270744618424940218079993<138>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=68468456
Step 1 took 118925ms
Step 2 took 818ms
********** Factor found in step 2: 270373237759043910478489482172585012737937
Found probable prime factor of 42 digits: 270373237759043910478489482172585012737937

c138

name 名前Youcef Lemsafer
date 日付December 1, 2013 14:09:58 UTC 2013 年 12 月 1 日 (日) 23 時 9 分 58 秒 (日本時間)
composite number 合成数
292438477384675513663412983438107939563625910414370816328318936790210071271901534256984775349764023407913785221616270744618424940218079993<138>
prime factors 素因数
31154060880295010326525915046378405163979<41>
9386849390463998353709406138259548987924165849516805950312719296985314506515030586606522682014667<97>
factorization results 素因数分解の結果
<Polynomial selection using msieve 1.52 GPU>

<Sieving>
<rational q from 6500000 to 12740000>
<    2x Intel Xeon E5-2620, 24 threads>
<    2013-11-30 09:44:56 ... 2013-11-30 19:46:32>
<    11258537 relations>

Sat Nov 30 19:58:25 2013 -> factmsieve.py (v0.76)
Sat Nov 30 19:58:25 2013 -> This is client 1 of 1
Sat Nov 30 19:58:25 2013 -> Running on 12 Cores with 2 hyper-threads per Core
Sat Nov 30 19:58:25 2013 -> Working with NAME = 30007_224
Sat Nov 30 19:58:25 2013 -> Selected lattice siever: gnfs-lasieve4I13e
Sat Nov 30 19:58:25 2013 -> Creating param file to detect parameter changes...
Sat Nov 30 19:58:25 2013 -> Running setup ...
Sat Nov 30 19:58:25 2013 -> Estimated minimum relations needed: 2.156e+07
Sat Nov 30 19:58:25 2013 -> cleaning up before a restart
Sat Nov 30 19:58:25 2013 -> Running lattice siever ...
Sat Nov 30 19:58:25 2013 -> entering sieving loop
Sat Nov 30 19:58:25 2013 -> Lattice sieving algebraic q from 12740000 to 12840000.
Sat Nov 30 20:18:37 2013 Found 11456102 relations, 53.1% of the estimated minimum (21560000).
<...snipped...>
Sun Dec 01 09:47:07 2013 Found 22762106 relations, 105.6% of the estimated minimum (21560000).
<...snipped...>
Sun Dec 01 09:47:07 2013  Msieve v. 1.51 (SVN 845)
Sun Dec 01 09:47:07 2013  random seeds: 82820030 3719b7d3
Sun Dec 01 09:47:07 2013  factoring 292438477384675513663412983438107939563625910414370816328318936790210071271901534256984775349764023407913785221616270744618424940218079993 (138 digits)
Sun Dec 01 09:47:08 2013  searching for 15-digit factors
Sun Dec 01 09:47:09 2013  commencing number field sieve (138-digit input)
Sun Dec 01 09:47:09 2013  R0: -560126387431945814288193454
Sun Dec 01 09:47:09 2013  R1: 650428336200139
Sun Dec 01 09:47:09 2013  A0: -608047181736220191220038600335025
Sun Dec 01 09:47:09 2013  A1: 8072653824533331037146687800
Sun Dec 01 09:47:09 2013  A2: -14851880192522794110633
Sun Dec 01 09:47:09 2013  A3: -57282615990551988
Sun Dec 01 09:47:09 2013  A4: 8785114214
Sun Dec 01 09:47:09 2013  A5: 5304
Sun Dec 01 09:47:09 2013  skew 957386.01, size 2.682e-013, alpha -6.143, combined = 2.898e-011 rroots = 5
Sun Dec 01 09:47:09 2013  
Sun Dec 01 09:47:09 2013  commencing relation filtering
Sun Dec 01 09:47:09 2013  estimated available RAM is 4096.0 MB
Sun Dec 01 09:47:09 2013  commencing duplicate removal, pass 1
Sun Dec 01 09:49:31 2013  found 3269068 hash collisions in 22762105 relations
Sun Dec 01 09:50:20 2013  added 31 free relations
Sun Dec 01 09:50:20 2013  commencing duplicate removal, pass 2
Sun Dec 01 09:50:37 2013  found 2855756 duplicates and 19906380 unique relations
Sun Dec 01 09:50:37 2013  memory use: 98.6 MB
Sun Dec 01 09:50:37 2013  reading ideals above 18546688
Sun Dec 01 09:50:43 2013  commencing singleton removal, initial pass
Sun Dec 01 09:53:11 2013  memory use: 376.5 MB
Sun Dec 01 09:53:11 2013  reading all ideals from disk
Sun Dec 01 09:53:11 2013  memory use: 330.7 MB
Sun Dec 01 09:53:12 2013  commencing in-memory singleton removal
Sun Dec 01 09:53:12 2013  begin with 19906380 relations and 19348473 unique ideals
Sun Dec 01 09:53:19 2013  reduce to 8318672 relations and 5910204 ideals in 18 passes
Sun Dec 01 09:53:19 2013  max relations containing the same ideal: 29
Sun Dec 01 09:53:20 2013  reading ideals above 100000
Sun Dec 01 09:53:20 2013  commencing singleton removal, initial pass
Sun Dec 01 09:54:44 2013  memory use: 188.3 MB
Sun Dec 01 09:54:44 2013  reading all ideals from disk
Sun Dec 01 09:54:44 2013  memory use: 322.7 MB
Sun Dec 01 09:54:45 2013  keeping 8225760 ideals with weight <= 200, target excess is 43737
Sun Dec 01 09:54:46 2013  commencing in-memory singleton removal
Sun Dec 01 09:54:46 2013  begin with 8318705 relations and 8225760 unique ideals
Sun Dec 01 09:54:55 2013  reduce to 8223393 relations and 8130160 ideals in 13 passes
Sun Dec 01 09:54:55 2013  max relations containing the same ideal: 200
Sun Dec 01 09:54:58 2013  removing 338988 relations and 317739 ideals in 21249 cliques
Sun Dec 01 09:54:58 2013  commencing in-memory singleton removal
Sun Dec 01 09:54:59 2013  begin with 7884405 relations and 8130160 unique ideals
Sun Dec 01 09:55:05 2013  reduce to 7872507 relations and 7800474 ideals in 10 passes
Sun Dec 01 09:55:05 2013  max relations containing the same ideal: 197
Sun Dec 01 09:55:08 2013  removing 244443 relations and 223194 ideals in 21249 cliques
Sun Dec 01 09:55:09 2013  commencing in-memory singleton removal
Sun Dec 01 09:55:09 2013  begin with 7628064 relations and 7800474 unique ideals
Sun Dec 01 09:55:14 2013  reduce to 7621329 relations and 7570525 ideals in 8 passes
Sun Dec 01 09:55:14 2013  max relations containing the same ideal: 194
Sun Dec 01 09:55:16 2013  relations with 0 large ideals: 142
Sun Dec 01 09:55:16 2013  relations with 1 large ideals: 109
Sun Dec 01 09:55:16 2013  relations with 2 large ideals: 1267
Sun Dec 01 09:55:16 2013  relations with 3 large ideals: 17219
Sun Dec 01 09:55:16 2013  relations with 4 large ideals: 124935
Sun Dec 01 09:55:16 2013  relations with 5 large ideals: 535621
Sun Dec 01 09:55:16 2013  relations with 6 large ideals: 1398296
Sun Dec 01 09:55:16 2013  relations with 7+ large ideals: 5543740
Sun Dec 01 09:55:16 2013  commencing 2-way merge
Sun Dec 01 09:55:22 2013  reduce to 4407524 relation sets and 4356719 unique ideals
Sun Dec 01 09:55:22 2013  commencing full merge
Sun Dec 01 09:56:50 2013  memory use: 457.0 MB
Sun Dec 01 09:56:51 2013  found 2282543 cycles, need 2280919
Sun Dec 01 09:56:51 2013  weight of 2280919 cycles is about 159752779 (70.04/cycle)
Sun Dec 01 09:56:51 2013  distribution of cycle lengths:
Sun Dec 01 09:56:51 2013  1 relations: 357193
Sun Dec 01 09:56:51 2013  2 relations: 307304
Sun Dec 01 09:56:51 2013  3 relations: 281509
Sun Dec 01 09:56:51 2013  4 relations: 237713
Sun Dec 01 09:56:51 2013  5 relations: 199798
Sun Dec 01 09:56:51 2013  6 relations: 165085
Sun Dec 01 09:56:51 2013  7 relations: 136478
Sun Dec 01 09:56:51 2013  8 relations: 110987
Sun Dec 01 09:56:51 2013  9 relations: 89506
Sun Dec 01 09:56:51 2013  10+ relations: 395346
Sun Dec 01 09:56:51 2013  heaviest cycle: 28 relations
Sun Dec 01 09:56:51 2013  commencing cycle optimization
Sun Dec 01 09:56:55 2013  start with 12970468 relations
Sun Dec 01 09:57:20 2013  pruned 265669 relations
Sun Dec 01 09:57:20 2013  memory use: 350.5 MB
Sun Dec 01 09:57:20 2013  distribution of cycle lengths:
Sun Dec 01 09:57:20 2013  1 relations: 357193
Sun Dec 01 09:57:20 2013  2 relations: 313874
Sun Dec 01 09:57:20 2013  3 relations: 290421
Sun Dec 01 09:57:20 2013  4 relations: 241839
Sun Dec 01 09:57:20 2013  5 relations: 202335
Sun Dec 01 09:57:20 2013  6 relations: 165402
Sun Dec 01 09:57:20 2013  7 relations: 135738
Sun Dec 01 09:57:20 2013  8 relations: 109436
Sun Dec 01 09:57:20 2013  9 relations: 87686
Sun Dec 01 09:57:20 2013  10+ relations: 376995
Sun Dec 01 09:57:20 2013  heaviest cycle: 28 relations
Sun Dec 01 09:57:23 2013  RelProcTime: 614
Sun Dec 01 09:57:23 2013  elapsed time 00:10:16
Sun Dec 01 09:57:23 2013 LatSieveTime: 1421.9
Sun Dec 01 09:57:23 2013 -> Running matrix solving step ...
Sun Dec 01 09:57:23 2013  
<...snipped...>
Sun Dec 01 09:57:25 2013  
Sun Dec 01 09:57:25 2013  commencing linear algebra
Sun Dec 01 09:57:25 2013  read 2280919 cycles
Sun Dec 01 09:57:31 2013  cycles contain 7548239 unique relations
Sun Dec 01 09:58:19 2013  read 7548239 relations
Sun Dec 01 09:58:32 2013  using 20 quadratic characters above 268435158
Sun Dec 01 09:59:13 2013  building initial matrix
Sun Dec 01 10:01:01 2013  memory use: 861.0 MB
Sun Dec 01 10:01:04 2013  read 2280919 cycles
Sun Dec 01 10:01:05 2013  matrix is 2280742 x 2280919 (648.8 MB) with weight 212470664 (93.15/col)
Sun Dec 01 10:01:05 2013  sparse part has weight 154104741 (67.56/col)
Sun Dec 01 10:01:31 2013  filtering completed in 2 passes
Sun Dec 01 10:01:32 2013  matrix is 2280193 x 2280370 (648.7 MB) with weight 212449026 (93.16/col)
Sun Dec 01 10:01:32 2013  sparse part has weight 154099267 (67.58/col)
Sun Dec 01 10:01:42 2013  matrix starts at (0, 0)
Sun Dec 01 10:01:43 2013  matrix is 2280193 x 2280370 (648.7 MB) with weight 212449026 (93.16/col)
Sun Dec 01 10:01:43 2013  sparse part has weight 154099267 (67.58/col)
Sun Dec 01 10:01:43 2013  saving the first 48 matrix rows for later
Sun Dec 01 10:01:44 2013  matrix includes 64 packed rows
Sun Dec 01 10:01:45 2013  matrix is 2280145 x 2280370 (626.9 MB) with weight 169632294 (74.39/col)
Sun Dec 01 10:01:45 2013  sparse part has weight 150666606 (66.07/col)
Sun Dec 01 10:01:45 2013  using block size 65536 for processor cache size 15360 kB
Sun Dec 01 10:02:01 2013  commencing Lanczos iteration (24 threads)
Sun Dec 01 10:02:01 2013  memory use: 923.1 MB
Sun Dec 01 10:02:11 2013  linear algebra at 0.1%, ETA 4h10m
Sun Dec 01 10:02:14 2013  checkpointing every 570000 dimensions
Sun Dec 01 14:00:03 2013  lanczos halted after 36056 iterations (dim = 2280143)
Sun Dec 01 14:00:08 2013  recovered 27 nontrivial dependencies
Sun Dec 01 14:00:08 2013  BLanczosTime: 14563
Sun Dec 01 14:00:08 2013  elapsed time 04:02:45
Sun Dec 01 14:00:08 2013 -> Running square root step ...
Sun Dec 01 14:00:08 2013  
<...snipped...>
Sun Dec 01 14:00:10 2013  
Sun Dec 01 14:00:10 2013  commencing square root phase
Sun Dec 01 14:00:10 2013  reading relations for dependency 1
Sun Dec 01 14:00:11 2013  read 1139469 cycles
Sun Dec 01 14:00:13 2013  cycles contain 3770062 unique relations
Sun Dec 01 14:00:56 2013  read 3770062 relations
Sun Dec 01 14:01:19 2013  multiplying 3770062 relations
Sun Dec 01 14:11:28 2013  multiply complete, coefficients have about 173.25 million bits
Sun Dec 01 14:11:31 2013  initial square root is modulo 1649743
Sun Dec 01 14:23:43 2013  sqrtTime: 1413
Sun Dec 01 14:23:43 2013  prp41 factor: 31154060880295010326525915046378405163979
Sun Dec 01 14:23:43 2013  prp97 factor: 9386849390463998353709406138259548987924165849516805950312719296985314506515030586606522682014667
Sun Dec 01 14:23:43 2013  elapsed time 00:23:35
Sun Dec 01 14:23:43 2013 -> Computing 1.3859e+09 scale for this machine...
Sun Dec 01 14:23:43 2013 -> procrels -speedtest> PIPE
software ソフトウェア
msieve 1.52 (SVN 942) win64 CUDA, GGNFS (SVN 440)
execution environment 実行環境
Windows 7 Pro, 2x Intel Xeon E5-2620 @2.0GHz, 2x NVIDIA GeForce GTX 660, 32GB RAM

