Table of contents 目次

10153+72×1076-19

c134

name 名前Dmitry Domanov
date 日付February 1, 2011 21:05:37 UTC 2011 年 2 月 2 日 (水) 6 時 5 分 37 秒 (日本時間)
composite number 合成数
62645469186302054644224169218919199090147049529565438023410548553358996637394101404819094753580277511343147257683165336104266534363153<134>
prime factors 素因数
28543049735317455802225927503763426036202594893867859<53>
2194771398544294752783422891381703640026413396384262817364690948721483290589347467<82>
factorization results 素因数分解の結果
Number: sp1
N=62645469186302054644224169218919199090147049529565438023410548553358996637394101404819094753580277511343147257683165336104266534363153
  ( 134 digits)
SNFS difficulty: 153 digits.
Divisors found:
 r1=28543049735317455802225927503763426036202594893867859 (pp53)
 r2=2194771398544294752783422891381703640026413396384262817364690948721483290589347467 (pp82)
Version: Msieve-1.40
Total time: 21.41 hours.
Scaled time: 40.09 units (timescale=1.872).
Factorization parameters were as follows:
n: 62645469186302054644224169218919199090147049529565438023410548553358996637394101404819094753580277511343147257683165336104266534363153
m: 10000000000000000000000000
deg: 6
c6: 1000
c3: 720
c0: -1
skew: 0.32
type: snfs
lss: 1
rlim: 2500000
alim: 2500000
lpbr: 27
lpba: 27
mfbr: 50
mfba: 50
rlambda: 2.4
alambda: 2.4
Factor base limits: 2500000/2500000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 50/50
Sieved rational special-q in [1250000, 2650001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 511102 x 511350
Total sieving time: 20.67 hours.
Total relation processing time: 0.06 hours.
Matrix solve time: 0.28 hours.
Time per square root: 0.39 hours.
Prototype def-par.txt line would be:
snfs,153.000,6,0,0,0,0,0,0,0,0,2500000,2500000,27,27,50,50,2.4,2.4,100000
total time: 21.41 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaJanuary 31, 2011 12:00:00 UTC 2011 年 1 月 31 日 (月) 21 時 0 分 0 秒 (日本時間)

10155+72×1077-19

c122

name 名前Dmitry Domanov
date 日付February 1, 2011 21:06:06 UTC 2011 年 2 月 2 日 (水) 6 時 6 分 6 秒 (日本時間)
composite number 合成数
11365594220905288277155102515833193275485740214654858240888732091724756772172885709230643860471918999283385543508534727239<122>
prime factors 素因数
3366908534418603829195856182145233928832647<43>
3375676560476536290371625294865846755532542468448991090967543860515627289871937<79>
factorization results 素因数分解の結果
Number: sp2
N=11365594220905288277155102515833193275485740214654858240888732091724756772172885709230643860471918999283385543508534727239
  ( 122 digits)
SNFS difficulty: 155 digits.
Divisors found:
 r1=3366908534418603829195856182145233928832647 (pp43)
 r2=3375676560476536290371625294865846755532542468448991090967543860515627289871937 (pp79)
Version: Msieve-1.40
Total time: 25.85 hours.
Scaled time: 50.00 units (timescale=1.934).
Factorization parameters were as follows:
n: 11365594220905288277155102515833193275485740214654858240888732091724756772172885709230643860471918999283385543508534727239
m: 10000000000000000000000000
deg: 6
c6: 100000
c3: 7200
c0: -1
skew: 0.15
type: snfs
lss: 1
rlim: 2700000
alim: 2700000
lpbr: 27
lpba: 27
mfbr: 50
mfba: 50
rlambda: 2.4
alambda: 2.4
Factor base limits: 2700000/2700000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 50/50
Sieved rational special-q in [1350000, 3050001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 507656 x 507882
Total sieving time: 25.42 hours.
Total relation processing time: 0.06 hours.
Matrix solve time: 0.28 hours.
Time per square root: 0.09 hours.
Prototype def-par.txt line would be:
snfs,155.000,6,0,0,0,0,0,0,0,0,2700000,2700000,27,27,50,50,2.4,2.4,100000
total time: 25.85 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaJanuary 31, 2011 12:00:00 UTC 2011 年 1 月 31 日 (月) 21 時 0 分 0 秒 (日本時間)

10161+72×1080-19

c144

name 名前Serge Batalov
date 日付February 1, 2011 01:43:49 UTC 2011 年 2 月 1 日 (火) 10 時 43 分 49 秒 (日本時間)
composite number 合成数
140452829800459381968678972724085297192481397735005609706020050107946342129916327590508103280743408810755271201461243186455740567460436427591963<144>
prime factors 素因数
45562673995514369891427296992223<32>
95363270571249592594692727321121298328679<41>
32325120486821616386488126690972906694342000209619078960569775492481139<71>
factorization results 素因数分解の結果
Using B1=2000000, B2=5705781910, polynomial Dickson(6), sigma=3800467978
Step 1 took 4436ms
********** Factor found in step 1: 45562673995514369891427296992223
Found probable prime factor of 32 digits: 45562673995514369891427296992223
Composite cofactor 3082629211233013153972295378279111819627574310478240274339943434245348226884329991126710927371298835291630285381 has 112 digits

Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3669483792
Step 1 took 4523ms
Step 2 took 5009ms
********** Factor found in step 2: 95363270571249592594692727321121298328679
Found probable prime factor of 41 digits: 95363270571249592594692727321121298328679
Probable prime cofactor 32325120486821616386488126690972906694342000209619078960569775492481139 has 71 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaJanuary 31, 2011 12:00:00 UTC 2011 年 1 月 31 日 (月) 21 時 0 分 0 秒 (日本時間)

10165+72×1082-19

c146

name 名前Sinkiti Sibata
date 日付February 5, 2011 22:52:32 UTC 2011 年 2 月 6 日 (日) 7 時 52 分 32 秒 (日本時間)
composite number 合成数
85034418943541494422378442618924977697968558372873698851491348498758208968362506076584469142033629765381915207749749442063156777103307836457915987<146>
prime factors 素因数
92570543309803040661292839209115460186129571250204778622569163<62>
918590470609634141446332792183995190513019420822236606047970709265135729564310129049<84>
factorization results 素因数分解の結果
Number: 11911_82
N=85034418943541494422378442618924977697968558372873698851491348498758208968362506076584469142033629765381915207749749442063156777103307836457915987
  ( 146 digits)
SNFS difficulty: 165 digits.
Divisors found:
 r1=92570543309803040661292839209115460186129571250204778622569163 (pp62)
 r2=918590470609634141446332792183995190513019420822236606047970709265135729564310129049 (pp84)
Version: Msieve-1.40
Total time: 58.03 hours.
Scaled time: 160.35 units (timescale=2.763).
Factorization parameters were as follows:
name: 11911_82
n: 85034418943541494422378442618924977697968558372873698851491348498758208968362506076584469142033629765381915207749749442063156777103307836457915987
m: 1000000000000000000000000000
deg: 6
c6: 1000
c3: 720
c0: -1
skew: 0.32
type: snfs
lss: 1
rlim: 3900000
alim: 3900000
lpbr: 27
lpba: 27
mfbr: 51
mfba: 51
rlambda: 2.4
alambda: 2.4
Factor base limits: 3900000/3900000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 51/51
Sieved rational special-q in [1950000, 4950001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 744959 x 745207
Total sieving time: 56.29 hours.
Total relation processing time: 0.12 hours.
Matrix solve time: 1.20 hours.
Time per square root: 0.42 hours.
Prototype def-par.txt line would be:
snfs,165.000,6,0,0,0,0,0,0,0,0,3900000,3900000,27,27,51,51,2.4,2.4,100000
total time: 58.03 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaJanuary 31, 2011 12:00:00 UTC 2011 年 1 月 31 日 (月) 21 時 0 分 0 秒 (日本時間)
403e6280 / 2318Serge BatalovFebruary 1, 2011 02:05:18 UTC 2011 年 2 月 1 日 (火) 11 時 5 分 18 秒 (日本時間)

10167+72×1083-19

c137

name 名前Jo Yeong Uk
date 日付February 13, 2011 02:14:37 UTC 2011 年 2 月 13 日 (日) 11 時 14 分 37 秒 (日本時間)
composite number 合成数
35459939231936140644472596082371176804717453754998917558296703509047895341206452277072584510576014211067727210454166045404416842381047767<137>
prime factors 素因数
265137795729924747461700628275192796280672578762463516243<57>
133741547991356249310834658194186291374681320019674382215903822234694596649689069<81>
factorization results 素因数分解の結果
Number: 11911_83
N=35459939231936140644472596082371176804717453754998917558296703509047895341206452277072584510576014211067727210454166045404416842381047767
  ( 137 digits)
SNFS difficulty: 168 digits.
Divisors found:
 r1=265137795729924747461700628275192796280672578762463516243
 r2=133741547991356249310834658194186291374681320019674382215903822234694596649689069
Version: 
Total time: 35.83 hours.
Scaled time: 84.83 units (timescale=2.368).
Factorization parameters were as follows:
n: 35459939231936140644472596082371176804717453754998917558296703509047895341206452277072584510576014211067727210454166045404416842381047767
m: 10000000000000000000000000000
deg: 6
c6: 1
c3: 72
c0: -10
skew: 1.47
type: snfs
lss: 1
rlim: 5600000
alim: 5600000
lpbr: 27
lpba: 27
mfbr: 51
mfba: 51
rlambda: 2.4
alambda: 2.4
Factor base limits: 5600000/5600000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 51/51
Sieved rational special-q in [2800000, 5700001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 9790360
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 815315 x 815563
Total sieving time: 32.93 hours.
Total relation processing time: 1.40 hours.
Matrix solve time: 1.39 hours.
Time per square root: 0.11 hours.
Prototype def-par.txt line would be:
snfs,168,6,0,0,0,0,0,0,0,0,5600000,5600000,27,27,51,51,2.4,2.4,100000
total time: 35.83 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Memory: 8046576k/8912896k available (2575k kernel code, 339584k reserved, 1304k data, 212k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 5345.45 BogoMIPS (lpj=2672726)
Calibrating delay using timer specific routine.. 5345.46 BogoMIPS (lpj=2672732)
Calibrating delay using timer specific routine.. 5345.44 BogoMIPS (lpj=2672724)
Calibrating delay using timer specific routine.. 5345.45 BogoMIPS (lpj=2672727)
software ソフトウェア
GGNFS / Msieve v1.39
execution environment 実行環境
Core 2 Quad Q6700

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaJanuary 31, 2011 12:00:00 UTC 2011 年 1 月 31 日 (月) 21 時 0 分 0 秒 (日本時間)
403e6280 / 2318Serge BatalovFebruary 1, 2011 02:05:32 UTC 2011 年 2 月 1 日 (火) 11 時 5 分 32 秒 (日本時間)

10169+72×1084-19

c135

name 名前Sinkiti Sibata
date 日付March 17, 2011 23:04:21 UTC 2011 年 3 月 18 日 (金) 8 時 4 分 21 秒 (日本時間)
composite number 合成数
386151797392607261490163863069015090739062127474591959016128017716953092717994589637230789426158576919417175333778016523928223806397901<135>
prime factors 素因数
83470551259386625484278979599375433810869169242983278215058676857<65>
4626203991305051039900814600452732574447845775927734487330201220648693<70>
factorization results 素因数分解の結果
Number: 11911_84
N=386151797392607261490163863069015090739062127474591959016128017716953092717994589637230789426158576919417175333778016523928223806397901
  ( 135 digits)
SNFS difficulty: 169 digits.
Divisors found:
 r1=83470551259386625484278979599375433810869169242983278215058676857 (pp65)
 r2=4626203991305051039900814600452732574447845775927734487330201220648693 (pp70)
Version: Msieve-1.40
Total time: 85.68 hours.
Scaled time: 278.79 units (timescale=3.254).
Factorization parameters were as follows:
name: 11911_84
n: 386151797392607261490163863069015090739062127474591959016128017716953092717994589637230789426158576919417175333778016523928223806397901
m: 10000000000000000000000000000
deg: 6
c6: 10
c3: 72
c0: -1
skew: 0.68
type: snfs
lss: 1
rlim: 4600000
alim: 4600000
lpbr: 27
lpba: 27
mfbr: 52
mfba: 52
rlambda: 2.4
alambda: 2.4
Factor base limits: 4600000/4600000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 52/52
Sieved rational special-q in [2300000, 4000001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 784731 x 784979
Total sieving time: 84.15 hours.
Total relation processing time: 0.10 hours.
Matrix solve time: 1.20 hours.
Time per square root: 0.22 hours.
Prototype def-par.txt line would be:
snfs,169.000,6,0,0,0,0,0,0,0,0,4600000,4600000,27,27,52,52,2.4,2.4,100000
total time: 85.68 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaJanuary 31, 2011 12:00:00 UTC 2011 年 1 月 31 日 (月) 21 時 0 分 0 秒 (日本時間)
403e6280 / 2318Serge BatalovFebruary 1, 2011 02:05:43 UTC 2011 年 2 月 1 日 (火) 11 時 5 分 43 秒 (日本時間)

10179+72×1089-19

c142

name 名前Jo Yeong Uk
date 日付September 20, 2011 23:33:37 UTC 2011 年 9 月 21 日 (水) 8 時 33 分 37 秒 (日本時間)
composite number 合成数
1070524053235083066295097330871120885678120356431655053170780964944296174265561572765141784097461932558222121319252645903718751730268620395523<142>
prime factors 素因数
42133311580507844127927258606734218588122867061<47>
25408020710395338741495355403993182765034983686082652466395770936542563685378708021227445537943<95>
factorization results 素因数分解の結果
Number: 11911_89
N=1070524053235083066295097330871120885678120356431655053170780964944296174265561572765141784097461932558222121319252645903718751730268620395523
  ( 142 digits)
SNFS difficulty: 180 digits.
Divisors found:
 r1=42133311580507844127927258606734218588122867061
 r2=25408020710395338741495355403993182765034983686082652466395770936542563685378708021227445537943
Version: 
Total time: 91.15 hours.
Scaled time: 216.76 units (timescale=2.378).
Factorization parameters were as follows:
n: 1070524053235083066295097330871120885678120356431655053170780964944296174265561572765141784097461932558222121319252645903718751730268620395523
m: 1000000000000000000000000000000
deg: 6
c6: 1
c3: 72
c0: -10
skew: 1.47
type: snfs
lss: 1
rlim: 5400000
alim: 5400000
lpbr: 28
lpba: 28
mfbr: 53
mfba: 53
rlambda: 2.5
alambda: 2.5

