Table of contents 目次

3×10154-1

c134

name 名前Tyler Cadigan
date 日付March 17, 2007 05:48:53 UTC 2007 年 3 月 17 日 (土) 14 時 48 分 53 秒 (日本時間)
composite number 合成数
49836158355684799392710790914879561735438604550081498928621816209020362192917352507673034351473382284833557383946745371232190331219343<134>
prime factors 素因数
62282513633822346544465252554897044469175211<44>
800162926125406274759982565017119197917086497848155175255046781462749015168218472947165613<90>
factorization results 素因数分解の結果
Number: trial
N=49836158355684799392710790914879561735438604550081498928621816209020362192917352507673034351473382284833557383946745371232190331219343
  ( 134 digits)
SNFS difficulty: 155 digits.
Divisors found:
 r1=62282513633822346544465252554897044469175211 (pp44)
 r2=800162926125406274759982565017119197917086497848155175255046781462749015168218472947165613 (pp90)
Version: GGNFS-0.77.1-20060722-pentium4
Total time: 63.81 hours.
Scaled time: 33.88 units (timescale=0.531).
Factorization parameters were as follows:
n: 49836158355684799392710790914879561735438604550081498928621816209020362192917352507673034351473382284833557383946745371232190331219343
m: 10000000000000000000000000000000
c5: 3
c0: -10
skew: 1.27
type: snfsFactor base limits: 3000000/3000000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 48/48
Sieved algebraic special-q in [1500000, 2700001)
Primes: RFBsize:216816, AFBsize:216741, largePrimes:5681901 encountered
Relations: rels:5682246, finalFF:509993
Max relations in full relation-set: 0
Initial matrix: 433622 x 509993 with sparse part having weight 32711006.
Pruned matrix : 380977 x 383209 with weight 23958820.
Total sieving time: 51.96 hours.
Total relation processing time: 0.48 hours.
Matrix solve time: 11.09 hours.
Time per square root: 0.29 hours.
Prototype def-par.txt line would be:
snfs,155,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000
total time: 63.81 hours.
 --------- CPU info (if available) ----------
software ソフトウェア
GGNFS-0.77.1-20060722-pentium4
execution environment 実行環境
Pentium 4 3.20 GHz, 1 Gig RAM, Windows XP and Cygwin

3×10155-1

c125

name 名前Robert Backstrom
date 日付March 16, 2007 12:38:53 UTC 2007 年 3 月 16 日 (金) 21 時 38 分 53 秒 (日本時間)
composite number 合成数
45585459615099389086179041758110407185275001961176861368273277748048769706955256547000294966297413952381207813653575502260861<125>
prime factors 素因数
5423853441107577188852485479594908047413233<43>
8404625993321570476494919510450078586561494231252473102406403901939727050282602317<82>
factorization results 素因数分解の結果
Number: n
N=45585459615099389086179041758110407185275001961176861368273277748048769706955256547000294966297413952381207813653575502260861
  ( 125 digits)
SNFS difficulty: 155 digits.
Divisors found:
 r1=5423853441107577188852485479594908047413233 (pp43)
 r2=8404625993321570476494919510450078586561494231252473102406403901939727050282602317 (pp82)
Version: GGNFS-0.77.1-20051202-athlon
Total time: 27.74 hours.
Scaled time: 32.59 units (timescale=1.175).
Factorization parameters were as follows:
name: KA_2_9_155
n: 45585459615099389086179041758110407185275001961176861368273277748048769706955256547000294966297413952381207813653575502260861
type: snfs
skew: 1
deg: 5
c5: 3
c0: -1
m: 10000000000000000000000000000000
rlim: 3200000
alim: 3200000
lpbr: 28
lpba: 28
mfbr: 48
mfba: 48
qintsize: 100000
Factor base limits: 3200000/3200000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 48/48
Sieved algebraic special-q in [1600000, 2500001)
Primes: RFBsize:230209, AFBsize:230192, largePrimes:7224662 encountered
Relations: rels:6717869, finalFF:525864
Max relations in full relation-set: 28
Initial matrix: 460466 x 525864 with sparse part having weight 36596595.
Pruned matrix : 410679 x 413045 with weight 24697501.
Total sieving time: 22.73 hours.
Total relation processing time: 0.18 hours.
Matrix solve time: 4.69 hours.
Time per square root: 0.13 hours.
Prototype def-par.txt line would be:
snfs,155,5,0,0,0,0,0,0,0,0,3200000,3200000,28,28,48,48,2.3,2.3,100000
total time: 27.74 hours.
 --------- CPU info (if available) ----------

Cygwin on AMD XP 2700+ 

3×10156-1

c141

name 名前Robert Backstrom
date 日付April 14, 2007 01:52:42 UTC 2007 年 4 月 14 日 (土) 10 時 52 分 42 秒 (日本時間)
composite number 合成数
197361598537583584072731037228204834039638876801120022701727429667743993129175140505213658215476850235031414454539015439269856571655277862361<141>
prime factors 素因数
34508927160252119290871470429799344288040408510935452205656946628557<68>
5719146168209700929932117892283471025039070385347664045593119483067546173<73>
factorization results 素因数分解の結果
Number: n
N=197361598537583584072731037228204834039638876801120022701727429667743993129175140505213658215476850235031414454539015439269856571655277862361
  ( 141 digits)
SNFS difficulty: 156 digits.
Divisors found:
 r1=34508927160252119290871470429799344288040408510935452205656946628557 (pp68)
 r2=5719146168209700929932117892283471025039070385347664045593119483067546173 (pp73)
Version: GGNFS-0.77.1-20051202-athlon
Total time: 29.42 hours.
Scaled time: 34.63 units (timescale=1.177).
Factorization parameters were as follows:
name: KA_2_9_156
n: 197361598537583584072731037228204834039638876801120022701727429667743993129175140505213658215476850235031414454539015439269856571655277862361
type: snfs
skew: 0.51
deg: 5
c5: 30
c0: -1
m: 10000000000000000000000000000000
rlim: 3000000
alim: 3000000
lpbr: 28
lpba: 28
mfbr: 48
mfba: 48
qintsize: 100000
Factor base limits: 3000000/3000000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 48/48
Sieved algebraic special-q in [100000, 1200001)
Primes: RFBsize:216816, AFBsize:215581, largePrimes:6375624 encountered
Relations: rels:5906725, finalFF:544951
Max relations in full relation-set: 28
Initial matrix: 432464 x 544951 with sparse part having weight 28722573.
Pruned matrix : 329414 x 331640 with weight 14402843.
Total sieving time: 27.08 hours.
Total relation processing time: 0.21 hours.
Matrix solve time: 1.98 hours.
Total square root time: 0.15 hours, sqrts: 2.
Prototype def-par.txt line would be:
snfs,156,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.3,2.3,100000
total time: 29.42 hours.
 --------- CPU info (if available) ----------

Cygwin on AMD XP 2700+

3×10159-1

c135

name 名前Jo Yeong Uk
date 日付July 11, 2007 04:02:24 UTC 2007 年 7 月 11 日 (水) 13 時 2 分 24 秒 (日本時間)
composite number 合成数
817448502109485317403780993112403563863150728789229793830328848991416569172256881829396183377993380084606222146439982368316243773421841<135>
prime factors 素因数
1365996837467415111026906770750469<34>
598426350404332450433128876484310209991358869759713755798077815328602741567697247226824883321819832989<102>
factorization results 素因数分解の結果
GMP-ECM 6.1.2 [powered by GMP 4.2.1] [ECM]
Input number is 817448502109485317403780993112403563863150728789229793830328848991416569172256881829396183377993380084606222146439982368316243773421841 (135 digits)
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2625841172
Step 1 took 7339ms
Step 2 took 4082ms
********** Factor found in step 2: 1365996837467415111026906770750469
Found probable prime factor of 34 digits: 1365996837467415111026906770750469
Probable prime cofactor 598426350404332450433128876484310209991358869759713755798077815328602741567697247226824883321819832989 has 102 digits
execution environment 実行環境
Core 2 Quad Q6600

3×10160-1

c133

name 名前Robert Backstrom
date 日付November 2, 2007 11:16:16 UTC 2007 年 11 月 2 日 (金) 20 時 16 分 16 秒 (日本時間)
composite number 合成数
2684823773644472499695314004905933113030245860446596390581560505765323424678107700978354714731235290256104741769394425383100177478713<133>
prime factors 素因数
22773127470380768369771978355584433053642892841637684786821<59>
117894381311324651726376382743763178993218466198694259251340381195966953253<75>
factorization results 素因数分解の結果
Number: n
N=2684823773644472499695314004905933113030245860446596390581560505765323424678107700978354714731235290256104741769394425383100177478713
  ( 133 digits)
SNFS difficulty: 160 digits.
Divisors found:

Fri Nov 02 21:39:00 2007  prp59 factor: 22773127470380768369771978355584433053642892841637684786821
Fri Nov 02 21:39:00 2007  prp75 factor: 117894381311324651726376382743763178993218466198694259251340381195966953253
Fri Nov 02 21:39:00 2007  elapsed time 01:07:33 (Msieve 1.29)

Version: GGNFS-0.77.1-20051202-athlon
Total time: 28.18 hours.
Scaled time: 37.37 units (timescale=1.326).
Factorization parameters were as follows:
name: KA_2_9_160
n: 2684823773644472499695314004905933113030245860446596390581560505765323424678107700978354714731235290256104741769394425383100177478713
skew: 0.95
deg: 5
c5: 3
c0: -1
m: 100000000000000000000000000000000
type: snfs
rlim: 3000000
alim: 3000000
lpbr: 28
lpba: 28
mfbr: 48
mfba: 48
rlambda: 2.5
alambda: 2.5
qintsize: 100000
Factor base limits: 3000000/3000000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 48/48
Sieved  special-q in [100000, 1400000)
Primes: RFBsize:216816, AFBsize:216846, largePrimes:7002342 encountered
Relations: rels:6502743, finalFF:523807
Max relations in full relation-set: 28
Initial matrix: 433727 x 523807 with sparse part having weight 39790411.
Pruned matrix : 360363 x 362595 with weight 22732739.
Total sieving time: 27.98 hours.
Total relation processing time: 0.20 hours.
Matrix solve time: 0.00 hours.
Total square root time: 0.00 hours, sqrts: 0.
Prototype def-par.txt line would be:
snfs,160,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000
total time: 28.18 hours.
 --------- CPU info (if available) ----------

Cygwin on AMD 64 3200+

3×10163-1

c158

name 名前Robert Backstrom
date 日付July 24, 2007 11:51:15 UTC 2007 年 7 月 24 日 (火) 20 時 51 分 15 秒 (日本時間)
composite number 合成数
13157092615844911209360481970616703630787421293175547631087403004816811606660821993746872449442775199231274935431567987741098240063434729198526931910730003741<158>
prime factors 素因数
45747879641691574163746483574403221719068934066339<50>
287600053136766851692762111657822054428122201049566171614253119368688303514147608918518033049860541686054719<108>
factorization results 素因数分解の結果
Number: n
N=13157092615844911209360481970616703630787421293175547631087403004816811606660821993746872449442775199231274935431567987741098240063434729198526931910730003741
  ( 158 digits)
SNFS difficulty: 163 digits.
Divisors found:
 r1=45747879641691574163746483574403221719068934066339 (pp50)
 r2=287600053136766851692762111657822054428122201049566171614253119368688303514147608918518033049860541686054719 (pp108)
Version: GGNFS-0.77.1-20051202-athlon
Total time: 63.42 hours.
Scaled time: 82.76 units (timescale=1.305).
Factorization parameters were as follows:
name: KA_2_9_163
n: 13157092615844911209360481970616703630787421293175547631087403004816811606660821993746872449442775199231274935431567987741098240063434729198526931910730003741
skew: 0.20
deg: 5
c5: 3000
c0: -1
m: 100000000000000000000000000000000
type: snfs
rlim: 3600000
alim: 3600000
lpbr: 28
lpba: 28
mfbr: 48
mfba: 48
rlambda: 2.5
alambda: 2.5
qintsize: 100000
Factor base limits: 3600000/3600000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 48/48
Sieved algebraic special-q in [100000, 2600001)
Primes: RFBsize:256726, AFBsize:256576, largePrimes:7639847 encountered
Relations: rels:7209577, finalFF:633047
Max relations in full relation-set: 48
Initial matrix: 513369 x 633047 with sparse part having weight 51694938.
Pruned matrix : 421670 x 424300 with weight 31990993.
Total sieving time: 56.77 hours.
Total relation processing time: 0.28 hours.
Matrix solve time: 5.99 hours.
Total square root time: 0.37 hours, sqrts: 4.
Prototype def-par.txt line would be:
snfs,163,5,0,0,0,0,0,0,0,0,3600000,3600000,28,28,48,48,2.5,2.5,100000
total time: 63.42 hours.
 --------- CPU info (if available) ----------

Cygwin on AMD 64 3200+

3×10164-1

c160

name 名前Sinkiti Sibata
date 日付July 6, 2007 21:50:35 UTC 2007 年 7 月 7 日 (土) 6 時 50 分 35 秒 (日本時間)
composite number 合成数
8906570079862245049431463943235460024344624884956803135112668111510257399875308018881928569307959504794703559659175251610604756108422646438856396401745687735653<160>
prime factors 素因数
20864331285956384714363476632186247632145067881<47>
16745773198975668201316866017478902963614694091371<50>
25491818321127692702503378138106307806982680946323585329451086103<65>
factorization results 素因数分解の結果
Number: 29999_164
N=8906570079862245049431463943235460024344624884956803135112668111510257399875308018881928569307959504794703559659175251610604756108422646438856396401745687735653
  ( 160 digits)
SNFS difficulty: 165 digits.
Divisors found:
 r1=20864331285956384714363476632186247632145067881 (pp47)
 r2=16745773198975668201316866017478902963614694091371 (pp50)
 r3=25491818321127692702503378138106307806982680946323585329451086103 (pp65)
Version: GGNFS-0.77.1-20060722-pentium4
Total time: 125.82 hours.
Scaled time: 85.56 units (timescale=0.680).
Factorization parameters were as follows:
name: 29999_164
n: 8906570079862245049431463943235460024344624884956803135112668111510257399875308018881928569307959504794703559659175251610604756108422646438856396401745687735653
m: 1000000000000000000000000000000000
c5: 3
c0: -10
skew: 1.27
type: snfs
Factor base limits: 5000000/5000000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 48/48
Sieved algebraic special-q in [2500000, 5400001)
Primes: RFBsize:348513, AFBsize:348501, largePrimes:5894099 encountered
Relations: rels:6079819, finalFF:784956
Max relations in full relation-set: 0
Initial matrix: 697079 x 784956 with sparse part having weight 43312634.
Pruned matrix : 626895 x 630444 with weight 33519435.
Total sieving time: 107.99 hours.
Total relation processing time: 0.41 hours.
Matrix solve time: 17.17 hours.
Time per square root: 0.25 hours.
Prototype def-par.txt line would be:
snfs,165,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,48,48,2.5,2.5,100000
total time: 125.82 hours.
 --------- CPU info (if available) ----------
execution environment 実行環境
Pentium 4 2.4GHz, Windows XP and Cygwin)

3×10165-1

c140

name 名前Robert Backstrom
date 日付February 6, 2008 08:28:24 UTC 2008 年 2 月 6 日 (水) 17 時 28 分 24 秒 (日本時間)
composite number 合成数
30236949720159319152255112676945296055617775960741404375126742070045530650217672185324750510281942081046922358241732522840944089077526675471<140>
prime factors 素因数
32537822232223537739373298666992795881162109492993066147359<59>
929286216648341931114487283109312466413415118752186358498797622230367374713700369<81>
factorization results 素因数分解の結果
Number: n
N=30236949720159319152255112676945296055617775960741404375126742070045530650217672185324750510281942081046922358241732522840944089077526675471
  ( 140 digits)
SNFS difficulty: 165 digits.
Divisors found:

Wed Feb 06 19:22:09 2008  prp59 factor: 32537822232223537739373298666992795881162109492993066147359
Wed Feb 06 19:22:09 2008  prp81 factor: 929286216648341931114487283109312466413415118752186358498797622230367374713700369
Wed Feb 06 19:22:09 2008  elapsed time 01:17:35 (Msieve 1.33)

Version: GGNFS-0.77.1-20060513-athlon-xp
Total time: 48.16 hours.
Scaled time: 63.14 units (timescale=1.311).
Factorization parameters were as follows:
name: KA_2_9_165
n: 30236949720159319152255112676945296055617775960741404375126742070045530650217672185324750510281942081046922358241732522840944089077526675471
skew: 0.80
deg: 5
c5: 3
c0: -1
m: 1000000000000000000000000000000000
type: snfs
rlim: 3200000
alim: 3200000
lpbr: 28
lpba: 28
mfbr: 48
mfba: 48
rlambda: 2.5
alambda: 2.5
qintsize: 100000
Factor base limits: 3200000/3200000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 48/48
Sieved  special-q in [100000, 2100001)
Primes: RFBsize:230209, AFBsize:230192, largePrimes:7367519 encountered
Relations: rels:6892734, finalFF:544123
Max relations in full relation-set: 28
Initial matrix: 460466 x 544123 with sparse part having weight 41822415.
Pruned matrix : 
Total sieving time: 47.92 hours.
Total relation processing time: 0.23 hours.
Matrix solve time: 0.00 hours.
Total square root time: 0.00 hours, sqrts: 0.
Prototype def-par.txt line would be:
snfs,165,5,0,0,0,0,0,0,0,0,3200000,3200000,28,28,48,48,2.5,2.5,100000
total time: 48.16 hours.
 --------- CPU info (if available) ----------

Cygwin on AMD 64 3200+

3×10169-1

c137

name 名前Sinkiti Sibata
date 日付July 12, 2009 20:38:32 UTC 2009 年 7 月 13 日 (月) 5 時 38 分 32 秒 (日本時間)
composite number 合成数
23382557913863687360210358549889939699253493723541318867971867107182684122332981322256389039762608813026488643802138025103343450876035237<137>
prime factors 素因数
2228251805235709353313536175233325312147783871786905403<55>
10493678433883386533453073734793889071910451026636427224419520005990497132630462879<83>
factorization results 素因数分解の結果
Number: 29999_169
N=23382557913863687360210358549889939699253493723541318867971867107182684122332981322256389039762608813026488643802138025103343450876035237
  ( 137 digits)
SNFS difficulty: 170 digits.
Divisors found:
 r1=2228251805235709353313536175233325312147783871786905403 (pp55)
 r2=10493678433883386533453073734793889071910451026636427224419520005990497132630462879 (pp83)
Version: Msieve-1.40
Total time: 59.94 hours.
Scaled time: 154.35 units (timescale=2.575).
Factorization parameters were as follows:
name: 29999_169
n: 23382557913863687360210358549889939699253493723541318867971867107182684122332981322256389039762608813026488643802138025103343450876035237
m: 10000000000000000000000000000000000
deg: 5
c5: 3
c0: -10
skew: 1.27
type: snfs
lss: 1
rlim: 4900000
alim: 4900000
lpbr: 27
lpba: 27
mfbr: 52
mfba: 52
rlambda: 2.4
alambda: 2.4
Factor base limits: 4900000/4900000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 52/52
Sieved rational special-q in [2450000, 4850001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 871097 x 871345
Total sieving time: 57.67 hours.
Total relation processing time: 0.15 hours.
Matrix solve time: 1.72 hours.
Time per square root: 0.40 hours.
Prototype def-par.txt line would be:
snfs,170.000,5,0,0,0,0,0,0,0,0,4900000,4900000,27,27,52,52,2.4,2.4,100000
total time: 59.94 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374YAMAOKA TakeshiJanuary 14, 2009 20:34:24 UTC 2009 年 1 月 15 日 (木) 5 時 34 分 24 秒 (日本時間)
255e40--
3025e4430YAMAOKA TakeshiJanuary 14, 2009 22:06:24 UTC 2009 年 1 月 15 日 (木) 7 時 6 分 24 秒 (日本時間)
351e6825Jo Yeong UkJune 25, 2009 16:08:09 UTC 2009 年 6 月 26 日 (金) 1 時 8 分 9 秒 (日本時間)

3×10170-1

c166

name 名前Robert Backstrom
date 日付May 26, 2007 03:04:27 UTC 2007 年 5 月 26 日 (土) 12 時 4 分 27 秒 (日本時間)
composite number 合成数
3990476063794410673193311962117080567711728009151491772968515143856662099788504768618896234320754466007794729911278415514970936032668697375596908711209247263198499581<166>
prime factors 素因数
173013747441272949252140271307882198468644836377812061<54>
23064502808650629916626080541133445738284945384523360813873885767965239712427790623664167124028559969692067948321<113>
factorization results 素因数分解の結果
Number: n
N=3990476063794410673193311962117080567711728009151491772968515143856662099788504768618896234320754466007794729911278415514970936032668697375596908711209247263198499581
  ( 166 digits)
SNFS difficulty: 170 digits.
Divisors found:
 r1=173013747441272949252140271307882198468644836377812061 (pp54)
 r2=23064502808650629916626080541133445738284945384523360813873885767965239712427790623664167124028559969692067948321 (pp113)
Version: GGNFS-0.77.1-20051202-athlon
Total time: 83.81 hours.
Scaled time: 110.71 units (timescale=1.321).
Factorization parameters were as follows:
name: KA_2_9_170
n: 3990476063794410673193311962117080567711728009151491772968515143856662099788504768618896234320754466007794729911278415514970936032668697375596908711209247263198499581
skew: 0.80
deg: 5
c5: 3
c0: -1
m: 10000000000000000000000000000000000
type: snfs
rlim: 5000000
alim: 5000000
lpbr: 28
lpba: 28
mfbr: 48
mfba: 48
rlambda: 2.5
alambda: 2.5
qintsize: 100000
Factor base limits: 5000000/5000000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 48/48
Sieved algebraic special-q in [100000, 3300001)
Primes: RFBsize:348513, AFBsize:348501, largePrimes:7962339 encountered
Relations: rels:7605195, finalFF:792642
Max relations in full relation-set: 48
Initial matrix: 697079 x 792642 with sparse part having weight 44278165.
Pruned matrix : 611079 x 614628 with weight 28486101.
Total sieving time: 74.99 hours.
Total relation processing time: 0.34 hours.
Matrix solve time: 8.38 hours.
Total square root time: 0.10 hours, sqrts: 1.
Prototype def-par.txt line would be:
snfs,170,5,0,0,0,0,0,0,0,0,5000000,5000000,28,28,48,48,2.5,2.5,100000
total time: 83.81 hours.
 --------- CPU info (if available) ----------

Cygwin on AMD 64 3200+

3×10171-1

c132

name 名前Sander Hoogendoorn
date 日付January 26, 2010 16:35:17 UTC 2010 年 1 月 27 日 (水) 1 時 35 分 17 秒 (日本時間)
composite number 合成数
477003566452786389911877468453776625956725654131330694818959918237745129415207167148176672507358290335561961809131023352008434233079<132>
prime factors 素因数
203808353944020828211710001231914168129351013132544641<54>
2340451493876462621104078626827590279589654809102234493298958220750325105388919<79>
factorization results 素因数分解の結果
N = 477003566452786389911877468453776625956725654131330694818959918237745129415207167148176672507358290335561961809131023352008434233079 (132 digits)
SNFS difficulty: 172 digits.
Divisors found:
r1=203808353944020828211710001231914168129351013132544641 (pp54)
r2=2340451493876462621104078626827590279589654809102234493298958220750325105388919 (pp79)
Version: Msieve v. 1.43
Total time: 25.57 hours.
Factorization parameters were as follows:
n: 477003566452786389911877468453776625956725654131330694818959918237745129415207167148176672507358290335561961809131023352008434233079
m: 10000000000000000000000000000000000
deg: 5
c5: 30
c0: -1
skew: 0.51
type: snfs
lss: 1
rlim: 5000000
alim: 5000000
lpbr: 27
lpba: 27
mfbr: 52
mfba: 52
rlambda: 2.4
alambda: 2.4

Factor base limits: 5000000/5000000
Large primes per side: 3
Large prime bits: 27/27
Sieved rational special-q in [2500000, 4800000)
Relations: 10731551 relations
Pruned matrix : 823332 x 823558
Polynomial selection time: 0.00 hours.
Total sieving time: 23.72 hours.
Total relation processing time: 0.14 hours.
Matrix solve time: 1.46 hours.
time per square root: 0.26 hours.
software ソフトウェア
GNFS & msieve with the factmsieve.py (python script)
execution environment 実行環境
Intel Core 2 Duo 2,2 GHz using 2 cores on Windows 2003

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
255e4214Wataru SakaiJune 20, 2009 03:44:59 UTC 2009 年 6 月 20 日 (土) 12 時 44 分 59 秒 (日本時間)
3025e4403Wataru SakaiJune 20, 2009 04:19:42 UTC 2009 年 6 月 20 日 (土) 13 時 19 分 42 秒 (日本時間)
351e60--
403e62337Wataru SakaiJuly 30, 2009 12:25:22 UTC 2009 年 7 月 30 日 (木) 21 時 25 分 22 秒 (日本時間)

3×10172-1

c138

name 名前Wataru Sakai
date 日付January 13, 2010 13:40:58 UTC 2010 年 1 月 13 日 (水) 22 時 40 分 58 秒 (日本時間)
composite number 合成数
786926780186075758268741106446345233058414651262593009833784935602647827417065446546566009104898212188196236218414523309890529326286496133<138>
prime factors 素因数
144305979336767394731126911499701100363397016943877899<54>
5453182077435764716694269821536175903777022858744153878594451246373586312292773813167<85>
factorization results 素因数分解の結果
Number: 29999_172
N=786926780186075758268741106446345233058414651262593009833784935602647827417065446546566009104898212188196236218414523309890529326286496133
  ( 138 digits)
SNFS difficulty: 172 digits.
Divisors found:
 r1=144305979336767394731126911499701100363397016943877899
 r2=5453182077435764716694269821536175903777022858744153878594451246373586312292773813167
Version: 
Total time: 83.49 hours.
Scaled time: 167.82 units (timescale=2.010).
Factorization parameters were as follows:
n: 786926780186075758268741106446345233058414651262593009833784935602647827417065446546566009104898212188196236218414523309890529326286496133
m: 10000000000000000000000000000000000
deg: 5
c5: 300
c0: -1
skew: 0.32
type: snfs
lss: 1
rlim: 5200000
alim: 5200000
lpbr: 27
lpba: 27
mfbr: 52
mfba: 52
rlambda: 2.4
alambda: 2.4
Factor base limits: 5200000/5200000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 52/52
Sieved rational special-q in [2600000, 5500001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 791830 x 792078
Total sieving time: 83.49 hours.
Total relation processing time: 0.00 hours.
Matrix solve time: 0.00 hours.
Time per square root: 0.00 hours.
Prototype def-par.txt line would be:
snfs,172,5,0,0,0,0,0,0,0,0,5200000,5200000,27,27,52,52,2.4,2.4,100000
total time: 83.49 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61200Dmitry DomanovJune 29, 2009 05:16:00 UTC 2009 年 6 月 29 日 (月) 14 時 16 分 0 秒 (日本時間)
403e62500Dmitry DomanovJune 29, 2009 05:16:00 UTC 2009 年 6 月 29 日 (月) 14 時 16 分 0 秒 (日本時間)

3×10174-1

c149

name 名前Jo Yeong Uk
date 日付February 26, 2010 15:32:05 UTC 2010 年 2 月 27 日 (土) 0 時 32 分 5 秒 (日本時間)
composite number 合成数
18062723553012053659512862987893876280483835577393700324705380850483733185155234049468881141228481012368229092117049920534892184452140953606048539513<149>
prime factors 素因数
8463645713858598762260867888847965297310229007204191808496082691<64>
2134154023417552716331724005141659076217090584552967921447661573925237208250265541843<85>
factorization results 素因数分解の結果
Number: 29999_174
N=18062723553012053659512862987893876280483835577393700324705380850483733185155234049468881141228481012368229092117049920534892184452140953606048539513
  ( 149 digits)
SNFS difficulty: 175 digits.
Divisors found:
 r1=8463645713858598762260867888847965297310229007204191808496082691
 r2=2134154023417552716331724005141659076217090584552967921447661573925237208250265541843
Version: 
Total time: 47.56 hours.
Scaled time: 113.62 units (timescale=2.389).
Factorization parameters were as follows:
n: 18062723553012053659512862987893876280483835577393700324705380850483733185155234049468881141228481012368229092117049920534892184452140953606048539513
m: 100000000000000000000000000000000000
deg: 5
c5: 3
c0: -10
skew: 1.27
type: snfs
lss: 1
rlim: 6800000
alim: 6800000
lpbr: 28
lpba: 28
mfbr: 52
mfba: 52
rlambda: 2.4
alambda: 2.4
Factor base limits: 6800000/6800000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 52/52
Sieved rational special-q in [3400000, 6800001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 16243385
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1132736 x 1132983
Total sieving time: 41.85 hours.
Total relation processing time: 2.65 hours.
Matrix solve time: 2.80 hours.
Time per square root: 0.26 hours.
Prototype def-par.txt line would be:
snfs,175,5,0,0,0,0,0,0,0,0,6800000,6800000,28,28,52,52,2.4,2.4,100000
total time: 47.56 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Memory: 8046640k/8912896k available (2550k kernel code, 339524k reserved, 1291k data, 208k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 5345.61 BogoMIPS (lpj=2672808)
Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344)
Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672339)
Calibrating delay using timer specific routine.. 5237.81 BogoMIPS (lpj=2618905)
software ソフトウェア
GGNFS / Msieve v1.39
execution environment 実行環境
Core 2 Quad Q6700

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Jo Yeong UkJuly 24, 2009 09:41:39 UTC 2009 年 7 月 24 日 (金) 18 時 41 分 39 秒 (日本時間)
255e4204Jo Yeong UkJuly 24, 2009 09:41:44 UTC 2009 年 7 月 24 日 (金) 18 時 41 分 44 秒 (日本時間)
3025e4403Jo Yeong UkJuly 24, 2009 09:41:48 UTC 2009 年 7 月 24 日 (金) 18 時 41 分 48 秒 (日本時間)
351e61000Lionel DebrouxOctober 8, 2009 08:14:36 UTC 2009 年 10 月 8 日 (木) 17 時 14 分 36 秒 (日本時間)

3×10175-1

c169

name 名前matsui
date 日付May 27, 2008 09:43:29 UTC 2008 年 5 月 27 日 (火) 18 時 43 分 29 秒 (日本時間)
composite number 合成数
1162531921673404249588938400262298202380764622820586874789848135742497319298266281269250802040460528495536826821843494295048974176019655779723141472810916546754728201393<169>
prime factors 素因数
127908438358629022538945818383105074917390387700273693347951544125819<69>
9088782074048181389749646028623925455114377328452874707792183747630337777668429784177679834126974147<100>
factorization results 素因数分解の結果
N=1162531921673404249588938400262298202380764622820586874789848135742497319298266281269250802040460528495536826821843494295048974176019655779723141472810916546754728201393
  ( 169 digits)

SNFS difficulty: 175 digits.

Divisors found:

 r1=127908438358629022538945818383105074917390387700273693347951544125819 (pp69)

 r2=9088782074048181389749646028623925455114377328452874707792183747630337777668429784177679834126974147 (pp100)
Version: GGNFS-0.77.1-20060513-prescott

Total time: 170.28 hours.

Scaled time: 289.65 units (timescale=1.701).

Factorization parameters were as follows:

n: 1162531921673404249588938400262298202380764622820586874789848135742497319298266281269250802040460528495536826821843494295048974176019655779723141472810916546754728201393
m: 100000000000000000000000000000000000
c5: 3
c0: -1
skew: 0.8
type: snfs



Factor base limits: 7400000/7400000

Large primes per side: 3

Large prime bits: 27/27

Max factor residue bits: 48/48

Sieved algebraic special-q in [3700000, 10100001)

Primes: RFBsize:501962, AFBsize:501561, largePrimes:6368718 encountered

Relations: rels:6829866, finalFF:1143743

Max relations in full relation-set: 28

Initial matrix: 1003588 x 1143743 with sparse part having weight 64710672.

Pruned matrix : 882352 x 887433 with weight 47911814.

Total sieving time: 156.22 hours.

Total relation processing time: 0.35 hours.

Matrix solve time: 13.47 hours.

Time per square root: 0.24 hours.

Prototype def-par.txt line would be:

snfs,175,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000

total time: 170.28 hours.