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61418118Makoto KamadaFebruary 16, 2013 02:00:00 UTC 2013 年 2 月 16 日 (土) 11 時 0 分 0 秒 (日本時間)
1300Warut RoonguthaiFebruary 19, 2013 15:15:40 UTC 2013 年 2 月 20 日 (水) 0 時 15 分 40 秒 (日本時間)
403e60--
4511e62700 / 44151000Dmitry DomanovMarch 29, 2013 14:53:26 UTC 2013 年 3 月 29 日 (金) 23 時 53 分 26 秒 (日本時間)
850Serge BatalovNovember 8, 2013 01:45:50 UTC 2013 年 11 月 8 日 (金) 10 時 45 分 50 秒 (日本時間)
850Serge BatalovNovember 8, 2013 17:08:57 UTC 2013 年 11 月 9 日 (土) 2 時 8 分 57 秒 (日本時間)

3×10225+7

c212

composite cofactor 合成数の残り
20654985550746513734316195728027386828787606321917787006896546542973550153350320121797639380461728997051292964561390868585556497380504293102288562914788312944727462394387145619809544320065266779454014473545917379<212>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61418118Makoto KamadaFebruary 16, 2013 02:00:00 UTC 2013 年 2 月 16 日 (土) 11 時 0 分 0 秒 (日本時間)
1300Warut RoonguthaiFebruary 19, 2013 15:15:46 UTC 2013 年 2 月 20 日 (水) 0 時 15 分 46 秒 (日本時間)
403e60--
4511e61000 / 4415Dmitry DomanovMarch 29, 2013 14:53:39 UTC 2013 年 3 月 29 日 (金) 23 時 53 分 39 秒 (日本時間)

3×10228+7

c185

composite cofactor 合成数の残り
10500875596903032763884309441558918803861922232986971594456955027000192790084387788630012678747486520874488888526565390910437999145099165518984335765125293067805513199192226682332790699<185>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61418118Makoto KamadaFebruary 16, 2013 02:00:00 UTC 2013 年 2 月 16 日 (土) 11 時 0 分 0 秒 (日本時間)
1300Warut RoonguthaiFebruary 19, 2013 15:15:52 UTC 2013 年 2 月 20 日 (水) 0 時 15 分 52 秒 (日本時間)
403e60--
4511e61000 / 4415Dmitry DomanovMarch 29, 2013 14:53:54 UTC 2013 年 3 月 29 日 (金) 23 時 53 分 54 秒 (日本時間)