Factor base limits: 5400000/5400000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 53/53
Sieved rational special-q in [2700000, 5400001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 17601556
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1132764 x 1133012
Total sieving time: 85.79 hours.
Total relation processing time: 2.43 hours.
Matrix solve time: 2.77 hours.
Time per square root: 0.17 hours.
Prototype def-par.txt line would be:
snfs,180,6,0,0,0,0,0,0,0,0,5400000,5400000,28,28,53,53,2.5,2.5,100000
total time: 91.15 hours.
 --------- CPU info (if available) ----------
software ソフトウェア
GGNFS / Msieve v1.39
execution environment 実行環境
Core 2 Quad Q6700

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaJanuary 31, 2011 12:00:00 UTC 2011 年 1 月 31 日 (月) 21 時 0 分 0 秒 (日本時間)
403e62318280Serge BatalovFebruary 1, 2011 02:05:55 UTC 2011 年 2 月 1 日 (火) 11 時 5 分 55 秒 (日本時間)
2038Jo Yeong UkAugust 28, 2011 02:50:47 UTC 2011 年 8 月 28 日 (日) 11 時 50 分 47 秒 (日本時間)

10181+72×1090-19

c115

name 名前Andreas Tete
date 日付February 1, 2011 10:49:19 UTC 2011 年 2 月 1 日 (火) 19 時 49 分 19 秒 (日本時間)
composite number 合成数
9313166589535359663375807978244798781927751382127370725563296297825947345494662205888924991629788240658512738851719<115>
prime factors 素因数
101939487019901414392308245139937026708353906702582971139<57>
91359755299898373182637764475834914099120646754448427570221<59>
factorization results 素因数分解の結果
Number: c115
N = 9313166589535359663375807978244798781927751382127370725563296297825947345494662205888924991629788240658512738851719 (115 digits)
Divisors found:
r1=101939487019901414392308245139937026708353906702582971139 (pp57)
r2=91359755299898373182637764475834914099120646754448427570221 (pp59)
Version: Msieve v. 1.48
Total time: 15.54 hours.
Factorization parameters were as follows:
n: 9313166589535359663375807978244798781927751382127370725563296297825947345494662205888924991629788240658512738851719
Y0: -14295303544652450780530
Y1: 1365261271061
c0: 692614294738332339220302789
c1: -233537865588697470494539
c2: -11226539080606088957
c3: 258972051364091
c4: 2206040024
c5: 15600
skew: 48062.62  
type: gnfs
Factor base limits: 3500000/3500000
Large primes per side: 3
Large prime bits: 27/27
Sieved algebraic special-q in [0, 0)
Total raw relations: 8240532
Relations: 703544 relations
Pruned matrix : 427437 x 427662
Polynomial selection time: 0.00 hours.
Total sieving time: 14.89 hours.
Total relation processing time: 0.12 hours.
Matrix solve time: 0.44 hours.
time per square root: 0.09 hours.
Prototype def-par.txt line would be: gnfs,114,5,61,2000,0.00016,0.25,250,15,50000,2800,3500000,3500000,27,27,50,50,2.6,2.6,100000
total time: 15.54 hours.
x86 Family 6 Model 23 Stepping 6, GenuineIntel
Windows-Vista-6.0.6002-SP2
processors: 2, speed: 2.09GHz
software ソフトウェア
factmsieve76.py via GGNFS
execution environment 実行環境
Core 2 Duo@2.1GHz on WinVista32bit

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaJanuary 31, 2011 12:00:00 UTC 2011 年 1 月 31 日 (月) 21 時 0 分 0 秒 (日本時間)

10183+72×1091-19

c142

name 名前Jo Yeong Uk
date 日付September 30, 2011 01:43:49 UTC 2011 年 9 月 30 日 (金) 10 時 43 分 49 秒 (日本時間)
composite number 合成数
4118438376276285484925278211513872667988456374688037473511781297371807609268357804348629452722220114737264000665185470168691674595746877482081<142>
prime factors 素因数
2262374623753739436279950887566383078578913166037600572216424721<64>
1820405132304286082288289620258997996405685505054974368198579762935843972462161<79>
factorization results 素因数分解の結果
Number: 11911_91
N=4118438376276285484925278211513872667988456374688037473511781297371807609268357804348629452722220114737264000665185470168691674595746877482081
  ( 142 digits)
SNFS difficulty: 183 digits.
Divisors found:
 r1=2262374623753739436279950887566383078578913166037600572216424721
 r2=1820405132304286082288289620258997996405685505054974368198579762935843972462161
Version: 
Total time: 131.00 hours.
Scaled time: 313.09 units (timescale=2.390).
Factorization parameters were as follows:
n: 4118438376276285484925278211513872667988456374688037473511781297371807609268357804348629452722220114737264000665185470168691674595746877482081
m: 1000000000000000000000000000000
deg: 6
c6: 1000
c3: 720
c0: -1
skew: 0.32
type: snfs
lss: 1
rlim: 6600000
alim: 6600000
lpbr: 28
lpba: 28
mfbr: 53
mfba: 53
rlambda: 2.5
alambda: 2.5

Factor base limits: 6600000/6600000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 53/53
Sieved rational special-q in [3300000, 7100001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 18431300
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1414026 x 1414274
Total sieving time: 122.18 hours.
Total relation processing time: 4.19 hours.
Matrix solve time: 4.36 hours.
Time per square root: 0.27 hours.
Prototype def-par.txt line would be:
snfs,183,6,0,0,0,0,0,0,0,0,6600000,6600000,28,28,53,53,2.5,2.5,100000
total time: 131.00 hours.
 --------- CPU info (if available) ----------
software ソフトウェア
GGNFS / Msieve v1.39
execution environment 実行環境
Core 2 Quad Q6700

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaJanuary 31, 2011 12:00:00 UTC 2011 年 1 月 31 日 (月) 21 時 0 分 0 秒 (日本時間)
403e62318280Serge BatalovFebruary 1, 2011 02:06:04 UTC 2011 年 2 月 1 日 (火) 11 時 6 分 4 秒 (日本時間)
2038Jo Yeong UkSeptember 1, 2011 00:16:36 UTC 2011 年 9 月 1 日 (木) 9 時 16 分 36 秒 (日本時間)

10185+72×1092-19

c128

name 名前Sinkiti Sibata
date 日付April 9, 2011 13:44:32 UTC 2011 年 4 月 9 日 (土) 22 時 44 分 32 秒 (日本時間)
composite number 合成数
36667372900079222361278080827290017317120479262924727529762646839540520765587265433800747837382716234504985981704255804293579633<128>
prime factors 素因数
134521760386300183819201908011421369149837<42>
272575773575837477329102036471901027351510122502068683903526951552890634071809354440309<87>
factorization results 素因数分解の結果
Number: 11911_92
N=36667372900079222361278080827290017317120479262924727529762646839540520765587265433800747837382716234504985981704255804293579633
  ( 128 digits)
Divisors found:
 r1=134521760386300183819201908011421369149837 (pp42)
 r2=272575773575837477329102036471901027351510122502068683903526951552890634071809354440309 (pp87)
Version: Msieve v. 1.42
Total time: 6.56 hours.
Scaled time: 5.58 units (timescale=0.851).
Factorization parameters were as follows:
name: 11911_92
# Murphy_E = 1.143e-10, selected by Markus Tervooren
n: 36667372900079222361278080827290017317120479262924727529762646839540520765587265433800747837382716234504985981704255804293579633
Y0: -12769494119488620418274032
Y1: 30654053369009
c0: -233763137356046401352250676814895
c1: 6224276858443783234702828525
c2: 10884851717785171889759
c3: 1448798151236991
c4: -1286850840
c5: 108
skew: 2673799.84
type: gnfs
# selected mechanically
rlim: 8400000
alim: 8400000
lpbr: 28
lpba: 28
mfbr: 53
mfba: 53
rlambda: 2.5
alambda: 2.5
Factor base limits: 8400000/8400000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 53/53
Sieved algebraic special-q in [4200000, 7800001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1239163 x 1239396
Total sieving time: 0.00 hours.
Total relation processing time: 0.16 hours.
Matrix solve time: 6.12 hours.
Time per square root: 0.28 hours.
Prototype def-par.txt line would be:
gnfs,127,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,8400000,8400000,28,28,53,53,2.5,2.5,100000
total time: 6.56 hours.
 --------- CPU info (if available) ----------
CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 5600+ stepping 02
CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 5600+ stepping 02
Memory: 3886124k/4718592k available (3786k kernel code, 656964k absent, 175504k reserved, 2294k data, 1304k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 5827.08 BogoMIPS (lpj=2913541)
Calibrating delay using timer specific routine.. 5826.53 BogoMIPS (lpj=2913268)
Total of 2 processors activated (11653.61 BogoMIPS).

Total time: 60 hours.

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaJanuary 31, 2011 12:00:00 UTC 2011 年 1 月 31 日 (月) 21 時 0 分 0 秒 (日本時間)
403e6780 / 2318280Serge BatalovFebruary 1, 2011 02:06:13 UTC 2011 年 2 月 1 日 (火) 11 時 6 分 13 秒 (日本時間)
500Erik BrangerMarch 14, 2011 14:55:59 UTC 2011 年 3 月 14 日 (月) 23 時 55 分 59 秒 (日本時間)

10189+72×1094-19

c130

name 名前Dmitry Domanov
date 日付March 10, 2011 13:07:06 UTC 2011 年 3 月 10 日 (木) 22 時 7 分 6 秒 (日本時間)
composite number 合成数
3613821813798101857774354752680828750594206953086763719945158559994175099180165799580002921265676899484053326117286648241661815529<130>
prime factors 素因数
1260218037531826078804128076539808600434379<43>
2867616322073819606575841802137858904336899957731714494833970890750797348525551673821851<88>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=921795061
Step 1 took 54519ms
Step 2 took 30243ms
********** Factor found in step 2: 1260218037531826078804128076539808600434379
Found probable prime factor of 43 digits: 1260218037531826078804128076539808600434379
Probable prime cofactor 2867616322073819606575841802137858904336899957731714494833970890750797348525551673821851 has 88 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaJanuary 31, 2011 12:00:00 UTC 2011 年 1 月 31 日 (月) 21 時 0 分 0 秒 (日本時間)
403e6280Serge BatalovFebruary 1, 2011 02:06:23 UTC 2011 年 2 月 1 日 (火) 11 時 6 分 23 秒 (日本時間)
4511e6600 / 4413Dmitry DomanovMarch 10, 2011 08:55:51 UTC 2011 年 3 月 10 日 (木) 17 時 55 分 51 秒 (日本時間)

10191+72×1095-19

c164

name 名前Serge Batalov
date 日付February 23, 2011 10:03:05 UTC 2011 年 2 月 23 日 (水) 19 時 3 分 5 秒 (日本時間)
composite number 合成数
41895573342993706245178397144994484525513414425868556452752830676922910322302471542634777829019342633592166704746804555745843256505512954438572001369081629106711577<164>
prime factors 素因数
9028467806006016199979308313769661589<37>
254438890202219204041816938422823104438321<42>
18237722014073019975796692979428160215297491274330005155157450167545441852598659705733<86>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1741061323
Step 1 took 11753ms
Step 2 took 4964ms
********** Factor found in step 2: 254438890202219204041816938422823104438321
Found probable prime factor of 42 digits: 254438890202219204041816938422823104438321
Composite cofactor 164658686058945461567479038647340418438534052550176637859488731677066567700465545762745154988370300277327648866813733189737 has 123 digits

Input number is 41895573342993706245178397144994484525513414425868556452752830676922910322302471542634777829019342633592166704746804555745843256505512954438572001369081629106711577 (164 digits)
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2325368849
Step 1 took 11484ms
Step 2 took 4857ms
********** Factor found in step 2: 9028467806006016199979308313769661589
Found probable prime factor of 37 digits: 9028467806006016199979308313769661589
Composite cofactor 4640385749077321210811306023173257283728919984223784752549665626503935291952891923064831685843577288385696486844650776108594293 has 127 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaJanuary 31, 2011 12:00:00 UTC 2011 年 1 月 31 日 (月) 21 時 0 分 0 秒 (日本時間)
403e6280 / 2318Serge BatalovFebruary 1, 2011 02:06:32 UTC 2011 年 2 月 1 日 (火) 11 時 6 分 32 秒 (日本時間)

