name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 6, 2014 16:33:53 UTC 2014 年 12 月 7 日 (日) 1 時 33 分 53 秒 (日本時間) |
composite number 合成数 | 50507996524013730154940735059100845515585227696792769606253518678385595039319958629576576308106474547<101> |
prime factors 素因数 | 106078075793053632311404651<27> 476139825750130852729748174272550006820267612879703503727057832159092913497<75> |
factorization results 素因数分解の結果 | N=50507996524013730154940735059100845515585227696792769606253518678385595039319958629576576308106474547 ( 101 digits) SNFS difficulty: 110 digits. Divisors found: r1=106078075793053632311404651 (pp27) r2=476139825750130852729748174272550006820267612879703503727057832159092913497 (pp75) Version: Msieve v. 1.50 (SVN unknown) Total time: 0.43 hours. Scaled time: 0.61 units (timescale=1.422). Factorization parameters were as follows: n: 50507996524013730154940735059100845515585227696792769606253518678385595039319958629576576308106474547 m: 1000000000000000000000 deg: 5 c5: 109000 c0: -1 skew: 0.10 # Murphy_E = 3.411e-08 type: snfs lss: 1 rlim: 480000 alim: 480000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2 Factor base limits: 480000/480000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [240000, 490001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 53471 x 53696 Total sieving time: 0.39 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.01 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,110.000,5,0,0,0,0,0,0,0,0,480000,480000,25,25,44,44,2.2,2.2,50000 total time: 0.43 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) |
name 名前 | KTakahashi |
---|---|
date 日付 | December 6, 2014 17:30:07 UTC 2014 年 12 月 7 日 (日) 2 時 30 分 7 秒 (日本時間) |
composite number 合成数 | 33788999718602889339885567972190410061454730875884217487194686911797524486668057277239292716753981336767<104> |
prime factors 素因数 | 521130909450462329838740508916620605442529<42> 64837834612868620499487274531868390398116920779532788477643423<62> |
factorization results 素因数分解の結果 | Number: 12111_116 N=33788999718602889339885567972190410061454730875884217487194686911797524486668057277239292716753981336767 ( 104 digits) SNFS difficulty: 119 digits. Divisors found: r1=521130909450462329838740508916620605442529 (pp42) r2=64837834612868620499487274531868390398116920779532788477643423 (pp62) Version: Msieve v. 1.51 (SVN Official Release) Total time: 1.53 hours. Scaled time: 2.64 units (timescale=1.727). Factorization parameters were as follows: n: 33788999718602889339885567972190410061454730875884217487194686911797524486668057277239292716753981336767 m: 200000000000000000000000 c5: 545 c0: -16 skew: 0.49 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [300000, 500001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 108214 x 108461 Total sieving time: 1.46 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.04 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,119.000,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 1.53 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) |
name 名前 | KTakahashi |
---|---|
date 日付 | December 6, 2014 17:30:44 UTC 2014 年 12 月 7 日 (日) 2 時 30 分 44 秒 (日本時間) |
composite number 合成数 | 367003367003367003367003367003367003367003367003367003367003367003367003367003367003367003367003367003367003367003367<117> |
prime factors 素因数 | 714362674465459172432815312963407359731<39> 513749360264360132708257946264983315858157718624667238942226207676096084477757<78> |
factorization results 素因数分解の結果 | Number: 12111_117 N=367003367003367003367003367003367003367003367003367003367003367003367003367003367003367003367003367003367003367003367 ( 117 digits) SNFS difficulty: 121 digits. Divisors found: r1=714362674465459172432815312963407359731 (pp39) r2=513749360264360132708257946264983315858157718624667238942226207676096084477757 (pp78) Version: Msieve v. 1.51 (SVN Official Release) Total time: 2.23 hours. Scaled time: 3.58 units (timescale=1.608). Factorization parameters were as follows: n: 367003367003367003367003367003367003367003367003367003367003367003367003367003367003367003367003367003367003367003367 m: 500000000000000000000000 c5: 436 c0: -125 skew: 0.78 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [300000, 450001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 75661 x 75886 Total sieving time: 2.15 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.02 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,121.000,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 2.23 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) |
name 名前 | KTakahashi |
---|---|
date 日付 | December 6, 2014 18:58:47 UTC 2014 年 12 月 7 日 (日) 3 時 58 分 47 秒 (日本時間) |
composite number 合成数 | 2481435490317009996239480222761488917272918452349041323330016701789198128079583958874650533518903533<100> |
prime factors 素因数 | 1058854399362990511245392179859<31> 2343509638161628145225929956310157547974760516143237740348954466076287<70> |
factorization results 素因数分解の結果 | GMP-ECM 6.4.4 [configured with GMP 6.0.0] [ECM] Input number is 2481435490317009996239480222761488917272918452349041323330016701789198128079583958874650533518903533 (100 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3186643423 Step 1 took 2698ms Step 2 took 1810ms ********** Factor found in step 2: 1058854399362990511245392179859 Found probable prime factor of 31 digits: 1058854399362990511245392179859 Probable prime cofactor 2343509638161628145225929956310157547974760516143237740348954466076287 has 70 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 7, 2014 01:57:22 UTC 2014 年 12 月 7 日 (日) 10 時 57 分 22 秒 (日本時間) |
composite number 合成数 | 4975121919426408696739345727015374025041323540523364370129227914040199437451614628554903638168569599173915823464603<115> |
prime factors 素因数 | 8018758259872936898903974717929480777705495448240479691<55> 620435453743837284542601642349682070727274685583980289502833<60> |
factorization results 素因数分解の結果 | N=4975121919426408696739345727015374025041323540523364370129227914040199437451614628554903638168569599173915823464603 ( 115 digits) SNFS difficulty: 127 digits. Divisors found: r1=8018758259872936898903974717929480777705495448240479691 (pp55) r2=620435453743837284542601642349682070727274685583980289502833 (pp60) Version: Msieve v. 1.50 (SVN unknown) Total time: 1.05 hours. Scaled time: 2.01 units (timescale=1.913). Factorization parameters were as follows: n: 4975121919426408696739345727015374025041323540523364370129227914040199437451614628554903638168569599173915823464603 m: 10000000000000000000000000 deg: 5 c5: 109 c0: -1 skew: 0.39 # Murphy_E = 1.562e-08 type: snfs lss: 1 rlim: 920000 alim: 920000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 920000/920000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [460000, 660001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 93449 x 93674 Total sieving time: 0.99 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.02 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,127.000,5,0,0,0,0,0,0,0,0,920000,920000,26,26,46,46,2.3,2.3,50000 total time: 1.05 hours. |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 8, 2014 10:42:50 UTC 2014 年 12 月 8 日 (月) 19 時 42 分 50 秒 (日本時間) |
composite number 合成数 | 1985428051001821493624772313296903460837887067395264116575591985428051001821493624772313296903460837887067395264116575591985428051<130> |
prime factors 素因数 | 36369136999488198605614748630621486653942384326441069497849<59> 54591013557175174392624128776602653952926159478844296854111853300509099<71> |
factorization results 素因数分解の結果 | N=1985428051001821493624772313296903460837887067395264116575591985428051001821493624772313296903460837887067395264116575591985428051 ( 130 digits) SNFS difficulty: 132 digits. Divisors found: r1=36369136999488198605614748630621486653942384326441069497849 (pp59) r2=54591013557175174392624128776602653952926159478844296854111853300509099 (pp71) Version: Msieve v. 1.50 (SVN unknown) Total time: 1.53 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 1985428051001821493624772313296903460837887067395264116575591985428051001821493624772313296903460837887067395264116575591985428051 m: 100000000000000000000000000 deg: 5 c5: 109 c0: -1 skew: 0.39 # Murphy_E = 1.032e-08 type: snfs lss: 1 rlim: 1110000 alim: 1110000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1110000/1110000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [555000, 805001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 139085 x 139310 Total sieving time: 1.41 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.05 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,132.000,5,0,0,0,0,0,0,0,0,1110000,1110000,26,26,47,47,2.3,2.3,50000 total time: 1.53 hours. |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 8, 2014 11:44:27 UTC 2014 年 12 月 8 日 (月) 20 時 44 分 27 秒 (日本時間) |
composite number 合成数 | 673850281595232354704896851450014527964786686202142720253219335175602910538647477388922890508602409787520787353870311640299956107<129> |
prime factors 素因数 | 133007952745789309768419585733508419<36> 5066240534377104937688286200351511395693456818477517925684936232672881017019062283522593072153<94> |
factorization results 素因数分解の結果 | N=673850281595232354704896851450014527964786686202142720253219335175602910538647477388922890508602409787520787353870311640299956107 ( 129 digits) SNFS difficulty: 134 digits. Divisors found: r1=133007952745789309768419585733508419 (pp36) r2=5066240534377104937688286200351511395693456818477517925684936232672881017019062283522593072153 (pp94) Version: Msieve v. 1.50 (SVN unknown) Total time: 1.81 hours. Scaled time: 3.86 units (timescale=2.130). Factorization parameters were as follows: n: 673850281595232354704896851450014527964786686202142720253219335175602910538647477388922890508602409787520787353870311640299956107 m: 100000000000000000000000000 deg: 5 c5: 10900 c0: -1 skew: 0.16 # Murphy_E = 6.272e-09 type: snfs lss: 1 rlim: 1200000 alim: 1200000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1200000/1200000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [600000, 975001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 182753 x 183001 Total sieving time: 1.64 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.10 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,134.000,5,0,0,0,0,0,0,0,0,1200000,1200000,26,26,47,47,2.3,2.3,75000 total time: 1.81 hours. |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) |
name 名前 | Cyp |
---|---|
date 日付 | December 13, 2014 15:30:55 UTC 2014 年 12 月 14 日 (日) 0 時 30 分 55 秒 (日本時間) |
composite number 合成数 | 4362856286168105257513932463458110350589483700634669162387552339155503430948800613006516130361942151641074075835777<115> |
prime factors 素因数 | 521796017379173312090934190128481318435667<42> 8361229562619965631325788864630174793599091261758766408218195519790890331<73> |
factorization results 素因数分解の結果 | 12/13/14 15:50:04 v1.34.3, 12/13/14 15:50:04 v1.34.3, **************************** 12/13/14 15:50:04 v1.34.3, Starting factorization of 4362856286168105257513932463458110350589483700634669162387552339155503430948800613006516130361942151641074075835777 12/13/14 15:50:04 v1.34.3, using pretesting plan: none 12/13/14 15:50:04 v1.34.3, no tune info: using qs/gnfs crossover of 95 digits 12/13/14 15:50:04 v1.34.3, **************************** 12/13/14 15:50:04 v1.34.3, nfs: commencing nfs on c115: 4362856286168105257513932463458110350589483700634669162387552339155503430948800613006516130361942151641074075835777 12/13/14 15:50:04 v1.34.3, nfs: continuing with sieving - could not determine last special q; using default startq 12/13/14 15:50:04 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/13/14 15:50:50 v1.34.3, nfs: commencing lattice sieving with 8 threads [41 lines snipped] 12/13/14 16:24:28 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/13/14 16:25:19 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/13/14 16:26:11 v1.34.3, nfs: commencing msieve filtering 12/13/14 16:27:03 v1.34.3, nfs: commencing msieve linear algebra 12/13/14 16:30:39 v1.34.3, nfs: commencing msieve sqrt 12/13/14 16:30:54 v1.34.3, prp73 = 8361229562619965631325788864630174793599091261758766408218195519790890331 12/13/14 16:30:54 v1.34.3, prp42 = 521796017379173312090934190128481318435667 12/13/14 16:30:54 v1.34.3, NFS elapsed time = 2450.3708 seconds. 12/13/14 16:30:54 v1.34.3, 12/13/14 16:30:54 v1.34.3, 12/13/14 16:30:54 v1.34.3, Total factoring time = 2450.3735 seconds -- Sat Dec 13 16:26:11 2014 Sat Dec 13 16:26:11 2014 commencing relation filtering Sat Dec 13 16:26:11 2014 estimated available RAM is 15987.3 MB Sat Dec 13 16:26:11 2014 commencing duplicate removal, pass 1 Sat Dec 13 16:26:24 2014 found 579564 hash collisions in 4475797 relations Sat Dec 13 16:26:28 2014 added 179756 free relations Sat Dec 13 16:26:28 2014 commencing duplicate removal, pass 2 Sat Dec 13 16:26:31 2014 found 403531 duplicates and 4252022 unique relations Sat Dec 13 16:26:31 2014 memory use: 20.6 MB Sat Dec 13 16:26:31 2014 reading ideals above 100000 Sat Dec 13 16:26:31 2014 commencing singleton removal, initial pass Sat Dec 13 16:26:51 2014 memory use: 94.1 MB Sat Dec 13 16:26:51 2014 reading all ideals from disk Sat Dec 13 16:26:52 2014 memory use: 133.0 MB Sat Dec 13 16:26:52 2014 keeping 4502446 ideals with weight <= 200, target excess is 21840 Sat Dec 13 16:26:52 2014 commencing in-memory singleton removal Sat Dec 13 16:26:52 2014 begin with 4252022 relations and 4502446 unique ideals Sat Dec 13 16:26:53 2014 reduce to 1891571 relations and 1521881 ideals in 11 passes Sat Dec 13 16:26:53 2014 max relations containing the same ideal: 120 Sat Dec 13 16:26:54 2014 removing 552487 relations and 380309 ideals in 172178 cliques Sat Dec 13 16:26:54 2014 commencing in-memory singleton removal Sat Dec 13 16:26:54 2014 begin with 1339084 relations and 1521881 unique ideals Sat Dec 13 16:26:55 2014 reduce to 1240313 relations and 1032013 ideals in 8 passes Sat Dec 13 16:26:55 2014 max relations containing the same ideal: 88 Sat Dec 13 16:26:55 2014 removing 468169 relations and 295991 ideals in 172178 cliques Sat Dec 13 16:26:55 2014 commencing in-memory singleton removal Sat Dec 13 16:26:55 2014 begin with 772144 relations and 1032013 unique ideals Sat Dec 13 16:26:55 2014 reduce to 683346 relations and 635302 ideals in 8 passes Sat Dec 13 16:26:55 2014 max relations containing the same ideal: 57 Sat Dec 13 16:26:55 2014 removing 90712 relations and 68003 ideals in 22709 cliques Sat Dec 13 16:26:55 2014 commencing in-memory singleton removal Sat Dec 13 16:26:55 2014 begin with 592634 relations and 635302 unique ideals Sat Dec 13 16:26:56 2014 reduce to 581955 relations and 556272 ideals in 6 passes Sat Dec 13 16:26:56 2014 max relations containing the same ideal: 52 Sat Dec 13 16:26:56 2014 relations with 0 large ideals: 503 Sat Dec 13 16:26:56 2014 relations with 1 large ideals: 236 Sat Dec 13 16:26:56 2014 relations with 2 large ideals: 3758 Sat Dec 13 16:26:56 2014 relations with 3 large ideals: 24960 Sat Dec 13 16:26:56 2014 relations with 4 large ideals: 81767 Sat Dec 13 16:26:56 2014 relations with 5 large ideals: 151781 Sat Dec 13 16:26:56 2014 relations with 6 large ideals: 169302 Sat Dec 13 16:26:56 2014 relations with 7+ large ideals: 149648 Sat Dec 13 16:26:56 2014 commencing 2-way merge Sat Dec 13 16:26:56 2014 reduce to 372053 relation sets and 346370 unique ideals Sat Dec 13 16:26:56 2014 commencing full merge Sat Dec 13 16:27:01 2014 memory use: 45.8 MB Sat Dec 13 16:27:01 2014 found 188022 cycles, need 184570 Sat Dec 13 16:27:01 2014 weight of 184570 cycles is about 13269538 (71.89/cycle) Sat Dec 13 16:27:01 2014 distribution of cycle lengths: Sat Dec 13 16:27:01 2014 1 relations: 11765 Sat Dec 13 16:27:01 2014 2 relations: 15987 Sat Dec 13 16:27:01 2014 3 relations: 18564 Sat Dec 13 16:27:01 2014 4 relations: 18837 Sat Dec 13 16:27:01 2014 5 relations: 18595 Sat Dec 13 16:27:01 2014 6 relations: 17510 Sat Dec 13 16:27:01 2014 7 relations: 16034 Sat Dec 13 16:27:01 2014 8 relations: 14037 Sat Dec 13 16:27:01 2014 9 relations: 11875 Sat Dec 13 16:27:01 2014 10+ relations: 41366 Sat Dec 13 16:27:01 2014 heaviest cycle: 22 relations Sat Dec 13 16:27:01 2014 commencing cycle optimization Sat Dec 13 16:27:01 2014 start with 1220696 relations Sat Dec 13 16:27:03 2014 pruned 43220 relations Sat Dec 13 16:27:03 2014 memory use: 36.5 MB Sat Dec 13 16:27:03 2014 distribution of cycle lengths: Sat Dec 13 16:27:03 2014 1 relations: 11765 Sat Dec 13 16:27:03 2014 2 relations: 16340 Sat Dec 13 16:27:03 2014 3 relations: 19241 Sat Dec 13 16:27:03 2014 4 relations: 19495 Sat Dec 13 16:27:03 2014 5 relations: 19519 Sat Dec 13 16:27:03 2014 6 relations: 18195 Sat Dec 13 16:27:03 2014 7 relations: 16664 Sat Dec 13 16:27:03 2014 8 relations: 14346 Sat Dec 13 16:27:03 2014 9 relations: 12017 Sat Dec 13 16:27:03 2014 10+ relations: 36988 Sat Dec 13 16:27:03 2014 heaviest cycle: 20 relations Sat Dec 13 16:27:03 2014 RelProcTime: 52 Sat Dec 13 16:27:03 2014 Sat Dec 13 16:27:03 2014 commencing linear algebra Sat Dec 13 16:27:03 2014 read 184570 cycles Sat Dec 13 16:27:04 2014 cycles contain 566393 unique relations Sat Dec 13 16:27:08 2014 read 566393 relations Sat Dec 13 16:27:09 2014 using 20 quadratic characters above 67071878 Sat Dec 13 16:27:11 2014 building initial matrix Sat Dec 13 16:27:16 2014 memory use: 70.3 MB Sat Dec 13 16:27:16 2014 read 184570 cycles Sat Dec 13 16:27:16 2014 matrix is 184397 x 184570 (55.6 MB) with weight 16895493 (91.54/col) Sat Dec 13 16:27:16 2014 sparse part has weight 12543691 (67.96/col) Sat Dec 13 16:27:17 2014 filtering completed in 2 passes Sat Dec 13 16:27:17 2014 matrix is 184374 x 184547 (55.6 MB) with weight 16894459 (91.55/col) Sat Dec 13 16:27:17 2014 sparse part has weight 12543237 (67.97/col) Sat Dec 13 16:27:17 2014 matrix starts at (0, 0) Sat Dec 13 16:27:17 2014 matrix is 184374 x 184547 (55.6 MB) with weight 16894459 (91.55/col) Sat Dec 13 16:27:17 2014 sparse part has weight 12543237 (67.97/col) Sat Dec 13 16:27:17 2014 saving the first 48 matrix rows for later Sat Dec 13 16:27:17 2014 matrix includes 64 packed rows Sat Dec 13 16:27:17 2014 matrix is 184326 x 184547 (52.4 MB) with weight 13310311 (72.12/col) Sat Dec 13 16:27:17 2014 sparse part has weight 11877972 (64.36/col) Sat Dec 13 16:27:17 2014 using block size 65536 for processor cache size 8192 kB Sat Dec 13 16:27:18 2014 commencing Lanczos iteration Sat Dec 13 16:27:18 2014 memory use: 39.5 MB Sat Dec 13 16:27:32 2014 linear algebra at 6.6%, ETA 0h 3m Sat Dec 13 16:30:39 2014 lanczos halted after 2918 iterations (dim = 184319) Sat Dec 13 16:30:39 2014 recovered 37 nontrivial dependencies Sat Dec 13 16:30:39 2014 BLanczosTime: 216 Sat Dec 13 16:30:39 2014 Sat Dec 13 16:30:39 2014 commencing square root phase Sat Dec 13 16:30:39 2014 reading relations for dependency 1 Sat Dec 13 16:30:39 2014 read 92418 cycles Sat Dec 13 16:30:39 2014 cycles contain 282142 unique relations Sat Dec 13 16:30:43 2014 read 282142 relations Sat Dec 13 16:30:43 2014 multiplying 282142 relations Sat Dec 13 16:30:48 2014 multiply complete, coefficients have about 8.39 million bits Sat Dec 13 16:30:48 2014 initial square root is modulo 66701 Sat Dec 13 16:30:54 2014 sqrtTime: 15 -- n: 4362856286168105257513932463458110350589483700634669162387552339155503430948800613006516130361942151641074075835777 m: 5000000000000000000000000000 deg: 5 c5: 1744 c0: -5 skew: 0.31 # Murphy_E = 3.28e-09 type: snfs lss: 1 rlim: 1610000 alim: 1610000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 |
software ソフトウェア | yafu v1.34.3 |
execution environment 実行環境 | Gentoo Linux, Intel(R) Core(TM) i7-3770K CPU |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 418 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) |
300 | Ignacio Santos | December 10, 2014 14:59:31 UTC 2014 年 12 月 10 日 (水) 23 時 59 分 31 秒 (日本時間) | |||
40 | 3e6 | 410 / 2126 | 110 | Ignacio Santos | December 10, 2014 14:59:31 UTC 2014 年 12 月 10 日 (水) 23 時 59 分 31 秒 (日本時間) |
300 | Serge Batalov | December 10, 2014 19:47:37 UTC 2014 年 12 月 11 日 (木) 4 時 47 分 37 秒 (日本時間) | |||
45 | 11e6 | 32 / 4371 | Ignacio Santos | December 10, 2014 14:59:31 UTC 2014 年 12 月 10 日 (水) 23 時 59 分 31 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 12, 2014 12:51:29 UTC 2014 年 12 月 12 日 (金) 21 時 51 分 29 秒 (日本時間) |
composite number 合成数 | 117320611215413439825144499975841641112569223331418639431580131791086089746112923284020036164670391886683444375139176956733697744067799<135> |
prime factors 素因数 | 100802838080132026627789471743500694725653<42> 1163862183345976869799910684901831953975014902758529315544005497676458033449973007650384436283<94> |
factorization results 素因数分解の結果 | N=117320611215413439825144499975841641112569223331418639431580131791086089746112923284020036164670391886683444375139176956733697744067799 ( 135 digits) SNFS difficulty: 142 digits. Divisors found: r1=100802838080132026627789471743500694725653 (pp42) r2=1163862183345976869799910684901831953975014902758529315544005497676458033449973007650384436283 (pp94) Version: Msieve v. 1.50 (SVN unknown) Total time: 2.98 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 117320611215413439825144499975841641112569223331418639431580131791086089746112923284020036164670391886683444375139176956733697744067799 m: 10000000000000000000000000000 deg: 5 c5: 109 c0: -1 skew: 0.39 # Murphy_E = 4.434e-09 type: snfs lss: 1 rlim: 1630000 alim: 1630000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1630000/1630000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [815000, 1315001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 238013 x 238261 Total sieving time: 2.86 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.05 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,142.000,5,0,0,0,0,0,0,0,0,1630000,1630000,26,26,48,48,2.3,2.3,100000 total time: 2.98 hours. |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 418 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) |
300 | Ignacio Santos | December 10, 2014 16:36:16 UTC 2014 年 12 月 11 日 (木) 1 時 36 分 16 秒 (日本時間) | |||
40 | 3e6 | 410 / 2126 | 110 | Ignacio Santos | December 10, 2014 16:36:16 UTC 2014 年 12 月 11 日 (木) 1 時 36 分 16 秒 (日本時間) |
300 | Serge Batalov | December 10, 2014 19:47:38 UTC 2014 年 12 月 11 日 (木) 4 時 47 分 38 秒 (日本時間) | |||
45 | 11e6 | 32 / 4371 | Ignacio Santos | December 10, 2014 16:36:16 UTC 2014 年 12 月 11 日 (木) 1 時 36 分 16 秒 (日本時間) |
name 名前 | Cyp |
---|---|
date 日付 | December 14, 2014 00:46:49 UTC 2014 年 12 月 14 日 (日) 9 時 46 分 49 秒 (日本時間) |
composite number 合成数 | 13885463564461884091278424746849471138620605145014932505122886615058725613992543847444053173245717969610900940526287<116> |
prime factors 素因数 | 85106821734877619816707391906236039288429732803353782013<56> 163153355764094799666550358058478342510328245706431155239099<60> |
factorization results 素因数分解の結果 | 12/14/14 01:05:08 v1.34.3, 12/14/14 01:05:08 v1.34.3, **************************** 12/14/14 01:05:08 v1.34.3, Starting factorization of 13885463564461884091278424746849471138620605145014932505122886615058725613992543847444053173245717969610900940526287 12/14/14 01:05:08 v1.34.3, using pretesting plan: none 12/14/14 01:05:08 v1.34.3, no tune info: using qs/gnfs crossover of 95 digits 12/14/14 01:05:08 v1.34.3, **************************** 12/14/14 01:05:08 v1.34.3, nfs: commencing nfs on c116: 13885463564461884091278424746849471138620605145014932505122886615058725613992543847444053173245717969610900940526287 12/14/14 01:05:08 v1.34.3, nfs: continuing with sieving - could not determine last special q; using default startq 12/14/14 01:05:08 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/14/14 01:05:49 v1.34.3, nfs: commencing lattice sieving with 8 threads [50 lines snipped] 12/14/14 01:42:54 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/14/14 01:43:40 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/14/14 01:44:24 v1.34.3, nfs: commencing msieve filtering 12/14/14 01:45:09 v1.34.3, nfs: commencing msieve linear algebra 12/14/14 01:46:30 v1.34.3, nfs: commencing msieve sqrt 12/14/14 01:46:48 v1.34.3, prp56 = 85106821734877619816707391906236039288429732803353782013 12/14/14 01:46:49 v1.34.3, prp60 = 163153355764094799666550358058478342510328245706431155239099 12/14/14 01:46:49 v1.34.3, NFS elapsed time = 2501.0288 seconds. 12/14/14 01:46:49 v1.34.3, 12/14/14 01:46:49 v1.34.3, 12/14/14 01:46:49 v1.34.3, Total factoring time = 2501.0293 seconds -- Sun Dec 14 01:44:24 2014 Sun Dec 14 01:44:24 2014 commencing relation filtering Sun Dec 14 01:44:24 2014 estimated available RAM is 15987.3 MB Sun Dec 14 01:44:24 2014 commencing duplicate removal, pass 1 Sun Dec 14 01:44:36 2014 found 609927 hash collisions in 4516608 relations Sun Dec 14 01:44:40 2014 added 180825 free relations Sun Dec 14 01:44:40 2014 commencing duplicate removal, pass 2 Sun Dec 14 01:44:43 2014 found 437602 duplicates and 4259831 unique relations Sun Dec 14 01:44:43 2014 memory use: 20.6 MB Sun Dec 14 01:44:43 2014 reading ideals above 100000 Sun Dec 14 01:44:43 2014 commencing singleton removal, initial pass Sun Dec 14 01:45:00 2014 memory use: 94.1 MB Sun Dec 14 01:45:00 2014 reading all ideals from disk Sun Dec 14 01:45:00 2014 memory use: 135.3 MB Sun Dec 14 01:45:00 2014 keeping 4605668 ideals with weight <= 200, target excess is 21981 Sun Dec 14 01:45:01 2014 commencing in-memory singleton removal Sun Dec 14 01:45:01 2014 begin with 4259831 relations and 4605668 unique ideals Sun Dec 14 01:45:02 2014 reduce to 1824847 relations and 1539284 ideals in 13 passes Sun Dec 14 01:45:02 2014 max relations containing the same ideal: 117 Sun Dec 14 01:45:02 2014 removing 477218 relations and 347185 ideals in 130033 cliques Sun Dec 14 01:45:02 2014 commencing in-memory singleton removal Sun Dec 14 01:45:02 2014 begin with 1347629 relations and 1539284 unique ideals Sun Dec 14 01:45:02 2014 reduce to 1260444 relations and 1097304 ideals in 7 passes Sun Dec 14 01:45:02 2014 max relations containing the same ideal: 88 Sun Dec 14 01:45:03 2014 removing 396827 relations and 266794 ideals in 130033 cliques Sun Dec 14 01:45:03 2014 commencing in-memory singleton removal Sun Dec 14 01:45:03 2014 begin with 863617 relations and 1097304 unique ideals Sun Dec 14 01:45:03 2014 reduce to 785957 relations and 744833 ideals in 9 passes Sun Dec 14 01:45:03 2014 max relations containing the same ideal: 61 Sun Dec 14 01:45:03 2014 removing 74531 relations and 58905 ideals in 15626 cliques Sun Dec 14 01:45:03 2014 commencing in-memory singleton removal Sun Dec 14 01:45:03 2014 begin with 711426 relations and 744833 unique ideals Sun Dec 14 01:45:03 2014 reduce to 706537 relations and 680938 ideals in 6 passes Sun Dec 14 01:45:03 2014 max relations containing the same ideal: 59 Sun Dec 14 01:45:03 2014 relations with 0 large ideals: 515 Sun Dec 14 01:45:03 2014 relations with 1 large ideals: 180 Sun Dec 14 01:45:03 2014 relations with 2 large ideals: 3095 Sun Dec 14 01:45:03 2014 relations with 3 large ideals: 21918 Sun Dec 14 01:45:03 2014 relations with 4 large ideals: 82334 Sun Dec 14 01:45:03 2014 relations with 5 large ideals: 169467 Sun Dec 14 01:45:03 2014 relations with 6 large ideals: 211215 Sun Dec 14 01:45:03 2014 relations with 7+ large ideals: 217813 Sun Dec 14 01:45:03 2014 commencing 2-way merge Sun Dec 14 01:45:04 2014 reduce to 442511 relation sets and 416912 unique ideals Sun Dec 14 01:45:04 2014 commencing full merge Sun Dec 14 01:45:07 2014 memory use: 55.4 MB Sun Dec 14 01:45:08 2014 found 226411 cycles, need 223112 Sun Dec 14 01:45:08 2014 weight of 223112 cycles is about 15621224 (70.02/cycle) Sun Dec 14 01:45:08 2014 distribution of cycle lengths: Sun Dec 14 01:45:08 2014 1 relations: 17279 Sun Dec 14 01:45:08 2014 2 relations: 20789 Sun Dec 14 01:45:08 2014 3 relations: 22514 Sun Dec 14 01:45:08 2014 4 relations: 22572 Sun Dec 14 01:45:08 2014 5 relations: 22470 Sun Dec 14 01:45:08 2014 6 relations: 20664 Sun Dec 14 01:45:08 2014 7 relations: 18988 Sun Dec 14 01:45:08 2014 8 relations: 16554 Sun Dec 14 01:45:08 2014 9 relations: 14085 Sun Dec 14 01:45:08 2014 10+ relations: 47197 Sun Dec 14 01:45:08 2014 heaviest cycle: 21 relations Sun Dec 14 01:45:08 2014 commencing cycle optimization Sun Dec 14 01:45:08 2014 start with 1430087 relations Sun Dec 14 01:45:09 2014 pruned 45705 relations Sun Dec 14 01:45:09 2014 memory use: 43.8 MB Sun Dec 14 01:45:09 2014 distribution of cycle lengths: Sun Dec 14 01:45:09 2014 1 relations: 17279 Sun Dec 14 01:45:09 2014 2 relations: 21211 Sun Dec 14 01:45:09 2014 3 relations: 23344 Sun Dec 14 01:45:09 2014 4 relations: 23293 Sun Dec 14 01:45:09 2014 5 relations: 23359 Sun Dec 14 01:45:09 2014 6 relations: 21563 Sun Dec 14 01:45:09 2014 7 relations: 19386 Sun Dec 14 01:45:09 2014 8 relations: 16879 Sun Dec 14 01:45:09 2014 9 relations: 14267 Sun Dec 14 01:45:09 2014 10+ relations: 42531 Sun Dec 14 01:45:09 2014 heaviest cycle: 20 relations Sun Dec 14 01:45:09 2014 RelProcTime: 45 Sun Dec 14 01:45:09 2014 Sun Dec 14 01:45:09 2014 commencing linear algebra Sun Dec 14 01:45:09 2014 read 223112 cycles Sun Dec 14 01:45:09 2014 cycles contain 691397 unique relations Sun Dec 14 01:45:13 2014 read 691397 relations Sun Dec 14 01:45:14 2014 using 20 quadratic characters above 67102562 Sun Dec 14 01:45:16 2014 building initial matrix Sun Dec 14 01:45:19 2014 memory use: 83.9 MB Sun Dec 14 01:45:19 2014 read 223112 cycles Sun Dec 14 01:45:19 2014 matrix is 222943 x 223112 (66.0 MB) with weight 19963927 (89.48/col) Sun Dec 14 01:45:19 2014 sparse part has weight 14847716 (66.55/col) Sun Dec 14 01:45:20 2014 filtering completed in 2 passes Sun Dec 14 01:45:20 2014 matrix is 222920 x 223096 (66.0 MB) with weight 19963123 (89.48/col) Sun Dec 14 01:45:20 2014 sparse part has weight 14847282 (66.55/col) Sun Dec 14 01:45:20 2014 matrix starts at (0, 0) Sun Dec 14 01:45:20 2014 matrix is 222920 x 223096 (66.0 MB) with weight 19963123 (89.48/col) Sun Dec 14 01:45:20 2014 sparse part has weight 14847282 (66.55/col) Sun Dec 14 01:45:20 2014 saving the first 48 matrix rows for later Sun Dec 14 01:45:20 2014 matrix includes 64 packed rows Sun Dec 14 01:45:20 2014 matrix is 222872 x 223096 (62.6 MB) with weight 15801431 (70.83/col) Sun Dec 14 01:45:20 2014 sparse part has weight 14166807 (63.50/col) Sun Dec 14 01:45:20 2014 using block size 65536 for processor cache size 8192 kB Sun Dec 14 01:45:21 2014 commencing Lanczos iteration (8 threads) Sun Dec 14 01:45:21 2014 memory use: 59.4 MB Sun Dec 14 01:45:25 2014 linear algebra at 5.4%, ETA 0h 1m Sun Dec 14 01:46:30 2014 lanczos halted after 3526 iterations (dim = 222868) Sun Dec 14 01:46:30 2014 recovered 37 nontrivial dependencies Sun Dec 14 01:46:30 2014 BLanczosTime: 81 Sun Dec 14 01:46:30 2014 Sun Dec 14 01:46:30 2014 commencing square root phase Sun Dec 14 01:46:30 2014 reading relations for dependency 1 Sun Dec 14 01:46:30 2014 read 111079 cycles Sun Dec 14 01:46:31 2014 cycles contain 344960 unique relations Sun Dec 14 01:46:34 2014 read 344960 relations Sun Dec 14 01:46:34 2014 multiplying 344960 relations Sun Dec 14 01:46:40 2014 multiply complete, coefficients have about 11.04 million bits Sun Dec 14 01:46:40 2014 initial square root is modulo 2215141 Sun Dec 14 01:46:48 2014 sqrtTime: 18 -- n: 13885463564461884091278424746849471138620605145014932505122886615058725613992543847444053173245717969610900940526287 m: 10000000000000000000000000000 deg: 5 c5: 10900 c0: -1 skew: 0.16 # Murphy_E = 2.688e-09 type: snfs lss: 1 rlim: 1760000 alim: 1760000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 |
software ソフトウェア | yafu v1.34.3 |
execution environment 実行環境 | Gentoo Linux, Intel(R) Core(TM) i7-3770K CPU |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 418 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) |
300 | Ignacio Santos | December 10, 2014 17:50:55 UTC 2014 年 12 月 11 日 (木) 2 時 50 分 55 秒 (日本時間) | |||
40 | 3e6 | 410 / 2126 | 110 | Ignacio Santos | December 10, 2014 17:50:55 UTC 2014 年 12 月 11 日 (木) 2 時 50 分 55 秒 (日本時間) |
300 | Serge Batalov | December 10, 2014 19:47:38 UTC 2014 年 12 月 11 日 (木) 4 時 47 分 38 秒 (日本時間) | |||
45 | 11e6 | 32 / 4371 | Ignacio Santos | December 10, 2014 17:50:55 UTC 2014 年 12 月 11 日 (木) 2 時 50 分 55 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 8, 2014 23:56:27 UTC 2014 年 12 月 9 日 (火) 8 時 56 分 27 秒 (日本時間) |
composite number 合成数 | 367003367003367003367003367003367003367003367003367003367003367003367003367003367003367003367003367003367003367003367003367003367003367003367003367<147> |
prime factors 素因数 | 95729035515512627905061866772479795987725401174214324573967<59> 3833772742272067635566725566266066227192857585291243584761311392082323210346080977708201<88> |
factorization results 素因数分解の結果 | N=367003367003367003367003367003367003367003367003367003367003367003367003367003367003367003367003367003367003367003367003367003367003367003367003367 ( 147 digits) SNFS difficulty: 149 digits. Divisors found: r1=95729035515512627905061866772479795987725401174214324573967 (pp59) r2=3833772742272067635566725566266066227192857585291243584761311392082323210346080977708201 (pp88) Version: Msieve v. 1.50 (SVN unknown) Total time: 5.95 hours. Scaled time: 12.22 units (timescale=2.052). Factorization parameters were as follows: n: 367003367003367003367003367003367003367003367003367003367003367003367003367003367003367003367003367003367003367003367003367003367003367003367003367 m: 100000000000000000000000000000 deg: 5 c5: 10900 c0: -1 skew: 0.16 # Murphy_E = 1.745e-09 type: snfs lss: 1 rlim: 2100000 alim: 2100000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 2100000/2100000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [1050000, 2250001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 322151 x 322376 Total sieving time: 5.71 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.09 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,149.000,5,0,0,0,0,0,0,0,0,2100000,2100000,26,26,49,49,2.3,2.3,100000 total time: 5.95 hours. |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2320 | Serge Batalov | December 8, 2014 19:27:19 UTC 2014 年 12 月 9 日 (火) 4 時 27 分 19 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | December 10, 2014 20:16:14 UTC 2014 年 12 月 11 日 (木) 5 時 16 分 14 秒 (日本時間) |
composite number 合成数 | 155990937139464486913630841003857497567778005114513800446153709415390650005397872920888397866279407242927852850981<114> |
prime factors 素因数 | 24682299681912498493247578409707609<35> 6319951509776725520001671705501305819011622477774354166336494222623539016942509<79> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1211376919 Step 1 took 6218ms Step 2 took 5702ms ********** Factor found in step 2: 24682299681912498493247578409707609 Found probable prime factor of 35 digits: 24682299681912498493247578409707609 Probable prime cofactor |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 / 2318 | Serge Batalov | December 10, 2014 19:47:38 UTC 2014 年 12 月 11 日 (木) 4 時 47 分 38 秒 (日本時間) |
name 名前 | KTakahashi |
---|---|
date 日付 | December 6, 2014 19:01:50 UTC 2014 年 12 月 7 日 (日) 4 時 1 分 50 秒 (日本時間) |
composite number 合成数 | 17679866062370507099916526252103450421819755319139240343242413642265597570182520148901384047010501455505386830777<113> |
prime factors 素因数 | 3080257060613397324265060051<28> 5739737208442521240182882164505366614114140739458901822495344136033268679597154239427<85> |
factorization results 素因数分解の結果 | GMP-ECM 6.4.4 [configured with GMP 6.0.0] [ECM] Input number is 17679866062370507099916526252103450421819755319139240343242413642265597570182520148901384047010501455505386830777 (113 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2612544140 Step 1 took 2668ms Step 2 took 1810ms ********** Factor found in step 2: 3080257060613397324265060051 Found probable prime factor of 28 digits: 3080257060613397324265060051 Probable prime cofactor 5739737208442521240182882164505366614114140739458901822495344136033268679597154239427 has 85 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) |
name 名前 | Cyp |
---|---|
date 日付 | December 18, 2014 10:57:49 UTC 2014 年 12 月 18 日 (木) 19 時 57 分 49 秒 (日本時間) |
composite number 合成数 | 26071042876584365953973831051716096948395290636238817816947315994877079264662099859039563551020493156611661247415206247058512450751<131> |
prime factors 素因数 | 1102049555556314289832012748027865270316654187<46> 23656869825081242574055926141170952626641735186044117374799573976862532309399648997373<86> |