3×10230+7

c171

name 名前Warut Roonguthai
date 日付February 16, 2013 17:03:37 UTC 2013 年 2 月 17 日 (日) 2 時 3 分 37 秒 (日本時間)
composite number 合成数
151451403522947626494970997151724835194968006469924128784074472492018651634717079085886747038089227294566772697876684016991621447126831938840599777071708646426835598717449<171>
prime factors 素因数
92601571170695111544465326458176329<35>
1635516564225167887613216362315714885798530094290990438103212631946304042995363657738055469047619485256352962875229196631682016831961281<136>
factorization results 素因数分解の結果
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3260755387
Step 1 took 7753ms
Step 2 took 5835ms
********** Factor found in step 2: 92601571170695111544465326458176329
Found probable prime factor of 35 digits: 92601571170695111544465326458176329
Probable prime cofactor 1635516564225167887613216362315714885798530094290990438103212631946304042995363657738055469047619485256352962875229196631682016831961281 has 136 digits
software ソフトウェア
GMP-ECM 6.3

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaFebruary 16, 2013 02:00:00 UTC 2013 年 2 月 16 日 (土) 11 時 0 分 0 秒 (日本時間)

3×10232+7

c213

name 名前Dmitry Domanov
date 日付April 2, 2013 09:54:37 UTC 2013 年 4 月 2 日 (火) 18 時 54 分 37 秒 (日本時間)
composite number 合成数
166436595921537191250408333693748699075669060679644744597842931871637403003277750244289976226981840719496368623261562036225444333960789546198108397844772236614212399006480482951762439977634858986910705344671313903<213>
prime factors 素因数
353888218208284019133101279391804886403<39>
composite cofactor 合成数の残り
470308383715615733943781897782939854837085069873393126899110055781329611624299030798331809282032109410933458739331865208113536333669579466213146065729149581139706787118142501<174>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=2091588175
Step 1 took 124263ms
Step 2 took 37513ms
********** Factor found in step 2: 353888218208284019133101279391804886403
Found probable prime factor of 39 digits: 353888218208284019133101279391804886403

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61418118Makoto KamadaFebruary 16, 2013 02:00:00 UTC 2013 年 2 月 16 日 (土) 11 時 0 分 0 秒 (日本時間)
1300Warut RoonguthaiFebruary 19, 2013 15:16:09 UTC 2013 年 2 月 20 日 (水) 0 時 16 分 9 秒 (日本時間)
403e60--
4511e61000 / 4415Dmitry DomanovMarch 29, 2013 14:54:10 UTC 2013 年 3 月 29 日 (金) 23 時 54 分 10 秒 (日本時間)

3×10234+7

c222

composite cofactor 合成数の残り
235116229497571765491837189764099880150451154319651287996106515301444788113703441822628944269215307480139661504806740339189429552617407273574123724292866428263559361437603507013122921773936065134872669967799761658051901659<222>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61418118Makoto KamadaFebruary 16, 2013 02:00:00 UTC 2013 年 2 月 16 日 (土) 11 時 0 分 0 秒 (日本時間)
1300Warut RoonguthaiFebruary 19, 2013 15:16:16 UTC 2013 年 2 月 20 日 (水) 0 時 16 分 16 秒 (日本時間)
403e60--
4511e61000 / 4415Dmitry DomanovMarch 29, 2013 14:54:23 UTC 2013 年 3 月 29 日 (金) 23 時 54 分 23 秒 (日本時間)

3×10236+7

c198

name 名前Warut Roonguthai
date 日付February 17, 2013 10:37:52 UTC 2013 年 2 月 17 日 (日) 19 時 37 分 52 秒 (日本時間)
composite number 合成数
160225109886451246651870003281715298433910158990961865378985657090593251601967787888076752905159081582569485581319287119047182098332144002839879128421795582143638380840014728647813432711089987379281<198>
prime factors 素因数
249729026332675607530766195161099<33>
composite cofactor 合成数の残り
641595861880340467557832794450234066553478993140900191782203091496087524716547162168227709617616084503209147064885363934543425447808732351348905841028018139062441619<165>
factorization results 素因数分解の結果
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=246550503
Step 1 took 12168ms
Step 2 took 7051ms
********** Factor found in step 2: 249729026332675607530766195161099
Found probable prime factor of 33 digits: 249729026332675607530766195161099
Composite cofactor 641595861880340467557832794450234066553478993140900191782203091496087524716547162168227709617616084503209147064885363934543425447808732351348905841028018139062441619 has 165 digits
software ソフトウェア
GMP-ECM 6.3

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61418118Makoto KamadaFebruary 16, 2013 02:00:00 UTC 2013 年 2 月 16 日 (土) 11 時 0 分 0 秒 (日本時間)
1300Warut RoonguthaiFebruary 19, 2013 15:16:29 UTC 2013 年 2 月 20 日 (水) 0 時 16 分 29 秒 (日本時間)
403e62000Dmitry DomanovMarch 3, 2013 23:06:00 UTC 2013 年 3 月 4 日 (月) 8 時 6 分 0 秒 (日本時間)

3×10237+7

c219

composite cofactor 合成数の残り
439204547145612724775767602345372509528084800543887024792429405359817538531480904703063835189737537116130038970692925243330701693708139282788719712088189908165391498299020354045893261565411074081151768133107457975895439<219>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61418118Makoto KamadaFebruary 16, 2013 02:00:00 UTC 2013 年 2 月 16 日 (土) 11 時 0 分 0 秒 (日本時間)
1300Warut RoonguthaiFebruary 19, 2013 15:16:38 UTC 2013 年 2 月 20 日 (水) 0 時 16 分 38 秒 (日本時間)
403e60--
4511e61000 / 4415Dmitry DomanovMarch 29, 2013 14:51:43 UTC 2013 年 3 月 29 日 (金) 23 時 51 分 43 秒 (日本時間)

3×10238+7

c199

composite cofactor 合成数の残り
3544260302883648546057867289912837191904022323016174724623091685649020528557556522763075295221426421013662644819611172164262559279096479853486764955259469200919259851913654232978022765854856341642721<199>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61418118Makoto KamadaFebruary 16, 2013 02:00:00 UTC 2013 年 2 月 16 日 (土) 11 時 0 分 0 秒 (日本時間)
1300Warut RoonguthaiFebruary 19, 2013 15:16:44 UTC 2013 年 2 月 20 日 (水) 0 時 16 分 44 秒 (日本時間)
403e60--
4511e61000 / 4415Dmitry DomanovMarch 29, 2013 14:51:58 UTC 2013 年 3 月 29 日 (金) 23 時 51 分 58 秒 (日本時間)

3×10240+7

c198

composite cofactor 合成数の残り
352138385196499252842075374294924596067115522718400742704461702917624909200282156397884898904717952463358856842023616015231460012236807196525809123904101562529614779407876023179291638065701335522083<198>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61418118Makoto KamadaFebruary 16, 2013 02:00:00 UTC 2013 年 2 月 16 日 (土) 11 時 0 分 0 秒 (日本時間)
1300Warut RoonguthaiFebruary 19, 2013 15:16:51 UTC 2013 年 2 月 20 日 (水) 0 時 16 分 51 秒 (日本時間)
403e60--
4511e61000 / 4415Dmitry DomanovMarch 29, 2013 14:52:10 UTC 2013 年 3 月 29 日 (金) 23 時 52 分 10 秒 (日本時間)

3×10241+7

c240

composite cofactor 合成数の残り
810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810811<240>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61418118Makoto KamadaFebruary 16, 2013 02:00:00 UTC 2013 年 2 月 16 日 (土) 11 時 0 分 0 秒 (日本時間)
1300Warut RoonguthaiFebruary 19, 2013 15:17:05 UTC 2013 年 2 月 20 日 (水) 0 時 17 分 5 秒 (日本時間)
403e60--
4511e61200Dmitry DomanovMarch 7, 2013 08:22:56 UTC 2013 年 3 月 7 日 (木) 17 時 22 分 56 秒 (日本時間)
5043e61000 / 7276500Dmitry DomanovMarch 7, 2013 16:01:09 UTC 2013 年 3 月 8 日 (金) 1 時 1 分 9 秒 (日本時間)
500Dmitry DomanovMarch 15, 2013 10:58:30 UTC 2013 年 3 月 15 日 (金) 19 時 58 分 30 秒 (日本時間)

