name 名前 | Hugo Platzer |
---|---|
date 日付 | February 27, 2008 17:02:14 UTC 2008 年 2 月 28 日 (木) 2 時 2 分 14 秒 (日本時間) |
composite number 合成数 | 2093213957341346156362036006419887207165908661562364431689794064377841865011771711992598395446841<97> |
prime factors 素因数 | 908549692702934028385232905262450753<36> 2303906956496829188740684010099011404683762570088688116424697<61> |
factorization results 素因数分解の結果 | Number: pal/pal N=2093213957341346156362036006419887207165908661562364431689794064377841865011771711992598395446841 ( 97 digits) SNFS difficulty: 102 digits. Divisors found: r1=908549692702934028385232905262450753 (pp36) r2=2303906956496829188740684010099011404683762570088688116424697 (pp61) Version: GGNFS-0.77.0 Total time: 1.06 hours. Scaled time: 1.30 units (timescale=1.226). Factorization parameters were as follows: n: 2093213957341346156362036006419887207165908661562364431689794064377841865011771711992598395446841 m: 200000000000000000000 c5: 25 c0: 34 skew: 1.06 type: snfs Factor base limits: 300000/350000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [175000, 255001) Relations: rels:834056, finalFF:65949 Initial matrix: 55703 x 65949 with sparse part having weight 1722162. Pruned matrix : 48155 x 48497 with weight 1039638. Total sieving time: 1.01 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.01 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,102,5,0,0,0,0,0,0,0,0,300000,350000,25,25,43,43,2.1,2.1,10000 total time: 1.06 hours. --------- CPU info (if available) ---------- |
name 名前 | Hugo Platzer |
---|---|
date 日付 | February 27, 2008 17:05:20 UTC 2008 年 2 月 28 日 (木) 2 時 5 分 20 秒 (日本時間) |
composite number 合成数 | 688328176060695733567653133817593886237944056362101592634801269296206820707236076007<84> |
prime factors 素因数 | 5999573294919686788638217605693019<34> 114729521955095979857325671845756990670861614334053<51> |
factorization results 素因数分解の結果 | Mon Feb 25 16:51:57 2008 Mon Feb 25 16:51:57 2008 Mon Feb 25 16:51:57 2008 Msieve v. 1.33 Mon Feb 25 16:51:57 2008 random seeds: 865e6202 3cef8fa7 Mon Feb 25 16:51:57 2008 factoring 688328176060695733567653133817593886237944056362101592634801269296206820707236076007 (84 digits) Mon Feb 25 16:51:58 2008 no P-1/P+1/ECM available, skipping Mon Feb 25 16:51:58 2008 commencing quadratic sieve (84-digit input) Mon Feb 25 16:51:58 2008 using multiplier of 7 Mon Feb 25 16:51:58 2008 using 64kb Pentium 4 sieve core Mon Feb 25 16:51:58 2008 sieve interval: 6 blocks of size 65536 Mon Feb 25 16:51:58 2008 processing polynomials in batches of 17 Mon Feb 25 16:51:58 2008 using a sieve bound of 1408987 (53824 primes) Mon Feb 25 16:51:58 2008 using large prime bound of 119763895 (26 bits) Mon Feb 25 16:51:58 2008 using double large prime bound of 347525361371830 (41-49 bits) Mon Feb 25 16:51:58 2008 using trial factoring cutoff of 49 bits Mon Feb 25 16:51:58 2008 polynomial 'A' values have 11 factors Mon Feb 25 17:34:06 2008 54044 relations (16264 full + 37780 combined from 570002 partial), need 53920 Mon Feb 25 17:34:07 2008 begin with 586266 relations Mon Feb 25 17:34:07 2008 reduce to 124740 relations in 10 passes Mon Feb 25 17:34:07 2008 attempting to read 124740 relations Mon Feb 25 17:34:09 2008 recovered 124740 relations Mon Feb 25 17:34:09 2008 recovered 97661 polynomials Mon Feb 25 17:34:10 2008 attempting to build 54044 cycles Mon Feb 25 17:34:10 2008 found 54044 cycles in 5 passes Mon Feb 25 17:34:10 2008 distribution of cycle lengths: Mon Feb 25 17:34:10 2008 length 1 : 16264 Mon Feb 25 17:34:10 2008 length 2 : 11387 Mon Feb 25 17:34:10 2008 length 3 : 9603 Mon Feb 25 17:34:10 2008 length 4 : 6775 Mon Feb 25 17:34:10 2008 length 5 : 4392 Mon Feb 25 17:34:10 2008 length 6 : 2597 Mon Feb 25 17:34:10 2008 length 7 : 1454 Mon Feb 25 17:34:10 2008 length 9+: 1572 Mon Feb 25 17:34:10 2008 largest cycle: 16 relations Mon Feb 25 17:34:10 2008 matrix is 53824 x 54044 (11.5 MB) with weight 2806436 (51.93/col) Mon Feb 25 17:34:10 2008 sparse part has weight 2806436 (51.93/col) Mon Feb 25 17:34:10 2008 filtering completed in 3 passes Mon Feb 25 17:34:10 2008 matrix is 48513 x 48577 (10.4 MB) with weight 2532665 (52.14/col) Mon Feb 25 17:34:10 2008 sparse part has weight 2532665 (52.14/col) Mon Feb 25 17:34:11 2008 saving the first 48 matrix rows for later Mon Feb 25 17:34:11 2008 matrix is 48465 x 48577 (6.2 MB) with weight 1903865 (39.19/col) Mon Feb 25 17:34:11 2008 sparse part has weight 1328744 (27.35/col) Mon Feb 25 17:34:11 2008 matrix includes 64 packed rows Mon Feb 25 17:34:11 2008 commencing Lanczos iteration Mon Feb 25 17:34:11 2008 memory use: 8.0 MB Mon Feb 25 17:35:38 2008 lanczos halted after 768 iterations (dim = 48457) Mon Feb 25 17:35:38 2008 recovered 13 nontrivial dependencies Mon Feb 25 17:35:39 2008 prp34 factor: 5999573294919686788638217605693019 Mon Feb 25 17:35:39 2008 prp51 factor: 114729521955095979857325671845756990670861614334053 Mon Feb 25 17:35:39 2008 elapsed time 00:43:42 |
name 名前 | Hugo Platzer |
---|---|
date 日付 | February 27, 2008 17:04:29 UTC 2008 年 2 月 28 日 (木) 2 時 4 分 29 秒 (日本時間) |
composite number 合成数 | 36461816524324356163353669314329958450145184317692851469585242129594363032425616440519<86> |
prime factors 素因数 | 1130021764079074147902253763132106677<37> 32266472809078491624666219453514850051247682267147<50> |
factorization results 素因数分解の結果 | Mon Feb 25 19:02:32 2008 Mon Feb 25 19:02:32 2008 Mon Feb 25 19:02:32 2008 Msieve v. 1.33 Mon Feb 25 19:02:32 2008 random seeds: 489d45ae e59eb9a7 Mon Feb 25 19:02:32 2008 factoring 36461816524324356163353669314329958450145184317692851469585242129594363032425616440519 (86 digits) Mon Feb 25 19:02:33 2008 no P-1/P+1/ECM available, skipping Mon Feb 25 19:02:33 2008 commencing quadratic sieve (86-digit input) Mon Feb 25 19:02:33 2008 using multiplier of 5 Mon Feb 25 19:02:33 2008 using 64kb Pentium 4 sieve core Mon Feb 25 19:02:33 2008 sieve interval: 8 blocks of size 65536 Mon Feb 25 19:02:33 2008 processing polynomials in batches of 13 Mon Feb 25 19:02:33 2008 using a sieve bound of 1461401 (55581 primes) Mon Feb 25 19:02:33 2008 using large prime bound of 116912080 (26 bits) Mon Feb 25 19:02:33 2008 using double large prime bound of 332771997435520 (41-49 bits) Mon Feb 25 19:02:33 2008 using trial factoring cutoff of 49 bits Mon Feb 25 19:02:33 2008 polynomial 'A' values have 11 factors Mon Feb 25 19:55:41 2008 28010 relations (11626 full + 16384 combined from 433728 partial), need 55677 Mon Feb 25 19:55:41 2008 elapsed time 00:53:09 Tue Feb 26 14:33:17 2008 Tue Feb 26 14:33:17 2008 Tue Feb 26 14:33:17 2008 Msieve v. 1.33 Tue Feb 26 14:33:17 2008 random seeds: 1bd18fdc 512ff2e1 Tue Feb 26 14:33:17 2008 factoring 36461816524324356163353669314329958450145184317692851469585242129594363032425616440519 (86 digits) Tue Feb 26 14:33:18 2008 no P-1/P+1/ECM available, skipping Tue Feb 26 14:33:18 2008 commencing quadratic sieve (86-digit input) Tue Feb 26 14:33:19 2008 using multiplier of 5 Tue Feb 26 14:33:19 2008 using 64kb Pentium 4 sieve core Tue Feb 26 14:33:19 2008 sieve interval: 8 blocks of size 65536 Tue Feb 26 14:33:19 2008 processing polynomials in batches of 13 Tue Feb 26 14:33:19 2008 using a sieve bound of 1461401 (55581 primes) Tue Feb 26 14:33:19 2008 using large prime bound of 116912080 (26 bits) Tue Feb 26 14:33:19 2008 using double large prime bound of 332771997435520 (41-49 bits) Tue Feb 26 14:33:19 2008 using trial factoring cutoff of 49 bits Tue Feb 26 14:33:19 2008 polynomial 'A' values have 11 factors Tue Feb 26 14:33:19 2008 restarting with 11626 full and 433728 partial relations Tue Feb 26 14:52:43 2008 55935 relations (15723 full + 40212 combined from 587434 partial), need 55677 Tue Feb 26 14:52:43 2008 begin with 603157 relations Tue Feb 26 14:52:44 2008 reduce to 133993 relations in 11 passes Tue Feb 26 14:52:44 2008 attempting to read 133993 relations Tue Feb 26 14:52:47 2008 recovered 133993 relations Tue Feb 26 14:52:47 2008 recovered 114567 polynomials Tue Feb 26 14:52:47 2008 attempting to build 55935 cycles Tue Feb 26 14:52:47 2008 found 55935 cycles in 5 passes Tue Feb 26 14:52:47 2008 distribution of cycle lengths: Tue Feb 26 14:52:47 2008 length 1 : 15723 Tue Feb 26 14:52:47 2008 length 2 : 10989 Tue Feb 26 14:52:47 2008 length 3 : 9938 Tue Feb 26 14:52:47 2008 length 4 : 7222 Tue Feb 26 14:52:47 2008 length 5 : 4960 Tue Feb 26 14:52:47 2008 length 6 : 3120 Tue Feb 26 14:52:47 2008 length 7 : 1800 Tue Feb 26 14:52:47 2008 length 9+: 2183 Tue Feb 26 14:52:47 2008 largest cycle: 18 relations Tue Feb 26 14:52:47 2008 matrix is 55581 x 55935 (12.6 MB) with weight 3078328 (55.03/col) Tue Feb 26 14:52:47 2008 sparse part has weight 3078328 (55.03/col) Tue Feb 26 14:52:48 2008 filtering completed in 4 passes Tue Feb 26 14:52:48 2008 matrix is 51012 x 51076 (11.6 MB) with weight 2828283 (55.37/col) Tue Feb 26 14:52:48 2008 sparse part has weight 2828283 (55.37/col) Tue Feb 26 14:52:48 2008 saving the first 48 matrix rows for later Tue Feb 26 14:52:49 2008 matrix is 50964 x 51076 (6.8 MB) with weight 2143902 (41.97/col) Tue Feb 26 14:52:49 2008 sparse part has weight 1474804 (28.87/col) Tue Feb 26 14:52:49 2008 matrix includes 64 packed rows Tue Feb 26 14:52:49 2008 using block size 20430 for processor cache size 2048 kB Tue Feb 26 14:52:49 2008 commencing Lanczos iteration Tue Feb 26 14:52:49 2008 memory use: 7.0 MB Tue Feb 26 14:53:11 2008 lanczos halted after 807 iterations (dim = 50964) Tue Feb 26 14:53:11 2008 recovered 19 nontrivial dependencies Tue Feb 26 14:53:12 2008 prp37 factor: 1130021764079074147902253763132106677 Tue Feb 26 14:53:12 2008 prp50 factor: 32266472809078491624666219453514850051247682267147 Tue Feb 26 14:53:12 2008 elapsed time 00:19:55 |
software ソフトウェア | Msieve 1.33 SIQS |
name 名前 | Hugo Platzer |
---|---|
date 日付 | February 27, 2008 17:00:46 UTC 2008 年 2 月 28 日 (木) 2 時 0 分 46 秒 (日本時間) |
composite number 合成数 | 301160634434001859043915236810290858557068276203651269507515584105353054975494297092576799<90> |
prime factors 素因数 | 319366236020566864959345447725369918009<39> 942994595128733071671702794426078062922265699564311<51> |
factorization results 素因数分解の結果 | Number: pal/pal N=301160634434001859043915236810290858557068276203651269507515584105353054975494297092576799 ( 90 digits) SNFS difficulty: 115 digits. Divisors found: r1=319366236020566864959345447725369918009 (pp39) r2=942994595128733071671702794426078062922265699564311 (pp51) Version: GGNFS-0.77.0 Total time: 1.74 hours. Scaled time: 2.06 units (timescale=1.188). Factorization parameters were as follows: n: 301160634434001859043915236810290858557068276203651269507515584105353054975494297092576799 m: 100000000000000000000000 c5: 4 c0: 17 skew: 1.34 type: snfs Factor base limits: 450000/500000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [250000, 410001) Relations: rels:1114412, finalFF:123645 Initial matrix: 79657 x 123645 with sparse part having weight 5708692. Pruned matrix : 71040 x 71502 with weight 1969930. Total sieving time: 1.65 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.02 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,115,5,0,0,0,0,0,0,0,0,450000,500000,25,25,44,44,2.2,2.2,20000 total time: 1.74 hours. --------- CPU info (if available) ---------- |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | February 25, 2008 17:02:05 UTC 2008 年 2 月 26 日 (火) 2 時 2 分 5 秒 (日本時間) |
composite number 合成数 | 2473104498593961880619564636823302910234312758577257036607839368934660595840602892623273796477189635668904101<109> |
prime factors 素因数 | 723106245094697489786689511373211<33> 1124531409652827761547009490788252799<37> 3041366547432398229574496599264058102209<40> |
factorization results 素因数分解の結果 | Number: 13339_117 N=2473104498593961880619564636823302910234312758577257036607839368934660595840602892623273796477189635668904101 ( 109 digits) SNFS difficulty: 117 digits. Divisors found: r1=723106245094697489786689511373211 (pp33) r2=1124531409652827761547009490788252799 (pp37) r3=3041366547432398229574496599264058102209 (pp40) Version: GGNFS-0.77.1-20050930-nocona Total time: 0.96 hours. Scaled time: 1.78 units (timescale=1.856). Factorization parameters were as follows: n: 2473104498593961880619564636823302910234312758577257036607839368934660595840602892623273796477189635668904101 m: 200000000000000000000000 c5: 25 c0: 34 skew: 1.06 type: snfs Factor base limits: 600000/600000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved algebraic special-q in [300000, 450001) Primes: RFBsize:49098, AFBsize:48661, largePrimes:1872252 encountered Relations: rels:1911209, finalFF:182604 Max relations in full relation-set: 28 Initial matrix: 97823 x 182604 with sparse part having weight 15576316. Pruned matrix : 79563 x 80116 with weight 4540075. Total sieving time: 0.91 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.02 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,117,5,0,0,0,0,0,0,0,0,600000,600000,25,25,45,45,2.4,2.4,30000 total time: 0.96 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory for crash kernel (0x0 to 0x0) notwithin permissible range Memory: 8178280k/8912896k available (2435k kernel code, 208060k reserved, 1235k data, 192k init) Calibrating delay using timer specific routine.. 4812.91 BogoMIPS (lpj=2406455) Calibrating delay using timer specific routine.. 4810.22 BogoMIPS (lpj=2405110) Calibrating delay using timer specific routine.. 4810.31 BogoMIPS (lpj=2405155) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117) |
execution environment 実行環境 | Core 2 Quad Q6600 |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | February 26, 2008 00:38:10 UTC 2008 年 2 月 26 日 (火) 9 時 38 分 10 秒 (日本時間) |
composite number 合成数 | 40515004575885434417965215165127114851969961825105124857145999259505190381310511895041336508050733630378677<107> |
prime factors 素因数 | 217864194199759946513098280992116925864009<42> 185964493728313965614110121580783555616158402525331494591164931853<66> |
factorization results 素因数分解の結果 | Number: 13339_120 N=40515004575885434417965215165127114851969961825105124857145999259505190381310511895041336508050733630378677 ( 107 digits) SNFS difficulty: 120 digits. Divisors found: r1=217864194199759946513098280992116925864009 (pp42) r2=185964493728313965614110121580783555616158402525331494591164931853 (pp66) Version: GGNFS-0.77.1-20050930-nocona Total time: 0.80 hours. Scaled time: 1.48 units (timescale=1.858). Factorization parameters were as follows: n: 40515004575885434417965215165127114851969961825105124857145999259505190381310511895041336508050733630378677 m: 1000000000000000000000000 c5: 4 c0: 17 skew: 1.34 type: snfs Factor base limits: 600000/600000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved algebraic special-q in [300000, 450001) Primes: RFBsize:49098, AFBsize:49461, largePrimes:1837125 encountered Relations: rels:1852045, finalFF:164665 Max relations in full relation-set: 28 Initial matrix: 98623 x 164665 with sparse part having weight 13791456. Pruned matrix : 83260 x 83817 with weight 4715712. Total sieving time: 0.74 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.02 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,120,5,0,0,0,0,0,0,0,0,600000,600000,25,25,45,45,2.4,2.4,30000 total time: 0.80 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory for crash kernel (0x0 to 0x0) notwithin permissible range Memory: 8178280k/8912896k available (2435k kernel code, 208060k reserved, 1235k data, 192k init) Calibrating delay using timer specific routine.. 4812.91 BogoMIPS (lpj=2406459) Calibrating delay using timer specific routine.. 4810.22 BogoMIPS (lpj=2405113) Calibrating delay using timer specific routine.. 4809.97 BogoMIPS (lpj=2404989) Calibrating delay using timer specific routine.. 4810.22 BogoMIPS (lpj=2405114) |
execution environment 実行環境 | Core 2 Quad Q6600 |
name 名前 | Sinkiti Sibata |
---|---|
date 日付 | February 26, 2008 02:53:07 UTC 2008 年 2 月 26 日 (火) 11 時 53 分 7 秒 (日本時間) |
composite number 合成数 | 1731300056614061539047787291401292101287271622335940759125354484590113946145583400138478407257787884223968161777<112> |
prime factors 素因数 | 1066128263744179842966023845014133805371522028417<49> 1623913477852878066050128577369053541152591491514652526106580081<64> |
factorization results 素因数分解の結果 | Number: 13339_121 N=1731300056614061539047787291401292101287271622335940759125354484590113946145583400138478407257787884223968161777 ( 112 digits) SNFS difficulty: 121 digits. Divisors found: r1=1066128263744179842966023845014133805371522028417 (pp49) r2=1623913477852878066050128577369053541152591491514652526106580081 (pp64) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 2.64 hours. Scaled time: 1.78 units (timescale=0.675). Factorization parameters were as follows: name: 13339_121 n: 1731300056614061539047787291401292101287271622335940759125354484590113946145583400138478407257787884223968161777 m: 1000000000000000000000000 c5: 40 c0: 17 skew: 0.84 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 600001) Primes: RFBsize:49098, AFBsize:64053, largePrimes:2177636 encountered Relations: rels:2321030, finalFF:268528 Max relations in full relation-set: 28 Initial matrix: 113217 x 268528 with sparse part having weight 24912659. Pruned matrix : 83980 x 84610 with weight 5656348. Total sieving time: 2.40 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.12 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,121,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 2.64 hours. --------- CPU info (if available) ---------- |
execution environment 実行環境 | Pentium 4 3.06GHz, Windows XP and Cygwin) |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | February 25, 2008 15:55:52 UTC 2008 年 2 月 26 日 (火) 0 時 55 分 52 秒 (日本時間) |
composite number 合成数 | 15147129105523130449266249388626985891346493244029314228392643742208865666200602751<83> |
prime factors 素因数 | 33682194968730310840375233374150796019583<41> 449707304395848847455968925235148050890497<42> |
factorization results 素因数分解の結果 | Tue Feb 26 00:09:56 2008 Tue Feb 26 00:09:56 2008 Tue Feb 26 00:09:56 2008 Msieve v. 1.32 Tue Feb 26 00:09:56 2008 random seeds: 65ed768f 19de7d2d Tue Feb 26 00:09:56 2008 factoring 15147129105523130449266249388626985891346493244029314228392643742208865666200602751 (83 digits) Tue Feb 26 00:09:57 2008 no P-1/P+1/ECM available, skipping Tue Feb 26 00:09:57 2008 commencing quadratic sieve (82-digit input) Tue Feb 26 00:09:57 2008 using multiplier of 31 Tue Feb 26 00:09:57 2008 using 32kb Intel Core sieve core Tue Feb 26 00:09:57 2008 sieve interval: 12 blocks of size 32768 Tue Feb 26 00:09:57 2008 processing polynomials in batches of 17 Tue Feb 26 00:09:57 2008 using a sieve bound of 1350541 (52059 primes) Tue Feb 26 00:09:57 2008 using large prime bound of 124249772 (26 bits) Tue Feb 26 00:09:57 2008 using trial factoring cutoff of 27 bits Tue Feb 26 00:09:57 2008 polynomial 'A' values have 11 factors Tue Feb 26 00:26:53 2008 52429 relations (27593 full + 24836 combined from 269723 partial), need 52155 Tue Feb 26 00:26:54 2008 begin with 297316 relations Tue Feb 26 00:26:54 2008 reduce to 74133 relations in 2 passes Tue Feb 26 00:26:54 2008 attempting to read 74133 relations Tue Feb 26 00:26:54 2008 recovered 74133 relations Tue Feb 26 00:26:54 2008 recovered 65067 polynomials Tue Feb 26 00:26:54 2008 attempting to build 52429 cycles Tue Feb 26 00:26:54 2008 found 52429 cycles in 1 passes Tue Feb 26 00:26:54 2008 distribution of cycle lengths: Tue Feb 26 00:26:54 2008 length 1 : 27593 Tue Feb 26 00:26:54 2008 length 2 : 24836 Tue Feb 26 00:26:54 2008 largest cycle: 2 relations Tue Feb 26 00:26:54 2008 matrix is 52059 x 52429 with weight 1691215 (avg 32.26/col) Tue Feb 26 00:26:54 2008 filtering completed in 4 passes Tue Feb 26 00:26:54 2008 matrix is 44234 x 44298 with weight 1396136 (avg 31.52/col) Tue Feb 26 00:26:55 2008 saving the first 48 matrix rows for later Tue Feb 26 00:26:55 2008 matrix is 44186 x 44298 with weight 1030375 (avg 23.26/col) Tue Feb 26 00:26:55 2008 matrix includes 64 packed rows Tue Feb 26 00:26:55 2008 commencing Lanczos iteration Tue Feb 26 00:27:21 2008 lanczos halted after 700 iterations (dim = 44175) Tue Feb 26 00:27:21 2008 recovered 13 nontrivial dependencies Tue Feb 26 00:27:21 2008 prp41 factor: 33682194968730310840375233374150796019583 Tue Feb 26 00:27:21 2008 prp42 factor: 449707304395848847455968925235148050890497 Tue Feb 26 00:27:21 2008 elapsed time 00:17:25 |
execution environment 実行環境 | Core 2 Quad Q6600 |
name 名前 | Sinkiti Sibata |
---|---|
date 日付 | February 26, 2008 06:50:45 UTC 2008 年 2 月 26 日 (火) 15 時 50 分 45 秒 (日本時間) |
composite number 合成数 | 270679376685841095843311932998986459968041182656991480680590979940930784945538563824171799516828487711451<105> |
prime factors 素因数 | 236131606868916230324368736021180849580845243<45> 1146307265998928188707147607605206865081607528799744013788257<61> |
factorization results 素因数分解の結果 | Number: 13339_126 N=270679376685841095843311932998986459968041182656991480680590979940930784945538563824171799516828487711451 ( 105 digits) SNFS difficulty: 126 digits. Divisors found: r1=236131606868916230324368736021180849580845243 (pp45) r2=1146307265998928188707147607605206865081607528799744013788257 (pp61) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 3.58 hours. Scaled time: 2.42 units (timescale=0.675). Factorization parameters were as follows: name: 13339_126 n: 270679376685841095843311932998986459968041182656991480680590979940930784945538563824171799516828487711451 m: 10000000000000000000000000 c5: 40 c0: 17 skew: 0.84 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 700001) Primes: RFBsize:49098, AFBsize:64053, largePrimes:2202658 encountered Relations: rels:2318750, finalFF:227942 Max relations in full relation-set: 28 Initial matrix: 113217 x 227942 with sparse part having weight 22222821. Pruned matrix : 92940 x 93570 with weight 6724861. Total sieving time: 3.29 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.16 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 3.58 hours. --------- CPU info (if available) ---------- |
execution environment 実行環境 | Pentium 4 3.06GHz, Windows XP and Cygwin) |
name 名前 | Sinkiti Sibata |
---|---|
date 日付 | February 26, 2008 01:39:23 UTC 2008 年 2 月 26 日 (火) 10 時 39 分 23 秒 (日本時間) |
composite number 合成数 | 4314276537511356389237006065085456272871260726194773903273423887193575947321561765086585534754954323729656689610960005373<121> |
prime factors 素因数 | 2264647650843887046315670559789081872837<40> 1905054208279908717959032447092198327666493476216888547860932106950160593631866329<82> |
factorization results 素因数分解の結果 | Number: 13339_128 N=4314276537511356389237006065085456272871260726194773903273423887193575947321561765086585534754954323729656689610960005373 ( 121 digits) SNFS difficulty: 128 digits. Divisors found: r1=2264647650843887046315670559789081872837 (pp40) r2=1905054208279908717959032447092198327666493476216888547860932106950160593631866329 (pp82) Version: GGNFS-0.77.1-20060513-k8 Total time: 4.50 hours. Scaled time: 8.93 units (timescale=1.986). Factorization parameters were as follows: name:13339_128 n: 4314276537511356389237006065085456272871260726194773903273423887193575947321561765086585534754954323729656689610960005373 m: 20000000000000000000000000 c5: 125 c0: 17 skew: 0.67 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [400000, 950001) Primes: RFBsize:63951, AFBsize:64073, largePrimes:1650177 encountered Relations: rels:1772225, finalFF:282784 Max relations in full relation-set: 28 Initial matrix: 128089 x 282784 with sparse part having weight 20216596. Pruned matrix : 93487 x 94191 with weight 6406529. Total sieving time: 4.36 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.04 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,128,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 4.50 hours. --------- CPU info (if available) ---------- |
execution environment 実行環境 | Core 2 Duo E6300 1.86GHz, Windows Vista) |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | February 25, 2008 15:05:25 UTC 2008 年 2 月 26 日 (火) 0 時 5 分 25 秒 (日本時間) |
composite number 合成数 | 11717657060444906039226517298146590277694612229277754702118211578659202199298969<80> |
prime factors 素因数 | 365060056289000062010732444238977<33> 32097888713326155328978718452411150896824316697<47> |
factorization results 素因数分解の結果 | Mon Feb 25 23:07:08 2008 Mon Feb 25 23:07:08 2008 Mon Feb 25 23:07:08 2008 Msieve v. 1.32 Mon Feb 25 23:07:08 2008 random seeds: ed514adf 848fe788 Mon Feb 25 23:07:08 2008 factoring 11717657060444906039226517298146590277694612229277754702118211578659202199298969 (80 digits) Mon Feb 25 23:07:09 2008 no P-1/P+1/ECM available, skipping Mon Feb 25 23:07:09 2008 commencing quadratic sieve (79-digit input) Mon Feb 25 23:07:09 2008 using multiplier of 1 Mon Feb 25 23:07:09 2008 using 32kb Intel Core sieve core Mon Feb 25 23:07:09 2008 sieve interval: 12 blocks of size 32768 Mon Feb 25 23:07:09 2008 processing polynomials in batches of 17 Mon Feb 25 23:07:09 2008 using a sieve bound of 1182691 (45941 primes) Mon Feb 25 23:07:09 2008 using large prime bound of 118269100 (26 bits) Mon Feb 25 23:07:09 2008 using trial factoring cutoff of 27 bits Mon Feb 25 23:07:09 2008 polynomial 'A' values have 10 factors Mon Feb 25 23:17:56 2008 46269 relations (23525 full + 22744 combined from 251467 partial), need 46037 Mon Feb 25 23:17:56 2008 begin with 274992 relations Mon Feb 25 23:17:56 2008 reduce to 66226 relations in 2 passes Mon Feb 25 23:17:56 2008 attempting to read 66226 relations Mon Feb 25 23:17:57 2008 recovered 66226 relations Mon Feb 25 23:17:57 2008 recovered 55745 polynomials Mon Feb 25 23:17:57 2008 attempting to build 46269 cycles Mon Feb 25 23:17:57 2008 found 46269 cycles in 1 passes Mon Feb 25 23:17:57 2008 distribution of cycle lengths: Mon Feb 25 23:17:57 2008 length 1 : 23525 Mon Feb 25 23:17:57 2008 length 2 : 22744 Mon Feb 25 23:17:57 2008 largest cycle: 2 relations Mon Feb 25 23:17:57 2008 matrix is 45941 x 46269 with weight 1371427 (avg 29.64/col) Mon Feb 25 23:17:57 2008 filtering completed in 4 passes Mon Feb 25 23:17:57 2008 matrix is 39547 x 39611 with weight 1149437 (avg 29.02/col) Mon Feb 25 23:17:57 2008 saving the first 48 matrix rows for later Mon Feb 25 23:17:57 2008 matrix is 39499 x 39611 with weight 837611 (avg 21.15/col) Mon Feb 25 23:17:57 2008 matrix includes 64 packed rows Mon Feb 25 23:17:57 2008 commencing Lanczos iteration Mon Feb 25 23:18:17 2008 lanczos halted after 626 iterations (dim = 39493) Mon Feb 25 23:18:17 2008 recovered 14 nontrivial dependencies Mon Feb 25 23:18:17 2008 prp33 factor: 365060056289000062010732444238977 Mon Feb 25 23:18:17 2008 prp47 factor: 32097888713326155328978718452411150896824316697 Mon Feb 25 23:18:17 2008 elapsed time 00:11:09 |
execution environment 実行環境 | Core 2 Quad Q6600 |
name 名前 | Sinkiti Sibata |
---|---|
date 日付 | February 26, 2008 04:52:22 UTC 2008 年 2 月 26 日 (火) 13 時 52 分 22 秒 (日本時間) |
composite number 合成数 | 287228759523614873835871623098592515574414650930219728909431025522262906433847741731199852827139960161808345277<111> |
prime factors 素因数 | 4380977512855558196767027709308224937234411105284163883<55> 65562710303983445700242735959728821688792651648307630519<56> |
factorization results 素因数分解の結果 | Number: 13339_135 N=287228759523614873835871623098592515574414650930219728909431025522262906433847741731199852827139960161808345277 ( 111 digits) SNFS difficulty: 135 digits. Divisors found: r1=4380977512855558196767027709308224937234411105284163883 (pp55) r2=65562710303983445700242735959728821688792651648307630519 (pp56) Version: GGNFS-0.77.1-20060513-k8 Total time: 5.81 hours. Scaled time: 11.63 units (timescale=2.001). Factorization parameters were as follows: name: 13339_135 n: 287228759523614873835871623098592515574414650930219728909431025522262906433847741731199852827139960161808345277 m: 1000000000000000000000000000 c5: 4 c0: 17 skew: 1.34 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 1075001) Primes: RFBsize:78498, AFBsize:64243, largePrimes:1496217 encountered Relations: rels:1480212, finalFF:161368 Max relations in full relation-set: 28 Initial matrix: 142805 x 161368 with sparse part having weight 12113242. Pruned matrix : 136801 x 137579 with weight 8839142. Total sieving time: 5.58 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.12 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,135,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 5.81 hours. --------- CPU info (if available) ---------- |
execution environment 実行環境 | Core 2 Duo E6300 1.86GHz, Windows Vista) |
name 名前 | Sinkiti Sibata |
---|---|
date 日付 | February 26, 2008 09:26:25 UTC 2008 年 2 月 26 日 (火) 18 時 26 分 25 秒 (日本時間) |
composite number 合成数 | 3568866953442970710576578115047601101316653162966331576826240522539223855305999559780261292809562850379089508878404152590832348103<130> |
prime factors 素因数 | 956208466723298533771784872423<30> 3732310555325491082117959675188859828864096907351170143183605318022765214999058108875422540141456161<100> |
factorization results 素因数分解の結果 | Number: 13339_136 N=3568866953442970710576578115047601101316653162966331576826240522539223855305999559780261292809562850379089508878404152590832348103 ( 130 digits) SNFS difficulty: 136 digits. Divisors found: r1=956208466723298533771784872423 (pp30) r2=3732310555325491082117959675188859828864096907351170143183605318022765214999058108875422540141456161 (pp100) Version: GGNFS-0.77.1-20060513-k8 Total time: 7.93 hours. Scaled time: 15.76 units (timescale=1.988). Factorization parameters were as follows: name: 13339_136 n: 3568866953442970710576578115047601101316653162966331576826240522539223855305999559780261292809562850379089508878404152590832348103 m: 1000000000000000000000000000 c5: 40 c0: 17 skew: 0.84 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 1375001) Primes: RFBsize:78498, AFBsize:64053, largePrimes:1600737 encountered Relations: rels:1625919, finalFF:194313 Max relations in full relation-set: 28 Initial matrix: 142617 x 194313 with sparse part having weight 17340077. Pruned matrix : 127910 x 128687 with weight 9762916. Total sieving time: 7.66 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.13 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,136,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 7.93 hours. --------- CPU info (if available) ---------- |
execution environment 実行環境 | Core 2 Duo E6300 1.86GHz, Windows Vista) |
name 名前 | Sinkiti Sibata |
---|---|
date 日付 | February 26, 2008 15:16:34 UTC 2008 年 2 月 27 日 (水) 0 時 16 分 34 秒 (日本時間) |
composite number 合成数 | 20347942136304429029183631746254234306862886526261416848618003401892376616431131460981554065323923352408492867165444245144676919<128> |
prime factors 素因数 | 1714801068361452362148879871541<31> 11866065698073971314555419688519586074878423197647649070453154014930648060685107891975630143616059<98> |
factorization results 素因数分解の結果 | Number: 13339_137 N=20347942136304429029183631746254234306862886526261416848618003401892376616431131460981554065323923352408492867165444245144676919 ( 128 digits) SNFS difficulty: 137 digits. Divisors found: r1=1714801068361452362148879871541 (pp31) r2=11866065698073971314555419688519586074878423197647649070453154014930648060685107891975630143616059 (pp98) Version: GGNFS-0.77.1-20060513-k8 Total time: 10.83 hours. Scaled time: 21.50 units (timescale=1.986). Factorization parameters were as follows: name: 13339_137 n: 20347942136304429029183631746254234306862886526261416848618003401892376616431131460981554065323923352408492867165444245144676919 m: 2000000000000000000000000000 c5: 25 c0: 34 skew: 1.06 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 1825001) Primes: RFBsize:78498, AFBsize:63478, largePrimes:1643983 encountered Relations: rels:1666339, finalFF:176380 Max relations in full relation-set: 28 Initial matrix: 142040 x 176380 with sparse part having weight 18465089. Pruned matrix : 133405 x 134179 with weight 12556937. Total sieving time: 10.51 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.19 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,137,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 10.83 hours. --------- CPU info (if available) ---------- |
execution environment 実行環境 | Core 2 Duo E6300 1.86GHz, Windows Vista) |
name 名前 | Sinkiti Sibata |
---|---|
date 日付 | February 26, 2008 22:26:10 UTC 2008 年 2 月 27 日 (水) 7 時 26 分 10 秒 (日本時間) |
composite number 合成数 | 5784818660226710392893078633225827009749351932038762240593991255227477040501870714437762806715702310280279904345671117125177<124> |
prime factors 素因数 | 26537771762988932797230520985691326549<38> 217984339902061538043658310872268089617507279115184973919874854501815077478362601957973<87> |
factorization results 素因数分解の結果 | Number: 13339_140 N=5784818660226710392893078633225827009749351932038762240593991255227477040501870714437762806715702310280279904345671117125177 ( 124 digits) SNFS difficulty: 140 digits. Divisors found: r1=26537771762988932797230520985691326549 (pp38) r2=217984339902061538043658310872268089617507279115184973919874854501815077478362601957973 (pp87) Version: GGNFS-0.77.1-20060513-k8 Total time: 9.46 hours. Scaled time: 18.92 units (timescale=2.001). Factorization parameters were as follows: name: 13339_140 n: 5784818660226710392893078633225827009749351932038762240593991255227477040501870714437762806715702310280279904345671117125177 m: 10000000000000000000000000000 c5: 4 c0: 17 skew: 1.34 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [650000, 1550001) Primes: RFBsize:100021, AFBsize:100163, largePrimes:2673595 encountered Relations: rels:2647843, finalFF:269918 Max relations in full relation-set: 28 Initial matrix: 200248 x 269918 with sparse part having weight 22264975. Pruned matrix : 177577 x 178642 with weight 12371339. Total sieving time: 9.05 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.26 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,140,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 9.46 hours. --------- CPU info (if available) ---------- |
execution environment 実行環境 | Core 2 Duo E6300 1.86GHz, Windows Vista) |
name 名前 | Sinkiti Sibata |
---|---|
date 日付 | February 27, 2008 01:21:43 UTC 2008 年 2 月 27 日 (水) 10 時 21 分 43 秒 (日本時間) |
