name 名前 | Jo Yeong Uk |
---|---|
date 日付 | April 2, 2008 15:03:16 UTC 2008 年 4 月 3 日 (木) 0 時 3 分 16 秒 (日本時間) |
composite number 合成数 | 7653111766905052625714127478056069869442270615205235958642237021066340455316087033400214209<91> |
prime factors 素因数 | 6123112702612974422656257278677<31> 1249872758938303891586631981770280688173300314576830254317117<61> |
factorization results 素因数分解の結果 | Number: 15559_104 N=7653111766905052625714127478056069869442270615205235958642237021066340455316087033400214209 ( 91 digits) SNFS difficulty: 105 digits. Divisors found: r1=6123112702612974422656257278677 (pp31) r2=1249872758938303891586631981770280688173300314576830254317117 (pp61) Version: GGNFS-0.77.1-20050930-nocona Total time: 0.41 hours. Scaled time: 0.87 units (timescale=2.135). Factorization parameters were as follows: n: 7653111766905052625714127478056069869442270615205235958642237021066340455316087033400214209 m: 1000000000000000000000 c5: 7 c0: 155 skew: 1.86 type: snfs Factor base limits: 360000/360000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [180000, 260001) Primes: RFBsize:30757, AFBsize:30265, largePrimes:962732 encountered Relations: rels:875648, finalFF:78657 Max relations in full relation-set: 28 Initial matrix: 61087 x 78657 with sparse part having weight 3216591. Pruned matrix : 52909 x 53278 with weight 1608056. Total sieving time: 0.39 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,105,5,0,0,0,0,0,0,0,0,360000,360000,25,25,44,44,2.2,2.2,20000 total time: 0.41 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167492k/8912896k available (2127k kernel code, 0k reserved, 1314k data, 212k init) Calibrating delay using timer specific routine.. 4815.33 BogoMIPS (lpj=2407668) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405125) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405125) Total of 4 processors activated (19246.08 BogoMIPS). |
execution environment 実行環境 | Core 2 Quad Q6600 |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | April 2, 2008 15:48:21 UTC 2008 年 4 月 3 日 (木) 0 時 48 分 21 秒 (日本時間) |
composite number 合成数 | 14795570666960928585241814337133228280279517122079409846942244753399146743476713502376399618540301153<101> |
prime factors 素因数 | 9501681575912170966662527503987525172261786003<46> 1557152862759509908452930886474382752596857671286405051<55> |
factorization results 素因数分解の結果 | Number: 15559_109 N=14795570666960928585241814337133228280279517122079409846942244753399146743476713502376399618540301153 ( 101 digits) SNFS difficulty: 110 digits. Divisors found: r1=9501681575912170966662527503987525172261786003 (pp46) r2=1557152862759509908452930886474382752596857671286405051 (pp55) Version: GGNFS-0.77.1-20050930-nocona Total time: 0.67 hours. Scaled time: 1.44 units (timescale=2.146). Factorization parameters were as follows: n: 14795570666960928585241814337133228280279517122079409846942244753399146743476713502376399618540301153 m: 10000000000000000000000 c5: 7 c0: 155 skew: 1.86 type: snfs Factor base limits: 360000/360000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [180000, 320001) Primes: RFBsize:30757, AFBsize:30265, largePrimes:1063994 encountered Relations: rels:991255, finalFF:96554 Max relations in full relation-set: 28 Initial matrix: 61087 x 96554 with sparse part having weight 4661689. Pruned matrix : 51141 x 51510 with weight 1737634. Total sieving time: 0.65 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,110,5,0,0,0,0,0,0,0,0,360000,360000,25,25,44,44,2.2,2.2,20000 total time: 0.67 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167492k/8912896k available (2127k kernel code, 0k reserved, 1314k data, 212k init) Calibrating delay using timer specific routine.. 4815.33 BogoMIPS (lpj=2407668) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405125) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405125) Total of 4 processors activated (19246.08 BogoMIPS). |
execution environment 実行環境 | Core 2 Quad Q6600 |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | April 2, 2008 16:28:38 UTC 2008 年 4 月 3 日 (木) 1 時 28 分 38 秒 (日本時間) |
composite number 合成数 | 45554290122453511114807516366761624584426921010585482934533181273112904583513232105843701083030470516271<104> |
prime factors 素因数 | 1303282840472408036468985773035703330564633891<46> 34953494903639795656060613382861445837052916896715844002181<59> |
factorization results 素因数分解の結果 | Number: 15559_110 N=45554290122453511114807516366761624584426921010585482934533181273112904583513232105843701083030470516271 ( 104 digits) SNFS difficulty: 111 digits. Divisors found: r1=1303282840472408036468985773035703330564633891 (pp46) r2=34953494903639795656060613382861445837052916896715844002181 (pp59) Version: GGNFS-0.77.1-20050930-nocona Total time: 0.60 hours. Scaled time: 1.27 units (timescale=2.130). Factorization parameters were as follows: n: 45554290122453511114807516366761624584426921010585482934533181273112904583513232105843701083030470516271 m: 10000000000000000000000 c5: 14 c0: 31 skew: 1.17 type: snfs Factor base limits: 360000/360000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [180000, 300001) Primes: RFBsize:30757, AFBsize:30605, largePrimes:979923 encountered Relations: rels:884896, finalFF:73064 Max relations in full relation-set: 28 Initial matrix: 61428 x 73064 with sparse part having weight 3324838. Pruned matrix : 56970 x 57341 with weight 2019227. Total sieving time: 0.57 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.01 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,111,5,0,0,0,0,0,0,0,0,360000,360000,25,25,44,44,2.2,2.2,20000 total time: 0.60 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167492k/8912896k available (2127k kernel code, 0k reserved, 1314k data, 212k init) Calibrating delay using timer specific routine.. 4815.33 BogoMIPS (lpj=2407668) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405125) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405125) Total of 4 processors activated (19246.08 BogoMIPS). |
execution environment 実行環境 | Core 2 Quad Q6600 |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | April 2, 2008 23:22:48 UTC 2008 年 4 月 3 日 (木) 8 時 22 分 48 秒 (日本時間) |
composite number 合成数 | 123523689370341250516149913321329516008019385631608532341465796759702347383365229527627429013246024337<102> |
prime factors 素因数 | 6092182038573200834431033938985160341<37> 20275771240622793997064761967146282229636836482089466349375858957<65> |
factorization results 素因数分解の結果 | Number: 15559_112 N=123523689370341250516149913321329516008019385631608532341465796759702347383365229527627429013246024337 ( 102 digits) SNFS difficulty: 113 digits. Divisors found: r1=6092182038573200834431033938985160341 (pp37) r2=20275771240622793997064761967146282229636836482089466349375858957 (pp65) Version: GGNFS-0.77.1-20050930-nocona Total time: 0.81 hours. Scaled time: 1.72 units (timescale=2.135). Factorization parameters were as follows: n: 123523689370341250516149913321329516008019385631608532341465796759702347383365229527627429013246024337 m: 20000000000000000000000 c5: 175 c0: 124 skew: 0.93 type: snfs Factor base limits: 450000/450000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [225000, 375001) Primes: RFBsize:37706, AFBsize:37740, largePrimes:1287788 encountered Relations: rels:1247576, finalFF:110750 Max relations in full relation-set: 28 Initial matrix: 75513 x 110750 with sparse part having weight 8140654. Pruned matrix : 67086 x 67527 with weight 3384017. Total sieving time: 0.77 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.01 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,113,5,0,0,0,0,0,0,0,0,450000,450000,25,25,44,44,2.3,2.3,25000 total time: 0.81 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167492k/8912896k available (2127k kernel code, 0k reserved, 1314k data, 212k init) Calibrating delay using timer specific routine.. 4815.33 BogoMIPS (lpj=2407668) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405125) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405125) Total of 4 processors activated (19246.08 BogoMIPS). |
execution environment 実行環境 | Core 2 Quad Q6600 |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | April 2, 2008 23:23:52 UTC 2008 年 4 月 3 日 (木) 8 時 23 分 52 秒 (日本時間) |
composite number 合成数 | 4743012819621551624636543784883103395485170841183928305043751488713980500978238376905549993126747<97> |
prime factors 素因数 | 467835898086147901719587583613501434971<39> 10138197686463485465002382573752151496026773591252758195457<59> |
factorization results 素因数分解の結果 | Number: 15559_115 N=4743012819621551624636543784883103395485170841183928305043751488713980500978238376905549993126747 ( 97 digits) SNFS difficulty: 116 digits. Divisors found: r1=467835898086147901719587583613501434971 (pp39) r2=10138197686463485465002382573752151496026773591252758195457 (pp59) Version: GGNFS-0.77.1-20050930-nocona Total time: 0.75 hours. Scaled time: 1.60 units (timescale=2.122). Factorization parameters were as follows: n: 4743012819621551624636543784883103395485170841183928305043751488713980500978238376905549993126747 m: 100000000000000000000000 c5: 14 c0: 31 skew: 1.17 type: snfs Factor base limits: 450000/450000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [225000, 375001) Primes: RFBsize:37706, AFBsize:37565, largePrimes:1292652 encountered Relations: rels:1256566, finalFF:114016 Max relations in full relation-set: 28 Initial matrix: 75337 x 114016 with sparse part having weight 8559587. Pruned matrix : 66510 x 66950 with weight 3395592. Total sieving time: 0.71 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.01 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,116,5,0,0,0,0,0,0,0,0,450000,450000,25,25,44,44,2.3,2.3,25000 total time: 0.75 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167492k/8912896k available (2127k kernel code, 0k reserved, 1314k data, 212k init) Calibrating delay using timer specific routine.. 4815.33 BogoMIPS (lpj=2407668) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405125) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405125) Total of 4 processors activated (19246.08 BogoMIPS). |
execution environment 実行環境 | Core 2 Quad Q6600 |
name 名前 | Sinkiti Sibata |
---|---|
date 日付 | April 3, 2008 02:25:14 UTC 2008 年 4 月 3 日 (木) 11 時 25 分 14 秒 (日本時間) |
composite number 合成数 | 16945389665412174607218409292531530192930180494329638763325905364366947215583860888478225208800730066514576193<110> |
prime factors 素因数 | 1421577012344853500890676274711460113354683750921<49> 11920134834947284852618265683350810943104485024229298831379833<62> |
factorization results 素因数分解の結果 | Number: 15559_120 N=16945389665412174607218409292531530192930180494329638763325905364366947215583860888478225208800730066514576193 ( 110 digits) SNFS difficulty: 121 digits. Divisors found: r1=1421577012344853500890676274711460113354683750921 (pp49) r2=11920134834947284852618265683350810943104485024229298831379833 (pp62) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 2.59 hours. Scaled time: 1.75 units (timescale=0.675). Factorization parameters were as follows: name: 15559_120 n: 16945389665412174607218409292531530192930180494329638763325905364366947215583860888478225208800730066514576193 m: 1000000000000000000000000 c5: 14 c0: 31 skew: 1.17 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 600001) Primes: RFBsize:49098, AFBsize:63629, largePrimes:2164814 encountered Relations: rels:2280226, finalFF:244401 Max relations in full relation-set: 28 Initial matrix: 112793 x 244401 with sparse part having weight 22393749. Pruned matrix : 86473 x 87100 with weight 5524265. Total sieving time: 2.35 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.12 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,121,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 2.59 hours. --------- CPU info (if available) ---------- |
execution environment 実行環境 | Pentium 4 2.4GHz, Windows XP and Cygwin) |
name 名前 | Robert Backstrom |
---|---|
date 日付 | April 2, 2008 19:04:04 UTC 2008 年 4 月 3 日 (木) 4 時 4 分 4 秒 (日本時間) |
composite number 合成数 | 330266572304788865298419438546827081858928992686954470393960839820712432177400330266572304788865298419438546827081858929<120> |
prime factors 素因数 | 10603836885495071034474476095145129<35> 31145949892586395406949575512425987474943569710446787657049654966993983919833639672201<86> |
factorization results 素因数分解の結果 | GMP-ECM 6.0.1 [powered by GMP 4.1.4] [ECM] Input number is 330266572304788865298419438546827081858928992686954470393960839820712432177400330266572304788865298419438546827081858929 (120 digits) Using B1=980000, B2=815727516, polynomial Dickson(3), sigma=4089034444 Step 1 took 11578ms Step 2 took 7000ms ********** Factor found in step 2: 10603836885495071034474476095145129 Found probable prime factor of 35 digits: 10603836885495071034474476095145129 Probable prime cofactor 31145949892586395406949575512425987474943569710446787657049654966993983919833639672201 has 86 digits |
name 名前 | Sinkiti Sibata |
---|---|
date 日付 | April 3, 2008 09:00:47 UTC 2008 年 4 月 3 日 (木) 18 時 0 分 47 秒 (日本時間) |
composite number 合成数 | 19172283068325806568537723586178607998494065432808843189221587559772708200225606297331105435664949712841064491<110> |
prime factors 素因数 | 4707523717355474776435082396044989377741827<43> 4072689638852448957226819815433219768108727767837548269928546344633<67> |
factorization results 素因数分解の結果 | Number: 15559_129 N=19172283068325806568537723586178607998494065432808843189221587559772708200225606297331105435664949712841064491 ( 110 digits) SNFS difficulty: 130 digits. Divisors found: r1=4707523717355474776435082396044989377741827 (pp43) r2=4072689638852448957226819815433219768108727767837548269928546344633 (pp67) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 6.23 hours. Scaled time: 4.21 units (timescale=0.675). Factorization parameters were as follows: name: 15559_129 n: 19172283068325806568537723586178607998494065432808843189221587559772708200225606297331105435664949712841064491 m: 100000000000000000000000000 c5: 7 c0: 155 skew: 1.86 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [400000, 1050001) Primes: RFBsize:63951, AFBsize:63449, largePrimes:1489289 encountered Relations: rels:1474945, finalFF:157286 Max relations in full relation-set: 28 Initial matrix: 127465 x 157286 with sparse part having weight 12062069. Pruned matrix : 118994 x 119695 with weight 7467431. Total sieving time: 5.86 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.24 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,130,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 6.23 hours. --------- CPU info (if available) ---------- |
execution environment 実行環境 | Pentium 4 2.4GHz, Windows XP and Cygwin) |
name 名前 | Sinkiti Sibata |
---|---|
date 日付 | April 4, 2008 21:44:25 UTC 2008 年 4 月 5 日 (土) 6 時 44 分 25 秒 (日本時間) |
composite number 合成数 | 2586650188811753255072196313522140231922638767244339815312972931926665126576983403300759137406015507<100> |
prime factors 素因数 | 223052339348662090783561338193275827047<39> 11596606412490730336161701177308159280832170437567286305560181<62> |
factorization results 素因数分解の結果 | Number: 15559_130 N=2586650188811753255072196313522140231922638767244339815312972931926665126576983403300759137406015507 ( 100 digits) SNFS difficulty: 131 digits. Divisors found: r1=223052339348662090783561338193275827047 (pp39) r2=11596606412490730336161701177308159280832170437567286305560181 (pp62) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 6.44 hours. Scaled time: 4.35 units (timescale=0.675). Factorization parameters were as follows: name: 15559_130 n: 2586650188811753255072196313522140231922638767244339815312972931926665126576983403300759137406015507 m: 100000000000000000000000000 c5: 14 c0: 31 skew: 1.17 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [400000, 1050001) Primes: RFBsize:63951, AFBsize:63629, largePrimes:1507105 encountered Relations: rels:1507107, finalFF:169181 Max relations in full relation-set: 28 Initial matrix: 127646 x 169181 with sparse part having weight 13212589. Pruned matrix : 116035 x 116737 with weight 7300210. Total sieving time: 6.08 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.23 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 6.44 hours. --------- CPU info (if available) ---------- |
execution environment 実行環境 | Pentium 4 2.4GHz, Windows XP and Cygwin) |
name 名前 | Sinkiti Sibata |
---|---|
date 日付 | April 5, 2008 08:44:32 UTC 2008 年 4 月 5 日 (土) 17 時 44 分 32 秒 (日本時間) |
composite number 合成数 | 360343976541436324001467268397547805706577207259650798154874784983464628358958156247401923595203099118773<105> |
prime factors 素因数 | 1306557661964407021017588295478647094717<40> 275796458917595587577783322712081943077119699195249979743129914969<66> |
factorization results 素因数分解の結果 | Number: 15559_134 N=360343976541436324001467268397547805706577207259650798154874784983464628358958156247401923595203099118773 ( 105 digits) SNFS difficulty: 135 digits. Divisors found: r1=1306557661964407021017588295478647094717 (pp40) r2=275796458917595587577783322712081943077119699195249979743129914969 (pp66) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 10.14 hours. Scaled time: 6.84 units (timescale=0.674). Factorization parameters were as follows: name: 15559_134 n: 360343976541436324001467268397547805706577207259650798154874784983464628358958156247401923595203099118773 m: 1000000000000000000000000000 c5: 7 c0: 155 skew: 1.86 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 1450001) Primes: RFBsize:78498, AFBsize:63449, largePrimes:1554550 encountered Relations: rels:1547172, finalFF:162708 Max relations in full relation-set: 28 Initial matrix: 142012 x 162708 with sparse part having weight 14524899. Pruned matrix : 135927 x 136701 with weight 10750022. Total sieving time: 9.55 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.43 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,135,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 10.14 hours. --------- CPU info (if available) ---------- |
execution environment 実行環境 | Pentium 4 2.4GHz, Windows XP and Cygwin) |
name 名前 | Sinkiti Sibata |
---|---|
date 日付 | April 4, 2008 07:22:30 UTC 2008 年 4 月 4 日 (金) 16 時 22 分 30 秒 (日本時間) |
composite number 合成数 | 24297418098835928184871286994621343003982194045684419344835498431243228852905498778636408028046235793839717<107> |
prime factors 素因数 | 18889071044965985559683161450105284079<38> 1286321494635454249284329017256606479419057950477955932294681889062123<70> |
factorization results 素因数分解の結果 | Number: 15559_138 N=24297418098835928184871286994621343003982194045684419344835498431243228852905498778636408028046235793839717 ( 107 digits) SNFS difficulty: 139 digits. Divisors found: r1=18889071044965985559683161450105284079 (pp38) r2=1286321494635454249284329017256606479419057950477955932294681889062123 (pp70) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 21.58 hours. Scaled time: 14.57 units (timescale=0.675). Factorization parameters were as follows: name: 15559_138 n: 24297418098835928184871286994621343003982194045684419344835498431243228852905498778636408028046235793839717 m: 2000000000000000000000000000 c5: 875 c0: 62 skew: 0.59 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 2800001) Primes: RFBsize:78498, AFBsize:63759, largePrimes:1746679 encountered Relations: rels:1808224, finalFF:167624 Max relations in full relation-set: 28 Initial matrix: 142323 x 167624 with sparse part having weight 20269469. Pruned matrix : 136875 x 137650 with weight 15512291. Total sieving time: 20.76 hours. Total relation processing time: 0.15 hours. Matrix solve time: 0.59 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,139,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 21.58 hours. --------- CPU info (if available) ---------- |
execution environment 実行環境 | Pentium 4 2.4GHz, Windows XP and Cygwin) |
name 名前 | Robert Backstrom |
---|---|
date 日付 | April 3, 2008 08:47:05 UTC 2008 年 4 月 3 日 (木) 17 時 47 分 5 秒 (日本時間) |
composite number 合成数 | 156429452288643464911081002531058371361509167836384377115150014761470851983993732172191342450556465613504105350691617341742398323867<132> |
prime factors 素因数 | 3145814278159836132977122915782215478379<40> 136993138600366227200200711944926574507283<42> 362983287496566443500422296301603020385805008326731<51> |
factorization results 素因数分解の結果 | Number: n N=156429452288643464911081002531058371361509167836384377115150014761470851983993732172191342450556465613504105350691617341742398323867 ( 132 digits) SNFS difficulty: 141 digits. Divisors found: r1=3145814278159836132977122915782215478379 (pp40) r2=136993138600366227200200711944926574507283 (pp42) r3=362983287496566443500422296301603020385805008326731 (pp51) Version: GGNFS-0.77.1-20051202-athlon Total time: 7.22 hours. Scaled time: 12.66 units (timescale=1.752). Factorization parameters were as follows: name: KA_1_5_139_9 n: 156429452288643464911081002531058371361509167836384377115150014761470851983993732172191342450556465613504105350691617341742398323867 type: snfs skew: 1.17 deg: 5 c5: 14 c0: 31 m: 10000000000000000000000000000 rlim: 2000000 alim: 2000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 50000 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 950001) Primes: RFBsize:148933, AFBsize:148581, largePrimes:5725582 encountered Relations: rels:5089339, finalFF:358359 Max relations in full relation-set: 28 Initial matrix: 297580 x 358359 with sparse part having weight 19209340. Pruned matrix : 245434 x 246985 with weight 10431835. Total sieving time: 6.09 hours. Total relation processing time: 0.15 hours. Matrix solve time: 0.87 hours. Total square root time: 0.12 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,2000000,2000000,28,28,48,48,2.3,2.3,100000 total time: 7.22 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+ |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | April 3, 2008 09:44:37 UTC 2008 年 4 月 3 日 (木) 18 時 44 分 37 秒 (日本時間) |
composite number 合成数 | 3347852800677986669372738417402636472582245561438340610458401501686074563594432546426620601309782766901973<106> |
prime factors 素因数 | 788446662848643115165841844345577532321<39> 4246137320921946481553619461943257958828954529607621070878133125813<67> |
factorization results 素因数分解の結果 | Number: 15559_146 N=3347852800677986669372738417402636472582245561438340610458401501686074563594432546426620601309782766901973 ( 106 digits) SNFS difficulty: 147 digits. Divisors found: r1=788446662848643115165841844345577532321 (pp39) r2=4246137320921946481553619461943257958828954529607621070878133125813 (pp67) Version: GGNFS-0.77.1-20050930-nocona Total time: 9.94 hours. Scaled time: 21.33 units (timescale=2.145). Factorization parameters were as follows: n: 3347852800677986669372738417402636472582245561438340610458401501686074563594432546426620601309782766901973 m: 100000000000000000000000000000 c5: 140 c0: 31 skew: 0.74 type: snfs Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved algebraic special-q in [900000, 1575001) Primes: RFBsize:135072, AFBsize:134614, largePrimes:3693349 encountered Relations: rels:3686817, finalFF:304236 Max relations in full relation-set: 28 Initial matrix: 269753 x 304236 with sparse part having weight 27282670. Pruned matrix : 256253 x 257665 with weight 20349781. Total sieving time: 9.58 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.27 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,147,5,0,0,0,0,0,0,0,0,1800000,1800000,26,26,48,48,2.3,2.3,75000 total time: 9.94 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167492k/8912896k available (2127k kernel code, 0k reserved, 1314k data, 212k init) Calibrating delay using timer specific routine.. 4815.33 BogoMIPS (lpj=2407668) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405125) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405125) Total of 4 processors activated (19246.08 BogoMIPS). |
execution environment 実行環境 | Core 2 Quad Q6600 |
name 名前 | Robert Backstrom |
---|---|
date 日付 | April 3, 2008 07:07:58 UTC 2008 年 4 月 3 日 (木) 16 時 7 分 58 秒 (日本時間) |
composite number 合成数 | 1991551121703915521973268759861123858251818753779420180747162813297499202475299406603325656412532341102863504788037127092669012462921<133> |
prime factors 素因数 | 48666565188027890092729966818877889<35> 40922368653085930485059904571405162735697559903875161667841200639610533122749207940850079133777289<98> |
factorization results 素因数分解の結果 | GMP-ECM 6.0 [powered by GMP 4.1.4] [ECM] Input number is 1991551121703915521973268759861123858251818753779420180747162813297499202475299406603325656412532341102863504788037127092669012462921 (133 digits) Using B1=1728000, B2=1830229701, polynomial Dickson(6), sigma=67868540 Step 1 took 15616ms Step 2 took 8401ms ********** Factor found in step 2: 48666565188027890092729966818877889 Found probable prime factor of 35 digits: 48666565188027890092729966818877889 Probable prime cofactor 40922368653085930485059904571405162735697559903875161667841200639610533122749207940850079133777289 has 98 digits |
name 名前 | JMB |
---|---|
date 日付 | April 3, 2008 04:47:52 UTC 2008 年 4 月 3 日 (木) 13 時 47 分 52 秒 (日本時間) |
composite number 合成数 | 535280139440636948401559310252950371356735826752504076122248519989185083201869449574101192378019855828053252177431<114> |
prime factors 素因数 | 2499113539947715325949124365216803<34> 214188003419738864023748273782105619197066640540736946746378416198577330759441277<81> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(12), sigma=3304108163 Step 1 took 30953ms Step 2 took 21579ms ********** Factor found in step 2: 2499113539947715325949124365216803 Found probable prime factor of 34 digits: 2499113539947715325949124365216803 Probable prime cofactor 214188003419738864023748273782105619197066640540736946746378416198577330759441277 has 81 digits |
software ソフトウェア | GMP-ECM 6.3 |
execution environment 実行環境 | WinXP 3.4ghz P4 |
name 名前 | Robert Backstrom |
---|---|
date 日付 | April 3, 2008 08:34:48 UTC 2008 年 4 月 3 日 (木) 17 時 34 分 48 秒 (日本時間) |
composite number 合成数 | 2167276186332709505732729637726798747457939097851641704942700564300028133875050345511818768550737450787997292268421854529694879689<130> |
prime factors 素因数 | 335061822392136720484534754789419<33> 6468287466652218202909758335139916011634361647250202124939424960816497412784711946727546397178331<97> |
factorization results 素因数分解の結果 | GMP-ECM 6.0 [powered by GMP 4.1.4] [ECM] Input number is 2167276186332709505732729637726798747457939097851641704942700564300028133875050345511818768550737450787997292268421854529694879689 (130 digits) Using B1=800000, B2=610894590, polynomial Dickson(3), sigma=770665858 Step 1 took 7247ms Step 2 took 3764ms ********** Factor found in step 2: 335061822392136720484534754789419 Found probable prime factor of 33 digits: 335061822392136720484534754789419 Probable prime cofactor 6468287466652218202909758335139916011634361647250202124939424960816497412784711946727546397178331 has 97 digits |
name 名前 | Sinkiti Sibata |
