Table of contents 目次

14×10106-239

c103

name 名前Jo Yeong Uk
date 日付March 19, 2008 10:07:02 UTC 2008 年 3 月 19 日 (水) 19 時 7 分 2 秒 (日本時間)
composite number 合成数
1086509433230114937176472414301568453974684330205738321963788192746773455022389855106206297098243735109<103>
prime factors 素因数
9347544516743237437692714740238292837<37>
116234742855085529578876954254245021476557271363549685111789948257<66>
factorization results 素因数分解の結果
Number: 15553_106
N=1086509433230114937176472414301568453974684330205738321963788192746773455022389855106206297098243735109
  ( 103 digits)
SNFS difficulty: 107 digits.
Divisors found:
 r1=9347544516743237437692714740238292837 (pp37)
 r2=116234742855085529578876954254245021476557271363549685111789948257 (pp66)
Version: GGNFS-0.77.1-20050930-nocona
Total time: 0.51 hours.
Scaled time: 0.95 units (timescale=1.856).
Factorization parameters were as follows:
n: 1086509433230114937176472414301568453974684330205738321963788192746773455022389855106206297098243735109
m: 1000000000000000000000
c5: 140
c0: -23
skew: 0.7
type: snfs
Factor base limits: 360000/360000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 44/44
Sieved algebraic special-q in [180000, 280001)
Primes: RFBsize:30757, AFBsize:30714, largePrimes:977479 encountered
Relations: rels:888661, finalFF:78082
Max relations in full relation-set: 28
Initial matrix: 61538 x 78082 with sparse part having weight 3514921.
Pruned matrix : 54793 x 55164 with weight 1839048.
Total sieving time: 0.49 hours.
Total relation processing time: 0.02 hours.
Matrix solve time: 0.00 hours.
Time per square root: 0.00 hours.
Prototype def-par.txt line would be:
snfs,107,5,0,0,0,0,0,0,0,0,360000,360000,25,25,44,44,2.2,2.2,20000
total time: 0.51 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Memory for crash kernel (0x0 to 0x0) notwithin permissible range
Memory: 8178324k/8912896k available (2439k kernel code, 208016k reserved, 1234k data, 192k init)
Calibrating delay using timer specific routine.. 4812.91 BogoMIPS (lpj=2406459)
Calibrating delay using timer specific routine.. 4810.22 BogoMIPS (lpj=2405110)
Calibrating delay using timer specific routine.. 4809.52 BogoMIPS (lpj=2404760)
Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405116)
execution environment 実行環境
Core 2 Quad Q6600

14×10107-239

c97

name 名前Sinkiti Sibata
date 日付March 19, 2008 22:40:13 UTC 2008 年 3 月 20 日 (木) 7 時 40 分 13 秒 (日本時間)
composite number 合成数
3037788062388449092580779371481569043270450892455898354863806802156173024445878302412156758572481<97>
prime factors 素因数
70116552119131233253697742765797176049<38>
43324835157711520807946225794361876690197612007341872469969<59>
factorization results 素因数分解の結果
Wed Mar 19 21:19:59 2008  Msieve v. 1.33
Wed Mar 19 21:19:59 2008  random seeds: ba38696c 9d0b82cb
Wed Mar 19 21:19:59 2008  factoring 3037788062388449092580779371481569043270450892455898354863806802156173024445878302412156758572481 (97 digits)
Wed Mar 19 21:20:01 2008  searching for 15-digit factors
Wed Mar 19 21:20:03 2008  commencing quadratic sieve (97-digit input)
Wed Mar 19 21:20:03 2008  using multiplier of 41
Wed Mar 19 21:20:03 2008  using 64kb Pentium 4 sieve core
Wed Mar 19 21:20:03 2008  sieve interval: 18 blocks of size 65536
Wed Mar 19 21:20:03 2008  processing polynomials in batches of 6
Wed Mar 19 21:20:03 2008  using a sieve bound of 2368859 (87059 primes)
Wed Mar 19 21:20:03 2008  using large prime bound of 355328850 (28 bits)
Wed Mar 19 21:20:03 2008  using double large prime bound of 2461131624868650 (43-52 bits)
Wed Mar 19 21:20:03 2008  using trial factoring cutoff of 52 bits
Wed Mar 19 21:20:03 2008  polynomial 'A' values have 13 factors
Thu Mar 20 07:23:56 2008  87413 relations (21168 full + 66245 combined from 1314170 partial), need 87155
Thu Mar 20 07:24:01 2008  begin with 1335338 relations
Thu Mar 20 07:24:02 2008  reduce to 228891 relations in 10 passes
Thu Mar 20 07:24:02 2008  attempting to read 228891 relations
Thu Mar 20 07:24:10 2008  recovered 228891 relations
Thu Mar 20 07:24:10 2008  recovered 216532 polynomials
Thu Mar 20 07:24:11 2008  attempting to build 87413 cycles
Thu Mar 20 07:24:11 2008  found 87413 cycles in 6 passes
Thu Mar 20 07:24:11 2008  distribution of cycle lengths:
Thu Mar 20 07:24:11 2008     length 1 : 21168
Thu Mar 20 07:24:11 2008     length 2 : 15264
Thu Mar 20 07:24:11 2008     length 3 : 14623
Thu Mar 20 07:24:11 2008     length 4 : 11881
Thu Mar 20 07:24:11 2008     length 5 : 8950
Thu Mar 20 07:24:11 2008     length 6 : 6114
Thu Mar 20 07:24:11 2008     length 7 : 3907
Thu Mar 20 07:24:11 2008     length 9+: 5506
Thu Mar 20 07:24:11 2008  largest cycle: 19 relations
Thu Mar 20 07:24:11 2008  matrix is 87059 x 87413 (23.6 MB) with weight 5834793 (66.75/col)
Thu Mar 20 07:24:11 2008  sparse part has weight 5834793 (66.75/col)
Thu Mar 20 07:24:13 2008  filtering completed in 3 passes
Thu Mar 20 07:24:13 2008  matrix is 83194 x 83258 (22.5 MB) with weight 5570899 (66.91/col)
Thu Mar 20 07:24:13 2008  sparse part has weight 5570899 (66.91/col)
Thu Mar 20 07:24:14 2008  saving the first 48 matrix rows for later
Thu Mar 20 07:24:14 2008  matrix is 83146 x 83258 (13.8 MB) with weight 4369149 (52.48/col)
Thu Mar 20 07:24:14 2008  sparse part has weight 3120596 (37.48/col)
Thu Mar 20 07:24:14 2008  matrix includes 64 packed rows
Thu Mar 20 07:24:14 2008  using block size 21845 for processor cache size 512 kB
Thu Mar 20 07:24:15 2008  commencing Lanczos iteration
Thu Mar 20 07:24:15 2008  memory use: 13.5 MB
Thu Mar 20 07:25:24 2008  lanczos halted after 1316 iterations (dim = 83143)
Thu Mar 20 07:25:24 2008  recovered 16 nontrivial dependencies
Thu Mar 20 07:25:28 2008  prp38 factor: 70116552119131233253697742765797176049
Thu Mar 20 07:25:28 2008  prp59 factor: 43324835157711520807946225794361876690197612007341872469969
Thu Mar 20 07:25:28 2008  elapsed time 10:05:29
execution environment 実行環境
Pentium 4 2.4GHz, Windows XP and Cygwin)

14×10112-239

c92

name 名前Sinkiti Sibata
date 日付March 19, 2008 05:33:24 UTC 2008 年 3 月 19 日 (水) 14 時 33 分 24 秒 (日本時間)
composite number 合成数
38572059436672044932250519700222956042161785286721937826457048311314788122676721518589306373<92>
prime factors 素因数
8602097249074871783783820192981298307<37>
4484029687158018042424643794202980992275372478191873239<55>
factorization results 素因数分解の結果
Wed Mar 19 10:47:13 2008  Msieve v. 1.33
Wed Mar 19 10:47:13 2008  random seeds: 40f75615 29c48224
Wed Mar 19 10:47:13 2008  factoring 38572059436672044932250519700222956042161785286721937826457048311314788122676721518589306373 (92 digits)
Wed Mar 19 10:47:14 2008  searching for 15-digit factors
Wed Mar 19 10:47:16 2008  commencing quadratic sieve (92-digit input)
Wed Mar 19 10:47:16 2008  using multiplier of 5
Wed Mar 19 10:47:16 2008  using 64kb Pentium 4 sieve core
Wed Mar 19 10:47:16 2008  sieve interval: 18 blocks of size 65536
Wed Mar 19 10:47:16 2008  processing polynomials in batches of 6
Wed Mar 19 10:47:16 2008  using a sieve bound of 1821679 (68077 primes)
Wed Mar 19 10:47:16 2008  using large prime bound of 198563011 (27 bits)
Wed Mar 19 10:47:16 2008  using double large prime bound of 863409753664201 (42-50 bits)
Wed Mar 19 10:47:16 2008  using trial factoring cutoff of 50 bits
Wed Mar 19 10:47:16 2008  polynomial 'A' values have 12 factors
Wed Mar 19 14:27:08 2008  68403 relations (17106 full + 51297 combined from 870879 partial), need 68173
Wed Mar 19 14:27:11 2008  begin with 887985 relations
Wed Mar 19 14:27:12 2008  reduce to 174296 relations in 10 passes
Wed Mar 19 14:27:12 2008  attempting to read 174296 relations
Wed Mar 19 14:27:17 2008  recovered 174296 relations
Wed Mar 19 14:27:17 2008  recovered 156172 polynomials
Wed Mar 19 14:27:18 2008  attempting to build 68403 cycles
Wed Mar 19 14:27:18 2008  found 68403 cycles in 6 passes
Wed Mar 19 14:27:18 2008  distribution of cycle lengths:
Wed Mar 19 14:27:18 2008     length 1 : 17106
Wed Mar 19 14:27:18 2008     length 2 : 12193
Wed Mar 19 14:27:18 2008     length 3 : 11888
Wed Mar 19 14:27:18 2008     length 4 : 9338
Wed Mar 19 14:27:18 2008     length 5 : 6854
Wed Mar 19 14:27:18 2008     length 6 : 4505
Wed Mar 19 14:27:18 2008     length 7 : 2791
Wed Mar 19 14:27:18 2008     length 9+: 3728
Wed Mar 19 14:27:18 2008  largest cycle: 22 relations
Wed Mar 19 14:27:18 2008  matrix is 68077 x 68403 (17.0 MB) with weight 4177014 (61.06/col)
Wed Mar 19 14:27:18 2008  sparse part has weight 4177014 (61.06/col)
Wed Mar 19 14:27:19 2008  filtering completed in 3 passes
Wed Mar 19 14:27:19 2008  matrix is 64492 x 64556 (16.1 MB) with weight 3955024 (61.27/col)
Wed Mar 19 14:27:19 2008  sparse part has weight 3955024 (61.27/col)
Wed Mar 19 14:27:20 2008  saving the first 48 matrix rows for later
Wed Mar 19 14:27:20 2008  matrix is 64444 x 64556 (9.5 MB) with weight 3034679 (47.01/col)
Wed Mar 19 14:27:20 2008  sparse part has weight 2092995 (32.42/col)
Wed Mar 19 14:27:20 2008  matrix includes 64 packed rows
Wed Mar 19 14:27:20 2008  using block size 21845 for processor cache size 512 kB
Wed Mar 19 14:27:21 2008  commencing Lanczos iteration
Wed Mar 19 14:27:21 2008  memory use: 9.6 MB
Wed Mar 19 14:27:59 2008  lanczos halted after 1020 iterations (dim = 64444)
Wed Mar 19 14:28:00 2008  recovered 18 nontrivial dependencies
Wed Mar 19 14:28:00 2008  prp37 factor: 8602097249074871783783820192981298307
Wed Mar 19 14:28:00 2008  prp55 factor: 4484029687158018042424643794202980992275372478191873239
Wed Mar 19 14:28:00 2008  elapsed time 03:40:47
execution environment 実行環境
Pentium 4 2.4GHz, Windows XP and Cygwin)

14×10113-239

c85

name 名前Sinkiti Sibata
date 日付March 19, 2008 01:42:55 UTC 2008 年 3 月 19 日 (水) 10 時 42 分 55 秒 (日本時間)
composite number 合成数
2034635142704677792494468631959407918934723927715575304293361053666704254742074577711<85>
prime factors 素因数
113861384206662076954599416574707<33>
17869404599998095262189940211282723567677418286716373<53>
factorization results 素因数分解の結果
Wed Mar 19 09:31:21 2008  Msieve v. 1.33
Wed Mar 19 09:31:21 2008  random seeds: 98abfa35 0fbf67a6
Wed Mar 19 09:31:21 2008  factoring 2034635142704677792494468631959407918934723927715575304293361053666704254742074577711 (85 digits)
Wed Mar 19 09:31:22 2008  searching for 15-digit factors
Wed Mar 19 09:31:24 2008  commencing quadratic sieve (85-digit input)
Wed Mar 19 09:31:24 2008  using multiplier of 39
Wed Mar 19 09:31:24 2008  using 64kb Pentium 4 sieve core
Wed Mar 19 09:31:24 2008  sieve interval: 6 blocks of size 65536
Wed Mar 19 09:31:24 2008  processing polynomials in batches of 17
Wed Mar 19 09:31:24 2008  using a sieve bound of 1426127 (54401 primes)
Wed Mar 19 09:31:24 2008  using large prime bound of 116942414 (26 bits)
Wed Mar 19 09:31:24 2008  using double large prime bound of 332927451401090 (41-49 bits)
Wed Mar 19 09:31:24 2008  using trial factoring cutoff of 49 bits
Wed Mar 19 09:31:24 2008  polynomial 'A' values have 11 factors
Wed Mar 19 10:18:33 2008  54724 relations (16675 full + 38049 combined from 565949 partial), need 54497
Wed Mar 19 10:18:35 2008  begin with 582624 relations
Wed Mar 19 10:18:35 2008  reduce to 126334 relations in 10 passes
Wed Mar 19 10:18:35 2008  attempting to read 126334 relations
Wed Mar 19 10:18:39 2008  recovered 126334 relations
Wed Mar 19 10:18:39 2008  recovered 104312 polynomials
Wed Mar 19 10:18:39 2008  attempting to build 54724 cycles
Wed Mar 19 10:18:39 2008  found 54724 cycles in 5 passes
Wed Mar 19 10:18:39 2008  distribution of cycle lengths:
Wed Mar 19 10:18:39 2008     length 1 : 16675
Wed Mar 19 10:18:39 2008     length 2 : 11194
Wed Mar 19 10:18:39 2008     length 3 : 9660
Wed Mar 19 10:18:39 2008     length 4 : 6962
Wed Mar 19 10:18:39 2008     length 5 : 4369
Wed Mar 19 10:18:39 2008     length 6 : 2716
Wed Mar 19 10:18:39 2008     length 7 : 1554
Wed Mar 19 10:18:39 2008     length 9+: 1594
Wed Mar 19 10:18:39 2008  largest cycle: 17 relations
Wed Mar 19 10:18:39 2008  matrix is 54401 x 54724 (11.9 MB) with weight 2911019 (53.19/col)
Wed Mar 19 10:18:39 2008  sparse part has weight 2911019 (53.19/col)
Wed Mar 19 10:18:39 2008  filtering completed in 3 passes
Wed Mar 19 10:18:39 2008  matrix is 49171 x 49235 (10.8 MB) with weight 2634621 (53.51/col)
Wed Mar 19 10:18:39 2008  sparse part has weight 2634621 (53.51/col)
Wed Mar 19 10:18:40 2008  saving the first 48 matrix rows for later
Wed Mar 19 10:18:40 2008  matrix is 49123 x 49235 (6.5 MB) with weight 2016709 (40.96/col)
Wed Mar 19 10:18:40 2008  sparse part has weight 1406841 (28.57/col)
Wed Mar 19 10:18:40 2008  matrix includes 64 packed rows
Wed Mar 19 10:18:40 2008  commencing Lanczos iteration
Wed Mar 19 10:18:40 2008  memory use: 8.4 MB
Wed Mar 19 10:20:19 2008  lanczos halted after 778 iterations (dim = 49121)
Wed Mar 19 10:20:20 2008  recovered 17 nontrivial dependencies
Wed Mar 19 10:20:21 2008  prp33 factor: 113861384206662076954599416574707
Wed Mar 19 10:20:21 2008  prp53 factor: 17869404599998095262189940211282723567677418286716373
Wed Mar 19 10:20:21 2008  elapsed time 00:49:00
execution environment 実行環境
Pentium 4 2.4GHz, Windows XP and Cygwin)

14×10115-239

c107

name 名前Jo Yeong Uk
date 日付March 19, 2008 13:00:06 UTC 2008 年 3 月 19 日 (水) 22 時 0 分 6 秒 (日本時間)
composite number 合成数
79016111561804901439724518048042668393209341149478405645387815768537964430607278443932418912722354943045009<107>
prime factors 素因数
21428391549316742681539165554993157989289<41>
3687449493348667986819089625807553114935732965345671067328548973481<67>
factorization results 素因数分解の結果
Number: 15553_115
N=79016111561804901439724518048042668393209341149478405645387815768537964430607278443932418912722354943045009
  ( 107 digits)
SNFS difficulty: 116 digits.
Divisors found:
 r1=21428391549316742681539165554993157989289 (pp41)
 r2=3687449493348667986819089625807553114935732965345671067328548973481 (pp67)
Version: GGNFS-0.77.1-20050930-nocona
Total time: 0.70 hours.
Scaled time: 1.29 units (timescale=1.852).
Factorization parameters were as follows:
n: 79016111561804901439724518048042668393209341149478405645387815768537964430607278443932418912722354943045009
m: 100000000000000000000000
c5: 14
c0: -23
skew: 1.1
type: snfs
Factor base limits: 450000/450000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 44/44
Sieved algebraic special-q in [225000, 350001)
Primes: RFBsize:37706, AFBsize:37874, largePrimes:1330452 encountered
Relations: rels:1334974, finalFF:152187
Max relations in full relation-set: 28
Initial matrix: 75648 x 152187 with sparse part having weight 10819504.
Pruned matrix : 58958 x 59400 with weight 2741608.
Total sieving time: 0.66 hours.
Total relation processing time: 0.02 hours.
Matrix solve time: 0.01 hours.
Time per square root: 0.01 hours.
Prototype def-par.txt line would be:
snfs,116,5,0,0,0,0,0,0,0,0,450000,450000,25,25,44,44,2.3,2.3,25000
total time: 0.70 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Memory for crash kernel (0x0 to 0x0) notwithin permissible range
Memory: 8178324k/8912896k available (2439k kernel code, 208016k reserved, 1234k data, 192k init)
Calibrating delay using timer specific routine.. 4812.91 BogoMIPS (lpj=2406459)
Calibrating delay using timer specific routine.. 4810.22 BogoMIPS (lpj=2405110)
Calibrating delay using timer specific routine.. 4809.52 BogoMIPS (lpj=2404760)
Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405116)
execution environment 実行環境
Core 2 Quad Q6600

14×10118-239

c94

name 名前Sinkiti Sibata
date 日付March 19, 2008 12:16:32 UTC 2008 年 3 月 19 日 (水) 21 時 16 分 32 秒 (日本時間)
composite number 合成数
9133651631791158911928100522746171669608341045686510741665627960105811317649914017350204015589<94>
prime factors 素因数
4090898917791232952071545697006570921621<40>
2232675951016315988867127284632626987970566041942101009<55>
factorization results 素因数分解の結果
Wed Mar 19 14:37:35 2008  Msieve v. 1.33
Wed Mar 19 14:37:35 2008  random seeds: f6411e96 e5f28ecf
Wed Mar 19 14:37:35 2008  factoring 9133651631791158911928100522746171669608341045686510741665627960105811317649914017350204015589 (94 digits)
Wed Mar 19 14:37:37 2008  searching for 15-digit factors
Wed Mar 19 14:37:39 2008  commencing quadratic sieve (94-digit input)
Wed Mar 19 14:37:39 2008  using multiplier of 21
Wed Mar 19 14:37:39 2008  using 64kb Pentium 4 sieve core
Wed Mar 19 14:37:39 2008  sieve interval: 18 blocks of size 65536
Wed Mar 19 14:37:39 2008  processing polynomials in batches of 6
Wed Mar 19 14:37:39 2008  using a sieve bound of 2093807 (77340 primes)
Wed Mar 19 14:37:39 2008  using large prime bound of 297320594 (28 bits)
Wed Mar 19 14:37:39 2008  using double large prime bound of 1785685485840044 (42-51 bits)
Wed Mar 19 14:37:39 2008  using trial factoring cutoff of 51 bits
Wed Mar 19 14:37:39 2008  polynomial 'A' values have 12 factors
Wed Mar 19 21:09:10 2008  77649 relations (18843 full + 58806 combined from 1137793 partial), need 77436
Wed Mar 19 21:09:14 2008  begin with 1156636 relations
Wed Mar 19 21:09:16 2008  reduce to 203477 relations in 12 passes
Wed Mar 19 21:09:16 2008  attempting to read 203477 relations
Wed Mar 19 21:09:22 2008  recovered 203477 relations
Wed Mar 19 21:09:22 2008  recovered 189051 polynomials
Wed Mar 19 21:09:23 2008  attempting to build 77649 cycles
Wed Mar 19 21:09:23 2008  found 77648 cycles in 5 passes
Wed Mar 19 21:09:23 2008  distribution of cycle lengths:
Wed Mar 19 21:09:23 2008     length 1 : 18843
Wed Mar 19 21:09:23 2008     length 2 : 13506
Wed Mar 19 21:09:23 2008     length 3 : 13112
Wed Mar 19 21:09:23 2008     length 4 : 10424
Wed Mar 19 21:09:23 2008     length 5 : 7886
Wed Mar 19 21:09:23 2008     length 6 : 5463
Wed Mar 19 21:09:23 2008     length 7 : 3500
Wed Mar 19 21:09:23 2008     length 9+: 4914
Wed Mar 19 21:09:23 2008  largest cycle: 19 relations
Wed Mar 19 21:09:23 2008  matrix is 77340 x 77648 (21.5 MB) with weight 5315713 (68.46/col)
Wed Mar 19 21:09:23 2008  sparse part has weight 5315713 (68.46/col)
Wed Mar 19 21:09:25 2008  filtering completed in 3 passes
Wed Mar 19 21:09:25 2008  matrix is 73810 x 73874 (20.5 MB) with weight 5076979 (68.72/col)
Wed Mar 19 21:09:25 2008  sparse part has weight 5076979 (68.72/col)
Wed Mar 19 21:09:26 2008  saving the first 48 matrix rows for later
Wed Mar 19 21:09:26 2008  matrix is 73762 x 73874 (14.4 MB) with weight 4199014 (56.84/col)
Wed Mar 19 21:09:26 2008  sparse part has weight 3337062 (45.17/col)
Wed Mar 19 21:09:26 2008  matrix includes 64 packed rows
Wed Mar 19 21:09:26 2008  using block size 21845 for processor cache size 512 kB
Wed Mar 19 21:09:27 2008  commencing Lanczos iteration
Wed Mar 19 21:09:27 2008  memory use: 13.0 MB
Wed Mar 19 21:10:26 2008  lanczos halted after 1168 iterations (dim = 73758)
Wed Mar 19 21:10:27 2008  recovered 16 nontrivial dependencies
Wed Mar 19 21:10:28 2008  prp40 factor: 4090898917791232952071545697006570921621
Wed Mar 19 21:10:28 2008  prp55 factor: 2232675951016315988867127284632626987970566041942101009
Wed Mar 19 21:10:28 2008  elapsed time 06:32:53
execution environment 実行環境
Pentium 4 2.4GHz, Windows XP and Cygwin)

14×10123-239

c102

name 名前Sinkiti Sibata
date 日付March 19, 2008 01:31:57 UTC 2008 年 3 月 19 日 (水) 10 時 31 分 57 秒 (日本時間)
composite number 合成数
193836510298645541604861266883321392503284953654360361313167961067989394247181929303493116733154326513<102>
prime factors 素因数
10753755444545527374527909643755701962882929<44>
18025006361564828534200757555861583140142606308789337325697<59>
factorization results 素因数分解の結果
Number: 15553_123
N=193836510298645541604861266883321392503284953654360361313167961067989394247181929303493116733154326513
  ( 102 digits)
SNFS difficulty: 124 digits.
Divisors found:
 r1=10753755444545527374527909643755701962882929 (pp44)
 r2=18025006361564828534200757555861583140142606308789337325697 (pp59)
Version: GGNFS-0.77.1-20060513-k8
Total time: 3.51 hours.
Scaled time: 7.00 units (timescale=1.993).
Factorization parameters were as follows:
name: 15553_123
n: 193836510298645541604861266883321392503284953654360361313167961067989394247181929303493116733154326513
m: 2000000000000000000000000
c5: 875
c0: -46
skew: 0.55
type: snfs
Factor base limits: 600000/800000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 46/46
Sieved algebraic special-q in [400000, 750001)
Primes: RFBsize:49098, AFBsize:63723, largePrimes:2340173 encountered
Relations: rels:2569764, finalFF:299018
Max relations in full relation-set: 28
Initial matrix: 112887 x 299018 with sparse part having weight 32153223.
Pruned matrix : 90356 x 90984 with weight 8670527.
Total sieving time: 3.34 hours.
Total relation processing time: 0.07 hours.
Matrix solve time: 0.06 hours.
Time per square root: 0.05 hours.
Prototype def-par.txt line would be:
snfs,124,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000
total time: 3.51 hours.
 --------- CPU info (if available) ----------
execution environment 実行環境
Core 2 Duo E6300 1.86GHz, Windows Vista)

14×10126-239

c102

name 名前Sinkiti Sibata
date 日付March 19, 2008 03:57:37 UTC 2008 年 3 月 19 日 (水) 12 時 57 分 37 秒 (日本時間)
composite number 合成数
113460617271489095821001999614229916567009542616345391734366387186548576373031471892411915187394642219<102>
prime factors 素因数
363241471005671447535513678139960218287887<42>
312355901867046413627024946541023325632565835499451550899237<60>
factorization results 素因数分解の結果
Number: 15553_126
N=113460617271489095821001999614229916567009542616345391734366387186548576373031471892411915187394642219
  ( 102 digits)
SNFS difficulty: 127 digits.
Divisors found:
 r1=363241471005671447535513678139960218287887 (pp42)
 r2=312355901867046413627024946541023325632565835499451550899237 (pp60)
Version: GGNFS-0.77.1-20060513-k8
Total time: 3.44 hours.
Scaled time: 6.89 units (timescale=2.004).
Factorization parameters were as follows:
name: 15553_126
n: 113460617271489095821001999614229916567009542616345391734366387186548576373031471892411915187394642219
m: 10000000000000000000000000
c5: 140
c0: -23
skew: 0.7
type: snfs
Factor base limits: 600000/800000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 46/46
Sieved algebraic special-q in [400000, 750001)
Primes: RFBsize:49098, AFBsize:63933, largePrimes:2213987 encountered
Relations: rels:2276628, finalFF:160025
Max relations in full relation-set: 28
Initial matrix: 113098 x 160025 with sparse part having weight 16087550.
Pruned matrix : 105821 x 106450 with weight 8492782.
Total sieving time: 3.25 hours.
Total relation processing time: 0.06 hours.
Matrix solve time: 0.08 hours.
Time per square root: 0.05 hours.
Prototype def-par.txt line would be:
snfs,127,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000
total time: 3.44 hours.
 --------- CPU info (if available) ----------
execution environment 実行環境
Core 2 Duo E6300 1.86GHz, Windows Vista)

14×10128-239

c104

name 名前Sinkiti Sibata
date 日付March 19, 2008 07:19:06 UTC 2008 年 3 月 19 日 (水) 16 時 19 分 6 秒 (日本時間)
composite number 合成数
54896222654214913716199732368230513011479825410843239174868664298416887368955153223689788344131375104181<104>
prime factors 素因数
187409363464363718474869100062621<33>
292921450878592546975162520988878794100375547144807005806036350434938361<72>
factorization results 素因数分解の結果
Number: 15553_128
N=54896222654214913716199732368230513011479825410843239174868664298416887368955153223689788344131375104181
  ( 104 digits)
SNFS difficulty: 129 digits.
Divisors found:
 r1=187409363464363718474869100062621 (pp33)
 r2=292921450878592546975162520988878794100375547144807005806036350434938361 (pp72)
Version: GGNFS-0.77.1-20060513-k8
Total time: 5.79 hours.
Scaled time: 11.55 units (timescale=1.996).
Factorization parameters were as follows:
name: 15553_128
n: 54896222654214913716199732368230513011479825410843239174868664298416887368955153223689788344131375104181
m: 20000000000000000000000000
c5: 875
c0: -46
skew: 0.55
type: snfs
Factor base limits: 800000/800000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 44/44
Sieved algebraic special-q in [400000, 1150001)
Primes: RFBsize:63951, AFBsize:63723, largePrimes:1580931 encountered
Relations: rels:1611418, finalFF:193201
Max relations in full relation-set: 28
Initial matrix: 127740 x 193201 with sparse part having weight 17142434.
Pruned matrix : 111485 x 112187 with weight 8144756.
Total sieving time: 5.60 hours.
Total relation processing time: 0.06 hours.
Matrix solve time: 0.08 hours.
Time per square root: 0.05 hours.
Prototype def-par.txt line would be:
snfs,129,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000
total time: 5.79 hours.
 --------- CPU info (if available) ----------
execution environment 実行環境
Core 2 Duo E6300 1.86GHz, Windows Vista)

14×10129-239

c130

name 名前Sinkiti Sibata
date 日付March 19, 2008 09:48:03 UTC 2008 年 3 月 19 日 (水) 18 時 48 分 3 秒 (日本時間)
composite number 合成数
1555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555553<130>
prime factors 素因数
5749413403024550933574604752036293641351380377<46>
270559002547500945368356658064162976416834648929786395630819569640571746923377726089<84>
factorization results 素因数分解の結果
Number: 15553_129
N=1555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555553
  ( 130 digits)
SNFS difficulty: 130 digits.
Divisors found:
 r1=5749413403024550933574604752036293641351380377 (pp46)
 r2=270559002547500945368356658064162976416834648929786395630819569640571746923377726089 (pp84)
Version: GGNFS-0.77.1-20060513-k8
Total time: 4.45 hours.
Scaled time: 8.83 units (timescale=1.986).
Factorization parameters were as follows:
name: 15553_129
n: 1555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555553
m: 100000000000000000000000000
c5: 7
c0: -115
skew: 1.75
type: snfs
Factor base limits: 800000/800000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 44/44
Sieved algebraic special-q in [400000, 950001)
Primes: RFBsize:63951, AFBsize:64213, largePrimes:1449116 encountered
Relations: rels:1418473, finalFF:143850
Max relations in full relation-set: 28
Initial matrix: 128229 x 143850 with sparse part having weight 10566283.
Pruned matrix : 124066 x 124771 with weight 7799437.
Total sieving time: 4.26 hours.
Total relation processing time: 0.05 hours.
Matrix solve time: 0.09 hours.
Time per square root: 0.05 hours.
Prototype def-par.txt line would be:
snfs,130,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000
total time: 4.45 hours.
 --------- CPU info (if available) ----------
execution environment 実行環境
Core 2 Duo E6300 1.86GHz, Windows Vista)

14×10131-239

c130

name 名前Sinkiti Sibata
date 日付March 20, 2008 06:49:06 UTC 2008 年 3 月 20 日 (木) 15 時 49 分 6 秒 (日本時間)
composite number 合成数
2729044834307992202729044834307992202729044834307992202729044834307992202729044834307992202729044834307992202729044834307992202729<130>
prime factors 素因数
468056747262877864591378985344497462087808873<45>
5830585394328821340439305519151218975641216570980360445799468073046721537499689235073<85>
factorization results 素因数分解の結果
Number: 15553_131
N=2729044834307992202729044834307992202729044834307992202729044834307992202729044834307992202729044834307992202729044834307992202729
  ( 130 digits)
SNFS difficulty: 132 digits.
Divisors found:
 r1=468056747262877864591378985344497462087808873 (pp45)
 r2=5830585394328821340439305519151218975641216570980360445799468073046721537499689235073 (pp85)
Version: GGNFS-0.77.1-20060513-pentium4
Total time: 7.84 hours.
Scaled time: 5.30 units (timescale=0.675).
Factorization parameters were as follows:
name: 15553_131
n: 2729044834307992202729044834307992202729044834307992202729044834307992202729044834307992202729044834307992202729044834307992202729
m: 100000000000000000000000000
c5: 140
c0: -23
skew: 0.7
type: snfs
Factor base limits: 800000/800000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 44/44
Sieved algebraic special-q in [400000, 1250001)
Primes: RFBsize:63951, AFBsize:63933, largePrimes:1536054 encountered
Relations: rels:1530353, finalFF:157374
Max relations in full relation-set: 28
Initial matrix: 127951 x 157374 with sparse part having weight 14195039.
Pruned matrix : 120613 x 121316 with weight 9276025.
Total sieving time: 7.40 hours.
Total relation processing time: 0.10 hours.
Matrix solve time: 0.29 hours.
Time per square root: 0.06 hours.
Prototype def-par.txt line would be:
snfs,132,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000
total time: 7.84 hours.
 --------- CPU info (if available) ----------
execution environment 実行環境
Pentium 4 2.4GHz, Windows XP and Cygwin)

14×10132-239

c116

name 名前Sinkiti Sibata
date 日付March 20, 2008 21:30:54 UTC 2008 年 3 月 21 日 (金) 6 時 30 分 54 秒 (日本時間)
composite number 合成数
30570599762300799760623180349250549785396977164422221332055957515459038129517087760322197185377808927798602234856711<116>
prime factors 素因数
7196110320984271887768290805077603<34>
4248211658617179794953002753092149992005253913469193885224487376180475161049101837<82>
factorization results 素因数分解の結果
Number: 15553_132
N=30570599762300799760623180349250549785396977164422221332055957515459038129517087760322197185377808927798602234856711
  ( 116 digits)
SNFS difficulty: 133 digits.
Divisors found:
 r1=7196110320984271887768290805077603 (pp34)
 r2=4248211658617179794953002753092149992005253913469193885224487376180475161049101837 (pp82)
Version: GGNFS-0.77.1-20060513-pentium4
Total time: 6.85 hours.
Scaled time: 4.62 units (timescale=0.675).
Factorization parameters were as follows:
name: 15553_132
n: 30570599762300799760623180349250549785396977164422221332055957515459038129517087760322197185377808927798602234856711
m: 100000000000000000000000000
c5: 1400
c0: -23
skew: 0.44
type: snfs
Factor base limits: 800000/800000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 44/44
Sieved algebraic special-q in [400000, 1100001)
Primes: RFBsize:63951, AFBsize:63708, largePrimes:1471928 encountered
Relations: rels:1451773, finalFF:152003
Max relations in full relation-set: 28
Initial matrix: 127726 x 152003 with sparse part having weight 11651770.
Pruned matrix : 121041 x 121743 with weight 7752542.
Total sieving time: 6.45 hours.
Total relation processing time: 0.08 hours.
Matrix solve time: 0.27 hours.
Time per square root: 0.05 hours.
Prototype def-par.txt line would be:
snfs,133,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000
total time: 6.85 hours.
 --------- CPU info (if available) ----------
execution environment 実行環境
(上の枠に貼り付けた素因数分解ソフトウェアの出力結果に実行環境の情報が含まれていない場合は、それをここPentium 4 3.06GHz, Windows XP and Cygwin)に記入してください。例:
Pentium 4 2.4GHz, Windows XP and Cygwin)

14×10134-239

c99

name 名前Sinkiti Sibata
date 日付March 21, 2008 12:24:08 UTC 2008 年 3 月 21 日 (金) 21 時 24 分 8 秒 (日本時間)
composite number 合成数
217417178821213519897591666112568676084285561292677561587515695663261258375232990435242424847951049<99>
prime factors 素因数
215339786052217239372566579524945255357716889<45>
1009647045755365143845638829136615216297983945249227441<55>
factorization results 素因数分解の結果
Number: 15553_134
N=217417178821213519897591666112568676084285561292677561587515695663261258375232990435242424847951049
  ( 99 digits)
SNFS difficulty: 135 digits.
Divisors found:
 r1=215339786052217239372566579524945255357716889 (pp45)
 r2=1009647045755365143845638829136615216297983945249227441 (pp55)
Version: GGNFS-0.77.1-20060513-pentium4
Total time: 10.16 hours.
Scaled time: 6.86 units (timescale=0.675).
Factorization parameters were as follows:
name: 15553_134
n: 217417178821213519897591666112568676084285561292677561587515695663261258375232990435242424847951049
m: 1000000000000000000000000000
c5: 7
c0: -115
skew: 1.75
type: snfs
Factor base limits: 1000000/800000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 43/43
Sieved algebraic special-q in [400000, 1450001)
Primes: RFBsize:78498, AFBsize:64213, largePrimes:1584221 encountered
Relations: rels:1601133, finalFF:186184
Max relations in full relation-set: 28
Initial matrix: 142776 x 186184 with sparse part having weight 16736449.
Pruned matrix : 129917 x 130694 with weight 10014781.
Total sieving time: 9.64 hours.
Total relation processing time: 0.10 hours.
Matrix solve time: 0.35 hours.
Time per square root: 0.06 hours.
Prototype def-par.txt line would be:
snfs,135,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000
total time: 10.16 hours.
 --------- CPU info (if available) ----------
execution environment 実行環境
Pentium 4 2.4GHz, Windows XP and Cygwin)

14×10135-239

c136

name 名前Sinkiti Sibata
date 日付March 19, 2008 13:35:50 UTC 2008 年 3 月 19 日 (水) 22 時 35 分 50 秒 (日本時間)
composite number 合成数
1555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555553<136>
prime factors 素因数
421082122543377471948099040072049191<36>
3694185699834148430250517608597883013280312326005666129435829336555704216470266353772323806409529783<100>
factorization results 素因数分解の結果
Number: 15553_135
N=1555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555553
  ( 136 digits)
SNFS difficulty: 136 digits.
Divisors found:
 r1=421082122543377471948099040072049191 (pp36)
 r2=3694185699834148430250517608597883013280312326005666129435829336555704216470266353772323806409529783 (pp100)
Version: GGNFS-0.77.1-20060513-k8
Total time: 6.90 hours.
Scaled time: 13.68 units (timescale=1.983).
Factorization parameters were as follows:
name: 15553_135
n: 1555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555553
m: 1000000000000000000000000000
c5: 14
c0: -23
skew: 1.1
type: snfs
Factor base limits: 1000000/800000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 43/43
Sieved algebraic special-q in [400000, 1225001)
Primes: RFBsize:78498, AFBsize:63993, largePrimes:1583247 encountered
Relations: rels:1614463, finalFF:201783
Max relations in full relation-set: 28
Initial matrix: 142559 x 201783 with sparse part having weight 16529259.
Pruned matrix : 124806 x 125582 with weight 8623929.
Total sieving time: 6.66 hours.
Total relation processing time: 0.06 hours.
Matrix solve time: 0.11 hours.
Time per square root: 0.06 hours.
Prototype def-par.txt line would be:
snfs,136,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000
total time: 6.90 hours.
 --------- CPU info (if available) ----------
execution environment 実行環境
Core 2 Duo E6300 1.86GHz, Windows Vista)

14×10136-239

c103

name 名前Sinkiti Sibata
date 日付March 19, 2008 20:35:08 UTC 2008 年 3 月 20 日 (木) 5 時 35 分 8 秒 (日本時間)
composite number 合成数
3607223231193333588521443657845306759593847350118466937436125963882416398551207258919445340876035052753<103>
prime factors 素因数
86564637715095292547101787933942319569693<41>
41670863835479319614069605921391221377496695827764326594084421<62>
factorization results 素因数分解の結果
Number: 15553_136
N=3607223231193333588521443657845306759593847350118466937436125963882416398551207258919445340876035052753
  ( 103 digits)
SNFS difficulty: 137 digits.
Divisors found:
 r1=86564637715095292547101787933942319569693 (pp41)
 r2=41670863835479319614069605921391221377496695827764326594084421 (pp62)
Version: GGNFS-0.77.1-20060513-k8
Total time: 11.88 hours.
Scaled time: 23.46 units (timescale=1.974).
Factorization parameters were as follows:
name: 15553_136
n: 3607223231193333588521443657845306759593847350118466937436125963882416398551207258919445340876035052753
m: 1000000000000000000000000000
c5: 140
c0: -23
skew: 0.7
type: snfs
Factor base limits: 1000000/800000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 43/43
Sieved algebraic special-q in [400000, 1975001)
Primes: RFBsize:78498, AFBsize:63933, largePrimes:1678180 encountered
Relations: rels:1716318, finalFF:184796
Max relations in full relation-set: 28
Initial matrix: 142498 x 184796 with sparse part having weight 20279499.
Pruned matrix : 132168 x 132944 with weight 13105300.
Total sieving time: 11.59 hours.
Total relation processing time: 0.09 hours.
Matrix solve time: 0.15 hours.
Time per square root: 0.06 hours.
Prototype def-par.txt line would be:
snfs,137,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000
total time: 11.88 hours.
 --------- CPU info (if available) ----------
execution environment 実行環境
Core 2 Duo E6300 1.86GHz, Windows Vista)

14×10138-239

c135

name 名前Sinkiti Sibata
date 日付March 20, 2008 07:06:56 UTC 2008 年 3 月 20 日 (木) 16 時 6 分 56 秒 (日本時間)
composite number 合成数
191783449088343675940766311867285853230866176248989712187838189564240606035699119166015972821545500623296209537116946807490513568679023<135>
prime factors 素因数
108711266578758459613216246008874649<36>
10324155343485704388884033718797007786067<41>
170876381427759404236156771629665436841780455921013486760381<60>
factorization results 素因数分解の結果
Number: 15553_138
N=191783449088343675940766311867285853230866176248989712187838189564240606035699119166015972821545500623296209537116946807490513568679023
  ( 135 digits)
SNFS difficulty: 139 digits.
Divisors found:
 r1=108711266578758459613216246008874649 (pp36)
 r2=10324155343485704388884033718797007786067 (pp41)
 r3=170876381427759404236156771629665436841780455921013486760381 (pp60)
Version: GGNFS-0.77.1-20060513-k8
Total time: 19.92 hours.
Scaled time: 39.85 units (timescale=2.000).
Factorization parameters were as follows:
name: 15553_138
n: 191783449088343675940766311867285853230866176248989712187838189564240606035699119166015972821545500623296209537116946807490513568679023
m: 2000000000000000000000000000
c5: 875
c0: -46
skew: 0.55
type: snfs
Factor base limits: 1000000/800000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 43/43
Sieved algebraic special-q in [400000, 3175001)
Primes: RFBsize:78498, AFBsize:63723, largePrimes:1800247 encountered
Relations: rels:1887080, finalFF:161274
Max relations in full relation-set: 28
Initial matrix: 142287 x 161274 with sparse part having weight 20694509.
Pruned matrix : 138410 x 139185 with weight 16896378.
Total sieving time: 19.54 hours.
Total relation processing time: 0.11 hours.
Matrix solve time: 0.20 hours.
Time per square root: 0.07 hours.
Prototype def-par.txt line would be:
snfs,139,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000
total time: 19.92 hours.
 --------- CPU info (if available) ----------
execution environment 実行環境
Core 2 Duo E6300 1.86GHz, Windows Vista)

14×10143-239

c130

name 名前Jo Yeong Uk
date 日付March 19, 2008 00:16:24 UTC 2008 年 3 月 19 日 (水) 9 時 16 分 24 秒 (日本時間)
composite number 合成数
2342031164301825038390457367153969291449264413996512703986313901765002146490531840808540192481289035544083215299248789953885093107<130>
prime factors 素因数
4033985856450760851705573910811<31>
580574956790360292326396245650795930374736048470567567465451678105744062669016644038536851027792137<99>
factorization results 素因数分解の結果
GMP-ECM 6.1.3 [powered by GMP 4.2.2] [ECM]
Input number is 2342031164301825038390457367153969291449264413996512703986313901765002146490531840808540192481289035544083215299248789953885093107 (130 digits)
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=384416447
Step 1 took 6715ms
Step 2 took 4188ms
********** Factor found in step 2: 4033985856450760851705573910811
Found probable prime factor of 31 digits: 4033985856450760851705573910811
Probable prime cofactor 580574956790360292326396245650795930374736048470567567465451678105744062669016644038536851027792137 has 99 digits
execution environment 実行環境
Core 2 Quad Q6600

