name 名前 | Jo Yeong Uk |
---|---|
date 日付 | March 19, 2008 10:07:02 UTC 2008 年 3 月 19 日 (水) 19 時 7 分 2 秒 (日本時間) |
composite number 合成数 | 1086509433230114937176472414301568453974684330205738321963788192746773455022389855106206297098243735109<103> |
prime factors 素因数 | 9347544516743237437692714740238292837<37> 116234742855085529578876954254245021476557271363549685111789948257<66> |
factorization results 素因数分解の結果 | Number: 15553_106 N=1086509433230114937176472414301568453974684330205738321963788192746773455022389855106206297098243735109 ( 103 digits) SNFS difficulty: 107 digits. Divisors found: r1=9347544516743237437692714740238292837 (pp37) r2=116234742855085529578876954254245021476557271363549685111789948257 (pp66) Version: GGNFS-0.77.1-20050930-nocona Total time: 0.51 hours. Scaled time: 0.95 units (timescale=1.856). Factorization parameters were as follows: n: 1086509433230114937176472414301568453974684330205738321963788192746773455022389855106206297098243735109 m: 1000000000000000000000 c5: 140 c0: -23 skew: 0.7 type: snfs Factor base limits: 360000/360000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [180000, 280001) Primes: RFBsize:30757, AFBsize:30714, largePrimes:977479 encountered Relations: rels:888661, finalFF:78082 Max relations in full relation-set: 28 Initial matrix: 61538 x 78082 with sparse part having weight 3514921. Pruned matrix : 54793 x 55164 with weight 1839048. Total sieving time: 0.49 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,107,5,0,0,0,0,0,0,0,0,360000,360000,25,25,44,44,2.2,2.2,20000 total time: 0.51 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory for crash kernel (0x0 to 0x0) notwithin permissible range Memory: 8178324k/8912896k available (2439k kernel code, 208016k reserved, 1234k data, 192k init) Calibrating delay using timer specific routine.. 4812.91 BogoMIPS (lpj=2406459) Calibrating delay using timer specific routine.. 4810.22 BogoMIPS (lpj=2405110) Calibrating delay using timer specific routine.. 4809.52 BogoMIPS (lpj=2404760) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405116) |
execution environment 実行環境 | Core 2 Quad Q6600 |
name 名前 | Sinkiti Sibata |
---|---|
date 日付 | March 19, 2008 22:40:13 UTC 2008 年 3 月 20 日 (木) 7 時 40 分 13 秒 (日本時間) |
composite number 合成数 | 3037788062388449092580779371481569043270450892455898354863806802156173024445878302412156758572481<97> |
prime factors 素因数 | 70116552119131233253697742765797176049<38> 43324835157711520807946225794361876690197612007341872469969<59> |
factorization results 素因数分解の結果 | Wed Mar 19 21:19:59 2008 Msieve v. 1.33 Wed Mar 19 21:19:59 2008 random seeds: ba38696c 9d0b82cb Wed Mar 19 21:19:59 2008 factoring 3037788062388449092580779371481569043270450892455898354863806802156173024445878302412156758572481 (97 digits) Wed Mar 19 21:20:01 2008 searching for 15-digit factors Wed Mar 19 21:20:03 2008 commencing quadratic sieve (97-digit input) Wed Mar 19 21:20:03 2008 using multiplier of 41 Wed Mar 19 21:20:03 2008 using 64kb Pentium 4 sieve core Wed Mar 19 21:20:03 2008 sieve interval: 18 blocks of size 65536 Wed Mar 19 21:20:03 2008 processing polynomials in batches of 6 Wed Mar 19 21:20:03 2008 using a sieve bound of 2368859 (87059 primes) Wed Mar 19 21:20:03 2008 using large prime bound of 355328850 (28 bits) Wed Mar 19 21:20:03 2008 using double large prime bound of 2461131624868650 (43-52 bits) Wed Mar 19 21:20:03 2008 using trial factoring cutoff of 52 bits Wed Mar 19 21:20:03 2008 polynomial 'A' values have 13 factors Thu Mar 20 07:23:56 2008 87413 relations (21168 full + 66245 combined from 1314170 partial), need 87155 Thu Mar 20 07:24:01 2008 begin with 1335338 relations Thu Mar 20 07:24:02 2008 reduce to 228891 relations in 10 passes Thu Mar 20 07:24:02 2008 attempting to read 228891 relations Thu Mar 20 07:24:10 2008 recovered 228891 relations Thu Mar 20 07:24:10 2008 recovered 216532 polynomials Thu Mar 20 07:24:11 2008 attempting to build 87413 cycles Thu Mar 20 07:24:11 2008 found 87413 cycles in 6 passes Thu Mar 20 07:24:11 2008 distribution of cycle lengths: Thu Mar 20 07:24:11 2008 length 1 : 21168 Thu Mar 20 07:24:11 2008 length 2 : 15264 Thu Mar 20 07:24:11 2008 length 3 : 14623 Thu Mar 20 07:24:11 2008 length 4 : 11881 Thu Mar 20 07:24:11 2008 length 5 : 8950 Thu Mar 20 07:24:11 2008 length 6 : 6114 Thu Mar 20 07:24:11 2008 length 7 : 3907 Thu Mar 20 07:24:11 2008 length 9+: 5506 Thu Mar 20 07:24:11 2008 largest cycle: 19 relations Thu Mar 20 07:24:11 2008 matrix is 87059 x 87413 (23.6 MB) with weight 5834793 (66.75/col) Thu Mar 20 07:24:11 2008 sparse part has weight 5834793 (66.75/col) Thu Mar 20 07:24:13 2008 filtering completed in 3 passes Thu Mar 20 07:24:13 2008 matrix is 83194 x 83258 (22.5 MB) with weight 5570899 (66.91/col) Thu Mar 20 07:24:13 2008 sparse part has weight 5570899 (66.91/col) Thu Mar 20 07:24:14 2008 saving the first 48 matrix rows for later Thu Mar 20 07:24:14 2008 matrix is 83146 x 83258 (13.8 MB) with weight 4369149 (52.48/col) Thu Mar 20 07:24:14 2008 sparse part has weight 3120596 (37.48/col) Thu Mar 20 07:24:14 2008 matrix includes 64 packed rows Thu Mar 20 07:24:14 2008 using block size 21845 for processor cache size 512 kB Thu Mar 20 07:24:15 2008 commencing Lanczos iteration Thu Mar 20 07:24:15 2008 memory use: 13.5 MB Thu Mar 20 07:25:24 2008 lanczos halted after 1316 iterations (dim = 83143) Thu Mar 20 07:25:24 2008 recovered 16 nontrivial dependencies Thu Mar 20 07:25:28 2008 prp38 factor: 70116552119131233253697742765797176049 Thu Mar 20 07:25:28 2008 prp59 factor: 43324835157711520807946225794361876690197612007341872469969 Thu Mar 20 07:25:28 2008 elapsed time 10:05:29 |
execution environment 実行環境 | Pentium 4 2.4GHz, Windows XP and Cygwin) |
name 名前 | Sinkiti Sibata |
---|---|
date 日付 | March 19, 2008 05:33:24 UTC 2008 年 3 月 19 日 (水) 14 時 33 分 24 秒 (日本時間) |
composite number 合成数 | 38572059436672044932250519700222956042161785286721937826457048311314788122676721518589306373<92> |
prime factors 素因数 | 8602097249074871783783820192981298307<37> 4484029687158018042424643794202980992275372478191873239<55> |
factorization results 素因数分解の結果 | Wed Mar 19 10:47:13 2008 Msieve v. 1.33 Wed Mar 19 10:47:13 2008 random seeds: 40f75615 29c48224 Wed Mar 19 10:47:13 2008 factoring 38572059436672044932250519700222956042161785286721937826457048311314788122676721518589306373 (92 digits) Wed Mar 19 10:47:14 2008 searching for 15-digit factors Wed Mar 19 10:47:16 2008 commencing quadratic sieve (92-digit input) Wed Mar 19 10:47:16 2008 using multiplier of 5 Wed Mar 19 10:47:16 2008 using 64kb Pentium 4 sieve core Wed Mar 19 10:47:16 2008 sieve interval: 18 blocks of size 65536 Wed Mar 19 10:47:16 2008 processing polynomials in batches of 6 Wed Mar 19 10:47:16 2008 using a sieve bound of 1821679 (68077 primes) Wed Mar 19 10:47:16 2008 using large prime bound of 198563011 (27 bits) Wed Mar 19 10:47:16 2008 using double large prime bound of 863409753664201 (42-50 bits) Wed Mar 19 10:47:16 2008 using trial factoring cutoff of 50 bits Wed Mar 19 10:47:16 2008 polynomial 'A' values have 12 factors Wed Mar 19 14:27:08 2008 68403 relations (17106 full + 51297 combined from 870879 partial), need 68173 Wed Mar 19 14:27:11 2008 begin with 887985 relations Wed Mar 19 14:27:12 2008 reduce to 174296 relations in 10 passes Wed Mar 19 14:27:12 2008 attempting to read 174296 relations Wed Mar 19 14:27:17 2008 recovered 174296 relations Wed Mar 19 14:27:17 2008 recovered 156172 polynomials Wed Mar 19 14:27:18 2008 attempting to build 68403 cycles Wed Mar 19 14:27:18 2008 found 68403 cycles in 6 passes Wed Mar 19 14:27:18 2008 distribution of cycle lengths: Wed Mar 19 14:27:18 2008 length 1 : 17106 Wed Mar 19 14:27:18 2008 length 2 : 12193 Wed Mar 19 14:27:18 2008 length 3 : 11888 Wed Mar 19 14:27:18 2008 length 4 : 9338 Wed Mar 19 14:27:18 2008 length 5 : 6854 Wed Mar 19 14:27:18 2008 length 6 : 4505 Wed Mar 19 14:27:18 2008 length 7 : 2791 Wed Mar 19 14:27:18 2008 length 9+: 3728 Wed Mar 19 14:27:18 2008 largest cycle: 22 relations Wed Mar 19 14:27:18 2008 matrix is 68077 x 68403 (17.0 MB) with weight 4177014 (61.06/col) Wed Mar 19 14:27:18 2008 sparse part has weight 4177014 (61.06/col) Wed Mar 19 14:27:19 2008 filtering completed in 3 passes Wed Mar 19 14:27:19 2008 matrix is 64492 x 64556 (16.1 MB) with weight 3955024 (61.27/col) Wed Mar 19 14:27:19 2008 sparse part has weight 3955024 (61.27/col) Wed Mar 19 14:27:20 2008 saving the first 48 matrix rows for later Wed Mar 19 14:27:20 2008 matrix is 64444 x 64556 (9.5 MB) with weight 3034679 (47.01/col) Wed Mar 19 14:27:20 2008 sparse part has weight 2092995 (32.42/col) Wed Mar 19 14:27:20 2008 matrix includes 64 packed rows Wed Mar 19 14:27:20 2008 using block size 21845 for processor cache size 512 kB Wed Mar 19 14:27:21 2008 commencing Lanczos iteration Wed Mar 19 14:27:21 2008 memory use: 9.6 MB Wed Mar 19 14:27:59 2008 lanczos halted after 1020 iterations (dim = 64444) Wed Mar 19 14:28:00 2008 recovered 18 nontrivial dependencies Wed Mar 19 14:28:00 2008 prp37 factor: 8602097249074871783783820192981298307 Wed Mar 19 14:28:00 2008 prp55 factor: 4484029687158018042424643794202980992275372478191873239 Wed Mar 19 14:28:00 2008 elapsed time 03:40:47 |
execution environment 実行環境 | Pentium 4 2.4GHz, Windows XP and Cygwin) |
name 名前 | Sinkiti Sibata |
---|---|
date 日付 | March 19, 2008 01:42:55 UTC 2008 年 3 月 19 日 (水) 10 時 42 分 55 秒 (日本時間) |
composite number 合成数 | 2034635142704677792494468631959407918934723927715575304293361053666704254742074577711<85> |
prime factors 素因数 | 113861384206662076954599416574707<33> 17869404599998095262189940211282723567677418286716373<53> |
factorization results 素因数分解の結果 | Wed Mar 19 09:31:21 2008 Msieve v. 1.33 Wed Mar 19 09:31:21 2008 random seeds: 98abfa35 0fbf67a6 Wed Mar 19 09:31:21 2008 factoring 2034635142704677792494468631959407918934723927715575304293361053666704254742074577711 (85 digits) Wed Mar 19 09:31:22 2008 searching for 15-digit factors Wed Mar 19 09:31:24 2008 commencing quadratic sieve (85-digit input) Wed Mar 19 09:31:24 2008 using multiplier of 39 Wed Mar 19 09:31:24 2008 using 64kb Pentium 4 sieve core Wed Mar 19 09:31:24 2008 sieve interval: 6 blocks of size 65536 Wed Mar 19 09:31:24 2008 processing polynomials in batches of 17 Wed Mar 19 09:31:24 2008 using a sieve bound of 1426127 (54401 primes) Wed Mar 19 09:31:24 2008 using large prime bound of 116942414 (26 bits) Wed Mar 19 09:31:24 2008 using double large prime bound of 332927451401090 (41-49 bits) Wed Mar 19 09:31:24 2008 using trial factoring cutoff of 49 bits Wed Mar 19 09:31:24 2008 polynomial 'A' values have 11 factors Wed Mar 19 10:18:33 2008 54724 relations (16675 full + 38049 combined from 565949 partial), need 54497 Wed Mar 19 10:18:35 2008 begin with 582624 relations Wed Mar 19 10:18:35 2008 reduce to 126334 relations in 10 passes Wed Mar 19 10:18:35 2008 attempting to read 126334 relations Wed Mar 19 10:18:39 2008 recovered 126334 relations Wed Mar 19 10:18:39 2008 recovered 104312 polynomials Wed Mar 19 10:18:39 2008 attempting to build 54724 cycles Wed Mar 19 10:18:39 2008 found 54724 cycles in 5 passes Wed Mar 19 10:18:39 2008 distribution of cycle lengths: Wed Mar 19 10:18:39 2008 length 1 : 16675 Wed Mar 19 10:18:39 2008 length 2 : 11194 Wed Mar 19 10:18:39 2008 length 3 : 9660 Wed Mar 19 10:18:39 2008 length 4 : 6962 Wed Mar 19 10:18:39 2008 length 5 : 4369 Wed Mar 19 10:18:39 2008 length 6 : 2716 Wed Mar 19 10:18:39 2008 length 7 : 1554 Wed Mar 19 10:18:39 2008 length 9+: 1594 Wed Mar 19 10:18:39 2008 largest cycle: 17 relations Wed Mar 19 10:18:39 2008 matrix is 54401 x 54724 (11.9 MB) with weight 2911019 (53.19/col) Wed Mar 19 10:18:39 2008 sparse part has weight 2911019 (53.19/col) Wed Mar 19 10:18:39 2008 filtering completed in 3 passes Wed Mar 19 10:18:39 2008 matrix is 49171 x 49235 (10.8 MB) with weight 2634621 (53.51/col) Wed Mar 19 10:18:39 2008 sparse part has weight 2634621 (53.51/col) Wed Mar 19 10:18:40 2008 saving the first 48 matrix rows for later Wed Mar 19 10:18:40 2008 matrix is 49123 x 49235 (6.5 MB) with weight 2016709 (40.96/col) Wed Mar 19 10:18:40 2008 sparse part has weight 1406841 (28.57/col) Wed Mar 19 10:18:40 2008 matrix includes 64 packed rows Wed Mar 19 10:18:40 2008 commencing Lanczos iteration Wed Mar 19 10:18:40 2008 memory use: 8.4 MB Wed Mar 19 10:20:19 2008 lanczos halted after 778 iterations (dim = 49121) Wed Mar 19 10:20:20 2008 recovered 17 nontrivial dependencies Wed Mar 19 10:20:21 2008 prp33 factor: 113861384206662076954599416574707 Wed Mar 19 10:20:21 2008 prp53 factor: 17869404599998095262189940211282723567677418286716373 Wed Mar 19 10:20:21 2008 elapsed time 00:49:00 |
execution environment 実行環境 | Pentium 4 2.4GHz, Windows XP and Cygwin) |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | March 19, 2008 13:00:06 UTC 2008 年 3 月 19 日 (水) 22 時 0 分 6 秒 (日本時間) |
composite number 合成数 | 79016111561804901439724518048042668393209341149478405645387815768537964430607278443932418912722354943045009<107> |
prime factors 素因数 | 21428391549316742681539165554993157989289<41> 3687449493348667986819089625807553114935732965345671067328548973481<67> |
factorization results 素因数分解の結果 | Number: 15553_115 N=79016111561804901439724518048042668393209341149478405645387815768537964430607278443932418912722354943045009 ( 107 digits) SNFS difficulty: 116 digits. Divisors found: r1=21428391549316742681539165554993157989289 (pp41) r2=3687449493348667986819089625807553114935732965345671067328548973481 (pp67) Version: GGNFS-0.77.1-20050930-nocona Total time: 0.70 hours. Scaled time: 1.29 units (timescale=1.852). Factorization parameters were as follows: n: 79016111561804901439724518048042668393209341149478405645387815768537964430607278443932418912722354943045009 m: 100000000000000000000000 c5: 14 c0: -23 skew: 1.1 type: snfs Factor base limits: 450000/450000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [225000, 350001) Primes: RFBsize:37706, AFBsize:37874, largePrimes:1330452 encountered Relations: rels:1334974, finalFF:152187 Max relations in full relation-set: 28 Initial matrix: 75648 x 152187 with sparse part having weight 10819504. Pruned matrix : 58958 x 59400 with weight 2741608. Total sieving time: 0.66 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.01 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,116,5,0,0,0,0,0,0,0,0,450000,450000,25,25,44,44,2.3,2.3,25000 total time: 0.70 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory for crash kernel (0x0 to 0x0) notwithin permissible range Memory: 8178324k/8912896k available (2439k kernel code, 208016k reserved, 1234k data, 192k init) Calibrating delay using timer specific routine.. 4812.91 BogoMIPS (lpj=2406459) Calibrating delay using timer specific routine.. 4810.22 BogoMIPS (lpj=2405110) Calibrating delay using timer specific routine.. 4809.52 BogoMIPS (lpj=2404760) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405116) |
execution environment 実行環境 | Core 2 Quad Q6600 |
name 名前 | Sinkiti Sibata |
---|---|
date 日付 | March 19, 2008 12:16:32 UTC 2008 年 3 月 19 日 (水) 21 時 16 分 32 秒 (日本時間) |
composite number 合成数 | 9133651631791158911928100522746171669608341045686510741665627960105811317649914017350204015589<94> |
prime factors 素因数 | 4090898917791232952071545697006570921621<40> 2232675951016315988867127284632626987970566041942101009<55> |
factorization results 素因数分解の結果 | Wed Mar 19 14:37:35 2008 Msieve v. 1.33 Wed Mar 19 14:37:35 2008 random seeds: f6411e96 e5f28ecf Wed Mar 19 14:37:35 2008 factoring 9133651631791158911928100522746171669608341045686510741665627960105811317649914017350204015589 (94 digits) Wed Mar 19 14:37:37 2008 searching for 15-digit factors Wed Mar 19 14:37:39 2008 commencing quadratic sieve (94-digit input) Wed Mar 19 14:37:39 2008 using multiplier of 21 Wed Mar 19 14:37:39 2008 using 64kb Pentium 4 sieve core Wed Mar 19 14:37:39 2008 sieve interval: 18 blocks of size 65536 Wed Mar 19 14:37:39 2008 processing polynomials in batches of 6 Wed Mar 19 14:37:39 2008 using a sieve bound of 2093807 (77340 primes) Wed Mar 19 14:37:39 2008 using large prime bound of 297320594 (28 bits) Wed Mar 19 14:37:39 2008 using double large prime bound of 1785685485840044 (42-51 bits) Wed Mar 19 14:37:39 2008 using trial factoring cutoff of 51 bits Wed Mar 19 14:37:39 2008 polynomial 'A' values have 12 factors Wed Mar 19 21:09:10 2008 77649 relations (18843 full + 58806 combined from 1137793 partial), need 77436 Wed Mar 19 21:09:14 2008 begin with 1156636 relations Wed Mar 19 21:09:16 2008 reduce to 203477 relations in 12 passes Wed Mar 19 21:09:16 2008 attempting to read 203477 relations Wed Mar 19 21:09:22 2008 recovered 203477 relations Wed Mar 19 21:09:22 2008 recovered 189051 polynomials Wed Mar 19 21:09:23 2008 attempting to build 77649 cycles Wed Mar 19 21:09:23 2008 found 77648 cycles in 5 passes Wed Mar 19 21:09:23 2008 distribution of cycle lengths: Wed Mar 19 21:09:23 2008 length 1 : 18843 Wed Mar 19 21:09:23 2008 length 2 : 13506 Wed Mar 19 21:09:23 2008 length 3 : 13112 Wed Mar 19 21:09:23 2008 length 4 : 10424 Wed Mar 19 21:09:23 2008 length 5 : 7886 Wed Mar 19 21:09:23 2008 length 6 : 5463 Wed Mar 19 21:09:23 2008 length 7 : 3500 Wed Mar 19 21:09:23 2008 length 9+: 4914 Wed Mar 19 21:09:23 2008 largest cycle: 19 relations Wed Mar 19 21:09:23 2008 matrix is 77340 x 77648 (21.5 MB) with weight 5315713 (68.46/col) Wed Mar 19 21:09:23 2008 sparse part has weight 5315713 (68.46/col) Wed Mar 19 21:09:25 2008 filtering completed in 3 passes Wed Mar 19 21:09:25 2008 matrix is 73810 x 73874 (20.5 MB) with weight 5076979 (68.72/col) Wed Mar 19 21:09:25 2008 sparse part has weight 5076979 (68.72/col) Wed Mar 19 21:09:26 2008 saving the first 48 matrix rows for later Wed Mar 19 21:09:26 2008 matrix is 73762 x 73874 (14.4 MB) with weight 4199014 (56.84/col) Wed Mar 19 21:09:26 2008 sparse part has weight 3337062 (45.17/col) Wed Mar 19 21:09:26 2008 matrix includes 64 packed rows Wed Mar 19 21:09:26 2008 using block size 21845 for processor cache size 512 kB Wed Mar 19 21:09:27 2008 commencing Lanczos iteration Wed Mar 19 21:09:27 2008 memory use: 13.0 MB Wed Mar 19 21:10:26 2008 lanczos halted after 1168 iterations (dim = 73758) Wed Mar 19 21:10:27 2008 recovered 16 nontrivial dependencies Wed Mar 19 21:10:28 2008 prp40 factor: 4090898917791232952071545697006570921621 Wed Mar 19 21:10:28 2008 prp55 factor: 2232675951016315988867127284632626987970566041942101009 Wed Mar 19 21:10:28 2008 elapsed time 06:32:53 |
execution environment 実行環境 | Pentium 4 2.4GHz, Windows XP and Cygwin) |
name 名前 | Sinkiti Sibata |
---|---|
date 日付 | March 19, 2008 01:31:57 UTC 2008 年 3 月 19 日 (水) 10 時 31 分 57 秒 (日本時間) |
composite number 合成数 | 193836510298645541604861266883321392503284953654360361313167961067989394247181929303493116733154326513<102> |
prime factors 素因数 | 10753755444545527374527909643755701962882929<44> 18025006361564828534200757555861583140142606308789337325697<59> |
factorization results 素因数分解の結果 | Number: 15553_123 N=193836510298645541604861266883321392503284953654360361313167961067989394247181929303493116733154326513 ( 102 digits) SNFS difficulty: 124 digits. Divisors found: r1=10753755444545527374527909643755701962882929 (pp44) r2=18025006361564828534200757555861583140142606308789337325697 (pp59) Version: GGNFS-0.77.1-20060513-k8 Total time: 3.51 hours. Scaled time: 7.00 units (timescale=1.993). Factorization parameters were as follows: name: 15553_123 n: 193836510298645541604861266883321392503284953654360361313167961067989394247181929303493116733154326513 m: 2000000000000000000000000 c5: 875 c0: -46 skew: 0.55 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 750001) Primes: RFBsize:49098, AFBsize:63723, largePrimes:2340173 encountered Relations: rels:2569764, finalFF:299018 Max relations in full relation-set: 28 Initial matrix: 112887 x 299018 with sparse part having weight 32153223. Pruned matrix : 90356 x 90984 with weight 8670527. Total sieving time: 3.34 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.06 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,124,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 3.51 hours. --------- CPU info (if available) ---------- |
execution environment 実行環境 | Core 2 Duo E6300 1.86GHz, Windows Vista) |
name 名前 | Sinkiti Sibata |
---|---|
date 日付 | March 19, 2008 03:57:37 UTC 2008 年 3 月 19 日 (水) 12 時 57 分 37 秒 (日本時間) |
composite number 合成数 | 113460617271489095821001999614229916567009542616345391734366387186548576373031471892411915187394642219<102> |
prime factors 素因数 | 363241471005671447535513678139960218287887<42> 312355901867046413627024946541023325632565835499451550899237<60> |
factorization results 素因数分解の結果 | Number: 15553_126 N=113460617271489095821001999614229916567009542616345391734366387186548576373031471892411915187394642219 ( 102 digits) SNFS difficulty: 127 digits. Divisors found: r1=363241471005671447535513678139960218287887 (pp42) r2=312355901867046413627024946541023325632565835499451550899237 (pp60) Version: GGNFS-0.77.1-20060513-k8 Total time: 3.44 hours. Scaled time: 6.89 units (timescale=2.004). Factorization parameters were as follows: name: 15553_126 n: 113460617271489095821001999614229916567009542616345391734366387186548576373031471892411915187394642219 m: 10000000000000000000000000 c5: 140 c0: -23 skew: 0.7 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 750001) Primes: RFBsize:49098, AFBsize:63933, largePrimes:2213987 encountered Relations: rels:2276628, finalFF:160025 Max relations in full relation-set: 28 Initial matrix: 113098 x 160025 with sparse part having weight 16087550. Pruned matrix : 105821 x 106450 with weight 8492782. Total sieving time: 3.25 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.08 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,127,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 3.44 hours. --------- CPU info (if available) ---------- |
execution environment 実行環境 | Core 2 Duo E6300 1.86GHz, Windows Vista) |
name 名前 | Sinkiti Sibata |
---|---|
date 日付 | March 19, 2008 07:19:06 UTC 2008 年 3 月 19 日 (水) 16 時 19 分 6 秒 (日本時間) |
composite number 合成数 | 54896222654214913716199732368230513011479825410843239174868664298416887368955153223689788344131375104181<104> |
prime factors 素因数 | 187409363464363718474869100062621<33> 292921450878592546975162520988878794100375547144807005806036350434938361<72> |
factorization results 素因数分解の結果 | Number: 15553_128 N=54896222654214913716199732368230513011479825410843239174868664298416887368955153223689788344131375104181 ( 104 digits) SNFS difficulty: 129 digits. Divisors found: r1=187409363464363718474869100062621 (pp33) r2=292921450878592546975162520988878794100375547144807005806036350434938361 (pp72) Version: GGNFS-0.77.1-20060513-k8 Total time: 5.79 hours. Scaled time: 11.55 units (timescale=1.996). Factorization parameters were as follows: name: 15553_128 n: 54896222654214913716199732368230513011479825410843239174868664298416887368955153223689788344131375104181 m: 20000000000000000000000000 c5: 875 c0: -46 skew: 0.55 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [400000, 1150001) Primes: RFBsize:63951, AFBsize:63723, largePrimes:1580931 encountered Relations: rels:1611418, finalFF:193201 Max relations in full relation-set: 28 Initial matrix: 127740 x 193201 with sparse part having weight 17142434. Pruned matrix : 111485 x 112187 with weight 8144756. Total sieving time: 5.60 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.08 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,129,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 5.79 hours. --------- CPU info (if available) ---------- |
execution environment 実行環境 | Core 2 Duo E6300 1.86GHz, Windows Vista) |
name 名前 | Sinkiti Sibata |
---|---|
date 日付 | March 19, 2008 09:48:03 UTC 2008 年 3 月 19 日 (水) 18 時 48 分 3 秒 (日本時間) |
composite number 合成数 | 1555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555553<130> |
prime factors 素因数 | 5749413403024550933574604752036293641351380377<46> 270559002547500945368356658064162976416834648929786395630819569640571746923377726089<84> |
factorization results 素因数分解の結果 | Number: 15553_129 N=1555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555553 ( 130 digits) SNFS difficulty: 130 digits. Divisors found: r1=5749413403024550933574604752036293641351380377 (pp46) r2=270559002547500945368356658064162976416834648929786395630819569640571746923377726089 (pp84) Version: GGNFS-0.77.1-20060513-k8 Total time: 4.45 hours. Scaled time: 8.83 units (timescale=1.986). Factorization parameters were as follows: name: 15553_129 n: 1555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555553 m: 100000000000000000000000000 c5: 7 c0: -115 skew: 1.75 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [400000, 950001) Primes: RFBsize:63951, AFBsize:64213, largePrimes:1449116 encountered Relations: rels:1418473, finalFF:143850 Max relations in full relation-set: 28 Initial matrix: 128229 x 143850 with sparse part having weight 10566283. Pruned matrix : 124066 x 124771 with weight 7799437. Total sieving time: 4.26 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.09 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,130,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 4.45 hours. --------- CPU info (if available) ---------- |
execution environment 実行環境 | Core 2 Duo E6300 1.86GHz, Windows Vista) |
name 名前 | Sinkiti Sibata |
---|---|
date 日付 | March 20, 2008 06:49:06 UTC 2008 年 3 月 20 日 (木) 15 時 49 分 6 秒 (日本時間) |
composite number 合成数 | 2729044834307992202729044834307992202729044834307992202729044834307992202729044834307992202729044834307992202729044834307992202729<130> |
prime factors 素因数 | 468056747262877864591378985344497462087808873<45> 5830585394328821340439305519151218975641216570980360445799468073046721537499689235073<85> |
factorization results 素因数分解の結果 | Number: 15553_131 N=2729044834307992202729044834307992202729044834307992202729044834307992202729044834307992202729044834307992202729044834307992202729 ( 130 digits) SNFS difficulty: 132 digits. Divisors found: r1=468056747262877864591378985344497462087808873 (pp45) r2=5830585394328821340439305519151218975641216570980360445799468073046721537499689235073 (pp85) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 7.84 hours. Scaled time: 5.30 units (timescale=0.675). Factorization parameters were as follows: name: 15553_131 n: 2729044834307992202729044834307992202729044834307992202729044834307992202729044834307992202729044834307992202729044834307992202729 m: 100000000000000000000000000 c5: 140 c0: -23 skew: 0.7 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [400000, 1250001) Primes: RFBsize:63951, AFBsize:63933, largePrimes:1536054 encountered Relations: rels:1530353, finalFF:157374 Max relations in full relation-set: 28 Initial matrix: 127951 x 157374 with sparse part having weight 14195039. Pruned matrix : 120613 x 121316 with weight 9276025. Total sieving time: 7.40 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.29 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,132,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 7.84 hours. --------- CPU info (if available) ---------- |
execution environment 実行環境 | Pentium 4 2.4GHz, Windows XP and Cygwin) |
name 名前 | Sinkiti Sibata |
---|---|
date 日付 | March 20, 2008 21:30:54 UTC 2008 年 3 月 21 日 (金) 6 時 30 分 54 秒 (日本時間) |
composite number 合成数 | 30570599762300799760623180349250549785396977164422221332055957515459038129517087760322197185377808927798602234856711<116> |
prime factors 素因数 | 7196110320984271887768290805077603<34> 4248211658617179794953002753092149992005253913469193885224487376180475161049101837<82> |
factorization results 素因数分解の結果 | Number: 15553_132 N=30570599762300799760623180349250549785396977164422221332055957515459038129517087760322197185377808927798602234856711 ( 116 digits) SNFS difficulty: 133 digits. Divisors found: r1=7196110320984271887768290805077603 (pp34) r2=4248211658617179794953002753092149992005253913469193885224487376180475161049101837 (pp82) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 6.85 hours. Scaled time: 4.62 units (timescale=0.675). Factorization parameters were as follows: name: 15553_132 n: 30570599762300799760623180349250549785396977164422221332055957515459038129517087760322197185377808927798602234856711 m: 100000000000000000000000000 c5: 1400 c0: -23 skew: 0.44 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [400000, 1100001) Primes: RFBsize:63951, AFBsize:63708, largePrimes:1471928 encountered Relations: rels:1451773, finalFF:152003 Max relations in full relation-set: 28 Initial matrix: 127726 x 152003 with sparse part having weight 11651770. Pruned matrix : 121041 x 121743 with weight 7752542. Total sieving time: 6.45 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.27 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,133,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 6.85 hours. --------- CPU info (if available) ---------- |
execution environment 実行環境 | (上の枠に貼り付けた素因数分解ソフトウェアの出力結果に実行環境の情報が含まれていない場合は、それをここPentium 4 3.06GHz, Windows XP and Cygwin)に記入してください。例: Pentium 4 2.4GHz, Windows XP and Cygwin) |
name 名前 | Sinkiti Sibata |
---|---|
date 日付 | March 21, 2008 12:24:08 UTC 2008 年 3 月 21 日 (金) 21 時 24 分 8 秒 (日本時間) |
composite number 合成数 | 217417178821213519897591666112568676084285561292677561587515695663261258375232990435242424847951049<99> |
prime factors 素因数 | 215339786052217239372566579524945255357716889<45> 1009647045755365143845638829136615216297983945249227441<55> |
factorization results 素因数分解の結果 | Number: 15553_134 N=217417178821213519897591666112568676084285561292677561587515695663261258375232990435242424847951049 ( 99 digits) SNFS difficulty: 135 digits. Divisors found: r1=215339786052217239372566579524945255357716889 (pp45) r2=1009647045755365143845638829136615216297983945249227441 (pp55) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 10.16 hours. Scaled time: 6.86 units (timescale=0.675). Factorization parameters were as follows: name: 15553_134 n: 217417178821213519897591666112568676084285561292677561587515695663261258375232990435242424847951049 m: 1000000000000000000000000000 c5: 7 c0: -115 skew: 1.75 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 1450001) Primes: RFBsize:78498, AFBsize:64213, largePrimes:1584221 encountered Relations: rels:1601133, finalFF:186184 Max relations in full relation-set: 28 Initial matrix: 142776 x 186184 with sparse part having weight 16736449. Pruned matrix : 129917 x 130694 with weight 10014781. Total sieving time: 9.64 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.35 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,135,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 10.16 hours. --------- CPU info (if available) ---------- |
execution environment 実行環境 | Pentium 4 2.4GHz, Windows XP and Cygwin) |
name 名前 | Sinkiti Sibata |
---|---|
date 日付 | March 19, 2008 13:35:50 UTC 2008 年 3 月 19 日 (水) 22 時 35 分 50 秒 (日本時間) |
composite number 合成数 | 1555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555553<136> |
prime factors 素因数 | 421082122543377471948099040072049191<36> 3694185699834148430250517608597883013280312326005666129435829336555704216470266353772323806409529783<100> |
factorization results 素因数分解の結果 | Number: 15553_135 N=1555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555553 ( 136 digits) SNFS difficulty: 136 digits. Divisors found: r1=421082122543377471948099040072049191 (pp36) r2=3694185699834148430250517608597883013280312326005666129435829336555704216470266353772323806409529783 (pp100) Version: GGNFS-0.77.1-20060513-k8 Total time: 6.90 hours. Scaled time: 13.68 units (timescale=1.983). Factorization parameters were as follows: name: 15553_135 n: 1555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555553 m: 1000000000000000000000000000 c5: 14 c0: -23 skew: 1.1 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 1225001) Primes: RFBsize:78498, AFBsize:63993, largePrimes:1583247 encountered Relations: rels:1614463, finalFF:201783 Max relations in full relation-set: 28 Initial matrix: 142559 x 201783 with sparse part having weight 16529259. Pruned matrix : 124806 x 125582 with weight 8623929. Total sieving time: 6.66 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.11 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,136,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 6.90 hours. --------- CPU info (if available) ---------- |
execution environment 実行環境 | Core 2 Duo E6300 1.86GHz, Windows Vista) |
name 名前 | Sinkiti Sibata |
---|---|
date 日付 | March 19, 2008 20:35:08 UTC 2008 年 3 月 20 日 (木) 5 時 35 分 8 秒 (日本時間) |
composite number 合成数 | 3607223231193333588521443657845306759593847350118466937436125963882416398551207258919445340876035052753<103> |
prime factors 素因数 | 86564637715095292547101787933942319569693<41> 41670863835479319614069605921391221377496695827764326594084421<62> |
factorization results 素因数分解の結果 | Number: 15553_136 N=3607223231193333588521443657845306759593847350118466937436125963882416398551207258919445340876035052753 ( 103 digits) SNFS difficulty: 137 digits. Divisors found: r1=86564637715095292547101787933942319569693 (pp41) r2=41670863835479319614069605921391221377496695827764326594084421 (pp62) Version: GGNFS-0.77.1-20060513-k8 Total time: 11.88 hours. Scaled time: 23.46 units (timescale=1.974). Factorization parameters were as follows: name: 15553_136 n: 3607223231193333588521443657845306759593847350118466937436125963882416398551207258919445340876035052753 m: 1000000000000000000000000000 c5: 140 c0: -23 skew: 0.7 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 1975001) Primes: RFBsize:78498, AFBsize:63933, largePrimes:1678180 encountered Relations: rels:1716318, finalFF:184796 Max relations in full relation-set: 28 Initial matrix: 142498 x 184796 with sparse part having weight 20279499. Pruned matrix : 132168 x 132944 with weight 13105300. Total sieving time: 11.59 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.15 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,137,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 11.88 hours. --------- CPU info (if available) ---------- |
execution environment 実行環境 | Core 2 Duo E6300 1.86GHz, Windows Vista) |
name 名前 | Sinkiti Sibata |
---|---|
date 日付 | March 20, 2008 07:06:56 UTC 2008 年 3 月 20 日 (木) 16 時 6 分 56 秒 (日本時間) |
composite number 合成数 | 191783449088343675940766311867285853230866176248989712187838189564240606035699119166015972821545500623296209537116946807490513568679023<135> |
prime factors 素因数 | 108711266578758459613216246008874649<36> 10324155343485704388884033718797007786067<41> 170876381427759404236156771629665436841780455921013486760381<60> |
factorization results 素因数分解の結果 | Number: 15553_138 N=191783449088343675940766311867285853230866176248989712187838189564240606035699119166015972821545500623296209537116946807490513568679023 ( 135 digits) SNFS difficulty: 139 digits. Divisors found: r1=108711266578758459613216246008874649 (pp36) r2=10324155343485704388884033718797007786067 (pp41) r3=170876381427759404236156771629665436841780455921013486760381 (pp60) Version: GGNFS-0.77.1-20060513-k8 Total time: 19.92 hours. Scaled time: 39.85 units (timescale=2.000). Factorization parameters were as follows: name: 15553_138 n: 191783449088343675940766311867285853230866176248989712187838189564240606035699119166015972821545500623296209537116946807490513568679023 m: 2000000000000000000000000000 c5: 875 c0: -46 skew: 0.55 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 3175001) Primes: RFBsize:78498, AFBsize:63723, largePrimes:1800247 encountered Relations: rels:1887080, finalFF:161274 Max relations in full relation-set: 28 Initial matrix: 142287 x 161274 with sparse part having weight 20694509. Pruned matrix : 138410 x 139185 with weight 16896378. Total sieving time: 19.54 hours. Total relation processing time: 0.11 hours. Matrix solve time: 0.20 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,139,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 19.92 hours. --------- CPU info (if available) ---------- |
execution environment 実行環境 | Core 2 Duo E6300 1.86GHz, Windows Vista) |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | March 19, 2008 00:16:24 UTC 2008 年 3 月 19 日 (水) 9 時 16 分 24 秒 (日本時間) |
composite number 合成数 | 2342031164301825038390457367153969291449264413996512703986313901765002146490531840808540192481289035544083215299248789953885093107<130> |
prime factors 素因数 | 4033985856450760851705573910811<31> 580574956790360292326396245650795930374736048470567567465451678105744062669016644038536851027792137<99> |
factorization results 素因数分解の結果 | GMP-ECM 6.1.3 [powered by GMP 4.2.2] [ECM] Input number is 2342031164301825038390457367153969291449264413996512703986313901765002146490531840808540192481289035544083215299248789953885093107 (130 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=384416447 Step 1 took 6715ms Step 2 took 4188ms ********** Factor found in step 2: 4033985856450760851705573910811 Found probable prime factor of 31 digits: 4033985856450760851705573910811 Probable prime cofactor 580574956790360292326396245650795930374736048470567567465451678105744062669016644038536851027792137 has 99 digits |
execution environment 実行環境 | Core 2 Quad Q6600 |
name 名前 | Sinkiti Sibata |
---|---|
date 日付 | March 23, 2008 20:41:06 UTC 2008 年 3 月 24 日 (月) 5 時 41 分 6 秒 (日本時間) |
composite number 合成数 | 40583635513631102698432965511202053180932113770520479983068613766399546890836472954025354188279221472737487682924859983<119> |
prime factors 素因数 | 105919920953310151356411194198742339101<39> 383153944492844763111161253251402110359504657912538041799224423031962917815854683<81> |
factorization results 素因数分解の結果 | Number: 15553_146 N=40583635513631102698432965511202053180932113770520479983068613766399546890836472954025354188279221472737487682924859983 ( 119 digits) SNFS difficulty: 147 digits. Divisors found: r1=105919920953310151356411194198742339101 (pp39) r2=383153944492844763111161253251402110359504657912538041799224423031962917815854683 (pp81) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 32.78 hours. Scaled time: 22.12 units (timescale=0.675). Factorization parameters were as follows: name: 15553_146 n: 40583635513631102698432965511202053180932113770520479983068613766399546890836472954025354188279221472737487682924859983 m: 100000000000000000000000000000 c5: 140 c0: -23 skew: 0.7 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [750000, 3950001) Primes: RFBsize:114155, AFBsize:113947, largePrimes:3019088 encountered Relations: rels:3057061, finalFF:262687 Max relations in full relation-set: 28 Initial matrix: 228169 x 262687 with sparse part having weight 32216803. Pruned matrix : 218774 x 219978 with weight 25544316. Total sieving time: 30.47 hours. Total relation processing time: 0.26 hours. Matrix solve time: 1.93 hours. Time per square root: 0.12 hours. Prototype def-par.txt line would be: snfs,147,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,100000 total time: 32.78 hours. --------- CPU info (if available) ---------- |
execution environment 実行環境 | Pentium 4 2.4GHz, Windows XP and Cygwin) |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | March 19, 2008 01:35:04 UTC 2008 年 3 月 19 日 (水) 10 時 35 分 4 秒 (日本時間) |
composite number 合成数 | 1953465426706459909771345628659462180437303225966257512839835814181864523682558163449563880884829639618986399<109> |
prime factors 素因数 | 56584859883732260957279040013<29> 80733674721485964418028247214298861<35> 427612866165966729085518073472242602764976743<45> |