3×10176-1

c168

name 名前Jo Yeong Uk
date 日付March 2, 2010 10:01:11 UTC 2010 年 3 月 2 日 (火) 19 時 1 分 11 秒 (日本時間)
composite number 合成数
392848460391723787629417001321938997702754462610864503618337946659745794230185163320743373889511195042515376425934660571944066430014666827034392171197502977663654019639<168>
prime factors 素因数
57269690852172211230698590365937264946108274851869337123769319131139186850180629<80>
6859622507929484284606361644307751405797667931674866097064318293703456089128520372145691<88>
factorization results 素因数分解の結果
Number: 29999_176
N=392848460391723787629417001321938997702754462610864503618337946659745794230185163320743373889511195042515376425934660571944066430014666827034392171197502977663654019639
  ( 168 digits)
SNFS difficulty: 176 digits.
Divisors found:
 r1=57269690852172211230698590365937264946108274851869337123769319131139186850180629
 r2=6859622507929484284606361644307751405797667931674866097064318293703456089128520372145691
Version: 
Total time: 44.52 hours.
Scaled time: 106.04 units (timescale=2.382).
Factorization parameters were as follows:
n: 392848460391723787629417001321938997702754462610864503618337946659745794230185163320743373889511195042515376425934660571944066430014666827034392171197502977663654019639
m: 100000000000000000000000000000000000
deg: 5
c5: 30
c0: -1
skew: 0.51
type: snfs
lss: 1
rlim: 7400000
alim: 7400000
lpbr: 28
lpba: 28
mfbr: 53
mfba: 53
rlambda: 2.5
alambda: 2.5
Factor base limits: 7400000/7400000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 53/53
Sieved rational special-q in [3700000, 6600001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 17916552
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1183697 x 1183945
Total sieving time: 38.14 hours.
Total relation processing time: 2.61 hours.
Matrix solve time: 3.30 hours.
Time per square root: 0.47 hours.
Prototype def-par.txt line would be:
snfs,176,5,0,0,0,0,0,0,0,0,7400000,7400000,28,28,53,53,2.5,2.5,100000
total time: 44.52 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Memory: 8046640k/8912896k available (2550k kernel code, 339524k reserved, 1291k data, 208k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 5345.51 BogoMIPS (lpj=2672756)
Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672345)
Calibrating delay using timer specific routine.. 5237.80 BogoMIPS (lpj=2618900)
Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341)
software ソフトウェア
GGNFS / Msieve v1.39
execution environment 実行環境
Core 2 Quad Q6700

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Andreas TeteMay 29, 2009 16:13:24 UTC 2009 年 5 月 30 日 (土) 1 時 13 分 24 秒 (日本時間)
255e4221Andreas TeteMay 29, 2009 21:58:30 UTC 2009 年 5 月 30 日 (土) 6 時 58 分 30 秒 (日本時間)
3025e4453Andreas TeteMay 29, 2009 21:58:50 UTC 2009 年 5 月 30 日 (土) 6 時 58 分 50 秒 (日本時間)

3×10177-1

c152

name 名前Jo Yeong Uk
date 日付February 21, 2010 06:49:37 UTC 2010 年 2 月 21 日 (日) 15 時 49 分 37 秒 (日本時間)
composite number 合成数
59047392893160869043607199325076222570768127309080308034366074617573380127309180479637247193714433698078123225234200167427666412839137529216792714585203<152>
prime factors 素因数
6212798730210408050381624569671817339<37>
9504153515554352849906622482432664871708559936002497935758971157239414990468164783447373021653755199704052528655977<115>
factorization results 素因数分解の結果
GMP-ECM 6.2.3 [powered by GMP 5.0.0] [ECM]
Input number is 59047392893160869043607199325076222570768127309080308034366074617573380127309180479637247193714433698078123225234200167427666412839137529216792714585203 (152 digits)
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=6359294935
Step 1 took 4047ms
Step 2 took 2425ms
********** Factor found in step 2: 6212798730210408050381624569671817339
Found probable prime factor of 37 digits: 6212798730210408050381624569671817339
Probable prime cofactor 9504153515554352849906622482432664871708559936002497935758971157239414990468164783447373021653755199704052528655977 has 115 digits
execution environment 実行環境
Core 2 Quad Q6700

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Jo Yeong UkJuly 24, 2009 09:42:05 UTC 2009 年 7 月 24 日 (金) 18 時 42 分 5 秒 (日本時間)
255e4204Jo Yeong UkJuly 24, 2009 09:42:10 UTC 2009 年 7 月 24 日 (金) 18 時 42 分 10 秒 (日本時間)
3025e4403Jo Yeong UkJuly 24, 2009 09:42:17 UTC 2009 年 7 月 24 日 (金) 18 時 42 分 17 秒 (日本時間)

3×10178-1

c140

name 名前Jo Yeong Uk
date 日付March 4, 2010 11:07:48 UTC 2010 年 3 月 4 日 (木) 20 時 7 分 48 秒 (日本時間)
composite number 合成数
99154416116749536613833960946915313870286305565293496539549511674257280995516346625540083524497935293003719656030483300925526737113890395767<140>
prime factors 素因数
15822535005390769197619578154346714884187993498909473<53>
6266658034440589293040361904117425689899050899063420689751835198468171995771249785353879<88>
factorization results 素因数分解の結果
Number: 29999_178
N=99154416116749536613833960946915313870286305565293496539549511674257280995516346625540083524497935293003719656030483300925526737113890395767
  ( 140 digits)
SNFS difficulty: 180 digits.
Divisors found:
 r1=15822535005390769197619578154346714884187993498909473
 r2=6266658034440589293040361904117425689899050899063420689751835198468171995771249785353879
Version: 
Total time: 74.16 hours.
Scaled time: 177.46 units (timescale=2.393).
Factorization parameters were as follows:
n: 99154416116749536613833960946915313870286305565293496539549511674257280995516346625540083524497935293003719656030483300925526737113890395767
m: 1000000000000000000000000000000000000
deg: 5
c5: 3
c0: -100
skew: 2.02
type: snfs
lss: 1
rlim: 5400000
alim: 5400000
lpbr: 28
lpba: 28
mfbr: 53
mfba: 53
rlambda: 2.5
alambda: 2.5
Factor base limits: 5400000/5400000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 53/53
Sieved rational special-q in [2700000, 4800001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 17500963
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1290029 x 1290277
Total sieving time: 68.25 hours.
Total relation processing time: 1.88 hours.
Matrix solve time: 3.72 hours.
Time per square root: 0.31 hours.
Prototype def-par.txt line would be:
snfs,180,5,0,0,0,0,0,0,0,0,5400000,5400000,28,28,53,53,2.5,2.5,100000
total time: 74.16 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Memory: 8046640k/8912896k available (2550k kernel code, 339524k reserved, 1291k data, 208k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 5345.51 BogoMIPS (lpj=2672756)
Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672345)
Calibrating delay using timer specific routine.. 5237.80 BogoMIPS (lpj=2618900)
Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341)
software ソフトウェア
GGNFS / Msieve v1.39
execution environment 実行環境
Core 2 Quad Q6700

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Jo Yeong UkJuly 24, 2009 09:42:26 UTC 2009 年 7 月 24 日 (金) 18 時 42 分 26 秒 (日本時間)
255e4204Jo Yeong UkJuly 24, 2009 09:42:31 UTC 2009 年 7 月 24 日 (金) 18 時 42 分 31 秒 (日本時間)
3025e4403Jo Yeong UkJuly 24, 2009 09:42:35 UTC 2009 年 7 月 24 日 (金) 18 時 42 分 35 秒 (日本時間)
351e6828Jo Yeong UkMarch 1, 2010 00:00:16 UTC 2010 年 3 月 1 日 (月) 9 時 0 分 16 秒 (日本時間)

3×10179-1

c123

name 名前matsui
date 日付February 16, 2008 13:16:59 UTC 2008 年 2 月 16 日 (土) 22 時 16 分 59 秒 (日本時間)
composite number 合成数
963123832109553152595040489985247676605852097732313677970697180432654991239607824625799134317843703968468200269973831642281<123>
prime factors 素因数
65229101266939367735801851025243606155752420471073669310383<59>
14765247618055126790247356701740302955486828755600519733418471207<65>
factorization results 素因数分解の結果
N=963123832109553152595040489985247676605852097732313677970697180432654991239607824625799134317843703968468200269973831642281
  ( 123 digits)

Divisors found:

 r1=65229101266939367735801851025243606155752420471073669310383 (pp59)

 r2=14765247618055126790247356701740302955486828755600519733418471207 (pp65)

Version: GGNFS-0.77.1-20060513-pentium4

Total time: 105.78 hours.

Scaled time: 136.98 units (timescale=1.295).

Factorization parameters were as follows:
name: 3000

n: 963123832109553152595040489985247676605852097732313677970697180432654991239607824625799134317843703968468200269973831642281

skew: 96096.19

# norm 9.91e+16

c5: 66240

c4: -32279355888

c3: -2129454685216800

c2: 294388916535552239654

c1: 12148253690490472323530277

c0: 57066639980311126901329358611
# alpha -6.31

Y1: 16016640817309

Y0: -429055962076730058362034

# Murphy_E 1.89e-10

# M 61974167399733499335733838603131508133502921043676458000972502662641628379410764569675900458759902446519498408010415736179

type: gnfs

rlim: 5000000
alim: 5000000
lpbr: 27
lpba: 27
mfbr: 50
mfba: 50
rlambda: 2.4
alambda: 2.4
qintsize: 60000

Factor base limits: 5000000/5000000

Large primes per side: 3

Large prime bits: 27/27

Max factor residue bits: 50/50

Sieved algebraic special-q in [2500000, 5920001)

Primes: RFBsize:348513, AFBsize:348802, largePrimes:7933036 encountered

Relations: rels:8259254, finalFF:863393

Max relations in full relation-set: 28

Initial matrix: 697393 x 863393 with sparse part having weight 88990510.

Pruned matrix : 565520 x 569070 with weight 62336262.

Total sieving time: 91.13 hours.

Total relation processing time: 0.34 hours.

Matrix solve time: 13.66 hours.

Time per square root: 0.65 hours.
Prototype def-par.txt 
line would be:

gnfs,122,5,maxs1,maxskew,goodScore,efrac,j0,j1,e
StepSize,maxTime,5000000,5000000,27,27,50,50,2.4,2.4,60000

total time: 105.78 hours.
 

3×10180-1

c151

name 名前Jo Yeong Uk
date 日付March 4, 2010 14:39:18 UTC 2010 年 3 月 4 日 (木) 23 時 39 分 18 秒 (日本時間)
composite number 合成数
5239034683502261512217266544200832044977356842743189184376130950310853527047649101007537456670565558710101254243540624698650299081238828416459698436833<151>
prime factors 素因数
18430490162974811893591210694438204036249222668991102941368207733<65>
284259107445064507092201327543954373371556380517472751352150669366327959473078731952701<87>
factorization results 素因数分解の結果
Number: 29999_180
N=5239034683502261512217266544200832044977356842743189184376130950310853527047649101007537456670565558710101254243540624698650299081238828416459698436833
  ( 151 digits)
SNFS difficulty: 180 digits.
Divisors found:
 r1=18430490162974811893591210694438204036249222668991102941368207733
 r2=284259107445064507092201327543954373371556380517472751352150669366327959473078731952701
Version: 
Total time: 63.75 hours.
Scaled time: 152.22 units (timescale=2.388).
Factorization parameters were as follows:
n: 5239034683502261512217266544200832044977356842743189184376130950310853527047649101007537456670565558710101254243540624698650299081238828416459698436833
m: 1000000000000000000000000000000000000
deg: 5
c5: 3
c0: -1
skew: 0.80
type: snfs
lss: 1
rlim: 5400000
alim: 5400000
lpbr: 28
lpba: 28
mfbr: 53
mfba: 53
rlambda: 2.5
alambda: 2.5
Factor base limits: 5400000/5400000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 53/53
Sieved rational special-q in [2700000, 4500001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 18009979
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1086105 x 1086353
Total sieving time: 59.42 hours.
Total relation processing time: 1.67 hours.
Matrix solve time: 2.54 hours.
Time per square root: 0.12 hours.
Prototype def-par.txt line would be:
snfs,180,5,0,0,0,0,0,0,0,0,5400000,5400000,28,28,53,53,2.5,2.5,100000
total time: 63.75 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Memory: 8046640k/8912896k available (2550k kernel code, 339524k reserved, 1291k data, 208k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 5345.51 BogoMIPS (lpj=2672756)
Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672345)
Calibrating delay using timer specific routine.. 5237.80 BogoMIPS (lpj=2618900)
Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341)
software ソフトウェア
GGNFS / Msieve v1.39
execution environment 実行環境
Core 2 Quad Q6700

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Jo Yeong UkJuly 24, 2009 16:53:26 UTC 2009 年 7 月 25 日 (土) 1 時 53 分 26 秒 (日本時間)
255e4204Jo Yeong UkJuly 24, 2009 16:53:33 UTC 2009 年 7 月 25 日 (土) 1 時 53 分 33 秒 (日本時間)
3025e4403Jo Yeong UkJuly 24, 2009 16:53:37 UTC 2009 年 7 月 25 日 (土) 1 時 53 分 37 秒 (日本時間)
351e6828Jo Yeong UkMarch 1, 2010 04:38:56 UTC 2010 年 3 月 1 日 (月) 13 時 38 分 56 秒 (日本時間)

3×10182-1

c131

name 名前Jo Yeong Uk
date 日付March 8, 2010 07:42:40 UTC 2010 年 3 月 8 日 (月) 16 時 42 分 40 秒 (日本時間)
composite number 合成数
74960842897132103681852428080646416843208943146159715909272551474037174009562269180153698832515915719138940829286706658162043208493<131>
prime factors 素因数
18282126687045549663745432739326772351099604880474511<53>
4100225547077532938162524694413091222368841653737008072666860688562574061951363<79>
factorization results 素因数分解の結果
Number: 29999_182
N=74960842897132103681852428080646416843208943146159715909272551474037174009562269180153698832515915719138940829286706658162043208493
  ( 131 digits)
SNFS difficulty: 182 digits.
Divisors found:
 r1=18282126687045549663745432739326772351099604880474511
 r2=4100225547077532938162524694413091222368841653737008072666860688562574061951363
Version: 
Total time: 89.94 hours.
Scaled time: 215.04 units (timescale=2.391).
Factorization parameters were as follows:
n: 74960842897132103681852428080646416843208943146159715909272551474037174009562269180153698832515915719138940829286706658162043208493
m: 1000000000000000000000000000000000000
deg: 5
c5: 300
c0: -1
skew: 0.32
type: snfs
lss: 1
rlim: 6600000
alim: 6600000
lpbr: 28
lpba: 28
mfbr: 53
mfba: 53
rlambda: 2.5
alambda: 2.5
Factor base limits: 6600000/6600000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 53/53
Sieved rational special-q in [3300000, 5800001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 18286788
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1318376 x 1318624
Total sieving time: 82.87 hours.
Total relation processing time: 2.38 hours.
Matrix solve time: 4.16 hours.
Time per square root: 0.53 hours.
Prototype def-par.txt line would be:
snfs,182,5,0,0,0,0,0,0,0,0,6600000,6600000,28,28,53,53,2.5,2.5,100000
total time: 89.94 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Memory: 8046640k/8912896k available (2551k kernel code, 339524k reserved, 1290k data, 208k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 5511.27 BogoMIPS (lpj=2755637)
Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672342)
Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672380)
Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672346)
software ソフトウェア
GGNFS / Msieve v1.39
execution environment 実行環境
Core 2 Quad Q6700

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Jo Yeong UkJuly 24, 2009 16:53:46 UTC 2009 年 7 月 25 日 (土) 1 時 53 分 46 秒 (日本時間)
255e4204Jo Yeong UkJuly 24, 2009 16:53:50 UTC 2009 年 7 月 25 日 (土) 1 時 53 分 50 秒 (日本時間)
3025e4403Jo Yeong UkJuly 24, 2009 16:53:55 UTC 2009 年 7 月 25 日 (土) 1 時 53 分 55 秒 (日本時間)
351e6828Jo Yeong UkMarch 1, 2010 00:00:46 UTC 2010 年 3 月 1 日 (月) 9 時 0 分 46 秒 (日本時間)

3×10184-1

c185

name 名前Jo Yeong Uk
date 日付September 12, 2007 03:35:48 UTC 2007 年 9 月 12 日 (水) 12 時 35 分 48 秒 (日本時間)
composite number 合成数
29999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999<185>
prime factors 素因数
10073641022189321360228001328707180659381468877455557544719139<62>
2978069194040036330503581914737461793403041082476154833888528931755723356899703483852214198475678536123147506448805613562741<124>
factorization results 素因数分解の結果
Number: 29999_184
N=29999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999
  ( 185 digits)
SNFS difficulty: 185 digits.
Divisors found:
 r1=10073641022189321360228001328707180659381468877455557544719139 (pp62)
 r2=2978069194040036330503581914737461793403041082476154833888528931755723356899703483852214198475678536123147506448805613562741 (pp124)
Version: GGNFS-0.77.1-20050930-nocona
Total time: 343.63 hours.
Scaled time: 729.87 units (timescale=2.124).
Factorization parameters were as follows:
n: 29999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999
m: 10000000000000000000000000000000000000
c5: 3
c0: -10
skew: 1.27
type: snfs
Factor base limits: 11000000/11000000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 50/50
Sieved algebraic special-q in [5500000, 11100001)
Primes: RFBsize:726517, AFBsize:727028, largePrimes:11282043 encountered
Relations: rels:11683743, finalFF:1645813
Max relations in full relation-set: 28
Initial matrix: 1453610 x 1645813 with sparse part having weight 94399149.
Pruned matrix : 1285739 x 1293071 with weight 69947957.
Total sieving time: 331.30 hours.
Total relation processing time: 0.39 hours.
Matrix solve time: 11.81 hours.
Time per square root: 0.13 hours.
Prototype def-par.txt line would be:
snfs,185,5,0,0,0,0,0,0,0,0,11000000,11000000,28,28,50,50,2.6,2.6,100000
total time: 343.63 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Memory: 8167564k/8912896k available (2106k kernel code, 0k reserved, 1299k data, 196k init)
Calibrating delay using timer specific routine.. 4815.36 BogoMIPS (lpj=2407683)
Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124)
Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117)
Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405128)
Total of 4 processors activated (19246.10 BogoMIPS).
execution environment 実行環境
Core 2 Quad Q6600

3×10187-1

c123

name 名前JMB
date 日付January 26, 2007 20:23:33 UTC 2007 年 1 月 27 日 (土) 5 時 23 分 33 秒 (日本時間)
composite number 合成数
893591381367634367034668162068769723587646517065989534061371480479899417929872313126751551226015776354610036070649704467863<123>
prime factors 素因数
47527930809248160978423930812756482163<38>
18801394593718690635972065355070083787495002798358052698294076860191499763907183853901<86>
factorization results 素因数分解の結果
P1: 47527930809248160978423930812756482163 (P38)

P2: 18801394593718690635972065355070083787495002798358052698294076860191499763907183853901 (P86)

B1: 1000000
Sigma: 2711386167

3×10191-1

c135

name 名前Jo Yeong Uk
date 日付March 6, 2010 07:38:27 UTC 2010 年 3 月 6 日 (土) 16 時 38 分 27 秒 (日本時間)
composite number 合成数
370812897556704338509590133832163695071597917566000336371183993274408395233490200784926313895161253111564845043776594915089730392839809<135>
prime factors 素因数
9986328167407533917958306774605218725739829<43>
37132056081125955472819112147087747804782221939881071336471506401331809870109280710565214621<92>
factorization results 素因数分解の結果
GMP-ECM 6.2.3 [powered by GMP 5.0.0] [ECM]
Input number is 370812897556704338509590133832163695071597917566000336371183993274408395233490200784926313895161253111564845043776594915089730392839809 (135 digits)
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=7007836905
Step 1 took 38220ms
Step 2 took 15613ms
********** Factor found in step 2: 9986328167407533917958306774605218725739829
Found probable prime factor of 43 digits: 9986328167407533917958306774605218725739829
Probable prime cofactor 37132056081125955472819112147087747804782221939881071336471506401331809870109280710565214621 has 92 digits
execution environment 実行環境
Core 2 Quad Q6700

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62350500Erik BrangerFebruary 1, 2009 09:01:38 UTC 2009 年 2 月 1 日 (日) 18 時 1 分 38 秒 (日本時間)
1850Wataru SakaiAugust 31, 2009 13:42:40 UTC 2009 年 8 月 31 日 (月) 22 時 42 分 40 秒 (日本時間)

3×10192-1

c128

name 名前Jo Yeong Uk
date 日付March 1, 2010 13:07:14 UTC 2010 年 3 月 1 日 (月) 22 時 7 分 14 秒 (日本時間)
composite number 合成数
96147100344714093985880165790142508713790938454554091728820058311092885918809960853895469472773862773301432799536380961132175497<128>
prime factors 素因数
9740471141873076715269094836964843996395634689724625712596839367<64>
9870888065300008002666195086781466583752845796759751444217049391<64>
factorization results 素因数分解の結果
Number: 29999_192
N=96147100344714093985880165790142508713790938454554091728820058311092885918809960853895469472773862773301432799536380961132175497
  ( 128 digits)
Divisors found:
 r1=9740471141873076715269094836964843996395634689724625712596839367
 r2=9870888065300008002666195086781466583752845796759751444217049391
Version: 
Total time: 70.00 hours.
Scaled time: 167.45 units (timescale=2.392).
Factorization parameters were as follows:
# Murphy_E = 9.470857e-11, selected by Jeff Gilchrist
n: 96147100344714093985880165790142508713790938454554091728820058311092885918809960853895469472773862773301432799536380961132175497
Y0: -4728337515127376913733073
Y1: 113391337021723
c0: -68746208699076990334683890878800
c1: 2556257913066612300971980446
c2: -15170833482453671465739
c3: -20681738268242644
c4: 50385102936
c5: 40680
skew: 464131.78
type: gnfs
# selected mechanically
rlim: 8000000
alim: 8000000
lpbr: 28
lpba: 28
mfbr: 54
mfba: 54
rlambda: 2.5
alambda: 2.5
Factor base limits: 8000000/8000000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 54/54
Sieved algebraic special-q in [4000000, 8400001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 19065947
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1260002 x 1260249
Total sieving time: 61.63 hours.
Total relation processing time: 4.29 hours.
Matrix solve time: 3.76 hours.
Time per square root: 0.33 hours.
Prototype def-par.txt line would be:
gnfs,127,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,8000000,8000000,28,28,54,54,2.5,2.5,100000
total time: 70.00 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Memory: 8046640k/8912896k available (2550k kernel code, 339524k reserved, 1291k data, 208k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 5345.61 BogoMIPS (lpj=2672808)
Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344)
Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672339)
Calibrating delay using timer specific routine.. 5237.81 BogoMIPS (lpj=2618905)
software ソフトウェア
GGNFS / Msieve v1.39
execution environment 実行環境
Core 2 Quad Q6700

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62350500Erik BrangerJanuary 30, 2009 17:46:35 UTC 2009 年 1 月 31 日 (土) 2 時 46 分 35 秒 (日本時間)
1850Wataru SakaiNovember 27, 2009 08:41:07 UTC 2009 年 11 月 27 日 (金) 17 時 41 分 7 秒 (日本時間)

3×10195-1

c178

name 名前Justin Card
date 日付April 7, 2010 17:48:17 UTC 2010 年 4 月 8 日 (木) 2 時 48 分 17 秒 (日本時間)
composite number 合成数
2144553944128461259777982403156803246875030233764787788772260756804252498292781255804248305688539873567816220314997405530013908251499707524258561767735217712828686152785412015873<178>
prime factors 素因数
2549430086848235938069023022334565304647820249008607<52>
841189548672696590223631459471770406069927514620180520789383724252020064883602521044531561533541571410124284972274340308388639<126>
factorization results 素因数分解の結果
Sieving over 2 weeks.

Tue Apr 06 11:17:50 2010  Msieve v. 1.38
Tue Apr 06 11:17:50 2010  random seeds: 7bae6e60 efea12b0
Tue Apr 06 11:17:50 2010  factoring 2144553944128461259777982403156803246875030233764787788772260756804252498292781255804248305688539873567816220314997405530013908251499707524258561767735217712828686152785412015873 (178 digits)
Tue Apr 06 11:17:53 2010  searching for 15-digit factors
Tue Apr 06 11:17:56 2010  commencing number field sieve (178-digit input)
Tue Apr 06 11:17:56 2010  R0: -1000000000000000000000000000000000000000
Tue Apr 06 11:17:56 2010  R1:  1
Tue Apr 06 11:17:56 2010  A0: -1
Tue Apr 06 11:17:56 2010  A1:  0
Tue Apr 06 11:17:56 2010  A2:  0
Tue Apr 06 11:17:56 2010  A3:  0
Tue Apr 06 11:17:56 2010  A4:  0
Tue Apr 06 11:17:56 2010  A5:  3
Tue Apr 06 11:17:56 2010  size score = 4.161539e-013, Murphy alpha = 1.167475, combined = 2.819971e-013
Tue Apr 06 11:17:56 2010  
Tue Apr 06 11:17:56 2010  commencing linear algebra
Tue Apr 06 11:17:58 2010  read 2406677 cycles
Tue Apr 06 11:18:03 2010  matrix is 2406477 x 2406677 (686.8 MB) with weight 228649700 (95.01/col)
Tue Apr 06 11:18:03 2010  sparse part has weight 163185779 (67.81/col)
Tue Apr 06 11:18:04 2010  saving the first 48 matrix rows for later
Tue Apr 06 11:18:06 2010  matrix is 2406429 x 2406677 (658.0 MB) with weight 175895106 (73.09/col)
Tue Apr 06 11:18:06 2010  sparse part has weight 158044754 (65.67/col)
Tue Apr 06 11:18:06 2010  matrix includes 64 packed rows
Tue Apr 06 11:18:06 2010  using block size 65536 for processor cache size 2048 kB
Tue Apr 06 11:18:32 2010  commencing Lanczos iteration (4 threads)
Tue Apr 06 11:18:32 2010  memory use: 724.6 MB
Tue Apr 06 11:18:32 2010  restarting at iteration 182 (dim = 11510)
Wed Apr 07 06:43:10 2010  lanczos halted after 38055 iterations (dim = 2406429)
Wed Apr 07 06:43:20 2010  recovered 49 nontrivial dependencies
Wed Apr 07 06:43:24 2010  elapsed time 19:25:34
Wed Apr 07 07:49:06 2010  
Wed Apr 07 07:49:06 2010  
Wed Apr 07 07:49:06 2010  Msieve v. 1.38
Wed Apr 07 07:49:06 2010  random seeds: eee13b94 2e6a2d78
Wed Apr 07 07:49:06 2010  factoring 2144553944128461259777982403156803246875030233764787788772260756804252498292781255804248305688539873567816220314997405530013908251499707524258561767735217712828686152785412015873 (178 digits)
Wed Apr 07 07:49:09 2010  searching for 15-digit factors
Wed Apr 07 07:49:12 2010  commencing number field sieve (178-digit input)
Wed Apr 07 07:49:12 2010  R0: -1000000000000000000000000000000000000000
Wed Apr 07 07:49:12 2010  R1:  1
Wed Apr 07 07:49:12 2010  A0: -1
Wed Apr 07 07:49:12 2010  A1:  0
Wed Apr 07 07:49:12 2010  A2:  0
Wed Apr 07 07:49:12 2010  A3:  0
Wed Apr 07 07:49:12 2010  A4:  0
Wed Apr 07 07:49:12 2010  A5:  3
Wed Apr 07 07:49:12 2010  size score = 4.161539e-013, Murphy alpha = 1.167475, combined = 2.819971e-013
Wed Apr 07 07:49:12 2010  
Wed Apr 07 07:49:12 2010  commencing square root phase
Wed Apr 07 07:49:12 2010  reading relations for dependency 1
Wed Apr 07 07:49:14 2010  read 1203368 cycles
Wed Apr 07 07:49:20 2010  cycles contain 4645525 unique relations
Wed Apr 07 07:50:40 2010  read 4645525 relations
Wed Apr 07 07:51:29 2010  multiplying 3815768 relations
Wed Apr 07 09:04:50 2010  multiply complete, coefficients have about 96.96 million bits
Wed Apr 07 09:04:52 2010  initial square root is modulo 9119051
Wed Apr 07 09:19:49 2010  reading relations for dependency 2
Wed Apr 07 09:19:51 2010  read 1204439 cycles
Wed Apr 07 09:19:57 2010  cycles contain 4650688 unique relations
Wed Apr 07 09:21:16 2010  read 4650688 relations
Wed Apr 07 09:22:05 2010  multiplying 3819412 relations
Wed Apr 07 09:33:13 2010  multiply complete, coefficients have about 97.05 million bits
Wed Apr 07 09:33:16 2010  initial square root is modulo 9256111
Wed Apr 07 09:48:15 2010  reading relations for dependency 3
Wed Apr 07 09:48:17 2010  read 1202404 cycles
Wed Apr 07 09:48:23 2010  cycles contain 4644934 unique relations
Wed Apr 07 09:49:43 2010  read 4644934 relations
Wed Apr 07 09:50:32 2010  multiplying 3814450 relations
Wed Apr 07 10:01:40 2010  multiply complete, coefficients have about 96.93 million bits
Wed Apr 07 10:01:42 2010  initial square root is modulo 9071201
Wed Apr 07 10:16:46 2010  reading relations for dependency 4
Wed Apr 07 10:16:48 2010  read 1202849 cycles
Wed Apr 07 10:16:54 2010  cycles contain 4643715 unique relations
Wed Apr 07 10:18:17 2010  read 4643715 relations
Wed Apr 07 10:19:05 2010  multiplying 3814520 relations
Wed Apr 07 10:30:13 2010  multiply complete, coefficients have about 96.93 million bits
Wed Apr 07 10:30:15 2010  initial square root is modulo 9075191
Wed Apr 07 10:45:14 2010  reading relations for dependency 5
Wed Apr 07 10:45:15 2010  read 1202706 cycles
Wed Apr 07 10:45:22 2010  cycles contain 4643117 unique relations
Wed Apr 07 10:46:41 2010  read 4643117 relations
Wed Apr 07 10:47:30 2010  multiplying 3813588 relations
Wed Apr 07 10:58:38 2010  multiply complete, coefficients have about 96.91 million bits
Wed Apr 07 10:58:41 2010  initial square root is modulo 9036901
Wed Apr 07 11:13:41 2010  prp52 factor: 2549430086848235938069023022334565304647820249008607
Wed Apr 07 11:13:41 2010  prp126 factor: 841189548672696590223631459471770406069927514620180520789383724252020064883602521044531561533541571410124284972274340308388639
Wed Apr 07 11:13:41 2010  elapsed time 03:24:35
software ソフトウェア
ggnfs / msieve
execution environment 実行環境
Intel Xeon 3.2 GHz, 4 GB RAM, Windows 2003

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Andreas TeteMay 29, 2009 14:03:53 UTC 2009 年 5 月 29 日 (金) 23 時 3 分 53 秒 (日本時間)
255e4204Andreas TeteMay 29, 2009 14:09:28 UTC 2009 年 5 月 29 日 (金) 23 時 9 分 28 秒 (日本時間)
3025e4403Andreas TeteMay 29, 2009 14:55:36 UTC 2009 年 5 月 29 日 (金) 23 時 55 分 36 秒 (日本時間)
351e6902Andreas TeteMay 29, 2009 22:13:38 UTC 2009 年 5 月 30 日 (土) 7 時 13 分 38 秒 (日本時間)

3×10196-1

c197

name 名前Jo Yeong Uk
date 日付October 3, 2008 12:06:14 UTC 2008 年 10 月 3 日 (金) 21 時 6 分 14 秒 (日本時間)
composite number 合成数
29999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999<197>
prime factors 素因数
122344767534061284667205826233542620221024729103782351<54>
349916959335497159053279727421119255555113601555011417<54>
700762515289784210874039143325825539548489780330736974377987653994531387998577206825482297<90>
factorization results 素因数分解の結果
Number: 29999_196
N=29999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999
  ( 197 digits)
SNFS difficulty: 196 digits.
Divisors found:
 r1=122344767534061284667205826233542620221024729103782351 (pp54)
 r2=349916959335497159053279727421119255555113601555011417 (pp54)
 r3=700762515289784210874039143325825539548489780330736974377987653994531387998577206825482297 (pp90)
Version: GGNFS-0.77.1-20050930-nocona
Total time: 516.20 hours.
Scaled time: 1233.71 units (timescale=2.390).
Factorization parameters were as follows:
n: 29999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999
m: 1000000000000000000000000000000000000000
c5: 30
c0: -1
skew: 0.51
type: snfs
Factor base limits: 20000000/20000000
Large primes per side: 3
Large prime bits: 29/29
Max factor residue bits: 53/53
Sieved algebraic special-q in [10000000, 18300001)
Primes: RFBsize:1270607, AFBsize:1269815, largePrimes:23687268 encountered
Relations: rels:24203236, finalFF:2931375
Max relations in full relation-set: 28
Initial matrix: 2540489 x 2931375 with sparse part having weight 208140655.
Pruned matrix : 2176346 x 2189112 with weight 145380897.
Total sieving time: 472.02 hours.
Total relation processing time: 1.03 hours.
Matrix solve time: 42.87 hours.
Time per square root: 0.29 hours.
Prototype def-par.txt line would be:
snfs,196,5,0,0,0,0,0,0,0,0,20000000,20000000,29,29,53,53,2.6,2.6,100000
total time: 516.20 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Memory: 8047092k/8912896k available (2460k kernel code, 339200k reserved, 1250k data, 196k init)
Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673800)
Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
Calibrating delay using timer specific routine.. 5344.40 BogoMIPS (lpj=2672204)
Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344)
execution environment 実行環境
Core 2 Quad Q6700

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Jo Yeong UkAugust 5, 2008 11:38:26 UTC 2008 年 8 月 5 日 (火) 20 時 38 分 26 秒 (日本時間)
255e4214Jo Yeong UkAugust 5, 2008 11:38:32 UTC 2008 年 8 月 5 日 (火) 20 時 38 分 32 秒 (日本時間)
3025e4430Jo Yeong UkAugust 5, 2008 11:38:38 UTC 2008 年 8 月 5 日 (火) 20 時 38 分 38 秒 (日本時間)
351e6904Jo Yeong UkAugust 5, 2008 11:38:45 UTC 2008 年 8 月 5 日 (火) 20 時 38 分 45 秒 (日本時間)
403e62350Jo Yeong UkAugust 5, 2008 11:38:50 UTC 2008 年 8 月 5 日 (火) 20 時 38 分 50 秒 (日本時間)
4511e63127 / 3918Jo Yeong UkAugust 5, 2008 11:38:57 UTC 2008 年 8 月 5 日 (火) 20 時 38 分 57 秒 (日本時間)

3×10197-1

c167

name 名前Jo Yeong Uk
date 日付April 6, 2010 02:45:57 UTC 2010 年 4 月 6 日 (火) 11 時 45 分 57 秒 (日本時間)
composite number 合成数
40001164850322949267202116877001435748940914164768609280109508184346779185483073822845813110708992902199245808876061101423961725002568546450350599960157751339884241871<167>
prime factors 素因数
68053976324751545794284630967427895603244001434280187721763258182322358947<74>
587785857793798607044597286642006113609085738682247451587060917433885743162793893936656523493<93>
factorization results 素因数分解の結果
Number: 29999_197
N=40001164850322949267202116877001435748940914164768609280109508184346779185483073822845813110708992902199245808876061101423961725002568546450350599960157751339884241871
  ( 167 digits)
SNFS difficulty: 197 digits.
Divisors found:
 r1=68053976324751545794284630967427895603244001434280187721763258182322358947
 r2=587785857793798607044597286642006113609085738682247451587060917433885743162793893936656523493
Version: 
Total time: 268.99 hours.
Scaled time: 643.15 units (timescale=2.391).
Factorization parameters were as follows:
n: 40001164850322949267202116877001435748940914164768609280109508184346779185483073822845813110708992902199245808876061101423961725002568546450350599960157751339884241871
m: 1000000000000000000000000000000000000000
deg: 5
c5: 300
c0: -1
skew: 0.32
type: snfs
lss: 1
rlim: 14000000
alim: 14000000
lpbr: 29
lpba: 29
mfbr: 55
mfba: 55
rlambda: 2.5
alambda: 2.5
Factor base limits: 14000000/14000000
Large primes per side: 3
Large prime bits: 29/29
Max factor residue bits: 55/55
Sieved rational special-q in [7000000, 13300001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 34091453
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 2611450 x 2611697
Total sieving time: 239.24 hours.
Total relation processing time: 11.07 hours.
Matrix solve time: 18.30 hours.
Time per square root: 0.37 hours.
Prototype def-par.txt line would be:
snfs,197,5,0,0,0,0,0,0,0,0,14000000,14000000,29,29,55,55,2.5,2.5,100000
total time: 268.99 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Calibrating delay loop (skipped), value calculated using timer frequency.. 5345.55 BogoMIPS (lpj=2672775)
Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672345)
Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672343)
Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672343)
software ソフトウェア
GGNFS / Msieve v1.39
execution environment 実行環境
Core 2 Quad Q6700

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Jo Yeong UkJuly 24, 2009 16:54:29 UTC 2009 年 7 月 25 日 (土) 1 時 54 分 29 秒 (日本時間)
255e4204Jo Yeong UkJuly 24, 2009 16:54:34 UTC 2009 年 7 月 25 日 (土) 1 時 54 分 34 秒 (日本時間)
3025e4403Jo Yeong UkJuly 24, 2009 16:54:39 UTC 2009 年 7 月 25 日 (土) 1 時 54 分 39 秒 (日本時間)
351e6828Jo Yeong UkMarch 3, 2010 16:15:03 UTC 2010 年 3 月 4 日 (木) 1 時 15 分 3 秒 (日本時間)
403e62111Jo Yeong UkMarch 20, 2010 02:39:14 UTC 2010 年 3 月 20 日 (土) 11 時 39 分 14 秒 (日本時間)

3×10198-1

c184

name 名前Robert Backstrom
date 日付March 20, 2010 07:19:26 UTC 2010 年 3 月 20 日 (土) 16 時 19 分 26 秒 (日本時間)
composite number 合成数
6733240862575855788126000455131138398562461563032705077407339199594400440823080129940917996693737402843780633456155832655094181124192730043729226838332273140405257637543355501673585561<184>
prime factors 素因数
245186388835201614679588776888220094897052023<45>
27461723689325607345365923884323524383870179087245314211471108082418732281332903742131945838261002031868993262649351286813848647212990461807<140>
factorization results 素因数分解の結果
Number: n
N=6733240862575855788126000455131138398562461563032705077407339199594400440823080129940917996693737402843780633456155832655094181124192730043729226838332273140405257637543355501673585561
  ( 184 digits)
SNFS difficulty: 198 digits.
Divisors found:

Sat Mar 20 15:51:39 2010  prp45 factor: 245186388835201614679588776888220094897052023
Sat Mar 20 15:51:39 2010  prp140 factor: 27461723689325607345365923884323524383870179087245314211471108082418732281332903742131945838261002031868993262649351286813848647212990461807
Sat Mar 20 15:51:39 2010  elapsed time 05:55:49 (Msieve 1.42 - dependency 2)

Version: 
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.100).
Factorization parameters were as follows:
name: KA_2_9_198
n: 6733240862575855788126000455131138398562461563032705077407339199594400440823080129940917996693737402843780633456155832655094181124192730043729226838332273140405257637543355501673585561
m: 1000000000000000000000000000000000000000
deg: 5
c5: 3000
c0: -1
skew: 0.20
type: snfs
lss: 1
rlim: 14200000
alim: 14200000
lpbr: 28
lpba: 28
mfbr: 56
mfba: 56
rlambda: 2.5
alambda: 2.5
qintsize: 100000
Factor base limits: 14200000/14200000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 56/56
Sieved  special-q in [100000, 15000000)
Primes: , , 
Relations: 
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 

Msieve: found 4399723 hash collisions in 30934102 relations
Msieve: matrix is 1909756 x 1909981 (540.7 MB)

Total sieving time: 0.00 hours.
Total relation processing time: 0.00 hours.
Matrix solve time: 0.00 hours.
Total square root time: 0.00 hours, sqrts: 0.
Prototype def-par.txt line would be:
snfs,198,5,0,0,0,0,0,0,0,0,14200000,14200000,28,28,56,56,2.5,2.5,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM)2 Quad  CPU   Q9550  @ 2.83GHz stepping 07
CPU1: Intel(R) Core(TM)2 Quad  CPU   Q9550  @ 2.83GHz stepping 07
CPU2: Intel(R) Core(TM)2 Quad  CPU   Q9550  @ 2.83GHz stepping 07
CPU3: Intel(R) Core(TM)2 Quad  CPU   Q9550  @ 2.83GHz stepping 07
Memory: 8109188k/9175040k available (3972k kernel code, 787464k absent, 278388k reserved, 2498k data, 1292k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 5661.44 BogoMIPS (lpj=2830723)
Calibrating delay using timer specific routine.. 5660.90 BogoMIPS (lpj=2830452)
Calibrating delay using timer specific routine.. 5660.92 BogoMIPS (lpj=2830461)
Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830458)
Total of 4 processors activated (22644.18 BogoMIPS).