10193+72×1096-19

c154

name 名前Serge Batalov
date 日付January 31, 2011 23:05:28 UTC 2011 年 2 月 1 日 (火) 8 時 5 分 28 秒 (日本時間)
composite number 合成数
2720594926032204814105981807441287126295922297267737846487801121568201589330081608373437222683246079811271417373636767218512862971398619655297644416380773<154>
prime factors 素因数
17915029093114138005357882217351709<35>
composite cofactor 合成数の残り
151861038678296032955242987960066451969734964862609142281951528231889280995531338801756828703426777914578704462782085097<120>
factorization results 素因数分解の結果
Using B1=2000000, B2=5705781910, polynomial Dickson(6), sigma=2629066370
Step 1 took 4469ms
Step 2 took 3577ms
********** Factor found in step 2: 17915029093114138005357882217351709
Found probable prime factor of 35 digits: 17915029093114138005357882217351709
Composite cofactor 151861038678296032955242987960066451969734964862609142281951528231889280995531338801756828703426777914578704462782085097 has 120 digits

c120

name 名前Erik Branger
date 日付February 7, 2011 17:48:42 UTC 2011 年 2 月 8 日 (火) 2 時 48 分 42 秒 (日本時間)
composite number 合成数
151861038678296032955242987960066451969734964862609142281951528231889280995531338801756828703426777914578704462782085097<120>
prime factors 素因数
377690805712196859245214393989935000519499970061603<51>
402077668774429337991050118469216337422935046911132259187967355968899<69>
factorization results 素因数分解の結果
Number: 11911_96
N = 151861038678296032955242987960066451969734964862609142281951528231889280995531338801756828703426777914578704462782085097 (120 digits)
Divisors found:
r1=377690805712196859245214393989935000519499970061603 (pp51)
r2=402077668774429337991050118469216337422935046911132259187967355968899 (pp69)
Version: Msieve v. 1.48
Total time: 30.17 hours.
Factorization parameters were as follows:
# Murphy_E = 3.219e-10, selected by Erik Branger
n: 151861038678296032955242987960066451969734964862609142281951528231889280995531338801756828703426777914578704462782085097
Y0: -94970699813481231777492
Y1: 6468207690001
c0: 5929632670782412116099743717
c1: 1521677751904678517872997
c2: -17010421009355397527
c3: -477091521511685
c4: 2014527882
c5: 19656
skew: 87903.04
type: gnfs
# selected mechanically
rlim: 5000000
alim: 5000000
lpbr: 27
lpba: 27
mfbr: 51
mfba: 51
rlambda: 2.5
alambda: 2.5
Factor base limits: 5000000/5000000
Large primes per side: 3
Large prime bits: 27/27
Sieved algebraic special-q in [2500000, 4400000)
Relations: 9000195
Relations in full relation-set: 1324194 relations
Pruned matrix : 751128 x 751371
Polynomial selection time: 0.00 hours.
Total sieving time: 29.61 hours.
Total relation processing time: 0.05 hours.
Matrix solve time: 0.42 hours.
time per square root: 0.09 hours.
Prototype def-par.txt line would be: gnfs,119,5,63,2000,2.6e-05,0.28,250,20,50000,3600,5000000,5000000,27,27,51,51,2.5,2.5,100000
total time: 30.17 hours.
 --------- CPU info (if available) ----------
software ソフトウェア
GGNFS, Msieve

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaJanuary 31, 2011 12:00:00 UTC 2011 年 1 月 31 日 (月) 21 時 0 分 0 秒 (日本時間)
403e6280 / 2318Serge BatalovFebruary 2, 2011 07:25:51 UTC 2011 年 2 月 2 日 (水) 16 時 25 分 51 秒 (日本時間)

10195+72×1097-19

c183

name 名前Jo Yeong Uk
date 日付December 25, 2011 00:14:59 UTC 2011 年 12 月 25 日 (日) 9 時 14 分 59 秒 (日本時間)
composite number 合成数
957534396822367671761637358217390396013669801767228811356432008917778486129800350175323608860563086904990664992325042361630927216639661815240354281253470438384744502938296772459350329<183>
prime factors 素因数
43280055100666861591215287371791524458905637786390902752406360013266116966407676073696929<89>
22124149209034022842910301383486464644171771465795497595389317158772281748841177367554762824601<95>
factorization results 素因数分解の結果
Number: 11911_97
N=957534396822367671761637358217390396013669801767228811356432008917778486129800350175323608860563086904990664992325042361630927216639661815240354281253470438384744502938296772459350329
  ( 183 digits)
SNFS difficulty: 195 digits.
Divisors found:
 r1=43280055100666861591215287371791524458905637786390902752406360013266116966407676073696929
 r2=22124149209034022842910301383486464644171771465795497595389317158772281748841177367554762824601
Version: 
Total time: 293.53 hours.
Scaled time: 701.82 units (timescale=2.391).
Factorization parameters were as follows:
n: 957534396822367671761637358217390396013669801767228811356432008917778486129800350175323608860563086904990664992325042361630927216639661815240354281253470438384744502938296772459350329
m: 100000000000000000000000000000000
deg: 6
c6: 1000
c3: 720
c0: -1
skew: 0.32
type: snfs
lss: 1
rlim: 13000000
alim: 13000000
lpbr: 29
lpba: 29
mfbr: 55
mfba: 55
rlambda: 2.5
alambda: 2.5

Factor base limits: 13000000/13000000
Large primes per side: 3
Large prime bits: 29/29
Max factor residue bits: 55/55
Sieved rational special-q in [6500000, 13600001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 33737061
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 2500850 x 2501098
Total sieving time: 262.24 hours.
Total relation processing time: 14.59 hours.
Matrix solve time: 14.82 hours.
Time per square root: 1.87 hours.
Prototype def-par.txt line would be:
snfs,195,6,0,0,0,0,0,0,0,0,13000000,13000000,29,29,55,55,2.5,2.5,100000
total time: 293.53 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Memory: 8044964k/9175040k available (4939k kernel code, 788820k absent, 341256k reserved, 3931k data, 1220k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 5345.35 BogoMIPS (lpj=2672679)
Total of 4 processors activated (21381.44 BogoMIPS).
software ソフトウェア
GGNFS / Msieve v1.39
execution environment 実行環境
Core 2 Quad Q6700

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaJanuary 31, 2011 12:00:00 UTC 2011 年 1 月 31 日 (月) 21 時 0 分 0 秒 (日本時間)
403e62318280Serge BatalovFebruary 1, 2011 02:06:46 UTC 2011 年 2 月 1 日 (火) 11 時 6 分 46 秒 (日本時間)
2038Jo Yeong UkSeptember 1, 2011 00:16:46 UTC 2011 年 9 月 1 日 (木) 9 時 16 分 46 秒 (日本時間)
4511e63963Jo Yeong UkDecember 12, 2011 13:39:43 UTC 2011 年 12 月 12 日 (月) 22 時 39 分 43 秒 (日本時間)

10197+72×1098-19

c154

name 名前Jo Yeong Uk
date 日付January 3, 2012 12:48:39 UTC 2012 年 1 月 3 日 (火) 21 時 48 分 39 秒 (日本時間)
composite number 合成数
9932065996747625995064131586818482370554750728286192466343891187013186814859017700612938209050045788022985428030913365381675209220141310216152524885167121<154>
prime factors 素因数
17676270812774202984038793116217854211220921276928512799912665251814519549<74>
561886955792166748638596421398817005599934235984938723696066840970974616961489829<81>
factorization results 素因数分解の結果
Number: 11911_98
N=9932065996747625995064131586818482370554750728286192466343891187013186814859017700612938209050045788022985428030913365381675209220141310216152524885167121
  ( 154 digits)
SNFS difficulty: 198 digits.
Divisors found:
 r1=17676270812774202984038793116217854211220921276928512799912665251814519549
 r2=561886955792166748638596421398817005599934235984938723696066840970974616961489829
Version: 
Total time: 222.88 hours.
Scaled time: 820.66 units (timescale=3.682).
Factorization parameters were as follows:
n: 9932065996747625995064131586818482370554750728286192466343891187013186814859017700612938209050045788022985428030913365381675209220141310216152524885167121
m: 1000000000000000000000000000000000
deg: 6
c6: 1
c3: 72
c0: -10
skew: 1.47
type: snfs
lss: 1
rlim: 14000000
alim: 14000000
lpbr: 29
lpba: 29
mfbr: 55
mfba: 55
rlambda: 2.5
alambda: 2.5

Factor base limits: 14000000/14000000
Large primes per side: 3
Large prime bits: 29/29
Max factor residue bits: 55/55
Sieved rational special-q in [7000000, 14100001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 33999346
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 2484260 x 2484506
Total sieving time: 204.91 hours.
Total relation processing time: 4.55 hours.
Matrix solve time: 12.91 hours.
Time per square root: 0.51 hours.
Prototype def-par.txt line would be:
snfs,198,6,0,0,0,0,0,0,0,0,14000000,14000000,29,29,55,55,2.5,2.5,100000
total time: 222.88 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz stepping 02
Memory: 24581144k/26214400k available (5084k kernel code, 1057692k absent, 575564k reserved, 7228k data, 1244k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 6666.69 BogoMIPS (lpj=3333348)
Total of 12 processors activated (79997.58 BogoMIPS).
software ソフトウェア
GGNFS / Msieve v1.39
execution environment 実行環境
Core i7 980

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaJanuary 31, 2011 12:00:00 UTC 2011 年 1 月 31 日 (月) 21 時 0 分 0 秒 (日本時間)
403e62318280Serge BatalovFebruary 1, 2011 02:07:38 UTC 2011 年 2 月 1 日 (火) 11 時 7 分 38 秒 (日本時間)
2038Jo Yeong UkSeptember 1, 2011 00:16:55 UTC 2011 年 9 月 1 日 (木) 9 時 16 分 55 秒 (日本時間)
4511e63963Jo Yeong UkDecember 12, 2011 13:40:57 UTC 2011 年 12 月 12 日 (月) 22 時 40 分 57 秒 (日本時間)

10199+72×1099-19

c177

name 名前Jo Yeong Uk
date 日付January 30, 2012 00:00:09 UTC 2012 年 1 月 30 日 (月) 9 時 0 分 9 秒 (日本時間)
composite number 合成数
106065309818687889202413856561028289960073714558405430823463228157345801683731584764305145734744549898999009037385754840743770920300426425488783423668909287137193740100541547797<177>
prime factors 素因数
5597010820723164541294157655285114216557855318352885092864370681822412382962780877843<85>
18950349251778589303921929757979790672897371454207494243960387901033626365831250034605127479<92>
factorization results 素因数分解の結果
Number: 11911_99
N=106065309818687889202413856561028289960073714558405430823463228157345801683731584764305145734744549898999009037385754840743770920300426425488783423668909287137193740100541547797
  ( 177 digits)
SNFS difficulty: 199 digits.
Divisors found:
 r1=5597010820723164541294157655285114216557855318352885092864370681822412382962780877843
 r2=18950349251778589303921929757979790672897371454207494243960387901033626365831250034605127479
Version: 
Total time: 238.50 hours.
Scaled time: 877.46 units (timescale=3.679).
Factorization parameters were as follows:
n: 106065309818687889202413856561028289960073714558405430823463228157345801683731584764305145734744549898999009037385754840743770920300426425488783423668909287137193740100541547797
m: 1000000000000000000000000000000000
deg: 6
c6: 10
c3: 72
c0: -1
skew: 0.68
type: snfs
lss: 1
rlim: 16000000
alim: 16000000
lpbr: 29
lpba: 29
mfbr: 55
mfba: 55
rlambda: 2.5
alambda: 2.5

Factor base limits: 16000000/16000000
Large primes per side: 3
Large prime bits: 29/29
Max factor residue bits: 55/55
Sieved rational special-q in [8000000, 15400001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 33723984
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 2749876 x 2750124
Total sieving time: 215.93 hours.
Total relation processing time: 4.53 hours.
Matrix solve time: 17.74 hours.
Time per square root: 0.30 hours.
Prototype def-par.txt line would be:
snfs,199,6,0,0,0,0,0,0,0,0,16000000,16000000,29,29,55,55,2.5,2.5,100000
total time: 238.50 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz stepping 02
Memory: 24581148k/26214400k available (5084k kernel code, 1057688k absent, 575564k reserved, 7228k data, 1244k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 6665.15 BogoMIPS (lpj=3332576)
Total of 12 processors activated (79996.07 BogoMIPS).
software ソフトウェア
GGNFS / Msieve v1.39
execution environment 実行環境
Core i7 980

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaJanuary 31, 2011 12:00:00 UTC 2011 年 1 月 31 日 (月) 21 時 0 分 0 秒 (日本時間)
403e62318280Serge BatalovFebruary 1, 2011 02:07:24 UTC 2011 年 2 月 1 日 (火) 11 時 7 分 24 秒 (日本時間)
2038Jo Yeong UkSeptember 1, 2011 00:17:05 UTC 2011 年 9 月 1 日 (木) 9 時 17 分 5 秒 (日本時間)
4511e63963Jo Yeong UkDecember 18, 2011 22:37:45 UTC 2011 年 12 月 19 日 (月) 7 時 37 分 45 秒 (日本時間)

10201+72×10100-19

c158

name 名前Jo Yeong Uk
date 日付February 12, 2012 14:05:01 UTC 2012 年 2 月 12 日 (日) 23 時 5 分 1 秒 (日本時間)
composite number 合成数
34200822838268699658664367097631128833075075884997795012798544885323833174327424670670835854750286671356220935328267939924193468346647205841015329596118772687<158>
prime factors 素因数
504791875174900179947826122935483514924839440270375649559216637851706844254139<78>
67752324314686732911741462374736795569848184071944615354679113761959210704199933<80>
factorization results 素因数分解の結果
Number: 11911_100
N=34200822838268699658664367097631128833075075884997795012798544885323833174327424670670835854750286671356220935328267939924193468346647205841015329596118772687
  ( 158 digits)
SNFS difficulty: 201 digits.
Divisors found:
 r1=504791875174900179947826122935483514924839440270375649559216637851706844254139
 r2=67752324314686732911741462374736795569848184071944615354679113761959210704199933
Version: 
Total time: 342.62 hours.
Scaled time: 1252.60 units (timescale=3.656).
Factorization parameters were as follows:
n: 34200822838268699658664367097631128833075075884997795012798544885323833174327424670670835854750286671356220935328267939924193468346647205841015329596118772687
m: 1000000000000000000000000000000000
deg: 6
c6: 1000
c3: 720
c0: -1
skew: 0.32
type: snfs
lss: 1
rlim: 20000000
alim: 20000000
lpbr: 29
lpba: 29
mfbr: 56
mfba: 56
rlambda: 2.6
alambda: 2.6