---|---|
date 日付 | April 7, 2008 20:27:24 UTC 2008 年 4 月 8 日 (火) 5 時 27 分 24 秒 (日本時間) |
composite number 合成数 | 17195646150667874950992453422444333642975476026069684108426569369939091078615552957010779914767445808166291<107> |
prime factors 素因数 | 111313093274540417476741014421320134743<39> 154479995522690870591367172547336505227910968599671963282858372345637<69> |
factorization results 素因数分解の結果 | Number: 15559_152 N=17195646150667874950992453422444333642975476026069684108426569369939091078615552957010779914767445808166291 ( 107 digits) SNFS difficulty: 153 digits. Divisors found: r1=111313093274540417476741014421320134743 (pp39) r2=154479995522690870591367172547336505227910968599671963282858372345637 (pp69) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 51.75 hours. Scaled time: 34.93 units (timescale=0.675). Factorization parameters were as follows: name: 15559_152 n: 17195646150667874950992453422444333642975476026069684108426569369939091078615552957010779914767445808166291 m: 1000000000000000000000000000000 c5: 1400 c0: 31 skew: 0.47 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 2600001) Primes: RFBsize:176302, AFBsize:175914, largePrimes:5759456 encountered Relations: rels:5717101, finalFF:466652 Max relations in full relation-set: 28 Initial matrix: 352283 x 466652 with sparse part having weight 48829191. Pruned matrix : 312843 x 314668 with weight 30625407. Total sieving time: 46.57 hours. Total relation processing time: 0.28 hours. Matrix solve time: 4.73 hours. Time per square root: 0.17 hours. Prototype def-par.txt line would be: snfs,153,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 51.75 hours. --------- CPU info (if available) ---------- |
execution environment 実行環境 | Pentium 4 2.4GHz, Windows XP and Cygwin) |
name 名前 | Robert Backstrom |
---|---|
date 日付 | April 7, 2008 00:52:10 UTC 2008 年 4 月 7 日 (月) 9 時 52 分 10 秒 (日本時間) |
composite number 合成数 | 1995283084362275608981993720845150085222935999336634693921193036336245407655677090547930521602073409192525797082004482958348510527<130> |
prime factors 素因数 | 12618987396929809067039217391491187497627561020701168808432897<62> 158117527310291680588589078011395917240084089263123655628504089737791<69> |
factorization results 素因数分解の結果 | Number: n N=1995283084362275608981993720845150085222935999336634693921193036336245407655677090547930521602073409192525797082004482958348510527 ( 130 digits) SNFS difficulty: 154 digits. Divisors found: r1=12618987396929809067039217391491187497627561020701168808432897 (pp62) r2=158117527310291680588589078011395917240084089263123655628504089737791 (pp69) Version: GGNFS-0.77.1-20051202-athlon Total time: 21.43 hours. Scaled time: 39.19 units (timescale=1.829). Factorization parameters were as follows: name: KA_1_5_152_9 n: 1995283084362275608981993720845150085222935999336634693921193036336245407655677090547930521602073409192525797082004482958348510527 skew: 0.59 deg: 5 c5: 875 c0: 62 m: 2000000000000000000000000000000 type: snfs rlim: 2500000 alim: 2500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1400001) Primes: RFBsize:183072, AFBsize:183212, largePrimes:7007383 encountered Relations: rels:6444936, finalFF:443762 Max relations in full relation-set: 48 Initial matrix: 366350 x 443762 with sparse part having weight 44001931. Pruned matrix : 316482 x 318377 with weight 26418976. Total sieving time: 19.91 hours. Total relation processing time: 0.16 hours. Matrix solve time: 0.94 hours. Total square root time: 0.41 hours, sqrts: 8. Prototype def-par.txt line would be: snfs,154,5,0,0,0,0,0,0,0,0,2500000,2500000,28,28,48,48,2.5,2.5,100000 total time: 21.43 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+ |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | April 3, 2008 03:04:03 UTC 2008 年 4 月 3 日 (木) 12 時 4 分 3 秒 (日本時間) |
composite number 合成数 | 6120076706711622875075575924966921720421073940043513255790267571504875260179454754917161769791927942133901997027368885152800965589<130> |
prime factors 素因数 | 7674360746381837411521751272723<31> 797470552787996185165803170580988931064736161642896696883978483018377247210575889135871920756199543<99> |
factorization results 素因数分解の結果 | GMP-ECM 6.1.3 [powered by GMP 4.2.2] [ECM] Input number is 6120076706711622875075575924966921720421073940043513255790267571504875260179454754917161769791927942133901997027368885152800965589 (130 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=284805434 Step 1 took 6746ms Step 2 took 3829ms ********** Factor found in step 2: 7674360746381837411521751272723 Found probable prime factor of 31 digits: 7674360746381837411521751272723 Probable prime cofactor 797470552787996185165803170580988931064736161642896696883978483018377247210575889135871920756199543 has 99 digits |
execution environment 実行環境 | Core 2 Quad Q6600 |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | April 5, 2008 16:08:05 UTC 2008 年 4 月 6 日 (日) 1 時 8 分 5 秒 (日本時間) |
composite number 合成数 | 325448861240618282863068539156450995311385946677891062779075151268243362097776381667860754237370696771018560283140022355213079<126> |
prime factors 素因数 | 181595105240033914022977640506121267719<39> 1792167585191447108689726343859434077154164335650452972726213569904570307167543559971441<88> |
factorization results 素因数分解の結果 | Number: 15559_156 N=325448861240618282863068539156450995311385946677891062779075151268243362097776381667860754237370696771018560283140022355213079 ( 126 digits) SNFS difficulty: 157 digits. Divisors found: r1=181595105240033914022977640506121267719 (pp39) r2=1792167585191447108689726343859434077154164335650452972726213569904570307167543559971441 (pp88) Version: GGNFS-0.77.1-20050930-nocona Total time: 24.96 hours. Scaled time: 53.59 units (timescale=2.147). Factorization parameters were as follows: n: 325448861240618282863068539156450995311385946677891062779075151268243362097776381667860754237370696771018560283140022355213079 m: 10000000000000000000000000000000 c5: 140 c0: 31 skew: 0.74 type: snfs Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 3100001) Primes: RFBsize:216816, AFBsize:216762, largePrimes:5719874 encountered Relations: rels:5700036, finalFF:548025 Max relations in full relation-set: 28 Initial matrix: 433645 x 548025 with sparse part having weight 48656988. Pruned matrix : 380612 x 382844 with weight 32093823. Total sieving time: 24.02 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.80 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,157,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 24.96 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4042900k/4718592k available (2127k kernel code, 0k reserved, 1314k data, 212k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407677) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405130) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405118) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Total of 4 processors activated (19246.09 BogoMIPS). |
execution environment 実行環境 | Core 2 Quad Q6600 |
name 名前 | Robert Backstrom |
---|---|
date 日付 | April 6, 2008 15:13:07 UTC 2008 年 4 月 7 日 (月) 0 時 13 分 7 秒 (日本時間) |
composite number 合成数 | 166433671635031744544481049109629997491990532133453025037392323621256408259802421916610388923754892468719810052105215109107568842740899850252019<144> |
prime factors 素因数 | 16264286654890748144075190501147967098201002951<47> 10233075398052231822492848466935430038785598384068263986570291327906585563875283488105494739268469<98> |
factorization results 素因数分解の結果 | Number: n N=166433671635031744544481049109629997491990532133453025037392323621256408259802421916610388923754892468719810052105215109107568842740899850252019 ( 144 digits) SNFS difficulty: 158 digits. Divisors found: Mon Apr 07 01:06:15 2008 prp47 factor: 16264286654890748144075190501147967098201002951 Mon Apr 07 01:06:15 2008 prp98 factor: 10233075398052231822492848466935430038785598384068263986570291327906585563875283488105494739268469 Mon Apr 07 01:06:15 2008 elapsed time 02:22:14 (Msieve 1.34, Dep=8) Version: GGNFS-0.77.1-20051202-athlon Total time: 47.92 hours. Scaled time: 84.11 units (timescale=1.755). Factorization parameters were as follows: name: KA_1_5_156_9 n: 166433671635031744544481049109629997491990532133453025037392323621256408259802421916610388923754892468719810052105215109107568842740899850252019 type: snfs skew: 0.47 deg: 5 c5: 1400 c0: 31 m: 10000000000000000000000000000000 rlim: 2500000 alim: 2500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 2400001) Primes: RFBsize:183072, AFBsize:182717, largePrimes:7075797 encountered Relations: rels:6427225, finalFF:371726 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 47.69 hours. Total relation processing time: 0.23 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,158,5,0,0,0,0,0,0,0,0,2500000,2500000,28,28,48,48,2.3,2.3,100000 total time: 47.92 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+ |
name 名前 | Robert Backstrom |
---|---|
date 日付 | April 2, 2008 17:05:13 UTC 2008 年 4 月 3 日 (木) 2 時 5 分 13 秒 (日本時間) |
composite number 合成数 | 13095194600311648587363642228835280059379349527210239503556304027577051905401432570267<86> |
prime factors 素因数 | 18462693075720592159694382676395345089159<41> 709278681425545386232340021289077175661076813<45> |
factorization results 素因数分解の結果 | Thu Apr 03 02:41:55 2008 Thu Apr 03 02:41:55 2008 Thu Apr 03 02:41:55 2008 Msieve v. 1.33 Thu Apr 03 02:41:55 2008 random seeds: 42b0e064 b812c0af Thu Apr 03 02:41:55 2008 factoring 13095194600311648587363642228835280059379349527210239503556304027577051905401432570267 (86 digits) Thu Apr 03 02:41:56 2008 searching for 15-digit factors Thu Apr 03 02:41:57 2008 commencing quadratic sieve (86-digit input) Thu Apr 03 02:41:57 2008 using multiplier of 3 Thu Apr 03 02:41:57 2008 using 64kb Opteron sieve core Thu Apr 03 02:41:57 2008 sieve interval: 6 blocks of size 65536 Thu Apr 03 02:41:57 2008 processing polynomials in batches of 17 Thu Apr 03 02:41:57 2008 using a sieve bound of 1442509 (54992 primes) Thu Apr 03 02:41:57 2008 using large prime bound of 115400720 (26 bits) Thu Apr 03 02:41:57 2008 using double large prime bound of 325068826146400 (41-49 bits) Thu Apr 03 02:41:57 2008 using trial factoring cutoff of 49 bits Thu Apr 03 02:41:57 2008 polynomial 'A' values have 11 factors Thu Apr 03 03:20:45 2008 55145 relations (16138 full + 39007 combined from 573077 partial), need 55088 Thu Apr 03 03:20:45 2008 begin with 589214 relations Thu Apr 03 03:20:46 2008 reduce to 130017 relations in 10 passes Thu Apr 03 03:20:46 2008 attempting to read 130017 relations Thu Apr 03 03:20:47 2008 recovered 130017 relations Thu Apr 03 03:20:47 2008 recovered 111360 polynomials Thu Apr 03 03:20:47 2008 attempting to build 55144 cycles Thu Apr 03 03:20:47 2008 found 55143 cycles in 5 passes Thu Apr 03 03:20:48 2008 distribution of cycle lengths: Thu Apr 03 03:20:48 2008 length 1 : 16138 Thu Apr 03 03:20:48 2008 length 2 : 11055 Thu Apr 03 03:20:48 2008 length 3 : 9584 Thu Apr 03 03:20:48 2008 length 4 : 7023 Thu Apr 03 03:20:48 2008 length 5 : 4907 Thu Apr 03 03:20:48 2008 length 6 : 2885 Thu Apr 03 03:20:48 2008 length 7 : 1679 Thu Apr 03 03:20:48 2008 length 9+: 1872 Thu Apr 03 03:20:48 2008 largest cycle: 18 relations Thu Apr 03 03:20:48 2008 matrix is 54992 x 55143 (12.0 MB) with weight 2919220 (52.94/col) Thu Apr 03 03:20:48 2008 sparse part has weight 2919220 (52.94/col) Thu Apr 03 03:20:49 2008 filtering completed in 4 passes Thu Apr 03 03:20:49 2008 matrix is 50096 x 50160 (11.0 MB) with weight 2691005 (53.65/col) Thu Apr 03 03:20:49 2008 sparse part has weight 2691005 (53.65/col) Thu Apr 03 03:20:50 2008 saving the first 48 matrix rows for later Thu Apr 03 03:20:50 2008 matrix is 50048 x 50160 (6.5 MB) with weight 2016906 (40.21/col) Thu Apr 03 03:20:50 2008 sparse part has weight 1390909 (27.73/col) Thu Apr 03 03:20:50 2008 matrix includes 64 packed rows Thu Apr 03 03:20:50 2008 using block size 20064 for processor cache size 512 kB Thu Apr 03 03:20:50 2008 commencing Lanczos iteration Thu Apr 03 03:20:50 2008 memory use: 6.8 MB Thu Apr 03 03:21:10 2008 lanczos halted after 792 iterations (dim = 50039) Thu Apr 03 03:21:10 2008 recovered 12 nontrivial dependencies Thu Apr 03 03:21:11 2008 prp41 factor: 18462693075720592159694382676395345089159 Thu Apr 03 03:21:11 2008 prp45 factor: 709278681425545386232340021289077175661076813 Thu Apr 03 03:21:11 2008 elapsed time 00:39:16 |
name 名前 | Robert Backstrom |
---|---|
date 日付 | April 5, 2008 11:59:16 UTC 2008 年 4 月 5 日 (土) 20 時 59 分 16 秒 (日本時間) |
composite number 合成数 | 538482665638292782825395952093173824033430376023107423400045296340750532135745493329735662010643393494585741323072415536628118545216627109347239991<147> |
prime factors 素因数 | 50365446354722171931533546718702257843<38> 3543988444207413403410274704260989655419<40> 3016801554260539634880325171364479046731365413823735186731506096436023<70> |
factorization results 素因数分解の結果 | GMP-ECM 6.1.3 [powered by GMP 4.2.1] [ECM] Input number is 538482665638292782825395952093173824033430376023107423400045296340750532135745493329735662010643393494585741323072415536628118545216627109347239991 (147 digits) Using B1=3696000, B2=8561285470, polynomial Dickson(6), sigma=2910241397 Step 1 took 44611ms Step 2 took 17806ms ********** Factor found in step 2: 50365446354722171931533546718702257843 Found probable prime factor of 38 digits: 50365446354722171931533546718702257843 Composite cofactor 10691509846766316509002436770053276030930115107099062938799324518870872343619138078994315188241927426748758637 has 110 digits GMP-ECM 6.1.3 [powered by GMP 4.2.1] [ECM] Input number is 10691509846766316509002436770053276030930115107099062938799324518870872343619138078994315188241927426748758637 (110 digits) Using B1=6462000, B2=14271342550, polynomial Dickson(12), sigma=3655672364 Step 1 took 51637ms Step 2 took 22131ms ********** Factor found in step 2: 3543988444207413403410274704260989655419 Found probable prime factor of 40 digits: 3543988444207413403410274704260989655419 Probable prime cofactor 3016801554260539634880325171364479046731365413823735186731506096436023 has 70 digits |
name 名前 | Robert Backstrom |
---|---|
date 日付 | April 7, 2008 09:29:20 UTC 2008 年 4 月 7 日 (月) 18 時 29 分 20 秒 (日本時間) |
composite number 合成数 | 2176107216560753301911443296557873067276016343298831494475440440002350484312812223305933949454487812090080679805129498136087304244961797327267959760029<151> |
prime factors 素因数 | 292044997922927091627528286394099949348817998187813<51> 7451273714795980303658961535674894947248661146078209917201810829662662013768700449007211187583249433<100> |
factorization results 素因数分解の結果 | Number: n N=2176107216560753301911443296557873067276016343298831494475440440002350484312812223305933949454487812090080679805129498136087304244961797327267959760029 ( 151 digits) SNFS difficulty: 165 digits. Divisors found: Mon Apr 7 19:21:33 2008 prp51 factor: 292044997922927091627528286394099949348817998187813 Mon Apr 7 19:21:33 2008 prp100 factor: 7451273714795980303658961535674894947248661146078209917201810829662662013768700449007211187583249433 Mon Apr 7 19:21:33 2008 elapsed time 00:56:16 (Msieve 1.34) Version: GGNFS-0.77.1-20050930-k8 Total time: 58.46 hours. Scaled time: 49.16 units (timescale=0.841). Factorization parameters were as follows: name: KA_1_5_163_9 n: 2176107216560753301911443296557873067276016343298831494475440440002350484312812223305933949454487812090080679805129498136087304244961797327267959760029 type: snfs deg: 5 c5: 7 c0: 155 skew: 1.86 m: 1000000000000000000000000000000000 rlim: 3200000 alim: 3200000 lbpr: 28 lbpa: 28 mbpr: 48 mbpa: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved special-q in [100000, 3700369) Primes: RFBsize:230209, AFBsize:229318, largePrimes:5754763 encountered Relations: rels:5663009, finalFF:469183 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 58.27 hours. Total relation processing time: 0.19 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,3200000,3200000,27,27,48,48,2.5,2.5,100000 total time: 58.46 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM) Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6029.31 BogoMIPS (lpj=3014656) Total of 2 processors activated (11993.08 BogoMIPS). |
name 名前 | Robert Backstrom |
---|---|
date 日付 | April 7, 2008 11:43:46 UTC 2008 年 4 月 7 日 (月) 20 時 43 分 46 秒 (日本時間) |
composite number 合成数 | 11831496728453040368588747027393946948515280652340570548132594078197001463889134283214599455363721462782675641132374892459492277581995839067963479<146> |
prime factors 素因数 | 67547527870814968644720759872728356155144540584072588165080323596693<68> 175158101286561444194143776900975745196879694692553333454908567390260925183803<78> |
factorization results 素因数分解の結果 | Number: n N=11831496728453040368588747027393946948515280652340570548132594078197001463889134283214599455363721462782675641132374892459492277581995839067963479 ( 146 digits) SNFS difficulty: 166 digits. Divisors found: Mon Apr 07 20:40:51 2008 prp68 factor: 67547527870814968644720759872728356155144540584072588165080323596693 Mon Apr 07 20:40:51 2008 prp78 factor: 175158101286561444194143776900975745196879694692553333454908567390260925183803 Mon Apr 07 20:40:51 2008 elapsed time 01:01:41 (Msieve 1.34) Version: GGNFS-0.77.1-20051202-athlon Total time: 50.67 hours. Scaled time: 92.93 units (timescale=1.834). Factorization parameters were as follows: name: KA_1_5_164_9 n: 11831496728453040368588747027393946948515280652340570548132594078197001463889134283214599455363721462782675641132374892459492277581995839067963479 skew: 1.17 deg: 5 c5: 14 c0: 31 m: 1000000000000000000000000000000000 type: snfs rlim: 3200000 alim: 3200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 3400001) Primes: RFBsize:230209, AFBsize:230543, largePrimes:7686963 encountered Relations: rels:7146455, finalFF:522792 Max relations in full relation-set: 28 Initial matrix: 460818 x 522792 with sparse part having weight 59672004. Pruned matrix : Total sieving time: 50.44 hours. Total relation processing time: 0.23 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,3200000,3200000,28,28,48,48,2.5,2.5,100000 total time: 50.67 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+ |
name 名前 | JMB |
---|---|
date 日付 | April 3, 2008 21:42:25 UTC 2008 年 4 月 4 日 (金) 6 時 42 分 25 秒 (日本時間) |
composite number 合成数 | 1053745669540091006444009642597343127033979085083438889887877838029155667556601922041914077882680834820782417527686070391820875048325323527<139> |
prime factors 素因数 | 25959036563720881399909794087532397<35> |
composite cofactor 合成数の残り | 40592633973664338092756074639611100697720162425602675161336639117666924326656515110040772765234343268291<104> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(12), sigma=2010564104 Step 1 took 41062ms Step 2 took 26063ms ********** Factor found in step 2: 25959036563720881399909794087532397 Found probable prime factor of 35 digits: 25959036563720881399909794087532397 Composite cofactor 40592633973664338092756074639611100697720162425602675161336639117666924326656515110040772765234343268291 has 104 digits |
software ソフトウェア | GMP-ECM 6.1.3 |
execution environment 実行環境 | WinXP 3.4ghz P4 |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | April 6, 2008 01:16:20 UTC 2008 年 4 月 6 日 (日) 10 時 16 分 20 秒 (日本時間) |
composite number 合成数 | 40592633973664338092756074639611100697720162425602675161336639117666924326656515110040772765234343268291<104> |
prime factors 素因数 | 9597033958947512940770715759079012159641836757583<49> 4229706193320175468626508490317354141097461889488396877<55> |
factorization results 素因数分解の結果 | Number: 15559_166 N=40592633973664338092756074639611100697720162425602675161336639117666924326656515110040772765234343268291 ( 104 digits) Divisors found: r1=9597033958947512940770715759079012159641836757583 (pp49) r2=4229706193320175468626508490317354141097461889488396877 (pp55) Version: GGNFS-0.77.1-20050930-nocona Total time: 5.75 hours. Scaled time: 12.23 units (timescale=2.128). Factorization parameters were as follows: name: 15559_166 n: 40592633973664338092756074639611100697720162425602675161336639117666924326656515110040772765234343268291 skew: 26811.40 # norm 3.74e+14 c5: 15120 c4: 6077326 c3: -23724512303077 c2: 86864477756364696 c1: 8298547771000702870996 c0: 33119074129593578932976192 # alpha -6.43 Y1: 72405459907 Y0: -76873924976831669127 # Murphy_E 2.13e-09 # M 1233879129425926695567871031059691043818742592710023171099250854072614931552306628519699357283862227743 type: gnfs rlim: 1800000 alim: 1800000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 60000 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [900000, 1680001) Primes: RFBsize:135072, AFBsize:134910, largePrimes:4428331 encountered Relations: rels:4423357, finalFF:366133 Max relations in full relation-set: 28 Initial matrix: 270065 x 366133 with sparse part having weight 30992146. Pruned matrix : 212490 x 213904 with weight 16099938. Polynomial selection time: 0.39 hours. Total sieving time: 5.03 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.18 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: gnfs,103,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,26,26,49,49,2.6,2.6,60000 total time: 5.75 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4042900k/4718592k available (2127k kernel code, 0k reserved, 1314k data, 212k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407677) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405130) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405118) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Total of 4 processors activated (19246.09 BogoMIPS). |
execution environment 実行環境 | Core 2 Quad Q6600 |
name 名前 | Robert Backstrom |
---|---|
date 日付 | April 10, 2008 09:15:05 UTC 2008 年 4 月 10 日 (木) 18 時 15 分 5 秒 (日本時間) |
composite number 合成数 | 138694607752947776402054601038374261634077577246418128378721610395375037159280518817908354940816419747823675209822231<117> |
prime factors 素因数 | 4570257576393376741108870562574935143559999<43> 30347219042826632639068219128539563087330388614267880782603290658707817769<74> |
factorization results 素因数分解の結果 | Number: n N=138694607752947776402054601038374261634077577246418128378721610395375037159280518817908354940816419747823675209822231 ( 117 digits) Divisors found: Thu Apr 10 19:09:13 2008 prp43 factor: 4570257576393376741108870562574935143559999 Thu Apr 10 19:09:13 2008 prp74 factor: 30347219042826632639068219128539563087330388614267880782603290658707817769 Thu Apr 10 19:09:13 2008 elapsed time 01:18:33 (Msieve 1.34) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 49.69 hours. Scaled time: 64.80 units (timescale=1.304). Factorization parameters were as follows: name: KA_1_5_169_9 n: 138694607752947776402054601038374261634077577246418128378721610395375037159280518817908354940816419747823675209822231 skew: 94836.36 # norm 1.77e+16 c5: 1920 c4: 4251138112 c3: -309124278511618 c2: -29561456463897609891 c1: 487127672626518629193186 c0: 32056092180814696347161000619 # alpha -6.09 Y1: 31913420429 Y0: -37303665233241543560500 # Murphy_E 4.26e-10 # M 30440368514637758849034089320960643934931022425993500010937446988681486641564356323500538790935064017609701630427635 type: gnfs rlim: 4500000 alim: 4500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 60000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved special-q in [100000, 2020001) Primes: RFBsize:315948, AFBsize:316044, largePrimes:6564918 encountered Relations: rels:6479500, finalFF:721077 Max relations in full relation-set: 28 Initial matrix: 632068 x 721077 with sparse part having weight 38916166. Pruned matrix : Total sieving time: 49.37 hours. Total relation processing time: 0.32 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: gnfs,116,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4500000,4500000,27,27,50,50,2.4,2.4,60000 total time: 49.69 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+ |
name 名前 | Serge Batalov |
---|---|
date 日付 | August 28, 2008 19:16:26 UTC 2008 年 8 月 29 日 (金) 4 時 16 分 26 秒 (日本時間) |
composite number 合成数 | 58143822340107037261713531691562643165073345955220955555355074430608056279462517333584141371689912500815533060873069353366193<125> |
prime factors 素因数 | 5813483701575740349680035428752387<34> 10001545600677817037581209402111644839880337297632163971294502938355625025052962872656161339<92> |
factorization results 素因数分解の結果 | Using B1=2000000, B2=5705781910, polynomial Dickson(6), sigma=783124874 Step 1 took 11510ms Step 2 took 6852ms ********** Factor found in step 2: 5813483701575740349680035428752387 Found probable prime factor of 34 digits: 5813483701575740349680035428752387 Probable prime cofactor 10001545600677817037581209402111644839880337297632163971294502938355625025052962872656161339 has 92 digits |
software ソフトウェア | GMP-ECM 6.2.1 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | April 2, 2008 09:00:00 UTC 2008 年 4 月 2 日 (水) 18 時 0 分 0 秒 (日本時間) |
name 名前 | Erik Branger |
---|---|
date 日付 | May 17, 2010 13:11:33 UTC 2010 年 5 月 17 日 (月) 22 時 11 分 33 秒 (日本時間) |
composite number 合成数 | 5548502541069893641694990865926477923529888080025242068490960079640390962913605716888779127457252695232867263485262661361836235450343<133> |
prime factors 素因数 | 1354337395535761597233402634886464070870633<43> 4096839206654974275984674966677389595231577412358244130174236961459057333083353721703313871<91> |
factorization results 素因数分解の結果 | Number: 15559_172 N = 5548502541069893641694990865926477923529888080025242068490960079640390962913605716888779127457252695232867263485262661361836235450343 (133 digits) SNFS difficulty: 174 digits. Divisors found: r1=1354337395535761597233402634886464070870633 (pp43) r2=4096839206654974275984674966677389595231577412358244130174236961459057333083353721703313871 (pp91) Version: Msieve v. 1.43 Total time: 186.05 hours. Factorization parameters were as follows: n: 5548502541069893641694990865926477923529888080025242068490960079640390962913605716888779127457252695232867263485262661361836235450343 m: 10000000000000000000000000000000000 deg: 5 c5: 1400 c0: 31 skew: 0.47 type: snfs lss: 1 rlim: 5400000 alim: 5400000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5400000/5400000 Large primes per side: 3 Large prime bits: 27/27 Sieved rational special-q in [2700000, 7300000) Relations: 11617049 Relations in full relation-set: 1856498 relations Pruned matrix : 1127815 x 1128039 Polynomial selection time: 0.00 hours. Total sieving time: 176.37 hours. Total relation processing time: 0.33 hours. Matrix solve time: 8.97 hours. time per square root: 0.37 hours. |
software ソフトウェア | GGNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | April 2, 2008 09:00:00 UTC 2008 年 4 月 2 日 (水) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2336 | Wataru Sakai | August 3, 2009 01:37:36 UTC 2009 年 8 月 3 日 (月) 10 時 37 分 36 秒 (日本時間) |
name 名前 | Alfred Reich |
---|---|
date 日付 | September 23, 2011 09:37:13 UTC 2011 年 9 月 23 日 (金) 18 時 37 分 13 秒 (日本時間) |
