name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 6, 2014 15:50:01 UTC 2014 年 12 月 7 日 (日) 0 時 50 分 1 秒 (日本時間) |
composite number 合成数 | 537037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037<108> |
prime factors 素因数 | 1327030034806024678456777442433769257199<40> 404690943649619123320823757726154161462058922953586482669152309966563<69> |
factorization results 素因数分解の結果 | N=537037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037 ( 108 digits) SNFS difficulty: 109 digits. Divisors found: r1=1327030034806024678456777442433769257199 (pp40) r2=404690943649619123320823757726154161462058922953586482669152309966563 (pp69) Version: Msieve v. 1.50 (SVN unknown) Total time: 0.30 hours. Scaled time: 0.64 units (timescale=2.104). Factorization parameters were as follows: n: 537037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037 m: 1000000000000000000000 deg: 5 c5: 14500 c0: -1 skew: 0.15 # Murphy_E = 3.929e-08 type: snfs lss: 1 rlim: 460000 alim: 460000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2 Factor base limits: 460000/460000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [230000, 430001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 47568 x 47793 Total sieving time: 0.28 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.01 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,109.000,5,0,0,0,0,0,0,0,0,460000,460000,25,25,44,44,2.2,2.2,50000 total time: 0.30 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) |
name 名前 | KTakahashi |
---|---|
date 日付 | December 6, 2014 17:36:33 UTC 2014 年 12 月 7 日 (日) 2 時 36 分 33 秒 (日本時間) |
composite number 合成数 | 19963921877649823656558164254116190885623176953020797886580142118371265129849935256450374670943<95> |
prime factors 素因数 | 75714811140505403567239366205639949330226184581<47> 263672610113263006929605695958826754759643021203<48> |
factorization results 素因数分解の結果 | Number: 16111_112 N=19963921877649823656558164254116190885623176953020797886580142118371265129849935256450374670943 ( 95 digits) SNFS difficulty: 115 digits. Divisors found: r1=75714811140505403567239366205639949330226184581 (pp47) r2=263672610113263006929605695958826754759643021203 (pp48) Version: Msieve v. 1.51 (SVN Official Release) Total time: 1.62 hours. Scaled time: 2.76 units (timescale=1.705). Factorization parameters were as follows: n: 19963921877649823656558164254116190885623176953020797886580142118371265129849935256450374670943 m: 50000000000000000000000 c5: 116 c0: -25 skew: 0.74 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [300000, 500001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 80874 x 81101 Total sieving time: 1.57 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.02 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,115.000,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 1.62 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) |
name 名前 | KTakahashi |
---|---|
date 日付 | December 6, 2014 17:37:12 UTC 2014 年 12 月 7 日 (日) 2 時 37 分 12 秒 (日本時間) |
composite number 合成数 | 4838740688956871593778711762851572883100645785306808901269017176525323677372004354035024075192674124171859<106> |
prime factors 素因数 | 23634966511457643030437608665176093012799238679<47> 204728053522359366923714202981283975741667517983237356272421<60> |
factorization results 素因数分解の結果 | Number: 16111_113 N=4838740688956871593778711762851572883100645785306808901269017176525323677372004354035024075192674124171859 ( 106 digits) SNFS difficulty: 116 digits. Divisors found: r1=23634966511457643030437608665176093012799238679 (pp47) r2=204728053522359366923714202981283975741667517983237356272421 (pp60) Version: Msieve v. 1.51 (SVN Official Release) Total time: 1.54 hours. Scaled time: 2.22 units (timescale=1.445). Factorization parameters were as follows: n: 4838740688956871593778711762851572883100645785306808901269017176525323677372004354035024075192674124171859 m: 100000000000000000000000 c5: 29 c0: -20 skew: 0.93 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [300000, 500001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 88887 x 89114 Total sieving time: 1.49 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.03 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,116.000,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 1.54 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) |
name 名前 | KTakahashi |
---|---|
date 日付 | December 6, 2014 17:37:47 UTC 2014 年 12 月 7 日 (日) 2 時 37 分 47 秒 (日本時間) |
composite number 合成数 | 80996091179437962934426585652665236681876294785647625187124418370030123931790506811589746959776557<98> |
prime factors 素因数 | 1322035112858234401106754720626699469064457699<46> 61266217811964730315346606869074130021425570806554543<53> |
factorization results 素因数分解の結果 | Number: 16111_116 N=80996091179437962934426585652665236681876294785647625187124418370030123931790506811589746959776557 ( 98 digits) SNFS difficulty: 120 digits. Divisors found: r1=1322035112858234401106754720626699469064457699 (pp46) r2=61266217811964730315346606869074130021425570806554543 (pp53) Version: Msieve v. 1.51 (SVN Official Release) Total time: 2.16 hours. Scaled time: 3.64 units (timescale=1.687). Factorization parameters were as follows: n: 80996091179437962934426585652665236681876294785647625187124418370030123931790506811589746959776557 m: 500000000000000000000000 c5: 58 c0: -125 skew: 1.17 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [300000, 450001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 73948 x 74173 Total sieving time: 2.12 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.02 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,120.000,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 2.16 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) |
name 名前 | KTakahashi |
---|---|
date 日付 | December 6, 2014 17:38:32 UTC 2014 年 12 月 7 日 (日) 2 時 38 分 32 秒 (日本時間) |
composite number 合成数 | 13555955723576014175113800807946361416320927529641328687909376022410261635383523049411193275789542219<101> |
prime factors 素因数 | 333658098830394424012915165882625639092496237<45> 40628283176985904798051625050899811646279245150690740887<56> |
factorization results 素因数分解の結果 | Number: 16111_117 N=13555955723576014175113800807946361416320927529641328687909376022410261635383523049411193275789542219 ( 101 digits) SNFS difficulty: 120 digits. Divisors found: r1=333658098830394424012915165882625639092496237 (pp45) r2=40628283176985904798051625050899811646279245150690740887 (pp56) Version: Msieve v. 1.51 (SVN Official Release) Total time: 2.02 hours. Scaled time: 4.19 units (timescale=2.068). Factorization parameters were as follows: n: 13555955723576014175113800807946361416320927529641328687909376022410261635383523049411193275789542219 m: 500000000000000000000000 c5: 116 c0: -25 skew: 0.74 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [300000, 450001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 85395 x 85633 Total sieving time: 1.98 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.02 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,120.000,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 2.02 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) |
name 名前 | KTakahashi |
---|---|
date 日付 | December 6, 2014 17:39:16 UTC 2014 年 12 月 7 日 (日) 2 時 39 分 16 秒 (日本時間) |
composite number 合成数 | 51554052881118392407394704613218317134769517370039997411488924316736609410762451667635925650695583772191385251<110> |
prime factors 素因数 | 117093518195864449983800031730229315341<39> 440281013632906595511764287691567158147953130495914804545847215311206511<72> |
factorization results 素因数分解の結果 | Number: 16111_119 N=51554052881118392407394704613218317134769517370039997411488924316736609410762451667635925650695583772191385251 ( 110 digits) SNFS difficulty: 121 digits. Divisors found: r1=117093518195864449983800031730229315341 (pp39) r2=440281013632906595511764287691567158147953130495914804545847215311206511 (pp72) Version: Msieve v. 1.51 (SVN Official Release) Total time: 2.31 hours. Scaled time: 3.88 units (timescale=1.678). Factorization parameters were as follows: n: 51554052881118392407394704613218317134769517370039997411488924316736609410762451667635925650695583772191385251 m: 1000000000000000000000000 c5: 29 c0: -2 skew: 0.59 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [300000, 450001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 74958 x 75185 Total sieving time: 2.27 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.02 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,121.000,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 2.31 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 6, 2014 21:45:50 UTC 2014 年 12 月 7 日 (日) 6 時 45 分 50 秒 (日本時間) |
composite number 合成数 | 6577843102564451521296334099992288046017683056837100849675871110566737888829915123141759323525542445233785616752178627<118> |
prime factors 素因数 | 21192996891404488337745645587737953624049588142369087<53> 310378146907213038036455290166567066935480943340348595658869239421<66> |
factorization results 素因数分解の結果 | N=6577843102564451521296334099992288046017683056837100849675871110566737888829915123141759323525542445233785616752178627 ( 118 digits) SNFS difficulty: 123 digits. Divisors found: r1=21192996891404488337745645587737953624049588142369087 (pp53) r2=310378146907213038036455290166567066935480943340348595658869239421 (pp66) Version: Msieve v. 1.50 (SVN unknown) Total time: 1.37 hours. Scaled time: 1.81 units (timescale=1.323). Factorization parameters were as follows: n: 6577843102564451521296334099992288046017683056837100849675871110566737888829915123141759323525542445233785616752178627 m: 1000000000000000000000000 deg: 5 c5: 1450 c0: -1 skew: 0.23 # Murphy_E = 1.453e-08 type: snfs lss: 1 rlim: 790000 alim: 790000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 790000/790000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [395000, 745001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 75594 x 75819 Total sieving time: 1.32 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.01 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,123.000,5,0,0,0,0,0,0,0,0,790000,790000,25,25,46,46,2.2,2.2,50000 total time: 1.37 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 7, 2014 00:21:21 UTC 2014 年 12 月 7 日 (日) 9 時 21 分 21 秒 (日本時間) |
composite number 合成数 | 906043970974973593850070622463683137942152566425787185606943225741648356843805535151128213809308981294117612955549<114> |
prime factors 素因数 | 170318069931854446486801983652941725477<39> 5319717228697393464670837915595425802184131420016203662640621724905614227737<76> |
factorization results 素因数分解の結果 | N=906043970974973593850070622463683137942152566425787185606943225741648356843805535151128213809308981294117612955549 ( 114 digits) SNFS difficulty: 125 digits. Divisors found: r1=170318069931854446486801983652941725477 (pp39) r2=5319717228697393464670837915595425802184131420016203662640621724905614227737 (pp76) Version: Msieve v. 1.50 (SVN unknown) Total time: 1.05 hours. Scaled time: 2.12 units (timescale=2.027). Factorization parameters were as follows: n: 906043970974973593850070622463683137942152566425787185606943225741648356843805535151128213809308981294117612955549 m: 5000000000000000000000000 deg: 5 c5: 232 c0: -5 skew: 0.46 # Murphy_E = 1.177e-08 type: snfs lss: 1 rlim: 880000 alim: 880000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 880000/880000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [440000, 690001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 104732 x 104962 Total sieving time: 0.98 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.03 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,125.000,5,0,0,0,0,0,0,0,0,880000,880000,26,26,46,46,2.3,2.3,50000 total time: 1.05 hours. |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | December 9, 2014 12:33:22 UTC 2014 年 12 月 9 日 (火) 21 時 33 分 22 秒 (日本時間) |
composite number 合成数 | 2273014037712085763688196420213331828825388860422297333651775897508576664285348253470072891219229018723<103> |
prime factors 素因数 | 2576282858254673544332453376055658814268260863<46> 882284346390427010357379149325433115959714710105982136221<57> |
factorization results 素因数分解の結果 | Number: 16111_127 N=2273014037712085763688196420213331828825388860422297333651775897508576664285348253470072891219229018723 ( 103 digits) SNFS difficulty: 129 digits. Divisors found: r1=2576282858254673544332453376055658814268260863 r2=882284346390427010357379149325433115959714710105982136221 Version: Total time: 0.69 hours. Scaled time: 3.48 units (timescale=5.017). Factorization parameters were as follows: n: 2273014037712085763688196420213331828825388860422297333651775897508576664285348253470072891219229018723 m: 10000000000000000000000000 deg: 5 c5: 14500 c0: -1 skew: 0.15 # Murphy_E = 7.927e-09 type: snfs lss: 1 rlim: 800000 alim: 800000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [400000, 725001) Primes: rational ideals reading, algebraic ideals reading, Relations: 2412473 Max relations in full relation-set: Initial matrix: Pruned matrix : 127908 x 128156 Total sieving time: 0.60 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.02 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,129,5,0,0,0,0,0,0,0,0,800000,800000,26,26,47,47,2.3,2.3,25000 total time: 0.69 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM) i7-4930K CPU @ 3.40GHz stepping 04 Total of 12 processors activated (81596.44 BogoMIPS). |
software ソフトウェア | GGNFS / Msieve v1.39 |
execution environment 実行環境 | Core i7-4930K |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 8, 2014 11:35:50 UTC 2014 年 12 月 8 日 (月) 20 時 35 分 50 秒 (日本時間) |
composite number 合成数 | 1287858602007283062438937738697930544453326227906563637978506084021671551647570832223110400568434141575628386179944932942534861<127> |
prime factors 素因数 | 147141292111720773080638021216991<33> 8752530194103798019811017196955685077463417865268572012526562489208478071075885247332249263571<94> |
factorization results 素因数分解の結果 | N=1287858602007283062438937738697930544453326227906563637978506084021671551647570832223110400568434141575628386179944932942534861 ( 127 digits) SNFS difficulty: 130 digits. Divisors found: r1=147141292111720773080638021216991 (pp33) r2=8752530194103798019811017196955685077463417865268572012526562489208478071075885247332249263571 (pp94) Version: Msieve v. 1.50 (SVN unknown) Total time: 1.91 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 1287858602007283062438937738697930544453326227906563637978506084021671551647570832223110400568434141575628386179944932942534861 m: 50000000000000000000000000 deg: 5 c5: 232 c0: -5 skew: 0.46 # Murphy_E = 7.795e-09 type: snfs lss: 1 rlim: 1060000 alim: 1060000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1060000/1060000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [530000, 880001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 135671 x 135899 Total sieving time: 1.81 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.05 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,130.000,5,0,0,0,0,0,0,0,0,1060000,1060000,26,26,47,47,2.3,2.3,50000 total time: 1.91 hours. |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 8, 2014 13:18:43 UTC 2014 年 12 月 8 日 (月) 22 時 18 分 43 秒 (日本時間) |
composite number 合成数 | 5536464299350897289041618938526155021000381825124093165330278732340588010691103474608629247804505536464299350897289041618938526155021<133> |
prime factors 素因数 | 46467273444604034816284477814084672821018908592697986841<56> 119147604086372612689088320835912417949908556379922258121228076459118465704981<78> |
factorization results 素因数分解の結果 | N=5536464299350897289041618938526155021000381825124093165330278732340588010691103474608629247804505536464299350897289041618938526155021 ( 133 digits) SNFS difficulty: 136 digits. Divisors found: r1=46467273444604034816284477814084672821018908592697986841 (pp56) r2=119147604086372612689088320835912417949908556379922258121228076459118465704981 (pp78) Version: Msieve v. 1.50 (SVN unknown) Total time: 2.55 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 5536464299350897289041618938526155021000381825124093165330278732340588010691103474608629247804505536464299350897289041618938526155021 m: 1000000000000000000000000000 deg: 5 c5: 29 c0: -2 skew: 0.59 # Murphy_E = 5.9e-09 type: snfs lss: 1 rlim: 1320000 alim: 1320000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1320000/1320000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [660000, 1110001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 161267 x 161498 Total sieving time: 2.43 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.07 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,136.000,5,0,0,0,0,0,0,0,0,1320000,1320000,26,26,48,48,2.3,2.3,75000 total time: 2.55 hours. |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | December 10, 2014 14:11:22 UTC 2014 年 12 月 10 日 (水) 23 時 11 分 22 秒 (日本時間) |
composite number 合成数 | 37713549939833086477431636681265112597921068240693334539508071008861155093863896483964474516811306576256999612289698160191159823<128> |
prime factors 素因数 | 41494638031834261595018064423552583280905143389<47> 908877670191980876340445848483222823625553421190898302150011485065851023397954907<81> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:1530991453 Step 1 took 4953ms Step 2 took 4219ms ********** Factor found in step 2: 41494638031834261595018064423552583280905143389 Found probable prime factor of 47 digits: 41494638031834261595018064423552583280905143389 Probable prime cofactor 908877670191980876340445848483222823625553421190898302150011485065851023397954907 has 81 digits |
software ソフトウェア | GMP-ECM 7.0 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 15, 2014 08:12:43 UTC 2014 年 12 月 15 日 (月) 17 時 12 分 43 秒 (日本時間) |
composite number 合成数 | 110295018952994271264665236677182360902878863658086739061348689383666606464184449792395554280622316675507319818679747422117723<126> |
prime factors 素因数 | 58166205904719064314505143808560494908193849381<47> 1896204458198054146642857423638435641862225920113494897379777844870316964301183<79> |
factorization results 素因数分解の結果 | N=110295018952994271264665236677182360902878863658086739061348689383666606464184449792395554280622316675507319818679747422117723 ( 126 digits) SNFS difficulty: 148 digits. Divisors found: r1=58166205904719064314505143808560494908193849381 (pp47) r2=1896204458198054146642857423638435641862225920113494897379777844870316964301183 (pp79) Version: Msieve v. 1.50 (SVN unknown) Total time: 7.21 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 110295018952994271264665236677182360902878863658086739061348689383666606464184449792395554280622316675507319818679747422117723 m: 100000000000000000000000000000 deg: 5 c5: 1450 c0: -1 skew: 0.23 # Murphy_E = 1.777e-09 type: snfs lss: 1 rlim: 2100000 alim: 2100000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 2100000/2100000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [1050000, 2250001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 316939 x 317164 Total sieving time: 6.93 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.09 hours. Time per square root: 0.14 hours. Prototype def-par.txt line would be: snfs,148.000,5,0,0,0,0,0,0,0,0,2100000,2100000,26,26,49,49,2.3,2.3,100000 total time: 7.21 hours. |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 / 2318 | Serge Batalov | December 10, 2014 19:48:35 UTC 2014 年 12 月 11 日 (木) 4 時 48 分 35 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 19, 2014 08:46:00 UTC 2014 年 12 月 19 日 (金) 17 時 46 分 0 秒 (日本時間) |
composite number 合成数 | 512437530222203648711575173303433325388524059811264605692977919948915973646045698336316124440100423079055249162446386673649<123> |
prime factors 素因数 | 399093369516710857684165877087801752360208547717917<51> 1284004118742310597614149530423195499174099917928398388388439862663732197<73> |
factorization results 素因数分解の結果 | N=512437530222203648711575173303433325388524059811264605692977919948915973646045698336316124440100423079055249162446386673649 ( 123 digits) SNFS difficulty: 150 digits. Divisors found: r1=399093369516710857684165877087801752360208547717917 (pp51) r2=1284004118742310597614149530423195499174099917928398388388439862663732197 (pp73) Version: Msieve v. 1.50 (SVN unknown) Total time: 10.11 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 512437530222203648711575173303433325388524059811264605692977919948915973646045698336316124440100423079055249162446386673649 m: 500000000000000000000000000000 deg: 5 c5: 232 c0: -5 skew: 0.46 # Murphy_E = 1.417e-09 type: snfs lss: 1 rlim: 2300000 alim: 2300000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1150000, 1750001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 360002 x 360230 Total sieving time: 9.88 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.12 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,150.000,5,0,0,0,0,0,0,0,0,2300000,2300000,27,27,49,49,2.4,2.4,100000 total time: 10.11 hours. |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2320 | Serge Batalov | December 9, 2014 00:57:14 UTC 2014 年 12 月 9 日 (火) 9 時 57 分 14 秒 (日本時間) |
name 名前 | Cyp |
---|---|
date 日付 | December 17, 2014 06:02:20 UTC 2014 年 12 月 17 日 (水) 15 時 2 分 20 秒 (日本時間) |
composite number 合成数 | 48838357043828577513102615721348921644971860967666324764152286226236157410092940246980478781393629284292475270099363110202109555082965144401<140> |
prime factors 素因数 | 662500002131978598950390602564644609301943<42> 124886659084551278498854672704686424329350583167<48> 590281420659968612843892642382897205949821729077321<51> |
factorization results 素因数分解の結果 | 12/17/14 05:14:24 v1.34.3, 12/17/14 05:14:24 v1.34.3, **************************** 12/17/14 05:14:24 v1.34.3, Starting factorization of 48838357043828577513102615721348921644971860967666324764152286226236157410092940246980478781393629284292475270099363110202109555082965144401 12/17/14 05:14:24 v1.34.3, using pretesting plan: none 12/17/14 05:14:24 v1.34.3, no tune info: using qs/gnfs crossover of 95 digits 12/17/14 05:14:24 v1.34.3, **************************** 12/17/14 05:14:24 v1.34.3, nfs: commencing nfs on c140: 48838357043828577513102615721348921644971860967666324764152286226236157410092940246980478781393629284292475270099363110202109555082965144401 12/17/14 05:14:24 v1.34.3, nfs: continuing with sieving - could not determine last special q; using default startq 12/17/14 05:14:24 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/17/14 05:18:00 v1.34.3, nfs: commencing lattice sieving with 8 threads [22 lines snipped] 12/17/14 06:38:51 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/17/14 06:42:24 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/17/14 06:45:51 v1.34.3, nfs: commencing msieve filtering 12/17/14 06:47:32 v1.34.3, nfs: commencing msieve linear algebra 12/17/14 06:49:19 v1.34.3, nfs: commencing msieve sqrt 12/17/14 06:50:22 v1.34.3, prp48 = 124886659084551278498854672704686424329350583167 12/17/14 06:50:22 v1.34.3, C93 = 391061442445696562214164908577338456920317362600240782839163011326182704627916869155282534703 12/17/14 06:50:22 v1.34.3, NFS elapsed time = 5757.5057 seconds. 12/17/14 06:50:22 v1.34.3, 12/17/14 06:50:22 v1.34.3, 12/17/14 06:50:22 v1.34.3, 12/17/14 06:50:22 v1.34.3, **************************** 12/17/14 06:50:22 v1.34.3, Starting factorization of 391061442445696562214164908577338456920317362600240782839163011326182704627916869155282534703 12/17/14 06:50:22 v1.34.3, using pretesting plan: normal 12/17/14 06:50:22 v1.34.3, no tune info: using qs/gnfs crossover of 95 digits 12/17/14 06:50:22 v1.34.3, **************************** 12/17/14 06:50:22 v1.34.3, rho: x^2 + 3, starting 1000 iterations on C93 12/17/14 06:50:22 v1.34.3, rho: x^2 + 2, starting 1000 iterations on C93 12/17/14 06:50:22 v1.34.3, rho: x^2 + 1, starting 1000 iterations on C93 12/17/14 06:50:22 v1.34.3, pm1: starting B1 = 150K, B2 = gmp-ecm default on C93 12/17/14 06:50:22 v1.34.3, current ECM pretesting depth: 0.00 12/17/14 06:50:22 v1.34.3, scheduled 30 curves at B1=2000 toward target pretesting depth of 28.62 12/17/14 06:50:22 v1.34.3, Finished 30 curves using Lenstra ECM method on C93 input, B1=2K, B2=gmp-ecm default 12/17/14 06:50:22 v1.34.3, current ECM pretesting depth: 15.18 12/17/14 06:50:22 v1.34.3, scheduled 74 curves at B1=11000 toward target pretesting depth of 28.62 12/17/14 06:50:24 v1.34.3, Finished 74 curves using Lenstra ECM method on C93 input, B1=11K, B2=gmp-ecm default 12/17/14 06:50:24 v1.34.3, current ECM pretesting depth: 20.24 12/17/14 06:50:24 v1.34.3, scheduled 214 curves at B1=50000 toward target pretesting depth of 28.62 12/17/14 06:50:45 v1.34.3, Finished 214 curves using Lenstra ECM method on C93 input, B1=50K, B2=gmp-ecm default 12/17/14 06:50:45 v1.34.3, pm1: starting B1 = 3750K, B2 = gmp-ecm default on C93 12/17/14 06:50:47 v1.34.3, current ECM pretesting depth: 25.33 12/17/14 06:50:47 v1.34.3, scheduled 283 curves at B1=250000 toward target pretesting depth of 28.62 12/17/14 06:52:51 v1.34.3, Finished 283 curves using Lenstra ECM method on C93 input, B1=250K, B2=gmp-ecm default 12/17/14 06:52:51 v1.34.3, final ECM pretested depth: 28.62 12/17/14 06:52:51 v1.34.3, scheduler: switching to sieve method 12/17/14 06:52:51 v1.34.3, starting SIQS on c93: 391061442445696562214164908577338456920317362600240782839163011326182704627916869155282534703 12/17/14 06:52:51 v1.34.3, random seeds: 1337890632, 1974366839 12/17/14 06:52:51 v1.34.3, ==== sieve params ==== 12/17/14 06:52:51 v1.34.3, n = 94 digits, 311 bits 12/17/14 06:52:51 v1.34.3, factor base: 83696 primes (max prime = 2273833) 12/17/14 06:52:51 v1.34.3, single large prime cutoff: 272859960 (120 * pmax) 12/17/14 06:52:51 v1.34.3, double large prime range from 43 to 51 bits 12/17/14 06:52:51 v1.34.3, double large prime cutoff: 1530000807521320 12/17/14 06:52:51 v1.34.3, allocating 9 large prime slices of factor base 12/17/14 06:52:51 v1.34.3, buckets hold 2048 elements 12/17/14 06:52:51 v1.34.3, using 32k sieve core 12/17/14 06:52:51 v1.34.3, sieve interval: 16 blocks of size 32768 12/17/14 06:52:51 v1.34.3, polynomial A has ~ 12 factors 12/17/14 06:52:51 v1.34.3, using multiplier of 7 12/17/14 06:52:51 v1.34.3, using SPV correction of 19 bits, starting at offset 30 12/17/14 06:52:51 v1.34.3, using SSE2 for trial division and x128 sieve scanning 12/17/14 06:52:51 v1.34.3, using SSE4.1 enabled 32k sieve core 12/17/14 06:52:51 v1.34.3, using SSE2 for resieving 13-16 bit primes 12/17/14 06:52:51 v1.34.3, trial factoring cutoff at 99 bits 12/17/14 06:52:51 v1.34.3, ==== sieving started ( 8 threads) ==== 12/17/14 07:02:01 v1.34.3, 85161 relations found: 22568 full + 62593 from 1082975 partial, using 998432 polys (991 A polys) 12/17/14 07:02:01 v1.34.3, on average, sieving found 1.11 rels/poly and 2009.92 rels/sec 12/17/14 07:02:01 v1.34.3, trial division touched 55781679 sieve locations out of 0 12/17/14 07:02:01 v1.34.3, ==== post processing stage (msieve-1.38) ==== 12/17/14 07:02:01 v1.34.3, begin with 1105543 relations 12/17/14 07:02:02 v1.34.3, reduce to 210192 relations in 10 passes 12/17/14 07:02:02 v1.34.3, recovered 210192 relations 12/17/14 07:02:02 v1.34.3, recovered 189305 polynomials 12/17/14 07:02:02 v1.34.3, freed 53 duplicate relations 12/17/14 07:02:02 v1.34.3, attempting to build 85108 cycles 12/17/14 07:02:02 v1.34.3, found 85108 cycles in 6 passes 12/17/14 07:02:02 v1.34.3, distribution of cycle lengths: 12/17/14 07:02:02 v1.34.3, length 1 : 22567 12/17/14 07:02:02 v1.34.3, length 2 : 16334 12/17/14 07:02:02 v1.34.3, length 3 : 15002 12/17/14 07:02:02 v1.34.3, length 4 : 11288 12/17/14 07:02:02 v1.34.3, length 5 : 7952 12/17/14 07:02:02 v1.34.3, length 6 : 5037 12/17/14 07:02:02 v1.34.3, length 7 : 3077 12/17/14 07:02:02 v1.34.3, length 9+: 3851 12/17/14 07:02:02 v1.34.3, largest cycle: 19 relations 12/17/14 07:02:03 v1.34.3, matrix is 83696 x 85108 (23.4 MB) with weight 5460424 (64.16/col) 12/17/14 07:02:03 v1.34.3, sparse part has weight 5460424 (64.16/col) 12/17/14 07:02:03 v1.34.3, filtering completed in 4 passes 12/17/14 07:02:03 v1.34.3, matrix is 77925 x 77989 (21.3 MB) with weight 4950401 (63.48/col) 12/17/14 07:02:03 v1.34.3, sparse part has weight 4950401 (63.48/col) 12/17/14 07:02:03 v1.34.3, saving the first 48 matrix rows for later 12/17/14 07:02:03 v1.34.3, matrix is 77877 x 77989 (18.1 MB) with weight 4340193 (55.65/col) 12/17/14 07:02:03 v1.34.3, sparse part has weight 3952530 (50.68/col) 12/17/14 07:02:03 v1.34.3, matrix includes 64 packed rows 12/17/14 07:02:03 v1.34.3, using block size 31195 for processor cache size 8192 kB 12/17/14 07:02:03 v1.34.3, commencing Lanczos iteration 12/17/14 07:02:03 v1.34.3, memory use: 14.3 MB 12/17/14 07:02:19 v1.34.3, lanczos halted after 1233 iterations (dim = 77873) 12/17/14 07:02:19 v1.34.3, recovered 15 nontrivial dependencies 12/17/14 07:02:19 v1.34.3, prp42 = 662500002131978598950390602564644609301943 12/17/14 07:02:19 v1.34.3, prp51 = 590281420659968612843892642382897205949821729077321 12/17/14 07:02:19 v1.34.3, Lanczos elapsed time = 17.5363 seconds. 12/17/14 07:02:19 v1.34.3, Sqrt elapsed time = 0.0810 seconds. 12/17/14 07:02:19 v1.34.3, SIQS elapsed time = 567.6675 seconds. 12/17/14 07:02:19 v1.34.3, 12/17/14 07:02:19 v1.34.3, 12/17/14 07:02:19 v1.34.3, Total factoring time = 717.0242 seconds 12/17/14 07:02:19 v1.34.3, Total factoring time = 6474.5559 seconds -- Wed Dec 17 06:45:51 2014 Wed Dec 17 06:45:51 2014 commencing relation filtering Wed Dec 17 06:45:51 2014 estimated available RAM is 15987.3 MB Wed Dec 17 06:45:51 2014 commencing duplicate removal, pass 1 Wed Dec 17 06:46:19 2014 found 1222579 hash collisions in 10242893 relations Wed Dec 17 06:46:27 2014 added 350777 free relations Wed Dec 17 06:46:27 2014 commencing duplicate removal, pass 2 Wed Dec 17 06:46:35 2014 found 698682 duplicates and 9894988 unique relations Wed Dec 17 06:46:35 2014 memory use: 41.3 MB Wed Dec 17 06:46:35 2014 reading ideals above 100000 Wed Dec 17 06:46:35 2014 commencing singleton removal, initial pass Wed Dec 17 06:47:16 2014 memory use: 188.2 MB Wed Dec 17 06:47:16 2014 reading all ideals from disk Wed Dec 17 06:47:16 2014 memory use: 330.2 MB Wed Dec 17 06:47:16 2014 keeping 9239437 ideals with weight <= 200, target excess is 79142 Wed Dec 17 06:47:17 2014 commencing in-memory singleton removal Wed Dec 17 06:47:17 2014 begin with 9894988 relations and 9239437 unique ideals Wed Dec 17 06:47:19 2014 reduce to 5342900 relations and 3639557 ideals in 10 passes Wed Dec 17 06:47:19 2014 max relations containing the same ideal: 137 Wed Dec 17 06:47:20 2014 removing 1131737 relations and 731737 ideals in 400000 cliques Wed Dec 17 06:47:21 2014 commencing in-memory singleton removal Wed Dec 17 06:47:21 2014 begin with 4211163 relations and 3639557 unique ideals Wed Dec 17 06:47:22 2014 reduce to 4081890 relations and 2767586 ideals in 6 passes Wed Dec 17 06:47:22 2014 max relations containing the same ideal: 114 Wed Dec 17 06:47:22 2014 removing 981128 relations and 581128 ideals in 400000 cliques Wed Dec 17 06:47:23 2014 commencing in-memory singleton removal Wed Dec 17 06:47:23 2014 begin with 3100762 relations and 2767586 unique ideals Wed Dec 17 06:47:23 2014 reduce to 3010777 relations and 2088933 ideals in 6 passes Wed Dec 17 06:47:23 2014 max relations containing the same ideal: 90 Wed Dec 17 06:47:24 2014 removing 937204 relations and 537204 ideals in 400000 cliques Wed Dec 17 06:47:24 2014 commencing in-memory singleton removal Wed Dec 17 06:47:24 2014 begin with 2073573 relations and 2088933 unique ideals Wed Dec 17 06:47:24 2014 reduce to 1985245 relations and 1455160 ideals in 6 passes Wed Dec 17 06:47:24 2014 max relations containing the same ideal: 68 Wed Dec 17 06:47:25 2014 removing 818011 relations and 458603 ideals in 359408 cliques Wed Dec 17 06:47:25 2014 commencing in-memory singleton removal Wed Dec 17 06:47:25 2014 begin with 1167234 relations and 1455160 unique ideals Wed Dec 17 06:47:25 2014 reduce to 1077592 relations and 897601 ideals in 8 passes Wed Dec 17 06:47:25 2014 max relations containing the same ideal: 44 Wed Dec 17 06:47:25 2014 removing 239193 relations and 151007 ideals in 88186 cliques Wed Dec 17 06:47:25 2014 commencing in-memory singleton removal Wed Dec 17 06:47:25 2014 begin with 838399 relations and 897601 unique ideals Wed Dec 17 06:47:25 2014 reduce to 788189 relations and 692309 ideals in 7 passes Wed Dec 17 06:47:25 2014 max relations containing the same ideal: 37 Wed Dec 17 06:47:26 2014 relations with 0 large ideals: 2136 Wed Dec 17 06:47:26 2014 relations with 1 large ideals: 10020 Wed Dec 17 06:47:26 2014 relations with 2 large ideals: 48388 Wed Dec 17 06:47:26 2014 relations with 3 large ideals: 127662 Wed Dec 17 06:47:26 2014 relations with 4 large ideals: 202741 Wed Dec 17 06:47:26 2014 relations with 5 large ideals: 201529 Wed Dec 17 06:47:26 2014 relations with 6 large ideals: 132562 Wed Dec 17 06:47:26 2014 relations with 7+ large ideals: 63151 Wed Dec 17 06:47:26 2014 commencing 2-way merge Wed Dec 17 06:47:26 2014 reduce to 578123 relation sets and 482243 unique ideals Wed Dec 17 06:47:26 2014 commencing full merge Wed Dec 17 06:47:30 2014 memory use: 52.5 MB Wed Dec 17 06:47:30 2014 found 271939 cycles, need 256443 Wed Dec 17 06:47:30 2014 weight of 256443 cycles is about 18084986 (70.52/cycle) Wed Dec 17 06:47:30 2014 distribution of cycle lengths: Wed Dec 17 06:47:30 2014 1 relations: 22017 Wed Dec 17 06:47:30 2014 2 relations: 25364 Wed Dec 17 06:47:30 2014 3 relations: 27377 Wed Dec 17 06:47:30 2014 4 relations: 27197 Wed Dec 17 06:47:30 2014 5 relations: 25998 Wed Dec 17 06:47:30 2014 6 relations: 23645 Wed Dec 17 06:47:30 2014 7 relations: 21357 Wed Dec 17 06:47:30 2014 8 relations: 18530 Wed Dec 17 06:47:30 2014 9 relations: 15424 Wed Dec 17 06:47:30 2014 10+ relations: 49534 Wed Dec 17 06:47:30 2014 heaviest cycle: 18 relations Wed Dec 17 06:47:30 2014 commencing cycle optimization Wed Dec 17 06:47:30 2014 start with 1565881 relations Wed Dec 17 06:47:32 2014 pruned 74502 relations Wed Dec 17 06:47:32 2014 memory use: 46.4 MB Wed Dec 17 06:47:32 2014 distribution of cycle lengths: Wed Dec 17 06:47:32 2014 1 relations: 22017 Wed Dec 17 06:47:32 2014 2 relations: 26243 Wed Dec 17 06:47:32 2014 3 relations: 29173 Wed Dec 17 06:47:32 2014 4 relations: 28915 Wed Dec 17 06:47:32 2014 5 relations: 27721 Wed Dec 17 06:47:32 2014 6 relations: 24658 Wed Dec 17 06:47:32 2014 7 relations: 22423 Wed Dec 17 06:47:32 2014 8 relations: 18813 Wed Dec 17 06:47:32 2014 9 relations: 15307 Wed Dec 17 06:47:32 2014 10+ relations: 41173 Wed Dec 17 06:47:32 2014 heaviest cycle: 18 relations Wed Dec 17 06:47:32 2014 RelProcTime: 101 Wed Dec 17 06:47:32 2014 Wed Dec 17 06:47:32 2014 commencing linear algebra Wed Dec 17 06:47:32 2014 read 256443 cycles Wed Dec 17 06:47:32 2014 cycles contain 723462 unique relations Wed Dec 17 06:47:40 2014 read 723462 relations Wed Dec 17 06:47:40 2014 using 20 quadratic characters above 133926674 Wed Dec 17 06:47:42 2014 building initial matrix Wed Dec 17 06:47:46 2014 memory use: 89.6 MB Wed Dec 17 06:47:46 2014 read 256443 cycles Wed Dec 17 06:47:46 2014 matrix is 256258 x 256443 (75.1 MB) with weight 22475340 (87.64/col) Wed Dec 17 06:47:46 2014 sparse part has weight 16863177 (65.76/col) Wed Dec 17 06:47:47 2014 filtering completed in 2 passes Wed Dec 17 06:47:47 2014 matrix is 255850 x 256035 (75.0 MB) with weight 22454902 (87.70/col) Wed Dec 17 06:47:47 2014 sparse part has weight 16851812 (65.82/col) Wed Dec 17 06:47:47 2014 matrix starts at (0, 0) Wed Dec 17 06:47:47 2014 matrix is 255850 x 256035 (75.0 MB) with weight 22454902 (87.70/col) Wed Dec 17 06:47:47 2014 sparse part has weight 16851812 (65.82/col) Wed Dec 17 06:47:47 2014 saving the first 48 matrix rows for later Wed Dec 17 06:47:48 2014 matrix includes 64 packed rows Wed Dec 17 06:47:48 2014 matrix is 255802 x 256035 (70.6 MB) with weight 17735473 (69.27/col) Wed Dec 17 06:47:48 2014 sparse part has weight 15960050 (62.34/col) Wed Dec 17 06:47:48 2014 using block size 65536 for processor cache size 8192 kB Wed Dec 17 06:47:48 2014 commencing Lanczos iteration (8 threads) Wed Dec 17 06:47:48 2014 memory use: 67.8 MB Wed Dec 17 06:47:52 2014 linear algebra at 4.8%, ETA 0h 1m Wed Dec 17 06:49:19 2014 lanczos halted after 4046 iterations (dim = 255800) Wed Dec 17 06:49:19 2014 recovered 38 nontrivial dependencies Wed Dec 17 06:49:19 2014 BLanczosTime: 107 Wed Dec 17 06:49:19 2014 Wed Dec 17 06:49:19 2014 commencing square root phase Wed Dec 17 06:49:19 2014 reading relations for dependency 1 Wed Dec 17 06:49:19 2014 read 128320 cycles Wed Dec 17 06:49:19 2014 cycles contain 362050 unique relations Wed Dec 17 06:49:26 2014 read 362050 relations Wed Dec 17 06:49:27 2014 multiplying 362050 relations Wed Dec 17 06:49:33 2014 multiply complete, coefficients have about 10.49 million bits Wed Dec 17 06:49:33 2014 initial square root is modulo 1066411 Wed Dec 17 06:49:40 2014 GCD is N, no factor found Wed Dec 17 06:49:40 2014 reading relations for dependency 2 Wed Dec 17 06:49:40 2014 read 127878 cycles Wed Dec 17 06:49:40 2014 cycles contain 360844 unique relations Wed Dec 17 06:49:47 2014 read 360844 relations Wed Dec 17 06:49:48 2014 multiplying 360844 relations Wed Dec 17 06:49:54 2014 multiply complete, coefficients have about 10.45 million bits Wed Dec 17 06:49:54 2014 initial square root is modulo 1017301 Wed Dec 17 06:50:01 2014 GCD is N, no factor found Wed Dec 17 06:50:01 2014 reading relations for dependency 3 Wed Dec 17 06:50:01 2014 read 128045 cycles Wed Dec 17 06:50:01 2014 cycles contain 362296 unique relations Wed Dec 17 06:50:08 2014 read 362296 relations Wed Dec 17 06:50:09 2014 multiplying 362296 relations Wed Dec 17 06:50:14 2014 multiply complete, coefficients have about 10.50 million bits Wed Dec 17 06:50:14 2014 initial square root is modulo 1076651 Wed Dec 17 06:50:22 2014 sqrtTime: 63 -- n: 48838357043828577513102615721348921644971860967666324764152286226236157410092940246980478781393629284292475270099363110202109555082965144401 m: 500000000000000000000000000000 deg: 5 c5: 464 c0: -1 skew: 0.29 # Murphy_E = 1.624e-09 type: snfs lss: 1 rlim: 2300000 alim: 2300000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 |
software ソフトウェア | yafu v1.34.3 |
execution environment 実行環境 | Gentoo Linux, Intel(R) Core(TM) i7-3770K CPU |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 / 2318 | Serge Batalov | December 10, 2014 19:48:35 UTC 2014 年 12 月 11 日 (木) 4 時 48 分 35 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | December 11, 2014 01:34:26 UTC 2014 年 12 月 11 日 (木) 10 時 34 分 26 秒 (日本時間) |
composite number 合成数 | 5565775707359728852585440499924963113952887328393084717096230600653778055058274895550942079465565870218837399026872167485602947425971359308243<142> |
prime factors 素因数 | 211518102940513424798006800651012458380803<42> |
composite cofactor 合成数の残り | 26313472133044929924760955918738421328856693990879534175731790966090824854189691917652466921902314481<101> |
factorization results 素因数分解の結果 | Input number is 5565775707359728852585440499924963113952887328393084717096230600653778055058274895550942079465565870218837399026872167485602947425971359308243 (142 digits) Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=286706208 Step 1 took 9159ms Step 2 took 5378ms ********** Factor found in step 2: 211518102940513424798006800651012458380803 Found probable prime factor of 42 digits: 211518102940513424798006800651012458380803 Composite cofactor 26313472133044929924760955918738421328856693990879534175731790966090824854189691917652466921902314481 has 101 digits |
name 名前 | Cyp |
---|---|
date 日付 | December 11, 2014 17:37:48 UTC 2014 年 12 月 12 日 (金) 2 時 37 分 48 秒 (日本時間) |
composite number 合成数 | 26313472133044929924760955918738421328856693990879534175731790966090824854189691917652466921902314481<101> |
prime factors 素因数 | 15246657358688724639996080449451342745311<41> 1725851871266030533958871515334903198742133138208566031943471<61> |