14×10146-239

c119

name 名前Sinkiti Sibata
date 日付March 23, 2008 20:41:06 UTC 2008 年 3 月 24 日 (月) 5 時 41 分 6 秒 (日本時間)
composite number 合成数
40583635513631102698432965511202053180932113770520479983068613766399546890836472954025354188279221472737487682924859983<119>
prime factors 素因数
105919920953310151356411194198742339101<39>
383153944492844763111161253251402110359504657912538041799224423031962917815854683<81>
factorization results 素因数分解の結果
Number: 15553_146
N=40583635513631102698432965511202053180932113770520479983068613766399546890836472954025354188279221472737487682924859983
  ( 119 digits)
SNFS difficulty: 147 digits.
Divisors found:
 r1=105919920953310151356411194198742339101 (pp39)
 r2=383153944492844763111161253251402110359504657912538041799224423031962917815854683 (pp81)
Version: GGNFS-0.77.1-20060513-pentium4
Total time: 32.78 hours.
Scaled time: 22.12 units (timescale=0.675).
Factorization parameters were as follows:
name: 15553_146
n: 40583635513631102698432965511202053180932113770520479983068613766399546890836472954025354188279221472737487682924859983
m: 100000000000000000000000000000
c5: 140
c0: -23
skew: 0.7
type: snfs
Factor base limits: 1500000/1500000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 45/45
Sieved algebraic special-q in [750000, 3950001)
Primes: RFBsize:114155, AFBsize:113947, largePrimes:3019088 encountered
Relations: rels:3057061, finalFF:262687
Max relations in full relation-set: 28
Initial matrix: 228169 x 262687 with sparse part having weight 32216803.
Pruned matrix : 218774 x 219978 with weight 25544316.
Total sieving time: 30.47 hours.
Total relation processing time: 0.26 hours.
Matrix solve time: 1.93 hours.
Time per square root: 0.12 hours.
Prototype def-par.txt line would be:
snfs,147,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,100000
total time: 32.78 hours.
 --------- CPU info (if available) ----------
execution environment 実行環境
Pentium 4 2.4GHz, Windows XP and Cygwin)

14×10147-239

c109

name 名前Jo Yeong Uk
date 日付March 19, 2008 01:35:04 UTC 2008 年 3 月 19 日 (水) 10 時 35 分 4 秒 (日本時間)
composite number 合成数
1953465426706459909771345628659462180437303225966257512839835814181864523682558163449563880884829639618986399<109>
prime factors 素因数
56584859883732260957279040013<29>
80733674721485964418028247214298861<35>
427612866165966729085518073472242602764976743<45>
factorization results 素因数分解の結果
GMP-ECM 6.1.3 [powered by GMP 4.2.2] [ECM]
Input number is 1953465426706459909771345628659462180437303225966257512839835814181864523682558163449563880884829639618986399 (109 digits)
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=579063250
Step 1 took 5489ms
Step 2 took 3646ms
********** Factor found in step 2: 56584859883732260957279040013
Found probable prime factor of 29 digits: 56584859883732260957279040013
Composite cofactor 34522758043765468944146280720649561007338052832042965993511737760269487716389723 has 80 digits

Wed Mar 19 10:25:07 2008  
Wed Mar 19 10:25:07 2008  
Wed Mar 19 10:25:07 2008  Msieve v. 1.32
Wed Mar 19 10:25:07 2008  random seeds: f8d730fa 637ad895
Wed Mar 19 10:25:07 2008  factoring 34522758043765468944146280720649561007338052832042965993511737760269487716389723 (80 digits)
Wed Mar 19 10:25:07 2008  no P-1/P+1/ECM available, skipping
Wed Mar 19 10:25:07 2008  commencing quadratic sieve (80-digit input)
Wed Mar 19 10:25:07 2008  using multiplier of 13
Wed Mar 19 10:25:07 2008  using 32kb Intel Core sieve core
Wed Mar 19 10:25:07 2008  sieve interval: 12 blocks of size 32768
Wed Mar 19 10:25:07 2008  processing polynomials in batches of 17
Wed Mar 19 10:25:07 2008  using a sieve bound of 1255967 (48647 primes)
Wed Mar 19 10:25:07 2008  using large prime bound of 125596700 (26 bits)
Wed Mar 19 10:25:07 2008  using trial factoring cutoff of 27 bits
Wed Mar 19 10:25:07 2008  polynomial 'A' values have 10 factors
Wed Mar 19 10:36:44 2008  48821 relations (25337 full + 23484 combined from 262308 partial), need 48743
Wed Mar 19 10:36:44 2008  begin with 287645 relations
Wed Mar 19 10:36:44 2008  reduce to 69412 relations in 2 passes
Wed Mar 19 10:36:44 2008  attempting to read 69412 relations
Wed Mar 19 10:36:45 2008  recovered 69412 relations
Wed Mar 19 10:36:45 2008  recovered 58119 polynomials
Wed Mar 19 10:36:45 2008  attempting to build 48821 cycles
Wed Mar 19 10:36:45 2008  found 48821 cycles in 1 passes
Wed Mar 19 10:36:45 2008  distribution of cycle lengths:
Wed Mar 19 10:36:45 2008     length 1 : 25337
Wed Mar 19 10:36:45 2008     length 2 : 23484
Wed Mar 19 10:36:45 2008  largest cycle: 2 relations
Wed Mar 19 10:36:45 2008  matrix is 48647 x 48821 with weight 1508644 (avg 30.90/col)
Wed Mar 19 10:36:45 2008  filtering completed in 4 passes
Wed Mar 19 10:36:45 2008  matrix is 41292 x 41356 with weight 1250071 (avg 30.23/col)
Wed Mar 19 10:36:45 2008  saving the first 48 matrix rows for later
Wed Mar 19 10:36:45 2008  matrix is 41244 x 41356 with weight 912138 (avg 22.06/col)
Wed Mar 19 10:36:45 2008  matrix includes 64 packed rows
Wed Mar 19 10:36:45 2008  commencing Lanczos iteration
Wed Mar 19 10:37:08 2008  lanczos halted after 654 iterations (dim = 41227)
Wed Mar 19 10:37:08 2008  recovered 10 nontrivial dependencies
Wed Mar 19 10:37:08 2008  prp35 factor: 80733674721485964418028247214298861
Wed Mar 19 10:37:08 2008  prp45 factor: 427612866165966729085518073472242602764976743
Wed Mar 19 10:37:08 2008  elapsed time 00:12:01
execution environment 実行環境
Core 2 Quad Q6600

14×10149-239

c146

name 名前Sinkiti Sibata
date 日付March 25, 2008 07:40:53 UTC 2008 年 3 月 25 日 (火) 16 時 40 分 53 秒 (日本時間)
composite number 合成数
44738439906688396766049915316524462339820407119803150864410571054229380372607292365704790208672866136196593487361390726360527913590898923081839389<146>
prime factors 素因数
3356563431989464838102279492452770144334227580418669<52>
13328644255702782199398300118670013826308047575946272170431865182527315159031646426963541568881<95>
factorization results 素因数分解の結果
Number: 15553_149
N=44738439906688396766049915316524462339820407119803150864410571054229380372607292365704790208672866136196593487361390726360527913590898923081839389
  ( 146 digits)
SNFS difficulty: 150 digits.
Divisors found:
 r1=3356563431989464838102279492452770144334227580418669 (pp52)
 r2=13328644255702782199398300118670013826308047575946272170431865182527315159031646426963541568881 (pp95)
Version: GGNFS-0.77.1-20060513-pentium4
Total time: 34.05 hours.
Scaled time: 22.99 units (timescale=0.675).
Factorization parameters were as follows:
name: 15553_149
n: 44738439906688396766049915316524462339820407119803150864410571054229380372607292365704790208672866136196593487361390726360527913590898923081839389
m: 1000000000000000000000000000000
c5: 7
c0: -115
skew: 1.75
type: snfs
Factor base limits: 2400000/2400000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 48/48
Sieved algebraic special-q in [1200000, 2100001)
Primes: RFBsize:176302, AFBsize:176253, largePrimes:5595123 encountered
Relations: rels:5569052, finalFF:530347
Max relations in full relation-set: 28
Initial matrix: 352620 x 530347 with sparse part having weight 46594351.
Pruned matrix : 278318 x 280145 with weight 23634117.
Total sieving time: 30.74 hours.
Total relation processing time: 0.22 hours.
Matrix solve time: 2.94 hours.
Time per square root: 0.15 hours.
Prototype def-par.txt line would be:
snfs,150,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000
total time: 34.05 hours.
 --------- CPU info (if available) ----------
execution environment 実行環境
Pentium 4 2.4GHz, Windows XP and Cygwin)

14×10151-239

c116

name 名前Jo Yeong Uk
date 日付March 20, 2008 04:36:55 UTC 2008 年 3 月 20 日 (木) 13 時 36 分 55 秒 (日本時間)
composite number 合成数
79167914691880090811594123125144309095545396652500286034081796657461347356478102726525041453355866471138533992361981<116>
prime factors 素因数
16820895951350324317170195241<29>
4706521871418196358281662023008824663095196031484100339389156478064745201226851468713141<88>
factorization results 素因数分解の結果
GMP-ECM 6.1.3 [powered by GMP 4.2.2] [ECM]
Input number is 79167914691880090811594123125144309095545396652500286034081796657461347356478102726525041453355866471138533992361981 (116 digits)
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2554641202
Step 1 took 6769ms
Step 2 took 4116ms
********** Factor found in step 2: 16820895951350324317170195241
Found probable prime factor of 29 digits: 16820895951350324317170195241
Probable prime cofactor 4706521871418196358281662023008824663095196031484100339389156478064745201226851468713141 has 88 digits
execution environment 実行環境
Core 2 Quad Q6600

14×10153-239

c154

name 名前Sinkiti Sibata
date 日付March 21, 2008 07:46:45 UTC 2008 年 3 月 21 日 (金) 16 時 46 分 45 秒 (日本時間)
composite number 合成数
1555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555553<154>
prime factors 素因数
3282864968103111044049116015189636325629<40>
750520966883775487075871543212035736560922760348863037<54>
631349262219539973921775256331377718345779965714457540134361<60>
factorization results 素因数分解の結果
Number: 15553_153
N=1555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555553
  ( 154 digits)
SNFS difficulty: 154 digits.
Divisors found:
 r1=3282864968103111044049116015189636325629 (pp40)
 r2=750520966883775487075871543212035736560922760348863037 (pp54)
 r3=631349262219539973921775256331377718345779965714457540134361 (pp60)
Version: GGNFS-0.77.1-20060513-k8
Total time: 47.73 hours.
Scaled time: 94.84 units (timescale=1.987).
Factorization parameters were as follows:
name: 15553_153
n: 1555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555553
m: 2000000000000000000000000000000
c5: 875
c0: -46
skew: 0.55
type: snfs
Factor base limits: 2400000/2400000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 48/48
Sieved algebraic special-q in [1200000, 2900001)
Primes: RFBsize:176302, AFBsize:176403, largePrimes:5995663 encountered
Relations: rels:6090467, finalFF:516187
Max relations in full relation-set: 28
Initial matrix: 352771 x 516187 with sparse part having weight 60940354.
Pruned matrix : 300632 x 302459 with weight 37411755.
Total sieving time: 45.67 hours.
Total relation processing time: 0.20 hours.
Matrix solve time: 1.70 hours.
Time per square root: 0.16 hours.
Prototype def-par.txt line would be:
snfs,154,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000
total time: 47.73 hours.
 --------- CPU info (if available) ----------
execution environment 実行環境
Core 2 Duo E6300 1.86GHz, Windows Vista)

14×10154-239

c101

name 名前Sinkiti Sibata
date 日付March 22, 2008 04:50:38 UTC 2008 年 3 月 22 日 (土) 13 時 50 分 38 秒 (日本時間)
composite number 合成数
29332292490325663814719515383691975304656640266784115156065107203761488181559402971368249961736184353<101>
prime factors 素因数
95870625299777853092472666927690315569741<41>
305957037399167054607851451384826644981270222698168907376933<60>
factorization results 素因数分解の結果
Number: 15553_154
N=29332292490325663814719515383691975304656640266784115156065107203761488181559402971368249961736184353
  ( 101 digits)
SNFS difficulty: 155 digits.
Divisors found:
 r1=95870625299777853092472666927690315569741 (pp41)
 r2=305957037399167054607851451384826644981270222698168907376933 (pp60)
Version: GGNFS-0.77.1-20060513-k8
Total time: 40.32 hours.
Scaled time: 80.60 units (timescale=1.999).
Factorization parameters were as follows:
name: 15553_154
n: 29332292490325663814719515383691975304656640266784115156065107203761488181559402971368249961736184353
m: 10000000000000000000000000000000
c5: 7
c0: -115
skew: 1.75
type: snfs
Factor base limits: 3000000/3000000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 48/48
Sieved algebraic special-q in [1500000, 2800001)
Primes: RFBsize:216816, AFBsize:216496, largePrimes:5747979 encountered
Relations: rels:5768604, finalFF:592648
Max relations in full relation-set: 28
Initial matrix: 433377 x 592648 with sparse part having weight 49565434.
Pruned matrix : 350847 x 353077 with weight 30783997.
Total sieving time: 38.33 hours.
Total relation processing time: 0.16 hours.
Matrix solve time: 1.66 hours.
Time per square root: 0.17 hours.
Prototype def-par.txt line would be:
snfs,155,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000
total time: 40.32 hours.
 --------- CPU info (if available) ----------
execution environment 実行環境
(上の枠に貼り付けた素因数分解ソフトウェアの出力結果に実行環境の情報が含まれていない場合は、それを
Core 2 Duo E6300 1.86GHz, Windows Vista)

14×10155-239

c138

name 名前Jo Yeong Uk
date 日付March 20, 2008 01:38:25 UTC 2008 年 3 月 20 日 (木) 10 時 38 分 25 秒 (日本時間)
composite number 合成数
364497557224591483367572443698544315385061677265026264435782386158847341051380966258140822312973759666965899605155104576539035235109798733<138>
prime factors 素因数
27496531615303751255508385977877<32>
13256128530106065804015121820004168812872800900839223596915403773061273707418701227696707739151908971363929<107>
factorization results 素因数分解の結果
GMP-ECM 6.1.3 [powered by GMP 4.2.2] [ECM]
Input number is 364497557224591483367572443698544315385061677265026264435782386158847341051380966258140822312973759666965899605155104576539035235109798733 (138 digits)
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=4156413895
Step 1 took 7178ms
********** Factor found in step 1: 27496531615303751255508385977877
Found probable prime factor of 32 digits: 27496531615303751255508385977877
Probable prime cofactor 13256128530106065804015121820004168812872800900839223596915403773061273707418701227696707739151908971363929 has 107 digits
execution environment 実行環境
Core 2 Quad Q6600

14×10158-239

c155

name 名前Jo Yeong Uk
date 日付March 28, 2008 09:39:22 UTC 2008 年 3 月 28 日 (金) 18 時 39 分 22 秒 (日本時間)
composite number 合成数
71323042437210250140098833358805848489479851240511488104335422079576137347801721942024555504610525243262519741199246013551378063069947526618778338173111213<155>
prime factors 素因数
14588197216044197579705519152242955035773942876598287<53>
4889092283367864506268890541041439684319959055354301808203619167574234059984462242015485343648252218499<103>
factorization results 素因数分解の結果
Number: 15553_158
N=71323042437210250140098833358805848489479851240511488104335422079576137347801721942024555504610525243262519741199246013551378063069947526618778338173111213
  ( 155 digits)
SNFS difficulty: 160 digits.
Divisors found:
 r1=14588197216044197579705519152242955035773942876598287 (pp53)
 r2=4889092283367864506268890541041439684319959055354301808203619167574234059984462242015485343648252218499 (pp103)
Version: GGNFS-0.77.1-20050930-nocona
Total time: 41.96 hours.
Scaled time: 77.92 units (timescale=1.857).
Factorization parameters were as follows:
n: 71323042437210250140098833358805848489479851240511488104335422079576137347801721942024555504610525243262519741199246013551378063069947526618778338173111213
m: 100000000000000000000000000000000
c5: 7
c0: -1150
skew: 2.77
type: snfs
Factor base limits: 4000000/4000000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 48/48
Sieved algebraic special-q in [2000000, 4500001)
Primes: RFBsize:283146, AFBsize:282822, largePrimes:5807321 encountered
Relations: rels:5848810, finalFF:648376
Max relations in full relation-set: 28
Initial matrix: 566034 x 648376 with sparse part having weight 50939019.
Pruned matrix : 513937 x 516831 with weight 38008732.
Total sieving time: 40.30 hours.
Total relation processing time: 0.10 hours.
Matrix solve time: 1.50 hours.
Time per square root: 0.06 hours.
Prototype def-par.txt line would be:
snfs,160,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,48,48,2.3,2.3,100000
total time: 41.96 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Memory for crash kernel (0x0 to 0x0) notwithin permissible range
Memory: 8178324k/8912896k available (2439k kernel code, 208016k reserved, 1234k data, 192k init)
Calibrating delay using timer specific routine.. 4812.92 BogoMIPS (lpj=2406460)
Calibrating delay using timer specific routine.. 4810.27 BogoMIPS (lpj=2405136)
Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133)
Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405131)
execution environment 実行環境
Core 2 Quad Q6600

14×10159-239

c113

name 名前Jo Yeong Uk
date 日付March 30, 2008 10:33:16 UTC 2008 年 3 月 30 日 (日) 19 時 33 分 16 秒 (日本時間)
composite number 合成数
24570413325872433726374752132935798567129323835655643445013749975132033066760666479547157867771337118765767720739<113>
prime factors 素因数
2430749538295306145725728141599656700945070902478673<52>
10108163321139107412078827980136296192052017344921530333358643<62>
factorization results 素因数分解の結果
Number: 15553_159
N=24570413325872433726374752132935798567129323835655643445013749975132033066760666479547157867771337118765767720739
  ( 113 digits)
Divisors found:
 r1=2430749538295306145725728141599656700945070902478673 (pp52)
 r2=10108163321139107412078827980136296192052017344921530333358643 (pp62)
Version: GGNFS-0.77.1-20050930-nocona
Total time: 19.76 hours.
Scaled time: 36.72 units (timescale=1.858).
Factorization parameters were as follows:
name: 15553_159
n: 24570413325872433726374752132935798567129323835655643445013749975132033066760666479547157867771337118765767720739
skew: 21469.36
# norm 6.53e+14
c5: 43920
c4: -1018208888
c3: -52825621881145
c2: 440927432653850745
c1: 9501511920375097228487
c0: -45005353793894983316532848
# alpha -4.95
Y1: 684329137657
Y0: -3544462736890836314475
# Murphy_E 7.69e-10
# M 19596200183058475987666150282800979262971493155179127731599566306585118493722288584774250903399448011868899771762
type: gnfs
rlim: 2800000
alim: 2800000
lpbr: 27
lpba: 27
mfbr: 50
mfba: 50
rlambda: 2.6
alambda: 2.6
qintsize: 70000
Factor base limits: 2800000/2800000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 50/50
Sieved algebraic special-q in [1400000, 2380001)
Primes: RFBsize:203362, AFBsize:203762, largePrimes:7714693 encountered
Relations: rels:7680934, finalFF:595056
Max relations in full relation-set: 28
Initial matrix: 407203 x 595056 with sparse part having weight 57185218.
Pruned matrix : 284718 x 286818 with weight 34334574.
Polynomial selection time: 1.06 hours.
Total sieving time: 17.98 hours.
Total relation processing time: 0.14 hours.
Matrix solve time: 0.48 hours.
Time per square root: 0.11 hours.
Prototype def-par.txt line would be:
gnfs,112,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2800000,2800000,27,27,50,50,2.6,2.6,70000
total time: 19.76 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Memory for crash kernel (0x0 to 0x0) notwithin permissible range
Memory: 8178324k/8912896k available (2439k kernel code, 208016k reserved, 1234k data, 192k init)
Calibrating delay using timer specific routine.. 4812.94 BogoMIPS (lpj=2406472)
Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405149)
Calibrating delay using timer specific routine.. 4809.88 BogoMIPS (lpj=2404940)
Calibrating delay using timer specific routine.. 4918.32 BogoMIPS (lpj=2459163)
execution environment 実行環境
Core 2 Quad Q6600

14×10162-239

c141

name 名前Robert Backstrom
date 日付April 1, 2008 05:09:27 UTC 2008 年 4 月 1 日 (火) 14 時 9 分 27 秒 (日本時間)
composite number 合成数
469362624404298939135494109270052332408386538926431489548931993834927472197048244992417935599677767202896447674317093792319483188200971134309<141>
prime factors 素因数
472035414783518016243135774561543103921057694177<48>
994337733365949129428898253056275129686355332723981707011105870757951405338818661021405862917<93>
factorization results 素因数分解の結果
Number: n
N=469362624404298939135494109270052332408386538926431489548931993834927472197048244992417935599677767202896447674317093792319483188200971134309
  ( 141 digits)
SNFS difficulty: 163 digits.
Divisors found:

Tue Apr  1 16:01:03 2008  prp48 factor: 472035414783518016243135774561543103921057694177
Tue Apr  1 16:01:03 2008  prp93 factor: 994337733365949129428898253056275129686355332723981707011105870757951405338818661021405862917
Tue Apr  1 16:01:03 2008  elapsed time 00:46:15 (Msieve 1.33)

Version: GGNFS-0.77.1-20050930-k8
Total time: 37.68 hours.
Scaled time: 31.61 units (timescale=0.839).
Factorization parameters were as follows:
name: KA_1_5_161_3
n: 469362624404298939135494109270052332408386538926431489548931993834927472197048244992417935599677767202896447674317093792319483188200971134309
type: snfs
deg: 5
c5: 1400
c0: -23
skew: 0.44
m: 100000000000000000000000000000000
rlim: 3000000
alim: 3000000
lbpr: 28
lbpa: 28
mbpr: 48
mbpa: 48
rlambda: 2.5
alambda: 2.5
qintsize: 100000
Factor base limits: 3000000/3000000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 48/48
Sieved  special-q in [100000, 2400001)
Primes: RFBsize:216816, AFBsize:216901, largePrimes:5556168 encountered
Relations: rels:5418684, finalFF:465647
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 
Total sieving time: 37.50 hours.
Total relation processing time: 0.18 hours.
Matrix solve time: 0.00 hours.
Total square root time: 0.00 hours, sqrts: 0.
Prototype def-par.txt line would be:
snfs,163,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.5,2.5,100000
total time: 37.68 hours.
 --------- CPU info (if available) ----------
CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03
CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03
Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM)
Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888)
Calibrating delay loop... 6029.31 BogoMIPS (lpj=3014656)
Total of 2 processors activated (11993.08 BogoMIPS).

14×10165-239

c148

name 名前Robert Backstrom
date 日付March 31, 2008 12:03:27 UTC 2008 年 3 月 31 日 (月) 21 時 3 分 27 秒 (日本時間)
composite number 合成数
4127144219030625606615578640760931340860497953075896232234229896254039121793781892295216094450484552747480745109771365395645492218596260903591774271<148>
prime factors 素因数
535728913589613419728258074511925624737<39>
7703792187315390144299929098071704967894750175677556891822468858120439691344477047932722475841300620157500383<109>
factorization results 素因数分解の結果
GMP-ECM 6.0 [powered by GMP 4.1.4] [ECM]
Input number is 4127144219030625606615578640760931340860497953075896232234229896254039121793781892295216094450484552747480745109771365395645492218596260903591774271 (148 digits)
Using B1=2066000, B2=2360767334, polynomial Dickson(6), sigma=719258285
Step 1 took 23106ms
Step 2 took 11347ms
********** Factor found in step 2: 535728913589613419728258074511925624737
Found probable prime factor of 39 digits: 535728913589613419728258074511925624737
Probable prime cofactor 7703792187315390144299929098071704967894750175677556891822468858120439691344477047932722475841300620157500383 has 109 digits

14×10166-239

c154

name 名前Robert Backstrom
date 日付April 17, 2008 12:28:15 UTC 2008 年 4 月 17 日 (木) 21 時 28 分 15 秒 (日本時間)
composite number 合成数
2254524377991385991563706505473868776277617286083852671778874658941835390476638766040487793370391946432194808145574188574573096897484680105410253377854959<154>
prime factors 素因数
3383246862790582749480921165155169175417<40>
432508300655604026409962871945358873577669<42>
1540730929988680743737736570091962036281428096254323888738391539667343483<73>
factorization results 素因数分解の結果
GMP-ECM 6.1.3 [powered by GMP 4.2.1] [ECM]
Input number is 2254524377991385991563706505473868776277617286083852671778874658941835390476638766040487793370391946432194808145574188574573096897484680105410253377854959 (154 digits)
Using B1=2628000, B2=4281434440, polynomial Dickson(6), sigma=1836372263
Step 1 took 31407ms
Step 2 took 13504ms
********** Factor found in step 2: 3383246862790582749480921165155169175417
Found probable prime factor of 40 digits: 3383246862790582749480921165155169175417
Composite cofactor 666378916296932729031689796754642939121851670277389480145678840927507410551912991473639321490092225320869301481127 has 114 digits


Number: n
N=666378916296932729031689796754642939121851670277389480145678840927507410551912991473639321490092225320869301481127
  ( 114 digits)
Divisors found:

Thu Apr 17 22:20:15 2008  prp42 factor: 432508300655604026409962871945358873577669
Thu Apr 17 22:20:15 2008  prp73 factor: 1540730929988680743737736570091962036281428096254323888738391539667343483
Thu Apr 17 22:20:15 2008  elapsed time 00:44:24 (Msieve 1.34)

Version: GGNFS-0.77.1-20050930-k8
Total time: 26.74 hours.
Scaled time: 22.39 units (timescale=0.837).
Factorization parameters were as follows:
name: KA_1_5_165_3
n: 666378916296932729031689796754642939121851670277389480145678840927507410551912991473639321490092225320869301481127
skew: 21772.53
# norm 1.15e+16
c5: 127920
c4: -23604014380
c3: -521830973354640
c2: 13654652291457606849
c1: 43808656190295530955502
c0: -112301076362569465313946696
# alpha -6.55
Y1: 1193146480793
Y0: -5538090041817291334015
# Murphy_E 5.94e-10
# M 424840657608522257635537657543679823340115623023876770799204026916388698189137461913456436848462018965001840737620
type: gnfs
rlim: 3500000
alim: 3500000
lpbr: 27
lpba: 27
mfbr: 50
mfba: 50
rlambda: 2.6
alambda: 2.6
qintsize: 100000
Factor base limits: 3500000/3500000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 50/50
Sieved  special-q in [100000, 1500151)
Primes: RFBsize:250150, AFBsize:250624, largePrimes:6967090 encountered
Relations: rels:6656946, finalFF:539540
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 
Total sieving time: 26.53 hours.
Total relation processing time: 0.22 hours.
Matrix solve time: 0.00 hours.
Total square root time: 0.00 hours, sqrts: 0.
Prototype def-par.txt line would be:
gnfs,113,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3500000,3500000,27,27,50,50,2.6,2.6,100000
total time: 26.74 hours.
 --------- CPU info (if available) ----------
CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03
CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03
Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM)
Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888)
Calibrating delay loop... 6029.31 BogoMIPS (lpj=3014656)
Total of 2 processors activated (11993.08 BogoMIPS).

14×10170-239

c148

name 名前Serge Batalov
date 日付November 24, 2008 03:51:38 UTC 2008 年 11 月 24 日 (月) 12 時 51 分 38 秒 (日本時間)
composite number 合成数
3370492126389538221668926684699853124387396608271289087220791904152731586742330640771051468886140534163065108871155506842989468743752607154636325753<148>
prime factors 素因数
4140183215192466077295603949<28>
composite cofactor 合成数の残り
814092505380309124943551135799902484909003478048353721821331357008460909965452505234824673882421566041432715888319342397<120>
factorization results 素因数分解の結果
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2712233381
Step 1 took 14573ms
********** Factor found in step 1: 4140183215192466077295603949
Found probable prime factor of 28 digits: 4140183215192466077295603949
Composite cofactor 814092505380309124943551135799902484909003478048353721821331357008460909965452505234824673882421566041432715888319342397 has 120 digits
software ソフトウェア
GMP-ECM 6.2.1

c120

name 名前Jo Yeong Uk
date 日付December 4, 2008 11:54:15 UTC 2008 年 12 月 4 日 (木) 20 時 54 分 15 秒 (日本時間)
composite number 合成数
814092505380309124943551135799902484909003478048353721821331357008460909965452505234824673882421566041432715888319342397<120>
prime factors 素因数
630117766017269648087725009336287261566800724122723<51>
1291968818028846496792599442959506376604417781810432273538694583529439<70>
factorization results 素因数分解の結果
Number: 15553_170
N=814092505380309124943551135799902484909003478048353721821331357008460909965452505234824673882421566041432715888319342397
  ( 120 digits)
Divisors found:
 r1=630117766017269648087725009336287261566800724122723 (pp51)
 r2=1291968818028846496792599442959506376604417781810432273538694583529439 (pp70)
Version: GGNFS-0.77.1-20050930-nocona
Total time: 43.54 hours.
Scaled time: 103.89 units (timescale=2.386).
Factorization parameters were as follows:
name: 15553_170
n: 814092505380309124943551135799902484909003478048353721821331357008460909965452505234824673882421566041432715888319342397
skew: 28185.42
# norm 3.42e+15
c5: 95760
c4: 4567223691
c3: -133520678204283
c2: -3909924647066575861
c1: 67745503802752554587296
c0: -3003949084757309352275677
# alpha -3.63
Y1: 11054423741099
Y0: -96804924543965338047558
# Murphy_E 2.60e-10
# M 275705184235830591348662618029168213759719931670795570142473149118975745695546772170490093024576973858091779254759836679
type: gnfs
rlim: 4800000
alim: 4800000
lpbr: 27
lpba: 27
mfbr: 53
mfba: 53
rlambda: 2.4
alambda: 2.4
qintsize: 100000
Factor base limits: 4800000/4800000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 53/53
Sieved algebraic special-q in [2400000, 4800001)
Primes: RFBsize:335439, AFBsize:334032, largePrimes:10062010 encountered
Relations: rels:10266008, finalFF:849385
Max relations in full relation-set: 28
Initial matrix: 669551 x 849385 with sparse part having weight 84446630.
Pruned matrix : 532692 x 536103 with weight 58093567.
Polynomial selection time: 2.60 hours.
Total sieving time: 38.10 hours.
Total relation processing time: 0.18 hours.
Matrix solve time: 2.48 hours.
Time per square root: 0.18 hours.
Prototype def-par.txt line would be:
gnfs,119,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4800000,4800000,27,27,53,53,2.4,2.4,100000
total time: 43.54 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Memory: 8047068k/8912896k available (2460k kernel code, 339224k reserved, 1251k data, 196k init)
Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803)
Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672384)
Calibrating delay using timer specific routine.. 5497.76 BogoMIPS (lpj=2748880)
Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
execution environment 実行環境
Core 2 Quad Q6700

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaMarch 19, 2008 09:00:00 UTC 2008 年 3 月 19 日 (水) 18 時 0 分 0 秒 (日本時間)

14×10172-239

c95

name 名前Sinkiti Sibata
date 日付March 21, 2008 22:11:38 UTC 2008 年 3 月 22 日 (土) 7 時 11 分 38 秒 (日本時間)
composite number 合成数
12714452607239358532562745136775421026098425976970363512265686475547346928780346430570128545383<95>
prime factors 素因数
59153305041058215728786305575326180793937<41>
214940696862403157894398875584911842395797860592706359<54>
factorization results 素因数分解の結果
Fri Mar 21 21:27:39 2008  Msieve v. 1.33
Fri Mar 21 21:27:39 2008  random seeds: 59a25932 53de64be
Fri Mar 21 21:27:39 2008  factoring 12714452607239358532562745136775421026098425976970363512265686475547346928780346430570128545383 (95 digits)
Fri Mar 21 21:27:41 2008  searching for 15-digit factors
Fri Mar 21 21:27:43 2008  commencing quadratic sieve (95-digit input)
Fri Mar 21 21:27:43 2008  using multiplier of 7
Fri Mar 21 21:27:43 2008  using 64kb Pentium 4 sieve core
Fri Mar 21 21:27:43 2008  sieve interval: 18 blocks of size 65536
Fri Mar 21 21:27:43 2008  processing polynomials in batches of 6
Fri Mar 21 21:27:43 2008  using a sieve bound of 2093807 (77512 primes)
Fri Mar 21 21:27:43 2008  using large prime bound of 297320594 (28 bits)
Fri Mar 21 21:27:43 2008  using double large prime bound of 1785685485840044 (42-51 bits)
Fri Mar 21 21:27:43 2008  using trial factoring cutoff of 51 bits
Fri Mar 21 21:27:43 2008  polynomial 'A' values have 12 factors
Sat Mar 22 02:44:08 2008  77717 relations (19430 full + 58287 combined from 1125756 partial), need 77608
Sat Mar 22 02:44:13 2008  begin with 1145186 relations
Sat Mar 22 02:44:14 2008  reduce to 199983 relations in 10 passes
Sat Mar 22 02:44:14 2008  attempting to read 199983 relations
Sat Mar 22 02:44:20 2008  recovered 199983 relations
Sat Mar 22 02:44:20 2008  recovered 182356 polynomials
Sat Mar 22 02:44:21 2008  attempting to build 77717 cycles
Sat Mar 22 02:44:21 2008  found 77717 cycles in 7 passes
Sat Mar 22 02:44:21 2008  distribution of cycle lengths:
Sat Mar 22 02:44:21 2008     length 1 : 19430
Sat Mar 22 02:44:21 2008     length 2 : 13873
Sat Mar 22 02:44:21 2008     length 3 : 13261
Sat Mar 22 02:44:21 2008     length 4 : 10546
Sat Mar 22 02:44:21 2008     length 5 : 7814
Sat Mar 22 02:44:21 2008     length 6 : 5092
Sat Mar 22 02:44:21 2008     length 7 : 3301
Sat Mar 22 02:44:21 2008     length 9+: 4400
Sat Mar 22 02:44:21 2008  largest cycle: 23 relations
Sat Mar 22 02:44:21 2008  matrix is 77512 x 77717 (20.8 MB) with weight 5138619 (66.12/col)
Sat Mar 22 02:44:21 2008  sparse part has weight 5138619 (66.12/col)
Sat Mar 22 02:44:23 2008  filtering completed in 3 passes
Sat Mar 22 02:44:23 2008  matrix is 73413 x 73476 (19.8 MB) with weight 4892739 (66.59/col)
Sat Mar 22 02:44:23 2008  sparse part has weight 4892739 (66.59/col)
Sat Mar 22 02:44:23 2008  saving the first 48 matrix rows for later
Sat Mar 22 02:44:24 2008  matrix is 73365 x 73476 (13.6 MB) with weight 3977170 (54.13/col)
Sat Mar 22 02:44:24 2008  sparse part has weight 3115293 (42.40/col)
Sat Mar 22 02:44:24 2008  matrix includes 64 packed rows
Sat Mar 22 02:44:24 2008  using block size 21845 for processor cache size 512 kB
Sat Mar 22 02:44:25 2008  commencing Lanczos iteration
Sat Mar 22 02:44:25 2008  memory use: 12.4 MB
Sat Mar 22 02:45:22 2008  lanczos halted after 1163 iterations (dim = 73363)
Sat Mar 22 02:45:22 2008  recovered 17 nontrivial dependencies
Sat Mar 22 02:45:23 2008  prp41 factor: 59153305041058215728786305575326180793937
Sat Mar 22 02:45:23 2008  prp54 factor: 214940696862403157894398875584911842395797860592706359
Sat Mar 22 02:45:23 2008  elapsed time 05:17:44
execution environment 実行環境
(上の枠に貼り付けた素因数分解ソフトウェアの出力結果に実行環境の情報が含まれていない場合は、それをここにPentium 4 3.06GHz, Windows XP and Cygwin)記入してください。例:
Pentium 4 2.4GHz, Windows XP and Cygwin)

14×10174-239

c127

name 名前Sinkiti Sibata
date 日付April 14, 2010 10:26:17 UTC 2010 年 4 月 14 日 (水) 19 時 26 分 17 秒 (日本時間)
composite number 合成数
5711751946033545264638372965422199499184157041919174657241365564315916000245537450835910108884553682537754204430553623485327671<127>
prime factors 素因数
99116071380420986197668503315898839491273606904399<50>
57626900123099745229955931269971891412641816187378696237985321097977648459929<77>
factorization results 素因数分解の結果
Number: 15553_174
N=5711751946033545264638372965422199499184157041919174657241365564315916000245537450835910108884553682537754204430553623485327671
  ( 127 digits)
SNFS difficulty: 175 digits.
Divisors found:
 r1=99116071380420986197668503315898839491273606904399 (pp50)
 r2=57626900123099745229955931269971891412641816187378696237985321097977648459929 (pp77)
Version: Msieve-1.40
Total time: 96.88 hours.
Scaled time: 278.52 units (timescale=2.875).
Factorization parameters were as follows:
name: 15553_174
n: 5711751946033545264638372965422199499184157041919174657241365564315916000245537450835910108884553682537754204430553623485327671
m: 20000000000000000000000000000000000
deg: 5
c5: 4375
c0: -23
skew: 0.35
type: snfs
lss: 1
rlim: 5800000
alim: 5800000
lpbr: 28
lpba: 28
mfbr: 52
mfba: 52
rlambda: 2.5
alambda: 2.5
Factor base limits: 5800000/5800000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 52/52
Sieved rational special-q in [2900000, 7300001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1153876 x 1154124
Total sieving time: 93.38 hours.
Total relation processing time: 0.18 hours.
Matrix solve time: 2.88 hours.
Time per square root: 0.43 hours.
Prototype def-par.txt line would be:
snfs,175.000,5,0,0,0,0,0,0,0,0,5800000,5800000,28,28,52,52,2.5,2.5,100000
total time: 96.88 hours.
 --------- CPU info (if available) ----------
execution environment 実行環境
Core i7 2.93GHz,Windows 7 64bit,and Cygwin)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaMarch 19, 2008 09:00:00 UTC 2008 年 3 月 19 日 (水) 18 時 0 分 0 秒 (日本時間)
351e61035625Ignacio SantosMarch 18, 2010 19:51:41 UTC 2010 年 3 月 19 日 (金) 4 時 51 分 41 秒 (日本時間)
410Ignacio SantosMarch 29, 2010 08:50:12 UTC 2010 年 3 月 29 日 (月) 17 時 50 分 12 秒 (日本時間)
403e6150 / 2054Ignacio SantosMarch 29, 2010 08:50:12 UTC 2010 年 3 月 29 日 (月) 17 時 50 分 12 秒 (日本時間)

14×10175-239

c171

name 名前Robert Backstrom
date 日付November 26, 2008 18:26:12 UTC 2008 年 11 月 27 日 (木) 3 時 26 分 12 秒 (日本時間)
composite number 合成数
158006232217245025907379003906139783599178819038848089422498507405413519238951696366195243786687072042941579452869562469456831004434332045582540762786372188194451498294097<171>
prime factors 素因数
2038700949876497258819164740062522064954709<43>
77503388727423169575714188322817654539111949909475491882640338731051584806905658501368959790339414055676600291226770718963064333<128>
factorization results 素因数分解の結果
Number: n
N=158006232217245025907379003906139783599178819038848089422498507405413519238951696366195243786687072042941579452869562469456831004434332045582540762786372188194451498294097
  ( 171 digits)
SNFS difficulty: 176 digits.
Divisors found:

Thu Nov 27 04:51:58 2008  prp43 factor: 2038700949876497258819164740062522064954709
Thu Nov 27 04:51:58 2008  prp128 factor: 77503388727423169575714188322817654539111949909475491882640338731051584806905658501368959790339414055676600291226770718963064333
Thu Nov 27 04:51:59 2008  elapsed time 03:36:08 (Msieve 1.38)

Version: GGNFS-0.77.1-20051202-athlon
Total time: 19.92 hours.
Scaled time: 40.86 units (timescale=2.051).
Factorization parameters were as follows:
name: KA_1_5_174_3
n: 158006232217245025907379003906139783599178819038848089422498507405413519238951696366195243786687072042941579452869562469456831004434332045582540762786372188194451498294097
type: snfs
skew: 1.10
deg: 5
c5: 14
c0: -23
m: 100000000000000000000000000000000000
rlim: 7500000
alim: 7500000
lpbr: 28
lpba: 28
mfbr: 56
mfba: 56
rlambda: 2.5
alambda: 2.5
qintsize: 100000
Factor base limits: 7500000/7500000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 56/56
Sieved  special-q in [100000, 3800001)
Primes: RFBsize:508261, AFBsize:508901, largePrimes:18196504 encountered
Relations: rels:17583392, finalFF:1197106
Max relations in full relation-set: 28
Initial matrix: 1017230 x 1197106 with sparse part having weight 109758757.
Pruned matrix : 
Total sieving time: 19.33 hours.
Total relation processing time: 0.59 hours.
Matrix solve time: 0.00 hours.
Total square root time: 0.00 hours, sqrts: 0.
Prototype def-par.txt line would be:
snfs,176,5,0,0,0,0,0,0,0,0,7500000,7500000,28,28,56,56,2.5,2.5,100000
total time: 19.92 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaMarch 19, 2008 09:00:00 UTC 2008 年 3 月 19 日 (水) 18 時 0 分 0 秒 (日本時間)

