Table of contents 目次

3×10124-8

c124

name 名前Dmitry Domanov
date 日付April 14, 2022 18:00:02 UTC 2022 年 4 月 15 日 (金) 3 時 0 分 2 秒 (日本時間)
composite number 合成数
3749999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999<124>
prime factors 素因数
20508744103907081676907006852855048768496956675200903647<56>
182848836623086767209025482229593276983689405114165268254956809154017<69>
factorization results 素因数分解の結果
N=3749999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999
  ( 124 digits)
SNFS difficulty: 124 digits.
Divisors found:
p56 factor: 20508744103907081676907006852855048768496956675200903647
p69 factor: 182848836623086767209025482229593276983689405114165268254956809154017
Version: Msieve v. 1.54 (SVN 1043M)
Total time: 1.45 hours.
Scaled time: 0.00 units (timescale=0.000).
Factorization parameters were as follows:
n: 3749999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999
m: 10000000000000000000000000000000
deg: 4
c4: 3
c0: -8
skew: 1.28
# Murphy_E = 3.129e-08
type: snfs
lss: 1
rlim: 830000
alim: 830000
lpbr: 25
lpba: 25
mfbr: 46
mfba: 46
rlambda: 2.2
alambda: 2.2

Factor base limits: 830000/830000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 46/46
Sieved rational special-q in [415000, 790001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 72544 x 72770
Total sieving time: 1.43 hours.
Total relation processing time: 0.01 hours.
Matrix solve time: 0.01 hours.
Time per square root: 0.00 hours.
Prototype def-par.txt line would be:
snfs,124.000,4,0,0,0,0,0,0,0,0,830000,830000,25,25,46,46,2.2,2.2,75000
total time: 1.45 hours.

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)

3×10139-8

c136

name 名前Ignacio Santos
date 日付April 14, 2022 22:22:47 UTC 2022 年 4 月 15 日 (金) 7 時 22 分 47 秒 (日本時間)
composite number 合成数
1528740317977986139421116999592335915205870362821035466775377089278434569914390542193232776192417448022829188748471259682022013860578883<136>
prime factors 素因数
7079066613074494147013313689880350300447945064388285912027<58>
215952243641064175593662354545557493663221924642452001244001007785185635686329<78>
factorization results 素因数分解の結果
N=1528740317977986139421116999592335915205870362821035466775377089278434569914390542193232776192417448022829188748471259682022013860578883
  ( 136 digits)
SNFS difficulty: 139 digits.
Divisors found:
 r1=7079066613074494147013313689880350300447945064388285912027 (pp58)
 r2=215952243641064175593662354545557493663221924642452001244001007785185635686329 (pp78)
Version: Msieve v. 1.52 (SVN 927)
Total time: 4.09 hours.
Scaled time: 31.44 units (timescale=7.692).
Factorization parameters were as follows:
n: 1528740317977986139421116999592335915205870362821035466775377089278434569914390542193232776192417448022829188748471259682022013860578883
m: 50000000000000000000000000000000000
deg: 4
c4: 3
c0: -5
skew: 1.14
# Murphy_E = 5.883e-09
type: snfs
lss: 1
rlim: 1470000
alim: 1470000
lpbr: 26
lpba: 26
mfbr: 48
mfba: 48
rlambda: 2.3
alambda: 2.3Factor base limits: 1470000/1470000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 48/48
Sieved rational special-q in [735000, 1135001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 192900 x 193126
Total sieving time: 4.06 hours.
Total relation processing time: 0.01 hours.
Matrix solve time: 0.02 hours.
Time per square root: 0.00 hours.
Prototype def-par.txt line would be:
snfs,139.000,4,0,0,0,0,0,0,0,0,1470000,1470000,26,26,48,48,2.3,2.3,100000
total time: 4.09 hours.
software ソフトウェア
GNFS, Msieve

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)

3×10147-8

c143

name 名前Ignacio Santos
date 日付April 17, 2022 08:10:16 UTC 2022 年 4 月 17 日 (日) 17 時 10 分 16 秒 (日本時間)
composite number 合成数
16573120608123038847394705440403058293189552304768639236310602377690369912051973306227073849825429796261103990807442436027754452645070049056437<143>
prime factors 素因数
11362888872541742149820986544335021574696805049<47>
1458530554511691731452317063232909926764446287652258771762657263231564254185371331020396858869213<97>
factorization results 素因数分解の結果
N=16573120608123038847394705440403058293189552304768639236310602377690369912051973306227073849825429796261103990807442436027754452645070049056437
  ( 143 digits)
SNFS difficulty: 146 digits.
Divisors found:
 r1=11362888872541742149820986544335021574696805049 (pp47)
 r2=1458530554511691731452317063232909926764446287652258771762657263231564254185371331020396858869213 (pp97)
Version: Msieve v. 1.52 (SVN 927)
Total time: 4.15 hours.
Scaled time: 32.63 units (timescale=7.855).
Factorization parameters were as follows:
n: 16573120608123038847394705440403058293189552304768639236310602377690369912051973306227073849825429796261103990807442436027754452645070049056437
m: 100000000000000000000000000000
deg: 5
c5: 75
c0: -2
skew: 0.48
# Murphy_E = 2.463e-09
type: snfs
lss: 1
rlim: 1960000
alim: 1960000
lpbr: 26
lpba: 26
mfbr: 49
mfba: 49
rlambda: 2.3
alambda: 2.3Factor base limits: 1960000/1960000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 49/49
Sieved rational special-q in [980000, 1880001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 280463 x 280689
Total sieving time: 4.11 hours.
Total relation processing time: 0.01 hours.
Matrix solve time: 0.03 hours.
Time per square root: 0.00 hours.
Prototype def-par.txt line would be:
snfs,146.000,5,0,0,0,0,0,0,0,0,1960000,1960000,26,26,49,49,2.3,2.3,100000
total time: 4.15 hours.
software ソフトウェア
GNFS, Msieve

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)

3×10155-8

c122

name 名前Ignacio Santos
date 日付April 17, 2022 09:45:39 UTC 2022 年 4 月 17 日 (日) 18 時 45 分 39 秒 (日本時間)
composite number 合成数
63574803808739849053873434889806186819632052206518583217915189041684095970070022249442255897317266481677513315301770042191<122>
prime factors 素因数
26128542888853870999835206227354670998178719851535871201<56>
2433155345829105243213743187114895388487200805871643411972443282991<67>
factorization results 素因数分解の結果
N=63574803808739849053873434889806186819632052206518583217915189041684095970070022249442255897317266481677513315301770042191
  ( 122 digits)
SNFS difficulty: 155 digits.
Divisors found:
 r1=26128542888853870999835206227354670998178719851535871201 (pp56)
 r2=2433155345829105243213743187114895388487200805871643411972443282991 (pp67)
Version: Msieve v. 1.52 (SVN 927)
Total time: 8.31 hours.
Scaled time: 65.75 units (timescale=7.911).
Factorization parameters were as follows:
n: 63574803808739849053873434889806186819632052206518583217915189041684095970070022249442255897317266481677513315301770042191
m: 10000000000000000000000000000000
deg: 5
c5: 3
c0: -8
skew: 1.22
# Murphy_E = 1.313e-09
type: snfs
lss: 1
rlim: 2700000
alim: 2700000
lpbr: 27
lpba: 27
mfbr: 50
mfba: 50
rlambda: 2.4
alambda: 2.4Factor base limits: 2700000/2700000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 50/50
Sieved rational special-q in [1350000, 1950001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 412249 x 412479
Total sieving time: 8.23 hours.
Total relation processing time: 0.02 hours.
Matrix solve time: 0.05 hours.
Time per square root: 0.01 hours.
Prototype def-par.txt line would be:
snfs,155.000,5,0,0,0,0,0,0,0,0,2700000,2700000,27,27,50,50,2.4,2.4,100000
total time: 8.31 hours.
software ソフトウェア
GNFS, Msieve

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)

3×10156-8

c117

name 名前Ignacio Santos
date 日付April 17, 2022 10:05:14 UTC 2022 年 4 月 17 日 (日) 19 時 5 分 14 秒 (日本時間)
composite number 合成数
426044456111678935496302505898730344975878678521862552837716196789436441455040942408808201517591417516962994180995157<117>
prime factors 素因数
1898480101243212911534310069892757827<37>
224413443065684620847578861510099664556728457831379135110003862186084880445702791<81>
factorization results 素因数分解の結果
N=426044456111678935496302505898730344975878678521862552837716196789436441455040942408808201517591417516962994180995157
  ( 117 digits)
SNFS difficulty: 156 digits.
Divisors found:
 r1=1898480101243212911534310069892757827 (pp37)
 r2=224413443065684620847578861510099664556728457831379135110003862186084880445702791 (pp81)
Version: Msieve v. 1.52 (SVN 927)
Total time: 9.55 hours.
Scaled time: 75.35 units (timescale=7.893).
Factorization parameters were as follows:
n: 426044456111678935496302505898730344975878678521862552837716196789436441455040942408808201517591417516962994180995157
m: 10000000000000000000000000000000
deg: 5
c5: 15
c0: -4
skew: 0.77
# Murphy_E = 1.237e-09
type: snfs
lss: 1
rlim: 2800000
alim: 2800000
lpbr: 27
lpba: 27
mfbr: 50
mfba: 50
rlambda: 2.4
alambda: 2.4Factor base limits: 2800000/2800000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 50/50
Sieved rational special-q in [1400000, 2100001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 389173 x 389398
Total sieving time: 9.47 hours.
Total relation processing time: 0.02 hours.
Matrix solve time: 0.05 hours.
Time per square root: 0.01 hours.
Prototype def-par.txt line would be:
snfs,156.000,5,0,0,0,0,0,0,0,0,2800000,2800000,27,27,50,50,2.4,2.4,100000
total time: 9.55 hours.
software ソフトウェア
GNFS, Msieve

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)

3×10157-8

c150

name 名前Bob Backstrom
date 日付April 19, 2022 06:34:20 UTC 2022 年 4 月 19 日 (火) 15 時 34 分 20 秒 (日本時間)
composite number 合成数
210497871249061249660186269846932122631905965043769243364559803764341851461812290123097471123481026311279649116327129858157553109875903365647656762957<150>
prime factors 素因数
49656267993539727913775016050658088378143879119891961144247224883<65>
4239099709959012368532385539926024412675037440029347064776155131554230176795368068479<85>
factorization results 素因数分解の結果
Number: n
N=210497871249061249660186269846932122631905965043769243364559803764341851461812290123097471123481026311279649116327129858157553109875903365647656762957  ( 150 digits)
SNFS difficulty: 156 digits.
Divisors found:

Tue Apr 19 16:28:27 2022  p65 factor: 49656267993539727913775016050658088378143879119891961144247224883
Tue Apr 19 16:28:27 2022  p85 factor: 4239099709959012368532385539926024412675037440029347064776155131554230176795368068479
Tue Apr 19 16:28:27 2022  elapsed time 00:06:03 (Msieve 1.54 - dependency 3)

Version: 
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.324).
Factorization parameters were as follows:
#
# N = 3x10^157-8 = 29(156)2
#
n: 210497871249061249660186269846932122631905965043769243364559803764341851461812290123097471123481026311279649116327129858157553109875903365647656762957
m: 10000000000000000000000000000000
deg: 5
c5: 75
c0: -2
skew: 0.48
# Murphy_E = 1.025e-09
type: snfs
lss: 1
rlim: 2900000
alim: 2900000
lpbr: 27
lpba: 27
mfbr: 50
mfba: 50
rlambda: 2.4
alambda: 2.4
Factor base limits: 2900000/2900000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 50/50
Sieved  special-q in [100000, 7050000)
Primes: , , 
Relations: 
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 

Msieve: found 1304418 hash collisions in 15938400 relations (15343088 unique)
Msieve: matrix is 320544 x 320769 (107.1 MB)

Sieving start time : 2022/04/19 15:55:49
Sieving end time  : 2022/04/19 16:21:50

Total sieving time: 0hrs 26min 1secs.

Total relation processing time: 0hrs 1min 45sec.
Matrix solve time: 0.00 hours.
Total square root time: 0hrs 0min 42sec.

Prototype def-par.txt line would be:
snfs,156,5,0,0,0,0,0,0,0,0,2900000,2900000,27,27,50,50,2.4,2.4,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------
[    0.116801] smpboot: CPU0: AMD Ryzen 7 2700 Eight-Core Processor (family: 0x17, model: 0x8, stepping: 0x2)
[    0.000000] Memory: 16197520K/16727236K available (14339K kernel code, 2401K rwdata, 9504K rodata, 2752K init, 4948K bss, 529716K reserved, 0K cma-reserved)
[    0.153503] x86/mm: Memory block size: 128MB
[    0.000005] Calibrating delay loop (skipped), value calculated using timer frequency.. 6399.36 BogoMIPS (lpj=12798732)
[    0.152038] smpboot: Total of 16 processors activated (102389.85 BogoMIPS)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)

3×10158-8

c152

name 名前Bob Backstrom
date 日付April 17, 2022 17:21:10 UTC 2022 年 4 月 18 日 (月) 2 時 21 分 10 秒 (日本時間)
composite number 合成数
24678504890621575857446426256349779308356931468120965475758798216040238466747524416912738780987153357494138032471647688347994558883241715754954950211939<152>
prime factors 素因数
40246080501320240055452746691961262662631590218049560093<56>
613190268051370058357638101983005282942274513139416114411587940742124295616176796772755118218623<96>
factorization results 素因数分解の結果
Number: n
N=24678504890621575857446426256349779308356931468120965475758798216040238466747524416912738780987153357494138032471647688347994558883241715754954950211939  ( 152 digits)
SNFS difficulty: 157 digits.
Divisors found:

Mon Apr 18 03:15:11 2022  p56 factor: 40246080501320240055452746691961262662631590218049560093
Mon Apr 18 03:15:11 2022  p96 factor: 613190268051370058357638101983005282942274513139416114411587940742124295616176796772755118218623
Mon Apr 18 03:15:11 2022  elapsed time 00:05:39 (Msieve 1.54 - dependency 2)

Version: 
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.305).
Factorization parameters were as follows:
#
# N = 3x10^158-8 = 29(157)2
#
n: 24678504890621575857446426256349779308356931468120965475758798216040238466747524416912738780987153357494138032471647688347994558883241715754954950211939
m: 10000000000000000000000000000000
deg: 5
c5: 375
c0: -1
skew: 0.31
# Murphy_E = 1.004e-09
type: snfs
lss: 1
rlim: 3000000
alim: 3000000
lpbr: 27
lpba: 27
mfbr: 50
mfba: 50
rlambda: 2.4
alambda: 2.4
Factor base limits: 3000000/3000000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 50/50
Sieved  special-q in [100000, 7100000)
Primes: , , 
Relations: 
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 

Msieve: found 1620142 hash collisions in 15599316 relations (14979513 unique)
Msieve: matrix is 323680 x 323906 (107.2 MB)

Sieving start time : 2022/04/18 02:57:47
Sieving end time  : 2022/04/18 03:08:58

Total sieving time: 0hrs 11min 11secs.

Total relation processing time: 0hrs 1min 47sec.
Matrix solve time: 0.00 hours.
Total square root time: 0hrs 0min 30sec.

Prototype def-par.txt line would be:
snfs,157,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,50,50,2.4,2.4,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------
[    0.116801] smpboot: CPU0: AMD Ryzen 7 2700 Eight-Core Processor (family: 0x17, model: 0x8, stepping: 0x2)
[    0.000000] Memory: 16197520K/16727236K available (14339K kernel code, 2401K rwdata, 9504K rodata, 2752K init, 4948K bss, 529716K reserved, 0K cma-reserved)
[    0.153503] x86/mm: Memory block size: 128MB
[    0.000005] Calibrating delay loop (skipped), value calculated using timer frequency.. 6399.36 BogoMIPS (lpj=12798732)
[    0.152038] smpboot: Total of 16 processors activated (102389.85 BogoMIPS)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)

3×10161-8

c131

name 名前Ignacio Santos
date 日付April 18, 2022 21:58:18 UTC 2022 年 4 月 19 日 (火) 6 時 58 分 18 秒 (日本時間)
composite number 合成数
23603350550651735442689437696643214974755595801139233764300000248299582462261068622893770235885553536966371766062784238425564022657<131>
prime factors 素因数
2091842810005701567916971590235145871<37>
composite cofactor 合成数の残り
11283520175489381865201604603063521948353813512463592548756714824266191165140751453920414128367<95>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:1146232165
Step 1 took 4766ms
Step 2 took 2906ms
********** Factor found in step 2: 2091842810005701567916971590235145871
Found prime factor of 37 digits: 2091842810005701567916971590235145871
Composite cofactor 11283520175489381865201604603063521948353813512463592548756714824266191165140751453920414128367 has 95 digits
software ソフトウェア
GMP-ECM

c95

name 名前Dmitry Domanov
date 日付April 19, 2022 23:13:19 UTC 2022 年 4 月 20 日 (水) 8 時 13 分 19 秒 (日本時間)
composite number 合成数
11283520175489381865201604603063521948353813512463592548756714824266191165140751453920414128367<95>
prime factors 素因数
4967100827587336792733715105899914207<37>
2271651123492516448593438107693650871355280732485503216881<58>
factorization results 素因数分解の結果
N=11283520175489381865201604603063521948353813512463592548756714824266191165140751453920414128367
  ( 95 digits)
Divisors found:
p37 factor: 4967100827587336792733715105899914207
p58 factor: 2271651123492516448593438107693650871355280732485503216881
Version: Msieve v. 1.54 (SVN 1043M)
Total time: 3.74 hours.
Scaled time: 0.00 units (timescale=0.000).
Factorization parameters were as follows:
n: 11283520175489381865201604603063521948353813512463592548756714824266191165140751453920414128367
skew: 429425.00
c0: 85661199337618342524451927
c1: -667807319337026961518
c2: -3611906988276523
c3: 9085466102
c4: 9240
Y0: -33241707649134339010410
Y1: 3062297738977
rlim: 1500000
alim: 1500000
lpbr: 25
lpba: 25
mfbr: 50
mfba: 50
rlambda: 2.5
alambda: 2.5
type: gnfs
Factor base limits: 1500000/1500000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 50/50
Sieved algebraic special-q in [750000, 930001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 115748 x 115974
Total sieving time: 3.61 hours.
Total relation processing time: 0.07 hours.
Matrix solve time: 0.06 hours.
Time per square root: 0.01 hours.
Prototype def-par.txt line would be:
gnfs,94,4,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1500000,1500000,25,25,50,50,2.5,2.5,60000
total time: 3.74 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)