factorization results 素因数分解の結果 | 12/11/14 18:02:46 v1.34.3, 12/11/14 18:02:46 v1.34.3, **************************** 12/11/14 18:02:46 v1.34.3, Starting factorization of 26313472133044929924760955918738421328856693990879534175731790966090824854189691917652466921902314481 12/11/14 18:02:46 v1.34.3, using pretesting plan: none 12/11/14 18:02:46 v1.34.3, no tune info: using qs/gnfs crossover of 95 digits 12/11/14 18:02:46 v1.34.3, **************************** 12/11/14 18:02:46 v1.34.3, rho: x^2 + 3, starting 1000 iterations on C101 12/11/14 18:02:46 v1.34.3, rho: x^2 + 2, starting 1000 iterations on C101 12/11/14 18:02:46 v1.34.3, rho: x^2 + 1, starting 1000 iterations on C101 12/11/14 18:02:46 v1.34.3, final ECM pretested depth: 0.00 12/11/14 18:02:46 v1.34.3, scheduler: switching to sieve method 12/11/14 18:02:46 v1.34.3, nfs: commencing nfs on c101: 26313472133044929924760955918738421328856693990879534175731790966090824854189691917652466921902314481 12/11/14 18:02:46 v1.34.3, nfs: commencing poly selection with 8 threads 12/11/14 18:02:46 v1.34.3, nfs: setting deadline of 168 seconds 12/11/14 18:06:29 v1.34.3, nfs: completed 35 ranges of size 250 in 223.1547 seconds 12/11/14 18:06:29 v1.34.3, nfs: best poly = # norm 9.855239e-14 alpha -5.302821 e 1.079e-08 rroots 4 12/11/14 18:06:29 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/11/14 18:07:56 v1.34.3, nfs: commencing lattice sieving with 8 threads [12 lines snipped] 12/11/14 18:27:52 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/11/14 18:29:23 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/11/14 18:31:01 v1.34.3, nfs: commencing msieve filtering 12/11/14 18:31:50 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/11/14 18:33:29 v1.34.3, nfs: commencing msieve filtering 12/11/14 18:34:32 v1.34.3, nfs: commencing msieve linear algebra 12/11/14 18:37:14 v1.34.3, nfs: commencing msieve sqrt 12/11/14 18:37:47 v1.34.3, prp61 = 1725851871266030533958871515334903198742133138208566031943471 12/11/14 18:37:47 v1.34.3, prp41 = 15246657358688724639996080449451342745311 12/11/14 18:37:47 v1.34.3, NFS elapsed time = 2100.8279 seconds. 12/11/14 18:37:47 v1.34.3, 12/11/14 18:37:47 v1.34.3, 12/11/14 18:37:47 v1.34.3, Total factoring time = 2100.8507 seconds -- Thu Dec 11 18:31:01 2014 Thu Dec 11 18:31:01 2014 commencing relation filtering Thu Dec 11 18:31:01 2014 estimated available RAM is 15987.3 MB Thu Dec 11 18:31:01 2014 commencing duplicate removal, pass 1 Thu Dec 11 18:31:16 2014 found 445767 hash collisions in 4721602 relations Thu Dec 11 18:31:20 2014 added 156839 free relations Thu Dec 11 18:31:20 2014 commencing duplicate removal, pass 2 Thu Dec 11 18:31:23 2014 found 190277 duplicates and 4688164 unique relations Thu Dec 11 18:31:23 2014 memory use: 20.6 MB Thu Dec 11 18:31:23 2014 reading ideals above 100000 Thu Dec 11 18:31:23 2014 commencing singleton removal, initial pass Thu Dec 11 18:31:47 2014 memory use: 172.2 MB Thu Dec 11 18:31:47 2014 reading all ideals from disk Thu Dec 11 18:31:47 2014 memory use: 146.6 MB Thu Dec 11 18:31:47 2014 keeping 5403431 ideals with weight <= 200, target excess is 41294 Thu Dec 11 18:31:48 2014 commencing in-memory singleton removal Thu Dec 11 18:31:48 2014 begin with 4688164 relations and 5403431 unique ideals Thu Dec 11 18:31:50 2014 reduce to 1351248 relations and 1312671 ideals in 23 passes Thu Dec 11 18:31:50 2014 max relations containing the same ideal: 85 Thu Dec 11 18:33:29 2014 Thu Dec 11 18:33:29 2014 commencing relation filtering Thu Dec 11 18:33:29 2014 estimated available RAM is 15987.3 MB Thu Dec 11 18:33:29 2014 commencing duplicate removal, pass 1 Thu Dec 11 18:33:46 2014 found 518290 hash collisions in 5188287 relations Thu Dec 11 18:33:51 2014 added 1248 free relations Thu Dec 11 18:33:51 2014 commencing duplicate removal, pass 2 Thu Dec 11 18:33:55 2014 found 213283 duplicates and 4976252 unique relations Thu Dec 11 18:33:55 2014 memory use: 20.6 MB Thu Dec 11 18:33:55 2014 reading ideals above 100000 Thu Dec 11 18:33:55 2014 commencing singleton removal, initial pass Thu Dec 11 18:34:18 2014 memory use: 172.2 MB Thu Dec 11 18:34:18 2014 reading all ideals from disk Thu Dec 11 18:34:18 2014 memory use: 155.7 MB Thu Dec 11 18:34:19 2014 keeping 5533244 ideals with weight <= 200, target excess is 44094 Thu Dec 11 18:34:19 2014 commencing in-memory singleton removal Thu Dec 11 18:34:19 2014 begin with 4976252 relations and 5533244 unique ideals Thu Dec 11 18:34:22 2014 reduce to 1714489 relations and 1583554 ideals in 20 passes Thu Dec 11 18:34:22 2014 max relations containing the same ideal: 106 Thu Dec 11 18:34:22 2014 removing 323069 relations and 283176 ideals in 39893 cliques Thu Dec 11 18:34:22 2014 commencing in-memory singleton removal Thu Dec 11 18:34:22 2014 begin with 1391420 relations and 1583554 unique ideals Thu Dec 11 18:34:23 2014 reduce to 1338787 relations and 1246034 ideals in 9 passes Thu Dec 11 18:34:23 2014 max relations containing the same ideal: 86 Thu Dec 11 18:34:23 2014 removing 239650 relations and 199757 ideals in 39893 cliques Thu Dec 11 18:34:23 2014 commencing in-memory singleton removal Thu Dec 11 18:34:23 2014 begin with 1099137 relations and 1246034 unique ideals Thu Dec 11 18:34:24 2014 reduce to 1060447 relations and 1006363 ideals in 10 passes Thu Dec 11 18:34:24 2014 max relations containing the same ideal: 69 Thu Dec 11 18:34:24 2014 relations with 0 large ideals: 613 Thu Dec 11 18:34:24 2014 relations with 1 large ideals: 4675 Thu Dec 11 18:34:24 2014 relations with 2 large ideals: 30710 Thu Dec 11 18:34:24 2014 relations with 3 large ideals: 120560 Thu Dec 11 18:34:24 2014 relations with 4 large ideals: 259953 Thu Dec 11 18:34:24 2014 relations with 5 large ideals: 323727 Thu Dec 11 18:34:24 2014 relations with 6 large ideals: 216395 Thu Dec 11 18:34:24 2014 relations with 7+ large ideals: 103814 Thu Dec 11 18:34:24 2014 commencing 2-way merge Thu Dec 11 18:34:24 2014 reduce to 591644 relation sets and 537559 unique ideals Thu Dec 11 18:34:24 2014 commencing full merge Thu Dec 11 18:34:30 2014 memory use: 55.1 MB Thu Dec 11 18:34:30 2014 found 275647 cycles, need 267759 Thu Dec 11 18:34:30 2014 weight of 267759 cycles is about 18754888 (70.04/cycle) Thu Dec 11 18:34:30 2014 distribution of cycle lengths: Thu Dec 11 18:34:30 2014 1 relations: 26814 Thu Dec 11 18:34:30 2014 2 relations: 26595 Thu Dec 11 18:34:30 2014 3 relations: 26436 Thu Dec 11 18:34:30 2014 4 relations: 24988 Thu Dec 11 18:34:30 2014 5 relations: 22464 Thu Dec 11 18:34:30 2014 6 relations: 20508 Thu Dec 11 18:34:30 2014 7 relations: 18192 Thu Dec 11 18:34:30 2014 8 relations: 16482 Thu Dec 11 18:34:30 2014 9 relations: 14514 Thu Dec 11 18:34:30 2014 10+ relations: 70766 Thu Dec 11 18:34:30 2014 heaviest cycle: 23 relations Thu Dec 11 18:34:30 2014 commencing cycle optimization Thu Dec 11 18:34:30 2014 start with 1827106 relations Thu Dec 11 18:34:32 2014 pruned 43073 relations Thu Dec 11 18:34:32 2014 memory use: 59.4 MB Thu Dec 11 18:34:32 2014 distribution of cycle lengths: Thu Dec 11 18:34:32 2014 1 relations: 26814 Thu Dec 11 18:34:32 2014 2 relations: 27161 Thu Dec 11 18:34:32 2014 3 relations: 27367 Thu Dec 11 18:34:32 2014 4 relations: 25573 Thu Dec 11 18:34:32 2014 5 relations: 22980 Thu Dec 11 18:34:32 2014 6 relations: 20883 Thu Dec 11 18:34:32 2014 7 relations: 18475 Thu Dec 11 18:34:32 2014 8 relations: 16686 Thu Dec 11 18:34:32 2014 9 relations: 14573 Thu Dec 11 18:34:32 2014 10+ relations: 67247 Thu Dec 11 18:34:32 2014 heaviest cycle: 23 relations Thu Dec 11 18:34:32 2014 RelProcTime: 63 Thu Dec 11 18:34:32 2014 Thu Dec 11 18:34:32 2014 commencing linear algebra Thu Dec 11 18:34:32 2014 read 267759 cycles Thu Dec 11 18:34:33 2014 cycles contain 985192 unique relations Thu Dec 11 18:34:38 2014 read 985192 relations Thu Dec 11 18:34:39 2014 using 20 quadratic characters above 67104834 Thu Dec 11 18:34:42 2014 building initial matrix Thu Dec 11 18:34:48 2014 memory use: 117.6 MB Thu Dec 11 18:34:48 2014 read 267759 cycles Thu Dec 11 18:34:48 2014 matrix is 267568 x 267759 (80.1 MB) with weight 25584714 (95.55/col) Thu Dec 11 18:34:48 2014 sparse part has weight 18061848 (67.46/col) Thu Dec 11 18:34:50 2014 filtering completed in 2 passes Thu Dec 11 18:34:50 2014 matrix is 266485 x 266676 (80.0 MB) with weight 25530304 (95.74/col) Thu Dec 11 18:34:50 2014 sparse part has weight 18039973 (67.65/col) Thu Dec 11 18:34:50 2014 matrix starts at (0, 0) Thu Dec 11 18:34:50 2014 matrix is 266485 x 266676 (80.0 MB) with weight 25530304 (95.74/col) Thu Dec 11 18:34:50 2014 sparse part has weight 18039973 (67.65/col) Thu Dec 11 18:34:50 2014 saving the first 48 matrix rows for later Thu Dec 11 18:34:50 2014 matrix includes 64 packed rows Thu Dec 11 18:34:50 2014 matrix is 266437 x 266676 (77.2 MB) with weight 20264288 (75.99/col) Thu Dec 11 18:34:50 2014 sparse part has weight 17567213 (65.87/col) Thu Dec 11 18:34:50 2014 using block size 65536 for processor cache size 8192 kB Thu Dec 11 18:34:51 2014 commencing Lanczos iteration (8 threads) Thu Dec 11 18:34:51 2014 memory use: 72.9 MB Thu Dec 11 18:34:57 2014 linear algebra at 4.6%, ETA 0h 2m Thu Dec 11 18:37:14 2014 lanczos halted after 4215 iterations (dim = 266435) Thu Dec 11 18:37:14 2014 recovered 31 nontrivial dependencies Thu Dec 11 18:37:14 2014 BLanczosTime: 162 Thu Dec 11 18:37:14 2014 Thu Dec 11 18:37:14 2014 commencing square root phase Thu Dec 11 18:37:14 2014 reading relations for dependency 1 Thu Dec 11 18:37:15 2014 read 133430 cycles Thu Dec 11 18:37:15 2014 cycles contain 493520 unique relations Thu Dec 11 18:37:19 2014 read 493520 relations Thu Dec 11 18:37:20 2014 multiplying 493520 relations Thu Dec 11 18:37:31 2014 multiply complete, coefficients have about 21.64 million bits Thu Dec 11 18:37:31 2014 initial square root is modulo 1637221 Thu Dec 11 18:37:47 2014 sqrtTime: 33 -- n: 26313472133044929924760955918738421328856693990879534175731790966090824854189691917652466921902314481 skew: 851976.28 c0: 2064169228612696497921880212 c1: -9509825726759627083528 c2: -4412150702478629 c3: 31639998318 c4: 8712 Y0: -1318287342327636646891867 Y1: 16685455553321 rlim: 1940000 alim: 1940000 lpbr: 26 lpba: 26 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 |
software ソフトウェア | yafu v1.34.3 |
execution environment 実行環境 | Gentoo Linux, Intel(R) Core(TM) i7-3770K CPU |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 / 2318 | Serge Batalov | December 10, 2014 19:48:36 UTC 2014 年 12 月 11 日 (木) 4 時 48 分 36 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | December 8, 2014 16:33:38 UTC 2014 年 12 月 9 日 (火) 1 時 33 分 38 秒 (日本時間) |
composite number 合成数 | 36930383690426406034619900494209567139539129062219104006825084496312170780617701354185753011027677503019341<107> |
prime factors 素因数 | 962099671706474084043293230753<30> |
composite cofactor 合成数の残り | 38385195189728175701801754636958261527975782481742321420555348397696257937197<77> |
factorization results 素因数分解の結果 | Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1:2058931936 Step 1 took 1266ms Step 2 took 1422ms ********** Factor found in step 2: 962099671706474084043293230753 Found probable prime factor of 30 digits: 962099671706474084043293230753 Composite cofactor 38385195189728175701801754636958261527975782481742321420555348397696257937197 has 77 digits |
software ソフトウェア | GMP-ECM 7.0 |
name 名前 | Serge Batalov |
---|---|
date 日付 | December 9, 2014 16:20:44 UTC 2014 年 12 月 10 日 (水) 1 時 20 分 44 秒 (日本時間) |
composite number 合成数 | 38385195189728175701801754636958261527975782481742321420555348397696257937197<77> |
prime factors 素因数 | 1568539601493466682259062699874132913<37> 24471932460729815123065899931519428177469<41> |
factorization results 素因数分解の結果 | ***factors found*** PRP37 = 1568539601493466682259062699874132913 PRP41 = 24471932460729815123065899931519428177469 |
software ソフトウェア | yafu 1.31 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) |
name 名前 | Cyp |
---|---|
date 日付 | December 19, 2014 16:37:23 UTC 2014 年 12 月 20 日 (土) 1 時 37 分 23 秒 (日本時間) |
composite number 合成数 | 1224632824819469858673365762167979588119995669319167142457066962119715365424141785030772743608489699739937518131636733799309<124> |
prime factors 素因数 | 53293149359438998496888412176677978251747825138772999461301<59> 22979179116622602479615617353752993723873881558835237196044767609<65> |
factorization results 素因数分解の結果 | 12/19/14 15:38:12 v1.34.3, 12/19/14 15:38:12 v1.34.3, **************************** 12/19/14 15:38:12 v1.34.3, Starting factorization of 1224632824819469858673365762167979588119995669319167142457066962119715365424141785030772743608489699739937518131636733799309 12/19/14 15:38:12 v1.34.3, using pretesting plan: none 12/19/14 15:38:12 v1.34.3, no tune info: using qs/gnfs crossover of 95 digits 12/19/14 15:38:12 v1.34.3, **************************** 12/19/14 15:38:12 v1.34.3, nfs: commencing nfs on c124: 1224632824819469858673365762167979588119995669319167142457066962119715365424141785030772743608489699739937518131636733799309 12/19/14 15:38:12 v1.34.3, nfs: continuing with sieving - could not determine last special q; using default startq 12/19/14 15:38:12 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/19/14 15:39:04 v1.34.3, nfs: commencing lattice sieving with 8 threads [113 lines snipped] 12/19/14 17:26:33 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/19/14 17:27:31 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/19/14 17:28:28 v1.34.3, nfs: commencing msieve filtering 12/19/14 17:30:07 v1.34.3, nfs: commencing msieve linear algebra 12/19/14 17:33:53 v1.34.3, nfs: commencing msieve sqrt 12/19/14 17:37:22 v1.34.3, prp65 = 22979179116622602479615617353752993723873881558835237196044767609 12/19/14 17:37:22 v1.34.3, prp59 = 53293149359438998496888412176677978251747825138772999461301 12/19/14 17:37:22 v1.34.3, NFS elapsed time = 7149.7136 seconds. 12/19/14 17:37:22 v1.34.3, 12/19/14 17:37:22 v1.34.3, 12/19/14 17:37:22 v1.34.3, Total factoring time = 7149.7142 seconds -- Fri Dec 19 17:28:28 2014 Fri Dec 19 17:28:28 2014 commencing relation filtering Fri Dec 19 17:28:28 2014 estimated available RAM is 15987.3 MB Fri Dec 19 17:28:28 2014 commencing duplicate removal, pass 1 Fri Dec 19 17:28:55 2014 found 1570089 hash collisions in 10044417 relations Fri Dec 19 17:29:03 2014 added 356204 free relations Fri Dec 19 17:29:03 2014 commencing duplicate removal, pass 2 Fri Dec 19 17:29:11 2014 found 1209619 duplicates and 9191002 unique relations Fri Dec 19 17:29:11 2014 memory use: 41.3 MB Fri Dec 19 17:29:11 2014 reading ideals above 100000 Fri Dec 19 17:29:11 2014 commencing singleton removal, initial pass Fri Dec 19 17:29:49 2014 memory use: 188.2 MB Fri Dec 19 17:29:49 2014 reading all ideals from disk Fri Dec 19 17:29:49 2014 memory use: 308.1 MB Fri Dec 19 17:29:50 2014 keeping 9526010 ideals with weight <= 200, target excess is 46513 Fri Dec 19 17:29:50 2014 commencing in-memory singleton removal Fri Dec 19 17:29:50 2014 begin with 9191002 relations and 9526010 unique ideals Fri Dec 19 17:29:53 2014 reduce to 4266856 relations and 3443519 ideals in 12 passes Fri Dec 19 17:29:53 2014 max relations containing the same ideal: 120 Fri Dec 19 17:29:54 2014 removing 1274940 relations and 890249 ideals in 384691 cliques Fri Dec 19 17:29:54 2014 commencing in-memory singleton removal Fri Dec 19 17:29:54 2014 begin with 2991916 relations and 3443519 unique ideals Fri Dec 19 17:29:55 2014 reduce to 2743361 relations and 2276933 ideals in 9 passes Fri Dec 19 17:29:55 2014 max relations containing the same ideal: 94 Fri Dec 19 17:29:56 2014 removing 1070838 relations and 686147 ideals in 384691 cliques Fri Dec 19 17:29:56 2014 commencing in-memory singleton removal Fri Dec 19 17:29:56 2014 begin with 1672523 relations and 2276933 unique ideals Fri Dec 19 17:29:56 2014 reduce to 1452382 relations and 1339317 ideals in 9 passes Fri Dec 19 17:29:56 2014 max relations containing the same ideal: 58 Fri Dec 19 17:29:57 2014 removing 234468 relations and 175359 ideals in 59109 cliques Fri Dec 19 17:29:57 2014 commencing in-memory singleton removal Fri Dec 19 17:29:57 2014 begin with 1217914 relations and 1339317 unique ideals Fri Dec 19 17:29:57 2014 reduce to 1187002 relations and 1131656 ideals in 8 passes Fri Dec 19 17:29:57 2014 max relations containing the same ideal: 50 Fri Dec 19 17:29:57 2014 relations with 0 large ideals: 1093 Fri Dec 19 17:29:57 2014 relations with 1 large ideals: 864 Fri Dec 19 17:29:57 2014 relations with 2 large ideals: 11461 Fri Dec 19 17:29:57 2014 relations with 3 large ideals: 67999 Fri Dec 19 17:29:57 2014 relations with 4 large ideals: 201332 Fri Dec 19 17:29:57 2014 relations with 5 large ideals: 330696 Fri Dec 19 17:29:57 2014 relations with 6 large ideals: 328277 Fri Dec 19 17:29:57 2014 relations with 7+ large ideals: 245280 Fri Dec 19 17:29:57 2014 commencing 2-way merge Fri Dec 19 17:29:58 2014 reduce to 745500 relation sets and 690154 unique ideals Fri Dec 19 17:29:58 2014 commencing full merge Fri Dec 19 17:30:04 2014 memory use: 88.6 MB Fri Dec 19 17:30:04 2014 found 384715 cycles, need 376354 Fri Dec 19 17:30:04 2014 weight of 376354 cycles is about 26574535 (70.61/cycle) Fri Dec 19 17:30:04 2014 distribution of cycle lengths: Fri Dec 19 17:30:04 2014 1 relations: 25914 Fri Dec 19 17:30:04 2014 2 relations: 35577 Fri Dec 19 17:30:04 2014 3 relations: 40026 Fri Dec 19 17:30:04 2014 4 relations: 40107 Fri Dec 19 17:30:04 2014 5 relations: 39300 Fri Dec 19 17:30:04 2014 6 relations: 36211 Fri Dec 19 17:30:05 2014 7 relations: 32857 Fri Dec 19 17:30:05 2014 8 relations: 28370 Fri Dec 19 17:30:05 2014 9 relations: 23861 Fri Dec 19 17:30:05 2014 10+ relations: 74131 Fri Dec 19 17:30:05 2014 heaviest cycle: 20 relations Fri Dec 19 17:30:05 2014 commencing cycle optimization Fri Dec 19 17:30:05 2014 start with 2364831 relations Fri Dec 19 17:30:07 2014 pruned 74188 relations Fri Dec 19 17:30:07 2014 memory use: 72.9 MB Fri Dec 19 17:30:07 2014 distribution of cycle lengths: Fri Dec 19 17:30:07 2014 1 relations: 25914 Fri Dec 19 17:30:07 2014 2 relations: 36330 Fri Dec 19 17:30:07 2014 3 relations: 41544 Fri Dec 19 17:30:07 2014 4 relations: 41480 Fri Dec 19 17:30:07 2014 5 relations: 40812 Fri Dec 19 17:30:07 2014 6 relations: 37521 Fri Dec 19 17:30:07 2014 7 relations: 33786 Fri Dec 19 17:30:07 2014 8 relations: 28910 Fri Dec 19 17:30:07 2014 9 relations: 23832 Fri Dec 19 17:30:07 2014 10+ relations: 66225 Fri Dec 19 17:30:07 2014 heaviest cycle: 20 relations Fri Dec 19 17:30:07 2014 RelProcTime: 99 Fri Dec 19 17:30:07 2014 Fri Dec 19 17:30:07 2014 commencing linear algebra Fri Dec 19 17:30:07 2014 read 376354 cycles Fri Dec 19 17:30:08 2014 cycles contain 1148109 unique relations Fri Dec 19 17:30:16 2014 read 1148109 relations Fri Dec 19 17:30:17 2014 using 20 quadratic characters above 134213294 Fri Dec 19 17:30:20 2014 building initial matrix Fri Dec 19 17:30:26 2014 memory use: 141.5 MB Fri Dec 19 17:30:26 2014 read 376354 cycles Fri Dec 19 17:30:26 2014 matrix is 376177 x 376354 (112.4 MB) with weight 33599413 (89.28/col) Fri Dec 19 17:30:26 2014 sparse part has weight 25328952 (67.30/col) Fri Dec 19 17:30:28 2014 filtering completed in 2 passes Fri Dec 19 17:30:28 2014 matrix is 376065 x 376242 (112.4 MB) with weight 33595487 (89.29/col) Fri Dec 19 17:30:28 2014 sparse part has weight 25327404 (67.32/col) Fri Dec 19 17:30:28 2014 matrix starts at (0, 0) Fri Dec 19 17:30:28 2014 matrix is 376065 x 376242 (112.4 MB) with weight 33595487 (89.29/col) Fri Dec 19 17:30:28 2014 sparse part has weight 25327404 (67.32/col) Fri Dec 19 17:30:28 2014 saving the first 48 matrix rows for later Fri Dec 19 17:30:28 2014 matrix includes 64 packed rows Fri Dec 19 17:30:29 2014 matrix is 376017 x 376242 (105.9 MB) with weight 26638064 (70.80/col) Fri Dec 19 17:30:29 2014 sparse part has weight 24008610 (63.81/col) Fri Dec 19 17:30:29 2014 using block size 65536 for processor cache size 8192 kB Fri Dec 19 17:30:29 2014 commencing Lanczos iteration (8 threads) Fri Dec 19 17:30:29 2014 memory use: 101.7 MB Fri Dec 19 17:30:36 2014 linear algebra at 3.2%, ETA 0h 3m Fri Dec 19 17:33:52 2014 lanczos halted after 5949 iterations (dim = 376013) Fri Dec 19 17:33:53 2014 recovered 37 nontrivial dependencies Fri Dec 19 17:33:53 2014 BLanczosTime: 226 Fri Dec 19 17:33:53 2014 Fri Dec 19 17:33:53 2014 commencing square root phase Fri Dec 19 17:33:53 2014 reading relations for dependency 1 Fri Dec 19 17:33:53 2014 read 188074 cycles Fri Dec 19 17:33:53 2014 cycles contain 574622 unique relations Fri Dec 19 17:34:00 2014 read 574622 relations Fri Dec 19 17:34:01 2014 multiplying 574622 relations Fri Dec 19 17:34:13 2014 multiply complete, coefficients have about 18.88 million bits Fri Dec 19 17:34:13 2014 initial square root is modulo 264731 Fri Dec 19 17:34:28 2014 GCD is 1, no factor found Fri Dec 19 17:34:28 2014 reading relations for dependency 2 Fri Dec 19 17:34:28 2014 read 188379 cycles Fri Dec 19 17:34:28 2014 cycles contain 574456 unique relations Fri Dec 19 17:34:35 2014 read 574456 relations Fri Dec 19 17:34:36 2014 multiplying 574456 relations Fri Dec 19 17:34:47 2014 multiply complete, coefficients have about 18.87 million bits Fri Dec 19 17:34:48 2014 initial square root is modulo 263881 Fri Dec 19 17:35:03 2014 GCD is N, no factor found Fri Dec 19 17:35:03 2014 reading relations for dependency 3 Fri Dec 19 17:35:03 2014 read 187775 cycles Fri Dec 19 17:35:03 2014 cycles contain 573652 unique relations Fri Dec 19 17:35:10 2014 read 573652 relations Fri Dec 19 17:35:11 2014 multiplying 573652 relations Fri Dec 19 17:35:22 2014 multiply complete, coefficients have about 18.85 million bits Fri Dec 19 17:35:22 2014 initial square root is modulo 259211 Fri Dec 19 17:35:37 2014 GCD is 1, no factor found Fri Dec 19 17:35:37 2014 reading relations for dependency 4 Fri Dec 19 17:35:37 2014 read 188698 cycles Fri Dec 19 17:35:37 2014 cycles contain 574458 unique relations Fri Dec 19 17:35:44 2014 read 574458 relations Fri Dec 19 17:35:45 2014 multiplying 574458 relations Fri Dec 19 17:35:57 2014 multiply complete, coefficients have about 18.87 million bits Fri Dec 19 17:35:57 2014 initial square root is modulo 264031 Fri Dec 19 17:36:12 2014 GCD is N, no factor found Fri Dec 19 17:36:12 2014 reading relations for dependency 5 Fri Dec 19 17:36:12 2014 read 187956 cycles Fri Dec 19 17:36:12 2014 cycles contain 574194 unique relations Fri Dec 19 17:36:19 2014 read 574194 relations Fri Dec 19 17:36:20 2014 multiplying 574194 relations Fri Dec 19 17:36:31 2014 multiply complete, coefficients have about 18.87 million bits Fri Dec 19 17:36:32 2014 initial square root is modulo 262391 Fri Dec 19 17:36:47 2014 GCD is N, no factor found Fri Dec 19 17:36:47 2014 reading relations for dependency 6 Fri Dec 19 17:36:47 2014 read 188519 cycles Fri Dec 19 17:36:47 2014 cycles contain 574550 unique relations Fri Dec 19 17:36:54 2014 read 574550 relations Fri Dec 19 17:36:55 2014 multiplying 574550 relations Fri Dec 19 17:37:06 2014 multiply complete, coefficients have about 18.88 million bits Fri Dec 19 17:37:07 2014 initial square root is modulo 264301 Fri Dec 19 17:37:22 2014 sqrtTime: 209 -- n: 1224632824819469858673365762167979588119995669319167142457066962119715365424141785030772743608489699739937518131636733799309 m: 1000000000000000000000000000000 deg: 5 c5: 14500 c0: -1 skew: 0.15 # Murphy_E = 9.402e-10 type: snfs lss: 1 rlim: 2600000 alim: 2600000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 |
software ソフトウェア | yafu v1.34.3 |
execution environment 実行環境 | Gentoo Linux, Intel(R) Core(TM) i7-3770K CPU |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 / 2318 | Serge Batalov | December 10, 2014 19:48:36 UTC 2014 年 12 月 11 日 (木) 4 時 48 分 36 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 7, 2014 11:26:44 UTC 2014 年 12 月 7 日 (日) 20 時 26 分 44 秒 (日本時間) |
composite number 合成数 | 115207872276716066170606560132514120343821129736453721472220489125890342969800194014166708183584749<99> |
prime factors 素因数 | 126022937854865016783949612764539<33> 914181769110920282519831633114268515783278183719830722977436350391<66> |
factorization results 素因数分解の結果 | N=115207872276716066170606560132514120343821129736453721472220489125890342969800194014166708183584749 ( 99 digits) Divisors found: r1=126022937854865016783949612764539 (pp33) r2=914181769110920282519831633114268515783278183719830722977436350391 (pp66) Version: Msieve v. 1.50 (SVN unknown) Total time: 3.14 hours. Scaled time: 5.22 units (timescale=1.666). Factorization parameters were as follows: n: 115207872276716066170606560132514120343821129736453721472220489125890342969800194014166708183584749 skew: 872013.44 c0: -153178867291591168878716320 c1: -1464618040815377403898 c2: -11905367570203443 c3: 7505105874 c4: 7056 Y0: -357462504025256135991201 Y1: 1246416854171 rlim: 1740000 alim: 1740000 lpbr: 26 lpba: 26 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 type: gnfs Factor base limits: 1740000/1740000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 52/52 Sieved algebraic special-q in [870000, 1170001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 165601 x 165831 Total sieving time: 2.96 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.09 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: gnfs,98,4,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1740000,1740000,26,26,52,52,2.5,2.5,100000 total time: 3.14 hours. |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) |
name 名前 | Cyp |
---|---|
date 日付 | December 17, 2014 19:40:36 UTC 2014 年 12 月 18 日 (木) 4 時 40 分 36 秒 (日本時間) |
composite number 合成数 | 15368500301090028480294160073649470877104062676749689100659887798381734743090062023083743690168660135679097208056722315218316836233675103<137> |
prime factors 素因数 | 6455048313979363114390136808381801550827239354104463176453273<61> 2380849771148461431124715177511618715398443879899370528992752794388431126711<76> |
factorization results 素因数分解の結果 | 12/17/14 18:44:04 v1.34.3, 12/17/14 18:44:04 v1.34.3, **************************** 12/17/14 18:44:04 v1.34.3, Starting factorization of 15368500301090028480294160073649470877104062676749689100659887798381734743090062023083743690168660135679097208056722315218316836233675103 12/17/14 18:44:04 v1.34.3, using pretesting plan: none 12/17/14 18:44:04 v1.34.3, no tune info: using qs/gnfs crossover of 95 digits 12/17/14 18:44:04 v1.34.3, **************************** 12/17/14 18:44:04 v1.34.3, nfs: commencing nfs on c137: 15368500301090028480294160073649470877104062676749689100659887798381734743090062023083743690168660135679097208056722315218316836233675103 12/17/14 18:44:04 v1.34.3, nfs: continuing with sieving - could not determine last special q; using default startq 12/17/14 18:44:04 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/17/14 18:45:09 v1.34.3, nfs: commencing lattice sieving with 8 threads [85 lines snipped] 12/17/14 20:27:37 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/17/14 20:28:51 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/17/14 20:30:02 v1.34.3, nfs: commencing msieve filtering 12/17/14 20:31:42 v1.34.3, nfs: commencing msieve linear algebra 12/17/14 20:35:21 v1.34.3, nfs: commencing msieve sqrt 12/17/14 20:40:35 v1.34.3, prp76 = 2380849771148461431124715177511618715398443879899370528992752794388431126711 12/17/14 20:40:35 v1.34.3, prp61 = 6455048313979363114390136808381801550827239354104463176453273 12/17/14 20:40:35 v1.34.3, NFS elapsed time = 6991.0258 seconds. 12/17/14 20:40:35 v1.34.3, 12/17/14 20:40:35 v1.34.3, 12/17/14 20:40:35 v1.34.3, Total factoring time = 6991.0264 seconds -- Wed Dec 17 20:30:02 2014 Wed Dec 17 20:30:02 2014 commencing relation filtering Wed Dec 17 20:30:02 2014 estimated available RAM is 15987.3 MB Wed Dec 17 20:30:02 2014 commencing duplicate removal, pass 1 Wed Dec 17 20:30:29 2014 found 1509465 hash collisions in 10125261 relations Wed Dec 17 20:30:37 2014 added 356039 free relations Wed Dec 17 20:30:37 2014 commencing duplicate removal, pass 2 Wed Dec 17 20:30:45 2014 found 1115418 duplicates and 9365882 unique relations Wed Dec 17 20:30:45 2014 memory use: 41.3 MB Wed Dec 17 20:30:45 2014 reading ideals above 100000 Wed Dec 17 20:30:45 2014 commencing singleton removal, initial pass Wed Dec 17 20:31:24 2014 memory use: 188.2 MB Wed Dec 17 20:31:24 2014 reading all ideals from disk Wed Dec 17 20:31:24 2014 memory use: 313.9 MB Wed Dec 17 20:31:24 2014 keeping 9599624 ideals with weight <= 200, target excess is 46869 Wed Dec 17 20:31:25 2014 commencing in-memory singleton removal Wed Dec 17 20:31:25 2014 begin with 9365882 relations and 9599624 unique ideals Wed Dec 17 20:31:27 2014 reduce to 4451980 relations and 3545632 ideals in 11 passes Wed Dec 17 20:31:27 2014 max relations containing the same ideal: 125 Wed Dec 17 20:31:28 2014 removing 1303491 relations and 903491 ideals in 400000 cliques Wed Dec 17 20:31:29 2014 commencing in-memory singleton removal Wed Dec 17 20:31:29 2014 begin with 3148489 relations and 3545632 unique ideals Wed Dec 17 20:31:30 2014 reduce to 2903639 relations and 2370379 ideals in 9 passes Wed Dec 17 20:31:30 2014 max relations containing the same ideal: 93 Wed Dec 17 20:31:31 2014 removing 1096552 relations and 696552 ideals in 400000 cliques Wed Dec 17 20:31:31 2014 commencing in-memory singleton removal Wed Dec 17 20:31:31 2014 begin with 1807087 relations and 2370379 unique ideals Wed Dec 17 20:31:31 2014 reduce to 1592262 relations and 1429886 ideals in 9 passes Wed Dec 17 20:31:31 2014 max relations containing the same ideal: 61 Wed Dec 17 20:31:32 2014 removing 362461 relations and 254454 ideals in 108007 cliques Wed Dec 17 20:31:32 2014 commencing in-memory singleton removal Wed Dec 17 20:31:32 2014 begin with 1229801 relations and 1429886 unique ideals Wed Dec 17 20:31:32 2014 reduce to 1166899 relations and 1108165 ideals in 7 passes Wed Dec 17 20:31:32 2014 max relations containing the same ideal: 52 Wed Dec 17 20:31:32 2014 relations with 0 large ideals: 1092 Wed Dec 17 20:31:32 2014 relations with 1 large ideals: 862 Wed Dec 17 20:31:32 2014 relations with 2 large ideals: 12027 Wed Dec 17 20:31:32 2014 relations with 3 large ideals: 69430 Wed Dec 17 20:31:32 2014 relations with 4 large ideals: 202980 Wed Dec 17 20:31:32 2014 relations with 5 large ideals: 328155 Wed Dec 17 20:31:32 2014 relations with 6 large ideals: 319735 Wed Dec 17 20:31:32 2014 relations with 7+ large ideals: 232618 Wed Dec 17 20:31:32 2014 commencing 2-way merge Wed Dec 17 20:31:33 2014 reduce to 733606 relation sets and 674872 unique ideals Wed Dec 17 20:31:33 2014 commencing full merge Wed Dec 17 20:31:39 2014 memory use: 87.2 MB Wed Dec 17 20:31:39 2014 found 376229 cycles, need 365072 Wed Dec 17 20:31:39 2014 weight of 365072 cycles is about 25882325 (70.90/cycle) Wed Dec 17 20:31:39 2014 distribution of cycle lengths: Wed Dec 17 20:31:39 2014 1 relations: 25101 Wed Dec 17 20:31:39 2014 2 relations: 33618 Wed Dec 17 20:31:39 2014 3 relations: 38003 Wed Dec 17 20:31:39 2014 4 relations: 38407 Wed Dec 17 20:31:39 2014 5 relations: 38440 Wed Dec 17 20:31:39 2014 6 relations: 35735 Wed Dec 17 20:31:39 2014 7 relations: 32124 Wed Dec 17 20:31:39 2014 8 relations: 27861 Wed Dec 17 20:31:39 2014 9 relations: 23398 Wed Dec 17 20:31:39 2014 10+ relations: 72385 Wed Dec 17 20:31:39 2014 heaviest cycle: 19 relations Wed Dec 17 20:31:40 2014 commencing cycle optimization Wed Dec 17 20:31:40 2014 start with 2302390 relations Wed Dec 17 20:31:42 2014 pruned 74615 relations Wed Dec 17 20:31:42 2014 memory use: 70.8 MB Wed Dec 17 20:31:42 2014 distribution of cycle lengths: Wed Dec 17 20:31:42 2014 1 relations: 25101 Wed Dec 17 20:31:42 2014 2 relations: 34348 Wed Dec 17 20:31:42 2014 3 relations: 39445 Wed Dec 17 20:31:42 2014 4 relations: 39825 Wed Dec 17 20:31:42 2014 5 relations: 40158 Wed Dec 17 20:31:42 2014 6 relations: 36940 Wed Dec 17 20:31:42 2014 7 relations: 33205 Wed Dec 17 20:31:42 2014 8 relations: 28367 Wed Dec 17 20:31:42 2014 9 relations: 23464 Wed Dec 17 20:31:42 2014 10+ relations: 64219 Wed Dec 17 20:31:42 2014 heaviest cycle: 18 relations Wed Dec 17 20:31:42 2014 RelProcTime: 100 Wed Dec 17 20:31:42 2014 Wed Dec 17 20:31:42 2014 commencing linear algebra Wed Dec 17 20:31:42 2014 read 365072 cycles Wed Dec 17 20:31:43 2014 cycles contain 1113516 unique relations Wed Dec 17 20:31:51 2014 read 1113516 relations Wed Dec 17 20:31:52 2014 using 20 quadratic characters above 134213618 Wed Dec 17 20:31:55 2014 building initial matrix Wed Dec 17 20:32:01 2014 memory use: 137.7 MB Wed Dec 17 20:32:01 2014 read 365072 cycles Wed Dec 17 20:32:01 2014 matrix is 364892 x 365072 (109.3 MB) with weight 32752868 (89.72/col) Wed Dec 17 20:32:01 2014 sparse part has weight 24624362 (67.45/col) Wed Dec 17 20:32:03 2014 filtering completed in 2 passes Wed Dec 17 20:32:03 2014 matrix is 364728 x 364908 (109.2 MB) with weight 32745325 (89.74/col) Wed Dec 17 20:32:03 2014 sparse part has weight 24620567 (67.47/col) Wed Dec 17 20:32:03 2014 matrix starts at (0, 0) Wed Dec 17 20:32:03 2014 matrix is 364728 x 364908 (109.2 MB) with weight 32745325 (89.74/col) Wed Dec 17 20:32:03 2014 sparse part has weight 24620567 (67.47/col) Wed Dec 17 20:32:03 2014 saving the first 48 matrix rows for later Wed Dec 17 20:32:03 2014 matrix includes 64 packed rows Wed Dec 17 20:32:03 2014 matrix is 364680 x 364908 (102.9 MB) with weight 25907768 (71.00/col) Wed Dec 17 20:32:03 2014 sparse part has weight 23324829 (63.92/col) Wed Dec 17 20:32:03 2014 using block size 65536 for processor cache size 8192 kB Wed Dec 17 20:32:04 2014 commencing Lanczos iteration (8 threads) Wed Dec 17 20:32:04 2014 memory use: 98.7 MB Wed Dec 17 20:32:11 2014 linear algebra at 3.3%, ETA 0h 3m Wed Dec 17 20:35:21 2014 lanczos halted after 5768 iterations (dim = 364675) Wed Dec 17 20:35:21 2014 recovered 35 nontrivial dependencies Wed Dec 17 20:35:21 2014 BLanczosTime: 219 Wed Dec 17 20:35:21 2014 Wed Dec 17 20:35:21 2014 commencing square root phase Wed Dec 17 20:35:21 2014 reading relations for dependency 1 Wed Dec 17 20:35:21 2014 read 182680 cycles Wed Dec 17 20:35:21 2014 cycles contain 556998 unique relations Wed Dec 17 20:35:29 2014 read 556998 relations Wed Dec 17 20:35:30 2014 multiplying 556998 relations Wed Dec 17 20:35:39 2014 multiply complete, coefficients have about 15.81 million bits Wed Dec 17 20:35:39 2014 initial square root is modulo 1212412871 Wed Dec 17 20:35:50 2014 GCD is 1, no factor found Wed Dec 17 20:35:50 2014 reading relations for dependency 2 Wed Dec 17 20:35:50 2014 read 182181 cycles Wed Dec 17 20:35:50 2014 cycles contain 556680 unique relations Wed Dec 17 20:35:57 2014 read 556680 relations Wed Dec 17 20:35:58 2014 multiplying 556680 relations Wed Dec 17 20:36:07 2014 multiply complete, coefficients have about 15.80 million bits Wed Dec 17 20:36:07 2014 initial square root is modulo 1199851571 Wed Dec 17 20:36:18 2014 GCD is 1, no factor found Wed Dec 17 20:36:18 2014 reading relations for dependency 3 Wed Dec 17 20:36:18 2014 read 182306 cycles Wed Dec 17 20:36:18 2014 cycles contain 556148 unique relations Wed Dec 17 20:36:26 2014 read 556148 relations Wed Dec 17 20:36:27 2014 multiplying 556148 relations Wed Dec 17 20:36:36 2014 multiply complete, coefficients have about 15.79 million bits Wed Dec 17 20:36:36 2014 initial square root is modulo 1173522811 Wed Dec 17 20:36:47 2014 Newton iteration failed to converge Wed Dec 17 20:36:47 2014 algebraic square root failed Wed Dec 17 20:36:47 2014 reading relations for dependency 4 Wed Dec 17 20:36:47 2014 read 182196 cycles Wed Dec 17 20:36:47 2014 cycles contain 555706 unique relations Wed Dec 17 20:36:54 2014 read 555706 relations Wed Dec 17 20:36:55 2014 multiplying 555706 relations Wed Dec 17 20:37:04 2014 multiply complete, coefficients have about 15.77 million bits Wed Dec 17 20:37:04 2014 initial square root is modulo 1155225961 Wed Dec 17 20:37:15 2014 GCD is 1, no factor found Wed Dec 17 20:37:15 2014 reading relations for dependency 5 Wed Dec 17 20:37:16 2014 read 182611 cycles Wed Dec 17 20:37:16 2014 cycles contain 556934 unique relations Wed Dec 17 20:37:23 2014 read 556934 relations Wed Dec 17 20:37:24 2014 multiplying 556934 relations Wed Dec 17 20:37:33 2014 multiply complete, coefficients have about 15.81 million bits Wed Dec 17 20:37:33 2014 initial square root is modulo 1209543131 Wed Dec 17 20:37:44 2014 GCD is N, no factor found Wed Dec 17 20:37:44 2014 reading relations for dependency 6 Wed Dec 17 20:37:44 2014 read 182892 cycles Wed Dec 17 20:37:44 2014 cycles contain 557140 unique relations Wed Dec 17 20:37:51 2014 read 557140 relations Wed Dec 17 20:37:52 2014 multiplying 557140 relations Wed Dec 17 20:38:01 2014 multiply complete, coefficients have about 15.81 million bits Wed Dec 17 20:38:01 2014 initial square root is modulo 1216783481 Wed Dec 17 20:38:12 2014 GCD is 1, no factor found Wed Dec 17 20:38:12 2014 reading relations for dependency 7 Wed Dec 17 20:38:12 2014 read 181790 cycles Wed Dec 17 20:38:13 2014 cycles contain 554544 unique relations Wed Dec 17 20:38:20 2014 read 554544 relations Wed Dec 17 20:38:21 2014 multiplying 554544 relations Wed Dec 17 20:38:30 2014 multiply complete, coefficients have about 15.74 million bits Wed Dec 17 20:38:30 2014 initial square root is modulo 1105381961 Wed Dec 17 20:38:41 2014 GCD is N, no factor found Wed Dec 17 20:38:41 2014 reading relations for dependency 8 Wed Dec 17 20:38:41 2014 read 182632 cycles Wed Dec 17 20:38:41 2014 cycles contain 556802 unique relations Wed Dec 17 20:38:48 2014 read 556802 relations Wed Dec 17 20:38:49 2014 multiplying 556802 relations Wed Dec 17 20:38:58 2014 multiply complete, coefficients have about 15.80 million bits Wed Dec 17 20:38:58 2014 initial square root is modulo 1203668111 Wed Dec 17 20:39:09 2014 Newton iteration failed to converge Wed Dec 17 20:39:09 2014 algebraic square root failed Wed Dec 17 20:39:09 2014 reading relations for dependency 9 Wed Dec 17 20:39:09 2014 read 182597 cycles Wed Dec 17 20:39:10 2014 cycles contain 556810 unique relations Wed Dec 17 20:39:17 2014 read 556810 relations Wed Dec 17 20:39:18 2014 multiplying 556810 relations Wed Dec 17 20:39:27 2014 multiply complete, coefficients have about 15.81 million bits Wed Dec 17 20:39:27 2014 initial square root is modulo 1205389501 Wed Dec 17 20:39:38 2014 GCD is 1, no factor found Wed Dec 17 20:39:38 2014 reading relations for dependency 10 Wed Dec 17 20:39:38 2014 read 182741 cycles Wed Dec 17 20:39:38 2014 cycles contain 558224 unique relations Wed Dec 17 20:39:45 2014 read 558224 relations Wed Dec 17 20:39:46 2014 multiplying 558224 relations Wed Dec 17 20:39:55 2014 multiply complete, coefficients have about 15.85 million bits Wed Dec 17 20:39:55 2014 initial square root is modulo 1269948181 Wed Dec 17 20:40:06 2014 Newton iteration failed to converge Wed Dec 17 20:40:06 2014 algebraic square root failed Wed Dec 17 20:40:06 2014 reading relations for dependency 11 Wed Dec 17 20:40:06 2014 read 182861 cycles Wed Dec 17 20:40:06 2014 cycles contain 557030 unique relations Wed Dec 17 20:40:14 2014 read 557030 relations Wed Dec 17 20:40:15 2014 multiplying 557030 relations Wed Dec 17 20:40:24 2014 multiply complete, coefficients have about 15.81 million bits Wed Dec 17 20:40:24 2014 initial square root is modulo 1213838741 Wed Dec 17 20:40:35 2014 sqrtTime: 314 -- n: 15368500301090028480294160073649470877104062676749689100659887798381734743090062023083743690168660135679097208056722315218316836233675103 m: 5000000000000000000000000000000 deg: 5 c5: 464 c0: -1 skew: 0.29 # Murphy_E = 1.046e-09 type: snfs lss: 1 rlim: 2800000 alim: 2800000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 |
software ソフトウェア | yafu v1.34.3 |
execution environment 実行環境 | Gentoo Linux, Intel(R) Core(TM) i7-3770K CPU |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 / 2318 | Serge Batalov | December 10, 2014 19:48:36 UTC 2014 年 12 月 11 日 (木) 4 時 48 分 36 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | December 11, 2014 01:34:30 UTC 2014 年 12 月 11 日 (木) 10 時 34 分 30 秒 (日本時間) |
composite number 合成数 | 4212045590061699183266755415007922173272376060485959068382291626808125602522935592487281035955304441855630448830415756552530169<127> |
prime factors 素因数 | 41875635736222409459754611279863<32> 100584636292895281398796971061722555520166299787951885208029589354325314868918915019340409387663<96> |
factorization results 素因数分解の結果 | Input number is 4212045590061699183266755415007922173272376060485959068382291626808125602522935592487281035955304441855630448830415756552530169 (127 digits) Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1620056165 Step 1 took 7626ms Step 2 took 6280ms ********** Factor found in step 2: 41875635736222409459754611279863 Found probable prime factor of 32 digits: 41875635736222409459754611279863 Probable prime cofactor 100584636292895281398796971061722555520166299787951885208029589354325314868918915019340409387663 has 96 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 / 2318 | Serge Batalov | December 10, 2014 19:48:37 UTC 2014 年 12 月 11 日 (木) 4 時 48 分 37 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | December 11, 2014 01:34:33 UTC 2014 年 12 月 11 日 (木) 10 時 34 分 33 秒 (日本時間) |
composite number 合成数 | 7840625565593509102174045893836396591712880380836393223093531086800731784178959941469772019496031259941770407097970927121477343245538175443451<142> |
prime factors 素因数 | 1229936637392934161604207012278234261<37> |
composite cofactor 合成数の残り | 6374820724271688042662336298156449851667093063601509963788239544326796036960215773938273268017719691763791<106> |
factorization results 素因数分解の結果 | Input number is 7840625565593509102174045893836396591712880380836393223093531086800731784178959941469772019496031259941770407097970927121477343245538175443451 (142 digits) Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1513839079 Step 1 took 9237ms Step 2 took 7128ms ********** Factor found in step 2: 1229936637392934161604207012278234261 Found probable prime factor of 37 digits: 1229936637392934161604207012278234261 Composite cofactor 6374820724271688042662336298156449851667093063601509963788239544326796036960215773938273268017719691763791 has 106 digits |
name 名前 | Cyp |
---|---|
date 日付 | December 11, 2014 21:40:58 UTC 2014 年 12 月 12 日 (金) 6 時 40 分 58 秒 (日本時間) |
composite number 合成数 | 6374820724271688042662336298156449851667093063601509963788239544326796036960215773938273268017719691763791<106> |
prime factors 素因数 | 2290650962089172210534430805120981<34> 2782973412264248817333430742810076034138208674808928733282395159348293011<73> |