3×10242+7

c237

composite cofactor 合成数の残り
640247220793522405451491669316578774950967733674229409115839929658172008818338387729448597751878592053678326991328918473053061555501964491889134791247393660272019702541141219329490427236970435517501157780390934953016524780768680813284703<237>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61418118Makoto KamadaFebruary 16, 2013 02:00:00 UTC 2013 年 2 月 16 日 (土) 11 時 0 分 0 秒 (日本時間)
1300Warut RoonguthaiFebruary 19, 2013 15:17:12 UTC 2013 年 2 月 20 日 (水) 0 時 17 分 12 秒 (日本時間)
403e60--
4511e61200Dmitry DomanovMarch 6, 2013 16:01:37 UTC 2013 年 3 月 7 日 (木) 1 時 1 分 37 秒 (日本時間)
5043e6920 / 7276500Dmitry DomanovMarch 7, 2013 16:00:05 UTC 2013 年 3 月 8 日 (金) 1 時 0 分 5 秒 (日本時間)
420Dmitry DomanovMarch 15, 2013 20:43:55 UTC 2013 年 3 月 16 日 (土) 5 時 43 分 55 秒 (日本時間)

3×10243+7

c213

composite cofactor 合成数の残り
195102480167271339396771789451034079470802404204563286852445183572712028526388109546180435103572178730015789391170008943408096471545442545383606054189027579470376051771099023667074096783449173813798172094794013343<213>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61418118Makoto KamadaFebruary 16, 2013 02:00:00 UTC 2013 年 2 月 16 日 (土) 11 時 0 分 0 秒 (日本時間)
1300Warut RoonguthaiFebruary 19, 2013 15:17:18 UTC 2013 年 2 月 20 日 (水) 0 時 17 分 18 秒 (日本時間)
403e60--
4511e6960 / 4415Dmitry DomanovMarch 28, 2013 11:02:41 UTC 2013 年 3 月 28 日 (木) 20 時 2 分 41 秒 (日本時間)

3×10244+7

c243

name 名前Dmitry Domanov
date 日付March 7, 2013 08:23:59 UTC 2013 年 3 月 7 日 (木) 17 時 23 分 59 秒 (日本時間)
composite number 合成数
810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810811<243>
prime factors 素因数
749249352958559349051537209085323256352699<42>
composite cofactor 合成数の残り
1082164178866706874308313035483424502524613749412168821147200771417651397116615857833095536061322955028770737458749922755480420258184823128017313369761534007405665329112903500002276317257541080584959489<202>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=4055770585
Step 1 took 139398ms
Step 2 took 46140ms
********** Factor found in step 2: 749249352958559349051537209085323256352699
Found probable prime factor of 42 digits: 749249352958559349051537209085323256352699

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61418118Makoto KamadaFebruary 16, 2013 02:00:00 UTC 2013 年 2 月 16 日 (土) 11 時 0 分 0 秒 (日本時間)
1300Warut RoonguthaiFebruary 19, 2013 15:17:27 UTC 2013 年 2 月 20 日 (水) 0 時 17 分 27 秒 (日本時間)
403e60--
4511e61200 / 4415Dmitry DomanovMarch 6, 2013 15:59:01 UTC 2013 年 3 月 7 日 (木) 0 時 59 分 1 秒 (日本時間)

3×10245+7

c205

composite cofactor 合成数の残り
3279286655557191176518750077414630949464635348358714556483172448130202169366760858443908205213601085738984766391137067365196159761705682378702596557195509867997153459098634964706228747475768171513571400981<205>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61418118Makoto KamadaFebruary 16, 2013 02:00:00 UTC 2013 年 2 月 16 日 (土) 11 時 0 分 0 秒 (日本時間)
1300Warut RoonguthaiFebruary 19, 2013 15:17:34 UTC 2013 年 2 月 20 日 (水) 0 時 17 分 34 秒 (日本時間)
403e60--
4511e61000 / 4415Dmitry DomanovMarch 28, 2013 11:01:40 UTC 2013 年 3 月 28 日 (木) 20 時 1 分 40 秒 (日本時間)

3×10246+7

c244

composite cofactor 合成数の残り
1982815598149372108393919365499008592200925313945803040317250495703899537343027098479841374752148050231328486450760079312623925974884335756774619960343688037012557832121612690019828155981493721083939193654990085922009253139458030403172504957039<244>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaFebruary 16, 2013 02:00:00 UTC 2013 年 2 月 16 日 (土) 11 時 0 分 0 秒 (日本時間)
403e62400Dmitry DomanovFebruary 17, 2013 21:49:35 UTC 2013 年 2 月 18 日 (月) 6 時 49 分 35 秒 (日本時間)
4511e60--
5043e61000 / 7308500Dmitry DomanovMarch 7, 2013 14:38:05 UTC 2013 年 3 月 7 日 (木) 23 時 38 分 5 秒 (日本時間)
500Dmitry DomanovMarch 15, 2013 10:56:31 UTC 2013 年 3 月 15 日 (金) 19 時 56 分 31 秒 (日本時間)
5511e764 / 17394Dmitry DomanovMarch 19, 2013 05:45:06 UTC 2013 年 3 月 19 日 (火) 14 時 45 分 6 秒 (日本時間)

3×10247+7

c229

composite cofactor 合成数の残り
3364180097206497791529406241910466126987742494793752636667413381438428315870225679099764080308465206325354032701903526666795836832930423204778704365020025273156797760832089138089438657865178020633066839508668533091351588156141897<229>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61418118Makoto KamadaFebruary 16, 2013 02:00:00 UTC 2013 年 2 月 16 日 (土) 11 時 0 分 0 秒 (日本時間)
1300Warut RoonguthaiFebruary 19, 2013 15:17:58 UTC 2013 年 2 月 20 日 (水) 0 時 17 分 58 秒 (日本時間)
403e62400Dmitry DomanovFebruary 24, 2013 23:54:07 UTC 2013 年 2 月 25 日 (月) 8 時 54 分 7 秒 (日本時間)

3×10248+7

c237

name 名前Seth Troisi
date 日付November 15, 2023 17:17:22 UTC 2023 年 11 月 16 日 (木) 2 時 17 分 22 秒 (日本時間)
composite number 合成数
450587880554388101427753969448719315634263871494821175681365775767398414974273346936229017456268497703760056402109770692817854084540111133311503057542923139715688471595938055247983847323230719578753713969345700927876041528518085596042071<237>
prime factors 素因数
11993271422864609744246017402556166679877<41>
composite cofactor 合成数の残り
37570056131254015473810888385615588001199942971836739219168001628287912224313900119414207560912536255034332784614416687276365438702623251403496012548991074833244529912545359538287164535125897183723<197>
factorization results 素因数分解の結果
11993271422864609744246017402556166679877

P-1 B1=1e9, B2=1e12, GMP-ECM 7.0.6 dev, 1080 ti for Stage 1
software ソフトウェア
GMP-ECM 7.0.6 dev
execution environment 実行環境
1080 ti for Stage 1

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaFebruary 16, 2013 02:00:00 UTC 2013 年 2 月 16 日 (土) 11 時 0 分 0 秒 (日本時間)
403e62400Dmitry DomanovFebruary 18, 2013 23:00:49 UTC 2013 年 2 月 19 日 (火) 8 時 0 分 49 秒 (日本時間)

3×10249+7

c233

composite cofactor 合成数の残り
43458109637678067108006543122258383638000416730645592232829359630649843948462669037381003301983672335902564281623142717357097280615906581045498742652651559132009939610549401190875297652331982685058476767159718036521226342632647393823<233>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61418118Makoto KamadaFebruary 16, 2013 02:00:00 UTC 2013 年 2 月 16 日 (土) 11 時 0 分 0 秒 (日本時間)
1300Warut RoonguthaiFebruary 19, 2013 15:18:10 UTC 2013 年 2 月 20 日 (水) 0 時 18 分 10 秒 (日本時間)
403e62000Dmitry DomanovFebruary 20, 2013 21:58:37 UTC 2013 年 2 月 21 日 (木) 6 時 58 分 37 秒 (日本時間)