14×10176-239

c147

name 名前Markus Tervooren
date 日付August 30, 2012 15:41:22 UTC 2012 年 8 月 31 日 (金) 0 時 41 分 22 秒 (日本時間)
composite number 合成数
116251175930903276901064889853415106976646263751065808132060477968001120966012861548008613202223192778144017506096349709416272396398638404951871321<147>
prime factors 素因数
234702867347322669726379416879684047505133531274778971582413091846467<69>
495312124835995920557634547516701277873203021011998714924966356518732869651763<78>
factorization results 素因数分解の結果
Thu Aug 30 15:00:18 2012  Msieve v. 1.50 (SVN exported)
Thu Aug 30 15:00:18 2012  random seeds: 5d2d086f 6c8577b2
Thu Aug 30 15:00:18 2012  factoring 116251175930903276901064889853415106976646263751065808132060477968001120966012861548008613202223192778144017506096349709416272396398638404951871321 (147 digits)
Thu Aug 30 15:00:19 2012  searching for 15-digit factors
Thu Aug 30 15:00:19 2012  commencing number field sieve (147-digit input)
Thu Aug 30 15:00:19 2012  R0: -100000000000000000000000000000000000
Thu Aug 30 15:00:19 2012  R1: 1
Thu Aug 30 15:00:19 2012  A0: -23
Thu Aug 30 15:00:19 2012  A1: 0
Thu Aug 30 15:00:19 2012  A2: 0
Thu Aug 30 15:00:19 2012  A3: 0
Thu Aug 30 15:00:19 2012  A4: 0
Thu Aug 30 15:00:19 2012  A5: 140
Thu Aug 30 15:00:19 2012  skew 0.70, size 1.789e-12, alpha 1.276, combined = 1.192e-10 rroots = 1
Thu Aug 30 15:00:19 2012  
Thu Aug 30 15:00:19 2012  commencing relation filtering
Thu Aug 30 15:00:19 2012  estimated available RAM is 16079.7 MB
Thu Aug 30 15:00:19 2012  commencing duplicate removal, pass 1
Thu Aug 30 15:00:29 2012  error -15 reading relation 745993
Thu Aug 30 15:00:48 2012  error -9 reading relation 2526010
Thu Aug 30 15:00:58 2012  error -1 reading relation 3499911
Thu Aug 30 15:01:01 2012  error -9 reading relation 3774439
Thu Aug 30 15:01:14 2012  error -5 reading relation 5038277
Thu Aug 30 15:01:15 2012  error -9 reading relation 5042002
Thu Aug 30 15:01:27 2012  error -9 reading relation 6193398
Thu Aug 30 15:01:27 2012  error -1 reading relation 6196665
Thu Aug 30 15:01:38 2012  error -5 reading relation 7257187
Thu Aug 30 15:02:07 2012  error -9 reading relation 10034274
Thu Aug 30 15:02:12 2012  error -9 reading relation 10493990
Thu Aug 30 15:02:13 2012  found 3046746 hash collisions in 10570519 relations
Thu Aug 30 15:02:22 2012  added 354177 free relations
Thu Aug 30 15:02:22 2012  commencing duplicate removal, pass 2
Thu Aug 30 15:02:53 2012  found 3837684 duplicates and 7087012 unique relations
Thu Aug 30 15:02:53 2012  memory use: 82.6 MB
Thu Aug 30 15:02:53 2012  reading ideals above 100000
Thu Aug 30 15:02:53 2012  commencing singleton removal, initial pass
Thu Aug 30 15:04:40 2012  memory use: 188.2 MB
Thu Aug 30 15:04:40 2012  reading all ideals from disk
Thu Aug 30 15:04:41 2012  memory use: 261.0 MB
Thu Aug 30 15:04:41 2012  keeping 7845206 ideals with weight <= 200, target excess is 47079
Thu Aug 30 15:04:42 2012  commencing in-memory singleton removal
Thu Aug 30 15:04:43 2012  begin with 7087012 relations and 7845206 unique ideals
Thu Aug 30 15:04:46 2012  reduce to 2014931 relations and 1692787 ideals in 8 passes
Thu Aug 30 15:04:46 2012  max relations containing the same ideal: 83
Thu Aug 30 15:04:47 2012  removing 309817 relations and 176051 ideals in 133766 cliques
Thu Aug 30 15:04:48 2012  commencing in-memory singleton removal
Thu Aug 30 15:04:48 2012  begin with 1705114 relations and 1692787 unique ideals
Thu Aug 30 15:04:49 2012  reduce to 1671582 relations and 1475077 ideals in 5 passes
Thu Aug 30 15:04:49 2012  max relations containing the same ideal: 74
Thu Aug 30 15:04:50 2012  removing 292421 relations and 158655 ideals in 133766 cliques
Thu Aug 30 15:04:50 2012  commencing in-memory singleton removal
Thu Aug 30 15:04:50 2012  begin with 1379161 relations and 1475077 unique ideals
Thu Aug 30 15:04:51 2012  reduce to 1347354 relations and 1278687 ideals in 5 passes
Thu Aug 30 15:04:51 2012  max relations containing the same ideal: 63
Thu Aug 30 15:04:52 2012  removing 47626 relations and 33571 ideals in 14055 cliques
Thu Aug 30 15:04:52 2012  commencing in-memory singleton removal
Thu Aug 30 15:04:52 2012  begin with 1299728 relations and 1278687 unique ideals
Thu Aug 30 15:04:52 2012  reduce to 1298945 relations and 1244325 ideals in 4 passes
Thu Aug 30 15:04:52 2012  max relations containing the same ideal: 62
Thu Aug 30 15:04:53 2012  relations with 0 large ideals: 1021
Thu Aug 30 15:04:53 2012  relations with 1 large ideals: 344
Thu Aug 30 15:04:53 2012  relations with 2 large ideals: 4398
Thu Aug 30 15:04:53 2012  relations with 3 large ideals: 28401
Thu Aug 30 15:04:53 2012  relations with 4 large ideals: 101718
Thu Aug 30 15:04:53 2012  relations with 5 large ideals: 226080
Thu Aug 30 15:04:53 2012  relations with 6 large ideals: 343473
Thu Aug 30 15:04:53 2012  relations with 7+ large ideals: 593510
Thu Aug 30 15:04:53 2012  commencing 2-way merge
Thu Aug 30 15:04:54 2012  reduce to 958193 relation sets and 903573 unique ideals
Thu Aug 30 15:04:54 2012  commencing full merge
Thu Aug 30 15:05:11 2012  memory use: 121.4 MB
Thu Aug 30 15:05:11 2012  found 529110 cycles, need 521773
Thu Aug 30 15:05:11 2012  weight of 521773 cycles is about 36801751 (70.53/cycle)
Thu Aug 30 15:05:11 2012  distribution of cycle lengths:
Thu Aug 30 15:05:11 2012  1 relations: 20588
Thu Aug 30 15:05:11 2012  2 relations: 52374
Thu Aug 30 15:05:11 2012  3 relations: 71531
Thu Aug 30 15:05:12 2012  4 relations: 74242
Thu Aug 30 15:05:12 2012  5 relations: 70464
Thu Aug 30 15:05:12 2012  6 relations: 61212
Thu Aug 30 15:05:12 2012  7 relations: 49862
Thu Aug 30 15:05:12 2012  8 relations: 38864
Thu Aug 30 15:05:12 2012  9 relations: 28751
Thu Aug 30 15:05:12 2012  10+ relations: 53885
Thu Aug 30 15:05:12 2012  heaviest cycle: 17 relations
Thu Aug 30 15:05:12 2012  commencing cycle optimization
Thu Aug 30 15:05:13 2012  start with 2881117 relations
Thu Aug 30 15:05:17 2012  pruned 107063 relations
Thu Aug 30 15:05:17 2012  memory use: 85.8 MB
Thu Aug 30 15:05:17 2012  distribution of cycle lengths:
Thu Aug 30 15:05:17 2012  1 relations: 20588
Thu Aug 30 15:05:17 2012  2 relations: 54149
Thu Aug 30 15:05:17 2012  3 relations: 75098
Thu Aug 30 15:05:17 2012  4 relations: 77528
Thu Aug 30 15:05:17 2012  5 relations: 73898
Thu Aug 30 15:05:17 2012  6 relations: 63097
Thu Aug 30 15:05:17 2012  7 relations: 50737
Thu Aug 30 15:05:17 2012  8 relations: 37945
Thu Aug 30 15:05:17 2012  9 relations: 27051
Thu Aug 30 15:05:17 2012  10+ relations: 41682
Thu Aug 30 15:05:17 2012  heaviest cycle: 17 relations
Thu Aug 30 15:05:18 2012  RelProcTime: 299
Thu Aug 30 15:05:18 2012  elapsed time 00:05:00
Thu Aug 30 15:05:37 2012  
Thu Aug 30 15:05:37 2012  
Thu Aug 30 15:05:37 2012  Msieve v. 1.50 (SVN exported)
Thu Aug 30 15:05:37 2012  random seeds: a36637d2 11ace5b9
Thu Aug 30 15:05:37 2012  factoring 116251175930903276901064889853415106976646263751065808132060477968001120966012861548008613202223192778144017506096349709416272396398638404951871321 (147 digits)
Thu Aug 30 15:05:38 2012  searching for 15-digit factors
Thu Aug 30 15:05:38 2012  commencing number field sieve (147-digit input)
Thu Aug 30 15:05:38 2012  R0: -100000000000000000000000000000000000
Thu Aug 30 15:05:38 2012  R1: 1
Thu Aug 30 15:05:38 2012  A0: -23
Thu Aug 30 15:05:38 2012  A1: 0
Thu Aug 30 15:05:38 2012  A2: 0
Thu Aug 30 15:05:38 2012  A3: 0
Thu Aug 30 15:05:38 2012  A4: 0
Thu Aug 30 15:05:38 2012  A5: 140
Thu Aug 30 15:05:38 2012  skew 0.70, size 1.789e-12, alpha 1.276, combined = 1.192e-10 rroots = 1
Thu Aug 30 15:05:38 2012  
Thu Aug 30 15:05:38 2012  commencing linear algebra
Thu Aug 30 15:05:40 2012  read 521773 cycles
Thu Aug 30 15:05:41 2012  cycles contain 1282612 unique relations
Thu Aug 30 15:06:44 2012  read 1282612 relations
Thu Aug 30 15:06:46 2012  using 20 quadratic characters above 536845290
Thu Aug 30 15:06:51 2012  building initial matrix
Thu Aug 30 15:07:06 2012  memory use: 169.7 MB
Thu Aug 30 15:07:06 2012  read 521773 cycles
Thu Aug 30 15:07:06 2012  matrix is 521596 x 521773 (155.7 MB) with weight 46126973 (88.40/col)
Thu Aug 30 15:07:06 2012  sparse part has weight 35076790 (67.23/col)
Thu Aug 30 15:07:11 2012  filtering completed in 2 passes
Thu Aug 30 15:07:11 2012  matrix is 521590 x 521767 (155.7 MB) with weight 46126552 (88.40/col)
Thu Aug 30 15:07:11 2012  sparse part has weight 35076519 (67.23/col)
Thu Aug 30 15:07:12 2012  matrix starts at (0, 0)
Thu Aug 30 15:07:13 2012  matrix is 521590 x 521767 (155.7 MB) with weight 46126552 (88.40/col)
Thu Aug 30 15:07:13 2012  sparse part has weight 35076519 (67.23/col)
Thu Aug 30 15:07:13 2012  saving the first 48 matrix rows for later
Thu Aug 30 15:07:13 2012  matrix includes 64 packed rows
Thu Aug 30 15:07:13 2012  matrix is 521542 x 521767 (147.1 MB) with weight 36465857 (69.89/col)
Thu Aug 30 15:07:13 2012  sparse part has weight 33341795 (63.90/col)
Thu Aug 30 15:07:13 2012  using block size 65536 for processor cache size 6144 kB
Thu Aug 30 15:07:14 2012  commencing Lanczos iteration (4 threads)
Thu Aug 30 15:07:14 2012  memory use: 127.1 MB
Thu Aug 30 17:15:18 2012  
Thu Aug 30 17:15:18 2012  
Thu Aug 30 17:15:18 2012  Msieve v. 1.50 (SVN exported)
Thu Aug 30 17:15:18 2012  random seeds: dfcfe337 3b67762e
Thu Aug 30 17:15:18 2012  factoring 116251175930903276901064889853415106976646263751065808132060477968001120966012861548008613202223192778144017506096349709416272396398638404951871321 (147 digits)
Thu Aug 30 17:15:18 2012  searching for 15-digit factors
Thu Aug 30 17:15:19 2012  commencing number field sieve (147-digit input)
Thu Aug 30 17:15:19 2012  R0: -100000000000000000000000000000000000
Thu Aug 30 17:15:19 2012  R1: 1
Thu Aug 30 17:15:19 2012  A0: -23
Thu Aug 30 17:15:19 2012  A1: 0
Thu Aug 30 17:15:19 2012  A2: 0
Thu Aug 30 17:15:19 2012  A3: 0
Thu Aug 30 17:15:19 2012  A4: 0
Thu Aug 30 17:15:19 2012  A5: 140
Thu Aug 30 17:15:19 2012  skew 0.70, size 1.789e-12, alpha 1.276, combined = 1.192e-10 rroots = 1
Thu Aug 30 17:15:19 2012  
Thu Aug 30 17:15:19 2012  commencing linear algebra
Thu Aug 30 17:15:19 2012  read 521767 cycles
Thu Aug 30 17:15:19 2012  cycles contain 1282607 unique relations
Thu Aug 30 17:15:57 2012  read 1282607 relations
Thu Aug 30 17:15:59 2012  using 20 quadratic characters above 536845290
Thu Aug 30 17:16:04 2012  building initial matrix
Thu Aug 30 17:16:18 2012  memory use: 169.7 MB
Thu Aug 30 17:16:19 2012  read 521767 cycles
Thu Aug 30 17:16:19 2012  matrix is 521590 x 521767 (155.7 MB) with weight 46126552 (88.40/col)
Thu Aug 30 17:16:19 2012  sparse part has weight 35076519 (67.23/col)
Thu Aug 30 17:16:21 2012  filtering completed in 1 passes
Thu Aug 30 17:16:22 2012  matrix is 521590 x 521767 (155.7 MB) with weight 46126552 (88.40/col)
Thu Aug 30 17:16:22 2012  sparse part has weight 35076519 (67.23/col)
Thu Aug 30 17:16:23 2012  matrix starts at (0, 0)
Thu Aug 30 17:16:23 2012  matrix is 521590 x 521767 (155.7 MB) with weight 46126552 (88.40/col)
Thu Aug 30 17:16:23 2012  sparse part has weight 35076519 (67.23/col)
Thu Aug 30 17:16:23 2012  saving the first 48 matrix rows for later
Thu Aug 30 17:16:23 2012  matrix includes 64 packed rows
Thu Aug 30 17:16:23 2012  matrix is 521542 x 521767 (147.1 MB) with weight 36465857 (69.89/col)
Thu Aug 30 17:16:23 2012  sparse part has weight 33341795 (63.90/col)
Thu Aug 30 17:16:23 2012  using block size 65536 for processor cache size 6144 kB
Thu Aug 30 17:16:24 2012  commencing Lanczos iteration (4 threads)
Thu Aug 30 17:16:24 2012  memory use: 127.1 MB
Thu Aug 30 17:16:30 2012  linear algebra at 0.6%, ETA 0h17m
Thu Aug 30 17:31:53 2012  lanczos halted after 8249 iterations (dim = 521540)
Thu Aug 30 17:31:54 2012  recovered 38 nontrivial dependencies
Thu Aug 30 17:31:54 2012  BLanczosTime: 995
Thu Aug 30 17:31:54 2012  elapsed time 00:16:36
Thu Aug 30 17:36:37 2012  
Thu Aug 30 17:36:37 2012  
Thu Aug 30 17:36:37 2012  Msieve v. 1.50 (SVN exported)
Thu Aug 30 17:36:37 2012  random seeds: 6c9698ad 714af5e1
Thu Aug 30 17:36:37 2012  factoring 116251175930903276901064889853415106976646263751065808132060477968001120966012861548008613202223192778144017506096349709416272396398638404951871321 (147 digits)
Thu Aug 30 17:36:38 2012  searching for 15-digit factors
Thu Aug 30 17:36:38 2012  commencing number field sieve (147-digit input)
Thu Aug 30 17:36:38 2012  R0: -100000000000000000000000000000000000
Thu Aug 30 17:36:38 2012  R1: 1
Thu Aug 30 17:36:38 2012  A0: -23
Thu Aug 30 17:36:38 2012  A1: 0
Thu Aug 30 17:36:38 2012  A2: 0
Thu Aug 30 17:36:38 2012  A3: 0
Thu Aug 30 17:36:38 2012  A4: 0
Thu Aug 30 17:36:38 2012  A5: 140
Thu Aug 30 17:36:38 2012  skew 0.70, size 1.789e-12, alpha 1.276, combined = 1.192e-10 rroots = 1
Thu Aug 30 17:36:38 2012  
Thu Aug 30 17:36:38 2012  commencing square root phase
Thu Aug 30 17:36:38 2012  reading relations for dependency 1
Thu Aug 30 17:36:38 2012  read 261027 cycles
Thu Aug 30 17:36:38 2012  cycles contain 642594 unique relations
Thu Aug 30 17:37:28 2012  read 642594 relations
Thu Aug 30 17:37:30 2012  multiplying 642594 relations
Thu Aug 30 17:37:43 2012  multiply complete, coefficients have about 19.13 million bits
Thu Aug 30 17:37:43 2012  initial square root is modulo 311951
Thu Aug 30 17:38:00 2012  GCD is 1, no factor found
Thu Aug 30 17:38:00 2012  reading relations for dependency 2
Thu Aug 30 17:38:00 2012  read 259875 cycles
Thu Aug 30 17:38:00 2012  cycles contain 639988 unique relations
Thu Aug 30 17:38:34 2012  read 639988 relations
Thu Aug 30 17:38:36 2012  multiplying 639988 relations
Thu Aug 30 17:38:48 2012  multiply complete, coefficients have about 19.05 million bits
Thu Aug 30 17:38:48 2012  initial square root is modulo 296441
Thu Aug 30 17:39:06 2012  sqrtTime: 148
Thu Aug 30 17:39:06 2012  prp69 factor: 234702867347322669726379416879684047505133531274778971582413091846467
Thu Aug 30 17:39:06 2012  prp78 factor: 495312124835995920557634547516701277873203021011998714924966356518732869651763
Thu Aug 30 17:39:06 2012  elapsed time 00:02:29

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaMarch 19, 2008 09:00:00 UTC 2008 年 3 月 19 日 (水) 18 時 0 分 0 秒 (日本時間)
351e6300Ignacio SantosOctober 8, 2010 06:23:03 UTC 2010 年 10 月 8 日 (金) 15 時 23 分 3 秒 (日本時間)
403e62144110Ignacio SantosOctober 8, 2010 06:23:03 UTC 2010 年 10 月 8 日 (金) 15 時 23 分 3 秒 (日本時間)
2034Wataru SakaiSeptember 27, 2011 01:57:38 UTC 2011 年 9 月 27 日 (火) 10 時 57 分 38 秒 (日本時間)
4511e632 / 3991Ignacio SantosOctober 8, 2010 06:23:03 UTC 2010 年 10 月 8 日 (金) 15 時 23 分 3 秒 (日本時間)

14×10177-239

c153

name 名前Ignacio Santos
date 日付October 8, 2010 06:20:44 UTC 2010 年 10 月 8 日 (金) 15 時 20 分 44 秒 (日本時間)
composite number 合成数
360247803808234983067639359606623976465394305804420646845194297919425380075733095279503331952222263510197992318471032805410937982754210889793508762494499<153>
prime factors 素因数
551070279090733843157124777559998214735819<42>
composite cofactor 合成数の残り
653723885096187708953281445418926172134364640836532252094970259837709556314637653024908899537227842861924851721<111>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1100047172
Step 1 took 72088ms
Step 2 took 36114ms
********** Factor found in step 2: 551070279090733843157124777559998214735819
Found probable prime factor of 42 digits: 551070279090733843157124777559998214735819
Composite cofactor 653723885096187708953281445418926172134364640836532252094970259837709556314637653024908899537227842861924851721 has 111 digits
software ソフトウェア
GMP-ECM 6.3

c111

name 名前Dmitry Domanov
date 日付October 10, 2010 19:18:49 UTC 2010 年 10 月 11 日 (月) 4 時 18 分 49 秒 (日本時間)
composite number 合成数
653723885096187708953281445418926172134364640836532252094970259837709556314637653024908899537227842861924851721<111>
prime factors 素因数
678257271786770080886865976540564306772539931538851<51>
963828789294137997437321079907552931491795841898920587638371<60>
factorization results 素因数分解の結果
Number: z111
N=653723885096187708953281445418926172134364640836532252094970259837709556314637653024908899537227842861924851721
  ( 111 digits)
Divisors found:
 r1=678257271786770080886865976540564306772539931538851 (pp51)
 r2=963828789294137997437321079907552931491795841898920587638371 (pp60)
Version: Msieve-1.40
Total time: 13.29 hours.
Scaled time: 25.70 units (timescale=1.934).
Factorization parameters were as follows:
name: z111
n: 653723885096187708953281445418926172134364640836532252094970259837709556314637653024908899537227842861924851721
skew: 15454.14
# norm 2.83e+015
c5: 185220
c4: -8402089108
c3: -127243234397781
c2: 3570443330073272933
c1: 19676072845747715562793
c0: -477450338671868044061865
# alpha -6.33
Y1: 823135552877
Y0: -1286897078465010883298
# Murphy_E 9.06e-010
# M 605197017814225155838362751101687717666385311353534240293058205014323545574175695658443904452427073931284027713
type: gnfs
rlim: 3200000
alim: 3200000
lpbr: 27
lpba: 27
mfbr: 50
mfba: 50
rlambda: 2.6
alambda: 2.6
qintsize: 100000
Factor base limits: 3200000/3200000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 50/50
Sieved algebraic special-q in [1600000, 2300001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 404417 x 404648
Total sieving time: 12.96 hours.
Total relation processing time: 0.06 hours.
Matrix solve time: 0.20 hours.
Time per square root: 0.07 hours.
Prototype def-par.txt line would be:
gnfs,110,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,3200000,27,27,50,50,2.6,2.6,100000
total time: 13.29 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaMarch 19, 2008 09:00:00 UTC 2008 年 3 月 19 日 (水) 18 時 0 分 0 秒 (日本時間)

14×10178-239

c177

name 名前Robert Backstrom
date 日付September 20, 2008 07:58:40 UTC 2008 年 9 月 20 日 (土) 16 時 58 分 40 秒 (日本時間)
composite number 合成数
915032679738562091503267973856209150326797385620915032679738562091503267973856209150326797385620915032679738562091503267973856209150326797385620915032679738562091503267973856209<177>
prime factors 素因数
2225841655194472268016781853809366714396313<43>
411095136800562521541539475829738868608002274427477071385840597838998349260485047470252329367328208883411589540139084008392762907660793<135>
factorization results 素因数分解の結果
Number: n
N=915032679738562091503267973856209150326797385620915032679738562091503267973856209150326797385620915032679738562091503267973856209150326797385620915032679738562091503267973856209
  ( 177 digits)
SNFS difficulty: 179 digits.
Divisors found:

Sat Sep 20 16:52:55 2008  prp43 factor: 2225841655194472268016781853809366714396313
Sat Sep 20 16:52:55 2008  prp135 factor: 411095136800562521541539475829738868608002274427477071385840597838998349260485047470252329367328208883411589540139084008392762907660793
Sat Sep 20 16:52:55 2008  elapsed time 06:44:14 (Msieve 1.36)

Version: GGNFS-0.77.1-20050930-k8
Total time: 103.73 hours.
Scaled time: 87.34 units (timescale=0.842).
Factorization parameters were as follows:
name: KA_1_5_177_3
n: 915032679738562091503267973856209150326797385620915032679738562091503267973856209150326797385620915032679738562091503267973856209150326797385620915032679738562091503267973856209
type: snfs
skew: 0.55
deg: 5
c5: 875
c0: -46
m: 200000000000000000000000000000000000
rlim: 8000000
alim: 8000000
lpbr: 28
lpba: 28
mfbr: 52
mfba: 52
rlambda: 2.5
alambda: 2.5
qintsize: 100000
Factor base limits: 8000000/8000000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 52/52
Sieved  special-q in [100000, 13800001)
Primes: RFBsize:539777, AFBsize:540340, largePrimes:15352877 encountered
Relations: rels:15599595, finalFF:1126756
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 
Total sieving time: 103.04 hours.
Total relation processing time: 0.69 hours.
Matrix solve time: 0.00 hours.
Total square root time: 0.00 hours, sqrts: 0.
Prototype def-par.txt line would be:
snfs,179,5,0,0,0,0,0,0,0,0,8000000,8000000,28,28,52,52,2.5,2.5,100000
total time: 103.73 hours.
 --------- CPU info (if available) ----------
CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03
CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03
Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM)
Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888)
Calibrating delay loop... 6029.31 BogoMIPS (lpj=3014656)
Total of 2 processors activated (11993.08 BogoMIPS).

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaMarch 19, 2008 09:00:00 UTC 2008 年 3 月 19 日 (水) 18 時 0 分 0 秒 (日本時間)

14×10182-239

c134

name 名前Robert Backstrom
date 日付April 27, 2012 03:34:23 UTC 2012 年 4 月 27 日 (金) 12 時 34 分 23 秒 (日本時間)
composite number 合成数
28308105810482340002410291246421714755620468802185129407002852371701539195382928877635196931481525955199346273185050669081656635127727<134>
prime factors 素因数
451344638653809780151646232464668802251922144892060586583<57>
62719490575793045441757950900246719553423646117253091908112789360783052414569<77>
factorization results 素因数分解の結果
Number: n
N=28308105810482340002410291246421714755620468802185129407002852371701539195382928877635196931481525955199346273185050669081656635127727
  ( 134 digits)
Divisors found:

Fri Apr 27 13:25:00 2012  prp57 factor: 451344638653809780151646232464668802251922144892060586583
Fri Apr 27 13:25:00 2012  prp77 factor: 62719490575793045441757950900246719553423646117253091908112789360783052414569
Fri Apr 27 13:25:00 2012  elapsed time 02:07:09 (Msieve 1.44 - dependency 1)

Version: 
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.096).
Factorization parameters were as follows:
name: KA_15553_182
n: 28308105810482340002410291246421714755620468802185129407002852371701539195382928877635196931481525955199346273185050669081656635127727
skew: 230213.26
# norm 3.17e+18
c5: 113220
c4: 195751592445
c3: -24861424867873858
c2: -4167564095174783061994
c1: 585565361050877843764704718
c0: 27585112610964065052918078926404
# alpha -6.11
Y1: 283603719751033
Y0: -47818576249424092207929585
# Murphy_E 4.51e-11
# M 17761568934575764873523759120047697046676466831685886564176729340436821051301970821804523785957093898145229501110409963848942211442600
type: gnfs
rlim: 5400000
alim: 5400000
lpbr: 27
lpba: 27
mfbr: 51
mfba: 51
rlambda: 2.5
alambda: 2.5
qintsize: 60000
Factor base limits: 5400000/5400000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 51/51
Sieved  special-q in [100000, 25560000)
Primes: , , 
Relations: 
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 

Msieve: found 3180312 hash collisions in 13399986 relations (10101040 unique)
Msieve: matrix is 1273986 x 1274212 (370.6 MB)

Total sieving time: 0.00 hours.
Total relation processing time: 0.00 hours.
Matrix solve time: 0.00 hours.
Total square root time: 0.00 hours, sqrts: 0.
Prototype def-par.txt line would be:
gnfs,133,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,5400000,5400000,27,27,51,51,2.5,2.5,60000
total time: 0.00 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM)2 Quad  CPU   Q9550  @ 2.83GHz stepping 07
CPU1: Intel(R) Core(TM)2 Quad  CPU   Q9550  @ 2.83GHz stepping 07
CPU2: Intel(R) Core(TM)2 Quad  CPU   Q9550  @ 2.83GHz stepping 07
CPU3: Intel(R) Core(TM)2 Quad  CPU   Q9550  @ 2.83GHz stepping 07
Memory: 8109188k/9175040k available (3972k kernel code, 787464k absent, 278388k reserved, 2498k data, 1292k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 5661.55 BogoMIPS (lpj=2830779)
Calibrating delay using timer specific routine.. 5660.90 BogoMIPS (lpj=2830450)
Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830457)
Calibrating delay using timer specific routine.. 5660.92 BogoMIPS (lpj=2830462)
Total of 4 processors activated (22644.29 BogoMIPS).

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaMarch 19, 2008 09:00:00 UTC 2008 年 3 月 19 日 (水) 18 時 0 分 0 秒 (日本時間)
351e6300Ignacio SantosOctober 8, 2010 06:23:33 UTC 2010 年 10 月 8 日 (金) 15 時 23 分 33 秒 (日本時間)
403e6880110Ignacio SantosOctober 8, 2010 06:23:33 UTC 2010 年 10 月 8 日 (金) 15 時 23 分 33 秒 (日本時間)
770Ignacio SantosJuly 13, 2011 08:14:45 UTC 2011 年 7 月 13 日 (水) 17 時 14 分 45 秒 (日本時間)
4511e6252 / 405732Ignacio SantosOctober 8, 2010 06:23:33 UTC 2010 年 10 月 8 日 (金) 15 時 23 分 33 秒 (日本時間)
220Ignacio SantosJuly 13, 2011 08:14:45 UTC 2011 年 7 月 13 日 (水) 17 時 14 分 45 秒 (日本時間)
5043e661 / 7462Ignacio SantosJuly 13, 2011 08:14:45 UTC 2011 年 7 月 13 日 (水) 17 時 14 分 45 秒 (日本時間)

14×10183-239

c93

name 名前Kenichiroh Yamaguchi
date 日付March 20, 2008 13:29:54 UTC 2008 年 3 月 20 日 (木) 22 時 29 分 54 秒 (日本時間)
composite number 合成数
218044335556607056762155154297125159650663090901409983335965799460624173261563216247971866209<93>
prime factors 素因数
8747097848694413689758101801203081<34>
24927620489480658641554644061289498862540687696094550232089<59>
factorization results 素因数分解の結果
Thu Mar 20 00:47:44 2008  
Thu Mar 20 00:47:44 2008  
Thu Mar 20 00:47:44 2008  Msieve v. 1.33
Thu Mar 20 00:47:44 2008  random seeds: ec6f1bc8 e3913f34
Thu Mar 20 00:47:44 2008  factoring 218044335556607056762155154297125159650663090901409983335965799460624173261563216247971866209 (93 digits)
Thu Mar 20 00:47:46 2008  searching for 15-digit factors
Thu Mar 20 00:47:47 2008  commencing quadratic sieve (93-digit input)
Thu Mar 20 00:47:48 2008  using multiplier of 1
Thu Mar 20 00:47:48 2008  using 32kb Pentium M sieve core
Thu Mar 20 00:47:48 2008  sieve interval: 36 blocks of size 32768
Thu Mar 20 00:47:48 2008  processing polynomials in batches of 6
Thu Mar 20 00:47:48 2008  using a sieve bound of 1888307 (70588 primes)
Thu Mar 20 00:47:48 2008  using large prime bound of 220931919 (27 bits)
Thu Mar 20 00:47:48 2008  using double large prime bound of 1046321638060374 (42-50 bits)
Thu Mar 20 00:47:48 2008  using trial factoring cutoff of 50 bits
Thu Mar 20 00:47:48 2008  polynomial 'A' values have 12 factors
Thu Mar 20 04:02:02 2008  71110 relations (18516 full + 52594 combined from 918052 partial), need 70684
Thu Mar 20 04:02:03 2008  begin with 936567 relations
Thu Mar 20 04:02:04 2008  reduce to 178995 relations in 10 passes
Thu Mar 20 04:02:04 2008  attempting to read 178995 relations
Thu Mar 20 04:02:07 2008  recovered 178995 relations
Thu Mar 20 04:02:07 2008  recovered 159948 polynomials
Thu Mar 20 04:02:07 2008  attempting to build 71110 cycles
Thu Mar 20 04:02:07 2008  found 71110 cycles in 6 passes
Thu Mar 20 04:02:07 2008  distribution of cycle lengths:
Thu Mar 20 04:02:07 2008     length 1 : 18516
Thu Mar 20 04:02:07 2008     length 2 : 12937
Thu Mar 20 04:02:07 2008     length 3 : 12446
Thu Mar 20 04:02:07 2008     length 4 : 9530
Thu Mar 20 04:02:07 2008     length 5 : 6740
Thu Mar 20 04:02:07 2008     length 6 : 4538
Thu Mar 20 04:02:07 2008     length 7 : 2826
Thu Mar 20 04:02:07 2008     length 9+: 3577
Thu Mar 20 04:02:07 2008  largest cycle: 19 relations
Thu Mar 20 04:02:08 2008  matrix is 70588 x 71110 (17.4 MB) with weight 4281603 (60.21/col)
Thu Mar 20 04:02:08 2008  sparse part has weight 4281603 (60.21/col)
Thu Mar 20 04:02:08 2008  filtering completed in 3 passes
Thu Mar 20 04:02:08 2008  matrix is 66351 x 66415 (16.3 MB) with weight 4003888 (60.29/col)
Thu Mar 20 04:02:08 2008  sparse part has weight 4003888 (60.29/col)
Thu Mar 20 04:02:09 2008  saving the first 48 matrix rows for later
Thu Mar 20 04:02:09 2008  matrix is 66303 x 66415 (9.7 MB) with weight 3093727 (46.58/col)
Thu Mar 20 04:02:09 2008  sparse part has weight 2156021 (32.46/col)
Thu Mar 20 04:02:09 2008  matrix includes 64 packed rows
Thu Mar 20 04:02:09 2008  using block size 26566 for processor cache size 2048 kB
Thu Mar 20 04:02:09 2008  commencing Lanczos iteration
Thu Mar 20 04:02:09 2008  memory use: 9.9 MB
Thu Mar 20 04:02:45 2008  lanczos halted after 1050 iterations (dim = 66301)
Thu Mar 20 04:02:45 2008  recovered 15 nontrivial dependencies
Thu Mar 20 04:02:45 2008  prp34 factor: 8747097848694413689758101801203081
Thu Mar 20 04:02:45 2008  prp59 factor: 24927620489480658641554644061289498862540687696094550232089
Thu Mar 20 04:02:45 2008  elapsed time 03:15:01

14×10184-239

c153

name 名前Ignacio Santos
date 日付October 8, 2010 06:22:16 UTC 2010 年 10 月 8 日 (金) 15 時 22 分 16 秒 (日本時間)
composite number 合成数
172072824595882755829342139286678751448635575581093669971277341408334105690458884031727171521353490384868582343553765006223857592421835713415003634722031<153>
prime factors 素因数
11530738827474680344340095285882094371<38>
composite cofactor 合成数の残り
14922966097010109406395092289189184151282479567596158356366061174397182388255514780486680012854552253568010077227461<116>
factorization results 素因数分解の結果
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1289100372
Step 1 took 6599ms
Step 2 took 5054ms
********** Factor found in step 2: 11530738827474680344340095285882094371
Found probable prime factor of 38 digits: 11530738827474680344340095285882094371
Composite cofactor 14922966097010109406395092289189184151282479567596158356366061174397182388255514780486680012854552253568010077227461 has 116 digits
software ソフトウェア
GMP-ECM 6.3

c116

name 名前Dmitry Domanov
date 日付October 11, 2010 02:49:21 UTC 2010 年 10 月 11 日 (月) 11 時 49 分 21 秒 (日本時間)
composite number 合成数
14922966097010109406395092289189184151282479567596158356366061174397182388255514780486680012854552253568010077227461<116>
prime factors 素因数
399248416356628216931980618453190939377<39>
37377646311513947369563642937369624137333302442851722145520171406714562870293<77>
factorization results 素因数分解の結果
Number: z116
N=14922966097010109406395092289189184151282479567596158356366061174397182388255514780486680012854552253568010077227461
  ( 116 digits)
Divisors found:
 r1=399248416356628216931980618453190939377 (pp39)
 r2=37377646311513947369563642937369624137333302442851722145520171406714562870293 (pp77)
Version: Msieve-1.40
Total time: 20.66 hours.
Scaled time: 40.44 units (timescale=1.957).
Factorization parameters were as follows:
name: z116
n: 14922966097010109406395092289189184151282479567596158356366061174397182388255514780486680012854552253568010077227461
skew: 19908.48
# norm 3.90e+015
c5: 95040
c4: -1244766468
c3: -269228078229216
c2: 179725575987543937
c1: 25294972835360023900244
c0: 33834459592974514034961127
# alpha -5.42
Y1: 3898683602279
Y0: -10944354457875273397454
# Murphy_E 5.44e-010
# M 8098991345644333647045863683019458743850883973336446811127910629255971979950833310876105578396084288790217888320855
type: gnfs
rlim: 3400000
alim: 3400000
lpbr: 27
lpba: 27
mfbr: 53
mfba: 53
rlambda: 2.5
alambda: 2.5
qintsize: 100000
Factor base limits: 3400000/3400000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 53/53
Sieved algebraic special-q in [1700000, 2800001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 476863 x 477089
Total sieving time: 20.23 hours.
Total relation processing time: 0.08 hours.
Matrix solve time: 0.28 hours.
Time per square root: 0.07 hours.
Prototype def-par.txt line would be:
gnfs,115,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3400000,3400000,27,27,53,53,2.5,2.5,100000
total time: 20.66 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaMarch 19, 2008 09:00:00 UTC 2008 年 3 月 19 日 (水) 18 時 0 分 0 秒 (日本時間)

14×10186-239

c179

name 名前Wataru Sakai
date 日付June 18, 2010 11:35:18 UTC 2010 年 6 月 18 日 (金) 20 時 35 分 18 秒 (日本時間)
composite number 合成数
55542009256226599432429696184296892574148810476029098315827027599431394234440305810970444228282878991961408967632699708901552387653581044664340813290771174257376854607694271834757<179>
prime factors 素因数
8831504096685906854961851854652321<34>
6289076996190171773132127311967162875386222790205267180773358694979298005392875675088270427791547856615819841843276720754972757597039614088969317<145>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2074512981
Step 1 took 18266ms
********** Factor found in step 1: 8831504096685906854961851854652321
Found probable prime factor of 34 digits: 8831504096685906854961851854652321
Probable prime cofactor 6289076996190171773132127311967162875386222790205267180773358694979298005392875675088270427791547856615819841843276720754972757597039614088969317 has 145 digits
software ソフトウェア
GMP-ECM 6.2.3

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaMarch 19, 2008 09:00:00 UTC 2008 年 3 月 19 日 (水) 18 時 0 分 0 秒 (日本時間)

14×10187-239

c161

name 名前Jo Yeong Uk
date 日付February 26, 2017 08:58:38 UTC 2017 年 2 月 26 日 (日) 17 時 58 分 38 秒 (日本時間)
composite number 合成数
64249643918452685762543484907345414655355769002718705566888466093167260086649199143181173123774784203400923722326748818995341565757608850762121803537399386684807<161>
prime factors 素因数
74139381966718203922912865719163125511<38>
866606143915455010448947146563672029714252286988620529684323320853314484760104943267014959261466106615178212774253838871937<123>
factorization results 素因数分解の結果
GMP-ECM 6.4.4 [configured with GMP 6.0.0, --enable-asm-redc] [ECM]
Input number is 64249643918452685762543484907345414655355769002718705566888466093167260086649199143181173123774784203400923722326748818995341565757608850762121803537399386684807 (161 digits)
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=2164012053
Step 1 took 29960ms
Step 2 took 9746ms
********** Factor found in step 2: 74139381966718203922912865719163125511
Found probable prime factor of 38 digits: 74139381966718203922912865719163125511
Probable prime cofactor 866606143915455010448947146563672029714252286988620529684323320853314484760104943267014959261466106615178212774253838871937 has 123 digits
execution environment 実行環境
Core i7-4930K

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaMarch 19, 2008 09:00:00 UTC 2008 年 3 月 19 日 (水) 18 時 0 分 0 秒 (日本時間)
351e6300Ignacio SantosOctober 8, 2010 06:24:43 UTC 2010 年 10 月 8 日 (金) 15 時 24 分 43 秒 (日本時間)
403e61110110Ignacio SantosOctober 8, 2010 06:24:43 UTC 2010 年 10 月 8 日 (金) 15 時 24 分 43 秒 (日本時間)
1000Dmitry DomanovMay 18, 2012 13:04:38 UTC 2012 年 5 月 18 日 (金) 22 時 4 分 38 秒 (日本時間)
4511e6732 / 422032Ignacio SantosOctober 8, 2010 06:24:43 UTC 2010 年 10 月 8 日 (金) 15 時 24 分 43 秒 (日本時間)
400Dmitry DomanovMay 19, 2012 10:05:02 UTC 2012 年 5 月 19 日 (土) 19 時 5 分 2 秒 (日本時間)
300Serge BatalovMay 27, 2014 00:30:11 UTC 2014 年 5 月 27 日 (火) 9 時 30 分 11 秒 (日本時間)

14×10188-239

c167

name 名前Dmitry Domanov
date 日付May 16, 2012 13:40:28 UTC 2012 年 5 月 16 日 (水) 22 時 40 分 28 秒 (日本時間)
composite number 合成数
60143892698676349917503430043718898150518686050827348961817245364871433349750714656177637969991813971610084605067169874764220706728892676736217629652236070361274160753<167>
prime factors 素因数
27160785900659997888588313244157337<35>
2214364964204326418867159465034646764633749122982406100696852937558853207149879879683642424650608830501960166764162582240480693628569<133>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1661170279
Step 1 took 26390ms
Step 2 took 10385ms
********** Factor found in step 2: 27160785900659997888588313244157337
Found probable prime factor of 35 digits: 27160785900659997888588313244157337

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaMarch 19, 2008 09:00:00 UTC 2008 年 3 月 19 日 (水) 18 時 0 分 0 秒 (日本時間)
351e6300Ignacio SantosOctober 8, 2010 07:14:51 UTC 2010 年 10 月 8 日 (金) 16 時 14 分 51 秒 (日本時間)
403e6110 / 2144Ignacio SantosOctober 8, 2010 07:14:51 UTC 2010 年 10 月 8 日 (金) 16 時 14 分 51 秒 (日本時間)
4511e632 / 4441Ignacio SantosOctober 8, 2010 07:14:51 UTC 2010 年 10 月 8 日 (金) 16 時 14 分 51 秒 (日本時間)

14×10191-239

c181

name 名前Ignacio Santos
date 日付October 8, 2010 12:48:56 UTC 2010 年 10 月 8 日 (金) 21 時 48 分 56 秒 (日本時間)
composite number 合成数
2546559112371994905195829433605899484206098477152865271283661349039656055345770044072397930812609577197498856683401452432364225842501608547919339798077346367325473388189869725631633<181>
prime factors 素因数
3598465183229085294499173214049<31>
707679241761299541712417487810079463164495158192167808861559999579405873611117043978013451576631655109578525920464298098877911368288678903590008167217<150>
factorization results 素因数分解の結果
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1606400259
Step 1 took 8736ms
Step 2 took 5975ms
********** Factor found in step 2: 3598465183229085294499173214049
Found probable prime factor of 31 digits: 3598465183229085294499173214049
Probable prime cofactor 707679241761299541712417487810079463164495158192167808861559999579405873611117043978013451576631655109578525920464298098877911368288678903590008167217 has 150 digits
software ソフトウェア
GMP-ECM 6.3

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaMarch 19, 2008 09:00:00 UTC 2008 年 3 月 19 日 (水) 18 時 0 分 0 秒 (日本時間)

14×10194-239

c170

name 名前matsui
date 日付March 2, 2011 09:01:36 UTC 2011 年 3 月 2 日 (水) 18 時 1 分 36 秒 (日本時間)
composite number 合成数
14460780334668632439800684750438911471451831440852736833304905040228503223722801720182793231229352462511233456312663137788620584579198044464650109088815201057970721868161<170>
prime factors 素因数
16017356713461169207690816324785616034907328460547193619<56>
902819397317637795287565649613985785907793845983174204562788702221650522111969837567369819809912113139602862622619<114>
factorization results 素因数分解の結果
N=14460780334668632439800684750438911471451831440852736833304905040228503223722801720182793231229352462511233456312663137788620584579198044464650109088815201057970721868161
  ( 170 digits)
SNFS difficulty: 195 digits.
Divisors found:
 r1=16017356713461169207690816324785616034907328460547193619 (pp56)
 r2=902819397317637795287565649613985785907793845983174204562788702221650522111969837567369819809912113139602862622619 (pp114)
Version: Msieve v. 1.48
Total time:
Scaled time: 52.26 units (timescale=0.451).
Factorization parameters were as follows:
n: 14460780334668632439800684750438911471451831440852736833304905040228503223722801720182793231229352462511233456312663137788620584579198044464650109088815201057970721868161
m: 200000000000000000000000000000000000000
deg: 5
c5: 4375
c0: -23
skew: 0.35
type: snfs
lss: 1
rlim: 12500000
alim: 12500000
lpbr: 28
lpba: 28
mfbr: 55
mfba: 55
rlambda: 2.5
alambda: 2.5
qintsize: 320000
Factor base limits: 12500000/12500000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 55/55
Sieved rational special-q in [6250000, 13930001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 2456581 x 2456807
Total sieving time:
Total relation processing time:
Matrix solve time:
Time per square root:
Prototype def-par.txt line would be:
snfs,195.000,5,0,0,0,0,0,0,0,0,12500000,12500000,28,28,55,55,2.5,2.5,100000
total time:

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaMarch 19, 2008 09:00:00 UTC 2008 年 3 月 19 日 (水) 18 時 0 分 0 秒 (日本時間)
351e6300Ignacio SantosOctober 8, 2010 12:50:57 UTC 2010 年 10 月 8 日 (金) 21 時 50 分 57 秒 (日本時間)
403e6110 / 2144Ignacio SantosOctober 8, 2010 12:50:57 UTC 2010 年 10 月 8 日 (金) 21 時 50 分 57 秒 (日本時間)
4511e632 / 4441Ignacio SantosOctober 8, 2010 12:50:57 UTC 2010 年 10 月 8 日 (金) 21 時 50 分 57 秒 (日本時間)

14×10195-239

c163

name 名前Dmitry Domanov
date 日付May 16, 2012 13:41:05 UTC 2012 年 5 月 16 日 (水) 22 時 41 分 5 秒 (日本時間)
composite number 合成数
1050415496599729184030472344935984398072307415455557540279532227120764814671403866152028320499524296065320837863161377324577858486771429621305467732075933089688179<163>
prime factors 素因数
459677278245238185567873636228214391<36>
2285115115129383661600997441443524486382279947226925876095131334689763789253307221014791602935849336209894859533061101128087269<127>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=417253223
Step 1 took 27071ms
Step 2 took 10008ms
********** Factor found in step 2: 459677278245238185567873636228214391
Found probable prime factor of 36 digits: 459677278245238185567873636228214391

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaMarch 19, 2008 09:00:00 UTC 2008 年 3 月 19 日 (水) 18 時 0 分 0 秒 (日本時間)
351e6300Ignacio SantosOctober 8, 2010 12:51:19 UTC 2010 年 10 月 8 日 (金) 21 時 51 分 19 秒 (日本時間)
403e6110 / 2144Ignacio SantosOctober 8, 2010 12:51:19 UTC 2010 年 10 月 8 日 (金) 21 時 51 分 19 秒 (日本時間)
4511e632 / 4441Ignacio SantosOctober 8, 2010 12:51:19 UTC 2010 年 10 月 8 日 (金) 21 時 51 分 19 秒 (日本時間)

14×10196-239

c176

name 名前Ignacio Santos
date 日付October 8, 2010 12:49:58 UTC 2010 年 10 月 8 日 (金) 21 時 49 分 58 秒 (日本時間)
composite number 合成数
82446278653016801773323133727349364258137822362969290586538866029795930092198425019769955074907473669771862059726466019026222135955519190870116835970135969717742527642353003153<176>
prime factors 素因数
610549116237318628374373127254607<33>
135036275477909590644828044635146967514082249300158584146137750683861603708636990567352097221628528182486666349621734915832535731127812338875679<144>
factorization results 素因数分解の結果
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=192517581
Step 1 took 8580ms
Step 2 took 6006ms
********** Factor found in step 2: 610549116237318628374373127254607
Found probable prime factor of 33 digits: 610549116237318628374373127254607
Probable prime cofactor 135036275477909590644828044635146967514082249300158584146137750683861603708636990567352097221628528182486666349621734915832535731127812338875679 has 144 digits
software ソフトウェア
GMP-ECM 6.3

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaMarch 19, 2008 09:00:00 UTC 2008 年 3 月 19 日 (水) 18 時 0 分 0 秒 (日本時間)

14×10197-239

c132

name 名前Sinkiti Sibata
date 日付April 22, 2011 22:25:05 UTC 2011 年 4 月 23 日 (土) 7 時 25 分 5 秒 (日本時間)
composite number 合成数
109891738093046325077322651135173252077103201484245078671008609110972785624963035514012070014075186034316627804214647165243254054401<132>
prime factors 素因数
32763791234608198379299093687572314288256794009<47>
3354060502527202463361127118745414757822316829596690824311908468084791433260081976489<85>
factorization results 素因数分解の結果
Number: 15553_197
N=109891738093046325077322651135173252077103201484245078671008609110972785624963035514012070014075186034316627804214647165243254054401
  ( 132 digits)
Divisors found:
 r1=32763791234608198379299093687572314288256794009 (pp47)
 r2=3354060502527202463361127118745414757822316829596690824311908468084791433260081976489 (pp85)
Version: Msieve v. 1.42
Total time: 11.95 hours.
Scaled time: 10.17 units (timescale=0.851).
Factorization parameters were as follows:
name: 15553_197
# Murphy_E = 6.400633e-11, selected by Jeff Gilchrist
n: 109891738093046325077322651135173252077103201484245078671008609110972785624963035514012070014075186034316627804214647165243254054401
Y0: -19576534341799516229397428
Y1: 273580858241237
c0: 15275129491140120257334836888445
c1: -767381195893339816113809552
c2: 4967635633760400958677
c3: 88731202901061528
c4: -29555707958
c5: 38220
skew: 213629.78
type: gnfs
# selected mechanically
rlim: 10400000
alim: 10400000
lpbr: 28
lpba: 28
mfbr: 54
mfba: 54
rlambda: 2.6
alambda: 2.6
Factor base limits: 10400000/10400000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 54/54
Sieved algebraic special-q in [5200000, 11300001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1602703 x 1602936
Total sieving time: 0.00 hours.
Total relation processing time: 0.19 hours.
Matrix solve time: 10.93 hours.
Time per square root: 0.83 hours.
Prototype def-par.txt line would be:
gnfs,131,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,10400000,10400000,28,28,54,54,2.6,2.6,100000
total time: 11.95 hours.
 --------- CPU info (if available) ----------
CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 5600+ stepping 02
CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 5600+ stepping 02
Memory: 3886124k/4718592k available (3786k kernel code, 656964k absent, 175504k reserved, 2294k data, 1304k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 5827.08 BogoMIPS (lpj=2913541)
Calibrating delay using timer specific routine.. 5826.53 BogoMIPS (lpj=2913268)
Total of 2 processors activated (11653.61 BogoMIPS).