factorization results 素因数分解の結果 | 12/18/14 10:27:17 v1.34.3, 12/18/14 10:27:17 v1.34.3, **************************** 12/18/14 10:27:17 v1.34.3, Starting factorization of 26071042876584365953973831051716096948395290636238817816947315994877079264662099859039563551020493156611661247415206247058512450751 12/18/14 10:27:17 v1.34.3, using pretesting plan: none 12/18/14 10:27:17 v1.34.3, no tune info: using qs/gnfs crossover of 95 digits 12/18/14 10:27:17 v1.34.3, **************************** 12/18/14 10:27:17 v1.34.3, nfs: commencing nfs on c131: 26071042876584365953973831051716096948395290636238817816947315994877079264662099859039563551020493156611661247415206247058512450751 12/18/14 10:27:17 v1.34.3, nfs: continuing with sieving - could not determine last special q; using default startq 12/18/14 10:27:17 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/18/14 10:28:12 v1.34.3, nfs: commencing lattice sieving with 8 threads [83 lines snipped] 12/18/14 11:49:47 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/18/14 11:50:47 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/18/14 11:51:45 v1.34.3, nfs: commencing msieve filtering 12/18/14 11:53:23 v1.34.3, nfs: commencing msieve linear algebra 12/18/14 11:56:03 v1.34.3, nfs: commencing msieve sqrt 12/18/14 11:57:48 v1.34.3, prp86 = 23656869825081242574055926141170952626641735186044117374799573976862532309399648997373 12/18/14 11:57:48 v1.34.3, prp46 = 1102049555556314289832012748027865270316654187 12/18/14 11:57:48 v1.34.3, NFS elapsed time = 5430.2087 seconds. 12/18/14 11:57:48 v1.34.3, 12/18/14 11:57:48 v1.34.3, 12/18/14 11:57:48 v1.34.3, Total factoring time = 5430.2094 seconds -- Thu Dec 18 11:51:45 2014 Thu Dec 18 11:51:45 2014 commencing relation filtering Thu Dec 18 11:51:45 2014 estimated available RAM is 15987.3 MB Thu Dec 18 11:51:45 2014 commencing duplicate removal, pass 1 Thu Dec 18 11:52:11 2014 found 1440499 hash collisions in 10107835 relations Thu Dec 18 11:52:20 2014 added 357949 free relations Thu Dec 18 11:52:20 2014 commencing duplicate removal, pass 2 Thu Dec 18 11:52:27 2014 found 1023160 duplicates and 9442624 unique relations Thu Dec 18 11:52:27 2014 memory use: 41.3 MB Thu Dec 18 11:52:27 2014 reading ideals above 100000 Thu Dec 18 11:52:27 2014 commencing singleton removal, initial pass Thu Dec 18 11:53:06 2014 memory use: 188.2 MB Thu Dec 18 11:53:06 2014 reading all ideals from disk Thu Dec 18 11:53:06 2014 memory use: 312.7 MB Thu Dec 18 11:53:07 2014 keeping 9569673 ideals with weight <= 200, target excess is 46872 Thu Dec 18 11:53:07 2014 commencing in-memory singleton removal Thu Dec 18 11:53:07 2014 begin with 9442624 relations and 9569673 unique ideals Thu Dec 18 11:53:10 2014 reduce to 4541496 relations and 3534379 ideals in 12 passes Thu Dec 18 11:53:10 2014 max relations containing the same ideal: 126 Thu Dec 18 11:53:11 2014 removing 1286080 relations and 886080 ideals in 400000 cliques Thu Dec 18 11:53:11 2014 commencing in-memory singleton removal Thu Dec 18 11:53:12 2014 begin with 3255416 relations and 3534379 unique ideals Thu Dec 18 11:53:12 2014 reduce to 3026110 relations and 2394280 ideals in 7 passes Thu Dec 18 11:53:12 2014 max relations containing the same ideal: 101 Thu Dec 18 11:53:13 2014 removing 1082122 relations and 682122 ideals in 400000 cliques Thu Dec 18 11:53:13 2014 commencing in-memory singleton removal Thu Dec 18 11:53:13 2014 begin with 1943988 relations and 2394280 unique ideals Thu Dec 18 11:53:14 2014 reduce to 1749921 relations and 1493207 ideals in 8 passes Thu Dec 18 11:53:14 2014 max relations containing the same ideal: 71 Thu Dec 18 11:53:14 2014 removing 574517 relations and 372175 ideals in 202342 cliques Thu Dec 18 11:53:14 2014 commencing in-memory singleton removal Thu Dec 18 11:53:14 2014 begin with 1175404 relations and 1493207 unique ideals Thu Dec 18 11:53:14 2014 reduce to 1060458 relations and 993034 ideals in 8 passes Thu Dec 18 11:53:14 2014 max relations containing the same ideal: 48 Thu Dec 18 11:53:15 2014 removing 66537 relations and 53485 ideals in 13052 cliques Thu Dec 18 11:53:15 2014 commencing in-memory singleton removal Thu Dec 18 11:53:15 2014 begin with 993921 relations and 993034 unique ideals Thu Dec 18 11:53:15 2014 reduce to 990557 relations and 936144 ideals in 6 passes Thu Dec 18 11:53:15 2014 max relations containing the same ideal: 45 Thu Dec 18 11:53:15 2014 relations with 0 large ideals: 1074 Thu Dec 18 11:53:15 2014 relations with 1 large ideals: 1012 Thu Dec 18 11:53:15 2014 relations with 2 large ideals: 13718 Thu Dec 18 11:53:15 2014 relations with 3 large ideals: 73364 Thu Dec 18 11:53:15 2014 relations with 4 large ideals: 195832 Thu Dec 18 11:53:15 2014 relations with 5 large ideals: 288510 Thu Dec 18 11:53:15 2014 relations with 6 large ideals: 254344 Thu Dec 18 11:53:15 2014 relations with 7+ large ideals: 162703 Thu Dec 18 11:53:15 2014 commencing 2-way merge Thu Dec 18 11:53:15 2014 reduce to 628850 relation sets and 574437 unique ideals Thu Dec 18 11:53:15 2014 commencing full merge Thu Dec 18 11:53:20 2014 memory use: 73.3 MB Thu Dec 18 11:53:20 2014 found 321803 cycles, need 314637 Thu Dec 18 11:53:21 2014 weight of 314637 cycles is about 22244494 (70.70/cycle) Thu Dec 18 11:53:21 2014 distribution of cycle lengths: Thu Dec 18 11:53:21 2014 1 relations: 20734 Thu Dec 18 11:53:21 2014 2 relations: 28537 Thu Dec 18 11:53:21 2014 3 relations: 32358 Thu Dec 18 11:53:21 2014 4 relations: 33268 Thu Dec 18 11:53:21 2014 5 relations: 33053 Thu Dec 18 11:53:21 2014 6 relations: 30817 Thu Dec 18 11:53:21 2014 7 relations: 27558 Thu Dec 18 11:53:21 2014 8 relations: 23718 Thu Dec 18 11:53:21 2014 9 relations: 19828 Thu Dec 18 11:53:21 2014 10+ relations: 64766 Thu Dec 18 11:53:21 2014 heaviest cycle: 20 relations Thu Dec 18 11:53:21 2014 commencing cycle optimization Thu Dec 18 11:53:21 2014 start with 2014355 relations Thu Dec 18 11:53:23 2014 pruned 66582 relations Thu Dec 18 11:53:23 2014 memory use: 61.4 MB Thu Dec 18 11:53:23 2014 distribution of cycle lengths: Thu Dec 18 11:53:23 2014 1 relations: 20734 Thu Dec 18 11:53:23 2014 2 relations: 29156 Thu Dec 18 11:53:23 2014 3 relations: 33648 Thu Dec 18 11:53:23 2014 4 relations: 34449 Thu Dec 18 11:53:23 2014 5 relations: 34514 Thu Dec 18 11:53:23 2014 6 relations: 31922 Thu Dec 18 11:53:23 2014 7 relations: 28297 Thu Dec 18 11:53:23 2014 8 relations: 24161 Thu Dec 18 11:53:23 2014 9 relations: 20030 Thu Dec 18 11:53:23 2014 10+ relations: 57726 Thu Dec 18 11:53:23 2014 heaviest cycle: 20 relations Thu Dec 18 11:53:23 2014 RelProcTime: 98 Thu Dec 18 11:53:23 2014 Thu Dec 18 11:53:23 2014 commencing linear algebra Thu Dec 18 11:53:23 2014 read 314637 cycles Thu Dec 18 11:53:23 2014 cycles contain 960760 unique relations Thu Dec 18 11:53:31 2014 read 960760 relations Thu Dec 18 11:53:32 2014 using 20 quadratic characters above 134217258 Thu Dec 18 11:53:35 2014 building initial matrix Thu Dec 18 11:53:40 2014 memory use: 118.3 MB Thu Dec 18 11:53:40 2014 read 314637 cycles Thu Dec 18 11:53:40 2014 matrix is 314459 x 314637 (93.8 MB) with weight 28907171 (91.87/col) Thu Dec 18 11:53:40 2014 sparse part has weight 21136126 (67.18/col) Thu Dec 18 11:53:41 2014 filtering completed in 2 passes Thu Dec 18 11:53:41 2014 matrix is 314398 x 314576 (93.8 MB) with weight 28904433 (91.88/col) Thu Dec 18 11:53:41 2014 sparse part has weight 21134952 (67.19/col) Thu Dec 18 11:53:41 2014 matrix starts at (0, 0) Thu Dec 18 11:53:41 2014 matrix is 314398 x 314576 (93.8 MB) with weight 28904433 (91.88/col) Thu Dec 18 11:53:41 2014 sparse part has weight 21134952 (67.19/col) Thu Dec 18 11:53:41 2014 saving the first 48 matrix rows for later Thu Dec 18 11:53:42 2014 matrix includes 64 packed rows Thu Dec 18 11:53:42 2014 matrix is 314350 x 314576 (88.8 MB) with weight 22593621 (71.82/col) Thu Dec 18 11:53:42 2014 sparse part has weight 20123311 (63.97/col) Thu Dec 18 11:53:42 2014 using block size 65536 for processor cache size 8192 kB Thu Dec 18 11:53:42 2014 commencing Lanczos iteration (8 threads) Thu Dec 18 11:53:42 2014 memory use: 84.9 MB Thu Dec 18 11:53:48 2014 linear algebra at 3.9%, ETA 0h 2m Thu Dec 18 11:56:03 2014 lanczos halted after 4972 iterations (dim = 314348) Thu Dec 18 11:56:03 2014 recovered 37 nontrivial dependencies Thu Dec 18 11:56:03 2014 BLanczosTime: 160 Thu Dec 18 11:56:03 2014 Thu Dec 18 11:56:03 2014 commencing square root phase Thu Dec 18 11:56:03 2014 reading relations for dependency 1 Thu Dec 18 11:56:03 2014 read 157009 cycles Thu Dec 18 11:56:03 2014 cycles contain 479846 unique relations Thu Dec 18 11:56:11 2014 read 479846 relations Thu Dec 18 11:56:11 2014 multiplying 479846 relations Thu Dec 18 11:56:19 2014 multiply complete, coefficients have about 14.09 million bits Thu Dec 18 11:56:19 2014 initial square root is modulo 125292611 Thu Dec 18 11:56:29 2014 GCD is 1, no factor found Thu Dec 18 11:56:29 2014 reading relations for dependency 2 Thu Dec 18 11:56:29 2014 read 157321 cycles Thu Dec 18 11:56:30 2014 cycles contain 480718 unique relations Thu Dec 18 11:56:37 2014 read 480718 relations Thu Dec 18 11:56:37 2014 multiplying 480718 relations Thu Dec 18 11:56:45 2014 multiply complete, coefficients have about 14.12 million bits Thu Dec 18 11:56:45 2014 initial square root is modulo 129474661 Thu Dec 18 11:56:55 2014 GCD is N, no factor found Thu Dec 18 11:56:55 2014 reading relations for dependency 3 Thu Dec 18 11:56:55 2014 read 157880 cycles Thu Dec 18 11:56:56 2014 cycles contain 480764 unique relations Thu Dec 18 11:57:03 2014 read 480764 relations Thu Dec 18 11:57:04 2014 multiplying 480764 relations Thu Dec 18 11:57:11 2014 multiply complete, coefficients have about 14.12 million bits Thu Dec 18 11:57:11 2014 initial square root is modulo 129921731 Thu Dec 18 11:57:22 2014 Newton iteration failed to converge Thu Dec 18 11:57:22 2014 algebraic square root failed Thu Dec 18 11:57:22 2014 reading relations for dependency 4 Thu Dec 18 11:57:22 2014 read 157120 cycles Thu Dec 18 11:57:22 2014 cycles contain 479598 unique relations Thu Dec 18 11:57:29 2014 read 479598 relations Thu Dec 18 11:57:30 2014 multiplying 479598 relations Thu Dec 18 11:57:37 2014 multiply complete, coefficients have about 14.09 million bits Thu Dec 18 11:57:37 2014 initial square root is modulo 124030561 Thu Dec 18 11:57:48 2014 sqrtTime: 105 -- n: 26071042876584365953973831051716096948395290636238817816947315994877079264662099859039563551020493156611661247415206247058512450751 m: 1000000000000000000000000000000 deg: 5 c5: 1090 c0: -1 skew: 0.25 # Murphy_E = 1.32e-09 type: snfs lss: 1 rlim: 2500000 alim: 2500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 |
software ソフトウェア | yafu v1.34.3 |
execution environment 実行環境 | Gentoo Linux, Intel(R) Core(TM) i7-3770K CPU |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 / 2318 | Serge Batalov | December 10, 2014 19:47:39 UTC 2014 年 12 月 11 日 (木) 4 時 47 分 39 秒 (日本時間) |
name 名前 | Cyp |
---|---|
date 日付 | December 11, 2014 04:40:36 UTC 2014 年 12 月 11 日 (木) 13 時 40 分 36 秒 (日本時間) |
composite number 合成数 | 108195041869050687817105362139162764647536586793054628900764719446289135592361903188424952397577290894087306799<111> |
prime factors 素因数 | 745804801103016521840046542983805440633100613349399<51> 145071527709441392580223917979923680306356578366501346482601<60> |
factorization results 素因数分解の結果 | 12/11/14 04:00:41 v1.34.3, 12/11/14 04:00:41 v1.34.3, **************************** 12/11/14 04:00:41 v1.34.3, Starting factorization of 108195041869050687817105362139162764647536586793054628900764719446289135592361903188424952397577290894087306799 12/11/14 04:00:41 v1.34.3, using pretesting plan: none 12/11/14 04:00:41 v1.34.3, no tune info: using qs/gnfs crossover of 95 digits 12/11/14 04:00:41 v1.34.3, **************************** 12/11/14 04:00:41 v1.34.3, rho: x^2 + 3, starting 1000 iterations on C111 12/11/14 04:00:41 v1.34.3, rho: x^2 + 2, starting 1000 iterations on C111 12/11/14 04:00:41 v1.34.3, rho: x^2 + 1, starting 1000 iterations on C111 12/11/14 04:00:41 v1.34.3, final ECM pretested depth: 0.00 12/11/14 04:00:41 v1.34.3, scheduler: switching to sieve method 12/11/14 04:00:41 v1.34.3, nfs: commencing nfs on c111: 108195041869050687817105362139162764647536586793054628900764719446289135592361903188424952397577290894087306799 12/11/14 04:00:41 v1.34.3, nfs: commencing poly selection with 8 threads 12/11/14 04:00:41 v1.34.3, nfs: setting deadline of 475 seconds 12/11/14 04:08:40 v1.34.3, nfs: completed 150 ranges of size 250 in 479.0059 seconds 12/11/14 04:08:40 v1.34.3, nfs: best poly = # norm 1.837240e-10 alpha -7.094818 e 9.741e-10 rroots 1 12/11/14 04:08:40 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/11/14 04:13:52 v1.34.3, nfs: commencing lattice sieving with 8 threads [9 lines snipped] 12/11/14 05:05:23 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/11/14 05:10:39 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/11/14 05:15:45 v1.34.3, nfs: commencing msieve filtering 12/11/14 05:16:30 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/11/14 05:21:55 v1.34.3, nfs: commencing msieve filtering 12/11/14 05:22:43 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/11/14 05:27:46 v1.34.3, nfs: commencing msieve filtering 12/11/14 05:28:38 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/11/14 05:33:48 v1.34.3, nfs: commencing msieve filtering 12/11/14 05:34:54 v1.34.3, nfs: commencing msieve linear algebra 12/11/14 05:38:56 v1.34.3, nfs: commencing msieve sqrt 12/11/14 05:40:34 v1.34.3, prp51 = 745804801103016521840046542983805440633100613349399 12/11/14 05:40:34 v1.34.3, prp60 = 145071527709441392580223917979923680306356578366501346482601 12/11/14 05:40:34 v1.34.3, NFS elapsed time = 5992.8296 seconds. 12/11/14 05:40:34 v1.34.3, 12/11/14 05:40:34 v1.34.3, 12/11/14 05:40:34 v1.34.3, Total factoring time = 5992.8522 seconds -- Thu Dec 11 05:15:45 2014 Thu Dec 11 05:15:45 2014 commencing relation filtering Thu Dec 11 05:15:45 2014 estimated available RAM is 15987.3 MB Thu Dec 11 05:15:45 2014 commencing duplicate removal, pass 1 Thu Dec 11 05:16:00 2014 found 409521 hash collisions in 4604588 relations Thu Dec 11 05:16:05 2014 added 32355 free relations Thu Dec 11 05:16:05 2014 commencing duplicate removal, pass 2 Thu Dec 11 05:16:08 2014 found 159133 duplicates and 4477810 unique relations Thu Dec 11 05:16:08 2014 memory use: 19.6 MB Thu Dec 11 05:16:08 2014 reading ideals above 100000 Thu Dec 11 05:16:08 2014 commencing singleton removal, initial pass Thu Dec 11 05:16:28 2014 memory use: 172.2 MB Thu Dec 11 05:16:28 2014 reading all ideals from disk Thu Dec 11 05:16:28 2014 memory use: 150.2 MB Thu Dec 11 05:16:28 2014 keeping 5409281 ideals with weight <= 200, target excess is 24370 Thu Dec 11 05:16:28 2014 commencing in-memory singleton removal Thu Dec 11 05:16:28 2014 begin with 4477810 relations and 5409281 unique ideals Thu Dec 11 05:16:30 2014 reduce to 751731 relations and 902271 ideals in 64 passes Thu Dec 11 05:16:30 2014 max relations containing the same ideal: 63 Thu Dec 11 05:21:55 2014 Thu Dec 11 05:21:55 2014 commencing relation filtering Thu Dec 11 05:21:55 2014 estimated available RAM is 15987.3 MB Thu Dec 11 05:21:55 2014 commencing duplicate removal, pass 1 Thu Dec 11 05:22:10 2014 found 472449 hash collisions in 4994103 relations Thu Dec 11 05:22:15 2014 added 91 free relations Thu Dec 11 05:22:15 2014 commencing duplicate removal, pass 2 Thu Dec 11 05:22:19 2014 found 183164 duplicates and 4811030 unique relations Thu Dec 11 05:22:19 2014 memory use: 20.6 MB Thu Dec 11 05:22:19 2014 reading ideals above 100000 Thu Dec 11 05:22:19 2014 commencing singleton removal, initial pass Thu Dec 11 05:22:40 2014 memory use: 172.2 MB Thu Dec 11 05:22:41 2014 reading all ideals from disk Thu Dec 11 05:22:41 2014 memory use: 161.5 MB Thu Dec 11 05:22:41 2014 keeping 5568505 ideals with weight <= 200, target excess is 25667 Thu Dec 11 05:22:41 2014 commencing in-memory singleton removal Thu Dec 11 05:22:41 2014 begin with 4811030 relations and 5568505 unique ideals Thu Dec 11 05:22:43 2014 reduce to 1342861 relations and 1417510 ideals in 25 passes Thu Dec 11 05:22:43 2014 max relations containing the same ideal: 82 Thu Dec 11 05:27:46 2014 Thu Dec 11 05:27:46 2014 commencing relation filtering Thu Dec 11 05:27:46 2014 estimated available RAM is 15987.3 MB Thu Dec 11 05:27:46 2014 commencing duplicate removal, pass 1 Thu Dec 11 05:28:03 2014 found 531693 hash collisions in 5330775 relations Thu Dec 11 05:28:08 2014 added 57 free relations Thu Dec 11 05:28:08 2014 commencing duplicate removal, pass 2 Thu Dec 11 05:28:12 2014 found 206732 duplicates and 5124100 unique relations Thu Dec 11 05:28:12 2014 memory use: 20.6 MB Thu Dec 11 05:28:12 2014 reading ideals above 100000 Thu Dec 11 05:28:12 2014 commencing singleton removal, initial pass Thu Dec 11 05:28:35 2014 memory use: 172.2 MB Thu Dec 11 05:28:35 2014 reading all ideals from disk Thu Dec 11 05:28:35 2014 memory use: 172.0 MB Thu Dec 11 05:28:36 2014 keeping 5706879 ideals with weight <= 200, target excess is 26986 Thu Dec 11 05:28:36 2014 commencing in-memory singleton removal Thu Dec 11 05:28:36 2014 begin with 5124100 relations and 5706879 unique ideals Thu Dec 11 05:28:38 2014 reduce to 1795476 relations and 1771957 ideals in 19 passes Thu Dec 11 05:28:38 2014 max relations containing the same ideal: 102 Thu Dec 11 05:33:48 2014 Thu Dec 11 05:33:48 2014 commencing relation filtering Thu Dec 11 05:33:48 2014 estimated available RAM is 15987.3 MB Thu Dec 11 05:33:48 2014 commencing duplicate removal, pass 1 Thu Dec 11 05:34:06 2014 found 596697 hash collisions in 5682710 relations Thu Dec 11 05:34:11 2014 added 40 free relations Thu Dec 11 05:34:11 2014 commencing duplicate removal, pass 2 Thu Dec 11 05:34:15 2014 found 232785 duplicates and 5449965 unique relations Thu Dec 11 05:34:15 2014 memory use: 20.6 MB Thu Dec 11 05:34:15 2014 reading ideals above 100000 Thu Dec 11 05:34:15 2014 commencing singleton removal, initial pass Thu Dec 11 05:34:39 2014 memory use: 172.2 MB Thu Dec 11 05:34:39 2014 reading all ideals from disk Thu Dec 11 05:34:39 2014 memory use: 183.0 MB Thu Dec 11 05:34:40 2014 keeping 5840274 ideals with weight <= 200, target excess is 28539 Thu Dec 11 05:34:40 2014 commencing in-memory singleton removal Thu Dec 11 05:34:40 2014 begin with 5449965 relations and 5840274 unique ideals Thu Dec 11 05:34:42 2014 reduce to 2246282 relations and 2099047 ideals in 16 passes Thu Dec 11 05:34:42 2014 max relations containing the same ideal: 109 Thu Dec 11 05:34:42 2014 removing 415623 relations and 358558 ideals in 57065 cliques Thu Dec 11 05:34:42 2014 commencing in-memory singleton removal Thu Dec 11 05:34:42 2014 begin with 1830659 relations and 2099047 unique ideals Thu Dec 11 05:34:43 2014 reduce to 1765879 relations and 1673576 ideals in 11 passes Thu Dec 11 05:34:43 2014 max relations containing the same ideal: 94 Thu Dec 11 05:34:43 2014 removing 316627 relations and 259562 ideals in 57065 cliques Thu Dec 11 05:34:43 2014 commencing in-memory singleton removal Thu Dec 11 05:34:43 2014 begin with 1449252 relations and 1673576 unique ideals Thu Dec 11 05:34:44 2014 reduce to 1400038 relations and 1363219 ideals in 9 passes Thu Dec 11 05:34:44 2014 max relations containing the same ideal: 82 Thu Dec 11 05:34:44 2014 relations with 0 large ideals: 90 Thu Dec 11 05:34:44 2014 relations with 1 large ideals: 222 Thu Dec 11 05:34:44 2014 relations with 2 large ideals: 3092 Thu Dec 11 05:34:44 2014 relations with 3 large ideals: 26890 Thu Dec 11 05:34:44 2014 relations with 4 large ideals: 117101 Thu Dec 11 05:34:44 2014 relations with 5 large ideals: 289739 Thu Dec 11 05:34:44 2014 relations with 6 large ideals: 415491 Thu Dec 11 05:34:44 2014 relations with 7+ large ideals: 547413 Thu Dec 11 05:34:44 2014 commencing 2-way merge Thu Dec 11 05:34:45 2014 reduce to 801750 relation sets and 764932 unique ideals Thu Dec 11 05:34:45 2014 ignored 1 oversize relation sets Thu Dec 11 05:34:45 2014 commencing full merge Thu Dec 11 05:34:51 2014 memory use: 86.4 MB Thu Dec 11 05:34:51 2014 found 392217 cycles, need 385132 Thu Dec 11 05:34:51 2014 weight of 385132 cycles is about 27108844 (70.39/cycle) Thu Dec 11 05:34:51 2014 distribution of cycle lengths: Thu Dec 11 05:34:51 2014 1 relations: 42439 Thu Dec 11 05:34:51 2014 2 relations: 41294 Thu Dec 11 05:34:51 2014 3 relations: 42084 Thu Dec 11 05:34:51 2014 4 relations: 38682 Thu Dec 11 05:34:51 2014 5 relations: 36096 Thu Dec 11 05:34:51 2014 6 relations: 31002 Thu Dec 11 05:34:51 2014 7 relations: 27388 Thu Dec 11 05:34:51 2014 8 relations: 24251 Thu Dec 11 05:34:51 2014 9 relations: 20742 Thu Dec 11 05:34:51 2014 10+ relations: 81154 Thu Dec 11 05:34:51 2014 heaviest cycle: 21 relations Thu Dec 11 05:34:52 2014 commencing cycle optimization Thu Dec 11 05:34:52 2014 start with 2383550 relations Thu Dec 11 05:34:54 2014 pruned 51214 relations Thu Dec 11 05:34:54 2014 memory use: 79.8 MB Thu Dec 11 05:34:54 2014 distribution of cycle lengths: Thu Dec 11 05:34:54 2014 1 relations: 42439 Thu Dec 11 05:34:54 2014 2 relations: 42136 Thu Dec 11 05:34:54 2014 3 relations: 43460 Thu Dec 11 05:34:54 2014 4 relations: 39524 Thu Dec 11 05:34:54 2014 5 relations: 36820 Thu Dec 11 05:34:54 2014 6 relations: 31380 Thu Dec 11 05:34:54 2014 7 relations: 27687 Thu Dec 11 05:34:54 2014 8 relations: 24353 Thu Dec 11 05:34:54 2014 9 relations: 20716 Thu Dec 11 05:34:54 2014 10+ relations: 76617 Thu Dec 11 05:34:54 2014 heaviest cycle: 21 relations Thu Dec 11 05:34:54 2014 RelProcTime: 66 Thu Dec 11 05:34:54 2014 Thu Dec 11 05:34:54 2014 commencing linear algebra Thu Dec 11 05:34:54 2014 read 385132 cycles Thu Dec 11 05:34:54 2014 cycles contain 1339125 unique relations Thu Dec 11 05:35:01 2014 read 1339125 relations Thu Dec 11 05:35:02 2014 using 20 quadratic characters above 67108860 Thu Dec 11 05:35:06 2014 building initial matrix Thu Dec 11 05:35:13 2014 memory use: 168.2 MB Thu Dec 11 05:35:13 2014 read 385132 cycles Thu Dec 11 05:35:13 2014 matrix is 384958 x 385132 (115.4 MB) with weight 36857483 (95.70/col) Thu Dec 11 05:35:13 2014 sparse part has weight 26023728 (67.57/col) Thu Dec 11 05:35:15 2014 filtering completed in 2 passes Thu Dec 11 05:35:15 2014 matrix is 384059 x 384237 (115.3 MB) with weight 36816155 (95.82/col) Thu Dec 11 05:35:15 2014 sparse part has weight 26009055 (67.69/col) Thu Dec 11 05:35:15 2014 matrix starts at (0, 0) Thu Dec 11 05:35:15 2014 matrix is 384059 x 384237 (115.3 MB) with weight 36816155 (95.82/col) Thu Dec 11 05:35:15 2014 sparse part has weight 26009055 (67.69/col) Thu Dec 11 05:35:15 2014 saving the first 48 matrix rows for later Thu Dec 11 05:35:15 2014 matrix includes 64 packed rows Thu Dec 11 05:35:15 2014 matrix is 384011 x 384237 (111.5 MB) with weight 29211591 (76.02/col) Thu Dec 11 05:35:15 2014 sparse part has weight 25395420 (66.09/col) Thu Dec 11 05:35:15 2014 using block size 65536 for processor cache size 8192 kB Thu Dec 11 05:35:16 2014 commencing Lanczos iteration (8 threads) Thu Dec 11 05:35:16 2014 memory use: 105.5 MB Thu Dec 11 05:35:23 2014 linear algebra at 3.2%, ETA 0h 3m Thu Dec 11 05:38:55 2014 lanczos halted after 6074 iterations (dim = 384009) Thu Dec 11 05:38:56 2014 recovered 29 nontrivial dependencies Thu Dec 11 05:38:56 2014 BLanczosTime: 242 Thu Dec 11 05:38:56 2014 Thu Dec 11 05:38:56 2014 commencing square root phase Thu Dec 11 05:38:56 2014 reading relations for dependency 1 Thu Dec 11 05:38:56 2014 read 191453 cycles Thu Dec 11 05:38:56 2014 cycles contain 667998 unique relations Thu Dec 11 05:39:01 2014 read 667998 relations Thu Dec 11 05:39:02 2014 multiplying 667998 relations Thu Dec 11 05:39:21 2014 multiply complete, coefficients have about 28.56 million bits Thu Dec 11 05:39:21 2014 initial square root is modulo 159423791 Thu Dec 11 05:39:45 2014 GCD is 1, no factor found Thu Dec 11 05:39:45 2014 reading relations for dependency 2 Thu Dec 11 05:39:45 2014 read 192147 cycles Thu Dec 11 05:39:45 2014 cycles contain 668970 unique relations Thu Dec 11 05:39:51 2014 read 668970 relations Thu Dec 11 05:39:52 2014 multiplying 668970 relations Thu Dec 11 05:40:10 2014 multiply complete, coefficients have about 28.60 million bits Thu Dec 11 05:40:10 2014 initial square root is modulo 163696289 Thu Dec 11 05:40:34 2014 sqrtTime: 98 -- n: 108195041869050687817105362139162764647536586793054628900764719446289135592361903188424952397577290894087306799 skew: 54060.56 c0: 791540588263399914176473824 c1: -19470248340724882240308 c2: -383102557115346009 c3: -22896676821382 c4: 1371565120 c5: 8400 Y0: -1667191852266800795743 Y1: 4169038619 rlim: 3460000 alim: 3460000 lpbr: 26 lpba: 26 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 |
software ソフトウェア | yafu v1.34.3 |
execution environment 実行環境 | Gentoo Linux, Intel(R) Core(TM) i7-3770K CPU |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 418 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) |
300 | Ignacio Santos | December 8, 2014 22:31:21 UTC 2014 年 12 月 9 日 (火) 7 時 31 分 21 秒 (日本時間) | |||
40 | 3e6 | 110 / 2126 | Ignacio Santos | December 8, 2014 22:31:21 UTC 2014 年 12 月 9 日 (火) 7 時 31 分 21 秒 (日本時間) | |
45 | 11e6 | 32 / 4437 | Ignacio Santos | December 8, 2014 22:31:21 UTC 2014 年 12 月 9 日 (火) 7 時 31 分 21 秒 (日本時間) |
name 名前 | Cyp |
---|---|
date 日付 | December 17, 2014 17:44:02 UTC 2014 年 12 月 18 日 (木) 2 時 44 分 2 秒 (日本時間) |
composite number 合成数 | 93572710861087152407012023716177289845315885294962392844842054104604540279381608901055928044268303234056252520550717636724633780637708269<137> |
prime factors 素因数 | 5627911010350213646360059321621534853829933748480178947<55> 16626544145598405571699952846829195191332530639806661160357010953861124978707906127<83> |
factorization results 素因数分解の結果 | 12/17/14 16:59:10 v1.34.3, 12/17/14 16:59:10 v1.34.3, **************************** 12/17/14 16:59:10 v1.34.3, Starting factorization of 93572710861087152407012023716177289845315885294962392844842054104604540279381608901055928044268303234056252520550717636724633780637708269 12/17/14 16:59:10 v1.34.3, using pretesting plan: none 12/17/14 16:59:10 v1.34.3, no tune info: using qs/gnfs crossover of 95 digits 12/17/14 16:59:10 v1.34.3, **************************** 12/17/14 16:59:10 v1.34.3, nfs: commencing nfs on c137: 93572710861087152407012023716177289845315885294962392844842054104604540279381608901055928044268303234056252520550717636724633780637708269 12/17/14 16:59:10 v1.34.3, nfs: continuing with sieving - could not determine last special q; using default startq 12/17/14 16:59:10 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/17/14 17:00:23 v1.34.3, nfs: commencing lattice sieving with 8 threads [75 lines snipped] 12/17/14 18:34:19 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/17/14 18:35:35 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/17/14 18:36:52 v1.34.3, nfs: commencing msieve filtering 12/17/14 18:38:32 v1.34.3, nfs: commencing msieve linear algebra 12/17/14 18:41:48 v1.34.3, nfs: commencing msieve sqrt 12/17/14 18:44:01 v1.34.3, prp55 = 5627911010350213646360059321621534853829933748480178947 12/17/14 18:44:01 v1.34.3, prp83 = 16626544145598405571699952846829195191332530639806661160357010953861124978707906127 12/17/14 18:44:01 v1.34.3, NFS elapsed time = 6291.3361 seconds. 12/17/14 18:44:01 v1.34.3, 12/17/14 18:44:01 v1.34.3, 12/17/14 18:44:01 v1.34.3, Total factoring time = 6291.3368 seconds -- Wed Dec 17 18:36:52 2014 Wed Dec 17 18:36:52 2014 commencing relation filtering Wed Dec 17 18:36:52 2014 estimated available RAM is 15987.3 MB Wed Dec 17 18:36:52 2014 commencing duplicate removal, pass 1 Wed Dec 17 18:37:19 2014 found 1438539 hash collisions in 10144016 relations Wed Dec 17 18:37:27 2014 added 357387 free relations Wed Dec 17 18:37:27 2014 commencing duplicate removal, pass 2 Wed Dec 17 18:37:35 2014 found 1015026 duplicates and 9486377 unique relations Wed Dec 17 18:37:35 2014 memory use: 41.3 MB Wed Dec 17 18:37:35 2014 reading ideals above 100000 Wed Dec 17 18:37:35 2014 commencing singleton removal, initial pass Wed Dec 17 18:38:14 2014 memory use: 188.2 MB Wed Dec 17 18:38:14 2014 reading all ideals from disk Wed Dec 17 18:38:14 2014 memory use: 317.1 MB Wed Dec 17 18:38:15 2014 keeping 9649555 ideals with weight <= 200, target excess is 46850 Wed Dec 17 18:38:15 2014 commencing in-memory singleton removal Wed Dec 17 18:38:15 2014 begin with 9486377 relations and 9649555 unique ideals Wed Dec 17 18:38:18 2014 reduce to 4567330 relations and 3601268 ideals in 12 passes Wed Dec 17 18:38:18 2014 max relations containing the same ideal: 129 Wed Dec 17 18:38:19 2014 removing 1297320 relations and 897320 ideals in 400000 cliques Wed Dec 17 18:38:19 2014 commencing in-memory singleton removal Wed Dec 17 18:38:19 2014 begin with 3270010 relations and 3601268 unique ideals Wed Dec 17 18:38:20 2014 reduce to 3033781 relations and 2442256 ideals in 8 passes Wed Dec 17 18:38:20 2014 max relations containing the same ideal: 96 Wed Dec 17 18:38:21 2014 removing 1094011 relations and 694011 ideals in 400000 cliques Wed Dec 17 18:38:21 2014 commencing in-memory singleton removal Wed Dec 17 18:38:21 2014 begin with 1939770 relations and 2442256 unique ideals Wed Dec 17 18:38:22 2014 reduce to 1735297 relations and 1517523 ideals in 9 passes Wed Dec 17 18:38:22 2014 max relations containing the same ideal: 64 Wed Dec 17 18:38:22 2014 removing 494083 relations and 330655 ideals in 163428 cliques Wed Dec 17 18:38:22 2014 commencing in-memory singleton removal Wed Dec 17 18:38:22 2014 begin with 1241214 relations and 1517523 unique ideals Wed Dec 17 18:38:23 2014 reduce to 1145374 relations and 1082005 ideals in 8 passes Wed Dec 17 18:38:23 2014 max relations containing the same ideal: 49 Wed Dec 17 18:38:23 2014 removing 49592 relations and 40569 ideals in 9023 cliques Wed Dec 17 18:38:23 2014 commencing in-memory singleton removal Wed Dec 17 18:38:23 2014 begin with 1095782 relations and 1082005 unique ideals Wed Dec 17 18:38:23 2014 reduce to 1094211 relations and 1039848 ideals in 4 passes Wed Dec 17 18:38:23 2014 max relations containing the same ideal: 47 Wed Dec 17 18:38:23 2014 relations with 0 large ideals: 1034 Wed Dec 17 18:38:23 2014 relations with 1 large ideals: 851 Wed Dec 17 18:38:23 2014 relations with 2 large ideals: 12155 Wed Dec 17 18:38:23 2014 relations with 3 large ideals: 69201 Wed Dec 17 18:38:23 2014 relations with 4 large ideals: 197912 Wed Dec 17 18:38:23 2014 relations with 5 large ideals: 312559 Wed Dec 17 18:38:23 2014 relations with 6 large ideals: 294293 Wed Dec 17 18:38:23 2014 relations with 7+ large ideals: 206206 Wed Dec 17 18:38:23 2014 commencing 2-way merge Wed Dec 17 18:38:23 2014 reduce to 691594 relation sets and 637231 unique ideals Wed Dec 17 18:38:23 2014 commencing full merge Wed Dec 17 18:38:29 2014 memory use: 81.9 MB Wed Dec 17 18:38:30 2014 found 354595 cycles, need 347431 Wed Dec 17 18:38:30 2014 weight of 347431 cycles is about 24588509 (70.77/cycle) Wed Dec 17 18:38:30 2014 distribution of cycle lengths: Wed Dec 17 18:38:30 2014 1 relations: 23568 Wed Dec 17 18:38:30 2014 2 relations: 31378 Wed Dec 17 18:38:30 2014 3 relations: 35632 Wed Dec 17 18:38:30 2014 4 relations: 36624 Wed Dec 17 18:38:30 2014 5 relations: 36112 Wed Dec 17 18:38:30 2014 6 relations: 33895 Wed Dec 17 18:38:30 2014 7 relations: 30608 Wed Dec 17 18:38:30 2014 8 relations: 26096 Wed Dec 17 18:38:30 2014 9 relations: 21807 Wed Dec 17 18:38:30 2014 10+ relations: 71711 Wed Dec 17 18:38:30 2014 heaviest cycle: 21 relations Wed Dec 17 18:38:30 2014 commencing cycle optimization Wed Dec 17 18:38:30 2014 start with 2223591 relations Wed Dec 17 18:38:32 2014 pruned 72161 relations Wed Dec 17 18:38:32 2014 memory use: 67.9 MB Wed Dec 17 18:38:32 2014 distribution of cycle lengths: Wed Dec 17 18:38:32 2014 1 relations: 23568 Wed Dec 17 18:38:32 2014 2 relations: 32039 Wed Dec 17 18:38:32 2014 3 relations: 37057 Wed Dec 17 18:38:32 2014 4 relations: 37885 Wed Dec 17 18:38:32 2014 5 relations: 37600 Wed Dec 17 18:38:32 2014 6 relations: 35120 Wed Dec 17 18:38:32 2014 7 relations: 31457 Wed Dec 17 18:38:32 2014 8 relations: 26664 Wed Dec 17 18:38:32 2014 9 relations: 21910 Wed Dec 17 18:38:32 2014 10+ relations: 64131 Wed Dec 17 18:38:32 2014 heaviest cycle: 19 relations Wed Dec 17 18:38:32 2014 RelProcTime: 100 Wed Dec 17 18:38:32 2014 Wed Dec 17 18:38:32 2014 commencing linear algebra Wed Dec 17 18:38:32 2014 read 347431 cycles Wed Dec 17 18:38:33 2014 cycles contain 1064983 unique relations Wed Dec 17 18:38:41 2014 read 1064983 relations Wed Dec 17 18:38:42 2014 using 20 quadratic characters above 134216940 Wed Dec 17 18:38:45 2014 building initial matrix Wed Dec 17 18:38:50 2014 memory use: 134.4 MB Wed Dec 17 18:38:51 2014 read 347431 cycles Wed Dec 17 18:38:51 2014 matrix is 347254 x 347431 (103.9 MB) with weight 32044582 (92.23/col) Wed Dec 17 18:38:51 2014 sparse part has weight 23404065 (67.36/col) Wed Dec 17 18:38:52 2014 filtering completed in 2 passes Wed Dec 17 18:38:52 2014 matrix is 347188 x 347365 (103.9 MB) with weight 32042217 (92.24/col) Wed Dec 17 18:38:52 2014 sparse part has weight 23403329 (67.37/col) Wed Dec 17 18:38:52 2014 matrix starts at (0, 0) Wed Dec 17 18:38:52 2014 matrix is 347188 x 347365 (103.9 MB) with weight 32042217 (92.24/col) Wed Dec 17 18:38:52 2014 sparse part has weight 23403329 (67.37/col) Wed Dec 17 18:38:52 2014 saving the first 48 matrix rows for later Wed Dec 17 18:38:52 2014 matrix includes 64 packed rows Wed Dec 17 18:38:52 2014 matrix is 347140 x 347365 (99.0 MB) with weight 25204946 (72.56/col) Wed Dec 17 18:38:52 2014 sparse part has weight 22469358 (64.69/col) Wed Dec 17 18:38:52 2014 using block size 65536 for processor cache size 8192 kB Wed Dec 17 18:38:53 2014 commencing Lanczos iteration (8 threads) Wed Dec 17 18:38:53 2014 memory use: 94.6 MB Wed Dec 17 18:38:59 2014 linear algebra at 3.5%, ETA 0h 2m Wed Dec 17 18:41:48 2014 lanczos halted after 5492 iterations (dim = 347136) Wed Dec 17 18:41:48 2014 recovered 34 nontrivial dependencies Wed Dec 17 18:41:48 2014 BLanczosTime: 196 Wed Dec 17 18:41:48 2014 Wed Dec 17 18:41:48 2014 commencing square root phase Wed Dec 17 18:41:48 2014 reading relations for dependency 1 Wed Dec 17 18:41:48 2014 read 173812 cycles Wed Dec 17 18:41:48 2014 cycles contain 532800 unique relations Wed Dec 17 18:41:55 2014 read 532800 relations Wed Dec 17 18:41:56 2014 multiplying 532800 relations Wed Dec 17 18:42:04 2014 multiply complete, coefficients have about 14.11 million bits Wed Dec 17 18:42:04 2014 initial square root is modulo 128340241 Wed Dec 17 18:42:14 2014 Newton iteration failed to converge Wed Dec 17 18:42:14 2014 algebraic square root failed Wed Dec 17 18:42:14 2014 reading relations for dependency 2 Wed Dec 17 18:42:14 2014 read 173690 cycles Wed Dec 17 18:42:15 2014 cycles contain 532964 unique relations Wed Dec 17 18:42:22 2014 read 532964 relations Wed Dec 17 18:42:23 2014 multiplying 532964 relations Wed Dec 17 18:42:31 2014 multiply complete, coefficients have about 14.12 million bits Wed Dec 17 18:42:31 2014 initial square root is modulo 129236381 Wed Dec 17 18:42:41 2014 GCD is N, no factor found Wed Dec 17 18:42:41 2014 reading relations for dependency 3 Wed Dec 17 18:42:41 2014 read 173202 cycles Wed Dec 17 18:42:41 2014 cycles contain 531166 unique relations Wed Dec 17 18:42:48 2014 read 531166 relations Wed Dec 17 18:42:49 2014 multiplying 531166 relations Wed Dec 17 18:42:57 2014 multiply complete, coefficients have about 14.07 million bits Wed Dec 17 18:42:57 2014 initial square root is modulo 121266311 Wed Dec 17 18:43:08 2014 Newton iteration failed to converge Wed Dec 17 18:43:08 2014 algebraic square root failed Wed Dec 17 18:43:08 2014 reading relations for dependency 4 Wed Dec 17 18:43:08 2014 read 173442 cycles Wed Dec 17 18:43:08 2014 cycles contain 533042 unique relations Wed Dec 17 18:43:15 2014 read 533042 relations Wed Dec 17 18:43:16 2014 multiplying 533042 relations Wed Dec 17 18:43:24 2014 multiply complete, coefficients have about 14.12 million bits Wed Dec 17 18:43:24 2014 initial square root is modulo 129496751 Wed Dec 17 18:43:34 2014 Newton iteration failed to converge Wed Dec 17 18:43:34 2014 algebraic square root failed Wed Dec 17 18:43:34 2014 reading relations for dependency 5 Wed Dec 17 18:43:34 2014 read 173779 cycles Wed Dec 17 18:43:34 2014 cycles contain 532454 unique relations Wed Dec 17 18:43:42 2014 read 532454 relations Wed Dec 17 18:43:43 2014 multiplying 532454 relations Wed Dec 17 18:43:51 2014 multiply complete, coefficients have about 14.10 million bits Wed Dec 17 18:43:51 2014 initial square root is modulo 126724651 Wed Dec 17 18:44:01 2014 sqrtTime: 133 -- n: 93572710861087152407012023716177289845315885294962392844842054104604540279381608901055928044268303234056252520550717636724633780637708269 m: 10000000000000000000000000000000 deg: 5 c5: 109 c0: -1 skew: 0.39 # Murphy_E = 1.199e-09 type: snfs lss: 1 rlim: 2900000 alim: 2900000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 |
software ソフトウェア | yafu v1.34.3 |
execution environment 実行環境 | Gentoo Linux, Intel(R) Core(TM) i7-3770K CPU |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 / 2318 | Serge Batalov | December 10, 2014 19:47:40 UTC 2014 年 12 月 11 日 (木) 4 時 47 分 40 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | December 11, 2014 01:33:30 UTC 2014 年 12 月 11 日 (木) 10 時 33 分 30 秒 (日本時間) |
composite number 合成数 | 480390103186165167231509446769035142230457933021231351080811623564160816284900671421970680199038310634724072143072842737522852557222697673<138> |
prime factors 素因数 | 34482301852899706771113963269716759<35> 13931497532719611916050926717373141340123357752208981610331177622794497742762784838599298507562390390047<104> |
factorization results 素因数分解の結果 | Input number is 480390103186165167231509446769035142230457933021231351080811623564160816284900671421970680199038310634724072143072842737522852557222697673 (138 digits) Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=191334633 Step 1 took 9154ms Step 2 took 7104ms ********** Factor found in step 2: 34482301852899706771113963269716759 Found probable prime factor of 35 digits: 34482301852899706771113963269716759 Probable prime cofactor 13931497532719611916050926717373141340123357752208981610331177622794497742762784838599298507562390390047 has 104 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 / 2318 | Serge Batalov | December 10, 2014 19:47:40 UTC 2014 年 12 月 11 日 (木) 4 時 47 分 40 秒 (日本時間) |
name 名前 | Cyp |
---|---|
date 日付 | December 18, 2014 07:11:18 UTC 2014 年 12 月 18 日 (木) 16 時 11 分 18 秒 (日本時間) |
composite number 合成数 | 117102745466710984022275134942735785082379331328639747545940990587206392881204005114682398060339191333109435448458153975153664158064567<135> |
prime factors 素因数 | 43515460315027476832393656203734883768076212347<47> 2691060708514925937035353560426592255105828659006540108534558343532097488819702078486261<88> |
factorization results 素因数分解の結果 | 12/18/14 04:44:39 v1.34.3, 12/18/14 04:44:39 v1.34.3, **************************** 12/18/14 04:44:39 v1.34.3, Starting factorization of 117102745466710984022275134942735785082379331328639747545940990587206392881204005114682398060339191333109435448458153975153664158064567 12/18/14 04:44:39 v1.34.3, using pretesting plan: none 12/18/14 04:44:39 v1.34.3, no tune info: using qs/gnfs crossover of 95 digits 12/18/14 04:44:39 v1.34.3, **************************** 12/18/14 04:44:39 v1.34.3, nfs: commencing nfs on c135: 117102745466710984022275134942735785082379331328639747545940990587206392881204005114682398060339191333109435448458153975153664158064567 12/18/14 04:44:39 v1.34.3, nfs: continuing with sieving - could not determine last special q; using default startq 12/18/14 04:44:39 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/18/14 04:45:45 v1.34.3, nfs: commencing lattice sieving with 8 threads [162 lines snipped] 12/18/14 07:55:34 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/18/14 07:56:36 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/18/14 07:57:39 v1.34.3, nfs: commencing msieve filtering 12/18/14 07:59:29 v1.34.3, nfs: commencing msieve linear algebra 12/18/14 08:09:05 v1.34.3, nfs: commencing msieve sqrt 12/18/14 08:11:17 v1.34.3, prp47 = 43515460315027476832393656203734883768076212347 12/18/14 08:11:17 v1.34.3, prp88 = 2691060708514925937035353560426592255105828659006540108534558343532097488819702078486261 12/18/14 08:11:17 v1.34.3, NFS elapsed time = 12398.2128 seconds. 12/18/14 08:11:17 v1.34.3, 12/18/14 08:11:17 v1.34.3, 12/18/14 08:11:17 v1.34.3, Total factoring time = 12398.2135 seconds -- Thu Dec 18 07:57:39 2014 Thu Dec 18 07:57:39 2014 commencing relation filtering Thu Dec 18 07:57:39 2014 estimated available RAM is 15987.3 MB Thu Dec 18 07:57:39 2014 commencing duplicate removal, pass 1 Thu Dec 18 07:58:07 2014 found 1619409 hash collisions in 10068287 relations Thu Dec 18 07:58:15 2014 added 363358 free relations Thu Dec 18 07:58:15 2014 commencing duplicate removal, pass 2 Thu Dec 18 07:58:23 2014 found 1280504 duplicates and 9151141 unique relations Thu Dec 18 07:58:23 2014 memory use: 41.3 MB Thu Dec 18 07:58:23 2014 reading ideals above 100000 Thu Dec 18 07:58:23 2014 commencing singleton removal, initial pass Thu Dec 18 07:59:03 2014 memory use: 188.2 MB Thu Dec 18 07:59:03 2014 reading all ideals from disk Thu Dec 18 07:59:03 2014 memory use: 315.2 MB Thu Dec 18 07:59:04 2014 keeping 10082416 ideals with weight <= 200, target excess is 45436 Thu Dec 18 07:59:04 2014 commencing in-memory singleton removal Thu Dec 18 07:59:04 2014 begin with 9151141 relations and 10082416 unique ideals Thu Dec 18 07:59:07 2014 reduce to 3687571 relations and 3363334 ideals in 15 passes Thu Dec 18 07:59:07 2014 max relations containing the same ideal: 109 Thu Dec 18 07:59:08 2014 removing 767838 relations and 632072 ideals in 135766 cliques Thu Dec 18 07:59:08 2014 commencing in-memory singleton removal Thu Dec 18 07:59:08 2014 begin with 2919733 relations and 3363334 unique ideals Thu Dec 18 07:59:09 2014 reduce to 2787466 relations and 2592642 ideals in 9 passes Thu Dec 18 07:59:09 2014 max relations containing the same ideal: 92 Thu Dec 18 07:59:10 2014 removing 601540 relations and 465774 ideals in 135766 cliques Thu Dec 18 07:59:10 2014 commencing in-memory singleton removal Thu Dec 18 07:59:10 2014 begin with 2185926 relations and 2592642 unique ideals Thu Dec 18 07:59:11 2014 reduce to 2083569 relations and 2019390 ideals in 9 passes Thu Dec 18 07:59:11 2014 max relations containing the same ideal: 73 Thu Dec 18 07:59:11 2014 removing 83792 relations and 72319 ideals in 11473 cliques Thu Dec 18 07:59:11 2014 commencing in-memory singleton removal Thu Dec 18 07:59:11 2014 begin with 1999777 relations and 2019390 unique ideals Thu Dec 18 07:59:12 2014 reduce to 1997731 relations and 1945013 ideals in 6 passes Thu Dec 18 07:59:12 2014 max relations containing the same ideal: 71 Thu Dec 18 07:59:12 2014 relations with 0 large ideals: 1015 Thu Dec 18 07:59:12 2014 relations with 1 large ideals: 433 Thu Dec 18 07:59:12 2014 relations with 2 large ideals: 7370 Thu Dec 18 07:59:12 2014 relations with 3 large ideals: 54628 Thu Dec 18 07:59:12 2014 relations with 4 large ideals: 212489 Thu Dec 18 07:59:12 2014 relations with 5 large ideals: 460160 Thu Dec 18 07:59:12 2014 relations with 6 large ideals: 603867 Thu Dec 18 07:59:12 2014 relations with 7+ large ideals: 657769 Thu Dec 18 07:59:12 2014 commencing 2-way merge Thu Dec 18 07:59:13 2014 reduce to 1192674 relation sets and 1139956 unique ideals Thu Dec 18 07:59:13 2014 commencing full merge Thu Dec 18 07:59:24 2014 memory use: 145.7 MB Thu Dec 18 07:59:24 2014 found 606910 cycles, need 600156 Thu Dec 18 07:59:24 2014 weight of 600156 cycles is about 42011905 (70.00/cycle) Thu Dec 18 07:59:24 2014 distribution of cycle lengths: Thu Dec 18 07:59:24 2014 1 relations: 63332 Thu Dec 18 07:59:24 2014 2 relations: 63829 Thu Dec 18 07:59:24 2014 3 relations: 63207 Thu Dec 18 07:59:24 2014 4 relations: 58886 Thu Dec 18 07:59:24 2014 5 relations: 54153 Thu Dec 18 07:59:24 2014 6 relations: 49197 Thu Dec 18 07:59:24 2014 7 relations: 43753 Thu Dec 18 07:59:24 2014 8 relations: 38622 Thu Dec 18 07:59:24 2014 9 relations: 33926 Thu Dec 18 07:59:24 2014 10+ relations: 131251 Thu Dec 18 07:59:24 2014 heaviest cycle: 22 relations Thu Dec 18 07:59:24 2014 commencing cycle optimization Thu Dec 18 07:59:25 2014 start with 3784085 relations Thu Dec 18 07:59:28 2014 pruned 96025 relations Thu Dec 18 07:59:28 2014 memory use: 120.4 MB Thu Dec 18 07:59:28 2014 distribution of cycle lengths: Thu Dec 18 07:59:28 2014 1 relations: 63332 Thu Dec 18 07:59:28 2014 2 relations: 65048 Thu Dec 18 07:59:28 2014 3 relations: 65175 Thu Dec 18 07:59:28 2014 4 relations: 60220 Thu Dec 18 07:59:28 2014 5 relations: 55720 Thu Dec 18 07:59:28 2014 6 relations: 50408 Thu Dec 18 07:59:28 2014 7 relations: 44507 Thu Dec 18 07:59:28 2014 8 relations: 39173 Thu Dec 18 07:59:28 2014 9 relations: 33954 Thu Dec 18 07:59:28 2014 10+ relations: 122619 Thu Dec 18 07:59:28 2014 heaviest cycle: 22 relations Thu Dec 18 07:59:29 2014 RelProcTime: 110 Thu Dec 18 07:59:29 2014 Thu Dec 18 07:59:29 2014 commencing linear algebra Thu Dec 18 07:59:29 2014 read 600156 cycles Thu Dec 18 07:59:29 2014 cycles contain 1959982 unique relations Thu Dec 18 07:59:40 2014 read 1959982 relations Thu Dec 18 07:59:41 2014 using 20 quadratic characters above 134217440 Thu Dec 18 07:59:47 2014 building initial matrix Thu Dec 18 07:59:57 2014 memory use: 237.1 MB Thu Dec 18 07:59:57 2014 read 600156 cycles Thu Dec 18 07:59:58 2014 matrix is 599979 x 600156 (179.0 MB) with weight 54143796 (90.22/col) Thu Dec 18 07:59:58 2014 sparse part has weight 40309103 (67.16/col) Thu Dec 18 08:00:00 2014 filtering completed in 2 passes Thu Dec 18 08:00:00 2014 matrix is 599788 x 599965 (178.9 MB) with weight 54137204 (90.23/col) Thu Dec 18 08:00:00 2014 sparse part has weight 40307133 (67.18/col) Thu Dec 18 08:00:02 2014 matrix starts at (0, 0) Thu Dec 18 08:00:02 2014 matrix is 599788 x 599965 (178.9 MB) with weight 54137204 (90.23/col) Thu Dec 18 08:00:02 2014 sparse part has weight 40307133 (67.18/col) Thu Dec 18 08:00:02 2014 saving the first 48 matrix rows for later Thu Dec 18 08:00:02 2014 matrix includes 64 packed rows Thu Dec 18 08:00:02 2014 matrix is 599740 x 599965 (169.4 MB) with weight 42471246 (70.79/col) Thu Dec 18 08:00:02 2014 sparse part has weight 38395280 (64.00/col) Thu Dec 18 08:00:02 2014 using block size 65536 for processor cache size 8192 kB Thu Dec 18 08:00:03 2014 commencing Lanczos iteration (8 threads) Thu Dec 18 08:00:03 2014 memory use: 164.5 MB Thu Dec 18 08:00:06 2014 linear algebra at 0.5%, ETA 0h 9m Thu Dec 18 08:09:05 2014 lanczos halted after 9487 iterations (dim = 599737) Thu Dec 18 08:09:05 2014 recovered 36 nontrivial dependencies Thu Dec 18 08:09:05 2014 BLanczosTime: 576 Thu Dec 18 08:09:05 2014 Thu Dec 18 08:09:05 2014 commencing square root phase Thu Dec 18 08:09:05 2014 reading relations for dependency 1 Thu Dec 18 08:09:05 2014 read 300159 cycles Thu Dec 18 08:09:06 2014 cycles contain 981238 unique relations Thu Dec 18 08:09:14 2014 read 981238 relations Thu Dec 18 08:09:16 2014 multiplying 981238 relations Thu Dec 18 08:09:40 2014 multiply complete, coefficients have about 35.08 million bits Thu Dec 18 08:09:40 2014 initial square root is modulo 108791 Thu Dec 18 08:10:11 2014 GCD is N, no factor found Thu Dec 18 08:10:11 2014 reading relations for dependency 2 Thu Dec 18 08:10:11 2014 read 299744 cycles Thu Dec 18 08:10:11 2014 cycles contain 978514 unique relations Thu Dec 18 08:10:20 2014 read 978514 relations Thu Dec 18 08:10:22 2014 multiplying 978514 relations Thu Dec 18 08:10:46 2014 multiply complete, coefficients have about 34.98 million bits Thu Dec 18 08:10:46 2014 initial square root is modulo 105331 Thu Dec 18 08:11:17 2014 sqrtTime: 132 -- n: 117102745466710984022275134942735785082379331328639747545940990587206392881204005114682398060339191333109435448458153975153664158064567 m: 10000000000000000000000000000000 deg: 5 c5: 109000 c0: -1 skew: 0.10 # Murphy_E = 5.219e-10 type: snfs lss: 1 rlim: 3300000 alim: 3300000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 |