3×10251+7

c221

name 名前Dmitry Domanov
date 日付August 19, 2016 12:59:30 UTC 2016 年 8 月 19 日 (金) 21 時 59 分 30 秒 (日本時間)
composite number 合成数
52002714928756325317316332044292615295723302502591249072640536069696532474752815146576705666331023441716558827491400902650510051501743728019630569145622653159815068434133299038891136645090336527297098172519933796522139183<221>
prime factors 素因数
2697260391814113539312508557649147883769<40>
composite cofactor 合成数の残り
19279827445128695681286994521451236318215416880570383267836739361265782578450039505541555028812458950028197210747050397138014195768607928154496199928148470016095298203561016495471207<182>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=599025282
Step 1 took 22279ms
Step 2 took 7991ms
********** Factor found in step 2: 2697260391814113539312508557649147883769
Found probable prime factor of 40 digits: 2697260391814113539312508557649147883769

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaJune 21, 2016 00:00:00 UTC 2016 年 6 月 21 日 (火) 9 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovAugust 19, 2016 08:39:03 UTC 2016 年 8 月 19 日 (金) 17 時 39 分 3 秒 (日本時間)
4511e6320 / 4218Dmitry DomanovSeptember 22, 2016 00:32:52 UTC 2016 年 9 月 22 日 (木) 9 時 32 分 52 秒 (日本時間)

3×10252+7

c185

composite cofactor 合成数の残り
20204049947148368536599946042875025309903113153658015631269215564806420086114764670902028595324160215115074938857940320763235003141576630895008185178353341414410848001233374114542632531<185>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaJune 21, 2016 00:00:00 UTC 2016 年 6 月 21 日 (火) 9 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovAugust 19, 2016 08:38:43 UTC 2016 年 8 月 19 日 (金) 17 時 38 分 43 秒 (日本時間)
4511e6320 / 4218Dmitry DomanovSeptember 22, 2016 00:32:37 UTC 2016 年 9 月 22 日 (木) 9 時 32 分 37 秒 (日本時間)

3×10253+7

c250

name 名前Serge Batalov
date 日付June 23, 2016 17:53:58 UTC 2016 年 6 月 24 日 (金) 2 時 53 分 58 秒 (日本時間)
composite number 合成数
3479874724509917642964853265282449831806054982020647256698758844681591462707342535668715926226655840389745969145110776012063565711634381162278157986312492750260990604338243823222363994896183737385454123651548544252406913351119359703050690175153694467<250>
prime factors 素因数
141631309721485840264479021442263641<36>
composite cofactor 合成数の残り
24569953715410791983447245767573831839016426209700744800742215982674684866498337635017193699322282945005788212942216911168204570590230200386185381968502569302287544702594927061739974196647613943634000240609821849787<215>
factorization results 素因数分解の結果
Using B1=6000000, B2=6000000-35128842850, polynomial Dickson(12), sigma=3835349630
Step 1 took 28046ms
Step 2 took 3934ms
********** Factor found in step 2: 141631309721485840264479021442263641
Found probable prime factor of 36 digits: 141631309721485840264479021442263641
Composite cofactor  has 215 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaJune 21, 2016 00:00:00 UTC 2016 年 6 月 21 日 (火) 9 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovAugust 19, 2016 08:38:20 UTC 2016 年 8 月 19 日 (金) 17 時 38 分 20 秒 (日本時間)
4511e6320 / 4218Dmitry DomanovSeptember 22, 2016 00:32:19 UTC 2016 年 9 月 22 日 (木) 9 時 32 分 19 秒 (日本時間)

3×10256+7

c234

composite cofactor 合成数の残り
126052149829630259629864946918532697966993726830345426335058529514556952405250326551368722038097475124148104587915716501452166925374041308838731507307293953065443274607459418392803192055363404554449579931647204610487652068599607745921<234>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaJune 21, 2016 00:00:00 UTC 2016 年 6 月 21 日 (火) 9 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovAugust 19, 2016 08:37:59 UTC 2016 年 8 月 19 日 (金) 17 時 37 分 59 秒 (日本時間)
4511e6320 / 4218Dmitry DomanovSeptember 22, 2016 00:32:07 UTC 2016 年 9 月 22 日 (木) 9 時 32 分 7 秒 (日本時間)

3×10257+7

c205

name 名前Serge Batalov
date 日付June 23, 2016 17:53:22 UTC 2016 年 6 月 24 日 (金) 2 時 53 分 22 秒 (日本時間)
composite number 合成数
3502967942240654913383652917783530974757345302617094142887269751815866313089084877927131025016083035137577678946421731316315077303476211890436105809417408636092205696483013788980565583032394677700850573479<205>
prime factors 素因数
3705056361251938702181041943546677<34>
composite cofactor 合成数の残り
945456047275081639132979173684342256988899923093211164579300542107619127751519303548917351733143480301926761682802247286468152444839831295933982702716103054871628209691627<171>
factorization results 素因数分解の結果
Using B1=6000000, B2=6000000-35128842850, polynomial Dickson(12), sigma=2305041146
Step 1 took 21524ms
Step 2 took 11769ms
********** Factor found in step 2: 3705056361251938702181041943546677
Found probable prime factor of 34 digits: 3705056361251938702181041943546677
Composite cofactor 945456047275081639132979173684342256988899923093211164579300542107619127751519303548917351733143480301926761682802247286468152444839831295933982702716103054871628209691627 has 171 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaJune 21, 2016 00:00:00 UTC 2016 年 6 月 21 日 (火) 9 時 0 分 0 秒 (日本時間)
403e61200Dmitry DomanovJune 26, 2016 00:55:27 UTC 2016 年 6 月 26 日 (日) 9 時 55 分 27 秒 (日本時間)
4511e61200Dmitry DomanovJune 26, 2016 11:05:11 UTC 2016 年 6 月 26 日 (日) 20 時 5 分 11 秒 (日本時間)
5043e62652 / 7233860Dmitry DomanovJune 28, 2016 10:43:10 UTC 2016 年 6 月 28 日 (火) 19 時 43 分 10 秒 (日本時間)
1792Dmitry DomanovJune 1, 2024 09:49:19 UTC 2024 年 6 月 1 日 (土) 18 時 49 分 19 秒 (日本時間)

3×10258+7

c225

composite cofactor 合成数の残り
161018081262837378916147323384926829237264948657931173003207125486558229677123713572399202506330878222472576251206905038592116258491476065270548287158228428590985371011842878365921488856853500794095690997034188597614626310413<225>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaJune 21, 2016 00:00:00 UTC 2016 年 6 月 21 日 (火) 9 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovAugust 19, 2016 08:37:35 UTC 2016 年 8 月 19 日 (金) 17 時 37 分 35 秒 (日本時間)
4511e6320 / 4218Dmitry DomanovSeptember 21, 2016 23:23:35 UTC 2016 年 9 月 22 日 (木) 8 時 23 分 35 秒 (日本時間)

3×10260+7

c254

composite cofactor 合成数の残り
18190813263358529833024705974305718809682921391250376474039496257573669307144059902105532062793959752583110642407964035064369102273057325740649573325379501294003501489009019672212459482237307526794613166595530480799566282502966163692701136277023286848327<254>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaJune 21, 2016 00:00:00 UTC 2016 年 6 月 21 日 (火) 9 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovAugust 19, 2016 08:37:11 UTC 2016 年 8 月 19 日 (金) 17 時 37 分 11 秒 (日本時間)
4511e6360 / 4218Dmitry DomanovSeptember 21, 2016 11:10:09 UTC 2016 年 9 月 21 日 (水) 20 時 10 分 9 秒 (日本時間)

3×10261+7

c213

composite cofactor 合成数の残り
142710092693937874724248609065069421658618783172567577301943774000488282082277733404542484436605927733198750591768039737121492736373851913549795304985539248631199920291974530590063302198706299311729261834323524757<213>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaJune 21, 2016 00:00:00 UTC 2016 年 6 月 21 日 (火) 9 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovAugust 19, 2016 08:36:52 UTC 2016 年 8 月 19 日 (金) 17 時 36 分 52 秒 (日本時間)
4511e6320 / 4218Dmitry DomanovSeptember 21, 2016 23:22:56 UTC 2016 年 9 月 22 日 (木) 8 時 22 分 56 秒 (日本時間)