Factor base limits: 20000000/20000000
Large primes per side: 3
Large prime bits: 29/29
Max factor residue bits: 56/56
Sieved rational special-q in [10000000, 19800001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 38539448
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 3319924 x 3320172
Total sieving time: 305.99 hours.
Total relation processing time: 8.41 hours.
Matrix solve time: 27.73 hours.
Time per square root: 0.49 hours.
Prototype def-par.txt line would be:
snfs,201,6,0,0,0,0,0,0,0,0,20000000,20000000,29,29,56,56,2.6,2.6,100000
total time: 342.62 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz stepping 02
Memory: 24581148k/26214400k available (5084k kernel code, 1057688k absent, 575564k reserved, 7228k data, 1244k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 6665.15 BogoMIPS (lpj=3332576)
Total of 12 processors activated (79996.07 BogoMIPS).
software ソフトウェア
GGNFS / Msieve v1.39
execution environment 実行環境
Core i7 980

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaJanuary 31, 2011 12:00:00 UTC 2011 年 1 月 31 日 (月) 21 時 0 分 0 秒 (日本時間)
403e6280Serge BatalovFebruary 1, 2011 02:07:15 UTC 2011 年 2 月 1 日 (火) 11 時 7 分 15 秒 (日本時間)
4511e64413600Dmitry DomanovFebruary 25, 2011 20:48:45 UTC 2011 年 2 月 26 日 (土) 5 時 48 分 45 秒 (日本時間)
3813Jo Yeong UkDecember 12, 2011 13:41:24 UTC 2011 年 12 月 12 日 (月) 22 時 41 分 24 秒 (日本時間)