composite number 合成数 | 25610167729429129154219135122692807752943626214310846468823181205165725036518490526562875573240011146514873716817667674949<122> |
prime factors 素因数 | 4952433461126705550942268828114546821893<40> 5171229039310035816298410533513362321815097567656651449551330364234046974538947393<82> |
factorization results 素因数分解の結果 | Number: 13339_142 N=25610167729429129154219135122692807752943626214310846468823181205165725036518490526562875573240011146514873716817667674949 ( 122 digits) SNFS difficulty: 142 digits. Divisors found: r1=4952433461126705550942268828114546821893 (pp40) r2=5171229039310035816298410533513362321815097567656651449551330364234046974538947393 (pp82) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 17.78 hours. Scaled time: 12.00 units (timescale=0.675). Factorization parameters were as follows: name: 13339_142 n: 25610167729429129154219135122692807752943626214310846468823181205165725036518490526562875573240011146514873716817667674949 m: 20000000000000000000000000000 c5: 25 c0: 34 skew: 1.06 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [650000, 2350001) Primes: RFBsize:100021, AFBsize:99703, largePrimes:2800788 encountered Relations: rels:2789786, finalFF:244586 Max relations in full relation-set: 28 Initial matrix: 199788 x 244586 with sparse part having weight 26053579. Pruned matrix : 187306 x 188368 with weight 18253445. Total sieving time: 16.40 hours. Total relation processing time: 0.16 hours. Matrix solve time: 1.13 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,142,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 17.78 hours. --------- CPU info (if available) ---------- |
execution environment 実行環境 | Pentium 4 2.4GHz, Windows XP and Cygwin) |
name 名前 | Sinkiti Sibata |
---|---|
date 日付 | February 27, 2008 08:54:37 UTC 2008 年 2 月 27 日 (水) 17 時 54 分 37 秒 (日本時間) |
composite number 合成数 | 7310632099048481632442417594674736817587577048810320179589357685324612306601759726202069186552803790311886326790976822657893721507371<133> |
prime factors 素因数 | 21530592730890687406724972323507960444311519390746899<53> 339546253576180671194251388956900458789709973584370940213518247026860941408782729<81> |
factorization results 素因数分解の結果 | Number: 13339_143 N=7310632099048481632442417594674736817587577048810320179589357685324612306601759726202069186552803790311886326790976822657893721507371 ( 133 digits) SNFS difficulty: 143 digits. Divisors found: r1=21530592730890687406724972323507960444311519390746899 (pp53) r2=339546253576180671194251388956900458789709973584370940213518247026860941408782729 (pp81) Version: GGNFS-0.77.1-20060513-k8 Total time: 14.08 hours. Scaled time: 28.10 units (timescale=1.995). Factorization parameters were as follows: name: 13339_143 n: 7310632099048481632442417594674736817587577048810320179589357685324612306601759726202069186552803790311886326790976822657893721507371 m: 20000000000000000000000000000 c5: 125 c0: 17 skew: 0.67 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [650000, 2150001) Primes: RFBsize:100021, AFBsize:100153, largePrimes:2776914 encountered Relations: rels:2762452, finalFF:254297 Max relations in full relation-set: 28 Initial matrix: 200239 x 254297 with sparse part having weight 25949347. Pruned matrix : 184883 x 185948 with weight 17064295. Total sieving time: 13.53 hours. Total relation processing time: 0.11 hours. Matrix solve time: 0.35 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,143,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 14.08 hours. --------- CPU info (if available) ---------- |
execution environment 実行環境 | Core 2 Duo E6300 1.86GHz, Windows Vista) |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | February 27, 2008 02:29:21 UTC 2008 年 2 月 27 日 (水) 11 時 29 分 21 秒 (日本時間) |
composite number 合成数 | 4312529361975759580155519858838490654948818548147782846071812163893943800192853626340200810716457613297607646415440679084469260066879423<136> |
prime factors 素因数 | 532912808365383321830732841180011<33> 8092373263092864819628133138996361186520651603049089855317300239501384692261426760504261399767313194493<103> |
factorization results 素因数分解の結果 | GMP-ECM 6.1.3 [powered by GMP 4.2.2] [ECM] Input number is 4312529361975759580155519858838490654948818548147782846071812163893943800192853626340200810716457613297607646415440679084469260066879423 (136 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3774164663 Step 1 took 19172ms Step 2 took 9766ms ********** Factor found in step 2: 532912808365383321830732841180011 Found probable prime factor of 33 digits: 532912808365383321830732841180011 Probable prime cofactor 8092373263092864819628133138996361186520651603049089855317300239501384692261426760504261399767313194493 has 103 digits |
execution environment 実行環境 | Core 2 Duo E2160 |
name 名前 | Robert Backstrom |
---|---|
date 日付 | March 6, 2008 11:05:40 UTC 2008 年 3 月 6 日 (木) 20 時 5 分 40 秒 (日本時間) |
composite number 合成数 | 1706089013160948065796653250284267745523856895624707272826723480789142535712807929895649433301290486998952660344553525854016075320703<133> |
prime factors 素因数 | 57126890860326108568751429326137900970835253270245426672695033<62> 29864902280999244026736715876111318231690393560147974398473655578471991<71> |
factorization results 素因数分解の結果 | Number: n N=1706089013160948065796653250284267745523856895624707272826723480789142535712807929895649433301290486998952660344553525854016075320703 ( 133 digits) SNFS difficulty: 150 digits. Divisors found: Thu Mar 6 21:59:20 2008 prp62 factor: 57126890860326108568751429326137900970835253270245426672695033 Thu Mar 6 21:59:20 2008 prp71 factor: 29864902280999244026736715876111318231690393560147974398473655578471991 Thu Mar 6 21:59:20 2008 elapsed time 00:17:18 (Msieve 1.33) Version: GGNFS-0.77.1-20050930-k8 Total time: 11.81 hours. Scaled time: 9.91 units (timescale=0.839). Factorization parameters were as follows: name: KA_1_3_149_9 n: 1706089013160948065796653250284267745523856895624707272826723480789142535712807929895649433301290486998952660344553525854016075320703 type: snfs deg: 5 c5: 4 c0: 17 skew: 1.34 m: 1000000000000000000000000000000 rlim: 2000000 alim: 2000000 lbpr: 28 lbpa: 28 mbpr: 48 mbpa: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved special-q in [100000, 700001) Primes: RFBsize:148933, AFBsize:149130, largePrimes:5287368 encountered Relations: rels:5151793, finalFF:463201 Max relations in full relation-set: 28 Initial matrix: 298127 x 463201 with sparse part having weight 38170491. Pruned matrix : Total sieving time: 11.69 hours. Total relation processing time: 0.12 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,150,5,0,0,0,0,0,0,0,0,2000000,2000000,27,27,48,48,2.5,2.5,100000 total time: 11.81 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM) Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6029.31 BogoMIPS (lpj=3014656) Total of 2 processors activated (11993.08 BogoMIPS). |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | February 27, 2008 03:46:00 UTC 2008 年 2 月 27 日 (水) 12 時 46 分 0 秒 (日本時間) |
composite number 合成数 | 474546511489957409450593776322501809208575055462623530388772229538147607692398951252209607194125114187754327271001649049127427601997840813372720693787<150> |
prime factors 素因数 | 415104467682959200738565774465754443<36> 1143197793410399407185698538514618525118222228412394584420498452315299754453223670868380083914065328519933881066609<115> |
factorization results 素因数分解の結果 | GMP-ECM 6.1.3 [powered by GMP 4.2.2] [ECM] Input number is 474546511489957409450593776322501809208575055462623530388772229538147607692398951252209607194125114187754327271001649049127427601997840813372720693787 (150 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1897149122 Step 1 took 7137ms Step 2 took 4530ms ********** Factor found in step 2: 415104467682959200738565774465754443 Found probable prime factor of 36 digits: 415104467682959200738565774465754443 Probable prime cofactor 1143197793410399407185698538514618525118222228412394584420498452315299754453223670868380083914065328519933881066609 has 115 digits |
execution environment 実行環境 | Core 2 Quad Q6600 |
name 名前 | Robert Backstrom |
---|---|
date 日付 | March 7, 2008 00:30:39 UTC 2008 年 3 月 7 日 (金) 9 時 30 分 39 秒 (日本時間) |
composite number 合成数 | 1884740751191882668563906253662372628699360247371667353287240058299223854681737727018135369552948233020909693280492841805572551267<130> |
prime factors 素因数 | 269480152008343856451946294957810061032767470763934370924086361<63> 6993987264537114565683739230936559086147454821094183445847542744347<67> |
factorization results 素因数分解の結果 | Number: n N=1884740751191882668563906253662372628699360247371667353287240058299223854681737727018135369552948233020909693280492841805572551267 ( 130 digits) SNFS difficulty: 156 digits. Divisors found: Fri Mar 07 11:25:48 2008 prp63 factor: 269480152008343856451946294957810061032767470763934370924086361 Fri Mar 07 11:25:48 2008 prp67 factor: 6993987264537114565683739230936559086147454821094183445847542744347 Fri Mar 07 11:25:48 2008 elapsed time 00:50:09 (Msieve 1.33) Version: GGNFS-0.77.1-20051202-athlon Total time: 24.70 hours. Scaled time: 35.57 units (timescale=1.440). Factorization parameters were as follows: name: KA_1_3_155_9 n: 1884740751191882668563906253662372628699360247371667353287240058299223854681737727018135369552948233020909693280492841805572551267 skew: 0.84 deg: 5 c5: 40 c0: 17 m: 10000000000000000000000000000000 type: snfs rlim: 2400000 alim: 2400000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 1200001) Primes: RFBsize:176302, AFBsize:176288, largePrimes:7013324 encountered Relations: rels:6491415, finalFF:440292 Max relations in full relation-set: 28 Initial matrix: 352656 x 440292 with sparse part having weight 37857733. Pruned matrix : Total sieving time: 24.46 hours. Total relation processing time: 0.24 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,2400000,2400000,28,28,48,48,2.5,2.5,100000 total time: 24.70 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+ |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | February 27, 2008 10:33:28 UTC 2008 年 2 月 27 日 (水) 19 時 33 分 28 秒 (日本時間) |
composite number 合成数 | 109777456634412218346494490700844285441385803001273328489621193439331026277902763095843016268149742804353789800587<114> |
prime factors 素因数 | 47215344192327994418258987129<29> 7609598281654676371263513938560727761<37> 305540140613631168561515299376375435879608838323<48> |
factorization results 素因数分解の結果 | GMP-ECM 6.1.3 [powered by GMP 4.2.2] [ECM] Input number is 109777456634412218346494490700844285441385803001273328489621193439331026277902763095843016268149742804353789800587 (114 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1313139947 Step 1 took 5512ms Step 2 took 3813ms ********** Factor found in step 2: 47215344192327994418258987129 Found probable prime factor of 29 digits: 47215344192327994418258987129 Composite cofactor 2325037728990015935986003917297505539985894435563542929797489279175271175442666784803 has 85 digits Wed Feb 27 19:01:59 2008 Wed Feb 27 19:01:59 2008 Wed Feb 27 19:01:59 2008 Msieve v. 1.32 Wed Feb 27 19:01:59 2008 random seeds: df8c8585 3390fcdc Wed Feb 27 19:01:59 2008 factoring 2325037728990015935986003917297505539985894435563542929797489279175271175442666784803 (85 digits) Wed Feb 27 19:02:00 2008 no P-1/P+1/ECM available, skipping Wed Feb 27 19:02:00 2008 commencing quadratic sieve (85-digit input) Wed Feb 27 19:02:00 2008 using multiplier of 3 Wed Feb 27 19:02:00 2008 using 32kb Intel Core sieve core Wed Feb 27 19:02:00 2008 sieve interval: 12 blocks of size 32768 Wed Feb 27 19:02:00 2008 processing polynomials in batches of 17 Wed Feb 27 19:02:00 2008 using a sieve bound of 1424231 (54412 primes) Wed Feb 27 19:02:00 2008 using large prime bound of 116786942 (26 bits) Wed Feb 27 19:02:00 2008 using double large prime bound of 332131201862394 (41-49 bits) Wed Feb 27 19:02:00 2008 using trial factoring cutoff of 49 bits Wed Feb 27 19:02:00 2008 polynomial 'A' values have 11 factors Wed Feb 27 19:33:30 2008 54805 relations (15971 full + 38834 combined from 576753 partial), need 54508 Wed Feb 27 19:33:31 2008 begin with 592724 relations Wed Feb 27 19:33:31 2008 reduce to 130102 relations in 10 passes Wed Feb 27 19:33:31 2008 attempting to read 130102 relations Wed Feb 27 19:33:32 2008 recovered 130102 relations Wed Feb 27 19:33:32 2008 recovered 110815 polynomials Wed Feb 27 19:33:32 2008 attempting to build 54805 cycles Wed Feb 27 19:33:32 2008 found 54805 cycles in 5 passes Wed Feb 27 19:33:32 2008 distribution of cycle lengths: Wed Feb 27 19:33:32 2008 length 1 : 15971 Wed Feb 27 19:33:32 2008 length 2 : 10733 Wed Feb 27 19:33:32 2008 length 3 : 9599 Wed Feb 27 19:33:32 2008 length 4 : 7051 Wed Feb 27 19:33:32 2008 length 5 : 4787 Wed Feb 27 19:33:32 2008 length 6 : 2900 Wed Feb 27 19:33:32 2008 length 7 : 1741 Wed Feb 27 19:33:32 2008 length 9+: 2023 Wed Feb 27 19:33:32 2008 largest cycle: 16 relations Wed Feb 27 19:33:32 2008 matrix is 54412 x 54805 with weight 2920282 (avg 53.28/col) Wed Feb 27 19:33:33 2008 filtering completed in 3 passes Wed Feb 27 19:33:33 2008 matrix is 49677 x 49741 with weight 2662605 (avg 53.53/col) Wed Feb 27 19:33:33 2008 saving the first 48 matrix rows for later Wed Feb 27 19:33:33 2008 matrix is 49629 x 49741 with weight 2029250 (avg 40.80/col) Wed Feb 27 19:33:33 2008 matrix includes 64 packed rows Wed Feb 27 19:33:33 2008 commencing Lanczos iteration Wed Feb 27 19:34:24 2008 lanczos halted after 786 iterations (dim = 49629) Wed Feb 27 19:34:24 2008 recovered 18 nontrivial dependencies Wed Feb 27 19:34:25 2008 prp37 factor: 7609598281654676371263513938560727761 Wed Feb 27 19:34:25 2008 prp48 factor: 305540140613631168561515299376375435879608838323 Wed Feb 27 19:34:25 2008 elapsed time 00:32:26 |
execution environment 実行環境 | Core 2 Quad Q6600 |
name 名前 | Robert Backstrom |
---|---|
date 日付 | March 2, 2008 22:15:06 UTC 2008 年 3 月 3 日 (月) 7 時 15 分 6 秒 (日本時間) |
composite number 合成数 | 445230143343673430462830307452572074138592959669891654414947312621594211589980392450274580125449085186534476196879<114> |
prime factors 素因数 | 2314877192735084930952330849764046313<37> 192334239043421111920406360429117553604774190411975262010918731321162335043383<78> |
factorization results 素因数分解の結果 | GMP-ECM 6.0.1 [powered by GMP 4.1.4] [ECM] Input number is 445230143343673430462830307452572074138592959669891654414947312621594211589980392450274580125449085186534476196879 (114 digits) Using B1=2052000, B2=2338006551, polynomial Dickson(6), sigma=380822657 Step 1 took 19828ms Step 2 took 12547ms ********** Factor found in step 2: 2314877192735084930952330849764046313 Found probable prime factor of 37 digits: 2314877192735084930952330849764046313 Probable prime cofactor 192334239043421111920406360429117553604774190411975262010918731321162335043383 has 78 digits |
name 名前 | Robert Backstrom |
---|---|
date 日付 | March 2, 2008 21:58:10 UTC 2008 年 3 月 3 日 (月) 6 時 58 分 10 秒 (日本時間) |
composite number 合成数 | 16205599103510331606869183022166574000084869094117343333121797692014386877384011350124261973077579987497293650076653719561<122> |
prime factors 素因数 | 6712335232775758523886486797289601<34> 2414301214334435801406014836781291748305862176834703050235565295072747708123609133613961<88> |
factorization results 素因数分解の結果 | GMP-ECM 6.1.3 [powered by GMP 4.2.1] [ECM] Input number is 16205599103510331606869183022166574000084869094117343333121797692014386877384011350124261973077579987497293650076653719561 (122 digits) Using B1=1382000, B2=2139965110, polynomial Dickson(6), sigma=1712860543 Step 1 took 12300ms Step 2 took 6355ms ********** Factor found in step 2: 6712335232775758523886486797289601 Found probable prime factor of 34 digits: 6712335232775758523886486797289601 Probable prime cofactor 2414301214334435801406014836781291748305862176834703050235565295072747708123609133613961 has 88 digits |
name 名前 | Robert Backstrom |
---|---|
date 日付 | September 7, 2008 01:35:18 UTC 2008 年 9 月 7 日 (日) 10 時 35 分 18 秒 (日本時間) |
composite number 合成数 | 265461328902714720449135413796276012856770681128783935438114532587303104386318078788477129357372613085202661101773298430470012799<129> |
prime factors 素因数 | 175477359310145651369576592622195539679<39> 11017383187107043445598825146216819497967<41> 137309858416434405546180978438036203884533672564143<51> |
factorization results 素因数分解の結果 | GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 265461328902714720449135413796276012856770681128783935438114532587303104386318078788477129357372613085202661101773298430470012799 (129 digits) Using B1=2842000, B2=4281592780, polynomial Dickson(6), sigma=4034181669 Step 1 took 27125ms Step 2 took 11531ms ********** Factor found in step 2: 11017383187107043445598825146216819497967 Found probable prime factor of 41 digits: 11017383187107043445598825146216819497967 Composite cofactor 24094771362165887160008178046242774179489161331528524488085284544470775942950829629130097 has 89 digits Sun Sep 07 03:19:16 2008 Sun Sep 07 03:19:16 2008 Sun Sep 07 03:19:16 2008 Msieve v. 1.37 Sun Sep 07 03:19:16 2008 random seeds: f938b800 08bc6fd4 Sun Sep 07 03:19:16 2008 factoring 24094771362165887160008178046242774179489161331528524488085284544470775942950829629130097 (89 digits) Sun Sep 07 03:19:16 2008 searching for 15-digit factors Sun Sep 07 03:19:17 2008 commencing quadratic sieve (89-digit input) Sun Sep 07 03:19:17 2008 using multiplier of 17 Sun Sep 07 03:19:17 2008 using 64kb Opteron sieve core Sun Sep 07 03:19:17 2008 sieve interval: 15 blocks of size 65536 Sun Sep 07 03:19:17 2008 processing polynomials in batches of 7 Sun Sep 07 03:19:17 2008 using a sieve bound of 1546837 (58635 primes) Sun Sep 07 03:19:17 2008 using large prime bound of 123746960 (26 bits) Sun Sep 07 03:19:17 2008 using double large prime bound of 368605688486800 (42-49 bits) Sun Sep 07 03:19:17 2008 using trial factoring cutoff of 49 bits Sun Sep 07 03:19:17 2008 polynomial 'A' values have 11 factors Sun Sep 07 04:22:05 2008 58762 relations (16144 full + 42618 combined from 616952 partial), need 58731 Sun Sep 07 04:22:07 2008 begin with 633096 relations Sun Sep 07 04:22:07 2008 reduce to 141733 relations in 11 passes Sun Sep 07 04:22:07 2008 attempting to read 141733 relations Sun Sep 07 04:22:10 2008 recovered 141733 relations Sun Sep 07 04:22:10 2008 recovered 119607 polynomials Sun Sep 07 04:22:10 2008 attempting to build 58762 cycles Sun Sep 07 04:22:10 2008 found 58762 cycles in 5 passes Sun Sep 07 04:22:11 2008 distribution of cycle lengths: Sun Sep 07 04:22:11 2008 length 1 : 16144 Sun Sep 07 04:22:11 2008 length 2 : 11470 Sun Sep 07 04:22:11 2008 length 3 : 10451 Sun Sep 07 04:22:11 2008 length 4 : 7660 Sun Sep 07 04:22:11 2008 length 5 : 5338 Sun Sep 07 04:22:11 2008 length 6 : 3372 Sun Sep 07 04:22:11 2008 length 7 : 1977 Sun Sep 07 04:22:11 2008 length 9+: 2350 Sun Sep 07 04:22:11 2008 largest cycle: 19 relations Sun Sep 07 04:22:11 2008 matrix is 58635 x 58762 (14.3 MB) with weight 3516020 (59.83/col) Sun Sep 07 04:22:11 2008 sparse part has weight 3516020 (59.83/col) Sun Sep 07 04:22:12 2008 filtering completed in 4 passes Sun Sep 07 04:22:12 2008 matrix is 54458 x 54522 (13.4 MB) with weight 3300382 (60.53/col) Sun Sep 07 04:22:12 2008 sparse part has weight 3300382 (60.53/col) Sun Sep 07 04:22:13 2008 saving the first 48 matrix rows for later Sun Sep 07 04:22:13 2008 matrix is 54410 x 54522 (10.1 MB) with weight 2767191 (50.75/col) Sun Sep 07 04:22:13 2008 sparse part has weight 2308672 (42.34/col) Sun Sep 07 04:22:13 2008 matrix includes 64 packed rows Sun Sep 07 04:22:13 2008 using block size 21808 for processor cache size 1024 kB Sun Sep 07 04:22:14 2008 commencing Lanczos iteration Sun Sep 07 04:22:14 2008 memory use: 9.0 MB Sun Sep 07 04:22:56 2008 lanczos halted after 862 iterations (dim = 54409) Sun Sep 07 04:22:56 2008 recovered 17 nontrivial dependencies Sun Sep 07 04:22:56 2008 prp39 factor: 175477359310145651369576592622195539679 Sun Sep 07 04:22:56 2008 prp51 factor: 137309858416434405546180978438036203884533672564143 Sun Sep 07 04:22:56 2008 elapsed time 01:03:40 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | February 25, 2008 09:00:00 UTC 2008 年 2 月 25 日 (月) 18 時 0 分 0 秒 (日本時間) |
name 名前 | Makoto Kamada |
---|---|
date 日付 | September 6, 2008 02:17:15 UTC 2008 年 9 月 6 日 (土) 11 時 17 分 15 秒 (日本時間) |
composite number 合成数 | 10594028369831114716682888330845541566105401124620505895213725128397891350870967330967394277735211887867089454105665163<119> |
prime factors 素因数 | 495436223298434385356722609135189152207142936793249<51> 21383233343940664218943433891745463379743409952464040968535330972587<68> |
factorization results 素因数分解の結果 | This is a nuggetprime's result posted on 21 Aug 2008 at: http://www.mersenneforum.org/showthread.php?p=139605#post139605 GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] Input number is 10594028369831114716682888330845541566105401124620505895213725128397891350870967330967394277735211887867089454105665163 (119 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=861666340 Step 1 took 46698ms Step 2 took 25614ms ********** Factor found in step 2: 495436223298434385356722609135189152207142936793249 Found probable prime factor of 51 digits: 495436223298434385356722609135189152207142936793249 Probable prime cofactor 21383233343940664218943433891745463379743409952464040968535330972587 has 68 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | February 25, 2008 09:00:00 UTC 2008 年 2 月 25 日 (月) 18 時 0 分 0 秒 (日本時間) |
name 名前 | Robert Backstrom |
---|---|
date 日付 | April 11, 2008 07:22:34 UTC 2008 年 4 月 11 日 (金) 16 時 22 分 34 秒 (日本時間) |
composite number 合成数 | 38816585897454376370203041341417520056828335718762951002257396990744760548637933715654773052226878857184125827938004994260332153467299638252418262869453947707<158> |
prime factors 素因数 | 4174243305008880150142804690262251278349<40> 7364569572438135830466677565409660399752515893267<49> 1262676814439812792538853247661616472122117327064522172690220773124829<70> |
factorization results 素因数分解の結果 | Number: n N=38816585897454376370203041341417520056828335718762951002257396990744760548637933715654773052226878857184125827938004994260332153467299638252418262869453947707 ( 158 digits) SNFS difficulty: 166 digits. Divisors found: Fri Apr 11 07:07:03 2008 prp40 factor: 4174243305008880150142804690262251278349 Fri Apr 11 07:07:03 2008 prp49 factor: 7364569572438135830466677565409660399752515893267 Fri Apr 11 07:07:03 2008 prp70 factor: 1262676814439812792538853247661616472122117327064522172690220773124829 Fri Apr 11 07:07:03 2008 elapsed time 00:55:29 (Msieve 1.34) Version: GGNFS-0.77.1-20050930-k8 Total time: 54.76 hours. Scaled time: 45.78 units (timescale=0.836). Factorization parameters were as follows: name: KA_1_3_165_9 n: 38816585897454376370203041341417520056828335718762951002257396990744760548637933715654773052226878857184125827938004994260332153467299638252418262869453947707 type: snfs deg: 5 c5: 40 c0: 17 skew: 0.84 m: 1000000000000000000000000000000000 rlim: 3200000 alim: 3200000 lbpr: 28 lbpa: 28 mbpr: 48 mbpa: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved special-q in [100000, 3300001) Primes: RFBsize:230209, AFBsize:230272, largePrimes:5779326 encountered Relations: rels:5745407, finalFF:535328 Max relations in full relation-set: 28 Initial matrix: 460547 x 535328 with sparse part having weight 49032993. Pruned matrix : Total sieving time: 54.57 hours. Total relation processing time: 0.19 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,3200000,3200000,27,27,48,48,2.5,2.5,100000 total time: 54.76 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM) Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6029.31 BogoMIPS (lpj=3014656) Total of 2 processors activated (11993.08 BogoMIPS). |
name 名前 | Robert Backstrom |
---|---|
date 日付 | May 8, 2008 18:44:59 UTC 2008 年 5 月 9 日 (金) 3 時 44 分 59 秒 (日本時間) |
composite number 合成数 | 34434608870307923404475024657134844748701860309674587315404647632781283456753980732432357056267145154518245991279445057211333<125> |
prime factors 素因数 | 54993925552292230908242328636465353<35> 2748027937502551074896604229460386066456913<43> 227855381034873924333702464731031467728937974797<48> |
factorization results 素因数分解の結果 | GMP-ECM 6.1.3 [powered by GMP 4.2.1] [ECM] Input number is 34434608870307923404475024657134844748701860309674587315404647632781283456753980732432357056267145154518245991279445057211333 (125 digits) Using B1=1902000, B2=2853920170, polynomial Dickson(6), sigma=302158330 Step 1 took 16877ms Step 2 took 8046ms ********** Factor found in step 2: 2748027937502551074896604229460386066456913 Found probable prime factor of 43 digits: 2748027937502551074896604229460386066456913 Composite cofactor 12530661861321035695461437620308285858371167816021440960712419669439223860277708341 has 83 digits Fri May 9 04:21:35 2008 Fri May 9 04:21:35 2008 Fri May 9 04:21:35 2008 Msieve v. 1.34 Fri May 9 04:21:35 2008 random seeds: 691b551c 6b560d30 Fri May 9 04:21:35 2008 factoring 12530661861321035695461437620308285858371167816021440960712419669439223860277708341 (83 digits) Fri May 9 04:21:35 2008 no P-1/P+1/ECM available, skipping Fri May 9 04:21:35 2008 commencing quadratic sieve (83-digit input) Fri May 9 04:21:35 2008 using multiplier of 61 Fri May 9 04:21:35 2008 using 64kb Opteron sieve core Fri May 9 04:21:35 2008 sieve interval: 6 blocks of size 65536 Fri May 9 04:21:35 2008 processing polynomials in batches of 17 Fri May 9 04:21:35 2008 using a sieve bound of 1359329 (52059 primes) Fri May 9 04:21:35 2008 using large prime bound of 125058268 (26 bits) Fri May 9 04:21:35 2008 using trial factoring cutoff of 27 bits Fri May 9 04:21:35 2008 polynomial 'A' values have 11 factors Fri May 9 04:35:11 2008 52262 relations (27275 full + 24987 combined from 270355 partial), need 52155 Fri May 9 04:35:11 2008 begin with 297630 relations Fri May 9 04:35:11 2008 reduce to 74125 relations in 2 passes Fri May 9 04:35:11 2008 attempting to read 74125 relations Fri May 9 04:35:12 2008 recovered 74125 relations Fri May 9 04:35:12 2008 recovered 66164 polynomials Fri May 9 04:35:12 2008 attempting to build 52262 cycles Fri May 9 04:35:12 2008 found 52262 cycles in 1 passes Fri May 9 04:35:12 2008 distribution of cycle lengths: Fri May 9 04:35:12 2008 length 1 : 27275 Fri May 9 04:35:12 2008 length 2 : 24987 Fri May 9 04:35:12 2008 largest cycle: 2 relations Fri May 9 04:35:12 2008 matrix is 52059 x 52262 (7.2 MB) with weight 1681414 (32.17/col) Fri May 9 04:35:12 2008 sparse part has weight 1681414 (32.17/col) Fri May 9 04:35:12 2008 filtering completed in 4 passes Fri May 9 04:35:12 2008 matrix is 44666 x 44730 (6.1 MB) with weight 1410257 (31.53/col) Fri May 9 04:35:12 2008 sparse part has weight 1410257 (31.53/col) Fri May 9 04:35:12 2008 saving the first 48 matrix rows for later Fri May 9 04:35:12 2008 matrix is 44618 x 44730 (3.7 MB) with weight 1022140 (22.85/col) Fri May 9 04:35:12 2008 sparse part has weight 706896 (15.80/col) Fri May 9 04:35:12 2008 matrix includes 64 packed rows Fri May 9 04:35:12 2008 commencing Lanczos iteration Fri May 9 04:35:12 2008 memory use: 5.4 MB Fri May 9 04:35:43 2008 lanczos halted after 707 iterations (dim = 44606) Fri May 9 04:35:44 2008 recovered 12 nontrivial dependencies Fri May 9 04:35:44 2008 prp35 factor: 54993925552292230908242328636465353 Fri May 9 04:35:44 2008 prp48 factor: 227855381034873924333702464731031467728937974797 Fri May 9 04:35:44 2008 elapsed time 00:14:09 |
name 名前 | Markus Tervooren |
---|---|
date 日付 | October 19, 2009 04:23:54 UTC 2009 年 10 月 19 日 (月) 13 時 23 分 54 秒 (日本時間) |
composite number 合成数 | 4192707701980709313272970180900604964145466964095403481717259105461617889929221812951526597959289619118710495547938053457257538998613<133> |
prime factors 素因数 | 1811998610010835822993607900189787073446791070400527729757<58> 2313858122637101115780520754396976599766152089544026425029700261948700504409<76> |
factorization results 素因数分解の結果 | lpbr: 32 lpba: 32 mfbr: 65 mfba: 65 rlambda: 2.4 alambda: 2.4 Sieve time: ~21 hours @ 0.0018secs/rel, 41718887 total relations commencing linear algebra read 913581 cycles cycles contain 3080119 unique relations read 3080119 relations using 20 quadratic characters above 4291404732 building initial matrix memory use: 372.8 MB read 913581 cycles matrix is 913322 x 913581 (273.3 MB) with weight 81825084 (89.57/col) sparse part has weight 61599757 (67.43/col) filtering completed in 3 passes matrix is 908377 x 908577 (272.6 MB) with weight 81576027 (89.78/col) sparse part has weight 61464641 (67.65/col) read 908577 cycles matrix is 908377 x 908577 (272.6 MB) with weight 81576027 (89.78/col) sparse part has weight 61464641 (67.65/col) saving the first 48 matrix rows for later matrix is 908329 x 908577 (258.5 MB) with weight 64431455 (70.91/col) sparse part has weight 58682398 (64.59/col) matrix includes 64 packed rows using block size 65536 for processor cache size 4096 kB commencing Lanczos iteration (4 threads) memory use: 274.1 MB linear algebra completed 908252 of 908577 dimensions (100.0%, ETA 0h 0m) lanczos halted after 14367 iterations (dim = 908323) recovered 35 nontrivial dependencies BLanczosTime: 4268 elapsed time 01:11:09 commencing square root phase reading relations for dependency 1 read 454350 cycles cycles contain 1875691 unique relations read 1875691 relations multiplying 1537770 relations multiply complete, coefficients have about 41.57 million bits initial square root is modulo 929311 sqrtTime: 293 prp58 factor: 1811998610010835822993607900189787073446791070400527729757 prp76 factor: 2313858122637101115780520754396976599766152089544026425029700261948700504409 elapsed time 00:04:55 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | February 25, 2008 09:00:00 UTC 2008 年 2 月 25 日 (月) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 904 | Sinkiti Sibata | August 21, 2008 22:25:52 UTC 2008 年 8 月 22 日 (金) 7 時 25 分 52 秒 (日本時間) |
name 名前 | Sinkiti Sibata |
---|---|
date 日付 | February 26, 2010 23:37:01 UTC 2010 年 2 月 27 日 (土) 8 時 37 分 1 秒 (日本時間) |
composite number 合成数 | 13056863419457890050431365913014502922835991826630671946129054157406689978355344915643036147881220693804338010252232715778158010154497<134> |
prime factors 素因数 | 24810789723900105090955741370007349221583859981<47> 526257469623398614415392439948486070797003604005931292446455183140895595832089089719237<87> |
factorization results 素因数分解の結果 | Number: 13339_172 N=13056863419457890050431365913014502922835991826630671946129054157406689978355344915643036147881220693804338010252232715778158010154497 ( 134 digits) SNFS difficulty: 172 digits. Divisors found: r1=24810789723900105090955741370007349221583859981 (pp47) r2=526257469623398614415392439948486070797003604005931292446455183140895595832089089719237 (pp87) Version: Msieve-1.40 Total time: 97.65 hours. Scaled time: 196.27 units (timescale=2.010). Factorization parameters were as follows: name: 13339_172 n: 13056863419457890050431365913014502922835991826630671946129054157406689978355344915643036147881220693804338010252232715778158010154497 m: 10000000000000000000000000000000000 deg: 5 c5: 400 c0: 17 skew: 0.53 type: snfs lss: 1 rlim: 5300000 alim: 5300000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5300000/5300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2650000, 6150001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1019384 x 1019632 Total sieving time: 94.61 hours. Total relation processing time: 0.16 hours. Matrix solve time: 2.71 hours. Time per square root: 0.17 hours. Prototype def-par.txt line would be: snfs,172.000,5,0,0,0,0,0,0,0,0,5300000,5300000,27,27,52,52,2.4,2.4,100000 total time: 97.65 hours. --------- CPU info (if available) ---------- |
execution environment 実行環境 | Core i7 2.93GHz,Windows 7 64bit,and Cygwin) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | February 25, 2008 09:00:00 UTC 2008 年 2 月 25 日 (月) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2336 | Wataru Sakai | June 22, 2009 00:18:19 UTC 2009 年 6 月 22 日 (月) 9 時 18 分 19 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | September 15, 2009 14:53:12 UTC 2009 年 9 月 15 日 (火) 23 時 53 分 12 秒 (日本時間) |
composite number 合成数 | 15282792603296490723134751400734804309762796922213680414723029758615550157418494861180090632309114959343759942172969347646738401802727649899647452719529005727876046771<167> |
prime factors 素因数 | 3055312741028287927419953994566699688539650674426697<52> 5002038710496443223237430195243628039136222337015568712568093688915681320808688259006916876185102925314392005660443<115> |
factorization results 素因数分解の結果 | Number: 13339_173 N=15282792603296490723134751400734804309762796922213680414723029758615550157418494861180090632309114959343759942172969347646738401802727649899647452719529005727876046771 ( 167 digits) SNFS difficulty: 173 digits. Divisors found: r1=3055312741028287927419953994566699688539650674426697 (pp52) r2=5002038710496443223237430195243628039136222337015568712568093688915681320808688259006916876185102925314392005660443 (pp115) Version: Msieve-1.40 Total time: 64.00 hours. Scaled time: 111.30 units (timescale=1.739). Factorization parameters were as follows: n: 15282792603296490723134751400734804309762796922213680414723029758615550157418494861180090632309114959343759942172969347646738401802727649899647452719529005727876046771 m: 20000000000000000000000000000000000 deg: 5 c5: 125 c0: 17 skew: 0.67 type: snfs lss: 1 rlim: 5500000 alim: 5500000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5500000/5500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2750000, 6050001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1011480 x 1011706 Total sieving time: 62.32 hours. Total relation processing time: 0.10 hours. Matrix solve time: 1.33 hours. Time per square root: 0.25 hours. Prototype def-par.txt line would be: snfs,173.000,5,0,0,0,0,0,0,0,0,5500000,5500000,27,27,52,52,2.4,2.4,100000 total time: 64.00 hours. |
software ソフトウェア | GGNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | February 25, 2008 09:00:00 UTC 2008 年 2 月 25 日 (月) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2336 | Wataru Sakai | August 19, 2009 05:31:27 UTC 2009 年 8 月 19 日 (水) 14 時 31 分 27 秒 (日本時間) |
name 名前 | Lionel Debroux |
---|---|
date 日付 | October 3, 2009 09:58:57 UTC 2009 年 10 月 3 日 (土) 18 時 58 分 57 秒 (日本時間) |