software ソフトウェア | yafu v1.34.3 |
execution environment 実行環境 | Gentoo Linux, Intel(R) Core(TM) i7-3770K CPU |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 / 2318 | Serge Batalov | December 10, 2014 19:47:41 UTC 2014 年 12 月 11 日 (木) 4 時 47 分 41 秒 (日本時間) |
name 名前 | Cyp |
---|---|
date 日付 | December 14, 2014 18:32:56 UTC 2014 年 12 月 15 日 (月) 3 時 32 分 56 秒 (日本時間) |
composite number 合成数 | 411010692903206193736571851741142916589116678933450479676439411199957671177667392372032942559826556202527864328522611543993983135281043625380073182754023<153> |
prime factors 素因数 | 67452855349698216390316789374055178210329<41> 6093303104403645571429656270621862800584021170541526174538175615327221110375923025883017651504082973478800402687<112> |
factorization results 素因数分解の結果 | 12/14/14 16:29:36 v1.34.3, 12/14/14 16:29:36 v1.34.3, **************************** 12/14/14 16:29:36 v1.34.3, Starting factorization of 411010692903206193736571851741142916589116678933450479676439411199957671177667392372032942559826556202527864328522611543993983135281043625380073182754023 12/14/14 16:29:36 v1.34.3, using pretesting plan: none 12/14/14 16:29:36 v1.34.3, no tune info: using qs/gnfs crossover of 95 digits 12/14/14 16:29:36 v1.34.3, **************************** 12/14/14 16:29:36 v1.34.3, nfs: commencing nfs on c153: 411010692903206193736571851741142916589116678933450479676439411199957671177667392372032942559826556202527864328522611543993983135281043625380073182754023 12/14/14 16:29:36 v1.34.3, nfs: continuing with sieving - could not determine last special q; using default startq 12/14/14 16:29:36 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/14/14 16:34:50 v1.34.3, nfs: commencing lattice sieving with 8 threads [28 lines snipped] 12/14/14 19:10:16 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/14/14 19:15:42 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/14/14 19:21:05 v1.34.3, nfs: commencing msieve filtering 12/14/14 19:23:19 v1.34.3, nfs: commencing msieve linear algebra 12/14/14 19:31:23 v1.34.3, nfs: commencing msieve sqrt 12/14/14 19:32:55 v1.34.3, prp41 = 67452855349698216390316789374055178210329 12/14/14 19:32:55 v1.34.3, prp112 = 6093303104403645571429656270621862800584021170541526174538175615327221110375923025883017651504082973478800402687 12/14/14 19:32:55 v1.34.3, NFS elapsed time = 10999.7324 seconds. 12/14/14 19:32:55 v1.34.3, 12/14/14 19:32:55 v1.34.3, 12/14/14 19:32:55 v1.34.3, Total factoring time = 10999.7335 seconds -- Sun Dec 14 19:21:05 2014 Sun Dec 14 19:21:05 2014 commencing relation filtering Sun Dec 14 19:21:05 2014 estimated available RAM is 15987.3 MB Sun Dec 14 19:21:05 2014 commencing duplicate removal, pass 1 Sun Dec 14 19:21:37 2014 found 1172003 hash collisions in 10051773 relations Sun Dec 14 19:21:47 2014 added 365801 free relations Sun Dec 14 19:21:47 2014 commencing duplicate removal, pass 2 Sun Dec 14 19:21:56 2014 found 663774 duplicates and 9753800 unique relations Sun Dec 14 19:21:56 2014 memory use: 41.3 MB Sun Dec 14 19:21:56 2014 reading ideals above 100000 Sun Dec 14 19:21:56 2014 commencing singleton removal, initial pass Sun Dec 14 19:22:47 2014 memory use: 344.5 MB Sun Dec 14 19:22:47 2014 reading all ideals from disk Sun Dec 14 19:22:47 2014 memory use: 339.6 MB Sun Dec 14 19:22:48 2014 keeping 10246221 ideals with weight <= 200, target excess is 50304 Sun Dec 14 19:22:49 2014 commencing in-memory singleton removal Sun Dec 14 19:22:49 2014 begin with 9753800 relations and 10246221 unique ideals Sun Dec 14 19:22:54 2014 reduce to 4452339 relations and 3799998 ideals in 14 passes Sun Dec 14 19:22:54 2014 max relations containing the same ideal: 122 Sun Dec 14 19:22:55 2014 removing 1185753 relations and 888759 ideals in 296994 cliques Sun Dec 14 19:22:56 2014 commencing in-memory singleton removal Sun Dec 14 19:22:56 2014 begin with 3266586 relations and 3799998 unique ideals Sun Dec 14 19:22:58 2014 reduce to 3020070 relations and 2643826 ideals in 9 passes Sun Dec 14 19:22:58 2014 max relations containing the same ideal: 95 Sun Dec 14 19:22:59 2014 removing 970424 relations and 673430 ideals in 296994 cliques Sun Dec 14 19:22:59 2014 commencing in-memory singleton removal Sun Dec 14 19:22:59 2014 begin with 2049646 relations and 2643826 unique ideals Sun Dec 14 19:23:01 2014 reduce to 1827075 relations and 1725115 ideals in 10 passes Sun Dec 14 19:23:01 2014 max relations containing the same ideal: 68 Sun Dec 14 19:23:02 2014 removing 223531 relations and 179924 ideals in 43607 cliques Sun Dec 14 19:23:02 2014 commencing in-memory singleton removal Sun Dec 14 19:23:02 2014 begin with 1603544 relations and 1725115 unique ideals Sun Dec 14 19:23:03 2014 reduce to 1583073 relations and 1524250 ideals in 8 passes Sun Dec 14 19:23:03 2014 max relations containing the same ideal: 59 Sun Dec 14 19:23:04 2014 relations with 0 large ideals: 1148 Sun Dec 14 19:23:04 2014 relations with 1 large ideals: 529 Sun Dec 14 19:23:04 2014 relations with 2 large ideals: 8238 Sun Dec 14 19:23:04 2014 relations with 3 large ideals: 56421 Sun Dec 14 19:23:04 2014 relations with 4 large ideals: 198052 Sun Dec 14 19:23:04 2014 relations with 5 large ideals: 392244 Sun Dec 14 19:23:04 2014 relations with 6 large ideals: 467953 Sun Dec 14 19:23:04 2014 relations with 7+ large ideals: 458488 Sun Dec 14 19:23:04 2014 commencing 2-way merge Sun Dec 14 19:23:04 2014 reduce to 944609 relation sets and 885786 unique ideals Sun Dec 14 19:23:04 2014 commencing full merge Sun Dec 14 19:23:14 2014 memory use: 110.6 MB Sun Dec 14 19:23:15 2014 found 482043 cycles, need 473986 Sun Dec 14 19:23:15 2014 weight of 473986 cycles is about 33274291 (70.20/cycle) Sun Dec 14 19:23:15 2014 distribution of cycle lengths: Sun Dec 14 19:23:15 2014 1 relations: 48000 Sun Dec 14 19:23:15 2014 2 relations: 47485 Sun Dec 14 19:23:15 2014 3 relations: 49366 Sun Dec 14 19:23:15 2014 4 relations: 48770 Sun Dec 14 19:23:15 2014 5 relations: 46644 Sun Dec 14 19:23:15 2014 6 relations: 43690 Sun Dec 14 19:23:15 2014 7 relations: 38592 Sun Dec 14 19:23:15 2014 8 relations: 33670 Sun Dec 14 19:23:15 2014 9 relations: 28321 Sun Dec 14 19:23:15 2014 10+ relations: 89448 Sun Dec 14 19:23:15 2014 heaviest cycle: 20 relations Sun Dec 14 19:23:15 2014 commencing cycle optimization Sun Dec 14 19:23:15 2014 start with 2868200 relations Sun Dec 14 19:23:18 2014 pruned 73624 relations Sun Dec 14 19:23:18 2014 memory use: 93.5 MB Sun Dec 14 19:23:18 2014 distribution of cycle lengths: Sun Dec 14 19:23:18 2014 1 relations: 48000 Sun Dec 14 19:23:18 2014 2 relations: 48443 Sun Dec 14 19:23:18 2014 3 relations: 50955 Sun Dec 14 19:23:18 2014 4 relations: 50111 Sun Dec 14 19:23:18 2014 5 relations: 48060 Sun Dec 14 19:23:18 2014 6 relations: 44761 Sun Dec 14 19:23:18 2014 7 relations: 39529 Sun Dec 14 19:23:18 2014 8 relations: 33989 Sun Dec 14 19:23:18 2014 9 relations: 28508 Sun Dec 14 19:23:18 2014 10+ relations: 81630 Sun Dec 14 19:23:18 2014 heaviest cycle: 20 relations Sun Dec 14 19:23:19 2014 RelProcTime: 134 Sun Dec 14 19:23:19 2014 Sun Dec 14 19:23:19 2014 commencing linear algebra Sun Dec 14 19:23:19 2014 read 473986 cycles Sun Dec 14 19:23:19 2014 cycles contain 1538418 unique relations Sun Dec 14 19:23:30 2014 read 1538418 relations Sun Dec 14 19:23:31 2014 using 20 quadratic characters above 134216390 Sun Dec 14 19:23:36 2014 building initial matrix Sun Dec 14 19:23:46 2014 memory use: 189.6 MB Sun Dec 14 19:23:46 2014 read 473986 cycles Sun Dec 14 19:23:46 2014 matrix is 473814 x 473986 (141.6 MB) with weight 42611548 (89.90/col) Sun Dec 14 19:23:46 2014 sparse part has weight 31913976 (67.33/col) Sun Dec 14 19:23:49 2014 filtering completed in 2 passes Sun Dec 14 19:23:49 2014 matrix is 473563 x 473739 (141.6 MB) with weight 42602378 (89.93/col) Sun Dec 14 19:23:49 2014 sparse part has weight 31910336 (67.36/col) Sun Dec 14 19:23:50 2014 matrix starts at (0, 0) Sun Dec 14 19:23:50 2014 matrix is 473563 x 473739 (141.6 MB) with weight 42602378 (89.93/col) Sun Dec 14 19:23:50 2014 sparse part has weight 31910336 (67.36/col) Sun Dec 14 19:23:50 2014 saving the first 48 matrix rows for later Sun Dec 14 19:23:50 2014 matrix includes 64 packed rows Sun Dec 14 19:23:50 2014 matrix is 473515 x 473739 (133.9 MB) with weight 33502345 (70.72/col) Sun Dec 14 19:23:50 2014 sparse part has weight 30372348 (64.11/col) Sun Dec 14 19:23:50 2014 using block size 65536 for processor cache size 8192 kB Sun Dec 14 19:23:51 2014 commencing Lanczos iteration (8 threads) Sun Dec 14 19:23:51 2014 memory use: 129.1 MB Sun Dec 14 19:24:03 2014 linear algebra at 2.6%, ETA 0h 7m Sun Dec 14 19:31:22 2014 lanczos halted after 7490 iterations (dim = 473515) Sun Dec 14 19:31:23 2014 recovered 38 nontrivial dependencies Sun Dec 14 19:31:23 2014 BLanczosTime: 484 Sun Dec 14 19:31:23 2014 Sun Dec 14 19:31:23 2014 commencing square root phase Sun Dec 14 19:31:23 2014 reading relations for dependency 1 Sun Dec 14 19:31:23 2014 read 237288 cycles Sun Dec 14 19:31:23 2014 cycles contain 768992 unique relations Sun Dec 14 19:31:31 2014 read 768992 relations Sun Dec 14 19:31:34 2014 multiplying 768992 relations Sun Dec 14 19:31:48 2014 multiply complete, coefficients have about 24.08 million bits Sun Dec 14 19:31:48 2014 initial square root is modulo 8241001 Sun Dec 14 19:32:10 2014 GCD is N, no factor found Sun Dec 14 19:32:10 2014 reading relations for dependency 2 Sun Dec 14 19:32:10 2014 read 236907 cycles Sun Dec 14 19:32:10 2014 cycles contain 767394 unique relations Sun Dec 14 19:32:18 2014 read 767394 relations Sun Dec 14 19:32:20 2014 multiplying 767394 relations Sun Dec 14 19:32:35 2014 multiply complete, coefficients have about 24.03 million bits Sun Dec 14 19:32:35 2014 initial square root is modulo 7964471 Sun Dec 14 19:32:55 2014 sqrtTime: 92 -- n: 411010692903206193736571851741142916589116678933450479676439411199957671177667392372032942559826556202527864328522611543993983135281043625380073182754023 m: 50000000000000000000000000000000 deg: 5 c5: 1744 c0: -5 skew: 0.31 # Murphy_E = 5.705e-10 type: snfs lss: 1 rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 |
software ソフトウェア | yafu v1.34.3 |
execution environment 実行環境 | Gentoo Linux, Intel(R) Core(TM) i7-3770K CPU |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 / 2318 | Serge Batalov | December 10, 2014 19:47:41 UTC 2014 年 12 月 11 日 (木) 4 時 47 分 41 秒 (日本時間) |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | December 30, 2014 22:15:58 UTC 2014 年 12 月 31 日 (水) 7 時 15 分 58 秒 (日本時間) |
composite number 合成数 | 294905568486704943001551309323063866093427053849529408450795800562884793587346332317584419795933388715030445053790188413123<123> |
prime factors 素因数 | 607466813891851946279962699141063466910697559389493<51> 485467784811710453491070344951652282542938362673339872123727459291845911<72> |
factorization results 素因数分解の結果 | Number: 12111_161 N=294905568486704943001551309323063866093427053849529408450795800562884793587346332317584419795933388715030445053790188413123 ( 123 digits) SNFS difficulty: 163 digits. Divisors found: r1=607466813891851946279962699141063466910697559389493 r2=485467784811710453491070344951652282542938362673339872123727459291845911 Version: Total time: 9.37 hours. Scaled time: 48.98 units (timescale=5.226). Factorization parameters were as follows: n: 294905568486704943001551309323063866093427053849529408450795800562884793587346332317584419795933388715030445053790188413123 m: 100000000000000000000000000000000 deg: 5 c5: 1090 c0: -1 skew: 0.25 # Murphy_E = 5.43e-10 type: snfs lss: 1 rlim: 3400000 alim: 3400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3400000/3400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1700000, 3000001) Primes: rational ideals reading, algebraic ideals reading, Relations: 9397260 Max relations in full relation-set: Initial matrix: Pruned matrix : 588761 x 589009 Total sieving time: 8.48 hours. Total relation processing time: 0.30 hours. Matrix solve time: 0.32 hours. Time per square root: 0.27 hours. Prototype def-par.txt line would be: snfs,163,5,0,0,0,0,0,0,0,0,3400000,3400000,27,27,51,51,2.4,2.4,100000 total time: 9.37 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM) i7-4930K CPU @ 3.40GHz stepping 04 Memory: 49373664k/51380224k available (5220k kernel code, 1086460k absent, 920100k reserved, 7121k data, 1264k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 6799.88 BogoMIPS (lpj=3399941) Total of 12 processors activated (81598.58 BogoMIPS). |
software ソフトウェア | GGNFS / Msieve v1.39 |
execution environment 実行環境 | Core i7-4930K |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 | Serge Batalov | December 10, 2014 19:47:41 UTC 2014 年 12 月 11 日 (木) 4 時 47 分 41 秒 (日本時間) | |
45 | 11e6 | 1017 / 4409 | Pierre Jammes | December 19, 2014 07:06:26 UTC 2014 年 12 月 19 日 (金) 16 時 6 分 26 秒 (日本時間) |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | January 4, 2015 00:01:55 UTC 2015 年 1 月 4 日 (日) 9 時 1 分 55 秒 (日本時間) |
composite number 合成数 | 193359089137345632301467344531353156146696244448527035311788085897502311817933148762131239107865233636319875252941142833740623800133<132> |
prime factors 素因数 | 58295332918739914755869808969422247271405381849082387<53> 3316887981528062159378497795787643953612381635222638485711724569188604051493959<79> |
factorization results 素因数分解の結果 | Number: 12111_162 N=193359089137345632301467344531353156146696244448527035311788085897502311817933148762131239107865233636319875252941142833740623800133 ( 132 digits) SNFS difficulty: 164 digits. Divisors found: r1=58295332918739914755869808969422247271405381849082387 r2=3316887981528062159378497795787643953612381635222638485711724569188604051493959 Version: Total time: 10.01 hours. Scaled time: 52.62 units (timescale=5.256). Factorization parameters were as follows: n: 193359089137345632301467344531353156146696244448527035311788085897502311817933148762131239107865233636319875252941142833740623800133 m: 100000000000000000000000000000000 deg: 5 c5: 10900 c0: -1 skew: 0.16 # Murphy_E = 4.632e-10 type: snfs lss: 1 rlim: 3600000 alim: 3600000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3600000/3600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1800000, 3200001) Primes: rational ideals reading, algebraic ideals reading, Relations: 9394320 Max relations in full relation-set: Initial matrix: Pruned matrix : 628223 x 628471 Total sieving time: 9.16 hours. Total relation processing time: 0.33 hours. Matrix solve time: 0.36 hours. Time per square root: 0.16 hours. Prototype def-par.txt line would be: snfs,164,5,0,0,0,0,0,0,0,0,3600000,3600000,27,27,51,51,2.4,2.4,100000 total time: 10.01 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM) i7-4930K CPU @ 3.40GHz stepping 04 Memory: 49373664k/51380224k available (5220k kernel code, 1086460k absent, 920100k reserved, 7121k data, 1264k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 6799.88 BogoMIPS (lpj=3399941) Total of 12 processors activated (81598.58 BogoMIPS). |
software ソフトウェア | GGNFS / Msieve v1.39 |
execution environment 実行環境 | Core i7-4930K |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 / 2318 | Serge Batalov | December 10, 2014 19:47:42 UTC 2014 年 12 月 11 日 (木) 4 時 47 分 42 秒 (日本時間) |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | January 7, 2015 13:07:47 UTC 2015 年 1 月 7 日 (水) 22 時 7 分 47 秒 (日本時間) |
composite number 合成数 | 3947976330229110432860310852816540768072003710974708655845045342430720572545105849462422656827597914274465059467996892731150064188169863834146919<145> |
prime factors 素因数 | 1151612280442243426691484923471986339077243436180430885398205991794333<70> 3428216594488732074542485056072300888795276883153736104759001593054039628243<76> |
factorization results 素因数分解の結果 | Number: 12111_163 N=3947976330229110432860310852816540768072003710974708655845045342430720572545105849462422656827597914274465059467996892731150064188169863834146919 ( 145 digits) SNFS difficulty: 165 digits. Divisors found: r1=1151612280442243426691484923471986339077243436180430885398205991794333 r2=3428216594488732074542485056072300888795276883153736104759001593054039628243 Version: Total time: 15.66 hours. Scaled time: 82.14 units (timescale=5.245). Factorization parameters were as follows: n: 3947976330229110432860310852816540768072003710974708655845045342430720572545105849462422656827597914274465059467996892731150064188169863834146919 m: 200000000000000000000000000000000 deg: 5 c5: 13625 c0: -4 skew: 0.10 # Murphy_E = 3.336e-10 type: snfs lss: 1 rlim: 4000000 alim: 4000000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2000000, 4300001) Primes: rational ideals reading, algebraic ideals reading, Relations: 9973942 Max relations in full relation-set: Initial matrix: Pruned matrix : 733827 x 734075 Total sieving time: 14.44 hours. Total relation processing time: 0.54 hours. Matrix solve time: 0.51 hours. Time per square root: 0.17 hours. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,51,51,2.4,2.4,100000 total time: 15.66 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM) i7-4930K CPU @ 3.40GHz stepping 04 Memory: 49373664k/51380224k available (5220k kernel code, 1086460k absent, 920100k reserved, 7121k data, 1264k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 6800.24 BogoMIPS (lpj=3400120) Total of 12 processors activated (81602.88 BogoMIPS). |
software ソフトウェア | GGNFS / Msieve v1.39 |
execution environment 実行環境 | Core i7-4930K |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 / 2318 | Serge Batalov | December 10, 2014 19:47:42 UTC 2014 年 12 月 11 日 (木) 4 時 47 分 42 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | December 17, 2014 22:19:11 UTC 2014 年 12 月 18 日 (木) 7 時 19 分 11 秒 (日本時間) |
composite number 合成数 | 87923298619196450785085700009926076894312733567676588066962223100656075165729223348263473059301107797824368412356174719156900956345581685047631504757<149> |
prime factors 素因数 | 186970865655929911782832998477082453129<39> 470251331996268702468769438505938594189185552224257500807286452777735763189920079361471025915318452082737403533<111> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=4158214579 Step 1 took 9154ms Step 2 took 7760ms ********** Factor found in step 2: 186970865655929911782832998477082453129 Found probable prime factor of 39 digits: 186970865655929911782832998477082453129 Probable prime cofactor |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 / 2318 | Serge Batalov | December 10, 2014 19:47:43 UTC 2014 年 12 月 11 日 (木) 4 時 47 分 43 秒 (日本時間) |
name 名前 | Cyp |
---|---|
date 日付 | December 10, 2014 00:55:49 UTC 2014 年 12 月 10 日 (水) 9 時 55 分 49 秒 (日本時間) |
composite number 合成数 | 525366274280718141957823209910817869972329102929856854559817770200935730353108794679630199981395286066756219926998187245360027723915684978814243499074343183709982393<165> |
prime factors 素因数 | 25057839955400944315281801951567959<35> 20966143738478191019019110510074315090950761790258501814319072119554325346853421744044735534333935497450797311253653053079412252527<131> |
factorization results 素因数分解の結果 | Run 39 out of 280: Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2491337022 Step 1 took 13529ms Step 2 took 5122ms ********** Factor found in step 2: 25057839955400944315281801951567959 Found probable prime factor of 35 digits: 25057839955400944315281801951567959 Probable prime cofactor 20966143738478191019019110510074315090950761790258501814319072119554325346853421744044735534333935497450797311253653053079412252527 has 131 digits |
software ソフトウェア | GMP-ECM 6.4.4 |
execution environment 実行環境 | Gentoo Linux, Intel(R) Core(TM) i7-3770K CPU |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 795 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 39 / 2318 | Cyp | December 10, 2014 00:55:48 UTC 2014 年 12 月 10 日 (水) 9 時 55 分 48 秒 (日本時間) |
name 名前 | Cyp |
---|---|
date 日付 | December 10, 2014 09:56:11 UTC 2014 年 12 月 10 日 (水) 18 時 56 分 11 秒 (日本時間) |
composite number 合成数 | 285441058196086243128482711867714967338743009084650497257460805380113495731772260651384159809797974919338701118997537271421922441451884201722899<144> |
prime factors 素因数 | 112533737681273376495337767337<30> 2536493180423226944326508181594139549750570661266269179996920031239792877043485661161012442322136693113303064110427<115> |
factorization results 素因数分解の結果 | Run 85 out of 280: Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=212517800 Step 1 took 11473ms Step 2 took 4411ms ********** Factor found in step 2: 112533737681273376495337767337 Found probable prime factor of 30 digits: 112533737681273376495337767337 Probable prime cofactor 2536493180423226944326508181594139549750570661266269179996920031239792877043485661161012442322136693113303064110427 has 115 digits |
software ソフトウェア | GMP-ECM 6.4.4 |
execution environment 実行環境 | Gentoo Linux, Intel(R) Core(TM) i7-3770K CPU |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 666 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 85 / 2318 | Cyp | December 10, 2014 09:56:11 UTC 2014 年 12 月 10 日 (水) 18 時 56 分 11 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | December 10, 2014 20:32:48 UTC 2014 年 12 月 11 日 (木) 5 時 32 分 48 秒 (日本時間) |
composite number 合成数 | 92820621280196943449283694456137351897150685226764381186227070033445988895362735503129516606458200242347131356358519006251995195753496157187660512001982196119040199<164> |
prime factors 素因数 | 156491610449121596543854800160139<33> 9753394409840070834484546217588579<34> |
composite cofactor 合成数の残り | 60813167481895151882800652662683069705992549335175540705103540169448187564895751137867519533958279<98> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2938600619 Step 1 took 12884ms Step 2 took 9960ms ********** Factor found in step 2: 156491610449121596543854800160139 Found probable prime factor of 33 digits: 156491610449121596543854800160139 -- Input number is 92820621280196943449283694456137351897150685226764381186227070033445988895362735503129516606458200242347131356358519006251995195753496157187660512001982196119040199 (164 digits) Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2666155595 Step 1 took 11002ms Step 2 took 8083ms ********** Factor found in step 2: 9753394409840070834484546217588579 Found probable prime factor of 34 digits: 9753394409840070834484546217588579 |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 11, 2014 17:58:47 UTC 2014 年 12 月 12 日 (金) 2 時 58 分 47 秒 (日本時間) |
composite number 合成数 | 60813167481895151882800652662683069705992549335175540705103540169448187564895751137867519533958279<98> |
prime factors 素因数 | 375692950338798877753665076589671030938383291<45> 161869333526365089739731466127301235118351578512783269<54> |
factorization results 素因数分解の結果 | N=60813167481895151882800652662683069705992549335175540705103540169448187564895751137867519533958279 ( 98 digits) Divisors found: r1=375692950338798877753665076589671030938383291 (pp45) r2=161869333526365089739731466127301235118351578512783269 (pp54) Version: Msieve v. 1.50 (SVN unknown) Total time: 2.49 hours. Scaled time: 5.31 units (timescale=2.135). Factorization parameters were as follows: n: 60813167481895151882800652662683069705992549335175540705103540169448187564895751137867519533958279 skew: 488037.56 c0: -32781884042780691716249040 c1: -2671985681162237157186 c2: 1329654174538021 c3: 11340746940 c4: 15048 Y0: -252130755675589583469953 Y1: 11971137811381 rlim: 1680000 alim: 1680000 lpbr: 26 lpba: 26 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 type: gnfs Factor base limits: 1680000/1680000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 52/52 Sieved algebraic special-q in [840000, 1140001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 170973 x 171207 Total sieving time: 2.33 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.09 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: gnfs,97,4,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1680000,1680000,26,26,52,52,2.5,2.5,100000 total time: 2.49 hours. |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 / 2318 | Serge Batalov | December 10, 2014 19:47:43 UTC 2014 年 12 月 11 日 (木) 4 時 47 分 43 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | March 28, 2015 23:22:10 UTC 2015 年 3 月 29 日 (日) 8 時 22 分 10 秒 (日本時間) |
composite number 合成数 | 402229850009384344199331951410098873937605695408405777778225707460327008276457877674831299161198365296092014227859826268266135840466591576052606308919249<153> |
prime factors 素因数 | 1498773200895667905333893988397518026401<40> 268372726286413118807858215883538953880850240923895841010962896801774047022995157507771629646420881838002385785649<114> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:77564666 Step 1 took 10141ms Step 2 took 6609ms ********** Factor found in step 2: 1498773200895667905333893988397518026401 Found probable prime factor of 40 digits: 1498773200895667905333893988397518026401 Probable prime cofactor 268372726286413118807858215883538953880850240923895841010962896801774047022995157507771629646420881838002385785649 has 114 digits |
software ソフトウェア | GMP-ECM 7.0 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 280 / 2318 | Cyp | December 10, 2014 00:24:54 UTC 2014 年 12 月 10 日 (水) 9 時 24 分 54 秒 (日本時間) |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | July 18, 2015 22:56:12 UTC 2015 年 7 月 19 日 (日) 7 時 56 分 12 秒 (日本時間) |
composite number 合成数 | 5568687570968966455659315511246047725990419133676700616415493143456380553800518361112469223951210365282810774836818534664563084960639265439821050907811655599<157> |
prime factors 素因数 | 3994111075353880661793971013943860978376839269<46> 1150740339648097154250233830921384048364033650275135529<55> 1211589153069555288186949357608235835600960079058380573899<58> |
factorization results 素因数分解の結果 | GMP-ECM 6.4.4 [configured with GMP 6.0.0, --enable-asm-redc] [ECM] Input number is 5568687570968966455659315511246047725990419133676700616415493143456380553800518361112469223951210365282810774836818534664563084960639265439821050907811655599 (157 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1211487691 Step 1 took 29367ms Step 2 took 9737ms ********** Factor found in step 2: 3994111075353880661793971013943860978376839269 Found probable prime factor of 46 digits: 3994111075353880661793971013943860978376839269 Composite cofactor 1394224513517210425132322540744935228228374754900418379870606911183730182075925107142361790817157062433024957571 has 112 digits Number: 12111_177 N=1394224513517210425132322540744935228228374754900418379870606911183730182075925107142361790817157062433024957571 ( 112 digits) Divisors found: r1=1150740339648097154250233830921384048364033650275135529 r2=1211589153069555288186949357608235835600960079058380573899 Version: Total time: 6.84 hours. Scaled time: 35.95 units (timescale=5.258). Factorization parameters were as follows: name: 12111_177 n: 1394224513517210425132322540744935228228374754900418379870606911183730182075925107142361790817157062433024957571 skew: 10725.95 # norm 3.81e+14 c5: 20160 c4: 604740104 c3: 16895563744718 c2: -226723362677285941 c1: -561840392337909205492 c0: 9910167615420585177315 # alpha -4.99 Y1: 999738323509 Y0: -2333282484673425718894 # Murphy_E 9.60e-10 # M 849741720518384320298856605712241063139257645166736221807988554688070326927378708287474872234553895741590121974 type: gnfs rlim: 2400000 alim: 2400000 lpbr: 27 lpba: 27 mfbr: 53 mfba: 53 rlambda: 2.6 alambda: 2.6 qintsize: 60000 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 53/53 Sieved algebraic special-q in [1200000, 1920001) Primes: rational ideals reading, algebraic ideals reading, Relations: 9307377 Max relations in full relation-set: Initial matrix: Pruned matrix : 418759 x 419007 Polynomial selection time: 0.87 hours. Total sieving time: 5.51 hours. Total relation processing time: 0.26 hours. Matrix solve time: 0.16 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: gnfs,111,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2400000,2400000,27,27,53,53,2.6,2.6,60000 total time: 6.84 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM) i7-4930K CPU @ 3.40GHz stepping 04 Memory: 49373664k/51380224k available (5220k kernel code, 1086460k absent, 920100k reserved, 7121k data, 1264k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 6799.89 BogoMIPS (lpj=3399945) Total of 12 processors activated (81598.68 BogoMIPS). |
software ソフトウェア | GMP-ECM v6.4.4 / GGNFS / Msieve v1.39 |
execution environment 実行環境 | Core i7-4930K |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 280 | Cyp | December 7, 2014 18:08:06 UTC 2014 年 12 月 8 日 (月) 3 時 8 分 6 秒 (日本時間) | |
45 | 11e6 | 600 / 4413 | KTakahashi | May 5, 2015 12:24:18 UTC 2015 年 5 月 5 日 (火) 21 時 24 分 18 秒 (日本時間) |
name 名前 | Pierre Jammes |
---|---|
date 日付 | February 9, 2015 11:01:03 UTC 2015 年 2 月 9 日 (月) 20 時 1 分 3 秒 (日本時間) |
composite number 合成数 | 3343919221603412445199743716453943908797753988894883193036335735648628058621017640536014050372043181511470151363446301779863410367177919027<139> |
prime factors 素因数 | 116803451578751809837485651084072435278701<42> 28628599381319296295011685798732683947377783255603069138160901049886274645598722931362359518724127<98> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=144269945836, polynomial Dickson(12), sigma=2891131837 Step 1 took 72916ms Step 2 took 58936ms ********** Factor found in step 2: 116803451578751809837485651084072435278701 Found probable prime factor of 42 digits: 116803451578751809837485651084072435278701 Probable prime cofactor 28628599381319296295011685798732683947377783255603069138160901049886274645598722931362359518724127 has 98 digits |
software ソフトウェア | GMP-ECM 6.4.4 |
execution environment 実行環境 | Debian 8 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 280 / 2318 | Cyp | December 7, 2014 13:58:33 UTC 2014 年 12 月 7 日 (日) 22 時 58 分 33 秒 (日本時間) |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | January 9, 2016 03:47:11 UTC 2016 年 1 月 9 日 (土) 12 時 47 分 11 秒 (日本時間) |
composite number 合成数 | 240279657370363984899123811775934602930577983069007300019199741939260025534647362311277554277682747176080206072587402256405505578129239523266444767731<150> |
prime factors 素因数 | 987740151155670550794117960425717823794355546289131907<54> 243262012877813299873793223043418106046308032204402486538626128628040186171773331150731586036433<96> |
factorization results 素因数分解の結果 | GMP-ECM 6.4.4 [configured with GMP 6.0.0, --enable-asm-redc] [ECM] Input number is 240279657370363984899123811775934602930577983069007300019199741939260025534647362311277554277682747176080206072587402256405505578129239523266444767731 (150 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=7367821986 Step 1 took 25673ms Step 2 took 9112ms ********** Factor found in step 2: 987740151155670550794117960425717823794355546289131907 Found probable prime factor of 54 digits: 987740151155670550794117960425717823794355546289131907 Probable prime cofactor 243262012877813299873793223043418106046308032204402486538626128628040186171773331150731586036433 has 96 digits |
execution environment 実行環境 | Core i7-4930K |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 | Serge Batalov | December 10, 2014 19:47:44 UTC 2014 年 12 月 11 日 (木) 4 時 47 分 44 秒 (日本時間) | |
45 | 11e6 | 585 / 4409 | Cyp | February 10, 2015 04:10:50 UTC 2015 年 2 月 10 日 (火) 13 時 10 分 50 秒 (日本時間) |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | March 25, 2016 16:27:25 UTC 2016 年 3 月 26 日 (土) 1 時 27 分 25 秒 (日本時間) |
composite number 合成数 | 698519736213095646604540778497254623697042900203124822613556127838981123222761901429593070808213469047497138617856274832046234798365746387781175079<147> |
prime factors 素因数 | 35179526703825737400653350389355912124494422985021207399783819<62> 19855859406349896761162319659570693277140542804000313226726542846889315009095897491541<86> |
factorization results 素因数分解の結果 | Number: 12111_182 N=698519736213095646604540778497254623697042900203124822613556127838981123222761901429593070808213469047497138617856274832046234798365746387781175079 ( 147 digits) SNFS difficulty: 184 digits. Divisors found: r1=35179526703825737400653350389355912124494422985021207399783819 r2=19855859406349896761162319659570693277140542804000313226726542846889315009095897491541 Version: Total time: 55.93 hours. Scaled time: 293.85 units (timescale=5.254). Factorization parameters were as follows: n: 698519736213095646604540778497254623697042900203124822613556127838981123222761901429593070808213469047497138617856274832046234798365746387781175079 m: 1000000000000000000000000000000000000 deg: 5 c5: 10900 c0: -1 skew: 0.16 # Murphy_E = 7.386e-11 type: snfs lss: 1 rlim: 6600000 alim: 6600000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 6600000/6600000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [3300000, 5800001) Primes: rational ideals reading, algebraic ideals reading, Relations: 19784983 Max relations in full relation-set: Initial matrix: Pruned matrix : 1396514 x 1396762 Total sieving time: 51.92 hours. Total relation processing time: 1.33 hours. Matrix solve time: 2.23 hours. Time per square root: 0.45 hours. Prototype def-par.txt line would be: snfs,184,5,0,0,0,0,0,0,0,0,6600000,6600000,28,28,54,54,2.5,2.5,100000 total time: 55.93 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM) i7-4930K CPU @ 3.40GHz stepping 04 Memory: 49365468k/51380224k available (5397k kernel code, 1086460k absent, 928296k reserved, 7011k data, 1296k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 6799.82 BogoMIPS (lpj=3399914) Total of 12 processors activated (81597.93 BogoMIPS). |
software ソフトウェア | GGNFS / Msieve v1.39 |
execution environment 実行環境 | Core i7-4930K |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 280 | Cyp | December 10, 2014 04:37:15 UTC 2014 年 12 月 10 日 (水) 13 時 37 分 15 秒 (日本時間) | |
45 | 11e6 | 591 / 4413 | Cyp | May 16, 2015 23:20:22 UTC 2015 年 5 月 17 日 (日) 8 時 20 分 22 秒 (日本時間) |
name 名前 | Cyp |
---|---|
date 日付 | June 29, 2015 06:55:23 UTC 2015 年 6 月 29 日 (月) 15 時 55 分 23 秒 (日本時間) |
composite number 合成数 | 123562884163170837450768876905012203812950864172795615276059417654633828472142182663598865516334530937681171599144532663015796071661806898756373692391385626032389860769353460983519<180> |
prime factors 素因数 | 4439152298563708921043407256335507<34> 27834792738052646210187391972476626643020649111952503184701803708363755513973050087070672089650060489955027369443258902845662646940630621772275717<146> |
factorization results 素因数分解の結果 | Run 39 out of 591: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=3514542594 Step 1 took 59557ms Step 2 took 19050ms ********** Factor found in step 2: 4439152298563708921043407256335507 Found probable prime factor of 34 digits: 4439152298563708921043407256335507 Probable prime cofactor 27834792738052646210187391972476626643020649111952503184701803708363755513973050087070672089650060489955027369443258902845662646940630621772275717 has 146 digits |
software ソフトウェア | GMP-ECM 6.4.4 |
execution environment 実行環境 | Gentoo Linux, Intel(R) Core(TM) i7-3770K CPU |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 280 / 2184 | Cyp | December 9, 2014 21:09:06 UTC 2014 年 12 月 10 日 (水) 6 時 9 分 6 秒 (日本時間) | |
45 | 11e6 | 39 / 4413 | Cyp | June 29, 2015 06:55:22 UTC 2015 年 6 月 29 日 (月) 15 時 55 分 22 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | December 9, 2014 19:41:15 UTC 2014 年 12 月 10 日 (水) 4 時 41 分 15 秒 (日本時間) |
composite number 合成数 | 2071970932985747344453950288453116453665087183448057858289825202342649282637588784946952432816457034997359763933278504363898608619281<133> |
prime factors 素因数 | 15152208728162548237660035331752745028675586673<47> 136743821983833476477409080240192345893624685239204494148035810658101192016284304744097<87> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2057033100 Step 1 took 7668ms Step 2 took 6844ms ********** Factor found in step 2: 15152208728162548237660035331752745028675586673 Found probable prime factor of 47 digits: 15152208728162548237660035331752745028675586673 Probable prime cofactor |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2600 | 280 | Cyp | December 7, 2014 00:02:29 UTC 2014 年 12 月 7 日 (日) 9 時 2 分 29 秒 (日本時間) |
2320 | Serge Batalov | December 9, 2014 19:25:54 UTC 2014 年 12 月 10 日 (水) 4 時 25 分 54 秒 (日本時間) |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | December 25, 2016 01:25:29 UTC 2016 年 12 月 25 日 (日) 10 時 25 分 29 秒 (日本時間) |
composite number 合成数 | 178283061404491954896496380154585656711049358438567813642777919185867213172710554344744448460194916136878833157813186198510168745208714568764788326974886309767938620337851<171> |