Total time: 4 days 10 hours.

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaMarch 19, 2008 09:00:00 UTC 2008 年 3 月 19 日 (水) 18 時 0 分 0 秒 (日本時間)
351e6825Wataru SakaiApril 17, 2009 13:55:52 UTC 2009 年 4 月 17 日 (金) 22 時 55 分 52 秒 (日本時間)
403e62111Wataru SakaiJuly 14, 2009 08:04:39 UTC 2009 年 7 月 14 日 (火) 17 時 4 分 39 秒 (日本時間)
4511e63974Wataru SakaiJune 7, 2010 08:16:46 UTC 2010 年 6 月 7 日 (月) 17 時 16 分 46 秒 (日本時間)

14×10198-239

c166

name 名前Dmitry Domanov
date 日付May 17, 2012 07:16:27 UTC 2012 年 5 月 17 日 (木) 16 時 16 分 27 秒 (日本時間)
composite number 合成数
5028485098136728944436001627898776836667469685001236336987086264666384406646708253757288251228540749304657853324543703002315126584466647840564992246460113661796990543<166>
prime factors 素因数
4280333875923656164217650925571001<34>
1174788052497803975185733772410188456265149505648421038417931241819507178125460724839687630679774634721312204403834609371885184937543<133>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=4136792943
Step 1 took 27391ms
Step 2 took 10433ms
********** Factor found in step 2: 4280333875923656164217650925571001
Found probable prime factor of 34 digits: 4280333875923656164217650925571001

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaMarch 19, 2008 09:00:00 UTC 2008 年 3 月 19 日 (水) 18 時 0 分 0 秒 (日本時間)
351e6300Ignacio SantosOctober 8, 2010 12:51:47 UTC 2010 年 10 月 8 日 (金) 21 時 51 分 47 秒 (日本時間)
403e6110 / 2144Ignacio SantosOctober 8, 2010 12:51:47 UTC 2010 年 10 月 8 日 (金) 21 時 51 分 47 秒 (日本時間)
4511e632 / 4441Ignacio SantosOctober 8, 2010 12:51:47 UTC 2010 年 10 月 8 日 (金) 21 時 51 分 47 秒 (日本時間)

14×10200-239

c200

name 名前Robert Backstrom
date 日付October 29, 2008 22:21:16 UTC 2008 年 10 月 30 日 (木) 7 時 21 分 16 秒 (日本時間)
composite number 合成数
17283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617<200>
prime factors 素因数
3033496037622857307870842268067364837548775059726949<52>
12252998283212933037938412743529586470315179061764978083771647637<65>
465004560406171829084976708697089017173510355031372707962704278582642195060480525009<84>
factorization results 素因数分解の結果
Number: n
N=17283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617
  ( 200 digits)
SNFS difficulty: 201 digits.
Divisors found:

Thu Oct 30 08:57:29 2008  prp52 factor: 3033496037622857307870842268067364837548775059726949
Thu Oct 30 08:57:29 2008  prp65 factor: 12252998283212933037938412743529586470315179061764978083771647637
Thu Oct 30 08:57:29 2008  prp84 factor: 465004560406171829084976708697089017173510355031372707962704278582642195060480525009
Thu Oct 30 08:57:30 2008  elapsed time 26:37:36 (Msieve 1.38)

Version: GGNFS-0.77.1-20051202-athlon
Total time: 83.40 hours.
Scaled time: 170.54 units (timescale=2.045).
Factorization parameters were as follows:
name: KA_1_5_199_3
n: 17283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617
type: snfs
skew: 1.10
deg: 5
c5: 14
c0: -23
m: 10000000000000000000000000000000000000000
rlim: 9600000
alim: 9600000
lpbr: 29
lpba: 29
mfbr: 58
mfba: 58
rlambda: 2.5
alambda: 2.5
qintsize: 100000
Factor base limits: 9600000/9600000
Large primes per side: 3
Large prime bits: 29/29
Max factor residue bits: 58/58
Sieved  special-q in [100000, 13300001)
Primes: RFBsize:639851, AFBsize:640823, largePrimes:35380027 encountered
Relations: rels:26823768, finalFF:263116
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 
Total sieving time: 81.43 hours.
Total relation processing time: 1.97 hours.
Matrix solve time: 0.00 hours.
Total square root time: 0.00 hours, sqrts: 0.
Prototype def-par.txt line would be:
snfs,201,5,0,0,0,0,0,0,0,0,9600000,9600000,29,29,58,58,2.5,2.5,100000
total time: 83.40 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaMarch 19, 2008 09:00:00 UTC 2008 年 3 月 19 日 (水) 18 時 0 分 0 秒 (日本時間)
351e6904Serge BatalovSeptember 9, 2008 08:15:55 UTC 2008 年 9 月 9 日 (火) 17 時 15 分 55 秒 (日本時間)

14×10201-239

c180

name 名前Serge Batalov
date 日付May 16, 2012 16:46:07 UTC 2012 年 5 月 17 日 (木) 1 時 46 分 7 秒 (日本時間)
composite number 合成数
424941384854187291238884748198954580911070393664338024468964055580778080484999736565645054087725663535200795506902648886071989656720445903799018277400079592285676939870675912723589<180>
prime factors 素因数
22389769353745427841394724213905932787661<41>
composite cofactor 合成数の残り
18979265848627503637959683967999446515964636822367448311257623627043420785409286585052702205017898129194127649121318363299354591926324836249<140>
factorization results 素因数分解の結果
Using B1=2000000, B2=5705781910, polynomial Dickson(6), sigma=2292340594
Step 1 took 9725ms
Step 2 took 6044ms
********** Factor found in step 2: 22389769353745427841394724213905932787661
Found probable prime factor of 41 digits: 22389769353745427841394724213905932787661
Composite cofactor 18979265848627503637959683967999446515964636822367448311257623627043420785409286585052702205017898129194127649121318363299354591926324836249 has 140 digits

c140

name 名前Erik Branger
date 日付May 16, 2016 17:15:59 UTC 2016 年 5 月 17 日 (火) 2 時 15 分 59 秒 (日本時間)
composite number 合成数
18979265848627503637959683967999446515964636822367448311257623627043420785409286585052702205017898129194127649121318363299354591926324836249<140>
prime factors 素因数
119305004153842178761686037810752942844750446073<48>
159081892526100570686976331024895454073292933365768980754351784861050248698496786500926910113<93>
factorization results 素因数分解の結果
Number: 15553_201
N = 18979265848627503637959683967999446515964636822367448311257623627043420785409286585052702205017898129194127649121318363299354591926324836249 (140 digits)
Divisors found:
r1=119305004153842178761686037810752942844750446073 (pp48)
r2=159081892526100570686976331024895454073292933365768980754351784861050248698496786500926910113 (pp93)
Version: Msieve v. 1.51 (SVN 845)
Total time: 314.18 hours.
Factorization parameters were as follows:
# Murphy_E = 2.37793157e-11, selected by Maksym Voznyy
# root optimized by CADO-NFS-2.2.0
n: 18979265848627503637959683967999446515964636822367448311257623627043420785409286585052702205017898129194127649121318363299354591926324836249
Y0: -1388912911562509526673132789
Y1: 1658272491260803
c0: 868599447943150836071103393199933600
c1: 972880076065704380056561938380
c2: 138313140770341447077077
c3: -215807172553666742
c4: 11760160188
c5: 3672
skew: 4379662.43909
type: gnfs
# selected mechanically
rlim: 17400000
alim: 17400000
lpbr: 28
lpba: 28
mfbr: 55
mfba: 55
rlambda: 2.6
alambda: 2.6
Factor base limits: 17400000/17400000
Large primes per side: 3
Large prime bits: 28/28
Sieved algebraic special-q in [0, 0)
Total raw relations: 23156552
Relations: 3017200 relations
Pruned matrix : 1898223 x 1898449
Polynomial selection time: 0.00 hours.
Total sieving time: 309.85 hours.
Total relation processing time: 0.18 hours.
Matrix solve time: 3.61 hours.
time per square root: 0.53 hours.
Prototype def-par.txt line would be: gnfs,139,5,65,2000,1e-05,0.28,250,20,50000,3600,17400000,17400000,28,28,55,55,2.6,2.6,100000
total time: 314.18 hours.
Intel64 Family 6 Model 58 Stepping 9, GenuineIntel
Windows-post2008Server-6.2.9200
processors: 8, speed: 2.29GHz
software ソフトウェア
GGNFS, Msieve

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaMay 16, 2012 01:00:00 UTC 2012 年 5 月 16 日 (水) 10 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovMay 17, 2012 22:48:51 UTC 2012 年 5 月 18 日 (金) 7 時 48 分 51 秒 (日本時間)
4511e64380480Dmitry DomanovMay 17, 2012 22:48:51 UTC 2012 年 5 月 18 日 (金) 7 時 48 分 51 秒 (日本時間)
850Serge BatalovNovember 8, 2013 01:46:04 UTC 2013 年 11 月 8 日 (金) 10 時 46 分 4 秒 (日本時間)
850Serge BatalovNovember 8, 2013 17:09:11 UTC 2013 年 11 月 9 日 (土) 2 時 9 分 11 秒 (日本時間)
400Serge BatalovJanuary 6, 2014 02:23:21 UTC 2014 年 1 月 6 日 (月) 11 時 23 分 21 秒 (日本時間)
1800Serge BatalovMay 24, 2014 17:35:15 UTC 2014 年 5 月 25 日 (日) 2 時 35 分 15 秒 (日本時間)

14×10202-239

c191

name 名前Dmitry Domanov
date 日付May 20, 2012 08:53:47 UTC 2012 年 5 月 20 日 (日) 17 時 53 分 47 秒 (日本時間)
composite number 合成数
23857235629550224166416348159084815085234672664945661474406621376291994618000512727557660187287855452198788933423915540674896223899582558191327000602817208071879537087628857203673874566913943<191>
prime factors 素因数
16393113374114277878498826000101634119<38>
composite cofactor 合成数の残り
1455320602322085374936866255273930544286757875847008035259322090909402830282565362321168228127459858175825533278475893050495648082552142159115683778907697<154>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=3454838635
Step 1 took 92577ms
Step 2 took 22898ms
********** Factor found in step 2: 16393113374114277878498826000101634119
Found probable prime factor of 38 digits: 16393113374114277878498826000101634119

c154

name 名前Ignacio Santos
date 日付September 25, 2021 15:45:01 UTC 2021 年 9 月 26 日 (日) 0 時 45 分 1 秒 (日本時間)
composite number 合成数
1455320602322085374936866255273930544286757875847008035259322090909402830282565362321168228127459858175825533278475893050495648082552142159115683778907697<154>
prime factors 素因数
176219705769526729777409657350634573173241<42>
composite cofactor 合成数の残り
8258557667923144577173240067432478551948638504524210736673059088796593510817321713593516246530469014400377498617<112>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:844617378
Step 1 took 21625ms
Step 2 took 11297ms
********** Factor found in step 2: 176219705769526729777409657350634573173241
Found prime factor of 42 digits: 176219705769526729777409657350634573173241
Composite cofactor 8258557667923144577173240067432478551948638504524210736673059088796593510817321713593516246530469014400377498617 has 112 digits
 
software ソフトウェア
GMP-ECM

c112

name 名前Eric Jeancolas
date 日付September 29, 2021 15:14:36 UTC 2021 年 9 月 30 日 (木) 0 時 14 分 36 秒 (日本時間)
composite number 合成数
8258557667923144577173240067432478551948638504524210736673059088796593510817321713593516246530469014400377498617<112>
prime factors 素因数
911046783069864422972230812802826621105738216666949481<54>
9064910629611245580503420624930331919633663592575550922257<58>
factorization results 素因数分解の結果
8258557667923144577173240067432478551948638504524210736673059088796593510817321713593516246530469014400377498617=911046783069864422972230812802826621105738216666949481*9064910629611245580503420624930331919633663592575550922257

cado polynomial
n: 8258557667923144577173240067432478551948638504524210736673059088796593510817321713593516246530469014400377498617
skew: 4983.856
c0: -51229440717722137541700
c1: -421800279314651256980
c2: -100591083341797713
c3: 22565816354135
c4: -511086192
c5: 158400
Y0: -3157043797576449673499
Y1: 2573630446603727
# MurphyE (Bf=6.711e+07,Bg=3.355e+07,area=4.194e+12) = 1.382e-06
# f(x) = 158400*x^5-511086192*x^4+22565816354135*x^3-100591083341797713*x^2-421800279314651256980*x-51229440717722137541700
# g(x) = 2573630446603727*x-3157043797576449673499

cado parameters (extracts)
tasks.lim0 = 1400000
tasks.lim1 = 2500000
tasks.lpb0 = 25
tasks.lpb1 = 26
tasks.sieve.mfb0 = 50
tasks.sieve.mfb1 = 52
tasks.I = 12
tasks.linalg.m = 64
tasks.linalg.n = 64
tasks.linalg.characters.nchar = 50

cado log (extracts)
Info:Square Root: Factors: 9064910629611245580503420624930331919633663592575550922257 911046783069864422972230812802826621105738216666949481
Info:Square Root: Total cpu/real time for sqrt: 372.16/98.6623
Info:Filtering - Singleton removal: Total cpu/real time for purge: 70.1/80.8768
Info:Generate Factor Base: Total cpu/real time for makefb: 2.36/0.637153
Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 22.31/22.8211
Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics:
Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 21.9s
Info:Polynomial Selection (root optimized): Aggregate statistics:
Info:Polynomial Selection (root optimized): Total time: 295.37
Info:Polynomial Selection (root optimized): Rootsieve time: 294.41
Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 91.84/99.6974
Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics:
Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 71.89999999999999s
Info:Filtering - Merging: Merged matrix has 322084 rows and total weight 50238419 (156.0 entries per row on average)
Info:Filtering - Merging: Total cpu/real time for merge: 50.56/15.0283
Info:Filtering - Merging: Total cpu/real time for replay: 10.74/8.75449
Info:Linear Algebra: Total cpu/real time for bwc: 1395.55/360.27
Info:Linear Algebra: Aggregate statistics:
Info:Linear Algebra: Krylov: CPU time 852.19, WCT time 217.57, iteration CPU time 0.02, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (10112 iterations)
Info:Linear Algebra: Lingen CPU time 47.01, WCT time 12.0
Info:Linear Algebra: Mksol: CPU time 469.34,  WCT time 119.99, iteration CPU time 0.02, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (5120 iterations)
Info:Generate Free Relations: Total cpu/real time for freerel: 62.3/16.4955
Info:Quadratic Characters: Total cpu/real time for characters: 12.04/4.64992
Info:Polynomial Selection (size optimized): Aggregate statistics:
Info:Polynomial Selection (size optimized): potential collisions: 11711.3
Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 11705/32.360/39.852/45.320/1.086
Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 9220/31.950/35.321/40.290/0.927
Info:Polynomial Selection (size optimized): Total time: 684.14
Info:Square Root: Total cpu/real time for sqrt: 372.16/98.6623
Info:Lattice Sieving: Aggregate statistics:
Info:Lattice Sieving: Total number of relations: 5607885
Info:Lattice Sieving: Average J: 1891.83 for 122461 special-q, max bucket fill -bkmult 1.0,1s:1.319240
Info:Lattice Sieving: Total time: 11223.9s
Info:HTTP server: Shutting down HTTP server
Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 23436.6/6550.43
Info:root: Cleaning up computation data in /tmp/cado.nq89l5ss
9064910629611245580503420624930331919633663592575550922257 911046783069864422972230812802826621105738216666949481
software ソフトウェア
cado-nfs-3.0.0
execution environment 実行環境
Linux Ubuntu 20.04.1 LTS [5.4.0-72-generic|libc 2.31 (Ubuntu GLIBC 2.31-0ubuntu9.3)]
GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaMay 16, 2012 01:00:00 UTC 2012 年 5 月 16 日 (水) 10 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovMay 18, 2012 13:05:00 UTC 2012 年 5 月 18 日 (金) 22 時 5 分 0 秒 (日本時間)
4511e61750 / 4254450Dmitry DomanovMay 19, 2012 10:05:34 UTC 2012 年 5 月 19 日 (土) 19 時 5 分 34 秒 (日本時間)
300Serge BatalovMay 27, 2014 00:30:11 UTC 2014 年 5 月 27 日 (火) 9 時 30 分 11 秒 (日本時間)
1000Ignacio SantosSeptember 25, 2021 14:06:57 UTC 2021 年 9 月 25 日 (土) 23 時 6 分 57 秒 (日本時間)

14×10203-239

c154

name 名前Bob Backstrom
date 日付October 19, 2021 06:07:34 UTC 2021 年 10 月 19 日 (火) 15 時 7 分 34 秒 (日本時間)
composite number 合成数
7580399768441789341740811129342932567797118882913370356819595211908926624228403008087480932205580227269977804202517548052821671691711853104770645506727543<154>
prime factors 素因数
2488386683021826130779011036496995958120146461<46>
654591677528045397490883596276681066741838463129629<51>
4653757635698959185611146253903714422957075631008342682047<58>
factorization results 素因数分解の結果
#
# N = 14x10^203-23 = 15(202)3
#
n: 7580399768441789341740811129342932567797118882913370356819595211908926624228403008087480932205580227269977804202517548052821671691711853104770645506727543
m: 10000000000000000000000000000000000
deg: 6
c6: 7
c0: -115
skew: 1.59
# Murphy_E = 9.813e-12
type: snfs
lss: 1
rlim: 18200000
alim: 18200000
lpbr: 29
lpba: 29
mfbr: 56
mfba: 56
rlambda: 2.6
alambda: 2.6



GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM]
Input number is 7580399768441789341740811129342932567797118882913370356819595211908926624228403008087480932205580227269977804202517548052821671691711853104770645506727543 (154 digits)
Using B1=50710000, B2=288592384096, polynomial Dickson(12), sigma=1:4112060293
Step 1 took 106644ms
Step 2 took 35627ms
********** Factor found in step 2: 2488386683021826130779011036496995958120146461
Found prime factor of 46 digits: 2488386683021826130779011036496995958120146461
Composite cofactor 3046311017561132061032646056299904317413404144170839094988394784904962342517220407189549854501024627292070563 has 109 digits



CADO

STA:Tue 19 Oct 2021 16:26:30 AEDT (3,046,311,017,561,132,061,032,646,056,299,904,317,413,404,144,170,839,094,988,394,784,904,962,342,517,220,407,189,549,854,501,024,627,292,070,563 - C109)

/home/bob/cado-nfs/cado-nfs-2.3.0/cado-nfs.py -t 16 --no-colors --screenlog DEBUG 3046311017561132061032646056299904317413404144170839094988394784904962342517220407189549854501024627292070563 2>&1 | tee -a log54

Debug:root: Looking for parameter file for c109 in directory /home/bob/cado-nfs/cado-nfs-2.3.0/parameters/factor
Info:root: Using default parameter file /home/bob/cado-nfs/cado-nfs-2.3.0/parameters/factor/params.c110
Debug:Parameters: Reading parameter file /home/bob/cado-nfs/cado-nfs-2.3.0/parameters/factor/params.c110
Info:root: No database exists yet
Info:root: Created temporary directory /tmp/cado.msaj6frt
Info:Database: Opened connection to database /tmp/cado.msaj6frt/c110.db
Info:root: tasks.polyselect.threads = 2
Info:root: tasks.sieve.las.threads = 2
Info:root: slaves.scriptpath is /home/bob/cado-nfs/cado-nfs-2.3.0
Info:root: Command line parameters: /home/bob/cado-nfs/cado-nfs-2.3.0/cado-nfs.py -t 16 --no-colors --screenlog DEBUG 3046311017561132061032646056299904317413404144170839094988394784904962342517220407189
549854501024627292070563
Debug:root: Root parameter dictionary:
N = 3046311017561132061032646056299904317413404144170839094988394784904962342517220407189549854501024627292070563
lim0 = 2910696
lim1 = 3533488
lpb0 = 25
lpb1 = 25
name = c110
...
n: 3046311017561132061032646056299904317413404144170839094988394784904962342517220407189549854501024627292070563
skew: 3910.63
c0: 226564262383192500538056
c1: 111920372408999400379
c2: -80804772377992000
c3: 10633939263397
c4: 2564795448
c5: 257760
Y0: -577935274930844547222
Y1: 5588788076169361
# MurphyE (Bf=3.53e+06,Bg=2.91e+06,area=2.96e+13) = 5.42e-09
# f(x) = 257760*x^5+2564795448*x^4+10633939263397*x^3-80804772377992000*x^2+111920372408999400379*x+226564262383192500538056
# g(x) = 5588788076169361*x-577935274930844547222
...
Info:Square Root: finished
Info:Square Root: Factors: 4653757635698959185611146253903714422957075631008342682047 654591677528045397490883596276681066741838463129629
Debug:Square Root: Exit SqrtTask.run(sqrt)
Info:Polynomial Selection (size optimized): Aggregate statistics:
Info:Polynomial Selection (size optimized): potential collisions: 27840.2
Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 28289/31.690/38.374/43.860/0.984
Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 28289/30.960/34.669/38.980/1.096
Info:Polynomial Selection (size optimized): Total time: 997.95
Info:Polynomial Selection (root optimized): Aggregate statistics:
Info:Polynomial Selection (root optimized): Total time: 221.69
Info:Polynomial Selection (root optimized): Rootsieve time: 220.79
Info:Generate Factor Base: Total cpu/real time for makefb: 4.46/0.435339
Info:Generate Free Relations: Total cpu/real time for freerel: 36.1/2.42331
Info:Lattice Sieving: Aggregate statistics:
Info:Lattice Sieving: Total number of relations: 3705568
Info:Lattice Sieving: Average J: 1885.88 for 90984 special-q, max bucket fill: 0.753718
Info:Lattice Sieving: Total CPU time: 22707.2s
Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 8.89/9.23408
Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics:
Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 9.0s
Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 53.46/22.724
Info:Filtering - Singleton removal: Total cpu/real time for purge: 35.23/18.86
Info:Filtering - Merging: Total cpu/real time for merge: 123.84/99.9484
Info:Filtering - Merging: Total cpu/real time for replay: 12.55/9.82606
Info:Linear Algebra: Total cpu/real time for bwc: 2865.8/0.000314474
Info:Linear Algebra: Aggregate statistics:
Info:Linear Algebra: Krylov: WCT time 118.35
Info:Linear Algebra: Lingen CPU time 69.81, WCT time 7.15
Info:Linear Algebra: Mksol: WCT time 69.57
Info:Quadratic Characters: Total cpu/real time for characters: 12.49/2.87929
Info:Square Root: Total cpu/real time for sqrt: 265.8/37.6044
Info:HTTP server: Shutting down HTTP server
Info:Complete Factorization: Total cpu/elapsed time for entire factorization: 27345.5/2072.39
Info:root: Cleaning up computation data in /tmp/cado.msaj6frt
4653757635698959185611146253903714422957075631008342682047 654591677528045397490883596276681066741838463129629

END:Tue 19 Oct 2021 17:01:03 AEDT (3,046,311,017,561,132,061,032,646,056,299,904,317,413,404,144,170,839,094,988,394,784,904,962,342,517,220,407,189,549,854,501,024,627,292,070,563 - C109)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaMay 16, 2012 01:00:00 UTC 2012 年 5 月 16 日 (水) 10 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovMay 17, 2012 22:49:54 UTC 2012 年 5 月 18 日 (金) 7 時 49 分 54 秒 (日本時間)
4511e6740 / 4254440Dmitry DomanovMay 17, 2012 22:49:54 UTC 2012 年 5 月 18 日 (金) 7 時 49 分 54 秒 (日本時間)
300Serge BatalovMay 27, 2014 00:30:11 UTC 2014 年 5 月 27 日 (火) 9 時 30 分 11 秒 (日本時間)

14×10204-239

c193

name 名前Bob Backstrom
date 日付July 9, 2021 18:54:05 UTC 2021 年 7 月 10 日 (土) 3 時 54 分 5 秒 (日本時間)
composite number 合成数
1008040457326078312249444326667424987895365064812047174870622589711911145602005259025241279691327412611433666171541611720091919475691637965449211457414779980713674816644657771836318591219376121<193>
prime factors 素因数
286137686909647426989001808532803068162496876484066221908821795596878835609837516050549<87>
3522920969317765144098981345965949280569941935864733481131256730464438242446979930694703356934448774979829<106>
factorization results 素因数分解の結果
Number: n
N=1008040457326078312249444326667424987895365064812047174870622589711911145602005259025241279691327412611433666171541611720091919475691637965449211457414779980713674816644657771836318591219376121
  ( 193 digits)
SNFS difficulty: 205 digits.
Divisors found:

Sat Jul 10 04:48:17 2021  p87 factor: 286137686909647426989001808532803068162496876484066221908821795596878835609837516050549
Sat Jul 10 04:48:17 2021  p106 factor: 3522920969317765144098981345965949280569941935864733481131256730464438242446979930694703356934448774979829
Sat Jul 10 04:48:17 2021  elapsed time 02:02:33 (Msieve 1.54 - dependency 3)

Version: 
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.351).
Factorization parameters were as follows:
#
# N = 14x10^204-23 = 15(203)3
#
n: 1008040457326078312249444326667424987895365064812047174870622589711911145602005259025241279691327412611433666171541611720091919475691637965449211457414779980713674816644657771836318591219376121
m: 10000000000000000000000000000000000
deg: 6
c6: 14
c0: -23
skew: 1.09
# Murphy_E = 9.002e-12
type: snfs
lss: 1
rlim: 18400000
alim: 18400000
lpbr: 29
lpba: 29
mfbr: 56
mfba: 56
rlambda: 2.6
alambda: 2.6
Factor base limits: 18400000/18400000
Large primes per side: 3
Large prime bits: 29/29
Max factor residue bits: 56/56
Sieved  special-q in [100000, 36400000)
Primes: , , 
Relations: 
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 

Msieve: found 9210604 hash collisions in 61918470 relations (55507963 unique)
Msieve: matrix is 2244885 x 2245111 (773.4 MB)

Sieving start time : 2021/07/09 13:58:20
Sieving end time  : 2021/07/10 02:44:30

Total sieving time: 12hrs 46min 10secs.

Total relation processing time: 1hrs 36min 35sec.
Matrix solve time: 0.00 hours.
Total square root time: 0hrs 9min 20sec.

Prototype def-par.txt line would be:
snfs,205,6,0,0,0,0,0,0,0,0,18400000,18400000,29,29,56,56,2.6,2.6,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------
[    0.117292] smpboot: CPU0: AMD Ryzen 7 2700 Eight-Core Processor (family: 0x17, model: 0x8, stepping: 0x2)
[    0.000000] Memory: 16239972K/16727236K available (14339K kernel code, 2400K rwdata, 5008K rodata, 2736K init, 4964K bss, 487264K reserved, 0K cma-reserved)
[    0.153499] x86/mm: Memory block size: 128MB
[    0.000005] Calibrating delay loop (skipped), value calculated using timer frequency.. 6399.03 BogoMIPS (lpj=12798064)
[    0.152047] smpboot: Total of 16 processors activated (102384.51 BogoMIPS)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaMay 16, 2012 01:00:00 UTC 2012 年 5 月 16 日 (水) 10 時 0 分 0 秒 (日本時間)
403e626001000Dmitry DomanovMay 18, 2012 13:05:17 UTC 2012 年 5 月 18 日 (金) 22 時 5 分 17 秒 (日本時間)
300Serge BatalovJanuary 9, 2014 04:39:04 UTC 2014 年 1 月 9 日 (木) 13 時 39 分 4 秒 (日本時間)
1300Serge BatalovMay 26, 2014 18:01:33 UTC 2014 年 5 月 27 日 (火) 3 時 1 分 33 秒 (日本時間)

14×10206-239

c131

name 名前Dmitry Domanov
date 日付May 16, 2012 13:38:01 UTC 2012 年 5 月 16 日 (水) 22 時 38 分 1 秒 (日本時間)
composite number 合成数
12865533764417148113584462312375834818002693216270716669540576742045241632601798968853083923307168240510140749516840962670038414831<131>
prime factors 素因数
2965343704455737212851543928289<31>
535101678471722252215665138995967718027<39>
8108050728465961194843784063632336596850533651404808974016077<61>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=186714475
Step 1 took 17924ms
Step 2 took 7950ms
********** Factor found in step 2: 2965343704455737212851543928289
Found probable prime factor of 31 digits: 2965343704455737212851543928289
Composite cofactor 4338631553936006151954621407836611525799915151649696766731588600924926423877039157088269347300720079 has 100 digits

Wed May 16 16:49:59 2012  commencing relation filtering
Wed May 16 16:49:59 2012  estimated available RAM is 2006.1 MB
Wed May 16 16:49:59 2012  commencing duplicate removal, pass 1
Wed May 16 16:53:55 2012  found 614474 hash collisions in 6578899 relations
Wed May 16 16:54:18 2012  added 7582 free relations
Wed May 16 16:54:18 2012  commencing duplicate removal, pass 2
Wed May 16 16:54:29 2012  found 384094 duplicates and 6202387 unique relations
Wed May 16 16:54:29 2012  memory use: 24.6 MB
Wed May 16 16:54:29 2012  reading ideals above 100000
Wed May 16 16:54:29 2012  commencing singleton removal, initial pass
Wed May 16 16:58:57 2012  memory use: 172.2 MB
Wed May 16 16:58:57 2012  reading all ideals from disk
Wed May 16 16:58:58 2012  memory use: 193.7 MB
Wed May 16 16:59:01 2012  keeping 5975115 ideals with weight <= 200, target excess is 44775
Wed May 16 16:59:05 2012  commencing in-memory singleton removal
Wed May 16 16:59:08 2012  begin with 6202387 relations and 5975115 unique ideals
Wed May 16 16:59:30 2012  reduce to 3283201 relations and 2588927 ideals in 12 passes
Wed May 16 16:59:30 2012  max relations containing the same ideal: 132
Wed May 16 16:59:40 2012  removing 1130186 relations and 809019 ideals in 321167 cliques
Wed May 16 16:59:43 2012  commencing in-memory singleton removal
Wed May 16 16:59:44 2012  begin with 2153015 relations and 2588927 unique ideals
Wed May 16 16:59:54 2012  reduce to 1945378 relations and 1546082 ideals in 10 passes
Wed May 16 16:59:54 2012  max relations containing the same ideal: 93
Wed May 16 16:59:59 2012  removing 835850 relations and 514683 ideals in 321167 cliques
Wed May 16 17:00:02 2012  commencing in-memory singleton removal
Wed May 16 17:00:02 2012  begin with 1109528 relations and 1546082 unique ideals
Wed May 16 17:00:07 2012  reduce to 915198 relations and 801879 ideals in 10 passes
Wed May 16 17:00:07 2012  max relations containing the same ideal: 53
Wed May 16 17:00:09 2012  removing 229569 relations and 168190 ideals in 61379 cliques
Wed May 16 17:00:10 2012  commencing in-memory singleton removal
Wed May 16 17:00:10 2012  begin with 685629 relations and 801879 unique ideals
Wed May 16 17:00:12 2012  reduce to 644752 relations and 589993 ideals in 7 passes
Wed May 16 17:00:12 2012  max relations containing the same ideal: 43
Wed May 16 17:00:15 2012  relations with 0 large ideals: 811
Wed May 16 17:00:15 2012  relations with 1 large ideals: 4477
Wed May 16 17:00:15 2012  relations with 2 large ideals: 26262
Wed May 16 17:00:15 2012  relations with 3 large ideals: 82677
Wed May 16 17:00:15 2012  relations with 4 large ideals: 154751
Wed May 16 17:00:15 2012  relations with 5 large ideals: 181623
Wed May 16 17:00:15 2012  relations with 6 large ideals: 125719
Wed May 16 17:00:15 2012  relations with 7+ large ideals: 68432
Wed May 16 17:00:15 2012  commencing 2-way merge
Wed May 16 17:00:16 2012  reduce to 417677 relation sets and 362918 unique ideals
Wed May 16 17:00:16 2012  commencing full merge
Wed May 16 17:00:40 2012  memory use: 40.2 MB
Wed May 16 17:00:40 2012  found 197880 cycles, need 189118
Wed May 16 17:00:40 2012  weight of 189118 cycles is about 13340018 (70.54/cycle)
Wed May 16 17:00:40 2012  distribution of cycle lengths:
Wed May 16 17:00:40 2012  1 relations: 16064
Wed May 16 17:00:40 2012  2 relations: 17499
Wed May 16 17:00:40 2012  3 relations: 19060
Wed May 16 17:00:40 2012  4 relations: 18794
Wed May 16 17:00:40 2012  5 relations: 18181
Wed May 16 17:00:40 2012  6 relations: 16635
Wed May 16 17:00:40 2012  7 relations: 15102
Wed May 16 17:00:40 2012  8 relations: 13243
Wed May 16 17:00:40 2012  9 relations: 11183
Wed May 16 17:00:40 2012  10+ relations: 43357
Wed May 16 17:00:40 2012  heaviest cycle: 20 relations
Wed May 16 17:00:41 2012  commencing cycle optimization
Wed May 16 17:00:42 2012  start with 1231500 relations
Wed May 16 17:00:51 2012  pruned 43624 relations
Wed May 16 17:00:51 2012  memory use: 37.6 MB
Wed May 16 17:00:51 2012  distribution of cycle lengths:
Wed May 16 17:00:51 2012  1 relations: 16064
Wed May 16 17:00:51 2012  2 relations: 17958
Wed May 16 17:00:51 2012  3 relations: 19873
Wed May 16 17:00:51 2012  4 relations: 19479
Wed May 16 17:00:51 2012  5 relations: 19000
Wed May 16 17:00:51 2012  6 relations: 17267
Wed May 16 17:00:51 2012  7 relations: 15685
Wed May 16 17:00:51 2012  8 relations: 13511
Wed May 16 17:00:51 2012  9 relations: 11244
Wed May 16 17:00:51 2012  10+ relations: 39037
Wed May 16 17:00:51 2012  heaviest cycle: 20 relations
Wed May 16 17:00:52 2012  RelProcTime: 653
Wed May 16 17:00:52 2012  
Wed May 16 17:00:52 2012  commencing linear algebra
Wed May 16 17:00:52 2012  read 189118 cycles
Wed May 16 17:00:55 2012  cycles contain 597143 unique relations
Wed May 16 17:01:22 2012  read 597143 relations
Wed May 16 17:01:24 2012  using 20 quadratic characters above 67091772
Wed May 16 17:01:33 2012  building initial matrix
Wed May 16 17:02:03 2012  memory use: 75.2 MB
Wed May 16 17:02:04 2012  read 189118 cycles
Wed May 16 17:02:05 2012  matrix is 188931 x 189118 (55.8 MB) with weight 17703157 (93.61/col)
Wed May 16 17:02:05 2012  sparse part has weight 12554546 (66.38/col)
Wed May 16 17:02:19 2012  filtering completed in 2 passes
Wed May 16 17:02:19 2012  matrix is 188583 x 188770 (55.8 MB) with weight 17683652 (93.68/col)
Wed May 16 17:02:19 2012  sparse part has weight 12545072 (66.46/col)
Wed May 16 17:02:21 2012  matrix starts at (0, 0)
Wed May 16 17:02:21 2012  matrix is 188583 x 188770 (55.8 MB) with weight 17683652 (93.68/col)
Wed May 16 17:02:21 2012  sparse part has weight 12545072 (66.46/col)
Wed May 16 17:02:21 2012  saving the first 48 matrix rows for later
Wed May 16 17:02:21 2012  matrix includes 64 packed rows
Wed May 16 17:02:21 2012  matrix is 188535 x 188770 (53.5 MB) with weight 13907375 (73.67/col)
Wed May 16 17:02:21 2012  sparse part has weight 12125098 (64.23/col)
Wed May 16 17:02:21 2012  using block size 65536 for processor cache size 2048 kB
Wed May 16 17:02:34 2012  commencing Lanczos iteration
Wed May 16 17:02:34 2012  memory use: 39.8 MB
Wed May 16 17:02:44 2012  checkpointing every 730000 dimensions
Wed May 16 17:03:31 2012  linear algebra at 6.4%, ETA 0h13m
Wed May 16 17:17:28 2012  lanczos halted after 2983 iterations (dim = 188533)
Wed May 16 17:17:29 2012  recovered 34 nontrivial dependencies
Wed May 16 17:17:29 2012  BLanczosTime: 997
Wed May 16 17:17:29 2012  
Wed May 16 17:17:29 2012  commencing square root phase
Wed May 16 17:17:29 2012  reading relations for dependency 1
Wed May 16 17:17:29 2012  read 94349 cycles
Wed May 16 17:17:30 2012  cycles contain 298724 unique relations
Wed May 16 17:17:46 2012  read 298724 relations
Wed May 16 17:17:50 2012  multiplying 298724 relations
Wed May 16 17:18:24 2012  multiply complete, coefficients have about 11.27 million bits
Wed May 16 17:18:25 2012  initial square root is modulo 2997341
Wed May 16 17:19:14 2012  GCD is N, no factor found
Wed May 16 17:19:14 2012  reading relations for dependency 2
Wed May 16 17:19:15 2012  read 94312 cycles
Wed May 16 17:19:16 2012  cycles contain 298604 unique relations
Wed May 16 17:19:31 2012  read 298604 relations
Wed May 16 17:19:35 2012  multiplying 298604 relations
Wed May 16 17:20:10 2012  multiply complete, coefficients have about 11.27 million bits
Wed May 16 17:20:10 2012  initial square root is modulo 2979239
Wed May 16 17:20:55 2012  sqrtTime: 206

prp39 = 535101678471722252215665138995967718027
prp61 = 8108050728465961194843784063632336596850533651404808974016077
NFS elapsed time = 7319.6744 seconds.