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Andreas TeteMay 29, 2009 14:59:15 UTC 2009 年 5 月 29 日 (金) 23 時 59 分 15 秒 (日本時間)
255e4204Andreas TeteMay 29, 2009 15:01:46 UTC 2009 年 5 月 30 日 (土) 0 時 1 分 46 秒 (日本時間)
3025e4403Andreas TeteMay 29, 2009 16:04:26 UTC 2009 年 5 月 30 日 (土) 1 時 4 分 26 秒 (日本時間)
351e6828Jo Yeong UkMarch 3, 2010 16:15:20 UTC 2010 年 3 月 4 日 (木) 1 時 15 分 20 秒 (日本時間)

3×10199-1

c154

name 名前Jo Yeong Uk
date 日付February 28, 2010 23:49:58 UTC 2010 年 3 月 1 日 (月) 8 時 49 分 58 秒 (日本時間)
composite number 合成数
2376230715420405644099040790825456071766775286180604701904756892104926933239051489210649996039224207690221146377023330989100613796750537016047758744439071<154>
prime factors 素因数
747259820832076009467740924242262873561358607<45>
3179925708804289450372549233037593965881328406446880827201957011485530677908247685109118491928166361686144753<109>
factorization results 素因数分解の結果
GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM]
Input number is 2376230715420405644099040790825456071766775286180604701904756892104926933239051489210649996039224207690221146377023330989100613796750537016047758744439071 (154 digits)
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=7401064585
Step 1 took 4633ms
Step 2 took 4477ms
********** Factor found in step 2: 747259820832076009467740924242262873561358607
Found probable prime factor of 45 digits: 747259820832076009467740924242262873561358607
Probable prime cofactor 3179925708804289450372549233037593965881328406446880827201957011485530677908247685109118491928166361686144753 has 109 digits
execution environment 実行環境
Core 2 Quad Q6600

3×10201-1

c127

name 名前Erik Branger
date 日付October 1, 2010 20:25:56 UTC 2010 年 10 月 2 日 (土) 5 時 25 分 56 秒 (日本時間)
composite number 合成数
9795140888311941000987207630043874188816800355899186911232930671623735090634685849624657327295375633893221639258907257099016727<127>
prime factors 素因数
51680027931445099736270712486418113352984366948483125672373<59>
189534357475685771189652977002654801785730673893347954721465838236699<69>
factorization results 素因数分解の結果
Number: 29999_201
N = 9795140888311941000987207630043874188816800355899186911232930671623735090634685849624657327295375633893221639258907257099016727 (127 digits)
Divisors found:
r1=51680027931445099736270712486418113352984366948483125672373 (pp59)
r2=189534357475685771189652977002654801785730673893347954721465838236699 (pp69)
Version: Msieve v. 1.45
Total time: 143.11 hours.
Factorization parameters were as follows:
# Murphy_E = 1.169e-10, selected by Erik Branger
n: 9795140888311941000987207630043874188816800355899186911232930671623735090634685849624657327295375633893221639258907257099016727
Y0: -6400280553028553615315704
Y1: 35096899269923
c0: -1350268489439046230052517123347
c1: 836889098125924295699365896
c2: -7344279676011454491037
c3: -7918693675849876
c4: 7962249572
c5: 912
skew: 853745.93
type: gnfs
# selected mechanically
rlim: 8100000
alim: 8100000
lpbr: 28
lpba: 28
mfbr: 53
mfba: 53
rlambda: 2.5
alambda: 2.5
Factor base limits: 8100000/8100000
Large primes per side: 3
Large prime bits: 28/28
Sieved algebraic special-q in [4050000, 7650000)
Relations: 17098143
Relations in full relation-set: 1948558 relations
Pruned matrix : 1145502 x 1145727
Polynomial selection time: 0.00 hours.
Total sieving time: 137.58 hours.
Total relation processing time: 0.28 hours.
Matrix solve time: 4.64 hours.
time per square root: 0.60 hours.
Prototype def-par.txt line would be: gnfs,126,5,65,2000,1e-05,0.28,250,20,50000,3600,8100000,8100000,28,28,53,53,2.5,2.5,100000
total time: 143.11 hours.
 --------- CPU info (if available) ----------
software ソフトウェア
GGNFS, Msieve

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6418118Makoto KamadaSeptember 23, 2010 10:00:00 UTC 2010 年 9 月 23 日 (木) 19 時 0 分 0 秒 (日本時間)
300Ignacio SantosSeptember 23, 2010 20:16:27 UTC 2010 年 9 月 24 日 (金) 5 時 16 分 27 秒 (日本時間)
403e62126110Ignacio SantosSeptember 23, 2010 20:16:27 UTC 2010 年 9 月 24 日 (金) 5 時 16 分 27 秒 (日本時間)
2016Wataru SakaiSeptember 28, 2010 03:25:52 UTC 2010 年 9 月 28 日 (火) 12 時 25 分 52 秒 (日本時間)
4511e632 / 3991Ignacio SantosSeptember 23, 2010 20:16:27 UTC 2010 年 9 月 24 日 (金) 5 時 16 分 27 秒 (日本時間)

3×10202-1

c195

name 名前Wataru Sakai
date 日付September 25, 2010 03:20:40 UTC 2010 年 9 月 25 日 (土) 12 時 20 分 40 秒 (日本時間)
composite number 合成数
300043077184591391786118733066506358317863695690790326767213968909516339260827677029591138399740050679075994940593621026170727331322958037085384348630932943042632630766799189359616360120822546493<195>
prime factors 素因数
1489398605083370326967975894222389<34>
201452503151630272092171137067216064475573143899301503387898381245497334238104480994753555248962880536691887832549083203575674684283685304601450640255059157512937<162>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=908324205
Step 1 took 21377ms
Step 2 took 7716ms
********** Factor found in step 2: 1489398605083370326967975894222389
Found probable prime factor of 34 digits: 1489398605083370326967975894222389
Probable prime cofactor 201452503151630272092171137067216064475573143899301503387898381245497334238104480994753555248962880536691887832549083203575674684283685304601450640255059157512937 has 162 digits
software ソフトウェア
GMP-ECM 6.2.3

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6418118Makoto KamadaSeptember 23, 2010 10:00:00 UTC 2010 年 9 月 23 日 (木) 19 時 0 分 0 秒 (日本時間)
300Ignacio SantosSeptember 23, 2010 22:25:47 UTC 2010 年 9 月 24 日 (金) 7 時 25 分 47 秒 (日本時間)
403e6110 / 2126Ignacio SantosSeptember 23, 2010 22:25:47 UTC 2010 年 9 月 24 日 (金) 7 時 25 分 47 秒 (日本時間)
4511e632 / 4437Ignacio SantosSeptember 23, 2010 22:25:47 UTC 2010 年 9 月 24 日 (金) 7 時 25 分 47 秒 (日本時間)

3×10203-1

c186

name 名前Ignacio Santos
date 日付November 8, 2010 21:49:07 UTC 2010 年 11 月 9 日 (火) 6 時 49 分 7 秒 (日本時間)
composite number 合成数
740714603732684406993801173873114001295585828697071619447677356782276793369184987991298064155891584887944226551132258886236882792402040655928526783245255154061339322886884976328008602719<186>
prime factors 素因数
5911299004317409433064334686882431<34>
125304878537135736559526197866845333384642570946536343308979146223992751323209664439152035917197388371173912085442221646664802334553324599448976142255649<153>
factorization results 素因数分解の結果
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=4160805105
Step 1 took 9157ms
Step 2 took 6786ms
********** Factor found in step 2: 5911299004317409433064334686882431
Found probable prime factor of 34 digits: 5911299004317409433064334686882431
Probable prime cofactor 125304878537135736559526197866845333384642570946536343308979146223992751323209664439152035917197388371173912085442221646664802334553324599448976142255649 has 153 digits
software ソフトウェア
GMP-ECM 6.3

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6204 / 904118Makoto KamadaSeptember 23, 2010 10:00:00 UTC 2010 年 9 月 23 日 (木) 19 時 0 分 0 秒 (日本時間)
86Luigi MorelliNovember 8, 2010 15:37:00 UTC 2010 年 11 月 9 日 (火) 0 時 37 分 0 秒 (日本時間)

3×10204-1

c196

name 名前[GPU Force] Robert 7NBI
date 日付December 17, 2011 00:30:24 UTC 2011 年 12 月 17 日 (土) 9 時 30 分 24 秒 (日本時間)
composite number 合成数
2764023105615288085988250235440179142086642986500652117353319367725771250872172519185082072723126592104373227315087225074103897098537596005958603618438480827707062186555345869494406524294483816331<196>
prime factors 素因数
4865205201866784469055303560140189723401751827411<49>
composite cofactor 合成数の残り
568120560373225254164514458290434909296187061758164146646542004177074857111598932545636638875579623614078218214806508414742019317598743155787823721<147>
factorization results 素因数分解の結果
GMP-ECM 6.3 [configured with GMP 5.0.1] [ECM]
Input number is 2764023105615288085988250235440179142086642986500652117353319367725771250872172519185082072723126592104373227315087225074103897098537596005958603618438480827707062186555345869494406524294483816331 (196 digits)
[Fri Dec 16 16:22:03 2011]
Using MODMULN
Using B1=110000000, B2=776278396540, polynomial Dickson(30), sigma=750827538
dF=131072, k=4, d=1345890, d2=11, i0=71
Expected number of curves to find a factor of n digits:
35        40      45      50      55      60      65      70      75      80
34      135     614     3135    17884   111314  752662  5482978 4.3e+007        3.6e+008
Step 1 took 473182ms
Using 24 small primes for NTT
Estimated memory usage: 721M
Initializing tables of differences for F took 312ms
Computing roots of F took 15303ms
Building F from its roots took 10780ms
Computing 1/F took 4383ms
Initializing table of differences for G took 250ms
Computing roots of G took 12808ms
Building G from its roots took 10545ms
Found factor while computing G[]
Computing roots of G took 515ms
Step 2 took 55489ms
********** Factor found in step 2: 4865205201866784469055303560140189723401751827411
Found probable prime factor of 49 digits: 4865205201866784469055303560140189723401751827411
Composite cofactor 568120560373225254164514458290434909296187061758164146646542004177074857111598932545636638875579623614078218214806508414742019317598743155787823721 has 147 digits
software ソフトウェア
GMP-ECM

c147

name 名前Dylan Delgado
date 日付March 6, 2019 04:11:32 UTC 2019 年 3 月 6 日 (水) 13 時 11 分 32 秒 (日本時間)
composite number 合成数
568120560373225254164514458290434909296187061758164146646542004177074857111598932545636638875579623614078218214806508414742019317598743155787823721<147>
prime factors 素因数
17201334856843872792091840415632047084927184520471936483205241911287<68>
33027701925539102191885887797543028799413573668100232754515284004933008970778783<80>
factorization results 素因数分解の結果
Number: 29999_204
N = 568120560373225254164514458290434909296187061758164146646542004177074857111598932545636638875579623614078218214806508414742019317598743155787823721 (147 digits)
SNFS difficulty: 206 digits.
Divisors found:
Version: Msieve v. 1.53 (SVN 1005)
Total time: 102.99 hours.
Factorization parameters were as follows:
n: 568120560373225254164514458290434909296187061758164146646542004177074857111598932545636638875579623614078218214806508414742019317598743155787823721
m: 50000000000000000000000000000000000000000
deg: 5
c5: 48
c0: -5
skew: 0.64
# Murphy_E = 1.079e-11
type: snfs
lss: 1
rlim: 16000000
alim: 16000000
lpbr: 29
lpba: 29
mfbr: 56
mfba: 56
rlambda: 2.7
alambda: 2.7
Factor base limits: 16000000/16000000
Large primes per side: 3
Large prime bits: 29/29
Sieved rational special-q in [0, 0)
Total raw relations: 39272054
Relations: 6211406 relations
Pruned matrix : 3686112 x 3686339
Polynomial selection time: 0.00 hours.
Total sieving time: 94.03 hours.
Total relation processing time: 0.23 hours.
Matrix solve time: 8.18 hours.
time per square root: 0.54 hours.
Prototype def-par.txt line would be: snfs,206,5,0,0,0,0,0,0,0,0,16000000,16000000,29,29,56,56,2.7,2.7,100000
total time: 102.99 hours.
Intel64 Family 6 Model 94 Stepping 3, GenuineIntel
Windows-10-10.0.17134
processors: 4, speed: 2.71GHz

__Square root phase + factors__
Tue Mar 05 22:34:27 2019  Msieve v. 1.53 (SVN 1005)
Tue Mar 05 22:34:27 2019  random seeds: 2af33de0 e82f33c4
Tue Mar 05 22:34:27 2019  factoring 568120560373225254164514458290434909296187061758164146646542004177074857111598932545636638875579623614078218214806508414742019317598743155787823721 (147 digits)
Tue Mar 05 22:34:28 2019  searching for 15-digit factors
Tue Mar 05 22:34:28 2019  commencing number field sieve (147-digit input)
Tue Mar 05 22:34:28 2019  R0: -50000000000000000000000000000000000000000
Tue Mar 05 22:34:28 2019  R1: 1
Tue Mar 05 22:34:28 2019  A0: -5
Tue Mar 05 22:34:28 2019  A1: 0
Tue Mar 05 22:34:28 2019  A2: 0
Tue Mar 05 22:34:28 2019  A3: 0
Tue Mar 05 22:34:28 2019  A4: 0
Tue Mar 05 22:34:28 2019  A5: 48
Tue Mar 05 22:34:28 2019  skew 0.64, size 3.171e-014, alpha 0.934, combined = 9.565e-012 rroots = 1
Tue Mar 05 22:34:28 2019  
Tue Mar 05 22:34:28 2019  commencing square root phase
Tue Mar 05 22:34:28 2019  reading relations for dependency 1
Tue Mar 05 22:34:29 2019  read 1843111 cycles
Tue Mar 05 22:34:31 2019  cycles contain 6220314 unique relations
Tue Mar 05 22:35:09 2019  read 6220314 relations
Tue Mar 05 22:35:36 2019  multiplying 6220314 relations
Tue Mar 05 22:38:41 2019  multiply complete, coefficients have about 180.86 million bits
Tue Mar 05 22:38:42 2019  initial square root is modulo 3095641
Tue Mar 05 22:42:35 2019  GCD is 1, no factor found
Tue Mar 05 22:42:35 2019  reading relations for dependency 2
Tue Mar 05 22:42:36 2019  read 1843980 cycles
Tue Mar 05 22:42:39 2019  cycles contain 6219356 unique relations
Tue Mar 05 22:43:16 2019  read 6219356 relations
Tue Mar 05 22:43:43 2019  multiplying 6219356 relations
Tue Mar 05 22:46:47 2019  multiply complete, coefficients have about 180.83 million bits
Tue Mar 05 22:46:48 2019  initial square root is modulo 3088061
Tue Mar 05 22:50:40 2019  GCD is N, no factor found
Tue Mar 05 22:50:40 2019  reading relations for dependency 3
Tue Mar 05 22:50:41 2019  read 1841586 cycles
Tue Mar 05 22:50:43 2019  cycles contain 6215376 unique relations
Tue Mar 05 22:51:21 2019  read 6215376 relations
Tue Mar 05 22:51:48 2019  multiplying 6215376 relations
Tue Mar 05 22:54:52 2019  multiply complete, coefficients have about 180.72 million bits
Tue Mar 05 22:54:53 2019  initial square root is modulo 3058361
Tue Mar 05 22:58:46 2019  GCD is N, no factor found
Tue Mar 05 22:58:46 2019  reading relations for dependency 4
Tue Mar 05 22:58:46 2019  read 1841934 cycles
Tue Mar 05 22:58:49 2019  cycles contain 6211406 unique relations
Tue Mar 05 22:59:26 2019  read 6211406 relations
Tue Mar 05 22:59:53 2019  multiplying 6211406 relations
Tue Mar 05 23:02:59 2019  multiply complete, coefficients have about 180.60 million bits
Tue Mar 05 23:02:59 2019  initial square root is modulo 3029711
Tue Mar 05 23:06:52 2019  sqrtTime: 1944
Tue Mar 05 23:06:52 2019  p68 factor: 17201334856843872792091840415632047084927184520471936483205241911287
Tue Mar 05 23:06:52 2019  p80 factor: 33027701925539102191885887797543028799413573668100232754515284004933008970778783
Tue Mar 05 23:06:52 2019  elapsed time 00:32:25
Tue Mar 05 23:06:52 2019 -> Computing 1.55185e+09 scale for this machine...
Tue Mar 05 23:06:52 2019 -> procrels -speedtest> PIPE
Tue Mar 05 23:06:54 2019 -> Factorization summary written to s206-29999_204.txt
software ソフトウェア
msieve v1.53, ggnfs, factmsieve.py v0.76
execution environment 実行環境
Intel Core i5-6400, Windows 10

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6418118Makoto KamadaSeptember 23, 2010 10:00:00 UTC 2010 年 9 月 23 日 (木) 19 時 0 分 0 秒 (日本時間)
300Ignacio SantosSeptember 23, 2010 23:35:37 UTC 2010 年 9 月 24 日 (金) 8 時 35 分 37 秒 (日本時間)
403e62126110Ignacio SantosSeptember 23, 2010 23:35:37 UTC 2010 年 9 月 24 日 (金) 8 時 35 分 37 秒 (日本時間)
2016Wataru SakaiSeptember 27, 2010 00:53:18 UTC 2010 年 9 月 27 日 (月) 9 時 53 分 18 秒 (日本時間)
4511e6423232Ignacio SantosSeptember 23, 2010 23:35:37 UTC 2010 年 9 月 24 日 (金) 8 時 35 分 37 秒 (日本時間)
600Serge BatalovJune 25, 2011 18:45:56 UTC 2011 年 6 月 26 日 (日) 3 時 45 分 56 秒 (日本時間)
3600Wataru SakaiSeptember 22, 2011 10:05:20 UTC 2011 年 9 月 22 日 (木) 19 時 5 分 20 秒 (日本時間)
5043e60 / 1579--
5511e72050 / 17487yoyo@homeDecember 14, 2011 14:50:14 UTC 2011 年 12 月 14 日 (水) 23 時 50 分 14 秒 (日本時間)

3×10205-1

c189

name 名前Dylan Delgado
date 日付March 9, 2019 23:06:31 UTC 2019 年 3 月 10 日 (日) 8 時 6 分 31 秒 (日本時間)
composite number 合成数
149420949345148181719699535053705287463550759220795172490599713901320150351284050444645249857895456018220795783374213760898507208017731266900132583026126643223196734357678182348227739334467<189>
prime factors 素因数
167600016483650028459421539216317068402628490727<48>
5643409327877686865675323356436413413687355359135162301043505206904279<70>
157977734941873640075507850668289158160299711451325582398769107983884099<72>
factorization results 素因数分解の結果
Number: 29999_205
N = 149420949345148181719699535053705287463550759220795172490599713901320150351284050444645249857895456018220795783374213760898507208017731266900132583026126643223196734357678182348227739334467 (189 digits)
SNFS difficulty: 206 digits.
Divisors found:
Version: Msieve v. 1.53 (SVN 1005)
Total time: 82.56 hours.
Factorization parameters were as follows:
n: 149420949345148181719699535053705287463550759220795172490599713901320150351284050444645249857895456018220795783374213760898507208017731266900132583026126643223196734357678182348227739334467
m: 100000000000000000000000000000000000000000
deg: 5
c5: 3
c0: -1
skew: 0.80
# Murphy_E = 1.37e-11
type: snfs
lss: 1
rlim: 16000000
alim: 16000000
lpbr: 29
lpba: 29
mfbr: 56
mfba: 56
rlambda: 2.6
alambda: 2.6
Factor base limits: 16000000/16000000
Large primes per side: 3
Large prime bits: 29/29
Sieved rational special-q in [0, 0)
Total raw relations: 38198179
Relations: 5975488 relations
Pruned matrix : 3497900 x 3498134
Polynomial selection time: 0.00 hours.
Total sieving time: 74.88 hours.
Total relation processing time: 0.23 hours.
Matrix solve time: 7.12 hours.
time per square root: 0.34 hours.
Prototype def-par.txt line would be: snfs,206,5,0,0,0,0,0,0,0,0,16000000,16000000,29,29,56,56,2.6,2.6,100000
total time: 82.56 hours.
Intel64 Family 6 Model 94 Stepping 3, GenuineIntel
Windows-10-10.0.17134
processors: 4, speed: 2.71GHz

__Square root phase + factors__
Sat Mar 09 09:15:11 2019  Msieve v. 1.53 (SVN 1005)
Sat Mar 09 09:15:11 2019  random seeds: caaa4ad8 690f9211
Sat Mar 09 09:15:11 2019  factoring 149420949345148181719699535053705287463550759220795172490599713901320150351284050444645249857895456018220795783374213760898507208017731266900132583026126643223196734357678182348227739334467 (189 digits)
Sat Mar 09 09:15:12 2019  searching for 15-digit factors
Sat Mar 09 09:15:12 2019  commencing number field sieve (189-digit input)
Sat Mar 09 09:15:12 2019  R0: -100000000000000000000000000000000000000000
Sat Mar 09 09:15:12 2019  R1: 1
Sat Mar 09 09:15:12 2019  A0: -1
Sat Mar 09 09:15:12 2019  A1: 0
Sat Mar 09 09:15:12 2019  A2: 0
Sat Mar 09 09:15:12 2019  A3: 0
Sat Mar 09 09:15:12 2019  A4: 0
Sat Mar 09 09:15:12 2019  A5: 3
Sat Mar 09 09:15:12 2019  skew 0.80, size 5.024e-014, alpha 1.167, combined = 1.214e-011 rroots = 1
Sat Mar 09 09:15:12 2019  
Sat Mar 09 09:15:12 2019  commencing square root phase
Sat Mar 09 09:15:12 2019  reading relations for dependency 1
Sat Mar 09 09:15:13 2019  read 1747876 cycles
Sat Mar 09 09:15:15 2019  cycles contain 5967122 unique relations
Sat Mar 09 09:15:50 2019  read 5967122 relations
Sat Mar 09 09:16:16 2019  multiplying 5967122 relations
Sat Mar 09 09:18:51 2019  multiply complete, coefficients have about 150.32 million bits
Sat Mar 09 09:18:51 2019  initial square root is modulo 248141
Sat Mar 09 09:21:55 2019  GCD is 1, no factor found
Sat Mar 09 09:21:55 2019  reading relations for dependency 2
Sat Mar 09 09:21:56 2019  read 1751225 cycles
Sat Mar 09 09:21:59 2019  cycles contain 5981738 unique relations
Sat Mar 09 09:22:34 2019  read 5981738 relations
Sat Mar 09 09:22:59 2019  multiplying 5981738 relations
Sat Mar 09 09:25:35 2019  multiply complete, coefficients have about 150.68 million bits
Sat Mar 09 09:25:35 2019  initial square root is modulo 255841
Sat Mar 09 09:28:37 2019  found factor: 167600016483650028459421539216317068402628490727
Sat Mar 09 09:28:37 2019  reading relations for dependency 3
Sat Mar 09 09:28:38 2019  read 1748986 cycles
Sat Mar 09 09:28:40 2019  cycles contain 5975488 unique relations
Sat Mar 09 09:29:16 2019  read 5975488 relations
Sat Mar 09 09:29:41 2019  multiplying 5975488 relations
Sat Mar 09 09:32:16 2019  multiply complete, coefficients have about 150.52 million bits
Sat Mar 09 09:32:16 2019  initial square root is modulo 252391
Sat Mar 09 09:35:18 2019  sqrtTime: 1206
Sat Mar 09 09:35:18 2019  p48 factor: 167600016483650028459421539216317068402628490727
Sat Mar 09 09:35:18 2019  p70 factor: 5643409327877686865675323356436413413687355359135162301043505206904279
Sat Mar 09 09:35:18 2019  p72 factor: 157977734941873640075507850668289158160299711451325582398769107983884099
Sat Mar 09 09:35:18 2019  elapsed time 00:20:07
Sat Mar 09 09:35:18 2019 -> Computing 1.55214e+09 scale for this machine...
Sat Mar 09 09:35:18 2019 -> procrels -speedtest> PIPE
Sat Mar 09 09:35:20 2019 -> Factorization summary written to s206-29999_205.txt
software ソフトウェア
ggnfs, msieve v1.53, factmsieve.py v0.76
execution environment 実行環境
Intel Core i5-6400, Windows 10

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6418118Makoto KamadaSeptember 23, 2010 10:00:00 UTC 2010 年 9 月 23 日 (木) 19 時 0 分 0 秒 (日本時間)
300Ignacio SantosNovember 8, 2010 22:52:41 UTC 2010 年 11 月 9 日 (火) 7 時 52 分 41 秒 (日本時間)
403e62126110Ignacio SantosNovember 8, 2010 22:52:41 UTC 2010 年 11 月 9 日 (火) 7 時 52 分 41 秒 (日本時間)
1600Youcef LemsaferDecember 19, 2013 22:35:31 UTC 2013 年 12 月 20 日 (金) 7 時 35 分 31 秒 (日本時間)
300Serge BatalovJanuary 9, 2014 04:38:08 UTC 2014 年 1 月 9 日 (木) 13 時 38 分 8 秒 (日本時間)
116KTakahashiJanuary 24, 2014 15:42:06 UTC 2014 年 1 月 25 日 (土) 0 時 42 分 6 秒 (日本時間)
4511e62112 / 399132Ignacio SantosNovember 8, 2010 22:52:41 UTC 2010 年 11 月 9 日 (火) 7 時 52 分 41 秒 (日本時間)
354KTakahashiApril 27, 2014 13:58:02 UTC 2014 年 4 月 27 日 (日) 22 時 58 分 2 秒 (日本時間)
1726KTakahashiMarch 20, 2015 09:50:38 UTC 2015 年 3 月 20 日 (金) 18 時 50 分 38 秒 (日本時間)

3×10206-1

c159

name 名前Bob Backstrom
date 日付June 1, 2022 08:58:53 UTC 2022 年 6 月 1 日 (水) 17 時 58 分 53 秒 (日本時間)
composite number 合成数
356691765312898855044551272462171319600662901965207529994372265149522460288111238503858604269568126993217825659728460473792118819630651862147288307034367744637<159>
prime factors 素因数
1021828675072250135587964288654831275335642902205599<52>
349071986346124370311964251579663214438523292674438408864698510831591803568951831593803689621187774672568163<108>
factorization results 素因数分解の結果
GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM]
Input number is 356691765312898855044551272462171319600662901965207529994372265149522460288111238503858604269568126993217825659728460473792118819630651862147288307034367744637 (159 digits)
Using B1=48250000, B2=240495495256, polynomial Dickson(12), sigma=1:142020064
Step 1 took 103404ms
Step 2 took 31506ms
********** Factor found in step 2: 1021828675072250135587964288654831275335642902205599
Found prime factor of 52 digits: 1021828675072250135587964288654831275335642902205599
Prime cofactor 349071986346124370311964251579663214438523292674438408864698510831591803568951831593803689621187774672568163 has 108 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6418118Makoto KamadaSeptember 23, 2010 10:00:00 UTC 2010 年 9 月 23 日 (木) 19 時 0 分 0 秒 (日本時間)
300Ignacio SantosNovember 10, 2010 14:20:44 UTC 2010 年 11 月 10 日 (水) 23 時 20 分 44 秒 (日本時間)
403e62126110Ignacio SantosNovember 10, 2010 14:20:44 UTC 2010 年 11 月 10 日 (水) 23 時 20 分 44 秒 (日本時間)
1600Youcef LemsaferDecember 19, 2013 22:35:51 UTC 2013 年 12 月 20 日 (金) 7 時 35 分 51 秒 (日本時間)
300Serge BatalovJanuary 9, 2014 04:38:09 UTC 2014 年 1 月 9 日 (木) 13 時 38 分 9 秒 (日本時間)
116KTakahashiJanuary 21, 2014 21:59:38 UTC 2014 年 1 月 22 日 (水) 6 時 59 分 38 秒 (日本時間)
4511e62112 / 399132Ignacio SantosNovember 10, 2010 14:20:44 UTC 2010 年 11 月 10 日 (水) 23 時 20 分 44 秒 (日本時間)
354KTakahashiApril 25, 2014 21:05:43 UTC 2014 年 4 月 26 日 (土) 6 時 5 分 43 秒 (日本時間)
1105KTakahashiJuly 4, 2014 10:33:46 UTC 2014 年 7 月 4 日 (金) 19 時 33 分 46 秒 (日本時間)
621KTakahashiMarch 14, 2015 01:31:48 UTC 2015 年 3 月 14 日 (土) 10 時 31 分 48 秒 (日本時間)

3×10208-1

c197

name 名前Jo Yeong Uk
date 日付April 21, 2020 15:51:45 UTC 2020 年 4 月 22 日 (水) 0 時 51 分 45 秒 (日本時間)
composite number 合成数
22006796264403422387844463869487013235192616976826946055177833450863429637244372917858265566233094615802865562868317232717097705372400590534460408595262895389268651053833693204802349545017606604263<197>
prime factors 素因数
489483369480799681873165359859227605279010625360148675273962137695042497<72>
44959231787070252937151747295347879448217753675962434119898768511186356218314659414429845460707928579018149806800998239751079<125>
factorization results 素因数分解の結果
Number: 29999_208
N=22006796264403422387844463869487013235192616976826946055177833450863429637244372917858265566233094615802865562868317232717097705372400590534460408595262895389268651053833693204802349545017606604263
  ( 197 digits)
SNFS difficulty: 209 digits.
Divisors found:
 r1=489483369480799681873165359859227605279010625360148675273962137695042497
 r2=44959231787070252937151747295347879448217753675962434119898768511186356218314659414429845460707928579018149806800998239751079
Version: 
Total time: 477.51 hours.
Scaled time: 2506.43 units (timescale=5.249).
Factorization parameters were as follows:
n: 22006796264403422387844463869487013235192616976826946055177833450863429637244372917858265566233094615802865562868317232717097705372400590534460408595262895389268651053833693204802349545017606604263
m: 200000000000000000000000000000000000000000
deg: 5
c5: 375
c0: -4
skew: 0.40
# Murphy_E = 6.938e-12
type: snfs
lss: 1
rlim: 20000000
alim: 20000000
lpbr: 29
lpba: 29
mfbr: 57
mfba: 57
rlambda: 2.6
alambda: 2.6
Factor base limits: 20000000/20000000
Large primes per side: 3
Large prime bits: 29/29
Max factor residue bits: 57/57
Sieved rational special-q in [10000000, 26700001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 44158536
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 4201475 x 4201723
Total sieving time: 420.67 hours.
Total relation processing time: 19.85 hours.
Matrix solve time: 36.61 hours.
Time per square root: 0.37 hours.
Prototype def-par.txt line would be:
snfs,209,5,0,0,0,0,0,0,0,0,20000000,20000000,29,29,57,57,2.6,2.6,100000
total time: 477.51 hours.
 --------- CPU info (if available) ----------
software ソフトウェア
GGNFS / Msieve v1.39
execution environment 実行環境
Core i7-4930K

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6418118Makoto KamadaSeptember 23, 2010 10:00:00 UTC 2010 年 9 月 23 日 (木) 19 時 0 分 0 秒 (日本時間)
300Ignacio SantosNovember 10, 2010 14:22:19 UTC 2010 年 11 月 10 日 (水) 23 時 22 分 19 秒 (日本時間)
403e62126110Ignacio SantosNovember 10, 2010 14:22:19 UTC 2010 年 11 月 10 日 (水) 23 時 22 分 19 秒 (日本時間)
1600Youcef LemsaferDecember 19, 2013 22:36:19 UTC 2013 年 12 月 20 日 (金) 7 時 36 分 19 秒 (日本時間)
300Serge BatalovJanuary 9, 2014 04:38:12 UTC 2014 年 1 月 9 日 (木) 13 時 38 分 12 秒 (日本時間)
116KTakahashiJanuary 24, 2014 22:28:00 UTC 2014 年 1 月 25 日 (土) 7 時 28 分 0 秒 (日本時間)
4511e6386 / 399132Ignacio SantosNovember 10, 2010 14:22:19 UTC 2010 年 11 月 10 日 (水) 23 時 22 分 19 秒 (日本時間)
354KTakahashiApril 27, 2014 22:54:00 UTC 2014 年 4 月 28 日 (月) 7 時 54 分 0 秒 (日本時間)

