Table of contents 目次

145×10107-19

c108

name 名前Dmitry Domanov
date 日付December 6, 2014 15:50:01 UTC 2014 年 12 月 7 日 (日) 0 時 50 分 1 秒 (日本時間)
composite number 合成数
537037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037<108>
prime factors 素因数
1327030034806024678456777442433769257199<40>
404690943649619123320823757726154161462058922953586482669152309966563<69>
factorization results 素因数分解の結果
N=537037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037
  ( 108 digits)
SNFS difficulty: 109 digits.
Divisors found:
 r1=1327030034806024678456777442433769257199 (pp40)
 r2=404690943649619123320823757726154161462058922953586482669152309966563 (pp69)
Version: Msieve v. 1.50 (SVN unknown)
Total time: 0.30 hours.
Scaled time: 0.64 units (timescale=2.104).
Factorization parameters were as follows:
n: 537037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037
m: 1000000000000000000000
deg: 5
c5: 14500
c0: -1
skew: 0.15
# Murphy_E = 3.929e-08
type: snfs
lss: 1
rlim: 460000
alim: 460000
lpbr: 25
lpba: 25
mfbr: 44
mfba: 44
rlambda: 2.2
alambda: 2.2
Factor base limits: 460000/460000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 44/44
Sieved rational special-q in [230000, 430001)
Primes: , ,
Relations: relations
Max relations in full relation-set:
Initial matrix:
Pruned matrix : 47568 x 47793
Total sieving time: 0.28 hours.
Total relation processing time: 0.01 hours.
Matrix solve time: 0.01 hours.
Time per square root: 0.00 hours.
Prototype def-par.txt line would be:
snfs,109.000,5,0,0,0,0,0,0,0,0,460000,460000,25,25,44,44,2.2,2.2,50000
total time: 0.30 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaDecember 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間)

145×10112-19

c95

name 名前KTakahashi
date 日付December 6, 2014 17:36:33 UTC 2014 年 12 月 7 日 (日) 2 時 36 分 33 秒 (日本時間)
composite number 合成数
19963921877649823656558164254116190885623176953020797886580142118371265129849935256450374670943<95>
prime factors 素因数
75714811140505403567239366205639949330226184581<47>
263672610113263006929605695958826754759643021203<48>
factorization results 素因数分解の結果
Number: 16111_112
N=19963921877649823656558164254116190885623176953020797886580142118371265129849935256450374670943
  ( 95 digits)
SNFS difficulty: 115 digits.
Divisors found:
 r1=75714811140505403567239366205639949330226184581 (pp47)
 r2=263672610113263006929605695958826754759643021203 (pp48)
Version: Msieve v. 1.51 (SVN Official Release)
Total time: 1.62 hours.
Scaled time: 2.76 units (timescale=1.705).
Factorization parameters were as follows:
n: 19963921877649823656558164254116190885623176953020797886580142118371265129849935256450374670943
m: 50000000000000000000000
c5: 116
c0: -25
skew: 0.74
type: snfs
Factor base limits: 600000/800000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 46/46
Sieved rational special-q in [300000, 500001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 80874 x 81101
Total sieving time: 1.57 hours.
Total relation processing time: 0.01 hours.
Matrix solve time: 0.02 hours.
Time per square root: 0.01 hours.
Prototype def-par.txt line would be:
snfs,115.000,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000
total time: 1.62 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaDecember 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間)

145×10113-19

c106

name 名前KTakahashi
date 日付December 6, 2014 17:37:12 UTC 2014 年 12 月 7 日 (日) 2 時 37 分 12 秒 (日本時間)
composite number 合成数
4838740688956871593778711762851572883100645785306808901269017176525323677372004354035024075192674124171859<106>
prime factors 素因数
23634966511457643030437608665176093012799238679<47>
204728053522359366923714202981283975741667517983237356272421<60>
factorization results 素因数分解の結果
Number: 16111_113
N=4838740688956871593778711762851572883100645785306808901269017176525323677372004354035024075192674124171859
  ( 106 digits)
SNFS difficulty: 116 digits.
Divisors found:
 r1=23634966511457643030437608665176093012799238679 (pp47)
 r2=204728053522359366923714202981283975741667517983237356272421 (pp60)
Version: Msieve v. 1.51 (SVN Official Release)
Total time: 1.54 hours.
Scaled time: 2.22 units (timescale=1.445).
Factorization parameters were as follows:
n: 4838740688956871593778711762851572883100645785306808901269017176525323677372004354035024075192674124171859
m: 100000000000000000000000
c5: 29
c0: -20
skew: 0.93
type: snfs
Factor base limits: 600000/800000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 46/46
Sieved rational special-q in [300000, 500001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 88887 x 89114
Total sieving time: 1.49 hours.
Total relation processing time: 0.01 hours.
Matrix solve time: 0.03 hours.
Time per square root: 0.00 hours.
Prototype def-par.txt line would be:
snfs,116.000,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000
total time: 1.54 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaDecember 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間)

145×10116-19

c98

name 名前KTakahashi
date 日付December 6, 2014 17:37:47 UTC 2014 年 12 月 7 日 (日) 2 時 37 分 47 秒 (日本時間)
composite number 合成数
80996091179437962934426585652665236681876294785647625187124418370030123931790506811589746959776557<98>
prime factors 素因数
1322035112858234401106754720626699469064457699<46>
61266217811964730315346606869074130021425570806554543<53>
factorization results 素因数分解の結果
Number: 16111_116
N=80996091179437962934426585652665236681876294785647625187124418370030123931790506811589746959776557
  ( 98 digits)
SNFS difficulty: 120 digits.
Divisors found:
 r1=1322035112858234401106754720626699469064457699 (pp46)
 r2=61266217811964730315346606869074130021425570806554543 (pp53)
Version: Msieve v. 1.51 (SVN Official Release)
Total time: 2.16 hours.
Scaled time: 3.64 units (timescale=1.687).
Factorization parameters were as follows:
n: 80996091179437962934426585652665236681876294785647625187124418370030123931790506811589746959776557
m: 500000000000000000000000
c5: 58
c0: -125
skew: 1.17
type: snfs
Factor base limits: 600000/800000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 46/46
Sieved rational special-q in [300000, 450001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 73948 x 74173
Total sieving time: 2.12 hours.
Total relation processing time: 0.02 hours.
Matrix solve time: 0.02 hours.
Time per square root: 0.01 hours.
Prototype def-par.txt line would be:
snfs,120.000,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000
total time: 2.16 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaDecember 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間)

145×10117-19

c101

name 名前KTakahashi
date 日付December 6, 2014 17:38:32 UTC 2014 年 12 月 7 日 (日) 2 時 38 分 32 秒 (日本時間)
composite number 合成数
13555955723576014175113800807946361416320927529641328687909376022410261635383523049411193275789542219<101>
prime factors 素因数
333658098830394424012915165882625639092496237<45>
40628283176985904798051625050899811646279245150690740887<56>
factorization results 素因数分解の結果
Number: 16111_117
N=13555955723576014175113800807946361416320927529641328687909376022410261635383523049411193275789542219
  ( 101 digits)
SNFS difficulty: 120 digits.
Divisors found:
 r1=333658098830394424012915165882625639092496237 (pp45)
 r2=40628283176985904798051625050899811646279245150690740887 (pp56)
Version: Msieve v. 1.51 (SVN Official Release)
Total time: 2.02 hours.
Scaled time: 4.19 units (timescale=2.068).
Factorization parameters were as follows:
n: 13555955723576014175113800807946361416320927529641328687909376022410261635383523049411193275789542219
m: 500000000000000000000000
c5: 116
c0: -25
skew: 0.74
type: snfs
Factor base limits: 600000/800000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 46/46
Sieved rational special-q in [300000, 450001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 85395 x 85633
Total sieving time: 1.98 hours.
Total relation processing time: 0.01 hours.
Matrix solve time: 0.02 hours.
Time per square root: 0.01 hours.
Prototype def-par.txt line would be:
snfs,120.000,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000
total time: 2.02 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaDecember 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間)

145×10119-19

c110

name 名前KTakahashi
date 日付December 6, 2014 17:39:16 UTC 2014 年 12 月 7 日 (日) 2 時 39 分 16 秒 (日本時間)
composite number 合成数
51554052881118392407394704613218317134769517370039997411488924316736609410762451667635925650695583772191385251<110>
prime factors 素因数
117093518195864449983800031730229315341<39>
440281013632906595511764287691567158147953130495914804545847215311206511<72>
factorization results 素因数分解の結果
Number: 16111_119
N=51554052881118392407394704613218317134769517370039997411488924316736609410762451667635925650695583772191385251
  ( 110 digits)
SNFS difficulty: 121 digits.
Divisors found:
 r1=117093518195864449983800031730229315341 (pp39)
 r2=440281013632906595511764287691567158147953130495914804545847215311206511 (pp72)
Version: Msieve v. 1.51 (SVN Official Release)
Total time: 2.31 hours.
Scaled time: 3.88 units (timescale=1.678).
Factorization parameters were as follows:
n: 51554052881118392407394704613218317134769517370039997411488924316736609410762451667635925650695583772191385251
m: 1000000000000000000000000
c5: 29
c0: -2
skew: 0.59
type: snfs
Factor base limits: 600000/800000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 46/46
Sieved rational special-q in [300000, 450001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 74958 x 75185
Total sieving time: 2.27 hours.
Total relation processing time: 0.02 hours.
Matrix solve time: 0.02 hours.
Time per square root: 0.01 hours.
Prototype def-par.txt line would be:
snfs,121.000,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000
total time: 2.31 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaDecember 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間)

145×10121-19

c118

name 名前Dmitry Domanov
date 日付December 6, 2014 21:45:50 UTC 2014 年 12 月 7 日 (日) 6 時 45 分 50 秒 (日本時間)
composite number 合成数
6577843102564451521296334099992288046017683056837100849675871110566737888829915123141759323525542445233785616752178627<118>
prime factors 素因数
21192996891404488337745645587737953624049588142369087<53>
310378146907213038036455290166567066935480943340348595658869239421<66>
factorization results 素因数分解の結果
N=6577843102564451521296334099992288046017683056837100849675871110566737888829915123141759323525542445233785616752178627
  ( 118 digits)
SNFS difficulty: 123 digits.
Divisors found:
 r1=21192996891404488337745645587737953624049588142369087 (pp53)
 r2=310378146907213038036455290166567066935480943340348595658869239421 (pp66)
Version: Msieve v. 1.50 (SVN unknown)
Total time: 1.37 hours.
Scaled time: 1.81 units (timescale=1.323).
Factorization parameters were as follows:
n: 6577843102564451521296334099992288046017683056837100849675871110566737888829915123141759323525542445233785616752178627
m: 1000000000000000000000000
deg: 5
c5: 1450
c0: -1
skew: 0.23
# Murphy_E = 1.453e-08
type: snfs
lss: 1
rlim: 790000
alim: 790000
lpbr: 25
lpba: 25
mfbr: 46
mfba: 46
rlambda: 2.2
alambda: 2.2
Factor base limits: 790000/790000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 46/46
Sieved rational special-q in [395000, 745001)
Primes: , ,
Relations: relations
Max relations in full relation-set:
Initial matrix:
Pruned matrix : 75594 x 75819
Total sieving time: 1.32 hours.
Total relation processing time: 0.02 hours.
Matrix solve time: 0.01 hours.
Time per square root: 0.00 hours.
Prototype def-par.txt line would be:
snfs,123.000,5,0,0,0,0,0,0,0,0,790000,790000,25,25,46,46,2.2,2.2,50000
total time: 1.37 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaDecember 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間)

145×10123-19

c114

name 名前Dmitry Domanov
date 日付December 7, 2014 00:21:21 UTC 2014 年 12 月 7 日 (日) 9 時 21 分 21 秒 (日本時間)
composite number 合成数
906043970974973593850070622463683137942152566425787185606943225741648356843805535151128213809308981294117612955549<114>
prime factors 素因数
170318069931854446486801983652941725477<39>
5319717228697393464670837915595425802184131420016203662640621724905614227737<76>
factorization results 素因数分解の結果
N=906043970974973593850070622463683137942152566425787185606943225741648356843805535151128213809308981294117612955549
  ( 114 digits)
SNFS difficulty: 125 digits.
Divisors found:
 r1=170318069931854446486801983652941725477 (pp39)
 r2=5319717228697393464670837915595425802184131420016203662640621724905614227737 (pp76)
Version: Msieve v. 1.50 (SVN unknown)
Total time: 1.05 hours.
Scaled time: 2.12 units (timescale=2.027).
Factorization parameters were as follows:
n: 906043970974973593850070622463683137942152566425787185606943225741648356843805535151128213809308981294117612955549
m: 5000000000000000000000000
deg: 5
c5: 232
c0: -5
skew: 0.46
# Murphy_E = 1.177e-08
type: snfs
lss: 1
rlim: 880000
alim: 880000
lpbr: 26
lpba: 26
mfbr: 46
mfba: 46
rlambda: 2.3
alambda: 2.3
Factor base limits: 880000/880000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 46/46
Sieved rational special-q in [440000, 690001)
Primes: , ,
Relations: relations
Max relations in full relation-set:
Initial matrix:
Pruned matrix : 104732 x 104962
Total sieving time: 0.98 hours.
Total relation processing time: 0.03 hours.
Matrix solve time: 0.03 hours.
Time per square root: 0.01 hours.
Prototype def-par.txt line would be:
snfs,125.000,5,0,0,0,0,0,0,0,0,880000,880000,26,26,46,46,2.3,2.3,50000
total time: 1.05 hours.

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaDecember 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間)

145×10127-19

c103

name 名前Jo Yeong Uk
date 日付December 9, 2014 12:33:22 UTC 2014 年 12 月 9 日 (火) 21 時 33 分 22 秒 (日本時間)
composite number 合成数
2273014037712085763688196420213331828825388860422297333651775897508576664285348253470072891219229018723<103>
prime factors 素因数
2576282858254673544332453376055658814268260863<46>
882284346390427010357379149325433115959714710105982136221<57>
factorization results 素因数分解の結果
Number: 16111_127
N=2273014037712085763688196420213331828825388860422297333651775897508576664285348253470072891219229018723
  ( 103 digits)
SNFS difficulty: 129 digits.
Divisors found:
 r1=2576282858254673544332453376055658814268260863
 r2=882284346390427010357379149325433115959714710105982136221
Version: 
Total time: 0.69 hours.
Scaled time: 3.48 units (timescale=5.017).
Factorization parameters were as follows:
n: 2273014037712085763688196420213331828825388860422297333651775897508576664285348253470072891219229018723
m: 10000000000000000000000000
deg: 5
c5: 14500
c0: -1
skew: 0.15
# Murphy_E = 7.927e-09
type: snfs
lss: 1
rlim: 800000
alim: 800000
lpbr: 26
lpba: 26
mfbr: 47
mfba: 47
rlambda: 2.3
alambda: 2.3
Factor base limits: 800000/800000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 47/47
Sieved rational special-q in [400000, 725001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 2412473
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 127908 x 128156
Total sieving time: 0.60 hours.
Total relation processing time: 0.07 hours.
Matrix solve time: 0.02 hours.
Time per square root: 0.01 hours.
Prototype def-par.txt line would be:
snfs,129,5,0,0,0,0,0,0,0,0,800000,800000,26,26,47,47,2.3,2.3,25000
total time: 0.69 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM) i7-4930K CPU @ 3.40GHz stepping 04
Total of 12 processors activated (81596.44 BogoMIPS).
software ソフトウェア
GGNFS / Msieve v1.39
execution environment 実行環境
Core i7-4930K

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaDecember 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間)

145×10128-19

c127

name 名前Dmitry Domanov
date 日付December 8, 2014 11:35:50 UTC 2014 年 12 月 8 日 (月) 20 時 35 分 50 秒 (日本時間)
composite number 合成数
1287858602007283062438937738697930544453326227906563637978506084021671551647570832223110400568434141575628386179944932942534861<127>
prime factors 素因数
147141292111720773080638021216991<33>
8752530194103798019811017196955685077463417865268572012526562489208478071075885247332249263571<94>
factorization results 素因数分解の結果
N=1287858602007283062438937738697930544453326227906563637978506084021671551647570832223110400568434141575628386179944932942534861
  ( 127 digits)
SNFS difficulty: 130 digits.
Divisors found:
 r1=147141292111720773080638021216991 (pp33)
 r2=8752530194103798019811017196955685077463417865268572012526562489208478071075885247332249263571 (pp94)
Version: Msieve v. 1.50 (SVN unknown)
Total time: 1.91 hours.
Scaled time: 0.00 units (timescale=0.000).
Factorization parameters were as follows:
n: 1287858602007283062438937738697930544453326227906563637978506084021671551647570832223110400568434141575628386179944932942534861
m: 50000000000000000000000000
deg: 5
c5: 232
c0: -5
skew: 0.46
# Murphy_E = 7.795e-09
type: snfs
lss: 1
rlim: 1060000
alim: 1060000
lpbr: 26
lpba: 26
mfbr: 47
mfba: 47
rlambda: 2.3
alambda: 2.3
Factor base limits: 1060000/1060000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 47/47
Sieved rational special-q in [530000, 880001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 135671 x 135899
Total sieving time: 1.81 hours.
Total relation processing time: 0.03 hours.
Matrix solve time: 0.05 hours.
Time per square root: 0.02 hours.
Prototype def-par.txt line would be:
snfs,130.000,5,0,0,0,0,0,0,0,0,1060000,1060000,26,26,47,47,2.3,2.3,50000
total time: 1.91 hours.

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaDecember 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間)

145×10134-19

c133

name 名前Dmitry Domanov
date 日付December 8, 2014 13:18:43 UTC 2014 年 12 月 8 日 (月) 22 時 18 分 43 秒 (日本時間)
composite number 合成数
5536464299350897289041618938526155021000381825124093165330278732340588010691103474608629247804505536464299350897289041618938526155021<133>
prime factors 素因数
46467273444604034816284477814084672821018908592697986841<56>
119147604086372612689088320835912417949908556379922258121228076459118465704981<78>
factorization results 素因数分解の結果
N=5536464299350897289041618938526155021000381825124093165330278732340588010691103474608629247804505536464299350897289041618938526155021
  ( 133 digits)
SNFS difficulty: 136 digits.
Divisors found:
 r1=46467273444604034816284477814084672821018908592697986841 (pp56)
 r2=119147604086372612689088320835912417949908556379922258121228076459118465704981 (pp78)
Version: Msieve v. 1.50 (SVN unknown)
Total time: 2.55 hours.
Scaled time: 0.00 units (timescale=0.000).
Factorization parameters were as follows:
n: 5536464299350897289041618938526155021000381825124093165330278732340588010691103474608629247804505536464299350897289041618938526155021
m: 1000000000000000000000000000
deg: 5
c5: 29
c0: -2
skew: 0.59
# Murphy_E = 5.9e-09
type: snfs
lss: 1
rlim: 1320000
alim: 1320000
lpbr: 26
lpba: 26
mfbr: 48
mfba: 48
rlambda: 2.3
alambda: 2.3
Factor base limits: 1320000/1320000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 48/48
Sieved rational special-q in [660000, 1110001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 161267 x 161498
Total sieving time: 2.43 hours.
Total relation processing time: 0.04 hours.
Matrix solve time: 0.07 hours.
Time per square root: 0.01 hours.
Prototype def-par.txt line would be:
snfs,136.000,5,0,0,0,0,0,0,0,0,1320000,1320000,26,26,48,48,2.3,2.3,75000
total time: 2.55 hours.

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaDecember 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間)

145×10139-19

c128

name 名前Ignacio Santos
date 日付December 10, 2014 14:11:22 UTC 2014 年 12 月 10 日 (水) 23 時 11 分 22 秒 (日本時間)
composite number 合成数
37713549939833086477431636681265112597921068240693334539508071008861155093863896483964474516811306576256999612289698160191159823<128>
prime factors 素因数
41494638031834261595018064423552583280905143389<47>
908877670191980876340445848483222823625553421190898302150011485065851023397954907<81>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:1530991453
Step 1 took 4953ms
Step 2 took 4219ms
********** Factor found in step 2: 41494638031834261595018064423552583280905143389
Found probable prime factor of 47 digits: 41494638031834261595018064423552583280905143389
Probable prime cofactor 908877670191980876340445848483222823625553421190898302150011485065851023397954907 has 81 digits
software ソフトウェア
GMP-ECM 7.0

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaDecember 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間)

145×10146-19

c126

name 名前Dmitry Domanov
date 日付December 15, 2014 08:12:43 UTC 2014 年 12 月 15 日 (月) 17 時 12 分 43 秒 (日本時間)
composite number 合成数
110295018952994271264665236677182360902878863658086739061348689383666606464184449792395554280622316675507319818679747422117723<126>
prime factors 素因数
58166205904719064314505143808560494908193849381<47>
1896204458198054146642857423638435641862225920113494897379777844870316964301183<79>
factorization results 素因数分解の結果
N=110295018952994271264665236677182360902878863658086739061348689383666606464184449792395554280622316675507319818679747422117723
  ( 126 digits)
SNFS difficulty: 148 digits.
Divisors found:
 r1=58166205904719064314505143808560494908193849381 (pp47)
 r2=1896204458198054146642857423638435641862225920113494897379777844870316964301183 (pp79)
Version: Msieve v. 1.50 (SVN unknown)
Total time: 7.21 hours.
Scaled time: 0.00 units (timescale=0.000).
Factorization parameters were as follows:
n: 110295018952994271264665236677182360902878863658086739061348689383666606464184449792395554280622316675507319818679747422117723
m: 100000000000000000000000000000
deg: 5
c5: 1450
c0: -1
skew: 0.23
# Murphy_E = 1.777e-09
type: snfs
lss: 1
rlim: 2100000
alim: 2100000
lpbr: 26
lpba: 26
mfbr: 49
mfba: 49
rlambda: 2.3
alambda: 2.3

Factor base limits: 2100000/2100000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 49/49
Sieved rational special-q in [1050000, 2250001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 316939 x 317164
Total sieving time: 6.93 hours.
Total relation processing time: 0.05 hours.
Matrix solve time: 0.09 hours.
Time per square root: 0.14 hours.
Prototype def-par.txt line would be:
snfs,148.000,5,0,0,0,0,0,0,0,0,2100000,2100000,26,26,49,49,2.3,2.3,100000
total time: 7.21 hours.

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6300 / 2318Serge BatalovDecember 10, 2014 19:48:35 UTC 2014 年 12 月 11 日 (木) 4 時 48 分 35 秒 (日本時間)

145×10148-19

c123

name 名前Dmitry Domanov
date 日付December 19, 2014 08:46:00 UTC 2014 年 12 月 19 日 (金) 17 時 46 分 0 秒 (日本時間)
composite number 合成数
512437530222203648711575173303433325388524059811264605692977919948915973646045698336316124440100423079055249162446386673649<123>
prime factors 素因数
399093369516710857684165877087801752360208547717917<51>
1284004118742310597614149530423195499174099917928398388388439862663732197<73>
factorization results 素因数分解の結果
N=512437530222203648711575173303433325388524059811264605692977919948915973646045698336316124440100423079055249162446386673649
  ( 123 digits)
SNFS difficulty: 150 digits.
Divisors found:
 r1=399093369516710857684165877087801752360208547717917 (pp51)
 r2=1284004118742310597614149530423195499174099917928398388388439862663732197 (pp73)
Version: Msieve v. 1.50 (SVN unknown)
Total time: 10.11 hours.
Scaled time: 0.00 units (timescale=0.000).
Factorization parameters were as follows:
n: 512437530222203648711575173303433325388524059811264605692977919948915973646045698336316124440100423079055249162446386673649
m: 500000000000000000000000000000
deg: 5
c5: 232
c0: -5
skew: 0.46
# Murphy_E = 1.417e-09
type: snfs
lss: 1
rlim: 2300000
alim: 2300000
lpbr: 27
lpba: 27
mfbr: 49
mfba: 49
rlambda: 2.4
alambda: 2.4

Factor base limits: 2300000/2300000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 49/49
Sieved rational special-q in [1150000, 1750001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 360002 x 360230
Total sieving time: 9.88 hours.
Total relation processing time: 0.08 hours.
Matrix solve time: 0.12 hours.
Time per square root: 0.03 hours.
Prototype def-par.txt line would be:
snfs,150.000,5,0,0,0,0,0,0,0,0,2300000,2300000,27,27,49,49,2.4,2.4,100000
total time: 10.11 hours.

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間)
403e62320Serge BatalovDecember 9, 2014 00:57:14 UTC 2014 年 12 月 9 日 (火) 9 時 57 分 14 秒 (日本時間)

145×10149-19

c140

name 名前Cyp
date 日付December 17, 2014 06:02:20 UTC 2014 年 12 月 17 日 (水) 15 時 2 分 20 秒 (日本時間)
composite number 合成数
48838357043828577513102615721348921644971860967666324764152286226236157410092940246980478781393629284292475270099363110202109555082965144401<140>
prime factors 素因数
662500002131978598950390602564644609301943<42>
124886659084551278498854672704686424329350583167<48>
590281420659968612843892642382897205949821729077321<51>
factorization results 素因数分解の結果
12/17/14 05:14:24 v1.34.3, 
12/17/14 05:14:24 v1.34.3, ****************************
12/17/14 05:14:24 v1.34.3, Starting factorization of 48838357043828577513102615721348921644971860967666324764152286226236157410092940246980478781393629284292475270099363110202109555082965144401
12/17/14 05:14:24 v1.34.3, using pretesting plan: none
12/17/14 05:14:24 v1.34.3, no tune info: using qs/gnfs crossover of 95 digits
12/17/14 05:14:24 v1.34.3, ****************************
12/17/14 05:14:24 v1.34.3, nfs: commencing nfs on c140: 48838357043828577513102615721348921644971860967666324764152286226236157410092940246980478781393629284292475270099363110202109555082965144401
12/17/14 05:14:24 v1.34.3, nfs: continuing with sieving - could not determine last special q; using default startq
12/17/14 05:14:24 v1.34.3, nfs: commencing lattice sieving with 8 threads
12/17/14 05:18:00 v1.34.3, nfs: commencing lattice sieving with 8 threads
[22 lines snipped]
12/17/14 06:38:51 v1.34.3, nfs: commencing lattice sieving with 8 threads
12/17/14 06:42:24 v1.34.3, nfs: commencing lattice sieving with 8 threads
12/17/14 06:45:51 v1.34.3, nfs: commencing msieve filtering
12/17/14 06:47:32 v1.34.3, nfs: commencing msieve linear algebra
12/17/14 06:49:19 v1.34.3, nfs: commencing msieve sqrt
12/17/14 06:50:22 v1.34.3, prp48 = 124886659084551278498854672704686424329350583167
12/17/14 06:50:22 v1.34.3, C93 = 391061442445696562214164908577338456920317362600240782839163011326182704627916869155282534703
12/17/14 06:50:22 v1.34.3, NFS elapsed time = 5757.5057 seconds.
12/17/14 06:50:22 v1.34.3, 
12/17/14 06:50:22 v1.34.3, 
12/17/14 06:50:22 v1.34.3, 
12/17/14 06:50:22 v1.34.3, ****************************
12/17/14 06:50:22 v1.34.3, Starting factorization of 391061442445696562214164908577338456920317362600240782839163011326182704627916869155282534703
12/17/14 06:50:22 v1.34.3, using pretesting plan: normal
12/17/14 06:50:22 v1.34.3, no tune info: using qs/gnfs crossover of 95 digits
12/17/14 06:50:22 v1.34.3, ****************************
12/17/14 06:50:22 v1.34.3, rho: x^2 + 3, starting 1000 iterations on C93
12/17/14 06:50:22 v1.34.3, rho: x^2 + 2, starting 1000 iterations on C93
12/17/14 06:50:22 v1.34.3, rho: x^2 + 1, starting 1000 iterations on C93
12/17/14 06:50:22 v1.34.3, pm1: starting B1 = 150K, B2 = gmp-ecm default on C93
12/17/14 06:50:22 v1.34.3, current ECM pretesting depth: 0.00
12/17/14 06:50:22 v1.34.3, scheduled 30 curves at B1=2000 toward target pretesting depth of 28.62
12/17/14 06:50:22 v1.34.3, Finished 30 curves using Lenstra ECM method on C93 input, B1=2K, B2=gmp-ecm default
12/17/14 06:50:22 v1.34.3, current ECM pretesting depth: 15.18
12/17/14 06:50:22 v1.34.3, scheduled 74 curves at B1=11000 toward target pretesting depth of 28.62
12/17/14 06:50:24 v1.34.3, Finished 74 curves using Lenstra ECM method on C93 input, B1=11K, B2=gmp-ecm default
12/17/14 06:50:24 v1.34.3, current ECM pretesting depth: 20.24
12/17/14 06:50:24 v1.34.3, scheduled 214 curves at B1=50000 toward target pretesting depth of 28.62
12/17/14 06:50:45 v1.34.3, Finished 214 curves using Lenstra ECM method on C93 input, B1=50K, B2=gmp-ecm default
12/17/14 06:50:45 v1.34.3, pm1: starting B1 = 3750K, B2 = gmp-ecm default on C93
12/17/14 06:50:47 v1.34.3, current ECM pretesting depth: 25.33
12/17/14 06:50:47 v1.34.3, scheduled 283 curves at B1=250000 toward target pretesting depth of 28.62
12/17/14 06:52:51 v1.34.3, Finished 283 curves using Lenstra ECM method on C93 input, B1=250K, B2=gmp-ecm default
12/17/14 06:52:51 v1.34.3, final ECM pretested depth: 28.62
12/17/14 06:52:51 v1.34.3, scheduler: switching to sieve method
12/17/14 06:52:51 v1.34.3, starting SIQS on c93: 391061442445696562214164908577338456920317362600240782839163011326182704627916869155282534703
12/17/14 06:52:51 v1.34.3, random seeds: 1337890632, 1974366839
12/17/14 06:52:51 v1.34.3, ==== sieve params ====
12/17/14 06:52:51 v1.34.3, n = 94 digits, 311 bits
12/17/14 06:52:51 v1.34.3, factor base: 83696 primes (max prime = 2273833)
12/17/14 06:52:51 v1.34.3, single large prime cutoff: 272859960 (120 * pmax)
12/17/14 06:52:51 v1.34.3, double large prime range from 43 to 51 bits
12/17/14 06:52:51 v1.34.3, double large prime cutoff: 1530000807521320
12/17/14 06:52:51 v1.34.3, allocating 9 large prime slices of factor base
12/17/14 06:52:51 v1.34.3, buckets hold 2048 elements
12/17/14 06:52:51 v1.34.3, using 32k sieve core
12/17/14 06:52:51 v1.34.3, sieve interval: 16 blocks of size 32768
12/17/14 06:52:51 v1.34.3, polynomial A has ~ 12 factors
12/17/14 06:52:51 v1.34.3, using multiplier of 7
12/17/14 06:52:51 v1.34.3, using SPV correction of 19 bits, starting at offset 30
12/17/14 06:52:51 v1.34.3, using SSE2 for trial division and x128 sieve scanning
12/17/14 06:52:51 v1.34.3, using SSE4.1 enabled 32k sieve core
12/17/14 06:52:51 v1.34.3, using SSE2 for resieving 13-16 bit primes
12/17/14 06:52:51 v1.34.3, trial factoring cutoff at 99 bits
12/17/14 06:52:51 v1.34.3, ==== sieving started ( 8 threads) ====
12/17/14 07:02:01 v1.34.3, 85161 relations found: 22568 full + 62593 from 1082975 partial, using 998432 polys (991 A polys)
12/17/14 07:02:01 v1.34.3, on average, sieving found 1.11 rels/poly and 2009.92 rels/sec
12/17/14 07:02:01 v1.34.3, trial division touched 55781679 sieve locations out of 0
12/17/14 07:02:01 v1.34.3, ==== post processing stage (msieve-1.38) ====
12/17/14 07:02:01 v1.34.3, begin with 1105543 relations
12/17/14 07:02:02 v1.34.3, reduce to 210192 relations in 10 passes
12/17/14 07:02:02 v1.34.3, recovered 210192 relations
12/17/14 07:02:02 v1.34.3, recovered 189305 polynomials
12/17/14 07:02:02 v1.34.3, freed 53 duplicate relations
12/17/14 07:02:02 v1.34.3, attempting to build 85108 cycles
12/17/14 07:02:02 v1.34.3, found 85108 cycles in 6 passes
12/17/14 07:02:02 v1.34.3, distribution of cycle lengths:
12/17/14 07:02:02 v1.34.3,    length 1 : 22567
12/17/14 07:02:02 v1.34.3,    length 2 : 16334
12/17/14 07:02:02 v1.34.3,    length 3 : 15002
12/17/14 07:02:02 v1.34.3,    length 4 : 11288
12/17/14 07:02:02 v1.34.3,    length 5 : 7952
12/17/14 07:02:02 v1.34.3,    length 6 : 5037
12/17/14 07:02:02 v1.34.3,    length 7 : 3077
12/17/14 07:02:02 v1.34.3,    length 9+: 3851
12/17/14 07:02:02 v1.34.3, largest cycle: 19 relations
12/17/14 07:02:03 v1.34.3, matrix is 83696 x 85108 (23.4 MB) with weight 5460424 (64.16/col)
12/17/14 07:02:03 v1.34.3, sparse part has weight 5460424 (64.16/col)
12/17/14 07:02:03 v1.34.3, filtering completed in 4 passes
12/17/14 07:02:03 v1.34.3, matrix is 77925 x 77989 (21.3 MB) with weight 4950401 (63.48/col)
12/17/14 07:02:03 v1.34.3, sparse part has weight 4950401 (63.48/col)
12/17/14 07:02:03 v1.34.3, saving the first 48 matrix rows for later
12/17/14 07:02:03 v1.34.3, matrix is 77877 x 77989 (18.1 MB) with weight 4340193 (55.65/col)
12/17/14 07:02:03 v1.34.3, sparse part has weight 3952530 (50.68/col)
12/17/14 07:02:03 v1.34.3, matrix includes 64 packed rows
12/17/14 07:02:03 v1.34.3, using block size 31195 for processor cache size 8192 kB
12/17/14 07:02:03 v1.34.3, commencing Lanczos iteration
12/17/14 07:02:03 v1.34.3, memory use: 14.3 MB
12/17/14 07:02:19 v1.34.3, lanczos halted after 1233 iterations (dim = 77873)
12/17/14 07:02:19 v1.34.3, recovered 15 nontrivial dependencies
12/17/14 07:02:19 v1.34.3, prp42 = 662500002131978598950390602564644609301943
12/17/14 07:02:19 v1.34.3, prp51 = 590281420659968612843892642382897205949821729077321
12/17/14 07:02:19 v1.34.3, Lanczos elapsed time = 17.5363 seconds.
12/17/14 07:02:19 v1.34.3, Sqrt elapsed time = 0.0810 seconds.
12/17/14 07:02:19 v1.34.3, SIQS elapsed time = 567.6675 seconds.
12/17/14 07:02:19 v1.34.3, 
12/17/14 07:02:19 v1.34.3, 
12/17/14 07:02:19 v1.34.3, Total factoring time = 717.0242 seconds
12/17/14 07:02:19 v1.34.3, Total factoring time = 6474.5559 seconds
--
Wed Dec 17 06:45:51 2014  
Wed Dec 17 06:45:51 2014  commencing relation filtering
Wed Dec 17 06:45:51 2014  estimated available RAM is 15987.3 MB
Wed Dec 17 06:45:51 2014  commencing duplicate removal, pass 1
Wed Dec 17 06:46:19 2014  found 1222579 hash collisions in 10242893 relations
Wed Dec 17 06:46:27 2014  added 350777 free relations
Wed Dec 17 06:46:27 2014  commencing duplicate removal, pass 2
Wed Dec 17 06:46:35 2014  found 698682 duplicates and 9894988 unique relations
Wed Dec 17 06:46:35 2014  memory use: 41.3 MB
Wed Dec 17 06:46:35 2014  reading ideals above 100000
Wed Dec 17 06:46:35 2014  commencing singleton removal, initial pass
Wed Dec 17 06:47:16 2014  memory use: 188.2 MB
Wed Dec 17 06:47:16 2014  reading all ideals from disk
Wed Dec 17 06:47:16 2014  memory use: 330.2 MB
Wed Dec 17 06:47:16 2014  keeping 9239437 ideals with weight <= 200, target excess is 79142
Wed Dec 17 06:47:17 2014  commencing in-memory singleton removal
Wed Dec 17 06:47:17 2014  begin with 9894988 relations and 9239437 unique ideals
Wed Dec 17 06:47:19 2014  reduce to 5342900 relations and 3639557 ideals in 10 passes
Wed Dec 17 06:47:19 2014  max relations containing the same ideal: 137
Wed Dec 17 06:47:20 2014  removing 1131737 relations and 731737 ideals in 400000 cliques
Wed Dec 17 06:47:21 2014  commencing in-memory singleton removal
Wed Dec 17 06:47:21 2014  begin with 4211163 relations and 3639557 unique ideals
Wed Dec 17 06:47:22 2014  reduce to 4081890 relations and 2767586 ideals in 6 passes
Wed Dec 17 06:47:22 2014  max relations containing the same ideal: 114
Wed Dec 17 06:47:22 2014  removing 981128 relations and 581128 ideals in 400000 cliques
Wed Dec 17 06:47:23 2014  commencing in-memory singleton removal
Wed Dec 17 06:47:23 2014  begin with 3100762 relations and 2767586 unique ideals
Wed Dec 17 06:47:23 2014  reduce to 3010777 relations and 2088933 ideals in 6 passes
Wed Dec 17 06:47:23 2014  max relations containing the same ideal: 90
Wed Dec 17 06:47:24 2014  removing 937204 relations and 537204 ideals in 400000 cliques
Wed Dec 17 06:47:24 2014  commencing in-memory singleton removal
Wed Dec 17 06:47:24 2014  begin with 2073573 relations and 2088933 unique ideals
Wed Dec 17 06:47:24 2014  reduce to 1985245 relations and 1455160 ideals in 6 passes
Wed Dec 17 06:47:24 2014  max relations containing the same ideal: 68
Wed Dec 17 06:47:25 2014  removing 818011 relations and 458603 ideals in 359408 cliques
Wed Dec 17 06:47:25 2014  commencing in-memory singleton removal
Wed Dec 17 06:47:25 2014  begin with 1167234 relations and 1455160 unique ideals
Wed Dec 17 06:47:25 2014  reduce to 1077592 relations and 897601 ideals in 8 passes
Wed Dec 17 06:47:25 2014  max relations containing the same ideal: 44
Wed Dec 17 06:47:25 2014  removing 239193 relations and 151007 ideals in 88186 cliques
Wed Dec 17 06:47:25 2014  commencing in-memory singleton removal
Wed Dec 17 06:47:25 2014  begin with 838399 relations and 897601 unique ideals
Wed Dec 17 06:47:25 2014  reduce to 788189 relations and 692309 ideals in 7 passes
Wed Dec 17 06:47:25 2014  max relations containing the same ideal: 37
Wed Dec 17 06:47:26 2014  relations with 0 large ideals: 2136
Wed Dec 17 06:47:26 2014  relations with 1 large ideals: 10020
Wed Dec 17 06:47:26 2014  relations with 2 large ideals: 48388
Wed Dec 17 06:47:26 2014  relations with 3 large ideals: 127662
Wed Dec 17 06:47:26 2014  relations with 4 large ideals: 202741
Wed Dec 17 06:47:26 2014  relations with 5 large ideals: 201529
Wed Dec 17 06:47:26 2014  relations with 6 large ideals: 132562
Wed Dec 17 06:47:26 2014  relations with 7+ large ideals: 63151
Wed Dec 17 06:47:26 2014  commencing 2-way merge
Wed Dec 17 06:47:26 2014  reduce to 578123 relation sets and 482243 unique ideals
Wed Dec 17 06:47:26 2014  commencing full merge
Wed Dec 17 06:47:30 2014  memory use: 52.5 MB
Wed Dec 17 06:47:30 2014  found 271939 cycles, need 256443
Wed Dec 17 06:47:30 2014  weight of 256443 cycles is about 18084986 (70.52/cycle)
Wed Dec 17 06:47:30 2014  distribution of cycle lengths:
Wed Dec 17 06:47:30 2014  1 relations: 22017
Wed Dec 17 06:47:30 2014  2 relations: 25364
Wed Dec 17 06:47:30 2014  3 relations: 27377
Wed Dec 17 06:47:30 2014  4 relations: 27197
Wed Dec 17 06:47:30 2014  5 relations: 25998
Wed Dec 17 06:47:30 2014  6 relations: 23645
Wed Dec 17 06:47:30 2014  7 relations: 21357
Wed Dec 17 06:47:30 2014  8 relations: 18530
Wed Dec 17 06:47:30 2014  9 relations: 15424
Wed Dec 17 06:47:30 2014  10+ relations: 49534
Wed Dec 17 06:47:30 2014  heaviest cycle: 18 relations
Wed Dec 17 06:47:30 2014  commencing cycle optimization
Wed Dec 17 06:47:30 2014  start with 1565881 relations
Wed Dec 17 06:47:32 2014  pruned 74502 relations
Wed Dec 17 06:47:32 2014  memory use: 46.4 MB
Wed Dec 17 06:47:32 2014  distribution of cycle lengths:
Wed Dec 17 06:47:32 2014  1 relations: 22017
Wed Dec 17 06:47:32 2014  2 relations: 26243
Wed Dec 17 06:47:32 2014  3 relations: 29173
Wed Dec 17 06:47:32 2014  4 relations: 28915
Wed Dec 17 06:47:32 2014  5 relations: 27721
Wed Dec 17 06:47:32 2014  6 relations: 24658
Wed Dec 17 06:47:32 2014  7 relations: 22423
Wed Dec 17 06:47:32 2014  8 relations: 18813
Wed Dec 17 06:47:32 2014  9 relations: 15307
Wed Dec 17 06:47:32 2014  10+ relations: 41173
Wed Dec 17 06:47:32 2014  heaviest cycle: 18 relations
Wed Dec 17 06:47:32 2014  RelProcTime: 101
Wed Dec 17 06:47:32 2014  
Wed Dec 17 06:47:32 2014  commencing linear algebra
Wed Dec 17 06:47:32 2014  read 256443 cycles
Wed Dec 17 06:47:32 2014  cycles contain 723462 unique relations
Wed Dec 17 06:47:40 2014  read 723462 relations
Wed Dec 17 06:47:40 2014  using 20 quadratic characters above 133926674
Wed Dec 17 06:47:42 2014  building initial matrix
Wed Dec 17 06:47:46 2014  memory use: 89.6 MB
Wed Dec 17 06:47:46 2014  read 256443 cycles
Wed Dec 17 06:47:46 2014  matrix is 256258 x 256443 (75.1 MB) with weight 22475340 (87.64/col)
Wed Dec 17 06:47:46 2014  sparse part has weight 16863177 (65.76/col)
Wed Dec 17 06:47:47 2014  filtering completed in 2 passes
Wed Dec 17 06:47:47 2014  matrix is 255850 x 256035 (75.0 MB) with weight 22454902 (87.70/col)
Wed Dec 17 06:47:47 2014  sparse part has weight 16851812 (65.82/col)
Wed Dec 17 06:47:47 2014  matrix starts at (0, 0)
Wed Dec 17 06:47:47 2014  matrix is 255850 x 256035 (75.0 MB) with weight 22454902 (87.70/col)
Wed Dec 17 06:47:47 2014  sparse part has weight 16851812 (65.82/col)
Wed Dec 17 06:47:47 2014  saving the first 48 matrix rows for later
Wed Dec 17 06:47:48 2014  matrix includes 64 packed rows
Wed Dec 17 06:47:48 2014  matrix is 255802 x 256035 (70.6 MB) with weight 17735473 (69.27/col)
Wed Dec 17 06:47:48 2014  sparse part has weight 15960050 (62.34/col)
Wed Dec 17 06:47:48 2014  using block size 65536 for processor cache size 8192 kB
Wed Dec 17 06:47:48 2014  commencing Lanczos iteration (8 threads)
Wed Dec 17 06:47:48 2014  memory use: 67.8 MB
Wed Dec 17 06:47:52 2014  linear algebra at 4.8%, ETA 0h 1m
Wed Dec 17 06:49:19 2014  lanczos halted after 4046 iterations (dim = 255800)
Wed Dec 17 06:49:19 2014  recovered 38 nontrivial dependencies
Wed Dec 17 06:49:19 2014  BLanczosTime: 107
Wed Dec 17 06:49:19 2014  
Wed Dec 17 06:49:19 2014  commencing square root phase
Wed Dec 17 06:49:19 2014  reading relations for dependency 1
Wed Dec 17 06:49:19 2014  read 128320 cycles
Wed Dec 17 06:49:19 2014  cycles contain 362050 unique relations
Wed Dec 17 06:49:26 2014  read 362050 relations
Wed Dec 17 06:49:27 2014  multiplying 362050 relations
Wed Dec 17 06:49:33 2014  multiply complete, coefficients have about 10.49 million bits
Wed Dec 17 06:49:33 2014  initial square root is modulo 1066411
Wed Dec 17 06:49:40 2014  GCD is N, no factor found
Wed Dec 17 06:49:40 2014  reading relations for dependency 2
Wed Dec 17 06:49:40 2014  read 127878 cycles
Wed Dec 17 06:49:40 2014  cycles contain 360844 unique relations
Wed Dec 17 06:49:47 2014  read 360844 relations
Wed Dec 17 06:49:48 2014  multiplying 360844 relations
Wed Dec 17 06:49:54 2014  multiply complete, coefficients have about 10.45 million bits
Wed Dec 17 06:49:54 2014  initial square root is modulo 1017301
Wed Dec 17 06:50:01 2014  GCD is N, no factor found
Wed Dec 17 06:50:01 2014  reading relations for dependency 3
Wed Dec 17 06:50:01 2014  read 128045 cycles
Wed Dec 17 06:50:01 2014  cycles contain 362296 unique relations
Wed Dec 17 06:50:08 2014  read 362296 relations
Wed Dec 17 06:50:09 2014  multiplying 362296 relations
Wed Dec 17 06:50:14 2014  multiply complete, coefficients have about 10.50 million bits
Wed Dec 17 06:50:14 2014  initial square root is modulo 1076651
Wed Dec 17 06:50:22 2014  sqrtTime: 63
--
n: 48838357043828577513102615721348921644971860967666324764152286226236157410092940246980478781393629284292475270099363110202109555082965144401
m: 500000000000000000000000000000
deg: 5
c5: 464
c0: -1
skew: 0.29
# Murphy_E = 1.624e-09
type: snfs
lss: 1
rlim: 2300000
alim: 2300000
lpbr: 27
lpba: 27
mfbr: 49
mfba: 49
rlambda: 2.4
alambda: 2.4
software ソフトウェア
yafu v1.34.3
execution environment 実行環境
Gentoo Linux, Intel(R) Core(TM) i7-3770K CPU