factorization results 素因数分解の結果 | GMP-ECM 6.1.3 [powered by GMP 4.2.2] [ECM] Input number is 1953465426706459909771345628659462180437303225966257512839835814181864523682558163449563880884829639618986399 (109 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=579063250 Step 1 took 5489ms Step 2 took 3646ms ********** Factor found in step 2: 56584859883732260957279040013 Found probable prime factor of 29 digits: 56584859883732260957279040013 Composite cofactor 34522758043765468944146280720649561007338052832042965993511737760269487716389723 has 80 digits Wed Mar 19 10:25:07 2008 Wed Mar 19 10:25:07 2008 Wed Mar 19 10:25:07 2008 Msieve v. 1.32 Wed Mar 19 10:25:07 2008 random seeds: f8d730fa 637ad895 Wed Mar 19 10:25:07 2008 factoring 34522758043765468944146280720649561007338052832042965993511737760269487716389723 (80 digits) Wed Mar 19 10:25:07 2008 no P-1/P+1/ECM available, skipping Wed Mar 19 10:25:07 2008 commencing quadratic sieve (80-digit input) Wed Mar 19 10:25:07 2008 using multiplier of 13 Wed Mar 19 10:25:07 2008 using 32kb Intel Core sieve core Wed Mar 19 10:25:07 2008 sieve interval: 12 blocks of size 32768 Wed Mar 19 10:25:07 2008 processing polynomials in batches of 17 Wed Mar 19 10:25:07 2008 using a sieve bound of 1255967 (48647 primes) Wed Mar 19 10:25:07 2008 using large prime bound of 125596700 (26 bits) Wed Mar 19 10:25:07 2008 using trial factoring cutoff of 27 bits Wed Mar 19 10:25:07 2008 polynomial 'A' values have 10 factors Wed Mar 19 10:36:44 2008 48821 relations (25337 full + 23484 combined from 262308 partial), need 48743 Wed Mar 19 10:36:44 2008 begin with 287645 relations Wed Mar 19 10:36:44 2008 reduce to 69412 relations in 2 passes Wed Mar 19 10:36:44 2008 attempting to read 69412 relations Wed Mar 19 10:36:45 2008 recovered 69412 relations Wed Mar 19 10:36:45 2008 recovered 58119 polynomials Wed Mar 19 10:36:45 2008 attempting to build 48821 cycles Wed Mar 19 10:36:45 2008 found 48821 cycles in 1 passes Wed Mar 19 10:36:45 2008 distribution of cycle lengths: Wed Mar 19 10:36:45 2008 length 1 : 25337 Wed Mar 19 10:36:45 2008 length 2 : 23484 Wed Mar 19 10:36:45 2008 largest cycle: 2 relations Wed Mar 19 10:36:45 2008 matrix is 48647 x 48821 with weight 1508644 (avg 30.90/col) Wed Mar 19 10:36:45 2008 filtering completed in 4 passes Wed Mar 19 10:36:45 2008 matrix is 41292 x 41356 with weight 1250071 (avg 30.23/col) Wed Mar 19 10:36:45 2008 saving the first 48 matrix rows for later Wed Mar 19 10:36:45 2008 matrix is 41244 x 41356 with weight 912138 (avg 22.06/col) Wed Mar 19 10:36:45 2008 matrix includes 64 packed rows Wed Mar 19 10:36:45 2008 commencing Lanczos iteration Wed Mar 19 10:37:08 2008 lanczos halted after 654 iterations (dim = 41227) Wed Mar 19 10:37:08 2008 recovered 10 nontrivial dependencies Wed Mar 19 10:37:08 2008 prp35 factor: 80733674721485964418028247214298861 Wed Mar 19 10:37:08 2008 prp45 factor: 427612866165966729085518073472242602764976743 Wed Mar 19 10:37:08 2008 elapsed time 00:12:01 |
execution environment 実行環境 | Core 2 Quad Q6600 |
name 名前 | Sinkiti Sibata |
---|---|
date 日付 | March 25, 2008 07:40:53 UTC 2008 年 3 月 25 日 (火) 16 時 40 分 53 秒 (日本時間) |
composite number 合成数 | 44738439906688396766049915316524462339820407119803150864410571054229380372607292365704790208672866136196593487361390726360527913590898923081839389<146> |
prime factors 素因数 | 3356563431989464838102279492452770144334227580418669<52> 13328644255702782199398300118670013826308047575946272170431865182527315159031646426963541568881<95> |
factorization results 素因数分解の結果 | Number: 15553_149 N=44738439906688396766049915316524462339820407119803150864410571054229380372607292365704790208672866136196593487361390726360527913590898923081839389 ( 146 digits) SNFS difficulty: 150 digits. Divisors found: r1=3356563431989464838102279492452770144334227580418669 (pp52) r2=13328644255702782199398300118670013826308047575946272170431865182527315159031646426963541568881 (pp95) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 34.05 hours. Scaled time: 22.99 units (timescale=0.675). Factorization parameters were as follows: name: 15553_149 n: 44738439906688396766049915316524462339820407119803150864410571054229380372607292365704790208672866136196593487361390726360527913590898923081839389 m: 1000000000000000000000000000000 c5: 7 c0: -115 skew: 1.75 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 2100001) Primes: RFBsize:176302, AFBsize:176253, largePrimes:5595123 encountered Relations: rels:5569052, finalFF:530347 Max relations in full relation-set: 28 Initial matrix: 352620 x 530347 with sparse part having weight 46594351. Pruned matrix : 278318 x 280145 with weight 23634117. Total sieving time: 30.74 hours. Total relation processing time: 0.22 hours. Matrix solve time: 2.94 hours. Time per square root: 0.15 hours. Prototype def-par.txt line would be: snfs,150,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 34.05 hours. --------- CPU info (if available) ---------- |
execution environment 実行環境 | Pentium 4 2.4GHz, Windows XP and Cygwin) |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | March 20, 2008 04:36:55 UTC 2008 年 3 月 20 日 (木) 13 時 36 分 55 秒 (日本時間) |
composite number 合成数 | 79167914691880090811594123125144309095545396652500286034081796657461347356478102726525041453355866471138533992361981<116> |
prime factors 素因数 | 16820895951350324317170195241<29> 4706521871418196358281662023008824663095196031484100339389156478064745201226851468713141<88> |
factorization results 素因数分解の結果 | GMP-ECM 6.1.3 [powered by GMP 4.2.2] [ECM] Input number is 79167914691880090811594123125144309095545396652500286034081796657461347356478102726525041453355866471138533992361981 (116 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2554641202 Step 1 took 6769ms Step 2 took 4116ms ********** Factor found in step 2: 16820895951350324317170195241 Found probable prime factor of 29 digits: 16820895951350324317170195241 Probable prime cofactor 4706521871418196358281662023008824663095196031484100339389156478064745201226851468713141 has 88 digits |
execution environment 実行環境 | Core 2 Quad Q6600 |
name 名前 | Sinkiti Sibata |
---|---|
date 日付 | March 21, 2008 07:46:45 UTC 2008 年 3 月 21 日 (金) 16 時 46 分 45 秒 (日本時間) |
composite number 合成数 | 1555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555553<154> |
prime factors 素因数 | 3282864968103111044049116015189636325629<40> 750520966883775487075871543212035736560922760348863037<54> 631349262219539973921775256331377718345779965714457540134361<60> |
factorization results 素因数分解の結果 | Number: 15553_153 N=1555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555553 ( 154 digits) SNFS difficulty: 154 digits. Divisors found: r1=3282864968103111044049116015189636325629 (pp40) r2=750520966883775487075871543212035736560922760348863037 (pp54) r3=631349262219539973921775256331377718345779965714457540134361 (pp60) Version: GGNFS-0.77.1-20060513-k8 Total time: 47.73 hours. Scaled time: 94.84 units (timescale=1.987). Factorization parameters were as follows: name: 15553_153 n: 1555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555553 m: 2000000000000000000000000000000 c5: 875 c0: -46 skew: 0.55 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 2900001) Primes: RFBsize:176302, AFBsize:176403, largePrimes:5995663 encountered Relations: rels:6090467, finalFF:516187 Max relations in full relation-set: 28 Initial matrix: 352771 x 516187 with sparse part having weight 60940354. Pruned matrix : 300632 x 302459 with weight 37411755. Total sieving time: 45.67 hours. Total relation processing time: 0.20 hours. Matrix solve time: 1.70 hours. Time per square root: 0.16 hours. Prototype def-par.txt line would be: snfs,154,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 47.73 hours. --------- CPU info (if available) ---------- |
execution environment 実行環境 | Core 2 Duo E6300 1.86GHz, Windows Vista) |
name 名前 | Sinkiti Sibata |
---|---|
date 日付 | March 22, 2008 04:50:38 UTC 2008 年 3 月 22 日 (土) 13 時 50 分 38 秒 (日本時間) |
composite number 合成数 | 29332292490325663814719515383691975304656640266784115156065107203761488181559402971368249961736184353<101> |
prime factors 素因数 | 95870625299777853092472666927690315569741<41> 305957037399167054607851451384826644981270222698168907376933<60> |
factorization results 素因数分解の結果 | Number: 15553_154 N=29332292490325663814719515383691975304656640266784115156065107203761488181559402971368249961736184353 ( 101 digits) SNFS difficulty: 155 digits. Divisors found: r1=95870625299777853092472666927690315569741 (pp41) r2=305957037399167054607851451384826644981270222698168907376933 (pp60) Version: GGNFS-0.77.1-20060513-k8 Total time: 40.32 hours. Scaled time: 80.60 units (timescale=1.999). Factorization parameters were as follows: name: 15553_154 n: 29332292490325663814719515383691975304656640266784115156065107203761488181559402971368249961736184353 m: 10000000000000000000000000000000 c5: 7 c0: -115 skew: 1.75 type: snfs Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 2800001) Primes: RFBsize:216816, AFBsize:216496, largePrimes:5747979 encountered Relations: rels:5768604, finalFF:592648 Max relations in full relation-set: 28 Initial matrix: 433377 x 592648 with sparse part having weight 49565434. Pruned matrix : 350847 x 353077 with weight 30783997. Total sieving time: 38.33 hours. Total relation processing time: 0.16 hours. Matrix solve time: 1.66 hours. Time per square root: 0.17 hours. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 40.32 hours. --------- CPU info (if available) ---------- |
execution environment 実行環境 | (上の枠に貼り付けた素因数分解ソフトウェアの出力結果に実行環境の情報が含まれていない場合は、それを Core 2 Duo E6300 1.86GHz, Windows Vista) |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | March 20, 2008 01:38:25 UTC 2008 年 3 月 20 日 (木) 10 時 38 分 25 秒 (日本時間) |
composite number 合成数 | 364497557224591483367572443698544315385061677265026264435782386158847341051380966258140822312973759666965899605155104576539035235109798733<138> |
prime factors 素因数 | 27496531615303751255508385977877<32> 13256128530106065804015121820004168812872800900839223596915403773061273707418701227696707739151908971363929<107> |
factorization results 素因数分解の結果 | GMP-ECM 6.1.3 [powered by GMP 4.2.2] [ECM] Input number is 364497557224591483367572443698544315385061677265026264435782386158847341051380966258140822312973759666965899605155104576539035235109798733 (138 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=4156413895 Step 1 took 7178ms ********** Factor found in step 1: 27496531615303751255508385977877 Found probable prime factor of 32 digits: 27496531615303751255508385977877 Probable prime cofactor 13256128530106065804015121820004168812872800900839223596915403773061273707418701227696707739151908971363929 has 107 digits |
execution environment 実行環境 | Core 2 Quad Q6600 |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | March 28, 2008 09:39:22 UTC 2008 年 3 月 28 日 (金) 18 時 39 分 22 秒 (日本時間) |
composite number 合成数 | 71323042437210250140098833358805848489479851240511488104335422079576137347801721942024555504610525243262519741199246013551378063069947526618778338173111213<155> |
prime factors 素因数 | 14588197216044197579705519152242955035773942876598287<53> 4889092283367864506268890541041439684319959055354301808203619167574234059984462242015485343648252218499<103> |
factorization results 素因数分解の結果 | Number: 15553_158 N=71323042437210250140098833358805848489479851240511488104335422079576137347801721942024555504610525243262519741199246013551378063069947526618778338173111213 ( 155 digits) SNFS difficulty: 160 digits. Divisors found: r1=14588197216044197579705519152242955035773942876598287 (pp53) r2=4889092283367864506268890541041439684319959055354301808203619167574234059984462242015485343648252218499 (pp103) Version: GGNFS-0.77.1-20050930-nocona Total time: 41.96 hours. Scaled time: 77.92 units (timescale=1.857). Factorization parameters were as follows: n: 71323042437210250140098833358805848489479851240511488104335422079576137347801721942024555504610525243262519741199246013551378063069947526618778338173111213 m: 100000000000000000000000000000000 c5: 7 c0: -1150 skew: 2.77 type: snfs Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2000000, 4500001) Primes: RFBsize:283146, AFBsize:282822, largePrimes:5807321 encountered Relations: rels:5848810, finalFF:648376 Max relations in full relation-set: 28 Initial matrix: 566034 x 648376 with sparse part having weight 50939019. Pruned matrix : 513937 x 516831 with weight 38008732. Total sieving time: 40.30 hours. Total relation processing time: 0.10 hours. Matrix solve time: 1.50 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,48,48,2.3,2.3,100000 total time: 41.96 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory for crash kernel (0x0 to 0x0) notwithin permissible range Memory: 8178324k/8912896k available (2439k kernel code, 208016k reserved, 1234k data, 192k init) Calibrating delay using timer specific routine.. 4812.92 BogoMIPS (lpj=2406460) Calibrating delay using timer specific routine.. 4810.27 BogoMIPS (lpj=2405136) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405131) |
execution environment 実行環境 | Core 2 Quad Q6600 |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | March 30, 2008 10:33:16 UTC 2008 年 3 月 30 日 (日) 19 時 33 分 16 秒 (日本時間) |
composite number 合成数 | 24570413325872433726374752132935798567129323835655643445013749975132033066760666479547157867771337118765767720739<113> |
prime factors 素因数 | 2430749538295306145725728141599656700945070902478673<52> 10108163321139107412078827980136296192052017344921530333358643<62> |
factorization results 素因数分解の結果 | Number: 15553_159 N=24570413325872433726374752132935798567129323835655643445013749975132033066760666479547157867771337118765767720739 ( 113 digits) Divisors found: r1=2430749538295306145725728141599656700945070902478673 (pp52) r2=10108163321139107412078827980136296192052017344921530333358643 (pp62) Version: GGNFS-0.77.1-20050930-nocona Total time: 19.76 hours. Scaled time: 36.72 units (timescale=1.858). Factorization parameters were as follows: name: 15553_159 n: 24570413325872433726374752132935798567129323835655643445013749975132033066760666479547157867771337118765767720739 skew: 21469.36 # norm 6.53e+14 c5: 43920 c4: -1018208888 c3: -52825621881145 c2: 440927432653850745 c1: 9501511920375097228487 c0: -45005353793894983316532848 # alpha -4.95 Y1: 684329137657 Y0: -3544462736890836314475 # Murphy_E 7.69e-10 # M 19596200183058475987666150282800979262971493155179127731599566306585118493722288584774250903399448011868899771762 type: gnfs rlim: 2800000 alim: 2800000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 70000 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1400000, 2380001) Primes: RFBsize:203362, AFBsize:203762, largePrimes:7714693 encountered Relations: rels:7680934, finalFF:595056 Max relations in full relation-set: 28 Initial matrix: 407203 x 595056 with sparse part having weight 57185218. Pruned matrix : 284718 x 286818 with weight 34334574. Polynomial selection time: 1.06 hours. Total sieving time: 17.98 hours. Total relation processing time: 0.14 hours. Matrix solve time: 0.48 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: gnfs,112,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2800000,2800000,27,27,50,50,2.6,2.6,70000 total time: 19.76 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory for crash kernel (0x0 to 0x0) notwithin permissible range Memory: 8178324k/8912896k available (2439k kernel code, 208016k reserved, 1234k data, 192k init) Calibrating delay using timer specific routine.. 4812.94 BogoMIPS (lpj=2406472) Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405149) Calibrating delay using timer specific routine.. 4809.88 BogoMIPS (lpj=2404940) Calibrating delay using timer specific routine.. 4918.32 BogoMIPS (lpj=2459163) |
execution environment 実行環境 | Core 2 Quad Q6600 |
name 名前 | Robert Backstrom |
---|---|
date 日付 | April 1, 2008 05:09:27 UTC 2008 年 4 月 1 日 (火) 14 時 9 分 27 秒 (日本時間) |
composite number 合成数 | 469362624404298939135494109270052332408386538926431489548931993834927472197048244992417935599677767202896447674317093792319483188200971134309<141> |
prime factors 素因数 | 472035414783518016243135774561543103921057694177<48> 994337733365949129428898253056275129686355332723981707011105870757951405338818661021405862917<93> |
factorization results 素因数分解の結果 | Number: n N=469362624404298939135494109270052332408386538926431489548931993834927472197048244992417935599677767202896447674317093792319483188200971134309 ( 141 digits) SNFS difficulty: 163 digits. Divisors found: Tue Apr 1 16:01:03 2008 prp48 factor: 472035414783518016243135774561543103921057694177 Tue Apr 1 16:01:03 2008 prp93 factor: 994337733365949129428898253056275129686355332723981707011105870757951405338818661021405862917 Tue Apr 1 16:01:03 2008 elapsed time 00:46:15 (Msieve 1.33) Version: GGNFS-0.77.1-20050930-k8 Total time: 37.68 hours. Scaled time: 31.61 units (timescale=0.839). Factorization parameters were as follows: name: KA_1_5_161_3 n: 469362624404298939135494109270052332408386538926431489548931993834927472197048244992417935599677767202896447674317093792319483188200971134309 type: snfs deg: 5 c5: 1400 c0: -23 skew: 0.44 m: 100000000000000000000000000000000 rlim: 3000000 alim: 3000000 lbpr: 28 lbpa: 28 mbpr: 48 mbpa: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved special-q in [100000, 2400001) Primes: RFBsize:216816, AFBsize:216901, largePrimes:5556168 encountered Relations: rels:5418684, finalFF:465647 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 37.50 hours. Total relation processing time: 0.18 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,163,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.5,2.5,100000 total time: 37.68 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM) Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6029.31 BogoMIPS (lpj=3014656) Total of 2 processors activated (11993.08 BogoMIPS). |
name 名前 | Robert Backstrom |
---|---|
date 日付 | March 31, 2008 12:03:27 UTC 2008 年 3 月 31 日 (月) 21 時 3 分 27 秒 (日本時間) |
composite number 合成数 | 4127144219030625606615578640760931340860497953075896232234229896254039121793781892295216094450484552747480745109771365395645492218596260903591774271<148> |
prime factors 素因数 | 535728913589613419728258074511925624737<39> 7703792187315390144299929098071704967894750175677556891822468858120439691344477047932722475841300620157500383<109> |
factorization results 素因数分解の結果 | GMP-ECM 6.0 [powered by GMP 4.1.4] [ECM] Input number is 4127144219030625606615578640760931340860497953075896232234229896254039121793781892295216094450484552747480745109771365395645492218596260903591774271 (148 digits) Using B1=2066000, B2=2360767334, polynomial Dickson(6), sigma=719258285 Step 1 took 23106ms Step 2 took 11347ms ********** Factor found in step 2: 535728913589613419728258074511925624737 Found probable prime factor of 39 digits: 535728913589613419728258074511925624737 Probable prime cofactor 7703792187315390144299929098071704967894750175677556891822468858120439691344477047932722475841300620157500383 has 109 digits |
name 名前 | Robert Backstrom |
---|---|
date 日付 | April 17, 2008 12:28:15 UTC 2008 年 4 月 17 日 (木) 21 時 28 分 15 秒 (日本時間) |
composite number 合成数 | 2254524377991385991563706505473868776277617286083852671778874658941835390476638766040487793370391946432194808145574188574573096897484680105410253377854959<154> |
prime factors 素因数 | 3383246862790582749480921165155169175417<40> 432508300655604026409962871945358873577669<42> 1540730929988680743737736570091962036281428096254323888738391539667343483<73> |
factorization results 素因数分解の結果 | GMP-ECM 6.1.3 [powered by GMP 4.2.1] [ECM] Input number is 2254524377991385991563706505473868776277617286083852671778874658941835390476638766040487793370391946432194808145574188574573096897484680105410253377854959 (154 digits) Using B1=2628000, B2=4281434440, polynomial Dickson(6), sigma=1836372263 Step 1 took 31407ms Step 2 took 13504ms ********** Factor found in step 2: 3383246862790582749480921165155169175417 Found probable prime factor of 40 digits: 3383246862790582749480921165155169175417 Composite cofactor 666378916296932729031689796754642939121851670277389480145678840927507410551912991473639321490092225320869301481127 has 114 digits Number: n N=666378916296932729031689796754642939121851670277389480145678840927507410551912991473639321490092225320869301481127 ( 114 digits) Divisors found: Thu Apr 17 22:20:15 2008 prp42 factor: 432508300655604026409962871945358873577669 Thu Apr 17 22:20:15 2008 prp73 factor: 1540730929988680743737736570091962036281428096254323888738391539667343483 Thu Apr 17 22:20:15 2008 elapsed time 00:44:24 (Msieve 1.34) Version: GGNFS-0.77.1-20050930-k8 Total time: 26.74 hours. Scaled time: 22.39 units (timescale=0.837). Factorization parameters were as follows: name: KA_1_5_165_3 n: 666378916296932729031689796754642939121851670277389480145678840927507410551912991473639321490092225320869301481127 skew: 21772.53 # norm 1.15e+16 c5: 127920 c4: -23604014380 c3: -521830973354640 c2: 13654652291457606849 c1: 43808656190295530955502 c0: -112301076362569465313946696 # alpha -6.55 Y1: 1193146480793 Y0: -5538090041817291334015 # Murphy_E 5.94e-10 # M 424840657608522257635537657543679823340115623023876770799204026916388698189137461913456436848462018965001840737620 type: gnfs rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved special-q in [100000, 1500151) Primes: RFBsize:250150, AFBsize:250624, largePrimes:6967090 encountered Relations: rels:6656946, finalFF:539540 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 26.53 hours. Total relation processing time: 0.22 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: gnfs,113,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3500000,3500000,27,27,50,50,2.6,2.6,100000 total time: 26.74 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM) Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6029.31 BogoMIPS (lpj=3014656) Total of 2 processors activated (11993.08 BogoMIPS). |
name 名前 | Serge Batalov |
---|---|
date 日付 | November 24, 2008 03:51:38 UTC 2008 年 11 月 24 日 (月) 12 時 51 分 38 秒 (日本時間) |
composite number 合成数 | 3370492126389538221668926684699853124387396608271289087220791904152731586742330640771051468886140534163065108871155506842989468743752607154636325753<148> |
prime factors 素因数 | 4140183215192466077295603949<28> |
composite cofactor 合成数の残り | 814092505380309124943551135799902484909003478048353721821331357008460909965452505234824673882421566041432715888319342397<120> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2712233381 Step 1 took 14573ms ********** Factor found in step 1: 4140183215192466077295603949 Found probable prime factor of 28 digits: 4140183215192466077295603949 Composite cofactor 814092505380309124943551135799902484909003478048353721821331357008460909965452505234824673882421566041432715888319342397 has 120 digits |
software ソフトウェア | GMP-ECM 6.2.1 |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | December 4, 2008 11:54:15 UTC 2008 年 12 月 4 日 (木) 20 時 54 分 15 秒 (日本時間) |
composite number 合成数 | 814092505380309124943551135799902484909003478048353721821331357008460909965452505234824673882421566041432715888319342397<120> |
prime factors 素因数 | 630117766017269648087725009336287261566800724122723<51> 1291968818028846496792599442959506376604417781810432273538694583529439<70> |
factorization results 素因数分解の結果 | Number: 15553_170 N=814092505380309124943551135799902484909003478048353721821331357008460909965452505234824673882421566041432715888319342397 ( 120 digits) Divisors found: r1=630117766017269648087725009336287261566800724122723 (pp51) r2=1291968818028846496792599442959506376604417781810432273538694583529439 (pp70) Version: GGNFS-0.77.1-20050930-nocona Total time: 43.54 hours. Scaled time: 103.89 units (timescale=2.386). Factorization parameters were as follows: name: 15553_170 n: 814092505380309124943551135799902484909003478048353721821331357008460909965452505234824673882421566041432715888319342397 skew: 28185.42 # norm 3.42e+15 c5: 95760 c4: 4567223691 c3: -133520678204283 c2: -3909924647066575861 c1: 67745503802752554587296 c0: -3003949084757309352275677 # alpha -3.63 Y1: 11054423741099 Y0: -96804924543965338047558 # Murphy_E 2.60e-10 # M 275705184235830591348662618029168213759719931670795570142473149118975745695546772170490093024576973858091779254759836679 type: gnfs rlim: 4800000 alim: 4800000 lpbr: 27 lpba: 27 mfbr: 53 mfba: 53 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 4800000/4800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 53/53 Sieved algebraic special-q in [2400000, 4800001) Primes: RFBsize:335439, AFBsize:334032, largePrimes:10062010 encountered Relations: rels:10266008, finalFF:849385 Max relations in full relation-set: 28 Initial matrix: 669551 x 849385 with sparse part having weight 84446630. Pruned matrix : 532692 x 536103 with weight 58093567. Polynomial selection time: 2.60 hours. Total sieving time: 38.10 hours. Total relation processing time: 0.18 hours. Matrix solve time: 2.48 hours. Time per square root: 0.18 hours. Prototype def-par.txt line would be: gnfs,119,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4800000,4800000,27,27,53,53,2.4,2.4,100000 total time: 43.54 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047068k/8912896k available (2460k kernel code, 339224k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672384) Calibrating delay using timer specific routine.. 5497.76 BogoMIPS (lpj=2748880) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347) |
execution environment 実行環境 | Core 2 Quad Q6700 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | March 19, 2008 09:00:00 UTC 2008 年 3 月 19 日 (水) 18 時 0 分 0 秒 (日本時間) |
name 名前 | Sinkiti Sibata |
---|---|
date 日付 | March 21, 2008 22:11:38 UTC 2008 年 3 月 22 日 (土) 7 時 11 分 38 秒 (日本時間) |
composite number 合成数 | 12714452607239358532562745136775421026098425976970363512265686475547346928780346430570128545383<95> |
prime factors 素因数 | 59153305041058215728786305575326180793937<41> 214940696862403157894398875584911842395797860592706359<54> |
factorization results 素因数分解の結果 | Fri Mar 21 21:27:39 2008 Msieve v. 1.33 Fri Mar 21 21:27:39 2008 random seeds: 59a25932 53de64be Fri Mar 21 21:27:39 2008 factoring 12714452607239358532562745136775421026098425976970363512265686475547346928780346430570128545383 (95 digits) Fri Mar 21 21:27:41 2008 searching for 15-digit factors Fri Mar 21 21:27:43 2008 commencing quadratic sieve (95-digit input) Fri Mar 21 21:27:43 2008 using multiplier of 7 Fri Mar 21 21:27:43 2008 using 64kb Pentium 4 sieve core Fri Mar 21 21:27:43 2008 sieve interval: 18 blocks of size 65536 Fri Mar 21 21:27:43 2008 processing polynomials in batches of 6 Fri Mar 21 21:27:43 2008 using a sieve bound of 2093807 (77512 primes) Fri Mar 21 21:27:43 2008 using large prime bound of 297320594 (28 bits) Fri Mar 21 21:27:43 2008 using double large prime bound of 1785685485840044 (42-51 bits) Fri Mar 21 21:27:43 2008 using trial factoring cutoff of 51 bits Fri Mar 21 21:27:43 2008 polynomial 'A' values have 12 factors Sat Mar 22 02:44:08 2008 77717 relations (19430 full + 58287 combined from 1125756 partial), need 77608 Sat Mar 22 02:44:13 2008 begin with 1145186 relations Sat Mar 22 02:44:14 2008 reduce to 199983 relations in 10 passes Sat Mar 22 02:44:14 2008 attempting to read 199983 relations Sat Mar 22 02:44:20 2008 recovered 199983 relations Sat Mar 22 02:44:20 2008 recovered 182356 polynomials Sat Mar 22 02:44:21 2008 attempting to build 77717 cycles Sat Mar 22 02:44:21 2008 found 77717 cycles in 7 passes Sat Mar 22 02:44:21 2008 distribution of cycle lengths: Sat Mar 22 02:44:21 2008 length 1 : 19430 Sat Mar 22 02:44:21 2008 length 2 : 13873 Sat Mar 22 02:44:21 2008 length 3 : 13261 Sat Mar 22 02:44:21 2008 length 4 : 10546 Sat Mar 22 02:44:21 2008 length 5 : 7814 Sat Mar 22 02:44:21 2008 length 6 : 5092 Sat Mar 22 02:44:21 2008 length 7 : 3301 Sat Mar 22 02:44:21 2008 length 9+: 4400 Sat Mar 22 02:44:21 2008 largest cycle: 23 relations Sat Mar 22 02:44:21 2008 matrix is 77512 x 77717 (20.8 MB) with weight 5138619 (66.12/col) Sat Mar 22 02:44:21 2008 sparse part has weight 5138619 (66.12/col) Sat Mar 22 02:44:23 2008 filtering completed in 3 passes Sat Mar 22 02:44:23 2008 matrix is 73413 x 73476 (19.8 MB) with weight 4892739 (66.59/col) Sat Mar 22 02:44:23 2008 sparse part has weight 4892739 (66.59/col) Sat Mar 22 02:44:23 2008 saving the first 48 matrix rows for later Sat Mar 22 02:44:24 2008 matrix is 73365 x 73476 (13.6 MB) with weight 3977170 (54.13/col) Sat Mar 22 02:44:24 2008 sparse part has weight 3115293 (42.40/col) Sat Mar 22 02:44:24 2008 matrix includes 64 packed rows Sat Mar 22 02:44:24 2008 using block size 21845 for processor cache size 512 kB Sat Mar 22 02:44:25 2008 commencing Lanczos iteration Sat Mar 22 02:44:25 2008 memory use: 12.4 MB Sat Mar 22 02:45:22 2008 lanczos halted after 1163 iterations (dim = 73363) Sat Mar 22 02:45:22 2008 recovered 17 nontrivial dependencies Sat Mar 22 02:45:23 2008 prp41 factor: 59153305041058215728786305575326180793937 Sat Mar 22 02:45:23 2008 prp54 factor: 214940696862403157894398875584911842395797860592706359 Sat Mar 22 02:45:23 2008 elapsed time 05:17:44 |
execution environment 実行環境 | (上の枠に貼り付けた素因数分解ソフトウェアの出力結果に実行環境の情報が含まれていない場合は、それをここにPentium 4 3.06GHz, Windows XP and Cygwin)記入してください。例: Pentium 4 2.4GHz, Windows XP and Cygwin) |
name 名前 | Sinkiti Sibata |
---|---|
date 日付 | April 14, 2010 10:26:17 UTC 2010 年 4 月 14 日 (水) 19 時 26 分 17 秒 (日本時間) |
composite number 合成数 | 5711751946033545264638372965422199499184157041919174657241365564315916000245537450835910108884553682537754204430553623485327671<127> |
prime factors 素因数 | 99116071380420986197668503315898839491273606904399<50> 57626900123099745229955931269971891412641816187378696237985321097977648459929<77> |
factorization results 素因数分解の結果 | Number: 15553_174 N=5711751946033545264638372965422199499184157041919174657241365564315916000245537450835910108884553682537754204430553623485327671 ( 127 digits) SNFS difficulty: 175 digits. Divisors found: r1=99116071380420986197668503315898839491273606904399 (pp50) r2=57626900123099745229955931269971891412641816187378696237985321097977648459929 (pp77) Version: Msieve-1.40 Total time: 96.88 hours. Scaled time: 278.52 units (timescale=2.875). Factorization parameters were as follows: name: 15553_174 n: 5711751946033545264638372965422199499184157041919174657241365564315916000245537450835910108884553682537754204430553623485327671 m: 20000000000000000000000000000000000 deg: 5 c5: 4375 c0: -23 skew: 0.35 type: snfs lss: 1 rlim: 5800000 alim: 5800000 lpbr: 28 lpba: 28 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 Factor base limits: 5800000/5800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 52/52 Sieved rational special-q in [2900000, 7300001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1153876 x 1154124 Total sieving time: 93.38 hours. Total relation processing time: 0.18 hours. Matrix solve time: 2.88 hours. Time per square root: 0.43 hours. Prototype def-par.txt line would be: snfs,175.000,5,0,0,0,0,0,0,0,0,5800000,5800000,28,28,52,52,2.5,2.5,100000 total time: 96.88 hours. --------- CPU info (if available) ---------- |
execution environment 実行環境 | Core i7 2.93GHz,Windows 7 64bit,and Cygwin) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | March 19, 2008 09:00:00 UTC 2008 年 3 月 19 日 (水) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 1035 | 625 | Ignacio Santos | March 18, 2010 19:51:41 UTC 2010 年 3 月 19 日 (金) 4 時 51 分 41 秒 (日本時間) |
410 | Ignacio Santos | March 29, 2010 08:50:12 UTC 2010 年 3 月 29 日 (月) 17 時 50 分 12 秒 (日本時間) | |||
40 | 3e6 | 150 / 2054 | Ignacio Santos | March 29, 2010 08:50:12 UTC 2010 年 3 月 29 日 (月) 17 時 50 分 12 秒 (日本時間) |
name 名前 | Robert Backstrom |
---|---|
date 日付 | November 26, 2008 18:26:12 UTC 2008 年 11 月 27 日 (木) 3 時 26 分 12 秒 (日本時間) |
composite number 合成数 | 158006232217245025907379003906139783599178819038848089422498507405413519238951696366195243786687072042941579452869562469456831004434332045582540762786372188194451498294097<171> |
prime factors 素因数 | 2038700949876497258819164740062522064954709<43> 77503388727423169575714188322817654539111949909475491882640338731051584806905658501368959790339414055676600291226770718963064333<128> |
factorization results 素因数分解の結果 | Number: n N=158006232217245025907379003906139783599178819038848089422498507405413519238951696366195243786687072042941579452869562469456831004434332045582540762786372188194451498294097 ( 171 digits) SNFS difficulty: 176 digits. Divisors found: Thu Nov 27 04:51:58 2008 prp43 factor: 2038700949876497258819164740062522064954709 Thu Nov 27 04:51:58 2008 prp128 factor: 77503388727423169575714188322817654539111949909475491882640338731051584806905658501368959790339414055676600291226770718963064333 Thu Nov 27 04:51:59 2008 elapsed time 03:36:08 (Msieve 1.38) Version: GGNFS-0.77.1-20051202-athlon Total time: 19.92 hours. Scaled time: 40.86 units (timescale=2.051). Factorization parameters were as follows: name: KA_1_5_174_3 n: 158006232217245025907379003906139783599178819038848089422498507405413519238951696366195243786687072042941579452869562469456831004434332045582540762786372188194451498294097 type: snfs skew: 1.10 deg: 5 c5: 14 c0: -23 m: 100000000000000000000000000000000000 rlim: 7500000 alim: 7500000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 7500000/7500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [100000, 3800001) Primes: RFBsize:508261, AFBsize:508901, largePrimes:18196504 encountered Relations: rels:17583392, finalFF:1197106 Max relations in full relation-set: 28 Initial matrix: 1017230 x 1197106 with sparse part having weight 109758757. Pruned matrix : Total sieving time: 19.33 hours. Total relation processing time: 0.59 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,176,5,0,0,0,0,0,0,0,0,7500000,7500000,28,28,56,56,2.5,2.5,100000 total time: 19.92 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | March 19, 2008 09:00:00 UTC 2008 年 3 月 19 日 (水) 18 時 0 分 0 秒 (日本時間) |
name 名前 | Markus Tervooren |
---|---|
date 日付 | August 30, 2012 15:41:22 UTC 2012 年 8 月 31 日 (金) 0 時 41 分 22 秒 (日本時間) |
composite number 合成数 | 116251175930903276901064889853415106976646263751065808132060477968001120966012861548008613202223192778144017506096349709416272396398638404951871321<147> |
prime factors 素因数 | 234702867347322669726379416879684047505133531274778971582413091846467<69> 495312124835995920557634547516701277873203021011998714924966356518732869651763<78> |
factorization results 素因数分解の結果 | Thu Aug 30 15:00:18 2012 Msieve v. 1.50 (SVN exported) Thu Aug 30 15:00:18 2012 random seeds: 5d2d086f 6c8577b2 Thu Aug 30 15:00:18 2012 factoring 116251175930903276901064889853415106976646263751065808132060477968001120966012861548008613202223192778144017506096349709416272396398638404951871321 (147 digits) Thu Aug 30 15:00:19 2012 searching for 15-digit factors Thu Aug 30 15:00:19 2012 commencing number field sieve (147-digit input) Thu Aug 30 15:00:19 2012 R0: -100000000000000000000000000000000000 Thu Aug 30 15:00:19 2012 R1: 1 Thu Aug 30 15:00:19 2012 A0: -23 Thu Aug 30 15:00:19 2012 A1: 0 Thu Aug 30 15:00:19 2012 A2: 0 Thu Aug 30 15:00:19 2012 A3: 0 Thu Aug 30 15:00:19 2012 A4: 0 Thu Aug 30 15:00:19 2012 A5: 140 Thu Aug 30 15:00:19 2012 skew 0.70, size 1.789e-12, alpha 1.276, combined = 1.192e-10 rroots = 1 Thu Aug 30 15:00:19 2012 Thu Aug 30 15:00:19 2012 commencing relation filtering Thu Aug 30 15:00:19 2012 estimated available RAM is 16079.7 MB Thu Aug 30 15:00:19 2012 commencing duplicate removal, pass 1 Thu Aug 30 15:00:29 2012 error -15 reading relation 745993 Thu Aug 30 15:00:48 2012 error -9 reading relation 2526010 Thu Aug 30 15:00:58 2012 error -1 reading relation 3499911 Thu Aug 30 15:01:01 2012 error -9 reading relation 3774439 Thu Aug 30 15:01:14 2012 error -5 reading relation 5038277 Thu Aug 30 15:01:15 2012 error -9 reading relation 5042002 Thu Aug 30 15:01:27 2012 error -9 reading relation 6193398 Thu Aug 30 15:01:27 2012 error -1 reading relation 6196665 Thu Aug 30 15:01:38 2012 error -5 reading relation 7257187 Thu Aug 30 15:02:07 2012 error -9 reading relation 10034274 Thu Aug 30 15:02:12 2012 error -9 reading relation 10493990 Thu Aug 30 15:02:13 2012 found 3046746 hash collisions in 10570519 relations Thu Aug 30 15:02:22 2012 added 354177 free relations Thu Aug 30 15:02:22 2012 commencing duplicate removal, pass 2 Thu Aug 30 15:02:53 2012 found 3837684 duplicates and 7087012 unique relations Thu Aug 30 15:02:53 2012 memory use: 82.6 MB Thu Aug 30 15:02:53 2012 reading ideals above 100000 Thu Aug 30 15:02:53 2012 commencing singleton removal, initial pass Thu Aug 30 15:04:40 2012 memory use: 188.2 MB Thu Aug 30 15:04:40 2012 reading all ideals from disk Thu Aug 30 15:04:41 2012 memory use: 261.0 MB Thu Aug 30 15:04:41 2012 keeping 7845206 ideals with weight <= 200, target excess is 47079 Thu Aug 30 15:04:42 2012 commencing in-memory singleton removal Thu Aug 30 15:04:43 2012 begin with 7087012 relations and 7845206 unique ideals Thu Aug 30 15:04:46 2012 reduce to 2014931 relations and 1692787 ideals in 8 passes Thu Aug 30 15:04:46 2012 max relations containing the same ideal: 83 Thu Aug 30 15:04:47 2012 removing 309817 relations and 176051 ideals in 133766 cliques Thu Aug 30 15:04:48 2012 commencing in-memory singleton removal Thu Aug 30 15:04:48 2012 begin with 1705114 relations and 1692787 unique ideals Thu Aug 30 15:04:49 2012 reduce to 1671582 relations and 1475077 ideals in 5 passes Thu Aug 30 15:04:49 2012 max relations containing the same ideal: 74 Thu Aug 30 15:04:50 2012 removing 292421 relations and 158655 ideals in 133766 cliques Thu Aug 30 15:04:50 2012 commencing in-memory singleton removal Thu Aug 30 15:04:50 2012 begin with 1379161 relations and 1475077 unique ideals Thu Aug 30 15:04:51 2012 reduce to 1347354 relations and 1278687 ideals in 5 passes Thu Aug 30 15:04:51 2012 max relations containing the same ideal: 63 Thu Aug 30 15:04:52 2012 removing 47626 relations and 33571 ideals in 14055 cliques Thu Aug 30 15:04:52 2012 commencing in-memory singleton removal Thu Aug 30 15:04:52 2012 begin with 1299728 relations and 1278687 unique ideals Thu Aug 30 15:04:52 2012 reduce to 1298945 relations and 1244325 ideals in 4 passes Thu Aug 30 15:04:52 2012 max relations containing the same ideal: 62 Thu Aug 30 15:04:53 2012 relations with 0 large ideals: 1021 Thu Aug 30 15:04:53 2012 relations with 1 large ideals: 344 Thu Aug 30 15:04:53 2012 relations with 2 large ideals: 4398 Thu Aug 30 15:04:53 2012 relations with 3 large ideals: 28401 Thu Aug 30 15:04:53 2012 relations with 4 large ideals: 101718 Thu Aug 30 15:04:53 2012 relations with 5 large ideals: 226080 Thu Aug 30 15:04:53 2012 relations with 6 large ideals: 343473 Thu Aug 30 15:04:53 2012 relations with 7+ large ideals: 593510 Thu Aug 30 15:04:53 2012 commencing 2-way merge Thu Aug 30 15:04:54 2012 reduce to 958193 relation sets and 903573 unique ideals Thu Aug 30 15:04:54 2012 commencing full merge Thu Aug 30 15:05:11 2012 memory use: 121.4 MB Thu Aug 30 15:05:11 2012 found 529110 cycles, need 521773 Thu Aug 30 15:05:11 2012 weight of 521773 cycles is about 36801751 (70.53/cycle) Thu Aug 30 15:05:11 2012 distribution of cycle lengths: Thu Aug 30 15:05:11 2012 1 relations: 20588 Thu Aug 30 15:05:11 2012 2 relations: 52374 Thu Aug 30 15:05:11 2012 3 relations: 71531 Thu Aug 30 15:05:12 2012 4 relations: 74242 Thu Aug 30 15:05:12 2012 5 relations: 70464 Thu Aug 30 15:05:12 2012 6 relations: 61212 Thu Aug 30 15:05:12 2012 7 relations: 49862 Thu Aug 30 15:05:12 2012 8 relations: 38864 Thu Aug 30 15:05:12 2012 9 relations: 28751 Thu Aug 30 15:05:12 2012 10+ relations: 53885 Thu Aug 30 15:05:12 2012 heaviest cycle: 17 relations Thu Aug 30 15:05:12 2012 commencing cycle optimization Thu Aug 30 15:05:13 2012 start with 2881117 relations Thu Aug 30 15:05:17 2012 pruned 107063 relations Thu Aug 30 15:05:17 2012 memory use: 85.8 MB Thu Aug 30 15:05:17 2012 distribution of cycle lengths: Thu Aug 30 15:05:17 2012 1 relations: 20588 Thu Aug 30 15:05:17 2012 2 relations: 54149 Thu Aug 30 15:05:17 2012 3 relations: 75098 Thu Aug 30 15:05:17 2012 4 relations: 77528 Thu Aug 30 15:05:17 2012 5 relations: 73898 Thu Aug 30 15:05:17 2012 6 relations: 63097 Thu Aug 30 15:05:17 2012 7 relations: 50737 Thu Aug 30 15:05:17 2012 8 relations: 37945 Thu Aug 30 15:05:17 2012 9 relations: 27051 Thu Aug 30 15:05:17 2012 10+ relations: 41682 Thu Aug 30 15:05:17 2012 heaviest cycle: 17 relations Thu Aug 30 15:05:18 2012 RelProcTime: 299 Thu Aug 30 15:05:18 2012 elapsed time 00:05:00 Thu Aug 30 15:05:37 2012 Thu Aug 30 15:05:37 2012 Thu Aug 30 15:05:37 2012 Msieve v. 1.50 (SVN exported) Thu Aug 30 15:05:37 2012 random seeds: a36637d2 11ace5b9 Thu Aug 30 15:05:37 2012 factoring 116251175930903276901064889853415106976646263751065808132060477968001120966012861548008613202223192778144017506096349709416272396398638404951871321 (147 digits) Thu Aug 30 15:05:38 2012 searching for 15-digit factors Thu Aug 30 15:05:38 2012 commencing number field sieve (147-digit input) Thu Aug 30 15:05:38 2012 R0: -100000000000000000000000000000000000 Thu Aug 30 15:05:38 2012 R1: 1 Thu Aug 30 15:05:38 2012 A0: -23 Thu Aug 30 15:05:38 2012 A1: 0 Thu Aug 30 15:05:38 2012 A2: 0 Thu Aug 30 15:05:38 2012 A3: 0 Thu Aug 30 15:05:38 2012 A4: 0 Thu Aug 30 15:05:38 2012 A5: 140 Thu Aug 30 15:05:38 2012 skew 0.70, size 1.789e-12, alpha 1.276, combined = 1.192e-10 rroots = 1 Thu Aug 30 15:05:38 2012 Thu Aug 30 15:05:38 2012 commencing linear algebra Thu Aug 30 15:05:40 2012 read 521773 cycles Thu Aug 30 15:05:41 2012 cycles contain 1282612 unique relations Thu Aug 30 15:06:44 2012 read 1282612 relations Thu Aug 30 15:06:46 2012 using 20 quadratic characters above 536845290 Thu Aug 30 15:06:51 2012 building initial matrix Thu Aug 30 15:07:06 2012 memory use: 169.7 MB Thu Aug 30 15:07:06 2012 read 521773 cycles Thu Aug 30 15:07:06 2012 matrix is 521596 x 521773 (155.7 MB) with weight 46126973 (88.40/col) Thu Aug 30 15:07:06 2012 sparse part has weight 35076790 (67.23/col) Thu Aug 30 15:07:11 2012 filtering completed in 2 passes Thu Aug 30 15:07:11 2012 matrix is 521590 x 521767 (155.7 MB) with weight 46126552 (88.40/col) Thu Aug 30 15:07:11 2012 sparse part has weight 35076519 (67.23/col) Thu Aug 30 15:07:12 2012 matrix starts at (0, 0) Thu Aug 30 15:07:13 2012 matrix is 521590 x 521767 (155.7 MB) with weight 46126552 (88.40/col) Thu Aug 30 15:07:13 2012 sparse part has weight 35076519 (67.23/col) Thu Aug 30 15:07:13 2012 saving the first 48 matrix rows for later Thu Aug 30 15:07:13 2012 matrix includes 64 packed rows Thu Aug 30 15:07:13 2012 matrix is 521542 x 521767 (147.1 MB) with weight 36465857 (69.89/col) Thu Aug 30 15:07:13 2012 sparse part has weight 33341795 (63.90/col) Thu Aug 30 15:07:13 2012 using block size 65536 for processor cache size 6144 kB Thu Aug 30 15:07:14 2012 commencing Lanczos iteration (4 threads) Thu Aug 30 15:07:14 2012 memory use: 127.1 MB Thu Aug 30 17:15:18 2012 Thu Aug 30 17:15:18 2012 Thu Aug 30 17:15:18 2012 Msieve v. 1.50 (SVN exported) Thu Aug 30 17:15:18 2012 random seeds: dfcfe337 3b67762e Thu Aug 30 17:15:18 2012 factoring 116251175930903276901064889853415106976646263751065808132060477968001120966012861548008613202223192778144017506096349709416272396398638404951871321 (147 digits) Thu Aug 30 17:15:18 2012 searching for 15-digit factors Thu Aug 30 17:15:19 2012 commencing number field sieve (147-digit input) Thu Aug 30 17:15:19 2012 R0: -100000000000000000000000000000000000 Thu Aug 30 17:15:19 2012 R1: 1 Thu Aug 30 17:15:19 2012 A0: -23 Thu Aug 30 17:15:19 2012 A1: 0 Thu Aug 30 17:15:19 2012 A2: 0 Thu Aug 30 17:15:19 2012 A3: 0 Thu Aug 30 17:15:19 2012 A4: 0 Thu Aug 30 17:15:19 2012 A5: 140 Thu Aug 30 17:15:19 2012 skew 0.70, size 1.789e-12, alpha 1.276, combined = 1.192e-10 rroots = 1 Thu Aug 30 17:15:19 2012 Thu Aug 30 17:15:19 2012 commencing linear algebra Thu Aug 30 17:15:19 2012 read 521767 cycles Thu Aug 30 17:15:19 2012 cycles contain 1282607 unique relations Thu Aug 30 17:15:57 2012 read 1282607 relations Thu Aug 30 17:15:59 2012 using 20 quadratic characters above 536845290 Thu Aug 30 17:16:04 2012 building initial matrix Thu Aug 30 17:16:18 2012 memory use: 169.7 MB Thu Aug 30 17:16:19 2012 read 521767 cycles Thu Aug 30 17:16:19 2012 matrix is 521590 x 521767 (155.7 MB) with weight 46126552 (88.40/col) Thu Aug 30 17:16:19 2012 sparse part has weight 35076519 (67.23/col) Thu Aug 30 17:16:21 2012 filtering completed in 1 passes Thu Aug 30 17:16:22 2012 matrix is 521590 x 521767 (155.7 MB) with weight 46126552 (88.40/col) Thu Aug 30 17:16:22 2012 sparse part has weight 35076519 (67.23/col) Thu Aug 30 17:16:23 2012 matrix starts at (0, 0) Thu Aug 30 17:16:23 2012 matrix is 521590 x 521767 (155.7 MB) with weight 46126552 (88.40/col) Thu Aug 30 17:16:23 2012 sparse part has weight 35076519 (67.23/col) Thu Aug 30 17:16:23 2012 saving the first 48 matrix rows for later Thu Aug 30 17:16:23 2012 matrix includes 64 packed rows Thu Aug 30 17:16:23 2012 matrix is 521542 x 521767 (147.1 MB) with weight 36465857 (69.89/col) Thu Aug 30 17:16:23 2012 sparse part has weight 33341795 (63.90/col) Thu Aug 30 17:16:23 2012 using block size 65536 for processor cache size 6144 kB Thu Aug 30 17:16:24 2012 commencing Lanczos iteration (4 threads) Thu Aug 30 17:16:24 2012 memory use: 127.1 MB Thu Aug 30 17:16:30 2012 linear algebra at 0.6%, ETA 0h17m Thu Aug 30 17:31:53 2012 lanczos halted after 8249 iterations (dim = 521540) Thu Aug 30 17:31:54 2012 recovered 38 nontrivial dependencies Thu Aug 30 17:31:54 2012 BLanczosTime: 995 Thu Aug 30 17:31:54 2012 elapsed time 00:16:36 Thu Aug 30 17:36:37 2012 Thu Aug 30 17:36:37 2012 Thu Aug 30 17:36:37 2012 Msieve v. 1.50 (SVN exported) Thu Aug 30 17:36:37 2012 random seeds: 6c9698ad 714af5e1 Thu Aug 30 17:36:37 2012 factoring 116251175930903276901064889853415106976646263751065808132060477968001120966012861548008613202223192778144017506096349709416272396398638404951871321 (147 digits) Thu Aug 30 17:36:38 2012 searching for 15-digit factors Thu Aug 30 17:36:38 2012 commencing number field sieve (147-digit input) Thu Aug 30 17:36:38 2012 R0: -100000000000000000000000000000000000 Thu Aug 30 17:36:38 2012 R1: 1 Thu Aug 30 17:36:38 2012 A0: -23 Thu Aug 30 17:36:38 2012 A1: 0 Thu Aug 30 17:36:38 2012 A2: 0 Thu Aug 30 17:36:38 2012 A3: 0 Thu Aug 30 17:36:38 2012 A4: 0 Thu Aug 30 17:36:38 2012 A5: 140 Thu Aug 30 17:36:38 2012 skew 0.70, size 1.789e-12, alpha 1.276, combined = 1.192e-10 rroots = 1 Thu Aug 30 17:36:38 2012 Thu Aug 30 17:36:38 2012 commencing square root phase Thu Aug 30 17:36:38 2012 reading relations for dependency 1 Thu Aug 30 17:36:38 2012 read 261027 cycles Thu Aug 30 17:36:38 2012 cycles contain 642594 unique relations Thu Aug 30 17:37:28 2012 read 642594 relations Thu Aug 30 17:37:30 2012 multiplying 642594 relations Thu Aug 30 17:37:43 2012 multiply complete, coefficients have about 19.13 million bits Thu Aug 30 17:37:43 2012 initial square root is modulo 311951 Thu Aug 30 17:38:00 2012 GCD is 1, no factor found Thu Aug 30 17:38:00 2012 reading relations for dependency 2 Thu Aug 30 17:38:00 2012 read 259875 cycles Thu Aug 30 17:38:00 2012 cycles contain 639988 unique relations Thu Aug 30 17:38:34 2012 read 639988 relations Thu Aug 30 17:38:36 2012 multiplying 639988 relations Thu Aug 30 17:38:48 2012 multiply complete, coefficients have about 19.05 million bits Thu Aug 30 17:38:48 2012 initial square root is modulo 296441 Thu Aug 30 17:39:06 2012 sqrtTime: 148 Thu Aug 30 17:39:06 2012 prp69 factor: 234702867347322669726379416879684047505133531274778971582413091846467 Thu Aug 30 17:39:06 2012 prp78 factor: 495312124835995920557634547516701277873203021011998714924966356518732869651763 Thu Aug 30 17:39:06 2012 elapsed time 00:02:29 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | March 19, 2008 09:00:00 UTC 2008 年 3 月 19 日 (水) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 300 | Ignacio Santos | October 8, 2010 06:23:03 UTC 2010 年 10 月 8 日 (金) 15 時 23 分 3 秒 (日本時間) | |