3×10264+7

c252

composite cofactor 合成数の残り
687257013042256517193953596335710699521629797993668160455956606931098522880270020212655611194421426337859490125114437298974241666747126283036872678694486304963973097989006336899041059084136901797276623553631317113006180072573958815154970082749618761081<252>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaJune 21, 2016 00:00:00 UTC 2016 年 6 月 21 日 (火) 9 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovAugust 19, 2016 08:36:37 UTC 2016 年 8 月 19 日 (金) 17 時 36 分 37 秒 (日本時間)
4511e6320 / 4218Dmitry DomanovSeptember 21, 2016 14:58:00 UTC 2016 年 9 月 21 日 (水) 23 時 58 分 0 秒 (日本時間)

3×10265+7

c252

composite cofactor 合成数の残り
278909854388298892825907541136820381044216272696253722269263026998561743476155492824024593735543257811734982716434386064478404218619547900097371727432418951100981355761763363293858054151107518038270911018487104631118386468881421146056103874297171538783<252>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaJune 21, 2016 00:00:00 UTC 2016 年 6 月 21 日 (火) 9 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovAugust 19, 2016 08:36:20 UTC 2016 年 8 月 19 日 (金) 17 時 36 分 20 秒 (日本時間)
4511e6320 / 4218Dmitry DomanovSeptember 21, 2016 14:58:37 UTC 2016 年 9 月 21 日 (水) 23 時 58 分 37 秒 (日本時間)

3×10267+7

c268

composite cofactor 合成数の残り
3000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000007<268>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaJune 21, 2016 00:00:00 UTC 2016 年 6 月 21 日 (火) 9 時 0 分 0 秒 (日本時間)
403e61200Dmitry DomanovJune 21, 2016 14:09:05 UTC 2016 年 6 月 21 日 (火) 23 時 9 分 5 秒 (日本時間)
4511e61200Dmitry DomanovJune 22, 2016 12:07:48 UTC 2016 年 6 月 22 日 (水) 21 時 7 分 48 秒 (日本時間)
5043e65480880Dmitry DomanovJune 24, 2016 15:42:20 UTC 2016 年 6 月 25 日 (土) 0 時 42 分 20 秒 (日本時間)
3200Dmitry DomanovOctober 18, 2016 13:48:31 UTC 2016 年 10 月 18 日 (火) 22 時 48 分 31 秒 (日本時間)
1400Dmitry DomanovOctober 31, 2016 14:29:44 UTC 2016 年 10 月 31 日 (月) 23 時 29 分 44 秒 (日本時間)
5511e7728 / 15729Dmitry DomanovNovember 2, 2016 13:24:07 UTC 2016 年 11 月 2 日 (水) 22 時 24 分 7 秒 (日本時間)

3×10268+7

c238

composite cofactor 合成数の残り
3116006456554113343538745764579030928085617578869576076562507969382286821143080546621842768294371280545910713303713095881618979511549819806083758880128498839342089484420432663770910643867243544533412742990785722126650344503794826627476961<238>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaJune 21, 2016 00:00:00 UTC 2016 年 6 月 21 日 (火) 9 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovAugust 19, 2016 08:35:53 UTC 2016 年 8 月 19 日 (金) 17 時 35 分 53 秒 (日本時間)
4511e6320 / 4218Dmitry DomanovSeptember 21, 2016 23:22:02 UTC 2016 年 9 月 22 日 (木) 8 時 22 分 2 秒 (日本時間)

3×10269+7

c257

name 名前Dmitry Domanov
date 日付September 26, 2016 14:23:57 UTC 2016 年 9 月 26 日 (月) 23 時 23 分 57 秒 (日本時間)
composite number 合成数
61078707772136899242990542149436192804765880372388594933887093742231116535828788400575567018713958542878433872813808998507279901239048907763390773058966342633257207436246870413575772833033788957187354859956436159887357094652462461349226643531605635720076529<257>
prime factors 素因数
190825846726078087743388244738449851329<39>
320075654425433440208923621435842794289157885636758660222053416446596880545898542741307124099104882258955435487033289449721857725724779128579527169066547655746562690589942838803895900495764410290394466732423305849578801<219>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=2841532960
Step 1 took 108035ms
Step 2 took 32524ms
********** Factor found in step 2: 190825846726078087743388244738449851329
Found probable prime factor of 39 digits: 190825846726078087743388244738449851329

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaJune 21, 2016 00:00:00 UTC 2016 年 6 月 21 日 (火) 9 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovAugust 19, 2016 08:35:34 UTC 2016 年 8 月 19 日 (金) 17 時 35 分 34 秒 (日本時間)
4511e6320 / 4218Dmitry DomanovSeptember 22, 2016 17:23:14 UTC 2016 年 9 月 23 日 (金) 2 時 23 分 14 秒 (日本時間)

3×10270+7

c205

composite cofactor 合成数の残り
9227422944002407612207340006688567333501321670635545219077585732393095367232330014972444411385236467800264647573530019718567955239973374831681064979145442815409333741401898828462934680492918762023989382317<205>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaJune 21, 2016 00:00:00 UTC 2016 年 6 月 21 日 (火) 9 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovAugust 19, 2016 08:35:15 UTC 2016 年 8 月 19 日 (金) 17 時 35 分 15 秒 (日本時間)
4511e6320 / 4218Dmitry DomanovSeptember 21, 2016 23:21:32 UTC 2016 年 9 月 22 日 (木) 8 時 21 分 32 秒 (日本時間)

3×10271+7

c252

composite cofactor 合成数の残り
118445295604753296681667418798448369372924815553661925645014192009781705532748991818399151614734367469789991384602324525444039678251610851383433295895923360165579655124889930060218020265755689907725546444685047116912559822078746458949817438285115455993<252>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaJune 21, 2016 00:00:00 UTC 2016 年 6 月 21 日 (火) 9 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovAugust 19, 2016 08:34:03 UTC 2016 年 8 月 19 日 (金) 17 時 34 分 3 秒 (日本時間)
4511e6320 / 4218Dmitry DomanovSeptember 21, 2016 15:02:51 UTC 2016 年 9 月 22 日 (木) 0 時 2 分 51 秒 (日本時間)

3×10272+7

c221

composite cofactor 合成数の残り
57324628639882258030076295068523555632538186040130493015081667158751301350699039293943313274050352321415913123086656741965659393591901155114865847875697458799758326799960464207586698044123468997595072017893671981380984943<221>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaJune 21, 2016 00:00:00 UTC 2016 年 6 月 21 日 (火) 9 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovAugust 18, 2016 16:39:17 UTC 2016 年 8 月 19 日 (金) 1 時 39 分 17 秒 (日本時間)
4511e6320 / 4218Dmitry DomanovSeptember 21, 2016 22:54:22 UTC 2016 年 9 月 22 日 (木) 7 時 54 分 22 秒 (日本時間)

3×10273+7

c218

composite cofactor 合成数の残り
63184436589732388746797983640510821526828326643937870782408073771720067619996644224829914071552550793437976319559115791898786067731980004206820971203097932012361453842325742089301019774620890785072341983492594592268747<218>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaJune 21, 2016 00:00:00 UTC 2016 年 6 月 21 日 (火) 9 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovAugust 18, 2016 16:39:02 UTC 2016 年 8 月 19 日 (金) 1 時 39 分 2 秒 (日本時間)
4511e6320 / 4218Dmitry DomanovSeptember 21, 2016 21:39:57 UTC 2016 年 9 月 22 日 (木) 6 時 39 分 57 秒 (日本時間)

3×10274+7

c224

name 名前Dmitry Domanov
date 日付August 19, 2016 08:33:25 UTC 2016 年 8 月 19 日 (金) 17 時 33 分 25 秒 (日本時間)
composite number 合成数
43018763122602850557564329264796400778372830625369336036960849704193324960888224996172517415669132962266342189160402153874688884609024086840308660317274750922978132215199604531676505999815232039306890074212303392943477882787<224>
prime factors 素因数
124257586329525269160594214913349211<36>
composite cofactor 合成数の残り
346206331487231016938737441267310577042970079833363353680161914440283395400260021857386464238325531981080991519076399842311553482114330421378282048573012410510895061821129299714788855664217<189>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2695176849
Step 1 took 25182ms
Step 2 took 8508ms
********** Factor found in step 2: 124257586329525269160594214913349211
Found probable prime factor of 36 digits: 124257586329525269160594214913349211