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6300 / 2318Serge BatalovDecember 10, 2014 19:48:35 UTC 2014 年 12 月 11 日 (木) 4 時 48 分 35 秒 (日本時間)

145×10150-19

c142

name 名前Serge Batalov
date 日付December 11, 2014 01:34:26 UTC 2014 年 12 月 11 日 (木) 10 時 34 分 26 秒 (日本時間)
composite number 合成数
5565775707359728852585440499924963113952887328393084717096230600653778055058274895550942079465565870218837399026872167485602947425971359308243<142>
prime factors 素因数
211518102940513424798006800651012458380803<42>
composite cofactor 合成数の残り
26313472133044929924760955918738421328856693990879534175731790966090824854189691917652466921902314481<101>
factorization results 素因数分解の結果
Input number is 5565775707359728852585440499924963113952887328393084717096230600653778055058274895550942079465565870218837399026872167485602947425971359308243 (142 digits)
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=286706208
Step 1 took 9159ms
Step 2 took 5378ms
********** Factor found in step 2: 211518102940513424798006800651012458380803
Found probable prime factor of 42 digits: 211518102940513424798006800651012458380803
Composite cofactor 26313472133044929924760955918738421328856693990879534175731790966090824854189691917652466921902314481 has 101 digits

c101

name 名前Cyp
date 日付December 11, 2014 17:37:48 UTC 2014 年 12 月 12 日 (金) 2 時 37 分 48 秒 (日本時間)
composite number 合成数
26313472133044929924760955918738421328856693990879534175731790966090824854189691917652466921902314481<101>
prime factors 素因数
15246657358688724639996080449451342745311<41>
1725851871266030533958871515334903198742133138208566031943471<61>
factorization results 素因数分解の結果
12/11/14 18:02:46 v1.34.3, 
12/11/14 18:02:46 v1.34.3, ****************************
12/11/14 18:02:46 v1.34.3, Starting factorization of 26313472133044929924760955918738421328856693990879534175731790966090824854189691917652466921902314481
12/11/14 18:02:46 v1.34.3, using pretesting plan: none
12/11/14 18:02:46 v1.34.3, no tune info: using qs/gnfs crossover of 95 digits
12/11/14 18:02:46 v1.34.3, ****************************
12/11/14 18:02:46 v1.34.3, rho: x^2 + 3, starting 1000 iterations on C101
12/11/14 18:02:46 v1.34.3, rho: x^2 + 2, starting 1000 iterations on C101
12/11/14 18:02:46 v1.34.3, rho: x^2 + 1, starting 1000 iterations on C101
12/11/14 18:02:46 v1.34.3, final ECM pretested depth: 0.00
12/11/14 18:02:46 v1.34.3, scheduler: switching to sieve method
12/11/14 18:02:46 v1.34.3, nfs: commencing nfs on c101: 26313472133044929924760955918738421328856693990879534175731790966090824854189691917652466921902314481
12/11/14 18:02:46 v1.34.3, nfs: commencing poly selection with 8 threads
12/11/14 18:02:46 v1.34.3, nfs: setting deadline of 168 seconds
12/11/14 18:06:29 v1.34.3, nfs: completed 35 ranges of size 250 in 223.1547 seconds
12/11/14 18:06:29 v1.34.3, nfs: best poly = # norm 9.855239e-14 alpha -5.302821 e 1.079e-08 rroots 4
12/11/14 18:06:29 v1.34.3, nfs: commencing lattice sieving with 8 threads
12/11/14 18:07:56 v1.34.3, nfs: commencing lattice sieving with 8 threads
[12 lines snipped]
12/11/14 18:27:52 v1.34.3, nfs: commencing lattice sieving with 8 threads
12/11/14 18:29:23 v1.34.3, nfs: commencing lattice sieving with 8 threads
12/11/14 18:31:01 v1.34.3, nfs: commencing msieve filtering
12/11/14 18:31:50 v1.34.3, nfs: commencing lattice sieving with 8 threads
12/11/14 18:33:29 v1.34.3, nfs: commencing msieve filtering
12/11/14 18:34:32 v1.34.3, nfs: commencing msieve linear algebra
12/11/14 18:37:14 v1.34.3, nfs: commencing msieve sqrt
12/11/14 18:37:47 v1.34.3, prp61 = 1725851871266030533958871515334903198742133138208566031943471
12/11/14 18:37:47 v1.34.3, prp41 = 15246657358688724639996080449451342745311
12/11/14 18:37:47 v1.34.3, NFS elapsed time = 2100.8279 seconds.
12/11/14 18:37:47 v1.34.3, 
12/11/14 18:37:47 v1.34.3, 
12/11/14 18:37:47 v1.34.3, Total factoring time = 2100.8507 seconds
--
Thu Dec 11 18:31:01 2014  
Thu Dec 11 18:31:01 2014  commencing relation filtering
Thu Dec 11 18:31:01 2014  estimated available RAM is 15987.3 MB
Thu Dec 11 18:31:01 2014  commencing duplicate removal, pass 1
Thu Dec 11 18:31:16 2014  found 445767 hash collisions in 4721602 relations
Thu Dec 11 18:31:20 2014  added 156839 free relations
Thu Dec 11 18:31:20 2014  commencing duplicate removal, pass 2
Thu Dec 11 18:31:23 2014  found 190277 duplicates and 4688164 unique relations
Thu Dec 11 18:31:23 2014  memory use: 20.6 MB
Thu Dec 11 18:31:23 2014  reading ideals above 100000
Thu Dec 11 18:31:23 2014  commencing singleton removal, initial pass
Thu Dec 11 18:31:47 2014  memory use: 172.2 MB
Thu Dec 11 18:31:47 2014  reading all ideals from disk
Thu Dec 11 18:31:47 2014  memory use: 146.6 MB
Thu Dec 11 18:31:47 2014  keeping 5403431 ideals with weight <= 200, target excess is 41294
Thu Dec 11 18:31:48 2014  commencing in-memory singleton removal
Thu Dec 11 18:31:48 2014  begin with 4688164 relations and 5403431 unique ideals
Thu Dec 11 18:31:50 2014  reduce to 1351248 relations and 1312671 ideals in 23 passes
Thu Dec 11 18:31:50 2014  max relations containing the same ideal: 85
Thu Dec 11 18:33:29 2014  
Thu Dec 11 18:33:29 2014  commencing relation filtering
Thu Dec 11 18:33:29 2014  estimated available RAM is 15987.3 MB
Thu Dec 11 18:33:29 2014  commencing duplicate removal, pass 1
Thu Dec 11 18:33:46 2014  found 518290 hash collisions in 5188287 relations
Thu Dec 11 18:33:51 2014  added 1248 free relations
Thu Dec 11 18:33:51 2014  commencing duplicate removal, pass 2
Thu Dec 11 18:33:55 2014  found 213283 duplicates and 4976252 unique relations
Thu Dec 11 18:33:55 2014  memory use: 20.6 MB
Thu Dec 11 18:33:55 2014  reading ideals above 100000
Thu Dec 11 18:33:55 2014  commencing singleton removal, initial pass
Thu Dec 11 18:34:18 2014  memory use: 172.2 MB
Thu Dec 11 18:34:18 2014  reading all ideals from disk
Thu Dec 11 18:34:18 2014  memory use: 155.7 MB
Thu Dec 11 18:34:19 2014  keeping 5533244 ideals with weight <= 200, target excess is 44094
Thu Dec 11 18:34:19 2014  commencing in-memory singleton removal
Thu Dec 11 18:34:19 2014  begin with 4976252 relations and 5533244 unique ideals
Thu Dec 11 18:34:22 2014  reduce to 1714489 relations and 1583554 ideals in 20 passes
Thu Dec 11 18:34:22 2014  max relations containing the same ideal: 106
Thu Dec 11 18:34:22 2014  removing 323069 relations and 283176 ideals in 39893 cliques
Thu Dec 11 18:34:22 2014  commencing in-memory singleton removal
Thu Dec 11 18:34:22 2014  begin with 1391420 relations and 1583554 unique ideals
Thu Dec 11 18:34:23 2014  reduce to 1338787 relations and 1246034 ideals in 9 passes
Thu Dec 11 18:34:23 2014  max relations containing the same ideal: 86
Thu Dec 11 18:34:23 2014  removing 239650 relations and 199757 ideals in 39893 cliques
Thu Dec 11 18:34:23 2014  commencing in-memory singleton removal
Thu Dec 11 18:34:23 2014  begin with 1099137 relations and 1246034 unique ideals
Thu Dec 11 18:34:24 2014  reduce to 1060447 relations and 1006363 ideals in 10 passes
Thu Dec 11 18:34:24 2014  max relations containing the same ideal: 69
Thu Dec 11 18:34:24 2014  relations with 0 large ideals: 613
Thu Dec 11 18:34:24 2014  relations with 1 large ideals: 4675
Thu Dec 11 18:34:24 2014  relations with 2 large ideals: 30710
Thu Dec 11 18:34:24 2014  relations with 3 large ideals: 120560
Thu Dec 11 18:34:24 2014  relations with 4 large ideals: 259953
Thu Dec 11 18:34:24 2014  relations with 5 large ideals: 323727
Thu Dec 11 18:34:24 2014  relations with 6 large ideals: 216395
Thu Dec 11 18:34:24 2014  relations with 7+ large ideals: 103814
Thu Dec 11 18:34:24 2014  commencing 2-way merge
Thu Dec 11 18:34:24 2014  reduce to 591644 relation sets and 537559 unique ideals
Thu Dec 11 18:34:24 2014  commencing full merge
Thu Dec 11 18:34:30 2014  memory use: 55.1 MB
Thu Dec 11 18:34:30 2014  found 275647 cycles, need 267759
Thu Dec 11 18:34:30 2014  weight of 267759 cycles is about 18754888 (70.04/cycle)
Thu Dec 11 18:34:30 2014  distribution of cycle lengths:
Thu Dec 11 18:34:30 2014  1 relations: 26814
Thu Dec 11 18:34:30 2014  2 relations: 26595
Thu Dec 11 18:34:30 2014  3 relations: 26436
Thu Dec 11 18:34:30 2014  4 relations: 24988
Thu Dec 11 18:34:30 2014  5 relations: 22464
Thu Dec 11 18:34:30 2014  6 relations: 20508
Thu Dec 11 18:34:30 2014  7 relations: 18192
Thu Dec 11 18:34:30 2014  8 relations: 16482
Thu Dec 11 18:34:30 2014  9 relations: 14514
Thu Dec 11 18:34:30 2014  10+ relations: 70766
Thu Dec 11 18:34:30 2014  heaviest cycle: 23 relations
Thu Dec 11 18:34:30 2014  commencing cycle optimization
Thu Dec 11 18:34:30 2014  start with 1827106 relations
Thu Dec 11 18:34:32 2014  pruned 43073 relations
Thu Dec 11 18:34:32 2014  memory use: 59.4 MB
Thu Dec 11 18:34:32 2014  distribution of cycle lengths:
Thu Dec 11 18:34:32 2014  1 relations: 26814
Thu Dec 11 18:34:32 2014  2 relations: 27161
Thu Dec 11 18:34:32 2014  3 relations: 27367
Thu Dec 11 18:34:32 2014  4 relations: 25573
Thu Dec 11 18:34:32 2014  5 relations: 22980
Thu Dec 11 18:34:32 2014  6 relations: 20883
Thu Dec 11 18:34:32 2014  7 relations: 18475
Thu Dec 11 18:34:32 2014  8 relations: 16686
Thu Dec 11 18:34:32 2014  9 relations: 14573
Thu Dec 11 18:34:32 2014  10+ relations: 67247
Thu Dec 11 18:34:32 2014  heaviest cycle: 23 relations
Thu Dec 11 18:34:32 2014  RelProcTime: 63
Thu Dec 11 18:34:32 2014  
Thu Dec 11 18:34:32 2014  commencing linear algebra
Thu Dec 11 18:34:32 2014  read 267759 cycles
Thu Dec 11 18:34:33 2014  cycles contain 985192 unique relations
Thu Dec 11 18:34:38 2014  read 985192 relations
Thu Dec 11 18:34:39 2014  using 20 quadratic characters above 67104834
Thu Dec 11 18:34:42 2014  building initial matrix
Thu Dec 11 18:34:48 2014  memory use: 117.6 MB
Thu Dec 11 18:34:48 2014  read 267759 cycles
Thu Dec 11 18:34:48 2014  matrix is 267568 x 267759 (80.1 MB) with weight 25584714 (95.55/col)
Thu Dec 11 18:34:48 2014  sparse part has weight 18061848 (67.46/col)
Thu Dec 11 18:34:50 2014  filtering completed in 2 passes
Thu Dec 11 18:34:50 2014  matrix is 266485 x 266676 (80.0 MB) with weight 25530304 (95.74/col)
Thu Dec 11 18:34:50 2014  sparse part has weight 18039973 (67.65/col)
Thu Dec 11 18:34:50 2014  matrix starts at (0, 0)
Thu Dec 11 18:34:50 2014  matrix is 266485 x 266676 (80.0 MB) with weight 25530304 (95.74/col)
Thu Dec 11 18:34:50 2014  sparse part has weight 18039973 (67.65/col)
Thu Dec 11 18:34:50 2014  saving the first 48 matrix rows for later
Thu Dec 11 18:34:50 2014  matrix includes 64 packed rows
Thu Dec 11 18:34:50 2014  matrix is 266437 x 266676 (77.2 MB) with weight 20264288 (75.99/col)
Thu Dec 11 18:34:50 2014  sparse part has weight 17567213 (65.87/col)
Thu Dec 11 18:34:50 2014  using block size 65536 for processor cache size 8192 kB
Thu Dec 11 18:34:51 2014  commencing Lanczos iteration (8 threads)
Thu Dec 11 18:34:51 2014  memory use: 72.9 MB
Thu Dec 11 18:34:57 2014  linear algebra at 4.6%, ETA 0h 2m
Thu Dec 11 18:37:14 2014  lanczos halted after 4215 iterations (dim = 266435)
Thu Dec 11 18:37:14 2014  recovered 31 nontrivial dependencies
Thu Dec 11 18:37:14 2014  BLanczosTime: 162
Thu Dec 11 18:37:14 2014  
Thu Dec 11 18:37:14 2014  commencing square root phase
Thu Dec 11 18:37:14 2014  reading relations for dependency 1
Thu Dec 11 18:37:15 2014  read 133430 cycles
Thu Dec 11 18:37:15 2014  cycles contain 493520 unique relations
Thu Dec 11 18:37:19 2014  read 493520 relations
Thu Dec 11 18:37:20 2014  multiplying 493520 relations
Thu Dec 11 18:37:31 2014  multiply complete, coefficients have about 21.64 million bits
Thu Dec 11 18:37:31 2014  initial square root is modulo 1637221
Thu Dec 11 18:37:47 2014  sqrtTime: 33
--
n: 26313472133044929924760955918738421328856693990879534175731790966090824854189691917652466921902314481
skew: 851976.28
c0: 2064169228612696497921880212
c1: -9509825726759627083528
c2: -4412150702478629
c3: 31639998318
c4: 8712
Y0: -1318287342327636646891867
Y1: 16685455553321
rlim: 1940000
alim: 1940000
lpbr: 26
lpba: 26
mfbr: 52
mfba: 52
rlambda: 2.5
alambda: 2.5
software ソフトウェア
yafu v1.34.3
execution environment 実行環境
Gentoo Linux, Intel(R) Core(TM) i7-3770K CPU

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6300 / 2318Serge BatalovDecember 10, 2014 19:48:36 UTC 2014 年 12 月 11 日 (木) 4 時 48 分 36 秒 (日本時間)

145×10151-19

c107

name 名前Ignacio Santos
date 日付December 8, 2014 16:33:38 UTC 2014 年 12 月 9 日 (火) 1 時 33 分 38 秒 (日本時間)
composite number 合成数
36930383690426406034619900494209567139539129062219104006825084496312170780617701354185753011027677503019341<107>
prime factors 素因数
962099671706474084043293230753<30>
composite cofactor 合成数の残り
38385195189728175701801754636958261527975782481742321420555348397696257937197<77>
factorization results 素因数分解の結果
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1:2058931936
Step 1 took 1266ms
Step 2 took 1422ms
********** Factor found in step 2: 962099671706474084043293230753
Found probable prime factor of 30 digits: 962099671706474084043293230753
Composite cofactor 38385195189728175701801754636958261527975782481742321420555348397696257937197 has 77 digits
software ソフトウェア
GMP-ECM 7.0

c77

name 名前Serge Batalov
date 日付December 9, 2014 16:20:44 UTC 2014 年 12 月 10 日 (水) 1 時 20 分 44 秒 (日本時間)
composite number 合成数
38385195189728175701801754636958261527975782481742321420555348397696257937197<77>
prime factors 素因数
1568539601493466682259062699874132913<37>
24471932460729815123065899931519428177469<41>
factorization results 素因数分解の結果
***factors found***

PRP37 = 1568539601493466682259062699874132913
PRP41 = 24471932460729815123065899931519428177469
software ソフトウェア
yafu 1.31

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaDecember 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間)

145×10152-19

c124

name 名前Cyp
date 日付December 19, 2014 16:37:23 UTC 2014 年 12 月 20 日 (土) 1 時 37 分 23 秒 (日本時間)
composite number 合成数
1224632824819469858673365762167979588119995669319167142457066962119715365424141785030772743608489699739937518131636733799309<124>
prime factors 素因数
53293149359438998496888412176677978251747825138772999461301<59>
22979179116622602479615617353752993723873881558835237196044767609<65>
factorization results 素因数分解の結果
12/19/14 15:38:12 v1.34.3, 
12/19/14 15:38:12 v1.34.3, ****************************
12/19/14 15:38:12 v1.34.3, Starting factorization of 1224632824819469858673365762167979588119995669319167142457066962119715365424141785030772743608489699739937518131636733799309
12/19/14 15:38:12 v1.34.3, using pretesting plan: none
12/19/14 15:38:12 v1.34.3, no tune info: using qs/gnfs crossover of 95 digits
12/19/14 15:38:12 v1.34.3, ****************************
12/19/14 15:38:12 v1.34.3, nfs: commencing nfs on c124: 1224632824819469858673365762167979588119995669319167142457066962119715365424141785030772743608489699739937518131636733799309
12/19/14 15:38:12 v1.34.3, nfs: continuing with sieving - could not determine last special q; using default startq
12/19/14 15:38:12 v1.34.3, nfs: commencing lattice sieving with 8 threads
12/19/14 15:39:04 v1.34.3, nfs: commencing lattice sieving with 8 threads
[113 lines snipped]
12/19/14 17:26:33 v1.34.3, nfs: commencing lattice sieving with 8 threads
12/19/14 17:27:31 v1.34.3, nfs: commencing lattice sieving with 8 threads
12/19/14 17:28:28 v1.34.3, nfs: commencing msieve filtering
12/19/14 17:30:07 v1.34.3, nfs: commencing msieve linear algebra
12/19/14 17:33:53 v1.34.3, nfs: commencing msieve sqrt
12/19/14 17:37:22 v1.34.3, prp65 = 22979179116622602479615617353752993723873881558835237196044767609
12/19/14 17:37:22 v1.34.3, prp59 = 53293149359438998496888412176677978251747825138772999461301
12/19/14 17:37:22 v1.34.3, NFS elapsed time = 7149.7136 seconds.
12/19/14 17:37:22 v1.34.3, 
12/19/14 17:37:22 v1.34.3, 
12/19/14 17:37:22 v1.34.3, Total factoring time = 7149.7142 seconds
--
Fri Dec 19 17:28:28 2014  
Fri Dec 19 17:28:28 2014  commencing relation filtering
Fri Dec 19 17:28:28 2014  estimated available RAM is 15987.3 MB
Fri Dec 19 17:28:28 2014  commencing duplicate removal, pass 1
Fri Dec 19 17:28:55 2014  found 1570089 hash collisions in 10044417 relations
Fri Dec 19 17:29:03 2014  added 356204 free relations
Fri Dec 19 17:29:03 2014  commencing duplicate removal, pass 2
Fri Dec 19 17:29:11 2014  found 1209619 duplicates and 9191002 unique relations
Fri Dec 19 17:29:11 2014  memory use: 41.3 MB
Fri Dec 19 17:29:11 2014  reading ideals above 100000
Fri Dec 19 17:29:11 2014  commencing singleton removal, initial pass
Fri Dec 19 17:29:49 2014  memory use: 188.2 MB
Fri Dec 19 17:29:49 2014  reading all ideals from disk
Fri Dec 19 17:29:49 2014  memory use: 308.1 MB
Fri Dec 19 17:29:50 2014  keeping 9526010 ideals with weight <= 200, target excess is 46513
Fri Dec 19 17:29:50 2014  commencing in-memory singleton removal
Fri Dec 19 17:29:50 2014  begin with 9191002 relations and 9526010 unique ideals
Fri Dec 19 17:29:53 2014  reduce to 4266856 relations and 3443519 ideals in 12 passes
Fri Dec 19 17:29:53 2014  max relations containing the same ideal: 120
Fri Dec 19 17:29:54 2014  removing 1274940 relations and 890249 ideals in 384691 cliques
Fri Dec 19 17:29:54 2014  commencing in-memory singleton removal
Fri Dec 19 17:29:54 2014  begin with 2991916 relations and 3443519 unique ideals
Fri Dec 19 17:29:55 2014  reduce to 2743361 relations and 2276933 ideals in 9 passes
Fri Dec 19 17:29:55 2014  max relations containing the same ideal: 94
Fri Dec 19 17:29:56 2014  removing 1070838 relations and 686147 ideals in 384691 cliques
Fri Dec 19 17:29:56 2014  commencing in-memory singleton removal
Fri Dec 19 17:29:56 2014  begin with 1672523 relations and 2276933 unique ideals
Fri Dec 19 17:29:56 2014  reduce to 1452382 relations and 1339317 ideals in 9 passes
Fri Dec 19 17:29:56 2014  max relations containing the same ideal: 58
Fri Dec 19 17:29:57 2014  removing 234468 relations and 175359 ideals in 59109 cliques
Fri Dec 19 17:29:57 2014  commencing in-memory singleton removal
Fri Dec 19 17:29:57 2014  begin with 1217914 relations and 1339317 unique ideals
Fri Dec 19 17:29:57 2014  reduce to 1187002 relations and 1131656 ideals in 8 passes
Fri Dec 19 17:29:57 2014  max relations containing the same ideal: 50
Fri Dec 19 17:29:57 2014  relations with 0 large ideals: 1093
Fri Dec 19 17:29:57 2014  relations with 1 large ideals: 864
Fri Dec 19 17:29:57 2014  relations with 2 large ideals: 11461
Fri Dec 19 17:29:57 2014  relations with 3 large ideals: 67999
Fri Dec 19 17:29:57 2014  relations with 4 large ideals: 201332
Fri Dec 19 17:29:57 2014  relations with 5 large ideals: 330696
Fri Dec 19 17:29:57 2014  relations with 6 large ideals: 328277
Fri Dec 19 17:29:57 2014  relations with 7+ large ideals: 245280
Fri Dec 19 17:29:57 2014  commencing 2-way merge
Fri Dec 19 17:29:58 2014  reduce to 745500 relation sets and 690154 unique ideals
Fri Dec 19 17:29:58 2014  commencing full merge
Fri Dec 19 17:30:04 2014  memory use: 88.6 MB
Fri Dec 19 17:30:04 2014  found 384715 cycles, need 376354
Fri Dec 19 17:30:04 2014  weight of 376354 cycles is about 26574535 (70.61/cycle)
Fri Dec 19 17:30:04 2014  distribution of cycle lengths:
Fri Dec 19 17:30:04 2014  1 relations: 25914
Fri Dec 19 17:30:04 2014  2 relations: 35577
Fri Dec 19 17:30:04 2014  3 relations: 40026
Fri Dec 19 17:30:04 2014  4 relations: 40107
Fri Dec 19 17:30:04 2014  5 relations: 39300
Fri Dec 19 17:30:04 2014  6 relations: 36211
Fri Dec 19 17:30:05 2014  7 relations: 32857
Fri Dec 19 17:30:05 2014  8 relations: 28370
Fri Dec 19 17:30:05 2014  9 relations: 23861
Fri Dec 19 17:30:05 2014  10+ relations: 74131
Fri Dec 19 17:30:05 2014  heaviest cycle: 20 relations
Fri Dec 19 17:30:05 2014  commencing cycle optimization
Fri Dec 19 17:30:05 2014  start with 2364831 relations
Fri Dec 19 17:30:07 2014  pruned 74188 relations
Fri Dec 19 17:30:07 2014  memory use: 72.9 MB
Fri Dec 19 17:30:07 2014  distribution of cycle lengths:
Fri Dec 19 17:30:07 2014  1 relations: 25914
Fri Dec 19 17:30:07 2014  2 relations: 36330
Fri Dec 19 17:30:07 2014  3 relations: 41544
Fri Dec 19 17:30:07 2014  4 relations: 41480
Fri Dec 19 17:30:07 2014  5 relations: 40812
Fri Dec 19 17:30:07 2014  6 relations: 37521
Fri Dec 19 17:30:07 2014  7 relations: 33786
Fri Dec 19 17:30:07 2014  8 relations: 28910
Fri Dec 19 17:30:07 2014  9 relations: 23832
Fri Dec 19 17:30:07 2014  10+ relations: 66225
Fri Dec 19 17:30:07 2014  heaviest cycle: 20 relations
Fri Dec 19 17:30:07 2014  RelProcTime: 99
Fri Dec 19 17:30:07 2014  
Fri Dec 19 17:30:07 2014  commencing linear algebra
Fri Dec 19 17:30:07 2014  read 376354 cycles
Fri Dec 19 17:30:08 2014  cycles contain 1148109 unique relations
Fri Dec 19 17:30:16 2014  read 1148109 relations
Fri Dec 19 17:30:17 2014  using 20 quadratic characters above 134213294
Fri Dec 19 17:30:20 2014  building initial matrix
Fri Dec 19 17:30:26 2014  memory use: 141.5 MB
Fri Dec 19 17:30:26 2014  read 376354 cycles
Fri Dec 19 17:30:26 2014  matrix is 376177 x 376354 (112.4 MB) with weight 33599413 (89.28/col)
Fri Dec 19 17:30:26 2014  sparse part has weight 25328952 (67.30/col)
Fri Dec 19 17:30:28 2014  filtering completed in 2 passes
Fri Dec 19 17:30:28 2014  matrix is 376065 x 376242 (112.4 MB) with weight 33595487 (89.29/col)
Fri Dec 19 17:30:28 2014  sparse part has weight 25327404 (67.32/col)
Fri Dec 19 17:30:28 2014  matrix starts at (0, 0)
Fri Dec 19 17:30:28 2014  matrix is 376065 x 376242 (112.4 MB) with weight 33595487 (89.29/col)
Fri Dec 19 17:30:28 2014  sparse part has weight 25327404 (67.32/col)
Fri Dec 19 17:30:28 2014  saving the first 48 matrix rows for later
Fri Dec 19 17:30:28 2014  matrix includes 64 packed rows
Fri Dec 19 17:30:29 2014  matrix is 376017 x 376242 (105.9 MB) with weight 26638064 (70.80/col)
Fri Dec 19 17:30:29 2014  sparse part has weight 24008610 (63.81/col)
Fri Dec 19 17:30:29 2014  using block size 65536 for processor cache size 8192 kB
Fri Dec 19 17:30:29 2014  commencing Lanczos iteration (8 threads)
Fri Dec 19 17:30:29 2014  memory use: 101.7 MB
Fri Dec 19 17:30:36 2014  linear algebra at 3.2%, ETA 0h 3m
Fri Dec 19 17:33:52 2014  lanczos halted after 5949 iterations (dim = 376013)
Fri Dec 19 17:33:53 2014  recovered 37 nontrivial dependencies
Fri Dec 19 17:33:53 2014  BLanczosTime: 226
Fri Dec 19 17:33:53 2014  
Fri Dec 19 17:33:53 2014  commencing square root phase
Fri Dec 19 17:33:53 2014  reading relations for dependency 1
Fri Dec 19 17:33:53 2014  read 188074 cycles
Fri Dec 19 17:33:53 2014  cycles contain 574622 unique relations
Fri Dec 19 17:34:00 2014  read 574622 relations
Fri Dec 19 17:34:01 2014  multiplying 574622 relations
Fri Dec 19 17:34:13 2014  multiply complete, coefficients have about 18.88 million bits
Fri Dec 19 17:34:13 2014  initial square root is modulo 264731
Fri Dec 19 17:34:28 2014  GCD is 1, no factor found
Fri Dec 19 17:34:28 2014  reading relations for dependency 2
Fri Dec 19 17:34:28 2014  read 188379 cycles
Fri Dec 19 17:34:28 2014  cycles contain 574456 unique relations
Fri Dec 19 17:34:35 2014  read 574456 relations
Fri Dec 19 17:34:36 2014  multiplying 574456 relations
Fri Dec 19 17:34:47 2014  multiply complete, coefficients have about 18.87 million bits
Fri Dec 19 17:34:48 2014  initial square root is modulo 263881
Fri Dec 19 17:35:03 2014  GCD is N, no factor found
Fri Dec 19 17:35:03 2014  reading relations for dependency 3
Fri Dec 19 17:35:03 2014  read 187775 cycles
Fri Dec 19 17:35:03 2014  cycles contain 573652 unique relations
Fri Dec 19 17:35:10 2014  read 573652 relations
Fri Dec 19 17:35:11 2014  multiplying 573652 relations
Fri Dec 19 17:35:22 2014  multiply complete, coefficients have about 18.85 million bits
Fri Dec 19 17:35:22 2014  initial square root is modulo 259211
Fri Dec 19 17:35:37 2014  GCD is 1, no factor found
Fri Dec 19 17:35:37 2014  reading relations for dependency 4
Fri Dec 19 17:35:37 2014  read 188698 cycles
Fri Dec 19 17:35:37 2014  cycles contain 574458 unique relations
Fri Dec 19 17:35:44 2014  read 574458 relations
Fri Dec 19 17:35:45 2014  multiplying 574458 relations
Fri Dec 19 17:35:57 2014  multiply complete, coefficients have about 18.87 million bits
Fri Dec 19 17:35:57 2014  initial square root is modulo 264031
Fri Dec 19 17:36:12 2014  GCD is N, no factor found
Fri Dec 19 17:36:12 2014  reading relations for dependency 5
Fri Dec 19 17:36:12 2014  read 187956 cycles
Fri Dec 19 17:36:12 2014  cycles contain 574194 unique relations
Fri Dec 19 17:36:19 2014  read 574194 relations
Fri Dec 19 17:36:20 2014  multiplying 574194 relations
Fri Dec 19 17:36:31 2014  multiply complete, coefficients have about 18.87 million bits
Fri Dec 19 17:36:32 2014  initial square root is modulo 262391
Fri Dec 19 17:36:47 2014  GCD is N, no factor found
Fri Dec 19 17:36:47 2014  reading relations for dependency 6
Fri Dec 19 17:36:47 2014  read 188519 cycles
Fri Dec 19 17:36:47 2014  cycles contain 574550 unique relations
Fri Dec 19 17:36:54 2014  read 574550 relations
Fri Dec 19 17:36:55 2014  multiplying 574550 relations
Fri Dec 19 17:37:06 2014  multiply complete, coefficients have about 18.88 million bits
Fri Dec 19 17:37:07 2014  initial square root is modulo 264301
Fri Dec 19 17:37:22 2014  sqrtTime: 209
--
n: 1224632824819469858673365762167979588119995669319167142457066962119715365424141785030772743608489699739937518131636733799309
m: 1000000000000000000000000000000
deg: 5
c5: 14500
c0: -1
skew: 0.15
# Murphy_E = 9.402e-10
type: snfs
lss: 1
rlim: 2600000
alim: 2600000
lpbr: 27
lpba: 27
mfbr: 50
mfba: 50
rlambda: 2.4
alambda: 2.4
software ソフトウェア
yafu v1.34.3
execution environment 実行環境
Gentoo Linux, Intel(R) Core(TM) i7-3770K CPU

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6300 / 2318Serge BatalovDecember 10, 2014 19:48:36 UTC 2014 年 12 月 11 日 (木) 4 時 48 分 36 秒 (日本時間)

145×10153-19

c99

name 名前Dmitry Domanov
date 日付December 7, 2014 11:26:44 UTC 2014 年 12 月 7 日 (日) 20 時 26 分 44 秒 (日本時間)
composite number 合成数
115207872276716066170606560132514120343821129736453721472220489125890342969800194014166708183584749<99>
prime factors 素因数
126022937854865016783949612764539<33>
914181769110920282519831633114268515783278183719830722977436350391<66>
factorization results 素因数分解の結果
N=115207872276716066170606560132514120343821129736453721472220489125890342969800194014166708183584749
  ( 99 digits)
Divisors found:
 r1=126022937854865016783949612764539 (pp33)
 r2=914181769110920282519831633114268515783278183719830722977436350391 (pp66)
Version: Msieve v. 1.50 (SVN unknown)
Total time: 3.14 hours.
Scaled time: 5.22 units (timescale=1.666).
Factorization parameters were as follows:
n: 115207872276716066170606560132514120343821129736453721472220489125890342969800194014166708183584749
skew: 872013.44
c0: -153178867291591168878716320
c1: -1464618040815377403898
c2: -11905367570203443
c3: 7505105874
c4: 7056
Y0: -357462504025256135991201
Y1: 1246416854171
rlim: 1740000
alim: 1740000
lpbr: 26
lpba: 26
mfbr: 52
mfba: 52
rlambda: 2.5
alambda: 2.5
type: gnfs
Factor base limits: 1740000/1740000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 52/52
Sieved algebraic special-q in [870000, 1170001)
Primes: , ,
Relations: relations
Max relations in full relation-set:
Initial matrix:
Pruned matrix : 165601 x 165831
Total sieving time: 2.96 hours.
Total relation processing time: 0.07 hours.
Matrix solve time: 0.09 hours.
Time per square root: 0.01 hours.
Prototype def-par.txt line would be:
gnfs,98,4,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1740000,1740000,26,26,52,52,2.5,2.5,100000
total time: 3.14 hours.

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaDecember 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間)

145×10154-19

c137

name 名前Cyp
date 日付December 17, 2014 19:40:36 UTC 2014 年 12 月 18 日 (木) 4 時 40 分 36 秒 (日本時間)
composite number 合成数
15368500301090028480294160073649470877104062676749689100659887798381734743090062023083743690168660135679097208056722315218316836233675103<137>
prime factors 素因数
6455048313979363114390136808381801550827239354104463176453273<61>
2380849771148461431124715177511618715398443879899370528992752794388431126711<76>
factorization results 素因数分解の結果
12/17/14 18:44:04 v1.34.3, 
12/17/14 18:44:04 v1.34.3, ****************************
12/17/14 18:44:04 v1.34.3, Starting factorization of 15368500301090028480294160073649470877104062676749689100659887798381734743090062023083743690168660135679097208056722315218316836233675103
12/17/14 18:44:04 v1.34.3, using pretesting plan: none
12/17/14 18:44:04 v1.34.3, no tune info: using qs/gnfs crossover of 95 digits
12/17/14 18:44:04 v1.34.3, ****************************
12/17/14 18:44:04 v1.34.3, nfs: commencing nfs on c137: 15368500301090028480294160073649470877104062676749689100659887798381734743090062023083743690168660135679097208056722315218316836233675103
12/17/14 18:44:04 v1.34.3, nfs: continuing with sieving - could not determine last special q; using default startq
12/17/14 18:44:04 v1.34.3, nfs: commencing lattice sieving with 8 threads
12/17/14 18:45:09 v1.34.3, nfs: commencing lattice sieving with 8 threads
[85 lines snipped]
12/17/14 20:27:37 v1.34.3, nfs: commencing lattice sieving with 8 threads
12/17/14 20:28:51 v1.34.3, nfs: commencing lattice sieving with 8 threads
12/17/14 20:30:02 v1.34.3, nfs: commencing msieve filtering
12/17/14 20:31:42 v1.34.3, nfs: commencing msieve linear algebra
12/17/14 20:35:21 v1.34.3, nfs: commencing msieve sqrt
12/17/14 20:40:35 v1.34.3, prp76 = 2380849771148461431124715177511618715398443879899370528992752794388431126711
12/17/14 20:40:35 v1.34.3, prp61 = 6455048313979363114390136808381801550827239354104463176453273
12/17/14 20:40:35 v1.34.3, NFS elapsed time = 6991.0258 seconds.
12/17/14 20:40:35 v1.34.3, 
12/17/14 20:40:35 v1.34.3, 
12/17/14 20:40:35 v1.34.3, Total factoring time = 6991.0264 seconds
--
Wed Dec 17 20:30:02 2014  
Wed Dec 17 20:30:02 2014  commencing relation filtering
Wed Dec 17 20:30:02 2014  estimated available RAM is 15987.3 MB
Wed Dec 17 20:30:02 2014  commencing duplicate removal, pass 1
Wed Dec 17 20:30:29 2014  found 1509465 hash collisions in 10125261 relations
Wed Dec 17 20:30:37 2014  added 356039 free relations
Wed Dec 17 20:30:37 2014  commencing duplicate removal, pass 2
Wed Dec 17 20:30:45 2014  found 1115418 duplicates and 9365882 unique relations
Wed Dec 17 20:30:45 2014  memory use: 41.3 MB
Wed Dec 17 20:30:45 2014  reading ideals above 100000
Wed Dec 17 20:30:45 2014  commencing singleton removal, initial pass
Wed Dec 17 20:31:24 2014  memory use: 188.2 MB
Wed Dec 17 20:31:24 2014  reading all ideals from disk
Wed Dec 17 20:31:24 2014  memory use: 313.9 MB
Wed Dec 17 20:31:24 2014  keeping 9599624 ideals with weight <= 200, target excess is 46869
Wed Dec 17 20:31:25 2014  commencing in-memory singleton removal
Wed Dec 17 20:31:25 2014  begin with 9365882 relations and 9599624 unique ideals
Wed Dec 17 20:31:27 2014  reduce to 4451980 relations and 3545632 ideals in 11 passes
Wed Dec 17 20:31:27 2014  max relations containing the same ideal: 125
Wed Dec 17 20:31:28 2014  removing 1303491 relations and 903491 ideals in 400000 cliques
Wed Dec 17 20:31:29 2014  commencing in-memory singleton removal
Wed Dec 17 20:31:29 2014  begin with 3148489 relations and 3545632 unique ideals
Wed Dec 17 20:31:30 2014  reduce to 2903639 relations and 2370379 ideals in 9 passes
Wed Dec 17 20:31:30 2014  max relations containing the same ideal: 93
Wed Dec 17 20:31:31 2014  removing 1096552 relations and 696552 ideals in 400000 cliques
Wed Dec 17 20:31:31 2014  commencing in-memory singleton removal
Wed Dec 17 20:31:31 2014  begin with 1807087 relations and 2370379 unique ideals
Wed Dec 17 20:31:31 2014  reduce to 1592262 relations and 1429886 ideals in 9 passes
Wed Dec 17 20:31:31 2014  max relations containing the same ideal: 61
Wed Dec 17 20:31:32 2014  removing 362461 relations and 254454 ideals in 108007 cliques
Wed Dec 17 20:31:32 2014  commencing in-memory singleton removal
Wed Dec 17 20:31:32 2014  begin with 1229801 relations and 1429886 unique ideals
Wed Dec 17 20:31:32 2014  reduce to 1166899 relations and 1108165 ideals in 7 passes
Wed Dec 17 20:31:32 2014  max relations containing the same ideal: 52
Wed Dec 17 20:31:32 2014  relations with 0 large ideals: 1092
Wed Dec 17 20:31:32 2014  relations with 1 large ideals: 862
Wed Dec 17 20:31:32 2014  relations with 2 large ideals: 12027
Wed Dec 17 20:31:32 2014  relations with 3 large ideals: 69430
Wed Dec 17 20:31:32 2014  relations with 4 large ideals: 202980
Wed Dec 17 20:31:32 2014  relations with 5 large ideals: 328155
Wed Dec 17 20:31:32 2014  relations with 6 large ideals: 319735
Wed Dec 17 20:31:32 2014  relations with 7+ large ideals: 232618
Wed Dec 17 20:31:32 2014  commencing 2-way merge
Wed Dec 17 20:31:33 2014  reduce to 733606 relation sets and 674872 unique ideals
Wed Dec 17 20:31:33 2014  commencing full merge
Wed Dec 17 20:31:39 2014  memory use: 87.2 MB
Wed Dec 17 20:31:39 2014  found 376229 cycles, need 365072
Wed Dec 17 20:31:39 2014  weight of 365072 cycles is about 25882325 (70.90/cycle)
Wed Dec 17 20:31:39 2014  distribution of cycle lengths:
Wed Dec 17 20:31:39 2014  1 relations: 25101
Wed Dec 17 20:31:39 2014  2 relations: 33618
Wed Dec 17 20:31:39 2014  3 relations: 38003
Wed Dec 17 20:31:39 2014  4 relations: 38407
Wed Dec 17 20:31:39 2014  5 relations: 38440
Wed Dec 17 20:31:39 2014  6 relations: 35735
Wed Dec 17 20:31:39 2014  7 relations: 32124
Wed Dec 17 20:31:39 2014  8 relations: 27861
Wed Dec 17 20:31:39 2014  9 relations: 23398
Wed Dec 17 20:31:39 2014  10+ relations: 72385
Wed Dec 17 20:31:39 2014  heaviest cycle: 19 relations
Wed Dec 17 20:31:40 2014  commencing cycle optimization
Wed Dec 17 20:31:40 2014  start with 2302390 relations
Wed Dec 17 20:31:42 2014  pruned 74615 relations
Wed Dec 17 20:31:42 2014  memory use: 70.8 MB
Wed Dec 17 20:31:42 2014  distribution of cycle lengths:
Wed Dec 17 20:31:42 2014  1 relations: 25101
Wed Dec 17 20:31:42 2014  2 relations: 34348
Wed Dec 17 20:31:42 2014  3 relations: 39445
Wed Dec 17 20:31:42 2014  4 relations: 39825
Wed Dec 17 20:31:42 2014  5 relations: 40158
Wed Dec 17 20:31:42 2014  6 relations: 36940
Wed Dec 17 20:31:42 2014  7 relations: 33205
Wed Dec 17 20:31:42 2014  8 relations: 28367
Wed Dec 17 20:31:42 2014  9 relations: 23464
Wed Dec 17 20:31:42 2014  10+ relations: 64219
Wed Dec 17 20:31:42 2014  heaviest cycle: 18 relations
Wed Dec 17 20:31:42 2014  RelProcTime: 100
Wed Dec 17 20:31:42 2014  
Wed Dec 17 20:31:42 2014  commencing linear algebra
Wed Dec 17 20:31:42 2014  read 365072 cycles
Wed Dec 17 20:31:43 2014  cycles contain 1113516 unique relations
Wed Dec 17 20:31:51 2014  read 1113516 relations
Wed Dec 17 20:31:52 2014  using 20 quadratic characters above 134213618
Wed Dec 17 20:31:55 2014  building initial matrix
Wed Dec 17 20:32:01 2014  memory use: 137.7 MB
Wed Dec 17 20:32:01 2014  read 365072 cycles
Wed Dec 17 20:32:01 2014  matrix is 364892 x 365072 (109.3 MB) with weight 32752868 (89.72/col)
Wed Dec 17 20:32:01 2014  sparse part has weight 24624362 (67.45/col)
Wed Dec 17 20:32:03 2014  filtering completed in 2 passes
Wed Dec 17 20:32:03 2014  matrix is 364728 x 364908 (109.2 MB) with weight 32745325 (89.74/col)
Wed Dec 17 20:32:03 2014  sparse part has weight 24620567 (67.47/col)
Wed Dec 17 20:32:03 2014  matrix starts at (0, 0)
Wed Dec 17 20:32:03 2014  matrix is 364728 x 364908 (109.2 MB) with weight 32745325 (89.74/col)
Wed Dec 17 20:32:03 2014  sparse part has weight 24620567 (67.47/col)
Wed Dec 17 20:32:03 2014  saving the first 48 matrix rows for later
Wed Dec 17 20:32:03 2014  matrix includes 64 packed rows
Wed Dec 17 20:32:03 2014  matrix is 364680 x 364908 (102.9 MB) with weight 25907768 (71.00/col)
Wed Dec 17 20:32:03 2014  sparse part has weight 23324829 (63.92/col)
Wed Dec 17 20:32:03 2014  using block size 65536 for processor cache size 8192 kB
Wed Dec 17 20:32:04 2014  commencing Lanczos iteration (8 threads)
Wed Dec 17 20:32:04 2014  memory use: 98.7 MB
Wed Dec 17 20:32:11 2014  linear algebra at 3.3%, ETA 0h 3m
Wed Dec 17 20:35:21 2014  lanczos halted after 5768 iterations (dim = 364675)
Wed Dec 17 20:35:21 2014  recovered 35 nontrivial dependencies
Wed Dec 17 20:35:21 2014  BLanczosTime: 219
Wed Dec 17 20:35:21 2014  
Wed Dec 17 20:35:21 2014  commencing square root phase
Wed Dec 17 20:35:21 2014  reading relations for dependency 1
Wed Dec 17 20:35:21 2014  read 182680 cycles
Wed Dec 17 20:35:21 2014  cycles contain 556998 unique relations
Wed Dec 17 20:35:29 2014  read 556998 relations
Wed Dec 17 20:35:30 2014  multiplying 556998 relations
Wed Dec 17 20:35:39 2014  multiply complete, coefficients have about 15.81 million bits
Wed Dec 17 20:35:39 2014  initial square root is modulo 1212412871
Wed Dec 17 20:35:50 2014  GCD is 1, no factor found
Wed Dec 17 20:35:50 2014  reading relations for dependency 2
Wed Dec 17 20:35:50 2014  read 182181 cycles
Wed Dec 17 20:35:50 2014  cycles contain 556680 unique relations
Wed Dec 17 20:35:57 2014  read 556680 relations
Wed Dec 17 20:35:58 2014  multiplying 556680 relations
Wed Dec 17 20:36:07 2014  multiply complete, coefficients have about 15.80 million bits
Wed Dec 17 20:36:07 2014  initial square root is modulo 1199851571
Wed Dec 17 20:36:18 2014  GCD is 1, no factor found
Wed Dec 17 20:36:18 2014  reading relations for dependency 3
Wed Dec 17 20:36:18 2014  read 182306 cycles
Wed Dec 17 20:36:18 2014  cycles contain 556148 unique relations
Wed Dec 17 20:36:26 2014  read 556148 relations
Wed Dec 17 20:36:27 2014  multiplying 556148 relations
Wed Dec 17 20:36:36 2014  multiply complete, coefficients have about 15.79 million bits
Wed Dec 17 20:36:36 2014  initial square root is modulo 1173522811
Wed Dec 17 20:36:47 2014  Newton iteration failed to converge
Wed Dec 17 20:36:47 2014  algebraic square root failed
Wed Dec 17 20:36:47 2014  reading relations for dependency 4
Wed Dec 17 20:36:47 2014  read 182196 cycles
Wed Dec 17 20:36:47 2014  cycles contain 555706 unique relations
Wed Dec 17 20:36:54 2014  read 555706 relations
Wed Dec 17 20:36:55 2014  multiplying 555706 relations
Wed Dec 17 20:37:04 2014  multiply complete, coefficients have about 15.77 million bits
Wed Dec 17 20:37:04 2014  initial square root is modulo 1155225961
Wed Dec 17 20:37:15 2014  GCD is 1, no factor found
Wed Dec 17 20:37:15 2014  reading relations for dependency 5
Wed Dec 17 20:37:16 2014  read 182611 cycles
Wed Dec 17 20:37:16 2014  cycles contain 556934 unique relations
Wed Dec 17 20:37:23 2014  read 556934 relations
Wed Dec 17 20:37:24 2014  multiplying 556934 relations
Wed Dec 17 20:37:33 2014  multiply complete, coefficients have about 15.81 million bits
Wed Dec 17 20:37:33 2014  initial square root is modulo 1209543131
Wed Dec 17 20:37:44 2014  GCD is N, no factor found
Wed Dec 17 20:37:44 2014  reading relations for dependency 6
Wed Dec 17 20:37:44 2014  read 182892 cycles
Wed Dec 17 20:37:44 2014  cycles contain 557140 unique relations
Wed Dec 17 20:37:51 2014  read 557140 relations
Wed Dec 17 20:37:52 2014  multiplying 557140 relations
Wed Dec 17 20:38:01 2014  multiply complete, coefficients have about 15.81 million bits
Wed Dec 17 20:38:01 2014  initial square root is modulo 1216783481
Wed Dec 17 20:38:12 2014  GCD is 1, no factor found
Wed Dec 17 20:38:12 2014  reading relations for dependency 7
Wed Dec 17 20:38:12 2014  read 181790 cycles
Wed Dec 17 20:38:13 2014  cycles contain 554544 unique relations
Wed Dec 17 20:38:20 2014  read 554544 relations
Wed Dec 17 20:38:21 2014  multiplying 554544 relations
Wed Dec 17 20:38:30 2014  multiply complete, coefficients have about 15.74 million bits
Wed Dec 17 20:38:30 2014  initial square root is modulo 1105381961
Wed Dec 17 20:38:41 2014  GCD is N, no factor found
Wed Dec 17 20:38:41 2014  reading relations for dependency 8
Wed Dec 17 20:38:41 2014  read 182632 cycles
Wed Dec 17 20:38:41 2014  cycles contain 556802 unique relations
Wed Dec 17 20:38:48 2014  read 556802 relations
Wed Dec 17 20:38:49 2014  multiplying 556802 relations
Wed Dec 17 20:38:58 2014  multiply complete, coefficients have about 15.80 million bits
Wed Dec 17 20:38:58 2014  initial square root is modulo 1203668111
Wed Dec 17 20:39:09 2014  Newton iteration failed to converge
Wed Dec 17 20:39:09 2014  algebraic square root failed
Wed Dec 17 20:39:09 2014  reading relations for dependency 9
Wed Dec 17 20:39:09 2014  read 182597 cycles
Wed Dec 17 20:39:10 2014  cycles contain 556810 unique relations
Wed Dec 17 20:39:17 2014  read 556810 relations
Wed Dec 17 20:39:18 2014  multiplying 556810 relations
Wed Dec 17 20:39:27 2014  multiply complete, coefficients have about 15.81 million bits
Wed Dec 17 20:39:27 2014  initial square root is modulo 1205389501
Wed Dec 17 20:39:38 2014  GCD is 1, no factor found
Wed Dec 17 20:39:38 2014  reading relations for dependency 10
Wed Dec 17 20:39:38 2014  read 182741 cycles
Wed Dec 17 20:39:38 2014  cycles contain 558224 unique relations
Wed Dec 17 20:39:45 2014  read 558224 relations
Wed Dec 17 20:39:46 2014  multiplying 558224 relations
Wed Dec 17 20:39:55 2014  multiply complete, coefficients have about 15.85 million bits
Wed Dec 17 20:39:55 2014  initial square root is modulo 1269948181
Wed Dec 17 20:40:06 2014  Newton iteration failed to converge
Wed Dec 17 20:40:06 2014  algebraic square root failed
Wed Dec 17 20:40:06 2014  reading relations for dependency 11
Wed Dec 17 20:40:06 2014  read 182861 cycles
Wed Dec 17 20:40:06 2014  cycles contain 557030 unique relations
Wed Dec 17 20:40:14 2014  read 557030 relations
Wed Dec 17 20:40:15 2014  multiplying 557030 relations
Wed Dec 17 20:40:24 2014  multiply complete, coefficients have about 15.81 million bits
Wed Dec 17 20:40:24 2014  initial square root is modulo 1213838741
Wed Dec 17 20:40:35 2014  sqrtTime: 314
--
n: 15368500301090028480294160073649470877104062676749689100659887798381734743090062023083743690168660135679097208056722315218316836233675103
m: 5000000000000000000000000000000
deg: 5
c5: 464
c0: -1
skew: 0.29
# Murphy_E = 1.046e-09
type: snfs
lss: 1
rlim: 2800000
alim: 2800000
lpbr: 27
lpba: 27
mfbr: 50
mfba: 50
rlambda: 2.4
alambda: 2.4
software ソフトウェア
yafu v1.34.3
execution environment 実行環境
Gentoo Linux, Intel(R) Core(TM) i7-3770K CPU