composite number 合成数 | 34653480265930107213911468312089814676202650490024533804881869022835266218664881461304021116792725096000602005734429619839477009825529617570745711284331483625134749<164> |
prime factors 素因数 | 17046294381955175722850377313441<32> 2032904013590983323124640548830455534219890792230587335816686586190726080165488832358711164967138379379602576761258463473790718398589<133> |
factorization results 素因数分解の結果 | $ echo 34653480265930107213911468312089814676202650490024533804881869022835266218664881461304021116792725096000602005734429619839477009825529617570745711284331483625134749 | ecm -n -c 1000 1e6 GMP-ECM 6.2.3 [powered by GMP 4.2.2] [ECM] Input number is 34653480265930107213911468312089814676202650490024533804881869022835266218664881461304021116792725096000602005734429619839477009825529617570745711284331483625134749 (164 digits) Run 445 out of 1000: Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=811603726 Step 1 took 7293ms Step 2 took 5490ms ********** Factor found in step 2: 17046294381955175722850377313441 Found probable prime factor of 32 digits: 17046294381955175722850377313441 Probable prime cofactor 2032904013590983323124640548830455534219890792230587335816686586190726080165488832358711164967138379379602576761258463473790718398589 has 133 digits |
software ソフトウェア | GMP-ECM 6.2.3 |
execution environment 実行環境 | Core 2 Duo T7200, 2 GB RAM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | February 25, 2008 09:00:00 UTC 2008 年 2 月 25 日 (月) 18 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | May 10, 2013 08:14:00 UTC 2013 年 5 月 10 日 (金) 17 時 14 分 0 秒 (日本時間) |
composite number 合成数 | 1449638426525957230688871051446042943123572912114200418380760581804261722171084535475820889993433270838193230072807876193798755713867035629131<142> |
prime factors 素因数 | 555185939086331699833779704890264351409842560142658751490982495359459<69> 2611086348677389158075876336813965221224458613144532934189670072260966009<73> |
factorization results 素因数分解の結果 | N=1449638426525957230688871051446042943123572912114200418380760581804261722171084535475820889993433270838193230072807876193798755713867035629131 ( 142 digits) SNFS difficulty: 178 digits. Divisors found: r1=555185939086331699833779704890264351409842560142658751490982495359459 (pp69) r2=2611086348677389158075876336813965221224458613144532934189670072260966009 (pp73) Version: Msieve v. 1.50 (SVN unknown) Total time: 90.00 hours. Scaled time: 172.99 units (timescale=1.922). Factorization parameters were as follows: n: 1449638426525957230688871051446042943123572912114200418380760581804261722171084535475820889993433270838193230072807876193798755713867035629131 m: 200000000000000000000000000000000000 deg: 5 c5: 125 c0: 17 skew: 0.67 # Murphy_E = 1.237e-10 type: snfs lss: 1 rlim: 6600000 alim: 6600000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 qintsize: 400000 Factor base limits: 6600000/6600000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3300000, 8100001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1196420 x 1196646 Total sieving time: 88.36 hours. Total relation processing time: 0.20 hours. Matrix solve time: 1.37 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,178.000,5,0,0,0,0,0,0,0,0,6600000,6600000,28,28,53,53,2.5,2.5,100000 total time: 90.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | February 25, 2008 09:00:00 UTC 2008 年 2 月 25 日 (月) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 300 | Ignacio Santos | October 5, 2010 15:30:04 UTC 2010 年 10 月 6 日 (水) 0 時 30 分 4 秒 (日本時間) | |
40 | 3e6 | 2144 | 110 | Ignacio Santos | October 5, 2010 15:30:04 UTC 2010 年 10 月 6 日 (水) 0 時 30 分 4 秒 (日本時間) |
2034 | Wataru Sakai | January 11, 2012 06:15:03 UTC 2012 年 1 月 11 日 (水) 15 時 15 分 3 秒 (日本時間) | |||
45 | 11e6 | 32 / 3991 | Ignacio Santos | October 5, 2010 15:30:04 UTC 2010 年 10 月 6 日 (水) 0 時 30 分 4 秒 (日本時間) |
name 名前 | matsui |
---|---|
date 日付 | September 10, 2010 04:29:27 UTC 2010 年 9 月 10 日 (金) 13 時 29 分 27 秒 (日本時間) |
composite number 合成数 | 5376009950539265662051468241820801959548748130286181003617890159802301899296164645935356917534869998292408216870580431741877731128424139885699988147119919946480267111<166> |
prime factors 素因数 | 2255108483152278631723934002691201232799<40> 2383925203910576036739499667582636576113037713638817822860782905959678367496060813490282062940533986807659656148091182535052089<127> |
factorization results 素因数分解の結果 | N=5376009950539265662051468241820801959548748130286181003617890159802301899296164645935356917534869998292408216870580431741877731128424139885699988147119919946480267111 ( 166 digits) SNFS difficulty: 179 digits. Divisors found: r1=2255108483152278631723934002691201232799 (pp40) r2=2383925203910576036739499667582636576113037713638817822860782905959678367496060813490282062940533986807659656148091182535052089 (pp127) Version: Msieve v. 1.47 Total time: Scaled time: 46.02 units (timescale=1.719). Factorization parameters were as follows: n: 5376009950539265662051468241820801959548748130286181003617890159802301899296164645935356917534869998292408216870580431741877731128424139885699988147119919946480267111 m: 200000000000000000000000000000000000 deg: 5 c5: 1250 c0: 17 skew: 0.42 type: snfs lss: 1 rlim: 6900000 alim: 6900000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 qintsize: 400000 Factor base limits: 6900000/6900000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3450000, 8650001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1365555 x 1365782 Total sieving time: Total relation processing time: Matrix solve time: Time per square root: Prototype def-par.txt line would be: snfs,179.000,5,0,0,0,0,0,0,0,0,6900000,6900000,28,28,53,53,2.5,2.5,100000 total time: |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | February 25, 2008 09:00:00 UTC 2008 年 2 月 25 日 (月) 18 時 0 分 0 秒 (日本時間) |
name 名前 | Robert Backstrom |
---|---|
date 日付 | April 25, 2012 01:42:07 UTC 2012 年 4 月 25 日 (水) 10 時 42 分 7 秒 (日本時間) |
composite number 合成数 | 15324734655678347076188850401569719539760678154487912986799498151545930579074462059759262197517085518506428300545156396178602509557713<134> |
prime factors 素因数 | 1007706964342534880491104221085485776551445130720153695489<58> 15207530758385467846484479223366603673033094766612543505885537635423996369617<77> |
factorization results 素因数分解の結果 | Number: n N=15324734655678347076188850401569719539760678154487912986799498151545930579074462059759262197517085518506428300545156396178602509557713 ( 134 digits) Divisors found: Wed Apr 25 09:48:15 2012 prp58 factor: 1007706964342534880491104221085485776551445130720153695489 Wed Apr 25 09:48:15 2012 prp77 factor: 15207530758385467846484479223366603673033094766612543505885537635423996369617 Wed Apr 25 09:48:15 2012 elapsed time 02:52:05 (Msieve 1.44 - dependency 4) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.096). Factorization parameters were as follows: name: KA_13339_180 n: 15324734655678347076188850401569719539760678154487912986799498151545930579074462059759262197517085518506428300545156396178602509557713 skew: 74585.88 # norm 3.55e+18 c5: 295920 c4: -1246860173508 c3: 26395702744540502 c2: 2653624299716510047420 c1: -142214793717203177370729989 c0: 788748894401878751783408495375 # alpha -6.49 Y1: 22140358136177 Y0: -34901489448544901923234038 # Murphy_E 4.61e-11 # M 7152882774137304613536295894069090263781008240604072350498169548390996579737833181706649940144105841088580274418682492555945335641845 type: gnfs rlim: 5400000 alim: 5400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.5 alambda: 2.5 qintsize: 60000 Factor base limits: 5400000/5400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved special-q in [100000, 21960000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2968286 hash collisions in 13011532 relations (9995000 unique) Msieve: matrix is 1215391 x 1215619 (352.3 MB) Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: gnfs,133,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,5400000,5400000,27,27,51,51,2.5,2.5,60000 total time: 0.00 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU1: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU2: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU3: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 Memory: 8109188k/9175040k available (3972k kernel code, 787464k absent, 278388k reserved, 2498k data, 1292k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 5661.55 BogoMIPS (lpj=2830779) Calibrating delay using timer specific routine.. 5660.90 BogoMIPS (lpj=2830450) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830457) Calibrating delay using timer specific routine.. 5660.92 BogoMIPS (lpj=2830462) Total of 4 processors activated (22644.29 BogoMIPS). |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | February 25, 2008 09:00:00 UTC 2008 年 2 月 25 日 (月) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 300 | Ignacio Santos | October 5, 2010 15:31:23 UTC 2010 年 10 月 6 日 (水) 0 時 31 分 23 秒 (日本時間) | |
40 | 3e6 | 880 | 110 | Ignacio Santos | October 5, 2010 15:31:23 UTC 2010 年 10 月 6 日 (水) 0 時 31 分 23 秒 (日本時間) |
770 | Ignacio Santos | July 12, 2011 18:52:51 UTC 2011 年 7 月 13 日 (水) 3 時 52 分 51 秒 (日本時間) | |||
45 | 11e6 | 252 / 4057 | 32 | Ignacio Santos | October 5, 2010 15:31:23 UTC 2010 年 10 月 6 日 (水) 0 時 31 分 23 秒 (日本時間) |
220 | Ignacio Santos | July 12, 2011 18:52:51 UTC 2011 年 7 月 13 日 (水) 3 時 52 分 51 秒 (日本時間) | |||
50 | 43e6 | 61 / 7462 | Ignacio Santos | July 12, 2011 18:52:51 UTC 2011 年 7 月 13 日 (水) 3 時 52 分 51 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | April 22, 2009 05:26:11 UTC 2009 年 4 月 22 日 (水) 14 時 26 分 11 秒 (日本時間) |
composite number 合成数 | 2426981383050532361400098863086638563435741633027187834221881554935421362496427028345140294389201291954999639289891944114627786910306473748343509362899791334208138772853897723<175> |
prime factors 素因数 | 22309717107372494315385593361862526662022588401333102253<56> 156122557936970418953523058188454015963068329714979720107<57> 696797723896822116787571000843431402872490055258855522222137813<63> |
factorization results 素因数分解の結果 | Number: 13339_181 N=2426981383050532361400098863086638563435741633027187834221881554935421362496427028345140294389201291954999639289891944114627786910306473748343509362899791334208138772853897723 ( 175 digits) SNFS difficulty: 181 digits. Divisors found: r1=22309717107372494315385593361862526662022588401333102253 (pp56) r2=156122557936970418953523058188454015963068329714979720107 (pp57) r3=696797723896822116787571000843431402872490055258855522222137813 (pp63) Version: Msieve-1.39 Total time: 131.58 hours. Scaled time: 228.81 units (timescale=1.739). Factorization parameters were as follows: n: 2426981383050532361400098863086638563435741633027187834221881554935421362496427028345140294389201291954999639289891944114627786910306473748343509362899791334208138772853897723 m: 1000000000000000000000000000000000000 deg: 5 c5: 40 c0: 17 skew: 0.84 type: snfs lss: 1 rlim: 7400000 alim: 7400000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3700000, 5900001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1446798 x 1447043 Total sieving time: 131.58 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,181,5,0,0,0,0,0,0,0,0,7400000,7400000,28,28,53,53,2.5,2.5,100000 total time: 131.58 hours. --------- CPU info (if available) ---------- |
software ソフトウェア | GGNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | February 25, 2008 09:00:00 UTC 2008 年 2 月 25 日 (月) 18 時 0 分 0 秒 (日本時間) |
name 名前 | Justin Card |
---|---|
date 日付 | July 3, 2012 11:06:03 UTC 2012 年 7 月 3 日 (火) 20 時 6 分 3 秒 (日本時間) |
composite number 合成数 | 16303998907133633775412200550628593952803509368752954359419254085915566253936648696677667528387419703577250467586701782537370427797464522485995753308539033<155> |
prime factors 素因数 | 31593797242368280144416144836632248217<38> 516050627977996142880178514821126575637569761009517460434720605756938062742081247935140844811060118843728827803349249<117> |
factorization results 素因数分解の結果 | [2012-07-02 23:07:51 GMT] a: Factor found! 13339_183 / (probable) 31593797242368280144416144836632248217 B1: 3000000 sigma: 739548470 (found in step 2) [2012-07-02 23:07:51 GMT] a: Co-factor: 13339_183 / (Probable) 516050627977996142880178514821126575637569761009517460434720605756938062742081247935140844811060118843728827803349249 |
software ソフトウェア | gmp-ecm 6.2, ecmnet 2.7.3 |
execution environment 実行環境 | Phenom X4 3 GHz, 4 GB RAM, Linux Mint 13 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | February 25, 2008 09:00:00 UTC 2008 年 2 月 25 日 (月) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 300 | Ignacio Santos | October 5, 2010 16:22:15 UTC 2010 年 10 月 6 日 (水) 1 時 22 分 15 秒 (日本時間) | |
40 | 3e6 | 110 / 2144 | Ignacio Santos | October 5, 2010 16:22:15 UTC 2010 年 10 月 6 日 (水) 1 時 22 分 15 秒 (日本時間) | |
45 | 11e6 | 32 / 4441 | Ignacio Santos | October 5, 2010 16:22:15 UTC 2010 年 10 月 6 日 (水) 1 時 22 分 15 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | August 13, 2013 08:06:03 UTC 2013 年 8 月 13 日 (火) 17 時 6 分 3 秒 (日本時間) |
composite number 合成数 | 231285634995072835275590283304591669801776250575214094106049985877533894401445143713823962557888223155645094181031943861715797384113390623568451608607610274026117871069897<171> |
prime factors 素因数 | 35022449745540894918179971382669617193244780025967252897614853979847<68> 6603925101627718982057138763057658216751290787383467662302721706600586292046615934306616191352532679151<103> |
factorization results 素因数分解の結果 | N=231285634995072835275590283304591669801776250575214094106049985877533894401445143713823962557888223155645094181031943861715797384113390623568451608607610274026117871069897 ( 171 digits) SNFS difficulty: 185 digits. Divisors found: r1=35022449745540894918179971382669617193244780025967252897614853979847 (pp68) r2=6603925101627718982057138763057658216751290787383467662302721706600586292046615934306616191352532679151 (pp103) Version: Msieve v. 1.50 (SVN unknown) Total time: 137.98 hours. Scaled time: 265.60 units (timescale=1.925). Factorization parameters were as follows: n: 231285634995072835275590283304591669801776250575214094106049985877533894401445143713823962557888223155645094181031943861715797384113390623568451608607610274026117871069897 m: 10000000000000000000000000000000000000 deg: 5 c5: 4 c0: 17 skew: 1.34 # Murphy_E = 7.308e-11 type: snfs lss: 1 rlim: 8700000 alim: 8700000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 qintsize: 400000 Factor base limits: 8700000/8700000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [4350000, 11150001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1747368 x 1747600 Total sieving time: 134.51 hours. Total relation processing time: 0.22 hours. Matrix solve time: 2.96 hours. Time per square root: 0.28 hours. Prototype def-par.txt line would be: snfs,185.000,5,0,0,0,0,0,0,0,0,8700000,8700000,28,28,54,54,2.5,2.5,100000 total time: 137.98 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | February 25, 2008 09:00:00 UTC 2008 年 2 月 25 日 (月) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 300 | Ignacio Santos | October 5, 2010 19:08:36 UTC 2010 年 10 月 6 日 (水) 4 時 8 分 36 秒 (日本時間) | |
40 | 3e6 | 1110 | 110 | Ignacio Santos | October 5, 2010 19:08:36 UTC 2010 年 10 月 6 日 (水) 4 時 8 分 36 秒 (日本時間) |
1000 | Dmitry Domanov | March 14, 2013 16:09:04 UTC 2013 年 3 月 15 日 (金) 1 時 9 分 4 秒 (日本時間) | |||
45 | 11e6 | 632 / 4220 | 32 | Ignacio Santos | October 5, 2010 19:08:36 UTC 2010 年 10 月 6 日 (水) 4 時 8 分 36 秒 (日本時間) |
600 | Dmitry Domanov | April 25, 2013 21:41:17 UTC 2013 年 4 月 26 日 (金) 6 時 41 分 17 秒 (日本時間) |
name 名前 | Wataru Sakai |
---|---|
date 日付 | September 7, 2008 08:19:44 UTC 2008 年 9 月 7 日 (日) 17 時 19 分 44 秒 (日本時間) |
composite number 合成数 | 1370332305584104145255224391915039397053785542994176087701267557382665296334361082562521411442274751627269612881123672490578965399109284001370332305584104145255224391915039397053785543<184> |
prime factors 素因数 | 4683752657040481930352270796090095702982198572437623038900544234035807<70> 292571449844658244129724130403038430010264115229371023800613342811197195422433644669612330433068714444752149233049<114> |
factorization results 素因数分解の結果 | Number: 13339_186 N=1370332305584104145255224391915039397053785542994176087701267557382665296334361082562521411442274751627269612881123672490578965399109284001370332305584104145255224391915039397053785543 ( 184 digits) SNFS difficulty: 186 digits. Divisors found: r1=4683752657040481930352270796090095702982198572437623038900544234035807 (pp70) r2=292571449844658244129724130403038430010264115229371023800613342811197195422433644669612330433068714444752149233049 (pp114) Version: GGNFS-0.77.1-20060722-nocona Total time: 739.89 hours. Scaled time: 1489.40 units (timescale=2.013). Factorization parameters were as follows: n: 1370332305584104145255224391915039397053785542994176087701267557382665296334361082562521411442274751627269612881123672490578965399109284001370332305584104145255224391915039397053785543 m: 10000000000000000000000000000000000000 c5: 40 c0: 17 skew: 0.84 type: snfs Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 13600001) Primes: RFBsize:501962, AFBsize:502686, largePrimes:6810292 encountered Relations: rels:7291905, finalFF:1137529 Max relations in full relation-set: 32 Initial matrix: 1004714 x 1137529 with sparse part having weight 102564823. Pruned matrix : 901497 x 906584 with weight 83116476. Total sieving time: 730.37 hours. Total relation processing time: 0.13 hours. Matrix solve time: 9.13 hours. Time per square root: 0.25 hours. Prototype def-par.txt line would be: snfs,186,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 739.89 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | February 25, 2008 09:00:00 UTC 2008 年 2 月 25 日 (月) 18 時 0 分 0 秒 (日本時間) |
name 名前 | Wataru Sakai |
---|---|
date 日付 | October 30, 2008 12:43:55 UTC 2008 年 10 月 30 日 (木) 21 時 43 分 55 秒 (日本時間) |
composite number 合成数 | 58737151248164464023494860499265785609397944199706314243759177679882525697503671071953010279001468428781204111600587371512481644640234948604992657856093979441997063142437591776798825257<185> |
prime factors 素因数 | 68965476147814636902426765565516035764069141667886618893443389<62> 851689200583090792929308232980079439143509638878237547282829962931049006405070726814731704503101259053470178580894789150813<123> |
factorization results 素因数分解の結果 | Number: 13339_187 N=58737151248164464023494860499265785609397944199706314243759177679882525697503671071953010279001468428781204111600587371512481644640234948604992657856093979441997063142437591776798825257 ( 185 digits) SNFS difficulty: 187 digits. Divisors found: r1=68965476147814636902426765565516035764069141667886618893443389 (pp62) r2=851689200583090792929308232980079439143509638878237547282829962931049006405070726814731704503101259053470178580894789150813 (pp123) Version: GGNFS-0.77.1-20060722-nocona Total time: 1042.92 hours. Scaled time: 2087.93 units (timescale=2.002). Factorization parameters were as follows: n: 58737151248164464023494860499265785609397944199706314243759177679882525697503671071953010279001468428781204111600587371512481644640234948604992657856093979441997063142437591776798825257 m: 20000000000000000000000000000000000000 c5: 25 c0: 34 skew: 1.06 type: snfsFactor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 18500001) Primes: RFBsize:501962, AFBsize:503361, largePrimes:7202596 encountered Relations: rels:7831073, finalFF:1219969 Max relations in full relation-set: 32 Initial matrix: 1005387 x 1219969 with sparse part having weight 139107803. Pruned matrix : 846533 x 851623 with weight 122408733. Total sieving time: 1030.97 hours. Total relation processing time: 0.16 hours. Matrix solve time: 11.53 hours. Time per square root: 0.27 hours. Prototype def-par.txt line would be: snfs,187,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 1042.92 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | February 25, 2008 09:00:00 UTC 2008 年 2 月 25 日 (月) 18 時 0 分 0 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | October 5, 2010 19:40:01 UTC 2010 年 10 月 6 日 (水) 4 時 40 分 1 秒 (日本時間) |
composite number 合成数 | 2840496407848273271831903274019478565955395094073872924563380536641522053965923429236476298904169551038906311221986272219290858536400448707408751827401<151> |
prime factors 素因数 | 37205730234467466905653127750177<32> 76345670141338374077803013185079905138490310419330407421350872681849766490041534758271713190504146266576930129340486313<119> |
factorization results 素因数分解の結果 | Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=710666354 Step 1 took 7051ms ********** Factor found in step 1: 37205730234467466905653127750177 Found probable prime factor of 32 digits: 37205730234467466905653127750177 Probable prime cofactor 76345670141338374077803013185079905138490310419330407421350872681849766490041534758271713190504146266576930129340486313 has 119 digits |
software ソフトウェア | GMP-ECM 6.3 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | February 25, 2008 09:00:00 UTC 2008 年 2 月 25 日 (月) 18 時 0 分 0 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | July 23, 2020 08:56:22 UTC 2020 年 7 月 23 日 (木) 17 時 56 分 22 秒 (日本時間) |
composite number 合成数 | 5326946913415247411984759806285820529714106430050402383504014654491426639128530412962867584858589690138264854955605332661948290741762876271038153987287<151> |
prime factors 素因数 | 2777009401158637387645399268569103821086739967893<49> 1918231501554410538230315653197268146193356031152948084261453606267508649548687796184240175011398371259<103> |
factorization results 素因数分解の結果 | 5326946913415247411984759806285820529714106430050402383504014654491426639128530412962867584858589690138264854955605332661948290741762876271038153987287=2777009401158637387645399268569103821086739967893*1918231501554410538230315653197268146193356031152948084261453606267508649548687796184240175011398371259 n: 5326946913415247411984759806285820529714106430050402383504014654491426639128530412962867584858589690138264854955605332661948290741762876271038153987287 skew: 2.12 type: snfs c0: 85 c5: 2 Y0: 100000000000000000000000000000000000000 Y1: -1 # f(x) = 2*x^5+85 # g(x) = -x+100000000000000000000000000000000000000 Info:Square Root: Factors: 2777009401158637387645399268569103821086739967893 1918231501554410538230315653197268146193356031152948084261453606267508649548687796184240175011398371259 Warning:Polynomial Selection (size optimized): some stats could not be displayed for polyselect1 (see log file for debug info) Warning:Polynomial Selection (root optimized): some stats could not be displayed for polyselect2 (see log file for debug info) Info:Generate Factor Base: Total cpu/real time for makefb: 4.63/2.02333 Info:Generate Free Relations: Total cpu/real time for freerel: 98.27/25.4356 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 24551295 Info:Lattice Sieving: Average J: 1893.99 for 1765778 special-q, max bucket fill -bkmult 1.0,1s:1.084760 Info:Lattice Sieving: Total time: 344216s Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 48.49/55.9089 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 55.6s Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 373.76/230.757 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 199.50000000000003s Info:Filtering - Singleton removal: Total cpu/real time for purge: 289.65/173.197 Info:Filtering - Merging: Total cpu/real time for merge: 280.4/80.1542 Info:Filtering - Merging: Total cpu/real time for replay: 73.55/62.3294 Info:Linear Algebra: Total cpu/real time for bwc: 61634.5/15833.5 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: WCT time 10134.77, iteration CPU time 0.16, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (59648 iterations) Info:Linear Algebra: Lingen CPU time 383.77, WCT time 111.39 Info:Linear Algebra: Mksol: WCT time 5482.76, iteration CPU time 0.17, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (29952 iterations) Info:Quadratic Characters: Total cpu/real time for characters: 68.82/27.9443 Info:Square Root: Total cpu/real time for sqrt: 457.28/147.033 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 743711/207867 Info:root: Cleaning up computation data in /tmp/cado.6damzugx 2777009401158637387645399268569103821086739967893 1918231501554410538230315653197268146193356031152948084261453606267508649548687796184240175011398371259 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 18.04.4 LTS [5.3.0-51-generic|libc 2.27 (Ubuntu GLIBC 2.27-3ubuntu1.2)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | February 25, 2008 09:00:00 UTC 2008 年 2 月 25 日 (月) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 300 | Ignacio Santos | October 5, 2010 20:54:40 UTC 2010 年 10 月 6 日 (水) 5 時 54 分 40 秒 (日本時間) | |
40 | 3e6 | 1110 | 110 | Ignacio Santos | October 5, 2010 20:54:40 UTC 2010 年 10 月 6 日 (水) 5 時 54 分 40 秒 (日本時間) |
1000 | Dmitry Domanov | March 14, 2013 16:09:12 UTC 2013 年 3 月 15 日 (金) 1 時 9 分 12 秒 (日本時間) | |||
45 | 11e6 | 5032 | 32 | Ignacio Santos | October 5, 2010 20:54:40 UTC 2010 年 10 月 6 日 (水) 5 時 54 分 40 秒 (日本時間) |
1000 | Dmitry Domanov | April 30, 2013 10:39:51 UTC 2013 年 4 月 30 日 (火) 19 時 39 分 51 秒 (日本時間) | |||
4000 | Robert Balfour | March 27, 2020 01:19:29 UTC 2020 年 3 月 27 日 (金) 10 時 19 分 29 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | March 1, 2019 03:35:19 UTC 2019 年 3 月 1 日 (金) 12 時 35 分 19 秒 (日本時間) |
composite number 合成数 | 114092790024322036665919359655432984163277313962134547254404440195422458391584434451220692010515202678454628424122139839393927744958571074477<141> |
prime factors 素因数 | 2574317813581704763873083796816160561805156034961377189297057147<64> 44319621074906147166374181876991729061994917065156322295439641288267515590391<77> |
factorization results 素因数分解の結果 | 31*6217*8110542644826343908161*747632311729615497757681*2574317813581704763873083796816160561805156034961377189297057147*44319621074906147166374181876991729061994917065156322295439641288267515590391 [32;1mInfo[0m:root: Using default parameter file ./parameters/factor/params.c140 [32;1mInfo[0m:root: No database exists yet [32;1mInfo[0m:root: Created temporary directory /tmp/cado.qnpox55b [32;1mInfo[0m:Database: Opened connection to database /tmp/cado.qnpox55b/c140.db [32;1mInfo[0m:root: Set tasks.threads=12 based on detected logical cpus [32;1mInfo[0m:root: tasks.polyselect.threads = 2 [32;1mInfo[0m:root: tasks.sieve.las.threads = 2 [32;1mInfo[0m:root: slaves.scriptpath is /home/ng/cado-nfs-2.3.0 [32;1mInfo[0m:root: Command line parameters: ./cado-nfs.py 114092790024322036665919359655432984163277313962134547254404440195422458391584434451220692010515202678454628424122139839393927744958571074477 [32;1mInfo[0m:root: If this computation gets interrupted, it can be resumed with ./cado-nfs.py /tmp/cado.qnpox55b/c140.parameters_snapshot.0 [32;1mInfo[0m:Server Launcher: Adding ng-All-Series to whitelist to allow clients on localhost to connect [32;1mInfo[0m:HTTP server: Using non-threaded HTTPS server [32;1mInfo[0m:HTTP server: Using whitelist: localhost,ng-All-Series [32;1mInfo[0m:Complete Factorization: Factoring 114092790024322036665919359655432984163277313962134547254404440195422458391584434451220692010515202678454628424122139839393927744958571074477 [32;1mInfo[0m:HTTP server: serving at https://ng-All-Series:33927 (0.0.0.0) [32;1mInfo[0m:HTTP server: For debugging purposes, the URL above can be accessed if the server.only_registered=False parameter is added [32;1mInfo[0m:HTTP server: You can start additional cado-nfs-client.py scripts with parameters: --server=https://ng-All-Series:33927 --certsha1=16320c277442762847795111a151213b1524ce0e [32;1mInfo[0m:HTTP server: If you want to start additional clients, remember to add their hosts to server.whitelist [32;1mInfo[0m:Client Launcher: Starting client id localhost on host localhost [32;1mInfo[0m:Client Launcher: Starting client id localhost+2 on host localhost [32;1mInfo[0m:Client Launcher: Starting client id localhost+3 on host localhost [32;1mInfo[0m:Client Launcher: Starting client id localhost+4 on host localhost [32;1mInfo[0m:Client Launcher: Starting client id localhost+5 on host localhost [32;1mInfo[0m:Client Launcher: Starting client id localhost+6 on host localhost [32;1mInfo[0m:Client Launcher: Running clients: localhost (Host localhost, PID 21750), localhost+2 (Host localhost, PID 21753), localhost+3 (Host localhost, PID 21756), localhost+4 (Host localhost, PID 21759), localhost+5 (Host localhost, PID 21762), localhost+6 (Host localhost, PID 21765) [32;1mInfo[0m:Polynomial Selection (size optimized): Starting [32;1mInfo[0m:Polynomial Selection (size optimized): 0 polynomials in queue from previous run [32;1mInfo[0m:Polynomial Selection (size optimized): Adding workunit c140_polyselect1_0-4000 to database [32;1mInfo[0m:Polynomial Selection (size optimized): Adding workunit c140_polyselect1_4000-8000 to database [32;1mInfo[0m:Polynomial Selection (size optimized): Adding workunit c140_polyselect1_8000-12000 to database [32;1mInfo[0m:Polynomial Selection (size optimized): Adding workunit c140_polyselect1_12000-16000 to database [32;1mInfo[0m:Polynomial Selection (size optimized): Adding workunit c140_polyselect1_16000-20000 to database [32;1mInfo[0m:Polynomial Selection (size optimized): Adding workunit c140_polyselect1_20000-24000 to database [32;1mInfo[0m:Polynomial Selection (size optimized): Adding workunit c140_polyselect1_24000-28000 to database [32;1mInfo[0m:Polynomial Selection (size optimized): Adding workunit c140_polyselect1_28000-32000 to database [32;1mInfo[0m:Polynomial Selection (size optimized): Adding workunit c140_polyselect1_32000-36000 to database [32;1mInfo[0m:Polynomial Selection (size optimized): Adding workunit c140_polyselect1_36000-40000 to database [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_polyselect1_0-4000 to client localhost [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_polyselect1_4000-8000 to client localhost+4 [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_polyselect1_8000-12000 to client localhost+5 [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_polyselect1_12000-16000 to client localhost+2 [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_polyselect1_16000-20000 to client localhost+6 [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_polyselect1_20000-24000 to client localhost+3 [32;1mInfo[0m:Polynomial Selection (size optimized): Adding workunit c140_polyselect1_40000-44000 to database [32;1mInfo[0m:Polynomial Selection (size optimized): Adding workunit c140_polyselect1_44000-48000 to database [32;1mInfo[0m:Polynomial Selection (size optimized): Adding workunit c140_polyselect1_48000-52000 to database [32;1mInfo[0m:Polynomial Selection (size optimized): Adding workunit c140_polyselect1_52000-56000 to database [32;1mInfo[0m:Polynomial Selection (size optimized): Adding workunit c140_polyselect1_56000-60000 to database [32;1mInfo[0m:Polynomial Selection (size optimized): Adding workunit c140_polyselect1_60000-64000 to database [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_polyselect1_24000-28000 to client localhost+4 [32;1mInfo[0m:Polynomial Selection (size optimized): Adding workunit c140_polyselect1_64000-68000 to database [32;1mInfo[0m:Polynomial Selection (size optimized): Parsed 665 polynomials, added 293 to priority queue (has 100) [32;1mInfo[0m:Polynomial Selection (size optimized): Worst polynomial in queue now has lognorm 39.180000 [32;1mInfo[0m:Polynomial Selection (size optimized): Marking workunit c140_polyselect1_4000-8000 as ok (1.0% => ETA Unknown) [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_polyselect1_28000-32000 to client localhost [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_polyselect1_32000-36000 to client localhost+2 [32;1mInfo[0m:Polynomial Selection (size optimized): Adding workunit c140_polyselect1_68000-72000 to database [32;1mInfo[0m:Polynomial Selection (size optimized): Adding workunit c140_polyselect1_72000-76000 to database [32;1mInfo[0m:Polynomial Selection (size optimized): Parsed 602 polynomials, added 71 to priority queue (has 100) [32;1mInfo[0m:Polynomial Selection (size optimized): Worst polynomial in queue now has lognorm 38.840000 [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_polyselect1_36000-40000 to client localhost+5 [32;1mInfo[0m:Polynomial Selection (size optimized): Marking workunit c140_polyselect1_0-4000 as ok (2.0% => ETA Wed Feb 13 07:22:35 2019) [32;1mInfo[0m:Polynomial Selection (size optimized): Adding workunit c140_polyselect1_76000-80000 to database [32;1mInfo[0m:Polynomial Selection (size optimized): Parsed 628 polynomials, added 35 to priority queue (has 100) [32;1mInfo[0m:Polynomial Selection (size optimized): Worst polynomial in queue now has lognorm 38.650000 [32;1mInfo[0m:Polynomial Selection (size optimized): Marking workunit c140_polyselect1_8000-12000 as ok (3.0% => ETA Wed Feb 13 02:11:15 2019) ... EJ: many similar lines [32;1mInfo[0m:Polynomial Selection (size optimized): Worst polynomial in queue now has lognorm 37.740000 [32;1mInfo[0m:Polynomial Selection (size optimized): Marking workunit c140_polyselect1_384000-388000 as ok (97.0% => ETA Tue Feb 12 22:34:11 2019) [32;1mInfo[0m:Polynomial Selection (size optimized): Parsed 643 polynomials, added 0 to priority queue (has 100) [32;1mInfo[0m:Polynomial Selection (size optimized): Marking workunit c140_polyselect1_392000-396000 as ok (98.0% => ETA Tue Feb 12 22:33:38 2019) [32;1mInfo[0m:Polynomial Selection (size optimized): Parsed 704 polynomials, added 0 to priority queue (has 100) [32;1mInfo[0m:Polynomial Selection (size optimized): Marking workunit c140_polyselect1_388000-392000 as ok (99.0% => ETA Tue Feb 12 22:32:53 2019) [32;1mInfo[0m:Polynomial Selection (size optimized): Parsed 690 polynomials, added 0 to priority queue (has 100) [32;1mInfo[0m:Polynomial Selection (size optimized): Marking workunit c140_polyselect1_396000-400000 as ok (100.0% => ETA Tue Feb 12 22:32:11 2019) [32;1mInfo[0m:Polynomial Selection (size optimized): Finished [32;1mInfo[0m:Polynomial Selection (size optimized): Aggregate statistics: [32;1mInfo[0m:Polynomial Selection (size optimized): potential collisions: 65655.1 [32;1mInfo[0m:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 