40 | 3e6 | 2144 | 110 | Ignacio Santos | October 8, 2010 06:23:03 UTC 2010 年 10 月 8 日 (金) 15 時 23 分 3 秒 (日本時間) |
2034 | Wataru Sakai | September 27, 2011 01:57:38 UTC 2011 年 9 月 27 日 (火) 10 時 57 分 38 秒 (日本時間) | |||
45 | 11e6 | 32 / 3991 | Ignacio Santos | October 8, 2010 06:23:03 UTC 2010 年 10 月 8 日 (金) 15 時 23 分 3 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | October 8, 2010 06:20:44 UTC 2010 年 10 月 8 日 (金) 15 時 20 分 44 秒 (日本時間) |
composite number 合成数 | 360247803808234983067639359606623976465394305804420646845194297919425380075733095279503331952222263510197992318471032805410937982754210889793508762494499<153> |
prime factors 素因数 | 551070279090733843157124777559998214735819<42> |
composite cofactor 合成数の残り | 653723885096187708953281445418926172134364640836532252094970259837709556314637653024908899537227842861924851721<111> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1100047172 Step 1 took 72088ms Step 2 took 36114ms ********** Factor found in step 2: 551070279090733843157124777559998214735819 Found probable prime factor of 42 digits: 551070279090733843157124777559998214735819 Composite cofactor 653723885096187708953281445418926172134364640836532252094970259837709556314637653024908899537227842861924851721 has 111 digits |
software ソフトウェア | GMP-ECM 6.3 |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | October 10, 2010 19:18:49 UTC 2010 年 10 月 11 日 (月) 4 時 18 分 49 秒 (日本時間) |
composite number 合成数 | 653723885096187708953281445418926172134364640836532252094970259837709556314637653024908899537227842861924851721<111> |
prime factors 素因数 | 678257271786770080886865976540564306772539931538851<51> 963828789294137997437321079907552931491795841898920587638371<60> |
factorization results 素因数分解の結果 | Number: z111 N=653723885096187708953281445418926172134364640836532252094970259837709556314637653024908899537227842861924851721 ( 111 digits) Divisors found: r1=678257271786770080886865976540564306772539931538851 (pp51) r2=963828789294137997437321079907552931491795841898920587638371 (pp60) Version: Msieve-1.40 Total time: 13.29 hours. Scaled time: 25.70 units (timescale=1.934). Factorization parameters were as follows: name: z111 n: 653723885096187708953281445418926172134364640836532252094970259837709556314637653024908899537227842861924851721 skew: 15454.14 # norm 2.83e+015 c5: 185220 c4: -8402089108 c3: -127243234397781 c2: 3570443330073272933 c1: 19676072845747715562793 c0: -477450338671868044061865 # alpha -6.33 Y1: 823135552877 Y0: -1286897078465010883298 # Murphy_E 9.06e-010 # M 605197017814225155838362751101687717666385311353534240293058205014323545574175695658443904452427073931284027713 type: gnfs rlim: 3200000 alim: 3200000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1600000, 2300001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 404417 x 404648 Total sieving time: 12.96 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.20 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: gnfs,110,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,3200000,27,27,50,50,2.6,2.6,100000 total time: 13.29 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | March 19, 2008 09:00:00 UTC 2008 年 3 月 19 日 (水) 18 時 0 分 0 秒 (日本時間) |
name 名前 | Robert Backstrom |
---|---|
date 日付 | September 20, 2008 07:58:40 UTC 2008 年 9 月 20 日 (土) 16 時 58 分 40 秒 (日本時間) |
composite number 合成数 | 915032679738562091503267973856209150326797385620915032679738562091503267973856209150326797385620915032679738562091503267973856209150326797385620915032679738562091503267973856209<177> |
prime factors 素因数 | 2225841655194472268016781853809366714396313<43> 411095136800562521541539475829738868608002274427477071385840597838998349260485047470252329367328208883411589540139084008392762907660793<135> |
factorization results 素因数分解の結果 | Number: n N=915032679738562091503267973856209150326797385620915032679738562091503267973856209150326797385620915032679738562091503267973856209150326797385620915032679738562091503267973856209 ( 177 digits) SNFS difficulty: 179 digits. Divisors found: Sat Sep 20 16:52:55 2008 prp43 factor: 2225841655194472268016781853809366714396313 Sat Sep 20 16:52:55 2008 prp135 factor: 411095136800562521541539475829738868608002274427477071385840597838998349260485047470252329367328208883411589540139084008392762907660793 Sat Sep 20 16:52:55 2008 elapsed time 06:44:14 (Msieve 1.36) Version: GGNFS-0.77.1-20050930-k8 Total time: 103.73 hours. Scaled time: 87.34 units (timescale=0.842). Factorization parameters were as follows: name: KA_1_5_177_3 n: 915032679738562091503267973856209150326797385620915032679738562091503267973856209150326797385620915032679738562091503267973856209150326797385620915032679738562091503267973856209 type: snfs skew: 0.55 deg: 5 c5: 875 c0: -46 m: 200000000000000000000000000000000000 rlim: 8000000 alim: 8000000 lpbr: 28 lpba: 28 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 8000000/8000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 52/52 Sieved special-q in [100000, 13800001) Primes: RFBsize:539777, AFBsize:540340, largePrimes:15352877 encountered Relations: rels:15599595, finalFF:1126756 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 103.04 hours. Total relation processing time: 0.69 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,179,5,0,0,0,0,0,0,0,0,8000000,8000000,28,28,52,52,2.5,2.5,100000 total time: 103.73 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM) Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6029.31 BogoMIPS (lpj=3014656) Total of 2 processors activated (11993.08 BogoMIPS). |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | March 19, 2008 09:00:00 UTC 2008 年 3 月 19 日 (水) 18 時 0 分 0 秒 (日本時間) |
name 名前 | Robert Backstrom |
---|---|
date 日付 | April 27, 2012 03:34:23 UTC 2012 年 4 月 27 日 (金) 12 時 34 分 23 秒 (日本時間) |
composite number 合成数 | 28308105810482340002410291246421714755620468802185129407002852371701539195382928877635196931481525955199346273185050669081656635127727<134> |
prime factors 素因数 | 451344638653809780151646232464668802251922144892060586583<57> 62719490575793045441757950900246719553423646117253091908112789360783052414569<77> |
factorization results 素因数分解の結果 | Number: n N=28308105810482340002410291246421714755620468802185129407002852371701539195382928877635196931481525955199346273185050669081656635127727 ( 134 digits) Divisors found: Fri Apr 27 13:25:00 2012 prp57 factor: 451344638653809780151646232464668802251922144892060586583 Fri Apr 27 13:25:00 2012 prp77 factor: 62719490575793045441757950900246719553423646117253091908112789360783052414569 Fri Apr 27 13:25:00 2012 elapsed time 02:07:09 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.096). Factorization parameters were as follows: name: KA_15553_182 n: 28308105810482340002410291246421714755620468802185129407002852371701539195382928877635196931481525955199346273185050669081656635127727 skew: 230213.26 # norm 3.17e+18 c5: 113220 c4: 195751592445 c3: -24861424867873858 c2: -4167564095174783061994 c1: 585565361050877843764704718 c0: 27585112610964065052918078926404 # alpha -6.11 Y1: 283603719751033 Y0: -47818576249424092207929585 # Murphy_E 4.51e-11 # M 17761568934575764873523759120047697046676466831685886564176729340436821051301970821804523785957093898145229501110409963848942211442600 type: gnfs rlim: 5400000 alim: 5400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.5 alambda: 2.5 qintsize: 60000 Factor base limits: 5400000/5400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved special-q in [100000, 25560000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 3180312 hash collisions in 13399986 relations (10101040 unique) Msieve: matrix is 1273986 x 1274212 (370.6 MB) Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: gnfs,133,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,5400000,5400000,27,27,51,51,2.5,2.5,60000 total time: 0.00 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU1: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU2: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU3: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 Memory: 8109188k/9175040k available (3972k kernel code, 787464k absent, 278388k reserved, 2498k data, 1292k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 5661.55 BogoMIPS (lpj=2830779) Calibrating delay using timer specific routine.. 5660.90 BogoMIPS (lpj=2830450) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830457) Calibrating delay using timer specific routine.. 5660.92 BogoMIPS (lpj=2830462) Total of 4 processors activated (22644.29 BogoMIPS). |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | March 19, 2008 09:00:00 UTC 2008 年 3 月 19 日 (水) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 300 | Ignacio Santos | October 8, 2010 06:23:33 UTC 2010 年 10 月 8 日 (金) 15 時 23 分 33 秒 (日本時間) | |
40 | 3e6 | 880 | 110 | Ignacio Santos | October 8, 2010 06:23:33 UTC 2010 年 10 月 8 日 (金) 15 時 23 分 33 秒 (日本時間) |
770 | Ignacio Santos | July 13, 2011 08:14:45 UTC 2011 年 7 月 13 日 (水) 17 時 14 分 45 秒 (日本時間) | |||
45 | 11e6 | 252 / 4057 | 32 | Ignacio Santos | October 8, 2010 06:23:33 UTC 2010 年 10 月 8 日 (金) 15 時 23 分 33 秒 (日本時間) |
220 | Ignacio Santos | July 13, 2011 08:14:45 UTC 2011 年 7 月 13 日 (水) 17 時 14 分 45 秒 (日本時間) | |||
50 | 43e6 | 61 / 7462 | Ignacio Santos | July 13, 2011 08:14:45 UTC 2011 年 7 月 13 日 (水) 17 時 14 分 45 秒 (日本時間) |
name 名前 | Kenichiroh Yamaguchi |
---|---|
date 日付 | March 20, 2008 13:29:54 UTC 2008 年 3 月 20 日 (木) 22 時 29 分 54 秒 (日本時間) |
composite number 合成数 | 218044335556607056762155154297125159650663090901409983335965799460624173261563216247971866209<93> |
prime factors 素因数 | 8747097848694413689758101801203081<34> 24927620489480658641554644061289498862540687696094550232089<59> |
factorization results 素因数分解の結果 | Thu Mar 20 00:47:44 2008 Thu Mar 20 00:47:44 2008 Thu Mar 20 00:47:44 2008 Msieve v. 1.33 Thu Mar 20 00:47:44 2008 random seeds: ec6f1bc8 e3913f34 Thu Mar 20 00:47:44 2008 factoring 218044335556607056762155154297125159650663090901409983335965799460624173261563216247971866209 (93 digits) Thu Mar 20 00:47:46 2008 searching for 15-digit factors Thu Mar 20 00:47:47 2008 commencing quadratic sieve (93-digit input) Thu Mar 20 00:47:48 2008 using multiplier of 1 Thu Mar 20 00:47:48 2008 using 32kb Pentium M sieve core Thu Mar 20 00:47:48 2008 sieve interval: 36 blocks of size 32768 Thu Mar 20 00:47:48 2008 processing polynomials in batches of 6 Thu Mar 20 00:47:48 2008 using a sieve bound of 1888307 (70588 primes) Thu Mar 20 00:47:48 2008 using large prime bound of 220931919 (27 bits) Thu Mar 20 00:47:48 2008 using double large prime bound of 1046321638060374 (42-50 bits) Thu Mar 20 00:47:48 2008 using trial factoring cutoff of 50 bits Thu Mar 20 00:47:48 2008 polynomial 'A' values have 12 factors Thu Mar 20 04:02:02 2008 71110 relations (18516 full + 52594 combined from 918052 partial), need 70684 Thu Mar 20 04:02:03 2008 begin with 936567 relations Thu Mar 20 04:02:04 2008 reduce to 178995 relations in 10 passes Thu Mar 20 04:02:04 2008 attempting to read 178995 relations Thu Mar 20 04:02:07 2008 recovered 178995 relations Thu Mar 20 04:02:07 2008 recovered 159948 polynomials Thu Mar 20 04:02:07 2008 attempting to build 71110 cycles Thu Mar 20 04:02:07 2008 found 71110 cycles in 6 passes Thu Mar 20 04:02:07 2008 distribution of cycle lengths: Thu Mar 20 04:02:07 2008 length 1 : 18516 Thu Mar 20 04:02:07 2008 length 2 : 12937 Thu Mar 20 04:02:07 2008 length 3 : 12446 Thu Mar 20 04:02:07 2008 length 4 : 9530 Thu Mar 20 04:02:07 2008 length 5 : 6740 Thu Mar 20 04:02:07 2008 length 6 : 4538 Thu Mar 20 04:02:07 2008 length 7 : 2826 Thu Mar 20 04:02:07 2008 length 9+: 3577 Thu Mar 20 04:02:07 2008 largest cycle: 19 relations Thu Mar 20 04:02:08 2008 matrix is 70588 x 71110 (17.4 MB) with weight 4281603 (60.21/col) Thu Mar 20 04:02:08 2008 sparse part has weight 4281603 (60.21/col) Thu Mar 20 04:02:08 2008 filtering completed in 3 passes Thu Mar 20 04:02:08 2008 matrix is 66351 x 66415 (16.3 MB) with weight 4003888 (60.29/col) Thu Mar 20 04:02:08 2008 sparse part has weight 4003888 (60.29/col) Thu Mar 20 04:02:09 2008 saving the first 48 matrix rows for later Thu Mar 20 04:02:09 2008 matrix is 66303 x 66415 (9.7 MB) with weight 3093727 (46.58/col) Thu Mar 20 04:02:09 2008 sparse part has weight 2156021 (32.46/col) Thu Mar 20 04:02:09 2008 matrix includes 64 packed rows Thu Mar 20 04:02:09 2008 using block size 26566 for processor cache size 2048 kB Thu Mar 20 04:02:09 2008 commencing Lanczos iteration Thu Mar 20 04:02:09 2008 memory use: 9.9 MB Thu Mar 20 04:02:45 2008 lanczos halted after 1050 iterations (dim = 66301) Thu Mar 20 04:02:45 2008 recovered 15 nontrivial dependencies Thu Mar 20 04:02:45 2008 prp34 factor: 8747097848694413689758101801203081 Thu Mar 20 04:02:45 2008 prp59 factor: 24927620489480658641554644061289498862540687696094550232089 Thu Mar 20 04:02:45 2008 elapsed time 03:15:01 |
name 名前 | Ignacio Santos |
---|---|
date 日付 | October 8, 2010 06:22:16 UTC 2010 年 10 月 8 日 (金) 15 時 22 分 16 秒 (日本時間) |
composite number 合成数 | 172072824595882755829342139286678751448635575581093669971277341408334105690458884031727171521353490384868582343553765006223857592421835713415003634722031<153> |
prime factors 素因数 | 11530738827474680344340095285882094371<38> |
composite cofactor 合成数の残り | 14922966097010109406395092289189184151282479567596158356366061174397182388255514780486680012854552253568010077227461<116> |
factorization results 素因数分解の結果 | Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1289100372 Step 1 took 6599ms Step 2 took 5054ms ********** Factor found in step 2: 11530738827474680344340095285882094371 Found probable prime factor of 38 digits: 11530738827474680344340095285882094371 Composite cofactor 14922966097010109406395092289189184151282479567596158356366061174397182388255514780486680012854552253568010077227461 has 116 digits |
software ソフトウェア | GMP-ECM 6.3 |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | October 11, 2010 02:49:21 UTC 2010 年 10 月 11 日 (月) 11 時 49 分 21 秒 (日本時間) |
composite number 合成数 | 14922966097010109406395092289189184151282479567596158356366061174397182388255514780486680012854552253568010077227461<116> |
prime factors 素因数 | 399248416356628216931980618453190939377<39> 37377646311513947369563642937369624137333302442851722145520171406714562870293<77> |
factorization results 素因数分解の結果 | Number: z116 N=14922966097010109406395092289189184151282479567596158356366061174397182388255514780486680012854552253568010077227461 ( 116 digits) Divisors found: r1=399248416356628216931980618453190939377 (pp39) r2=37377646311513947369563642937369624137333302442851722145520171406714562870293 (pp77) Version: Msieve-1.40 Total time: 20.66 hours. Scaled time: 40.44 units (timescale=1.957). Factorization parameters were as follows: name: z116 n: 14922966097010109406395092289189184151282479567596158356366061174397182388255514780486680012854552253568010077227461 skew: 19908.48 # norm 3.90e+015 c5: 95040 c4: -1244766468 c3: -269228078229216 c2: 179725575987543937 c1: 25294972835360023900244 c0: 33834459592974514034961127 # alpha -5.42 Y1: 3898683602279 Y0: -10944354457875273397454 # Murphy_E 5.44e-010 # M 8098991345644333647045863683019458743850883973336446811127910629255971979950833310876105578396084288790217888320855 type: gnfs rlim: 3400000 alim: 3400000 lpbr: 27 lpba: 27 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3400000/3400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 53/53 Sieved algebraic special-q in [1700000, 2800001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 476863 x 477089 Total sieving time: 20.23 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.28 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: gnfs,115,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3400000,3400000,27,27,53,53,2.5,2.5,100000 total time: 20.66 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | March 19, 2008 09:00:00 UTC 2008 年 3 月 19 日 (水) 18 時 0 分 0 秒 (日本時間) |
name 名前 | Wataru Sakai |
---|---|
date 日付 | June 18, 2010 11:35:18 UTC 2010 年 6 月 18 日 (金) 20 時 35 分 18 秒 (日本時間) |
composite number 合成数 | 55542009256226599432429696184296892574148810476029098315827027599431394234440305810970444228282878991961408967632699708901552387653581044664340813290771174257376854607694271834757<179> |
prime factors 素因数 | 8831504096685906854961851854652321<34> 6289076996190171773132127311967162875386222790205267180773358694979298005392875675088270427791547856615819841843276720754972757597039614088969317<145> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2074512981 Step 1 took 18266ms ********** Factor found in step 1: 8831504096685906854961851854652321 Found probable prime factor of 34 digits: 8831504096685906854961851854652321 Probable prime cofactor 6289076996190171773132127311967162875386222790205267180773358694979298005392875675088270427791547856615819841843276720754972757597039614088969317 has 145 digits |
software ソフトウェア | GMP-ECM 6.2.3 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | March 19, 2008 09:00:00 UTC 2008 年 3 月 19 日 (水) 18 時 0 分 0 秒 (日本時間) |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | February 26, 2017 08:58:38 UTC 2017 年 2 月 26 日 (日) 17 時 58 分 38 秒 (日本時間) |
composite number 合成数 | 64249643918452685762543484907345414655355769002718705566888466093167260086649199143181173123774784203400923722326748818995341565757608850762121803537399386684807<161> |
prime factors 素因数 | 74139381966718203922912865719163125511<38> 866606143915455010448947146563672029714252286988620529684323320853314484760104943267014959261466106615178212774253838871937<123> |
factorization results 素因数分解の結果 | GMP-ECM 6.4.4 [configured with GMP 6.0.0, --enable-asm-redc] [ECM] Input number is 64249643918452685762543484907345414655355769002718705566888466093167260086649199143181173123774784203400923722326748818995341565757608850762121803537399386684807 (161 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=2164012053 Step 1 took 29960ms Step 2 took 9746ms ********** Factor found in step 2: 74139381966718203922912865719163125511 Found probable prime factor of 38 digits: 74139381966718203922912865719163125511 Probable prime cofactor 866606143915455010448947146563672029714252286988620529684323320853314484760104943267014959261466106615178212774253838871937 has 123 digits |
execution environment 実行環境 | Core i7-4930K |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | March 19, 2008 09:00:00 UTC 2008 年 3 月 19 日 (水) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 300 | Ignacio Santos | October 8, 2010 06:24:43 UTC 2010 年 10 月 8 日 (金) 15 時 24 分 43 秒 (日本時間) | |
40 | 3e6 | 1110 | 110 | Ignacio Santos | October 8, 2010 06:24:43 UTC 2010 年 10 月 8 日 (金) 15 時 24 分 43 秒 (日本時間) |
1000 | Dmitry Domanov | May 18, 2012 13:04:38 UTC 2012 年 5 月 18 日 (金) 22 時 4 分 38 秒 (日本時間) | |||
45 | 11e6 | 732 / 4220 | 32 | Ignacio Santos | October 8, 2010 06:24:43 UTC 2010 年 10 月 8 日 (金) 15 時 24 分 43 秒 (日本時間) |
400 | Dmitry Domanov | May 19, 2012 10:05:02 UTC 2012 年 5 月 19 日 (土) 19 時 5 分 2 秒 (日本時間) | |||
300 | Serge Batalov | May 27, 2014 00:30:11 UTC 2014 年 5 月 27 日 (火) 9 時 30 分 11 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | May 16, 2012 13:40:28 UTC 2012 年 5 月 16 日 (水) 22 時 40 分 28 秒 (日本時間) |
composite number 合成数 | 60143892698676349917503430043718898150518686050827348961817245364871433349750714656177637969991813971610084605067169874764220706728892676736217629652236070361274160753<167> |
prime factors 素因数 | 27160785900659997888588313244157337<35> 2214364964204326418867159465034646764633749122982406100696852937558853207149879879683642424650608830501960166764162582240480693628569<133> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1661170279 Step 1 took 26390ms Step 2 took 10385ms ********** Factor found in step 2: 27160785900659997888588313244157337 Found probable prime factor of 35 digits: 27160785900659997888588313244157337 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | March 19, 2008 09:00:00 UTC 2008 年 3 月 19 日 (水) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 300 | Ignacio Santos | October 8, 2010 07:14:51 UTC 2010 年 10 月 8 日 (金) 16 時 14 分 51 秒 (日本時間) | |
40 | 3e6 | 110 / 2144 | Ignacio Santos | October 8, 2010 07:14:51 UTC 2010 年 10 月 8 日 (金) 16 時 14 分 51 秒 (日本時間) | |
45 | 11e6 | 32 / 4441 | Ignacio Santos | October 8, 2010 07:14:51 UTC 2010 年 10 月 8 日 (金) 16 時 14 分 51 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | October 8, 2010 12:48:56 UTC 2010 年 10 月 8 日 (金) 21 時 48 分 56 秒 (日本時間) |
composite number 合成数 | 2546559112371994905195829433605899484206098477152865271283661349039656055345770044072397930812609577197498856683401452432364225842501608547919339798077346367325473388189869725631633<181> |
prime factors 素因数 | 3598465183229085294499173214049<31> 707679241761299541712417487810079463164495158192167808861559999579405873611117043978013451576631655109578525920464298098877911368288678903590008167217<150> |
factorization results 素因数分解の結果 | Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1606400259 Step 1 took 8736ms Step 2 took 5975ms ********** Factor found in step 2: 3598465183229085294499173214049 Found probable prime factor of 31 digits: 3598465183229085294499173214049 Probable prime cofactor 707679241761299541712417487810079463164495158192167808861559999579405873611117043978013451576631655109578525920464298098877911368288678903590008167217 has 150 digits |
software ソフトウェア | GMP-ECM 6.3 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | March 19, 2008 09:00:00 UTC 2008 年 3 月 19 日 (水) 18 時 0 分 0 秒 (日本時間) |
name 名前 | matsui |
---|---|
date 日付 | March 2, 2011 09:01:36 UTC 2011 年 3 月 2 日 (水) 18 時 1 分 36 秒 (日本時間) |
composite number 合成数 | 14460780334668632439800684750438911471451831440852736833304905040228503223722801720182793231229352462511233456312663137788620584579198044464650109088815201057970721868161<170> |
prime factors 素因数 | 16017356713461169207690816324785616034907328460547193619<56> 902819397317637795287565649613985785907793845983174204562788702221650522111969837567369819809912113139602862622619<114> |
factorization results 素因数分解の結果 | N=14460780334668632439800684750438911471451831440852736833304905040228503223722801720182793231229352462511233456312663137788620584579198044464650109088815201057970721868161 ( 170 digits) SNFS difficulty: 195 digits. Divisors found: r1=16017356713461169207690816324785616034907328460547193619 (pp56) r2=902819397317637795287565649613985785907793845983174204562788702221650522111969837567369819809912113139602862622619 (pp114) Version: Msieve v. 1.48 Total time: Scaled time: 52.26 units (timescale=0.451). Factorization parameters were as follows: n: 14460780334668632439800684750438911471451831440852736833304905040228503223722801720182793231229352462511233456312663137788620584579198044464650109088815201057970721868161 m: 200000000000000000000000000000000000000 deg: 5 c5: 4375 c0: -23 skew: 0.35 type: snfs lss: 1 rlim: 12500000 alim: 12500000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 qintsize: 320000 Factor base limits: 12500000/12500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved rational special-q in [6250000, 13930001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 2456581 x 2456807 Total sieving time: Total relation processing time: Matrix solve time: Time per square root: Prototype def-par.txt line would be: snfs,195.000,5,0,0,0,0,0,0,0,0,12500000,12500000,28,28,55,55,2.5,2.5,100000 total time: |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | March 19, 2008 09:00:00 UTC 2008 年 3 月 19 日 (水) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 300 | Ignacio Santos | October 8, 2010 12:50:57 UTC 2010 年 10 月 8 日 (金) 21 時 50 分 57 秒 (日本時間) | |
40 | 3e6 | 110 / 2144 | Ignacio Santos | October 8, 2010 12:50:57 UTC 2010 年 10 月 8 日 (金) 21 時 50 分 57 秒 (日本時間) | |
45 | 11e6 | 32 / 4441 | Ignacio Santos | October 8, 2010 12:50:57 UTC 2010 年 10 月 8 日 (金) 21 時 50 分 57 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | May 16, 2012 13:41:05 UTC 2012 年 5 月 16 日 (水) 22 時 41 分 5 秒 (日本時間) |
composite number 合成数 | 1050415496599729184030472344935984398072307415455557540279532227120764814671403866152028320499524296065320837863161377324577858486771429621305467732075933089688179<163> |
prime factors 素因数 | 459677278245238185567873636228214391<36> 2285115115129383661600997441443524486382279947226925876095131334689763789253307221014791602935849336209894859533061101128087269<127> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=417253223 Step 1 took 27071ms Step 2 took 10008ms ********** Factor found in step 2: 459677278245238185567873636228214391 Found probable prime factor of 36 digits: 459677278245238185567873636228214391 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | March 19, 2008 09:00:00 UTC 2008 年 3 月 19 日 (水) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 300 | Ignacio Santos | October 8, 2010 12:51:19 UTC 2010 年 10 月 8 日 (金) 21 時 51 分 19 秒 (日本時間) | |
40 | 3e6 | 110 / 2144 | Ignacio Santos | October 8, 2010 12:51:19 UTC 2010 年 10 月 8 日 (金) 21 時 51 分 19 秒 (日本時間) | |
45 | 11e6 | 32 / 4441 | Ignacio Santos | October 8, 2010 12:51:19 UTC 2010 年 10 月 8 日 (金) 21 時 51 分 19 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | October 8, 2010 12:49:58 UTC 2010 年 10 月 8 日 (金) 21 時 49 分 58 秒 (日本時間) |
composite number 合成数 | 82446278653016801773323133727349364258137822362969290586538866029795930092198425019769955074907473669771862059726466019026222135955519190870116835970135969717742527642353003153<176> |
prime factors 素因数 | 610549116237318628374373127254607<33> 135036275477909590644828044635146967514082249300158584146137750683861603708636990567352097221628528182486666349621734915832535731127812338875679<144> |
factorization results 素因数分解の結果 | Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=192517581 Step 1 took 8580ms Step 2 took 6006ms ********** Factor found in step 2: 610549116237318628374373127254607 Found probable prime factor of 33 digits: 610549116237318628374373127254607 Probable prime cofactor 135036275477909590644828044635146967514082249300158584146137750683861603708636990567352097221628528182486666349621734915832535731127812338875679 has 144 digits |
software ソフトウェア | GMP-ECM 6.3 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | March 19, 2008 09:00:00 UTC 2008 年 3 月 19 日 (水) 18 時 0 分 0 秒 (日本時間) |
name 名前 | Sinkiti Sibata |
---|---|
date 日付 | April 22, 2011 22:25:05 UTC 2011 年 4 月 23 日 (土) 7 時 25 分 5 秒 (日本時間) |
composite number 合成数 | 109891738093046325077322651135173252077103201484245078671008609110972785624963035514012070014075186034316627804214647165243254054401<132> |
prime factors 素因数 | 32763791234608198379299093687572314288256794009<47> 3354060502527202463361127118745414757822316829596690824311908468084791433260081976489<85> |
factorization results 素因数分解の結果 | Number: 15553_197 N=109891738093046325077322651135173252077103201484245078671008609110972785624963035514012070014075186034316627804214647165243254054401 ( 132 digits) Divisors found: r1=32763791234608198379299093687572314288256794009 (pp47) r2=3354060502527202463361127118745414757822316829596690824311908468084791433260081976489 (pp85) Version: Msieve v. 1.42 Total time: 11.95 hours. Scaled time: 10.17 units (timescale=0.851). Factorization parameters were as follows: name: 15553_197 # Murphy_E = 6.400633e-11, selected by Jeff Gilchrist n: 109891738093046325077322651135173252077103201484245078671008609110972785624963035514012070014075186034316627804214647165243254054401 Y0: -19576534341799516229397428 Y1: 273580858241237 c0: 15275129491140120257334836888445 c1: -767381195893339816113809552 c2: 4967635633760400958677 c3: 88731202901061528 c4: -29555707958 c5: 38220 skew: 213629.78 type: gnfs # selected mechanically rlim: 10400000 alim: 10400000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.6 alambda: 2.6 Factor base limits: 10400000/10400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved algebraic special-q in [5200000, 11300001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1602703 x 1602936 Total sieving time: 0.00 hours. Total relation processing time: 0.19 hours. Matrix solve time: 10.93 hours. Time per square root: 0.83 hours. Prototype def-par.txt line would be: gnfs,131,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,10400000,10400000,28,28,54,54,2.6,2.6,100000 total time: 11.95 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 5600+ stepping 02 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 5600+ stepping 02 Memory: 3886124k/4718592k available (3786k kernel code, 656964k absent, 175504k reserved, 2294k data, 1304k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 5827.08 BogoMIPS (lpj=2913541) Calibrating delay using timer specific routine.. 5826.53 BogoMIPS (lpj=2913268) Total of 2 processors activated (11653.61 BogoMIPS). Total time: 4 days 10 hours. |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | March 19, 2008 09:00:00 UTC 2008 年 3 月 19 日 (水) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 825 | Wataru Sakai | April 17, 2009 13:55:52 UTC 2009 年 4 月 17 日 (金) 22 時 55 分 52 秒 (日本時間) | |
40 | 3e6 | 2111 | Wataru Sakai | July 14, 2009 08:04:39 UTC 2009 年 7 月 14 日 (火) 17 時 4 分 39 秒 (日本時間) | |
45 | 11e6 | 3974 | Wataru Sakai | June 7, 2010 08:16:46 UTC 2010 年 6 月 7 日 (月) 17 時 16 分 46 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | May 17, 2012 07:16:27 UTC 2012 年 5 月 17 日 (木) 16 時 16 分 27 秒 (日本時間) |
composite number 合成数 | 5028485098136728944436001627898776836667469685001236336987086264666384406646708253757288251228540749304657853324543703002315126584466647840564992246460113661796990543<166> |
prime factors 素因数 | 4280333875923656164217650925571001<34> 1174788052497803975185733772410188456265149505648421038417931241819507178125460724839687630679774634721312204403834609371885184937543<133> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=4136792943 Step 1 took 27391ms Step 2 took 10433ms ********** Factor found in step 2: 4280333875923656164217650925571001 Found probable prime factor of 34 digits: 4280333875923656164217650925571001 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | March 19, 2008 09:00:00 UTC 2008 年 3 月 19 日 (水) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 300 | Ignacio Santos | October 8, 2010 12:51:47 UTC 2010 年 10 月 8 日 (金) 21 時 51 分 47 秒 (日本時間) | |
40 | 3e6 | 110 / 2144 | Ignacio Santos | October 8, 2010 12:51:47 UTC 2010 年 10 月 8 日 (金) 21 時 51 分 47 秒 (日本時間) | |
45 | 11e6 | 32 / 4441 | Ignacio Santos | October 8, 2010 12:51:47 UTC 2010 年 10 月 8 日 (金) 21 時 51 分 47 秒 (日本時間) |
name 名前 | Robert Backstrom |
---|---|
date 日付 | October 29, 2008 22:21:16 UTC 2008 年 10 月 30 日 (木) 7 時 21 分 16 秒 (日本時間) |
composite number 合成数 | 17283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617<200> |
prime factors 素因数 | 3033496037622857307870842268067364837548775059726949<52> 12252998283212933037938412743529586470315179061764978083771647637<65> 465004560406171829084976708697089017173510355031372707962704278582642195060480525009<84> |
factorization results 素因数分解の結果 | Number: n N=17283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617 ( 200 digits) SNFS difficulty: 201 digits. Divisors found: Thu Oct 30 08:57:29 2008 prp52 factor: 3033496037622857307870842268067364837548775059726949 Thu Oct 30 08:57:29 2008 prp65 factor: 12252998283212933037938412743529586470315179061764978083771647637 Thu Oct 30 08:57:29 2008 prp84 factor: 465004560406171829084976708697089017173510355031372707962704278582642195060480525009 Thu Oct 30 08:57:30 2008 elapsed time 26:37:36 (Msieve 1.38) Version: GGNFS-0.77.1-20051202-athlon Total time: 83.40 hours. Scaled time: 170.54 units (timescale=2.045). Factorization parameters were as follows: name: KA_1_5_199_3 n: 17283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617 type: snfs skew: 1.10 deg: 5 c5: 14 c0: -23 m: 10000000000000000000000000000000000000000 rlim: 9600000 alim: 9600000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 9600000/9600000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved special-q in [100000, 13300001) Primes: RFBsize:639851, AFBsize:640823, largePrimes:35380027 encountered Relations: rels:26823768, finalFF:263116 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 81.43 hours. Total relation processing time: 1.97 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,201,5,0,0,0,0,0,0,0,0,9600000,9600000,29,29,58,58,2.5,2.5,100000 total time: 83.40 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | March 19, 2008 09:00:00 UTC 2008 年 3 月 19 日 (水) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 904 | Serge Batalov | September 9, 2008 08:15:55 UTC 2008 年 9 月 9 日 (火) 17 時 15 分 55 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | May 16, 2012 16:46:07 UTC 2012 年 5 月 17 日 (木) 1 時 46 分 7 秒 (日本時間) |
composite number 合成数 | 424941384854187291238884748198954580911070393664338024468964055580778080484999736565645054087725663535200795506902648886071989656720445903799018277400079592285676939870675912723589<180> |
prime factors 素因数 | 22389769353745427841394724213905932787661<41> |
composite cofactor 合成数の残り | 18979265848627503637959683967999446515964636822367448311257623627043420785409286585052702205017898129194127649121318363299354591926324836249<140> |
factorization results 素因数分解の結果 | Using B1=2000000, B2=5705781910, polynomial Dickson(6), sigma=2292340594 Step 1 took 9725ms Step 2 took 6044ms ********** Factor found in step 2: 22389769353745427841394724213905932787661 Found probable prime factor of 41 digits: 22389769353745427841394724213905932787661 Composite cofactor 18979265848627503637959683967999446515964636822367448311257623627043420785409286585052702205017898129194127649121318363299354591926324836249 has 140 digits |
name 名前 | Erik Branger |
---|---|
date 日付 | May 16, 2016 17:15:59 UTC 2016 年 5 月 17 日 (火) 2 時 15 分 59 秒 (日本時間) |
composite number 合成数 | 18979265848627503637959683967999446515964636822367448311257623627043420785409286585052702205017898129194127649121318363299354591926324836249<140> |
prime factors 素因数 | 119305004153842178761686037810752942844750446073<48> 159081892526100570686976331024895454073292933365768980754351784861050248698496786500926910113<93> |