prime factors 素因数 | 13919668409060595144471014946028584246266002433<47> 12807996294541318660994291854252541497364677942175310465960947089330004869877932394242739624582091060498267523794920105679547<125> |
factorization results 素因数分解の結果 | GMP-ECM 6.4.4 [configured with GMP 6.0.0, --enable-asm-redc] [ECM] Input number is 178283061404491954896496380154585656711049358438567813642777919185867213172710554344744448460194916136878833157813186198510168745208714568764788326974886309767938620337851 (171 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=2412613764 Step 1 took 29384ms Step 2 took 10039ms ********** Factor found in step 2: 13919668409060595144471014946028584246266002433 Found probable prime factor of 47 digits: 13919668409060595144471014946028584246266002433 Probable prime cofactor 12807996294541318660994291854252541497364677942175310465960947089330004869877932394242739624582091060498267523794920105679547 has 125 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 | Serge Batalov | December 10, 2014 19:47:44 UTC 2014 年 12 月 11 日 (木) 4 時 47 分 44 秒 (日本時間) | |
45 | 11e6 | 585 / 4409 | Cyp | July 6, 2015 17:13:42 UTC 2015 年 7 月 7 日 (火) 2 時 13 分 42 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 12, 2014 06:49:47 UTC 2014 年 12 月 12 日 (金) 15 時 49 分 47 秒 (日本時間) |
composite number 合成数 | 9409125636458091581949126888584668460461848861759187263167531564544293138089341121085509689248326713688431991<109> |
prime factors 素因数 | 3004000797667276876965902378212965488110516812982818559<55> 3132198115181807724937206283093947551771304017801261449<55> |
factorization results 素因数分解の結果 | N=9409125636458091581949126888584668460461848861759187263167531564544293138089341121085509689248326713688431991 ( 109 digits) Divisors found: r1=3004000797667276876965902378212965488110516812982818559 (pp55) r2=3132198115181807724937206283093947551771304017801261449 (pp55) Version: Msieve v. 1.50 (SVN unknown) Total time: 11.69 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 9409125636458091581949126888584668460461848861759187263167531564544293138089341121085509689248326713688431991 skew: 18950.08 c0: -45346341717400294472086480 c1: -1699688997332373175108 c2: 416932025264074470 c3: 489098264236 c4: -885556307 c5: 31980 Y0: -782951130170903736111 Y1: 160715511161 rlim: 3060000 alim: 3060000 lpbr: 26 lpba: 26 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 type: gnfs Factor base limits: 3060000/3060000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 52/52 Sieved algebraic special-q in [1530000, 2930001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 365004 x 365235 Total sieving time: 11.45 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.13 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: gnfs,108,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3060000,3060000,26,26,52,52,2.5,2.5,100000 total time: 11.69 hours. |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 418 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) |
300 | Ignacio Santos | December 8, 2014 18:10:41 UTC 2014 年 12 月 9 日 (火) 3 時 10 分 41 秒 (日本時間) | |||
40 | 3e6 | 110 / 2126 | Ignacio Santos | December 8, 2014 18:10:41 UTC 2014 年 12 月 9 日 (火) 3 時 10 分 41 秒 (日本時間) | |
45 | 11e6 | 32 / 4437 | Ignacio Santos | December 8, 2014 18:10:41 UTC 2014 年 12 月 9 日 (火) 3 時 10 分 41 秒 (日本時間) |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | May 4, 2017 10:23:46 UTC 2017 年 5 月 4 日 (木) 19 時 23 分 46 秒 (日本時間) |
composite number 合成数 | 231169071856791531962168617253268048303129620127308286011698813514982936021671001903278593112154625268010052071087933803052344972384341198356248773491663533212313991317412668454943948573<186> |
prime factors 素因数 | 23371976507328657612802513866580781229984617355342440419379880449690024962794697559449<86> 9890865318314211318409498353568840667287397948594368549407048912920783813141148263756726655934679077<100> |
factorization results 素因数分解の結果 | Number: 12111_192 N=231169071856791531962168617253268048303129620127308286011698813514982936021671001903278593112154625268010052071087933803052344972384341198356248773491663533212313991317412668454943948573 ( 186 digits) SNFS difficulty: 194 digits. Divisors found: r1=23371976507328657612802513866580781229984617355342440419379880449690024962794697559449 r2=9890865318314211318409498353568840667287397948594368549407048912920783813141148263756726655934679077 Version: Total time: 126.06 hours. Scaled time: 662.46 units (timescale=5.255). Factorization parameters were as follows: n: 231169071856791531962168617253268048303129620127308286011698813514982936021671001903278593112154625268010052071087933803052344972384341198356248773491663533212313991317412668454943948573 m: 100000000000000000000000000000000000000 deg: 5 c5: 10900 c0: -1 skew: 0.16 # Murphy_E = 2.872e-11 type: snfs lss: 1 rlim: 11000000 alim: 11000000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 Factor base limits: 11000000/11000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved rational special-q in [5500000, 10700001) Primes: rational ideals reading, algebraic ideals reading, Relations: 22568076 Max relations in full relation-set: Initial matrix: Pruned matrix : 2138805 x 2139053 Total sieving time: 115.65 hours. Total relation processing time: 3.24 hours. Matrix solve time: 6.97 hours. Time per square root: 0.19 hours. Prototype def-par.txt line would be: snfs,194,5,0,0,0,0,0,0,0,0,11000000,11000000,28,28,55,55,2.5,2.5,100000 total time: 126.06 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM) i7-4930K CPU @ 3.40GHz stepping 04 Memory: 49367836k/51380224k available (5467k kernel code, 1086464k absent, 925924k reserved, 6954k data, 1316k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 6800.09 BogoMIPS (lpj=3400049) Total of 12 processors activated (81601.17 BogoMIPS). |
software ソフトウェア | GGNFS / Msieve v1.39 |
execution environment 実行環境 | Core i7-4930K |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 280 | Cyp | December 9, 2014 21:40:25 UTC 2014 年 12 月 10 日 (水) 6 時 40 分 25 秒 (日本時間) | |
45 | 11e6 | 591 / 4413 | Cyp | June 16, 2015 22:10:29 UTC 2015 年 6 月 17 日 (水) 7 時 10 分 29 秒 (日本時間) |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | June 23, 2017 10:35:58 UTC 2017 年 6 月 23 日 (金) 19 時 35 分 58 秒 (日本時間) |
composite number 合成数 | 41932539161817784036113072130545765846470047683452262093142325616322729440524136735008626754352607182551539610880655261708478601690619956434015321842047972902192967928570650923421835227203<188> |
prime factors 素因数 | 41186766327272491849041177218995236257117457231481257929401<59> 866516255957717952289718551515516702168014280254819028167243881<63> 1174942872097570188552343744172017099572111272538356832171266214563<67> |
factorization results 素因数分解の結果 | Number: 12111_193 N=41932539161817784036113072130545765846470047683452262093142325616322729440524136735008626754352607182551539610880655261708478601690619956434015321842047972902192967928570650923421835227203 ( 188 digits) SNFS difficulty: 195 digits. Divisors found: r1=41186766327272491849041177218995236257117457231481257929401 r2=866516255957717952289718551515516702168014280254819028167243881 r3=1174942872097570188552343744172017099572111272538356832171266214563 Version: Total time: 177.42 hours. Scaled time: 928.59 units (timescale=5.234). Factorization parameters were as follows: n: 41932539161817784036113072130545765846470047683452262093142325616322729440524136735008626754352607182551539610880655261708478601690619956434015321842047972902192967928570650923421835227203 m: 200000000000000000000000000000000000000 deg: 5 c5: 13625 c0: -4 skew: 0.20 # Murphy_E = 2.063e-11 type: snfs lss: 1 rlim: 12000000 alim: 12000000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 Factor base limits: 12000000/12000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved rational special-q in [6000000, 13300001) Primes: rational ideals reading, algebraic ideals reading, Relations: 23688587 Max relations in full relation-set: Initial matrix: Pruned matrix : 2314922 x 2315169 Total sieving time: 163.17 hours. Total relation processing time: 4.73 hours. Matrix solve time: 8.59 hours. Time per square root: 0.93 hours. Prototype def-par.txt line would be: snfs,195,5,0,0,0,0,0,0,0,0,12000000,12000000,28,28,55,55,2.5,2.5,100000 total time: 177.42 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM) i7-4930K CPU @ 3.40GHz stepping 04 Memory: 49367836k/51380224k available (5467k kernel code, 1086464k absent, 925924k reserved, 6954k data, 1316k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 6800.09 BogoMIPS (lpj=3400049) Total of 12 processors activated (81601.17 BogoMIPS). |
software ソフトウェア | GGNFS / Msieve v1.39 |
execution environment 実行環境 | Core i7-4930K |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 | Serge Batalov | December 10, 2014 19:47:45 UTC 2014 年 12 月 11 日 (木) 4 時 47 分 45 秒 (日本時間) | |
45 | 11e6 | 585 / 4409 | Cyp | August 1, 2015 12:22:15 UTC 2015 年 8 月 1 日 (土) 21 時 22 分 15 秒 (日本時間) |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | September 18, 2017 10:36:55 UTC 2017 年 9 月 18 日 (月) 19 時 36 分 55 秒 (日本時間) |
composite number 合成数 | 59725372152507813591006203911326836367681108260666537294040514606704209277773407464246603639660581355528176938584265171602304369560842498808110930162642149560253<161> |
prime factors 素因数 | 271694716546963772149039121201276353845486121176167413427<57> 219825298451042894542106058771590407179083477056368858968555058632540812460909406963280326164419269285839<105> |
factorization results 素因数分解の結果 | Number: 12111_195 N=59725372152507813591006203911326836367681108260666537294040514606704209277773407464246603639660581355528176938584265171602304369560842498808110930162642149560253 ( 161 digits) SNFS difficulty: 197 digits. Divisors found: r1=271694716546963772149039121201276353845486121176167413427 r2=219825298451042894542106058771590407179083477056368858968555058632540812460909406963280326164419269285839 Version: Total time: 120.68 hours. Scaled time: 613.92 units (timescale=5.087). Factorization parameters were as follows: n: 59725372152507813591006203911326836367681108260666537294040514606704209277773407464246603639660581355528176938584265171602304369560842498808110930162642149560253 m: 1000000000000000000000000000000000000000 deg: 5 c5: 109 c0: -1 skew: 0.39 # Murphy_E = 2.966e-11 type: snfs lss: 1 rlim: 12000000 alim: 12000000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 Factor base limits: 12000000/12000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved rational special-q in [6000000, 10900001) Primes: rational ideals reading, algebraic ideals reading, Relations: 22552404 Max relations in full relation-set: Initial matrix: Pruned matrix : 2092491 x 2092739 Total sieving time: 110.79 hours. Total relation processing time: 3.03 hours. Matrix solve time: 6.53 hours. Time per square root: 0.33 hours. Prototype def-par.txt line would be: snfs,197,5,0,0,0,0,0,0,0,0,12000000,12000000,28,28,55,55,2.5,2.5,100000 total time: 120.68 hours. --------- CPU info (if available) ---------- |
software ソフトウェア | GGNFS / Msieve v1.39 |
execution environment 実行環境 | Core i7-4930K |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 580 | 280 | Cyp | December 10, 2014 16:37:37 UTC 2014 年 12 月 11 日 (木) 1 時 37 分 37 秒 (日本時間) |
300 | Serge Batalov | December 10, 2014 19:47:45 UTC 2014 年 12 月 11 日 (木) 4 時 47 分 45 秒 (日本時間) | |||
45 | 11e6 | 504 / 4347 | 479 | Cyp | May 13, 2015 18:44:34 UTC 2015 年 5 月 14 日 (木) 3 時 44 分 34 秒 (日本時間) |
25 | Cyp | July 31, 2015 23:27:29 UTC 2015 年 8 月 1 日 (土) 8 時 27 分 29 秒 (日本時間) |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | November 3, 2017 10:22:59 UTC 2017 年 11 月 3 日 (金) 19 時 22 分 59 秒 (日本時間) |
composite number 合成数 | 125840377467888264406445342761110378637483136696585234683790337275229462127652091457866618885991392963618188089362405007807533836296065320615325277088240251004433424271351157436549<180> |
prime factors 素因数 | 54876899590760183567992667308295838244590841221911<50> 2293139342898964557900164113550213988506334841104952119258699239841649430737137132540799066490118432056995590942835900846607665859<130> |
factorization results 素因数分解の結果 | GMP-ECM 6.4.4 [configured with GMP 6.0.0, --enable-asm-redc] [ECM] Input number is 125840377467888264406445342761110378637483136696585234683790337275229462127652091457866618885991392963618188089362405007807533836296065320615325277088240251004433424271351157436549 (180 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=2709599986 Step 1 took 34564ms Step 2 took 11031ms ********** Factor found in step 2: 54876899590760183567992667308295838244590841221911 Found probable prime factor of 50 digits: 54876899590760183567992667308295838244590841221911 Probable prime cofactor 2293139342898964557900164113550213988506334841104952119258699239841649430737137132540799066490118432056995590942835900846607665859 has 130 digits |
execution environment 実行環境 | Core i7-4930K |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 | Serge Batalov | December 10, 2014 19:47:45 UTC 2014 年 12 月 11 日 (木) 4 時 47 分 45 秒 (日本時間) | |
45 | 11e6 | 585 / 4409 | Cyp | August 1, 2015 11:30:44 UTC 2015 年 8 月 1 日 (土) 20 時 30 分 44 秒 (日本時間) |
name 名前 | Cyp |
---|---|
date 日付 | December 11, 2014 03:00:38 UTC 2014 年 12 月 11 日 (木) 12 時 0 分 38 秒 (日本時間) |
composite number 合成数 | 13311437498250804012099465615124357640346675716386352611856974591052108203357702689734930030094195136771156753<110> |
prime factors 素因数 | 2296908499651062519455279887116403112833653903014734291<55> 5795371256744892649075623493116839749223452190932796683<55> |
factorization results 素因数分解の結果 | 12/11/14 02:30:39 v1.34.3, 12/11/14 02:30:39 v1.34.3, **************************** 12/11/14 02:30:39 v1.34.3, Starting factorization of 13311437498250804012099465615124357640346675716386352611856974591052108203357702689734930030094195136771156753 12/11/14 02:30:39 v1.34.3, using pretesting plan: none 12/11/14 02:30:39 v1.34.3, no tune info: using qs/gnfs crossover of 95 digits 12/11/14 02:30:39 v1.34.3, **************************** 12/11/14 02:30:39 v1.34.3, rho: x^2 + 3, starting 1000 iterations on C110 12/11/14 02:30:39 v1.34.3, rho: x^2 + 2, starting 1000 iterations on C110 12/11/14 02:30:39 v1.34.3, rho: x^2 + 1, starting 1000 iterations on C110 12/11/14 02:30:39 v1.34.3, final ECM pretested depth: 0.00 12/11/14 02:30:39 v1.34.3, scheduler: switching to sieve method 12/11/14 02:30:39 v1.34.3, nfs: commencing nfs on c110: 13311437498250804012099465615124357640346675716386352611856974591052108203357702689734930030094195136771156753 12/11/14 02:30:39 v1.34.3, nfs: commencing poly selection with 8 threads 12/11/14 02:30:39 v1.34.3, nfs: setting deadline of 423 seconds 12/11/14 02:37:52 v1.34.3, nfs: completed 183 ranges of size 250 in 433.1156 seconds 12/11/14 02:37:52 v1.34.3, nfs: best poly = # norm 2.217944e-10 alpha -7.656019 e 1.066e-09 rroots 3 12/11/14 02:37:52 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/11/14 02:43:17 v1.34.3, nfs: commencing lattice sieving with 8 threads [8 lines snipped] 12/11/14 03:31:39 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/11/14 03:36:43 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/11/14 03:42:05 v1.34.3, nfs: commencing msieve filtering 12/11/14 03:42:50 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/11/14 03:48:09 v1.34.3, nfs: commencing msieve filtering 12/11/14 03:48:58 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/11/14 03:54:22 v1.34.3, nfs: commencing msieve filtering 12/11/14 03:55:27 v1.34.3, nfs: commencing msieve linear algebra 12/11/14 03:59:46 v1.34.3, nfs: commencing msieve sqrt 12/11/14 04:00:36 v1.34.3, prp55 = 2296908499651062519455279887116403112833653903014734291 12/11/14 04:00:36 v1.34.3, prp55 = 5795371256744892649075623493116839749223452190932796683 12/11/14 04:00:37 v1.34.3, NFS elapsed time = 5397.9406 seconds. 12/11/14 04:00:37 v1.34.3, 12/11/14 04:00:37 v1.34.3, 12/11/14 04:00:37 v1.34.3, Total factoring time = 5397.9628 seconds -- Thu Dec 11 03:42:05 2014 Thu Dec 11 03:42:05 2014 commencing relation filtering Thu Dec 11 03:42:05 2014 estimated available RAM is 15987.3 MB Thu Dec 11 03:42:05 2014 commencing duplicate removal, pass 1 Thu Dec 11 03:42:20 2014 found 413004 hash collisions in 4620149 relations Thu Dec 11 03:42:25 2014 added 32352 free relations Thu Dec 11 03:42:25 2014 commencing duplicate removal, pass 2 Thu Dec 11 03:42:28 2014 found 161334 duplicates and 4491167 unique relations Thu Dec 11 03:42:28 2014 memory use: 19.6 MB Thu Dec 11 03:42:28 2014 reading ideals above 100000 Thu Dec 11 03:42:28 2014 commencing singleton removal, initial pass Thu Dec 11 03:42:48 2014 memory use: 172.2 MB Thu Dec 11 03:42:48 2014 reading all ideals from disk Thu Dec 11 03:42:48 2014 memory use: 149.5 MB Thu Dec 11 03:42:48 2014 keeping 5388127 ideals with weight <= 200, target excess is 24642 Thu Dec 11 03:42:48 2014 commencing in-memory singleton removal Thu Dec 11 03:42:48 2014 begin with 4491167 relations and 5388127 unique ideals Thu Dec 11 03:42:50 2014 reduce to 864958 relations and 993713 ideals in 43 passes Thu Dec 11 03:42:50 2014 max relations containing the same ideal: 62 Thu Dec 11 03:48:09 2014 Thu Dec 11 03:48:09 2014 commencing relation filtering Thu Dec 11 03:48:09 2014 estimated available RAM is 15987.3 MB Thu Dec 11 03:48:09 2014 commencing duplicate removal, pass 1 Thu Dec 11 03:48:25 2014 found 482803 hash collisions in 5046466 relations Thu Dec 11 03:48:30 2014 added 91 free relations Thu Dec 11 03:48:30 2014 commencing duplicate removal, pass 2 Thu Dec 11 03:48:34 2014 found 187885 duplicates and 4858672 unique relations Thu Dec 11 03:48:34 2014 memory use: 20.6 MB Thu Dec 11 03:48:34 2014 reading ideals above 100000 Thu Dec 11 03:48:34 2014 commencing singleton removal, initial pass Thu Dec 11 03:48:55 2014 memory use: 172.2 MB Thu Dec 11 03:48:55 2014 reading all ideals from disk Thu Dec 11 03:48:55 2014 memory use: 161.8 MB Thu Dec 11 03:48:56 2014 keeping 5562682 ideals with weight <= 200, target excess is 26042 Thu Dec 11 03:48:56 2014 commencing in-memory singleton removal Thu Dec 11 03:48:56 2014 begin with 4858672 relations and 5562682 unique ideals Thu Dec 11 03:48:57 2014 reduce to 1443359 relations and 1481881 ideals in 24 passes Thu Dec 11 03:48:57 2014 max relations containing the same ideal: 85 Thu Dec 11 03:54:22 2014 Thu Dec 11 03:54:22 2014 commencing relation filtering Thu Dec 11 03:54:22 2014 estimated available RAM is 15987.3 MB Thu Dec 11 03:54:22 2014 commencing duplicate removal, pass 1 Thu Dec 11 03:54:39 2014 found 550475 hash collisions in 5427712 relations Thu Dec 11 03:54:44 2014 added 74 free relations Thu Dec 11 03:54:44 2014 commencing duplicate removal, pass 2 Thu Dec 11 03:54:48 2014 found 215086 duplicates and 5212700 unique relations Thu Dec 11 03:54:48 2014 memory use: 20.6 MB Thu Dec 11 03:54:48 2014 reading ideals above 100000 Thu Dec 11 03:54:48 2014 commencing singleton removal, initial pass Thu Dec 11 03:55:10 2014 memory use: 172.2 MB Thu Dec 11 03:55:11 2014 reading all ideals from disk Thu Dec 11 03:55:11 2014 memory use: 173.7 MB Thu Dec 11 03:55:11 2014 keeping 5716031 ideals with weight <= 200, target excess is 27602 Thu Dec 11 03:55:11 2014 commencing in-memory singleton removal Thu Dec 11 03:55:12 2014 begin with 5212700 relations and 5716031 unique ideals Thu Dec 11 03:55:13 2014 reduce to 1937706 relations and 1857943 ideals in 18 passes Thu Dec 11 03:55:13 2014 max relations containing the same ideal: 100 Thu Dec 11 03:55:14 2014 removing 246931 relations and 223059 ideals in 23872 cliques Thu Dec 11 03:55:14 2014 commencing in-memory singleton removal Thu Dec 11 03:55:14 2014 begin with 1690775 relations and 1857943 unique ideals Thu Dec 11 03:55:14 2014 reduce to 1663051 relations and 1606682 ideals in 10 passes Thu Dec 11 03:55:14 2014 max relations containing the same ideal: 92 Thu Dec 11 03:55:14 2014 removing 182481 relations and 158609 ideals in 23872 cliques Thu Dec 11 03:55:14 2014 commencing in-memory singleton removal Thu Dec 11 03:55:15 2014 begin with 1480570 relations and 1606682 unique ideals Thu Dec 11 03:55:15 2014 reduce to 1462776 relations and 1430017 ideals in 9 passes Thu Dec 11 03:55:15 2014 max relations containing the same ideal: 84 Thu Dec 11 03:55:15 2014 relations with 0 large ideals: 89 Thu Dec 11 03:55:15 2014 relations with 1 large ideals: 201 Thu Dec 11 03:55:15 2014 relations with 2 large ideals: 3106 Thu Dec 11 03:55:15 2014 relations with 3 large ideals: 26537 Thu Dec 11 03:55:15 2014 relations with 4 large ideals: 119610 Thu Dec 11 03:55:15 2014 relations with 5 large ideals: 300516 Thu Dec 11 03:55:15 2014 relations with 6 large ideals: 435619 Thu Dec 11 03:55:15 2014 relations with 7+ large ideals: 577098 Thu Dec 11 03:55:15 2014 commencing 2-way merge Thu Dec 11 03:55:16 2014 reduce to 822081 relation sets and 789323 unique ideals Thu Dec 11 03:55:16 2014 ignored 1 oversize relation sets Thu Dec 11 03:55:16 2014 commencing full merge Thu Dec 11 03:55:23 2014 memory use: 86.0 MB Thu Dec 11 03:55:23 2014 found 401364 cycles, need 397523 Thu Dec 11 03:55:23 2014 weight of 397523 cycles is about 28010573 (70.46/cycle) Thu Dec 11 03:55:23 2014 distribution of cycle lengths: Thu Dec 11 03:55:23 2014 1 relations: 46625 Thu Dec 11 03:55:23 2014 2 relations: 45221 Thu Dec 11 03:55:23 2014 3 relations: 45040 Thu Dec 11 03:55:23 2014 4 relations: 39647 Thu Dec 11 03:55:23 2014 5 relations: 35800 Thu Dec 11 03:55:23 2014 6 relations: 30022 Thu Dec 11 03:55:23 2014 7 relations: 26684 Thu Dec 11 03:55:23 2014 8 relations: 22749 Thu Dec 11 03:55:23 2014 9 relations: 19354 Thu Dec 11 03:55:23 2014 10+ relations: 86381 Thu Dec 11 03:55:23 2014 heaviest cycle: 23 relations Thu Dec 11 03:55:23 2014 commencing cycle optimization Thu Dec 11 03:55:23 2014 start with 2483180 relations Thu Dec 11 03:55:26 2014 pruned 48647 relations Thu Dec 11 03:55:26 2014 memory use: 83.9 MB Thu Dec 11 03:55:26 2014 distribution of cycle lengths: Thu Dec 11 03:55:26 2014 1 relations: 46625 Thu Dec 11 03:55:26 2014 2 relations: 46157 Thu Dec 11 03:55:26 2014 3 relations: 46410 Thu Dec 11 03:55:26 2014 4 relations: 40300 Thu Dec 11 03:55:26 2014 5 relations: 36362 Thu Dec 11 03:55:26 2014 6 relations: 30388 Thu Dec 11 03:55:26 2014 7 relations: 26742 Thu Dec 11 03:55:26 2014 8 relations: 22627 Thu Dec 11 03:55:26 2014 9 relations: 19271 Thu Dec 11 03:55:26 2014 10+ relations: 82641 Thu Dec 11 03:55:26 2014 heaviest cycle: 23 relations Thu Dec 11 03:55:27 2014 RelProcTime: 65 Thu Dec 11 03:55:27 2014 Thu Dec 11 03:55:27 2014 commencing linear algebra Thu Dec 11 03:55:27 2014 read 397523 cycles Thu Dec 11 03:55:27 2014 cycles contain 1418776 unique relations Thu Dec 11 03:55:34 2014 read 1418776 relations Thu Dec 11 03:55:35 2014 using 20 quadratic characters above 67108290 Thu Dec 11 03:55:39 2014 building initial matrix Thu Dec 11 03:55:46 2014 memory use: 180.0 MB Thu Dec 11 03:55:47 2014 read 397523 cycles Thu Dec 11 03:55:47 2014 matrix is 397349 x 397523 (119.9 MB) with weight 38499461 (96.85/col) Thu Dec 11 03:55:47 2014 sparse part has weight 27047870 (68.04/col) Thu Dec 11 03:55:48 2014 filtering completed in 2 passes Thu Dec 11 03:55:48 2014 matrix is 396581 x 396757 (119.8 MB) with weight 38465308 (96.95/col) Thu Dec 11 03:55:48 2014 sparse part has weight 27037590 (68.15/col) Thu Dec 11 03:55:49 2014 matrix starts at (0, 0) Thu Dec 11 03:55:49 2014 matrix is 396581 x 396757 (119.8 MB) with weight 38465308 (96.95/col) Thu Dec 11 03:55:49 2014 sparse part has weight 27037590 (68.15/col) Thu Dec 11 03:55:49 2014 saving the first 48 matrix rows for later Thu Dec 11 03:55:49 2014 matrix includes 64 packed rows Thu Dec 11 03:55:49 2014 matrix is 396533 x 396757 (115.6 MB) with weight 30489330 (76.85/col) Thu Dec 11 03:55:49 2014 sparse part has weight 26348402 (66.41/col) Thu Dec 11 03:55:49 2014 using block size 65536 for processor cache size 8192 kB Thu Dec 11 03:55:50 2014 commencing Lanczos iteration (8 threads) Thu Dec 11 03:55:50 2014 memory use: 109.4 MB Thu Dec 11 03:55:57 2014 linear algebra at 3.1%, ETA 0h 3m Thu Dec 11 03:59:46 2014 lanczos halted after 6272 iterations (dim = 396531) Thu Dec 11 03:59:46 2014 recovered 29 nontrivial dependencies Thu Dec 11 03:59:46 2014 BLanczosTime: 259 Thu Dec 11 03:59:46 2014 Thu Dec 11 03:59:46 2014 commencing square root phase Thu Dec 11 03:59:46 2014 reading relations for dependency 1 Thu Dec 11 03:59:47 2014 read 198015 cycles Thu Dec 11 03:59:47 2014 cycles contain 708922 unique relations Thu Dec 11 03:59:52 2014 read 708922 relations Thu Dec 11 03:59:53 2014 multiplying 708922 relations Thu Dec 11 04:00:11 2014 multiply complete, coefficients have about 28.20 million bits Thu Dec 11 04:00:11 2014 initial square root is modulo 125248493 Thu Dec 11 04:00:36 2014 sqrtTime: 50 -- n: 13311437498250804012099465615124357640346675716386352611856974591052108203357702689734930030094195136771156753 skew: 172518.26 c0: 61460473636523221040222910720 c1: -1083120026437317843209586 c2: -7445688410118699629 c3: 49001828175628 c4: 218242836 c5: 720 Y0: -1792165307127762939503 Y1: 29012693141 rlim: 3200000 alim: 3200000 lpbr: 26 lpba: 26 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 |
software ソフトウェア | yafu v1.34.3 |
execution environment 実行環境 | Gentoo Linux, Intel(R) Core(TM) i7-3770K CPU |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 418 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) |
300 | Ignacio Santos | December 8, 2014 18:35:15 UTC 2014 年 12 月 9 日 (火) 3 時 35 分 15 秒 (日本時間) | |||
40 | 3e6 | 110 / 2126 | Ignacio Santos | December 8, 2014 18:35:15 UTC 2014 年 12 月 9 日 (火) 3 時 35 分 15 秒 (日本時間) | |
45 | 11e6 | 32 / 4437 | Ignacio Santos | December 8, 2014 18:35:15 UTC 2014 年 12 月 9 日 (火) 3 時 35 分 15 秒 (日本時間) |
name 名前 | Cyp |
---|---|
date 日付 | May 24, 2015 21:47:50 UTC 2015 年 5 月 25 日 (月) 6 時 47 分 50 秒 (日本時間) |
composite number 合成数 | 8596914627638298532819002818535702243817621754310001613326874346890049616839825571204776552068786762742056533199495734443602836559603560240519544557089208829095661669<166> |
prime factors 素因数 | 3135980493115358019901014082293811757<37> |
composite cofactor 合成数の残り | 2741380135020520470006335892789248418726249408865400281352797561468701365782436391256723287199624636925040050859831484488196987417<130> |
factorization results 素因数分解の結果 | Run 154 out of 585: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=528885284 Step 1 took 49869ms Step 2 took 17384ms ********** Factor found in step 2: 3135980493115358019901014082293811757 Found probable prime factor of 37 digits: 3135980493115358019901014082293811757 Composite cofactor 2741380135020520470006335892789248418726249408865400281352797561468701365782436391256723287199624636925040050859831484488196987417 has 130 digits |
software ソフトウェア | GMP-ECM 6.4.4 |
execution environment 実行環境 | Gentoo Linux, Intel(R) Core(TM) i7-3770K CPU |
name 名前 | Erik Branger |
---|---|
date 日付 | May 28, 2015 09:44:38 UTC 2015 年 5 月 28 日 (木) 18 時 44 分 38 秒 (日本時間) |
composite number 合成数 | 2741380135020520470006335892789248418726249408865400281352797561468701365782436391256723287199624636925040050859831484488196987417<130> |
prime factors 素因数 | 123458660333252977489632294125193838637603179403<48> 22204842719179768508346801738579780806195444474816546317722921352651980844852376939<83> |
factorization results 素因数分解の結果 | Number: 12111_198 N = 2741380135020520470006335892789248418726249408865400281352797561468701365782436391256723287199624636925040050859831484488196987417 (130 digits) Divisors found: r1=123458660333252977489632294125193838637603179403 (pp48) r2=22204842719179768508346801738579780806195444474816546317722921352651980844852376939 (pp83) Version: Msieve v. 1.50 (SVN 708) Total time: 54.86 hours. Factorization parameters were as follows: # Murphy_E = 8.639e-11, selected by Erik Branger # expecting poly E from 8.99e-011 to > 1.03e-010 n: 2741380135020520470006335892789248418726249408865400281352797561468701365782436391256723287199624636925040050859831484488196987417 Y0: -11431969057641255119504599 Y1: 37538026686467 c0: -88363067490599284721079327062592 c1: 326056179198025874723512872 c2: 4298420165304164573221 c3: -2687212801625482 c4: -30007540824 c5: 14040 skew: 403321.44 type: gnfs # selected mechanically rlim: 9500000 alim: 9500000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 9500000/9500000 Large primes per side: 3 Large prime bits: 28/28 Sieved algebraic special-q in [0, 0) Total raw relations: 17630667 Relations: 2170850 relations Pruned matrix : 1297156 x 1297385 Polynomial selection time: 0.00 hours. Total sieving time: 53.23 hours. Total relation processing time: 0.09 hours. Matrix solve time: 1.28 hours. time per square root: 0.27 hours. Prototype def-par.txt line would be: gnfs,129,5,65,2000,1e-05,0.28,250,20,50000,3600,9500000,9500000,28,28,53,53,2.5,2.5,100000 total time: 54.86 hours. Intel64 Family 6 Model 60 Stepping 3, GenuineIntel Windows-7-6.1.7601-SP1 processors: 8, speed: 2.69GHz |
software ソフトウェア | GGNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 | Serge Batalov | December 10, 2014 19:47:46 UTC 2014 年 12 月 11 日 (木) 4 時 47 分 46 秒 (日本時間) | |
45 | 11e6 | 585 / 4409 | Cyp | May 24, 2015 21:47:50 UTC 2015 年 5 月 25 日 (月) 6 時 47 分 50 秒 (日本時間) |
name 名前 | Erik Branger |
---|---|
date 日付 | March 3, 2015 16:13:11 UTC 2015 年 3 月 4 日 (水) 1 時 13 分 11 秒 (日本時間) |
composite number 合成数 | 143123836015116838113877569226647957717252200357717490268105242947837936747499157439703266162102595855246253927531591423840734133111<132> |
prime factors 素因数 | 725966237573962086160140727090423346880197106932765323<54> 197149438372518328535279871288093669558998540694256575754718026369206537253957<78> |
factorization results 素因数分解の結果 | Tue Mar 03 00:22:56 2015 -> factmsieve.py (v0.76) Tue Mar 03 00:22:56 2015 -> This is client 1 of 1 Tue Mar 03 00:22:56 2015 -> Running on 4 Cores with 1 hyper-thread per Core Tue Mar 03 00:22:56 2015 -> Working with NAME = 12111_199 Tue Mar 03 00:22:56 2015 -> Selected lattice siever: gnfs-lasieve4I13e Tue Mar 03 00:22:56 2015 -> Creating param file to detect parameter changes... Tue Mar 03 00:22:56 2015 -> Running setup ... Tue Mar 03 00:22:56 2015 -> Estimated minimum relations needed: 1.892e+07 Tue Mar 03 00:22:56 2015 -> cleaning up before a restart Tue Mar 03 00:22:56 2015 -> Running lattice siever ... Tue Mar 03 00:22:56 2015 -> entering sieving loop Tue Mar 03 00:22:56 2015 -> making sieve job for q = 5250000 in 5250000 .. 5275000 as file 12111_199.job.T0 Tue Mar 03 00:22:56 2015 -> making sieve job for q = 5275000 in 5275000 .. 5300000 as file 12111_199.job.T1 Tue Mar 03 00:22:56 2015 -> making sieve job for q = 5300000 in 5300000 .. 5325000 as file 12111_199.job.T2 Tue Mar 03 00:22:56 2015 -> making sieve job for q = 5325000 in 5325000 .. 5350000 as file 12111_199.job.T3 Tue Mar 03 00:22:56 2015 -> Lattice sieving algebraic q from 5250000 to 5350000. Tue Mar 03 00:22:56 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 12111_199.job.T0 Tue Mar 03 00:22:56 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 12111_199.job.T1 Tue Mar 03 00:22:56 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 12111_199.job.T2 Tue Mar 03 00:22:56 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 12111_199.job.T3 Tue Mar 03 00:37:03 2015 Found 382017 relations, 2.0% of the estimated minimum (19000000). Tue Mar 03 00:37:03 2015 LatSieveTime: 846.976 Tue Mar 03 00:37:03 2015 -> making sieve job for q = 5350000 in 5350000 .. 5375000 as file 12111_199.job.T0 Tue Mar 03 00:37:03 2015 -> making sieve job for q = 5375000 in 5375000 .. 5400000 as file 12111_199.job.T1 Tue Mar 03 00:37:03 2015 -> making sieve job for q = 5400000 in 5400000 .. 5425000 as file 12111_199.job.T2 Tue Mar 03 00:37:03 2015 -> making sieve job for q = 5425000 in 5425000 .. 5450000 as file 12111_199.job.T3 Tue Mar 03 00:37:03 2015 -> Lattice sieving algebraic q from 5350000 to 5450000. Tue Mar 03 00:37:03 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 12111_199.job.T0 Tue Mar 03 00:37:03 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 12111_199.job.T1 Tue Mar 03 00:37:03 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 12111_199.job.T2 Tue Mar 03 00:37:03 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 12111_199.job.T3 Tue Mar 03 00:51:04 2015 Found 761253 relations, 4.0% of the estimated minimum (19000000). Tue Mar 03 00:51:04 2015 LatSieveTime: 841.132 Tue Mar 03 00:51:04 2015 -> making sieve job for q = 5450000 in 5450000 .. 5475000 as file 12111_199.job.T0 Tue Mar 03 00:51:04 2015 -> making sieve job for q = 5475000 in 5475000 .. 5500000 as file 12111_199.job.T1 Tue Mar 03 00:51:04 2015 -> making sieve job for q = 5500000 in 5500000 .. 5525000 as file 12111_199.job.T2 Tue Mar 03 00:51:04 2015 -> making sieve job for q = 5525000 in 5525000 .. 5550000 as file 12111_199.job.T3 Tue Mar 03 00:51:04 2015 -> Lattice sieving algebraic q from 5450000 to 5550000. Tue Mar 03 00:51:04 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 12111_199.job.T0 Tue Mar 03 00:51:04 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 12111_199.job.T1 Tue Mar 03 00:51:04 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 12111_199.job.T2 Tue Mar 03 00:51:04 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 12111_199.job.T3 Tue Mar 03 01:05:43 2015 Found 1139294 relations, 6.0% of the estimated minimum (19000000). Tue Mar 03 01:05:43 2015 LatSieveTime: 878.245 Tue Mar 03 01:05:43 2015 -> making sieve job for q = 5550000 in 5550000 .. 5575000 as file 12111_199.job.T0 Tue Mar 03 01:05:43 2015 -> making sieve job for q = 5575000 in 5575000 .. 5600000 as file 12111_199.job.T1 Tue Mar 03 01:05:43 2015 -> making sieve job for q = 5600000 in 5600000 .. 5625000 as file 12111_199.job.T2 Tue Mar 03 01:05:43 2015 -> making sieve job for q = 5625000 in 5625000 .. 5650000 as file 12111_199.job.T3 Tue Mar 03 01:05:43 2015 -> Lattice sieving algebraic q from 5550000 to 5650000. Tue Mar 03 01:05:43 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 12111_199.job.T0 Tue Mar 03 01:05:43 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 12111_199.job.T1 Tue Mar 03 01:05:43 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 12111_199.job.T2 Tue Mar 03 01:05:43 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 12111_199.job.T3 Tue Mar 03 01:20:08 2015 Found 1521047 relations, 8.0% of the estimated minimum (19000000). Tue Mar 03 01:20:08 2015 LatSieveTime: 865.442 Tue Mar 03 01:20:08 2015 -> making sieve job for q = 5650000 in 5650000 .. 5675000 as file 12111_199.job.T0 Tue Mar 03 01:20:08 2015 -> making sieve job for q = 5675000 in 5675000 .. 5700000 as file 12111_199.job.T1 Tue Mar 03 01:20:08 2015 -> making sieve job for q = 5700000 in 5700000 .. 5725000 as file 12111_199.job.T2 Tue Mar 03 01:20:08 2015 -> making sieve job for q = 5725000 in 5725000 .. 5750000 as file 12111_199.job.T3 Tue Mar 03 01:20:08 2015 -> Lattice sieving algebraic q from 5650000 to 5750000. Tue Mar 03 01:20:08 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 12111_199.job.T0 Tue Mar 03 01:20:08 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 12111_199.job.T1 Tue Mar 03 01:20:08 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 12111_199.job.T2 Tue Mar 03 01:20:08 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 12111_199.job.T3 Tue Mar 03 01:34:43 2015 Found 1904699 relations, 10.0% of the estimated minimum (19000000). Tue Mar 03 01:34:43 2015 LatSieveTime: 874.539 Tue Mar 03 01:34:43 2015 -> making sieve job for q = 5750000 in 5750000 .. 5775000 as file 12111_199.job.T0 Tue Mar 03 01:34:43 2015 -> making sieve job for q = 5775000 in 5775000 .. 5800000 as file 12111_199.job.T1 Tue Mar 03 01:34:43 2015 -> making sieve job for q = 5800000 in 5800000 .. 5825000 as file 12111_199.job.T2 Tue Mar 03 01:34:43 2015 -> making sieve job for q = 5825000 in 5825000 .. 5850000 as file 12111_199.job.T3 Tue Mar 03 01:34:43 2015 -> Lattice sieving algebraic q from 5750000 to 5850000. Tue Mar 03 01:34:43 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 12111_199.job.T0 Tue Mar 03 01:34:43 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 12111_199.job.T1 Tue Mar 03 01:34:43 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 12111_199.job.T2 Tue Mar 03 01:34:43 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 12111_199.job.T3 Tue Mar 03 01:49:15 2015 Found 2289943 relations, 12.1% of the estimated minimum (19000000). Tue Mar 03 01:49:15 2015 LatSieveTime: 872.735 Tue Mar 03 01:49:15 2015 -> making sieve job for q = 5850000 in 5850000 .. 5875000 as file 12111_199.job.T0 Tue Mar 03 01:49:15 2015 -> making sieve job for q = 5875000 in 5875000 .. 5900000 as file 12111_199.job.T1 Tue Mar 03 01:49:15 2015 -> making sieve job for q = 5900000 in 5900000 .. 5925000 as file 12111_199.job.T2 Tue Mar 03 01:49:15 2015 -> making sieve job for q = 5925000 in 5925000 .. 5950000 as file 12111_199.job.T3 Tue Mar 03 01:49:15 2015 -> Lattice sieving algebraic q from 5850000 to 5950000. Tue Mar 03 01:49:15 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 12111_199.job.T0 Tue Mar 03 01:49:15 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 12111_199.job.T1 Tue Mar 03 01:49:15 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 12111_199.job.T2 Tue Mar 03 01:49:15 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 12111_199.job.T3 Tue Mar 03 02:04:05 2015 Found 2678469 relations, 14.1% of the estimated minimum (19000000). Tue Mar 03 02:04:05 2015 LatSieveTime: 889.868 Tue Mar 03 02:04:05 2015 -> making sieve job for q = 5950000 in 5950000 .. 5975000 as file 12111_199.job.T0 Tue Mar 03 02:04:05 2015 -> making sieve job for q = 5975000 in 5975000 .. 6000000 as file 12111_199.job.T1 Tue Mar 03 02:04:05 2015 -> making sieve job for q = 6000000 in 6000000 .. 6025000 as file 12111_199.job.T2 Tue Mar 03 02:04:05 2015 -> making sieve job for q = 6025000 in 6025000 .. 6050000 as file 12111_199.job.T3 Tue Mar 03 02:04:05 2015 -> Lattice sieving algebraic q from 5950000 to 6050000. Tue Mar 03 02:04:05 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 12111_199.job.T0 Tue Mar 03 02:04:05 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 12111_199.job.T1 Tue Mar 03 02:04:05 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 12111_199.job.T2 Tue Mar 03 02:04:05 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 12111_199.job.T3 Tue Mar 03 02:18:01 2015 Found 3048897 relations, 16.0% of the estimated minimum (19000000). Tue Mar 03 02:18:01 2015 LatSieveTime: 835.805 Tue Mar 03 02:18:01 2015 -> making sieve job for q = 6050000 in 6050000 .. 6075000 as file 12111_199.job.T0 Tue Mar 03 02:18:01 2015 -> making sieve job for q = 6075000 in 6075000 .. 6100000 as file 12111_199.job.T1 Tue Mar 03 02:18:01 2015 -> making sieve job for q = 6100000 in 6100000 .. 6125000 as file 12111_199.job.T2 Tue Mar 03 02:18:01 2015 -> making sieve job for q = 6125000 in 6125000 .. 6150000 as file 12111_199.job.T3 Tue Mar 03 02:18:01 2015 -> Lattice sieving algebraic q from 6050000 to 6150000. Tue Mar 03 02:18:01 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 12111_199.job.T0 Tue Mar 03 02:18:01 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 12111_199.job.T1 Tue Mar 03 02:18:01 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 12111_199.job.T2 Tue Mar 03 02:18:01 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 12111_199.job.T3 Tue Mar 03 02:32:42 2015 Found 3432402 relations, 18.1% of the estimated minimum (19000000). Tue Mar 03 02:32:42 2015 LatSieveTime: 881.114 Tue Mar 03 02:32:42 2015 -> making sieve job for q = 6150000 in 6150000 .. 6175000 as file 12111_199.job.T0 Tue Mar 03 02:32:42 2015 -> making sieve job for q = 6175000 in 6175000 .. 6200000 as file 12111_199.job.T1 Tue Mar 03 02:32:42 2015 -> making sieve job for q = 6200000 in 6200000 .. 6225000 as file 12111_199.job.T2 Tue Mar 03 02:32:42 2015 -> making sieve job for q = 6225000 in 6225000 .. 6250000 as file 12111_199.job.T3 Tue Mar 03 02:32:42 2015 -> Lattice sieving algebraic q from 6150000 to 6250000. Tue Mar 03 02:32:42 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 12111_199.job.T0 Tue Mar 03 02:32:42 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 12111_199.job.T1 Tue Mar 03 02:32:42 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 12111_199.job.T2 Tue Mar 03 02:32:42 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 12111_199.job.T3 Tue Mar 03 02:47:15 2015 Found 3816039 relations, 20.1% of the estimated minimum (19000000). Tue Mar 03 02:47:15 2015 LatSieveTime: 873.256 Tue Mar 03 02:47:15 2015 -> making sieve job for q = 6250000 in 6250000 .. 