10203+72×10101-19

c157

name 名前Ray Chandler
date 日付February 5, 2022 18:58:36 UTC 2022 年 2 月 6 日 (日) 3 時 58 分 36 秒 (日本時間)
composite number 合成数
5848570803316102771117675824849187797160711728780907348300167409397315298881067219958382025961837827716471940239496799736015651866029613700738709216140356319<157>
prime factors 素因数
73391458449090910239583963735174695542759969445636225355379273549<65>
79690074661386541801297747046043781535425601774041103997338942133364779017286524412147008731<92>
factorization results 素因数分解の結果
02/02/22 10:54:23, 
02/02/22 10:54:23, ****************************
02/02/22 10:54:23, Starting factorization of 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111911111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111
02/02/22 10:54:23, using pretesting plan: normal
02/02/22 10:54:23, using specified qs/gnfs crossover of 100 digits
02/02/22 10:54:23, using specified qs/snfs crossover of 75 digits
02/02/22 10:54:23, ****************************
02/02/22 10:54:23, div: found prime factor = 7
02/02/22 10:54:23, div: found prime factor = 7
02/02/22 10:54:23, div: found prime factor = 7
02/02/22 10:54:23, div: found prime factor = 661
02/02/22 10:54:23, rho: x^2 + 3, starting 1000 iterations on C197
02/02/22 10:54:23, prp7 = 4463831
02/02/22 10:54:23, rho: x^2 + 3, starting 1000 iterations on C191
02/02/22 10:54:23, prp11 = 13191914803
02/02/22 10:54:23, rho: x^2 + 3, starting 1000 iterations on C180
02/02/22 10:54:23, rho: x^2 + 2, starting 1000 iterations on C180
02/02/22 10:54:23, rho: x^2 + 1, starting 1000 iterations on C180
02/02/22 10:54:23, pm1: starting B1 = 150K, B2 = gmp-ecm default on C180
02/02/22 10:54:23, current ECM pretesting depth: 0.00
02/02/22 10:54:23, scheduled 30 curves at B1=2000 toward target pretesting depth of 55.38
02/02/22 10:54:23, ecm: commencing 48 curves using AVX-ECM method on 832235676419912474928576129825519816073687943260498376187380326139259287815919240026836008342996982542177554184948549086558850011101882091786144173782105222009066605916176147321049, B1=2k, B2=200k
02/02/22 10:54:24, ecm: finished 384 curves using AVX-ECM method on C180 input, B1=2k, B2=200k
02/02/22 10:54:24, current ECM pretesting depth: 17.27
02/02/22 10:54:24, scheduled 74 curves at B1=11000 toward target pretesting depth of 55.38
02/02/22 10:54:24, ecm: commencing 96 curves using AVX-ECM method on 832235676419912474928576129825519816073687943260498376187380326139259287815919240026836008342996982542177554184948549086558850011101882091786144173782105222009066605916176147321049, B1=11k, B2=1100k
02/02/22 10:54:24, ecm: finished 384 curves using AVX-ECM method on C180 input, B1=11k, B2=1100k
02/02/22 10:54:24, current ECM pretesting depth: 21.28
02/02/22 10:54:24, scheduled 214 curves at B1=50000 toward target pretesting depth of 55.38
02/02/22 10:54:25, ecm: commencing 240 curves using AVX-ECM method on 832235676419912474928576129825519816073687943260498376187380326139259287815919240026836008342996982542177554184948549086558850011101882091786144173782105222009066605916176147321049, B1=50k, B2=5M
02/02/22 10:54:26, ecm: finished 0 curves using AVX-ECM method on C180 input, B1=50k, B2=5M
02/02/22 10:54:26, prp24 = 142297273027461699449671 (curve=168 stg=2 B1=50000 B2=5000000 sigma=1198405210 thread=21 vecpos=0)
02/02/22 10:54:26, current ECM pretesting depth: 21.28
02/02/22 10:54:26, scheduled 214 curves at B1=50000 toward target pretesting depth of 48.31
02/02/22 10:54:26, ecm: commencing 240 curves using AVX-ECM method on 5848570803316102771117675824849187797160711728780907348300167409397315298881067219958382025961837827716471940239496799736015651866029613700738709216140356319, B1=50k, B2=5M
02/02/22 10:54:27, ecm: finished 384 curves using AVX-ECM method on C157 input, B1=50k, B2=5M
02/02/22 10:54:27, pm1: starting B1 = 3750K, B2 = gmp-ecm default on C157
02/02/22 10:54:28, current ECM pretesting depth: 25.62
02/02/22 10:54:28, scheduled 430 curves at B1=250000 toward target pretesting depth of 48.31
02/02/22 10:54:29, ecm: commencing 432 curves using AVX-ECM method on 5848570803316102771117675824849187797160711728780907348300167409397315298881067219958382025961837827716471940239496799736015651866029613700738709216140356319, B1=250k, B2=25M
02/02/22 10:54:36, ecm: finished 768 curves using AVX-ECM method on C157 input, B1=250k, B2=25M
02/02/22 10:54:36, pm1: starting B1 = 15M, B2 = gmp-ecm default on C157
02/02/22 10:54:41, current ECM pretesting depth: 30.81
02/02/22 10:54:41, scheduled 904 curves at B1=1000000 toward target pretesting depth of 48.31
02/02/22 10:54:42, ecm: commencing 912 curves using AVX-ECM method on 5848570803316102771117675824849187797160711728780907348300167409397315298881067219958382025961837827716471940239496799736015651866029613700738709216140356319, B1=1M, B2=100M
02/02/22 10:55:23, ecm: finished 1152 curves using AVX-ECM method on C157 input, B1=1M, B2=100M
02/02/22 10:55:23, current ECM pretesting depth: 35.72
02/02/22 10:55:23, scheduled 2350 curves at B1=3000000 toward target pretesting depth of 48.31
02/02/22 10:55:25, ecm: commencing 2352 curves using AVX-ECM method on 5848570803316102771117675824849187797160711728780907348300167409397315298881067219958382025961837827716471940239496799736015651866029613700738709216140356319, B1=3M, B2=300M
02/02/22 11:00:00, ecm: finished 2688 curves using AVX-ECM method on C157 input, B1=3M, B2=300M
02/02/22 11:00:01, current ECM pretesting depth: 40.73
02/02/22 11:00:01, scheduled 4480 curves at B1=11000000 toward target pretesting depth of 48.31
02/02/22 11:00:03, ecm: commencing 4512 curves using AVX-ECM method on 5848570803316102771117675824849187797160711728780907348300167409397315298881067219958382025961837827716471940239496799736015651866029613700738709216140356319, B1=11M, B2=1100M
02/02/22 11:28:02, ecm: finished 4608 curves using AVX-ECM method on C157 input, B1=11M, B2=1100M
02/02/22 11:28:03, current ECM pretesting depth: 45.76
02/02/22 11:28:03, scheduled 3778 curves at B1=43000000 toward target pretesting depth of 48.31
02/02/22 11:28:05, ecm: commencing 3792 curves using AVX-ECM method on 5848570803316102771117675824849187797160711728780907348300167409397315298881067219958382025961837827716471940239496799736015651866029613700738709216140356319, B1=43M, B2=4300M
02/02/22 12:57:19, ecm: finished 3840 curves using AVX-ECM method on C157 input, B1=43M, B2=4300M
02/02/22 12:57:20, final ECM pretested depth: 48.35
02/02/22 12:57:20, scheduler: switching to sieve method
02/02/22 12:57:20, nfs: commencing nfs on c157: 5848570803316102771117675824849187797160711728780907348300167409397315298881067219958382025961837827716471940239496799736015651866029613700738709216140356319
02/02/22 12:57:20, nfs: commencing poly selection with 48 threads
02/02/22 12:57:20, nfs: setting deadline of 22500 seconds
02/02/22 12:57:20, nfs: expecting degree 5 poly E from 1.66e-12 to > 1.91e-12
02/02/22 12:57:20, nfs: searching for avg quality poly E > 1.72e-12
02/02/22 23:33:02, nfs: completed 49 ranges of size 250 in 38141.9168 seconds
02/02/22 23:33:02, nfs: best poly = # norm 4.230287e-15 alpha -8.169798 e 2.373e-12 rroots 5
02/02/22 23:33:02, nfs: commencing lattice sieving with 48 threads
02/02/22 23:41:11, nfs: commencing lattice sieving with 48 threads
02/02/22 23:48:37, nfs: commencing lattice sieving with 48 threads
02/02/22 23:56:09, nfs: commencing lattice sieving with 48 threads
02/03/22 00:03:51, nfs: commencing lattice sieving with 48 threads
02/03/22 00:11:30, nfs: commencing lattice sieving with 48 threads
02/03/22 00:19:02, nfs: commencing lattice sieving with 48 threads
02/03/22 00:26:27, nfs: commencing lattice sieving with 48 threads
02/03/22 00:33:51, nfs: commencing lattice sieving with 48 threads
02/03/22 00:41:18, nfs: commencing lattice sieving with 48 threads
02/03/22 00:49:03, nfs: commencing lattice sieving with 48 threads
02/03/22 00:56:46, nfs: commencing lattice sieving with 48 threads
02/03/22 01:04:17, nfs: commencing lattice sieving with 48 threads
02/03/22 01:11:48, nfs: commencing lattice sieving with 48 threads
02/03/22 01:19:46, nfs: commencing lattice sieving with 48 threads
02/03/22 01:27:38, nfs: commencing lattice sieving with 48 threads
02/03/22 01:35:20, nfs: commencing lattice sieving with 48 threads
02/03/22 01:42:51, nfs: commencing lattice sieving with 48 threads
02/03/22 01:50:49, nfs: commencing lattice sieving with 48 threads
02/03/22 01:59:12, nfs: commencing lattice sieving with 48 threads
02/03/22 02:06:46, nfs: commencing lattice sieving with 48 threads
02/03/22 02:14:06, nfs: commencing lattice sieving with 48 threads
02/03/22 02:21:31, nfs: commencing lattice sieving with 48 threads
02/03/22 02:29:11, nfs: commencing lattice sieving with 48 threads
02/03/22 02:36:39, nfs: commencing lattice sieving with 48 threads
02/03/22 02:44:19, nfs: commencing lattice sieving with 48 threads
02/03/22 02:51:47, nfs: commencing lattice sieving with 48 threads
02/03/22 02:59:40, nfs: commencing lattice sieving with 48 threads
02/03/22 03:07:32, nfs: commencing lattice sieving with 48 threads
02/03/22 03:15:32, nfs: commencing lattice sieving with 48 threads
02/03/22 03:23:03, nfs: commencing lattice sieving with 48 threads
02/03/22 03:31:00, nfs: commencing lattice sieving with 48 threads
02/03/22 03:39:43, nfs: commencing lattice sieving with 48 threads
02/03/22 03:47:51, nfs: commencing lattice sieving with 48 threads
02/03/22 03:56:00, nfs: commencing lattice sieving with 48 threads
02/03/22 04:04:18, nfs: commencing lattice sieving with 48 threads
02/03/22 04:12:18, nfs: commencing lattice sieving with 48 threads
02/03/22 04:20:03, nfs: commencing lattice sieving with 48 threads
02/03/22 04:27:51, nfs: commencing lattice sieving with 48 threads
02/03/22 04:35:38, nfs: commencing lattice sieving with 48 threads
02/03/22 04:44:19, nfs: commencing lattice sieving with 48 threads
02/03/22 04:52:11, nfs: commencing lattice sieving with 48 threads
02/03/22 04:59:59, nfs: commencing lattice sieving with 48 threads
02/03/22 05:07:56, nfs: commencing lattice sieving with 48 threads
02/03/22 05:15:28, nfs: commencing lattice sieving with 48 threads
02/03/22 05:23:11, nfs: commencing lattice sieving with 48 threads
02/03/22 05:31:05, nfs: commencing lattice sieving with 48 threads
02/03/22 05:38:58, nfs: commencing lattice sieving with 48 threads
02/03/22 05:47:00, nfs: commencing lattice sieving with 48 threads
02/03/22 05:54:49, nfs: commencing lattice sieving with 48 threads
02/03/22 06:02:23, nfs: commencing lattice sieving with 48 threads
02/03/22 06:10:12, nfs: commencing lattice sieving with 48 threads
02/03/22 06:18:24, nfs: commencing lattice sieving with 48 threads
02/03/22 06:27:08, nfs: commencing lattice sieving with 48 threads
02/03/22 06:35:12, nfs: commencing lattice sieving with 48 threads
02/03/22 06:43:10, nfs: commencing lattice sieving with 48 threads
02/03/22 06:50:55, nfs: commencing lattice sieving with 48 threads
02/03/22 06:58:39, nfs: commencing lattice sieving with 48 threads
02/03/22 07:06:25, nfs: commencing lattice sieving with 48 threads
02/03/22 07:14:47, nfs: commencing lattice sieving with 48 threads
02/03/22 07:22:47, nfs: commencing lattice sieving with 48 threads
02/03/22 07:31:03, nfs: commencing lattice sieving with 48 threads
02/03/22 07:38:45, nfs: commencing lattice sieving with 48 threads
02/03/22 07:46:44, nfs: commencing lattice sieving with 48 threads
02/03/22 07:54:50, nfs: commencing lattice sieving with 48 threads
02/03/22 08:02:52, nfs: commencing lattice sieving with 48 threads
02/03/22 08:11:05, nfs: commencing lattice sieving with 48 threads
02/03/22 08:19:29, nfs: commencing lattice sieving with 48 threads
02/03/22 08:27:36, nfs: commencing lattice sieving with 48 threads
02/03/22 08:35:45, nfs: commencing lattice sieving with 48 threads
02/03/22 08:44:10, nfs: commencing lattice sieving with 48 threads
02/03/22 08:52:09, nfs: commencing lattice sieving with 48 threads
02/03/22 09:00:13, nfs: commencing lattice sieving with 48 threads
02/03/22 09:08:27, nfs: commencing lattice sieving with 48 threads
02/03/22 09:16:23, nfs: commencing lattice sieving with 48 threads
02/03/22 09:25:01, nfs: commencing lattice sieving with 48 threads
02/03/22 09:33:31, nfs: commencing lattice sieving with 48 threads
02/03/22 09:41:47, nfs: commencing lattice sieving with 48 threads
02/03/22 09:50:27, nfs: commencing lattice sieving with 48 threads
02/03/22 09:58:35, nfs: commencing lattice sieving with 48 threads
02/03/22 10:07:11, nfs: commencing lattice sieving with 48 threads
02/03/22 10:15:31, nfs: commencing lattice sieving with 48 threads
02/03/22 10:23:23, nfs: commencing lattice sieving with 48 threads
02/03/22 10:31:27, nfs: commencing lattice sieving with 48 threads
02/03/22 10:39:32, nfs: commencing lattice sieving with 48 threads
02/03/22 10:47:54, nfs: commencing lattice sieving with 48 threads
02/03/22 10:56:08, nfs: commencing lattice sieving with 48 threads
02/03/22 11:04:35, nfs: commencing lattice sieving with 48 threads
02/03/22 11:12:59, nfs: commencing lattice sieving with 48 threads
02/03/22 11:21:13, nfs: commencing lattice sieving with 48 threads
02/03/22 11:29:33, nfs: commencing lattice sieving with 48 threads
02/03/22 11:37:35, nfs: commencing lattice sieving with 48 threads
02/03/22 11:46:03, nfs: commencing lattice sieving with 48 threads
02/03/22 11:54:13, nfs: commencing lattice sieving with 48 threads
02/03/22 12:02:56, nfs: commencing lattice sieving with 48 threads
02/03/22 12:11:22, nfs: commencing lattice sieving with 48 threads
02/03/22 12:19:41, nfs: commencing lattice sieving with 48 threads
02/03/22 12:28:19, nfs: commencing lattice sieving with 48 threads
02/03/22 12:37:11, nfs: commencing lattice sieving with 48 threads
02/03/22 12:45:30, nfs: commencing lattice sieving with 48 threads
02/03/22 12:54:03, nfs: commencing lattice sieving with 48 threads
02/03/22 13:02:20, nfs: commencing lattice sieving with 48 threads
02/03/22 13:10:26, nfs: commencing lattice sieving with 48 threads
02/03/22 13:19:03, nfs: commencing lattice sieving with 48 threads
02/03/22 13:27:25, nfs: commencing lattice sieving with 48 threads
02/03/22 13:36:00, nfs: commencing lattice sieving with 48 threads
02/03/22 13:44:48, nfs: commencing lattice sieving with 48 threads
02/03/22 13:53:09, nfs: commencing lattice sieving with 48 threads
02/03/22 14:01:23, nfs: commencing lattice sieving with 48 threads
02/03/22 14:09:57, nfs: commencing lattice sieving with 48 threads
02/03/22 14:18:20, nfs: commencing lattice sieving with 48 threads
02/03/22 14:27:06, nfs: commencing lattice sieving with 48 threads
02/03/22 14:35:29, nfs: commencing lattice sieving with 48 threads
02/03/22 14:44:12, nfs: commencing lattice sieving with 48 threads
02/03/22 14:52:37, nfs: commencing lattice sieving with 48 threads
02/03/22 15:00:50, nfs: commencing lattice sieving with 48 threads
02/03/22 15:09:05, nfs: commencing lattice sieving with 48 threads
02/03/22 15:17:36, nfs: commencing lattice sieving with 48 threads
02/03/22 15:25:59, nfs: commencing lattice sieving with 48 threads
02/03/22 15:34:37, nfs: commencing lattice sieving with 48 threads
02/03/22 15:43:17, nfs: commencing lattice sieving with 48 threads
02/03/22 15:52:35, nfs: commencing lattice sieving with 48 threads
02/03/22 16:01:24, nfs: commencing lattice sieving with 48 threads
02/03/22 16:09:59, nfs: commencing lattice sieving with 48 threads
02/03/22 16:18:17, nfs: commencing lattice sieving with 48 threads
02/03/22 16:26:54, nfs: commencing lattice sieving with 48 threads
02/03/22 16:35:44, nfs: commencing lattice sieving with 48 threads
02/03/22 16:44:09, nfs: commencing lattice sieving with 48 threads
02/03/22 16:52:55, nfs: commencing lattice sieving with 48 threads
02/03/22 17:01:34, nfs: commencing lattice sieving with 48 threads
02/03/22 17:10:38, nfs: commencing lattice sieving with 48 threads
02/03/22 17:20:10, nfs: commencing lattice sieving with 48 threads
02/03/22 17:29:19, nfs: commencing lattice sieving with 48 threads
02/03/22 17:37:30, nfs: commencing lattice sieving with 48 threads
02/03/22 17:45:59, nfs: commencing lattice sieving with 48 threads
02/03/22 17:54:22, nfs: commencing lattice sieving with 48 threads
02/03/22 18:03:10, nfs: commencing lattice sieving with 48 threads
02/03/22 18:11:45, nfs: commencing lattice sieving with 48 threads
02/03/22 18:20:35, nfs: commencing lattice sieving with 48 threads
02/03/22 18:28:40, nfs: commencing lattice sieving with 48 threads
02/03/22 18:37:16, nfs: commencing lattice sieving with 48 threads
02/03/22 18:45:49, nfs: commencing lattice sieving with 48 threads
02/03/22 18:54:21, nfs: commencing lattice sieving with 48 threads
02/03/22 19:02:47, nfs: commencing lattice sieving with 48 threads
02/03/22 19:11:10, nfs: commencing lattice sieving with 48 threads
02/03/22 19:19:36, nfs: commencing lattice sieving with 48 threads
02/03/22 19:28:30, nfs: commencing lattice sieving with 48 threads
02/03/22 19:37:08, nfs: commencing lattice sieving with 48 threads
02/03/22 19:45:46, nfs: commencing lattice sieving with 48 threads
02/03/22 19:54:45, nfs: commencing lattice sieving with 48 threads
02/03/22 20:03:07, nfs: commencing lattice sieving with 48 threads
02/03/22 20:11:31, nfs: commencing lattice sieving with 48 threads
02/03/22 20:20:05, nfs: commencing lattice sieving with 48 threads
02/03/22 20:28:58, nfs: commencing lattice sieving with 48 threads
02/03/22 20:37:32, nfs: commencing lattice sieving with 48 threads
02/03/22 20:46:21, nfs: commencing lattice sieving with 48 threads
02/03/22 20:54:52, nfs: commencing lattice sieving with 48 threads
02/03/22 21:03:37, nfs: commencing lattice sieving with 48 threads
02/03/22 21:11:57, nfs: commencing lattice sieving with 48 threads
02/03/22 21:20:12, nfs: commencing lattice sieving with 48 threads
02/03/22 21:28:59, nfs: commencing lattice sieving with 48 threads
02/03/22 21:37:31, nfs: commencing lattice sieving with 48 threads
02/03/22 21:45:47, nfs: commencing lattice sieving with 48 threads
02/03/22 21:54:16, nfs: commencing lattice sieving with 48 threads
02/03/22 22:02:30, nfs: commencing lattice sieving with 48 threads
02/03/22 22:11:07, nfs: commencing lattice sieving with 48 threads
02/03/22 22:19:41, nfs: commencing lattice sieving with 48 threads
02/03/22 22:28:16, nfs: commencing lattice sieving with 48 threads
02/03/22 22:36:47, nfs: commencing lattice sieving with 48 threads
02/03/22 22:45:19, nfs: commencing lattice sieving with 48 threads
02/03/22 22:54:07, nfs: commencing lattice sieving with 48 threads
02/03/22 23:02:53, nfs: commencing lattice sieving with 48 threads
02/03/22 23:11:49, nfs: commencing lattice sieving with 48 threads
02/03/22 23:20:22, nfs: commencing lattice sieving with 48 threads
02/03/22 23:29:03, nfs: commencing lattice sieving with 48 threads
02/03/22 23:37:16, nfs: commencing lattice sieving with 48 threads
02/03/22 23:45:58, nfs: commencing lattice sieving with 48 threads
02/03/22 23:54:11, nfs: commencing lattice sieving with 48 threads
02/04/22 00:02:44, nfs: commencing lattice sieving with 48 threads
02/04/22 00:11:26, nfs: commencing lattice sieving with 48 threads
02/04/22 00:20:07, nfs: commencing lattice sieving with 48 threads
02/04/22 00:29:07, nfs: commencing lattice sieving with 48 threads
02/04/22 00:38:13, nfs: commencing lattice sieving with 48 threads
02/04/22 00:47:20, nfs: commencing lattice sieving with 48 threads
02/04/22 00:55:33, nfs: commencing lattice sieving with 48 threads
02/04/22 01:04:05, nfs: commencing lattice sieving with 48 threads
02/04/22 01:12:12, nfs: commencing lattice sieving with 48 threads
02/04/22 01:20:42, nfs: commencing lattice sieving with 48 threads
02/04/22 01:28:54, nfs: commencing lattice sieving with 48 threads
02/04/22 01:37:30, nfs: commencing lattice sieving with 48 threads
02/04/22 01:45:48, nfs: commencing lattice sieving with 48 threads
02/04/22 01:53:54, nfs: commencing lattice sieving with 48 threads
02/04/22 02:02:12, nfs: commencing lattice sieving with 48 threads
02/04/22 02:10:33, nfs: commencing lattice sieving with 48 threads
02/04/22 02:18:45, nfs: commencing msieve filtering
02/04/22 02:27:47, nfs: raising min_rels by 5.00 percent to 47210772
02/04/22 02:27:47, nfs: commencing lattice sieving with 48 threads
02/04/22 02:35:58, nfs: commencing lattice sieving with 48 threads
02/04/22 02:44:47, nfs: commencing lattice sieving with 48 threads
02/04/22 02:53:24, nfs: commencing lattice sieving with 48 threads
02/04/22 03:01:46, nfs: commencing lattice sieving with 48 threads
02/04/22 03:10:21, nfs: commencing lattice sieving with 48 threads
02/04/22 03:19:10, nfs: commencing lattice sieving with 48 threads
02/04/22 03:28:04, nfs: commencing lattice sieving with 48 threads
02/04/22 03:36:24, nfs: commencing lattice sieving with 48 threads
02/04/22 03:44:32, nfs: commencing lattice sieving with 48 threads
02/04/22 03:52:51, nfs: commencing lattice sieving with 48 threads
02/04/22 04:01:14, nfs: commencing msieve filtering
02/04/22 04:10:33, nfs: raising min_rels by 5.00 percent to 49577500
02/04/22 04:10:33, nfs: commencing lattice sieving with 48 threads
02/04/22 04:18:57, nfs: commencing lattice sieving with 48 threads
02/04/22 04:27:06, nfs: commencing lattice sieving with 48 threads
02/04/22 04:35:53, nfs: commencing lattice sieving with 48 threads
02/04/22 04:44:10, nfs: commencing lattice sieving with 48 threads
02/04/22 04:52:24, nfs: commencing lattice sieving with 48 threads
02/04/22 05:00:51, nfs: commencing lattice sieving with 48 threads
02/04/22 05:08:54, nfs: commencing lattice sieving with 48 threads
02/04/22 05:16:53, nfs: commencing lattice sieving with 48 threads
02/04/22 05:25:36, nfs: commencing lattice sieving with 48 threads
02/04/22 05:34:04, nfs: commencing lattice sieving with 48 threads
02/04/22 05:42:48, nfs: commencing lattice sieving with 48 threads
02/04/22 05:51:03, nfs: commencing msieve filtering
02/04/22 06:08:32, nfs: raising min_rels by 5.00 percent to 52109574
02/04/22 06:08:32, nfs: commencing lattice sieving with 48 threads
02/04/22 06:17:00, nfs: commencing lattice sieving with 48 threads
02/04/22 06:25:45, nfs: commencing lattice sieving with 48 threads
02/04/22 06:34:49, nfs: commencing lattice sieving with 48 threads
02/04/22 06:43:26, nfs: commencing lattice sieving with 48 threads
02/04/22 06:51:34, nfs: commencing lattice sieving with 48 threads
02/04/22 06:59:54, nfs: commencing lattice sieving with 48 threads
02/04/22 07:08:38, nfs: commencing lattice sieving with 48 threads
02/04/22 07:17:24, nfs: commencing lattice sieving with 48 threads
02/04/22 07:25:53, nfs: commencing lattice sieving with 48 threads
02/04/22 07:34:51, nfs: commencing lattice sieving with 48 threads
02/04/22 07:43:00, nfs: commencing lattice sieving with 48 threads
02/04/22 07:51:37, nfs: commencing lattice sieving with 48 threads
02/04/22 07:59:48, nfs: commencing msieve filtering
02/04/22 08:14:38, nfs: commencing msieve linear algebra
02/04/22 10:56:32, nfs: commencing msieve sqrt
02/04/22 11:30:29, prp92 = 79690074661386541801297747046043781535425601774041103997338942133364779017286524412147008731
02/04/22 11:30:29, prp65 = 73391458449090910239583963735174695542759969445636225355379273549
02/04/22 11:30:30, NFS elapsed time = 167589.9435 seconds.
02/04/22 11:30:30, 
02/04/22 11:30:30, 
02/04/22 11:30:30, Total factoring time = 174967.0843 seconds
software ソフトウェア
YAFU Version 2.07
Built with GCC 9
Using GMP-ECM 7.0.5-dev, Powered by GMP 6.2.1
Detected Intel(R) Xeon(R) Gold 6248R CPU @ 3.00GHz
Detected L1 = 32768 bytes, L2 = 37486592 bytes, CL = 64 bytes
Using 1 random witness for Rabin-Miller PRP checks
Cached 664579 primes; max prime is 9999991
Note: YAFU was unable to detect SNFS form
execution environment 実行環境
Ubuntu 20.04.3 LTS