3×10163-8

c127

name 名前Taiyo Kodama
date 日付April 22, 2022 12:49:49 UTC 2022 年 4 月 22 日 (金) 21 時 49 分 49 秒 (日本時間)
composite number 合成数
1370299455983123338296788277457681926439000445654861797367055738764743792341307129203239223201076158865961708752982538696198053<127>
prime factors 素因数
29400879121357011334939190162191877941760636566861<50>
46607431373973028519084175062432994225989707960604334031794185147560082745273<77>
factorization results 素因数分解の結果
Fri Apr 22 19:58:07 2022 -> factmsieve.py (v0.86)
Fri Apr 22 19:58:07 2022 -> This is client 1 of 1
Fri Apr 22 19:58:07 2022 -> Running on 6 Cores with 1 hyper-thread per Core
Fri Apr 22 19:58:07 2022 -> Working with NAME = 29992_163
Fri Apr 22 19:58:07 2022 -> Selected lattice siever: gnfs-lasieve4I13e
Fri Apr 22 19:58:07 2022 -> Creating param file to detect parameter changes...
Fri Apr 22 19:58:07 2022 -> Running setup ...
Fri Apr 22 19:58:07 2022 -> Estimated minimum relations needed: 8.48343e+06
Fri Apr 22 19:58:07 2022 -> cleaning up before a restart
Fri Apr 22 19:58:07 2022 -> Running lattice siever ...
Fri Apr 22 19:58:07 2022 -> entering sieving loop
Fri Apr 22 19:58:07 2022 -> making sieve job for q = 1800000 in 1800000 .. 1816666 as file 29992_163.job.T0
Fri Apr 22 19:58:07 2022 -> making sieve job for q = 1816666 in 1816666 .. 1833332 as file 29992_163.job.T1
Fri Apr 22 19:58:07 2022 -> making sieve job for q = 1833332 in 1833332 .. 1849998 as file 29992_163.job.T2
Fri Apr 22 19:58:07 2022 -> making sieve job for q = 1849998 in 1849998 .. 1866664 as file 29992_163.job.T3
Fri Apr 22 19:58:07 2022 -> making sieve job for q = 1866664 in 1866664 .. 1883330 as file 29992_163.job.T4
Fri Apr 22 19:58:07 2022 -> making sieve job for q = 1883330 in 1883330 .. 1899996 as file 29992_163.job.T5
Fri Apr 22 19:58:07 2022 -> Lattice sieving rational q from 1800000 to 1900000.
Fri Apr 22 19:58:07 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n 0 -r 29992_163.job.T0
Fri Apr 22 19:58:07 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n 1 -r 29992_163.job.T1
Fri Apr 22 19:58:07 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n 2 -r 29992_163.job.T2
Fri Apr 22 19:58:07 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n 3 -r 29992_163.job.T3
Fri Apr 22 19:58:07 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T4 -v -n 4 -r 29992_163.job.T4
Fri Apr 22 19:58:07 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T5 -v -n 5 -r 29992_163.job.T5
Fri Apr 22 19:58:29 2022 -> Return value 3221225786. Updating job file and terminating...
Fri Apr 22 19:58:29 2022 LatSieveTime: 21.2589
Fri Apr 22 20:01:15 2022 -> factmsieve.py (v0.86)
Fri Apr 22 20:01:15 2022 -> This is client 1 of 1
Fri Apr 22 20:01:15 2022 -> Running on 6 Cores with 1 hyper-thread per Core
Fri Apr 22 20:01:15 2022 -> Working with NAME = 29992_163
Fri Apr 22 20:01:15 2022 -> Selected lattice siever: gnfs-lasieve4I13e
Fri Apr 22 20:01:15 2022 -> Creating param file to detect parameter changes...
Fri Apr 22 20:01:15 2022 -> Running setup ...
Fri Apr 22 20:01:15 2022 -> Estimated minimum relations needed: 8.48343e+06
Fri Apr 22 20:01:15 2022 -> resuming a block for q from 1800000 to 1900000
Fri Apr 22 20:01:15 2022 -> Running lattice siever ...
Fri Apr 22 20:01:15 2022 -> entering sieving loop
Fri Apr 22 20:01:15 2022 -> making sieve job for q = 1800000 in 1800000 .. 1816666 as file 29992_163.job.T0
Fri Apr 22 20:01:15 2022 -> making sieve job for q = 1816666 in 1816666 .. 1833332 as file 29992_163.job.T1
Fri Apr 22 20:01:15 2022 -> making sieve job for q = 1833332 in 1833332 .. 1849998 as file 29992_163.job.T2
Fri Apr 22 20:01:15 2022 -> making sieve job for q = 1849998 in 1849998 .. 1866664 as file 29992_163.job.T3
Fri Apr 22 20:01:15 2022 -> making sieve job for q = 1866664 in 1866664 .. 1883330 as file 29992_163.job.T4
Fri Apr 22 20:01:15 2022 -> making sieve job for q = 1883330 in 1883330 .. 1899996 as file 29992_163.job.T5
Fri Apr 22 20:01:15 2022 -> Lattice sieving rational q from 1800000 to 1900000.
Fri Apr 22 20:01:15 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n 0 -r 29992_163.job.T0
Fri Apr 22 20:01:15 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n 1 -r 29992_163.job.T1
Fri Apr 22 20:01:15 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n 2 -r 29992_163.job.T2
Fri Apr 22 20:01:15 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n 3 -r 29992_163.job.T3
Fri Apr 22 20:01:15 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T4 -v -n 4 -r 29992_163.job.T4
Fri Apr 22 20:01:15 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T5 -v -n 5 -r 29992_163.job.T5
Fri Apr 22 20:08:16 2022 Found 855781 relations, 10.1% of the estimated minimum (8483428).
Fri Apr 22 20:08:16 2022 LatSieveTime: 421.337
Fri Apr 22 20:08:16 2022 -> making sieve job for q = 1900000 in 1900000 .. 1916666 as file 29992_163.job.T0
Fri Apr 22 20:08:16 2022 -> making sieve job for q = 1916666 in 1916666 .. 1933332 as file 29992_163.job.T1
Fri Apr 22 20:08:16 2022 -> making sieve job for q = 1933332 in 1933332 .. 1949998 as file 29992_163.job.T2
Fri Apr 22 20:08:16 2022 -> making sieve job for q = 1949998 in 1949998 .. 1966664 as file 29992_163.job.T3
Fri Apr 22 20:08:16 2022 -> making sieve job for q = 1966664 in 1966664 .. 1983330 as file 29992_163.job.T4
Fri Apr 22 20:08:16 2022 -> making sieve job for q = 1983330 in 1983330 .. 1999996 as file 29992_163.job.T5
Fri Apr 22 20:08:16 2022 -> Lattice sieving rational q from 1900000 to 2000000.
Fri Apr 22 20:08:16 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n 0 -r 29992_163.job.T0
Fri Apr 22 20:08:16 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n 1 -r 29992_163.job.T1
Fri Apr 22 20:08:16 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n 2 -r 29992_163.job.T2
Fri Apr 22 20:08:16 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n 3 -r 29992_163.job.T3
Fri Apr 22 20:08:16 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T4 -v -n 4 -r 29992_163.job.T4
Fri Apr 22 20:08:16 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T5 -v -n 5 -r 29992_163.job.T5
Fri Apr 22 20:15:21 2022 Found 1668936 relations, 19.7% of the estimated minimum (8483428).
Fri Apr 22 20:15:21 2022 LatSieveTime: 424.626
Fri Apr 22 20:15:21 2022 -> making sieve job for q = 2000000 in 2000000 .. 2016666 as file 29992_163.job.T0
Fri Apr 22 20:15:21 2022 -> making sieve job for q = 2016666 in 2016666 .. 2033332 as file 29992_163.job.T1
Fri Apr 22 20:15:21 2022 -> making sieve job for q = 2033332 in 2033332 .. 2049998 as file 29992_163.job.T2
Fri Apr 22 20:15:21 2022 -> making sieve job for q = 2049998 in 2049998 .. 2066664 as file 29992_163.job.T3
Fri Apr 22 20:15:21 2022 -> making sieve job for q = 2066664 in 2066664 .. 2083330 as file 29992_163.job.T4
Fri Apr 22 20:15:21 2022 -> making sieve job for q = 2083330 in 2083330 .. 2099996 as file 29992_163.job.T5
Fri Apr 22 20:15:21 2022 -> Lattice sieving rational q from 2000000 to 2100000.
Fri Apr 22 20:15:21 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n 0 -r 29992_163.job.T0
Fri Apr 22 20:15:21 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n 1 -r 29992_163.job.T1
Fri Apr 22 20:15:21 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n 2 -r 29992_163.job.T2
Fri Apr 22 20:15:21 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n 3 -r 29992_163.job.T3
Fri Apr 22 20:15:21 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T4 -v -n 4 -r 29992_163.job.T4
Fri Apr 22 20:15:21 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T5 -v -n 5 -r 29992_163.job.T5
Fri Apr 22 20:22:53 2022 Found 2488776 relations, 29.3% of the estimated minimum (8483428).
Fri Apr 22 20:22:53 2022 LatSieveTime: 452.245
Fri Apr 22 20:22:53 2022 -> making sieve job for q = 2100000 in 2100000 .. 2116666 as file 29992_163.job.T0
Fri Apr 22 20:22:53 2022 -> making sieve job for q = 2116666 in 2116666 .. 2133332 as file 29992_163.job.T1
Fri Apr 22 20:22:53 2022 -> making sieve job for q = 2133332 in 2133332 .. 2149998 as file 29992_163.job.T2
Fri Apr 22 20:22:53 2022 -> making sieve job for q = 2149998 in 2149998 .. 2166664 as file 29992_163.job.T3
Fri Apr 22 20:22:53 2022 -> making sieve job for q = 2166664 in 2166664 .. 2183330 as file 29992_163.job.T4
Fri Apr 22 20:22:53 2022 -> making sieve job for q = 2183330 in 2183330 .. 2199996 as file 29992_163.job.T5
Fri Apr 22 20:22:53 2022 -> Lattice sieving rational q from 2100000 to 2200000.
Fri Apr 22 20:22:53 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n 0 -r 29992_163.job.T0
Fri Apr 22 20:22:53 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n 1 -r 29992_163.job.T1
Fri Apr 22 20:22:53 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n 2 -r 29992_163.job.T2
Fri Apr 22 20:22:53 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n 3 -r 29992_163.job.T3
Fri Apr 22 20:22:53 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T4 -v -n 4 -r 29992_163.job.T4
Fri Apr 22 20:22:53 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T5 -v -n 5 -r 29992_163.job.T5
Fri Apr 22 20:30:43 2022 Found 3311544 relations, 39.0% of the estimated minimum (8483428).
Fri Apr 22 20:30:43 2022 LatSieveTime: 470.526
Fri Apr 22 20:30:43 2022 -> making sieve job for q = 2200000 in 2200000 .. 2216666 as file 29992_163.job.T0
Fri Apr 22 20:30:43 2022 -> making sieve job for q = 2216666 in 2216666 .. 2233332 as file 29992_163.job.T1
Fri Apr 22 20:30:43 2022 -> making sieve job for q = 2233332 in 2233332 .. 2249998 as file 29992_163.job.T2
Fri Apr 22 20:30:43 2022 -> making sieve job for q = 2249998 in 2249998 .. 2266664 as file 29992_163.job.T3
Fri Apr 22 20:30:43 2022 -> making sieve job for q = 2266664 in 2266664 .. 2283330 as file 29992_163.job.T4
Fri Apr 22 20:30:43 2022 -> making sieve job for q = 2283330 in 2283330 .. 2299996 as file 29992_163.job.T5
Fri Apr 22 20:30:43 2022 -> Lattice sieving rational q from 2200000 to 2300000.
Fri Apr 22 20:30:43 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n 0 -r 29992_163.job.T0
Fri Apr 22 20:30:43 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n 1 -r 29992_163.job.T1
Fri Apr 22 20:30:43 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n 2 -r 29992_163.job.T2
Fri Apr 22 20:30:43 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n 3 -r 29992_163.job.T3
Fri Apr 22 20:30:43 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T4 -v -n 4 -r 29992_163.job.T4
Fri Apr 22 20:30:43 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T5 -v -n 5 -r 29992_163.job.T5
Fri Apr 22 20:39:07 2022 Found 4138041 relations, 48.8% of the estimated minimum (8483428).
Fri Apr 22 20:39:07 2022 LatSieveTime: 503.475
Fri Apr 22 20:39:07 2022 -> making sieve job for q = 2300000 in 2300000 .. 2316666 as file 29992_163.job.T0
Fri Apr 22 20:39:07 2022 -> making sieve job for q = 2316666 in 2316666 .. 2333332 as file 29992_163.job.T1
Fri Apr 22 20:39:07 2022 -> making sieve job for q = 2333332 in 2333332 .. 2349998 as file 29992_163.job.T2
Fri Apr 22 20:39:07 2022 -> making sieve job for q = 2349998 in 2349998 .. 2366664 as file 29992_163.job.T3
Fri Apr 22 20:39:07 2022 -> making sieve job for q = 2366664 in 2366664 .. 2383330 as file 29992_163.job.T4
Fri Apr 22 20:39:07 2022 -> making sieve job for q = 2383330 in 2383330 .. 2399996 as file 29992_163.job.T5
Fri Apr 22 20:39:07 2022 -> Lattice sieving rational q from 2300000 to 2400000.
Fri Apr 22 20:39:07 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n 0 -r 29992_163.job.T0
Fri Apr 22 20:39:07 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n 1 -r 29992_163.job.T1
Fri Apr 22 20:39:07 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n 2 -r 29992_163.job.T2
Fri Apr 22 20:39:07 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n 3 -r 29992_163.job.T3
Fri Apr 22 20:39:07 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T4 -v -n 4 -r 29992_163.job.T4
Fri Apr 22 20:39:07 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T5 -v -n 5 -r 29992_163.job.T5
Fri Apr 22 20:47:42 2022 Found 4962852 relations, 58.5% of the estimated minimum (8483428).
Fri Apr 22 20:47:42 2022 LatSieveTime: 514.901
Fri Apr 22 20:47:42 2022 -> making sieve job for q = 2400000 in 2400000 .. 2416666 as file 29992_163.job.T0
Fri Apr 22 20:47:42 2022 -> making sieve job for q = 2416666 in 2416666 .. 2433332 as file 29992_163.job.T1
Fri Apr 22 20:47:42 2022 -> making sieve job for q = 2433332 in 2433332 .. 2449998 as file 29992_163.job.T2
Fri Apr 22 20:47:42 2022 -> making sieve job for q = 2449998 in 2449998 .. 2466664 as file 29992_163.job.T3
Fri Apr 22 20:47:42 2022 -> making sieve job for q = 2466664 in 2466664 .. 2483330 as file 29992_163.job.T4
Fri Apr 22 20:47:42 2022 -> making sieve job for q = 2483330 in 2483330 .. 2499996 as file 29992_163.job.T5
Fri Apr 22 20:47:42 2022 -> Lattice sieving rational q from 2400000 to 2500000.
Fri Apr 22 20:47:42 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n 0 -r 29992_163.job.T0
Fri Apr 22 20:47:42 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n 1 -r 29992_163.job.T1
Fri Apr 22 20:47:42 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n 2 -r 29992_163.job.T2
Fri Apr 22 20:47:42 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n 3 -r 29992_163.job.T3
Fri Apr 22 20:47:42 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T4 -v -n 4 -r 29992_163.job.T4
Fri Apr 22 20:47:42 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T5 -v -n 5 -r 29992_163.job.T5
Fri Apr 22 20:56:20 2022 Found 5788388 relations, 68.2% of the estimated minimum (8483428).
Fri Apr 22 20:56:20 2022 LatSieveTime: 518.332
Fri Apr 22 20:56:20 2022 -> making sieve job for q = 2500000 in 2500000 .. 2516666 as file 29992_163.job.T0
Fri Apr 22 20:56:20 2022 -> making sieve job for q = 2516666 in 2516666 .. 2533332 as file 29992_163.job.T1
Fri Apr 22 20:56:20 2022 -> making sieve job for q = 2533332 in 2533332 .. 2549998 as file 29992_163.job.T2
Fri Apr 22 20:56:20 2022 -> making sieve job for q = 2549998 in 2549998 .. 2566664 as file 29992_163.job.T3
Fri Apr 22 20:56:20 2022 -> making sieve job for q = 2566664 in 2566664 .. 2583330 as file 29992_163.job.T4
Fri Apr 22 20:56:20 2022 -> making sieve job for q = 2583330 in 2583330 .. 2599996 as file 29992_163.job.T5
Fri Apr 22 20:56:20 2022 -> Lattice sieving rational q from 2500000 to 2600000.
Fri Apr 22 20:56:20 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n 0 -r 29992_163.job.T0
Fri Apr 22 20:56:20 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n 1 -r 29992_163.job.T1
Fri Apr 22 20:56:20 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n 2 -r 29992_163.job.T2
Fri Apr 22 20:56:20 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n 3 -r 29992_163.job.T3
Fri Apr 22 20:56:20 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T4 -v -n 4 -r 29992_163.job.T4
Fri Apr 22 20:56:20 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T5 -v -n 5 -r 29992_163.job.T5
Fri Apr 22 21:05:42 2022 Found 6619462 relations, 78.0% of the estimated minimum (8483428).
Fri Apr 22 21:05:42 2022 LatSieveTime: 562.281
Fri Apr 22 21:05:42 2022 -> making sieve job for q = 2600000 in 2600000 .. 2616666 as file 29992_163.job.T0
Fri Apr 22 21:05:42 2022 -> making sieve job for q = 2616666 in 2616666 .. 2633332 as file 29992_163.job.T1
Fri Apr 22 21:05:42 2022 -> making sieve job for q = 2633332 in 2633332 .. 2649998 as file 29992_163.job.T2
Fri Apr 22 21:05:42 2022 -> making sieve job for q = 2649998 in 2649998 .. 2666664 as file 29992_163.job.T3
Fri Apr 22 21:05:42 2022 -> making sieve job for q = 2666664 in 2666664 .. 2683330 as file 29992_163.job.T4
Fri Apr 22 21:05:42 2022 -> making sieve job for q = 2683330 in 2683330 .. 2699996 as file 29992_163.job.T5
Fri Apr 22 21:05:42 2022 -> Lattice sieving rational q from 2600000 to 2700000.
Fri Apr 22 21:05:42 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n 0 -r 29992_163.job.T0
Fri Apr 22 21:05:42 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n 1 -r 29992_163.job.T1
Fri Apr 22 21:05:42 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n 2 -r 29992_163.job.T2
Fri Apr 22 21:05:42 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n 3 -r 29992_163.job.T3
Fri Apr 22 21:05:42 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T4 -v -n 4 -r 29992_163.job.T4
Fri Apr 22 21:05:42 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T5 -v -n 5 -r 29992_163.job.T5
Fri Apr 22 21:15:07 2022 Found 7446360 relations, 87.8% of the estimated minimum (8483428).
Fri Apr 22 21:15:07 2022 LatSieveTime: 564.751
Fri Apr 22 21:15:07 2022 -> making sieve job for q = 2700000 in 2700000 .. 2716666 as file 29992_163.job.T0
Fri Apr 22 21:15:07 2022 -> making sieve job for q = 2716666 in 2716666 .. 2733332 as file 29992_163.job.T1
Fri Apr 22 21:15:07 2022 -> making sieve job for q = 2733332 in 2733332 .. 2749998 as file 29992_163.job.T2
Fri Apr 22 21:15:07 2022 -> making sieve job for q = 2749998 in 2749998 .. 2766664 as file 29992_163.job.T3
Fri Apr 22 21:15:07 2022 -> making sieve job for q = 2766664 in 2766664 .. 2783330 as file 29992_163.job.T4
Fri Apr 22 21:15:07 2022 -> making sieve job for q = 2783330 in 2783330 .. 2799996 as file 29992_163.job.T5
Fri Apr 22 21:15:07 2022 -> Lattice sieving rational q from 2700000 to 2800000.
Fri Apr 22 21:15:07 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n 0 -r 29992_163.job.T0
Fri Apr 22 21:15:07 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n 1 -r 29992_163.job.T1
Fri Apr 22 21:15:07 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n 2 -r 29992_163.job.T2
Fri Apr 22 21:15:07 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n 3 -r 29992_163.job.T3
Fri Apr 22 21:15:07 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T4 -v -n 4 -r 29992_163.job.T4
Fri Apr 22 21:15:07 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T5 -v -n 5 -r 29992_163.job.T5
Fri Apr 22 21:24:24 2022 Found 8263845 relations, 97.4% of the estimated minimum (8483428).
Fri Apr 22 21:24:24 2022 LatSieveTime: 556.62
Fri Apr 22 21:24:24 2022 -> making sieve job for q = 2800000 in 2800000 .. 2816666 as file 29992_163.job.T0
Fri Apr 22 21:24:24 2022 -> making sieve job for q = 2816666 in 2816666 .. 2833332 as file 29992_163.job.T1
Fri Apr 22 21:24:24 2022 -> making sieve job for q = 2833332 in 2833332 .. 2849998 as file 29992_163.job.T2
Fri Apr 22 21:24:24 2022 -> making sieve job for q = 2849998 in 2849998 .. 2866664 as file 29992_163.job.T3
Fri Apr 22 21:24:24 2022 -> making sieve job for q = 2866664 in 2866664 .. 2883330 as file 29992_163.job.T4
Fri Apr 22 21:24:24 2022 -> making sieve job for q = 2883330 in 2883330 .. 2899996 as file 29992_163.job.T5
Fri Apr 22 21:24:24 2022 -> Lattice sieving rational q from 2800000 to 2900000.
Fri Apr 22 21:24:24 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n 0 -r 29992_163.job.T0
Fri Apr 22 21:24:24 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n 1 -r 29992_163.job.T1
Fri Apr 22 21:24:24 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n 2 -r 29992_163.job.T2
Fri Apr 22 21:24:24 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n 3 -r 29992_163.job.T3
Fri Apr 22 21:24:24 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T4 -v -n 4 -r 29992_163.job.T4
Fri Apr 22 21:24:24 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T5 -v -n 5 -r 29992_163.job.T5
Fri Apr 22 21:33:43 2022 Found 9086327 relations, 107.1% of the estimated minimum (8483428).
Fri Apr 22 21:33:43 2022 -> msieve-1.53-SVN998-win64-core2 -s 29992_163\29992_163.dat -l 29992_163\29992_163.log -i 29992_163\29992_163.ini -nf 29992_163\29992_163.fb -t 6 -nc1
Fri Apr 22 21:33:43 2022  
Fri Apr 22 21:33:43 2022  
Fri Apr 22 21:33:43 2022  Msieve v. 1.53 (SVN unknown)
Fri Apr 22 21:33:43 2022  random seeds: 23aff248 ec25359a
Fri Apr 22 21:33:43 2022  factoring 1370299455983123338296788277457681926439000445654861797367055738764743792341307129203239223201076158865961708752982538696198053 (127 digits)
Fri Apr 22 21:33:43 2022  searching for 15-digit factors
Fri Apr 22 21:33:43 2022  commencing number field sieve (127-digit input)
Fri Apr 22 21:33:43 2022  R0: -100000000000000000000000000000000
Fri Apr 22 21:33:43 2022  R1: 1
Fri Apr 22 21:33:43 2022  A0: -1
Fri Apr 22 21:33:43 2022  A1: 0
Fri Apr 22 21:33:43 2022  A2: 0
Fri Apr 22 21:33:43 2022  A3: 0
Fri Apr 22 21:33:43 2022  A4: 0
Fri Apr 22 21:33:43 2022  A5: 375
Fri Apr 22 21:33:43 2022  skew 0.31, size 3.243e-11, alpha -0.417, combined = 6.426e-10 rroots = 1
Fri Apr 22 21:33:43 2022  
Fri Apr 22 21:33:43 2022  commencing relation filtering
Fri Apr 22 21:33:43 2022  estimated available RAM is 32684.9 MB
Fri Apr 22 21:33:43 2022  commencing duplicate removal, pass 1
Fri Apr 22 21:33:52 2022  error -1 reading relation 840372
Fri Apr 22 21:33:52 2022  error -1 reading relation 855779
Fri Apr 22 21:35:13 2022  skipped 5 relations with composite factors
Fri Apr 22 21:35:13 2022  found 993478 hash collisions in 9086319 relations
Fri Apr 22 21:35:25 2022  added 362014 free relations
Fri Apr 22 21:35:25 2022  commencing duplicate removal, pass 2
Fri Apr 22 21:35:28 2022  found 572453 duplicates and 8875880 unique relations
Fri Apr 22 21:35:28 2022  memory use: 41.3 MB
Fri Apr 22 21:35:28 2022  reading ideals above 100000
Fri Apr 22 21:35:28 2022  commencing singleton removal, initial pass
Fri Apr 22 21:36:53 2022  memory use: 188.3 MB
Fri Apr 22 21:36:54 2022  reading all ideals from disk
Fri Apr 22 21:36:54 2022  memory use: 309.1 MB
Fri Apr 22 21:36:54 2022  keeping 9878544 ideals with weight <= 200, target excess is 45335
Fri Apr 22 21:36:54 2022  commencing in-memory singleton removal
Fri Apr 22 21:36:55 2022  begin with 8875880 relations and 9878544 unique ideals
Fri Apr 22 21:36:58 2022  reduce to 3434717 relations and 3148531 ideals in 16 passes
Fri Apr 22 21:36:58 2022  max relations containing the same ideal: 105
Fri Apr 22 21:36:59 2022  removing 697805 relations and 581006 ideals in 116799 cliques
Fri Apr 22 21:36:59 2022  commencing in-memory singleton removal
Fri Apr 22 21:36:59 2022  begin with 2736912 relations and 3148531 unique ideals
Fri Apr 22 21:37:00 2022  reduce to 2617259 relations and 2442440 ideals in 9 passes
Fri Apr 22 21:37:00 2022  max relations containing the same ideal: 90
Fri Apr 22 21:37:01 2022  removing 546268 relations and 429469 ideals in 116799 cliques
Fri Apr 22 21:37:01 2022  commencing in-memory singleton removal
Fri Apr 22 21:37:01 2022  begin with 2070991 relations and 2442440 unique ideals
Fri Apr 22 21:37:02 2022  reduce to 1974184 relations and 1911713 ideals in 10 passes
Fri Apr 22 21:37:02 2022  max relations containing the same ideal: 74
Fri Apr 22 21:37:02 2022  removing 78579 relations and 68697 ideals in 9882 cliques
Fri Apr 22 21:37:02 2022  commencing in-memory singleton removal
Fri Apr 22 21:37:02 2022  begin with 1895605 relations and 1911713 unique ideals
Fri Apr 22 21:37:03 2022  reduce to 1893362 relations and 1840759 ideals in 6 passes
Fri Apr 22 21:37:03 2022  max relations containing the same ideal: 72
Fri Apr 22 21:37:03 2022  relations with 0 large ideals: 1007
Fri Apr 22 21:37:03 2022  relations with 1 large ideals: 340
Fri Apr 22 21:37:03 2022  relations with 2 large ideals: 5677
Fri Apr 22 21:37:03 2022  relations with 3 large ideals: 45583
Fri Apr 22 21:37:03 2022  relations with 4 large ideals: 183058
Fri Apr 22 21:37:03 2022  relations with 5 large ideals: 415959
Fri Apr 22 21:37:03 2022  relations with 6 large ideals: 570460
Fri Apr 22 21:37:03 2022  relations with 7+ large ideals: 671278
Fri Apr 22 21:37:03 2022  commencing 2-way merge
Fri Apr 22 21:37:04 2022  reduce to 1100514 relation sets and 1047911 unique ideals
Fri Apr 22 21:37:04 2022  commencing full merge
Fri Apr 22 21:37:16 2022  memory use: 125.5 MB
Fri Apr 22 21:37:16 2022  found 550888 cycles, need 544111
Fri Apr 22 21:37:16 2022  weight of 544111 cycles is about 38266543 (70.33/cycle)
Fri Apr 22 21:37:16 2022  distribution of cycle lengths:
Fri Apr 22 21:37:16 2022  1 relations: 59652
Fri Apr 22 21:37:16 2022  2 relations: 56990
Fri Apr 22 21:37:16 2022  3 relations: 57845
Fri Apr 22 21:37:16 2022  4 relations: 53390
Fri Apr 22 21:37:16 2022  5 relations: 50810
Fri Apr 22 21:37:16 2022  6 relations: 45087
Fri Apr 22 21:37:16 2022  7 relations: 40163
Fri Apr 22 21:37:16 2022  8 relations: 35573
Fri Apr 22 21:37:16 2022  9 relations: 30733
Fri Apr 22 21:37:16 2022  10+ relations: 113868
Fri Apr 22 21:37:16 2022  heaviest cycle: 22 relations
Fri Apr 22 21:37:16 2022  commencing cycle optimization
Fri Apr 22 21:37:17 2022  start with 3370902 relations
Fri Apr 22 21:37:21 2022  pruned 74114 relations
Fri Apr 22 21:37:21 2022  memory use: 111.2 MB
Fri Apr 22 21:37:21 2022  distribution of cycle lengths:
Fri Apr 22 21:37:21 2022  1 relations: 59652
Fri Apr 22 21:37:21 2022  2 relations: 58082
Fri Apr 22 21:37:21 2022  3 relations: 59515
Fri Apr 22 21:37:21 2022  4 relations: 54653
Fri Apr 22 21:37:21 2022  5 relations: 52008
Fri Apr 22 21:37:21 2022  6 relations: 45729
Fri Apr 22 21:37:21 2022  7 relations: 40829
Fri Apr 22 21:37:21 2022  8 relations: 35907
Fri Apr 22 21:37:21 2022  9 relations: 30825
Fri Apr 22 21:37:21 2022  10+ relations: 106911
Fri Apr 22 21:37:21 2022  heaviest cycle: 22 relations
Fri Apr 22 21:37:21 2022  RelProcTime: 218
Fri Apr 22 21:37:21 2022  elapsed time 00:03:38
Fri Apr 22 21:37:21 2022 LatSieveTime: 777.069
Fri Apr 22 21:37:21 2022 -> Running matrix solving step ...
Fri Apr 22 21:37:21 2022 -> msieve-1.53-SVN998-win64-core2 -s 29992_163\29992_163.dat -l 29992_163\29992_163.log -i 29992_163\29992_163.ini -nf 29992_163\29992_163.fb -t 6 -nc2
Fri Apr 22 21:37:21 2022  
Fri Apr 22 21:37:21 2022  
Fri Apr 22 21:37:21 2022  Msieve v. 1.53 (SVN unknown)
Fri Apr 22 21:37:21 2022  random seeds: 4cb3cca0 957ecf75
Fri Apr 22 21:37:21 2022  factoring 1370299455983123338296788277457681926439000445654861797367055738764743792341307129203239223201076158865961708752982538696198053 (127 digits)
Fri Apr 22 21:37:21 2022  searching for 15-digit factors
Fri Apr 22 21:37:22 2022  commencing number field sieve (127-digit input)
Fri Apr 22 21:37:22 2022  R0: -100000000000000000000000000000000
Fri Apr 22 21:37:22 2022  R1: 1
Fri Apr 22 21:37:22 2022  A0: -1
Fri Apr 22 21:37:22 2022  A1: 0
Fri Apr 22 21:37:22 2022  A2: 0
Fri Apr 22 21:37:22 2022  A3: 0
Fri Apr 22 21:37:22 2022  A4: 0
Fri Apr 22 21:37:22 2022  A5: 375
Fri Apr 22 21:37:22 2022  skew 0.31, size 3.243e-11, alpha -0.417, combined = 6.426e-10 rroots = 1
Fri Apr 22 21:37:22 2022  
Fri Apr 22 21:37:22 2022  commencing linear algebra
Fri Apr 22 21:37:22 2022  read 544111 cycles
Fri Apr 22 21:37:22 2022  cycles contain 1851145 unique relations
Fri Apr 22 21:37:37 2022  read 1851145 relations
Fri Apr 22 21:37:39 2022  using 20 quadratic characters above 4294917295
Fri Apr 22 21:37:47 2022  building initial matrix
Fri Apr 22 21:37:59 2022  memory use: 224.8 MB
Fri Apr 22 21:38:00 2022  read 544111 cycles
Fri Apr 22 21:38:00 2022  matrix is 543933 x 544111 (163.3 MB) with weight 49628293 (91.21/col)
Fri Apr 22 21:38:00 2022  sparse part has weight 36824287 (67.68/col)
Fri Apr 22 21:38:02 2022  filtering completed in 2 passes
Fri Apr 22 21:38:02 2022  matrix is 543521 x 543699 (163.3 MB) with weight 49614660 (91.25/col)
Fri Apr 22 21:38:02 2022  sparse part has weight 36820277 (67.72/col)
Fri Apr 22 21:38:03 2022  matrix starts at (0, 0)
Fri Apr 22 21:38:03 2022  matrix is 543521 x 543699 (163.3 MB) with weight 49614660 (91.25/col)
Fri Apr 22 21:38:03 2022  sparse part has weight 36820277 (67.72/col)
Fri Apr 22 21:38:03 2022  saving the first 48 matrix rows for later
Fri Apr 22 21:38:03 2022  matrix includes 64 packed rows
Fri Apr 22 21:38:03 2022  matrix is 543473 x 543699 (154.7 MB) with weight 38997815 (71.73/col)
Fri Apr 22 21:38:03 2022  sparse part has weight 35119469 (64.59/col)
Fri Apr 22 21:38:03 2022  using block size 8192 and superblock size 1179648 for processor cache size 12288 kB
Fri Apr 22 21:38:05 2022  commencing Lanczos iteration (6 threads)
Fri Apr 22 21:38:05 2022  memory use: 121.7 MB
Fri Apr 22 21:38:07 2022  linear algebra at 0.6%, ETA 0h 5m
Fri Apr 22 21:42:16 2022  lanczos halted after 8596 iterations (dim = 543473)
Fri Apr 22 21:42:16 2022  recovered 37 nontrivial dependencies
Fri Apr 22 21:42:16 2022  BLanczosTime: 294
Fri Apr 22 21:42:16 2022  elapsed time 00:04:55
Fri Apr 22 21:42:16 2022 -> Running square root step ...
Fri Apr 22 21:42:16 2022 -> msieve-1.53-SVN998-win64-core2 -s 29992_163\29992_163.dat -l 29992_163\29992_163.log -i 29992_163\29992_163.ini -nf 29992_163\29992_163.fb -t 6 -nc3
Fri Apr 22 21:42:16 2022  
Fri Apr 22 21:42:16 2022  
Fri Apr 22 21:42:16 2022  Msieve v. 1.53 (SVN unknown)
Fri Apr 22 21:42:16 2022  random seeds: 5ee7d270 49e7b48f
Fri Apr 22 21:42:16 2022  factoring 1370299455983123338296788277457681926439000445654861797367055738764743792341307129203239223201076158865961708752982538696198053 (127 digits)
Fri Apr 22 21:42:16 2022  searching for 15-digit factors
Fri Apr 22 21:42:17 2022  commencing number field sieve (127-digit input)
Fri Apr 22 21:42:17 2022  R0: -100000000000000000000000000000000
Fri Apr 22 21:42:17 2022  R1: 1
Fri Apr 22 21:42:17 2022  A0: -1
Fri Apr 22 21:42:17 2022  A1: 0
Fri Apr 22 21:42:17 2022  A2: 0
Fri Apr 22 21:42:17 2022  A3: 0
Fri Apr 22 21:42:17 2022  A4: 0
Fri Apr 22 21:42:17 2022  A5: 375
Fri Apr 22 21:42:17 2022  skew 0.31, size 3.243e-11, alpha -0.417, combined = 6.426e-10 rroots = 1
Fri Apr 22 21:42:17 2022  
Fri Apr 22 21:42:17 2022  commencing square root phase
Fri Apr 22 21:42:17 2022  reading relations for dependency 1
Fri Apr 22 21:42:17 2022  read 271655 cycles
Fri Apr 22 21:42:17 2022  cycles contain 924830 unique relations
Fri Apr 22 21:42:25 2022  read 924830 relations
Fri Apr 22 21:42:27 2022  multiplying 924830 relations
Fri Apr 22 21:42:43 2022  multiply complete, coefficients have about 26.92 million bits
Fri Apr 22 21:42:43 2022  initial square root is modulo 53847011
Fri Apr 22 21:43:00 2022  Newton iteration failed to converge
Fri Apr 22 21:43:00 2022  algebraic square root failed
Fri Apr 22 21:43:00 2022  reading relations for dependency 2
Fri Apr 22 21:43:00 2022  read 271853 cycles
Fri Apr 22 21:43:00 2022  cycles contain 925386 unique relations
Fri Apr 22 21:43:08 2022  read 925386 relations
Fri Apr 22 21:43:11 2022  multiplying 925386 relations
Fri Apr 22 21:43:26 2022  multiply complete, coefficients have about 26.93 million bits
Fri Apr 22 21:43:26 2022  initial square root is modulo 54319351
Fri Apr 22 21:43:44 2022  sqrtTime: 87
Fri Apr 22 21:43:44 2022  p50 factor: 29400879121357011334939190162191877941760636566861
Fri Apr 22 21:43:44 2022  p77 factor: 46607431373973028519084175062432994225989707960604334031794185147560082745273
Fri Apr 22 21:43:44 2022  elapsed time 00:01:28
Fri Apr 22 21:43:44 2022 -> Computing time scale for this machine...
Fri Apr 22 21:43:44 2022 -> procrels -speedtest> PIPE

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)
403e62350Ignacio SantosApril 18, 2022 15:13:48 UTC 2022 年 4 月 19 日 (火) 0 時 13 分 48 秒 (日本時間)

3×10164-8

c155

name 名前Bob Backstrom
date 日付April 16, 2022 13:29:32 UTC 2022 年 4 月 16 日 (土) 22 時 29 分 32 秒 (日本時間)
composite number 合成数
15577511611847900247786824726196477335337681921289140958652352134279206872516647897475238998003059799633247469853935318905910373055552742487736405629924883<155>
prime factors 素因数
17566147703173032656588521649087034500011<41>
886791564950469000816368265529802421582523298326418990065341480099777584554006205234157387429516875390450268311353<114>
factorization results 素因数分解の結果
GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM]
Input number is 15577511611847900247786824726196477335337681921289140958652352134279206872516647897475238998003059799633247469853935318905910373055552742487736405629924883 (155 digits)
Using B1=11130000, B2=35133715900, polynomial Dickson(12), sigma=1:2965304424
Step 1 took 27337ms
Step 2 took 11598ms
********** Factor found in step 2: 17566147703173032656588521649087034500011
Found prime factor of 41 digits: 17566147703173032656588521649087034500011
Prime cofactor 886791564950469000816368265529802421582523298326418990065341480099777584554006205234157387429516875390450268311353 has 114 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)

3×10166-8

c154

name 名前Bob Backstrom
date 日付April 17, 2022 13:11:30 UTC 2022 年 4 月 17 日 (日) 22 時 11 分 30 秒 (日本時間)
composite number 合成数
2981314501631952715093154801648052463646535582249322346159785003670909642704318736799038328147649516186174120756309610607091052667058761171658688987171857<154>
prime factors 素因数
3244592660805557140569177019112704064857<40>
918856329068981324162415949332154100740969014998912771178164155705535360491129116604873750165742024931295972251001<114>
factorization results 素因数分解の結果
Number: n
N=2981314501631952715093154801648052463646535582249322346159785003670909642704318736799038328147649516186174120756309610607091052667058761171658688987171857  ( 154 digits)
SNFS difficulty: 166 digits.
Divisors found:

Sun Apr 17 23:07:37 2022  p40 factor: 3244592660805557140569177019112704064857
Sun Apr 17 23:07:37 2022  p114 factor: 918856329068981324162415949332154100740969014998912771178164155705535360491129116604873750165742024931295972251001
Sun Apr 17 23:07:37 2022  elapsed time 00:07:54 (Msieve 1.54 - dependency 2)

Version: 
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.319).
Factorization parameters were as follows:
#
# N = 3x10^166-8 = 29(165)2
#
n: 2981314501631952715093154801648052463646535582249322346159785003670909642704318736799038328147649516186174120756309610607091052667058761171658688987171857
m: 1000000000000000000000000000000000
deg: 5
c5: 15
c0: -4
skew: 0.77
# Murphy_E = 5.053e-10
type: snfs
lss: 1
rlim: 4100000
alim: 4100000
lpbr: 27
lpba: 27
mfbr: 51
mfba: 51
rlambda: 2.4
alambda: 2.4
Factor base limits: 4100000/4100000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 51/51
Sieved  special-q in [100000, 7650000)
Primes: , , 
Relations: 
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 

Msieve: found 1940145 hash collisions in 17006859 relations (16149552 unique)
Msieve: matrix is 461460 x 461686 (155.7 MB)

Sieving start time : 2022/04/17 22:26:32
Sieving end time  : 2022/04/17 22:59:20

Total sieving time: 0hrs 32min 48secs.

Total relation processing time: 0hrs 3min 21sec.
Matrix solve time: 0.00 hours.
Total square root time: 0hrs 0min 40sec.