6275000 as file 12111_199.job.T0 Tue Mar 03 02:47:15 2015 -> making sieve job for q = 6275000 in 6275000 .. 6300000 as file 12111_199.job.T1 Tue Mar 03 02:47:15 2015 -> making sieve job for q = 6300000 in 6300000 .. 6325000 as file 12111_199.job.T2 Tue Mar 03 02:47:15 2015 -> making sieve job for q = 6325000 in 6325000 .. 6350000 as file 12111_199.job.T3 Tue Mar 03 02:47:15 2015 -> Lattice sieving algebraic q from 6250000 to 6350000. Tue Mar 03 02:47:15 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 12111_199.job.T0 Tue Mar 03 02:47:15 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 12111_199.job.T1 Tue Mar 03 02:47:15 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 12111_199.job.T2 Tue Mar 03 02:47:15 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 12111_199.job.T3 Tue Mar 03 03:02:08 2015 Found 4199603 relations, 22.1% of the estimated minimum (19000000). Tue Mar 03 03:02:08 2015 LatSieveTime: 892.438 Tue Mar 03 03:02:08 2015 -> making sieve job for q = 6350000 in 6350000 .. 6375000 as file 12111_199.job.T0 Tue Mar 03 03:02:08 2015 -> making sieve job for q = 6375000 in 6375000 .. 6400000 as file 12111_199.job.T1 Tue Mar 03 03:02:08 2015 -> making sieve job for q = 6400000 in 6400000 .. 6425000 as file 12111_199.job.T2 Tue Mar 03 03:02:08 2015 -> making sieve job for q = 6425000 in 6425000 .. 6450000 as file 12111_199.job.T3 Tue Mar 03 03:02:08 2015 -> Lattice sieving algebraic q from 6350000 to 6450000. Tue Mar 03 03:02:08 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 12111_199.job.T0 Tue Mar 03 03:02:08 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 12111_199.job.T1 Tue Mar 03 03:02:08 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 12111_199.job.T2 Tue Mar 03 03:02:08 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 12111_199.job.T3 Tue Mar 03 03:17:04 2015 Found 4580431 relations, 24.1% of the estimated minimum (19000000). Tue Mar 03 03:17:04 2015 LatSieveTime: 896.478 Tue Mar 03 03:17:04 2015 -> making sieve job for q = 6450000 in 6450000 .. 6475000 as file 12111_199.job.T0 Tue Mar 03 03:17:04 2015 -> making sieve job for q = 6475000 in 6475000 .. 6500000 as file 12111_199.job.T1 Tue Mar 03 03:17:04 2015 -> making sieve job for q = 6500000 in 6500000 .. 6525000 as file 12111_199.job.T2 Tue Mar 03 03:17:04 2015 -> making sieve job for q = 6525000 in 6525000 .. 6550000 as file 12111_199.job.T3 Tue Mar 03 03:17:04 2015 -> Lattice sieving algebraic q from 6450000 to 6550000. Tue Mar 03 03:17:04 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 12111_199.job.T0 Tue Mar 03 03:17:04 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 12111_199.job.T1 Tue Mar 03 03:17:04 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 12111_199.job.T2 Tue Mar 03 03:17:04 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 12111_199.job.T3 Tue Mar 03 03:31:24 2015 Found 4949966 relations, 26.1% of the estimated minimum (19000000). Tue Mar 03 03:31:24 2015 LatSieveTime: 859.473 Tue Mar 03 03:31:24 2015 -> making sieve job for q = 6550000 in 6550000 .. 6575000 as file 12111_199.job.T0 Tue Mar 03 03:31:24 2015 -> making sieve job for q = 6575000 in 6575000 .. 6600000 as file 12111_199.job.T1 Tue Mar 03 03:31:24 2015 -> making sieve job for q = 6600000 in 6600000 .. 6625000 as file 12111_199.job.T2 Tue Mar 03 03:31:24 2015 -> making sieve job for q = 6625000 in 6625000 .. 6650000 as file 12111_199.job.T3 Tue Mar 03 03:31:24 2015 -> Lattice sieving algebraic q from 6550000 to 6650000. Tue Mar 03 03:31:24 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 12111_199.job.T0 Tue Mar 03 03:31:24 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 12111_199.job.T1 Tue Mar 03 03:31:24 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 12111_199.job.T2 Tue Mar 03 03:31:24 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 12111_199.job.T3 Tue Mar 03 03:46:09 2015 Found 5332422 relations, 28.1% of the estimated minimum (19000000). Tue Mar 03 03:46:09 2015 LatSieveTime: 884.884 Tue Mar 03 03:46:09 2015 -> making sieve job for q = 6650000 in 6650000 .. 6675000 as file 12111_199.job.T0 Tue Mar 03 03:46:09 2015 -> making sieve job for q = 6675000 in 6675000 .. 6700000 as file 12111_199.job.T1 Tue Mar 03 03:46:09 2015 -> making sieve job for q = 6700000 in 6700000 .. 6725000 as file 12111_199.job.T2 Tue Mar 03 03:46:09 2015 -> making sieve job for q = 6725000 in 6725000 .. 6750000 as file 12111_199.job.T3 Tue Mar 03 03:46:09 2015 -> Lattice sieving algebraic q from 6650000 to 6750000. Tue Mar 03 03:46:09 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 12111_199.job.T0 Tue Mar 03 03:46:09 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 12111_199.job.T1 Tue Mar 03 03:46:09 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 12111_199.job.T2 Tue Mar 03 03:46:09 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 12111_199.job.T3 Tue Mar 03 04:01:23 2015 Found 5717729 relations, 30.1% of the estimated minimum (19000000). Tue Mar 03 04:01:23 2015 LatSieveTime: 913.938 Tue Mar 03 04:01:23 2015 -> making sieve job for q = 6750000 in 6750000 .. 6775000 as file 12111_199.job.T0 Tue Mar 03 04:01:23 2015 -> making sieve job for q = 6775000 in 6775000 .. 6800000 as file 12111_199.job.T1 Tue Mar 03 04:01:23 2015 -> making sieve job for q = 6800000 in 6800000 .. 6825000 as file 12111_199.job.T2 Tue Mar 03 04:01:23 2015 -> making sieve job for q = 6825000 in 6825000 .. 6850000 as file 12111_199.job.T3 Tue Mar 03 04:01:23 2015 -> Lattice sieving algebraic q from 6750000 to 6850000. Tue Mar 03 04:01:23 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 12111_199.job.T0 Tue Mar 03 04:01:23 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 12111_199.job.T1 Tue Mar 03 04:01:23 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 12111_199.job.T2 Tue Mar 03 04:01:23 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 12111_199.job.T3 Tue Mar 03 04:15:49 2015 Found 6093044 relations, 32.1% of the estimated minimum (19000000). Tue Mar 03 04:15:49 2015 LatSieveTime: 865.928 Tue Mar 03 04:15:49 2015 -> making sieve job for q = 6850000 in 6850000 .. 6875000 as file 12111_199.job.T0 Tue Mar 03 04:15:49 2015 -> making sieve job for q = 6875000 in 6875000 .. 6900000 as file 12111_199.job.T1 Tue Mar 03 04:15:49 2015 -> making sieve job for q = 6900000 in 6900000 .. 6925000 as file 12111_199.job.T2 Tue Mar 03 04:15:49 2015 -> making sieve job for q = 6925000 in 6925000 .. 6950000 as file 12111_199.job.T3 Tue Mar 03 04:15:49 2015 -> Lattice sieving algebraic q from 6850000 to 6950000. Tue Mar 03 04:15:49 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 12111_199.job.T0 Tue Mar 03 04:15:49 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 12111_199.job.T1 Tue Mar 03 04:15:49 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 12111_199.job.T2 Tue Mar 03 04:15:49 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 12111_199.job.T3 Tue Mar 03 04:31:05 2015 Found 6477853 relations, 34.1% of the estimated minimum (19000000). Tue Mar 03 04:31:05 2015 LatSieveTime: 916.189 Tue Mar 03 04:31:05 2015 -> making sieve job for q = 6950000 in 6950000 .. 6975000 as file 12111_199.job.T0 Tue Mar 03 04:31:05 2015 -> making sieve job for q = 6975000 in 6975000 .. 7000000 as file 12111_199.job.T1 Tue Mar 03 04:31:05 2015 -> making sieve job for q = 7000000 in 7000000 .. 7025000 as file 12111_199.job.T2 Tue Mar 03 04:31:05 2015 -> making sieve job for q = 7025000 in 7025000 .. 7050000 as file 12111_199.job.T3 Tue Mar 03 04:31:05 2015 -> Lattice sieving algebraic q from 6950000 to 7050000. Tue Mar 03 04:31:05 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 12111_199.job.T0 Tue Mar 03 04:31:05 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 12111_199.job.T1 Tue Mar 03 04:31:05 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 12111_199.job.T2 Tue Mar 03 04:31:05 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 12111_199.job.T3 Tue Mar 03 04:45:51 2015 Found 6856590 relations, 36.1% of the estimated minimum (19000000). Tue Mar 03 04:45:51 2015 LatSieveTime: 886.255 Tue Mar 03 04:45:51 2015 -> making sieve job for q = 7050000 in 7050000 .. 7075000 as file 12111_199.job.T0 Tue Mar 03 04:45:51 2015 -> making sieve job for q = 7075000 in 7075000 .. 7100000 as file 12111_199.job.T1 Tue Mar 03 04:45:51 2015 -> making sieve job for q = 7100000 in 7100000 .. 7125000 as file 12111_199.job.T2 Tue Mar 03 04:45:51 2015 -> making sieve job for q = 7125000 in 7125000 .. 7150000 as file 12111_199.job.T3 Tue Mar 03 04:45:51 2015 -> Lattice sieving algebraic q from 7050000 to 7150000. Tue Mar 03 04:45:51 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 12111_199.job.T0 Tue Mar 03 04:45:51 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 12111_199.job.T1 Tue Mar 03 04:45:51 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 12111_199.job.T2 Tue Mar 03 04:45:51 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 12111_199.job.T3 Tue Mar 03 05:00:51 2015 Found 7235171 relations, 38.1% of the estimated minimum (19000000). Tue Mar 03 05:00:51 2015 LatSieveTime: 900.351 Tue Mar 03 05:00:51 2015 -> making sieve job for q = 7150000 in 7150000 .. 7175000 as file 12111_199.job.T0 Tue Mar 03 05:00:51 2015 -> making sieve job for q = 7175000 in 7175000 .. 7200000 as file 12111_199.job.T1 Tue Mar 03 05:00:51 2015 -> making sieve job for q = 7200000 in 7200000 .. 7225000 as file 12111_199.job.T2 Tue Mar 03 05:00:51 2015 -> making sieve job for q = 7225000 in 7225000 .. 7250000 as file 12111_199.job.T3 Tue Mar 03 05:00:51 2015 -> Lattice sieving algebraic q from 7150000 to 7250000. Tue Mar 03 05:00:51 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 12111_199.job.T0 Tue Mar 03 05:00:51 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 12111_199.job.T1 Tue Mar 03 05:00:51 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 12111_199.job.T2 Tue Mar 03 05:00:51 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 12111_199.job.T3 Tue Mar 03 05:15:38 2015 Found 7612172 relations, 40.1% of the estimated minimum (19000000). Tue Mar 03 05:15:38 2015 LatSieveTime: 886.482 Tue Mar 03 05:15:38 2015 -> making sieve job for q = 7250000 in 7250000 .. 7275000 as file 12111_199.job.T0 Tue Mar 03 05:15:38 2015 -> making sieve job for q = 7275000 in 7275000 .. 7300000 as file 12111_199.job.T1 Tue Mar 03 05:15:38 2015 -> making sieve job for q = 7300000 in 7300000 .. 7325000 as file 12111_199.job.T2 Tue Mar 03 05:15:38 2015 -> making sieve job for q = 7325000 in 7325000 .. 7350000 as file 12111_199.job.T3 Tue Mar 03 05:15:38 2015 -> Lattice sieving algebraic q from 7250000 to 7350000. Tue Mar 03 05:15:38 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 12111_199.job.T0 Tue Mar 03 05:15:38 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 12111_199.job.T1 Tue Mar 03 05:15:38 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 12111_199.job.T2 Tue Mar 03 05:15:38 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 12111_199.job.T3 Tue Mar 03 05:30:59 2015 Found 8000893 relations, 42.1% of the estimated minimum (19000000). Tue Mar 03 05:30:59 2015 LatSieveTime: 920.736 Tue Mar 03 05:30:59 2015 -> making sieve job for q = 7350000 in 7350000 .. 7375000 as file 12111_199.job.T0 Tue Mar 03 05:30:59 2015 -> making sieve job for q = 7375000 in 7375000 .. 7400000 as file 12111_199.job.T1 Tue Mar 03 05:30:59 2015 -> making sieve job for q = 7400000 in 7400000 .. 7425000 as file 12111_199.job.T2 Tue Mar 03 05:30:59 2015 -> making sieve job for q = 7425000 in 7425000 .. 7450000 as file 12111_199.job.T3 Tue Mar 03 05:30:59 2015 -> Lattice sieving algebraic q from 7350000 to 7450000. Tue Mar 03 05:30:59 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 12111_199.job.T0 Tue Mar 03 05:30:59 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 12111_199.job.T1 Tue Mar 03 05:30:59 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 12111_199.job.T2 Tue Mar 03 05:30:59 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 12111_199.job.T3 Tue Mar 03 05:45:54 2015 Found 8378666 relations, 44.1% of the estimated minimum (19000000). Tue Mar 03 05:45:54 2015 LatSieveTime: 895.772 Tue Mar 03 05:45:54 2015 -> making sieve job for q = 7450000 in 7450000 .. 7475000 as file 12111_199.job.T0 Tue Mar 03 05:45:54 2015 -> making sieve job for q = 7475000 in 7475000 .. 7500000 as file 12111_199.job.T1 Tue Mar 03 05:45:54 2015 -> making sieve job for q = 7500000 in 7500000 .. 7525000 as file 12111_199.job.T2 Tue Mar 03 05:45:54 2015 -> making sieve job for q = 7525000 in 7525000 .. 7550000 as file 12111_199.job.T3 Tue Mar 03 05:45:54 2015 -> Lattice sieving algebraic q from 7450000 to 7550000. Tue Mar 03 05:45:54 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 12111_199.job.T0 Tue Mar 03 05:45:54 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 12111_199.job.T1 Tue Mar 03 05:45:54 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 12111_199.job.T2 Tue Mar 03 05:45:54 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 12111_199.job.T3 Tue Mar 03 06:00:33 2015 Found 8752364 relations, 46.1% of the estimated minimum (19000000). Tue Mar 03 06:00:33 2015 LatSieveTime: 878.846 Tue Mar 03 06:00:33 2015 -> making sieve job for q = 7550000 in 7550000 .. 7575000 as file 12111_199.job.T0 Tue Mar 03 06:00:33 2015 -> making sieve job for q = 7575000 in 7575000 .. 7600000 as file 12111_199.job.T1 Tue Mar 03 06:00:33 2015 -> making sieve job for q = 7600000 in 7600000 .. 7625000 as file 12111_199.job.T2 Tue Mar 03 06:00:33 2015 -> making sieve job for q = 7625000 in 7625000 .. 7650000 as file 12111_199.job.T3 Tue Mar 03 06:00:33 2015 -> Lattice sieving algebraic q from 7550000 to 7650000. Tue Mar 03 06:00:33 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 12111_199.job.T0 Tue Mar 03 06:00:33 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 12111_199.job.T1 Tue Mar 03 06:00:33 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 12111_199.job.T2 Tue Mar 03 06:00:33 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 12111_199.job.T3 Tue Mar 03 06:15:36 2015 Found 9128429 relations, 48.0% of the estimated minimum (19000000). Tue Mar 03 06:15:36 2015 LatSieveTime: 903.006 Tue Mar 03 06:15:36 2015 -> making sieve job for q = 7650000 in 7650000 .. 7675000 as file 12111_199.job.T0 Tue Mar 03 06:15:36 2015 -> making sieve job for q = 7675000 in 7675000 .. 7700000 as file 12111_199.job.T1 Tue Mar 03 06:15:36 2015 -> making sieve job for q = 7700000 in 7700000 .. 7725000 as file 12111_199.job.T2 Tue Mar 03 06:15:36 2015 -> making sieve job for q = 7725000 in 7725000 .. 7750000 as file 12111_199.job.T3 Tue Mar 03 06:15:36 2015 -> Lattice sieving algebraic q from 7650000 to 7750000. Tue Mar 03 06:15:36 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 12111_199.job.T0 Tue Mar 03 06:15:36 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 12111_199.job.T1 Tue Mar 03 06:15:36 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 12111_199.job.T2 Tue Mar 03 06:15:36 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 12111_199.job.T3 Tue Mar 03 06:30:12 2015 Found 9495997 relations, 50.0% of the estimated minimum (19000000). Tue Mar 03 06:30:12 2015 LatSieveTime: 876.069 Tue Mar 03 06:30:12 2015 -> making sieve job for q = 7750000 in 7750000 .. 7775000 as file 12111_199.job.T0 Tue Mar 03 06:30:12 2015 -> making sieve job for q = 7775000 in 7775000 .. 7800000 as file 12111_199.job.T1 Tue Mar 03 06:30:12 2015 -> making sieve job for q = 7800000 in 7800000 .. 7825000 as file 12111_199.job.T2 Tue Mar 03 06:30:12 2015 -> making sieve job for q = 7825000 in 7825000 .. 7850000 as file 12111_199.job.T3 Tue Mar 03 06:30:12 2015 -> Lattice sieving algebraic q from 7750000 to 7850000. Tue Mar 03 06:30:12 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 12111_199.job.T0 Tue Mar 03 06:30:12 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 12111_199.job.T1 Tue Mar 03 06:30:12 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 12111_199.job.T2 Tue Mar 03 06:30:12 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 12111_199.job.T3 Tue Mar 03 06:45:45 2015 Found 9869332 relations, 51.9% of the estimated minimum (19000000). Tue Mar 03 06:45:45 2015 LatSieveTime: 932.253 Tue Mar 03 06:45:45 2015 -> making sieve job for q = 7850000 in 7850000 .. 7875000 as file 12111_199.job.T0 Tue Mar 03 06:45:45 2015 -> making sieve job for q = 7875000 in 7875000 .. 7900000 as file 12111_199.job.T1 Tue Mar 03 06:45:45 2015 -> making sieve job for q = 7900000 in 7900000 .. 7925000 as file 12111_199.job.T2 Tue Mar 03 06:45:45 2015 -> making sieve job for q = 7925000 in 7925000 .. 7950000 as file 12111_199.job.T3 Tue Mar 03 06:45:45 2015 -> Lattice sieving algebraic q from 7850000 to 7950000. Tue Mar 03 06:45:45 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 12111_199.job.T0 Tue Mar 03 06:45:45 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 12111_199.job.T1 Tue Mar 03 06:45:45 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 12111_199.job.T2 Tue Mar 03 06:45:45 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 12111_199.job.T3 Tue Mar 03 07:00:20 2015 Found 10238008 relations, 53.9% of the estimated minimum (19000000). Tue Mar 03 07:00:20 2015 LatSieveTime: 875.355 Tue Mar 03 07:00:20 2015 -> making sieve job for q = 7950000 in 7950000 .. 7975000 as file 12111_199.job.T0 Tue Mar 03 07:00:20 2015 -> making sieve job for q = 7975000 in 7975000 .. 8000000 as file 12111_199.job.T1 Tue Mar 03 07:00:20 2015 -> making sieve job for q = 8000000 in 8000000 .. 8025000 as file 12111_199.job.T2 Tue Mar 03 07:00:20 2015 -> making sieve job for q = 8025000 in 8025000 .. 8050000 as file 12111_199.job.T3 Tue Mar 03 07:00:20 2015 -> Lattice sieving algebraic q from 7950000 to 8050000. Tue Mar 03 07:00:20 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 12111_199.job.T0 Tue Mar 03 07:00:20 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 12111_199.job.T1 Tue Mar 03 07:00:20 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 12111_199.job.T2 Tue Mar 03 07:00:20 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 12111_199.job.T3 Tue Mar 03 07:15:25 2015 Found 10618178 relations, 55.9% of the estimated minimum (19000000). Tue Mar 03 07:15:25 2015 LatSieveTime: 905.542 Tue Mar 03 07:15:25 2015 -> making sieve job for q = 8050000 in 8050000 .. 8075000 as file 12111_199.job.T0 Tue Mar 03 07:15:25 2015 -> making sieve job for q = 8075000 in 8075000 .. 8100000 as file 12111_199.job.T1 Tue Mar 03 07:15:25 2015 -> making sieve job for q = 8100000 in 8100000 .. 8125000 as file 12111_199.job.T2 Tue Mar 03 07:15:25 2015 -> making sieve job for q = 8125000 in 8125000 .. 8150000 as file 12111_199.job.T3 Tue Mar 03 07:15:25 2015 -> Lattice sieving algebraic q from 8050000 to 8150000. Tue Mar 03 07:15:25 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 12111_199.job.T0 Tue Mar 03 07:15:25 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 12111_199.job.T1 Tue Mar 03 07:15:25 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 12111_199.job.T2 Tue Mar 03 07:15:25 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 12111_199.job.T3 Tue Mar 03 07:30:24 2015 Found 10994297 relations, 57.9% of the estimated minimum (19000000). Tue Mar 03 07:30:24 2015 LatSieveTime: 898.625 Tue Mar 03 07:30:24 2015 -> making sieve job for q = 8150000 in 8150000 .. 8175000 as file 12111_199.job.T0 Tue Mar 03 07:30:24 2015 -> making sieve job for q = 8175000 in 8175000 .. 8200000 as file 12111_199.job.T1 Tue Mar 03 07:30:24 2015 -> making sieve job for q = 8200000 in 8200000 .. 8225000 as file 12111_199.job.T2 Tue Mar 03 07:30:24 2015 -> making sieve job for q = 8225000 in 8225000 .. 8250000 as file 12111_199.job.T3 Tue Mar 03 07:30:24 2015 -> Lattice sieving algebraic q from 8150000 to 8250000. Tue Mar 03 07:30:24 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 12111_199.job.T0 Tue Mar 03 07:30:24 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 12111_199.job.T1 Tue Mar 03 07:30:24 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 12111_199.job.T2 Tue Mar 03 07:30:24 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 12111_199.job.T3 Tue Mar 03 07:45:42 2015 Found 11376781 relations, 59.9% of the estimated minimum (19000000). Tue Mar 03 07:45:42 2015 LatSieveTime: 917.818 Tue Mar 03 07:45:42 2015 -> making sieve job for q = 8250000 in 8250000 .. 8275000 as file 12111_199.job.T0 Tue Mar 03 07:45:42 2015 -> making sieve job for q = 8275000 in 8275000 .. 8300000 as file 12111_199.job.T1 Tue Mar 03 07:45:42 2015 -> making sieve job for q = 8300000 in 8300000 .. 8325000 as file 12111_199.job.T2 Tue Mar 03 07:45:42 2015 -> making sieve job for q = 8325000 in 8325000 .. 8350000 as file 12111_199.job.T3 Tue Mar 03 07:45:42 2015 -> Lattice sieving algebraic q from 8250000 to 8350000. Tue Mar 03 07:45:42 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 12111_199.job.T0 Tue Mar 03 07:45:42 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 12111_199.job.T1 Tue Mar 03 07:45:42 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 12111_199.job.T2 Tue Mar 03 07:45:42 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 12111_199.job.T3 Tue Mar 03 08:00:41 2015 Found 11747556 relations, 61.8% of the estimated minimum (19000000). Tue Mar 03 08:00:41 2015 LatSieveTime: 898.88 Tue Mar 03 08:00:41 2015 -> making sieve job for q = 8350000 in 8350000 .. 8375000 as file 12111_199.job.T0 Tue Mar 03 08:00:41 2015 -> making sieve job for q = 8375000 in 8375000 .. 8400000 as file 12111_199.job.T1 Tue Mar 03 08:00:41 2015 -> making sieve job for q = 8400000 in 8400000 .. 8425000 as file 12111_199.job.T2 Tue Mar 03 08:00:41 2015 -> making sieve job for q = 8425000 in 8425000 .. 8450000 as file 12111_199.job.T3 Tue Mar 03 08:00:41 2015 -> Lattice sieving algebraic q from 8350000 to 8450000. Tue Mar 03 08:00:41 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 12111_199.job.T0 Tue Mar 03 08:00:41 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 12111_199.job.T1 Tue Mar 03 08:00:41 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 12111_199.job.T2 Tue Mar 03 08:00:41 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 12111_199.job.T3 Tue Mar 03 08:15:25 2015 Found 12114134 relations, 63.8% of the estimated minimum (19000000). Tue Mar 03 08:15:25 2015 LatSieveTime: 883.937 Tue Mar 03 08:15:25 2015 -> making sieve job for q = 8450000 in 8450000 .. 8475000 as file 12111_199.job.T0 Tue Mar 03 08:15:25 2015 -> making sieve job for q = 8475000 in 8475000 .. 8500000 as file 12111_199.job.T1 Tue Mar 03 08:15:25 2015 -> making sieve job for q = 8500000 in 8500000 .. 8525000 as file 12111_199.job.T2 Tue Mar 03 08:15:25 2015 -> making sieve job for q = 8525000 in 8525000 .. 8550000 as file 12111_199.job.T3 Tue Mar 03 08:15:25 2015 -> Lattice sieving algebraic q from 8450000 to 8550000. Tue Mar 03 08:15:25 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 12111_199.job.T0 Tue Mar 03 08:15:25 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 12111_199.job.T1 Tue Mar 03 08:15:25 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 12111_199.job.T2 Tue Mar 03 08:15:25 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 12111_199.job.T3 Tue Mar 03 08:30:57 2015 Found 12495032 relations, 65.8% of the estimated minimum (19000000). Tue Mar 03 08:30:57 2015 LatSieveTime: 932.221 Tue Mar 03 08:30:57 2015 -> making sieve job for q = 8550000 in 8550000 .. 8575000 as file 12111_199.job.T0 Tue Mar 03 08:30:57 2015 -> making sieve job for q = 8575000 in 8575000 .. 8600000 as file 12111_199.job.T1 Tue Mar 03 08:30:57 2015 -> making sieve job for q = 8600000 in 8600000 .. 8625000 as file 12111_199.job.T2 Tue Mar 03 08:30:57 2015 -> making sieve job for q = 8625000 in 8625000 .. 8650000 as file 12111_199.job.T3 Tue Mar 03 08:30:57 2015 -> Lattice sieving algebraic q from 8550000 to 8650000. Tue Mar 03 08:30:57 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 12111_199.job.T0 Tue Mar 03 08:30:57 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 12111_199.job.T1 Tue Mar 03 08:30:57 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 12111_199.job.T2 Tue Mar 03 08:30:57 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 12111_199.job.T3 Tue Mar 03 08:45:56 2015 Found 12865825 relations, 67.7% of the estimated minimum (19000000). Tue Mar 03 08:45:56 2015 LatSieveTime: 899.255 Tue Mar 03 08:45:56 2015 -> making sieve job for q = 8650000 in 8650000 .. 8675000 as file 12111_199.job.T0 Tue Mar 03 08:45:56 2015 -> making sieve job for q = 8675000 in 8675000 .. 8700000 as file 12111_199.job.T1 Tue Mar 03 08:45:56 2015 -> making sieve job for q = 8700000 in 8700000 .. 8725000 as file 12111_199.job.T2 Tue Mar 03 08:45:56 2015 -> making sieve job for q = 8725000 in 8725000 .. 8750000 as file 12111_199.job.T3 Tue Mar 03 08:45:56 2015 -> Lattice sieving algebraic q from 8650000 to 8750000. Tue Mar 03 08:45:56 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 12111_199.job.T0 Tue Mar 03 08:45:56 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 12111_199.job.T1 Tue Mar 03 08:45:56 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 12111_199.job.T2 Tue Mar 03 08:45:56 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 12111_199.job.T3 Tue Mar 03 09:01:26 2015 Found 13248035 relations, 69.7% of the estimated minimum (19000000). Tue Mar 03 09:01:26 2015 LatSieveTime: 929.53 Tue Mar 03 09:01:26 2015 -> making sieve job for q = 8750000 in 8750000 .. 8775000 as file 12111_199.job.T0 Tue Mar 03 09:01:26 2015 -> making sieve job for q = 8775000 in 8775000 .. 8800000 as file 12111_199.job.T1 Tue Mar 03 09:01:26 2015 -> making sieve job for q = 8800000 in 8800000 .. 8825000 as file 12111_199.job.T2 Tue Mar 03 09:01:26 2015 -> making sieve job for q = 8825000 in 8825000 .. 8850000 as file 12111_199.job.T3 Tue Mar 03 09:01:26 2015 -> Lattice sieving algebraic q from 8750000 to 8850000. Tue Mar 03 09:01:26 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 12111_199.job.T0 Tue Mar 03 09:01:26 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 12111_199.job.T1 Tue Mar 03 09:01:26 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 12111_199.job.T2 Tue Mar 03 09:01:26 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 12111_199.job.T3 Tue Mar 03 09:16:50 2015 Found 13625168 relations, 71.7% of the estimated minimum (19000000). Tue Mar 03 09:16:50 2015 LatSieveTime: 924.622 Tue Mar 03 09:16:50 2015 -> making sieve job for q = 8850000 in 8850000 .. 8875000 as file 12111_199.job.T0 Tue Mar 03 09:16:50 2015 -> making sieve job for q = 8875000 in 8875000 .. 8900000 as file 12111_199.job.T1 Tue Mar 03 09:16:50 2015 -> making sieve job for q = 8900000 in 8900000 .. 8925000 as file 12111_199.job.T2 Tue Mar 03 09:16:50 2015 -> making sieve job for q = 8925000 in 8925000 .. 8950000 as file 12111_199.job.T3 Tue Mar 03 09:16:50 2015 -> Lattice sieving algebraic q from 8850000 to 8950000. Tue Mar 03 09:16:50 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 12111_199.job.T0 Tue Mar 03 09:16:50 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 12111_199.job.T1 Tue Mar 03 09:16:50 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 12111_199.job.T2 Tue Mar 03 09:16:50 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 12111_199.job.T3 Tue Mar 03 09:32:13 2015 Found 13992852 relations, 73.6% of the estimated minimum (19000000). Tue Mar 03 09:32:13 2015 LatSieveTime: 922.694 Tue Mar 03 09:32:13 2015 -> making sieve job for q = 8950000 in 8950000 .. 8975000 as file 12111_199.job.T0 Tue Mar 03 09:32:13 2015 -> making sieve job for q = 8975000 in 8975000 .. 9000000 as file 12111_199.job.T1 Tue Mar 03 09:32:13 2015 -> making sieve job for q = 9000000 in 9000000 .. 9025000 as file 12111_199.job.T2 Tue Mar 03 09:32:13 2015 -> making sieve job for q = 9025000 in 9025000 .. 9050000 as file 12111_199.job.T3 Tue Mar 03 09:32:13 2015 -> Lattice sieving algebraic q from 8950000 to 9050000. Tue Mar 03 09:32:13 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 12111_199.job.T0 Tue Mar 03 09:32:13 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 12111_199.job.T1 Tue Mar 03 09:32:13 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 12111_199.job.T2 Tue Mar 03 09:32:13 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 12111_199.job.T3 Tue Mar 03 09:47:58 2015 Found 14367186 relations, 75.6% of the estimated minimum (19000000). Tue Mar 03 09:47:58 2015 LatSieveTime: 944.838 Tue Mar 03 09:47:58 2015 -> making sieve job for q = 9050000 in 9050000 .. 9075000 as file 12111_199.job.T0 Tue Mar 03 09:47:58 2015 -> making sieve job for q = 9075000 in 9075000 .. 9100000 as file 12111_199.job.T1 Tue Mar 03 09:47:58 2015 -> making sieve job for q = 9100000 in 9100000 .. 9125000 as file 12111_199.job.T2 Tue Mar 03 09:47:58 2015 -> making sieve job for q = 9125000 in 9125000 .. 9150000 as file 12111_199.job.T3 Tue Mar 03 09:47:58 2015 -> Lattice sieving algebraic q from 9050000 to 9150000. Tue Mar 03 09:47:58 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 12111_199.job.T0 Tue Mar 03 09:47:58 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 12111_199.job.T1 Tue Mar 03 09:47:58 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 12111_199.job.T2 Tue Mar 03 09:47:58 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 12111_199.job.T3 Tue Mar 03 10:03:35 2015 Found 14741419 relations, 77.6% of the estimated minimum (19000000). Tue Mar 03 10:03:35 2015 LatSieveTime: 936.938 Tue Mar 03 10:03:35 2015 -> making sieve job for q = 9150000 in 9150000 .. 9175000 as file 12111_199.job.T0 Tue Mar 03 10:03:35 2015 -> making sieve job for q = 9175000 in 9175000 .. 9200000 as file 12111_199.job.T1 Tue Mar 03 10:03:35 2015 -> making sieve job for q = 9200000 in 9200000 .. 9225000 as file 12111_199.job.T2 Tue Mar 03 10:03:35 2015 -> making sieve job for q = 9225000 in 9225000 .. 9250000 as file 12111_199.job.T3 Tue Mar 03 10:03:35 2015 -> Lattice sieving algebraic q from 9150000 to 9250000. Tue Mar 03 10:03:35 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 12111_199.job.T0 Tue Mar 03 10:03:35 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 12111_199.job.T1 Tue Mar 03 10:03:35 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 12111_199.job.T2 Tue Mar 03 10:03:35 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 12111_199.job.T3 Tue Mar 03 10:18:43 2015 Found 15107246 relations, 79.5% of the estimated minimum (19000000). Tue Mar 03 10:18:43 2015 LatSieveTime: 907.984 Tue Mar 03 10:18:43 2015 -> making sieve job for q = 9250000 in 9250000 .. 9275000 as file 12111_199.job.T0 Tue Mar 03 10:18:43 2015 -> making sieve job for q = 9275000 in 9275000 .. 9300000 as file 12111_199.job.T1 Tue Mar 03 10:18:43 2015 -> making sieve job for q = 9300000 in 9300000 .. 9325000 as file 12111_199.job.T2 Tue Mar 03 10:18:43 2015 -> making sieve job for q = 9325000 in 9325000 .. 9350000 as file 12111_199.job.T3 Tue Mar 03 10:18:43 2015 -> Lattice sieving algebraic q from 9250000 to 9350000. Tue Mar 03 10:18:43 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 12111_199.job.T0 Tue Mar 03 10:18:43 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 12111_199.job.T1 Tue Mar 03 10:18:43 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 12111_199.job.T2 Tue Mar 03 10:18:43 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 12111_199.job.T3 Tue Mar 03 10:34:20 2015 Found 15483954 relations, 81.5% of the estimated minimum (19000000). Tue Mar 03 10:34:20 2015 LatSieveTime: 937.236 Tue Mar 03 10:34:20 2015 -> making sieve job for q = 9350000 in 9350000 .. 9375000 as file 12111_199.job.T0 Tue Mar 03 10:34:20 2015 -> making sieve job for q = 9375000 in 9375000 .. 9400000 as file 12111_199.job.T1 Tue Mar 03 10:34:20 2015 -> making sieve job for q = 9400000 in 9400000 .. 9425000 as file 12111_199.job.T2 Tue Mar 03 10:34:20 2015 -> making sieve job for q = 9425000 in 9425000 .. 9450000 as file 12111_199.job.T3 Tue Mar 03 10:34:20 2015 -> Lattice sieving algebraic q from 9350000 to 9450000. Tue Mar 03 10:34:20 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 12111_199.job.T0 Tue Mar 03 10:34:20 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 12111_199.job.T1 Tue Mar 03 10:34:20 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 12111_199.job.T2 Tue Mar 03 10:34:20 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 12111_199.job.T3 Tue Mar 03 10:49:56 2015 Found 15850289 relations, 83.4% of the estimated minimum (19000000). Tue Mar 03 10:49:56 2015 LatSieveTime: 936.264 Tue Mar 03 10:49:56 2015 -> making sieve job for q = 9450000 in 9450000 .. 9475000 as file 12111_199.job.T0 Tue Mar 03 10:49:56 2015 -> making sieve job for q = 9475000 in 9475000 .. 9500000 as file 12111_199.job.T1 Tue Mar 03 10:49:56 2015 -> making sieve job for q = 9500000 in 9500000 .. 9525000 as file 12111_199.job.T2 Tue Mar 03 10:49:56 2015 -> making sieve job for q = 9525000 in 9525000 .. 9550000 as file 12111_199.job.T3 Tue Mar 03 10:49:56 2015 -> Lattice sieving algebraic q from 9450000 to 9550000. Tue Mar 03 10:49:56 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 12111_199.job.T0 Tue Mar 03 10:49:56 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 12111_199.job.T1 Tue Mar 03 10:49:56 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 12111_199.job.T2 Tue Mar 03 10:49:56 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 12111_199.job.T3 Tue Mar 03 11:05:39 2015 Found 16218381 relations, 85.4% of the estimated minimum (19000000). Tue Mar 03 11:05:39 2015 LatSieveTime: 942.399 Tue Mar 03 11:05:39 2015 -> making sieve job for q = 9550000 in 9550000 .. 9575000 as file 12111_199.job.T0 Tue Mar 03 11:05:39 2015 -> making sieve job for q = 9575000 in 9575000 .. 9600000 as file 12111_199.job.T1 Tue Mar 03 11:05:39 2015 -> making sieve job for q = 9600000 in 9600000 .. 9625000 as file 12111_199.job.T2 Tue Mar 03 11:05:39 2015 -> making sieve job for q = 9625000 in 9625000 .. 9650000 as file 12111_199.job.T3 Tue Mar 03 11:05:39 2015 -> Lattice sieving algebraic q from 9550000 to 9650000. Tue Mar 03 11:05:39 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 12111_199.job.T0 Tue Mar 03 11:05:39 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 12111_199.job.T1 Tue Mar 03 11:05:39 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 12111_199.job.T2 Tue Mar 03 11:05:39 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 12111_199.job.T3 Tue Mar 03 11:21:26 2015 Found 16593856 relations, 87.3% of the estimated minimum (19000000). Tue Mar 03 11:21:26 2015 LatSieveTime: 947.605 Tue Mar 03 11:21:26 2015 -> making sieve job for q = 9650000 in 9650000 .. 9675000 as file 12111_199.job.T0 Tue Mar 03 11:21:26 2015 -> making sieve job for q = 9675000 in 9675000 .. 9700000 as file 12111_199.job.T1 Tue Mar 03 11:21:26 2015 -> making sieve job for q = 9700000 in 9700000 .. 9725000 as file 12111_199.job.T2 Tue Mar 03 11:21:26 2015 -> making sieve job for q = 9725000 in 9725000 .. 9750000 as file 12111_199.job.T3 Tue Mar 03 11:21:26 2015 -> Lattice sieving algebraic q from 9650000 to 9750000. Tue Mar 03 11:21:26 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 12111_199.job.T0 Tue Mar 03 11:21:26 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 12111_199.job.T1 Tue Mar 03 11:21:26 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 12111_199.job.T2 Tue Mar 03 11:21:26 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 12111_199.job.T3 Tue Mar 03 11:37:07 2015 Found 16968241 relations, 89.3% of the estimated minimum (19000000). Tue Mar 03 11:37:07 2015 LatSieveTime: 940.864 Tue Mar 03 11:37:07 2015 -> making sieve job for q = 9750000 in 9750000 .. 9775000 as file 12111_199.job.T0 Tue Mar 03 11:37:07 2015 -> making sieve job for q = 9775000 in 9775000 .. 9800000 as file 12111_199.job.T1 Tue Mar 03 11:37:07 2015 -> making sieve job for q = 9800000 in 9800000 .. 9825000 as file 12111_199.job.T2 Tue Mar 03 11:37:07 2015 -> making sieve job for q = 9825000 in 9825000 .. 9850000 as file 12111_199.job.T3 Tue Mar 03 11:37:07 2015 -> Lattice sieving algebraic q from 9750000 to 9850000. Tue Mar 03 11:37:07 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 12111_199.job.T0 Tue Mar 03 11:37:07 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 12111_199.job.T1 Tue Mar 03 11:37:07 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 12111_199.job.T2 Tue Mar 03 11:37:07 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 12111_199.job.T3 Tue Mar 03 11:52:37 2015 Found 17336284 relations, 91.2% of the estimated minimum (19000000). Tue Mar 03 11:52:37 2015 LatSieveTime: 929.803 Tue Mar 03 11:52:37 2015 -> making sieve job for q = 9850000 in 9850000 .. 9875000 as file 12111_199.job.T0 Tue Mar 03 11:52:37 2015 -> making sieve job for q = 9875000 in 9875000 .. 9900000 as file 12111_199.job.T1 Tue Mar 03 11:52:37 2015 -> making sieve job for q = 9900000 in 9900000 .. 9925000 as file 12111_199.job.T2 Tue Mar 03 11:52:37 2015 -> making sieve job for q = 9925000 in 9925000 .. 9950000 as file 12111_199.job.T3 Tue Mar 03 11:52:37 2015 -> Lattice sieving algebraic q from 9850000 to 9950000. Tue Mar 03 11:52:37 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 12111_199.job.T0 Tue Mar 03 11:52:37 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 12111_199.job.T1 Tue Mar 03 11:52:37 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 12111_199.job.T2 Tue Mar 03 11:52:37 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 12111_199.job.T3 Tue Mar 03 12:08:15 2015 Found 17701499 relations, 93.2% of the estimated minimum (19000000). Tue Mar 03 12:08:15 2015 LatSieveTime: 937.887 Tue Mar 03 12:08:15 2015 -> making sieve job for q = 9950000 in 9950000 .. 9975000 as file 12111_199.job.T0 Tue Mar 03 12:08:15 2015 -> making sieve job for q = 9975000 in 9975000 .. 10000000 as file 12111_199.job.T1 Tue Mar 03 12:08:15 2015 -> making sieve job for q = 10000000 in 10000000 .. 10025000 as file 12111_199.job.T2 Tue Mar 03 12:08:15 2015 -> making sieve job for q = 10025000 in 10025000 .. 10050000 as file 12111_199.job.T3 Tue Mar 03 12:08:15 2015 -> Lattice sieving algebraic q from 9950000 to 10050000. Tue Mar 03 12:08:15 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 12111_199.job.T0 Tue Mar 03 12:08:15 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 12111_199.job.T1 Tue Mar 03 12:08:15 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 12111_199.job.T2 Tue Mar 03 12:08:15 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 12111_199.job.T3 Tue Mar 03 12:23:48 2015 Found 18068859 relations, 95.1% of the estimated minimum (19000000). Tue Mar 03 12:23:48 2015 LatSieveTime: 933.005 Tue Mar 03 12:23:48 2015 -> making sieve job for q = 10050000 in 10050000 .. 10075000 as file 12111_199.job.T0 Tue Mar 03 12:23:48 2015 -> making sieve job for q = 10075000 in 10075000 .. 10100000 as file 12111_199.job.T1 Tue Mar 03 12:23:48 2015 -> making sieve job for q = 10100000 in 10100000 .. 10125000 as file 12111_199.job.T2 Tue Mar 03 12:23:48 2015 -> making sieve job for q = 10125000 in 10125000 .. 10150000 as file 12111_199.job.T3 Tue Mar 03 12:23:48 2015 -> Lattice sieving algebraic q from 10050000 to 10150000. Tue Mar 03 12:23:48 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 12111_199.job.T0 Tue Mar 03 12:23:48 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 12111_199.job.T1 Tue Mar 03 12:23:48 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 12111_199.job.T2 Tue Mar 03 12:23:48 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 12111_199.job.T3 Tue Mar 03 12:39:28 2015 Found 18437127 relations, 97.0% of the estimated minimum (19000000). Tue Mar 03 12:39:28 2015 LatSieveTime: 940.162 Tue Mar 03 12:39:28 2015 -> making sieve job for q = 10150000 in 10150000 .. 10175000 as file 12111_199.job.T0 Tue Mar 03 12:39:28 2015 -> making sieve job for q = 10175000 in 10175000 .. 10200000 as file 12111_199.job.T1 Tue Mar 03 12:39:28 2015 -> making sieve job for q = 10200000 in 10200000 .. 10225000 as file 12111_199.job.T2 Tue Mar 03 12:39:28 2015 -> making sieve job for q = 10225000 in 10225000 .. 