factorization results 素因数分解の結果 | 12/11/14 21:34:50 v1.34.3, 12/11/14 21:34:50 v1.34.3, **************************** 12/11/14 21:34:50 v1.34.3, Starting factorization of 6374820724271688042662336298156449851667093063601509963788239544326796036960215773938273268017719691763791 12/11/14 21:34:50 v1.34.3, using pretesting plan: none 12/11/14 21:34:50 v1.34.3, no tune info: using qs/gnfs crossover of 95 digits 12/11/14 21:34:50 v1.34.3, **************************** 12/11/14 21:34:50 v1.34.3, rho: x^2 + 3, starting 1000 iterations on C106 12/11/14 21:34:50 v1.34.3, rho: x^2 + 2, starting 1000 iterations on C106 12/11/14 21:34:50 v1.34.3, rho: x^2 + 1, starting 1000 iterations on C106 12/11/14 21:34:50 v1.34.3, final ECM pretested depth: 0.00 12/11/14 21:34:50 v1.34.3, scheduler: switching to sieve method 12/11/14 21:34:50 v1.34.3, nfs: commencing nfs on c106: 6374820724271688042662336298156449851667093063601509963788239544326796036960215773938273268017719691763791 12/11/14 21:34:50 v1.34.3, nfs: commencing poly selection with 8 threads 12/11/14 21:34:50 v1.34.3, nfs: setting deadline of 277 seconds 12/11/14 21:40:59 v1.34.3, nfs: completed 42 ranges of size 250 in 368.4631 seconds 12/11/14 21:40:59 v1.34.3, nfs: best poly = # norm 1.545954e-14 alpha -5.429292 e 4.788e-09 rroots 4 12/11/14 21:40:59 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/11/14 21:42:34 v1.34.3, nfs: commencing lattice sieving with 8 threads [20 lines snipped] 12/11/14 22:18:38 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/11/14 22:20:22 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/11/14 22:22:15 v1.34.3, nfs: commencing msieve filtering 12/11/14 22:23:01 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/11/14 22:24:47 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/11/14 22:26:34 v1.34.3, nfs: commencing msieve filtering 12/11/14 22:27:24 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/11/14 22:29:15 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/11/14 22:31:03 v1.34.3, nfs: commencing msieve filtering 12/11/14 22:31:59 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/11/14 22:33:43 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/11/14 22:35:21 v1.34.3, nfs: commencing msieve filtering 12/11/14 22:36:24 v1.34.3, nfs: commencing msieve linear algebra 12/11/14 22:40:19 v1.34.3, nfs: commencing msieve sqrt 12/11/14 22:40:57 v1.34.3, prp34 = 2290650962089172210534430805120981 12/11/14 22:40:57 v1.34.3, prp73 = 2782973412264248817333430742810076034138208674808928733282395159348293011 12/11/14 22:40:57 v1.34.3, NFS elapsed time = 3966.8261 seconds. 12/11/14 22:40:57 v1.34.3, 12/11/14 22:40:57 v1.34.3, 12/11/14 22:40:57 v1.34.3, Total factoring time = 3966.8488 seconds -- Thu Dec 11 22:22:15 2014 Thu Dec 11 22:22:15 2014 commencing relation filtering Thu Dec 11 22:22:15 2014 estimated available RAM is 15987.3 MB Thu Dec 11 22:22:15 2014 commencing duplicate removal, pass 1 Thu Dec 11 22:22:30 2014 found 460640 hash collisions in 4486073 relations Thu Dec 11 22:22:34 2014 added 158185 free relations Thu Dec 11 22:22:34 2014 commencing duplicate removal, pass 2 Thu Dec 11 22:22:37 2014 found 244652 duplicates and 4399606 unique relations Thu Dec 11 22:22:37 2014 memory use: 20.6 MB Thu Dec 11 22:22:37 2014 reading ideals above 100000 Thu Dec 11 22:22:37 2014 commencing singleton removal, initial pass Thu Dec 11 22:22:59 2014 memory use: 172.2 MB Thu Dec 11 22:22:59 2014 reading all ideals from disk Thu Dec 11 22:22:59 2014 memory use: 142.4 MB Thu Dec 11 22:22:59 2014 keeping 5479421 ideals with weight <= 200, target excess is 21169 Thu Dec 11 22:23:00 2014 commencing in-memory singleton removal Thu Dec 11 22:23:00 2014 begin with 4399606 relations and 5479421 unique ideals Thu Dec 11 22:23:01 2014 reduce to 411 relations and 0 ideals in 28 passes Thu Dec 11 22:23:01 2014 max relations containing the same ideal: 0 Thu Dec 11 22:26:34 2014 Thu Dec 11 22:26:34 2014 commencing relation filtering Thu Dec 11 22:26:34 2014 estimated available RAM is 15987.3 MB Thu Dec 11 22:26:34 2014 commencing duplicate removal, pass 1 Thu Dec 11 22:26:50 2014 found 549778 hash collisions in 5026827 relations Thu Dec 11 22:26:54 2014 added 1239 free relations Thu Dec 11 22:26:54 2014 commencing duplicate removal, pass 2 Thu Dec 11 22:26:58 2014 found 282938 duplicates and 4745128 unique relations Thu Dec 11 22:26:58 2014 memory use: 20.6 MB Thu Dec 11 22:26:58 2014 reading ideals above 100000 Thu Dec 11 22:26:58 2014 commencing singleton removal, initial pass Thu Dec 11 22:27:19 2014 memory use: 172.2 MB Thu Dec 11 22:27:19 2014 reading all ideals from disk Thu Dec 11 22:27:19 2014 memory use: 153.7 MB Thu Dec 11 22:27:20 2014 keeping 5645264 ideals with weight <= 200, target excess is 22662 Thu Dec 11 22:27:20 2014 commencing in-memory singleton removal Thu Dec 11 22:27:20 2014 begin with 4745128 relations and 5645264 unique ideals Thu Dec 11 22:27:24 2014 reduce to 1125298 relations and 1226900 ideals in 34 passes Thu Dec 11 22:27:24 2014 max relations containing the same ideal: 77 Thu Dec 11 22:31:03 2014 Thu Dec 11 22:31:03 2014 commencing relation filtering Thu Dec 11 22:31:03 2014 estimated available RAM is 15987.3 MB Thu Dec 11 22:31:03 2014 commencing duplicate removal, pass 1 Thu Dec 11 22:31:24 2014 found 624164 hash collisions in 5403026 relations Thu Dec 11 22:31:28 2014 added 945 free relations Thu Dec 11 22:31:28 2014 commencing duplicate removal, pass 2 Thu Dec 11 22:31:32 2014 found 322838 duplicates and 5081133 unique relations Thu Dec 11 22:31:32 2014 memory use: 20.6 MB Thu Dec 11 22:31:32 2014 reading ideals above 100000 Thu Dec 11 22:31:32 2014 commencing singleton removal, initial pass Thu Dec 11 22:31:55 2014 memory use: 172.2 MB Thu Dec 11 22:31:55 2014 reading all ideals from disk Thu Dec 11 22:31:55 2014 memory use: 164.7 MB Thu Dec 11 22:31:56 2014 keeping 5792754 ideals with weight <= 200, target excess is 24250 Thu Dec 11 22:31:56 2014 commencing in-memory singleton removal Thu Dec 11 22:31:56 2014 begin with 5081133 relations and 5792754 unique ideals Thu Dec 11 22:31:59 2014 reduce to 1628901 relations and 1636414 ideals in 23 passes Thu Dec 11 22:31:59 2014 max relations containing the same ideal: 94 Thu Dec 11 22:35:21 2014 Thu Dec 11 22:35:21 2014 commencing relation filtering Thu Dec 11 22:35:21 2014 estimated available RAM is 15987.3 MB Thu Dec 11 22:35:21 2014 commencing duplicate removal, pass 1 Thu Dec 11 22:35:38 2014 found 703521 hash collisions in 5785303 relations Thu Dec 11 22:35:42 2014 added 837 free relations Thu Dec 11 22:35:42 2014 commencing duplicate removal, pass 2 Thu Dec 11 22:35:46 2014 found 365561 duplicates and 5420579 unique relations Thu Dec 11 22:35:46 2014 memory use: 20.6 MB Thu Dec 11 22:35:46 2014 reading ideals above 100000 Thu Dec 11 22:35:46 2014 commencing singleton removal, initial pass Thu Dec 11 22:36:08 2014 memory use: 172.2 MB Thu Dec 11 22:36:08 2014 reading all ideals from disk Thu Dec 11 22:36:08 2014 memory use: 175.8 MB Thu Dec 11 22:36:09 2014 keeping 5929756 ideals with weight <= 200, target excess is 25946 Thu Dec 11 22:36:09 2014 commencing in-memory singleton removal Thu Dec 11 22:36:09 2014 begin with 5420579 relations and 5929756 unique ideals Thu Dec 11 22:36:11 2014 reduce to 2108706 relations and 1995512 ideals in 19 passes Thu Dec 11 22:36:11 2014 max relations containing the same ideal: 109 Thu Dec 11 22:36:11 2014 removing 353211 relations and 311663 ideals in 41548 cliques Thu Dec 11 22:36:11 2014 commencing in-memory singleton removal Thu Dec 11 22:36:11 2014 begin with 1755495 relations and 1995512 unique ideals Thu Dec 11 22:36:12 2014 reduce to 1703717 relations and 1630569 ideals in 10 passes Thu Dec 11 22:36:12 2014 max relations containing the same ideal: 95 Thu Dec 11 22:36:12 2014 removing 262932 relations and 221384 ideals in 41548 cliques Thu Dec 11 22:36:12 2014 commencing in-memory singleton removal Thu Dec 11 22:36:12 2014 begin with 1440785 relations and 1630569 unique ideals Thu Dec 11 22:36:13 2014 reduce to 1404852 relations and 1372317 ideals in 9 passes Thu Dec 11 22:36:13 2014 max relations containing the same ideal: 79 Thu Dec 11 22:36:13 2014 relations with 0 large ideals: 511 Thu Dec 11 22:36:13 2014 relations with 1 large ideals: 249 Thu Dec 11 22:36:13 2014 relations with 2 large ideals: 3174 Thu Dec 11 22:36:13 2014 relations with 3 large ideals: 27332 Thu Dec 11 22:36:13 2014 relations with 4 large ideals: 123226 Thu Dec 11 22:36:13 2014 relations with 5 large ideals: 318415 Thu Dec 11 22:36:13 2014 relations with 6 large ideals: 427029 Thu Dec 11 22:36:13 2014 relations with 7+ large ideals: 504916 Thu Dec 11 22:36:13 2014 commencing 2-way merge Thu Dec 11 22:36:14 2014 reduce to 800448 relation sets and 767913 unique ideals Thu Dec 11 22:36:14 2014 commencing full merge Thu Dec 11 22:36:21 2014 memory use: 87.1 MB Thu Dec 11 22:36:21 2014 found 382750 cycles, need 378113 Thu Dec 11 22:36:21 2014 weight of 378113 cycles is about 26501173 (70.09/cycle) Thu Dec 11 22:36:21 2014 distribution of cycle lengths: Thu Dec 11 22:36:21 2014 1 relations: 42022 Thu Dec 11 22:36:21 2014 2 relations: 39683 Thu Dec 11 22:36:21 2014 3 relations: 39029 Thu Dec 11 22:36:21 2014 4 relations: 35607 Thu Dec 11 22:36:21 2014 5 relations: 32796 Thu Dec 11 22:36:21 2014 6 relations: 29090 Thu Dec 11 22:36:21 2014 7 relations: 25153 Thu Dec 11 22:36:21 2014 8 relations: 22725 Thu Dec 11 22:36:21 2014 9 relations: 19601 Thu Dec 11 22:36:21 2014 10+ relations: 92407 Thu Dec 11 22:36:21 2014 heaviest cycle: 25 relations Thu Dec 11 22:36:21 2014 commencing cycle optimization Thu Dec 11 22:36:21 2014 start with 2501557 relations Thu Dec 11 22:36:23 2014 pruned 55954 relations Thu Dec 11 22:36:23 2014 memory use: 81.4 MB Thu Dec 11 22:36:23 2014 distribution of cycle lengths: Thu Dec 11 22:36:23 2014 1 relations: 42022 Thu Dec 11 22:36:23 2014 2 relations: 40497 Thu Dec 11 22:36:23 2014 3 relations: 40215 Thu Dec 11 22:36:23 2014 4 relations: 36382 Thu Dec 11 22:36:23 2014 5 relations: 33613 Thu Dec 11 22:36:23 2014 6 relations: 29409 Thu Dec 11 22:36:23 2014 7 relations: 25440 Thu Dec 11 22:36:23 2014 8 relations: 22791 Thu Dec 11 22:36:23 2014 9 relations: 19763 Thu Dec 11 22:36:23 2014 10+ relations: 87981 Thu Dec 11 22:36:23 2014 heaviest cycle: 24 relations Thu Dec 11 22:36:24 2014 RelProcTime: 63 Thu Dec 11 22:36:24 2014 Thu Dec 11 22:36:24 2014 commencing linear algebra Thu Dec 11 22:36:24 2014 read 378113 cycles Thu Dec 11 22:36:24 2014 cycles contain 1351782 unique relations Thu Dec 11 22:36:31 2014 read 1351782 relations Thu Dec 11 22:36:31 2014 using 20 quadratic characters above 67108662 Thu Dec 11 22:36:35 2014 building initial matrix Thu Dec 11 22:36:42 2014 memory use: 166.0 MB Thu Dec 11 22:36:42 2014 read 378113 cycles Thu Dec 11 22:36:42 2014 matrix is 377939 x 378113 (113.4 MB) with weight 35940744 (95.05/col) Thu Dec 11 22:36:42 2014 sparse part has weight 25572959 (67.63/col) Thu Dec 11 22:36:44 2014 filtering completed in 2 passes Thu Dec 11 22:36:44 2014 matrix is 377252 x 377431 (113.4 MB) with weight 35910915 (95.15/col) Thu Dec 11 22:36:44 2014 sparse part has weight 25563363 (67.73/col) Thu Dec 11 22:36:45 2014 matrix starts at (0, 0) Thu Dec 11 22:36:45 2014 matrix is 377252 x 377431 (113.4 MB) with weight 35910915 (95.15/col) Thu Dec 11 22:36:45 2014 sparse part has weight 25563363 (67.73/col) Thu Dec 11 22:36:45 2014 saving the first 48 matrix rows for later Thu Dec 11 22:36:45 2014 matrix includes 64 packed rows Thu Dec 11 22:36:45 2014 matrix is 377204 x 377431 (108.9 MB) with weight 28481902 (75.46/col) Thu Dec 11 22:36:45 2014 sparse part has weight 24778603 (65.65/col) Thu Dec 11 22:36:45 2014 using block size 65536 for processor cache size 8192 kB Thu Dec 11 22:36:46 2014 commencing Lanczos iteration (8 threads) Thu Dec 11 22:36:46 2014 memory use: 103.6 MB Thu Dec 11 22:36:52 2014 linear algebra at 3.2%, ETA 0h 3m Thu Dec 11 22:40:19 2014 lanczos halted after 5967 iterations (dim = 377204) Thu Dec 11 22:40:19 2014 recovered 33 nontrivial dependencies Thu Dec 11 22:40:19 2014 BLanczosTime: 235 Thu Dec 11 22:40:19 2014 Thu Dec 11 22:40:19 2014 commencing square root phase Thu Dec 11 22:40:19 2014 reading relations for dependency 1 Thu Dec 11 22:40:19 2014 read 188712 cycles Thu Dec 11 22:40:19 2014 cycles contain 675986 unique relations Thu Dec 11 22:40:24 2014 read 675986 relations Thu Dec 11 22:40:25 2014 multiplying 675986 relations Thu Dec 11 22:40:39 2014 multiply complete, coefficients have about 29.94 million bits Thu Dec 11 22:40:39 2014 initial square root is modulo 397666837 Thu Dec 11 22:40:57 2014 sqrtTime: 38 -- n: 6374820724271688042662336298156449851667093063601509963788239544326796036960215773938273268017719691763791 skew: 2969965.12 c0: 172290130872844297908894663000 c1: 7585801547317056572626 c2: -225358930534691131 c3: -2210311136 c4: 10416 Y0: -27969956721338383725530537 Y1: 52460992519421 rlim: 2640000 alim: 2640000 lpbr: 26 lpba: 26 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 |
software ソフトウェア | yafu v1.34.3 |
execution environment 実行環境 | Gentoo Linux, Intel(R) Core(TM) i7-3770K CPU |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 / 2318 | Serge Batalov | December 10, 2014 19:48:37 UTC 2014 年 12 月 11 日 (木) 4 時 48 分 37 秒 (日本時間) |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | January 4, 2015 11:46:56 UTC 2015 年 1 月 4 日 (日) 20 時 46 分 56 秒 (日本時間) |
composite number 合成数 | 20527186276287716404322147715614379393083300879143996512926535465385996749909361855080046824635398240862606162714333907669848663673095073574390452281865731533<158> |
prime factors 素因数 | 107144887994128285870318451098560997948947533<45> 245048576160038018237520265815997977370015583782755904079<57> 781818215491867943309867281290001070328274626453786889519<57> |
factorization results 素因数分解の結果 | Number: 16111_162 N=20527186276287716404322147715614379393083300879143996512926535465385996749909361855080046824635398240862606162714333907669848663673095073574390452281865731533 ( 158 digits) SNFS difficulty: 164 digits. Divisors found: r1=107144887994128285870318451098560997948947533 r2=245048576160038018237520265815997977370015583782755904079 r3=781818215491867943309867281290001070328274626453786889519 Version: Total time: 11.70 hours. Scaled time: 61.41 units (timescale=5.250). Factorization parameters were as follows: n: 20527186276287716404322147715614379393083300879143996512926535465385996749909361855080046824635398240862606162714333907669848663673095073574390452281865731533 m: 100000000000000000000000000000000 deg: 5 c5: 14500 c0: -1 skew: 0.15 # Murphy_E = 3.863e-10 type: snfs lss: 1 rlim: 3600000 alim: 3600000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3600000/3600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1800000, 3500001) Primes: rational ideals reading, algebraic ideals reading, Relations: 9670459 Max relations in full relation-set: Initial matrix: Pruned matrix : 655921 x 656169 Total sieving time: 10.82 hours. Total relation processing time: 0.40 hours. Matrix solve time: 0.40 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,164,5,0,0,0,0,0,0,0,0,3600000,3600000,27,27,51,51,2.4,2.4,100000 total time: 11.70 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM) i7-4930K CPU @ 3.40GHz stepping 04 Memory: 49373664k/51380224k available (5220k kernel code, 1086460k absent, 920100k reserved, 7121k data, 1264k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 6799.88 BogoMIPS (lpj=3399941) Total of 12 processors activated (81598.58 BogoMIPS). |
software ソフトウェア | GGNFS / Msieve v1.39 |
execution environment 実行環境 | Core i7-4930K |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 / 2318 | Serge Batalov | December 10, 2014 19:48:38 UTC 2014 年 12 月 11 日 (木) 4 時 48 分 38 秒 (日本時間) |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | January 8, 2015 12:16:30 UTC 2015 年 1 月 8 日 (木) 21 時 16 分 30 秒 (日本時間) |
composite number 合成数 | 363741519693908059518144927811454743276986261850573414698643425864413219797743077706105937449378331367746499417565386834296602074273249778043<141> |
prime factors 素因数 | 2255575300512416626116714175976726473471039767380811319<55> 161263301478462750792717281500744635986270930264736746130990924445818592700479443147997<87> |
factorization results 素因数分解の結果 | Number: 16111_163 N=363741519693908059518144927811454743276986261850573414698643425864413219797743077706105937449378331367746499417565386834296602074273249778043 ( 141 digits) SNFS difficulty: 165 digits. Divisors found: r1=2255575300512416626116714175976726473471039767380811319 r2=161263301478462750792717281500744635986270930264736746130990924445818592700479443147997 Version: Total time: 12.00 hours. Scaled time: 63.07 units (timescale=5.256). Factorization parameters were as follows: n: 363741519693908059518144927811454743276986261850573414698643425864413219797743077706105937449378331367746499417565386834296602074273249778043 m: 500000000000000000000000000000000 deg: 5 c5: 232 c0: -5 skew: 0.46 # Murphy_E = 3.736e-10 type: snfs lss: 1 rlim: 4000000 alim: 4000000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2000000, 3700001) Primes: rational ideals reading, algebraic ideals reading, Relations: 9547965 Max relations in full relation-set: Initial matrix: Pruned matrix : 726295 x 726542 Total sieving time: 11.07 hours. Total relation processing time: 0.40 hours. Matrix solve time: 0.50 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,51,51,2.4,2.4,100000 total time: 12.00 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM) i7-4930K CPU @ 3.40GHz stepping 04 Memory: 49373664k/51380224k available (5220k kernel code, 1086460k absent, 920100k reserved, 7121k data, 1264k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 6800.24 BogoMIPS (lpj=3400120) Total of 12 processors activated (81602.88 BogoMIPS). |
software ソフトウェア | GGNFS / Msieve v1.39 |
execution environment 実行環境 | Core i7-4930K |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 / 2318 | Serge Batalov | December 10, 2014 19:48:38 UTC 2014 年 12 月 11 日 (木) 4 時 48 分 38 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | February 9, 2015 17:57:16 UTC 2015 年 2 月 10 日 (火) 2 時 57 分 16 秒 (日本時間) |
composite number 合成数 | 6795486627307884356455273811763014362213859296262656164767443775662582609932111433338038471831089086619117421560913654147<121> |
prime factors 素因数 | 161395590904802441645871113416778433856627<42> 42104536990208942408806370945342480010452153183437988165046547499097121069443761<80> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:136232417 Step 1 took 7515ms Step 2 took 5578ms ********** Factor found in step 2: 161395590904802441645871113416778433856627 Found probable prime factor of 42 digits: 161395590904802441645871113416778433856627 Probable prime cofactor 42104536990208942408806370945342480010452153183437988165046547499097121069443761 has 80 digits |
software ソフトウェア | GMP-ECM 7.0 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 / 2180 | Serge Batalov | December 10, 2014 19:48:39 UTC 2014 年 12 月 11 日 (木) 4 時 48 分 39 秒 (日本時間) | |
45 | 11e6 | 40 / 4409 | Pierre Jammes | December 20, 2014 08:12:26 UTC 2014 年 12 月 20 日 (土) 17 時 12 分 26 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | December 11, 2014 01:34:37 UTC 2014 年 12 月 11 日 (木) 10 時 34 分 37 秒 (日本時間) |
composite number 合成数 | 27663736409235567017881648430540841309551677672064147816692069608065906085621362814863401239220920500335875916885925625758487186634256214658384334770130567112319921<164> |
prime factors 素因数 | 200740366729109362365080801183680103<36> |
composite cofactor 合成数の残り | 137808537764437830705102052167661560153401623485978359438107110939819917465051669249019237364945240072955180388440742720381306407<129> |
factorization results 素因数分解の結果 | Input number is 27663736409235567017881648430540841309551677672064147816692069608065906085621362814863401239220920500335875916885925625758487186634256214658384334770130567112319921 (164 digits) Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2725228995 Step 1 took 12930ms ********** Factor found in step 1: 200740366729109362365080801183680103 Found probable prime factor of 36 digits: 200740366729109362365080801183680103 Composite cofactor 137808537764437830705102052167661560153401623485978359438107110939819917465051669249019237364945240072955180388440742720381306407 has 129 digits |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | April 1, 2015 12:40:19 UTC 2015 年 4 月 1 日 (水) 21 時 40 分 19 秒 (日本時間) |
composite number 合成数 | 137808537764437830705102052167661560153401623485978359438107110939819917465051669249019237364945240072955180388440742720381306407<129> |
prime factors 素因数 | 2724982164052973195621302699939093246302958693598413<52> 50572271474786378042236083777518957783964234439795339860572671032879730579139<77> |
factorization results 素因数分解の結果 | Number: 16111_168 N=137808537764437830705102052167661560153401623485978359438107110939819917465051669249019237364945240072955180388440742720381306407 ( 129 digits) SNFS difficulty: 170 digits. Divisors found: r1=2724982164052973195621302699939093246302958693598413 r2=50572271474786378042236083777518957783964234439795339860572671032879730579139 Version: Total time: 19.45 hours. Scaled time: 101.63 units (timescale=5.225). Factorization parameters were as follows: n: 137808537764437830705102052167661560153401623485978359438107110939819917465051669249019237364945240072955180388440742720381306407 m: 5000000000000000000000000000000000 deg: 5 c5: 232 c0: -5 skew: 0.46 # Murphy_E = 2.372e-10 type: snfs lss: 1 rlim: 5400000 alim: 5400000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5400000/5400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2700000, 5200001) Primes: rational ideals reading, algebraic ideals reading, Relations: 10949133 Max relations in full relation-set: Initial matrix: Pruned matrix : 925201 x 925449 Total sieving time: 17.56 hours. Total relation processing time: 0.68 hours. Matrix solve time: 0.83 hours. Time per square root: 0.38 hours. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,5400000,5400000,27,27,52,52,2.4,2.4,100000 total time: 19.45 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM) i7-4930K CPU @ 3.40GHz stepping 04 Memory: 49373664k/51380224k available (5220k kernel code, 1086460k absent, 920100k reserved, 7121k data, 1264k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 6800.24 BogoMIPS (lpj=3400120) Total of 12 processors activated (81602.88 BogoMIPS). |
software ソフトウェア | GGNFS / Msieve v1.39 |
execution environment 実行環境 | Core i7-4930K |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2650 | 300 | Serge Batalov | December 10, 2014 19:48:39 UTC 2014 年 12 月 11 日 (木) 4 時 48 分 39 秒 (日本時間) |
2350 | Ignacio Santos | February 9, 2015 22:14:08 UTC 2015 年 2 月 10 日 (火) 7 時 14 分 8 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 16, 2014 06:52:21 UTC 2014 年 12 月 16 日 (火) 15 時 52 分 21 秒 (日本時間) |
composite number 合成数 | 672136466879896166504426829833588281648356742224076391786028832336717192787280396792286654614564501923700922449357993788531961247856116441848607055115190284151485653363<168> |
prime factors 素因数 | 498970449894889449941173615296520027859970294553090202618837234383349050734151334617<84> 1347046637774812074654581221942988218542939465320994955780494329898248305419312944939<85> |
factorization results 素因数分解の結果 | N=672136466879896166504426829833588281648356742224076391786028832336717192787280396792286654614564501923700922449357993788531961247856116441848607055115190284151485653363 ( 168 digits) SNFS difficulty: 172 digits. Divisors found: r1=498970449894889449941173615296520027859970294553090202618837234383349050734151334617 (pp84) r2=1347046637774812074654581221942988218542939465320994955780494329898248305419312944939 (pp85) Version: Msieve v. 1.50 (SVN unknown) Total time: 48.93 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 672136466879896166504426829833588281648356742224076391786028832336717192787280396792286654614564501923700922449357993788531961247856116441848607055115190284151485653363 m: 10000000000000000000000000000000000 deg: 5 c5: 145 c0: -1 skew: 0.37 # Murphy_E = 2.223e-10 type: snfs lss: 1 rlim: 5200000 alim: 5200000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5200000/5200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2600000, 5200001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 907325 x 907555 Total sieving time: 47.57 hours. Total relation processing time: 0.13 hours. Matrix solve time: 0.86 hours. Time per square root: 0.38 hours. Prototype def-par.txt line would be: snfs,172.000,5,0,0,0,0,0,0,0,0,5200000,5200000,27,27,52,52,2.4,2.4,100000 total time: 48.93 hours. |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2600 | 280 | Cyp | December 7, 2014 18:22:40 UTC 2014 年 12 月 8 日 (月) 3 時 22 分 40 秒 (日本時間) |
2320 | Serge Batalov | December 8, 2014 19:27:28 UTC 2014 年 12 月 9 日 (火) 4 時 27 分 28 秒 (日本時間) |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | May 7, 2015 21:52:38 UTC 2015 年 5 月 8 日 (金) 6 時 52 分 38 秒 (日本時間) |
composite number 合成数 | 698633637220839759244015422775629037900168206809943128331026575182402161598101378099572212237556866683470264234456069735922521<126> |
prime factors 素因数 | 2711970916230934848197021185651787709133806653236039861<55> 257611035958966896885760716050637483016117998507849974715419929833831061<72> |
factorization results 素因数分解の結果 | Number: 16111_173 N=698633637220839759244015422775629037900168206809943128331026575182402161598101378099572212237556866683470264234456069735922521 ( 126 digits) SNFS difficulty: 175 digits. Divisors found: r1=2711970916230934848197021185651787709133806653236039861 r2=257611035958966896885760716050637483016117998507849974715419929833831061 Version: Total time: 29.41 hours. Scaled time: 154.59 units (timescale=5.256). Factorization parameters were as follows: n: 698633637220839759244015422775629037900168206809943128331026575182402161598101378099572212237556866683470264234456069735922521 m: 50000000000000000000000000000000000 deg: 5 c5: 232 c0: -5 skew: 0.46 # Murphy_E = 1.499e-10 type: snfs lss: 1 rlim: 7200000 alim: 7200000 lpbr: 28 lpba: 28 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 Factor base limits: 7200000/7200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 52/52 Sieved rational special-q in [3600000, 7000001) Primes: rational ideals reading, algebraic ideals reading, Relations: 16066789 Max relations in full relation-set: Initial matrix: Pruned matrix : 1187102 x 1187350 Total sieving time: 26.39 hours. Total relation processing time: 1.35 hours. Matrix solve time: 1.51 hours. Time per square root: 0.16 hours. Prototype def-par.txt line would be: snfs,175,5,0,0,0,0,0,0,0,0,7200000,7200000,28,28,52,52,2.5,2.5,100000 total time: 29.41 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM) i7-4930K CPU @ 3.40GHz stepping 04 Memory: 49373664k/51380224k available (5220k kernel code, 1086460k absent, 920100k reserved, 7121k data, 1264k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 6800.18 BogoMIPS (lpj=3400094) Total of 12 processors activated (81602.25 BogoMIPS). |
software ソフトウェア | GGNFS / Msieve v1.39 |
execution environment 実行環境 | Core i7-4930K |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 280 | Cyp | December 7, 2014 21:31:28 UTC 2014 年 12 月 8 日 (月) 6 時 31 分 28 秒 (日本時間) | |
45 | 11e6 | 600 / 4413 | Pierre Jammes | February 16, 2015 06:13:55 UTC 2015 年 2 月 16 日 (月) 15 時 13 分 55 秒 (日本時間) |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | May 12, 2015 21:26:45 UTC 2015 年 5 月 13 日 (水) 6 時 26 分 45 秒 (日本時間) |
composite number 合成数 | 2320876370920169815460800325267139473801496406445890868598514129237672475897933803784631252352657825817152851076862715881255379372779447947<139> |
prime factors 素因数 | 62668553063536585175620287555817509453431<41> 37034146433333902191628496181820185519363485300766438148630145765607755337963679772549132669041037<98> |
factorization results 素因数分解の結果 | Number: 16111_174 N=2320876370920169815460800325267139473801496406445890868598514129237672475897933803784631252352657825817152851076862715881255379372779447947 ( 139 digits) SNFS difficulty: 176 digits. Divisors found: r1=62668553063536585175620287555817509453431 r2=37034146433333902191628496181820185519363485300766438148630145765607755337963679772549132669041037 Version: Total time: 25.55 hours. Scaled time: 133.54 units (timescale=5.227). Factorization parameters were as follows: n: 2320876370920169815460800325267139473801496406445890868598514129237672475897933803784631252352657825817152851076862715881255379372779447947 m: 100000000000000000000000000000000000 deg: 5 c5: 29 c0: -2 skew: 0.59 # Murphy_E = 1.714e-10 type: snfs lss: 1 rlim: 7400000 alim: 7400000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3700000, 6600001) Primes: rational ideals reading, algebraic ideals reading, Relations: 17521579 Max relations in full relation-set: Initial matrix: Pruned matrix : 1238668 x 1238915 Total sieving time: 22.55 hours. Total relation processing time: 1.25 hours. Matrix solve time: 1.68 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,176,5,0,0,0,0,0,0,0,0,7400000,7400000,28,28,53,53,2.5,2.5,100000 total time: 25.55 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM) i7-4930K CPU @ 3.40GHz stepping 04 Memory: 49373664k/51380224k available (5220k kernel code, 1086460k absent, 920100k reserved, 7121k data, 1264k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 6800.18 BogoMIPS (lpj=3400094) Total of 12 processors activated (81602.25 BogoMIPS). |
software ソフトウェア | GGNFS / Msieve v1.39 |
execution environment 実行環境 | Core i7-4930K |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2680 | 280 | Cyp | December 9, 2014 01:09:00 UTC 2014 年 12 月 9 日 (火) 10 時 9 分 0 秒 (日本時間) |
2400 | Cyp | April 2, 2015 20:31:09 UTC 2015 年 4 月 3 日 (金) 5 時 31 分 9 秒 (日本時間) |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | May 25, 2015 14:21:35 UTC 2015 年 5 月 25 日 (月) 23 時 21 分 35 秒 (日本時間) |
composite number 合成数 | 5508105898870749522835173259294521242761658664011519770507311452505542966511058506969974000940116426632434497811524444041387057<127> |
prime factors 素因数 | 431888088394810543264182777270642714680313216820442449<54> 12753549002341351708395365431919938569461708799647740494514685948095725793<74> |
factorization results 素因数分解の結果 | Number: 16111_175 N=5508105898870749522835173259294521242761658664011519770507311452505542966511058506969974000940116426632434497811524444041387057 ( 127 digits) SNFS difficulty: 177 digits. Divisors found: r1=431888088394810543264182777270642714680313216820442449 r2=12753549002341351708395365431919938569461708799647740494514685948095725793 Version: Total time: 30.49 hours. Scaled time: 157.00 units (timescale=5.149). Factorization parameters were as follows: n: 5508105898870749522835173259294521242761658664011519770507311452505542966511058506969974000940116426632434497811524444041387057 m: 100000000000000000000000000000000000 deg: 5 c5: 145 c0: -1 skew: 0.37 # Murphy_E = 1.403e-10 type: snfs lss: 1 rlim: 7400000 alim: 7400000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3700000, 7100001) Primes: rational ideals reading, algebraic ideals reading, Relations: 17887927 Max relations in full relation-set: Initial matrix: Pruned matrix : 1315660 x 1315908 Total sieving time: 26.83 hours. Total relation processing time: 1.52 hours. Matrix solve time: 1.97 hours. Time per square root: 0.17 hours. Prototype def-par.txt line would be: snfs,177,5,0,0,0,0,0,0,0,0,7400000,7400000,28,28,53,53,2.5,2.5,100000 total time: 30.49 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM) i7-4930K CPU @ 3.40GHz stepping 04 Memory: 49373664k/51380224k available (5220k kernel code, 1086460k absent, 920100k reserved, 7121k data, 1264k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 6799.77 BogoMIPS (lpj=3399888) Total of 12 processors activated (81597.31 BogoMIPS). |
software ソフトウェア | GGNFS / Msieve v1.39 |
execution environment 実行環境 | Core i7-4930K |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 280 | Cyp | December 10, 2014 06:28:10 UTC 2014 年 12 月 10 日 (水) 15 時 28 分 10 秒 (日本時間) | |
45 | 11e6 | 600 / 4413 | KTakahashi | April 27, 2015 20:25:26 UTC 2015 年 4 月 28 日 (火) 5 時 25 分 26 秒 (日本時間) |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | October 1, 2015 12:32:48 UTC 2015 年 10 月 1 日 (木) 21 時 32 分 48 秒 (日本時間) |
composite number 合成数 | 23009274378284171022573999309556223206297198976818230308371527326611751550820292348756040689325517795373185956170266087448251652094560581874274099028965994541<158> |
prime factors 素因数 | 3440770687110695795233051511293141762923338993831929471303816830709<67> 6687244361990788254470411563379627199827158188092023347718627141765229653128135958814972249<91> |
factorization results 素因数分解の結果 | Number: 16111_176 N=23009274378284171022573999309556223206297198976818230308371527326611751550820292348756040689325517795373185956170266087448251652094560581874274099028965994541 ( 158 digits) SNFS difficulty: 178 digits. Divisors found: r1=3440770687110695795233051511293141762923338993831929471303816830709 r2=6687244361990788254470411563379627199827158188092023347718627141765229653128135958814972249 Version: Total time: 35.26 hours. Scaled time: 181.92 units (timescale=5.159). Factorization parameters were as follows: n: 23009274378284171022573999309556223206297198976818230308371527326611751550820292348756040689325517795373185956170266087448251652094560581874274099028965994541 m: 100000000000000000000000000000000000 deg: 5 c5: 1450 c0: -1 skew: 0.23 # Murphy_E = 1.201e-10 type: snfs lss: 1 rlim: 8000000 alim: 8000000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 8000000/8000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [4000000, 7900001) Primes: rational ideals reading, algebraic ideals reading, Relations: 18416283 Max relations in full relation-set: Initial matrix: Pruned matrix : 1321016 x 1321264 Total sieving time: 31.42 hours. Total relation processing time: 1.80 hours. Matrix solve time: 1.95 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,178,5,0,0,0,0,0,0,0,0,8000000,8000000,28,28,53,53,2.5,2.5,100000 total time: 35.26 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM) i7-4930K CPU @ 3.40GHz stepping 04 Memory: 49365480k/51380224k available (5395k kernel code, 1086460k absent, 928284k reserved, 7013k data, 1296k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 6799.95 BogoMIPS (lpj=3399977) Total of 12 processors activated (81599.44 BogoMIPS). |
software ソフトウェア | GGNFS / Msieve v1.39 |
execution environment 実行環境 | Core i7-4930K |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 | Serge Batalov | December 10, 2014 19:48:40 UTC 2014 年 12 月 11 日 (木) 4 時 48 分 40 秒 (日本時間) | |
45 | 11e6 | 600 / 4409 | KTakahashi | May 6, 2015 22:37:30 UTC 2015 年 5 月 7 日 (木) 7 時 37 分 30 秒 (日本時間) |
name 名前 | Cyp |
---|---|
date 日付 | December 12, 2014 22:12:26 UTC 2014 年 12 月 13 日 (土) 7 時 12 分 26 秒 (日本時間) |
composite number 合成数 | 17386215481716176099586562975135212277520490450743978778949679160312788866796828872876160937771390062420019193235099027<119> |
prime factors 素因数 | 72579865102082334652051310395225211869974799<44> 239545987819938248802135682446241868725565849856551782454419628560680301373<75> |
factorization results 素因数分解の結果 | 12/12/14 18:43:54 v1.34.3, 12/12/14 18:43:54 v1.34.3, **************************** 12/12/14 18:43:54 v1.34.3, Starting factorization of 17386215481716176099586562975135212277520490450743978778949679160312788866796828872876160937771390062420019193235099027 12/12/14 18:43:54 v1.34.3, using pretesting plan: none 12/12/14 18:43:54 v1.34.3, no tune info: using qs/gnfs crossover of 95 digits 12/12/14 18:43:54 v1.34.3, **************************** 12/12/14 18:43:54 v1.34.3, rho: x^2 + 3, starting 1000 iterations on C119 12/12/14 18:43:54 v1.34.3, rho: x^2 + 2, starting 1000 iterations on C119 12/12/14 18:43:54 v1.34.3, rho: x^2 + 1, starting 1000 iterations on C119 12/12/14 18:43:54 v1.34.3, final ECM pretested depth: 0.00 12/12/14 18:43:54 v1.34.3, scheduler: switching to sieve method 12/12/14 18:43:54 v1.34.3, nfs: commencing nfs on c119: 17386215481716176099586562975135212277520490450743978778949679160312788866796828872876160937771390062420019193235099027 12/12/14 18:43:54 v1.34.3, nfs: commencing poly selection with 8 threads 12/12/14 18:43:54 v1.34.3, nfs: setting deadline of 1462 seconds 12/12/14 19:08:38 v1.34.3, nfs: completed 254 ranges of size 250 in 1484.4237 seconds 12/12/14 19:08:38 v1.34.3, nfs: best poly = # norm 2.601874e-11 alpha -5.967698 e 3.327e-10 rroots 3 12/12/14 19:08:38 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/12/14 19:14:04 v1.34.3, nfs: commencing lattice sieving with 8 threads [34 lines snipped] 12/12/14 22:29:59 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/12/14 22:35:46 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/12/14 22:41:42 v1.34.3, nfs: commencing msieve filtering 12/12/14 22:43:22 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/12/14 22:49:06 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/12/14 22:54:58 v1.34.3, nfs: commencing msieve filtering 12/12/14 22:57:00 v1.34.3, nfs: commencing msieve linear algebra 12/12/14 23:10:41 v1.34.3, nfs: commencing msieve sqrt 12/12/14 23:12:25 v1.34.3, prp44 = 72579865102082334652051310395225211869974799 12/12/14 23:12:25 v1.34.3, prp75 = 239545987819938248802135682446241868725565849856551782454419628560680301373 12/12/14 23:12:25 v1.34.3, NFS elapsed time = 16111.2357 seconds. 12/12/14 23:12:25 v1.34.3, 12/12/14 23:12:25 v1.34.3, 12/12/14 23:12:25 v1.34.3, Total factoring time = 16111.2608 seconds -- Fri Dec 12 22:41:42 2014 Fri Dec 12 22:41:42 2014 commencing relation filtering Fri Dec 12 22:41:42 2014 estimated available RAM is 15987.3 MB Fri Dec 12 22:41:42 2014 commencing duplicate removal, pass 1 Fri Dec 12 22:42:14 2014 found 1107832 hash collisions in 10114894 relations Fri Dec 12 22:42:24 2014 added 63170 free relations Fri Dec 12 22:42:24 2014 commencing duplicate removal, pass 2 Fri Dec 12 22:42:33 2014 found 566936 duplicates and 9611128 unique relations Fri Dec 12 22:42:33 2014 memory use: 41.3 MB Fri Dec 12 22:42:33 2014 reading ideals above 100000 Fri Dec 12 22:42:33 2014 commencing singleton removal, initial pass Fri Dec 12 22:43:17 2014 memory use: 344.5 MB Fri Dec 12 22:43:17 2014 reading all ideals from disk Fri Dec 12 22:43:17 2014 memory use: 340.4 MB Fri Dec 12 22:43:17 2014 keeping 10785420 ideals with weight <= 200, target excess is 49382 Fri Dec 12 22:43:18 2014 commencing in-memory singleton removal Fri Dec 12 22:43:18 2014 begin with 9611128 relations and 10785420 unique ideals Fri Dec 12 22:43:22 2014 reduce to 3172372 relations and 3126591 ideals in 23 passes Fri Dec 12 22:43:22 2014 max relations containing the same ideal: 96 Fri Dec 12 22:54:58 2014 Fri Dec 12 22:54:58 2014 commencing relation filtering Fri Dec 12 22:54:58 2014 estimated available RAM is 15987.3 MB Fri Dec 12 22:54:58 2014 commencing duplicate removal, pass 1 Fri Dec 12 22:55:33 2014 found 1217789 hash collisions in 10703314 relations Fri Dec 12 22:55:43 2014 added 104 free relations Fri Dec 12 22:55:43 2014 commencing duplicate removal, pass 2 Fri Dec 12 22:55:51 2014 found 620334 duplicates and 10083084 unique relations Fri Dec 12 22:55:51 2014 memory use: 41.3 MB Fri Dec 12 22:55:51 2014 reading ideals above 720000 Fri Dec 12 22:55:51 2014 commencing singleton removal, initial pass Fri Dec 12 22:56:34 2014 memory use: 344.5 MB Fri Dec 12 22:56:34 2014 reading all ideals from disk Fri Dec 12 22:56:34 2014 memory use: 286.7 MB Fri Dec 12 22:56:34 2014 commencing in-memory singleton removal Fri Dec 12 22:56:35 2014 begin with 10083084 relations and 10924104 unique ideals Fri Dec 12 22:56:38 2014 reduce to 3815804 relations and 3540589 ideals in 19 passes Fri Dec 12 22:56:38 2014 max relations containing the same ideal: 80 Fri Dec 12 22:56:39 2014 removing 609742 relations and 539398 ideals in 70344 cliques Fri Dec 12 22:56:39 2014 commencing in-memory singleton removal Fri Dec 12 22:56:39 2014 begin with 3206062 relations and 3540589 unique ideals Fri Dec 12 22:56:40 2014 reduce to 3122083 relations and 2915093 ideals in 10 passes Fri Dec 12 22:56:40 2014 max relations containing the same ideal: 69 Fri Dec 12 22:56:41 2014 removing 455143 relations and 384799 ideals in 70344 cliques Fri Dec 12 22:56:41 2014 commencing in-memory singleton removal Fri Dec 12 22:56:41 2014 begin with 2666940 relations and 2915093 unique ideals Fri Dec 12 22:56:42 2014 reduce to 2608083 relations and 2469984 ideals in 13 passes Fri Dec 12 22:56:42 2014 max relations containing the same ideal: 59 Fri Dec 12 22:56:43 2014 relations with 0 large ideals: 510 Fri Dec 12 22:56:43 2014 relations with 1 large ideals: 3581 Fri Dec 12 22:56:43 2014 relations with 2 large ideals: 43668 Fri Dec 12 22:56:43 2014 relations with 3 large ideals: 221262 Fri Dec 12 22:56:43 2014 relations with 4 large ideals: 567019 Fri Dec 12 22:56:43 2014 relations with 5 large ideals: 792140 Fri Dec 12 22:56:43 2014 relations with 6 large ideals: 623939 Fri Dec 12 22:56:43 2014 relations with 7+ large ideals: 355964 Fri Dec 12 22:56:43 2014 commencing 2-way merge Fri Dec 12 22:56:44 2014 reduce to 1472223 relation sets and 1334125 unique ideals Fri Dec 12 22:56:44 2014 ignored 1 oversize relation sets Fri Dec 12 22:56:44 2014 commencing full merge Fri Dec 12 22:56:55 2014 memory use: 142.3 MB Fri Dec 12 22:56:55 2014 found 722208 cycles, need 702325 Fri Dec 12 22:56:55 2014 weight of 702325 cycles is about 49293357 (70.19/cycle) Fri Dec 12 22:56:55 2014 distribution of cycle lengths: Fri Dec 12 22:56:55 2014 1 relations: 84492 Fri Dec 12 22:56:55 2014 2 relations: 78683 Fri Dec 12 22:56:55 2014 3 relations: 78593 Fri Dec 12 22:56:55 2014 4 relations: 70490 Fri Dec 12 22:56:55 2014 5 relations: 64110 Fri Dec 12 22:56:55 2014 6 relations: 54472 Fri Dec 12 22:56:55 2014 7 relations: 48643 Fri Dec 12 22:56:55 2014 8 relations: 42057 Fri Dec 12 22:56:55 2014 9 relations: 36547 Fri Dec 12 22:56:55 2014 10+ relations: 144238 Fri Dec 12 22:56:55 2014 heaviest cycle: 20 relations Fri Dec 12 22:56:55 2014 commencing cycle optimization Fri Dec 12 22:56:56 2014 start with 4233808 relations Fri Dec 12 22:56:59 2014 pruned 88288 relations Fri Dec 12 22:56:59 2014 memory use: 144.2 MB Fri Dec 12 22:56:59 2014 distribution of cycle lengths: Fri Dec 12 22:56:59 2014 1 relations: 84492 Fri Dec 12 22:56:59 2014 2 relations: 80408 Fri Dec 12 22:56:59 2014 3 relations: 81146 Fri Dec 12 22:56:59 2014 4 relations: 71803 Fri Dec 12 22:56:59 2014 5 relations: 65410 Fri Dec 12 22:56:59 2014 6 relations: 55041 Fri Dec 12 22:56:59 2014 7 relations: 48966 Fri Dec 12 22:56:59 2014 8 relations: 42354 Fri Dec 12 22:56:59 2014 9 relations: 36150 Fri Dec 12 22:56:59 2014 10+ relations: 136555 Fri Dec 12 22:56:59 2014 heaviest cycle: 20 relations Fri Dec 12 22:57:00 2014 RelProcTime: 122 Fri Dec 12 22:57:00 2014 Fri Dec 12 22:57:00 2014 commencing linear algebra Fri Dec 12 22:57:00 2014 read 702325 cycles Fri Dec 12 22:57:01 2014 cycles contain 2446166 unique relations Fri Dec 12 22:57:14 2014 read 2446166 relations Fri Dec 12 22:57:15 2014 using 20 quadratic characters above 134215442 Fri Dec 12 22:57:23 2014 building initial matrix Fri Dec 12 22:57:37 2014 memory use: 310.6 MB Fri Dec 12 22:57:38 2014 read 702325 cycles Fri Dec 12 22:57:38 2014 matrix is 702134 x 702325 (210.6 MB) with weight 66823570 (95.15/col) Fri Dec 12 22:57:38 2014 sparse part has weight 47488276 (67.62/col) Fri Dec 12 22:57:41 2014 filtering completed in 2 passes Fri Dec 12 22:57:41 2014 matrix is 699041 x 699230 (210.3 MB) with weight 66676146 (95.36/col) Fri Dec 12 22:57:41 2014 sparse part has weight 47431485 (67.83/col) Fri Dec 12 22:57:43 2014 matrix starts at (0, 0) Fri Dec 12 22:57:43 2014 matrix is 699041 x 699230 (210.3 MB) with weight 66676146 (95.36/col) Fri Dec 12 22:57:43 2014 sparse part has weight 47431485 (67.83/col) Fri Dec 12 22:57:43 2014 saving the first 48 matrix rows for later Fri Dec 12 22:57:43 2014 matrix includes 64 packed rows Fri Dec 12 22:57:43 2014 matrix is 698993 x 699230 (203.1 MB) with weight 52951575 (75.73/col) Fri Dec 12 22:57:43 2014 sparse part has weight 46254941 (66.15/col) Fri Dec 12 22:57:43 2014 using block size 65536 for processor cache size 8192 kB Fri Dec 12 22:57:45 2014 commencing Lanczos iteration (8 threads) Fri Dec 12 22:57:45 2014 memory use: 194.6 MB Fri Dec 12 22:57:48 2014 linear algebra at 0.4%, ETA 0h11m Fri Dec 12 23:10:40 2014 lanczos halted after 11054 iterations (dim = 698993) Fri Dec 12 23:10:40 2014 recovered 33 nontrivial dependencies Fri Dec 12 23:10:41 2014 BLanczosTime: 821 Fri Dec 12 23:10:41 2014 Fri Dec 12 23:10:41 2014 commencing square root phase Fri Dec 12 23:10:41 2014 reading relations for dependency 1 Fri Dec 12 23:10:41 2014 read 350288 cycles Fri Dec 12 23:10:41 2014 cycles contain 1223700 unique relations Fri Dec 12 23:10:51 2014 read 1223700 relations Fri Dec 12 23:10:54 2014 multiplying 1223700 relations Fri Dec 12 23:11:34 2014 multiply complete, coefficients have about 51.33 million bits Fri Dec 12 23:11:35 2014 initial square root is modulo 23423243 Fri Dec 12 23:12:25 2014 sqrtTime: 104 -- n: 17386215481716176099586562975135212277520490450743978778949679160312788866796828872876160937771390062420019193235099027 skew: 185739.25 c0: -128910159283929089634843322752 c1: 2810423227136067793541856 c2: 17127622602959551915 c3: -428820316760284 c4: -804703028 c5: 1200 Y0: -107697392549562218269475 Y1: 788403203369 rlim: 5300000 alim: 5300000 lpbr: 27 lpba: 27 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 |