composite number 合成数 | 392116213116105066447489807994768614568074848316066015827394815823390494163045611039762127847512283907458356792395286357794439986693461154937118205749<150> |
prime factors 素因数 | 5246415367690495571310475520490893676313003211757708619732026195749789<70> 74739833893235381365436253204698605006333319258549804886858198734626903429419641<80> |
factorization results 素因数分解の結果 | Number: kam N = 392116213116105066447489807994768614568074848316066015827394815823390494163045611039762127847512283907458356792395286357794439986693461154937118205749 (150 digits) SNFS difficulty: 175 digits. Divisors found: r1=5246415367690495571310475520490893676313003211757708619732026195749789 (pp70) r2=74739833893235381365436253204698605006333319258549804886858198734626903429419641 (pp80) Version: Msieve v. 1.49 (SVN unknown) Total time: 42.80 hours. Factorization parameters were as follows: n: 392116213116105066447489807994768614568074848316066015827394815823390494163045611039762127847512283907458356792395286357794439986693461154937118205749 c5: 14000 c0: 31 Y0: -10000000000000000000000000000000000 Y1: 1 skew: 0.29 type: snfs Factor base limits: 5800000/5800000 Large primes per side: 3 Large prime bits: 28/28 Sieved rational special-q in [0, 0) Total raw relations: 20097937 Relations: 2257850 relations Pruned matrix : 1275403 x 1275635 Polynomial selection time: 0.00 hours. Total sieving time: 40.66 hours. Total relation processing time: 0.15 hours. Matrix solve time: 1.92 hours. time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,175,5,0,0,0,0,0,0,0,0,5800000,5800000,28,28,55,55,2.5,2.5,100000 total time: 42.80 hours. AMD64 Family 16 Model 5 Stepping 2, AuthenticAMD Windows-7-6.1.7600 processors: 4, speed: 2.80GHz |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | April 2, 2008 09:00:00 UTC 2008 年 4 月 2 日 (水) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2336 | Wataru Sakai | January 24, 2010 06:11:26 UTC 2010 年 1 月 24 日 (日) 15 時 11 分 26 秒 (日本時間) | |
45 | 11e6 | 4000 | Wataru Sakai | September 6, 2011 13:09:50 UTC 2011 年 9 月 6 日 (火) 22 時 9 分 50 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | October 20, 2008 18:28:07 UTC 2008 年 10 月 21 日 (火) 3 時 28 分 7 秒 (日本時間) |
composite number 合成数 | 91577520366063589277240766947306748041354023568047146249685501908499620499316018448070354842587752733157064074686017179232354084676531620519553064437257292523523<161> |
prime factors 素因数 | 56152629625366819992137469300041576546741213872597735252417<59> 1630867885921653385652101326198882104756613516393727742204108998674895216128979500226008716085217882819<103> |
factorization results 素因数分解の結果 | SNFS difficulty: 177 digits. Divisors found: r1=56152629625366819992137469300041576546741213872597735252417 r2=1630867885921653385652101326198882104756613516393727742204108998674895216128979500226008716085217882819 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.310). Factorization parameters were as follows: n: 91577520366063589277240766947306748041354023568047146249685501908499620499316018448070354842587752733157064074686017179232354084676531620519553064437257292523523 Y1: 1 Y0: -100000000000000000000000000000000000 c5: 140 c0: 31 skew: 0.74 type: snfs Factor base limits: 11400000/11400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved rational special-q in [5700000, 10200001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1465262 x 1465510 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,177,5,0,0,0,0,0,0,0,0,11400000,11400000,27,27,54,54,2.6,2.6,100000 total time: 150.00 hours. |
software ソフトウェア | Msieve-1.38 |
execution environment 実行環境 | Opteron-2.6GHz; Linux x86_64 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | April 2, 2008 09:00:00 UTC 2008 年 4 月 2 日 (水) 18 時 0 分 0 秒 (日本時間) |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | May 8, 2008 23:00:57 UTC 2008 年 5 月 9 日 (金) 8 時 0 分 57 秒 (日本時間) |
composite number 合成数 | 1555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555559<178> |
prime factors 素因数 | 1096328539362005176413092222756577932801642557082525242167262230187171<70> 1418877188457386922625323450174283086499815757388954272526173072437542925270309130364696618460095061630075629<109> |
factorization results 素因数分解の結果 | Number: 15559_177 N=1555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555559 ( 178 digits) SNFS difficulty: 178 digits. Divisors found: r1=1096328539362005176413092222756577932801642557082525242167262230187171 (pp70) r2=1418877188457386922625323450174283086499815757388954272526173072437542925270309130364696618460095061630075629 (pp109) Version: GGNFS-0.77.1-20050930-nocona Total time: 219.39 hours. Scaled time: 522.80 units (timescale=2.383). Factorization parameters were as follows: n: 1555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555559 m: 200000000000000000000000000000000000 c5: 175 c0: 124 skew: 0.93 type: snfs Factor base limits: 9000000/9000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 50/50 Sieved algebraic special-q in [4500000, 8700001) Primes: RFBsize:602489, AFBsize:602061, largePrimes:11158562 encountered Relations: rels:11397768, finalFF:1426718 Max relations in full relation-set: 28 Initial matrix: 1204617 x 1426718 with sparse part having weight 98668142. Pruned matrix : 1013971 x 1020058 with weight 71526964. Total sieving time: 210.79 hours. Total relation processing time: 0.24 hours. Matrix solve time: 8.25 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: snfs,178,5,0,0,0,0,0,0,0,0,9000000,9000000,28,28,50,50,2.6,2.6,100000 total time: 219.39 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047208k/8912896k available (2434k kernel code, 339080k reserved, 1235k data, 192k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673793) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672342) Calibrating delay using timer specific routine.. 5344.48 BogoMIPS (lpj=2672242) Calibrating delay using timer specific routine.. 5344.70 BogoMIPS (lpj=2672351) |
execution environment 実行環境 | Core 2 Quad Q6700 |
name 名前 | Rich Dickerson |
---|---|
date 日付 | June 14, 2013 14:18:42 UTC 2013 年 6 月 14 日 (金) 23 時 18 分 42 秒 (日本時間) |
composite number 合成数 | 788568589409553138145499263993281370385789883188644787589756680387808101117749514577260216741813191028853915154120805229802163629687783371011390105240296195405009<162> |
prime factors 素因数 | 78479230349226865374239224323020151165383<41> 10048118284296116141954857348136022599533572756609892015636382670291608564299780629495791460066528621005398227407577056423<122> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=3281259817 Step 1 took 29402ms Step 2 took 9785ms ********** Factor found in step 2: 78479230349226865374239224323020151165383 Found probable prime factor of 41 digits: 78479230349226865374239224323020151165383 Probable prime cofactor 10048118284296116141954857348136022599533572756609892015636382670291608564299780629495791460066528621005398227407577056423 has 122 digits |
software ソフトウェア | GMP-ECM 6.4.4 [configured with GMP 5.1.1] [ECM] |
execution environment 実行環境 | Core-i5, 3.4 GHz, Linux (OpenSUSE) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | April 2, 2008 09:00:00 UTC 2008 年 4 月 2 日 (水) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 300 | Ignacio Santos | October 7, 2010 18:31:29 UTC 2010 年 10 月 8 日 (金) 3 時 31 分 29 秒 (日本時間) | |
40 | 3e6 | 2144 | 110 | Ignacio Santos | October 7, 2010 18:31:29 UTC 2010 年 10 月 8 日 (金) 3 時 31 分 29 秒 (日本時間) |
2034 | Wataru Sakai | March 22, 2012 05:30:47 UTC 2012 年 3 月 22 日 (木) 14 時 30 分 47 秒 (日本時間) | |||
45 | 11e6 | 32 / 3991 | Ignacio Santos | October 7, 2010 18:31:29 UTC 2010 年 10 月 8 日 (金) 3 時 31 分 29 秒 (日本時間) |
name 名前 | matsui |
---|---|
date 日付 | July 25, 2008 17:31:31 UTC 2008 年 7 月 26 日 (土) 2 時 31 分 31 秒 (日本時間) |
composite number 合成数 | 18446051886108805354625347510441782942672305888243277072875080701477001726023426485895358182800374191338261064337193828478068961882551352490875792192049751637087104892156475223<176> |
prime factors 素因数 | 175295153066532340613622437887691574772872821<45> 8441086165595067651650397848876928006494892885709<49> 12466231410440518465524895241428903373602741675890690732557533120565315438138006407<83> |
factorization results 素因数分解の結果 | N=18446051886108805354625347510441782942672305888243277072875080701477001726023426485895358182800374191338261064337193828478068961882551352490875792192049751637087104892156475223 ( 176 digits) SNFS difficulty: 180 digits. Divisors found: r1=175295153066532340613622437887691574772872821 (pp45) r2=8441086165595067651650397848876928006494892885709 (pp49) r3=12466231410440518465524895241428903373602741675890690732557533120565315438138006407 (pp83) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 315.32 hours. Scaled time: 610.14 units (timescale=1.935). Factorization parameters were as follows: n: 18446051886108805354625347510441782942672305888243277072875080701477001726023426485895358182800374191338261064337193828478068961882551352490875792192049751637087104892156475223 m: 1000000000000000000000000000000000000 c5: 7 c0: 155 skew: 1.86 type: snfs Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 10200001) Primes: RFBsize:501962, AFBsize:499942, largePrimes:6632716 encountered Relations: rels:7100185, finalFF:1147043 Max relations in full relation-set: 28 Initial matrix: 1001969 x 1147043 with sparse part having weight 77618795. Pruned matrix : 881350 x 886423 with weight 59827143. Total sieving time: 308.53 hours. Total relation processing time: 0.13 hours. Matrix solve time: 6.25 hours. Time per square root: 0.40 hours. Prototype def-par.txt line would be: snfs,180,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 315.32 hours. |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | April 2, 2008 09:00:00 UTC 2008 年 4 月 2 日 (水) 18 時 0 分 0 秒 (日本時間) |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | April 2, 2008 16:24:26 UTC 2008 年 4 月 3 日 (木) 1 時 24 分 26 秒 (日本時間) |
composite number 合成数 | 1555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555559<181> |
prime factors 素因数 | 224540162641475926200940032590041<33> 6927738615916639493795372224802362230619590881114688329834073792904549303518808372499279890767099431963254595662524485909980595129219530776688881599<148> |
factorization results 素因数分解の結果 | GMP-ECM 6.1.3 [powered by GMP 4.2.2] [ECM] Input number is 1555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555559 (181 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2158616714 Step 1 took 9955ms Step 2 took 5236ms ********** Factor found in step 2: 224540162641475926200940032590041 Found probable prime factor of 33 digits: 224540162641475926200940032590041 Probable prime cofactor 6927738615916639493795372224802362230619590881114688329834073792904549303518808372499279890767099431963254595662524485909980595129219530776688881599 has 148 digits |
execution environment 実行環境 | Core 2 Quad Q6600 |
name 名前 | Ignacio Santos |
---|---|
date 日付 | October 7, 2010 18:42:28 UTC 2010 年 10 月 8 日 (金) 3 時 42 分 28 秒 (日本時間) |
composite number 合成数 | 317489571877323806321653243147377626263035543722896496191015983373574369901176784396551488058404273672806756945349147986828108032023488078696911<144> |
prime factors 素因数 | 1094719052504211547245296510568611707<37> 290019225618714055084846274549282800436014755806436679880662263073428292874364571210394254920133698541558973<108> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1483728229 Step 1 took 20171ms Step 2 took 11294ms ********** Factor found in step 2: 1094719052504211547245296510568611707 Found probable prime factor of 37 digits: 1094719052504211547245296510568611707 Probable prime cofactor 290019225618714055084846274549282800436014755806436679880662263073428292874364571210394254920133698541558973 has 108 digits |
software ソフトウェア | GMP-ECM 6.3 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | April 2, 2008 09:00:00 UTC 2008 年 4 月 2 日 (水) 18 時 0 分 0 秒 (日本時間) |
name 名前 | Wataru Sakai |
---|---|
date 日付 | July 1, 2010 12:33:02 UTC 2010 年 7 月 1 日 (木) 21 時 33 分 2 秒 (日本時間) |
composite number 合成数 | 1581932427930353522021645732824903414861373572062620438094875025603717590019551249770516689854349707336229600759588810247525046094883812108403008897399278568529865889316823079727<178> |
prime factors 素因数 | 137580860230554431690291756176085579251<39> |
composite cofactor 合成数の残り | 11498201314335382498223124202312486685614748136920966316332196076488995563686648545657467629657017644635052417449213514491005086449862027477<140> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3256471429 Step 1 took 18202ms Step 2 took 6919ms ********** Factor found in step 2: 137580860230554431690291756176085579251 Found probable prime factor of 39 digits: 137580860230554431690291756176085579251 Composite cofactor 11498201314335382498223124202312486685614748136920966316332196076488995563686648545657467629657017644635052417449213514491005086449862027477 has 140 digits |
software ソフトウェア | GMP-ECM 6.2.3 |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | August 21, 2014 11:50:33 UTC 2014 年 8 月 21 日 (木) 20 時 50 分 33 秒 (日本時間) |
composite number 合成数 | 11498201314335382498223124202312486685614748136920966316332196076488995563686648545657467629657017644635052417449213514491005086449862027477<140> |
prime factors 素因数 | 13857642881464984785848348807980840628822417493488467<53> 829737164732003122282639924038663600006318661993029084379045668396891837889206254655031<87> |
factorization results 素因数分解の結果 | GMP-ECM 6.4.4 [configured with GMP 6.0.0, --enable-asm-redc] [ECM] Input number is 11498201314335382498223124202312486685614748136920966316332196076488995563686648545657467629657017644635052417449213514491005086449862027477 (140 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=4715975624 Step 1 took 24401ms Step 2 took 8547ms ********** Factor found in step 2: 13857642881464984785848348807980840628822417493488467 Found probable prime factor of 53 digits: 13857642881464984785848348807980840628822417493488467 Probable prime cofactor 829737164732003122282639924038663600006318661993029084379045668396891837889206254655031 has 87 digits |
execution environment 実行環境 | Core i7-4930K |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | April 2, 2008 09:00:00 UTC 2008 年 4 月 2 日 (水) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 300 | Ignacio Santos | June 19, 2010 23:09:57 UTC 2010 年 6 月 20 日 (日) 8 時 9 分 57 秒 (日本時間) | |
40 | 3e6 | 2144 | 110 | Ignacio Santos | June 19, 2010 23:09:57 UTC 2010 年 6 月 20 日 (日) 8 時 9 分 57 秒 (日本時間) |
2034 | Wataru Sakai | July 2, 2010 08:34:03 UTC 2010 年 7 月 2 日 (金) 17 時 34 分 3 秒 (日本時間) | |||
45 | 11e6 | 332 / 3991 | 32 | Ignacio Santos | June 19, 2010 23:09:57 UTC 2010 年 6 月 20 日 (日) 8 時 9 分 57 秒 (日本時間) |
300 | Serge Batalov | May 27, 2014 00:30:15 UTC 2014 年 5 月 27 日 (火) 9 時 30 分 15 秒 (日本時間) |
name 名前 | LegionMammal978 |
---|---|
date 日付 | July 29, 2017 12:42:17 UTC 2017 年 7 月 29 日 (土) 21 時 42 分 17 秒 (日本時間) |
composite number 合成数 | 1515126757354786548934086945828904604595318112128885183920878437355149306506583269155155010181584447757067174129643500067625725533732981646908708026356020219059<160> |
prime factors 素因数 | 1597607243979582096591313768393766595285154450427<49> 948372488334905376027679337267348615646548089891829658137358776055005713228794071763025485154573060714858933417<111> |
factorization results 素因数分解の結果 | Fri Jul 28 22:51:59 2017 Msieve v. 1.53 (SVN Unversioned directory) Fri Jul 28 22:51:59 2017 random seeds: 9970ffa4 1e928816 Fri Jul 28 22:51:59 2017 factoring 1515126757354786548934086945828904604595318112128885183920878437355149306506583269155155010181584447757067174129643500067625725533732981646908708026356020219059 (160 digits) Fri Jul 28 22:52:00 2017 no P-1/P+1/ECM available, skipping Fri Jul 28 22:52:00 2017 commencing number field sieve (160-digit input) Fri Jul 28 22:52:00 2017 R0: -10000000000000000000000000000000000000 Fri Jul 28 22:52:00 2017 R1: 1 Fri Jul 28 22:52:00 2017 A0: 31 Fri Jul 28 22:52:00 2017 A1: 0 Fri Jul 28 22:52:00 2017 A2: 0 Fri Jul 28 22:52:00 2017 A3: 0 Fri Jul 28 22:52:00 2017 A4: 0 Fri Jul 28 22:52:00 2017 A5: 1400 Fri Jul 28 22:52:00 2017 skew 0.47, size 2.205e-13, alpha 0.879, combined = 3.390e-11 rroots = 1 Fri Jul 28 22:52:00 2017 Fri Jul 28 22:52:00 2017 commencing relation filtering Fri Jul 28 22:52:00 2017 estimated available RAM is 15929.4 MB Fri Jul 28 22:52:00 2017 commencing duplicate removal, pass 1 Fri Jul 28 22:54:58 2017 skipped 1 relations with b > 2^32 Fri Jul 28 22:54:58 2017 found 3595666 hash collisions in 22622701 relations Fri Jul 28 22:55:18 2017 added 287 free relations Fri Jul 28 22:55:18 2017 commencing duplicate removal, pass 2 Fri Jul 28 22:55:25 2017 found 3336632 duplicates and 19286356 unique relations Fri Jul 28 22:55:25 2017 memory use: 106.6 MB Fri Jul 28 22:55:25 2017 reading ideals above 720000 Fri Jul 28 22:55:25 2017 commencing singleton removal, initial pass Fri Jul 28 22:57:42 2017 memory use: 689.0 MB Fri Jul 28 22:57:42 2017 reading all ideals from disk Fri Jul 28 22:57:43 2017 memory use: 617.6 MB Fri Jul 28 22:57:44 2017 keeping 21460578 ideals with weight <= 200, target excess is 115851 Fri Jul 28 22:57:45 2017 commencing in-memory singleton removal Fri Jul 28 22:57:47 2017 begin with 19286356 relations and 21460578 unique ideals Fri Jul 28 22:57:58 2017 reduce to 7861674 relations and 7715514 ideals in 19 passes Fri Jul 28 22:57:58 2017 max relations containing the same ideal: 108 Fri Jul 28 22:58:02 2017 relations with 0 large ideals: 2835 Fri Jul 28 22:58:02 2017 relations with 1 large ideals: 786 Fri Jul 28 22:58:02 2017 relations with 2 large ideals: 15511 Fri Jul 28 22:58:02 2017 relations with 3 large ideals: 126823 Fri Jul 28 22:58:02 2017 relations with 4 large ideals: 559734 Fri Jul 28 22:58:02 2017 relations with 5 large ideals: 1439054 Fri Jul 28 22:58:02 2017 relations with 6 large ideals: 2301575 Fri Jul 28 22:58:02 2017 relations with 7+ large ideals: 3415356 Fri Jul 28 22:58:02 2017 commencing 2-way merge Fri Jul 28 22:58:06 2017 reduce to 4549935 relation sets and 4404518 unique ideals Fri Jul 28 22:58:06 2017 ignored 743 oversize relation sets Fri Jul 28 22:58:06 2017 commencing full merge Fri Jul 28 22:59:10 2017 memory use: 512.1 MB Fri Jul 28 22:59:10 2017 found 2256312 cycles, need 2254718 Fri Jul 28 22:59:11 2017 weight of 2254718 cycles is about 157956707 (70.06/cycle) Fri Jul 28 22:59:11 2017 distribution of cycle lengths: Fri Jul 28 22:59:11 2017 1 relations: 339838 Fri Jul 28 22:59:11 2017 2 relations: 301516 Fri Jul 28 22:59:11 2017 3 relations: 279653 Fri Jul 28 22:59:11 2017 4 relations: 238337 Fri Jul 28 22:59:11 2017 5 relations: 201346 Fri Jul 28 22:59:11 2017 6 relations: 164586 Fri Jul 28 22:59:11 2017 7 relations: 136462 Fri Jul 28 22:59:11 2017 8 relations: 110401 Fri Jul 28 22:59:11 2017 9 relations: 88305 Fri Jul 28 22:59:11 2017 10+ relations: 394274 Fri Jul 28 22:59:11 2017 heaviest cycle: 28 relations Fri Jul 28 22:59:11 2017 commencing cycle optimization Fri Jul 28 22:59:14 2017 start with 13016905 relations Fri Jul 28 22:59:30 2017 pruned 285256 relations Fri Jul 28 22:59:30 2017 memory use: 437.7 MB Fri Jul 28 22:59:30 2017 distribution of cycle lengths: Fri Jul 28 22:59:30 2017 1 relations: 339838 Fri Jul 28 22:59:30 2017 2 relations: 307899 Fri Jul 28 22:59:30 2017 3 relations: 288992 Fri Jul 28 22:59:30 2017 4 relations: 242442 Fri Jul 28 22:59:30 2017 5 relations: 204672 Fri Jul 28 22:59:30 2017 6 relations: 164987 Fri Jul 28 22:59:30 2017 7 relations: 136314 Fri Jul 28 22:59:30 2017 8 relations: 108292 Fri Jul 28 22:59:30 2017 9 relations: 86700 Fri Jul 28 22:59:30 2017 10+ relations: 374582 Fri Jul 28 22:59:30 2017 heaviest cycle: 28 relations Fri Jul 28 22:59:33 2017 RelProcTime: 453 Fri Jul 28 22:59:33 2017 elapsed time 00:07:34 Fri Jul 28 22:59:34 2017 LatSieveTime: 1812.33 Fri Jul 28 22:59:34 2017 -> Running matrix solving step ... Fri Jul 28 22:59:34 2017 -> ./msieve -s 15559_187/15559_187.dat -l 15559_187/15559_187.log -i 15559_187/15559_187.ini -nf 15559_187/15559_187.fb -t 3 -nc2 Fri Jul 28 22:59:34 2017 Fri Jul 28 22:59:34 2017 Fri Jul 28 22:59:34 2017 Msieve v. 1.53 (SVN Unversioned directory) Fri Jul 28 22:59:34 2017 random seeds: 1d699a61 3d4d53b3 Fri Jul 28 22:59:34 2017 factoring 1515126757354786548934086945828904604595318112128885183920878437355149306506583269155155010181584447757067174129643500067625725533732981646908708026356020219059 (160 digits) Fri Jul 28 22:59:34 2017 no P-1/P+1/ECM available, skipping Fri Jul 28 22:59:34 2017 commencing number field sieve (160-digit input) Fri Jul 28 22:59:34 2017 R0: -10000000000000000000000000000000000000 Fri Jul 28 22:59:34 2017 R1: 1 Fri Jul 28 22:59:34 2017 A0: 31 Fri Jul 28 22:59:34 2017 A1: 0 Fri Jul 28 22:59:34 2017 A2: 0 Fri Jul 28 22:59:34 2017 A3: 0 Fri Jul 28 22:59:34 2017 A4: 0 Fri Jul 28 22:59:34 2017 A5: 1400 Fri Jul 28 22:59:34 2017 skew 0.47, size 2.205e-13, alpha 0.879, combined = 3.390e-11 rroots = 1 Fri Jul 28 22:59:34 2017 Fri Jul 28 22:59:34 2017 commencing linear algebra Fri Jul 28 22:59:35 2017 read 2254718 cycles Fri Jul 28 22:59:38 2017 cycles contain 7428619 unique relations Fri Jul 28 23:00:15 2017 read 7428619 relations Fri Jul 28 23:00:23 2017 using 20 quadratic characters above 4294917295 Fri Jul 28 23:00:53 2017 building initial matrix Fri Jul 28 23:01:43 2017 memory use: 902.7 MB Fri Jul 28 23:01:44 2017 read 2254718 cycles Fri Jul 28 23:01:44 2017 matrix is 2254527 x 2254718 (676.3 MB) with weight 198742632 (88.15/col) Fri Jul 28 23:01:44 2017 sparse part has weight 152492571 (67.63/col) Fri Jul 28 23:01:59 2017 filtering completed in 2 passes Fri Jul 28 23:01:59 2017 matrix is 2252121 x 2252311 (676.1 MB) with weight 198646961 (88.20/col) Fri Jul 28 23:01:59 2017 sparse part has weight 152456326 (67.69/col) Fri Jul 28 23:02:04 2017 matrix starts at (0, 0) Fri Jul 28 23:02:05 2017 matrix is 2252121 x 2252311 (676.1 MB) with weight 198646961 (88.20/col) Fri Jul 28 23:02:05 2017 sparse part has weight 152456326 (67.69/col) Fri Jul 28 23:02:05 2017 saving the first 48 matrix rows for later Fri Jul 28 23:02:05 2017 matrix includes 64 packed rows Fri Jul 28 23:02:05 2017 matrix is 2252073 x 2252311 (640.7 MB) with weight 158458758 (70.35/col) Fri Jul 28 23:02:05 2017 sparse part has weight 145427183 (64.57/col) Fri Jul 28 23:02:05 2017 using block size 8192 and superblock size 786432 for processor cache size 8192 kB Fri Jul 28 23:02:11 2017 commencing Lanczos iteration (3 threads) Fri Jul 28 23:02:11 2017 memory use: 517.8 MB Fri Jul 28 23:02:20 2017 linear algebra at 0.1%, ETA 3h42m Fri Jul 28 23:02:23 2017 checkpointing every 610000 dimensions Sat Jul 29 02:32:26 2017 lanczos halted after 35621 iterations (dim = 2252073) Sat Jul 29 02:32:28 2017 recovered 39 nontrivial dependencies Sat Jul 29 02:32:28 2017 BLanczosTime: 12774 Sat Jul 29 02:32:28 2017 elapsed time 03:32:54 Sat Jul 29 02:32:28 2017 -> Running square root step ... Sat Jul 29 02:32:28 2017 -> ./msieve -s 15559_187/15559_187.dat -l 15559_187/15559_187.log -i 15559_187/15559_187.ini -nf 15559_187/15559_187.fb -t 3 -nc3 Sat Jul 29 02:32:28 2017 Sat Jul 29 02:32:28 2017 Sat Jul 29 02:32:28 2017 Msieve v. 1.53 (SVN Unversioned directory) Sat Jul 29 02:32:28 2017 random seeds: ac76fc04 cb53fec3 Sat Jul 29 02:32:28 2017 factoring 1515126757354786548934086945828904604595318112128885183920878437355149306506583269155155010181584447757067174129643500067625725533732981646908708026356020219059 (160 digits) Sat Jul 29 02:32:28 2017 no P-1/P+1/ECM available, skipping Sat Jul 29 02:32:28 2017 commencing number field sieve (160-digit input) Sat Jul 29 02:32:28 2017 R0: -10000000000000000000000000000000000000 Sat Jul 29 02:32:28 2017 R1: 1 Sat Jul 29 02:32:28 2017 A0: 31 Sat Jul 29 02:32:28 2017 A1: 0 Sat Jul 29 02:32:28 2017 A2: 0 Sat Jul 29 02:32:28 2017 A3: 0 Sat Jul 29 02:32:28 2017 A4: 0 Sat Jul 29 02:32:28 2017 A5: 1400 Sat Jul 29 02:32:28 2017 skew 0.47, size 2.205e-13, alpha 0.879, combined = 3.390e-11 rroots = 1 Sat Jul 29 02:32:28 2017 Sat Jul 29 02:32:28 2017 commencing square root phase Sat Jul 29 02:32:28 2017 reading relations for dependency 1 Sat Jul 29 02:32:29 2017 read 1125227 cycles Sat Jul 29 02:32:30 2017 cycles contain 3714274 unique relations Sat Jul 29 02:32:50 2017 read 3714274 relations Sat Jul 29 02:33:03 2017 multiplying 3714274 relations Sat Jul 29 02:35:02 2017 multiply complete, coefficients have about 120.83 million bits Sat Jul 29 02:35:02 2017 initial square root is modulo 471009041 Sat Jul 29 02:37:32 2017 sqrtTime: 304 Sat Jul 29 02:37:32 2017 p49 factor: 1597607243979582096591313768393766595285154450427 Sat Jul 29 02:37:32 2017 p111 factor: 948372488334905376027679337267348615646548089891829658137358776055005713228794071763025485154573060714858933417 Sat Jul 29 02:37:32 2017 elapsed time 00:05:04 |
software ソフトウェア | Msieve 1.53 snfs |
execution environment 実行環境 | Core i7-2600K 3.4GHz, Ubuntu 16.04.2 LTS |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | April 2, 2008 09:00:00 UTC 2008 年 4 月 2 日 (水) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 300 | Ignacio Santos | October 7, 2010 20:03:33 UTC 2010 年 10 月 8 日 (金) 5 時 3 分 33 秒 (日本時間) | |
40 | 3e6 | 2210 | 110 | Ignacio Santos | October 7, 2010 20:03:33 UTC 2010 年 10 月 8 日 (金) 5 時 3 分 33 秒 (日本時間) |
300 | Serge Batalov | January 9, 2014 04:39:12 UTC 2014 年 1 月 9 日 (木) 13 時 39 分 12 秒 (日本時間) | |||
1800 | Youcef Lemsafer | April 13, 2014 08:13:19 UTC 2014 年 4 月 13 日 (日) 17 時 13 分 19 秒 (日本時間) | |||
45 | 11e6 | 432 / 3977 | 32 | Ignacio Santos | October 7, 2010 20:03:33 UTC 2010 年 10 月 8 日 (金) 5 時 3 分 33 秒 (日本時間) |
100 | Youcef Lemsafer | April 13, 2014 08:13:19 UTC 2014 年 4 月 13 日 (日) 17 時 13 分 19 秒 (日本時間) | |||
300 | Serge Batalov | May 27, 2014 00:30:16 UTC 2014 年 5 月 27 日 (火) 9 時 30 分 16 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 14, 2009 07:24:51 UTC 2009 年 12 月 14 日 (月) 16 時 24 分 51 秒 (日本時間) |
composite number 合成数 | 5782734407269723254853366377529946303180503923998347790169351507641470466749277158199091284593143329202808756712102437009500206526228831061544816191656340355225113589425857083849648905411<187> |
prime factors 素因数 | 15476888878283271998699894906904401294117352114726080949942811469<65> 373636746554657431899738325086669472686287739421434557195295928619410609529013993014149729410980424907284192083404696637519<123> |