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaMay 16, 2012 01:00:00 UTC 2012 年 5 月 16 日 (水) 10 時 0 分 0 秒 (日本時間)

14×10208-239

c186

composite cofactor 合成数の残り
229118518412757373746033264623628013555542924385136488031345833220600580945722637593258442022292519806214216478399309069387861961157085360409706469490342639882134672816753177839664148801<186>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaMay 16, 2012 01:00:00 UTC 2012 年 5 月 16 日 (水) 10 時 0 分 0 秒 (日本時間)
403e626001000Dmitry DomanovMay 18, 2012 13:05:36 UTC 2012 年 5 月 18 日 (金) 22 時 5 分 36 秒 (日本時間)
300Serge BatalovJanuary 9, 2014 04:39:05 UTC 2014 年 1 月 9 日 (木) 13 時 39 分 5 秒 (日本時間)
1300Serge BatalovMay 26, 2014 18:01:34 UTC 2014 年 5 月 27 日 (火) 3 時 1 分 34 秒 (日本時間)

14×10209-239

c170

composite cofactor 合成数の残り
57792108629016632513480430248051671324634832778985752819217686762635869227536924404865988398395798192219115343500311258366616898283908702322533391037356654925008313136421<170>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaMay 16, 2012 01:00:00 UTC 2012 年 5 月 16 日 (水) 10 時 0 分 0 秒 (日本時間)
403e613001000Dmitry DomanovMay 18, 2012 13:05:45 UTC 2012 年 5 月 18 日 (金) 22 時 5 分 45 秒 (日本時間)
300Serge BatalovJanuary 9, 2014 04:39:05 UTC 2014 年 1 月 9 日 (木) 13 時 39 分 5 秒 (日本時間)
4511e6595 / 4188295CypFebruary 14, 2014 11:37:04 UTC 2014 年 2 月 14 日 (金) 20 時 37 分 4 秒 (日本時間)
300Serge BatalovMay 27, 2014 00:30:12 UTC 2014 年 5 月 27 日 (火) 9 時 30 分 12 秒 (日本時間)

14×10212-239

c208

name 名前Dmitry Domanov
date 日付May 17, 2012 09:21:49 UTC 2012 年 5 月 17 日 (木) 18 時 21 分 49 秒 (日本時間)
composite number 合成数
5016141225873256443054256733273856230226550435508547146353086180889218521026589131455146740045646885155446633631793736272792091695061608963127779031813084246091888541341961096241835334415386654914564366049323<208>
prime factors 素因数
15932823146116233610761083867710201576457<41>
314830659944655519411148209684762149550557202442967275661987544041322371977742702501820789706280626276787960987940992762363758630259063173374094463111741477525136027539<168>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=61898396
Step 1 took 36446ms
Step 2 took 12574ms
********** Factor found in step 2: 15932823146116233610761083867710201576457
Found probable prime factor of 41 digits: 15932823146116233610761083867710201576457

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaMay 16, 2012 01:00:00 UTC 2012 年 5 月 16 日 (水) 10 時 0 分 0 秒 (日本時間)

14×10213-239

c206

name 名前Dmitry Domanov
date 日付May 21, 2012 13:58:46 UTC 2012 年 5 月 21 日 (月) 22 時 58 分 46 秒 (日本時間)
composite number 合成数
26026946482219571600811120863593864759371872589329606705900764053175855137124241002883835865055287099686530898847865717791867985794856987255308894279701588342558928441463146960151274413245590473362728129509<206>
prime factors 素因数
8729779849606365068962271274294477056090491627<46>
2981397805053830071121383554126096294245246874500171302667458416802360776437916254220617958300186002910396419959177675941375381623093099652222726894431823251567<160>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=2002506396
Step 1 took 137429ms
Step 2 took 42941ms
********** Factor found in step 2: 8729779849606365068962271274294477056090491627
Found probable prime factor of 46 digits: 8729779849606365068962271274294477056090491627

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaMay 16, 2012 01:00:00 UTC 2012 年 5 月 16 日 (水) 10 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovMay 18, 2012 13:05:58 UTC 2012 年 5 月 18 日 (金) 22 時 5 分 58 秒 (日本時間)
4511e6400 / 4254Dmitry DomanovMay 21, 2012 10:51:04 UTC 2012 年 5 月 21 日 (月) 19 時 51 分 4 秒 (日本時間)

14×10215-239

c213

name 名前Serge Batalov
date 日付December 13, 2014 19:08:02 UTC 2014 年 12 月 14 日 (日) 4 時 8 分 2 秒 (日本時間)
composite number 合成数
978336827393431167016072676450034940600978336827393431167016072676450034940600978336827393431167016072676450034940600978336827393431167016072676450034940600978336827393431167016072676450034940600978336827393431167<213>
prime factors 素因数
53966118115270660024446727349608395064961138348499340058865288337529544102744415304052640688171<95>
18128723383507430666006957753049737784860733539070634825496231706353166623494506987265409511802855050314217665777102077<119>
factorization results 素因数分解の結果
RelProcTime: 2186
BLanczosTime: 12289
sqrtTime: 3615

prp95 factor: 53966118115270660024446727349608395064961138348499340058865288337529544102744415304052640688171
prp119 factor: 18128723383507430666006957753049737784860733539070634825496231706353166623494506987265409511802855050314217665777102077

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaMay 16, 2012 01:00:00 UTC 2012 年 5 月 16 日 (水) 10 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovMay 18, 2012 13:06:09 UTC 2012 年 5 月 18 日 (金) 22 時 6 分 9 秒 (日本時間)
4511e64350400Dmitry DomanovMay 21, 2012 10:51:54 UTC 2012 年 5 月 21 日 (月) 19 時 51 分 54 秒 (日本時間)
850Serge BatalovNovember 8, 2013 17:14:31 UTC 2013 年 11 月 9 日 (土) 2 時 14 分 31 秒 (日本時間)
400Serge BatalovJanuary 6, 2014 02:27:46 UTC 2014 年 1 月 6 日 (月) 11 時 27 分 46 秒 (日本時間)
1800Serge BatalovMay 24, 2014 09:17:16 UTC 2014 年 5 月 24 日 (土) 18 時 17 分 16 秒 (日本時間)
900Serge BatalovMay 24, 2014 19:03:30 UTC 2014 年 5 月 25 日 (日) 4 時 3 分 30 秒 (日本時間)
5043e63000 / 6539Serge BatalovDecember 11, 2014 03:09:11 UTC 2014 年 12 月 11 日 (木) 12 時 9 分 11 秒 (日本時間)

14×10217-239

c194

composite cofactor 合成数の残り
10694802260844792999191807207954418743571323101262233932741998180421283396165399674123160065229944031992106983066327776199541433307333738633288584043464987900601374226844828911922010164810300489<194>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaMay 16, 2012 01:00:00 UTC 2012 年 5 月 16 日 (水) 10 時 0 分 0 秒 (日本時間)
403e626001000Dmitry DomanovMay 18, 2012 13:06:20 UTC 2012 年 5 月 18 日 (金) 22 時 6 分 20 秒 (日本時間)
300Serge BatalovJanuary 9, 2014 04:39:06 UTC 2014 年 1 月 9 日 (木) 13 時 39 分 6 秒 (日本時間)
1300Serge BatalovMay 26, 2014 18:01:34 UTC 2014 年 5 月 27 日 (火) 3 時 1 分 34 秒 (日本時間)
4511e6147 / 3900CypFebruary 19, 2014 21:03:06 UTC 2014 年 2 月 20 日 (木) 6 時 3 分 6 秒 (日本時間)

14×10218-239

c207

name 名前Bob Backstrom
date 日付December 28, 2019 20:34:10 UTC 2019 年 12 月 29 日 (日) 5 時 34 分 10 秒 (日本時間)
composite number 合成数
136833786893080487854273524705346019971502501792565200992023486496481998605947081235217224403309431956008606300345719714019261419865915433420369475520863477725414259796092170807565548015671923724001680123271<207>
prime factors 素因数
151408447772673203853997054825024166757396839971<48>
30139152688717542959640158828892344126299845404734170141904351835087<68>
29985562518777891581238449865171690036899983878731155372434123541624188632349801850813541923<92>
factorization results 素因数分解の結果
#
# N = 14x10^218-23 = 15(217)3
#
n: 136833786893080487854273524705346019971502501792565200992023486496481998605947081235217224403309431956008606300345719714019261419865915433420369475520863477725414259796092170807565548015671923724001680123271
m: 1000000000000000000000000000000000000
deg: 6
c6: 1400
c0: -23
skew: 0.50
# Murphy_E = 2.965e-12
type: snfs
lss: 1
rlim: 31000000
alim: 31000000
lpbr: 29
lpba: 29
mfbr: 58
mfba: 58
rlambda: 2.6
alambda: 2.6



GMP-ECM 7.0-dev [configured with MPIR 2.6.0, --enable-openmp] [ECM]
Input number is 136833786893080487854273524705346019971502501792565200992023486496481998605947081235217224403309431956008606300345719714019261419865915433420369475520863477725414259796092170807565548015671923724001680123271 (207 digits)
Using B1=23550000, B2=96188942866, polynomial Dickson(12), sigma=1:3992909585
Step 1 took 351500ms
********** Factor found in step 1: 151408447772673203853997054825024166757396839971
Found probable prime factor of 48 digits: 151408447772673203853997054825024166757396839971
Composite cofactor 903739447210532670801854300597524629212350336052957569924110846172849175925786230561845111524516912360150637340379241001630082308879699007002376784935256852301 has 159 digits



Number: n
N=903739447210532670801854300597524629212350336052957569924110846172849175925786230561845111524516912360150637340379241001630082308879699007002376784935256852301
  ( 159 digits)
SNFS difficulty: 219 digits.
Divisors found:

Sun Dec 29 07:22:46 2019  p68 factor: 30139152688717542959640158828892344126299845404734170141904351835087
Sun Dec 29 07:22:46 2019  p92 factor: 29985562518777891581238449865171690036899983878731155372434123541624188632349801850813541923
Sun Dec 29 07:22:46 2019  elapsed time 06:46:39 (Msieve 1.54 - dependency 1)

Version:
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.133).
Factorization parameters were as follows:
#
# N = 14x10^218-23 = 15(217)3
#
# n: 136833786893080487854273524705346019971502501792565200992023486496481998605947081235217224403309431956008606300345719714019261419865915433420369475520863477725414259796092170807565548015671923724001680123271
#
# Found probable prime factor of 48 digits: 151408447772673203853997054825024166757396839971
#
n: 903739447210532670801854300597524629212350336052957569924110846172849175925786230561845111524516912360150637340379241001630082308879699007002376784935256852301
m: 1000000000000000000000000000000000000
deg: 6
c6: 1400
c0: -23
skew: 0.50
# Murphy_E = 2.965e-12
type: snfs
lss: 1
rlim: 31000000
alim: 31000000
lpbr: 29
lpba: 29
mfbr: 58
mfba: 58
rlambda: 2.6
alambda: 2.6
Factor base limits: 31000000/31000000
Large primes per side: 3
Large prime bits: 29/29
Max factor residue bits: 58/58
Sieved  special-q in [100000, 98700000)
Primes: , ,
Relations:
Max relations in full relation-set: 28
Initial matrix:
Pruned matrix :

Msieve: found 11937994 hash collisions in 69117158 relations (59807091 unique)
Msieve: matrix is 3850533 x 3850758 (1335.6 MB)

Sieving start time: 2019/12/26 22:43:28
Sieving end time  : 2019/12/29 00:34:01

Total sieving time: 49hrs 50min 33secs.

Total relation processing time: 6hrs 18min 7sec.
Matrix solve time: 0.00 hours.
Total square root time: 0hrs 7min 57sec.

Prototype def-par.txt line would be:
snfs,219,6,0,0,0,0,0,0,0,0,31000000,31000000,29,29,58,58,2.6,2.6,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------
[    0.149937] smpboot: CPU0: AMD Ryzen 7 1700 Eight-Core Processor (family: 0x17, model: 0x1, stepping: 0x1)
[    0.000000] Memory: 16283572K/16703460K available (12300K kernel code, 2481K rwdata, 4264K rodata, 2428K init, 2388K bss, 419888K reserved, 0K cma-reserved)
[    0.184567] x86/mm: Memory block size: 128MB
[    0.024000] Calibrating delay loop (skipped), value calculated using timer frequency.. 5988.57 BogoMIPS (lpj=11977148)
[    0.182215] smpboot: Total of 16 processors activated (95817.18 BogoMIPS)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaMay 16, 2012 01:00:00 UTC 2012 年 5 月 16 日 (水) 10 時 0 分 0 秒 (日本時間)
403e626001000Dmitry DomanovMay 18, 2012 13:06:29 UTC 2012 年 5 月 18 日 (金) 22 時 6 分 29 秒 (日本時間)
300Serge BatalovJanuary 9, 2014 04:39:06 UTC 2014 年 1 月 9 日 (木) 13 時 39 分 6 秒 (日本時間)
1300Serge BatalovMay 26, 2014 18:01:34 UTC 2014 年 5 月 27 日 (火) 3 時 1 分 34 秒 (日本時間)

14×10219-239

c218

name 名前Dmitry Domanov
date 日付May 21, 2012 20:08:18 UTC 2012 年 5 月 22 日 (火) 5 時 8 分 18 秒 (日本時間)
composite number 合成数
14537902388369678089304257528556593977154724818276220145379023883696780893042575285565939771547248182762201453790238836967808930425752855659397715472481827622014537902388369678089304257528556593977154724818276220145379<218>
prime factors 素因数
2118613624426168872354237160902572806079<40>
6861988529082220315108092199695675323120916152661531512632558347231039078656695263418652454063044615163470852437727814186000601315162241623294031473683262751106359497854940596701<178>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=3313060108
Step 1 took 155352ms
Step 2 took 46514ms
********** Factor found in step 2: 2118613624426168872354237160902572806079
Found probable prime factor of 40 digits: 2118613624426168872354237160902572806079

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaMay 16, 2012 01:00:00 UTC 2012 年 5 月 16 日 (水) 10 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovMay 18, 2012 13:06:40 UTC 2012 年 5 月 18 日 (金) 22 時 6 分 40 秒 (日本時間)
4511e6400 / 4254Dmitry DomanovMay 21, 2012 10:52:30 UTC 2012 年 5 月 21 日 (月) 19 時 52 分 30 秒 (日本時間)

14×10220-239

c174

name 名前Serge Batalov
date 日付May 18, 2014 23:39:22 UTC 2014 年 5 月 19 日 (月) 8 時 39 分 22 秒 (日本時間)
composite number 合成数
791513819840122716757102036629797155913773716462971022357062706815937751356745868292156426777351839805753238639784165098634343818606666172297180572396407661734588032469603861<174>
prime factors 素因数
17822464873065334324509324567275204432333<41>
composite cofactor 合成数の残り
44411018648510210075526998380074804898316383347362838515916290022880087228547203764182509460212786559034097760725645542566400325037417<134>
factorization results 素因数分解の結果
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2170693389
Step 1 took 16874ms
Step 2 took 12261ms
********** Factor found in step 2: 17822464873065334324509324567275204432333
Found probable prime factor of 41 digits: 17822464873065334324509324567275204432333
Composite cofactor 