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6300 / 2318Serge BatalovDecember 10, 2014 19:48:36 UTC 2014 年 12 月 11 日 (木) 4 時 48 分 36 秒 (日本時間)

145×10157-19

c127

name 名前Serge Batalov
date 日付December 11, 2014 01:34:30 UTC 2014 年 12 月 11 日 (木) 10 時 34 分 30 秒 (日本時間)
composite number 合成数
4212045590061699183266755415007922173272376060485959068382291626808125602522935592487281035955304441855630448830415756552530169<127>
prime factors 素因数
41875635736222409459754611279863<32>
100584636292895281398796971061722555520166299787951885208029589354325314868918915019340409387663<96>
factorization results 素因数分解の結果
Input number is 4212045590061699183266755415007922173272376060485959068382291626808125602522935592487281035955304441855630448830415756552530169 (127 digits)
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1620056165
Step 1 took 7626ms
Step 2 took 6280ms
********** Factor found in step 2: 41875635736222409459754611279863
Found probable prime factor of 32 digits: 41875635736222409459754611279863
Probable prime cofactor 100584636292895281398796971061722555520166299787951885208029589354325314868918915019340409387663 has 96 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6300 / 2318Serge BatalovDecember 10, 2014 19:48:37 UTC 2014 年 12 月 11 日 (木) 4 時 48 分 37 秒 (日本時間)

145×10158-19

c142

name 名前Serge Batalov
date 日付December 11, 2014 01:34:33 UTC 2014 年 12 月 11 日 (木) 10 時 34 分 33 秒 (日本時間)
composite number 合成数
7840625565593509102174045893836396591712880380836393223093531086800731784178959941469772019496031259941770407097970927121477343245538175443451<142>
prime factors 素因数
1229936637392934161604207012278234261<37>
composite cofactor 合成数の残り
6374820724271688042662336298156449851667093063601509963788239544326796036960215773938273268017719691763791<106>
factorization results 素因数分解の結果
Input number is 7840625565593509102174045893836396591712880380836393223093531086800731784178959941469772019496031259941770407097970927121477343245538175443451 (142 digits)
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1513839079
Step 1 took 9237ms
Step 2 took 7128ms
********** Factor found in step 2: 1229936637392934161604207012278234261
Found probable prime factor of 37 digits: 1229936637392934161604207012278234261
Composite cofactor 6374820724271688042662336298156449851667093063601509963788239544326796036960215773938273268017719691763791 has 106 digits

c106

name 名前Cyp
date 日付December 11, 2014 21:40:58 UTC 2014 年 12 月 12 日 (金) 6 時 40 分 58 秒 (日本時間)
composite number 合成数
6374820724271688042662336298156449851667093063601509963788239544326796036960215773938273268017719691763791<106>
prime factors 素因数
2290650962089172210534430805120981<34>
2782973412264248817333430742810076034138208674808928733282395159348293011<73>
factorization results 素因数分解の結果
12/11/14 21:34:50 v1.34.3, 
12/11/14 21:34:50 v1.34.3, ****************************
12/11/14 21:34:50 v1.34.3, Starting factorization of 6374820724271688042662336298156449851667093063601509963788239544326796036960215773938273268017719691763791
12/11/14 21:34:50 v1.34.3, using pretesting plan: none
12/11/14 21:34:50 v1.34.3, no tune info: using qs/gnfs crossover of 95 digits
12/11/14 21:34:50 v1.34.3, ****************************
12/11/14 21:34:50 v1.34.3, rho: x^2 + 3, starting 1000 iterations on C106
12/11/14 21:34:50 v1.34.3, rho: x^2 + 2, starting 1000 iterations on C106
12/11/14 21:34:50 v1.34.3, rho: x^2 + 1, starting 1000 iterations on C106
12/11/14 21:34:50 v1.34.3, final ECM pretested depth: 0.00
12/11/14 21:34:50 v1.34.3, scheduler: switching to sieve method
12/11/14 21:34:50 v1.34.3, nfs: commencing nfs on c106: 6374820724271688042662336298156449851667093063601509963788239544326796036960215773938273268017719691763791
12/11/14 21:34:50 v1.34.3, nfs: commencing poly selection with 8 threads
12/11/14 21:34:50 v1.34.3, nfs: setting deadline of 277 seconds
12/11/14 21:40:59 v1.34.3, nfs: completed 42 ranges of size 250 in 368.4631 seconds
12/11/14 21:40:59 v1.34.3, nfs: best poly = # norm 1.545954e-14 alpha -5.429292 e 4.788e-09 rroots 4
12/11/14 21:40:59 v1.34.3, nfs: commencing lattice sieving with 8 threads
12/11/14 21:42:34 v1.34.3, nfs: commencing lattice sieving with 8 threads
[20 lines snipped]
12/11/14 22:18:38 v1.34.3, nfs: commencing lattice sieving with 8 threads
12/11/14 22:20:22 v1.34.3, nfs: commencing lattice sieving with 8 threads
12/11/14 22:22:15 v1.34.3, nfs: commencing msieve filtering
12/11/14 22:23:01 v1.34.3, nfs: commencing lattice sieving with 8 threads
12/11/14 22:24:47 v1.34.3, nfs: commencing lattice sieving with 8 threads
12/11/14 22:26:34 v1.34.3, nfs: commencing msieve filtering
12/11/14 22:27:24 v1.34.3, nfs: commencing lattice sieving with 8 threads
12/11/14 22:29:15 v1.34.3, nfs: commencing lattice sieving with 8 threads
12/11/14 22:31:03 v1.34.3, nfs: commencing msieve filtering
12/11/14 22:31:59 v1.34.3, nfs: commencing lattice sieving with 8 threads
12/11/14 22:33:43 v1.34.3, nfs: commencing lattice sieving with 8 threads
12/11/14 22:35:21 v1.34.3, nfs: commencing msieve filtering
12/11/14 22:36:24 v1.34.3, nfs: commencing msieve linear algebra
12/11/14 22:40:19 v1.34.3, nfs: commencing msieve sqrt
12/11/14 22:40:57 v1.34.3, prp34 = 2290650962089172210534430805120981
12/11/14 22:40:57 v1.34.3, prp73 = 2782973412264248817333430742810076034138208674808928733282395159348293011
12/11/14 22:40:57 v1.34.3, NFS elapsed time = 3966.8261 seconds.
12/11/14 22:40:57 v1.34.3, 
12/11/14 22:40:57 v1.34.3, 
12/11/14 22:40:57 v1.34.3, Total factoring time = 3966.8488 seconds
--
Thu Dec 11 22:22:15 2014  
Thu Dec 11 22:22:15 2014  commencing relation filtering
Thu Dec 11 22:22:15 2014  estimated available RAM is 15987.3 MB
Thu Dec 11 22:22:15 2014  commencing duplicate removal, pass 1
Thu Dec 11 22:22:30 2014  found 460640 hash collisions in 4486073 relations
Thu Dec 11 22:22:34 2014  added 158185 free relations
Thu Dec 11 22:22:34 2014  commencing duplicate removal, pass 2
Thu Dec 11 22:22:37 2014  found 244652 duplicates and 4399606 unique relations
Thu Dec 11 22:22:37 2014  memory use: 20.6 MB
Thu Dec 11 22:22:37 2014  reading ideals above 100000
Thu Dec 11 22:22:37 2014  commencing singleton removal, initial pass
Thu Dec 11 22:22:59 2014  memory use: 172.2 MB
Thu Dec 11 22:22:59 2014  reading all ideals from disk
Thu Dec 11 22:22:59 2014  memory use: 142.4 MB
Thu Dec 11 22:22:59 2014  keeping 5479421 ideals with weight <= 200, target excess is 21169
Thu Dec 11 22:23:00 2014  commencing in-memory singleton removal
Thu Dec 11 22:23:00 2014  begin with 4399606 relations and 5479421 unique ideals
Thu Dec 11 22:23:01 2014  reduce to 411 relations and 0 ideals in 28 passes
Thu Dec 11 22:23:01 2014  max relations containing the same ideal: 0
Thu Dec 11 22:26:34 2014  
Thu Dec 11 22:26:34 2014  commencing relation filtering
Thu Dec 11 22:26:34 2014  estimated available RAM is 15987.3 MB
Thu Dec 11 22:26:34 2014  commencing duplicate removal, pass 1
Thu Dec 11 22:26:50 2014  found 549778 hash collisions in 5026827 relations
Thu Dec 11 22:26:54 2014  added 1239 free relations
Thu Dec 11 22:26:54 2014  commencing duplicate removal, pass 2
Thu Dec 11 22:26:58 2014  found 282938 duplicates and 4745128 unique relations
Thu Dec 11 22:26:58 2014  memory use: 20.6 MB
Thu Dec 11 22:26:58 2014  reading ideals above 100000
Thu Dec 11 22:26:58 2014  commencing singleton removal, initial pass
Thu Dec 11 22:27:19 2014  memory use: 172.2 MB
Thu Dec 11 22:27:19 2014  reading all ideals from disk
Thu Dec 11 22:27:19 2014  memory use: 153.7 MB
Thu Dec 11 22:27:20 2014  keeping 5645264 ideals with weight <= 200, target excess is 22662
Thu Dec 11 22:27:20 2014  commencing in-memory singleton removal
Thu Dec 11 22:27:20 2014  begin with 4745128 relations and 5645264 unique ideals
Thu Dec 11 22:27:24 2014  reduce to 1125298 relations and 1226900 ideals in 34 passes
Thu Dec 11 22:27:24 2014  max relations containing the same ideal: 77
Thu Dec 11 22:31:03 2014  
Thu Dec 11 22:31:03 2014  commencing relation filtering
Thu Dec 11 22:31:03 2014  estimated available RAM is 15987.3 MB
Thu Dec 11 22:31:03 2014  commencing duplicate removal, pass 1
Thu Dec 11 22:31:24 2014  found 624164 hash collisions in 5403026 relations
Thu Dec 11 22:31:28 2014  added 945 free relations
Thu Dec 11 22:31:28 2014  commencing duplicate removal, pass 2
Thu Dec 11 22:31:32 2014  found 322838 duplicates and 5081133 unique relations
Thu Dec 11 22:31:32 2014  memory use: 20.6 MB
Thu Dec 11 22:31:32 2014  reading ideals above 100000
Thu Dec 11 22:31:32 2014  commencing singleton removal, initial pass
Thu Dec 11 22:31:55 2014  memory use: 172.2 MB
Thu Dec 11 22:31:55 2014  reading all ideals from disk
Thu Dec 11 22:31:55 2014  memory use: 164.7 MB
Thu Dec 11 22:31:56 2014  keeping 5792754 ideals with weight <= 200, target excess is 24250
Thu Dec 11 22:31:56 2014  commencing in-memory singleton removal
Thu Dec 11 22:31:56 2014  begin with 5081133 relations and 5792754 unique ideals
Thu Dec 11 22:31:59 2014  reduce to 1628901 relations and 1636414 ideals in 23 passes
Thu Dec 11 22:31:59 2014  max relations containing the same ideal: 94
Thu Dec 11 22:35:21 2014  
Thu Dec 11 22:35:21 2014  commencing relation filtering
Thu Dec 11 22:35:21 2014  estimated available RAM is 15987.3 MB
Thu Dec 11 22:35:21 2014  commencing duplicate removal, pass 1
Thu Dec 11 22:35:38 2014  found 703521 hash collisions in 5785303 relations
Thu Dec 11 22:35:42 2014  added 837 free relations
Thu Dec 11 22:35:42 2014  commencing duplicate removal, pass 2
Thu Dec 11 22:35:46 2014  found 365561 duplicates and 5420579 unique relations
Thu Dec 11 22:35:46 2014  memory use: 20.6 MB
Thu Dec 11 22:35:46 2014  reading ideals above 100000
Thu Dec 11 22:35:46 2014  commencing singleton removal, initial pass
Thu Dec 11 22:36:08 2014  memory use: 172.2 MB
Thu Dec 11 22:36:08 2014  reading all ideals from disk
Thu Dec 11 22:36:08 2014  memory use: 175.8 MB
Thu Dec 11 22:36:09 2014  keeping 5929756 ideals with weight <= 200, target excess is 25946
Thu Dec 11 22:36:09 2014  commencing in-memory singleton removal
Thu Dec 11 22:36:09 2014  begin with 5420579 relations and 5929756 unique ideals
Thu Dec 11 22:36:11 2014  reduce to 2108706 relations and 1995512 ideals in 19 passes
Thu Dec 11 22:36:11 2014  max relations containing the same ideal: 109
Thu Dec 11 22:36:11 2014  removing 353211 relations and 311663 ideals in 41548 cliques
Thu Dec 11 22:36:11 2014  commencing in-memory singleton removal
Thu Dec 11 22:36:11 2014  begin with 1755495 relations and 1995512 unique ideals
Thu Dec 11 22:36:12 2014  reduce to 1703717 relations and 1630569 ideals in 10 passes
Thu Dec 11 22:36:12 2014  max relations containing the same ideal: 95
Thu Dec 11 22:36:12 2014  removing 262932 relations and 221384 ideals in 41548 cliques
Thu Dec 11 22:36:12 2014  commencing in-memory singleton removal
Thu Dec 11 22:36:12 2014  begin with 1440785 relations and 1630569 unique ideals
Thu Dec 11 22:36:13 2014  reduce to 1404852 relations and 1372317 ideals in 9 passes
Thu Dec 11 22:36:13 2014  max relations containing the same ideal: 79
Thu Dec 11 22:36:13 2014  relations with 0 large ideals: 511
Thu Dec 11 22:36:13 2014  relations with 1 large ideals: 249
Thu Dec 11 22:36:13 2014  relations with 2 large ideals: 3174
Thu Dec 11 22:36:13 2014  relations with 3 large ideals: 27332
Thu Dec 11 22:36:13 2014  relations with 4 large ideals: 123226
Thu Dec 11 22:36:13 2014  relations with 5 large ideals: 318415
Thu Dec 11 22:36:13 2014  relations with 6 large ideals: 427029
Thu Dec 11 22:36:13 2014  relations with 7+ large ideals: 504916
Thu Dec 11 22:36:13 2014  commencing 2-way merge
Thu Dec 11 22:36:14 2014  reduce to 800448 relation sets and 767913 unique ideals
Thu Dec 11 22:36:14 2014  commencing full merge
Thu Dec 11 22:36:21 2014  memory use: 87.1 MB
Thu Dec 11 22:36:21 2014  found 382750 cycles, need 378113
Thu Dec 11 22:36:21 2014  weight of 378113 cycles is about 26501173 (70.09/cycle)
Thu Dec 11 22:36:21 2014  distribution of cycle lengths:
Thu Dec 11 22:36:21 2014  1 relations: 42022
Thu Dec 11 22:36:21 2014  2 relations: 39683
Thu Dec 11 22:36:21 2014  3 relations: 39029
Thu Dec 11 22:36:21 2014  4 relations: 35607
Thu Dec 11 22:36:21 2014  5 relations: 32796
Thu Dec 11 22:36:21 2014  6 relations: 29090
Thu Dec 11 22:36:21 2014  7 relations: 25153
Thu Dec 11 22:36:21 2014  8 relations: 22725
Thu Dec 11 22:36:21 2014  9 relations: 19601
Thu Dec 11 22:36:21 2014  10+ relations: 92407
Thu Dec 11 22:36:21 2014  heaviest cycle: 25 relations
Thu Dec 11 22:36:21 2014  commencing cycle optimization
Thu Dec 11 22:36:21 2014  start with 2501557 relations
Thu Dec 11 22:36:23 2014  pruned 55954 relations
Thu Dec 11 22:36:23 2014  memory use: 81.4 MB
Thu Dec 11 22:36:23 2014  distribution of cycle lengths:
Thu Dec 11 22:36:23 2014  1 relations: 42022
Thu Dec 11 22:36:23 2014  2 relations: 40497
Thu Dec 11 22:36:23 2014  3 relations: 40215
Thu Dec 11 22:36:23 2014  4 relations: 36382
Thu Dec 11 22:36:23 2014  5 relations: 33613
Thu Dec 11 22:36:23 2014  6 relations: 29409
Thu Dec 11 22:36:23 2014  7 relations: 25440
Thu Dec 11 22:36:23 2014  8 relations: 22791
Thu Dec 11 22:36:23 2014  9 relations: 19763
Thu Dec 11 22:36:23 2014  10+ relations: 87981
Thu Dec 11 22:36:23 2014  heaviest cycle: 24 relations
Thu Dec 11 22:36:24 2014  RelProcTime: 63
Thu Dec 11 22:36:24 2014  
Thu Dec 11 22:36:24 2014  commencing linear algebra
Thu Dec 11 22:36:24 2014  read 378113 cycles
Thu Dec 11 22:36:24 2014  cycles contain 1351782 unique relations
Thu Dec 11 22:36:31 2014  read 1351782 relations
Thu Dec 11 22:36:31 2014  using 20 quadratic characters above 67108662
Thu Dec 11 22:36:35 2014  building initial matrix
Thu Dec 11 22:36:42 2014  memory use: 166.0 MB
Thu Dec 11 22:36:42 2014  read 378113 cycles
Thu Dec 11 22:36:42 2014  matrix is 377939 x 378113 (113.4 MB) with weight 35940744 (95.05/col)
Thu Dec 11 22:36:42 2014  sparse part has weight 25572959 (67.63/col)
Thu Dec 11 22:36:44 2014  filtering completed in 2 passes
Thu Dec 11 22:36:44 2014  matrix is 377252 x 377431 (113.4 MB) with weight 35910915 (95.15/col)
Thu Dec 11 22:36:44 2014  sparse part has weight 25563363 (67.73/col)
Thu Dec 11 22:36:45 2014  matrix starts at (0, 0)
Thu Dec 11 22:36:45 2014  matrix is 377252 x 377431 (113.4 MB) with weight 35910915 (95.15/col)
Thu Dec 11 22:36:45 2014  sparse part has weight 25563363 (67.73/col)
Thu Dec 11 22:36:45 2014  saving the first 48 matrix rows for later
Thu Dec 11 22:36:45 2014  matrix includes 64 packed rows
Thu Dec 11 22:36:45 2014  matrix is 377204 x 377431 (108.9 MB) with weight 28481902 (75.46/col)
Thu Dec 11 22:36:45 2014  sparse part has weight 24778603 (65.65/col)
Thu Dec 11 22:36:45 2014  using block size 65536 for processor cache size 8192 kB
Thu Dec 11 22:36:46 2014  commencing Lanczos iteration (8 threads)
Thu Dec 11 22:36:46 2014  memory use: 103.6 MB
Thu Dec 11 22:36:52 2014  linear algebra at 3.2%, ETA 0h 3m
Thu Dec 11 22:40:19 2014  lanczos halted after 5967 iterations (dim = 377204)
Thu Dec 11 22:40:19 2014  recovered 33 nontrivial dependencies
Thu Dec 11 22:40:19 2014  BLanczosTime: 235
Thu Dec 11 22:40:19 2014  
Thu Dec 11 22:40:19 2014  commencing square root phase
Thu Dec 11 22:40:19 2014  reading relations for dependency 1
Thu Dec 11 22:40:19 2014  read 188712 cycles
Thu Dec 11 22:40:19 2014  cycles contain 675986 unique relations
Thu Dec 11 22:40:24 2014  read 675986 relations
Thu Dec 11 22:40:25 2014  multiplying 675986 relations
Thu Dec 11 22:40:39 2014  multiply complete, coefficients have about 29.94 million bits
Thu Dec 11 22:40:39 2014  initial square root is modulo 397666837
Thu Dec 11 22:40:57 2014  sqrtTime: 38
--
n: 6374820724271688042662336298156449851667093063601509963788239544326796036960215773938273268017719691763791
skew: 2969965.12
c0: 172290130872844297908894663000
c1: 7585801547317056572626
c2: -225358930534691131
c3: -2210311136
c4: 10416
Y0: -27969956721338383725530537
Y1: 52460992519421
rlim: 2640000
alim: 2640000
lpbr: 26
lpba: 26
mfbr: 52
mfba: 52
rlambda: 2.5
alambda: 2.5
software ソフトウェア
yafu v1.34.3
execution environment 実行環境
Gentoo Linux, Intel(R) Core(TM) i7-3770K CPU

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6300 / 2318Serge BatalovDecember 10, 2014 19:48:37 UTC 2014 年 12 月 11 日 (木) 4 時 48 分 37 秒 (日本時間)

145×10162-19

c158

name 名前Jo Yeong Uk
date 日付January 4, 2015 11:46:56 UTC 2015 年 1 月 4 日 (日) 20 時 46 分 56 秒 (日本時間)
composite number 合成数
20527186276287716404322147715614379393083300879143996512926535465385996749909361855080046824635398240862606162714333907669848663673095073574390452281865731533<158>
prime factors 素因数
107144887994128285870318451098560997948947533<45>
245048576160038018237520265815997977370015583782755904079<57>
781818215491867943309867281290001070328274626453786889519<57>
factorization results 素因数分解の結果
Number: 16111_162
N=20527186276287716404322147715614379393083300879143996512926535465385996749909361855080046824635398240862606162714333907669848663673095073574390452281865731533
  ( 158 digits)
SNFS difficulty: 164 digits.
Divisors found:
 r1=107144887994128285870318451098560997948947533
 r2=245048576160038018237520265815997977370015583782755904079
 r3=781818215491867943309867281290001070328274626453786889519
Version: 
Total time: 11.70 hours.
Scaled time: 61.41 units (timescale=5.250).
Factorization parameters were as follows:
n: 20527186276287716404322147715614379393083300879143996512926535465385996749909361855080046824635398240862606162714333907669848663673095073574390452281865731533
m: 100000000000000000000000000000000
deg: 5
c5: 14500
c0: -1
skew: 0.15
# Murphy_E = 3.863e-10
type: snfs
lss: 1
rlim: 3600000
alim: 3600000
lpbr: 27
lpba: 27
mfbr: 51
mfba: 51
rlambda: 2.4
alambda: 2.4
Factor base limits: 3600000/3600000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 51/51
Sieved rational special-q in [1800000, 3500001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 9670459
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 655921 x 656169
Total sieving time: 10.82 hours.
Total relation processing time: 0.40 hours.
Matrix solve time: 0.40 hours.
Time per square root: 0.08 hours.
Prototype def-par.txt line would be:
snfs,164,5,0,0,0,0,0,0,0,0,3600000,3600000,27,27,51,51,2.4,2.4,100000
total time: 11.70 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM) i7-4930K CPU @ 3.40GHz stepping 04
Memory: 49373664k/51380224k available (5220k kernel code, 1086460k absent, 920100k reserved, 7121k data, 1264k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 6799.88 BogoMIPS (lpj=3399941)
Total of 12 processors activated (81598.58 BogoMIPS).
software ソフトウェア
GGNFS / Msieve v1.39
execution environment 実行環境
Core i7-4930K

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6300 / 2318Serge BatalovDecember 10, 2014 19:48:38 UTC 2014 年 12 月 11 日 (木) 4 時 48 分 38 秒 (日本時間)

145×10163-19

c141

name 名前Jo Yeong Uk
date 日付January 8, 2015 12:16:30 UTC 2015 年 1 月 8 日 (木) 21 時 16 分 30 秒 (日本時間)
composite number 合成数
363741519693908059518144927811454743276986261850573414698643425864413219797743077706105937449378331367746499417565386834296602074273249778043<141>
prime factors 素因数
2255575300512416626116714175976726473471039767380811319<55>
161263301478462750792717281500744635986270930264736746130990924445818592700479443147997<87>
factorization results 素因数分解の結果
Number: 16111_163
N=363741519693908059518144927811454743276986261850573414698643425864413219797743077706105937449378331367746499417565386834296602074273249778043
  ( 141 digits)
SNFS difficulty: 165 digits.
Divisors found:
 r1=2255575300512416626116714175976726473471039767380811319
 r2=161263301478462750792717281500744635986270930264736746130990924445818592700479443147997
Version: 
Total time: 12.00 hours.
Scaled time: 63.07 units (timescale=5.256).
Factorization parameters were as follows:
n: 363741519693908059518144927811454743276986261850573414698643425864413219797743077706105937449378331367746499417565386834296602074273249778043
m: 500000000000000000000000000000000
deg: 5
c5: 232
c0: -5
skew: 0.46
# Murphy_E = 3.736e-10
type: snfs
lss: 1
rlim: 4000000
alim: 4000000
lpbr: 27
lpba: 27
mfbr: 51
mfba: 51
rlambda: 2.4
alambda: 2.4
Factor base limits: 4000000/4000000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 51/51
Sieved rational special-q in [2000000, 3700001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 9547965
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 726295 x 726542
Total sieving time: 11.07 hours.
Total relation processing time: 0.40 hours.
Matrix solve time: 0.50 hours.
Time per square root: 0.04 hours.
Prototype def-par.txt line would be:
snfs,165,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,51,51,2.4,2.4,100000
total time: 12.00 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM) i7-4930K CPU @ 3.40GHz stepping 04
Memory: 49373664k/51380224k available (5220k kernel code, 1086460k absent, 920100k reserved, 7121k data, 1264k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 6800.24 BogoMIPS (lpj=3400120)
Total of 12 processors activated (81602.88 BogoMIPS).
software ソフトウェア
GGNFS / Msieve v1.39
execution environment 実行環境
Core i7-4930K

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6300 / 2318Serge BatalovDecember 10, 2014 19:48:38 UTC 2014 年 12 月 11 日 (木) 4 時 48 分 38 秒 (日本時間)

145×10166-19

c121

name 名前Ignacio Santos
date 日付February 9, 2015 17:57:16 UTC 2015 年 2 月 10 日 (火) 2 時 57 分 16 秒 (日本時間)
composite number 合成数
6795486627307884356455273811763014362213859296262656164767443775662582609932111433338038471831089086619117421560913654147<121>
prime factors 素因数
161395590904802441645871113416778433856627<42>
42104536990208942408806370945342480010452153183437988165046547499097121069443761<80>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:136232417
Step 1 took 7515ms
Step 2 took 5578ms
********** Factor found in step 2: 161395590904802441645871113416778433856627
Found probable prime factor of 42 digits: 161395590904802441645871113416778433856627
Probable prime cofactor 42104536990208942408806370945342480010452153183437988165046547499097121069443761 has 80 digits
 
software ソフトウェア
GMP-ECM 7.0

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6300 / 2180Serge BatalovDecember 10, 2014 19:48:39 UTC 2014 年 12 月 11 日 (木) 4 時 48 分 39 秒 (日本時間)
4511e640 / 4409Pierre JammesDecember 20, 2014 08:12:26 UTC 2014 年 12 月 20 日 (土) 17 時 12 分 26 秒 (日本時間)

145×10168-19

c164

name 名前Serge Batalov
date 日付December 11, 2014 01:34:37 UTC 2014 年 12 月 11 日 (木) 10 時 34 分 37 秒 (日本時間)
composite number 合成数
27663736409235567017881648430540841309551677672064147816692069608065906085621362814863401239220920500335875916885925625758487186634256214658384334770130567112319921<164>
prime factors 素因数
200740366729109362365080801183680103<36>
composite cofactor 合成数の残り
137808537764437830705102052167661560153401623485978359438107110939819917465051669249019237364945240072955180388440742720381306407<129>
factorization results 素因数分解の結果
Input number is 27663736409235567017881648430540841309551677672064147816692069608065906085621362814863401239220920500335875916885925625758487186634256214658384334770130567112319921 (164 digits)
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2725228995
Step 1 took 12930ms
********** Factor found in step 1: 200740366729109362365080801183680103
Found probable prime factor of 36 digits: 200740366729109362365080801183680103
Composite cofactor 137808537764437830705102052167661560153401623485978359438107110939819917465051669249019237364945240072955180388440742720381306407 has 129 digits

c129

name 名前Jo Yeong Uk
date 日付April 1, 2015 12:40:19 UTC 2015 年 4 月 1 日 (水) 21 時 40 分 19 秒 (日本時間)
composite number 合成数
137808537764437830705102052167661560153401623485978359438107110939819917465051669249019237364945240072955180388440742720381306407<129>
prime factors 素因数
2724982164052973195621302699939093246302958693598413<52>
50572271474786378042236083777518957783964234439795339860572671032879730579139<77>
factorization results 素因数分解の結果
Number: 16111_168
N=137808537764437830705102052167661560153401623485978359438107110939819917465051669249019237364945240072955180388440742720381306407
  ( 129 digits)
SNFS difficulty: 170 digits.
Divisors found:
 r1=2724982164052973195621302699939093246302958693598413
 r2=50572271474786378042236083777518957783964234439795339860572671032879730579139
Version: 
Total time: 19.45 hours.
Scaled time: 101.63 units (timescale=5.225).
Factorization parameters were as follows:
n: 137808537764437830705102052167661560153401623485978359438107110939819917465051669249019237364945240072955180388440742720381306407
m: 5000000000000000000000000000000000
deg: 5
c5: 232
c0: -5
skew: 0.46
# Murphy_E = 2.372e-10
type: snfs
lss: 1
rlim: 5400000
alim: 5400000
lpbr: 27
lpba: 27
mfbr: 52
mfba: 52
rlambda: 2.4
alambda: 2.4
Factor base limits: 5400000/5400000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 52/52
Sieved rational special-q in [2700000, 5200001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 10949133
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 925201 x 925449
Total sieving time: 17.56 hours.
Total relation processing time: 0.68 hours.
Matrix solve time: 0.83 hours.
Time per square root: 0.38 hours.
Prototype def-par.txt line would be:
snfs,170,5,0,0,0,0,0,0,0,0,5400000,5400000,27,27,52,52,2.4,2.4,100000
total time: 19.45 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM) i7-4930K CPU @ 3.40GHz stepping 04
Memory: 49373664k/51380224k available (5220k kernel code, 1086460k absent, 920100k reserved, 7121k data, 1264k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 6800.24 BogoMIPS (lpj=3400120)
Total of 12 processors activated (81602.88 BogoMIPS).
software ソフトウェア
GGNFS / Msieve v1.39
execution environment 実行環境
Core i7-4930K

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間)
403e62650300Serge BatalovDecember 10, 2014 19:48:39 UTC 2014 年 12 月 11 日 (木) 4 時 48 分 39 秒 (日本時間)
2350Ignacio SantosFebruary 9, 2015 22:14:08 UTC 2015 年 2 月 10 日 (火) 7 時 14 分 8 秒 (日本時間)

145×10170-19

c168

name 名前Dmitry Domanov
date 日付December 16, 2014 06:52:21 UTC 2014 年 12 月 16 日 (火) 15 時 52 分 21 秒 (日本時間)
composite number 合成数
672136466879896166504426829833588281648356742224076391786028832336717192787280396792286654614564501923700922449357993788531961247856116441848607055115190284151485653363<168>
prime factors 素因数
498970449894889449941173615296520027859970294553090202618837234383349050734151334617<84>
1347046637774812074654581221942988218542939465320994955780494329898248305419312944939<85>
factorization results 素因数分解の結果
N=672136466879896166504426829833588281648356742224076391786028832336717192787280396792286654614564501923700922449357993788531961247856116441848607055115190284151485653363
  ( 168 digits)
SNFS difficulty: 172 digits.
Divisors found:
 r1=498970449894889449941173615296520027859970294553090202618837234383349050734151334617 (pp84)
 r2=1347046637774812074654581221942988218542939465320994955780494329898248305419312944939 (pp85)
Version: Msieve v. 1.50 (SVN unknown)
Total time: 48.93 hours.
Scaled time: 0.00 units (timescale=0.000).
Factorization parameters were as follows:
n: 672136466879896166504426829833588281648356742224076391786028832336717192787280396792286654614564501923700922449357993788531961247856116441848607055115190284151485653363
m: 10000000000000000000000000000000000
deg: 5
c5: 145
c0: -1
skew: 0.37
# Murphy_E = 2.223e-10
type: snfs
lss: 1
rlim: 5200000
alim: 5200000
lpbr: 27
lpba: 27
mfbr: 52
mfba: 52
rlambda: 2.4
alambda: 2.4
Factor base limits: 5200000/5200000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 52/52
Sieved rational special-q in [2600000, 5200001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 907325 x 907555
Total sieving time: 47.57 hours.
Total relation processing time: 0.13 hours.
Matrix solve time: 0.86 hours.
Time per square root: 0.38 hours.
Prototype def-par.txt line would be:
snfs,172.000,5,0,0,0,0,0,0,0,0,5200000,5200000,27,27,52,52,2.4,2.4,100000
total time: 48.93 hours.