3×10211-1

c202

name 名前ebina
date 日付July 13, 2023 22:01:38 UTC 2023 年 7 月 14 日 (金) 7 時 1 分 38 秒 (日本時間)
composite number 合成数
1878946781381709724491378145579778608088716843263249290841971430663918549250875025970168267719275484887812888079566745722014265650030351382069949278833115235222438638400864625470496643200102186044705593<202>
prime factors 素因数
23471920759275827668858758489201611273405477544273283955881<59>
701301841443020897685416688374061205424850638583113743670131900388387<69>
114146045393689588744555368567781509029088868161603599183595448958757109819<75>
factorization results 素因数分解の結果
Number: 29999_211
N = 1878946781381709724491378145579778608088716843263249290841971430663918549250875025970168267719275484887812888079566745722014265650030351382069949278833115235222438638400864625470496643200102186044705593 (202 digits)
SNFS difficulty: 212 digits.
Divisors found:
r1=23471920759275827668858758489201611273405477544273283955881 (pp59)
r2=701301841443020897685416688374061205424850638583113743670131900388387 (pp69)
r3=114146045393689588744555368567781509029088868161603599183595448958757109819 (pp75)
Version: Msieve v. 1.53 (SVN unknown)
Total time: 311.35 hours.
Factorization parameters were as follows:
n: 1878946781381709724491378145579778608088716843263249290841971430663918549250875025970168267719275484887812888079566745722014265650030351382069949278833115235222438638400864625470496643200102186044705593
m: 1000000000000000000000000000000000000000000
deg: 5
c5: 30
c0: -1
skew: 0.51
# Murphy_E = 6.162e-12
type: snfs
lss: 1
rlim: 23000000
alim: 23000000
lpbr: 29
lpba: 29
mfbr: 57
mfba: 57
rlambda: 2.6
alambda: 2.6
Factor base limits: 23000000/23000000
Large primes per side: 3
Large prime bits: 29/29
Sieved rational special-q in [0, 0)
Total raw relations: 42715551
Relations: 6883830 relations
Pruned matrix : 4215337 x 4215561
Total sieving time: 271.97 hours.
Total relation processing time: 0.51 hours.
Matrix solve time: 38.13 hours.
time per square root: 0.73 hours.
Prototype def-par.txt line would be: snfs,212,5,0,0,0,0,0,0,0,0,23000000,23000000,29,29,57,57,2.6,2.6,100000
total time: 311.35 hours.
Intel64 Family 6 Model 58 Stepping 9, GenuineIntel
processors: 4, speed: 3.39GHz
Windows-7-6.1.7601-SP1
Running Python 3.2

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6418118Makoto KamadaSeptember 23, 2010 10:00:00 UTC 2010 年 9 月 23 日 (木) 19 時 0 分 0 秒 (日本時間)
300Ignacio SantosSeptember 29, 2010 18:32:02 UTC 2010 年 9 月 30 日 (木) 3 時 32 分 2 秒 (日本時間)
403e62428110Ignacio SantosSeptember 29, 2010 18:32:02 UTC 2010 年 9 月 30 日 (木) 3 時 32 分 2 秒 (日本時間)
2318Wataru SakaiSeptember 30, 2010 14:12:45 UTC 2010 年 9 月 30 日 (木) 23 時 12 分 45 秒 (日本時間)
4511e6403232Ignacio SantosSeptember 29, 2010 18:32:02 UTC 2010 年 9 月 30 日 (木) 3 時 32 分 2 秒 (日本時間)
200Ignacio SantosJune 12, 2011 13:57:13 UTC 2011 年 6 月 12 日 (日) 22 時 57 分 13 秒 (日本時間)
500Serge BatalovJune 26, 2011 15:55:00 UTC 2011 年 6 月 27 日 (月) 0 時 55 分 0 秒 (日本時間)
3300Wataru SakaiSeptember 26, 2011 02:48:41 UTC 2011 年 9 月 26 日 (月) 11 時 48 分 41 秒 (日本時間)
5043e60--
5511e72730 / 17498yoyo@homeDecember 14, 2011 16:25:24 UTC 2011 年 12 月 15 日 (木) 1 時 25 分 24 秒 (日本時間)

3×10215-1

c184

name 名前Youcef Lemsafer
date 日付December 19, 2013 17:37:57 UTC 2013 年 12 月 20 日 (金) 2 時 37 分 57 秒 (日本時間)
composite number 合成数
4168337771526041830931488687686438687448984284344859463467341113052959974711919919270878272464997702540252100778046707784307295921912489624269081262028275925188495142190997422626278879<184>
prime factors 素因数
135069937014825408795388841396935613723<39>
composite cofactor 合成数の残り
30860588696865394908965590164247781143263880486360243555136283430839748294667419494363297502693077662043790594864423048152966858683535973337477773<146>
factorization results 素因数分解の結果
GMP-ECM 7.0-dev [configured with MPIR 2.6.0, --enable-gpu] [ECM]
Input number is (3*10^215-1)/(7*474819775515343*21653669935445881) (184 digits)
Using MODMULN [mulredc:0, sqrredc:1]
Computing batch product (of zu bits) of primes below B1=0 took 0ms
GPU: compiled for a NVIDIA GPU with compute capability 3.0.
GPU: device 1 is required.
GPU: will use device 1: GeForce GTX 660, compute capability 3.0, 5 MPs.
GPU: Selection and initialization of the device took 0ms
Using B1=3000000, B2=0, sigma=3:3642554675-3:3642556274 (1600 curves)
dF=0, k=0, d=1573424, d2=0, i0=0
Expected number of curves to find a factor of n digits:
35      40      45      50      55      60      65      70      75      80
5388    51440   559187  6813685 9.3e+007        1.2e+009        5.4e+010        Inf     Inf     Inf
Computing 1600 Step 1 took 37222ms of CPU time / 4643540ms of GPU time
Throughput: 0.345 curves by second (on average 2902.21ms by Step 1)
Expected time to find a factor of n digits:
35       40      45      50      55      60      65      70      75      80
4.34h   1.73d   18.78d  228.86d 8.53y   110.94y 4931y   Inf     Inf     Inf
Resuming ECM residue saved by ******@****** with GMP-ECM 7.0-dev on Thu Dec 19 17:44:54 2013 
Input number is (3*10^215-1)/(7*474819775515343*21653669935445881) (184 digits)
Using MODMULN [mulredc:0, sqrredc:1]
Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:3642555923
dF=16384, k=2, d=158340, d2=11, i0=8
Expected number of curves to find a factor of n digits:
35   40      45      50      55      60      65      70      75      80
389     2872    25127   252850  2853276 3.6e+007        5.1e+008        7.8e+009        1.8e+011        2.3e+016
Step 1 took 15ms
Using 23 small primes for NTT
Estimated memory usage: 61M
Initializing tables of differences for F took 31ms
Computing roots of F took 842ms
Building F from its roots took 1810ms
Computing 1/F took 998ms
Initializing table of differences for G took 15ms
Computing roots of G took 718ms
Building G from its roots took 1872ms
Computing roots of G took 717ms
Building G from its roots took 1872ms
Computing G * H took 561ms
Reducing  G * H mod F took 578ms
Computing polyeval(F,G) took 3447ms
Computing product of all F(g_i) took 16ms
Step 2 took 13588ms
********** Factor found in step 2: 135069937014825408795388841396935613723
Found probable prime factor of 39 digits: 135069937014825408795388841396935613723
Composite cofactor ((3*10^215-1)/(7*474819775515343*21653669935445881))/135069937014825408795388841396935613723 has 146 digits

c146

name 名前Robert Balfour
date 日付April 7, 2020 23:42:41 UTC 2020 年 4 月 8 日 (水) 8 時 42 分 41 秒 (日本時間)
composite number 合成数
30860588696865394908965590164247781143263880486360243555136283430839748294667419494363297502693077662043790594864423048152966858683535973337477773<146>
prime factors 素因数
570851018157094747039977245744874086515128563<45>
54060670324271450418193984895009035869320119837249970916079791611665274741622296069799206552538924671<101>
factorization results 素因数分解の結果
PID20429 2020-04-07 16:21:49,470 Debug:root: Root parameter dictionary:
N = 30860588696865394908965590164247781143263880486360243555136283430839748294667419494363297502693077662043790594864423048152966858683535973337477773
name = 29999_215
tasks.I = 14
tasks.lim0 = 13000000
tasks.lim1 = 20000000
tasks.lpb0 = 30
tasks.lpb1 = 31
tasks.qmin = 100000
tasks.threads = 6
tasks.wutimeout = 1800
tasks.filter.required_excess = 0.05
tasks.filter.target_density = 135.0
tasks.filter.purge.keep = 175
tasks.linalg.m = 64
tasks.linalg.n = 64
tasks.linalg.bwc.interleaving = 0
tasks.linalg.bwc.threads = 6
tasks.linalg.characters.nchar = 50
tasks.polyselect.P = 300000
tasks.polyselect.admax = 20e4
tasks.polyselect.admin = 12600
tasks.polyselect.adrange = 840
tasks.polyselect.degree = 5
tasks.polyselect.incr = 60
tasks.polyselect.nq = 15625
tasks.polyselect.nrkeep = 100
tasks.polyselect.threads = 2
tasks.sieve.lambda0 = 1.81
tasks.sieve.lambda1 = 1.79
tasks.sieve.mfb0 = 56
tasks.sieve.mfb1 = 58
tasks.sieve.ncurves0 = 19
tasks.sieve.ncurves1 = 22
tasks.sieve.qrange = 5000
tasks.sieve.rels_wanted = 85000000
tasks.sieve.las.threads = 2
tasks.sqrt.threads = 2
PID20429 2020-04-07 17:14:38,017 Info:Polynomial Selection (root optimized): Best polynomial is:
n: 30860588696865394908965590164247781143263880486360243555136283430839748294667419494363297502693077662043790594864423048152966858683535973337477773
skew: 366559.925
c0: -1202644363538715907312204926945000
c1: -48796641716620152268801593765
c2: -215114259876516569364416
c3: -1159510061822341355
c4: 2453916685536
c5: 1013760
Y0: -17049530629258895847594057171
Y1: 100702694080465802857
# MurphyE (Bf=2.147e+09,Bg=1.074e+09,area=1.342e+13) = 2.403e-06
PID27695 2020-04-07 22:58:09,727 Info:Square Root: Factors: 54060670324271450418193984895009035869320119837249970916079791611665274741622296069799206552538924671 570851018157094747039977245744874086515128563
PID27695 2020-04-07 22:58:09,728 Debug:Square Root: Exit SqrtTask.run(sqrt)
PID27695 2020-04-07 22:58:09,728 Info:Polynomial Selection (size optimized): Aggregate statistics:
PID27695 2020-04-07 22:58:09,728 Info:Polynomial Selection (size optimized): potential collisions: 144726
PID27695 2020-04-07 22:58:09,728 Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 146265/42.700/52.992/60.410/1.195
PID27695 2020-04-07 22:58:09,728 Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 121297/42.150/46.915/53.440/1.016
PID27695 2020-04-07 22:58:09,728 Info:Polynomial Selection (size optimized): Total time: 61440.8
PID27695 2020-04-07 22:58:09,728 Info:Polynomial Selection (root optimized): Aggregate statistics:
PID27695 2020-04-07 22:58:09,728 Info:Polynomial Selection (root optimized): Total time: 2250.18
PID27695 2020-04-07 22:58:09,728 Info:Polynomial Selection (root optimized): Rootsieve time: 2246.19
PID27695 2020-04-07 22:58:09,728 Info:Generate Factor Base: Total cpu/real time for makefb: 14.36/2.73308
PID27695 2020-04-07 22:58:09,728 Info:Generate Free Relations: Total cpu/real time for freerel: 1336.53/225.695
PID27695 2020-04-07 22:58:09,728 Info:Lattice Sieving: Aggregate statistics:
PID27695 2020-04-07 22:58:09,728 Info:Lattice Sieving: Total number of relations: 94224397
PID27695 2020-04-07 22:58:09,728 Info:Lattice Sieving: Average J: 7818.86 for 648661 special-q, max bucket fill -bkmult 1.0,1s:1.087370
PID27695 2020-04-07 22:58:09,728 Info:Lattice Sieving: Total time: 611289s
PID27695 2020-04-07 22:58:09,728 Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 282.82/225.946
PID27695 2020-04-07 22:58:09,729 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics:
PID27695 2020-04-07 22:58:09,729 Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 225.3s
PID27695 2020-04-07 22:58:09,729 Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 1064.24/402
PID27695 2020-04-07 22:58:09,729 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics:
PID27695 2020-04-07 22:58:09,729 Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 308.2s
PID27695 2020-04-07 22:58:09,729 Info:Filtering - Singleton removal: Total cpu/real time for purge: 414.27/224.284
PID27695 2020-04-07 22:58:09,729 Info:Filtering - Merging: Total cpu/real time for merge: 154.9/35.83
PID27695 2020-04-07 22:58:09,729 Info:Filtering - Merging: Total cpu/real time for replay: 56.17/57.1516
PID27695 2020-04-07 22:58:09,729 Info:Linear Algebra: Total cpu/real time for bwc: 43481.4/7598.94
PID27695 2020-04-07 22:58:09,729 Info:Linear Algebra: Aggregate statistics:
PID27695 2020-04-07 22:58:09,729 Info:Linear Algebra: Krylov: WCT time 4812.82, iteration CPU time 0.06, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (70144 iterations)
PID27695 2020-04-07 22:58:09,729 Info:Linear Algebra: Lingen CPU time 276.81, WCT time 52.12
PID27695 2020-04-07 22:58:09,729 Info:Linear Algebra: Mksol: WCT time 2616.71, iteration CPU time 0.07, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (34304 iterations)
PID27695 2020-04-07 22:58:09,729 Info:Quadratic Characters: Total cpu/real time for characters: 72.15/22.3942
PID27695 2020-04-07 22:58:09,729 Info:Square Root: Total cpu/real time for sqrt: 648.32/145.851
PID27695 2020-04-07 22:58:09,729 Info:HTTP server: Shutting down HTTP server
PID27695 2020-04-07 22:58:10,124 Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 1.35504e+06/23638.1
software ソフトウェア
CADO-NFS

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6418118Makoto KamadaSeptember 23, 2010 10:00:00 UTC 2010 年 9 月 23 日 (木) 19 時 0 分 0 秒 (日本時間)
300Ignacio SantosNovember 12, 2010 06:35:56 UTC 2010 年 11 月 12 日 (金) 15 時 35 分 56 秒 (日本時間)
403e61710110Ignacio SantosNovember 12, 2010 06:35:56 UTC 2010 年 11 月 12 日 (金) 15 時 35 分 56 秒 (日本時間)
1600Youcef LemsaferDecember 19, 2013 17:35:15 UTC 2013 年 12 月 20 日 (金) 2 時 35 分 15 秒 (日本時間)
4511e6408332Ignacio SantosNovember 12, 2010 06:35:56 UTC 2010 年 11 月 12 日 (金) 15 時 35 分 56 秒 (日本時間)
230Ignacio SantosDecember 25, 2013 00:23:03 UTC 2013 年 12 月 25 日 (水) 9 時 23 分 3 秒 (日本時間)
400Serge BatalovJanuary 6, 2014 02:24:26 UTC 2014 年 1 月 6 日 (月) 11 時 24 分 26 秒 (日本時間)
1800Serge BatalovMay 24, 2014 17:36:04 UTC 2014 年 5 月 25 日 (日) 2 時 36 分 4 秒 (日本時間)
1621KTakahashiAugust 16, 2014 11:11:53 UTC 2014 年 8 月 16 日 (土) 20 時 11 分 53 秒 (日本時間)

3×10216-1

c177

composite cofactor 合成数の残り
145631870002781454717561682762880626089322799700979310229236886473776340441637327653247393670147665933591499388303122901639997221078477495535277351822564540046749106190357910357<177>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6418118Makoto KamadaSeptember 23, 2010 10:00:00 UTC 2010 年 9 月 23 日 (木) 19 時 0 分 0 秒 (日本時間)
300Ignacio SantosNovember 12, 2010 06:36:19 UTC 2010 年 11 月 12 日 (金) 15 時 36 分 19 秒 (日本時間)
403e62126110Ignacio SantosNovember 12, 2010 06:36:19 UTC 2010 年 11 月 12 日 (金) 15 時 36 分 19 秒 (日本時間)
1600Youcef LemsaferDecember 19, 2013 22:36:54 UTC 2013 年 12 月 20 日 (金) 7 時 36 分 54 秒 (日本時間)
300Serge BatalovJanuary 9, 2014 04:38:13 UTC 2014 年 1 月 9 日 (木) 13 時 38 分 13 秒 (日本時間)
116KTakahashiJanuary 22, 2014 22:05:13 UTC 2014 年 1 月 23 日 (木) 7 時 5 分 13 秒 (日本時間)
4511e6399132Ignacio SantosNovember 12, 2010 06:36:19 UTC 2010 年 11 月 12 日 (金) 15 時 36 分 19 秒 (日本時間)
354KTakahashiApril 26, 2014 21:51:40 UTC 2014 年 4 月 27 日 (日) 6 時 51 分 40 秒 (日本時間)
1726KTakahashiMarch 14, 2015 21:03:25 UTC 2015 年 3 月 15 日 (日) 6 時 3 分 25 秒 (日本時間)
1879Florian BaurJune 15, 2022 05:47:21 UTC 2022 年 6 月 15 日 (水) 14 時 47 分 21 秒 (日本時間)
5043e66575Florian BaurAugust 14, 2022 14:37:02 UTC 2022 年 8 月 14 日 (日) 23 時 37 分 2 秒 (日本時間)

3×10217-1

c201

name 名前Bob Backstrom
date 日付September 12, 2019 15:56:30 UTC 2019 年 9 月 13 日 (金) 0 時 56 分 30 秒 (日本時間)
composite number 合成数
664457763405396538992691338359903803840677726330880068445312668031190518379701347612103585091181030075496852241141317187161117581399202379529553668839616058326490942902296102459875918674328395686129297<201>
prime factors 素因数
51021602449586267694017733429293415506756956519079808475739087810633<68>
13023067318631122348557103888630650700446941612605094117352079694456660978800505690045749506045121566785337486300651991346814028979209<134>
factorization results 素因数分解の結果
Number: n
N=664457763405396538992691338359903803840677726330880068445312668031190518379701347612103585091181030075496852241141317187161117581399202379529553668839616058326490942902296102459875918674328395686129297
  ( 201 digits)
SNFS difficulty: 217 digits.
Divisors found:

Fri Sep 13 01:48:35 2019  p68 factor: 51021602449586267694017733429293415506756956519079808475739087810633
Fri Sep 13 01:48:35 2019  p134 factor: 13023067318631122348557103888630650700446941612605094117352079694456660978800505690045749506045121566785337486300651991346814028979209
Fri Sep 13 01:48:35 2019  elapsed time 05:44:00 (Msieve 1.54 - dependency 2)

Version:
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.122).
Factorization parameters were as follows:
#
# N = 3x10^217-1 = 29(217)
#
n: 664457763405396538992691338359903803840677726330880068445312668031190518379701347612103585091181030075496852241141317187161117581399202379529553668839616058326490942902296102459875918674328395686129297
m: 1000000000000000000000000000000000000
deg: 6
c6: 30
c0: -1
skew: 0.57
# Murphy_E = 3.452e-12
type: snfs
lss: 1
rlim: 29000000
alim: 29000000
lpbr: 29
lpba: 29
mfbr: 58
mfba: 58
rlambda: 2.6
alambda: 2.6
Factor base limits: 29000000/29000000
Large primes per side: 3
Large prime bits: 29/29
Max factor residue bits: 58/58
Sieved  special-q in [100000, 61700000)
Primes: , ,
Relations:
Max relations in full relation-set: 28
Initial matrix:
Pruned matrix :

Msieve: found 12979656 hash collisions in 69896190 relations (59211587 unique)
Msieve: matrix is 3610824 x 3611051 (1249.7 MB)

Sieving start time: 2019/09/11 16:59:06
Sieving end time  : 2019/09/12 20:01:45

Total sieving time: 27hrs 2min 39secs.

Total relation processing time: 5hrs 10min 42sec.
Matrix solve time: 0.00 hours.
Total square root time: 0hrs 13min 8sec.

Prototype def-par.txt line would be:
snfs,217,6,0,0,0,0,0,0,0,0,29000000,29000000,29,29,58,58,2.6,2.6,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------
[    0.040000] smpboot: CPU0: AMD Ryzen 7 1700 Eight-Core Processor (family: 0x17, model: 0x1, stepping: 0x1)
[    0.000000] Memory: 16284080K/16703460K available (12300K kernel code, 2478K rwdata, 4280K rodata, 2424K init, 2384K bss, 419380K reserved, 0K cma-reserved)
[    0.072549] x86/mm: Memory block size: 128MB
[    0.028000] Calibrating delay loop (skipped), value calculated using timer frequency.. 5988.52 BogoMIPS (lpj=11977052)
[    0.070220] smpboot: Total of 16 processors activated (95816.41 BogoMIPS)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6418118Makoto KamadaSeptember 23, 2010 10:00:00 UTC 2010 年 9 月 23 日 (木) 19 時 0 分 0 秒 (日本時間)
300Ignacio SantosNovember 12, 2010 06:36:48 UTC 2010 年 11 月 12 日 (金) 15 時 36 分 48 秒 (日本時間)
403e62126110Ignacio SantosNovember 12, 2010 06:36:48 UTC 2010 年 11 月 12 日 (金) 15 時 36 分 48 秒 (日本時間)
1600Youcef LemsaferDecember 19, 2013 22:37:13 UTC 2013 年 12 月 20 日 (金) 7 時 37 分 13 秒 (日本時間)
300Serge BatalovJanuary 9, 2014 04:38:14 UTC 2014 年 1 月 9 日 (木) 13 時 38 分 14 秒 (日本時間)
116KTakahashiJanuary 24, 2014 23:08:36 UTC 2014 年 1 月 25 日 (土) 8 時 8 分 36 秒 (日本時間)
4511e6386 / 399132Ignacio SantosNovember 12, 2010 06:36:48 UTC 2010 年 11 月 12 日 (金) 15 時 36 分 48 秒 (日本時間)
354KTakahashiApril 29, 2014 12:52:03 UTC 2014 年 4 月 29 日 (火) 21 時 52 分 3 秒 (日本時間)

3×10219-1

c180

name 名前KTakahashi
date 日付March 14, 2015 22:21:06 UTC 2015 年 3 月 15 日 (日) 7 時 21 分 6 秒 (日本時間)
composite number 合成数
157209867590243368899073837003689851054770579807220832613012212224171682442309057229722512510044526140199516633740898496547200252920958416523924504334973501235380777852625695457643<180>
prime factors 素因数
51537980707374859288465624373661565777383269<44>
composite cofactor 合成数の残り
3050369173034893962581429657759566610750244742440774431168511179663584402723394516722370242827320796600746080014804138250335961870076047<136>
factorization results 素因数分解の結果
GMP-ECM 6.4.4 [configured with GMP 6.0.0] [ECM]
Input number is 157209867590243368899073837003689851054770579807220832613012212224171682442309057229722512510044526140199516633740898496547200252920958416523924504334973501235380777852625695457643 (180 digits)
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1583749019
Step 1 took 54023ms
Step 2 took 20967ms
********** Factor found in step 2: 51537980707374859288465624373661565777383269
Found probable prime factor of 44 digits: 51537980707374859288465624373661565777383269
Composite cofactor 3050369173034893962581429657759566610750244742440774431168511179663584402723394516722370242827320796600746080014804138250335961870076047 has 136 digits

c136

name 名前Erik Branger
date 日付April 21, 2015 18:04:07 UTC 2015 年 4 月 22 日 (水) 3 時 4 分 7 秒 (日本時間)
composite number 合成数
3050369173034893962581429657759566610750244742440774431168511179663584402723394516722370242827320796600746080014804138250335961870076047<136>
prime factors 素因数
78968497606560052814333700965974749136904008185517<50>
38627671356147142887904952437828881669989202768143263641330016660368569254577218482091<86>
factorization results 素因数分解の結果
Number: 29999_219
N = 3050369173034893962581429657759566610750244742440774431168511179663584402723394516722370242827320796600746080014804138250335961870076047 (136 digits)
Divisors found:
r1=78968497606560052814333700965974749136904008185517 (pp50)
r2=38627671356147142887904952437828881669989202768143263641330016660368569254577218482091 (pp86)
Version: Msieve v. 1.51 (SVN 845)
Total time: 176.87 hours.
Factorization parameters were as follows:
# Murphy_E = 3.966e-11, selected by Erik Branger
# expecting poly E from 3.86e-011 to > 4.44e-011
n: 3050369173034893962581429657759566610750244742440774431168511179663584402723394516722370242827320796600746080014804138250335961870076047
Y0: -247267916474694899737239190
Y1: 39663779722489
c0: -18896722202651450438553379027305507
c1: 55627758556228394444816221641
c2: 63567182481187747162987
c3: -40703546816444821
c4: -18170792480
c5: 3300
skew: 1926671.32
type: gnfs
# selected mechanically
rlim: 13800000
alim: 13800000
lpbr: 28
lpba: 28
mfbr: 55
mfba: 55
rlambda: 2.6
alambda: 2.6
Factor base limits: 13800000/13800000
Large primes per side: 3
Large prime bits: 28/28
Sieved algebraic special-q in [0, 0)
Total raw relations: 23228159
Relations: 2854560 relations
Pruned matrix : 1788183 x 1788408
Polynomial selection time: 0.00 hours.
Total sieving time: 173.22 hours.
Total relation processing time: 0.16 hours.
Matrix solve time: 2.58 hours.
time per square root: 0.92 hours.
Prototype def-par.txt line would be: gnfs,135,5,65,2000,1e-05,0.28,250,20,50000,3600,13800000,13800000,28,28,55,55,2.6,2.6,100000
total time: 176.87 hours.
Intel64 Family 6 Model 58 Stepping 9, GenuineIntel
Windows-7-6.1.7601-SP1
processors: 8, speed: 2.29GHz
software ソフトウェア
GGNFS, Msieve

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6418118Makoto KamadaSeptember 23, 2010 10:00:00 UTC 2010 年 9 月 23 日 (木) 19 時 0 分 0 秒 (日本時間)
300Ignacio SantosNovember 12, 2010 07:37:11 UTC 2010 年 11 月 12 日 (金) 16 時 37 分 11 秒 (日本時間)
403e62126110Ignacio SantosNovember 12, 2010 07:37:11 UTC 2010 年 11 月 12 日 (金) 16 時 37 分 11 秒 (日本時間)
1600Youcef LemsaferDecember 19, 2013 22:37:37 UTC 2013 年 12 月 20 日 (金) 7 時 37 分 37 秒 (日本時間)
300Serge BatalovJanuary 9, 2014 04:38:14 UTC 2014 年 1 月 9 日 (木) 13 時 38 分 14 秒 (日本時間)
116KTakahashiJanuary 23, 2014 22:06:56 UTC 2014 年 1 月 24 日 (金) 7 時 6 分 56 秒 (日本時間)
4511e6399132Ignacio SantosNovember 12, 2010 07:37:11 UTC 2010 年 11 月 12 日 (金) 16 時 37 分 11 秒 (日本時間)
354KTakahashiApril 26, 2014 21:51:57 UTC 2014 年 4 月 27 日 (日) 6 時 51 分 57 秒 (日本時間)
1726KTakahashiMarch 15, 2015 13:50:46 UTC 2015 年 3 月 15 日 (日) 22 時 50 分 46 秒 (日本時間)
469KTakahashiMarch 17, 2015 13:48:48 UTC 2015 年 3 月 17 日 (火) 22 時 48 分 48 秒 (日本時間)
470KTakahashiMarch 18, 2015 14:06:47 UTC 2015 年 3 月 18 日 (水) 23 時 6 分 47 秒 (日本時間)
470KTakahashiMarch 19, 2015 14:51:06 UTC 2015 年 3 月 19 日 (木) 23 時 51 分 6 秒 (日本時間)
470KTakahashiMarch 20, 2015 14:24:07 UTC 2015 年 3 月 20 日 (金) 23 時 24 分 7 秒 (日本時間)
5043e65 / 6575KTakahashiMarch 20, 2015 21:56:55 UTC 2015 年 3 月 21 日 (土) 6 時 56 分 55 秒 (日本時間)

3×10224-1

c171

composite cofactor 合成数の残り
665216478586907855339972747484555374250749668841598036191771671137679236270989472674109002982763554683333874059637778491788808949793207676841176175320873503227364076562681<171>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6418118Makoto KamadaSeptember 23, 2010 10:00:00 UTC 2010 年 9 月 23 日 (木) 19 時 0 分 0 秒 (日本時間)
300Ignacio SantosNovember 12, 2010 13:33:46 UTC 2010 年 11 月 12 日 (金) 22 時 33 分 46 秒 (日本時間)
403e62126110Ignacio SantosNovember 12, 2010 13:33:46 UTC 2010 年 11 月 12 日 (金) 22 時 33 分 46 秒 (日本時間)
1600Youcef LemsaferDecember 19, 2013 22:37:54 UTC 2013 年 12 月 20 日 (金) 7 時 37 分 54 秒 (日本時間)
300Serge BatalovJanuary 9, 2014 04:38:15 UTC 2014 年 1 月 9 日 (木) 13 時 38 分 15 秒 (日本時間)
116KTakahashiJanuary 21, 2014 22:01:01 UTC 2014 年 1 月 22 日 (水) 7 時 1 分 1 秒 (日本時間)
4511e6399132Ignacio SantosNovember 12, 2010 13:33:46 UTC 2010 年 11 月 12 日 (金) 22 時 33 分 46 秒 (日本時間)
354KTakahashiApril 26, 2014 02:46:41 UTC 2014 年 4 月 26 日 (土) 11 時 46 分 41 秒 (日本時間)
1105KTakahashiJuly 15, 2014 20:24:07 UTC 2014 年 7 月 16 日 (水) 5 時 24 分 7 秒 (日本時間)
621KTakahashiMarch 14, 2015 01:32:10 UTC 2015 年 3 月 14 日 (土) 10 時 32 分 10 秒 (日本時間)
1879Florian BaurJune 15, 2022 16:31:24 UTC 2022 年 6 月 16 日 (木) 1 時 31 分 24 秒 (日本時間)
5043e66575Florian BaurAugust 15, 2022 12:06:35 UTC 2022 年 8 月 15 日 (月) 21 時 6 分 35 秒 (日本時間)

3×10227-1

c201

name 名前Florian Baur
date 日付June 16, 2022 05:07:04 UTC 2022 年 6 月 16 日 (木) 14 時 7 分 4 秒 (日本時間)
composite number 合成数
475535848369823271621976282566183163495438065096859555918916346400668229763045871783484447687733321522397602287571986452276584696378999490671768883679253603813200090511825498243523391117806297158145091<201>
prime factors 素因数
20344927471173334979349573079769558971349<41>
23373681181395635316839983302967007703902506110568886227014358845303531417267938147068218935705923260423482835638272708535773508269840735220618226559712321989559<161>
factorization results 素因数分解の結果
06/15/22 21:21:16, prp41 = 20344927471173334979349573079769558971349 (curve 369 stg2 B1=11000000 sigma=2006884560 thread=3)
software ソフトウェア
gmp-ecm
execution environment 実行環境
Epyk 7401P, 128 GB, Ubuntu

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6418118Makoto KamadaSeptember 23, 2010 10:00:00 UTC 2010 年 9 月 23 日 (木) 19 時 0 分 0 秒 (日本時間)
300Ignacio SantosNovember 12, 2010 13:34:05 UTC 2010 年 11 月 12 日 (金) 22 時 34 分 5 秒 (日本時間)
403e62126110Ignacio SantosNovember 12, 2010 13:34:05 UTC 2010 年 11 月 12 日 (金) 22 時 34 分 5 秒 (日本時間)
1600Youcef LemsaferDecember 19, 2013 22:38:09 UTC 2013 年 12 月 20 日 (金) 7 時 38 分 9 秒 (日本時間)
300Serge BatalovJanuary 9, 2014 04:38:15 UTC 2014 年 1 月 9 日 (木) 13 時 38 分 15 秒 (日本時間)
116KTakahashiJanuary 24, 2014 23:09:00 UTC 2014 年 1 月 25 日 (土) 8 時 9 分 0 秒 (日本時間)
4511e6386 / 399132Ignacio SantosNovember 12, 2010 13:34:05 UTC 2010 年 11 月 12 日 (金) 22 時 34 分 5 秒 (日本時間)
354KTakahashiApril 29, 2014 12:52:30 UTC 2014 年 4 月 29 日 (火) 21 時 52 分 30 秒 (日本時間)

3×10229-1

c181

composite cofactor 合成数の残り
4356678967073131699922919238013195777268404683816329412282933395427914670466940368270959639305823432531294732744114567989001133102965833856075412728110445335868062963377998453577527<181>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6418118Makoto KamadaSeptember 23, 2010 10:00:00 UTC 2010 年 9 月 23 日 (木) 19 時 0 分 0 秒 (日本時間)
300Ignacio SantosNovember 12, 2010 13:34:27 UTC 2010 年 11 月 12 日 (金) 22 時 34 分 27 秒 (日本時間)
403e62126110Ignacio SantosNovember 12, 2010 13:34:27 UTC 2010 年 11 月 12 日 (金) 22 時 34 分 27 秒 (日本時間)
1600Youcef LemsaferDecember 19, 2013 22:38:27 UTC 2013 年 12 月 20 日 (金) 7 時 38 分 27 秒 (日本時間)
300Serge BatalovJanuary 9, 2014 04:38:16 UTC 2014 年 1 月 9 日 (木) 13 時 38 分 16 秒 (日本時間)
116KTakahashiJanuary 24, 2014 15:42:27 UTC 2014 年 1 月 25 日 (土) 0 時 42 分 27 秒 (日本時間)
4511e6399132Ignacio SantosNovember 12, 2010 13:34:27 UTC 2010 年 11 月 12 日 (金) 22 時 34 分 27 秒 (日本時間)
354KTakahashiApril 27, 2014 06:04:48 UTC 2014 年 4 月 27 日 (日) 15 時 4 分 48 秒 (日本時間)
1726KTakahashiMarch 16, 2015 10:33:47 UTC 2015 年 3 月 16 日 (月) 19 時 33 分 47 秒 (日本時間)
1879Florian BaurJune 16, 2022 19:09:07 UTC 2022 年 6 月 17 日 (金) 4 時 9 分 7 秒 (日本時間)
5043e66575Florian BaurAugust 16, 2022 09:51:43 UTC 2022 年 8 月 16 日 (火) 18 時 51 分 43 秒 (日本時間)

3×10231-1

c217

composite cofactor 合成数の残り
7917662474182316214227603643169139421570856799921026888010388859387406485741797396717628609075723138663392672268035950746935123514655318934038254620922525714676970209930134476969171144513307411981009875618829118031007<217>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6418118Makoto KamadaSeptember 23, 2010 10:00:00 UTC 2010 年 9 月 23 日 (木) 19 時 0 分 0 秒 (日本時間)
300Ignacio SantosNovember 12, 2010 13:34:48 UTC 2010 年 11 月 12 日 (金) 22 時 34 分 48 秒 (日本時間)
403e62126110Ignacio SantosNovember 12, 2010 13:34:48 UTC 2010 年 11 月 12 日 (金) 22 時 34 分 48 秒 (日本時間)
1600Youcef LemsaferDecember 19, 2013 22:38:42 UTC 2013 年 12 月 20 日 (金) 7 時 38 分 42 秒 (日本時間)
300Serge BatalovJanuary 9, 2014 04:38:16 UTC 2014 年 1 月 9 日 (木) 13 時 38 分 16 秒 (日本時間)
116KTakahashiJanuary 25, 2014 23:12:12 UTC 2014 年 1 月 26 日 (日) 8 時 12 分 12 秒 (日本時間)
4511e6399132Ignacio SantosNovember 12, 2010 13:34:48 UTC 2010 年 11 月 12 日 (金) 22 時 34 分 48 秒 (日本時間)
354KTakahashiMay 2, 2014 16:04:29 UTC 2014 年 5 月 3 日 (土) 1 時 4 分 29 秒 (日本時間)
3605Florian BaurJune 18, 2022 14:07:27 UTC 2022 年 6 月 18 日 (土) 23 時 7 分 27 秒 (日本時間)
5043e66575Florian BaurAugust 16, 2022 09:52:08 UTC 2022 年 8 月 16 日 (火) 18 時 52 分 8 秒 (日本時間)