software ソフトウェア | yafu v1.34.3 |
execution environment 実行環境 | Gentoo Linux, Intel(R) Core(TM) i7-3770K CPU |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2320 | Serge Batalov | December 9, 2014 00:57:16 UTC 2014 年 12 月 9 日 (火) 9 時 57 分 16 秒 (日本時間) |
name 名前 | KTakahashi |
---|---|
date 日付 | July 14, 2015 00:45:39 UTC 2015 年 7 月 14 日 (火) 9 時 45 分 39 秒 (日本時間) |
composite number 合成数 | 155441677084707780941616474375974120746874600080802771735876306235799855666855571134605058357402909695411532211852813889832486916273<132> |
prime factors 素因数 | 275710585086635977800033791128166936006839247<45> 563785670527896700468661551748644031350258445749426405016636555684801065163749146508159<87> |
factorization results 素因数分解の結果 | GMP-ECM 6.4.4 [configured with GMP 6.0.0] [ECM] Input number is 155441677084707780941616474375974120746874600080802771735876306235799855666855571134605058357402909695411532211852813889832486916273 (132 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=3977984342 Step 1 took 30888ms Step 2 took 14571ms ********** Factor found in step 2: 275710585086635977800033791128166936006839247 Found probable prime factor of 45 digits: 275710585086635977800033791128166936006839247 Probable prime cofactor 563785670527896700468661551748644031350258445749426405016636555684801065163749146508159 has 87 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 | Serge Batalov | December 10, 2014 19:48:40 UTC 2014 年 12 月 11 日 (木) 4 時 48 分 40 秒 (日本時間) | |
45 | 11e6 | 1609 / 4409 | 600 | KTakahashi | May 17, 2015 00:07:15 UTC 2015 年 5 月 17 日 (日) 9 時 7 分 15 秒 (日本時間) |
1009 | KTakahashi | July 13, 2015 20:37:23 UTC 2015 年 7 月 14 日 (火) 5 時 37 分 23 秒 (日本時間) |
name 名前 | Robert Backstrom |
---|---|
date 日付 | December 27, 2014 01:37:40 UTC 2014 年 12 月 27 日 (土) 10 時 37 分 40 秒 (日本時間) |
composite number 合成数 | 179012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679<183> |
prime factors 素因数 | 105498094087683137746214031291691640352185168974551584676232197222207055080113<78> 1696830139227244758082760346490289295811909596696647096664787946717940393213272263635584337270614985245183<106> |
factorization results 素因数分解の結果 | Number: n N=179012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679 ( 183 digits) SNFS difficulty: 184 digits. Divisors found: Sat Dec 27 11:38:36 2014 prp78 factor: 105498094087683137746214031291691640352185168974551584676232197222207055080113 Sat Dec 27 11:38:36 2014 prp106 factor: 1696830139227244758082760346490289295811909596696647096664787946717940393213272263635584337270614985245183 Sat Dec 27 11:38:36 2014 elapsed time 00:41:45 (Msieve 1.44 - dependency 2) Version: GGNFS-0.77.1-20060513-nocona Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.278). Factorization parameters were as follows: # # N = 145*10^182-1 161(182) # n: 179012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679 m: 1000000000000000000000000000000000000 deg: 5 c5: 14500 c0: -1 skew: 0.15 # Murphy_E = 6.159e-11 type: snfs lss: 1 rlim: 8200000 alim: 8200000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 8200000/8200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved special-q in [100000, 9700000) Primes: RFBsize:552319, AFBsize:551143, Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 4067667 hash collisions in 32804507 relations (30656582 unique) Msieve: matrix is 916670 x 916895 (257.6 MB) Total sieving time: 0.00 hours. Total relation processing time: 0hrs 29min 42sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 4min 48sec. Prototype def-par.txt line would be: snfs,184,5,0,0,0,0,0,0,0,0,8200000,8200000,28,28,54,54,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- [ 0.038914] smpboot: CPU0: Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz (fam: 06, model: 3c, stepping: 03) [ 0.000000] Memory: 16059668K/16661464K available (7375K kernel code, 1160K rwdata, 3228K rodata, 1468K init, 1504K bss, 601796K reserved) [ 1.131637] [drm] Memory usable by graphics device = 2048M [ 0.000027] Calibrating delay loop (skipped), value calculated using timer frequency.. 7200.29 BogoMIPS (lpj=3600149) [ 0.136791] smpboot: Total of 8 processors activated (57602.38 BogoMIPS) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2320 | Serge Batalov | December 8, 2014 19:27:35 UTC 2014 年 12 月 9 日 (火) 4 時 27 分 35 秒 (日本時間) |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | April 6, 2016 13:24:00 UTC 2016 年 4 月 6 日 (水) 22 時 24 分 0 秒 (日本時間) |
composite number 合成数 | 35801997133313307956196774050292025114675381100518652538877673943478637889996830897928776062205398301203492669829122050540988347847<131> |
prime factors 素因数 | 1013538291081503207343300867126180584674904807045665313<55> 35323773604163029211087651458326249283179364071519182024307855920582136601319<77> |
factorization results 素因数分解の結果 | GMP-ECM 6.4.4 [configured with GMP 6.0.0, --enable-asm-redc] [ECM] Input number is 35801997133313307956196774050292025114675381100518652538877673943478637889996830897928776062205398301203492669829122050540988347847 (131 digits) Using B1=43000000, B2=240490660426, polynomial Dickson(12), sigma=6656394354 Step 1 took 77274ms Step 2 took 23956ms ********** Factor found in step 2: 1013538291081503207343300867126180584674904807045665313 Found probable prime factor of 55 digits: 1013538291081503207343300867126180584674904807045665313 Probable prime cofactor 35323773604163029211087651458326249283179364071519182024307855920582136601319 has 77 digits |
execution environment 実行環境 | Core i7-4930K |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 | Serge Batalov | December 10, 2014 19:48:41 UTC 2014 年 12 月 11 日 (木) 4 時 48 分 41 秒 (日本時間) | |
45 | 11e6 | 4409 | 585 | Cyp | May 24, 2015 17:14:30 UTC 2015 年 5 月 25 日 (月) 2 時 14 分 30 秒 (日本時間) |
174 | KTakahashi | June 29, 2015 22:39:25 UTC 2015 年 6 月 30 日 (火) 7 時 39 分 25 秒 (日本時間) | |||
920 | KTakahashi | June 30, 2015 13:06:32 UTC 2015 年 6 月 30 日 (火) 22 時 6 分 32 秒 (日本時間) | |||
230 | KTakahashi | June 30, 2015 13:47:38 UTC 2015 年 6 月 30 日 (火) 22 時 47 分 38 秒 (日本時間) | |||
2500 | KTakahashi | July 1, 2015 09:20:11 UTC 2015 年 7 月 1 日 (水) 18 時 20 分 11 秒 (日本時間) |
name 名前 | Cyp |
---|---|
date 日付 | June 3, 2015 08:28:01 UTC 2015 年 6 月 3 日 (水) 17 時 28 分 1 秒 (日本時間) |
composite number 合成数 | 122396843379272514368764192117624270111871333005952629285393935290503501260005667930669766393119111594102377719555727839320900580082972164927248976648756373<156> |
prime factors 素因数 | 774360870194396343710182032463058286459476323<45> 158061761757855721457938809749889170402601170526007198220947683985466376910622693048336313581514275959610429351<111> |
factorization results 素因数分解の結果 | Run 157 out of 591: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1092000953 Step 1 took 50627ms Step 2 took 17124ms ********** Factor found in step 2: 774360870194396343710182032463058286459476323 Found probable prime factor of 45 digits: 774360870194396343710182032463058286459476323 Probable prime cofactor 158061761757855721457938809749889170402601170526007198220947683985466376910622693048336313581514275959610429351 has 111 digits |
software ソフトウェア | GMP-ECM 6.4.4 |
execution environment 実行環境 | Gentoo Linux, Intel(R) Core(TM) i7-3770K CPU |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 280 / 1777 | Cyp | December 7, 2014 10:01:08 UTC 2014 年 12 月 7 日 (日) 19 時 1 分 8 秒 (日本時間) | |
45 | 11e6 | 157 / 4413 | Cyp | June 3, 2015 08:28:01 UTC 2015 年 6 月 3 日 (水) 17 時 28 分 1 秒 (日本時間) |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | December 4, 2016 06:59:04 UTC 2016 年 12 月 4 日 (日) 15 時 59 分 4 秒 (日本時間) |
composite number 合成数 | 505740478289062187400732633602210913618704920924953607282310715849151610458396665645808667395989232524016906738614642704543123240183264667435207352699637900236983847333<168> |
prime factors 素因数 | 3482362791196156844255945949742971219357635574350796460063442659559<67> 145229118450161645387129324315469743481981898065451209999391250279074798782399387036692190482847722387<102> |
factorization results 素因数分解の結果 | Number: 16111_187 N=505740478289062187400732633602210913618704920924953607282310715849151610458396665645808667395989232524016906738614642704543123240183264667435207352699637900236983847333 ( 168 digits) SNFS difficulty: 189 digits. Divisors found: r1=3482362791196156844255945949742971219357635574350796460063442659559 r2=145229118450161645387129324315469743481981898065451209999391250279074798782399387036692190482847722387 Version: Total time: 93.31 hours. Scaled time: 488.03 units (timescale=5.230). Factorization parameters were as follows: n: 505740478289062187400732633602210913618704920924953607282310715849151610458396665645808667395989232524016906738614642704543123240183264667435207352699637900236983847333 m: 10000000000000000000000000000000000000 deg: 5 c5: 14500 c0: -1 skew: 0.15 # Murphy_E = 3.849e-11 type: snfs lss: 1 rlim: 8400000 alim: 8400000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 8400000/8400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [4200000, 8300001) Primes: rational ideals reading, algebraic ideals reading, Relations: 20619382 Max relations in full relation-set: Initial matrix: Pruned matrix : 1799152 x 1799399 Total sieving time: 85.90 hours. Total relation processing time: 2.25 hours. Matrix solve time: 4.48 hours. Time per square root: 0.68 hours. Prototype def-par.txt line would be: snfs,189,5,0,0,0,0,0,0,0,0,8400000,8400000,28,28,54,54,2.5,2.5,100000 total time: 93.31 hours. --------- CPU info (if available) ---------- |
software ソフトウェア | GGNFS / Msieve v1.39 |
execution environment 実行環境 | Core i7-4930K |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 280 | Cyp | December 8, 2014 23:54:31 UTC 2014 年 12 月 9 日 (火) 8 時 54 分 31 秒 (日本時間) | |
45 | 11e6 | 791 / 4413 | 591 | Cyp | May 22, 2015 06:05:27 UTC 2015 年 5 月 22 日 (金) 15 時 5 分 27 秒 (日本時間) |
200 | Dmitry Domanov | December 16, 2015 06:14:57 UTC 2015 年 12 月 16 日 (水) 15 時 14 分 57 秒 (日本時間) |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | January 9, 2017 14:35:17 UTC 2017 年 1 月 9 日 (月) 23 時 35 分 17 秒 (日本時間) |
composite number 合成数 | 6256492484805084896286390695858338226705603326305379548784309211819269602458043481757263435260343513073954814412003660321966571686329665884603<142> |
prime factors 素因数 | 598985156893864749786054437763821374130800455184859<51> 10445154463007309509576013895643819979869754894674387754092526715832995156457602717670938017<92> |
factorization results 素因数分解の結果 | Number: 16111_188 N=6256492484805084896286390695858338226705603326305379548784309211819269602458043481757263435260343513073954814412003660321966571686329665884603 ( 142 digits) SNFS difficulty: 190 digits. Divisors found: r1=598985156893864749786054437763821374130800455184859 r2=10445154463007309509576013895643819979869754894674387754092526715832995156457602717670938017 Version: Total time: 99.75 hours. Scaled time: 524.29 units (timescale=5.256). Factorization parameters were as follows: n: 6256492484805084896286390695858338226705603326305379548784309211819269602458043481757263435260343513073954814412003660321966571686329665884603 m: 50000000000000000000000000000000000000 deg: 5 c5: 232 c0: -5 skew: 0.46 # Murphy_E = 3.684e-11 type: snfs lss: 1 rlim: 9000000 alim: 9000000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 9000000/9000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [4500000, 8900001) Primes: rational ideals reading, algebraic ideals reading, Relations: 21121382 Max relations in full relation-set: Initial matrix: Pruned matrix : 1772408 x 1772656 Total sieving time: 92.55 hours. Total relation processing time: 2.49 hours. Matrix solve time: 4.29 hours. Time per square root: 0.42 hours. Prototype def-par.txt line would be: snfs,190,5,0,0,0,0,0,0,0,0,9000000,9000000,28,28,54,54,2.5,2.5,100000 total time: 99.75 hours. --------- CPU info (if available) ---------- |
software ソフトウェア | GGNFS / Msieve v1.39 |
execution environment 実行環境 | Core i7-4930K |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 | Serge Batalov | December 10, 2014 19:48:41 UTC 2014 年 12 月 11 日 (木) 4 時 48 分 41 秒 (日本時間) | |
45 | 11e6 | 4609 | 585 | Cyp | June 2, 2015 15:30:50 UTC 2015 年 6 月 3 日 (水) 0 時 30 分 50 秒 (日本時間) |
200 | Dmitry Domanov | December 16, 2015 06:15:13 UTC 2015 年 12 月 16 日 (水) 15 時 15 分 13 秒 (日本時間) | |||
3824 | Matthew House | December 17, 2015 00:35:49 UTC 2015 年 12 月 17 日 (木) 9 時 35 分 49 秒 (日本時間) |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | November 12, 2016 09:14:15 UTC 2016 年 11 月 12 日 (土) 18 時 14 分 15 秒 (日本時間) |
composite number 合成数 | 21615341579331418947510266993583973795609827063994983407122944151658731619842054431309875936933517530844071424866624024579682085107701056734463382523087960175651<161> |
prime factors 素因数 | 417792955748542439757381054092238278260333987<45> 51736969907987321775043408203389456092750744145030661339518657211287722110380388441568155432612702138732581532415873<116> |
factorization results 素因数分解の結果 | GMP-ECM 6.4.4 [configured with GMP 6.0.0, --enable-asm-redc] [ECM] Input number is 21615341579331418947510266993583973795609827063994983407122944151658731619842054431309875936933517530844071424866624024579682085107701056734463382523087960175651 (161 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1376911872 Step 1 took 30058ms Step 2 took 9930ms ********** Factor found in step 2: 417792955748542439757381054092238278260333987 Found probable prime factor of 45 digits: 417792955748542439757381054092238278260333987 Probable prime cofactor 51736969907987321775043408203389456092750744145030661339518657211287722110380388441568155432612702138732581532415873 has 116 digits |
execution environment 実行環境 | Core i7-4930K |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 580 | 280 | Cyp | December 10, 2014 16:58:12 UTC 2014 年 12 月 11 日 (木) 1 時 58 分 12 秒 (日本時間) |
300 | Serge Batalov | December 10, 2014 19:48:42 UTC 2014 年 12 月 11 日 (木) 4 時 48 分 42 秒 (日本時間) | |||
45 | 11e6 | 704 / 4347 | 504 | Cyp | January 25, 2015 23:05:04 UTC 2015 年 1 月 26 日 (月) 8 時 5 分 4 秒 (日本時間) |
200 | Dmitry Domanov | December 16, 2015 06:15:29 UTC 2015 年 12 月 16 日 (水) 15 時 15 分 29 秒 (日本時間) |
name 名前 | Robert Backstrom |
---|---|
date 日付 | December 30, 2014 02:06:10 UTC 2014 年 12 月 30 日 (火) 11 時 6 分 10 秒 (日本時間) |
composite number 合成数 | 3413587963453421003689029199125179801917730175882177068693160817660256183891160690533532027694792277286927370619130688626631165351846751088228300762995764796726722272837492025152257794163<187> |
prime factors 素因数 | 1982197109032777809183268080161666042817809923<46> 1722123369012023704101520977351144789322361103790238618267105293552751768957626864947312233036983677037851079839111312486830169345749021724881<142> |
factorization results 素因数分解の結果 | Number: n N=3413587963453421003689029199125179801917730175882177068693160817660256183891160690533532027694792277286927370619130688626631165351846751088228300762995764796726722272837492025152257794163 ( 187 digits) SNFS difficulty: 192 digits. Divisors found: Tue Dec 30 13:03:30 2014 prp46 factor: 1982197109032777809183268080161666042817809923 Tue Dec 30 13:03:30 2014 prp142 factor: 1722123369012023704101520977351144789322361103790238618267105293552751768957626864947312233036983677037851079839111312486830169345749021724881 Tue Dec 30 13:03:30 2014 elapsed time 01:02:20 (Msieve 1.44 - dependency 3) Version: GGNFS-0.77.1-20060513-nocona Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.270). Factorization parameters were as follows: # # N = 145*10^190-1 161(190) # n: 3413587963453421003689029199125179801917730175882177068693160817660256183891160690533532027694792277286927370619130688626631165351846751088228300762995764796726722272837492025152257794163 m: 100000000000000000000000000000000000000 deg: 5 c5: 145 c0: -1 skew: 0.37 # Murphy_E = 3.432e-11 type: snfs lss: 1 rlim: 11200000 alim: 11200000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 Factor base limits: 11200000/11200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved special-q in [100000, 16800000) Primes: RFBsize:738873, AFBsize:738647, Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 5139887 hash collisions in 40139651 relations (36415537 unique) Msieve: matrix is 1168161 x 1168388 (325.6 MB) Total sieving time: 0.00 hours. Total relation processing time: 0hrs 44min 12sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 7min 52sec. Prototype def-par.txt line would be: snfs,192,5,0,0,0,0,0,0,0,0,11200000,11200000,28,28,55,55,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- [ 0.038914] smpboot: CPU0: Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz (fam: 06, model: 3c, stepping: 03) [ 0.000000] Memory: 16059668K/16661464K available (7375K kernel code, 1160K rwdata, 3228K rodata, 1468K init, 1504K bss, 601796K reserved) [ 1.131637] [drm] Memory usable by graphics device = 2048M [ 0.000027] Calibrating delay loop (skipped), value calculated using timer frequency.. 7200.29 BogoMIPS (lpj=3600149) [ 0.136791] smpboot: Total of 8 processors activated (57602.38 BogoMIPS) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2320 | Serge Batalov | December 9, 2014 00:57:33 UTC 2014 年 12 月 9 日 (火) 9 時 57 分 33 秒 (日本時間) |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | April 22, 2017 02:54:51 UTC 2017 年 4 月 22 日 (土) 11 時 54 分 51 秒 (日本時間) |
composite number 合成数 | 2747599400403029074764416000198809544017878714986776460934939972224389158796364542069869401091835746913102196489399950881335360847690190428029375355319946793746326782111895492327<178> |
prime factors 素因数 | 61086754332929000791909355577494564535754593517188491896159713228199424262727507<80> 44978644395286315905198184771392648543524345306773139979163206557051334948716805669039782950159261<98> |
factorization results 素因数分解の結果 | Number: 16111_191 N=2747599400403029074764416000198809544017878714986776460934939972224389158796364542069869401091835746913102196489399950881335360847690190428029375355319946793746326782111895492327 ( 178 digits) SNFS difficulty: 193 digits. Divisors found: r1=61086754332929000791909355577494564535754593517188491896159713228199424262727507 r2=44978644395286315905198184771392648543524345306773139979163206557051334948716805669039782950159261 Version: Total time: 119.81 hours. Scaled time: 629.38 units (timescale=5.253). Factorization parameters were as follows: n: 2747599400403029074764416000198809544017878714986776460934939972224389158796364542069869401091835746913102196489399950881335360847690190428029375355319946793746326782111895492327 m: 100000000000000000000000000000000000000 deg: 5 c5: 1450 c0: -1 skew: 0.23 # Murphy_E = 2.935e-11 type: snfs lss: 1 rlim: 10000000 alim: 10000000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 Factor base limits: 10000000/10000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved rational special-q in [5000000, 10100001) Primes: rational ideals reading, algebraic ideals reading, Relations: 22386765 Max relations in full relation-set: Initial matrix: Pruned matrix : 2108541 x 2108786 Total sieving time: 109.54 hours. Total relation processing time: 3.13 hours. Matrix solve time: 6.62 hours. Time per square root: 0.52 hours. Prototype def-par.txt line would be: snfs,193,5,0,0,0,0,0,0,0,0,10000000,10000000,28,28,55,55,2.5,2.5,100000 total time: 119.81 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM) i7-4930K CPU @ 3.40GHz stepping 04 Memory: 49367836k/51380224k available (5467k kernel code, 1086464k absent, 925924k reserved, 6954k data, 1316k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 6800.09 BogoMIPS (lpj=3400049) Total of 12 processors activated (81601.17 BogoMIPS). |
software ソフトウェア | GGNFS / Msieve v1.39 |
execution environment 実行環境 | Core i7-4930K |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 280 | Cyp | December 9, 2014 23:22:42 UTC 2014 年 12 月 10 日 (水) 8 時 22 分 42 秒 (日本時間) | |
45 | 11e6 | 791 / 4413 | 591 | Cyp | July 30, 2015 14:29:42 UTC 2015 年 7 月 30 日 (木) 23 時 29 分 42 秒 (日本時間) |
200 | Dmitry Domanov | December 16, 2015 06:15:47 UTC 2015 年 12 月 16 日 (水) 15 時 15 分 47 秒 (日本時間) |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | May 23, 2017 11:00:53 UTC 2017 年 5 月 23 日 (火) 20 時 0 分 53 秒 (日本時間) |
composite number 合成数 | 1659664412551260853233561278249173567945031080381188958364406090776832296870017016807676426030857356501454988005322554436000547858991779053871384239805934831716285801<166> |
prime factors 素因数 | 321936924745309507870522593580712191875381652089743<51> 5155247146204969454651990949595220545911392322375120747384280785714201485188805993025132267452203778502816299363207<115> |
factorization results 素因数分解の結果 | Number: 16111_192 N=1659664412551260853233561278249173567945031080381188958364406090776832296870017016807676426030857356501454988005322554436000547858991779053871384239805934831716285801 ( 166 digits) SNFS difficulty: 194 digits. Divisors found: r1=321936924745309507870522593580712191875381652089743 r2=5155247146204969454651990949595220545911392322375120747384280785714201485188805993025132267452203778502816299363207 Version: Total time: 143.27 hours. Scaled time: 752.18 units (timescale=5.250). Factorization parameters were as follows: n: 1659664412551260853233561278249173567945031080381188958364406090776832296870017016807676426030857356501454988005322554436000547858991779053871384239805934831716285801 m: 100000000000000000000000000000000000000 deg: 5 c5: 14500 c0: -1 skew: 0.15 # Murphy_E = 2.395e-11 type: snfs lss: 1 rlim: 11000000 alim: 11000000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 Factor base limits: 11000000/11000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved rational special-q in [5500000, 11500001) Primes: rational ideals reading, algebraic ideals reading, Relations: 22866177 Max relations in full relation-set: Initial matrix: Pruned matrix : 2247511 x 2247758 Total sieving time: 131.28 hours. Total relation processing time: 3.71 hours. Matrix solve time: 7.89 hours. Time per square root: 0.39 hours. Prototype def-par.txt line would be: snfs,194,5,0,0,0,0,0,0,0,0,11000000,11000000,28,28,55,55,2.5,2.5,100000 total time: 143.27 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM) i7-4930K CPU @ 3.40GHz stepping 04 Memory: 49367836k/51380224k available (5467k kernel code, 1086464k absent, 925924k reserved, 6954k data, 1316k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 6800.09 BogoMIPS (lpj=3400049) Total of 12 processors activated (81601.17 BogoMIPS). |
software ソフトウェア | GGNFS / Msieve v1.39 |
execution environment 実行環境 | Core i7-4930K |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 | Serge Batalov | December 10, 2014 19:48:42 UTC 2014 年 12 月 11 日 (木) 4 時 48 分 42 秒 (日本時間) | |
45 | 11e6 | 785 / 4409 | 585 | Cyp | May 12, 2015 04:54:03 UTC 2015 年 5 月 12 日 (火) 13 時 54 分 3 秒 (日本時間) |
200 | Dmitry Domanov | December 16, 2015 06:16:01 UTC 2015 年 12 月 16 日 (水) 15 時 16 分 1 秒 (日本時間) |
name 名前 | Cyp |
---|---|
date 日付 | December 7, 2014 21:29:49 UTC 2014 年 12 月 8 日 (月) 6 時 29 分 49 秒 (日本時間) |
composite number 合成数 | 340030630243594285763666766352129548014222279836498966117941110947173619626728191965838456090827452453329071154834797200400444360726974679310403029577<150> |
prime factors 素因数 | 2323331772189002670715579516019<31> 146354745505513126513222678799213560124307171732545586403132004254362809975378116208916101947216040428690404498552800083<120> |
factorization results 素因数分解の結果 | Run 147 out of 280: Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=648895941 Step 1 took 11342ms Step 2 took 4583ms ********** Factor found in step 2: 2323331772189002670715579516019 Found probable prime factor of 31 digits: 2323331772189002670715579516019 Probable prime cofactor 146354745505513126513222678799213560124307171732545586403132004254362809975378116208916101947216040428690404498552800083 has 120 digits |
software ソフトウェア | GMP-ECM 6.4.4 |
execution environment 実行環境 | Gentoo Linux, Intel(R) Core(TM) i7-3770K CPU |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 492 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 147 / 2318 | Cyp | December 7, 2014 21:29:49 UTC 2014 年 12 月 8 日 (月) 6 時 29 分 49 秒 (日本時間) |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | June 4, 2017 11:00:12 UTC 2017 年 6 月 4 日 (日) 20 時 0 分 12 秒 (日本時間) |
composite number 合成数 | 61791048130489109503407711274933909016405953824303142929185793023572457531154157539560615902060692244847072071794853931090753399831314770939421603373072698457<158> |
prime factors 素因数 | 219414297163877912361161475121273432717<39> 281618148539965539427281186576559056522109296650785817232323735659778985834199809048343028405471320621050968102999604221<120> |
factorization results 素因数分解の結果 | GMP-ECM 6.4.4 [configured with GMP 6.0.0, --enable-asm-redc] [ECM] Input number is 61791048130489109503407711274933909016405953824303142929185793023572457531154157539560615902060692244847072071794853931090753399831314770939421603373072698457 (158 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1150546041 Step 1 took 29765ms Step 2 took 9755ms ********** Factor found in step 2: 219414297163877912361161475121273432717 Found probable prime factor of 39 digits: 219414297163877912361161475121273432717 Probable prime cofactor 281618148539965539427281186576559056522109296650785817232323735659778985834199809048343028405471320621050968102999604221 has 120 digits |
execution environment 実行環境 | Core i7-4930K |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 280 | Cyp | December 7, 2014 09:24:50 UTC 2014 年 12 月 7 日 (日) 18 時 24 分 50 秒 (日本時間) | |
45 | 11e6 | 791 / 4413 | 591 | Cyp | July 30, 2015 11:32:09 UTC 2015 年 7 月 30 日 (木) 20 時 32 分 9 秒 (日本時間) |
200 | Dmitry Domanov | December 16, 2015 06:16:19 UTC 2015 年 12 月 16 日 (水) 15 時 16 分 19 秒 (日本時間) |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | August 18, 2017 10:41:01 UTC 2017 年 8 月 18 日 (金) 19 時 41 分 1 秒 (日本時間) |
composite number 合成数 | 23716903463988579051297725825905865345564200155268943711545390654414238511165909991055153016893475600673215458326772598313756266110354765268253663549307296927630262581936835651<176> |
prime factors 素因数 | 28821084573016447934187524228345817121667<41> 2542231800608855151506688474756484181227732081671977239<55> 323692412201478642729575389596762313546233195271895542398379187384787623359463527<81> |
factorization results 素因数分解の結果 | GMP-ECM 6.4.4 [configured with GMP 6.0.0, --enable-asm-redc] [ECM] Input number is 23716903463988579051297725825905865345564200155268943711545390654414238511165909991055153016893475600673215458326772598313756266110354765268253663549307296927630262581936835651 (176 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=7541625046 Step 1 took 34295ms Step 2 took 11061ms ********** Factor found in step 2: 28821084573016447934187524228345817121667 Found probable prime factor of 41 digits: 28821084573016447934187524228345817121667 Composite cofactor 822901143914388805240462092001283389979730220470203522842464624104250112936623033107760854094860346317804950446554444793773892394661953 has 135 digits Number: 16111_199 N=822901143914388805240462092001283389979730220470203522842464624104250112936623033107760854094860346317804950446554444793773892394661953 ( 135 digits) Divisors found: r1=2542231800608855151506688474756484181227732081671977239 r2=323692412201478642729575389596762313546233195271895542398379187384787623359463527 Version: Total time: 123.08 hours. Scaled time: 646.79 units (timescale=5.255). Factorization parameters were as follows: name: 16111_199 n: 822901143914388805240462092001283389979730220470203522842464624104250112936623033107760854094860346317804950446554444793773892394661953 skew: 65476.14 # norm 4.50e+17 c5: 848880 c4: -51727850712 c3: -7745413929396840 c2: -462749704710468652960 c1: 10910429236656555695355855 c0: 269474958776106190303167579822 # alpha -4.92 Y1: 704592038249369 Y0: -62704734362598683260004765 # Murphy_E 4.33e-11 # M 535201303353591735836351128229065203755198632709472848790432253424903631551411496704312253748532506758922324777598181751920789332536210 type: gnfs rlim: 10000000 alim: 10000000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 10000000/10000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved algebraic special-q in [5000000, 9100001) Primes: rational ideals reading, algebraic ideals reading, Relations: 20849125 Max relations in full relation-set: Initial matrix: Pruned matrix : 1710707 x 1710955 Polynomial selection time: 23.29 hours. Total sieving time: 93.49 hours. Total relation processing time: 2.23 hours. Matrix solve time: 3.87 hours. Time per square root: 0.21 hours. Prototype def-par.txt line would be: gnfs,134,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,10000000,10000000,28,28,55,55,2.6,2.6,100000 total time: 123.08 hours. --------- CPU info (if available) ---------- |
software ソフトウェア | GMP-ECM v6.4.4 / GGNFS / Msieve v1.39 |
execution environment 実行環境 | Core i7-4930K |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 | Serge Batalov | December 10, 2014 19:48:43 UTC 2014 年 12 月 11 日 (木) 4 時 48 分 43 秒 (日本時間) | |
45 | 11e6 | 785 / 4409 | 585 | Cyp | July 30, 2015 13:14:29 UTC 2015 年 7 月 30 日 (木) 22 時 14 分 29 秒 (日本時間) |
200 | Dmitry Domanov | December 16, 2015 06:16:34 UTC 2015 年 12 月 16 日 (水) 15 時 16 分 34 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | December 11, 2014 01:34:41 UTC 2014 年 12 月 11 日 (木) 10 時 34 分 41 秒 (日本時間) |
composite number 合成数 | 48680267640594004056328338949299021011244346843090857796020811976424606662072990700612232377443907419859929761796107462920862028101467770017975126889136834828960907481754893<173> |
prime factors 素因数 | 118547384242888663886459546876071<33> |
composite cofactor 合成数の残り | 410639745039454139662996851957176923079266774607395184070941241474064124077922254387922804157264176135740018541551913988733757570705590071083<141> |
factorization results 素因数分解の結果 | Input number is 48680267640594004056328338949299021011244346843090857796020811976424606662072990700612232377443907419859929761796107462920862028101467770017975126889136834828960907481754893 (173 digits) Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1553556401 Step 1 took 10991ms Step 2 took 8224ms ********** Factor found in step 2: 118547384242888663886459546876071 Found probable prime factor of 33 digits: 118547384242888663886459546876071 Composite cofactor 410639745039454139662996851957176923079266774607395184070941241474064124077922254387922804157264176135740018541551913988733757570705590071083 has 141 digits |
name 名前 | Erik Branger |
---|---|
date 日付 | October 22, 2016 08:08:46 UTC 2016 年 10 月 22 日 (土) 17 時 8 分 46 秒 (日本時間) |
composite number 合成数 | 410639745039454139662996851957176923079266774607395184070941241474064124077922254387922804157264176135740018541551913988733757570705590071083<141> |
prime factors 素因数 | 307331391512326555621221848925437399987985911659504935017891729<63> 1336146441203953798638882896545673550787873910276549451936233682971081868133627<79> |
factorization results 素因数分解の結果 | Number: 16111_200 N = 410639745039454139662996851957176923079266774607395184070941241474064124077922254387922804157264176135740018541551913988733757570705590071083 (141 digits) Divisors found: r1=307331391512326555621221848925437399987985911659504935017891729 (pp63) r2=1336146441203953798638882896545673550787873910276549451936233682971081868133627 (pp79) Version: Msieve v. 1.51 (SVN 845) Total time: 430.94 hours. Factorization parameters were as follows: # Murphy_E = 1.854e-11, selected by Maksym Voznyy # expecting poly E from 1.89e-011 to > 2.17e-011; sieved all c5<2640 n: 410639745039454139662996851957176923079266774607395184070941241474064124077922254387922804157264176135740018541551913988733757570705590071083 Y0: -2885737015736529319761529283 Y1: 921120925283047 c0: -2978104954783212998128208901181032 c1: -2717373156962381242398282132 c2: 11436900335935458076822 c3: 35875617875458955 c4: -1865907216 c5: 2052 skew: 1286579.56 type: gnfs # selected mechanically rlim: 18900000 alim: 18900000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 18900000/18900000 Large primes per side: 3 Large prime bits: 28/28 Sieved algebraic special-q in [0, 0) Total raw relations: 23258028 Relations: 3735602 relations Pruned matrix : 2328323 x 2328548 Polynomial selection time: 0.00 hours. Total sieving time: 424.72 hours. Total relation processing time: 0.30 hours. Matrix solve time: 5.49 hours. time per square root: 0.45 hours. Prototype def-par.txt line would be: gnfs,140,5,65,2000,1e-05,0.28,250,20,50000,3600,18900000,18900000,28,28,56,56,2.6,2.6,100000 total time: 430.94 hours. Intel64 Family 6 Model 58 Stepping 9, GenuineIntel Windows-post2008Server-6.2.9200 processors: 8, speed: 2.29GHz |
software ソフトウェア | GGNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 | Serge Batalov | December 10, 2014 19:48:43 UTC 2014 年 12 月 11 日 (木) 4 時 48 分 43 秒 (日本時間) | |
45 | 11e6 | 1400 / 3356 | 1000 | Serge Batalov | December 18, 2014 00:18:27 UTC 2014 年 12 月 18 日 (木) 9 時 18 分 27 秒 (日本時間) |
400 | Dmitry Domanov | February 29, 2016 06:33:12 UTC 2016 年 2 月 29 日 (月) 15 時 33 分 12 秒 (日本時間) | |||
50 | 43e6 | 300 / 7227 | Rich Dickerson | June 7, 2016 23:24:15 UTC 2016 年 6 月 8 日 (水) 8 時 24 分 15 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | December 9, 2014 01:09:12 UTC 2014 年 12 月 9 日 (火) 10 時 9 分 12 秒 (日本時間) |
composite number 合成数 | 3719951768901203211985941147797532004412632443110392775597116396008106929372226070448190051053131173195823392082916442186818543318196977859873265091459503835398547936068139254470355832627825239231381<199> |
prime factors 素因数 | 15384579401923960681208457648403288633<38> |
composite cofactor 合成数の残り | 241797430512529608892824198930315299397194763492106757954821097176064879777248884072060335752428596428156483448087509296419128246398821784593568267988717458052157<162> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1366968030 Step 1 took 18948ms Step 2 took 12670ms ********** Factor found in step 2: 15384579401923960681208457648403288633 Found probable prime factor of 38 digits: 15384579401923960681208457648403288633 Composite cofactor |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | January 24, 2021 08:09:18 UTC 2021 年 1 月 24 日 (日) 17 時 9 分 18 秒 (日本時間) |
composite number 合成数 | 241797430512529608892824198930315299397194763492106757954821097176064879777248884072060335752428596428156483448087509296419128246398821784593568267988717458052157<162> |
prime factors 素因数 | 26788941152048572003616047418475545668581724774007205391083304819<65> 9026016711154675994134323505808722826116675459491650852083239576290999823002888776626272931068303<97> |
factorization results 素因数分解の結果 | Number: 16111_201 N=241797430512529608892824198930315299397194763492106757954821097176064879777248884072060335752428596428156483448087509296419128246398821784593568267988717458052157 ( 162 digits) SNFS difficulty: 203 digits. Divisors found: r1=26788941152048572003616047418475545668581724774007205391083304819 r2=9026016711154675994134323505808722826116675459491650852083239576290999823002888776626272931068303 Version: Total time: 260.89 hours. Scaled time: 1371.21 units (timescale=5.256). Factorization parameters were as follows: n: 241797430512529608892824198930315299397194763492106757954821097176064879777248884072060335752428596428156483448087509296419128246398821784593568267988717458052157 m: 10000000000000000000000000000000000000000 deg: 5 c5: 1450 c0: -1 skew: 0.23 # Murphy_E = 1.123e-11 type: snfs lss: 1 rlim: 17000000 alim: 17000000 lpbr: 29 lpba: 29 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 17000000/17000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 56/56 Sieved rational special-q in [8500000, 17800001) Primes: rational ideals reading, algebraic ideals reading, Relations: 38656210 Max relations in full relation-set: Initial matrix: Pruned matrix : 3320461 x 3320706 Total sieving time: 229.78 hours. Total relation processing time: 9.61 hours. Matrix solve time: 20.86 hours. Time per square root: 0.63 hours. Prototype def-par.txt line would be: snfs,203,5,0,0,0,0,0,0,0,0,17000000,17000000,29,29,56,56,2.6,2.6,100000 total time: 260.89 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM) i7-4930K CPU @ 3.40GHz stepping 04 Memory: 49367540k/51380224k available (5548k kernel code, 1086464k absent, 926220k reserved, 6882k data, 1352k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 6800.05 BogoMIPS (lpj=3400026) Total of 12 processors activated (81600.62 BogoMIPS). |
software ソフトウェア | GGNFS / Msieve v1.39 |
execution environment 実行環境 | Core i7-4930K |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2320 | Serge Batalov | December 9, 2014 00:57:36 UTC 2014 年 12 月 9 日 (火) 9 時 57 分 36 秒 (日本時間) | |
45 | 11e6 | 400 / 3962 | Dmitry Domanov | December 16, 2015 06:17:14 UTC 2015 年 12 月 16 日 (水) 15 時 17 分 14 秒 (日本時間) |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | April 3, 2021 09:26:46 UTC 2021 年 4 月 3 日 (土) 18 時 26 分 46 秒 (日本時間) |