66463/42.200/50.441/55.590/0.953 [32;1mInfo[0m:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 66463/40.800/45.220/51.110/1.323 [32;1mInfo[0m:Polynomial Selection (size optimized): Total time: 60621.7 [32;1mInfo[0m:Polynomial Selection (root optimized): Starting [32;1mInfo[0m:Polynomial Selection (root optimized): No polynomial was previously found [32;1mInfo[0m:Polynomial Selection (root optimized): Adding workunit c140_polyselect2_0 to database [32;1mInfo[0m:Polynomial Selection (root optimized): Adding workunit c140_polyselect2_6 to database [32;1mInfo[0m:Polynomial Selection (root optimized): Adding workunit c140_polyselect2_12 to database [32;1mInfo[0m:Polynomial Selection (root optimized): Adding workunit c140_polyselect2_18 to database [32;1mInfo[0m:Polynomial Selection (root optimized): Adding workunit c140_polyselect2_24 to database [32;1mInfo[0m:Polynomial Selection (root optimized): Adding workunit c140_polyselect2_30 to database [32;1mInfo[0m:Polynomial Selection (root optimized): Adding workunit c140_polyselect2_36 to database [32;1mInfo[0m:Polynomial Selection (root optimized): Adding workunit c140_polyselect2_42 to database [32;1mInfo[0m:Polynomial Selection (root optimized): Adding workunit c140_polyselect2_48 to database [32;1mInfo[0m:Polynomial Selection (root optimized): Adding workunit c140_polyselect2_54 to database [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_polyselect2_0 to client localhost [32;1mInfo[0m:Polynomial Selection (root optimized): Adding workunit c140_polyselect2_60 to database [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_polyselect2_6 to client localhost+2 [32;1mInfo[0m:Polynomial Selection (root optimized): Adding workunit c140_polyselect2_66 to database [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_polyselect2_12 to client localhost+6 [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_polyselect2_18 to client localhost+4 [32;1mInfo[0m:Polynomial Selection (root optimized): Adding workunit c140_polyselect2_72 to database [32;1mInfo[0m:Polynomial Selection (root optimized): Adding workunit c140_polyselect2_78 to database [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_polyselect2_24 to client localhost+3 [32;1mInfo[0m:Polynomial Selection (root optimized): Adding workunit c140_polyselect2_84 to database [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_polyselect2_30 to client localhost+5 [32;1mInfo[0m:Polynomial Selection (root optimized): Adding workunit c140_polyselect2_90 to database [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_polyselect2_36 to client localhost+5 [32;1mInfo[0m:Polynomial Selection (root optimized): Adding workunit c140_polyselect2_96 to database [32;1mInfo[0m:Polynomial Selection (root optimized): New best polynomial from file /tmp/cado.qnpox55b/c140.upload/c140.polyselect2.f2ny37e2.opt_30: Murphy E = 6.6e-10 [32;1mInfo[0m:Polynomial Selection (root optimized): Marking workunit c140_polyselect2_30 as ok (4.0% => ETA Unknown) [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_polyselect2_42 to client localhost [32;1mInfo[0m:Polynomial Selection (root optimized): Best polynomial from file /tmp/cado.qnpox55b/c140.upload/c140.polyselect2.kol5xii_.opt_0 with E=5.91e-10 is no better than current best with E=6.6e-10 [32;1mInfo[0m:Polynomial Selection (root optimized): Marking workunit c140_polyselect2_0 as ok (10.0% => ETA Wed Feb 13 00:19:27 2019) [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_polyselect2_48 to client localhost+2 [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_polyselect2_54 to client localhost+6 [32;1mInfo[0m:Polynomial Selection (root optimized): New best polynomial from file /tmp/cado.qnpox55b/c140.upload/c140.polyselect2.okyl89ca.opt_6: Murphy E = 6.76e-10 [32;1mInfo[0m:Polynomial Selection (root optimized): Marking workunit c140_polyselect2_6 as ok (16.0% => ETA Tue Feb 12 23:28:14 2019) [32;1mInfo[0m:Polynomial Selection (root optimized): Best polynomial from file /tmp/cado.qnpox55b/c140.upload/c140.polyselect2._iahcnff.opt_12 with E=6.44e-10 is no better than current best with E=6.76e-10 [32;1mInfo[0m:Polynomial Selection (root optimized): Marking workunit c140_polyselect2_12 as ok (22.0% => ETA Tue Feb 12 23:09:33 2019) [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_polyselect2_60 to client localhost+3 [32;1mInfo[0m:Polynomial Selection (root optimized): New best polynomial from file /tmp/cado.qnpox55b/c140.upload/c140.polyselect2.f8x_jgtj.opt_24: Murphy E = 7.14e-10 [32;1mInfo[0m:Polynomial Selection (root optimized): Marking workunit c140_polyselect2_24 as ok (28.0% => ETA Tue Feb 12 23:00:28 2019) [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_polyselect2_66 to client localhost+4 [32;1mInfo[0m:Polynomial Selection (root optimized): Best polynomial from file /tmp/cado.qnpox55b/c140.upload/c140.polyselect2.fa8pf5ze.opt_18 with E=6.71e-10 is no better than current best with E=7.14e-10 [32;1mInfo[0m:Polynomial Selection (root optimized): Marking workunit c140_polyselect2_18 as ok (34.0% => ETA Tue Feb 12 23:00:10 2019) [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_polyselect2_72 to client localhost+2 [32;1mInfo[0m:Polynomial Selection (root optimized): New best polynomial from file /tmp/cado.qnpox55b/c140.upload/c140.polyselect2.yguiwty8.opt_48: Murphy E = 7.5e-10 [32;1mInfo[0m:Polynomial Selection (root optimized): Marking workunit c140_polyselect2_48 as ok (40.0% => ETA Tue Feb 12 23:01:36 2019) [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_polyselect2_78 to client localhost+5 [32;1mInfo[0m:Polynomial Selection (root optimized): Best polynomial from file /tmp/cado.qnpox55b/c140.upload/c140.polyselect2.0ht38cmg.opt_36 with E=7.24e-10 is no better than current best with E=7.5e-10 [32;1mInfo[0m:Polynomial Selection (root optimized): Marking workunit c140_polyselect2_36 as ok (46.0% => ETA Tue Feb 12 23:01:13 2019) [32;1mInfo[0m:Polynomial Selection (root optimized): Best polynomial from file /tmp/cado.qnpox55b/c140.upload/c140.polyselect2.d7foy65p.opt_42 with E=6.7e-10 is no better than current best with E=7.5e-10 [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_polyselect2_84 to client localhost [32;1mInfo[0m:Polynomial Selection (root optimized): Marking workunit c140_polyselect2_42 as ok (52.0% => ETA Tue Feb 12 22:57:47 2019) [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_polyselect2_90 to client localhost+3 [32;1mInfo[0m:Polynomial Selection (root optimized): Best polynomial from file /tmp/cado.qnpox55b/c140.upload/c140.polyselect2.68brxjgb.opt_60 with E=6.73e-10 is no better than current best with E=7.5e-10 [32;1mInfo[0m:Polynomial Selection (root optimized): Marking workunit c140_polyselect2_60 as ok (58.0% => ETA Tue Feb 12 22:56:01 2019) [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_polyselect2_96 to client localhost+4 [32;1mInfo[0m:Polynomial Selection (root optimized): Best polynomial from file /tmp/cado.qnpox55b/c140.upload/c140.polyselect2.xlwjt3s4.opt_66 with E=7e-10 is no better than current best with E=7.5e-10 [32;1mInfo[0m:Polynomial Selection (root optimized): Marking workunit c140_polyselect2_66 as ok (64.0% => ETA Tue Feb 12 22:55:01 2019) [32;1mInfo[0m:Polynomial Selection (root optimized): Best polynomial from file /tmp/cado.qnpox55b/c140.upload/c140.polyselect2.yakn_b_a.opt_54 with E=6.59e-10 is no better than current best with E=7.5e-10 [32;1mInfo[0m:Polynomial Selection (root optimized): Marking workunit c140_polyselect2_54 as ok (70.0% => ETA Tue Feb 12 22:53:58 2019) [32;1mInfo[0m:Polynomial Selection (root optimized): Best polynomial from file /tmp/cado.qnpox55b/c140.upload/c140.polyselect2.1060nvg8.opt_72 with E=6.11e-10 is no better than current best with E=7.5e-10 [32;1mInfo[0m:Polynomial Selection (root optimized): Marking workunit c140_polyselect2_72 as ok (76.0% => ETA Tue Feb 12 22:55:58 2019) [32;1mInfo[0m:Polynomial Selection (root optimized): Best polynomial from file /tmp/cado.qnpox55b/c140.upload/c140.polyselect2.hafg5id1.opt_96 with E=6.31e-10 is no better than current best with E=7.5e-10 [32;1mInfo[0m:Polynomial Selection (root optimized): Marking workunit c140_polyselect2_96 as ok (82.0% => ETA Tue Feb 12 22:54:41 2019) [32;1mInfo[0m:Polynomial Selection (root optimized): Best polynomial from file /tmp/cado.qnpox55b/c140.upload/c140.polyselect2.k9txecj4.opt_84 with E=6.64e-10 is no better than current best with E=7.5e-10 [32;1mInfo[0m:Polynomial Selection (root optimized): Marking workunit c140_polyselect2_84 as ok (88.0% => ETA Tue Feb 12 22:53:21 2019) [32;1mInfo[0m:Polynomial Selection (root optimized): Best polynomial from file /tmp/cado.qnpox55b/c140.upload/c140.polyselect2.o_wpql80.opt_90 with E=6.32e-10 is no better than current best with E=7.5e-10 [32;1mInfo[0m:Polynomial Selection (root optimized): Marking workunit c140_polyselect2_90 as ok (94.0% => ETA Tue Feb 12 22:52:02 2019) [32;1mInfo[0m:Polynomial Selection (root optimized): Best polynomial from file /tmp/cado.qnpox55b/c140.upload/c140.polyselect2.10apxzxr.opt_78 with E=6.88e-10 is no better than current best with E=7.5e-10 [32;1mInfo[0m:Polynomial Selection (root optimized): Marking workunit c140_polyselect2_78 as ok (100.0% => ETA Tue Feb 12 22:51:04 2019) [32;1mInfo[0m:Polynomial Selection (root optimized): Finished, best polynomial from file /tmp/cado.qnpox55b/c140.upload/c140.polyselect2.yguiwty8.opt_48 has Murphy_E = 7.5e-10 [32;1mInfo[0m:Polynomial Selection (root optimized): Best overall polynomial was 3-th in list after size optimization [32;1mInfo[0m:Polynomial Selection (root optimized): Aggregate statistics: [32;1mInfo[0m:Polynomial Selection (root optimized): Total time: 11336.6 [32;1mInfo[0m:Polynomial Selection (root optimized): Rootsieve time: 11333.9 [32;1mInfo[0m:Generate Factor Base: Starting [32;1mInfo[0m:Generate Factor Base: Finished [32;1mInfo[0m:Generate Factor Base: Total cpu/real time for makefb: 23.31/2.83168 [32;1mInfo[0m:Generate Free Relations: Starting [32;1mInfo[0m:Generate Free Relations: Found 121591 free relations [32;1mInfo[0m:Generate Free Relations: Finished [32;1mInfo[0m:Generate Free Relations: Total cpu/real time for freerel: 411.3/37.4115 [32;1mInfo[0m:Lattice Sieving: Starting [32;1mInfo[0m:Lattice Sieving: We want 25172582 relations [32;1mInfo[0m:Lattice Sieving: Adding workunit c140_sieving_10122724-10130000 to database [32;1mInfo[0m:Lattice Sieving: Adding workunit c140_sieving_10130000-10140000 to database [32;1mInfo[0m:Lattice Sieving: Adding workunit c140_sieving_10140000-10150000 to database [32;1mInfo[0m:Lattice Sieving: Adding workunit c140_sieving_10150000-10160000 to database [32;1mInfo[0m:Lattice Sieving: Adding workunit c140_sieving_10160000-10170000 to database [32;1mInfo[0m:Lattice Sieving: Adding workunit c140_sieving_10170000-10180000 to database [32;1mInfo[0m:Lattice Sieving: Adding workunit c140_sieving_10180000-10190000 to database [32;1mInfo[0m:Lattice Sieving: Adding workunit c140_sieving_10190000-10200000 to database [32;1mInfo[0m:Lattice Sieving: Adding workunit c140_sieving_10200000-10210000 to database [32;1mInfo[0m:Lattice Sieving: Adding workunit c140_sieving_10210000-10220000 to database [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_sieving_10122724-10130000 to client localhost+3 [32;1mInfo[0m:Lattice Sieving: Adding workunit c140_sieving_10220000-10230000 to database [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_sieving_10130000-10140000 to client localhost+4 [32;1mInfo[0m:Lattice Sieving: Adding workunit c140_sieving_10230000-10240000 to database [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_sieving_10140000-10150000 to client localhost+6 [32;1mInfo[0m:Lattice Sieving: Adding workunit c140_sieving_10240000-10250000 to database [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_sieving_10150000-10160000 to client localhost+2 [32;1mInfo[0m:Lattice Sieving: Adding workunit c140_sieving_10250000-10260000 to database [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_sieving_10160000-10170000 to client localhost [32;1mInfo[0m:Lattice Sieving: Adding workunit c140_sieving_10260000-10270000 to database [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_sieving_10170000-10180000 to client localhost+5 [32;1mInfo[0m:Lattice Sieving: Adding workunit c140_sieving_10270000-10280000 to database [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_sieving_10180000-10190000 to client localhost+3 [32;1mInfo[0m:Lattice Sieving: Adding workunit c140_sieving_10280000-10290000 to database [32;1mInfo[0m:Lattice Sieving: Found 14843 relations in '/tmp/cado.qnpox55b/c140.upload/c140.10122724-10130000.fwywkni5.gz', total is now 14843/25172582 [32;1mInfo[0m:Lattice Sieving: Marking workunit c140_sieving_10122724-10130000 as ok (0.1% => ETA Unknown) [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_sieving_10190000-10200000 to client localhost+4 [32;1mInfo[0m:Lattice Sieving: Adding workunit c140_sieving_10290000-10300000 to database [32;1mInfo[0m:Lattice Sieving: Found 18715 relations in '/tmp/cado.qnpox55b/c140.upload/c140.10130000-10140000.4zv2xbbc.gz', total is now 33558/25172582 [32;1mInfo[0m:Lattice Sieving: Marking workunit c140_sieving_10130000-10140000 as ok (0.1% => ETA Sun Feb 24 03:13:22 2019) [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_sieving_10200000-10210000 to client localhost+5 [32;1mInfo[0m:Lattice Sieving: Adding workunit c140_sieving_10300000-10310000 to database [32;1mInfo[0m:Lattice Sieving: Found 18781 relations in '/tmp/cado.qnpox55b/c140.upload/c140.10170000-10180000.rwhmgv6f.gz', total is now 52339/25172582 [32;1mInfo[0m:Lattice Sieving: Marking workunit c140_sieving_10170000-10180000 as ok (0.2% => ETA Mon Feb 18 14:18:14 2019) [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_sieving_10210000-10220000 to client localhost [32;1mInfo[0m:Lattice Sieving: Adding workunit c140_sieving_10310000-10320000 to database [32;1mInfo[0m:Lattice Sieving: Found 19404 relations in '/tmp/cado.qnpox55b/c140.upload/c140.10160000-10170000.qy_kiucz.gz', total is now 71743/25172582 [32;1mInfo[0m:Lattice Sieving: Marking workunit c140_sieving_10160000-10170000 as ok (0.3% => ETA Sat Feb 16 17:57:52 2019) [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_sieving_10220000-10230000 to client localhost+6 [32;1mInfo[0m:Lattice Sieving: Adding workunit c140_sieving_10320000-10330000 to database [32;1mInfo[0m:Lattice Sieving: Found 19416 relations in '/tmp/cado.qnpox55b/c140.upload/c140.10140000-10150000.csw4vti8.gz', total is now 91159/25172582 [32;1mInfo[0m:Lattice Sieving: Marking workunit c140_sieving_10140000-10150000 as ok (0.4% => ETA Fri Feb 15 18:52:53 2019) ... EJ: many similar lines [32;1mInfo[0m:Lattice Sieving: Marking workunit c140_sieving_25800000-25810000 as ok (99.9% => ETA Fri Feb 15 19:21:47 2019) [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_sieving_25870000-25880000 to client localhost+5 [32;1mInfo[0m:Lattice Sieving: Adding workunit c140_sieving_25970000-25980000 to database [32;1mInfo[0m:Lattice Sieving: Found 14903 relations in '/tmp/cado.qnpox55b/c140.upload/c140.25810000-25820000.xx8d3sgx.gz', total is now 25154076/25172582 [32;1mInfo[0m:Lattice Sieving: Marking workunit c140_sieving_25810000-25820000 as ok (99.9% => ETA Fri Feb 15 19:26:33 2019) [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_sieving_25880000-25890000 to client localhost+3 [32;1mInfo[0m:Lattice Sieving: Adding workunit c140_sieving_25980000-25990000 to database [32;1mInfo[0m:Lattice Sieving: Found 14549 relations in '/tmp/cado.qnpox55b/c140.upload/c140.25820000-25830000.4eee8bp4.gz', total is now 25168625/25172582 [32;1mInfo[0m:Lattice Sieving: Marking workunit c140_sieving_25820000-25830000 as ok (100.0% => ETA Fri Feb 15 19:31:23 2019) [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_sieving_25890000-25900000 to client localhost+4 [32;1mInfo[0m:Lattice Sieving: Adding workunit c140_sieving_25990000-26000000 to database [32;1mInfo[0m:Lattice Sieving: Found 13018 relations in '/tmp/cado.qnpox55b/c140.upload/c140.25840000-25850000.et920thm.gz', total is now 25181643/25172582 [32;1mInfo[0m:Lattice Sieving: Marking workunit c140_sieving_25840000-25850000 as ok (100.0% => ETA Fri Feb 15 19:29:29 2019) [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_sieving_25900000-25910000 to client localhost+2 [32;1mInfo[0m:Lattice Sieving: Adding workunit c140_sieving_26000000-26010000 to database [32;1mInfo[0m:Lattice Sieving: Reached target of 25172582 relations, now have 25181643 [32;1mInfo[0m:Lattice Sieving: Aggregate statistics: [32;1mInfo[0m:Lattice Sieving: Total number of relations: 25181643 [32;1mInfo[0m:Lattice Sieving: Average J: 3793.22 for 943206 special-q, max bucket fill: 0.688696 [32;1mInfo[0m:Lattice Sieving: Total CPU time: 2.64126e+06s [32;1mInfo[0m:Filtering - Duplicate Removal, splitting pass: Starting [32;1mInfo[0m:Filtering - Duplicate Removal, splitting pass: Splitting 1572 new files [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_sieving_25910000-25920000 to client localhost [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_sieving_25920000-25930000 to client localhost+6 [32;1mInfo[0m:Filtering - Duplicate Removal, splitting pass: Relations per slice: 0: 12594584, 1: 12587059 [32;1mInfo[0m:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 189.33/372.862 [32;1mInfo[0m:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: [32;1mInfo[0m:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 372.5s [32;1mInfo[0m:Filtering - Duplicate Removal, removal pass: Starting [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_sieving_25930000-25940000 to client localhost+5 [32;1mInfo[0m:Filtering - Duplicate Removal, removal pass: 10487375 unique relations remain on slice 0 [32;1mInfo[0m:Filtering - Duplicate Removal, removal pass: 10479676 unique relations remain on slice 1 [32;1mInfo[0m:Filtering - Duplicate Removal, removal pass: Of 25181643 newly added relations 20967051 were unique (ratio 0.832632) [32;1mInfo[0m:Filtering - Duplicate Removal, removal pass: 20967051 unique relations remain in total [32;1mInfo[0m:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 772.69/605.191 [32;1mInfo[0m:Filtering - Singleton removal: Starting [32;1mInfo[0m:Filtering - Singleton removal: Reading 20967051 unique and 121591 free relations, total 21088642 [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_sieving_25940000-25950000 to client localhost+4 [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_sieving_25950000-25960000 to client localhost+2 [32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_sieving_25960000-25970000 to client localhost+3 [33;1mWarning[0m:Command: Process with PID 1817 finished with return code 2 ... EJ: I got a gzip check here, I reran and it worked. Here is the complement from run 2. Info:Filtering - Singleton removal: After purge, 9467062 relations with 9473905 primes remain with excess -6843 Info:Filtering - Singleton removal: Not enough relations Info:Filtering - Singleton removal: Requesting 209670 additional relations Info:Filtering - Duplicate Removal, removal pass: Got request for 21176721 (209670 additional) output relations, estimate 25433459 (251816 additional) needed in input Info:Lattice Sieving: New goal for number of relations is 25433459, currently have 25181643. Need to sieve more Info:Filtering - Singleton removal: Total cpu/real time for purge: 107.02/100.276 Info:Lattice Sieving: Starting Info:Lattice Sieving: We want 25433459 relations Info:Lattice Sieving: Adding workunit c140_sieving_26010000-26020000 to database Info:Lattice Sieving: Adding workunit c140_sieving_26020000-26030000 to database Info:Lattice Sieving: Adding workunit c140_sieving_26030000-26040000 to database Info:Lattice Sieving: Adding workunit c140_sieving_26040000-26050000 to database Info:Lattice Sieving: Adding workunit c140_sieving_26050000-26060000 to database Info:Lattice Sieving: Found 14007 relations in '/tmp/cado.x3587clo/c140.upload/c140.25830000-25840000.wu65r8jv.gz', total is now 25195650/25433459 Info:Lattice Sieving: Marking workunit c140_sieving_25830000-25840000 as ok (99.1% => ETA Thu Feb 28 16:52:53 2019) Info:Lattice Sieving: Found 13899 relations in '/tmp/cado.x3587clo/c140.upload/c140.25850000-25860000.kw0dumfu.gz', total is now 25209549/25433459 Info:Lattice Sieving: Marking workunit c140_sieving_25850000-25860000 as ok (99.1% => ETA Thu Feb 28 16:51:22 2019) Info:Lattice Sieving: Found 13495 relations in '/tmp/cado.x3587clo/c140.upload/c140.25860000-25870000.i3ryfmwo.gz', total is now 25223044/25433459 Info:Lattice Sieving: Marking workunit c140_sieving_25860000-25870000 as ok (99.2% => ETA Thu Feb 28 16:49:53 2019) Info:Lattice Sieving: Found 12542 relations in '/tmp/cado.x3587clo/c140.upload/c140.25870000-25880000.nkcoh2vl.gz', total is now 25235586/25433459 Info:Lattice Sieving: Marking workunit c140_sieving_25870000-25880000 as ok (99.2% => ETA Thu Feb 28 16:48:31 2019) Info:Lattice Sieving: Found 12839 relations in '/tmp/cado.x3587clo/c140.upload/c140.25890000-25900000.wyv7aa99.gz', total is now 25248425/25433459 Info:Lattice Sieving: Marking workunit c140_sieving_25890000-25900000 as ok (99.3% => ETA Thu Feb 28 16:47:07 2019) Info:Lattice Sieving: Found 12942 relations in '/tmp/cado.x3587clo/c140.upload/c140.25900000-25910000.irdy3i_w.gz', total is now 25261367/25433459 Info:Lattice Sieving: Marking workunit c140_sieving_25900000-25910000 as ok (99.3% => ETA Thu Feb 28 16:45:42 2019) Info:HTTP server: 127.0.0.1 Sending workunit c140_sieving_25960000-25970000 to client localhost Info:Lattice Sieving: Adding workunit c140_sieving_26060000-26070000 to database Info:Lattice Sieving: Found 14302 relations in '/tmp/cado.x3587clo/c140.upload/c140.25880000-25890000.f5xn8yjy.gz', total is now 25275669/25433459 Info:Lattice Sieving: Marking workunit c140_sieving_25880000-25890000 as ok (99.4% => ETA Thu Feb 28 16:44:13 2019) Info:HTTP server: 127.0.0.1 Sending workunit c140_sieving_25970000-25980000 to client localhost+3 Info:Lattice Sieving: Adding workunit c140_sieving_26070000-26080000 to database Info:Lattice Sieving: Found 13794 relations in '/tmp/cado.x3587clo/c140.upload/c140.25910000-25920000.pmuo6lsv.gz', total is now 25289463/25433459 Info:Lattice Sieving: Marking workunit c140_sieving_25910000-25920000 as ok (99.4% => ETA Thu Feb 28 16:43:34 2019) Info:HTTP server: 127.0.0.1 Sending workunit c140_sieving_25980000-25990000 to client localhost+5 Info:Lattice Sieving: Adding workunit c140_sieving_26080000-26090000 to database Info:Lattice Sieving: Found 13892 relations in '/tmp/cado.x3587clo/c140.upload/c140.25920000-25930000.em9h8s5l.gz', total is now 25303355/25433459 Info:Lattice Sieving: Marking workunit c140_sieving_25920000-25930000 as ok (99.5% => ETA Thu Feb 28 16:42:06 2019) Info:HTTP server: 127.0.0.1 Sending workunit c140_sieving_25990000-26000000 to client localhost+4 Info:Lattice Sieving: Adding workunit c140_sieving_26090000-26100000 to database Info:Lattice Sieving: Found 15512 relations in '/tmp/cado.x3587clo/c140.upload/c140.25930000-25940000.rjsg5ub_.gz', total is now 25318867/25433459 Info:Lattice Sieving: Marking workunit c140_sieving_25930000-25940000 as ok (99.5% => ETA Thu Feb 28 16:46:04 2019) Info:HTTP server: 127.0.0.1 Sending workunit c140_sieving_26000000-26010000 to client localhost+6 Info:Lattice Sieving: Adding workunit c140_sieving_26100000-26110000 to database Info:Lattice Sieving: Found 12584 relations in '/tmp/cado.x3587clo/c140.upload/c140.25950000-25960000.7ddqv24g.gz', total is now 25331451/25433459 Info:Lattice Sieving: Marking workunit c140_sieving_25950000-25960000 as ok (99.6% => ETA Thu Feb 28 16:47:16 2019) Info:HTTP server: 127.0.0.1 Sending workunit c140_sieving_26010000-26020000 to client localhost+2 Info:Lattice Sieving: Adding workunit c140_sieving_26110000-26120000 to database Info:Lattice Sieving: Found 13465 relations in '/tmp/cado.x3587clo/c140.upload/c140.25940000-25950000.o6_dc8b2.gz', total is now 25344916/25433459 Info:Lattice Sieving: Marking workunit c140_sieving_25940000-25950000 as ok (99.7% => ETA Thu Feb 28 16:46:23 2019) Info:HTTP server: 127.0.0.1 Sending workunit c140_sieving_26020000-26030000 to client localhost Info:Lattice Sieving: Adding workunit c140_sieving_26120000-26130000 to database Info:Lattice Sieving: Found 14411 relations in '/tmp/cado.x3587clo/c140.upload/c140.25960000-25970000.h6q2cthz.gz', total is now 25359327/25433459 Info:Lattice Sieving: Marking workunit c140_sieving_25960000-25970000 as ok (99.7% => ETA Thu Feb 28 16:46:07 2019) Info:HTTP server: 127.0.0.1 Sending workunit c140_sieving_26030000-26040000 to client localhost+3 Info:Lattice Sieving: Adding workunit c140_sieving_26130000-26140000 to database Info:Lattice Sieving: Found 13756 relations in '/tmp/cado.x3587clo/c140.upload/c140.25970000-25980000.__ym3akr.gz', total is now 25373083/25433459 Info:Lattice Sieving: Marking workunit c140_sieving_25970000-25980000 as ok (99.8% => ETA Thu Feb 28 16:45:16 2019) Info:HTTP server: 127.0.0.1 Sending workunit c140_sieving_26040000-26050000 to client localhost+5 Info:Lattice Sieving: Adding workunit c140_sieving_26140000-26150000 to database Info:Lattice Sieving: Found 14792 relations in '/tmp/cado.x3587clo/c140.upload/c140.25980000-25990000.8l8miqio.gz', total is now 25387875/25433459 Info:Lattice Sieving: Marking workunit c140_sieving_25980000-25990000 as ok (99.8% => ETA Thu Feb 28 16:44:13 2019) Info:HTTP server: 127.0.0.1 Sending workunit c140_sieving_26050000-26060000 to client localhost+4 Info:Lattice Sieving: Adding workunit c140_sieving_26150000-26160000 to database Info:Lattice Sieving: Found 14082 relations in '/tmp/cado.x3587clo/c140.upload/c140.25990000-26000000.dco_yn3t.gz', total is now 25401957/25433459 Info:Lattice Sieving: Marking workunit c140_sieving_25990000-26000000 as ok (99.9% => ETA Thu Feb 28 16:47:52 2019) Info:HTTP server: 127.0.0.1 Sending workunit c140_sieving_26060000-26070000 to client localhost+6 Info:Lattice Sieving: Adding workunit c140_sieving_26160000-26170000 to database Info:Lattice Sieving: Found 12074 relations in '/tmp/cado.x3587clo/c140.upload/c140.26000000-26010000.mvmbak2s.gz', total is now 25414031/25433459 Info:Lattice Sieving: Marking workunit c140_sieving_26000000-26010000 as ok (99.9% => ETA Thu Feb 28 16:47:33 2019) Info:HTTP server: 127.0.0.1 Sending workunit c140_sieving_26070000-26080000 to client localhost+2 Info:Lattice Sieving: Adding workunit c140_sieving_26170000-26180000 to database Info:Lattice Sieving: Found 13303 relations in '/tmp/cado.x3587clo/c140.upload/c140.26010000-26020000._cwkfx5y.gz', total is now 25427334/25433459 Info:Lattice Sieving: Marking workunit c140_sieving_26010000-26020000 as ok (100.0% => ETA Thu Feb 28 16:47:55 2019) Info:HTTP server: 127.0.0.1 Sending workunit c140_sieving_26080000-26090000 to client localhost+3 Info:Lattice Sieving: Adding workunit c140_sieving_26180000-26190000 to database Info:Lattice Sieving: Found 13261 relations in '/tmp/cado.x3587clo/c140.upload/c140.26030000-26040000.3t8zfbxq.gz', total is now 25440595/25433459 Info:Lattice Sieving: Marking workunit c140_sieving_26030000-26040000 as ok (100.0% => ETA Thu Feb 28 16:48:21 2019) Info:HTTP server: 127.0.0.1 Sending workunit c140_sieving_26090000-26100000 to client localhost Info:Lattice Sieving: Adding workunit c140_sieving_26190000-26200000 to database Info:Lattice Sieving: Reached target of 25433459 relations, now have 25440595 Info:Filtering - Duplicate Removal, splitting pass: Starting Info:Filtering - Duplicate Removal, splitting pass: Splitting 19 new files Info:Filtering - Duplicate Removal, splitting pass: Relations per slice: 0: 12723950, 1: 12716645 Info:Filtering - Duplicate Removal, removal pass: Starting Info:HTTP server: 127.0.0.1 Sending workunit c140_sieving_26100000-26110000 to client localhost+5 Info:Filtering - Duplicate Removal, removal pass: 10587187 unique relations remain on slice 0 Info:Filtering - Duplicate Removal, removal pass: 10579655 unique relations remain on slice 1 Info:Filtering - Duplicate Removal, removal pass: Of 258952 newly added relations 199791 were unique (ratio 0.771537) Info:Filtering - Duplicate Removal, removal pass: 21166842 unique relations remain in total Info:Filtering - Singleton removal: Starting Info:Filtering - Singleton removal: Reading 21166842 unique and 121591 free relations, total 21288433 Info:Filtering - Singleton removal: After purge, 8853645 relations with 8853485 primes remain with weight 167964202 and excess 160 Info:Filtering - Singleton removal: Have enough relations Info:HTTP server: Got notification to stop serving Workunits Info:Lattice Sieving: Cancelling remaining workunits Info:Client Launcher: Stopped client localhost (Host localhost, PID 5213) Info:Client Launcher: Stopped client localhost+2 (Host localhost, PID 5216) Info:Client Launcher: Stopped client localhost+3 (Host localhost, PID 5219) Info:Client Launcher: Stopped client localhost+4 (Host localhost, PID 5222) Info:Client Launcher: Stopped client localhost+5 (Host localhost, PID 5225) Info:Client Launcher: Stopped client localhost+6 (Host localhost, PID 5228) Info:Filtering - Merging: Starting Info:Filtering - Merging: Merged matrix has 2155845 rows and total weight 366493855 (170.0 entries per row on average) Info:Linear Algebra: Starting Info:Linear Algebra: krylov: N=1000 ; ETA (N=68000): Thu Feb 28 21:34:32 2019 [0.230 s/iter] Info:Linear Algebra: krylov: N=2000 ; ETA (N=68000): Thu Feb 28 21:37:25 2019 [0.232 s/iter] ... EJ: many similar lines Info:Linear Algebra: krylov: N=67000 ; ETA (N=68000): Thu Feb 28 21:42:13 2019 [0.236 s/iter] Info:Linear Algebra: krylov: N=68000 ; ETA (N=68000): Thu Feb 28 21:42:13 2019 [0.236 s/iter] Info:Linear Algebra: lingen ETA: Thu Feb 28 21:42:33 2019 Info:Linear Algebra: lingen ETA: Thu Feb 28 21:44:20 2019 Info:Linear Algebra: lingen ETA: Thu Feb 28 21:44:09 2019 Info:Linear Algebra: lingen ETA: Thu Feb 28 21:44:10 2019 Info:Linear Algebra: lingen ETA: Thu Feb 28 21:44:08 2019 Info:Linear Algebra: lingen ETA: Thu Feb 28 21:44:07 2019 Info:Linear Algebra: lingen ETA: Thu Feb 28 21:44:08 2019 Info:Linear Algebra: lingen ETA: Thu Feb 28 21:44:04 2019 Info:Linear Algebra: lingen ETA: Thu Feb 28 21:44:04 2019 Info:Linear Algebra: lingen ETA: Thu Feb 28 21:44:05 2019 Info:Linear Algebra: lingen ETA: Thu Feb 28 21:44:06 2019 Info:Linear Algebra: lingen ETA: Thu Feb 28 21:44:08 2019 Info:Linear Algebra: lingen ETA: Thu Feb 28 21:44:06 2019 Info:Linear Algebra: lingen ETA: Thu Feb 28 21:44:08 2019 Info:Linear Algebra: lingen ETA: Thu Feb 28 21:44:10 2019 Info:Linear Algebra: lingen ETA: Thu Feb 28 21:44:09 2019 Info:Linear Algebra: lingen ETA: Thu Feb 28 21:44:11 2019 Info:Linear Algebra: lingen ETA: Thu Feb 28 21:44:09 2019 Info:Linear Algebra: lingen ETA: Thu Feb 28 21:44:01 2019 Info:Linear Algebra: mksol: N=1000 ; ETA (N=34000): Fri Mar 1 00:05:30 2019 [0.250 s/iter] Info:Linear Algebra: mksol: N=2000 ; ETA (N=34000): Fri Mar 1 00:06:28 2019 [0.252 s/iter] Info:Linear Algebra: mksol: N=3000 ; ETA (N=34000): Fri Mar 1 00:07:02 2019 [0.253 s/iter] Info:Linear Algebra: mksol: N=4000 ; ETA (N=34000): Fri Mar 1 00:07:18 2019 [0.253 s/iter] Info:Linear Algebra: mksol: N=5000 ; ETA (N=34000): Fri Mar 1 00:07:22 2019 [0.253 s/iter] Info:Linear Algebra: mksol: N=6000 ; ETA (N=34000): Fri Mar 1 00:07:29 2019 [0.254 s/iter] Info:Linear Algebra: mksol: N=7000 ; ETA (N=34000): Fri Mar 1 00:07:34 2019 [0.254 s/iter] Info:Linear Algebra: mksol: N=8000 ; ETA (N=34000): Fri Mar 1 00:07:36 2019 [0.254 s/iter] Info:Linear Algebra: mksol: N=9000 ; ETA (N=34000): Fri Mar 1 00:07:44 2019 [0.254 s/iter] Info:Linear Algebra: mksol: N=10000 ; ETA (N=34000): Fri Mar 1 00:07:49 2019 [0.254 s/iter] Info:Linear Algebra: mksol: N=11000 ; ETA (N=34000): Fri Mar 1 00:07:49 2019 [0.254 s/iter] Info:Linear Algebra: mksol: N=12000 ; ETA (N=34000): Fri Mar 1 00:07:48 2019 [0.254 s/iter] Info:Linear Algebra: mksol: N=13000 ; ETA (N=34000): Fri Mar 1 00:07:50 2019 [0.254 s/iter] Info:Linear Algebra: mksol: N=14000 ; ETA (N=34000): Fri Mar 1 00:07:50 2019 [0.254 s/iter] Info:Linear Algebra: mksol: N=15000 ; ETA (N=34000): Fri Mar 1 00:07:51 2019 [0.254 s/iter] Info:Linear Algebra: mksol: N=16000 ; ETA (N=34000): Fri Mar 1 00:07:52 2019 [0.254 s/iter] Info:Linear Algebra: mksol: N=17000 ; ETA (N=34000): Fri Mar 1 00:07:53 2019 [0.254 s/iter] Info:Linear Algebra: mksol: N=18000 ; ETA (N=34000): Fri Mar 1 00:07:55 2019 [0.254 s/iter] Info:Linear Algebra: mksol: N=19000 ; ETA (N=34000): Fri Mar 1 00:07:54 2019 [0.254 s/iter] Info:Linear Algebra: mksol: N=20000 ; ETA (N=34000): Fri Mar 1 00:07:56 2019 [0.254 s/iter] Info:Linear Algebra: mksol: N=21000 ; ETA (N=34000): Fri Mar 1 00:07:57 2019 [0.255 s/iter] Info:Linear Algebra: mksol: N=22000 ; ETA (N=34000): Fri Mar 1 00:07:57 2019 [0.255 s/iter] Info:Linear Algebra: mksol: N=23000 ; ETA (N=34000): Fri Mar 1 00:07:57 2019 [0.255 s/iter] Info:Linear Algebra: mksol: N=24000 ; ETA (N=34000): Fri Mar 1 00:07:57 2019 [0.255 s/iter] Info:Linear Algebra: mksol: N=25000 ; ETA (N=34000): Fri Mar 1 00:07:57 2019 [0.255 s/iter] Info:Linear Algebra: mksol: N=26000 ; ETA (N=34000): Fri Mar 1 00:07:58 2019 [0.255 s/iter] Info:Linear Algebra: mksol: N=27000 ; ETA (N=34000): Fri Mar 1 00:07:58 2019 [0.255 s/iter] Info:Linear Algebra: mksol: N=28000 ; ETA (N=34000): Fri Mar 1 00:07:59 2019 [0.255 s/iter] Info:Linear Algebra: mksol: N=29000 ; ETA (N=34000): Fri Mar 1 00:07:59 2019 [0.255 s/iter] Info:Linear Algebra: mksol: N=30000 ; ETA (N=34000): Fri Mar 1 00:08:00 2019 [0.255 s/iter] Info:Linear Algebra: mksol: N=31000 ; ETA (N=34000): Fri Mar 1 00:08:00 2019 [0.255 s/iter] Info:Linear Algebra: mksol: N=32000 ; ETA (N=34000): Fri Mar 1 00:08:01 2019 [0.255 s/iter] Info:Linear Algebra: mksol: N=33000 ; ETA (N=34000): Fri Mar 1 00:08:02 2019 [0.255 s/iter] Info:Linear Algebra: mksol: N=34000 ; ETA (N=34000): Fri Mar 1 00:07:57 2019 [0.255 s/iter] Info:Quadratic Characters: Starting Info:Square Root: Starting Info:Square Root: Creating file of (a,b) values Info:Square Root: finished Info:Square Root: Factors: 2574317813581704763873083796816160561805156034961377189297057147 44319621074906147166374181876991729061994917065156322295439641288267515590391 Info:Polynomial Selection (size optimized): Aggregate statistics: Info:Polynomial Selection (size optimized): potential collisions: 65655.1 Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 66463/42.200/50.441/55.590/0.953 Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 66463/40.800/45.220/51.110/1.323 Info:Polynomial Selection (size optimized): Total time: 46975.5 Info:Polynomial Selection (root optimized): Aggregate statistics: Info:Polynomial Selection (root optimized): Total time: 8872.78 Info:Polynomial Selection (root optimized): Rootsieve time: 8870.73 Info:Generate Factor Base: Total cpu/real time for makefb: 23.12/2.48005 Info:Generate Free Relations: Total cpu/real time for freerel: 265.38/22.3922 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 25440595 Info:Lattice Sieving: Average J: 3793.09 for 954185 special-q, max bucket fill: 0.644185 Info:Lattice Sieving: Total CPU time: 1.90525e+06s Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 135.42/244.474 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 244.20000000000002s Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 640.05/460.274 Info:Filtering - Singleton removal: Total cpu/real time for purge: 381.27/337.285 Info:Filtering - Merging: Total cpu/real time for merge: 991.64/892.102 Info:Filtering - Merging: Total cpu/real time for replay: 77.16/60.6718 Info:Linear Algebra: Total cpu/real time for bwc: 267327/0.000204563 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: WCT time 16076.55 Info:Linear Algebra: Lingen CPU time 763.42, WCT time 89.17 Info:Linear Algebra: Mksol: WCT time 8655.34 Info:Quadratic Characters: Total cpu/real time for characters: 88.06/20.696 Info:Square Root: Total cpu/real time for sqrt: 5585.97/805.807 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization: Total cpu/elapsed time for entire factorization: 2.23661e+06/197438 Info:root: Cleaning up computation data in /tmp/cado.x3587clo 2574317813581704763873083796816160561805156034961377189297057147 44319621074906147166374181876991729061994917065156322295439641288267515590391 |