factorization results 素因数分解の結果 | Number: 15553_201 N = 18979265848627503637959683967999446515964636822367448311257623627043420785409286585052702205017898129194127649121318363299354591926324836249 (140 digits) Divisors found: r1=119305004153842178761686037810752942844750446073 (pp48) r2=159081892526100570686976331024895454073292933365768980754351784861050248698496786500926910113 (pp93) Version: Msieve v. 1.51 (SVN 845) Total time: 314.18 hours. Factorization parameters were as follows: # Murphy_E = 2.37793157e-11, selected by Maksym Voznyy # root optimized by CADO-NFS-2.2.0 n: 18979265848627503637959683967999446515964636822367448311257623627043420785409286585052702205017898129194127649121318363299354591926324836249 Y0: -1388912911562509526673132789 Y1: 1658272491260803 c0: 868599447943150836071103393199933600 c1: 972880076065704380056561938380 c2: 138313140770341447077077 c3: -215807172553666742 c4: 11760160188 c5: 3672 skew: 4379662.43909 type: gnfs # selected mechanically rlim: 17400000 alim: 17400000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.6 alambda: 2.6 Factor base limits: 17400000/17400000 Large primes per side: 3 Large prime bits: 28/28 Sieved algebraic special-q in [0, 0) Total raw relations: 23156552 Relations: 3017200 relations Pruned matrix : 1898223 x 1898449 Polynomial selection time: 0.00 hours. Total sieving time: 309.85 hours. Total relation processing time: 0.18 hours. Matrix solve time: 3.61 hours. time per square root: 0.53 hours. Prototype def-par.txt line would be: gnfs,139,5,65,2000,1e-05,0.28,250,20,50000,3600,17400000,17400000,28,28,55,55,2.6,2.6,100000 total time: 314.18 hours. Intel64 Family 6 Model 58 Stepping 9, GenuineIntel Windows-post2008Server-6.2.9200 processors: 8, speed: 2.29GHz |
software ソフトウェア | GGNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | May 16, 2012 01:00:00 UTC 2012 年 5 月 16 日 (水) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | May 17, 2012 22:48:51 UTC 2012 年 5 月 18 日 (金) 7 時 48 分 51 秒 (日本時間) | |
45 | 11e6 | 4380 | 480 | Dmitry Domanov | May 17, 2012 22:48:51 UTC 2012 年 5 月 18 日 (金) 7 時 48 分 51 秒 (日本時間) |
850 | Serge Batalov | November 8, 2013 01:46:04 UTC 2013 年 11 月 8 日 (金) 10 時 46 分 4 秒 (日本時間) | |||
850 | Serge Batalov | November 8, 2013 17:09:11 UTC 2013 年 11 月 9 日 (土) 2 時 9 分 11 秒 (日本時間) | |||
400 | Serge Batalov | January 6, 2014 02:23:21 UTC 2014 年 1 月 6 日 (月) 11 時 23 分 21 秒 (日本時間) | |||
1800 | Serge Batalov | May 24, 2014 17:35:15 UTC 2014 年 5 月 25 日 (日) 2 時 35 分 15 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | May 20, 2012 08:53:47 UTC 2012 年 5 月 20 日 (日) 17 時 53 分 47 秒 (日本時間) |
composite number 合成数 | 23857235629550224166416348159084815085234672664945661474406621376291994618000512727557660187287855452198788933423915540674896223899582558191327000602817208071879537087628857203673874566913943<191> |
prime factors 素因数 | 16393113374114277878498826000101634119<38> |
composite cofactor 合成数の残り | 1455320602322085374936866255273930544286757875847008035259322090909402830282565362321168228127459858175825533278475893050495648082552142159115683778907697<154> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=3454838635 Step 1 took 92577ms Step 2 took 22898ms ********** Factor found in step 2: 16393113374114277878498826000101634119 Found probable prime factor of 38 digits: 16393113374114277878498826000101634119 |
name 名前 | Ignacio Santos |
---|---|
date 日付 | September 25, 2021 15:45:01 UTC 2021 年 9 月 26 日 (日) 0 時 45 分 1 秒 (日本時間) |
composite number 合成数 | 1455320602322085374936866255273930544286757875847008035259322090909402830282565362321168228127459858175825533278475893050495648082552142159115683778907697<154> |
prime factors 素因数 | 176219705769526729777409657350634573173241<42> |
composite cofactor 合成数の残り | 8258557667923144577173240067432478551948638504524210736673059088796593510817321713593516246530469014400377498617<112> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:844617378 Step 1 took 21625ms Step 2 took 11297ms ********** Factor found in step 2: 176219705769526729777409657350634573173241 Found prime factor of 42 digits: 176219705769526729777409657350634573173241 Composite cofactor 8258557667923144577173240067432478551948638504524210736673059088796593510817321713593516246530469014400377498617 has 112 digits |
software ソフトウェア | GMP-ECM |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | September 29, 2021 15:14:36 UTC 2021 年 9 月 30 日 (木) 0 時 14 分 36 秒 (日本時間) |
composite number 合成数 | 8258557667923144577173240067432478551948638504524210736673059088796593510817321713593516246530469014400377498617<112> |
prime factors 素因数 | 911046783069864422972230812802826621105738216666949481<54> 9064910629611245580503420624930331919633663592575550922257<58> |
factorization results 素因数分解の結果 | 8258557667923144577173240067432478551948638504524210736673059088796593510817321713593516246530469014400377498617=911046783069864422972230812802826621105738216666949481*9064910629611245580503420624930331919633663592575550922257 cado polynomial n: 8258557667923144577173240067432478551948638504524210736673059088796593510817321713593516246530469014400377498617 skew: 4983.856 c0: -51229440717722137541700 c1: -421800279314651256980 c2: -100591083341797713 c3: 22565816354135 c4: -511086192 c5: 158400 Y0: -3157043797576449673499 Y1: 2573630446603727 # MurphyE (Bf=6.711e+07,Bg=3.355e+07,area=4.194e+12) = 1.382e-06 # f(x) = 158400*x^5-511086192*x^4+22565816354135*x^3-100591083341797713*x^2-421800279314651256980*x-51229440717722137541700 # g(x) = 2573630446603727*x-3157043797576449673499 cado parameters (extracts) tasks.lim0 = 1400000 tasks.lim1 = 2500000 tasks.lpb0 = 25 tasks.lpb1 = 26 tasks.sieve.mfb0 = 50 tasks.sieve.mfb1 = 52 tasks.I = 12 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 9064910629611245580503420624930331919633663592575550922257 911046783069864422972230812802826621105738216666949481 Info:Square Root: Total cpu/real time for sqrt: 372.16/98.6623 Info:Filtering - Singleton removal: Total cpu/real time for purge: 70.1/80.8768 Info:Generate Factor Base: Total cpu/real time for makefb: 2.36/0.637153 Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 22.31/22.8211 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 21.9s Info:Polynomial Selection (root optimized): Aggregate statistics: Info:Polynomial Selection (root optimized): Total time: 295.37 Info:Polynomial Selection (root optimized): Rootsieve time: 294.41 Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 91.84/99.6974 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 71.89999999999999s Info:Filtering - Merging: Merged matrix has 322084 rows and total weight 50238419 (156.0 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 50.56/15.0283 Info:Filtering - Merging: Total cpu/real time for replay: 10.74/8.75449 Info:Linear Algebra: Total cpu/real time for bwc: 1395.55/360.27 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 852.19, WCT time 217.57, iteration CPU time 0.02, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (10112 iterations) Info:Linear Algebra: Lingen CPU time 47.01, WCT time 12.0 Info:Linear Algebra: Mksol: CPU time 469.34, WCT time 119.99, iteration CPU time 0.02, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (5120 iterations) Info:Generate Free Relations: Total cpu/real time for freerel: 62.3/16.4955 Info:Quadratic Characters: Total cpu/real time for characters: 12.04/4.64992 Info:Polynomial Selection (size optimized): Aggregate statistics: Info:Polynomial Selection (size optimized): potential collisions: 11711.3 Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 11705/32.360/39.852/45.320/1.086 Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 9220/31.950/35.321/40.290/0.927 Info:Polynomial Selection (size optimized): Total time: 684.14 Info:Square Root: Total cpu/real time for sqrt: 372.16/98.6623 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 5607885 Info:Lattice Sieving: Average J: 1891.83 for 122461 special-q, max bucket fill -bkmult 1.0,1s:1.319240 Info:Lattice Sieving: Total time: 11223.9s Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 23436.6/6550.43 Info:root: Cleaning up computation data in /tmp/cado.nq89l5ss 9064910629611245580503420624930331919633663592575550922257 911046783069864422972230812802826621105738216666949481 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 20.04.1 LTS [5.4.0-72-generic|libc 2.31 (Ubuntu GLIBC 2.31-0ubuntu9.3)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | May 16, 2012 01:00:00 UTC 2012 年 5 月 16 日 (水) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | May 18, 2012 13:05:00 UTC 2012 年 5 月 18 日 (金) 22 時 5 分 0 秒 (日本時間) | |
45 | 11e6 | 1750 / 4254 | 450 | Dmitry Domanov | May 19, 2012 10:05:34 UTC 2012 年 5 月 19 日 (土) 19 時 5 分 34 秒 (日本時間) |
300 | Serge Batalov | May 27, 2014 00:30:11 UTC 2014 年 5 月 27 日 (火) 9 時 30 分 11 秒 (日本時間) | |||
1000 | Ignacio Santos | September 25, 2021 14:06:57 UTC 2021 年 9 月 25 日 (土) 23 時 6 分 57 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | October 19, 2021 06:07:34 UTC 2021 年 10 月 19 日 (火) 15 時 7 分 34 秒 (日本時間) |
composite number 合成数 | 7580399768441789341740811129342932567797118882913370356819595211908926624228403008087480932205580227269977804202517548052821671691711853104770645506727543<154> |
prime factors 素因数 | 2488386683021826130779011036496995958120146461<46> 654591677528045397490883596276681066741838463129629<51> 4653757635698959185611146253903714422957075631008342682047<58> |
factorization results 素因数分解の結果 | # # N = 14x10^203-23 = 15(202)3 # n: 7580399768441789341740811129342932567797118882913370356819595211908926624228403008087480932205580227269977804202517548052821671691711853104770645506727543 m: 10000000000000000000000000000000000 deg: 6 c6: 7 c0: -115 skew: 1.59 # Murphy_E = 9.813e-12 type: snfs lss: 1 rlim: 18200000 alim: 18200000 lpbr: 29 lpba: 29 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 7580399768441789341740811129342932567797118882913370356819595211908926624228403008087480932205580227269977804202517548052821671691711853104770645506727543 (154 digits) Using B1=50710000, B2=288592384096, polynomial Dickson(12), sigma=1:4112060293 Step 1 took 106644ms Step 2 took 35627ms ********** Factor found in step 2: 2488386683021826130779011036496995958120146461 Found prime factor of 46 digits: 2488386683021826130779011036496995958120146461 Composite cofactor 3046311017561132061032646056299904317413404144170839094988394784904962342517220407189549854501024627292070563 has 109 digits CADO STA:Tue 19 Oct 2021 16:26:30 AEDT (3,046,311,017,561,132,061,032,646,056,299,904,317,413,404,144,170,839,094,988,394,784,904,962,342,517,220,407,189,549,854,501,024,627,292,070,563 - C109) /home/bob/cado-nfs/cado-nfs-2.3.0/cado-nfs.py -t 16 --no-colors --screenlog DEBUG 3046311017561132061032646056299904317413404144170839094988394784904962342517220407189549854501024627292070563 2>&1 | tee -a log54 Debug:root: Looking for parameter file for c109 in directory /home/bob/cado-nfs/cado-nfs-2.3.0/parameters/factor Info:root: Using default parameter file /home/bob/cado-nfs/cado-nfs-2.3.0/parameters/factor/params.c110 Debug:Parameters: Reading parameter file /home/bob/cado-nfs/cado-nfs-2.3.0/parameters/factor/params.c110 Info:root: No database exists yet Info:root: Created temporary directory /tmp/cado.msaj6frt Info:Database: Opened connection to database /tmp/cado.msaj6frt/c110.db Info:root: tasks.polyselect.threads = 2 Info:root: tasks.sieve.las.threads = 2 Info:root: slaves.scriptpath is /home/bob/cado-nfs/cado-nfs-2.3.0 Info:root: Command line parameters: /home/bob/cado-nfs/cado-nfs-2.3.0/cado-nfs.py -t 16 --no-colors --screenlog DEBUG 3046311017561132061032646056299904317413404144170839094988394784904962342517220407189 549854501024627292070563 Debug:root: Root parameter dictionary: N = 3046311017561132061032646056299904317413404144170839094988394784904962342517220407189549854501024627292070563 lim0 = 2910696 lim1 = 3533488 lpb0 = 25 lpb1 = 25 name = c110 ... n: 3046311017561132061032646056299904317413404144170839094988394784904962342517220407189549854501024627292070563 skew: 3910.63 c0: 226564262383192500538056 c1: 111920372408999400379 c2: -80804772377992000 c3: 10633939263397 c4: 2564795448 c5: 257760 Y0: -577935274930844547222 Y1: 5588788076169361 # MurphyE (Bf=3.53e+06,Bg=2.91e+06,area=2.96e+13) = 5.42e-09 # f(x) = 257760*x^5+2564795448*x^4+10633939263397*x^3-80804772377992000*x^2+111920372408999400379*x+226564262383192500538056 # g(x) = 5588788076169361*x-577935274930844547222 ... Info:Square Root: finished Info:Square Root: Factors: 4653757635698959185611146253903714422957075631008342682047 654591677528045397490883596276681066741838463129629 Debug:Square Root: Exit SqrtTask.run(sqrt) Info:Polynomial Selection (size optimized): Aggregate statistics: Info:Polynomial Selection (size optimized): potential collisions: 27840.2 Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 28289/31.690/38.374/43.860/0.984 Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 28289/30.960/34.669/38.980/1.096 Info:Polynomial Selection (size optimized): Total time: 997.95 Info:Polynomial Selection (root optimized): Aggregate statistics: Info:Polynomial Selection (root optimized): Total time: 221.69 Info:Polynomial Selection (root optimized): Rootsieve time: 220.79 Info:Generate Factor Base: Total cpu/real time for makefb: 4.46/0.435339 Info:Generate Free Relations: Total cpu/real time for freerel: 36.1/2.42331 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 3705568 Info:Lattice Sieving: Average J: 1885.88 for 90984 special-q, max bucket fill: 0.753718 Info:Lattice Sieving: Total CPU time: 22707.2s Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 8.89/9.23408 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 9.0s Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 53.46/22.724 Info:Filtering - Singleton removal: Total cpu/real time for purge: 35.23/18.86 Info:Filtering - Merging: Total cpu/real time for merge: 123.84/99.9484 Info:Filtering - Merging: Total cpu/real time for replay: 12.55/9.82606 Info:Linear Algebra: Total cpu/real time for bwc: 2865.8/0.000314474 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: WCT time 118.35 Info:Linear Algebra: Lingen CPU time 69.81, WCT time 7.15 Info:Linear Algebra: Mksol: WCT time 69.57 Info:Quadratic Characters: Total cpu/real time for characters: 12.49/2.87929 Info:Square Root: Total cpu/real time for sqrt: 265.8/37.6044 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization: Total cpu/elapsed time for entire factorization: 27345.5/2072.39 Info:root: Cleaning up computation data in /tmp/cado.msaj6frt 4653757635698959185611146253903714422957075631008342682047 654591677528045397490883596276681066741838463129629 END:Tue 19 Oct 2021 17:01:03 AEDT (3,046,311,017,561,132,061,032,646,056,299,904,317,413,404,144,170,839,094,988,394,784,904,962,342,517,220,407,189,549,854,501,024,627,292,070,563 - C109) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | May 16, 2012 01:00:00 UTC 2012 年 5 月 16 日 (水) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | May 17, 2012 22:49:54 UTC 2012 年 5 月 18 日 (金) 7 時 49 分 54 秒 (日本時間) | |
45 | 11e6 | 740 / 4254 | 440 | Dmitry Domanov | May 17, 2012 22:49:54 UTC 2012 年 5 月 18 日 (金) 7 時 49 分 54 秒 (日本時間) |
300 | Serge Batalov | May 27, 2014 00:30:11 UTC 2014 年 5 月 27 日 (火) 9 時 30 分 11 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | July 9, 2021 18:54:05 UTC 2021 年 7 月 10 日 (土) 3 時 54 分 5 秒 (日本時間) |
composite number 合成数 | 1008040457326078312249444326667424987895365064812047174870622589711911145602005259025241279691327412611433666171541611720091919475691637965449211457414779980713674816644657771836318591219376121<193> |
prime factors 素因数 | 286137686909647426989001808532803068162496876484066221908821795596878835609837516050549<87> 3522920969317765144098981345965949280569941935864733481131256730464438242446979930694703356934448774979829<106> |
factorization results 素因数分解の結果 | Number: n N=1008040457326078312249444326667424987895365064812047174870622589711911145602005259025241279691327412611433666171541611720091919475691637965449211457414779980713674816644657771836318591219376121 ( 193 digits) SNFS difficulty: 205 digits. Divisors found: Sat Jul 10 04:48:17 2021 p87 factor: 286137686909647426989001808532803068162496876484066221908821795596878835609837516050549 Sat Jul 10 04:48:17 2021 p106 factor: 3522920969317765144098981345965949280569941935864733481131256730464438242446979930694703356934448774979829 Sat Jul 10 04:48:17 2021 elapsed time 02:02:33 (Msieve 1.54 - dependency 3) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.351). Factorization parameters were as follows: # # N = 14x10^204-23 = 15(203)3 # n: 1008040457326078312249444326667424987895365064812047174870622589711911145602005259025241279691327412611433666171541611720091919475691637965449211457414779980713674816644657771836318591219376121 m: 10000000000000000000000000000000000 deg: 6 c6: 14 c0: -23 skew: 1.09 # Murphy_E = 9.002e-12 type: snfs lss: 1 rlim: 18400000 alim: 18400000 lpbr: 29 lpba: 29 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 18400000/18400000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 56/56 Sieved special-q in [100000, 36400000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 9210604 hash collisions in 61918470 relations (55507963 unique) Msieve: matrix is 2244885 x 2245111 (773.4 MB) Sieving start time : 2021/07/09 13:58:20 Sieving end time : 2021/07/10 02:44:30 Total sieving time: 12hrs 46min 10secs. Total relation processing time: 1hrs 36min 35sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 9min 20sec. Prototype def-par.txt line would be: snfs,205,6,0,0,0,0,0,0,0,0,18400000,18400000,29,29,56,56,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- [ 0.117292] smpboot: CPU0: AMD Ryzen 7 2700 Eight-Core Processor (family: 0x17, model: 0x8, stepping: 0x2) [ 0.000000] Memory: 16239972K/16727236K available (14339K kernel code, 2400K rwdata, 5008K rodata, 2736K init, 4964K bss, 487264K reserved, 0K cma-reserved) [ 0.153499] x86/mm: Memory block size: 128MB [ 0.000005] Calibrating delay loop (skipped), value calculated using timer frequency.. 6399.03 BogoMIPS (lpj=12798064) [ 0.152047] smpboot: Total of 16 processors activated (102384.51 BogoMIPS) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | May 16, 2012 01:00:00 UTC 2012 年 5 月 16 日 (水) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2600 | 1000 | Dmitry Domanov | May 18, 2012 13:05:17 UTC 2012 年 5 月 18 日 (金) 22 時 5 分 17 秒 (日本時間) |
300 | Serge Batalov | January 9, 2014 04:39:04 UTC 2014 年 1 月 9 日 (木) 13 時 39 分 4 秒 (日本時間) | |||
1300 | Serge Batalov | May 26, 2014 18:01:33 UTC 2014 年 5 月 27 日 (火) 3 時 1 分 33 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | May 16, 2012 13:38:01 UTC 2012 年 5 月 16 日 (水) 22 時 38 分 1 秒 (日本時間) |
composite number 合成数 | 12865533764417148113584462312375834818002693216270716669540576742045241632601798968853083923307168240510140749516840962670038414831<131> |
prime factors 素因数 | 2965343704455737212851543928289<31> 535101678471722252215665138995967718027<39> 8108050728465961194843784063632336596850533651404808974016077<61> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=186714475 Step 1 took 17924ms Step 2 took 7950ms ********** Factor found in step 2: 2965343704455737212851543928289 Found probable prime factor of 31 digits: 2965343704455737212851543928289 Composite cofactor 4338631553936006151954621407836611525799915151649696766731588600924926423877039157088269347300720079 has 100 digits Wed May 16 16:49:59 2012 commencing relation filtering Wed May 16 16:49:59 2012 estimated available RAM is 2006.1 MB Wed May 16 16:49:59 2012 commencing duplicate removal, pass 1 Wed May 16 16:53:55 2012 found 614474 hash collisions in 6578899 relations Wed May 16 16:54:18 2012 added 7582 free relations Wed May 16 16:54:18 2012 commencing duplicate removal, pass 2 Wed May 16 16:54:29 2012 found 384094 duplicates and 6202387 unique relations Wed May 16 16:54:29 2012 memory use: 24.6 MB Wed May 16 16:54:29 2012 reading ideals above 100000 Wed May 16 16:54:29 2012 commencing singleton removal, initial pass Wed May 16 16:58:57 2012 memory use: 172.2 MB Wed May 16 16:58:57 2012 reading all ideals from disk Wed May 16 16:58:58 2012 memory use: 193.7 MB Wed May 16 16:59:01 2012 keeping 5975115 ideals with weight <= 200, target excess is 44775 Wed May 16 16:59:05 2012 commencing in-memory singleton removal Wed May 16 16:59:08 2012 begin with 6202387 relations and 5975115 unique ideals Wed May 16 16:59:30 2012 reduce to 3283201 relations and 2588927 ideals in 12 passes Wed May 16 16:59:30 2012 max relations containing the same ideal: 132 Wed May 16 16:59:40 2012 removing 1130186 relations and 809019 ideals in 321167 cliques Wed May 16 16:59:43 2012 commencing in-memory singleton removal Wed May 16 16:59:44 2012 begin with 2153015 relations and 2588927 unique ideals Wed May 16 16:59:54 2012 reduce to 1945378 relations and 1546082 ideals in 10 passes Wed May 16 16:59:54 2012 max relations containing the same ideal: 93 Wed May 16 16:59:59 2012 removing 835850 relations and 514683 ideals in 321167 cliques Wed May 16 17:00:02 2012 commencing in-memory singleton removal Wed May 16 17:00:02 2012 begin with 1109528 relations and 1546082 unique ideals Wed May 16 17:00:07 2012 reduce to 915198 relations and 801879 ideals in 10 passes Wed May 16 17:00:07 2012 max relations containing the same ideal: 53 Wed May 16 17:00:09 2012 removing 229569 relations and 168190 ideals in 61379 cliques Wed May 16 17:00:10 2012 commencing in-memory singleton removal Wed May 16 17:00:10 2012 begin with 685629 relations and 801879 unique ideals Wed May 16 17:00:12 2012 reduce to 644752 relations and 589993 ideals in 7 passes Wed May 16 17:00:12 2012 max relations containing the same ideal: 43 Wed May 16 17:00:15 2012 relations with 0 large ideals: 811 Wed May 16 17:00:15 2012 relations with 1 large ideals: 4477 Wed May 16 17:00:15 2012 relations with 2 large ideals: 26262 Wed May 16 17:00:15 2012 relations with 3 large ideals: 82677 Wed May 16 17:00:15 2012 relations with 4 large ideals: 154751 Wed May 16 17:00:15 2012 relations with 5 large ideals: 181623 Wed May 16 17:00:15 2012 relations with 6 large ideals: 125719 Wed May 16 17:00:15 2012 relations with 7+ large ideals: 68432 Wed May 16 17:00:15 2012 commencing 2-way merge Wed May 16 17:00:16 2012 reduce to 417677 relation sets and 362918 unique ideals Wed May 16 17:00:16 2012 commencing full merge Wed May 16 17:00:40 2012 memory use: 40.2 MB Wed May 16 17:00:40 2012 found 197880 cycles, need 189118 Wed May 16 17:00:40 2012 weight of 189118 cycles is about 13340018 (70.54/cycle) Wed May 16 17:00:40 2012 distribution of cycle lengths: Wed May 16 17:00:40 2012 1 relations: 16064 Wed May 16 17:00:40 2012 2 relations: 17499 Wed May 16 17:00:40 2012 3 relations: 19060 Wed May 16 17:00:40 2012 4 relations: 18794 Wed May 16 17:00:40 2012 5 relations: 18181 Wed May 16 17:00:40 2012 6 relations: 16635 Wed May 16 17:00:40 2012 7 relations: 15102 Wed May 16 17:00:40 2012 8 relations: 13243 Wed May 16 17:00:40 2012 9 relations: 11183 Wed May 16 17:00:40 2012 10+ relations: 43357 Wed May 16 17:00:40 2012 heaviest cycle: 20 relations Wed May 16 17:00:41 2012 commencing cycle optimization Wed May 16 17:00:42 2012 start with 1231500 relations Wed May 16 17:00:51 2012 pruned 43624 relations Wed May 16 17:00:51 2012 memory use: 37.6 MB Wed May 16 17:00:51 2012 distribution of cycle lengths: Wed May 16 17:00:51 2012 1 relations: 16064 Wed May 16 17:00:51 2012 2 relations: 17958 Wed May 16 17:00:51 2012 3 relations: 19873 Wed May 16 17:00:51 2012 4 relations: 19479 Wed May 16 17:00:51 2012 5 relations: 19000 Wed May 16 17:00:51 2012 6 relations: 17267 Wed May 16 17:00:51 2012 7 relations: 15685 Wed May 16 17:00:51 2012 8 relations: 13511 Wed May 16 17:00:51 2012 9 relations: 11244 Wed May 16 17:00:51 2012 10+ relations: 39037 Wed May 16 17:00:51 2012 heaviest cycle: 20 relations Wed May 16 17:00:52 2012 RelProcTime: 653 Wed May 16 17:00:52 2012 Wed May 16 17:00:52 2012 commencing linear algebra Wed May 16 17:00:52 2012 read 189118 cycles Wed May 16 17:00:55 2012 cycles contain 597143 unique relations Wed May 16 17:01:22 2012 read 597143 relations Wed May 16 17:01:24 2012 using 20 quadratic characters above 67091772 Wed May 16 17:01:33 2012 building initial matrix Wed May 16 17:02:03 2012 memory use: 75.2 MB Wed May 16 17:02:04 2012 read 189118 cycles Wed May 16 17:02:05 2012 matrix is 188931 x 189118 (55.8 MB) with weight 17703157 (93.61/col) Wed May 16 17:02:05 2012 sparse part has weight 12554546 (66.38/col) Wed May 16 17:02:19 2012 filtering completed in 2 passes Wed May 16 17:02:19 2012 matrix is 188583 x 188770 (55.8 MB) with weight 17683652 (93.68/col) Wed May 16 17:02:19 2012 sparse part has weight 12545072 (66.46/col) Wed May 16 17:02:21 2012 matrix starts at (0, 0) Wed May 16 17:02:21 2012 matrix is 188583 x 188770 (55.8 MB) with weight 17683652 (93.68/col) Wed May 16 17:02:21 2012 sparse part has weight 12545072 (66.46/col) Wed May 16 17:02:21 2012 saving the first 48 matrix rows for later Wed May 16 17:02:21 2012 matrix includes 64 packed rows Wed May 16 17:02:21 2012 matrix is 188535 x 188770 (53.5 MB) with weight 13907375 (73.67/col) Wed May 16 17:02:21 2012 sparse part has weight 12125098 (64.23/col) Wed May 16 17:02:21 2012 using block size 65536 for processor cache size 2048 kB Wed May 16 17:02:34 2012 commencing Lanczos iteration Wed May 16 17:02:34 2012 memory use: 39.8 MB Wed May 16 17:02:44 2012 checkpointing every 730000 dimensions Wed May 16 17:03:31 2012 linear algebra at 6.4%, ETA 0h13m Wed May 16 17:17:28 2012 lanczos halted after 2983 iterations (dim = 188533) Wed May 16 17:17:29 2012 recovered 34 nontrivial dependencies Wed May 16 17:17:29 2012 BLanczosTime: 997 Wed May 16 17:17:29 2012 Wed May 16 17:17:29 2012 commencing square root phase Wed May 16 17:17:29 2012 reading relations for dependency 1 Wed May 16 17:17:29 2012 read 94349 cycles Wed May 16 17:17:30 2012 cycles contain 298724 unique relations Wed May 16 17:17:46 2012 read 298724 relations Wed May 16 17:17:50 2012 multiplying 298724 relations Wed May 16 17:18:24 2012 multiply complete, coefficients have about 11.27 million bits Wed May 16 17:18:25 2012 initial square root is modulo 2997341 Wed May 16 17:19:14 2012 GCD is N, no factor found Wed May 16 17:19:14 2012 reading relations for dependency 2 Wed May 16 17:19:15 2012 read 94312 cycles Wed May 16 17:19:16 2012 cycles contain 298604 unique relations Wed May 16 17:19:31 2012 read 298604 relations Wed May 16 17:19:35 2012 multiplying 298604 relations Wed May 16 17:20:10 2012 multiply complete, coefficients have about 11.27 million bits Wed May 16 17:20:10 2012 initial square root is modulo 2979239 Wed May 16 17:20:55 2012 sqrtTime: 206 prp39 = 535101678471722252215665138995967718027 prp61 = 8108050728465961194843784063632336596850533651404808974016077 NFS elapsed time = 7319.6744 seconds. |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | May 16, 2012 01:00:00 UTC 2012 年 5 月 16 日 (水) 10 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | May 16, 2012 01:00:00 UTC 2012 年 5 月 16 日 (水) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2600 | 1000 | Dmitry Domanov | May 18, 2012 13:05:36 UTC 2012 年 5 月 18 日 (金) 22 時 5 分 36 秒 (日本時間) |
300 | Serge Batalov | January 9, 2014 04:39:05 UTC 2014 年 1 月 9 日 (木) 13 時 39 分 5 秒 (日本時間) | |||
1300 | Serge Batalov | May 26, 2014 18:01:34 UTC 2014 年 5 月 27 日 (火) 3 時 1 分 34 秒 (日本時間) | |||
45 | 11e6 | 4002 | Thomas Kozlowski | December 7, 2024 11:50:15 UTC 2024 年 12 月 7 日 (土) 20 時 50 分 15 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | May 16, 2012 01:00:00 UTC 2012 年 5 月 16 日 (水) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1300 | 1000 | Dmitry Domanov | May 18, 2012 13:05:45 UTC 2012 年 5 月 18 日 (金) 22 時 5 分 45 秒 (日本時間) |
300 | Serge Batalov | January 9, 2014 04:39:05 UTC 2014 年 1 月 9 日 (木) 13 時 39 分 5 秒 (日本時間) | |||
45 | 11e6 | 4195 | 295 | Cyp | February 14, 2014 11:37:04 UTC 2014 年 2 月 14 日 (金) 20 時 37 分 4 秒 (日本時間) |
300 | Serge Batalov | May 27, 2014 00:30:12 UTC 2014 年 5 月 27 日 (火) 9 時 30 分 12 秒 (日本時間) | |||
3600 | Thomas Kozlowski | December 7, 2024 12:44:35 UTC 2024 年 12 月 7 日 (土) 21 時 44 分 35 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | May 17, 2012 09:21:49 UTC 2012 年 5 月 17 日 (木) 18 時 21 分 49 秒 (日本時間) |
composite number 合成数 | 5016141225873256443054256733273856230226550435508547146353086180889218521026589131455146740045646885155446633631793736272792091695061608963127779031813084246091888541341961096241835334415386654914564366049323<208> |
prime factors 素因数 | 15932823146116233610761083867710201576457<41> 314830659944655519411148209684762149550557202442967275661987544041322371977742702501820789706280626276787960987940992762363758630259063173374094463111741477525136027539<168> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=61898396 Step 1 took 36446ms Step 2 took 12574ms ********** Factor found in step 2: 15932823146116233610761083867710201576457 Found probable prime factor of 41 digits: 15932823146116233610761083867710201576457 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | May 16, 2012 01:00:00 UTC 2012 年 5 月 16 日 (水) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | May 21, 2012 13:58:46 UTC 2012 年 5 月 21 日 (月) 22 時 58 分 46 秒 (日本時間) |
composite number 合成数 | 26026946482219571600811120863593864759371872589329606705900764053175855137124241002883835865055287099686530898847865717791867985794856987255308894279701588342558928441463146960151274413245590473362728129509<206> |
prime factors 素因数 | 8729779849606365068962271274294477056090491627<46> 2981397805053830071121383554126096294245246874500171302667458416802360776437916254220617958300186002910396419959177675941375381623093099652222726894431823251567<160> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=2002506396 Step 1 took 137429ms Step 2 took 42941ms ********** Factor found in step 2: 8729779849606365068962271274294477056090491627 Found probable prime factor of 46 digits: 8729779849606365068962271274294477056090491627 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | May 16, 2012 01:00:00 UTC 2012 年 5 月 16 日 (水) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | May 18, 2012 13:05:58 UTC 2012 年 5 月 18 日 (金) 22 時 5 分 58 秒 (日本時間) | |
45 | 11e6 | 400 / 4254 | Dmitry Domanov | May 21, 2012 10:51:04 UTC 2012 年 5 月 21 日 (月) 19 時 51 分 4 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | December 13, 2014 19:08:02 UTC 2014 年 12 月 14 日 (日) 4 時 8 分 2 秒 (日本時間) |
composite number 合成数 | 978336827393431167016072676450034940600978336827393431167016072676450034940600978336827393431167016072676450034940600978336827393431167016072676450034940600978336827393431167016072676450034940600978336827393431167<213> |
prime factors 素因数 | 53966118115270660024446727349608395064961138348499340058865288337529544102744415304052640688171<95> 18128723383507430666006957753049737784860733539070634825496231706353166623494506987265409511802855050314217665777102077<119> |
factorization results 素因数分解の結果 | RelProcTime: 2186 BLanczosTime: 12289 sqrtTime: 3615 prp95 factor: 53966118115270660024446727349608395064961138348499340058865288337529544102744415304052640688171 prp119 factor: 18128723383507430666006957753049737784860733539070634825496231706353166623494506987265409511802855050314217665777102077 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | May 16, 2012 01:00:00 UTC 2012 年 5 月 16 日 (水) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | May 18, 2012 13:06:09 UTC 2012 年 5 月 18 日 (金) 22 時 6 分 9 秒 (日本時間) | |
45 | 11e6 | 4350 | 400 | Dmitry Domanov | May 21, 2012 10:51:54 UTC 2012 年 5 月 21 日 (月) 19 時 51 分 54 秒 (日本時間) |
850 | Serge Batalov | November 8, 2013 17:14:31 UTC 2013 年 11 月 9 日 (土) 2 時 14 分 31 秒 (日本時間) | |||
400 | Serge Batalov | January 6, 2014 02:27:46 UTC 2014 年 1 月 6 日 (月) 11 時 27 分 46 秒 (日本時間) | |||
1800 | Serge Batalov | May 24, 2014 09:17:16 UTC 2014 年 5 月 24 日 (土) 18 時 17 分 16 秒 (日本時間) | |||
900 | Serge Batalov | May 24, 2014 19:03:30 UTC 2014 年 5 月 25 日 (日) 4 時 3 分 30 秒 (日本時間) | |||
50 | 43e6 | 3000 / 6539 | Serge Batalov | December 11, 2014 03:09:11 UTC 2014 年 12 月 11 日 (木) 12 時 9 分 11 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | May 16, 2012 01:00:00 UTC 2012 年 5 月 16 日 (水) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2600 | 1000 | Dmitry Domanov | May 18, 2012 13:06:20 UTC 2012 年 5 月 18 日 (金) 22 時 6 分 20 秒 (日本時間) |
300 | Serge Batalov | January 9, 2014 04:39:06 UTC 2014 年 1 月 9 日 (木) 13 時 39 分 6 秒 (日本時間) | |||
1300 | Serge Batalov | May 26, 2014 18:01:34 UTC 2014 年 5 月 27 日 (火) 3 時 1 分 34 秒 (日本時間) | |||
45 | 11e6 | 3948 | 147 | Cyp | February 19, 2014 21:03:06 UTC 2014 年 2 月 20 日 (木) 6 時 3 分 6 秒 (日本時間) |
3801 | Thomas Kozlowski | December 7, 2024 14:00:35 UTC 2024 年 12 月 7 日 (土) 23 時 0 分 35 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 28, 2019 20:34:10 UTC 2019 年 12 月 29 日 (日) 5 時 34 分 10 秒 (日本時間) |
composite number 合成数 | 136833786893080487854273524705346019971502501792565200992023486496481998605947081235217224403309431956008606300345719714019261419865915433420369475520863477725414259796092170807565548015671923724001680123271<207> |
prime factors 素因数 | 151408447772673203853997054825024166757396839971<48> 30139152688717542959640158828892344126299845404734170141904351835087<68> 29985562518777891581238449865171690036899983878731155372434123541624188632349801850813541923<92> |
factorization results 素因数分解の結果 | # # N = 14x10^218-23 = 15(217)3 # n: 136833786893080487854273524705346019971502501792565200992023486496481998605947081235217224403309431956008606300345719714019261419865915433420369475520863477725414259796092170807565548015671923724001680123271 m: 1000000000000000000000000000000000000 deg: 6 c6: 1400 c0: -23 skew: 0.50 # Murphy_E = 2.965e-12 type: snfs lss: 1 rlim: 31000000 alim: 31000000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.6 alambda: 2.6 GMP-ECM 7.0-dev [configured with MPIR 2.6.0, --enable-openmp] [ECM] Input number is 136833786893080487854273524705346019971502501792565200992023486496481998605947081235217224403309431956008606300345719714019261419865915433420369475520863477725414259796092170807565548015671923724001680123271 (207 digits) Using B1=23550000, B2=96188942866, polynomial Dickson(12), sigma=1:3992909585 Step 1 took 351500ms ********** Factor found in step 1: 151408447772673203853997054825024166757396839971 Found probable prime factor of 48 digits: 151408447772673203853997054825024166757396839971 Composite cofactor 903739447210532670801854300597524629212350336052957569924110846172849175925786230561845111524516912360150637340379241001630082308879699007002376784935256852301 has 159 digits Number: n N=903739447210532670801854300597524629212350336052957569924110846172849175925786230561845111524516912360150637340379241001630082308879699007002376784935256852301 ( 159 digits) SNFS difficulty: 219 digits. Divisors found: Sun Dec 29 07:22:46 2019 p68 factor: 30139152688717542959640158828892344126299845404734170141904351835087 Sun Dec 29 07:22:46 2019 p92 factor: 29985562518777891581238449865171690036899983878731155372434123541624188632349801850813541923 Sun Dec 29 07:22:46 2019 elapsed time 06:46:39 (Msieve 1.54 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.133). Factorization parameters were as follows: # # N = 14x10^218-23 = 15(217)3 # # n: 136833786893080487854273524705346019971502501792565200992023486496481998605947081235217224403309431956008606300345719714019261419865915433420369475520863477725414259796092170807565548015671923724001680123271 # # Found probable prime factor of 48 digits: 151408447772673203853997054825024166757396839971 # n: 903739447210532670801854300597524629212350336052957569924110846172849175925786230561845111524516912360150637340379241001630082308879699007002376784935256852301 m: 1000000000000000000000000000000000000 deg: 6 c6: 1400 c0: -23 skew: 0.50 # Murphy_E = 2.965e-12 type: snfs lss: 1 rlim: 31000000 alim: 31000000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.6 alambda: 2.6 Factor base limits: 31000000/31000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved special-q in [100000, 98700000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 11937994 hash collisions in 69117158 relations (59807091 unique) Msieve: matrix is 3850533 x 3850758 (1335.6 MB) Sieving start time: 2019/12/26 22:43:28 Sieving end time : 2019/12/29 00:34:01 Total sieving time: 49hrs 50min 33secs. Total relation processing time: 6hrs 18min 7sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 7min 57sec. Prototype def-par.txt line would be: snfs,219,6,0,0,0,0,0,0,0,0,31000000,31000000,29,29,58,58,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- [ 0.149937] smpboot: CPU0: AMD Ryzen 7 1700 Eight-Core Processor (family: 0x17, model: 0x1, stepping: 0x1) [ 0.000000] Memory: 16283572K/16703460K available (12300K kernel code, 2481K rwdata, 4264K rodata, 2428K init, 2388K bss, 419888K reserved, 0K cma-reserved) [ 0.184567] x86/mm: Memory block size: 128MB [ 0.024000] Calibrating delay loop (skipped), value calculated using timer frequency.. 5988.57 BogoMIPS (lpj=11977148) [ 0.182215] smpboot: Total of 16 processors activated (95817.18 BogoMIPS) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | May 16, 2012 01:00:00 UTC 2012 年 5 月 16 日 (水) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2600 | 1000 | Dmitry Domanov | May 18, 2012 13:06:29 UTC 2012 年 5 月 18 日 (金) 22 時 6 分 29 秒 (日本時間) |
300 | Serge Batalov | January 9, 2014 04:39:06 UTC 2014 年 1 月 9 日 (木) 13 時 39 分 6 秒 (日本時間) | |||
1300 | Serge Batalov | May 26, 2014 18:01:34 UTC 2014 年 5 月 27 日 (火) 3 時 1 分 34 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | May 21, 2012 20:08:18 UTC 2012 年 5 月 22 日 (火) 5 時 8 分 18 秒 (日本時間) |
composite number 合成数 | 14537902388369678089304257528556593977154724818276220145379023883696780893042575285565939771547248182762201453790238836967808930425752855659397715472481827622014537902388369678089304257528556593977154724818276220145379<218> |
prime factors 素因数 | 2118613624426168872354237160902572806079<40> 6861988529082220315108092199695675323120916152661531512632558347231039078656695263418652454063044615163470852437727814186000601315162241623294031473683262751106359497854940596701<178> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=3313060108 Step 1 took 155352ms Step 2 took 46514ms ********** Factor found in step 2: 2118613624426168872354237160902572806079 Found probable prime factor of 40 digits: 2118613624426168872354237160902572806079 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | May 16, 2012 01:00:00 UTC 2012 年 5 月 16 日 (水) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | May 18, 2012 13:06:40 UTC 2012 年 5 月 18 日 (金) 22 時 6 分 40 秒 (日本時間) | |
45 | 11e6 | 400 / 4254 | Dmitry Domanov | May 21, 2012 10:52:30 UTC 2012 年 5 月 21 日 (月) 19 時 52 分 30 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | May 18, 2014 23:39:22 UTC 2014 年 5 月 19 日 (月) 8 時 39 分 22 秒 (日本時間) |
composite number 合成数 | 791513819840122716757102036629797155913773716462971022357062706815937751356745868292156426777351839805753238639784165098634343818606666172297180572396407661734588032469603861<174> |
prime factors 素因数 | 17822464873065334324509324567275204432333<41> |
composite cofactor 合成数の残り | 44411018648510210075526998380074804898316383347362838515916290022880087228547203764182509460212786559034097760725645542566400325037417<134> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2170693389 Step 1 took 16874ms Step 2 took 12261ms ********** Factor found in step 2: 17822464873065334324509324567275204432333 Found probable prime factor of 41 digits: 17822464873065334324509324567275204432333 Composite cofactor |
name 名前 | Erik Branger |
---|---|
date 日付 | November 12, 2014 07:37:43 UTC 2014 年 11 月 12 日 (水) 16 時 37 分 43 秒 (日本時間) |
composite number 合成数 | 44411018648510210075526998380074804898316383347362838515916290022880087228547203764182509460212786559034097760725645542566400325037417<134> |
prime factors 素因数 | 79624809417174635727667837952347714118128698485612076869994232241<65> 557753531513395325577559620079103641354397078819521838231830662964537<69> |