composite number 合成数 | 16658097064281803702661605288887476214279265060986702732993651921658032331452472676830303194103112104609823905707752405623831468677881467366109705592444447<155> |
prime factors 素因数 | 216826110486522325939684927909396630330452817018800616092130819<63> 76826988349806020297891725242760092312567802407819831278729499890959294621035817608963820213<92> |
factorization results 素因数分解の結果 | Number: 16111_202 N=16658097064281803702661605288887476214279265060986702732993651921658032331452472676830303194103112104609823905707752405623831468677881467366109705592444447 ( 155 digits) SNFS difficulty: 204 digits. Divisors found: r1=216826110486522325939684927909396630330452817018800616092130819 r2=76826988349806020297891725242760092312567802407819831278729499890959294621035817608963820213 Version: Total time: 308.44 hours. Scaled time: 1619.92 units (timescale=5.252). Factorization parameters were as follows: n: 16658097064281803702661605288887476214279265060986702732993651921658032331452472676830303194103112104609823905707752405623831468677881467366109705592444447 m: 10000000000000000000000000000000000000000 deg: 5 c5: 14500 c0: -1 skew: 0.15 # Murphy_E = 9.156e-12 type: snfs lss: 1 rlim: 18000000 alim: 18000000 lpbr: 29 lpba: 29 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 18000000/18000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 56/56 Sieved rational special-q in [9000000, 19900001) Primes: rational ideals reading, algebraic ideals reading, Relations: 39407052 Max relations in full relation-set: Initial matrix: Pruned matrix : 3542837 x 3543081 Total sieving time: 272.29 hours. Total relation processing time: 11.48 hours. Matrix solve time: 24.31 hours. Time per square root: 0.36 hours. Prototype def-par.txt line would be: snfs,204,5,0,0,0,0,0,0,0,0,18000000,18000000,29,29,56,56,2.6,2.6,100000 total time: 308.44 hours. --------- CPU info (if available) ---------- |
software ソフトウェア | GGNFS / Msieve v1.39 |
execution environment 実行環境 | Core i7-4930K |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 280 | Cyp | December 9, 2014 08:39:39 UTC 2014 年 12 月 9 日 (火) 17 時 39 分 39 秒 (日本時間) | |
45 | 11e6 | 991 / 4413 | 591 | Cyp | July 30, 2015 08:52:23 UTC 2015 年 7 月 30 日 (木) 17 時 52 分 23 秒 (日本時間) |
400 | Dmitry Domanov | December 16, 2015 06:18:01 UTC 2015 年 12 月 16 日 (水) 15 時 18 分 1 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | December 11, 2014 01:34:44 UTC 2014 年 12 月 11 日 (木) 10 時 34 分 44 秒 (日本時間) |
composite number 合成数 | 3229932833686354999344050694774807530417774652794841722558140477857815749696040195763892972757374655678403650371847413948236634163215655569427986111593982434805875513267906576719<178> |
prime factors 素因数 | 4824482395620689814110209011251048728703<40> |
composite cofactor 合成数の残り | 669487951001386263217564406967182869872453081031017133135450771964943586226766051305323297514007185445743480744401640147577545711993773873<138> |
factorization results 素因数分解の結果 | Input number is 3229932833686354999344050694774807530417774652794841722558140477857815749696040195763892972757374655678403650371847413948236634163215655569427986111593982434805875513267906576719 (178 digits) Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1582246688 Step 1 took 13269ms Step 2 took 8851ms ********** Factor found in step 2: 4824482395620689814110209011251048728703 Found probable prime factor of 40 digits: 4824482395620689814110209011251048728703 Composite cofactor 669487951001386263217564406967182869872453081031017133135450771964943586226766051305323297514007185445743480744401640147577545711993773873 has 138 digits |
name 名前 | Erik Branger |
---|---|
date 日付 | February 25, 2015 08:07:01 UTC 2015 年 2 月 25 日 (水) 17 時 7 分 1 秒 (日本時間) |
composite number 合成数 | 669487951001386263217564406967182869872453081031017133135450771964943586226766051305323297514007185445743480744401640147577545711993773873<138> |
prime factors 素因数 | 197838578708440223382308227704561747905801<42> 3384011123472676127789221682750107911216519908869990676032321543154412431051467448409340320330473<97> |
factorization results 素因数分解の結果 | Number: 16111_203 N = 669487951001386263217564406967182869872453081031017133135450771964943586226766051305323297514007185445743480744401640147577545711993773873 (138 digits) Divisors found: r1=197838578708440223382308227704561747905801 (pp42) r2=3384011123472676127789221682750107911216519908869990676032321543154412431051467448409340320330473 (pp97) Version: Msieve v. 1.51 (SVN Official Release) Total time: 127.55 hours. Factorization parameters were as follows: # Murphy_E = 2.887e-11, selected by Erik Branger # expecting poly E from 2.78e-011 to > 3.20e-011 n: 669487951001386263217564406967182869872453081031017133135450771964943586226766051305323297514007185445743480744401640147577545711993773873 Y0: -784297610134936816897233558 Y1: 425524468980121 c0: -91002319590487508886717102956006285 c1: 87700304215779967783051386619 c2: 74245547257833681669051 c3: -18819847054863595 c4: -7547617486 c5: 2256 skew: 2606018.76 type: gnfs # selected mechanically rlim: 15900000 alim: 15900000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.6 alambda: 2.6 Factor base limits: 15900000/15900000 Large primes per side: 3 Large prime bits: 28/28 Sieved algebraic special-q in [0, 0) Total raw relations: 23028433 Relations: 3288788 relations Pruned matrix : 2050581 x 2050807 Polynomial selection time: 0.00 hours. Total sieving time: 124.15 hours. Total relation processing time: 0.13 hours. Matrix solve time: 2.77 hours. time per square root: 0.50 hours. Prototype def-par.txt line would be: gnfs,137,5,65,2000,1e-05,0.28,250,20,50000,3600,15900000,15900000,28,28,55,55,2.6,2.6,100000 total time: 127.55 hours. Intel64 Family 6 Model 60 Stepping 3, GenuineIntel Windows-7-6.1.7601-SP1 processors: 8, speed: 3.50GHz |
software ソフトウェア | GGNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 | Serge Batalov | December 10, 2014 19:48:44 UTC 2014 年 12 月 11 日 (木) 4 時 48 分 44 秒 (日本時間) | |
45 | 11e6 | 1000 / 4409 | Serge Batalov | December 18, 2014 00:18:26 UTC 2014 年 12 月 18 日 (木) 9 時 18 分 26 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | December 11, 2014 01:34:47 UTC 2014 年 12 月 11 日 (木) 10 時 34 分 47 秒 (日本時間) |
composite number 合成数 | 16154665281874587312268556810158844132101236854716800641827773716682316199483410781286156049217510378956517126732974932537646897630971842550059762331297467772068217075016777071211<179> |
prime factors 素因数 | 32386754966205821658152021608907<32> |
composite cofactor 合成数の残り | 498804690335023745824507701182228568361159426157891600512118599806625243902301339303242090947385697594977741761735278125896869916885147387934703073<147> |
factorization results 素因数分解の結果 | Input number is 16154665281874587312268556810158844132101236854716800641827773716682316199483410781286156049217510378956517126732974932537646897630971842550059762331297467772068217075016777071211 (179 digits) Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1596693317 Step 1 took 13609ms Step 2 took 9219ms ********** Factor found in step 2: 32386754966205821658152021608907 Found probable prime factor of 32 digits: 32386754966205821658152021608907 Composite cofactor 498804690335023745824507701182228568361159426157891600512118599806625243902301339303242090947385697594977741761735278125896869916885147387934703073 has 147 digits |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | October 29, 2020 08:14:23 UTC 2020 年 10 月 29 日 (木) 17 時 14 分 23 秒 (日本時間) |
composite number 合成数 | 498804690335023745824507701182228568361159426157891600512118599806625243902301339303242090947385697594977741761735278125896869916885147387934703073<147> |
prime factors 素因数 | 96134750382786575995814567697588339753493<41> 5188599214632561256369179828351380982562387796612295439738234998121898113019081854434975705487909417180061<106> |
factorization results 素因数分解の結果 | GMP-ECM 6.4.4 [configured with GMP 6.0.0, --enable-asm-redc] [ECM] Input number is 498804690335023745824507701182228568361159426157891600512118599806625243902301339303242090947385697594977741761735278125896869916885147387934703073 (147 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=2991823814 Step 1 took 24479ms Step 2 took 8879ms ********** Factor found in step 2: 96134750382786575995814567697588339753493 Found probable prime factor of 41 digits: 96134750382786575995814567697588339753493 Probable prime cofactor 5188599214632561256369179828351380982562387796612295439738234998121898113019081854434975705487909417180061 has 106 digits |
execution environment 実行環境 | Core i7-4930K |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 | Serge Batalov | December 10, 2014 19:48:44 UTC 2014 年 12 月 11 日 (木) 4 時 48 分 44 秒 (日本時間) | |
45 | 11e6 | 785 / 4409 | 585 | Cyp | June 11, 2015 20:18:09 UTC 2015 年 6 月 12 日 (金) 5 時 18 分 9 秒 (日本時間) |
200 | Dmitry Domanov | December 16, 2015 06:18:24 UTC 2015 年 12 月 16 日 (水) 15 時 18 分 24 秒 (日本時間) |
name 名前 | Cyp |
---|---|
date 日付 | February 8, 2015 13:27:03 UTC 2015 年 2 月 8 日 (日) 22 時 27 分 3 秒 (日本時間) |
composite number 合成数 | 276292973422720691766759896861797766502262999085793316253302471946152837365340381373649838528867312076017023456369691098757837342624742799700679173342364877929041199026337104194623<180> |
prime factors 素因数 | 7387855430343748950845891307680267111401<40> 37398264764077154862605576199334429139141586478464923460457071662163936099561439992974022574841920164755436028331459880564151655938815272423<140> |
factorization results 素因数分解の結果 | Run 429 out of 585: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1107224615 Step 1 took 58631ms Step 2 took 18831ms ********** Factor found in step 2: 7387855430343748950845891307680267111401 Found probable prime factor of 40 digits: 7387855430343748950845891307680267111401 Probable prime cofactor 37398264764077154862605576199334429139141586478464923460457071662163936099561439992974022574841920164755436028331459880564151655938815272423 has 140 digits |
software ソフトウェア | GMP-ECM 6.4.4 |
execution environment 実行環境 | Gentoo Linux, Intel(R) Core(TM) i7-3770K CPU |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 / 838 | Serge Batalov | December 10, 2014 19:48:44 UTC 2014 年 12 月 11 日 (木) 4 時 48 分 44 秒 (日本時間) | |
45 | 11e6 | 429 / 4409 | Cyp | February 8, 2015 13:27:03 UTC 2015 年 2 月 8 日 (日) 22 時 27 分 3 秒 (日本時間) |
name 名前 | ebina |
---|---|
date 日付 | October 6, 2023 14:24:41 UTC 2023 年 10 月 6 日 (金) 23 時 24 分 41 秒 (日本時間) |
composite number 合成数 | 11616996563077756632853144461247532939908601623304515922514826281735082457785015448515468896543923790389448242535140840624114138882142493861125170777031888479<158> |
prime factors 素因数 | 850719823419798158615424730461452265796034311758149515405063<60> 13655490613088966211250703541865251841351561699692877330390308902304272131065690494706241901817833<98> |
factorization results 素因数分解の結果 | Number: 16111_208 N = 11616996563077756632853144461247532939908601623304515922514826281735082457785015448515468896543923790389448242535140840624114138882142493861125170777031888479 (158 digits) SNFS difficulty: 211 digits. Divisors found: r1=850719823419798158615424730461452265796034311758149515405063 (pp60) r2=13655490613088966211250703541865251841351561699692877330390308902304272131065690494706241901817833 (pp98) Version: Msieve v. 1.54 (SVN 1018) Total time: 148.14 hours. Factorization parameters were as follows: n: 11616996563077756632853144461247532939908601623304515922514826281735082457785015448515468896543923790389448242535140840624114138882142493861125170777031888479 m: 500000000000000000000000000000000000000000 deg: 5 c5: 232 c0: -5 skew: 0.46 # Murphy_E = 5.347e-12 type: snfs lss: 1 rlim: 23000000 alim: 23000000 lpbr: 29 lpba: 29 mfbr: 57 mfba: 57 rlambda: 2.6 alambda: 2.6 Factor base limits: 23000000/23000000 Large primes per side: 3 Large prime bits: 29/29 Sieved rational special-q in [0, 0) Total raw relations: 43721866 Relations: 7498364 relations Pruned matrix : 4580951 x 4581176 Total sieving time: 136.32 hours. Total relation processing time: 0.25 hours. Matrix solve time: 11.44 hours. time per square root: 0.13 hours. Prototype def-par.txt line would be: snfs,211,5,0,0,0,0,0,0,0,0,23000000,23000000,29,29,57,57,2.6,2.6,100000 total time: 148.14 hours. Intel64 Family 6 Model 60 Stepping 3, GenuineIntel processors: 8, speed: 3.19GHz Windows-post2008Server-6.2.9200 Running Python 3.2 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 280 | Cyp | December 8, 2014 07:07:27 UTC 2014 年 12 月 8 日 (月) 16 時 7 分 27 秒 (日本時間) | |
45 | 11e6 | 791 / 4413 | 335 | Cyp | January 7, 2015 20:58:31 UTC 2015 年 1 月 8 日 (木) 5 時 58 分 31 秒 (日本時間) |
256 | Cyp | May 31, 2015 12:31:20 UTC 2015 年 5 月 31 日 (日) 21 時 31 分 20 秒 (日本時間) | |||
200 | Dmitry Domanov | December 16, 2015 06:18:40 UTC 2015 年 12 月 16 日 (水) 15 時 18 分 40 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | August 19, 2017 03:49:50 UTC 2017 年 8 月 19 日 (土) 12 時 49 分 50 秒 (日本時間) |
composite number 合成数 | 179012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679<210> |
prime factors 素因数 | 47971898676712968703275557787229243249536199<44> 3731608517006862394664287766487336716103220699712715405314783395254419707924226102439943085543893353741480055849005937939685559304566388739036051481009151380862814521<166> |
factorization results 素因数分解の結果 | Number: n N=179012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679 ( 210 digits) SNFS difficulty: 211 digits. Divisors found: Sat Aug 19 13:42:32 2017 prp44 factor: 47971898676712968703275557787229243249536199 Sat Aug 19 13:42:32 2017 prp166 factor: 3731608517006862394664287766487336716103220699712715405314783395254419707924226102439943085543893353741480055849005937939685559304566388739036051481009151380862814521 Sat Aug 19 13:42:32 2017 elapsed time 08:35:30 (Msieve 1.44 - dependency 1) Version: GGNFS-0.77.1-20060513-nocona Total time: 0.00 hours. Scaled time: 0.00 units (timescale=3.826). Factorization parameters were as follows: # # 145x10^209-1 161(209) # n: 179012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679 m: 500000000000000000000000000000000000000000 deg: 5 c5: 464 c0: -1 skew: 0.29 # Murphy_E = 6.095e-12 type: snfs lss: 1 rlim: 23000000 alim: 23000000 lpbr: 29 lpba: 29 mfbr: 57 mfba: 57 rlambda: 2.6 alambda: 2.6 Factor base limits: 23000000/23000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 57/57 Sieved special-q in [100000, 22700000) Primes: RFBsize:1448221, AFBsize:1446481, Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 10748319 hash collisions in 69000841 relations (60859110 unique) Msieve: matrix is 2719744 x 2719971 (767.4 MB) Total sieving time: 0.00 hours. Total relation processing time: 8hrs 11min 27sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 3min 37sec. Prototype def-par.txt line would be: snfs,211,5,0,0,0,0,0,0,0,0,23000000,23000000,29,29,57,57,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- [ 0.038374] smpboot: CPU0: Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz (fam: 06, model: 3c, stepping: 03) [ 0.000000] efi: mem02: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x0000000000009000-0x0000000000058000) (0MB) [ 0.000000] efi: mem04: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x0000000000059000-0x000000000005f000) (0MB) [ 0.000000] efi: mem08: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x0000000000100000-0x0000000001000000) (15MB) [ 0.000000] efi: mem10: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x00000000022d8000-0x000000003eefc000) (972MB [ 0.000000] efi: mem12: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x0000000040000000-0x0000000090ff4000) (1295M [ 0.000000] efi: mem14: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x00000000c3ddf000-0x00000000c6d42000) (47MB) [ 0.000000] efi: mem17: [ACPI Memory NVS | | | | | |WB|WT|WC|UC] range=[0x00000000c7052000-0x00000000c7059000) (0MB) [ 0.000000] efi: mem26: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x00000000c7ccf000-0x00000000c7cd9000) (0MB) [ 0.000000] efi: mem28: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x00000000c7cde000-0x00000000cae1e000) (49MB) [ 0.000000] efi: mem30: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x00000000cae85000-0x00000000cae9f000) (0MB) [ 0.000000] efi: mem32: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x00000000caf16000-0x00000000caf2b000) (0MB) [ 0.000000] efi: mem34: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x00000000cafb1000-0x00000000cafd8000) (0MB) [ 0.000000] efi: mem36: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x00000000cb046000-0x00000000cb069000) (0MB) [ 0.000000] efi: mem38: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x00000000cb123000-0x00000000cb16c000) (0MB) [ 0.000000] efi: mem40: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x00000000cb216000-0x00000000cb259000) (0MB) [ 0.000000] efi: mem42: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x00000000cb30c000-0x00000000cb34d000) (0MB) [ 0.000000] efi: mem44: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x00000000cb34e000-0x00000000cb34f000) (0MB) [ 0.000000] efi: mem46: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x00000000cb350000-0x00000000cb3cd000) (0MB) [ 0.000000] efi: mem48: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x00000000cb41e000-0x00000000cb4bb000) (0MB) [ 0.000000] efi: mem50: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x00000000cb4bc000-0x00000000cb50d000) (0MB) [ 0.000000] efi: mem52: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x00000000cb50e000-0x00000000cb5a0000) (0MB) [ 0.000000] efi: mem54: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x00000000cb5a1000-0x00000000cb874000) (2MB) [ 0.000000] efi: mem56: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x00000000cb875000-0x00000000cb876000) (0MB) [ 0.000000] efi: mem58: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x00000000cb877000-0x00000000cb8f5000) (0MB) [ 0.000000] efi: mem60: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x00000000cb946000-0x00000000cbbf5000) (2MB) [ 0.000000] efi: mem62: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x00000000cbcc7000-0x00000000cbd5a000) (0MB) [ 0.000000] efi: mem64: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x00000000cbe04000-0x00000000cbe1e000) (0MB) [ 0.000000] efi: mem66: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x00000000cbe94000-0x00000000cbea9000) (0MB) [ 0.000000] efi: mem68: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x00000000cbf30000-0x00000000cbf57000) (0MB) [ 0.000000] efi: mem70: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x00000000cbfc5000-0x00000000cbfe8000) (0MB) [ 0.000000] efi: mem72: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x00000000cc285000-0x00000000cc2c6000) (0MB) [ 0.000000] efi: mem74: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x00000000cc330000-0x00000000cc34a000) (0MB) [ 0.000000] efi: mem76: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x00000000cc3c2000-0x00000000cc3d7000) (0MB) [ 0.000000] efi: mem78: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x00000000cc45e000-0x00000000cc485000) (0MB) [ 0.000000] efi: mem80: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x00000000cc4f1000-0x00000000cc514000) (0MB) [ 0.000000] efi: mem82: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x00000000cc6ae000-0x00000000cc6c1000) (0MB) [ 0.000000] efi: mem84: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x00000000cc85c000-0x00000000cc876000) (0MB) [ 0.000000] efi: mem86: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x00000000cc8ee000-0x00000000cc8f2000) (0MB) [ 0.000000] efi: mem88: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x00000000cc98a000-0x00000000cc98f000) (0MB) [ 0.000000] efi: mem90: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x00000000cca1c000-0x00000000cca25000) (0MB) [ 0.000000] efi: mem92: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x00000000ccccf000-0x00000000cccd8000) (0MB) [ 0.000000] efi: mem94: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x00000000ccd87000-0x00000000ccd8c000) (0MB) [ 0.000000] efi: mem96: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x00000000cce17000-0x00000000cce1b000) (0MB) [ 0.000000] efi: mem98: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x00000000cd148000-0x00000000cd14a000) (0MB) [ 0.000000] efi: mem100: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x00000000cd23c000-0x00000000cd240000) (0MB) [ 0.000000] efi: mem102: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x00000000cd2eb000-0x00000000cd2f0000) (0MB) [ 0.000000] efi: mem104: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x00000000cd417000-0x00000000cd41b000) (0MB) [ 0.000000] efi: mem106: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x00000000cd4ac000-0x00000000cd4b5000) (0MB) [ 0.000000] efi: mem108: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x00000000cd588000-0x00000000cd58e000) (0MB) [ 0.000000] efi: mem110: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x00000000cd676000-0x00000000cd67d000) (0MB) [ 0.000000] efi: mem112: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x00000000cd892000-0x00000000cd893000) (0MB) [ 0.000000] efi: mem114: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x00000000cd8a4000-0x00000000cd8bc000) (0MB) [ 0.000000] efi: mem116: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x00000000cde60000-0x00000000cde69000) (0MB) [ 0.000000] efi: mem118: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x00000000ce0ea000-0x00000000ce0ec000) (0MB) [ 0.000000] efi: mem120: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x00000000ce0f1000-0x00000000ce0f4000) (0MB) [ 0.000000] efi: mem122: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x00000000ce0f9000-0x00000000ce0fc000) (0MB) [ 0.000000] efi: mem124: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x00000000ce101000-0x00000000ce104000) (0MB) [ 0.000000] efi: mem126: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x00000000ce107000-0x00000000ce109000) (0MB) [ 0.000000] efi: mem128: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x00000000ce13c000-0x00000000ce13e000) (0MB) [ 0.000000] efi: mem130: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x00000000d7c61000-0x00000000d7c64000) (0MB) [ 0.000000] efi: mem132: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x00000000d7c6b000-0x00000000d7c6e000) (0MB) [ 0.000000] efi: mem134: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x00000000d95d0000-0x00000000da0b6000) (10MB) [ 0.000000] efi: mem138: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x00000000da443000-0x00000000da4a8000) (0MB) [ 0.000000] efi: mem139: [ACPI Memory NVS | | | | | |WB|WT|WC|UC] range=[0x00000000da4a8000-0x00000000da5d0000) (1MB) [ 0.000000] efi: mem140: [ACPI Memory NVS | | | | | |WB|WT|WC|UC] range=[0x00000000da5d0000-0x00000000da5d4000) (0MB) [ 0.000000] efi: mem141: [ACPI Memory NVS | | | | | |WB|WT|WC|UC] range=[0x00000000da5d4000-0x00000000da5eb000) (0MB) [ 0.000000] efi: mem151: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x0000000100000000-0x000000041ee00000) (12782MB) [ 0.000000] efi: mem153: [Memory Mapped I/O |RUN| | | | | | | |UC] range=[0x00000000f8000000-0x00000000fc000000) (64MB) [ 0.000000] efi: mem154: [Memory Mapped I/O |RUN| | | | | | | |UC] range=[0x00000000fec00000-0x00000000fec01000) (0MB) [ 0.000000] efi: mem155: [Memory Mapped I/O |RUN| | | | | | | |UC] range=[0x00000000fed00000-0x00000000fed04000) (0MB) [ 0.000000] efi: mem156: [Memory Mapped I/O |RUN| | | | | | | |UC] range=[0x00000000fed1c000-0x00000000fed20000) (0MB) [ 0.000000] efi: mem157: [Memory Mapped I/O |RUN| | | | | | | |UC] range=[0x00000000fee00000-0x00000000fee01000) (0MB) [ 0.000000] efi: mem158: [Memory Mapped I/O |RUN| | | | | | | |UC] range=[0x00000000ff000000-0x0000000100000000) (16MB) [ 0.000000] Memory: 16059420K/16661464K available (7585K kernel code, 1183K rwdata, 3284K rodata, 1504K init, 1524K bss, 602044K reserved, 0K cma-reserved) [ 1.083812] [drm] Memory usable by graphics device = 2048M [ 0.000027] Calibrating delay loop (skipped), value calculated using timer frequency.. 7200.23 BogoMIPS (lpj=3600117) [ 0.136470] smpboot: Total of 8 processors activated (57601.87 BogoMIPS) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2320 | Serge Batalov | December 9, 2014 00:57:39 UTC 2014 年 12 月 9 日 (火) 9 時 57 分 39 秒 (日本時間) | |
45 | 11e6 | 1000 / 3962 | Serge Batalov | December 18, 2014 00:18:32 UTC 2014 年 12 月 18 日 (木) 9 時 18 分 32 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | December 10, 2014 22:58:26 UTC 2014 年 12 月 11 日 (木) 7 時 58 分 26 秒 (日本時間) |
composite number 合成数 | 16111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111<212> |
prime factors 素因数 | 3233706858247304123777097096787945075499817352024798141009883849238021470570967342525568237<91> 4982242304994666910969955477736483172331817567701870627514765422140098684462238537837251785790105171568320449032156307203<121> |
factorization results 素因数分解の結果 | RelProcTime: 2500 BLanczosTime: 9481 sqrtTime: 897 prp91 factor: 3233706858247304123777097096787945075499817352024798141009883849238021470570967342525568237 prp121 factor: 4982242304994666910969955477736483172331817567701870627514765422140098684462238537837251785790105171568320449032156307203 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2320 | Serge Batalov | December 9, 2014 00:57:42 UTC 2014 年 12 月 9 日 (火) 9 時 57 分 42 秒 (日本時間) | |
45 | 11e6 | 3962 | Serge Batalov | December 9, 2014 21:26:38 UTC 2014 年 12 月 10 日 (水) 6 時 26 分 38 秒 (日本時間) | |
50 | 43e6 | 2000 / 6576 | 500 | Serge Batalov | December 9, 2014 22:18:05 UTC 2014 年 12 月 10 日 (水) 7 時 18 分 5 秒 (日本時間) |
1500 | Serge Batalov | December 10, 2014 01:28:07 UTC 2014 年 12 月 10 日 (水) 10 時 28 分 7 秒 (日本時間) |
name 名前 | Cyp |
---|---|
date 日付 | June 13, 2015 16:14:11 UTC 2015 年 6 月 14 日 (日) 1 時 14 分 11 秒 (日本時間) |
composite number 合成数 | 10006186831575381339859090068242621945068421994979503139190762801402347461880075775433805691007024291893087611045315099660034075100392144316537141793954408948312515626422448295423790893578831<191> |
prime factors 素因数 | 1370675951889814880400700475450126448821<40> 7300184130158105379335836831410000573053271785119220621876891079442322835753976832357543410037450208668458648911161993722305913437389978950185597885811<151> |
factorization results 素因数分解の結果 | Run 322 out of 591: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=421203901 Step 1 took 59214ms ********** Factor found in step 1: 1370675951889814880400700475450126448821 Found probable prime factor of 40 digits: 1370675951889814880400700475450126448821 Probable prime cofactor 7300184130158105379335836831410000573053271785119220621876891079442322835753976832357543410037450208668458648911161993722305913437389978950185597885811 has 151 digits |
software ソフトウェア | GMP-ECM 6.4.4 |
execution environment 実行環境 | Gentoo Linux, Intel(R) Core(TM) i7-3770K CPU |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 280 / 1207 | Cyp | December 8, 2014 04:11:42 UTC 2014 年 12 月 8 日 (月) 13 時 11 分 42 秒 (日本時間) | |
45 | 11e6 | 322 / 4413 | Cyp | June 13, 2015 16:14:11 UTC 2015 年 6 月 14 日 (日) 1 時 14 分 11 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 280 | Cyp | December 6, 2014 17:39:30 UTC 2014 年 12 月 7 日 (日) 2 時 39 分 30 秒 (日本時間) | |
45 | 11e6 | 4592 | 335 | Cyp | January 6, 2015 14:37:57 UTC 2015 年 1 月 6 日 (火) 23 時 37 分 57 秒 (日本時間) |
256 | Cyp | June 28, 2015 12:31:49 UTC 2015 年 6 月 28 日 (日) 21 時 31 分 49 秒 (日本時間) | |||
400 | Dmitry Domanov | December 16, 2015 06:19:01 UTC 2015 年 12 月 16 日 (水) 15 時 19 分 1 秒 (日本時間) | |||
3601 | Thomas Kozlowski | December 13, 2024 06:09:48 UTC 2024 年 12 月 13 日 (金) 15 時 9 分 48 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | December 9, 2014 01:52:08 UTC 2014 年 12 月 9 日 (火) 10 時 52 分 8 秒 (日本時間) |
composite number 合成数 | 7971851118808070812029248446863488921875859035680906042113365220737808565616581450327120787289020836769476056957501786794216284567595799659134641816482489416680411237561163340480510198471603716531969871900599263291<214> |
prime factors 素因数 | 15345519273095977082700694900795840063<38> |
composite cofactor 合成数の残り | 519490476466603153417263306308601804580211275414048644124709630532456090442515479049378813653871679342479419239873113113103932512494037233504405533649344496391904233581053021957<177> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3470912693 Step 1 took 18597ms Step 2 took 11851ms ********** Factor found in step 2: 15345519273095977082700694900795840063 Found probable prime factor of 38 digits: 15345519273095977082700694900795840063 Composite cofactor |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2320 | Serge Batalov | December 9, 2014 00:57:44 UTC 2014 年 12 月 9 日 (火) 9 時 57 分 44 秒 (日本時間) | |
45 | 11e6 | 4001 | 600 | Dmitry Domanov | December 16, 2015 06:19:19 UTC 2015 年 12 月 16 日 (水) 15 時 19 分 19 秒 (日本時間) |
3401 | Thomas Kozlowski | December 13, 2024 07:08:56 UTC 2024 年 12 月 13 日 (金) 16 時 8 分 56 秒 (日本時間) |
name 名前 | Cyp |
---|---|
date 日付 | July 30, 2015 03:58:17 UTC 2015 年 7 月 30 日 (木) 12 時 58 分 17 秒 (日本時間) |
composite number 合成数 | 140892794986253512315837362105118456085563027832846424009192521748527872994795262156073686805120451231577400659660414040283851324958856028981981421829919486688684470051349134723<177> |
prime factors 素因数 | 10480322915079137674940657729323661<35> 3859741891719841095013508878746420833<37> 3483019107170196313589363045103111714718211977934319112220296418977643718595908679526451552024532806199471<106> |
factorization results 素因数分解の結果 | Run 157 out of 591: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=2060954565 Step 1 took 59760ms Step 2 took 18711ms ********** Factor found in step 2: 10480322915079137674940657729323661 Found probable prime factor of 35 digits: 10480322915079137674940657729323661 Composite cofactor 13443554757605445466313005265721162305055505009118052468276744563565464462339454650971789870603568392928111561570985072742985911042774707979343 has 143 digits -- Run 356 out of 591: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=2958954465 Step 1 took 42027ms ********** Factor found in step 1: 3859741891719841095013508878746420833 Found probable prime factor of 37 digits: 3859741891719841095013508878746420833 Probable prime cofactor 3483019107170196313589363045103111714718211977934319112220296418977643718595908679526451552024532806199471 has 106 digits |
software ソフトウェア | GMP-ECM 6.4.4 |
execution environment 実行環境 | Gentoo Linux, Intel(R) Core(TM) i7-3770K CPU |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 280 / 1090 | Cyp | December 9, 2014 19:32:47 UTC 2014 年 12 月 10 日 (水) 4 時 32 分 47 秒 (日本時間) | |
45 | 11e6 | 356 / 4413 | Cyp | July 30, 2015 03:58:17 UTC 2015 年 7 月 30 日 (木) 12 時 58 分 17 秒 (日本時間) |
name 名前 | Erik Branger |
---|---|
date 日付 | May 1, 2019 10:14:16 UTC 2019 年 5 月 1 日 (水) 19 時 14 分 16 秒 (日本時間) |
composite number 合成数 | 1669262907591500390453613932802943256457546263870833613914071568752055943061150806602064649100646711614328315983377535565573044135871913687481804972070501<154> |
prime factors 素因数 | 2017654973985124826408429443114426690084097078213971<52> 827328224654036930207349027095803064616535316510791497480292265454619685270721951288988239382048419431<102> |
factorization results 素因数分解の結果 | Number: 16111_218 N = 1669262907591500390453613932802943256457546263870833613914071568752055943061150806602064649100646711614328315983377535565573044135871913687481804972070501 (154 digits) SNFS difficulty: 222 digits. Divisors found: r1=2017654973985124826408429443114426690084097078213971 (pp52) r2=827328224654036930207349027095803064616535316510791497480292265454619685270721951288988239382048419431 (pp102) Version: Msieve v. 1.52 (SVN unknown) Total time: 49.32 hours. Factorization parameters were as follows: n: 1669262907591500390453613932802943256457546263870833613914071568752055943061150806602064649100646711614328315983377535565573044135871913687481804972070501 m: 10000000000000000000000000000000000000000000000000000000 deg: 4 c4: 29 c0: -20 skew: 1.00 type: snfs lss: 1 rlim: 536870912 alim: 268435456 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.8 alambda: 2.8 side: 1 Number of cores used: 6 Number of threads per core: 1 Factor base limits: 536870912/268435456 Large primes per side: 3 Large prime bits: 29/29 Total raw relations: 53024560 Relations: 8132304 relations Total pre-computation time approximately 1000 CPU-days. Pre-computation saved approximately 18 G rational relations. Total batch smoothness checking time: 27.39 hours. Total relation processing time: 0.61 hours. Pruned matrix : 6884117 x 6884361 Matrix solve time: 21.16 hours. time per square root: 0.17 hours. Prototype def-par.txt line would be: snfs,222,4,0,0,0,0,0,0,0,0,536870912,268435456,29,29,58,58,2.8,2.8,100000 total time: 49.32 hours. Intel64 Family 6 Model 158 Stepping 10, GenuineIntel Windows-10-10.0.17763-SP0 processors: 12, speed: 3.19GHz |
software ソフトウェア | GGNFS, NFS_factory, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 | Serge Batalov | December 10, 2014 19:48:45 UTC 2014 年 12 月 11 日 (木) 4 時 48 分 45 秒 (日本時間) | |
45 | 11e6 | 985 / 4409 | 585 | Cyp | February 10, 2015 09:52:07 UTC 2015 年 2 月 10 日 (火) 18 時 52 分 7 秒 (日本時間) |
400 | Dmitry Domanov | December 16, 2015 06:19:34 UTC 2015 年 12 月 16 日 (水) 15 時 19 分 34 秒 (日本時間) |
name 名前 | Erik Branger |
---|---|
date 日付 | November 29, 2019 23:54:48 UTC 2019 年 11 月 30 日 (土) 8 時 54 分 48 秒 (日本時間) |
composite number 合成数 | 537624591274141855630674183597767156321990552199581634178279523198963944771042784682945372322378632984795705211443572209941565713351995598660294609182545474160843304857<168> |
prime factors 素因数 | 3168481791148491688636189987774436747076374210738672951797499<61> 169678927231349818794055316016695951533653665478001731663111085461046604260875158625587841476234436294987643<108> |
factorization results 素因数分解の結果 | Number: 16111_219 N = 537624591274141855630674183597767156321990552199581634178279523198963944771042784682945372322378632984795705211443572209941565713351995598660294609182545474160843304857 (168 digits) SNFS difficulty: 222 digits. Divisors found: r1=3168481791148491688636189987774436747076374210738672951797499 (pp61) r2=169678927231349818794055316016695951533653665478001731663111085461046604260875158625587841476234436294987643 (pp108) Version: Msieve v. 1.52 (SVN unknown) Total time: 64.57 hours. Factorization parameters were as follows: n: 537624591274141855630674183597767156321990552199581634178279523198963944771042784682945372322378632984795705211443572209941565713351995598660294609182545474160843304857 m: 10000000000000000000000000000000000000000000000000000000 deg: 4 c4: 29 c0: -2 skew: 1.00 type: snfs lss: 1 rlim: 536870912 alim: 44739242 lpbr: 29 lpba: 28 mfbr: 58 mfba: 56 rlambda: 2.8 alambda: 2.8 side: 1 Factor base limits: 536870912/44739242 Large primes per side: 3 Large prime bits: 29/28 Relations: 6968638 relations Pruned matrix : 6358236 x 6358461 Total pre-computation time approximately 1000 CPU-days. Pre-computation saved approximately 18 G relations. Total batch smoothness checking time: 33.79 hours. Total relation processing time: 0.43 hours. Matrix solve time: 30.21 hours. time per square root: 0.15 hours. Prototype def-par.txt line would be: snfs,222,4,0,0,0,0,0,0,0,0,536870912,44739242,29,28,58,56,2.8,2.8,100000 total time: 64.57 hours. Intel64 Family 6 Model 60 Stepping 3, GenuineIntel Windows-10-10.0.17763-SP0 processors: 8, speed: 3.50GHz |
software ソフトウェア | GGNFS, NFS_factory, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 | Serge Batalov | December 10, 2014 19:48:45 UTC 2014 年 12 月 11 日 (木) 4 時 48 分 45 秒 (日本時間) | |
45 | 11e6 | 1185 / 4409 | 585 | Cyp | May 27, 2015 13:31:25 UTC 2015 年 5 月 27 日 (水) 22 時 31 分 25 秒 (日本時間) |
600 | Dmitry Domanov | December 16, 2015 06:19:55 UTC 2015 年 12 月 16 日 (水) 15 時 19 分 55 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | December 11, 2014 01:34:51 UTC 2014 年 12 月 11 日 (木) 10 時 34 分 51 秒 (日本時間) |
composite number 合成数 | 209609160089227351634504810049945928744086897276227461011178587672152837973253160979484232937431464589328904763112720309438907911324199484196143503959614175860609568942599929663521820347922615113613288850036689<210> |
prime factors 素因数 | 5371118274493468551420556086492461<34> |
composite cofactor 合成数の残り | 39025236343170056356758574503522648974237865838435659479394417773273353413226762142957343317984677265899897506158258664588175128573471086708332290875204623171042244125515060149<176> |
factorization results 素因数分解の結果 | Input number is 209609160089227351634504810049945928744086897276227461011178587672152837973253160979484232937431464589328904763112720309438907911324199484196143503959614175860609568942599929663521820347922615113613288850036689 (210 digits) Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1817733509 Step 1 took 16071ms Step 2 took 10518ms ********** Factor found in step 2: 5371118274493468551420556086492461 Found probable prime factor of 34 digits: 5371118274493468551420556086492461 Composite cofactor 39025236343170056356758574503522648974237865838435659479394417773273353413226762142957343317984677265899897506158258664588175128573471086708332290875204623171042244125515060149 has 176 digits |
name 名前 | Erik Branger |
---|---|
date 日付 | March 3, 2018 14:24:38 UTC 2018 年 3 月 3 日 (土) 23 時 24 分 38 秒 (日本時間) |
composite number 合成数 | 39025236343170056356758574503522648974237865838435659479394417773273353413226762142957343317984677265899897506158258664588175128573471086708332290875204623171042244125515060149<176> |
prime factors 素因数 | 161674144523825632261973231433950228054395703<45> 1785396513014841546750633422405799058446406937<46> 135198006526327251638311935946477102133214335265266961594581483421713305730260013137259<87> |
factorization results 素因数分解の結果 | Number: 16111_220 N = 39025236343170056356758574503522648974237865838435659479394417773273353413226762142957343317984677265899897506158258664588175128573471086708332290875204623171042244125515060149 (176 digits) SNFS difficulty: 223 digits. Divisors found: r1=161674144523825632261973231433950228054395703 (pp45) r2=1785396513014841546750633422405799058446406937 (pp46) r3=135198006526327251638311935946477102133214335265266961594581483421713305730260013137259 (pp87) Version: Msieve v. 1.52 (SVN unknown) Total time: 78.55 hours. Factorization parameters were as follows: n: 39025236343170056356758574503522648974237865838435659479394417773273353413226762142957343317984677265899897506158258664588175128573471086708332290875204623171042244125515060149 m: 10000000000000000000000000000000000000000000000000000000 deg: 4 c4: 145 c0: -1 skew: 1.00 type: snfs lss: 1 rlim: 536870912 alim: 536870912 lpbr: 29 lpba: 27 mfbr: 58 mfba: 54 rlambda: 2.8 alambda: 2.8 side: 1 Number of cores used: 4 Number of threads per core: 1 Factor base limits: 536870912/536870912 Large primes per side: 3 Large prime bits: 29/27 Total raw relations: 30222062 Relations: 8066732 relations Total pre-computation time approximately 1000 CPU-days. Pre-computation saved approximately 18 G rational relations. Total batch smoothness checking time: 40.40 hours. Total relation processing time: 0.33 hours. Pruned matrix : 7227938 x 7228163 Matrix solve time: 37.35 hours. time per square root: 0.47 hours. Prototype def-par.txt line would be: snfs,223,4,0,0,0,0,0,0,0,0,536870912,536870912,29,27,58,54,2.8,2.8,100000 total time: 78.55 hours. Intel64 Family 6 Model 60 Stepping 3, GenuineIntel Windows-10-10.0.16299-SP0 processors: 8, speed: 3.50GHz |
software ソフトウェア | GGNFS, NFS_factory, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 | Serge Batalov | December 10, 2014 19:48:46 UTC 2014 年 12 月 11 日 (木) 4 時 48 分 46 秒 (日本時間) | |
45 | 11e6 | 1185 / 4409 | 585 | Cyp | January 26, 2015 08:30:03 UTC 2015 年 1 月 26 日 (月) 17 時 30 分 3 秒 (日本時間) |
600 | Dmitry Domanov | December 16, 2015 06:20:12 UTC 2015 年 12 月 16 日 (水) 15 時 20 分 12 秒 (日本時間) |
name 名前 | Erik Branger |
---|---|
date 日付 | January 22, 2020 18:03:36 UTC 2020 年 1 月 23 日 (木) 3 時 3 分 36 秒 (日本時間) |
composite number 合成数 | 15460622457919600490570088642272537267809450356197507210169365468403468115702158202498744113451732217639501061404776935457843868793391131647923555734494669250302194275181930675194405605089<188> |
prime factors 素因数 | 1029866924949119415302629331350382496578150827919<49> 15012252635148402966986324927378902214897195350458758273973515916301825853896216240375457999676395071251650996249410049860524581004250188431<140> |
factorization results 素因数分解の結果 | Number: 16111_221 N = 15460622457919600490570088642272537267809450356197507210169365468403468115702158202498744113451732217639501061404776935457843868793391131647923555734494669250302194275181930675194405605089 (188 digits) SNFS difficulty: 224 digits. Divisors found: r1=1029866924949119415302629331350382496578150827919 (pp49) r2=15012252635148402966986324927378902214897195350458758273973515916301825853896216240375457999676395071251650996249410049860524581004250188431 (pp140) Version: Msieve v. 1.52 (SVN unknown) Total time: 55.74 hours. Factorization parameters were as follows: n: 15460622457919600490570088642272537267809450356197507210169365468403468115702158202498744113451732217639501061404776935457843868793391131647923555734494669250302194275181930675194405605089 m: 10000000000000000000000000000000000000000000000000000000 deg: 4 c4: 1450 c0: -1 skew: 1.00 type: snfs lss: 1 rlim: 536870912 alim: 44739242 lpbr: 29 lpba: 28 mfbr: 58 mfba: 56 rlambda: 2.8 alambda: 2.8 side: 1 Number of cores used: 6 Number of threads per core: 1 Factor base limits: 536870912/44739242 Large primes per side: 3 Large prime bits: 29/28 Total raw relations: 33798542 Relations: 8193580 relations Total pre-computation time approximately 1000 CPU-days. Pre-computation saved approximately 18 G rational relations. Total batch smoothness checking time: 26.48 hours. Total relation processing time: 0.36 hours. Pruned matrix : 7068474 x 7068699 Matrix solve time: 28.24 hours. time per square root: 0.66 hours. Prototype def-par.txt line would be: snfs,224,4,0,0,0,0,0,0,0,0,536870912,44739242,29,28,58,56,2.8,2.8,100000 total time: 55.74 hours. Intel64 Family 6 Model 158 Stepping 10, GenuineIntel Windows-10-10.0.18362-SP0 processors: 12, speed: 3.19GHz |