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6918118Makoto KamadaDecember 7, 2011 14:00:00 UTC 2011 年 12 月 7 日 (水) 23 時 0 分 0 秒 (日本時間)
800Serge BatalovDecember 7, 2011 18:50:50 UTC 2011 年 12 月 8 日 (木) 3 時 50 分 50 秒 (日本時間)
403e650Dmitry DomanovDecember 13, 2011 11:58:12 UTC 2011 年 12 月 13 日 (火) 20 時 58 分 12 秒 (日本時間)
4511e65080600Dmitry DomanovDecember 13, 2011 11:58:18 UTC 2011 年 12 月 13 日 (火) 20 時 58 分 18 秒 (日本時間)
4480Ignacio SantosDecember 20, 2021 14:37:57 UTC 2021 年 12 月 20 日 (月) 23 時 37 分 57 秒 (日本時間)
5043e636437400Dmitry DomanovJanuary 13, 2012 20:42:51 UTC 2012 年 1 月 14 日 (土) 5 時 42 分 51 秒 (日本時間)
36037Bob BackstromDecember 23, 2021 23:40:48 UTC 2021 年 12 月 24 日 (金) 8 時 40 分 48 秒 (日本時間)
5511e74449Stargate38December 23, 2021 23:41:32 UTC 2021 年 12 月 24 日 (金) 8 時 41 分 32 秒 (日本時間)
6026e719394 / 35991ebinaDecember 24, 2021 05:23:51 UTC 2021 年 12 月 24 日 (金) 14 時 23 分 51 秒 (日本時間)

10207+72×10103-19

c170

name 名前Bob Backstrom
date 日付May 27, 2024 03:33:36 UTC 2024 年 5 月 27 日 (月) 12 時 33 分 36 秒 (日本時間)
composite number 合成数
33043538775201333422432872032638252692966536858861832538175254577266545367833506485468670765496059921821716280874322576349645893717142188758819414806351077640504962177201<170>
prime factors 素因数
6718818295392371502273847894598498240067588008807333<52>
4918058105226914396769664943338498974976367797750907792207189986820608937206810732949771435475443330427694490447002397<118>
factorization results 素因数分解の結果
Number: n
N=33043538775201333422432872032638252692966536858861832538175254577266545367833506485468670765496059921821716280874322576349645893717142188758819414806351077640504962177201  ( 170 digits)
SNFS difficulty: 207 digits.
Divisors found:

Mon May 27 13:13:43 2024  prp52 factor: 6718818295392371502273847894598498240067588008807333
Mon May 27 13:13:43 2024  prp118 factor: 4918058105226914396769664943338498974976367797750907792207189986820608937206810732949771435475443330427694490447002397
Mon May 27 13:13:43 2024  elapsed time 03:04:44 (Msieve 1.44 - dependency 1)

Version:
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=1.991).
Factorization parameters were as follows:
#
# N = 10^207+72x10^103-1 = 1(103)91(103)
#
n: 33043538775201333422432872032638252692966536858861832538175254577266545367833506485468670765496059921821716280874322576349645893717142188758819414806351077640504962177201
m: 10000000000000000000000000000000000
deg: 6
c6: 1000
c3: 720
c0: -1
skew: 0.32
# Murphy_E = 7.216e-12
type: snfs
lss: 1
rlim: 19700000
alim: 19700000
lpbr: 27
lpba: 27
mfbr: 56
mfba: 56
rlambda: 2.6
alambda: 2.6
Factor base limits: 19700000/19700000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 56/56
Sieved  special-q in [100000, 49850000)
Primes: , ,
Relations:
Max relations in full relation-set: 28
Initial matrix:
Pruned matrix :

Msieve: found 4585800 hash collisions in 21524611 relations (17330071 unique)
Msieve: matrix is 2389282 x 2389507 (672.6 MB)

Sieving start time: 2024/05/26 12:13:39
Sieving end time  : 2024/05/27 10:08:30

Total sieving time: 21hrs 54min 51secs.

Total relation processing time: 2hrs 53min 49sec.
Matrix solve time: 0.00 hours.
Total square root time: 0hrs 4min 11sec.

Prototype def-par.txt line would be:
snfs,207,6,0,0,0,0,0,0,0,0,19700000,19700000,27,27,56,56,2.6,2.6,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6918118Makoto KamadaDecember 7, 2011 14:00:00 UTC 2011 年 12 月 7 日 (水) 23 時 0 分 0 秒 (日本時間)
800Serge BatalovDecember 7, 2011 18:50:50 UTC 2011 年 12 月 8 日 (木) 3 時 50 分 50 秒 (日本時間)
403e650Dmitry DomanovDecember 13, 2011 11:59:29 UTC 2011 年 12 月 13 日 (火) 20 時 59 分 29 秒 (日本時間)
4511e6600 / 3164Dmitry DomanovDecember 13, 2011 11:59:29 UTC 2011 年 12 月 13 日 (火) 20 時 59 分 29 秒 (日本時間)
5043e6360 / 7411Dmitry DomanovJanuary 13, 2012 20:44:41 UTC 2012 年 1 月 14 日 (土) 5 時 44 分 41 秒 (日本時間)

10209+72×10104-19

c188

name 名前Serge Batalov
date 日付December 7, 2011 18:47:14 UTC 2011 年 12 月 8 日 (木) 3 時 47 分 14 秒 (日本時間)
composite number 合成数
31057183048831034258860960091052722074197048880257490293287715015056248740049361488988495768028828373651183444116053004803706236508006833308614311862036033399522759360530854091496564115591<188>
prime factors 素因数
22152275082348965987637044643730027<35>
1401986158684781755471614309691841052396995008406768922022299216108132557739944644040962948507855589681804473785992722417079713663131113989799127969186133<154>
factorization results 素因数分解の結果
Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=2190975803
Step 1 took 4577ms
Step 2 took 3204ms
********** Factor found in step 2: 22152275082348965987637044643730027
Found probable prime factor of 35 digits: 22152275082348965987637044643730027
Probable prime cofactor ((10^209+10^104*72-1)/9/16156946651/22142983571)/22152275082348965987637044643730027 has 154 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6918118Makoto KamadaDecember 7, 2011 14:00:00 UTC 2011 年 12 月 7 日 (水) 23 時 0 分 0 秒 (日本時間)
800Serge BatalovDecember 7, 2011 18:50:50 UTC 2011 年 12 月 8 日 (木) 3 時 50 分 50 秒 (日本時間)

10211+72×10105-19

c209

name 名前Warut Roonguthai
date 日付December 7, 2011 15:34:37 UTC 2011 年 12 月 8 日 (木) 0 時 34 分 37 秒 (日本時間)
composite number 合成数
52910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910053291005291005291005291005291005291005291005291005291005291005291005291005291005291005291005291005291005291<209>
prime factors 素因数
36285706632946618839980126821<29>
composite cofactor 合成数の残り
1458151371978842836956881515428300916068255790867447320795687674208551255853291255417604140678341138214910640540521491934217604441928380807712905084200358740265389315239827039581071<181>
factorization results 素因数分解の結果
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3664285537
Step 1 took 9875ms
Step 2 took 5882ms
********** Factor found in step 2: 36285706632946618839980126821
Found probable prime factor of 29 digits: 36285706632946618839980126821
Composite cofactor 1458151371978842836956881515428300916068255790867447320795687674208551255853291255417604140678341138214910640540521491934217604441928380807712905084200358740265389315239827039581071 has 181 digits
software ソフトウェア
GMP-ECM 6.3

c181

name 名前Serge Batalov
date 日付December 8, 2011 14:32:46 UTC 2011 年 12 月 8 日 (木) 23 時 32 分 46 秒 (日本時間)
composite number 合成数
1458151371978842836956881515428300916068255790867447320795687674208551255853291255417604140678341138214910640540521491934217604441928380807712905084200358740265389315239827039581071<181>
prime factors 素因数
2025112299678070208793242951929013<34>
composite cofactor 合成数の残り
720034820889016128393115377311599232045779970008725088301845666634777386152421830385140310250202206470931847416132593715856908763459760003256364467<147>
factorization results 素因数分解の結果
Input number is (10^211+10^105*72-1)/9/3/7/36285706632946618839980126821 (181 digits)
Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=1757436507
Step 1 took 4616ms
********** Factor found in step 1: 2025112299678070208793242951929013
Found probable prime factor of 34 digits: 2025112299678070208793242951929013
Composite cofactor ((10^211+10^105*72-1)/9/3/7/36285706632946618839980126821)/2025112299678070208793242951929013 has 147 digits

c147

name 名前ebina
date 日付March 27, 2023 21:27:17 UTC 2023 年 3 月 28 日 (火) 6 時 27 分 17 秒 (日本時間)
composite number 合成数
720034820889016128393115377311599232045779970008725088301845666634777386152421830385140310250202206470931847416132593715856908763459760003256364467<147>
prime factors 素因数
153598551732803927143336076600619373696039458909809140882227553<63>
4687770898657756246075953428507276418949908465131862811912067789434465979965893608339<85>
factorization results 素因数分解の結果
Number: 11911_105
N = 720034820889016128393115377311599232045779970008725088301845666634777386152421830385140310250202206470931847416132593715856908763459760003256364467 (147 digits)
Divisors found:
r1=153598551732803927143336076600619373696039458909809140882227553 (pp63)
r2=4687770898657756246075953428507276418949908465131862811912067789434465979965893608339 (pp85)
Version: Msieve v. 1.53 (SVN unknown)
Total time: 114.48 hours.
Factorization parameters were as follows:
n: 720034820889016128393115377311599232045779970008725088301845666634777386152421830385140310250202206470931847416132593715856908763459760003256364467
# norm 2.902272e-14 alpha -6.397933 e 7.100e-12 rroots 3
skew: 7874107.26
c0: -9134461542926310576780635885965981647
c1: -9818303304837598938119067183001
c2: -1544829948638206394677291
c3: 610745525656335701
c4: 1730938566
c5: 312
Y0: -74582987570604262095656442580
Y1: 800789511342599
type: gnfs
Factor base limits: 17700000/17700000
Large primes per side: 3
Large prime bits: 29/29
Sieved algebraic special-q in [0, 0)
Total raw relations: 42788382
Relations: 6389854 relations
Pruned matrix : 3763699 x 3763935
Polynomial selection time: 0.70 hours.
Total sieving time: 100.36 hours.
Total relation processing time: 0.44 hours.
Matrix solve time: 12.66 hours.
time per square root: 0.32 hours.
Prototype def-par.txt line would be: gnfs,146,5,65,2000,1e-05,0.28,250,20,50000,3600,17700000,17700000,29,29,58,58,2.6,2.6,100000
total time: 114.48 hours.
Intel64 Family 6 Model 60 Stepping 3, GenuineIntel
processors: 8, speed: 2.29GHz
Windows-post2008Server-6.2.9200
Running Python 3.2

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6918118Makoto KamadaDecember 7, 2011 14:00:00 UTC 2011 年 12 月 7 日 (水) 23 時 0 分 0 秒 (日本時間)
800Serge BatalovDecember 7, 2011 18:50:50 UTC 2011 年 12 月 8 日 (木) 3 時 50 分 50 秒 (日本時間)
403e60--
4511e6103438610Dmitry DomanovDecember 12, 2011 08:08:25 UTC 2011 年 12 月 12 日 (月) 17 時 8 分 25 秒 (日本時間)
102828Eric JeancolasDecember 19, 2021 07:53:30 UTC 2021 年 12 月 19 日 (日) 16 時 53 分 30 秒 (日本時間)
5043e6400Dmitry DomanovJanuary 13, 2012 20:44:06 UTC 2012 年 1 月 14 日 (土) 5 時 44 分 6 秒 (日本時間)