factorization results 素因数分解の結果 | Mon Nov 10 18:57:00 2014 -> factmsieve.py (v0.76) Mon Nov 10 18:57:00 2014 -> This is client 1 of 1 Mon Nov 10 18:57:00 2014 -> Running on 4 Cores with 1 hyper-thread per Core Mon Nov 10 18:57:00 2014 -> Working with NAME = 15553_220 Mon Nov 10 18:57:00 2014 -> Selected lattice siever: gnfs-lasieve4I13e Mon Nov 10 18:57:00 2014 -> Creating param file to detect parameter changes... Mon Nov 10 18:57:00 2014 -> Running setup ... Mon Nov 10 18:57:00 2014 -> Estimated minimum relations needed: 1.98e+07 Mon Nov 10 18:57:00 2014 -> cleaning up before a restart Mon Nov 10 18:57:00 2014 -> Running lattice siever ... Mon Nov 10 18:57:00 2014 -> entering sieving loop Mon Nov 10 18:57:00 2014 -> making sieve job for q = 6150000 in 6150000 .. 6175000 as file 15553_220.job.T0 Mon Nov 10 18:57:00 2014 -> making sieve job for q = 6175000 in 6175000 .. 6200000 as file 15553_220.job.T1 Mon Nov 10 18:57:00 2014 -> making sieve job for q = 6200000 in 6200000 .. 6225000 as file 15553_220.job.T2 Mon Nov 10 18:57:00 2014 -> making sieve job for q = 6225000 in 6225000 .. 6250000 as file 15553_220.job.T3 Mon Nov 10 18:57:00 2014 -> Lattice sieving algebraic q from 6150000 to 6250000. Mon Nov 10 18:57:00 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0 Mon Nov 10 18:57:00 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1 Mon Nov 10 18:57:00 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2 Mon Nov 10 18:57:00 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3 Mon Nov 10 19:19:04 2014 Found 282329 relations, 1.5% of the estimated minimum (19000000). Mon Nov 10 19:19:04 2014 LatSieveTime: 1323.83 Mon Nov 10 19:19:04 2014 -> making sieve job for q = 6250000 in 6250000 .. 6275000 as file 15553_220.job.T0 Mon Nov 10 19:19:04 2014 -> making sieve job for q = 6275000 in 6275000 .. 6300000 as file 15553_220.job.T1 Mon Nov 10 19:19:04 2014 -> making sieve job for q = 6300000 in 6300000 .. 6325000 as file 15553_220.job.T2 Mon Nov 10 19:19:04 2014 -> making sieve job for q = 6325000 in 6325000 .. 6350000 as file 15553_220.job.T3 Mon Nov 10 19:19:04 2014 -> Lattice sieving algebraic q from 6250000 to 6350000. Mon Nov 10 19:19:04 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0 Mon Nov 10 19:19:04 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1 Mon Nov 10 19:19:04 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2 Mon Nov 10 19:19:04 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3 Mon Nov 10 19:44:03 2014 Found 571050 relations, 3.0% of the estimated minimum (19000000). Mon Nov 10 19:44:03 2014 LatSieveTime: 1498.92 Mon Nov 10 19:44:03 2014 -> making sieve job for q = 6350000 in 6350000 .. 6375000 as file 15553_220.job.T0 Mon Nov 10 19:44:03 2014 -> making sieve job for q = 6375000 in 6375000 .. 6400000 as file 15553_220.job.T1 Mon Nov 10 19:44:03 2014 -> making sieve job for q = 6400000 in 6400000 .. 6425000 as file 15553_220.job.T2 Mon Nov 10 19:44:03 2014 -> making sieve job for q = 6425000 in 6425000 .. 6450000 as file 15553_220.job.T3 Mon Nov 10 19:44:03 2014 -> Lattice sieving algebraic q from 6350000 to 6450000. Mon Nov 10 19:44:03 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0 Mon Nov 10 19:44:03 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1 Mon Nov 10 19:44:03 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2 Mon Nov 10 19:44:03 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3 Mon Nov 10 20:08:43 2014 Found 857726 relations, 4.5% of the estimated minimum (19000000). Mon Nov 10 20:08:43 2014 LatSieveTime: 1480.15 Mon Nov 10 20:08:43 2014 -> making sieve job for q = 6450000 in 6450000 .. 6475000 as file 15553_220.job.T0 Mon Nov 10 20:08:43 2014 -> making sieve job for q = 6475000 in 6475000 .. 6500000 as file 15553_220.job.T1 Mon Nov 10 20:08:43 2014 -> making sieve job for q = 6500000 in 6500000 .. 6525000 as file 15553_220.job.T2 Mon Nov 10 20:08:43 2014 -> making sieve job for q = 6525000 in 6525000 .. 6550000 as file 15553_220.job.T3 Mon Nov 10 20:08:43 2014 -> Lattice sieving algebraic q from 6450000 to 6550000. Mon Nov 10 20:08:43 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0 Mon Nov 10 20:08:43 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1 Mon Nov 10 20:08:43 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2 Mon Nov 10 20:08:43 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3 Mon Nov 10 20:33:29 2014 Found 1142071 relations, 6.0% of the estimated minimum (19000000). Mon Nov 10 20:33:29 2014 LatSieveTime: 1485.71 Mon Nov 10 20:33:29 2014 -> making sieve job for q = 6550000 in 6550000 .. 6575000 as file 15553_220.job.T0 Mon Nov 10 20:33:29 2014 -> making sieve job for q = 6575000 in 6575000 .. 6600000 as file 15553_220.job.T1 Mon Nov 10 20:33:29 2014 -> making sieve job for q = 6600000 in 6600000 .. 6625000 as file 15553_220.job.T2 Mon Nov 10 20:33:29 2014 -> making sieve job for q = 6625000 in 6625000 .. 6650000 as file 15553_220.job.T3 Mon Nov 10 20:33:29 2014 -> Lattice sieving algebraic q from 6550000 to 6650000. Mon Nov 10 20:33:29 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0 Mon Nov 10 20:33:29 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1 Mon Nov 10 20:33:29 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2 Mon Nov 10 20:33:29 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3 Mon Nov 10 20:59:37 2014 Found 1426032 relations, 7.5% of the estimated minimum (19000000). Mon Nov 10 20:59:37 2014 LatSieveTime: 1568.42 Mon Nov 10 20:59:37 2014 -> making sieve job for q = 6650000 in 6650000 .. 6675000 as file 15553_220.job.T0 Mon Nov 10 20:59:37 2014 -> making sieve job for q = 6675000 in 6675000 .. 6700000 as file 15553_220.job.T1 Mon Nov 10 20:59:37 2014 -> making sieve job for q = 6700000 in 6700000 .. 6725000 as file 15553_220.job.T2 Mon Nov 10 20:59:37 2014 -> making sieve job for q = 6725000 in 6725000 .. 6750000 as file 15553_220.job.T3 Mon Nov 10 20:59:37 2014 -> Lattice sieving algebraic q from 6650000 to 6750000. Mon Nov 10 20:59:37 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0 Mon Nov 10 20:59:37 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1 Mon Nov 10 20:59:37 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2 Mon Nov 10 20:59:37 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3 Mon Nov 10 21:24:47 2014 Found 1710109 relations, 9.0% of the estimated minimum (19000000). Mon Nov 10 21:24:47 2014 LatSieveTime: 1510.11 Mon Nov 10 21:24:47 2014 -> making sieve job for q = 6750000 in 6750000 .. 6775000 as file 15553_220.job.T0 Mon Nov 10 21:24:47 2014 -> making sieve job for q = 6775000 in 6775000 .. 6800000 as file 15553_220.job.T1 Mon Nov 10 21:24:47 2014 -> making sieve job for q = 6800000 in 6800000 .. 6825000 as file 15553_220.job.T2 Mon Nov 10 21:24:47 2014 -> making sieve job for q = 6825000 in 6825000 .. 6850000 as file 15553_220.job.T3 Mon Nov 10 21:24:47 2014 -> Lattice sieving algebraic q from 6750000 to 6850000. Mon Nov 10 21:24:47 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0 Mon Nov 10 21:24:47 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1 Mon Nov 10 21:24:47 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2 Mon Nov 10 21:24:47 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3 Mon Nov 10 21:49:35 2014 Found 1992682 relations, 10.5% of the estimated minimum (19000000). Mon Nov 10 21:49:35 2014 LatSieveTime: 1487.79 Mon Nov 10 21:49:35 2014 -> making sieve job for q = 6850000 in 6850000 .. 6875000 as file 15553_220.job.T0 Mon Nov 10 21:49:35 2014 -> making sieve job for q = 6875000 in 6875000 .. 6900000 as file 15553_220.job.T1 Mon Nov 10 21:49:35 2014 -> making sieve job for q = 6900000 in 6900000 .. 6925000 as file 15553_220.job.T2 Mon Nov 10 21:49:35 2014 -> making sieve job for q = 6925000 in 6925000 .. 6950000 as file 15553_220.job.T3 Mon Nov 10 21:49:35 2014 -> Lattice sieving algebraic q from 6850000 to 6950000. Mon Nov 10 21:49:35 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0 Mon Nov 10 21:49:35 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1 Mon Nov 10 21:49:35 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2 Mon Nov 10 21:49:35 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3 Mon Nov 10 22:15:25 2014 Found 2285528 relations, 12.0% of the estimated minimum (19000000). Mon Nov 10 22:15:25 2014 LatSieveTime: 1549.96 Mon Nov 10 22:15:25 2014 -> making sieve job for q = 6950000 in 6950000 .. 6975000 as file 15553_220.job.T0 Mon Nov 10 22:15:25 2014 -> making sieve job for q = 6975000 in 6975000 .. 7000000 as file 15553_220.job.T1 Mon Nov 10 22:15:25 2014 -> making sieve job for q = 7000000 in 7000000 .. 7025000 as file 15553_220.job.T2 Mon Nov 10 22:15:25 2014 -> making sieve job for q = 7025000 in 7025000 .. 7050000 as file 15553_220.job.T3 Mon Nov 10 22:15:25 2014 -> Lattice sieving algebraic q from 6950000 to 7050000. Mon Nov 10 22:15:25 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0 Mon Nov 10 22:15:25 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1 Mon Nov 10 22:15:25 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2 Mon Nov 10 22:15:25 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3 Mon Nov 10 22:40:20 2014 Found 2565348 relations, 13.5% of the estimated minimum (19000000). Mon Nov 10 22:40:20 2014 LatSieveTime: 1494.37 Mon Nov 10 22:40:20 2014 -> making sieve job for q = 7050000 in 7050000 .. 7075000 as file 15553_220.job.T0 Mon Nov 10 22:40:20 2014 -> making sieve job for q = 7075000 in 7075000 .. 7100000 as file 15553_220.job.T1 Mon Nov 10 22:40:20 2014 -> making sieve job for q = 7100000 in 7100000 .. 7125000 as file 15553_220.job.T2 Mon Nov 10 22:40:20 2014 -> making sieve job for q = 7125000 in 7125000 .. 7150000 as file 15553_220.job.T3 Mon Nov 10 22:40:20 2014 -> Lattice sieving algebraic q from 7050000 to 7150000. Mon Nov 10 22:40:20 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0 Mon Nov 10 22:40:20 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1 Mon Nov 10 22:40:20 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2 Mon Nov 10 22:40:20 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3 Mon Nov 10 23:06:28 2014 Found 2850130 relations, 15.0% of the estimated minimum (19000000). Mon Nov 10 23:06:28 2014 LatSieveTime: 1568.02 Mon Nov 10 23:06:28 2014 -> making sieve job for q = 7150000 in 7150000 .. 7175000 as file 15553_220.job.T0 Mon Nov 10 23:06:28 2014 -> making sieve job for q = 7175000 in 7175000 .. 7200000 as file 15553_220.job.T1 Mon Nov 10 23:06:28 2014 -> making sieve job for q = 7200000 in 7200000 .. 7225000 as file 15553_220.job.T2 Mon Nov 10 23:06:28 2014 -> making sieve job for q = 7225000 in 7225000 .. 7250000 as file 15553_220.job.T3 Mon Nov 10 23:06:28 2014 -> Lattice sieving algebraic q from 7150000 to 7250000. Mon Nov 10 23:06:28 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0 Mon Nov 10 23:06:28 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1 Mon Nov 10 23:06:28 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2 Mon Nov 10 23:06:28 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3 Mon Nov 10 23:32:35 2014 Found 3146098 relations, 16.6% of the estimated minimum (19000000). Mon Nov 10 23:32:35 2014 LatSieveTime: 1567.4 Mon Nov 10 23:32:35 2014 -> making sieve job for q = 7250000 in 7250000 .. 7275000 as file 15553_220.job.T0 Mon Nov 10 23:32:35 2014 -> making sieve job for q = 7275000 in 7275000 .. 7300000 as file 15553_220.job.T1 Mon Nov 10 23:32:35 2014 -> making sieve job for q = 7300000 in 7300000 .. 7325000 as file 15553_220.job.T2 Mon Nov 10 23:32:35 2014 -> making sieve job for q = 7325000 in 7325000 .. 7350000 as file 15553_220.job.T3 Mon Nov 10 23:32:35 2014 -> Lattice sieving algebraic q from 7250000 to 7350000. Mon Nov 10 23:32:35 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0 Mon Nov 10 23:32:35 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1 Mon Nov 10 23:32:35 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2 Mon Nov 10 23:32:35 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3 Mon Nov 10 23:58:15 2014 Found 3426411 relations, 18.0% of the estimated minimum (19000000). Mon Nov 10 23:58:15 2014 LatSieveTime: 1539.6 Mon Nov 10 23:58:15 2014 -> making sieve job for q = 7350000 in 7350000 .. 7375000 as file 15553_220.job.T0 Mon Nov 10 23:58:15 2014 -> making sieve job for q = 7375000 in 7375000 .. 7400000 as file 15553_220.job.T1 Mon Nov 10 23:58:15 2014 -> making sieve job for q = 7400000 in 7400000 .. 7425000 as file 15553_220.job.T2 Mon Nov 10 23:58:15 2014 -> making sieve job for q = 7425000 in 7425000 .. 7450000 as file 15553_220.job.T3 Mon Nov 10 23:58:15 2014 -> Lattice sieving algebraic q from 7350000 to 7450000. Mon Nov 10 23:58:15 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0 Mon Nov 10 23:58:15 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1 Mon Nov 10 23:58:15 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2 Mon Nov 10 23:58:15 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3 Tue Nov 11 00:23:36 2014 Found 3709348 relations, 19.5% of the estimated minimum (19000000). Tue Nov 11 00:23:36 2014 LatSieveTime: 1521.78 Tue Nov 11 00:23:36 2014 -> making sieve job for q = 7450000 in 7450000 .. 7475000 as file 15553_220.job.T0 Tue Nov 11 00:23:36 2014 -> making sieve job for q = 7475000 in 7475000 .. 7500000 as file 15553_220.job.T1 Tue Nov 11 00:23:36 2014 -> making sieve job for q = 7500000 in 7500000 .. 7525000 as file 15553_220.job.T2 Tue Nov 11 00:23:36 2014 -> making sieve job for q = 7525000 in 7525000 .. 7550000 as file 15553_220.job.T3 Tue Nov 11 00:23:36 2014 -> Lattice sieving algebraic q from 7450000 to 7550000. Tue Nov 11 00:23:36 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0 Tue Nov 11 00:23:36 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1 Tue Nov 11 00:23:36 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2 Tue Nov 11 00:23:36 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3 Tue Nov 11 00:48:14 2014 Found 3985599 relations, 21.0% of the estimated minimum (19000000). Tue Nov 11 00:48:14 2014 LatSieveTime: 1477.17 Tue Nov 11 00:48:14 2014 -> making sieve job for q = 7550000 in 7550000 .. 7575000 as file 15553_220.job.T0 Tue Nov 11 00:48:14 2014 -> making sieve job for q = 7575000 in 7575000 .. 7600000 as file 15553_220.job.T1 Tue Nov 11 00:48:14 2014 -> making sieve job for q = 7600000 in 7600000 .. 7625000 as file 15553_220.job.T2 Tue Nov 11 00:48:14 2014 -> making sieve job for q = 7625000 in 7625000 .. 7650000 as file 15553_220.job.T3 Tue Nov 11 00:48:14 2014 -> Lattice sieving algebraic q from 7550000 to 7650000. Tue Nov 11 00:48:14 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0 Tue Nov 11 00:48:14 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1 Tue Nov 11 00:48:14 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2 Tue Nov 11 00:48:14 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3 Tue Nov 11 01:14:26 2014 Found 4266480 relations, 22.5% of the estimated minimum (19000000). Tue Nov 11 01:14:26 2014 LatSieveTime: 1572 Tue Nov 11 01:14:26 2014 -> making sieve job for q = 7650000 in 7650000 .. 7675000 as file 15553_220.job.T0 Tue Nov 11 01:14:26 2014 -> making sieve job for q = 7675000 in 7675000 .. 7700000 as file 15553_220.job.T1 Tue Nov 11 01:14:26 2014 -> making sieve job for q = 7700000 in 7700000 .. 7725000 as file 15553_220.job.T2 Tue Nov 11 01:14:26 2014 -> making sieve job for q = 7725000 in 7725000 .. 7750000 as file 15553_220.job.T3 Tue Nov 11 01:14:26 2014 -> Lattice sieving algebraic q from 7650000 to 7750000. Tue Nov 11 01:14:26 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0 Tue Nov 11 01:14:26 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1 Tue Nov 11 01:14:26 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2 Tue Nov 11 01:14:26 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3 Tue Nov 11 01:40:22 2014 Found 4543286 relations, 23.9% of the estimated minimum (19000000). Tue Nov 11 01:40:22 2014 LatSieveTime: 1556.9 Tue Nov 11 01:40:22 2014 -> making sieve job for q = 7750000 in 7750000 .. 7775000 as file 15553_220.job.T0 Tue Nov 11 01:40:22 2014 -> making sieve job for q = 7775000 in 7775000 .. 7800000 as file 15553_220.job.T1 Tue Nov 11 01:40:22 2014 -> making sieve job for q = 7800000 in 7800000 .. 7825000 as file 15553_220.job.T2 Tue Nov 11 01:40:22 2014 -> making sieve job for q = 7825000 in 7825000 .. 7850000 as file 15553_220.job.T3 Tue Nov 11 01:40:22 2014 -> Lattice sieving algebraic q from 7750000 to 7850000. Tue Nov 11 01:40:22 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0 Tue Nov 11 01:40:22 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1 Tue Nov 11 01:40:22 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2 Tue Nov 11 01:40:22 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3 Tue Nov 11 02:05:31 2014 Found 4822234 relations, 25.4% of the estimated minimum (19000000). Tue Nov 11 02:05:31 2014 LatSieveTime: 1508.04 Tue Nov 11 02:05:31 2014 -> making sieve job for q = 7850000 in 7850000 .. 7875000 as file 15553_220.job.T0 Tue Nov 11 02:05:31 2014 -> making sieve job for q = 7875000 in 7875000 .. 7900000 as file 15553_220.job.T1 Tue Nov 11 02:05:31 2014 -> making sieve job for q = 7900000 in 7900000 .. 7925000 as file 15553_220.job.T2 Tue Nov 11 02:05:31 2014 -> making sieve job for q = 7925000 in 7925000 .. 7950000 as file 15553_220.job.T3 Tue Nov 11 02:05:31 2014 -> Lattice sieving algebraic q from 7850000 to 7950000. Tue Nov 11 02:05:31 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0 Tue Nov 11 02:05:31 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1 Tue Nov 11 02:05:31 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2 Tue Nov 11 02:05:31 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3 Tue Nov 11 02:30:31 2014 Found 5098012 relations, 26.8% of the estimated minimum (19000000). Tue Nov 11 02:30:31 2014 LatSieveTime: 1500.48 Tue Nov 11 02:30:31 2014 -> making sieve job for q = 7950000 in 7950000 .. 7975000 as file 15553_220.job.T0 Tue Nov 11 02:30:31 2014 -> making sieve job for q = 7975000 in 7975000 .. 8000000 as file 15553_220.job.T1 Tue Nov 11 02:30:31 2014 -> making sieve job for q = 8000000 in 8000000 .. 8025000 as file 15553_220.job.T2 Tue Nov 11 02:30:31 2014 -> making sieve job for q = 8025000 in 8025000 .. 8050000 as file 15553_220.job.T3 Tue Nov 11 02:30:31 2014 -> Lattice sieving algebraic q from 7950000 to 8050000. Tue Nov 11 02:30:31 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0 Tue Nov 11 02:30:31 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1 Tue Nov 11 02:30:31 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2 Tue Nov 11 02:30:31 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3 Tue Nov 11 02:55:11 2014 Found 5372734 relations, 28.3% of the estimated minimum (19000000). Tue Nov 11 02:55:11 2014 LatSieveTime: 1480.39 Tue Nov 11 02:55:11 2014 -> making sieve job for q = 8050000 in 8050000 .. 8075000 as file 15553_220.job.T0 Tue Nov 11 02:55:11 2014 -> making sieve job for q = 8075000 in 8075000 .. 8100000 as file 15553_220.job.T1 Tue Nov 11 02:55:11 2014 -> making sieve job for q = 8100000 in 8100000 .. 8125000 as file 15553_220.job.T2 Tue Nov 11 02:55:11 2014 -> making sieve job for q = 8125000 in 8125000 .. 8150000 as file 15553_220.job.T3 Tue Nov 11 02:55:11 2014 -> Lattice sieving algebraic q from 8050000 to 8150000. Tue Nov 11 02:55:11 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0 Tue Nov 11 02:55:11 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1 Tue Nov 11 02:55:11 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2 Tue Nov 11 02:55:11 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3 Tue Nov 11 03:21:36 2014 Found 5650701 relations, 29.7% of the estimated minimum (19000000). Tue Nov 11 03:21:36 2014 LatSieveTime: 1584.84 Tue Nov 11 03:21:36 2014 -> making sieve job for q = 8150000 in 8150000 .. 8175000 as file 15553_220.job.T0 Tue Nov 11 03:21:36 2014 -> making sieve job for q = 8175000 in 8175000 .. 8200000 as file 15553_220.job.T1 Tue Nov 11 03:21:36 2014 -> making sieve job for q = 8200000 in 8200000 .. 8225000 as file 15553_220.job.T2 Tue Nov 11 03:21:36 2014 -> making sieve job for q = 8225000 in 8225000 .. 8250000 as file 15553_220.job.T3 Tue Nov 11 03:21:36 2014 -> Lattice sieving algebraic q from 8150000 to 8250000. Tue Nov 11 03:21:36 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0 Tue Nov 11 03:21:36 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1 Tue Nov 11 03:21:36 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2 Tue Nov 11 03:21:36 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3 Tue Nov 11 03:47:14 2014 Found 5933753 relations, 31.2% of the estimated minimum (19000000). Tue Nov 11 03:47:14 2014 LatSieveTime: 1537.3 Tue Nov 11 03:47:14 2014 -> making sieve job for q = 8250000 in 8250000 .. 8275000 as file 15553_220.job.T0 Tue Nov 11 03:47:14 2014 -> making sieve job for q = 8275000 in 8275000 .. 8300000 as file 15553_220.job.T1 Tue Nov 11 03:47:14 2014 -> making sieve job for q = 8300000 in 8300000 .. 8325000 as file 15553_220.job.T2 Tue Nov 11 03:47:14 2014 -> making sieve job for q = 8325000 in 8325000 .. 8350000 as file 15553_220.job.T3 Tue Nov 11 03:47:14 2014 -> Lattice sieving algebraic q from 8250000 to 8350000. Tue Nov 11 03:47:14 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0 Tue Nov 11 03:47:14 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1 Tue Nov 11 03:47:14 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2 Tue Nov 11 03:47:14 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3 Tue Nov 11 04:13:25 2014 Found 6222484 relations, 32.7% of the estimated minimum (19000000). Tue Nov 11 04:13:25 2014 LatSieveTime: 1571.83 Tue Nov 11 04:13:25 2014 -> making sieve job for q = 8350000 in 8350000 .. 8375000 as file 15553_220.job.T0 Tue Nov 11 04:13:25 2014 -> making sieve job for q = 8375000 in 8375000 .. 8400000 as file 15553_220.job.T1 Tue Nov 11 04:13:25 2014 -> making sieve job for q = 8400000 in 8400000 .. 8425000 as file 15553_220.job.T2 Tue Nov 11 04:13:25 2014 -> making sieve job for q = 8425000 in 8425000 .. 8450000 as file 15553_220.job.T3 Tue Nov 11 04:13:25 2014 -> Lattice sieving algebraic q from 8350000 to 8450000. Tue Nov 11 04:13:25 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0 Tue Nov 11 04:13:25 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1 Tue Nov 11 04:13:25 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2 Tue Nov 11 04:13:25 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3 Tue Nov 11 04:39:50 2014 Found 6501816 relations, 34.2% of the estimated minimum (19000000). Tue Nov 11 04:39:50 2014 LatSieveTime: 1584.34 Tue Nov 11 04:39:50 2014 -> making sieve job for q = 8450000 in 8450000 .. 8475000 as file 15553_220.job.T0 Tue Nov 11 04:39:50 2014 -> making sieve job for q = 8475000 in 8475000 .. 8500000 as file 15553_220.job.T1 Tue Nov 11 04:39:50 2014 -> making sieve job for q = 8500000 in 8500000 .. 8525000 as file 15553_220.job.T2 Tue Nov 11 04:39:50 2014 -> making sieve job for q = 8525000 in 8525000 .. 8550000 as file 15553_220.job.T3 Tue Nov 11 04:39:50 2014 -> Lattice sieving algebraic q from 8450000 to 8550000. Tue Nov 11 04:39:50 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0 Tue Nov 11 04:39:50 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1 Tue Nov 11 04:39:50 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2 Tue Nov 11 04:39:50 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3 Tue Nov 11 05:05:45 2014 Found 6787664 relations, 35.7% of the estimated minimum (19000000). Tue Nov 11 05:05:45 2014 LatSieveTime: 1555.67 Tue Nov 11 05:05:45 2014 -> making sieve job for q = 8550000 in 8550000 .. 8575000 as file 15553_220.job.T0 Tue Nov 11 05:05:45 2014 -> making sieve job for q = 8575000 in 8575000 .. 8600000 as file 15553_220.job.T1 Tue Nov 11 05:05:45 2014 -> making sieve job for q = 8600000 in 8600000 .. 8625000 as file 15553_220.job.T2 Tue Nov 11 05:05:45 2014 -> making sieve job for q = 8625000 in 8625000 .. 8650000 as file 15553_220.job.T3 Tue Nov 11 05:05:45 2014 -> Lattice sieving algebraic q from 8550000 to 8650000. Tue Nov 11 05:05:45 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0 Tue Nov 11 05:05:45 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1 Tue Nov 11 05:05:45 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2 Tue Nov 11 05:05:45 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3 Tue Nov 11 05:32:36 2014 Found 7066675 relations, 37.2% of the estimated minimum (19000000). Tue Nov 11 05:32:36 2014 LatSieveTime: 1611.01 Tue Nov 11 05:32:36 2014 -> making sieve job for q = 8650000 in 8650000 .. 8675000 as file 15553_220.job.T0 Tue Nov 11 05:32:36 2014 -> making sieve job for q = 8675000 in 8675000 .. 8700000 as file 15553_220.job.T1 Tue Nov 11 05:32:36 2014 -> making sieve job for q = 8700000 in 8700000 .. 8725000 as file 15553_220.job.T2 Tue Nov 11 05:32:36 2014 -> making sieve job for q = 8725000 in 8725000 .. 8750000 as file 15553_220.job.T3 Tue Nov 11 05:32:36 2014 -> Lattice sieving algebraic q from 8650000 to 8750000. Tue Nov 11 05:32:36 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0 Tue Nov 11 05:32:36 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1 Tue Nov 11 05:32:36 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2 Tue Nov 11 05:32:36 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3 Tue Nov 11 05:58:23 2014 Found 7347613 relations, 38.7% of the estimated minimum (19000000). Tue Nov 11 05:58:23 2014 LatSieveTime: 1546.13 Tue Nov 11 05:58:23 2014 -> making sieve job for q = 8750000 in 8750000 .. 8775000 as file 15553_220.job.T0 Tue Nov 11 05:58:23 2014 -> making sieve job for q = 8775000 in 8775000 .. 8800000 as file 15553_220.job.T1 Tue Nov 11 05:58:23 2014 -> making sieve job for q = 8800000 in 8800000 .. 8825000 as file 15553_220.job.T2 Tue Nov 11 05:58:23 2014 -> making sieve job for q = 8825000 in 8825000 .. 8850000 as file 15553_220.job.T3 Tue Nov 11 05:58:23 2014 -> Lattice sieving algebraic q from 8750000 to 8850000. Tue Nov 11 05:58:23 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0 Tue Nov 11 05:58:23 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1 Tue Nov 11 05:58:23 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2 Tue Nov 11 05:58:23 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3 Tue Nov 11 06:24:36 2014 Found 7623523 relations, 40.1% of the estimated minimum (19000000). Tue Nov 11 06:24:36 2014 LatSieveTime: 1573.87 Tue Nov 11 06:24:36 2014 -> making sieve job for q = 8850000 in 8850000 .. 8875000 as file 15553_220.job.T0 Tue Nov 11 06:24:36 2014 -> making sieve job for q = 8875000 in 8875000 .. 8900000 as file 15553_220.job.T1 Tue Nov 11 06:24:36 2014 -> making sieve job for q = 8900000 in 8900000 .. 8925000 as file 15553_220.job.T2 Tue Nov 11 06:24:36 2014 -> making sieve job for q = 8925000 in 8925000 .. 8950000 as file 15553_220.job.T3 Tue Nov 11 06:24:36 2014 -> Lattice sieving algebraic q from 8850000 to 8950000. Tue Nov 11 06:24:36 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0 Tue Nov 11 06:24:36 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1 Tue Nov 11 06:24:36 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2 Tue Nov 11 06:24:36 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3 Tue Nov 11 06:50:39 2014 Found 7902710 relations, 41.6% of the estimated minimum (19000000). Tue Nov 11 06:50:39 2014 LatSieveTime: 1562.93 Tue Nov 11 06:50:39 2014 -> making sieve job for q = 8950000 in 8950000 .. 8975000 as file 15553_220.job.T0 Tue Nov 11 06:50:39 2014 -> making sieve job for q = 8975000 in 8975000 .. 9000000 as file 15553_220.job.T1 Tue Nov 11 06:50:39 2014 -> making sieve job for q = 9000000 in 9000000 .. 9025000 as file 15553_220.job.T2 Tue Nov 11 06:50:39 2014 -> making sieve job for q = 9025000 in 9025000 .. 9050000 as file 15553_220.job.T3 Tue Nov 11 06:50:39 2014 -> Lattice sieving algebraic q from 8950000 to 9050000. Tue Nov 11 06:50:39 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0 Tue Nov 11 06:50:39 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1 Tue Nov 11 06:50:39 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2 Tue Nov 11 06:50:39 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3 Tue Nov 11 07:19:18 2014 Found 8183927 relations, 43.1% of the estimated minimum (19000000). Tue Nov 11 07:19:18 2014 LatSieveTime: 1718.31 Tue Nov 11 07:19:18 2014 -> making sieve job for q = 9050000 in 9050000 .. 9075000 as file 15553_220.job.T0 Tue Nov 11 07:19:18 2014 -> making sieve job for q = 9075000 in 9075000 .. 9100000 as file 15553_220.job.T1 Tue Nov 11 07:19:18 2014 -> making sieve job for q = 9100000 in 9100000 .. 9125000 as file 15553_220.job.T2 Tue Nov 11 07:19:18 2014 -> making sieve job for q = 9125000 in 9125000 .. 9150000 as file 15553_220.job.T3 Tue Nov 11 07:19:18 2014 -> Lattice sieving algebraic q from 9050000 to 9150000. Tue Nov 11 07:19:18 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0 Tue Nov 11 07:19:18 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1 Tue Nov 11 07:19:18 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2 Tue Nov 11 07:19:18 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3 Tue Nov 11 07:45:36 2014 Found 8458438 relations, 44.5% of the estimated minimum (19000000). Tue Nov 11 07:45:36 2014 LatSieveTime: 1578.64 Tue Nov 11 07:45:36 2014 -> making sieve job for q = 9150000 in 9150000 .. 9175000 as file 15553_220.job.T0 Tue Nov 11 07:45:36 2014 -> making sieve job for q = 9175000 in 9175000 .. 9200000 as file 15553_220.job.T1 Tue Nov 11 07:45:36 2014 -> making sieve job for q = 9200000 in 9200000 .. 9225000 as file 15553_220.job.T2 Tue Nov 11 07:45:36 2014 -> making sieve job for q = 9225000 in 9225000 .. 9250000 as file 15553_220.job.T3 Tue Nov 11 07:45:36 2014 -> Lattice sieving algebraic q from 9150000 to 9250000. Tue Nov 11 07:45:36 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0 Tue Nov 11 07:45:36 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1 Tue Nov 11 07:45:36 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2 Tue Nov 11 07:45:36 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3 Tue Nov 11 08:12:31 2014 Found 8734263 relations, 46.0% of the estimated minimum (19000000). Tue Nov 11 08:12:31 2014 LatSieveTime: 1614.44 Tue Nov 11 08:12:31 2014 -> making sieve job for q = 9250000 in 9250000 .. 9275000 as file 15553_220.job.T0 Tue Nov 11 08:12:31 2014 -> making sieve job for q = 9275000 in 9275000 .. 9300000 as file 15553_220.job.T1 Tue Nov 11 08:12:31 2014 -> making sieve job for q = 9300000 in 9300000 .. 9325000 as file 15553_220.job.T2 Tue Nov 11 08:12:31 2014 -> making sieve job for q = 9325000 in 9325000 .. 9350000 as file 15553_220.job.T3 Tue Nov 11 08:12:31 2014 -> Lattice sieving algebraic q from 9250000 to 9350000. Tue Nov 11 08:12:31 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0 Tue Nov 11 08:12:31 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1 Tue Nov 11 08:12:31 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2 Tue Nov 11 08:12:31 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3 Tue Nov 11 08:40:01 2014 Found 9014039 relations, 47.4% of the estimated minimum (19000000). Tue Nov 11 08:40:01 2014 LatSieveTime: 1649.88 Tue Nov 11 08:40:01 2014 -> making sieve job for q = 9350000 in 9350000 .. 9375000 as file 15553_220.job.T0 Tue Nov 11 08:40:01 2014 -> making sieve job for q = 9375000 in 9375000 .. 9400000 as file 15553_220.job.T1 Tue Nov 11 08:40:01 2014 -> making sieve job for q = 9400000 in 9400000 .. 9425000 as file 15553_220.job.T2 Tue Nov 11 08:40:01 2014 -> making sieve job for q = 9425000 in 9425000 .. 9450000 as file 15553_220.job.T3 Tue Nov 11 08:40:01 2014 -> Lattice sieving algebraic q from 9350000 to 9450000. Tue Nov 11 08:40:01 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0 Tue Nov 11 08:40:01 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1 Tue Nov 11 08:40:01 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2 Tue Nov 11 08:40:01 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3 Tue Nov 11 09:08:04 2014 Found 9292518 relations, 48.9% of the estimated minimum (19000000). Tue Nov 11 09:08:04 2014 LatSieveTime: 1683.34 Tue Nov 11 09:08:04 2014 -> making sieve job for q = 9450000 in 9450000 .. 9475000 as file 15553_220.job.T0 Tue Nov 11 09:08:04 2014 -> making sieve job for q = 9475000 in 9475000 .. 9500000 as file 15553_220.job.T1 Tue Nov 11 09:08:04 2014 -> making sieve job for q = 9500000 in 9500000 .. 9525000 as file 15553_220.job.T2 Tue Nov 11 09:08:04 2014 -> making sieve job for q = 9525000 in 9525000 .. 9550000 as file 15553_220.job.T3 Tue Nov 11 09:08:04 2014 -> Lattice sieving algebraic q from 9450000 to 9550000. Tue Nov 11 09:08:04 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0 Tue Nov 11 09:08:04 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1 Tue Nov 11 09:08:04 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2 Tue Nov 11 09:08:04 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3 Tue Nov 11 09:33:24 2014 Found 9564398 relations, 50.3% of the estimated minimum (19000000). Tue Nov 11 09:33:24 2014 LatSieveTime: 1520.04 Tue Nov 11 09:33:24 2014 -> making sieve job for q = 9550000 in 9550000 .. 9575000 as file 15553_220.job.T0 Tue Nov 11 09:33:24 2014 -> making sieve job for q = 9575000 in 9575000 .. 9600000 as file 15553_220.job.T1 Tue Nov 11 09:33:24 2014 -> making sieve job for q = 9600000 in 9600000 .. 9625000 as file 15553_220.job.T2 Tue Nov 11 09:33:24 2014 -> making sieve job for q = 9625000 in 9625000 .. 9650000 as file 15553_220.job.T3 Tue Nov 11 09:33:24 2014 -> Lattice sieving algebraic q from 9550000 to 9650000. Tue Nov 11 09:33:24 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0 Tue Nov 11 09:33:24 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1 Tue Nov 11 09:33:24 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2 Tue Nov 11 09:33:24 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3 Tue Nov 11 09:59:43 2014 Found 9842102 relations, 51.8% of the estimated minimum (19000000). Tue Nov 11 09:59:43 2014 LatSieveTime: 1579.33 Tue Nov 11 09:59:43 2014 -> making sieve job for q = 9650000 in 9650000 .. 9675000 as file 15553_220.job.T0 Tue Nov 11 09:59:43 2014 -> making sieve job for q = 9675000 in 9675000 .. 9700000 as file 15553_220.job.T1 Tue Nov 11 09:59:43 2014 -> making sieve job for q = 9700000 in 9700000 .. 9725000 as file 15553_220.job.T2 Tue Nov 11 09:59:43 2014 -> making sieve job for q = 9725000 in 9725000 .. 9750000 as file 15553_220.job.T3 Tue Nov 11 09:59:43 2014 -> Lattice sieving algebraic q from 9650000 to 9750000. Tue Nov 11 09:59:43 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0 Tue Nov 11 09:59:43 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1 Tue Nov 11 09:59:43 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2 Tue Nov 11 09:59:43 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3 Tue Nov 11 10:25:53 2014 Found 10115153 relations, 53.2% of the estimated minimum (19000000). Tue Nov 11 10:25:53 2014 LatSieveTime: 1569.64 Tue Nov 11 10:25:53 2014 -> making sieve job for q = 9750000 in 9750000 .. 9775000 as file 15553_220.job.T0 Tue Nov 11 10:25:53 2014 -> making sieve job for q = 9775000 in 9775000 .. 9800000 as file 15553_220.job.T1 Tue Nov 11 10:25:53 2014 -> making sieve job for q = 9800000 in 9800000 .. 9825000 as file 15553_220.job.T2 Tue Nov 11 10:25:53 2014 -> making sieve job for q = 9825000 in 9825000 .. 9850000 as file 15553_220.job.T3 Tue Nov 11 10:25:53 2014 -> Lattice sieving algebraic q from 9750000 to 9850000. Tue Nov 11 10:25:53 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0 Tue Nov 11 10:25:53 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1 Tue Nov 11 10:25:53 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2 Tue Nov 11 10:25:53 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3 Tue Nov 11 10:53:45 2014 Found 10393144 relations, 54.7% of the estimated minimum (19000000). Tue Nov 11 10:53:45 2014 LatSieveTime: 1671.79 Tue Nov 11 10:53:45 2014 -> making sieve job for q = 9850000 in 9850000 .. 9875000 as file 15553_220.job.T0 Tue Nov 11 10:53:45 2014 -> making sieve job for q = 9875000 in 9875000 .. 9900000 as file 15553_220.job.T1 Tue Nov 11 10:53:45 2014 -> making sieve job for q = 9900000 in 9900000 .. 9925000 as file 15553_220.job.T2 Tue Nov 11 10:53:45 2014 -> making sieve job for q = 9925000 in 9925000 .. 9950000 as file 15553_220.job.T3 Tue Nov 11 10:53:45 2014 -> Lattice sieving algebraic q from 9850000 to 9950000. Tue Nov 11 10:53:45 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0 Tue Nov 11 10:53:45 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1 Tue Nov 11 10:53:45 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2 Tue Nov 11 10:53:45 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3 Tue Nov 11 11:20:32 2014 Found 10668175 relations, 56.1% of the estimated minimum (19000000). Tue Nov 11 11:20:32 2014 LatSieveTime: 1606.79 Tue Nov 11 11:20:32 2014 -> making sieve job for q = 9950000 in 9950000 .. 9975000 as file 15553_220.job.T0 Tue Nov 11 11:20:32 2014 -> making sieve job for q = 9975000 in 9975000 .. 10000000 as file 15553_220.job.T1 Tue Nov 11 11:20:32 2014 -> making sieve job for q = 10000000 in 10000000 .. 10025000 as file 15553_220.job.T2 Tue Nov 11 11:20:32 2014 -> making sieve job for q = 10025000 in 10025000 .. 10050000 as file 15553_220.job.T3 Tue Nov 11 11:20:32 2014 -> Lattice sieving algebraic q from 9950000 to 10050000. Tue Nov 11 11:20:32 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0 Tue Nov 11 11:20:32 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1 Tue Nov 11 11:20:32 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2 Tue Nov 11 11:20:32 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3 Tue Nov 11 11:48:40 2014 Found 10949402 relations, 57.6% of the estimated minimum (19000000). Tue Nov 11 11:48:40 2014 LatSieveTime: 1688.08 Tue Nov 11 11:48:40 2014 -> making sieve job for q = 10050000 in 10050000 .. 10075000 as file 15553_220.job.T0 Tue Nov 11 11:48:40 2014 -> making sieve job for q = 10075000 in 10075000 .. 10100000 as file 15553_220.job.T1 Tue Nov 11 11:48:40 2014 -> making sieve job for q = 10100000 in 10100000 .. 10125000 as file 15553_220.job.T2 Tue Nov 11 11:48:40 2014 -> making sieve job for q = 10125000 in 10125000 .. 10150000 as file 15553_220.job.T3 Tue Nov 11 11:48:40 2014 -> Lattice sieving algebraic q from 10050000 to 10150000. Tue Nov 11 11:48:40 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0 Tue Nov 11 11:48:40 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1 Tue Nov 11 11:48:40 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2 Tue Nov 11 11:48:40 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3 Tue Nov 11 12:14:47 2014 Found 11227074 relations, 59.1% of the estimated minimum (19000000). Tue Nov 11 12:14:47 2014 LatSieveTime: 1567.24 Tue Nov 11 12:14:47 2014 -> making sieve job for q = 10150000 in 10150000 .. 10175000 as file 15553_220.job.T0 Tue Nov 11 12:14:47 2014 -> making sieve job for q = 10175000 in 10175000 .. 10200000 as file 15553_220.job.T1 Tue Nov 11 12:14:47 2014 -> making sieve job for q = 10200000 in 10200000 .. 10225000 as file 15553_220.job.T2 Tue Nov 11 12:14:47 2014 -> making sieve job for q = 10225000 in 10225000 .. 10250000 as file 15553_220.job.T3 Tue Nov 11 12:14:47 2014 -> Lattice sieving algebraic q from 10150000 to 10250000. Tue Nov 11 12:14:47 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0 Tue Nov 11 12:14:47 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1 Tue Nov 11 12:14:47 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2 Tue Nov 11 12:14:47 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3 Tue Nov 11 12:40:25 2014 Found 11497389 relations, 60.5% of the estimated minimum (19000000). Tue Nov 11 12:40:25 2014 LatSieveTime: 1538.4 Tue Nov 11 12:40:25 2014 -> making sieve job for q = 10250000 in 10250000 .. 10275000 as file 15553_220.job.T0 Tue Nov 11 12:40:25 2014 -> making sieve job for q = 10275000 in 10275000 .. 10300000 as file 15553_220.job.T1 Tue Nov 11 12:40:25 2014 -> making sieve job for q = 10300000 in 10300000 .. 10325000 as file 15553_220.job.T2 Tue Nov 11 12:40:25 2014 -> making sieve job for q = 10325000 in 10325000 .. 10350000 as file 15553_220.job.T3 Tue Nov 11 12:40:25 2014 -> Lattice sieving algebraic q from 10250000 to 10350000. Tue Nov 11 12:40:25 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0 Tue Nov 11 12:40:25 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1 Tue Nov 11 12:40:25 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2 Tue Nov 11 12:40:25 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3 Tue Nov 11 13:08:33 2014 Found 11773394 relations, 62.0% of the estimated minimum (19000000). Tue Nov 11 13:08:33 2014 LatSieveTime: 1687.15 Tue Nov 11 13:08:33 2014 -> making sieve job for q = 10350000 in 10350000 .. 10375000 as file 15553_220.job.T0 Tue Nov 11 13:08:33 2014 -> making sieve job for q = 10375000 in 10375000 .. 10400000 as file 15553_220.job.T1 Tue Nov 11 13:08:33 2014 -> making sieve job for q = 10400000 in 10400000 .. 10425000 as file 15553_220.job.T2 Tue Nov 11 13:08:33 2014 -> making sieve job for q = 10425000 in 10425000 .. 10450000 as file 15553_220.job.T3 Tue Nov 11 13:08:33 2014 -> Lattice sieving algebraic q from 10350000 to 10450000. Tue Nov 11 13:08:33 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0 Tue Nov 11 13:08:33 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1 Tue Nov 11 13:08:33 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2 Tue Nov 11 13:08:33 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3 Tue Nov 11 13:38:33 2014 Found 12053771 relations, 63.4% of the estimated minimum (19000000). Tue Nov 11 13:38:33 2014 LatSieveTime: 1800.49 Tue Nov 11 13:38:33 2014 -> making sieve job for q = 10450000 in 10450000 .. 10475000 as file 15553_220.job.T0 Tue Nov 11 13:38:33 2014 -> making sieve job for q = 10475000 in 10475000 .. 10500000 as file 15553_220.job.T1 Tue Nov 11 13:38:33 2014 -> making sieve job for q = 10500000 in 10500000 .. 