3×10232-1

c199

name 名前Ignacio Santos
date 日付November 12, 2010 14:07:48 UTC 2010 年 11 月 12 日 (金) 23 時 7 分 48 秒 (日本時間)
composite number 合成数
2514520385288019313466941955438891728366524869055698733004247876123792908308116203509434603904791611450882752242024442604465256841992262962787781175938070959468039675157801250408186827864432083458203<199>
prime factors 素因数
298363907844779350307048893453665107<36>
8427696243327701015938935430022630937488867323174880941163956638487776713388125224527233959937892819820286832747140750154647858167538283583428483700883633002034329<163>
factorization results 素因数分解の結果
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2457181535
Step 1 took 10717ms
Step 2 took 7582ms
********** Factor found in step 2: 298363907844779350307048893453665107
Found probable prime factor of 36 digits: 298363907844779350307048893453665107
Probable prime cofactor 8427696243327701015938935430022630937488867323174880941163956638487776713388125224527233959937892819820286832747140750154647858167538283583428483700883633002034329 has 163 digits
software ソフトウェア
GMP-ECM 6.3

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaSeptember 23, 2010 10:00:00 UTC 2010 年 9 月 23 日 (木) 19 時 0 分 0 秒 (日本時間)

3×10233-1

c233

name 名前matsui
date 日付September 14, 2012 11:39:12 UTC 2012 年 9 月 14 日 (金) 20 時 39 分 12 秒 (日本時間)
composite number 合成数
42857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857<233>
prime factors 素因数
189463425949411434003748743265533094404392834958315942679047997<63>
6937859318682358619779711655390966130774663036538025305503447222060484081<73>
32604109221823010620391224287664218577256270072051779328401086054283813766714696419408318931140301<98>
factorization results 素因数分解の結果
N=42857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857
  ( 233 digits)
SNFS difficulty: 233 digits.
Divisors found:
 r1=189463425949411434003748743265533094404392834958315942679047997 (pp63)
 r2=6937859318682358619779711655390966130774663036538025305503447222060484081 (pp73)
 r3=32604109221823010620391224287664218577256270072051779328401086054283813766714696419408318931140301 (pp98)
Version: Msieve v. 1.51
Scaled time: 271.76 units (timescale=1.814).
Factorization parameters were as follows:
n: 42857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857
m: 100000000000000000000000000000000000000
deg: 6
c6: 300000
c0: -1
skew: 0.12
type: snfs
lss: 1
rlim: 54000000
alim: 54000000
lpbr: 30
lpba: 30
mfbr: 60
mfba: 60
rlambda: 2.7
alambda: 2.7
qintsize: 160000
Factor base limits: 54000000/54000000
Large primes per side: 3
Large prime bits: 30/30
Max factor residue bits: 60/60
Sieved rational special-q in [27000000, 55640001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 7769408 x 7769636
Total sieving time:
Total relation processing time:
Matrix solve time:
Time per square root:
Prototype def-par.txt line would be:
snfs,233.000,6,0,0,0,0,0,0,0,0,54000000,54000000,30,30,60,60,2.7,2.7,100000
total time:

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6418118Makoto KamadaSeptember 23, 2010 10:00:00 UTC 2010 年 9 月 23 日 (木) 19 時 0 分 0 秒 (日本時間)
300Ignacio SantosSeptember 24, 2010 06:12:49 UTC 2010 年 9 月 24 日 (金) 15 時 12 分 49 秒 (日本時間)
403e62128110Ignacio SantosSeptember 24, 2010 06:12:49 UTC 2010 年 9 月 24 日 (金) 15 時 12 分 49 秒 (日本時間)
2018Serge BatalovSeptember 24, 2010 07:05:23 UTC 2010 年 9 月 24 日 (金) 16 時 5 分 23 秒 (日本時間)
4511e632Ignacio SantosSeptember 24, 2010 06:12:49 UTC 2010 年 9 月 24 日 (金) 15 時 12 分 49 秒 (日本時間)
5043e6600300Dmitry DomanovMay 25, 2011 20:43:29 UTC 2011 年 5 月 26 日 (木) 5 時 43 分 29 秒 (日本時間)
300Dmitry DomanovMay 26, 2011 13:24:58 UTC 2011 年 5 月 26 日 (木) 22 時 24 分 58 秒 (日本時間)
5511e73085 / 17518240Dmitry DomanovMay 30, 2011 16:46:00 UTC 2011 年 5 月 31 日 (火) 1 時 46 分 0 秒 (日本時間)
2845yoyo@homeSeptember 23, 2011 01:30:05 UTC 2011 年 9 月 23 日 (金) 10 時 30 分 5 秒 (日本時間)
6026e78 / 40778Dmitry DomanovMay 30, 2011 16:49:55 UTC 2011 年 5 月 31 日 (火) 1 時 49 分 55 秒 (日本時間)

3×10234-1

c204

composite cofactor 合成数の残り
107792304307139560210666335830848687978750752449830788691580353046844516595060078066677756466921413394857447882633792760092630660543544064791722379156530851262917123495944561541496798422416709220741501217<204>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6418118Makoto KamadaSeptember 23, 2010 10:00:00 UTC 2010 年 9 月 23 日 (木) 19 時 0 分 0 秒 (日本時間)
300Ignacio SantosNovember 10, 2010 14:22:52 UTC 2010 年 11 月 10 日 (水) 23 時 22 分 52 秒 (日本時間)
403e61710110Ignacio SantosNovember 10, 2010 14:22:52 UTC 2010 年 11 月 10 日 (水) 23 時 22 分 52 秒 (日本時間)
1600Youcef LemsaferDecember 19, 2013 22:39:00 UTC 2013 年 12 月 20 日 (金) 7 時 39 分 0 秒 (日本時間)
4511e6408332Ignacio SantosNovember 10, 2010 14:22:52 UTC 2010 年 11 月 10 日 (水) 23 時 22 分 52 秒 (日本時間)
131CypJanuary 8, 2014 19:53:04 UTC 2014 年 1 月 9 日 (木) 4 時 53 分 4 秒 (日本時間)
315KTakahashiApril 25, 2014 21:30:59 UTC 2014 年 4 月 26 日 (土) 6 時 30 分 59 秒 (日本時間)
3605Florian BaurJune 18, 2022 14:09:24 UTC 2022 年 6 月 18 日 (土) 23 時 9 分 24 秒 (日本時間)
5043e66570Florian BaurAugust 17, 2022 08:03:45 UTC 2022 年 8 月 17 日 (水) 17 時 3 分 45 秒 (日本時間)

3×10235-1

c190

name 名前Ignacio Santos
date 日付November 10, 2010 14:23:20 UTC 2010 年 11 月 10 日 (水) 23 時 23 分 20 秒 (日本時間)
composite number 合成数
2202988127933546675784757663232542442153763131063931884503965332135856796387917795270518714627986439355884619719966017679365049531650874504088094965720711727458254448304726694544018464717329<190>
prime factors 素因数
2136402331008922147165389780849956832607<40>
composite cofactor 合成数の残り
1031167255323663307583532532780289216347399581274837246893992901532188944537586341666542056644807492868698716631843625521106301358821983488667420706447<151>
factorization results 素因数分解の結果
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3576123916
Step 1 took 9376ms
Step 2 took 6630ms
********** Factor found in step 2: 2136402331008922147165389780849956832607
Found probable prime factor of 40 digits: 2136402331008922147165389780849956832607
Composite cofactor 1031167255323663307583532532780289216347399581274837246893992901532188944537586341666542056644807492868698716631843625521106301358821983488667420706447 has 151 digits
software ソフトウェア
GMP-ECM 6.3

c151

name 名前NFS@Home + Lionel Debroux
date 日付August 2, 2013 05:48:23 UTC 2013 年 8 月 2 日 (金) 14 時 48 分 23 秒 (日本時間)
composite number 合成数
1031167255323663307583532532780289216347399581274837246893992901532188944537586341666542056644807492868698716631843625521106301358821983488667420706447<151>
prime factors 素因数
1594264654009345926779168497144420365135920494761720601213<58>
646798041172415267289633787963704266787787379285930212171336658990155749445764798817046701819<93>
factorization results 素因数分解の結果
prp58 factor: 1594264654009345926779168497144420365135920494761720601213
prp93 factor: 646798041172415267289633787963704266787787379285930212171336658990155749445764798817046701819
software ソフトウェア
ggnfs-lasieve4I14e on the NFS@Home grid + msieve

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaSeptember 23, 2010 10:00:00 UTC 2010 年 9 月 23 日 (木) 19 時 0 分 0 秒 (日本時間)
403e61000Erik BrangerNovember 11, 2010 19:17:39 UTC 2010 年 11 月 12 日 (金) 4 時 17 分 39 秒 (日本時間)
4511e64254400Dmitry DomanovNovember 20, 2010 10:28:49 UTC 2010 年 11 月 20 日 (土) 19 時 28 分 49 秒 (日本時間)
3854Wataru SakaiNovember 29, 2010 01:28:59 UTC 2010 年 11 月 29 日 (月) 10 時 28 分 59 秒 (日本時間)
5043e67000Wataru SakaiJanuary 10, 2011 08:46:35 UTC 2011 年 1 月 10 日 (月) 17 時 46 分 35 秒 (日本時間)
5511e73000 / 14997Wataru SakaiJanuary 12, 2011 04:02:55 UTC 2011 年 1 月 12 日 (水) 13 時 2 分 55 秒 (日本時間)

3×10237-1

c208

name 名前Serge Batalov
date 日付September 23, 2010 18:18:04 UTC 2010 年 9 月 24 日 (金) 3 時 18 分 4 秒 (日本時間)
composite number 合成数
7852978578563619371040477054510872179659974254264836941844345766702313417206375084878208582273652582672244421524819260345122159367361477854780134286349994684324697009530682032633691651879278322630696566601689<208>
prime factors 素因数
979344090486010814933143639196331587<36>
composite cofactor 合成数の残り
8018610266659686546645654000385995234265376666722739667470794883946905113756811628514863257406251781280851390981204234613914060239590544033769436639667734592286755819943347<172>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=790511631
Step 1 took 10768ms
Step 2 took 4884ms
********** Factor found in step 2: 979344090486010814933143639196331587
Found probable prime factor of 36 digits: 979344090486010814933143639196331587
Composite cofactor has 172 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6418118Makoto KamadaSeptember 23, 2010 10:00:00 UTC 2010 年 9 月 23 日 (木) 19 時 0 分 0 秒 (日本時間)
300Ignacio SantosNovember 10, 2010 15:40:29 UTC 2010 年 11 月 11 日 (木) 0 時 40 分 29 秒 (日本時間)
403e62126110Ignacio SantosNovember 10, 2010 15:40:29 UTC 2010 年 11 月 11 日 (木) 0 時 40 分 29 秒 (日本時間)
300Serge BatalovJanuary 9, 2014 04:38:18 UTC 2014 年 1 月 9 日 (木) 13 時 38 分 18 秒 (日本時間)
1716KTakahashiFebruary 23, 2014 07:55:51 UTC 2014 年 2 月 23 日 (日) 16 時 55 分 51 秒 (日本時間)
4511e6399132Ignacio SantosNovember 10, 2010 15:40:29 UTC 2010 年 11 月 11 日 (木) 0 時 40 分 29 秒 (日本時間)
354KTakahashiApril 26, 2014 09:21:28 UTC 2014 年 4 月 26 日 (土) 18 時 21 分 28 秒 (日本時間)
1105KTakahashiJuly 17, 2014 01:40:55 UTC 2014 年 7 月 17 日 (木) 10 時 40 分 55 秒 (日本時間)
621KTakahashiMarch 14, 2015 01:39:24 UTC 2015 年 3 月 14 日 (土) 10 時 39 分 24 秒 (日本時間)
1879Florian BaurJune 18, 2022 21:16:35 UTC 2022 年 6 月 19 日 (日) 6 時 16 分 35 秒 (日本時間)
5043e665756570Florian BaurAugust 18, 2022 06:01:18 UTC 2022 年 8 月 18 日 (木) 15 時 1 分 18 秒 (日本時間)
5Florian BaurAugust 18, 2022 07:00:21 UTC 2022 年 8 月 18 日 (木) 16 時 0 分 21 秒 (日本時間)

3×10238-1

c223

name 名前Florian Baur
date 日付June 19, 2022 08:26:57 UTC 2022 年 6 月 19 日 (日) 17 時 26 分 57 秒 (日本時間)
composite number 合成数
2496652612664644627957996948295649875870728454253216521124577905928616719491614747261518459416393449262358038444327254901877738493874177411868975201646849395275164208146238013942678828358126885955935196778436587706174974259<223>
prime factors 素因数
733094246271381527872270076511379937952520383863<48>
3405636622252819807336572127265585521853216537017929000577864261466477647604929352437610101401770682143725979360760998613859997748731422133742453790114651694810530194462925093<175>
factorization results 素因数分解の結果
06/19/22 03:39:02, prp48 = 733094246271381527872270076511379937952520383863 (curve 2939 stg2 B1=11000000 sigma=620034157 thread=3)
software ソフトウェア
gmp-ecm 7.04+ds-6

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6418118Makoto KamadaSeptember 23, 2010 10:00:00 UTC 2010 年 9 月 23 日 (木) 19 時 0 分 0 秒 (日本時間)
300Ignacio SantosNovember 14, 2010 00:46:38 UTC 2010 年 11 月 14 日 (日) 9 時 46 分 38 秒 (日本時間)
403e6110Ignacio SantosNovember 14, 2010 00:46:38 UTC 2010 年 11 月 14 日 (日) 9 時 46 分 38 秒 (日本時間)
4511e63774 / 443732Ignacio SantosNovember 14, 2010 00:46:38 UTC 2010 年 11 月 14 日 (日) 9 時 46 分 38 秒 (日本時間)
800Dmitry DomanovSeptember 11, 2011 22:19:39 UTC 2011 年 9 月 12 日 (月) 7 時 19 分 39 秒 (日本時間)
2942Florian BaurJune 19, 2022 06:20:30 UTC 2022 年 6 月 19 日 (日) 15 時 20 分 30 秒 (日本時間)

3×10239-1

c228

name 名前Serge Batalov
date 日付September 24, 2010 01:27:12 UTC 2010 年 9 月 24 日 (金) 10 時 27 分 12 秒 (日本時間)
composite number 合成数
842775656947325007655584934805820440689532173590286877019812189048876103967989395801231476499550188504812339491396138322911670303988326375287646280752570079535591345070174379899295999659774568704782460565468534371450373512857599<228>
prime factors 素因数
77203796737224443766710102182926132323<38>
10916246254259329875940527696399155789884824127541558495304859754181264740404524607872548942516259298620753621206702100588140627958595463239342669014541036268439465523024466804909854179973813<191>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3856446914
Step 1 took 12078ms
Step 2 took 5284ms
********** Factor found in step 2: 77203796737224443766710102182926132323
Found probable prime factor of 38 digits: 77203796737224443766710102182926132323
Probable prime cofactor has 191 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaSeptember 23, 2010 10:00:00 UTC 2010 年 9 月 23 日 (木) 19 時 0 分 0 秒 (日本時間)
403e6300 / 2318Serge BatalovSeptember 24, 2010 01:08:35 UTC 2010 年 9 月 24 日 (金) 10 時 8 分 35 秒 (日本時間)

3×10240-1

c231

name 名前Erik Branger
date 日付April 24, 2023 16:01:07 UTC 2023 年 4 月 25 日 (火) 1 時 1 分 7 秒 (日本時間)
composite number 合成数
118822191232006729688401381615152200851216425256516527895826365031508309577783316897783810163554123651544367580943857351507569667245627542597771300614750834183579022215128012827701240637521739093698060789095658486338164144984899989<231>
prime factors 素因数
8612983311914710449432234585981951050033163457717503080226681247987264415833<76>
13795706659228618195322438459544243347989247229848777018474606399282338997390472414635229090167824493337681234778725030255806805084989944559370201803717533<155>
factorization results 素因数分解の結果
Number: 29999_240
N = 118822191232006729688401381615152200851216425256516527895826365031508309577783316897783810163554123651544367580943857351507569667245627542597771300614750834183579022215128012827701240637521739093698060789095658486338164144984899989 (231 digits)
SNFS difficulty: 241 digits.
Divisors found:
r1=8612983311914710449432234585981951050033163457717503080226681247987264415833 (pp76)
r2=13795706659228618195322438459544243347989247229848777018474606399282338997390472414635229090167824493337681234778725030255806805084989944559370201803717533 (pp155)
Version: Msieve v. 1.52 (SVN unknown)
Total time: 45.31 hours.
Factorization parameters were as follows:
n: 118822191232006729688401381615152200851216425256516527895826365031508309577783316897783810163554123651544367580943857351507569667245627542597771300614750834183579022215128012827701240637521739093698060789095658486338164144984899989 
m: 1000000000000000000000000000000000000000000000000000000000000
deg: 4
c4: 3
c0: -1
skew: 1.00
type: snfs
lss: 1
rlim: 500000000
alim: 150000000
lpbr: 29
lpba: 29
mfbr: 58
mfba: 58
rlambda: 2.8
alambda: 2.8
side: 1
Number of cores used: 8
Number of threads per core: 1
Factor base limits: 500000000/150000000
Large primes per side: 3
Large prime bits: 29/29
Total raw relations: 0
Relations: 13701202 relations
Total pre-computation time approximately 1000 CPU-days.
Pre-computation saved approximately 18 G rational relations.
Total batch smoothness checking time: 15.30 hours.
Total relation processing time: 0.60 hours.
Pruned matrix : 10940785 x 10941010
Matrix solve time: 28.58 hours.
time per square root: 0.83 hours.
Prototype def-par.txt line would be: snfs,241,4,0,0,0,0,0,0,0,0,500000000,150000000,29,29,58,58,2.8,2.8,100000
total time: 45.31 hours.
Intel64 Family 6 Model 165 Stepping 5, GenuineIntel
Windows-10-10.0.22621-SP0
processors: 16, speed: 3.79GHz
software ソフトウェア
GGNFS, NFS_factory, Msieve

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaSeptember 23, 2010 10:00:00 UTC 2010 年 9 月 23 日 (木) 19 時 0 分 0 秒 (日本時間)
403e62318300Serge BatalovSeptember 24, 2010 01:08:22 UTC 2010 年 9 月 24 日 (金) 10 時 8 分 22 秒 (日本時間)
2018Serge BatalovSeptember 24, 2010 07:04:14 UTC 2010 年 9 月 24 日 (金) 16 時 4 分 14 秒 (日本時間)
4511e6480Dmitry DomanovApril 12, 2011 21:43:03 UTC 2011 年 4 月 13 日 (水) 6 時 43 分 3 秒 (日本時間)
5043e6400Dmitry DomanovApril 15, 2011 05:51:49 UTC 2011 年 4 月 15 日 (金) 14 時 51 分 49 秒 (日本時間)
5511e73319 / 17578300Dmitry DomanovApril 9, 2011 18:56:08 UTC 2011 年 4 月 10 日 (日) 3 時 56 分 8 秒 (日本時間)
2900yoyo@homeMay 20, 2011 18:36:09 UTC 2011 年 5 月 21 日 (土) 3 時 36 分 9 秒 (日本時間)
119KTakahashiSeptember 18, 2014 01:05:33 UTC 2014 年 9 月 18 日 (木) 10 時 5 分 33 秒 (日本時間)

3×10241-1

c173

name 名前Serge Batalov
date 日付September 23, 2010 19:26:17 UTC 2010 年 9 月 24 日 (金) 4 時 26 分 17 秒 (日本時間)
composite number 合成数
50742580180875705309061706313588290750139955308829446605953758737777935331369084853827962186808594693540230248960618465765454973969505548932164586250098171143964574176950733<173>
prime factors 素因数
695741014426238161421383101413887<33>
composite cofactor 合成数の残り
72933144846609281169908928857343332673816458316865720352218732601757987134327071419701294254638843150011092417951566050931053621984632542259<140>
factorization results 素因数分解の結果
Using B1=2000000, B2=2853999340, polynomial Dickson(6), sigma=4080826854
Step 1 took 5195ms
********** Factor found in step 1: 695741014426238161421383101413887
Found probable prime factor of 33 digits: 695741014426238161421383101413887
Composite cofactor has 140 digits

c140

name 名前Wataru Sakai
date 日付September 26, 2010 04:22:59 UTC 2010 年 9 月 26 日 (日) 13 時 22 分 59 秒 (日本時間)
composite number 合成数
72933144846609281169908928857343332673816458316865720352218732601757987134327071419701294254638843150011092417951566050931053621984632542259<140>
prime factors 素因数
7259452327746521153190995373860628441589099<43>
composite cofactor 合成数の残り
10046645608216175796475085825647514986925229835855099541852727057891969636932866601044211242890841<98>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=458411955
Step 1 took 13380ms
Step 2 took 5639ms
********** Factor found in step 2: 7259452327746521153190995373860628441589099
Found probable prime factor of 43 digits: 7259452327746521153190995373860628441589099
Composite cofactor 10046645608216175796475085825647514986925229835855099541852727057891969636932866601044211242890841 has 98 digits
software ソフトウェア
GMP-ECM 6.2.3

c98

name 名前Dmitry Domanov
date 日付September 27, 2010 04:14:39 UTC 2010 年 9 月 27 日 (月) 13 時 14 分 39 秒 (日本時間)
composite number 合成数
10046645608216175796475085825647514986925229835855099541852727057891969636932866601044211242890841<98>
prime factors 素因数
229285497603320667207077634519116727893380825579<48>
43817187363491904946764333609605587734192812331979<50>
factorization results 素因数分解の結果
Number: 98g
N=10046645608216175796475085825647514986925229835855099541852727057891969636932866601044211242890841
  ( 98 digits)
Divisors found:
 r1=229285497603320667207077634519116727893380825579 (pp48)
 r2=43817187363491904946764333609605587734192812331979 (pp50)
Version: Msieve-1.40
Total time: 3.17 hours.
Scaled time: 5.81 units (timescale=1.829).
Factorization parameters were as follows:
name: 98g
n: 10046645608216175796475085825647514986925229835855099541852727057891969636932866601044211242890841
skew: 3380.02
# norm 3.39e+013
c5: 184680
c4: -679255806
c3: -6855531668691
c2: 12703185072589196
c1: 35777591042712167084
c0: 9926080680778379741232
# alpha -5.97
Y1: 31790275099
Y0: -2223948934112463031
# Murphy_E 4.77e-009
# M 2376745239802615893025660389377620405959565647882108686990622645990096149522415690418547038117034
type: gnfs
rlim: 1800000
alim: 1800000
lpbr: 26
lpba: 26
mfbr: 48
mfba: 48
rlambda: 2.5
alambda: 2.5
qintsize: 100000
Factor base limits: 1800000/1800000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 48/48
Sieved algebraic special-q in [900000, 1300001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 196819 x 197045
Polynomial selection time: 0.29 hours.
Total sieving time: 2.67 hours.
Total relation processing time: 0.03 hours.
Matrix solve time: 0.11 hours.
Time per square root: 0.07 hours.
Prototype def-par.txt line would be:
gnfs,97,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,26,26,48,48,2.5,2.5,100000
total time: 3.17 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6418118Makoto KamadaSeptember 23, 2010 10:00:00 UTC 2010 年 9 月 23 日 (木) 19 時 0 分 0 秒 (日本時間)
300Ignacio SantosSeptember 24, 2010 15:57:15 UTC 2010 年 9 月 25 日 (土) 0 時 57 分 15 秒 (日本時間)
403e62126110Ignacio SantosSeptember 24, 2010 15:57:15 UTC 2010 年 9 月 25 日 (土) 0 時 57 分 15 秒 (日本時間)
2016Wataru SakaiSeptember 26, 2010 04:22:53 UTC 2010 年 9 月 26 日 (日) 13 時 22 分 53 秒 (日本時間)
4511e632 / 3991Ignacio SantosSeptember 24, 2010 15:57:15 UTC 2010 年 9 月 25 日 (土) 0 時 57 分 15 秒 (日本時間)

3×10242-1

c223

name 名前Serge Batalov
date 日付September 23, 2010 16:04:20 UTC 2010 年 9 月 24 日 (金) 1 時 4 分 20 秒 (日本時間)
composite number 合成数
5587180271203337359602363748708691978590234522511106898078885724876456541046120258329870203628656511183625540430040835330265729705947944630071258394586229146377374365000266135626277229084520907235400376860853786341106257317<223>
prime factors 素因数
325604793963376923442516447201<30>
17159391921704221233397448886585956653327687159531128913980146763772696050869104925233975758559439909831461606154328293077690950760879505172935739075402946024822168031615996367553533451071374917<194>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=561220683
Step 1 took 12223ms
Step 2 took 5292ms
********** Factor found in step 2: 325604793963376923442516447201
Found probable prime factor of 30 digits: 325604793963376923442516447201
Probable prime cofactor has 194 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaSeptember 23, 2010 10:00:00 UTC 2010 年 9 月 23 日 (木) 19 時 0 分 0 秒 (日本時間)

3×10243-1

c229

name 名前Serge Batalov
date 日付September 23, 2010 19:06:33 UTC 2010 年 9 月 24 日 (金) 4 時 6 分 33 秒 (日本時間)
composite number 合成数
1005696275800868495458311064645936121107699527354368512142136465861906000443856793482206064965624885542441100525716160345009700632641823639086387839557988606958992757674499600213639473891666014581320090979583455352299074524859347<229>
prime factors 素因数
926940776073990033225313348679<30>
1084962817215187500354747332697493900314682405003802303136902959791211670985589587208290809529514856971511927982385959707922331227570374226472022335751556553231608324376982822961551342678226949391893<199>
factorization results 素因数分解の結果
Using B1=2000000, B2=2853999340, polynomial Dickson(6), sigma=2462459920
Step 1 took 8129ms
Step 2 took 3680ms
********** Factor found in step 2: 926940776073990033225313348679
Found probable prime factor of 30 digits: 926940776073990033225313348679
Probable prime cofactor has 199 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaSeptember 23, 2010 10:00:00 UTC 2010 年 9 月 23 日 (木) 19 時 0 分 0 秒 (日本時間)

3×10245-1

c228

composite cofactor 合成数の残り
124028020298159826909478862678703486017987474148853830173622993600839418469848645573751360701236893222794428896737010022306531909832922641384840829331594853253330125535001203914851531537824260502880310212948224997567767453170253<228>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaSeptember 23, 2010 10:00:00 UTC 2010 年 9 月 23 日 (木) 19 時 0 分 0 秒 (日本時間)
403e62318Serge BatalovSeptember 24, 2010 07:03:44 UTC 2010 年 9 月 24 日 (金) 16 時 3 分 44 秒 (日本時間)
4511e63963358KTakahashiOctober 13, 2014 09:05:50 UTC 2014 年 10 月 13 日 (月) 18 時 5 分 50 秒 (日本時間)
3605Florian BaurJune 19, 2022 16:20:49 UTC 2022 年 6 月 20 日 (月) 1 時 20 分 49 秒 (日本時間)
5043e66576Florian BaurAugust 21, 2022 06:27:00 UTC 2022 年 8 月 21 日 (日) 15 時 27 分 0 秒 (日本時間)

3×10247-1

c243

composite cofactor 合成数の残り
503330369276714259349361609314967367414391893025518849722329412949012633592268845527909668976393805680922101236514940523128030468265020217103165948022750532691307484522591144741036525007130513564753452007449289465295371038370551817861517037733<243>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaSeptember 23, 2010 10:00:00 UTC 2010 年 9 月 23 日 (木) 19 時 0 分 0 秒 (日本時間)
403e62320300Serge BatalovSeptember 24, 2010 00:53:40 UTC 2010 年 9 月 24 日 (金) 9 時 53 分 40 秒 (日本時間)
2020Serge BatalovSeptember 24, 2010 07:06:04 UTC 2010 年 9 月 24 日 (金) 16 時 6 分 4 秒 (日本時間)
4511e60--
5043e6300Dmitry DomanovApril 11, 2011 15:22:26 UTC 2011 年 4 月 12 日 (火) 0 時 22 分 26 秒 (日本時間)
5511e73385 / 17644100Dmitry DomanovMarch 13, 2011 11:49:47 UTC 2011 年 3 月 13 日 (日) 20 時 49 分 47 秒 (日本時間)
300Dmitry DomanovApril 9, 2011 18:53:55 UTC 2011 年 4 月 10 日 (日) 3 時 53 分 55 秒 (日本時間)
2985yoyo@homeMay 20, 2011 20:01:14 UTC 2011 年 5 月 21 日 (土) 5 時 1 分 14 秒 (日本時間)

3×10248-1

c244

name 名前Serge Batalov
date 日付September 24, 2010 01:01:47 UTC 2010 年 9 月 24 日 (金) 10 時 1 分 47 秒 (日本時間)
composite number 合成数
4411570077790685705042424598914753760863491316559563548666970574827581136126347367027925238592415040512918547711130391306265900033822037263061923738658588591679778833286766760289987206446774407011455376968663147214093495875181977265708865785333<244>
prime factors 素因数
46051493207244966325278220810248409<35>
95796461103603119871604838434486717700243417657696515920803485868215910956344736478763290580783516682187399019799924476121631939704185675070918276440320191932973270470220436196777055717660460074352138830963837<209>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3783953849
Step 1 took 13832ms
Step 2 took 5792ms
********** Factor found in step 2: 46051493207244966325278220810248409
Found probable prime factor of 35 digits: 46051493207244966325278220810248409
Probable prime cofactor has 209 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaSeptember 23, 2010 10:00:00 UTC 2010 年 9 月 23 日 (木) 19 時 0 分 0 秒 (日本時間)
403e6300 / 2318Serge BatalovSeptember 24, 2010 00:53:26 UTC 2010 年 9 月 24 日 (金) 9 時 53 分 26 秒 (日本時間)

3×10249-1

c234

name 名前KTakahashi
date 日付October 13, 2014 09:08:36 UTC 2014 年 10 月 13 日 (月) 18 時 8 分 36 秒 (日本時間)
composite number 合成数
583054569589666490559464078074470124739965454230617242900875106510279084950320648379473212080038889119982902554872389746968943595703212170166924809900421238285130127238322821544712357311417510762275342975901476170261681417139278973817<234>
prime factors 素因数
1726063437369789654448846178369596291661<40>
composite cofactor 合成数の残り
337794403708670653416593235656564566384717438342157284566726726000475319090394272283672990642619382693244597730757769829442822175463072436346392471826660197601711855162362683994360044079523320797<195>
factorization results 素因数分解の結果
GMP-ECM 6.4.4 [configured with GMP 6.0.0] [ECM]
Input number is 583054569589666490559464078074470124739965454230617242900875106510279084950320648379473212080038889119982902554872389746968943595703212170166924809900421238285130127238322821544712357311417510762275342975901476170261681417139278973817 (234 digits)
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=4190689324
Step 1 took 78968ms
Step 2 took 29328ms
********** Factor found in step 2: 1726063437369789654448846178369596291661
Found probable prime factor of 40 digits: 1726063437369789654448846178369596291661
Composite cofactor 337794403708670653416593235656564566384717438342157284566726726000475319090394272283672990642619382693244597730757769829442822175463072436346392471826660197601711855162362683994360044079523320797 has 195 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaSeptember 23, 2010 10:00:00 UTC 2010 年 9 月 23 日 (木) 19 時 0 分 0 秒 (日本時間)
403e62318Serge BatalovSeptember 24, 2010 07:05:47 UTC 2010 年 9 月 24 日 (金) 16 時 5 分 47 秒 (日本時間)
4511e63963358KTakahashiOctober 13, 2014 21:05:45 UTC 2014 年 10 月 14 日 (火) 6 時 5 分 45 秒 (日本時間)
1726Alfred ReichFebruary 28, 2015 12:17:23 UTC 2015 年 2 月 28 日 (土) 21 時 17 分 23 秒 (日本時間)
1879Florian BaurJune 19, 2022 19:21:26 UTC 2022 年 6 月 20 日 (月) 4 時 21 分 26 秒 (日本時間)
5043e66576Florian BaurAugust 27, 2022 12:23:29 UTC 2022 年 8 月 27 日 (土) 21 時 23 分 29 秒 (日本時間)

3×10250-1

c231

name 名前Dmitry Domanov
date 日付July 22, 2011 06:18:12 UTC 2011 年 7 月 22 日 (金) 15 時 18 分 12 秒 (日本時間)
composite number 合成数
300112637813488271434332048284666312511440849691522653061274721111754978850560970307436383825938201673663924791560673849127669925915561563867487204580387853312391142270209814501012026996762865621243183784199209449843435526477741737<231>
prime factors 素因数
278984038634718404823349055784265724393081891<45>
1075734078846116826565575685145514189316212622504364684610726258420057585321791181765414619843667387655848719019083328558662837515216264295032917669234263799379404741177389335548295053507<187>
factorization results 素因数分解の結果
Using B1=43000000, B2=240490660426, polynomial Dickson(12), sigma=1225193389
Step 1 took 432510ms
Step 2 took 112877ms
********** Factor found in step 2: 278984038634718404823349055784265724393081891
Found probable prime factor of 45 digits: 278984038634718404823349055784265724393081891
Probable prime cofactor 1075734078846116826565575685145514189316212622504364684610726258420057585321791181765414619843667387655848719019083328558662837515216264295032917669234263799379404741177389335548295053507 has 187 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaSeptember 23, 2010 10:00:00 UTC 2010 年 9 月 23 日 (木) 19 時 0 分 0 秒 (日本時間)
403e62318Serge BatalovSeptember 24, 2010 07:04:32 UTC 2010 年 9 月 24 日 (金) 16 時 4 分 32 秒 (日本時間)
4511e60--
5043e61200 / 7465Dmitry DomanovJuly 21, 2011 21:21:22 UTC 2011 年 7 月 22 日 (金) 6 時 21 分 22 秒 (日本時間)

3×10251-1

c246

name 名前KTakahashi
date 日付September 14, 2015 14:40:06 UTC 2015 年 9 月 14 日 (月) 23 時 40 分 6 秒 (日本時間)
composite number 合成数
331683392723087485917275950632243827095658596072647507896828775082174560547144924636005116769138408162949417176998420081439329026608747375555155078570267679554040622370718105601358575176593766342317162293789670715783817609513564192345410662736587<246>
prime factors 素因数
9810373128146159410841244364459<31>
33809457437605620451313519682836038864936868779214640560935095050861588240131319458653089032139770531125376321938627058190130151956558179379351873615333457736245639284910430377028606031721217678473477772435283844193<215>
factorization results 素因数分解の結果
Input number is 331683392723087485917275950632243827095658596072647507896828775082174560547144924636005116769138408162949417176998420081439329026608747375555155078570267679554040622370718105601358575176593766342317162293789670715783817609513564192345410662736587 (246 digits)
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=968664949
Step 1 took 7347ms
Step 2 took 3744ms
********** Factor found in step 2: 9810373128146159410841244364459
Found probable prime factor of 31 digits: 9810373128146159410841244364459
Probable prime cofactor 33809457437605620451313519682836038864936868779214640560935095050861588240131319458653089032139770531125376321938627058190130151956558179379351873615333457736245639284910430377028606031721217678473477772435283844193 has 215 digits
software ソフトウェア
GMP-ECM 6.4.4