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間)
403e62600280CypDecember 7, 2014 18:22:40 UTC 2014 年 12 月 8 日 (月) 3 時 22 分 40 秒 (日本時間)
2320Serge BatalovDecember 8, 2014 19:27:28 UTC 2014 年 12 月 9 日 (火) 4 時 27 分 28 秒 (日本時間)

145×10173-19

c126

name 名前Jo Yeong Uk
date 日付May 7, 2015 21:52:38 UTC 2015 年 5 月 8 日 (金) 6 時 52 分 38 秒 (日本時間)
composite number 合成数
698633637220839759244015422775629037900168206809943128331026575182402161598101378099572212237556866683470264234456069735922521<126>
prime factors 素因数
2711970916230934848197021185651787709133806653236039861<55>
257611035958966896885760716050637483016117998507849974715419929833831061<72>
factorization results 素因数分解の結果
Number: 16111_173
N=698633637220839759244015422775629037900168206809943128331026575182402161598101378099572212237556866683470264234456069735922521
  ( 126 digits)
SNFS difficulty: 175 digits.
Divisors found:
 r1=2711970916230934848197021185651787709133806653236039861
 r2=257611035958966896885760716050637483016117998507849974715419929833831061
Version: 
Total time: 29.41 hours.
Scaled time: 154.59 units (timescale=5.256).
Factorization parameters were as follows:
n: 698633637220839759244015422775629037900168206809943128331026575182402161598101378099572212237556866683470264234456069735922521
m: 50000000000000000000000000000000000
deg: 5
c5: 232
c0: -5
skew: 0.46
# Murphy_E = 1.499e-10
type: snfs
lss: 1
rlim: 7200000
alim: 7200000
lpbr: 28
lpba: 28
mfbr: 52
mfba: 52
rlambda: 2.5
alambda: 2.5
Factor base limits: 7200000/7200000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 52/52
Sieved rational special-q in [3600000, 7000001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 16066789
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1187102 x 1187350
Total sieving time: 26.39 hours.
Total relation processing time: 1.35 hours.
Matrix solve time: 1.51 hours.
Time per square root: 0.16 hours.
Prototype def-par.txt line would be:
snfs,175,5,0,0,0,0,0,0,0,0,7200000,7200000,28,28,52,52,2.5,2.5,100000
total time: 29.41 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM) i7-4930K CPU @ 3.40GHz stepping 04
Memory: 49373664k/51380224k available (5220k kernel code, 1086460k absent, 920100k reserved, 7121k data, 1264k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 6800.18 BogoMIPS (lpj=3400094)
Total of 12 processors activated (81602.25 BogoMIPS).
software ソフトウェア
GGNFS / Msieve v1.39
execution environment 実行環境
Core i7-4930K

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6280CypDecember 7, 2014 21:31:28 UTC 2014 年 12 月 8 日 (月) 6 時 31 分 28 秒 (日本時間)
4511e6600 / 4413Pierre JammesFebruary 16, 2015 06:13:55 UTC 2015 年 2 月 16 日 (月) 15 時 13 分 55 秒 (日本時間)

145×10174-19

c139

name 名前Jo Yeong Uk
date 日付May 12, 2015 21:26:45 UTC 2015 年 5 月 13 日 (水) 6 時 26 分 45 秒 (日本時間)
composite number 合成数
2320876370920169815460800325267139473801496406445890868598514129237672475897933803784631252352657825817152851076862715881255379372779447947<139>
prime factors 素因数
62668553063536585175620287555817509453431<41>
37034146433333902191628496181820185519363485300766438148630145765607755337963679772549132669041037<98>
factorization results 素因数分解の結果
Number: 16111_174
N=2320876370920169815460800325267139473801496406445890868598514129237672475897933803784631252352657825817152851076862715881255379372779447947
  ( 139 digits)
SNFS difficulty: 176 digits.
Divisors found:
 r1=62668553063536585175620287555817509453431
 r2=37034146433333902191628496181820185519363485300766438148630145765607755337963679772549132669041037
Version: 
Total time: 25.55 hours.
Scaled time: 133.54 units (timescale=5.227).
Factorization parameters were as follows:
n: 2320876370920169815460800325267139473801496406445890868598514129237672475897933803784631252352657825817152851076862715881255379372779447947
m: 100000000000000000000000000000000000
deg: 5
c5: 29
c0: -2
skew: 0.59
# Murphy_E = 1.714e-10
type: snfs
lss: 1
rlim: 7400000
alim: 7400000
lpbr: 28
lpba: 28
mfbr: 53
mfba: 53
rlambda: 2.5
alambda: 2.5
Factor base limits: 7400000/7400000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 53/53
Sieved rational special-q in [3700000, 6600001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 17521579
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1238668 x 1238915
Total sieving time: 22.55 hours.
Total relation processing time: 1.25 hours.
Matrix solve time: 1.68 hours.
Time per square root: 0.08 hours.
Prototype def-par.txt line would be:
snfs,176,5,0,0,0,0,0,0,0,0,7400000,7400000,28,28,53,53,2.5,2.5,100000
total time: 25.55 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM) i7-4930K CPU @ 3.40GHz stepping 04
Memory: 49373664k/51380224k available (5220k kernel code, 1086460k absent, 920100k reserved, 7121k data, 1264k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 6800.18 BogoMIPS (lpj=3400094)
Total of 12 processors activated (81602.25 BogoMIPS).
software ソフトウェア
GGNFS / Msieve v1.39
execution environment 実行環境
Core i7-4930K

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間)
403e62680280CypDecember 9, 2014 01:09:00 UTC 2014 年 12 月 9 日 (火) 10 時 9 分 0 秒 (日本時間)
2400CypApril 2, 2015 20:31:09 UTC 2015 年 4 月 3 日 (金) 5 時 31 分 9 秒 (日本時間)

145×10175-19

c127

name 名前Jo Yeong Uk
date 日付May 25, 2015 14:21:35 UTC 2015 年 5 月 25 日 (月) 23 時 21 分 35 秒 (日本時間)
composite number 合成数
5508105898870749522835173259294521242761658664011519770507311452505542966511058506969974000940116426632434497811524444041387057<127>
prime factors 素因数
431888088394810543264182777270642714680313216820442449<54>
12753549002341351708395365431919938569461708799647740494514685948095725793<74>
factorization results 素因数分解の結果
Number: 16111_175
N=5508105898870749522835173259294521242761658664011519770507311452505542966511058506969974000940116426632434497811524444041387057
  ( 127 digits)
SNFS difficulty: 177 digits.
Divisors found:
 r1=431888088394810543264182777270642714680313216820442449
 r2=12753549002341351708395365431919938569461708799647740494514685948095725793
Version: 
Total time: 30.49 hours.
Scaled time: 157.00 units (timescale=5.149).
Factorization parameters were as follows:
n: 5508105898870749522835173259294521242761658664011519770507311452505542966511058506969974000940116426632434497811524444041387057
m: 100000000000000000000000000000000000
deg: 5
c5: 145
c0: -1
skew: 0.37
# Murphy_E = 1.403e-10
type: snfs
lss: 1
rlim: 7400000
alim: 7400000
lpbr: 28
lpba: 28
mfbr: 53
mfba: 53
rlambda: 2.5
alambda: 2.5
Factor base limits: 7400000/7400000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 53/53
Sieved rational special-q in [3700000, 7100001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 17887927
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1315660 x 1315908
Total sieving time: 26.83 hours.
Total relation processing time: 1.52 hours.
Matrix solve time: 1.97 hours.
Time per square root: 0.17 hours.
Prototype def-par.txt line would be:
snfs,177,5,0,0,0,0,0,0,0,0,7400000,7400000,28,28,53,53,2.5,2.5,100000
total time: 30.49 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM) i7-4930K CPU @ 3.40GHz stepping 04
Memory: 49373664k/51380224k available (5220k kernel code, 1086460k absent, 920100k reserved, 7121k data, 1264k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 6799.77 BogoMIPS (lpj=3399888)
Total of 12 processors activated (81597.31 BogoMIPS).
software ソフトウェア
GGNFS / Msieve v1.39
execution environment 実行環境
Core i7-4930K

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6280CypDecember 10, 2014 06:28:10 UTC 2014 年 12 月 10 日 (水) 15 時 28 分 10 秒 (日本時間)
4511e6600 / 4413KTakahashiApril 27, 2015 20:25:26 UTC 2015 年 4 月 28 日 (火) 5 時 25 分 26 秒 (日本時間)

145×10176-19

c158

name 名前Jo Yeong Uk
date 日付October 1, 2015 12:32:48 UTC 2015 年 10 月 1 日 (木) 21 時 32 分 48 秒 (日本時間)
composite number 合成数
23009274378284171022573999309556223206297198976818230308371527326611751550820292348756040689325517795373185956170266087448251652094560581874274099028965994541<158>
prime factors 素因数
3440770687110695795233051511293141762923338993831929471303816830709<67>
6687244361990788254470411563379627199827158188092023347718627141765229653128135958814972249<91>
factorization results 素因数分解の結果
Number: 16111_176
N=23009274378284171022573999309556223206297198976818230308371527326611751550820292348756040689325517795373185956170266087448251652094560581874274099028965994541
  ( 158 digits)
SNFS difficulty: 178 digits.
Divisors found:
 r1=3440770687110695795233051511293141762923338993831929471303816830709
 r2=6687244361990788254470411563379627199827158188092023347718627141765229653128135958814972249
Version: 
Total time: 35.26 hours.
Scaled time: 181.92 units (timescale=5.159).
Factorization parameters were as follows:
n: 23009274378284171022573999309556223206297198976818230308371527326611751550820292348756040689325517795373185956170266087448251652094560581874274099028965994541
m: 100000000000000000000000000000000000
deg: 5
c5: 1450
c0: -1
skew: 0.23
# Murphy_E = 1.201e-10
type: snfs
lss: 1
rlim: 8000000
alim: 8000000
lpbr: 28
lpba: 28
mfbr: 53
mfba: 53
rlambda: 2.5
alambda: 2.5
Factor base limits: 8000000/8000000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 53/53
Sieved rational special-q in [4000000, 7900001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 18416283
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1321016 x 1321264
Total sieving time: 31.42 hours.
Total relation processing time: 1.80 hours.
Matrix solve time: 1.95 hours.
Time per square root: 0.08 hours.
Prototype def-par.txt line would be:
snfs,178,5,0,0,0,0,0,0,0,0,8000000,8000000,28,28,53,53,2.5,2.5,100000
total time: 35.26 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM) i7-4930K CPU @ 3.40GHz stepping 04
Memory: 49365480k/51380224k available (5395k kernel code, 1086460k absent, 928284k reserved, 7013k data, 1296k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 6799.95 BogoMIPS (lpj=3399977)
Total of 12 processors activated (81599.44 BogoMIPS).
software ソフトウェア
GGNFS / Msieve v1.39
execution environment 実行環境
Core i7-4930K

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6300Serge BatalovDecember 10, 2014 19:48:40 UTC 2014 年 12 月 11 日 (木) 4 時 48 分 40 秒 (日本時間)
4511e6600 / 4409KTakahashiMay 6, 2015 22:37:30 UTC 2015 年 5 月 7 日 (木) 7 時 37 分 30 秒 (日本時間)

145×10178-19

c119

name 名前Cyp
date 日付December 12, 2014 22:12:26 UTC 2014 年 12 月 13 日 (土) 7 時 12 分 26 秒 (日本時間)
composite number 合成数
17386215481716176099586562975135212277520490450743978778949679160312788866796828872876160937771390062420019193235099027<119>
prime factors 素因数
72579865102082334652051310395225211869974799<44>
239545987819938248802135682446241868725565849856551782454419628560680301373<75>
factorization results 素因数分解の結果
12/12/14 18:43:54 v1.34.3, 
12/12/14 18:43:54 v1.34.3, ****************************
12/12/14 18:43:54 v1.34.3, Starting factorization of 17386215481716176099586562975135212277520490450743978778949679160312788866796828872876160937771390062420019193235099027
12/12/14 18:43:54 v1.34.3, using pretesting plan: none
12/12/14 18:43:54 v1.34.3, no tune info: using qs/gnfs crossover of 95 digits
12/12/14 18:43:54 v1.34.3, ****************************
12/12/14 18:43:54 v1.34.3, rho: x^2 + 3, starting 1000 iterations on C119
12/12/14 18:43:54 v1.34.3, rho: x^2 + 2, starting 1000 iterations on C119
12/12/14 18:43:54 v1.34.3, rho: x^2 + 1, starting 1000 iterations on C119
12/12/14 18:43:54 v1.34.3, final ECM pretested depth: 0.00
12/12/14 18:43:54 v1.34.3, scheduler: switching to sieve method
12/12/14 18:43:54 v1.34.3, nfs: commencing nfs on c119: 17386215481716176099586562975135212277520490450743978778949679160312788866796828872876160937771390062420019193235099027
12/12/14 18:43:54 v1.34.3, nfs: commencing poly selection with 8 threads
12/12/14 18:43:54 v1.34.3, nfs: setting deadline of 1462 seconds
12/12/14 19:08:38 v1.34.3, nfs: completed 254 ranges of size 250 in 1484.4237 seconds
12/12/14 19:08:38 v1.34.3, nfs: best poly = # norm 2.601874e-11 alpha -5.967698 e 3.327e-10 rroots 3
12/12/14 19:08:38 v1.34.3, nfs: commencing lattice sieving with 8 threads
12/12/14 19:14:04 v1.34.3, nfs: commencing lattice sieving with 8 threads
[34 lines snipped]
12/12/14 22:29:59 v1.34.3, nfs: commencing lattice sieving with 8 threads
12/12/14 22:35:46 v1.34.3, nfs: commencing lattice sieving with 8 threads
12/12/14 22:41:42 v1.34.3, nfs: commencing msieve filtering
12/12/14 22:43:22 v1.34.3, nfs: commencing lattice sieving with 8 threads
12/12/14 22:49:06 v1.34.3, nfs: commencing lattice sieving with 8 threads
12/12/14 22:54:58 v1.34.3, nfs: commencing msieve filtering
12/12/14 22:57:00 v1.34.3, nfs: commencing msieve linear algebra
12/12/14 23:10:41 v1.34.3, nfs: commencing msieve sqrt
12/12/14 23:12:25 v1.34.3, prp44 = 72579865102082334652051310395225211869974799
12/12/14 23:12:25 v1.34.3, prp75 = 239545987819938248802135682446241868725565849856551782454419628560680301373
12/12/14 23:12:25 v1.34.3, NFS elapsed time = 16111.2357 seconds.
12/12/14 23:12:25 v1.34.3, 
12/12/14 23:12:25 v1.34.3, 
12/12/14 23:12:25 v1.34.3, Total factoring time = 16111.2608 seconds
--
Fri Dec 12 22:41:42 2014  
Fri Dec 12 22:41:42 2014  commencing relation filtering
Fri Dec 12 22:41:42 2014  estimated available RAM is 15987.3 MB
Fri Dec 12 22:41:42 2014  commencing duplicate removal, pass 1
Fri Dec 12 22:42:14 2014  found 1107832 hash collisions in 10114894 relations
Fri Dec 12 22:42:24 2014  added 63170 free relations
Fri Dec 12 22:42:24 2014  commencing duplicate removal, pass 2
Fri Dec 12 22:42:33 2014  found 566936 duplicates and 9611128 unique relations
Fri Dec 12 22:42:33 2014  memory use: 41.3 MB
Fri Dec 12 22:42:33 2014  reading ideals above 100000
Fri Dec 12 22:42:33 2014  commencing singleton removal, initial pass
Fri Dec 12 22:43:17 2014  memory use: 344.5 MB
Fri Dec 12 22:43:17 2014  reading all ideals from disk
Fri Dec 12 22:43:17 2014  memory use: 340.4 MB
Fri Dec 12 22:43:17 2014  keeping 10785420 ideals with weight <= 200, target excess is 49382
Fri Dec 12 22:43:18 2014  commencing in-memory singleton removal
Fri Dec 12 22:43:18 2014  begin with 9611128 relations and 10785420 unique ideals
Fri Dec 12 22:43:22 2014  reduce to 3172372 relations and 3126591 ideals in 23 passes
Fri Dec 12 22:43:22 2014  max relations containing the same ideal: 96
Fri Dec 12 22:54:58 2014  
Fri Dec 12 22:54:58 2014  commencing relation filtering
Fri Dec 12 22:54:58 2014  estimated available RAM is 15987.3 MB
Fri Dec 12 22:54:58 2014  commencing duplicate removal, pass 1
Fri Dec 12 22:55:33 2014  found 1217789 hash collisions in 10703314 relations
Fri Dec 12 22:55:43 2014  added 104 free relations
Fri Dec 12 22:55:43 2014  commencing duplicate removal, pass 2
Fri Dec 12 22:55:51 2014  found 620334 duplicates and 10083084 unique relations
Fri Dec 12 22:55:51 2014  memory use: 41.3 MB
Fri Dec 12 22:55:51 2014  reading ideals above 720000
Fri Dec 12 22:55:51 2014  commencing singleton removal, initial pass
Fri Dec 12 22:56:34 2014  memory use: 344.5 MB
Fri Dec 12 22:56:34 2014  reading all ideals from disk
Fri Dec 12 22:56:34 2014  memory use: 286.7 MB
Fri Dec 12 22:56:34 2014  commencing in-memory singleton removal
Fri Dec 12 22:56:35 2014  begin with 10083084 relations and 10924104 unique ideals
Fri Dec 12 22:56:38 2014  reduce to 3815804 relations and 3540589 ideals in 19 passes
Fri Dec 12 22:56:38 2014  max relations containing the same ideal: 80
Fri Dec 12 22:56:39 2014  removing 609742 relations and 539398 ideals in 70344 cliques
Fri Dec 12 22:56:39 2014  commencing in-memory singleton removal
Fri Dec 12 22:56:39 2014  begin with 3206062 relations and 3540589 unique ideals
Fri Dec 12 22:56:40 2014  reduce to 3122083 relations and 2915093 ideals in 10 passes
Fri Dec 12 22:56:40 2014  max relations containing the same ideal: 69
Fri Dec 12 22:56:41 2014  removing 455143 relations and 384799 ideals in 70344 cliques
Fri Dec 12 22:56:41 2014  commencing in-memory singleton removal
Fri Dec 12 22:56:41 2014  begin with 2666940 relations and 2915093 unique ideals
Fri Dec 12 22:56:42 2014  reduce to 2608083 relations and 2469984 ideals in 13 passes
Fri Dec 12 22:56:42 2014  max relations containing the same ideal: 59
Fri Dec 12 22:56:43 2014  relations with 0 large ideals: 510
Fri Dec 12 22:56:43 2014  relations with 1 large ideals: 3581
Fri Dec 12 22:56:43 2014  relations with 2 large ideals: 43668
Fri Dec 12 22:56:43 2014  relations with 3 large ideals: 221262
Fri Dec 12 22:56:43 2014  relations with 4 large ideals: 567019
Fri Dec 12 22:56:43 2014  relations with 5 large ideals: 792140
Fri Dec 12 22:56:43 2014  relations with 6 large ideals: 623939
Fri Dec 12 22:56:43 2014  relations with 7+ large ideals: 355964
Fri Dec 12 22:56:43 2014  commencing 2-way merge
Fri Dec 12 22:56:44 2014  reduce to 1472223 relation sets and 1334125 unique ideals
Fri Dec 12 22:56:44 2014  ignored 1 oversize relation sets
Fri Dec 12 22:56:44 2014  commencing full merge
Fri Dec 12 22:56:55 2014  memory use: 142.3 MB
Fri Dec 12 22:56:55 2014  found 722208 cycles, need 702325
Fri Dec 12 22:56:55 2014  weight of 702325 cycles is about 49293357 (70.19/cycle)
Fri Dec 12 22:56:55 2014  distribution of cycle lengths:
Fri Dec 12 22:56:55 2014  1 relations: 84492
Fri Dec 12 22:56:55 2014  2 relations: 78683
Fri Dec 12 22:56:55 2014  3 relations: 78593
Fri Dec 12 22:56:55 2014  4 relations: 70490
Fri Dec 12 22:56:55 2014  5 relations: 64110
Fri Dec 12 22:56:55 2014  6 relations: 54472
Fri Dec 12 22:56:55 2014  7 relations: 48643
Fri Dec 12 22:56:55 2014  8 relations: 42057
Fri Dec 12 22:56:55 2014  9 relations: 36547
Fri Dec 12 22:56:55 2014  10+ relations: 144238
Fri Dec 12 22:56:55 2014  heaviest cycle: 20 relations
Fri Dec 12 22:56:55 2014  commencing cycle optimization
Fri Dec 12 22:56:56 2014  start with 4233808 relations
Fri Dec 12 22:56:59 2014  pruned 88288 relations
Fri Dec 12 22:56:59 2014  memory use: 144.2 MB
Fri Dec 12 22:56:59 2014  distribution of cycle lengths:
Fri Dec 12 22:56:59 2014  1 relations: 84492
Fri Dec 12 22:56:59 2014  2 relations: 80408
Fri Dec 12 22:56:59 2014  3 relations: 81146
Fri Dec 12 22:56:59 2014  4 relations: 71803
Fri Dec 12 22:56:59 2014  5 relations: 65410
Fri Dec 12 22:56:59 2014  6 relations: 55041
Fri Dec 12 22:56:59 2014  7 relations: 48966
Fri Dec 12 22:56:59 2014  8 relations: 42354
Fri Dec 12 22:56:59 2014  9 relations: 36150
Fri Dec 12 22:56:59 2014  10+ relations: 136555
Fri Dec 12 22:56:59 2014  heaviest cycle: 20 relations
Fri Dec 12 22:57:00 2014  RelProcTime: 122
Fri Dec 12 22:57:00 2014  
Fri Dec 12 22:57:00 2014  commencing linear algebra
Fri Dec 12 22:57:00 2014  read 702325 cycles
Fri Dec 12 22:57:01 2014  cycles contain 2446166 unique relations
Fri Dec 12 22:57:14 2014  read 2446166 relations
Fri Dec 12 22:57:15 2014  using 20 quadratic characters above 134215442
Fri Dec 12 22:57:23 2014  building initial matrix
Fri Dec 12 22:57:37 2014  memory use: 310.6 MB
Fri Dec 12 22:57:38 2014  read 702325 cycles
Fri Dec 12 22:57:38 2014  matrix is 702134 x 702325 (210.6 MB) with weight 66823570 (95.15/col)
Fri Dec 12 22:57:38 2014  sparse part has weight 47488276 (67.62/col)
Fri Dec 12 22:57:41 2014  filtering completed in 2 passes
Fri Dec 12 22:57:41 2014  matrix is 699041 x 699230 (210.3 MB) with weight 66676146 (95.36/col)
Fri Dec 12 22:57:41 2014  sparse part has weight 47431485 (67.83/col)
Fri Dec 12 22:57:43 2014  matrix starts at (0, 0)
Fri Dec 12 22:57:43 2014  matrix is 699041 x 699230 (210.3 MB) with weight 66676146 (95.36/col)
Fri Dec 12 22:57:43 2014  sparse part has weight 47431485 (67.83/col)
Fri Dec 12 22:57:43 2014  saving the first 48 matrix rows for later
Fri Dec 12 22:57:43 2014  matrix includes 64 packed rows
Fri Dec 12 22:57:43 2014  matrix is 698993 x 699230 (203.1 MB) with weight 52951575 (75.73/col)
Fri Dec 12 22:57:43 2014  sparse part has weight 46254941 (66.15/col)
Fri Dec 12 22:57:43 2014  using block size 65536 for processor cache size 8192 kB
Fri Dec 12 22:57:45 2014  commencing Lanczos iteration (8 threads)
Fri Dec 12 22:57:45 2014  memory use: 194.6 MB
Fri Dec 12 22:57:48 2014  linear algebra at 0.4%, ETA 0h11m
Fri Dec 12 23:10:40 2014  lanczos halted after 11054 iterations (dim = 698993)
Fri Dec 12 23:10:40 2014  recovered 33 nontrivial dependencies
Fri Dec 12 23:10:41 2014  BLanczosTime: 821
Fri Dec 12 23:10:41 2014  
Fri Dec 12 23:10:41 2014  commencing square root phase
Fri Dec 12 23:10:41 2014  reading relations for dependency 1
Fri Dec 12 23:10:41 2014  read 350288 cycles
Fri Dec 12 23:10:41 2014  cycles contain 1223700 unique relations
Fri Dec 12 23:10:51 2014  read 1223700 relations
Fri Dec 12 23:10:54 2014  multiplying 1223700 relations
Fri Dec 12 23:11:34 2014  multiply complete, coefficients have about 51.33 million bits
Fri Dec 12 23:11:35 2014  initial square root is modulo 23423243
Fri Dec 12 23:12:25 2014  sqrtTime: 104
--
n: 17386215481716176099586562975135212277520490450743978778949679160312788866796828872876160937771390062420019193235099027
skew: 185739.25
c0: -128910159283929089634843322752
c1: 2810423227136067793541856
c2: 17127622602959551915
c3: -428820316760284
c4: -804703028
c5: 1200
Y0: -107697392549562218269475
Y1: 788403203369
rlim: 5300000
alim: 5300000
lpbr: 27
lpba: 27
mfbr: 54
mfba: 54
rlambda: 2.5
alambda: 2.5
software ソフトウェア
yafu v1.34.3
execution environment 実行環境
Gentoo Linux, Intel(R) Core(TM) i7-3770K CPU

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間)
403e62320Serge BatalovDecember 9, 2014 00:57:16 UTC 2014 年 12 月 9 日 (火) 9 時 57 分 16 秒 (日本時間)

145×10179-19

c132

name 名前KTakahashi
date 日付July 14, 2015 00:45:39 UTC 2015 年 7 月 14 日 (火) 9 時 45 分 39 秒 (日本時間)
composite number 合成数
155441677084707780941616474375974120746874600080802771735876306235799855666855571134605058357402909695411532211852813889832486916273<132>
prime factors 素因数
275710585086635977800033791128166936006839247<45>
563785670527896700468661551748644031350258445749426405016636555684801065163749146508159<87>
factorization results 素因数分解の結果
GMP-ECM 6.4.4 [configured with GMP 6.0.0] [ECM]
Input number is 155441677084707780941616474375974120746874600080802771735876306235799855666855571134605058357402909695411532211852813889832486916273 (132 digits)
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=3977984342
Step 1 took 30888ms
Step 2 took 14571ms
********** Factor found in step 2: 275710585086635977800033791128166936006839247
Found probable prime factor of 45 digits: 275710585086635977800033791128166936006839247
Probable prime cofactor 563785670527896700468661551748644031350258445749426405016636555684801065163749146508159 has 87 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6300Serge BatalovDecember 10, 2014 19:48:40 UTC 2014 年 12 月 11 日 (木) 4 時 48 分 40 秒 (日本時間)
4511e61609 / 4409600KTakahashiMay 17, 2015 00:07:15 UTC 2015 年 5 月 17 日 (日) 9 時 7 分 15 秒 (日本時間)
1009KTakahashiJuly 13, 2015 20:37:23 UTC 2015 年 7 月 14 日 (火) 5 時 37 分 23 秒 (日本時間)

145×10182-19

c183

name 名前Robert Backstrom
date 日付December 27, 2014 01:37:40 UTC 2014 年 12 月 27 日 (土) 10 時 37 分 40 秒 (日本時間)
composite number 合成数
179012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679<183>
prime factors 素因数
105498094087683137746214031291691640352185168974551584676232197222207055080113<78>
1696830139227244758082760346490289295811909596696647096664787946717940393213272263635584337270614985245183<106>
factorization results 素因数分解の結果
Number: n
N=179012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679
  ( 183 digits)
SNFS difficulty: 184 digits.
Divisors found:

Sat Dec 27 11:38:36 2014  prp78 factor: 105498094087683137746214031291691640352185168974551584676232197222207055080113
Sat Dec 27 11:38:36 2014  prp106 factor: 1696830139227244758082760346490289295811909596696647096664787946717940393213272263635584337270614985245183
Sat Dec 27 11:38:36 2014  elapsed time 00:41:45 (Msieve 1.44 - dependency 2)

Version: GGNFS-0.77.1-20060513-nocona
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.278).
Factorization parameters were as follows:
#
#  N = 145*10^182-1 161(182)
#
n: 179012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679
m: 1000000000000000000000000000000000000
deg: 5
c5: 14500
c0: -1
skew: 0.15
# Murphy_E = 6.159e-11
type: snfs
lss: 1
rlim: 8200000
alim: 8200000
lpbr: 28
lpba: 28
mfbr: 54
mfba: 54
rlambda: 2.5
alambda: 2.5
Factor base limits: 8200000/8200000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 54/54
Sieved  special-q in [100000, 9700000)
Primes: RFBsize:552319, AFBsize:551143,
Relations:
Max relations in full relation-set: 28
Initial matrix:
Pruned matrix :

Msieve: found 4067667 hash collisions in 32804507 relations (30656582 unique)
Msieve: matrix is 916670 x 916895 (257.6 MB)

Total sieving time: 0.00 hours.
Total relation processing time: 0hrs 29min 42sec.
Matrix solve time: 0.00 hours.
Total square root time: 0hrs 4min 48sec.

Prototype def-par.txt line would be:
snfs,184,5,0,0,0,0,0,0,0,0,8200000,8200000,28,28,54,54,2.5,2.5,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------
[    0.038914] smpboot: CPU0: Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz (fam: 06, model: 3c, stepping: 03)
[    0.000000] Memory: 16059668K/16661464K available (7375K kernel code, 1160K rwdata, 3228K rodata, 1468K init, 1504K bss, 601796K reserved)
[    1.131637] [drm] Memory usable by graphics device = 2048M
[    0.000027] Calibrating delay loop (skipped), value calculated using timer frequency.. 7200.29 BogoMIPS (lpj=3600149)
[    0.136791] smpboot: Total of 8 processors activated (57602.38 BogoMIPS)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間)
403e62320Serge BatalovDecember 8, 2014 19:27:35 UTC 2014 年 12 月 9 日 (火) 4 時 27 分 35 秒 (日本時間)

145×10183-19

c131

name 名前Jo Yeong Uk
date 日付April 6, 2016 13:24:00 UTC 2016 年 4 月 6 日 (水) 22 時 24 分 0 秒 (日本時間)
composite number 合成数
35801997133313307956196774050292025114675381100518652538877673943478637889996830897928776062205398301203492669829122050540988347847<131>
prime factors 素因数
1013538291081503207343300867126180584674904807045665313<55>
35323773604163029211087651458326249283179364071519182024307855920582136601319<77>
factorization results 素因数分解の結果
GMP-ECM 6.4.4 [configured with GMP 6.0.0, --enable-asm-redc] [ECM]
Input number is 35801997133313307956196774050292025114675381100518652538877673943478637889996830897928776062205398301203492669829122050540988347847 (131 digits)
Using B1=43000000, B2=240490660426, polynomial Dickson(12), sigma=6656394354
Step 1 took 77274ms
Step 2 took 23956ms
********** Factor found in step 2: 1013538291081503207343300867126180584674904807045665313
Found probable prime factor of 55 digits: 1013538291081503207343300867126180584674904807045665313
Probable prime cofactor 35323773604163029211087651458326249283179364071519182024307855920582136601319 has 77 digits
execution environment 実行環境
Core i7-4930K

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6300Serge BatalovDecember 10, 2014 19:48:41 UTC 2014 年 12 月 11 日 (木) 4 時 48 分 41 秒 (日本時間)
4511e64409585CypMay 24, 2015 17:14:30 UTC 2015 年 5 月 25 日 (月) 2 時 14 分 30 秒 (日本時間)
174KTakahashiJune 29, 2015 22:39:25 UTC 2015 年 6 月 30 日 (火) 7 時 39 分 25 秒 (日本時間)
920KTakahashiJune 30, 2015 13:06:32 UTC 2015 年 6 月 30 日 (火) 22 時 6 分 32 秒 (日本時間)
230KTakahashiJune 30, 2015 13:47:38 UTC 2015 年 6 月 30 日 (火) 22 時 47 分 38 秒 (日本時間)
2500KTakahashiJuly 1, 2015 09:20:11 UTC 2015 年 7 月 1 日 (水) 18 時 20 分 11 秒 (日本時間)

145×10186-19

c156

name 名前Cyp
date 日付June 3, 2015 08:28:01 UTC 2015 年 6 月 3 日 (水) 17 時 28 分 1 秒 (日本時間)
composite number 合成数
122396843379272514368764192117624270111871333005952629285393935290503501260005667930669766393119111594102377719555727839320900580082972164927248976648756373<156>
prime factors 素因数
774360870194396343710182032463058286459476323<45>
158061761757855721457938809749889170402601170526007198220947683985466376910622693048336313581514275959610429351<111>
factorization results 素因数分解の結果
Run 157 out of 591:
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1092000953
Step 1 took 50627ms
Step 2 took 17124ms
********** Factor found in step 2: 774360870194396343710182032463058286459476323
Found probable prime factor of 45 digits: 774360870194396343710182032463058286459476323
Probable prime cofactor 158061761757855721457938809749889170402601170526007198220947683985466376910622693048336313581514275959610429351 has 111 digits
software ソフトウェア
GMP-ECM 6.4.4
execution environment 実行環境
Gentoo Linux, Intel(R) Core(TM) i7-3770K CPU

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6280 / 1777CypDecember 7, 2014 10:01:08 UTC 2014 年 12 月 7 日 (日) 19 時 1 分 8 秒 (日本時間)
4511e6157 / 4413CypJune 3, 2015 08:28:01 UTC 2015 年 6 月 3 日 (水) 17 時 28 分 1 秒 (日本時間)

145×10187-19

c168

name 名前Jo Yeong Uk
date 日付December 4, 2016 06:59:04 UTC 2016 年 12 月 4 日 (日) 15 時 59 分 4 秒 (日本時間)
composite number 合成数
505740478289062187400732633602210913618704920924953607282310715849151610458396665645808667395989232524016906738614642704543123240183264667435207352699637900236983847333<168>
prime factors 素因数
3482362791196156844255945949742971219357635574350796460063442659559<67>
145229118450161645387129324315469743481981898065451209999391250279074798782399387036692190482847722387<102>
factorization results 素因数分解の結果
Number: 16111_187
N=505740478289062187400732633602210913618704920924953607282310715849151610458396665645808667395989232524016906738614642704543123240183264667435207352699637900236983847333
  ( 168 digits)
SNFS difficulty: 189 digits.
Divisors found:
 r1=3482362791196156844255945949742971219357635574350796460063442659559
 r2=145229118450161645387129324315469743481981898065451209999391250279074798782399387036692190482847722387
Version: 
Total time: 93.31 hours.
Scaled time: 488.03 units (timescale=5.230).
Factorization parameters were as follows:
n: 505740478289062187400732633602210913618704920924953607282310715849151610458396665645808667395989232524016906738614642704543123240183264667435207352699637900236983847333
m: 10000000000000000000000000000000000000
deg: 5
c5: 14500
c0: -1
skew: 0.15
# Murphy_E = 3.849e-11
type: snfs
lss: 1
rlim: 8400000
alim: 8400000
lpbr: 28
lpba: 28
mfbr: 54
mfba: 54
rlambda: 2.5
alambda: 2.5
Factor base limits: 8400000/8400000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 54/54
Sieved rational special-q in [4200000, 8300001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 20619382
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1799152 x 1799399
Total sieving time: 85.90 hours.
Total relation processing time: 2.25 hours.
Matrix solve time: 4.48 hours.
Time per square root: 0.68 hours.
Prototype def-par.txt line would be:
snfs,189,5,0,0,0,0,0,0,0,0,8400000,8400000,28,28,54,54,2.5,2.5,100000
total time: 93.31 hours.
 --------- CPU info (if available) ----------
software ソフトウェア
GGNFS / Msieve v1.39
execution environment 実行環境
Core i7-4930K

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6280CypDecember 8, 2014 23:54:31 UTC 2014 年 12 月 9 日 (火) 8 時 54 分 31 秒 (日本時間)
4511e6791 / 4413591CypMay 22, 2015 06:05:27 UTC 2015 年 5 月 22 日 (金) 15 時 5 分 27 秒 (日本時間)
200Dmitry DomanovDecember 16, 2015 06:14:57 UTC 2015 年 12 月 16 日 (水) 15 時 14 分 57 秒 (日本時間)

145×10188-19

c142

name 名前Jo Yeong Uk
date 日付January 9, 2017 14:35:17 UTC 2017 年 1 月 9 日 (月) 23 時 35 分 17 秒 (日本時間)
composite number 合成数
6256492484805084896286390695858338226705603326305379548784309211819269602458043481757263435260343513073954814412003660321966571686329665884603<142>
prime factors 素因数
598985156893864749786054437763821374130800455184859<51>
10445154463007309509576013895643819979869754894674387754092526715832995156457602717670938017<92>
factorization results 素因数分解の結果
Number: 16111_188
N=6256492484805084896286390695858338226705603326305379548784309211819269602458043481757263435260343513073954814412003660321966571686329665884603
  ( 142 digits)
SNFS difficulty: 190 digits.
Divisors found:
 r1=598985156893864749786054437763821374130800455184859
 r2=10445154463007309509576013895643819979869754894674387754092526715832995156457602717670938017
Version: 
Total time: 99.75 hours.
Scaled time: 524.29 units (timescale=5.256).
Factorization parameters were as follows:
n: 6256492484805084896286390695858338226705603326305379548784309211819269602458043481757263435260343513073954814412003660321966571686329665884603
m: 50000000000000000000000000000000000000
deg: 5
c5: 232
c0: -5
skew: 0.46
# Murphy_E = 3.684e-11
type: snfs
lss: 1
rlim: 9000000
alim: 9000000
lpbr: 28
lpba: 28
mfbr: 54
mfba: 54
rlambda: 2.5
alambda: 2.5
Factor base limits: 9000000/9000000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 54/54
Sieved rational special-q in [4500000, 8900001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 21121382
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1772408 x 1772656
Total sieving time: 92.55 hours.
Total relation processing time: 2.49 hours.
Matrix solve time: 4.29 hours.
Time per square root: 0.42 hours.
Prototype def-par.txt line would be:
snfs,190,5,0,0,0,0,0,0,0,0,9000000,9000000,28,28,54,54,2.5,2.5,100000
total time: 99.75 hours.
 --------- CPU info (if available) ----------
software ソフトウェア
GGNFS / Msieve v1.39
execution environment 実行環境
Core i7-4930K

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6300Serge BatalovDecember 10, 2014 19:48:41 UTC 2014 年 12 月 11 日 (木) 4 時 48 分 41 秒 (日本時間)
4511e64609585CypJune 2, 2015 15:30:50 UTC 2015 年 6 月 3 日 (水) 0 時 30 分 50 秒 (日本時間)
200Dmitry DomanovDecember 16, 2015 06:15:13 UTC 2015 年 12 月 16 日 (水) 15 時 15 分 13 秒 (日本時間)
3824Matthew HouseDecember 17, 2015 00:35:49 UTC 2015 年 12 月 17 日 (木) 9 時 35 分 49 秒 (日本時間)

145×10189-19

c161

name 名前Jo Yeong Uk
date 日付November 12, 2016 09:14:15 UTC 2016 年 11 月 12 日 (土) 18 時 14 分 15 秒 (日本時間)
composite number 合成数
21615341579331418947510266993583973795609827063994983407122944151658731619842054431309875936933517530844071424866624024579682085107701056734463382523087960175651<161>
prime factors 素因数
417792955748542439757381054092238278260333987<45>
51736969907987321775043408203389456092750744145030661339518657211287722110380388441568155432612702138732581532415873<116>
factorization results 素因数分解の結果
GMP-ECM 6.4.4 [configured with GMP 6.0.0, --enable-asm-redc] [ECM]
Input number is 21615341579331418947510266993583973795609827063994983407122944151658731619842054431309875936933517530844071424866624024579682085107701056734463382523087960175651 (161 digits)
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1376911872
Step 1 took 30058ms
Step 2 took 9930ms
********** Factor found in step 2: 417792955748542439757381054092238278260333987
Found probable prime factor of 45 digits: 417792955748542439757381054092238278260333987
Probable prime cofactor 51736969907987321775043408203389456092750744145030661339518657211287722110380388441568155432612702138732581532415873 has 116 digits
execution environment 実行環境
Core i7-4930K

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6580280CypDecember 10, 2014 16:58:12 UTC 2014 年 12 月 11 日 (木) 1 時 58 分 12 秒 (日本時間)
300Serge BatalovDecember 10, 2014 19:48:42 UTC 2014 年 12 月 11 日 (木) 4 時 48 分 42 秒 (日本時間)
4511e6704 / 4347504CypJanuary 25, 2015 23:05:04 UTC 2015 年 1 月 26 日 (月) 8 時 5 分 4 秒 (日本時間)
200Dmitry DomanovDecember 16, 2015 06:15:29 UTC 2015 年 12 月 16 日 (水) 15 時 15 分 29 秒 (日本時間)

145×10190-19

c187

name 名前Robert Backstrom
date 日付December 30, 2014 02:06:10 UTC 2014 年 12 月 30 日 (火) 11 時 6 分 10 秒 (日本時間)
composite number 合成数
3413587963453421003689029199125179801917730175882177068693160817660256183891160690533532027694792277286927370619130688626631165351846751088228300762995764796726722272837492025152257794163<187>
prime factors 素因数
1982197109032777809183268080161666042817809923<46>
1722123369012023704101520977351144789322361103790238618267105293552751768957626864947312233036983677037851079839111312486830169345749021724881<142>
factorization results 素因数分解の結果
Number: n
N=3413587963453421003689029199125179801917730175882177068693160817660256183891160690533532027694792277286927370619130688626631165351846751088228300762995764796726722272837492025152257794163
  ( 187 digits)
SNFS difficulty: 192 digits.
Divisors found:

Tue Dec 30 13:03:30 2014  prp46 factor: 1982197109032777809183268080161666042817809923
Tue Dec 30 13:03:30 2014  prp142 factor: 1722123369012023704101520977351144789322361103790238618267105293552751768957626864947312233036983677037851079839111312486830169345749021724881
Tue Dec 30 13:03:30 2014  elapsed time 01:02:20 (Msieve 1.44 - dependency 3)

Version: GGNFS-0.77.1-20060513-nocona
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.270).
Factorization parameters were as follows:
#
#  N = 145*10^190-1 161(190)
#
n: 3413587963453421003689029199125179801917730175882177068693160817660256183891160690533532027694792277286927370619130688626631165351846751088228300762995764796726722272837492025152257794163
m: 100000000000000000000000000000000000000
deg: 5
c5: 145
c0: -1
skew: 0.37
# Murphy_E = 3.432e-11
type: snfs
lss: 1
rlim: 11200000
alim: 11200000
lpbr: 28
lpba: 28
mfbr: 55
mfba: 55
rlambda: 2.5
alambda: 2.5
Factor base limits: 11200000/11200000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 55/55
Sieved  special-q in [100000, 16800000)
Primes: RFBsize:738873, AFBsize:738647,
Relations:
Max relations in full relation-set: 28
Initial matrix:
Pruned matrix :

Msieve: found 5139887 hash collisions in 40139651 relations (36415537 unique)
Msieve: matrix is 1168161 x 1168388 (325.6 MB)

Total sieving time: 0.00 hours.
Total relation processing time: 0hrs 44min 12sec.
Matrix solve time: 0.00 hours.
Total square root time: 0hrs 7min 52sec.