10525000 as file 15553_220.job.T2 Tue Nov 11 13:38:33 2014 -> making sieve job for q = 10525000 in 10525000 .. 10550000 as file 15553_220.job.T3 Tue Nov 11 13:38:33 2014 -> Lattice sieving algebraic q from 10450000 to 10550000. Tue Nov 11 13:38:33 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0 Tue Nov 11 13:38:33 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1 Tue Nov 11 13:38:33 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2 Tue Nov 11 13:38:33 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3 Tue Nov 11 14:07:09 2014 Found 12334197 relations, 64.9% of the estimated minimum (19000000). Tue Nov 11 14:07:09 2014 LatSieveTime: 1716.14 Tue Nov 11 14:07:09 2014 -> making sieve job for q = 10550000 in 10550000 .. 10575000 as file 15553_220.job.T0 Tue Nov 11 14:07:09 2014 -> making sieve job for q = 10575000 in 10575000 .. 10600000 as file 15553_220.job.T1 Tue Nov 11 14:07:09 2014 -> making sieve job for q = 10600000 in 10600000 .. 10625000 as file 15553_220.job.T2 Tue Nov 11 14:07:09 2014 -> making sieve job for q = 10625000 in 10625000 .. 10650000 as file 15553_220.job.T3 Tue Nov 11 14:07:09 2014 -> Lattice sieving algebraic q from 10550000 to 10650000. Tue Nov 11 14:07:09 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0 Tue Nov 11 14:07:09 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1 Tue Nov 11 14:07:09 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2 Tue Nov 11 14:07:09 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3 Tue Nov 11 14:34:36 2014 Found 12613623 relations, 66.4% of the estimated minimum (19000000). Tue Nov 11 14:34:36 2014 LatSieveTime: 1647.21 Tue Nov 11 14:34:36 2014 -> making sieve job for q = 10650000 in 10650000 .. 10675000 as file 15553_220.job.T0 Tue Nov 11 14:34:36 2014 -> making sieve job for q = 10675000 in 10675000 .. 10700000 as file 15553_220.job.T1 Tue Nov 11 14:34:36 2014 -> making sieve job for q = 10700000 in 10700000 .. 10725000 as file 15553_220.job.T2 Tue Nov 11 14:34:36 2014 -> making sieve job for q = 10725000 in 10725000 .. 10750000 as file 15553_220.job.T3 Tue Nov 11 14:34:36 2014 -> Lattice sieving algebraic q from 10650000 to 10750000. Tue Nov 11 14:34:36 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0 Tue Nov 11 14:34:36 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1 Tue Nov 11 14:34:36 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2 Tue Nov 11 14:34:36 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3 Tue Nov 11 15:01:39 2014 Found 12889943 relations, 67.8% of the estimated minimum (19000000). Tue Nov 11 15:01:39 2014 LatSieveTime: 1622.76 Tue Nov 11 15:01:39 2014 -> making sieve job for q = 10750000 in 10750000 .. 10775000 as file 15553_220.job.T0 Tue Nov 11 15:01:39 2014 -> making sieve job for q = 10775000 in 10775000 .. 10800000 as file 15553_220.job.T1 Tue Nov 11 15:01:39 2014 -> making sieve job for q = 10800000 in 10800000 .. 10825000 as file 15553_220.job.T2 Tue Nov 11 15:01:39 2014 -> making sieve job for q = 10825000 in 10825000 .. 10850000 as file 15553_220.job.T3 Tue Nov 11 15:01:39 2014 -> Lattice sieving algebraic q from 10750000 to 10850000. Tue Nov 11 15:01:39 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0 Tue Nov 11 15:01:39 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1 Tue Nov 11 15:01:39 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2 Tue Nov 11 15:01:39 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3 Tue Nov 11 15:29:10 2014 Found 13166306 relations, 69.3% of the estimated minimum (19000000). Tue Nov 11 15:29:10 2014 LatSieveTime: 1650.38 Tue Nov 11 15:29:10 2014 -> making sieve job for q = 10850000 in 10850000 .. 10875000 as file 15553_220.job.T0 Tue Nov 11 15:29:10 2014 -> making sieve job for q = 10875000 in 10875000 .. 10900000 as file 15553_220.job.T1 Tue Nov 11 15:29:10 2014 -> making sieve job for q = 10900000 in 10900000 .. 10925000 as file 15553_220.job.T2 Tue Nov 11 15:29:10 2014 -> making sieve job for q = 10925000 in 10925000 .. 10950000 as file 15553_220.job.T3 Tue Nov 11 15:29:10 2014 -> Lattice sieving algebraic q from 10850000 to 10950000. Tue Nov 11 15:29:10 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0 Tue Nov 11 15:29:10 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1 Tue Nov 11 15:29:10 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2 Tue Nov 11 15:29:10 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3 Tue Nov 11 15:56:55 2014 Found 13443298 relations, 70.8% of the estimated minimum (19000000). Tue Nov 11 15:56:55 2014 LatSieveTime: 1665.1 Tue Nov 11 15:56:55 2014 -> making sieve job for q = 10950000 in 10950000 .. 10975000 as file 15553_220.job.T0 Tue Nov 11 15:56:55 2014 -> making sieve job for q = 10975000 in 10975000 .. 11000000 as file 15553_220.job.T1 Tue Nov 11 15:56:55 2014 -> making sieve job for q = 11000000 in 11000000 .. 11025000 as file 15553_220.job.T2 Tue Nov 11 15:56:55 2014 -> making sieve job for q = 11025000 in 11025000 .. 11050000 as file 15553_220.job.T3 Tue Nov 11 15:56:55 2014 -> Lattice sieving algebraic q from 10950000 to 11050000. Tue Nov 11 15:56:55 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0 Tue Nov 11 15:56:55 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1 Tue Nov 11 15:56:55 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2 Tue Nov 11 15:56:55 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3 Tue Nov 11 16:24:26 2014 Found 13714556 relations, 72.2% of the estimated minimum (19000000). Tue Nov 11 16:24:26 2014 LatSieveTime: 1650.98 Tue Nov 11 16:24:26 2014 -> making sieve job for q = 11050000 in 11050000 .. 11075000 as file 15553_220.job.T0 Tue Nov 11 16:24:26 2014 -> making sieve job for q = 11075000 in 11075000 .. 11100000 as file 15553_220.job.T1 Tue Nov 11 16:24:26 2014 -> making sieve job for q = 11100000 in 11100000 .. 11125000 as file 15553_220.job.T2 Tue Nov 11 16:24:26 2014 -> making sieve job for q = 11125000 in 11125000 .. 11150000 as file 15553_220.job.T3 Tue Nov 11 16:24:26 2014 -> Lattice sieving algebraic q from 11050000 to 11150000. Tue Nov 11 16:24:26 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0 Tue Nov 11 16:24:26 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1 Tue Nov 11 16:24:26 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2 Tue Nov 11 16:24:26 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3 Tue Nov 11 16:53:11 2014 Found 13987769 relations, 73.6% of the estimated minimum (19000000). Tue Nov 11 16:53:11 2014 LatSieveTime: 1725.13 Tue Nov 11 16:53:11 2014 -> making sieve job for q = 11150000 in 11150000 .. 11175000 as file 15553_220.job.T0 Tue Nov 11 16:53:11 2014 -> making sieve job for q = 11175000 in 11175000 .. 11200000 as file 15553_220.job.T1 Tue Nov 11 16:53:11 2014 -> making sieve job for q = 11200000 in 11200000 .. 11225000 as file 15553_220.job.T2 Tue Nov 11 16:53:11 2014 -> making sieve job for q = 11225000 in 11225000 .. 11250000 as file 15553_220.job.T3 Tue Nov 11 16:53:11 2014 -> Lattice sieving algebraic q from 11150000 to 11250000. Tue Nov 11 16:53:11 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0 Tue Nov 11 16:53:11 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1 Tue Nov 11 16:53:11 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2 Tue Nov 11 16:53:11 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3 Tue Nov 11 17:20:16 2014 Found 14259190 relations, 75.0% of the estimated minimum (19000000). Tue Nov 11 17:20:16 2014 LatSieveTime: 1624.79 Tue Nov 11 17:20:16 2014 -> making sieve job for q = 11250000 in 11250000 .. 11275000 as file 15553_220.job.T0 Tue Nov 11 17:20:16 2014 -> making sieve job for q = 11275000 in 11275000 .. 11300000 as file 15553_220.job.T1 Tue Nov 11 17:20:16 2014 -> making sieve job for q = 11300000 in 11300000 .. 11325000 as file 15553_220.job.T2 Tue Nov 11 17:20:16 2014 -> making sieve job for q = 11325000 in 11325000 .. 11350000 as file 15553_220.job.T3 Tue Nov 11 17:20:16 2014 -> Lattice sieving algebraic q from 11250000 to 11350000. Tue Nov 11 17:20:16 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0 Tue Nov 11 17:20:16 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1 Tue Nov 11 17:20:16 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2 Tue Nov 11 17:20:16 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3 Tue Nov 11 17:46:11 2014 Found 14535609 relations, 76.5% of the estimated minimum (19000000). Tue Nov 11 17:46:11 2014 LatSieveTime: 1555.62 Tue Nov 11 17:46:11 2014 -> making sieve job for q = 11350000 in 11350000 .. 11375000 as file 15553_220.job.T0 Tue Nov 11 17:46:11 2014 -> making sieve job for q = 11375000 in 11375000 .. 11400000 as file 15553_220.job.T1 Tue Nov 11 17:46:11 2014 -> making sieve job for q = 11400000 in 11400000 .. 11425000 as file 15553_220.job.T2 Tue Nov 11 17:46:11 2014 -> making sieve job for q = 11425000 in 11425000 .. 11450000 as file 15553_220.job.T3 Tue Nov 11 17:46:11 2014 -> Lattice sieving algebraic q from 11350000 to 11450000. Tue Nov 11 17:46:11 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0 Tue Nov 11 17:46:11 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1 Tue Nov 11 17:46:11 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2 Tue Nov 11 17:46:11 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3 Tue Nov 11 18:11:09 2014 Found 14802917 relations, 77.9% of the estimated minimum (19000000). Tue Nov 11 18:11:09 2014 LatSieveTime: 1497.39 Tue Nov 11 18:11:09 2014 -> making sieve job for q = 11450000 in 11450000 .. 11475000 as file 15553_220.job.T0 Tue Nov 11 18:11:09 2014 -> making sieve job for q = 11475000 in 11475000 .. 11500000 as file 15553_220.job.T1 Tue Nov 11 18:11:09 2014 -> making sieve job for q = 11500000 in 11500000 .. 11525000 as file 15553_220.job.T2 Tue Nov 11 18:11:09 2014 -> making sieve job for q = 11525000 in 11525000 .. 11550000 as file 15553_220.job.T3 Tue Nov 11 18:11:09 2014 -> Lattice sieving algebraic q from 11450000 to 11550000. Tue Nov 11 18:11:09 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0 Tue Nov 11 18:11:09 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1 Tue Nov 11 18:11:09 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2 Tue Nov 11 18:11:09 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3 Tue Nov 11 18:37:05 2014 Found 15077761 relations, 79.4% of the estimated minimum (19000000). Tue Nov 11 18:37:05 2014 LatSieveTime: 1556.09 Tue Nov 11 18:37:05 2014 -> making sieve job for q = 11550000 in 11550000 .. 11575000 as file 15553_220.job.T0 Tue Nov 11 18:37:05 2014 -> making sieve job for q = 11575000 in 11575000 .. 11600000 as file 15553_220.job.T1 Tue Nov 11 18:37:05 2014 -> making sieve job for q = 11600000 in 11600000 .. 11625000 as file 15553_220.job.T2 Tue Nov 11 18:37:05 2014 -> making sieve job for q = 11625000 in 11625000 .. 11650000 as file 15553_220.job.T3 Tue Nov 11 18:37:05 2014 -> Lattice sieving algebraic q from 11550000 to 11650000. Tue Nov 11 18:37:05 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0 Tue Nov 11 18:37:05 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1 Tue Nov 11 18:37:05 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2 Tue Nov 11 18:37:05 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3 Tue Nov 11 19:02:25 2014 Found 15356621 relations, 80.8% of the estimated minimum (19000000). Tue Nov 11 19:02:25 2014 LatSieveTime: 1520.48 Tue Nov 11 19:02:25 2014 -> making sieve job for q = 11650000 in 11650000 .. 11675000 as file 15553_220.job.T0 Tue Nov 11 19:02:25 2014 -> making sieve job for q = 11675000 in 11675000 .. 11700000 as file 15553_220.job.T1 Tue Nov 11 19:02:25 2014 -> making sieve job for q = 11700000 in 11700000 .. 11725000 as file 15553_220.job.T2 Tue Nov 11 19:02:25 2014 -> making sieve job for q = 11725000 in 11725000 .. 11750000 as file 15553_220.job.T3 Tue Nov 11 19:02:25 2014 -> Lattice sieving algebraic q from 11650000 to 11750000. Tue Nov 11 19:02:25 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0 Tue Nov 11 19:02:25 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1 Tue Nov 11 19:02:25 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2 Tue Nov 11 19:02:25 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3 Tue Nov 11 19:27:12 2014 Found 15630907 relations, 82.3% of the estimated minimum (19000000). Tue Nov 11 19:27:12 2014 LatSieveTime: 1486.9 Tue Nov 11 19:27:12 2014 -> making sieve job for q = 11750000 in 11750000 .. 11775000 as file 15553_220.job.T0 Tue Nov 11 19:27:12 2014 -> making sieve job for q = 11775000 in 11775000 .. 11800000 as file 15553_220.job.T1 Tue Nov 11 19:27:12 2014 -> making sieve job for q = 11800000 in 11800000 .. 11825000 as file 15553_220.job.T2 Tue Nov 11 19:27:12 2014 -> making sieve job for q = 11825000 in 11825000 .. 11850000 as file 15553_220.job.T3 Tue Nov 11 19:27:12 2014 -> Lattice sieving algebraic q from 11750000 to 11850000. Tue Nov 11 19:27:12 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0 Tue Nov 11 19:27:12 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1 Tue Nov 11 19:27:12 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2 Tue Nov 11 19:27:12 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3 Tue Nov 11 19:50:32 2014 Found 15898860 relations, 83.7% of the estimated minimum (19000000). Tue Nov 11 19:50:32 2014 LatSieveTime: 1399.46 Tue Nov 11 19:50:32 2014 -> making sieve job for q = 11850000 in 11850000 .. 11875000 as file 15553_220.job.T0 Tue Nov 11 19:50:32 2014 -> making sieve job for q = 11875000 in 11875000 .. 11900000 as file 15553_220.job.T1 Tue Nov 11 19:50:32 2014 -> making sieve job for q = 11900000 in 11900000 .. 11925000 as file 15553_220.job.T2 Tue Nov 11 19:50:32 2014 -> making sieve job for q = 11925000 in 11925000 .. 11950000 as file 15553_220.job.T3 Tue Nov 11 19:50:32 2014 -> Lattice sieving algebraic q from 11850000 to 11950000. Tue Nov 11 19:50:32 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0 Tue Nov 11 19:50:32 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1 Tue Nov 11 19:50:32 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2 Tue Nov 11 19:50:32 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3 Tue Nov 11 20:15:51 2014 Found 16176313 relations, 85.1% of the estimated minimum (19000000). Tue Nov 11 20:15:51 2014 LatSieveTime: 1519.17 Tue Nov 11 20:15:51 2014 -> making sieve job for q = 11950000 in 11950000 .. 11975000 as file 15553_220.job.T0 Tue Nov 11 20:15:51 2014 -> making sieve job for q = 11975000 in 11975000 .. 12000000 as file 15553_220.job.T1 Tue Nov 11 20:15:51 2014 -> making sieve job for q = 12000000 in 12000000 .. 12025000 as file 15553_220.job.T2 Tue Nov 11 20:15:51 2014 -> making sieve job for q = 12025000 in 12025000 .. 12050000 as file 15553_220.job.T3 Tue Nov 11 20:15:51 2014 -> Lattice sieving algebraic q from 11950000 to 12050000. Tue Nov 11 20:15:51 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0 Tue Nov 11 20:15:51 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1 Tue Nov 11 20:15:51 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2 Tue Nov 11 20:15:51 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3 Tue Nov 11 20:41:38 2014 Found 16449698 relations, 86.6% of the estimated minimum (19000000). Tue Nov 11 20:41:38 2014 LatSieveTime: 1546.83 Tue Nov 11 20:41:38 2014 -> making sieve job for q = 12050000 in 12050000 .. 12075000 as file 15553_220.job.T0 Tue Nov 11 20:41:38 2014 -> making sieve job for q = 12075000 in 12075000 .. 12100000 as file 15553_220.job.T1 Tue Nov 11 20:41:38 2014 -> making sieve job for q = 12100000 in 12100000 .. 12125000 as file 15553_220.job.T2 Tue Nov 11 20:41:38 2014 -> making sieve job for q = 12125000 in 12125000 .. 12150000 as file 15553_220.job.T3 Tue Nov 11 20:41:38 2014 -> Lattice sieving algebraic q from 12050000 to 12150000. Tue Nov 11 20:41:38 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0 Tue Nov 11 20:41:38 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1 Tue Nov 11 20:41:38 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2 Tue Nov 11 20:41:38 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3 Tue Nov 11 21:07:01 2014 Found 16722054 relations, 88.0% of the estimated minimum (19000000). Tue Nov 11 21:07:01 2014 LatSieveTime: 1523.35 Tue Nov 11 21:07:01 2014 -> making sieve job for q = 12150000 in 12150000 .. 12175000 as file 15553_220.job.T0 Tue Nov 11 21:07:01 2014 -> making sieve job for q = 12175000 in 12175000 .. 12200000 as file 15553_220.job.T1 Tue Nov 11 21:07:01 2014 -> making sieve job for q = 12200000 in 12200000 .. 12225000 as file 15553_220.job.T2 Tue Nov 11 21:07:01 2014 -> making sieve job for q = 12225000 in 12225000 .. 12250000 as file 15553_220.job.T3 Tue Nov 11 21:07:01 2014 -> Lattice sieving algebraic q from 12150000 to 12250000. Tue Nov 11 21:07:01 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0 Tue Nov 11 21:07:01 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1 Tue Nov 11 21:07:01 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2 Tue Nov 11 21:07:01 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3 Tue Nov 11 21:32:38 2014 Found 17000336 relations, 89.5% of the estimated minimum (19000000). Tue Nov 11 21:32:38 2014 LatSieveTime: 1536.87 Tue Nov 11 21:32:38 2014 -> making sieve job for q = 12250000 in 12250000 .. 12275000 as file 15553_220.job.T0 Tue Nov 11 21:32:38 2014 -> making sieve job for q = 12275000 in 12275000 .. 12300000 as file 15553_220.job.T1 Tue Nov 11 21:32:38 2014 -> making sieve job for q = 12300000 in 12300000 .. 12325000 as file 15553_220.job.T2 Tue Nov 11 21:32:38 2014 -> making sieve job for q = 12325000 in 12325000 .. 12350000 as file 15553_220.job.T3 Tue Nov 11 21:32:38 2014 -> Lattice sieving algebraic q from 12250000 to 12350000. Tue Nov 11 21:32:38 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0 Tue Nov 11 21:32:38 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1 Tue Nov 11 21:32:38 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2 Tue Nov 11 21:32:38 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3 Tue Nov 11 21:58:19 2014 Found 17267284 relations, 90.9% of the estimated minimum (19000000). Tue Nov 11 21:58:19 2014 LatSieveTime: 1540.99 Tue Nov 11 21:58:19 2014 -> making sieve job for q = 12350000 in 12350000 .. 12375000 as file 15553_220.job.T0 Tue Nov 11 21:58:19 2014 -> making sieve job for q = 12375000 in 12375000 .. 12400000 as file 15553_220.job.T1 Tue Nov 11 21:58:19 2014 -> making sieve job for q = 12400000 in 12400000 .. 12425000 as file 15553_220.job.T2 Tue Nov 11 21:58:19 2014 -> making sieve job for q = 12425000 in 12425000 .. 12450000 as file 15553_220.job.T3 Tue Nov 11 21:58:19 2014 -> Lattice sieving algebraic q from 12350000 to 12450000. Tue Nov 11 21:58:19 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0 Tue Nov 11 21:58:19 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1 Tue Nov 11 21:58:19 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2 Tue Nov 11 21:58:19 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3 Tue Nov 11 22:23:59 2014 Found 17540812 relations, 92.3% of the estimated minimum (19000000). Tue Nov 11 22:23:59 2014 LatSieveTime: 1539.72 Tue Nov 11 22:23:59 2014 -> making sieve job for q = 12450000 in 12450000 .. 12475000 as file 15553_220.job.T0 Tue Nov 11 22:23:59 2014 -> making sieve job for q = 12475000 in 12475000 .. 12500000 as file 15553_220.job.T1 Tue Nov 11 22:23:59 2014 -> making sieve job for q = 12500000 in 12500000 .. 12525000 as file 15553_220.job.T2 Tue Nov 11 22:23:59 2014 -> making sieve job for q = 12525000 in 12525000 .. 12550000 as file 15553_220.job.T3 Tue Nov 11 22:23:59 2014 -> Lattice sieving algebraic q from 12450000 to 12550000. Tue Nov 11 22:23:59 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0 Tue Nov 11 22:23:59 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1 Tue Nov 11 22:23:59 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2 Tue Nov 11 22:23:59 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3 Tue Nov 11 22:49:31 2014 Found 17811642 relations, 93.7% of the estimated minimum (19000000). Tue Nov 11 22:49:31 2014 LatSieveTime: 1532.33 Tue Nov 11 22:49:31 2014 -> making sieve job for q = 12550000 in 12550000 .. 12575000 as file 15553_220.job.T0 Tue Nov 11 22:49:31 2014 -> making sieve job for q = 12575000 in 12575000 .. 12600000 as file 15553_220.job.T1 Tue Nov 11 22:49:31 2014 -> making sieve job for q = 12600000 in 12600000 .. 12625000 as file 15553_220.job.T2 Tue Nov 11 22:49:31 2014 -> making sieve job for q = 12625000 in 12625000 .. 12650000 as file 15553_220.job.T3 Tue Nov 11 22:49:31 2014 -> Lattice sieving algebraic q from 12550000 to 12650000. Tue Nov 11 22:49:31 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0 Tue Nov 11 22:49:31 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1 Tue Nov 11 22:49:31 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2 Tue Nov 11 22:49:31 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3 Tue Nov 11 23:14:52 2014 Found 18084667 relations, 95.2% of the estimated minimum (19000000). Tue Nov 11 23:14:52 2014 LatSieveTime: 1521.18 Tue Nov 11 23:14:52 2014 -> making sieve job for q = 12650000 in 12650000 .. 12675000 as file 15553_220.job.T0 Tue Nov 11 23:14:52 2014 -> making sieve job for q = 12675000 in 12675000 .. 12700000 as file 15553_220.job.T1 Tue Nov 11 23:14:52 2014 -> making sieve job for q = 12700000 in 12700000 .. 12725000 as file 15553_220.job.T2 Tue Nov 11 23:14:52 2014 -> making sieve job for q = 12725000 in 12725000 .. 12750000 as file 15553_220.job.T3 Tue Nov 11 23:14:52 2014 -> Lattice sieving algebraic q from 12650000 to 12750000. Tue Nov 11 23:14:52 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0 Tue Nov 11 23:14:52 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1 Tue Nov 11 23:14:52 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2 Tue Nov 11 23:14:52 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3 Tue Nov 11 23:40:58 2014 Found 18360149 relations, 96.6% of the estimated minimum (19000000). Tue Nov 11 23:40:58 2014 LatSieveTime: 1565.69 Tue Nov 11 23:40:58 2014 -> making sieve job for q = 12750000 in 12750000 .. 12775000 as file 15553_220.job.T0 Tue Nov 11 23:40:58 2014 -> making sieve job for q = 12775000 in 12775000 .. 12800000 as file 15553_220.job.T1 Tue Nov 11 23:40:58 2014 -> making sieve job for q = 12800000 in 12800000 .. 12825000 as file 15553_220.job.T2 Tue Nov 11 23:40:58 2014 -> making sieve job for q = 12825000 in 12825000 .. 12850000 as file 15553_220.job.T3 Tue Nov 11 23:40:58 2014 -> Lattice sieving algebraic q from 12750000 to 12850000. Tue Nov 11 23:40:58 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0 Tue Nov 11 23:40:58 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1 Tue Nov 11 23:40:58 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2 Tue Nov 11 23:40:58 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3 Wed Nov 12 00:06:06 2014 Found 18629232 relations, 98.0% of the estimated minimum (19000000). Wed Nov 12 00:06:06 2014 LatSieveTime: 1508.03 Wed Nov 12 00:06:06 2014 -> making sieve job for q = 12850000 in 12850000 .. 12875000 as file 15553_220.job.T0 Wed Nov 12 00:06:06 2014 -> making sieve job for q = 12875000 in 12875000 .. 12900000 as file 15553_220.job.T1 Wed Nov 12 00:06:06 2014 -> making sieve job for q = 12900000 in 12900000 .. 12925000 as file 15553_220.job.T2 Wed Nov 12 00:06:06 2014 -> making sieve job for q = 12925000 in 12925000 .. 12950000 as file 15553_220.job.T3 Wed Nov 12 00:06:06 2014 -> Lattice sieving algebraic q from 12850000 to 12950000. Wed Nov 12 00:06:06 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0 Wed Nov 12 00:06:06 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1 Wed Nov 12 00:06:06 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2 Wed Nov 12 00:06:06 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3 Wed Nov 12 00:34:30 2014 Found 18895099 relations, 99.4% of the estimated minimum (19000000). Wed Nov 12 00:34:33 2014 LatSieveTime: 1704.33 Wed Nov 12 00:34:33 2014 -> making sieve job for q = 12950000 in 12950000 .. 12975000 as file 15553_220.job.T0 Wed Nov 12 00:34:33 2014 -> making sieve job for q = 12975000 in 12975000 .. 13000000 as file 15553_220.job.T1 Wed Nov 12 00:34:33 2014 -> making sieve job for q = 13000000 in 13000000 .. 13025000 as file 15553_220.job.T2 Wed Nov 12 00:34:33 2014 -> making sieve job for q = 13025000 in 13025000 .. 13050000 as file 15553_220.job.T3 Wed Nov 12 00:34:33 2014 -> Lattice sieving algebraic q from 12950000 to 13050000. Wed Nov 12 00:34:33 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0 Wed Nov 12 00:34:33 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1 Wed Nov 12 00:34:33 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2 Wed Nov 12 00:34:33 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3 Wed Nov 12 01:00:08 2014 Found 19162495 relations, 100.9% of the estimated minimum (19000000). Wed Nov 12 01:00:08 2014 Wed Nov 12 01:00:09 2014 Wed Nov 12 01:00:09 2014 Msieve v. 1.51 (SVN 845) Wed Nov 12 01:00:09 2014 random seeds: 622fc40c 356fff9b Wed Nov 12 01:00:09 2014 factoring 44411018648510210075526998380074804898316383347362838515916290022880087228547203764182509460212786559034097760725645542566400325037417 (134 digits) Wed Nov 12 01:00:09 2014 searching for 15-digit factors Wed Nov 12 01:00:10 2014 commencing number field sieve (134-digit input) Wed Nov 12 01:00:10 2014 R0: -99897098244994361976794188 Wed Nov 12 01:00:10 2014 R1: 140963966726011 Wed Nov 12 01:00:10 2014 A0: 92283268763007322061572551651975 Wed Nov 12 01:00:10 2014 A1: 857159006391033326945836521 Wed Nov 12 01:00:10 2014 A2: -6533537849100489796919 Wed Nov 12 01:00:10 2014 A3: -5639116642534241 Wed Nov 12 01:00:10 2014 A4: 15896980680 Wed Nov 12 01:00:10 2014 A5: 4464 Wed Nov 12 01:00:10 2014 skew 631930.24, size 7.007e-013, alpha -6.280, combined = 5.091e-011 rroots = 5 Wed Nov 12 01:00:10 2014 Wed Nov 12 01:00:10 2014 commencing relation filtering Wed Nov 12 01:00:10 2014 estimated available RAM is 4096.0 MB Wed Nov 12 01:00:10 2014 commencing duplicate removal, pass 1 Wed Nov 12 01:02:27 2014 found 2265850 hash collisions in 19162494 relations Wed Nov 12 01:03:02 2014 added 119550 free relations Wed Nov 12 01:03:02 2014 commencing duplicate removal, pass 2 Wed Nov 12 01:03:12 2014 found 1912659 duplicates and 17369385 unique relations Wed Nov 12 01:03:12 2014 memory use: 98.6 MB Wed Nov 12 01:03:12 2014 reading ideals above 720000 Wed Nov 12 01:03:13 2014 commencing singleton removal, initial pass Wed Nov 12 01:05:48 2014 memory use: 376.5 MB Wed Nov 12 01:05:49 2014 reading all ideals from disk Wed Nov 12 01:05:49 2014 memory use: 547.6 MB Wed Nov 12 01:05:50 2014 keeping 19461195 ideals with weight <= 200, target excess is 116491 Wed Nov 12 01:05:51 2014 commencing in-memory singleton removal Wed Nov 12 01:05:52 2014 begin with 17369385 relations and 19461195 unique ideals Wed Nov 12 01:06:03 2014 reduce to 5907322 relations and 5998612 ideals in 23 passes Wed Nov 12 01:06:03 2014 max relations containing the same ideal: 95 Wed Nov 12 01:06:03 2014 filtering wants 1000000 more relations Wed Nov 12 01:06:03 2014 elapsed time 00:05:54 Wed Nov 12 01:06:03 2014 LatSieveTime: 1890.16 Wed Nov 12 01:06:03 2014 -> making sieve job for q = 13050000 in 13050000 .. 13075000 as file 15553_220.job.T0 Wed Nov 12 01:06:03 2014 -> making sieve job for q = 13075000 in 13075000 .. 13100000 as file 15553_220.job.T1 Wed Nov 12 01:06:03 2014 -> making sieve job for q = 13100000 in 13100000 .. 13125000 as file 15553_220.job.T2 Wed Nov 12 01:06:03 2014 -> making sieve job for q = 13125000 in 13125000 .. 13150000 as file 15553_220.job.T3 Wed Nov 12 01:06:03 2014 -> Lattice sieving algebraic q from 13050000 to 13150000. Wed Nov 12 01:06:03 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0 Wed Nov 12 01:06:03 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1 Wed Nov 12 01:06:03 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2 Wed Nov 12 01:06:03 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3 Wed Nov 12 01:30:46 2014 Found 19543179 relations, 102.9% of the estimated minimum (19000000). Wed Nov 12 01:30:46 2014 Wed Nov 12 01:30:46 2014 Wed Nov 12 01:30:46 2014 Msieve v. 1.51 (SVN 845) Wed Nov 12 01:30:46 2014 random seeds: 970fb2a8 16189150 Wed Nov 12 01:30:46 2014 factoring 44411018648510210075526998380074804898316383347362838515916290022880087228547203764182509460212786559034097760725645542566400325037417 (134 digits) Wed Nov 12 01:30:47 2014 searching for 15-digit factors Wed Nov 12 01:30:47 2014 commencing number field sieve (134-digit input) Wed Nov 12 01:30:47 2014 R0: -99897098244994361976794188 Wed Nov 12 01:30:47 2014 R1: 140963966726011 Wed Nov 12 01:30:47 2014 A0: 92283268763007322061572551651975 Wed Nov 12 01:30:47 2014 A1: 857159006391033326945836521 Wed Nov 12 01:30:47 2014 A2: -6533537849100489796919 Wed Nov 12 01:30:47 2014 A3: -5639116642534241 Wed Nov 12 01:30:47 2014 A4: 15896980680 Wed Nov 12 01:30:47 2014 A5: 4464 Wed Nov 12 01:30:47 2014 skew 631930.24, size 7.007e-013, alpha -6.280, combined = 5.091e-011 rroots = 5 Wed Nov 12 01:30:47 2014 Wed Nov 12 01:30:47 2014 commencing relation filtering Wed Nov 12 01:30:47 2014 estimated available RAM is 4096.0 MB Wed Nov 12 01:30:47 2014 commencing duplicate removal, pass 1 Wed Nov 12 01:33:08 2014 found 2324361 hash collisions in 19543178 relations Wed Nov 12 01:33:42 2014 added 85 free relations Wed Nov 12 01:33:42 2014 commencing duplicate removal, pass 2 Wed Nov 12 01:33:52 2014 found 1957510 duplicates and 17585753 unique relations Wed Nov 12 01:33:52 2014 memory use: 98.6 MB Wed Nov 12 01:33:53 2014 reading ideals above 720000 Wed Nov 12 01:33:53 2014 commencing singleton removal, initial pass Wed Nov 12 01:37:16 2014 memory use: 376.5 MB Wed Nov 12 01:37:16 2014 reading all ideals from disk Wed Nov 12 01:37:16 2014 memory use: 554.5 MB Wed Nov 12 01:37:17 2014 keeping 19559495 ideals with weight <= 200, target excess is 116675 Wed Nov 12 01:37:18 2014 commencing in-memory singleton removal Wed Nov 12 01:37:19 2014 begin with 17585753 relations and 19559495 unique ideals Wed Nov 12 01:37:30 2014 reduce to 6207430 relations and 6226794 ideals in 21 passes Wed Nov 12 01:37:30 2014 max relations containing the same ideal: 97 Wed Nov 12 01:37:30 2014 filtering wants 1000000 more relations Wed Nov 12 01:37:30 2014 elapsed time 00:06:44 Wed Nov 12 01:37:30 2014 LatSieveTime: 1886.81 Wed Nov 12 01:37:30 2014 -> making sieve job for q = 13150000 in 13150000 .. 13175000 as file 15553_220.job.T0 Wed Nov 12 01:37:30 2014 -> making sieve job for q = 13175000 in 13175000 .. 13200000 as file 15553_220.job.T1 Wed Nov 12 01:37:30 2014 -> making sieve job for q = 13200000 in 13200000 .. 13225000 as file 15553_220.job.T2 Wed Nov 12 01:37:30 2014 -> making sieve job for q = 13225000 in 13225000 .. 13250000 as file 15553_220.job.T3 Wed Nov 12 01:37:30 2014 -> Lattice sieving algebraic q from 13150000 to 13250000. Wed Nov 12 01:37:30 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0 Wed Nov 12 01:37:30 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1 Wed Nov 12 01:37:30 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2 Wed Nov 12 01:37:30 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3 Wed Nov 12 02:03:29 2014 Found 19810905 relations, 104.3% of the estimated minimum (19000000). Wed Nov 12 02:03:29 2014 Wed Nov 12 02:03:29 2014 Wed Nov 12 02:03:29 2014 Msieve v. 1.51 (SVN 845) Wed Nov 12 02:03:29 2014 random seeds: 0923bd9c b9b80524 Wed Nov 12 02:03:29 2014 factoring 44411018648510210075526998380074804898316383347362838515916290022880087228547203764182509460212786559034097760725645542566400325037417 (134 digits) Wed Nov 12 02:03:29 2014 searching for 15-digit factors Wed Nov 12 02:03:30 2014 commencing number field sieve (134-digit input) Wed Nov 12 02:03:30 2014 R0: -99897098244994361976794188 Wed Nov 12 02:03:30 2014 R1: 140963966726011 Wed Nov 12 02:03:30 2014 A0: 92283268763007322061572551651975 Wed Nov 12 02:03:30 2014 A1: 857159006391033326945836521 Wed Nov 12 02:03:30 2014 A2: -6533537849100489796919 Wed Nov 12 02:03:30 2014 A3: -5639116642534241 Wed Nov 12 02:03:30 2014 A4: 15896980680 Wed Nov 12 02:03:30 2014 A5: 4464 Wed Nov 12 02:03:30 2014 skew 631930.24, size 7.007e-013, alpha -6.280, combined = 5.091e-011 rroots = 5 Wed Nov 12 02:03:30 2014 Wed Nov 12 02:03:30 2014 commencing relation filtering Wed Nov 12 02:03:30 2014 estimated available RAM is 4096.0 MB Wed Nov 12 02:03:30 2014 commencing duplicate removal, pass 1 Wed Nov 12 02:05:53 2014 found 2378304 hash collisions in 19810904 relations Wed Nov 12 02:06:27 2014 added 87 free relations Wed Nov 12 02:06:27 2014 commencing duplicate removal, pass 2 Wed Nov 12 02:06:49 2014 found 2004141 duplicates and 17806850 unique relations Wed Nov 12 02:06:49 2014 memory use: 98.6 MB Wed Nov 12 02:06:49 2014 reading ideals above 720000 Wed Nov 12 02:06:49 2014 commencing singleton removal, initial pass Wed Nov 12 02:09:34 2014 memory use: 376.5 MB Wed Nov 12 02:09:34 2014 reading all ideals from disk Wed Nov 12 02:09:34 2014 memory use: 561.6 MB Wed Nov 12 02:09:35 2014 keeping 19658919 ideals with weight <= 200, target excess is 116879 Wed Nov 12 02:09:36 2014 commencing in-memory singleton removal Wed Nov 12 02:09:37 2014 begin with 17806850 relations and 19658919 unique ideals Wed Nov 12 02:09:48 2014 reduce to 6509695 relations and 6452645 ideals in 20 passes Wed Nov 12 02:09:48 2014 max relations containing the same ideal: 102 Wed Nov 12 02:09:48 2014 filtering wants 1000000 more relations Wed Nov 12 02:09:48 2014 elapsed time 00:06:19 Wed Nov 12 02:09:48 2014 LatSieveTime: 1938.27 Wed Nov 12 02:09:48 2014 -> making sieve job for q = 13250000 in 13250000 .. 13275000 as file 15553_220.job.T0 Wed Nov 12 02:09:48 2014 -> making sieve job for q = 13275000 in 13275000 .. 13300000 as file 15553_220.job.T1 Wed Nov 12 02:09:48 2014 -> making sieve job for q = 13300000 in 13300000 .. 13325000 as file 15553_220.job.T2 Wed Nov 12 02:09:48 2014 -> making sieve job for q = 13325000 in 13325000 .. 13350000 as file 15553_220.job.T3 Wed Nov 12 02:09:48 2014 -> Lattice sieving algebraic q from 13250000 to 13350000. Wed Nov 12 02:09:48 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0 Wed Nov 12 02:09:48 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1 Wed Nov 12 02:09:48 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2 Wed Nov 12 02:09:48 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3 Wed Nov 12 02:35:31 2014 Found 20076947 relations, 105.7% of the estimated minimum (19000000). Wed Nov 12 02:35:31 2014 Wed Nov 12 02:35:31 2014 Wed Nov 12 02:35:31 2014 Msieve v. 1.51 (SVN 845) Wed Nov 12 02:35:31 2014 random seeds: 18f17db8 7b27a660 Wed Nov 12 02:35:31 2014 factoring 44411018648510210075526998380074804898316383347362838515916290022880087228547203764182509460212786559034097760725645542566400325037417 (134 digits) Wed Nov 12 02:35:32 2014 searching for 15-digit factors Wed Nov 12 02:35:32 2014 commencing number field sieve (134-digit input) Wed Nov 12 02:35:32 2014 R0: -99897098244994361976794188 Wed Nov 12 02:35:32 2014 R1: 140963966726011 Wed Nov 12 02:35:32 2014 A0: 92283268763007322061572551651975 Wed Nov 12 02:35:32 2014 A1: 857159006391033326945836521 Wed Nov 12 02:35:32 2014 A2: -6533537849100489796919 Wed Nov 12 02:35:32 2014 A3: -5639116642534241 Wed Nov 12 02:35:32 2014 A4: 15896980680 Wed Nov 12 02:35:32 2014 A5: 4464 Wed Nov 12 02:35:32 2014 skew 631930.24, size 7.007e-013, alpha -6.280, combined = 5.091e-011 rroots = 5 Wed Nov 12 02:35:32 2014 Wed Nov 12 02:35:32 2014 commencing relation filtering Wed Nov 12 02:35:32 2014 estimated available RAM is 4096.0 MB Wed Nov 12 02:35:32 2014 commencing duplicate removal, pass 1 Wed Nov 12 02:38:03 2014 found 2432140 hash collisions in 20076946 relations Wed Nov 12 02:38:37 2014 added 95 free relations Wed Nov 12 02:38:37 2014 commencing duplicate removal, pass 2 Wed Nov 12 02:40:27 2014 found 2050716 duplicates and 18026325 unique relations Wed Nov 12 02:40:27 2014 memory use: 98.6 MB Wed Nov 12 02:40:27 2014 reading ideals above 720000 Wed Nov 12 02:40:28 2014 commencing singleton removal, initial pass Wed Nov 12 02:43:47 2014 memory use: 376.5 MB Wed Nov 12 02:43:47 2014 reading all ideals from disk Wed Nov 12 02:43:48 2014 memory use: 568.6 MB Wed Nov 12 02:43:49 2014 keeping 19755795 ideals with weight <= 200, target excess is 117159 Wed Nov 12 02:43:50 2014 commencing in-memory singleton removal Wed Nov 12 02:43:51 2014 begin with 18026325 relations and 19755795 unique ideals Wed Nov 12 02:44:01 2014 reduce to 6805150 relations and 6669351 ideals in 19 passes Wed Nov 12 02:44:01 2014 max relations containing the same ideal: 104 Wed Nov 12 02:44:02 2014 filtering wants 1000000 more relations Wed Nov 12 02:44:02 2014 elapsed time 00:08:31 Wed Nov 12 02:44:02 2014 LatSieveTime: 2053.56 Wed Nov 12 02:44:02 2014 -> making sieve job for q = 13350000 in 13350000 .. 13375000 as file 15553_220.job.T0 Wed Nov 12 02:44:02 2014 -> making sieve job for q = 13375000 in 13375000 .. 13400000 as file 15553_220.job.T1 Wed Nov 12 02:44:02 2014 -> making sieve job for q = 13400000 in 13400000 .. 13425000 as file 15553_220.job.T2 Wed Nov 12 02:44:02 2014 -> making sieve job for q = 13425000 in 13425000 .. 