factorization results 素因数分解の結果 | N=5782734407269723254853366377529946303180503923998347790169351507641470466749277158199091284593143329202808756712102437009500206526228831061544816191656340355225113589425857083849648905411 ( 187 digits) SNFS difficulty: 190 digits. Divisors found: r1=15476888878283271998699894906904401294117352114726080949942811469 (pp65) r2=373636746554657431899738325086669472686287739421434557195295928619410609529013993014149729410980424907284192083404696637519 (pp123) Version: Msieve-1.40 Total time: 477.33 hours. Scaled time: 443.92 units (timescale=0.930). Factorization parameters were as follows: n: 5782734407269723254853366377529946303180503923998347790169351507641470466749277158199091284593143329202808756712102437009500206526228831061544816191656340355225113589425857083849648905411 m: 20000000000000000000000000000000000000 deg: 5 c5: 4375 c0: 31 skew: 0.37 type: snfs lss: 1 rlim: 10300000 alim: 10300000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 qintsize: 300000Factor base limits: 10300000/10300000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [5150000, 10850001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 2109440 x 2109664 Total sieving time: 466.75 hours. Total relation processing time: 0.42 hours. Matrix solve time: 8.57 hours. Time per square root: 1.60 hours. Prototype def-par.txt line would be: snfs,190.000,5,0,0,0,0,0,0,0,0,10300000,10300000,28,28,54,54,2.5,2.5,100000 total time: 477.33 hours. --------- CPU info (if available) ---------- |
software ソフトウェア | GGNFS/msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | April 2, 2008 09:00:00 UTC 2008 年 4 月 2 日 (水) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 825 | Wataru Sakai | August 1, 2009 05:02:01 UTC 2009 年 8 月 1 日 (土) 14 時 2 分 1 秒 (日本時間) | |
40 | 3e6 | 1735 / 2111 | Wataru Sakai | August 3, 2009 01:39:33 UTC 2009 年 8 月 3 日 (月) 10 時 39 分 33 秒 (日本時間) |
name 名前 | Edwin Hall |
---|---|
date 日付 | December 19, 2020 03:16:01 UTC 2020 年 12 月 19 日 (土) 12 時 16 分 1 秒 (日本時間) |
composite number 合成数 | 11561608198437971675656770552774480988579835122892307841773268879200232130970468343050113121093481404895206894705107135340885696707416745943023299445163160498586546107290403<173> |
prime factors 素因数 | 1592251090189903736961380395176359619636253507438367<52> 586036848934695549111477254258137693056170614365255313<54> 12390298475299469548028628331417350521744522729520583408773095272493<68> |
factorization results 素因数分解の結果 | found factor: 586036848934695549111477254258137693056170614365255313 p52 factor: 1592251090189903736961380395176359619636253507438367 p54 factor: 586036848934695549111477254258137693056170614365255313 p68 factor: 12390298475299469548028628331417350521744522729520583408773095272493 Msieve v. 1.54 (SVN 1034) random seeds: 4cb60b03 ce02a563 factoring 11561608198437971675656770552774480988579835122892307841773268879200232130970468343050113121093481404895206894705107135340885696707416745943023299445163160498586546107290403 (173 digits) searching for 15-digit factors commencing number field sieve (173-digit input) R0: -100000000000000000000000000000000000000 R1: 1 A0: 31 A1: 0 A2: 0 A3: 0 A4: 0 A5: 140 skew 1.00, size 1.857e-13, alpha 0.474, combined = 2.983e-11 rroots = 1 commencing relation filtering estimated available RAM is 15892.2 MB commencing duplicate removal, pass 1 found 2124664 hash collisions in 35239008 relations added 725963 free relations commencing duplicate removal, pass 2 found 0 duplicates and 35964971 unique relations memory use: 98.6 MB reading ideals above 720000 commencing singleton removal, initial pass memory use: 753.0 MB reading all ideals from disk memory use: 1171.8 MB keeping 39265822 ideals with weight <= 200, target excess is 193259 commencing in-memory singleton removal begin with 35964971 relations and 39265822 unique ideals reduce to 12853416 relations and 11994329 ideals in 14 passes max relations containing the same ideal: 103 removing 1899046 relations and 1581593 ideals in 317453 cliques commencing in-memory singleton removal begin with 10954370 relations and 11994329 unique ideals reduce to 10700901 relations and 10151008 ideals in 9 passes max relations containing the same ideal: 93 removing 1519167 relations and 1201714 ideals in 317453 cliques commencing in-memory singleton removal begin with 9181734 relations and 10151008 unique ideals reduce to 8981895 relations and 8743309 ideals in 9 passes max relations containing the same ideal: 83 removing 124962 relations and 110557 ideals in 14405 cliques commencing in-memory singleton removal begin with 8856933 relations and 8743309 unique ideals reduce to 8855647 relations and 8631465 ideals in 6 passes max relations containing the same ideal: 83 relations with 0 large ideals: 3970 relations with 1 large ideals: 10423 relations with 2 large ideals: 87899 relations with 3 large ideals: 413969 relations with 4 large ideals: 1179281 relations with 5 large ideals: 2110977 relations with 6 large ideals: 2483375 relations with 7+ large ideals: 2565753 commencing 2-way merge reduce to 5404013 relation sets and 5179831 unique ideals commencing full merge memory use: 578.5 MB found 2478718 cycles, need 2460031 weight of 2460031 cycles is about 221858191 (90.19/cycle) distribution of cycle lengths: 1 relations: 206719 2 relations: 213773 3 relations: 223658 4 relations: 212543 5 relations: 204375 6 relations: 185777 7 relations: 170404 8 relations: 153587 9 relations: 136787 10+ relations: 752408 heaviest cycle: 28 relations commencing cycle optimization start with 18561896 relations pruned 586944 relations memory use: 550.9 MB distribution of cycle lengths: 1 relations: 206719 2 relations: 219197 3 relations: 231779 4 relations: 219497 5 relations: 211061 6 relations: 191118 7 relations: 174766 8 relations: 156125 9 relations: 138629 10+ relations: 711140 heaviest cycle: 28 relations RelProcTime: 925 elapsed time 00:15:27 Msieve v. 1.54 (SVN 1034) random seeds: 594c980a 934f997f factoring 11561608198437971675656770552774480988579835122892307841773268879200232130970468343050113121093481404895206894705107135340885696707416745943023299445163160498586546107290403 (173 digits) searching for 15-digit factors commencing number field sieve (173-digit input) R0: -100000000000000000000000000000000000000 R1: 1 A0: 31 A1: 0 A2: 0 A3: 0 A4: 0 A5: 140 skew 1.00, size 1.857e-13, alpha 0.474, combined = 2.983e-11 rroots = 1 commencing linear algebra read 2460031 cycles cycles contain 8682272 unique relations read 8682272 relations using 20 quadratic characters above 4294917295 building initial matrix memory use: 1048.0 MB read 2460031 cycles matrix is 2459854 x 2460031 (906.7 MB) with weight 267935378 (108.92/col) sparse part has weight 210617384 (85.62/col) filtering completed in 2 passes matrix is 2458907 x 2459084 (906.6 MB) with weight 267900414 (108.94/col) sparse part has weight 210605126 (85.64/col) matrix starts at (0, 0) matrix is 2458907 x 2459084 (906.6 MB) with weight 267900414 (108.94/col) sparse part has weight 210605126 (85.64/col) saving the first 48 matrix rows for later matrix includes 64 packed rows matrix is 2458859 x 2459084 (867.0 MB) with weight 221863746 (90.22/col) sparse part has weight 202677039 (82.42/col) using block size 8192 and superblock size 786432 for processor cache size 8192 kB commencing Lanczos iteration (8 threads) memory use: 822.6 MB linear algebra at 0.1%, ETA 5h51m checkpointing every 430000 dimensions lanczos halted after 38887 iterations (dim = 2458857) recovered 39 nontrivial dependencies BLanczosTime: 14432 elapsed time 04:00:34 Msieve v. 1.54 (SVN 1034) random seeds: 7c725c59 fc9809e2 factoring 11561608198437971675656770552774480988579835122892307841773268879200232130970468343050113121093481404895206894705107135340885696707416745943023299445163160498586546107290403 (173 digits) searching for 15-digit factors commencing number field sieve (173-digit input) R0: -100000000000000000000000000000000000000 R1: 1 A0: 31 A1: 0 A2: 0 A3: 0 A4: 0 A5: 140 skew 1.00, size 1.857e-13, alpha 0.474, combined = 2.983e-11 rroots = 1 commencing square root phase reading relations for dependency 1 read 1229027 cycles cycles contain 4340590 unique relations read 4340590 relations multiplying 4340590 relations multiply complete, coefficients have about 125.77 million bits initial square root is modulo 1065440671 found factor: 586036848934695549111477254258137693056170614365255313 reading relations for dependency 2 read 1231346 cycles cycles contain 4346942 unique relations read 4346942 relations multiplying 4346942 relations multiply complete, coefficients have about 125.96 million bits initial square root is modulo 1098625841 Newton iteration failed to converge algebraic square root failed reading relations for dependency 3 read 1229568 cycles cycles contain 4342486 unique relations read 4342486 relations multiplying 4342486 relations multiply complete, coefficients have about 125.83 million bits initial square root is modulo 1075368271 sqrtTime: 699 p52 factor: 1592251090189903736961380395176359619636253507438367 p54 factor: 586036848934695549111477254258137693056170614365255313 p68 factor: 12390298475299469548028628331417350521744522729520583408773095272493 elapsed time 00:11:40 |
software ソフトウェア | CADO-NFS/Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | April 2, 2008 09:00:00 UTC 2008 年 4 月 2 日 (水) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 300 | Ignacio Santos | October 7, 2010 21:08:16 UTC 2010 年 10 月 8 日 (金) 6 時 8 分 16 秒 (日本時間) | |
40 | 3e6 | 2210 | 110 | Ignacio Santos | October 7, 2010 21:08:16 UTC 2010 年 10 月 8 日 (金) 6 時 8 分 16 秒 (日本時間) |
300 | Serge Batalov | January 9, 2014 04:39:12 UTC 2014 年 1 月 9 日 (木) 13 時 39 分 12 秒 (日本時間) | |||
1800 | Youcef Lemsafer | April 13, 2014 08:14:02 UTC 2014 年 4 月 13 日 (日) 17 時 14 分 2 秒 (日本時間) | |||
45 | 11e6 | 4432 | 32 | Ignacio Santos | October 7, 2010 21:08:16 UTC 2010 年 10 月 8 日 (金) 6 時 8 分 16 秒 (日本時間) |
100 | Youcef Lemsafer | April 13, 2014 08:14:02 UTC 2014 年 4 月 13 日 (日) 17 時 14 分 2 秒 (日本時間) | |||
300 | Serge Batalov | May 27, 2014 00:30:16 UTC 2014 年 5 月 27 日 (火) 9 時 30 分 16 秒 (日本時間) | |||
4000 | Robert Balfour | April 18, 2020 15:22:20 UTC 2020 年 4 月 19 日 (日) 0 時 22 分 20 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | May 12, 2020 07:57:55 UTC 2020 年 5 月 12 日 (火) 16 時 57 分 55 秒 (日本時間) |
composite number 合成数 | 946979091167551069142164811826160474769054597368349849313926265498444099704757525218340029592460080937618151155807408832276317879120549799445397<144> |
prime factors 素因数 | 1377639415458471090607968276371455090710228313<46> 687392564804340655628316384875125610208028334742057355549565086640317030022645102102363007385408669<99> |
factorization results 素因数分解の結果 | 946979091167551069142164811826160474769054597368349849313926265498444099704757525218340029592460080937618151155807408832276317879120549799445397=1377639415458471090607968276371455090710228313*687392564804340655628316384875125610208028334742057355549565086640317030022645102102363007385408669 n: 946979091167551069142164811826160474769054597368349849313926265498444099704757525218340029592460080937618151155807408832276317879120549799445397 skew: 172887.819 c0: -89537089355408427565713693241128 c1: -1173271336336515007030354163 c2: 11280681855143465932239 c3: 3908616388642898 c4: -92841761976 c5: -728640 Y0: -7920129166111468494319155904 Y1: 54040757785915606043 # MurphyE (Bf=5.369e+08,Bg=5.369e+08,area=3.355e+14) = 2.06e-07 # found by revision 7f9c8bd19 # f(x) = -728640*x^5-92841761976*x^4+3908616388642898*x^3+11280681855143465932239*x^2-1173271336336515007030354163*x-89537089355408427565713693241128 # g(x) = 54040757785915606043*x-7920129166111468494319155904 Info:Square Root: Factors: 1377639415458471090607968276371455090710228313 687392564804340655628316384875125610208028334742057355549565086640317030022645102102363007385408669 Info:Square Root: Total cpu/real time for sqrt: 2946.44/862.217 Warning:Polynomial Selection (size optimized): some stats could not be displayed for polyselect1 (see log file for debug info) Warning:Polynomial Selection (root optimized): some stats could not be displayed for polyselect2 (see log file for debug info) Info:Generate Factor Base: Total cpu/real time for makefb: 18.1/4.85637 Info:Generate Free Relations: Total cpu/real time for freerel: 470.42/118.792 Warning:Lattice Sieving: some stats could not be displayed for sieving (see log file for debug info) Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 47936646 Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 101.96/76.721 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 76.6s Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 548.01/176.437 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 165.60000000000002s Info:Filtering - Singleton removal: Total cpu/real time for purge: 237.52/103.447 Info:Filtering - Merging: Total cpu/real time for merge: 460.48/134.138 Info:Filtering - Merging: Total cpu/real time for replay: 138.56/117.518 Info:Linear Algebra: Total cpu/real time for bwc: 191965/49213.4 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: WCT time 31286.53, iteration CPU time 0.29, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (101888 iterations) Info:Linear Algebra: Lingen CPU time 678.09, WCT time 196.42 Info:Linear Algebra: Mksol: WCT time 17320.58, iteration CPU time 0.32, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (50688 iterations) Info:Quadratic Characters: Total cpu/real time for characters: 132.72/53.9711 Info:Square Root: Total cpu/real time for sqrt: 2946.44/862.217 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 159522/51065.4 Info:root: Cleaning up computation data in /tmp/cado.rzxukobv 1377639415458471090607968276371455090710228313 687392564804340655628316384875125610208028334742057355549565086640317030022645102102363007385408669 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 18.04 LTS GenuineIntel Intel(R) Core(TM) i7-5820K CPU @ 3.30GHz [Family 6 Model 63 Stepping 2] (12 processors) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | April 2, 2008 09:00:00 UTC 2008 年 4 月 2 日 (水) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 300 | Ignacio Santos | October 7, 2010 21:56:55 UTC 2010 年 10 月 8 日 (金) 6 時 56 分 55 秒 (日本時間) | |
40 | 3e6 | 2210 | 110 | Ignacio Santos | October 7, 2010 21:56:55 UTC 2010 年 10 月 8 日 (金) 6 時 56 分 55 秒 (日本時間) |
300 | Serge Batalov | January 9, 2014 04:39:13 UTC 2014 年 1 月 9 日 (木) 13 時 39 分 13 秒 (日本時間) | |||
1800 | Youcef Lemsafer | April 13, 2014 13:51:44 UTC 2014 年 4 月 13 日 (日) 22 時 51 分 44 秒 (日本時間) | |||
45 | 11e6 | 432 / 3977 | 32 | Ignacio Santos | October 7, 2010 21:56:55 UTC 2010 年 10 月 8 日 (金) 6 時 56 分 55 秒 (日本時間) |
100 | Youcef Lemsafer | April 13, 2014 15:14:23 UTC 2014 年 4 月 14 日 (月) 0 時 14 分 23 秒 (日本時間) | |||
300 | Serge Batalov | May 27, 2014 00:30:16 UTC 2014 年 5 月 27 日 (火) 9 時 30 分 16 秒 (日本時間) |
name 名前 | Robert Backstrom |
---|---|
date 日付 | May 7, 2008 21:30:44 UTC 2008 年 5 月 8 日 (木) 6 時 30 分 44 秒 (日本時間) |
composite number 合成数 | 32654766634387580423114278336120923083189533752076496568545648898558155934363078337045374818984316647814856907280851380527819643<128> |
prime factors 素因数 | 67438308398974187180622772855468793089<38> 484216870346117642180865357051076528493767653821960944086179418529064377186836629909208187<90> |
factorization results 素因数分解の結果 | GMP-ECM 6.0 [powered by GMP 4.1.4] [ECM] Input number is 32654766634387580423114278336120923083189533752076496568545648898558155934363078337045374818984316647814856907280851380527819643 (128 digits) Using B1=2244000, B2=2655791053, polynomial Dickson(6), sigma=164315382 Step 1 took 20464ms Step 2 took 9618ms ********** Factor found in step 2: 67438308398974187180622772855468793089 Found probable prime factor of 38 digits: 67438308398974187180622772855468793089 Probable prime cofactor 484216870346117642180865357051076528493767653821960944086179418529064377186836629909208187 has 90 digits |
name 名前 | Youcef Lemsafer |
---|---|
date 日付 | April 13, 2014 15:52:09 UTC 2014 年 4 月 14 日 (月) 0 時 52 分 9 秒 (日本時間) |
composite number 合成数 | 15597257043251164194356692344121412075924493994848638125140263231278762139524035594114940756928557735127006011081742606090352665608368555829503273518154604620461119<164> |
prime factors 素因数 | 1953961190743750495821374119784924011<37> |
composite cofactor 合成数の残り | 7982378113310565044922041008716267827253054305967973231018278879950959985969853605371325460362989043818788793437166620419496829<127> |
factorization results 素因数分解の結果 | GMP-ECM 6.4.4 [configured with GMP 6.0.0, --enable-asm-redc] [ECM] Input number is (14*10^197+31)/(9*3^3*53*799311197*8719302929072234645723) (164 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1649303945 Step 1 took 21607ms Step 2 took 8236ms ********** Factor found in step 2: 1953961190743750495821374119784924011 Found probable prime factor of 37 digits: 1953961190743750495821374119784924011 Composite cofactor ((14*10^197+31)/(9*3^3*53*799311197*8719302929072234645723))/1953961190743750495821374119784924011 has 127 digits |
name 名前 | Youcef Lemsafer |
---|---|
date 日付 | April 17, 2014 06:14:06 UTC 2014 年 4 月 17 日 (木) 15 時 14 分 6 秒 (日本時間) |
composite number 合成数 | 7982378113310565044922041008716267827253054305967973231018278879950959985969853605371325460362989043818788793437166620419496829<127> |
prime factors 素因数 | 230580497888424993436922462074805467<36> 34618617733981724446599661510662008422776076093282549286834114258037860545880968877427223687<92> |
factorization results 素因数分解の結果 | <Polynomial selection using msieve 1.52 (SVN 959) win64 on Intel Xeon W3530 @2.8GHz ~10hours> Mon Apr 14 22:31:50 2014 Msieve v. 1.52 (SVN 959) Mon Apr 14 22:31:50 2014 random seeds: d23ef3c8 4f1670f9 Mon Apr 14 22:31:50 2014 factoring 7982378113310565044922041008716267827253054305967973231018278879950959985969853605371325460362989043818788793437166620419496829 (127 digits) Mon Apr 14 22:31:51 2014 searching for 15-digit factors Mon Apr 14 22:31:53 2014 commencing number field sieve (127-digit input) Mon Apr 14 22:31:53 2014 commencing number field sieve polynomial selection Mon Apr 14 22:31:53 2014 polynomial degree: 5 Mon Apr 14 22:31:53 2014 max stage 1 norm: 1.58e+019 Mon Apr 14 22:31:53 2014 max stage 2 norm: 4.05e+017 Mon Apr 14 22:31:53 2014 min E-value: 8.73e-011 Mon Apr 14 22:31:53 2014 poly select deadline: 35630 Mon Apr 14 22:31:53 2014 time limit set to 9.90 CPU-hours Mon Apr 14 22:31:53 2014 expecting poly E from 1.11e-010 to > 1.28e-010 Mon Apr 14 22:31:53 2014 searching leading coefficients from 80000 to 200000 Tue Apr 15 08:33:35 2014 polynomial selection complete Tue Apr 15 08:33:35 2014 R0: -2422085808068151846224436 Tue Apr 15 08:33:35 2014 R1: 5935803660203 Tue Apr 15 08:33:35 2014 A0: 6627590829984535102757740366175 Tue Apr 15 08:33:35 2014 A1: 202804045060560550939056330 Tue Apr 15 08:33:35 2014 A2: -1756206147930431601997 Tue Apr 15 08:33:35 2014 A3: -16485909939309528 Tue Apr 15 08:33:35 2014 A4: 48002020700 Tue Apr 15 08:33:35 2014 A5: 95760 Tue Apr 15 08:33:35 2014 skew 200058.37, size 2.726e-012, alpha -7.018, combined = 1.065e-010 rroots = 5 Tue Apr 15 08:33:35 2014 elapsed time 10:01:45 <Sieving + post-processing on Intel Xeon X5660 @2.8GHz> Tue Apr 15 15:56:58 2014 -> factmsieve.py (v0.76) Tue Apr 15 15:56:58 2014 -> This is client 1 of 1 Tue Apr 15 15:56:58 2014 -> Running on 2 Cores with 2 hyper-threads per Core Tue Apr 15 15:56:58 2014 -> Working with NAME = 15559_197 Tue Apr 15 15:56:58 2014 -> Selected lattice siever: gnfs-lasieve4I13e Tue Apr 15 15:56:58 2014 -> Creating param file to detect parameter changes... Tue Apr 15 15:56:58 2014 -> Running setup ... Tue Apr 15 15:56:58 2014 -> Estimated minimum relations needed: 1.672e+07 Tue Apr 15 15:56:58 2014 -> cleaning up before a restart Tue Apr 15 15:56:58 2014 -> Running lattice siever ... Tue Apr 15 15:56:58 2014 -> entering sieving loop Tue Apr 15 15:56:58 2014 -> Lattice sieving algebraic q from 4000000 to 4100000. Tue Apr 15 16:44:02 2014 Found 432132 relations, 2.6% of the estimated minimum (16720000). <...snipped...> Tue Apr 15 23:23:24 2014 Found 4743352 relations, 28.4% of the estimated minimum (16720000). <...interrupted for ~8.5hours due to crash in gnfs-lasieve4I13e...> Wed Apr 16 07:58:16 2014 Found 4849732 relations, 29.0% of the estimated minimum (16720000). <...snipped...> Thu Apr 17 04:21:29 2014 Found 16785625 relations, 100.4% of the estimated minimum (16720000). Thu Apr 17 04:21:30 2014 Thu Apr 17 04:21:30 2014 Msieve v. 1.52 (SVN 959) Thu Apr 17 04:21:30 2014 random seeds: b74ee264 3ca75715 Thu Apr 17 04:21:30 2014 factoring 7982378113310565044922041008716267827253054305967973231018278879950959985969853605371325460362989043818788793437166620419496829 (127 digits) Thu Apr 17 04:21:31 2014 searching for 15-digit factors Thu Apr 17 04:21:33 2014 commencing number field sieve (127-digit input) Thu Apr 17 04:21:33 2014 R0: -2422085808068151846224436 Thu Apr 17 04:21:33 2014 R1: 5935803660203 Thu Apr 17 04:21:33 2014 A0: 6627590829984535102757740366175 Thu Apr 17 04:21:33 2014 A1: 202804045060560550939056330 Thu Apr 17 04:21:33 2014 A2: -1756206147930431601997 Thu Apr 17 04:21:33 2014 A3: -16485909939309528 Thu Apr 17 04:21:33 2014 A4: 48002020700 Thu Apr 17 04:21:33 2014 A5: 95760 Thu Apr 17 04:21:33 2014 skew 200058.37, size 2.726e-012, alpha -7.018, combined = 1.065e-010 rroots = 5 Thu Apr 17 04:21:33 2014 Thu Apr 17 04:21:33 2014 commencing relation filtering Thu Apr 17 04:21:33 2014 estimated available RAM is 4095.6 MB Thu Apr 17 04:21:33 2014 commencing duplicate removal, pass 1 Thu Apr 17 04:22:16 2014 error -15 reading relation 4849684 Thu Apr 17 04:22:16 2014 error -9 reading relation 4849730 Thu Apr 17 04:24:02 2014 found 1752499 hash collisions in 16785622 relations Thu Apr 17 04:24:29 2014 added 116542 free relations Thu Apr 17 04:24:29 2014 commencing duplicate removal, pass 2 Thu Apr 17 04:24:38 2014 found 1447522 duplicates and 15454642 unique relations Thu Apr 17 04:24:38 2014 memory use: 69.3 MB Thu Apr 17 04:24:38 2014 reading ideals above 720000 Thu Apr 17 04:24:38 2014 commencing singleton removal, initial pass Thu Apr 17 04:27:24 2014 memory use: 376.5 MB Thu Apr 17 04:27:24 2014 reading all ideals from disk Thu Apr 17 04:27:24 2014 memory use: 466.5 MB Thu Apr 17 04:27:26 2014 keeping 17216916 ideals with weight <= 200, target excess is 116012 Thu Apr 17 04:27:27 2014 commencing in-memory singleton removal Thu Apr 17 04:27:28 2014 begin with 15454642 relations and 17216916 unique ideals Thu Apr 17 04:27:38 2014 reduce to 5029929 relations and 4874071 ideals in 18 passes Thu Apr 17 04:27:38 2014 max relations containing the same ideal: 89 Thu Apr 17 04:27:40 2014 removing 189742 relations and 179100 ideals in 10642 cliques Thu Apr 17 04:27:40 2014 commencing in-memory singleton removal Thu Apr 17 04:27:40 2014 begin with 4840187 relations and 4874071 unique ideals Thu Apr 17 04:27:43 2014 reduce to 4833954 relations and 4688710 ideals in 8 passes Thu Apr 17 04:27:43 2014 max relations containing the same ideal: 88 Thu Apr 17 04:27:46 2014 removing 136840 relations and 126198 ideals in 10642 cliques Thu Apr 17 04:27:46 2014 commencing in-memory singleton removal Thu Apr 17 04:27:46 2014 begin with 4697114 relations and 4688710 unique ideals Thu Apr 17 04:27:49 2014 reduce to 4693513 relations and 4558901 ideals in 7 passes Thu Apr 17 04:27:49 2014 max relations containing the same ideal: 87 Thu Apr 17 04:27:50 2014 relations with 0 large ideals: 499 Thu Apr 17 04:27:50 2014 relations with 1 large ideals: 1813 Thu Apr 17 04:27:50 2014 relations with 2 large ideals: 28194 Thu Apr 17 04:27:50 2014 relations with 3 large ideals: 183383 Thu Apr 17 04:27:50 2014 relations with 4 large ideals: 627244 Thu Apr 17 04:27:50 2014 relations with 5 large ideals: 1208132 Thu Apr 17 04:27:50 2014 relations with 6 large ideals: 1360272 Thu Apr 17 04:27:50 2014 relations with 7+ large ideals: 1283976 Thu Apr 17 04:27:50 2014 commencing 2-way merge Thu Apr 17 04:27:53 2014 reduce to 2593816 relation sets and 2459204 unique ideals Thu Apr 17 04:27:53 2014 ignored 1 oversize relation sets Thu Apr 17 04:27:53 2014 commencing full merge Thu Apr 17 04:28:35 2014 memory use: 278.1 MB Thu Apr 17 04:28:35 2014 found 1291436 cycles, need 1279404 Thu Apr 17 04:28:35 2014 weight of 1279404 cycles is about 89589715 (70.02/cycle) Thu Apr 17 04:28:35 2014 distribution of cycle lengths: Thu Apr 17 04:28:35 2014 1 relations: 176049 Thu Apr 17 04:28:35 2014 2 relations: 159350 Thu Apr 17 04:28:35 2014 3 relations: 153166 Thu Apr 17 04:28:35 2014 4 relations: 132915 Thu Apr 17 04:28:35 2014 5 relations: 114983 Thu Apr 17 04:28:35 2014 6 relations: 94507 Thu Apr 17 04:28:35 2014 7 relations: 81556 Thu Apr 17 04:28:35 2014 8 relations: 66861 Thu Apr 17 04:28:35 2014 9 relations: 54634 Thu Apr 17 04:28:35 2014 10+ relations: 245383 Thu Apr 17 04:28:36 2014 heaviest cycle: 26 relations Thu Apr 17 04:28:36 2014 commencing cycle optimization Thu Apr 17 04:28:37 2014 start with 7629800 relations Thu Apr 17 04:28:50 2014 pruned 143155 relations Thu Apr 17 04:28:50 2014 memory use: 262.9 MB Thu Apr 17 04:28:50 2014 distribution of cycle lengths: Thu Apr 17 04:28:50 2014 1 relations: 176049 Thu Apr 17 04:28:50 2014 2 relations: 162564 Thu Apr 17 04:28:50 2014 3 relations: 157779 Thu Apr 17 04:28:50 2014 4 relations: 134901 Thu Apr 17 04:28:50 2014 5 relations: 116578 Thu Apr 17 04:28:50 2014 6 relations: 95123 Thu Apr 17 04:28:50 2014 7 relations: 81415 Thu Apr 17 04:28:50 2014 8 relations: 66054 Thu Apr 17 04:28:50 2014 9 relations: 53834 Thu Apr 17 04:28:50 2014 10+ relations: 235107 Thu Apr 17 04:28:50 2014 heaviest cycle: 26 relations Thu Apr 17 04:28:51 2014 RelProcTime: 438 Thu Apr 17 04:28:51 2014 elapsed time 00:07:21 Thu Apr 17 04:28:51 2014 LatSieveTime: 2826.38 Thu Apr 17 04:28:51 2014 -> Running matrix solving step ... Thu Apr 17 04:28:53 2014 commencing linear algebra Thu Apr 17 04:28:54 2014 read 1279404 cycles Thu Apr 17 04:28:56 2014 cycles contain 4505594 unique relations Thu Apr 17 04:29:38 2014 read 4505594 relations Thu Apr 17 04:29:44 2014 using 20 quadratic characters above 268435338 Thu Apr 17 04:30:03 2014 building initial matrix Thu Apr 17 04:30:48 2014 memory use: 562.3 MB Thu Apr 17 04:30:49 2014 read 1279404 cycles Thu Apr 17 04:30:49 2014 matrix is 1279224 x 1279404 (390.3 MB) with weight 122411915 (95.68/col) Thu Apr 17 04:30:49 2014 sparse part has weight 86958778 (67.97/col) Thu Apr 17 04:31:03 2014 filtering completed in 2 passes Thu Apr 17 04:31:04 2014 matrix is 1275621 x 1275801 (389.9 MB) with weight 122245009 (95.82/col) Thu Apr 17 04:31:04 2014 sparse part has weight 86904609 (68.12/col) Thu Apr 17 04:31:07 2014 matrix starts at (0, 0) Thu Apr 17 04:31:07 2014 matrix is 1275621 x 1275801 (389.9 MB) with weight 122245009 (95.82/col) Thu Apr 17 04:31:07 2014 sparse part has weight 86904609 (68.12/col) Thu Apr 17 04:31:07 2014 saving the first 48 matrix rows for later Thu Apr 17 04:31:08 2014 matrix includes 64 packed rows Thu Apr 17 04:31:08 2014 matrix is 1275573 x 1275801 (374.5 MB) with weight 97676265 (76.56/col) Thu Apr 17 04:31:08 2014 sparse part has weight 85418370 (66.95/col) Thu Apr 17 04:31:08 2014 using block size 8192 and superblock size 1179648 for processor cache size 12288 kB Thu Apr 17 04:31:14 2014 commencing Lanczos iteration (4 threads) Thu Apr 17 04:31:14 2014 memory use: 295.8 MB Thu Apr 17 04:31:23 2014 linear algebra at 0.1%, ETA 2h 5m Thu Apr 17 04:31:25 2014 checkpointing every 670000 dimensions Thu Apr 17 06:24:01 2014 lanczos halted after 20171 iterations (dim = 1275573) Thu Apr 17 06:24:03 2014 recovered 30 nontrivial dependencies Thu Apr 17 06:24:03 2014 BLanczosTime: 6910 Thu Apr 17 06:24:03 2014 elapsed time 01:55:12 Thu Apr 17 06:24:03 2014 -> Running square root step ... Thu Apr 17 06:24:07 2014 Thu Apr 17 06:24:07 2014 commencing square root phase Thu Apr 17 06:24:07 2014 reading relations for dependency 1 Thu Apr 17 06:24:09 2014 read 638165 cycles Thu Apr 17 06:24:11 2014 cycles contain 2251012 unique relations Thu Apr 17 06:30:56 2014 read 2251012 relations Thu Apr 17 06:31:08 2014 multiplying 2251012 relations Thu Apr 17 06:33:50 2014 multiply complete, coefficients have about 108.55 million bits Thu Apr 17 06:33:51 2014 initial square root is modulo 61908703 Thu Apr 17 06:37:17 2014 sqrtTime: 790 Thu Apr 17 06:37:17 2014 prp36 factor: 230580497888424993436922462074805467 Thu Apr 17 06:37:17 2014 prp92 factor: 34618617733981724446599661510662008422776076093282549286834114258037860545880968877427223687 Thu Apr 17 06:37:17 2014 elapsed time 00:13:13 Thu Apr 17 06:37:17 2014 -> Computing 1.39771e+09 scale for this machine... Thu Apr 17 06:37:17 2014 -> procrels -speedtest> PIPE Thu Apr 17 06:37:23 2014 -> Factorization summary written to g127-15559_197.txt <...What a painful ECM miss...> Number: 15559_197 N = 7982378113310565044922041008716267827253054305967973231018278879950959985969853605371325460362989043818788793437166620419496829 (127 digits) Divisors found: r1=230580497888424993436922462074805467 (pp36) r2=34618617733981724446599661510662008422776076093282549286834114258037860545880968877427223687 (pp92) Version: Msieve v. 1.52 (SVN 959) Total time: 38.79 hours. Factorization parameters were as follows: # # C127, 15559_197 # # Murphy_E = 1.065e-10, selected by Youcef Lemsafer # msieve 1.52 (SVN 959) CPU win64, expecting poly E from 1.11e-010 to > 1.28e-010 # n: 7982378113310565044922041008716267827253054305967973231018278879950959985969853605371325460362989043818788793437166620419496829 Y0: -2422085808068151846224436 Y1: 5935803660203 c0: 6627590829984535102757740366175 c1: 202804045060560550939056330 c2: -1756206147930431601997 c3: -16485909939309528 c4: 48002020700 c5: 95760 skew: 200058.37 type: gnfs # selected mechanically rlim: 8100000 alim: 8100000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 q0: 4000000 Factor base limits: 8100000/8100000 Large primes per side: 3 Large prime bits: 28/28 Sieved algebraic special-q in [0, 0) Total raw relations: 16785625 Relations: 2251012 relations Pruned matrix : 1275573 x 1275801 Polynomial selection time: 0.00 hours. Total sieving time: 36.53 hours. Total relation processing time: 0.12 hours. Matrix solve time: 1.92 hours. time per square root: 0.22 hours. Prototype def-par.txt line would be: gnfs,126,5,67,2000,5e-06,0.28,250,20,50000,3600,8100000,8100000,28,28,53,53,2.5,2.5,100000 total time: 38.79 hours. Intel64 Family 6 Model 44 Stepping 2, GenuineIntel Windows-7-6.1.7601-SP1 processors: 2, speed: 2.79GHz |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | April 2, 2008 09:00:00 UTC 2008 年 4 月 2 日 (水) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 300 | Ignacio Santos | October 7, 2010 23:09:23 UTC 2010 年 10 月 8 日 (金) 8 時 9 分 23 秒 (日本時間) | |