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaJune 21, 2016 00:00:00 UTC 2016 年 6 月 21 日 (火) 9 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovAugust 18, 2016 16:38:47 UTC 2016 年 8 月 19 日 (金) 1 時 38 分 47 秒 (日本時間)
4511e61800Dmitry DomanovAugust 19, 2016 17:06:23 UTC 2016 年 8 月 20 日 (土) 2 時 6 分 23 秒 (日本時間)
5043e6800 / 7106Dmitry DomanovAugust 22, 2016 14:28:27 UTC 2016 年 8 月 22 日 (月) 23 時 28 分 27 秒 (日本時間)

3×10276+7

c239

composite cofactor 合成数の残り
43133994085101951622405032530299490227961527942381117944375875531887983023084270316530196273113677148810954620207173345939414501671903374921490516789548575813479841636145244026592935960597203793981797201874176108877693453247557732785519901<239>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaJune 21, 2016 00:00:00 UTC 2016 年 6 月 21 日 (火) 9 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovAugust 18, 2016 16:38:17 UTC 2016 年 8 月 19 日 (金) 1 時 38 分 17 秒 (日本時間)
4511e6320 / 4218Dmitry DomanovSeptember 21, 2016 21:39:17 UTC 2016 年 9 月 22 日 (木) 6 時 39 分 17 秒 (日本時間)

3×10280+7

c246

composite cofactor 合成数の残り
966001366259251064324049703237781909018819406467320154843963866630472607182259827416140397612756705101731087062006625522586932619602661929299493071362488370156162969706380384515752709115532730060107692968768173202733092593764604903044836220448541<246>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaJune 21, 2016 00:00:00 UTC 2016 年 6 月 21 日 (火) 9 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovAugust 18, 2016 14:22:15 UTC 2016 年 8 月 18 日 (木) 23 時 22 分 15 秒 (日本時間)
4511e6320 / 4218Dmitry DomanovSeptember 21, 2016 15:01:10 UTC 2016 年 9 月 22 日 (木) 0 時 1 分 10 秒 (日本時間)

3×10282+7

c230

name 名前Dmitry Domanov
date 日付August 18, 2016 15:38:44 UTC 2016 年 8 月 19 日 (金) 0 時 38 分 44 秒 (日本時間)
composite number 合成数
66856169939119794701591359173390106274072895392091032945699430182960384439211613320201002369418514212733551503840138348417454605501150457570704339964114066957517084306628452008022944184915698229794567189989161787792981559654126699<230>
prime factors 素因数
1438596712461100071114039104563708057<37>
46473184152315097314126930022150605313886357963854355344460183777400844779762272939860087248120258175965879592802985089454574125075907740251917807833037496463797539727670461850446093716202367907<194>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2700844742
Step 1 took 25615ms
Step 2 took 10359ms
********** Factor found in step 2: 1438596712461100071114039104563708057
Found probable prime factor of 37 digits: 1438596712461100071114039104563708057

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaJune 21, 2016 00:00:00 UTC 2016 年 6 月 21 日 (火) 9 時 0 分 0 秒 (日本時間)
403e61000 / 2104Dmitry DomanovAugust 18, 2016 14:21:57 UTC 2016 年 8 月 18 日 (木) 23 時 21 分 57 秒 (日本時間)

3×10283+7

c258

composite cofactor 合成数の残り
194672116004856139872267371403944512518539282031626150238770774136086555825098286332580856618481621896729270797248965130937799081484215242304434991363636410576947037928966314984780896745920351612162185185751888839503981060171974384665945778418853233723056833<258>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaJune 21, 2016 00:00:00 UTC 2016 年 6 月 21 日 (火) 9 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovAugust 18, 2016 14:21:37 UTC 2016 年 8 月 18 日 (木) 23 時 21 分 37 秒 (日本時間)
4511e6320 / 4218Dmitry DomanovSeptember 21, 2016 14:59:34 UTC 2016 年 9 月 21 日 (水) 23 時 59 分 34 秒 (日本時間)

3×10284+7

c257

composite cofactor 合成数の残り
24892618912750418467074266371643226652369935776851619341748239744395231279589260191014809993177011035455124453426989681963651680447219414638264245581202411188946719799051812482689044869202654105985714184463890414452010352219557032298949445302113198197231161<257>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaJune 21, 2016 00:00:00 UTC 2016 年 6 月 21 日 (火) 9 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovAugust 18, 2016 14:20:47 UTC 2016 年 8 月 18 日 (木) 23 時 20 分 47 秒 (日本時間)
4511e6320 / 4218Dmitry DomanovSeptember 21, 2016 15:00:30 UTC 2016 年 9 月 22 日 (木) 0 時 0 分 30 秒 (日本時間)

3×10285+7

c243

composite cofactor 合成数の残り
272333650878372694713618139852203602687674695852151204674941906684749652150406875418602610318863377208658138231059133218983641019657145107504911030827746624999413826756121566942773540535291840047037381335202998372260696676904530719204603297189<243>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaJune 21, 2016 00:00:00 UTC 2016 年 6 月 21 日 (火) 9 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovAugust 18, 2016 14:21:18 UTC 2016 年 8 月 18 日 (木) 23 時 21 分 18 秒 (日本時間)
4511e6320 / 4218Dmitry DomanovSeptember 21, 2016 15:00:49 UTC 2016 年 9 月 22 日 (木) 0 時 0 分 49 秒 (日本時間)

3×10286+7

c281

composite cofactor 合成数の残り
38479939766067619515486251758853913474007442020350757477614295041090162346865873039286735836496170604660946837397883859845798054710778359394941427118352750738494177343781064534706981672004689421992824773898287257881012330255365706934213412311271928755674187784671387727721076873941<281>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaJune 21, 2016 00:00:00 UTC 2016 年 6 月 21 日 (火) 9 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovAugust 18, 2016 14:10:36 UTC 2016 年 8 月 18 日 (木) 23 時 10 分 36 秒 (日本時間)
4511e6320 / 4218Dmitry DomanovSeptember 21, 2016 10:37:58 UTC 2016 年 9 月 21 日 (水) 19 時 37 分 58 秒 (日本時間)

3×10287+7

c209

composite cofactor 合成数の残り
52428400659218822652930178733613872592330711135932430857015848288249389397512516200115257087280942969879075645114550178071668552496486125957621667811114632789474773544323292326785905289134471765307504038666421<209>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaJune 21, 2016 00:00:00 UTC 2016 年 6 月 21 日 (火) 9 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovAugust 18, 2016 14:11:50 UTC 2016 年 8 月 18 日 (木) 23 時 11 分 50 秒 (日本時間)
4511e6320 / 4218Dmitry DomanovSeptember 21, 2016 16:07:55 UTC 2016 年 9 月 22 日 (木) 1 時 7 分 55 秒 (日本時間)

3×10288+7

c261

name 名前Dmitry Domanov
date 日付August 18, 2016 22:22:12 UTC 2016 年 8 月 19 日 (金) 7 時 22 分 12 秒 (日本時間)
composite number 合成数
435260783717856687306553247188468245608926275876545078895394361657666418644536150065340003047996385866250381881617086193242790864374074014395678719502795307232002911931543240597852021385766136264413373032200389000757519589334015814879412709464766978837129880653<261>
prime factors 素因数
504453190959145816602697453002071635511849<42>
composite cofactor 合成数の残り
862836813243802398143140376176915697408440196752694486022926187106200263659383009220767493865971440243521152605332999490066846395550217581321691945019542786404683783424087282030103421054901065081891860075739801412113797<219>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2813357601
Step 1 took 41354ms
Step 2 took 13603ms
********** Factor found in step 2: 504453190959145816602697453002071635511849
Found probable prime factor of 42 digits: 504453190959145816602697453002071635511849
Composite cofactor 862836813243802398143140376176915697408440196752694486022926187106200263659383009220767493865971440243521152605332999490066846395550217581321691945019542786404683783424087282030103421054901065081891860075739801412113797 has 219 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaJune 21, 2016 00:00:00 UTC 2016 年 6 月 21 日 (火) 9 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovAugust 18, 2016 14:10:53 UTC 2016 年 8 月 18 日 (木) 23 時 10 分 53 秒 (日本時間)
4511e6320 / 4218Dmitry DomanovSeptember 21, 2016 16:07:19 UTC 2016 年 9 月 22 日 (木) 1 時 7 分 19 秒 (日本時間)