software ソフトウェア | GGNFS, NFS_factory, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 280 | Cyp | December 7, 2014 12:25:42 UTC 2014 年 12 月 7 日 (日) 21 時 25 分 42 秒 (日本時間) | |
45 | 11e6 | 1191 / 4413 | 335 | Cyp | January 7, 2015 09:06:23 UTC 2015 年 1 月 7 日 (水) 18 時 6 分 23 秒 (日本時間) |
256 | Cyp | July 30, 2015 00:23:33 UTC 2015 年 7 月 30 日 (木) 9 時 23 分 33 秒 (日本時間) | |||
600 | Dmitry Domanov | December 16, 2015 06:20:28 UTC 2015 年 12 月 16 日 (水) 15 時 20 分 28 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 280 | Cyp | December 9, 2014 08:50:43 UTC 2014 年 12 月 9 日 (火) 17 時 50 分 43 秒 (日本時間) | |
45 | 11e6 | 4595 | 591 | Cyp | July 30, 2015 07:21:42 UTC 2015 年 7 月 30 日 (木) 16 時 21 分 42 秒 (日本時間) |
600 | Dmitry Domanov | December 16, 2015 06:20:48 UTC 2015 年 12 月 16 日 (水) 15 時 20 分 48 秒 (日本時間) | |||
3404 | Thomas Kozlowski | December 13, 2024 08:08:08 UTC 2024 年 12 月 13 日 (金) 17 時 8 分 8 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | December 18, 2014 03:39:30 UTC 2014 年 12 月 18 日 (木) 12 時 39 分 30 秒 (日本時間) |
composite number 合成数 | 211515178037430892885796391113445071696351727860195760944087056729829475004740857438770002771578194973232389538021676658935422228057123685323764094933846804662086269018131956296588041369451373389931877525418289498636091783<222> |
prime factors 素因数 | 62994586928928603852354807469132232978815639<44> |
composite cofactor 合成数の残り | 3357672275493533266776755896923479010248417085604299464287164973875465319884973497826608330241518463747643866106546462441856250665004854956586152499183039285738068256837125873297<178> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=58553269330, polynomial Dickson(12), sigma=2967088650 Step 1 took 66392ms Step 2 took 29277ms ********** Factor found in step 2: 62994586928928603852354807469132232978815639 Found probable prime factor of 44 digits: 62994586928928603852354807469132232978815639 Composite cofactor |
name 名前 | Seth Troisi |
---|---|
date 日付 | November 30, 2023 17:32:51 UTC 2023 年 12 月 1 日 (金) 2 時 32 分 51 秒 (日本時間) |
composite number 合成数 | 3357672275493533266776755896923479010248417085604299464287164973875465319884973497826608330241518463747643866106546462441856250665004854956586152499183039285738068256837125873297<178> |
prime factors 素因数 | 2179264001588103959996342051117113399511214181485017627<55> 1540736814377093840192075935972791275247596223447724215734649627420602061832120388132010743806656032187928223489019519702211<124> |
factorization results 素因数分解の結果 | Resuming P-1 residue saved by five@five with GMP-ECM 7.0.6-dev on Sun Nov 19 11:33:53 2023 Input number is 3357672275493533266776755896923479010248417085604299464287164973875465319884973497826608330241518463747643866106546462441856250665004854956586152499183039285738068256837125873297 (178 digits) Using mpz_mod Using lmax = 16777216 with NTT which takes about 4416MB of memory Using B1=4000000000-4000000000, B2=2114508355760232, polynomial x^1 P = 111546435, l = 16777216, s_1 = 7299072, k = s_2 = 5, m_1 = 13 Probability of finding a factor of n digits (assuming one exists): 20 25 30 35 40 45 50 55 60 65 0.77 0.5 0.25 0.11 0.04 0.013 0.0039 0.0011 0.00026 6.1e-05 Step 1 took 0ms Computing F from factored S_1 took 72543ms Computing h took 8112ms Computing DCT-I of h took 23718ms Multi-point evaluation 1 of 5: Computing g_i took 29488ms Computing g*h took 48832ms Computing gcd of coefficients and N took 12058ms Step 2 took 195219ms ********** Factor found in step 2: 2179264001588103959996342051117113399511214181485017627 Found prime factor of 55 digits: 2179264001588103959996342051117113399511214181485017627 Prime cofactor 1540736814377093840192075935972791275247596223447724215734649627420602061832120388132010743806656032187928223489019519702211 has 124 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2600 | 280 | Cyp | December 9, 2014 01:31:19 UTC 2014 年 12 月 9 日 (火) 10 時 31 分 19 秒 (日本時間) |
2320 | Serge Batalov | December 9, 2014 19:26:05 UTC 2014 年 12 月 10 日 (水) 4 時 26 分 5 秒 (日本時間) | |||
45 | 11e6 | 1000 / 3900 | Serge Batalov | December 18, 2014 00:18:44 UTC 2014 年 12 月 18 日 (木) 9 時 18 分 44 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 280 | Cyp | December 8, 2014 04:12:36 UTC 2014 年 12 月 8 日 (月) 13 時 12 分 36 秒 (日本時間) | |
45 | 11e6 | 4593 | 591 | Cyp | July 2, 2015 07:31:41 UTC 2015 年 7 月 2 日 (木) 16 時 31 分 41 秒 (日本時間) |
600 | Dmitry Domanov | December 16, 2015 06:21:16 UTC 2015 年 12 月 16 日 (水) 15 時 21 分 16 秒 (日本時間) | |||
3402 | Thomas Kozlowski | December 13, 2024 09:07:04 UTC 2024 年 12 月 13 日 (金) 18 時 7 分 4 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 | Serge Batalov | December 10, 2014 19:48:46 UTC 2014 年 12 月 11 日 (木) 4 時 48 分 46 秒 (日本時間) | |
45 | 11e6 | 4585 | 585 | Cyp | July 30, 2015 08:21:01 UTC 2015 年 7 月 30 日 (木) 17 時 21 分 1 秒 (日本時間) |
600 | Dmitry Domanov | December 16, 2015 06:21:35 UTC 2015 年 12 月 16 日 (水) 15 時 21 分 35 秒 (日本時間) | |||
3400 | Thomas Kozlowski | December 13, 2024 10:14:16 UTC 2024 年 12 月 13 日 (金) 19 時 14 分 16 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | December 11, 2014 01:34:54 UTC 2014 年 12 月 11 日 (木) 10 時 34 分 54 秒 (日本時間) |
composite number 合成数 | 28364957696319457460477654808745431984555751111095575063015825114252799001190636669900395945592750540625161078173663111295904232642205021365273636859908095853957493330843856093976954897309<188> |
prime factors 素因数 | 8105152385120775160514035311209<31> |
composite cofactor 合成数の残り | 3499620531304395732107034638630600743737437723893940498322265407888610516929350765219777378380633655282076346745700121211716796070049061175741512581508122901<157> |
factorization results 素因数分解の結果 | Input number is 28364957696319457460477654808745431984555751111095575063015825114252799001190636669900395945592750540625161078173663111295904232642205021365273636859908095853957493330843856093976954897309 (188 digits) Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=4022711487 Step 1 took 13736ms Step 2 took 9421ms ********** Factor found in step 2: 8105152385120775160514035311209 Found probable prime factor of 31 digits: 8105152385120775160514035311209 Composite cofactor 3499620531304395732107034638630600743737437723893940498322265407888610516929350765219777378380633655282076346745700121211716796070049061175741512581508122901 has 157 digits |
name 名前 | NFS@Home |
---|---|
date 日付 | April 12, 2022 13:33:13 UTC 2022 年 4 月 12 日 (火) 22 時 33 分 13 秒 (日本時間) |
composite number 合成数 | 3499620531304395732107034638630600743737437723893940498322265407888610516929350765219777378380633655282076346745700121211716796070049061175741512581508122901<157> |
prime factors 素因数 | 632374307494547864740681614654259911044868170188351679352941806038403488983<75> 5534096641544167060479244804453734269615025117170758121503084069847870122120232947<82> |
factorization results 素因数分解の結果 | Mon Apr 11 12:04:15 2022 Mon Apr 11 12:04:15 2022 Mon Apr 11 12:04:15 2022 Msieve v. 1.53 (SVN 988) Mon Apr 11 12:04:15 2022 random seeds: 5bed7040 848160f3 Mon Apr 11 12:04:15 2022 factoring 3499620531304395732107034638630600743737437723893940498322265407888610516929350765219777378380633655282076346745700121211716796070049061175741512581508122901 (157 digits) Mon Apr 11 12:04:16 2022 searching for 15-digit factors Mon Apr 11 12:04:17 2022 commencing number field sieve (157-digit input) Mon Apr 11 12:04:17 2022 R0: -1614021381452866107689652952395 Mon Apr 11 12:04:17 2022 R1: 2800720549747877335151 Mon Apr 11 12:04:17 2022 A0: -900576000315545449296986055612617336 Mon Apr 11 12:04:17 2022 A1: 3261594593047514428295417374782 Mon Apr 11 12:04:17 2022 A2: 9177816658363201073537987 Mon Apr 11 12:04:17 2022 A3: -5145135425062913109 Mon Apr 11 12:04:17 2022 A4: -6208776799068 Mon Apr 11 12:04:17 2022 A5: 1288800 Mon Apr 11 12:04:17 2022 skew 1.00, size 2.896e-015, alpha -6.207, combined = 2.483e-014 rroots = 5 Mon Apr 11 12:04:17 2022 Mon Apr 11 12:04:17 2022 commencing relation filtering Mon Apr 11 12:04:17 2022 setting target matrix density to 130.0 Mon Apr 11 12:04:17 2022 estimated available RAM is 16151.1 MB Mon Apr 11 12:04:17 2022 commencing duplicate removal, pass 1 Mon Apr 11 12:04:44 2022 error -9 reading relation 1725877 Mon Apr 11 12:04:44 2022 error -15 reading relation 1773629 Mon Apr 11 12:15:10 2022 error -9 reading relation 43281745 Mon Apr 11 12:30:02 2022 error -5 reading relation 93969249 Mon Apr 11 12:30:07 2022 error -15 reading relation 94170882 Mon Apr 11 12:30:46 2022 error -9 reading relation 96254352 Mon Apr 11 12:30:47 2022 error -15 reading relation 96326769 Mon Apr 11 12:30:47 2022 error -15 reading relation 96348861 Mon Apr 11 12:30:48 2022 error -9 reading relation 96424025 Mon Apr 11 12:30:53 2022 error -5 reading relation 96721106 Mon Apr 11 12:30:54 2022 error -15 reading relation 96789330 Mon Apr 11 12:31:12 2022 error -1 reading relation 97850124 Mon Apr 11 12:33:10 2022 error -15 reading relation 104226942 Mon Apr 11 12:33:25 2022 error -15 reading relation 105197660 Mon Apr 11 12:33:29 2022 error -1 reading relation 105458742 Mon Apr 11 12:33:38 2022 error -5 reading relation 105965751 Mon Apr 11 12:33:40 2022 error -9 reading relation 106057044 Mon Apr 11 12:36:13 2022 error -1 reading relation 116178160 Mon Apr 11 12:37:09 2022 error -9 reading relation 120457298 Mon Apr 11 12:37:09 2022 error -15 reading relation 120484307 Mon Apr 11 12:37:20 2022 error -1 reading relation 121542288 Mon Apr 11 12:37:20 2022 error -1 reading relation 121542289 Mon Apr 11 12:37:20 2022 error -1 reading relation 121542290 Mon Apr 11 12:37:20 2022 error -1 reading relation 121542291 Mon Apr 11 12:37:20 2022 error -1 reading relation 121542292 Mon Apr 11 12:37:20 2022 error -1 reading relation 121542293 Mon Apr 11 12:37:20 2022 error -1 reading relation 121542294 Mon Apr 11 12:37:20 2022 error -1 reading relation 121542295 Mon Apr 11 12:37:20 2022 error -1 reading relation 121542296 Mon Apr 11 12:37:20 2022 error -1 reading relation 121542297 Mon Apr 11 12:37:20 2022 error -1 reading relation 121542298 Mon Apr 11 12:37:20 2022 error -1 reading relation 121542299 Mon Apr 11 12:37:20 2022 error -1 reading relation 121542300 Mon Apr 11 12:37:20 2022 error -1 reading relation 121542301 Mon Apr 11 12:37:20 2022 error -1 reading relation 121542302 Mon Apr 11 12:37:20 2022 error -1 reading relation 121542303 Mon Apr 11 12:37:20 2022 error -1 reading relation 121542304 Mon Apr 11 12:37:20 2022 error -1 reading relation 121542305 Mon Apr 11 12:37:20 2022 error -1 reading relation 121542306 Mon Apr 11 12:37:20 2022 error -1 reading relation 121542307 Mon Apr 11 12:37:20 2022 error -1 reading relation 121542308 Mon Apr 11 12:37:20 2022 error -1 reading relation 121542309 Mon Apr 11 12:37:20 2022 error -1 reading relation 121542310 Mon Apr 11 12:37:20 2022 error -1 reading relation 121542311 Mon Apr 11 12:37:20 2022 error -1 reading relation 121542312 Mon Apr 11 12:37:20 2022 error -1 reading relation 121542313 Mon Apr 11 12:37:20 2022 error -1 reading relation 121542314 Mon Apr 11 12:37:20 2022 error -1 reading relation 121542315 Mon Apr 11 12:37:20 2022 error -1 reading relation 121542316 Mon Apr 11 12:37:20 2022 error -1 reading relation 121542317 Mon Apr 11 12:37:20 2022 error -1 reading relation 121542318 Mon Apr 11 12:37:20 2022 error -1 reading relation 121542319 Mon Apr 11 12:37:20 2022 error -1 reading relation 121542320 Mon Apr 11 12:37:20 2022 error -1 reading relation 121542321 Mon Apr 11 12:37:20 2022 error -1 reading relation 121542322 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542323 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542324 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542325 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542326 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542327 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542328 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542329 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542330 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542331 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542332 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542333 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542334 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542335 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542336 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542337 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542338 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542339 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542340 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542341 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542342 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542343 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542344 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542345 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542346 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542347 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542348 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542349 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542350 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542351 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542352 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542353 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542354 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542355 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542356 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542357 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542358 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542359 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542360 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542361 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542362 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542363 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542364 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542365 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542366 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542367 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542368 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542369 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542370 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542371 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542372 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542373 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542374 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542375 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542376 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542377 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542378 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542379 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542380 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542381 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542382 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542383 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542384 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542385 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542386 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542387 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542388 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542389 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542390 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542391 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542392 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542393 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542394 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542395 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542396 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542397 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542398 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542399 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542400 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542401 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542402 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542403 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542404 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542405 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542406 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542407 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542408 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542409 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542410 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542411 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542412 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542413 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542414 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542415 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542416 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542417 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542418 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542419 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542420 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542421 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542422 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542423 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542424 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542425 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542426 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542427 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542428 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542429 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542430 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542431 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542432 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542433 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542434 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542435 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542436 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542437 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542438 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542439 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542440 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542441 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542442 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542443 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542444 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542445 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542446 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542447 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542448 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542449 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542450 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542451 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542452 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542453 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542454 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542455 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542456 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542457 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542458 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542459 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542460 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542461 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542462 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542463 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542464 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542465 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542466 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542467 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542468 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542469 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542470 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542471 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542472 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542473 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542474 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542475 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542476 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542477 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542478 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542479 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542480 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542481 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542482 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542483 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542484 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542485 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542486 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542487 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542488 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542489 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542490 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542491 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542492 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542493 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542494 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542495 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542496 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542497 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542498 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542499 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542500 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542501 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542502 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542503 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542504 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542505 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542506 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542507 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542508 Mon Apr 11 12:37:21 2022 error -1 reading relation 121542509 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542510 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542511 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542512 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542513 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542514 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542515 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542516 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542517 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542518 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542519 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542520 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542521 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542522 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542523 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542524 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542525 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542526 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542527 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542528 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542529 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542530 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542531 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542532 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542533 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542534 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542535 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542536 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542537 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542538 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542539 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542540 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542541 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542542 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542543 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542544 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542545 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542546 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542547 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542548 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542549 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542550 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542551 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542552 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542553 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542554 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542555 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542556 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542557 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542558 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542559 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542560 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542561 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542562 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542563 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542564 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542565 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542566 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542567 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542568 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542569 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542570 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542571 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542572 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542573 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542574 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542575 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542576 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542577 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542578 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542579 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542580 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542581 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542582 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542583 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542584 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542585 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542586 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542587 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542588 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542589 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542590 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542591 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542592 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542593 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542594 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542595 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542596 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542597 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542598 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542599 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542600 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542601 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542602 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542603 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542604 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542605 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542606 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542607 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542608 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542609 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542610 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542611 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542612 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542613 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542614 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542615 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542616 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542617 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542618 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542619 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542620 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542621 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542622 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542623 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542624 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542625 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542626 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542627 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542628 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542629 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542630 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542631 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542632 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542633 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542634 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542635 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542636 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542637 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542638 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542639 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542640 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542641 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542642 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542643 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542644 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542645 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542646 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542647 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542648 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542649 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542650 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542651 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542652 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542653 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542654 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542655 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542656 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542657 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542658 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542659 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542660 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542661 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542662 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542663 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542664 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542665 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542666 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542667 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542668 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542669 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542670 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542671 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542672 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542673 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542674 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542675 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542676 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542677 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542678 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542679 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542680 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542681 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542682 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542683 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542684 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542685 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542686 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542687 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542688 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542689 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542690 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542691 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542692 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542693 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542694 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542695 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542696 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542697 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542698 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542699 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542700 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542701 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542702 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542703 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542704 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542705 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542706 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542707 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542708 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542709 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542710 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542711 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542712 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542713 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542714 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542715 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542716 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542717 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542718 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542719 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542720 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542721 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542722 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542723 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542724 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542725 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542726 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542727 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542728 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542729 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542730 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542731 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542732 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542733 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542734 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542735 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542736 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542737 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542738 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542739 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542740 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542741 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542742 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542743 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542744 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542745 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542746 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542747 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542748 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542749 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542750 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542751 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542752 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542753 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542754 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542755 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542756 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542757 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542758 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542759 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542760 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542761 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542762 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542763 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542764 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542765 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542766 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542767 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542768 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542769 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542770 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542771 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542772 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542773 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542774 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542775 Mon Apr 11 12:37:22 2022 error -1 reading relation 121542776 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542777 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542778 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542779 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542780 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542781 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542782 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542783 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542784 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542785 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542786 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542787 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542788 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542789 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542790 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542791 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542792 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542793 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542794 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542795 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542796 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542797 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542798 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542799 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542800 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542801 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542802 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542803 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542804 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542805 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542806 