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaSeptember 14, 2015 01:00:00 UTC 2015 年 9 月 14 日 (月) 10 時 0 分 0 秒 (日本時間)

3×10254-1

c211

composite cofactor 合成数の残り
4243905638787949384663828328592955185506026898991670618849869185658285372328512845058139212076375355053406042013500764639216677462822614069220243077742717156140096252756144860191755652275886802290799890162655883<211>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaSeptember 14, 2015 01:00:00 UTC 2015 年 9 月 14 日 (月) 10 時 0 分 0 秒 (日本時間)
403e62318300Dmitry DomanovSeptember 14, 2015 17:09:43 UTC 2015 年 9 月 15 日 (火) 2 時 9 分 43 秒 (日本時間)
2018KTakahashiSeptember 15, 2015 10:20:22 UTC 2015 年 9 月 15 日 (火) 19 時 20 分 22 秒 (日本時間)
4511e63963358KTakahashiSeptember 15, 2015 10:20:35 UTC 2015 年 9 月 15 日 (火) 19 時 20 分 35 秒 (日本時間)
3605Florian BaurJune 20, 2022 05:40:37 UTC 2022 年 6 月 20 日 (月) 14 時 40 分 37 秒 (日本時間)
5043e66576Florian BaurAugust 28, 2022 06:23:17 UTC 2022 年 8 月 28 日 (日) 15 時 23 分 17 秒 (日本時間)

3×10255-1

c240

composite cofactor 合成数の残り
129864829971838041085624128957898621981599168578722458624082152515250670680189240672666982644243242746416468066110961347320093868040631097671098394462804886622205439254963578422474041344708873450926808441503597125283917181575416210247512367<240>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaSeptember 14, 2015 01:00:00 UTC 2015 年 9 月 14 日 (月) 10 時 0 分 0 秒 (日本時間)
403e6300Dmitry DomanovSeptember 14, 2015 17:10:03 UTC 2015 年 9 月 15 日 (火) 2 時 10 分 3 秒 (日本時間)
4511e64409600Dmitry DomanovFebruary 17, 2017 11:49:34 UTC 2017 年 2 月 17 日 (金) 20 時 49 分 34 秒 (日本時間)
3809Florian BaurJune 20, 2022 13:18:27 UTC 2022 年 6 月 20 日 (月) 22 時 18 分 27 秒 (日本時間)
5043e66552Florian BaurAugust 29, 2022 12:46:44 UTC 2022 年 8 月 29 日 (月) 21 時 46 分 44 秒 (日本時間)

3×10256-1

c251

composite cofactor 合成数の残り
15782421433790900802746562194051184497032641730090080800736933864815143128149579477380896641448110817850339506189076565261101749797064364397172000511350454454825186008988615087258377703857592054918617943876657220010637352046375067141051182918790498351<251>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904118Makoto KamadaSeptember 14, 2015 01:00:00 UTC 2015 年 9 月 14 日 (月) 10 時 0 分 0 秒 (日本時間)
786KTakahashiSeptember 14, 2015 14:47:07 UTC 2015 年 9 月 14 日 (月) 23 時 47 分 7 秒 (日本時間)
403e63000600Dmitry DomanovSeptember 14, 2015 21:23:52 UTC 2015 年 9 月 15 日 (火) 6 時 23 分 52 秒 (日本時間)
2400Serge BatalovSeptember 17, 2015 01:57:04 UTC 2015 年 9 月 17 日 (木) 10 時 57 分 4 秒 (日本時間)
4511e63776Florian BaurJune 20, 2022 20:38:14 UTC 2022 年 6 月 21 日 (火) 5 時 38 分 14 秒 (日本時間)
5043e66587Florian BaurSeptember 4, 2022 05:45:22 UTC 2022 年 9 月 4 日 (日) 14 時 45 分 22 秒 (日本時間)

3×10257-1

c169

name 名前Florian Baur
date 日付September 4, 2022 18:45:36 UTC 2022 年 9 月 5 日 (月) 3 時 45 分 36 秒 (日本時間)
composite number 合成数
3995842971221230540766836244831620718081423427113993467184784222097410463605819765874460461575560183469989158085955159854647479710255131477946312229998564537327711868373<169>
prime factors 素因数
31171197226311395570049869722472441520374169867277<50>
composite cofactor 合成数の残り
128190230943339149841847999519069885264582956416434894719087288774673420049789290246495228448648459240622103315141193449<120>
factorization results 素因数分解の結果
09/04/22 14:57:47, prp50 = 31171197226311395570049869722472441520374169867277 (curve 3449 stg2 B1=43000000 sigma=4227195106 thread=4)
software ソフトウェア
GMP-ECM 7.0.6-dev
execution environment 実行環境
AMD Epyc 7401p, 128 GB, Ubuntu

c120

name 名前Florian Baur
date 日付September 6, 2022 15:30:46 UTC 2022 年 9 月 7 日 (水) 0 時 30 分 46 秒 (日本時間)
composite number 合成数
128190230943339149841847999519069885264582956416434894719087288774673420049789290246495228448648459240622103315141193449<120>
prime factors 素因数
2406643285962096341272041895466642897001048567538429589<55>
53265156365744056575082514085847115301971800009032820222428212741<65>
factorization results 素因数分解の結果
C120 =
2406643285962096341272041895466642897001048567538429589 *
53265156365744056575082514085847115301971800009032820222428212741

Factored with CADO-NFS on an AMD Epyc 7401p running Ubuntu..

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904118Makoto KamadaSeptember 14, 2015 01:00:00 UTC 2015 年 9 月 14 日 (月) 10 時 0 分 0 秒 (日本時間)
786KTakahashiSeptember 14, 2015 14:27:12 UTC 2015 年 9 月 14 日 (月) 23 時 27 分 12 秒 (日本時間)
403e62104KTakahashiSeptember 14, 2015 14:27:12 UTC 2015 年 9 月 14 日 (月) 23 時 27 分 12 秒 (日本時間)
4511e639752095KTakahashiSeptember 14, 2015 14:27:12 UTC 2015 年 9 月 14 日 (月) 23 時 27 分 12 秒 (日本時間)
1880Ignacio SantosJanuary 27, 2016 19:33:29 UTC 2016 年 1 月 28 日 (木) 4 時 33 分 29 秒 (日本時間)

3×10258-1

c254

composite cofactor 合成数の残り
17735422960278564376629441984475593102102829982323695116255697504625989488805992208237512784284050534131821487056097142823361099123278924996896300981951251234089847652716771207132004753093353354655252936690451839458951363558435262750291156526931239765183<254>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904118Makoto KamadaSeptember 14, 2015 01:00:00 UTC 2015 年 9 月 14 日 (月) 10 時 0 分 0 秒 (日本時間)
786KTakahashiSeptember 14, 2015 14:48:32 UTC 2015 年 9 月 14 日 (月) 23 時 48 分 32 秒 (日本時間)
403e63000600Dmitry DomanovSeptember 14, 2015 21:23:37 UTC 2015 年 9 月 15 日 (火) 6 時 23 分 37 秒 (日本時間)
2400Serge BatalovSeptember 17, 2015 01:57:04 UTC 2015 年 9 月 17 日 (木) 10 時 57 分 4 秒 (日本時間)
4511e63776Florian BaurJune 21, 2022 05:43:08 UTC 2022 年 6 月 21 日 (火) 14 時 43 分 8 秒 (日本時間)
5043e66587Florian BaurSeptember 6, 2022 10:31:49 UTC 2022 年 9 月 6 日 (火) 19 時 31 分 49 秒 (日本時間)

3×10261-1

c240

name 名前Florian Baur
date 日付September 6, 2022 17:13:46 UTC 2022 年 9 月 7 日 (水) 2 時 13 分 46 秒 (日本時間)
composite number 合成数
215788863873980684377158450076063244942465670654353641602064431411491698198961364930376600711676130246587494393128106353986144289475087414180964857087166539396058186085330943280891404683319439601897146121931999596813187158092402864528431411<240>
prime factors 素因数
355959485721696996870222685848276298889302372613659<51>
606217484095065893961295647915516773907267971265993624118770477281494994164030521647186633406466300477765174730034342217519689499495753987189327439100246975033716479024953602287483097686729<189>
factorization results 素因数分解の結果
09/06/22 18:38:33, prp51 = 355959485721696996870222685848276298889302372613659 (curve 1893 stg2 B1=43000000 sigma=3611830709 thread=1)
software ソフトウェア
GMP-ECM 7.0.4+ds-6
execution environment 実行環境
AMD Epyc 7401P, 128 GB, Ubuntu

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaSeptember 14, 2015 01:00:00 UTC 2015 年 9 月 14 日 (月) 10 時 0 分 0 秒 (日本時間)
403e6300Dmitry DomanovSeptember 14, 2015 17:10:38 UTC 2015 年 9 月 15 日 (火) 2 時 10 分 38 秒 (日本時間)
4511e64409600Dmitry DomanovFebruary 21, 2017 07:23:49 UTC 2017 年 2 月 21 日 (火) 16 時 23 分 49 秒 (日本時間)
3809Florian BaurJune 21, 2022 12:38:15 UTC 2022 年 6 月 21 日 (火) 21 時 38 分 15 秒 (日本時間)
5043e61892 / 6552Florian BaurSeptember 6, 2022 17:11:00 UTC 2022 年 9 月 7 日 (水) 2 時 11 分 0 秒 (日本時間)

3×10262-1

c181

name 名前KTakahashi
date 日付September 14, 2015 14:36:33 UTC 2015 年 9 月 14 日 (月) 23 時 36 分 33 秒 (日本時間)
composite number 合成数
1270992039180591363791802676656232913928348561826447968567975252180272789235262820477442350064369902577027176665386677672882282011649737406002668145177220618841474674004310198308791<181>
prime factors 素因数
880482910602817002739617065763601<33>
484926123512155816956321712789885135319<39>
2976777117384252284440069138530511544288948482411776180555732631854282326207461563193028477806681944513366289<109>
factorization results 素因数分解の結果
GMP-ECM 6.4.4 [configured with GMP 6.0.0] [ECM]
Input number is 1270992039180591363791802676656232913928348561826447968567975252180272789235262820477442350064369902577027176665386677672882282011649737406002668145177220618841474674004310198308791 (181 digits)
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2935291095
Step 1 took 4992ms
Step 2 took 2699ms
********** Factor found in step 2: 880482910602817002739617065763601
Found probable prime factor of 33 digits: 880482910602817002739617065763601
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2402713257
Step 1 took 11512ms
Step 2 took 5273ms
********** Factor found in step 2: 484926123512155816956321712789885135319
Found probable prime factor of 39 digits: 484926123512155816956321712789885135319
Probable prime cofactor 2976777117384252284440069138530511544288948482411776180555732631854282326207461563193028477806681944513366289 has 109 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904118Makoto KamadaSeptember 14, 2015 01:00:00 UTC 2015 年 9 月 14 日 (月) 10 時 0 分 0 秒 (日本時間)
786KTakahashiSeptember 14, 2015 14:33:09 UTC 2015 年 9 月 14 日 (月) 23 時 33 分 9 秒 (日本時間)

3×10263-1

c239

composite cofactor 合成数の残り
28947841334570809944188515128289539305447627701679894424839554229884124348397124283186151627434187834443903570835879470316633372484665834773981258387383682856236196068746928648611377297972877193220221161762503462706761221862290673406363829<239>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaSeptember 14, 2015 01:00:00 UTC 2015 年 9 月 14 日 (月) 10 時 0 分 0 秒 (日本時間)
403e6300Dmitry DomanovSeptember 14, 2015 17:10:51 UTC 2015 年 9 月 15 日 (火) 2 時 10 分 51 秒 (日本時間)
4511e64409600Dmitry DomanovFebruary 21, 2017 07:24:15 UTC 2017 年 2 月 21 日 (火) 16 時 24 分 15 秒 (日本時間)
3809Florian BaurJune 21, 2022 19:18:22 UTC 2022 年 6 月 22 日 (水) 4 時 18 分 22 秒 (日本時間)
5043e66552Florian BaurSeptember 7, 2022 16:57:12 UTC 2022 年 9 月 8 日 (木) 1 時 57 分 12 秒 (日本時間)

3×10264-1

c186

name 名前Florian Baur
date 日付June 21, 2022 20:58:13 UTC 2022 年 6 月 22 日 (水) 5 時 58 分 13 秒 (日本時間)
composite number 合成数
307551220072541239625523592119776195188858031186020193003594546903027285502946302435324164339751910921544674699044970853550409463156142058187547471695391605232725529511388775552821454169<186>
prime factors 素因数
44935842696142638066812646374434954340797517291<47>
6844229497423933032213607160680216426842030864266320538945869390192591476159399320845561656651152532954474787537234405137502958189892474059<139>
factorization results 素因数分解の結果
prp47 = 44935842696142638066812646374434954340797517291 (curve 728 stg2 B1=11000000 sigma=394084517 thread=2)
software ソフトウェア
GMP-ECM 7.0.4
execution environment 実行環境
i9-10920X, 32 GB, Ubuntu 

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaSeptember 14, 2015 01:00:00 UTC 2015 年 9 月 14 日 (月) 10 時 0 分 0 秒 (日本時間)
403e62318300Dmitry DomanovSeptember 14, 2015 17:11:05 UTC 2015 年 9 月 15 日 (火) 2 時 11 分 5 秒 (日本時間)
2018KTakahashiSeptember 15, 2015 10:21:58 UTC 2015 年 9 月 15 日 (火) 19 時 21 分 58 秒 (日本時間)
4511e62818 / 39632084KTakahashiSeptember 15, 2015 10:21:58 UTC 2015 年 9 月 15 日 (火) 19 時 21 分 58 秒 (日本時間)
734Florian BaurJune 21, 2022 20:56:33 UTC 2022 年 6 月 22 日 (水) 5 時 56 分 33 秒 (日本時間)

3×10266-1

c217

composite cofactor 合成数の残り
7807169358757201919417747766736534120388733280054744111302176922943511471319120042245971291792670097356914178811355582411201475093627362705197630522470175093863638503150989249817489893500721113377783177698057719165069<217>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaSeptember 14, 2015 01:00:00 UTC 2015 年 9 月 14 日 (月) 10 時 0 分 0 秒 (日本時間)
403e62318300Dmitry DomanovSeptember 14, 2015 17:11:19 UTC 2015 年 9 月 15 日 (火) 2 時 11 分 19 秒 (日本時間)
2018KTakahashiSeptember 15, 2015 10:22:28 UTC 2015 年 9 月 15 日 (火) 19 時 22 分 28 秒 (日本時間)
4511e63963358KTakahashiSeptember 15, 2015 10:22:28 UTC 2015 年 9 月 15 日 (火) 19 時 22 分 28 秒 (日本時間)
3605Florian BaurJune 22, 2022 05:36:17 UTC 2022 年 6 月 22 日 (水) 14 時 36 分 17 秒 (日本時間)
5043e66576Florian BaurSeptember 15, 2022 18:38:11 UTC 2022 年 9 月 16 日 (金) 3 時 38 分 11 秒 (日本時間)

3×10267-1

c235

composite cofactor 合成数の残り
3499525129136309762140291496255745929166445041477767199032025837214534907445599469180360681403064365117283597616833080774078796294569930713461789312161720972268723572760602829105042152448150637086219677766609754836060366453371802162387<235>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaSeptember 14, 2015 01:00:00 UTC 2015 年 9 月 14 日 (月) 10 時 0 分 0 秒 (日本時間)
403e6300Dmitry DomanovSeptember 14, 2015 17:11:34 UTC 2015 年 9 月 15 日 (火) 2 時 11 分 34 秒 (日本時間)
4511e64409600Dmitry DomanovFebruary 21, 2017 07:24:40 UTC 2017 年 2 月 21 日 (火) 16 時 24 分 40 秒 (日本時間)
3809Florian BaurJune 22, 2022 12:44:08 UTC 2022 年 6 月 22 日 (水) 21 時 44 分 8 秒 (日本時間)
5043e66552Florian BaurSeptember 16, 2022 16:35:54 UTC 2022 年 9 月 17 日 (土) 1 時 35 分 54 秒 (日本時間)

3×10268-1

c213

name 名前Dmitry Domanov
date 日付September 14, 2015 19:24:18 UTC 2015 年 9 月 15 日 (火) 4 時 24 分 18 秒 (日本時間)
composite number 合成数
148269122942881979021983750068159986927460324419656903159741294851522626109200348556565627156755680151830053273612011368716908571175598049719206640225669407700016072596386067419890253393316073165326322178738379527<213>
prime factors 素因数
10897768869036654459750187235772507313<38>
13605456742999242476906542548944027844315547594008150218413222010976630012995570716449707863987622574087536615689070173534782027693607986524004601993049789434088019321083578679<176>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1874728461
Step 1 took 30037ms
Step 2 took 10370ms
********** Factor found in step 2: 10897768869036654459750187235772507313
Found probable prime factor of 38 digits: 10897768869036654459750187235772507313

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaSeptember 14, 2015 01:00:00 UTC 2015 年 9 月 14 日 (月) 10 時 0 分 0 秒 (日本時間)
403e6300 / 2318Dmitry DomanovSeptember 14, 2015 17:11:48 UTC 2015 年 9 月 15 日 (火) 2 時 11 分 48 秒 (日本時間)

3×10270-1

c246

name 名前Florian Baur
date 日付September 17, 2022 05:47:08 UTC 2022 年 9 月 17 日 (土) 14 時 47 分 8 秒 (日本時間)
composite number 合成数
762535950699948496833876051747241978604966231162321833008250353956975867186933381535991294227158619409729067237171812690781115366757058044973690312438562298273022833990928197350034184950583388560412479780780657948845218090435902774490048580916147<246>
prime factors 素因数
296950578209358819584777382159270184236812409336733<51>
composite cofactor 合成数の残り
2567888418665877823873329008298114118209388309348789629124549209432482729856160713130613042766745125394409229755916931276173520826342066410759654555281844761522819558262315446059200549707345513359<196>
factorization results 素因数分解の結果
 prp51 = 296950578209358819584777382159270184236812409336733 (curve 2132 stg2 B1=43000000 sigma=1555168508 thread=9)
software ソフトウェア
GMP-ECM 7.0.6-dev
execution environment 実行環境
AMD Epyc 7401P, 128 GB, Ubuntu

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaSeptember 14, 2015 01:00:00 UTC 2015 年 9 月 14 日 (月) 10 時 0 分 0 秒 (日本時間)
403e6300Dmitry DomanovSeptember 14, 2015 20:07:11 UTC 2015 年 9 月 15 日 (火) 5 時 7 分 11 秒 (日本時間)
4511e64409600Dmitry DomanovFebruary 21, 2017 07:25:10 UTC 2017 年 2 月 21 日 (火) 16 時 25 分 10 秒 (日本時間)
3809Florian BaurJune 22, 2022 19:34:50 UTC 2022 年 6 月 23 日 (木) 4 時 34 分 50 秒 (日本時間)
5043e665522154Florian BaurSeptember 17, 2022 05:42:52 UTC 2022 年 9 月 17 日 (土) 14 時 42 分 52 秒 (日本時間)
4398Florian BaurJanuary 14, 2023 20:54:07 UTC 2023 年 1 月 15 日 (日) 5 時 54 分 7 秒 (日本時間)

3×10271-1

c263

name 名前Dmitry Domanov
date 日付February 21, 2017 13:20:21 UTC 2017 年 2 月 21 日 (火) 22 時 20 分 21 秒 (日本時間)
composite number 合成数
49769906835860703672856376891166666555790374215665876817692182592456481728489221886211018867252415446805282371532344575718785745732118921283787605641832361870927310896779514251117611875695682720878601835507859918343542432477951271820448133118600959690219358757453<263>
prime factors 素因数
14750570742387069931488097277147745589193<41>
3374100413134691358447123278700866688221787483792841709503202068999786297462934676975457030379898605444234389425397579727678687403166228771716170472644362943938840093213228406849317274507878471659122590036142466394471710821<223>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=2712479544
Step 1 took 114595ms
Step 2 took 32259ms
********** Factor found in step 2: 14750570742387069931488097277147745589193
Found probable prime factor of 41 digits: 14750570742387069931488097277147745589193

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaSeptember 14, 2015 01:00:00 UTC 2015 年 9 月 14 日 (月) 10 時 0 分 0 秒 (日本時間)
403e6600Dmitry DomanovSeptember 14, 2015 21:23:14 UTC 2015 年 9 月 15 日 (火) 6 時 23 分 14 秒 (日本時間)
4511e6600 / 4342Dmitry DomanovFebruary 21, 2017 11:28:20 UTC 2017 年 2 月 21 日 (火) 20 時 28 分 20 秒 (日本時間)

3×10272-1

c272

composite cofactor 合成数の残り
23076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923<272>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904118Makoto KamadaSeptember 14, 2015 01:00:00 UTC 2015 年 9 月 14 日 (月) 10 時 0 分 0 秒 (日本時間)
786KTakahashiSeptember 14, 2015 14:54:04 UTC 2015 年 9 月 14 日 (月) 23 時 54 分 4 秒 (日本時間)
403e6600Dmitry DomanovSeptember 14, 2015 21:22:59 UTC 2015 年 9 月 15 日 (火) 6 時 22 分 59 秒 (日本時間)
4511e64000Serge BatalovSeptember 15, 2015 16:16:44 UTC 2015 年 9 月 16 日 (水) 1 時 16 分 44 秒 (日本時間)
5043e666282000Serge BatalovSeptember 15, 2015 16:16:44 UTC 2015 年 9 月 16 日 (水) 1 時 16 分 44 秒 (日本時間)
4628Florian BaurJune 24, 2022 05:40:26 UTC 2022 年 6 月 24 日 (金) 14 時 40 分 26 秒 (日本時間)
5511e72000 / 15149Florian BaurJune 27, 2022 13:08:33 UTC 2022 年 6 月 27 日 (月) 22 時 8 分 33 秒 (日本時間)

3×10274-1

c264

composite cofactor 合成数の残り
181320505517836357160162547611969315640216780653983680226396255184258407610706906554966241453727528013298758730201544957169951182245681146018961017429078222843255424544226686623485767254114779495777519147464315566303803526125168129972881402933469696189918703388187<264>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaSeptember 14, 2015 01:00:00 UTC 2015 年 9 月 14 日 (月) 10 時 0 分 0 秒 (日本時間)
403e6600Dmitry DomanovSeptember 14, 2015 21:22:40 UTC 2015 年 9 月 15 日 (火) 6 時 22 分 40 秒 (日本時間)
4511e64342600Dmitry DomanovFebruary 21, 2017 12:12:14 UTC 2017 年 2 月 21 日 (火) 21 時 12 分 14 秒 (日本時間)
3742Florian BaurJune 24, 2022 13:44:29 UTC 2022 年 6 月 24 日 (金) 22 時 44 分 29 秒 (日本時間)
5043e66556Florian BaurSeptember 18, 2022 06:14:32 UTC 2022 年 9 月 18 日 (日) 15 時 14 分 32 秒 (日本時間)

3×10277-1

c249

name 名前KTakahashi
date 日付September 14, 2015 21:08:26 UTC 2015 年 9 月 15 日 (火) 6 時 8 分 26 秒 (日本時間)
composite number 合成数
885810612273486712313960769479894948886890075784465672173352977263404450564114795448511083554034628200096340679216425635380461525463329435657608822681058614458047631274558174830712658924092650350698923809386252394296371667019340982901591387860960871<249>
prime factors 素因数
24059267190781606387105992962851<32>
composite cofactor 合成数の残り
36817855059728842956489648835118295829539523290243462670764438238669390779341348213689122321454988584037627461796343942496334663616788081950745311008721494625588577912522119090493505470375734224370585853127366634391021<218>
factorization results 素因数分解の結果
Input number is 885810612273486712313960769479894948886890075784465672173352977263404450564114795448511083554034628200096340679216425635380461525463329435657608822681058614458047631274558174830712658924092650350698923809386252394296371667019340982901591387860960871 (249 digits)
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=355649155
Step 1 took 7519ms
Step 2 took 4072ms
********** Factor found in step 2: 24059267190781606387105992962851
Found probable prime factor of 32 digits: 24059267190781606387105992962851
Composite cofactor 36817855059728842956489648835118295829539523290243462670764438238669390779341348213689122321454988584037627461796343942496334663616788081950745311008721494625588577912522119090493505470375734224370585853127366634391021 has 218 digits
software ソフトウェア
GMP-ECM 6.4.4

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaSeptember 14, 2015 01:00:00 UTC 2015 年 9 月 14 日 (月) 10 時 0 分 0 秒 (日本時間)
403e62318300Dmitry DomanovSeptember 14, 2015 20:07:31 UTC 2015 年 9 月 15 日 (火) 5 時 7 分 31 秒 (日本時間)
2018KTakahashiSeptember 14, 2015 21:07:35 UTC 2015 年 9 月 15 日 (火) 6 時 7 分 35 秒 (日本時間)
4511e63963358KTakahashiSeptember 14, 2015 21:07:52 UTC 2015 年 9 月 15 日 (火) 6 時 7 分 52 秒 (日本時間)
3605Florian BaurJune 24, 2022 19:20:17 UTC 2022 年 6 月 25 日 (土) 4 時 20 分 17 秒 (日本時間)
5043e66576Florian BaurJanuary 15, 2023 18:39:01 UTC 2023 年 1 月 16 日 (月) 3 時 39 分 1 秒 (日本時間)

3×10278-1

c213

name 名前Dmitry Domanov
date 日付September 14, 2015 20:53:50 UTC 2015 年 9 月 15 日 (火) 5 時 53 分 50 秒 (日本時間)
composite number 合成数
522340508681899341177145354315563192235113813663165612806630559629025619370624095679748818684622213600189996104711438204944162655186134069072216133531033415629534087624502270519911230174276154272665665537217368687<213>
prime factors 素因数
36510718907360225494603099513007<32>
composite cofactor 合成数の残り
14306497497549967266111614171230541229597382621586479650338026648583323815933280821588131776245502357449685027264378551646399465523611555829455792655997068269074924001689037246962241<182>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2168117003
Step 1 took 39054ms
Step 2 took 11202ms
********** Factor found in step 2: 36510718907360225494603099513007
Found probable prime factor of 32 digits: 36510718907360225494603099513007

c182

name 名前Erik Branger
date 日付November 4, 2015 14:47:37 UTC 2015 年 11 月 4 日 (水) 23 時 47 分 37 秒 (日本時間)
composite number 合成数
14306497497549967266111614171230541229597382621586479650338026648583323815933280821588131776245502357449685027264378551646399465523611555829455792655997068269074924001689037246962241<182>
prime factors 素因数
414793047030090727937655318594575732628523814389<48>
34490687826095882852042991459260753867331943552198052585877345799304804663749015120653535671545538734359355772561294058718507528224669<134>
factorization results 素因数分解の結果
Wed 2015/11/04 13:56:36 UTC GMP-ECM 6.4.4 [configured with MPIR 2.7.0, --enable-asm-redc] [ECM]
Wed 2015/11/04 13:56:36 UTC Input number is 14306497497549967266111614171230541229597382621586479650338026648583323815933280821588131776245502357449685027264378551646399465523611555829455792655997068269074924001689037246962241 (182 digits)
Wed 2015/11/04 13:56:36 UTC Run 585 out of 1200:
Wed 2015/11/04 13:56:36 UTC Using B1=43000000, B2=240490660426, polynomial Dickson(12), sigma=2701930693
Wed 2015/11/04 13:56:36 UTC Step 1 took 160447ms
Wed 2015/11/04 13:56:36 UTC Step 2 took 47643ms
Wed 2015/11/04 13:56:36 UTC ********** Factor found in step 2: 414793047030090727937655318594575732628523814389
Wed 2015/11/04 13:56:36 UTC Found probable prime factor of 48 digits: 414793047030090727937655318594575732628523814389
Wed 2015/11/04 13:56:36 UTC Probable prime cofactor 34490687826095882852042991459260753867331943552198052585877345799304804663749015120653535671545538734359355772561294058718507528224669 has 134 digits
software ソフトウェア
GMP-ECM

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaSeptember 14, 2015 01:00:00 UTC 2015 年 9 月 14 日 (月) 10 時 0 分 0 秒 (日本時間)
403e62318300Dmitry DomanovSeptember 14, 2015 20:07:48 UTC 2015 年 9 月 15 日 (火) 5 時 7 分 48 秒 (日本時間)
2018KTakahashiSeptember 15, 2015 14:03:16 UTC 2015 年 9 月 15 日 (火) 23 時 3 分 16 秒 (日本時間)
4511e62084 / 3963KTakahashiSeptember 15, 2015 14:03:16 UTC 2015 年 9 月 15 日 (火) 23 時 3 分 16 秒 (日本時間)

3×10279-1

c260

name 名前Dmitry Domanov
date 日付September 15, 2015 08:28:28 UTC 2015 年 9 月 15 日 (火) 17 時 28 分 28 秒 (日本時間)
composite number 合成数
20586621751572476728496182524592722493248677452773961142458011311203394245175502677346441770505203372947306301449208912668521543218835313032221547559143224010936394217765922494264318682848272516133375196705115984486652164236022193572095328667609185337405461541<260>
prime factors 素因数
2183333953749593339023317375031307053<37>
9428984382447595657235939635641010558397379499756881557614001834224003278685757524914560895963691625574036787087723415835630838196513489549760529705048313894231609462626355973156389646539073179048298902982348334372701095897<223>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2967735357
Step 1 took 45998ms
Step 2 took 13153ms
********** Factor found in step 2: 2183333953749593339023317375031307053
Found probable prime factor of 37 digits: 2183333953749593339023317375031307053

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaSeptember 14, 2015 01:00:00 UTC 2015 年 9 月 14 日 (月) 10 時 0 分 0 秒 (日本時間)
403e6600 / 2318Dmitry DomanovSeptember 14, 2015 21:22:11 UTC 2015 年 9 月 15 日 (火) 6 時 22 分 11 秒 (日本時間)

3×10280-1

c241

name 名前KTakahashi
date 日付September 14, 2015 21:10:50 UTC 2015 年 9 月 15 日 (火) 6 時 10 分 50 秒 (日本時間)
composite number 合成数
6199598175912708614783308085225069689496783959216659148207790955262083660493601971987334440632145038512721534310605668903997358870951034965493660243298016616879435565958575605370838204778027980088785238742622906103608115139463346192111591269<241>
prime factors 素因数
70826888213408535989715027789680943239<38>
composite cofactor 合成数の残り
87531703457487725949994801266005358068384775586795162032877987797431212359478145238175325395582320588906475001706530078862969974036012214416606752891186978621861815056396990703732477319186187685742286771<203>
factorization results 素因数分解の結果
Input number is 6199598175912708614783308085225069689496783959216659148207790955262083660493601971987334440632145038512721534310605668903997358870951034965493660243298016616879435565958575605370838204778027980088785238742622906103608115139463346192111591269 (241 digits)
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1621429921
Step 1 took 7332ms
Step 2 took 3666ms
********** Factor found in step 2: 70826888213408535989715027789680943239
Found probable prime factor of 38 digits: 70826888213408535989715027789680943239
Composite cofactor 87531703457487725949994801266005358068384775586795162032877987797431212359478145238175325395582320588906475001706530078862969974036012214416606752891186978621861815056396990703732477319186187685742286771 has 203 digits
software ソフトウェア
GMP-ECM 6.4.4

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaSeptember 14, 2015 01:00:00 UTC 2015 年 9 月 14 日 (月) 10 時 0 分 0 秒 (日本時間)
403e62318300Dmitry DomanovSeptember 14, 2015 20:08:07 UTC 2015 年 9 月 15 日 (火) 5 時 8 分 7 秒 (日本時間)
2018KTakahashiSeptember 14, 2015 21:09:09 UTC 2015 年 9 月 15 日 (火) 6 時 9 分 9 秒 (日本時間)
4511e63963358KTakahashiSeptember 14, 2015 21:09:09 UTC 2015 年 9 月 15 日 (火) 6 時 9 分 9 秒 (日本時間)
3605Florian BaurJune 26, 2022 19:59:45 UTC 2022 年 6 月 27 日 (月) 4 時 59 分 45 秒 (日本時間)
5043e66576Florian BaurJanuary 16, 2023 14:17:07 UTC 2023 年 1 月 16 日 (月) 23 時 17 分 7 秒 (日本時間)

3×10281-1

c276

composite cofactor 合成数の残り
192451167120102999864642679125527556761867982348378951744152852414973470606612493801468659006682546026300376498633275961502068529294595907076878467729467545355928811030274493099663402908706939853236739954209452303223492898872685213399476661126211399909034748341231315397312227<276>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904118Makoto KamadaSeptember 14, 2015 01:00:00 UTC 2015 年 9 月 14 日 (月) 10 時 0 分 0 秒 (日本時間)
786KTakahashiSeptember 14, 2015 14:59:14 UTC 2015 年 9 月 14 日 (月) 23 時 59 分 14 秒 (日本時間)
403e63000600Dmitry DomanovSeptember 14, 2015 21:21:52 UTC 2015 年 9 月 15 日 (火) 6 時 21 分 52 秒 (日本時間)
2400Serge BatalovSeptember 17, 2015 01:57:06 UTC 2015 年 9 月 17 日 (木) 10 時 57 分 6 秒 (日本時間)
4511e63776Florian BaurJune 27, 2022 05:48:17 UTC 2022 年 6 月 27 日 (月) 14 時 48 分 17 秒 (日本時間)
5043e66587Florian BaurJanuary 17, 2023 18:01:36 UTC 2023 年 1 月 18 日 (水) 3 時 1 分 36 秒 (日本時間)

3×10282-1

c247

composite cofactor 合成数の残り
6059166206839113917233142979165815607944292614686531067171650026285366327903878933517135239879749942462929047405152337130478267592320689291081474856740091041405072316423591924548697842313221759898719087341343200556649344607527121485319737263193827<247>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaSeptember 14, 2015 01:00:00 UTC 2015 年 9 月 14 日 (月) 10 時 0 分 0 秒 (日本時間)
403e6300Dmitry DomanovSeptember 14, 2015 20:08:33 UTC 2015 年 9 月 15 日 (火) 5 時 8 分 33 秒 (日本時間)
4511e64409600Dmitry DomanovFebruary 21, 2017 12:12:54 UTC 2017 年 2 月 21 日 (火) 21 時 12 分 54 秒 (日本時間)
3809Florian BaurJune 27, 2022 12:10:01 UTC 2022 年 6 月 27 日 (月) 21 時 10 分 1 秒 (日本時間)
5043e66552Florian BaurJanuary 25, 2023 07:55:56 UTC 2023 年 1 月 25 日 (水) 16 時 55 分 56 秒 (日本時間)