10250000 as file 12111_199.job.T3 Tue Mar 03 12:39:28 2015 -> Lattice sieving algebraic q from 10150000 to 10250000. Tue Mar 03 12:39:28 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 12111_199.job.T0 Tue Mar 03 12:39:28 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 12111_199.job.T1 Tue Mar 03 12:39:28 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 12111_199.job.T2 Tue Mar 03 12:39:28 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 12111_199.job.T3 Tue Mar 03 12:55:17 2015 Found 18805148 relations, 99.0% of the estimated minimum (19000000). Tue Mar 03 12:55:17 2015 LatSieveTime: 949.31 Tue Mar 03 12:55:17 2015 -> making sieve job for q = 10250000 in 10250000 .. 10275000 as file 12111_199.job.T0 Tue Mar 03 12:55:17 2015 -> making sieve job for q = 10275000 in 10275000 .. 10300000 as file 12111_199.job.T1 Tue Mar 03 12:55:17 2015 -> making sieve job for q = 10300000 in 10300000 .. 10325000 as file 12111_199.job.T2 Tue Mar 03 12:55:17 2015 -> making sieve job for q = 10325000 in 10325000 .. 10350000 as file 12111_199.job.T3 Tue Mar 03 12:55:17 2015 -> Lattice sieving algebraic q from 10250000 to 10350000. Tue Mar 03 12:55:17 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T0 -v -n0 -a 12111_199.job.T0 Tue Mar 03 12:55:17 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T1 -v -n1 -a 12111_199.job.T1 Tue Mar 03 12:55:17 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T2 -v -n2 -a 12111_199.job.T2 Tue Mar 03 12:55:17 2015 -> gnfs-lasieve4I13e -k -o spairs.out.T3 -v -n3 -a 12111_199.job.T3 Tue Mar 03 13:11:18 2015 Found 19181912 relations, 101.0% of the estimated minimum (19000000). Tue Mar 03 13:11:18 2015 Tue Mar 03 13:11:18 2015 Tue Mar 03 13:11:18 2015 Msieve v. 1.52 (SVN 958) Tue Mar 03 13:11:18 2015 random seeds: f154fd60 9c6aa8a9 Tue Mar 03 13:11:18 2015 factoring 143123836015116838113877569226647957717252200357717490268105242947837936747499157439703266162102595855246253927531591423840734133111 (132 digits) Tue Mar 03 13:11:18 2015 searching for 15-digit factors Tue Mar 03 13:11:20 2015 commencing number field sieve (132-digit input) Tue Mar 03 13:11:20 2015 R0: -28232011573890035790082904 Tue Mar 03 13:11:20 2015 R1: 16031391421331 Tue Mar 03 13:11:20 2015 A0: -180731068586369736073172755244595 Tue Mar 03 13:11:20 2015 A1: 4139538925948329107378219238 Tue Mar 03 13:11:20 2015 A2: 106786793344346760951 Tue Mar 03 13:11:20 2015 A3: -19329859455693452 Tue Mar 03 13:11:20 2015 A4: -1314155714 Tue Mar 03 13:11:20 2015 A5: 7980 Tue Mar 03 13:11:20 2015 skew 793005.54, size 1.226e-012, alpha -7.078, combined = 6.934e-011 rroots = 5 Tue Mar 03 13:11:20 2015 Tue Mar 03 13:11:20 2015 commencing relation filtering Tue Mar 03 13:11:20 2015 estimated available RAM is 4096.0 MB Tue Mar 03 13:11:20 2015 commencing duplicate removal, pass 1 Tue Mar 03 13:12:58 2015 found 2069072 hash collisions in 19181911 relations Tue Mar 03 13:13:23 2015 added 119333 free relations Tue Mar 03 13:13:23 2015 commencing duplicate removal, pass 2 Tue Mar 03 13:13:30 2015 found 1672604 duplicates and 17628640 unique relations Tue Mar 03 13:13:30 2015 memory use: 98.6 MB Tue Mar 03 13:13:30 2015 reading ideals above 720000 Tue Mar 03 13:13:30 2015 commencing singleton removal, initial pass Tue Mar 03 13:15:21 2015 memory use: 376.5 MB Tue Mar 03 13:15:21 2015 reading all ideals from disk Tue Mar 03 13:15:21 2015 memory use: 544.8 MB Tue Mar 03 13:15:22 2015 keeping 19369229 ideals with weight <= 200, target excess is 117194 Tue Mar 03 13:15:23 2015 commencing in-memory singleton removal Tue Mar 03 13:15:23 2015 begin with 17628640 relations and 19369229 unique ideals Tue Mar 03 13:15:32 2015 reduce to 6347804 relations and 6136704 ideals in 22 passes Tue Mar 03 13:15:32 2015 max relations containing the same ideal: 95 Tue Mar 03 13:15:34 2015 removing 491356 relations and 453779 ideals in 37577 cliques Tue Mar 03 13:15:34 2015 commencing in-memory singleton removal Tue Mar 03 13:15:34 2015 begin with 5856448 relations and 6136704 unique ideals Tue Mar 03 13:15:37 2015 reduce to 5823038 relations and 5649185 ideals in 9 passes Tue Mar 03 13:15:37 2015 max relations containing the same ideal: 91 Tue Mar 03 13:15:38 2015 removing 357984 relations and 320407 ideals in 37577 cliques Tue Mar 03 13:15:38 2015 commencing in-memory singleton removal Tue Mar 03 13:15:39 2015 begin with 5465054 relations and 5649185 unique ideals Tue Mar 03 13:15:41 2015 reduce to 5445762 relations and 5309324 ideals in 8 passes Tue Mar 03 13:15:41 2015 max relations containing the same ideal: 89 Tue Mar 03 13:15:43 2015 relations with 0 large ideals: 510 Tue Mar 03 13:15:43 2015 relations with 1 large ideals: 1523 Tue Mar 03 13:15:43 2015 relations with 2 large ideals: 24598 Tue Mar 03 13:15:43 2015 relations with 3 large ideals: 169654 Tue Mar 03 13:15:43 2015 relations with 4 large ideals: 619312 Tue Mar 03 13:15:43 2015 relations with 5 large ideals: 1292946 Tue Mar 03 13:15:43 2015 relations with 6 large ideals: 1594407 Tue Mar 03 13:15:43 2015 relations with 7+ large ideals: 1742812 Tue Mar 03 13:15:43 2015 commencing 2-way merge Tue Mar 03 13:15:45 2015 reduce to 3063624 relation sets and 2927187 unique ideals Tue Mar 03 13:15:45 2015 ignored 1 oversize relation sets Tue Mar 03 13:15:45 2015 commencing full merge Tue Mar 03 13:16:15 2015 memory use: 294.5 MB Tue Mar 03 13:16:15 2015 found 1557324 cycles, need 1541387 Tue Mar 03 13:16:15 2015 weight of 1541387 cycles is about 108076743 (70.12/cycle) Tue Mar 03 13:16:15 2015 distribution of cycle lengths: Tue Mar 03 13:16:15 2015 1 relations: 220275 Tue Mar 03 13:16:15 2015 2 relations: 195047 Tue Mar 03 13:16:15 2015 3 relations: 185575 Tue Mar 03 13:16:15 2015 4 relations: 158640 Tue Mar 03 13:16:15 2015 5 relations: 137231 Tue Mar 03 13:16:15 2015 6 relations: 114316 Tue Mar 03 13:16:15 2015 7 relations: 97718 Tue Mar 03 13:16:15 2015 8 relations: 80564 Tue Mar 03 13:16:15 2015 9 relations: 66652 Tue Mar 03 13:16:15 2015 10+ relations: 285369 Tue Mar 03 13:16:15 2015 heaviest cycle: 23 relations Tue Mar 03 13:16:15 2015 commencing cycle optimization Tue Mar 03 13:16:16 2015 start with 8904585 relations Tue Mar 03 13:16:26 2015 pruned 167924 relations Tue Mar 03 13:16:26 2015 memory use: 243.8 MB Tue Mar 03 13:16:26 2015 distribution of cycle lengths: Tue Mar 03 13:16:26 2015 1 relations: 220275 Tue Mar 03 13:16:26 2015 2 relations: 199123 Tue Mar 03 13:16:26 2015 3 relations: 190984 Tue Mar 03 13:16:26 2015 4 relations: 161386 Tue Mar 03 13:16:26 2015 5 relations: 138909 Tue Mar 03 13:16:26 2015 6 relations: 114757 Tue Mar 03 13:16:26 2015 7 relations: 97598 Tue Mar 03 13:16:26 2015 8 relations: 79854 Tue Mar 03 13:16:26 2015 9 relations: 65714 Tue Mar 03 13:16:26 2015 10+ relations: 272787 Tue Mar 03 13:16:26 2015 heaviest cycle: 23 relations Tue Mar 03 13:16:27 2015 RelProcTime: 307 Tue Mar 03 13:16:27 2015 elapsed time 00:05:09 Tue Mar 03 13:16:27 2015 LatSieveTime: 1269.54 Tue Mar 03 13:16:27 2015 -> Running matrix solving step ... Tue Mar 03 13:16:27 2015 Tue Mar 03 13:16:27 2015 Tue Mar 03 13:16:27 2015 Msieve v. 1.52 (SVN 958) Tue Mar 03 13:16:27 2015 random seeds: eb7e0540 f4ca3e4d Tue Mar 03 13:16:27 2015 factoring 143123836015116838113877569226647957717252200357717490268105242947837936747499157439703266162102595855246253927531591423840734133111 (132 digits) Tue Mar 03 13:16:27 2015 searching for 15-digit factors Tue Mar 03 13:16:29 2015 commencing number field sieve (132-digit input) Tue Mar 03 13:16:29 2015 R0: -28232011573890035790082904 Tue Mar 03 13:16:29 2015 R1: 16031391421331 Tue Mar 03 13:16:29 2015 A0: -180731068586369736073172755244595 Tue Mar 03 13:16:29 2015 A1: 4139538925948329107378219238 Tue Mar 03 13:16:29 2015 A2: 106786793344346760951 Tue Mar 03 13:16:29 2015 A3: -19329859455693452 Tue Mar 03 13:16:29 2015 A4: -1314155714 Tue Mar 03 13:16:29 2015 A5: 7980 Tue Mar 03 13:16:29 2015 skew 793005.54, size 1.226e-012, alpha -7.078, combined = 6.934e-011 rroots = 5 Tue Mar 03 13:16:29 2015 Tue Mar 03 13:16:29 2015 commencing linear algebra Tue Mar 03 13:16:29 2015 read 1541387 cycles Tue Mar 03 13:16:31 2015 cycles contain 5277053 unique relations Tue Mar 03 13:16:58 2015 read 5277053 relations Tue Mar 03 13:17:03 2015 using 20 quadratic characters above 268435020 Tue Mar 03 13:17:20 2015 building initial matrix Tue Mar 03 13:17:57 2015 memory use: 620.3 MB Tue Mar 03 13:17:58 2015 read 1541387 cycles Tue Mar 03 13:17:59 2015 matrix is 1541204 x 1541387 (445.7 MB) with weight 147249169 (95.53/col) Tue Mar 03 13:17:59 2015 sparse part has weight 104504464 (67.80/col) Tue Mar 03 13:18:08 2015 filtering completed in 2 passes Tue Mar 03 13:18:09 2015 matrix is 1537800 x 1537981 (445.4 MB) with weight 147104251 (95.65/col) Tue Mar 03 13:18:09 2015 sparse part has weight 104462159 (67.92/col) Tue Mar 03 13:18:11 2015 matrix starts at (0, 0) Tue Mar 03 13:18:11 2015 matrix is 1537800 x 1537981 (445.4 MB) with weight 147104251 (95.65/col) Tue Mar 03 13:18:11 2015 sparse part has weight 104462159 (67.92/col) Tue Mar 03 13:18:11 2015 saving the first 48 matrix rows for later Tue Mar 03 13:18:11 2015 matrix includes 64 packed rows Tue Mar 03 13:18:12 2015 matrix is 1537752 x 1537981 (425.9 MB) with weight 117153108 (76.17/col) Tue Mar 03 13:18:12 2015 sparse part has weight 102408779 (66.59/col) Tue Mar 03 13:18:12 2015 using block size 8192 and superblock size 786432 for processor cache size 8192 kB Tue Mar 03 13:18:18 2015 commencing Lanczos iteration (4 threads) Tue Mar 03 13:18:18 2015 memory use: 353.6 MB Tue Mar 03 13:18:21 2015 linear algebra at 0.1%, ETA 0h50m Tue Mar 03 13:18:22 2015 checkpointing every 1820000 dimensions Tue Mar 03 14:11:50 2015 lanczos halted after 24322 iterations (dim = 1537752) Tue Mar 03 14:11:51 2015 recovered 30 nontrivial dependencies Tue Mar 03 14:11:51 2015 BLanczosTime: 3322 Tue Mar 03 14:11:51 2015 elapsed time 00:55:24 Tue Mar 03 14:11:51 2015 -> Running square root step ... Tue Mar 03 14:11:51 2015 Tue Mar 03 14:11:51 2015 Tue Mar 03 14:11:51 2015 Msieve v. 1.52 (SVN 958) Tue Mar 03 14:11:51 2015 random seeds: 51a8e74c 0eb84daf Tue Mar 03 14:11:51 2015 factoring 143123836015116838113877569226647957717252200357717490268105242947837936747499157439703266162102595855246253927531591423840734133111 (132 digits) Tue Mar 03 14:11:52 2015 searching for 15-digit factors Tue Mar 03 14:11:53 2015 commencing number field sieve (132-digit input) Tue Mar 03 14:11:53 2015 R0: -28232011573890035790082904 Tue Mar 03 14:11:53 2015 R1: 16031391421331 Tue Mar 03 14:11:53 2015 A0: -180731068586369736073172755244595 Tue Mar 03 14:11:53 2015 A1: 4139538925948329107378219238 Tue Mar 03 14:11:53 2015 A2: 106786793344346760951 Tue Mar 03 14:11:53 2015 A3: -19329859455693452 Tue Mar 03 14:11:53 2015 A4: -1314155714 Tue Mar 03 14:11:53 2015 A5: 7980 Tue Mar 03 14:11:53 2015 skew 793005.54, size 1.226e-012, alpha -7.078, combined = 6.934e-011 rroots = 5 Tue Mar 03 14:11:53 2015 Tue Mar 03 14:11:53 2015 commencing square root phase Tue Mar 03 14:11:53 2015 reading relations for dependency 1 Tue Mar 03 14:11:53 2015 read 768244 cycles Tue Mar 03 14:11:54 2015 cycles contain 2638818 unique relations Tue Mar 03 14:12:09 2015 read 2638818 relations Tue Mar 03 14:12:17 2015 multiplying 2638818 relations Tue Mar 03 14:15:38 2015 multiply complete, coefficients have about 119.06 million bits Tue Mar 03 14:15:39 2015 initial square root is modulo 351223703 Tue Mar 03 14:19:47 2015 sqrtTime: 474 Tue Mar 03 14:19:47 2015 prp54 factor: 725966237573962086160140727090423346880197106932765323 Tue Mar 03 14:19:47 2015 prp78 factor: 197149438372518328535279871288093669558998540694256575754718026369206537253957 Tue Mar 03 14:19:47 2015 elapsed time 00:07:56 Tue Mar 03 14:19:47 2015 -> Computing 1.42539e+09 scale for this machine... Tue Mar 03 14:19:47 2015 -> procrels -speedtest> PIPE Tue Mar 03 14:19:48 2015 -> Factorization summary written to g132-12111_199.txt |
software ソフトウェア | GGNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2600 | 280 | Cyp | December 6, 2014 22:38:55 UTC 2014 年 12 月 7 日 (日) 7 時 38 分 55 秒 (日本時間) |
2320 | Serge Batalov | December 9, 2014 19:25:53 UTC 2014 年 12 月 10 日 (水) 4 時 25 分 53 秒 (日本時間) | |||
45 | 11e6 | 200 / 3900 | Pierre Jammes | February 9, 2015 14:36:52 UTC 2015 年 2 月 9 日 (月) 23 時 36 分 52 秒 (日本時間) |
name 名前 | Cyp |
---|---|
date 日付 | December 8, 2014 09:53:17 UTC 2014 年 12 月 8 日 (月) 18 時 53 分 17 秒 (日本時間) |
composite number 合成数 | 16218195727641746001401627330190460775629375293649095560700848126288703721541108838878571220512780579166677205448620360480944733077013102922908840227615381413082196041270676058029269481<185> |
prime factors 素因数 | 4145894087485583972839281199113751<34> 3911869282092011380939901379712700506224019079600308510242327629545766499724678514039703006477430543516453939563210284069484912986606037072788267743231<151> |
factorization results 素因数分解の結果 | Run 81 out of 280: Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=323408573 Step 1 took 16022ms Step 2 took 5784ms ********** Factor found in step 2: 4145894087485583972839281199113751 Found probable prime factor of 34 digits: 4145894087485583972839281199113751 Probable prime cofactor 3911869282092011380939901379712700506224019079600308510242327629545766499724678514039703006477430543516453939563210284069484912986606037072788267743231 has 151 digits |
software ソフトウェア | GMP-ECM 6.4.4 |
execution environment 実行環境 | Gentoo Linux, Intel(R) Core(TM) i7-3770K CPU |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 677 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 81 / 2318 | Cyp | December 8, 2014 09:53:16 UTC 2014 年 12 月 8 日 (月) 18 時 53 分 16 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | September 4, 2020 16:15:06 UTC 2020 年 9 月 5 日 (土) 1 時 15 分 6 秒 (日本時間) |
composite number 合成数 | 4787000439174352217830478700043917435221783047870004391743522178304787000439174352217830478700043917435221783047870004391743522178304787000439174352217830478700043917435221783047870004391743522178304787<202> |
prime factors 素因数 | 19133568525790385615296759308422959873377165195623734968237731<62> 250188585193707704296730207076502720049564569808018078921737097140340601108689538592805004516366573388995605780367519376146219013685449914577<141> |
factorization results 素因数分解の結果 | Number: n N=4787000439174352217830478700043917435221783047870004391743522178304787000439174352217830478700043917435221783047870004391743522178304787000439174352217830478700043917435221783047870004391743522178304787 ( 202 digits) SNFS difficulty: 205 digits. Divisors found: Sat Sep 5 02:08:26 2020 p62 factor: 19133568525790385615296759308422959873377165195623734968237731 Sat Sep 5 02:08:26 2020 p141 factor: 250188585193707704296730207076502720049564569808018078921737097140340601108689538592805004516366573388995605780367519376146219013685449914577 Sat Sep 5 02:08:26 2020 elapsed time 02:04:31 (Msieve 1.54 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.120). Factorization parameters were as follows: # # N = 109x10^203-1 = 121(203) # n: 4787000439174352217830478700043917435221783047870004391743522178304787000439174352217830478700043917435221783047870004391743522178304787000439174352217830478700043917435221783047870004391743522178304787 m: 10000000000000000000000000000000000000000 deg: 5 c5: 109000 c0: -1 skew: 0.10 # Murphy_E = 7.881e-12 type: snfs lss: 1 rlim: 18300000 alim: 18300000 lpbr: 29 lpba: 29 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 18300000/18300000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 56/56 Sieved special-q in [100000, 41950000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 8892870 hash collisions in 59786302 relations (53050675 unique) Msieve: matrix is 2257075 x 2257303 (785.7 MB) Sieving start time: 2020/09/04 07:59:12 Sieving end time : 2020/09/05 00:02:29 Total sieving time: 16hrs 3min 17secs. Total relation processing time: 1hrs 43min 5sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 3min 38sec. Prototype def-par.txt line would be: snfs,205,5,0,0,0,0,0,0,0,0,18300000,18300000,29,29,56,56,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- [ 0.149587] smpboot: CPU0: AMD Ryzen 7 1700 Eight-Core Processor (family: 0x17, model: 0x1, stepping: 0x1) [ 0.000000] Memory: 16283124K/16703460K available (12300K kernel code, 2481K rwdata, 4272K rodata, 2436K init, 2724K bss, 420336K reserved, 0K cma-reserved) [ 0.184717] x86/mm: Memory block size: 128MB [ 0.024000] Calibrating delay loop (skipped), value calculated using timer frequency.. 5988.39 BogoMIPS (lpj=11976780) [ 0.182223] smpboot: Total of 16 processors activated (95814.24 BogoMIPS) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2320 | Serge Batalov | December 9, 2014 00:57:37 UTC 2014 年 12 月 9 日 (火) 9 時 57 分 37 秒 (日本時間) | |
45 | 11e6 | 1000 / 3962 | Serge Batalov | December 18, 2014 00:18:30 UTC 2014 年 12 月 18 日 (木) 9 時 18 分 30 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | December 11, 2014 01:33:34 UTC 2014 年 12 月 11 日 (木) 10 時 33 分 34 秒 (日本時間) |
composite number 合成数 | 39301502828295001825480499822328329142762983838902244141502115296849109418235886647143972825750115876011888708022927190949341400631164076151273167771174609403558305084259514109<176> |
prime factors 素因数 | 18251618764204532747982802909739<32> |
composite cofactor 合成数の残り | 2153316006434122677219052491924529604593043591825924390275212185803205168083237678210485503254357514057179647041112216166885828603615633760339831<145> |
factorization results 素因数分解の結果 | Input number is 39301502828295001825480499822328329142762983838902244141502115296849109418235886647143972825750115876011888708022927190949341400631164076151273167771174609403558305084259514109 (176 digits) Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=4236693262 Step 1 took 13791ms Step 2 took 9223ms ********** Factor found in step 2: 18251618764204532747982802909739 Found probable prime factor of 32 digits: 18251618764204532747982802909739 Composite cofactor 2153316006434122677219052491924529604593043591825924390275212185803205168083237678210485503254357514057179647041112216166885828603615633760339831 has 145 digits |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | May 23, 2020 03:47:31 UTC 2020 年 5 月 23 日 (土) 12 時 47 分 31 秒 (日本時間) |
composite number 合成数 | 2153316006434122677219052491924529604593043591825924390275212185803205168083237678210485503254357514057179647041112216166885828603615633760339831<145> |
prime factors 素因数 | 7423216532026600197537107244597760575313639129277187897227602260911491<70> 290078565961789262011411322765107652238460062920122648951129228902454175741<75> |
factorization results 素因数分解の結果 | 2153316006434122677219052491924529604593043591825924390275212185803205168083237678210485503254357514057179647041112216166885828603615633760339831=7423216532026600197537107244597760575313639129277187897227602260911491*290078565961789262011411322765107652238460062920122648951129228902454175741 n: 2153316006434122677219052491924529604593043591825924390275212185803205168083237678210485503254357514057179647041112216166885828603615633760339831 skew: 1860064.227 c0: 686769083756200854638892039912086068 c1: -994529142208710624914523831259 c2: -678216765955141282961374 c3: 19277688134297161 c4: 112096605168 c5: 39960 Y0: -10071321245502091863310953978 Y1: 143837711149242758743 # MurphyE (Bf=5.369e+08,Bg=5.369e+08,area=3.355e+14) = 1.74e-07 # found by revision 7f9c8bd19 # f(x) = 39960*x^5+112096605168*x^4+19277688134297161*x^3-678216765955141282961374*x^2-994529142208710624914523831259*x+686769083756200854638892039912086068 # g(x) = 143837711149242758743*x-10071321245502091863310953978 Info:Square Root: Factors: 290078565961789262011411322765107652238460062920122648951129228902454175741 7423216532026600197537107244597760575313639129277187897227602260911491 Info:Square Root: Total cpu/real time for sqrt: 1607.04/475.678 Warning:Polynomial Selection (size optimized): some stats could not be displayed for polyselect1 (see log file for debug info) Warning:Polynomial Selection (root optimized): some stats could not be displayed for polyselect2 (see log file for debug info) Info:Generate Factor Base: Total cpu/real time for makefb: 18.12/4.82673 Info:Generate Free Relations: Total cpu/real time for freerel: 468.6/118.591 Warning:Lattice Sieving: some stats could not be displayed for sieving (see log file for debug info) Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 49025788 Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 105.05/89.0338 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 88.7s Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 556.86/178.123 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 167.8s Info:Filtering - Singleton removal: Total cpu/real time for purge: 242.39/104.405 Info:Filtering - Merging: Total cpu/real time for merge: 504.62/146.785 Info:Filtering - Merging: Total cpu/real time for replay: 151.28/136.304 Info:Linear Algebra: Total cpu/real time for bwc: 224631/57550.5 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: WCT time 36769.71, iteration CPU time 0.32, COMM 0.02, cpu-wait 0.0, comm-wait 0.0 (109568 iterations) Info:Linear Algebra: Lingen CPU time 779.83, WCT time 224.53 Info:Linear Algebra: Mksol: WCT time 20054.2, iteration CPU time 0.35, COMM 0.02, cpu-wait 0.0, comm-wait 0.0 (54784 iterations) Info:Quadratic Characters: Total cpu/real time for characters: 142.75/58.2972 Info:Square Root: Total cpu/real time for sqrt: 1607.04/475.678 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 170292/59082.3 Info:root: Cleaning up computation data in /tmp/cado.azdqhwcd 290078565961789262011411322765107652238460062920122648951129228902454175741 7423216532026600197537107244597760575313639129277187897227602260911491 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 18.04 LTS GenuineIntel Intel(R) Core(TM) i7-5820K CPU @ 3.30GHz [Family 6 Model 63 Stepping 2] (12 processors) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 | Serge Batalov | December 10, 2014 19:47:47 UTC 2014 年 12 月 11 日 (木) 4 時 47 分 47 秒 (日本時間) | |
45 | 11e6 | 585 / 4409 | Cyp | June 18, 2015 06:24:28 UTC 2015 年 6 月 18 日 (木) 15 時 24 分 28 秒 (日本時間) |
name 名前 | Erik Branger |
---|---|
date 日付 | September 15, 2016 18:36:03 UTC 2016 年 9 月 16 日 (金) 3 時 36 分 3 秒 (日本時間) |
composite number 合成数 | 57264999003654838322752964068052840818366772319717204536271652910872147117801942238444219672920278123189580998765618151308599679314450335511<140> |
prime factors 素因数 | 2261701994834830297430221266460186085975403628421<49> 25319427198823707356910140465268584831855450593694691893666954366316569357542054107205165291<92> |
factorization results 素因数分解の結果 | Number: 12111_207 N = 57264999003654838322752964068052840818366772319717204536271652910872147117801942238444219672920278123189580998765618151308599679314450335511 (140 digits) Divisors found: r1=2261701994834830297430221266460186085975403628421 (pp49) r2=25319427198823707356910140465268584831855450593694691893666954366316569357542054107205165291 (pp92) Version: Msieve v. 1.51 (SVN 845) Total time: 343.19 hours. Factorization parameters were as follows: # Murphy_E = 2.08e-11, selected by Erik Branger # expecting poly E from 2.13e-011 to > 2.44e-011 n: 57264999003654838322752964068052840818366772319717204536271652910872147117801942238444219672920278123189580998765618151308599679314450335511 Y0: -1422606933930228723155339604 Y1: 312300304906783 c0: -2756832214837214531697807397357087 c1: -12769629249207262849334839114 c2: 45131411785831123297510 c3: -38385590688190148 c4: -51142313697 c5: 9828 skew: 1159107.9 type: gnfs # selected mechanically rlim: 18000000 alim: 18000000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.6 alambda: 2.6 Factor base limits: 18000000/18000000 Large primes per side: 3 Large prime bits: 28/28 Sieved algebraic special-q in [0, 0) Total raw relations: 23064742 Relations: 3240112 relations Pruned matrix : 2045316 x 2045541 Polynomial selection time: 0.00 hours. Total sieving time: 338.82 hours. Total relation processing time: 0.18 hours. Matrix solve time: 3.94 hours. time per square root: 0.26 hours. Prototype def-par.txt line would be: gnfs,139,5,65,2000,1e-05,0.28,250,20,50000,3600,18000000,18000000,28,28,55,55,2.6,2.6,100000 total time: 343.19 hours. Intel64 Family 6 Model 58 Stepping 9, GenuineIntel Windows-post2008Server-6.2.9200 processors: 8, speed: 2.29GHz |
software ソフトウェア | GGNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2600 | 280 | Cyp | December 8, 2014 10:10:19 UTC 2014 年 12 月 8 日 (月) 19 時 10 分 19 秒 (日本時間) |
2320 | Serge Batalov | December 9, 2014 19:25:56 UTC 2014 年 12 月 10 日 (水) 4 時 25 分 56 秒 (日本時間) | |||
45 | 11e6 | 3900 | 242 | Pierre Jammes | April 1, 2015 14:09:21 UTC 2015 年 4 月 1 日 (水) 23 時 9 分 21 秒 (日本時間) |
3658 | Ignacio Santos | December 26, 2015 10:11:28 UTC 2015 年 12 月 26 日 (土) 19 時 11 分 28 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 13, 2020 06:19:25 UTC 2020 年 1 月 13 日 (月) 15 時 19 分 25 秒 (日本時間) |
composite number 合成数 | 36055704409381098872018788660646356389136978598127749660944064040223611524593959842545731203069696668982170619562700539181634745790744599913995567463861599020872614203962819622242069398961331083986636234329<206> |
prime factors 素因数 | 16062823685603167537345359963468220987558153362077515257606797233507875097066531<80> 2244667881257839261025436006593522394499130231163413546489425394865064781233493851510182632005418973778282549010708948916639059<127> |
factorization results 素因数分解の結果 | Number: n N=36055704409381098872018788660646356389136978598127749660944064040223611524593959842545731203069696668982170619562700539181634745790744599913995567463861599020872614203962819622242069398961331083986636234329 ( 206 digits) SNFS difficulty: 210 digits. Divisors found: Mon Jan 13 17:15:45 2020 p80 factor: 16062823685603167537345359963468220987558153362077515257606797233507875097066531 Mon Jan 13 17:15:45 2020 p127 factor: 2244667881257839261025436006593522394499130231163413546489425394865064781233493851510182632005418973778282549010708948916639059 Mon Jan 13 17:15:45 2020 elapsed time 03:39:06 (Msieve 1.54 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.129). Factorization parameters were as follows: # # N = 109x10^208-1 = 121(208) # n: 36055704409381098872018788660646356389136978598127749660944064040223611524593959842545731203069696668982170619562700539181634745790744599913995567463861599020872614203962819622242069398961331083986636234329 m: 100000000000000000000000000000000000000000 deg: 5 c5: 109000 c0: -1 skew: 0.10 # Murphy_E = 4.842e-12 type: snfs lss: 1 rlim: 22000000 alim: 22000000 lpbr: 29 lpba: 29 mfbr: 57 mfba: 57 rlambda: 2.6 alambda: 2.6 Factor base limits: 22000000/22000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 57/57 Sieved special-q in [100000, 51000000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 12125422 hash collisions in 72196735 relations (62550201 unique) Msieve: matrix is 2868582 x 2868808 (991.3 MB) Sieving start time: 2020/01/12 14:51:25 Sieving end time : 2020/01/13 13:34:50 Total sieving time: 22hrs 43min 25secs. Total relation processing time: 3hrs 8min 32sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 10min 4sec. Prototype def-par.txt line would be: snfs,210,5,0,0,0,0,0,0,0,0,22000000,22000000,29,29,57,57,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- [ 0.149937] smpboot: CPU0: AMD Ryzen 7 1700 Eight-Core Processor (family: 0x17, model: 0x1, stepping: 0x1) [ 0.000000] Memory: 16283572K/16703460K available (12300K kernel code, 2481K rwdata, 4264K rodata, 2428K init, 2388K bss, 419888K reserved, 0K cma-reserved) [ 0.184567] x86/mm: Memory block size: 128MB [ 0.024000] Calibrating delay loop (skipped), value calculated using timer frequency.. 5988.57 BogoMIPS (lpj=11977148) [ 0.182215] smpboot: Total of 16 processors activated (95817.18 BogoMIPS) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2600 | 280 | Cyp | December 7, 2014 00:43:15 UTC 2014 年 12 月 7 日 (日) 9 時 43 分 15 秒 (日本時間) |
2320 | Serge Batalov | December 9, 2014 19:26:03 UTC 2014 年 12 月 10 日 (水) 4 時 26 分 3 秒 (日本時間) | |||
45 | 11e6 | 1000 / 3900 | Serge Batalov | December 18, 2014 00:18:31 UTC 2014 年 12 月 18 日 (木) 9 時 18 分 31 秒 (日本時間) |
name 名前 | ebina |
---|---|
date 日付 | January 22, 2023 09:32:50 UTC 2023 年 1 月 22 日 (日) 18 時 32 分 50 秒 (日本時間) |
composite number 合成数 | 1972643843247459942760553807740241493891921111760704729421266728809345299715948293022443711675671253713559483969637668670485947060606496527407833190790306628408206176112913554879<178> |
prime factors 素因数 | 13746672251157697237886263019392832978404441633<47> 344864464174097263503127327022121462531077970005921701<54> 416104734532413088036082079378632460814737799062224045928124604407604405606963<78> |
factorization results 素因数分解の結果 | Z:\ALL\ECM>ecm70dev-svn2256-x64-nehalem\ecm -primetest -one -nn -sigma 1:3597015130 11e6 GMP-ECM 7.0-dev [configured with MPIR 2.6.0, --enable-openmp] [ECM] Input number is 1972643843247459942760553807740241493891921111760704729421266728809345299715948293022443711675671253713559483969637668670485947060606496527407833190790306628408206176112913554879 (178 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:3597015130 Step 1 took 25016ms Step 2 took 14750ms ********** Factor found in step 2: 13746672251157697237886263019392832978404441633 Found probable prime factor of 47 digits: 13746672251157697237886263019392832978404441633 Composite cofactor 143499736314825625844936625223919909052416784255927104217517002540652265330000767901834741912531712158408240630753643321397158404063 has 132 digits Number: 12111_211 N = 143499736314825625844936625223919909052416784255927104217517002540652265330000767901834741912531712158408240630753643321397158404063 (132 digits) Divisors found: r1=344864464174097263503127327022121462531077970005921701 (pp54) r2=416104734532413088036082079378632460814737799062224045928124604407604405606963 (pp78) Version: Msieve v. 1.53 (SVN unknown) Total time: 11.49 hours. Factorization parameters were as follows: n: 143499736314825625844936625223919909052416784255927104217517002540652265330000767901834741912531712158408240630753643321397158404063 # norm 1.477489e-12 alpha -7.272447 e 6.805e-11 rroots 5 skew: 1627375.96 c0: 1478164554860604436362727020928768 c1: 1475838140393263045074799984 c2: -20167966934109304695376 c3: 10789955148647657 c4: 7426880802 c5: 360 Y0: -52493753434458776105974005 Y1: 61327271388221 type: gnfs Factor base limits: 8000000/8000000 Large primes per side: 3 Large prime bits: 28/28 Sieved algebraic special-q in [0, 0) Total raw relations: 20387772 Relations: 2699064 relations Pruned matrix : 1525796 x 1526028 Polynomial selection time: 0.20 hours. Total sieving time: 10.10 hours. Total relation processing time: 0.13 hours. Matrix solve time: 0.87 hours. time per square root: 0.19 hours. Prototype def-par.txt line would be: gnfs,131,5,65,2000,1e-05,0.28,250,20,50000,3600,8000000,8000000,28,28,55,55,2.5,2.5,100000 total time: 11.49 hours. Intel64 Family 6 Model 60 Stepping 3, GenuineIntel processors: 8, speed: 3.19GHz Windows-post2008Server-6.2.9200 Running Python 3.2 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 | Serge Batalov | December 10, 2014 19:47:47 UTC 2014 年 12 月 11 日 (木) 4 時 47 分 47 秒 (日本時間) | |
45 | 11e6 | 585 / 4409 | Cyp | June 30, 2015 10:58:45 UTC 2015 年 6 月 30 日 (火) 19 時 58 分 45 秒 (日本時間) |
name 名前 | Thomas Kozlowski |
---|---|
date 日付 | November 2, 2024 05:38:45 UTC 2024 年 11 月 2 日 (土) 14 時 38 分 45 秒 (日本時間) |
composite number 合成数 | 8161099788784973856678815855754167655379434522800587804934882010531978414912864535486058796319371901422215122305954106908054624993767925781308347370743759<154> |
prime factors 素因数 | 5918087354217884560058689053918971099648977<43> 1379009686798298134372907751461726228215111750875350576504525499806631366509999678734945914517249165021533079967<112> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.6 [configured with GMP 6.3.0, --enable-asm-redc] [ECM] Input number is 8161099788784973856678815855754167655379434522800587804934882010531978414912864535486058796319371901422215122305954106908054624993767925781308347370743759 (154 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:1878231685 Step 1 took 23112ms Step 2 took 9266ms Run 2 out of 0: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:3964504409 Step 1 took 20826ms Step 2 took 9228ms Run 3 out of 0: ... Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:2957069558 Step 1 took 20532ms Step 2 took 9445ms Run 16 out of 0: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:3841105628 Step 1 took 20898ms Step 2 took 9675ms ** Factor found in step 2: 5918087354217884560058689053918971099648977 Found prime factor of 43 digits: 5918087354217884560058689053918971099648977 Prime cofactor 1379009686798298134372907751461726228215111750875350576504525499806631366509999678734945914517249165021533079967 has 112 digits |
execution environment 実行環境 | 2x Xeon E5-2698v4, 128GB DDR4, Ubuntu Server 24.04 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 | Serge Batalov | December 10, 2014 19:47:48 UTC 2014 年 12 月 11 日 (木) 4 時 47 分 48 秒 (日本時間) | |
45 | 11e6 | 585 / 4409 | Cyp | January 28, 2015 03:49:43 UTC 2015 年 1 月 28 日 (水) 12 時 49 分 43 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 | Serge Batalov | December 10, 2014 19:47:48 UTC 2014 年 12 月 11 日 (木) 4 時 47 分 48 秒 (日本時間) | |
45 | 11e6 | 4588 | 585 | Cyp | August 1, 2015 07:19:11 UTC 2015 年 8 月 1 日 (土) 16 時 19 分 11 秒 (日本時間) |
4003 | Thomas Kozlowski | November 2, 2024 06:44:27 UTC 2024 年 11 月 2 日 (土) 15 時 44 分 27 秒 (日本時間) |
name 名前 | Erik Branger |
---|---|
date 日付 | November 15, 2019 18:31:44 UTC 2019 年 11 月 16 日 (土) 3 時 31 分 44 秒 (日本時間) |
composite number 合成数 | 73570010544190804949160725036896207326153289919468745801575304425700740607095810146647480658357764355741172767551632499439004625001902154756009124969043921257542413886368527<173> |
prime factors 素因数 | 1281811224185547197519904916799774085852886982274590893879147039067<67> 57395355225522083302030496368461668879477479187689871510111022766004563452436076507414787044677515699052381<107> |
factorization results 素因数分解の結果 | Number: 12111_218 N = 73570010544190804949160725036896207326153289919468745801575304425700740607095810146647480658357764355741172767551632499439004625001902154756009124969043921257542413886368527 (173 digits) SNFS difficulty: 223 digits. Divisors found: r1=1281811224185547197519904916799774085852886982274590893879147039067 (pp67) r2=57395355225522083302030496368461668879477479187689871510111022766004563452436076507414787044677515699052381 (pp107) Version: Msieve v. 1.52 (SVN unknown) Total time: 89.83 hours. Factorization parameters were as follows: n: 73570010544190804949160725036896207326153289919468745801575304425700740607095810146647480658357764355741172767551632499439004625001902154756009124969043921257542413886368527 m: 10000000000000000000000000000000000000000000000000000000 deg: 4 c4: 109 c0: -100 skew: 1.00 type: snfs lss: 1 rlim: 536870912 alim: 44739242 lpbr: 29 lpba: 28 mfbr: 58 mfba: 56 rlambda: 2.8 alambda: 2.8 side: 1 Factor base limits: 536870912/44739242 Large primes per side: 3 Large prime bits: 29/28 Relations: 7966208 relations Pruned matrix : 6980163 x 6980389 Total pre-computation time approximately 1000 CPU-days. Pre-computation saved approximately 18 G relations. Total batch smoothness checking time: 42.09 hours. Total relation processing time: 0.45 hours. Matrix solve time: 46.85 hours. time per square root: 0.44 hours. Prototype def-par.txt line would be: snfs,223,4,0,0,0,0,0,0,0,0,536870912,44739242,29,28,58,56,2.8,2.8,100000 total time: 89.83 hours. Intel64 Family 6 Model 60 Stepping 3, GenuineIntel Windows-10-10.0.17763-SP0 processors: 8, speed: 3.50GHz |
software ソフトウェア | GGNFS, NFS_factory, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 280 | Cyp | December 9, 2014 02:00:37 UTC 2014 年 12 月 9 日 (火) 11 時 0 分 37 秒 (日本時間) | |
45 | 11e6 | 591 / 4413 | Cyp | May 28, 2015 05:51:58 UTC 2015 年 5 月 28 日 (木) 14 時 51 分 58 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | December 11, 2014 01:33:37 UTC 2014 年 12 月 11 日 (木) 10 時 33 分 37 秒 (日本時間) |
composite number 合成数 | 37574467797931228098726428202853934474211421777390897940578027720231612054222634586800373725375650472402697761710107085473079911413753049128200007521624803441691335763853<170> |
prime factors 素因数 | 6757945298661180705266777478883357<34> |
composite cofactor 合成数の残り | 5560043199132600438964101503887193843816611232587625253190532905912075004861307692724006959277248345452156500132702476195647913808724529<136> |
factorization results 素因数分解の結果 | Input number is 37574467797931228098726428202853934474211421777390897940578027720231612054222634586800373725375650472402697761710107085473079911413753049128200007521624803441691335763853 (170 digits) Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2015638443 Step 1 took 11001ms Step 2 took 8302ms ********** Factor found in step 2: 6757945298661180705266777478883357 Found probable prime factor of 34 digits: 6757945298661180705266777478883357 Composite cofactor 5560043199132600438964101503887193843816611232587625253190532905912075004861307692724006959277248345452156500132702476195647913808724529 has 136 digits |
name 名前 | Serge Batalov |
---|---|
date 日付 | December 18, 2014 04:26:21 UTC 2014 年 12 月 18 日 (木) 13 時 26 分 21 秒 (日本時間) |
composite number 合成数 | 5560043199132600438964101503887193843816611232587625253190532905912075004861307692724006959277248345452156500132702476195647913808724529<136> |
prime factors 素因数 | 48887050356549188826188189837654950873799<41> |
composite cofactor 合成数の残り | 113732433406830511649408496512780320435770193356162469141612642781827438900223573567892813075271<96> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=58553269330, polynomial Dickson(12), sigma=2379734460 Step 1 took 35051ms Step 2 took 17528ms ********** Factor found in step 2: 48887050356549188826188189837654950873799 Found probable prime factor of 41 digits: 48887050356549188826188189837654950873799 Composite cofactor |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 18, 2014 16:57:37 UTC 2014 年 12 月 19 日 (金) 1 時 57 分 37 秒 (日本時間) |
composite number 合成数 | 113732433406830511649408496512780320435770193356162469141612642781827438900223573567892813075271<96> |
prime factors 素因数 | 18955560798087426735146931198906307103<38> 5999950864988698053408049260294866814954660582872142096857<58> |
factorization results 素因数分解の結果 | N=113732433406830511649408496512780320435770193356162469141612642781827438900223573567892813075271 ( 96 digits) Divisors found: r1=18955560798087426735146931198906307103 (pp38) r2=5999950864988698053408049260294866814954660582872142096857 (pp58) Version: Msieve v. 1.50 (SVN unknown) Total time: 2.06 hours. Scaled time: 4.42 units (timescale=2.147). Factorization parameters were as follows: n: 113732433406830511649408496512780320435770193356162469141612642781827438900223573567892813075271 skew: 287025.03 c0: -2462582813234060413753224 c1: -132828715918088260342 c2: -2984014468511461 c3: 5100948002 c4: 12720 Y0: -54682556872130063078905 Y1: 617540956373 rlim: 1560000 alim: 1560000 lpbr: 25 lpba: 25 mfbr: 50 mfba: 50 rlambda: 2.5 alambda: 2.5 type: gnfs Factor base limits: 1560000/1560000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 50/50 Sieved algebraic special-q in [780000, 1020001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 144527 x 144754 Total sieving time: 1.95 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.07 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: gnfs,95,4,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1560000,1560000,25,25,50,50,2.5,2.5,60000 total time: 2.06 hours. |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 | Serge Batalov | December 10, 2014 19:47:48 UTC 2014 年 12 月 11 日 (木) 4 時 47 分 48 秒 (日本時間) | |
45 | 11e6 | 1000 / 4409 | Serge Batalov | December 18, 2014 00:18:25 UTC 2014 年 12 月 18 日 (木) 9 時 18 分 25 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | December 9, 2014 01:17:25 UTC 2014 年 12 月 9 日 (火) 10 時 17 分 25 秒 (日本時間) |
composite number 合成数 | 121111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111<222> |
prime factors 素因数 | 79662433566355686962436971574851<32> |
composite cofactor 合成数の残り | 1520303933600400233886420127867606447382591536936189754435786736365789329422631762168803507449493778482537965260685548832328715587034927085238131480012819899000502071267651366039508978825261<190> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2364001280 Step 1 took 18160ms Step 2 took 12163ms ********** Factor found in step 2: 79662433566355686962436971574851 Found probable prime factor of 32 digits: 79662433566355686962436971574851 Composite cofactor |