3×10289+7

c276

composite cofactor 合成数の残り
107296523580435316571409065941009188317022747956992407421342244372667549693524192098388513369330978665287578133766553098554898332557480508543250903934041969268109847872842511684952446578477710833800120296703022410480761759648719641600926318917057777026843185770643805081576741<276>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaJune 21, 2016 00:00:00 UTC 2016 年 6 月 21 日 (火) 9 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovAugust 18, 2016 14:10:14 UTC 2016 年 8 月 18 日 (木) 23 時 10 分 14 秒 (日本時間)
4511e6320 / 4218Dmitry DomanovSeptember 21, 2016 10:37:25 UTC 2016 年 9 月 21 日 (水) 19 時 37 分 25 秒 (日本時間)

3×10291+7

c284

composite cofactor 合成数の残り
31362614983056504068478638959524757695311547278896413140312607283011815478389281746877582482658120451656363716594907783928184044271718211002425595096994584376824160763342631268407960170398941557742823818137228146370453180064094521736273255104587055296022366311600396711989443678331263<284>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaJune 21, 2016 00:00:00 UTC 2016 年 6 月 21 日 (火) 9 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovAugust 18, 2016 14:09:47 UTC 2016 年 8 月 18 日 (木) 23 時 9 分 47 秒 (日本時間)
4511e6320 / 4218Dmitry DomanovSeptember 21, 2016 10:36:26 UTC 2016 年 9 月 21 日 (水) 19 時 36 分 26 秒 (日本時間)

3×10294+7

c290

name 名前Dmitry Domanov
date 日付August 18, 2016 11:23:24 UTC 2016 年 8 月 18 日 (木) 20 時 23 分 24 秒 (日本時間)
composite number 合成数
15280161765979229166772778901152633535880366520146893288443613656389908981169747317058263256813678800812904605950094991672311837541320104108835498871814722945200246519943157798230557267499605262487712203246525036545053556966989757198229538590048539980543260684653114860975994865865646630979<290>
prime factors 素因数
4832462506098631133658654625059342021736433<43>
3161982477193659420487258971220179921374004863731983590341137961805231982439385879964430302759999566464506759400696929532960326621362799827335650288728236575671226407362550329280549953816074629428501280585413097013018834113186003349647603593262963<247>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3489537725
Step 1 took 49017ms
Step 2 took 16838ms
********** Factor found in step 2: 4832462506098631133658654625059342021736433
Found probable prime factor of 43 digits: 4832462506098631133658654625059342021736433

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaJune 21, 2016 00:00:00 UTC 2016 年 6 月 21 日 (火) 9 時 0 分 0 秒 (日本時間)
403e61200 / 2104Dmitry DomanovAugust 18, 2016 10:48:59 UTC 2016 年 8 月 18 日 (木) 19 時 48 分 59 秒 (日本時間)

3×10295+7

c284

composite cofactor 合成数の残り
93965152518601871814446800885100069672900104190865451382686647761742438445996190686913947053386483542363123778626212652733546899796579156505499636968864079542432839244004842919646842812700673840424506760177748413630308068952116797750617120839772672536200016882514108984707756821101221<284>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaJune 21, 2016 00:00:00 UTC 2016 年 6 月 21 日 (火) 9 時 0 分 0 秒 (日本時間)
403e61200Dmitry DomanovAugust 18, 2016 12:43:57 UTC 2016 年 8 月 18 日 (木) 21 時 43 分 57 秒 (日本時間)
4511e6360 / 4173Dmitry DomanovSeptember 21, 2016 10:13:33 UTC 2016 年 9 月 21 日 (水) 19 時 13 分 33 秒 (日本時間)

3×10296+7

c287

name 名前Dmitry Domanov
date 日付September 21, 2016 10:13:22 UTC 2016 年 9 月 21 日 (水) 19 時 13 分 22 秒 (日本時間)
composite number 合成数
46301549800181101134663140214899454083290238307333772496227832415937910767526976198526732808102329683452798171585629389902315183381653448070911451985346644179216000400141697497149090493849630788378274144120902671043048614200625965128699885829530465763907066244981310773758022696736037887<287>
prime factors 素因数
34243336633104945989779111896593444706229<41>
composite cofactor 合成数の残り
1352133125818668237879743406426035578779844426010402960327403237626482148981761008414693107782982058163940260661738631423180993261471189249836824835389520313503174508647731002291304299386282504882873282586831123088437834485646816610675238705384803<247>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=3534511075
Step 1 took 105328ms
Step 2 took 30771ms
********** Factor found in step 2: 34243336633104945989779111896593444706229
Found probable prime factor of 41 digits: 34243336633104945989779111896593444706229

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaJune 21, 2016 00:00:00 UTC 2016 年 6 月 21 日 (火) 9 時 0 分 0 秒 (日本時間)
403e61200Dmitry DomanovAugust 18, 2016 11:23:32 UTC 2016 年 8 月 18 日 (木) 20 時 23 分 32 秒 (日本時間)
4511e6360 / 4173Dmitry DomanovSeptember 21, 2016 08:14:25 UTC 2016 年 9 月 21 日 (水) 17 時 14 分 25 秒 (日本時間)

3×10297+7

c206

composite cofactor 合成数の残り
81682544988242208349179357567028421014104056162801945379884908030750163000376057753869296768074206618996666668604450691505403562163962797550193089286136517939439458774276494253043695897304592900628431932763<206>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaJune 21, 2016 00:00:00 UTC 2016 年 6 月 21 日 (火) 9 時 0 分 0 秒 (日本時間)
403e62104104Luigi MorelliJuly 7, 2016 13:45:35 UTC 2016 年 7 月 7 日 (木) 22 時 45 分 35 秒 (日本時間)
2000Luigi MorelliJuly 7, 2016 13:57:03 UTC 2016 年 7 月 7 日 (木) 22 時 57 分 3 秒 (日本時間)
4511e674 / 3974Luigi MorelliJuly 8, 2016 08:59:10 UTC 2016 年 7 月 8 日 (金) 17 時 59 分 10 秒 (日本時間)

3×10298+7

c290

composite cofactor 合成数の残り
46591716611835023782019572903704446663269685315927380342730189392734421551312857585698097333602805327015463428881135692474567589228056620409670123828467010499764821321644270942206688902832616249800146772915059158613017959511764097056515654407550998994039799691090396023208135421880748908233<290>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaJune 21, 2016 00:00:00 UTC 2016 年 6 月 21 日 (火) 9 時 0 分 0 秒 (日本時間)
403e61200Dmitry DomanovAugust 18, 2016 10:48:13 UTC 2016 年 8 月 18 日 (木) 19 時 48 分 13 秒 (日本時間)
4511e6360 / 4173Dmitry DomanovSeptember 21, 2016 06:42:36 UTC 2016 年 9 月 21 日 (水) 15 時 42 分 36 秒 (日本時間)

3×10299+7

c295

composite cofactor 合成数の残り
1332699560653378171269662871434473383768607817615622792716352667842403834620869186653458133243302074124749563540893886018648909185409605209966815780939730883535385394501281612744161665341370992461362818570724144517940357252328892482241778354293735867831742238135642161283300830271826287054600701<295>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaJune 21, 2016 00:00:00 UTC 2016 年 6 月 21 日 (火) 9 時 0 分 0 秒 (日本時間)
403e61200Dmitry DomanovAugust 18, 2016 10:47:45 UTC 2016 年 8 月 18 日 (木) 19 時 47 分 45 秒 (日本時間)
4511e6360 / 4173Dmitry DomanovSeptember 21, 2016 06:42:05 UTC 2016 年 9 月 21 日 (水) 15 時 42 分 5 秒 (日本時間)

3×10300+7

c283

composite cofactor 合成数の残り
9150387091231088261572462447630301419516835213519689892656289900600420515361826198650483228522170346015852211369076681201000614911948503249487488297073763624757914297405012425854207471382166610983670508452369239144366457854045170620952793811880524852974981362955807729997271411549279<283>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaJune 21, 2016 00:00:00 UTC 2016 年 6 月 21 日 (火) 9 時 0 分 0 秒 (日本時間)
403e61200Dmitry DomanovJune 21, 2016 14:08:01 UTC 2016 年 6 月 21 日 (火) 23 時 8 分 1 秒 (日本時間)
4511e61200Dmitry DomanovJune 22, 2016 12:08:18 UTC 2016 年 6 月 22 日 (水) 21 時 8 分 18 秒 (日本時間)
5043e6880 / 7233Dmitry DomanovJune 24, 2016 15:40:39 UTC 2016 年 6 月 25 日 (土) 0 時 40 分 39 秒 (日本時間)