Prototype def-par.txt line would be:
snfs,166,5,0,0,0,0,0,0,0,0,4100000,4100000,27,27,51,51,2.4,2.4,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------
[    0.116801] smpboot: CPU0: AMD Ryzen 7 2700 Eight-Core Processor (family: 0x17, model: 0x8, stepping: 0x2)
[    0.000000] Memory: 16197520K/16727236K available (14339K kernel code, 2401K rwdata, 9504K rodata, 2752K init, 4948K bss, 529716K reserved, 0K cma-reserved)
[    0.153503] x86/mm: Memory block size: 128MB
[    0.000005] Calibrating delay loop (skipped), value calculated using timer frequency.. 6399.36 BogoMIPS (lpj=12798732)
[    0.152038] smpboot: Total of 16 processors activated (102389.85 BogoMIPS)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)

3×10167-8

c138

name 名前Taiyo Kodama
date 日付April 22, 2022 15:00:59 UTC 2022 年 4 月 23 日 (土) 0 時 0 分 59 秒 (日本時間)
composite number 合成数
246333673057140027230649169461694183352553981932435261328694067274064809488645136577488966491436842537090916783586346486335630893622714853<138>
prime factors 素因数
904540553131403691422616646117818857428650628812334991<54>
272330159443227128584139180317965452538042114629442571016371666315957702818184676683<84>
factorization results 素因数分解の結果
Fri Apr 22 21:52:43 2022 -> factmsieve.py (v0.86)
Fri Apr 22 21:52:43 2022 -> This is client 1 of 1
Fri Apr 22 21:52:43 2022 -> Running on 6 Cores with 1 hyper-thread per Core
Fri Apr 22 21:52:43 2022 -> Working with NAME = 29992_167
Fri Apr 22 21:53:06 2022 -> factmsieve.py (v0.86)
Fri Apr 22 21:53:06 2022 -> This is client 1 of 1
Fri Apr 22 21:53:06 2022 -> Running on 6 Cores with 1 hyper-thread per Core
Fri Apr 22 21:53:06 2022 -> Working with NAME = 29992_167
Fri Apr 22 21:53:06 2022 -> Selected lattice siever: gnfs-lasieve4I13e
Fri Apr 22 21:53:06 2022 -> Creating param file to detect parameter changes...
Fri Apr 22 21:53:06 2022 -> Running setup ...
Fri Apr 22 21:53:06 2022 -> Estimated minimum relations needed: 9.67641e+06
Fri Apr 22 21:53:06 2022 -> cleaning up before a restart
Fri Apr 22 21:53:06 2022 -> Running lattice siever ...
Fri Apr 22 21:53:06 2022 -> entering sieving loop
Fri Apr 22 21:53:06 2022 -> making sieve job for q = 2100000 in 2100000 .. 2116666 as file 29992_167.job.T0
Fri Apr 22 21:53:06 2022 -> making sieve job for q = 2116666 in 2116666 .. 2133332 as file 29992_167.job.T1
Fri Apr 22 21:53:06 2022 -> making sieve job for q = 2133332 in 2133332 .. 2149998 as file 29992_167.job.T2
Fri Apr 22 21:53:06 2022 -> making sieve job for q = 2149998 in 2149998 .. 2166664 as file 29992_167.job.T3
Fri Apr 22 21:53:06 2022 -> making sieve job for q = 2166664 in 2166664 .. 2183330 as file 29992_167.job.T4
Fri Apr 22 21:53:06 2022 -> making sieve job for q = 2183330 in 2183330 .. 2199996 as file 29992_167.job.T5
Fri Apr 22 21:53:06 2022 -> Lattice sieving rational q from 2100000 to 2200000.
Fri Apr 22 21:53:06 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n 0 -r 29992_167.job.T0
Fri Apr 22 21:53:06 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n 1 -r 29992_167.job.T1
Fri Apr 22 21:53:06 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n 2 -r 29992_167.job.T2
Fri Apr 22 21:53:06 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n 3 -r 29992_167.job.T3
Fri Apr 22 21:53:06 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T4 -v -n 4 -r 29992_167.job.T4
Fri Apr 22 21:53:06 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T5 -v -n 5 -r 29992_167.job.T5
Fri Apr 22 22:01:50 2022 Found 593973 relations, 6.1% of the estimated minimum (9676410).
Fri Apr 22 22:01:50 2022 LatSieveTime: 523.838
Fri Apr 22 22:01:50 2022 -> making sieve job for q = 2200000 in 2200000 .. 2216666 as file 29992_167.job.T0
Fri Apr 22 22:01:50 2022 -> making sieve job for q = 2216666 in 2216666 .. 2233332 as file 29992_167.job.T1
Fri Apr 22 22:01:50 2022 -> making sieve job for q = 2233332 in 2233332 .. 2249998 as file 29992_167.job.T2
Fri Apr 22 22:01:50 2022 -> making sieve job for q = 2249998 in 2249998 .. 2266664 as file 29992_167.job.T3
Fri Apr 22 22:01:50 2022 -> making sieve job for q = 2266664 in 2266664 .. 2283330 as file 29992_167.job.T4
Fri Apr 22 22:01:50 2022 -> making sieve job for q = 2283330 in 2283330 .. 2299996 as file 29992_167.job.T5
Fri Apr 22 22:01:50 2022 -> Lattice sieving rational q from 2200000 to 2300000.
Fri Apr 22 22:01:50 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n 0 -r 29992_167.job.T0
Fri Apr 22 22:01:50 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n 1 -r 29992_167.job.T1
Fri Apr 22 22:01:50 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n 2 -r 29992_167.job.T2
Fri Apr 22 22:01:50 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n 3 -r 29992_167.job.T3
Fri Apr 22 22:01:50 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T4 -v -n 4 -r 29992_167.job.T4
Fri Apr 22 22:01:50 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T5 -v -n 5 -r 29992_167.job.T5
Fri Apr 22 22:09:23 2022 Found 1190328 relations, 12.3% of the estimated minimum (9676410).
Fri Apr 22 22:09:23 2022 LatSieveTime: 453.338
Fri Apr 22 22:09:23 2022 -> making sieve job for q = 2300000 in 2300000 .. 2316666 as file 29992_167.job.T0
Fri Apr 22 22:09:23 2022 -> making sieve job for q = 2316666 in 2316666 .. 2333332 as file 29992_167.job.T1
Fri Apr 22 22:09:23 2022 -> making sieve job for q = 2333332 in 2333332 .. 2349998 as file 29992_167.job.T2
Fri Apr 22 22:09:23 2022 -> making sieve job for q = 2349998 in 2349998 .. 2366664 as file 29992_167.job.T3
Fri Apr 22 22:09:23 2022 -> making sieve job for q = 2366664 in 2366664 .. 2383330 as file 29992_167.job.T4
Fri Apr 22 22:09:23 2022 -> making sieve job for q = 2383330 in 2383330 .. 2399996 as file 29992_167.job.T5
Fri Apr 22 22:09:23 2022 -> Lattice sieving rational q from 2300000 to 2400000.
Fri Apr 22 22:09:23 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n 0 -r 29992_167.job.T0
Fri Apr 22 22:09:23 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n 1 -r 29992_167.job.T1
Fri Apr 22 22:09:23 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n 2 -r 29992_167.job.T2
Fri Apr 22 22:09:23 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n 3 -r 29992_167.job.T3
Fri Apr 22 22:09:23 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T4 -v -n 4 -r 29992_167.job.T4
Fri Apr 22 22:09:23 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T5 -v -n 5 -r 29992_167.job.T5
Fri Apr 22 22:16:18 2022 Found 1788690 relations, 18.5% of the estimated minimum (9676410).
Fri Apr 22 22:16:18 2022 LatSieveTime: 414.383
Fri Apr 22 22:16:18 2022 -> making sieve job for q = 2400000 in 2400000 .. 2416666 as file 29992_167.job.T0
Fri Apr 22 22:16:18 2022 -> making sieve job for q = 2416666 in 2416666 .. 2433332 as file 29992_167.job.T1
Fri Apr 22 22:16:18 2022 -> making sieve job for q = 2433332 in 2433332 .. 2449998 as file 29992_167.job.T2
Fri Apr 22 22:16:18 2022 -> making sieve job for q = 2449998 in 2449998 .. 2466664 as file 29992_167.job.T3
Fri Apr 22 22:16:18 2022 -> making sieve job for q = 2466664 in 2466664 .. 2483330 as file 29992_167.job.T4
Fri Apr 22 22:16:18 2022 -> making sieve job for q = 2483330 in 2483330 .. 2499996 as file 29992_167.job.T5
Fri Apr 22 22:16:18 2022 -> Lattice sieving rational q from 2400000 to 2500000.
Fri Apr 22 22:16:18 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n 0 -r 29992_167.job.T0
Fri Apr 22 22:16:18 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n 1 -r 29992_167.job.T1
Fri Apr 22 22:16:18 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n 2 -r 29992_167.job.T2
Fri Apr 22 22:16:18 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n 3 -r 29992_167.job.T3
Fri Apr 22 22:16:18 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T4 -v -n 4 -r 29992_167.job.T4
Fri Apr 22 22:16:18 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T5 -v -n 5 -r 29992_167.job.T5
Fri Apr 22 22:23:35 2022 Found 2386470 relations, 24.7% of the estimated minimum (9676410).
Fri Apr 22 22:23:35 2022 LatSieveTime: 436.889
Fri Apr 22 22:23:35 2022 -> making sieve job for q = 2500000 in 2500000 .. 2516666 as file 29992_167.job.T0
Fri Apr 22 22:23:35 2022 -> making sieve job for q = 2516666 in 2516666 .. 2533332 as file 29992_167.job.T1
Fri Apr 22 22:23:35 2022 -> making sieve job for q = 2533332 in 2533332 .. 2549998 as file 29992_167.job.T2
Fri Apr 22 22:23:35 2022 -> making sieve job for q = 2549998 in 2549998 .. 2566664 as file 29992_167.job.T3
Fri Apr 22 22:23:35 2022 -> making sieve job for q = 2566664 in 2566664 .. 2583330 as file 29992_167.job.T4
Fri Apr 22 22:23:35 2022 -> making sieve job for q = 2583330 in 2583330 .. 2599996 as file 29992_167.job.T5
Fri Apr 22 22:23:35 2022 -> Lattice sieving rational q from 2500000 to 2600000.
Fri Apr 22 22:23:35 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n 0 -r 29992_167.job.T0
Fri Apr 22 22:23:35 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n 1 -r 29992_167.job.T1
Fri Apr 22 22:23:35 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n 2 -r 29992_167.job.T2
Fri Apr 22 22:23:35 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n 3 -r 29992_167.job.T3
Fri Apr 22 22:23:35 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T4 -v -n 4 -r 29992_167.job.T4
Fri Apr 22 22:23:35 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T5 -v -n 5 -r 29992_167.job.T5
Fri Apr 22 22:30:50 2022 Found 2994519 relations, 30.9% of the estimated minimum (9676410).
Fri Apr 22 22:30:50 2022 LatSieveTime: 435.702
Fri Apr 22 22:30:50 2022 -> making sieve job for q = 2600000 in 2600000 .. 2616666 as file 29992_167.job.T0
Fri Apr 22 22:30:50 2022 -> making sieve job for q = 2616666 in 2616666 .. 2633332 as file 29992_167.job.T1
Fri Apr 22 22:30:50 2022 -> making sieve job for q = 2633332 in 2633332 .. 2649998 as file 29992_167.job.T2
Fri Apr 22 22:30:50 2022 -> making sieve job for q = 2649998 in 2649998 .. 2666664 as file 29992_167.job.T3
Fri Apr 22 22:30:50 2022 -> making sieve job for q = 2666664 in 2666664 .. 2683330 as file 29992_167.job.T4
Fri Apr 22 22:30:50 2022 -> making sieve job for q = 2683330 in 2683330 .. 2699996 as file 29992_167.job.T5
Fri Apr 22 22:30:50 2022 -> Lattice sieving rational q from 2600000 to 2700000.
Fri Apr 22 22:30:50 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n 0 -r 29992_167.job.T0
Fri Apr 22 22:30:50 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n 1 -r 29992_167.job.T1
Fri Apr 22 22:30:50 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n 2 -r 29992_167.job.T2
Fri Apr 22 22:30:50 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n 3 -r 29992_167.job.T3
Fri Apr 22 22:30:50 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T4 -v -n 4 -r 29992_167.job.T4
Fri Apr 22 22:30:50 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T5 -v -n 5 -r 29992_167.job.T5
Fri Apr 22 22:37:26 2022 Found 3595651 relations, 37.2% of the estimated minimum (9676410).
Fri Apr 22 22:37:26 2022 LatSieveTime: 395.26
Fri Apr 22 22:37:26 2022 -> making sieve job for q = 2700000 in 2700000 .. 2716666 as file 29992_167.job.T0
Fri Apr 22 22:37:26 2022 -> making sieve job for q = 2716666 in 2716666 .. 2733332 as file 29992_167.job.T1
Fri Apr 22 22:37:26 2022 -> making sieve job for q = 2733332 in 2733332 .. 2749998 as file 29992_167.job.T2
Fri Apr 22 22:37:26 2022 -> making sieve job for q = 2749998 in 2749998 .. 2766664 as file 29992_167.job.T3
Fri Apr 22 22:37:26 2022 -> making sieve job for q = 2766664 in 2766664 .. 2783330 as file 29992_167.job.T4
Fri Apr 22 22:37:26 2022 -> making sieve job for q = 2783330 in 2783330 .. 2799996 as file 29992_167.job.T5
Fri Apr 22 22:37:26 2022 -> Lattice sieving rational q from 2700000 to 2800000.
Fri Apr 22 22:37:26 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n 0 -r 29992_167.job.T0
Fri Apr 22 22:37:26 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n 1 -r 29992_167.job.T1
Fri Apr 22 22:37:26 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n 2 -r 29992_167.job.T2
Fri Apr 22 22:37:26 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n 3 -r 29992_167.job.T3
Fri Apr 22 22:37:26 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T4 -v -n 4 -r 29992_167.job.T4
Fri Apr 22 22:37:26 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T5 -v -n 5 -r 29992_167.job.T5
Fri Apr 22 22:43:53 2022 Found 4193497 relations, 43.3% of the estimated minimum (9676410).
Fri Apr 22 22:43:53 2022 LatSieveTime: 387.08
Fri Apr 22 22:43:53 2022 -> making sieve job for q = 2800000 in 2800000 .. 2816666 as file 29992_167.job.T0
Fri Apr 22 22:43:53 2022 -> making sieve job for q = 2816666 in 2816666 .. 2833332 as file 29992_167.job.T1
Fri Apr 22 22:43:53 2022 -> making sieve job for q = 2833332 in 2833332 .. 2849998 as file 29992_167.job.T2
Fri Apr 22 22:43:53 2022 -> making sieve job for q = 2849998 in 2849998 .. 2866664 as file 29992_167.job.T3
Fri Apr 22 22:43:53 2022 -> making sieve job for q = 2866664 in 2866664 .. 2883330 as file 29992_167.job.T4
Fri Apr 22 22:43:53 2022 -> making sieve job for q = 2883330 in 2883330 .. 2899996 as file 29992_167.job.T5
Fri Apr 22 22:43:53 2022 -> Lattice sieving rational q from 2800000 to 2900000.
Fri Apr 22 22:43:53 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n 0 -r 29992_167.job.T0
Fri Apr 22 22:43:53 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n 1 -r 29992_167.job.T1
Fri Apr 22 22:43:53 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n 2 -r 29992_167.job.T2
Fri Apr 22 22:43:53 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n 3 -r 29992_167.job.T3
Fri Apr 22 22:43:53 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T4 -v -n 4 -r 29992_167.job.T4
Fri Apr 22 22:43:53 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T5 -v -n 5 -r 29992_167.job.T5
Fri Apr 22 22:50:31 2022 Found 4793674 relations, 49.5% of the estimated minimum (9676410).
Fri Apr 22 22:50:31 2022 LatSieveTime: 398.855
Fri Apr 22 22:50:31 2022 -> making sieve job for q = 2900000 in 2900000 .. 2916666 as file 29992_167.job.T0
Fri Apr 22 22:50:31 2022 -> making sieve job for q = 2916666 in 2916666 .. 2933332 as file 29992_167.job.T1
Fri Apr 22 22:50:31 2022 -> making sieve job for q = 2933332 in 2933332 .. 2949998 as file 29992_167.job.T2
Fri Apr 22 22:50:31 2022 -> making sieve job for q = 2949998 in 2949998 .. 2966664 as file 29992_167.job.T3
Fri Apr 22 22:50:31 2022 -> making sieve job for q = 2966664 in 2966664 .. 2983330 as file 29992_167.job.T4
Fri Apr 22 22:50:31 2022 -> making sieve job for q = 2983330 in 2983330 .. 2999996 as file 29992_167.job.T5
Fri Apr 22 22:50:31 2022 -> Lattice sieving rational q from 2900000 to 3000000.
Fri Apr 22 22:50:31 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n 0 -r 29992_167.job.T0
Fri Apr 22 22:50:31 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n 1 -r 29992_167.job.T1
Fri Apr 22 22:50:31 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n 2 -r 29992_167.job.T2
Fri Apr 22 22:50:31 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n 3 -r 29992_167.job.T3
Fri Apr 22 22:50:31 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T4 -v -n 4 -r 29992_167.job.T4
Fri Apr 22 22:50:31 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T5 -v -n 5 -r 29992_167.job.T5
Fri Apr 22 22:57:11 2022 Found 5389366 relations, 55.7% of the estimated minimum (9676410).
Fri Apr 22 22:57:11 2022 LatSieveTime: 399.989
Fri Apr 22 22:57:11 2022 -> making sieve job for q = 3000000 in 3000000 .. 3016666 as file 29992_167.job.T0
Fri Apr 22 22:57:11 2022 -> making sieve job for q = 3016666 in 3016666 .. 3033332 as file 29992_167.job.T1
Fri Apr 22 22:57:11 2022 -> making sieve job for q = 3033332 in 3033332 .. 3049998 as file 29992_167.job.T2
Fri Apr 22 22:57:11 2022 -> making sieve job for q = 3049998 in 3049998 .. 3066664 as file 29992_167.job.T3
Fri Apr 22 22:57:11 2022 -> making sieve job for q = 3066664 in 3066664 .. 3083330 as file 29992_167.job.T4
Fri Apr 22 22:57:11 2022 -> making sieve job for q = 3083330 in 3083330 .. 3099996 as file 29992_167.job.T5
Fri Apr 22 22:57:11 2022 -> Lattice sieving rational q from 3000000 to 3100000.
Fri Apr 22 22:57:11 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n 0 -r 29992_167.job.T0
Fri Apr 22 22:57:11 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n 1 -r 29992_167.job.T1
Fri Apr 22 22:57:11 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n 2 -r 29992_167.job.T2
Fri Apr 22 22:57:11 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n 3 -r 29992_167.job.T3
Fri Apr 22 22:57:11 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T4 -v -n 4 -r 29992_167.job.T4
Fri Apr 22 22:57:11 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T5 -v -n 5 -r 29992_167.job.T5
Fri Apr 22 23:03:57 2022 Found 5981309 relations, 61.8% of the estimated minimum (9676410).
Fri Apr 22 23:03:57 2022 LatSieveTime: 405.299
Fri Apr 22 23:03:57 2022 -> making sieve job for q = 3100000 in 3100000 .. 3116666 as file 29992_167.job.T0
Fri Apr 22 23:03:57 2022 -> making sieve job for q = 3116666 in 3116666 .. 3133332 as file 29992_167.job.T1
Fri Apr 22 23:03:57 2022 -> making sieve job for q = 3133332 in 3133332 .. 3149998 as file 29992_167.job.T2
Fri Apr 22 23:03:57 2022 -> making sieve job for q = 3149998 in 3149998 .. 3166664 as file 29992_167.job.T3
Fri Apr 22 23:03:57 2022 -> making sieve job for q = 3166664 in 3166664 .. 3183330 as file 29992_167.job.T4
Fri Apr 22 23:03:57 2022 -> making sieve job for q = 3183330 in 3183330 .. 3199996 as file 29992_167.job.T5
Fri Apr 22 23:03:57 2022 -> Lattice sieving rational q from 3100000 to 3200000.
Fri Apr 22 23:03:57 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n 0 -r 29992_167.job.T0
Fri Apr 22 23:03:57 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n 1 -r 29992_167.job.T1
Fri Apr 22 23:03:57 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n 2 -r 29992_167.job.T2
Fri Apr 22 23:03:57 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n 3 -r 29992_167.job.T3
Fri Apr 22 23:03:57 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T4 -v -n 4 -r 29992_167.job.T4
Fri Apr 22 23:03:57 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T5 -v -n 5 -r 29992_167.job.T5
Fri Apr 22 23:10:39 2022 Found 6572618 relations, 67.9% of the estimated minimum (9676410).
Fri Apr 22 23:10:39 2022 LatSieveTime: 402.453
Fri Apr 22 23:10:39 2022 -> making sieve job for q = 3200000 in 3200000 .. 3216666 as file 29992_167.job.T0
Fri Apr 22 23:10:39 2022 -> making sieve job for q = 3216666 in 3216666 .. 3233332 as file 29992_167.job.T1
Fri Apr 22 23:10:39 2022 -> making sieve job for q = 3233332 in 3233332 .. 3249998 as file 29992_167.job.T2
Fri Apr 22 23:10:39 2022 -> making sieve job for q = 3249998 in 3249998 .. 3266664 as file 29992_167.job.T3
Fri Apr 22 23:10:39 2022 -> making sieve job for q = 3266664 in 3266664 .. 3283330 as file 29992_167.job.T4
Fri Apr 22 23:10:39 2022 -> making sieve job for q = 3283330 in 3283330 .. 3299996 as file 29992_167.job.T5
Fri Apr 22 23:10:39 2022 -> Lattice sieving rational q from 3200000 to 3300000.
Fri Apr 22 23:10:39 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n 0 -r 29992_167.job.T0
Fri Apr 22 23:10:39 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n 1 -r 29992_167.job.T1
Fri Apr 22 23:10:39 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n 2 -r 29992_167.job.T2
Fri Apr 22 23:10:39 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n 3 -r 29992_167.job.T3
Fri Apr 22 23:10:39 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T4 -v -n 4 -r 29992_167.job.T4
Fri Apr 22 23:10:39 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T5 -v -n 5 -r 29992_167.job.T5
Fri Apr 22 23:17:27 2022 Found 7162230 relations, 74.0% of the estimated minimum (9676410).
Fri Apr 22 23:17:27 2022 LatSieveTime: 407.897
Fri Apr 22 23:17:27 2022 -> making sieve job for q = 3300000 in 3300000 .. 3316666 as file 29992_167.job.T0
Fri Apr 22 23:17:27 2022 -> making sieve job for q = 3316666 in 3316666 .. 3333332 as file 29992_167.job.T1
Fri Apr 22 23:17:27 2022 -> making sieve job for q = 3333332 in 3333332 .. 3349998 as file 29992_167.job.T2
Fri Apr 22 23:17:27 2022 -> making sieve job for q = 3349998 in 3349998 .. 3366664 as file 29992_167.job.T3
Fri Apr 22 23:17:27 2022 -> making sieve job for q = 3366664 in 3366664 .. 3383330 as file 29992_167.job.T4
Fri Apr 22 23:17:27 2022 -> making sieve job for q = 3383330 in 3383330 .. 3399996 as file 29992_167.job.T5
Fri Apr 22 23:17:27 2022 -> Lattice sieving rational q from 3300000 to 3400000.
Fri Apr 22 23:17:27 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n 0 -r 29992_167.job.T0
Fri Apr 22 23:17:27 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n 1 -r 29992_167.job.T1
Fri Apr 22 23:17:27 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n 2 -r 29992_167.job.T2
Fri Apr 22 23:17:27 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n 3 -r 29992_167.job.T3
Fri Apr 22 23:17:27 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T4 -v -n 4 -r 29992_167.job.T4
Fri Apr 22 23:17:27 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T5 -v -n 5 -r 29992_167.job.T5
Fri Apr 22 23:24:02 2022 Found 7746876 relations, 80.1% of the estimated minimum (9676410).
Fri Apr 22 23:24:02 2022 LatSieveTime: 394.723
Fri Apr 22 23:24:02 2022 -> making sieve job for q = 3400000 in 3400000 .. 3416666 as file 29992_167.job.T0
Fri Apr 22 23:24:02 2022 -> making sieve job for q = 3416666 in 3416666 .. 3433332 as file 29992_167.job.T1
Fri Apr 22 23:24:02 2022 -> making sieve job for q = 3433332 in 3433332 .. 3449998 as file 29992_167.job.T2
Fri Apr 22 23:24:02 2022 -> making sieve job for q = 3449998 in 3449998 .. 3466664 as file 29992_167.job.T3
Fri Apr 22 23:24:02 2022 -> making sieve job for q = 3466664 in 3466664 .. 3483330 as file 29992_167.job.T4
Fri Apr 22 23:24:02 2022 -> making sieve job for q = 3483330 in 3483330 .. 3499996 as file 29992_167.job.T5
Fri Apr 22 23:24:02 2022 -> Lattice sieving rational q from 3400000 to 3500000.
Fri Apr 22 23:24:02 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n 0 -r 29992_167.job.T0
Fri Apr 22 23:24:02 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n 1 -r 29992_167.job.T1
Fri Apr 22 23:24:02 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n 2 -r 29992_167.job.T2
Fri Apr 22 23:24:02 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n 3 -r 29992_167.job.T3
Fri Apr 22 23:24:02 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T4 -v -n 4 -r 29992_167.job.T4
Fri Apr 22 23:24:02 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T5 -v -n 5 -r 29992_167.job.T5
Fri Apr 22 23:30:40 2022 Found 8325644 relations, 86.0% of the estimated minimum (9676410).
Fri Apr 22 23:30:40 2022 LatSieveTime: 397.983
Fri Apr 22 23:30:40 2022 -> making sieve job for q = 3500000 in 3500000 .. 3516666 as file 29992_167.job.T0
Fri Apr 22 23:30:40 2022 -> making sieve job for q = 3516666 in 3516666 .. 3533332 as file 29992_167.job.T1
Fri Apr 22 23:30:40 2022 -> making sieve job for q = 3533332 in 3533332 .. 3549998 as file 29992_167.job.T2
Fri Apr 22 23:30:40 2022 -> making sieve job for q = 3549998 in 3549998 .. 3566664 as file 29992_167.job.T3
Fri Apr 22 23:30:40 2022 -> making sieve job for q = 3566664 in 3566664 .. 3583330 as file 29992_167.job.T4
Fri Apr 22 23:30:40 2022 -> making sieve job for q = 3583330 in 3583330 .. 3599996 as file 29992_167.job.T5
Fri Apr 22 23:30:40 2022 -> Lattice sieving rational q from 3500000 to 3600000.
Fri Apr 22 23:30:40 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n 0 -r 29992_167.job.T0
Fri Apr 22 23:30:40 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n 1 -r 29992_167.job.T1
Fri Apr 22 23:30:40 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n 2 -r 29992_167.job.T2
Fri Apr 22 23:30:40 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n 3 -r 29992_167.job.T3
Fri Apr 22 23:30:40 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T4 -v -n 4 -r 29992_167.job.T4
Fri Apr 22 23:30:40 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T5 -v -n 5 -r 29992_167.job.T5
Fri Apr 22 23:37:12 2022 Found 8900600 relations, 92.0% of the estimated minimum (9676410).
Fri Apr 22 23:37:12 2022 LatSieveTime: 391.693
Fri Apr 22 23:37:12 2022 -> making sieve job for q = 3600000 in 3600000 .. 3616666 as file 29992_167.job.T0
Fri Apr 22 23:37:12 2022 -> making sieve job for q = 3616666 in 3616666 .. 3633332 as file 29992_167.job.T1
Fri Apr 22 23:37:12 2022 -> making sieve job for q = 3633332 in 3633332 .. 3649998 as file 29992_167.job.T2
Fri Apr 22 23:37:12 2022 -> making sieve job for q = 3649998 in 3649998 .. 3666664 as file 29992_167.job.T3
Fri Apr 22 23:37:12 2022 -> making sieve job for q = 3666664 in 3666664 .. 3683330 as file 29992_167.job.T4
Fri Apr 22 23:37:12 2022 -> making sieve job for q = 3683330 in 3683330 .. 3699996 as file 29992_167.job.T5
Fri Apr 22 23:37:12 2022 -> Lattice sieving rational q from 3600000 to 3700000.
Fri Apr 22 23:37:12 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n 0 -r 29992_167.job.T0
Fri Apr 22 23:37:12 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n 1 -r 29992_167.job.T1
Fri Apr 22 23:37:12 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n 2 -r 29992_167.job.T2
Fri Apr 22 23:37:12 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n 3 -r 29992_167.job.T3
Fri Apr 22 23:37:12 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T4 -v -n 4 -r 29992_167.job.T4
Fri Apr 22 23:37:12 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T5 -v -n 5 -r 29992_167.job.T5
Fri Apr 22 23:43:56 2022 Found 9479781 relations, 98.0% of the estimated minimum (9676410).
Fri Apr 22 23:43:56 2022 LatSieveTime: 404.083
Fri Apr 22 23:43:56 2022 -> making sieve job for q = 3700000 in 3700000 .. 3716666 as file 29992_167.job.T0
Fri Apr 22 23:43:56 2022 -> making sieve job for q = 3716666 in 3716666 .. 3733332 as file 29992_167.job.T1
Fri Apr 22 23:43:56 2022 -> making sieve job for q = 3733332 in 3733332 .. 3749998 as file 29992_167.job.T2
Fri Apr 22 23:43:56 2022 -> making sieve job for q = 3749998 in 3749998 .. 3766664 as file 29992_167.job.T3
Fri Apr 22 23:43:56 2022 -> making sieve job for q = 3766664 in 3766664 .. 3783330 as file 29992_167.job.T4
Fri Apr 22 23:43:56 2022 -> making sieve job for q = 3783330 in 3783330 .. 3799996 as file 29992_167.job.T5
Fri Apr 22 23:43:56 2022 -> Lattice sieving rational q from 3700000 to 3800000.
Fri Apr 22 23:43:56 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n 0 -r 29992_167.job.T0
Fri Apr 22 23:43:56 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n 1 -r 29992_167.job.T1
Fri Apr 22 23:43:56 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n 2 -r 29992_167.job.T2
Fri Apr 22 23:43:56 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n 3 -r 29992_167.job.T3
Fri Apr 22 23:43:56 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T4 -v -n 4 -r 29992_167.job.T4
Fri Apr 22 23:43:56 2022 -> gnfs-lasieve4I13e -k -o spairs.out.T5 -v -n 5 -r 29992_167.job.T5
Fri Apr 22 23:50:46 2022 Found 10050971 relations, 103.9% of the estimated minimum (9676410).
Fri Apr 22 23:50:46 2022 -> msieve-1.53-SVN998-win64-core2 -s 29992_167\29992_167.dat -l 29992_167\29992_167.log -i 29992_167\29992_167.ini -nf 29992_167\29992_167.fb -t 6 -nc1
Fri Apr 22 23:50:46 2022  
Fri Apr 22 23:50:46 2022  
Fri Apr 22 23:50:46 2022  Msieve v. 1.53 (SVN unknown)
Fri Apr 22 23:50:46 2022  random seeds: 01330688 fb927ad1
Fri Apr 22 23:50:46 2022  factoring 246333673057140027230649169461694183352553981932435261328694067274064809488645136577488966491436842537090916783586346486335630893622714853 (138 digits)
Fri Apr 22 23:50:47 2022  searching for 15-digit factors
Fri Apr 22 23:50:47 2022  commencing number field sieve (138-digit input)
Fri Apr 22 23:50:47 2022  R0: -1000000000000000000000000000000000
Fri Apr 22 23:50:47 2022  R1: 1
Fri Apr 22 23:50:47 2022  A0: -2
Fri Apr 22 23:50:47 2022  A1: 0
Fri Apr 22 23:50:47 2022  A2: 0
Fri Apr 22 23:50:47 2022  A3: 0
Fri Apr 22 23:50:47 2022  A4: 0
Fri Apr 22 23:50:47 2022  A5: 75
Fri Apr 22 23:50:47 2022  skew 0.48, size 1.559e-11, alpha 0.167, combined = 4.180e-10 rroots = 1
Fri Apr 22 23:50:47 2022  
Fri Apr 22 23:50:47 2022  commencing relation filtering
Fri Apr 22 23:50:47 2022  estimated available RAM is 32684.9 MB
Fri Apr 22 23:50:47 2022  commencing duplicate removal, pass 1
Fri Apr 22 23:52:20 2022  found 981425 hash collisions in 10050970 relations
Fri Apr 22 23:52:31 2022  added 366270 free relations
Fri Apr 22 23:52:31 2022  commencing duplicate removal, pass 2
Fri Apr 22 23:52:34 2022  found 736862 duplicates and 9680378 unique relations
Fri Apr 22 23:52:34 2022  memory use: 49.3 MB
Fri Apr 22 23:52:34 2022  reading ideals above 100000
Fri Apr 22 23:52:34 2022  commencing singleton removal, initial pass
Fri Apr 22 23:53:58 2022  memory use: 344.5 MB
Fri Apr 22 23:53:58 2022  reading all ideals from disk
Fri Apr 22 23:53:58 2022  memory use: 343.0 MB
Fri Apr 22 23:53:58 2022  keeping 10357477 ideals with weight <= 200, target excess is 49984
Fri Apr 22 23:53:59 2022  commencing in-memory singleton removal
Fri Apr 22 23:53:59 2022  begin with 9680378 relations and 10357477 unique ideals
Fri Apr 22 23:54:02 2022  reduce to 4300093 relations and 3816790 ideals in 14 passes
Fri Apr 22 23:54:02 2022  max relations containing the same ideal: 118
Fri Apr 22 23:54:03 2022  removing 999874 relations and 787213 ideals in 212661 cliques
Fri Apr 22 23:54:03 2022  commencing in-memory singleton removal
Fri Apr 22 23:54:03 2022  begin with 3300219 relations and 3816790 unique ideals
Fri Apr 22 23:54:04 2022  reduce to 3108640 relations and 2825893 ideals in 9 passes
Fri Apr 22 23:54:04 2022  max relations containing the same ideal: 93
Fri Apr 22 23:54:05 2022  removing 805295 relations and 592634 ideals in 212661 cliques
Fri Apr 22 23:54:05 2022  commencing in-memory singleton removal
Fri Apr 22 23:54:05 2022  begin with 2303345 relations and 2825893 unique ideals
Fri Apr 22 23:54:05 2022  reduce to 2137149 relations and 2055653 ideals in 11 passes
Fri Apr 22 23:54:05 2022  max relations containing the same ideal: 72
Fri Apr 22 23:54:06 2022  removing 148787 relations and 125273 ideals in 23514 cliques
Fri Apr 22 23:54:06 2022  commencing in-memory singleton removal
Fri Apr 22 23:54:06 2022  begin with 1988362 relations and 2055653 unique ideals
Fri Apr 22 23:54:06 2022  reduce to 1981276 relations and 1923217 ideals in 7 passes
Fri Apr 22 23:54:06 2022  max relations containing the same ideal: 70
Fri Apr 22 23:54:07 2022  relations with 0 large ideals: 1105
Fri Apr 22 23:54:07 2022  relations with 1 large ideals: 397
Fri Apr 22 23:54:07 2022  relations with 2 large ideals: 6274
Fri Apr 22 23:54:07 2022  relations with 3 large ideals: 48213
Fri Apr 22 23:54:07 2022  relations with 4 large ideals: 189918
Fri Apr 22 23:54:07 2022  relations with 5 large ideals: 430853
Fri Apr 22 23:54:07 2022  relations with 6 large ideals: 591958
Fri Apr 22 23:54:07 2022  relations with 7+ large ideals: 712558
Fri Apr 22 23:54:07 2022  commencing 2-way merge
Fri Apr 22 23:54:07 2022  reduce to 1182388 relation sets and 1124329 unique ideals
Fri Apr 22 23:54:07 2022  commencing full merge
Fri Apr 22 23:54:19 2022  memory use: 141.3 MB
Fri Apr 22 23:54:19 2022  found 602150 cycles, need 594529
Fri Apr 22 23:54:19 2022  weight of 594529 cycles is about 41814836 (70.33/cycle)
Fri Apr 22 23:54:19 2022  distribution of cycle lengths:
Fri Apr 22 23:54:19 2022  1 relations: 65056
Fri Apr 22 23:54:19 2022  2 relations: 61249
Fri Apr 22 23:54:19 2022  3 relations: 63137
Fri Apr 22 23:54:19 2022  4 relations: 60152
Fri Apr 22 23:54:19 2022  5 relations: 57069
Fri Apr 22 23:54:19 2022  6 relations: 52371
Fri Apr 22 23:54:19 2022  7 relations: 46505
Fri Apr 22 23:54:19 2022  8 relations: 40183
Fri Apr 22 23:54:19 2022  9 relations: 34280
Fri Apr 22 23:54:19 2022  10+ relations: 114527
Fri Apr 22 23:54:19 2022  heaviest cycle: 21 relations
Fri Apr 22 23:54:19 2022  commencing cycle optimization
Fri Apr 22 23:54:19 2022  start with 3591814 relations
Fri Apr 22 23:54:23 2022  pruned 88445 relations
Fri Apr 22 23:54:23 2022  memory use: 117.3 MB
Fri Apr 22 23:54:23 2022  distribution of cycle lengths:
Fri Apr 22 23:54:23 2022  1 relations: 65056
Fri Apr 22 23:54:23 2022  2 relations: 62462
Fri Apr 22 23:54:23 2022  3 relations: 65154
Fri Apr 22 23:54:23 2022  4 relations: 61621
Fri Apr 22 23:54:23 2022  5 relations: 58757
Fri Apr 22 23:54:23 2022  6 relations: 53495
Fri Apr 22 23:54:23 2022  7 relations: 47225
Fri Apr 22 23:54:23 2022  8 relations: 40666
Fri Apr 22 23:54:23 2022  9 relations: 34072
Fri Apr 22 23:54:23 2022  10+ relations: 106021
Fri Apr 22 23:54:23 2022  heaviest cycle: 21 relations
Fri Apr 22 23:54:23 2022  RelProcTime: 216
Fri Apr 22 23:54:23 2022  elapsed time 00:03:37
Fri Apr 22 23:54:23 2022 LatSieveTime: 627.531
Fri Apr 22 23:54:23 2022 -> Running matrix solving step ...
Fri Apr 22 23:54:23 2022 -> msieve-1.53-SVN998-win64-core2 -s 29992_167\29992_167.dat -l 29992_167\29992_167.log -i 29992_167\29992_167.ini -nf 29992_167\29992_167.fb -t 6 -nc2
Fri Apr 22 23:54:23 2022  
Fri Apr 22 23:54:23 2022  
Fri Apr 22 23:54:23 2022  Msieve v. 1.53 (SVN unknown)
Fri Apr 22 23:54:23 2022  random seeds: a7e06d10 86625abb
Fri Apr 22 23:54:23 2022  factoring 246333673057140027230649169461694183352553981932435261328694067274064809488645136577488966491436842537090916783586346486335630893622714853 (138 digits)
Fri Apr 22 23:54:24 2022  searching for 15-digit factors
Fri Apr 22 23:54:24 2022  commencing number field sieve (138-digit input)
Fri Apr 22 23:54:24 2022  R0: -1000000000000000000000000000000000
Fri Apr 22 23:54:24 2022  R1: 1
Fri Apr 22 23:54:24 2022  A0: -2
Fri Apr 22 23:54:24 2022  A1: 0
Fri Apr 22 23:54:24 2022  A2: 0
Fri Apr 22 23:54:24 2022  A3: 0
Fri Apr 22 23:54:24 2022  A4: 0
Fri Apr 22 23:54:24 2022  A5: 75
Fri Apr 22 23:54:24 2022  skew 0.48, size 1.559e-11, alpha 0.167, combined = 4.180e-10 rroots = 1
Fri Apr 22 23:54:24 2022  
Fri Apr 22 23:54:24 2022  commencing linear algebra
Fri Apr 22 23:54:24 2022  read 594529 cycles
Fri Apr 22 23:54:25 2022  cycles contain 1938657 unique relations
Fri Apr 22 23:54:39 2022  read 1938657 relations
Fri Apr 22 23:54:41 2022  using 20 quadratic characters above 4294917295
Fri Apr 22 23:54:48 2022  building initial matrix
Fri Apr 22 23:55:00 2022  memory use: 237.0 MB
Fri Apr 22 23:55:00 2022  read 594529 cycles
Fri Apr 22 23:55:01 2022  matrix is 594352 x 594529 (178.2 MB) with weight 53484617 (89.96/col)
Fri Apr 22 23:55:01 2022  sparse part has weight 40165847 (67.56/col)
Fri Apr 22 23:55:03 2022  filtering completed in 2 passes
Fri Apr 22 23:55:03 2022  matrix is 594078 x 594255 (178.1 MB) with weight 53475410 (89.99/col)
Fri Apr 22 23:55:03 2022  sparse part has weight 40162888 (67.59/col)
Fri Apr 22 23:55:04 2022  matrix starts at (0, 0)
Fri Apr 22 23:55:04 2022  matrix is 594078 x 594255 (178.1 MB) with weight 53475410 (89.99/col)
Fri Apr 22 23:55:04 2022  sparse part has weight 40162888 (67.59/col)
Fri Apr 22 23:55:04 2022  saving the first 48 matrix rows for later
Fri Apr 22 23:55:04 2022  matrix includes 64 packed rows
Fri Apr 22 23:55:04 2022  matrix is 594030 x 594255 (168.4 MB) with weight 42143914 (70.92/col)
Fri Apr 22 23:55:04 2022  sparse part has weight 38196436 (64.28/col)
Fri Apr 22 23:55:04 2022  using block size 8192 and superblock size 1179648 for processor cache size 12288 kB
Fri Apr 22 23:55:06 2022  commencing Lanczos iteration (6 threads)
Fri Apr 22 23:55:06 2022  memory use: 132.5 MB
Fri Apr 22 23:55:07 2022  linear algebra at 0.5%, ETA 0h 3m
Fri Apr 22 23:58:22 2022  lanczos halted after 9396 iterations (dim = 594026)
Fri Apr 22 23:58:22 2022  recovered 37 nontrivial dependencies
Fri Apr 22 23:58:22 2022  BLanczosTime: 238
Fri Apr 22 23:58:22 2022  elapsed time 00:03:59
Fri Apr 22 23:58:22 2022 -> Running square root step ...
Fri Apr 22 23:58:22 2022 -> msieve-1.53-SVN998-win64-core2 -s 29992_167\29992_167.dat -l 29992_167\29992_167.log -i 29992_167\29992_167.ini -nf 29992_167\29992_167.fb -t 6 -nc3
Fri Apr 22 23:58:22 2022  
Fri Apr 22 23:58:22 2022  
Fri Apr 22 23:58:22 2022  Msieve v. 1.53 (SVN unknown)
Fri Apr 22 23:58:22 2022  random seeds: accf0e64 14cb4f3e
Fri Apr 22 23:58:22 2022  factoring 246333673057140027230649169461694183352553981932435261328694067274064809488645136577488966491436842537090916783586346486335630893622714853 (138 digits)
Fri Apr 22 23:58:22 2022  searching for 15-digit factors
Fri Apr 22 23:58:23 2022  commencing number field sieve (138-digit input)
Fri Apr 22 23:58:23 2022  R0: -1000000000000000000000000000000000
Fri Apr 22 23:58:23 2022  R1: 1
Fri Apr 22 23:58:23 2022  A0: -2
Fri Apr 22 23:58:23 2022  A1: 0
Fri Apr 22 23:58:23 2022  A2: 0
Fri Apr 22 23:58:23 2022  A3: 0
Fri Apr 22 23:58:23 2022  A4: 0
Fri Apr 22 23:58:23 2022  A5: 75
Fri Apr 22 23:58:23 2022  skew 0.48, size 1.559e-11, alpha 0.167, combined = 4.180e-10 rroots = 1
Fri Apr 22 23:58:23 2022  
Fri Apr 22 23:58:23 2022  commencing square root phase
Fri Apr 22 23:58:23 2022  reading relations for dependency 1
Fri Apr 22 23:58:23 2022  read 296889 cycles
Fri Apr 22 23:58:23 2022  cycles contain 967884 unique relations
Fri Apr 22 23:58:30 2022  read 967884 relations
Fri Apr 22 23:58:33 2022  multiplying 967884 relations
Fri Apr 22 23:58:47 2022  multiply complete, coefficients have about 26.40 million bits
Fri Apr 22 23:58:47 2022  initial square root is modulo 38089481
Fri Apr 22 23:59:03 2022  Newton iteration failed to converge
Fri Apr 22 23:59:03 2022  algebraic square root failed
Fri Apr 22 23:59:03 2022  reading relations for dependency 2
Fri Apr 22 23:59:03 2022  read 297829 cycles
Fri Apr 22 23:59:03 2022  cycles contain 971904 unique relations
Fri Apr 22 23:59:11 2022  read 971904 relations
Fri Apr 22 23:59:13 2022  multiplying 971904 relations
Fri Apr 22 23:59:27 2022  multiply complete, coefficients have about 26.51 million bits
Fri Apr 22 23:59:27 2022  initial square root is modulo 40965161
Fri Apr 22 23:59:43 2022  GCD is N, no factor found
Fri Apr 22 23:59:43 2022  reading relations for dependency 3
Fri Apr 22 23:59:43 2022  read 297221 cycles
Fri Apr 22 23:59:43 2022  cycles contain 969730 unique relations
Fri Apr 22 23:59:51 2022  read 969730 relations
Fri Apr 22 23:59:53 2022  multiplying 969730 relations
Sat Apr 23 00:00:07 2022  multiply complete, coefficients have about 26.45 million bits
Sat Apr 23 00:00:07 2022  initial square root is modulo 39390361
Sat Apr 23 00:00:23 2022  sqrtTime: 120
Sat Apr 23 00:00:23 2022  p54 factor: 904540553131403691422616646117818857428650628812334991
Sat Apr 23 00:00:23 2022  p84 factor: 272330159443227128584139180317965452538042114629442571016371666315957702818184676683
Sat Apr 23 00:00:23 2022  elapsed time 00:02:01
Sat Apr 23 00:00:23 2022 -> Computing time scale for this machine...
Sat Apr 23 00:00:23 2022 -> procrels -speedtest> PIPE