name 名前 | Erik Branger |
---|---|
date 日付 | February 21, 2018 07:41:38 UTC 2018 年 2 月 21 日 (水) 16 時 41 分 38 秒 (日本時間) |
composite number 合成数 | 1520303933600400233886420127867606447382591536936189754435786736365789329422631762168803507449493778482537965260685548832328715587034927085238131480012819899000502071267651366039508978825261<190> |
prime factors 素因数 | 1784308285264671488659718335163297653221417522725940154364869604023<67> 852041066084546738808988770173998038410006205053698624702745317030770318295650591255465087588814595967938200293560833947707<123> |
factorization results 素因数分解の結果 | Number: 12111_220 N = 1520303933600400233886420127867606447382591536936189754435786736365789329422631762168803507449493778482537965260685548832328715587034927085238131480012819899000502071267651366039508978825261 (190 digits) SNFS difficulty: 223 digits. Divisors found: r1=1784308285264671488659718335163297653221417522725940154364869604023 (pp67) r2=852041066084546738808988770173998038410006205053698624702745317030770318295650591255465087588814595967938200293560833947707 (pp123) Version: Msieve v. 1.52 (SVN unknown) Total time: 85.31 hours. Factorization parameters were as follows: n: 1520303933600400233886420127867606447382591536936189754435786736365789329422631762168803507449493778482537965260685548832328715587034927085238131480012819899000502071267651366039508978825261 m: 10000000000000000000000000000000000000000000000000000000 deg: 4 c4: 109 c0: -1 skew: 1.00 type: snfs lss: 1 rlim: 536870912 alim: 536870912 lpbr: 29 lpba: 27 mfbr: 58 mfba: 54 rlambda: 2.8 alambda: 2.8 side: 1 Number of cores used: 4 Number of threads per core: 1 Factor base limits: 536870912/536870912 Large primes per side: 3 Large prime bits: 29/27 Total raw relations: 30117285 Relations: 8733026 relations Total pre-computation time approximately 1000 CPU-days. Pre-computation saved approximately 18 G rational relations. Total batch smoothness checking time: 43.58 hours. Total relation processing time: 0.27 hours. Pruned matrix : 7622434 x 7622659 Matrix solve time: 41.10 hours. time per square root: 0.36 hours. Prototype def-par.txt line would be: snfs,223,4,0,0,0,0,0,0,0,0,536870912,536870912,29,27,58,54,2.8,2.8,100000 total time: 85.31 hours. Intel64 Family 6 Model 60 Stepping 3, GenuineIntel Windows-10-10.0.16299-SP0 processors: 8, speed: 3.50GHz |
software ソフトウェア | GGNFS, NFS_factory, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2320 | Serge Batalov | December 9, 2014 00:57:46 UTC 2014 年 12 月 9 日 (火) 9 時 57 分 46 秒 (日本時間) |
name 名前 | Erik Branger |
---|---|
date 日付 | January 12, 2020 14:24:01 UTC 2020 年 1 月 12 日 (日) 23 時 24 分 1 秒 (日本時間) |
composite number 合成数 | 10984932445075264196969200999676092807162169714241128769232954922589311980282298256552793125052622465607758632423214182294550235539363141904456188204469316990627650158435382316195324492621223993085490542749503<209> |
prime factors 素因数 | 189076124991283334164570830624498963264137294328222240228784324627070983132078927<81> 58097935133701753636309814828374191127388968905711344258900810272015716314688028137038374909887971223347198420400547051856675089<128> |
factorization results 素因数分解の結果 | Number: 12111_221 N = 10984932445075264196969200999676092807162169714241128769232954922589311980282298256552793125052622465607758632423214182294550235539363141904456188204469316990627650158435382316195324492621223993085490542749503 (209 digits) SNFS difficulty: 224 digits. Divisors found: r1=189076124991283334164570830624498963264137294328222240228784324627070983132078927 (pp81) r2=58097935133701753636309814828374191127388968905711344258900810272015716314688028137038374909887971223347198420400547051856675089 (pp128) Version: Msieve v. 1.52 (SVN unknown) Total time: 72.17 hours. Factorization parameters were as follows: n: 10984932445075264196969200999676092807162169714241128769232954922589311980282298256552793125052622465607758632423214182294550235539363141904456188204469316990627650158435382316195324492621223993085490542749503 m: 10000000000000000000000000000000000000000000000000000000 deg: 4 c4: 1090 c0: -1 skew: 1.00 type: snfs lss: 1 rlim: 536870912 alim: 44739242 lpbr: 29 lpba: 28 mfbr: 58 mfba: 56 rlambda: 2.8 alambda: 2.8 side: 1 Number of cores used: 6 Number of threads per core: 1 Factor base limits: 536870912/44739242 Large primes per side: 3 Large prime bits: 29/28 Total raw relations: 33689398 Relations: 8937716 relations Total pre-computation time approximately 1000 CPU-days. Pre-computation saved approximately 18 G rational relations. Total batch smoothness checking time: 34.18 hours. Total relation processing time: 0.40 hours. Pruned matrix : 7612076 x 7612301 Matrix solve time: 37.34 hours. time per square root: 0.25 hours. Prototype def-par.txt line would be: snfs,224,4,0,0,0,0,0,0,0,0,536870912,44739242,29,28,58,56,2.8,2.8,100000 total time: 72.17 hours. Intel64 Family 6 Model 158 Stepping 10, GenuineIntel Windows-10-10.0.18362-SP0 processors: 12, speed: 3.19GHz |
software ソフトウェア | GGNFS, NFS_factory, msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 | Serge Batalov | December 10, 2014 19:47:49 UTC 2014 年 12 月 11 日 (木) 4 時 47 分 49 秒 (日本時間) | |
45 | 11e6 | 585 / 4409 | Cyp | August 1, 2015 07:28:34 UTC 2015 年 8 月 1 日 (土) 16 時 28 分 34 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 | Serge Batalov | December 10, 2014 19:47:49 UTC 2014 年 12 月 11 日 (木) 4 時 47 分 49 秒 (日本時間) | |
45 | 11e6 | 4587 | 585 | Cyp | February 4, 2015 20:41:34 UTC 2015 年 2 月 5 日 (木) 5 時 41 分 34 秒 (日本時間) |
4002 | Thomas Kozlowski | November 2, 2024 08:14:30 UTC 2024 年 11 月 2 日 (土) 17 時 14 分 30 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | October 24, 2019 16:27:50 UTC 2019 年 10 月 25 日 (金) 1 時 27 分 50 秒 (日本時間) |
composite number 合成数 | 1469711207141232370375853696586615946798072332174149182159647582129552211355797801716541788406621359110719547684914951587847672658369135633175184317291502925332063718587788210030630669259291170420025934335190967397625513<220> |
prime factors 素因数 | 2434338211328775203508885396980758189608028207612143670975626307620330884621115043<82> 603741583770726551810617039000515633375767210352187873562201531040788381067781278253543755534064447065409479359130386155054667245221236291<138> |
factorization results 素因数分解の結果 | Number: n N=1469711207141232370375853696586615946798072332174149182159647582129552211355797801716541788406621359110719547684914951587847672658369135633175184317291502925332063718587788210030630669259291170420025934335190967397625513 ( 220 digits) SNFS difficulty: 226 digits. Divisors found: Thu Oct 24 22:19:43 2019 p82 factor: 2434338211328775203508885396980758189608028207612143670975626307620330884621115043 Thu Oct 24 22:19:43 2019 p138 factor: 603741583770726551810617039000515633375767210352187873562201531040788381067781278253543755534064447065409479359130386155054667245221236291 Thu Oct 24 22:19:43 2019 elapsed time 13:54:39 (Msieve 1.54 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.131). Factorization parameters were as follows: # # N = 109x10^224-1 = 121(224) # n: 1469711207141232370375853696586615946798072332174149182159647582129552211355797801716541788406621359110719547684914951587847672658369135633175184317291502925332063718587788210030630669259291170420025934335190967397625513 m: 10000000000000000000000000000000000000 deg: 6 c6: 10900 c0: -1 skew: 0.21 # Murphy_E = 1.496e-12 type: snfs lss: 1 rlim: 41000000 alim: 41000000 lpbr: 30 lpba: 30 mfbr: 59 mfba: 59 rlambda: 2.7 alambda: 2.7 Factor base limits: 41000000/41000000 Large primes per side: 3 Large prime bits: 30/30 Max factor residue bits: 59/59 Sieved special-q in [100000, 74900000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 19126685 hash collisions in 114024111 relations (97872343 unique) Msieve: matrix is 5278290 x 5278515 (1853.2 MB) Sieving start time: 2019/10/22 22:37:18 Sieving end time : 2019/10/24 08:16:50 Total sieving time: 33hrs 39min 32secs. Total relation processing time: 12hrs 48min 45sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 27min 37sec. Prototype def-par.txt line would be: snfs,226,6,0,0,0,0,0,0,0,0,41000000,41000000,30,30,59,59,2.7,2.7,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- [ 0.149912] smpboot: CPU0: AMD Ryzen 7 1700 Eight-Core Processor (family: 0x17, model: 0x1, stepping: 0x1) [ 0.000000] Memory: 16284044K/16703460K available (12300K kernel code, 2481K rwdata, 4256K rodata, 2436K init, 2388K bss, 419416K reserved, 0K cma-reserved) [ 0.184564] x86/mm: Memory block size: 128MB [ 0.024000] Calibrating delay loop (skipped), value calculated using timer frequency.. 5988.54 BogoMIPS (lpj=11977096) [ 0.182216] smpboot: Total of 16 processors activated (95816.76 BogoMIPS) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 | Serge Batalov | December 10, 2014 19:47:50 UTC 2014 年 12 月 11 日 (木) 4 時 47 分 50 秒 (日本時間) | |
45 | 11e6 | 585 / 4409 | Cyp | June 14, 2015 07:23:16 UTC 2015 年 6 月 14 日 (日) 16 時 23 分 16 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 | Serge Batalov | December 10, 2014 19:47:50 UTC 2014 年 12 月 11 日 (木) 4 時 47 分 50 秒 (日本時間) | |
45 | 11e6 | 4586 | 585 | Cyp | August 1, 2015 05:28:08 UTC 2015 年 8 月 1 日 (土) 14 時 28 分 8 秒 (日本時間) |
4001 | Thomas Kozlowski | November 2, 2024 09:23:45 UTC 2024 年 11 月 2 日 (土) 18 時 23 分 45 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 280 | Cyp | December 7, 2014 04:23:52 UTC 2014 年 12 月 7 日 (日) 13 時 23 分 52 秒 (日本時間) | |
45 | 11e6 | 4593 | 591 | Cyp | August 1, 2015 04:54:06 UTC 2015 年 8 月 1 日 (土) 13 時 54 分 6 秒 (日本時間) |
4002 | Thomas Kozlowski | November 2, 2024 10:32:58 UTC 2024 年 11 月 2 日 (土) 19 時 32 分 58 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | December 10, 2014 20:34:22 UTC 2014 年 12 月 11 日 (木) 5 時 34 分 22 秒 (日本時間) |
composite number 合成数 | 78901262765775527272539157278777428157189122908700524839542790248860832769423951546980659357841156736275709687842597056891897720232021205457665044646772542844388335033827864472660853<182> |
prime factors 素因数 | 256252804720703927395909959119<30> 1791298163909738190281749557096653<34> 14361098134955779399399238467735333<35> 11969053155433907297495511823032086038553828157434564353287707467599368780150606980763<86> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2965877521 Step 1 took 13709ms Step 2 took 9174ms ********** Factor found in step 2: 1791298163909738190281749557096653 Found probable prime factor of 34 digits: 1791298163909738190281749557096653 -- Input number is 78901262765775527272539157278777428157189122908700524839542790248860832769423951546980659357841156736275709687842597056891897720232021205457665044646772542844388335033827864472660853 (182 digits) Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3371020432 Step 1 took 13706ms Step 2 took 9168ms ********** Factor found in step 2: 256252804720703927395909959119 Found probable prime factor of 30 digits: 256252804720703927395909959119 -- Input number is 78901262765775527272539157278777428157189122908700524839542790248860832769423951546980659357841156736275709687842597056891897720232021205457665044646772542844388335033827864472660853 (182 digits) Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=691147863 Step 1 took 13632ms Step 2 took 9186ms ********** Factor found in step 2: 14361098134955779399399238467735333 Found probable prime factor of 35 digits: 14361098134955779399399238467735333 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 / 2318 | Serge Batalov | December 10, 2014 19:47:50 UTC 2014 年 12 月 11 日 (木) 4 時 47 分 50 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | December 9, 2014 01:19:39 UTC 2014 年 12 月 9 日 (火) 10 時 19 分 39 秒 (日本時間) |
composite number 合成数 | 38516567954710169893400981147730119708786477221690410894040214830574805005457691670279803431225487649786162375249606795312003635398634110625943700085266494013500587112639052760984200786515384895356845401210126959795416952449<224> |
prime factors 素因数 | 256188366489969557564767483913<30> 9517192020613996445012252347609<31> 15797171961095055178442321589940089353405425744576494102211178960898726621451486452183227438396876595733529779787902093354225887980009080013572749906498698589558497<164> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1194628851 Step 1 took 18114ms ********** Factor found in step 1: 9517192020613996445012252347609 Found probable prime factor of 31 digits: 9517192020613996445012252347609 Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=541465092 Step 1 took 18355ms Step 2 took 12190ms ********** Factor found in step 2: 256188366489969557564767483913 Found probable prime factor of 30 digits: 256188366489969557564767483913 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2320 | Serge Batalov | December 9, 2014 00:57:51 UTC 2014 年 12 月 9 日 (火) 9 時 57 分 51 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 | Serge Batalov | December 10, 2014 19:47:51 UTC 2014 年 12 月 11 日 (木) 4 時 47 分 51 秒 (日本時間) | |
45 | 11e6 | 4587 | 585 | Cyp | August 1, 2015 02:45:59 UTC 2015 年 8 月 1 日 (土) 11 時 45 分 59 秒 (日本時間) |
4002 | Thomas Kozlowski | November 2, 2024 11:42:04 UTC 2024 年 11 月 2 日 (土) 20 時 42 分 4 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 280 | Cyp | December 10, 2014 09:33:25 UTC 2014 年 12 月 10 日 (水) 18 時 33 分 25 秒 (日本時間) | |
45 | 11e6 | 4593 | 591 | Cyp | June 4, 2015 06:15:00 UTC 2015 年 6 月 4 日 (木) 15 時 15 分 0 秒 (日本時間) |
4002 | Thomas Kozlowski | November 2, 2024 13:12:00 UTC 2024 年 11 月 2 日 (土) 22 時 12 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 280 | Cyp | December 10, 2014 20:34:28 UTC 2014 年 12 月 11 日 (木) 5 時 34 分 28 秒 (日本時間) | |
45 | 11e6 | 4591 | 591 | Cyp | July 4, 2015 08:05:30 UTC 2015 年 7 月 4 日 (土) 17 時 5 分 30 秒 (日本時間) |
4000 | Thomas Kozlowski | November 2, 2024 14:21:02 UTC 2024 年 11 月 2 日 (土) 23 時 21 分 2 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 280 | Cyp | December 10, 2014 20:13:43 UTC 2014 年 12 月 11 日 (木) 5 時 13 分 43 秒 (日本時間) | |
45 | 11e6 | 4592 | 125 | Cyp | January 8, 2015 17:40:12 UTC 2015 年 1 月 9 日 (金) 2 時 40 分 12 秒 (日本時間) |
466 | Cyp | July 31, 2015 22:59:14 UTC 2015 年 8 月 1 日 (土) 7 時 59 分 14 秒 (日本時間) | |||
4001 | Thomas Kozlowski | November 2, 2024 15:40:28 UTC 2024 年 11 月 3 日 (日) 0 時 40 分 28 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 280 | Cyp | December 10, 2014 12:11:38 UTC 2014 年 12 月 10 日 (水) 21 時 11 分 38 秒 (日本時間) | |
45 | 11e6 | 4593 | 591 | Cyp | January 25, 2015 08:55:11 UTC 2015 年 1 月 25 日 (日) 17 時 55 分 11 秒 (日本時間) |
4002 | Thomas Kozlowski | November 2, 2024 17:10:25 UTC 2024 年 11 月 3 日 (日) 2 時 10 分 25 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 | Serge Batalov | December 10, 2014 19:47:51 UTC 2014 年 12 月 11 日 (木) 4 時 47 分 51 秒 (日本時間) | |
45 | 11e6 | 4588 | 585 | Cyp | June 18, 2015 06:03:50 UTC 2015 年 6 月 18 日 (木) 15 時 3 分 50 秒 (日本時間) |
4003 | Thomas Kozlowski | November 2, 2024 18:40:28 UTC 2024 年 11 月 3 日 (日) 3 時 40 分 28 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 280 | Cyp | December 6, 2014 20:11:57 UTC 2014 年 12 月 7 日 (日) 5 時 11 分 57 秒 (日本時間) | |
45 | 11e6 | 4592 | 591 | Cyp | August 1, 2015 01:14:59 UTC 2015 年 8 月 1 日 (土) 10 時 14 分 59 秒 (日本時間) |
4001 | Thomas Kozlowski | November 2, 2024 19:59:25 UTC 2024 年 11 月 3 日 (日) 4 時 59 分 25 秒 (日本時間) |
name 名前 | Cyp |
---|---|
date 日付 | January 8, 2015 06:57:55 UTC 2015 年 1 月 8 日 (木) 15 時 57 分 55 秒 (日本時間) |
composite number 合成数 | 2220365242130370261100438051468422819729622531747392287905414228251882191303316747714389202859433583554400436668622582409763210684263098206622664423059542265111270931388289979931930617057588497347097<199> |
prime factors 素因数 | 15422902215363962712326603970879343<35> 143965461955564386043521207820174302882789678050716390131424530451809787639868421226877006542534013610083884951703835387769537106382231011469914135750115832288953079<165> |
factorization results 素因数分解の結果 | Run 29 out of 335: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=823289055 Step 1 took 69233ms Step 2 took 20461ms ********** Factor found in step 2: 15422902215363962712326603970879343 Found probable prime factor of 35 digits: 15422902215363962712326603970879343 Probable prime cofactor 143965461955564386043521207820174302882789678050716390131424530451809787639868421226877006542534013610083884951703835387769537106382231011469914135750115832288953079 has 165 digits |
software ソフトウェア | GMP-ECM 6.4.4 |
execution environment 実行環境 | Gentoo Linux, Intel(R) Core(TM) i7-3770K CPU |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 280 / 2218 | Cyp | December 8, 2014 12:24:44 UTC 2014 年 12 月 8 日 (月) 21 時 24 分 44 秒 (日本時間) | |
45 | 11e6 | 29 / 4413 | Cyp | January 8, 2015 06:57:54 UTC 2015 年 1 月 8 日 (木) 15 時 57 分 54 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2320 | Serge Batalov | December 9, 2014 00:57:56 UTC 2014 年 12 月 9 日 (火) 9 時 57 分 56 秒 (日本時間) | |
45 | 11e6 | 4004 | 1000 | Serge Batalov | December 18, 2014 00:19:01 UTC 2014 年 12 月 18 日 (木) 9 時 19 分 1 秒 (日本時間) |
1000 | Serge Batalov | December 18, 2014 01:48:51 UTC 2014 年 12 月 18 日 (木) 10 時 48 分 51 秒 (日本時間) | |||
1000 | Serge Batalov | December 21, 2014 10:24:58 UTC 2014 年 12 月 21 日 (日) 19 時 24 分 58 秒 (日本時間) | |||
1004 | Thomas Kozlowski | November 2, 2024 20:26:00 UTC 2024 年 11 月 3 日 (日) 5 時 26 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 | Serge Batalov | December 10, 2014 19:47:52 UTC 2014 年 12 月 11 日 (木) 4 時 47 分 52 秒 (日本時間) | |
45 | 11e6 | 4588 | 585 | Cyp | May 22, 2015 16:42:23 UTC 2015 年 5 月 23 日 (土) 1 時 42 分 23 秒 (日本時間) |
4003 | Thomas Kozlowski | November 2, 2024 22:09:25 UTC 2024 年 11 月 3 日 (日) 7 時 9 分 25 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2320 | Serge Batalov | December 9, 2014 00:57:57 UTC 2014 年 12 月 9 日 (火) 9 時 57 分 57 秒 (日本時間) | |
45 | 11e6 | 4004 | 1000 | Serge Batalov | December 18, 2014 00:19:03 UTC 2014 年 12 月 18 日 (木) 9 時 19 分 3 秒 (日本時間) |
1000 | Serge Batalov | December 18, 2014 01:48:52 UTC 2014 年 12 月 18 日 (木) 10 時 48 分 52 秒 (日本時間) | |||
1000 | Serge Batalov | December 21, 2014 10:24:59 UTC 2014 年 12 月 21 日 (日) 19 時 24 分 59 秒 (日本時間) | |||
1004 | Thomas Kozlowski | November 2, 2024 22:36:06 UTC 2024 年 11 月 3 日 (日) 7 時 36 分 6 秒 (日本時間) |
name 名前 | Cyp |
---|---|
date 日付 | May 25, 2015 05:29:38 UTC 2015 年 5 月 25 日 (月) 14 時 29 分 38 秒 (日本時間) |
composite number 合成数 | 51779872307927637784950403680689260195594732019485330237328623615895789761719651560336663553249523996523178662754098017451931019408661949637768157858073572726107654015820241546705567060483584132025983683542594191<212> |
prime factors 素因数 | 11418200956443505726140238984597007703319<41> |
composite cofactor 合成数の残り | 4534853827275415150378158993967213659473411036534529214991922740716441394409555981081893662785138186700670108512128225168409841494747376650011561449949163283643248167465289<172> |
factorization results 素因数分解の結果 | Run 127 out of 591: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=362932387 Step 1 took 70946ms Step 2 took 21009ms ********** Factor found in step 2: 11418200956443505726140238984597007703319 Found probable prime factor of 41 digits: 11418200956443505726140238984597007703319 Composite cofactor 4534853827275415150378158993967213659473411036534529214991922740716441394409555981081893662785138186700670108512128225168409841494747376650011561449949163283643248167465289 has 172 digits |
software ソフトウェア | GMP-ECM 6.4.4 |
execution environment 実行環境 | Gentoo Linux, Intel(R) Core(TM) i7-3770K CPU |
name 名前 | Thomas Kozlowski |
---|---|
date 日付 | November 3, 2024 03:58:57 UTC 2024 年 11 月 3 日 (日) 12 時 58 分 57 秒 (日本時間) |
composite number 合成数 | 4534853827275415150378158993967213659473411036534529214991922740716441394409555981081893662785138186700670108512128225168409841494747376650011561449949163283643248167465289<172> |
prime factors 素因数 | 2154903435827008564880198657514950119459333<43> |
composite cofactor 合成数の残り | 2104434821477292567768497804727425741324972682468422059439791385420017109080719301295157495499655482639945986073453459019045878133<130> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.6 [configured with GMP 6.3.0, --enable-asm-redc] [ECM] Input number is 4534853827275415150378158993967213659473411036534529214991922740716441394409555981081893662785138186700670108512128225168409841494747376650011561449949163283643248167465289 (172 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:3387883428 Step 1 took 27496ms Step 2 took 11128ms Run 2 out of 0: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:358109379 Step 1 took 24817ms Step 2 took 11375ms Run 3 out of 0: ... Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:651897968 Step 1 took 24220ms Step 2 took 11060ms Run 84 out of 0: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:2019428199 Step 1 took 25597ms Step 2 took 11186ms ** Factor found in step 2: 2154903435827008564880198657514950119459333 Found prime factor of 43 digits: 2154903435827008564880198657514950119459333 Composite cofactor 2104434821477292567768497804727425741324972682468422059439791385420017109080719301295157495499655482639945986073453459019045878133 has 130 digits |
execution environment 実行環境 | 2x Xeon E5-2698v4, 128GB DDR4, Ubuntu Server 24.04 |
name 名前 | Bob Backstrom |
---|---|
date 日付 | November 5, 2024 21:40:37 UTC 2024 年 11 月 6 日 (水) 6 時 40 分 37 秒 (日本時間) |
composite number 合成数 | 2104434821477292567768497804727425741324972682468422059439791385420017109080719301295157495499655482639945986073453459019045878133<130> |
prime factors 素因数 | 123461663635515410354998513682157063405360862521360231986487761<63> 17045249185123758111709289397492871202484199545963784417888732938853<68> |
factorization results 素因数分解の結果 | CADO-NFS STA:Tue Nov 5 20:50:38 AEDT 2024 (2104434821477292567768497804727425741324972682468422059439791385420017109080719301295157495499655482639945986073453459019045878133 - C130) ./cado-nfs.py -t 16 --no-colors 2104434821477292567768497804727425741324972682468422059439791385420017109080719301295157495499655482639945986073453459019045878133 2>&1 | tee -a log-14 Info:root: Using default parameter file ./parameters/factor/params.c130 Info:root: No database exists yet Info:root: Created temporary directory /tmp/cado.xm2k4dll Info:Database: Opened connection to database /tmp/cado.xm2k4dll/c130.db Info:root: Set tasks.threads=16 based on --server-threads 16 Info:root: tasks.threads = 16 [via tasks.threads] Info:root: tasks.polyselect.threads = 2 [via tasks.polyselect.threads] Info:root: tasks.sieve.las.threads = 2 [via tasks.sieve.las.threads] Info:root: tasks.linalg.bwc.threads = 16 [via tasks.threads] Info:root: tasks.sqrt.threads = 8 [via tasks.sqrt.threads] Info:root: slaves.scriptpath is /home/bob/Math/cado-nfs/build/TrigKey-2 Info:root: Command line parameters: ./cado-nfs.py -t 16 --no-colors 2104434821477292567768497804727425741324972682468422059439791385420017109080719301295157495499655482639945986073453459019045878133 Info:root: If this computation gets interrupted, it can be resumed with ./cado-nfs.py /tmp/cado.xm2k4dll/c130.parameters_snapshot.0 Info:Server Launcher: Adding TrigKey-2 to whitelist to allow clients on localhost to connect Info:HTTP server: Using non-threaded HTTPS server Info:HTTP server: Using whitelist: localhost,TrigKey-2 Info:Lattice Sieving: param rels_wanted is 30000000 Info:Complete Factorization / Discrete logarithm: Factoring 2104434821477292567768497804727425741324972682468422059439791385420017109080719301295157495499655482639945986073453459019045878133 Info:HTTP server: serving at https://TrigKey-2:39927 (0.0.0.0) === Info:Polynomial Selection (root optimized): Finished, best polynomial has Murphy_E = 1.706e-06 Info:Polynomial Selection (root optimized): Best polynomial is: n: 2104434821477292567768497804727425741324972682468422059439791385420017109080719301295157495499655482639945986073453459019045878133 skew: 95386.738 c0: -175880535970637018471970719700 c1: -6665877864665441337616555 c2: -229630499149682794230 c3: 1091818204453549 c4: 4073085624 c5: 55440 Y0: -11620551548482089004549882 Y1: 9965025294611784889 # MurphyE (Bf=5.369e+08,Bg=2.684e+08,area=2.517e+13) = 1.706e-06 # f(x) = 55440*x^5+4073085624*x^4+1091818204453549*x^3-229630499149682794230*x^2-6665877864665441337616555*x-175880535970637018471970719700 # g(x) = 9965025294611784889*x-11620551548482089004549882 === Info:Square Root: Starting Info:Square Root: Creating file of (a,b) values Info:Square Root: finished Info:Square Root: Factors: 17045249185123758111709289397492871202484199545963784417888732938853 123461663635515410354998513682157063405360862521360231986487761 Info:Complete Factorization / Discrete logarithm: Square Root Info:Square Root: Total cpu/real time for sqrt: 1352.36/110.228 Info:HTTP server: Got notification to stop serving Workunits Info:Quadratic Characters: Total cpu/real time for characters: 27.7/6.59656 Info:Filtering - Singleton removal: Total cpu/real time for purge: 252.84/153.73 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 33179757 Info:Lattice Sieving: Average J: 3800.24 for 249564 special-q, max bucket fill -bkmult 1.0,1s:1.195430 Info:Lattice Sieving: Total time: 63704.9s Info:Generate Free Relations: Total cpu/real time for freerel: 215.09/15.9163 Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 146.82/94.3412 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 93.89999999999999s Info:Filtering - Merging: Total cpu/real time for merge: 107.27/10.8649 Info:Filtering - Merging: Total cpu/real time for replay: 23.25/21.6758 Info:Linear Algebra: Total cpu/real time for bwc: 17112.1/1435.51 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 10213.68, WCT time 823.01, iteration CPU time 0.02, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (39000 iterations) Info:Linear Algebra: Lingen CPU time 76.06, WCT time 30.56 Info:Linear Algebra: Mksol: CPU time 5481.7, WCT time 460.07, iteration CPU time 0.02, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (21000 iterations) Info:Polynomial Selection (size optimized): Aggregate statistics: Info:Polynomial Selection (size optimized): potential collisions: 55661.1 Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 52777/37.370/47.654/59.460/2.221 Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 43965/36.470/41.827/53.490/1.548 Info:Polynomial Selection (size optimized): Total time: 5559.58 Info:Polynomial Selection (root optimized): Aggregate statistics: Info:Polynomial Selection (root optimized): Total time: 496.06 Info:Polynomial Selection (root optimized): Rootsieve time: 501.26 Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 763.26/436.687 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 342.8s Info:Square Root: Total cpu/real time for sqrt: 1352.36/110.228 Info:Generate Factor Base: Total cpu/real time for makefb: 0.97/0.339016 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire Complete Factorization 137750/10455.7 [02:54:16] Info:root: Cleaning up computation data in /tmp/cado.xm2k4dll 17045249185123758111709289397492871202484199545963784417888732938853 123461663635515410354998513682157063405360862521360231986487761 END:Tue Nov 5 23:44:56 AEDT 2024 (2104434821477292567768497804727425741324972682468422059439791385420017109080719301295157495499655482639945986073453459019045878133 - C130) |
software ソフトウェア | CADO-NFS |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 280 | Cyp | December 7, 2014 01:15:22 UTC 2014 年 12 月 7 日 (日) 10 時 15 分 22 秒 (日本時間) | |
45 | 11e6 | 591 / 4413 | Cyp | May 25, 2015 05:29:38 UTC 2015 年 5 月 25 日 (月) 14 時 29 分 38 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 280 | Cyp | December 7, 2014 16:43:55 UTC 2014 年 12 月 8 日 (月) 1 時 43 分 55 秒 (日本時間) | |
45 | 11e6 | 4591 | 335 | Cyp | January 8, 2015 08:08:16 UTC 2015 年 1 月 8 日 (木) 17 時 8 分 16 秒 (日本時間) |
256 | Cyp | July 6, 2015 06:26:26 UTC 2015 年 7 月 6 日 (月) 15 時 26 分 26 秒 (日本時間) | |||
4000 | Thomas Kozlowski | November 3, 2024 00:47:38 UTC 2024 年 11 月 3 日 (日) 9 時 47 分 38 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 280 | Cyp | December 8, 2014 20:05:28 UTC 2014 年 12 月 9 日 (火) 5 時 5 分 28 秒 (日本時間) | |
45 | 11e6 | 4591 | 591 | Cyp | July 31, 2015 22:40:37 UTC 2015 年 8 月 1 日 (土) 7 時 40 分 37 秒 (日本時間) |
4000 | Thomas Kozlowski | November 3, 2024 02:06:21 UTC 2024 年 11 月 3 日 (日) 11 時 6 分 21 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | December 21, 2014 00:16:07 UTC 2014 年 12 月 21 日 (日) 9 時 16 分 7 秒 (日本時間) |
composite number 合成数 | 620987084608065995544844952628370564072763734354258888945860181054766503159058150597913711280885561765426401636215511004005081839261196283192899098144445014157366103220587146137061534692668364411173209819571917710665595606373948167518387484546537<246> |
prime factors 素因数 | 247694206518439525605616878147366392442847864054547<51> 2507071494875019559732758002810731674544307040127598281707701778554394483759018258825994573060547634003799746996748483866495701230778233064975220920845033109818767961394566138175273799564461377171<196> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=58553269330, polynomial Dickson(12), sigma=1620913716 Step 1 took 76972ms Step 2 took 32318ms ********** Factor found in step 2: 247694206518439525605616878147366392442847864054547 Found probable prime factor of 51 digits: 247694206518439525605616878147366392442847864054547 Probable prime cofactor |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2600 | 280 | Cyp | December 6, 2014 20:32:47 UTC 2014 年 12 月 7 日 (日) 5 時 32 分 47 秒 (日本時間) |
2320 | Serge Batalov | December 9, 2014 19:26:07 UTC 2014 年 12 月 10 日 (水) 4 時 26 分 7 秒 (日本時間) | |||
45 | 11e6 | 4000 | 1000 | Serge Batalov | December 18, 2014 00:19:06 UTC 2014 年 12 月 18 日 (木) 9 時 19 分 6 秒 (日本時間) |
1000 | Serge Batalov | December 18, 2014 01:48:55 UTC 2014 年 12 月 18 日 (木) 10 時 48 分 55 秒 (日本時間) | |||
2000 | Serge Batalov | December 20, 2014 23:59:19 UTC 2014 年 12 月 21 日 (日) 8 時 59 分 19 秒 (日本時間) |
name 名前 | Cyp |
---|---|
date 日付 | December 10, 2014 00:43:26 UTC 2014 年 12 月 10 日 (水) 9 時 43 分 26 秒 (日本時間) |
composite number 合成数 | 277333154211736484652154255244713432160621185555980460479898307784334544185150666960792470582967011857391730027115040591141979054477136680210193087483852976789759333341984092272048049368354658726287697272288489580033641274908142933945603518925189<246> |
prime factors 素因数 | 286468870452443683734420007511525462720971<42> |
composite cofactor 合成数の残り | 968109218197850201711165014192916817068718858131551382361754682624006280014174068427563684220933256923761779071950119965532761856753183145305749228789396366915449371521066274106263664414620187514801534959<204> |
factorization results 素因数分解の結果 | Run 95 out of 280: Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3991026340 Step 1 took 24757ms Step 2 took 7748ms ********** Factor found in step 2: 286468870452443683734420007511525462720971 Found probable prime factor of 42 digits: 286468870452443683734420007511525462720971 Composite cofactor 968109218197850201711165014192916817068718858131551382361754682624006280014174068427563684220933256923761779071950119965532761856753183145305749228789396366915449371521066274106263664414620187514801534959 has 204 digits |
software ソフトウェア | GMP-ECM 6.4.4 |
execution environment 実行環境 | Gentoo Linux, Intel(R) Core(TM) i7-3770K CPU |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1280 | 280 | Cyp | December 10, 2014 00:43:25 UTC 2014 年 12 月 10 日 (水) 9 時 43 分 25 秒 (日本時間) |
1000 | Dmitry Domanov | December 17, 2014 13:31:05 UTC 2014 年 12 月 17 日 (水) 22 時 31 分 5 秒 (日本時間) | |||
45 | 11e6 | 4202 | 600 | Dmitry Domanov | April 27, 2015 14:04:53 UTC 2015 年 4 月 27 日 (月) 23 時 4 分 53 秒 (日本時間) |
3602 | Thomas Kozlowski | November 3, 2024 03:17:33 UTC 2024 年 11 月 3 日 (日) 12 時 17 分 33 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | November 13, 2015 20:48:52 UTC 2015 年 11 月 14 日 (土) 5 時 48 分 52 秒 (日本時間) |
composite number 合成数 | 110101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101<252> |
prime factors 素因数 | 11112099785483967207492685934467743509<38> |
composite cofactor 合成数の残り | 9908209269758177629482383195255554923738204358319991907082027252326704855392165138817319423983797457861731591015071443761463444660403093196424098000711478181218373899174529739321356016242456838859756160044699904289<214> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=4033186397 Step 1 took 31402ms Step 2 took 10084ms ********** Factor found in step 2: 11112099785483967207492685934467743509 Found probable prime factor of 38 digits: 11112099785483967207492685934467743509 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 13, 2015 06:00:00 UTC 2015 年 11 月 13 日 (金) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 904 | Makoto Kamada | November 13, 2015 06:00:00 UTC 2015 年 11 月 13 日 (金) 15 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2950 | 600 | Dmitry Domanov | November 13, 2015 18:01:48 UTC 2015 年 11 月 14 日 (土) 3 時 1 分 48 秒 (日本時間) |
2350 | Ignacio Santos | December 22, 2021 20:13:51 UTC 2021 年 12 月 23 日 (木) 5 時 13 分 51 秒 (日本時間) | |||
45 | 11e6 | 3802 | Thomas Kozlowski | November 3, 2024 04:42:54 UTC 2024 年 11 月 3 日 (日) 13 時 42 分 54 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 13, 2015 06:00:00 UTC 2015 年 11 月 13 日 (金) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2950 | 600 | Dmitry Domanov | November 13, 2015 18:02:01 UTC 2015 年 11 月 14 日 (土) 3 時 2 分 1 秒 (日本時間) |
2350 | Ignacio Santos | December 22, 2021 20:24:32 UTC 2021 年 12 月 23 日 (木) 5 時 24 分 32 秒 (日本時間) | |||
45 | 11e6 | 4001 | Thomas Kozlowski | November 3, 2024 06:25:04 UTC 2024 年 11 月 3 日 (日) 15 時 25 分 4 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | November 13, 2015 17:45:22 UTC 2015 年 11 月 14 日 (土) 2 時 45 分 22 秒 (日本時間) |
composite number 合成数 | 38258343995653009736537950504724080647606359688032337215923459725213129688029178270088956265693599031565485456090530052508348655098115629140741812442364594507007366696785460228749095707880625683275596578328150380703867185000538951258764451343582147<248> |
prime factors 素因数 | 148512005422566103185697097539819027<36> 257611119631677471302576306164033523664257816867042067159982560849316829135626863210255799040921333636376891748697825108393920556932477402061505772663360968705092210936831388761171780197518054429409376035527004561<213> |
factorization results 素因数分解の結果 | Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1:1002913612 Step 1 took 7531ms Step 2 took 4812ms ********** Factor found in step 2: 148512005422566103185697097539819027 Found probable prime factor of 36 digits: 148512005422566103185697097539819027 Probable prime cofactor 257611119631677471302576306164033523664257816867042067159982560849316829135626863210255799040921333636376891748697825108393920556932477402061505772663360968705092210936831388761171780197518054429409376035527004561 has 213 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 13, 2015 06:00:00 UTC 2015 年 11 月 13 日 (金) 15 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 13, 2015 06:00:00 UTC 2015 年 11 月 13 日 (金) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 904 | Makoto Kamada | November 13, 2015 06:00:00 UTC 2015 年 11 月 13 日 (金) 15 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 600 | Dmitry Domanov | November 13, 2015 18:02:13 UTC 2015 年 11 月 14 日 (土) 3 時 2 分 13 秒 (日本時間) | |
45 | 11e6 | 4400 | 800 | Dmitry Domanov | February 5, 2016 10:10:47 UTC 2016 年 2 月 5 日 (金) 19 時 10 分 47 秒 (日本時間) |
3600 | Thomas Kozlowski | November 3, 2024 08:08:10 UTC 2024 年 11 月 3 日 (日) 17 時 8 分 10 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 13, 2015 06:00:00 UTC 2015 年 11 月 13 日 (金) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2950 | 600 | Dmitry Domanov | November 13, 2015 18:02:26 UTC 2015 年 11 月 14 日 (土) 3 時 2 分 26 秒 (日本時間) |
2350 | Ignacio Santos | December 22, 2021 20:43:23 UTC 2021 年 12 月 23 日 (木) 5 時 43 分 23 秒 (日本時間) | |||
45 | 11e6 | 4002 | Thomas Kozlowski | November 3, 2024 09:50:42 UTC 2024 年 11 月 3 日 (日) 18 時 50 分 42 秒 (日本時間) |
name 名前 | Thomas Kozlowski |
---|---|
date 日付 | November 3, 2024 19:48:30 UTC 2024 年 11 月 4 日 (月) 4 時 48 分 30 秒 (日本時間) |
composite number 合成数 | 51645250521954313227174279435055483244142051224716147947095831509165318086090656620873857680275160240738924504179529221099468737957248102011420272198176734646353102891805537609755691988214072067750962547389322888603839177206036997418340647866061<245> |
prime factors 素因数 | 49205959359362216586473958462139764337457394457439<50> 1049573084121323664230052162262601265570975022374590554489298476309596330584347706595863634750589927071632053107613507774055998574939535689322359488725783104804427309420714907880389372246822236499<196> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.6 [configured with GMP 6.3.0, --enable-asm-redc] [ECM] Input number is 51645250521954313227174279435055483244142051224716147947095831509165318086090656620873857680275160240738924504179529221099468737957248102011420272198176734646353102891805537609755691988214072067750962547389322888603839177206036997418340647866061 (245 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:3747438351 Step 1 took 48484ms Step 2 took 16662ms Run 2 out of 0: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:3479538643 Step 1 took 44388ms Step 2 took 16072ms Run 3 out of 0: ... Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:280368761 Step 1 took 43589ms Step 2 took 16126ms Run 25 out of 0: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:795775945 Step 1 took 44372ms Step 2 took 16426ms ** Factor found in step 2: 49205959359362216586473958462139764337457394457439 Found prime factor of 50 digits: 49205959359362216586473958462139764337457394457439 Prime cofactor 1049573084121323664230052162262601265570975022374590554489298476309596330584347706595863634750589927071632053107613507774055998574939535689322359488725783104804427309420714907880389372246822236499 has 196 digits |
execution environment 実行環境 | 2x Xeon E5-2698v4, 128GB DDR4, Ubuntu Server 24.04 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 13, 2015 06:00:00 UTC 2015 年 11 月 13 日 (金) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2950 | 600 | Dmitry Domanov | November 13, 2015 18:02:37 UTC 2015 年 11 月 14 日 (土) 3 時 2 分 37 秒 (日本時間) |
2350 | Ignacio Santos | December 22, 2021 21:10:03 UTC 2021 年 12 月 23 日 (木) 6 時 10 分 3 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 13, 2015 06:00:00 UTC 2015 年 11 月 13 日 (金) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2950 | 600 | Dmitry Domanov | November 13, 2015 18:02:48 UTC 2015 年 11 月 14 日 (土) 3 時 2 分 48 秒 (日本時間) |
2350 | Ignacio Santos | December 22, 2021 21:11:20 UTC 2021 年 12 月 23 日 (木) 6 時 11 分 20 秒 (日本時間) | |||
45 | 11e6 | 4002 | Thomas Kozlowski | November 3, 2024 11:59:12 UTC 2024 年 11 月 3 日 (日) 20 時 59 分 12 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | November 13, 2015 20:48:12 UTC 2015 年 11 月 14 日 (土) 5 時 48 分 12 秒 (日本時間) |
composite number 合成数 | 906524492730000570839859428723151156725032424855655875756348235092705398664965713763898986787114932155177468073092447623579351133087451864297996207426093068353587678664006323126030107036635543349498776570747745717468821415182387025766937<237> |
prime factors 素因数 | 3328794383952177053786914334701<31> 272328172956634051569426232613844300889885424528445360106351322911433037657401684604745585431446903698780548944485222224662964367753984552586648367860760971025741734401598496450628935624877554428481975283037<207> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3363356995 Step 1 took 31216ms Step 2 took 10214ms ********** Factor found in step 2: 3328794383952177053786914334701 Found probable prime factor of 31 digits: 3328794383952177053786914334701 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 13, 2015 06:00:00 UTC 2015 年 11 月 13 日 (金) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 600 / 2336 | Dmitry Domanov | November 13, 2015 18:02:59 UTC 2015 年 11 月 14 日 (土) 3 時 2 分 59 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | November 13, 2015 19:18:50 UTC 2015 年 11 月 14 日 (土) 4 時 18 分 50 秒 (日本時間) |
composite number 合成数 | 425859051498512798389063223225228342595494561488512965057470738445557401943003346977726891817315537707680412207176539697964303494327826053789464583226807437696137273509399081523025348887173781234790319842334811267168389219615698358702793630627807<246> |