40 | 3e6 | 2210 | 110 | Ignacio Santos | October 7, 2010 23:09:23 UTC 2010 年 10 月 8 日 (金) 8 時 9 分 23 秒 (日本時間) |
300 | Serge Batalov | January 9, 2014 04:39:13 UTC 2014 年 1 月 9 日 (木) 13 時 39 分 13 秒 (日本時間) | |||
114 | Youcef Lemsafer | April 13, 2014 15:50:56 UTC 2014 年 4 月 14 日 (月) 0 時 50 分 56 秒 (日本時間) | |||
1686 | Youcef Lemsafer | April 14, 2014 14:57:16 UTC 2014 年 4 月 14 日 (月) 23 時 57 分 16 秒 (日本時間) | |||
45 | 11e6 | 132 / 3977 | 32 | Ignacio Santos | October 7, 2010 23:09:23 UTC 2010 年 10 月 8 日 (金) 8 時 9 分 23 秒 (日本時間) |
100 | Youcef Lemsafer | April 14, 2014 14:57:16 UTC 2014 年 4 月 14 日 (月) 23 時 57 分 16 秒 (日本時間) |
name 名前 | Robert Backstrom |
---|---|
date 日付 | September 12, 2012 15:07:55 UTC 2012 年 9 月 13 日 (木) 0 時 7 分 55 秒 (日本時間) |
composite number 合成数 | 2312354837308439528683021082181722856390832332087240349348869845590589665188399590470809108838889844374258864827456381893677077993988933991536822036467619816553443922284580849613146822917<187> |
prime factors 素因数 | 217877024595372337912026856111245803082506025875119252247531391962081<69> 10613119219903067549657117980514864581357027956092526623562808163493854105566508950865445600716890514040580403771560357<119> |
factorization results 素因数分解の結果 | Number: n N=2312354837308439528683021082181722856390832332087240349348869845590589665188399590470809108838889844374258864827456381893677077993988933991536822036467619816553443922284580849613146822917 ( 187 digits) SNFS difficulty: 200 digits. Divisors found: Thu Sep 13 01:02:22 2012 prp69 factor: 217877024595372337912026856111245803082506025875119252247531391962081 Thu Sep 13 01:02:22 2012 prp119 factor: 10613119219903067549657117980514864581357027956092526623562808163493854105566508950865445600716890514040580403771560357 Thu Sep 13 01:02:22 2012 elapsed time 05:53:33 (Msieve 1.44 - dependency 1) Version: GGNFS-0.77.1-20060513-nocona Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.094). Factorization parameters were as follows: name: KA_15559_199 n: 2312354837308439528683021082181722856390832332087240349348869845590589665188399590470809108838889844374258864827456381893677077993988933991536822036467619816553443922284580849613146822917 m: 10000000000000000000000000000000000000000 # c187, diff: 200.85 skew: 1.858 deg: 5 c5: 7 c0: 155 # Murphy_E = 1.401e-11 type: snfs lss: 1 rlim: 15600000 alim: 15600000 lpbr: 29 lpba: 29 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 15600000/15600000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 56/56 Sieved special-q in [100000, 26800000) Primes: RFBsize:1006966, AFBsize:1005273, Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 9009429 hash collisions in 62186916 relations (55590293 unique) Msieve: matrix is 1984612 x 1984837 (559.7 MB) Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,200,5,0,0,0,0,0,0,0,0,15600000,15600000,29,29,56,56,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU1: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU2: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU3: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 Memory: 8109188k/9175040k available (3972k kernel code, 787464k absent, 278388k reserved, 2498k data, 1292k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 5661.42 BogoMIPS (lpj=2830713) Calibrating delay using timer specific routine.. 5660.89 BogoMIPS (lpj=2830448) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830455) Calibrating delay using timer specific routine.. 5660.92 BogoMIPS (lpj=2830461) Total of 4 processors activated (22644.15 BogoMIPS). |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | April 2, 2008 09:00:00 UTC 2008 年 4 月 2 日 (水) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 300 | Ignacio Santos | October 8, 2010 06:19:18 UTC 2010 年 10 月 8 日 (金) 15 時 19 分 18 秒 (日本時間) | |
40 | 3e6 | 110 / 2144 | Ignacio Santos | October 8, 2010 06:19:18 UTC 2010 年 10 月 8 日 (金) 15 時 19 分 18 秒 (日本時間) | |
45 | 11e6 | 32 / 4441 | Ignacio Santos | October 8, 2010 06:19:18 UTC 2010 年 10 月 8 日 (金) 15 時 19 分 18 秒 (日本時間) |
name 名前 | Robert Backstrom |
---|---|
date 日付 | November 18, 2012 05:07:39 UTC 2012 年 11 月 18 日 (日) 14 時 7 分 39 秒 (日本時間) |
composite number 合成数 | 220425119806944467664860118585385613504431714074388773825573958946577006407234329533991381891185035573202523418277602720342496845119559290332736552358101318189<159> |
prime factors 素因数 | 2447154381250819573149562281510462227670001<43> 90074055603422157568635975003627516416620454226071466072363932284582246456797411276738362003100117332490990111688189<116> |
factorization results 素因数分解の結果 | Number: n N=220425119806944467664860118585385613504431714074388773825573958946577006407234329533991381891185035573202523418277602720342496845119559290332736552358101318189 ( 159 digits) SNFS difficulty: 201 digits. Divisors found: Sun Nov 18 06:37:57 2012 prp43 factor: 2447154381250819573149562281510462227670001 Sun Nov 18 06:37:57 2012 prp116 factor: 90074055603422157568635975003627516416620454226071466072363932284582246456797411276738362003100117332490990111688189 Sun Nov 18 06:37:57 2012 elapsed time 05:31:54 (Msieve 1.44 - dependency 1) Version: GGNFS-0.77.1-20060513-nocona Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.084). Factorization parameters were as follows: name: KA_15559_200 n: 220425119806944467664860118585385613504431714074388773825573958946577006407234329533991381891185035573202523418277602720342496845119559290332736552358101318189 m: 10000000000000000000000000000000000000000 # c159, diff: 201.15 skew: 1.172 deg: 5 c5: 14 c0: 31 # Murphy_E = 1.43e-11 type: snfs lss: 1 rlim: 15800000 alim: 15800000 lpbr: 29 lpba: 29 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 15800000/15800000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 56/56 Sieved special-q in [100000, 30700000) Primes: RFBsize:1019012, AFBsize:1019853, Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 9405823 hash collisions in 64831460 relations (58023110 unique) Msieve: matrix is 1911026 x 1911251 (536.2 MB) Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,201,5,0,0,0,0,0,0,0,0,15800000,15800000,29,29,56,56,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU1: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU2: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU3: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 Memory: 8109188k/9175040k available (3972k kernel code, 787464k absent, 278388k reserved, 2498k data, 1292k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 5661.42 BogoMIPS (lpj=2830711) Calibrating delay using timer specific routine.. 5660.89 BogoMIPS (lpj=2830448) Calibrating delay using timer specific routine.. 5660.92 BogoMIPS (lpj=2830460) Calibrating delay using timer specific routine.. 5660.92 BogoMIPS (lpj=2830461) Total of 4 processors activated (22644.16 BogoMIPS). |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | April 2, 2008 09:00:00 UTC 2008 年 4 月 2 日 (水) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 300 | Ignacio Santos | October 8, 2010 06:19:44 UTC 2010 年 10 月 8 日 (金) 15 時 19 分 44 秒 (日本時間) | |
40 | 3e6 | 110 / 2144 | Ignacio Santos | October 8, 2010 06:19:44 UTC 2010 年 10 月 8 日 (金) 15 時 19 分 44 秒 (日本時間) | |
45 | 11e6 | 32 / 4441 | Ignacio Santos | October 8, 2010 06:19:44 UTC 2010 年 10 月 8 日 (金) 15 時 19 分 44 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | May 29, 2021 15:42:19 UTC 2021 年 5 月 30 日 (日) 0 時 42 分 19 秒 (日本時間) |
composite number 合成数 | 28964008527030282161341213792307888532776277991479886823618495835213572298979108798544087616714907602183036373071192703926602777821773201760234638079342622622547524724911983356592838499319<188> |
prime factors 素因数 | 5491794761831555397837264339802062018554917887203250117723739370748826646050291747217568347<91> 5274051522888769540637830326177363220711399299185052924854373960578592329736068705660817456297877<97> |
factorization results 素因数分解の結果 | Number: n N=28964008527030282161341213792307888532776277991479886823618495835213572298979108798544087616714907602183036373071192703926602777821773201760234638079342622622547524724911983356592838499319 ( 188 digits) SNFS difficulty: 202 digits. Divisors found: Sun May 30 01:35:39 2021 p91 factor: 5491794761831555397837264339802062018554917887203250117723739370748826646050291747217568347 Sun May 30 01:35:39 2021 p97 factor: 5274051522888769540637830326177363220711399299185052924854373960578592329736068705660817456297877 Sun May 30 01:35:39 2021 elapsed time 01:34:18 (Msieve 1.54 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.347). Factorization parameters were as follows: # # N = 14x10^201+31 = 15(200)9 # n: 28964008527030282161341213792307888532776277991479886823618495835213572298979108798544087616714907602183036373071192703926602777821773201760234638079342622622547524724911983356592838499319 m: 10000000000000000000000000000000000000000 deg: 5 c5: 140 c0: 31 skew: 0.74 # Murphy_E = 1.279e-11 type: snfs lss: 1 rlim: 16400000 alim: 16400000 lpbr: 29 lpba: 29 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 16400000/16400000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 56/56 Sieved special-q in [100000, 28200000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 8190434 hash collisions in 58513588 relations (52585872 unique) Msieve: matrix is 1997218 x 1997444 (698.6 MB) Sieving start time : 2021/05/29 14:01:54 Sieving end time : 2021/05/30 00:00:30 Total sieving time: 9hrs 58min 36secs. Total relation processing time: 1hrs 16min 44sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 2min 35sec. Prototype def-par.txt line would be: snfs,202,5,0,0,0,0,0,0,0,0,16400000,16400000,29,29,56,56,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- [ 0.117662] smpboot: CPU0: AMD Ryzen 7 2700 Eight-Core Processor (family: 0x17, model: 0x8, stepping: 0x2) [ 0.000000] Memory: 16241088K/16727236K available (14339K kernel code, 2400K rwdata, 5008K rodata, 2732K init, 4972K bss, 486148K reserved, 0K cma-reserved) [ 0.152608] x86/mm: Memory block size: 128MB [ 0.000005] Calibrating delay loop (skipped), value calculated using timer frequency.. 6399.07 BogoMIPS (lpj=12798140) [ 0.150211] smpboot: Total of 16 processors activated (102385.12 BogoMIPS) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1118 | 118 | Makoto Kamada | November 22, 2012 08:00:00 UTC 2012 年 11 月 22 日 (木) 17 時 0 分 0 秒 (日本時間) |
1000 | Warut Roonguthai | November 24, 2012 18:50:52 UTC 2012 年 11 月 25 日 (日) 3 時 50 分 52 秒 (日本時間) | |||
40 | 3e6 | 2084 | 300 | Serge Batalov | January 9, 2014 04:39:14 UTC 2014 年 1 月 9 日 (木) 13 時 39 分 14 秒 (日本時間) |
1784 | Youcef Lemsafer | April 14, 2014 06:48:11 UTC 2014 年 4 月 14 日 (月) 15 時 48 分 11 秒 (日本時間) | |||
45 | 11e6 | 400 / 3968 | 100 | Youcef Lemsafer | April 14, 2014 08:27:37 UTC 2014 年 4 月 14 日 (月) 17 時 27 分 37 秒 (日本時間) |
300 | Serge Batalov | May 27, 2014 00:30:17 UTC 2014 年 5 月 27 日 (火) 9 時 30 分 17 秒 (日本時間) |
name 名前 | Warut Roonguthai |
---|---|
date 日付 | November 22, 2012 15:52:38 UTC 2012 年 11 月 23 日 (金) 0 時 52 分 38 秒 (日本時間) |
composite number 合成数 | 113698680564213223984865344288596319052248727676416502029812178703430092740072352775502105255418510606815900456465042218166635257755500830003982279490184248562927199387<168> |
prime factors 素因数 | 886842186934778048344853454731<30> 128206215535588953185891713718826212644641775582405704826193009334829506310222988519753265352942492481468423160581277167475769718268752177<138> |
factorization results 素因数分解の結果 | Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=325279801 Step 1 took 6817ms Step 2 took 5600ms ********** Factor found in step 2: 886842186934778048344853454731 Found probable prime factor of 30 digits: 886842186934778048344853454731 Probable prime cofactor 128206215535588953185891713718826212644641775582405704826193009334829506310222988519753265352942492481468423160581277167475769718268752177 has 138 digits |
software ソフトウェア | GMP-ECM 6.3 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | November 22, 2012 08:00:00 UTC 2012 年 11 月 22 日 (木) 17 時 0 分 0 秒 (日本時間) |
name 名前 | Warut Roonguthai |
---|---|
date 日付 | November 22, 2012 15:55:06 UTC 2012 年 11 月 23 日 (金) 0 時 55 分 6 秒 (日本時間) |
composite number 合成数 | 1077661122385637649105941595691658176364966953015759004850655946398834852274939484132664873015900093422819898230023113849240995932653178027998507163114276410159832288888773607<175> |
prime factors 素因数 | 712403202769703709123970799527<30> 1512712349124586533156980783269889397818343792890280110158009741862053638639190352928032844925245344814723602708410298654748403074999225435759041<145> |
factorization results 素因数分解の結果 | Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2109907721 Step 1 took 7441ms Step 2 took 4665ms ********** Factor found in step 2: 712403202769703709123970799527 Found probable prime factor of 30 digits: 712403202769703709123970799527 Probable prime cofactor 1512712349124586533156980783269889397818343792890280110158009741862053638639190352928032844925245344814723602708410298654748403074999225435759041 has 145 digits |
software ソフトウェア | GMP-ECM 6.3 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | November 22, 2012 08:00:00 UTC 2012 年 11 月 22 日 (木) 17 時 0 分 0 秒 (日本時間) |
name 名前 | Warut Roonguthai |
---|---|
date 日付 | November 22, 2012 15:57:56 UTC 2012 年 11 月 23 日 (金) 0 時 57 分 56 秒 (日本時間) |
composite number 合成数 | 4200933270754180161401119549193130866044398983856945714138000618563166534189457547136134125088047237642061813946294659734162415173871304641442812164451694188848863400825220135676183951807913<190> |
prime factors 素因数 | 205110121256094584606686222777987<33> 777789933047743982681073507713651<33> 26332759576798691312943237386913341649606230998624046171691220790666093579032741729750357403526283771171551231579464756096849<125> |
factorization results 素因数分解の結果 | Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3530478063 Step 1 took 9375ms Step 2 took 5772ms ********** Factor found in step 2: 205110121256094584606686222777987 Found probable prime factor of 33 digits: 205110121256094584606686222777987 Composite cofactor 20481355308200593287961351908389662101534505537292809970749343697516910164277907174120370018512271572962651112315098603825967157608183267498415182732715385699 has 158 digits Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3084778904 Step 1 took 6396ms ********** Factor found in step 1: 777789933047743982681073507713651 Found probable prime factor of 33 digits: 777789933047743982681073507713651 Probable prime cofactor 26332759576798691312943237386913341649606230998624046171691220790666093579032741729750357403526283771171551231579464756096849 has 125 digits |
software ソフトウェア | GMP-ECM 6.3 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | November 22, 2012 08:00:00 UTC 2012 年 11 月 22 日 (木) 17 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1118 | 118 | Makoto Kamada | November 22, 2012 08:00:00 UTC 2012 年 11 月 22 日 (木) 17 時 0 分 0 秒 (日本時間) |
1000 | Warut Roonguthai | November 24, 2012 18:51:19 UTC 2012 年 11 月 25 日 (日) 3 時 51 分 19 秒 (日本時間) | |||
40 | 3e6 | 1600 | 300 | Serge Batalov | January 9, 2014 04:39:14 UTC 2014 年 1 月 9 日 (木) 13 時 39 分 14 秒 (日本時間) |
1300 | Serge Batalov | May 26, 2014 18:01:37 UTC 2014 年 5 月 27 日 (火) 3 時 1 分 37 秒 (日本時間) | |||
45 | 11e6 | 4150 | 150 | Youcef Lemsafer | October 31, 2014 14:18:17 UTC 2014 年 10 月 31 日 (金) 23 時 18 分 17 秒 (日本時間) |
4000 | ebina | December 6, 2023 20:51:31 UTC 2023 年 12 月 7 日 (木) 5 時 51 分 31 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | August 22, 2020 19:08:10 UTC 2020 年 8 月 23 日 (日) 4 時 8 分 10 秒 (日本時間) |
composite number 合成数 | 40640253176503468697269633546456453439720263873266242527377417275269903458169601896213071696472936081809003282686054325566886320473998976958244770263792157150956518517725485905783893713129316506920063049<203> |
prime factors 素因数 | 9585442287990836890377590179015173199896713873238551301277981<61> 4239789042120652779317894425128298476498074376818683851787666318865878013704475363506508868133420110739136490186199285568081277671829035673629<142> |
factorization results 素因数分解の結果 | Number: n N=40640253176503468697269633546456453439720263873266242527377417275269903458169601896213071696472936081809003282686054325566886320473998976958244770263792157150956518517725485905783893713129316506920063049 ( 203 digits) SNFS difficulty: 214 digits. Divisors found: Sun Aug 23 04:58:31 2020 p61 factor: 9585442287990836890377590179015173199896713873238551301277981 Sun Aug 23 04:58:31 2020 p142 factor: 4239789042120652779317894425128298476498074376818683851787666318865878013704475363506508868133420110739136490186199285568081277671829035673629 Sun Aug 23 04:58:31 2020 elapsed time 06:53:09 (Msieve 1.54 - dependency 3) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=1.941). Factorization parameters were as follows: # # N = 14x10^213+31 = 15(212)9 # n: 40640253176503468697269633546456453439720263873266242527377417275269903458169601896213071696472936081809003282686054325566886320473998976958244770263792157150956518517725485905783893713129316506920063049 m: 100000000000000000000000000000000000 deg: 6 c6: 14000 c0: 31 skew: 0.36 # Murphy_E = 2.98e-12 type: snfs lss: 1 rlim: 26000000 alim: 26000000 lpbr: 29 lpba: 29 mfbr: 57 mfba: 57 rlambda: 2.6 alambda: 2.6 Factor base limits: 26000000/26000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 57/57 Sieved special-q in [100000, 89000000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 10576114 hash collisions in 60159649 relations (51647891 unique) Msieve: matrix is 3876548 x 3876774 (1356.7 MB) Sieving start time: 2020/08/21 02:57:58 Sieving end time : 2020/08/22 22:04:26 Total sieving time: 43hrs 6min 28secs. Total relation processing time: 6hrs 5min 47sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 28min 52sec. Prototype def-par.txt line would be: snfs,214,6,0,0,0,0,0,0,0,0,26000000,26000000,29,29,57,57,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- [ 0.154206] smpboot: CPU0: AMD Ryzen 7 1700 Eight-Core Processor (family: 0x17, model: 0x1, stepping: 0x1) [ 0.000000] Memory: 16283136K/16703460K available (12300K kernel code, 2481K rwdata, 4272K rodata, 2436K init, 2720K bss, 420324K reserved, 0K cma-reserved) [ 0.188728] x86/mm: Memory block size: 128MB [ 0.028000] Calibrating delay loop (skipped), value calculated using timer frequency.. 5988.50 BogoMIPS (lpj=11977004) [ 0.186225] smpboot: Total of 16 processors activated (95816.03 BogoMIPS) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1118 | 118 | Makoto Kamada | November 22, 2012 08:00:00 UTC 2012 年 11 月 22 日 (木) 17 時 0 分 0 秒 (日本時間) |
1000 | Warut Roonguthai | November 24, 2012 18:51:27 UTC 2012 年 11 月 25 日 (日) 3 時 51 分 27 秒 (日本時間) | |||
40 | 3e6 | 1600 | 300 | Serge Batalov | January 9, 2014 04:39:15 UTC 2014 年 1 月 9 日 (木) 13 時 39 分 15 秒 (日本時間) |
1300 | Serge Batalov | May 26, 2014 18:01:38 UTC 2014 年 5 月 27 日 (火) 3 時 1 分 38 秒 (日本時間) | |||
45 | 11e6 | 0 / 3906 | - | - | |
50 | 43e6 | 44 / 7482 | Cyp | January 22, 2014 15:46:52 UTC 2014 年 1 月 23 日 (木) 0 時 46 分 52 秒 (日本時間) | |
55 | 11e7 | 2 / 17740 | KTakahashi | September 14, 2014 03:07:36 UTC 2014 年 9 月 14 日 (日) 12 時 7 分 36 秒 (日本時間) |
name 名前 | Warut Roonguthai |
---|---|
date 日付 | November 22, 2012 21:07:11 UTC 2012 年 11 月 23 日 (金) 6 時 7 分 11 秒 (日本時間) |
composite number 合成数 | 13688800185463687084196583295029137100080480367376108291707158626500989162479116024217051962392172587610521172711689717139521824787464266120444428408992798615553860099875441696026698635881728375289017016058624829<212> |
prime factors 素因数 | 5228203770703310981618350975439124470341<40> |
composite cofactor 合成数の残り | 2618260646643127228125101769417646563089959299651798556035366219277208482002624246028398583116987755176337997301386493996173436568791809862027750371663666016252467856009369<172> |
factorization results 素因数分解の結果 | Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=578531504 Step 1 took 11497ms Step 2 took 7207ms ********** Factor found in step 2: 5228203770703310981618350975439124470341 Found probable prime factor of 40 digits: 5228203770703310981618350975439124470341 Composite cofactor 2618260646643127228125101769417646563089959299651798556035366219277208482002624246028398583116987755176337997301386493996173436568791809862027750371663666016252467856009369 has 172 digits |
software ソフトウェア | GMP-ECM 6.3 |
name 名前 | ebina |
---|---|
date 日付 | December 13, 2023 03:16:32 UTC 2023 年 12 月 13 日 (水) 12 時 16 分 32 秒 (日本時間) |
composite number 合成数 | 2618260646643127228125101769417646563089959299651798556035366219277208482002624246028398583116987755176337997301386493996173436568791809862027750371663666016252467856009369<172> |
prime factors 素因数 | 2793434189150129800761532221167342564287315888002563<52> 937290972099007241451176695753319930731346739212620793921070320268177187896177938969252785905432948326560126050915533363<120> |
factorization results 素因数分解の結果 | Number: 15559_217 N = 2618260646643127228125101769417646563089959299651798556035366219277208482002624246028398583116987755176337997301386493996173436568791809862027750371663666016252467856009369 (172 digits) SNFS difficulty: 219 digits. Divisors found: r1=2793434189150129800761532221167342564287315888002563 (pp52) r2=937290972099007241451176695753319930731346739212620793921070320268177187896177938969252785905432948326560126050915533363 (pp120) Version: Msieve v. 1.54 (SVN 1018) Total time: 139.71 hours. Factorization parameters were as follows: n: 2618260646643127228125101769417646563089959299651798556035366219277208482002624246028398583116987755176337997301386493996173436568791809862027750371663666016252467856009369 m: 1000000000000000000000000000000000000 deg: 6 c6: 140 c0: 31 skew: 0.78 # Murphy_E = 3.629e-12 type: snfs lss: 1 rlim: 30000000 alim: 30000000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.6 alambda: 2.6 Factor base limits: 30000000/30000000 Large primes per side: 3 Large prime bits: 29/29 Sieved rational special-q in [0, 0) Total raw relations: 53588105 Relations: 5717970 relations Pruned matrix : 4070729 x 4070953 Total sieving time: 133.98 hours. Total relation processing time: 0.31 hours. Matrix solve time: 5.29 hours. time per square root: 0.14 hours. Prototype def-par.txt line would be: snfs,219,6,0,0,0,0,0,0,0,0,30000000,30000000,29,29,58,58,2.6,2.6,100000 total time: 139.71 hours. Intel64 Family 6 Model 158 Stepping 12, GenuineIntel processors: 16, speed: 3.60GHz Windows-post2008Server-6.2.9200 Running Python 3.2 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1118 | 118 | Makoto Kamada | November 22, 2012 08:00:00 UTC 2012 年 11 月 22 日 (木) 17 時 0 分 0 秒 (日本時間) |
1000 | Warut Roonguthai | November 24, 2012 18:51:35 UTC 2012 年 11 月 25 日 (日) 3 時 51 分 35 秒 (日本時間) | |||
40 | 3e6 | 1600 | 300 | Serge Batalov | January 9, 2014 04:39:16 UTC 2014 年 1 月 9 日 (木) 13 時 39 分 16 秒 (日本時間) |
1300 | Serge Batalov | May 26, 2014 18:01:38 UTC 2014 年 5 月 27 日 (火) 3 時 1 分 38 秒 (日本時間) | |||
45 | 11e6 | 960 / 4075 | Youcef Lemsafer | October 31, 2014 11:23:28 UTC 2014 年 10 月 31 日 (金) 20 時 23 分 28 秒 (日本時間) |
name 名前 | Erik Branger |
---|---|
date 日付 | June 2, 2020 08:05:05 UTC 2020 年 6 月 2 日 (火) 17 時 5 分 5 秒 (日本時間) |
composite number 合成数 | 296499956150339465706152208355145161002289846048787670098260664188598233535985104852851439020807396625533644505137826914998565269363253908821332329248665234419462658373212039425094097969081701409<195> |
prime factors 素因数 | 5926985990624986703821018851601998915330391<43> 465951341490422389034556060724388683606906042678042173633483926729<66> 107361894478936651936906228971778006776574934675470658911525307282975405132767742162831<87> |