Prototype def-par.txt line would be:
snfs,192,5,0,0,0,0,0,0,0,0,11200000,11200000,28,28,55,55,2.5,2.5,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------
[    0.038914] smpboot: CPU0: Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz (fam: 06, model: 3c, stepping: 03)
[    0.000000] Memory: 16059668K/16661464K available (7375K kernel code, 1160K rwdata, 3228K rodata, 1468K init, 1504K bss, 601796K reserved)
[    1.131637] [drm] Memory usable by graphics device = 2048M
[    0.000027] Calibrating delay loop (skipped), value calculated using timer frequency.. 7200.29 BogoMIPS (lpj=3600149)
[    0.136791] smpboot: Total of 8 processors activated (57602.38 BogoMIPS)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間)
403e62320Serge BatalovDecember 9, 2014 00:57:33 UTC 2014 年 12 月 9 日 (火) 9 時 57 分 33 秒 (日本時間)

145×10191-19

c178

name 名前Jo Yeong Uk
date 日付April 22, 2017 02:54:51 UTC 2017 年 4 月 22 日 (土) 11 時 54 分 51 秒 (日本時間)
composite number 合成数
2747599400403029074764416000198809544017878714986776460934939972224389158796364542069869401091835746913102196489399950881335360847690190428029375355319946793746326782111895492327<178>
prime factors 素因数
61086754332929000791909355577494564535754593517188491896159713228199424262727507<80>
44978644395286315905198184771392648543524345306773139979163206557051334948716805669039782950159261<98>
factorization results 素因数分解の結果
Number: 16111_191
N=2747599400403029074764416000198809544017878714986776460934939972224389158796364542069869401091835746913102196489399950881335360847690190428029375355319946793746326782111895492327
  ( 178 digits)
SNFS difficulty: 193 digits.
Divisors found:
 r1=61086754332929000791909355577494564535754593517188491896159713228199424262727507
 r2=44978644395286315905198184771392648543524345306773139979163206557051334948716805669039782950159261
Version: 
Total time: 119.81 hours.
Scaled time: 629.38 units (timescale=5.253).
Factorization parameters were as follows:
n: 2747599400403029074764416000198809544017878714986776460934939972224389158796364542069869401091835746913102196489399950881335360847690190428029375355319946793746326782111895492327
m: 100000000000000000000000000000000000000
deg: 5
c5: 1450
c0: -1
skew: 0.23
# Murphy_E = 2.935e-11
type: snfs
lss: 1
rlim: 10000000
alim: 10000000
lpbr: 28
lpba: 28
mfbr: 55
mfba: 55
rlambda: 2.5
alambda: 2.5
Factor base limits: 10000000/10000000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 55/55
Sieved rational special-q in [5000000, 10100001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 22386765
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 2108541 x 2108786
Total sieving time: 109.54 hours.
Total relation processing time: 3.13 hours.
Matrix solve time: 6.62 hours.
Time per square root: 0.52 hours.
Prototype def-par.txt line would be:
snfs,193,5,0,0,0,0,0,0,0,0,10000000,10000000,28,28,55,55,2.5,2.5,100000
total time: 119.81 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM) i7-4930K CPU @ 3.40GHz stepping 04
Memory: 49367836k/51380224k available (5467k kernel code, 1086464k absent, 925924k reserved, 6954k data, 1316k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 6800.09 BogoMIPS (lpj=3400049)
Total of 12 processors activated (81601.17 BogoMIPS).
software ソフトウェア
GGNFS / Msieve v1.39
execution environment 実行環境
Core i7-4930K

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6280CypDecember 9, 2014 23:22:42 UTC 2014 年 12 月 10 日 (水) 8 時 22 分 42 秒 (日本時間)
4511e6791 / 4413591CypJuly 30, 2015 14:29:42 UTC 2015 年 7 月 30 日 (木) 23 時 29 分 42 秒 (日本時間)
200Dmitry DomanovDecember 16, 2015 06:15:47 UTC 2015 年 12 月 16 日 (水) 15 時 15 分 47 秒 (日本時間)

145×10192-19

c166

name 名前Jo Yeong Uk
date 日付May 23, 2017 11:00:53 UTC 2017 年 5 月 23 日 (火) 20 時 0 分 53 秒 (日本時間)
composite number 合成数
1659664412551260853233561278249173567945031080381188958364406090776832296870017016807676426030857356501454988005322554436000547858991779053871384239805934831716285801<166>
prime factors 素因数
321936924745309507870522593580712191875381652089743<51>
5155247146204969454651990949595220545911392322375120747384280785714201485188805993025132267452203778502816299363207<115>
factorization results 素因数分解の結果
Number: 16111_192
N=1659664412551260853233561278249173567945031080381188958364406090776832296870017016807676426030857356501454988005322554436000547858991779053871384239805934831716285801
  ( 166 digits)
SNFS difficulty: 194 digits.
Divisors found:
 r1=321936924745309507870522593580712191875381652089743
 r2=5155247146204969454651990949595220545911392322375120747384280785714201485188805993025132267452203778502816299363207
Version: 
Total time: 143.27 hours.
Scaled time: 752.18 units (timescale=5.250).
Factorization parameters were as follows:
n: 1659664412551260853233561278249173567945031080381188958364406090776832296870017016807676426030857356501454988005322554436000547858991779053871384239805934831716285801
m: 100000000000000000000000000000000000000
deg: 5
c5: 14500
c0: -1
skew: 0.15
# Murphy_E = 2.395e-11
type: snfs
lss: 1
rlim: 11000000
alim: 11000000
lpbr: 28
lpba: 28
mfbr: 55
mfba: 55
rlambda: 2.5
alambda: 2.5
Factor base limits: 11000000/11000000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 55/55
Sieved rational special-q in [5500000, 11500001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 22866177
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 2247511 x 2247758
Total sieving time: 131.28 hours.
Total relation processing time: 3.71 hours.
Matrix solve time: 7.89 hours.
Time per square root: 0.39 hours.
Prototype def-par.txt line would be:
snfs,194,5,0,0,0,0,0,0,0,0,11000000,11000000,28,28,55,55,2.5,2.5,100000
total time: 143.27 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM) i7-4930K CPU @ 3.40GHz stepping 04
Memory: 49367836k/51380224k available (5467k kernel code, 1086464k absent, 925924k reserved, 6954k data, 1316k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 6800.09 BogoMIPS (lpj=3400049)
Total of 12 processors activated (81601.17 BogoMIPS).
software ソフトウェア
GGNFS / Msieve v1.39
execution environment 実行環境
Core i7-4930K

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6300Serge BatalovDecember 10, 2014 19:48:42 UTC 2014 年 12 月 11 日 (木) 4 時 48 分 42 秒 (日本時間)
4511e6785 / 4409585CypMay 12, 2015 04:54:03 UTC 2015 年 5 月 12 日 (火) 13 時 54 分 3 秒 (日本時間)
200Dmitry DomanovDecember 16, 2015 06:16:01 UTC 2015 年 12 月 16 日 (水) 15 時 16 分 1 秒 (日本時間)

145×10194-19

c150

name 名前Cyp
date 日付December 7, 2014 21:29:49 UTC 2014 年 12 月 8 日 (月) 6 時 29 分 49 秒 (日本時間)
composite number 合成数
340030630243594285763666766352129548014222279836498966117941110947173619626728191965838456090827452453329071154834797200400444360726974679310403029577<150>
prime factors 素因数
2323331772189002670715579516019<31>
146354745505513126513222678799213560124307171732545586403132004254362809975378116208916101947216040428690404498552800083<120>
factorization results 素因数分解の結果
Run 147 out of 280:
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=648895941
Step 1 took 11342ms
Step 2 took 4583ms
********** Factor found in step 2: 2323331772189002670715579516019
Found probable prime factor of 31 digits: 2323331772189002670715579516019
Probable prime cofactor 146354745505513126513222678799213560124307171732545586403132004254362809975378116208916101947216040428690404498552800083 has 120 digits
software ソフトウェア
GMP-ECM 6.4.4
execution environment 実行環境
Gentoo Linux, Intel(R) Core(TM) i7-3770K CPU

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 492Makoto KamadaDecember 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6147 / 2318CypDecember 7, 2014 21:29:49 UTC 2014 年 12 月 8 日 (月) 6 時 29 分 49 秒 (日本時間)

145×10196-19

c158

name 名前Jo Yeong Uk
date 日付June 4, 2017 11:00:12 UTC 2017 年 6 月 4 日 (日) 20 時 0 分 12 秒 (日本時間)
composite number 合成数
61791048130489109503407711274933909016405953824303142929185793023572457531154157539560615902060692244847072071794853931090753399831314770939421603373072698457<158>
prime factors 素因数
219414297163877912361161475121273432717<39>
281618148539965539427281186576559056522109296650785817232323735659778985834199809048343028405471320621050968102999604221<120>
factorization results 素因数分解の結果
GMP-ECM 6.4.4 [configured with GMP 6.0.0, --enable-asm-redc] [ECM]
Input number is 61791048130489109503407711274933909016405953824303142929185793023572457531154157539560615902060692244847072071794853931090753399831314770939421603373072698457 (158 digits)
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1150546041
Step 1 took 29765ms
Step 2 took 9755ms
********** Factor found in step 2: 219414297163877912361161475121273432717
Found probable prime factor of 39 digits: 219414297163877912361161475121273432717
Probable prime cofactor 281618148539965539427281186576559056522109296650785817232323735659778985834199809048343028405471320621050968102999604221 has 120 digits
execution environment 実行環境
Core i7-4930K

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6280CypDecember 7, 2014 09:24:50 UTC 2014 年 12 月 7 日 (日) 18 時 24 分 50 秒 (日本時間)
4511e6791 / 4413591CypJuly 30, 2015 11:32:09 UTC 2015 年 7 月 30 日 (木) 20 時 32 分 9 秒 (日本時間)
200Dmitry DomanovDecember 16, 2015 06:16:19 UTC 2015 年 12 月 16 日 (水) 15 時 16 分 19 秒 (日本時間)

145×10199-19

c176

name 名前Jo Yeong Uk
date 日付August 18, 2017 10:41:01 UTC 2017 年 8 月 18 日 (金) 19 時 41 分 1 秒 (日本時間)
composite number 合成数
23716903463988579051297725825905865345564200155268943711545390654414238511165909991055153016893475600673215458326772598313756266110354765268253663549307296927630262581936835651<176>
prime factors 素因数
28821084573016447934187524228345817121667<41>
2542231800608855151506688474756484181227732081671977239<55>
323692412201478642729575389596762313546233195271895542398379187384787623359463527<81>
factorization results 素因数分解の結果
GMP-ECM 6.4.4 [configured with GMP 6.0.0, --enable-asm-redc] [ECM]
Input number is 23716903463988579051297725825905865345564200155268943711545390654414238511165909991055153016893475600673215458326772598313756266110354765268253663549307296927630262581936835651 (176 digits)
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=7541625046
Step 1 took 34295ms
Step 2 took 11061ms
********** Factor found in step 2: 28821084573016447934187524228345817121667
Found probable prime factor of 41 digits: 28821084573016447934187524228345817121667
Composite cofactor 822901143914388805240462092001283389979730220470203522842464624104250112936623033107760854094860346317804950446554444793773892394661953 has 135 digits

Number: 16111_199
N=822901143914388805240462092001283389979730220470203522842464624104250112936623033107760854094860346317804950446554444793773892394661953
  ( 135 digits)
Divisors found:
 r1=2542231800608855151506688474756484181227732081671977239
 r2=323692412201478642729575389596762313546233195271895542398379187384787623359463527
Version: 
Total time: 123.08 hours.
Scaled time: 646.79 units (timescale=5.255).
Factorization parameters were as follows:
name: 16111_199
n: 822901143914388805240462092001283389979730220470203522842464624104250112936623033107760854094860346317804950446554444793773892394661953
skew: 65476.14
# norm 4.50e+17
c5: 848880
c4: -51727850712
c3: -7745413929396840
c2: -462749704710468652960
c1: 10910429236656555695355855
c0: 269474958776106190303167579822
# alpha -4.92
Y1: 704592038249369
Y0: -62704734362598683260004765
# Murphy_E 4.33e-11
# M 535201303353591735836351128229065203755198632709472848790432253424903631551411496704312253748532506758922324777598181751920789332536210
type: gnfs
rlim: 10000000
alim: 10000000
lpbr: 28
lpba: 28
mfbr: 55
mfba: 55
rlambda: 2.6
alambda: 2.6
qintsize: 100000
Factor base limits: 10000000/10000000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 55/55
Sieved algebraic special-q in [5000000, 9100001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 20849125
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1710707 x 1710955
Polynomial selection time: 23.29 hours.
Total sieving time: 93.49 hours.
Total relation processing time: 2.23 hours.
Matrix solve time: 3.87 hours.
Time per square root: 0.21 hours.
Prototype def-par.txt line would be:
gnfs,134,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,10000000,10000000,28,28,55,55,2.6,2.6,100000
total time: 123.08 hours.
 --------- CPU info (if available) ----------
software ソフトウェア
GMP-ECM v6.4.4 / GGNFS / Msieve v1.39
execution environment 実行環境
Core i7-4930K

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6300Serge BatalovDecember 10, 2014 19:48:43 UTC 2014 年 12 月 11 日 (木) 4 時 48 分 43 秒 (日本時間)
4511e6785 / 4409585CypJuly 30, 2015 13:14:29 UTC 2015 年 7 月 30 日 (木) 22 時 14 分 29 秒 (日本時間)
200Dmitry DomanovDecember 16, 2015 06:16:34 UTC 2015 年 12 月 16 日 (水) 15 時 16 分 34 秒 (日本時間)

145×10200-19

c173

name 名前Serge Batalov
date 日付December 11, 2014 01:34:41 UTC 2014 年 12 月 11 日 (木) 10 時 34 分 41 秒 (日本時間)
composite number 合成数
48680267640594004056328338949299021011244346843090857796020811976424606662072990700612232377443907419859929761796107462920862028101467770017975126889136834828960907481754893<173>
prime factors 素因数
118547384242888663886459546876071<33>
composite cofactor 合成数の残り
410639745039454139662996851957176923079266774607395184070941241474064124077922254387922804157264176135740018541551913988733757570705590071083<141>
factorization results 素因数分解の結果
Input number is 48680267640594004056328338949299021011244346843090857796020811976424606662072990700612232377443907419859929761796107462920862028101467770017975126889136834828960907481754893 (173 digits)
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1553556401
Step 1 took 10991ms
Step 2 took 8224ms
********** Factor found in step 2: 118547384242888663886459546876071
Found probable prime factor of 33 digits: 118547384242888663886459546876071
Composite cofactor 410639745039454139662996851957176923079266774607395184070941241474064124077922254387922804157264176135740018541551913988733757570705590071083 has 141 digits

c141

name 名前Erik Branger
date 日付October 22, 2016 08:08:46 UTC 2016 年 10 月 22 日 (土) 17 時 8 分 46 秒 (日本時間)
composite number 合成数
410639745039454139662996851957176923079266774607395184070941241474064124077922254387922804157264176135740018541551913988733757570705590071083<141>
prime factors 素因数
307331391512326555621221848925437399987985911659504935017891729<63>
1336146441203953798638882896545673550787873910276549451936233682971081868133627<79>
factorization results 素因数分解の結果
Number: 16111_200
N = 410639745039454139662996851957176923079266774607395184070941241474064124077922254387922804157264176135740018541551913988733757570705590071083 (141 digits)
Divisors found:
r1=307331391512326555621221848925437399987985911659504935017891729 (pp63)
r2=1336146441203953798638882896545673550787873910276549451936233682971081868133627 (pp79)
Version: Msieve v. 1.51 (SVN 845)
Total time: 430.94 hours.
Factorization parameters were as follows:
# Murphy_E = 1.854e-11, selected by Maksym Voznyy
# expecting poly E from 1.89e-011 to > 2.17e-011; sieved all c5<2640
n: 410639745039454139662996851957176923079266774607395184070941241474064124077922254387922804157264176135740018541551913988733757570705590071083
Y0: -2885737015736529319761529283
Y1: 921120925283047
c0: -2978104954783212998128208901181032
c1: -2717373156962381242398282132
c2: 11436900335935458076822
c3: 35875617875458955
c4: -1865907216
c5: 2052
skew: 1286579.56
type: gnfs
# selected mechanically
rlim: 18900000
alim: 18900000
lpbr: 28
lpba: 28
mfbr: 56
mfba: 56
rlambda: 2.6
alambda: 2.6
Factor base limits: 18900000/18900000
Large primes per side: 3
Large prime bits: 28/28
Sieved algebraic special-q in [0, 0)
Total raw relations: 23258028
Relations: 3735602 relations
Pruned matrix : 2328323 x 2328548
Polynomial selection time: 0.00 hours.
Total sieving time: 424.72 hours.
Total relation processing time: 0.30 hours.
Matrix solve time: 5.49 hours.
time per square root: 0.45 hours.
Prototype def-par.txt line would be: gnfs,140,5,65,2000,1e-05,0.28,250,20,50000,3600,18900000,18900000,28,28,56,56,2.6,2.6,100000
total time: 430.94 hours.
Intel64 Family 6 Model 58 Stepping 9, GenuineIntel
Windows-post2008Server-6.2.9200
processors: 8, speed: 2.29GHz
software ソフトウェア
GGNFS, Msieve

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6300Serge BatalovDecember 10, 2014 19:48:43 UTC 2014 年 12 月 11 日 (木) 4 時 48 分 43 秒 (日本時間)
4511e61400 / 33561000Serge BatalovDecember 18, 2014 00:18:27 UTC 2014 年 12 月 18 日 (木) 9 時 18 分 27 秒 (日本時間)
400Dmitry DomanovFebruary 29, 2016 06:33:12 UTC 2016 年 2 月 29 日 (月) 15 時 33 分 12 秒 (日本時間)
5043e6300 / 7227Rich DickersonJune 7, 2016 23:24:15 UTC 2016 年 6 月 8 日 (水) 8 時 24 分 15 秒 (日本時間)

145×10201-19

c199

name 名前Serge Batalov
date 日付December 9, 2014 01:09:12 UTC 2014 年 12 月 9 日 (火) 10 時 9 分 12 秒 (日本時間)
composite number 合成数
3719951768901203211985941147797532004412632443110392775597116396008106929372226070448190051053131173195823392082916442186818543318196977859873265091459503835398547936068139254470355832627825239231381<199>
prime factors 素因数
15384579401923960681208457648403288633<38>
composite cofactor 合成数の残り
241797430512529608892824198930315299397194763492106757954821097176064879777248884072060335752428596428156483448087509296419128246398821784593568267988717458052157<162>
factorization results 素因数分解の結果
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1366968030
Step 1 took 18948ms
Step 2 took 12670ms
********** Factor found in step 2: 15384579401923960681208457648403288633
Found probable prime factor of 38 digits: 15384579401923960681208457648403288633
Composite cofactor 

c162

name 名前Jo Yeong Uk
date 日付January 24, 2021 08:09:18 UTC 2021 年 1 月 24 日 (日) 17 時 9 分 18 秒 (日本時間)
composite number 合成数
241797430512529608892824198930315299397194763492106757954821097176064879777248884072060335752428596428156483448087509296419128246398821784593568267988717458052157<162>
prime factors 素因数
26788941152048572003616047418475545668581724774007205391083304819<65>
9026016711154675994134323505808722826116675459491650852083239576290999823002888776626272931068303<97>
factorization results 素因数分解の結果
Number: 16111_201
N=241797430512529608892824198930315299397194763492106757954821097176064879777248884072060335752428596428156483448087509296419128246398821784593568267988717458052157
  ( 162 digits)
SNFS difficulty: 203 digits.
Divisors found:
 r1=26788941152048572003616047418475545668581724774007205391083304819
 r2=9026016711154675994134323505808722826116675459491650852083239576290999823002888776626272931068303
Version: 
Total time: 260.89 hours.
Scaled time: 1371.21 units (timescale=5.256).
Factorization parameters were as follows:
n: 241797430512529608892824198930315299397194763492106757954821097176064879777248884072060335752428596428156483448087509296419128246398821784593568267988717458052157
m: 10000000000000000000000000000000000000000
deg: 5
c5: 1450
c0: -1
skew: 0.23
# Murphy_E = 1.123e-11
type: snfs
lss: 1
rlim: 17000000
alim: 17000000
lpbr: 29
lpba: 29
mfbr: 56
mfba: 56
rlambda: 2.6
alambda: 2.6

Factor base limits: 17000000/17000000
Large primes per side: 3
Large prime bits: 29/29
Max factor residue bits: 56/56
Sieved rational special-q in [8500000, 17800001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 38656210
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 3320461 x 3320706
Total sieving time: 229.78 hours.
Total relation processing time: 9.61 hours.
Matrix solve time: 20.86 hours.
Time per square root: 0.63 hours.
Prototype def-par.txt line would be:
snfs,203,5,0,0,0,0,0,0,0,0,17000000,17000000,29,29,56,56,2.6,2.6,100000
total time: 260.89 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM) i7-4930K CPU @ 3.40GHz stepping 04
Memory: 49367540k/51380224k available (5548k kernel code, 1086464k absent, 926220k reserved, 6882k data, 1352k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 6800.05 BogoMIPS (lpj=3400026)
Total of 12 processors activated (81600.62 BogoMIPS).
software ソフトウェア
GGNFS / Msieve v1.39
execution environment 実行環境
Core i7-4930K

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間)
403e62320Serge BatalovDecember 9, 2014 00:57:36 UTC 2014 年 12 月 9 日 (火) 9 時 57 分 36 秒 (日本時間)
4511e6400 / 3962Dmitry DomanovDecember 16, 2015 06:17:14 UTC 2015 年 12 月 16 日 (水) 15 時 17 分 14 秒 (日本時間)

145×10202-19

c155

name 名前Jo Yeong Uk
date 日付April 3, 2021 09:26:46 UTC 2021 年 4 月 3 日 (土) 18 時 26 分 46 秒 (日本時間)
composite number 合成数
16658097064281803702661605288887476214279265060986702732993651921658032331452472676830303194103112104609823905707752405623831468677881467366109705592444447<155>
prime factors 素因数
216826110486522325939684927909396630330452817018800616092130819<63>
76826988349806020297891725242760092312567802407819831278729499890959294621035817608963820213<92>
factorization results 素因数分解の結果
Number: 16111_202
N=16658097064281803702661605288887476214279265060986702732993651921658032331452472676830303194103112104609823905707752405623831468677881467366109705592444447
  ( 155 digits)
SNFS difficulty: 204 digits.
Divisors found:
 r1=216826110486522325939684927909396630330452817018800616092130819
 r2=76826988349806020297891725242760092312567802407819831278729499890959294621035817608963820213
Version: 
Total time: 308.44 hours.
Scaled time: 1619.92 units (timescale=5.252).
Factorization parameters were as follows:
n: 16658097064281803702661605288887476214279265060986702732993651921658032331452472676830303194103112104609823905707752405623831468677881467366109705592444447
m: 10000000000000000000000000000000000000000
deg: 5
c5: 14500
c0: -1
skew: 0.15
# Murphy_E = 9.156e-12
type: snfs
lss: 1
rlim: 18000000
alim: 18000000
lpbr: 29
lpba: 29
mfbr: 56
mfba: 56
rlambda: 2.6
alambda: 2.6
Factor base limits: 18000000/18000000
Large primes per side: 3
Large prime bits: 29/29
Max factor residue bits: 56/56
Sieved rational special-q in [9000000, 19900001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 39407052
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 3542837 x 3543081
Total sieving time: 272.29 hours.
Total relation processing time: 11.48 hours.
Matrix solve time: 24.31 hours.
Time per square root: 0.36 hours.
Prototype def-par.txt line would be:
snfs,204,5,0,0,0,0,0,0,0,0,18000000,18000000,29,29,56,56,2.6,2.6,100000
total time: 308.44 hours.
 --------- CPU info (if available) ----------
software ソフトウェア
GGNFS / Msieve v1.39
execution environment 実行環境
Core i7-4930K

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6280CypDecember 9, 2014 08:39:39 UTC 2014 年 12 月 9 日 (火) 17 時 39 分 39 秒 (日本時間)
4511e6991 / 4413591CypJuly 30, 2015 08:52:23 UTC 2015 年 7 月 30 日 (木) 17 時 52 分 23 秒 (日本時間)
400Dmitry DomanovDecember 16, 2015 06:18:01 UTC 2015 年 12 月 16 日 (水) 15 時 18 分 1 秒 (日本時間)

145×10203-19

c178

name 名前Serge Batalov
date 日付December 11, 2014 01:34:44 UTC 2014 年 12 月 11 日 (木) 10 時 34 分 44 秒 (日本時間)
composite number 合成数
3229932833686354999344050694774807530417774652794841722558140477857815749696040195763892972757374655678403650371847413948236634163215655569427986111593982434805875513267906576719<178>
prime factors 素因数
4824482395620689814110209011251048728703<40>
composite cofactor 合成数の残り
669487951001386263217564406967182869872453081031017133135450771964943586226766051305323297514007185445743480744401640147577545711993773873<138>
factorization results 素因数分解の結果
Input number is 3229932833686354999344050694774807530417774652794841722558140477857815749696040195763892972757374655678403650371847413948236634163215655569427986111593982434805875513267906576719 (178 digits)
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1582246688
Step 1 took 13269ms
Step 2 took 8851ms
********** Factor found in step 2: 4824482395620689814110209011251048728703
Found probable prime factor of 40 digits: 4824482395620689814110209011251048728703
Composite cofactor 669487951001386263217564406967182869872453081031017133135450771964943586226766051305323297514007185445743480744401640147577545711993773873 has 138 digits

c138

name 名前Erik Branger
date 日付February 25, 2015 08:07:01 UTC 2015 年 2 月 25 日 (水) 17 時 7 分 1 秒 (日本時間)
composite number 合成数
669487951001386263217564406967182869872453081031017133135450771964943586226766051305323297514007185445743480744401640147577545711993773873<138>
prime factors 素因数
197838578708440223382308227704561747905801<42>
3384011123472676127789221682750107911216519908869990676032321543154412431051467448409340320330473<97>
factorization results 素因数分解の結果
Number: 16111_203
N = 669487951001386263217564406967182869872453081031017133135450771964943586226766051305323297514007185445743480744401640147577545711993773873 (138 digits)
Divisors found:
r1=197838578708440223382308227704561747905801 (pp42)
r2=3384011123472676127789221682750107911216519908869990676032321543154412431051467448409340320330473 (pp97)
Version: Msieve v. 1.51 (SVN Official Release)
Total time: 127.55 hours.
Factorization parameters were as follows:
# Murphy_E = 2.887e-11, selected by Erik Branger
# expecting poly E from 2.78e-011 to > 3.20e-011
n: 669487951001386263217564406967182869872453081031017133135450771964943586226766051305323297514007185445743480744401640147577545711993773873
Y0: -784297610134936816897233558
Y1: 425524468980121
c0: -91002319590487508886717102956006285
c1: 87700304215779967783051386619
c2: 74245547257833681669051
c3: -18819847054863595
c4: -7547617486
c5: 2256
skew: 2606018.76
type: gnfs
# selected mechanically
rlim: 15900000
alim: 15900000
lpbr: 28
lpba: 28
mfbr: 55
mfba: 55
rlambda: 2.6
alambda: 2.6
Factor base limits: 15900000/15900000
Large primes per side: 3
Large prime bits: 28/28
Sieved algebraic special-q in [0, 0)
Total raw relations: 23028433
Relations: 3288788 relations
Pruned matrix : 2050581 x 2050807
Polynomial selection time: 0.00 hours.
Total sieving time: 124.15 hours.
Total relation processing time: 0.13 hours.
Matrix solve time: 2.77 hours.
time per square root: 0.50 hours.
Prototype def-par.txt line would be: gnfs,137,5,65,2000,1e-05,0.28,250,20,50000,3600,15900000,15900000,28,28,55,55,2.6,2.6,100000
total time: 127.55 hours.
Intel64 Family 6 Model 60 Stepping 3, GenuineIntel
Windows-7-6.1.7601-SP1
processors: 8, speed: 3.50GHz
software ソフトウェア
GGNFS, Msieve

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6300Serge BatalovDecember 10, 2014 19:48:44 UTC 2014 年 12 月 11 日 (木) 4 時 48 分 44 秒 (日本時間)
4511e61000 / 4409Serge BatalovDecember 18, 2014 00:18:26 UTC 2014 年 12 月 18 日 (木) 9 時 18 分 26 秒 (日本時間)

145×10205-19

c179

name 名前Serge Batalov
date 日付December 11, 2014 01:34:47 UTC 2014 年 12 月 11 日 (木) 10 時 34 分 47 秒 (日本時間)
composite number 合成数
16154665281874587312268556810158844132101236854716800641827773716682316199483410781286156049217510378956517126732974932537646897630971842550059762331297467772068217075016777071211<179>
prime factors 素因数
32386754966205821658152021608907<32>
composite cofactor 合成数の残り
498804690335023745824507701182228568361159426157891600512118599806625243902301339303242090947385697594977741761735278125896869916885147387934703073<147>
factorization results 素因数分解の結果
Input number is 16154665281874587312268556810158844132101236854716800641827773716682316199483410781286156049217510378956517126732974932537646897630971842550059762331297467772068217075016777071211 (179 digits)
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1596693317
Step 1 took 13609ms
Step 2 took 9219ms
********** Factor found in step 2: 32386754966205821658152021608907
Found probable prime factor of 32 digits: 32386754966205821658152021608907
Composite cofactor 498804690335023745824507701182228568361159426157891600512118599806625243902301339303242090947385697594977741761735278125896869916885147387934703073 has 147 digits

c147

name 名前Jo Yeong Uk
date 日付October 29, 2020 08:14:23 UTC 2020 年 10 月 29 日 (木) 17 時 14 分 23 秒 (日本時間)
composite number 合成数
498804690335023745824507701182228568361159426157891600512118599806625243902301339303242090947385697594977741761735278125896869916885147387934703073<147>
prime factors 素因数
96134750382786575995814567697588339753493<41>
5188599214632561256369179828351380982562387796612295439738234998121898113019081854434975705487909417180061<106>
factorization results 素因数分解の結果
GMP-ECM 6.4.4 [configured with GMP 6.0.0, --enable-asm-redc] [ECM]
Input number is 498804690335023745824507701182228568361159426157891600512118599806625243902301339303242090947385697594977741761735278125896869916885147387934703073 (147 digits)
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=2991823814
Step 1 took 24479ms
Step 2 took 8879ms
********** Factor found in step 2: 96134750382786575995814567697588339753493
Found probable prime factor of 41 digits: 96134750382786575995814567697588339753493
Probable prime cofactor 5188599214632561256369179828351380982562387796612295439738234998121898113019081854434975705487909417180061 has 106 digits
execution environment 実行環境
Core i7-4930K

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6300Serge BatalovDecember 10, 2014 19:48:44 UTC 2014 年 12 月 11 日 (木) 4 時 48 分 44 秒 (日本時間)
4511e6785 / 4409585CypJune 11, 2015 20:18:09 UTC 2015 年 6 月 12 日 (金) 5 時 18 分 9 秒 (日本時間)
200Dmitry DomanovDecember 16, 2015 06:18:24 UTC 2015 年 12 月 16 日 (水) 15 時 18 分 24 秒 (日本時間)

145×10207-19

c180

name 名前Cyp
date 日付February 8, 2015 13:27:03 UTC 2015 年 2 月 8 日 (日) 22 時 27 分 3 秒 (日本時間)
composite number 合成数
276292973422720691766759896861797766502262999085793316253302471946152837365340381373649838528867312076017023456369691098757837342624742799700679173342364877929041199026337104194623<180>
prime factors 素因数
7387855430343748950845891307680267111401<40>
37398264764077154862605576199334429139141586478464923460457071662163936099561439992974022574841920164755436028331459880564151655938815272423<140>
factorization results 素因数分解の結果
Run 429 out of 585:
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1107224615
Step 1 took 58631ms
Step 2 took 18831ms
********** Factor found in step 2: 7387855430343748950845891307680267111401
Found probable prime factor of 40 digits: 7387855430343748950845891307680267111401
Probable prime cofactor 37398264764077154862605576199334429139141586478464923460457071662163936099561439992974022574841920164755436028331459880564151655938815272423 has 140 digits
software ソフトウェア
GMP-ECM 6.4.4
execution environment 実行環境
Gentoo Linux, Intel(R) Core(TM) i7-3770K CPU

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6300 / 838Serge BatalovDecember 10, 2014 19:48:44 UTC 2014 年 12 月 11 日 (木) 4 時 48 分 44 秒 (日本時間)
4511e6429 / 4409CypFebruary 8, 2015 13:27:03 UTC 2015 年 2 月 8 日 (日) 22 時 27 分 3 秒 (日本時間)

145×10208-19

c158

name 名前ebina
date 日付October 6, 2023 14:24:41 UTC 2023 年 10 月 6 日 (金) 23 時 24 分 41 秒 (日本時間)
composite number 合成数
11616996563077756632853144461247532939908601623304515922514826281735082457785015448515468896543923790389448242535140840624114138882142493861125170777031888479<158>
prime factors 素因数
850719823419798158615424730461452265796034311758149515405063<60>
13655490613088966211250703541865251841351561699692877330390308902304272131065690494706241901817833<98>
factorization results 素因数分解の結果
Number: 16111_208
N = 11616996563077756632853144461247532939908601623304515922514826281735082457785015448515468896543923790389448242535140840624114138882142493861125170777031888479 (158 digits)
SNFS difficulty: 211 digits.
Divisors found:
r1=850719823419798158615424730461452265796034311758149515405063 (pp60)
r2=13655490613088966211250703541865251841351561699692877330390308902304272131065690494706241901817833 (pp98)
Version: Msieve v. 1.54 (SVN 1018)
Total time: 148.14 hours.
Factorization parameters were as follows:
n: 11616996563077756632853144461247532939908601623304515922514826281735082457785015448515468896543923790389448242535140840624114138882142493861125170777031888479
m: 500000000000000000000000000000000000000000
deg: 5
c5: 232
c0: -5
skew: 0.46
# Murphy_E = 5.347e-12
type: snfs
lss: 1
rlim: 23000000
alim: 23000000
lpbr: 29
lpba: 29
mfbr: 57
mfba: 57
rlambda: 2.6
alambda: 2.6
Factor base limits: 23000000/23000000
Large primes per side: 3
Large prime bits: 29/29
Sieved rational special-q in [0, 0)
Total raw relations: 43721866
Relations: 7498364 relations
Pruned matrix : 4580951 x 4581176
Total sieving time: 136.32 hours.
Total relation processing time: 0.25 hours.
Matrix solve time: 11.44 hours.
time per square root: 0.13 hours.
Prototype def-par.txt line would be: snfs,211,5,0,0,0,0,0,0,0,0,23000000,23000000,29,29,57,57,2.6,2.6,100000
total time: 148.14 hours.
Intel64 Family 6 Model 60 Stepping 3, GenuineIntel
processors: 8, speed: 3.19GHz
Windows-post2008Server-6.2.9200
Running Python 3.2

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6280CypDecember 8, 2014 07:07:27 UTC 2014 年 12 月 8 日 (月) 16 時 7 分 27 秒 (日本時間)
4511e6791 / 4413335CypJanuary 7, 2015 20:58:31 UTC 2015 年 1 月 8 日 (木) 5 時 58 分 31 秒 (日本時間)
256CypMay 31, 2015 12:31:20 UTC 2015 年 5 月 31 日 (日) 21 時 31 分 20 秒 (日本時間)
200Dmitry DomanovDecember 16, 2015 06:18:40 UTC 2015 年 12 月 16 日 (水) 15 時 18 分 40 秒 (日本時間)

145×10209-19

c210

name 名前Bob Backstrom
date 日付August 19, 2017 03:49:50 UTC 2017 年 8 月 19 日 (土) 12 時 49 分 50 秒 (日本時間)
composite number 合成数
179012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679<210>
prime factors 素因数
47971898676712968703275557787229243249536199<44>
3731608517006862394664287766487336716103220699712715405314783395254419707924226102439943085543893353741480055849005937939685559304566388739036051481009151380862814521<166>
factorization results 素因数分解の結果
Number: n
N=179012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679
  ( 210 digits)
SNFS difficulty: 211 digits.
Divisors found:

Sat Aug 19 13:42:32 2017  prp44 factor: 47971898676712968703275557787229243249536199
Sat Aug 19 13:42:32 2017  prp166 factor: 3731608517006862394664287766487336716103220699712715405314783395254419707924226102439943085543893353741480055849005937939685559304566388739036051481009151380862814521
Sat Aug 19 13:42:32 2017  elapsed time 08:35:30 (Msieve 1.44 - dependency 1)

Version: GGNFS-0.77.1-20060513-nocona
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=3.826).
Factorization parameters were as follows:
#
# 145x10^209-1 161(209)
#
n: 179012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679
m: 500000000000000000000000000000000000000000
deg: 5
c5: 464
c0: -1
skew: 0.29
# Murphy_E = 6.095e-12
type: snfs
lss: 1
rlim: 23000000
alim: 23000000
lpbr: 29
lpba: 29
mfbr: 57
mfba: 57
rlambda: 2.6
alambda: 2.6
Factor base limits: 23000000/23000000
Large primes per side: 3
Large prime bits: 29/29
Max factor residue bits: 57/57
Sieved  special-q in [100000, 22700000)
Primes: RFBsize:1448221, AFBsize:1446481,
Relations:
Max relations in full relation-set: 28
Initial matrix:
Pruned matrix :

Msieve: found 10748319 hash collisions in 69000841 relations (60859110 unique)
Msieve: matrix is 2719744 x 2719971 (767.4 MB)

Total sieving time: 0.00 hours.
Total relation processing time: 8hrs 11min 27sec.
Matrix solve time: 0.00 hours.
Total square root time: 0hrs 3min 37sec.

Prototype def-par.txt line would be:
snfs,211,5,0,0,0,0,0,0,0,0,23000000,23000000,29,29,57,57,2.6,2.6,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------
[    0.038374] smpboot: CPU0: Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz (fam: 06, model: 3c, stepping: 03)
[    0.000000] efi: mem02: [Conventional Memory|   |  |  |  |   |WB|WT|WC|UC] range=[0x0000000000009000-0x0000000000058000) (0MB)
[    0.000000] efi: mem04: [Conventional Memory|   |  |  |  |   |WB|WT|WC|UC] range=[0x0000000000059000-0x000000000005f000) (0MB)
[    0.000000] efi: mem08: [Conventional Memory|   |  |  |  |   |WB|WT|WC|UC] range=[0x0000000000100000-0x0000000001000000) (15MB)
[    0.000000] efi: mem10: [Conventional Memory|   |  |  |  |   |WB|WT|WC|UC] range=[0x00000000022d8000-0x000000003eefc000) (972MB
[    0.000000] efi: mem12: [Conventional Memory|   |  |  |  |   |WB|WT|WC|UC] range=[0x0000000040000000-0x0000000090ff4000) (1295M
[    0.000000] efi: mem14: [Conventional Memory|   |  |  |  |   |WB|WT|WC|UC] range=[0x00000000c3ddf000-0x00000000c6d42000) (47MB)
[    0.000000] efi: mem17: [ACPI Memory NVS    |   |  |  |  |   |WB|WT|WC|UC] range=[0x00000000c7052000-0x00000000c7059000) (0MB)
[    0.000000] efi: mem26: [Conventional Memory|   |  |  |  |   |WB|WT|WC|UC] range=[0x00000000c7ccf000-0x00000000c7cd9000) (0MB)
[    0.000000] efi: mem28: [Conventional Memory|   |  |  |  |   |WB|WT|WC|UC] range=[0x00000000c7cde000-0x00000000cae1e000) (49MB)
[    0.000000] efi: mem30: [Conventional Memory|   |  |  |  |   |WB|WT|WC|UC] range=[0x00000000cae85000-0x00000000cae9f000) (0MB)
[    0.000000] efi: mem32: [Conventional Memory|   |  |  |  |   |WB|WT|WC|UC] range=[0x00000000caf16000-0x00000000caf2b000) (0MB)
[    0.000000] efi: mem34: [Conventional Memory|   |  |  |  |   |WB|WT|WC|UC] range=[0x00000000cafb1000-0x00000000cafd8000) (0MB)
[    0.000000] efi: mem36: [Conventional Memory|   |  |  |  |   |WB|WT|WC|UC] range=[0x00000000cb046000-0x00000000cb069000) (0MB)
[    0.000000] efi: mem38: [Conventional Memory|   |  |  |  |   |WB|WT|WC|UC] range=[0x00000000cb123000-0x00000000cb16c000) (0MB)
[    0.000000] efi: mem40: [Conventional Memory|   |  |  |  |   |WB|WT|WC|UC] range=[0x00000000cb216000-0x00000000cb259000) (0MB)
[    0.000000] efi: mem42: [Conventional Memory|   |  |  |  |   |WB|WT|WC|UC] range=[0x00000000cb30c000-0x00000000cb34d000) (0MB)
[    0.000000] efi: mem44: [Conventional Memory|   |  |  |  |   |WB|WT|WC|UC] range=[0x00000000cb34e000-0x00000000cb34f000) (0MB)
[    0.000000] efi: mem46: [Conventional Memory|   |  |  |  |   |WB|WT|WC|UC] range=[0x00000000cb350000-0x00000000cb3cd000) (0MB)
[    0.000000] efi: mem48: [Conventional Memory|   |  |  |  |   |WB|WT|WC|UC] range=[0x00000000cb41e000-0x00000000cb4bb000) (0MB)
[    0.000000] efi: mem50: [Conventional Memory|   |  |  |  |   |WB|WT|WC|UC] range=[0x00000000cb4bc000-0x00000000cb50d000) (0MB)
[    0.000000] efi: mem52: [Conventional Memory|   |  |  |  |   |WB|WT|WC|UC] range=[0x00000000cb50e000-0x00000000cb5a0000) (0MB)
[    0.000000] efi: mem54: [Conventional Memory|   |  |  |  |   |WB|WT|WC|UC] range=[0x00000000cb5a1000-0x00000000cb874000) (2MB)
[    0.000000] efi: mem56: [Conventional Memory|   |  |  |  |   |WB|WT|WC|UC] range=[0x00000000cb875000-0x00000000cb876000) (0MB)
[    0.000000] efi: mem58: [Conventional Memory|   |  |  |  |   |WB|WT|WC|UC] range=[0x00000000cb877000-0x00000000cb8f5000) (0MB)
[    0.000000] efi: mem60: [Conventional Memory|   |  |  |  |   |WB|WT|WC|UC] range=[0x00000000cb946000-0x00000000cbbf5000) (2MB)
[    0.000000] efi: mem62: [Conventional Memory|   |  |  |  |   |WB|WT|WC|UC] range=[0x00000000cbcc7000-0x00000000cbd5a000) (0MB)
[    0.000000] efi: mem64: [Conventional Memory|   |  |  |  |   |WB|WT|WC|UC] range=[0x00000000cbe04000-0x00000000cbe1e000) (0MB)
[    0.000000] efi: mem66: [Conventional Memory|   |  |  |  |   |WB|WT|WC|UC] range=[0x00000000cbe94000-0x00000000cbea9000) (0MB)
[    0.000000] efi: mem68: [Conventional Memory|   |  |  |  |   |WB|WT|WC|UC] range=[0x00000000cbf30000-0x00000000cbf57000) (0MB)
[    0.000000] efi: mem70: [Conventional Memory|   |  |  |  |   |WB|WT|WC|UC] range=[0x00000000cbfc5000-0x00000000cbfe8000) (0MB)
[    0.000000] efi: mem72: [Conventional Memory|   |  |  |  |   |WB|WT|WC|UC] range=[0x00000000cc285000-0x00000000cc2c6000) (0MB)
[    0.000000] efi: mem74: [Conventional Memory|   |  |  |  |   |WB|WT|WC|UC] range=[0x00000000cc330000-0x00000000cc34a000) (0MB)
[    0.000000] efi: mem76: [Conventional Memory|   |  |  |  |   |WB|WT|WC|UC] range=[0x00000000cc3c2000-0x00000000cc3d7000) (0MB)
[    0.000000] efi: mem78: [Conventional Memory|   |  |  |  |   |WB|WT|WC|UC] range=[0x00000000cc45e000-0x00000000cc485000) (0MB)
[    0.000000] efi: mem80: [Conventional Memory|   |  |  |  |   |WB|WT|WC|UC] range=[0x00000000cc4f1000-0x00000000cc514000) (0MB)
[    0.000000] efi: mem82: [Conventional Memory|   |  |  |  |   |WB|WT|WC|UC] range=[0x00000000cc6ae000-0x00000000cc6c1000) (0MB)
[    0.000000] efi: mem84: [Conventional Memory|   |  |  |  |   |WB|WT|WC|UC] range=[0x00000000cc85c000-0x00000000cc876000) (0MB)
[    0.000000] efi: mem86: [Conventional Memory|   |  |  |  |   |WB|WT|WC|UC] range=[0x00000000cc8ee000-0x00000000cc8f2000) (0MB)
[    0.000000] efi: mem88: [Conventional Memory|   |  |  |  |   |WB|WT|WC|UC] range=[0x00000000cc98a000-0x00000000cc98f000) (0MB)
[    0.000000] efi: mem90: [Conventional Memory|   |  |  |  |   |WB|WT|WC|UC] range=[0x00000000cca1c000-0x00000000cca25000) (0MB)
[    0.000000] efi: mem92: [Conventional Memory|   |  |  |  |   |WB|WT|WC|UC] range=[0x00000000ccccf000-0x00000000cccd8000) (0MB)
[    0.000000] efi: mem94: [Conventional Memory|   |  |  |  |   |WB|WT|WC|UC] range=[0x00000000ccd87000-0x00000000ccd8c000) (0MB)
[    0.000000] efi: mem96: [Conventional Memory|   |  |  |  |   |WB|WT|WC|UC] range=[0x00000000cce17000-0x00000000cce1b000) (0MB)
[    0.000000] efi: mem98: [Conventional Memory|   |  |  |  |   |WB|WT|WC|UC] range=[0x00000000cd148000-0x00000000cd14a000) (0MB)
[    0.000000] efi: mem100: [Conventional Memory|   |  |  |  |   |WB|WT|WC|UC] range=[0x00000000cd23c000-0x00000000cd240000) (0MB)
[    0.000000] efi: mem102: [Conventional Memory|   |  |  |  |   |WB|WT|WC|UC] range=[0x00000000cd2eb000-0x00000000cd2f0000) (0MB)
[    0.000000] efi: mem104: [Conventional Memory|   |  |  |  |   |WB|WT|WC|UC] range=[0x00000000cd417000-0x00000000cd41b000) (0MB)
[    0.000000] efi: mem106: [Conventional Memory|   |  |  |  |   |WB|WT|WC|UC] range=[0x00000000cd4ac000-0x00000000cd4b5000) (0MB)
[    0.000000] efi: mem108: [Conventional Memory|   |  |  |  |   |WB|WT|WC|UC] range=[0x00000000cd588000-0x00000000cd58e000) (0MB)
[    0.000000] efi: mem110: [Conventional Memory|   |  |  |  |   |WB|WT|WC|UC] range=[0x00000000cd676000-0x00000000cd67d000) (0MB)
[    0.000000] efi: mem112: [Conventional Memory|   |  |  |  |   |WB|WT|WC|UC] range=[0x00000000cd892000-0x00000000cd893000) (0MB)
[    0.000000] efi: mem114: [Conventional Memory|   |  |  |  |   |WB|WT|WC|UC] range=[0x00000000cd8a4000-0x00000000cd8bc000) (0MB)
[    0.000000] efi: mem116: [Conventional Memory|   |  |  |  |   |WB|WT|WC|UC] range=[0x00000000cde60000-0x00000000cde69000) (0MB)
[    0.000000] efi: mem118: [Conventional Memory|   |  |  |  |   |WB|WT|WC|UC] range=[0x00000000ce0ea000-0x00000000ce0ec000) (0MB)
[    0.000000] efi: mem120: [Conventional Memory|   |  |  |  |   |WB|WT|WC|UC] range=[0x00000000ce0f1000-0x00000000ce0f4000) (0MB)
[    0.000000] efi: mem122: [Conventional Memory|   |  |  |  |   |WB|WT|WC|UC] range=[0x00000000ce0f9000-0x00000000ce0fc000) (0MB)
[    0.000000] efi: mem124: [Conventional Memory|   |  |  |  |   |WB|WT|WC|UC] range=[0x00000000ce101000-0x00000000ce104000) (0MB)
[    0.000000] efi: mem126: [Conventional Memory|   |  |  |  |   |WB|WT|WC|UC] range=[0x00000000ce107000-0x00000000ce109000) (0MB)
[    0.000000] efi: mem128: [Conventional Memory|   |  |  |  |   |WB|WT|WC|UC] range=[0x00000000ce13c000-0x00000000ce13e000) (0MB)
[    0.000000] efi: mem130: [Conventional Memory|   |  |  |  |   |WB|WT|WC|UC] range=[0x00000000d7c61000-0x00000000d7c64000) (0MB)
[    0.000000] efi: mem132: [Conventional Memory|   |  |  |  |   |WB|WT|WC|UC] range=[0x00000000d7c6b000-0x00000000d7c6e000) (0MB)
[    0.000000] efi: mem134: [Conventional Memory|   |  |  |  |   |WB|WT|WC|UC] range=[0x00000000d95d0000-0x00000000da0b6000) (10MB)
[    0.000000] efi: mem138: [Conventional Memory|   |  |  |  |   |WB|WT|WC|UC] range=[0x00000000da443000-0x00000000da4a8000) (0MB)
[    0.000000] efi: mem139: [ACPI Memory NVS    |   |  |  |  |   |WB|WT|WC|UC] range=[0x00000000da4a8000-0x00000000da5d0000) (1MB)
[    0.000000] efi: mem140: [ACPI Memory NVS    |   |  |  |  |   |WB|WT|WC|UC] range=[0x00000000da5d0000-0x00000000da5d4000) (0MB)
[    0.000000] efi: mem141: [ACPI Memory NVS    |   |  |  |  |   |WB|WT|WC|UC] range=[0x00000000da5d4000-0x00000000da5eb000) (0MB)
[    0.000000] efi: mem151: [Conventional Memory|   |  |  |  |   |WB|WT|WC|UC] range=[0x0000000100000000-0x000000041ee00000) (12782MB)
[    0.000000] efi: mem153: [Memory Mapped I/O  |RUN|  |  |  |   |  |  |  |UC] range=[0x00000000f8000000-0x00000000fc000000) (64MB)
[    0.000000] efi: mem154: [Memory Mapped I/O  |RUN|  |  |  |   |  |  |  |UC] range=[0x00000000fec00000-0x00000000fec01000) (0MB)
[    0.000000] efi: mem155: [Memory Mapped I/O  |RUN|  |  |  |   |  |  |  |UC] range=[0x00000000fed00000-0x00000000fed04000) (0MB)
[    0.000000] efi: mem156: [Memory Mapped I/O  |RUN|  |  |  |   |  |  |  |UC] range=[0x00000000fed1c000-0x00000000fed20000) (0MB)
[    0.000000] efi: mem157: [Memory Mapped I/O  |RUN|  |  |  |   |  |  |  |UC] range=[0x00000000fee00000-0x00000000fee01000) (0MB)
[    0.000000] efi: mem158: [Memory Mapped I/O  |RUN|  |  |  |   |  |  |  |UC] range=[0x00000000ff000000-0x0000000100000000) (16MB)
[    0.000000] Memory: 16059420K/16661464K available (7585K kernel code, 1183K rwdata, 3284K rodata, 1504K init, 1524K bss, 602044K reserved, 0K cma-reserved)
[    1.083812] [drm] Memory usable by graphics device = 2048M
[    0.000027] Calibrating delay loop (skipped), value calculated using timer frequency.. 7200.23 BogoMIPS (lpj=3600117)
[    0.136470] smpboot: Total of 8 processors activated (57601.87 BogoMIPS)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間)
403e62320Serge BatalovDecember 9, 2014 00:57:39 UTC 2014 年 12 月 9 日 (火) 9 時 57 分 39 秒 (日本時間)
4511e61000 / 3962Serge BatalovDecember 18, 2014 00:18:32 UTC 2014 年 12 月 18 日 (木) 9 時 18 分 32 秒 (日本時間)