c134

name 名前Erik Branger
date 日付November 12, 2014 07:37:43 UTC 2014 年 11 月 12 日 (水) 16 時 37 分 43 秒 (日本時間)
composite number 合成数
44411018648510210075526998380074804898316383347362838515916290022880087228547203764182509460212786559034097760725645542566400325037417<134>
prime factors 素因数
79624809417174635727667837952347714118128698485612076869994232241<65>
557753531513395325577559620079103641354397078819521838231830662964537<69>
factorization results 素因数分解の結果
Mon Nov 10 18:57:00 2014 -> factmsieve.py (v0.76)
Mon Nov 10 18:57:00 2014 -> This is client 1 of 1
Mon Nov 10 18:57:00 2014 -> Running on 4 Cores with 1 hyper-thread per Core
Mon Nov 10 18:57:00 2014 -> Working with NAME = 15553_220
Mon Nov 10 18:57:00 2014 -> Selected lattice siever: gnfs-lasieve4I13e
Mon Nov 10 18:57:00 2014 -> Creating param file to detect parameter changes...
Mon Nov 10 18:57:00 2014 -> Running setup ...
Mon Nov 10 18:57:00 2014 -> Estimated minimum relations needed: 1.98e+07
Mon Nov 10 18:57:00 2014 -> cleaning up before a restart
Mon Nov 10 18:57:00 2014 -> Running lattice siever ...
Mon Nov 10 18:57:00 2014 -> entering sieving loop
Mon Nov 10 18:57:00 2014 -> making sieve job for q = 6150000 in 6150000 .. 6175000 as file 15553_220.job.T0
Mon Nov 10 18:57:00 2014 -> making sieve job for q = 6175000 in 6175000 .. 6200000 as file 15553_220.job.T1
Mon Nov 10 18:57:00 2014 -> making sieve job for q = 6200000 in 6200000 .. 6225000 as file 15553_220.job.T2
Mon Nov 10 18:57:00 2014 -> making sieve job for q = 6225000 in 6225000 .. 6250000 as file 15553_220.job.T3
Mon Nov 10 18:57:00 2014 -> Lattice sieving algebraic q from 6150000 to 6250000.
Mon Nov 10 18:57:00 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0
Mon Nov 10 18:57:00 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1
Mon Nov 10 18:57:00 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2
Mon Nov 10 18:57:00 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3
Mon Nov 10 19:19:04 2014 Found 282329 relations, 1.5% of the estimated minimum (19000000).
Mon Nov 10 19:19:04 2014 LatSieveTime: 1323.83
Mon Nov 10 19:19:04 2014 -> making sieve job for q = 6250000 in 6250000 .. 6275000 as file 15553_220.job.T0
Mon Nov 10 19:19:04 2014 -> making sieve job for q = 6275000 in 6275000 .. 6300000 as file 15553_220.job.T1
Mon Nov 10 19:19:04 2014 -> making sieve job for q = 6300000 in 6300000 .. 6325000 as file 15553_220.job.T2
Mon Nov 10 19:19:04 2014 -> making sieve job for q = 6325000 in 6325000 .. 6350000 as file 15553_220.job.T3
Mon Nov 10 19:19:04 2014 -> Lattice sieving algebraic q from 6250000 to 6350000.
Mon Nov 10 19:19:04 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0
Mon Nov 10 19:19:04 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1
Mon Nov 10 19:19:04 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2
Mon Nov 10 19:19:04 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3
Mon Nov 10 19:44:03 2014 Found 571050 relations, 3.0% of the estimated minimum (19000000).
Mon Nov 10 19:44:03 2014 LatSieveTime: 1498.92
Mon Nov 10 19:44:03 2014 -> making sieve job for q = 6350000 in 6350000 .. 6375000 as file 15553_220.job.T0
Mon Nov 10 19:44:03 2014 -> making sieve job for q = 6375000 in 6375000 .. 6400000 as file 15553_220.job.T1
Mon Nov 10 19:44:03 2014 -> making sieve job for q = 6400000 in 6400000 .. 6425000 as file 15553_220.job.T2
Mon Nov 10 19:44:03 2014 -> making sieve job for q = 6425000 in 6425000 .. 6450000 as file 15553_220.job.T3
Mon Nov 10 19:44:03 2014 -> Lattice sieving algebraic q from 6350000 to 6450000.
Mon Nov 10 19:44:03 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0
Mon Nov 10 19:44:03 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1
Mon Nov 10 19:44:03 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2
Mon Nov 10 19:44:03 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3
Mon Nov 10 20:08:43 2014 Found 857726 relations, 4.5% of the estimated minimum (19000000).
Mon Nov 10 20:08:43 2014 LatSieveTime: 1480.15
Mon Nov 10 20:08:43 2014 -> making sieve job for q = 6450000 in 6450000 .. 6475000 as file 15553_220.job.T0
Mon Nov 10 20:08:43 2014 -> making sieve job for q = 6475000 in 6475000 .. 6500000 as file 15553_220.job.T1
Mon Nov 10 20:08:43 2014 -> making sieve job for q = 6500000 in 6500000 .. 6525000 as file 15553_220.job.T2
Mon Nov 10 20:08:43 2014 -> making sieve job for q = 6525000 in 6525000 .. 6550000 as file 15553_220.job.T3
Mon Nov 10 20:08:43 2014 -> Lattice sieving algebraic q from 6450000 to 6550000.
Mon Nov 10 20:08:43 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0
Mon Nov 10 20:08:43 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1
Mon Nov 10 20:08:43 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2
Mon Nov 10 20:08:43 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3
Mon Nov 10 20:33:29 2014 Found 1142071 relations, 6.0% of the estimated minimum (19000000).
Mon Nov 10 20:33:29 2014 LatSieveTime: 1485.71
Mon Nov 10 20:33:29 2014 -> making sieve job for q = 6550000 in 6550000 .. 6575000 as file 15553_220.job.T0
Mon Nov 10 20:33:29 2014 -> making sieve job for q = 6575000 in 6575000 .. 6600000 as file 15553_220.job.T1
Mon Nov 10 20:33:29 2014 -> making sieve job for q = 6600000 in 6600000 .. 6625000 as file 15553_220.job.T2
Mon Nov 10 20:33:29 2014 -> making sieve job for q = 6625000 in 6625000 .. 6650000 as file 15553_220.job.T3
Mon Nov 10 20:33:29 2014 -> Lattice sieving algebraic q from 6550000 to 6650000.
Mon Nov 10 20:33:29 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0
Mon Nov 10 20:33:29 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1
Mon Nov 10 20:33:29 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2
Mon Nov 10 20:33:29 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3
Mon Nov 10 20:59:37 2014 Found 1426032 relations, 7.5% of the estimated minimum (19000000).
Mon Nov 10 20:59:37 2014 LatSieveTime: 1568.42
Mon Nov 10 20:59:37 2014 -> making sieve job for q = 6650000 in 6650000 .. 6675000 as file 15553_220.job.T0
Mon Nov 10 20:59:37 2014 -> making sieve job for q = 6675000 in 6675000 .. 6700000 as file 15553_220.job.T1
Mon Nov 10 20:59:37 2014 -> making sieve job for q = 6700000 in 6700000 .. 6725000 as file 15553_220.job.T2
Mon Nov 10 20:59:37 2014 -> making sieve job for q = 6725000 in 6725000 .. 6750000 as file 15553_220.job.T3
Mon Nov 10 20:59:37 2014 -> Lattice sieving algebraic q from 6650000 to 6750000.
Mon Nov 10 20:59:37 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0
Mon Nov 10 20:59:37 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1
Mon Nov 10 20:59:37 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2
Mon Nov 10 20:59:37 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3
Mon Nov 10 21:24:47 2014 Found 1710109 relations, 9.0% of the estimated minimum (19000000).
Mon Nov 10 21:24:47 2014 LatSieveTime: 1510.11
Mon Nov 10 21:24:47 2014 -> making sieve job for q = 6750000 in 6750000 .. 6775000 as file 15553_220.job.T0
Mon Nov 10 21:24:47 2014 -> making sieve job for q = 6775000 in 6775000 .. 6800000 as file 15553_220.job.T1
Mon Nov 10 21:24:47 2014 -> making sieve job for q = 6800000 in 6800000 .. 6825000 as file 15553_220.job.T2
Mon Nov 10 21:24:47 2014 -> making sieve job for q = 6825000 in 6825000 .. 6850000 as file 15553_220.job.T3
Mon Nov 10 21:24:47 2014 -> Lattice sieving algebraic q from 6750000 to 6850000.
Mon Nov 10 21:24:47 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0
Mon Nov 10 21:24:47 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1
Mon Nov 10 21:24:47 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2
Mon Nov 10 21:24:47 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3
Mon Nov 10 21:49:35 2014 Found 1992682 relations, 10.5% of the estimated minimum (19000000).
Mon Nov 10 21:49:35 2014 LatSieveTime: 1487.79
Mon Nov 10 21:49:35 2014 -> making sieve job for q = 6850000 in 6850000 .. 6875000 as file 15553_220.job.T0
Mon Nov 10 21:49:35 2014 -> making sieve job for q = 6875000 in 6875000 .. 6900000 as file 15553_220.job.T1
Mon Nov 10 21:49:35 2014 -> making sieve job for q = 6900000 in 6900000 .. 6925000 as file 15553_220.job.T2
Mon Nov 10 21:49:35 2014 -> making sieve job for q = 6925000 in 6925000 .. 6950000 as file 15553_220.job.T3
Mon Nov 10 21:49:35 2014 -> Lattice sieving algebraic q from 6850000 to 6950000.
Mon Nov 10 21:49:35 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0
Mon Nov 10 21:49:35 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1
Mon Nov 10 21:49:35 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2
Mon Nov 10 21:49:35 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3
Mon Nov 10 22:15:25 2014 Found 2285528 relations, 12.0% of the estimated minimum (19000000).
Mon Nov 10 22:15:25 2014 LatSieveTime: 1549.96
Mon Nov 10 22:15:25 2014 -> making sieve job for q = 6950000 in 6950000 .. 6975000 as file 15553_220.job.T0
Mon Nov 10 22:15:25 2014 -> making sieve job for q = 6975000 in 6975000 .. 7000000 as file 15553_220.job.T1
Mon Nov 10 22:15:25 2014 -> making sieve job for q = 7000000 in 7000000 .. 7025000 as file 15553_220.job.T2
Mon Nov 10 22:15:25 2014 -> making sieve job for q = 7025000 in 7025000 .. 7050000 as file 15553_220.job.T3
Mon Nov 10 22:15:25 2014 -> Lattice sieving algebraic q from 6950000 to 7050000.
Mon Nov 10 22:15:25 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0
Mon Nov 10 22:15:25 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1
Mon Nov 10 22:15:25 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2
Mon Nov 10 22:15:25 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3
Mon Nov 10 22:40:20 2014 Found 2565348 relations, 13.5% of the estimated minimum (19000000).
Mon Nov 10 22:40:20 2014 LatSieveTime: 1494.37
Mon Nov 10 22:40:20 2014 -> making sieve job for q = 7050000 in 7050000 .. 7075000 as file 15553_220.job.T0
Mon Nov 10 22:40:20 2014 -> making sieve job for q = 7075000 in 7075000 .. 7100000 as file 15553_220.job.T1
Mon Nov 10 22:40:20 2014 -> making sieve job for q = 7100000 in 7100000 .. 7125000 as file 15553_220.job.T2
Mon Nov 10 22:40:20 2014 -> making sieve job for q = 7125000 in 7125000 .. 7150000 as file 15553_220.job.T3
Mon Nov 10 22:40:20 2014 -> Lattice sieving algebraic q from 7050000 to 7150000.
Mon Nov 10 22:40:20 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0
Mon Nov 10 22:40:20 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1
Mon Nov 10 22:40:20 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2
Mon Nov 10 22:40:20 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3
Mon Nov 10 23:06:28 2014 Found 2850130 relations, 15.0% of the estimated minimum (19000000).
Mon Nov 10 23:06:28 2014 LatSieveTime: 1568.02
Mon Nov 10 23:06:28 2014 -> making sieve job for q = 7150000 in 7150000 .. 7175000 as file 15553_220.job.T0
Mon Nov 10 23:06:28 2014 -> making sieve job for q = 7175000 in 7175000 .. 7200000 as file 15553_220.job.T1
Mon Nov 10 23:06:28 2014 -> making sieve job for q = 7200000 in 7200000 .. 7225000 as file 15553_220.job.T2
Mon Nov 10 23:06:28 2014 -> making sieve job for q = 7225000 in 7225000 .. 7250000 as file 15553_220.job.T3
Mon Nov 10 23:06:28 2014 -> Lattice sieving algebraic q from 7150000 to 7250000.
Mon Nov 10 23:06:28 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0
Mon Nov 10 23:06:28 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1
Mon Nov 10 23:06:28 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2
Mon Nov 10 23:06:28 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3
Mon Nov 10 23:32:35 2014 Found 3146098 relations, 16.6% of the estimated minimum (19000000).
Mon Nov 10 23:32:35 2014 LatSieveTime: 1567.4
Mon Nov 10 23:32:35 2014 -> making sieve job for q = 7250000 in 7250000 .. 7275000 as file 15553_220.job.T0
Mon Nov 10 23:32:35 2014 -> making sieve job for q = 7275000 in 7275000 .. 7300000 as file 15553_220.job.T1
Mon Nov 10 23:32:35 2014 -> making sieve job for q = 7300000 in 7300000 .. 7325000 as file 15553_220.job.T2
Mon Nov 10 23:32:35 2014 -> making sieve job for q = 7325000 in 7325000 .. 7350000 as file 15553_220.job.T3
Mon Nov 10 23:32:35 2014 -> Lattice sieving algebraic q from 7250000 to 7350000.
Mon Nov 10 23:32:35 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0
Mon Nov 10 23:32:35 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1
Mon Nov 10 23:32:35 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2
Mon Nov 10 23:32:35 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3
Mon Nov 10 23:58:15 2014 Found 3426411 relations, 18.0% of the estimated minimum (19000000).
Mon Nov 10 23:58:15 2014 LatSieveTime: 1539.6
Mon Nov 10 23:58:15 2014 -> making sieve job for q = 7350000 in 7350000 .. 7375000 as file 15553_220.job.T0
Mon Nov 10 23:58:15 2014 -> making sieve job for q = 7375000 in 7375000 .. 7400000 as file 15553_220.job.T1
Mon Nov 10 23:58:15 2014 -> making sieve job for q = 7400000 in 7400000 .. 7425000 as file 15553_220.job.T2
Mon Nov 10 23:58:15 2014 -> making sieve job for q = 7425000 in 7425000 .. 7450000 as file 15553_220.job.T3
Mon Nov 10 23:58:15 2014 -> Lattice sieving algebraic q from 7350000 to 7450000.
Mon Nov 10 23:58:15 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0
Mon Nov 10 23:58:15 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1
Mon Nov 10 23:58:15 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2
Mon Nov 10 23:58:15 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3
Tue Nov 11 00:23:36 2014 Found 3709348 relations, 19.5% of the estimated minimum (19000000).
Tue Nov 11 00:23:36 2014 LatSieveTime: 1521.78
Tue Nov 11 00:23:36 2014 -> making sieve job for q = 7450000 in 7450000 .. 7475000 as file 15553_220.job.T0
Tue Nov 11 00:23:36 2014 -> making sieve job for q = 7475000 in 7475000 .. 7500000 as file 15553_220.job.T1
Tue Nov 11 00:23:36 2014 -> making sieve job for q = 7500000 in 7500000 .. 7525000 as file 15553_220.job.T2
Tue Nov 11 00:23:36 2014 -> making sieve job for q = 7525000 in 7525000 .. 7550000 as file 15553_220.job.T3
Tue Nov 11 00:23:36 2014 -> Lattice sieving algebraic q from 7450000 to 7550000.
Tue Nov 11 00:23:36 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0
Tue Nov 11 00:23:36 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1
Tue Nov 11 00:23:36 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2
Tue Nov 11 00:23:36 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3
Tue Nov 11 00:48:14 2014 Found 3985599 relations, 21.0% of the estimated minimum (19000000).
Tue Nov 11 00:48:14 2014 LatSieveTime: 1477.17
Tue Nov 11 00:48:14 2014 -> making sieve job for q = 7550000 in 7550000 .. 7575000 as file 15553_220.job.T0
Tue Nov 11 00:48:14 2014 -> making sieve job for q = 7575000 in 7575000 .. 7600000 as file 15553_220.job.T1
Tue Nov 11 00:48:14 2014 -> making sieve job for q = 7600000 in 7600000 .. 7625000 as file 15553_220.job.T2
Tue Nov 11 00:48:14 2014 -> making sieve job for q = 7625000 in 7625000 .. 7650000 as file 15553_220.job.T3
Tue Nov 11 00:48:14 2014 -> Lattice sieving algebraic q from 7550000 to 7650000.
Tue Nov 11 00:48:14 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0
Tue Nov 11 00:48:14 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1
Tue Nov 11 00:48:14 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2
Tue Nov 11 00:48:14 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3
Tue Nov 11 01:14:26 2014 Found 4266480 relations, 22.5% of the estimated minimum (19000000).
Tue Nov 11 01:14:26 2014 LatSieveTime: 1572
Tue Nov 11 01:14:26 2014 -> making sieve job for q = 7650000 in 7650000 .. 7675000 as file 15553_220.job.T0
Tue Nov 11 01:14:26 2014 -> making sieve job for q = 7675000 in 7675000 .. 7700000 as file 15553_220.job.T1
Tue Nov 11 01:14:26 2014 -> making sieve job for q = 7700000 in 7700000 .. 7725000 as file 15553_220.job.T2
Tue Nov 11 01:14:26 2014 -> making sieve job for q = 7725000 in 7725000 .. 7750000 as file 15553_220.job.T3
Tue Nov 11 01:14:26 2014 -> Lattice sieving algebraic q from 7650000 to 7750000.
Tue Nov 11 01:14:26 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0
Tue Nov 11 01:14:26 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1
Tue Nov 11 01:14:26 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2
Tue Nov 11 01:14:26 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3
Tue Nov 11 01:40:22 2014 Found 4543286 relations, 23.9% of the estimated minimum (19000000).
Tue Nov 11 01:40:22 2014 LatSieveTime: 1556.9
Tue Nov 11 01:40:22 2014 -> making sieve job for q = 7750000 in 7750000 .. 7775000 as file 15553_220.job.T0
Tue Nov 11 01:40:22 2014 -> making sieve job for q = 7775000 in 7775000 .. 7800000 as file 15553_220.job.T1
Tue Nov 11 01:40:22 2014 -> making sieve job for q = 7800000 in 7800000 .. 7825000 as file 15553_220.job.T2
Tue Nov 11 01:40:22 2014 -> making sieve job for q = 7825000 in 7825000 .. 7850000 as file 15553_220.job.T3
Tue Nov 11 01:40:22 2014 -> Lattice sieving algebraic q from 7750000 to 7850000.
Tue Nov 11 01:40:22 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0
Tue Nov 11 01:40:22 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1
Tue Nov 11 01:40:22 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2
Tue Nov 11 01:40:22 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3
Tue Nov 11 02:05:31 2014 Found 4822234 relations, 25.4% of the estimated minimum (19000000).
Tue Nov 11 02:05:31 2014 LatSieveTime: 1508.04
Tue Nov 11 02:05:31 2014 -> making sieve job for q = 7850000 in 7850000 .. 7875000 as file 15553_220.job.T0
Tue Nov 11 02:05:31 2014 -> making sieve job for q = 7875000 in 7875000 .. 7900000 as file 15553_220.job.T1
Tue Nov 11 02:05:31 2014 -> making sieve job for q = 7900000 in 7900000 .. 7925000 as file 15553_220.job.T2
Tue Nov 11 02:05:31 2014 -> making sieve job for q = 7925000 in 7925000 .. 7950000 as file 15553_220.job.T3
Tue Nov 11 02:05:31 2014 -> Lattice sieving algebraic q from 7850000 to 7950000.
Tue Nov 11 02:05:31 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0
Tue Nov 11 02:05:31 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1
Tue Nov 11 02:05:31 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2
Tue Nov 11 02:05:31 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3
Tue Nov 11 02:30:31 2014 Found 5098012 relations, 26.8% of the estimated minimum (19000000).
Tue Nov 11 02:30:31 2014 LatSieveTime: 1500.48
Tue Nov 11 02:30:31 2014 -> making sieve job for q = 7950000 in 7950000 .. 7975000 as file 15553_220.job.T0
Tue Nov 11 02:30:31 2014 -> making sieve job for q = 7975000 in 7975000 .. 8000000 as file 15553_220.job.T1
Tue Nov 11 02:30:31 2014 -> making sieve job for q = 8000000 in 8000000 .. 8025000 as file 15553_220.job.T2
Tue Nov 11 02:30:31 2014 -> making sieve job for q = 8025000 in 8025000 .. 8050000 as file 15553_220.job.T3
Tue Nov 11 02:30:31 2014 -> Lattice sieving algebraic q from 7950000 to 8050000.
Tue Nov 11 02:30:31 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0
Tue Nov 11 02:30:31 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1
Tue Nov 11 02:30:31 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2
Tue Nov 11 02:30:31 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3
Tue Nov 11 02:55:11 2014 Found 5372734 relations, 28.3% of the estimated minimum (19000000).
Tue Nov 11 02:55:11 2014 LatSieveTime: 1480.39
Tue Nov 11 02:55:11 2014 -> making sieve job for q = 8050000 in 8050000 .. 8075000 as file 15553_220.job.T0
Tue Nov 11 02:55:11 2014 -> making sieve job for q = 8075000 in 8075000 .. 8100000 as file 15553_220.job.T1
Tue Nov 11 02:55:11 2014 -> making sieve job for q = 8100000 in 8100000 .. 8125000 as file 15553_220.job.T2
Tue Nov 11 02:55:11 2014 -> making sieve job for q = 8125000 in 8125000 .. 8150000 as file 15553_220.job.T3
Tue Nov 11 02:55:11 2014 -> Lattice sieving algebraic q from 8050000 to 8150000.
Tue Nov 11 02:55:11 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0
Tue Nov 11 02:55:11 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1
Tue Nov 11 02:55:11 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2
Tue Nov 11 02:55:11 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3
Tue Nov 11 03:21:36 2014 Found 5650701 relations, 29.7% of the estimated minimum (19000000).
Tue Nov 11 03:21:36 2014 LatSieveTime: 1584.84
Tue Nov 11 03:21:36 2014 -> making sieve job for q = 8150000 in 8150000 .. 8175000 as file 15553_220.job.T0
Tue Nov 11 03:21:36 2014 -> making sieve job for q = 8175000 in 8175000 .. 8200000 as file 15553_220.job.T1
Tue Nov 11 03:21:36 2014 -> making sieve job for q = 8200000 in 8200000 .. 8225000 as file 15553_220.job.T2
Tue Nov 11 03:21:36 2014 -> making sieve job for q = 8225000 in 8225000 .. 8250000 as file 15553_220.job.T3
Tue Nov 11 03:21:36 2014 -> Lattice sieving algebraic q from 8150000 to 8250000.
Tue Nov 11 03:21:36 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0
Tue Nov 11 03:21:36 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1
Tue Nov 11 03:21:36 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2
Tue Nov 11 03:21:36 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3
Tue Nov 11 03:47:14 2014 Found 5933753 relations, 31.2% of the estimated minimum (19000000).
Tue Nov 11 03:47:14 2014 LatSieveTime: 1537.3
Tue Nov 11 03:47:14 2014 -> making sieve job for q = 8250000 in 8250000 .. 8275000 as file 15553_220.job.T0
Tue Nov 11 03:47:14 2014 -> making sieve job for q = 8275000 in 8275000 .. 8300000 as file 15553_220.job.T1
Tue Nov 11 03:47:14 2014 -> making sieve job for q = 8300000 in 8300000 .. 8325000 as file 15553_220.job.T2
Tue Nov 11 03:47:14 2014 -> making sieve job for q = 8325000 in 8325000 .. 8350000 as file 15553_220.job.T3
Tue Nov 11 03:47:14 2014 -> Lattice sieving algebraic q from 8250000 to 8350000.
Tue Nov 11 03:47:14 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0
Tue Nov 11 03:47:14 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1
Tue Nov 11 03:47:14 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2
Tue Nov 11 03:47:14 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3
Tue Nov 11 04:13:25 2014 Found 6222484 relations, 32.7% of the estimated minimum (19000000).
Tue Nov 11 04:13:25 2014 LatSieveTime: 1571.83
Tue Nov 11 04:13:25 2014 -> making sieve job for q = 8350000 in 8350000 .. 8375000 as file 15553_220.job.T0
Tue Nov 11 04:13:25 2014 -> making sieve job for q = 8375000 in 8375000 .. 8400000 as file 15553_220.job.T1
Tue Nov 11 04:13:25 2014 -> making sieve job for q = 8400000 in 8400000 .. 8425000 as file 15553_220.job.T2
Tue Nov 11 04:13:25 2014 -> making sieve job for q = 8425000 in 8425000 .. 8450000 as file 15553_220.job.T3
Tue Nov 11 04:13:25 2014 -> Lattice sieving algebraic q from 8350000 to 8450000.
Tue Nov 11 04:13:25 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0
Tue Nov 11 04:13:25 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1
Tue Nov 11 04:13:25 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2
Tue Nov 11 04:13:25 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3
Tue Nov 11 04:39:50 2014 Found 6501816 relations, 34.2% of the estimated minimum (19000000).
Tue Nov 11 04:39:50 2014 LatSieveTime: 1584.34
Tue Nov 11 04:39:50 2014 -> making sieve job for q = 8450000 in 8450000 .. 8475000 as file 15553_220.job.T0
Tue Nov 11 04:39:50 2014 -> making sieve job for q = 8475000 in 8475000 .. 8500000 as file 15553_220.job.T1
Tue Nov 11 04:39:50 2014 -> making sieve job for q = 8500000 in 8500000 .. 8525000 as file 15553_220.job.T2
Tue Nov 11 04:39:50 2014 -> making sieve job for q = 8525000 in 8525000 .. 8550000 as file 15553_220.job.T3
Tue Nov 11 04:39:50 2014 -> Lattice sieving algebraic q from 8450000 to 8550000.
Tue Nov 11 04:39:50 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0
Tue Nov 11 04:39:50 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1
Tue Nov 11 04:39:50 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2
Tue Nov 11 04:39:50 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3
Tue Nov 11 05:05:45 2014 Found 6787664 relations, 35.7% of the estimated minimum (19000000).
Tue Nov 11 05:05:45 2014 LatSieveTime: 1555.67
Tue Nov 11 05:05:45 2014 -> making sieve job for q = 8550000 in 8550000 .. 8575000 as file 15553_220.job.T0
Tue Nov 11 05:05:45 2014 -> making sieve job for q = 8575000 in 8575000 .. 8600000 as file 15553_220.job.T1
Tue Nov 11 05:05:45 2014 -> making sieve job for q = 8600000 in 8600000 .. 8625000 as file 15553_220.job.T2
Tue Nov 11 05:05:45 2014 -> making sieve job for q = 8625000 in 8625000 .. 8650000 as file 15553_220.job.T3
Tue Nov 11 05:05:45 2014 -> Lattice sieving algebraic q from 8550000 to 8650000.
Tue Nov 11 05:05:45 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0
Tue Nov 11 05:05:45 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1
Tue Nov 11 05:05:45 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2
Tue Nov 11 05:05:45 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3
Tue Nov 11 05:32:36 2014 Found 7066675 relations, 37.2% of the estimated minimum (19000000).
Tue Nov 11 05:32:36 2014 LatSieveTime: 1611.01
Tue Nov 11 05:32:36 2014 -> making sieve job for q = 8650000 in 8650000 .. 8675000 as file 15553_220.job.T0
Tue Nov 11 05:32:36 2014 -> making sieve job for q = 8675000 in 8675000 .. 8700000 as file 15553_220.job.T1
Tue Nov 11 05:32:36 2014 -> making sieve job for q = 8700000 in 8700000 .. 8725000 as file 15553_220.job.T2
Tue Nov 11 05:32:36 2014 -> making sieve job for q = 8725000 in 8725000 .. 8750000 as file 15553_220.job.T3
Tue Nov 11 05:32:36 2014 -> Lattice sieving algebraic q from 8650000 to 8750000.
Tue Nov 11 05:32:36 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0
Tue Nov 11 05:32:36 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1
Tue Nov 11 05:32:36 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2
Tue Nov 11 05:32:36 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3
Tue Nov 11 05:58:23 2014 Found 7347613 relations, 38.7% of the estimated minimum (19000000).
Tue Nov 11 05:58:23 2014 LatSieveTime: 1546.13
Tue Nov 11 05:58:23 2014 -> making sieve job for q = 8750000 in 8750000 .. 8775000 as file 15553_220.job.T0
Tue Nov 11 05:58:23 2014 -> making sieve job for q = 8775000 in 8775000 .. 8800000 as file 15553_220.job.T1
Tue Nov 11 05:58:23 2014 -> making sieve job for q = 8800000 in 8800000 .. 8825000 as file 15553_220.job.T2
Tue Nov 11 05:58:23 2014 -> making sieve job for q = 8825000 in 8825000 .. 8850000 as file 15553_220.job.T3
Tue Nov 11 05:58:23 2014 -> Lattice sieving algebraic q from 8750000 to 8850000.
Tue Nov 11 05:58:23 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0
Tue Nov 11 05:58:23 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1
Tue Nov 11 05:58:23 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2
Tue Nov 11 05:58:23 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3
Tue Nov 11 06:24:36 2014 Found 7623523 relations, 40.1% of the estimated minimum (19000000).
Tue Nov 11 06:24:36 2014 LatSieveTime: 1573.87
Tue Nov 11 06:24:36 2014 -> making sieve job for q = 8850000 in 8850000 .. 8875000 as file 15553_220.job.T0
Tue Nov 11 06:24:36 2014 -> making sieve job for q = 8875000 in 8875000 .. 8900000 as file 15553_220.job.T1
Tue Nov 11 06:24:36 2014 -> making sieve job for q = 8900000 in 8900000 .. 8925000 as file 15553_220.job.T2
Tue Nov 11 06:24:36 2014 -> making sieve job for q = 8925000 in 8925000 .. 8950000 as file 15553_220.job.T3
Tue Nov 11 06:24:36 2014 -> Lattice sieving algebraic q from 8850000 to 8950000.
Tue Nov 11 06:24:36 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0
Tue Nov 11 06:24:36 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1
Tue Nov 11 06:24:36 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2
Tue Nov 11 06:24:36 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3
Tue Nov 11 06:50:39 2014 Found 7902710 relations, 41.6% of the estimated minimum (19000000).
Tue Nov 11 06:50:39 2014 LatSieveTime: 1562.93
Tue Nov 11 06:50:39 2014 -> making sieve job for q = 8950000 in 8950000 .. 8975000 as file 15553_220.job.T0
Tue Nov 11 06:50:39 2014 -> making sieve job for q = 8975000 in 8975000 .. 9000000 as file 15553_220.job.T1
Tue Nov 11 06:50:39 2014 -> making sieve job for q = 9000000 in 9000000 .. 9025000 as file 15553_220.job.T2
Tue Nov 11 06:50:39 2014 -> making sieve job for q = 9025000 in 9025000 .. 9050000 as file 15553_220.job.T3
Tue Nov 11 06:50:39 2014 -> Lattice sieving algebraic q from 8950000 to 9050000.
Tue Nov 11 06:50:39 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0
Tue Nov 11 06:50:39 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1
Tue Nov 11 06:50:39 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2
Tue Nov 11 06:50:39 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3
Tue Nov 11 07:19:18 2014 Found 8183927 relations, 43.1% of the estimated minimum (19000000).
Tue Nov 11 07:19:18 2014 LatSieveTime: 1718.31
Tue Nov 11 07:19:18 2014 -> making sieve job for q = 9050000 in 9050000 .. 9075000 as file 15553_220.job.T0
Tue Nov 11 07:19:18 2014 -> making sieve job for q = 9075000 in 9075000 .. 9100000 as file 15553_220.job.T1
Tue Nov 11 07:19:18 2014 -> making sieve job for q = 9100000 in 9100000 .. 9125000 as file 15553_220.job.T2
Tue Nov 11 07:19:18 2014 -> making sieve job for q = 9125000 in 9125000 .. 9150000 as file 15553_220.job.T3
Tue Nov 11 07:19:18 2014 -> Lattice sieving algebraic q from 9050000 to 9150000.
Tue Nov 11 07:19:18 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0
Tue Nov 11 07:19:18 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1
Tue Nov 11 07:19:18 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2
Tue Nov 11 07:19:18 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3
Tue Nov 11 07:45:36 2014 Found 8458438 relations, 44.5% of the estimated minimum (19000000).
Tue Nov 11 07:45:36 2014 LatSieveTime: 1578.64
Tue Nov 11 07:45:36 2014 -> making sieve job for q = 9150000 in 9150000 .. 9175000 as file 15553_220.job.T0
Tue Nov 11 07:45:36 2014 -> making sieve job for q = 9175000 in 9175000 .. 9200000 as file 15553_220.job.T1
Tue Nov 11 07:45:36 2014 -> making sieve job for q = 9200000 in 9200000 .. 9225000 as file 15553_220.job.T2
Tue Nov 11 07:45:36 2014 -> making sieve job for q = 9225000 in 9225000 .. 9250000 as file 15553_220.job.T3
Tue Nov 11 07:45:36 2014 -> Lattice sieving algebraic q from 9150000 to 9250000.
Tue Nov 11 07:45:36 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0
Tue Nov 11 07:45:36 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1
Tue Nov 11 07:45:36 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2
Tue Nov 11 07:45:36 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3
Tue Nov 11 08:12:31 2014 Found 8734263 relations, 46.0% of the estimated minimum (19000000).
Tue Nov 11 08:12:31 2014 LatSieveTime: 1614.44
Tue Nov 11 08:12:31 2014 -> making sieve job for q = 9250000 in 9250000 .. 9275000 as file 15553_220.job.T0
Tue Nov 11 08:12:31 2014 -> making sieve job for q = 9275000 in 9275000 .. 9300000 as file 15553_220.job.T1
Tue Nov 11 08:12:31 2014 -> making sieve job for q = 9300000 in 9300000 .. 9325000 as file 15553_220.job.T2
Tue Nov 11 08:12:31 2014 -> making sieve job for q = 9325000 in 9325000 .. 9350000 as file 15553_220.job.T3
Tue Nov 11 08:12:31 2014 -> Lattice sieving algebraic q from 9250000 to 9350000.
Tue Nov 11 08:12:31 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0
Tue Nov 11 08:12:31 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1
Tue Nov 11 08:12:31 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2
Tue Nov 11 08:12:31 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3
Tue Nov 11 08:40:01 2014 Found 9014039 relations, 47.4% of the estimated minimum (19000000).
Tue Nov 11 08:40:01 2014 LatSieveTime: 1649.88
Tue Nov 11 08:40:01 2014 -> making sieve job for q = 9350000 in 9350000 .. 9375000 as file 15553_220.job.T0
Tue Nov 11 08:40:01 2014 -> making sieve job for q = 9375000 in 9375000 .. 9400000 as file 15553_220.job.T1
Tue Nov 11 08:40:01 2014 -> making sieve job for q = 9400000 in 9400000 .. 9425000 as file 15553_220.job.T2
Tue Nov 11 08:40:01 2014 -> making sieve job for q = 9425000 in 9425000 .. 9450000 as file 15553_220.job.T3
Tue Nov 11 08:40:01 2014 -> Lattice sieving algebraic q from 9350000 to 9450000.
Tue Nov 11 08:40:01 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0
Tue Nov 11 08:40:01 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1
Tue Nov 11 08:40:01 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2
Tue Nov 11 08:40:01 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3
Tue Nov 11 09:08:04 2014 Found 9292518 relations, 48.9% of the estimated minimum (19000000).
Tue Nov 11 09:08:04 2014 LatSieveTime: 1683.34
Tue Nov 11 09:08:04 2014 -> making sieve job for q = 9450000 in 9450000 .. 9475000 as file 15553_220.job.T0
Tue Nov 11 09:08:04 2014 -> making sieve job for q = 9475000 in 9475000 .. 9500000 as file 15553_220.job.T1
Tue Nov 11 09:08:04 2014 -> making sieve job for q = 9500000 in 9500000 .. 9525000 as file 15553_220.job.T2
Tue Nov 11 09:08:04 2014 -> making sieve job for q = 9525000 in 9525000 .. 9550000 as file 15553_220.job.T3
Tue Nov 11 09:08:04 2014 -> Lattice sieving algebraic q from 9450000 to 9550000.
Tue Nov 11 09:08:04 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0
Tue Nov 11 09:08:04 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1
Tue Nov 11 09:08:04 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2
Tue Nov 11 09:08:04 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3
Tue Nov 11 09:33:24 2014 Found 9564398 relations, 50.3% of the estimated minimum (19000000).
Tue Nov 11 09:33:24 2014 LatSieveTime: 1520.04
Tue Nov 11 09:33:24 2014 -> making sieve job for q = 9550000 in 9550000 .. 9575000 as file 15553_220.job.T0
Tue Nov 11 09:33:24 2014 -> making sieve job for q = 9575000 in 9575000 .. 9600000 as file 15553_220.job.T1
Tue Nov 11 09:33:24 2014 -> making sieve job for q = 9600000 in 9600000 .. 9625000 as file 15553_220.job.T2
Tue Nov 11 09:33:24 2014 -> making sieve job for q = 9625000 in 9625000 .. 9650000 as file 15553_220.job.T3
Tue Nov 11 09:33:24 2014 -> Lattice sieving algebraic q from 9550000 to 9650000.
Tue Nov 11 09:33:24 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0
Tue Nov 11 09:33:24 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1
Tue Nov 11 09:33:24 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2
Tue Nov 11 09:33:24 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3
Tue Nov 11 09:59:43 2014 Found 9842102 relations, 51.8% of the estimated minimum (19000000).
Tue Nov 11 09:59:43 2014 LatSieveTime: 1579.33
Tue Nov 11 09:59:43 2014 -> making sieve job for q = 9650000 in 9650000 .. 9675000 as file 15553_220.job.T0
Tue Nov 11 09:59:43 2014 -> making sieve job for q = 9675000 in 9675000 .. 9700000 as file 15553_220.job.T1
Tue Nov 11 09:59:43 2014 -> making sieve job for q = 9700000 in 9700000 .. 9725000 as file 15553_220.job.T2
Tue Nov 11 09:59:43 2014 -> making sieve job for q = 9725000 in 9725000 .. 9750000 as file 15553_220.job.T3
Tue Nov 11 09:59:43 2014 -> Lattice sieving algebraic q from 9650000 to 9750000.
Tue Nov 11 09:59:43 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0
Tue Nov 11 09:59:43 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1
Tue Nov 11 09:59:43 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2
Tue Nov 11 09:59:43 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3
Tue Nov 11 10:25:53 2014 Found 10115153 relations, 53.2% of the estimated minimum (19000000).
Tue Nov 11 10:25:53 2014 LatSieveTime: 1569.64
Tue Nov 11 10:25:53 2014 -> making sieve job for q = 9750000 in 9750000 .. 9775000 as file 15553_220.job.T0
Tue Nov 11 10:25:53 2014 -> making sieve job for q = 9775000 in 9775000 .. 9800000 as file 15553_220.job.T1
Tue Nov 11 10:25:53 2014 -> making sieve job for q = 9800000 in 9800000 .. 9825000 as file 15553_220.job.T2
Tue Nov 11 10:25:53 2014 -> making sieve job for q = 9825000 in 9825000 .. 9850000 as file 15553_220.job.T3
Tue Nov 11 10:25:53 2014 -> Lattice sieving algebraic q from 9750000 to 9850000.
Tue Nov 11 10:25:53 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0
Tue Nov 11 10:25:53 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1
Tue Nov 11 10:25:53 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2
Tue Nov 11 10:25:53 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3
Tue Nov 11 10:53:45 2014 Found 10393144 relations, 54.7% of the estimated minimum (19000000).
Tue Nov 11 10:53:45 2014 LatSieveTime: 1671.79
Tue Nov 11 10:53:45 2014 -> making sieve job for q = 9850000 in 9850000 .. 9875000 as file 15553_220.job.T0
Tue Nov 11 10:53:45 2014 -> making sieve job for q = 9875000 in 9875000 .. 9900000 as file 15553_220.job.T1
Tue Nov 11 10:53:45 2014 -> making sieve job for q = 9900000 in 9900000 .. 9925000 as file 15553_220.job.T2
Tue Nov 11 10:53:45 2014 -> making sieve job for q = 9925000 in 9925000 .. 9950000 as file 15553_220.job.T3
Tue Nov 11 10:53:45 2014 -> Lattice sieving algebraic q from 9850000 to 9950000.
Tue Nov 11 10:53:45 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0
Tue Nov 11 10:53:45 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1
Tue Nov 11 10:53:45 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2
Tue Nov 11 10:53:45 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3
Tue Nov 11 11:20:32 2014 Found 10668175 relations, 56.1% of the estimated minimum (19000000).
Tue Nov 11 11:20:32 2014 LatSieveTime: 1606.79
Tue Nov 11 11:20:32 2014 -> making sieve job for q = 9950000 in 9950000 .. 9975000 as file 15553_220.job.T0
Tue Nov 11 11:20:32 2014 -> making sieve job for q = 9975000 in 9975000 .. 10000000 as file 15553_220.job.T1
Tue Nov 11 11:20:32 2014 -> making sieve job for q = 10000000 in 10000000 .. 10025000 as file 15553_220.job.T2
Tue Nov 11 11:20:32 2014 -> making sieve job for q = 10025000 in 10025000 .. 10050000 as file 15553_220.job.T3
Tue Nov 11 11:20:32 2014 -> Lattice sieving algebraic q from 9950000 to 10050000.
Tue Nov 11 11:20:32 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0
Tue Nov 11 11:20:32 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1
Tue Nov 11 11:20:32 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2
Tue Nov 11 11:20:32 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3
Tue Nov 11 11:48:40 2014 Found 10949402 relations, 57.6% of the estimated minimum (19000000).
Tue Nov 11 11:48:40 2014 LatSieveTime: 1688.08
Tue Nov 11 11:48:40 2014 -> making sieve job for q = 10050000 in 10050000 .. 10075000 as file 15553_220.job.T0
Tue Nov 11 11:48:40 2014 -> making sieve job for q = 10075000 in 10075000 .. 10100000 as file 15553_220.job.T1
Tue Nov 11 11:48:40 2014 -> making sieve job for q = 10100000 in 10100000 .. 10125000 as file 15553_220.job.T2
Tue Nov 11 11:48:40 2014 -> making sieve job for q = 10125000 in 10125000 .. 10150000 as file 15553_220.job.T3
Tue Nov 11 11:48:40 2014 -> Lattice sieving algebraic q from 10050000 to 10150000.
Tue Nov 11 11:48:40 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0
Tue Nov 11 11:48:40 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1
Tue Nov 11 11:48:40 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2
Tue Nov 11 11:48:40 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3
Tue Nov 11 12:14:47 2014 Found 11227074 relations, 59.1% of the estimated minimum (19000000).
Tue Nov 11 12:14:47 2014 LatSieveTime: 1567.24
Tue Nov 11 12:14:47 2014 -> making sieve job for q = 10150000 in 10150000 .. 10175000 as file 15553_220.job.T0
Tue Nov 11 12:14:47 2014 -> making sieve job for q = 10175000 in 10175000 .. 10200000 as file 15553_220.job.T1
Tue Nov 11 12:14:47 2014 -> making sieve job for q = 10200000 in 10200000 .. 10225000 as file 15553_220.job.T2
Tue Nov 11 12:14:47 2014 -> making sieve job for q = 10225000 in 10225000 .. 10250000 as file 15553_220.job.T3
Tue Nov 11 12:14:47 2014 -> Lattice sieving algebraic q from 10150000 to 10250000.
Tue Nov 11 12:14:47 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0
Tue Nov 11 12:14:47 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1
Tue Nov 11 12:14:47 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2
Tue Nov 11 12:14:47 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3
Tue Nov 11 12:40:25 2014 Found 11497389 relations, 60.5% of the estimated minimum (19000000).
Tue Nov 11 12:40:25 2014 LatSieveTime: 1538.4
Tue Nov 11 12:40:25 2014 -> making sieve job for q = 10250000 in 10250000 .. 10275000 as file 15553_220.job.T0
Tue Nov 11 12:40:25 2014 -> making sieve job for q = 10275000 in 10275000 .. 10300000 as file 15553_220.job.T1
Tue Nov 11 12:40:25 2014 -> making sieve job for q = 10300000 in 10300000 .. 10325000 as file 15553_220.job.T2
Tue Nov 11 12:40:25 2014 -> making sieve job for q = 10325000 in 10325000 .. 10350000 as file 15553_220.job.T3
Tue Nov 11 12:40:25 2014 -> Lattice sieving algebraic q from 10250000 to 10350000.
Tue Nov 11 12:40:25 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0
Tue Nov 11 12:40:25 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1
Tue Nov 11 12:40:25 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2
Tue Nov 11 12:40:25 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3
Tue Nov 11 13:08:33 2014 Found 11773394 relations, 62.0% of the estimated minimum (19000000).
Tue Nov 11 13:08:33 2014 LatSieveTime: 1687.15
Tue Nov 11 13:08:33 2014 -> making sieve job for q = 10350000 in 10350000 .. 10375000 as file 15553_220.job.T0
Tue Nov 11 13:08:33 2014 -> making sieve job for q = 10375000 in 10375000 .. 10400000 as file 15553_220.job.T1
Tue Nov 11 13:08:33 2014 -> making sieve job for q = 10400000 in 10400000 .. 10425000 as file 15553_220.job.T2
Tue Nov 11 13:08:33 2014 -> making sieve job for q = 10425000 in 10425000 .. 10450000 as file 15553_220.job.T3
Tue Nov 11 13:08:33 2014 -> Lattice sieving algebraic q from 10350000 to 10450000.
Tue Nov 11 13:08:33 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0
Tue Nov 11 13:08:33 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1
Tue Nov 11 13:08:33 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2
Tue Nov 11 13:08:33 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3
Tue Nov 11 13:38:33 2014 Found 12053771 relations, 63.4% of the estimated minimum (19000000).
Tue Nov 11 13:38:33 2014 LatSieveTime: 1800.49
Tue Nov 11 13:38:33 2014 -> making sieve job for q = 10450000 in 10450000 .. 10475000 as file 15553_220.job.T0
Tue Nov 11 13:38:33 2014 -> making sieve job for q = 10475000 in 10475000 .. 10500000 as file 15553_220.job.T1
Tue Nov 11 13:38:33 2014 -> making sieve job for q = 10500000 in 10500000 .. 10525000 as file 15553_220.job.T2
Tue Nov 11 13:38:33 2014 -> making sieve job for q = 10525000 in 10525000 .. 10550000 as file 15553_220.job.T3
Tue Nov 11 13:38:33 2014 -> Lattice sieving algebraic q from 10450000 to 10550000.
Tue Nov 11 13:38:33 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0
Tue Nov 11 13:38:33 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1
Tue Nov 11 13:38:33 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2
Tue Nov 11 13:38:33 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3
Tue Nov 11 14:07:09 2014 Found 12334197 relations, 64.9% of the estimated minimum (19000000).
Tue Nov 11 14:07:09 2014 LatSieveTime: 1716.14
Tue Nov 11 14:07:09 2014 -> making sieve job for q = 10550000 in 10550000 .. 10575000 as file 15553_220.job.T0
Tue Nov 11 14:07:09 2014 -> making sieve job for q = 10575000 in 10575000 .. 10600000 as file 15553_220.job.T1
Tue Nov 11 14:07:09 2014 -> making sieve job for q = 10600000 in 10600000 .. 10625000 as file 15553_220.job.T2
Tue Nov 11 14:07:09 2014 -> making sieve job for q = 10625000 in 10625000 .. 10650000 as file 15553_220.job.T3
Tue Nov 11 14:07:09 2014 -> Lattice sieving algebraic q from 10550000 to 10650000.
Tue Nov 11 14:07:09 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0
Tue Nov 11 14:07:09 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1
Tue Nov 11 14:07:09 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2
Tue Nov 11 14:07:09 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3
Tue Nov 11 14:34:36 2014 Found 12613623 relations, 66.4% of the estimated minimum (19000000).
Tue Nov 11 14:34:36 2014 LatSieveTime: 1647.21
Tue Nov 11 14:34:36 2014 -> making sieve job for q = 10650000 in 10650000 .. 10675000 as file 15553_220.job.T0
Tue Nov 11 14:34:36 2014 -> making sieve job for q = 10675000 in 10675000 .. 10700000 as file 15553_220.job.T1
Tue Nov 11 14:34:36 2014 -> making sieve job for q = 10700000 in 10700000 .. 10725000 as file 15553_220.job.T2
Tue Nov 11 14:34:36 2014 -> making sieve job for q = 10725000 in 10725000 .. 10750000 as file 15553_220.job.T3
Tue Nov 11 14:34:36 2014 -> Lattice sieving algebraic q from 10650000 to 10750000.
Tue Nov 11 14:34:36 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0
Tue Nov 11 14:34:36 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1
Tue Nov 11 14:34:36 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2
Tue Nov 11 14:34:36 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3
Tue Nov 11 15:01:39 2014 Found 12889943 relations, 67.8% of the estimated minimum (19000000).
Tue Nov 11 15:01:39 2014 LatSieveTime: 1622.76
Tue Nov 11 15:01:39 2014 -> making sieve job for q = 10750000 in 10750000 .. 10775000 as file 15553_220.job.T0
Tue Nov 11 15:01:39 2014 -> making sieve job for q = 10775000 in 10775000 .. 10800000 as file 15553_220.job.T1
Tue Nov 11 15:01:39 2014 -> making sieve job for q = 10800000 in 10800000 .. 10825000 as file 15553_220.job.T2
Tue Nov 11 15:01:39 2014 -> making sieve job for q = 10825000 in 10825000 .. 10850000 as file 15553_220.job.T3
Tue Nov 11 15:01:39 2014 -> Lattice sieving algebraic q from 10750000 to 10850000.
Tue Nov 11 15:01:39 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0
Tue Nov 11 15:01:39 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1
Tue Nov 11 15:01:39 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2
Tue Nov 11 15:01:39 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3
Tue Nov 11 15:29:10 2014 Found 13166306 relations, 69.3% of the estimated minimum (19000000).
Tue Nov 11 15:29:10 2014 LatSieveTime: 1650.38
Tue Nov 11 15:29:10 2014 -> making sieve job for q = 10850000 in 10850000 .. 10875000 as file 15553_220.job.T0
Tue Nov 11 15:29:10 2014 -> making sieve job for q = 10875000 in 10875000 .. 10900000 as file 15553_220.job.T1
Tue Nov 11 15:29:10 2014 -> making sieve job for q = 10900000 in 10900000 .. 10925000 as file 15553_220.job.T2
Tue Nov 11 15:29:10 2014 -> making sieve job for q = 10925000 in 10925000 .. 10950000 as file 15553_220.job.T3
Tue Nov 11 15:29:10 2014 -> Lattice sieving algebraic q from 10850000 to 10950000.
Tue Nov 11 15:29:10 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0
Tue Nov 11 15:29:10 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1
Tue Nov 11 15:29:10 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2
Tue Nov 11 15:29:10 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3
Tue Nov 11 15:56:55 2014 Found 13443298 relations, 70.8% of the estimated minimum (19000000).
Tue Nov 11 15:56:55 2014 LatSieveTime: 1665.1
Tue Nov 11 15:56:55 2014 -> making sieve job for q = 10950000 in 10950000 .. 10975000 as file 15553_220.job.T0
Tue Nov 11 15:56:55 2014 -> making sieve job for q = 10975000 in 10975000 .. 11000000 as file 15553_220.job.T1
Tue Nov 11 15:56:55 2014 -> making sieve job for q = 11000000 in 11000000 .. 11025000 as file 15553_220.job.T2
Tue Nov 11 15:56:55 2014 -> making sieve job for q = 11025000 in 11025000 .. 11050000 as file 15553_220.job.T3
Tue Nov 11 15:56:55 2014 -> Lattice sieving algebraic q from 10950000 to 11050000.
Tue Nov 11 15:56:55 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0
Tue Nov 11 15:56:55 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1
Tue Nov 11 15:56:55 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2
Tue Nov 11 15:56:55 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3
Tue Nov 11 16:24:26 2014 Found 13714556 relations, 72.2% of the estimated minimum (19000000).
Tue Nov 11 16:24:26 2014 LatSieveTime: 1650.98
Tue Nov 11 16:24:26 2014 -> making sieve job for q = 11050000 in 11050000 .. 11075000 as file 15553_220.job.T0
Tue Nov 11 16:24:26 2014 -> making sieve job for q = 11075000 in 11075000 .. 11100000 as file 15553_220.job.T1
Tue Nov 11 16:24:26 2014 -> making sieve job for q = 11100000 in 11100000 .. 11125000 as file 15553_220.job.T2
Tue Nov 11 16:24:26 2014 -> making sieve job for q = 11125000 in 11125000 .. 11150000 as file 15553_220.job.T3
Tue Nov 11 16:24:26 2014 -> Lattice sieving algebraic q from 11050000 to 11150000.
Tue Nov 11 16:24:26 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0
Tue Nov 11 16:24:26 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1
Tue Nov 11 16:24:26 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2
Tue Nov 11 16:24:26 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3
Tue Nov 11 16:53:11 2014 Found 13987769 relations, 73.6% of the estimated minimum (19000000).
Tue Nov 11 16:53:11 2014 LatSieveTime: 1725.13
Tue Nov 11 16:53:11 2014 -> making sieve job for q = 11150000 in 11150000 .. 11175000 as file 15553_220.job.T0
Tue Nov 11 16:53:11 2014 -> making sieve job for q = 11175000 in 11175000 .. 11200000 as file 15553_220.job.T1
Tue Nov 11 16:53:11 2014 -> making sieve job for q = 11200000 in 11200000 .. 11225000 as file 15553_220.job.T2
Tue Nov 11 16:53:11 2014 -> making sieve job for q = 11225000 in 11225000 .. 11250000 as file 15553_220.job.T3
Tue Nov 11 16:53:11 2014 -> Lattice sieving algebraic q from 11150000 to 11250000.
Tue Nov 11 16:53:11 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0
Tue Nov 11 16:53:11 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1
Tue Nov 11 16:53:11 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2
Tue Nov 11 16:53:11 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3
Tue Nov 11 17:20:16 2014 Found 14259190 relations, 75.0% of the estimated minimum (19000000).
Tue Nov 11 17:20:16 2014 LatSieveTime: 1624.79
Tue Nov 11 17:20:16 2014 -> making sieve job for q = 11250000 in 11250000 .. 11275000 as file 15553_220.job.T0
Tue Nov 11 17:20:16 2014 -> making sieve job for q = 11275000 in 11275000 .. 11300000 as file 15553_220.job.T1
Tue Nov 11 17:20:16 2014 -> making sieve job for q = 11300000 in 11300000 .. 11325000 as file 15553_220.job.T2
Tue Nov 11 17:20:16 2014 -> making sieve job for q = 11325000 in 11325000 .. 11350000 as file 15553_220.job.T3
Tue Nov 11 17:20:16 2014 -> Lattice sieving algebraic q from 11250000 to 11350000.
Tue Nov 11 17:20:16 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0
Tue Nov 11 17:20:16 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1
Tue Nov 11 17:20:16 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2
Tue Nov 11 17:20:16 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3
Tue Nov 11 17:46:11 2014 Found 14535609 relations, 76.5% of the estimated minimum (19000000).
Tue Nov 11 17:46:11 2014 LatSieveTime: 1555.62
Tue Nov 11 17:46:11 2014 -> making sieve job for q = 11350000 in 11350000 .. 11375000 as file 15553_220.job.T0
Tue Nov 11 17:46:11 2014 -> making sieve job for q = 11375000 in 11375000 .. 11400000 as file 15553_220.job.T1
Tue Nov 11 17:46:11 2014 -> making sieve job for q = 11400000 in 11400000 .. 11425000 as file 15553_220.job.T2
Tue Nov 11 17:46:11 2014 -> making sieve job for q = 11425000 in 11425000 .. 11450000 as file 15553_220.job.T3
Tue Nov 11 17:46:11 2014 -> Lattice sieving algebraic q from 11350000 to 11450000.
Tue Nov 11 17:46:11 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0
Tue Nov 11 17:46:11 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1
Tue Nov 11 17:46:11 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2
Tue Nov 11 17:46:11 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3
Tue Nov 11 18:11:09 2014 Found 14802917 relations, 77.9% of the estimated minimum (19000000).
Tue Nov 11 18:11:09 2014 LatSieveTime: 1497.39
Tue Nov 11 18:11:09 2014 -> making sieve job for q = 11450000 in 11450000 .. 11475000 as file 15553_220.job.T0
Tue Nov 11 18:11:09 2014 -> making sieve job for q = 11475000 in 11475000 .. 11500000 as file 15553_220.job.T1
Tue Nov 11 18:11:09 2014 -> making sieve job for q = 11500000 in 11500000 .. 11525000 as file 15553_220.job.T2
Tue Nov 11 18:11:09 2014 -> making sieve job for q = 11525000 in 11525000 .. 11550000 as file 15553_220.job.T3
Tue Nov 11 18:11:09 2014 -> Lattice sieving algebraic q from 11450000 to 11550000.
Tue Nov 11 18:11:09 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0
Tue Nov 11 18:11:09 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1
Tue Nov 11 18:11:09 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2
Tue Nov 11 18:11:09 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3
Tue Nov 11 18:37:05 2014 Found 15077761 relations, 79.4% of the estimated minimum (19000000).
Tue Nov 11 18:37:05 2014 LatSieveTime: 1556.09
Tue Nov 11 18:37:05 2014 -> making sieve job for q = 11550000 in 11550000 .. 11575000 as file 15553_220.job.T0
Tue Nov 11 18:37:05 2014 -> making sieve job for q = 11575000 in 11575000 .. 11600000 as file 15553_220.job.T1
Tue Nov 11 18:37:05 2014 -> making sieve job for q = 11600000 in 11600000 .. 11625000 as file 15553_220.job.T2
Tue Nov 11 18:37:05 2014 -> making sieve job for q = 11625000 in 11625000 .. 11650000 as file 15553_220.job.T3
Tue Nov 11 18:37:05 2014 -> Lattice sieving algebraic q from 11550000 to 11650000.
Tue Nov 11 18:37:05 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0
Tue Nov 11 18:37:05 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1
Tue Nov 11 18:37:05 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2
Tue Nov 11 18:37:05 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3
Tue Nov 11 19:02:25 2014 Found 15356621 relations, 80.8% of the estimated minimum (19000000).
Tue Nov 11 19:02:25 2014 LatSieveTime: 1520.48
Tue Nov 11 19:02:25 2014 -> making sieve job for q = 11650000 in 11650000 .. 11675000 as file 15553_220.job.T0
Tue Nov 11 19:02:25 2014 -> making sieve job for q = 11675000 in 11675000 .. 11700000 as file 15553_220.job.T1
Tue Nov 11 19:02:25 2014 -> making sieve job for q = 11700000 in 11700000 .. 11725000 as file 15553_220.job.T2
Tue Nov 11 19:02:25 2014 -> making sieve job for q = 11725000 in 11725000 .. 11750000 as file 15553_220.job.T3
Tue Nov 11 19:02:25 2014 -> Lattice sieving algebraic q from 11650000 to 11750000.
Tue Nov 11 19:02:25 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0
Tue Nov 11 19:02:25 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1
Tue Nov 11 19:02:25 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2
Tue Nov 11 19:02:25 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3
Tue Nov 11 19:27:12 2014 Found 15630907 relations, 82.3% of the estimated minimum (19000000).
Tue Nov 11 19:27:12 2014 LatSieveTime: 1486.9
Tue Nov 11 19:27:12 2014 -> making sieve job for q = 11750000 in 11750000 .. 11775000 as file 15553_220.job.T0
Tue Nov 11 19:27:12 2014 -> making sieve job for q = 11775000 in 11775000 .. 11800000 as file 15553_220.job.T1
Tue Nov 11 19:27:12 2014 -> making sieve job for q = 11800000 in 11800000 .. 11825000 as file 15553_220.job.T2
Tue Nov 11 19:27:12 2014 -> making sieve job for q = 11825000 in 11825000 .. 11850000 as file 15553_220.job.T3
Tue Nov 11 19:27:12 2014 -> Lattice sieving algebraic q from 11750000 to 11850000.
Tue Nov 11 19:27:12 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0
Tue Nov 11 19:27:12 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1
Tue Nov 11 19:27:12 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2
Tue Nov 11 19:27:12 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3
Tue Nov 11 19:50:32 2014 Found 15898860 relations, 83.7% of the estimated minimum (19000000).
Tue Nov 11 19:50:32 2014 LatSieveTime: 1399.46
Tue Nov 11 19:50:32 2014 -> making sieve job for q = 11850000 in 11850000 .. 11875000 as file 15553_220.job.T0
Tue Nov 11 19:50:32 2014 -> making sieve job for q = 11875000 in 11875000 .. 11900000 as file 15553_220.job.T1
Tue Nov 11 19:50:32 2014 -> making sieve job for q = 11900000 in 11900000 .. 11925000 as file 15553_220.job.T2
Tue Nov 11 19:50:32 2014 -> making sieve job for q = 11925000 in 11925000 .. 11950000 as file 15553_220.job.T3
Tue Nov 11 19:50:32 2014 -> Lattice sieving algebraic q from 11850000 to 11950000.
Tue Nov 11 19:50:32 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0
Tue Nov 11 19:50:32 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1
Tue Nov 11 19:50:32 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2
Tue Nov 11 19:50:32 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3
Tue Nov 11 20:15:51 2014 Found 16176313 relations, 85.1% of the estimated minimum (19000000).
Tue Nov 11 20:15:51 2014 LatSieveTime: 1519.17
Tue Nov 11 20:15:51 2014 -> making sieve job for q = 11950000 in 11950000 .. 11975000 as file 15553_220.job.T0
Tue Nov 11 20:15:51 2014 -> making sieve job for q = 11975000 in 11975000 .. 12000000 as file 15553_220.job.T1
Tue Nov 11 20:15:51 2014 -> making sieve job for q = 12000000 in 12000000 .. 12025000 as file 15553_220.job.T2
Tue Nov 11 20:15:51 2014 -> making sieve job for q = 12025000 in 12025000 .. 12050000 as file 15553_220.job.T3
Tue Nov 11 20:15:51 2014 -> Lattice sieving algebraic q from 11950000 to 12050000.
Tue Nov 11 20:15:51 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0
Tue Nov 11 20:15:51 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1
Tue Nov 11 20:15:51 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2
Tue Nov 11 20:15:51 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3
Tue Nov 11 20:41:38 2014 Found 16449698 relations, 86.6% of the estimated minimum (19000000).
Tue Nov 11 20:41:38 2014 LatSieveTime: 1546.83
Tue Nov 11 20:41:38 2014 -> making sieve job for q = 12050000 in 12050000 .. 12075000 as file 15553_220.job.T0
Tue Nov 11 20:41:38 2014 -> making sieve job for q = 12075000 in 12075000 .. 12100000 as file 15553_220.job.T1
Tue Nov 11 20:41:38 2014 -> making sieve job for q = 12100000 in 12100000 .. 12125000 as file 15553_220.job.T2
Tue Nov 11 20:41:38 2014 -> making sieve job for q = 12125000 in 12125000 .. 12150000 as file 15553_220.job.T3
Tue Nov 11 20:41:38 2014 -> Lattice sieving algebraic q from 12050000 to 12150000.
Tue Nov 11 20:41:38 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0
Tue Nov 11 20:41:38 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1
Tue Nov 11 20:41:38 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2
Tue Nov 11 20:41:38 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3
Tue Nov 11 21:07:01 2014 Found 16722054 relations, 88.0% of the estimated minimum (19000000).
Tue Nov 11 21:07:01 2014 LatSieveTime: 1523.35
Tue Nov 11 21:07:01 2014 -> making sieve job for q = 12150000 in 12150000 .. 12175000 as file 15553_220.job.T0
Tue Nov 11 21:07:01 2014 -> making sieve job for q = 12175000 in 12175000 .. 12200000 as file 15553_220.job.T1
Tue Nov 11 21:07:01 2014 -> making sieve job for q = 12200000 in 12200000 .. 12225000 as file 15553_220.job.T2
Tue Nov 11 21:07:01 2014 -> making sieve job for q = 12225000 in 12225000 .. 12250000 as file 15553_220.job.T3
Tue Nov 11 21:07:01 2014 -> Lattice sieving algebraic q from 12150000 to 12250000.
Tue Nov 11 21:07:01 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0
Tue Nov 11 21:07:01 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1
Tue Nov 11 21:07:01 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2
Tue Nov 11 21:07:01 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3
Tue Nov 11 21:32:38 2014 Found 17000336 relations, 89.5% of the estimated minimum (19000000).
Tue Nov 11 21:32:38 2014 LatSieveTime: 1536.87
Tue Nov 11 21:32:38 2014 -> making sieve job for q = 12250000 in 12250000 .. 12275000 as file 15553_220.job.T0
Tue Nov 11 21:32:38 2014 -> making sieve job for q = 12275000 in 12275000 .. 12300000 as file 15553_220.job.T1
Tue Nov 11 21:32:38 2014 -> making sieve job for q = 12300000 in 12300000 .. 12325000 as file 15553_220.job.T2
Tue Nov 11 21:32:38 2014 -> making sieve job for q = 12325000 in 12325000 .. 12350000 as file 15553_220.job.T3
Tue Nov 11 21:32:38 2014 -> Lattice sieving algebraic q from 12250000 to 12350000.
Tue Nov 11 21:32:38 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0
Tue Nov 11 21:32:38 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1
Tue Nov 11 21:32:38 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2
Tue Nov 11 21:32:38 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3
Tue Nov 11 21:58:19 2014 Found 17267284 relations, 90.9% of the estimated minimum (19000000).
Tue Nov 11 21:58:19 2014 LatSieveTime: 1540.99
Tue Nov 11 21:58:19 2014 -> making sieve job for q = 12350000 in 12350000 .. 12375000 as file 15553_220.job.T0
Tue Nov 11 21:58:19 2014 -> making sieve job for q = 12375000 in 12375000 .. 12400000 as file 15553_220.job.T1
Tue Nov 11 21:58:19 2014 -> making sieve job for q = 12400000 in 12400000 .. 12425000 as file 15553_220.job.T2
Tue Nov 11 21:58:19 2014 -> making sieve job for q = 12425000 in 12425000 .. 12450000 as file 15553_220.job.T3
Tue Nov 11 21:58:19 2014 -> Lattice sieving algebraic q from 12350000 to 12450000.
Tue Nov 11 21:58:19 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0
Tue Nov 11 21:58:19 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1
Tue Nov 11 21:58:19 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2
Tue Nov 11 21:58:19 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3
Tue Nov 11 22:23:59 2014 Found 17540812 relations, 92.3% of the estimated minimum (19000000).
Tue Nov 11 22:23:59 2014 LatSieveTime: 1539.72
Tue Nov 11 22:23:59 2014 -> making sieve job for q = 12450000 in 12450000 .. 12475000 as file 15553_220.job.T0
Tue Nov 11 22:23:59 2014 -> making sieve job for q = 12475000 in 12475000 .. 12500000 as file 15553_220.job.T1
Tue Nov 11 22:23:59 2014 -> making sieve job for q = 12500000 in 12500000 .. 12525000 as file 15553_220.job.T2
Tue Nov 11 22:23:59 2014 -> making sieve job for q = 12525000 in 12525000 .. 12550000 as file 15553_220.job.T3
Tue Nov 11 22:23:59 2014 -> Lattice sieving algebraic q from 12450000 to 12550000.
Tue Nov 11 22:23:59 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0
Tue Nov 11 22:23:59 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1
Tue Nov 11 22:23:59 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2
Tue Nov 11 22:23:59 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3
Tue Nov 11 22:49:31 2014 Found 17811642 relations, 93.7% of the estimated minimum (19000000).
Tue Nov 11 22:49:31 2014 LatSieveTime: 1532.33
Tue Nov 11 22:49:31 2014 -> making sieve job for q = 12550000 in 12550000 .. 12575000 as file 15553_220.job.T0
Tue Nov 11 22:49:31 2014 -> making sieve job for q = 12575000 in 12575000 .. 12600000 as file 15553_220.job.T1
Tue Nov 11 22:49:31 2014 -> making sieve job for q = 12600000 in 12600000 .. 12625000 as file 15553_220.job.T2
Tue Nov 11 22:49:31 2014 -> making sieve job for q = 12625000 in 12625000 .. 12650000 as file 15553_220.job.T3
Tue Nov 11 22:49:31 2014 -> Lattice sieving algebraic q from 12550000 to 12650000.
Tue Nov 11 22:49:31 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0
Tue Nov 11 22:49:31 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1
Tue Nov 11 22:49:31 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2
Tue Nov 11 22:49:31 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3
Tue Nov 11 23:14:52 2014 Found 18084667 relations, 95.2% of the estimated minimum (19000000).
Tue Nov 11 23:14:52 2014 LatSieveTime: 1521.18
Tue Nov 11 23:14:52 2014 -> making sieve job for q = 12650000 in 12650000 .. 12675000 as file 15553_220.job.T0
Tue Nov 11 23:14:52 2014 -> making sieve job for q = 12675000 in 12675000 .. 12700000 as file 15553_220.job.T1
Tue Nov 11 23:14:52 2014 -> making sieve job for q = 12700000 in 12700000 .. 12725000 as file 15553_220.job.T2
Tue Nov 11 23:14:52 2014 -> making sieve job for q = 12725000 in 12725000 .. 12750000 as file 15553_220.job.T3
Tue Nov 11 23:14:52 2014 -> Lattice sieving algebraic q from 12650000 to 12750000.
Tue Nov 11 23:14:52 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0
Tue Nov 11 23:14:52 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1
Tue Nov 11 23:14:52 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2
Tue Nov 11 23:14:52 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3
Tue Nov 11 23:40:58 2014 Found 18360149 relations, 96.6% of the estimated minimum (19000000).
Tue Nov 11 23:40:58 2014 LatSieveTime: 1565.69
Tue Nov 11 23:40:58 2014 -> making sieve job for q = 12750000 in 12750000 .. 12775000 as file 15553_220.job.T0
Tue Nov 11 23:40:58 2014 -> making sieve job for q = 12775000 in 12775000 .. 12800000 as file 15553_220.job.T1
Tue Nov 11 23:40:58 2014 -> making sieve job for q = 12800000 in 12800000 .. 12825000 as file 15553_220.job.T2
Tue Nov 11 23:40:58 2014 -> making sieve job for q = 12825000 in 12825000 .. 12850000 as file 15553_220.job.T3
Tue Nov 11 23:40:58 2014 -> Lattice sieving algebraic q from 12750000 to 12850000.
Tue Nov 11 23:40:58 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0
Tue Nov 11 23:40:58 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1
Tue Nov 11 23:40:58 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2
Tue Nov 11 23:40:58 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3
Wed Nov 12 00:06:06 2014 Found 18629232 relations, 98.0% of the estimated minimum (19000000).
Wed Nov 12 00:06:06 2014 LatSieveTime: 1508.03
Wed Nov 12 00:06:06 2014 -> making sieve job for q = 12850000 in 12850000 .. 12875000 as file 15553_220.job.T0
Wed Nov 12 00:06:06 2014 -> making sieve job for q = 12875000 in 12875000 .. 12900000 as file 15553_220.job.T1
Wed Nov 12 00:06:06 2014 -> making sieve job for q = 12900000 in 12900000 .. 12925000 as file 15553_220.job.T2
Wed Nov 12 00:06:06 2014 -> making sieve job for q = 12925000 in 12925000 .. 12950000 as file 15553_220.job.T3
Wed Nov 12 00:06:06 2014 -> Lattice sieving algebraic q from 12850000 to 12950000.
Wed Nov 12 00:06:06 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0
Wed Nov 12 00:06:06 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1
Wed Nov 12 00:06:06 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2
Wed Nov 12 00:06:06 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3
Wed Nov 12 00:34:30 2014 Found 18895099 relations, 99.4% of the estimated minimum (19000000).
Wed Nov 12 00:34:33 2014 LatSieveTime: 1704.33
Wed Nov 12 00:34:33 2014 -> making sieve job for q = 12950000 in 12950000 .. 12975000 as file 15553_220.job.T0
Wed Nov 12 00:34:33 2014 -> making sieve job for q = 12975000 in 12975000 .. 13000000 as file 15553_220.job.T1
Wed Nov 12 00:34:33 2014 -> making sieve job for q = 13000000 in 13000000 .. 13025000 as file 15553_220.job.T2
Wed Nov 12 00:34:33 2014 -> making sieve job for q = 13025000 in 13025000 .. 13050000 as file 15553_220.job.T3
Wed Nov 12 00:34:33 2014 -> Lattice sieving algebraic q from 12950000 to 13050000.
Wed Nov 12 00:34:33 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0
Wed Nov 12 00:34:33 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1
Wed Nov 12 00:34:33 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2
Wed Nov 12 00:34:33 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3
Wed Nov 12 01:00:08 2014 Found 19162495 relations, 100.9% of the estimated minimum (19000000).
Wed Nov 12 01:00:08 2014  
Wed Nov 12 01:00:09 2014  
Wed Nov 12 01:00:09 2014  Msieve v. 1.51 (SVN 845)
Wed Nov 12 01:00:09 2014  random seeds: 622fc40c 356fff9b
Wed Nov 12 01:00:09 2014  factoring 44411018648510210075526998380074804898316383347362838515916290022880087228547203764182509460212786559034097760725645542566400325037417 (134 digits)
Wed Nov 12 01:00:09 2014  searching for 15-digit factors
Wed Nov 12 01:00:10 2014  commencing number field sieve (134-digit input)
Wed Nov 12 01:00:10 2014  R0: -99897098244994361976794188
Wed Nov 12 01:00:10 2014  R1: 140963966726011
Wed Nov 12 01:00:10 2014  A0: 92283268763007322061572551651975
Wed Nov 12 01:00:10 2014  A1: 857159006391033326945836521
Wed Nov 12 01:00:10 2014  A2: -6533537849100489796919
Wed Nov 12 01:00:10 2014  A3: -5639116642534241
Wed Nov 12 01:00:10 2014  A4: 15896980680
Wed Nov 12 01:00:10 2014  A5: 4464
Wed Nov 12 01:00:10 2014  skew 631930.24, size 7.007e-013, alpha -6.280, combined = 5.091e-011 rroots = 5
Wed Nov 12 01:00:10 2014  
Wed Nov 12 01:00:10 2014  commencing relation filtering
Wed Nov 12 01:00:10 2014  estimated available RAM is 4096.0 MB
Wed Nov 12 01:00:10 2014  commencing duplicate removal, pass 1
Wed Nov 12 01:02:27 2014  found 2265850 hash collisions in 19162494 relations
Wed Nov 12 01:03:02 2014  added 119550 free relations
Wed Nov 12 01:03:02 2014  commencing duplicate removal, pass 2
Wed Nov 12 01:03:12 2014  found 1912659 duplicates and 17369385 unique relations
Wed Nov 12 01:03:12 2014  memory use: 98.6 MB
Wed Nov 12 01:03:12 2014  reading ideals above 720000
Wed Nov 12 01:03:13 2014  commencing singleton removal, initial pass
Wed Nov 12 01:05:48 2014  memory use: 376.5 MB
Wed Nov 12 01:05:49 2014  reading all ideals from disk
Wed Nov 12 01:05:49 2014  memory use: 547.6 MB
Wed Nov 12 01:05:50 2014  keeping 19461195 ideals with weight <= 200, target excess is 116491
Wed Nov 12 01:05:51 2014  commencing in-memory singleton removal
Wed Nov 12 01:05:52 2014  begin with 17369385 relations and 19461195 unique ideals
Wed Nov 12 01:06:03 2014  reduce to 5907322 relations and 5998612 ideals in 23 passes
Wed Nov 12 01:06:03 2014  max relations containing the same ideal: 95
Wed Nov 12 01:06:03 2014  filtering wants 1000000 more relations
Wed Nov 12 01:06:03 2014  elapsed time 00:05:54
Wed Nov 12 01:06:03 2014 LatSieveTime: 1890.16
Wed Nov 12 01:06:03 2014 -> making sieve job for q = 13050000 in 13050000 .. 13075000 as file 15553_220.job.T0
Wed Nov 12 01:06:03 2014 -> making sieve job for q = 13075000 in 13075000 .. 13100000 as file 15553_220.job.T1
Wed Nov 12 01:06:03 2014 -> making sieve job for q = 13100000 in 13100000 .. 13125000 as file 15553_220.job.T2
Wed Nov 12 01:06:03 2014 -> making sieve job for q = 13125000 in 13125000 .. 13150000 as file 15553_220.job.T3
Wed Nov 12 01:06:03 2014 -> Lattice sieving algebraic q from 13050000 to 13150000.
Wed Nov 12 01:06:03 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0
Wed Nov 12 01:06:03 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1
Wed Nov 12 01:06:03 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2
Wed Nov 12 01:06:03 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3
Wed Nov 12 01:30:46 2014 Found 19543179 relations, 102.9% of the estimated minimum (19000000).
Wed Nov 12 01:30:46 2014  
Wed Nov 12 01:30:46 2014  
Wed Nov 12 01:30:46 2014  Msieve v. 1.51 (SVN 845)
Wed Nov 12 01:30:46 2014  random seeds: 970fb2a8 16189150
Wed Nov 12 01:30:46 2014  factoring 44411018648510210075526998380074804898316383347362838515916290022880087228547203764182509460212786559034097760725645542566400325037417 (134 digits)
Wed Nov 12 01:30:47 2014  searching for 15-digit factors
Wed Nov 12 01:30:47 2014  commencing number field sieve (134-digit input)
Wed Nov 12 01:30:47 2014  R0: -99897098244994361976794188
Wed Nov 12 01:30:47 2014  R1: 140963966726011
Wed Nov 12 01:30:47 2014  A0: 92283268763007322061572551651975
Wed Nov 12 01:30:47 2014  A1: 857159006391033326945836521
Wed Nov 12 01:30:47 2014  A2: -6533537849100489796919
Wed Nov 12 01:30:47 2014  A3: -5639116642534241
Wed Nov 12 01:30:47 2014  A4: 15896980680
Wed Nov 12 01:30:47 2014  A5: 4464
Wed Nov 12 01:30:47 2014  skew 631930.24, size 7.007e-013, alpha -6.280, combined = 5.091e-011 rroots = 5
Wed Nov 12 01:30:47 2014  
Wed Nov 12 01:30:47 2014  commencing relation filtering
Wed Nov 12 01:30:47 2014  estimated available RAM is 4096.0 MB
Wed Nov 12 01:30:47 2014  commencing duplicate removal, pass 1
Wed Nov 12 01:33:08 2014  found 2324361 hash collisions in 19543178 relations
Wed Nov 12 01:33:42 2014  added 85 free relations
Wed Nov 12 01:33:42 2014  commencing duplicate removal, pass 2
Wed Nov 12 01:33:52 2014  found 1957510 duplicates and 17585753 unique relations
Wed Nov 12 01:33:52 2014  memory use: 98.6 MB
Wed Nov 12 01:33:53 2014  reading ideals above 720000
Wed Nov 12 01:33:53 2014  commencing singleton removal, initial pass
Wed Nov 12 01:37:16 2014  memory use: 376.5 MB
Wed Nov 12 01:37:16 2014  reading all ideals from disk
Wed Nov 12 01:37:16 2014  memory use: 554.5 MB
Wed Nov 12 01:37:17 2014  keeping 19559495 ideals with weight <= 200, target excess is 116675
Wed Nov 12 01:37:18 2014  commencing in-memory singleton removal
Wed Nov 12 01:37:19 2014  begin with 17585753 relations and 19559495 unique ideals
Wed Nov 12 01:37:30 2014  reduce to 6207430 relations and 6226794 ideals in 21 passes
Wed Nov 12 01:37:30 2014  max relations containing the same ideal: 97
Wed Nov 12 01:37:30 2014  filtering wants 1000000 more relations
Wed Nov 12 01:37:30 2014  elapsed time 00:06:44
Wed Nov 12 01:37:30 2014 LatSieveTime: 1886.81
Wed Nov 12 01:37:30 2014 -> making sieve job for q = 13150000 in 13150000 .. 13175000 as file 15553_220.job.T0
Wed Nov 12 01:37:30 2014 -> making sieve job for q = 13175000 in 13175000 .. 13200000 as file 15553_220.job.T1
Wed Nov 12 01:37:30 2014 -> making sieve job for q = 13200000 in 13200000 .. 13225000 as file 15553_220.job.T2
Wed Nov 12 01:37:30 2014 -> making sieve job for q = 13225000 in 13225000 .. 13250000 as file 15553_220.job.T3
Wed Nov 12 01:37:30 2014 -> Lattice sieving algebraic q from 13150000 to 13250000.
Wed Nov 12 01:37:30 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0
Wed Nov 12 01:37:30 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1
Wed Nov 12 01:37:30 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2
Wed Nov 12 01:37:30 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3
Wed Nov 12 02:03:29 2014 Found 19810905 relations, 104.3% of the estimated minimum (19000000).
Wed Nov 12 02:03:29 2014  
Wed Nov 12 02:03:29 2014  
Wed Nov 12 02:03:29 2014  Msieve v. 1.51 (SVN 845)
Wed Nov 12 02:03:29 2014  random seeds: 0923bd9c b9b80524
Wed Nov 12 02:03:29 2014  factoring 44411018648510210075526998380074804898316383347362838515916290022880087228547203764182509460212786559034097760725645542566400325037417 (134 digits)
Wed Nov 12 02:03:29 2014  searching for 15-digit factors
Wed Nov 12 02:03:30 2014  commencing number field sieve (134-digit input)
Wed Nov 12 02:03:30 2014  R0: -99897098244994361976794188
Wed Nov 12 02:03:30 2014  R1: 140963966726011
Wed Nov 12 02:03:30 2014  A0: 92283268763007322061572551651975
Wed Nov 12 02:03:30 2014  A1: 857159006391033326945836521
Wed Nov 12 02:03:30 2014  A2: -6533537849100489796919
Wed Nov 12 02:03:30 2014  A3: -5639116642534241
Wed Nov 12 02:03:30 2014  A4: 15896980680
Wed Nov 12 02:03:30 2014  A5: 4464
Wed Nov 12 02:03:30 2014  skew 631930.24, size 7.007e-013, alpha -6.280, combined = 5.091e-011 rroots = 5
Wed Nov 12 02:03:30 2014  
Wed Nov 12 02:03:30 2014  commencing relation filtering
Wed Nov 12 02:03:30 2014  estimated available RAM is 4096.0 MB
Wed Nov 12 02:03:30 2014  commencing duplicate removal, pass 1
Wed Nov 12 02:05:53 2014  found 2378304 hash collisions in 19810904 relations
Wed Nov 12 02:06:27 2014  added 87 free relations
Wed Nov 12 02:06:27 2014  commencing duplicate removal, pass 2
Wed Nov 12 02:06:49 2014  found 2004141 duplicates and 17806850 unique relations
Wed Nov 12 02:06:49 2014  memory use: 98.6 MB
Wed Nov 12 02:06:49 2014  reading ideals above 720000
Wed Nov 12 02:06:49 2014  commencing singleton removal, initial pass
Wed Nov 12 02:09:34 2014  memory use: 376.5 MB
Wed Nov 12 02:09:34 2014  reading all ideals from disk
Wed Nov 12 02:09:34 2014  memory use: 561.6 MB
Wed Nov 12 02:09:35 2014  keeping 19658919 ideals with weight <= 200, target excess is 116879
Wed Nov 12 02:09:36 2014  commencing in-memory singleton removal
Wed Nov 12 02:09:37 2014  begin with 17806850 relations and 19658919 unique ideals
Wed Nov 12 02:09:48 2014  reduce to 6509695 relations and 6452645 ideals in 20 passes
Wed Nov 12 02:09:48 2014  max relations containing the same ideal: 102
Wed Nov 12 02:09:48 2014  filtering wants 1000000 more relations
Wed Nov 12 02:09:48 2014  elapsed time 00:06:19
Wed Nov 12 02:09:48 2014 LatSieveTime: 1938.27
Wed Nov 12 02:09:48 2014 -> making sieve job for q = 13250000 in 13250000 .. 13275000 as file 15553_220.job.T0
Wed Nov 12 02:09:48 2014 -> making sieve job for q = 13275000 in 13275000 .. 13300000 as file 15553_220.job.T1
Wed Nov 12 02:09:48 2014 -> making sieve job for q = 13300000 in 13300000 .. 13325000 as file 15553_220.job.T2
Wed Nov 12 02:09:48 2014 -> making sieve job for q = 13325000 in 13325000 .. 13350000 as file 15553_220.job.T3
Wed Nov 12 02:09:48 2014 -> Lattice sieving algebraic q from 13250000 to 13350000.
Wed Nov 12 02:09:48 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0
Wed Nov 12 02:09:48 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1
Wed Nov 12 02:09:48 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2
Wed Nov 12 02:09:48 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3
Wed Nov 12 02:35:31 2014 Found 20076947 relations, 105.7% of the estimated minimum (19000000).
Wed Nov 12 02:35:31 2014  
Wed Nov 12 02:35:31 2014  
Wed Nov 12 02:35:31 2014  Msieve v. 1.51 (SVN 845)
Wed Nov 12 02:35:31 2014  random seeds: 18f17db8 7b27a660
Wed Nov 12 02:35:31 2014  factoring 44411018648510210075526998380074804898316383347362838515916290022880087228547203764182509460212786559034097760725645542566400325037417 (134 digits)
Wed Nov 12 02:35:32 2014  searching for 15-digit factors
Wed Nov 12 02:35:32 2014  commencing number field sieve (134-digit input)
Wed Nov 12 02:35:32 2014  R0: -99897098244994361976794188
Wed Nov 12 02:35:32 2014  R1: 140963966726011
Wed Nov 12 02:35:32 2014  A0: 92283268763007322061572551651975
Wed Nov 12 02:35:32 2014  A1: 857159006391033326945836521
Wed Nov 12 02:35:32 2014  A2: -6533537849100489796919
Wed Nov 12 02:35:32 2014  A3: -5639116642534241
Wed Nov 12 02:35:32 2014  A4: 15896980680
Wed Nov 12 02:35:32 2014  A5: 4464
Wed Nov 12 02:35:32 2014  skew 631930.24, size 7.007e-013, alpha -6.280, combined = 5.091e-011 rroots = 5
Wed Nov 12 02:35:32 2014  
Wed Nov 12 02:35:32 2014  commencing relation filtering
Wed Nov 12 02:35:32 2014  estimated available RAM is 4096.0 MB
Wed Nov 12 02:35:32 2014  commencing duplicate removal, pass 1
Wed Nov 12 02:38:03 2014  found 2432140 hash collisions in 20076946 relations
Wed Nov 12 02:38:37 2014  added 95 free relations
Wed Nov 12 02:38:37 2014  commencing duplicate removal, pass 2
Wed Nov 12 02:40:27 2014  found 2050716 duplicates and 18026325 unique relations
Wed Nov 12 02:40:27 2014  memory use: 98.6 MB
Wed Nov 12 02:40:27 2014  reading ideals above 720000
Wed Nov 12 02:40:28 2014  commencing singleton removal, initial pass
Wed Nov 12 02:43:47 2014  memory use: 376.5 MB
Wed Nov 12 02:43:47 2014  reading all ideals from disk
Wed Nov 12 02:43:48 2014  memory use: 568.6 MB
Wed Nov 12 02:43:49 2014  keeping 19755795 ideals with weight <= 200, target excess is 117159
Wed Nov 12 02:43:50 2014  commencing in-memory singleton removal
Wed Nov 12 02:43:51 2014  begin with 18026325 relations and 19755795 unique ideals
Wed Nov 12 02:44:01 2014  reduce to 6805150 relations and 6669351 ideals in 19 passes
Wed Nov 12 02:44:01 2014  max relations containing the same ideal: 104
Wed Nov 12 02:44:02 2014  filtering wants 1000000 more relations
Wed Nov 12 02:44:02 2014  elapsed time 00:08:31
Wed Nov 12 02:44:02 2014 LatSieveTime: 2053.56
Wed Nov 12 02:44:02 2014 -> making sieve job for q = 13350000 in 13350000 .. 13375000 as file 15553_220.job.T0
Wed Nov 12 02:44:02 2014 -> making sieve job for q = 13375000 in 13375000 .. 13400000 as file 15553_220.job.T1
Wed Nov 12 02:44:02 2014 -> making sieve job for q = 13400000 in 13400000 .. 13425000 as file 15553_220.job.T2
Wed Nov 12 02:44:02 2014 -> making sieve job for q = 13425000 in 13425000 .. 13450000 as file 15553_220.job.T3
Wed Nov 12 02:44:02 2014 -> Lattice sieving algebraic q from 13350000 to 13450000.
Wed Nov 12 02:44:02 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 15553_220.job.T0
Wed Nov 12 02:44:02 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 15553_220.job.T1
Wed Nov 12 02:44:02 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 15553_220.job.T2
Wed Nov 12 02:44:02 2014 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 15553_220.job.T3
Wed Nov 12 03:08:45 2014 Found 20339343 relations, 107.0% of the estimated minimum (19000000).
Wed Nov 12 03:08:45 2014  
Wed Nov 12 03:08:45 2014  
Wed Nov 12 03:08:45 2014  Msieve v. 1.51 (SVN 845)
Wed Nov 12 03:08:45 2014  random seeds: e9343f60 e27c076d
Wed Nov 12 03:08:45 2014  factoring 44411018648510210075526998380074804898316383347362838515916290022880087228547203764182509460212786559034097760725645542566400325037417 (134 digits)
Wed Nov 12 03:08:45 2014  searching for 15-digit factors
Wed Nov 12 03:08:46 2014  commencing number field sieve (134-digit input)
Wed Nov 12 03:08:46 2014  R0: -99897098244994361976794188
Wed Nov 12 03:08:46 2014  R1: 140963966726011
Wed Nov 12 03:08:46 2014  A0: 92283268763007322061572551651975
Wed Nov 12 03:08:46 2014  A1: 857159006391033326945836521
Wed Nov 12 03:08:46 2014  A2: -6533537849100489796919
Wed Nov 12 03:08:46 2014  A3: -5639116642534241
Wed Nov 12 03:08:46 2014  A4: 15896980680
Wed Nov 12 03:08:46 2014  A5: 4464
Wed Nov 12 03:08:46 2014  skew 631930.24, size 7.007e-013, alpha -6.280, combined = 5.091e-011 rroots = 5
Wed Nov 12 03:08:46 2014  
Wed Nov 12 03:08:46 2014  commencing relation filtering
Wed Nov 12 03:08:46 2014  estimated available RAM is 4096.0 MB
Wed Nov 12 03:08:46 2014  commencing duplicate removal, pass 1
Wed Nov 12 03:11:16 2014  found 2485829 hash collisions in 20339342 relations
Wed Nov 12 03:11:50 2014  added 80 free relations
Wed Nov 12 03:11:50 2014  commencing duplicate removal, pass 2
Wed Nov 12 03:12:01 2014  found 2097376 duplicates and 18242046 unique relations
Wed Nov 12 03:12:01 2014  memory use: 98.6 MB
Wed Nov 12 03:12:01 2014  reading ideals above 720000
Wed Nov 12 03:12:01 2014  commencing singleton removal, initial pass
Wed Nov 12 03:14:58 2014  memory use: 376.5 MB
Wed Nov 12 03:14:58 2014  reading all ideals from disk
Wed Nov 12 03:14:59 2014  memory use: 575.5 MB
Wed Nov 12 03:15:00 2014  keeping 19850111 ideals with weight <= 200, target excess is 117453
Wed Nov 12 03:15:01 2014  commencing in-memory singleton removal
Wed Nov 12 03:15:02 2014  begin with 18242046 relations and 19850111 unique ideals
Wed Nov 12 03:15:13 2014  reduce to 7095166 relations and 6879599 ideals in 19 passes
Wed Nov 12 03:15:13 2014  max relations containing the same ideal: 106
Wed Nov 12 03:15:15 2014  removing 498486 relations and 458825 ideals in 39661 cliques
Wed Nov 12 03:15:16 2014  commencing in-memory singleton removal
Wed Nov 12 03:15:16 2014  begin with 6596680 relations and 6879599 unique ideals
Wed Nov 12 03:15:20 2014  reduce to 6566527 relations and 6390372 ideals in 9 passes
Wed Nov 12 03:15:20 2014  max relations containing the same ideal: 100
Wed Nov 12 03:15:22 2014  removing 364587 relations and 324926 ideals in 39661 cliques
Wed Nov 12 03:15:23 2014  commencing in-memory singleton removal
Wed Nov 12 03:15:23 2014  begin with 6201940 relations and 6390372 unique ideals
Wed Nov 12 03:15:27 2014  reduce to 6184196 relations and 6047579 ideals in 10 passes
Wed Nov 12 03:15:27 2014  max relations containing the same ideal: 93
Wed Nov 12 03:15:30 2014  relations with 0 large ideals: 459
Wed Nov 12 03:15:30 2014  relations with 1 large ideals: 1109
Wed Nov 12 03:15:30 2014  relations with 2 large ideals: 20192
Wed Nov 12 03:15:30 2014  relations with 3 large ideals: 148319
Wed Nov 12 03:15:30 2014  relations with 4 large ideals: 583863
Wed Nov 12 03:15:30 2014  relations with 5 large ideals: 1323347
Wed Nov 12 03:15:30 2014  relations with 6 large ideals: 1799599
Wed Nov 12 03:15:30 2014  relations with 7+ large ideals: 2307308
Wed Nov 12 03:15:30 2014  commencing 2-way merge
Wed Nov 12 03:15:34 2014  reduce to 3559295 relation sets and 3422678 unique ideals
Wed Nov 12 03:15:34 2014  ignored 1 oversize relation sets
Wed Nov 12 03:15:34 2014  commencing full merge
Wed Nov 12 03:16:22 2014  memory use: 353.7 MB
Wed Nov 12 03:16:22 2014  found 1814607 cycles, need 1798878
Wed Nov 12 03:16:22 2014  weight of 1798878 cycles is about 125953552 (70.02/cycle)
Wed Nov 12 03:16:22 2014  distribution of cycle lengths:
Wed Nov 12 03:16:22 2014  1 relations: 262424
Wed Nov 12 03:16:22 2014  2 relations: 228943
Wed Nov 12 03:16:22 2014  3 relations: 213408
Wed Nov 12 03:16:22 2014  4 relations: 184369
Wed Nov 12 03:16:22 2014  5 relations: 160572
Wed Nov 12 03:16:22 2014  6 relations: 132582
Wed Nov 12 03:16:22 2014  7 relations: 113204
Wed Nov 12 03:16:22 2014  8 relations: 93740
Wed Nov 12 03:16:22 2014  9 relations: 77810
Wed Nov 12 03:16:22 2014  10+ relations: 331826
Wed Nov 12 03:16:22 2014  heaviest cycle: 24 relations
Wed Nov 12 03:16:23 2014  commencing cycle optimization
Wed Nov 12 03:16:25 2014  start with 10379714 relations
Wed Nov 12 03:16:40 2014  pruned 214263 relations
Wed Nov 12 03:16:40 2014  memory use: 280.5 MB
Wed Nov 12 03:16:40 2014  distribution of cycle lengths:
Wed Nov 12 03:16:40 2014  1 relations: 262424
Wed Nov 12 03:16:40 2014  2 relations: 233834
Wed Nov 12 03:16:40 2014  3 relations: 220143
Wed Nov 12 03:16:40 2014  4 relations: 187887
Wed Nov 12 03:16:40 2014  5 relations: 162656
Wed Nov 12 03:16:40 2014  6 relations: 133570
Wed Nov 12 03:16:40 2014  7 relations: 113059
Wed Nov 12 03:16:40 2014  8 relations: 93004
Wed Nov 12 03:16:40 2014  9 relations: 76923
Wed Nov 12 03:16:40 2014  10+ relations: 315378
Wed Nov 12 03:16:40 2014  heaviest cycle: 24 relations
Wed Nov 12 03:16:42 2014  RelProcTime: 476
Wed Nov 12 03:16:42 2014  elapsed time 00:07:57
Wed Nov 12 03:16:42 2014 LatSieveTime: 1959.74
Wed Nov 12 03:16:42 2014 -> Running matrix solving step ...
Wed Nov 12 03:16:42 2014  
Wed Nov 12 03:16:42 2014  
Wed Nov 12 03:16:42 2014  Msieve v. 1.51 (SVN 845)
Wed Nov 12 03:16:42 2014  random seeds: 1bf8dc28 f391dc87
Wed Nov 12 03:16:42 2014  factoring 44411018648510210075526998380074804898316383347362838515916290022880087228547203764182509460212786559034097760725645542566400325037417 (134 digits)
Wed Nov 12 03:16:43 2014  searching for 15-digit factors
Wed Nov 12 03:16:43 2014  commencing number field sieve (134-digit input)
Wed Nov 12 03:16:43 2014  R0: -99897098244994361976794188
Wed Nov 12 03:16:43 2014  R1: 140963966726011
Wed Nov 12 03:16:43 2014  A0: 92283268763007322061572551651975
Wed Nov 12 03:16:43 2014  A1: 857159006391033326945836521
Wed Nov 12 03:16:43 2014  A2: -6533537849100489796919
Wed Nov 12 03:16:43 2014  A3: -5639116642534241
Wed Nov 12 03:16:43 2014  A4: 15896980680
Wed Nov 12 03:16:43 2014  A5: 4464
Wed Nov 12 03:16:43 2014  skew 631930.24, size 7.007e-013, alpha -6.280, combined = 5.091e-011 rroots = 5
Wed Nov 12 03:16:43 2014  
Wed Nov 12 03:16:43 2014  commencing linear algebra
Wed Nov 12 03:16:44 2014  read 1798878 cycles
Wed Nov 12 03:16:47 2014  cycles contain 6024398 unique relations
Wed Nov 12 03:17:50 2014  read 6024398 relations
Wed Nov 12 03:17:57 2014  using 20 quadratic characters above 268434980
Wed Nov 12 03:18:23 2014  building initial matrix
Wed Nov 12 03:19:21 2014  memory use: 689.2 MB
Wed Nov 12 03:19:46 2014  read 1798878 cycles
Wed Nov 12 03:19:46 2014  matrix is 1798699 x 1798878 (511.2 MB) with weight 167745300 (93.25/col)
Wed Nov 12 03:19:46 2014  sparse part has weight 121428864 (67.50/col)
Wed Nov 12 03:20:02 2014  filtering completed in 2 passes
Wed Nov 12 03:20:03 2014  matrix is 1796026 x 1796205 (511.0 MB) with weight 167635811 (93.33/col)
Wed Nov 12 03:20:03 2014  sparse part has weight 121394988 (67.58/col)
Wed Nov 12 03:20:08 2014  matrix starts at (0, 0)
Wed Nov 12 03:20:09 2014  matrix is 1796026 x 1796205 (511.0 MB) with weight 167635811 (93.33/col)
Wed Nov 12 03:20:09 2014  sparse part has weight 121394988 (67.58/col)
Wed Nov 12 03:20:09 2014  saving the first 48 matrix rows for later
Wed Nov 12 03:20:09 2014  matrix includes 64 packed rows
Wed Nov 12 03:20:10 2014  matrix is 1795978 x 1796205 (493.4 MB) with weight 134628347 (74.95/col)
Wed Nov 12 03:20:10 2014  sparse part has weight 118573233 (66.01/col)
Wed Nov 12 03:20:10 2014  using block size 65536 for processor cache size 6144 kB
Wed Nov 12 03:20:19 2014  commencing Lanczos iteration (4 threads)
Wed Nov 12 03:20:19 2014  memory use: 452.0 MB
Wed Nov 12 03:20:26 2014  linear algebra at 0.1%, ETA 1h58m
Wed Nov 12 03:20:28 2014  checkpointing every 920000 dimensions
Wed Nov 12 05:45:28 2014  lanczos halted after 28407 iterations (dim = 1795976)
Wed Nov 12 05:45:32 2014  recovered 30 nontrivial dependencies
Wed Nov 12 05:45:32 2014  BLanczosTime: 8929
Wed Nov 12 05:45:32 2014  elapsed time 02:28:50
Wed Nov 12 05:45:32 2014 -> Running square root step ...
Wed Nov 12 05:45:32 2014  
Wed Nov 12 05:45:32 2014  
Wed Nov 12 05:45:32 2014  Msieve v. 1.51 (SVN 845)
Wed Nov 12 05:45:32 2014  random seeds: c2dff0e0 0254b8b9
Wed Nov 12 05:45:32 2014  factoring 44411018648510210075526998380074804898316383347362838515916290022880087228547203764182509460212786559034097760725645542566400325037417 (134 digits)
Wed Nov 12 05:45:33 2014  searching for 15-digit factors
Wed Nov 12 05:45:34 2014  commencing number field sieve (134-digit input)
Wed Nov 12 05:45:34 2014  R0: -99897098244994361976794188
Wed Nov 12 05:45:34 2014  R1: 140963966726011
Wed Nov 12 05:45:34 2014  A0: 92283268763007322061572551651975
Wed Nov 12 05:45:34 2014  A1: 857159006391033326945836521
Wed Nov 12 05:45:34 2014  A2: -6533537849100489796919
Wed Nov 12 05:45:34 2014  A3: -5639116642534241
Wed Nov 12 05:45:34 2014  A4: 15896980680
Wed Nov 12 05:45:34 2014  A5: 4464
Wed Nov 12 05:45:34 2014  skew 631930.24, size 7.007e-013, alpha -6.280, combined = 5.091e-011 rroots = 5
Wed Nov 12 05:45:34 2014  
Wed Nov 12 05:45:34 2014  commencing square root phase
Wed Nov 12 05:45:34 2014  reading relations for dependency 1
Wed Nov 12 05:45:42 2014  read 899416 cycles
Wed Nov 12 05:45:44 2014  cycles contain 3015684 unique relations
Wed Nov 12 05:46:14 2014  read 3015684 relations
Wed Nov 12 05:46:27 2014  multiplying 3015684 relations
Wed Nov 12 05:52:36 2014  multiply complete, coefficients have about 137.81 million bits
Wed Nov 12 05:52:38 2014  initial square root is modulo 88259
Wed Nov 12 06:00:09 2014  sqrtTime: 875
Wed Nov 12 06:00:09 2014  prp65 factor: 79624809417174635727667837952347714118128698485612076869994232241
Wed Nov 12 06:00:09 2014  prp69 factor: 557753531513395325577559620079103641354397078819521838231830662964537
Wed Nov 12 06:00:09 2014  elapsed time 00:14:37
Wed Nov 12 06:00:09 2014 -> Computing 1.41577e+09 scale for this machine...
Wed Nov 12 06:00:09 2014 -> procrels -speedtest> PIPE
Wed Nov 12 06:00:12 2014 -> Factorization summary written to g134-15553_220.txt
software ソフトウェア
GGNFS, Msieve