software ソフトウェア | cado-nfs-2.3.0 |
execution environment 実行環境 | Linux Ubuntu 18.04 LTS GenuineIntel Intel(R) Core(TM) i7-5820K CPU @ 3.30GHz [Family 6 Model 63 Stepping 2] (12 processors) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | February 25, 2008 09:00:00 UTC 2008 年 2 月 25 日 (月) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 300 | Ignacio Santos | October 5, 2010 21:53:44 UTC 2010 年 10 月 6 日 (水) 6 時 53 分 44 秒 (日本時間) | |
40 | 3e6 | 1110 | 110 | Ignacio Santos | October 5, 2010 21:53:44 UTC 2010 年 10 月 6 日 (水) 6 時 53 分 44 秒 (日本時間) |
1000 | Dmitry Domanov | March 14, 2013 16:09:22 UTC 2013 年 3 月 15 日 (金) 1 時 9 分 22 秒 (日本時間) | |||
45 | 11e6 | 1032 / 4220 | 32 | Ignacio Santos | October 5, 2010 21:53:44 UTC 2010 年 10 月 6 日 (水) 6 時 53 分 44 秒 (日本時間) |
1000 | Dmitry Domanov | April 30, 2013 10:40:06 UTC 2013 年 4 月 30 日 (火) 19 時 40 分 6 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | May 6, 2013 05:27:31 UTC 2013 年 5 月 6 日 (月) 14 時 27 分 31 秒 (日本時間) |
composite number 合成数 | 73373607782520436404117589961308590755566163494982049065036282396204281700921932458456905720962855613677892741500537063752746506163059307806482470623856014465140079<164> |
prime factors 素因数 | 610712887518312497646863005789961048302005163<45> 120144194239425307902682604048844575111760428389868815197415302000997081000361525368303064562988582505001218515399321933<120> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=2218267009 Step 1 took 74036ms Step 2 took 26221ms ********** Factor found in step 2: 610712887518312497646863005789961048302005163 Found probable prime factor of 45 digits: 610712887518312497646863005789961048302005163 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | February 25, 2008 09:00:00 UTC 2008 年 2 月 25 日 (月) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 300 | Ignacio Santos | October 5, 2010 22:51:46 UTC 2010 年 10 月 6 日 (水) 7 時 51 分 46 秒 (日本時間) | |
40 | 3e6 | 1110 | 110 | Ignacio Santos | October 5, 2010 22:51:46 UTC 2010 年 10 月 6 日 (水) 7 時 51 分 46 秒 (日本時間) |
1000 | Dmitry Domanov | March 14, 2013 16:09:31 UTC 2013 年 3 月 15 日 (金) 1 時 9 分 31 秒 (日本時間) | |||
45 | 11e6 | 1032 / 4220 | 32 | Ignacio Santos | October 5, 2010 22:51:46 UTC 2010 年 10 月 6 日 (水) 7 時 51 分 46 秒 (日本時間) |
1000 | Dmitry Domanov | April 30, 2013 10:40:17 UTC 2013 年 4 月 30 日 (火) 19 時 40 分 17 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | October 22, 2008 05:14:41 UTC 2008 年 10 月 22 日 (水) 14 時 14 分 41 秒 (日本時間) |
composite number 合成数 | 124610591900311526479750778816199376947040498442367601246105919003115264797507788161993769470404984423676012461059190031152647975077881619937694704049844236760124610591900311526479750778816199377<195> |
prime factors 素因数 | 641296994832521105786533002959<30> 194310269507585008333310325816908802409995304643133352971273908773477838968564150543240097299719754825793275239136337188618271630275071223132887746105578377626129503<165> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1275197237 Step 1 took 27673ms Step 2 took 15717ms ********** Factor found in step 2: 641296994832521105786533002959 Found probable prime factor of 30 digits: 641296994832521105786533002959 Probable prime cofactor 194310269507585008333310325816908802409995304643133352971273908773477838968564150543240097299719754825793275239136337188618271630275071223132887746105578377626129503 has 165 digits |
software ソフトウェア | GMP-ECM 6.2.1 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | February 25, 2008 09:00:00 UTC 2008 年 2 月 25 日 (月) 18 時 0 分 0 秒 (日本時間) |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | February 26, 2008 13:02:24 UTC 2008 年 2 月 26 日 (火) 22 時 2 分 24 秒 (日本時間) |
composite number 合成数 | 133333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333339<198> |
prime factors 素因数 | 30911517865801875999507572028613382077670753<44> |
composite cofactor 合成数の残り | 4313386806567757392671601783903255857588579313081814644131577195810056098206845332856572255132864229461765584994838840653666401244846784162380204100450363<154> |
factorization results 素因数分解の結果 | GMP-ECM 6.1.3 [powered by GMP 4.2.2] [ECM] Input number is 133333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333339 (198 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2369543653 Step 1 took 31229ms Step 2 took 14462ms ********** Factor found in step 2: 30911517865801875999507572028613382077670753 Found probable prime factor of 44 digits: 30911517865801875999507572028613382077670753 Composite cofactor 4313386806567757392671601783903255857588579313081814644131577195810056098206845332856572255132864229461765584994838840653666401244846784162380204100450363 has 154 digits |
execution environment 実行環境 | Core 2 Quad Q6600 |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | December 24, 2020 10:45:31 UTC 2020 年 12 月 24 日 (木) 19 時 45 分 31 秒 (日本時間) |
composite number 合成数 | 4313386806567757392671601783903255857588579313081814644131577195810056098206845332856572255132864229461765584994838840653666401244846784162380204100450363<154> |
prime factors 素因数 | 9241857829717848953663282290533856873935089551<46> 466722912864744182164692537971948153950797769148252825212512577727609892624959561505533479512105087095576213<108> |
factorization results 素因数分解の結果 | 4313386806567757392671601783903255857588579313081814644131577195810056098206845332856572255132864229461765584994838840653666401244846784162380204100450363=9241857829717848953663282290533856873935089551*466722912864744182164692537971948153950797769148252825212512577727609892624959561505533479512105087095576213 cado polynomial n: 4313386806567757392671601783903255857588579313081814644131577195810056098206845332856572255132864229461765584994838840653666401244846784162380204100450363 skew: 0.53 type: snfs c0: 17 c5: 400 Y0: 1000000000000000000000000000000000000000 Y1: -1 # f(x) = 400*x^5+17 # g(x) = -x+1000000000000000000000000000000000000000 cado parameters (extracts) tasks.lim0 = 13800000 tasks.lim1 = 13800000 tasks.lpb0 = 28 tasks.lpb1 = 28 tasks.sieve.mfb0 = 55 tasks.sieve.mfb1 = 55 tasks.sieve.lambda0 = 2.5 tasks.sieve.lambda1 = 2.5 tasks.sqrt.threads = 2 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 466722912864744182164692537971948153950797769148252825212512577727609892624959561505533479512105087095576213 9241857829717848953663282290533856873935089551 Warning:Polynomial Selection (size optimized): some stats could not be displayed for polyselect1 (see log file for debug info) Warning:Polynomial Selection (root optimized): some stats could not be displayed for polyselect2 (see log file for debug info) Info:Generate Factor Base: Total cpu/real time for makefb: 5.83/2.34607 Info:Generate Free Relations: Total cpu/real time for freerel: 102.56/26.4669 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 31123784 Info:Lattice Sieving: Average J: 1893.96 for 4582919 special-q, max bucket fill -bkmult 1.0,1s:1.080670 Info:Lattice Sieving: Total time: 1.38582e+06s Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 60.47/161.923 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 160.7s Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 562.4/572.965 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 500.79999999999995s Info:Filtering - Singleton removal: Total cpu/real time for purge: 502.41/596.242 Info:Filtering - Merging: Merged matrix has 2912418 rows and total weight 497526045 (170.8 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 411.53/118.837 Info:Filtering - Merging: Total cpu/real time for replay: 111.98/98.3261 Info:Linear Algebra: Total cpu/real time for bwc: 153137/39306.6 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: WCT time 25153.1, iteration CPU time 0.26, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (91136 iterations) Info:Linear Algebra: Lingen CPU time 606.7, WCT time 174.99 Info:Linear Algebra: Mksol: WCT time 13652.05, iteration CPU time 0.28, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (45568 iterations) Info:Quadratic Characters: Total cpu/real time for characters: 100.01/42.8787 Info:Square Root: Total cpu/real time for sqrt: 1528.07/471.659 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 2.71743e+06/41687.7 466722912864744182164692537971948153950797769148252825212512577727609892624959561505533479512105087095576213 9241857829717848953663282290533856873935089551 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | 6 x Linux Ubuntu 20.04.1 LTS [5.4.0-48-generic|libc 2.31 (Ubuntu GLIBC 2.31-0ubuntu9.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | February 25, 2008 09:00:00 UTC 2008 年 2 月 25 日 (月) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 300 | Ignacio Santos | October 5, 2010 23:43:11 UTC 2010 年 10 月 6 日 (水) 8 時 43 分 11 秒 (日本時間) | |
40 | 3e6 | 1110 | 110 | Ignacio Santos | October 5, 2010 23:43:11 UTC 2010 年 10 月 6 日 (水) 8 時 43 分 11 秒 (日本時間) |
1000 | Dmitry Domanov | March 14, 2013 16:09:40 UTC 2013 年 3 月 15 日 (金) 1 時 9 分 40 秒 (日本時間) | |||
45 | 11e6 | 1032 / 4220 | 32 | Ignacio Santos | October 5, 2010 23:43:11 UTC 2010 年 10 月 6 日 (水) 8 時 43 分 11 秒 (日本時間) |
1000 | Dmitry Domanov | April 30, 2013 10:40:31 UTC 2013 年 4 月 30 日 (火) 19 時 40 分 31 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | April 6, 2021 03:36:43 UTC 2021 年 4 月 6 日 (火) 12 時 36 分 43 秒 (日本時間) |
composite number 合成数 | 42350034433672725655250720785412715265388834317007429683859941745000960914994051738222175428142645516409696778019960033666385214959385240579696057016248337648704133213498449<173> |
prime factors 素因数 | 17601699701091371527888200041583294955801064019055169899179978168890016060822049168643<86> 2406019597700946140489994088468239855621261767917457864240434305978944667027242862927643<88> |
factorization results 素因数分解の結果 | Number: n N=42350034433672725655250720785412715265388834317007429683859941745000960914994051738222175428142645516409696778019960033666385214959385240579696057016248337648704133213498449 ( 173 digits) SNFS difficulty: 200 digits. Divisors found: Tue Apr 6 13:30:44 2021 p86 factor: 17601699701091371527888200041583294955801064019055169899179978168890016060822049168643 Tue Apr 6 13:30:44 2021 p88 factor: 2406019597700946140489994088468239855621261767917457864240434305978944667027242862927643 Tue Apr 6 13:30:44 2021 elapsed time 01:23:14 (Msieve 1.54 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.333). Factorization parameters were as follows: # # N = 4x10^199+17 = 13(198)9 # n: 42350034433672725655250720785412715265388834317007429683859941745000960914994051738222175428142645516409696778019960033666385214959385240579696057016248337648704133213498449 m: 10000000000000000000000000000000000000000 deg: 5 c5: 2 c0: 85 skew: 2.12 # Murphy_E = 1.759e-11 type: snfs lss: 1 rlim: 15300000 alim: 15300000 lpbr: 29 lpba: 29 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 15300000/15300000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 56/56 Sieved special-q in [100000, 27650000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 5578132 hash collisions in 49761503 relations (46305085 unique) Msieve: matrix is 1880737 x 1880963 (654.6 MB) Sieving start time : 2021/04/06 04:45:27 Sieving end time : 2021/04/06 12:06:02 Total sieving time: 7hrs 20min 35secs. Total relation processing time: 1hrs 8min 16sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 2min 12sec. Prototype def-par.txt line would be: snfs,200,5,0,0,0,0,0,0,0,0,15300000,15300000,29,29,56,56,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- [ 0.119768] smpboot: CPU0: AMD Ryzen 7 2700 Eight-Core Processor (family: 0x17, model: 0x8, stepping: 0x2) [ 0.000000] Memory: 16241112K/16727236K available (14339K kernel code, 2400K rwdata, 5008K rodata, 2732K init, 4972K bss, 486124K reserved, 0K cma-reserved) [ 0.153507] x86/mm: Memory block size: 128MB [ 0.000005] Calibrating delay loop (skipped), value calculated using timer frequency.. 6399.05 BogoMIPS (lpj=12798104) [ 0.152038] smpboot: Total of 16 processors activated (102384.83 BogoMIPS) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | February 25, 2008 09:00:00 UTC 2008 年 2 月 25 日 (月) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 300 | Ignacio Santos | October 6, 2010 05:44:01 UTC 2010 年 10 月 6 日 (水) 14 時 44 分 1 秒 (日本時間) | |
40 | 3e6 | 1110 | 110 | Ignacio Santos | October 6, 2010 05:44:01 UTC 2010 年 10 月 6 日 (水) 14 時 44 分 1 秒 (日本時間) |
1000 | Dmitry Domanov | March 14, 2013 16:09:49 UTC 2013 年 3 月 15 日 (金) 1 時 9 分 49 秒 (日本時間) | |||
45 | 11e6 | 832 / 4220 | 32 | Ignacio Santos | October 6, 2010 05:44:01 UTC 2010 年 10 月 6 日 (水) 14 時 44 分 1 秒 (日本時間) |
800 | Dmitry Domanov | April 24, 2013 21:41:00 UTC 2013 年 4 月 25 日 (木) 6 時 41 分 0 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | September 10, 2008 02:27:34 UTC 2008 年 9 月 10 日 (水) 11 時 27 分 34 秒 (日本時間) |
composite number 合成数 | 21134420231306468499665468836361985917199862080556631715390429044590492823388699832878837599841062439114941801425532780731467902791135367598072512491378479428243314191399139650204285778838461<191> |
prime factors 素因数 | 310858393336630686720841637998697<33> 67987291591061721286953508434298743969287676084869733019950591260403028836697158046529832913321391635730918226951318222021514833120320272626786443796812828213<158> |
factorization results 素因数分解の結果 | Using B1=1000000, B2=2852890960, polynomial Dickson(6), sigma=4007235084 Step 1 took 7252ms Step 2 took 5488ms ********** Factor found in step 2: 310858393336630686720841637998697 Found probable prime factor of 33 digits: 310858393336630686720841637998697 Probable prime cofactor 67987291591061721286953508434298743969287676084869733019950591260403028836697158046529832913321391635730918226951318222021514833120320272626786443796812828213 has 158 digits |
software ソフトウェア | GMP-ECM 6.2.1 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | February 25, 2008 09:00:00 UTC 2008 年 2 月 25 日 (月) 18 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | November 19, 2021 07:31:30 UTC 2021 年 11 月 19 日 (金) 16 時 31 分 30 秒 (日本時間) |
composite number 合成数 | 67540420003938294677238540482124497343720488084065211566271051202586729964685223597131668593175161793344466074640625743961069208165946424454733481932568849312416237<164> |
prime factors 素因数 | 10469237616972361513212578673720502189278964955753<50> 6451321717490118884106400867363463991049441045591441117493168488782265938613465785285996309846938150946847327449829<115> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 67540420003938294677238540482124497343720488084065211566271051202586729964685223597131668593175161793344466074640625743961069208165946424454733481932568849312416237 (164 digits) Using B1=56000000, B2=288597909616, polynomial Dickson(12), sigma=1:2767260690 Step 1 took 134199ms Step 2 took 42155ms ********** Factor found in step 2: 10469237616972361513212578673720502189278964955753 Found prime factor of 50 digits: 10469237616972361513212578673720502189278964955753 Prime cofactor 6451321717490118884106400867363463991049441045591441117493168488782265938613465785285996309846938150946847327449829 has 115 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1418 | 118 | Makoto Kamada | February 25, 2013 15:00:00 UTC 2013 年 2 月 26 日 (火) 0 時 0 分 0 秒 (日本時間) |
1300 | Warut Roonguthai | February 27, 2013 01:01:29 UTC 2013 年 2 月 27 日 (水) 10 時 1 分 29 秒 (日本時間) | |||
40 | 3e6 | 2700 | Warut Roonguthai | February 27, 2013 19:20:53 UTC 2013 年 2 月 28 日 (木) 4 時 20 分 53 秒 (日本時間) | |
45 | 11e6 | 5480 | 1000 | Dmitry Domanov | May 21, 2013 13:37:25 UTC 2013 年 5 月 21 日 (火) 22 時 37 分 25 秒 (日本時間) |
4480 | Ignacio Santos | August 3, 2021 20:37:08 UTC 2021 年 8 月 4 日 (水) 5 時 37 分 8 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | September 21, 2021 01:58:13 UTC 2021 年 9 月 21 日 (火) 10 時 58 分 13 秒 (日本時間) |
composite number 合成数 | 257830394765185389419203610981730852433380928243251310495271088255455056217728180682031384015570130333233267418874519347457363867416326771826826714897629720675309348044996371371344521<183> |
prime factors 素因数 | 17290851740959908318461420703266329280441386038770100482934990542063103159897461477<83> 14911376179024008876572033463992299205687595016391648311093959327294501044292624918403659567610217173<101> |
factorization results 素因数分解の結果 | Number: n N=257830394765185389419203610981730852433380928243251310495271088255455056217728180682031384015570130333233267418874519347457363867416326771826826714897629720675309348044996371371344521 ( 183 digits) SNFS difficulty: 202 digits. Divisors found: Tue Sep 21 11:46:10 2021 p83 factor: 17290851740959908318461420703266329280441386038770100482934990542063103159897461477 Tue Sep 21 11:46:10 2021 p101 factor: 14911376179024008876572033463992299205687595016391648311093959327294501044292624918403659567610217173 Tue Sep 21 11:46:10 2021 elapsed time 01:55:35 (Msieve 1.54 - dependency 5) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.352). Factorization parameters were as follows: # # N = 4x10^202+17 = 13(201)9 # n: 257830394765185389419203610981730852433380928243251310495271088255455056217728180682031384015570130333233267418874519347457363867416326771826826714897629720675309348044996371371344521 m: 10000000000000000000000000000000000000000 deg: 5 c5: 400 c0: 17 skew: 0.53 # Murphy_E = 1.211e-11 type: snfs lss: 1 rlim: 16700000 alim: 16700000 lpbr: 29 lpba: 29 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 16700000/16700000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 56/56 Sieved special-q in [100000, 35550000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 9501990 hash collisions in 63539944 relations (56440796 unique) Msieve: matrix is 2120766 x 2120997 (733.7 MB) Sieving start time : 2021/09/20 21:46:07 Sieving end time : 2021/09/21 09:49:29 Total sieving time: 12hrs 3min 22secs. Total relation processing time: 1hrs 27min 4sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 12min 58sec. Prototype def-par.txt line would be: snfs,202,5,0,0,0,0,0,0,0,0,16700000,16700000,29,29,56,56,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- [ 0.119850] smpboot: CPU0: AMD Ryzen 7 2700 Eight-Core Processor (family: 0x17, model: 0x8, stepping: 0x2) [ 0.000000] Memory: 16239964K/16727236K available (14339K kernel code, 2400K rwdata, 5016K rodata, 2736K init, 4964K bss, 487272K reserved, 0K cma-reserved) [ 0.154026] x86/mm: Memory block size: 128MB [ 0.000005] Calibrating delay loop (skipped), value calculated using timer frequency.. 6399.44 BogoMIPS (lpj=12798892) [ 0.150212] smpboot: Total of 16 processors activated (102391.13 BogoMIPS) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1418 | 118 | Makoto Kamada | February 25, 2013 15:00:00 UTC 2013 年 2 月 26 日 (火) 0 時 0 分 0 秒 (日本時間) |
1300 | Warut Roonguthai | February 27, 2013 01:01:39 UTC 2013 年 2 月 27 日 (水) 10 時 1 分 39 秒 (日本時間) | |||
40 | 3e6 | 1000 | Dmitry Domanov | March 14, 2013 16:10:05 UTC 2013 年 3 月 15 日 (金) 1 時 10 分 5 秒 (日本時間) | |
45 | 11e6 | 5480 | 1000 | Dmitry Domanov | April 30, 2013 10:40:57 UTC 2013 年 4 月 30 日 (火) 19 時 40 分 57 秒 (日本時間) |
4480 | Ignacio Santos | August 30, 2021 18:48:31 UTC 2021 年 8 月 31 日 (火) 3 時 48 分 31 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | August 26, 2021 23:22:06 UTC 2021 年 8 月 27 日 (金) 8 時 22 分 6 秒 (日本時間) |
composite number 合成数 | 30213788538084306203590446162609299690387890024293661462170130352661915867975291771204215712559883598119103161478295620503684802911446053125549176595642076520323619425758207599050293556959<188> |
prime factors 素因数 | 1028609604477298690907876012153920580254477377413107<52> 514214337172892158778426757942095078987883549344816728557311<60> 57122923851927278909637792731981206401050999742775140112164962558466398554267<77> |
factorization results 素因数分解の結果 | Number: n N=30213788538084306203590446162609299690387890024293661462170130352661915867975291771204215712559883598119103161478295620503684802911446053125549176595642076520323619425758207599050293556959 ( 188 digits) SNFS difficulty: 203 digits. Divisors found: Fri Aug 27 09:12:01 2021 found factor: 514214337172892158778426757942095078987883549344816728557311 Fri Aug 27 09:14:25 2021 p52 factor: 1028609604477298690907876012153920580254477377413107 Fri Aug 27 09:14:25 2021 p60 factor: 514214337172892158778426757942095078987883549344816728557311 Fri Aug 27 09:14:25 2021 p77 factor: 57122923851927278909637792731981206401050999742775140112164962558466398554267 Fri Aug 27 09:14:25 2021 elapsed time 01:48:55 (Msieve 1.54 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.347). Factorization parameters were as follows: # # N = 4x10^203+17 = 13(202)9 # n: 30213788538084306203590446162609299690387890024293661462170130352661915867975291771204215712559883598119103161478295620503684802911446053125549176595642076520323619425758207599050293556959 m: 20000000000000000000000000000000000000000 deg: 5 c5: 125 c0: 17 skew: 0.67 # Murphy_E = 1.16e-11 type: snfs lss: 1 rlim: 17300000 alim: 17300000 lpbr: 29 lpba: 29 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 17300000/17300000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 56/56 Sieved special-q in [100000, 35850000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 10743618 hash collisions in 69144766 relations (61056932 unique) Msieve: matrix is 2137003 x 2137231 (732.8 MB) Sieving start time : 2021/08/26 17:55:14 Sieving end time : 2021/08/27 07:22:07 Total sieving time: 13hrs 26min 53secs. Total relation processing time: 1hrs 27min 0sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 4min 47sec. Prototype def-par.txt line would be: snfs,203,5,0,0,0,0,0,0,0,0,17300000,17300000,29,29,56,56,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- [ 0.116939] smpboot: CPU0: AMD Ryzen 7 2700 Eight-Core Processor (family: 0x17, model: 0x8, stepping: 0x2) [ 0.000000] Memory: 16239968K/16727236K available (14339K kernel code, 2400K rwdata, 5016K rodata, 2736K init, 4964K bss, 487268K reserved, 0K cma-reserved) [ 0.154077] x86/mm: Memory block size: 128MB [ 0.000005] Calibrating delay loop (skipped), value calculated using timer frequency.. 6399.20 BogoMIPS (lpj=12798404) [ 0.152034] smpboot: Total of 16 processors activated (102387.23 BogoMIPS) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1418 | 118 | Makoto Kamada | February 25, 2013 15:00:00 UTC 2013 年 2 月 26 日 (火) 0 時 0 分 0 秒 (日本時間) |
1300 | Warut Roonguthai | February 27, 2013 01:01:46 UTC 2013 年 2 月 27 日 (水) 10 時 1 分 46 秒 (日本時間) | |||
40 | 3e6 | 1000 | Dmitry Domanov | March 14, 2013 16:10:14 UTC 2013 年 3 月 15 日 (金) 1 時 10 分 14 秒 (日本時間) | |
45 | 11e6 | 1000 / 4194 | Dmitry Domanov | April 30, 2013 10:41:20 UTC 2013 年 4 月 30 日 (火) 19 時 41 分 20 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | July 17, 2021 15:26:36 UTC 2021 年 7 月 18 日 (日) 0 時 26 分 36 秒 (日本時間) |
composite number 合成数 | 408132302638119556766527197900148486547451842622387402352623479272149001022440378417680813587978432148618296182981735734453944088633082955666966798656580162732999066720333121164421714239325829<192> |
prime factors 素因数 | 2799751751111165104889043677119394491584824020243<49> 145774461066464218638479526117919664668267438945197120489611569604523832862535797672993232546141488020239035022479681702551649665113192591165703<144> |
factorization results 素因数分解の結果 | Number: n N=408132302638119556766527197900148486547451842622387402352623479272149001022440378417680813587978432148618296182981735734453944088633082955666966798656580162732999066720333121164421714239325829 ( 192 digits) SNFS difficulty: 205 digits. Divisors found: Sun Jul 18 01:06:05 2021 p49 factor: 2799751751111165104889043677119394491584824020243 Sun Jul 18 01:06:05 2021 p144 factor: 145774461066464218638479526117919664668267438945197120489611569604523832862535797672993232546141488020239035022479681702551649665113192591165703 Sun Jul 18 01:06:05 2021 elapsed time 01:47:09 (Msieve 1.54 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.352). Factorization parameters were as follows: # # N = 4x10^205+17 = 13(204)9 # n: 408132302638119556766527197900148486547451842622387402352623479272149001022440378417680813587978432148618296182981735734453944088633082955666966798656580162732999066720333121164421714239325829 m: 100000000000000000000000000000000000000000 deg: 5 c5: 4 c0: 17 skew: 1.34 # Murphy_E = 1.081e-11 type: snfs lss: 1 rlim: 18700000 alim: 18700000 lpbr: 29 lpba: 29 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 18700000/18700000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 56/56 Sieved special-q in [100000, 29350000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 8789350 hash collisions in 61078469 relations (54649065 unique) Msieve: matrix is 2168093 x 2168319 (754.1 MB) Sieving start time : 2021/07/17 12:59:57 Sieving end time : 2021/07/17 23:16:09 Total sieving time: 10hrs 16min 12secs. Total relation processing time: 1hrs 29min 56sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 2min 16sec. Prototype def-par.txt line would be: snfs,205,5,0,0,0,0,0,0,0,0,18700000,18700000,29,29,56,56,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- [ 0.118191] smpboot: CPU0: AMD Ryzen 7 2700 Eight-Core Processor (family: 0x17, model: 0x8, stepping: 0x2) [ 0.000000] Memory: 16239972K/16727236K available (14339K kernel code, 2400K rwdata, 5008K rodata, 2736K init, 4964K bss, 487264K reserved, 0K cma-reserved) [ 0.153502] x86/mm: Memory block size: 128MB [ 0.000005] Calibrating delay loop (skipped), value calculated using timer frequency.. 6399.23 BogoMIPS (lpj=12798472) [ 0.152038] smpboot: Total of 16 processors activated (102387.77 BogoMIPS) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1418 | 118 | Makoto Kamada | February 25, 2013 15:00:00 UTC 2013 年 2 月 26 日 (火) 0 時 0 分 0 秒 (日本時間) |
1300 | Warut Roonguthai | February 27, 2013 01:01:59 UTC 2013 年 2 月 27 日 (水) 10 時 1 分 59 秒 (日本時間) | |||
40 | 3e6 | 1000 | Dmitry Domanov | March 14, 2013 16:10:22 UTC 2013 年 3 月 15 日 (金) 1 時 10 分 22 秒 (日本時間) | |
45 | 11e6 | 1000 / 4194 | Dmitry Domanov | April 30, 2013 10:41:35 UTC 2013 年 4 月 30 日 (火) 19 時 41 分 35 秒 (日本時間) |
name 名前 | Warut Roonguthai |
---|---|
date 日付 | February 25, 2013 20:46:05 UTC 2013 年 2 月 26 日 (火) 5 時 46 分 5 秒 (日本時間) |
composite number 合成数 | 4049025123580446721444497156553969589084956201390682145443641220596648119475123877824197669667304029666745666895754562609013161615509504248930636028970023854854946899516584303901<178> |
prime factors 素因数 | 1591216537468408085863154474693451269633<40> 2544609755013205306343577305914764532507204916236375176218385323839225084275149242620510800513119335079854926332100062943906156365389901597<139> |
factorization results 素因数分解の結果 | Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=670385536 Step 1 took 10655ms Step 2 took 6412ms ********** Factor found in step 2: 1591216537468408085863154474693451269633 Found probable prime factor of 40 digits: 1591216537468408085863154474693451269633 Probable prime cofactor 2544609755013205306343577305914764532507204916236375176218385323839225084275149242620510800513119335079854926332100062943906156365389901597 has 139 digits |
software ソフトウェア | GMP-ECM 6.3 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | February 25, 2013 15:00:00 UTC 2013 年 2 月 26 日 (火) 0 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | July 29, 2024 02:06:17 UTC 2024 年 7 月 29 日 (月) 11 時 6 分 17 秒 (日本時間) |
composite number 合成数 | 928039130376997294075273676756416183321451093169220687446225877160602049119530611652403097225967735963517500042558373605611161394481462223571512860662364498136994363760832881036693409<183> |
prime factors 素因数 | 724544361323732362425227269630182972057138949055445139151293<60> 1280858950694865459084467549985429193104322488579026033937863761513880147389449818432049563048865710983806188653947974476213<124> |
factorization results 素因数分解の結果 | 07/26/24 12:24:21 v1.34.5 @ RYZEN-9, 07/26/24 12:24:21 v1.34.5 @ RYZEN-9, **************************** 07/26/24 12:24:21 v1.34.5 @ RYZEN-9, Starting factorization of 4000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000017 07/26/24 12:24:21 v1.34.5 @ RYZEN-9, using pretesting plan: normal 07/26/24 12:24:21 v1.34.5 @ RYZEN-9, no tune info: using qs/gnfs crossover of 125 digits 07/26/24 12:24:21 v1.34.5 @ RYZEN-9, **************************** 07/26/24 12:24:21 v1.34.5 @ RYZEN-9, div: found prime factor = 3 07/26/24 12:24:21 v1.34.5 @ RYZEN-9, div: found prime factor = 13 07/26/24 12:24:21 v1.34.5 @ RYZEN-9, div: found prime factor = 103 07/26/24 12:24:21 v1.34.5 @ RYZEN-9, rho: x^2 + 3, starting 1000 iterations on C204 07/26/24 12:24:21 v1.34.5 @ RYZEN-9, rho: x^2 + 2, starting 1000 iterations on C204 07/26/24 12:24:21 v1.34.5 @ RYZEN-9, prp5 = 17783 07/26/24 12:24:21 v1.34.5 @ RYZEN-9, rho: x^2 + 2, starting 1000 iterations on C200 07/26/24 12:24:21 v1.34.5 @ RYZEN-9, prp6 = 580793 07/26/24 12:24:21 v1.34.5 @ RYZEN-9, rho: x^2 + 2, starting 1000 iterations on C194 07/26/24 12:24:21 v1.34.5 @ RYZEN-9, rho: x^2 + 1, starting 1000 iterations on C194 07/26/24 12:24:21 v1.34.5 @ RYZEN-9, pm1: starting B1 = 150K, B2 = gmp-ecm default on C194 07/26/24 12:24:21 v1.34.5 @ RYZEN-9, prp12 = 103888020031 07/26/24 12:24:21 v1.34.5 @ RYZEN-9, current ECM pretesting depth: 0.00 07/26/24 12:24:21 v1.34.5 @ RYZEN-9, scheduled 30 curves at B1=2000 toward target pretesting depth of 56.31 07/26/24 12:24:21 v1.34.5 @ RYZEN-9, Finished 30 curves using Lenstra ECM method on C183 input, B1=2K, B2=gmp-ecm default 07/26/24 12:24:21 v1.34.5 @ RYZEN-9, current ECM pretesting depth: 15.18 07/26/24 12:24:21 v1.34.5 @ RYZEN-9, scheduled 74 curves at B1=11000 toward target pretesting depth of 56.31 07/26/24 12:24:24 v1.34.5 @ RYZEN-9, Finished 74 curves using Lenstra ECM method on C183 input, B1=11K, B2=gmp-ecm default 07/26/24 12:24:24 v1.34.5 @ RYZEN-9, current ECM pretesting depth: 20.24 07/26/24 12:24:24 v1.34.5 @ RYZEN-9, scheduled 214 curves at B1=50000 toward target pretesting depth of 56.31 07/26/24 12:24:51 v1.34.5 @ RYZEN-9, Finished 214 curves using Lenstra ECM method on C183 input, B1=50K, B2=gmp-ecm default 07/26/24 12:24:51 v1.34.5 @ RYZEN-9, pm1: starting B1 = 3750K, B2 = gmp-ecm default on C183 07/26/24 12:24:52 v1.34.5 @ RYZEN-9, current ECM pretesting depth: 25.33 07/26/24 12:24:52 v1.34.5 @ RYZEN-9, scheduled 430 curves at B1=250000 toward target pretesting depth of 56.31 07/26/24 12:27:41 v1.34.5 @ RYZEN-9, nfs: commencing nfs on c208: 4000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000017 07/26/24 12:27:41 v1.34.5 @ RYZEN-9, nfs: input divides 4*10^207 + 17 07/26/24 12:27:41 v1.34.5 @ RYZEN-9, nfs: using supplied cofactor: 928039130376997294075273676756416183321451093169220687446225877160602049119530611652403097225967735963517500042558373605611161394481462223571512860662364498136994363760832881036693409 07/26/24 12:27:41 v1.34.5 @ RYZEN-9, nfs: commencing snfs on c183: 928039130376997294075273676756416183321451093169220687446225877160602049119530611652403097225967735963517500042558373605611161394481462223571512860662364498136994363760832881036693409 07/26/24 12:27:41 v1.34.5 @ RYZEN-9, gen: best 3 polynomials: n: 928039130376997294075273676756416183321451093169220687446225877160602049119530611652403097225967735963517500042558373605611161394481462223571512860662364498136994363760832881036693409 # 4*10^207+17, difficulty: 209.60, anorm: 1.65e+032, rnorm: 1.37e+047 # scaled difficulty: 212.09, suggest sieving rational side # size = 1.696e-014, alpha = 0.357, combined = 6.613e-012, rroots = 1 type: snfs size: 209 skew: 0.5317 c5: 400 c0: 17 Y1: -1 Y0: 100000000000000000000000000000000000000000 m: 100000000000000000000000000000000000000000 n: 928039130376997294075273676756416183321451093169220687446225877160602049119530611652403097225967735963517500042558373605611161394481462223571512860662364498136994363760832881036693409 # 4*10^207+17, difficulty: 208.51, anorm: 5.83e+031, rnorm: 1.94e+047 # scaled difficulty: 211.09, suggest sieving rational side # size = 1.696e-014, alpha = 1.050, combined = 6.554e-012, rroots = 1 type: snfs size: 208 skew: 1.0634 c5: 25 c0: 34 Y1: -1 Y0: 200000000000000000000000000000000000000000 m: 200000000000000000000000000000000000000000 n: 928039130376997294075273676756416183321451093169220687446225877160602049119530611652403097225967735963517500042558373605611161394481462223571512860662364498136994363760832881036693409 # 4*10^207+17, difficulty: 208.51, anorm: 1.30e+038, rnorm: 2.23e+040 # scaled difficulty: 208.51, suggest sieving algebraic side # size = 1.908e-010, alpha = -0.112, combined = 5.303e-012, rroots = 0 type: snfs size: 208 skew: 0.8049 c6: 125 c0: 34 Y1: -1 Y0: 20000000000000000000000000000000000 m: 20000000000000000000000000000000000 07/26/24 12:27:43 v1.34.5 @ RYZEN-9, test: fb generation took 1.7602 seconds 07/26/24 12:27:43 v1.34.5 @ RYZEN-9, test: commencing test sieving of polynomial 0 on the rational side over range 21400000-21402000 skew: 0.5317 c5: 400 c0: 17 Y1: -1 Y0: 100000000000000000000000000000000000000000 m: 100000000000000000000000000000000000000000 rlim: 21400000 alim: 21400000 mfbr: 56 mfba: 56 lpbr: 28 lpba: 28 rlambda: 2.60 alambda: 2.60 07/26/24 12:30:52 v1.34.5 @ RYZEN-9, nfs: parsing special-q from .dat file 07/26/24 12:30:53 v1.34.5 @ RYZEN-9, test: fb generation took 1.5852 seconds 07/26/24 12:30:53 v1.34.5 @ RYZEN-9, test: commencing test sieving of polynomial 1 on the rational side over range 20200000-20202000 skew: 1.0634 c5: 25 c0: 34 Y1: -1 Y0: 200000000000000000000000000000000000000000 m: 200000000000000000000000000000000000000000 rlim: 20200000 alim: 20200000 mfbr: 56 mfba: 56 lpbr: 28 lpba: 28 rlambda: 2.60 alambda: 2.60 07/26/24 12:34:17 v1.34.5 @ RYZEN-9, nfs: parsing special-q from .dat file 07/26/24 12:34:19 v1.34.5 @ RYZEN-9, test: fb generation took 2.3116 seconds 07/26/24 12:34:19 v1.34.5 @ RYZEN-9, test: commencing test sieving of polynomial 2 on the algebraic side over range 20200000-20202000 skew: 0.8049 c6: 125 c0: 34 Y1: -1 Y0: 20000000000000000000000000000000000 m: 20000000000000000000000000000000000 rlim: 20200000 alim: 20200000 mfbr: 56 mfba: 56 lpbr: 28 lpba: 28 rlambda: 2.60 alambda: 2.60 07/26/24 12:38:10 v1.34.5 @ RYZEN-9, nfs: parsing special-q from .dat file 07/26/24 12:38:10 v1.34.5 @ RYZEN-9, gen: selected polynomial: n: 928039130376997294075273676756416183321451093169220687446225877160602049119530611652403097225967735963517500042558373605611161394481462223571512860662364498136994363760832881036693409 # 4*10^207+17, difficulty: 209.60, anorm: 1.65e+032, rnorm: 1.37e+047 # scaled difficulty: 212.09, suggest sieving rational side # size = 1.696e-014, alpha = 0.357, combined = 6.613e-012, rroots = 1 type: snfs size: 209 skew: 0.5317 c5: 400 c0: 17 Y1: -1 Y0: 100000000000000000000000000000000000000000 m: 100000000000000000000000000000000000000000 07/27/24 15:35:01 v1.34.5 @ RYZEN-9, nfs: commencing msieve filtering 07/27/24 15:37:06 v1.34.5 @ RYZEN-9, nfs: raising min_rels by 5.00 percent to 22139533 07/27/24 17:07:06 v1.34.5 @ RYZEN-9, nfs: commencing msieve filtering 07/27/24 17:09:18 v1.34.5 @ RYZEN-9, nfs: raising min_rels by 5.00 percent to 23249870 07/27/24 18:52:18 v1.34.5 @ RYZEN-9, nfs: commencing msieve filtering 07/27/24 18:54:37 v1.34.5 @ RYZEN-9, nfs: raising min_rels by 5.00 percent to 24502802 07/27/24 20:37:55 v1.34.5 @ RYZEN-9, nfs: commencing msieve filtering 07/27/24 20:40:19 v1.34.5 @ RYZEN-9, nfs: raising min_rels by 5.00 percent to 25745482 07/27/24 22:36:38 v1.34.5 @ RYZEN-9, nfs: commencing msieve filtering 07/27/24 22:39:11 v1.34.5 @ RYZEN-9, nfs: raising min_rels by 5.00 percent to 27126535 07/28/24 00:34:23 v1.34.5 @ RYZEN-9, nfs: commencing msieve filtering 07/28/24 00:38:58 v1.34.5 @ RYZEN-9, nfs: commencing msieve linear algebra 07/28/24 04:31:42 v1.34.5 @ RYZEN-9, nfs: commencing msieve sqrt 07/28/24 04:35:09 v1.34.5 @ RYZEN-9, prp124 = 1280858950694865459084467549985429193104322488579026033937863761513880147389449818432049563048865710983806188653947974476213 07/28/24 04:35:09 v1.34.5 @ RYZEN-9, prp60 = 724544361323732362425227269630182972057138949055445139151293 07/28/24 04:35:09 v1.34.5 @ RYZEN-9, NFS elapsed time = 144447.9737 seconds. 07/28/24 04:35:09 v1.34.5 @ RYZEN-9, 07/28/24 04:35:09 v1.34.5 @ RYZEN-9, |