145×10210-19

c212

name 名前Serge Batalov
date 日付December 10, 2014 22:58:26 UTC 2014 年 12 月 11 日 (木) 7 時 58 分 26 秒 (日本時間)
composite number 合成数
16111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111<212>
prime factors 素因数
3233706858247304123777097096787945075499817352024798141009883849238021470570967342525568237<91>
4982242304994666910969955477736483172331817567701870627514765422140098684462238537837251785790105171568320449032156307203<121>
factorization results 素因数分解の結果
RelProcTime: 2500
BLanczosTime: 9481
sqrtTime: 897
prp91 factor: 3233706858247304123777097096787945075499817352024798141009883849238021470570967342525568237
prp121 factor: 4982242304994666910969955477736483172331817567701870627514765422140098684462238537837251785790105171568320449032156307203

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間)
403e62320Serge BatalovDecember 9, 2014 00:57:42 UTC 2014 年 12 月 9 日 (火) 9 時 57 分 42 秒 (日本時間)
4511e63962Serge BatalovDecember 9, 2014 21:26:38 UTC 2014 年 12 月 10 日 (水) 6 時 26 分 38 秒 (日本時間)
5043e62000 / 6576500Serge BatalovDecember 9, 2014 22:18:05 UTC 2014 年 12 月 10 日 (水) 7 時 18 分 5 秒 (日本時間)
1500Serge BatalovDecember 10, 2014 01:28:07 UTC 2014 年 12 月 10 日 (水) 10 時 28 分 7 秒 (日本時間)

145×10213-19

c191

name 名前Cyp
date 日付June 13, 2015 16:14:11 UTC 2015 年 6 月 14 日 (日) 1 時 14 分 11 秒 (日本時間)
composite number 合成数
10006186831575381339859090068242621945068421994979503139190762801402347461880075775433805691007024291893087611045315099660034075100392144316537141793954408948312515626422448295423790893578831<191>
prime factors 素因数
1370675951889814880400700475450126448821<40>
7300184130158105379335836831410000573053271785119220621876891079442322835753976832357543410037450208668458648911161993722305913437389978950185597885811<151>
factorization results 素因数分解の結果
Run 322 out of 591:
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=421203901
Step 1 took 59214ms
********** Factor found in step 1: 1370675951889814880400700475450126448821
Found probable prime factor of 40 digits: 1370675951889814880400700475450126448821
Probable prime cofactor 7300184130158105379335836831410000573053271785119220621876891079442322835753976832357543410037450208668458648911161993722305913437389978950185597885811 has 151 digits
software ソフトウェア
GMP-ECM 6.4.4
execution environment 実行環境
Gentoo Linux, Intel(R) Core(TM) i7-3770K CPU

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6280 / 1207CypDecember 8, 2014 04:11:42 UTC 2014 年 12 月 8 日 (月) 13 時 11 分 42 秒 (日本時間)
4511e6322 / 4413CypJune 13, 2015 16:14:11 UTC 2015 年 6 月 14 日 (日) 1 時 14 分 11 秒 (日本時間)

145×10214-19

c181

composite cofactor 合成数の残り
1194728750842393287978567547906006502135516983956756783975466365081617334005613084812283493214075974219989308288731011865788578720200971029375600084147708471143172058607683768725923<181>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6280CypDecember 6, 2014 17:39:30 UTC 2014 年 12 月 7 日 (日) 2 時 39 分 30 秒 (日本時間)
4511e64592335CypJanuary 6, 2015 14:37:57 UTC 2015 年 1 月 6 日 (火) 23 時 37 分 57 秒 (日本時間)
256CypJune 28, 2015 12:31:49 UTC 2015 年 6 月 28 日 (日) 21 時 31 分 49 秒 (日本時間)
400Dmitry DomanovDecember 16, 2015 06:19:01 UTC 2015 年 12 月 16 日 (水) 15 時 19 分 1 秒 (日本時間)
3601Thomas KozlowskiDecember 13, 2024 06:09:48 UTC 2024 年 12 月 13 日 (金) 15 時 9 分 48 秒 (日本時間)

145×10216-19

c214

name 名前Serge Batalov
date 日付December 9, 2014 01:52:08 UTC 2014 年 12 月 9 日 (火) 10 時 52 分 8 秒 (日本時間)
composite number 合成数
7971851118808070812029248446863488921875859035680906042113365220737808565616581450327120787289020836769476056957501786794216284567595799659134641816482489416680411237561163340480510198471603716531969871900599263291<214>
prime factors 素因数
15345519273095977082700694900795840063<38>
composite cofactor 合成数の残り
519490476466603153417263306308601804580211275414048644124709630532456090442515479049378813653871679342479419239873113113103932512494037233504405533649344496391904233581053021957<177>
factorization results 素因数分解の結果
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3470912693
Step 1 took 18597ms
Step 2 took 11851ms
********** Factor found in step 2: 15345519273095977082700694900795840063
Found probable prime factor of 38 digits: 15345519273095977082700694900795840063
Composite cofactor 

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間)
403e62320Serge BatalovDecember 9, 2014 00:57:44 UTC 2014 年 12 月 9 日 (火) 9 時 57 分 44 秒 (日本時間)
4511e64001600Dmitry DomanovDecember 16, 2015 06:19:19 UTC 2015 年 12 月 16 日 (水) 15 時 19 分 19 秒 (日本時間)
3401Thomas KozlowskiDecember 13, 2024 07:08:56 UTC 2024 年 12 月 13 日 (金) 16 時 8 分 56 秒 (日本時間)

145×10217-19

c177

name 名前Cyp
date 日付July 30, 2015 03:58:17 UTC 2015 年 7 月 30 日 (木) 12 時 58 分 17 秒 (日本時間)
composite number 合成数
140892794986253512315837362105118456085563027832846424009192521748527872994795262156073686805120451231577400659660414040283851324958856028981981421829919486688684470051349134723<177>
prime factors 素因数
10480322915079137674940657729323661<35>
3859741891719841095013508878746420833<37>
3483019107170196313589363045103111714718211977934319112220296418977643718595908679526451552024532806199471<106>
factorization results 素因数分解の結果
Run 157 out of 591:
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=2060954565
Step 1 took 59760ms
Step 2 took 18711ms
********** Factor found in step 2: 10480322915079137674940657729323661
Found probable prime factor of 35 digits: 10480322915079137674940657729323661
Composite cofactor 13443554757605445466313005265721162305055505009118052468276744563565464462339454650971789870603568392928111561570985072742985911042774707979343 has 143 digits
--
Run 356 out of 591:
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=2958954465
Step 1 took 42027ms
********** Factor found in step 1: 3859741891719841095013508878746420833
Found probable prime factor of 37 digits: 3859741891719841095013508878746420833
Probable prime cofactor 3483019107170196313589363045103111714718211977934319112220296418977643718595908679526451552024532806199471 has 106 digits
software ソフトウェア
GMP-ECM 6.4.4
execution environment 実行環境
Gentoo Linux, Intel(R) Core(TM) i7-3770K CPU

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6280 / 1090CypDecember 9, 2014 19:32:47 UTC 2014 年 12 月 10 日 (水) 4 時 32 分 47 秒 (日本時間)
4511e6356 / 4413CypJuly 30, 2015 03:58:17 UTC 2015 年 7 月 30 日 (木) 12 時 58 分 17 秒 (日本時間)

145×10218-19

c154

name 名前Erik Branger
date 日付May 1, 2019 10:14:16 UTC 2019 年 5 月 1 日 (水) 19 時 14 分 16 秒 (日本時間)
composite number 合成数
1669262907591500390453613932802943256457546263870833613914071568752055943061150806602064649100646711614328315983377535565573044135871913687481804972070501<154>
prime factors 素因数
2017654973985124826408429443114426690084097078213971<52>
827328224654036930207349027095803064616535316510791497480292265454619685270721951288988239382048419431<102>
factorization results 素因数分解の結果
Number: 16111_218
N = 1669262907591500390453613932802943256457546263870833613914071568752055943061150806602064649100646711614328315983377535565573044135871913687481804972070501 (154 digits)
SNFS difficulty: 222 digits.
Divisors found:
r1=2017654973985124826408429443114426690084097078213971 (pp52)
r2=827328224654036930207349027095803064616535316510791497480292265454619685270721951288988239382048419431 (pp102)
Version: Msieve v. 1.52 (SVN unknown)
Total time: 49.32 hours.
Factorization parameters were as follows:
n: 1669262907591500390453613932802943256457546263870833613914071568752055943061150806602064649100646711614328315983377535565573044135871913687481804972070501
m: 10000000000000000000000000000000000000000000000000000000
deg: 4
c4: 29
c0: -20
skew: 1.00
type: snfs
lss: 1
rlim: 536870912
alim: 268435456
lpbr: 29
lpba: 29
mfbr: 58
mfba: 58
rlambda: 2.8
alambda: 2.8
side: 1
Number of cores used: 6
Number of threads per core: 1
Factor base limits: 536870912/268435456
Large primes per side: 3
Large prime bits: 29/29
Total raw relations: 53024560
Relations: 8132304 relations
Total pre-computation time approximately 1000 CPU-days.
Pre-computation saved approximately 18 G rational relations.
Total batch smoothness checking time: 27.39 hours.
Total relation processing time: 0.61 hours.
Pruned matrix : 6884117 x 6884361
Matrix solve time: 21.16 hours.
time per square root: 0.17 hours.
Prototype def-par.txt line would be: snfs,222,4,0,0,0,0,0,0,0,0,536870912,268435456,29,29,58,58,2.8,2.8,100000
total time: 49.32 hours.
Intel64 Family 6 Model 158 Stepping 10, GenuineIntel
Windows-10-10.0.17763-SP0
processors: 12, speed: 3.19GHz
software ソフトウェア
GGNFS, NFS_factory, Msieve

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6300Serge BatalovDecember 10, 2014 19:48:45 UTC 2014 年 12 月 11 日 (木) 4 時 48 分 45 秒 (日本時間)
4511e6985 / 4409585CypFebruary 10, 2015 09:52:07 UTC 2015 年 2 月 10 日 (火) 18 時 52 分 7 秒 (日本時間)
400Dmitry DomanovDecember 16, 2015 06:19:34 UTC 2015 年 12 月 16 日 (水) 15 時 19 分 34 秒 (日本時間)

145×10219-19

c168

name 名前Erik Branger
date 日付November 29, 2019 23:54:48 UTC 2019 年 11 月 30 日 (土) 8 時 54 分 48 秒 (日本時間)
composite number 合成数
537624591274141855630674183597767156321990552199581634178279523198963944771042784682945372322378632984795705211443572209941565713351995598660294609182545474160843304857<168>
prime factors 素因数
3168481791148491688636189987774436747076374210738672951797499<61>
169678927231349818794055316016695951533653665478001731663111085461046604260875158625587841476234436294987643<108>
factorization results 素因数分解の結果
Number: 16111_219
N = 537624591274141855630674183597767156321990552199581634178279523198963944771042784682945372322378632984795705211443572209941565713351995598660294609182545474160843304857 (168 digits)
SNFS difficulty: 222 digits.
Divisors found:
r1=3168481791148491688636189987774436747076374210738672951797499 (pp61)
r2=169678927231349818794055316016695951533653665478001731663111085461046604260875158625587841476234436294987643 (pp108)
Version: Msieve v. 1.52 (SVN unknown)
Total time: 64.57 hours.
Factorization parameters were as follows:
n: 537624591274141855630674183597767156321990552199581634178279523198963944771042784682945372322378632984795705211443572209941565713351995598660294609182545474160843304857
m: 10000000000000000000000000000000000000000000000000000000
deg: 4
c4: 29
c0: -2
skew: 1.00
type: snfs
lss: 1
rlim: 536870912
alim: 44739242
lpbr: 29
lpba: 28
mfbr: 58
mfba: 56
rlambda: 2.8
alambda: 2.8
side: 1
Factor base limits: 536870912/44739242
Large primes per side: 3
Large prime bits: 29/28
Relations: 6968638 relations
Pruned matrix : 6358236 x 6358461
Total pre-computation time approximately 1000 CPU-days.
Pre-computation saved approximately 18 G relations.
Total batch smoothness checking time: 33.79 hours.
Total relation processing time: 0.43 hours.
Matrix solve time: 30.21 hours.
time per square root: 0.15 hours.
Prototype def-par.txt line would be: snfs,222,4,0,0,0,0,0,0,0,0,536870912,44739242,29,28,58,56,2.8,2.8,100000
total time: 64.57 hours.
Intel64 Family 6 Model 60 Stepping 3, GenuineIntel
Windows-10-10.0.17763-SP0
processors: 8, speed: 3.50GHz
software ソフトウェア
GGNFS, NFS_factory, Msieve

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6300Serge BatalovDecember 10, 2014 19:48:45 UTC 2014 年 12 月 11 日 (木) 4 時 48 分 45 秒 (日本時間)
4511e61185 / 4409585CypMay 27, 2015 13:31:25 UTC 2015 年 5 月 27 日 (水) 22 時 31 分 25 秒 (日本時間)
600Dmitry DomanovDecember 16, 2015 06:19:55 UTC 2015 年 12 月 16 日 (水) 15 時 19 分 55 秒 (日本時間)

145×10220-19

c210

name 名前Serge Batalov
date 日付December 11, 2014 01:34:51 UTC 2014 年 12 月 11 日 (木) 10 時 34 分 51 秒 (日本時間)
composite number 合成数
209609160089227351634504810049945928744086897276227461011178587672152837973253160979484232937431464589328904763112720309438907911324199484196143503959614175860609568942599929663521820347922615113613288850036689<210>
prime factors 素因数
5371118274493468551420556086492461<34>
composite cofactor 合成数の残り
39025236343170056356758574503522648974237865838435659479394417773273353413226762142957343317984677265899897506158258664588175128573471086708332290875204623171042244125515060149<176>
factorization results 素因数分解の結果
Input number is 209609160089227351634504810049945928744086897276227461011178587672152837973253160979484232937431464589328904763112720309438907911324199484196143503959614175860609568942599929663521820347922615113613288850036689 (210 digits)
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1817733509
Step 1 took 16071ms
Step 2 took 10518ms
********** Factor found in step 2: 5371118274493468551420556086492461
Found probable prime factor of 34 digits: 5371118274493468551420556086492461
Composite cofactor 39025236343170056356758574503522648974237865838435659479394417773273353413226762142957343317984677265899897506158258664588175128573471086708332290875204623171042244125515060149 has 176 digits

c176

name 名前Erik Branger
date 日付March 3, 2018 14:24:38 UTC 2018 年 3 月 3 日 (土) 23 時 24 分 38 秒 (日本時間)
composite number 合成数
39025236343170056356758574503522648974237865838435659479394417773273353413226762142957343317984677265899897506158258664588175128573471086708332290875204623171042244125515060149<176>
prime factors 素因数
161674144523825632261973231433950228054395703<45>
1785396513014841546750633422405799058446406937<46>
135198006526327251638311935946477102133214335265266961594581483421713305730260013137259<87>
factorization results 素因数分解の結果
Number: 16111_220
N = 39025236343170056356758574503522648974237865838435659479394417773273353413226762142957343317984677265899897506158258664588175128573471086708332290875204623171042244125515060149 (176 digits)
SNFS difficulty: 223 digits.
Divisors found:
r1=161674144523825632261973231433950228054395703 (pp45)
r2=1785396513014841546750633422405799058446406937 (pp46)
r3=135198006526327251638311935946477102133214335265266961594581483421713305730260013137259 (pp87)
Version: Msieve v. 1.52 (SVN unknown)
Total time: 78.55 hours.
Factorization parameters were as follows:
n: 39025236343170056356758574503522648974237865838435659479394417773273353413226762142957343317984677265899897506158258664588175128573471086708332290875204623171042244125515060149
m: 10000000000000000000000000000000000000000000000000000000
deg: 4
c4: 145
c0: -1
skew: 1.00
type: snfs
lss: 1
rlim: 536870912
alim: 536870912
lpbr: 29
lpba: 27
mfbr: 58
mfba: 54
rlambda: 2.8
alambda: 2.8
side: 1
Number of cores used: 4
Number of threads per core: 1
Factor base limits: 536870912/536870912
Large primes per side: 3
Large prime bits: 29/27
Total raw relations: 30222062
Relations: 8066732 relations
Total pre-computation time approximately 1000 CPU-days.
Pre-computation saved approximately 18 G rational relations.
Total batch smoothness checking time: 40.40 hours.
Total relation processing time: 0.33 hours.
Pruned matrix : 7227938 x 7228163
Matrix solve time: 37.35 hours.
time per square root: 0.47 hours.
Prototype def-par.txt line would be: snfs,223,4,0,0,0,0,0,0,0,0,536870912,536870912,29,27,58,54,2.8,2.8,100000
total time: 78.55 hours.
Intel64 Family 6 Model 60 Stepping 3, GenuineIntel
Windows-10-10.0.16299-SP0
processors: 8, speed: 3.50GHz
software ソフトウェア
GGNFS, NFS_factory, Msieve

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6300Serge BatalovDecember 10, 2014 19:48:46 UTC 2014 年 12 月 11 日 (木) 4 時 48 分 46 秒 (日本時間)
4511e61185 / 4409585CypJanuary 26, 2015 08:30:03 UTC 2015 年 1 月 26 日 (月) 17 時 30 分 3 秒 (日本時間)
600Dmitry DomanovDecember 16, 2015 06:20:12 UTC 2015 年 12 月 16 日 (水) 15 時 20 分 12 秒 (日本時間)

145×10221-19

c188

name 名前Erik Branger
date 日付January 22, 2020 18:03:36 UTC 2020 年 1 月 23 日 (木) 3 時 3 分 36 秒 (日本時間)
composite number 合成数
15460622457919600490570088642272537267809450356197507210169365468403468115702158202498744113451732217639501061404776935457843868793391131647923555734494669250302194275181930675194405605089<188>
prime factors 素因数
1029866924949119415302629331350382496578150827919<49>
15012252635148402966986324927378902214897195350458758273973515916301825853896216240375457999676395071251650996249410049860524581004250188431<140>
factorization results 素因数分解の結果
Number: 16111_221
N = 15460622457919600490570088642272537267809450356197507210169365468403468115702158202498744113451732217639501061404776935457843868793391131647923555734494669250302194275181930675194405605089 (188 digits)
SNFS difficulty: 224 digits.
Divisors found:
r1=1029866924949119415302629331350382496578150827919 (pp49)
r2=15012252635148402966986324927378902214897195350458758273973515916301825853896216240375457999676395071251650996249410049860524581004250188431 (pp140)
Version: Msieve v. 1.52 (SVN unknown)
Total time: 55.74 hours.
Factorization parameters were as follows:
n: 15460622457919600490570088642272537267809450356197507210169365468403468115702158202498744113451732217639501061404776935457843868793391131647923555734494669250302194275181930675194405605089
m: 10000000000000000000000000000000000000000000000000000000
deg: 4
c4: 1450
c0: -1
skew: 1.00
type: snfs
lss: 1
rlim: 536870912
alim: 44739242
lpbr: 29
lpba: 28
mfbr: 58
mfba: 56
rlambda: 2.8
alambda: 2.8
side: 1
Number of cores used: 6
Number of threads per core: 1
Factor base limits: 536870912/44739242
Large primes per side: 3
Large prime bits: 29/28
Total raw relations: 33798542
Relations: 8193580 relations
Total pre-computation time approximately 1000 CPU-days.
Pre-computation saved approximately 18 G rational relations.
Total batch smoothness checking time: 26.48 hours.
Total relation processing time: 0.36 hours.
Pruned matrix : 7068474 x 7068699
Matrix solve time: 28.24 hours.
time per square root: 0.66 hours.
Prototype def-par.txt line would be: snfs,224,4,0,0,0,0,0,0,0,0,536870912,44739242,29,28,58,56,2.8,2.8,100000
total time: 55.74 hours.
Intel64 Family 6 Model 158 Stepping 10, GenuineIntel
Windows-10-10.0.18362-SP0
processors: 12, speed: 3.19GHz
software ソフトウェア
GGNFS, NFS_factory, Msieve

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6280CypDecember 7, 2014 12:25:42 UTC 2014 年 12 月 7 日 (日) 21 時 25 分 42 秒 (日本時間)
4511e61191 / 4413335CypJanuary 7, 2015 09:06:23 UTC 2015 年 1 月 7 日 (水) 18 時 6 分 23 秒 (日本時間)
256CypJuly 30, 2015 00:23:33 UTC 2015 年 7 月 30 日 (木) 9 時 23 分 33 秒 (日本時間)
600Dmitry DomanovDecember 16, 2015 06:20:28 UTC 2015 年 12 月 16 日 (水) 15 時 20 分 28 秒 (日本時間)

145×10223-19

c177

composite cofactor 合成数の残り
209179732355244647293421070070799722264736729908638695574176522785522485835184177133927764252966759894912945603064180702880447799328957897007743022130124921282271051933123882651<177>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6280CypDecember 9, 2014 08:50:43 UTC 2014 年 12 月 9 日 (火) 17 時 50 分 43 秒 (日本時間)
4511e64595591CypJuly 30, 2015 07:21:42 UTC 2015 年 7 月 30 日 (木) 16 時 21 分 42 秒 (日本時間)
600Dmitry DomanovDecember 16, 2015 06:20:48 UTC 2015 年 12 月 16 日 (水) 15 時 20 分 48 秒 (日本時間)
3404Thomas KozlowskiDecember 13, 2024 08:08:08 UTC 2024 年 12 月 13 日 (金) 17 時 8 分 8 秒 (日本時間)

145×10224-19

c222

name 名前Serge Batalov
date 日付December 18, 2014 03:39:30 UTC 2014 年 12 月 18 日 (木) 12 時 39 分 30 秒 (日本時間)
composite number 合成数
211515178037430892885796391113445071696351727860195760944087056729829475004740857438770002771578194973232389538021676658935422228057123685323764094933846804662086269018131956296588041369451373389931877525418289498636091783<222>
prime factors 素因数
62994586928928603852354807469132232978815639<44>
composite cofactor 合成数の残り
3357672275493533266776755896923479010248417085604299464287164973875465319884973497826608330241518463747643866106546462441856250665004854956586152499183039285738068256837125873297<178>
factorization results 素因数分解の結果
Using B1=11000000, B2=58553269330, polynomial Dickson(12), sigma=2967088650
Step 1 took 66392ms
Step 2 took 29277ms
********** Factor found in step 2: 62994586928928603852354807469132232978815639
Found probable prime factor of 44 digits: 62994586928928603852354807469132232978815639
Composite cofactor 

c178

name 名前Seth Troisi
date 日付November 30, 2023 17:32:51 UTC 2023 年 12 月 1 日 (金) 2 時 32 分 51 秒 (日本時間)
composite number 合成数
3357672275493533266776755896923479010248417085604299464287164973875465319884973497826608330241518463747643866106546462441856250665004854956586152499183039285738068256837125873297<178>
prime factors 素因数
2179264001588103959996342051117113399511214181485017627<55>
1540736814377093840192075935972791275247596223447724215734649627420602061832120388132010743806656032187928223489019519702211<124>
factorization results 素因数分解の結果
Resuming P-1 residue saved by five@five with GMP-ECM 7.0.6-dev on Sun Nov 19 11:33:53 2023 
Input number is 3357672275493533266776755896923479010248417085604299464287164973875465319884973497826608330241518463747643866106546462441856250665004854956586152499183039285738068256837125873297 (178 digits)
Using mpz_mod
Using lmax = 16777216 with NTT which takes about 4416MB of memory
Using B1=4000000000-4000000000, B2=2114508355760232, polynomial x^1
P = 111546435, l = 16777216, s_1 = 7299072, k = s_2 = 5, m_1 = 13
Probability of finding a factor of n digits (assuming one exists):
20      25      30      35      40      45      50      55      60      65
0.77    0.5     0.25    0.11    0.04    0.013   0.0039  0.0011  0.00026 6.1e-05
Step 1 took 0ms
Computing F from factored S_1 took 72543ms
Computing h took 8112ms
Computing DCT-I of h took 23718ms
Multi-point evaluation 1 of 5:
Computing g_i took 29488ms
Computing g*h took 48832ms
Computing gcd of coefficients and N took 12058ms
Step 2 took 195219ms
********** Factor found in step 2: 2179264001588103959996342051117113399511214181485017627
Found prime factor of 55 digits: 2179264001588103959996342051117113399511214181485017627
Prime cofactor 1540736814377093840192075935972791275247596223447724215734649627420602061832120388132010743806656032187928223489019519702211 has 124 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間)
403e62600280CypDecember 9, 2014 01:31:19 UTC 2014 年 12 月 9 日 (火) 10 時 31 分 19 秒 (日本時間)
2320Serge BatalovDecember 9, 2014 19:26:05 UTC 2014 年 12 月 10 日 (水) 4 時 26 分 5 秒 (日本時間)
4511e61000 / 3900Serge BatalovDecember 18, 2014 00:18:44 UTC 2014 年 12 月 18 日 (木) 9 時 18 分 44 秒 (日本時間)

145×10225-19

c176

composite cofactor 合成数の残り
16565506318739576557445918282402692420962598313691556732771937558173118506942504994763957941400464816166743070839822495653070532490128444138271325830404947916741945824543368199<176>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6280CypDecember 8, 2014 04:12:36 UTC 2014 年 12 月 8 日 (月) 13 時 12 分 36 秒 (日本時間)
4511e64593591CypJuly 2, 2015 07:31:41 UTC 2015 年 7 月 2 日 (木) 16 時 31 分 41 秒 (日本時間)
600Dmitry DomanovDecember 16, 2015 06:21:16 UTC 2015 年 12 月 16 日 (水) 15 時 21 分 16 秒 (日本時間)
3402Thomas KozlowskiDecember 13, 2024 09:07:04 UTC 2024 年 12 月 13 日 (金) 18 時 7 分 4 秒 (日本時間)

145×10228-19

c196

composite cofactor 合成数の残り
4829713860367713702362774268170720457581217504141951248222687216348994661188007990470626784621452862361437555582824359146446974793264999485473273432886787005528892932251108149388865517092504508411<196>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6300Serge BatalovDecember 10, 2014 19:48:46 UTC 2014 年 12 月 11 日 (木) 4 時 48 分 46 秒 (日本時間)
4511e64585585CypJuly 30, 2015 08:21:01 UTC 2015 年 7 月 30 日 (木) 17 時 21 分 1 秒 (日本時間)
600Dmitry DomanovDecember 16, 2015 06:21:35 UTC 2015 年 12 月 16 日 (水) 15 時 21 分 35 秒 (日本時間)
3400Thomas KozlowskiDecember 13, 2024 10:14:16 UTC 2024 年 12 月 13 日 (金) 19 時 14 分 16 秒 (日本時間)

145×10229-19

c188

name 名前Serge Batalov
date 日付December 11, 2014 01:34:54 UTC 2014 年 12 月 11 日 (木) 10 時 34 分 54 秒 (日本時間)
composite number 合成数
28364957696319457460477654808745431984555751111095575063015825114252799001190636669900395945592750540625161078173663111295904232642205021365273636859908095853957493330843856093976954897309<188>
prime factors 素因数
8105152385120775160514035311209<31>
composite cofactor 合成数の残り
3499620531304395732107034638630600743737437723893940498322265407888610516929350765219777378380633655282076346745700121211716796070049061175741512581508122901<157>
factorization results 素因数分解の結果
Input number is 28364957696319457460477654808745431984555751111095575063015825114252799001190636669900395945592750540625161078173663111295904232642205021365273636859908095853957493330843856093976954897309 (188 digits)
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=4022711487
Step 1 took 13736ms
Step 2 took 9421ms
********** Factor found in step 2: 8105152385120775160514035311209
Found probable prime factor of 31 digits: 8105152385120775160514035311209
Composite cofactor 3499620531304395732107034638630600743737437723893940498322265407888610516929350765219777378380633655282076346745700121211716796070049061175741512581508122901 has 157 digits

c157

name 名前NFS@Home
date 日付April 12, 2022 13:33:13 UTC 2022 年 4 月 12 日 (火) 22 時 33 分 13 秒 (日本時間)
composite number 合成数
3499620531304395732107034638630600743737437723893940498322265407888610516929350765219777378380633655282076346745700121211716796070049061175741512581508122901<157>
prime factors 素因数
632374307494547864740681614654259911044868170188351679352941806038403488983<75>
5534096641544167060479244804453734269615025117170758121503084069847870122120232947<82>
factorization results 素因数分解の結果
Mon Apr 11 12:04:15 2022  
Mon Apr 11 12:04:15 2022  
Mon Apr 11 12:04:15 2022  Msieve v. 1.53 (SVN 988)
Mon Apr 11 12:04:15 2022  random seeds: 5bed7040 848160f3
Mon Apr 11 12:04:15 2022  factoring 3499620531304395732107034638630600743737437723893940498322265407888610516929350765219777378380633655282076346745700121211716796070049061175741512581508122901 (157 digits)
Mon Apr 11 12:04:16 2022  searching for 15-digit factors
Mon Apr 11 12:04:17 2022  commencing number field sieve (157-digit input)
Mon Apr 11 12:04:17 2022  R0: -1614021381452866107689652952395
Mon Apr 11 12:04:17 2022  R1: 2800720549747877335151
Mon Apr 11 12:04:17 2022  A0: -900576000315545449296986055612617336
Mon Apr 11 12:04:17 2022  A1: 3261594593047514428295417374782
Mon Apr 11 12:04:17 2022  A2: 9177816658363201073537987
Mon Apr 11 12:04:17 2022  A3: -5145135425062913109
Mon Apr 11 12:04:17 2022  A4: -6208776799068
Mon Apr 11 12:04:17 2022  A5: 1288800
Mon Apr 11 12:04:17 2022  skew 1.00, size 2.896e-015, alpha -6.207, combined = 2.483e-014 rroots = 5
Mon Apr 11 12:04:17 2022  
Mon Apr 11 12:04:17 2022  commencing relation filtering
Mon Apr 11 12:04:17 2022  setting target matrix density to 130.0
Mon Apr 11 12:04:17 2022  estimated available RAM is 16151.1 MB
Mon Apr 11 12:04:17 2022  commencing duplicate removal, pass 1
Mon Apr 11 12:04:44 2022  error -9 reading relation 1725877
Mon Apr 11 12:04:44 2022  error -15 reading relation 1773629
Mon Apr 11 12:15:10 2022  error -9 reading relation 43281745
Mon Apr 11 12:30:02 2022  error -5 reading relation 93969249
Mon Apr 11 12:30:07 2022  error -15 reading relation 94170882
Mon Apr 11 12:30:46 2022  error -9 reading relation 96254352
Mon Apr 11 12:30:47 2022  error -15 reading relation 96326769
Mon Apr 11 12:30:47 2022  error -15 reading relation 96348861
Mon Apr 11 12:30:48 2022  error -9 reading relation 96424025
Mon Apr 11 12:30:53 2022  error -5 reading relation 96721106
Mon Apr 11 12:30:54 2022  error -15 reading relation 96789330
Mon Apr 11 12:31:12 2022  error -1 reading relation 97850124
Mon Apr 11 12:33:10 2022  error -15 reading relation 104226942
Mon Apr 11 12:33:25 2022  error -15 reading relation 105197660
Mon Apr 11 12:33:29 2022  error -1 reading relation 105458742
Mon Apr 11 12:33:38 2022  error -5 reading relation 105965751
Mon Apr 11 12:33:40 2022  error -9 reading relation 106057044
Mon Apr 11 12:36:13 2022  error -1 reading relation 116178160
Mon Apr 11 12:37:09 2022  error -9 reading relation 120457298
Mon Apr 11 12:37:09 2022  error -15 reading relation 120484307
Mon Apr 11 12:37:20 2022  error -1 reading relation 121542288
Mon Apr 11 12:37:20 2022  error -1 reading relation 121542289
Mon Apr 11 12:37:20 2022  error -1 reading relation 121542290
Mon Apr 11 12:37:20 2022  error -1 reading relation 121542291
Mon Apr 11 12:37:20 2022  error -1 reading relation 121542292
Mon Apr 11 12:37:20 2022  error -1 reading relation 121542293
Mon Apr 11 12:37:20 2022  error -1 reading relation 121542294
Mon Apr 11 12:37:20 2022  error -1 reading relation 121542295
Mon Apr 11 12:37:20 2022  error -1 reading relation 121542296
Mon Apr 11 12:37:20 2022  error -1 reading relation 121542297
Mon Apr 11 12:37:20 2022  error -1 reading relation 121542298
Mon Apr 11 12:37:20 2022  error -1 reading relation 121542299
Mon Apr 11 12:37:20 2022  error -1 reading relation 121542300
Mon Apr 11 12:37:20 2022  error -1 reading relation 121542301
Mon Apr 11 12:37:20 2022  error -1 reading relation 121542302
Mon Apr 11 12:37:20 2022  error -1 reading relation 121542303
Mon Apr 11 12:37:20 2022  error -1 reading relation 121542304
Mon Apr 11 12:37:20 2022  error -1 reading relation 121542305
Mon Apr 11 12:37:20 2022  error -1 reading relation 121542306
Mon Apr 11 12:37:20 2022  error -1 reading relation 121542307
Mon Apr 11 12:37:20 2022  error -1 reading relation 121542308
Mon Apr 11 12:37:20 2022  error -1 reading relation 121542309
Mon Apr 11 12:37:20 2022  error -1 reading relation 121542310
Mon Apr 11 12:37:20 2022  error -1 reading relation 121542311
Mon Apr 11 12:37:20 2022  error -1 reading relation 121542312
Mon Apr 11 12:37:20 2022  error -1 reading relation 121542313
Mon Apr 11 12:37:20 2022  error -1 reading relation 121542314
Mon Apr 11 12:37:20 2022  error -1 reading relation 121542315
Mon Apr 11 12:37:20 2022  error -1 reading relation 121542316
Mon Apr 11 12:37:20 2022  error -1 reading relation 121542317
Mon Apr 11 12:37:20 2022  error -1 reading relation 121542318
Mon Apr 11 12:37:20 2022  error -1 reading relation 121542319
Mon Apr 11 12:37:20 2022  error -1 reading relation 121542320
Mon Apr 11 12:37:20 2022  error -1 reading relation 121542321
Mon Apr 11 12:37:20 2022  error -1 reading relation 121542322
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542323
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542324
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542325
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542326
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542327
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542328
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542329
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542330
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542331
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542332
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542333
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542334
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542335
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542336
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542337
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542338
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542339
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542340
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542341
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542342
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542343
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542344
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542345
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542346
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542347
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542348
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542349
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542350
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542351
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542352
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542353
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542354
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542355
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542356
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542357
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542358
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542359
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542360
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542361
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542362
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542363
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542364
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542365
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542366
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542367
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542368
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542369
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542370
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542371
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542372
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542373
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542374
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542375
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542376
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542377
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542378
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542379
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542380
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542381
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542382
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542383
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542384
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542385
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542386
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542387
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542388
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542389
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542390
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542391
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542392
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542393
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542394
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542395
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542396
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542397
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542398
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542399
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542400
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542401
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542402
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542403
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542404
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542405
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542406
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542407
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542408
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542409
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542410
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542411
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542412
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542413
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542414
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542415
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542416
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542417
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542418
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542419
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542420
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542421
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542422
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542423
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542424
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542425
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542426
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542427
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542428
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542429
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542430
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542431
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542432
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542433
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542434
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542435
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542436
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542437
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542438
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542439
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542440
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542441
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542442
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542443
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542444
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542445
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542446
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542447
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542448
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542449
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542450
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542451
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542452
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542453
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542454
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542455
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542456
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542457
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542458
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542459
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542460
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542461
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542462
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542463
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542464
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542465
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542466
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542467
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542468
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542469
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542470
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542471
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542472
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542473
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542474
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542475
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542476
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542477
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542478
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542479
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542480
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542481
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542482
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542483
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542484
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542485
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542486
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542487
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542488
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542489
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542490
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542491
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542492
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542493
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542494
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542495
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542496
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542497
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542498
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542499
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542500
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542501
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542502
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542503
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542504
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542505
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542506
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542507
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542508
Mon Apr 11 12:37:21 2022  error -1 reading relation 121542509
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542510
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542511
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542512
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542513
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542514
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542515
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542516
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542517
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542518
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542519
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542520
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542521
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542522
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542523
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542524
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542525
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542526
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542527
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542528
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542529
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542530
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542531
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542532
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542533
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542534
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542535
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542536
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542537
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542538
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542539
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542540
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542541
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542542
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542543
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542544
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542545
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542546
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542547
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542548
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542549
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542550
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542551
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542552
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542553
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542554
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542555
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542556
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542557
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542558
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542559
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542560
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542561
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542562
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542563
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542564
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542565
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542566
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542567
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542568
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542569
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542570
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542571
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542572
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542573
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542574
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542575
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542576
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542577
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542578
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542579
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542580
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542581
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542582
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542583
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542584
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542585
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542586
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542587
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542588
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542589
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542590
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542591
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542592
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542593
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542594
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542595
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542596
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542597
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542598
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542599
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542600
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542601
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542602
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542603
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542604
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542605
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542606
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542607
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542608
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542609
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542610
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542611
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542612
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542613
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542614
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542615
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542616
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542617
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542618
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542619
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542620
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542621
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542622
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542623
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542624
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542625
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542626
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542627
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542628
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542629
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542630
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542631
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542632
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542633
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542634
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542635
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542636
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542637
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542638
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542639
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542640
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542641
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542642
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542643
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542644
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542645
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542646
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542647
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542648
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542649
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542650
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542651
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542652
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542653
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542654
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542655
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542656
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542657
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542658
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542659
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542660
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542661
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542662
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542663
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542664
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542665
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542666
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542667
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542668
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542669
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542670
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542671
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542672
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542673
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542674
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542675
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542676
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542677
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542678
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542679
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542680
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542681
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542682
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542683
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542684
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542685
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542686
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542687
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542688
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542689
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542690
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542691
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542692
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542693
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542694
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542695
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542696
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542697
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542698
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542699
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542700
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542701
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542702
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542703
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542704
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542705
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542706
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542707
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542708
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542709
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542710
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542711
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542712
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542713
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542714
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542715
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542716
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542717
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542718
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542719
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542720
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542721
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542722
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542723
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542724
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542725
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542726
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542727
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542728
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542729
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542730
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542731
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542732
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542733
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542734
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542735
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542736
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542737
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542738
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542739
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542740
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542741
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542742
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542743
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542744
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542745
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542746
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542747
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542748
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542749
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542750
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542751
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542752
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542753
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542754
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542755
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542756
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542757
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542758
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542759
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542760
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542761
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542762
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542763
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542764
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542765
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542766
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542767
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542768
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542769
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542770
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542771
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542772
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542773
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542774
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542775
Mon Apr 11 12:37:22 2022  error -1 reading relation 121542776
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542777
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542778
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542779
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542780
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542781
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542782
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542783
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542784
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542785
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542786
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542787
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542788
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542789
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542790
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542791
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542792
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542793
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542794
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542795
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542796
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542797
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542798
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542799
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542800
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542801
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542802
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542803
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542804
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542805
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542806
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542807
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542808
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542809
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542810
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542811
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542812
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542813
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542814
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542815
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542816
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542817
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542818
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542819
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542820
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542821
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542822
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542823
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542824
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542825
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542826
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542827
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542828
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542829
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542830
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542831
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542832
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542833
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542834
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542835
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542836
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542837
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542838
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542839
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542840
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542841
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542842
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542843
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542844
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542845
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542846
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542847
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542848
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542849
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542850
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542851
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542852
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542853
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542854
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542855
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542856
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542857
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542858
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542859
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542860
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542861
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542862
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542863
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542864
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542865
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542866
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542867
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542868
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542869
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542870
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542871
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542872
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542873
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542874
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542875
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542876
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542877
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542878
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542879
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542880
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542881
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542882
Mon Apr 11 12:37:23 2022  error -1 reading relation 121542883
Mon Apr 11 12:38:52 2022  error -15 reading relation 128664876
Mon Apr 11 12:39:53 2022  error -15 reading relation 133034398
Mon Apr 11 12:39:56 2022  error -9 reading relation 133208289
Mon Apr 11 12:40:37 2022  error -5 reading relation 135652832
Mon Apr 11 12:41:04 2022  skipped 12 relations with composite factors
Mon Apr 11 12:41:04 2022  found 22839242 hash collisions in 137367757 relations
Mon Apr 11 12:41:42 2022  added 121877 free relations
Mon Apr 11 12:41:42 2022  commencing duplicate removal, pass 2
Mon Apr 11 12:43:32 2022  found 19803191 duplicates and 117686443 unique relations
Mon Apr 11 12:43:32 2022  memory use: 660.8 MB
Mon Apr 11 12:43:32 2022  reading ideals above 69926912
Mon Apr 11 12:43:32 2022  commencing singleton removal, initial pass
Mon Apr 11 13:02:36 2022  memory use: 2756.0 MB
Mon Apr 11 13:02:36 2022  reading all ideals from disk
Mon Apr 11 13:02:41 2022  memory use: 1976.0 MB
Mon Apr 11 13:02:46 2022  commencing in-memory singleton removal
Mon Apr 11 13:02:52 2022  begin with 117686443 relations and 85613665 unique ideals
Mon Apr 11 13:03:52 2022  reduce to 87802641 relations and 53424369 ideals in 10 passes
Mon Apr 11 13:03:52 2022  max relations containing the same ideal: 64
Mon Apr 11 13:04:01 2022  reading ideals above 720000
Mon Apr 11 13:04:01 2022  commencing singleton removal, initial pass
Mon Apr 11 13:21:37 2022  memory use: 1506.0 MB
Mon Apr 11 13:21:37 2022  reading all ideals from disk
Mon Apr 11 13:21:45 2022  memory use: 3225.3 MB
Mon Apr 11 13:21:57 2022  keeping 61193218 ideals with weight <= 200, target excess is 458797
Mon Apr 11 13:22:10 2022  commencing in-memory singleton removal
Mon Apr 11 13:22:20 2022  begin with 87802641 relations and 61193218 unique ideals
Mon Apr 11 13:23:28 2022  reduce to 87802066 relations and 61192643 ideals in 6 passes
Mon Apr 11 13:23:28 2022  max relations containing the same ideal: 200
Mon Apr 11 13:24:16 2022  removing 7502744 relations and 5502744 ideals in 2000000 cliques
Mon Apr 11 13:24:20 2022  commencing in-memory singleton removal
Mon Apr 11 13:24:29 2022  begin with 80299322 relations and 61192643 unique ideals
Mon Apr 11 13:25:42 2022  reduce to 79781412 relations and 55157339 ideals in 7 passes
Mon Apr 11 13:25:42 2022  max relations containing the same ideal: 195
Mon Apr 11 13:26:29 2022  removing 6011019 relations and 4011019 ideals in 2000000 cliques
Mon Apr 11 13:26:32 2022  commencing in-memory singleton removal
Mon Apr 11 13:26:41 2022  begin with 73770393 relations and 55157339 unique ideals
Mon Apr 11 13:27:44 2022  reduce to 73424631 relations and 50791668 ideals in 7 passes
Mon Apr 11 13:27:44 2022  max relations containing the same ideal: 189
Mon Apr 11 13:28:26 2022  removing 5618729 relations and 3618729 ideals in 2000000 cliques
Mon Apr 11 13:28:29 2022  commencing in-memory singleton removal
Mon Apr 11 13:28:36 2022  begin with 67805902 relations and 50791668 unique ideals
Mon Apr 11 13:29:21 2022  reduce to 67509123 relations and 46868579 ideals in 6 passes
Mon Apr 11 13:29:21 2022  max relations containing the same ideal: 179
Mon Apr 11 13:29:59 2022  removing 5409382 relations and 3409382 ideals in 2000000 cliques
Mon Apr 11 13:30:02 2022  commencing in-memory singleton removal
Mon Apr 11 13:30:08 2022  begin with 62099741 relations and 46868579 unique ideals
Mon Apr 11 13:30:47 2022  reduce to 61823614 relations and 43175757 ideals in 6 passes
Mon Apr 11 13:30:47 2022  max relations containing the same ideal: 170
Mon Apr 11 13:31:24 2022  removing 5273149 relations and 3273149 ideals in 2000000 cliques
Mon Apr 11 13:31:27 2022  commencing in-memory singleton removal
Mon Apr 11 13:31:32 2022  begin with 56550465 relations and 43175757 unique ideals
Mon Apr 11 13:32:21 2022  reduce to 56283354 relations and 39627814 ideals in 7 passes
Mon Apr 11 13:32:21 2022  max relations containing the same ideal: 160
Mon Apr 11 13:32:53 2022  removing 5179457 relations and 3179457 ideals in 2000000 cliques
Mon Apr 11 13:32:56 2022  commencing in-memory singleton removal
Mon Apr 11 13:33:01 2022  begin with 51103897 relations and 39627814 unique ideals
Mon Apr 11 13:33:39 2022  reduce to 50835595 relations and 36171911 ideals in 6 passes
Mon Apr 11 13:33:39 2022  max relations containing the same ideal: 151
Mon Apr 11 13:34:09 2022  removing 5106905 relations and 3106905 ideals in 2000000 cliques
Mon Apr 11 13:34:12 2022  commencing in-memory singleton removal
Mon Apr 11 13:34:17 2022  begin with 45728690 relations and 36171911 unique ideals
Mon Apr 11 13:34:57 2022  reduce to 45453605 relations and 32780881 ideals in 6 passes
Mon Apr 11 13:34:57 2022  max relations containing the same ideal: 143
Mon Apr 11 13:35:27 2022  removing 5055647 relations and 3055647 ideals in 2000000 cliques
Mon Apr 11 13:35:29 2022  commencing in-memory singleton removal
Mon Apr 11 13:35:32 2022  begin with 40397958 relations and 32780881 unique ideals
Mon Apr 11 13:36:03 2022  reduce to 40106546 relations and 29423292 ideals in 6 passes
Mon Apr 11 13:36:03 2022  max relations containing the same ideal: 129
Mon Apr 11 13:36:27 2022  removing 5019687 relations and 3019687 ideals in 2000000 cliques
Mon Apr 11 13:36:29 2022  commencing in-memory singleton removal
Mon Apr 11 13:36:33 2022  begin with 35086859 relations and 29423292 unique ideals
Mon Apr 11 13:36:58 2022  reduce to 34770666 relations and 26074664 ideals in 6 passes
Mon Apr 11 13:36:58 2022  max relations containing the same ideal: 115
Mon Apr 11 13:37:18 2022  removing 4997259 relations and 2997259 ideals in 2000000 cliques
Mon Apr 11 13:37:20 2022  commencing in-memory singleton removal
Mon Apr 11 13:37:23 2022  begin with 29773407 relations and 26074664 unique ideals
Mon Apr 11 13:37:49 2022  reduce to 29420470 relations and 22708296 ideals in 7 passes
Mon Apr 11 13:37:49 2022  max relations containing the same ideal: 108
Mon Apr 11 13:38:07 2022  removing 4983519 relations and 2983519 ideals in 2000000 cliques
Mon Apr 11 13:38:09 2022  commencing in-memory singleton removal
Mon Apr 11 13:38:11 2022  begin with 24436951 relations and 22708296 unique ideals
Mon Apr 11 13:38:31 2022  reduce to 24029344 relations and 19295904 ideals in 7 passes
Mon Apr 11 13:38:31 2022  max relations containing the same ideal: 92
Mon Apr 11 13:38:47 2022  removing 4979407 relations and 2979407 ideals in 2000000 cliques
Mon Apr 11 13:38:48 2022  commencing in-memory singleton removal
Mon Apr 11 13:38:50 2022  begin with 19049937 relations and 19295904 unique ideals
Mon Apr 11 13:39:04 2022  reduce to 18557733 relations and 15792501 ideals in 7 passes
Mon Apr 11 13:39:04 2022  max relations containing the same ideal: 80
Mon Apr 11 13:39:14 2022  removing 4968865 relations and 2968865 ideals in 2000000 cliques
Mon Apr 11 13:39:16 2022  commencing in-memory singleton removal
Mon Apr 11 13:39:17 2022  begin with 13588868 relations and 15792501 unique ideals
Mon Apr 11 13:39:29 2022  reduce to 12953311 relations and 12134938 ideals in 8 passes
Mon Apr 11 13:39:29 2022  max relations containing the same ideal: 58
Mon Apr 11 13:39:36 2022  removing 991650 relations and 705482 ideals in 286168 cliques
Mon Apr 11 13:39:36 2022  commencing in-memory singleton removal
Mon Apr 11 13:39:38 2022  begin with 11961661 relations and 12134938 unique ideals
Mon Apr 11 13:39:46 2022  reduce to 11880773 relations and 11346655 ideals in 6 passes
Mon Apr 11 13:39:46 2022  max relations containing the same ideal: 55
Mon Apr 11 13:39:55 2022  relations with 0 large ideals: 1478
Mon Apr 11 13:39:55 2022  relations with 1 large ideals: 10574
Mon Apr 11 13:39:55 2022  relations with 2 large ideals: 137348
Mon Apr 11 13:39:55 2022  relations with 3 large ideals: 728694
Mon Apr 11 13:39:56 2022  relations with 4 large ideals: 1985320
Mon Apr 11 13:39:56 2022  relations with 5 large ideals: 3141726
Mon Apr 11 13:39:56 2022  relations with 6 large ideals: 3081221
Mon Apr 11 13:39:56 2022  relations with 7+ large ideals: 2794412
Mon Apr 11 13:39:56 2022  commencing 2-way merge
Mon Apr 11 13:40:05 2022  reduce to 8309431 relation sets and 7775313 unique ideals
Mon Apr 11 13:40:05 2022  commencing full merge
Mon Apr 11 13:44:16 2022  memory use: 993.2 MB
Mon Apr 11 13:44:18 2022  found 3672680 cycles, need 3637513
Mon Apr 11 13:44:19 2022  weight of 3637513 cycles is about 473288544 (130.11/cycle)
Mon Apr 11 13:44:19 2022  distribution of cycle lengths:
Mon Apr 11 13:44:19 2022  1 relations: 54704
Mon Apr 11 13:44:19 2022  2 relations: 163508
Mon Apr 11 13:44:19 2022  3 relations: 225155
Mon Apr 11 13:44:19 2022  4 relations: 257420
Mon Apr 11 13:44:19 2022  5 relations: 281249
Mon Apr 11 13:44:19 2022  6 relations: 286911
Mon Apr 11 13:44:19 2022  7 relations: 286668
Mon Apr 11 13:44:19 2022  8 relations: 274660
Mon Apr 11 13:44:19 2022  9 relations: 257496
Mon Apr 11 13:44:19 2022  10+ relations: 1549742
Mon Apr 11 13:44:19 2022  heaviest cycle: 28 relations
Mon Apr 11 13:44:21 2022  commencing cycle optimization
Mon Apr 11 13:44:31 2022  start with 33989915 relations
Mon Apr 11 13:46:40 2022  pruned 2018490 relations
Mon Apr 11 13:46:40 2022  memory use: 842.0 MB
Mon Apr 11 13:46:40 2022  distribution of cycle lengths:
Mon Apr 11 13:46:40 2022  1 relations: 54704
Mon Apr 11 13:46:40 2022  2 relations: 168870
Mon Apr 11 13:46:40 2022  3 relations: 237277
Mon Apr 11 13:46:40 2022  4 relations: 272032
Mon Apr 11 13:46:40 2022  5 relations: 301466
Mon Apr 11 13:46:40 2022  6 relations: 307666
Mon Apr 11 13:46:40 2022  7 relations: 308540
Mon Apr 11 13:46:40 2022  8 relations: 293843
Mon Apr 11 13:46:40 2022  9 relations: 273668
Mon Apr 11 13:46:40 2022  10+ relations: 1419447
Mon Apr 11 13:46:40 2022  heaviest cycle: 28 relations
Mon Apr 11 13:46:48 2022  RelProcTime: 6151
Mon Apr 11 13:46:48 2022  
Mon Apr 11 13:46:48 2022  commencing linear algebra
Mon Apr 11 13:46:49 2022  read 3637513 cycles
Mon Apr 11 13:46:59 2022  cycles contain 11638394 unique relations
Mon Apr 11 13:49:03 2022  read 11638394 relations
Mon Apr 11 13:49:32 2022  using 20 quadratic characters above 4294917295
Mon Apr 11 13:50:39 2022  building initial matrix
Mon Apr 11 13:55:21 2022  memory use: 1631.0 MB
Mon Apr 11 13:55:28 2022  read 3637513 cycles
Mon Apr 11 13:55:29 2022  matrix is 3637335 x 3637513 (1801.5 MB) with weight 548876019 (150.89/col)
Mon Apr 11 13:55:29 2022  sparse part has weight 432249085 (118.83/col)
Mon Apr 11 13:56:40 2022  filtering completed in 2 passes
Mon Apr 11 13:56:41 2022  matrix is 3637256 x 3637434 (1801.5 MB) with weight 548870810 (150.90/col)
Mon Apr 11 13:56:41 2022  sparse part has weight 432246490 (118.83/col)
Mon Apr 11 13:57:00 2022  matrix starts at (0, 0)
Mon Apr 11 13:57:01 2022  matrix is 3637256 x 3637434 (1801.5 MB) with weight 548870810 (150.90/col)
Mon Apr 11 13:57:02 2022  sparse part has weight 432246490 (118.83/col)
Mon Apr 11 13:57:02 2022  saving the first 48 matrix rows for later
Mon Apr 11 13:57:03 2022  matrix includes 64 packed rows
Mon Apr 11 13:57:04 2022  matrix is 3637208 x 3637434 (1755.3 MB) with weight 470914628 (129.46/col)
Mon Apr 11 13:57:04 2022  sparse part has weight 423759151 (116.50/col)
Mon Apr 11 13:57:04 2022  using block size 8192 and superblock size 1179648 for processor cache size 12288 kB
Mon Apr 11 13:57:33 2022  commencing Lanczos iteration (6 threads)
Mon Apr 11 13:57:33 2022  memory use: 1443.0 MB
Mon Apr 11 13:57:49 2022  linear algebra at 0.0%, ETA 9h57m
Mon Apr 11 13:57:54 2022  checkpointing every 370000 dimensions
Tue Apr 12 00:33:09 2022  lanczos halted after 57520 iterations (dim = 3637208)
Tue Apr 12 00:33:13 2022  recovered 30 nontrivial dependencies
Tue Apr 12 00:33:14 2022  BLanczosTime: 38786
Tue Apr 12 00:33:14 2022  
Tue Apr 12 00:33:14 2022  commencing square root phase
Tue Apr 12 00:33:14 2022  handling dependencies 1 to 64
Tue Apr 12 00:33:14 2022  reading relations for dependency 1
Tue Apr 12 00:33:16 2022  read 1820332 cycles
Tue Apr 12 00:33:21 2022  cycles contain 5820766 unique relations
Tue Apr 12 00:34:37 2022  read 5820766 relations
Tue Apr 12 00:35:17 2022  multiplying 5820766 relations
Tue Apr 12 00:43:44 2022  multiply complete, coefficients have about 326.16 million bits
Tue Apr 12 00:43:46 2022  initial square root is modulo 711793
Tue Apr 12 00:53:35 2022  GCD is 1, no factor found
Tue Apr 12 00:53:35 2022  reading relations for dependency 2
Tue Apr 12 00:53:39 2022  read 1818421 cycles
Tue Apr 12 00:53:44 2022  cycles contain 5816204 unique relations
Tue Apr 12 00:55:55 2022  read 5816204 relations
Tue Apr 12 00:56:33 2022  multiplying 5816204 relations
Tue Apr 12 01:05:31 2022  multiply complete, coefficients have about 325.89 million bits
Tue Apr 12 01:05:33 2022  initial square root is modulo 704161
Tue Apr 12 01:15:48 2022  GCD is N, no factor found
Tue Apr 12 01:15:48 2022  reading relations for dependency 3
Tue Apr 12 01:15:49 2022  read 1818575 cycles
Tue Apr 12 01:15:54 2022  cycles contain 5818718 unique relations
Tue Apr 12 01:18:08 2022  read 5818718 relations
Tue Apr 12 01:18:46 2022  multiplying 5818718 relations
Tue Apr 12 01:27:36 2022  multiply complete, coefficients have about 326.04 million bits
Tue Apr 12 01:27:38 2022  initial square root is modulo 708473
Tue Apr 12 01:37:56 2022  GCD is 1, no factor found
Tue Apr 12 01:37:56 2022  reading relations for dependency 4
Tue Apr 12 01:37:58 2022  read 1819438 cycles
Tue Apr 12 01:38:03 2022  cycles contain 5824624 unique relations
Tue Apr 12 01:39:12 2022  read 5824624 relations
Tue Apr 12 01:39:51 2022  multiplying 5824624 relations
Tue Apr 12 01:48:48 2022  multiply complete, coefficients have about 326.38 million bits
Tue Apr 12 01:48:50 2022  initial square root is modulo 718357
Tue Apr 12 01:59:01 2022  GCD is 1, no factor found
Tue Apr 12 01:59:01 2022  reading relations for dependency 5
Tue Apr 12 01:59:02 2022  read 1817274 cycles
Tue Apr 12 01:59:07 2022  cycles contain 5818584 unique relations
Tue Apr 12 02:01:52 2022  read 5818584 relations
Tue Apr 12 02:02:29 2022  multiplying 5818584 relations
Tue Apr 12 02:11:21 2022  multiply complete, coefficients have about 326.04 million bits
Tue Apr 12 02:11:23 2022  initial square root is modulo 708223
Tue Apr 12 02:21:43 2022  sqrtTime: 6509
Tue Apr 12 02:21:43 2022  p75 factor: 632374307494547864740681614654259911044868170188351679352941806038403488983
Tue Apr 12 02:21:43 2022  p82 factor: 5534096641544167060479244804453734269615025117170758121503084069847870122120232947
Tue Apr 12 02:21:43 2022  elapsed time 14:17:28
software ソフトウェア
Msieve v. 1.53 (SVN 988)
execution environment 実行環境
Core i7-10750H with 16 GB memory, Windows 10