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaMay 16, 2012 01:00:00 UTC 2012 年 5 月 16 日 (水) 10 時 0 分 0 秒 (日本時間)
403e613001000Dmitry DomanovMay 18, 2012 13:06:49 UTC 2012 年 5 月 18 日 (金) 22 時 6 分 49 秒 (日本時間)
300Serge BatalovJanuary 9, 2014 04:39:07 UTC 2014 年 1 月 9 日 (木) 13 時 39 分 7 秒 (日本時間)
4511e64188120CypMarch 11, 2014 17:53:21 UTC 2014 年 3 月 12 日 (水) 2 時 53 分 21 秒 (日本時間)
1800Serge BatalovMay 24, 2014 17:34:58 UTC 2014 年 5 月 25 日 (日) 2 時 34 分 58 秒 (日本時間)
300Serge BatalovMay 27, 2014 00:30:12 UTC 2014 年 5 月 27 日 (火) 9 時 30 分 12 秒 (日本時間)
1968KTakahashiOctober 31, 2014 09:56:55 UTC 2014 年 10 月 31 日 (金) 18 時 56 分 55 秒 (日本時間)
5043e60 / 6507--
5511e70 / 17466--
6026e70 / 41934--
6585e75 / 693981KTakahashiNovember 1, 2014 13:46:43 UTC 2014 年 11 月 1 日 (土) 22 時 46 分 43 秒 (日本時間)
4KTakahashiNovember 1, 2014 22:49:21 UTC 2014 年 11 月 2 日 (日) 7 時 49 分 21 秒 (日本時間)

14×10222-239

c202

name 名前Erik Branger
date 日付May 24, 2020 20:09:04 UTC 2020 年 5 月 25 日 (月) 5 時 9 分 4 秒 (日本時間)
composite number 合成数
3342892502187948744218139280129581574128860020915256261949785190457854415096318519559945973824760099553897937694634797207160802420403413238122565372885262667151759907729203850206742148873733375193159859<202>
prime factors 素因数
230813727458517053139393068413516994271110042033361582937108720687930099850099<78>
14483074897652044419999365996112856615613478027986534329866847812737257589284417370585773689295148363138465123077859982114241<125>
factorization results 素因数分解の結果
Number: 15553_222
N = 3342892502187948744218139280129581574128860020915256261949785190457854415096318519559945973824760099553897937694634797207160802420403413238122565372885262667151759907729203850206742148873733375193159859 (202 digits)
SNFS difficulty: 224 digits.
Divisors found:
r1=230813727458517053139393068413516994271110042033361582937108720687930099850099 (pp78)
r2=14483074897652044419999365996112856615613478027986534329866847812737257589284417370585773689295148363138465123077859982114241 (pp125)
Version: Msieve v. 1.52 (SVN unknown)
Total time: 80.63 hours.
Factorization parameters were as follows:
n: 3342892502187948744218139280129581574128860020915256261949785190457854415096318519559945973824760099553897937694634797207160802420403413238122565372885262667151759907729203850206742148873733375193159859
m: 10000000000000000000000000000000000000000000000000000000
deg: 4
c4: 1400
c0: -23
skew: 1.00
type: snfs
lss: 1
rlim: 536870912
alim: 44739242
lpbr: 29
lpba: 28
mfbr: 58
mfba: 56
rlambda: 2.8
alambda: 2.8
side: 1
Number of cores used: 6
Number of threads per core: 1
Factor base limits: 536870912/44739242
Large primes per side: 3
Large prime bits: 29/28
Total raw relations: 35787259
Relations: 9489710 relations
Total pre-computation time approximately 1000 CPU-days.
Pre-computation saved approximately 18 G rational relations.
Total batch smoothness checking time: 38.31 hours.
Total relation processing time: 0.43 hours.
Pruned matrix : 8117044 x 8117269
Matrix solve time: 41.36 hours.
time per square root: 0.53 hours.
Prototype def-par.txt line would be: snfs,224,4,0,0,0,0,0,0,0,0,536870912,44739242,29,28,58,56,2.8,2.8,100000
total time: 80.63 hours.
Intel64 Family 6 Model 158 Stepping 10, GenuineIntel
Windows-10-10.0.18362-SP0
processors: 12, speed: 3.19GHz
software ソフトウェア
GGNFS, NFS_factory, Msieve

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaMay 16, 2012 01:00:00 UTC 2012 年 5 月 16 日 (水) 10 時 0 分 0 秒 (日本時間)
403e626001000Dmitry DomanovMay 18, 2012 13:06:59 UTC 2012 年 5 月 18 日 (金) 22 時 6 分 59 秒 (日本時間)
300Serge BatalovJanuary 9, 2014 04:39:07 UTC 2014 年 1 月 9 日 (木) 13 時 39 分 7 秒 (日本時間)
1300Serge BatalovMay 26, 2014 18:01:35 UTC 2014 年 5 月 27 日 (火) 3 時 1 分 35 秒 (日本時間)

14×10223-239

c190

name 名前Serge Batalov
date 日付May 16, 2012 08:47:49 UTC 2012 年 5 月 16 日 (水) 17 時 47 分 49 秒 (日本時間)
composite number 合成数
3452282481218783073492076231895119423804483119806947480678224767640809157729159369151608667872496934827092879303604563741965999301075608375360118228506295841955580224684194774990449111935267<190>
prime factors 素因数
9635461794175346180127226554589<31>
composite cofactor 合成数の残り
358289260542311940205008631540295830847866646139697232289356934540403121706072694186883664037360097677739653070637717889420037609432166181550548280756263893503<159>
factorization results 素因数分解の結果
Using B1=2000000, B2=5705781910, polynomial Dickson(6), sigma=2973624528
Step 1 took 9717ms
Step 2 took 6328ms
********** Factor found in step 2: 9635461794175346180127226554589
Found probable prime factor of 31 digits: 9635461794175346180127226554589
Composite cofactor 358289260542311940205008631540295830847866646139697232289356934540403121706072694186883664037360097677739653070637717889420037609432166181550548280756263893503 has 159 digits

c159

name 名前Dmitry Domanov
date 日付May 20, 2012 11:23:12 UTC 2012 年 5 月 20 日 (日) 20 時 23 分 12 秒 (日本時間)
composite number 合成数
358289260542311940205008631540295830847866646139697232289356934540403121706072694186883664037360097677739653070637717889420037609432166181550548280756263893503<159>
prime factors 素因数
1330683692599308087529269064612588155503<40>
269252011229237362812593264302061560649133992595916636112136199975560660977530362021537890059955505385917109083474246001<120>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=4138720335
Step 1 took 222085ms
Step 2 took 130498ms
********** Factor found in step 2: 1330683692599308087529269064612588155503
Found probable prime factor of 40 digits: 1330683692599308087529269064612588155503

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaMay 16, 2012 01:00:00 UTC 2012 年 5 月 16 日 (水) 10 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovMay 18, 2012 13:07:15 UTC 2012 年 5 月 18 日 (金) 22 時 7 分 15 秒 (日本時間)
4511e6400 / 4254Dmitry DomanovMay 18, 2012 21:40:51 UTC 2012 年 5 月 19 日 (土) 6 時 40 分 51 秒 (日本時間)

14×10231-239

c221

composite cofactor 合成数の残り
57713896610617552921569521325023574221073183293709227090993381378264110320617922569307174118509779700705858245394550857307845842571423261393199360470496143456373506780515681900092600424701591699301065872992841372608714791<221>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaMay 16, 2012 01:00:00 UTC 2012 年 5 月 16 日 (水) 10 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovMay 18, 2012 13:07:25 UTC 2012 年 5 月 18 日 (金) 22 時 7 分 25 秒 (日本時間)
4511e6700 / 4254400Dmitry DomanovMay 21, 2012 10:53:10 UTC 2012 年 5 月 21 日 (月) 19 時 53 分 10 秒 (日本時間)
300Serge BatalovMay 27, 2014 00:30:13 UTC 2014 年 5 月 27 日 (火) 9 時 30 分 13 秒 (日本時間)

14×10232-239

c198

composite cofactor 合成数の残り
412601782819916147211620993485467770985873704748398496500912599238809105421916344691467864152901666990002900855419891106748299512811401775742417149805678870722691094624422049310020314103293549151439<198>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaMay 16, 2012 01:00:00 UTC 2012 年 5 月 16 日 (水) 10 時 0 分 0 秒 (日本時間)
403e626001000Dmitry DomanovMay 18, 2012 13:07:37 UTC 2012 年 5 月 18 日 (金) 22 時 7 分 37 秒 (日本時間)
300Serge BatalovJanuary 9, 2014 04:39:08 UTC 2014 年 1 月 9 日 (木) 13 時 39 分 8 秒 (日本時間)
1300Serge BatalovMay 26, 2014 18:01:35 UTC 2014 年 5 月 27 日 (火) 3 時 1 分 35 秒 (日本時間)

14×10235-239

c138

name 名前Erik Branger
date 日付October 7, 2012 16:49:19 UTC 2012 年 10 月 8 日 (月) 1 時 49 分 19 秒 (日本時間)
composite number 合成数
418880453691726899892199588369884611873994945138835542745096960900621558592332276397082437754357768051432896665691081592874195689696950737<138>
prime factors 素因数
7370391906149901523797049700481450225060417173441<49>
56832860318080291716956424475808405464261234722441043620899972870606002492417197854000657<89>
factorization results 素因数分解の結果
Number: 15553_235
N = 418880453691726899892199588369884611873994945138835542745096960900621558592332276397082437754357768051432896665691081592874195689696950737 (138 digits)
Divisors found:
r1=7370391906149901523797049700481450225060417173441 (pp49)
r2=56832860318080291716956424475808405464261234722441043620899972870606002492417197854000657 (pp89)
Version: Msieve v. 1.49 (SVN unknown)
Total time: 279.00 hours.
Factorization parameters were as follows:
# Murphy_E = 3.131e-11, selected by Erik Branger
n: 418880453691726899892199588369884611873994945138835542745096960900621558592332276397082437754357768051432896665691081592874195689696950737
Y0: -488564130167074544984051932
Y1: 1483536287036413
c0: 5696646281874369033452363284224525
c1: -7656967061005962761739553590
c2: -28527592661101883814963
c3: -18650829654552160
c4: 39033930680
c5: 15048
skew: 1095757.93
type: gnfs
# selected mechanically
rlim: 16000000
alim: 16000000
lpbr: 28
lpba: 28
mfbr: 55
mfba: 55
rlambda: 2.6
alambda: 2.6
Factor base limits: 16000000/16000000
Large primes per side: 3
Large prime bits: 28/28
Sieved algebraic special-q in [8000000, 19500000)
Relations: 23000490
Relations in full relation-set: 3602346 relations
Pruned matrix : 2239530 x 2239758
Polynomial selection time: 0.00 hours.
Total sieving time: 273.27 hours.
Total relation processing time: 0.11 hours.
Matrix solve time: 4.94 hours.
time per square root: 0.67 hours.
Prototype def-par.txt line would be: gnfs,137,5,65,2000,1e-05,0.28,250,20,50000,3600,16000000,16000000,28,28,55,55,2.6,2.6,100000
total time: 279.00 hours.
 --------- CPU info (if available) ----------
software ソフトウェア
GGNFS, Msieve

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaMay 16, 2012 01:00:00 UTC 2012 年 5 月 16 日 (水) 10 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovMay 18, 2012 13:07:47 UTC 2012 年 5 月 18 日 (金) 22 時 7 分 47 秒 (日本時間)
4511e6400 / 4254Dmitry DomanovMay 18, 2012 21:41:52 UTC 2012 年 5 月 19 日 (土) 6 時 41 分 52 秒 (日本時間)

14×10237-239

c212

name 名前Serge Batalov
date 日付May 16, 2012 16:46:43 UTC 2012 年 5 月 17 日 (木) 1 時 46 分 43 秒 (日本時間)
composite number 合成数
16990989197222966652350802632537415324327656093162230555189043901716573499186311788808943826812610833454525777138963799990814032192206410878002756719241170945479989827542283842313654651095474316968510720488542523<212>
prime factors 素因数
314029070066251460669334830544347<33>
composite cofactor 合成数の残り
54106421401172627753642546315559784144195528323604030174821373014831112664191668371847535857237801465349945343391717828567047321301738224176278685273674088475471079623011422642209<179>
factorization results 素因数分解の結果
Using B1=2000000, B2=5705781910, polynomial Dickson(6), sigma=2293139550
Step 1 took 11173ms
Step 2 took 7248ms
********** Factor found in step 2: 314029070066251460669334830544347
Found probable prime factor of 33 digits: 314029070066251460669334830544347
Composite cofactor 54106421401172627753642546315559784144195528323604030174821373014831112664191668371847535857237801465349945343391717828567047321301738224176278685273674088475471079623011422642209 has 179 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaMay 16, 2012 01:00:00 UTC 2012 年 5 月 16 日 (水) 10 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovMay 18, 2012 13:07:55 UTC 2012 年 5 月 18 日 (金) 22 時 7 分 55 秒 (日本時間)
4511e6700 / 4254400Dmitry DomanovMay 19, 2012 22:25:15 UTC 2012 年 5 月 20 日 (日) 7 時 25 分 15 秒 (日本時間)
300Serge BatalovMay 27, 2014 00:30:13 UTC 2014 年 5 月 27 日 (火) 9 時 30 分 13 秒 (日本時間)

14×10238-239

c208

composite cofactor 合成数の残り
2655281950688839718351685008438136361736855640055626148612938990909593694447331595784863183042099528001875600627634658150752619231113763488891237694043492792649180801902470761313376911374001462306728024920869<208>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaMay 16, 2012 01:00:00 UTC 2012 年 5 月 16 日 (水) 10 時 0 分 0 秒 (日本時間)
403e613001000Dmitry DomanovMay 18, 2012 13:08:05 UTC 2012 年 5 月 18 日 (金) 22 時 8 分 5 秒 (日本時間)
300Serge BatalovJanuary 9, 2014 04:39:09 UTC 2014 年 1 月 9 日 (木) 13 時 39 分 9 秒 (日本時間)
4511e6300 / 3682Serge BatalovMay 27, 2014 00:30:14 UTC 2014 年 5 月 27 日 (火) 9 時 30 分 14 秒 (日本時間)
5043e6144 / 7436CypFebruary 7, 2014 11:20:36 UTC 2014 年 2 月 7 日 (金) 20 時 20 分 36 秒 (日本時間)

14×10239-239

c187

name 名前Serge Batalov
date 日付May 16, 2012 06:56:27 UTC 2012 年 5 月 16 日 (水) 15 時 56 分 27 秒 (日本時間)
composite number 合成数
5565261492312883829445165964692942267321921130631827007569662342492982528522649931199277127708084975792041527513505367686172332367651191970910507728433808687543174855107639521838724061721<187>
prime factors 素因数
656516856624185708201245430173643<33>
composite cofactor 合成数の残り
8476951408269237052593037226879842137951834573419198427846290201935463169516274178079953251052530713799379943470319990155550448094709597550273188512053547<154>
factorization results 素因数分解の結果
Using B1=2000000, B2=5705781910, polynomial Dickson(6), sigma=1496248512
Step 1 took 9601ms
********** Factor found in step 1: 656516856624185708201245430173643
Found probable prime factor of 33 digits: 656516856624185708201245430173643
Composite cofactor 8476951408269237052593037226879842137951834573419198427846290201935463169516274178079953251052530713799379943470319990155550448094709597550273188512053547 has 154 digits

c154

name 名前NFS@Home + Rich Dickerson
date 日付July 13, 2022 18:57:00 UTC 2022 年 7 月 14 日 (木) 3 時 57 分 0 秒 (日本時間)
composite number 合成数
8476951408269237052593037226879842137951834573419198427846290201935463169516274178079953251052530713799379943470319990155550448094709597550273188512053547<154>
prime factors 素因数
9461374145182077330591891178948860417948790193576752746397816788643<67>
895953513537552237716067392585906423054100975812428340873288482583685768839092355130329<87>
factorization results 素因数分解の結果
p67 factor: 9461374145182077330591891178948860417948790193576752746397816788643
p87 factor: 895953513537552237716067392585906423054100975812428340873288482583685768839092355130329

Complete log at: https://pastebin.com/C48eZdk1
software ソフトウェア
GGNFS + Msieve
execution environment 実行環境
LA phase used a GTX 1660.