3×10283-1

c252

name 名前KTakahashi
date 日付September 14, 2015 21:13:09 UTC 2015 年 9 月 15 日 (火) 6 時 13 分 9 秒 (日本時間)
composite number 合成数
121000002289769970927682369678380102320410770223474311816753168118282800014414217371312185808708816167259064838468911175748304320750806315910249451044840719656429203370972394512918067883766157200091007076017621284240632491092914327683134052343205526711<252>
prime factors 素因数
201781068202100853698922810943<30>
4620474432330019491083597480544397<34>
composite cofactor 合成数の残り
129783173762855209175766742279074614187771261068739847879120474748522082755908758964202337299572311619125746393456135106371531211569451669931835273761734854760004277618293437282864184450541<189>
factorization results 素因数分解の結果
Input number is 121000002289769970927682369678380102320410770223474311816753168118282800014414217371312185808708816167259064838468911175748304320750806315910249451044840719656429203370972394512918067883766157200091007076017621284240632491092914327683134052343205526711 (252 digits)
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=324818788
Step 1 took 9360ms
Step 2 took 4586ms
********** Factor found in step 2: 201781068202100853698922810943
Found probable prime factor of 30 digits: 201781068202100853698922810943
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=987654321
Step 1 took 6334ms
Step 2 took 3401ms
********** Factor found in step 2: 4620474432330019491083597480544397
Found probable prime factor of 34 digits: 4620474432330019491083597480544397
Composite cofactor 129783173762855209175766742279074614187771261068739847879120474748522082755908758964202337299572311619125746393456135106371531211569451669931835273761734854760004277618293437282864184450541 has 189 digits
software ソフトウェア
GMP-ECM 6.4.4

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904118Makoto KamadaSeptember 14, 2015 01:00:00 UTC 2015 年 9 月 14 日 (月) 10 時 0 分 0 秒 (日本時間)
786KTakahashiSeptember 14, 2015 21:11:54 UTC 2015 年 9 月 15 日 (火) 6 時 11 分 54 秒 (日本時間)
403e62104KTakahashiSeptember 14, 2015 21:11:54 UTC 2015 年 9 月 15 日 (火) 6 時 11 分 54 秒 (日本時間)
4511e6369KTakahashiSeptember 14, 2015 21:11:54 UTC 2015 年 9 月 15 日 (火) 6 時 11 分 54 秒 (日本時間)
5043e673861200Erik BrangerNovember 2, 2015 07:01:11 UTC 2015 年 11 月 2 日 (月) 16 時 1 分 11 秒 (日本時間)
6186Florian BaurJune 28, 2022 12:19:40 UTC 2022 年 6 月 28 日 (火) 21 時 19 分 40 秒 (日本時間)

3×10285-1

c222

name 名前Dmitry Domanov
date 日付September 14, 2015 20:53:05 UTC 2015 年 9 月 15 日 (火) 5 時 53 分 5 秒 (日本時間)
composite number 合成数
175884125609016729118749580685939746237972592424950671107099804768148917572140799509352077094713476516119000206484974525264404325351258503408338189988509257588737440841027444066145034162031503413520682644693655428569193887<222>
prime factors 素因数
136880389899229905837160580703119<33>
1284947578966578175628548427486419443193730997866398993993054678496950345137138914635480377389508471425354669443290047980292800713842199452031657584396449108022851607095641153476662816709873<190>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1732866669
Step 1 took 38272ms
Step 2 took 12221ms
********** Factor found in step 2: 136880389899229905837160580703119
Found probable prime factor of 33 digits: 136880389899229905837160580703119

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaSeptember 14, 2015 01:00:00 UTC 2015 年 9 月 14 日 (月) 10 時 0 分 0 秒 (日本時間)
403e6300 / 2318Dmitry DomanovSeptember 14, 2015 20:08:48 UTC 2015 年 9 月 15 日 (火) 5 時 8 分 48 秒 (日本時間)

3×10286-1

c265

composite cofactor 合成数の残り
1033551575065161692772599228849739033103225329661798481298286776509428529340621621170340489447237925603380443466031809094838343034684493706344648408342064775584316537687270869109071248659442713962839467824889942759906617103331059588981061465572807492137299813456831<265>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaSeptember 14, 2015 01:00:00 UTC 2015 年 9 月 14 日 (月) 10 時 0 分 0 秒 (日本時間)
403e6600Dmitry DomanovSeptember 14, 2015 21:21:21 UTC 2015 年 9 月 15 日 (火) 6 時 21 分 21 秒 (日本時間)
4511e64342600Dmitry DomanovMarch 2, 2017 09:49:36 UTC 2017 年 3 月 2 日 (木) 18 時 49 分 36 秒 (日本時間)
3742Florian BaurJune 28, 2022 18:47:47 UTC 2022 年 6 月 29 日 (水) 3 時 47 分 47 秒 (日本時間)
5043e66556Florian BaurFebruary 24, 2023 06:34:56 UTC 2023 年 2 月 24 日 (金) 15 時 34 分 56 秒 (日本時間)

3×10287-1

c241

name 名前KTakahashi
date 日付September 14, 2015 21:15:59 UTC 2015 年 9 月 15 日 (火) 6 時 15 分 59 秒 (日本時間)
composite number 合成数
2184928570272667698615095090200632236317481676650981343758305200872342736843318855779061901666125406300648382308915689130847331612885693119145114288831207175221081923674388597001712742653992135492636597177629453586425390226810037815756423749<241>
prime factors 素因数
9079649562854343798202500970257660006847<40>
composite cofactor 合成数の残り
240640187173236879062860811720261376246528431570868740779751098959550681266087625437782420346609384398274464753105061734375489032963894866256971945844293459982713624053234092168682458668827130546595067<201>
factorization results 素因数分解の結果
Input number is 2184928570272667698615095090200632236317481676650981343758305200872342736843318855779061901666125406300648382308915689130847331612885693119145114288831207175221081923674388597001712742653992135492636597177629453586425390226810037815756423749 (241 digits)
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=597366400
Step 1 took 7769ms
Step 2 took 3885ms
********** Factor found in step 2: 9079649562854343798202500970257660006847
Found probable prime factor of 40 digits: 9079649562854343798202500970257660006847
Composite cofactor 240640187173236879062860811720261376246528431570868740779751098959550681266087625437782420346609384398274464753105061734375489032963894866256971945844293459982713624053234092168682458668827130546595067 has 201 digits
software ソフトウェア
GMP-ECM 6.4.4

c201

name 名前KTakahashi
date 日付September 15, 2015 13:57:20 UTC 2015 年 9 月 15 日 (火) 22 時 57 分 20 秒 (日本時間)
composite number 合成数
240640187173236879062860811720261376246528431570868740779751098959550681266087625437782420346609384398274464753105061734375489032963894866256971945844293459982713624053234092168682458668827130546595067<201>
prime factors 素因数
2258752400414238765259735743461689<34>
composite cofactor 合成数の残り
106536770975475319295386542921675263042903017607771449356290850073531416405698271296746990120933523592539482926165343925010205346583398744005962955901347988383317890003<168>
factorization results 素因数分解の結果
Input number is 240640187173236879062860811720261376246528431570868740779751098959550681266087625437782420346609384398274464753105061734375489032963894866256971945844293459982713624053234092168682458668827130546595067 (201 digits)
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3425338188
Step 1 took 18674ms
Step 2 took 7644ms
********** Factor found in step 2: 2258752400414238765259735743461689
Found probable prime factor of 34 digits: 2258752400414238765259735743461689
Composite cofactor 106536770975475319295386542921675263042903017607771449356290850073531416405698271296746990120933523592539482926165343925010205346583398744005962955901347988383317890003 has 168 digits
software ソフトウェア
GMP-ECM 6.4.4

c168

name 名前Dmitry Domanov
date 日付September 16, 2015 13:48:11 UTC 2015 年 9 月 16 日 (水) 22 時 48 分 11 秒 (日本時間)
composite number 合成数
106536770975475319295386542921675263042903017607771449356290850073531416405698271296746990120933523592539482926165343925010205346583398744005962955901347988383317890003<168>
prime factors 素因数
30149367146749551891331686966988768800629<41>
3533632081128482559549190867044706541977488971402868795544572483032266550633803060407988441139591224388590997887097515849946407<127>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=680710756
Step 1 took 26727ms
********** Factor found in step 1: 30149367146749551891331686966988768800629
Found probable prime factor of 41 digits: 30149367146749551891331686966988768800629

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaSeptember 14, 2015 01:00:00 UTC 2015 年 9 月 14 日 (月) 10 時 0 分 0 秒 (日本時間)
403e62318300Dmitry DomanovSeptember 14, 2015 20:09:12 UTC 2015 年 9 月 15 日 (火) 5 時 9 分 12 秒 (日本時間)
2018KTakahashiSeptember 14, 2015 21:14:16 UTC 2015 年 9 月 15 日 (火) 6 時 14 分 16 秒 (日本時間)
4511e6358 / 3963KTakahashiSeptember 14, 2015 21:14:16 UTC 2015 年 9 月 15 日 (火) 6 時 14 分 16 秒 (日本時間)

3×10289-1

c237

name 名前Florian Baur
date 日付August 5, 2022 16:50:59 UTC 2022 年 8 月 6 日 (土) 1 時 50 分 59 秒 (日本時間)
composite number 合成数
458586943310135900390553142868687839532102607905618973831931898942883436414762225811787466336187010491661453038297910104306479011010798440707312488652559560568044172399596296718270750892622593589621689281228976608353072943801399370760609<237>
prime factors 素因数
18254665675106241571550859087206555738380907<44>
25121629257527716350155251854299530308694061273986526252845656442360824289261940454616596128775218323013315464391974099993279829751455450523534751276888169081286601813143270957656674008914833187<194>
factorization results 素因数分解の結果
08/05/22 15:25:34, prp44 = 18254665675106241571550859087206555738380907 (curve 2414 stg2 B1=11000000 sigma=4025432993 thread=5)
software ソフトウェア
GMP-ECM 7.0.4+ds-6
execution environment 実行環境
Ubuntu, i9-10920X, 32 GB RAM

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaSeptember 14, 2015 01:00:00 UTC 2015 年 9 月 14 日 (月) 10 時 0 分 0 秒 (日本時間)
403e6300Dmitry DomanovSeptember 14, 2015 20:10:08 UTC 2015 年 9 月 15 日 (火) 5 時 10 分 8 秒 (日本時間)
4511e6600 / 4409Dmitry DomanovMarch 2, 2017 09:50:08 UTC 2017 年 3 月 2 日 (木) 18 時 50 分 8 秒 (日本時間)

3×10290-1

c243

name 名前Dmitry Domanov
date 日付September 14, 2015 20:55:10 UTC 2015 年 9 月 15 日 (火) 5 時 55 分 10 秒 (日本時間)
composite number 合成数
237553430155959379601322871713737358809737649914692082796463353219844451146451889398968361001199129900675222654667504898388747766372523336162907360119737072638764178702201358184061067962873415626532357645315231038563380339629519092167263354757<243>
prime factors 素因数
46908491174594925173187254540327<32>
composite cofactor 合成数の残り
5064188256914463733706728788645342241850973708120361793592359294750005243191378757608171214923629299905775985699444763587246204393916921524805853476595263334415464739699771100576399378173059365290982729918655091<211>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3752690032
Step 1 took 33648ms
Step 2 took 9937ms
********** Factor found in step 2: 46908491174594925173187254540327
Found probable prime factor of 32 digits: 46908491174594925173187254540327

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaSeptember 14, 2015 01:00:00 UTC 2015 年 9 月 14 日 (月) 10 時 0 分 0 秒 (日本時間)
403e62318300Dmitry DomanovSeptember 14, 2015 20:10:21 UTC 2015 年 9 月 15 日 (火) 5 時 10 分 21 秒 (日本時間)
2018KTakahashiSeptember 15, 2015 14:04:11 UTC 2015 年 9 月 15 日 (火) 23 時 4 分 11 秒 (日本時間)
4511e639632084KTakahashiSeptember 15, 2015 14:04:11 UTC 2015 年 9 月 15 日 (火) 23 時 4 分 11 秒 (日本時間)
1879Florian BaurAugust 5, 2022 18:28:52 UTC 2022 年 8 月 6 日 (土) 3 時 28 分 52 秒 (日本時間)
5043e66576Florian BaurOctober 11, 2023 05:49:43 UTC 2023 年 10 月 11 日 (水) 14 時 49 分 43 秒 (日本時間)

3×10291-1

c272

composite cofactor 合成数の残り
41155341038021548872479711663101089076061285056638618117490880049710234771719225723081957284034129117418889523586955286495465037229189378976716640857466226435394113309271486477877812072971589999189413630654553611096979199630919931148457425895944887859615932037083532391881<272>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaSeptember 14, 2015 01:00:00 UTC 2015 年 9 月 14 日 (月) 10 時 0 分 0 秒 (日本時間)
403e6600Dmitry DomanovSeptember 14, 2015 21:21:03 UTC 2015 年 9 月 15 日 (火) 6 時 21 分 3 秒 (日本時間)
4511e64342600Dmitry DomanovMarch 3, 2017 09:12:48 UTC 2017 年 3 月 3 日 (金) 18 時 12 分 48 秒 (日本時間)
3742Florian BaurAugust 6, 2022 04:59:42 UTC 2022 年 8 月 6 日 (土) 13 時 59 分 42 秒 (日本時間)
5043e66556Florian BaurOctober 13, 2023 08:10:23 UTC 2023 年 10 月 13 日 (金) 17 時 10 分 23 秒 (日本時間)

3×10292-1

c283

composite cofactor 合成数の残り
5765093517496919214255134431537361121210407273111767428531416955624956191174466655858743358863770048249868278807015108535805744523625392533423185877350184739606480854398558589488267967336384506643317981551000861656834388390959245760455776486581782599388460133642027981727318560098121<283>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaSeptember 14, 2015 01:00:00 UTC 2015 年 9 月 14 日 (月) 10 時 0 分 0 秒 (日本時間)
403e6600Dmitry DomanovSeptember 14, 2015 21:20:48 UTC 2015 年 9 月 15 日 (火) 6 時 20 分 48 秒 (日本時間)
4511e64342600Dmitry DomanovMarch 3, 2017 09:13:15 UTC 2017 年 3 月 3 日 (金) 18 時 13 分 15 秒 (日本時間)
3742Florian BaurAugust 6, 2022 09:56:42 UTC 2022 年 8 月 6 日 (土) 18 時 56 分 42 秒 (日本時間)
5043e66556Florian BaurOctober 15, 2023 11:45:16 UTC 2023 年 10 月 15 日 (日) 20 時 45 分 16 秒 (日本時間)

3×10293-1

c254

composite cofactor 合成数の残り
10046353610324682659248076016528504470375606586540177428779339568685289494359477675482884666145661544321251706850323096862340478594817322104496971780288014924503214893571307188841485716992785852800424262476182926794879170977597646938580083897653327098161<254>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaSeptember 14, 2015 01:00:00 UTC 2015 年 9 月 14 日 (月) 10 時 0 分 0 秒 (日本時間)
403e6600Dmitry DomanovSeptember 14, 2015 21:20:30 UTC 2015 年 9 月 15 日 (火) 6 時 20 分 30 秒 (日本時間)
4511e64342600Dmitry DomanovMarch 3, 2017 09:13:48 UTC 2017 年 3 月 3 日 (金) 18 時 13 分 48 秒 (日本時間)
3742Florian BaurAugust 6, 2022 16:33:52 UTC 2022 年 8 月 7 日 (日) 1 時 33 分 52 秒 (日本時間)
5043e66556Florian BaurOctober 16, 2023 18:48:08 UTC 2023 年 10 月 17 日 (火) 3 時 48 分 8 秒 (日本時間)

3×10294-1

c287

name 名前KTakahashi
date 日付September 14, 2015 15:05:02 UTC 2015 年 9 月 15 日 (火) 0 時 5 分 2 秒 (日本時間)
composite number 合成数
29508208234350097992333315041522917840089255641381709260404596682449197414604892911417234290658624879922494133694432490614643879156136457640126095655755354212744758415168037393430983010776977975279931338727309208359986212584784582260214062181879998831868396696194120810165168556246092437<287>
prime factors 素因数
13514324659863619539289646433527<32>
composite cofactor 合成数の残り
2183476346545598047103995156221159188402352323062946599237158999863708884447053677862846728730182256425306007707202721586646748069509523667817264000220990526233941668424401734496357432326352506978016680282381907620962034464582905394625123085135492408485331<256>
factorization results 素因数分解の結果
Input number is 29508208234350097992333315041522917840089255641381709260404596682449197414604892911417234290658624879922494133694432490614643879156136457640126095655755354212744758415168037393430983010776977975279931338727309208359986212584784582260214062181879998831868396696194120810165168556246092437 (287 digits)
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2886526743
Step 1 took 9282ms
Step 2 took 4742ms
********** Factor found in step 2: 13514324659863619539289646433527
Found probable prime factor of 32 digits: 13514324659863619539289646433527
Composite cofactor 2183476346545598047103995156221159188402352323062946599237158999863708884447053677862846728730182256425306007707202721586646748069509523667817264000220990526233941668424401734496357432326352506978016680282381907620962034464582905394625123085135492408485331 has 256 digits
software ソフトウェア
GMP-ECM 6.4.4

c256

name 名前Florian Baur
date 日付August 6, 2022 19:01:45 UTC 2022 年 8 月 7 日 (日) 4 時 1 分 45 秒 (日本時間)
composite number 合成数
2183476346545598047103995156221159188402352323062946599237158999863708884447053677862846728730182256425306007707202721586646748069509523667817264000220990526233941668424401734496357432326352506978016680282381907620962034464582905394625123085135492408485331<256>
prime factors 素因数
491860226832047207348930827197685552571<39>
4439221200317092613575120845806108990203165964356643393669617780090480701422968008767626254736275372712237532219115571624604276537611906331189026660357571251754484318366449269032173965634323820144578641219500383183561<217>
factorization results 素因数分解の結果
8/06/22 17:29:21, prp39 = 491860226832047207348930827197685552571 g2 B1=11000000 sigma=1190281723 thread=9)
software ソフトウェア
GMP-ECM 7.0.4+ds-6
execution environment 実行環境
i9-10920X, 32 GB, Ubuntu

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904118Makoto KamadaSeptember 14, 2015 01:00:00 UTC 2015 年 9 月 14 日 (月) 10 時 0 分 0 秒 (日本時間)
786KTakahashiSeptember 14, 2015 15:03:51 UTC 2015 年 9 月 15 日 (火) 0 時 3 分 51 秒 (日本時間)
403e6300Dmitry DomanovSeptember 15, 2015 14:11:34 UTC 2015 年 9 月 15 日 (火) 23 時 11 分 34 秒 (日本時間)
4511e61357 / 4372600Dmitry DomanovMarch 3, 2017 09:14:15 UTC 2017 年 3 月 3 日 (金) 18 時 14 分 15 秒 (日本時間)
757Florian BaurAugust 6, 2022 18:59:32 UTC 2022 年 8 月 7 日 (日) 3 時 59 分 32 秒 (日本時間)

3×10295-1

c261

composite cofactor 合成数の残り
205705904436717939619041352302221263739916844744412586643504933754812568104231429336222214862819674961036611619766472847352072865015835748362026804171507927766941746098200277992560630134709289172322602933884361204145669009596408204108058522663890653833460161319<261>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaSeptember 14, 2015 01:00:00 UTC 2015 年 9 月 14 日 (月) 10 時 0 分 0 秒 (日本時間)
403e6600Dmitry DomanovSeptember 14, 2015 21:20:16 UTC 2015 年 9 月 15 日 (火) 6 時 20 分 16 秒 (日本時間)
4511e64342600Dmitry DomanovMarch 3, 2017 09:14:53 UTC 2017 年 3 月 3 日 (金) 18 時 14 分 53 秒 (日本時間)
3742Florian BaurAugust 8, 2022 11:51:08 UTC 2022 年 8 月 8 日 (月) 20 時 51 分 8 秒 (日本時間)
5043e66556Florian BaurOctober 18, 2023 05:41:38 UTC 2023 年 10 月 18 日 (水) 14 時 41 分 38 秒 (日本時間)

3×10296-1

c285

composite cofactor 合成数の残り
362316630154649705388282696311859636273057120898396664559544058859194988506560644656514222600777107040901351438417086990095609969491560147945854946623390006518671957871553500755756019106746868142863810989857288954843847809170608165626568809409214691817453514729802529383680062430303569<285>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaSeptember 14, 2015 01:00:00 UTC 2015 年 9 月 14 日 (月) 10 時 0 分 0 秒 (日本時間)
403e6600Dmitry DomanovSeptember 14, 2015 21:20:02 UTC 2015 年 9 月 15 日 (火) 6 時 20 分 2 秒 (日本時間)
4511e64342600Dmitry DomanovMarch 6, 2017 07:03:50 UTC 2017 年 3 月 6 日 (月) 16 時 3 分 50 秒 (日本時間)
3742Florian BaurAugust 8, 2022 16:36:46 UTC 2022 年 8 月 9 日 (火) 1 時 36 分 46 秒 (日本時間)
5043e66556Florian BaurOctober 19, 2023 07:47:32 UTC 2023 年 10 月 19 日 (木) 16 時 47 分 32 秒 (日本時間)

3×10298-1

c264

name 名前Dmitry Domanov
date 日付March 6, 2017 19:11:42 UTC 2017 年 3 月 7 日 (火) 4 時 11 分 42 秒 (日本時間)
composite number 合成数
183714787549475281045445328389539299462399956053032764377648984693397165745263781677629745083624609626341616022105526206679806464790652629016775312967856853877188096037938692468157261712917035982952522081599758075156636561018084134787058959258913382549358274482989<264>
prime factors 素因数
537852406398139185353428805100536591<36>
416019575231946770566704102313780673081132711<45>
821045514121100849016920430250756282665600182262029718447961121045217677841035522832585942062645696504044032765730706341310048416542214722894067438018027733865708890047100821382053189<183>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=759521296
Step 1 took 150209ms
Step 2 took 37441ms
********** Factor found in step 2: 416019575231946770566704102313780673081132711
Found probable prime factor of 45 digits: 416019575231946770566704102313780673081132711

Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=4014515366
Step 1 took 90209ms
Step 2 took 24699ms
********** Factor found in step 2: 537852406398139185353428805100536591
Found probable prime factor of 36 digits: 537852406398139185353428805100536591

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaSeptember 14, 2015 01:00:00 UTC 2015 年 9 月 14 日 (月) 10 時 0 分 0 秒 (日本時間)
403e6600Dmitry DomanovSeptember 14, 2015 21:19:48 UTC 2015 年 9 月 15 日 (火) 6 時 19 分 48 秒 (日本時間)
4511e6600 / 4342Dmitry DomanovMarch 6, 2017 13:45:15 UTC 2017 年 3 月 6 日 (月) 22 時 45 分 15 秒 (日本時間)

3×10299-1

c288

name 名前Dmitry Domanov
date 日付September 15, 2015 06:15:56 UTC 2015 年 9 月 15 日 (火) 15 時 15 分 56 秒 (日本時間)
composite number 合成数
102519309621007508804767139318014250422201295148414686436837142225678497992513754417965523953338225577591020478246033612930795583008028167489210418625268013900408412075671343184606825234540616768169305855189099985443511605761876222538227974499177345630161958961757624616646636249741473177<288>
prime factors 素因数
18590255248396054135119519862636579<35>
composite cofactor 合成数の残り
5514680043451945451722659577266014534499613782731427020199543126528843055153003041820782385421251376314589830261452074675316729827943389772405084621134231830243391229918560179885010369147268754986907047166766418542405996783654594184325600079994508505363<253>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1248788013
Step 1 took 49148ms
Step 2 took 14549ms
********** Factor found in step 2: 18590255248396054135119519862636579
Found probable prime factor of 35 digits: 18590255248396054135119519862636579

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaSeptember 14, 2015 01:00:00 UTC 2015 年 9 月 14 日 (月) 10 時 0 分 0 秒 (日本時間)
403e6600Dmitry DomanovSeptember 14, 2015 21:19:25 UTC 2015 年 9 月 15 日 (火) 6 時 19 分 25 秒 (日本時間)
4511e64342600Dmitry DomanovMarch 7, 2017 00:35:36 UTC 2017 年 3 月 7 日 (火) 9 時 35 分 36 秒 (日本時間)
3742Florian BaurAugust 8, 2022 21:46:33 UTC 2022 年 8 月 9 日 (火) 6 時 46 分 33 秒 (日本時間)
5043e66556Florian BaurOctober 20, 2023 11:49:40 UTC 2023 年 10 月 20 日 (金) 20 時 49 分 40 秒 (日本時間)