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6300Serge BatalovDecember 10, 2014 19:48:47 UTC 2014 年 12 月 11 日 (木) 4 時 48 分 47 秒 (日本時間)
4511e646001000Serge BatalovDecember 18, 2014 00:18:28 UTC 2014 年 12 月 18 日 (木) 9 時 18 分 28 秒 (日本時間)
400Dmitry DomanovMarch 1, 2016 13:08:30 UTC 2016 年 3 月 1 日 (火) 22 時 8 分 30 秒 (日本時間)
3200Lionel DebrouxDecember 17, 2017 16:22:50 UTC 2017 年 12 月 18 日 (月) 1 時 22 分 50 秒 (日本時間)
5043e66000yoyo@HomeApril 8, 2021 12:43:48 UTC 2021 年 4 月 8 日 (木) 21 時 43 分 48 秒 (日本時間)
5511e75200 / 15338yoyo@HomeAugust 3, 2021 12:05:03 UTC 2021 年 8 月 3 日 (火) 21 時 5 分 3 秒 (日本時間)

145×10231-19

c199

name 名前Thomas Kozlowski
date 日付December 13, 2024 10:35:05 UTC 2024 年 12 月 13 日 (金) 19 時 35 分 5 秒 (日本時間)
composite number 合成数
1798518040936248652372538031831515098487408467730986031173355938866831758360506069304441662706774145971850094744689850513085708185727403103332312533745385618389326851419052524356430584680013042325367<199>
prime factors 素因数
628185651264566898532145623863148744451<39>
2863035851448928012474379716186818953820816992690375153428509814493809861608324852596020619168470960162966488477537137777009886708069677154546445144335402254717<160>
factorization results 素因数分解の結果
GMP-ECM 7.0.6 [configured with GMP 6.3.0, --enable-asm-redc] [ECM]
Input number is 1798518040936248652372538031831515098487408467730986031173355938866831758360506069304441662706774145971850094744689850513085708185727403103332312533745385618389326851419052524356430584680013042325367 (199 digits)
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:2850912650
Step 1 took 34566ms
Step 2 took 12922ms
Run 2 out of 0:
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:732568932
Step 1 took 32574ms
Step 2 took 12900ms
Run 3 out of 0:
...
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:3310465710
Step 1 took 33047ms
Step 2 took 12916ms
Run 11 out of 0:
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:4087020127
Step 1 took 32560ms
Step 2 took 12945ms
** Factor found in step 2: 628185651264566898532145623863148744451
Found prime factor of 39 digits: 628185651264566898532145623863148744451
Prime cofactor 2863035851448928012474379716186818953820816992690375153428509814493809861608324852596020619168470960162966488477537137777009886708069677154546445144335402254717 has 160 digits
execution environment 実行環境
2x Xeon E5-2698v4, 128GB DDR4, Ubuntu Server 24.04

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6280CypDecember 7, 2014 14:07:35 UTC 2014 年 12 月 7 日 (日) 23 時 7 分 35 秒 (日本時間)
4511e61191 / 4413591CypJuly 30, 2015 07:06:31 UTC 2015 年 7 月 30 日 (木) 16 時 6 分 31 秒 (日本時間)
600Dmitry DomanovDecember 16, 2015 06:22:06 UTC 2015 年 12 月 16 日 (水) 15 時 22 分 6 秒 (日本時間)

145×10232-19

c225

name 名前Cyp
date 日付July 29, 2015 21:35:10 UTC 2015 年 7 月 30 日 (木) 6 時 35 分 10 秒 (日本時間)
composite number 合成数
951061761316520085715694016557658623998452190929069783013494772092534554977806524504984864616197579950936455321990987821393752190758468980173200376027257304145636174089814233677817545080722668962495651442271354243347046023847<225>
prime factors 素因数
43964430562156600689628330642766510908709<41>
composite cofactor 合成数の残り
21632527685577905995072502745050100467050795734857081252040898799632484255631672884852497945019823344620681219974287146382410557901211706687158402943025381969490397738659455932679589083<185>
factorization results 素因数分解の結果
Run 190 out of 256:
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=3433354645
Step 1 took 80629ms
Step 2 took 23806ms
********** Factor found in step 2: 43964430562156600689628330642766510908709
Found probable prime factor of 41 digits: 43964430562156600689628330642766510908709
Composite cofactor 21632527685577905995072502745050100467050795734857081252040898799632484255631672884852497945019823344620681219974287146382410557901211706687158402943025381969490397738659455932679589083 has 185 digits
software ソフトウェア
GMP-ECM 6.4.4
execution environment 実行環境
Gentoo Linux, Intel(R) Core(TM) i7-3770K CPU

c185

name 名前Dmitry Domanov
date 日付December 16, 2015 10:08:02 UTC 2015 年 12 月 16 日 (水) 19 時 8 分 2 秒 (日本時間)
composite number 合成数
21632527685577905995072502745050100467050795734857081252040898799632484255631672884852497945019823344620681219974287146382410557901211706687158402943025381969490397738659455932679589083<185>
prime factors 素因数
1251082177541979147604591307171504289196474753<46>
17291052557458434697847183663835939865764136507745522137208837443355014507395733044992168018729268579835494802806095121206716927116315755611<140>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=4069390481
Step 1 took 73713ms
********** Factor found in step 1: 1251082177541979147604591307171504289196474753
Found probable prime factor of 46 digits: 1251082177541979147604591307171504289196474753

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6300Serge BatalovDecember 10, 2014 19:48:47 UTC 2014 年 12 月 11 日 (木) 4 時 48 分 47 秒 (日本時間)
4511e61185 / 4409329CypJanuary 7, 2015 14:44:51 UTC 2015 年 1 月 7 日 (水) 23 時 44 分 51 秒 (日本時間)
256CypJuly 29, 2015 21:35:10 UTC 2015 年 7 月 30 日 (木) 6 時 35 分 10 秒 (日本時間)
600Dmitry DomanovDecember 16, 2015 06:22:24 UTC 2015 年 12 月 16 日 (水) 15 時 22 分 24 秒 (日本時間)

145×10234-19

c190

composite cofactor 合成数の残り
3538675840835409510045403535700051585473180597504414581316803459734117591879015365965829189237841282177100256616237384616502869033700498977313954880467456200053861129987191167290906488897239<190>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6300Serge BatalovDecember 10, 2014 19:48:47 UTC 2014 年 12 月 11 日 (木) 4 時 48 分 47 秒 (日本時間)
4511e64586585CypJune 11, 2015 06:03:28 UTC 2015 年 6 月 11 日 (木) 15 時 3 分 28 秒 (日本時間)
600Dmitry DomanovDecember 16, 2015 06:24:37 UTC 2015 年 12 月 16 日 (水) 15 時 24 分 37 秒 (日本時間)
3401Thomas KozlowskiDecember 13, 2024 11:21:46 UTC 2024 年 12 月 13 日 (金) 20 時 21 分 46 秒 (日本時間)

145×10235-19

c204

name 名前Serge Batalov
date 日付December 11, 2014 01:34:58 UTC 2014 年 12 月 11 日 (木) 10 時 34 分 58 秒 (日本時間)
composite number 合成数
602335056876116786506124277417251505486911999685821296383624053294535714799343341395556880789372496517203453558469396590825839203450109562873712656985212034443474154012950036447537064050919253986094068741<204>
prime factors 素因数
1389912577012451929468662944530120847<37>
composite cofactor 合成数の残り
433361829253179421783052858358438574469534806994686526411002902694465894045420112160161523217020740115089550985073021867693958222710264941223806617404297741780999234603<168>
factorization results 素因数分解の結果
Input number is 602335056876116786506124277417251505486911999685821296383624053294535714799343341395556880789372496517203453558469396590825839203450109562873712656985212034443474154012950036447537064050919253986094068741 (204 digits)
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2829408530
Step 1 took 15970ms
Step 2 took 10500ms
********** Factor found in step 2: 1389912577012451929468662944530120847
Found probable prime factor of 37 digits: 1389912577012451929468662944530120847
Composite cofactor 433361829253179421783052858358438574469534806994686526411002902694465894045420112160161523217020740115089550985073021867693958222710264941223806617404297741780999234603 has 168 digits

c168

name 名前Dmitry Domanov
date 日付December 16, 2015 10:10:24 UTC 2015 年 12 月 16 日 (水) 19 時 10 分 24 秒 (日本時間)
composite number 合成数
433361829253179421783052858358438574469534806994686526411002902694465894045420112160161523217020740115089550985073021867693958222710264941223806617404297741780999234603<168>
prime factors 素因数
7562627084141918039110173123766942369<37>
57303080587154213956366978299813378386882343161515932518391185375366135016699215659250831325810604037883751485656695650349690656587<131>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=4008292274
Step 1 took 87292ms
Step 2 took 30707ms
********** Factor found in step 2: 7562627084141918039110173123766942369
Found probable prime factor of 37 digits: 7562627084141918039110173123766942369

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6300Serge BatalovDecember 10, 2014 19:48:48 UTC 2014 年 12 月 11 日 (木) 4 時 48 分 48 秒 (日本時間)
4511e61385 / 4409585CypJune 22, 2015 18:55:20 UTC 2015 年 6 月 23 日 (火) 3 時 55 分 20 秒 (日本時間)
800Dmitry DomanovDecember 16, 2015 06:24:55 UTC 2015 年 12 月 16 日 (水) 15 時 24 分 55 秒 (日本時間)

145×10236-19

c212

name 名前Cyp
date 日付July 29, 2015 21:21:05 UTC 2015 年 7 月 30 日 (木) 6 時 21 分 5 秒 (日本時間)
composite number 合成数
20157019986291882264236651113158054582650539505924823186325554555339908130559619282574419663618951745296250749129240142772739178904294600393211111366192489048547600996859847316343115875190398172024420953222919717<212>
prime factors 素因数
7090217654259744428282084940563572243<37>
2842933880059621372649725333698450199463991974073580509319590809183922899994354990390223384111022611987406109482106597536898930984734472180737247771641342860728546660579039719<175>
factorization results 素因数分解の結果
Run 405 out of 591:
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=2979873795
Step 1 took 69358ms
********** Factor found in step 1: 7090217654259744428282084940563572243
Found probable prime factor of 37 digits: 7090217654259744428282084940563572243
Probable prime cofactor 2842933880059621372649725333698450199463991974073580509319590809183922899994354990390223384111022611987406109482106597536898930984734472180737247771641342860728546660579039719 has 175 digits
software ソフトウェア
GMP-ECM 6.4.4
execution environment 実行環境
Gentoo Linux, Intel(R) Core(TM) i7-3770K CPU

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6280 / 921CypDecember 10, 2014 07:18:34 UTC 2014 年 12 月 10 日 (水) 16 時 18 分 34 秒 (日本時間)
4511e6405 / 4413CypJuly 29, 2015 21:21:05 UTC 2015 年 7 月 30 日 (木) 6 時 21 分 5 秒 (日本時間)

145×10240-19

c220

name 名前Erik Branger
date 日付January 1, 2025 23:48:34 UTC 2025 年 1 月 2 日 (木) 8 時 48 分 34 秒 (日本時間)
composite number 合成数
1664216544294124410602398877188068317102865300670616224653088061621982838376223383411522350679681953650882902641396241470200518536504607988280501553443670322559861319886145129001373960977683689335341671935892536460032477<220>
prime factors 素因数
2666593148066662798186874886871532129699267974173244481<55>
624098410175814441204773955569409276096786139456292188186927277947026083279221518792048555366054163604372727810498205608689279322528734819355254256775665701426972317<165>
factorization results 素因数分解の結果
Number: 16111_240
N = 1664216544294124410602398877188068317102865300670616224653088061621982838376223383411522350679681953650882902641396241470200518536504607988280501553443670322559861319886145129001373960977683689335341671935892536460032477 (220 digits)
SNFS difficulty: 243 digits.
Divisors found:
r1=2666593148066662798186874886871532129699267974173244481 (pp55)
r2=624098410175814441204773955569409276096786139456292188186927277947026083279221518792048555366054163604372727810498205608689279322528734819355254256775665701426972317 (pp165)
Version: Msieve v. 1.52 (SVN unknown)
Total time: 80.88 hours.
Factorization parameters were as follows:
n: 1664216544294124410602398877188068317102865300670616224653088061621982838376223383411522350679681953650882902641396241470200518536504607988280501553443670322559861319886145129001373960977683689335341671935892536460032477
m: 1000000000000000000000000000000000000000000000000000000000000
deg: 4
c4: 145
c0: -1
skew: 1.00
type: snfs
lss: 1
rlim: 500000000
alim: 100000000
lpbr: 29
lpba: 29
mfbr: 58
mfba: 58
rlambda: 2.8
alambda: 2.8
side: 1
Number of cores used: 8
Number of threads per core: 1
Factor base limits: 500000000/100000000
Large primes per side: 3
Large prime bits: 29/29
Total raw relations: 70611215
Relations: 14803356 relations
Total pre-computation time approximately 1000 CPU-days.
Pre-computation saved approximately 18 G rational relations.
Total batch smoothness checking time: 21.21 hours.
Total relation processing time: 0.65 hours.
Pruned matrix : 11959419 x 11959644
Matrix solve time: 57.62 hours.
time per square root: 1.40 hours.
Prototype def-par.txt line would be: snfs,243,4,0,0,0,0,0,0,0,0,500000000,100000000,29,29,58,58,2.8,2.8,100000
total time: 80.88 hours.
Intel64 Family 6 Model 165 Stepping 5, GenuineIntel
Windows-10-10.0.26100-SP0
processors: 16, speed: 3.79GHz
software ソフトウェア
GGNFS, NFS_factory, Msieve

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6280CypDecember 10, 2014 05:18:50 UTC 2014 年 12 月 10 日 (水) 14 時 18 分 50 秒 (日本時間)
4511e64591591CypFebruary 1, 2015 02:21:57 UTC 2015 年 2 月 1 日 (日) 11 時 21 分 57 秒 (日本時間)
600Dmitry DomanovDecember 16, 2015 06:25:50 UTC 2015 年 12 月 16 日 (水) 15 時 25 分 50 秒 (日本時間)
3400Thomas KozlowskiDecember 13, 2024 12:38:10 UTC 2024 年 12 月 13 日 (金) 21 時 38 分 10 秒 (日本時間)

145×10241-19

c194

name 名前Thomas Kozlowski
date 日付December 13, 2024 18:22:06 UTC 2024 年 12 月 14 日 (土) 3 時 22 分 6 秒 (日本時間)
composite number 合成数
65075901835419769067719661485236057489857113278509657009147324586553043902441731558516320469081703315992819973250796516561464490270650194803267381791326276657869458069739196389081017348750297011<194>
prime factors 素因数
1048109053173141595391549746587361198101792728039<49>
composite cofactor 合成数の残り
62088865312634222491959640646606035857065488123844343185329010678738454795839248000061620322208727232084422370197046584731405373044689824176292949<146>
factorization results 素因数分解の結果
GMP-ECM 7.0.6 [configured with GMP 6.3.0, --enable-asm-redc] [ECM]
Input number is 65075901835419769067719661485236057489857113278509657009147324586553043902441731558516320469081703315992819973250796516561464490270650194803267381791326276657869458069739196389081017348750297011 (194 digits)
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:1972238530
Step 1 took 33354ms
Step 2 took 13116ms
Run 2 out of 0:
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:2343421351
Step 1 took 33628ms
Step 2 took 13396ms
Run 3 out of 0:
...
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:3956007603
Step 1 took 33416ms
Step 2 took 13079ms
Run 76 out of 0:
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:2313352932
Step 1 took 32905ms
Step 2 took 13195ms
** Factor found in step 2: 1048109053173141595391549746587361198101792728039
Found prime factor of 49 digits: 1048109053173141595391549746587361198101792728039
Composite cofactor 62088865312634222491959640646606035857065488123844343185329010678738454795839248000061620322208727232084422370197046584731405373044689824176292949 has 146 digits
execution environment 実行環境
2x Xeon E5-2698v4, 128GB DDR4, Ubuntu Server 24.04

c146

name 名前Bob Backstrom
date 日付December 15, 2024 18:14:28 UTC 2024 年 12 月 16 日 (月) 3 時 14 分 28 秒 (日本時間)
composite number 合成数
62088865312634222491959640646606035857065488123844343185329010678738454795839248000061620322208727232084422370197046584731405373044689824176292949<146>
prime factors 素因数
33049872934907634644730756809113151179855526395527247056331899887<65>
1878641574051417571308446849578287926908437096065013960182376732444093497185708027<82>
factorization results 素因数分解の結果
CADO-NFS

STA:Sun Dec 15 00:56:07 AEDT 2024 (62088865312634222491959640646606035857065488123844343185329010678738454795839248000061620322208727232084422370197046584731405373044689824176292949 - C146)

./cado-nfs.py -t 16 --no-colors 62088865312634222491959640646606035857065488123844343185329010678738454795839248000061620322208727232084422370197046584731405373044689824176292949 2>&1 | tee -a log-27

Info:root: Using default parameter file ./parameters/factor/params.c145
Info:root: No database exists yet
Info:root: Created temporary directory /tmp/cado.jqqf_180
Info:Database: Opened connection to database /tmp/cado.jqqf_180/c145.db
Info:root: Set tasks.threads=16 based on --server-threads 16
Info:root: tasks.threads = 16 [via tasks.threads]
Info:root: tasks.polyselect.threads = 2 [via tasks.polyselect.threads]
Info:root: tasks.sieve.las.threads = 2 [via tasks.sieve.las.threads]
Info:root: tasks.linalg.bwc.threads = 16 [via tasks.threads]
Info:root: tasks.sqrt.threads = 8 [via tasks.sqrt.threads]
Info:root: slaves.scriptpath is /home/bob/Math/cado-nfs/build/TrigKey-2
Info:root: Command line parameters: ./cado-nfs.py -t 16 --no-colors 62088865312634222491959640646606035857065488123844343185329010678738454795839248000061620322208727232084422370197046584731405373044689824176292949
Info:root: If this computation gets interrupted, it can be resumed with ./cado-nfs.py /tmp/cado.jqqf_180/c145.parameters_snapshot.0
Info:Server Launcher: Adding TrigKey-2 to whitelist to allow clients on localhost to connect
Info:HTTP server: Using non-threaded HTTPS server
Info:HTTP server: Using whitelist: localhost,TrigKey-2
Info:Lattice Sieving: param rels_wanted is 85000000
Info:Complete Factorization / Discrete logarithm: Factoring 62088865312634222491959640646606035857065488123844343185329010678738454795839248000061620322208727232084422370197046584731405373044689824176292949
Info:HTTP server: serving at https://TrigKey-2:46719 (0.0.0.0)
Info:HTTP server: For debugging purposes, the URL above can be accessed if the server.only_registered=False parameter is added
Info:HTTP server: You can start additional cado-nfs-client.py scripts with parameters: --server=https://TrigKey-2:46719 --certsha1=3be3332f8ab4517e7c91861cbe5626a1d831a322
Info:HTTP server: If you want to start additional clients, remember to add their hosts to server.whitelist
Info:Client Launcher: Starting client id localhost on host localhost
Info:Client Launcher: Starting client id localhost+2 on host localhost
Info:Client Launcher: Starting client id localhost+3 on host localhost
Info:Client Launcher: Starting client id localhost+4 on host localhost
Info:Client Launcher: Starting client id localhost+5 on host localhost
Info:Client Launcher: Starting client id localhost+6 on host localhost
Info:Client Launcher: Starting client id localhost+7 on host localhost
Info:Client Launcher: Starting client id localhost+8 on host localhost
Info:Client Launcher: Running clients: localhost (Host localhost, PID 478), localhost+2 (Host localhost, PID 480), localhost+3 (Host localhost, PID 482), localhost+4 (Host localhost, PID 484), localhost+5 (Host localhost, PID 486), localhost+6 (Host localhost, PID 488), localhost+7 (Host localhost, PID 490), localhost+8 (Host localhost, PID 492)
Info:Polynomial Selection (size optimized): Starting
===
Info:Polynomial Selection (root optimized): Finished, best polynomial has Murphy_E = 4.417e-07
Info:Polynomial Selection (root optimized): Best polynomial is:
n: 62088865312634222491959640646606035857065488123844343185329010678738454795839248000061620322208727232084422370197046584731405373044689824176292949
skew: 486443.458
c0: 5318003238517692871036908722208330
c1: 98361127447438848077445357419
c2: -229115136555410054788306
c3: -385066573548149773
c4: 698917334334
c5: 511560
Y0: -14309109341495371969350165036
Y1: 2505977014655470834841
# MurphyE (Bf=1.074e+09,Bg=1.074e+09,area=2.684e+14) = 4.417e-07
# f(x) = 511560*x^5+698917334334*x^4-385066573548149773*x^3-229115136555410054788306*x^2+98361127447438848077445357419*x+5318003238517692871036908722208330
# g(x) = 2505977014655470834841*x-14309109341495371969350165036
===
Info:Linear Algebra: Aggregate statistics:
Info:Linear Algebra: Krylov: CPU time 63004.7, WCT time 4481.91, iteration CPU time 0.05, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (80000 iterations)
Info:Linear Algebra: Lingen CPU time 147.96, WCT time 54.45
Info:Linear Algebra: Mksol: CPU time 32707.95,  WCT time 2309.61, iteration CPU time 0.05, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (40000 iterations)
Info:Quadratic Characters: Starting
Info:Complete Factorization / Discrete logarithm: Quadratic Characters
Info:Quadratic Characters: Total cpu/real time for characters: 55.8/13.2465
Info:Square Root: Starting
Info:Square Root: Creating file of (a,b) values
Info:Square Root: finished
Info:Square Root: Factors: 1878641574051417571308446849578287926908437096065013960182376732444093497185708027 33049872934907634644730756809113151179855526395527247056331899887
Info:Complete Factorization / Discrete logarithm: Square Root
Info:Square Root: Total cpu/real time for sqrt: 3117.96/246.366
Info:HTTP server: Got notification to stop serving Workunits
Info:Lattice Sieving: Aggregate statistics:
Info:Lattice Sieving: Total number of relations: 85042186
Info:Lattice Sieving: Average J: 7864.14 for 502644 special-q, max bucket fill -bkmult 1.0,1s:1.078260
Info:Lattice Sieving: Total time: 435059s
Info:Generate Free Relations: Total cpu/real time for freerel: 381.89/30.6794
Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 1526.53/794.783
Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics:
Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 731.1s
Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 350.53/228.767
Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics:
Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 228.7s
Info:Polynomial Selection (root optimized): Aggregate statistics:
Info:Polynomial Selection (root optimized): Total time: 2538.01
Info:Polynomial Selection (root optimized): Rootsieve time: 2572.41
Info:Quadratic Characters: Total cpu/real time for characters: 55.8/13.2465
Info:Filtering - Singleton removal: Total cpu/real time for purge: 355.83/137.507
Info:Polynomial Selection (size optimized): Aggregate statistics:
Info:Polynomial Selection (size optimized): potential collisions: 133692
Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 126759/43.820/54.593/67.130/2.497
Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 107474/42.880/47.521/59.960/1.428
Info:Polynomial Selection (size optimized): Total time: 39310.4
Info:Linear Algebra: Total cpu/real time for bwc: 101558/7267.21
Info:Linear Algebra: Aggregate statistics:
Info:Linear Algebra: Krylov: CPU time 63004.7, WCT time 4481.91, iteration CPU time 0.05, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (80000 iterations)
Info:Linear Algebra: Lingen CPU time 147.96, WCT time 54.45
Info:Linear Algebra: Mksol: CPU time 32707.95,  WCT time 2309.61, iteration CPU time 0.05, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (40000 iterations)
Info:Filtering - Merging: Total cpu/real time for merge: 346.97/32.1993
Info:Filtering - Merging: Total cpu/real time for replay: 55.43/49.0613
Info:Square Root: Total cpu/real time for sqrt: 3117.96/246.366
Info:Generate Factor Base: Total cpu/real time for makefb: 3.32/0.854962
Info:HTTP server: Shutting down HTTP server
Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire Complete Factorization 957522/66928.3 [18:35:28]
Info:root: Cleaning up computation data in /tmp/cado.jqqf_180
1878641574051417571308446849578287926908437096065013960182376732444093497185708027 33049872934907634644730756809113151179855526395527247056331899887

END:Sun Dec 15 19:31:37 AEDT 2024 (62088865312634222491959640646606035857065488123844343185329010678738454795839248000061620322208727232084422370197046584731405373044689824176292949 - C146)
software ソフトウェア
CADO-NFS

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6300Serge BatalovDecember 10, 2014 19:48:48 UTC 2014 年 12 月 11 日 (木) 4 時 48 分 48 秒 (日本時間)
4511e61185 / 4409585CypJuly 30, 2015 01:31:45 UTC 2015 年 7 月 30 日 (木) 10 時 31 分 45 秒 (日本時間)
600Dmitry DomanovDecember 16, 2015 06:57:37 UTC 2015 年 12 月 16 日 (水) 15 時 57 分 37 秒 (日本時間)

145×10243-19

c189

composite cofactor 合成数の残り
849151877552315070173375843548726768305153912370517503939935537469235914004967704817780156480827785095141999524925521313314173635746811078572892029787680965731732185633657170101581160642073<189>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6280CypDecember 7, 2014 17:14:56 UTC 2014 年 12 月 8 日 (月) 2 時 14 分 56 秒 (日本時間)
4511e64592335CypDecember 29, 2014 03:36:10 UTC 2014 年 12 月 29 日 (月) 12 時 36 分 10 秒 (日本時間)
256CypJanuary 26, 2015 07:26:36 UTC 2015 年 1 月 26 日 (月) 16 時 26 分 36 秒 (日本時間)
600Dmitry DomanovDecember 16, 2015 06:58:16 UTC 2015 年 12 月 16 日 (水) 15 時 58 分 16 秒 (日本時間)
3401Thomas KozlowskiDecember 13, 2024 14:36:46 UTC 2024 年 12 月 13 日 (金) 23 時 36 分 46 秒 (日本時間)

145×10244-19

c213

composite cofactor 合成数の残り
421685417932256828831912429617410278192179124131556247985152238070006180577717293955424066811619612917214672000375127968729955510576759417986780726404320362138037871702554232970452374257396210308055675655577044267<213>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6280CypDecember 10, 2014 11:15:34 UTC 2014 年 12 月 10 日 (水) 20 時 15 分 34 秒 (日本時間)
4511e64593591CypFebruary 2, 2015 08:46:29 UTC 2015 年 2 月 2 日 (月) 17 時 46 分 29 秒 (日本時間)
600Dmitry DomanovDecember 16, 2015 07:08:06 UTC 2015 年 12 月 16 日 (水) 16 時 8 分 6 秒 (日本時間)
3402Thomas KozlowskiDecember 13, 2024 15:53:52 UTC 2024 年 12 月 14 日 (土) 0 時 53 分 52 秒 (日本時間)

145×10245-19

c209

composite cofactor 合成数の残り
31416846461403339412537419561443878130858485735872894004624507106561830590866042528620335698175569306440196980734485294307535580861043736671360667640301321767345588562122700131960881398049016325086900082727373<209>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6300Serge BatalovDecember 10, 2014 19:48:49 UTC 2014 年 12 月 11 日 (木) 4 時 48 分 49 秒 (日本時間)
4511e64590585CypJune 29, 2015 06:03:19 UTC 2015 年 6 月 29 日 (月) 15 時 3 分 19 秒 (日本時間)
600Dmitry DomanovDecember 16, 2015 07:08:22 UTC 2015 年 12 月 16 日 (水) 16 時 8 分 22 秒 (日本時間)
3405Thomas KozlowskiDecember 13, 2024 17:01:18 UTC 2024 年 12 月 14 日 (土) 2 時 1 分 18 秒 (日本時間)

145×10247-19

c213

composite cofactor 合成数の残り
907352906453404846280374689530047390442430575201811537785062397351230355740752204952375089909816431810504109070239738628815151119874166382156480103314604199391461493703822584715116412880949102760434915555846002269<213>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6280CypDecember 9, 2014 06:29:20 UTC 2014 年 12 月 9 日 (火) 15 時 29 分 20 秒 (日本時間)
4511e64591591CypJune 11, 2015 09:45:35 UTC 2015 年 6 月 11 日 (木) 18 時 45 分 35 秒 (日本時間)
600Dmitry DomanovDecember 16, 2015 07:55:15 UTC 2015 年 12 月 16 日 (水) 16 時 55 分 15 秒 (日本時間)
3400Thomas KozlowskiDecember 13, 2024 18:18:15 UTC 2024 年 12 月 14 日 (土) 3 時 18 分 15 秒 (日本時間)

145×10248-19

c235

composite cofactor 合成数の残り
2282301283490077320522683968786027609569900634486522933549077055739899217265562920458387779894294416762809561557582441338806046817705179414649156276687732456640922050744276550227124925537095183245817626511276383746014022374298480325119<235>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6300Serge BatalovDecember 10, 2014 19:48:49 UTC 2014 年 12 月 11 日 (木) 4 時 48 分 49 秒 (日本時間)
4511e64585585CypJune 25, 2015 13:23:07 UTC 2015 年 6 月 25 日 (木) 22 時 23 分 7 秒 (日本時間)
4000Thomas KozlowskiDecember 13, 2024 20:00:09 UTC 2024 年 12 月 14 日 (土) 5 時 0 分 9 秒 (日本時間)

145×10249-19

c206

composite cofactor 合成数の残り
32314550548902533028221428926215882022517725679656173584242610729072916587626280052240105338587213536676295235793019222537106504360860001889399074156959317589564694719511369040494610309098477346797089977701<206>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6300Serge BatalovDecember 10, 2014 19:48:50 UTC 2014 年 12 月 11 日 (木) 4 時 48 分 50 秒 (日本時間)
4511e64587585CypJuly 30, 2015 00:25:57 UTC 2015 年 7 月 30 日 (木) 9 時 25 分 57 秒 (日本時間)
4002Thomas KozlowskiDecember 13, 2024 21:19:28 UTC 2024 年 12 月 14 日 (土) 6 時 19 分 28 秒 (日本時間)

145×10250-19

c223

composite cofactor 合成数の残り
2476625652664582587535463910535139988631028510564884481788516187281404423435247345943213338368011906435537489668794313999391079034951266545747149081935064527180040369572158800790954169101948474303525775499570337022452138017<223>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間)
403e61280280CypDecember 7, 2014 10:39:04 UTC 2014 年 12 月 7 日 (日) 19 時 39 分 4 秒 (日本時間)
1000Dmitry DomanovDecember 17, 2014 13:29:38 UTC 2014 年 12 月 17 日 (水) 22 時 29 分 38 秒 (日本時間)
4511e64202600Dmitry DomanovApril 27, 2015 14:06:26 UTC 2015 年 4 月 27 日 (月) 23 時 6 分 26 秒 (日本時間)
3602Thomas KozlowskiDecember 13, 2024 22:40:57 UTC 2024 年 12 月 14 日 (土) 7 時 40 分 57 秒 (日本時間)

145×10251-19

c202

composite cofactor 合成数の残り
2161172808998345669699959255798769996196881142198344902805837489905678483756775939834580736789340384015464429613423173528843327813331481963368466517448799124445689787633635250639575541353454874036619727<202>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaDecember 12, 2015 04:00:00 UTC 2015 年 12 月 12 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6600Dmitry DomanovDecember 12, 2015 13:15:26 UTC 2015 年 12 月 12 日 (土) 22 時 15 分 26 秒 (日本時間)
4511e64402600Dmitry DomanovDecember 13, 2015 22:19:28 UTC 2015 年 12 月 14 日 (月) 7 時 19 分 28 秒 (日本時間)
3802Thomas KozlowskiDecember 13, 2024 23:56:31 UTC 2024 年 12 月 14 日 (土) 8 時 56 分 31 秒 (日本時間)

145×10252-19

c227

composite cofactor 合成数の残り
24098580776826907421227149939095295064310918314840773723250061106420170321257044025985371363740005724216999413972123593489016468808187311012412334149170592224164846004824469823700794004718224041347385662533109260067764676069139<227>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaDecember 12, 2015 04:00:00 UTC 2015 年 12 月 12 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6600Dmitry DomanovDecember 12, 2015 19:19:55 UTC 2015 年 12 月 13 日 (日) 4 時 19 分 55 秒 (日本時間)
4511e64401600Dmitry DomanovDecember 14, 2015 19:44:59 UTC 2015 年 12 月 15 日 (火) 4 時 44 分 59 秒 (日本時間)
3801Thomas KozlowskiDecember 14, 2024 01:22:18 UTC 2024 年 12 月 14 日 (土) 10 時 22 分 18 秒 (日本時間)