prime factors 素因数 | 380669802826103939306531264041<30> 1118709832870699311508894801007070695559093365299529560861739904689189055800609377063759584278301685135878205189318689096795670248212510177442813844958768249368098279650804044496265868890747483855970999451887846870727<217> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=4236976777 Step 1 took 26629ms Step 2 took 8917ms ********** Factor found in step 2: 380669802826103939306531264041 Found probable prime factor of 30 digits: 380669802826103939306531264041 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 13, 2015 06:00:00 UTC 2015 年 11 月 13 日 (金) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 600 / 2336 | Dmitry Domanov | November 13, 2015 18:03:10 UTC 2015 年 11 月 14 日 (土) 3 時 3 分 10 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 10, 2017 22:56:55 UTC 2017 年 1 月 11 日 (水) 7 時 56 分 55 秒 (日本時間) |
composite number 合成数 | 535134465223337882844536592522513657550266859847846937268499452156979982441939834130153456266386196714960621562231290934092592999929929745180229486021583545165594778139269940835380809819<186> |
prime factors 素因数 | 3843617012665525626484005986416728667016739309547<49> 139226791706862932646024106556159663396811738328143843840608687038467003377683929193709849330631129813713622430128601183001441040026660177<138> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=4027368958 Step 1 took 70579ms Step 2 took 22655ms ********** Factor found in step 2: 3843617012665525626484005986416728667016739309547 Found probable prime factor of 49 digits: 3843617012665525626484005986416728667016739309547 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 13, 2015 06:00:00 UTC 2015 年 11 月 13 日 (金) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 600 | Dmitry Domanov | November 13, 2015 18:03:26 UTC 2015 年 11 月 14 日 (土) 3 時 3 分 26 秒 (日本時間) | |
45 | 11e6 | 600 / 4346 | Dmitry Domanov | January 10, 2017 18:51:48 UTC 2017 年 1 月 11 日 (水) 3 時 51 分 48 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 13, 2015 06:00:00 UTC 2015 年 11 月 13 日 (金) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2950 | 600 | Dmitry Domanov | November 13, 2015 20:43:19 UTC 2015 年 11 月 14 日 (土) 5 時 43 分 19 秒 (日本時間) |
2350 | Ignacio Santos | December 22, 2021 21:29:12 UTC 2021 年 12 月 23 日 (木) 6 時 29 分 12 秒 (日本時間) | |||
45 | 11e6 | 4000 | Thomas Kozlowski | November 3, 2024 13:29:15 UTC 2024 年 11 月 3 日 (日) 22 時 29 分 15 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | November 13, 2015 22:01:12 UTC 2015 年 11 月 14 日 (土) 7 時 1 分 12 秒 (日本時間) |
composite number 合成数 | 122927888503723733958662110273158048068432104294845995822521360883550732665749687336966350312040408468386268831994024081777180503608584548181928997515657242916534196721241544019311829139687304623272473113136617475798024484128514284437110760449574377437<252> |
prime factors 素因数 | 282851303232079881307270954053771407<36> 434602517644619912703239660917971506904793074344857976849153754882225167227360082290091531004525457513369914337518392216947360682259041682172291319584752311858993115240324297420475253170205722391640195242019669614291<216> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=234023569 Step 1 took 36426ms Step 2 took 11554ms ********** Factor found in step 2: 282851303232079881307270954053771407 Found probable prime factor of 36 digits: 282851303232079881307270954053771407 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 13, 2015 06:00:00 UTC 2015 年 11 月 13 日 (金) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 600 / 2336 | Dmitry Domanov | November 13, 2015 19:20:42 UTC 2015 年 11 月 14 日 (土) 4 時 20 分 42 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | November 13, 2015 22:02:55 UTC 2015 年 11 月 14 日 (土) 7 時 2 分 55 秒 (日本時間) |
composite number 合成数 | 1187437816596679644082994955833147036955288057506269247615749535940740262153036460781718251466514386850310689260861665057226801139989386541154372139511341366052113538380904169110360637410151119566034435865423189673563282662068405849<232> |
prime factors 素因数 | 46204078564929426284033709250031<32> |
composite cofactor 合成数の残り | 25699848443639087598097911774487280804962088635462126173760904944275337795302153075211068658782245209237128801912362695641751257510623329256457487590005504084502816845517740188133227521140175438311479<200> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=987579513 Step 1 took 41611ms Step 2 took 14351ms ********** Factor found in step 2: 46204078564929426284033709250031 Found probable prime factor of 32 digits: 46204078564929426284033709250031 |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | November 14, 2015 16:39:49 UTC 2015 年 11 月 15 日 (日) 1 時 39 分 49 秒 (日本時間) |
composite number 合成数 | 25699848443639087598097911774487280804962088635462126173760904944275337795302153075211068658782245209237128801912362695641751257510623329256457487590005504084502816845517740188133227521140175438311479<200> |
prime factors 素因数 | 57792338609075512129730844373163<32> |
composite cofactor 合成数の残り | 444693000182610206414699962571216041600207090215691638544051663800385431601843796084783381296401529939115166192453720481184680209872414454548746921994442636137773741733<168> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1553486795 Step 1 took 20819ms Step 2 took 7663ms ********** Factor found in step 2: 57792338609075512129730844373163 Found probable prime factor of 32 digits: 57792338609075512129730844373163 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 13, 2015 06:00:00 UTC 2015 年 11 月 13 日 (金) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 600 | Dmitry Domanov | November 13, 2015 20:43:42 UTC 2015 年 11 月 14 日 (土) 5 時 43 分 42 秒 (日本時間) | |
45 | 11e6 | 1400 | 600 | Dmitry Domanov | November 19, 2015 08:32:40 UTC 2015 年 11 月 19 日 (木) 17 時 32 分 40 秒 (日本時間) |
800 | Dmitry Domanov | February 10, 2016 13:37:49 UTC 2016 年 2 月 10 日 (水) 22 時 37 分 49 秒 (日本時間) | |||
50 | 43e6 | 2392 / 6927 | 600 | Dmitry Domanov | February 25, 2016 13:28:31 UTC 2016 年 2 月 25 日 (木) 22 時 28 分 31 秒 (日本時間) |
1792 | Dmitry Domanov | June 16, 2024 22:00:33 UTC 2024 年 6 月 17 日 (月) 7 時 0 分 33 秒 (日本時間) | |||
55 | 11e7 | 120 / 16824 | Dmitry Domanov | February 28, 2016 19:25:37 UTC 2016 年 2 月 29 日 (月) 4 時 25 分 37 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | November 13, 2015 20:42:13 UTC 2015 年 11 月 14 日 (土) 5 時 42 分 13 秒 (日本時間) |
composite number 合成数 | 13795390314623493423142589913671231801791881982334306604448190715575755044493297845008156999135573249092858164403083586143353089851022440923455833868062912042363238955144731363250345833981969804548428780981092721476132076307492921952262886982846887620725485654692521<266> |
prime factors 素因数 | 65227152741393826896229881642667<32> |
composite cofactor 合成数の残り | 211497662167136046188918695015274817806214035210727924324005308149225081671160039337306908875034445661653536723198986156300005454953431132255118996990826471417832693686668689036851233779910617348225812536463934786507292299206005613563<234> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1260229496 Step 1 took 32333ms Step 2 took 10973ms ********** Factor found in step 2: 65227152741393826896229881642667 Found probable prime factor of 32 digits: 65227152741393826896229881642667 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 13, 2015 06:00:00 UTC 2015 年 11 月 13 日 (金) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2950 | 600 | Dmitry Domanov | November 13, 2015 19:20:09 UTC 2015 年 11 月 14 日 (土) 4 時 20 分 9 秒 (日本時間) |
2350 | Ignacio Santos | December 22, 2021 22:01:49 UTC 2021 年 12 月 23 日 (木) 7 時 1 分 49 秒 (日本時間) | |||
45 | 11e6 | 4000 | Thomas Kozlowski | November 3, 2024 15:11:11 UTC 2024 年 11 月 4 日 (月) 0 時 11 分 11 秒 (日本時間) |
name 名前 | Thomas Kozlowski |
---|---|
date 日付 | November 3, 2024 19:49:06 UTC 2024 年 11 月 4 日 (月) 4 時 49 分 6 秒 (日本時間) |
composite number 合成数 | 52625509431148934397017396709721126120641893784016578983861294010557447832984566476911178932189841613326850161903127589801297850968248920640766962589087885845138129861207762981933875322459297405606078574840834633852398022841706136311<233> |
prime factors 素因数 | 16829480885529710071841911757515067560304325187<47> |
composite cofactor 合成数の残り | 3126983523086400875065067401775275704812532758375267797548902296449656092803494092668511111298101717189595685055802062583426145829587133533222970183288530457226377192134286607122103272253<187> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.6 [configured with GMP 6.3.0, --enable-asm-redc] [ECM] Input number is 52625509431148934397017396709721126120641893784016578983861294010557447832984566476911178932189841613326850161903127589801297850968248920640766962589087885845138129861207762981933875322459297405606078574840834633852398022841706136311 (233 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:3747696336 Step 1 took 48409ms Step 2 took 16930ms Run 2 out of 0: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:4051414412 Step 1 took 43919ms Step 2 took 17746ms Run 3 out of 0: ... Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:1064535309 Step 1 took 45527ms Step 2 took 15943ms Run 54 out of 0: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:3302812017 Step 1 took 46876ms Step 2 took 15855ms ** Factor found in step 2: 16829480885529710071841911757515067560304325187 Found prime factor of 47 digits: 16829480885529710071841911757515067560304325187 Composite cofactor 3126983523086400875065067401775275704812532758375267797548902296449656092803494092668511111298101717189595685055802062583426145829587133533222970183288530457226377192134286607122103272253 has 187 digits |
execution environment 実行環境 | 2x Xeon E5-2698v4, 128GB DDR4, Ubuntu Server 24.04 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 13, 2015 06:00:00 UTC 2015 年 11 月 13 日 (金) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2950 | 600 | Dmitry Domanov | November 13, 2015 20:44:17 UTC 2015 年 11 月 14 日 (土) 5 時 44 分 17 秒 (日本時間) |
2350 | Ignacio Santos | December 22, 2021 22:02:45 UTC 2021 年 12 月 23 日 (木) 7 時 2 分 45 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 13, 2015 06:00:00 UTC 2015 年 11 月 13 日 (金) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2950 | 600 | Dmitry Domanov | November 13, 2015 20:44:48 UTC 2015 年 11 月 14 日 (土) 5 時 44 分 48 秒 (日本時間) |
2350 | Ignacio Santos | December 22, 2021 22:16:48 UTC 2021 年 12 月 23 日 (木) 7 時 16 分 48 秒 (日本時間) | |||
45 | 11e6 | 4000 | Thomas Kozlowski | November 3, 2024 17:36:00 UTC 2024 年 11 月 4 日 (月) 2 時 36 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 13, 2015 06:00:00 UTC 2015 年 11 月 13 日 (金) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2950 | 600 | Dmitry Domanov | November 13, 2015 22:57:04 UTC 2015 年 11 月 14 日 (土) 7 時 57 分 4 秒 (日本時間) |
2350 | Ignacio Santos | December 22, 2021 22:37:45 UTC 2021 年 12 月 23 日 (木) 7 時 37 分 45 秒 (日本時間) | |||
45 | 11e6 | 4001 | Thomas Kozlowski | November 3, 2024 19:30:06 UTC 2024 年 11 月 4 日 (月) 4 時 30 分 6 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 13, 2015 06:00:00 UTC 2015 年 11 月 13 日 (金) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2950 | 600 | Dmitry Domanov | March 4, 2016 08:04:44 UTC 2016 年 3 月 4 日 (金) 17 時 4 分 44 秒 (日本時間) |
2350 | Ignacio Santos | December 22, 2021 22:52:08 UTC 2021 年 12 月 23 日 (木) 7 時 52 分 8 秒 (日本時間) | |||
45 | 11e6 | 4000 | Thomas Kozlowski | November 3, 2024 21:24:05 UTC 2024 年 11 月 4 日 (月) 6 時 24 分 5 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | March 4, 2016 08:30:51 UTC 2016 年 3 月 4 日 (金) 17 時 30 分 51 秒 (日本時間) |
composite number 合成数 | 1189198235099661699584638278379395619284528195959680188475165023112392369793084478506366186146266139096717465234988030963981962160090468537686059548917576434792958029341014024735818572816958524777710019223102818447889155741291591832596406881859<244> |
prime factors 素因数 | 297939191706759391945002574324799<33> |
composite cofactor 合成数の残り | 3991412570757411293616927050084043681455793178217542129836059592416083821872856192575690567086671523256394158042942957110387940046853739069692125359290872199164337375955735089913531144056130652988215568691954941<211> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3477963427 Step 1 took 34517ms Step 2 took 13739ms ********** Factor found in step 2: 297939191706759391945002574324799 Found probable prime factor of 33 digits: 297939191706759391945002574324799 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 13, 2015 06:00:00 UTC 2015 年 11 月 13 日 (金) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2950 | 600 | Dmitry Domanov | March 4, 2016 08:05:01 UTC 2016 年 3 月 4 日 (金) 17 時 5 分 1 秒 (日本時間) |
2350 | Ignacio Santos | December 23, 2021 12:57:12 UTC 2021 年 12 月 23 日 (木) 21 時 57 分 12 秒 (日本時間) | |||
45 | 11e6 | 4000 | Thomas Kozlowski | November 3, 2024 22:44:25 UTC 2024 年 11 月 4 日 (月) 7 時 44 分 25 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 13, 2015 06:00:00 UTC 2015 年 11 月 13 日 (金) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2950 | 600 | Dmitry Domanov | March 4, 2016 08:05:22 UTC 2016 年 3 月 4 日 (金) 17 時 5 分 22 秒 (日本時間) |
2350 | Ignacio Santos | December 23, 2021 13:14:12 UTC 2021 年 12 月 23 日 (木) 22 時 14 分 12 秒 (日本時間) | |||
45 | 11e6 | 4002 | Thomas Kozlowski | November 4, 2024 00:38:42 UTC 2024 年 11 月 4 日 (月) 9 時 38 分 42 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 13, 2015 06:00:00 UTC 2015 年 11 月 13 日 (金) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2950 | 600 | Dmitry Domanov | March 4, 2016 08:05:56 UTC 2016 年 3 月 4 日 (金) 17 時 5 分 56 秒 (日本時間) |
2350 | Ignacio Santos | December 23, 2021 13:24:53 UTC 2021 年 12 月 23 日 (木) 22 時 24 分 53 秒 (日本時間) | |||
45 | 11e6 | 4000 | Thomas Kozlowski | November 4, 2024 02:21:16 UTC 2024 年 11 月 4 日 (月) 11 時 21 分 16 秒 (日本時間) |
name 名前 | Thomas Kozlowski |
---|---|
date 日付 | November 4, 2024 12:27:24 UTC 2024 年 11 月 4 日 (月) 21 時 27 分 24 秒 (日本時間) |
composite number 合成数 | 1290413353318507554430186300366702919366592058987441793273153247489690319338720511968217583163722741536004586788773111752370102655950951008369231558314740612071821259142151094669924358950211885982960617102572702136913<217> |
prime factors 素因数 | 4408692010133728377978785789966076276873003841<46> |
composite cofactor 合成数の残り | 292697550736678833169796971645954538316598489332705005334510517927861545472910584740579302411340149404763705116469452406091640787622275255768119500003522275143369406251793<171> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.6 [configured with GMP 6.3.0, --enable-asm-redc] [ECM] Input number is 1290413353318507554430186300366702919366592058987441793273153247489690319338720511968217583163722741536004586788773111752370102655950951008369231558314740612071821259142151094669924358950211885982960617102572702136913 (217 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:4066421511 Step 1 took 39984ms Step 2 took 15645ms Run 2 out of 0: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:1168613158 Step 1 took 37328ms Step 2 took 14477ms Run 3 out of 0: ... Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:1507720887 Step 1 took 37502ms Step 2 took 14757ms Run 72 out of 0: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:4061274231 Step 1 took 39028ms Step 2 took 14448ms ** Factor found in step 2: 4408692010133728377978785789966076276873003841 Found prime factor of 46 digits: 4408692010133728377978785789966076276873003841 Composite cofactor 292697550736678833169796971645954538316598489332705005334510517927861545472910584740579302411340149404763705116469452406091640787622275255768119500003522275143369406251793 has 171 digits |
execution environment 実行環境 | 2x Xeon E5-2698v4, 128GB DDR4, Ubuntu Server 24.04 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 13, 2015 06:00:00 UTC 2015 年 11 月 13 日 (金) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2950 | 600 | Dmitry Domanov | November 13, 2015 20:46:12 UTC 2015 年 11 月 14 日 (土) 5 時 46 分 12 秒 (日本時間) |
2350 | Ignacio Santos | December 23, 2021 13:37:33 UTC 2021 年 12 月 23 日 (木) 22 時 37 分 33 秒 (日本時間) | |||
45 | 11e6 | 3584 | Dmitry Domanov | November 4, 2024 15:48:47 UTC 2024 年 11 月 5 日 (火) 0 時 48 分 47 秒 (日本時間) | |
50 | 43e6 | 1792 / 6637 | Dmitry Domanov | November 10, 2024 21:25:01 UTC 2024 年 11 月 11 日 (月) 6 時 25 分 1 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 13, 2015 06:00:00 UTC 2015 年 11 月 13 日 (金) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 600 | Dmitry Domanov | November 14, 2015 09:48:32 UTC 2015 年 11 月 14 日 (土) 18 時 48 分 32 秒 (日本時間) | |
45 | 11e6 | 4400 | 800 | Dmitry Domanov | January 23, 2016 11:33:37 UTC 2016 年 1 月 23 日 (土) 20 時 33 分 37 秒 (日本時間) |
3600 | Thomas Kozlowski | November 4, 2024 05:20:07 UTC 2024 年 11 月 4 日 (月) 14 時 20 分 7 秒 (日本時間) |
name 名前 | KTakahashi |
---|---|
date 日付 | November 13, 2015 22:27:48 UTC 2015 年 11 月 14 日 (土) 7 時 27 分 48 秒 (日本時間) |
composite number 合成数 | 32379279417273454325602301700890297953258430975164491913570021785212091232081314387427269677508807345952391911755006697488980865305090521873965390310749516203447302383600209292332287400744948936834013471889617891739928509<221> |
prime factors 素因数 | 7913341939387410771280507011329929<34> |
composite cofactor 合成数の残り | 4091732628930224852748502808578213803830265894266182948192021205493140061744905266449923017648576452926742278179084406234462534382682075334906177960076718222229661619047978409116838000021<187> |
factorization results 素因数分解の結果 | GMP-ECM 6.4.4 [configured with GMP 6.0.0] [ECM] Input number is 32379279417273454325602301700890297953258430975164491913570021785212091232081314387427269677508807345952391911755006697488980865305090521873965390310749516203447302383600209292332287400744948936834013471889617891739928509 (221 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2911335535 Step 1 took 8034ms Step 2 took 4431ms ********** Factor found in step 2: 7913341939387410771280507011329929 Found probable prime factor of 34 digits: 7913341939387410771280507011329929 Composite cofactor 4091732628930224852748502808578213803830265894266182948192021205493140061744905266449923017648576452926742278179084406234462534382682075334906177960076718222229661619047978409116838000021 has 187 digits |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | April 16, 2024 12:46:20 UTC 2024 年 4 月 16 日 (火) 21 時 46 分 20 秒 (日本時間) |
composite number 合成数 | 4091732628930224852748502808578213803830265894266182948192021205493140061744905266449923017648576452926742278179084406234462534382682075334906177960076718222229661619047978409116838000021<187> |
prime factors 素因数 | 39188960746034172230566558453192064237900601317<47> |
composite cofactor 合成数の残り | 104410337784839019232005102777710796519708780103359931010232410178940004211969587704180825870678051831535157919124934494557152530050367433713<141> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @aafc1ac4932e with GMP-ECM 7.0.5-dev on Mon Apr 15 23:20:23 2024 Input number is 4091732628930224852748502808578213803830265894266182948192021205493140061744905266449923017648576452926742278179084406234462534382682075334906177960076718222229661619047978409116838000021 (187 digits) Using B1=43000000-43000000, B2=240490660426, polynomial Dickson(12), sigma=3:2504682925 Step 1 took 0ms Step 2 took 25712ms ********** Factor found in step 2: 39188960746034172230566558453192064237900601317 Found prime factor of 47 digits: 39188960746034172230566558453192064237900601317 Composite cofactor 104410337784839019232005102777710796519708780103359931010232410178940004211969587704180825870678051831535157919124934494557152530050367433713 has 141 digits |
name 名前 | Bob Backstrom |
---|---|
date 日付 | April 30, 2024 17:18:58 UTC 2024 年 5 月 1 日 (水) 2 時 18 分 58 秒 (日本時間) |
composite number 合成数 | 104410337784839019232005102777710796519708780103359931010232410178940004211969587704180825870678051831535157919124934494557152530050367433713<141> |
prime factors 素因数 | 4202506215835281822847507108935131505881190740955447262793471961169<67> 24844778906314271094753306479062607096409418298302012965390234100427817377<74> |
factorization results 素因数分解の結果 | CADO: STA:Tue Apr 30 04:05:18 AM AEST 2024 (104410337784839019232005102777710796519708780103359931010232410178940004211969587704180825870678051831535157919124934494557152530050367433713 - C141) /home/bob/Downloads/Math/cado-nfs/cado-nfs.py -t 24 --no-colors --screenlog DEBUG 104410337784839019232005102777710796519708780103359931010232410178940004211969587704180825870678051831535157919124934494557152530050367433713 2>&1 | tee -a log-03 /home/bob/Downloads/Math/cado-nfs/cado-nfs.py:93: DeprecationWarning: 'locale.getdefaultlocale' is deprecated and slated for removal in Python 3.15. Use setlocale(), getencoding() and getlocale() instead. loc = locale.getdefaultlocale()[1] Debug:root: Looking for parameter file for c141 in directory /home/bob/Downloads/Math/cado-nfs/parameters/factor Info:root: Using default parameter file /home/bob/Downloads/Math/cado-nfs/parameters/factor/params.c140 Debug:Parameters: Reading parameter file /home/bob/Downloads/Math/cado-nfs/parameters/factor/params.c140 Info:root: No database exists yet Info:root: Created temporary directory /tmp/cado.yel7963o Info:Database: Opened connection to database /tmp/cado.yel7963o/c140.db Info:root: Set tasks.threads=24 based on --server-threads 24 Info:root: tasks.threads = 24 [via tasks.threads] Info:root: tasks.polyselect.threads = 2 [via tasks.polyselect.threads] Info:root: tasks.sieve.las.threads = 2 [via tasks.sieve.las.threads] Info:root: tasks.linalg.bwc.threads = 24 [via tasks.threads] Info:root: tasks.sqrt.threads = 8 [via tasks.sqrt.threads] Info:root: slaves.scriptpath is /home/bob/Downloads/Math/cado-nfs/build/VM9 Info:root: Command line parameters: /home/bob/Downloads/Math/cado-nfs/cado-nfs.py -t 24 --no-colors --screenlog DEBUG 104410337784839019232005102777710796519708780103359931010232410178940004211969587704180825870678051831535157919124934494557152530050367433713 Debug:root: Root parameter dictionary: N = 104410337784839019232005102777710796519708780103359931010232410178940004211969587704180825870678051831535157919124934494557152530050367433713 name = c140 === Info:Polynomial Selection (root optimized): Best polynomial is: n: 104410337784839019232005102777710796519708780103359931010232410178940004211969587704180825870678051831535157919124934494557152530050367433713 skew: 23672.527 c0: 396258533725810632541800924132 c1: 5795873251319704138499783 c2: -6133417938679286947008 c3: -53455317705971507 c4: 6745051736430 c5: 2116800 Y0: 640636118867824268088969910 Y1: 4005213055208722985023 # MurphyE (Bf=1.074e+09,Bg=1.074e+09,area=8.053e+13) = 1.207e-06 # f(x) = 2116800*x^5+6745051736430*x^4-53455317705971507*x^3-6133417938679286947008*x^2+5795873251319704138499783*x+396258533725810632541800924132 # g(x) = 4005213055208722985023*x+640636118867824268088969910 === Debug:Command: Process with PID 364157 finished successfully Info:Square Root: finished Info:Square Root: Factors: 4202506215835281822847507108935131505881190740955447262793471961169 24844778906314271094753306479062607096409418298302012965390234100427817377 Debug:Square Root: Exit SqrtTask.run(sqrt) Info:Complete Factorization / Discrete logarithm: Square Root Info:Square Root: Total cpu/real time for sqrt: 2762.02/300.558 Info:HTTP server: Got notification to stop serving Workunits Info:Generate Factor Base: Total cpu/real time for makefb: 3.99/0.627312 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 76358930 Info:Lattice Sieving: Average J: 3791.17 for 817489 special-q, max bucket fill -bkmult 1.0,1s:1.232250 Info:Lattice Sieving: Total time: 632093s Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 1146.65/1023.57 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 709.1s Info:Quadratic Characters: Total cpu/real time for characters: 62.85/15.6857 Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 330.96/325.336 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 324.6s Info:Linear Algebra: Total cpu/real time for bwc: 45233/5411.49 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 27335.04, WCT time 3236.68, iteration CPU time 0.03, COMM 0.01, cpu-wait 0.01, comm-wait 0.0 (64000 iterations) Info:Linear Algebra: Lingen CPU time 73.14, WCT time 74.32 Info:Linear Algebra: Mksol: CPU time 14552.09, WCT time 1731.77, iteration CPU time 0.04, COMM 0.01, cpu-wait 0.01, comm-wait 0.0 (32000 iterations) Info:Polynomial Selection (size optimized): Aggregate statistics: Info:Polynomial Selection (size optimized): potential collisions: 93020.2 Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 64209/41.600/52.484/63.650/2.558 Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 54785/40.780/45.531/56.930/1.483 Info:Polynomial Selection (size optimized): Total time: 18985.8 Info:Square Root: Total cpu/real time for sqrt: 2762.02/300.558 Info:Filtering - Merging: Total cpu/real time for merge: 191.4/28.6531 Info:Filtering - Merging: Total cpu/real time for replay: 34.86/30.4458 Info:Filtering - Singleton removal: Total cpu/real time for purge: 505.65/485.161 Info:Generate Free Relations: Total cpu/real time for freerel: 454.13/53.9167 Info:Polynomial Selection (root optimized): Aggregate statistics: Info:Polynomial Selection (root optimized): Total time: 2576.98 Info:Polynomial Selection (root optimized): Rootsieve time: 2576.52 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire Complete Factorization 571488/62003.1 [17:13:23] Info:root: Cleaning up computation data in /tmp/cado.yel7963o 4202506215835281822847507108935131505881190740955447262793471961169 24844778906314271094753306479062607096409418298302012965390234100427817377 END:Tue Apr 30 09:18:48 PM AEST 2024 (104410337784839019232005102777710796519708780103359931010232410178940004211969587704180825870678051831535157919124934494557152530050367433713 - C141) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 13, 2015 06:00:00 UTC 2015 年 11 月 13 日 (金) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 600 | Dmitry Domanov | November 13, 2015 20:46:33 UTC 2015 年 11 月 14 日 (土) 5 時 46 分 33 秒 (日本時間) | |
45 | 11e6 | 600 | Dmitry Domanov | November 19, 2015 22:50:02 UTC 2015 年 11 月 20 日 (金) 7 時 50 分 2 秒 (日本時間) | |
50 | 43e6 | 3292 / 7396 | 1500 | Erik Branger | November 23, 2015 08:25:59 UTC 2015 年 11 月 23 日 (月) 17 時 25 分 59 秒 (日本時間) |
1792 | Dmitry Domanov | April 15, 2024 17:15:22 UTC 2024 年 4 月 16 日 (火) 2 時 15 分 22 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | March 5, 2016 09:59:35 UTC 2016 年 3 月 5 日 (土) 18 時 59 分 35 秒 (日本時間) |
composite number 合成数 | 215907762144598918258867124830017888497321775749903901673140466604214253581968758563347846729658838503700987200152292169313175570618337896849661436533181000066828544469815380711825101279978657406012048637344202701352327046817934917576933593166864749671050741<258> |
prime factors 素因数 | 75025359681734017683287697301250573<35> 189317028809080930547927440583094792541<39> |
composite cofactor 合成数の残り | 15200941579945278784559551159239679328032400171711174141830881586313895775930543490892631141574326114090013077452092197865668270341724749220543411818379010112068520400970168172342123037<185> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1055182334 Step 1 took 40448ms ********** Factor found in step 1: 75025359681734017683287697301250573 Found probable prime factor of 35 digits: 75025359681734017683287697301250573 Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=4202150069 Step 1 took 28645ms Step 2 took 9920ms ********** Factor found in step 2: 189317028809080930547927440583094792541 Found probable prime factor of 39 digits: 189317028809080930547927440583094792541 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 13, 2015 06:00:00 UTC 2015 年 11 月 13 日 (金) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 600 | Dmitry Domanov | March 4, 2016 11:17:48 UTC 2016 年 3 月 4 日 (金) 20 時 17 分 48 秒 (日本時間) | |
45 | 11e6 | 1200 | Dmitry Domanov | March 6, 2016 19:09:17 UTC 2016 年 3 月 7 日 (月) 4 時 9 分 17 秒 (日本時間) | |
50 | 43e6 | 2692 / 7261 | 900 | Dmitry Domanov | March 8, 2016 09:48:18 UTC 2016 年 3 月 8 日 (火) 18 時 48 分 18 秒 (日本時間) |
1792 | Dmitry Domanov | April 16, 2024 05:43:13 UTC 2024 年 4 月 16 日 (火) 14 時 43 分 13 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 13, 2015 06:00:00 UTC 2015 年 11 月 13 日 (金) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2950 | 600 | Dmitry Domanov | November 13, 2015 20:47:10 UTC 2015 年 11 月 14 日 (土) 5 時 47 分 10 秒 (日本時間) |
2350 | Ignacio Santos | December 23, 2021 13:50:59 UTC 2021 年 12 月 23 日 (木) 22 時 50 分 59 秒 (日本時間) | |||
45 | 11e6 | 4000 | Thomas Kozlowski | November 4, 2024 06:50:03 UTC 2024 年 11 月 4 日 (月) 15 時 50 分 3 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 13, 2015 06:00:00 UTC 2015 年 11 月 13 日 (金) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2950 | 600 | Dmitry Domanov | March 4, 2016 11:18:06 UTC 2016 年 3 月 4 日 (金) 20 時 18 分 6 秒 (日本時間) |
2350 | Ignacio Santos | December 23, 2021 14:19:36 UTC 2021 年 12 月 23 日 (木) 23 時 19 分 36 秒 (日本時間) | |||
45 | 11e6 | 4003 | Thomas Kozlowski | November 4, 2024 08:32:08 UTC 2024 年 11 月 4 日 (月) 17 時 32 分 8 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 22, 2016 08:17:15 UTC 2016 年 1 月 22 日 (金) 17 時 17 分 15 秒 (日本時間) |
composite number 合成数 | 14318950013727800701234451131000001313665138874110156076555149633027643455517327900014318950013727800701234451131000001313665138874110156076555149633027643455517327900014318950013727800701234451131000001313665138874110156076555149633027643455517327900014318950013727800701234451131<281> |
prime factors 素因数 | 71656913796516532015695416818865765251459<41> |
composite cofactor 合成数の残り | 199826496217646061994151666544327040284540593213464319427164537041026826894417118652719042198244611424985363437206602249943860272218402542272006993333201747858270300829920956984107705027072987095299953590867752961066151335257484761169532009<240> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=3422029892 Step 1 took 114124ms Step 2 took 33614ms ********** Factor found in step 2: 71656913796516532015695416818865765251459 Found probable prime factor of 41 digits: 71656913796516532015695416818865765251459 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 13, 2015 06:00:00 UTC 2015 年 11 月 13 日 (金) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 600 | Dmitry Domanov | November 14, 2015 09:47:30 UTC 2015 年 11 月 14 日 (土) 18 時 47 分 30 秒 (日本時間) | |
45 | 11e6 | 4403 | 800 | Dmitry Domanov | January 21, 2016 17:52:17 UTC 2016 年 1 月 22 日 (金) 2 時 52 分 17 秒 (日本時間) |
3603 | Thomas Kozlowski | November 4, 2024 10:04:10 UTC 2024 年 11 月 4 日 (月) 19 時 4 分 10 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 13, 2015 06:00:00 UTC 2015 年 11 月 13 日 (金) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2950 | 600 | Dmitry Domanov | March 4, 2016 11:18:25 UTC 2016 年 3 月 4 日 (金) 20 時 18 分 25 秒 (日本時間) |
2350 | Ignacio Santos | December 23, 2021 14:58:31 UTC 2021 年 12 月 23 日 (木) 23 時 58 分 31 秒 (日本時間) | |||
45 | 11e6 | 4000 | Thomas Kozlowski | November 4, 2024 11:58:06 UTC 2024 年 11 月 4 日 (月) 20 時 58 分 6 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 13, 2015 06:00:00 UTC 2015 年 11 月 13 日 (金) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 904 | Makoto Kamada | November 13, 2015 06:00:00 UTC 2015 年 11 月 13 日 (金) 15 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | December 23, 2021 19:54:31 UTC 2021 年 12 月 24 日 (金) 4 時 54 分 31 秒 (日本時間) | |
45 | 11e6 | 4001 | Thomas Kozlowski | November 4, 2024 14:05:29 UTC 2024 年 11 月 4 日 (月) 23 時 5 分 29 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 13, 2015 06:00:00 UTC 2015 年 11 月 13 日 (金) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2950 | 600 | Dmitry Domanov | March 4, 2016 11:18:38 UTC 2016 年 3 月 4 日 (金) 20 時 18 分 38 秒 (日本時間) |
2350 | Ignacio Santos | December 23, 2021 20:02:05 UTC 2021 年 12 月 24 日 (金) 5 時 2 分 5 秒 (日本時間) | |||
45 | 11e6 | 4002 | Thomas Kozlowski | November 4, 2024 16:00:08 UTC 2024 年 11 月 5 日 (火) 1 時 0 分 8 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 13, 2015 06:00:00 UTC 2015 年 11 月 13 日 (金) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2950 | 600 | Dmitry Domanov | March 9, 2016 07:11:13 UTC 2016 年 3 月 9 日 (水) 16 時 11 分 13 秒 (日本時間) |
2350 | Ignacio Santos | December 23, 2021 20:23:19 UTC 2021 年 12 月 24 日 (金) 5 時 23 分 19 秒 (日本時間) | |||
45 | 11e6 | 4001 | Thomas Kozlowski | November 4, 2024 17:55:01 UTC 2024 年 11 月 5 日 (火) 2 時 55 分 1 秒 (日本時間) |
name 名前 | Thomas Kozlowski |
---|---|
date 日付 | November 4, 2024 18:45:17 UTC 2024 年 11 月 5 日 (火) 3 時 45 分 17 秒 (日本時間) |
composite number 合成数 | 2696624894017956378088596609026665444437306107472646093591140986694307739491061549899399096426669157525220690395733250582564974860215447557166084226796836600440271060054739018739285388545065631930157997226262667427<214> |
prime factors 素因数 | 299742581183027537388420773742911408293522259<45> 8996469181572019554321007736378278904853436377169849894201784152958296577433384733399810969485901315208008097223210275815606758134176660429337546184470248386112794090353<169> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.6 [configured with GMP 6.3.0, --enable-asm-redc] [ECM] Input number is 2696624894017956378088596609026665444437306107472646093591140986694307739491061549899399096426669157525220690395733250582564974860215447557166084226796836600440271060054739018739285388545065631930157997226262667427 (214 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:3570999365 Step 1 took 39709ms Step 2 took 14510ms Run 2 out of 0: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:110441891 Step 1 took 37484ms Step 2 took 14456ms Run 3 out of 0: ... Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:1220625057 Step 1 took 37478ms Step 2 took 14793ms Run 53 out of 0: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:253232585 Step 1 took 37475ms Step 2 took 14407ms ** Factor found in step 2: 299742581183027537388420773742911408293522259 Found prime factor of 45 digits: 299742581183027537388420773742911408293522259 Prime cofactor 8996469181572019554321007736378278904853436377169849894201784152958296577433384733399810969485901315208008097223210275815606758134176660429337546184470248386112794090353 has 169 digits |
execution environment 実行環境 | 2x Xeon E5-2698v4, 128GB DDR4, Ubuntu Server 24.04 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 13, 2015 06:00:00 UTC 2015 年 11 月 13 日 (金) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2400 | 600 | Dmitry Domanov | November 13, 2015 20:47:27 UTC 2015 年 11 月 14 日 (土) 5 時 47 分 27 秒 (日本時間) |
1800 | ebina | December 20, 2021 20:08:35 UTC 2021 年 12 月 21 日 (火) 5 時 8 分 35 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 13, 2015 06:00:00 UTC 2015 年 11 月 13 日 (金) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2950 | 600 | Dmitry Domanov | March 9, 2016 07:11:26 UTC 2016 年 3 月 9 日 (水) 16 時 11 分 26 秒 (日本時間) |
2350 | Ignacio Santos | December 23, 2021 20:42:15 UTC 2021 年 12 月 24 日 (金) 5 時 42 分 15 秒 (日本時間) | |||
45 | 11e6 | 4001 | Thomas Kozlowski | November 4, 2024 20:36:11 UTC 2024 年 11 月 5 日 (火) 5 時 36 分 11 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 13, 2015 06:00:00 UTC 2015 年 11 月 13 日 (金) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 600 | Dmitry Domanov | November 13, 2015 20:49:21 UTC 2015 年 11 月 14 日 (土) 5 時 49 分 21 秒 (日本時間) | |
45 | 11e6 | 4346 | Serge Batalov | February 7, 2017 02:34:51 UTC 2017 年 2 月 7 日 (火) 11 時 34 分 51 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 13, 2015 06:00:00 UTC 2015 年 11 月 13 日 (金) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2950 | 600 | Dmitry Domanov | March 9, 2016 07:12:55 UTC 2016 年 3 月 9 日 (水) 16 時 12 分 55 秒 (日本時間) |
2350 | Ignacio Santos | December 23, 2021 20:59:51 UTC 2021 年 12 月 24 日 (金) 5 時 59 分 51 秒 (日本時間) | |||
45 | 11e6 | 4002 | Thomas Kozlowski | November 4, 2024 22:43:33 UTC 2024 年 11 月 5 日 (火) 7 時 43 分 33 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | March 9, 2016 08:24:31 UTC 2016 年 3 月 9 日 (水) 17 時 24 分 31 秒 (日本時間) |
composite number 合成数 | 4432095551121635827686806616830029605657336428833387747854178203519141290459252014647669370056371953875513603931010478775874122785245864691748958289304776318159875099637072619237346440683523526585193992867006773267454139854572481098425506153181684909690298116375106849673<271> |
prime factors 素因数 | 464510853371969720910056536218354533759<39> |
composite cofactor 合成数の残り | 9541425176501773937452554718024422307145816823999958344955431785664517583360660475538163382240233692289236494445461615829563851425310150963066370217799067763546154223775986079577125924061051345625222463372308989908002200012460557047<232> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=597808695 Step 1 took 34278ms Step 2 took 10572ms ********** Factor found in step 2: 464510853371969720910056536218354533759 Found probable prime factor of 39 digits: 464510853371969720910056536218354533759 |
name 名前 | Ignacio Santos |
---|---|
date 日付 | December 23, 2021 21:06:46 UTC 2021 年 12 月 24 日 (金) 6 時 6 分 46 秒 (日本時間) |
composite number 合成数 | 9541425176501773937452554718024422307145816823999958344955431785664517583360660475538163382240233692289236494445461615829563851425310150963066370217799067763546154223775986079577125924061051345625222463372308989908002200012460557047<232> |
prime factors 素因数 | 12987204419509569934131863766672852389<38> |
composite cofactor 合成数の残り | 734678909201467898607555843690415951628100497338221705680481355558878766032319708088020297383348468017227554212928455646905901884551434515815186505669890873108035379558138872333739491004873218923<195> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:991508863 Step 1 took 9766ms ********** Factor found in step 2: 12987204419509569934131863766672852389 Found prime factor of 38 digits: 12987204419509569934131863766672852389 Composite cofactor 734678909201467898607555843690415951628100497338221705680481355558878766032319708088020297383348468017227554212928455646905901884551434515815186505669890873108035379558138872333739491004873218923 has 195 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 13, 2015 06:00:00 UTC 2015 年 11 月 13 日 (金) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2950 | 600 | Dmitry Domanov | March 9, 2016 07:13:07 UTC 2016 年 3 月 9 日 (水) 16 時 13 分 7 秒 (日本時間) |
2350 | Ignacio Santos | December 26, 2021 11:18:03 UTC 2021 年 12 月 26 日 (日) 20 時 18 分 3 秒 (日本時間) | |||
45 | 11e6 | 4480 | Ignacio Santos | December 28, 2021 11:17:27 UTC 2021 年 12 月 28 日 (火) 20 時 17 分 27 秒 (日本時間) | |
50 | 43e6 | 10240 | Florian Piesker | May 7, 2022 11:59:53 UTC 2022 年 5 月 7 日 (土) 20 時 59 分 53 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 13, 2015 06:00:00 UTC 2015 年 11 月 13 日 (金) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2400 | 600 | Dmitry Domanov | March 9, 2016 07:13:19 UTC 2016 年 3 月 9 日 (水) 16 時 13 分 19 秒 (日本時間) |
1800 | ebina | December 20, 2021 15:50:32 UTC 2021 年 12 月 21 日 (火) 0 時 50 分 32 秒 (日本時間) | |||
45 | 11e6 | 4002 | Thomas Kozlowski | November 5, 2024 00:38:09 UTC 2024 年 11 月 5 日 (火) 9 時 38 分 9 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | November 15, 2015 09:41:35 UTC 2015 年 11 月 15 日 (日) 18 時 41 分 35 秒 (日本時間) |
composite number 合成数 | 2036102685112506266342079926243624557117010033726169072007243143672607741258586902249980423577846646582497850758513912648019347757398463922564232634911465616392956783372073410124188821591374498663065752343652619317462869198669068543580298440738996572217038727884327779417353200932853012981419<292> |
prime factors 素因数 | 2835697345640921071094769179345981<34> 69643358323520852480087974406693911<35> |
composite cofactor 合成数の残り | 10310033931020646536842456178671453944802435525606595859596703611024751159017414319778335036438593015934705655335824797710375612461116680525708590625946095811576294835113856700386844474461739593784809312103851097065287128209<224> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3454353786 Step 1 took 47755ms ********** Factor found in step 1: 2835697345640921071094769179345981 Found probable prime factor of 34 digits: 2835697345640921071094769179345981 Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=815107792 Step 1 took 33454ms Step 2 took 10951ms ********** Factor found in step 2: 69643358323520852480087974406693911 Found probable prime factor of 35 digits: 69643358323520852480087974406693911 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 13, 2015 06:00:00 UTC 2015 年 11 月 13 日 (金) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 1200 | Dmitry Domanov | November 14, 2015 22:50:07 UTC 2015 年 11 月 15 日 (日) 7 時 50 分 7 秒 (日本時間) | |
45 | 11e6 | 800 | Dmitry Domanov | November 15, 2015 08:59:16 UTC 2015 年 11 月 15 日 (日) 17 時 59 分 16 秒 (日本時間) | |
50 | 43e6 | 972 / 7326 | Dmitry Domanov | December 4, 2015 00:01:03 UTC 2015 年 12 月 4 日 (金) 9 時 1 分 3 秒 (日本時間) | |
55 | 11e7 | 1 / 17363 | Dmitry Domanov | December 4, 2015 06:42:33 UTC 2015 年 12 月 4 日 (金) 15 時 42 分 33 秒 (日本時間) |