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)
403e62350Ignacio SantosApril 18, 2022 15:14:56 UTC 2022 年 4 月 19 日 (火) 0 時 14 分 56 秒 (日本時間)

3×10168-8

c146

name 名前Bob Backstrom
date 日付April 30, 2022 08:57:27 UTC 2022 年 4 月 30 日 (土) 17 時 57 分 27 秒 (日本時間)
composite number 合成数
14692401188373150290789629567416726878372250309309402818469214977116362444319187716064468111229118175975918622636831238894464721920232634061275863<146>
prime factors 素因数
7465731046384866553531242667774071881192629971257827<52>
1967978902144841748870435488053336424273694810392088810337492496715999773239170441548523865469<94>
factorization results 素因数分解の結果
Number: n
N=14692401188373150290789629567416726878372250309309402818469214977116362444319187716064468111229118175975918622636831238894464721920232634061275863  ( 146 digits)
SNFS difficulty: 167 digits.
Divisors found:

Sat Apr 30 18:53:30 2022  p52 factor: 7465731046384866553531242667774071881192629971257827
Sat Apr 30 18:53:30 2022  p94 factor: 1967978902144841748870435488053336424273694810392088810337492496715999773239170441548523865469
Sat Apr 30 18:53:30 2022  elapsed time 00:09:46 (Msieve 1.54 - dependency 4)

Version: 
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.329).
Factorization parameters were as follows:
#
# N = 3x10^168-8 = 29(167)2
#
n: 14692401188373150290789629567416726878372250309309402818469214977116362444319187716064468111229118175975918622636831238894464721920232634061275863
m: 1000000000000000000000000000000000
deg: 5
c5: 375
c0: -1
skew: 0.31
# Murphy_E = 4.092e-10
type: snfs
lss: 1
rlim: 4300000
alim: 4300000
lpbr: 27
lpba: 27
mfbr: 51
mfba: 51
rlambda: 2.4
alambda: 2.4
Factor base limits: 4300000/4300000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 51/51
Sieved  special-q in [100000, 7750000)
Primes: , , 
Relations: 
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 

Msieve: found 1859477 hash collisions in 15785307 relations (14880033 unique)
Msieve: matrix is 512649 x 512882 (173.6 MB)

Sieving start time : 2022/04/30 18:18:45
Sieving end time  : 2022/04/30 18:43:24

Total sieving time: 0hrs 24min 39secs.

Total relation processing time: 0hrs 4min 10sec.
Matrix solve time: 0.00 hours.
Total square root time: 0hrs 1min 55sec.

Prototype def-par.txt line would be:
snfs,167,5,0,0,0,0,0,0,0,0,4300000,4300000,27,27,51,51,2.4,2.4,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------
[    0.116801] smpboot: CPU0: AMD Ryzen 7 2700 Eight-Core Processor (family: 0x17, model: 0x8, stepping: 0x2)
[    0.000000] Memory: 16197520K/16727236K available (14339K kernel code, 2401K rwdata, 9504K rodata, 2752K init, 4948K bss, 529716K reserved, 0K cma-reserved)
[    0.153503] x86/mm: Memory block size: 128MB
[    0.000005] Calibrating delay loop (skipped), value calculated using timer frequency.. 6399.36 BogoMIPS (lpj=12798732)
[    0.152038] smpboot: Total of 16 processors activated (102389.85 BogoMIPS)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)
403e62350Ignacio SantosApril 18, 2022 15:15:30 UTC 2022 年 4 月 19 日 (火) 0 時 15 分 30 秒 (日本時間)

3×10170-8

c147

name 名前Taiyo Kodama
date 日付April 24, 2022 11:06:12 UTC 2022 年 4 月 24 日 (日) 20 時 6 分 12 秒 (日本時間)
composite number 合成数
987565081147561662270973196836470983280009713839373703117456708676506065911357571303411406244728883159023559018530145581119566200583203904697134897<147>
prime factors 素因数
216772240095280803574437683771678668846709<42>
4555772827339349200707120343310199076230615442737404180109680644282212040092831591103463828456204159571533<106>
factorization results 素因数分解の結果
Sun Apr 24 16:54:12 2022 -> factmsieve.py (v0.86)
Sun Apr 24 16:54:12 2022 -> This is client 1 of 1
Sun Apr 24 16:54:12 2022 -> Running on 6 Cores with 1 hyper-thread per Core
Sun Apr 24 16:54:12 2022 -> Working with NAME = 29992_170
Sun Apr 24 16:54:12 2022 -> Selected lattice siever: gnfs-lasieve4I13e
Sun Apr 24 16:54:12 2022 -> Creating param file to detect parameter changes...
Sun Apr 24 16:54:12 2022 -> Running setup ...
Sun Apr 24 16:54:12 2022 -> Estimated minimum relations needed: 1.10372e+07
Sun Apr 24 16:54:12 2022 -> cleaning up before a restart
Sun Apr 24 16:54:12 2022 -> Running lattice siever ...
Sun Apr 24 16:54:12 2022 -> entering sieving loop
Sun Apr 24 19:27:52 2022 Found 11488097 relations, 104.1% of the estimated minimum (11037155).
Sun Apr 24 19:27:52 2022 -> msieve-1.53-SVN998-win64-core2 -s 29992_170\29992_170.dat -l 29992_170\29992_170.log -i 29992_170\29992_170.ini -nf 29992_170\29992_170.fb -t 6 -nc1
Sun Apr 24 19:27:52 2022  
Sun Apr 24 19:27:52 2022  
Sun Apr 24 19:27:52 2022  Msieve v. 1.53 (SVN unknown)
Sun Apr 24 19:27:52 2022  random seeds: b2080d70 73244895
Sun Apr 24 19:27:52 2022  factoring 987565081147561662270973196836470983280009713839373703117456708676506065911357571303411406244728883159023559018530145581119566200583203904697134897 (147 digits)
Sun Apr 24 19:27:53 2022  searching for 15-digit factors
Sun Apr 24 19:27:53 2022  commencing number field sieve (147-digit input)
Sun Apr 24 19:27:53 2022  R0: -10000000000000000000000000000000000
Sun Apr 24 19:27:53 2022  R1: 1
Sun Apr 24 19:27:53 2022  A0: -8
Sun Apr 24 19:27:53 2022  A1: 0
Sun Apr 24 19:27:53 2022  A2: 0
Sun Apr 24 19:27:53 2022  A3: 0
Sun Apr 24 19:27:53 2022  A4: 0
Sun Apr 24 19:27:53 2022  A5: 3
Sun Apr 24 19:27:53 2022  skew 1.22, size 1.125e-11, alpha 0.221, combined = 3.405e-10 rroots = 1
Sun Apr 24 19:27:53 2022  
Sun Apr 24 19:27:53 2022  commencing relation filtering
Sun Apr 24 19:27:53 2022  estimated available RAM is 32684.9 MB
Sun Apr 24 19:27:53 2022  commencing duplicate removal, pass 1
Sun Apr 24 19:29:40 2022  found 1184145 hash collisions in 11488096 relations
Sun Apr 24 19:29:53 2022  added 373548 free relations
Sun Apr 24 19:29:53 2022  commencing duplicate removal, pass 2
Sun Apr 24 19:29:56 2022  found 868622 duplicates and 10993022 unique relations
Sun Apr 24 19:29:56 2022  memory use: 49.3 MB
Sun Apr 24 19:29:56 2022  reading ideals above 720000
Sun Apr 24 19:29:56 2022  commencing singleton removal, initial pass
Sun Apr 24 19:31:26 2022  memory use: 344.5 MB
Sun Apr 24 19:31:26 2022  reading all ideals from disk
Sun Apr 24 19:31:26 2022  memory use: 318.4 MB
Sun Apr 24 19:31:26 2022  commencing in-memory singleton removal
Sun Apr 24 19:31:27 2022  begin with 10993022 relations and 11252816 unique ideals
Sun Apr 24 19:31:30 2022  reduce to 5453603 relations and 4687706 ideals in 15 passes
Sun Apr 24 19:31:30 2022  max relations containing the same ideal: 88
Sun Apr 24 19:31:31 2022  removing 1355577 relations and 1039752 ideals in 315825 cliques
Sun Apr 24 19:31:32 2022  commencing in-memory singleton removal
Sun Apr 24 19:31:32 2022  begin with 4098026 relations and 4687706 unique ideals
Sun Apr 24 19:31:33 2022  reduce to 3819232 relations and 3348276 ideals in 10 passes
Sun Apr 24 19:31:33 2022  max relations containing the same ideal: 67
Sun Apr 24 19:31:34 2022  removing 1097769 relations and 781944 ideals in 315825 cliques
Sun Apr 24 19:31:34 2022  commencing in-memory singleton removal
Sun Apr 24 19:31:34 2022  begin with 2721463 relations and 3348276 unique ideals
Sun Apr 24 19:31:35 2022  reduce to 2477335 relations and 2301377 ideals in 10 passes
Sun Apr 24 19:31:35 2022  max relations containing the same ideal: 51
Sun Apr 24 19:31:35 2022  removing 232193 relations and 190483 ideals in 41710 cliques
Sun Apr 24 19:31:35 2022  commencing in-memory singleton removal
Sun Apr 24 19:31:35 2022  begin with 2245142 relations and 2301377 unique ideals
Sun Apr 24 19:31:36 2022  reduce to 2229032 relations and 2094516 ideals in 7 passes
Sun Apr 24 19:31:36 2022  max relations containing the same ideal: 48
Sun Apr 24 19:31:37 2022  relations with 0 large ideals: 2828
Sun Apr 24 19:31:37 2022  relations with 1 large ideals: 2937
Sun Apr 24 19:31:37 2022  relations with 2 large ideals: 37709
Sun Apr 24 19:31:37 2022  relations with 3 large ideals: 186957
Sun Apr 24 19:31:37 2022  relations with 4 large ideals: 473792
Sun Apr 24 19:31:37 2022  relations with 5 large ideals: 661403
Sun Apr 24 19:31:37 2022  relations with 6 large ideals: 547642
Sun Apr 24 19:31:37 2022  relations with 7+ large ideals: 315764
Sun Apr 24 19:31:37 2022  commencing 2-way merge
Sun Apr 24 19:31:37 2022  reduce to 1342900 relation sets and 1208384 unique ideals
Sun Apr 24 19:31:37 2022  commencing full merge
Sun Apr 24 19:31:48 2022  memory use: 144.5 MB
Sun Apr 24 19:31:48 2022  found 678791 cycles, need 660584
Sun Apr 24 19:31:49 2022  weight of 660584 cycles is about 46548876 (70.47/cycle)
Sun Apr 24 19:31:49 2022  distribution of cycle lengths:
Sun Apr 24 19:31:49 2022  1 relations: 71198
Sun Apr 24 19:31:49 2022  2 relations: 66951
Sun Apr 24 19:31:49 2022  3 relations: 67804
Sun Apr 24 19:31:49 2022  4 relations: 66277
Sun Apr 24 19:31:49 2022  5 relations: 62887
Sun Apr 24 19:31:49 2022  6 relations: 58409
Sun Apr 24 19:31:49 2022  7 relations: 52653
Sun Apr 24 19:31:49 2022  8 relations: 45877
Sun Apr 24 19:31:49 2022  9 relations: 39719
Sun Apr 24 19:31:49 2022  10+ relations: 128809
Sun Apr 24 19:31:49 2022  heaviest cycle: 20 relations
Sun Apr 24 19:31:49 2022  commencing cycle optimization
Sun Apr 24 19:31:49 2022  start with 3993156 relations
Sun Apr 24 19:31:53 2022  pruned 108233 relations
Sun Apr 24 19:31:53 2022  memory use: 129.7 MB
Sun Apr 24 19:31:53 2022  distribution of cycle lengths:
Sun Apr 24 19:31:53 2022  1 relations: 71198
Sun Apr 24 19:31:53 2022  2 relations: 68402
Sun Apr 24 19:31:53 2022  3 relations: 70274
Sun Apr 24 19:31:53 2022  4 relations: 68203
Sun Apr 24 19:31:53 2022  5 relations: 65080
Sun Apr 24 19:31:53 2022  6 relations: 59850
Sun Apr 24 19:31:53 2022  7 relations: 53986
Sun Apr 24 19:31:53 2022  8 relations: 46506
Sun Apr 24 19:31:53 2022  9 relations: 39607
Sun Apr 24 19:31:53 2022  10+ relations: 117478
Sun Apr 24 19:31:53 2022  heaviest cycle: 19 relations
Sun Apr 24 19:31:53 2022  RelProcTime: 240
Sun Apr 24 19:31:53 2022  elapsed time 00:04:01
Sun Apr 24 19:31:53 2022 LatSieveTime: 692.882
Sun Apr 24 19:31:53 2022 -> Running matrix solving step ...
Sun Apr 24 19:31:53 2022 -> msieve-1.53-SVN998-win64-core2 -s 29992_170\29992_170.dat -l 29992_170\29992_170.log -i 29992_170\29992_170.ini -nf 29992_170\29992_170.fb -t 6 -nc2
Sun Apr 24 19:31:53 2022  
Sun Apr 24 19:31:53 2022  
Sun Apr 24 19:31:53 2022  Msieve v. 1.53 (SVN unknown)
Sun Apr 24 19:31:53 2022  random seeds: 914ab5bc 6ecc1e13
Sun Apr 24 19:31:53 2022  factoring 987565081147561662270973196836470983280009713839373703117456708676506065911357571303411406244728883159023559018530145581119566200583203904697134897 (147 digits)
Sun Apr 24 19:31:54 2022  searching for 15-digit factors
Sun Apr 24 19:31:54 2022  commencing number field sieve (147-digit input)
Sun Apr 24 19:31:54 2022  R0: -10000000000000000000000000000000000
Sun Apr 24 19:31:54 2022  R1: 1
Sun Apr 24 19:31:54 2022  A0: -8
Sun Apr 24 19:31:54 2022  A1: 0
Sun Apr 24 19:31:54 2022  A2: 0
Sun Apr 24 19:31:54 2022  A3: 0
Sun Apr 24 19:31:54 2022  A4: 0
Sun Apr 24 19:31:54 2022  A5: 3
Sun Apr 24 19:31:54 2022  skew 1.22, size 1.125e-11, alpha 0.221, combined = 3.405e-10 rroots = 1
Sun Apr 24 19:31:54 2022  
Sun Apr 24 19:31:54 2022  commencing linear algebra
Sun Apr 24 19:31:54 2022  read 660584 cycles
Sun Apr 24 19:31:55 2022  cycles contain 2136128 unique relations
Sun Apr 24 19:32:11 2022  read 2136128 relations
Sun Apr 24 19:32:12 2022  using 20 quadratic characters above 4294917295
Sun Apr 24 19:32:20 2022  building initial matrix
Sun Apr 24 19:32:33 2022  memory use: 271.0 MB
Sun Apr 24 19:32:33 2022  read 660584 cycles
Sun Apr 24 19:32:34 2022  matrix is 660401 x 660584 (197.9 MB) with weight 59700306 (90.38/col)
Sun Apr 24 19:32:34 2022  sparse part has weight 44619879 (67.55/col)
Sun Apr 24 19:32:36 2022  filtering completed in 2 passes
Sun Apr 24 19:32:36 2022  matrix is 659848 x 660031 (197.9 MB) with weight 59678468 (90.42/col)
Sun Apr 24 19:32:36 2022  sparse part has weight 44611017 (67.59/col)
Sun Apr 24 19:32:37 2022  matrix starts at (0, 0)
Sun Apr 24 19:32:37 2022  matrix is 659848 x 660031 (197.9 MB) with weight 59678468 (90.42/col)
Sun Apr 24 19:32:37 2022  sparse part has weight 44611017 (67.59/col)
Sun Apr 24 19:32:37 2022  saving the first 48 matrix rows for later
Sun Apr 24 19:32:37 2022  matrix includes 64 packed rows
Sun Apr 24 19:32:37 2022  matrix is 659800 x 660031 (187.5 MB) with weight 46939960 (71.12/col)
Sun Apr 24 19:32:37 2022  sparse part has weight 42560572 (64.48/col)
Sun Apr 24 19:32:37 2022  using block size 8192 and superblock size 1179648 for processor cache size 12288 kB
Sun Apr 24 19:32:39 2022  commencing Lanczos iteration (6 threads)
Sun Apr 24 19:32:39 2022  memory use: 148.3 MB
Sun Apr 24 19:32:40 2022  linear algebra at 0.5%, ETA 0h 3m
Sun Apr 24 19:36:37 2022  lanczos halted after 10435 iterations (dim = 659797)
Sun Apr 24 19:36:38 2022  recovered 36 nontrivial dependencies
Sun Apr 24 19:36:38 2022  BLanczosTime: 284
Sun Apr 24 19:36:38 2022  elapsed time 00:04:45
Sun Apr 24 19:36:38 2022 -> Running square root step ...
Sun Apr 24 19:36:38 2022 -> msieve-1.53-SVN998-win64-core2 -s 29992_170\29992_170.dat -l 29992_170\29992_170.log -i 29992_170\29992_170.ini -nf 29992_170\29992_170.fb -t 6 -nc3
Sun Apr 24 19:36:38 2022  
Sun Apr 24 19:36:38 2022  
Sun Apr 24 19:36:38 2022  Msieve v. 1.53 (SVN unknown)
Sun Apr 24 19:36:38 2022  random seeds: 41434058 c6fda833
Sun Apr 24 19:36:38 2022  factoring 987565081147561662270973196836470983280009713839373703117456708676506065911357571303411406244728883159023559018530145581119566200583203904697134897 (147 digits)
Sun Apr 24 19:36:38 2022  searching for 15-digit factors
Sun Apr 24 19:36:38 2022  commencing number field sieve (147-digit input)
Sun Apr 24 19:36:38 2022  R0: -10000000000000000000000000000000000
Sun Apr 24 19:36:38 2022  R1: 1
Sun Apr 24 19:36:38 2022  A0: -8
Sun Apr 24 19:36:38 2022  A1: 0
Sun Apr 24 19:36:38 2022  A2: 0
Sun Apr 24 19:36:38 2022  A3: 0
Sun Apr 24 19:36:38 2022  A4: 0
Sun Apr 24 19:36:38 2022  A5: 3
Sun Apr 24 19:36:38 2022  skew 1.22, size 1.125e-11, alpha 0.221, combined = 3.405e-10 rroots = 1
Sun Apr 24 19:36:38 2022  
Sun Apr 24 19:36:38 2022  commencing square root phase
Sun Apr 24 19:36:38 2022  reading relations for dependency 1
Sun Apr 24 19:36:38 2022  read 329943 cycles
Sun Apr 24 19:36:39 2022  cycles contain 1068650 unique relations
Sun Apr 24 19:36:47 2022  read 1068650 relations
Sun Apr 24 19:36:50 2022  multiplying 1068650 relations
Sun Apr 24 19:37:03 2022  multiply complete, coefficients have about 25.03 million bits
Sun Apr 24 19:37:03 2022  initial square root is modulo 15442711
Sun Apr 24 19:37:19 2022  sqrtTime: 41
Sun Apr 24 19:37:19 2022  p42 factor: 216772240095280803574437683771678668846709
Sun Apr 24 19:37:19 2022  p106 factor: 4555772827339349200707120343310199076230615442737404180109680644282212040092831591103463828456204159571533
Sun Apr 24 19:37:19 2022  elapsed time 00:00:41
Sun Apr 24 19:37:19 2022 -> Computing time scale for this machine...
Sun Apr 24 19:37:19 2022 -> procrels -speedtest> PIPE

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)
403e62350Ignacio SantosApril 18, 2022 11:22:40 UTC 2022 年 4 月 18 日 (月) 20 時 22 分 40 秒 (日本時間)

3×10171-8

c165

name 名前Bob Backstrom
date 日付April 16, 2022 00:34:08 UTC 2022 年 4 月 16 日 (土) 9 時 34 分 8 秒 (日本時間)
composite number 合成数
272533229068176185828417439510341364221401634763321242548033073179169158831639145655565964306141300121586157928282335704251300346880293957974649322409717008762488381<165>
prime factors 素因数
269186942672531854037416609274043253106106571691<48>
1012431087341837070140252511026426487049250842258834062203114179948708737314886023908118635883653466300705059327409591<118>
factorization results 素因数分解の結果
Number: n
N=272533229068176185828417439510341364221401634763321242548033073179169158831639145655565964306141300121586157928282335704251300346880293957974649322409717008762488381  ( 165 digits)
SNFS difficulty: 171 digits.
Divisors found:

Sat Apr 16 10:30:22 2022  p48 factor: 269186942672531854037416609274043253106106571691
Sat Apr 16 10:30:22 2022  p118 factor: 1012431087341837070140252511026426487049250842258834062203114179948708737314886023908118635883653466300705059327409591
Sat Apr 16 10:30:22 2022  elapsed time 00:10:44 (Msieve 1.54 - dependency 5)

Version: 
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.331).
Factorization parameters were as follows:
#
# N = 3x10^171-8 = 29(170)2
#
n: 272533229068176185828417439510341364221401634763321242548033073179169158831639145655565964306141300121586157928282335704251300346880293957974649322409717008762488381
m: 10000000000000000000000000000000000
deg: 5
c5: 15
c0: -4
skew: 0.77
# Murphy_E = 3.205e-10
type: snfs
lss: 1
rlim: 5000000
alim: 5000000
lpbr: 27
lpba: 27
mfbr: 52
mfba: 52
rlambda: 2.4
alambda: 2.4
Factor base limits: 5000000/5000000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 52/52
Sieved  special-q in [100000, 8100000)
Primes: , , 
Relations: 
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 

Msieve: found 1964333 hash collisions in 16879390 relations (15974383 unique)
Msieve: matrix is 543656 x 543881 (186.2 MB)

Sieving start time : 2022/04/16 09:38:12
Sieving end time  : 2022/04/16 10:19:18

Total sieving time: 0hrs 41min 6secs.