145×10253-19

c254

composite cofactor 合成数の残り
23015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873<254>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaDecember 12, 2015 04:00:00 UTC 2015 年 12 月 12 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6600Dmitry DomanovDecember 12, 2015 13:45:30 UTC 2015 年 12 月 12 日 (土) 22 時 45 分 30 秒 (日本時間)
4511e64503600Dmitry DomanovDecember 14, 2015 22:49:57 UTC 2015 年 12 月 15 日 (火) 7 時 49 分 57 秒 (日本時間)
100Dmitry DomanovDecember 15, 2015 11:20:52 UTC 2015 年 12 月 15 日 (火) 20 時 20 分 52 秒 (日本時間)
3803Thomas KozlowskiDecember 14, 2024 03:10:40 UTC 2024 年 12 月 14 日 (土) 12 時 10 分 40 秒 (日本時間)

145×10254-19

c237

composite cofactor 合成数の残り
752491419906491702277792183358491809985941192551602307878087376189907940389107055409257995315987684685442961361171855382979343011780389505959915928722465848682733433577648869768236424631746399413653463698564809816146301089641620364459199<237>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaDecember 12, 2015 04:00:00 UTC 2015 年 12 月 12 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6600Dmitry DomanovDecember 12, 2015 19:20:32 UTC 2015 年 12 月 13 日 (日) 4 時 20 分 32 秒 (日本時間)
4511e64402600Dmitry DomanovDecember 14, 2015 19:45:15 UTC 2015 年 12 月 15 日 (火) 4 時 45 分 15 秒 (日本時間)
3802Thomas KozlowskiDecember 14, 2024 04:47:48 UTC 2024 年 12 月 14 日 (土) 13 時 47 分 48 秒 (日本時間)

145×10255-19

c183

name 名前Thomas Kozlowski
date 日付December 14, 2024 05:14:27 UTC 2024 年 12 月 14 日 (土) 14 時 14 分 27 秒 (日本時間)
composite number 合成数
250320093721796965184543329475607729445368343909964059249387327643965192036262585051708755466585469115245272240263187941311845217727480118322922876830377098416897045161348627427848207<183>
prime factors 素因数
3672686700825847286767170520862043248440367<43>
68157214081318048409050962737144395768511585543075559130339987305528234876889750315838653886039359447224217874488418391744351266757985151521<140>
factorization results 素因数分解の結果
GMP-ECM 7.0.6 [configured with GMP 6.3.0, --enable-asm-redc] [ECM]
Input number is 250320093721796965184543329475607729445368343909964059249387327643965192036262585051708755466585469115245272240263187941311845217727480118322922876830377098416897045161348627427848207 (183 digits)
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:2881768825
Step 1 took 32142ms
Step 2 took 12016ms
Run 2 out of 0:
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:732636964
Step 1 took 27978ms
Step 2 took 11994ms
Run 3 out of 0:
...
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:585417117
Step 1 took 28101ms
Step 2 took 12013ms
Run 29 out of 0:
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:3797035003
Step 1 took 28207ms
Step 2 took 12933ms
** Factor found in step 2: 3672686700825847286767170520862043248440367
Found prime factor of 43 digits: 3672686700825847286767170520862043248440367
Prime cofactor 68157214081318048409050962737144395768511585543075559130339987305528234876889750315838653886039359447224217874488418391744351266757985151521 has 140 digits
execution environment 実行環境
2x Xeon E5-2698v4, 128GB DDR4, Ubuntu Server 24.04

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaDecember 12, 2015 04:00:00 UTC 2015 年 12 月 12 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6600Dmitry DomanovDecember 12, 2015 13:15:48 UTC 2015 年 12 月 12 日 (土) 22 時 15 分 48 秒 (日本時間)
4511e6600 / 4306Dmitry DomanovDecember 13, 2015 22:19:41 UTC 2015 年 12 月 14 日 (月) 7 時 19 分 41 秒 (日本時間)

145×10256-19

c251

name 名前Dmitry Domanov
date 日付December 12, 2015 22:20:42 UTC 2015 年 12 月 13 日 (日) 7 時 20 分 42 秒 (日本時間)
composite number 合成数
98253400126672349101242268558525721960902058368076074422952698983632948606898920086715062903520785235752935117045887522624539403306423421062777891955004821531507595428276068202496056481204226197215986519362458758135296829281464753557772558828206911361<251>
prime factors 素因数
64644174296748425459458037260781457419<38>
composite cofactor 合成数の残り
1519911131908671520329757258260332242853146340490954668784402111679186426929085699990516043861764597338034446875508737591253271898120044076251298827694709135533770145027681447013069101554936855974204526741195651619<214>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2656187157
Step 1 took 30004ms
Step 2 took 9224ms
********** Factor found in step 2: 64644174296748425459458037260781457419
Found probable prime factor of 38 digits: 64644174296748425459458037260781457419

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaDecember 12, 2015 04:00:00 UTC 2015 年 12 月 12 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6600Dmitry DomanovDecember 12, 2015 13:45:51 UTC 2015 年 12 月 12 日 (土) 22 時 45 分 51 秒 (日本時間)
4511e64400600Dmitry DomanovDecember 13, 2015 22:19:56 UTC 2015 年 12 月 14 日 (月) 7 時 19 分 56 秒 (日本時間)
3800Thomas KozlowskiDecember 14, 2024 06:33:07 UTC 2024 年 12 月 14 日 (土) 15 時 33 分 7 秒 (日本時間)

145×10257-19

c208

composite cofactor 合成数の残り
9081637495120094393854412502842423125006853613150208917816749053222578261373275952823405901356894596071356581900558245610557003974882813868026655171801050878040569827133230040791326807475760843187445629405417<208>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaDecember 12, 2015 04:00:00 UTC 2015 年 12 月 12 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6600Dmitry DomanovDecember 12, 2015 13:16:01 UTC 2015 年 12 月 12 日 (土) 22 時 16 分 1 秒 (日本時間)
4511e64400600Dmitry DomanovDecember 13, 2015 22:20:08 UTC 2015 年 12 月 14 日 (月) 7 時 20 分 8 秒 (日本時間)
3800Thomas KozlowskiDecember 14, 2024 07:48:44 UTC 2024 年 12 月 14 日 (土) 16 時 48 分 44 秒 (日本時間)

145×10259-19

c183

composite cofactor 合成数の残り
183904354381725518828817367095582738489272290741871855267336471029126303749653034850717929647045944861199719329257385529209565426916219262701408080040430457423144391926806241126458377<183>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaDecember 12, 2015 04:00:00 UTC 2015 年 12 月 12 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6600Dmitry DomanovDecember 12, 2015 13:16:17 UTC 2015 年 12 月 12 日 (土) 22 時 16 分 17 秒 (日本時間)
4511e64401600Dmitry DomanovDecember 13, 2015 22:25:51 UTC 2015 年 12 月 14 日 (月) 7 時 25 分 51 秒 (日本時間)
3801Thomas KozlowskiDecember 14, 2024 08:55:12 UTC 2024 年 12 月 14 日 (土) 17 時 55 分 12 秒 (日本時間)

145×10260-19

c229

composite cofactor 合成数の残り
4310309232536360842216353845226538696860729023539223175273244631000037402632743688137293880405351315370947039515718811736443598203356614876918530792852813841328875118943515988703926937316942000809880466932166050650982698309659957<229>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaDecember 12, 2015 04:00:00 UTC 2015 年 12 月 12 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6600Dmitry DomanovDecember 12, 2015 19:20:50 UTC 2015 年 12 月 13 日 (日) 4 時 20 分 50 秒 (日本時間)
4511e64400600Dmitry DomanovDecember 14, 2015 19:45:37 UTC 2015 年 12 月 15 日 (火) 4 時 45 分 37 秒 (日本時間)
3800Thomas KozlowskiDecember 14, 2024 10:21:33 UTC 2024 年 12 月 14 日 (土) 19 時 21 分 33 秒 (日本時間)

145×10262-19

c252

composite cofactor 合成数の残り
448859542982440191594975381760369818806576788208615290549338639678260287333547131085223851238241829490422135219320655081864221002316863397470493159384980642060358036101393369435079177618276262492904298983987193675766239409770111568758974453820566364429<252>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaDecember 12, 2015 04:00:00 UTC 2015 年 12 月 12 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6600Dmitry DomanovDecember 12, 2015 13:46:12 UTC 2015 年 12 月 12 日 (土) 22 時 46 分 12 秒 (日本時間)
4511e64400600Dmitry DomanovDecember 14, 2015 19:36:21 UTC 2015 年 12 月 15 日 (火) 4 時 36 分 21 秒 (日本時間)
3800Thomas KozlowskiDecember 14, 2024 12:11:04 UTC 2024 年 12 月 14 日 (土) 21 時 11 分 4 秒 (日本時間)

145×10263-19

c259

name 名前Dmitry Domanov
date 日付December 12, 2015 19:18:25 UTC 2015 年 12 月 13 日 (日) 4 時 18 分 25 秒 (日本時間)
composite number 合成数
3288069093896595442554825150689938939423109411292771259464253360009778037195091116929859590379155183935718929504478917014351627923008388204403608893932106588768908381469531051050560751838540841106215289611991973483196719731566574441997667511813805490984681453<259>
prime factors 素因数
350665676255081101424953652482642777<36>
composite cofactor 合成数の残り
9376649374445160673341039806509738244792453892017388788364609455715702039765627203198003815071196733661988436164221589585014315076524596066649768057018050411514072482055906924850674947475040533208717351976013096116645175989<223>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3470222441
Step 1 took 35788ms
Step 2 took 10386ms
********** Factor found in step 2: 350665676255081101424953652482642777
Found probable prime factor of 36 digits: 350665676255081101424953652482642777

c223

name 名前Dmitry Domanov
date 日付December 15, 2015 06:03:43 UTC 2015 年 12 月 15 日 (火) 15 時 3 分 43 秒 (日本時間)
composite number 合成数
9376649374445160673341039806509738244792453892017388788364609455715702039765627203198003815071196733661988436164221589585014315076524596066649768057018050411514072482055906924850674947475040533208717351976013096116645175989<223>
prime factors 素因数
83832137455331231434814274743393104231<38>
111850295830061301391982353701114989318134852020630533017186796398537734710086331995811288003761964982594072329678174747025363584956932307397450900789065108437378138192374968937130847619<186>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=3918185833
Step 1 took 143113ms
Step 2 took 42756ms
********** Factor found in step 2: 83832137455331231434814274743393104231
Found probable prime factor of 38 digits: 83832137455331231434814274743393104231

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaDecember 12, 2015 04:00:00 UTC 2015 年 12 月 12 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6600Dmitry DomanovDecember 12, 2015 14:06:25 UTC 2015 年 12 月 12 日 (土) 23 時 6 分 25 秒 (日本時間)
4511e6600 / 4306Dmitry DomanovDecember 14, 2015 19:45:56 UTC 2015 年 12 月 15 日 (火) 4 時 45 分 56 秒 (日本時間)

145×10264-19

c261

composite cofactor 合成数の残り
162569358254655369778019950063177816121722966117182235765931516816959235453125648175243041190590709777818139825344450835101975834345187442470067617641354057002422844021988346579933111117838119038889953998477453872346055226492751088373824315218622151812872578137<261>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaDecember 12, 2015 04:00:00 UTC 2015 年 12 月 12 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6600Dmitry DomanovDecember 12, 2015 14:06:37 UTC 2015 年 12 月 12 日 (土) 23 時 6 分 37 秒 (日本時間)
4511e64402600Dmitry DomanovDecember 14, 2015 19:36:07 UTC 2015 年 12 月 15 日 (火) 4 時 36 分 7 秒 (日本時間)
1000Dmitry DomanovDecember 15, 2015 11:50:39 UTC 2015 年 12 月 15 日 (火) 20 時 50 分 39 秒 (日本時間)
2802Thomas KozlowskiDecember 14, 2024 13:31:59 UTC 2024 年 12 月 14 日 (土) 22 時 31 分 59 秒 (日本時間)

145×10265-19

c243

composite cofactor 合成数の残り
284027197413042275722055985185751007976188035316021489958193780687131774138959718733875465817875185774709629087202632689048130305230059192354312532525921695655142788097726006991845035006646781686560816626488575529595196969849396774599714506919<243>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaDecember 12, 2015 04:00:00 UTC 2015 年 12 月 12 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6600Dmitry DomanovDecember 12, 2015 19:21:06 UTC 2015 年 12 月 13 日 (日) 4 時 21 分 6 秒 (日本時間)
4511e64400600Dmitry DomanovDecember 14, 2015 19:46:14 UTC 2015 年 12 月 15 日 (火) 4 時 46 分 14 秒 (日本時間)
3800Thomas KozlowskiDecember 14, 2024 15:09:04 UTC 2024 年 12 月 15 日 (日) 0 時 9 分 4 秒 (日本時間)

145×10266-19

c238

name 名前Dmitry Domanov
date 日付December 15, 2015 06:05:05 UTC 2015 年 12 月 15 日 (火) 15 時 5 分 5 秒 (日本時間)
composite number 合成数
6938914063656315035379220602005044379405404739521956843847645153990340093387395879074878565614339039259397328878321417290567858428085688441347712520552346622620438518111296077376857579883669962251085220396896738466282933645504711610240297<238>
prime factors 素因数
5381901124844703112611276219293020213<37>
324224650970134483551926853262257380704864177<45>
3976580355795938082832615910186283309801309560973214381976461710163972051340313521913110331963768464653696967949662356267109711369826013362366900375384889397<157>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=3857556890
Step 1 took 114985ms
Step 2 took 32511ms
********** Factor found in step 2: 324224650970134483551926853262257380704864177
Found probable prime factor of 45 digits: 324224650970134483551926853262257380704864177

Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1597092842
Step 1 took 91573ms
Step 2 took 29042ms
********** Factor found in step 2: 5381901124844703112611276219293020213
Found probable prime factor of 37 digits: 5381901124844703112611276219293020213

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaDecember 12, 2015 04:00:00 UTC 2015 年 12 月 12 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6600Dmitry DomanovDecember 12, 2015 19:22:04 UTC 2015 年 12 月 13 日 (日) 4 時 22 分 4 秒 (日本時間)
4511e6600 / 4306Dmitry DomanovDecember 14, 2015 19:46:29 UTC 2015 年 12 月 15 日 (火) 4 時 46 分 29 秒 (日本時間)

145×10267-19

c267

name 名前Dmitry Domanov
date 日付December 15, 2015 12:12:15 UTC 2015 年 12 月 15 日 (火) 21 時 12 分 15 秒 (日本時間)
composite number 合成数
847953216374269005847953216374269005847953216374269005847953216374269005847953216374269005847953216374269005847953216374269005847953216374269005847953216374269005847953216374269005847953216374269005847953216374269005847953216374269005847953216374269005847953216374269<267>
prime factors 素因数
51552288712924610035978768114598822256701089<44>
composite cofactor 合成数の残り
16448410682524745250829058048352047230350893226623564184652847017855914199022184428524036216308637386849787702755844354209811006555240044662648934179711938721907179784363833518595281243767620539254168242019957725758101382621<224>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1938570622
Step 1 took 161346ms
Step 2 took 45712ms
********** Factor found in step 2: 51552288712924610035978768114598822256701089
Found probable prime factor of 44 digits: 51552288712924610035978768114598822256701089

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaDecember 12, 2015 04:00:00 UTC 2015 年 12 月 12 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6600Dmitry DomanovDecember 12, 2015 14:06:51 UTC 2015 年 12 月 12 日 (土) 23 時 6 分 51 秒 (日本時間)
4511e644011800Dmitry DomanovDecember 15, 2015 07:15:29 UTC 2015 年 12 月 15 日 (火) 16 時 15 分 29 秒 (日本時間)
2601Thomas KozlowskiDecember 14, 2024 16:07:59 UTC 2024 年 12 月 15 日 (日) 1 時 7 分 59 秒 (日本時間)

145×10269-19

c218

composite cofactor 合成数の残り
40820100136595676368779404771534647938181726776224161831323888136968576336720529009910122479962538310033099868098195034176613055909089012146852256803333589625691568819752952227550079339239269108942454896860329392814869<218>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaDecember 12, 2015 04:00:00 UTC 2015 年 12 月 12 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6600Dmitry DomanovDecember 12, 2015 13:16:31 UTC 2015 年 12 月 12 日 (土) 22 時 16 分 31 秒 (日本時間)
4511e64400600Dmitry DomanovDecember 13, 2015 22:26:34 UTC 2015 年 12 月 14 日 (月) 7 時 26 分 34 秒 (日本時間)
3800Thomas KozlowskiDecember 14, 2024 17:33:14 UTC 2024 年 12 月 15 日 (日) 2 時 33 分 14 秒 (日本時間)

145×10271-19

c269

composite cofactor 合成数の残り
46309603653668039985947430615438663728402158985659991696209000031937657692184855162722365941681837054070454472868959790488965539267350132541279422567148925297818657979623774392386062406183130529206987959503050046309603653668039985947430615438663728402158985659991696209<269>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaDecember 12, 2015 04:00:00 UTC 2015 年 12 月 12 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6600Dmitry DomanovDecember 12, 2015 14:07:06 UTC 2015 年 12 月 12 日 (土) 23 時 7 分 6 秒 (日本時間)
4511e644001800Dmitry DomanovDecember 15, 2015 07:12:15 UTC 2015 年 12 月 15 日 (火) 16 時 12 分 15 秒 (日本時間)
2600Thomas KozlowskiDecember 14, 2024 18:48:19 UTC 2024 年 12 月 15 日 (日) 3 時 48 分 19 秒 (日本時間)

145×10272-19

c273

composite cofactor 合成数の残り
179012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679<273>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaDecember 12, 2015 04:00:00 UTC 2015 年 12 月 12 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6600Dmitry DomanovDecember 12, 2015 14:07:17 UTC 2015 年 12 月 12 日 (土) 23 時 7 分 17 秒 (日本時間)
4511e644001800Dmitry DomanovDecember 15, 2015 06:33:39 UTC 2015 年 12 月 15 日 (火) 15 時 33 分 39 秒 (日本時間)
2600Thomas KozlowskiDecember 14, 2024 20:11:30 UTC 2024 年 12 月 15 日 (日) 5 時 11 分 30 秒 (日本時間)

145×10274-19

c235

name 名前KTakahashi
date 日付December 12, 2015 21:03:46 UTC 2015 年 12 月 13 日 (日) 6 時 3 分 46 秒 (日本時間)
composite number 合成数
1647105647412900923077739421224391458242059319915401805562843448054495725123932716922607036090368608213463337129465091482851110900844998156203636210434115975969560868149693571549282945378034136008888247540388242388388122402086211231377<235>
prime factors 素因数
67056208950185146999859851501466933<35>
24563059457126574500628301374284869579631892496818006986169359015240893279076498377326936130777490684580932548765328319657758265520788879551873990605109374242393181121842829793911310013434913578761069<200>
factorization results 素因数分解の結果
Input number is 1647105647412900923077739421224391458242059319915401805562843448054495725123932716922607036090368608213463337129465091482851110900844998156203636210434115975969560868149693571549282945378034136008888247540388242388388122402086211231377 (215 digits)
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2031962215
Step 1 took 8846ms
Step 2 took 4368ms
********** Factor found in step 2: 67056208950185146999859851501466933
Found probable prime factor of 35 digits: 67056208950185146999859851501466933
Probable prime cofactor
software ソフトウェア
GMP-ECM 6.4.4

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaDecember 12, 2015 04:00:00 UTC 2015 年 12 月 12 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6600 / 2104Dmitry DomanovDecember 12, 2015 19:22:38 UTC 2015 年 12 月 13 日 (日) 4 時 22 分 38 秒 (日本時間)

145×10275-19

c255

composite cofactor 合成数の残り
202068173900997041880899404686890393578500994465476761737034516143483557940252517046161450368423542765001736469960756664603589432708259969074734674251714585578171129208051899683430750085597913527089457788021014925207781324161201082258024737930310718495607<255>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaDecember 12, 2015 04:00:00 UTC 2015 年 12 月 12 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6600Dmitry DomanovDecember 12, 2015 14:07:30 UTC 2015 年 12 月 12 日 (土) 23 時 7 分 30 秒 (日本時間)
4511e64402600Dmitry DomanovDecember 14, 2015 19:35:45 UTC 2015 年 12 月 15 日 (火) 4 時 35 分 45 秒 (日本時間)
3802Thomas KozlowskiDecember 14, 2024 22:00:08 UTC 2024 年 12 月 15 日 (日) 7 時 0 分 8 秒 (日本時間)

145×10276-19

c216

composite cofactor 合成数の残り
463014184343608663910527768153453612963376345395605369730571130811253658241281932048214939004239925918841647973652045302970531483012024638512554054518749133602908858068631483198643679440073518832391248374891397635747<216>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaDecember 12, 2015 04:00:00 UTC 2015 年 12 月 12 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6600Dmitry DomanovDecember 12, 2015 13:16:47 UTC 2015 年 12 月 12 日 (土) 22 時 16 分 47 秒 (日本時間)
4511e64400600Dmitry DomanovDecember 13, 2015 22:26:52 UTC 2015 年 12 月 14 日 (月) 7 時 26 分 52 秒 (日本時間)
3800Thomas KozlowskiDecember 14, 2024 23:25:43 UTC 2024 年 12 月 15 日 (日) 8 時 25 分 43 秒 (日本時間)

145×10277-19

c253

name 名前Dmitry Domanov
date 日付December 12, 2015 19:17:56 UTC 2015 年 12 月 13 日 (日) 4 時 17 分 56 秒 (日本時間)
composite number 合成数
1114559248125513919890523712813476145234144657580878110663428746089008153430775093603467777470587226692052358524442895782587947540543242003414640899805189827673825896445269133084437964050385569146669668891010340721626745745902868141208634922627126811883<253>
prime factors 素因数
13022818010966252022705571614308279<35>
composite cofactor 合成数の残り
85585105096835883601297221362125742550415797624463060781228594044995621146357209039412772038209030206946438668971883752012739816950435958642900850043473765015075130716188157946093535648414787497555752857435074241133677<218>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2475788761
Step 1 took 34316ms
Step 2 took 9122ms
********** Factor found in step 2: 13022818010966252022705571614308279
Found probable prime factor of 35 digits: 13022818010966252022705571614308279

c218

name 名前Thomas Kozlowski
date 日付December 15, 2024 02:14:31 UTC 2024 年 12 月 15 日 (日) 11 時 14 分 31 秒 (日本時間)
composite number 合成数
85585105096835883601297221362125742550415797624463060781228594044995621146357209039412772038209030206946438668971883752012739816950435958642900850043473765015075130716188157946093535648414787497555752857435074241133677<218>
prime factors 素因数
111778117887448462098501914855608006417957<42>
765669584658896948676997389449958805682214595834637659357771208992327939128936440332973923033162776171206535540247954323682706797490309948567148959666218081849608776266763361961<177>
factorization results 素因数分解の結果
GMP-ECM 7.0.6 [configured with GMP 6.3.0, --enable-asm-redc] [ECM]
Input number is 85585105096835883601297221362125742550415797624463060781228594044995621146357209039412772038209030206946438668971883752012739816950435958642900850043473765015075130716188157946093535648414787497555752857435074241133677 (218 digits)
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:3897467718
Step 1 took 38781ms
Step 2 took 14453ms
Run 2 out of 0:
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:1837529893
Step 1 took 37491ms
Step 2 took 14409ms
Run 3 out of 0:
...
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:2261128693
Step 1 took 38409ms
Step 2 took 14379ms
Run 7 out of 0:
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:2761234636
Step 1 took 37735ms
Step 2 took 14389ms
** Factor found in step 2: 111778117887448462098501914855608006417957
Found prime factor of 42 digits: 111778117887448462098501914855608006417957
Prime cofactor 765669584658896948676997389449958805682214595834637659357771208992327939128936440332973923033162776171206535540247954323682706797490309948567148959666218081849608776266763361961 has 177 digits
execution environment 実行環境
2x Xeon E5-2698v4, 128GB DDR4, Ubuntu Server 24.04

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaDecember 12, 2015 04:00:00 UTC 2015 年 12 月 12 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6600Dmitry DomanovDecember 12, 2015 14:07:41 UTC 2015 年 12 月 12 日 (土) 23 時 7 分 41 秒 (日本時間)
4511e6600 / 4306Dmitry DomanovDecember 13, 2015 22:27:06 UTC 2015 年 12 月 14 日 (月) 7 時 27 分 6 秒 (日本時間)

145×10278-19

c231

composite cofactor 合成数の残り
128000238265867521826357828776547284862324605864288993770457043052385838896542114323923623664272323030833027303492808839425075990701878955546718505945598137207209269525817966893693360299243321362785033644283055824731445049388080267<231>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaDecember 12, 2015 04:00:00 UTC 2015 年 12 月 12 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6600Dmitry DomanovDecember 12, 2015 19:22:52 UTC 2015 年 12 月 13 日 (日) 4 時 22 分 52 秒 (日本時間)
4511e64400600Dmitry DomanovDecember 14, 2015 19:47:01 UTC 2015 年 12 月 15 日 (火) 4 時 47 分 1 秒 (日本時間)
3800Thomas KozlowskiDecember 15, 2024 00:58:26 UTC 2024 年 12 月 15 日 (日) 9 時 58 分 26 秒 (日本時間)

145×10279-19

c255

name 名前Thomas Kozlowski
date 日付December 15, 2024 02:15:08 UTC 2024 年 12 月 15 日 (日) 11 時 15 分 8 秒 (日本時間)
composite number 合成数
171955323272162308464306216832921082703328072634417558369427380155569641474273849657840952547479796601082975386599309001362283290507537771689475778483832517628694874585576850883294101793978140883266545029336947430142221959186324095366412093329568440386133<255>
prime factors 素因数
236580893498465862146342606034674593651<39>
726835209426062015749626620023187917102086765399655378910876038894650143388348274564052837842097007882496256976875193354754656739008026329816207591765369909147372553216949051299470270846748107797397368536521319548183<216>
factorization results 素因数分解の結果
GMP-ECM 7.0.6 [configured with GMP 6.3.0, --enable-asm-redc] [ECM]
Input number is 171955323272162308464306216832921082703328072634417558369427380155569641474273849657840952547479796601082975386599309001362283290507537771689475778483832517628694874585576850883294101793978140883266545029336947430142221959186324095366412093329568440386133 (255 digits)
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:3106192673
Step 1 took 51298ms
Step 2 took 17411ms
Run 2 out of 0:
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:512433114
Step 1 took 50638ms
Step 2 took 17540ms
Run 3 out of 0:
...
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:2959972863
Step 1 took 50079ms
Step 2 took 17391ms
Run 9 out of 0:
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:3196446460
Step 1 took 48877ms
Step 2 took 18183ms
** Factor found in step 2: 236580893498465862146342606034674593651
Found prime factor of 39 digits: 236580893498465862146342606034674593651
Prime cofactor 726835209426062015749626620023187917102086765399655378910876038894650143388348274564052837842097007882496256976875193354754656739008026329816207591765369909147372553216949051299470270846748107797397368536521319548183 has 216 digits
execution environment 実行環境
2x Xeon E5-2698v4, 128GB DDR4, Ubuntu Server 24.04

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaDecember 12, 2015 04:00:00 UTC 2015 年 12 月 12 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6600Dmitry DomanovDecember 12, 2015 14:07:53 UTC 2015 年 12 月 12 日 (土) 23 時 7 分 53 秒 (日本時間)
4511e6600 / 4306Dmitry DomanovDecember 14, 2015 19:35:25 UTC 2015 年 12 月 15 日 (火) 4 時 35 分 25 秒 (日本時間)

145×10280-19

c246

composite cofactor 合成数の残り
820535095911366809125329718573314311561138859013529548365418026480612724283027270196304339083135179052358948109481350608039585329850505355991682749513883696566479615801019039626582388483962166187380758413133763227644979870227212886257606681772507<246>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaDecember 12, 2015 04:00:00 UTC 2015 年 12 月 12 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6600Dmitry DomanovDecember 12, 2015 19:23:07 UTC 2015 年 12 月 13 日 (日) 4 時 23 分 7 秒 (日本時間)
4511e64403600Dmitry DomanovDecember 14, 2015 19:47:15 UTC 2015 年 12 月 15 日 (火) 4 時 47 分 15 秒 (日本時間)
3803Thomas KozlowskiDecember 15, 2024 02:46:28 UTC 2024 年 12 月 15 日 (日) 11 時 46 分 28 秒 (日本時間)

145×10281-19

c281

composite cofactor 合成数の残り
59670781893004115226337448559670781893004115226337448559670781893004115226337448559670781893004115226337448559670781893004115226337448559670781893004115226337448559670781893004115226337448559670781893004115226337448559670781893004115226337448559670781893004115226337448559670781893<281>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaDecember 12, 2015 04:00:00 UTC 2015 年 12 月 12 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6600Dmitry DomanovDecember 12, 2015 14:08:05 UTC 2015 年 12 月 12 日 (土) 23 時 8 分 5 秒 (日本時間)
4511e644001000Dmitry DomanovDecember 14, 2015 22:50:15 UTC 2015 年 12 月 15 日 (火) 7 時 50 分 15 秒 (日本時間)
600Dmitry DomanovDecember 15, 2015 11:52:57 UTC 2015 年 12 月 15 日 (火) 20 時 52 分 57 秒 (日本時間)
2800Thomas KozlowskiDecember 15, 2024 04:16:17 UTC 2024 年 12 月 15 日 (日) 13 時 16 分 17 秒 (日本時間)

145×10282-19

c259

name 名前Thomas Kozlowski
date 日付December 15, 2024 06:12:56 UTC 2024 年 12 月 15 日 (日) 15 時 12 分 56 秒 (日本時間)
composite number 合成数
1289391757955770005896831243330394606445937730738049405810219904845664211795513425759754373701455360875971749966422880137923712660800440104723401207544462692351957885828730221995683344062665204850631780945474857535632238611667080913331946965668420224903504107<259>
prime factors 素因数
1699974238402378039352427491057347851615587<43>
758477233847690475205745380647980024545312074808577655188726779810921962893408009379799223644487925918232914378852254957635014960482749870622244378356628590852722000842220407512566594185452813391842100983055183775961<216>
factorization results 素因数分解の結果
GMP-ECM 7.0.6 [configured with GMP 6.3.0, --enable-asm-redc] [ECM]
Input number is 1289391757955770005896831243330394606445937730738049405810219904845664211795513425759754373701455360875971749966422880137923712660800440104723401207544462692351957885828730221995683344062665204850631780945474857535632238611667080913331946965668420224903504107 (259 digits)
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:457083709
Step 1 took 49148ms
Step 2 took 17526ms
Run 2 out of 0:
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:2480923265
Step 1 took 48886ms
Step 2 took 18746ms
Run 3 out of 0:
...
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:67990003
Step 1 took 49248ms
Step 2 took 17429ms
Run 96 out of 0:
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:875530000
Step 1 took 48257ms
Step 2 took 17463ms
** Factor found in step 2: 1699974238402378039352427491057347851615587
Found prime factor of 43 digits: 1699974238402378039352427491057347851615587
Prime cofactor 758477233847690475205745380647980024545312074808577655188726779810921962893408009379799223644487925918232914378852254957635014960482749870622244378356628590852722000842220407512566594185452813391842100983055183775961 has 216 digits
execution environment 実行環境
2x Xeon E5-2698v4, 128GB DDR4, Ubuntu Server 24.04

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaDecember 12, 2015 04:00:00 UTC 2015 年 12 月 12 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6600Dmitry DomanovDecember 12, 2015 14:08:15 UTC 2015 年 12 月 12 日 (土) 23 時 8 分 15 秒 (日本時間)
4511e6600 / 4306Dmitry DomanovDecember 14, 2015 19:35:07 UTC 2015 年 12 月 15 日 (火) 4 時 35 分 7 秒 (日本時間)

145×10283-19

c276

composite cofactor 合成数の残り
209128555573035674043070280147518365820106644120404593597451359927567629605115051514528203230389558109569337661294654972942625133531881916630680077220191276023838288288530160177818705130308279171478474953696258787219716154695033057785130253190383142835846070402839492029178827<276>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaDecember 12, 2015 04:00:00 UTC 2015 年 12 月 12 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6600Dmitry DomanovDecember 12, 2015 14:08:29 UTC 2015 年 12 月 12 日 (土) 23 時 8 分 29 秒 (日本時間)
4511e64402600Dmitry DomanovDecember 14, 2015 17:23:47 UTC 2015 年 12 月 15 日 (火) 2 時 23 分 47 秒 (日本時間)
3802Thomas KozlowskiDecember 15, 2024 08:04:34 UTC 2024 年 12 月 15 日 (日) 17 時 4 分 34 秒 (日本時間)

145×10285-19

c244

composite cofactor 合成数の残り
2713713335203154828832522121039144365105188950779594495044567058707114172647219234259399798628147389731815465615102058446514699765335096869514037634965049754055888391311584249916619784948550013613551857905974187630320316893371765754215905816481<244>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaDecember 12, 2015 04:00:00 UTC 2015 年 12 月 12 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6600Dmitry DomanovDecember 12, 2015 19:23:29 UTC 2015 年 12 月 13 日 (日) 4 時 23 分 29 秒 (日本時間)
4511e64401600Dmitry DomanovDecember 14, 2015 22:33:02 UTC 2015 年 12 月 15 日 (火) 7 時 33 分 2 秒 (日本時間)
3801Thomas KozlowskiDecember 15, 2024 09:42:02 UTC 2024 年 12 月 15 日 (日) 18 時 42 分 2 秒 (日本時間)

145×10286-19

c260

composite cofactor 合成数の残り
20726285813328728724864507390865149668256773514946297382999154160585010781238891658984122339725263540216356115516759895866165298598443999375944277309289280253833891406609032684197771499242392182947387810318353750608877836208086094405793407322161199181633640067<260>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaDecember 12, 2015 04:00:00 UTC 2015 年 12 月 12 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6600Dmitry DomanovDecember 12, 2015 14:08:42 UTC 2015 年 12 月 12 日 (土) 23 時 8 分 42 秒 (日本時間)
4511e64400600Dmitry DomanovDecember 14, 2015 19:34:35 UTC 2015 年 12 月 15 日 (火) 4 時 34 分 35 秒 (日本時間)
3800Thomas KozlowskiDecember 15, 2024 11:31:03 UTC 2024 年 12 月 15 日 (日) 20 時 31 分 3 秒 (日本時間)

145×10287-19

c282

composite cofactor 合成数の残り
980286174604922699702716386511018856041189326454834260988281253433114296838360747881280448449150088506320378209279470055941889717264509401586670920432605021269167721488393513101592329537868083092301244780905701946084395608615403919481592220016240299645765140063626657266736341351601<282>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaDecember 12, 2015 04:00:00 UTC 2015 年 12 月 12 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6600Dmitry DomanovDecember 12, 2015 14:08:55 UTC 2015 年 12 月 12 日 (土) 23 時 8 分 55 秒 (日本時間)
4511e64404600Dmitry DomanovDecember 14, 2015 17:23:11 UTC 2015 年 12 月 15 日 (火) 2 時 23 分 11 秒 (日本時間)
3804Thomas KozlowskiDecember 15, 2024 13:32:10 UTC 2024 年 12 月 15 日 (日) 22 時 32 分 10 秒 (日本時間)

145×10288-19

c221

name 名前Dmitry Domanov
date 日付December 15, 2015 06:06:42 UTC 2015 年 12 月 15 日 (火) 15 時 6 分 42 秒 (日本時間)
composite number 合成数
18843141224101409515843988722104917290988876840973098371187542877266090481782390968826975704723205263406370801299414385065399153449162054065347993853704830045860039494975255806294160664668940136261055338372076711130849023<221>
prime factors 素因数
235606843018076840181049053990410453<36>
composite cofactor 合成数の残り
79977054073321958187816427023480919618025185880946760703667882710301014772797342071783981475666362395120801179999384883795483571555023317467509283502616717508451675938095797286429442691<185>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=2741273283
Step 1 took 94021ms
Step 2 took 30057ms
********** Factor found in step 2: 235606843018076840181049053990410453
Found probable prime factor of 36 digits: 235606843018076840181049053990410453

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaDecember 12, 2015 04:00:00 UTC 2015 年 12 月 12 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6600Dmitry DomanovDecember 12, 2015 19:23:43 UTC 2015 年 12 月 13 日 (日) 4 時 23 分 43 秒 (日本時間)
4511e61400600Dmitry DomanovDecember 14, 2015 22:34:13 UTC 2015 年 12 月 15 日 (火) 7 時 34 分 13 秒 (日本時間)
800Dmitry DomanovFebruary 10, 2016 13:32:30 UTC 2016 年 2 月 10 日 (水) 22 時 32 分 30 秒 (日本時間)
5043e62392 / 6922600Dmitry DomanovFebruary 11, 2016 14:25:15 UTC 2016 年 2 月 11 日 (木) 23 時 25 分 15 秒 (日本時間)
1792Dmitry DomanovApril 15, 2024 21:47:11 UTC 2024 年 4 月 16 日 (火) 6 時 47 分 11 秒 (日本時間)
5511e7120 / 16823Dmitry DomanovFebruary 27, 2016 21:12:10 UTC 2016 年 2 月 28 日 (日) 6 時 12 分 10 秒 (日本時間)

145×10290-19

c235

name 名前Dmitry Domanov
date 日付December 14, 2015 11:40:21 UTC 2015 年 12 月 14 日 (月) 20 時 40 分 21 秒 (日本時間)
composite number 合成数
5566256962596330523829321061330312038866938837451415482483278026958975554934797273055396268598795530970625197062961733452722866136126602099880140110399652302075889546919860051176188498232925235087406366555072123705601407219283746909843<235>
prime factors 素因数
547607792857965327246718729342135637021<39>
composite cofactor 合成数の残り
10164678142263156684857659660042288602152455403419452650450173366958752646716144677964759069830651445886980561827000691337187955265928242050889159142751047581320592521235835174913314712756877635183<197>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1903475085
Step 1 took 26267ms
Step 2 took 8564ms
********** Factor found in step 2: 547607792857965327246718729342135637021
Found probable prime factor of 39 digits: 547607792857965327246718729342135637021

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaDecember 12, 2015 04:00:00 UTC 2015 年 12 月 12 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6600Dmitry DomanovDecember 12, 2015 19:23:59 UTC 2015 年 12 月 13 日 (日) 4 時 23 分 59 秒 (日本時間)
4511e61800600Dmitry DomanovDecember 14, 2015 17:01:08 UTC 2015 年 12 月 15 日 (火) 2 時 1 分 8 秒 (日本時間)
1200Dmitry DomanovDecember 15, 2015 22:43:02 UTC 2015 年 12 月 16 日 (水) 7 時 43 分 2 秒 (日本時間)
5043e67100600Dmitry DomanovFebruary 10, 2016 13:31:44 UTC 2016 年 2 月 10 日 (水) 22 時 31 分 44 秒 (日本時間)
6500Erik BrangerAugust 14, 2017 07:34:35 UTC 2017 年 8 月 14 日 (月) 16 時 34 分 35 秒 (日本時間)
5511e760 / 15118Dmitry DomanovFebruary 12, 2016 08:46:39 UTC 2016 年 2 月 12 日 (金) 17 時 46 分 39 秒 (日本時間)

145×10291-19

c242

name 名前Dmitry Domanov
date 日付December 15, 2015 08:16:15 UTC 2015 年 12 月 15 日 (火) 17 時 16 分 15 秒 (日本時間)
composite number 合成数
30936525450603944307863414949735932386533768652250310161554001116262988335653591746467192630946076302063124118102465582553111801506565955649596704097478979711846512181369099599616663040661701622087792250112818748888054478535571232893115249669<242>
prime factors 素因数
10383276198663294175233169413756525576712037<44>
2979457047919673166207427666224020466821345002665903099956845444104223005269761258711245925687403857369734210359598212590013700378086597829320327118063149245520245840690922210438165020996087801083937<199>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=2820234063
Step 1 took 114523ms
Step 2 took 33386ms
********** Factor found in step 2: 10383276198663294175233169413756525576712037
Found probable prime factor of 44 digits: 10383276198663294175233169413756525576712037

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaDecember 12, 2015 04:00:00 UTC 2015 年 12 月 12 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6600Dmitry DomanovDecember 12, 2015 19:24:15 UTC 2015 年 12 月 13 日 (日) 4 時 24 分 15 秒 (日本時間)
4511e6600 / 4306Dmitry DomanovDecember 14, 2015 22:33:37 UTC 2015 年 12 月 15 日 (火) 7 時 33 分 37 秒 (日本時間)

145×10292-19

c273

composite cofactor 合成数の残り
312584651342977242828735752522453221014004473326637584213941272768033623082928275334628583158436729787938294910319156343364567364563718719651322519899292085027086680462957552347336764339962705037526837804879516304525293549864494876420908875435308646374459990742892786544777<273>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaDecember 12, 2015 04:00:00 UTC 2015 年 12 月 12 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6600Dmitry DomanovDecember 12, 2015 14:09:11 UTC 2015 年 12 月 12 日 (土) 23 時 9 分 11 秒 (日本時間)
4511e64406600Dmitry DomanovDecember 14, 2015 17:00:39 UTC 2015 年 12 月 15 日 (火) 2 時 0 分 39 秒 (日本時間)
3806Thomas KozlowskiDecember 15, 2024 15:33:21 UTC 2024 年 12 月 16 日 (月) 0 時 33 分 21 秒 (日本時間)

145×10293-19

c289

composite cofactor 合成数の残り
1377784657199100620183633039504126750107205899274819674118771308746243517641962417645297606712034739937444775777899592945400484467093323816167039191132083844182627351724002937626928411544467144634417193764317676853626343470692762478191806818247684062765787725573042018346200416737099968539<289>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaDecember 12, 2015 04:00:00 UTC 2015 年 12 月 12 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6600Dmitry DomanovDecember 12, 2015 14:09:26 UTC 2015 年 12 月 12 日 (土) 23 時 9 分 26 秒 (日本時間)
4511e64400600Dmitry DomanovDecember 13, 2015 22:53:09 UTC 2015 年 12 月 14 日 (月) 7 時 53 分 9 秒 (日本時間)
1200Dmitry DomanovDecember 15, 2015 20:58:17 UTC 2015 年 12 月 16 日 (水) 5 時 58 分 17 秒 (日本時間)
2600Thomas KozlowskiDecember 15, 2024 16:57:56 UTC 2024 年 12 月 16 日 (月) 1 時 57 分 56 秒 (日本時間)

145×10295-19

c283

composite cofactor 合成数の残り
4450407824644675889855229865341599304674866364773516164299487022646788343175086815395167444564249390546794051083340950795101123597813068461210718232872940101777416243681073929299365842341569192717389136460579022953794706272047240236555077690746759787024890453725437888035287056433077<283>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaDecember 12, 2015 04:00:00 UTC 2015 年 12 月 12 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6600Dmitry DomanovDecember 12, 2015 14:09:42 UTC 2015 年 12 月 12 日 (土) 23 時 9 分 42 秒 (日本時間)
4511e64402600Dmitry DomanovDecember 13, 2015 22:53:40 UTC 2015 年 12 月 14 日 (月) 7 時 53 分 40 秒 (日本時間)
3802Thomas KozlowskiDecember 15, 2024 18:59:07 UTC 2024 年 12 月 16 日 (月) 3 時 59 分 7 秒 (日本時間)

145×10297-19

c296

name 名前Dmitry Domanov
date 日付December 12, 2015 20:19:44 UTC 2015 年 12 月 13 日 (日) 5 時 19 分 44 秒 (日本時間)
composite number 合成数
18668726664091669885412643234195957255053431183211020986223767220290974636281704647869190163512295609630487961890047637440453199433500708124114844856443929445088193639757950302562121797347753315308355864555169306038367452040684949143813570233037208703489120638599201750997811252735934080082399897<296>
prime factors 素因数
47966407486118177520670149107234381<35>
389204187732728020703450481772729205580377357670366186072500293565765211744947201155808138293477474035326196497672860860050703320401239364700225224977961192890341989673399193657489684342549608256927252363831251315720538608469518608254408577903750769071145683837<261>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=209388594
Step 1 took 40245ms
Step 2 took 13413ms
********** Factor found in step 2: 47966407486118177520670149107234381
Found probable prime factor of 35 digits: 47966407486118177520670149107234381

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaDecember 12, 2015 04:00:00 UTC 2015 年 12 月 12 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6600 / 2104Dmitry DomanovDecember 12, 2015 14:09:53 UTC 2015 年 12 月 12 日 (土) 23 時 9 分 53 秒 (日本時間)

145×10299-19

c277

composite cofactor 合成数の残り
2451277641070288601047937010774318089235040183015925867395810491269557133295652753245466543035149748015278237924577949279374697013576538199660615377635961195266465538919070057744672154900337484015357474046219639484683791861724058259938985329571886958807335255478724529589098443<277>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Makoto KamadaDecember 12, 2015 04:00:00 UTC 2015 年 12 月 12 日 (土) 13 時 0 分 0 秒 (日本時間)
403e6600Dmitry DomanovDecember 12, 2015 14:10:07 UTC 2015 年 12 月 12 日 (土) 23 時 10 分 7 秒 (日本時間)
4511e64400600Dmitry DomanovDecember 13, 2015 22:53:57 UTC 2015 年 12 月 14 日 (月) 7 時 53 分 57 秒 (日本時間)
3800Thomas KozlowskiDecember 15, 2024 21:00:40 UTC 2024 年 12 月 16 日 (月) 6 時 0 分 40 秒 (日本時間)