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542807 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542808 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542809 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542810 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542811 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542812 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542813 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542814 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542815 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542816 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542817 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542818 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542819 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542820 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542821 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542822 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542823 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542824 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542825 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542826 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542827 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542828 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542829 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542830 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542831 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542832 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542833 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542834 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542835 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542836 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542837 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542838 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542839 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542840 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542841 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542842 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542843 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542844 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542845 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542846 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542847 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542848 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542849 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542850 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542851 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542852 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542853 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542854 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542855 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542856 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542857 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542858 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542859 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542860 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542861 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542862 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542863 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542864 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542865 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542866 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542867 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542868 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542869 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542870 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542871 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542872 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542873 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542874 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542875 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542876 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542877 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542878 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542879 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542880 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542881 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542882 Mon Apr 11 12:37:23 2022 error -1 reading relation 121542883 Mon Apr 11 12:38:52 2022 error -15 reading relation 128664876 Mon Apr 11 12:39:53 2022 error -15 reading relation 133034398 Mon Apr 11 12:39:56 2022 error -9 reading relation 133208289 Mon Apr 11 12:40:37 2022 error -5 reading relation 135652832 Mon Apr 11 12:41:04 2022 skipped 12 relations with composite factors Mon Apr 11 12:41:04 2022 found 22839242 hash collisions in 137367757 relations Mon Apr 11 12:41:42 2022 added 121877 free relations Mon Apr 11 12:41:42 2022 commencing duplicate removal, pass 2 Mon Apr 11 12:43:32 2022 found 19803191 duplicates and 117686443 unique relations Mon Apr 11 12:43:32 2022 memory use: 660.8 MB Mon Apr 11 12:43:32 2022 reading ideals above 69926912 Mon Apr 11 12:43:32 2022 commencing singleton removal, initial pass Mon Apr 11 13:02:36 2022 memory use: 2756.0 MB Mon Apr 11 13:02:36 2022 reading all ideals from disk Mon Apr 11 13:02:41 2022 memory use: 1976.0 MB Mon Apr 11 13:02:46 2022 commencing in-memory singleton removal Mon Apr 11 13:02:52 2022 begin with 117686443 relations and 85613665 unique ideals Mon Apr 11 13:03:52 2022 reduce to 87802641 relations and 53424369 ideals in 10 passes Mon Apr 11 13:03:52 2022 max relations containing the same ideal: 64 Mon Apr 11 13:04:01 2022 reading ideals above 720000 Mon Apr 11 13:04:01 2022 commencing singleton removal, initial pass Mon Apr 11 13:21:37 2022 memory use: 1506.0 MB Mon Apr 11 13:21:37 2022 reading all ideals from disk Mon Apr 11 13:21:45 2022 memory use: 3225.3 MB Mon Apr 11 13:21:57 2022 keeping 61193218 ideals with weight <= 200, target excess is 458797 Mon Apr 11 13:22:10 2022 commencing in-memory singleton removal Mon Apr 11 13:22:20 2022 begin with 87802641 relations and 61193218 unique ideals Mon Apr 11 13:23:28 2022 reduce to 87802066 relations and 61192643 ideals in 6 passes Mon Apr 11 13:23:28 2022 max relations containing the same ideal: 200 Mon Apr 11 13:24:16 2022 removing 7502744 relations and 5502744 ideals in 2000000 cliques Mon Apr 11 13:24:20 2022 commencing in-memory singleton removal Mon Apr 11 13:24:29 2022 begin with 80299322 relations and 61192643 unique ideals Mon Apr 11 13:25:42 2022 reduce to 79781412 relations and 55157339 ideals in 7 passes Mon Apr 11 13:25:42 2022 max relations containing the same ideal: 195 Mon Apr 11 13:26:29 2022 removing 6011019 relations and 4011019 ideals in 2000000 cliques Mon Apr 11 13:26:32 2022 commencing in-memory singleton removal Mon Apr 11 13:26:41 2022 begin with 73770393 relations and 55157339 unique ideals Mon Apr 11 13:27:44 2022 reduce to 73424631 relations and 50791668 ideals in 7 passes Mon Apr 11 13:27:44 2022 max relations containing the same ideal: 189 Mon Apr 11 13:28:26 2022 removing 5618729 relations and 3618729 ideals in 2000000 cliques Mon Apr 11 13:28:29 2022 commencing in-memory singleton removal Mon Apr 11 13:28:36 2022 begin with 67805902 relations and 50791668 unique ideals Mon Apr 11 13:29:21 2022 reduce to 67509123 relations and 46868579 ideals in 6 passes Mon Apr 11 13:29:21 2022 max relations containing the same ideal: 179 Mon Apr 11 13:29:59 2022 removing 5409382 relations and 3409382 ideals in 2000000 cliques Mon Apr 11 13:30:02 2022 commencing in-memory singleton removal Mon Apr 11 13:30:08 2022 begin with 62099741 relations and 46868579 unique ideals Mon Apr 11 13:30:47 2022 reduce to 61823614 relations and 43175757 ideals in 6 passes Mon Apr 11 13:30:47 2022 max relations containing the same ideal: 170 Mon Apr 11 13:31:24 2022 removing 5273149 relations and 3273149 ideals in 2000000 cliques Mon Apr 11 13:31:27 2022 commencing in-memory singleton removal Mon Apr 11 13:31:32 2022 begin with 56550465 relations and 43175757 unique ideals Mon Apr 11 13:32:21 2022 reduce to 56283354 relations and 39627814 ideals in 7 passes Mon Apr 11 13:32:21 2022 max relations containing the same ideal: 160 Mon Apr 11 13:32:53 2022 removing 5179457 relations and 3179457 ideals in 2000000 cliques Mon Apr 11 13:32:56 2022 commencing in-memory singleton removal Mon Apr 11 13:33:01 2022 begin with 51103897 relations and 39627814 unique ideals Mon Apr 11 13:33:39 2022 reduce to 50835595 relations and 36171911 ideals in 6 passes Mon Apr 11 13:33:39 2022 max relations containing the same ideal: 151 Mon Apr 11 13:34:09 2022 removing 5106905 relations and 3106905 ideals in 2000000 cliques Mon Apr 11 13:34:12 2022 commencing in-memory singleton removal Mon Apr 11 13:34:17 2022 begin with 45728690 relations and 36171911 unique ideals Mon Apr 11 13:34:57 2022 reduce to 45453605 relations and 32780881 ideals in 6 passes Mon Apr 11 13:34:57 2022 max relations containing the same ideal: 143 Mon Apr 11 13:35:27 2022 removing 5055647 relations and 3055647 ideals in 2000000 cliques Mon Apr 11 13:35:29 2022 commencing in-memory singleton removal Mon Apr 11 13:35:32 2022 begin with 40397958 relations and 32780881 unique ideals Mon Apr 11 13:36:03 2022 reduce to 40106546 relations and 29423292 ideals in 6 passes Mon Apr 11 13:36:03 2022 max relations containing the same ideal: 129 Mon Apr 11 13:36:27 2022 removing 5019687 relations and 3019687 ideals in 2000000 cliques Mon Apr 11 13:36:29 2022 commencing in-memory singleton removal Mon Apr 11 13:36:33 2022 begin with 35086859 relations and 29423292 unique ideals Mon Apr 11 13:36:58 2022 reduce to 34770666 relations and 26074664 ideals in 6 passes Mon Apr 11 13:36:58 2022 max relations containing the same ideal: 115 Mon Apr 11 13:37:18 2022 removing 4997259 relations and 2997259 ideals in 2000000 cliques Mon Apr 11 13:37:20 2022 commencing in-memory singleton removal Mon Apr 11 13:37:23 2022 begin with 29773407 relations and 26074664 unique ideals Mon Apr 11 13:37:49 2022 reduce to 29420470 relations and 22708296 ideals in 7 passes Mon Apr 11 13:37:49 2022 max relations containing the same ideal: 108 Mon Apr 11 13:38:07 2022 removing 4983519 relations and 2983519 ideals in 2000000 cliques Mon Apr 11 13:38:09 2022 commencing in-memory singleton removal Mon Apr 11 13:38:11 2022 begin with 24436951 relations and 22708296 unique ideals Mon Apr 11 13:38:31 2022 reduce to 24029344 relations and 19295904 ideals in 7 passes Mon Apr 11 13:38:31 2022 max relations containing the same ideal: 92 Mon Apr 11 13:38:47 2022 removing 4979407 relations and 2979407 ideals in 2000000 cliques Mon Apr 11 13:38:48 2022 commencing in-memory singleton removal Mon Apr 11 13:38:50 2022 begin with 19049937 relations and 19295904 unique ideals Mon Apr 11 13:39:04 2022 reduce to 18557733 relations and 15792501 ideals in 7 passes Mon Apr 11 13:39:04 2022 max relations containing the same ideal: 80 Mon Apr 11 13:39:14 2022 removing 4968865 relations and 2968865 ideals in 2000000 cliques Mon Apr 11 13:39:16 2022 commencing in-memory singleton removal Mon Apr 11 13:39:17 2022 begin with 13588868 relations and 15792501 unique ideals Mon Apr 11 13:39:29 2022 reduce to 12953311 relations and 12134938 ideals in 8 passes Mon Apr 11 13:39:29 2022 max relations containing the same ideal: 58 Mon Apr 11 13:39:36 2022 removing 991650 relations and 705482 ideals in 286168 cliques Mon Apr 11 13:39:36 2022 commencing in-memory singleton removal Mon Apr 11 13:39:38 2022 begin with 11961661 relations and 12134938 unique ideals Mon Apr 11 13:39:46 2022 reduce to 11880773 relations and 11346655 ideals in 6 passes Mon Apr 11 13:39:46 2022 max relations containing the same ideal: 55 Mon Apr 11 13:39:55 2022 relations with 0 large ideals: 1478 Mon Apr 11 13:39:55 2022 relations with 1 large ideals: 10574 Mon Apr 11 13:39:55 2022 relations with 2 large ideals: 137348 Mon Apr 11 13:39:55 2022 relations with 3 large ideals: 728694 Mon Apr 11 13:39:56 2022 relations with 4 large ideals: 1985320 Mon Apr 11 13:39:56 2022 relations with 5 large ideals: 3141726 Mon Apr 11 13:39:56 2022 relations with 6 large ideals: 3081221 Mon Apr 11 13:39:56 2022 relations with 7+ large ideals: 2794412 Mon Apr 11 13:39:56 2022 commencing 2-way merge Mon Apr 11 13:40:05 2022 reduce to 8309431 relation sets and 7775313 unique ideals Mon Apr 11 13:40:05 2022 commencing full merge Mon Apr 11 13:44:16 2022 memory use: 993.2 MB Mon Apr 11 13:44:18 2022 found 3672680 cycles, need 3637513 Mon Apr 11 13:44:19 2022 weight of 3637513 cycles is about 473288544 (130.11/cycle) Mon Apr 11 13:44:19 2022 distribution of cycle lengths: Mon Apr 11 13:44:19 2022 1 relations: 54704 Mon Apr 11 13:44:19 2022 2 relations: 163508 Mon Apr 11 13:44:19 2022 3 relations: 225155 Mon Apr 11 13:44:19 2022 4 relations: 257420 Mon Apr 11 13:44:19 2022 5 relations: 281249 Mon Apr 11 13:44:19 2022 6 relations: 286911 Mon Apr 11 13:44:19 2022 7 relations: 286668 Mon Apr 11 13:44:19 2022 8 relations: 274660 Mon Apr 11 13:44:19 2022 9 relations: 257496 Mon Apr 11 13:44:19 2022 10+ relations: 1549742 Mon Apr 11 13:44:19 2022 heaviest cycle: 28 relations Mon Apr 11 13:44:21 2022 commencing cycle optimization Mon Apr 11 13:44:31 2022 start with 33989915 relations Mon Apr 11 13:46:40 2022 pruned 2018490 relations Mon Apr 11 13:46:40 2022 memory use: 842.0 MB Mon Apr 11 13:46:40 2022 distribution of cycle lengths: Mon Apr 11 13:46:40 2022 1 relations: 54704 Mon Apr 11 13:46:40 2022 2 relations: 168870 Mon Apr 11 13:46:40 2022 3 relations: 237277 Mon Apr 11 13:46:40 2022 4 relations: 272032 Mon Apr 11 13:46:40 2022 5 relations: 301466 Mon Apr 11 13:46:40 2022 6 relations: 307666 Mon Apr 11 13:46:40 2022 7 relations: 308540 Mon Apr 11 13:46:40 2022 8 relations: 293843 Mon Apr 11 13:46:40 2022 9 relations: 273668 Mon Apr 11 13:46:40 2022 10+ relations: 1419447 Mon Apr 11 13:46:40 2022 heaviest cycle: 28 relations Mon Apr 11 13:46:48 2022 RelProcTime: 6151 Mon Apr 11 13:46:48 2022 Mon Apr 11 13:46:48 2022 commencing linear algebra Mon Apr 11 13:46:49 2022 read 3637513 cycles Mon Apr 11 13:46:59 2022 cycles contain 11638394 unique relations Mon Apr 11 13:49:03 2022 read 11638394 relations Mon Apr 11 13:49:32 2022 using 20 quadratic characters above 4294917295 Mon Apr 11 13:50:39 2022 building initial matrix Mon Apr 11 13:55:21 2022 memory use: 1631.0 MB Mon Apr 11 13:55:28 2022 read 3637513 cycles Mon Apr 11 13:55:29 2022 matrix is 3637335 x 3637513 (1801.5 MB) with weight 548876019 (150.89/col) Mon Apr 11 13:55:29 2022 sparse part has weight 432249085 (118.83/col) Mon Apr 11 13:56:40 2022 filtering completed in 2 passes Mon Apr 11 13:56:41 2022 matrix is 3637256 x 3637434 (1801.5 MB) with weight 548870810 (150.90/col) Mon Apr 11 13:56:41 2022 sparse part has weight 432246490 (118.83/col) Mon Apr 11 13:57:00 2022 matrix starts at (0, 0) Mon Apr 11 13:57:01 2022 matrix is 3637256 x 3637434 (1801.5 MB) with weight 548870810 (150.90/col) Mon Apr 11 13:57:02 2022 sparse part has weight 432246490 (118.83/col) Mon Apr 11 13:57:02 2022 saving the first 48 matrix rows for later Mon Apr 11 13:57:03 2022 matrix includes 64 packed rows Mon Apr 11 13:57:04 2022 matrix is 3637208 x 3637434 (1755.3 MB) with weight 470914628 (129.46/col) Mon Apr 11 13:57:04 2022 sparse part has weight 423759151 (116.50/col) Mon Apr 11 13:57:04 2022 using block size 8192 and superblock size 1179648 for processor cache size 12288 kB Mon Apr 11 13:57:33 2022 commencing Lanczos iteration (6 threads) Mon Apr 11 13:57:33 2022 memory use: 1443.0 MB Mon Apr 11 13:57:49 2022 linear algebra at 0.0%, ETA 9h57m Mon Apr 11 13:57:54 2022 checkpointing every 370000 dimensions Tue Apr 12 00:33:09 2022 lanczos halted after 57520 iterations (dim = 3637208) Tue Apr 12 00:33:13 2022 recovered 30 nontrivial dependencies Tue Apr 12 00:33:14 2022 BLanczosTime: 38786 Tue Apr 12 00:33:14 2022 Tue Apr 12 00:33:14 2022 commencing square root phase Tue Apr 12 00:33:14 2022 handling dependencies 1 to 64 Tue Apr 12 00:33:14 2022 reading relations for dependency 1 Tue Apr 12 00:33:16 2022 read 1820332 cycles Tue Apr 12 00:33:21 2022 cycles contain 5820766 unique relations Tue Apr 12 00:34:37 2022 read 5820766 relations Tue Apr 12 00:35:17 2022 multiplying 5820766 relations Tue Apr 12 00:43:44 2022 multiply complete, coefficients have about 326.16 million bits Tue Apr 12 00:43:46 2022 initial square root is modulo 711793 Tue Apr 12 00:53:35 2022 GCD is 1, no factor found Tue Apr 12 00:53:35 2022 reading relations for dependency 2 Tue Apr 12 00:53:39 2022 read 1818421 cycles Tue Apr 12 00:53:44 2022 cycles contain 5816204 unique relations Tue Apr 12 00:55:55 2022 read 5816204 relations Tue Apr 12 00:56:33 2022 multiplying 5816204 relations Tue Apr 12 01:05:31 2022 multiply complete, coefficients have about 325.89 million bits Tue Apr 12 01:05:33 2022 initial square root is modulo 704161 Tue Apr 12 01:15:48 2022 GCD is N, no factor found Tue Apr 12 01:15:48 2022 reading relations for dependency 3 Tue Apr 12 01:15:49 2022 read 1818575 cycles Tue Apr 12 01:15:54 2022 cycles contain 5818718 unique relations Tue Apr 12 01:18:08 2022 read 5818718 relations Tue Apr 12 01:18:46 2022 multiplying 5818718 relations Tue Apr 12 01:27:36 2022 multiply complete, coefficients have about 326.04 million bits Tue Apr 12 01:27:38 2022 initial square root is modulo 708473 Tue Apr 12 01:37:56 2022 GCD is 1, no factor found Tue Apr 12 01:37:56 2022 reading relations for dependency 4 Tue Apr 12 01:37:58 2022 read 1819438 cycles Tue Apr 12 01:38:03 2022 cycles contain 5824624 unique relations Tue Apr 12 01:39:12 2022 read 5824624 relations Tue Apr 12 01:39:51 2022 multiplying 5824624 relations Tue Apr 12 01:48:48 2022 multiply complete, coefficients have about 326.38 million bits Tue Apr 12 01:48:50 2022 initial square root is modulo 718357 Tue Apr 12 01:59:01 2022 GCD is 1, no factor found Tue Apr 12 01:59:01 2022 reading relations for dependency 5 Tue Apr 12 01:59:02 2022 read 1817274 cycles Tue Apr 12 01:59:07 2022 cycles contain 5818584 unique relations Tue Apr 12 02:01:52 2022 read 5818584 relations Tue Apr 12 02:02:29 2022 multiplying 5818584 relations Tue Apr 12 02:11:21 2022 multiply complete, coefficients have about 326.04 million bits Tue Apr 12 02:11:23 2022 initial square root is modulo 708223 Tue Apr 12 02:21:43 2022 sqrtTime: 6509 Tue Apr 12 02:21:43 2022 p75 factor: 632374307494547864740681614654259911044868170188351679352941806038403488983 Tue Apr 12 02:21:43 2022 p82 factor: 5534096641544167060479244804453734269615025117170758121503084069847870122120232947 Tue Apr 12 02:21:43 2022 elapsed time 14:17:28 |
software ソフトウェア | Msieve v. 1.53 (SVN 988) |
execution environment 実行環境 | Core i7-10750H with 16 GB memory, Windows 10 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 | Serge Batalov | December 10, 2014 19:48:47 UTC 2014 年 12 月 11 日 (木) 4 時 48 分 47 秒 (日本時間) | |
45 | 11e6 | 4600 | 1000 | Serge Batalov | December 18, 2014 00:18:28 UTC 2014 年 12 月 18 日 (木) 9 時 18 分 28 秒 (日本時間) |
400 | Dmitry Domanov | March 1, 2016 13:08:30 UTC 2016 年 3 月 1 日 (火) 22 時 8 分 30 秒 (日本時間) | |||
3200 | Lionel Debroux | December 17, 2017 16:22:50 UTC 2017 年 12 月 18 日 (月) 1 時 22 分 50 秒 (日本時間) | |||
50 | 43e6 | 6000 | yoyo@Home | April 8, 2021 12:43:48 UTC 2021 年 4 月 8 日 (木) 21 時 43 分 48 秒 (日本時間) | |
55 | 11e7 | 5200 / 15338 | yoyo@Home | August 3, 2021 12:05:03 UTC 2021 年 8 月 3 日 (火) 21 時 5 分 3 秒 (日本時間) |
name 名前 | Thomas Kozlowski |
---|---|
date 日付 | December 13, 2024 10:35:05 UTC 2024 年 12 月 13 日 (金) 19 時 35 分 5 秒 (日本時間) |
composite number 合成数 | 1798518040936248652372538031831515098487408467730986031173355938866831758360506069304441662706774145971850094744689850513085708185727403103332312533745385618389326851419052524356430584680013042325367<199> |
prime factors 素因数 | 628185651264566898532145623863148744451<39> 2863035851448928012474379716186818953820816992690375153428509814493809861608324852596020619168470960162966488477537137777009886708069677154546445144335402254717<160> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.6 [configured with GMP 6.3.0, --enable-asm-redc] [ECM] Input number is 1798518040936248652372538031831515098487408467730986031173355938866831758360506069304441662706774145971850094744689850513085708185727403103332312533745385618389326851419052524356430584680013042325367 (199 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:2850912650 Step 1 took 34566ms Step 2 took 12922ms Run 2 out of 0: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:732568932 Step 1 took 32574ms Step 2 took 12900ms Run 3 out of 0: ... Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:3310465710 Step 1 took 33047ms Step 2 took 12916ms Run 11 out of 0: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:4087020127 Step 1 took 32560ms Step 2 took 12945ms ** Factor found in step 2: 628185651264566898532145623863148744451 Found prime factor of 39 digits: 628185651264566898532145623863148744451 Prime cofactor 2863035851448928012474379716186818953820816992690375153428509814493809861608324852596020619168470960162966488477537137777009886708069677154546445144335402254717 has 160 digits |
execution environment 実行環境 | 2x Xeon E5-2698v4, 128GB DDR4, Ubuntu Server 24.04 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 280 | Cyp | December 7, 2014 14:07:35 UTC 2014 年 12 月 7 日 (日) 23 時 7 分 35 秒 (日本時間) | |
45 | 11e6 | 1191 / 4413 | 591 | Cyp | July 30, 2015 07:06:31 UTC 2015 年 7 月 30 日 (木) 16 時 6 分 31 秒 (日本時間) |
600 | Dmitry Domanov | December 16, 2015 06:22:06 UTC 2015 年 12 月 16 日 (水) 15 時 22 分 6 秒 (日本時間) |
name 名前 | Cyp |
---|---|
date 日付 | July 29, 2015 21:35:10 UTC 2015 年 7 月 30 日 (木) 6 時 35 分 10 秒 (日本時間) |
composite number 合成数 | 951061761316520085715694016557658623998452190929069783013494772092534554977806524504984864616197579950936455321990987821393752190758468980173200376027257304145636174089814233677817545080722668962495651442271354243347046023847<225> |
prime factors 素因数 | 43964430562156600689628330642766510908709<41> |
composite cofactor 合成数の残り | 21632527685577905995072502745050100467050795734857081252040898799632484255631672884852497945019823344620681219974287146382410557901211706687158402943025381969490397738659455932679589083<185> |
factorization results 素因数分解の結果 | Run 190 out of 256: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=3433354645 Step 1 took 80629ms Step 2 took 23806ms ********** Factor found in step 2: 43964430562156600689628330642766510908709 Found probable prime factor of 41 digits: 43964430562156600689628330642766510908709 Composite cofactor 21632527685577905995072502745050100467050795734857081252040898799632484255631672884852497945019823344620681219974287146382410557901211706687158402943025381969490397738659455932679589083 has 185 digits |
software ソフトウェア | GMP-ECM 6.4.4 |
execution environment 実行環境 | Gentoo Linux, Intel(R) Core(TM) i7-3770K CPU |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 16, 2015 10:08:02 UTC 2015 年 12 月 16 日 (水) 19 時 8 分 2 秒 (日本時間) |
composite number 合成数 | 21632527685577905995072502745050100467050795734857081252040898799632484255631672884852497945019823344620681219974287146382410557901211706687158402943025381969490397738659455932679589083<185> |
prime factors 素因数 | 1251082177541979147604591307171504289196474753<46> 17291052557458434697847183663835939865764136507745522137208837443355014507395733044992168018729268579835494802806095121206716927116315755611<140> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=4069390481 Step 1 took 73713ms ********** Factor found in step 1: 1251082177541979147604591307171504289196474753 Found probable prime factor of 46 digits: 1251082177541979147604591307171504289196474753 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 | Serge Batalov | December 10, 2014 19:48:47 UTC 2014 年 12 月 11 日 (木) 4 時 48 分 47 秒 (日本時間) | |
45 | 11e6 | 1185 / 4409 | 329 | Cyp | January 7, 2015 14:44:51 UTC 2015 年 1 月 7 日 (水) 23 時 44 分 51 秒 (日本時間) |
256 | Cyp | July 29, 2015 21:35:10 UTC 2015 年 7 月 30 日 (木) 6 時 35 分 10 秒 (日本時間) | |||
600 | Dmitry Domanov | December 16, 2015 06:22:24 UTC 2015 年 12 月 16 日 (水) 15 時 22 分 24 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 | Serge Batalov | December 10, 2014 19:48:47 UTC 2014 年 12 月 11 日 (木) 4 時 48 分 47 秒 (日本時間) | |
45 | 11e6 | 4586 | 585 | Cyp | June 11, 2015 06:03:28 UTC 2015 年 6 月 11 日 (木) 15 時 3 分 28 秒 (日本時間) |
600 | Dmitry Domanov | December 16, 2015 06:24:37 UTC 2015 年 12 月 16 日 (水) 15 時 24 分 37 秒 (日本時間) | |||
3401 | Thomas Kozlowski | December 13, 2024 11:21:46 UTC 2024 年 12 月 13 日 (金) 20 時 21 分 46 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | December 11, 2014 01:34:58 UTC 2014 年 12 月 11 日 (木) 10 時 34 分 58 秒 (日本時間) |
composite number 合成数 | 602335056876116786506124277417251505486911999685821296383624053294535714799343341395556880789372496517203453558469396590825839203450109562873712656985212034443474154012950036447537064050919253986094068741<204> |
prime factors 素因数 | 1389912577012451929468662944530120847<37> |
composite cofactor 合成数の残り | 433361829253179421783052858358438574469534806994686526411002902694465894045420112160161523217020740115089550985073021867693958222710264941223806617404297741780999234603<168> |
factorization results 素因数分解の結果 | Input number is 602335056876116786506124277417251505486911999685821296383624053294535714799343341395556880789372496517203453558469396590825839203450109562873712656985212034443474154012950036447537064050919253986094068741 (204 digits) Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2829408530 Step 1 took 15970ms Step 2 took 10500ms ********** Factor found in step 2: 1389912577012451929468662944530120847 Found probable prime factor of 37 digits: 1389912577012451929468662944530120847 Composite cofactor 433361829253179421783052858358438574469534806994686526411002902694465894045420112160161523217020740115089550985073021867693958222710264941223806617404297741780999234603 has 168 digits |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 16, 2015 10:10:24 UTC 2015 年 12 月 16 日 (水) 19 時 10 分 24 秒 (日本時間) |
composite number 合成数 | 433361829253179421783052858358438574469534806994686526411002902694465894045420112160161523217020740115089550985073021867693958222710264941223806617404297741780999234603<168> |
prime factors 素因数 | 7562627084141918039110173123766942369<37> 57303080587154213956366978299813378386882343161515932518391185375366135016699215659250831325810604037883751485656695650349690656587<131> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=4008292274 Step 1 took 87292ms Step 2 took 30707ms ********** Factor found in step 2: 7562627084141918039110173123766942369 Found probable prime factor of 37 digits: 7562627084141918039110173123766942369 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 | Serge Batalov | December 10, 2014 19:48:48 UTC 2014 年 12 月 11 日 (木) 4 時 48 分 48 秒 (日本時間) | |
45 | 11e6 | 1385 / 4409 | 585 | Cyp | June 22, 2015 18:55:20 UTC 2015 年 6 月 23 日 (火) 3 時 55 分 20 秒 (日本時間) |
800 | Dmitry Domanov | December 16, 2015 06:24:55 UTC 2015 年 12 月 16 日 (水) 15 時 24 分 55 秒 (日本時間) |
name 名前 | Cyp |
---|---|
date 日付 | July 29, 2015 21:21:05 UTC 2015 年 7 月 30 日 (木) 6 時 21 分 5 秒 (日本時間) |
composite number 合成数 | 20157019986291882264236651113158054582650539505924823186325554555339908130559619282574419663618951745296250749129240142772739178904294600393211111366192489048547600996859847316343115875190398172024420953222919717<212> |
prime factors 素因数 | 7090217654259744428282084940563572243<37> 2842933880059621372649725333698450199463991974073580509319590809183922899994354990390223384111022611987406109482106597536898930984734472180737247771641342860728546660579039719<175> |
factorization results 素因数分解の結果 | Run 405 out of 591: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=2979873795 Step 1 took 69358ms ********** Factor found in step 1: 7090217654259744428282084940563572243 Found probable prime factor of 37 digits: 7090217654259744428282084940563572243 Probable prime cofactor 2842933880059621372649725333698450199463991974073580509319590809183922899994354990390223384111022611987406109482106597536898930984734472180737247771641342860728546660579039719 has 175 digits |
software ソフトウェア | GMP-ECM 6.4.4 |
execution environment 実行環境 | Gentoo Linux, Intel(R) Core(TM) i7-3770K CPU |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 280 / 921 | Cyp | December 10, 2014 07:18:34 UTC 2014 年 12 月 10 日 (水) 16 時 18 分 34 秒 (日本時間) | |
45 | 11e6 | 405 / 4413 | Cyp | July 29, 2015 21:21:05 UTC 2015 年 7 月 30 日 (木) 6 時 21 分 5 秒 (日本時間) |
name 名前 | Erik Branger |
---|---|
date 日付 | January 1, 2025 23:48:34 UTC 2025 年 1 月 2 日 (木) 8 時 48 分 34 秒 (日本時間) |
composite number 合成数 | 1664216544294124410602398877188068317102865300670616224653088061621982838376223383411522350679681953650882902641396241470200518536504607988280501553443670322559861319886145129001373960977683689335341671935892536460032477<220> |
prime factors 素因数 | 2666593148066662798186874886871532129699267974173244481<55> 624098410175814441204773955569409276096786139456292188186927277947026083279221518792048555366054163604372727810498205608689279322528734819355254256775665701426972317<165> |
factorization results 素因数分解の結果 | Number: 16111_240 N = 1664216544294124410602398877188068317102865300670616224653088061621982838376223383411522350679681953650882902641396241470200518536504607988280501553443670322559861319886145129001373960977683689335341671935892536460032477 (220 digits) SNFS difficulty: 243 digits. Divisors found: r1=2666593148066662798186874886871532129699267974173244481 (pp55) r2=624098410175814441204773955569409276096786139456292188186927277947026083279221518792048555366054163604372727810498205608689279322528734819355254256775665701426972317 (pp165) Version: Msieve v. 1.52 (SVN unknown) Total time: 80.88 hours. Factorization parameters were as follows: n: 1664216544294124410602398877188068317102865300670616224653088061621982838376223383411522350679681953650882902641396241470200518536504607988280501553443670322559861319886145129001373960977683689335341671935892536460032477 m: 1000000000000000000000000000000000000000000000000000000000000 deg: 4 c4: 145 c0: -1 skew: 1.00 type: snfs lss: 1 rlim: 500000000 alim: 100000000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.8 alambda: 2.8 side: 1 Number of cores used: 8 Number of threads per core: 1 Factor base limits: 500000000/100000000 Large primes per side: 3 Large prime bits: 29/29 Total raw relations: 70611215 Relations: 14803356 relations Total pre-computation time approximately 1000 CPU-days. Pre-computation saved approximately 18 G rational relations. Total batch smoothness checking time: 21.21 hours. Total relation processing time: 0.65 hours. Pruned matrix : 11959419 x 11959644 Matrix solve time: 57.62 hours. time per square root: 1.40 hours. Prototype def-par.txt line would be: snfs,243,4,0,0,0,0,0,0,0,0,500000000,100000000,29,29,58,58,2.8,2.8,100000 total time: 80.88 hours. Intel64 Family 6 Model 165 Stepping 5, GenuineIntel Windows-10-10.0.26100-SP0 processors: 16, speed: 3.79GHz |
software ソフトウェア | GGNFS, NFS_factory, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 280 | Cyp | December 10, 2014 05:18:50 UTC 2014 年 12 月 10 日 (水) 14 時 18 分 50 秒 (日本時間) | |
45 | 11e6 | 4591 | 591 | Cyp | February 1, 2015 02:21:57 UTC 2015 年 2 月 1 日 (日) 11 時 21 分 57 秒 (日本時間) |
600 | Dmitry Domanov | December 16, 2015 06:25:50 UTC 2015 年 12 月 16 日 (水) 15 時 25 分 50 秒 (日本時間) | |||
3400 | Thomas Kozlowski | December 13, 2024 12:38:10 UTC 2024 年 12 月 13 日 (金) 21 時 38 分 10 秒 (日本時間) |
name 名前 | Thomas Kozlowski |
---|---|
date 日付 | December 13, 2024 18:22:06 UTC 2024 年 12 月 14 日 (土) 3 時 22 分 6 秒 (日本時間) |
composite number 合成数 | 65075901835419769067719661485236057489857113278509657009147324586553043902441731558516320469081703315992819973250796516561464490270650194803267381791326276657869458069739196389081017348750297011<194> |
prime factors 素因数 | 1048109053173141595391549746587361198101792728039<49> |
composite cofactor 合成数の残り | 62088865312634222491959640646606035857065488123844343185329010678738454795839248000061620322208727232084422370197046584731405373044689824176292949<146> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.6 [configured with GMP 6.3.0, --enable-asm-redc] [ECM] Input number is 65075901835419769067719661485236057489857113278509657009147324586553043902441731558516320469081703315992819973250796516561464490270650194803267381791326276657869458069739196389081017348750297011 (194 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:1972238530 Step 1 took 33354ms Step 2 took 13116ms Run 2 out of 0: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:2343421351 Step 1 took 33628ms Step 2 took 13396ms Run 3 out of 0: ... Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:3956007603 Step 1 took 33416ms Step 2 took 13079ms Run 76 out of 0: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:2313352932 Step 1 took 32905ms Step 2 took 13195ms ** Factor found in step 2: 1048109053173141595391549746587361198101792728039 Found prime factor of 49 digits: 1048109053173141595391549746587361198101792728039 Composite cofactor 62088865312634222491959640646606035857065488123844343185329010678738454795839248000061620322208727232084422370197046584731405373044689824176292949 has 146 digits |
execution environment 実行環境 | 2x Xeon E5-2698v4, 128GB DDR4, Ubuntu Server 24.04 |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 15, 2024 18:14:28 UTC 2024 年 12 月 16 日 (月) 3 時 14 分 28 秒 (日本時間) |
composite number 合成数 | 62088865312634222491959640646606035857065488123844343185329010678738454795839248000061620322208727232084422370197046584731405373044689824176292949<146> |
prime factors 素因数 | 33049872934907634644730756809113151179855526395527247056331899887<65> 1878641574051417571308446849578287926908437096065013960182376732444093497185708027<82> |
factorization results 素因数分解の結果 | CADO-NFS STA:Sun Dec 15 00:56:07 AEDT 2024 (62088865312634222491959640646606035857065488123844343185329010678738454795839248000061620322208727232084422370197046584731405373044689824176292949 - C146) ./cado-nfs.py -t 16 --no-colors 62088865312634222491959640646606035857065488123844343185329010678738454795839248000061620322208727232084422370197046584731405373044689824176292949 2>&1 | tee -a log-27 Info:root: Using default parameter file ./parameters/factor/params.c145 Info:root: No database exists yet Info:root: Created temporary directory /tmp/cado.jqqf_180 Info:Database: Opened connection to database /tmp/cado.jqqf_180/c145.db Info:root: Set tasks.threads=16 based on --server-threads 16 Info:root: tasks.threads = 16 [via tasks.threads] Info:root: tasks.polyselect.threads = 2 [via tasks.polyselect.threads] Info:root: tasks.sieve.las.threads = 2 [via tasks.sieve.las.threads] Info:root: tasks.linalg.bwc.threads = 16 [via tasks.threads] Info:root: tasks.sqrt.threads = 8 [via tasks.sqrt.threads] Info:root: slaves.scriptpath is /home/bob/Math/cado-nfs/build/TrigKey-2 Info:root: Command line parameters: ./cado-nfs.py -t 16 --no-colors 62088865312634222491959640646606035857065488123844343185329010678738454795839248000061620322208727232084422370197046584731405373044689824176292949 Info:root: If this computation gets interrupted, it can be resumed with ./cado-nfs.py /tmp/cado.jqqf_180/c145.parameters_snapshot.0 Info:Server Launcher: Adding TrigKey-2 to whitelist to allow clients on localhost to connect Info:HTTP server: Using non-threaded HTTPS server Info:HTTP server: Using whitelist: localhost,TrigKey-2 Info:Lattice Sieving: param rels_wanted is 85000000 Info:Complete Factorization / Discrete logarithm: Factoring 62088865312634222491959640646606035857065488123844343185329010678738454795839248000061620322208727232084422370197046584731405373044689824176292949 Info:HTTP server: serving at https://TrigKey-2:46719 (0.0.0.0) Info:HTTP server: For debugging purposes, the URL above can be accessed if the server.only_registered=False parameter is added Info:HTTP server: You can start additional cado-nfs-client.py scripts with parameters: --server=https://TrigKey-2:46719 --certsha1=3be3332f8ab4517e7c91861cbe5626a1d831a322 Info:HTTP server: If you want to start additional clients, remember to add their hosts to server.whitelist Info:Client Launcher: Starting client id localhost on host localhost Info:Client Launcher: Starting client id localhost+2 on host localhost Info:Client Launcher: Starting client id localhost+3 on host localhost Info:Client Launcher: Starting client id localhost+4 on host localhost Info:Client Launcher: Starting client id localhost+5 on host localhost Info:Client Launcher: Starting client id localhost+6 on host localhost Info:Client Launcher: Starting client id localhost+7 on host localhost Info:Client Launcher: Starting client id localhost+8 on host localhost Info:Client Launcher: Running clients: localhost (Host localhost, PID 478), localhost+2 (Host localhost, PID 480), localhost+3 (Host localhost, PID 482), localhost+4 (Host localhost, PID 484), localhost+5 (Host localhost, PID 486), localhost+6 (Host localhost, PID 488), localhost+7 (Host localhost, PID 490), localhost+8 (Host localhost, PID 492) Info:Polynomial Selection (size optimized): Starting === Info:Polynomial Selection (root optimized): Finished, best polynomial has Murphy_E = 4.417e-07 Info:Polynomial Selection (root optimized): Best polynomial is: n: 62088865312634222491959640646606035857065488123844343185329010678738454795839248000061620322208727232084422370197046584731405373044689824176292949 skew: 486443.458 c0: 5318003238517692871036908722208330 c1: 98361127447438848077445357419 c2: -229115136555410054788306 c3: -385066573548149773 c4: 698917334334 c5: 511560 Y0: -14309109341495371969350165036 Y1: 2505977014655470834841 # MurphyE (Bf=1.074e+09,Bg=1.074e+09,area=2.684e+14) = 4.417e-07 # f(x) = 511560*x^5+698917334334*x^4-385066573548149773*x^3-229115136555410054788306*x^2+98361127447438848077445357419*x+5318003238517692871036908722208330 # g(x) = 2505977014655470834841*x-14309109341495371969350165036 === Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 63004.7, WCT time 4481.91, iteration CPU time 0.05, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (80000 iterations) Info:Linear Algebra: Lingen CPU time 147.96, WCT time 54.45 Info:Linear Algebra: Mksol: CPU time 32707.95, WCT time 2309.61, iteration CPU time 0.05, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (40000 iterations) Info:Quadratic Characters: Starting Info:Complete Factorization / Discrete logarithm: Quadratic Characters Info:Quadratic Characters: Total cpu/real time for characters: 55.8/13.2465 Info:Square Root: Starting Info:Square Root: Creating file of (a,b) values Info:Square Root: finished Info:Square Root: Factors: 1878641574051417571308446849578287926908437096065013960182376732444093497185708027 33049872934907634644730756809113151179855526395527247056331899887 Info:Complete Factorization / Discrete logarithm: Square Root Info:Square Root: Total cpu/real time for sqrt: 3117.96/246.366 Info:HTTP server: Got notification to stop serving Workunits Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 85042186 Info:Lattice Sieving: Average J: 7864.14 for 502644 special-q, max bucket fill -bkmult 1.0,1s:1.078260 Info:Lattice Sieving: Total time: 435059s Info:Generate Free Relations: Total cpu/real time for freerel: 381.89/30.6794 Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 1526.53/794.783 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 731.1s Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 350.53/228.767 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 228.7s Info:Polynomial Selection (root optimized): Aggregate statistics: Info:Polynomial Selection (root optimized): Total time: 2538.01 Info:Polynomial Selection (root optimized): Rootsieve time: 2572.41 Info:Quadratic Characters: Total cpu/real time for characters: 55.8/13.2465 Info:Filtering - Singleton removal: Total cpu/real time for purge: 355.83/137.507 Info:Polynomial Selection (size optimized): Aggregate statistics: Info:Polynomial Selection (size optimized): potential collisions: 133692 Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 126759/43.820/54.593/67.130/2.497 Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 107474/42.880/47.521/59.960/1.428 Info:Polynomial Selection (size optimized): Total time: 39310.4 Info:Linear Algebra: Total cpu/real time for bwc: 101558/7267.21 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 63004.7, WCT time 4481.91, iteration CPU time 0.05, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (80000 iterations) Info:Linear Algebra: Lingen CPU time 147.96, WCT time 54.45 Info:Linear Algebra: Mksol: CPU time 32707.95, WCT time 2309.61, iteration CPU time 0.05, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (40000 iterations) Info:Filtering - Merging: Total cpu/real time for merge: 346.97/32.1993 Info:Filtering - Merging: Total cpu/real time for replay: 55.43/49.0613 Info:Square Root: Total cpu/real time for sqrt: 3117.96/246.366 Info:Generate Factor Base: Total cpu/real time for makefb: 3.32/0.854962 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire Complete Factorization 957522/66928.3 [18:35:28] Info:root: Cleaning up computation data in /tmp/cado.jqqf_180 1878641574051417571308446849578287926908437096065013960182376732444093497185708027 33049872934907634644730756809113151179855526395527247056331899887 END:Sun Dec 15 19:31:37 AEDT 2024 (62088865312634222491959640646606035857065488123844343185329010678738454795839248000061620322208727232084422370197046584731405373044689824176292949 - C146) |