Total relation processing time: 0hrs 4min 21sec.
Matrix solve time: 0.00 hours.
Total square root time: 0hrs 2min 16sec.

Prototype def-par.txt line would be:
snfs,171,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,52,52,2.4,2.4,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------
[    0.116801] smpboot: CPU0: AMD Ryzen 7 2700 Eight-Core Processor (family: 0x17, model: 0x8, stepping: 0x2)
[    0.000000] Memory: 16197520K/16727236K available (14339K kernel code, 2401K rwdata, 9504K rodata, 2752K init, 4948K bss, 529716K reserved, 0K cma-reserved)
[    0.153503] x86/mm: Memory block size: 128MB
[    0.000005] Calibrating delay loop (skipped), value calculated using timer frequency.. 6399.36 BogoMIPS (lpj=12798732)
[    0.152038] smpboot: Total of 16 processors activated (102389.85 BogoMIPS)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)

3×10173-8

c145

name 名前Ignacio Santos
date 日付April 18, 2022 11:34:03 UTC 2022 年 4 月 18 日 (月) 20 時 34 分 3 秒 (日本時間)
composite number 合成数
4851595139315765543634918869696821456228800027439912976928331194434938474310910166386276024536814816258047593396514477457798453838830995800844683<145>
prime factors 素因数
13167001186394974161089257839317008524464023<44>
368466218741497340364693499713669040951050145552769236139911913445867478250206418706365585437839717421<102>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:1865839320
Step 1 took 5750ms
Step 2 took 3328ms
********** Factor found in step 2: 13167001186394974161089257839317008524464023
Found prime factor of 44 digits: 13167001186394974161089257839317008524464023
Prime cofactor 368466218741497340364693499713669040951050145552769236139911913445867478250206418706365585437839717421 has 102 digits
software ソフトウェア
GMP-ECM

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)

3×10176-8

c118

name 名前Taiyo Kodama
date 日付April 15, 2022 06:58:35 UTC 2022 年 4 月 15 日 (金) 15 時 58 分 35 秒 (日本時間)
composite number 合成数
5520890600563645527965034301081277625839986235681930956444134158471184794126072450098042323630738584660847484519398317<118>
prime factors 素因数
1528678340798820964536568554601908446507790704089201<52>
3611544988384323988574769977929112238042119279887114391349100401917<67>
factorization results 素因数分解の結果
1528678340798820964536568554601908446507790704089201 3611544988384323988574769977929112238042119279887114391349100401917

n: 5520890600563645527965034301081277625839986235681930956444134158471184794126072450098042323630738584660847484519398317
skew: 25871.88
c0: 57507706454680833760941455
c1: -100436658945695325202633
c2: 3503133223709998088
c3: 366986905663256
c4: -2128716810
c5: -69300
Y0: -76485062793528034470292
Y1: 11241059515509641
# MurphyE (Bf=1.342e+08,Bg=1.342e+08,area=8.389e+12) = 1.734e-06
# f(x) = -69300*x^5-2128716810*x^4+366986905663256*x^3+3503133223709998088*x^2-100436658945695325202633*x+57507706454680833760941455
# g(x) = 11241059515509641*x-76485062793528034470292
software ソフトウェア
cado-nfs 3.0.0

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)
403e62350Ignacio SantosApril 14, 2022 18:00:01 UTC 2022 年 4 月 15 日 (金) 3 時 0 分 1 秒 (日本時間)

3×10177-8

c147

name 名前Bob Backstrom
date 日付April 27, 2022 23:21:19 UTC 2022 年 4 月 28 日 (木) 8 時 21 分 19 秒 (日本時間)
composite number 合成数
765470736297710264529659107089590848534224537937349406858419265321279416881345762340380974372139561836461183615389051136251109411326850902306534739<147>
prime factors 素因数
1860093770319146518636319007960282657578855226964501<52>
411522660046527783508383212421946510705608725309360371456922886790398780850719889702461486519239<96>
factorization results 素因数分解の結果
Number: n
N=765470736297710264529659107089590848534224537937349406858419265321279416881345762340380974372139561836461183615389051136251109411326850902306534739  ( 147 digits)
SNFS difficulty: 176 digits.
Divisors found:

Thu Apr 28 09:15:29 2022  p52 factor: 1860093770319146518636319007960282657578855226964501
Thu Apr 28 09:15:29 2022  p96 factor: 411522660046527783508383212421946510705608725309360371456922886790398780850719889702461486519239
Thu Apr 28 09:15:29 2022  elapsed time 00:20:34 (Msieve 1.54 - dependency 1)

Version: 
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.313).
Factorization parameters were as follows:
#
# N = 3x10^177-8 = 29(176)2
#
n: 765470736297710264529659107089590848534224537937349406858419265321279416881345762340380974372139561836461183615389051136251109411326850902306534739
m: 100000000000000000000000000000000000
deg: 5
c5: 75
c0: -2
skew: 0.48
# Murphy_E = 1.673e-10
type: snfs
lss: 1
rlim: 6200000
alim: 6200000
lpbr: 28
lpba: 28
mfbr: 53
mfba: 53
rlambda: 2.5
alambda: 2.5
Factor base limits: 6200000/6200000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 53/53
Sieved  special-q in [100000, 66300000)
Primes: , , 
Relations: 
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 

Msieve: found 2947739 hash collisions in 30538347 relations (29564982 unique)
Msieve: matrix is 917985 x 918216 (309.0 MB)

Sieving start time : 2022/04/28 00:48:21
Sieving end time  : 2022/04/28 08:50:46

Total sieving time: 8hrs 2min 25secs.

Total relation processing time: 0hrs 12min 16sec.
Matrix solve time: 0.00 hours.
Total square root time: 0hrs 0min 52sec.

Prototype def-par.txt line would be:
snfs,176,5,0,0,0,0,0,0,0,0,6200000,6200000,28,28,53,53,2.5,2.5,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------
[    0.116801] smpboot: CPU0: AMD Ryzen 7 2700 Eight-Core Processor (family: 0x17, model: 0x8, stepping: 0x2)
[    0.000000] Memory: 16197520K/16727236K available (14339K kernel code, 2401K rwdata, 9504K rodata, 2752K init, 4948K bss, 529716K reserved, 0K cma-reserved)
[    0.153503] x86/mm: Memory block size: 128MB
[    0.000005] Calibrating delay loop (skipped), value calculated using timer frequency.. 6399.36 BogoMIPS (lpj=12798732)
[    0.152038] smpboot: Total of 16 processors activated (102389.85 BogoMIPS)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)
403e62350Ignacio SantosApril 17, 2022 14:32:48 UTC 2022 年 4 月 17 日 (日) 23 時 32 分 48 秒 (日本時間)

3×10179-8

c176

name 名前Bob Backstrom
date 日付April 16, 2022 02:37:06 UTC 2022 年 4 月 16 日 (土) 11 時 37 分 6 秒 (日本時間)
composite number 合成数
28647822765469824293353705118411000763941940412528647822765469824293353705118411000763941940412528647822765469824293353705118411000763941940412528647822765469824293353705118411<176>
prime factors 素因数
356856823493447252826338360528765966489947<42>
80278198088023576853313695545262514049734477206321211775580845088067539529983842559718180113311246869431552941929236809893258610495313<134>
factorization results 素因数分解の結果
GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM]
Input number is 28647822765469824293353705118411000763941940412528647822765469824293353705118411000763941940412528647822765469824293353705118411000763941940412528647822765469824293353705118411 (176 digits)
Using B1=11490000, B2=35134040770, polynomial Dickson(12), sigma=1:3359370941
Step 1 took 32701ms
Step 2 took 12988ms
********** Factor found in step 2: 356856823493447252826338360528765966489947
Found prime factor of 42 digits: 356856823493447252826338360528765966489947
Prime cofactor 80278198088023576853313695545262514049734477206321211775580845088067539529983842559718180113311246869431552941929236809893258610495313 has 134 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)

3×10180-8

c158

name 名前Bob Backstrom
date 日付April 16, 2022 11:09:35 UTC 2022 年 4 月 16 日 (土) 20 時 9 分 35 秒 (日本時間)
composite number 合成数
43507723784397715851603754745189640158892031972424874631112038550944891890689634321219915129291729243279652582201405096054043593218924191648837947865914477507<158>
prime factors 素因数
10203286836675240015698727918082049862319074895164707131122715625520907<71>
4264089060792765925065803324838778996882446594293787128157293621554479587411709238933801<88>
factorization results 素因数分解の結果
Number: n
N=43507723784397715851603754745189640158892031972424874631112038550944891890689634321219915129291729243279652582201405096054043593218924191648837947865914477507  ( 158 digits)
SNFS difficulty: 180 digits.
Divisors found:

Sat Apr 16 21:05:04 2022  p71 factor: 10203286836675240015698727918082049862319074895164707131122715625520907
Sat Apr 16 21:05:04 2022  p88 factor: 4264089060792765925065803324838778996882446594293787128157293621554479587411709238933801
Sat Apr 16 21:05:04 2022  elapsed time 00:17:10 (Msieve 1.54 - dependency 3)

Version: 
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.321).
Factorization parameters were as follows:
#
# N = 3x10^180-8 = 29(179)2
#
n: 43507723784397715851603754745189640158892031972424874631112038550944891890689634321219915129291729243279652582201405096054043593218924191648837947865914477507
m: 1000000000000000000000000000000000000
deg: 5
c5: 3
c0: -8
skew: 1.22
# Murphy_E = 1.353e-10
type: snfs
lss: 1
rlim: 7100000
alim: 7100000
lpbr: 28
lpba: 28
mfbr: 53
mfba: 53
rlambda: 2.5
alambda: 2.5
Factor base limits: 7100000/7100000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 53/53
Sieved  special-q in [100000, 16350000)
Primes: , , 
Relations: 
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 

Msieve: found 2974462 hash collisions in 30574543 relations (29577806 unique)
Msieve: matrix is 728946 x 729176 (247.0 MB)

Sieving start time : 2022/04/16 17:01:23
Sieving end time  : 2022/04/16 20:46:42

Total sieving time: 3hrs 45min 19secs.

Total relation processing time: 0hrs 7min 52sec.
Matrix solve time: 0.00 hours.
Total square root time: 0hrs 1min 53sec.

Prototype def-par.txt line would be:
snfs,180,5,0,0,0,0,0,0,0,0,7100000,7100000,28,28,53,53,2.5,2.5,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------
[    0.116801] smpboot: CPU0: AMD Ryzen 7 2700 Eight-Core Processor (family: 0x17, model: 0x8, stepping: 0x2)
[    0.000000] Memory: 16197520K/16727236K available (14339K kernel code, 2401K rwdata, 9504K rodata, 2752K init, 4948K bss, 529716K reserved, 0K cma-reserved)
[    0.153503] x86/mm: Memory block size: 128MB
[    0.000005] Calibrating delay loop (skipped), value calculated using timer frequency.. 6399.36 BogoMIPS (lpj=12798732)
[    0.152038] smpboot: Total of 16 processors activated (102389.85 BogoMIPS)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)

3×10181-8

c140

name 名前Ignacio Santos
date 日付April 17, 2022 16:05:51 UTC 2022 年 4 月 18 日 (月) 1 時 5 分 51 秒 (日本時間)
composite number 合成数
12720611254025590295963280360558601030930770961235593594375009833699880853801363484661093766645230728460062804940303406765070067985090512697<140>
prime factors 素因数
1756915076314175092843380919355798833433<40>
7240310829771071398561450821623500969226982051859726897367660533491975324273941910235916075300344609<100>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:3274397600
Step 1 took 5922ms
Step 2 took 3344ms
********** Factor found in step 2: 1756915076314175092843380919355798833433
Found prime factor of 40 digits: 1756915076314175092843380919355798833433
Prime cofactor 7240310829771071398561450821623500969226982051859726897367660533491975324273941910235916075300344609 has 100 digits
 
software ソフトウェア
GMP-ECM

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)

3×10182-8

c165

name 名前Bob Backstrom
date 日付April 16, 2022 06:50:47 UTC 2022 年 4 月 16 日 (土) 15 時 50 分 47 秒 (日本時間)
composite number 合成数
925726535921454247910555557408383497784224737609378517763724539586618746771945330629970093579000452634179845478064485594476327688469515083095663738575869484269619401<165>
prime factors 素因数
12980387252947149315442403324036501<35>
168166137565961145707403863229658801<36>
424088517945676770707688086938580285050748138322685774771982882011455046309112427458887751994101<96>
factorization results 素因数分解の結果
GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM]
Input number is 925726535921454247910555557408383497784224737609378517763724539586618746771945330629970093579000452634179845478064485594476327688469515083095663738575869484269619401 (165 digits)
Using B1=10780000, B2=35133391030, polynomial Dickson(12), sigma=1:3964017859
Step 1 took 26318ms
Step 2 took 12006ms
********** Factor found in step 2: 168166137565961145707403863229658801
Found prime factor of 36 digits: 168166137565961145707403863229658801
Composite cofactor 5504833192463311132465832592701894785612996261629274157510510493024644398134304996625010109748864314606404373730569772627260680601 has 130 digits


GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM]
Input number is 5504833192463311132465832592701894785612996261629274157510510493024644398134304996625010109748864314606404373730569772627260680601 (130 digits)
Using B1=21620000, B2=96186870796, polynomial Dickson(12), sigma=1:693829070
Step 1 took 34499ms
Step 2 took 15753ms
********** Factor found in step 2: 12980387252947149315442403324036501
Found prime factor of 35 digits: 12980387252947149315442403324036501
Prime cofactor 424088517945676770707688086938580285050748138322685774771982882011455046309112427458887751994101 has 96 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)

3×10183-8

c174

name 名前Bob Backstrom
date 日付April 17, 2022 01:43:24 UTC 2022 年 4 月 17 日 (日) 10 時 43 分 24 秒 (日本時間)
composite number 合成数
391654274368585083543245837806734476030598091492951346325824357598241176948541609145926490108453277550596424027489250570621739452708353695221472048089279478049304328899445233<174>
prime factors 素因数
56057765864669554951710225088311113958607900387<47>
6986619397463812524834431259467573955191948301949856761121579804724464892569134520873505304028619980624589653310523502023135259<127>
factorization results 素因数分解の結果
Number: n
N=391654274368585083543245837806734476030598091492951346325824357598241176948541609145926490108453277550596424027489250570621739452708353695221472048089279478049304328899445233  ( 174 digits)
SNFS difficulty: 182 digits.
Divisors found:

Sun Apr 17 11:39:08 2022  p47 factor: 56057765864669554951710225088311113958607900387
Sun Apr 17 11:39:08 2022  p127 factor: 6986619397463812524834431259467573955191948301949856761121579804724464892569134520873505304028619980624589653310523502023135259
Sun Apr 17 11:39:08 2022  elapsed time 00:17:37 (Msieve 1.54 - dependency 1)

Version: 
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.310).
Factorization parameters were as follows:
#
# N = 3x10^183-8 = 29(182)2
#
n: 391654274368585083543245837806734476030598091492951346325824357598241176948541609145926490108453277550596424027489250570621739452708353695221472048089279478049304328899445233
m: 1000000000000000000000000000000000000
deg: 5
c5: 375
c0: -1
skew: 0.31
# Murphy_E = 1.028e-10
type: snfs
lss: 1
rlim: 7700000
alim: 7700000
lpbr: 28
lpba: 28
mfbr: 53
mfba: 53
rlambda: 2.5
alambda: 2.5
Factor base limits: 7700000/7700000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 53/53
Sieved  special-q in [100000, 9450000)
Primes: , , 
Relations: 
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 

Msieve: found 3230812 hash collisions in 30756053 relations (29451129 unique)
Msieve: matrix is 799879 x 800109 (272.9 MB)

Sieving start time : 2022/04/17 08:20:38
Sieving end time  : 2022/04/17 11:20:38

Total sieving time: 3hrs 0min 0secs.

Total relation processing time: 0hrs 9min 19sec.
Matrix solve time: 0.00 hours.
Total square root time: 0hrs 0min 52sec.

Prototype def-par.txt line would be:
snfs,182,5,0,0,0,0,0,0,0,0,7700000,7700000,28,28,53,53,2.5,2.5,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------
[    0.116801] smpboot: CPU0: AMD Ryzen 7 2700 Eight-Core Processor (family: 0x17, model: 0x8, stepping: 0x2)
[    0.000000] Memory: 16197520K/16727236K available (14339K kernel code, 2401K rwdata, 9504K rodata, 2752K init, 4948K bss, 529716K reserved, 0K cma-reserved)
[    0.153503] x86/mm: Memory block size: 128MB
[    0.000005] Calibrating delay loop (skipped), value calculated using timer frequency.. 6399.36 BogoMIPS (lpj=12798732)
[    0.152038] smpboot: Total of 16 processors activated (102389.85 BogoMIPS)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)

3×10184-8

c159

name 名前Bob Backstrom
date 日付April 17, 2022 12:00:42 UTC 2022 年 4 月 17 日 (日) 21 時 0 分 42 秒 (日本時間)
composite number 合成数
173020777496301597176946585546887654880428368705723208276532403943191370446903870288580757073736961814301111452639499923825601208445813959413108491508625812279<159>
prime factors 素因数
15313657153356154574893083489930574689731937723564632783<56>
11298462265650384588558401551655628786678396634387341052426794076584604968162224263000350939039215186713<104>
factorization results 素因数分解の結果
Number: n
N=173020777496301597176946585546887654880428368705723208276532403943191370446903870288580757073736961814301111452639499923825601208445813959413108491508625812279  ( 159 digits)
SNFS difficulty: 184 digits.
Divisors found:

Sun Apr 17 21:33:15 2022  p56 factor: 15313657153356154574893083489930574689731937723564632783
Sun Apr 17 21:33:15 2022  p104 factor: 11298462265650384588558401551655628786678396634387341052426794076584604968162224263000350939039215186713
Sun Apr 17 21:33:15 2022  elapsed time 00:20:17 (Msieve 1.54 - dependency 2)

Version: 
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.350).
Factorization parameters were as follows:
#
# N = 3x10^184-8 = 29(183)2
#
n: 173020777496301597176946585546887654880428368705723208276532403943191370446903870288580757073736961814301111452639499923825601208445813959413108491508625812279
m: 5000000000000000000000000000000000000
deg: 5
c5: 6
c0: -5
skew: 0.96
# Murphy_E = 1.006e-10
type: snfs
lss: 1
rlim: 8200000
alim: 8200000
lpbr: 28
lpba: 28
mfbr: 54
mfba: 54
rlambda: 2.5
alambda: 2.5
Factor base limits: 8200000/8200000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 54/54
Sieved  special-q in [100000, 16900000)
Primes: , , 
Relations: 
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 

Msieve: found 2949222 hash collisions in 30634209 relations (29677201 unique)
Msieve: matrix is 844143 x 844369 (291.0 MB)

Sieving start time : 2022/04/17 17:21:40
Sieving end time  : 2022/04/17 21:11:48

Total sieving time: 3hrs 50min 8secs.
Total relation processing time: 0hrs 11min 10sec.
Matrix solve time: 0.00 hours.
Total square root time: 0hrs 1min 29sec.

Prototype def-par.txt line would be:
snfs,184,5,0,0,0,0,0,0,0,0,8200000,8200000,28,28,54,54,2.5,2.5,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------
[    0.116801] smpboot: CPU0: AMD Ryzen 7 2700 Eight-Core Processor (family: 0x17, model: 0x8, stepping: 0x2)
[    0.000000] Memory: 16197520K/16727236K available (14339K kernel code, 2401K rwdata, 9504K rodata, 2752K init, 4948K bss, 529716K reserved, 0K cma-reserved)
[    0.153503] x86/mm: Memory block size: 128MB
[    0.000005] Calibrating delay loop (skipped), value calculated using timer frequency.. 6399.36 BogoMIPS (lpj=12798732)
[    0.152038] smpboot: Total of 16 processors activated (102389.85 BogoMIPS)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)

3×10185-8

c178

name 名前Bob Backstrom
date 日付April 18, 2022 04:45:46 UTC 2022 年 4 月 18 日 (月) 13 時 45 分 46 秒 (日本時間)
composite number 合成数
4757519386257163079771928326638340607686197573563619261940009837281418943478005480408598600984819199673596109947668555423007541365996727587865356872947209676819805083796409125861<178>
prime factors 素因数
220144662609651724858065835228950739719903765322059953<54>
21610877728582191090534076199359280243712998439589890853713466123682457986447855051149640313405324057358800819092367026789237<125>
factorization results 素因数分解の結果
Number: n
N=4757519386257163079771928326638340607686197573563619261940009837281418943478005480408598600984819199673596109947668555423007541365996727587865356872947209676819805083796409125861  ( 178 digits)
SNFS difficulty: 185 digits.
Divisors found:

Mon Apr 18 14:40:44 2022  p54 factor: 220144662609651724858065835228950739719903765322059953
Mon Apr 18 14:40:44 2022  p125 factor: 21610877728582191090534076199359280243712998439589890853713466123682457986447855051149640313405324057358800819092367026789237
Mon Apr 18 14:40:44 2022  elapsed time 00:20:26 (Msieve 1.54 - dependency 2)

Version: 
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.328).
Factorization parameters were as follows:
#
# N = 3x10^185-8 = 29(184)2
#
n: 4757519386257163079771928326638340607686197573563619261940009837281418943478005480408598600984819199673596109947668555423007541365996727587865356872947209676819805083796409125861
m: 10000000000000000000000000000000000000
deg: 5
c5: 3
c0: -8
skew: 1.22
# Murphy_E = 8.471e-11
type: snfs
lss: 1
rlim: 8600000
alim: 8600000
lpbr: 28
lpba: 28
mfbr: 54
mfba: 54
rlambda: 2.5
alambda: 2.5
Factor base limits: 8600000/8600000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 54/54
Sieved  special-q in [100000, 9900000)
Primes: , , 
Relations: 
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 

Msieve: found 2407804 hash collisions in 30558864 relations (29496109 unique)
Msieve: matrix is 863945 x 864171 (298.6 MB)

Sieving start time : 2022/04/18 11:38:44
Sieving end time  : 2022/04/18 14:19:15

Total sieving time: 2hrs 40min 31secs.

Total relation processing time: 0hrs 11min 26sec.
Matrix solve time: 0.00 hours.
Total square root time: 0hrs 1min 29sec.

Prototype def-par.txt line would be:
snfs,185,5,0,0,0,0,0,0,0,0,8600000,8600000,28,28,54,54,2.5,2.5,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------
[    0.116801] smpboot: CPU0: AMD Ryzen 7 2700 Eight-Core Processor (family: 0x17, model: 0x8, stepping: 0x2)
[    0.000000] Memory: 16197520K/16727236K available (14339K kernel code, 2401K rwdata, 9504K rodata, 2752K init, 4948K bss, 529716K reserved, 0K cma-reserved)
[    0.153503] x86/mm: Memory block size: 128MB
[    0.000005] Calibrating delay loop (skipped), value calculated using timer frequency.. 6399.36 BogoMIPS (lpj=12798732)
[    0.152038] smpboot: Total of 16 processors activated (102389.85 BogoMIPS)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)
403e62350Ignacio SantosApril 17, 2022 16:08:34 UTC 2022 年 4 月 18 日 (月) 1 時 8 分 34 秒 (日本時間)

3×10186-8

c165

name 名前Bob Backstrom
date 日付April 18, 2022 12:06:35 UTC 2022 年 4 月 18 日 (月) 21 時 6 分 35 秒 (日本時間)
composite number 合成数
150232937523561375983151087697136193603228682627815730751177595913092505817395992850816980255805616731616246474017265099813746275757821184831263900180251139312127243<165>
prime factors 素因数
39769908309001473338208165796076993236953063463351366549375371531174789893<74>
3777553027185577722975855172201016661412916424059426362462024669784367754578380018785823951<91>
factorization results 素因数分解の結果
Number: n
N=150232937523561375983151087697136193603228682627815730751177595913092505817395992850816980255805616731616246474017265099813746275757821184831263900180251139312127243  ( 165 digits)
SNFS difficulty: 186 digits.
Divisors found:

Mon Apr 18 21:24:25 2022  p74 factor: 39769908309001473338208165796076993236953063463351366549375371531174789893
Mon Apr 18 21:24:25 2022  p91 factor: 3777553027185577722975855172201016661412916424059426362462024669784367754578380018785823951
Mon Apr 18 21:24:25 2022  elapsed time 00:20:59 (Msieve 1.54 - dependency 1)

Version: 
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.349).
Factorization parameters were as follows:
#
# N = 3x10^186-8 = 29(185)2
#
n: 150232937523561375983151087697136193603228682627815730751177595913092505817395992850816980255805616731616246474017265099813746275757821184831263900180251139312127243
m: 10000000000000000000000000000000000000
deg: 5
c5: 15
c0: -4
skew: 0.77
# Murphy_E = 7.962e-11
type: snfs
lss: 1
rlim: 8900000
alim: 8900000
lpbr: 28
lpba: 28
mfbr: 54
mfba: 54
rlambda: 2.5
alambda: 2.5
Factor base limits: 8900000/8900000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 54/54
Sieved  special-q in [100000, 10050000)
Primes: , , 
Relations: 
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 

Msieve: found 3094760 hash collisions in 30645875 relations (29505559 unique)
Msieve: matrix is 892946 x 893172 (310.1 MB)

Sieving start time : 2022/04/18 17:46:09
Sieving end time  : 2022/04/18 21:01:59

Total sieving time: 3hrs 15min 50secs.

Total relation processing time: 0hrs 12min 25sec.
Matrix solve time: 0.00 hours.
Total square root time: 0hrs 0min 55sec.

Prototype def-par.txt line would be:
snfs,186,5,0,0,0,0,0,0,0,0,8900000,8900000,28,28,54,54,2.5,2.5,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------
[    0.116801] smpboot: CPU0: AMD Ryzen 7 2700 Eight-Core Processor (family: 0x17, model: 0x8, stepping: 0x2)
[    0.000000] Memory: 16197520K/16727236K available (14339K kernel code, 2401K rwdata, 9504K rodata, 2752K init, 4948K bss, 529716K reserved, 0K cma-reserved)
[    0.153503] x86/mm: Memory block size: 128MB
[    0.000005] Calibrating delay loop (skipped), value calculated using timer frequency.. 6399.36 BogoMIPS (lpj=12798732)
[    0.152038] smpboot: Total of 16 processors activated (102389.85 BogoMIPS)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)
403e62350Ignacio SantosApril 17, 2022 16:09:08 UTC 2022 年 4 月 18 日 (月) 1 時 9 分 8 秒 (日本時間)

3×10187-8

c127

name 名前Eric Jeancolas
date 日付April 16, 2022 23:39:43 UTC 2022 年 4 月 17 日 (日) 8 時 39 分 43 秒 (日本時間)
composite number 合成数
2861986445843030878201682990670787179329953933275421110869271931818412140941801274104419904921457750520652620506023771312914091<127>
prime factors 素因数
39840073902672097212160551022219251181754886317<47>
71836875926354036263686472960649553436026550265530517644829132661837905299306423<80>
factorization results 素因数分解の結果
2861986445843030878201682990670787179329953933275421110869271931818412140941801274104419904921457750520652620506023771312914091=39840073902672097212160551022219251181754886317*71836875926354036263686472960649553436026550265530517644829132661837905299306423

cado polynomial
n: 2861986445843030878201682990670787179329953933275421110869271931818412140941801274104419904921457750520652620506023771312914091
skew: 74419.32
c0: -6650177458208481956339032455
c1: 1796619643497461088347024
c2: -2616161692054523302
c3: -247020145410367
c4: -4199928330
c5: -8100
Y0: -5552195486178849437536342
Y1: 48164546032277587
# MurphyE (Bf=1.342e+08,Bg=1.342e+08,area=1.236e+14) = 2.084e-07
# f(x) = -8100*x^5-4199928330*x^4-247020145410367*x^3-2616161692054523302*x^2+1796619643497461088347024*x-6650177458208481956339032455
# g(x) = 48164546032277587*x-5552195486178849437536342

cado parameters (extracts)
tasks.lim0 = 13124945
tasks.lim1 = 44217255
tasks.lpb0 = 28
tasks.lpb1 = 28
tasks.sieve.mfb0 = 56
tasks.sieve.mfb1 = 56
tasks.I = 14
tasks.linalg.m = 64
tasks.linalg.n = 64
tasks.linalg.characters.nchar = 50

cado log (extracts)
Info:Square Root: Factors: 71836875926354036263686472960649553436026550265530517644829132661837905299306423 39840073902672097212160551022219251181754886317
Info:Square Root: Total cpu/real time for sqrt: 493.06/66.5854
Info:Filtering - Merging: Merged matrix has 838837 rows and total weight 143251898 (170.8 entries per row on average)
Info:Filtering - Merging: Total cpu/real time for merge: 256.09/41.2489
Info:Filtering - Merging: Total cpu/real time for replay: 33.21/25.0146
Info:Generate Free Relations: Total cpu/real time for freerel: 205.87/24.3502
Info:Generate Factor Base: Total cpu/real time for makefb: 11.06/1.81708
Info:Polynomial Selection (size optimized): Aggregate statistics:
Info:Polynomial Selection (size optimized): potential collisions: 19925.9
Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 20371/36.550/45.071/47.290/0.855
Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 16093/36.640/40.477/45.870/1.070
Info:Polynomial Selection (size optimized): Total time: 3454.76
Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 393.73/380.285
Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics:
Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 312.2s
Info:Quadratic Characters: Total cpu/real time for characters: 36.63/9.50342
Info:Square Root: Total cpu/real time for sqrt: 493.06/66.5854
Info:Linear Algebra: Total cpu/real time for bwc: 119390/15349.4
Info:Linear Algebra: Aggregate statistics:
Info:Linear Algebra: Krylov: CPU time 12324.15, WCT time 2692.33, iteration CPU time 0.08, COMM 0.0, cpu-wait 0.02, comm-wait 0.0 (26368 iterations)
Info:Linear Algebra: Lingen CPU time 102184.13, WCT time 11482.47
Info:Linear Algebra: Mksol: CPU time 4678.92,  WCT time 1122.45, iteration CPU time 0.06, COMM 0.0, cpu-wait 0.02, comm-wait 0.0 (13312 iterations)
Info:Filtering - Singleton removal: Total cpu/real time for purge: 261.5/311.3
Info:Lattice Sieving: Aggregate statistics:
Info:Lattice Sieving: Total number of relations: 12280458
Info:Lattice Sieving: Average J: 3804.55 for 266552 special-q, max bucket fill -bkmult 1.0,1s:1.181560
Info:Lattice Sieving: Total time: 193580s
Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 109.28/110.999
Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics:
Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 109.89999999999999s
Info:Polynomial Selection (root optimized): Aggregate statistics:
Info:Polynomial Selection (root optimized): Total time: 4990.58
Info:Polynomial Selection (root optimized): Rootsieve time: 4986.26
Info:HTTP server: Shutting down HTTP server
Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 429081/49198.2
Info:root: Cleaning up computation data in /tmp/cado.rhpek8rm
71836875926354036263686472960649553436026550265530517644829132661837905299306423 39840073902672097212160551022219251181754886317
software ソフトウェア
cado-nfs-3.0.0
execution environment 実行環境
Linux Ubuntu 20.04.1 LTS [5.4.0-105-generic|libc 2.31 (Ubuntu GLIBC 2.31-0ubuntu9.7)]
GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)
403e62350Ignacio SantosApril 14, 2022 18:38:48 UTC 2022 年 4 月 15 日 (金) 3 時 38 分 48 秒 (日本時間)