software ソフトウェア | YAFU |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1418 | 118 | Makoto Kamada | February 25, 2013 15:00:00 UTC 2013 年 2 月 26 日 (火) 0 時 0 分 0 秒 (日本時間) |
1300 | Warut Roonguthai | February 27, 2013 01:03:33 UTC 2013 年 2 月 27 日 (水) 10 時 3 分 33 秒 (日本時間) | |||
40 | 3e6 | 1000 | Dmitry Domanov | March 14, 2013 16:10:37 UTC 2013 年 3 月 15 日 (金) 1 時 10 分 37 秒 (日本時間) | |
45 | 11e6 | 1000 / 4194 | Dmitry Domanov | April 30, 2013 10:41:48 UTC 2013 年 4 月 30 日 (火) 19 時 41 分 48 秒 (日本時間) |
name 名前 | Warut Roonguthai |
---|---|
date 日付 | February 26, 2013 05:47:04 UTC 2013 年 2 月 26 日 (火) 14 時 47 分 4 秒 (日本時間) |
composite number 合成数 | 8628077362214345978977066509866657367942702707455709678507739620789086622635732776530559011490216762299383718814703511593475091815831895492988652578373<151> |
prime factors 素因数 | 1315527919751198638420237031292533<34> 6558642528731845668650262762509381823771258487097692858224969598644754075983903409435466456399674627259297816061390481<118> |
factorization results 素因数分解の結果 | Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1939995436 Step 1 took 6193ms Step 2 took 4836ms ********** Factor found in step 2: 1315527919751198638420237031292533 Found probable prime factor of 34 digits: 1315527919751198638420237031292533 Probable prime cofactor 6558642528731845668650262762509381823771258487097692858224969598644754075983903409435466456399674627259297816061390481 has 118 digits |
software ソフトウェア | GMP-ECM 6.3 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | February 25, 2013 15:00:00 UTC 2013 年 2 月 26 日 (火) 0 時 0 分 0 秒 (日本時間) |
name 名前 | Warut Roonguthai |
---|---|
date 日付 | February 26, 2013 01:14:49 UTC 2013 年 2 月 26 日 (火) 10 時 14 分 49 秒 (日本時間) |
composite number 合成数 | 66269061015125000010896436810483792459089649525685288664020903458428653922509544317539945061541321847241702777770821093667190385107702168851826018530671583002856536339954564692709<179> |
prime factors 素因数 | 44905063312900859885025864971281993<35> |
composite cofactor 合成数の残り | 1475759215689301503451017158486210971220728975652718561234543383900350783096850100830309229149456323878181816188972909019816653647482100132167613<145> |
factorization results 素因数分解の結果 | Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=4072034569 Step 1 took 10561ms Step 2 took 7722ms ********** Factor found in step 2: 44905063312900859885025864971281993 Found probable prime factor of 35 digits: 44905063312900859885025864971281993 Composite cofactor 1475759215689301503451017158486210971220728975652718561234543383900350783096850100830309229149456323878181816188972909019816653647482100132167613 has 145 digits |
software ソフトウェア | GMP-ECM 6.3 |
name 名前 | Warut Roonguthai |
---|---|
date 日付 | February 26, 2013 16:38:53 UTC 2013 年 2 月 27 日 (水) 1 時 38 分 53 秒 (日本時間) |
composite number 合成数 | 1475759215689301503451017158486210971220728975652718561234543383900350783096850100830309229149456323878181816188972909019816653647482100132167613<145> |
prime factors 素因数 | 684122461703760350145416694549625549<36> 2157156500919475422756899141132674000092729892246350741224785479640615174864261190295509611788608818720962737<109> |
factorization results 素因数分解の結果 | Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1443764215 Step 1 took 6505ms Step 2 took 5023ms ********** Factor found in step 2: 684122461703760350145416694549625549 Found probable prime factor of 36 digits: 684122461703760350145416694549625549 Probable prime cofactor 2157156500919475422756899141132674000092729892246350741224785479640615174864261190295509611788608818720962737 has 109 digits |
software ソフトウェア | GMP-ECM 6.3 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | February 25, 2013 15:00:00 UTC 2013 年 2 月 26 日 (火) 0 時 0 分 0 秒 (日本時間) |
name 名前 | Warut Roonguthai |
---|---|
date 日付 | February 26, 2013 19:54:38 UTC 2013 年 2 月 27 日 (水) 4 時 54 分 38 秒 (日本時間) |
composite number 合成数 | 7911421088803800175043365026083141083758209826920495870995389208754651736825645311141879733461756379081422035708822675256776158043674754578041597270741353943<157> |
prime factors 素因数 | 22193339528968567029996206999385331<35> 427891191018827956221289051171705963<36> 424325237268775578122512850851554069747179<42> 1963358625798350755175890543905903401819020789<46> |
factorization results 素因数分解の結果 | Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1494877494 Step 1 took 9594ms Step 2 took 6895ms ********** Factor found in step 2: 22193339528968567029996206999385331 Found probable prime factor of 35 digits: 22193339528968567029996206999385331 Composite cofactor 356477270060108100569410182915313603414548011209760545650751376543634676917754538825639344750380354622470179825468809229453 has 123 digits Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3359162567 Step 1 took 4461ms Step 2 took 3620ms ********** Factor found in step 2: 427891191018827956221289051171705963 Found probable prime factor of 36 digits: 427891191018827956221289051171705963 Composite cofactor 833102614735582348109912829888613343767070687383026236802296378714636802336274575104231 has 87 digits starting SIQS on c87: 833102614735582348109912829888613343767070687383026236802296378714636802336274575104231 ==== sieving in progress ( 4 threads): 59968 relations needed ==== ==== Press ctrl-c to abort and save state ==== 60121 rels found: 18680 full + 41441 from 658608 partial, (1252.92 rels/sec) SIQS elapsed time = 551.4114 seconds. ***factors found*** PRP46 = 1963358625798350755175890543905903401819020789 PRP42 = 424325237268775578122512850851554069747179 |
software ソフトウェア | GMP-ECM 6.3, YAFU 1.24 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | February 25, 2013 15:00:00 UTC 2013 年 2 月 26 日 (火) 0 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | October 7, 2017 11:31:17 UTC 2017 年 10 月 7 日 (土) 20 時 31 分 17 秒 (日本時間) |
composite number 合成数 | 287976961843052555795536357091432685385169186465082793376529877609791216702663786897048236141108711303095752339812814974802015838732901367890568754499640028797696184305255579553635709143268538516918646508279337653<213> |
prime factors 素因数 | 880314681967236545077521810598978228062616030775007018266211580142953538928227959349<84> 327129568257922626194441406597396599703416154753780213399794581501963223712097385343431310912193084617590850204266687464359239297<129> |
factorization results 素因数分解の結果 | Number: n N=287976961843052555795536357091432685385169186465082793376529877609791216702663786897048236141108711303095752339812814974802015838732901367890568754499640028797696184305255579553635709143268538516918646508279337653 ( 213 digits) SNFS difficulty: 216 digits. Divisors found: Sat Oct 7 22:20:08 2017 p84 factor: 880314681967236545077521810598978228062616030775007018266211580142953538928227959349 Sat Oct 7 22:20:08 2017 p129 factor: 327129568257922626194441406597396599703416154753780213399794581501963223712097385343431310912193084617590850204266687464359239297 Sat Oct 7 22:20:08 2017 elapsed time 06:49:22 (Msieve 1.53 - dependency 3) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.118). Factorization parameters were as follows: # # 4x10^215+17 13(214)9 # n: 287976961843052555795536357091432685385169186465082793376529877609791216702663786897048236141108711303095752339812814974802015838732901367890568754499640028797696184305255579553635709143268538516918646508279337653 m: 1000000000000000000000000000000000000 deg: 6 c6: 2 c0: 85 skew: 1.87 # Murphy_E = 2.858e-12 type: snfs lss: 1 rlim: 28000000 alim: 28000000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.6 alambda: 2.6 Factor base limits: 28000000/28000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved special-q in [100000, 67600000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 12102585 hash collisions in 65807723 relations (54675643 unique) Msieve: matrix is 4171648 x 4171873 (1185.1 MB) Sieving start time: 2017/10/06 02:20:57 Sieving end time : 2017/10/07 15:28:57 Total sieving time: 37hrs 8min 0secs. Total relation processing time: 6hrs 10min 22sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 19min 31sec. Prototype def-par.txt line would be: snfs,216,6,0,0,0,0,0,0,0,0,28000000,28000000,29,29,58,58,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- [ 0.178577] smpboot: CPU0: AMD Ryzen 7 1700 Eight-Core Processor (family: 0x17, model: 0x1, stepping: 0x1) [ 0.000000] Memory: 16306368K/16703460K available (9091K kernel code, 1667K rwdata, 3820K rodata, 2232K init, 2364K bss, 397092K reserved, 0K cma-reserved) [ 0.215024] x86/mm: Memory block size: 128MB [ 0.000018] Calibrating delay loop (skipped), value calculated using timer frequency.. 5988.38 BogoMIPS (lpj=11976772) [ 0.212835] smpboot: Total of 16 processors activated (95814.17 BogoMIPS) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1418 | 118 | Makoto Kamada | February 25, 2013 15:00:00 UTC 2013 年 2 月 26 日 (火) 0 時 0 分 0 秒 (日本時間) |
1300 | Warut Roonguthai | February 27, 2013 01:08:26 UTC 2013 年 2 月 27 日 (水) 10 時 8 分 26 秒 (日本時間) | |||
40 | 3e6 | 1000 | Dmitry Domanov | March 14, 2013 16:10:49 UTC 2013 年 3 月 15 日 (金) 1 時 10 分 49 秒 (日本時間) | |
45 | 11e6 | 4950 | 1000 | Dmitry Domanov | April 30, 2013 10:42:05 UTC 2013 年 4 月 30 日 (火) 19 時 42 分 5 秒 (日本時間) |
850 | Serge Batalov | November 8, 2013 17:14:25 UTC 2013 年 11 月 9 日 (土) 2 時 14 分 25 秒 (日本時間) | |||
400 | Serge Batalov | January 6, 2014 02:27:39 UTC 2014 年 1 月 6 日 (月) 11 時 27 分 39 秒 (日本時間) | |||
1800 | Serge Batalov | May 24, 2014 09:17:14 UTC 2014 年 5 月 24 日 (土) 18 時 17 分 14 秒 (日本時間) | |||
900 | Serge Batalov | May 24, 2014 19:03:28 UTC 2014 年 5 月 25 日 (日) 4 時 3 分 28 秒 (日本時間) |
name 名前 | Warut Roonguthai |
---|---|
date 日付 | February 26, 2013 05:49:08 UTC 2013 年 2 月 26 日 (火) 14 時 49 分 8 秒 (日本時間) |
composite number 合成数 | 806224537161609925591521904012115942344464673961789391173494078381552615120297770970555269009917972700027834902145504582681047293736018302909442642868530778730264883056123104037028280542758420662567418007468461<210> |
prime factors 素因数 | 45506960779488370139086950232737142957<38> |
composite cofactor 合成数の残り | 17716510251438378330378360676753159541825229491740209882627041041003530762820140223360727427744175570190737402607704994427658328819265709069331284888282956012776245650031873<173> |
factorization results 素因数分解の結果 | Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2876152275 Step 1 took 12215ms Step 2 took 7285ms ********** Factor found in step 2: 45506960779488370139086950232737142957 Found probable prime factor of 38 digits: 45506960779488370139086950232737142957 Composite cofactor 17716510251438378330378360676753159541825229491740209882627041041003530762820140223360727427744175570190737402607704994427658328819265709069331284888282956012776245650031873 has 173 digits |
software ソフトウェア | GMP-ECM 6.3 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1418 | 118 | Makoto Kamada | February 25, 2013 15:00:00 UTC 2013 年 2 月 26 日 (火) 0 時 0 分 0 秒 (日本時間) |
1300 | Warut Roonguthai | February 27, 2013 01:08:59 UTC 2013 年 2 月 27 日 (水) 10 時 8 分 59 秒 (日本時間) | |||
40 | 3e6 | 1000 | Dmitry Domanov | March 14, 2013 16:10:57 UTC 2013 年 3 月 15 日 (金) 1 時 10 分 57 秒 (日本時間) | |
45 | 11e6 | 4203 | 1000 | Dmitry Domanov | April 22, 2013 15:27:08 UTC 2013 年 4 月 23 日 (火) 0 時 27 分 8 秒 (日本時間) |
3203 | Thomas Kozlowski | November 20, 2024 01:38:41 UTC 2024 年 11 月 20 日 (水) 10 時 38 分 41 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | April 23, 2013 05:06:36 UTC 2013 年 4 月 23 日 (火) 14 時 6 分 36 秒 (日本時間) |
composite number 合成数 | 11729928800420713199843412546477960320556255074799900843465955569122628777117245089792148188889872661732683009671620980376615968481210580059010302073097568405405845974801763987<176> |
prime factors 素因数 | 1190382690154584465838512609284824119220039<43> |
composite cofactor 合成数の残り | 9853914121430521766881118762609447747053245635715713619430325755334308371898991918812311681630256775090480506473553693033069049269333<133> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=3332573258 Step 1 took 88767ms Step 2 took 36198ms ********** Factor found in step 2: 1190382690154584465838512609284824119220039 Found probable prime factor of 43 digits: 1190382690154584465838512609284824119220039 |
name 名前 | Erik Branger |
---|---|
date 日付 | June 27, 2013 06:45:47 UTC 2013 年 6 月 27 日 (木) 15 時 45 分 47 秒 (日本時間) |
composite number 合成数 | 9853914121430521766881118762609447747053245635715713619430325755334308371898991918812311681630256775090480506473553693033069049269333<133> |
prime factors 素因数 | 2169417881214597366886174931032831188432714431<46> 4542192726794335465248024947777241718576878824905035284540119810206396537171918294884843<88> |
factorization results 素因数分解の結果 | Number: 13339_218 N = 9853914121430521766881118762609447747053245635715713619430325755334308371898991918812311681630256775090480506473553693033069049269333 (133 digits) Divisors found: r1=2169417881214597366886174931032831188432714431 (pp46) r2=4542192726794335465248024947777241718576878824905035284540119810206396537171918294884843 (pp88) Version: Msieve v. 1.51 (SVN 845) Total time: 111.17 hours. Factorization parameters were as follows: # Murphy_E = 5.709e-11, selected by Dmitry Domanov n: 9853914121430521766881118762609447747053245635715713619430325755334308371898991918812311681630256775090480506473553693033069049269333 Y0: -42633562593145193968588855 Y1: 190837801667423 c0: -2861525833686651232537970917824 c1: 147962461930660481960278678 c2: -1407687775808248023519 c3: -24710685436508618 c4: 30459615238 c5: 69960 skew: 209856.5 type: gnfs # selected mechanically rlim: 11800000 alim: 11800000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.6 alambda: 2.6 Factor base limits: 11800000/11800000 Large primes per side: 3 Large prime bits: 28/28 Sieved algebraic special-q in [0, 0) Total raw relations: 19781898 Relations: 3088120 relations Pruned matrix : 1805868 x 1806116 Polynomial selection time: 0.00 hours. Total sieving time: 106.99 hours. Total relation processing time: 0.12 hours. Matrix solve time: 2.26 hours. time per square root: 1.80 hours. Prototype def-par.txt line would be: gnfs,132,5,65,2000,1e-05,0.28,250,20,50000,3600,11800000,11800000,28,28,54,54,2.6,2.6,100000 total time: 111.17 hours. Intel64 Family 6 Model 58 Stepping 9, GenuineIntel Windows-7-6.1.7601-SP1 processors: 8, speed: 2.29GHz |
software ソフトウェア | GGNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1418 | 118 | Makoto Kamada | February 25, 2013 15:00:00 UTC 2013 年 2 月 26 日 (火) 0 時 0 分 0 秒 (日本時間) |
1300 | Warut Roonguthai | February 27, 2013 01:08:46 UTC 2013 年 2 月 27 日 (水) 10 時 8 分 46 秒 (日本時間) | |||
40 | 3e6 | 1000 | Dmitry Domanov | March 14, 2013 16:11:06 UTC 2013 年 3 月 15 日 (金) 1 時 11 分 6 秒 (日本時間) | |
45 | 11e6 | 1000 / 4194 | Dmitry Domanov | April 22, 2013 15:27:21 UTC 2013 年 4 月 23 日 (火) 0 時 27 分 21 秒 (日本時間) |
name 名前 | Erik Branger |
---|---|
date 日付 | November 18, 2018 22:36:59 UTC 2018 年 11 月 19 日 (月) 7 時 36 分 59 秒 (日本時間) |
composite number 合成数 | 2760851795491462854149162206267118432493522408244843200071657466615693639745384841197710056176420175142409586082947858080815669908609104291711972874449997418593218021249138384830277781970763924434697582040689771<211> |
prime factors 素因数 | 14374645698789066408938113987611318525311479583973833360040899<62> 192063989147505707931376868389685592588518613296074098702509068601936373277303662205390532984914161824538996569139836866056981658040879749242002166329<150> |
factorization results 素因数分解の結果 | Number: 13339_220 N = 2760851795491462854149162206267118432493522408244843200071657466615693639745384841197710056176420175142409586082947858080815669908609104291711972874449997418593218021249138384830277781970763924434697582040689771 (211 digits) SNFS difficulty: 221 digits. Divisors found: r1=14374645698789066408938113987611318525311479583973833360040899 (pp62) r2=192063989147505707931376868389685592588518613296074098702509068601936373277303662205390532984914161824538996569139836866056981658040879749242002166329 (pp150) Version: Msieve v. 1.52 (SVN unknown) Total time: 30.55 hours. Factorization parameters were as follows: n: 2760851795491462854149162206267118432493522408244843200071657466615693639745384841197710056176420175142409586082947858080815669908609104291711972874449997418593218021249138384830277781970763924434697582040689771 m: 10000000000000000000000000000000000000000000000000000000 deg: 4 c4: 4 c0: 17 skew: 1.00 type: snfs lss: 1 rlim: 536870912 alim: 536870912 lpbr: 29 lpba: 28 mfbr: 58 mfba: 56 rlambda: 2.8 alambda: 2.8 side: 1 Number of cores used: 6 Number of threads per core: 1 Factor base limits: 536870912/536870912 Large primes per side: 3 Large prime bits: 29/28 Total raw relations: 30903383 Relations: 7751610 relations Total pre-computation time approximately 1000 CPU-days. Pre-computation saved approximately 18 G rational relations. Total batch smoothness checking time: 13.55 hours. Total relation processing time: 0.24 hours. Pruned matrix : 6741310 x 6741536 Matrix solve time: 16.39 hours. time per square root: 0.37 hours. Prototype def-par.txt line would be: snfs,221,4,0,0,0,0,0,0,0,0,536870912,536870912,29,28,58,56,2.8,2.8,100000 total time: 30.55 hours. Intel64 Family 6 Model 158 Stepping 10, GenuineIntel Windows-10-10.0.17134-SP0 processors: 12, speed: 3.19GHz |
software ソフトウェア | GGNFs, NFS_factory, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1418 | 118 | Makoto Kamada | February 25, 2013 15:00:00 UTC 2013 年 2 月 26 日 (火) 0 時 0 分 0 秒 (日本時間) |
1300 | Warut Roonguthai | February 27, 2013 01:09:15 UTC 2013 年 2 月 27 日 (水) 10 時 9 分 15 秒 (日本時間) | |||
40 | 3e6 | 1000 | Dmitry Domanov | March 14, 2013 16:11:16 UTC 2013 年 3 月 15 日 (金) 1 時 11 分 16 秒 (日本時間) | |
45 | 11e6 | 1000 / 4194 | Dmitry Domanov | April 30, 2013 10:42:36 UTC 2013 年 4 月 30 日 (火) 19 時 42 分 36 秒 (日本時間) |
name 名前 | Erik Branger |
---|---|
date 日付 | May 18, 2020 12:20:52 UTC 2020 年 5 月 18 日 (月) 21 時 20 分 52 秒 (日本時間) |
composite number 合成数 | 604632560380939888482114813561795070588572601952021352657364905930439031489378681249985549546823453239790300502338344765045430420585548618464704708963020884957672678344220104486465178862741850479497<198> |
prime factors 素因数 | 1397180625722594178349766166532403715572352751941216866587<58> 432751892811450838768050061620688854901456710254072993966942834610770314254427741751858816846606248169199774311650126326942217781595915301931<141> |
factorization results 素因数分解の結果 | Number: 13339_221 N = 604632560380939888482114813561795070588572601952021352657364905930439031489378681249985549546823453239790300502338344765045430420585548618464704708963020884957672678344220104486465178862741850479497 (198 digits) SNFS difficulty: 222 digits. Divisors found: r1=1397180625722594178349766166532403715572352751941216866587 (pp58) r2=432751892811450838768050061620688854901456710254072993966942834610770314254427741751858816846606248169199774311650126326942217781595915301931 (pp141) Version: Msieve v. 1.52 (SVN unknown) Total time: 57.28 hours. Factorization parameters were as follows: n: 604632560380939888482114813561795070588572601952021352657364905930439031489378681249985549546823453239790300502338344765045430420585548618464704708963020884957672678344220104486465178862741850479497 m: 10000000000000000000000000000000000000000000000000000000 deg: 4 c4: 40 c0: 17 skew: 1.00 type: snfs lss: 1 rlim: 536870912 alim: 44739242 lpbr: 29 lpba: 28 mfbr: 58 mfba: 56 rlambda: 2.8 alambda: 2.8 side: 1 Number of cores used: 6 Number of threads per core: 1 Factor base limits: 536870912/44739242 Large primes per side: 3 Large prime bits: 29/28 Total raw relations: 36776224 Relations: 6951450 relations Total pre-computation time approximately 1000 CPU-days. Pre-computation saved approximately 18 G rational relations. Total batch smoothness checking time: 25.39 hours. Total relation processing time: 0.49 hours. Pruned matrix : 6388967 x 6389192 Matrix solve time: 31.22 hours. time per square root: 0.17 hours. Prototype def-par.txt line would be: snfs,222,4,0,0,0,0,0,0,0,0,536870912,44739242,29,28,58,56,2.8,2.8,100000 total time: 57.28 hours. Intel64 Family 6 Model 158 Stepping 10, GenuineIntel Windows-10-10.0.18362-SP0 processors: 12, speed: 3.19GHz |
software ソフトウェア | GGNFS, NFS_factory, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1418 | 118 | Makoto Kamada | February 25, 2013 15:00:00 UTC 2013 年 2 月 26 日 (火) 0 時 0 分 0 秒 (日本時間) |
1300 | Warut Roonguthai | February 27, 2013 01:09:25 UTC 2013 年 2 月 27 日 (水) 10 時 9 分 25 秒 (日本時間) | |||
40 | 3e6 | 1000 | Dmitry Domanov | March 14, 2013 16:11:25 UTC 2013 年 3 月 15 日 (金) 1 時 11 分 25 秒 (日本時間) | |
45 | 11e6 | 1000 / 4194 | Dmitry Domanov | April 30, 2013 10:42:50 UTC 2013 年 4 月 30 日 (火) 19 時 42 分 50 秒 (日本時間) |
name 名前 | Erik Branger |
---|---|
date 日付 | May 24, 2020 20:08:45 UTC 2020 年 5 月 25 日 (月) 5 時 8 分 45 秒 (日本時間) |
composite number 合成数 | 578996901001666330216932063410797094873653188852853481332356146968748420848743738492218212978910414927858740318173064553940323832714361490788302407138362495940040822239157938400396567150157<189> |
prime factors 素因数 | 22889158105519327021739591605150094493060287277264176713826291<62> 2862400480892198534048489401724880948409443391212365700328359539<64> 8837227269731976093680768129817393961300835836009407873304085893<64> |
factorization results 素因数分解の結果 | Number: 13339_222 N = 578996901001666330216932063410797094873653188852853481332356146968748420848743738492218212978910414927858740318173064553940323832714361490788302407138362495940040822239157938400396567150157 (189 digits) SNFS difficulty: 223 digits. Divisors found: r1=22889158105519327021739591605150094493060287277264176713826291 (pp62) r2=2862400480892198534048489401724880948409443391212365700328359539 (pp64) r3=8837227269731976093680768129817393961300835836009407873304085893 (pp64) Version: Msieve v. 1.52 (SVN unknown) Total time: 68.19 hours. Factorization parameters were as follows: n: 578996901001666330216932063410797094873653188852853481332356146968748420848743738492218212978910414927858740318173064553940323832714361490788302407138362495940040822239157938400396567150157 m: 10000000000000000000000000000000000000000000000000000000 deg: 4 c4: 400 c0: 17 skew: 1.00 type: snfs lss: 1 rlim: 536870912 alim: 44739242 lpbr: 29 lpba: 28 mfbr: 58 mfba: 56 rlambda: 2.8 alambda: 2.8 side: 1 Number of cores used: 6 Number of threads per core: 1 Factor base limits: 536870912/44739242 Large primes per side: 3 Large prime bits: 29/28 Total raw relations: 36030646 Relations: 8078200 relations Total pre-computation time approximately 1000 CPU-days. Pre-computation saved approximately 18 G rational relations. Total batch smoothness checking time: 32.27 hours. Total relation processing time: 0.47 hours. Pruned matrix : 7216016 x 7216241 Matrix solve time: 34.52 hours. time per square root: 0.93 hours. Prototype def-par.txt line would be: snfs,223,4,0,0,0,0,0,0,0,0,536870912,44739242,29,28,58,56,2.8,2.8,100000 total time: 68.19 hours. Intel64 Family 6 Model 158 Stepping 10, GenuineIntel Windows-10-10.0.18362-SP0 processors: 12, speed: 3.19GHz |
software ソフトウェア | GGNFS, NFS_factory, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1418 | 118 | Makoto Kamada | February 25, 2013 15:00:00 UTC 2013 年 2 月 26 日 (火) 0 時 0 分 0 秒 (日本時間) |
1300 | Warut Roonguthai | February 27, 2013 01:09:31 UTC 2013 年 2 月 27 日 (水) 10 時 9 分 31 秒 (日本時間) | |||
40 | 3e6 | 1000 | Dmitry Domanov | March 14, 2013 16:11:33 UTC 2013 年 3 月 15 日 (金) 1 時 11 分 33 秒 (日本時間) | |
45 | 11e6 | 1000 / 4194 | Dmitry Domanov | April 22, 2013 15:27:52 UTC 2013 年 4 月 23 日 (火) 0 時 27 分 52 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | May 31, 2020 02:49:19 UTC 2020 年 5 月 31 日 (日) 11 時 49 分 19 秒 (日本時間) |
composite number 合成数 | 50377689028326607540312595147317970992075777172735855150521916447743806922388425732998618425883338236908667016789086529085172741462187310769199163043714228322223170036459882663737586920106089720414795634573246270057<215> |
prime factors 素因数 | 15100054452195538146146745355790270623870899057395900926053332143740529752864787<80> 3336258765676286959008538618984569971093955932221165838237465130971638614314612400706516537740183902833870756931064477699371660871400211<136> |
factorization results 素因数分解の結果 | Number: n N=50377689028326607540312595147317970992075777172735855150521916447743806922388425732998618425883338236908667016789086529085172741462187310769199163043714228322223170036459882663737586920106089720414795634573246270057 ( 215 digits) SNFS difficulty: 223 digits. Divisors found: Sun May 31 12:35:16 2020 p80 factor: 15100054452195538146146745355790270623870899057395900926053332143740529752864787 Sun May 31 12:35:16 2020 p136 factor: 3336258765676286959008538618984569971093955932221165838237465130971638614314612400706516537740183902833870756931064477699371660871400211 Sun May 31 12:35:16 2020 elapsed time 14:09:48 (Msieve 1.54 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.119). Factorization parameters were as follows: # # N = 4x10^223+17 = 13(222)9 # n: 50377689028326607540312595147317970992075777172735855150521916447743806922388425732998618425883338236908667016789086529085172741462187310769199163043714228322223170036459882663737586920106089720414795634573246270057 m: 10000000000000000000000000000000000000 deg: 6 c6: 40 c0: 17 skew: 0.87 # Murphy_E = 1.958e-12 type: snfs lss: 1 rlim: 37000000 alim: 37000000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.6 alambda: 2.6 Factor base limits: 37000000/37000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved special-q in [100000, 101700000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 10319460 hash collisions in 59682812 relations (51458104 unique) Msieve: matrix is 5138571 x 5138796 (1796.1 MB) Sieving start time: 2020/05/28 18:03:04 Sieving end time : 2020/05/30 22:24:29 Total sieving time: 52hrs 21min 25secs. Total relation processing time: 13hrs 39min 16sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 10min 17sec. Prototype def-par.txt line would be: snfs,223,6,0,0,0,0,0,0,0,0,37000000,37000000,29,29,58,58,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- [ 0.149558] smpboot: CPU0: AMD Ryzen 7 1700 Eight-Core Processor (family: 0x17, model: 0x1, stepping: 0x1) [ 0.000000] Memory: 16283204K/16703460K available (12300K kernel code, 2481K rwdata, 4268K rodata, 2432K init, 2712K bss, 420256K reserved, 0K cma-reserved) [ 0.184558] x86/mm: Memory block size: 128MB [ 0.024000] Calibrating delay loop (skipped), value calculated using timer frequency.. 5988.59 BogoMIPS (lpj=11977184) [ 0.182227] smpboot: Total of 16 processors activated (95817.47 BogoMIPS) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1418 | 118 | Makoto Kamada | February 25, 2013 15:00:00 UTC 2013 年 2 月 26 日 (火) 0 時 0 分 0 秒 (日本時間) |
1300 | Warut Roonguthai | February 27, 2013 01:09:38 UTC 2013 年 2 月 27 日 (水) 10 時 9 分 38 秒 (日本時間) | |||
40 | 3e6 | 1000 | Dmitry Domanov | March 14, 2013 16:11:42 UTC 2013 年 3 月 15 日 (金) 1 時 11 分 42 秒 (日本時間) | |
45 | 11e6 | 1000 / 4194 | Dmitry Domanov | April 30, 2013 10:43:14 UTC 2013 年 4 月 30 日 (火) 19 時 43 分 14 秒 (日本時間) |
name 名前 | Warut Roonguthai |
---|---|
date 日付 | February 28, 2013 00:07:18 UTC 2013 年 2 月 28 日 (木) 9 時 7 分 18 秒 (日本時間) |
composite number 合成数 | 348012942129580446093520605409169756078100822650522404895095418079192134895181078491159074973097419005241939170509986709811401320301446834799686106891908119375327197<165> |
prime factors 素因数 | 38131919551035411952471249802598690323<38> 9126551881653980495466746013921884019128365653678387538209716512710462214973006510601188574357504713331939575769040922687580239<127> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3551303674 Step 1 took 19360ms Step 2 took 11388ms ********** Factor found in step 2: 38131919551035411952471249802598690323 Found probable prime factor of 38 digits: 38131919551035411952471249802598690323 Probable prime cofactor 9126551881653980495466746013921884019128365653678387538209716512710462214973006510601188574357504713331939575769040922687580239 has 127 digits |
software ソフトウェア | GMP-ECM 6.3 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1418 | 118 | Makoto Kamada | February 25, 2013 15:00:00 UTC 2013 年 2 月 26 日 (火) 0 時 0 分 0 秒 (日本時間) |
1300 | Warut Roonguthai | February 27, 2013 01:09:47 UTC 2013 年 2 月 27 日 (水) 10 時 9 分 47 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1418 | 118 | Makoto Kamada | February 25, 2013 15:00:00 UTC 2013 年 2 月 26 日 (火) 0 時 0 分 0 秒 (日本時間) |
1300 | Warut Roonguthai | February 27, 2013 01:10:07 UTC 2013 年 2 月 27 日 (水) 10 時 10 分 7 秒 (日本時間) | |||
40 | 3e6 | 1000 | Dmitry Domanov | March 14, 2013 16:11:51 UTC 2013 年 3 月 15 日 (金) 1 時 11 分 51 秒 (日本時間) | |
45 | 11e6 | 4206 | 1000 | Dmitry Domanov | April 30, 2013 10:43:26 UTC 2013 年 4 月 30 日 (火) 19 時 43 分 26 秒 (日本時間) |
3206 | Thomas Kozlowski | November 20, 2024 02:34:30 UTC 2024 年 11 月 20 日 (水) 11 時 34 分 30 秒 (日本時間) |
name 名前 | Warut Roonguthai |
---|---|
date 日付 | February 25, 2013 23:25:25 UTC 2013 年 2 月 26 日 (火) 8 時 25 分 25 秒 (日本時間) |
composite number 合成数 | 108630955448891821072439953153018544513975107919775944989830009506121400538932519588012345705479171547736747318468083931889125898000108754973979180048419967304225535688135319487601732557197427648936474064035857791899<216> |
prime factors 素因数 | 218793315539956981733714541967<30> 496500339513586127249452115149184103662034456925019938650660515552739531167850881862975632201948963228404895189980206112085138787827686713406853609968962330992388579997358630829255193397<186> |
factorization results 素因数分解の結果 | Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3840353110 Step 1 took 14103ms Step 2 took 7909ms ********** Factor found in step 2: 218793315539956981733714541967 Found probable prime factor of 30 digits: 218793315539956981733714541967 Probable prime cofactor 496500339513586127249452115149184103662034456925019938650660515552739531167850881862975632201948963228404895189980206112085138787827686713406853609968962330992388579997358630829255193397 has 186 digits |
software ソフトウェア | GMP-ECM 6.3 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | February 25, 2013 15:00:00 UTC 2013 年 2 月 26 日 (火) 0 時 0 分 0 秒 (日本時間) |
composite cofactor 合成数の残り | 50504081081307048504075103448851552652365404306061751822627693012807824191406634664138404429287299330386132061050385880191434311235805125844048583572971564951259605219<167> |
---|