3×10300-1

c301

name 名前NFS@Home + Greg Childers
date 日付May 22, 2024 00:00:00 UTC 2024 年 5 月 22 日 (水) 9 時 0 分 0 秒 (日本時間)
composite number 合成数
2999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999<301>
prime factors 素因数
158636608584555287822564496483760836474537795744193022267616490070819282284413545159<84>
18911145584664731672161623834145080343808448716496401267776943318321972394867043207863171146420418840120805701950834599928431328193997261491089145805583267931067662501894878002916008487809625902209231182365193202026761<218>
factorization results 素因数分解の結果
Fri May 17 15:43:36 2024
Fri May 17 15:43:36 2024
Fri May 17 15:43:36 2024  Msieve v. 1.54 (SVN Unversioned directory)
Fri May 17 15:43:36 2024  random seeds: 27dba18b b634569f
Fri May 17 15:43:36 2024  MPI process 0 of 1
Fri May 17 15:43:36 2024  Using 46 OpenMP threads
Fri May 17 15:43:36 2024  factoring 2999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999 (301 digits)
Fri May 17 15:43:38 2024  no P-1/P+1/ECM available, skipping
Fri May 17 15:43:38 2024  commencing number field sieve (301-digit input)
Fri May 17 15:43:38 2024  R0: -100000000000000000000000000000000000000000000000000
Fri May 17 15:43:38 2024  R1: 1
Fri May 17 15:43:38 2024  A0: -1
Fri May 17 15:43:38 2024  A1: 0
Fri May 17 15:43:38 2024  A2: 0
Fri May 17 15:43:38 2024  A3: 0
Fri May 17 15:43:38 2024  A4: 0
Fri May 17 15:43:38 2024  A5: 0
Fri May 17 15:43:38 2024  A6: 3
Fri May 17 15:43:38 2024  skew 0.83, size 1.017e-14, alpha 2.177, combined = 3.327e-15 rroots = 2
Fri May 17 15:43:38 2024
Fri May 17 15:43:38 2024  commencing relation filtering
Fri May 17 15:43:38 2024  setting target matrix density to 110.0
Fri May 17 15:43:38 2024  estimated available RAM is 192069.2 MB
Fri May 17 15:43:38 2024  commencing duplicate removal, pass 1
Fri May 17 16:08:19 2024  skipped 245604 relations with b > 2^32
Fri May 17 16:08:19 2024  skipped 783 malformed relations
Fri May 17 16:08:19 2024  found 220102281 hash collisions in 1826209739 relations
Fri May 17 16:08:34 2024  added 1218608 free relations
Fri May 17 16:08:34 2024  commencing duplicate removal, pass 2
Fri May 17 16:19:41 2024  found 157351248 duplicates and 1670077099 unique relations
Fri May 17 16:19:41 2024  memory use: 6822.0 MB
Fri May 17 16:19:42 2024  reading ideals above 747569152
Fri May 17 16:19:42 2024  commencing singleton removal, initial pass
Fri May 17 17:50:52 2024  memory use: 41024.0 MB
Fri May 17 17:50:55 2024  reading all ideals from disk
Fri May 17 17:51:27 2024  memory use: 43994.7 MB
Fri May 17 17:53:09 2024  commencing in-memory singleton removal
Fri May 17 17:53:17 2024  begin with 1670077099 relations and 1584737139 unique ideals
Fri May 17 17:54:24 2024  reduce to 843768135 relations and 645794965 ideals in 20 passes
Fri May 17 17:54:24 2024  max relations containing the same ideal: 30
Fri May 17 17:55:00 2024  reading ideals above 720000
Fri May 17 17:55:02 2024  commencing singleton removal, initial pass
Fri May 17 18:55:43 2024  memory use: 21024.0 MB
Fri May 17 18:55:45 2024  reading all ideals from disk
Fri May 17 18:56:22 2024  memory use: 44619.6 MB
Fri May 17 18:58:29 2024  keeping 718389245 ideals with weight <= 200, target excess is 4568464
Fri May 17 19:01:02 2024  commencing in-memory singleton removal
Fri May 17 19:01:10 2024  begin with 843768135 relations and 718389245 unique ideals
Fri May 17 19:02:04 2024  reduce to 843751918 relations and 718373028 ideals in 12 passes
Fri May 17 19:02:04 2024  max relations containing the same ideal: 200
Fri May 17 19:09:10 2024  removing 23723019 relations and 21723019 ideals in 2000000 cliques
Fri May 17 19:09:54 2024  commencing in-memory singleton removal
Fri May 17 19:10:02 2024  begin with 820028899 relations and 718373028 unique ideals
Fri May 17 19:10:45 2024  reduce to 819501924 relations and 696120822 ideals in 10 passes
Fri May 17 19:10:45 2024  max relations containing the same ideal: 200
Fri May 17 19:16:09 2024  removing 17442271 relations and 15442271 ideals in 2000000 cliques
Fri May 17 19:16:53 2024  commencing in-memory singleton removal
Fri May 17 19:17:00 2024  begin with 802059653 relations and 696120822 unique ideals
Fri May 17 19:17:35 2024  reduce to 801752850 relations and 680370762 ideals in 8 passes
Fri May 17 19:17:35 2024  max relations containing the same ideal: 200
Fri May 17 19:22:55 2024  removing 15406668 relations and 13406668 ideals in 2000000 cliques
Fri May 17 19:23:36 2024  commencing in-memory singleton removal
Fri May 17 19:23:44 2024  begin with 786346182 relations and 680370762 unique ideals
Fri May 17 19:24:17 2024  reduce to 786097582 relations and 666714794 ideals in 8 passes
Fri May 17 19:24:17 2024  max relations containing the same ideal: 199
Fri May 17 19:29:33 2024  removing 14235506 relations and 12235506 ideals in 2000000 cliques
Fri May 17 19:30:10 2024  commencing in-memory singleton removal
Fri May 17 19:30:17 2024  begin with 771862076 relations and 666714794 unique ideals
Fri May 17 19:30:54 2024  reduce to 771644812 relations and 654261380 ideals in 8 passes
Fri May 17 19:30:54 2024  max relations containing the same ideal: 199
Fri May 17 19:35:59 2024  removing 13422314 relations and 11422314 ideals in 2000000 cliques
Fri May 17 19:36:35 2024  commencing in-memory singleton removal
Fri May 17 19:36:43 2024  begin with 758222498 relations and 654261380 unique ideals
Fri May 17 19:37:18 2024  reduce to 758026157 relations and 642642198 ideals in 8 passes
Fri May 17 19:37:19 2024  max relations containing the same ideal: 196
Fri May 17 19:42:18 2024  removing 12813629 relations and 10813629 ideals in 2000000 cliques
Fri May 17 19:42:54 2024  commencing in-memory singleton removal
Fri May 17 19:43:01 2024  begin with 745212528 relations and 642642198 unique ideals
Fri May 17 19:43:34 2024  reduce to 745028649 relations and 631644177 ideals in 8 passes
Fri May 17 19:43:34 2024  max relations containing the same ideal: 194
Fri May 17 19:48:27 2024  removing 12334703 relations and 10334703 ideals in 2000000 cliques
Fri May 17 19:49:00 2024  commencing in-memory singleton removal
Fri May 17 19:49:07 2024  begin with 732693946 relations and 631644177 unique ideals
Fri May 17 19:49:39 2024  reduce to 732521537 relations and 621136590 ideals in 7 passes
Fri May 17 19:49:39 2024  max relations containing the same ideal: 193
Fri May 17 19:54:30 2024  removing 11947390 relations and 9947390 ideals in 2000000 cliques
Fri May 17 19:55:00 2024  commencing in-memory singleton removal
Fri May 17 19:55:06 2024  begin with 720574147 relations and 621136590 unique ideals
Fri May 17 19:55:41 2024  reduce to 720409120 relations and 611023699 ideals in 8 passes
Fri May 17 19:55:41 2024  max relations containing the same ideal: 192
Fri May 17 20:00:24 2024  removing 11622237 relations and 9622237 ideals in 2000000 cliques
Fri May 17 20:00:54 2024  commencing in-memory singleton removal
Fri May 17 20:01:01 2024  begin with 708786883 relations and 611023699 unique ideals
Fri May 17 20:01:35 2024  reduce to 708627381 relations and 601241524 ideals in 8 passes
Fri May 17 20:01:35 2024  max relations containing the same ideal: 190
Fri May 17 20:06:15 2024  removing 11341235 relations and 9341235 ideals in 2000000 cliques
Fri May 17 20:06:46 2024  commencing in-memory singleton removal
Fri May 17 20:06:52 2024  begin with 697286146 relations and 601241524 unique ideals
Fri May 17 20:07:20 2024  reduce to 697132868 relations and 591746574 ideals in 8 passes
Fri May 17 20:07:20 2024  max relations containing the same ideal: 189
Fri May 17 20:12:11 2024  removing 11101488 relations and 9101488 ideals in 2000000 cliques
Fri May 17 20:12:42 2024  commencing in-memory singleton removal
Fri May 17 20:12:49 2024  begin with 686031380 relations and 591746574 unique ideals
Fri May 17 20:13:18 2024  reduce to 685880733 relations and 582494029 ideals in 7 passes
Fri May 17 20:13:18 2024  max relations containing the same ideal: 189
Fri May 17 20:17:20 2024  removing 10894711 relations and 8894711 ideals in 2000000 cliques
Fri May 17 20:17:48 2024  commencing in-memory singleton removal
Fri May 17 20:17:55 2024  begin with 674986022 relations and 582494029 unique ideals
Fri May 17 20:18:23 2024  reduce to 674840308 relations and 573453186 ideals in 7 passes
Fri May 17 20:18:23 2024  max relations containing the same ideal: 188
Fri May 17 20:22:18 2024  removing 10712128 relations and 8712128 ideals in 2000000 cliques
Fri May 17 20:22:45 2024  commencing in-memory singleton removal
Fri May 17 20:22:52 2024  begin with 664128180 relations and 573453186 unique ideals
Fri May 17 20:23:18 2024  reduce to 663983741 relations and 564596171 ideals in 7 passes
Fri May 17 20:23:18 2024  max relations containing the same ideal: 186
Fri May 17 20:27:13 2024  removing 10551813 relations and 8551813 ideals in 2000000 cliques
Fri May 17 20:27:42 2024  commencing in-memory singleton removal
Fri May 17 20:27:49 2024  begin with 653431928 relations and 564596171 unique ideals
Fri May 17 20:28:18 2024  reduce to 653289819 relations and 555901794 ideals in 7 passes
Fri May 17 20:28:18 2024  max relations containing the same ideal: 182
Fri May 17 20:32:01 2024  removing 10404818 relations and 8404818 ideals in 2000000 cliques
Fri May 17 20:32:29 2024  commencing in-memory singleton removal
Fri May 17 20:32:36 2024  begin with 642885001 relations and 555901794 unique ideals
Fri May 17 20:33:00 2024  reduce to 642744130 relations and 547355658 ideals in 7 passes
Fri May 17 20:33:00 2024  max relations containing the same ideal: 180
Fri May 17 20:36:44 2024  removing 10275185 relations and 8275185 ideals in 2000000 cliques
Fri May 17 20:37:11 2024  commencing in-memory singleton removal
Fri May 17 20:37:18 2024  begin with 632468945 relations and 547355658 unique ideals
Fri May 17 20:37:46 2024  reduce to 632329315 relations and 538940433 ideals in 7 passes
Fri May 17 20:37:46 2024  max relations containing the same ideal: 177
Fri May 17 20:41:22 2024  removing 10153383 relations and 8153383 ideals in 2000000 cliques
Fri May 17 20:41:49 2024  commencing in-memory singleton removal
Fri May 17 20:41:56 2024  begin with 622175932 relations and 538940433 unique ideals
Fri May 17 20:42:23 2024  reduce to 622038048 relations and 530648734 ideals in 7 passes
Fri May 17 20:42:23 2024  max relations containing the same ideal: 174
Fri May 17 20:45:55 2024  removing 10044130 relations and 8044130 ideals in 2000000 cliques
Fri May 17 20:46:21 2024  commencing in-memory singleton removal
Fri May 17 20:46:28 2024  begin with 611993918 relations and 530648734 unique ideals
Fri May 17 20:46:51 2024  reduce to 611856531 relations and 522466774 ideals in 7 passes
Fri May 17 20:46:51 2024  max relations containing the same ideal: 172
Fri May 17 20:50:50 2024  removing 9950952 relations and 7950952 ideals in 2000000 cliques
Fri May 17 20:51:17 2024  commencing in-memory singleton removal
Fri May 17 20:51:24 2024  begin with 601905579 relations and 522466774 unique ideals
Fri May 17 20:51:52 2024  reduce to 601768922 relations and 514378717 ideals in 7 passes
Fri May 17 20:51:52 2024  max relations containing the same ideal: 172
Fri May 17 20:55:46 2024  removing 9855207 relations and 7855207 ideals in 2000000 cliques
Fri May 17 20:56:12 2024  commencing in-memory singleton removal
Fri May 17 20:56:19 2024  begin with 591913715 relations and 514378717 unique ideals
Fri May 17 20:56:45 2024  reduce to 591775739 relations and 506385097 ideals in 6 passes
Fri May 17 20:56:45 2024  max relations containing the same ideal: 171
Fri May 17 21:00:34 2024  removing 9780826 relations and 7780826 ideals in 2000000 cliques
Fri May 17 21:00:58 2024  commencing in-memory singleton removal
Fri May 17 21:01:04 2024  begin with 581994913 relations and 506385097 unique ideals
Fri May 17 21:01:31 2024  reduce to 581857180 relations and 498466058 ideals in 8 passes
Fri May 17 21:01:31 2024  max relations containing the same ideal: 170
Fri May 17 21:04:59 2024  removing 9699008 relations and 7699008 ideals in 2000000 cliques
Fri May 17 21:05:23 2024  commencing in-memory singleton removal
Fri May 17 21:05:29 2024  begin with 572158172 relations and 498466058 unique ideals
Fri May 17 21:05:53 2024  reduce to 572018851 relations and 490627283 ideals in 8 passes
Fri May 17 21:05:53 2024  max relations containing the same ideal: 167
Fri May 17 21:09:23 2024  removing 9637779 relations and 7637779 ideals in 2000000 cliques
Fri May 17 21:09:46 2024  commencing in-memory singleton removal
Fri May 17 21:09:52 2024  begin with 562381072 relations and 490627283 unique ideals
Fri May 17 21:10:15 2024  reduce to 562243801 relations and 482851805 ideals in 6 passes
Fri May 17 21:10:15 2024  max relations containing the same ideal: 164
Fri May 17 21:13:46 2024  removing 9574536 relations and 7574536 ideals in 2000000 cliques
Fri May 17 21:14:08 2024  commencing in-memory singleton removal
Fri May 17 21:14:14 2024  begin with 552669265 relations and 482851805 unique ideals
Fri May 17 21:14:43 2024  reduce to 552530290 relations and 475137808 ideals in 8 passes
Fri May 17 21:14:43 2024  max relations containing the same ideal: 163
Fri May 17 21:17:58 2024  removing 9520356 relations and 7520356 ideals in 2000000 cliques
Fri May 17 21:18:20 2024  commencing in-memory singleton removal
Fri May 17 21:18:25 2024  begin with 543009934 relations and 475137808 unique ideals
Fri May 17 21:18:47 2024  reduce to 542871128 relations and 467478131 ideals in 7 passes
Fri May 17 21:18:47 2024  max relations containing the same ideal: 160
Fri May 17 21:22:12 2024  removing 9470144 relations and 7470144 ideals in 2000000 cliques
Fri May 17 21:22:31 2024  commencing in-memory singleton removal
Fri May 17 21:22:36 2024  begin with 533400984 relations and 467478131 unique ideals
Fri May 17 21:23:01 2024  reduce to 533259745 relations and 459866238 ideals in 7 passes
Fri May 17 21:23:01 2024  max relations containing the same ideal: 159
Fri May 17 21:26:15 2024  removing 9419531 relations and 7419531 ideals in 2000000 cliques
Fri May 17 21:26:36 2024  commencing in-memory singleton removal
Fri May 17 21:26:41 2024  begin with 523840214 relations and 459866238 unique ideals
Fri May 17 21:27:03 2024  reduce to 523698943 relations and 452304894 ideals in 7 passes
Fri May 17 21:27:03 2024  max relations containing the same ideal: 157
Fri May 17 21:30:24 2024  removing 9381044 relations and 7381044 ideals in 2000000 cliques
Fri May 17 21:30:42 2024  commencing in-memory singleton removal
Fri May 17 21:30:48 2024  begin with 514317899 relations and 452304894 unique ideals
Fri May 17 21:31:08 2024  reduce to 514175957 relations and 444781401 ideals in 6 passes
Fri May 17 21:31:08 2024  max relations containing the same ideal: 156
Fri May 17 21:34:09 2024  removing 9345474 relations and 7345474 ideals in 2000000 cliques
Fri May 17 21:34:27 2024  commencing in-memory singleton removal
Fri May 17 21:34:32 2024  begin with 504830483 relations and 444781401 unique ideals
Fri May 17 21:34:54 2024  reduce to 504685954 relations and 437290798 ideals in 7 passes
Fri May 17 21:34:54 2024  max relations containing the same ideal: 155
Fri May 17 21:37:52 2024  removing 9308625 relations and 7308625 ideals in 2000000 cliques
Fri May 17 21:38:09 2024  commencing in-memory singleton removal
Fri May 17 21:38:14 2024  begin with 495377329 relations and 437290798 unique ideals
Fri May 17 21:38:33 2024  reduce to 495231561 relations and 429835829 ideals in 7 passes
Fri May 17 21:38:33 2024  max relations containing the same ideal: 152
Fri May 17 21:41:43 2024  removing 9279720 relations and 7279720 ideals in 2000000 cliques
Fri May 17 21:42:02 2024  commencing in-memory singleton removal
Fri May 17 21:42:07 2024  begin with 485951841 relations and 429835829 unique ideals
Fri May 17 21:42:27 2024  reduce to 485803674 relations and 422407322 ideals in 7 passes
Fri May 17 21:42:27 2024  max relations containing the same ideal: 150
Fri May 17 21:45:32 2024  removing 9252110 relations and 7252110 ideals in 2000000 cliques
Fri May 17 21:45:51 2024  commencing in-memory singleton removal
Fri May 17 21:45:55 2024  begin with 476551564 relations and 422407322 unique ideals
Fri May 17 21:46:12 2024  reduce to 476401894 relations and 415004909 ideals in 6 passes
Fri May 17 21:46:12 2024  max relations containing the same ideal: 149
Fri May 17 21:48:57 2024  removing 9224931 relations and 7224931 ideals in 2000000 cliques
Fri May 17 21:49:14 2024  commencing in-memory singleton removal
Fri May 17 21:49:19 2024  begin with 467176963 relations and 415004909 unique ideals
Fri May 17 21:49:40 2024  reduce to 467024483 relations and 407626863 ideals in 8 passes
Fri May 17 21:49:40 2024  max relations containing the same ideal: 149
Fri May 17 21:52:32 2024  removing 9206265 relations and 7206265 ideals in 2000000 cliques
Fri May 17 21:52:49 2024  commencing in-memory singleton removal
Fri May 17 21:52:53 2024  begin with 457818218 relations and 407626863 unique ideals
Fri May 17 21:53:09 2024  reduce to 457663752 relations and 400265451 ideals in 6 passes
Fri May 17 21:53:09 2024  max relations containing the same ideal: 144
Fri May 17 21:55:56 2024  removing 9189658 relations and 7189658 ideals in 2000000 cliques
Fri May 17 21:56:12 2024  commencing in-memory singleton removal
Fri May 17 21:56:16 2024  begin with 448474094 relations and 400265451 unique ideals
Fri May 17 21:56:33 2024  reduce to 448316710 relations and 392917694 ideals in 7 passes
Fri May 17 21:56:33 2024  max relations containing the same ideal: 143
Fri May 17 21:59:26 2024  removing 9177594 relations and 7177594 ideals in 2000000 cliques
Fri May 17 21:59:43 2024  commencing in-memory singleton removal
Fri May 17 21:59:47 2024  begin with 439139116 relations and 392917694 unique ideals
Fri May 17 22:00:03 2024  reduce to 438979105 relations and 385579386 ideals in 7 passes
Fri May 17 22:00:03 2024  max relations containing the same ideal: 141
Fri May 17 22:03:26 2024  removing 9168334 relations and 7168334 ideals in 2000000 cliques
Fri May 17 22:03:49 2024  commencing in-memory singleton removal
Fri May 17 22:03:54 2024  begin with 429810771 relations and 385579386 unique ideals
Fri May 17 22:04:11 2024  reduce to 429647388 relations and 378246908 ideals in 7 passes
Fri May 17 22:04:11 2024  max relations containing the same ideal: 138
Fri May 17 22:06:51 2024  removing 9164857 relations and 7164857 ideals in 2000000 cliques
Fri May 17 22:07:05 2024  commencing in-memory singleton removal
Fri May 17 22:07:10 2024  begin with 420482531 relations and 378246908 unique ideals
Fri May 17 22:07:25 2024  reduce to 420317558 relations and 370916298 ideals in 7 passes
Fri May 17 22:07:25 2024  max relations containing the same ideal: 135
Fri May 17 22:09:54 2024  removing 9160297 relations and 7160297 ideals in 2000000 cliques
Fri May 17 22:10:09 2024  commencing in-memory singleton removal
Fri May 17 22:10:13 2024  begin with 411157261 relations and 370916298 unique ideals
Fri May 17 22:10:26 2024  reduce to 410986992 relations and 363584936 ideals in 6 passes
Fri May 17 22:10:26 2024  max relations containing the same ideal: 133
Fri May 17 22:12:57 2024  removing 9157832 relations and 7157832 ideals in 2000000 cliques
Fri May 17 22:13:11 2024  commencing in-memory singleton removal
Fri May 17 22:13:15 2024  begin with 401829160 relations and 363584936 unique ideals
Fri May 17 22:13:30 2024  reduce to 401656635 relations and 356253706 ideals in 7 passes
Fri May 17 22:13:30 2024  max relations containing the same ideal: 132
Fri May 17 22:16:03 2024  removing 9161876 relations and 7161876 ideals in 2000000 cliques
Fri May 17 22:16:16 2024  commencing in-memory singleton removal
Fri May 17 22:16:20 2024  begin with 392494759 relations and 356253706 unique ideals
Fri May 17 22:16:36 2024  reduce to 392317345 relations and 348913469 ideals in 8 passes
Fri May 17 22:16:36 2024  max relations containing the same ideal: 131
Fri May 17 22:19:06 2024  removing 9166662 relations and 7166662 ideals in 2000000 cliques
Fri May 17 22:19:21 2024  commencing in-memory singleton removal
Fri May 17 22:19:25 2024  begin with 383150683 relations and 348913469 unique ideals
Fri May 17 22:19:40 2024  reduce to 382968302 relations and 341563478 ideals in 7 passes
Fri May 17 22:19:40 2024  max relations containing the same ideal: 128
Fri May 17 22:21:53 2024  removing 9176723 relations and 7176723 ideals in 2000000 cliques
Fri May 17 22:22:07 2024  commencing in-memory singleton removal
Fri May 17 22:22:10 2024  begin with 373791579 relations and 341563478 unique ideals
Fri May 17 22:22:24 2024  reduce to 373605206 relations and 334199435 ideals in 7 passes
Fri May 17 22:22:24 2024  max relations containing the same ideal: 125
Fri May 17 22:24:39 2024  removing 9190485 relations and 7190485 ideals in 2000000 cliques
Fri May 17 22:24:52 2024  commencing in-memory singleton removal
Fri May 17 22:24:55 2024  begin with 364414721 relations and 334199435 unique ideals
Fri May 17 22:25:09 2024  reduce to 364222444 relations and 326815607 ideals in 7 passes
Fri May 17 22:25:09 2024  max relations containing the same ideal: 124
Fri May 17 22:27:30 2024  removing 9207180 relations and 7207180 ideals in 2000000 cliques
Fri May 17 22:27:43 2024  commencing in-memory singleton removal
Fri May 17 22:27:46 2024  begin with 355015264 relations and 326815607 unique ideals
Fri May 17 22:28:02 2024  reduce to 354816648 relations and 319408757 ideals in 8 passes
Fri May 17 22:28:02 2024  max relations containing the same ideal: 122
Fri May 17 22:30:06 2024  removing 9226165 relations and 7226165 ideals in 2000000 cliques
Fri May 17 22:30:20 2024  commencing in-memory singleton removal
Fri May 17 22:30:23 2024  begin with 345590483 relations and 319408757 unique ideals
Fri May 17 22:30:37 2024  reduce to 345386249 relations and 311977228 ideals in 7 passes
Fri May 17 22:30:37 2024  max relations containing the same ideal: 119
Fri May 17 22:32:46 2024  removing 9253854 relations and 7253854 ideals in 2000000 cliques
Fri May 17 22:32:59 2024  commencing in-memory singleton removal
Fri May 17 22:33:02 2024  begin with 336132395 relations and 311977228 unique ideals
Fri May 17 22:33:15 2024  reduce to 335921914 relations and 304511686 ideals in 7 passes
Fri May 17 22:33:15 2024  max relations containing the same ideal: 116
Fri May 17 22:35:13 2024  removing 9283917 relations and 7283917 ideals in 2000000 cliques
Fri May 17 22:35:25 2024  commencing in-memory singleton removal
Fri May 17 22:35:28 2024  begin with 326637997 relations and 304511686 unique ideals
Fri May 17 22:35:43 2024  reduce to 326421039 relations and 297009587 ideals in 8 passes
Fri May 17 22:35:43 2024  max relations containing the same ideal: 116
Fri May 17 22:37:44 2024  removing 9313589 relations and 7313589 ideals in 2000000 cliques
Fri May 17 22:37:56 2024  commencing in-memory singleton removal
Fri May 17 22:37:59 2024  begin with 317107450 relations and 297009587 unique ideals
Fri May 17 22:38:10 2024  reduce to 316882346 relations and 289469533 ideals in 6 passes
Fri May 17 22:38:10 2024  max relations containing the same ideal: 114
Fri May 17 22:39:59 2024  removing 9353391 relations and 7353391 ideals in 2000000 cliques
Fri May 17 22:40:11 2024  commencing in-memory singleton removal
Fri May 17 22:40:14 2024  begin with 307528955 relations and 289469533 unique ideals
Fri May 17 22:40:27 2024  reduce to 307294180 relations and 281879969 ideals in 8 passes
Fri May 17 22:40:27 2024  max relations containing the same ideal: 109
Fri May 17 22:42:14 2024  removing 9400965 relations and 7400965 ideals in 2000000 cliques
Fri May 17 22:42:25 2024  commencing in-memory singleton removal
Fri May 17 22:42:28 2024  begin with 297893215 relations and 281879969 unique ideals
Fri May 17 22:42:38 2024  reduce to 297648961 relations and 274233347 ideals in 7 passes
Fri May 17 22:42:38 2024  max relations containing the same ideal: 108
Fri May 17 22:44:24 2024  removing 9453503 relations and 7453503 ideals in 2000000 cliques
Fri May 17 22:44:35 2024  commencing in-memory singleton removal
Fri May 17 22:44:38 2024  begin with 288195458 relations and 274233347 unique ideals
Fri May 17 22:44:48 2024  reduce to 287938718 relations and 266521533 ideals in 8 passes
Fri May 17 22:44:48 2024  max relations containing the same ideal: 105
Fri May 17 22:46:28 2024  removing 9509549 relations and 7509549 ideals in 2000000 cliques
Fri May 17 22:46:39 2024  commencing in-memory singleton removal
Fri May 17 22:46:42 2024  begin with 278429169 relations and 266521533 unique ideals
Fri May 17 22:46:52 2024  reduce to 278162666 relations and 258743763 ideals in 8 passes
Fri May 17 22:46:52 2024  max relations containing the same ideal: 103
Fri May 17 22:48:25 2024  removing 9575131 relations and 7575131 ideals in 2000000 cliques
Fri May 17 22:48:36 2024  commencing in-memory singleton removal
Fri May 17 22:48:38 2024  begin with 268587535 relations and 258743763 unique ideals
Fri May 17 22:48:47 2024  reduce to 268306471 relations and 250885631 ideals in 7 passes
Fri May 17 22:48:47 2024  max relations containing the same ideal: 101
Fri May 17 22:50:22 2024  removing 9648294 relations and 7648294 ideals in 2000000 cliques
Fri May 17 22:50:32 2024  commencing in-memory singleton removal
Fri May 17 22:50:35 2024  begin with 258658177 relations and 250885631 unique ideals
Fri May 17 22:50:44 2024  reduce to 258363042 relations and 242940155 ideals in 7 passes
Fri May 17 22:50:44 2024  max relations containing the same ideal: 100
Fri May 17 22:52:08 2024  removing 9728466 relations and 7728466 ideals in 2000000 cliques
Fri May 17 22:52:18 2024  commencing in-memory singleton removal
Fri May 17 22:52:21 2024  begin with 248634576 relations and 242940155 unique ideals
Fri May 17 22:52:30 2024  reduce to 248322677 relations and 234897554 ideals in 8 passes
Fri May 17 22:52:30 2024  max relations containing the same ideal: 98
Fri May 17 22:53:55 2024  removing 9821258 relations and 7821258 ideals in 2000000 cliques
Fri May 17 22:54:05 2024  commencing in-memory singleton removal
Fri May 17 22:54:07 2024  begin with 238501419 relations and 234897554 unique ideals
Fri May 17 22:54:17 2024  reduce to 238167087 relations and 226739635 ideals in 8 passes
Fri May 17 22:54:17 2024  max relations containing the same ideal: 95
Fri May 17 22:55:34 2024  removing 9924946 relations and 7924946 ideals in 2000000 cliques
Fri May 17 22:55:43 2024  commencing in-memory singleton removal
Fri May 17 22:55:45 2024  begin with 228242141 relations and 226739635 unique ideals
Fri May 17 22:55:55 2024  reduce to 227887473 relations and 218457333 ideals in 8 passes
Fri May 17 22:55:55 2024  max relations containing the same ideal: 93
Fri May 17 22:57:11 2024  removing 10043617 relations and 8043617 ideals in 2000000 cliques
Fri May 17 22:57:21 2024  commencing in-memory singleton removal
Fri May 17 22:57:23 2024  begin with 217843856 relations and 218457333 unique ideals
Fri May 17 22:57:33 2024  reduce to 217464152 relations and 210031222 ideals in 9 passes
Fri May 17 22:57:33 2024  max relations containing the same ideal: 92
Fri May 17 22:58:45 2024  removing 10178632 relations and 8178632 ideals in 2000000 cliques
Fri May 17 22:58:54 2024  commencing in-memory singleton removal
Fri May 17 22:58:57 2024  begin with 207285520 relations and 210031222 unique ideals
Fri May 17 22:59:05 2024  reduce to 206873785 relations and 201437540 ideals in 8 passes
Fri May 17 22:59:05 2024  max relations containing the same ideal: 87
Fri May 17 23:00:15 2024  removing 1060419 relations and 923593 ideals in 136826 cliques
Fri May 17 23:00:23 2024  commencing in-memory singleton removal
Fri May 17 23:00:25 2024  begin with 205813366 relations and 201437540 unique ideals
Fri May 17 23:00:32 2024  reduce to 205809445 relations and 200510023 ideals in 6 passes
Fri May 17 23:00:32 2024  max relations containing the same ideal: 86
Fri May 17 23:01:04 2024  relations with 0 large ideals: 173049
Fri May 17 23:01:04 2024  relations with 1 large ideals: 107771
Fri May 17 23:01:04 2024  relations with 2 large ideals: 1351127
Fri May 17 23:01:04 2024  relations with 3 large ideals: 8037741
Fri May 17 23:01:04 2024  relations with 4 large ideals: 25724658
Fri May 17 23:01:04 2024  relations with 5 large ideals: 48531377
Fri May 17 23:01:04 2024  relations with 6 large ideals: 56237839
Fri May 17 23:01:04 2024  relations with 7+ large ideals: 65645883
Fri May 17 23:01:04 2024  commencing 2-way merge
Fri May 17 23:02:50 2024  reduce to 120351638 relation sets and 115052216 unique ideals
Fri May 17 23:02:50 2024  commencing full merge
Fri May 17 23:34:41 2024  memory use: 13848.4 MB
Fri May 17 23:34:52 2024  found 55750807 cycles, need 55112416
Fri May 17 23:35:12 2024  weight of 55112416 cycles is about 6062584700 (110.00/cycle)
Fri May 17 23:35:12 2024  distribution of cycle lengths:
Fri May 17 23:35:12 2024  1 relations: 5238450
Fri May 17 23:35:12 2024  2 relations: 4440231
Fri May 17 23:35:12 2024  3 relations: 4443179
Fri May 17 23:35:12 2024  4 relations: 4281635
Fri May 17 23:35:12 2024  5 relations: 4237264
Fri May 17 23:35:12 2024  6 relations: 4007892
Fri May 17 23:35:12 2024  7 relations: 3871259
Fri May 17 23:35:12 2024  8 relations: 3598435
Fri May 17 23:35:12 2024  9 relations: 3325645
Fri May 17 23:35:12 2024  10+ relations: 17668426
Fri May 17 23:35:12 2024  heaviest cycle: 26 relations
Fri May 17 23:35:31 2024  commencing cycle optimization
Fri May 17 23:37:13 2024  start with 414966490 relations
Fri May 17 23:49:08 2024  pruned 11671043 relations
Fri May 17 23:49:09 2024  memory use: 12612.5 MB
Fri May 17 23:49:09 2024  distribution of cycle lengths:
Fri May 17 23:49:09 2024  1 relations: 5238450
Fri May 17 23:49:09 2024  2 relations: 4535225
Fri May 17 23:49:09 2024  3 relations: 4591122
Fri May 17 23:49:09 2024  4 relations: 4402148
Fri May 17 23:49:09 2024  5 relations: 4367579
Fri May 17 23:49:09 2024  6 relations: 4117469
Fri May 17 23:49:09 2024  7 relations: 3975182
Fri May 17 23:49:09 2024  8 relations: 3682414
Fri May 17 23:49:09 2024  9 relations: 3399083
Fri May 17 23:49:09 2024  10+ relations: 16803744
Fri May 17 23:49:09 2024  heaviest cycle: 26 relations
Fri May 17 23:51:29 2024  RelProcTime: 29271
Fri May 17 23:51:29 2024  elapsed time 08:07:53
Fri May 17 23:51:31 2024
Fri May 17 23:51:31 2024
Fri May 17 23:51:31 2024  Msieve v. 1.54 (SVN Unversioned directory)
Fri May 17 23:51:31 2024  random seeds: cf012959 a82b2366
Fri May 17 23:51:31 2024  MPI process 0 of 1
Fri May 17 23:51:31 2024  Using 46 OpenMP threads
Fri May 17 23:51:31 2024  factoring 2999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999 (301 digits)
Fri May 17 23:51:32 2024  no P-1/P+1/ECM available, skipping
Fri May 17 23:51:32 2024  commencing number field sieve (301-digit input)
Fri May 17 23:51:32 2024  R0: -100000000000000000000000000000000000000000000000000
Fri May 17 23:51:32 2024  R1: 1
Fri May 17 23:51:32 2024  A0: -1
Fri May 17 23:51:32 2024  A1: 0
Fri May 17 23:51:32 2024  A2: 0
Fri May 17 23:51:32 2024  A3: 0
Fri May 17 23:51:32 2024  A4: 0
Fri May 17 23:51:32 2024  A5: 0
Fri May 17 23:51:32 2024  A6: 3
Fri May 17 23:51:32 2024  skew 0.83, size 1.017e-14, alpha 2.177, combined = 3.327e-15 rroots = 2
Fri May 17 23:51:32 2024
Fri May 17 23:51:32 2024  commencing linear algebra
Fri May 17 23:51:32 2024  using VBITS=128
Fri May 17 23:51:32 2024  stopping after matrix build
Fri May 17 23:51:32 2024  initialized process (0,0) of 1 x 1 grid
Fri May 17 23:51:40 2024  read 55112416 cycles
Fri May 17 23:53:35 2024  cycles contain 202394517 unique relations
Fri May 17 23:58:56 2024  read 202394517 relations
Fri May 17 23:59:11 2024  using 20 quadratic characters above 4294917295
Fri May 17 23:59:36 2024  building initial matrix
Sat May 18 00:48:19 2024  memory use: 26678.8 MB
Sat May 18 00:49:18 2024  read 55112416 cycles
Sat May 18 00:49:27 2024  matrix is 55112235 x 55112416 (24383.7 MB) with weight 6997403233 (126.97/col)
Sat May 18 00:49:27 2024  sparse part has weight 5785800123 (104.98/col)
Sat May 18 01:08:08 2024  filtering completed in 2 passes
Sat May 18 01:08:19 2024  matrix is 55095331 x 55095509 (24382.3 MB) with weight 6996860828 (127.00/col)
Sat May 18 01:08:19 2024  sparse part has weight 5785619311 (105.01/col)
Sat May 18 01:11:17 2024  BLanczosTime: 4785
Sat May 18 01:11:17 2024  elapsed time 01:19:46
Mon May 20 04:15:40 2024
Mon May 20 04:15:40 2024
Mon May 20 04:15:40 2024  Msieve v. 1.54 (SVN unknown)
Mon May 20 04:15:40 2024  random seeds: 7f4ea867 bac8c7cc
Mon May 20 04:15:40 2024  MPI process 0 of 4
Mon May 20 04:15:40 2024  Using 16 OpenMP threads
Mon May 20 04:15:40 2024  factoring 2999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999 (301 digits)
Mon May 20 04:15:41 2024  no P-1/P+1/ECM available, skipping
Mon May 20 04:15:41 2024  commencing number field sieve (301-digit input)
Mon May 20 04:15:41 2024  R0: -100000000000000000000000000000000000000000000000000
Mon May 20 04:15:41 2024  R1: 1
Mon May 20 04:15:41 2024  A0: -1
Mon May 20 04:15:41 2024  A1: 0
Mon May 20 04:15:41 2024  A2: 0
Mon May 20 04:15:41 2024  A3: 0
Mon May 20 04:15:41 2024  A4: 0
Mon May 20 04:15:41 2024  A5: 0
Mon May 20 04:15:41 2024  A6: 3
Mon May 20 04:15:41 2024  skew 0.83, size 1.017e-14, alpha 2.177, combined = 3.327e-15 rroots = 2
Mon May 20 04:15:41 2024
Mon May 20 04:15:41 2024  commencing linear algebra
Mon May 20 04:15:41 2024  using VBITS=256
Mon May 20 04:15:41 2024  skipping matrix build
Mon May 20 04:15:41 2024  initialized process (0,0) of 2 x 2 grid
Mon May 20 04:16:07 2024  matrix starts at (0, 0)
Mon May 20 04:16:10 2024  matrix is 27547786 x 27547746 (7076.9 MB) with weight 2157764086 (78.33/col)
Mon May 20 04:16:10 2024  sparse part has weight 1552141597 (56.34/col)
Mon May 20 04:16:10 2024  saving the first 240 matrix rows for later
Mon May 20 04:16:15 2024  matrix includes 256 packed rows
Mon May 20 04:16:21 2024  matrix is 27547546 x 27547746 (6447.6 MB) with weight 1341763510 (48.71/col)
Mon May 20 04:16:21 2024  sparse part has weight 1249443423 (45.36/col)
Mon May 20 04:16:22 2024  using GPU 0 (NVIDIA A100-SXM4-40GB)
Mon May 20 04:16:22 2024  selected card has CUDA arch 8.0
Mon May 20 04:17:30 2024  commencing Lanczos iteration
Mon May 20 04:17:31 2024  memory use: 14786.8 MB
Mon May 20 04:18:03 2024  linear algebra at 0.1%, ETA 15h29m
Mon May 20 04:18:49 2024  checking every 50000 dimensions, checkpointing every 3600000 dimensions
Mon May 20 19:40:42 2024  lanczos halted after 215862 iterations (dim = 55095090)
Mon May 20 19:45:06 2024  recovered 35 nontrivial dependencies
Mon May 20 19:45:07 2024  BLanczosTime: 55766
Mon May 20 19:45:07 2024  elapsed time 15:29:27
Mon May 20 18:04:00 2024
Mon May 20 18:04:00 2024
Mon May 20 18:04:00 2024  Msieve v. 1.54 (SVN Unversioned directory)
Mon May 20 18:04:00 2024  random seeds: 9099b2ef 3f311203
Mon May 20 18:04:00 2024  MPI process 0 of 1
Mon May 20 18:04:00 2024  Using 23 OpenMP threads
Mon May 20 18:04:00 2024  factoring 2999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999 (301 digits)
Mon May 20 18:04:01 2024  no P-1/P+1/ECM available, skipping
Mon May 20 18:04:01 2024  commencing number field sieve (301-digit input)
Mon May 20 18:04:01 2024  R0: -100000000000000000000000000000000000000000000000000
Mon May 20 18:04:01 2024  R1: 1
Mon May 20 18:04:01 2024  A0: -1
Mon May 20 18:04:01 2024  A1: 0
Mon May 20 18:04:01 2024  A2: 0
Mon May 20 18:04:01 2024  A3: 0
Mon May 20 18:04:01 2024  A4: 0
Mon May 20 18:04:01 2024  A5: 0
Mon May 20 18:04:01 2024  A6: 3
Mon May 20 18:04:01 2024  skew 0.83, size 1.017e-14, alpha 2.177, combined = 3.327e-15 rroots = 2
Mon May 20 18:04:01 2024
Mon May 20 18:04:01 2024  commencing square root phase
Mon May 20 18:04:01 2024  reading relations for dependency 1
Mon May 20 18:04:09 2024  read 27547198 cycles
Mon May 20 18:05:13 2024  cycles contain 101198706 unique relations
Mon May 20 18:09:53 2024  read 101198706 relations
Mon May 20 18:18:02 2024  multiplying 101198706 relations
Mon May 20 18:26:05 2024  multiply complete, coefficients have about 2947.95 million bits
Mon May 20 18:26:15 2024  initial square root is modulo 4091071
Mon May 20 18:49:41 2024  GCD is N, no factor found
Mon May 20 18:49:41 2024  reading relations for dependency 2
Mon May 20 18:49:48 2024  read 27553955 cycles
Mon May 20 18:50:51 2024  cycles contain 101215656 unique relations
Mon May 20 18:55:40 2024  read 101215656 relations
Mon May 20 19:06:26 2024  multiplying 101215656 relations
Mon May 20 19:14:30 2024  multiply complete, coefficients have about 2948.45 million bits
Mon May 20 19:14:41 2024  initial square root is modulo 4101679
Mon May 20 19:38:35 2024  GCD is N, no factor found
Mon May 20 19:38:35 2024  reading relations for dependency 3
Mon May 20 19:38:42 2024  read 27544365 cycles
Mon May 20 19:39:44 2024  cycles contain 101186582 unique relations
Mon May 20 19:44:27 2024  read 101186582 relations
Mon May 20 19:54:06 2024  multiplying 101186582 relations
Mon May 20 20:02:05 2024  multiply complete, coefficients have about 2947.60 million bits
Mon May 20 20:02:15 2024  initial square root is modulo 4083619
Mon May 20 20:26:01 2024  GCD is N, no factor found
Mon May 20 20:26:01 2024  reading relations for dependency 4
Mon May 20 20:26:08 2024  read 27545790 cycles
Mon May 20 20:27:10 2024  cycles contain 101183160 unique relations
Mon May 20 20:31:46 2024  read 101183160 relations
Mon May 20 20:40:15 2024  multiplying 101183160 relations
Mon May 20 20:48:17 2024  multiply complete, coefficients have about 2947.50 million bits
Mon May 20 20:48:28 2024  initial square root is modulo 4081543
Mon May 20 21:12:06 2024  sqrtTime: 11285
Mon May 20 21:12:06 2024  p84 factor: 158636608584555287822564496483760836474537795744193022267616490070819282284413545159
Mon May 20 21:12:06 2024  p218 factor: 18911145584664731672161623834145080343808448716496401267776943318321972394867043207863171146420418840120805701950834599928431328193997261491089145805583267931067662501894878002916008487809625902209231182365193202026761
Mon May 20 21:12:06 2024  elapsed time 03:08:06

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6404118Makoto KamadaSeptember 14, 2015 01:00:00 UTC 2015 年 9 月 14 日 (月) 10 時 0 分 0 秒 (日本時間)
286KTakahashiSeptember 14, 2015 15:05:54 UTC 2015 年 9 月 15 日 (火) 0 時 5 分 54 秒 (日本時間)
403e61200Dmitry DomanovSeptember 14, 2015 16:28:31 UTC 2015 年 9 月 15 日 (火) 1 時 28 分 31 秒 (日本時間)
4511e64400Serge BatalovSeptember 15, 2015 05:57:22 UTC 2015 年 9 月 15 日 (火) 14 時 57 分 22 秒 (日本時間)
5043e640002000Serge BatalovSeptember 15, 2015 16:13:31 UTC 2015 年 9 月 16 日 (水) 1 時 13 分 31 秒 (日本時間)
2000Dmitry DomanovAugust 11, 2016 10:36:47 UTC 2016 年 8 月 11 日 (木) 19 時 36 分 47 秒 (日本時間)
5511e7136881200Dmitry DomanovAugust 16, 2016 14:52:54 UTC 2016 年 8 月 16 日 (火) 23 時 52 分 54 秒 (日本時間)
488Jason Parker-BurlinghamAugust 23, 2019 16:37:58 UTC 2019 年 8 月 24 日 (土) 1 時 37 分 58 秒 (日本時間)
12000SyjApril 22, 2022 10:24:58 UTC 2022 年 4 月 22 日 (金) 19 時 24 分 58 秒 (日本時間)
6026e7363061192Jason Parker-BurlinghamAugust 30, 2019 16:23:57 UTC 2019 年 8 月 31 日 (土) 1 時 23 分 57 秒 (日本時間)
1150Florian BaurAugust 8, 2022 06:04:10 UTC 2022 年 8 月 8 日 (月) 15 時 4 分 10 秒 (日本時間)
1964Florian BaurAugust 10, 2022 20:33:08 UTC 2022 年 8 月 11 日 (木) 5 時 33 分 8 秒 (日本時間)
3000Florian BaurSeptember 11, 2022 13:04:49 UTC 2022 年 9 月 11 日 (日) 22 時 4 分 49 秒 (日本時間)
10000Florian BaurJanuary 1, 2024 12:48:02 UTC 2024 年 1 月 1 日 (月) 21 時 48 分 2 秒 (日本時間)
10000Florian BaurFebruary 9, 2024 06:27:13 UTC 2024 年 2 月 9 日 (金) 15 時 27 分 13 秒 (日本時間)
9000Florian BaurFebruary 19, 2024 17:24:22 UTC 2024 年 2 月 20 日 (火) 2 時 24 分 22 秒 (日本時間)