10213+72×10106-19

c163

name 名前Dmitry Domanov
date 日付January 14, 2012 08:26:48 UTC 2012 年 1 月 14 日 (土) 17 時 26 分 48 秒 (日本時間)
composite number 合成数
2829665258200624272859905463690551347298913889410265797663278649499215312485474310479351279521960108583204265483090530961144912767519173732197743551608864050391399<163>
prime factors 素因数
132474387652106290359263322965143894468639<42>
composite cofactor 合成数の残り
21360093134619095668018289347327646365175392959554903403770628839145084491701690901178276581778456738533147444826801894841<122>
factorization results 素因数分解の結果
Using B1=43000000, B2=240490660426, polynomial Dickson(12), sigma=3609645930
Step 1 took 284542ms
Step 2 took 78220ms
********** Factor found in step 2: 132474387652106290359263322965143894468639
Found probable prime factor of 42 digits: 132474387652106290359263322965143894468639

c122

name 名前Warut Roonguthai
date 日付January 15, 2012 11:20:06 UTC 2012 年 1 月 15 日 (日) 20 時 20 分 6 秒 (日本時間)
composite number 合成数
21360093134619095668018289347327646365175392959554903403770628839145084491701690901178276581778456738533147444826801894841<122>
prime factors 素因数
10352473063494313530050609640268066130367990057282075059513<59>
2063284106475070034949124460711982413093036222864732341393200257<64>
factorization results 素因数分解の結果
N = 21360093134619095668018289347327646365175392959554903403770628839145084491701690901178276581778456738533147444826801894841 (122 digits)
Divisors found:
r1=10352473063494313530050609640268066130367990057282075059513 (pp59)
r2=2063284106475070034949124460711982413093036222864732341393200257 (pp64)
Version: Msieve v. 1.48
Total time: 16.31 hours.
Factorization parameters were as follows:
n: 21360093134619095668018289347327646365175392959554903403770628839145084491701690901178276581778456738533147444826801894841
Y0: -320663303409516699410273
Y1: 9109237145377
c0: 46459471640683626617506561929600
c1: 259419930889148634885578268
c2: -1339440281493689279153
c3: -3220607895132947
c4: 8314228837
c5: 6300
skew: 434706.77 
type: gnfs
Factor base limits: 4700000/4700000
Large primes per side: 3
Large prime bits: 27/27
Sieved algebraic special-q in [0, 0)
Total raw relations: 10709652
Relations: 1293814 relations
Pruned matrix : 747968 x 748196
Polynomial selection time: 0.00 hours.
Total sieving time: 15.57 hours.
Total relation processing time: 0.05 hours.
Matrix solve time: 0.65 hours.
time per square root: 0.04 hours.
Prototype def-par.txt line would be: gnfs,121,5,65,2000,1e-05,0.28,250,20,50000,3600,4700000,4700000,27,27,53,53,2.5,2.5,100000
total time: 16.31 hours.
Intel64 Family 6 Model 42 Stepping 7, GenuineIntel
Windows-7-6.1.7601-SP1
processors: 4, speed: 2.29GHz

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6918118Makoto KamadaDecember 7, 2011 14:00:00 UTC 2011 年 12 月 7 日 (水) 23 時 0 分 0 秒 (日本時間)
800Serge BatalovDecember 7, 2011 18:50:50 UTC 2011 年 12 月 8 日 (木) 3 時 50 分 50 秒 (日本時間)
403e640Dmitry DomanovDecember 13, 2011 12:04:31 UTC 2011 年 12 月 13 日 (火) 21 時 4 分 31 秒 (日本時間)
4511e6600 / 3026Dmitry DomanovDecember 13, 2011 12:04:31 UTC 2011 年 12 月 13 日 (火) 21 時 4 分 31 秒 (日本時間)
5043e6400 / 7412Dmitry DomanovJanuary 13, 2012 20:43:34 UTC 2012 年 1 月 14 日 (土) 5 時 43 分 34 秒 (日本時間)

10215+72×10107-19

c179

name 名前ebina
date 日付December 7, 2023 07:08:30 UTC 2023 年 12 月 7 日 (木) 16 時 8 分 30 秒 (日本時間)
composite number 合成数
12983142270192250038980311501208341025454322610534429054723264442740571932995805090094408174682815099724965435612227140613306292670798930478587466889608556848047451573876402240651<179>
prime factors 素因数
10292142204315569750225610093594306076904269378369872082206592203853304471307516449761<86>
1261461609493534249456746118595251559718313355781236021143465650198744022068707418491296128491<94>
factorization results 素因数分解の結果
Number: 11911_107
N = 12983142270192250038980311501208341025454322610534429054723264442740571932995805090094408174682815099724965435612227140613306292670798930478587466889608556848047451573876402240651 (179 digits)
SNFS difficulty: 217 digits.
Divisors found:
r1=10292142204315569750225610093594306076904269378369872082206592203853304471307516449761 (pp86)
r2=1261461609493534249456746118595251559718313355781236021143465650198744022068707418491296128491 (pp94)
Version: Msieve v. 1.54 (SVN 1018)
Total time: 89.28 hours.
Factorization parameters were as follows:
n: 12983142270192250038980311501208341025454322610534429054723264442740571932995805090094408174682815099724965435612227140613306292670798930478587466889608556848047451573876402240651
m: 1000000000000000000000000000000000000
deg: 6
c6: 1
c3: 72
c0: -10
skew: 1.47
# Murphy_E = 4.408e-12
type: snfs
lss: 1
rlim: 28000000
alim: 28000000
lpbr: 29
lpba: 29
mfbr: 58
mfba: 58
rlambda: 2.6
alambda: 2.6
Factor base limits: 28000000/28000000
Large primes per side: 3
Large prime bits: 29/29
Sieved rational special-q in [0, 0)
Total raw relations: 50237871
Relations: 5719482 relations
Pruned matrix : 3875921 x 3876146
Total sieving time: 85.56 hours.
Total relation processing time: 0.26 hours.
Matrix solve time: 3.06 hours.
time per square root: 0.39 hours.
Prototype def-par.txt line would be: snfs,217,6,0,0,0,0,0,0,0,0,28000000,28000000,29,29,58,58,2.6,2.6,100000
total time: 89.28 hours.
Intel64 Family 6 Model 158 Stepping 12, GenuineIntel
processors: 16, speed: 3.60GHz
Windows-post2008Server-6.2.9200
Running Python 3.2

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6918118Makoto KamadaDecember 7, 2011 14:00:00 UTC 2011 年 12 月 7 日 (水) 23 時 0 分 0 秒 (日本時間)
800Serge BatalovDecember 7, 2011 18:50:50 UTC 2011 年 12 月 8 日 (木) 3 時 50 分 50 秒 (日本時間)
403e60--
4511e6720 / 3315Dmitry DomanovDecember 15, 2011 21:08:26 UTC 2011 年 12 月 16 日 (金) 6 時 8 分 26 秒 (日本時間)
5043e6320 / 7386Dmitry DomanovJanuary 13, 2012 20:45:18 UTC 2012 年 1 月 14 日 (土) 5 時 45 分 18 秒 (日本時間)

10219+72×10109-19

c205

name 名前Erik Branger
date 日付August 14, 2018 15:23:43 UTC 2018 年 8 月 15 日 (水) 0 時 23 分 43 秒 (日本時間)
composite number 合成数
3195859123916133723612089982657574338027654870934853450346426585548143602280236763183232044096766383643101305218973460088289223952130771098820737929284218033114679017755616255949325074515086696568101838161<205>
prime factors 素因数
3775397405830799740362309739997997237918053172666178514636658533<64>
846496085148648078771691988526708196455457281799070647667856181540706607884079687589144685562448959481618067376882721833687321770798990990717<141>
factorization results 素因数分解の結果
Number: 11911_109
N = 3195859123916133723612089982657574338027654870934853450346426585548143602280236763183232044096766383643101305218973460088289223952130771098820737929284218033114679017755616255949325074515086696568101838161 (205 digits)
SNFS difficulty: 221 digits.
Divisors found:
r1=3775397405830799740362309739997997237918053172666178514636658533 (pp64)
r2=846496085148648078771691988526708196455457281799070647667856181540706607884079687589144685562448959481618067376882721833687321770798990990717 (pp141)
Version: Msieve v. 1.52 (SVN unknown)
Total time: 37.44 hours.
Factorization parameters were as follows:
n: 3195859123916133723612089982657574338027654870934853450346426585548143602280236763183232044096766383643101305218973460088289223952130771098820737929284218033114679017755616255949325074515086696568101838161
m: 10000000000000000000000000000000000000000000000000000000
deg: 4
c4: 1
c2: 72
c0: -10
skew: 1.00
type: snfs
lss: 1
rlim: 536870912
alim: 536870912
lpbr: 29
lpba: 29
mfbr: 58
mfba: 58
rlambda: 2.8
alambda: 2.8
side: 1
Number of cores used: 6
Number of threads per core: 1
Factor base limits: 536870912/536870912
Large primes per side: 3
Large prime bits: 29/29
Total raw relations: 29401945
Relations: 8760506 relations
Total pre-computation time approximately 1000 CPU-days.
Pre-computation saved approximately 18 G rational relations.
Total batch smoothness checking time: 13.11 hours.
Total relation processing time: 0.23 hours.
Pruned matrix : 7354837 x 7355062
Matrix solve time: 23.45 hours.
time per square root: 0.65 hours.
Prototype def-par.txt line would be: snfs,221,4,0,0,0,0,0,0,0,0,536870912,536870912,29,29,58,58,2.8,2.8,100000
total time: 37.44 hours.
Intel64 Family 6 Model 158 Stepping 10, GenuineIntel
Windows-10-10.0.16299-SP0
processors: 12, speed: 3.19GHz
software ソフトウェア
GGNFS; NFS_factory, Msieve

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6918118Makoto KamadaDecember 7, 2011 14:00:00 UTC 2011 年 12 月 7 日 (水) 23 時 0 分 0 秒 (日本時間)
800Serge BatalovDecember 7, 2011 18:50:50 UTC 2011 年 12 月 8 日 (木) 3 時 50 分 50 秒 (日本時間)
403e60--
4511e6630 / 3035Dmitry DomanovDecember 15, 2011 21:07:56 UTC 2011 年 12 月 16 日 (金) 6 時 7 分 56 秒 (日本時間)
5043e6400 / 7407Dmitry DomanovJuly 17, 2014 12:16:42 UTC 2014 年 7 月 17 日 (木) 21 時 16 分 42 秒 (日本時間)

10221+72×10110-19

c216

name 名前Warut Roonguthai
date 日付December 7, 2011 16:55:51 UTC 2011 年 12 月 8 日 (木) 1 時 55 分 51 秒 (日本時間)
composite number 合成数
217026605291542690218393872904879409166769754304180149444520403756296484386020882299961152237652813858450907512375942166750221909703910602400748307735045239195873022073776024202807022112840813155284706352151710278163<216>
prime factors 素因数
4633730866585023191600910531227<31>
46836256040801829820119414921305051406542619813208568614151625995995339257739058110219492995623995542556439519879697923182278954793127768906502579431727357042514337325736887978035630569<185>
factorization results 素因数分解の結果
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3194673333
Step 1 took 11544ms
Step 2 took 6412ms
********** Factor found in step 2: 4633730866585023191600910531227
Found probable prime factor of 31 digits: 4633730866585023191600910531227
Probable prime cofactor 46836256040801829820119414921305051406542619813208568614151625995995339257739058110219492995623995542556439519879697923182278954793127768906502579431727357042514337325736887978035630569 has 185 digits
software ソフトウェア
GMP-ECM 6.3

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6918118Makoto KamadaDecember 7, 2011 14:00:00 UTC 2011 年 12 月 7 日 (水) 23 時 0 分 0 秒 (日本時間)
800Serge BatalovDecember 7, 2011 18:50:50 UTC 2011 年 12 月 8 日 (木) 3 時 50 分 50 秒 (日本時間)

10225+72×10112-19

c211

composite cofactor 合成数の残り
2299946397743865585293029848407905134491761302423294437557619940759160237561053956790842483114815814892962124953504327727844616363236521758211049064256376949659825407838025296616908112907133769372399016342905627<211>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6918118Makoto KamadaDecember 7, 2011 14:00:00 UTC 2011 年 12 月 7 日 (水) 23 時 0 分 0 秒 (日本時間)
800Serge BatalovDecember 7, 2011 18:50:50 UTC 2011 年 12 月 8 日 (木) 3 時 50 分 50 秒 (日本時間)
403e60--
4511e63035630Dmitry DomanovDecember 15, 2011 21:07:33 UTC 2011 年 12 月 16 日 (金) 6 時 7 分 33 秒 (日本時間)
2405ebinaDecember 4, 2023 09:35:44 UTC 2023 年 12 月 4 日 (月) 18 時 35 分 44 秒 (日本時間)
5043e6400 / 6867Dmitry DomanovJuly 17, 2014 12:16:51 UTC 2014 年 7 月 17 日 (木) 21 時 16 分 51 秒 (日本時間)

10227+72×10113-19

c199

composite cofactor 合成数の残り
2174901143173445334276219295705615354660436801558498397369809654798951238358932886314751690255138015485941264705103828339608803849866085228400216227233187977015382836952697978360172464406641352445877<199>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6918118Makoto KamadaDecember 7, 2011 14:00:00 UTC 2011 年 12 月 7 日 (水) 23 時 0 分 0 秒 (日本時間)
800Serge BatalovDecember 7, 2011 18:50:50 UTC 2011 年 12 月 8 日 (木) 3 時 50 分 50 秒 (日本時間)
403e60--
4511e63035630Dmitry DomanovDecember 15, 2011 21:06:31 UTC 2011 年 12 月 16 日 (金) 6 時 6 分 31 秒 (日本時間)
2405ebinaDecember 4, 2023 09:36:42 UTC 2023 年 12 月 4 日 (月) 18 時 36 分 42 秒 (日本時間)
5043e6400 / 6867Dmitry DomanovJuly 17, 2014 12:17:04 UTC 2014 年 7 月 17 日 (木) 21 時 17 分 4 秒 (日本時間)

10229+72×10114-19

c178

name 名前Dmitry Domanov
date 日付December 16, 2011 05:15:43 UTC 2011 年 12 月 16 日 (金) 14 時 15 分 43 秒 (日本時間)
composite number 合成数
8839565493986091668787563213047597352287736929823212056083891138487507287527371030964512220668579626979613070019672747177144619811995820735003282659558049823799072247228788461613<178>
prime factors 素因数
7097835278747594947321439059884209477<37>
1245388931531505343582385147532613694374727456803558394643359590344974081526994801806287610454129541744960937997851941880996570333380545780169<142>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=2462695802
Step 1 took 91193ms
Step 2 took 29867ms
********** Factor found in step 2: 7097835278747594947321439059884209477
Found probable prime factor of 37 digits: 7097835278747594947321439059884209477