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1418 | 118 | Makoto Kamada | February 25, 2013 15:00:00 UTC 2013 年 2 月 26 日 (火) 0 時 0 分 0 秒 (日本時間) |
1300 | Warut Roonguthai | February 27, 2013 01:10:13 UTC 2013 年 2 月 27 日 (水) 10 時 10 分 13 秒 (日本時間) | |||
40 | 3e6 | 2500 | Warut Roonguthai | February 28, 2013 05:37:38 UTC 2013 年 2 月 28 日 (木) 14 時 37 分 38 秒 (日本時間) | |
45 | 11e6 | 4002 | 1000 | Dmitry Domanov | April 22, 2013 15:28:20 UTC 2013 年 4 月 23 日 (火) 0 時 28 分 20 秒 (日本時間) |
1000 | Dmitry Domanov | May 21, 2013 13:38:12 UTC 2013 年 5 月 21 日 (火) 22 時 38 分 12 秒 (日本時間) | |||
2002 | Thomas Kozlowski | November 20, 2024 03:05:14 UTC 2024 年 11 月 20 日 (水) 12 時 5 分 14 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1418 | 118 | Makoto Kamada | February 25, 2013 15:00:00 UTC 2013 年 2 月 26 日 (火) 0 時 0 分 0 秒 (日本時間) |
1300 | Warut Roonguthai | February 27, 2013 01:10:19 UTC 2013 年 2 月 27 日 (水) 10 時 10 分 19 秒 (日本時間) | |||
40 | 3e6 | 1000 | Dmitry Domanov | March 14, 2013 16:12:07 UTC 2013 年 3 月 15 日 (金) 1 時 12 分 7 秒 (日本時間) | |
45 | 11e6 | 4204 | 1000 | Dmitry Domanov | April 30, 2013 10:43:43 UTC 2013 年 4 月 30 日 (火) 19 時 43 分 43 秒 (日本時間) |
3204 | Thomas Kozlowski | November 20, 2024 04:08:47 UTC 2024 年 11 月 20 日 (水) 13 時 8 分 47 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1418 | 118 | Makoto Kamada | February 25, 2013 15:00:00 UTC 2013 年 2 月 26 日 (火) 0 時 0 分 0 秒 (日本時間) |
1300 | Warut Roonguthai | February 27, 2013 01:10:27 UTC 2013 年 2 月 27 日 (水) 10 時 10 分 27 秒 (日本時間) | |||
40 | 3e6 | 1000 | Dmitry Domanov | March 14, 2013 16:12:18 UTC 2013 年 3 月 15 日 (金) 1 時 12 分 18 秒 (日本時間) | |
45 | 11e6 | 4200 | 1000 | Dmitry Domanov | April 30, 2013 10:43:54 UTC 2013 年 4 月 30 日 (火) 19 時 43 分 54 秒 (日本時間) |
3200 | Thomas Kozlowski | November 20, 2024 05:21:12 UTC 2024 年 11 月 20 日 (水) 14 時 21 分 12 秒 (日本時間) |
name 名前 | Thomas Kozlowski |
---|---|
date 日付 | November 20, 2024 05:47:12 UTC 2024 年 11 月 20 日 (水) 14 時 47 分 12 秒 (日本時間) |
composite number 合成数 | 31700882205756382636198715790355963067957888636861280403898156661052049800856528036508489416342283922924066469086838328716325821116018770537737891581588810956361965684202504047418664878744803236536136596554681461<212> |
prime factors 素因数 | 1906130639910657771273119580858403457713817<43> |
composite cofactor 合成数の残り | 16631012346164392145330241931274189541536670674023426403908042684378853571592811888203242431864133186853229212257057902183995754926128015377972783134103576264554748201533<170> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.6 [configured with GMP 6.3.0, --enable-asm-redc] [ECM] Input number is 31700882205756382636198715790355963067957888636861280403898156661052049800856528036508489416342283922924066469086838328716325821116018770537737891581588810956361965684202504047418664878744803236536136596554681461 (212 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:2326845156 Step 1 took 34813ms Step 2 took 15427ms Run 2 out of 0: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:3604481034 Step 1 took 37375ms Step 2 took 17848ms Run 3 out of 0: ... Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:3280787724 Step 1 took 37825ms Step 2 took 15260ms Run 22 out of 0: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:958265510 Step 1 took 39684ms Step 2 took 16355ms ** Factor found in step 2: 1906130639910657771273119580858403457713817 Found prime factor of 43 digits: 1906130639910657771273119580858403457713817 Composite cofactor 16631012346164392145330241931274189541536670674023426403908042684378853571592811888203242431864133186853229212257057902183995754926128015377972783134103576264554748201533 has 170 digits |
execution environment 実行環境 | 2x Xeon E5-2698v4, 128GB DDR4, Ubuntu Server 24.04 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1418 | 118 | Makoto Kamada | February 25, 2013 15:00:00 UTC 2013 年 2 月 26 日 (火) 0 時 0 分 0 秒 (日本時間) |
1300 | Warut Roonguthai | February 27, 2013 01:10:42 UTC 2013 年 2 月 27 日 (水) 10 時 10 分 42 秒 (日本時間) | |||
40 | 3e6 | 1000 | Dmitry Domanov | March 14, 2013 16:12:27 UTC 2013 年 3 月 15 日 (金) 1 時 12 分 27 秒 (日本時間) | |
45 | 11e6 | 1000 / 4194 | Dmitry Domanov | April 30, 2013 10:44:07 UTC 2013 年 4 月 30 日 (火) 19 時 44 分 7 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1418 | 118 | Makoto Kamada | February 25, 2013 15:00:00 UTC 2013 年 2 月 26 日 (火) 0 時 0 分 0 秒 (日本時間) |
1300 | Warut Roonguthai | February 27, 2013 01:10:49 UTC 2013 年 2 月 27 日 (水) 10 時 10 分 49 秒 (日本時間) | |||
40 | 3e6 | 1000 | Dmitry Domanov | March 14, 2013 16:12:35 UTC 2013 年 3 月 15 日 (金) 1 時 12 分 35 秒 (日本時間) | |
45 | 11e6 | 4205 | 1000 | Dmitry Domanov | April 22, 2013 15:28:50 UTC 2013 年 4 月 23 日 (火) 0 時 28 分 50 秒 (日本時間) |
3205 | Thomas Kozlowski | November 20, 2024 06:37:03 UTC 2024 年 11 月 20 日 (水) 15 時 37 分 3 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1418 | 118 | Makoto Kamada | February 25, 2013 15:00:00 UTC 2013 年 2 月 26 日 (火) 0 時 0 分 0 秒 (日本時間) |
1300 | Warut Roonguthai | February 27, 2013 01:10:57 UTC 2013 年 2 月 27 日 (水) 10 時 10 分 57 秒 (日本時間) | |||
40 | 3e6 | 1000 | Dmitry Domanov | March 14, 2013 16:12:43 UTC 2013 年 3 月 15 日 (金) 1 時 12 分 43 秒 (日本時間) | |
45 | 11e6 | 4200 | 1000 | Dmitry Domanov | April 30, 2013 10:44:28 UTC 2013 年 4 月 30 日 (火) 19 時 44 分 28 秒 (日本時間) |
3200 | Thomas Kozlowski | November 20, 2024 07:49:24 UTC 2024 年 11 月 20 日 (水) 16 時 49 分 24 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1418 | 118 | Makoto Kamada | February 25, 2013 15:00:00 UTC 2013 年 2 月 26 日 (火) 0 時 0 分 0 秒 (日本時間) |
1300 | Warut Roonguthai | February 27, 2013 01:11:03 UTC 2013 年 2 月 27 日 (水) 10 時 11 分 3 秒 (日本時間) | |||
40 | 3e6 | 1000 | Dmitry Domanov | March 14, 2013 16:12:52 UTC 2013 年 3 月 15 日 (金) 1 時 12 分 52 秒 (日本時間) | |
45 | 11e6 | 4200 | 1000 | Dmitry Domanov | April 30, 2013 10:44:39 UTC 2013 年 4 月 30 日 (火) 19 時 44 分 39 秒 (日本時間) |
3200 | Thomas Kozlowski | November 20, 2024 08:52:55 UTC 2024 年 11 月 20 日 (水) 17 時 52 分 55 秒 (日本時間) |
name 名前 | Warut Roonguthai |
---|---|
date 日付 | February 26, 2013 15:14:39 UTC 2013 年 2 月 27 日 (水) 0 時 14 分 39 秒 (日本時間) |
composite number 合成数 | 87414497694442623309075810223125505365064795996416005594527852444327891780851854280032343364146943770624358049782556436985073974518673922069975305404401319958915186083611967044734369195131012478419545881684477370571909351165890863<230> |
prime factors 素因数 | 982947940843476676377651778898755205321<39> |
composite cofactor 合成数の残り | 88930953575660821019658654138918047983331990760974002883455183417509598457553811220722942853609567205700024540643650524187698595232413456650034323234506886372416971737783828129543427508366903<191> |
factorization results 素因数分解の結果 | Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3407149506 Step 1 took 11685ms Step 2 took 6770ms ********** Factor found in step 2: 982947940843476676377651778898755205321 Found probable prime factor of 39 digits: 982947940843476676377651778898755205321 Composite cofactor 88930953575660821019658654138918047983331990760974002883455183417509598457553811220722942853609567205700024540643650524187698595232413456650034323234506886372416971737783828129543427508366903 has 191 digits |
software ソフトウェア | GMP-ECM 6.3 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1418 | 118 | Makoto Kamada | February 25, 2013 15:00:00 UTC 2013 年 2 月 26 日 (火) 0 時 0 分 0 秒 (日本時間) |
1300 | Warut Roonguthai | February 27, 2013 01:11:09 UTC 2013 年 2 月 27 日 (水) 10 時 11 分 9 秒 (日本時間) | |||
40 | 3e6 | 1000 | Dmitry Domanov | March 14, 2013 16:13:02 UTC 2013 年 3 月 15 日 (金) 1 時 13 分 2 秒 (日本時間) | |
45 | 11e6 | 4202 | 1000 | Dmitry Domanov | April 30, 2013 10:44:54 UTC 2013 年 4 月 30 日 (火) 19 時 44 分 54 秒 (日本時間) |
3202 | Thomas Kozlowski | November 20, 2024 09:48:31 UTC 2024 年 11 月 20 日 (水) 18 時 48 分 31 秒 (日本時間) |
name 名前 | Warut Roonguthai |
---|---|
date 日付 | February 25, 2013 23:33:54 UTC 2013 年 2 月 26 日 (火) 8 時 33 分 54 秒 (日本時間) |
composite number 合成数 | 154126574872573561499543101140034675647274242369991115256705421952502306921742479747837148198677996374932888052931410043194958750576257912510414918669389738823689870817273041557003576464255153637170880637919<207> |
prime factors 素因数 | 279173954567957078739430111321<30> |
composite cofactor 合成数の残り | 552080780999417208866594446474273576496929867230926797926022230674313938400129102621081663960445659342210756994335291079274825897070748182705687768143800991899015128991467208439<177> |
factorization results 素因数分解の結果 | Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2782515125 Step 1 took 9891ms Step 2 took 6006ms ********** Factor found in step 2: 279173954567957078739430111321 Found probable prime factor of 30 digits: 279173954567957078739430111321 Composite cofactor 552080780999417208866594446474273576496929867230926797926022230674313938400129102621081663960445659342210756994335291079274825897070748182705687768143800991899015128991467208439 has 177 digits |
software ソフトウェア | GMP-ECM 6.3 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1418 | 118 | Makoto Kamada | February 25, 2013 15:00:00 UTC 2013 年 2 月 26 日 (火) 0 時 0 分 0 秒 (日本時間) |
1300 | Warut Roonguthai | February 27, 2013 01:11:24 UTC 2013 年 2 月 27 日 (水) 10 時 11 分 24 秒 (日本時間) | |||
40 | 3e6 | 1000 | Dmitry Domanov | March 14, 2013 16:13:10 UTC 2013 年 3 月 15 日 (金) 1 時 13 分 10 秒 (日本時間) | |
45 | 11e6 | 4205 | 1000 | Dmitry Domanov | April 30, 2013 10:45:09 UTC 2013 年 4 月 30 日 (火) 19 時 45 分 9 秒 (日本時間) |
3205 | Thomas Kozlowski | November 20, 2024 10:44:03 UTC 2024 年 11 月 20 日 (水) 19 時 44 分 3 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | May 6, 2013 05:48:17 UTC 2013 年 5 月 6 日 (月) 14 時 48 分 17 秒 (日本時間) |
composite number 合成数 | 453392474088027957091375737368046183385464298030661525277728337484066838166527190044973939207604877042617105402997733399184085415364926089220918431566374269917488412813984476923759726068367<189> |
prime factors 素因数 | 3779683607508808062887838761320810553<37> 119955139416248449753258336669342087979421293328019456767829672847935676316913190812670172406553335529467039245731217140587141091804712602062676753125639<153> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=3961915051 Step 1 took 70647ms Step 2 took 27477ms ********** Factor found in step 2: 3779683607508808062887838761320810553 Found probable prime factor of 37 digits: 3779683607508808062887838761320810553 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1418 | 118 | Makoto Kamada | February 25, 2013 15:00:00 UTC 2013 年 2 月 26 日 (火) 0 時 0 分 0 秒 (日本時間) |
1300 | Warut Roonguthai | February 27, 2013 01:11:36 UTC 2013 年 2 月 27 日 (水) 10 時 11 分 36 秒 (日本時間) | |||
40 | 3e6 | 1000 | Dmitry Domanov | March 14, 2013 16:13:19 UTC 2013 年 3 月 15 日 (金) 1 時 13 分 19 秒 (日本時間) | |
45 | 11e6 | 1000 / 4194 | Dmitry Domanov | April 30, 2013 10:45:23 UTC 2013 年 4 月 30 日 (火) 19 時 45 分 23 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1418 | 118 | Makoto Kamada | February 25, 2013 15:00:00 UTC 2013 年 2 月 26 日 (火) 0 時 0 分 0 秒 (日本時間) |
1300 | Warut Roonguthai | February 27, 2013 01:11:41 UTC 2013 年 2 月 27 日 (水) 10 時 11 分 41 秒 (日本時間) | |||
40 | 3e6 | 1000 | Dmitry Domanov | March 14, 2013 16:13:27 UTC 2013 年 3 月 15 日 (金) 1 時 13 分 27 秒 (日本時間) | |
45 | 11e6 | 4203 | 1000 | Dmitry Domanov | April 30, 2013 10:45:34 UTC 2013 年 4 月 30 日 (火) 19 時 45 分 34 秒 (日本時間) |
3203 | Thomas Kozlowski | November 20, 2024 11:40:26 UTC 2024 年 11 月 20 日 (水) 20 時 40 分 26 秒 (日本時間) |
name 名前 | Warut Roonguthai |
---|---|
date 日付 | February 26, 2013 12:14:39 UTC 2013 年 2 月 26 日 (火) 21 時 14 分 39 秒 (日本時間) |
composite number 合成数 | 20180616517834619847636345290348620150345593057867917864890772413097220120074668281115988093436254477574289894556278694314111296100095857928459714444276272640129155945714141567024872609858231168962211795570354674335300943443822208768477877<239> |
prime factors 素因数 | 47926621467899597598336519638828112700969<41> 421073213586550002159576272423222007174816208611609682922514350058912210659817593997109505098120890978420969312484734982660964631662339675942956406330542314378933285255984545158434379064202098121133<198> |
factorization results 素因数分解の結果 | Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=168516521 Step 1 took 13166ms Step 2 took 6989ms ********** Factor found in step 2: 47926621467899597598336519638828112700969 Found probable prime factor of 41 digits: 47926621467899597598336519638828112700969 Probable prime cofactor 421073213586550002159576272423222007174816208611609682922514350058912210659817593997109505098120890978420969312484734982660964631662339675942956406330542314378933285255984545158434379064202098121133 has 198 digits |
software ソフトウェア | GMP-ECM 6.3 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | February 25, 2013 15:00:00 UTC 2013 年 2 月 26 日 (火) 0 時 0 分 0 秒 (日本時間) |
name 名前 | NFS@Home + Rich Dickerson |
---|---|
date 日付 | February 9, 2019 17:41:16 UTC 2019 年 2 月 10 日 (日) 2 時 41 分 16 秒 (日本時間) |
composite number 合成数 | 13333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333339<245> |
prime factors 素因数 | 95468584983683198999268490197359433147178673681030107176948246680926618260356497<80> 139661998086723191335442339583177820666161719005528103876339938070574991625445735959699461263248347680162323509738410005647604150640342637220613031997465946608377387<165> |
factorization results 素因数分解の結果 | p80 factor: 95468584983683198999268490197359433147178673681030107176948246680926618260356497 p165 factor: 139661998086723191335442339583177820666161719005528103876339938070574991625445735959699461263248347680162323509738410005647604150640342637220613031997465946608377387 |
software ソフトウェア | ggnfs-lasieve4I14e on the NFS@Home grid + msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1418 | 118 | Makoto Kamada | February 25, 2013 15:00:00 UTC 2013 年 2 月 26 日 (火) 0 時 0 分 0 秒 (日本時間) |
1300 | Warut Roonguthai | February 27, 2013 01:11:49 UTC 2013 年 2 月 27 日 (水) 10 時 11 分 49 秒 (日本時間) | |||
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 1200 | Dmitry Domanov | March 6, 2013 15:58:22 UTC 2013 年 3 月 7 日 (木) 0 時 58 分 22 秒 (日本時間) | |
50 | 43e6 | 1000 | 500 | Dmitry Domanov | March 7, 2013 14:38:20 UTC 2013 年 3 月 7 日 (木) 23 時 38 分 20 秒 (日本時間) |
500 | Dmitry Domanov | March 15, 2013 10:56:51 UTC 2013 年 3 月 15 日 (金) 19 時 56 分 51 秒 (日本時間) | |||
55 | 11e7 | 17615 | 2615 | yoyo@home | September 19, 2013 17:35:07 UTC 2013 年 9 月 20 日 (金) 2 時 35 分 7 秒 (日本時間) |
15000 | yoyo@home | January 20, 2019 12:34:48 UTC 2019 年 1 月 20 日 (日) 21 時 34 分 48 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1418 | 118 | Makoto Kamada | February 25, 2013 15:00:00 UTC 2013 年 2 月 26 日 (火) 0 時 0 分 0 秒 (日本時間) |
1300 | Warut Roonguthai | February 27, 2013 01:11:56 UTC 2013 年 2 月 27 日 (水) 10 時 11 分 56 秒 (日本時間) | |||
40 | 3e6 | 1000 | Dmitry Domanov | March 14, 2013 16:13:43 UTC 2013 年 3 月 15 日 (金) 1 時 13 分 43 秒 (日本時間) | |
45 | 11e6 | 4205 | 1000 | Dmitry Domanov | April 30, 2013 10:46:01 UTC 2013 年 4 月 30 日 (火) 19 時 46 分 1 秒 (日本時間) |
3205 | Thomas Kozlowski | November 20, 2024 13:02:21 UTC 2024 年 11 月 20 日 (水) 22 時 2 分 21 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1418 | 118 | Makoto Kamada | February 25, 2013 15:00:00 UTC 2013 年 2 月 26 日 (火) 0 時 0 分 0 秒 (日本時間) |
1300 | Warut Roonguthai | February 27, 2013 01:12:10 UTC 2013 年 2 月 27 日 (水) 10 時 12 分 10 秒 (日本時間) | |||
40 | 3e6 | 3400 | Warut Roonguthai | February 28, 2013 13:04:21 UTC 2013 年 2 月 28 日 (木) 22 時 4 分 21 秒 (日本時間) | |
45 | 11e6 | 1000 / 3663 | Dmitry Domanov | May 21, 2013 13:38:46 UTC 2013 年 5 月 21 日 (火) 22 時 38 分 46 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1418 | 118 | Makoto Kamada | February 25, 2013 15:00:00 UTC 2013 年 2 月 26 日 (火) 0 時 0 分 0 秒 (日本時間) |
1300 | Warut Roonguthai | February 27, 2013 01:12:16 UTC 2013 年 2 月 27 日 (水) 10 時 12 分 16 秒 (日本時間) | |||
40 | 3e6 | 1000 | Dmitry Domanov | March 14, 2013 16:13:56 UTC 2013 年 3 月 15 日 (金) 1 時 13 分 56 秒 (日本時間) | |
45 | 11e6 | 4204 | 1000 | Dmitry Domanov | April 30, 2013 10:46:58 UTC 2013 年 4 月 30 日 (火) 19 時 46 分 58 秒 (日本時間) |
3204 | Thomas Kozlowski | November 20, 2024 14:57:32 UTC 2024 年 11 月 20 日 (水) 23 時 57 分 32 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | May 6, 2013 05:22:41 UTC 2013 年 5 月 6 日 (月) 14 時 22 分 41 秒 (日本時間) |
composite number 合成数 | 201910218510749723208518975328858631702155642900057508392881102126587634888522669968381960020687616682177112379835269689087466608142606873737865993257501497748731110726360822321279087087883637284492625236209055393452684261846631461<231> |
prime factors 素因数 | 5880785404554555424092909422569329724249<40> |
composite cofactor 合成数の残り | 34333886482981360669489145758157041132615871835193917152351475093417742908095820396865587475001880832183073795755995162405265337722026233308899828836639128938733025747106467094591729617551789<191> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1186789882 Step 1 took 139716ms Step 2 took 48611ms ********** Factor found in step 2: 5880785404554555424092909422569329724249 Found probable prime factor of 40 digits: 5880785404554555424092909422569329724249 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1418 | 118 | Makoto Kamada | February 25, 2013 15:00:00 UTC 2013 年 2 月 26 日 (火) 0 時 0 分 0 秒 (日本時間) |
1300 | Warut Roonguthai | February 27, 2013 01:12:22 UTC 2013 年 2 月 27 日 (水) 10 時 12 分 22 秒 (日本時間) | |||
40 | 3e6 | 1000 | Dmitry Domanov | March 14, 2013 16:14:06 UTC 2013 年 3 月 15 日 (金) 1 時 14 分 6 秒 (日本時間) | |
45 | 11e6 | 4201 | 1000 | Dmitry Domanov | April 30, 2013 10:46:47 UTC 2013 年 4 月 30 日 (火) 19 時 46 分 47 秒 (日本時間) |
3201 | Thomas Kozlowski | November 20, 2024 15:53:11 UTC 2024 年 11 月 21 日 (木) 0 時 53 分 11 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1418 | 118 | Makoto Kamada | February 25, 2013 15:00:00 UTC 2013 年 2 月 26 日 (火) 0 時 0 分 0 秒 (日本時間) |
1300 | Warut Roonguthai | February 27, 2013 01:12:28 UTC 2013 年 2 月 27 日 (水) 10 時 12 分 28 秒 (日本時間) | |||
40 | 3e6 | 1000 | Dmitry Domanov | March 14, 2013 16:14:13 UTC 2013 年 3 月 15 日 (金) 1 時 14 分 13 秒 (日本時間) | |
45 | 11e6 | 4204 | 1000 | Dmitry Domanov | April 30, 2013 10:46:37 UTC 2013 年 4 月 30 日 (火) 19 時 46 分 37 秒 (日本時間) |
3204 | Thomas Kozlowski | November 20, 2024 17:05:43 UTC 2024 年 11 月 21 日 (木) 2 時 5 分 43 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1418 | 118 | Makoto Kamada | February 25, 2013 15:00:00 UTC 2013 年 2 月 26 日 (火) 0 時 0 分 0 秒 (日本時間) |
1300 | Warut Roonguthai | February 27, 2013 01:12:35 UTC 2013 年 2 月 27 日 (水) 10 時 12 分 35 秒 (日本時間) | |||
40 | 3e6 | 2000 | Dmitry Domanov | March 11, 2013 21:46:17 UTC 2013 年 3 月 12 日 (火) 6 時 46 分 17 秒 (日本時間) | |
45 | 11e6 | 0 | - | - | |
50 | 43e6 | 1140 / 7469 | 420 | Dmitry Domanov | March 15, 2013 20:46:35 UTC 2013 年 3 月 16 日 (土) 5 時 46 分 35 秒 (日本時間) |
720 | Dmitry Domanov | March 22, 2013 05:53:43 UTC 2013 年 3 月 22 日 (金) 14 時 53 分 43 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 13, 2015 06:00:00 UTC 2015 年 11 月 13 日 (金) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 600 | Dmitry Domanov | November 14, 2015 23:06:20 UTC 2015 年 11 月 15 日 (日) 8 時 6 分 20 秒 (日本時間) | |
45 | 11e6 | 4402 | 800 | Erik Branger | November 17, 2015 15:54:27 UTC 2015 年 11 月 18 日 (水) 0 時 54 分 27 秒 (日本時間) |
3602 | Thomas Kozlowski | November 20, 2024 18:37:39 UTC 2024 年 11 月 21 日 (木) 3 時 37 分 39 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 13, 2015 06:00:00 UTC 2015 年 11 月 13 日 (金) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 600 | Dmitry Domanov | November 14, 2015 23:06:35 UTC 2015 年 11 月 15 日 (日) 8 時 6 分 35 秒 (日本時間) | |
45 | 11e6 | 4405 | 800 | Erik Branger | November 17, 2015 15:54:48 UTC 2015 年 11 月 18 日 (水) 0 時 54 分 48 秒 (日本時間) |
3605 | Thomas Kozlowski | November 20, 2024 20:09:41 UTC 2024 年 11 月 21 日 (木) 5 時 9 分 41 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 13, 2015 06:00:00 UTC 2015 年 11 月 13 日 (金) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 600 | Dmitry Domanov | November 14, 2015 23:06:56 UTC 2015 年 11 月 15 日 (日) 8 時 6 分 56 秒 (日本時間) | |
45 | 11e6 | 4404 | 800 | Erik Branger | November 17, 2015 15:54:58 UTC 2015 年 11 月 18 日 (水) 0 時 54 分 58 秒 (日本時間) |
3604 | Thomas Kozlowski | November 20, 2024 21:31:37 UTC 2024 年 11 月 21 日 (木) 6 時 31 分 37 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 13, 2015 06:00:00 UTC 2015 年 11 月 13 日 (金) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 904 | Ignacio Santos | November 13, 2015 16:25:16 UTC 2015 年 11 月 14 日 (土) 1 時 25 分 16 秒 (日本時間) | |
40 | 3e6 | 600 | Dmitry Domanov | November 14, 2015 22:48:14 UTC 2015 年 11 月 15 日 (日) 7 時 48 分 14 秒 (日本時間) | |
45 | 11e6 | 800 | Erik Branger | November 17, 2015 15:55:42 UTC 2015 年 11 月 18 日 (水) 0 時 55 分 42 秒 (日本時間) | |
50 | 43e6 | 1500 / 7346 | Erik Branger | December 2, 2015 13:02:38 UTC 2015 年 12 月 2 日 (水) 22 時 2 分 38 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | November 15, 2015 09:43:28 UTC 2015 年 11 月 15 日 (日) 18 時 43 分 28 秒 (日本時間) |
composite number 合成数 | 413901695122904504926998018230821902275556458633398348110434533863545150190416234794841257586638247595534759256701931160044013009074500854350017037032959577491554899451323130276949780965993065208784331026459<207> |
prime factors 素因数 | 434796417022346078921935591338094932101143<42> 951943665859675878240875700445430897232329699765219270683983112062356404773430745512335683473979677836203615984915815363745751601054098277725802524149391384806381213<165> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=392781338 Step 1 took 20657ms Step 2 took 7405ms ********** Factor found in step 2: 434796417022346078921935591338094932101143 Found probable prime factor of 42 digits: 434796417022346078921935591338094932101143 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 13, 2015 06:00:00 UTC 2015 年 11 月 13 日 (金) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 600 / 2336 | Dmitry Domanov | November 14, 2015 23:07:18 UTC 2015 年 11 月 15 日 (日) 8 時 7 分 18 秒 (日本時間) |
name 名前 | Erik Branger |
---|---|
date 日付 | November 17, 2015 15:56:21 UTC 2015 年 11 月 18 日 (水) 0 時 56 分 21 秒 (日本時間) |
composite number 合成数 | 11776402991177672852296209675209082515770924377665164456736912605824066659440611016921054024089788263861910516118704389197603662133914536994051168108912306866517127163644585115372526711343507911020636822379799029901462070751<224> |
prime factors 素因数 | 1971053479994655159187011668183786902369<40> 5974674513250450483199954512975486426569241631493440225793510977593130343382668934665769973553011925239661627024794129456747644634268991855477202744743692593299009445047277450436444479<184> |
factorization results 素因数分解の結果 | Tue 2015/11/17 06:11:29 UTC GMP-ECM 7.0-dev [configured with MPIR 2.6.0, --enable-openmp] [ECM] Tue 2015/11/17 06:11:29 UTC Input number is 11776402991177672852296209675209082515770924377665164456736912605824066659440611016921054024089788263861910516118704389197603662133914536994051168108912306866517127163644585115372526711343507911020636822379799029901462070751 (224 digits) Tue 2015/11/17 06:11:29 UTC Run 549 out of 800: Tue 2015/11/17 06:11:29 UTC Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:4055691830 Tue 2015/11/17 06:11:29 UTC Step 1 took 161078ms Tue 2015/11/17 06:11:29 UTC Step 2 took 81078ms Tue 2015/11/17 06:11:29 UTC ********** Factor found in step 2: 1971053479994655159187011668183786902369 Tue 2015/11/17 06:11:29 UTC Found probable prime factor of 40 digits: 1971053479994655159187011668183786902369 Tue 2015/11/17 06:11:29 UTC Probable prime cofactor 5974674513250450483199954512975486426569241631493440225793510977593130343382668934665769973553011925239661627024794129456747644634268991855477202744743692593299009445047277450436444479 has 184 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 13, 2015 06:00:00 UTC 2015 年 11 月 13 日 (金) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 600 / 2336 | Dmitry Domanov | November 14, 2015 23:07:30 UTC 2015 年 11 月 15 日 (日) 8 時 7 分 30 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | November 15, 2015 09:43:59 UTC 2015 年 11 月 15 日 (日) 18 時 43 分 59 秒 (日本時間) |
composite number 合成数 | 5322022693922327242111587959920127364775183850919028490316553666434410429949151577309588765038688591054904756051883719881506882627772606660992495588886081489272671913096092139123072961935077048092408644129397<208> |
prime factors 素因数 | 62191553359387825824985150180533869<35> 85574686696886740301583759056649620624796244003446523856660175158869308955967987862620174774880847634910749402250213550822878776708975571418508837643962165968717834857903913<173> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1376507775 Step 1 took 25992ms Step 2 took 9053ms ********** Factor found in step 2: 62191553359387825824985150180533869 Found probable prime factor of 35 digits: 62191553359387825824985150180533869 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 13, 2015 06:00:00 UTC 2015 年 11 月 13 日 (金) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 600 / 2336 | Dmitry Domanov | November 14, 2015 23:07:45 UTC 2015 年 11 月 15 日 (日) 8 時 7 分 45 秒 (日本時間) |
name 名前 | NFS@home + Dmitry Domanov |
---|---|
date 日付 | December 22, 2023 22:02:17 UTC 2023 年 12 月 23 日 (土) 7 時 2 分 17 秒 (日本時間) |
composite number 合成数 | 133333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333339<261> |
prime factors 素因数 | 605170225114027569200606813958526186661811383682695151418241612286967932769184303249196235327881900061<102> 220323683816748187223498089002970091969735399247802561065797825310831273576260939561597390162128411121575602878580088004166989637857296569736801661323891069399<159> |
factorization results 素因数分解の結果 | Sieving by NFS@home, filtering, linear algebra and square root by Dmitry Domanov -------- Fri Dec 8 14:11:41 2023 Fri Dec 8 14:11:41 2023 Fri Dec 8 14:11:41 2023 Msieve v. 1.54 (SVN Unversioned directory) Fri Dec 8 14:11:41 2023 random seeds: 621b8328 5d40b33c Fri Dec 8 14:11:41 2023 Using 4 OpenMP threads Fri Dec 8 14:11:41 2023 factoring 133333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333339 (261 digits) Fri Dec 8 14:11:42 2023 searching for 15-digit factors Fri Dec 8 14:11:42 2023 commencing number field sieve (261-digit input) Fri Dec 8 14:11:42 2023 R0: -10000000000000000000000000000000000000000000 Fri Dec 8 14:11:42 2023 R1: 1 Fri Dec 8 14:11:42 2023 A0: 17 Fri Dec 8 14:11:42 2023 A1: 0 Fri Dec 8 14:11:42 2023 A2: 0 Fri Dec 8 14:11:42 2023 A3: 0 Fri Dec 8 14:11:42 2023 A4: 0 Fri Dec 8 14:11:42 2023 A5: 0 Fri Dec 8 14:11:42 2023 A6: 400 Fri Dec 8 14:11:42 2023 skew 1.00, size 5.107e-13, alpha 0.199, combined = 7.238e-14 rroots = 0 Fri Dec 8 14:11:42 2023 Fri Dec 8 14:11:42 2023 commencing relation filtering Fri Dec 8 14:11:42 2023 setting target matrix density to 116.0 Fri Dec 8 14:11:42 2023 estimated available RAM is 15729.3 MB Fri Dec 8 14:11:42 2023 commencing duplicate removal, pass 1 Fri Dec 8 14:12:19 2023 error -1 reading relation 14957519 Fri Dec 8 14:12:27 2023 error -1 reading relation 17631951 Fri Dec 8 14:12:48 2023 error -1 reading relation 25296619 Fri Dec 8 14:13:20 2023 error -1 reading relation 36969439 Fri Dec 8 14:13:34 2023 error -1 reading relation 42274615 Fri Dec 8 14:13:57 2023 error -1 reading relation 50518335 Fri Dec 8 14:14:02 2023 error -1 reading relation 52463373 Fri Dec 8 14:14:17 2023 error -1 reading relation 57936531 Fri Dec 8 14:15:11 2023 error -1 reading relation 77478021 Fri Dec 8 14:15:21 2023 error -1 reading relation 81096229 Fri Dec 8 14:15:38 2023 error -1 reading relation 87113407 Fri Dec 8 14:15:45 2023 error -1 reading relation 89828593 Fri Dec 8 14:15:46 2023 error -1 reading relation 89882128 Fri Dec 8 14:16:13 2023 error -1 reading relation 99952550 Fri Dec 8 14:16:21 2023 error -1 reading relation 102802245 Fri Dec 8 14:16:37 2023 error -1 reading relation 108282793 Fri Dec 8 14:17:00 2023 error -1 reading relation 116548681 Fri Dec 8 14:17:26 2023 error -1 reading relation 126116613 Fri Dec 8 14:18:24 2023 error -1 reading relation 146785750 Fri Dec 8 14:18:28 2023 error -11 reading relation 147977510 Fri Dec 8 14:18:54 2023 error -1 reading relation 157466942 Fri Dec 8 14:19:39 2023 error -1 reading relation 173343795 Fri Dec 8 14:20:20 2023 error -1 reading relation 186291470 Fri Dec 8 14:20:43 2023 error -1 reading relation 194322240 Fri Dec 8 14:20:55 2023 error -15 reading relation 198527705 Fri Dec 8 14:21:00 2023 error -1 reading relation 200486442 Fri Dec 8 14:21:30 2023 error -1 reading relation 211079976 Fri Dec 8 14:21:46 2023 error -1 reading relation 216779978 Fri Dec 8 14:22:41 2023 error -1 reading relation 234034916 Fri Dec 8 14:22:53 2023 error -1 reading relation 238229380 Fri Dec 8 14:23:18 2023 skipped 1931 relations with b > 2^32 Fri Dec 8 14:23:18 2023 skipped 2 relations with composite factors Fri Dec 8 14:23:18 2023 skipped 318 malformed relations Fri Dec 8 14:23:18 2023 found 54098387 hash collisions in 247194815 relations Fri Dec 8 14:23:25 2023 commencing duplicate removal, pass 2 Fri Dec 8 14:26:59 2023 found 57148587 duplicates and 190046228 unique relations Fri Dec 8 14:26:59 2023 memory use: 1449.5 MB Fri Dec 8 14:26:59 2023 reading ideals above 215941120 Fri Dec 8 14:26:59 2023 commencing singleton removal, initial pass Fri Dec 8 14:36:36 2023 memory use: 3012.0 MB Fri Dec 8 14:36:37 2023 reading all ideals from disk Fri Dec 8 14:36:38 2023 memory use: 4638.4 MB Fri Dec 8 14:36:43 2023 commencing in-memory singleton removal Fri Dec 8 14:36:47 2023 begin with 190046228 relations and 156540260 unique ideals Fri Dec 8 14:37:04 2023 reduce to 124482146 relations and 84504677 ideals in 15 passes Fri Dec 8 14:37:04 2023 max relations containing the same ideal: 30 Fri Dec 8 14:37:07 2023 reading ideals above 720000 Fri Dec 8 14:37:07 2023 commencing singleton removal, initial pass Fri Dec 8 14:47:05 2023 memory use: 3012.0 MB Fri Dec 8 14:47:06 2023 reading all ideals from disk Fri Dec 8 14:47:08 2023 memory use: 6111.9 MB Fri Dec 8 14:47:22 2023 keeping 107653473 ideals with weight <= 200, target excess is 662196 Fri Dec 8 14:47:34 2023 commencing in-memory singleton removal Fri Dec 8 14:47:40 2023 begin with 124482146 relations and 107653473 unique ideals Fri Dec 8 14:48:03 2023 reduce to 124430087 relations and 107601391 ideals in 9 passes Fri Dec 8 14:48:03 2023 max relations containing the same ideal: 200 Fri Dec 8 14:48:51 2023 removing 11757840 relations and 9757840 ideals in 2000000 cliques Fri Dec 8 14:48:54 2023 commencing in-memory singleton removal Fri Dec 8 14:49:00 2023 begin with 112672247 relations and 107601391 unique ideals Fri Dec 8 14:49:21 2023 reduce to 111746980 relations and 96898588 ideals in 9 passes Fri Dec 8 14:49:21 2023 max relations containing the same ideal: 195 Fri Dec 8 14:50:03 2023 removing 9042059 relations and 7042059 ideals in 2000000 cliques Fri Dec 8 14:50:06 2023 commencing in-memory singleton removal Fri Dec 8 14:50:11 2023 begin with 102704921 relations and 96898588 unique ideals Fri Dec 8 14:50:30 2023 reduce to 102085321 relations and 89225206 ideals in 9 passes Fri Dec 8 14:50:30 2023 max relations containing the same ideal: 187 Fri Dec 8 14:51:09 2023 removing 8226905 relations and 6226905 ideals in 2000000 cliques Fri Dec 8 14:51:12 2023 commencing in-memory singleton removal Fri Dec 8 14:51:16 2023 begin with 93858416 relations and 89225206 unique ideals Fri Dec 8 14:51:31 2023 reduce to 93301897 relations and 82431357 ideals in 8 passes Fri Dec 8 14:51:31 2023 max relations containing the same ideal: 179 Fri Dec 8 14:52:07 2023 removing 7829490 relations and 5829490 ideals in 2000000 cliques Fri Dec 8 14:52:10 2023 commencing in-memory singleton removal Fri Dec 8 14:52:13 2023 begin with 85472407 relations and 82431357 unique ideals Fri Dec 8 14:52:27 2023 reduce to 84933524 relations and 76052493 ideals in 8 passes Fri Dec 8 14:52:27 2023 max relations containing the same ideal: 168 Fri Dec 8 14:53:00 2023 removing 7599936 relations and 5599936 ideals in 2000000 cliques Fri Dec 8 14:53:02 2023 commencing in-memory singleton removal Fri Dec 8 14:53:06 2023 begin with 77333588 relations and 76052493 unique ideals Fri Dec 8 14:53:18 2023 reduce to 76792578 relations and 69900082 ideals in 8 passes Fri Dec 8 14:53:18 2023 max relations containing the same ideal: 157 Fri Dec 8 14:53:48 2023 removing 7454791 relations and 5454791 ideals in 2000000 cliques Fri Dec 8 14:53:50 2023 commencing in-memory singleton removal Fri Dec 8 14:53:53 2023 begin with 69337787 relations and 69900082 unique ideals Fri Dec 8 14:54:05 2023 reduce to 68773375 relations and 63867949 ideals in 9 passes Fri Dec 8 14:54:05 2023 max relations containing the same ideal: 145 Fri Dec 8 14:54:32 2023 removing 7369761 relations and 5369761 ideals in 2000000 cliques Fri Dec 8 14:54:34 2023 commencing in-memory singleton removal Fri Dec 8 14:54:37 2023 begin with 61403614 relations and 63867949 unique ideals Fri Dec 8 14:54:47 2023 reduce to 60799008 relations and 57878350 ideals in 9 passes Fri Dec 8 14:54:47 2023 max relations containing the same ideal: 132 Fri Dec 8 14:55:11 2023 removing 7328989 relations and 5328989 ideals in 2000000 cliques Fri Dec 8 14:55:13 2023 commencing in-memory singleton removal Fri Dec 8 14:55:15 2023 begin with 53470019 relations and 57878350 unique ideals Fri Dec 8 14:55:23 2023 reduce to 52799740 relations and 51860157 ideals in 8 passes Fri Dec 8 14:55:23 2023 max relations containing the same ideal: 124 Fri Dec 8 14:55:44 2023 removing 992421 relations and 820986 ideals in 171435 cliques Fri Dec 8 14:55:45 2023 commencing in-memory singleton removal Fri Dec 8 14:55:47 2023 begin with 51807319 relations and 51860157 unique ideals Fri Dec 8 14:55:53 2023 reduce to 51795558 relations and 51027387 ideals in 6 passes Fri Dec 8 14:55:53 2023 max relations containing the same ideal: 123 Fri Dec 8 14:55:59 2023 relations with 0 large ideals: 24776 Fri Dec 8 14:55:59 2023 relations with 1 large ideals: 5634 Fri Dec 8 14:55:59 2023 relations with 2 large ideals: 58580 Fri Dec 8 14:55:59 2023 relations with 3 large ideals: 490363 Fri Dec 8 14:55:59 2023 relations with 4 large ideals: 2283049 Fri Dec 8 14:55:59 2023 relations with 5 large ideals: 6465270 Fri Dec 8 14:55:59 2023 relations with 6 large ideals: 11647680 Fri Dec 8 14:55:59 2023 relations with 7+ large ideals: 30820206 Fri Dec 8 14:55:59 2023 commencing 2-way merge Fri Dec 8 14:56:27 2023 reduce to 34352401 relation sets and 33584230 unique ideals Fri Dec 8 14:56:27 2023 commencing full merge Fri Dec 8 15:08:34 2023 memory use: 4566.9 MB Fri Dec 8 15:08:36 2023 found 