factorization results 素因数分解の結果 | Number: 15559_219 N = 296499956150339465706152208355145161002289846048787670098260664188598233535985104852851439020807396625533644505137826914998565269363253908821332329248665234419462658373212039425094097969081701409 (195 digits) SNFS difficulty: 221 digits. Divisors found: r1=5926985990624986703821018851601998915330391 (pp43) r2=465951341490422389034556060724388683606906042678042173633483926729 (pp66) r3=107361894478936651936906228971778006776574934675470658911525307282975405132767742162831 (pp87) Version: Msieve v. 1.52 (SVN unknown) Total time: 60.82 hours. Factorization parameters were as follows: n: 296499956150339465706152208355145161002289846048787670098260664188598233535985104852851439020807396625533644505137826914998565269363253908821332329248665234419462658373212039425094097969081701409 m: 10000000000000000000000000000000000000000000000000000000 deg: 4 c4: 7 c0: 155 skew: 1.00 type: snfs lss: 1 rlim: 536870912 alim: 44739242 lpbr: 29 lpba: 28 mfbr: 58 mfba: 56 rlambda: 2.8 alambda: 2.8 side: 1 Number of cores used: 6 Number of threads per core: 1 Factor base limits: 536870912/44739242 Large primes per side: 3 Large prime bits: 29/28 Total raw relations: 36197164 Relations: 7361718 relations Total pre-computation time approximately 1000 CPU-days. Pre-computation saved approximately 18 G rational relations. Total batch smoothness checking time: 29.05 hours. Total relation processing time: 0.62 hours. Pruned matrix : 6702303 x 6702529 Matrix solve time: 30.79 hours. time per square root: 0.35 hours. Prototype def-par.txt line would be: snfs,221,4,0,0,0,0,0,0,0,0,536870912,44739242,29,28,58,56,2.8,2.8,100000 total time: 60.82 hours. Intel64 Family 6 Model 158 Stepping 10, GenuineIntel Windows-10-10.0.18362-SP0 processors: 12, speed: 3.19GHz |
software ソフトウェア | GGNFS, NFS_factory, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1118 | 118 | Makoto Kamada | November 22, 2012 08:00:00 UTC 2012 年 11 月 22 日 (木) 17 時 0 分 0 秒 (日本時間) |
1000 | Warut Roonguthai | November 24, 2012 18:51:53 UTC 2012 年 11 月 25 日 (日) 3 時 51 分 53 秒 (日本時間) | |||
40 | 3e6 | 1600 | 300 | Serge Batalov | January 9, 2014 04:39:16 UTC 2014 年 1 月 9 日 (木) 13 時 39 分 16 秒 (日本時間) |
1300 | Serge Batalov | May 26, 2014 18:01:38 UTC 2014 年 5 月 27 日 (火) 3 時 1 分 38 秒 (日本時間) | |||
45 | 11e6 | 170 / 4075 | Youcef Lemsafer | October 30, 2014 21:25:52 UTC 2014 年 10 月 31 日 (金) 6 時 25 分 52 秒 (日本時間) |
name 名前 | Warut Roonguthai |
---|---|
date 日付 | November 22, 2012 21:11:57 UTC 2012 年 11 月 23 日 (金) 6 時 11 分 57 秒 (日本時間) |
composite number 合成数 | 633747199313033504108496810410523193085290140554128004043113919726299763493300838695336503300950165892736686450094443659727334133792722131782078072388129059335999457702288620405781300048867<189> |
prime factors 素因数 | 12578573831836249185655944334114529<35> |
composite cofactor 合成数の残り | 50383072658764020465108412348393208292535472878161095950380999537189154794069861739493390800356652627375100793334111718893314340903213993510336333532864323<155> |
factorization results 素因数分解の結果 | Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=946743377 Step 1 took 8846ms Step 2 took 6021ms ********** Factor found in step 2: 12578573831836249185655944334114529 Found probable prime factor of 35 digits: 12578573831836249185655944334114529 Composite cofactor 50383072658764020465108412348393208292535472878161095950380999537189154794069861739493390800356652627375100793334111718893314340903213993510336333532864323 has 155 digits |
software ソフトウェア | GMP-ECM 6.3 |
name 名前 | Erik Branger |
---|---|
date 日付 | November 25, 2018 21:05:35 UTC 2018 年 11 月 26 日 (月) 6 時 5 分 35 秒 (日本時間) |
composite number 合成数 | 50383072658764020465108412348393208292535472878161095950380999537189154794069861739493390800356652627375100793334111718893314340903213993510336333532864323<155> |
prime factors 素因数 | 33179384004683810216595792352824538240726660697077110857<56> 1518505366213297676559728582392029343418651957587444430772063646547145547819716567285239524652413739<100> |
factorization results 素因数分解の結果 | Number: 15559_220 N = 50383072658764020465108412348393208292535472878161095950380999537189154794069861739493390800356652627375100793334111718893314340903213993510336333532864323 (155 digits) SNFS difficulty: 222 digits. Divisors found: r1=33179384004683810216595792352824538240726660697077110857 (pp56) r2=1518505366213297676559728582392029343418651957587444430772063646547145547819716567285239524652413739 (pp100) Version: Msieve v. 1.52 (SVN unknown) Total time: 30.01 hours. Factorization parameters were as follows: n: 50383072658764020465108412348393208292535472878161095950380999537189154794069861739493390800356652627375100793334111718893314340903213993510336333532864323 m: 10000000000000000000000000000000000000000000000000000000 deg: 4 c4: 14 c0: 31 skew: 1.00 type: snfs lss: 1 rlim: 536870912 alim: 536870912 lpbr: 29 lpba: 28 mfbr: 58 mfba: 56 rlambda: 2.8 alambda: 2.8 side: 1 Number of cores used: 6 Number of threads per core: 1 Factor base limits: 536870912/536870912 Large primes per side: 3 Large prime bits: 29/28 Total raw relations: 30101498 Relations: 7193964 relations Total pre-computation time approximately 1000 CPU-days. Pre-computation saved approximately 18 G rational relations. Total batch smoothness checking time: 14.26 hours. Total relation processing time: 0.23 hours. Pruned matrix : 6319761 x 6319987 Matrix solve time: 15.40 hours. time per square root: 0.11 hours. Prototype def-par.txt line would be: snfs,222,4,0,0,0,0,0,0,0,0,536870912,536870912,29,28,58,56,2.8,2.8,100000 total time: 30.01 hours. Intel64 Family 6 Model 158 Stepping 10, GenuineIntel Windows-10-10.0.17134-SP0 processors: 12, speed: 3.19GHz |
software ソフトウェア | GGNFs, NFS_factory, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1118 | 118 | Makoto Kamada | November 22, 2012 08:00:00 UTC 2012 年 11 月 22 日 (木) 17 時 0 分 0 秒 (日本時間) |
1000 | Warut Roonguthai | November 24, 2012 18:52:01 UTC 2012 年 11 月 25 日 (日) 3 時 52 分 1 秒 (日本時間) | |||
40 | 3e6 | 300 | Serge Batalov | January 9, 2014 04:39:17 UTC 2014 年 1 月 9 日 (木) 13 時 39 分 17 秒 (日本時間) | |
45 | 11e6 | 806 / 4363 | 506 | Cyp | February 19, 2014 16:41:28 UTC 2014 年 2 月 20 日 (木) 1 時 41 分 28 秒 (日本時間) |
300 | Serge Batalov | May 27, 2014 00:30:17 UTC 2014 年 5 月 27 日 (火) 9 時 30 分 17 秒 (日本時間) |
name 名前 | Erik Branger |
---|---|
date 日付 | June 4, 2020 19:18:04 UTC 2020 年 6 月 5 日 (金) 4 時 18 分 4 秒 (日本時間) |
composite number 合成数 | 4782203998531338682428666408107426139458491555503838979122680069787696598854499134477725509341172720028088709128414401961927386378563699912859268177078457059<157> |
prime factors 素因数 | 19790393773863997939766074397190593136142148051104421984135171055276965587<74> 241642690548528273370965983655680852160035041715474789816280852353696761224356327857<84> |
factorization results 素因数分解の結果 | Number: 15559_221 N = 4782203998531338682428666408107426139458491555503838979122680069787696598854499134477725509341172720028088709128414401961927386378563699912859268177078457059 (157 digits) SNFS difficulty: 223 digits. Divisors found: r1=19790393773863997939766074397190593136142148051104421984135171055276965587 (pp74) r2=241642690548528273370965983655680852160035041715474789816280852353696761224356327857 (pp84) Version: Msieve v. 1.52 (SVN unknown) Total time: 56.89 hours. Factorization parameters were as follows: n: 4782203998531338682428666408107426139458491555503838979122680069787696598854499134477725509341172720028088709128414401961927386378563699912859268177078457059 m: 10000000000000000000000000000000000000000000000000000000 deg: 4 c4: 140 c0: 31 skew: 1.00 type: snfs lss: 1 rlim: 536870912 alim: 44739242 lpbr: 29 lpba: 28 mfbr: 58 mfba: 56 rlambda: 2.8 alambda: 2.8 side: 1 Number of cores used: 6 Number of threads per core: 1 Factor base limits: 536870912/44739242 Large primes per side: 3 Large prime bits: 29/28 Total raw relations: 35776999 Relations: 7948690 relations Total pre-computation time approximately 1000 CPU-days. Pre-computation saved approximately 18 G rational relations. Total batch smoothness checking time: 28.08 hours. Total relation processing time: 0.41 hours. Pruned matrix : 6993712 x 6993937 Matrix solve time: 27.81 hours. time per square root: 0.59 hours. Prototype def-par.txt line would be: snfs,223,4,0,0,0,0,0,0,0,0,536870912,44739242,29,28,58,56,2.8,2.8,100000 total time: 56.89 hours. Intel64 Family 6 Model 158 Stepping 10, GenuineIntel Windows-10-10.0.18362-SP0 processors: 12, speed: 3.19GHz |
software ソフトウェア | GGNFS, NFS_factory, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1118 | 118 | Makoto Kamada | November 22, 2012 08:00:00 UTC 2012 年 11 月 22 日 (木) 17 時 0 分 0 秒 (日本時間) |
1000 | Warut Roonguthai | November 24, 2012 18:52:08 UTC 2012 年 11 月 25 日 (日) 3 時 52 分 8 秒 (日本時間) | |||
40 | 3e6 | 1600 | 300 | Serge Batalov | January 9, 2014 04:39:17 UTC 2014 年 1 月 9 日 (木) 13 時 39 分 17 秒 (日本時間) |
1300 | Serge Batalov | May 26, 2014 18:01:39 UTC 2014 年 5 月 27 日 (火) 3 時 1 分 39 秒 (日本時間) | |||
45 | 11e6 | 130 / 4075 | Youcef Lemsafer | October 30, 2014 17:59:32 UTC 2014 年 10 月 31 日 (金) 2 時 59 分 32 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | May 2, 2020 15:17:20 UTC 2020 年 5 月 3 日 (日) 0 時 17 分 20 秒 (日本時間) |
composite number 合成数 | 18407631892212014268391747338871664365922152416944008621496022966800930869858820813830262889201912880761442955852033369166331825869928196529047848341893142032955158271246929866401713784208820113199043549370697983<212> |
prime factors 素因数 | 46952757328401583472913863613366238993786300016528303819642161<62> 392045812420845674205266921083602514575262009925007212862942042654764968195231298277320235785307017352789801082584719328227395323490823174401911731503<150> |
factorization results 素因数分解の結果 | Number: n N=18407631892212014268391747338871664365922152416944008621496022966800930869858820813830262889201912880761442955852033369166331825869928196529047848341893142032955158271246929866401713784208820113199043549370697983 ( 212 digits) SNFS difficulty: 223 digits. Divisors found: Sun May 3 00:50:46 2020 p62 factor: 46952757328401583472913863613366238993786300016528303819642161 Sun May 3 00:50:46 2020 p150 factor: 392045812420845674205266921083602514575262009925007212862942042654764968195231298277320235785307017352789801082584719328227395323490823174401911731503 Sun May 3 00:50:46 2020 elapsed time 09:50:00 (Msieve 1.54 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.116). Factorization parameters were as follows: # # N = 14x10^222+31 = 15(221)9 # n: 18407631892212014268391747338871664365922152416944008621496022966800930869858820813830262889201912880761442955852033369166331825869928196529047848341893142032955158271246929866401713784208820113199043549370697983 m: 10000000000000000000000000000000000000 deg: 6 c6: 14 c0: 31 skew: 1.14 # Murphy_E = 2.517e-12 type: snfs lss: 1 rlim: 37000000 alim: 37000000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.6 alambda: 2.6 Factor base limits: 37000000/37000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved special-q in [100000, 80100000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 9838570 hash collisions in 60548572 relations (53096288 unique) Msieve: matrix is 4541812 x 4542037 (1593.7 MB) Sieving start time: 2020/04/30 23:57:31 Sieving end time : 2020/05/02 14:59:47 Total sieving time: -681hrs 2min 16secs. Total relation processing time: 9hrs 13min 7sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 16min 41sec. Prototype def-par.txt line would be: snfs,223,6,0,0,0,0,0,0,0,0,37000000,37000000,29,29,58,58,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- [ 0.141282] smpboot: CPU0: AMD Ryzen 7 1700 Eight-Core Processor (family: 0x17, model: 0x1, stepping: 0x1) [ 0.000000] Memory: 16283232K/16703460K available (12300K kernel code, 2481K rwdata, 4264K rodata, 2432K init, 2712K bss, 420228K reserved, 0K cma-reserved) [ 0.176568] x86/mm: Memory block size: 128MB [ 0.024000] Calibrating delay loop (skipped), value calculated using timer frequency.. 5988.77 BogoMIPS (lpj=11977540) [ 0.174220] smpboot: Total of 16 processors activated (95820.32 BogoMIPS) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1118 | 118 | Makoto Kamada | November 22, 2012 08:00:00 UTC 2012 年 11 月 22 日 (木) 17 時 0 分 0 秒 (日本時間) |
1000 | Warut Roonguthai | November 24, 2012 18:52:15 UTC 2012 年 11 月 25 日 (日) 3 時 52 分 15 秒 (日本時間) | |||
40 | 3e6 | 1600 | 300 | Serge Batalov | January 9, 2014 04:39:18 UTC 2014 年 1 月 9 日 (木) 13 時 39 分 18 秒 (日本時間) |
1300 | Serge Batalov | May 26, 2014 18:01:39 UTC 2014 年 5 月 27 日 (火) 3 時 1 分 39 秒 (日本時間) | |||
45 | 11e6 | 130 / 4075 | Youcef Lemsafer | October 30, 2014 14:49:47 UTC 2014 年 10 月 30 日 (木) 23 時 49 分 47 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | January 9, 2014 08:55:33 UTC 2014 年 1 月 9 日 (木) 17 時 55 分 33 秒 (日本時間) |
composite number 合成数 | 25018678547785492585745081540143539546487010838480587352093452554477659208130563578120968248328814060208699786944096562846572305643226232303763941044992985869611726687387003998356001902862789974211119646072463326039<215> |
prime factors 素因数 | 9802082441637807160189027793213046461<37> 2552384016023964369835376169888753703695879524574634284601974718627013009312215371741833408848624742986068372901853984182543924063096753863832664014403295569294115319149471022499<178> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3863108851 Step 1 took 18420ms Step 2 took 6341ms ********** Factor found in step 2: 9802082441637807160189027793213046461 Found probable prime factor of 37 digits: 9802082441637807160189027793213046461 Probable prime cofactor |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1118 | 118 | Makoto Kamada | November 22, 2012 08:00:00 UTC 2012 年 11 月 22 日 (木) 17 時 0 分 0 秒 (日本時間) |
1000 | Warut Roonguthai | November 24, 2012 18:52:54 UTC 2012 年 11 月 25 日 (日) 3 時 52 分 54 秒 (日本時間) | |||
40 | 3e6 | 300 / 2045 | Serge Batalov | January 9, 2014 04:39:18 UTC 2014 年 1 月 9 日 (木) 13 時 39 分 18 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1118 | 118 | Makoto Kamada | November 22, 2012 08:00:00 UTC 2012 年 11 月 22 日 (木) 17 時 0 分 0 秒 (日本時間) |
1000 | Warut Roonguthai | November 24, 2012 18:53:12 UTC 2012 年 11 月 25 日 (日) 3 時 53 分 12 秒 (日本時間) | |||
40 | 3e6 | 1600 | 300 | Serge Batalov | January 9, 2014 04:39:19 UTC 2014 年 1 月 9 日 (木) 13 時 39 分 19 秒 (日本時間) |
1300 | Serge Batalov | May 26, 2014 18:01:39 UTC 2014 年 5 月 27 日 (火) 3 時 1 分 39 秒 (日本時間) | |||
45 | 11e6 | 4147 | 144 | Youcef Lemsafer | October 30, 2014 09:35:20 UTC 2014 年 10 月 30 日 (木) 18 時 35 分 20 秒 (日本時間) |
4003 | Thomas Kozlowski | December 11, 2024 14:31:31 UTC 2024 年 12 月 11 日 (水) 23 時 31 分 31 秒 (日本時間) |
composite cofactor 合成数の残り | 4245445083499078259213639133242514481237958753524464933716588679390757884792067918141813345745583652379645717234214192657781744124674908214548240853218094581868727<163> |
---|
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1118 | 118 | Makoto Kamada | November 22, 2012 08:00:00 UTC 2012 年 11 月 22 日 (木) 17 時 0 分 0 秒 (日本時間) |
1000 | Warut Roonguthai | November 24, 2012 18:53:19 UTC 2012 年 11 月 25 日 (日) 3 時 53 分 19 秒 (日本時間) | |||
40 | 3e6 | 1600 | 300 | Serge Batalov | January 9, 2014 04:39:20 UTC 2014 年 1 月 9 日 (木) 13 時 39 分 20 秒 (日本時間) |
1300 | Serge Batalov | May 26, 2014 18:01:40 UTC 2014 年 5 月 27 日 (火) 3 時 1 分 40 秒 (日本時間) | |||
45 | 11e6 | 4146 | 144 | Youcef Lemsafer | October 30, 2014 07:16:40 UTC 2014 年 10 月 30 日 (木) 16 時 16 分 40 秒 (日本時間) |
4002 | Thomas Kozlowski | December 11, 2024 15:31:39 UTC 2024 年 12 月 12 日 (木) 0 時 31 分 39 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1118 | 118 | Makoto Kamada | November 22, 2012 08:00:00 UTC 2012 年 11 月 22 日 (木) 17 時 0 分 0 秒 (日本時間) |
1000 | Warut Roonguthai | November 24, 2012 18:53:29 UTC 2012 年 11 月 25 日 (日) 3 時 53 分 29 秒 (日本時間) | |||
40 | 3e6 | 1600 | 300 | Serge Batalov | January 9, 2014 04:39:20 UTC 2014 年 1 月 9 日 (木) 13 時 39 分 20 秒 (日本時間) |
1300 | Serge Batalov | May 26, 2014 18:01:40 UTC 2014 年 5 月 27 日 (火) 3 時 1 分 40 秒 (日本時間) | |||
45 | 11e6 | 4131 | 130 | Youcef Lemsafer | October 29, 2014 18:05:52 UTC 2014 年 10 月 30 日 (木) 3 時 5 分 52 秒 (日本時間) |
4001 | Thomas Kozlowski | December 11, 2024 16:51:02 UTC 2024 年 12 月 12 日 (木) 1 時 51 分 2 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | May 26, 2014 22:55:16 UTC 2014 年 5 月 27 日 (火) 7 時 55 分 16 秒 (日本時間) |
composite number 合成数 | 4212026457992572729791115656895650947858581992647582481162897021112293186221213646453979809975021648027054407128325323759482306114788296967363184118580967309120634966852948165870873037370171995903904768347<205> |
prime factors 素因数 | 25251918571179501579848419569389845879039<41> 166800255042792638208995397809927380318702802222345086602356596038249002385565354020364009630583723359137796990669583657636418106716217280016690993189703122997361573<165> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2030439332 Step 1 took 18067ms ********** Factor found in step 1: 25251918571179501579848419569389845879039 Found probable prime factor of 41 digits: 25251918571179501579848419569389845879039 Probable prime cofactor |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1118 | 118 | Makoto Kamada | November 22, 2012 08:00:00 UTC 2012 年 11 月 22 日 (木) 17 時 0 分 0 秒 (日本時間) |
1000 | Warut Roonguthai | November 24, 2012 18:53:36 UTC 2012 年 11 月 25 日 (日) 3 時 53 分 36 秒 (日本時間) | |||
40 | 3e6 | 1600 / 1625 | 300 | Serge Batalov | January 9, 2014 04:39:21 UTC 2014 年 1 月 9 日 (木) 13 時 39 分 21 秒 (日本時間) |
1300 | Serge Batalov | May 26, 2014 18:01:40 UTC 2014 年 5 月 27 日 (火) 3 時 1 分 40 秒 (日本時間) | |||
45 | 11e6 | 0 / 3921 | - | - | |
50 | 43e6 | 44 / 7486 | Cyp | January 11, 2014 03:09:10 UTC 2014 年 1 月 11 日 (土) 12 時 9 分 10 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1118 | 118 | Makoto Kamada | November 22, 2012 08:00:00 UTC 2012 年 11 月 22 日 (木) 17 時 0 分 0 秒 (日本時間) |
1000 | Warut Roonguthai | November 24, 2012 18:53:42 UTC 2012 年 11 月 25 日 (日) 3 時 53 分 42 秒 (日本時間) | |||
40 | 3e6 | 1600 | 300 | Serge Batalov | January 9, 2014 04:39:21 UTC 2014 年 1 月 9 日 (木) 13 時 39 分 21 秒 (日本時間) |
1300 | Serge Batalov | May 26, 2014 18:01:41 UTC 2014 年 5 月 27 日 (火) 3 時 1 分 41 秒 (日本時間) | |||
45 | 11e6 | 4002 | Thomas Kozlowski | December 11, 2024 18:00:14 UTC 2024 年 12 月 12 日 (木) 3 時 0 分 14 秒 (日本時間) | |
50 | 43e6 | 44 / 6583 | Cyp | January 31, 2014 17:03:24 UTC 2014 年 2 月 1 日 (土) 2 時 3 分 24 秒 (日本時間) | |
55 | 11e7 | 2 / 17490 | KTakahashi | September 14, 2014 01:53:33 UTC 2014 年 9 月 14 日 (日) 10 時 53 分 33 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1118 | 118 | Makoto Kamada | November 22, 2012 08:00:00 UTC 2012 年 11 月 22 日 (木) 17 時 0 分 0 秒 (日本時間) |
1000 | Warut Roonguthai | November 24, 2012 18:53:56 UTC 2012 年 11 月 25 日 (日) 3 時 53 分 56 秒 (日本時間) | |||
40 | 3e6 | 1600 | 300 | Serge Batalov | January 9, 2014 04:39:22 UTC 2014 年 1 月 9 日 (木) 13 時 39 分 22 秒 (日本時間) |
1300 | Serge Batalov | May 26, 2014 18:01:41 UTC 2014 年 5 月 27 日 (火) 3 時 1 分 41 秒 (日本時間) | |||
45 | 11e6 | 4002 | Thomas Kozlowski | December 11, 2024 19:19:44 UTC 2024 年 12 月 12 日 (木) 4 時 19 分 44 秒 (日本時間) | |
50 | 43e6 | 44 / 6583 | Cyp | January 26, 2014 09:32:52 UTC 2014 年 1 月 26 日 (日) 18 時 32 分 52 秒 (日本時間) | |
55 | 11e7 | 2 / 17490 | KTakahashi | September 14, 2014 02:54:17 UTC 2014 年 9 月 14 日 (日) 11 時 54 分 17 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1118 | 118 | Makoto Kamada | November 22, 2012 08:00:00 UTC 2012 年 11 月 22 日 (木) 17 時 0 分 0 秒 (日本時間) |
1000 | Warut Roonguthai | November 24, 2012 18:54:03 UTC 2012 年 11 月 25 日 (日) 3 時 54 分 3 秒 (日本時間) | |||
40 | 3e6 | 1600 | 300 | Serge Batalov | January 9, 2014 04:39:22 UTC 2014 年 1 月 9 日 (木) 13 時 39 分 22 秒 (日本時間) |
1300 | Serge Batalov | May 26, 2014 18:01:42 UTC 2014 年 5 月 27 日 (火) 3 時 1 分 42 秒 (日本時間) | |||
45 | 11e6 | 4000 | Thomas Kozlowski | December 11, 2024 20:38:53 UTC 2024 年 12 月 12 日 (木) 5 時 38 分 53 秒 (日本時間) | |
50 | 43e6 | 44 / 6584 | Cyp | January 22, 2014 03:49:20 UTC 2014 年 1 月 22 日 (水) 12 時 49 分 20 秒 (日本時間) | |
55 | 11e7 | 2 / 17490 | KTakahashi | September 14, 2014 02:40:52 UTC 2014 年 9 月 14 日 (日) 11 時 40 分 52 秒 (日本時間) |
name 名前 | Warut Roonguthai |
---|---|
date 日付 | November 23, 2012 06:46:37 UTC 2012 年 11 月 23 日 (金) 15 時 46 分 37 秒 (日本時間) |
composite number 合成数 | 446215722717230898165722771733533462833051113622341816626529641064781009491583442900897933633058997479079386939968027434581152001447164900081443274829864757097276128802507943705930067650532022322319<198> |
prime factors 素因数 | 268209324880096649039436852820831699<36> 658646321954151880836663686570841973<36> 2525914959329121838930514808834170812330841845072908198789523675707510456390693972965942428575334180880533992164477232572208097<127> |
factorization results 素因数分解の結果 | Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=889784741 Step 1 took 9860ms Step 2 took 5772ms ********** Factor found in step 2: 658646321954151880836663686570841973 Found probable prime factor of 36 digits: 658646321954151880836663686570841973 Composite cofactor 677473945946200553397335814893865673623124814271039526257663251804074516164561207214787641471784273612723817660514188921735938022192105794307237293654356442066803 has 162 digits Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=983422035 Step 1 took 6443ms Step 2 took 4602ms ********** Factor found in step 2: 268209324880096649039436852820831699 Found probable prime factor of 36 digits: 268209324880096649039436852820831699 Probable prime cofactor 2525914959329121838930514808834170812330841845072908198789523675707510456390693972965942428575334180880533992164477232572208097 has 127 digits |
software ソフトウェア | GMP-ECM 6.3 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | November 22, 2012 08:00:00 UTC 2012 年 11 月 22 日 (木) 17 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | February 1, 2013 10:44:47 UTC 2013 年 2 月 1 日 (金) 19 時 44 分 47 秒 (日本時間) |
composite number 合成数 | 103016924208977189109639440765268579838116261957321559970566593083149374540103016924208977189109639440765268579838116261957321559970566593083149374540103016924208977189109639440765268579838116261957321559970566593083149374540103016924209<237> |
prime factors 素因数 | 181252198314240645091313043399389953620708577507<48> 568362343558308957027191160770629099380277690174184565714323012102710427556565946681369074278302389594366970578606764804654225874492605786485669587576680565355632950580776535081847307847387<189> |
factorization results 素因数分解の結果 | Using B1=43000000, B2=240490660426, polynomial Dickson(12), sigma=1906980194 Step 1 took 707713ms Step 2 took 160375ms ********** Factor found in step 2: 181252198314240645091313043399389953620708577507 Found probable prime factor of 48 digits: 181252198314240645091313043399389953620708577507 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1118 | 118 | Makoto Kamada | November 22, 2012 08:00:00 UTC 2012 年 11 月 22 日 (木) 17 時 0 分 0 秒 (日本時間) |
1000 | Warut Roonguthai | November 24, 2012 18:54:11 UTC 2012 年 11 月 25 日 (日) 3 時 54 分 11 秒 (日本時間) | |||
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 1000 / 3376 | Dmitry Domanov | December 28, 2012 15:32:59 UTC 2012 年 12 月 29 日 (土) 0 時 32 分 59 秒 (日本時間) | |
50 | 43e6 | 300 / 7322 | Dmitry Domanov | January 31, 2013 14:30:33 UTC 2013 年 1 月 31 日 (木) 23 時 30 分 33 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1118 | 118 | Makoto Kamada | November 22, 2012 08:00:00 UTC 2012 年 11 月 22 日 (木) 17 時 0 分 0 秒 (日本時間) |
1000 | Warut Roonguthai | November 24, 2012 18:54:28 UTC 2012 年 11 月 25 日 (日) 3 時 54 分 28 秒 (日本時間) | |||
40 | 3e6 | 1600 | 300 | Serge Batalov | January 9, 2014 04:39:23 UTC 2014 年 1 月 9 日 (木) 13 時 39 分 23 秒 (日本時間) |
1300 | Serge Batalov | May 26, 2014 18:01:42 UTC 2014 年 5 月 27 日 (火) 3 時 1 分 42 秒 (日本時間) | |||
45 | 11e6 | 4130 | 130 | Youcef Lemsafer | October 28, 2014 17:12:58 UTC 2014 年 10 月 29 日 (水) 2 時 12 分 58 秒 (日本時間) |
4000 | Thomas Kozlowski | December 11, 2024 22:08:59 UTC 2024 年 12 月 12 日 (木) 7 時 8 分 59 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1118 | 118 | Makoto Kamada | November 22, 2012 08:00:00 UTC 2012 年 11 月 22 日 (木) 17 時 0 分 0 秒 (日本時間) |
1000 | Warut Roonguthai | November 24, 2012 18:54:35 UTC 2012 年 11 月 25 日 (日) 3 時 54 分 35 秒 (日本時間) | |||
40 | 3e6 | 1600 | 300 | Serge Batalov | January 9, 2014 04:39:24 UTC 2014 年 1 月 9 日 (木) 13 時 39 分 24 秒 (日本時間) |
1300 | Serge Batalov | May 26, 2014 18:01:42 UTC 2014 年 5 月 27 日 (火) 3 時 1 分 42 秒 (日本時間) | |||
45 | 11e6 | 4130 | 130 | Youcef Lemsafer | October 28, 2014 13:55:37 UTC 2014 年 10 月 28 日 (火) 22 時 55 分 37 秒 (日本時間) |
4000 | Thomas Kozlowski | December 11, 2024 23:39:13 UTC 2024 年 12 月 12 日 (木) 8 時 39 分 13 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1118 | 118 | Makoto Kamada | November 22, 2012 08:00:00 UTC 2012 年 11 月 22 日 (木) 17 時 0 分 0 秒 (日本時間) |
1000 | Warut Roonguthai | November 24, 2012 18:54:44 UTC 2012 年 11 月 25 日 (日) 3 時 54 分 44 秒 (日本時間) | |||
40 | 3e6 | 1600 | 300 | Serge Batalov | January 9, 2014 04:39:24 UTC 2014 年 1 月 9 日 (木) 13 時 39 分 24 秒 (日本時間) |
1300 | Serge Batalov | May 26, 2014 18:01:43 UTC 2014 年 5 月 27 日 (火) 3 時 1 分 43 秒 (日本時間) | |||
45 | 11e6 | 4162 | 160 | Youcef Lemsafer | October 28, 2014 08:39:17 UTC 2014 年 10 月 28 日 (火) 17 時 39 分 17 秒 (日本時間) |
4002 | Thomas Kozlowski | December 12, 2024 01:21:29 UTC 2024 年 12 月 12 日 (木) 10 時 21 分 29 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1118 | 118 | Makoto Kamada | November 22, 2012 08:00:00 UTC 2012 年 11 月 22 日 (木) 17 時 0 分 0 秒 (日本時間) |
1000 | Warut Roonguthai | November 24, 2012 18:55:03 UTC 2012 年 11 月 25 日 (日) 3 時 55 分 3 秒 (日本時間) | |||
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 600 | Dmitry Domanov | December 21, 2012 23:02:46 UTC 2012 年 12 月 22 日 (土) 8 時 2 分 46 秒 (日本時間) | |
50 | 43e6 | 1100 / 7412 | 600 | Dmitry Domanov | December 31, 2012 00:22:15 UTC 2012 年 12 月 31 日 (月) 9 時 22 分 15 秒 (日本時間) |
500 | Dmitry Domanov | January 5, 2013 15:25:18 UTC 2013 年 1 月 6 日 (日) 0 時 25 分 18 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1118 | 118 | Makoto Kamada | November 22, 2012 08:00:00 UTC 2012 年 11 月 22 日 (木) 17 時 0 分 0 秒 (日本時間) |
1000 | Warut Roonguthai | November 24, 2012 18:55:09 UTC 2012 年 11 月 25 日 (日) 3 時 55 分 9 秒 (日本時間) | |||
40 | 3e6 | 300 | Serge Batalov | January 9, 2014 04:39:28 UTC 2014 年 1 月 9 日 (木) 13 時 39 分 28 秒 (日本時間) | |
45 | 11e6 | 4418 | 516 | Cyp | January 10, 2014 04:25:06 UTC 2014 年 1 月 10 日 (金) 13 時 25 分 6 秒 (日本時間) |
300 | Serge Batalov | May 27, 2014 00:30:18 UTC 2014 年 5 月 27 日 (火) 9 時 30 分 18 秒 (日本時間) | |||
3602 | Thomas Kozlowski | December 12, 2024 02:42:59 UTC 2024 年 12 月 12 日 (木) 11 時 42 分 59 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | May 27, 2014 06:09:32 UTC 2014 年 5 月 27 日 (火) 15 時 9 分 32 秒 (日本時間) |
composite number 合成数 | 3113783268618451692565654882934494981333593358979843125511553678220216753974192397617141015799172702186860430012417258102781324327201131672970147542134508498118004862183818443324025503767847332418909118492275510255407<217> |
prime factors 素因数 | 7542015722336657149965796819380817895466487<43> |