3×10188-8

c134

name 名前Bob Backstrom
date 日付June 21, 2022 16:11:17 UTC 2022 年 6 月 22 日 (水) 1 時 11 分 17 秒 (日本時間)
composite number 合成数
31616465170068504801815380996712109418057948095072435871434296904377537146308376003321642141515685877799524349411044293938096254126567<134>
prime factors 素因数
84801589026859481200875862958214334815452831<44>
372828687915912986814323751752242898953618970060245380662757645646775170048818520446179257<90>
factorization results 素因数分解の結果
GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM]
Input number is 31616465170068504801815380996712109418057948095072435871434296904377537146308376003321642141515685877799524349411044293938096254126567 (134 digits)
Using B1=24770000, B2=96189633556, polynomial Dickson(12), sigma=1:232395718
Step 1 took 35335ms
Step 2 took 14375ms
********** Factor found in step 2: 84801589026859481200875862958214334815452831
Found prime factor of 44 digits: 84801589026859481200875862958214334815452831
Prime cofactor 372828687915912986814323751752242898953618970060245380662757645646775170048818520446179257 has 90 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)
403e62350Ignacio SantosApril 17, 2022 16:22:17 UTC 2022 年 4 月 18 日 (月) 1 時 22 分 17 秒 (日本時間)

3×10189-8

c134

name 名前Eric Jeancolas
date 日付July 17, 2022 02:33:37 UTC 2022 年 7 月 17 日 (日) 11 時 33 分 37 秒 (日本時間)
composite number 合成数
11626629719419895714648131320916143916339953307699678871675061189775986540004018280920962506916443537147441068442812412555310128525093<134>
prime factors 素因数
2347691851819510954389104840591611061431439473165840571759<58>
4952366176339970344341174928794924113889202230961490355695143242003497376427<76>
factorization results 素因数分解の結果
11626629719419895714648131320916143916339953307699678871675061189775986540004018280920962506916443537147441068442812412555310128525093=2347691851819510954389104840591611061431439473165840571759*4952366176339970344341174928794924113889202230961490355695143242003497376427

cado polynomial
n: 11626629719419895714648131320916143916339953307699678871675061189775986540004018280920962506916443537147441068442812412555310128525093
skew: 40609.004
c0: -131078595651993647153766663780
c1: -40816602107395061442131269
c2: 728837978033216099970
c3: 35837515761666961
c4: -285886502610
c5: -4480200
Y0: -37852569388854980903040154
Y1: 1098913210869485297
# MurphyE (Bf=2.684e+08,Bg=1.342e+08,area=3.578e+14) = 1.409e-07
# f(x) = -4480200*x^5-285886502610*x^4+35837515761666961*x^3+728837978033216099970*x^2-40816602107395061442131269*x-131078595651993647153766663780
# g(x) = 1098913210869485297*x-37852569388854980903040154

cado parameters (extracts)
tasks.lim0 = 3341873
tasks.lim1 = 16407032
tasks.lpb0 = 27
tasks.lpb1 = 28
tasks.sieve.mfb0 = 51
tasks.sieve.mfb1 = 62
tasks.I = 13
tasks.linalg.m = 64
tasks.linalg.n = 64
tasks.linalg.characters.nchar = 50

cado log (extracts)
Info:Square Root: Factors: 4952366176339970344341174928794924113889202230961490355695143242003497376427 2347691851819510954389104840591611061431439473165840571759
Info:Square Root: Total cpu/real time for sqrt: 447.76/135.137
Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 193.17/162.497
Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics:
Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 150.2s
Info:Square Root: Total cpu/real time for sqrt: 447.76/135.137
Info:Filtering - Singleton removal: Total cpu/real time for purge: 92.67/100.94
Info:Lattice Sieving: Aggregate statistics:
Info:Lattice Sieving: Total number of relations: 17017096
Info:Lattice Sieving: Average J: 3805.14 for 550190 special-q, max bucket fill -bkmult 1.0,1s:1.172980
Info:Lattice Sieving: Total time: 189486s
Info:Generate Factor Base: Total cpu/real time for makefb: 14.71/12.1167
Info:Linear Algebra: Total cpu/real time for bwc: 23519/6035.91
Info:Linear Algebra: Aggregate statistics:
Info:Linear Algebra: Krylov: CPU time 14953.52, WCT time 3824.33, iteration CPU time 0.09, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (38656 iterations)
Info:Linear Algebra: Lingen CPU time 233.53, WCT time 59.25
Info:Linear Algebra: Mksol: CPU time 8126.93,  WCT time 2077.58, iteration CPU time 0.1, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (19456 iterations)
Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 76.3/88.2366
Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics:
Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 88.2s
Info:Polynomial Selection (root optimized): Aggregate statistics:
Info:Polynomial Selection (root optimized): Total time: 5950.2
Info:Polynomial Selection (root optimized): Rootsieve time: 5947.57
Info:Generate Free Relations: Total cpu/real time for freerel: 251.87/177.213
Info:Filtering - Merging: Merged matrix has 1229443 rows and total weight 209309564 (170.2 entries per row on average)
Info:Filtering - Merging: Total cpu/real time for merge: 319.23/88.8049
Info:Filtering - Merging: Total cpu/real time for replay: 44.79/38.8437
Info:Quadratic Characters: Total cpu/real time for characters: 41.5/17.1812
Info:Polynomial Selection (size optimized): Aggregate statistics:
Info:Polynomial Selection (size optimized): potential collisions: 53395.3
Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 54508/38.690/47.815/52.980/0.985
Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 44575/38.690/42.610/48.410/0.990
Info:Polynomial Selection (size optimized): Total time: 11444.9
Info:HTTP server: Shutting down HTTP server
Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 390173/111266
Info:root: Cleaning up computation data in /tmp/cado._7397rfi
4952366176339970344341174928794924113889202230961490355695143242003497376427 2347691851819510954389104840591611061431439473165840571759
software ソフトウェア
cado-nfs-3.0.0
execution environment 実行環境
Linux Ubuntu 20.04.1 LTS [5.4.0-105-generic|libc 2.31 (Ubuntu GLIBC 2.31-0ubuntu9.7)]
GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)
403e62350Ignacio SantosApril 20, 2022 18:59:19 UTC 2022 年 4 月 21 日 (木) 3 時 59 分 19 秒 (日本時間)

3×10192-8

c129

name 名前Taiyo Kodama
date 日付April 17, 2022 00:45:58 UTC 2022 年 4 月 17 日 (日) 9 時 45 分 58 秒 (日本時間)
composite number 合成数
319601283495410735034856810039013271628664017416358883245426594318188564700178750158152915726381861869313242360126595050249516231<129>
prime factors 素因数
10946191737658273100878036136524500356053827669987830838739<59>
29197486318084838712377752050138256201703560155219944445992479831255229<71>
factorization results 素因数分解の結果
10946191737658273100878036136524500356053827669987830838739 29197486318084838712377752050138256201703560155219944445992479831255229

n: 319601283495410735034856810039013271628664017416358883245426594318188564700178750158152915726381861869313242360126595050249516231
skew: 44319.684
c0: -12408678856374194812837768842
c1: 5161592244601253048435197
c2: -342268567357036952334
c3: -6436905762777787
c4: 24518970966
c5: 848880
Y0: -4685313956731867987344332
Y1: 82565321330276741
# MurphyE (Bf=2.684e+08,Bg=2.684e+08,area=9.547e+13) = 5.188e-07
# f(x) = 848880*x^5+24518970966*x^4-6436905762777787*x^3-342268567357036952334*x^2+5161592244601253048435197*x-12408678856374194812837768842
# g(x) = 82565321330276741*x-4685313956731867987344332
software ソフトウェア
cado-nfs 3.0.0

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)
403e62350Ignacio SantosApril 14, 2022 18:57:12 UTC 2022 年 4 月 15 日 (金) 3 時 57 分 12 秒 (日本時間)

3×10193-8

c131

name 名前Eric Jeancolas
date 日付April 16, 2022 23:33:49 UTC 2022 年 4 月 17 日 (日) 8 時 33 分 49 秒 (日本時間)
composite number 合成数
72554467304275437295694547858719428500238472270567037244978359742320203777030800491790468379521637364751390497714862211881597036543<131>
prime factors 素因数
402743248821279377709126934570648879456617691613104277<54>
180150672957579675464138557303440035168987854398788256760466764557428686734659<78>
factorization results 素因数分解の結果
72554467304275437295694547858719428500238472270567037244978359742320203777030800491790468379521637364751390497714862211881597036543=402743248821279377709126934570648879456617691613104277*180150672957579675464138557303440035168987854398788256760466764557428686734659

cado polynomial
n: 72554467304275437295694547858719428500238472270567037244978359742320203777030800491790468379521637364751390497714862211881597036543
skew: 166081.478
c0: 1021377939542123164547575965320
c1: 49601196332645061811836516
c2: -547370218059018377165
c3: -3428547170683001
c4: -2916805720
c5: 25200
Y0: -22497538170503715121821703
Y1: 169113782425193051
# MurphyE (Bf=2.684e+08,Bg=2.684e+08,area=9.547e+13) = 4.317e-07
# f(x) = 25200*x^5-2916805720*x^4-3428547170683001*x^3-547370218059018377165*x^2+49601196332645061811836516*x+1021377939542123164547575965320
# g(x) = 169113782425193051*x-22497538170503715121821703

cado parameters (extracts)
tasks.lim0 = 13124945
tasks.lim1 = 44217255
tasks.lpb0 = 28
tasks.lpb1 = 28
tasks.sieve.mfb0 = 56
tasks.sieve.mfb1 = 56
tasks.I = 14
tasks.linalg.m = 64
tasks.linalg.n = 64
tasks.linalg.characters.nchar = 50

cado log (extracts)
Info:Square Root: Factors: 180150672957579675464138557303440035168987854398788256760466764557428686734659 402743248821279377709126934570648879456617691613104277
Info:Square Root: Total cpu/real time for sqrt: 722.5/218.404
Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 378.03/354.661
Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics:
Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 304.79999999999995s
Info:Filtering - Singleton removal: Total cpu/real time for purge: 252.4/283.009
Info:Generate Free Relations: Total cpu/real time for freerel: 250.95/63.6851
Info:Linear Algebra: Total cpu/real time for bwc: 52277.7/13405.2
Info:Linear Algebra: Aggregate statistics:
Info:Linear Algebra: Krylov: CPU time 33431.3, WCT time 8534.75, iteration CPU time 0.14, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (56064 iterations)
Info:Linear Algebra: Lingen CPU time 350.35, WCT time 88.96
Info:Linear Algebra: Mksol: CPU time 18164.13,  WCT time 4654.81, iteration CPU time 0.16, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (28160 iterations)
Info:Lattice Sieving: Aggregate statistics:
Info:Lattice Sieving: Total number of relations: 24311834
Info:Lattice Sieving: Average J: 7922.22 for 69077 special-q, max bucket fill -bkmult 1.0,1s:1.077570
Info:Lattice Sieving: Total time: 96871.7s
Info:Generate Factor Base: Total cpu/real time for makefb: 40.45/10.6864
Info:Polynomial Selection (root optimized): Aggregate statistics:
Info:Polynomial Selection (root optimized): Total time: 5530.13
Info:Polynomial Selection (root optimized): Rootsieve time: 5527.67
Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 103.21/119.852
Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics:
Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 119.5s
Info:Filtering - Merging: Merged matrix has 1792904 rows and total weight 305709290 (170.5 entries per row on average)
Info:Filtering - Merging: Total cpu/real time for merge: 448.36/126.281
Info:Filtering - Merging: Total cpu/real time for replay: 70.84/60.1405
Info:Quadratic Characters: Total cpu/real time for characters: 69.08/29.8338
Info:Polynomial Selection (size optimized): Aggregate statistics:
Info:Polynomial Selection (size optimized): potential collisions: 38210.8
Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 38632/38.480/46.741/50.290/0.829
Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 30520/37.760/42.013/47.560/1.044
Info:Polynomial Selection (size optimized): Total time: 4809
Info:Square Root: Total cpu/real time for sqrt: 722.5/218.404
Info:HTTP server: Shutting down HTTP server
Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 247045/66327.6
Info:root: Cleaning up computation data in /tmp/cado.op420o70
180150672957579675464138557303440035168987854398788256760466764557428686734659 402743248821279377709126934570648879456617691613104277
software ソフトウェア
cado-nfs-3.0.0
execution environment 実行環境
Linux Ubuntu 20.04.1 LTS [5.4.0-105-generic|libc 2.31 (Ubuntu GLIBC 2.31-0ubuntu9.7)]
GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)
403e62350Ignacio SantosApril 14, 2022 19:05:25 UTC 2022 年 4 月 15 日 (金) 4 時 5 分 25 秒 (日本時間)

3×10194-8

c187

name 名前Bob Backstrom
date 日付April 21, 2022 06:58:37 UTC 2022 年 4 月 21 日 (木) 15 時 58 分 37 秒 (日本時間)
composite number 合成数
1344398317042751041917658363579009159798016162822625571194512961953635179555508933813621723383127098448926433412722145240978737749080709393461613789210317995373764063257848534636307451921<187>
prime factors 素因数
14352537116634553243144962511278737110649744996889902928638021153238784694713240367<83>
93669732822679614185260043242307237748247329240717176836019448994039878905843233701474736018529736886463<104>
factorization results 素因数分解の結果
Number: n
N=1344398317042751041917658363579009159798016162822625571194512961953635179555508933813621723383127098448926433412722145240978737749080709393461613789210317995373764063257848534636307451921  ( 187 digits)
SNFS difficulty: 194 digits.
Divisors found:

Thu Apr 21 16:49:52 2022  p83 factor: 14352537116634553243144962511278737110649744996889902928638021153238784694713240367
Thu Apr 21 16:49:52 2022  p104 factor: 93669732822679614185260043242307237748247329240717176836019448994039878905843233701474736018529736886463
Thu Apr 21 16:49:52 2022  elapsed time 00:36:52 (Msieve 1.54 - dependency 1)

Version: 
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.326).
Factorization parameters were as follows:
#
# N = 3x10^194-8 = 29(193)2
#
n: 1344398317042751041917658363579009159798016162822625571194512961953635179555508933813621723383127098448926433412722145240978737749080709393461613789210317995373764063257848534636307451921
m: 500000000000000000000000000000000000000
deg: 5
c5: 6
c0: -5
skew: 0.96
# Murphy_E = 3.902e-11
type: snfs
lss: 1
rlim: 12100000
alim: 12100000
lpbr: 28
lpba: 28
mfbr: 55
mfba: 55
rlambda: 2.5
alambda: 2.5
Factor base limits: 12100000/12100000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 55/55
Sieved  special-q in [100000, 18850000)
Primes: , , 
Relations: 
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 

Msieve: found 3334872 hash collisions in 30696250 relations (29249347 unique)
Msieve: matrix is 1251406 x 1251631 (437.0 MB)

Sieving start time : 2022/04/21 12:02:55
Sieving end time  : 2022/04/21 16:12:29

Total sieving time: 4hrs 9min 34secs.

Total relation processing time: 0hrs 27min 29sec.
Matrix solve time: 0.00 hours.
Total square root time: 0hrs 1min 23sec.

Prototype def-par.txt line would be:
snfs,194,5,0,0,0,0,0,0,0,0,12100000,12100000,28,28,55,55,2.5,2.5,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------
[    0.116801] smpboot: CPU0: AMD Ryzen 7 2700 Eight-Core Processor (family: 0x17, model: 0x8, stepping: 0x2)
[    0.000000] Memory: 16197520K/16727236K available (14339K kernel code, 2401K rwdata, 9504K rodata, 2752K init, 4948K bss, 529716K reserved, 0K cma-reserved)
[    0.153503] x86/mm: Memory block size: 128MB
[    0.000005] Calibrating delay loop (skipped), value calculated using timer frequency.. 6399.36 BogoMIPS (lpj=12798732)
[    0.152038] smpboot: Total of 16 processors activated (102389.85 BogoMIPS)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)

3×10196-8

c87

name 名前Ignacio Santos
date 日付April 14, 2022 15:11:45 UTC 2022 年 4 月 15 日 (金) 0 時 11 分 45 秒 (日本時間)
composite number 合成数
171291332187924484233035971491120597273125944708211167225003585924074451135911131169143<87>
prime factors 素因数
754487437767782282412784014043340437748639<42>
227030065198573773732102360676612324203850537<45>
factorization results 素因数分解の結果
prp42 = 754487437767782282412784014043340437748639
prp45 = 227030065198573773732102360676612324203850537
software ソフトウェア
Yafu

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)

3×10197-8

c141

name 名前Eric Jeancolas
date 日付January 13, 2023 04:55:45 UTC 2023 年 1 月 13 日 (金) 13 時 55 分 45 秒 (日本時間)
composite number 合成数
819136199141986491610638996223483128743403525029600050439294382382596584401162021418838125095957282277553721669437316207926204598477000436933<141>
prime factors 素因数
211934269186865860653437525927012823960764373006628692808578719<63>
3865048358081915028619115662037354475154337332276394674640965026408648765806107<79>
factorization results 素因数分解の結果
819136199141986491610638996223483128743403525029600050439294382382596584401162021418838125095957282277553721669437316207926204598477000436933=211934269186865860653437525927012823960764373006628692808578719*3865048358081915028619115662037354475154337332276394674640965026408648765806107

cado polynomial
n: 819136199141986491610638996223483128743403525029600050439294382382596584401162021418838125095957282277553721669437316207926204598477000436933
skew: 0.48
type: snfs
c0: -2
c5: 75
Y0: 1000000000000000000000000000000000000000
Y1: -1
# f(x) = 75*x^5-2
# g(x) = -x+1000000000000000000000000000000000000000

cado parameters (extracts)
tasks.lim0 = 13400000
tasks.lim1 = 13400000
tasks.lpb0 = 28
tasks.lpb1 = 28
tasks.sieve.mfb0 = 55
tasks.sieve.mfb1 = 55
tasks.sieve.lambda0 = 2.5
tasks.sieve.lambda1 = 2.5
tasks.I = 12
tasks.linalg.m = 64
tasks.linalg.n = 64
tasks.linalg.characters.nchar = 50

cado log (extracts)
Info:Square Root: Factors: 211934269186865860653437525927012823960764373006628692808578719 3865048358081915028619115662037354475154337332276394674640965026408648765806107
Info:Square Root: Total cpu/real time for sqrt: 634.03/209.115
Info:Filtering - Singleton removal: Total cpu/real time for purge: 419.71/414.335
Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 119.21/116.718
Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics:
Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 115.89999999999999s
Info:Quadratic Characters: Total cpu/real time for characters: 80.25/35.4779
Info:Generate Free Relations: Total cpu/real time for freerel: 117.58/31.025
Info:Square Root: Total cpu/real time for sqrt: 634.03/209.115
Info:Lattice Sieving: Aggregate statistics:
Info:Lattice Sieving: Total number of relations: 27751348
Info:Lattice Sieving: Average J: 1895.17 for 2544734 special-q, max bucket fill -bkmult 1.0,1s:1.170460
Info:Lattice Sieving: Total time: 577145s
Info:Generate Factor Base: Total cpu/real time for makefb: 5.59/2.57476
Info:Filtering - Merging: Merged matrix has 2331622 rows and total weight 398900049 (171.1 entries per row on average)
Info:Filtering - Merging: Total cpu/real time for merge: 654.56/178.79
Info:Filtering - Merging: Total cpu/real time for replay: 89.18/79.1132
Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 526.73/546.574
Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics:
Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 447.4s
Info:Linear Algebra: Total cpu/real time for bwc: 94273.5/24172.2
Info:Linear Algebra: Aggregate statistics:
Info:Linear Algebra: Krylov: CPU time 60385.18, WCT time 15423.18, iteration CPU time 0.2, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (73216 iterations)
Info:Linear Algebra: Lingen CPU time 512.45, WCT time 129.88
Info:Linear Algebra: Mksol: CPU time 32559.9,  WCT time 8345.02, iteration CPU time 0.21, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (36864 iterations)
Info:HTTP server: Shutting down HTTP server
Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 1.18518e+06/292822
211934269186865860653437525927012823960764373006628692808578719 3865048358081915028619115662037354475154337332276394674640965026408648765806107
software ソフトウェア
cado-nfs-3.0.0
execution environment 実行環境
Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)]
GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)
403e62350Ignacio SantosApril 22, 2022 16:32:05 UTC 2022 年 4 月 23 日 (土) 1 時 32 分 5 秒 (日本時間)

3×10198-8

c180

name 名前Taiyo Kodama
date 日付April 25, 2022 12:29:09 UTC 2022 年 4 月 25 日 (月) 21 時 29 分 9 秒 (日本時間)
composite number 合成数
209989756705769160903839562778183434528083445899408840729451753893958461595609484900313400634767735517098028705175525219990983022040897558437928709742895396831670020571959199738343<180>
prime factors 素因数
104269514784411036255887217889226595551<39>
composite cofactor 合成数の残り
2013913243386109833885735221224349861505501846526962143397020283734131615282797516400750077415770191378615407387287532184243301677488480947193<142>
factorization results 素因数分解の結果
Input number is 209989756705769160903839562778183434528083445899408840729451753893958461595609484900313400634767735517098028705175525219990983022040897558437928709742895396831670020571959199738343 (180 digits)
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:2492753748
Step 1 took 5719ms
Step 2 took 2547ms
********** Factor found in step 2: 104269514784411036255887217889226595551
Found prime factor of 39 digits: 104269514784411036255887217889226595551
Composite cofactor 2013913243386109833885735221224349861505501846526962143397020283734131615282797516400750077415770191378615407387287532184243301677488480947193 has 142 digits
software ソフトウェア
GMP-ECM 7.0.5-dev

c142

name 名前Ignacio Santos
date 日付May 4, 2022 19:35:57 UTC 2022 年 5 月 5 日 (木) 4 時 35 分 57 秒 (日本時間)
composite number 合成数
2013913243386109833885735221224349861505501846526962143397020283734131615282797516400750077415770191378615407387287532184243301677488480947193<142>
prime factors 素因数
1627812002250120623832985545700332846479<40>
1237190314730621466793426710046920329210447612932261865586716605839613444333554141475630288570011838967<103>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:3169265246
Step 1 took 5859ms
********** Factor found in step 1: 1627812002250120623832985545700332846479
Found prime factor of 40 digits: 1627812002250120623832985545700332846479
Prime cofactor 1237190314730621466793426710046920329210447612932261865586716605839613444333554141475630288570011838967 has 103 digits
 
software ソフトウェア
GMP-ECM

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)

3×10199-8

c178

name 名前Bob Backstrom
date 日付August 28, 2022 01:04:27 UTC 2022 年 8 月 28 日 (日) 10 時 4 分 27 秒 (日本時間)
composite number 合成数
3640193649930405059922366279448342722014738325499873922706316705835806935642174394158605194352373768132052266898363015157629437024896884037452987399087362577740274405318707200707<178>
prime factors 素因数
61120991973382160958151926955559880119661892992884240429213949071<65>
59557175569331210674949628049478489192137703571976881576980547953509121098998124056747516009558808961132428261517<113>
factorization results 素因数分解の結果
Number: n
N=3640193649930405059922366279448342722014738325499873922706316705835806935642174394158605194352373768132052266898363015157629437024896884037452987399087362577740274405318707200707  ( 178 digits)
SNFS difficulty: 199 digits.
Divisors found:

Sun Aug 28 10:59:51 2022  p65 factor: 61120991973382160958151926955559880119661892992884240429213949071
Sun Aug 28 10:59:51 2022  p113 factor: 59557175569331210674949628049478489192137703571976881576980547953509121098998124056747516009558808961132428261517
Sun Aug 28 10:59:51 2022  elapsed time 01:27:59 (Msieve 1.54 - dependency 18)

Version: 
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.320).
Factorization parameters were as follows:
#
# N = 3x10^199-8 = 29(198)2
#
n: 3640193649930405059922366279448342722014738325499873922706316705835806935642174394158605194352373768132052266898363015157629437024896884037452987399087362577740274405318707200707
m: 5000000000000000000000000000000000000000
deg: 5
c5: 6
c0: -5
skew: 0.96
# Murphy_E = 2.415e-11
type: snfs
lss: 1
rlim: 14700000
alim: 14700000
lpbr: 28
lpba: 28
mfbr: 55
mfba: 55
rlambda: 2.5
alambda: 2.5
Factor base limits: 14700000/14700000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 55/55
Sieved  special-q in [100000, 20150000)
Primes: , , 
Relations: 
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 

Msieve: found 3181270 hash collisions in 28374025 relations (26863156 unique)
Msieve: matrix is 1602867 x 1603092 (563.3 MB)

Sieving start time : 2022/08/28 04:23:49
Sieving end time  : 2022/08/28 09:31:20

Total sieving time: 5hrs 7min 31secs.

Total relation processing time: 0hrs 50min 11sec.
Matrix solve time: 0.00 hours.
Total square root time: 0hrs 29min 35sec.

Prototype def-par.txt line would be:
snfs,199,5,0,0,0,0,0,0,0,0,14700000,14700000,28,28,55,55,2.5,2.5,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)
403e62078Taiyo KodamaMay 12, 2022 05:18:45 UTC 2022 年 5 月 12 日 (木) 14 時 18 分 45 秒 (日本時間)

3×10201-8

c143

name 名前Bob Backstrom
date 日付May 26, 2023 19:59:16 UTC 2023 年 5 月 27 日 (土) 4 時 59 分 16 秒 (日本時間)
composite number 合成数
57523812973476526374001457761984769500832688272418754956473921290506392688477324546515920927070457071678147611656826121973866289788821518704417<143>
prime factors 素因数
3160532664675845459859292990906711482769127099<46>
18200670290929062833277249541563132309830303915602297283450167589048560922079428244084063060924883<98>
factorization results 素因数分解の結果
GMP-ECM 7.0.4 [configured with GMP 6.2.1, --enable-asm-redc] [ECM]
Input number is 57523812973476526374001457761984769500832688272418754956473921290506392688477324546515920927070457071678147611656826121973866289788821518704417 (143 digits)
Using B1=27840000, B2=144287213086, polynomial Dickson(12), sigma=1:92208309
Step 1 took 50385ms
Step 2 took 18563ms
********** Factor found in step 2: 3160532664675845459859292990906711482769127099
Found prime factor of 46 digits: 3160532664675845459859292990906711482769127099
Prime cofactor 18200670290929062833277249541563132309830303915602297283450167589048560922079428244084063060924883 has 98 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)
403e62078Taiyo KodamaMay 12, 2022 09:39:45 UTC 2022 年 5 月 12 日 (木) 18 時 39 分 45 秒 (日本時間)

3×10204-8

c128

name 名前Taiyo Kodama
date 日付April 15, 2022 01:47:09 UTC 2022 年 4 月 15 日 (金) 10 時 47 分 9 秒 (日本時間)
composite number 合成数
25158443353978360261038932987873448518309270543893232001716167089260454769257586911105465283605687636472775223734058272261467631<128>
prime factors 素因数
756627090318592315189818790137435326711260610593707822460531<60>
33250783213940854609150661528750342087533631703172579889126147934101<68>
factorization results 素因数分解の結果
756627090318592315189818790137435326711260610593707822460531 33250783213940854609150661528750342087533631703172579889126147934101

n: 25158443353978360261038932987873448518309270543893232001716167089260454769257586911105465283605687636472775223734058272261467631
skew: 166940.726
c0: -1579121415928227736723294807440
c1: 158779972217896793627402342
c2: 331499157529055390145
c3: -7789543203401483
c4: -331419090
c5: 63720
Y0: -4730570476626088406171709
Y1: 16159685010802141
# MurphyE (Bf=2.684e+08,Bg=2.684e+08,area=9.547e+13) = 5.600e-07
# f(x) = 63720*x^5-331419090*x^4-7789543203401483*x^3+331499157529055390145*x^2+158779972217896793627402342*x-1579121415928227736723294807440
# g(x) = 16159685010802141*x-4730570476626088406171709
software ソフトウェア
cado-nfs 3.0.0

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)

3×10205-8

c158

name 名前Bob Backstrom
date 日付October 11, 2023 22:12:50 UTC 2023 年 10 月 12 日 (木) 7 時 12 分 50 秒 (日本時間)
composite number 合成数
21558579090087571503517928430432063957365886743944516772096678746382401930951576151352701337849400111192872220393013485059733412943109680113021907906004889743<158>
prime factors 素因数
14343151856232459216482048206694843313053<41>
1503057299133302293430991157192367298326095584594708398450946385321357488807555269152713623382917452372081554421416731<118>
factorization results 素因数分解の結果
GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM]
Input number is 21558579090087571503517928430432063957365886743944516772096678746382401930951576151352701337849400111192872220393013485059733412943109680113021907906004889743 (158 digits)
Using B1=50830000, B2=288592384096, polynomial Dickson(12), sigma=1:1722530075
Step 1 took 120434ms
********** Factor found in step 1: 14343151856232459216482048206694843313053
Found prime factor of 41 digits: 14343151856232459216482048206694843313053
Prime cofactor 1503057299133302293430991157192367298326095584594708398450946385321357488807555269152713623382917452372081554421416731 has 118 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)
403e633501000Dmitry DomanovMay 22, 2022 08:22:31 UTC 2022 年 5 月 22 日 (日) 17 時 22 分 31 秒 (日本時間)
2350Ignacio SantosSeptember 17, 2023 14:43:03 UTC 2023 年 9 月 17 日 (日) 23 時 43 分 3 秒 (日本時間)