software ソフトウェア | CADO-NFS |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 | Serge Batalov | December 10, 2014 19:48:48 UTC 2014 年 12 月 11 日 (木) 4 時 48 分 48 秒 (日本時間) | |
45 | 11e6 | 1185 / 4409 | 585 | Cyp | July 30, 2015 01:31:45 UTC 2015 年 7 月 30 日 (木) 10 時 31 分 45 秒 (日本時間) |
600 | Dmitry Domanov | December 16, 2015 06:57:37 UTC 2015 年 12 月 16 日 (水) 15 時 57 分 37 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 280 | Cyp | December 7, 2014 17:14:56 UTC 2014 年 12 月 8 日 (月) 2 時 14 分 56 秒 (日本時間) | |
45 | 11e6 | 4592 | 335 | Cyp | December 29, 2014 03:36:10 UTC 2014 年 12 月 29 日 (月) 12 時 36 分 10 秒 (日本時間) |
256 | Cyp | January 26, 2015 07:26:36 UTC 2015 年 1 月 26 日 (月) 16 時 26 分 36 秒 (日本時間) | |||
600 | Dmitry Domanov | December 16, 2015 06:58:16 UTC 2015 年 12 月 16 日 (水) 15 時 58 分 16 秒 (日本時間) | |||
3401 | Thomas Kozlowski | December 13, 2024 14:36:46 UTC 2024 年 12 月 13 日 (金) 23 時 36 分 46 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 280 | Cyp | December 10, 2014 11:15:34 UTC 2014 年 12 月 10 日 (水) 20 時 15 分 34 秒 (日本時間) | |
45 | 11e6 | 4593 | 591 | Cyp | February 2, 2015 08:46:29 UTC 2015 年 2 月 2 日 (月) 17 時 46 分 29 秒 (日本時間) |
600 | Dmitry Domanov | December 16, 2015 07:08:06 UTC 2015 年 12 月 16 日 (水) 16 時 8 分 6 秒 (日本時間) | |||
3402 | Thomas Kozlowski | December 13, 2024 15:53:52 UTC 2024 年 12 月 14 日 (土) 0 時 53 分 52 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 | Serge Batalov | December 10, 2014 19:48:49 UTC 2014 年 12 月 11 日 (木) 4 時 48 分 49 秒 (日本時間) | |
45 | 11e6 | 4590 | 585 | Cyp | June 29, 2015 06:03:19 UTC 2015 年 6 月 29 日 (月) 15 時 3 分 19 秒 (日本時間) |
600 | Dmitry Domanov | December 16, 2015 07:08:22 UTC 2015 年 12 月 16 日 (水) 16 時 8 分 22 秒 (日本時間) | |||
3405 | Thomas Kozlowski | December 13, 2024 17:01:18 UTC 2024 年 12 月 14 日 (土) 2 時 1 分 18 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 280 | Cyp | December 9, 2014 06:29:20 UTC 2014 年 12 月 9 日 (火) 15 時 29 分 20 秒 (日本時間) | |
45 | 11e6 | 4591 | 591 | Cyp | June 11, 2015 09:45:35 UTC 2015 年 6 月 11 日 (木) 18 時 45 分 35 秒 (日本時間) |
600 | Dmitry Domanov | December 16, 2015 07:55:15 UTC 2015 年 12 月 16 日 (水) 16 時 55 分 15 秒 (日本時間) | |||
3400 | Thomas Kozlowski | December 13, 2024 18:18:15 UTC 2024 年 12 月 14 日 (土) 3 時 18 分 15 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 | Serge Batalov | December 10, 2014 19:48:49 UTC 2014 年 12 月 11 日 (木) 4 時 48 分 49 秒 (日本時間) | |
45 | 11e6 | 4585 | 585 | Cyp | June 25, 2015 13:23:07 UTC 2015 年 6 月 25 日 (木) 22 時 23 分 7 秒 (日本時間) |
4000 | Thomas Kozlowski | December 13, 2024 20:00:09 UTC 2024 年 12 月 14 日 (土) 5 時 0 分 9 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 | Serge Batalov | December 10, 2014 19:48:50 UTC 2014 年 12 月 11 日 (木) 4 時 48 分 50 秒 (日本時間) | |
45 | 11e6 | 4587 | 585 | Cyp | July 30, 2015 00:25:57 UTC 2015 年 7 月 30 日 (木) 9 時 25 分 57 秒 (日本時間) |
4002 | Thomas Kozlowski | December 13, 2024 21:19:28 UTC 2024 年 12 月 14 日 (土) 6 時 19 分 28 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1280 | 280 | Cyp | December 7, 2014 10:39:04 UTC 2014 年 12 月 7 日 (日) 19 時 39 分 4 秒 (日本時間) |
1000 | Dmitry Domanov | December 17, 2014 13:29:38 UTC 2014 年 12 月 17 日 (水) 22 時 29 分 38 秒 (日本時間) | |||
45 | 11e6 | 4202 | 600 | Dmitry Domanov | April 27, 2015 14:06:26 UTC 2015 年 4 月 27 日 (月) 23 時 6 分 26 秒 (日本時間) |
3602 | Thomas Kozlowski | December 13, 2024 22:40:57 UTC 2024 年 12 月 14 日 (土) 7 時 40 分 57 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | Makoto Kamada | December 12, 2015 04:00:00 UTC 2015 年 12 月 12 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 600 | Dmitry Domanov | December 12, 2015 13:15:26 UTC 2015 年 12 月 12 日 (土) 22 時 15 分 26 秒 (日本時間) | |
45 | 11e6 | 4402 | 600 | Dmitry Domanov | December 13, 2015 22:19:28 UTC 2015 年 12 月 14 日 (月) 7 時 19 分 28 秒 (日本時間) |
3802 | Thomas Kozlowski | December 13, 2024 23:56:31 UTC 2024 年 12 月 14 日 (土) 8 時 56 分 31 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | Makoto Kamada | December 12, 2015 04:00:00 UTC 2015 年 12 月 12 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 600 | Dmitry Domanov | December 12, 2015 19:19:55 UTC 2015 年 12 月 13 日 (日) 4 時 19 分 55 秒 (日本時間) | |
45 | 11e6 | 4401 | 600 | Dmitry Domanov | December 14, 2015 19:44:59 UTC 2015 年 12 月 15 日 (火) 4 時 44 分 59 秒 (日本時間) |
3801 | Thomas Kozlowski | December 14, 2024 01:22:18 UTC 2024 年 12 月 14 日 (土) 10 時 22 分 18 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | Makoto Kamada | December 12, 2015 04:00:00 UTC 2015 年 12 月 12 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 600 | Dmitry Domanov | December 12, 2015 13:45:30 UTC 2015 年 12 月 12 日 (土) 22 時 45 分 30 秒 (日本時間) | |
45 | 11e6 | 4503 | 600 | Dmitry Domanov | December 14, 2015 22:49:57 UTC 2015 年 12 月 15 日 (火) 7 時 49 分 57 秒 (日本時間) |
100 | Dmitry Domanov | December 15, 2015 11:20:52 UTC 2015 年 12 月 15 日 (火) 20 時 20 分 52 秒 (日本時間) | |||
3803 | Thomas Kozlowski | December 14, 2024 03:10:40 UTC 2024 年 12 月 14 日 (土) 12 時 10 分 40 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | Makoto Kamada | December 12, 2015 04:00:00 UTC 2015 年 12 月 12 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 600 | Dmitry Domanov | December 12, 2015 19:20:32 UTC 2015 年 12 月 13 日 (日) 4 時 20 分 32 秒 (日本時間) | |
45 | 11e6 | 4402 | 600 | Dmitry Domanov | December 14, 2015 19:45:15 UTC 2015 年 12 月 15 日 (火) 4 時 45 分 15 秒 (日本時間) |
3802 | Thomas Kozlowski | December 14, 2024 04:47:48 UTC 2024 年 12 月 14 日 (土) 13 時 47 分 48 秒 (日本時間) |
name 名前 | Thomas Kozlowski |
---|---|
date 日付 | December 14, 2024 05:14:27 UTC 2024 年 12 月 14 日 (土) 14 時 14 分 27 秒 (日本時間) |
composite number 合成数 | 250320093721796965184543329475607729445368343909964059249387327643965192036262585051708755466585469115245272240263187941311845217727480118322922876830377098416897045161348627427848207<183> |
prime factors 素因数 | 3672686700825847286767170520862043248440367<43> 68157214081318048409050962737144395768511585543075559130339987305528234876889750315838653886039359447224217874488418391744351266757985151521<140> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.6 [configured with GMP 6.3.0, --enable-asm-redc] [ECM] Input number is 250320093721796965184543329475607729445368343909964059249387327643965192036262585051708755466585469115245272240263187941311845217727480118322922876830377098416897045161348627427848207 (183 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:2881768825 Step 1 took 32142ms Step 2 took 12016ms Run 2 out of 0: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:732636964 Step 1 took 27978ms Step 2 took 11994ms Run 3 out of 0: ... Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:585417117 Step 1 took 28101ms Step 2 took 12013ms Run 29 out of 0: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:3797035003 Step 1 took 28207ms Step 2 took 12933ms ** Factor found in step 2: 3672686700825847286767170520862043248440367 Found prime factor of 43 digits: 3672686700825847286767170520862043248440367 Prime cofactor 68157214081318048409050962737144395768511585543075559130339987305528234876889750315838653886039359447224217874488418391744351266757985151521 has 140 digits |
execution environment 実行環境 | 2x Xeon E5-2698v4, 128GB DDR4, Ubuntu Server 24.04 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | Makoto Kamada | December 12, 2015 04:00:00 UTC 2015 年 12 月 12 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 600 | Dmitry Domanov | December 12, 2015 13:15:48 UTC 2015 年 12 月 12 日 (土) 22 時 15 分 48 秒 (日本時間) | |
45 | 11e6 | 600 / 4306 | Dmitry Domanov | December 13, 2015 22:19:41 UTC 2015 年 12 月 14 日 (月) 7 時 19 分 41 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 12, 2015 22:20:42 UTC 2015 年 12 月 13 日 (日) 7 時 20 分 42 秒 (日本時間) |
composite number 合成数 | 98253400126672349101242268558525721960902058368076074422952698983632948606898920086715062903520785235752935117045887522624539403306423421062777891955004821531507595428276068202496056481204226197215986519362458758135296829281464753557772558828206911361<251> |
prime factors 素因数 | 64644174296748425459458037260781457419<38> |
composite cofactor 合成数の残り | 1519911131908671520329757258260332242853146340490954668784402111679186426929085699990516043861764597338034446875508737591253271898120044076251298827694709135533770145027681447013069101554936855974204526741195651619<214> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2656187157 Step 1 took 30004ms Step 2 took 9224ms ********** Factor found in step 2: 64644174296748425459458037260781457419 Found probable prime factor of 38 digits: 64644174296748425459458037260781457419 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | Makoto Kamada | December 12, 2015 04:00:00 UTC 2015 年 12 月 12 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 600 | Dmitry Domanov | December 12, 2015 13:45:51 UTC 2015 年 12 月 12 日 (土) 22 時 45 分 51 秒 (日本時間) | |
45 | 11e6 | 4400 | 600 | Dmitry Domanov | December 13, 2015 22:19:56 UTC 2015 年 12 月 14 日 (月) 7 時 19 分 56 秒 (日本時間) |
3800 | Thomas Kozlowski | December 14, 2024 06:33:07 UTC 2024 年 12 月 14 日 (土) 15 時 33 分 7 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | Makoto Kamada | December 12, 2015 04:00:00 UTC 2015 年 12 月 12 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 600 | Dmitry Domanov | December 12, 2015 13:16:01 UTC 2015 年 12 月 12 日 (土) 22 時 16 分 1 秒 (日本時間) | |
45 | 11e6 | 4400 | 600 | Dmitry Domanov | December 13, 2015 22:20:08 UTC 2015 年 12 月 14 日 (月) 7 時 20 分 8 秒 (日本時間) |
3800 | Thomas Kozlowski | December 14, 2024 07:48:44 UTC 2024 年 12 月 14 日 (土) 16 時 48 分 44 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | Makoto Kamada | December 12, 2015 04:00:00 UTC 2015 年 12 月 12 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 600 | Dmitry Domanov | December 12, 2015 13:16:17 UTC 2015 年 12 月 12 日 (土) 22 時 16 分 17 秒 (日本時間) | |
45 | 11e6 | 4401 | 600 | Dmitry Domanov | December 13, 2015 22:25:51 UTC 2015 年 12 月 14 日 (月) 7 時 25 分 51 秒 (日本時間) |
3801 | Thomas Kozlowski | December 14, 2024 08:55:12 UTC 2024 年 12 月 14 日 (土) 17 時 55 分 12 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | Makoto Kamada | December 12, 2015 04:00:00 UTC 2015 年 12 月 12 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 600 | Dmitry Domanov | December 12, 2015 19:20:50 UTC 2015 年 12 月 13 日 (日) 4 時 20 分 50 秒 (日本時間) | |
45 | 11e6 | 4400 | 600 | Dmitry Domanov | December 14, 2015 19:45:37 UTC 2015 年 12 月 15 日 (火) 4 時 45 分 37 秒 (日本時間) |
3800 | Thomas Kozlowski | December 14, 2024 10:21:33 UTC 2024 年 12 月 14 日 (土) 19 時 21 分 33 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | Makoto Kamada | December 12, 2015 04:00:00 UTC 2015 年 12 月 12 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 600 | Dmitry Domanov | December 12, 2015 13:46:12 UTC 2015 年 12 月 12 日 (土) 22 時 46 分 12 秒 (日本時間) | |
45 | 11e6 | 4400 | 600 | Dmitry Domanov | December 14, 2015 19:36:21 UTC 2015 年 12 月 15 日 (火) 4 時 36 分 21 秒 (日本時間) |
3800 | Thomas Kozlowski | December 14, 2024 12:11:04 UTC 2024 年 12 月 14 日 (土) 21 時 11 分 4 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 12, 2015 19:18:25 UTC 2015 年 12 月 13 日 (日) 4 時 18 分 25 秒 (日本時間) |
composite number 合成数 | 3288069093896595442554825150689938939423109411292771259464253360009778037195091116929859590379155183935718929504478917014351627923008388204403608893932106588768908381469531051050560751838540841106215289611991973483196719731566574441997667511813805490984681453<259> |
prime factors 素因数 | 350665676255081101424953652482642777<36> |
composite cofactor 合成数の残り | 9376649374445160673341039806509738244792453892017388788364609455715702039765627203198003815071196733661988436164221589585014315076524596066649768057018050411514072482055906924850674947475040533208717351976013096116645175989<223> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3470222441 Step 1 took 35788ms Step 2 took 10386ms ********** Factor found in step 2: 350665676255081101424953652482642777 Found probable prime factor of 36 digits: 350665676255081101424953652482642777 |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 15, 2015 06:03:43 UTC 2015 年 12 月 15 日 (火) 15 時 3 分 43 秒 (日本時間) |
composite number 合成数 | 9376649374445160673341039806509738244792453892017388788364609455715702039765627203198003815071196733661988436164221589585014315076524596066649768057018050411514072482055906924850674947475040533208717351976013096116645175989<223> |
prime factors 素因数 | 83832137455331231434814274743393104231<38> 111850295830061301391982353701114989318134852020630533017186796398537734710086331995811288003761964982594072329678174747025363584956932307397450900789065108437378138192374968937130847619<186> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=3918185833 Step 1 took 143113ms Step 2 took 42756ms ********** Factor found in step 2: 83832137455331231434814274743393104231 Found probable prime factor of 38 digits: 83832137455331231434814274743393104231 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | Makoto Kamada | December 12, 2015 04:00:00 UTC 2015 年 12 月 12 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 600 | Dmitry Domanov | December 12, 2015 14:06:25 UTC 2015 年 12 月 12 日 (土) 23 時 6 分 25 秒 (日本時間) | |
45 | 11e6 | 600 / 4306 | Dmitry Domanov | December 14, 2015 19:45:56 UTC 2015 年 12 月 15 日 (火) 4 時 45 分 56 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | Makoto Kamada | December 12, 2015 04:00:00 UTC 2015 年 12 月 12 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 600 | Dmitry Domanov | December 12, 2015 14:06:37 UTC 2015 年 12 月 12 日 (土) 23 時 6 分 37 秒 (日本時間) | |
45 | 11e6 | 4402 | 600 | Dmitry Domanov | December 14, 2015 19:36:07 UTC 2015 年 12 月 15 日 (火) 4 時 36 分 7 秒 (日本時間) |
1000 | Dmitry Domanov | December 15, 2015 11:50:39 UTC 2015 年 12 月 15 日 (火) 20 時 50 分 39 秒 (日本時間) | |||
2802 | Thomas Kozlowski | December 14, 2024 13:31:59 UTC 2024 年 12 月 14 日 (土) 22 時 31 分 59 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | Makoto Kamada | December 12, 2015 04:00:00 UTC 2015 年 12 月 12 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 600 | Dmitry Domanov | December 12, 2015 19:21:06 UTC 2015 年 12 月 13 日 (日) 4 時 21 分 6 秒 (日本時間) | |
45 | 11e6 | 4400 | 600 | Dmitry Domanov | December 14, 2015 19:46:14 UTC 2015 年 12 月 15 日 (火) 4 時 46 分 14 秒 (日本時間) |
3800 | Thomas Kozlowski | December 14, 2024 15:09:04 UTC 2024 年 12 月 15 日 (日) 0 時 9 分 4 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 15, 2015 06:05:05 UTC 2015 年 12 月 15 日 (火) 15 時 5 分 5 秒 (日本時間) |
composite number 合成数 | 6938914063656315035379220602005044379405404739521956843847645153990340093387395879074878565614339039259397328878321417290567858428085688441347712520552346622620438518111296077376857579883669962251085220396896738466282933645504711610240297<238> |
prime factors 素因数 | 5381901124844703112611276219293020213<37> 324224650970134483551926853262257380704864177<45> 3976580355795938082832615910186283309801309560973214381976461710163972051340313521913110331963768464653696967949662356267109711369826013362366900375384889397<157> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=3857556890 Step 1 took 114985ms Step 2 took 32511ms ********** Factor found in step 2: 324224650970134483551926853262257380704864177 Found probable prime factor of 45 digits: 324224650970134483551926853262257380704864177 Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1597092842 Step 1 took 91573ms Step 2 took 29042ms ********** Factor found in step 2: 5381901124844703112611276219293020213 Found probable prime factor of 37 digits: 5381901124844703112611276219293020213 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | Makoto Kamada | December 12, 2015 04:00:00 UTC 2015 年 12 月 12 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 600 | Dmitry Domanov | December 12, 2015 19:22:04 UTC 2015 年 12 月 13 日 (日) 4 時 22 分 4 秒 (日本時間) | |
45 | 11e6 | 600 / 4306 | Dmitry Domanov | December 14, 2015 19:46:29 UTC 2015 年 12 月 15 日 (火) 4 時 46 分 29 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 15, 2015 12:12:15 UTC 2015 年 12 月 15 日 (火) 21 時 12 分 15 秒 (日本時間) |
composite number 合成数 | 847953216374269005847953216374269005847953216374269005847953216374269005847953216374269005847953216374269005847953216374269005847953216374269005847953216374269005847953216374269005847953216374269005847953216374269005847953216374269005847953216374269005847953216374269<267> |
prime factors 素因数 | 51552288712924610035978768114598822256701089<44> |
composite cofactor 合成数の残り | 16448410682524745250829058048352047230350893226623564184652847017855914199022184428524036216308637386849787702755844354209811006555240044662648934179711938721907179784363833518595281243767620539254168242019957725758101382621<224> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1938570622 Step 1 took 161346ms Step 2 took 45712ms ********** Factor found in step 2: 51552288712924610035978768114598822256701089 Found probable prime factor of 44 digits: 51552288712924610035978768114598822256701089 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | Makoto Kamada | December 12, 2015 04:00:00 UTC 2015 年 12 月 12 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 600 | Dmitry Domanov | December 12, 2015 14:06:51 UTC 2015 年 12 月 12 日 (土) 23 時 6 分 51 秒 (日本時間) | |
45 | 11e6 | 4401 | 1800 | Dmitry Domanov | December 15, 2015 07:15:29 UTC 2015 年 12 月 15 日 (火) 16 時 15 分 29 秒 (日本時間) |
2601 | Thomas Kozlowski | December 14, 2024 16:07:59 UTC 2024 年 12 月 15 日 (日) 1 時 7 分 59 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | Makoto Kamada | December 12, 2015 04:00:00 UTC 2015 年 12 月 12 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 600 | Dmitry Domanov | December 12, 2015 13:16:31 UTC 2015 年 12 月 12 日 (土) 22 時 16 分 31 秒 (日本時間) | |
45 | 11e6 | 4400 | 600 | Dmitry Domanov | December 13, 2015 22:26:34 UTC 2015 年 12 月 14 日 (月) 7 時 26 分 34 秒 (日本時間) |
3800 | Thomas Kozlowski | December 14, 2024 17:33:14 UTC 2024 年 12 月 15 日 (日) 2 時 33 分 14 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | Makoto Kamada | December 12, 2015 04:00:00 UTC 2015 年 12 月 12 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 600 | Dmitry Domanov | December 12, 2015 14:07:06 UTC 2015 年 12 月 12 日 (土) 23 時 7 分 6 秒 (日本時間) | |
45 | 11e6 | 4400 | 1800 | Dmitry Domanov | December 15, 2015 07:12:15 UTC 2015 年 12 月 15 日 (火) 16 時 12 分 15 秒 (日本時間) |
2600 | Thomas Kozlowski | December 14, 2024 18:48:19 UTC 2024 年 12 月 15 日 (日) 3 時 48 分 19 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | Makoto Kamada | December 12, 2015 04:00:00 UTC 2015 年 12 月 12 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 600 | Dmitry Domanov | December 12, 2015 14:07:17 UTC 2015 年 12 月 12 日 (土) 23 時 7 分 17 秒 (日本時間) | |
45 | 11e6 | 4400 | 1800 | Dmitry Domanov | December 15, 2015 06:33:39 UTC 2015 年 12 月 15 日 (火) 15 時 33 分 39 秒 (日本時間) |
2600 | Thomas Kozlowski | December 14, 2024 20:11:30 UTC 2024 年 12 月 15 日 (日) 5 時 11 分 30 秒 (日本時間) |
name 名前 | KTakahashi |
---|---|
date 日付 | December 12, 2015 21:03:46 UTC 2015 年 12 月 13 日 (日) 6 時 3 分 46 秒 (日本時間) |
composite number 合成数 | 1647105647412900923077739421224391458242059319915401805562843448054495725123932716922607036090368608213463337129465091482851110900844998156203636210434115975969560868149693571549282945378034136008888247540388242388388122402086211231377<235> |
prime factors 素因数 | 67056208950185146999859851501466933<35> 24563059457126574500628301374284869579631892496818006986169359015240893279076498377326936130777490684580932548765328319657758265520788879551873990605109374242393181121842829793911310013434913578761069<200> |
factorization results 素因数分解の結果 | Input number is 1647105647412900923077739421224391458242059319915401805562843448054495725123932716922607036090368608213463337129465091482851110900844998156203636210434115975969560868149693571549282945378034136008888247540388242388388122402086211231377 (215 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2031962215 Step 1 took 8846ms Step 2 took 4368ms ********** Factor found in step 2: 67056208950185146999859851501466933 Found probable prime factor of 35 digits: 67056208950185146999859851501466933 Probable prime cofactor |
software ソフトウェア | GMP-ECM 6.4.4 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | Makoto Kamada | December 12, 2015 04:00:00 UTC 2015 年 12 月 12 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 600 / 2104 | Dmitry Domanov | December 12, 2015 19:22:38 UTC 2015 年 12 月 13 日 (日) 4 時 22 分 38 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | Makoto Kamada | December 12, 2015 04:00:00 UTC 2015 年 12 月 12 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 600 | Dmitry Domanov | December 12, 2015 14:07:30 UTC 2015 年 12 月 12 日 (土) 23 時 7 分 30 秒 (日本時間) | |
45 | 11e6 | 4402 | 600 | Dmitry Domanov | December 14, 2015 19:35:45 UTC 2015 年 12 月 15 日 (火) 4 時 35 分 45 秒 (日本時間) |
3802 | Thomas Kozlowski | December 14, 2024 22:00:08 UTC 2024 年 12 月 15 日 (日) 7 時 0 分 8 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | Makoto Kamada | December 12, 2015 04:00:00 UTC 2015 年 12 月 12 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 600 | Dmitry Domanov | December 12, 2015 13:16:47 UTC 2015 年 12 月 12 日 (土) 22 時 16 分 47 秒 (日本時間) | |
45 | 11e6 | 4400 | 600 | Dmitry Domanov | December 13, 2015 22:26:52 UTC 2015 年 12 月 14 日 (月) 7 時 26 分 52 秒 (日本時間) |
3800 | Thomas Kozlowski | December 14, 2024 23:25:43 UTC 2024 年 12 月 15 日 (日) 8 時 25 分 43 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 12, 2015 19:17:56 UTC 2015 年 12 月 13 日 (日) 4 時 17 分 56 秒 (日本時間) |
composite number 合成数 | 1114559248125513919890523712813476145234144657580878110663428746089008153430775093603467777470587226692052358524442895782587947540543242003414640899805189827673825896445269133084437964050385569146669668891010340721626745745902868141208634922627126811883<253> |
prime factors 素因数 | 13022818010966252022705571614308279<35> |
composite cofactor 合成数の残り | 85585105096835883601297221362125742550415797624463060781228594044995621146357209039412772038209030206946438668971883752012739816950435958642900850043473765015075130716188157946093535648414787497555752857435074241133677<218> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2475788761 Step 1 took 34316ms Step 2 took 9122ms ********** Factor found in step 2: 13022818010966252022705571614308279 Found probable prime factor of 35 digits: 13022818010966252022705571614308279 |
name 名前 | Thomas Kozlowski |
---|---|
date 日付 | December 15, 2024 02:14:31 UTC 2024 年 12 月 15 日 (日) 11 時 14 分 31 秒 (日本時間) |
composite number 合成数 | 85585105096835883601297221362125742550415797624463060781228594044995621146357209039412772038209030206946438668971883752012739816950435958642900850043473765015075130716188157946093535648414787497555752857435074241133677<218> |
prime factors 素因数 | 111778117887448462098501914855608006417957<42> 765669584658896948676997389449958805682214595834637659357771208992327939128936440332973923033162776171206535540247954323682706797490309948567148959666218081849608776266763361961<177> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.6 [configured with GMP 6.3.0, --enable-asm-redc] [ECM] Input number is 85585105096835883601297221362125742550415797624463060781228594044995621146357209039412772038209030206946438668971883752012739816950435958642900850043473765015075130716188157946093535648414787497555752857435074241133677 (218 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:3897467718 Step 1 took 38781ms Step 2 took 14453ms Run 2 out of 0: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:1837529893 Step 1 took 37491ms Step 2 took 14409ms Run 3 out of 0: ... Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:2261128693 Step 1 took 38409ms Step 2 took 14379ms Run 7 out of 0: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:2761234636 Step 1 took 37735ms Step 2 took 14389ms ** Factor found in step 2: 111778117887448462098501914855608006417957 Found prime factor of 42 digits: 111778117887448462098501914855608006417957 Prime cofactor 765669584658896948676997389449958805682214595834637659357771208992327939128936440332973923033162776171206535540247954323682706797490309948567148959666218081849608776266763361961 has 177 digits |
execution environment 実行環境 | 2x Xeon E5-2698v4, 128GB DDR4, Ubuntu Server 24.04 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | Makoto Kamada | December 12, 2015 04:00:00 UTC 2015 年 12 月 12 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 600 | Dmitry Domanov | December 12, 2015 14:07:41 UTC 2015 年 12 月 12 日 (土) 23 時 7 分 41 秒 (日本時間) | |
45 | 11e6 | 600 / 4306 | Dmitry Domanov | December 13, 2015 22:27:06 UTC 2015 年 12 月 14 日 (月) 7 時 27 分 6 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | Makoto Kamada | December 12, 2015 04:00:00 UTC 2015 年 12 月 12 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 600 | Dmitry Domanov | December 12, 2015 19:22:52 UTC 2015 年 12 月 13 日 (日) 4 時 22 分 52 秒 (日本時間) | |
45 | 11e6 | 4400 | 600 | Dmitry Domanov | December 14, 2015 19:47:01 UTC 2015 年 12 月 15 日 (火) 4 時 47 分 1 秒 (日本時間) |
3800 | Thomas Kozlowski | December 15, 2024 00:58:26 UTC 2024 年 12 月 15 日 (日) 9 時 58 分 26 秒 (日本時間) |
name 名前 | Thomas Kozlowski |
---|---|
date 日付 | December 15, 2024 02:15:08 UTC 2024 年 12 月 15 日 (日) 11 時 15 分 8 秒 (日本時間) |
composite number 合成数 | 171955323272162308464306216832921082703328072634417558369427380155569641474273849657840952547479796601082975386599309001362283290507537771689475778483832517628694874585576850883294101793978140883266545029336947430142221959186324095366412093329568440386133<255> |
prime factors 素因数 | 236580893498465862146342606034674593651<39> 726835209426062015749626620023187917102086765399655378910876038894650143388348274564052837842097007882496256976875193354754656739008026329816207591765369909147372553216949051299470270846748107797397368536521319548183<216> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.6 [configured with GMP 6.3.0, --enable-asm-redc] [ECM] Input number is 171955323272162308464306216832921082703328072634417558369427380155569641474273849657840952547479796601082975386599309001362283290507537771689475778483832517628694874585576850883294101793978140883266545029336947430142221959186324095366412093329568440386133 (255 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:3106192673 Step 1 took 51298ms Step 2 took 17411ms Run 2 out of 0: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:512433114 Step 1 took 50638ms Step 2 took 17540ms Run 3 out of 0: ... Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:2959972863 Step 1 took 50079ms Step 2 took 17391ms Run 9 out of 0: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:3196446460 Step 1 took 48877ms Step 2 took 18183ms ** Factor found in step 2: 236580893498465862146342606034674593651 Found prime factor of 39 digits: 236580893498465862146342606034674593651 Prime cofactor 726835209426062015749626620023187917102086765399655378910876038894650143388348274564052837842097007882496256976875193354754656739008026329816207591765369909147372553216949051299470270846748107797397368536521319548183 has 216 digits |
execution environment 実行環境 | 2x Xeon E5-2698v4, 128GB DDR4, Ubuntu Server 24.04 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | Makoto Kamada | December 12, 2015 04:00:00 UTC 2015 年 12 月 12 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 600 | Dmitry Domanov | December 12, 2015 14:07:53 UTC 2015 年 12 月 12 日 (土) 23 時 7 分 53 秒 (日本時間) | |
45 | 11e6 | 600 / 4306 | Dmitry Domanov | December 14, 2015 19:35:25 UTC 2015 年 12 月 15 日 (火) 4 時 35 分 25 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | Makoto Kamada | December 12, 2015 04:00:00 UTC 2015 年 12 月 12 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 600 | Dmitry Domanov | December 12, 2015 19:23:07 UTC 2015 年 12 月 13 日 (日) 4 時 23 分 7 秒 (日本時間) | |
45 | 11e6 | 4403 | 600 | Dmitry Domanov | December 14, 2015 19:47:15 UTC 2015 年 12 月 15 日 (火) 4 時 47 分 15 秒 (日本時間) |
3803 | Thomas Kozlowski | December 15, 2024 02:46:28 UTC 2024 年 12 月 15 日 (日) 11 時 46 分 28 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | Makoto Kamada | December 12, 2015 04:00:00 UTC 2015 年 12 月 12 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 600 | Dmitry Domanov | December 12, 2015 14:08:05 UTC 2015 年 12 月 12 日 (土) 23 時 8 分 5 秒 (日本時間) | |
45 | 11e6 | 4400 | 1000 | Dmitry Domanov | December 14, 2015 22:50:15 UTC 2015 年 12 月 15 日 (火) 7 時 50 分 15 秒 (日本時間) |
600 | Dmitry Domanov | December 15, 2015 11:52:57 UTC 2015 年 12 月 15 日 (火) 20 時 52 分 57 秒 (日本時間) | |||
2800 | Thomas Kozlowski | December 15, 2024 04:16:17 UTC 2024 年 12 月 15 日 (日) 13 時 16 分 17 秒 (日本時間) |
name 名前 | Thomas Kozlowski |
---|---|
date 日付 | December 15, 2024 06:12:56 UTC 2024 年 12 月 15 日 (日) 15 時 12 分 56 秒 (日本時間) |
composite number 合成数 | 1289391757955770005896831243330394606445937730738049405810219904845664211795513425759754373701455360875971749966422880137923712660800440104723401207544462692351957885828730221995683344062665204850631780945474857535632238611667080913331946965668420224903504107<259> |
prime factors 素因数 | 1699974238402378039352427491057347851615587<43> 758477233847690475205745380647980024545312074808577655188726779810921962893408009379799223644487925918232914378852254957635014960482749870622244378356628590852722000842220407512566594185452813391842100983055183775961<216> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.6 [configured with GMP 6.3.0, --enable-asm-redc] [ECM] Input number is 1289391757955770005896831243330394606445937730738049405810219904845664211795513425759754373701455360875971749966422880137923712660800440104723401207544462692351957885828730221995683344062665204850631780945474857535632238611667080913331946965668420224903504107 (259 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:457083709 Step 1 took 49148ms Step 2 took 17526ms Run 2 out of 0: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:2480923265 Step 1 took 48886ms Step 2 took 18746ms Run 3 out of 0: ... Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:67990003 Step 1 took 49248ms Step 2 took 17429ms Run 96 out of 0: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:875530000 Step 1 took 48257ms Step 2 took 17463ms ** Factor found in step 2: 1699974238402378039352427491057347851615587 Found prime factor of 43 digits: 1699974238402378039352427491057347851615587 Prime cofactor 758477233847690475205745380647980024545312074808577655188726779810921962893408009379799223644487925918232914378852254957635014960482749870622244378356628590852722000842220407512566594185452813391842100983055183775961 has 216 digits |
execution environment 実行環境 | 2x Xeon E5-2698v4, 128GB DDR4, Ubuntu Server 24.04 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | Makoto Kamada | December 12, 2015 04:00:00 UTC 2015 年 12 月 12 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 600 | Dmitry Domanov | December 12, 2015 14:08:15 UTC 2015 年 12 月 12 日 (土) 23 時 8 分 15 秒 (日本時間) | |
45 | 11e6 | 600 / 4306 | Dmitry Domanov | December 14, 2015 19:35:07 UTC 2015 年 12 月 15 日 (火) 4 時 35 分 7 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | Makoto Kamada | December 12, 2015 04:00:00 UTC 2015 年 12 月 12 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 600 | Dmitry Domanov | December 12, 2015 14:08:29 UTC 2015 年 12 月 12 日 (土) 23 時 8 分 29 秒 (日本時間) | |
45 | 11e6 | 4402 | 600 | Dmitry Domanov | December 14, 2015 17:23:47 UTC 2015 年 12 月 15 日 (火) 2 時 23 分 47 秒 (日本時間) |
3802 | Thomas Kozlowski | December 15, 2024 08:04:34 UTC 2024 年 12 月 15 日 (日) 17 時 4 分 34 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | Makoto Kamada | December 12, 2015 04:00:00 UTC 2015 年 12 月 12 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 600 | Dmitry Domanov | December 12, 2015 19:23:29 UTC 2015 年 12 月 13 日 (日) 4 時 23 分 29 秒 (日本時間) | |
45 | 11e6 | 4401 | 600 | Dmitry Domanov | December 14, 2015 22:33:02 UTC 2015 年 12 月 15 日 (火) 7 時 33 分 2 秒 (日本時間) |
3801 | Thomas Kozlowski | December 15, 2024 09:42:02 UTC 2024 年 12 月 15 日 (日) 18 時 42 分 2 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | Makoto Kamada | December 12, 2015 04:00:00 UTC 2015 年 12 月 12 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 600 | Dmitry Domanov | December 12, 2015 14:08:42 UTC 2015 年 12 月 12 日 (土) 23 時 8 分 42 秒 (日本時間) | |
45 | 11e6 | 4400 | 600 | Dmitry Domanov | December 14, 2015 19:34:35 UTC 2015 年 12 月 15 日 (火) 4 時 34 分 35 秒 (日本時間) |
3800 | Thomas Kozlowski | December 15, 2024 11:31:03 UTC 2024 年 12 月 15 日 (日) 20 時 31 分 3 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | Makoto Kamada | December 12, 2015 04:00:00 UTC 2015 年 12 月 12 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 600 | Dmitry Domanov | December 12, 2015 14:08:55 UTC 2015 年 12 月 12 日 (土) 23 時 8 分 55 秒 (日本時間) | |
45 | 11e6 | 4404 | 600 | Dmitry Domanov | December 14, 2015 17:23:11 UTC 2015 年 12 月 15 日 (火) 2 時 23 分 11 秒 (日本時間) |
3804 | Thomas Kozlowski | December 15, 2024 13:32:10 UTC 2024 年 12 月 15 日 (日) 22 時 32 分 10 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 15, 2015 06:06:42 UTC 2015 年 12 月 15 日 (火) 15 時 6 分 42 秒 (日本時間) |
composite number 合成数 | 18843141224101409515843988722104917290988876840973098371187542877266090481782390968826975704723205263406370801299414385065399153449162054065347993853704830045860039494975255806294160664668940136261055338372076711130849023<221> |
prime factors 素因数 | 235606843018076840181049053990410453<36> |
composite cofactor 合成数の残り | 79977054073321958187816427023480919618025185880946760703667882710301014772797342071783981475666362395120801179999384883795483571555023317467509283502616717508451675938095797286429442691<185> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=2741273283 Step 1 took 94021ms Step 2 took 30057ms ********** Factor found in step 2: 235606843018076840181049053990410453 Found probable prime factor of 36 digits: 235606843018076840181049053990410453 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | Makoto Kamada | December 12, 2015 04:00:00 UTC 2015 年 12 月 12 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 600 | Dmitry Domanov | December 12, 2015 19:23:43 UTC 2015 年 12 月 13 日 (日) 4 時 23 分 43 秒 (日本時間) | |
45 | 11e6 | 1400 | 600 | Dmitry Domanov | December 14, 2015 22:34:13 UTC 2015 年 12 月 15 日 (火) 7 時 34 分 13 秒 (日本時間) |
800 | Dmitry Domanov | February 10, 2016 13:32:30 UTC 2016 年 2 月 10 日 (水) 22 時 32 分 30 秒 (日本時間) | |||
50 | 43e6 | 2392 / 6922 | 600 | Dmitry Domanov | February 11, 2016 14:25:15 UTC 2016 年 2 月 11 日 (木) 23 時 25 分 15 秒 (日本時間) |
1792 | Dmitry Domanov | April 15, 2024 21:47:11 UTC 2024 年 4 月 16 日 (火) 6 時 47 分 11 秒 (日本時間) | |||
55 | 11e7 | 120 / 16823 | Dmitry Domanov | February 27, 2016 21:12:10 UTC 2016 年 2 月 28 日 (日) 6 時 12 分 10 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 14, 2015 11:40:21 UTC 2015 年 12 月 14 日 (月) 20 時 40 分 21 秒 (日本時間) |
composite number 合成数 | 5566256962596330523829321061330312038866938837451415482483278026958975554934797273055396268598795530970625197062961733452722866136126602099880140110399652302075889546919860051176188498232925235087406366555072123705601407219283746909843<235> |
prime factors 素因数 | 547607792857965327246718729342135637021<39> |
composite cofactor 合成数の残り | 10164678142263156684857659660042288602152455403419452650450173366958752646716144677964759069830651445886980561827000691337187955265928242050889159142751047581320592521235835174913314712756877635183<197> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1903475085 Step 1 took 26267ms Step 2 took 8564ms ********** Factor found in step 2: 547607792857965327246718729342135637021 Found probable prime factor of 39 digits: 547607792857965327246718729342135637021 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | Makoto Kamada | December 12, 2015 04:00:00 UTC 2015 年 12 月 12 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 600 | Dmitry Domanov | December 12, 2015 19:23:59 UTC 2015 年 12 月 13 日 (日) 4 時 23 分 59 秒 (日本時間) | |
45 | 11e6 | 1800 | 600 | Dmitry Domanov | December 14, 2015 17:01:08 UTC 2015 年 12 月 15 日 (火) 2 時 1 分 8 秒 (日本時間) |
1200 | Dmitry Domanov | December 15, 2015 22:43:02 UTC 2015 年 12 月 16 日 (水) 7 時 43 分 2 秒 (日本時間) | |||
50 | 43e6 | 7100 | 600 | Dmitry Domanov | February 10, 2016 13:31:44 UTC 2016 年 2 月 10 日 (水) 22 時 31 分 44 秒 (日本時間) |
6500 | Erik Branger | August 14, 2017 07:34:35 UTC 2017 年 8 月 14 日 (月) 16 時 34 分 35 秒 (日本時間) | |||
55 | 11e7 | 60 / 15118 | Dmitry Domanov | February 12, 2016 08:46:39 UTC 2016 年 2 月 12 日 (金) 17 時 46 分 39 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 15, 2015 08:16:15 UTC 2015 年 12 月 15 日 (火) 17 時 16 分 15 秒 (日本時間) |
composite number 合成数 | 30936525450603944307863414949735932386533768652250310161554001116262988335653591746467192630946076302063124118102465582553111801506565955649596704097478979711846512181369099599616663040661701622087792250112818748888054478535571232893115249669<242> |
prime factors 素因数 | 10383276198663294175233169413756525576712037<44> 2979457047919673166207427666224020466821345002665903099956845444104223005269761258711245925687403857369734210359598212590013700378086597829320327118063149245520245840690922210438165020996087801083937<199> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=2820234063 Step 1 took 114523ms Step 2 took 33386ms ********** Factor found in step 2: 10383276198663294175233169413756525576712037 Found probable prime factor of 44 digits: 10383276198663294175233169413756525576712037 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | Makoto Kamada | December 12, 2015 04:00:00 UTC 2015 年 12 月 12 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 600 | Dmitry Domanov | December 12, 2015 19:24:15 UTC 2015 年 12 月 13 日 (日) 4 時 24 分 15 秒 (日本時間) | |
45 | 11e6 | 600 / 4306 | Dmitry Domanov | December 14, 2015 22:33:37 UTC 2015 年 12 月 15 日 (火) 7 時 33 分 37 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | Makoto Kamada | December 12, 2015 04:00:00 UTC 2015 年 12 月 12 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 600 | Dmitry Domanov | December 12, 2015 14:09:11 UTC 2015 年 12 月 12 日 (土) 23 時 9 分 11 秒 (日本時間) | |
45 | 11e6 | 4406 | 600 | Dmitry Domanov | December 14, 2015 17:00:39 UTC 2015 年 12 月 15 日 (火) 2 時 0 分 39 秒 (日本時間) |
3806 | Thomas Kozlowski | December 15, 2024 15:33:21 UTC 2024 年 12 月 16 日 (月) 0 時 33 分 21 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | Makoto Kamada | December 12, 2015 04:00:00 UTC 2015 年 12 月 12 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 600 | Dmitry Domanov | December 12, 2015 14:09:26 UTC 2015 年 12 月 12 日 (土) 23 時 9 分 26 秒 (日本時間) | |
45 | 11e6 | 4400 | 600 | Dmitry Domanov | December 13, 2015 22:53:09 UTC 2015 年 12 月 14 日 (月) 7 時 53 分 9 秒 (日本時間) |
1200 | Dmitry Domanov | December 15, 2015 20:58:17 UTC 2015 年 12 月 16 日 (水) 5 時 58 分 17 秒 (日本時間) | |||
2600 | Thomas Kozlowski | December 15, 2024 16:57:56 UTC 2024 年 12 月 16 日 (月) 1 時 57 分 56 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | Makoto Kamada | December 12, 2015 04:00:00 UTC 2015 年 12 月 12 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 600 | Dmitry Domanov | December 12, 2015 14:09:42 UTC 2015 年 12 月 12 日 (土) 23 時 9 分 42 秒 (日本時間) | |
45 | 11e6 | 4402 | 600 | Dmitry Domanov | December 13, 2015 22:53:40 UTC 2015 年 12 月 14 日 (月) 7 時 53 分 40 秒 (日本時間) |
3802 | Thomas Kozlowski | December 15, 2024 18:59:07 UTC 2024 年 12 月 16 日 (月) 3 時 59 分 7 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 12, 2015 20:19:44 UTC 2015 年 12 月 13 日 (日) 5 時 19 分 44 秒 (日本時間) |
composite number 合成数 | 18668726664091669885412643234195957255053431183211020986223767220290974636281704647869190163512295609630487961890047637440453199433500708124114844856443929445088193639757950302562121797347753315308355864555169306038367452040684949143813570233037208703489120638599201750997811252735934080082399897<296> |
prime factors 素因数 | 47966407486118177520670149107234381<35> 389204187732728020703450481772729205580377357670366186072500293565765211744947201155808138293477474035326196497672860860050703320401239364700225224977961192890341989673399193657489684342549608256927252363831251315720538608469518608254408577903750769071145683837<261> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=209388594 Step 1 took 40245ms Step 2 took 13413ms ********** Factor found in step 2: 47966407486118177520670149107234381 Found probable prime factor of 35 digits: 47966407486118177520670149107234381 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | Makoto Kamada | December 12, 2015 04:00:00 UTC 2015 年 12 月 12 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 600 / 2104 | Dmitry Domanov | December 12, 2015 14:09:53 UTC 2015 年 12 月 12 日 (土) 23 時 9 分 53 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | Makoto Kamada | December 12, 2015 04:00:00 UTC 2015 年 12 月 12 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 600 | Dmitry Domanov | December 12, 2015 14:10:07 UTC 2015 年 12 月 12 日 (土) 23 時 10 分 7 秒 (日本時間) | |
45 | 11e6 | 4400 | 600 | Dmitry Domanov | December 13, 2015 22:53:57 UTC 2015 年 12 月 14 日 (月) 7 時 53 分 57 秒 (日本時間) |
3800 | Thomas Kozlowski | December 15, 2024 21:00:40 UTC 2024 年 12 月 16 日 (月) 6 時 0 分 40 秒 (日本時間) |