composite cofactor 合成数の残り | 412858230909885130203340633239638080463335259900249683993983404312837755474276227943056882151721280749961868411837345256447021019850031089703519781675563177674187393031873161<174> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=58553269330, polynomial Dickson(12), sigma=2755572571 Step 1 took 66599ms Step 2 took 29967ms ********** Factor found in step 2: 7542015722336657149965796819380817895466487 Found probable prime factor of 43 digits: 7542015722336657149965796819380817895466487 Composite cofactor |
name 名前 | Serge Batalov |
---|---|
date 日付 | May 27, 2014 15:52:28 UTC 2014 年 5 月 28 日 (水) 0 時 52 分 28 秒 (日本時間) |
composite number 合成数 | 412858230909885130203340633239638080463335259900249683993983404312837755474276227943056882151721280749961868411837345256447021019850031089703519781675563177674187393031873161<174> |
prime factors 素因数 | 2030045119039982619256825783171348022543<40> 203373918657102373618182154036907544965513977348562416439330891206599911123219720408722337238395505359620110667872451776899776540151527<135> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=58553269330, polynomial Dickson(12), sigma=286862410 Step 1 took 73790ms Step 2 took 35793ms ********** Factor found in step 2: 2030045119039982619256825783171348022543 Found probable prime factor of 40 digits: 2030045119039982619256825783171348022543 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1118 | 118 | Makoto Kamada | November 22, 2012 08:00:00 UTC 2012 年 11 月 22 日 (木) 17 時 0 分 0 秒 (日本時間) |
1000 | Warut Roonguthai | November 24, 2012 18:55:16 UTC 2012 年 11 月 25 日 (日) 3 時 55 分 16 秒 (日本時間) | |||
40 | 3e6 | 300 | Serge Batalov | January 9, 2014 04:39:29 UTC 2014 年 1 月 9 日 (木) 13 時 39 分 29 秒 (日本時間) | |
45 | 11e6 | 806 / 4363 | 506 | Cyp | March 7, 2014 03:01:17 UTC 2014 年 3 月 7 日 (金) 12 時 1 分 17 秒 (日本時間) |
300 | Serge Batalov | May 27, 2014 00:30:18 UTC 2014 年 5 月 27 日 (火) 9 時 30 分 18 秒 (日本時間) |
name 名前 | Warut Roonguthai |
---|---|
date 日付 | November 22, 2012 16:10:30 UTC 2012 年 11 月 23 日 (金) 1 時 10 分 30 秒 (日本時間) |
composite number 合成数 | 13450007545031339044516217071677028285675159347938606291237286804302167769289598353220858836058578381047502666435829311556152231453267868204331811022096897591953039736344320649402922357518889984869398835445637464481097707<221> |
prime factors 素因数 | 20732435723604948286344359859611<32> |
composite cofactor 合成数の残り | 648742276322015129209817197897867619406592714359218881532015962414853865206608007439891492604644045451544270420666724711867493741867735044190558742764837776720844317770122285796041593521137<189> |
factorization results 素因数分解の結果 | Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3881709504 Step 1 took 11420ms Step 2 took 6396ms ********** Factor found in step 2: 20732435723604948286344359859611 Found probable prime factor of 32 digits: 20732435723604948286344359859611 Composite cofactor 648742276322015129209817197897867619406592714359218881532015962414853865206608007439891492604644045451544270420666724711867493741867735044190558742764837776720844317770122285796041593521137 has 189 digits |
software ソフトウェア | GMP-ECM 6.3 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1118 | 118 | Makoto Kamada | November 22, 2012 08:00:00 UTC 2012 年 11 月 22 日 (木) 17 時 0 分 0 秒 (日本時間) |
1000 | Warut Roonguthai | November 24, 2012 18:55:24 UTC 2012 年 11 月 25 日 (日) 3 時 55 分 24 秒 (日本時間) | |||
40 | 3e6 | 1600 | 300 | Serge Batalov | January 9, 2014 04:39:29 UTC 2014 年 1 月 9 日 (木) 13 時 39 分 29 秒 (日本時間) |
1300 | Serge Batalov | May 26, 2014 18:01:43 UTC 2014 年 5 月 27 日 (火) 3 時 1 分 43 秒 (日本時間) | |||
45 | 11e6 | 4000 | Thomas Kozlowski | December 12, 2024 03:52:18 UTC 2024 年 12 月 12 日 (木) 12 時 52 分 18 秒 (日本時間) | |
50 | 43e6 | 44 / 6584 | Cyp | January 24, 2014 05:25:11 UTC 2014 年 1 月 24 日 (金) 14 時 25 分 11 秒 (日本時間) | |
55 | 11e7 | 2 / 17490 | KTakahashi | September 14, 2014 01:54:38 UTC 2014 年 9 月 14 日 (日) 10 時 54 分 38 秒 (日本時間) |
name 名前 | Warut Roonguthai |
---|---|
date 日付 | November 22, 2012 14:53:37 UTC 2012 年 11 月 22 日 (木) 23 時 53 分 37 秒 (日本時間) |
composite number 合成数 | 509975998579813906008586218775244527803544371932699121525955313794167719692667056604695796463390944753480495954677241777311010275080493669712873136974454047591245536204587928502862422517085377013114047819952597100415266798730417239<231> |
prime factors 素因数 | 50147802319311827677394734037533<32> 10169458580309970519550300839640356356295659787330893418031902990000916011847332433507332096398556652169509053877066339544879528464227761076677347399037889802059380381149002666055080112129837008494083<200> |
factorization results 素因数分解の結果 | Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1508701698 Step 1 took 11451ms Step 2 took 7004ms ********** Factor found in step 2: 50147802319311827677394734037533 Found probable prime factor of 32 digits: 50147802319311827677394734037533 Probable prime cofactor 10169458580309970519550300839640356356295659787330893418031902990000916011847332433507332096398556652169509053877066339544879528464227761076677347399037889802059380381149002666055080112129837008494083 has 200 digits |
software ソフトウェア | GMP-ECM 6.3 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | November 22, 2012 08:00:00 UTC 2012 年 11 月 22 日 (木) 17 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 400 | Erik Branger | November 20, 2015 20:36:54 UTC 2015 年 11 月 21 日 (土) 5 時 36 分 54 秒 (日本時間) | |
45 | 11e6 | 4402 | 600 | Dmitry Domanov | January 23, 2017 13:21:34 UTC 2017 年 1 月 23 日 (月) 22 時 21 分 34 秒 (日本時間) |
3802 | Thomas Kozlowski | December 12, 2024 04:59:25 UTC 2024 年 12 月 12 日 (木) 13 時 59 分 25 秒 (日本時間) |
name 名前 | Thomas Kozlowski |
---|---|
date 日付 | December 12, 2024 06:59:16 UTC 2024 年 12 月 12 日 (木) 15 時 59 分 16 秒 (日本時間) |
composite number 合成数 | 225847899972741144468542734278480940708695529860482799596964461285814962836005731041191858867545391618742674552708310276143319206284116003824569052083153913527061106224425999434384053570726281365209387670534684228819822936591462492091<234> |
prime factors 素因数 | 76557701900769916285413198621602505726688493<44> |
composite cofactor 合成数の残り | 2950034997987183109019806005785058797079181626218419937771617198793764577319609492648784979291520194758113657471888396358968086410942879407732803216776157633494604383071474761341801950972487<190> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.6 [configured with GMP 6.3.0, --enable-asm-redc] [ECM] Input number is 225847899972741144468542734278480940708695529860482799596964461285814962836005731041191858867545391618742674552708310276143319206284116003824569052083153913527061106224425999434384053570726281365209387670534684228819822936591462492091 (234 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:1828591049 Step 1 took 42738ms Step 2 took 15877ms Run 2 out of 0: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:4062700946 Step 1 took 43352ms Step 2 took 15790ms Run 3 out of 0: ... Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:572336272 Step 1 took 43245ms Step 2 took 15793ms Run 80 out of 0: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:1958835147 Step 1 took 43554ms Step 2 took 16830ms ** Factor found in step 2: 76557701900769916285413198621602505726688493 Found prime factor of 44 digits: 76557701900769916285413198621602505726688493 Composite cofactor 2950034997987183109019806005785058797079181626218419937771617198793764577319609492648784979291520194758113657471888396358968086410942879407732803216776157633494604383071474761341801950972487 has 190 digits |
execution environment 実行環境 | 2x Xeon E5-2698v4, 128GB DDR4, Ubuntu Server 24.04 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 400 | Erik Branger | November 20, 2015 20:36:59 UTC 2015 年 11 月 21 日 (土) 5 時 36 分 59 秒 (日本時間) | |
45 | 11e6 | 1000 / 4390 | Lionel Debroux | July 11, 2020 17:51:08 UTC 2020 年 7 月 12 日 (日) 2 時 51 分 8 秒 (日本時間) |
name 名前 | Erik Branger |
---|---|
date 日付 | November 20, 2015 20:37:18 UTC 2015 年 11 月 21 日 (土) 5 時 37 分 18 秒 (日本時間) |
composite number 合成数 | 34278728832684851129747067214601435142831097853387726931272732189056011398876176572686816900463008332180870181809655438961985561477915218494358027601486719498499953370942599601904556031600901709086668313905566224189504937895415097043<233> |
prime factors 素因数 | 18707300651625109786379361281<29> 1832371728612115179818561998226326894913631718769833920508498776388038003813104591984666513754028290347191794837062846072184114964064567129788341585368969324087870923213202968449125045369769370788120597203<205> |
factorization results 素因数分解の結果 | Fri 2015/11/20 19:57:21 UTC GMP-ECM 7.0-dev [configured with MPIR 2.6.0, --enable-openmp] [ECM] Fri 2015/11/20 19:57:21 UTC Input number is 34278728832684851129747067214601435142831097853387726931272732189056011398876176572686816900463008332180870181809655438961985561477915218494358027601486719498499953370942599601904556031600901709086668313905566224189504937895415097043 (233 digits) Fri 2015/11/20 19:57:21 UTC Run 110 out of 400: Fri 2015/11/20 19:57:21 UTC Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:767410044 Fri 2015/11/20 19:57:21 UTC Step 1 took 16797ms Fri 2015/11/20 19:57:21 UTC Step 2 took 8312ms Fri 2015/11/20 19:57:21 UTC ********** Factor found in step 2: 18707300651625109786379361281 Fri 2015/11/20 19:57:21 UTC Found probable prime factor of 29 digits: 18707300651625109786379361281 Fri 2015/11/20 19:57:21 UTC Probable prime cofactor 1832371728612115179818561998226326894913631718769833920508498776388038003813104591984666513754028290347191794837062846072184114964064567129788341585368969324087870923213202968449125045369769370788120597203 has 205 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 400 | Erik Branger | November 20, 2015 20:41:54 UTC 2015 年 11 月 21 日 (土) 5 時 41 分 54 秒 (日本時間) | |
45 | 11e6 | 3003 | Thomas Kozlowski | December 12, 2024 07:36:40 UTC 2024 年 12 月 12 日 (木) 16 時 36 分 40 秒 (日本時間) | |
50 | 43e6 | 400 / 6864 | Lionel Debroux | October 18, 2020 17:11:11 UTC 2020 年 10 月 19 日 (月) 2 時 11 分 11 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 9, 2017 08:17:45 UTC 2017 年 1 月 9 日 (月) 17 時 17 分 45 秒 (日本時間) |
composite number 合成数 | 1555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555559<256> |
prime factors 素因数 | 111351632701929312477234850547996000078768113<45> 13969759740474856313303831131297756653506450019163752389342424255264269061177871209595272174487157150536398114905722109864617551691356946189235463890467655802022203306522994673887824006558523026326438264368825943<212> |
factorization results 素因数分解の結果 | Using B1=43000000, B2=240490660426, polynomial Dickson(12), sigma=209149487 Step 1 took 611277ms Step 2 took 117244ms ********** Factor found in step 2: 111351632701929312477234850547996000078768113 Found probable prime factor of 45 digits: 111351632701929312477234850547996000078768113 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 904 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | 400 | Erik Branger | November 20, 2015 23:42:43 UTC 2015 年 11 月 21 日 (土) 8 時 42 分 43 秒 (日本時間) |
600 | Dmitry Domanov | November 21, 2015 09:25:07 UTC 2015 年 11 月 21 日 (土) 18 時 25 分 7 秒 (日本時間) | |||
45 | 11e6 | 2116 | 1700 | Serge Batalov | December 19, 2015 07:52:05 UTC 2015 年 12 月 19 日 (土) 16 時 52 分 5 秒 (日本時間) |
416 | Ignacio Santos | February 18, 2016 19:57:36 UTC 2016 年 2 月 19 日 (金) 4 時 57 分 36 秒 (日本時間) | |||
50 | 43e6 | 2600 / 7035 | 600 | Dmitry Domanov | February 9, 2016 15:43:47 UTC 2016 年 2 月 10 日 (水) 0 時 43 分 47 秒 (日本時間) |
2000 | Dmitry Domanov | January 6, 2017 23:53:44 UTC 2017 年 1 月 7 日 (土) 8 時 53 分 44 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 400 | Erik Branger | November 20, 2015 23:42:54 UTC 2015 年 11 月 21 日 (土) 8 時 42 分 54 秒 (日本時間) | |
45 | 11e6 | 4501 | 2100 | Eric Jeancolas | November 7, 2020 04:50:55 UTC 2020 年 11 月 7 日 (土) 13 時 50 分 55 秒 (日本時間) |
2401 | Thomas Kozlowski | December 12, 2024 08:31:04 UTC 2024 年 12 月 12 日 (木) 17 時 31 分 4 秒 (日本時間) |
name 名前 | Erik Branger |
---|---|
date 日付 | November 20, 2015 23:43:28 UTC 2015 年 11 月 21 日 (土) 8 時 43 分 28 秒 (日本時間) |
composite number 合成数 | 946003123950096884026780323679478745862524463651961596418544031424566202101594711343667757710859713765333667783349878840835987394858226247693318953688803710272655855738384022150721671082257652482242351421606239877587721958069<225> |
prime factors 素因数 | 35782622157668801793169369611973<32> 26437501415679591993324584261392745343392109542278755386720499983713741336269959923719461792605649732065480870675491612921528007181977525619511305614519602311460946593283342403356505238314869553<194> |
factorization results 素因数分解の結果 | Fri 2015/11/20 22:02:30 UTC GMP-ECM 7.0-dev [configured with MPIR 2.6.0, --enable-openmp] [ECM] Fri 2015/11/20 22:02:30 UTC Input number is 946003123950096884026780323679478745862524463651961596418544031424566202101594711343667757710859713765333667783349878840835987394858226247693318953688803710272655855738384022150721671082257652482242351421606239877587721958069 (225 digits) Fri 2015/11/20 22:02:30 UTC Run 1 out of 400: Fri 2015/11/20 22:02:30 UTC Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:2736214813 Fri 2015/11/20 22:02:30 UTC Step 1 took 13203ms Fri 2015/11/20 22:02:30 UTC Step 2 took 7407ms Fri 2015/11/20 22:02:30 UTC ********** Factor found in step 2: 35782622157668801793169369611973 Fri 2015/11/20 22:02:30 UTC Found probable prime factor of 32 digits: 35782622157668801793169369611973 Fri 2015/11/20 22:02:30 UTC Probable prime cofactor 26437501415679591993324584261392745343392109542278755386720499983713741336269959923719461792605649732065480870675491612921528007181977525619511305614519602311460946593283342403356505238314869553 has 194 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) |
name 名前 | Erik Branger |
---|---|
date 日付 | November 20, 2015 23:43:53 UTC 2015 年 11 月 21 日 (土) 8 時 43 分 53 秒 (日本時間) |
composite number 合成数 | 4016402921188859774742373505010080862765223630866026934169211101607825970246095353132922873507704907309892139679229096380310580696723093716707429848861216277240442272133141759787425772681205158336624240734169469540980383908392757013647363741<241> |
prime factors 素因数 | 1240674882016876458824985861419<31> 3237272696824232212810421362468262081701861386482840129294845681402122067592129633716667308935370046892115299492710635907306346379806122804703304185322301377458668119009611401568417887125998854931866366321143639<211> |
factorization results 素因数分解の結果 | Fri 2015/11/20 22:05:31 UTC GMP-ECM 7.0-dev [configured with MPIR 2.6.0, --enable-openmp] [ECM] Fri 2015/11/20 22:05:31 UTC Input number is 4016402921188859774742373505010080862765223630866026934169211101607825970246095353132922873507704907309892139679229096380310580696723093716707429848861216277240442272133141759787425772681205158336624240734169469540980383908392757013647363741 (241 digits) Fri 2015/11/20 22:05:31 UTC Run 19 out of 400: Fri 2015/11/20 22:05:31 UTC Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:40787781 Fri 2015/11/20 22:05:31 UTC Step 1 took 15219ms Fri 2015/11/20 22:05:31 UTC Step 2 took 8125ms Fri 2015/11/20 22:05:31 UTC ********** Factor found in step 2: 1240674882016876458824985861419 Fri 2015/11/20 22:05:31 UTC Found probable prime factor of 31 digits: 1240674882016876458824985861419 Fri 2015/11/20 22:05:31 UTC Probable prime cofactor 3237272696824232212810421362468262081701861386482840129294845681402122067592129633716667308935370046892115299492710635907306346379806122804703304185322301377458668119009611401568417887125998854931866366321143639 has 211 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 400 | Erik Branger | November 20, 2015 23:44:10 UTC 2015 年 11 月 21 日 (土) 8 時 44 分 10 秒 (日本時間) | |
45 | 11e6 | 4500 | 2100 | Eric Jeancolas | November 11, 2020 07:44:40 UTC 2020 年 11 月 11 日 (水) 16 時 44 分 40 秒 (日本時間) |
2400 | Thomas Kozlowski | December 12, 2024 09:25:57 UTC 2024 年 12 月 12 日 (木) 18 時 25 分 57 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 400 | Erik Branger | November 20, 2015 23:44:33 UTC 2015 年 11 月 21 日 (土) 8 時 44 分 33 秒 (日本時間) | |
45 | 11e6 | 4501 | 2100 | Eric Jeancolas | November 11, 2020 07:45:09 UTC 2020 年 11 月 11 日 (水) 16 時 45 分 9 秒 (日本時間) |
2401 | Thomas Kozlowski | December 12, 2024 10:14:08 UTC 2024 年 12 月 12 日 (木) 19 時 14 分 8 秒 (日本時間) |
name 名前 | Erik Branger |
---|---|
date 日付 | November 20, 2015 23:44:56 UTC 2015 年 11 月 21 日 (土) 8 時 44 分 56 秒 (日本時間) |
composite number 合成数 | 2079601272011922719835722487839464414509154014240652750002623264285162361249715122129898652050372667075387914490739140861635251259223905305977817967639812350144987094501930569505158978212573445224908194688889208174942632904908940425400084049502823<247> |
prime factors 素因数 | 29309297597544238068984557426699<32> |
composite cofactor 合成数の残り | 70953637325862355747742368605112063878904721445653305696237064322783575735566328449953553355569538116260034238338170961485810947899097177203948399231552719024454481477696013025437036339372360843691566224830067453077<215> |
factorization results 素因数分解の結果 | Fri 2015/11/20 23:22:40 UTC GMP-ECM 7.0-dev [configured with MPIR 2.6.0, --enable-openmp] [ECM] Fri 2015/11/20 23:22:40 UTC Input number is 2079601272011922719835722487839464414509154014240652750002623264285162361249715122129898652050372667075387914490739140861635251259223905305977817967639812350144987094501930569505158978212573445224908194688889208174942632904908940425400084049502823 (247 digits) Fri 2015/11/20 23:22:40 UTC Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:848243871 Fri 2015/11/20 23:22:40 UTC Step 1 took 13406ms Fri 2015/11/20 23:22:40 UTC ********** Factor found in step 2: 29309297597544238068984557426699 Fri 2015/11/20 23:22:40 UTC Found probable prime factor of 32 digits: 29309297597544238068984557426699 Fri 2015/11/20 23:22:40 UTC Composite cofactor 70953637325862355747742368605112063878904721445653305696237064322783575735566328449953553355569538116260034238338170961485810947899097177203948399231552719024454481477696013025437036339372360843691566224830067453077 has 215 digits |
software ソフトウェア | GMP-ECM |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | November 11, 2020 03:30:51 UTC 2020 年 11 月 11 日 (水) 12 時 30 分 51 秒 (日本時間) |
composite number 合成数 | 70953637325862355747742368605112063878904721445653305696237064322783575735566328449953553355569538116260034238338170961485810947899097177203948399231552719024454481477696013025437036339372360843691566224830067453077<215> |
prime factors 素因数 | 152313269271965790881101545576999825483133<42> 465840157361272109042628462143490614413952160937290428168026436369958308897709428190837799948331127850949800520974984442727246322409930032863988348884192619754242182016069369<174> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.1.2, --enable-asm-redc] [ECM] Input number is 70953637325862355747742368605112063878904721445653305696237064322783575735566328449953553355569538116260034238338170961485810947899097177203948399231552719024454481477696013025437036339372360843691566224830067453077 (215 digits) Run 1770 out of 2100: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:592648385 Step 1 took 80494ms Step 2 took 27900ms ********** Factor found in step 2: 152313269271965790881101545576999825483133 Found prime factor of 42 digits: 152313269271965790881101545576999825483133 Prime cofactor 465840157361272109042628462143490614413952160937290428168026436369958308897709428190837799948331127850949800520974984442727246322409930032863988348884192619754242182016069369 has 174 digits |
software ソフトウェア | GMP-ECM 7.0.4 |
execution environment 実行環境 | Linux Ubuntu 18.04 LTS Intel(R) Core(TM) i5-3320M CPU @ 2.60GHz |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 600 | Dmitry Domanov | March 9, 2016 11:10:02 UTC 2016 年 3 月 9 日 (水) 20 時 10 分 2 秒 (日本時間) | |
45 | 11e6 | 1770 / 4346 | Eric Jeancolas | November 11, 2020 03:25:45 UTC 2020 年 11 月 11 日 (水) 12 時 25 分 45 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 400 | Erik Branger | November 21, 2015 08:52:17 UTC 2015 年 11 月 21 日 (土) 17 時 52 分 17 秒 (日本時間) | |
45 | 11e6 | 4501 | 2100 | Eric Jeancolas | November 11, 2020 07:46:37 UTC 2020 年 11 月 11 日 (水) 16 時 46 分 37 秒 (日本時間) |
2401 | Thomas Kozlowski | December 12, 2024 11:08:55 UTC 2024 年 12 月 12 日 (木) 20 時 8 分 55 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 904 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 400 | Erik Branger | November 21, 2015 08:52:23 UTC 2015 年 11 月 21 日 (土) 17 時 52 分 23 秒 (日本時間) | |
45 | 11e6 | 4500 | 2100 | Eric Jeancolas | November 11, 2020 07:47:36 UTC 2020 年 11 月 11 日 (水) 16 時 47 分 36 秒 (日本時間) |
2400 | Thomas Kozlowski | December 12, 2024 12:18:07 UTC 2024 年 12 月 12 日 (木) 21 時 18 分 7 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 400 | Erik Branger | November 21, 2015 08:52:44 UTC 2015 年 11 月 21 日 (土) 17 時 52 分 44 秒 (日本時間) | |
45 | 11e6 | 4503 | 2100 | Eric Jeancolas | November 11, 2020 07:48:36 UTC 2020 年 11 月 11 日 (水) 16 時 48 分 36 秒 (日本時間) |
2403 | Thomas Kozlowski | December 12, 2024 13:12:57 UTC 2024 年 12 月 12 日 (木) 22 時 12 分 57 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 400 | Erik Branger | November 21, 2015 08:52:50 UTC 2015 年 11 月 21 日 (土) 17 時 52 分 50 秒 (日本時間) | |
45 | 11e6 | 4500 | 2100 | Eric Jeancolas | November 11, 2020 07:49:42 UTC 2020 年 11 月 11 日 (水) 16 時 49 分 42 秒 (日本時間) |
2400 | Thomas Kozlowski | December 12, 2024 14:23:18 UTC 2024 年 12 月 12 日 (木) 23 時 23 分 18 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 400 | Erik Branger | November 21, 2015 08:53:16 UTC 2015 年 11 月 21 日 (土) 17 時 53 分 16 秒 (日本時間) | |
45 | 11e6 | 4500 | 2100 | Eric Jeancolas | November 14, 2020 17:16:48 UTC 2020 年 11 月 15 日 (日) 2 時 16 分 48 秒 (日本時間) |
2400 | Thomas Kozlowski | December 12, 2024 15:32:34 UTC 2024 年 12 月 13 日 (金) 0 時 32 分 34 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 400 | Erik Branger | November 21, 2015 08:53:21 UTC 2015 年 11 月 21 日 (土) 17 時 53 分 21 秒 (日本時間) | |
45 | 11e6 | 4502 | 2100 | Eric Jeancolas | November 27, 2020 16:02:04 UTC 2020 年 11 月 28 日 (土) 1 時 2 分 4 秒 (日本時間) |
2402 | Thomas Kozlowski | December 12, 2024 16:20:49 UTC 2024 年 12 月 13 日 (金) 1 時 20 分 49 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | November 13, 2020 03:27:37 UTC 2020 年 11 月 13 日 (金) 12 時 27 分 37 秒 (日本時間) |
composite number 合成数 | 210343014740841406012321341234689805328221718472116979963110992374679037732259425297117217641558727384791168414370845336589547165237932418411895946397200740471958598466199708228761557257644719627480708691263652598722298803600768317180630758802421569479<252> |
prime factors 素因数 | 33147718646931082387909713639239297669<38> 6345625681854144988861728469382111420523558759907479662252095044334776760338895983369487348973864013539879851898555777563350107299420856633749335773376765301629252107902337295760140190193800448193133513640231606491<214> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.1.2, --enable-asm-redc] [ECM] Input number is 210343014740841406012321341234689805328221718472116979963110992374679037732259425297117217641558727384791168414370845336589547165237932418411895946397200740471958598466199708228761557257644719627480708691263652598722298803600768317180630758802421569479 (252 digits) Run 578 out of 2100: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:2686147597 Step 1 took 102886ms Step 2 took 33665ms ********** Factor found in step 2: 33147718646931082387909713639239297669 Found prime factor of 38 digits: 33147718646931082387909713639239297669 Prime cofactor 6345625681854144988861728469382111420523558759907479662252095044334776760338895983369487348973864013539879851898555777563350107299420856633749335773376765301629252107902337295760140190193800448193133513640231606491 has 214 digits |
software ソフトウェア | GMP-ECM 7.0.4 |
execution environment 実行環境 | Linux Ubuntu 18.04 LTS Intel(R) Core(TM) i5-3320M CPU @ 2.60GHz |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 400 | Erik Branger | November 21, 2015 08:53:27 UTC 2015 年 11 月 21 日 (土) 17 時 53 分 27 秒 (日本時間) | |
45 | 11e6 | 578 / 4390 | Eric Jeancolas | November 13, 2020 03:24:38 UTC 2020 年 11 月 13 日 (金) 12 時 24 分 38 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 904 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 400 | Erik Branger | November 21, 2015 08:53:32 UTC 2015 年 11 月 21 日 (土) 17 時 53 分 32 秒 (日本時間) | |
45 | 11e6 | 4500 | 2100 | Eric Jeancolas | November 15, 2020 08:28:59 UTC 2020 年 11 月 15 日 (日) 17 時 28 分 59 秒 (日本時間) |
2400 | Thomas Kozlowski | December 12, 2024 17:30:04 UTC 2024 年 12 月 13 日 (金) 2 時 30 分 4 秒 (日本時間) |
name 名前 | Erik Branger |
---|---|
date 日付 | November 21, 2015 08:54:09 UTC 2015 年 11 月 21 日 (土) 17 時 54 分 9 秒 (日本時間) |
composite number 合成数 | 4624547169708920067387712187726172356813556587840368282023965969172973368094997368682209155299934371399490671533566534052161053700165759956477461676435411461800763058871446715556256240516726024216051470919313038184360763857993197641257643885113392063298634728301891417<268> |
prime factors 素因数 | 10843932355754023086670408078236269713<38> |
composite cofactor 合成数の残り | 426464037029430209667963021216109953527084772408303564380814862674800020495480754837534647863328707925546451057348435677210338228290746558822888171649437121158066021432649488706601979815883867539226209289102797738689849963959528009<231> |
factorization results 素因数分解の結果 | Sat 2015/11/21 05:08:56 UTC GMP-ECM 7.0-dev [configured with MPIR 2.6.0, --enable-openmp] [ECM] Sat 2015/11/21 05:08:56 UTC Input number is 4624547169708920067387712187726172356813556587840368282023965969172973368094997368682209155299934371399490671533566534052161053700165759956477461676435411461800763058871446715556256240516726024216051470919313038184360763857993197641257643885113392063298634728301891417 (268 digits) Sat 2015/11/21 05:08:56 UTC Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:1688903990 Sat 2015/11/21 05:08:56 UTC Step 1 took 12750ms Sat 2015/11/21 05:08:56 UTC ********** Factor found in step 2: 10843932355754023086670408078236269713 Sat 2015/11/21 05:08:56 UTC Found probable prime factor of 38 digits: 10843932355754023086670408078236269713 Sat 2015/11/21 05:08:56 UTC Composite cofactor 426464037029430209667963021216109953527084772408303564380814862674800020495480754837534647863328707925546451057348435677210338228290746558822888171649437121158066021432649488706601979815883867539226209289102797738689849963959528009 has 231 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 904 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 | Erik Branger | November 21, 2015 08:53:52 UTC 2015 年 11 月 21 日 (土) 17 時 53 分 52 秒 (日本時間) | |
45 | 11e6 | 4502 | 2100 | Eric Jeancolas | November 14, 2020 17:29:31 UTC 2020 年 11 月 15 日 (日) 2 時 29 分 31 秒 (日本時間) |
2402 | Thomas Kozlowski | December 12, 2024 18:25:18 UTC 2024 年 12 月 13 日 (金) 3 時 25 分 18 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | November 19, 2020 03:04:51 UTC 2020 年 11 月 19 日 (木) 12 時 4 分 51 秒 (日本時間) |
composite number 合成数 | 196696502685405051329950039487471310066416300424533083847175981615898389672487453879117393073856991800669601661139607268959568282394026482109130163309224410331708020704261452686566138843014322463022460116829874685668456664735188920339607341995789679523284970224293397<267> |