13450000 as file 15553_220.job.T3 Wed Nov 12 02:44:02 2014 -> Lattice sieving algebraic q from 13350000 to 13450000. Wed Nov 12 02:44:02 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0 Wed Nov 12 02:44:02 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1 Wed Nov 12 02:44:02 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2 Wed Nov 12 02:44:02 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3 Wed Nov 12 03:08:45 2014 Found 20339343 relations, 107.0% of the estimated minimum (19000000). Wed Nov 12 03:08:45 2014 Wed Nov 12 03:08:45 2014 Wed Nov 12 03:08:45 2014 Msieve v. 1.51 (SVN 845) Wed Nov 12 03:08:45 2014 random seeds: e9343f60 e27c076d Wed Nov 12 03:08:45 2014 factoring 44411018648510210075526998380074804898316383347362838515916290022880087228547203764182509460212786559034097760725645542566400325037417 (134 digits) Wed Nov 12 03:08:45 2014 searching for 15-digit factors Wed Nov 12 03:08:46 2014 commencing number field sieve (134-digit input) Wed Nov 12 03:08:46 2014 R0: -99897098244994361976794188 Wed Nov 12 03:08:46 2014 R1: 140963966726011 Wed Nov 12 03:08:46 2014 A0: 92283268763007322061572551651975 Wed Nov 12 03:08:46 2014 A1: 857159006391033326945836521 Wed Nov 12 03:08:46 2014 A2: -6533537849100489796919 Wed Nov 12 03:08:46 2014 A3: -5639116642534241 Wed Nov 12 03:08:46 2014 A4: 15896980680 Wed Nov 12 03:08:46 2014 A5: 4464 Wed Nov 12 03:08:46 2014 skew 631930.24, size 7.007e-013, alpha -6.280, combined = 5.091e-011 rroots = 5 Wed Nov 12 03:08:46 2014 Wed Nov 12 03:08:46 2014 commencing relation filtering Wed Nov 12 03:08:46 2014 estimated available RAM is 4096.0 MB Wed Nov 12 03:08:46 2014 commencing duplicate removal, pass 1 Wed Nov 12 03:11:16 2014 found 2485829 hash collisions in 20339342 relations Wed Nov 12 03:11:50 2014 added 80 free relations Wed Nov 12 03:11:50 2014 commencing duplicate removal, pass 2 Wed Nov 12 03:12:01 2014 found 2097376 duplicates and 18242046 unique relations Wed Nov 12 03:12:01 2014 memory use: 98.6 MB Wed Nov 12 03:12:01 2014 reading ideals above 720000 Wed Nov 12 03:12:01 2014 commencing singleton removal, initial pass Wed Nov 12 03:14:58 2014 memory use: 376.5 MB Wed Nov 12 03:14:58 2014 reading all ideals from disk Wed Nov 12 03:14:59 2014 memory use: 575.5 MB Wed Nov 12 03:15:00 2014 keeping 19850111 ideals with weight <= 200, target excess is 117453 Wed Nov 12 03:15:01 2014 commencing in-memory singleton removal Wed Nov 12 03:15:02 2014 begin with 18242046 relations and 19850111 unique ideals Wed Nov 12 03:15:13 2014 reduce to 7095166 relations and 6879599 ideals in 19 passes Wed Nov 12 03:15:13 2014 max relations containing the same ideal: 106 Wed Nov 12 03:15:15 2014 removing 498486 relations and 458825 ideals in 39661 cliques Wed Nov 12 03:15:16 2014 commencing in-memory singleton removal Wed Nov 12 03:15:16 2014 begin with 6596680 relations and 6879599 unique ideals Wed Nov 12 03:15:20 2014 reduce to 6566527 relations and 6390372 ideals in 9 passes Wed Nov 12 03:15:20 2014 max relations containing the same ideal: 100 Wed Nov 12 03:15:22 2014 removing 364587 relations and 324926 ideals in 39661 cliques Wed Nov 12 03:15:23 2014 commencing in-memory singleton removal Wed Nov 12 03:15:23 2014 begin with 6201940 relations and 6390372 unique ideals Wed Nov 12 03:15:27 2014 reduce to 6184196 relations and 6047579 ideals in 10 passes Wed Nov 12 03:15:27 2014 max relations containing the same ideal: 93 Wed Nov 12 03:15:30 2014 relations with 0 large ideals: 459 Wed Nov 12 03:15:30 2014 relations with 1 large ideals: 1109 Wed Nov 12 03:15:30 2014 relations with 2 large ideals: 20192 Wed Nov 12 03:15:30 2014 relations with 3 large ideals: 148319 Wed Nov 12 03:15:30 2014 relations with 4 large ideals: 583863 Wed Nov 12 03:15:30 2014 relations with 5 large ideals: 1323347 Wed Nov 12 03:15:30 2014 relations with 6 large ideals: 1799599 Wed Nov 12 03:15:30 2014 relations with 7+ large ideals: 2307308 Wed Nov 12 03:15:30 2014 commencing 2-way merge Wed Nov 12 03:15:34 2014 reduce to 3559295 relation sets and 3422678 unique ideals Wed Nov 12 03:15:34 2014 ignored 1 oversize relation sets Wed Nov 12 03:15:34 2014 commencing full merge Wed Nov 12 03:16:22 2014 memory use: 353.7 MB Wed Nov 12 03:16:22 2014 found 1814607 cycles, need 1798878 Wed Nov 12 03:16:22 2014 weight of 1798878 cycles is about 125953552 (70.02/cycle) Wed Nov 12 03:16:22 2014 distribution of cycle lengths: Wed Nov 12 03:16:22 2014 1 relations: 262424 Wed Nov 12 03:16:22 2014 2 relations: 228943 Wed Nov 12 03:16:22 2014 3 relations: 213408 Wed Nov 12 03:16:22 2014 4 relations: 184369 Wed Nov 12 03:16:22 2014 5 relations: 160572 Wed Nov 12 03:16:22 2014 6 relations: 132582 Wed Nov 12 03:16:22 2014 7 relations: 113204 Wed Nov 12 03:16:22 2014 8 relations: 93740 Wed Nov 12 03:16:22 2014 9 relations: 77810 Wed Nov 12 03:16:22 2014 10+ relations: 331826 Wed Nov 12 03:16:22 2014 heaviest cycle: 24 relations Wed Nov 12 03:16:23 2014 commencing cycle optimization Wed Nov 12 03:16:25 2014 start with 10379714 relations Wed Nov 12 03:16:40 2014 pruned 214263 relations Wed Nov 12 03:16:40 2014 memory use: 280.5 MB Wed Nov 12 03:16:40 2014 distribution of cycle lengths: Wed Nov 12 03:16:40 2014 1 relations: 262424 Wed Nov 12 03:16:40 2014 2 relations: 233834 Wed Nov 12 03:16:40 2014 3 relations: 220143 Wed Nov 12 03:16:40 2014 4 relations: 187887 Wed Nov 12 03:16:40 2014 5 relations: 162656 Wed Nov 12 03:16:40 2014 6 relations: 133570 Wed Nov 12 03:16:40 2014 7 relations: 113059 Wed Nov 12 03:16:40 2014 8 relations: 93004 Wed Nov 12 03:16:40 2014 9 relations: 76923 Wed Nov 12 03:16:40 2014 10+ relations: 315378 Wed Nov 12 03:16:40 2014 heaviest cycle: 24 relations Wed Nov 12 03:16:42 2014 RelProcTime: 476 Wed Nov 12 03:16:42 2014 elapsed time 00:07:57 Wed Nov 12 03:16:42 2014 LatSieveTime: 1959.74 Wed Nov 12 03:16:42 2014 -> Running matrix solving step ... Wed Nov 12 03:16:42 2014 Wed Nov 12 03:16:42 2014 Wed Nov 12 03:16:42 2014 Msieve v. 1.51 (SVN 845) Wed Nov 12 03:16:42 2014 random seeds: 1bf8dc28 f391dc87 Wed Nov 12 03:16:42 2014 factoring 44411018648510210075526998380074804898316383347362838515916290022880087228547203764182509460212786559034097760725645542566400325037417 (134 digits) Wed Nov 12 03:16:43 2014 searching for 15-digit factors Wed Nov 12 03:16:43 2014 commencing number field sieve (134-digit input) Wed Nov 12 03:16:43 2014 R0: -99897098244994361976794188 Wed Nov 12 03:16:43 2014 R1: 140963966726011 Wed Nov 12 03:16:43 2014 A0: 92283268763007322061572551651975 Wed Nov 12 03:16:43 2014 A1: 857159006391033326945836521 Wed Nov 12 03:16:43 2014 A2: -6533537849100489796919 Wed Nov 12 03:16:43 2014 A3: -5639116642534241 Wed Nov 12 03:16:43 2014 A4: 15896980680 Wed Nov 12 03:16:43 2014 A5: 4464 Wed Nov 12 03:16:43 2014 skew 631930.24, size 7.007e-013, alpha -6.280, combined = 5.091e-011 rroots = 5 Wed Nov 12 03:16:43 2014 Wed Nov 12 03:16:43 2014 commencing linear algebra Wed Nov 12 03:16:44 2014 read 1798878 cycles Wed Nov 12 03:16:47 2014 cycles contain 6024398 unique relations Wed Nov 12 03:17:50 2014 read 6024398 relations Wed Nov 12 03:17:57 2014 using 20 quadratic characters above 268434980 Wed Nov 12 03:18:23 2014 building initial matrix Wed Nov 12 03:19:21 2014 memory use: 689.2 MB Wed Nov 12 03:19:46 2014 read 1798878 cycles Wed Nov 12 03:19:46 2014 matrix is 1798699 x 1798878 (511.2 MB) with weight 167745300 (93.25/col) Wed Nov 12 03:19:46 2014 sparse part has weight 121428864 (67.50/col) Wed Nov 12 03:20:02 2014 filtering completed in 2 passes Wed Nov 12 03:20:03 2014 matrix is 1796026 x 1796205 (511.0 MB) with weight 167635811 (93.33/col) Wed Nov 12 03:20:03 2014 sparse part has weight 121394988 (67.58/col) Wed Nov 12 03:20:08 2014 matrix starts at (0, 0) Wed Nov 12 03:20:09 2014 matrix is 1796026 x 1796205 (511.0 MB) with weight 167635811 (93.33/col) Wed Nov 12 03:20:09 2014 sparse part has weight 121394988 (67.58/col) Wed Nov 12 03:20:09 2014 saving the first 48 matrix rows for later Wed Nov 12 03:20:09 2014 matrix includes 64 packed rows Wed Nov 12 03:20:10 2014 matrix is 1795978 x 1796205 (493.4 MB) with weight 134628347 (74.95/col) Wed Nov 12 03:20:10 2014 sparse part has weight 118573233 (66.01/col) Wed Nov 12 03:20:10 2014 using block size 65536 for processor cache size 6144 kB Wed Nov 12 03:20:19 2014 commencing Lanczos iteration (4 threads) Wed Nov 12 03:20:19 2014 memory use: 452.0 MB Wed Nov 12 03:20:26 2014 linear algebra at 0.1%, ETA 1h58m Wed Nov 12 03:20:28 2014 checkpointing every 920000 dimensions Wed Nov 12 05:45:28 2014 lanczos halted after 28407 iterations (dim = 1795976) Wed Nov 12 05:45:32 2014 recovered 30 nontrivial dependencies Wed Nov 12 05:45:32 2014 BLanczosTime: 8929 Wed Nov 12 05:45:32 2014 elapsed time 02:28:50 Wed Nov 12 05:45:32 2014 -> Running square root step ... Wed Nov 12 05:45:32 2014 Wed Nov 12 05:45:32 2014 Wed Nov 12 05:45:32 2014 Msieve v. 1.51 (SVN 845) Wed Nov 12 05:45:32 2014 random seeds: c2dff0e0 0254b8b9 Wed Nov 12 05:45:32 2014 factoring 44411018648510210075526998380074804898316383347362838515916290022880087228547203764182509460212786559034097760725645542566400325037417 (134 digits) Wed Nov 12 05:45:33 2014 searching for 15-digit factors Wed Nov 12 05:45:34 2014 commencing number field sieve (134-digit input) Wed Nov 12 05:45:34 2014 R0: -99897098244994361976794188 Wed Nov 12 05:45:34 2014 R1: 140963966726011 Wed Nov 12 05:45:34 2014 A0: 92283268763007322061572551651975 Wed Nov 12 05:45:34 2014 A1: 857159006391033326945836521 Wed Nov 12 05:45:34 2014 A2: -6533537849100489796919 Wed Nov 12 05:45:34 2014 A3: -5639116642534241 Wed Nov 12 05:45:34 2014 A4: 15896980680 Wed Nov 12 05:45:34 2014 A5: 4464 Wed Nov 12 05:45:34 2014 skew 631930.24, size 7.007e-013, alpha -6.280, combined = 5.091e-011 rroots = 5 Wed Nov 12 05:45:34 2014 Wed Nov 12 05:45:34 2014 commencing square root phase Wed Nov 12 05:45:34 2014 reading relations for dependency 1 Wed Nov 12 05:45:42 2014 read 899416 cycles Wed Nov 12 05:45:44 2014 cycles contain 3015684 unique relations Wed Nov 12 05:46:14 2014 read 3015684 relations Wed Nov 12 05:46:27 2014 multiplying 3015684 relations Wed Nov 12 05:52:36 2014 multiply complete, coefficients have about 137.81 million bits Wed Nov 12 05:52:38 2014 initial square root is modulo 88259 Wed Nov 12 06:00:09 2014 sqrtTime: 875 Wed Nov 12 06:00:09 2014 prp65 factor: 79624809417174635727667837952347714118128698485612076869994232241 Wed Nov 12 06:00:09 2014 prp69 factor: 557753531513395325577559620079103641354397078819521838231830662964537 Wed Nov 12 06:00:09 2014 elapsed time 00:14:37 Wed Nov 12 06:00:09 2014 -> Computing 1.41577e+09 scale for this machine... Wed Nov 12 06:00:09 2014 -> procrels -speedtest> PIPE Wed Nov 12 06:00:12 2014 -> Factorization summary written to g134-15553_220.txt |
software ソフトウェア | GGNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | May 16, 2012 01:00:00 UTC 2012 年 5 月 16 日 (水) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1300 | 1000 | Dmitry Domanov | May 18, 2012 13:06:49 UTC 2012 年 5 月 18 日 (金) 22 時 6 分 49 秒 (日本時間) |
300 | Serge Batalov | January 9, 2014 04:39:07 UTC 2014 年 1 月 9 日 (木) 13 時 39 分 7 秒 (日本時間) | |||
45 | 11e6 | 4188 | 120 | Cyp | March 11, 2014 17:53:21 UTC 2014 年 3 月 12 日 (水) 2 時 53 分 21 秒 (日本時間) |
1800 | Serge Batalov | May 24, 2014 17:34:58 UTC 2014 年 5 月 25 日 (日) 2 時 34 分 58 秒 (日本時間) | |||
300 | Serge Batalov | May 27, 2014 00:30:12 UTC 2014 年 5 月 27 日 (火) 9 時 30 分 12 秒 (日本時間) | |||
1968 | KTakahashi | October 31, 2014 09:56:55 UTC 2014 年 10 月 31 日 (金) 18 時 56 分 55 秒 (日本時間) | |||
50 | 43e6 | 0 / 6507 | - | - | |
55 | 11e7 | 0 / 17466 | - | - | |
60 | 26e7 | 0 / 41934 | - | - | |
65 | 85e7 | 5 / 69398 | 1 | KTakahashi | November 1, 2014 13:46:43 UTC 2014 年 11 月 1 日 (土) 22 時 46 分 43 秒 (日本時間) |
4 | KTakahashi | November 1, 2014 22:49:21 UTC 2014 年 11 月 2 日 (日) 7 時 49 分 21 秒 (日本時間) |
name 名前 | Erik Branger |
---|---|
date 日付 | May 24, 2020 20:09:04 UTC 2020 年 5 月 25 日 (月) 5 時 9 分 4 秒 (日本時間) |
composite number 合成数 | 3342892502187948744218139280129581574128860020915256261949785190457854415096318519559945973824760099553897937694634797207160802420403413238122565372885262667151759907729203850206742148873733375193159859<202> |
prime factors 素因数 | 230813727458517053139393068413516994271110042033361582937108720687930099850099<78> 14483074897652044419999365996112856615613478027986534329866847812737257589284417370585773689295148363138465123077859982114241<125> |
factorization results 素因数分解の結果 | Number: 15553_222 N = 3342892502187948744218139280129581574128860020915256261949785190457854415096318519559945973824760099553897937694634797207160802420403413238122565372885262667151759907729203850206742148873733375193159859 (202 digits) SNFS difficulty: 224 digits. Divisors found: r1=230813727458517053139393068413516994271110042033361582937108720687930099850099 (pp78) r2=14483074897652044419999365996112856615613478027986534329866847812737257589284417370585773689295148363138465123077859982114241 (pp125) Version: Msieve v. 1.52 (SVN unknown) Total time: 80.63 hours. Factorization parameters were as follows: n: 3342892502187948744218139280129581574128860020915256261949785190457854415096318519559945973824760099553897937694634797207160802420403413238122565372885262667151759907729203850206742148873733375193159859 m: 10000000000000000000000000000000000000000000000000000000 deg: 4 c4: 1400 c0: -23 skew: 1.00 type: snfs lss: 1 rlim: 536870912 alim: 44739242 lpbr: 29 lpba: 28 mfbr: 58 mfba: 56 rlambda: 2.8 alambda: 2.8 side: 1 Number of cores used: 6 Number of threads per core: 1 Factor base limits: 536870912/44739242 Large primes per side: 3 Large prime bits: 29/28 Total raw relations: 35787259 Relations: 9489710 relations Total pre-computation time approximately 1000 CPU-days. Pre-computation saved approximately 18 G rational relations. Total batch smoothness checking time: 38.31 hours. Total relation processing time: 0.43 hours. Pruned matrix : 8117044 x 8117269 Matrix solve time: 41.36 hours. time per square root: 0.53 hours. Prototype def-par.txt line would be: snfs,224,4,0,0,0,0,0,0,0,0,536870912,44739242,29,28,58,56,2.8,2.8,100000 total time: 80.63 hours. Intel64 Family 6 Model 158 Stepping 10, GenuineIntel Windows-10-10.0.18362-SP0 processors: 12, speed: 3.19GHz |
software ソフトウェア | GGNFS, NFS_factory, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | May 16, 2012 01:00:00 UTC 2012 年 5 月 16 日 (水) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2600 | 1000 | Dmitry Domanov | May 18, 2012 13:06:59 UTC 2012 年 5 月 18 日 (金) 22 時 6 分 59 秒 (日本時間) |
300 | Serge Batalov | January 9, 2014 04:39:07 UTC 2014 年 1 月 9 日 (木) 13 時 39 分 7 秒 (日本時間) | |||
1300 | Serge Batalov | May 26, 2014 18:01:35 UTC 2014 年 5 月 27 日 (火) 3 時 1 分 35 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | May 16, 2012 08:47:49 UTC 2012 年 5 月 16 日 (水) 17 時 47 分 49 秒 (日本時間) |
composite number 合成数 | 3452282481218783073492076231895119423804483119806947480678224767640809157729159369151608667872496934827092879303604563741965999301075608375360118228506295841955580224684194774990449111935267<190> |
prime factors 素因数 | 9635461794175346180127226554589<31> |
composite cofactor 合成数の残り | 358289260542311940205008631540295830847866646139697232289356934540403121706072694186883664037360097677739653070637717889420037609432166181550548280756263893503<159> |
factorization results 素因数分解の結果 | Using B1=2000000, B2=5705781910, polynomial Dickson(6), sigma=2973624528 Step 1 took 9717ms Step 2 took 6328ms ********** Factor found in step 2: 9635461794175346180127226554589 Found probable prime factor of 31 digits: 9635461794175346180127226554589 Composite cofactor 358289260542311940205008631540295830847866646139697232289356934540403121706072694186883664037360097677739653070637717889420037609432166181550548280756263893503 has 159 digits |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | May 20, 2012 11:23:12 UTC 2012 年 5 月 20 日 (日) 20 時 23 分 12 秒 (日本時間) |
composite number 合成数 | 358289260542311940205008631540295830847866646139697232289356934540403121706072694186883664037360097677739653070637717889420037609432166181550548280756263893503<159> |
prime factors 素因数 | 1330683692599308087529269064612588155503<40> 269252011229237362812593264302061560649133992595916636112136199975560660977530362021537890059955505385917109083474246001<120> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=4138720335 Step 1 took 222085ms Step 2 took 130498ms ********** Factor found in step 2: 1330683692599308087529269064612588155503 Found probable prime factor of 40 digits: 1330683692599308087529269064612588155503 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | May 16, 2012 01:00:00 UTC 2012 年 5 月 16 日 (水) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | May 18, 2012 13:07:15 UTC 2012 年 5 月 18 日 (金) 22 時 7 分 15 秒 (日本時間) | |
45 | 11e6 | 400 / 4254 | Dmitry Domanov | May 18, 2012 21:40:51 UTC 2012 年 5 月 19 日 (土) 6 時 40 分 51 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | May 16, 2012 01:00:00 UTC 2012 年 5 月 16 日 (水) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | May 18, 2012 13:07:25 UTC 2012 年 5 月 18 日 (金) 22 時 7 分 25 秒 (日本時間) | |
45 | 11e6 | 4302 | 400 | Dmitry Domanov | May 21, 2012 10:53:10 UTC 2012 年 5 月 21 日 (月) 19 時 53 分 10 秒 (日本時間) |
300 | Serge Batalov | May 27, 2014 00:30:13 UTC 2014 年 5 月 27 日 (火) 9 時 30 分 13 秒 (日本時間) | |||
3602 | Thomas Kozlowski | December 7, 2024 15:21:41 UTC 2024 年 12 月 8 日 (日) 0 時 21 分 41 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | May 16, 2012 01:00:00 UTC 2012 年 5 月 16 日 (水) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2600 | 1000 | Dmitry Domanov | May 18, 2012 13:07:37 UTC 2012 年 5 月 18 日 (金) 22 時 7 分 37 秒 (日本時間) |
300 | Serge Batalov | January 9, 2014 04:39:08 UTC 2014 年 1 月 9 日 (木) 13 時 39 分 8 秒 (日本時間) | |||
1300 | Serge Batalov | May 26, 2014 18:01:35 UTC 2014 年 5 月 27 日 (火) 3 時 1 分 35 秒 (日本時間) | |||
45 | 11e6 | 4001 | Thomas Kozlowski | December 7, 2024 16:40:34 UTC 2024 年 12 月 8 日 (日) 1 時 40 分 34 秒 (日本時間) |
name 名前 | Erik Branger |
---|---|
date 日付 | October 7, 2012 16:49:19 UTC 2012 年 10 月 8 日 (月) 1 時 49 分 19 秒 (日本時間) |
composite number 合成数 | 418880453691726899892199588369884611873994945138835542745096960900621558592332276397082437754357768051432896665691081592874195689696950737<138> |
prime factors 素因数 | 7370391906149901523797049700481450225060417173441<49> 56832860318080291716956424475808405464261234722441043620899972870606002492417197854000657<89> |
factorization results 素因数分解の結果 | Number: 15553_235 N = 418880453691726899892199588369884611873994945138835542745096960900621558592332276397082437754357768051432896665691081592874195689696950737 (138 digits) Divisors found: r1=7370391906149901523797049700481450225060417173441 (pp49) r2=56832860318080291716956424475808405464261234722441043620899972870606002492417197854000657 (pp89) Version: Msieve v. 1.49 (SVN unknown) Total time: 279.00 hours. Factorization parameters were as follows: # Murphy_E = 3.131e-11, selected by Erik Branger n: 418880453691726899892199588369884611873994945138835542745096960900621558592332276397082437754357768051432896665691081592874195689696950737 Y0: -488564130167074544984051932 Y1: 1483536287036413 c0: 5696646281874369033452363284224525 c1: -7656967061005962761739553590 c2: -28527592661101883814963 c3: -18650829654552160 c4: 39033930680 c5: 15048 skew: 1095757.93 type: gnfs # selected mechanically rlim: 16000000 alim: 16000000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.6 alambda: 2.6 Factor base limits: 16000000/16000000 Large primes per side: 3 Large prime bits: 28/28 Sieved algebraic special-q in [8000000, 19500000) Relations: 23000490 Relations in full relation-set: 3602346 relations Pruned matrix : 2239530 x 2239758 Polynomial selection time: 0.00 hours. Total sieving time: 273.27 hours. Total relation processing time: 0.11 hours. Matrix solve time: 4.94 hours. time per square root: 0.67 hours. Prototype def-par.txt line would be: gnfs,137,5,65,2000,1e-05,0.28,250,20,50000,3600,16000000,16000000,28,28,55,55,2.6,2.6,100000 total time: 279.00 hours. --------- CPU info (if available) ---------- |
software ソフトウェア | GGNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | May 16, 2012 01:00:00 UTC 2012 年 5 月 16 日 (水) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | May 18, 2012 13:07:47 UTC 2012 年 5 月 18 日 (金) 22 時 7 分 47 秒 (日本時間) | |
45 | 11e6 | 400 / 4254 | Dmitry Domanov | May 18, 2012 21:41:52 UTC 2012 年 5 月 19 日 (土) 6 時 41 分 52 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | May 16, 2012 16:46:43 UTC 2012 年 5 月 17 日 (木) 1 時 46 分 43 秒 (日本時間) |
composite number 合成数 | 16990989197222966652350802632537415324327656093162230555189043901716573499186311788808943826812610833454525777138963799990814032192206410878002756719241170945479989827542283842313654651095474316968510720488542523<212> |
prime factors 素因数 | 314029070066251460669334830544347<33> |
composite cofactor 合成数の残り | 54106421401172627753642546315559784144195528323604030174821373014831112664191668371847535857237801465349945343391717828567047321301738224176278685273674088475471079623011422642209<179> |
factorization results 素因数分解の結果 | Using B1=2000000, B2=5705781910, polynomial Dickson(6), sigma=2293139550 Step 1 took 11173ms Step 2 took 7248ms ********** Factor found in step 2: 314029070066251460669334830544347 Found probable prime factor of 33 digits: 314029070066251460669334830544347 Composite cofactor 54106421401172627753642546315559784144195528323604030174821373014831112664191668371847535857237801465349945343391717828567047321301738224176278685273674088475471079623011422642209 has 179 digits |
name 名前 | Thomas Kozlowski |
---|---|
date 日付 | December 7, 2024 17:38:54 UTC 2024 年 12 月 8 日 (日) 2 時 38 分 54 秒 (日本時間) |
composite number 合成数 | 54106421401172627753642546315559784144195528323604030174821373014831112664191668371847535857237801465349945343391717828567047321301738224176278685273674088475471079623011422642209<179> |
prime factors 素因数 | 26964744289888929654358231332530192968673<41> |
composite cofactor 合成数の残り | 2006561635426341261552562738896707790603228323019759860499195435519260498752171571022751002178100735111798258202687264035257994173952212033<139> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.6 [configured with GMP 6.3.0, --enable-asm-redc] [ECM] Input number is 54106421401172627753642546315559784144195528323604030174821373014831112664191668371847535857237801465349945343391717828567047321301738224176278685273674088475471079623011422642209 (179 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:2150714304 Step 1 took 30919ms Step 2 took 12576ms Run 2 out of 0: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:3873115346 Step 1 took 29582ms Step 2 took 12029ms Run 3 out of 0: ... Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:535263656 Step 1 took 27993ms Step 2 took 11963ms Run 27 out of 0: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:2552116233 Step 1 took 29557ms Step 2 took 12081ms ** Factor found in step 2: 26964744289888929654358231332530192968673 Found prime factor of 41 digits: 26964744289888929654358231332530192968673 Composite cofactor 2006561635426341261552562738896707790603228323019759860499195435519260498752171571022751002178100735111798258202687264035257994173952212033 has 139 digits |
execution environment 実行環境 | 2x Xeon E5-2698v4, 128GB DDR4, Ubuntu Server 24.04 |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 15, 2024 18:05:27 UTC 2024 年 12 月 16 日 (月) 3 時 5 分 27 秒 (日本時間) |
composite number 合成数 | 2006561635426341261552562738896707790603228323019759860499195435519260498752171571022751002178100735111798258202687264035257994173952212033<139> |
prime factors 素因数 | 13011969925707126764400616628982274754245400828060816818109417<62> 154208905099148238113380076414788023334762277682514815818732577744161028701849<78> |
factorization results 素因数分解の結果 | CADO-NFS STA:Sun Dec 15 21:15:22 AEDT 2024 (2006561635426341261552562738896707790603228323019759860499195435519260498752171571022751002178100735111798258202687264035257994173952212033 - C139) ./cado-nfs.py -t 16 --no-colors 2006561635426341261552562738896707790603228323019759860499195435519260498752171571022751002178100735111798258202687264035257994173952212033 2>&1 | tee -a log-28 Info:root: Using default parameter file ./parameters/factor/params.c140 Info:root: No database exists yet Info:root: Created temporary directory /tmp/cado.fuh5ogua Info:Database: Opened connection to database /tmp/cado.fuh5ogua/c140.db Info:root: Set tasks.threads=16 based on --server-threads 16 Info:root: tasks.threads = 16 [via tasks.threads] Info:root: tasks.polyselect.threads = 2 [via tasks.polyselect.threads] Info:root: tasks.sieve.las.threads = 2 [via tasks.sieve.las.threads] Info:root: tasks.linalg.bwc.threads = 16 [via tasks.threads] Info:root: tasks.sqrt.threads = 8 [via tasks.sqrt.threads] Info:root: slaves.scriptpath is /home/bob/Math/cado-nfs/build/TrigKey-2 Info:root: Command line parameters: ./cado-nfs.py -t 16 --no-colors 2006561635426341261552562738896707790603228323019759860499195435519260498752171571022751002178100735111798258202687264035257994173952212033 Info:root: If this computation gets interrupted, it can be resumed with ./cado-nfs.py /tmp/cado.fuh5ogua/c140.parameters_snapshot.0 Info:Server Launcher: Adding TrigKey-2 to whitelist to allow clients on localhost to connect Info:HTTP server: Using non-threaded HTTPS server Info:HTTP server: Using whitelist: localhost,TrigKey-2 Info:Lattice Sieving: param rels_wanted is 71000000 Info:Complete Factorization / Discrete logarithm: Factoring 2006561635426341261552562738896707790603228323019759860499195435519260498752171571022751002178100735111798258202687264035257994173952212033 Info:HTTP server: serving at https://TrigKey-2:43157 (0.0.0.0) Info:HTTP server: For debugging purposes, the URL above can be accessed if the server.only_registered=False parameter is added Info:HTTP server: You can start additional cado-nfs-client.py scripts with parameters: --server=https://TrigKey-2:43157 --certsha1=c6e4cd01c6436b6d2344d4ae503ad04b498ddeca Info:HTTP server: If you want to start additional clients, remember to add their hosts to server.whitelist === Info:Polynomial Selection (root optimized): Finished, best polynomial has Murphy_E = 1.392e-06 Info:Polynomial Selection (root optimized): Best polynomial is: n: 2006561635426341261552562738896707790603228323019759860499195435519260498752171571022751002178100735111798258202687264035257994173952212033 skew: 143169.079 c0: -1599776691104275097669981686380 c1: 308620504752137494859288294 c2: -4520448226278378845330 c3: -29757777679012767 c4: 77952038818 c5: 28560 Y0: -67395543868133806390314187 Y1: 3894354359922841078693 # MurphyE (Bf=1.074e+09,Bg=1.074e+09,area=8.053e+13) = 1.392e-06 # f(x) = 28560*x^5+77952038818*x^4-29757777679012767*x^3-4520448226278378845330*x^2+308620504752137494859288294*x-1599776691104275097669981686380 # g(x) = 3894354359922841078693*x-67395543868133806390314187 === Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 28984.95, WCT time 2081.64, iteration CPU time 0.03, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (60000 iterations) Info:Linear Algebra: Lingen CPU time 94.11, WCT time 36.2 Info:Linear Algebra: Mksol: CPU time 14794.92, WCT time 1077.67, iteration CPU time 0.03, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (32000 iterations) Info:Quadratic Characters: Starting Info:Complete Factorization / Discrete logarithm: Quadratic Characters Info:Quadratic Characters: Total cpu/real time for characters: 41.88/9.07738 Info:Square Root: Starting Info:Square Root: Creating file of (a,b) values Info:Square Root: finished Info:Square Root: Factors: 154208905099148238113380076414788023334762277682514815818732577744161028701849 13011969925707126764400616628982274754245400828060816818109417 Info:Complete Factorization / Discrete logarithm: Square Root Info:Square Root: Total cpu/real time for sqrt: 2063.79/158.086 Info:HTTP server: Got notification to stop serving Workunits Info:Filtering - Singleton removal: Total cpu/real time for purge: 325.62/153.436 Info:Polynomial Selection (root optimized): Aggregate statistics: Info:Polynomial Selection (root optimized): Total time: 1395.36 Info:Polynomial Selection (root optimized): Rootsieve time: 1413.76 Info:Linear Algebra: Total cpu/real time for bwc: 47353.1/3458.04 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 28984.95, WCT time 2081.64, iteration CPU time 0.03, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (60000 iterations) Info:Linear Algebra: Lingen CPU time 94.11, WCT time 36.2 Info:Linear Algebra: Mksol: CPU time 14794.92, WCT time 1077.67, iteration CPU time 0.03, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (32000 iterations) Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 73255446 Info:Lattice Sieving: Average J: 3790.91 for 608481 special-q, max bucket fill -bkmult 1.0,1s:1.203570 Info:Lattice Sieving: Total time: 152022s Info:Quadratic Characters: Total cpu/real time for characters: 41.88/9.07738 Info:Square Root: Total cpu/real time for sqrt: 2063.79/158.086 Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 273.79/175.435 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 175.2s Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 1055.78/582.17 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 490.4s Info:Filtering - Merging: Total cpu/real time for merge: 187.87/17.3974 Info:Filtering - Merging: Total cpu/real time for replay: 35.42/31.8865 Info:Polynomial Selection (size optimized): Aggregate statistics: Info:Polynomial Selection (size optimized): potential collisions: 93020.2 Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 88182/42.510/51.516/62.540/2.325 Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 74750/40.210/44.838/55.670/1.324 Info:Polynomial Selection (size optimized): Total time: 16235.5 Info:Generate Factor Base: Total cpu/real time for makefb: 1.38/0.52213 Info:Generate Free Relations: Total cpu/real time for freerel: 376.35/29.8886 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire Complete Factorization 351548/25002.8 [06:56:43] Info:root: Cleaning up computation data in /tmp/cado.fuh5ogua 154208905099148238113380076414788023334762277682514815818732577744161028701849 13011969925707126764400616628982274754245400828060816818109417 END:Mon Dec 16 04:12:09 AEDT 2024 (2006561635426341261552562738896707790603228323019759860499195435519260498752171571022751002178100735111798258202687264035257994173952212033 - C139) |
software ソフトウェア | CADO-NFS |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | May 16, 2012 01:00:00 UTC 2012 年 5 月 16 日 (水) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | May 18, 2012 13:07:55 UTC 2012 年 5 月 18 日 (金) 22 時 7 分 55 秒 (日本時間) | |
45 | 11e6 | 700 / 4254 | 400 | Dmitry Domanov | May 19, 2012 22:25:15 UTC 2012 年 5 月 20 日 (日) 7 時 25 分 15 秒 (日本時間) |
300 | Serge Batalov | May 27, 2014 00:30:13 UTC 2014 年 5 月 27 日 (火) 9 時 30 分 13 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | May 16, 2012 01:00:00 UTC 2012 年 5 月 16 日 (水) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1300 | 1000 | Dmitry Domanov | May 18, 2012 13:08:05 UTC 2012 年 5 月 18 日 (金) 22 時 8 分 5 秒 (日本時間) |
300 | Serge Batalov | January 9, 2014 04:39:09 UTC 2014 年 1 月 9 日 (木) 13 時 39 分 9 秒 (日本時間) | |||
45 | 11e6 | 3703 | 300 | Serge Batalov | May 27, 2014 00:30:14 UTC 2014 年 5 月 27 日 (火) 9 時 30 分 14 秒 (日本時間) |
3403 | Thomas Kozlowski | December 7, 2024 18:06:40 UTC 2024 年 12 月 8 日 (日) 3 時 6 分 40 秒 (日本時間) | |||
50 | 43e6 | 144 / 6673 | Cyp | February 7, 2014 11:20:36 UTC 2014 年 2 月 7 日 (金) 20 時 20 分 36 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | May 16, 2012 06:56:27 UTC 2012 年 5 月 16 日 (水) 15 時 56 分 27 秒 (日本時間) |
composite number 合成数 | 5565261492312883829445165964692942267321921130631827007569662342492982528522649931199277127708084975792041527513505367686172332367651191970910507728433808687543174855107639521838724061721<187> |
prime factors 素因数 | 656516856624185708201245430173643<33> |
composite cofactor 合成数の残り | 8476951408269237052593037226879842137951834573419198427846290201935463169516274178079953251052530713799379943470319990155550448094709597550273188512053547<154> |
factorization results 素因数分解の結果 | Using B1=2000000, B2=5705781910, polynomial Dickson(6), sigma=1496248512 Step 1 took 9601ms ********** Factor found in step 1: 656516856624185708201245430173643 Found probable prime factor of 33 digits: 656516856624185708201245430173643 Composite cofactor 8476951408269237052593037226879842137951834573419198427846290201935463169516274178079953251052530713799379943470319990155550448094709597550273188512053547 has 154 digits |
name 名前 | NFS@Home + Rich Dickerson |
---|---|
date 日付 | July 13, 2022 18:57:00 UTC 2022 年 7 月 14 日 (木) 3 時 57 分 0 秒 (日本時間) |
composite number 合成数 | 8476951408269237052593037226879842137951834573419198427846290201935463169516274178079953251052530713799379943470319990155550448094709597550273188512053547<154> |
prime factors 素因数 | 9461374145182077330591891178948860417948790193576752746397816788643<67> 895953513537552237716067392585906423054100975812428340873288482583685768839092355130329<87> |
factorization results 素因数分解の結果 | p67 factor: 9461374145182077330591891178948860417948790193576752746397816788643 p87 factor: 895953513537552237716067392585906423054100975812428340873288482583685768839092355130329 Complete log at: https://pastebin.com/C48eZdk1 |
software ソフトウェア | GGNFS + Msieve |
execution environment 実行環境 | LA phase used a GTX 1660. |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | May 16, 2012 01:00:00 UTC 2012 年 5 月 16 日 (水) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | May 18, 2012 13:08:14 UTC 2012 年 5 月 18 日 (金) 22 時 8 分 14 秒 (日本時間) | |
45 | 11e6 | 4308 | 400 | Dmitry Domanov | May 20, 2012 21:54:25 UTC 2012 年 5 月 21 日 (月) 6 時 54 分 25 秒 (日本時間) |
850 | Serge Batalov | November 8, 2013 17:11:53 UTC 2013 年 11 月 9 日 (土) 2 時 11 分 53 秒 (日本時間) | |||
400 | Serge Batalov | January 6, 2014 02:25:47 UTC 2014 年 1 月 6 日 (月) 11 時 25 分 47 秒 (日本時間) | |||
900 | Serge Batalov | May 24, 2014 19:02:43 UTC 2014 年 5 月 25 日 (日) 4 時 2 分 43 秒 (日本時間) | |||
300 | Serge Batalov | May 27, 2014 00:30:14 UTC 2014 年 5 月 27 日 (火) 9 時 30 分 14 秒 (日本時間) | |||
400 | Serge Batalov | June 23, 2015 21:29:44 UTC 2015 年 6 月 24 日 (水) 6 時 29 分 44 秒 (日本時間) | |||
1058 | Ignacio Santos | January 6, 2016 21:24:44 UTC 2016 年 1 月 7 日 (木) 6 時 24 分 44 秒 (日本時間) | |||
50 | 43e6 | 5000 | yoyo@Home | March 7, 2021 13:41:29 UTC 2021 年 3 月 7 日 (日) 22 時 41 分 29 秒 (日本時間) | |
55 | 11e7 | 5000 / 15708 | yoyo@Home | June 23, 2022 21:06:31 UTC 2022 年 6 月 24 日 (金) 6 時 6 分 31 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | May 16, 2012 01:00:00 UTC 2012 年 5 月 16 日 (水) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | May 18, 2012 13:08:25 UTC 2012 年 5 月 18 日 (金) 22 時 8 分 25 秒 (日本時間) | |
45 | 11e6 | 4302 | 400 | Dmitry Domanov | May 19, 2012 22:26:04 UTC 2012 年 5 月 20 日 (日) 7 時 26 分 4 秒 (日本時間) |
300 | Serge Batalov | May 27, 2014 00:30:15 UTC 2014 年 5 月 27 日 (火) 9 時 30 分 15 秒 (日本時間) | |||
3602 | Thomas Kozlowski | December 7, 2024 19:09:05 UTC 2024 年 12 月 8 日 (日) 4 時 9 分 5 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | May 16, 2012 01:00:00 UTC 2012 年 5 月 16 日 (水) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2600 | 1000 | Dmitry Domanov | May 18, 2012 13:08:34 UTC 2012 年 5 月 18 日 (金) 22 時 8 分 34 秒 (日本時間) |
300 | Serge Batalov | January 9, 2014 04:39:09 UTC 2014 年 1 月 9 日 (木) 13 時 39 分 9 秒 (日本時間) | |||
1300 | Serge Batalov | May 26, 2014 18:01:36 UTC 2014 年 5 月 27 日 (火) 3 時 1 分 36 秒 (日本時間) | |||
45 | 11e6 | 4004 | Thomas Kozlowski | December 7, 2024 20:18:44 UTC 2024 年 12 月 8 日 (日) 5 時 18 分 44 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | May 16, 2012 01:00:00 UTC 2012 年 5 月 16 日 (水) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | May 17, 2012 19:58:23 UTC 2012 年 5 月 18 日 (金) 4 時 58 分 23 秒 (日本時間) | |
45 | 11e6 | 600 | Dmitry Domanov | May 17, 2012 19:58:23 UTC 2012 年 5 月 18 日 (金) 4 時 58 分 23 秒 (日本時間) | |
50 | 43e6 | 1000 / 7332 | Dmitry Domanov | May 18, 2012 15:31:00 UTC 2012 年 5 月 19 日 (土) 0 時 31 分 0 秒 (日本時間) | |
55 | 11e7 | 20 / 17367 | Dmitry Domanov | May 21, 2012 07:44:36 UTC 2012 年 5 月 21 日 (月) 16 時 44 分 36 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | May 16, 2012 01:00:00 UTC 2012 年 5 月 16 日 (水) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | May 17, 2012 19:56:58 UTC 2012 年 5 月 18 日 (金) 4 時 56 分 58 秒 (日本時間) | |
45 | 11e6 | 800 | Dmitry Domanov | May 17, 2012 19:56:58 UTC 2012 年 5 月 18 日 (金) 4 時 56 分 58 秒 (日本時間) | |
50 | 43e6 | 1000 | Dmitry Domanov | May 18, 2012 15:29:59 UTC 2012 年 5 月 19 日 (土) 0 時 29 分 59 秒 (日本時間) | |
55 | 11e7 | 2640 / 17355 | yoyo@home | January 14, 2013 00:30:05 UTC 2013 年 1 月 14 日 (月) 9 時 30 分 5 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | May 16, 2012 10:58:15 UTC 2012 年 5 月 16 日 (水) 19 時 58 分 15 秒 (日本時間) |
composite number 合成数 | 73202337211091652971071846667116694755582686861089792305099679919902254961425500074998853848495328493195023739327715045572413692130385741321882055265961804467617033716124180352711068469298749126925075959403837682909<215> |
prime factors 素因数 | 21342415342204769649187818544849<32> |
composite cofactor 合成数の残り | 3429899382865703095812843230299297489820982742113125255608990123967353992451605003072563177413136149437710353977412932560099707001176542678269492785105166037669631587949259232810020941<184> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=296399998 Step 1 took 42902ms Step 2 took 14052ms ********** Factor found in step 2: 21342415342204769649187818544849 Found probable prime factor of 32 digits: 21342415342204769649187818544849 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | May 16, 2012 01:00:00 UTC 2012 年 5 月 16 日 (水) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2600 | 1000 | Dmitry Domanov | May 18, 2012 13:08:54 UTC 2012 年 5 月 18 日 (金) 22 時 8 分 54 秒 (日本時間) |
300 | Serge Batalov | January 9, 2014 04:39:10 UTC 2014 年 1 月 9 日 (木) 13 時 39 分 10 秒 (日本時間) | |||
1300 | Serge Batalov | May 26, 2014 18:01:36 UTC 2014 年 5 月 27 日 (火) 3 時 1 分 36 秒 (日本時間) | |||
45 | 11e6 | 4001 | Thomas Kozlowski | December 7, 2024 21:28:16 UTC 2024 年 12 月 8 日 (日) 6 時 28 分 16 秒 (日本時間) |
composite cofactor 合成数の残り | 20650871665621735859297935771744889358335533203419330484564434018155381974508423158073841375796226915391039277483033613379200423211104119421656340464931<152> |
---|
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | May 16, 2012 01:00:00 UTC 2012 年 5 月 16 日 (水) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | May 18, 2012 13:09:05 UTC 2012 年 5 月 18 日 (金) 22 時 9 分 5 秒 (日本時間) | |
45 | 11e6 | 4258 | 400 | Dmitry Domanov | May 20, 2012 21:55:24 UTC 2012 年 5 月 21 日 (月) 6 時 55 分 24 秒 (日本時間) |
850 | Serge Batalov | November 8, 2013 17:11:22 UTC 2013 年 11 月 9 日 (土) 2 時 11 分 22 秒 (日本時間) | |||
400 | Serge Batalov | January 6, 2014 02:25:20 UTC 2014 年 1 月 6 日 (月) 11 時 25 分 20 秒 (日本時間) | |||
900 | Serge Batalov | May 24, 2014 19:02:23 UTC 2014 年 5 月 25 日 (日) 4 時 2 分 23 秒 (日本時間) | |||
300 | Serge Batalov | May 27, 2014 00:30:15 UTC 2014 年 5 月 27 日 (火) 9 時 30 分 15 秒 (日本時間) | |||
1408 | Ignacio Santos | January 17, 2016 15:16:32 UTC 2016 年 1 月 18 日 (月) 0 時 16 分 32 秒 (日本時間) | |||
50 | 43e6 | 6618 | Ignacio Santos | January 27, 2024 13:24:06 UTC 2024 年 1 月 27 日 (土) 22 時 24 分 6 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | May 16, 2012 01:00:00 UTC 2012 年 5 月 16 日 (水) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2600 | 1000 | Dmitry Domanov | May 18, 2012 13:09:25 UTC 2012 年 5 月 18 日 (金) 22 時 9 分 25 秒 (日本時間) |
300 | Serge Batalov | January 9, 2014 04:39:11 UTC 2014 年 1 月 9 日 (木) 13 時 39 分 11 秒 (日本時間) | |||
1300 | Serge Batalov | May 26, 2014 18:01:36 UTC 2014 年 5 月 27 日 (火) 3 時 1 分 36 秒 (日本時間) | |||
45 | 11e6 | 4001 | Thomas Kozlowski | December 7, 2024 23:10:36 UTC 2024 年 12 月 8 日 (日) 8 時 10 分 36 秒 (日本時間) |
name 名前 | Thomas Kozlowski |
---|---|
date 日付 | December 8, 2024 01:00:09 UTC 2024 年 12 月 8 日 (日) 10 時 0 分 9 秒 (日本時間) |
composite number 合成数 | 2565385885243686541561836822003723144762862522298471755767207473496326790113703881945243887929051923482878469689090113879978283624671225022793426793919066995983980679135269249287207868255798312530283063214553751614213476361869019<229> |
prime factors 素因数 | 4824382083427105219705982391191400619687870547<46> |
composite cofactor 合成数の残り | 531754293271338207833357987129809304777388079011450153759032898632862751384583158778738536764577856237495326132787566107944030500896640154115402930424072389447671891841899831512882777<183> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.6 [configured with GMP 6.3.0, --enable-asm-redc] [ECM] Input number is 2565385885243686541561836822003723144762862522298471755767207473496326790113703881945243887929051923482878469689090113879978283624671225022793426793919066995983980679135269249287207868255798312530283063214553751614213476361869019 (229 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:1880009982 Step 1 took 39002ms Step 2 took 15002ms Run 2 out of 0: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:2427143023 Step 1 took 41453ms Step 2 took 15835ms Run 3 out of 0: ... Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:3433833562 Step 1 took 38345ms Step 2 took 14677ms Run 23 out of 0: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:3110927484 Step 1 took 39819ms Step 2 took 14847ms ** Factor found in step 2: 4824382083427105219705982391191400619687870547 Found prime factor of 46 digits: 4824382083427105219705982391191400619687870547 Composite cofactor 531754293271338207833357987129809304777388079011450153759032898632862751384583158778738536764577856237495326132787566107944030500896640154115402930424072389447671891841899831512882777 has 183 digits |
execution environment 実行環境 | 2x Xeon E5-2698v4, 128GB DDR4, Ubuntu Server 24.04 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | May 16, 2012 01:00:00 UTC 2012 年 5 月 16 日 (水) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2600 | 1000 | Dmitry Domanov | May 18, 2012 13:09:33 UTC 2012 年 5 月 18 日 (金) 22 時 9 分 33 秒 (日本時間) |
300 | Serge Batalov | January 9, 2014 04:39:11 UTC 2014 年 1 月 9 日 (木) 13 時 39 分 11 秒 (日本時間) | |||
1300 | Serge Batalov | May 26, 2014 18:01:37 UTC 2014 年 5 月 27 日 (火) 3 時 1 分 37 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | May 16, 2012 01:00:00 UTC 2012 年 5 月 16 日 (水) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | May 16, 2012 22:05:16 UTC 2012 年 5 月 17 日 (木) 7 時 5 分 16 秒 (日本時間) | |
45 | 11e6 | 400 | Dmitry Domanov | May 16, 2012 22:05:16 UTC 2012 年 5 月 17 日 (木) 7 時 5 分 16 秒 (日本時間) | |
50 | 43e6 | 1120 / 7425 | 960 | Dmitry Domanov | May 17, 2012 19:55:47 UTC 2012 年 5 月 18 日 (金) 4 時 55 分 47 秒 (日本時間) |
160 | Dmitry Domanov | May 18, 2012 13:10:39 UTC 2012 年 5 月 18 日 (金) 22 時 10 分 39 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | December 12, 2021 20:39:51 UTC 2021 年 12 月 13 日 (月) 5 時 39 分 51 秒 (日本時間) |
composite number 合成数 | 3332207362368182529516212777980700165419709615218256449775650283986890789083043851111941181823126714328054342113968899342236563434283602985864552891<148> |
prime factors 素因数 | 70490083947972354753664238336266496279863123069123<50> 47272001616959818911942405108760611464851338189770033157469808630339834849255963867021105631048617<98> |
factorization results 素因数分解の結果 | Using B1=43000000, B2=240490660426, polynomial Dickson(12), sigma=1:3332015905 Step 1 took 83656ms Step 2 took 32063ms ********** Factor found in step 2: 70490083947972354753664238336266496279863123069123 Found prime factor of 50 digits: 70490083947972354753664238336266496279863123069123 Prime cofactor 47272001616959818911942405108760611464851338189770033157469808630339834849255963867021105631048617 has 98 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 1544 | 294 | KTakahashi | November 20, 2015 20:42:34 UTC 2015 年 11 月 21 日 (土) 5 時 42 分 34 秒 (日本時間) |
1250 | Serge Batalov | November 21, 2015 02:04:11 UTC 2015 年 11 月 21 日 (土) 11 時 4 分 11 秒 (日本時間) | |||
45 | 11e6 | 4144 | 600 | Serge Batalov | November 21, 2015 02:04:11 UTC 2015 年 11 月 21 日 (土) 11 時 4 分 11 秒 (日本時間) |
600 | Serge Batalov | November 21, 2015 07:47:13 UTC 2015 年 11 月 21 日 (土) 16 時 47 分 13 秒 (日本時間) | |||
400 | Serge Batalov | November 21, 2015 07:47:22 UTC 2015 年 11 月 21 日 (土) 16 時 47 分 22 秒 (日本時間) | |||