15871359 cycles, need 15830430 Fri Dec 8 15:08:40 2023 weight of 15830430 cycles is about 1836891575 (116.04/cycle) Fri Dec 8 15:08:40 2023 distribution of cycle lengths: Fri Dec 8 15:08:40 2023 1 relations: 825328 Fri Dec 8 15:08:40 2023 2 relations: 1133402 Fri Dec 8 15:08:40 2023 3 relations: 1277498 Fri Dec 8 15:08:40 2023 4 relations: 1281613 Fri Dec 8 15:08:40 2023 5 relations: 1264526 Fri Dec 8 15:08:40 2023 6 relations: 1213540 Fri Dec 8 15:08:40 2023 7 relations: 1149415 Fri Dec 8 15:08:40 2023 8 relations: 1071890 Fri Dec 8 15:08:40 2023 9 relations: 990035 Fri Dec 8 15:08:40 2023 10+ relations: 5623183 Fri Dec 8 15:08:40 2023 heaviest cycle: 28 relations Fri Dec 8 15:08:44 2023 commencing cycle optimization Fri Dec 8 15:09:10 2023 start with 130843776 relations Fri Dec 8 15:13:17 2023 pruned 5735464 relations Fri Dec 8 15:13:17 2023 memory use: 3508.3 MB Fri Dec 8 15:13:17 2023 distribution of cycle lengths: Fri Dec 8 15:13:17 2023 1 relations: 825328 Fri Dec 8 15:13:17 2023 2 relations: 1162085 Fri Dec 8 15:13:17 2023 3 relations: 1334314 Fri Dec 8 15:13:17 2023 4 relations: 1334571 Fri Dec 8 15:13:17 2023 5 relations: 1325084 Fri Dec 8 15:13:17 2023 6 relations: 1266173 Fri Dec 8 15:13:17 2023 7 relations: 1200770 Fri Dec 8 15:13:17 2023 8 relations: 1114318 Fri Dec 8 15:13:17 2023 9 relations: 1024420 Fri Dec 8 15:13:17 2023 10+ relations: 5243367 Fri Dec 8 15:13:17 2023 heaviest cycle: 28 relations Fri Dec 8 15:13:47 2023 RelProcTime: 3725 Fri Dec 8 15:13:47 2023 elapsed time 01:02:06 Thu Dec 21 16:21:30 2023 Thu Dec 21 16:21:30 2023 Thu Dec 21 16:21:30 2023 Msieve v. 1.54 (SVN Unversioned directory) Thu Dec 21 16:21:30 2023 random seeds: 4dcd608e c816ed26 Thu Dec 21 16:21:30 2023 Using 64 OpenMP threads Thu Dec 21 16:21:30 2023 factoring 133333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333339 (261 digits) Thu Dec 21 16:21:31 2023 searching for 15-digit factors Thu Dec 21 16:21:31 2023 commencing number field sieve (261-digit input) Thu Dec 21 16:21:31 2023 R0: -10000000000000000000000000000000000000000000 Thu Dec 21 16:21:31 2023 R1: 1 Thu Dec 21 16:21:31 2023 A0: 17 Thu Dec 21 16:21:31 2023 A1: 0 Thu Dec 21 16:21:31 2023 A2: 0 Thu Dec 21 16:21:31 2023 A3: 0 Thu Dec 21 16:21:31 2023 A4: 0 Thu Dec 21 16:21:31 2023 A5: 0 Thu Dec 21 16:21:31 2023 A6: 400 Thu Dec 21 16:21:31 2023 skew 1.00, size 5.107e-13, alpha 0.199, combined = 7.238e-14 rroots = 0 Thu Dec 21 16:21:31 2023 Thu Dec 21 16:21:31 2023 commencing linear algebra Thu Dec 21 16:21:31 2023 using VBITS=256 Thu Dec 21 16:21:31 2023 skipping matrix build Thu Dec 21 16:21:35 2023 matrix starts at (0, 0) Thu Dec 21 16:21:37 2023 matrix is 15619335 x 15619505 (7339.0 MB) with weight 2100790356 (134.50/col) Thu Dec 21 16:21:37 2023 sparse part has weight 1752067598 (112.17/col) Thu Dec 21 16:21:37 2023 saving the first 240 matrix rows for later Thu Dec 21 16:21:40 2023 matrix includes 256 packed rows Thu Dec 21 16:21:44 2023 matrix is 15619095 x 15619505 (6754.6 MB) with weight 1601648609 (102.54/col) Thu Dec 21 16:21:44 2023 sparse part has weight 1520768885 (97.36/col) Thu Dec 21 16:21:44 2023 using block size 8192 and superblock size 1032192 for processor cache size 43008 kB Thu Dec 21 16:22:15 2023 commencing Lanczos iteration (64 threads) Thu Dec 21 16:22:15 2023 memory use: 9308.7 MB Thu Dec 21 16:24:32 2023 linear algebra at 0.2%, ETA 18h56m Thu Dec 21 16:27:46 2023 checking every 10000 dimensions, checkpointing every 850000 dimensions Fri Dec 22 10:41:13 2023 lanczos halted after 61197 iterations (dim = 15619093) Fri Dec 22 10:42:28 2023 recovered 38 nontrivial dependencies Fri Dec 22 10:42:29 2023 BLanczosTime: 66058 Fri Dec 22 10:42:29 2023 elapsed time 18:20:59 Fri Dec 22 19:07:24 2023 Fri Dec 22 19:07:24 2023 Fri Dec 22 19:07:24 2023 Msieve v. 1.54 (SVN Unversioned directory) Fri Dec 22 19:07:24 2023 random seeds: ed84aaae 9591bd07 Fri Dec 22 19:07:24 2023 Using 4 OpenMP threads Fri Dec 22 19:07:24 2023 factoring 133333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333339 (261 digits) Fri Dec 22 19:07:25 2023 searching for 15-digit factors Fri Dec 22 19:07:25 2023 commencing number field sieve (261-digit input) Fri Dec 22 19:07:25 2023 R0: -10000000000000000000000000000000000000000000 Fri Dec 22 19:07:25 2023 R1: 1 Fri Dec 22 19:07:25 2023 A0: 17 Fri Dec 22 19:07:25 2023 A1: 0 Fri Dec 22 19:07:25 2023 A2: 0 Fri Dec 22 19:07:25 2023 A3: 0 Fri Dec 22 19:07:25 2023 A4: 0 Fri Dec 22 19:07:25 2023 A5: 0 Fri Dec 22 19:07:25 2023 A6: 400 Fri Dec 22 19:07:25 2023 skew 1.00, size 5.107e-13, alpha 0.199, combined = 7.238e-14 rroots = 0 Fri Dec 22 19:07:25 2023 Fri Dec 22 19:07:25 2023 commencing square root phase Fri Dec 22 19:07:25 2023 reading relations for dependency 1 Fri Dec 22 19:07:26 2023 read 7809576 cycles Fri Dec 22 19:07:36 2023 cycles contain 25563692 unique relations Fri Dec 22 19:11:17 2023 read 25563692 relations Fri Dec 22 19:12:41 2023 multiplying 25563692 relations Fri Dec 22 19:20:20 2023 multiply complete, coefficients have about 881.59 million bits Fri Dec 22 19:20:22 2023 initial square root is modulo 81137983 Fri Dec 22 19:29:59 2023 GCD is N, no factor found Fri Dec 22 19:29:59 2023 reading relations for dependency 2 Fri Dec 22 19:30:00 2023 read 7807200 cycles Fri Dec 22 19:30:10 2023 cycles contain 25556136 unique relations Fri Dec 22 19:33:50 2023 read 25556136 relations Fri Dec 22 19:35:12 2023 multiplying 25556136 relations Fri Dec 22 19:42:53 2023 multiply complete, coefficients have about 881.34 million bits Fri Dec 22 19:42:54 2023 initial square root is modulo 80708413 Fri Dec 22 19:52:26 2023 sqrtTime: 2701 Fri Dec 22 19:52:26 2023 p102 factor: 605170225114027569200606813958526186661811383682695151418241612286967932769184303249196235327881900061 Fri Dec 22 19:52:26 2023 p159 factor: 220323683816748187223498089002970091969735399247802561065797825310831273576260939561597390162128411121575602878580088004166989637857296569736801661323891069399 Fri Dec 22 19:52:26 2023 elapsed time 00:45:02 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 13, 2015 06:00:00 UTC 2015 年 11 月 13 日 (金) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 904 | Makoto Kamada | November 13, 2015 06:00:00 UTC 2015 年 11 月 13 日 (金) 15 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 600 | Dmitry Domanov | November 14, 2015 09:52:43 UTC 2015 年 11 月 14 日 (土) 18 時 52 分 43 秒 (日本時間) | |
45 | 11e6 | 800 | Dmitry Domanov | February 5, 2016 14:29:46 UTC 2016 年 2 月 5 日 (金) 23 時 29 分 46 秒 (日本時間) | |
50 | 43e6 | 6875 | 600 | Dmitry Domanov | February 8, 2016 14:40:05 UTC 2016 年 2 月 8 日 (月) 23 時 40 分 5 秒 (日本時間) |
3200 | Dmitry Domanov | December 23, 2016 20:00:07 UTC 2016 年 12 月 24 日 (土) 5 時 0 分 7 秒 (日本時間) | |||
1875 | Dmitry Domanov | December 29, 2016 20:46:36 UTC 2016 年 12 月 30 日 (金) 5 時 46 分 36 秒 (日本時間) | |||
1200 | Dmitry Domanov | January 11, 2017 14:48:21 UTC 2017 年 1 月 11 日 (水) 23 時 48 分 21 秒 (日本時間) | |||
55 | 11e7 | 200 | Dmitry Domanov | February 13, 2016 20:55:51 UTC 2016 年 2 月 14 日 (日) 5 時 55 分 51 秒 (日本時間) | |
60 | 26e7 | 10000 / 41124 | yoyo@Home | October 27, 2022 12:41:46 UTC 2022 年 10 月 27 日 (木) 21 時 41 分 46 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | February 5, 2016 06:32:41 UTC 2016 年 2 月 5 日 (金) 15 時 32 分 41 秒 (日本時間) |
composite number 合成数 | 102564102564102564102564102564102564102564102564102564102564102564102564102564102564102564102564102564102564102564102564102564102564102564102564102564102564102564102564102564102564102564102564102564102564102564102564102564102564102564102564102564102564102564103<261> |
prime factors 素因数 | 14227315133624942538529019957394606877<38> 7208956967692505826427868290435701899781757222286064294758269101918478742081394951572698776817971383176208413814202371897345266200156097317984056335182218867808876327650059581526469988042255103864392352774920826219404666739<223> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=2845712534 Step 1 took 127563ms Step 2 took 32408ms ********** Factor found in step 2: 14227315133624942538529019957394606877 Found probable prime factor of 38 digits: 14227315133624942538529019957394606877 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 13, 2015 06:00:00 UTC 2015 年 11 月 13 日 (金) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 904 | Makoto Kamada | November 13, 2015 06:00:00 UTC 2015 年 11 月 13 日 (金) 15 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 600 | Dmitry Domanov | November 14, 2015 09:52:11 UTC 2015 年 11 月 14 日 (土) 18 時 52 分 11 秒 (日本時間) | |
45 | 11e6 | 800 / 4305 | Dmitry Domanov | February 4, 2016 18:02:55 UTC 2016 年 2 月 5 日 (金) 3 時 2 分 55 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 13, 2015 06:00:00 UTC 2015 年 11 月 13 日 (金) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2352 | 600 | Dmitry Domanov | November 15, 2015 09:49:28 UTC 2015 年 11 月 15 日 (日) 18 時 49 分 28 秒 (日本時間) |
1752 | ivelive | July 2, 2020 03:28:39 UTC 2020 年 7 月 2 日 (木) 12 時 28 分 39 秒 (日本時間) | |||
45 | 11e6 | 4001 | Thomas Kozlowski | November 20, 2024 23:01:33 UTC 2024 年 11 月 21 日 (木) 8 時 1 分 33 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | November 15, 2015 10:42:11 UTC 2015 年 11 月 15 日 (日) 19 時 42 分 11 秒 (日本時間) |
composite number 合成数 | 4866414873236562762633755878252614009841249198627278487952135930293211527553511660109758070123704217092257760846183106061331571188702584916868431307973356249282304504774688237466995894310940067828247437292184925151328837<220> |
prime factors 素因数 | 1589320515235914104595767832899<31> |
composite cofactor 合成数の残り | 3061946804678480050883984113607901673220931401264859823645931919613004278648263438630033688336458795484860259077997884849497957657578973438066774075655687640140629128881416587440447151163863<190> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2074366022 Step 1 took 43165ms Step 2 took 13560ms ********** Factor found in step 2: 1589320515235914104595767832899 Found probable prime factor of 31 digits: 1589320515235914104595767832899 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 13, 2015 06:00:00 UTC 2015 年 11 月 13 日 (金) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 600 | Dmitry Domanov | November 15, 2015 09:49:56 UTC 2015 年 11 月 15 日 (日) 18 時 49 分 56 秒 (日本時間) | |
45 | 11e6 | 4406 | 600 | Dmitry Domanov | January 23, 2017 06:43:50 UTC 2017 年 1 月 23 日 (月) 15 時 43 分 50 秒 (日本時間) |
3806 | Thomas Kozlowski | November 21, 2024 00:07:43 UTC 2024 年 11 月 21 日 (木) 9 時 7 分 43 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 13, 2015 06:00:00 UTC 2015 年 11 月 13 日 (金) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2400 | 600 | Dmitry Domanov | November 15, 2015 09:50:08 UTC 2015 年 11 月 15 日 (日) 18 時 50 分 8 秒 (日本時間) |
1800 | ebina | July 21, 2022 11:58:55 UTC 2022 年 7 月 21 日 (木) 20 時 58 分 55 秒 (日本時間) | |||
45 | 11e6 | 4001 | Thomas Kozlowski | November 21, 2024 01:38:03 UTC 2024 年 11 月 21 日 (木) 10 時 38 分 3 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 13, 2015 06:00:00 UTC 2015 年 11 月 13 日 (金) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2400 | 600 | Dmitry Domanov | November 15, 2015 09:50:21 UTC 2015 年 11 月 15 日 (日) 18 時 50 分 21 秒 (日本時間) |
1800 | ebina | July 21, 2022 20:03:03 UTC 2022 年 7 月 22 日 (金) 5 時 3 分 3 秒 (日本時間) | |||
45 | 11e6 | 4001 | Thomas Kozlowski | November 21, 2024 03:33:22 UTC 2024 年 11 月 21 日 (木) 12 時 33 分 22 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 13, 2015 06:00:00 UTC 2015 年 11 月 13 日 (金) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2400 | 600 | Dmitry Domanov | November 15, 2015 09:50:35 UTC 2015 年 11 月 15 日 (日) 18 時 50 分 35 秒 (日本時間) |
1800 | ebina | July 21, 2022 20:41:30 UTC 2022 年 7 月 22 日 (金) 5 時 41 分 30 秒 (日本時間) | |||
45 | 11e6 | 4000 | Thomas Kozlowski | November 21, 2024 04:52:38 UTC 2024 年 11 月 21 日 (木) 13 時 52 分 38 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | November 15, 2015 10:42:42 UTC 2015 年 11 月 15 日 (日) 19 時 42 分 42 秒 (日本時間) |
composite number 合成数 | 5067470145502926734195559578304811906607438330814562644710496907675169074528080375335812872112989982245730494798148911900846538413063533225180634480053252000614352335319590605989194878754276423582256800866557104016598094255303<226> |
prime factors 素因数 | 96176132295803013686166226693<29> |
composite cofactor 合成数の残り | 52689477363440032507659614017574206517578572623058701542291207590721389214012111944465319374885443933362346996890089909041117793125551676360537970371922188463598974936720215619872788659396845575771<197> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2231830610 Step 1 took 41839ms Step 2 took 13000ms ********** Factor found in step 2: 96176132295803013686166226693 Found probable prime factor of 29 digits: 96176132295803013686166226693 |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 23, 2017 10:00:17 UTC 2017 年 1 月 23 日 (月) 19 時 0 分 17 秒 (日本時間) |
composite number 合成数 | 52689477363440032507659614017574206517578572623058701542291207590721389214012111944465319374885443933362346996890089909041117793125551676360537970371922188463598974936720215619872788659396845575771<197> |
prime factors 素因数 | 68805776652587470281012671794389049016999<41> |
composite cofactor 合成数の残り | 765771130372941186265385299698357247104637086441797831634115850203872894346751160504372956968933076611113638921879202677683108244439706605243142289768317229<156> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=901035445 Step 1 took 99032ms Step 2 took 32169ms ********** Factor found in step 2: 68805776652587470281012671794389049016999 Found probable prime factor of 41 digits: 68805776652587470281012671794389049016999 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 13, 2015 06:00:00 UTC 2015 年 11 月 13 日 (金) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 600 | Dmitry Domanov | November 15, 2015 09:50:50 UTC 2015 年 11 月 15 日 (日) 18 時 50 分 50 秒 (日本時間) | |
45 | 11e6 | 4600 | 600 | Dmitry Domanov | January 23, 2017 06:44:22 UTC 2017 年 1 月 23 日 (月) 15 時 44 分 22 秒 (日本時間) |
4000 | Lionel Debroux | December 27, 2017 20:10:50 UTC 2017 年 12 月 28 日 (木) 5 時 10 分 50 秒 (日本時間) | |||
50 | 43e6 | 6554 | Ignacio Santos | October 21, 2024 14:04:09 UTC 2024 年 10 月 21 日 (月) 23 時 4 分 9 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 13, 2015 06:00:00 UTC 2015 年 11 月 13 日 (金) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2400 | 600 | Dmitry Domanov | November 15, 2015 09:51:01 UTC 2015 年 11 月 15 日 (日) 18 時 51 分 1 秒 (日本時間) |
1800 | ebina | July 21, 2022 22:43:38 UTC 2022 年 7 月 22 日 (金) 7 時 43 分 38 秒 (日本時間) | |||
45 | 11e6 | 4002 | Thomas Kozlowski | November 21, 2024 06:46:44 UTC 2024 年 11 月 21 日 (木) 15 時 46 分 44 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | November 15, 2015 10:17:43 UTC 2015 年 11 月 15 日 (日) 19 時 17 分 43 秒 (日本時間) |
composite number 合成数 | 379827342458753722388387865871030481490043665283413174148202514216745558531094180327221467694203281157773569063575248993129406249850327786533590863226437586471189431556102652450480781404461332284313935885135230918441468132628816960326617483<240> |
prime factors 素因数 | 126222093950322437015806578498509357<36> |
composite cofactor 合成数の残り | 3009198552895528520005373886428712472316383538192267001191578443426778882174916076008527213486369847499743334625514581776576526716879341905408431395904315678133617740988758801152932572676295954498137972119<205> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=716711298 Step 1 took 40416ms Step 2 took 13878ms ********** Factor found in step 2: 126222093950322437015806578498509357 Found probable prime factor of 36 digits: 126222093950322437015806578498509357 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 13, 2015 06:00:00 UTC 2015 年 11 月 13 日 (金) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2520 | 600 | Dmitry Domanov | November 15, 2015 09:51:15 UTC 2015 年 11 月 15 日 (日) 18 時 51 分 15 秒 (日本時間) |
1920 | ebina | July 22, 2022 00:24:30 UTC 2022 年 7 月 22 日 (金) 9 時 24 分 30 秒 (日本時間) | |||
45 | 11e6 | 4001 | Thomas Kozlowski | November 21, 2024 08:06:18 UTC 2024 年 11 月 21 日 (木) 17 時 6 分 18 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 13, 2015 06:00:00 UTC 2015 年 11 月 13 日 (金) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2400 | 600 | Dmitry Domanov | November 15, 2015 09:51:30 UTC 2015 年 11 月 15 日 (日) 18 時 51 分 30 秒 (日本時間) |
1800 | ebina | July 22, 2022 02:54:13 UTC 2022 年 7 月 22 日 (金) 11 時 54 分 13 秒 (日本時間) | |||
45 | 11e6 | 4003 | Thomas Kozlowski | November 21, 2024 10:00:54 UTC 2024 年 11 月 21 日 (木) 19 時 0 分 54 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 13, 2015 06:00:00 UTC 2015 年 11 月 13 日 (金) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2520 | 600 | Dmitry Domanov | November 15, 2015 09:51:41 UTC 2015 年 11 月 15 日 (日) 18 時 51 分 41 秒 (日本時間) |
1920 | ebina | July 22, 2022 04:26:57 UTC 2022 年 7 月 22 日 (金) 13 時 26 分 57 秒 (日本時間) | |||
45 | 11e6 | 4000 | Thomas Kozlowski | November 21, 2024 11:43:40 UTC 2024 年 11 月 21 日 (木) 20 時 43 分 40 秒 (日本時間) |
name 名前 | ebina |
---|---|
date 日付 | November 27, 2022 08:33:20 UTC 2022 年 11 月 27 日 (日) 17 時 33 分 20 秒 (日本時間) |
composite number 合成数 | 80620371412030466362943794779136769120575329833580397183705582324893596635543929470875873514800429154629553121670875418081591438873716665224468756936801467430871017603683444722433907860146057526544981138851833151107602566990594048123638579609<242> |
prime factors 素因数 | 1766097623249950717360711800061050838523<40> |
composite cofactor 合成数の残り | 45648876002490660200277656023237789453087698795153369688156277778186747357200947516662247053115093848800484544882216236356403266782290570667954493084623360808938412771977743403470296983273551142294351483<203> |
factorization results 素因数分解の結果 | C:\MYDATA\ALL\ECM>ecm70dev-svn2256-x64-nehalem\ecm -primetest -one -nn -sigma 1:258798904 3e6 GMP-ECM 7.0-dev [configured with MPIR 2.6.0, --enable-openmp] [ECM] Input number is 80620371412030466362943794779136769120575329833580397183705582324893596635543929470875873514800429154629553121670875418081591438873716665224468756936801467430871017603683444722433907860146057526544981138851833151107602566990594048123638579609 (242 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:258798904 Step 1 took 18453ms Step 2 took 9328ms ********** Factor found in step 2: 1766097623249950717360711800061050838523 Found probable prime factor of 40 digits: 1766097623249950717360711800061050838523 Composite cofactor 45648876002490660200277656023237789453087698795153369688156277778186747357200947516662247053115093848800484544882216236356403266782290570667954493084623360808938412771977743403470296983273551142294351483 has 203 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 13, 2015 06:00:00 UTC 2015 年 11 月 13 日 (金) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 3270 | 600 | Dmitry Domanov | November 15, 2015 09:51:52 UTC 2015 年 11 月 15 日 (日) 18 時 51 分 52 秒 (日本時間) |
878 | ebina | November 27, 2022 08:32:40 UTC 2022 年 11 月 27 日 (日) 17 時 32 分 40 秒 (日本時間) | |||
1792 | Dmitry Domanov | October 8, 2023 08:16:15 UTC 2023 年 10 月 8 日 (日) 17 時 16 分 15 秒 (日本時間) | |||
45 | 11e6 | 3802 | Thomas Kozlowski | November 21, 2024 12:59:27 UTC 2024 年 11 月 21 日 (木) 21 時 59 分 27 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 13, 2015 06:00:00 UTC 2015 年 11 月 13 日 (金) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2392 | 600 | Dmitry Domanov | November 15, 2015 09:52:03 UTC 2015 年 11 月 15 日 (日) 18 時 52 分 3 秒 (日本時間) |
1792 | Dmitry Domanov | October 8, 2023 08:16:24 UTC 2023 年 10 月 8 日 (日) 17 時 16 分 24 秒 (日本時間) | |||
45 | 11e6 | 4000 | Thomas Kozlowski | November 21, 2024 14:54:10 UTC 2024 年 11 月 21 日 (木) 23 時 54 分 10 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 13, 2015 06:00:00 UTC 2015 年 11 月 13 日 (金) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2392 | 600 | Dmitry Domanov | November 15, 2015 09:52:15 UTC 2015 年 11 月 15 日 (日) 18 時 52 分 15 秒 (日本時間) |
1792 | Dmitry Domanov | October 8, 2023 08:16:33 UTC 2023 年 10 月 8 日 (日) 17 時 16 分 33 秒 (日本時間) | |||
45 | 11e6 | 4000 | Thomas Kozlowski | November 21, 2024 16:48:33 UTC 2024 年 11 月 22 日 (金) 1 時 48 分 33 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 13, 2015 06:00:00 UTC 2015 年 11 月 13 日 (金) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2392 | 600 | Dmitry Domanov | November 15, 2015 09:52:30 UTC 2015 年 11 月 15 日 (日) 18 時 52 分 30 秒 (日本時間) |
1792 | Dmitry Domanov | October 8, 2023 08:16:42 UTC 2023 年 10 月 8 日 (日) 17 時 16 分 42 秒 (日本時間) | |||
45 | 11e6 | 4000 | Thomas Kozlowski | November 21, 2024 18:30:40 UTC 2024 年 11 月 22 日 (金) 3 時 30 分 40 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 13, 2015 06:00:00 UTC 2015 年 11 月 13 日 (金) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 904 | Makoto Kamada | November 13, 2015 06:00:00 UTC 2015 年 11 月 13 日 (金) 15 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 600 | Dmitry Domanov | November 14, 2015 09:47:10 UTC 2015 年 11 月 14 日 (土) 18 時 47 分 10 秒 (日本時間) | |
45 | 11e6 | 4401 | 800 | Dmitry Domanov | January 20, 2016 20:16:26 UTC 2016 年 1 月 21 日 (木) 5 時 16 分 26 秒 (日本時間) |
3601 | Thomas Kozlowski | November 21, 2024 20:25:19 UTC 2024 年 11 月 22 日 (金) 5 時 25 分 19 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | October 8, 2023 11:45:56 UTC 2023 年 10 月 8 日 (日) 20 時 45 分 56 秒 (日本時間) |
composite number 合成数 | 1823261269781438257807672649415578869960371148652024190207424120040596181417180106115622809543118740211164680677371776101814198199376918718438275276084091705350876740355461969324400605849335725407297025314551558322508129252915675068559515190048265586603022721779<262> |
prime factors 素因数 | 1829193117056544496093277170564593812817559<43> |
composite cofactor 合成数の残り | 996757123553662009831926575027723929934601458799583278028468708359601444170302010892885117581674552478445210961620527862005788455772550049760131434213636017929930497718391209460124254823496430511087140240248511269080581<219> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @b31f9af792b3 with GMP-ECM 7.0.5-dev on Sun Oct 8 08:44:06 2023 Input number is 1823261269781438257807672649415578869960371148652024190207424120040596181417180106115622809543118740211164680677371776101814198199376918718438275276084091705350876740355461969324400605849335725407297025314551558322508129252915675068559515190048265586603022721779 (262 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:3969470958 Step 1 took 0ms Step 2 took 7006ms ********** Factor found in step 2: 1829193117056544496093277170564593812817559 Found prime factor of 43 digits: 1829193117056544496093277170564593812817559 Composite cofactor 996757123553662009831926575027723929934601458799583278028468708359601444170302010892885117581674552478445210961620527862005788455772550049760131434213636017929930497718391209460124254823496430511087140240248511269080581 has 219 digits |
name 名前 | Thomas Kozlowski |
---|---|
date 日付 | November 21, 2024 20:32:43 UTC 2024 年 11 月 22 日 (金) 5 時 32 分 43 秒 (日本時間) |
composite number 合成数 | 996757123553662009831926575027723929934601458799583278028468708359601444170302010892885117581674552478445210961620527862005788455772550049760131434213636017929930497718391209460124254823496430511087140240248511269080581<219> |
prime factors 素因数 | 191858702464040992237617215347276925191819<42> 5195266676738203442131608524747156334266166478463009856926841722509165365083836644784394927490735940058955929077827535290812174119129358296663105933667940351619884196350108999599<178> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.6 [configured with GMP 6.3.0, --enable-asm-redc] [ECM] Input number is 996757123553662009831926575027723929934601458799583278028468708359601444170302010892885117581674552478445210961620527862005788455772550049760131434213636017929930497718391209460124254823496430511087140240248511269080581 (219 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:2750662233 Step 1 took 41154ms Step 2 took 14455ms Run 2 out of 0: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:1646559987 Step 1 took 37577ms Step 2 took 14457ms Run 3 out of 0: ... Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:903093919 Step 1 took 37712ms Step 2 took 14427ms Run 7 out of 0: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:3444926961 Step 1 took 37176ms Step 2 took 14681ms ** Factor found in step 2: 191858702464040992237617215347276925191819 Found prime factor of 42 digits: 191858702464040992237617215347276925191819 Prime cofactor 5195266676738203442131608524747156334266166478463009856926841722509165365083836644784394927490735940058955929077827535290812174119129358296663105933667940351619884196350108999599 has 178 digits |
execution environment 実行環境 | 2x Xeon E5-2698v4, 128GB DDR4, Ubuntu Server 24.04 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 13, 2015 06:00:00 UTC 2015 年 11 月 13 日 (金) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2392 | 600 | Dmitry Domanov | November 15, 2015 09:52:42 UTC 2015 年 11 月 15 日 (日) 18 時 52 分 42 秒 (日本時間) |
1792 | Dmitry Domanov | October 8, 2023 08:16:56 UTC 2023 年 10 月 8 日 (日) 17 時 16 分 56 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 13, 2015 06:00:00 UTC 2015 年 11 月 13 日 (金) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2392 | 600 | Dmitry Domanov | November 15, 2015 09:52:56 UTC 2015 年 11 月 15 日 (日) 18 時 52 分 56 秒 (日本時間) |
1792 | Dmitry Domanov | October 8, 2023 08:17:04 UTC 2023 年 10 月 8 日 (日) 17 時 17 分 4 秒 (日本時間) | |||
45 | 11e6 | 4000 | Thomas Kozlowski | November 21, 2024 22:25:57 UTC 2024 年 11 月 22 日 (金) 7 時 25 分 57 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 13, 2015 06:00:00 UTC 2015 年 11 月 13 日 (金) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 904 | Makoto Kamada | November 13, 2015 06:00:00 UTC 2015 年 11 月 13 日 (金) 15 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2392 | 600 | Dmitry Domanov | November 15, 2015 09:53:30 UTC 2015 年 11 月 15 日 (日) 18 時 53 分 30 秒 (日本時間) |
1792 | Dmitry Domanov | October 8, 2023 08:17:12 UTC 2023 年 10 月 8 日 (日) 17 時 17 分 12 秒 (日本時間) | |||
45 | 11e6 | 4001 | Thomas Kozlowski | November 22, 2024 00:20:06 UTC 2024 年 11 月 22 日 (金) 9 時 20 分 6 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | November 15, 2015 10:41:21 UTC 2015 年 11 月 15 日 (日) 19 時 41 分 21 秒 (日本時間) |
composite number 合成数 | 213676594641461967529350152090362835456845225868263798707974487797768758361389726723953520864657885103768800873459239639369403952226873009722007536602185128634097040099648583414372519847641587306412070056188708248673481363709111572973728694032168047082854751916843977783864787<276> |
prime factors 素因数 | 190802117359769731950671384324959<33> |
composite cofactor 合成数の残り | 1119885867086898880226529880575715850380008314796677710773549491152504645130382138304242525211498312684705856886537507911078127181932940040525187174579747486145812565671065954668902682518936672715874134626721944266130430297167809732579638740493<244> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=4188568227 Step 1 took 59008ms Step 2 took 18484ms ********** Factor found in step 2: 190802117359769731950671384324959 Found probable prime factor of 33 digits: 190802117359769731950671384324959 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 13, 2015 06:00:00 UTC 2015 年 11 月 13 日 (金) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2392 | 600 | Dmitry Domanov | November 15, 2015 09:53:45 UTC 2015 年 11 月 15 日 (日) 18 時 53 分 45 秒 (日本時間) |
1792 | Dmitry Domanov | October 8, 2023 08:17:22 UTC 2023 年 10 月 8 日 (日) 17 時 17 分 22 秒 (日本時間) | |||
45 | 11e6 | 4000 | Thomas Kozlowski | November 22, 2024 02:02:36 UTC 2024 年 11 月 22 日 (金) 11 時 2 分 36 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 13, 2015 06:00:00 UTC 2015 年 11 月 13 日 (金) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2392 | 600 | Dmitry Domanov | November 16, 2015 08:12:55 UTC 2015 年 11 月 16 日 (月) 17 時 12 分 55 秒 (日本時間) |
1792 | Dmitry Domanov | October 8, 2023 08:17:30 UTC 2023 年 10 月 8 日 (日) 17 時 17 分 30 秒 (日本時間) | |||
45 | 11e6 | 4000 | Thomas Kozlowski | November 22, 2024 03:57:25 UTC 2024 年 11 月 22 日 (金) 12 時 57 分 25 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 13, 2015 06:00:00 UTC 2015 年 11 月 13 日 (金) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 904 | Makoto Kamada | November 13, 2015 06:00:00 UTC 2015 年 11 月 13 日 (金) 15 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 600 | Dmitry Domanov | November 14, 2015 09:44:24 UTC 2015 年 11 月 14 日 (土) 18 時 44 分 24 秒 (日本時間) | |
45 | 11e6 | 4400 | 800 | Dmitry Domanov | December 31, 2015 00:27:03 UTC 2015 年 12 月 31 日 (木) 9 時 27 分 3 秒 (日本時間) |
3600 | Thomas Kozlowski | November 22, 2024 06:05:24 UTC 2024 年 11 月 22 日 (金) 15 時 5 分 24 秒 (日本時間) |
name 名前 | Thomas Kozlowski |
---|---|
date 日付 | November 22, 2024 06:26:03 UTC 2024 年 11 月 22 日 (金) 15 時 26 分 3 秒 (日本時間) |
composite number 合成数 | 439025672837895226954947329408543311411751695760438135406346582211853741927801966208089360529909490097562598408832131099880457460011659972478896303123472184757984782788194472454560306765354956278606841167266089803276063224041656574349313660024902471185536067382069491067884015403633<282> |
prime factors 素因数 | 50466136808267755662611678236401932345343765259231507<53> 8699411141888130839157369577524263863877671655376233164221075799489783112986451732070468161843613059863811789313994061255571927852428643052860448782858284436002322025872711535188082465831775657955795986174395430183683298188215019<229> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.6 [configured with GMP 6.3.0, --enable-asm-redc] [ECM] Input number is 439025672837895226954947329408543311411751695760438135406346582211853741927801966208089360529909490097562598408832131099880457460011659972478896303123472184757984782788194472454560306765354956278606841167266089803276063224041656574349313660024902471185536067382069491067884015403633 (282 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:2068843671 Step 1 took 57546ms Step 2 took 18987ms Run 2 out of 0: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:2056120476 Step 1 took 54916ms Step 2 took 19308ms Run 3 out of 0: ... Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:3850874485 Step 1 took 55435ms Step 2 took 18944ms Run 16 out of 0: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:2917935313 Step 1 took 55628ms Step 2 took 18978ms ** Factor found in step 2: 50466136808267755662611678236401932345343765259231507 Found prime factor of 53 digits: 50466136808267755662611678236401932345343765259231507 Prime cofactor 8699411141888130839157369577524263863877671655376233164221075799489783112986451732070468161843613059863811789313994061255571927852428643052860448782858284436002322025872711535188082465831775657955795986174395430183683298188215019 has 229 digits |
execution environment 実行環境 | 2x Xeon E5-2698v4, 128GB DDR4, Ubuntu Server 24.04 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 13, 2015 06:00:00 UTC 2015 年 11 月 13 日 (金) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2392 | 600 | Dmitry Domanov | November 16, 2015 08:13:19 UTC 2015 年 11 月 16 日 (月) 17 時 13 分 19 秒 (日本時間) |
1792 | Dmitry Domanov | October 8, 2023 08:17:42 UTC 2023 年 10 月 8 日 (日) 17 時 17 分 42 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | November 15, 2015 13:28:31 UTC 2015 年 11 月 15 日 (日) 22 時 28 分 31 秒 (日本時間) |
composite number 合成数 | 1203541161206641617743454700012060700321508373042692560182278284307140786801768230883765789248024375465748899797306413008692859020699256699713144262439557049674045960062170937895013000500150937258974142730848626524663319162350089<229> |
prime factors 素因数 | 324942657466254569194750714333216081<36> |
composite cofactor 合成数の残り | 3703857076172370106316257809790678029511677940769372027035655364298342548895219629472606566936176527686024077331587342878777703290758615622427680173560339730446932431200662281379517998730400569<193> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1797285080 Step 1 took 41535ms Step 2 took 14997ms ********** Factor found in step 2: 324942657466254569194750714333216081 Found probable prime factor of 36 digits: 324942657466254569194750714333216081 |
name 名前 | Serge Batalov |
---|---|
date 日付 | November 16, 2015 21:53:40 UTC 2015 年 11 月 17 日 (火) 6 時 53 分 40 秒 (日本時間) |
composite number 合成数 | 3703857076172370106316257809790678029511677940769372027035655364298342548895219629472606566936176527686024077331587342878777703290758615622427680173560339730446932431200662281379517998730400569<193> |
prime factors 素因数 | 85830464943007584325757304014026192061<38> 43153175025112281461026751348727035354281970405559188058567055437592988995735861160946703618250218299720113991263399945154349141015099530020028799185462829<155> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=653942306 Step 1 took 18528ms Step 2 took 6772ms ********** Factor found in step 2: 85830464943007584325757304014026192061 Found probable prime factor of 38 digits: 85830464943007584325757304014026192061 Probable prime cofactor |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 13, 2015 06:00:00 UTC 2015 年 11 月 13 日 (金) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 600 / 2336 | Dmitry Domanov | November 15, 2015 09:54:19 UTC 2015 年 11 月 15 日 (日) 18 時 54 分 19 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 13, 2015 06:00:00 UTC 2015 年 11 月 13 日 (金) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2400 | 600 | Dmitry Domanov | November 16, 2015 08:13:36 UTC 2015 年 11 月 16 日 (月) 17 時 13 分 36 秒 (日本時間) |
1800 | ebina | October 15, 2021 03:00:21 UTC 2021 年 10 月 15 日 (金) 12 時 0 分 21 秒 (日本時間) | |||
45 | 11e6 | 4000 | Thomas Kozlowski | November 22, 2024 08:07:56 UTC 2024 年 11 月 22 日 (金) 17 時 7 分 56 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 13, 2015 06:00:00 UTC 2015 年 11 月 13 日 (金) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 1200 | Dmitry Domanov | November 14, 2015 22:52:31 UTC 2015 年 11 月 15 日 (日) 7 時 52 分 31 秒 (日本時間) | |
45 | 11e6 | 1200 | Dmitry Domanov | November 16, 2015 08:11:41 UTC 2015 年 11 月 16 日 (月) 17 時 11 分 41 秒 (日本時間) | |
50 | 43e6 | 600 / 6934 | Dmitry Domanov | November 28, 2015 00:10:03 UTC 2015 年 11 月 28 日 (土) 9 時 10 分 3 秒 (日本時間) | |
55 | 11e7 | 120 / 17464 | Dmitry Domanov | December 3, 2015 07:25:49 UTC 2015 年 12 月 3 日 (木) 16 時 25 分 49 秒 (日本時間) | |
60 | 26e7 | 3 / 41881 | 2 | Dmitry Domanov | December 3, 2015 07:26:57 UTC 2015 年 12 月 3 日 (木) 16 時 26 分 57 秒 (日本時間) |
1 | Dmitry Domanov | December 3, 2015 07:27:10 UTC 2015 年 12 月 3 日 (木) 16 時 27 分 10 秒 (日本時間) |