3×10209-8

c187

name 名前Bob Backstrom
date 日付October 29, 2024 23:14:25 UTC 2024 年 10 月 30 日 (水) 8 時 14 分 25 秒 (日本時間)
composite number 合成数
3004153904275480360879418214114755997274490198872094060470407531417260980301387581719530129173768902446442539783107071315892324716525053094182339062583630310184417836764107413222473390761<187>
prime factors 素因数
5060181646381753423513640344826156396172683921749<49>
593684992795382958944298314330585390746688741637457830074739749550361149089320764012082620925407874070001591308282504184770051707100969989<138>
factorization results 素因数分解の結果
10/28/24 01:27:30 v1.34.5 @ TRIGKEY,
10/28/24 01:27:30 v1.34.5 @ TRIGKEY, ****************************
10/28/24 01:27:30 v1.34.5 @ TRIGKEY, Starting factorization of 299999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999992
10/28/24 01:27:30 v1.34.5 @ TRIGKEY, using pretesting plan: normal
10/28/24 01:27:30 v1.34.5 @ TRIGKEY, no tune info: using qs/gnfs crossover of 100 digits
10/28/24 01:27:30 v1.34.5 @ TRIGKEY, ****************************
10/28/24 01:27:30 v1.34.5 @ TRIGKEY, div: found prime factor = 2
10/28/24 01:27:30 v1.34.5 @ TRIGKEY, div: found prime factor = 2
10/28/24 01:27:30 v1.34.5 @ TRIGKEY, div: found prime factor = 2
10/28/24 01:27:30 v1.34.5 @ TRIGKEY, div: found prime factor = 7
10/28/24 01:27:30 v1.34.5 @ TRIGKEY, div: found prime factor = 11
10/28/24 01:27:30 v1.34.5 @ TRIGKEY, rho: x^2 + 3, starting 1000 iterations on C207
10/28/24 01:27:30 v1.34.5 @ TRIGKEY, rho: x^2 + 2, starting 1000 iterations on C207
10/28/24 01:27:30 v1.34.5 @ TRIGKEY, prp5 = 24113
10/28/24 01:27:30 v1.34.5 @ TRIGKEY, rho: x^2 + 2, starting 1000 iterations on C203
10/28/24 01:27:30 v1.34.5 @ TRIGKEY, rho: x^2 + 1, starting 1000 iterations on C203
10/28/24 01:27:30 v1.34.5 @ TRIGKEY, pm1: starting B1 = 150K, B2 = gmp-ecm default on C203
10/28/24 01:27:30 v1.34.5 @ TRIGKEY, current ECM pretesting depth: 0.00
10/28/24 01:27:30 v1.34.5 @ TRIGKEY, scheduled 30 curves at B1=2000 toward target pretesting depth of 62.46
10/28/24 01:27:31 v1.34.5 @ TRIGKEY, Finished 30 curves using Lenstra ECM method on C203 input, B1=2K, B2=gmp-ecm default
10/28/24 01:27:31 v1.34.5 @ TRIGKEY, current ECM pretesting depth: 15.18
10/28/24 01:27:31 v1.34.5 @ TRIGKEY, scheduled 74 curves at B1=11000 toward target pretesting depth of 62.46
10/28/24 01:27:31 v1.34.5 @ TRIGKEY, prp16 = 6723062031823859 (curve 5 stg2 B1=11000 sigma=2320617332 thread=0)
10/28/24 01:27:31 v1.34.5 @ TRIGKEY, Finished 5 curves using Lenstra ECM method on C203 input, B1=11K, B2=gmp-ecm default
10/28/24 01:27:31 v1.34.5 @ TRIGKEY, current ECM pretesting depth: 15.52
10/28/24 01:27:31 v1.34.5 @ TRIGKEY, scheduled 69 curves at B1=11000 toward target pretesting depth of 57.54
10/28/24 01:27:33 v1.34.5 @ TRIGKEY, Finished 69 curves using Lenstra ECM method on C187 input, B1=11K, B2=gmp-ecm default
10/28/24 01:27:33 v1.34.5 @ TRIGKEY, current ECM pretesting depth: 20.24
10/28/24 01:27:33 v1.34.5 @ TRIGKEY, scheduled 214 curves at B1=50000 toward target pretesting depth of 57.54
10/28/24 01:28:11 v1.34.5 @ TRIGKEY, nfs: commencing nfs on c210: 299999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999992
10/28/24 01:28:11 v1.34.5 @ TRIGKEY, nfs: input divides 3*10^209 - 8
10/28/24 01:28:11 v1.34.5 @ TRIGKEY, nfs: using supplied cofactor: 3004153904275480360879418214114755997274490198872094060470407531417260980301387581719530129173768902446442539783107071315892324716525053094182339062583630310184417836764107413222473390761
10/28/24 01:28:11 v1.34.5 @ TRIGKEY, nfs: commencing snfs on c187: 3004153904275480360879418214114755997274490198872094060470407531417260980301387581719530129173768902446442539783107071315892324716525053094182339062583630310184417836764107413222473390761
10/28/24 01:28:11 v1.34.5 @ TRIGKEY, gen: best 3 polynomials:
n: 3004153904275480360879418214114755997274490198872094060470407531417260980301387581719530129173768902446442539783107071315892324716525053094182339062583630310184417836764107413222473390761
# 3*10^209-8, difficulty: 210.18, anorm: 8.87e+024, rnorm: 5.09e+047
# scaled difficulty: 213.97, suggest sieving rational side
# size = 3.242e-014, alpha = -0.188, combined = 9.138e-012, rroots = 1
type: snfs
size: 210
skew: 0.9642
c5: 6
c0: -5
Y1: -1
Y0: 500000000000000000000000000000000000000000
m: 500000000000000000000000000000000000000000
n: 3004153904275480360879418214114755997274490198872094060470407531417260980301387581719530129173768902446442539783107071315892324716525053094182339062583630310184417836764107413222473390761
# 3*10^209-8, difficulty: 213.48, anorm: -5.32e+026, rnorm: 2.28e+047
# scaled difficulty: 216.92, suggest sieving rational side
# size = 2.480e-014, alpha = -0.993, combined = 8.061e-012, rroots = 1
type: snfs
size: 213
skew: 0.1928
c5: 3750
c0: -1
Y1: -1
Y0: 100000000000000000000000000000000000000000
m: 100000000000000000000000000000000000000000
n: 3004153904275480360879418214114755997274490198872094060470407531417260980301387581719530129173768902446442539783107071315892324716525053094182339062583630310184417836764107413222473390761
# 3*10^209-8, difficulty: 210.18, anorm: -9.84e+030, rnorm: 5.38e+040
# scaled difficulty: 211.80, suggest sieving rational side
# size = 3.137e-010, alpha = -0.248, combined = 7.441e-012, rroots = 2
type: snfs
size: 210
skew: 0.8642
c6: 12
c0: -5
Y1: -1
Y0: 50000000000000000000000000000000000
m: 50000000000000000000000000000000000
10/28/24 01:28:12 v1.34.5 @ TRIGKEY, test: fb generation took 1.5152 seconds
10/28/24 01:28:12 v1.34.5 @ TRIGKEY, test: commencing test sieving of polynomial 0 on the rational side over range 21400000-21402000
skew: 0.9642
c5: 6
c0: -5
Y1: -1
Y0: 500000000000000000000000000000000000000000
m: 500000000000000000000000000000000000000000
rlim: 21400000
alim: 21400000
mfbr: 56
mfba: 56
lpbr: 28
lpba: 28
rlambda: 2.60
alambda: 2.60
10/28/24 01:31:09 v1.34.5 @ TRIGKEY, nfs: parsing special-q from .dat file
10/28/24 01:31:10 v1.34.5 @ TRIGKEY, test: fb generation took 1.7860 seconds
10/28/24 01:31:10 v1.34.5 @ TRIGKEY, test: commencing test sieving of polynomial 1 on the rational side over range 23800000-23802000
skew: 0.1928
c5: 3750
c0: -1
Y1: -1
Y0: 100000000000000000000000000000000000000000
m: 100000000000000000000000000000000000000000
rlim: 23800000
alim: 23800000
mfbr: 58
mfba: 58
lpbr: 29
lpba: 29
rlambda: 2.60
alambda: 2.60
10/28/24 01:34:23 v1.34.5 @ TRIGKEY, nfs: parsing special-q from .dat file
10/28/24 01:34:25 v1.34.5 @ TRIGKEY, test: fb generation took 2.2204 seconds
10/28/24 01:34:25 v1.34.5 @ TRIGKEY, test: commencing test sieving of polynomial 2 on the rational side over range 21400000-21402000
skew: 0.8642
c6: 12
c0: -5
Y1: -1
Y0: 50000000000000000000000000000000000
m: 50000000000000000000000000000000000
rlim: 21400000
alim: 21400000
mfbr: 56
mfba: 56
lpbr: 28
lpba: 28
rlambda: 2.60
alambda: 2.60
10/28/24 01:37:17 v1.34.5 @ TRIGKEY, nfs: parsing special-q from .dat file
10/28/24 01:37:17 v1.34.5 @ TRIGKEY, gen: selected polynomial:
n: 3004153904275480360879418214114755997274490198872094060470407531417260980301387581719530129173768902446442539783107071315892324716525053094182339062583630310184417836764107413222473390761
# 3*10^209-8, difficulty: 210.18, anorm: 8.87e+024, rnorm: 5.09e+047
# scaled difficulty: 213.97, suggest sieving rational side
# size = 3.242e-014, alpha = -0.188, combined = 9.138e-012, rroots = 1
type: snfs
size: 210
skew: 0.9642
c5: 6
c0: -5
Y1: -1
Y0: 500000000000000000000000000000000000000000
m: 500000000000000000000000000000000000000000
10/29/24 04:11:44 v1.34.5 @ TRIGKEY, nfs: commencing msieve filtering
10/29/24 04:13:39 v1.34.5 @ TRIGKEY, nfs: raising min_rels by 5.00 percent to 22220262
10/29/24 05:39:39 v1.34.5 @ TRIGKEY, nfs: commencing msieve filtering
10/29/24 05:41:38 v1.34.5 @ TRIGKEY, nfs: raising min_rels by 5.00 percent to 23341958
10/29/24 07:23:59 v1.34.5 @ TRIGKEY, nfs: commencing msieve filtering
10/29/24 07:26:04 v1.34.5 @ TRIGKEY, nfs: raising min_rels by 5.00 percent to 24668100
10/29/24 09:08:29 v1.34.5 @ TRIGKEY, nfs: commencing msieve filtering
10/29/24 09:12:26 v1.34.5 @ TRIGKEY, nfs: commencing msieve linear algebra
10/29/24 11:38:56 v1.34.5 @ TRIGKEY, nfs: commencing msieve sqrt
10/29/24 11:41:47 v1.34.5 @ TRIGKEY, prp49 = 5060181646381753423513640344826156396172683921749
10/29/24 11:41:48 v1.34.5 @ TRIGKEY, prp138 = 593684992795382958944298314330585390746688741637457830074739749550361149089320764012082620925407874070001591308282504184770051707100969989
10/29/24 11:41:48 v1.34.5 @ TRIGKEY, NFS elapsed time = 123217.3037 seconds.
10/29/24 11:41:48 v1.34.5 @ TRIGKEY,
10/29/24 11:41:48 v1.34.5 @ TRIGKEY,
10/28/24 01:37:17 v1.34.5 @ TRIGKEY, test: test sieving took 546.05 seconds
software ソフトウェア
YAFU

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)
403e633501000Dmitry DomanovJune 5, 2022 19:04:27 UTC 2022 年 6 月 6 日 (月) 4 時 4 分 27 秒 (日本時間)
2350Ignacio SantosSeptember 17, 2023 14:55:14 UTC 2023 年 9 月 17 日 (日) 23 時 55 分 14 秒 (日本時間)

3×10211-8

c185

name 名前Ignacio Santos
date 日付September 17, 2023 15:02:40 UTC 2023 年 9 月 18 日 (月) 0 時 2 分 40 秒 (日本時間)
composite number 合成数
22263951742454267839771953173245662315493224925522656280079058898292754099177993472497213819583668813116624064866512904645086668465623400114311100422813099071932683396959862129042371973<185>
prime factors 素因数
1367149681288919449063192709632443089693<40>
composite cofactor 合成数の残り
16284940886256354026014000258172219465761290085004009174072001692766612685512342180359881060576351583918621150922101134838188481815172020028589961<146>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:2649189297
Step 1 took 5094ms
********** Factor found in step 2: 1367149681288919449063192709632443089693
Found prime factor of 40 digits: 1367149681288919449063192709632443089693
Composite cofactor 16284940886256354026014000258172219465761290085004009174072001692766612685512342180359881060576351583918621150922101134838188481815172020028589961 has 146 digits
software ソフトウェア
GMP-ECM

c146

name 名前Bob Backstrom
date 日付September 20, 2023 04:34:27 UTC 2023 年 9 月 20 日 (水) 13 時 34 分 27 秒 (日本時間)
composite number 合成数
16284940886256354026014000258172219465761290085004009174072001692766612685512342180359881060576351583918621150922101134838188481815172020028589961<146>
prime factors 素因数
153565596299162070259758135564492053735480471<45>
355511317689087082120269306435504404407617371<45>
298290089834641966519424479198824500430291051987338217421<57>
factorization results 素因数分解の結果
#
# N = 3x10^211-8 = 29(210)2(212)
#
# 3×10211-8 = 2(9)2102<212> = 23 × 11 × 17 × 900715028841428897081449<24> × 1367149681288919449063192709632443089693<40> ×
# [16284940886256354026014000258172219465761290085004009174072001692766612685512342180359881060576351583918621150922101134838188481815172020028589961<146>]
# (Ignacio Santos / GMP-ECM B1=3000000 for P40 / September 17, 2023 ) Reserved
#
# GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM]
# Input number is 16284940886256354026014000258172219465761290085004009174072001692766612685512342180359881060576351583918621150922101134838188481815172020028589961 (146 digits)
# Using B1=54510000, B2=288595837546, polynomial Dickson(12), sigma=1:3081407293
# Step 1 took 109656ms
# Step 2 took 37688ms
# ********** Factor found in step 2: 153565596299162070259758135564492053735480471
# Found prime factor of 45 digits: 153565596299162070259758135564492053735480471
# Composite cofactor 106045502890709725370336940126621805676224359445785636462397341051806221016563133126258151556974420191 has 102 digits
#
CADO:

STA:Wed 20 Sep 2023 14:02:38 AEST (106045502890709725370336940126621805676224359445785636462397341051806221016563133126258151556974420191 - C102)

cado-nfs.py -t 16 --no-colors workdir=/home/bob/tmpg 106045502890709725370336940126621805676224359445785636462397341051806221016563133126258151556974420191 2>&1 | tee -a log-g

Info:root: Using default parameter file ./parameters/factor/params.c100
Info:root: No database exists yet
Info:Database: Opened connection to database /home/bob/tmpg/c100.db
Info:root: Set tasks.threads=16 based on --server-threads 16
Info:root: tasks.threads = 16 [via tasks.threads]
Info:root: tasks.polyselect.threads = 2 [via tasks.polyselect.threads]
Info:root: tasks.sieve.las.threads = 2 [via tasks.sieve.las.threads]
Info:root: tasks.linalg.bwc.threads = 16 [via tasks.threads]
Info:root: tasks.sqrt.threads = 8 [via tasks.sqrt.threads]
Info:root: slaves.scriptpath is /home/bob/Math/cado-nfs/build/LINUX-7
Info:root: Command line parameters: ./cado-nfs.py -t 16 --no-colors workdir=/home/bob/tmpg 106045502890709725370336940126621805676224359445785636462397341051806221016563133126258151556974420191
Info:root: If this computation gets interrupted, it can be resumed with ./cado-nfs.py /home/bob/tmpg/c100.parameters_snapshot.0
Info:Server Launcher: Adding LINUX-7 to whitelist to allow clients on localhost to connect
Info:HTTP server: Using non-threaded HTTPS server
Info:HTTP server: Using whitelist: localhost,LINUX-7
Info:Lattice Sieving: param rels_wanted is 0
Info:Complete Factorization / Discrete logarithm: Factoring 106045502890709725370336940126621805676224359445785636462397341051806221016563133126258151556974420191
====
n: 106045502890709725370336940126621805676224359445785636462397341051806221016563133126258151556974420191
skew: 1890530.982
c0: -13123551815403662734098772880
c1: 7100809752835911848580
c2: -13721630574558042
c3: -7476852023
c4: 1740
Y0: -2794093045008054511070717
Y1: 30616137780989
# MurphyE (Bf=3.355e+07,Bg=1.678e+07,area=2.206e+12) = 2.281e-06
# f(x) = 1740*x^4-7476852023*x^3-13721630574558042*x^2+7100809752835911848580*x-13123551815403662734098772880
# g(x) = 30616137780989*x-2794093045008054511070717
====
Info:Square Root: Starting
Info:Square Root: Creating file of (a,b) values
Info:Square Root: finished
Info:Square Root: Factors: 355511317689087082120269306435504404407617371 298290089834641966519424479198824500430291051987338217421
Info:Complete Factorization / Discrete logarithm: Square Root
Info:Square Root: Total cpu/real time for sqrt: 182.57/16.1851
Info:HTTP server: Got notification to stop serving Workunits
Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 29.15/23.6404
Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics:
Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 15.5s
Info:Linear Algebra: Total cpu/real time for bwc: 845.56/67.42
Info:Linear Algebra: Aggregate statistics:
Info:Linear Algebra: Krylov: CPU time 523.74, WCT time 38.04, iteration CPU time 0.01, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (6272 iterations)
Info:Linear Algebra: Lingen CPU time 15.63, WCT time 5.11
Info:Linear Algebra: Mksol: CPU time 281.65,  WCT time 20.56, iteration CPU time 0.01, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (3200 iterations)
Info:Polynomial Selection (root optimized): Aggregate statistics:
Info:Polynomial Selection (root optimized): Total time: 37.8
Info:Polynomial Selection (root optimized): Rootsieve time: 37.57
Info:Polynomial Selection (size optimized): Aggregate statistics:
Info:Polynomial Selection (size optimized): potential collisions: 6382.08
Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 4317/33.410/38.560/39.390/0.686
Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 2519/33.410/37.030/39.330/1.020
Info:Polynomial Selection (size optimized): Total time: 82.66
Info:Generate Free Relations: Total cpu/real time for freerel: 27.42/2.85514
Info:Square Root: Total cpu/real time for sqrt: 182.57/16.1851
Info:Generate Factor Base: Total cpu/real time for makefb: 1.02/0.141801
Info:Lattice Sieving: Aggregate statistics:
Info:Lattice Sieving: Total number of relations: 2525679
Info:Lattice Sieving: Average J: 1024 for 104052 special-q, max bucket fill -bkmult 1.0,1s:1.346640
Info:Lattice Sieving: Total time: 4273.38s
Info:Quadratic Characters: Total cpu/real time for characters: 7.31/1.63594
Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 12.23/9.30055
Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics:
Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 9.1s
Info:Filtering - Singleton removal: Total cpu/real time for purge: 17.13/13.2035
Info:Filtering - Merging: Total cpu/real time for merge: 77.49/6.56218
Info:Filtering - Merging: Total cpu/real time for replay: 5.92/4.80498
Info:HTTP server: Shutting down HTTP server
Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire Complete Factorization 9223.96/791.603
355511317689087082120269306435504404407617371 298290089834641966519424479198824500430291051987338217421

END:Wed 20 Sep 2023 14:15:54 AEST (106045502890709725370336940126621805676224359445785636462397341051806221016563133126258151556974420191 - C102)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)
403e633501000Dmitry DomanovJune 5, 2022 19:04:40 UTC 2022 年 6 月 6 日 (月) 4 時 4 分 40 秒 (日本時間)
2350Ignacio SantosSeptember 19, 2023 15:04:46 UTC 2023 年 9 月 20 日 (水) 0 時 4 分 46 秒 (日本時間)

3×10212-8

c181

composite cofactor 合成数の残り
2329932147530526012888206638591415245424388970352677809240423927971238534091757971477475253719243529464095511656319838500780657360836101177865659535365035761469827485809193171229699<181>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)
403e633501000Dmitry DomanovJune 5, 2022 19:04:51 UTC 2022 年 6 月 6 日 (月) 4 時 4 分 51 秒 (日本時間)
2350Ignacio SantosSeptember 17, 2023 15:09:21 UTC 2023 年 9 月 18 日 (月) 0 時 9 分 21 秒 (日本時間)

3×10215-8

c161

composite cofactor 合成数の残り
89424743863574454798991542958424948384879033328131620270585012978312279902657265663532409845842571403134330258386723481563930005805708987372611397118533266694511<161>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)
403e633501000Dmitry DomanovMay 22, 2022 08:22:46 UTC 2022 年 5 月 22 日 (日) 17 時 22 分 46 秒 (日本時間)
2350Ignacio SantosSeptember 17, 2023 15:15:59 UTC 2023 年 9 月 18 日 (月) 0 時 15 分 59 秒 (日本時間)

3×10216-8

c212

composite cofactor 合成数の残り
19123871691570197358355857004436738232444285787138558825029323269927074302616145647406802998623081238206945790198378295680554847264011423326023764597888724565250650211637513386710184099138150849099903105716762711<212>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)
403e62350Ignacio SantosSeptember 27, 2022 10:39:08 UTC 2022 年 9 月 27 日 (火) 19 時 39 分 8 秒 (日本時間)

3×10218-8

c195

composite cofactor 合成数の残り
453738683271773611271720861619691435334122790363227606972360888753763092089136181376713438190456547490052324640453265694150057004315325413004780427179876596934013624394981304175636487910184751753<195>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)
403e633501000Dmitry DomanovJune 5, 2022 19:05:03 UTC 2022 年 6 月 6 日 (月) 4 時 5 分 3 秒 (日本時間)
2350Ignacio SantosSeptember 17, 2023 15:38:07 UTC 2023 年 9 月 18 日 (月) 0 時 38 分 7 秒 (日本時間)

3×10219-8

c204

composite cofactor 合成数の残り
291826836884825275628048617480171667095434880890113129281913742867845695081422462666027318370803696737954088763942993587764768934690192312710179020109366588149209323297878396210182555281827096320358423661<204>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)
403e641421792Dmitry DomanovAugust 16, 2023 18:55:19 UTC 2023 年 8 月 17 日 (木) 3 時 55 分 19 秒 (日本時間)
2350Ignacio SantosSeptember 17, 2023 15:45:56 UTC 2023 年 9 月 18 日 (月) 0 時 45 分 56 秒 (日本時間)

3×10220-8

c217

name 名前Erik Branger
date 日付November 11, 2024 17:25:19 UTC 2024 年 11 月 12 日 (火) 2 時 25 分 19 秒 (日本時間)
composite number 合成数
1924063622370446382760389943560800410466906105695228322216521292970754232939969214982042072857875833760903027193432529502308876346844535659312467932272960492560287326834273986659825551564905079527963057978450487429451<217>
prime factors 素因数
9037564395876604320967145539889329275293299571300776980760735588153<67>
212896255903670449577748791160699827273534636264164635753556142842664467565396532604506110984911788991779525968466478877185522068964606277247027554467<150>
factorization results 素因数分解の結果
Number: 29992_220
N = 1924063622370446382760389943560800410466906105695228322216521292970754232939969214982042072857875833760903027193432529502308876346844535659312467932272960492560287326834273986659825551564905079527963057978450487429451 (217 digits)
SNFS difficulty: 221 digits.
Divisors found:
r1=9037564395876604320967145539889329275293299571300776980760735588153 (pp67)
r2=212896255903670449577748791160699827273534636264164635753556142842664467565396532604506110984911788991779525968466478877185522068964606277247027554467 (pp150)
Version: Msieve v. 1.52 (SVN unknown)
Total time: 41.80 hours.
Factorization parameters were as follows:
n: 1924063622370446382760389943560800410466906105695228322216521292970754232939969214982042072857875833760903027193432529502308876346844535659312467932272960492560287326834273986659825551564905079527963057978450487429451
m: 10000000000000000000000000000000000000000000000000000000
deg: 4
c4: 3
c0: -8
skew: 1.00
type: snfs
lss: 1
rlim: 536870912
alim: 44739242
lpbr: 29
lpba: 28
mfbr: 58
mfba: 56
rlambda: 2.8
alambda: 2.8
side: 1
Number of cores used: 6
Number of threads per core: 1
Factor base limits: 536870912/44739242
Large primes per side: 3
Large prime bits: 29/28
Total raw relations: 31788962
Relations: 6703174 relations
Total pre-computation time approximately 1000 CPU-days.
Pre-computation saved approximately 18 G rational relations.
Total batch smoothness checking time: 10.53 hours.
Total relation processing time: 0.42 hours.
Pruned matrix : 6049488 x 6049713
Matrix solve time: 30.56 hours.
time per square root: 0.29 hours.
Prototype def-par.txt line would be: snfs,221,4,0,0,0,0,0,0,0,0,536870912,44739242,29,28,58,56,2.8,2.8,100000
total time: 41.80 hours.
Intel64 Family 6 Model 158 Stepping 10, GenuineIntel
Windows-10-10.0.22621-SP0
processors: 12, speed: 3.19GHz
software ソフトウェア
GGNFS, NFS_factory, Msieve

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)
403e641421792Dmitry DomanovAugust 16, 2023 18:55:33 UTC 2023 年 8 月 17 日 (木) 3 時 55 分 33 秒 (日本時間)
2350Ignacio SantosSeptember 17, 2023 15:53:31 UTC 2023 年 9 月 18 日 (月) 0 時 53 分 31 秒 (日本時間)

3×10222-8

c222

composite cofactor 合成数の残り
374999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999<222>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)
403e641421792Dmitry DomanovAugust 16, 2023 18:55:39 UTC 2023 年 8 月 17 日 (木) 3 時 55 分 39 秒 (日本時間)
2350Ignacio SantosSeptember 18, 2023 06:19:12 UTC 2023 年 9 月 18 日 (月) 15 時 19 分 12 秒 (日本時間)

3×10223-8

c169

composite cofactor 合成数の残り
1384327135886358834440181695758125931228863503285961571796289115918231365048867430934417663215956519605172482641647330436073381866321569741771421591353349954086023200867<169>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)
403e633501000Dmitry DomanovMay 22, 2022 08:22:57 UTC 2022 年 5 月 22 日 (日) 17 時 22 分 57 秒 (日本時間)
2350Ignacio SantosSeptember 18, 2023 06:34:58 UTC 2023 年 9 月 18 日 (月) 15 時 34 分 58 秒 (日本時間)

3×10225-8

c215

composite cofactor 合成数の残り
19943179442849430641236745293679269978148731070777203996899299767490719374836050678334002138846857070826906760979452051724181561209536970319917331864428006469120471313588082376909630316360299351724727531008145601093<215>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)
403e641421792Dmitry DomanovAugust 16, 2023 18:55:52 UTC 2023 年 8 月 17 日 (木) 3 時 55 分 52 秒 (日本時間)
2350Ignacio SantosSeptember 18, 2023 06:35:10 UTC 2023 年 9 月 18 日 (月) 15 時 35 分 10 秒 (日本時間)

3×10227-8

c130

name 名前Taiyo Kodama
date 日付April 18, 2022 01:20:50 UTC 2022 年 4 月 18 日 (月) 10 時 20 分 50 秒 (日本時間)
composite number 合成数
3411020008601337601775010337315119725282053792311084309722613971071489148091148160969187917203371893434884065906127863290992679919<130>
prime factors 素因数
14573390411218106565382009083919648715088507967<47>
234058095772665840400930768094437555342027502345236836855049508172546857973257317457<84>
factorization results 素因数分解の結果
14573390411218106565382009083919648715088507967 234058095772665840400930768094437555342027502345236836855049508172546857973257317457

n: 3411020008601337601775010337315119725282053792311084309722613971071489148091148160969187917203371893434884065906127863290992679919
skew: 16215.573
c0: -9258994053759860491480029216
c1: 204187422878350223382946
c2: 413525305140180200347
c3: -5198764579254293
c4: 279738459756
c5: 12267360
Y0: -5222271419432666391766525
Y1: 509814915832413599
# MurphyE (Bf=2.684e+08,Bg=2.684e+08,area=9.547e+13) = 4.721e-07
# f(x) = 12267360*x^5+279738459756*x^4-5198764579254293*x^3+413525305140180200347*x^2+204187422878350223382946*x-9258994053759860491480029216
# g(x) = 509814915832413599*x-5222271419432666391766525
software ソフトウェア
cado-nfs 3.0.0

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)
403e62350Ignacio SantosApril 14, 2022 19:00:20 UTC 2022 年 4 月 15 日 (金) 4 時 0 分 20 秒 (日本時間)

3×10229-8

c217

composite cofactor 合成数の残り
1772183248669963832307825979936931816180878565771151271126644178014357614948618175979680722392694895565434231699607457319417275341470241308335393464039227895545295243812059311364311570451663653833043652442788870807749<217>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)
403e641421792Dmitry DomanovAugust 16, 2023 18:56:00 UTC 2023 年 8 月 17 日 (木) 3 時 56 分 0 秒 (日本時間)
2350Ignacio SantosSeptember 18, 2023 06:48:48 UTC 2023 年 9 月 18 日 (月) 15 時 48 分 48 秒 (日本時間)

3×10230-8

c182

composite cofactor 合成数の残り
10100364051901029283774520505273514128295579342153712114618150726450191478169397850992215798832347275301129866795848841198139074959717506222634033435757365276703359803737216401552319<182>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)
403e633501000Dmitry DomanovJune 5, 2022 19:05:29 UTC 2022 年 6 月 6 日 (月) 4 時 5 分 29 秒 (日本時間)
2350Ignacio SantosSeptember 18, 2023 07:04:35 UTC 2023 年 9 月 18 日 (月) 16 時 4 分 35 秒 (日本時間)

3×10231-8

c167

name 名前Ignacio Santos
date 日付September 18, 2023 07:05:03 UTC 2023 年 9 月 18 日 (月) 16 時 5 分 3 秒 (日本時間)
composite number 合成数
50815940911966432841485080769286216759132454615248799469030759616069950060523936168369346469677993655552404516044092233830251412919008600735138450113434862500805239163<167>
prime factors 素因数
50080289506959493834664855573537620148891<41>
1014689439942329166050585743778565403676193407121331306660902918983385298567112088895932509222194771628694127875814095698975393<127>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:976341959
Step 1 took 6484ms
Step 2 took 3203ms
********** Factor found in step 2: 50080289506959493834664855573537620148891
Found prime factor of 41 digits: 50080289506959493834664855573537620148891
Prime cofactor 1014689439942329166050585743778565403676193407121331306660902918983385298567112088895932509222194771628694127875814095698975393 has 127 digits
software ソフトウェア
GMP-ECM

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)
403e61000 / 2078Dmitry DomanovMay 22, 2022 08:23:12 UTC 2022 年 5 月 22 日 (日) 17 時 23 分 12 秒 (日本時間)

3×10232-8

c220

name 名前Ignacio Santos
date 日付September 18, 2023 07:05:38 UTC 2023 年 9 月 18 日 (月) 16 時 5 分 38 秒 (日本時間)
composite number 合成数
1973284292527348133159508676730844011224186371708112763371568232519209077965509049318856178214355210248413122055051377356860261162386026153624867788901363677331928452260132728601842764334719755327389643397944920077628249<220>
prime factors 素因数
3606811693018536715218612409996991900443<40>
547099338827946599018460011303030143018835856040546497641398788636653667306931385306711739745937793216985132984728143387355636514040528835169236709554242781741997202987100715724443<180>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:1168489647
Step 1 took 9656ms
********** Factor found in step 1: 3606811693018536715218612409996991900443
Found prime factor of 40 digits: 3606811693018536715218612409996991900443
Prime cofactor 547099338827946599018460011303030143018835856040546497641398788636653667306931385306711739745937793216985132984728143387355636514040528835169236709554242781741997202987100715724443 has 180 digits
 
software ソフトウェア
GMP-ECM

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)
403e61792 / 2078Dmitry DomanovAugust 16, 2023 18:56:10 UTC 2023 年 8 月 17 日 (木) 3 時 56 分 10 秒 (日本時間)