2544 | Ignacio Santos | March 6, 2016 14:42:04 UTC 2016 年 3 月 6 日 (日) 23 時 42 分 4 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | March 6, 2016 18:47:51 UTC 2016 年 3 月 7 日 (月) 3 時 47 分 51 秒 (日本時間) |
composite number 合成数 | 899502978674526170664821781049110450536520828220393200242330259900576402505783753470340308729584733431525188856544225872799179998050455169924017160881<150> |
prime factors 素因数 | 113479354632432265273363730549333890450363831891<48> 7926578200837329081401061430754605410654363759418680778405331451314714018696547481748094620565287606891<103> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:2837901922 Step 1 took 36875ms Step 2 took 16875ms ********** Factor found in step 2: 113479354632432265273363730549333890450363831891 Found prime factor of 48 digits: 113479354632432265273363730549333890450363831891 Prime cofactor 7926578200837329081401061430754605410654363759418680778405331451314714018696547481748094620565287606891 has 103 digits |
software ソフトウェア | GMP-ECM 7.0 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 1544 | 294 | KTakahashi | November 20, 2015 20:43:04 UTC 2015 年 11 月 21 日 (土) 5 時 43 分 4 秒 (日本時間) |
1250 | Serge Batalov | November 21, 2015 02:04:40 UTC 2015 年 11 月 21 日 (土) 11 時 4 分 40 秒 (日本時間) | |||
45 | 11e6 | 1600 / 4138 | 400 | Serge Batalov | November 21, 2015 02:04:40 UTC 2015 年 11 月 21 日 (土) 11 時 4 分 40 秒 (日本時間) |
1200 | Serge Batalov | November 21, 2015 07:46:55 UTC 2015 年 11 月 21 日 (土) 16 時 46 分 55 秒 (日本時間) |
name 名前 | Thomas Kozlowski |
---|---|
date 日付 | December 8, 2024 01:01:04 UTC 2024 年 12 月 8 日 (日) 10 時 1 分 4 秒 (日本時間) |
composite number 合成数 | 11558083114656410981431773449087980139509495626042112556456992947002928222566085830001262748581211531342122087156848479513485936244448682128197066162400364075902125879690192463843743302451299000577718707916177434506439<218> |
prime factors 素因数 | 4678619583875096358498552764299631634196830409<46> |
composite cofactor 合成数の残り | 2470404551481690524615558500994332089475626152139876009226894547402769965808179698248340929546204584728922898590654387086379739217736447393594916886146130833169068216678671<172> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.6 [configured with GMP 6.3.0, --enable-asm-redc] [ECM] Input number is 11558083114656410981431773449087980139509495626042112556456992947002928222566085830001262748581211531342122087156848479513485936244448682128197066162400364075902125879690192463843743302451299000577718707916177434506439 (218 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:384250787 Step 1 took 38094ms Step 2 took 14427ms Run 2 out of 0: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:1360719822 Step 1 took 37468ms Step 2 took 14757ms Run 3 out of 0: ... Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:256819921 Step 1 took 37878ms Step 2 took 14370ms Run 44 out of 0: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:90532957 Step 1 took 37383ms Step 2 took 14859ms ** Factor found in step 2: 4678619583875096358498552764299631634196830409 Found prime factor of 46 digits: 4678619583875096358498552764299631634196830409 Composite cofactor 2470404551481690524615558500994332089475626152139876009226894547402769965808179698248340929546204584728922898590654387086379739217736447393594916886146130833169068216678671 has 172 digits |
execution environment 実行環境 | 2x Xeon E5-2698v4, 128GB DDR4, Ubuntu Server 24.04 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 600 | Dmitry Domanov | March 14, 2016 06:37:33 UTC 2016 年 3 月 14 日 (月) 15 時 37 分 33 秒 (日本時間) | |
45 | 11e6 | 4584 | 1000 | Lionel Debroux | July 11, 2020 17:50:37 UTC 2020 年 7 月 12 日 (日) 2 時 50 分 37 秒 (日本時間) |
3584 | Dmitry Domanov | December 15, 2024 21:16:56 UTC 2024 年 12 月 16 日 (月) 6 時 16 分 56 秒 (日本時間) | |||
50 | 43e6 | 1792 / 6502 | Dmitry Domanov | December 16, 2024 00:59:12 UTC 2024 年 12 月 16 日 (月) 9 時 59 分 12 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | November 21, 2015 16:42:58 UTC 2015 年 11 月 22 日 (日) 1 時 42 分 58 秒 (日本時間) |
composite number 合成数 | 1555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555553<256> |
prime factors 素因数 | 2161147240624572510139798179195888458017<40> 719782311133043998768434243652232434860504601997099495034380890576149652239800334676298193989836358776385003091626366894363219174356410576998591908110517686067355871756283458756823250825102408247115597164385143990209<216> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3715794685 Step 1 took 49577ms Step 2 took 14989ms ********** Factor found in step 2: 2161147240624572510139798179195888458017 Found probable prime factor of 40 digits: 2161147240624572510139798179195888458017 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 904 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 600 / 2089 | Dmitry Domanov | November 21, 2015 09:25:24 UTC 2015 年 11 月 21 日 (土) 18 時 25 分 24 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 904 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 600 | Dmitry Domanov | November 21, 2015 09:22:59 UTC 2015 年 11 月 21 日 (土) 18 時 22 分 59 秒 (日本時間) | |
45 | 11e6 | 4400 | 800 | Dmitry Domanov | February 5, 2016 14:32:12 UTC 2016 年 2 月 5 日 (金) 23 時 32 分 12 秒 (日本時間) |
3600 | Thomas Kozlowski | December 8, 2024 01:53:05 UTC 2024 年 12 月 8 日 (日) 10 時 53 分 5 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 300 | Dmitry Domanov | November 27, 2015 20:51:03 UTC 2015 年 11 月 28 日 (土) 5 時 51 分 3 秒 (日本時間) | |
45 | 11e6 | 4601 | 600 | Dmitry Domanov | January 23, 2017 06:46:18 UTC 2017 年 1 月 23 日 (月) 15 時 46 分 18 秒 (日本時間) |
4001 | Thomas Kozlowski | December 8, 2024 03:12:16 UTC 2024 年 12 月 8 日 (日) 12 時 12 分 16 秒 (日本時間) |
name 名前 | Thomas Kozlowski |
---|---|
date 日付 | December 8, 2024 04:05:09 UTC 2024 年 12 月 8 日 (日) 13 時 5 分 9 秒 (日本時間) |
composite number 合成数 | 69112084348724265712845615819723433295974655711361947871687119018555867805469902883259072965435124803372068993547861625895136548704181551682669488035048597753410127363869759034748219990616092464127097217455314753799743328473313988847<233> |
prime factors 素因数 | 17864509186542648762471433620558002849556076411<47> 3868680836794915281495151219804221322525954230014085747937561886390065799085646900467599099162133824755658294029147901867723942450648279699711110733099329506487323276797679556261648693277<187> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.6 [configured with GMP 6.3.0, --enable-asm-redc] [ECM] Input number is 69112084348724265712845615819723433295974655711361947871687119018555867805469902883259072965435124803372068993547861625895136548704181551682669488035048597753410127363869759034748219990616092464127097217455314753799743328473313988847 (233 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:2396119088 Step 1 took 45163ms Step 2 took 15960ms Run 2 out of 0: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:3810960600 Step 1 took 44137ms Step 2 took 15919ms Run 3 out of 0: ... Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:2062126865 Step 1 took 45427ms Step 2 took 15884ms Run 48 out of 0: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:4189809414 Step 1 took 43499ms Step 2 took 15899ms ** Factor found in step 2: 17864509186542648762471433620558002849556076411 Found prime factor of 47 digits: 17864509186542648762471433620558002849556076411 Prime cofactor 3868680836794915281495151219804221322525954230014085747937561886390065799085646900467599099162133824755658294029147901867723942450648279699711110733099329506487323276797679556261648693277 has 187 digits |
execution environment 実行環境 | 2x Xeon E5-2698v4, 128GB DDR4, Ubuntu Server 24.04 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2336 | 600 | Dmitry Domanov | March 14, 2016 06:37:12 UTC 2016 年 3 月 14 日 (月) 15 時 37 分 12 秒 (日本時間) |
1736 | ebina | July 13, 2022 20:02:51 UTC 2022 年 7 月 14 日 (木) 5 時 2 分 51 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 904 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2200 | 600 | Dmitry Domanov | March 14, 2016 06:36:59 UTC 2016 年 3 月 14 日 (月) 15 時 36 分 59 秒 (日本時間) |
1600 | ebina | July 29, 2022 22:25:13 UTC 2022 年 7 月 30 日 (土) 7 時 25 分 13 秒 (日本時間) | |||
45 | 11e6 | 4000 | Thomas Kozlowski | December 8, 2024 05:31:38 UTC 2024 年 12 月 8 日 (日) 14 時 31 分 38 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2336 | 600 | Dmitry Domanov | March 14, 2016 06:36:44 UTC 2016 年 3 月 14 日 (月) 15 時 36 分 44 秒 (日本時間) |
1736 | ebina | November 27, 2022 13:15:53 UTC 2022 年 11 月 27 日 (日) 22 時 15 分 53 秒 (日本時間) | |||
45 | 11e6 | 4001 | Thomas Kozlowski | December 8, 2024 07:13:41 UTC 2024 年 12 月 8 日 (日) 16 時 13 分 41 秒 (日本時間) |
name 名前 | Thomas Kozlowski |
---|---|
date 日付 | December 8, 2024 07:36:29 UTC 2024 年 12 月 8 日 (日) 16 時 36 分 29 秒 (日本時間) |
composite number 合成数 | 1905758583738314452499108637216874851197789081696902014000811778692750294223798670083864581123030956752892821801673402778767129129535747086585256263093479091968054306370245998554270436694777944409090933226174817<211> |
prime factors 素因数 | 1295157459430713469528348723611893404090608665357<49> |
composite cofactor 合成数の残り | 1471449336033620761273693718460320285904721903256161288137950429318451785766179271233708708774999617410368559276984967020387265470437869952197906164974309812783781<163> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.6 [configured with GMP 6.3.0, --enable-asm-redc] [ECM] Input number is 1905758583738314452499108637216874851197789081696902014000811778692750294223798670083864581123030956752892821801673402778767129129535747086585256263093479091968054306370245998554270436694777944409090933226174817 (211 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:850371461 Step 1 took 34596ms Step 2 took 13718ms Run 2 out of 0: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:328869305 Step 1 took 32992ms Step 2 took 13692ms Run 3 out of 0: ... Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:2254636396 Step 1 took 33001ms Step 2 took 13802ms Run 9 out of 0: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:3307774141 Step 1 took 36255ms Step 2 took 13700ms ** Factor found in step 2: 1295157459430713469528348723611893404090608665357 Found prime factor of 49 digits: 1295157459430713469528348723611893404090608665357 Composite cofactor 1471449336033620761273693718460320285904721903256161288137950429318451785766179271233708708774999617410368559276984967020387265470437869952197906164974309812783781 has 163 digits |
execution environment 実行環境 | 2x Xeon E5-2698v4, 128GB DDR4, Ubuntu Server 24.04 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2336 | 600 | Dmitry Domanov | March 14, 2016 06:36:33 UTC 2016 年 3 月 14 日 (月) 15 時 36 分 33 秒 (日本時間) |
1736 | ebina | November 27, 2022 20:54:58 UTC 2022 年 11 月 28 日 (月) 5 時 54 分 58 秒 (日本時間) |
name 名前 | Thomas Kozlowski |
---|---|
date 日付 | December 8, 2024 08:16:40 UTC 2024 年 12 月 8 日 (日) 17 時 16 分 40 秒 (日本時間) |
composite number 合成数 | 29350104821802935010482180293501048218029350104821802935010482180293501048218029350104821802935010482180293501048218029350104821802935010482180293501048218029350104821802935010482180293501048218029350104821802935010482180293501048218029350104821802935010482180293501<266> |
prime factors 素因数 | 6760544512069614921624666519446093277996319<43> |
composite cofactor 合成数の残り | 4341381788020791609509686531021536082188431748050271514845886499394633603494509249870406106322730200897363016145454965697612219483214702822126773713136334165507234244027014172242255148803036227605673222046013731993116919779<223> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.6 [configured with GMP 6.3.0, --enable-asm-redc] [ECM] Input number is 29350104821802935010482180293501048218029350104821802935010482180293501048218029350104821802935010482180293501048218029350104821802935010482180293501048218029350104821802935010482180293501048218029350104821802935010482180293501048218029350104821802935010482180293501 (266 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:1972300196 Step 1 took 53570ms Step 2 took 17610ms Run 2 out of 0: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:2208272427 Step 1 took 48265ms Step 2 took 17584ms Run 3 out of 0: ... Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:3931455549 Step 1 took 48343ms Step 2 took 17510ms Run 45 out of 0: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:2864058276 Step 1 took 48228ms Step 2 took 17571ms ** Factor found in step 2: 6760544512069614921624666519446093277996319 Found prime factor of 43 digits: 6760544512069614921624666519446093277996319 Composite cofactor 4341381788020791609509686531021536082188431748050271514845886499394633603494509249870406106322730200897363016145454965697612219483214702822126773713136334165507234244027014172242255148803036227605673222046013731993116919779 has 223 digits |
execution environment 実行環境 | 2x Xeon E5-2698v4, 128GB DDR4, Ubuntu Server 24.04 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 904 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 600 | Dmitry Domanov | November 20, 2015 22:24:51 UTC 2015 年 11 月 21 日 (土) 7 時 24 分 51 秒 (日本時間) | |
45 | 11e6 | 800 / 4305 | Dmitry Domanov | January 23, 2016 15:52:03 UTC 2016 年 1 月 24 日 (日) 0 時 52 分 3 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2336 | 600 | Dmitry Domanov | March 14, 2016 06:36:14 UTC 2016 年 3 月 14 日 (月) 15 時 36 分 14 秒 (日本時間) |
1736 | ebina | November 28, 2022 01:33:01 UTC 2022 年 11 月 28 日 (月) 10 時 33 分 1 秒 (日本時間) | |||
45 | 11e6 | 4000 | Thomas Kozlowski | December 8, 2024 09:53:29 UTC 2024 年 12 月 8 日 (日) 18 時 53 分 29 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2336 | 600 | Dmitry Domanov | March 14, 2016 06:36:00 UTC 2016 年 3 月 14 日 (月) 15 時 36 分 0 秒 (日本時間) |
1736 | ebina | December 10, 2022 03:47:39 UTC 2022 年 12 月 10 日 (土) 12 時 47 分 39 秒 (日本時間) | |||
45 | 11e6 | 4001 | Thomas Kozlowski | December 8, 2024 11:48:14 UTC 2024 年 12 月 8 日 (日) 20 時 48 分 14 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 23, 2017 08:04:39 UTC 2017 年 1 月 23 日 (月) 17 時 4 分 39 秒 (日本時間) |
composite number 合成数 | 397978319133686428997006832957688449141507562270136853849158952830757451055739407234058758996965334847657712698039039286354344534181388250088104440767029896723597417492212216435446730971007<189> |
prime factors 素因数 | 62432091864824334067021445535499196276167<41> |
composite cofactor 合成数の残り | 6374579278800627537059751634653249378754908519361403219833207690009924288522792932457743760238407677806551750341206264187996438508308037559189264521<148> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=4274018705 Step 1 took 76079ms Step 2 took 24178ms ********** Factor found in step 2: 62432091864824334067021445535499196276167 Found probable prime factor of 41 digits: 62432091864824334067021445535499196276167 Composite cofactor 6374579278800627537059751634653249378754908519361403219833207690009924288522792932457743760238407677806551750341206264187996438508308037559189264521 has 148 digits |
name 名前 | Lionel Debroux |
---|---|
date 日付 | March 3, 2023 10:45:31 UTC 2023 年 3 月 3 日 (金) 19 時 45 分 31 秒 (日本時間) |
composite number 合成数 | 6374579278800627537059751634653249378754908519361403219833207690009924288522792932457743760238407677806551750341206264187996438508308037559189264521<148> |
prime factors 素因数 | 891653565582253848987378705910801199127712839055559337754753054325417<69> 7149165914721597245185384977088539416213290086502518657207308818467420509977313<79> |
factorization results 素因数分解の結果 | 891653565582253848987378705910801199127712839055559337754753054325417 7149165914721597245185384977088539416213290086502518657207308818467420509977313 |
software ソフトウェア | CADO-NFS |
execution environment 実行環境 | 4 x (2 x Xeon L5640 6C/6T), Debian sid amd64 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 300 | Dmitry Domanov | November 27, 2015 20:51:32 UTC 2015 年 11 月 28 日 (土) 5 時 51 分 32 秒 (日本時間) | |
45 | 11e6 | 4600 | 600 | Dmitry Domanov | January 23, 2017 06:46:41 UTC 2017 年 1 月 23 日 (月) 15 時 46 分 41 秒 (日本時間) |
4000 | Robert Balfour | April 12, 2020 11:26:31 UTC 2020 年 4 月 12 日 (日) 20 時 26 分 31 秒 (日本時間) | |||
50 | 43e6 | 6454 | Ignacio Santos | February 6, 2022 13:36:20 UTC 2022 年 2 月 6 日 (日) 22 時 36 分 20 秒 (日本時間) | |
55 | 11e7 | 280 / 15176 | Serge Batalov | May 12, 2019 02:09:42 UTC 2019 年 5 月 12 日 (日) 11 時 9 分 42 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2336 | 600 | Dmitry Domanov | March 14, 2016 06:35:40 UTC 2016 年 3 月 14 日 (月) 15 時 35 分 40 秒 (日本時間) |
1736 | ebina | December 10, 2022 15:06:03 UTC 2022 年 12 月 11 日 (日) 0 時 6 分 3 秒 (日本時間) | |||
45 | 11e6 | 4001 | Thomas Kozlowski | December 8, 2024 13:43:07 UTC 2024 年 12 月 8 日 (日) 22 時 43 分 7 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2336 | 600 | Dmitry Domanov | March 14, 2016 06:35:29 UTC 2016 年 3 月 14 日 (月) 15 時 35 分 29 秒 (日本時間) |
1736 | ebina | December 10, 2022 22:14:21 UTC 2022 年 12 月 11 日 (日) 7 時 14 分 21 秒 (日本時間) | |||
45 | 11e6 | 4001 | Thomas Kozlowski | December 8, 2024 15:25:13 UTC 2024 年 12 月 9 日 (月) 0 時 25 分 13 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2336 | 600 | Dmitry Domanov | March 14, 2016 06:35:17 UTC 2016 年 3 月 14 日 (月) 15 時 35 分 17 秒 (日本時間) |
1736 | ebina | December 11, 2022 00:45:52 UTC 2022 年 12 月 11 日 (日) 9 時 45 分 52 秒 (日本時間) | |||
45 | 11e6 | 4003 | Thomas Kozlowski | December 8, 2024 17:07:26 UTC 2024 年 12 月 9 日 (月) 2 時 7 分 26 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | March 14, 2016 11:03:09 UTC 2016 年 3 月 14 日 (月) 20 時 3 分 9 秒 (日本時間) |
composite number 合成数 | 45826990392236603291254599122635100178630714895709478972825290435726584082882130457332174462188074744467333653993260234229825653792276746621823090758296680526827841061742876529325607219051923980460602430340401033574709586534362004376440772323329838927772970021<260> |
prime factors 素因数 | 102231764825019806708760986268737<33> |
composite cofactor 合成数の残り | 448265668412104756245098028626885904524407181759690216175031442607693004137743437628578498186262623752046727767924145920762129795668347601600879393993874775208853108169439259637452834752406047312250576432977040513563937440444133<228> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2941117722 Step 1 took 48035ms Step 2 took 15589ms ********** Factor found in step 2: 102231764825019806708760986268737 Found probable prime factor of 33 digits: 102231764825019806708760986268737 |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | March 14, 2016 13:44:32 UTC 2016 年 3 月 14 日 (月) 22 時 44 分 32 秒 (日本時間) |
composite number 合成数 | 448265668412104756245098028626885904524407181759690216175031442607693004137743437628578498186262623752046727767924145920762129795668347601600879393993874775208853108169439259637452834752406047312250576432977040513563937440444133<228> |
prime factors 素因数 | 14161468661065763087752538616030967<35> |
composite cofactor 合成数の残り | 31653896862020044281624046855101681922770510327200752169990871299568570933392806942777059946301256082695425172950782318136365337048985652303761693945447254068652372219926655053321148235832055299<194> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3411193915 Step 1 took 38423ms Step 2 took 12057ms ********** Factor found in step 2: 14161468661065763087752538616030967 Found probable prime factor of 35 digits: 14161468661065763087752538616030967 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 600 | Dmitry Domanov | March 14, 2016 06:35:06 UTC 2016 年 3 月 14 日 (月) 15 時 35 分 6 秒 (日本時間) | |
45 | 11e6 | 4400 | 600 | Dmitry Domanov | January 23, 2017 08:29:15 UTC 2017 年 1 月 23 日 (月) 17 時 29 分 15 秒 (日本時間) |
3800 | Thomas Kozlowski | December 8, 2024 18:23:03 UTC 2024 年 12 月 9 日 (月) 3 時 23 分 3 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | March 14, 2016 10:11:11 UTC 2016 年 3 月 14 日 (月) 19 時 11 分 11 秒 (日本時間) |
composite number 合成数 | 568695561713291294660102278001397545151562344156648096087148489573493630122557720852339479099702711547433186191493069350959882624838001334266918015900581621418067753638805620732032251226327102223258388088557368411851239017801769<228> |
prime factors 素因数 | 565270010956338656936213268802399<33> |
composite cofactor 合成数の残り | 1006060025634753205724376046654798860886187756832839942917326101978314193722077211509427464195245027142860637241076671963471749672167146811361183541107090042595595872094589440441877898267945312631<196> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1159630214 Step 1 took 38545ms Step 2 took 12607ms ********** Factor found in step 2: 565270010956338656936213268802399 Found probable prime factor of 33 digits: 565270010956338656936213268802399 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 600 | Dmitry Domanov | March 14, 2016 06:34:53 UTC 2016 年 3 月 14 日 (月) 15 時 34 分 53 秒 (日本時間) | |
45 | 11e6 | 4402 | 600 | Dmitry Domanov | January 23, 2017 08:29:55 UTC 2017 年 1 月 23 日 (月) 17 時 29 分 55 秒 (日本時間) |
3802 | Thomas Kozlowski | December 8, 2024 19:38:04 UTC 2024 年 12 月 9 日 (月) 4 時 38 分 4 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2336 | 600 | Dmitry Domanov | March 14, 2016 06:34:42 UTC 2016 年 3 月 14 日 (月) 15 時 34 分 42 秒 (日本時間) |
1736 | ebina | December 11, 2022 03:23:11 UTC 2022 年 12 月 11 日 (日) 12 時 23 分 11 秒 (日本時間) | |||
45 | 11e6 | 4001 | Thomas Kozlowski | December 8, 2024 21:20:16 UTC 2024 年 12 月 9 日 (月) 6 時 20 分 16 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | March 14, 2016 10:11:49 UTC 2016 年 3 月 14 日 (月) 19 時 11 分 49 秒 (日本時間) |
composite number 合成数 | 29332893111162250990924226951439335251113763570155360352882156142692856713400588771611405125898965919331243177477416725990204200883150754777182408713433763962750274810225718086133040577311703597034462749903159774320975358509118667981787259<239> |
prime factors 素因数 | 4623985086488977625601543733396397<34> |
composite cofactor 合成数の残り | 6343639212174646134073240603997366623055915470704705375754062030829016938621228941201735303961121164127585252526670478756340381900171861399088127664481485509710577971126359378512964900937895796836630587847<205> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1565544095 Step 1 took 37335ms ********** Factor found in step 1: 4623985086488977625601543733396397 Found probable prime factor of 34 digits: 4623985086488977625601543733396397 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2336 | 600 | Dmitry Domanov | March 14, 2016 06:34:30 UTC 2016 年 3 月 14 日 (月) 15 時 34 分 30 秒 (日本時間) |
1736 | ebina | December 12, 2022 00:09:51 UTC 2022 年 12 月 12 日 (月) 9 時 9 分 51 秒 (日本時間) | |||
45 | 11e6 | 4000 | Thomas Kozlowski | December 8, 2024 22:39:26 UTC 2024 年 12 月 9 日 (月) 7 時 39 分 26 秒 (日本時間) |
name 名前 | ebina |
---|---|
date 日付 | December 12, 2022 01:00:32 UTC 2022 年 12 月 12 日 (月) 10 時 0 分 32 秒 (日本時間) |
composite number 合成数 | 1563106984776609377025223045371168388745773629087877504926808466261812935160934122894163527596526129921223257622453385949067591668649887925255684124168916906433720612404624066367125750293700030025586284475458087<211> |
prime factors 素因数 | 49343763652889826635827440015261178699<38> 31677903529457784431460243260815585357246740464851544541621742223408176030036813196850870379043483657195418874268309244802551037254184525828446029540633902070658005645365013<173> |
factorization results 素因数分解の結果 | Z:\ALL\ECM>ecm70dev-svn2256-x64-nehalem\ecm -primetest -one -nn -sigma 1:1045272105 3e6 GMP-ECM 7.0-dev [configured with MPIR 2.6.0, --enable-openmp] [ECM] Input number is 1563106984776609377025223045371168388745773629087877504926808466261812935160934122894163527596526129921223257622453385949067591668649887925255684124168916906433720612404624066367125750293700030025586284475458087 (211 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:1045272105 Step 1 took 6735ms Step 2 took 5172ms ********** Factor found in step 2: 49343763652889826635827440015261178699 Found probable prime factor of 38 digits: 49343763652889826635827440015261178699 Probable prime cofactor 31677903529457784431460243260815585357246740464851544541621742223408176030036813196850870379043483657195418874268309244802551037254184525828446029540633902070658005645365013 has 173 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 300 / 2336 | Dmitry Domanov | November 27, 2015 20:52:16 UTC 2015 年 11 月 28 日 (土) 5 時 52 分 16 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2392 | 600 | Dmitry Domanov | March 14, 2016 06:34:13 UTC 2016 年 3 月 14 日 (月) 15 時 34 分 13 秒 (日本時間) |
1792 | Dmitry Domanov | October 12, 2023 21:57:45 UTC 2023 年 10 月 13 日 (金) 6 時 57 分 45 秒 (日本時間) | |||
45 | 11e6 | 4001 | Thomas Kozlowski | December 9, 2024 00:33:19 UTC 2024 年 12 月 9 日 (月) 9 時 33 分 19 秒 (日本時間) |
name 名前 | Thomas Kozlowski |
---|---|
date 日付 | December 9, 2024 02:13:42 UTC 2024 年 12 月 9 日 (月) 11 時 13 分 42 秒 (日本時間) |
composite number 合成数 | 511527640761445430962037341517775585516460228725930797617742701596696992948226095217216558880485220504950856808798275421096861412547042274105740070883115934086009719025174467463188278709488837736124812744345792685154737111330337242866016295809127114618729219189594066279367167233<279> |
prime factors 素因数 | 14329534317048090988779482201612935573233551023<47> |
composite cofactor 合成数の残り | 35697436458411093384442439781779639255634698122370464998715412382089427949154631412404279444433388725551713681433292117423185294301915655627944990119598000555605917268520661144368613378518831797853083153420702934378528638513391080271<233> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.6 [configured with GMP 6.3.0, --enable-asm-redc] [ECM] Input number is 511527640761445430962037341517775585516460228725930797617742701596696992948226095217216558880485220504950856808798275421096861412547042274105740070883115934086009719025174467463188278709488837736124812744345792685154737111330337242866016295809127114618729219189594066279367167233 (279 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:440602602 Step 1 took 56656ms Step 2 took 18944ms Run 2 out of 0: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:1731798369 Step 1 took 55054ms Step 2 took 19621ms Run 3 out of 0: ... Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:399728330 Step 1 took 55257ms Step 2 took 18934ms Run 42 out of 0: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:3660917175 Step 1 took 54770ms Step 2 took 18962ms ** Factor found in step 2: 14329534317048090988779482201612935573233551023 Found prime factor of 47 digits: 14329534317048090988779482201612935573233551023 Composite cofactor 35697436458411093384442439781779639255634698122370464998715412382089427949154631412404279444433388725551713681433292117423185294301915655627944990119598000555605917268520661144368613378518831797853083153420702934378528638513391080271 has 233 digits |
execution environment 実行環境 | 2x Xeon E5-2698v4, 128GB DDR4, Ubuntu Server 24.04 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 904 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 600 | Dmitry Domanov | November 20, 2015 15:53:31 UTC 2015 年 11 月 21 日 (土) 0 時 53 分 31 秒 (日本時間) | |
45 | 11e6 | 800 / 4305 | Dmitry Domanov | January 22, 2016 22:32:12 UTC 2016 年 1 月 23 日 (土) 7 時 32 分 12 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 904 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 600 | Dmitry Domanov | November 20, 2015 15:52:52 UTC 2015 年 11 月 21 日 (土) 0 時 52 分 52 秒 (日本時間) | |
45 | 11e6 | 4403 | 800 | Dmitry Domanov | January 21, 2016 17:57:16 UTC 2016 年 1 月 22 日 (金) 2 時 57 分 16 秒 (日本時間) |
3603 | Thomas Kozlowski | December 9, 2024 03:20:37 UTC 2024 年 12 月 9 日 (月) 12 時 20 分 37 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | March 14, 2016 07:53:11 UTC 2016 年 3 月 14 日 (月) 16 時 53 分 11 秒 (日本時間) |
composite number 合成数 | 1118189838178354551028378855082926513911898574806232037811450359252986577845820538472966806983416134984599260254669477727744607058038344291846163523353290257390442901481293875299506890873582747643006914188301009693802579784235524446568657452041182289<250> |
prime factors 素因数 | 2228193787316602840818185750773<31> 501836888938184426578867078334067120832907878141111847904256447012173158760785806874952367562697199478413212655124451077871265462956493182692198470715714988573351608728789389215735470640796485801583240484052883288054893<219> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=202739422 Step 1 took 30016ms Step 2 took 9478ms ********** Factor found in step 2: 2228193787316602840818185750773 Found probable prime factor of 31 digits: 2228193787316602840818185750773 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 600 / 2336 | Dmitry Domanov | March 14, 2016 06:30:08 UTC 2016 年 3 月 14 日 (月) 15 時 30 分 8 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2392 | 600 | Dmitry Domanov | March 14, 2016 06:29:57 UTC 2016 年 3 月 14 日 (月) 15 時 29 分 57 秒 (日本時間) |
1792 | Dmitry Domanov | October 12, 2023 21:57:55 UTC 2023 年 10 月 13 日 (金) 6 時 57 分 55 秒 (日本時間) | |||
45 | 11e6 | 4001 | Thomas Kozlowski | December 9, 2024 05:15:40 UTC 2024 年 12 月 9 日 (月) 14 時 15 分 40 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2392 | 300 | Dmitry Domanov | November 27, 2015 20:51:55 UTC 2015 年 11 月 28 日 (土) 5 時 51 分 55 秒 (日本時間) |
1792 | Dmitry Domanov | October 12, 2023 21:58:08 UTC 2023 年 10 月 13 日 (金) 6 時 58 分 8 秒 (日本時間) | |||
300 | Dmitry Domanov | October 17, 2023 00:20:49 UTC 2023 年 10 月 17 日 (火) 9 時 20 分 49 秒 (日本時間) | |||
45 | 11e6 | 4001 | Thomas Kozlowski | December 9, 2024 06:34:56 UTC 2024 年 12 月 9 日 (月) 15 時 34 分 56 秒 (日本時間) |
name 名前 | Thomas Kozlowski |
---|---|
date 日付 | December 9, 2024 08:57:20 UTC 2024 年 12 月 9 日 (月) 17 時 57 分 20 秒 (日本時間) |
composite number 合成数 | 20060431339339356921115917709297461635469717608370481539809293399421318906148667469487463634507921309083283105313036485942775872937697124813097948318755079976014835371661030329237774049107396774902642268113215301232314949745137303456194745907509195118234596293<260> |
prime factors 素因数 | 1826275158158355137435488215092033958257<40> |
composite cofactor 合成数の残り | 10984342227799130966438053868486077165329883047478442372177047104587412429764980477142598416324400839307117121515892043553279639170006526808758894654235177549273982944658571167934574969586372098698771935447303974342688149<221> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.6 [configured with GMP 6.3.0, --enable-asm-redc] [ECM] Input number is 20060431339339356921115917709297461635469717608370481539809293399421318906148667469487463634507921309083283105313036485942775872937697124813097948318755079976014835371661030329237774049107396774902642268113215301232314949745137303456194745907509195118234596293 (260 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:3832837288 Step 1 took 48844ms Step 2 took 18063ms Run 2 out of 0: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:735984756 Step 1 took 51741ms Step 2 took 18599ms Run 3 out of 0: ... Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:643724859 Step 1 took 50727ms Step 2 took 19498ms Run 7 out of 0: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:3279044562 Step 1 took 50266ms Step 2 took 18051ms ** Factor found in step 2: 1826275158158355137435488215092033958257 Found prime factor of 40 digits: 1826275158158355137435488215092033958257 Composite cofactor 10984342227799130966438053868486077165329883047478442372177047104587412429764980477142598416324400839307117121515892043553279639170006526808758894654235177549273982944658571167934574969586372098698771935447303974342688149 has 221 digits |
execution environment 実行環境 | 2x Xeon E5-2698v4, 128GB DDR4, Ubuntu Server 24.04 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2392 | 600 | Dmitry Domanov | March 14, 2016 06:29:37 UTC 2016 年 3 月 14 日 (月) 15 時 29 分 37 秒 (日本時間) |
1792 | Dmitry Domanov | October 12, 2023 21:58:16 UTC 2023 年 10 月 13 日 (金) 6 時 58 分 16 秒 (日本時間) |
name 名前 | Thomas Kozlowski |
---|---|
date 日付 | December 9, 2024 08:58:04 UTC 2024 年 12 月 9 日 (月) 17 時 58 分 4 秒 (日本時間) |
composite number 合成数 | 15585326586292613624492321075874865002778569747422038482785670927841227365835124921160160036506674345354768262913074581699148315593448995294304463193613034484250316840783663599247150986043326806853569801862160421947071826951543193321906798108960096942147373641<260> |
prime factors 素因数 | 2003499140479819157095202176810709907996451<43> |
composite cofactor 合成数の残り | 7779053293010185584827112543271906288018954285253241257745373554541776989241321980584911393238676747175293123779856346749381501448393094565099602754318637362705300097612282341940856303553231412366851972042435619126691<217> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.6 [configured with GMP 6.3.0, --enable-asm-redc] [ECM] Input number is 15585326586292613624492321075874865002778569747422038482785670927841227365835124921160160036506674345354768262913074581699148315593448995294304463193613034484250316840783663599247150986043326806853569801862160421947071826951543193321906798108960096942147373641 (260 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:2468539941 Step 1 took 52009ms Step 2 took 17649ms Run 2 out of 0: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:4264898269 Step 1 took 48786ms Step 2 took 18933ms Run 3 out of 0: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:454681983 Step 1 took 53499ms Step 2 took 17679ms Run 4 out of 0: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:3055910427 Step 1 took 48982ms Step 2 took 18043ms Run 5 out of 0: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:324202751 Step 1 took 49103ms Step 2 took 17747ms ** Factor found in step 2: 2003499140479819157095202176810709907996451 Found prime factor of 43 digits: 2003499140479819157095202176810709907996451 Composite cofactor 7779053293010185584827112543271906288018954285253241257745373554541776989241321980584911393238676747175293123779856346749381501448393094565099602754318637362705300097612282341940856303553231412366851972042435619126691 has 217 digits |
execution environment 実行環境 | 2x Xeon E5-2698v4, 128GB DDR4, Ubuntu Server 24.04 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2392 | 600 | Dmitry Domanov | March 14, 2016 06:29:27 UTC 2016 年 3 月 14 日 (月) 15 時 29 分 27 秒 (日本時間) |
1792 | Dmitry Domanov | October 12, 2023 21:58:31 UTC 2023 年 10 月 13 日 (金) 6 時 58 分 31 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2392 | 600 | Dmitry Domanov | March 14, 2016 06:29:17 UTC 2016 年 3 月 14 日 (月) 15 時 29 分 17 秒 (日本時間) |
1792 | Dmitry Domanov | October 12, 2023 21:58:41 UTC 2023 年 10 月 13 日 (金) 6 時 58 分 41 秒 (日本時間) | |||
45 | 11e6 | 4000 | Thomas Kozlowski | December 9, 2024 08:19:09 UTC 2024 年 12 月 9 日 (月) 17 時 19 分 9 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2392 | 600 | Dmitry Domanov | March 14, 2016 06:29:05 UTC 2016 年 3 月 14 日 (月) 15 時 29 分 5 秒 (日本時間) |
1792 | Dmitry Domanov | October 12, 2023 21:58:49 UTC 2023 年 10 月 13 日 (金) 6 時 58 分 49 秒 (日本時間) | |||
45 | 11e6 | 4002 | Thomas Kozlowski | December 9, 2024 10:01:42 UTC 2024 年 12 月 9 日 (月) 19 時 1 分 42 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2392 | 600 | Dmitry Domanov | March 14, 2016 06:28:52 UTC 2016 年 3 月 14 日 (月) 15 時 28 分 52 秒 (日本時間) |
1792 | Dmitry Domanov | October 12, 2023 21:58:57 UTC 2023 年 10 月 13 日 (金) 6 時 58 分 57 秒 (日本時間) | |||
45 | 11e6 | 4002 | Thomas Kozlowski | December 9, 2024 12:08:51 UTC 2024 年 12 月 9 日 (月) 21 時 8 分 51 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | March 14, 2016 07:52:41 UTC 2016 年 3 月 14 日 (月) 16 時 52 分 41 秒 (日本時間) |
composite number 合成数 | 15709805367849477790222817611595593776027863679344690856925024884213413597307818878964030721500717707794870520580544595639773931603262480267646648000574924318040678409735731721784944135377364909846326856483537592580616541001904120082412099860238103638746080672979001<266> |
prime factors 素因数 | 131956142508955998537567829876603<33> |
composite cofactor 合成数の残り | 119053232908678254294982690396351134942381856068675608311017654019447956123509670636567905431810198858621412793574783335113310096834837374688614169461055405574992371874890249792846688242744593709117945707325015155770217077210786242267<234> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2675702536 Step 1 took 32042ms Step 2 took 10451ms ********** Factor found in step 2: 131956142508955998537567829876603 Found probable prime factor of 33 digits: 131956142508955998537567829876603 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2400 | 600 | Dmitry Domanov | March 14, 2016 06:28:42 UTC 2016 年 3 月 14 日 (月) 15 時 28 分 42 秒 (日本時間) |
1800 | ebina | October 17, 2021 11:25:06 UTC 2021 年 10 月 17 日 (日) 20 時 25 分 6 秒 (日本時間) | |||
45 | 11e6 | 4000 | Thomas Kozlowski | December 9, 2024 13:50:50 UTC 2024 年 12 月 9 日 (月) 22 時 50 分 50 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2392 | 600 | Dmitry Domanov | March 14, 2016 06:28:28 UTC 2016 年 3 月 14 日 (月) 15 時 28 分 28 秒 (日本時間) |
1792 | Dmitry Domanov | October 12, 2023 21:59:05 UTC 2023 年 10 月 13 日 (金) 6 時 59 分 5 秒 (日本時間) | |||
45 | 11e6 | 4001 | Thomas Kozlowski | December 9, 2024 15:45:21 UTC 2024 年 12 月 10 日 (火) 0 時 45 分 21 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | March 14, 2016 12:00:48 UTC 2016 年 3 月 14 日 (月) 21 時 0 分 48 秒 (日本時間) |
composite number 合成数 | 8645562625698737508566938968211946398708996914348776276657302743892261480019860401859629497913157105371018514084365107179873394582747223971719270879527288827548395243125067411906608711620804013597425553173324920826950834374974132077166000782017887262517196182509<262> |
prime factors 素因数 | 262456545527149281921575495667593197<36> |
composite cofactor 合成数の残り | 32940929738802856110629445026636979357635787563746484882186067832329780432356864285328375317343432644786210881307377359726768753299249130962171828541149818626518287968403665936377394061990808231665275471665873835804280668599297<227> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=4056380004 Step 1 took 32934ms Step 2 took 10268ms ********** Factor found in step 2: 262456545527149281921575495667593197 Found probable prime factor of 36 digits: 262456545527149281921575495667593197 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2392 | 600 | Dmitry Domanov | March 14, 2016 06:28:16 UTC 2016 年 3 月 14 日 (月) 15 時 28 分 16 秒 (日本時間) |
1792 | Dmitry Domanov | October 12, 2023 21:59:12 UTC 2023 年 10 月 13 日 (金) 6 時 59 分 12 秒 (日本時間) | |||
45 | 11e6 | 4000 | Thomas Kozlowski | December 9, 2024 17:15:10 UTC 2024 年 12 月 10 日 (火) 2 時 15 分 10 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 12, 2016 09:38:07 UTC 2016 年 1 月 12 日 (火) 18 時 38 分 7 秒 (日本時間) |
composite number 合成数 | 17283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617<299> |
prime factors 素因数 | 354199795700573037449702094524826324953<39> |
composite cofactor 合成数の残り | 48797178392206475252423253911684508484600967091179512054901330690831784325978534987771587483393466984225195325154694270210013694940440384261531587646461934160831239501078203456255311472470632737882398956979507519760371985334625998626334455902849033112861786689<260> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=2391955236 Step 1 took 169018ms Step 2 took 47467ms ********** Factor found in step 2: 354199795700573037449702094524826324953 Found probable prime factor of 39 digits: 354199795700573037449702094524826324953 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 904 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 600 | Dmitry Domanov | November 20, 2015 13:41:13 UTC 2015 年 11 月 20 日 (金) 22 時 41 分 13 秒 (日本時間) | |
45 | 11e6 | 4401 | 800 | Dmitry Domanov | December 31, 2015 00:22:31 UTC 2015 年 12 月 31 日 (木) 9 時 22 分 31 秒 (日本時間) |
3601 | Thomas Kozlowski | December 9, 2024 18:58:20 UTC 2024 年 12 月 10 日 (火) 3 時 58 分 20 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | November 22, 2015 23:48:09 UTC 2015 年 11 月 23 日 (月) 8 時 48 分 9 秒 (日本時間) |
composite number 合成数 | 1261512131359840298864521860266737587004445121725077528915504098828940784450520155390941396204068168600285023726172800239705470733061238484562802565467982552097437137517571610362162036521885792894917014516494834878290615681998612314488933867491198060191393901110191795859423847263259223118859<292> |
prime factors 素因数 | 262984590893028174924568097569283192105004863<45> 4796905123133142027320389505752389412479283574557036286215019272899851452570483923436394321574308382334343612610940019924909001784683965257324702279598892493753572978872255619559045484016179985192556065136219069229130445394948167552898005651338293<247> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=765806021 Step 1 took 144371ms Step 2 took 35896ms ********** Factor found in step 2: 262984590893028174924568097569283192105004863 Found probable prime factor of 45 digits: 262984590893028174924568097569283192105004863 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 904 | Makoto Kamada | November 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1200 | Dmitry Domanov | November 21, 2015 09:38:20 UTC 2015 年 11 月 21 日 (土) 18 時 38 分 20 秒 (日本時間) | |
45 | 11e6 | 1200 / 4172 | Dmitry Domanov | November 22, 2015 22:45:05 UTC 2015 年 11 月 23 日 (月) 7 時 45 分 5 秒 (日本時間) |