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaMay 16, 2012 01:00:00 UTC 2012 年 5 月 16 日 (水) 10 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovMay 18, 2012 13:08:14 UTC 2012 年 5 月 18 日 (金) 22 時 8 分 14 秒 (日本時間)
4511e64308400Dmitry DomanovMay 20, 2012 21:54:25 UTC 2012 年 5 月 21 日 (月) 6 時 54 分 25 秒 (日本時間)
850Serge BatalovNovember 8, 2013 17:11:53 UTC 2013 年 11 月 9 日 (土) 2 時 11 分 53 秒 (日本時間)
400Serge BatalovJanuary 6, 2014 02:25:47 UTC 2014 年 1 月 6 日 (月) 11 時 25 分 47 秒 (日本時間)
900Serge BatalovMay 24, 2014 19:02:43 UTC 2014 年 5 月 25 日 (日) 4 時 2 分 43 秒 (日本時間)
300Serge BatalovMay 27, 2014 00:30:14 UTC 2014 年 5 月 27 日 (火) 9 時 30 分 14 秒 (日本時間)
400Serge BatalovJune 23, 2015 21:29:44 UTC 2015 年 6 月 24 日 (水) 6 時 29 分 44 秒 (日本時間)
1058Ignacio SantosJanuary 6, 2016 21:24:44 UTC 2016 年 1 月 7 日 (木) 6 時 24 分 44 秒 (日本時間)
5043e65000yoyo@HomeMarch 7, 2021 13:41:29 UTC 2021 年 3 月 7 日 (日) 22 時 41 分 29 秒 (日本時間)
5511e75000 / 15708yoyo@HomeJune 23, 2022 21:06:31 UTC 2022 年 6 月 24 日 (金) 6 時 6 分 31 秒 (日本時間)

14×10241-239

c178

composite cofactor 合成数の残り
2013665919515515085695793021044493667838171489639651274783522266522285703237030497185889365733794381569598528200680956695773923401130388320382702848438448520268726244831884519137<178>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaMay 16, 2012 01:00:00 UTC 2012 年 5 月 16 日 (水) 10 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovMay 18, 2012 13:08:25 UTC 2012 年 5 月 18 日 (金) 22 時 8 分 25 秒 (日本時間)
4511e6700 / 4254400Dmitry DomanovMay 19, 2012 22:26:04 UTC 2012 年 5 月 20 日 (日) 7 時 26 分 4 秒 (日本時間)
300Serge BatalovMay 27, 2014 00:30:15 UTC 2014 年 5 月 27 日 (火) 9 時 30 分 15 秒 (日本時間)

14×10242-239

c188

composite cofactor 合成数の残り
41087097343838758952683934339864249696838797471574928258408598013321694917797234451913780202866624270315984621120929249840591416428651643925731779230048777770195347129657825314558690227831<188>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaMay 16, 2012 01:00:00 UTC 2012 年 5 月 16 日 (水) 10 時 0 分 0 秒 (日本時間)
403e626001000Dmitry DomanovMay 18, 2012 13:08:34 UTC 2012 年 5 月 18 日 (金) 22 時 8 分 34 秒 (日本時間)
300Serge BatalovJanuary 9, 2014 04:39:09 UTC 2014 年 1 月 9 日 (木) 13 時 39 分 9 秒 (日本時間)
1300Serge BatalovMay 26, 2014 18:01:36 UTC 2014 年 5 月 27 日 (火) 3 時 1 分 36 秒 (日本時間)

14×10243-239

c237

composite cofactor 合成数の残り
216757064426253262638945729558372809052493405282434687187119886489899113056412868451980034754518057156267769724788354918698528035289040978031408315392428524009645875158737778404515346918830068608100858672272871380987281051560359015964421<237>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaMay 16, 2012 01:00:00 UTC 2012 年 5 月 16 日 (水) 10 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovMay 17, 2012 19:58:23 UTC 2012 年 5 月 18 日 (金) 4 時 58 分 23 秒 (日本時間)
4511e6600Dmitry DomanovMay 17, 2012 19:58:23 UTC 2012 年 5 月 18 日 (金) 4 時 58 分 23 秒 (日本時間)
5043e61000 / 7332Dmitry DomanovMay 18, 2012 15:31:00 UTC 2012 年 5 月 19 日 (土) 0 時 31 分 0 秒 (日本時間)
5511e720 / 17367Dmitry DomanovMay 21, 2012 07:44:36 UTC 2012 年 5 月 21 日 (月) 16 時 44 分 36 秒 (日本時間)

14×10245-239

c243

composite cofactor 合成数の残り
595998297147722435078756917837377607492550021285653469561515538527032779906343124733929331630481055768412090251170710940825883354618986802894848871860366113239676458067262664963814389101745423584504044274159216687952320136228182205193699446573<243>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaMay 16, 2012 01:00:00 UTC 2012 年 5 月 16 日 (水) 10 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovMay 17, 2012 19:56:58 UTC 2012 年 5 月 18 日 (金) 4 時 56 分 58 秒 (日本時間)
4511e6800Dmitry DomanovMay 17, 2012 19:56:58 UTC 2012 年 5 月 18 日 (金) 4 時 56 分 58 秒 (日本時間)
5043e61000Dmitry DomanovMay 18, 2012 15:29:59 UTC 2012 年 5 月 19 日 (土) 0 時 29 分 59 秒 (日本時間)
5511e72640 / 17355yoyo@homeJanuary 14, 2013 00:30:05 UTC 2013 年 1 月 14 日 (月) 9 時 30 分 5 秒 (日本時間)

14×10246-239

c215

name 名前Dmitry Domanov
date 日付May 16, 2012 10:58:15 UTC 2012 年 5 月 16 日 (水) 19 時 58 分 15 秒 (日本時間)
composite number 合成数
73202337211091652971071846667116694755582686861089792305099679919902254961425500074998853848495328493195023739327715045572413692130385741321882055265961804467617033716124180352711068469298749126925075959403837682909<215>
prime factors 素因数
21342415342204769649187818544849<32>
composite cofactor 合成数の残り
3429899382865703095812843230299297489820982742113125255608990123967353992451605003072563177413136149437710353977412932560099707001176542678269492785105166037669631587949259232810020941<184>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=296399998
Step 1 took 42902ms
Step 2 took 14052ms
********** Factor found in step 2: 21342415342204769649187818544849
Found probable prime factor of 32 digits: 21342415342204769649187818544849

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaMay 16, 2012 01:00:00 UTC 2012 年 5 月 16 日 (水) 10 時 0 分 0 秒 (日本時間)
403e626001000Dmitry DomanovMay 18, 2012 13:08:54 UTC 2012 年 5 月 18 日 (金) 22 時 8 分 54 秒 (日本時間)
300Serge BatalovJanuary 9, 2014 04:39:10 UTC 2014 年 1 月 9 日 (木) 13 時 39 分 10 秒 (日本時間)
1300Serge BatalovMay 26, 2014 18:01:36 UTC 2014 年 5 月 27 日 (火) 3 時 1 分 36 秒 (日本時間)

14×10247-239

c152

composite cofactor 合成数の残り
20650871665621735859297935771744889358335533203419330484564434018155381974508423158073841375796226915391039277483033613379200423211104119421656340464931<152>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaMay 16, 2012 01:00:00 UTC 2012 年 5 月 16 日 (水) 10 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovMay 18, 2012 13:09:05 UTC 2012 年 5 月 18 日 (金) 22 時 9 分 5 秒 (日本時間)
4511e64258400Dmitry DomanovMay 20, 2012 21:55:24 UTC 2012 年 5 月 21 日 (月) 6 時 55 分 24 秒 (日本時間)
850Serge BatalovNovember 8, 2013 17:11:22 UTC 2013 年 11 月 9 日 (土) 2 時 11 分 22 秒 (日本時間)
400Serge BatalovJanuary 6, 2014 02:25:20 UTC 2014 年 1 月 6 日 (月) 11 時 25 分 20 秒 (日本時間)
900Serge BatalovMay 24, 2014 19:02:23 UTC 2014 年 5 月 25 日 (日) 4 時 2 分 23 秒 (日本時間)
300Serge BatalovMay 27, 2014 00:30:15 UTC 2014 年 5 月 27 日 (火) 9 時 30 分 15 秒 (日本時間)
1408Ignacio SantosJanuary 17, 2016 15:16:32 UTC 2016 年 1 月 18 日 (月) 0 時 16 分 32 秒 (日本時間)
5043e66618Ignacio SantosJanuary 27, 2024 13:24:06 UTC 2024 年 1 月 27 日 (土) 22 時 24 分 6 秒 (日本時間)

14×10248-239

c233

composite cofactor 合成数の残り
50737131147276794013957800120108811492349202762025573393098996709612025361632646035388258439744448505922722506147196678315184388369287025370284742136696709379670652652402300131450098617830394601690675424179122192682704108771328786461<233>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaMay 16, 2012 01:00:00 UTC 2012 年 5 月 16 日 (水) 10 時 0 分 0 秒 (日本時間)
403e626001000Dmitry DomanovMay 18, 2012 13:09:25 UTC 2012 年 5 月 18 日 (金) 22 時 9 分 25 秒 (日本時間)
300Serge BatalovJanuary 9, 2014 04:39:11 UTC 2014 年 1 月 9 日 (木) 13 時 39 分 11 秒 (日本時間)
1300Serge BatalovMay 26, 2014 18:01:36 UTC 2014 年 5 月 27 日 (火) 3 時 1 分 36 秒 (日本時間)

14×10249-239

c229

composite cofactor 合成数の残り
2565385885243686541561836822003723144762862522298471755767207473496326790113703881945243887929051923482878469689090113879978283624671225022793426793919066995983980679135269249287207868255798312530283063214553751614213476361869019<229>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaMay 16, 2012 01:00:00 UTC 2012 年 5 月 16 日 (水) 10 時 0 分 0 秒 (日本時間)
403e626001000Dmitry DomanovMay 18, 2012 13:09:33 UTC 2012 年 5 月 18 日 (金) 22 時 9 分 33 秒 (日本時間)
300Serge BatalovJanuary 9, 2014 04:39:11 UTC 2014 年 1 月 9 日 (木) 13 時 39 分 11 秒 (日本時間)
1300Serge BatalovMay 26, 2014 18:01:37 UTC 2014 年 5 月 27 日 (火) 3 時 1 分 37 秒 (日本時間)

14×10250-239

c211

composite cofactor 合成数の残り
7116376113566465729786343068988381165167975094979264915770816756106504692591979718183266278434340345451409815123213283005804431682103321017762024630057420147494605111027504618583239638335796294169902932518486687<211>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaMay 16, 2012 01:00:00 UTC 2012 年 5 月 16 日 (水) 10 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovMay 16, 2012 22:05:16 UTC 2012 年 5 月 17 日 (木) 7 時 5 分 16 秒 (日本時間)
4511e6400Dmitry DomanovMay 16, 2012 22:05:16 UTC 2012 年 5 月 17 日 (木) 7 時 5 分 16 秒 (日本時間)
5043e61120 / 7425960Dmitry DomanovMay 17, 2012 19:55:47 UTC 2012 年 5 月 18 日 (金) 4 時 55 分 47 秒 (日本時間)
160Dmitry DomanovMay 18, 2012 13:10:39 UTC 2012 年 5 月 18 日 (金) 22 時 10 分 39 秒 (日本時間)

14×10252-239

c148

name 名前Ignacio Santos
date 日付December 12, 2021 20:39:51 UTC 2021 年 12 月 13 日 (月) 5 時 39 分 51 秒 (日本時間)
composite number 合成数
3332207362368182529516212777980700165419709615218256449775650283986890789083043851111941181823126714328054342113968899342236563434283602985864552891<148>
prime factors 素因数
70490083947972354753664238336266496279863123069123<50>
47272001616959818911942405108760611464851338189770033157469808630339834849255963867021105631048617<98>
factorization results 素因数分解の結果
Using B1=43000000, B2=240490660426, polynomial Dickson(12), sigma=1:3332015905
Step 1 took 83656ms
Step 2 took 32063ms
********** Factor found in step 2: 70490083947972354753664238336266496279863123069123
Found prime factor of 50 digits: 70490083947972354753664238336266496279863123069123
Prime cofactor 47272001616959818911942405108760611464851338189770033157469808630339834849255963867021105631048617 has 98 digits
 
software ソフトウェア
GMP-ECM

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間)
351e60--
403e61544294KTakahashiNovember 20, 2015 20:42:34 UTC 2015 年 11 月 21 日 (土) 5 時 42 分 34 秒 (日本時間)
1250Serge BatalovNovember 21, 2015 02:04:11 UTC 2015 年 11 月 21 日 (土) 11 時 4 分 11 秒 (日本時間)
4511e64144600Serge BatalovNovember 21, 2015 02:04:11 UTC 2015 年 11 月 21 日 (土) 11 時 4 分 11 秒 (日本時間)
600Serge BatalovNovember 21, 2015 07:47:13 UTC 2015 年 11 月 21 日 (土) 16 時 47 分 13 秒 (日本時間)
400Serge BatalovNovember 21, 2015 07:47:22 UTC 2015 年 11 月 21 日 (土) 16 時 47 分 22 秒 (日本時間)
2544Ignacio SantosMarch 6, 2016 14:42:04 UTC 2016 年 3 月 6 日 (日) 23 時 42 分 4 秒 (日本時間)

14×10253-239

c150

name 名前Ignacio Santos
date 日付March 6, 2016 18:47:51 UTC 2016 年 3 月 7 日 (月) 3 時 47 分 51 秒 (日本時間)
composite number 合成数
899502978674526170664821781049110450536520828220393200242330259900576402505783753470340308729584733431525188856544225872799179998050455169924017160881<150>
prime factors 素因数
113479354632432265273363730549333890450363831891<48>
7926578200837329081401061430754605410654363759418680778405331451314714018696547481748094620565287606891<103>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:2837901922
Step 1 took 36875ms
Step 2 took 16875ms
********** Factor found in step 2: 113479354632432265273363730549333890450363831891
Found prime factor of 48 digits: 113479354632432265273363730549333890450363831891
Prime cofactor 7926578200837329081401061430754605410654363759418680778405331451314714018696547481748094620565287606891 has 103 digits
 
software ソフトウェア
GMP-ECM 7.0

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間)
351e60--
403e61544294KTakahashiNovember 20, 2015 20:43:04 UTC 2015 年 11 月 21 日 (土) 5 時 43 分 4 秒 (日本時間)
1250Serge BatalovNovember 21, 2015 02:04:40 UTC 2015 年 11 月 21 日 (土) 11 時 4 分 40 秒 (日本時間)
4511e61600 / 4138400Serge BatalovNovember 21, 2015 02:04:40 UTC 2015 年 11 月 21 日 (土) 11 時 4 分 40 秒 (日本時間)
1200Serge BatalovNovember 21, 2015 07:46:55 UTC 2015 年 11 月 21 日 (土) 16 時 46 分 55 秒 (日本時間)

14×10254-239

c218

composite cofactor 合成数の残り
11558083114656410981431773449087980139509495626042112556456992947002928222566085830001262748581211531342122087156848479513485936244448682128197066162400364075902125879690192463843743302451299000577718707916177434506439<218>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間)
351e60--
403e6600Dmitry DomanovMarch 14, 2016 06:37:33 UTC 2016 年 3 月 14 日 (月) 15 時 37 分 33 秒 (日本時間)
4511e61000 / 4346Lionel DebrouxJuly 11, 2020 17:50:37 UTC 2020 年 7 月 12 日 (日) 2 時 50 分 37 秒 (日本時間)

14×10255-239

c256

name 名前Dmitry Domanov
date 日付November 21, 2015 16:42:58 UTC 2015 年 11 月 22 日 (日) 1 時 42 分 58 秒 (日本時間)
composite number 合成数
1555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555553<256>
prime factors 素因数
2161147240624572510139798179195888458017<40>
719782311133043998768434243652232434860504601997099495034380890576149652239800334676298193989836358776385003091626366894363219174356410576998591908110517686067355871756283458756823250825102408247115597164385143990209<216>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3715794685
Step 1 took 49577ms
Step 2 took 14989ms
********** Factor found in step 2: 2161147240624572510139798179195888458017
Found probable prime factor of 40 digits: 2161147240624572510139798179195888458017

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間)
351e6904Makoto KamadaNovember 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間)
403e6600 / 2089Dmitry DomanovNovember 21, 2015 09:25:24 UTC 2015 年 11 月 21 日 (土) 18 時 25 分 24 秒 (日本時間)

14×10256-239

c255

composite cofactor 合成数の残り
232172470978441127694859038142620232172470978441127694859038142620232172470978441127694859038142620232172470978441127694859038142620232172470978441127694859038142620232172470978441127694859038142620232172470978441127694859038142620232172470978441127694859<255>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間)
351e6904Makoto KamadaNovember 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間)
403e6600Dmitry DomanovNovember 21, 2015 09:22:59 UTC 2015 年 11 月 21 日 (土) 18 時 22 分 59 秒 (日本時間)
4511e6800 / 4305Dmitry DomanovFebruary 5, 2016 14:32:12 UTC 2016 年 2 月 5 日 (金) 23 時 32 分 12 秒 (日本時間)

14×10258-239

c195

composite cofactor 合成数の残り
310432956927304741032779012771113682752897505488634420358968627908463975344476145191384185278438803861522324440699187257834287210455910104840879595073440704952160750550945240891155603972026222519<195>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間)
351e60--
403e6300Dmitry DomanovNovember 27, 2015 20:51:03 UTC 2015 年 11 月 28 日 (土) 5 時 51 分 3 秒 (日本時間)
4511e6600 / 4413Dmitry DomanovJanuary 23, 2017 06:46:18 UTC 2017 年 1 月 23 日 (月) 15 時 46 分 18 秒 (日本時間)

14×10260-239

c233

composite cofactor 合成数の残り
69112084348724265712845615819723433295974655711361947871687119018555867805469902883259072965435124803372068993547861625895136548704181551682669488035048597753410127363869759034748219990616092464127097217455314753799743328473313988847<233>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間)
351e60--
403e62336600Dmitry DomanovMarch 14, 2016 06:37:12 UTC 2016 年 3 月 14 日 (月) 15 時 37 分 12 秒 (日本時間)
1736ebinaJuly 13, 2022 20:02:51 UTC 2022 年 7 月 14 日 (木) 5 時 2 分 51 秒 (日本時間)

14×10262-239

c226

composite cofactor 合成数の残り
2872844992537460307347155966850384323285026565530900739457269988372239356141303407576158618386411593571732586890004532266565828130186654471334295681640139844814126515849481571481140861540862061274625402723347170189504902069761<226>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間)
351e6904Makoto KamadaNovember 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間)
403e62200600Dmitry DomanovMarch 14, 2016 06:36:59 UTC 2016 年 3 月 14 日 (月) 15 時 36 分 59 秒 (日本時間)
1600ebinaJuly 29, 2022 22:25:13 UTC 2022 年 7 月 30 日 (土) 7 時 25 分 13 秒 (日本時間)

14×10263-239

c236

composite cofactor 合成数の残り
27849830264964636473440314512204813829325925978771620906040377794946963537158201917257687818417450158588910410100386500894464267680965144163216874673545887288287873240924201837142566381231250077451700685766134628709708686830455079461293<236>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間)
351e60--
403e62336600Dmitry DomanovMarch 14, 2016 06:36:44 UTC 2016 年 3 月 14 日 (月) 15 時 36 分 44 秒 (日本時間)
1736ebinaNovember 27, 2022 13:15:53 UTC 2022 年 11 月 27 日 (日) 22 時 15 分 53 秒 (日本時間)

14×10266-239

c211

composite cofactor 合成数の残り
1905758583738314452499108637216874851197789081696902014000811778692750294223798670083864581123030956752892821801673402778767129129535747086585256263093479091968054306370245998554270436694777944409090933226174817<211>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間)
351e60--
403e62336600Dmitry DomanovMarch 14, 2016 06:36:33 UTC 2016 年 3 月 14 日 (月) 15 時 36 分 33 秒 (日本時間)
1736ebinaNovember 27, 2022 20:54:58 UTC 2022 年 11 月 28 日 (月) 5 時 54 分 58 秒 (日本時間)

14×10267-239

c266

composite cofactor 合成数の残り
29350104821802935010482180293501048218029350104821802935010482180293501048218029350104821802935010482180293501048218029350104821802935010482180293501048218029350104821802935010482180293501048218029350104821802935010482180293501048218029350104821802935010482180293501<266>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間)
351e6904Makoto KamadaNovember 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間)
403e6600Dmitry DomanovNovember 20, 2015 22:24:51 UTC 2015 年 11 月 21 日 (土) 7 時 24 分 51 秒 (日本時間)
4511e6800 / 4305Dmitry DomanovJanuary 23, 2016 15:52:03 UTC 2016 年 1 月 24 日 (日) 0 時 52 分 3 秒 (日本時間)

14×10268-239

c239

composite cofactor 合成数の残り
14422338456223052955473193219452101636746056474915265604974920623182833054823862513693178711730068481066260098306292257282130546377842676743315503486110559516354557229355748538981748294398754232544791494661126013637261324794123623792863923<239>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間)
351e60--
403e62336600Dmitry DomanovMarch 14, 2016 06:36:14 UTC 2016 年 3 月 14 日 (月) 15 時 36 分 14 秒 (日本時間)
1736ebinaNovember 28, 2022 01:33:01 UTC 2022 年 11 月 28 日 (月) 10 時 33 分 1 秒 (日本時間)

14×10269-239

c260

composite cofactor 合成数の残り
28365654337972427318024337696937449140332385385117241788371306303199202075261890063802456823919830464463501873246507847173115791380902512114619993428545473690897147083587957148295078165121329655614163558209800502961300471007725168779340470061172198441135361793<260>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間)
351e60--
403e62336600Dmitry DomanovMarch 14, 2016 06:36:00 UTC 2016 年 3 月 14 日 (月) 15 時 36 分 0 秒 (日本時間)
1736ebinaDecember 10, 2022 03:47:39 UTC 2022 年 12 月 10 日 (土) 12 時 47 分 39 秒 (日本時間)

14×10270-239

c189

name 名前Dmitry Domanov
date 日付January 23, 2017 08:04:39 UTC 2017 年 1 月 23 日 (月) 17 時 4 分 39 秒 (日本時間)
composite number 合成数
397978319133686428997006832957688449141507562270136853849158952830757451055739407234058758996965334847657712698039039286354344534181388250088104440767029896723597417492212216435446730971007<189>
prime factors 素因数
62432091864824334067021445535499196276167<41>
composite cofactor 合成数の残り
6374579278800627537059751634653249378754908519361403219833207690009924288522792932457743760238407677806551750341206264187996438508308037559189264521<148>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=4274018705
Step 1 took 76079ms
Step 2 took 24178ms
********** Factor found in step 2: 62432091864824334067021445535499196276167
Found probable prime factor of 41 digits: 62432091864824334067021445535499196276167
Composite cofactor 6374579278800627537059751634653249378754908519361403219833207690009924288522792932457743760238407677806551750341206264187996438508308037559189264521 has 148 digits

c148

name 名前Lionel Debroux
date 日付March 3, 2023 10:45:31 UTC 2023 年 3 月 3 日 (金) 19 時 45 分 31 秒 (日本時間)
composite number 合成数
6374579278800627537059751634653249378754908519361403219833207690009924288522792932457743760238407677806551750341206264187996438508308037559189264521<148>
prime factors 素因数
891653565582253848987378705910801199127712839055559337754753054325417<69>
7149165914721597245185384977088539416213290086502518657207308818467420509977313<79>
factorization results 素因数分解の結果
891653565582253848987378705910801199127712839055559337754753054325417
7149165914721597245185384977088539416213290086502518657207308818467420509977313
software ソフトウェア
CADO-NFS
execution environment 実行環境
4 x (2 x Xeon L5640 6C/6T), Debian sid amd64

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間)
351e60--
403e6300Dmitry DomanovNovember 27, 2015 20:51:32 UTC 2015 年 11 月 28 日 (土) 5 時 51 分 32 秒 (日本時間)
4511e64600600Dmitry DomanovJanuary 23, 2017 06:46:41 UTC 2017 年 1 月 23 日 (月) 15 時 46 分 41 秒 (日本時間)
4000Robert BalfourApril 12, 2020 11:26:31 UTC 2020 年 4 月 12 日 (日) 20 時 26 分 31 秒 (日本時間)
5043e66454Ignacio SantosFebruary 6, 2022 13:36:20 UTC 2022 年 2 月 6 日 (日) 22 時 36 分 20 秒 (日本時間)
5511e7280 / 15176Serge BatalovMay 12, 2019 02:09:42 UTC 2019 年 5 月 12 日 (日) 11 時 9 分 42 秒 (日本時間)

14×10271-239

c258

composite cofactor 合成数の残り
432573460937549224543438293267592265576162129887578069652496488407659091269844211019353580963986305248440655721610384268406065483746815772053699389541768845921051777411982767509789036527822170186170162242970351720541657448030377916571939072942001017684366571<258>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間)
351e60--
403e62336600Dmitry DomanovMarch 14, 2016 06:35:40 UTC 2016 年 3 月 14 日 (月) 15 時 35 分 40 秒 (日本時間)
1736ebinaDecember 10, 2022 15:06:03 UTC 2022 年 12 月 11 日 (日) 0 時 6 分 3 秒 (日本時間)

14×10272-239

c239

composite cofactor 合成数の残り
11024291202543001003209531892223656330123857296295713602583464307903441530254986955869365203691498898787688424463243215341288531881874905126154078384619072396802657040992560138135886624105999685900122852040278450333447118745219402792020807<239>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間)
351e60--
403e62336600Dmitry DomanovMarch 14, 2016 06:35:29 UTC 2016 年 3 月 14 日 (月) 15 時 35 分 29 秒 (日本時間)
1736ebinaDecember 10, 2022 22:14:21 UTC 2022 年 12 月 11 日 (日) 7 時 14 分 21 秒 (日本時間)

14×10273-239

c234

composite cofactor 合成数の残り
701990647634440736721538904753699092241237117469239005073613405168211395787597944878795223142749034303375825814776708975400136913962860175576807230841516269841945727046579284588107252009843363824281331266597870468970669125408652371541<234>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間)
351e60--
403e62336600Dmitry DomanovMarch 14, 2016 06:35:17 UTC 2016 年 3 月 14 日 (月) 15 時 35 分 17 秒 (日本時間)
1736ebinaDecember 11, 2022 00:45:52 UTC 2022 年 12 月 11 日 (日) 9 時 45 分 52 秒 (日本時間)

14×10274-239

c260

name 名前Dmitry Domanov
date 日付March 14, 2016 11:03:09 UTC 2016 年 3 月 14 日 (月) 20 時 3 分 9 秒 (日本時間)
composite number 合成数
45826990392236603291254599122635100178630714895709478972825290435726584082882130457332174462188074744467333653993260234229825653792276746621823090758296680526827841061742876529325607219051923980460602430340401033574709586534362004376440772323329838927772970021<260>
prime factors 素因数
102231764825019806708760986268737<33>
composite cofactor 合成数の残り
448265668412104756245098028626885904524407181759690216175031442607693004137743437628578498186262623752046727767924145920762129795668347601600879393993874775208853108169439259637452834752406047312250576432977040513563937440444133<228>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2941117722
Step 1 took 48035ms
Step 2 took 15589ms
********** Factor found in step 2: 102231764825019806708760986268737
Found probable prime factor of 33 digits: 102231764825019806708760986268737

c228

name 名前Dmitry Domanov
date 日付March 14, 2016 13:44:32 UTC 2016 年 3 月 14 日 (月) 22 時 44 分 32 秒 (日本時間)
composite number 合成数
448265668412104756245098028626885904524407181759690216175031442607693004137743437628578498186262623752046727767924145920762129795668347601600879393993874775208853108169439259637452834752406047312250576432977040513563937440444133<228>
prime factors 素因数
14161468661065763087752538616030967<35>
composite cofactor 合成数の残り
31653896862020044281624046855101681922770510327200752169990871299568570933392806942777059946301256082695425172950782318136365337048985652303761693945447254068652372219926655053321148235832055299<194>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3411193915
Step 1 took 38423ms
Step 2 took 12057ms
********** Factor found in step 2: 14161468661065763087752538616030967
Found probable prime factor of 35 digits: 14161468661065763087752538616030967

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間)
351e60--
403e6600Dmitry DomanovMarch 14, 2016 06:35:06 UTC 2016 年 3 月 14 日 (月) 15 時 35 分 6 秒 (日本時間)
4511e6600 / 4346Dmitry DomanovJanuary 23, 2017 08:29:15 UTC 2017 年 1 月 23 日 (月) 17 時 29 分 15 秒 (日本時間)

14×10275-239

c228

name 名前Dmitry Domanov
date 日付March 14, 2016 10:11:11 UTC 2016 年 3 月 14 日 (月) 19 時 11 分 11 秒 (日本時間)
composite number 合成数
568695561713291294660102278001397545151562344156648096087148489573493630122557720852339479099702711547433186191493069350959882624838001334266918015900581621418067753638805620732032251226327102223258388088557368411851239017801769<228>
prime factors 素因数
565270010956338656936213268802399<33>
composite cofactor 合成数の残り
1006060025634753205724376046654798860886187756832839942917326101978314193722077211509427464195245027142860637241076671963471749672167146811361183541107090042595595872094589440441877898267945312631<196>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1159630214
Step 1 took 38545ms
Step 2 took 12607ms
********** Factor found in step 2: 565270010956338656936213268802399
Found probable prime factor of 33 digits: 565270010956338656936213268802399

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間)
351e60--
403e6600Dmitry DomanovMarch 14, 2016 06:34:53 UTC 2016 年 3 月 14 日 (月) 15 時 34 分 53 秒 (日本時間)
4511e6600 / 4346Dmitry DomanovJanuary 23, 2017 08:29:55 UTC 2017 年 1 月 23 日 (月) 17 時 29 分 55 秒 (日本時間)

14×10276-239

c244

composite cofactor 合成数の残り
2079147583258996072587393333349456213019381457946451850443658501744697760199885106738251507879015889157499914700176964732270485912703498687010259195008005965422580844391667834892258433258386478063365526502862637586451268858377660120022782284773<244>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間)
351e60--
403e62336600Dmitry DomanovMarch 14, 2016 06:34:42 UTC 2016 年 3 月 14 日 (月) 15 時 34 分 42 秒 (日本時間)
1736ebinaDecember 11, 2022 03:23:11 UTC 2022 年 12 月 11 日 (日) 12 時 23 分 11 秒 (日本時間)

14×10277-239

c239

name 名前Dmitry Domanov
date 日付March 14, 2016 10:11:49 UTC 2016 年 3 月 14 日 (月) 19 時 11 分 49 秒 (日本時間)
composite number 合成数
29332893111162250990924226951439335251113763570155360352882156142692856713400588771611405125898965919331243177477416725990204200883150754777182408713433763962750274810225718086133040577311703597034462749903159774320975358509118667981787259<239>
prime factors 素因数
4623985086488977625601543733396397<34>
composite cofactor 合成数の残り
6343639212174646134073240603997366623055915470704705375754062030829016938621228941201735303961121164127585252526670478756340381900171861399088127664481485509710577971126359378512964900937895796836630587847<205>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1565544095
Step 1 took 37335ms
********** Factor found in step 1: 4623985086488977625601543733396397
Found probable prime factor of 34 digits: 4623985086488977625601543733396397

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間)
351e60--
403e62336600Dmitry DomanovMarch 14, 2016 06:34:30 UTC 2016 年 3 月 14 日 (月) 15 時 34 分 30 秒 (日本時間)
1736ebinaDecember 12, 2022 00:09:51 UTC 2022 年 12 月 12 日 (月) 9 時 9 分 51 秒 (日本時間)

14×10279-239

c211

name 名前ebina
date 日付December 12, 2022 01:00:32 UTC 2022 年 12 月 12 日 (月) 10 時 0 分 32 秒 (日本時間)
composite number 合成数
1563106984776609377025223045371168388745773629087877504926808466261812935160934122894163527596526129921223257622453385949067591668649887925255684124168916906433720612404624066367125750293700030025586284475458087<211>
prime factors 素因数
49343763652889826635827440015261178699<38>
31677903529457784431460243260815585357246740464851544541621742223408176030036813196850870379043483657195418874268309244802551037254184525828446029540633902070658005645365013<173>
factorization results 素因数分解の結果
Z:\ALL\ECM>ecm70dev-svn2256-x64-nehalem\ecm -primetest -one -nn -sigma 1:1045272105 3e6      
GMP-ECM 7.0-dev [configured with MPIR 2.6.0, --enable-openmp] [ECM]
Input number is 1563106984776609377025223045371168388745773629087877504926808466261812935160934122894163527596526129921223257622453385949067591668649887925255684124168916906433720612404624066367125750293700030025586284475458087 (211 digits)
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:1045272105
Step 1 took 6735ms
Step 2 took 5172ms
********** Factor found in step 2: 49343763652889826635827440015261178699
Found probable prime factor of 38 digits: 49343763652889826635827440015261178699
Probable prime cofactor 31677903529457784431460243260815585357246740464851544541621742223408176030036813196850870379043483657195418874268309244802551037254184525828446029540633902070658005645365013 has 173 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間)
351e60--
403e6300 / 2336Dmitry DomanovNovember 27, 2015 20:52:16 UTC 2015 年 11 月 28 日 (土) 5 時 52 分 16 秒 (日本時間)

14×10281-239

c253

composite cofactor 合成数の残り
3006110991547377843828513400939011196725869664999568882113139111503894989285801112452009590460734607693569730723170160196251477846269198240888752626801367549525601970769886517347262310805132336515964791593521836269434161875418459914305527027020622619043<253>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間)
351e60--
403e62392600Dmitry DomanovMarch 14, 2016 06:34:13 UTC 2016 年 3 月 14 日 (月) 15 時 34 分 13 秒 (日本時間)
1792Dmitry DomanovOctober 12, 2023 21:57:45 UTC 2023 年 10 月 13 日 (金) 6 時 57 分 45 秒 (日本時間)

14×10282-239

c279

composite cofactor 合成数の残り
511527640761445430962037341517775585516460228725930797617742701596696992948226095217216558880485220504950856808798275421096861412547042274105740070883115934086009719025174467463188278709488837736124812744345792685154737111330337242866016295809127114618729219189594066279367167233<279>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間)
351e6904Makoto KamadaNovember 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間)
403e6600Dmitry DomanovNovember 20, 2015 15:53:31 UTC 2015 年 11 月 21 日 (土) 0 時 53 分 31 秒 (日本時間)
4511e6800 / 4305Dmitry DomanovJanuary 22, 2016 22:32:12 UTC 2016 年 1 月 23 日 (土) 7 時 32 分 12 秒 (日本時間)

14×10283-239

c278

composite cofactor 合成数の残り
13222914441793250098864897799622032435620226941102588942753375361422392684479254711206353874847570492537506560690674379025964231449738616038771851928670688132745971473828877163941754573074122652543082852609556332496228399778950650288764839061547094212604252054817291907453577417<278>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間)
351e6904Makoto KamadaNovember 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間)
403e6600Dmitry DomanovNovember 20, 2015 15:52:52 UTC 2015 年 11 月 21 日 (土) 0 時 52 分 52 秒 (日本時間)
4511e6800 / 4305Dmitry DomanovJanuary 21, 2016 17:57:16 UTC 2016 年 1 月 22 日 (金) 2 時 57 分 16 秒 (日本時間)

14×10285-239

c250

name 名前Dmitry Domanov
date 日付March 14, 2016 07:53:11 UTC 2016 年 3 月 14 日 (月) 16 時 53 分 11 秒 (日本時間)
composite number 合成数
1118189838178354551028378855082926513911898574806232037811450359252986577845820538472966806983416134984599260254669477727744607058038344291846163523353290257390442901481293875299506890873582747643006914188301009693802579784235524446568657452041182289<250>
prime factors 素因数
2228193787316602840818185750773<31>
501836888938184426578867078334067120832907878141111847904256447012173158760785806874952367562697199478413212655124451077871265462956493182692198470715714988573351608728789389215735470640796485801583240484052883288054893<219>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=202739422
Step 1 took 30016ms
Step 2 took 9478ms
********** Factor found in step 2: 2228193787316602840818185750773
Found probable prime factor of 31 digits: 2228193787316602840818185750773

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間)
351e60--
403e6600 / 2336Dmitry DomanovMarch 14, 2016 06:30:08 UTC 2016 年 3 月 14 日 (月) 15 時 30 分 8 秒 (日本時間)

14×10286-239

c268

composite cofactor 合成数の残り
1497646409770951743805120304585866817544198616278788312514151742974070758555665339276368154792013471836574736151384720049179499321697102772613509461213876111269936933781777952666239236855738934028055795896681261522365132796030449475100049893797145853256353535866955379<268>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間)
351e60--
403e62392600Dmitry DomanovMarch 14, 2016 06:29:57 UTC 2016 年 3 月 14 日 (月) 15 時 29 分 57 秒 (日本時間)
1792Dmitry DomanovOctober 12, 2023 21:57:55 UTC 2023 年 10 月 13 日 (金) 6 時 57 分 55 秒 (日本時間)

14×10288-239

c201

composite cofactor 合成数の残り
492881929896889498218560752527348136495542655077039833211531873788154825012842736956476834313875150995012472851948978058902980106989931708468428560995423339753290580190948598089815416901292329456588649<201>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間)
351e60--
403e62392300Dmitry DomanovNovember 27, 2015 20:51:55 UTC 2015 年 11 月 28 日 (土) 5 時 51 分 55 秒 (日本時間)
1792Dmitry DomanovOctober 12, 2023 21:58:08 UTC 2023 年 10 月 13 日 (金) 6 時 58 分 8 秒 (日本時間)
300Dmitry DomanovOctober 17, 2023 00:20:49 UTC 2023 年 10 月 17 日 (火) 9 時 20 分 49 秒 (日本時間)

14×10289-239

c260

composite cofactor 合成数の残り
20060431339339356921115917709297461635469717608370481539809293399421318906148667469487463634507921309083283105313036485942775872937697124813097948318755079976014835371661030329237774049107396774902642268113215301232314949745137303456194745907509195118234596293<260>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間)
351e60--
403e62392600Dmitry DomanovMarch 14, 2016 06:29:37 UTC 2016 年 3 月 14 日 (月) 15 時 29 分 37 秒 (日本時間)
1792Dmitry DomanovOctober 12, 2023 21:58:16 UTC 2023 年 10 月 13 日 (金) 6 時 58 分 16 秒 (日本時間)

14×10291-239

c260

composite cofactor 合成数の残り
15585326586292613624492321075874865002778569747422038482785670927841227365835124921160160036506674345354768262913074581699148315593448995294304463193613034484250316840783663599247150986043326806853569801862160421947071826951543193321906798108960096942147373641<260>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間)
351e60--
403e62392600Dmitry DomanovMarch 14, 2016 06:29:27 UTC 2016 年 3 月 14 日 (月) 15 時 29 分 27 秒 (日本時間)
1792Dmitry DomanovOctober 12, 2023 21:58:31 UTC 2023 年 10 月 13 日 (金) 6 時 58 分 31 秒 (日本時間)

14×10292-239

c223

composite cofactor 合成数の残り
6681583463698681697430236145388660869769550917487934714725525780054241120216280323190493004869888964444077995772037039111483914647967752254399644205663787244236432178819202795821606492286220002836344198987250460342856689463<223>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間)
351e60--
403e62392600Dmitry DomanovMarch 14, 2016 06:29:17 UTC 2016 年 3 月 14 日 (月) 15 時 29 分 17 秒 (日本時間)
1792Dmitry DomanovOctober 12, 2023 21:58:41 UTC 2023 年 10 月 13 日 (金) 6 時 58 分 41 秒 (日本時間)

14×10293-239

c240

composite cofactor 合成数の残り
225847421044932614921449325268438622357569652980603519466940202782724743551128549094938543325032466234069760482941173699057149702462753488356167000681891913665047326290197019779150135510644259049349348338396856868180969142974914018021412811<240>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間)
351e60--
403e62392600Dmitry DomanovMarch 14, 2016 06:29:05 UTC 2016 年 3 月 14 日 (月) 15 時 29 分 5 秒 (日本時間)
1792Dmitry DomanovOctober 12, 2023 21:58:49 UTC 2023 年 10 月 13 日 (金) 6 時 58 分 49 秒 (日本時間)

14×10294-239

c275

composite cofactor 合成数の残り
41097062758516277988502634171139276662977800412117596328206898216914249913543781313663251476979332906455817251429696482134317494500211947878238940829203614353757188312894852555714562619585812611319008694365006294168671395979845984136522793032643979983704893392947375823946097<275>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間)
351e60--
403e62392600Dmitry DomanovMarch 14, 2016 06:28:52 UTC 2016 年 3 月 14 日 (月) 15 時 28 分 52 秒 (日本時間)
1792Dmitry DomanovOctober 12, 2023 21:58:57 UTC 2023 年 10 月 13 日 (金) 6 時 58 分 57 秒 (日本時間)

14×10296-239

c266

name 名前Dmitry Domanov
date 日付March 14, 2016 07:52:41 UTC 2016 年 3 月 14 日 (月) 16 時 52 分 41 秒 (日本時間)
composite number 合成数
15709805367849477790222817611595593776027863679344690856925024884213413597307818878964030721500717707794870520580544595639773931603262480267646648000574924318040678409735731721784944135377364909846326856483537592580616541001904120082412099860238103638746080672979001<266>
prime factors 素因数
131956142508955998537567829876603<33>
composite cofactor 合成数の残り
119053232908678254294982690396351134942381856068675608311017654019447956123509670636567905431810198858621412793574783335113310096834837374688614169461055405574992371874890249792846688242744593709117945707325015155770217077210786242267<234>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2675702536
Step 1 took 32042ms
Step 2 took 10451ms
********** Factor found in step 2: 131956142508955998537567829876603
Found probable prime factor of 33 digits: 131956142508955998537567829876603

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間)
351e60--
403e62400600Dmitry DomanovMarch 14, 2016 06:28:42 UTC 2016 年 3 月 14 日 (月) 15 時 28 分 42 秒 (日本時間)
1800ebinaOctober 17, 2021 11:25:06 UTC 2021 年 10 月 17 日 (日) 20 時 25 分 6 秒 (日本時間)

14×10297-239

c268

composite cofactor 合成数の残り
7152850665361216822370124913789201682097980115552610075681199561224273838315957911628159238535159334894448813237796395535787623768937670855152517035685893708931743610013828292688718200469491579654083571442453704398627285183005021496549409730732143824736027693596511671<268>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間)
351e60--
403e62392600Dmitry DomanovMarch 14, 2016 06:28:28 UTC 2016 年 3 月 14 日 (月) 15 時 28 分 28 秒 (日本時間)
1792Dmitry DomanovOctober 12, 2023 21:59:05 UTC 2023 年 10 月 13 日 (金) 6 時 59 分 5 秒 (日本時間)

14×10298-239

c262

name 名前Dmitry Domanov
date 日付March 14, 2016 12:00:48 UTC 2016 年 3 月 14 日 (月) 21 時 0 分 48 秒 (日本時間)
composite number 合成数
8645562625698737508566938968211946398708996914348776276657302743892261480019860401859629497913157105371018514084365107179873394582747223971719270879527288827548395243125067411906608711620804013597425553173324920826950834374974132077166000782017887262517196182509<262>
prime factors 素因数
262456545527149281921575495667593197<36>
composite cofactor 合成数の残り
32940929738802856110629445026636979357635787563746484882186067832329780432356864285328375317343432644786210881307377359726768753299249130962171828541149818626518287968403665936377394061990808231665275471665873835804280668599297<227>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=4056380004
Step 1 took 32934ms
Step 2 took 10268ms
********** Factor found in step 2: 262456545527149281921575495667593197
Found probable prime factor of 36 digits: 262456545527149281921575495667593197

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間)
351e60--
403e62392600Dmitry DomanovMarch 14, 2016 06:28:16 UTC 2016 年 3 月 14 日 (月) 15 時 28 分 16 秒 (日本時間)
1792Dmitry DomanovOctober 12, 2023 21:59:12 UTC 2023 年 10 月 13 日 (金) 6 時 59 分 12 秒 (日本時間)

14×10299-239

c299

name 名前Dmitry Domanov
date 日付January 12, 2016 09:38:07 UTC 2016 年 1 月 12 日 (火) 18 時 38 分 7 秒 (日本時間)
composite number 合成数
17283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617<299>
prime factors 素因数
354199795700573037449702094524826324953<39>
composite cofactor 合成数の残り
48797178392206475252423253911684508484600967091179512054901330690831784325978534987771587483393466984225195325154694270210013694940440384261531587646461934160831239501078203456255311472470632737882398956979507519760371985334625998626334455902849033112861786689<260>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=2391955236
Step 1 took 169018ms
Step 2 took 47467ms
********** Factor found in step 2: 354199795700573037449702094524826324953
Found probable prime factor of 39 digits: 354199795700573037449702094524826324953

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間)
351e6904Makoto KamadaNovember 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間)
403e6600Dmitry DomanovNovember 20, 2015 13:41:13 UTC 2015 年 11 月 20 日 (金) 22 時 41 分 13 秒 (日本時間)
4511e6800 / 4305Dmitry DomanovDecember 31, 2015 00:22:31 UTC 2015 年 12 月 31 日 (木) 9 時 22 分 31 秒 (日本時間)

14×10300-239

c292

name 名前Dmitry Domanov
date 日付November 22, 2015 23:48:09 UTC 2015 年 11 月 23 日 (月) 8 時 48 分 9 秒 (日本時間)
composite number 合成数
1261512131359840298864521860266737587004445121725077528915504098828940784450520155390941396204068168600285023726172800239705470733061238484562802565467982552097437137517571610362162036521885792894917014516494834878290615681998612314488933867491198060191393901110191795859423847263259223118859<292>
prime factors 素因数
262984590893028174924568097569283192105004863<45>
4796905123133142027320389505752389412479283574557036286215019272899851452570483923436394321574308382334343612610940019924909001784683965257324702279598892493753572978872255619559045484016179985192556065136219069229130445394948167552898005651338293<247>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=765806021
Step 1 took 144371ms
Step 2 took 35896ms
********** Factor found in step 2: 262984590893028174924568097569283192105004863
Found probable prime factor of 45 digits: 262984590893028174924568097569283192105004863

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間)
351e6904Makoto KamadaNovember 20, 2015 11:00:00 UTC 2015 年 11 月 20 日 (金) 20 時 0 分 0 秒 (日本時間)
403e61200Dmitry DomanovNovember 21, 2015 09:38:20 UTC 2015 年 11 月 21 日 (土) 18 時 38 分 20 秒 (日本時間)
4511e61200 / 4172Dmitry DomanovNovember 22, 2015 22:45:05 UTC 2015 年 11 月 23 日 (月) 7 時 45 分 5 秒 (日本時間)