3×10234-8

c146

name 名前ebina
date 日付June 1, 2022 02:03:45 UTC 2022 年 6 月 1 日 (水) 11 時 3 分 45 秒 (日本時間)
composite number 合成数
16039786894124960449790425668064798298535678868875932135199482492322872975402663680836485939111728686621710189759864566337404274786771810657670601<146>
prime factors 素因数
188653755416263624048471187415591862643552738295853249<54>
85022356744148803750707581915183825830406189700833320056965146553185994511808141936187088649<92>
factorization results 素因数分解の結果
Wed Jun  1 10:41:31 2022  Msieve v. 1.53 (SVN unknown)
Wed Jun  1 10:41:31 2022  random seeds: 50556b10 e08246bd
Wed Jun  1 10:41:31 2022  factoring 16039786894124960449790425668064798298535678868875932135199482492322872975402663680836485939111728686621710189759864566337404274786771810657670601 (146 digits)
Wed Jun  1 10:41:31 2022  searching for 15-digit factors
Wed Jun  1 10:41:31 2022  commencing number field sieve (146-digit input)
Wed Jun  1 10:41:31 2022  R0: -27975946313175142906696248614
Wed Jun  1 10:41:31 2022  R1: 4720656498756281
Wed Jun  1 10:41:31 2022  A0: -58577199508223709977226328958986716825
Wed Jun  1 10:41:31 2022  A1: -26663000028562332437400148885155
Wed Jun  1 10:41:31 2022  A2: -366023161655930103293511
Wed Jun  1 10:41:31 2022  A3: 289262784674985331
Wed Jun  1 10:41:31 2022  A4: -15125158856
Wed Jun  1 10:41:31 2022  A5: 936
Wed Jun  1 10:41:31 2022  skew 10808400.06, size 3.974e-14, alpha -7.417, combined = 9.679e-12 rroots = 3
Wed Jun  1 10:41:31 2022  
Wed Jun  1 10:41:31 2022  commencing square root phase
Wed Jun  1 10:41:31 2022  reading relations for dependency 1
Wed Jun  1 10:41:32 2022  read 1717331 cycles
Wed Jun  1 10:41:34 2022  cycles contain 5935916 unique relations
Wed Jun  1 10:42:14 2022  read 5935916 relations
Wed Jun  1 10:42:33 2022  multiplying 5935916 relations
Wed Jun  1 10:45:23 2022  multiply complete, coefficients have about 270.75 million bits
Wed Jun  1 10:45:24 2022  error: relation product is incorrect
Wed Jun  1 10:45:24 2022  algebraic square root failed
Wed Jun  1 10:45:24 2022  reading relations for dependency 2
Wed Jun  1 10:45:24 2022  read 1716756 cycles
Wed Jun  1 10:45:26 2022  cycles contain 5926684 unique relations
Wed Jun  1 10:46:06 2022  read 5926684 relations
Wed Jun  1 10:46:24 2022  multiplying 5926684 relations
Wed Jun  1 10:49:13 2022  multiply complete, coefficients have about 270.33 million bits
Wed Jun  1 10:49:14 2022  initial square root is modulo 70913
Wed Jun  1 10:52:32 2022  GCD is 1, no factor found
Wed Jun  1 10:52:32 2022  reading relations for dependency 3
Wed Jun  1 10:52:32 2022  read 1717105 cycles
Wed Jun  1 10:52:34 2022  cycles contain 5933622 unique relations
Wed Jun  1 10:53:15 2022  read 5933622 relations
Wed Jun  1 10:53:33 2022  multiplying 5933622 relations
Wed Jun  1 10:57:03 2022  multiply complete, coefficients have about 270.64 million bits
Wed Jun  1 10:57:04 2022  initial square root is modulo 71843
Wed Jun  1 11:01:39 2022  sqrtTime: 1208
Wed Jun  1 11:01:39 2022  p54 factor: 188653755416263624048471187415591862643552738295853249
Wed Jun  1 11:01:39 2022  p92 factor: 85022356744148803750707581915183825830406189700833320056965146553185994511808141936187088649
Wed Jun  1 11:01:39 2022  elapsed time 00:20:08
Wed Jun 01 11:01:39 2022 -> Computing time scale for this machine...
Wed Jun 01 11:01:39 2022 -> procrels -speedtest> PIPE
Wed Jun 01 11:01:41 2022 -> Factorization summary written to g146-29992_234.txt

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)
403e62350Ignacio SantosApril 14, 2022 19:53:35 UTC 2022 年 4 月 15 日 (金) 4 時 53 分 35 秒 (日本時間)
4511e64480Ignacio SantosApril 17, 2022 13:56:58 UTC 2022 年 4 月 17 日 (日) 22 時 56 分 58 秒 (日本時間)
5043e66454Ignacio SantosMay 16, 2022 17:12:25 UTC 2022 年 5 月 17 日 (火) 2 時 12 分 25 秒 (日本時間)

3×10235-8

c203

composite cofactor 合成数の残り
14156888301490513777792138410827822460826526663930369401088699120649778705547401726179994753366072521574293427842399587539059164316002074422475960393955154565234660847698206637078949929184071667031097207<203>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)
403e641421792Dmitry DomanovAugust 16, 2023 18:56:18 UTC 2023 年 8 月 17 日 (木) 3 時 56 分 18 秒 (日本時間)
2350Ignacio SantosSeptember 18, 2023 11:17:39 UTC 2023 年 9 月 18 日 (月) 20 時 17 分 39 秒 (日本時間)

3×10236-8

c210

name 名前Dmitry Domanov
date 日付August 17, 2023 20:38:55 UTC 2023 年 8 月 18 日 (金) 5 時 38 分 55 秒 (日本時間)
composite number 合成数
779856534527277033201434917840720300264277778231042608476207689964994116089050702125642848588035512143818196988021925746953811944761485107309426995839130907596856065184300548393770925624089743951097503314744497<210>
prime factors 素因数
30176832957307497697972518091794192077<38>
composite cofactor 合成数の残り
25842888669946730898970599627091336719765896216628129332734918301853773525997144068304556334600351534452874408008896548875377320187822587014896826700297100923665920681561461<173>
factorization results 素因数分解の結果
Resuming ECM residue saved by @6ecf74cbb665 with GMP-ECM 7.0.5-dev on Wed Aug 16 19:25:54 2023 
Input number is 779856534527277033201434917840720300264277778231042608476207689964994116089050702125642848588035512143818196988021925746953811944761485107309426995839130907596856065184300548393770925624089743951097503314744497 (210 digits)
Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:3561501292
Step 1 took 0ms
Step 2 took 4946ms
********** Factor found in step 2: 30176832957307497697972518091794192077
Found prime factor of 38 digits: 30176832957307497697972518091794192077
Composite cofactor 25842888669946730898970599627091336719765896216628129332734918301853773525997144068304556334600351534452874408008896548875377320187822587014896826700297100923665920681561461 has 173 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)
403e641421792Dmitry DomanovAugust 16, 2023 18:56:27 UTC 2023 年 8 月 17 日 (木) 3 時 56 分 27 秒 (日本時間)
2350Ignacio SantosSeptember 18, 2023 12:36:14 UTC 2023 年 9 月 18 日 (月) 21 時 36 分 14 秒 (日本時間)

3×10241-8

c240

composite cofactor 合成数の残り
340909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909<240>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)
403e641421792Dmitry DomanovJune 27, 2023 21:58:14 UTC 2023 年 6 月 28 日 (水) 6 時 58 分 14 秒 (日本時間)
2350Ignacio SantosSeptember 18, 2023 11:18:29 UTC 2023 年 9 月 18 日 (月) 20 時 18 分 29 秒 (日本時間)

3×10242-8

c202

composite cofactor 合成数の残り
9307483239374768590941141881413919053614174738497580548684758773172762091151489045081248770003883675919023901851261269467082427237566167306844484632185358303039180811604453582686882240425855199109349301<202>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)
403e641421792Dmitry DomanovAugust 16, 2023 18:56:36 UTC 2023 年 8 月 17 日 (木) 3 時 56 分 36 秒 (日本時間)
2350Ignacio SantosSeptember 18, 2023 11:28:52 UTC 2023 年 9 月 18 日 (月) 20 時 28 分 52 秒 (日本時間)

3×10243-8

c204

name 名前Ignacio Santos
date 日付September 18, 2023 11:29:16 UTC 2023 年 9 月 18 日 (月) 20 時 29 分 16 秒 (日本時間)
composite number 合成数
710950635352199148255673637348028531094348643035042191787953910567923751174954170329923398486309588785157977697110542605097726843222635634806652902819601600054413869061908827072057939491627398455589437511<204>
prime factors 素因数
9297123706705993977933460072256830952564333<43>
76469955416360878121984911451176429636621256964426581641608262508150196206192332510274211459915842176975053825837939891506214153547341605661211188136108148318467<161>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:995213461
Step 1 took 8656ms
Step 2 took 3922ms
********** Factor found in step 2: 9297123706705993977933460072256830952564333
Found prime factor of 43 digits: 9297123706705993977933460072256830952564333
Prime cofactor 76469955416360878121984911451176429636621256964426581641608262508150196206192332510274211459915842176975053825837939891506214153547341605661211188136108148318467 has 161 digits
software ソフトウェア
GMP-ECM

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)
403e61792 / 2078Dmitry DomanovAugust 16, 2023 18:56:45 UTC 2023 年 8 月 17 日 (木) 3 時 56 分 45 秒 (日本時間)

3×10245-8

c191

composite cofactor 合成数の残り
33113840185028897502161264285895840533968761744259844916404147792085036693705195691481890069267053875041546913501578272515542483887289252040916301968451056712813650379005666806776072114010459<191>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)
403e633501000Dmitry DomanovJune 5, 2022 19:05:41 UTC 2022 年 6 月 6 日 (月) 4 時 5 分 41 秒 (日本時間)
2350Ignacio SantosSeptember 18, 2023 12:18:55 UTC 2023 年 9 月 18 日 (月) 21 時 18 分 55 秒 (日本時間)

3×10246-8

c227

composite cofactor 合成数の残り
12429222585141516768766516959114378062136891875680982743973745431978632219907568142745857575690091649249740004633890600186898930660529891573288636863355693448318942466030361604898352628666841045373660014657666131199340174959813<227>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)
403e641421792Dmitry DomanovJune 27, 2023 21:57:58 UTC 2023 年 6 月 28 日 (水) 6 時 57 分 58 秒 (日本時間)
2350Ignacio SantosSeptember 18, 2023 12:19:05 UTC 2023 年 9 月 18 日 (月) 21 時 19 分 5 秒 (日本時間)

3×10247-8

c204

composite cofactor 合成数の残り
126184722240110002824908678848680601702610816714195823020749291066363139179809640137396977617372758228351204630185465112626108073267375604389237298933240298134347927288573685821864823956355657492251770287<204>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)
403e641421792Dmitry DomanovAugust 16, 2023 18:57:01 UTC 2023 年 8 月 17 日 (木) 3 時 57 分 1 秒 (日本時間)
2350Ignacio SantosSeptember 18, 2023 12:19:16 UTC 2023 年 9 月 18 日 (月) 21 時 19 分 16 秒 (日本時間)

3×10248-8

c150

name 名前Thomas Kozlowski
date 日付September 9, 2024 00:07:41 UTC 2024 年 9 月 9 日 (月) 9 時 7 分 41 秒 (日本時間)
composite number 合成数
685517782419902012515640841075098531197829662756974150162755254670207368233126598990573657700755423370870105451820897824536723633410710939292187195539<150>
prime factors 素因数
2630060517229490210165293136623517540777943976627867<52>
260647151626011821883109300851274715397645017367508341865816522752345723719145254856361866350125417<99>
factorization results 素因数分解の結果
260647151626011821883109300851274715397645017367508341865816522752345723719145254856361866350125417
2630060517229490210165293136623517540777943976627867
software ソフトウェア
cado-nfs
execution environment 実行環境
4x Xeon E7-8890v4, 1024GB DDR4, Ubuntu Server 24.04

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)
403e62350Ignacio SantosApril 14, 2022 20:41:04 UTC 2022 年 4 月 15 日 (金) 5 時 41 分 4 秒 (日本時間)
4511e64480Ignacio SantosApril 18, 2022 20:26:22 UTC 2022 年 4 月 19 日 (火) 5 時 26 分 22 秒 (日本時間)
5043e66454Ignacio SantosDecember 15, 2023 16:49:22 UTC 2023 年 12 月 16 日 (土) 1 時 49 分 22 秒 (日本時間)

3×10249-8

c248

composite cofactor 合成数の残り
34090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909<248>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)
403e641421792Dmitry DomanovJune 27, 2023 21:57:17 UTC 2023 年 6 月 28 日 (水) 6 時 57 分 17 秒 (日本時間)
2350Ignacio SantosSeptember 18, 2023 12:54:28 UTC 2023 年 9 月 18 日 (月) 21 時 54 分 28 秒 (日本時間)

3×10250-8

c223

composite cofactor 合成数の残り
6866891526747832595435014625348143232307998423851007153908506115117559552465225857278337232700173308416695515553576934492881462212725920602006667187064100887839930156758924465199133801911623064947398812403176498164419471249<223>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)
403e641421792Dmitry DomanovAugust 16, 2023 18:58:12 UTC 2023 年 8 月 17 日 (木) 3 時 58 分 12 秒 (日本時間)
2350Ignacio SantosSeptember 18, 2023 13:23:48 UTC 2023 年 9 月 18 日 (月) 22 時 23 分 48 秒 (日本時間)

3×10251-8

c233

composite cofactor 合成数の残り
27312054463300500010311709144574799260319145875439230528739301319090545555513295604547689170393499754013207841974956737544705322536177616364766823291396808362224851823766149596284006434010896548011573164881003904472536278908485990819<233>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)
403e641421792Dmitry DomanovAugust 16, 2023 18:58:21 UTC 2023 年 8 月 17 日 (木) 3 時 58 分 21 秒 (日本時間)
2350Ignacio SantosSeptember 18, 2023 13:24:10 UTC 2023 年 9 月 18 日 (月) 22 時 24 分 10 秒 (日本時間)

3×10254-8

c236

composite cofactor 合成数の残り
35963729712493665874542431264114861139704501822578561083767561634031224404911374828390583270092063177831916718410784800693030374382084170493649825935517729293948490295355609337475518841975326578669155992141815625607224590891427201117237<236>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)
403e641421792Dmitry DomanovAugust 16, 2023 18:58:31 UTC 2023 年 8 月 17 日 (木) 3 時 58 分 31 秒 (日本時間)
2350Ignacio SantosSeptember 18, 2023 13:50:33 UTC 2023 年 9 月 18 日 (月) 22 時 50 分 33 秒 (日本時間)

3×10255-8

c237

composite cofactor 合成数の残り
112335763113382892351139971192500708929180749499595592112583780279155722550110230259062374358512207376774054587020741468698589061016528969789900493794528164953552475983514969344122763340243323474384026728786499003175182684334043439625101<237>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)
403e641421792Dmitry DomanovAugust 16, 2023 18:58:40 UTC 2023 年 8 月 17 日 (木) 3 時 58 分 40 秒 (日本時間)
2350Ignacio SantosSeptember 18, 2023 13:50:45 UTC 2023 年 9 月 18 日 (月) 22 時 50 分 45 秒 (日本時間)

3×10256-8

c201

composite cofactor 合成数の残り
981922221871540330126814296135035358660824907090284829350097677927822592278388888492308343229902968731368974084198985380414466286226969099997893839669053882328707763825003738032298969665267701591140093<201>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)
403e641421792Dmitry DomanovAugust 16, 2023 18:58:49 UTC 2023 年 8 月 17 日 (木) 3 時 58 分 49 秒 (日本時間)
2350Ignacio SantosSeptember 18, 2023 14:04:17 UTC 2023 年 9 月 18 日 (月) 23 時 4 分 17 秒 (日本時間)

3×10258-8

c238

composite cofactor 合成数の残り
6994457378452719505317896007851778602750566073884170375163910731253462279691634824619436249051500339204225621690743960839115445039961507276133218665514931219054756743740736705654970845566337866513204265218113394416495928294879141490113661<238>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)
403e641421792Dmitry DomanovAugust 16, 2023 18:58:57 UTC 2023 年 8 月 17 日 (木) 3 時 58 分 57 秒 (日本時間)
2350Ignacio SantosSeptember 18, 2023 14:29:31 UTC 2023 年 9 月 18 日 (月) 23 時 29 分 31 秒 (日本時間)

3×10259-8

c247

composite cofactor 合成数の残り
9791238420923320542807415117912468871173624579433581954172218425952484046800165028393001728262593025049267687104168948507546025568836936644796639441523991680618836612581828724921362389453326899435300606962386986977127329992520724435369293870683143<247>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)
403e641421792Dmitry DomanovJune 27, 2023 21:57:07 UTC 2023 年 6 月 28 日 (水) 6 時 57 分 7 秒 (日本時間)
2350Ignacio SantosSeptember 18, 2023 14:45:19 UTC 2023 年 9 月 18 日 (月) 23 時 45 分 19 秒 (日本時間)

3×10260-8

c235

composite cofactor 合成数の残り
1077875806247011230057547662292642749237562928944912662694264423319210302996586815661664632222253187142843453590890253530029609448205207950026463772094192476952887019196399053747392117777363702741354740044203678837258046314532417147179<235>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)
403e641421792Dmitry DomanovAugust 16, 2023 18:59:07 UTC 2023 年 8 月 17 日 (木) 3 時 59 分 7 秒 (日本時間)
2350Ignacio SantosSeptember 18, 2023 14:59:52 UTC 2023 年 9 月 18 日 (月) 23 時 59 分 52 秒 (日本時間)

3×10262-8

c210

composite cofactor 合成数の残り
186659465428097360381818670047204159696584781537323640893717615519656326100850441404950916484453244665957590276005930871299041670155110174045842700279670124501150761594024403296985630951101125330867751664809883<210>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)
403e641421792Dmitry DomanovAugust 16, 2023 18:59:18 UTC 2023 年 8 月 17 日 (木) 3 時 59 分 18 秒 (日本時間)
2350Ignacio SantosSeptember 18, 2023 15:00:05 UTC 2023 年 9 月 19 日 (火) 0 時 0 分 5 秒 (日本時間)

3×10264-8

c254

composite cofactor 合成数の残り
41073413972049934125270280848724338464165754690016213644732765649632087462802849767262105426199114145102533878196039715291199502315699200211812813814621803435147420029848593197844157442629276667682669222492673298950149070079775129634630426295672264895627<254>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)
403e641421792Dmitry DomanovJune 5, 2022 19:08:04 UTC 2022 年 6 月 6 日 (月) 4 時 8 分 4 秒 (日本時間)
2350Ignacio SantosSeptember 18, 2023 15:18:30 UTC 2023 年 9 月 19 日 (火) 0 時 18 分 30 秒 (日本時間)

3×10265-8

c239

composite cofactor 合成数の残り
11428179867175220066513837878981369582124102345555935658877483957977754790066702907158586804870737565518968335676676707981712214443054671018374528681889571297553385711983953274079185245348752643314154451537654481216442135598425987157759177<239>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)
403e641421792Dmitry DomanovAugust 16, 2023 18:59:28 UTC 2023 年 8 月 17 日 (木) 3 時 59 分 28 秒 (日本時間)
2350Ignacio SantosSeptember 18, 2023 15:30:13 UTC 2023 年 9 月 19 日 (火) 0 時 30 分 13 秒 (日本時間)

3×10266-8

c243

composite cofactor 合成数の残り
383461501959100473838115473361415327533379578420021828976596463386378221593844216329573466521971408756180983821087289735971234624260375592617297996305189628882634613837019489873408714037408249270772812420266114859785084632530089732167602103397<243>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)
403e641421792Dmitry DomanovJune 27, 2023 21:56:58 UTC 2023 年 6 月 28 日 (水) 6 時 56 分 58 秒 (日本時間)
2350Ignacio SantosSeptember 18, 2023 15:45:20 UTC 2023 年 9 月 19 日 (火) 0 時 45 分 20 秒 (日本時間)

3×10269-8

c254

composite cofactor 合成数の残り
11114364052867378435142857387984999836016821767431927585354806866733250502082454888196491976185315419017549927785809965568252577271416560945557458266806386614246436956265539308529930709918523575428705039017528753185123043240404674618011954064724759851779<254>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)
403e641421792Dmitry DomanovJune 5, 2022 19:07:42 UTC 2022 年 6 月 6 日 (月) 4 時 7 分 42 秒 (日本時間)
2350Ignacio SantosSeptember 19, 2023 07:40:36 UTC 2023 年 9 月 19 日 (火) 16 時 40 分 36 秒 (日本時間)

3×10272-8

c254

composite cofactor 合成数の残り
86396207247989185272811603781005709583247840278900226547798316648798066176844575437331391548576997508681160036318847378100315291135144769925615109543894821766070565381678216763318133464252577184972931038956474872271179969289447425634862429844811637520921<254>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)
403e641421792Dmitry DomanovJune 5, 2022 19:07:53 UTC 2022 年 6 月 6 日 (月) 4 時 7 分 53 秒 (日本時間)
2350Ignacio SantosSeptember 19, 2023 08:06:53 UTC 2023 年 9 月 19 日 (火) 17 時 6 分 53 秒 (日本時間)

3×10275-8

c246

composite cofactor 合成数の残り
428927479823797886167873816744867990481268491176154713965713280006215519527661017588505299752695205949461738772532038400835960273825210540333994916942809534050331383892043842556064295523407509037808438701894258708436814770869920563022699214065967<246>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)
403e641421792Dmitry DomanovJune 27, 2023 21:56:49 UTC 2023 年 6 月 28 日 (水) 6 時 56 分 49 秒 (日本時間)
2350Ignacio SantosSeptember 19, 2023 08:07:24 UTC 2023 年 9 月 19 日 (火) 17 時 7 分 24 秒 (日本時間)

3×10276-8

c204

composite cofactor 合成数の残り
364118958863718698777005901515773512899202493054045153909314872916381458316292167790942937455334077932685456793451237513956595378593683339231648984808075133505793275217267241596306520682051052050433899979<204>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)
403e641421792Dmitry DomanovAugust 16, 2023 18:59:37 UTC 2023 年 8 月 17 日 (木) 3 時 59 分 37 秒 (日本時間)
2350Ignacio SantosSeptember 19, 2023 08:18:48 UTC 2023 年 9 月 19 日 (火) 17 時 18 分 48 秒 (日本時間)

3×10277-8

c219

composite cofactor 合成数の残り
189862218079810685730799912673506517658446813169647963855099680692213246555343956012303379322390908275552693563652446377678373467513629247529112842650068682091953330528023940988134145124603006404162309746478532458833139<219>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)
403e641421792Dmitry DomanovAugust 16, 2023 18:59:46 UTC 2023 年 8 月 17 日 (木) 3 時 59 分 46 秒 (日本時間)
2350Ignacio SantosSeptember 19, 2023 08:32:51 UTC 2023 年 9 月 19 日 (火) 17 時 32 分 51 秒 (日本時間)

3×10278-8

c219

composite cofactor 合成数の残り
235485029884530479125657658416137347418457558486346297520704509092306419553687635952776605551933988904894037103876890404020662480347463803569349539724829237818122663520280859239298377546682809666504003404001928110656761<219>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)
403e641421792Dmitry DomanovAugust 16, 2023 18:59:58 UTC 2023 年 8 月 17 日 (木) 3 時 59 分 58 秒 (日本時間)
2350Ignacio SantosSeptember 19, 2023 08:53:05 UTC 2023 年 9 月 19 日 (火) 17 時 53 分 5 秒 (日本時間)

3×10279-8

c251

name 名前Dmitry Domanov
date 日付June 6, 2022 08:00:18 UTC 2022 年 6 月 6 日 (月) 17 時 0 分 18 秒 (日本時間)
composite number 合成数
99662540912645281066898504184945800105392192470377047735222424989170330700964479166379912779154499075093577064284372981285644559044397919174394658678478441020688602257733861855903837236960815730387627389631437346563887440703451101274429754269784319933<251>
prime factors 素因数
3188169034772598163943999279942373323967886909<46>
composite cofactor 合成数の残り
31260118213824220692253778721207041452170406005932893300767379548754784939272515046605907500202754008722895810988655799143730500820840933908892111179988668882170859816840099543298363941716463821032943652737<206>
factorization results 素因数分解の結果
Resuming ECM residue saved by @e971f031f34c with GMP-ECM 7.0.5-dev on Sun Jun  5 22:31:28 2022 
Input number is 99662540912645281066898504184945800105392192470377047735222424989170330700964479166379912779154499075093577064284372981285644559044397919174394658678478441020688602257733861855903837236960815730387627389631437346563887440703451101274429754269784319933 (251 digits)
Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:3417906260
Step 1 took 0ms
Step 2 took 15216ms
********** Factor found in step 2: 3188169034772598163943999279942373323967886909
Found prime factor of 46 digits: 3188169034772598163943999279942373323967886909
Composite cofactor 31260118213824220692253778721207041452170406005932893300767379548754784939272515046605907500202754008722895810988655799143730500820840933908892111179988668882170859816840099543298363941716463821032943652737 has 206 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)
403e641421792Dmitry DomanovJune 5, 2022 19:07:29 UTC 2022 年 6 月 6 日 (月) 4 時 7 分 29 秒 (日本時間)
2350Ignacio SantosSeptember 19, 2023 09:06:38 UTC 2023 年 9 月 19 日 (火) 18 時 6 分 38 秒 (日本時間)

3×10280-8

c267

composite cofactor 合成数の残り
315143861147747828510872092388177704644542187494022823826231298665653615913522922403118580332335371322723607479594839583087160861606700444827352708001157980936761358549527537232019490343723496185632408820747090302753153236119095156387647333043746174087796636461544693<267>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)
403e641421792Dmitry DomanovJune 5, 2022 19:07:16 UTC 2022 年 6 月 6 日 (月) 4 時 7 分 16 秒 (日本時間)
2350Ignacio SantosSeptember 19, 2023 09:10:21 UTC 2023 年 9 月 19 日 (火) 18 時 10 分 21 秒 (日本時間)

3×10283-8

c265

composite cofactor 合成数の残り
2390033313760041609427244921813686122895082162252781991487420526539419721172778556867834770040874064151885285144919024712061286895424822001678239179355169553564035795649276180758323421651612856670666107294460022170725628963851417380684243829582104922632704652838009<265>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)
403e641421792Dmitry DomanovJune 5, 2022 19:06:58 UTC 2022 年 6 月 6 日 (月) 4 時 6 分 58 秒 (日本時間)
2350Ignacio SantosSeptember 19, 2023 09:27:30 UTC 2023 年 9 月 19 日 (火) 18 時 27 分 30 秒 (日本時間)

3×10284-8

c279

composite cofactor 合成数の残り
420276373743373642507312808903134701379627242874914543804005514026023513062189695944052809127282100709426518878814708552344021428491375928810785972855749941161307675927690048976206753561141806852185997511963867439228036356708171293442567832606722180505900680287356965940802671837<279>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)
403e641421792Dmitry DomanovApril 24, 2022 23:19:39 UTC 2022 年 4 月 25 日 (月) 8 時 19 分 39 秒 (日本時間)
2350Ignacio SantosSeptember 19, 2023 09:46:59 UTC 2023 年 9 月 19 日 (火) 18 時 46 分 59 秒 (日本時間)

3×10285-8

c245

composite cofactor 合成数の残り
11883858075660738004933115491662557711048860488561231689092757225380170765456456160978289910487935895227584976432487116430730718061160288448445213420129245273362418927744189610199441781606827156870554766380798171894697721919007049880446657532751<245>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)
403e641421792Dmitry DomanovJune 27, 2023 21:56:37 UTC 2023 年 6 月 28 日 (水) 6 時 56 分 37 秒 (日本時間)
2350Ignacio SantosSeptember 19, 2023 13:26:12 UTC 2023 年 9 月 19 日 (火) 22 時 26 分 12 秒 (日本時間)

3×10286-8

c278

composite cofactor 合成数の残り
83316534868425306159938019607735533677843131761456184623042558552583386909568210836068541113921630867625289683260084027946987488500374135677044492784821407008315856671831477177945877712255926710598994118363646369699726986156768880798766950832335515996963545550027213402062290863<278>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)
403e641421792Dmitry DomanovApril 24, 2022 23:19:48 UTC 2022 年 4 月 25 日 (月) 8 時 19 分 48 秒 (日本時間)
2350Ignacio SantosSeptember 19, 2023 13:26:27 UTC 2023 年 9 月 19 日 (火) 22 時 26 分 27 秒 (日本時間)

3×10288-8

c236

composite cofactor 合成数の残り
41174042304149730604409402296470122282060946837006845630573027675458777009492845013973755404817426080326566399459391389369734453466911641269779738800111642515306470065886029255868233768926966855793261371317451721857526750137343396638973<236>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)
403e641421792Dmitry DomanovAugust 16, 2023 19:00:09 UTC 2023 年 8 月 17 日 (木) 4 時 0 分 9 秒 (日本時間)
2350Ignacio SantosSeptember 19, 2023 13:26:37 UTC 2023 年 9 月 19 日 (火) 22 時 26 分 37 秒 (日本時間)

3×10291-8

c280

composite cofactor 合成数の残り
1297247269289854864462965484946119747292148138746026910708734679124436978732013701018617901435471505323943262091377130068362136890143822038612487267030762604153592813739326652172752879824844295228238818543233357015944401507822422372670573137964299047032019116544083067613992551219<280>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)
403e641421792Dmitry DomanovApril 24, 2022 23:19:58 UTC 2022 年 4 月 25 日 (月) 8 時 19 分 58 秒 (日本時間)
2350Ignacio SantosSeptember 19, 2023 13:53:22 UTC 2023 年 9 月 19 日 (火) 22 時 53 分 22 秒 (日本時間)

3×10293-8

c259

composite cofactor 合成数の残り
2118898264341600585934608423916590670520703083805059077141496606263106361292641720955815940259993276560816861191024700150279166748900325849744985637842255288823092980394937820530926038090928576374724956737470197040242947961574408242807391713034322639043845901<259>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)
403e641421792Dmitry DomanovJune 5, 2022 19:06:33 UTC 2022 年 6 月 6 日 (月) 4 時 6 分 33 秒 (日本時間)
2350Ignacio SantosSeptember 19, 2023 14:06:56 UTC 2023 年 9 月 19 日 (火) 23 時 6 分 56 秒 (日本時間)

3×10297-8

c280

composite cofactor 合成数の残り
3482795575592603692187849375392464399247804760414169870238198690298269042602466823033089708306166657385680689777464524343221348656423296336803413957593252126364298390608942864053387268643134143288363020670835896587210079062829904390733323148637826848778522395102115333333126432511<280>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)
403e641421792Dmitry DomanovApril 24, 2022 23:20:08 UTC 2022 年 4 月 25 日 (月) 8 時 20 分 8 秒 (日本時間)
2350Ignacio SantosSeptember 19, 2023 14:29:57 UTC 2023 年 9 月 19 日 (火) 23 時 29 分 57 秒 (日本時間)

3×10298-8

c283

composite cofactor 合成数の残り
1661868439512075581214168098948638779135707484139850389476755537686299705989805873077179028588889652986777558700342496584843744662727474647626053800951796148069275254182123664103436258740548602537274955521852637476888798689702557139192255129007831763078806202778340857449265904331891<283>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)
403e641421792Dmitry DomanovApril 24, 2022 23:20:17 UTC 2022 年 4 月 25 日 (月) 8 時 20 分 17 秒 (日本時間)
2350Ignacio SantosSeptember 19, 2023 14:43:02 UTC 2023 年 9 月 19 日 (火) 23 時 43 分 2 秒 (日本時間)

3×10299-8

c278

composite cofactor 合成数の残り
19443294746980034190870998835002779605783570395225931476188851630540629838521443802768510943183440901458682718247536345428436289043320360447368638216148184491674980188982959151316841093504672911144872502686490213742907484910209982297810272007807908981873515841103942554509241677<278>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)
403e641421792Dmitry DomanovApril 24, 2022 23:20:26 UTC 2022 年 4 月 25 日 (月) 8 時 20 分 26 秒 (日本時間)
2350Ignacio SantosSeptember 19, 2023 14:53:20 UTC 2023 年 9 月 19 日 (火) 23 時 53 分 20 秒 (日本時間)

3×10300-8

c285

composite cofactor 合成数の残り
176690377454299936184143400557349832140507862292315028799273129612133904269303861314907271338961098787084787536190165933091998387103958801754202567164624491092023646438001553095285386851216936243043709250832794745794234908935708595889013119860321555614514830475711059311883001897445533<285>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasApril 14, 2022 08:00:00 UTC 2022 年 4 月 14 日 (木) 17 時 0 分 0 秒 (日本時間)
403e61792Dmitry DomanovApril 14, 2022 15:45:27 UTC 2022 年 4 月 15 日 (金) 0 時 45 分 27 秒 (日本時間)
4511e635841792Dmitry DomanovApril 15, 2022 14:44:30 UTC 2022 年 4 月 15 日 (金) 23 時 44 分 30 秒 (日本時間)
1792Dmitry DomanovApril 17, 2022 15:50:07 UTC 2022 年 4 月 18 日 (月) 0 時 50 分 7 秒 (日本時間)
5043e6130 / 6675NFS@home + Dmitry DomanovApril 18, 2022 22:22:55 UTC 2022 年 4 月 19 日 (火) 7 時 22 分 55 秒 (日本時間)