prime factors 素因数 | 623646540272301409769158866536140407083<39> 315397408601869084898830119906268829940640852898556873825738490892258416810504741493647269815616064099353769161246770142416140396390064736967169195669325396316714252439025649543062418010089543697020360549438362453679338222298559<228> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.1.2, --enable-asm-redc] [ECM] Input number is 196696502685405051329950039487471310066416300424533083847175981615898389672487453879117393073856991800669601661139607268959568282394026482109130163309224410331708020704261452686566138843014322463022460116829874685668456664735188920339607341995789679523284970224293397 (267 digits) Run 861 out of 2100: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:444821002 Step 1 took 59736ms Step 2 took 20176ms ********** Factor found in step 2: 623646540272301409769158866536140407083 Found prime factor of 39 digits: 623646540272301409769158866536140407083 Prime cofactor 315397408601869084898830119906268829940640852898556873825738490892258416810504741493647269815616064099353769161246770142416140396390064736967169195669325396316714252439025649543062418010089543697020360549438362453679338222298559 has 228 digits |
software ソフトウェア | GMP-ECM 7.0.4 |
execution environment 実行環境 | Linux Ubuntu 18.04 LTS Intel(R) Core(TM) i5-3320M CPU @ 2.60GHz |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 904 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 400 | Erik Branger | November 21, 2015 08:54:48 UTC 2015 年 11 月 21 日 (土) 17 時 54 分 48 秒 (日本時間) | |
45 | 11e6 | 861 / 4349 | Eric Jeancolas | November 15, 2020 08:20:31 UTC 2020 年 11 月 15 日 (日) 17 時 20 分 31 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 904 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 400 | Erik Branger | November 21, 2015 08:54:54 UTC 2015 年 11 月 21 日 (土) 17 時 54 分 54 秒 (日本時間) | |
45 | 11e6 | 4501 | 2100 | Eric Jeancolas | November 14, 2020 17:21:34 UTC 2020 年 11 月 15 日 (日) 2 時 21 分 34 秒 (日本時間) |
2401 | Thomas Kozlowski | December 12, 2024 19:27:19 UTC 2024 年 12 月 13 日 (金) 4 時 27 分 19 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | November 14, 2020 17:24:53 UTC 2020 年 11 月 15 日 (日) 2 時 24 分 53 秒 (日本時間) |
composite number 合成数 | 137471645561683803844801189589186964305271012138474934670654031996851486180382654090620725859257276591204345339994617599260129578934973574585304175554677098982523625860446736972989538857266726447076508673287066041745872178401757<228> |
prime factors 素因数 | 4667837317077245082305906530933449534859<40> |
composite cofactor 合成数の残り | 29450821916767514603993617925602638249030750298919636594787487176819483211468682453109401076405522297774999072678293956571577193860082671293910581668953064878948996391191697721484174900023<188> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.1.2, --enable-asm-redc] [ECM] Input number is 137471645561683803844801189589186964305271012138474934670654031996851486180382654090620725859257276591204345339994617599260129578934973574585304175554677098982523625860446736972989538857266726447076508673287066041745872178401757 (228 digits) Run 891 out of 2100: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:2849016071 Step 1 took 80905ms Step 2 took 28453ms ********** Factor found in step 2: 4667837317077245082305906530933449534859 Found prime factor of 40 digits: 4667837317077245082305906530933449534859 Composite cofactor 29450821916767514603993617925602638249030750298919636594787487176819483211468682453109401076405522297774999072678293956571577193860082671293910581668953064878948996391191697721484174900023 has 188 digits |
software ソフトウェア | GMP-ECM 7.0.4 |
execution environment 実行環境 | Linux Ubuntu 18.04 LTS Intel(R) Core(TM) i5-3320M CPU @ 2.60GHz |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | November 17, 2020 04:47:45 UTC 2020 年 11 月 17 日 (火) 13 時 47 分 45 秒 (日本時間) |
composite number 合成数 | 29450821916767514603993617925602638249030750298919636594787487176819483211468682453109401076405522297774999072678293956571577193860082671293910581668953064878948996391191697721484174900023<188> |
prime factors 素因数 | 4644483323461172087684162600497371262591<40> 6341032977338824473535557342639606715579883170018851899600971405367365095303541526920183658976785975088258501160592665538363560816235117399784359753<148> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.1.2, --enable-asm-redc] [ECM] Input number is 29450821916767514603993617925602638249030750298919636594787487176819483211468682453109401076405522297774999072678293956571577193860082671293910581668953064878948996391191697721484174900023 (188 digits) Run 1608 out of 2100: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:1485140534 Step 1 took 31352ms Step 2 took 12583ms ********** Factor found in step 2: 4644483323461172087684162600497371262591 Found prime factor of 40 digits: 4644483323461172087684162600497371262591 Prime cofactor 6341032977338824473535557342639606715579883170018851899600971405367365095303541526920183658976785975088258501160592665538363560816235117399784359753 has 148 digits |
software ソフトウェア | GMP-ECM 7.0.4 |
execution environment 実行環境 | Linux Ubuntu 18.04 LTS Intel(R) Core(TM) i5-3320M CPU @ 2.60GHz |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 400 | Erik Branger | November 21, 2015 08:54:59 UTC 2015 年 11 月 21 日 (土) 17 時 54 分 59 秒 (日本時間) | |
45 | 11e6 | 1608 / 4390 | Eric Jeancolas | November 17, 2020 04:44:49 UTC 2020 年 11 月 17 日 (火) 13 時 44 分 49 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | November 20, 2020 01:21:31 UTC 2020 年 11 月 20 日 (金) 10 時 21 分 31 秒 (日本時間) |
composite number 合成数 | 1173334713976940843273267036438870412344814910996906911332277998451213765465412799833110554510594670618672930199929283224796608974797805696690388731568943286676202663594063400565210791759961242904323178489980469869148144080073127298975050493424091226397511086479<262> |
prime factors 素因数 | 77355795685599887405412754204166505724981<41> |
composite cofactor 合成数の残り | 15168025919425221869324110159374195234935007673283801581215823686441431393446732921998314862405339299221900690499216903157887333569529899661613939884183609131392685152262934353131537929548623374062554636757757920666404659<221> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.1.2, --enable-asm-redc] [ECM] Input number is 1173334713976940843273267036438870412344814910996906911332277998451213765465412799833110554510594670618672930199929283224796608974797805696690388731568943286676202663594063400565210791759961242904323178489980469869148144080073127298975050493424091226397511086479 (262 digits) Run 1840 out of 2100: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:279008882 Step 1 took 104993ms Step 2 took 34642ms ********** Factor found in step 2: 77355795685599887405412754204166505724981 Found prime factor of 41 digits: 77355795685599887405412754204166505724981 Composite cofactor 15168025919425221869324110159374195234935007673283801581215823686441431393446732921998314862405339299221900690499216903157887333569529899661613939884183609131392685152262934353131537929548623374062554636757757920666404659 has 221 digits |
software ソフトウェア | GMP-ECM 7.0.4 |
execution environment 実行環境 | Linux Ubuntu 18.04 LTS Intel(R) Core(TM) i5-3320M CPU @ 2.60GHz |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 400 | Erik Branger | November 21, 2015 08:55:05 UTC 2015 年 11 月 21 日 (土) 17 時 55 分 5 秒 (日本時間) | |
45 | 11e6 | 4501 | 1840 | Eric Jeancolas | November 20, 2020 01:17:57 UTC 2020 年 11 月 20 日 (金) 10 時 17 分 57 秒 (日本時間) |
260 | Eric Jeancolas | November 21, 2020 05:40:23 UTC 2020 年 11 月 21 日 (土) 14 時 40 分 23 秒 (日本時間) | |||
2401 | Thomas Kozlowski | December 12, 2024 20:21:49 UTC 2024 年 12 月 13 日 (金) 5 時 21 分 49 秒 (日本時間) |
name 名前 | Erik Branger |
---|---|
date 日付 | November 21, 2015 08:55:34 UTC 2015 年 11 月 21 日 (土) 17 時 55 分 34 秒 (日本時間) |
composite number 合成数 | 1118258226960467239450670551870530471711292949031693577204884211438065316347868594665216057618354169387129868310518387955687311840316989048119675729437816321141148345416646356365321715795327189846559836803364607037735511786496109610756408236557<244> |
prime factors 素因数 | 46317234540205859301890560447129<32> |
composite cofactor 合成数の残り | 24143458435320846855377726951112453110808457955705420497648588181724380846122663701358008750320585401322950026815237530172586152467573328022566817662275981258401488045881670492185594245911431492651474677103779733<212> |
factorization results 素因数分解の結果 | Sat 2015/11/21 07:51:05 UTC GMP-ECM 7.0-dev [configured with MPIR 2.6.0, --enable-openmp] [ECM] Sat 2015/11/21 07:51:05 UTC Input number is 1118258226960467239450670551870530471711292949031693577204884211438065316347868594665216057618354169387129868310518387955687311840316989048119675729437816321141148345416646356365321715795327189846559836803364607037735511786496109610756408236557 (244 digits) Sat 2015/11/21 07:51:05 UTC Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:2276724939 Sat 2015/11/21 07:51:05 UTC Step 1 took 11078ms Sat 2015/11/21 07:51:05 UTC ********** Factor found in step 2: 46317234540205859301890560447129 Sat 2015/11/21 07:51:05 UTC Found probable prime factor of 32 digits: 46317234540205859301890560447129 Sat 2015/11/21 07:51:05 UTC Composite cofactor 24143458435320846855377726951112453110808457955705420497648588181724380846122663701358008750320585401322950026815237530172586152467573328022566817662275981258401488045881670492185594245911431492651474677103779733 has 212 digits |
software ソフトウェア | GMP-ECM |
name 名前 | Serge Batalov |
---|---|
date 日付 | December 5, 2015 00:25:01 UTC 2015 年 12 月 5 日 (土) 9 時 25 分 1 秒 (日本時間) |
composite number 合成数 | 24143458435320846855377726951112453110808457955705420497648588181724380846122663701358008750320585401322950026815237530172586152467573328022566817662275981258401488045881670492185594245911431492651474677103779733<212> |
prime factors 素因数 | 18178113871788230939470386252359912335682905357<47> 1328160809510089651738976075491616581773276822706812781121011292110077827204250963731948822023707793027375251699491105469419770408301196661480178076824663269630579369<166> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=3000000-11414255590, polynomial Dickson(12), sigma=508718413 Step 1 took 21952ms Step 2 took 13508ms ********** Factor found in step 2: 18178113871788230939470386252359912335682905357 Found probable prime factor of 47 digits: 18178113871788230939470386252359912335682905357 Probable prime cofactor |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) |
name 名前 | Erik Branger |
---|---|
date 日付 | November 21, 2015 08:56:00 UTC 2015 年 11 月 21 日 (土) 17 時 56 分 0 秒 (日本時間) |
composite number 合成数 | 254594755514491797456510731884102492800907224861972721216300474447808148879353683289817046984974984509128367823509653489366859545046635493475280065860677384973760833618720798800573715352777914768668432781617572997065360226588790059049<234> |
prime factors 素因数 | 915591166710802508468947352087953<33> |
composite cofactor 合成数の残り | 278065980506458710188825112822458447364979581031397121933876253185029026014024696754227861859177774510809989735374557213465584152682242617269970715631891747025542898170117328162831700535387612676222233<201> |
factorization results 素因数分解の結果 | at 2015/11/21 07:58:06 UTC GMP-ECM 7.0-dev [configured with MPIR 2.6.0, --enable-openmp] [ECM] Sat 2015/11/21 07:58:06 UTC Input number is 254594755514491797456510731884102492800907224861972721216300474447808148879353683289817046984974984509128367823509653489366859545046635493475280065860677384973760833618720798800573715352777914768668432781617572997065360226588790059049 (234 digits) Sat 2015/11/21 07:58:06 UTC Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:4279596598 Sat 2015/11/21 07:58:06 UTC Step 1 took 11047ms Sat 2015/11/21 07:58:06 UTC Step 2 took 6203ms Sat 2015/11/21 07:58:06 UTC ********** Factor found in step 2: 915591166710802508468947352087953 Sat 2015/11/21 07:58:06 UTC Found probable prime factor of 33 digits: 915591166710802508468947352087953 Sat 2015/11/21 07:58:06 UTC Composite cofactor 278065980506458710188825112822458447364979581031397121933876253185029026014024696754227861859177774510809989735374557213465584152682242617269970715631891747025542898170117328162831700535387612676222233 has 201 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 600 | Dmitry Domanov | March 9, 2016 11:12:26 UTC 2016 年 3 月 9 日 (水) 20 時 12 分 26 秒 (日本時間) | |
45 | 11e6 | 4501 | 2100 | Eric Jeancolas | November 21, 2020 05:39:05 UTC 2020 年 11 月 21 日 (土) 14 時 39 分 5 秒 (日本時間) |
2401 | Thomas Kozlowski | December 12, 2024 21:09:47 UTC 2024 年 12 月 13 日 (金) 6 時 9 分 47 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 400 | Erik Branger | November 21, 2015 08:56:18 UTC 2015 年 11 月 21 日 (土) 17 時 56 分 18 秒 (日本時間) | |
45 | 11e6 | 4501 | 2100 | Eric Jeancolas | November 21, 2020 05:37:24 UTC 2020 年 11 月 21 日 (土) 14 時 37 分 24 秒 (日本時間) |
2401 | Thomas Kozlowski | December 12, 2024 22:26:47 UTC 2024 年 12 月 13 日 (金) 7 時 26 分 47 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 904 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | 600 | Dmitry Domanov | November 20, 2015 13:45:25 UTC 2015 年 11 月 20 日 (金) 22 時 45 分 25 秒 (日本時間) |
400 | Erik Branger | November 21, 2015 13:35:47 UTC 2015 年 11 月 21 日 (土) 22 時 35 分 47 秒 (日本時間) | |||
45 | 11e6 | 4303 | 800 | Dmitry Domanov | January 21, 2016 17:51:41 UTC 2016 年 1 月 22 日 (金) 2 時 51 分 41 秒 (日本時間) |
2100 | Eric Jeancolas | November 23, 2020 00:46:43 UTC 2020 年 11 月 23 日 (月) 9 時 46 分 43 秒 (日本時間) | |||
1403 | Thomas Kozlowski | December 12, 2024 23:12:26 UTC 2024 年 12 月 13 日 (金) 8 時 12 分 26 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | November 16, 2020 00:57:21 UTC 2020 年 11 月 16 日 (月) 9 時 57 分 21 秒 (日本時間) |
composite number 合成数 | 9167521676080350374486954809839589510784846882967610586176865403766360010970071582188739133082654568717916834704787380126855246704035624430377532027069801197904964830267303809510305764054583312945000286910980463605118802856313<226> |
prime factors 素因数 | 395435372988054093881730926549220944024681<42> |
composite cofactor 合成数の残り | 23183362699212284806896943597651284618125737551808186555712588060495587368610417477230752369763346968653973047599571467007406527306156779309190812747390014283598854861530924432961366673<185> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.1.2, --enable-asm-redc] [ECM] Input number is 9167521676080350374486954809839589510784846882967610586176865403766360010970071582188739133082654568717916834704787380126855246704035624430377532027069801197904964830267303809510305764054583312945000286910980463605118802856313 (226 digits) Run 111 out of 2100: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:2113288657 Step 1 took 81403ms Step 2 took 28738ms ********** Factor found in step 2: 395435372988054093881730926549220944024681 Found prime factor of 42 digits: 395435372988054093881730926549220944024681 Composite cofactor 23183362699212284806896943597651284618125737551808186555712588060495587368610417477230752369763346968653973047599571467007406527306156779309190812747390014283598854861530924432961366673 has 185 digits |
software ソフトウェア | GMP-ECM 7.0.4 |
execution environment 実行環境 | Linux Ubuntu 18.04 LTS Intel(R) Core(TM)2 Duo CPU U9400 @ 1.40GHz |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 400 | Erik Branger | November 21, 2015 13:35:54 UTC 2015 年 11 月 21 日 (土) 22 時 35 分 54 秒 (日本時間) | |
45 | 11e6 | 2100 | 111 | Eric Jeancolas | November 16, 2020 00:54:37 UTC 2020 年 11 月 16 日 (月) 9 時 54 分 37 秒 (日本時間) |
1989 | Eric Jeancolas | November 18, 2020 05:22:49 UTC 2020 年 11 月 18 日 (水) 14 時 22 分 49 秒 (日本時間) | |||
50 | 43e6 | 2452 / 7067 | 660 | Dmitry Domanov | December 19, 2020 00:16:36 UTC 2020 年 12 月 19 日 (土) 9 時 16 分 36 秒 (日本時間) |
1792 | Dmitry Domanov | April 16, 2024 05:42:40 UTC 2024 年 4 月 16 日 (火) 14 時 42 分 40 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | November 18, 2020 04:13:43 UTC 2020 年 11 月 18 日 (水) 13 時 13 分 43 秒 (日本時間) |
composite number 合成数 | 1293080908252695022850753651802211003011434632278071207716412907697183213667966970027178412182329758559996911173297735345816425232314702498263164823446159559555292509048449779117776238297377483709932008060205913359<214> |
prime factors 素因数 | 4755510600417773054381818089770610163<37> |
composite cofactor 合成数の残り | 271912107217066758571683820826456827591740618185339593518655195941238545412930488942981615673220765827702091330999752793082620564851104620314018169767807668885329417339821381493<177> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.1.2, --enable-asm-redc] [ECM] Input number is 1293080908252695022850753651802211003011434632278071207716412907697183213667966970027178412182329758559996911173297735345816425232314702498263164823446159559555292509048449779117776238297377483709932008060205913359 (214 digits) Run 345 out of 2100: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:3653412941 Step 1 took 80842ms Step 2 took 27796ms ********** Factor found in step 2: 4755510600417773054381818089770610163 Found prime factor of 37 digits: 4755510600417773054381818089770610163 Composite cofactor 271912107217066758571683820826456827591740618185339593518655195941238545412930488942981615673220765827702091330999752793082620564851104620314018169767807668885329417339821381493 has 177 digits |
software ソフトウェア | GMP-ECM 7.0.4 |
execution environment 実行環境 | Linux Ubuntu 18.04 LTS Intel(R) Core(TM) i5-3320M CPU @ 2.60GHz |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 400 | Erik Branger | November 21, 2015 13:36:00 UTC 2015 年 11 月 21 日 (土) 22 時 36 分 0 秒 (日本時間) | |
45 | 11e6 | 2100 | 345 | Eric Jeancolas | November 19, 2020 20:08:25 UTC 2020 年 11 月 20 日 (金) 5 時 8 分 25 秒 (日本時間) |
1755 | Eric Jeancolas | November 19, 2020 20:09:24 UTC 2020 年 11 月 20 日 (金) 5 時 9 分 24 秒 (日本時間) | |||
50 | 43e6 | 2446 / 7067 | 654 | Dmitry Domanov | December 20, 2020 15:53:21 UTC 2020 年 12 月 21 日 (月) 0 時 53 分 21 秒 (日本時間) |
1792 | Dmitry Domanov | May 8, 2024 16:14:23 UTC 2024 年 5 月 9 日 (木) 1 時 14 分 23 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 400 | Erik Branger | November 21, 2015 13:36:05 UTC 2015 年 11 月 21 日 (土) 22 時 36 分 5 秒 (日本時間) | |
45 | 11e6 | 4501 | 2100 | Eric Jeancolas | November 18, 2020 05:20:07 UTC 2020 年 11 月 18 日 (水) 14 時 20 分 7 秒 (日本時間) |
2401 | Thomas Kozlowski | December 13, 2024 00:06:46 UTC 2024 年 12 月 13 日 (金) 9 時 6 分 46 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 400 | Erik Branger | November 21, 2015 13:36:29 UTC 2015 年 11 月 21 日 (土) 22 時 36 分 29 秒 (日本時間) | |
45 | 11e6 | 4500 | 2100 | Eric Jeancolas | November 21, 2020 05:34:59 UTC 2020 年 11 月 21 日 (土) 14 時 34 分 59 秒 (日本時間) |
2400 | Thomas Kozlowski | December 13, 2024 01:24:02 UTC 2024 年 12 月 13 日 (金) 10 時 24 分 2 秒 (日本時間) |
name 名前 | Erik Branger |
---|---|
date 日付 | November 21, 2015 13:36:47 UTC 2015 年 11 月 21 日 (土) 22 時 36 分 47 秒 (日本時間) |
composite number 合成数 | 17703164515465812601414276794174240529417368080352437345497144845022176002391070836609316659778119863491140992774128833237683966823574174918586625828242817015144778967724560376826195105731627557531433168533965477105452762951593655939259577<239> |
prime factors 素因数 | 123478958762059658367434070324161<33> |
composite cofactor 合成数の残り | 143369888221841040826574544791994136797785192417351775355937697801401260177372235067913150661084954738968966920457235007341211294361714657774826084932985476320472649728224506019076060706383062697681003038457<207> |
factorization results 素因数分解の結果 | Sat 2015/11/21 12:19:22 UTC GMP-ECM 7.0-dev [configured with MPIR 2.6.0, --enable-openmp] [ECM] Sat 2015/11/21 12:19:22 UTC Input number is 17703164515465812601414276794174240529417368080352437345497144845022176002391070836609316659778119863491140992774128833237683966823574174918586625828242817015144778967724560376826195105731627557531433168533965477105452762951593655939259577 (239 digits) Sat 2015/11/21 12:19:22 UTC Run 37 out of 400: Sat 2015/11/21 12:19:22 UTC Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:4205683627 Sat 2015/11/21 12:19:22 UTC Step 1 took 11235ms Sat 2015/11/21 12:19:22 UTC ********** Factor found in step 2: 123478958762059658367434070324161 Sat 2015/11/21 12:19:22 UTC Found probable prime factor of 33 digits: 123478958762059658367434070324161 Sat 2015/11/21 12:19:22 UTC Composite cofactor 143369888221841040826574544791994136797785192417351775355937697801401260177372235067913150661084954738968966920457235007341211294361714657774826084932985476320472649728224506019076060706383062697681003038457 has 207 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 600 | Dmitry Domanov | March 9, 2016 11:12:45 UTC 2016 年 3 月 9 日 (水) 20 時 12 分 45 秒 (日本時間) | |
45 | 11e6 | 4502 | 2100 | Eric Jeancolas | November 27, 2020 16:00:33 UTC 2020 年 11 月 28 日 (土) 1 時 0 分 33 秒 (日本時間) |
2402 | Thomas Kozlowski | December 13, 2024 02:12:11 UTC 2024 年 12 月 13 日 (金) 11 時 12 分 11 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2504 | 400 | Erik Branger | November 21, 2015 13:37:03 UTC 2015 年 11 月 21 日 (土) 22 時 37 分 3 秒 (日本時間) |
2104 | Eric Jeancolas | September 10, 2020 02:14:59 UTC 2020 年 9 月 10 日 (木) 11 時 14 分 59 秒 (日本時間) | |||
45 | 11e6 | 4101 | 2100 | Eric Jeancolas | November 27, 2020 16:01:02 UTC 2020 年 11 月 28 日 (土) 1 時 1 分 2 秒 (日本時間) |
2001 | Thomas Kozlowski | December 13, 2024 03:16:34 UTC 2024 年 12 月 13 日 (金) 12 時 16 分 34 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 904 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | 600 | Dmitry Domanov | November 20, 2015 13:42:12 UTC 2015 年 11 月 20 日 (金) 22 時 42 分 12 秒 (日本時間) |
400 | Erik Branger | November 21, 2015 17:06:38 UTC 2015 年 11 月 22 日 (日) 2 時 6 分 38 秒 (日本時間) | |||
45 | 11e6 | 4301 | 800 | Dmitry Domanov | December 31, 2015 00:25:15 UTC 2015 年 12 月 31 日 (木) 9 時 25 分 15 秒 (日本時間) |
2100 | Eric Jeancolas | November 27, 2020 16:02:49 UTC 2020 年 11 月 28 日 (土) 1 時 2 分 49 秒 (日本時間) | |||
1401 | Thomas Kozlowski | December 13, 2024 04:02:43 UTC 2024 年 12 月 13 日 (金) 13 時 2 分 43 秒 (日本時間) |
name 名前 | Erik Branger |
---|---|
date 日付 | November 21, 2015 17:06:51 UTC 2015 年 11 月 22 日 (日) 2 時 6 分 51 秒 (日本時間) |
composite number 合成数 | 250521266272079086691372991640788320015015576833895662485624633860056138768738862261315972031669465077824893761662072119115900647923039348027815825869065926014250780075568696272519432460063979816575015340026918093848858926759159484245555613665845082505742906436777784930439<273> |
prime factors 素因数 | 16899512052372412754076327092770798291<38> |
composite cofactor 合成数の残り | 14824171579374685730517803793605798944467068062012154010409337791130158321944990936504551638189645875430338743707845192748263408187008204934751416773560960319555159562437072316255433216069130439723263362278081633891668375470865053580029<236> |
factorization results 素因数分解の結果 | Sat 2015/11/21 14:15:29 UTC GMP-ECM 7.0-dev [configured with MPIR 2.6.0, --enable-openmp] [ECM] Sat 2015/11/21 14:15:29 UTC Input number is 250521266272079086691372991640788320015015576833895662485624633860056138768738862261315972031669465077824893761662072119115900647923039348027815825869065926014250780075568696272519432460063979816575015340026918093848858926759159484245555613665845082505742906436777784930439 (273 digits) Sat 2015/11/21 14:15:29 UTC Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:1797043625 Sat 2015/11/21 14:15:29 UTC Step 1 took 15750ms Sat 2015/11/21 14:15:29 UTC Step 2 took 7922ms Sat 2015/11/21 14:15:29 UTC ********** Factor found in step 2: 16899512052372412754076327092770798291 Sat 2015/11/21 14:15:29 UTC Found probable prime factor of 38 digits: 16899512052372412754076327092770798291 Sat 2015/11/21 14:15:29 UTC Composite cofactor 14824171579374685730517803793605798944467068062012154010409337791130158321944990936504551638189645875430338743707845192748263408187008204934751416773560960319555159562437072316255433216069130439723263362278081633891668375470865053580029 has 236 digits |
software ソフトウェア | GMP-ECM |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | March 9, 2016 14:27:09 UTC 2016 年 3 月 9 日 (水) 23 時 27 分 9 秒 (日本時間) |
composite number 合成数 | 14824171579374685730517803793605798944467068062012154010409337791130158321944990936504551638189645875430338743707845192748263408187008204934751416773560960319555159562437072316255433216069130439723263362278081633891668375470865053580029<236> |
prime factors 素因数 | 99465793688412332041468243812173464861631<41> |
composite cofactor 合成数の残り | 149037885585199801828161005607684033499548412992653250989936193460484391248194448519497775722308537304251066874256689085665886375818092052722998590240160531278916066432972030279246605204407969859<195> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=555455968 Step 1 took 44550ms Step 2 took 15109ms ********** Factor found in step 2: 99465793688412332041468243812173464861631 Found probable prime factor of 41 digits: 99465793688412332041468243812173464861631 |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | March 10, 2016 16:41:37 UTC 2016 年 3 月 11 日 (金) 1 時 41 分 37 秒 (日本時間) |
composite number 合成数 | 149037885585199801828161005607684033499548412992653250989936193460484391248194448519497775722308537304251066874256689085665886375818092052722998590240160531278916066432972030279246605204407969859<195> |
prime factors 素因数 | 28792648701539799845467064358498031007<38> 5176247837776363249535070924392183404656935773234418814401367469199911859154612089030831034574753401251460216625778385005680303380327607647603734193456431837<157> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=585105749 Step 1 took 23426ms Step 2 took 8708ms ********** Factor found in step 2: 28792648701539799845467064358498031007 Found probable prime factor of 38 digits: 28792648701539799845467064358498031007 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 600 / 2336 | Dmitry Domanov | March 9, 2016 11:12:58 UTC 2016 年 3 月 9 日 (水) 20 時 12 分 58 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2504 | 400 | Erik Branger | November 21, 2015 17:07:06 UTC 2015 年 11 月 22 日 (日) 2 時 7 分 6 秒 (日本時間) |
2104 | Eric Jeancolas | September 8, 2020 01:00:12 UTC 2020 年 9 月 8 日 (火) 10 時 0 分 12 秒 (日本時間) | |||
45 | 11e6 | 4100 | 2100 | Eric Jeancolas | November 27, 2020 16:03:36 UTC 2020 年 11 月 28 日 (土) 1 時 3 分 36 秒 (日本時間) |
2000 | Thomas Kozlowski | December 13, 2024 05:07:17 UTC 2024 年 12 月 13 日 (金) 14 時 7 分 17 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 1600 | 1200 | Dmitry Domanov | November 21, 2015 09:38:41 UTC 2015 年 11 月 21 日 (土) 18 時 38 分 41 秒 (日本時間) |
400 | Erik Branger | November 21, 2015 17:07:02 UTC 2015 年 11 月 22 日 (日) 2 時 7 分 2 秒 (日本時間) | |||
45 | 11e6 | 1200 | Dmitry Domanov | November 22, 2015 19:06:23 UTC 2015 年 11 月 23 日 (月) 4 時 6 分 23 秒 (日本時間) | |
50 | 43e6 | 600 / 6934 | Dmitry Domanov | November 28, 2015 00:10:35 UTC 2015 年 11 月 28 日 (土) 9 時 10 分 35 秒 (日本時間) | |
55 | 11e7 | 120 / 17468 | Dmitry Domanov | December 3, 2015 07:23:39 UTC 2015 年 12 月 3 日 (木) 16 時 23 分 39 秒 (日本時間) |