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6918118Makoto KamadaDecember 7, 2011 14:00:00 UTC 2011 年 12 月 7 日 (水) 23 時 0 分 0 秒 (日本時間)
800Serge BatalovDecember 7, 2011 18:50:50 UTC 2011 年 12 月 8 日 (木) 3 時 50 分 50 秒 (日本時間)
403e60--
4511e6750 / 4438Dmitry DomanovDecember 15, 2011 21:05:54 UTC 2011 年 12 月 16 日 (金) 6 時 5 分 54 秒 (日本時間)

10231+72×10115-19

c222

name 名前ebina
date 日付December 4, 2023 08:50:22 UTC 2023 年 12 月 4 日 (月) 17 時 50 分 22 秒 (日本時間)
composite number 合成数
725174583079601091991382857755103396004828012225959054100577237445264738002062847572869061017502711487593037732550567995494049409179926017993607543990027497757232624608683013768220472792203461832478273818440219509157011879<222>
prime factors 素因数
20531390070084363558603548943892032812424254247781253<53>
35320286673440097322972635204789742606662138679018235056872819092111798832007742689325274465158045038513807435044092815662273951837032257558939192990454580579470563306043<170>
factorization results 素因数分解の結果
Y:\ALL\ECM>ecm-svn3038-skylake\ecm -primetest -one -sigma 1:1936459708 43e6      
GMP-ECM 7.0.5-dev [configured with GMP 6.1.2, --enable-asm-redc] [ECM]
Input number is 725174583079601091991382857755103396004828012225959054100577237445264738002062847572869061017502711487593037732550567995494049409179926017993607543990027497757232624608683013768220472792203461832478273818440219509157011879 (222 digits)
Using B1=43000000, B2=240490660426, polynomial Dickson(12), sigma=1:1936459708
Step 1 took 99547ms
********** Factor found in step 1: 20531390070084363558603548943892032812424254247781253
Found prime factor of 53 digits: 20531390070084363558603548943892032812424254247781253
Prime cofactor 35320286673440097322972635204789742606662138679018235056872819092111798832007742689325274465158045038513807435044092815662273951837032257558939192990454580579470563306043 has 170 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6918118Makoto KamadaDecember 7, 2011 14:00:00 UTC 2011 年 12 月 7 日 (水) 23 時 0 分 0 秒 (日本時間)
800Serge BatalovDecember 7, 2011 22:59:29 UTC 2011 年 12 月 8 日 (木) 7 時 59 分 29 秒 (日本時間)
403e62100Wataru SakaiDecember 12, 2011 08:37:04 UTC 2011 年 12 月 12 日 (月) 17 時 37 分 4 秒 (日本時間)
4511e62150yas matSeptember 26, 2014 08:47:09 UTC 2014 年 9 月 26 日 (金) 17 時 47 分 9 秒 (日本時間)
5043e6520 / 6986Dmitry DomanovJanuary 13, 2012 20:40:36 UTC 2012 年 1 月 14 日 (土) 5 時 40 分 36 秒 (日本時間)

10235+72×10117-19

c219

name 名前Dmitry Domanov
date 日付December 16, 2011 05:16:30 UTC 2011 年 12 月 16 日 (金) 14 時 16 分 30 秒 (日本時間)
composite number 合成数
143363824188724130858548093205653814525814025223458206300331979297441863815763564903061123074142184017797015084013979877733954833471235786926270266282609763564781746670557609601705244577508293405845513324223644688612217<219>
prime factors 素因数
147835670600591673435779457922750052281<39>
composite cofactor 合成数の残り
969751235316210313949069186652394228831113690600704011856620198736129574854194665604290582373386384371158992438834352253991919651137283143365508239682422988234684502098676450296257<180>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=692717582
Step 1 took 114411ms
Step 2 took 34271ms
********** Factor found in step 2: 147835670600591673435779457922750052281
Found probable prime factor of 39 digits: 147835670600591673435779457922750052281

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6918118Makoto KamadaDecember 7, 2011 14:00:00 UTC 2011 年 12 月 7 日 (水) 23 時 0 分 0 秒 (日本時間)
800Serge BatalovDecember 7, 2011 18:50:50 UTC 2011 年 12 月 8 日 (木) 3 時 50 分 50 秒 (日本時間)
403e60--
4511e63430630Dmitry DomanovDecember 15, 2011 21:05:14 UTC 2011 年 12 月 16 日 (金) 6 時 5 分 14 秒 (日本時間)
2800Thomas KozlowskiNovember 1, 2024 13:59:10 UTC 2024 年 11 月 1 日 (金) 22 時 59 分 10 秒 (日本時間)
5043e6320 / 6778Dmitry DomanovJanuary 13, 2012 20:45:50 UTC 2012 年 1 月 14 日 (土) 5 時 45 分 50 秒 (日本時間)

10237+72×10118-19

c221

composite cofactor 合成数の残り
20441539836377931137575341957318782759287309376106151874286590444385579634598934412576979126359355200113153605531886748560174583204610333746993917645886799426638044106631040305019306143176387816129587903587395213826317151<221>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6918118Makoto KamadaDecember 7, 2011 14:00:00 UTC 2011 年 12 月 7 日 (水) 23 時 0 分 0 秒 (日本時間)
800Serge BatalovDecember 7, 2011 18:50:50 UTC 2011 年 12 月 8 日 (木) 3 時 50 分 50 秒 (日本時間)
403e60--
4511e63232630Dmitry DomanovDecember 15, 2011 21:04:53 UTC 2011 年 12 月 16 日 (金) 6 時 4 分 53 秒 (日本時間)
2602Thomas KozlowskiNovember 1, 2024 14:58:29 UTC 2024 年 11 月 1 日 (金) 23 時 58 分 29 秒 (日本時間)
5043e6400 / 6823Dmitry DomanovJuly 17, 2014 12:17:28 UTC 2014 年 7 月 17 日 (木) 21 時 17 分 28 秒 (日本時間)

10239+72×10119-19

c228

composite cofactor 合成数の残り
389542954303270050359289132115514403311373995592538112477105600790450285170889248712060827404340091467423144564878624341030181879645907054313332256892848994435605179384512557157107955193831329858762017000892812728703318580860841<228>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6918118Makoto KamadaDecember 7, 2011 14:00:00 UTC 2011 年 12 月 7 日 (水) 23 時 0 分 0 秒 (日本時間)
800Serge BatalovDecember 7, 2011 22:59:46 UTC 2011 年 12 月 8 日 (木) 7 時 59 分 46 秒 (日本時間)
403e62100Wataru SakaiDecember 12, 2011 08:36:42 UTC 2011 年 12 月 12 日 (月) 17 時 36 分 42 秒 (日本時間)
4511e62290yas matOctober 2, 2014 08:41:09 UTC 2014 年 10 月 2 日 (木) 17 時 41 分 9 秒 (日本時間)
5043e6480 / 6955Dmitry DomanovJanuary 13, 2012 20:37:45 UTC 2012 年 1 月 14 日 (土) 5 時 37 分 45 秒 (日本時間)

10241+72×10120-19

c226

name 名前Thomas Kozlowski
date 日付November 1, 2024 15:54:44 UTC 2024 年 11 月 2 日 (土) 0 時 54 分 44 秒 (日本時間)
composite number 合成数
3516253115536665144984463345465687626459121977167107901376883958270754419077000747124779482279947030550518301928854724527626831894567585568849089156357043523544868937009934133872701352475467508523933680265815761352970226758859<226>
prime factors 素因数
596953135952273816573225071105221938695461374580091<51>
composite cofactor 合成数の残り
5890333602029671365894000960030034261824958569043613614506714340774110521404358315324560584185502346532111741943760620378629561524873481368901554538232999332743703452525278449<175>
factorization results 素因数分解の結果
GMP-ECM 7.0.6 [configured with GMP 6.3.0, --enable-asm-redc] [ECM]
Input number is 3516253115536665144984463345465687626459121977167107901376883958270754419077000747124779482279947030550518301928854724527626831894567585568849089156357043523544868937009934133872701352475467508523933680265815761352970226758859 (226 digits)
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:3635089861
Step 1 took 38673ms
Step 2 took 14622ms
Run 2 out of 0:
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:4262822058
Step 1 took 37314ms
Step 2 took 15172ms
Run 3 out of 0:
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:3437558014
Step 1 took 37166ms
Step 2 took 14580ms
** Factor found in step 2: 596953135952273816573225071105221938695461374580091
Found prime factor of 51 digits: 596953135952273816573225071105221938695461374580091
Composite cofactor 5890333602029671365894000960030034261824958569043613614506714340774110521404358315324560584185502346532111741943760620378629561524873481368901554538232999332743703452525278449 has 175 digits
execution environment 実行環境
2x Xeon E5-2698v4, 128GB DDR4, Ubuntu Server 24.04

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6918118Makoto KamadaDecember 7, 2011 14:00:00 UTC 2011 年 12 月 7 日 (水) 23 時 0 分 0 秒 (日本時間)
800Serge BatalovDecember 7, 2011 18:50:50 UTC 2011 年 12 月 8 日 (木) 3 時 50 分 50 秒 (日本時間)
403e60--
4511e6630 / 3035Dmitry DomanovDecember 15, 2011 21:00:32 UTC 2011 年 12 月 16 日 (金) 6 時 0 分 32 秒 (日本時間)
5043e6400 / 7407Dmitry DomanovJuly 17, 2014 12:17:46 UTC 2014 年 7 月 17 日 (木) 21 時 17 分 46 秒 (日本時間)

10243+72×10121-19

c212

composite cofactor 合成数の残り
14787788399782590921898545282237875021627622115298438804755053736638618046089861827160266030472667605142493432286571788768794499992300850497077206178196745523420715174333384039397484568050531185325037283518684893<212>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6918118Makoto KamadaDecember 7, 2011 14:00:00 UTC 2011 年 12 月 7 日 (水) 23 時 0 分 0 秒 (日本時間)
800Serge BatalovDecember 7, 2011 18:50:50 UTC 2011 年 12 月 8 日 (木) 3 時 50 分 50 秒 (日本時間)
403e60--
4511e63232630Dmitry DomanovDecember 15, 2011 20:58:34 UTC 2011 年 12 月 16 日 (金) 5 時 58 分 34 秒 (日本時間)
2602Thomas KozlowskiNovember 1, 2024 15:53:53 UTC 2024 年 11 月 2 日 (土) 0 時 53 分 53 秒 (日本時間)
5043e6400 / 6823Dmitry DomanovJuly 17, 2014 12:17:56 UTC 2014 年 7 月 17 日 (木) 21 時 17 分 56 秒 (日本時間)

10247+72×10123-19

c225

name 名前Serge Batalov
date 日付December 7, 2011 18:49:20 UTC 2011 年 12 月 8 日 (木) 3 時 49 分 20 秒 (日本時間)
composite number 合成数
405932089441184414591970545345428914563157430157490485625825829746992752729703108871747083219676955609480032976547857034196001413876474875837755300726040448731558065446913434648911346246427216320624481248042144401700853021367<225>
prime factors 素因数
131958864349837886421268918171746205507<39>
3076201750001519383843970678712868514475330082808793009353282348149054634724366799921883665374672523518517592364619314550839515716018030524267392255150016981567964328673076074705947417981<187>
factorization results 素因数分解の結果
Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=59237472
Step 1 took 6373ms
Step 2 took 4048ms
********** Factor found in step 2: 131958864349837886421268918171746205507
Found probable prime factor of 39 digits: 131958864349837886421268918171746205507
Probable prime cofactor ((10^247+10^123*72-1)/9/3/7/709/183839392597964297)/131958864349837886421268918171746205507 has 187 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6918118Makoto KamadaDecember 7, 2011 14:00:00 UTC 2011 年 12 月 7 日 (水) 23 時 0 分 0 秒 (日本時間)
800Serge BatalovDecember 7, 2011 18:50:50 UTC 2011 年 12 月 8 日 (木) 3 時 50 分 50 秒 (日本時間)

10249+72×10124-19

c234

composite cofactor 合成数の残り
914913389139860470841444772920034529847944319031687675795356146731468697673213039707201431839668592791440708919119409023171264021323369299825504177538164458022169462893826941693351121925059436069207271201570660289178489095593929360487<234>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6918118Makoto KamadaDecember 7, 2011 14:00:00 UTC 2011 年 12 月 7 日 (水) 23 時 0 分 0 秒 (日本時間)
800Serge BatalovDecember 7, 2011 18:50:50 UTC 2011 年 12 月 8 日 (木) 3 時 50 分 50 秒 (日本時間)
403e60--
4511e63230630Dmitry DomanovDecember 15, 2011 20:57:27 UTC 2011 年 12 月 16 日 (金) 5 時 57 分 27 秒 (日本時間)
2600Thomas KozlowskiNovember 1, 2024 17:00:56 UTC 2024 年 11 月 2 日 (土) 2 時 0 分 56 秒 (日本時間)
5043e6400 / 6823Dmitry DomanovJuly 17, 2014 12:18:12 UTC 2014 年 7 月 17 日 (木) 21 時 18 分 12 秒 (日本時間)

10251+72×10125-19

c242

name 名前Serge Batalov
date 日付December 7, 2011 18:46:07 UTC 2011 年 12 月 8 日 (木) 3 時 46 分 7 秒 (日本時間)
composite number 合成数
70722736243202352484888352926533452853908911510390604564831118939750255005146878955330360643146368083987288971497005294178861015014648365413226607575727142478302375908895101301341417021295395954608990855147791384712002318296951871072570642839<242>
prime factors 素因数
11033384686691597227036666451749<32>
composite cofactor 合成数の残り
6409885837526148702075053179597842759754481796101860707030011910831400484166484554595631152683523304108288949395175950086964127312715129636154241450184472233136457040046373432642534169943077821571496370211526411<211>
factorization results 素因数分解の結果
Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=2063220679
Step 1 took 7276ms
Step 2 took 4344ms
********** Factor found in step 2: 11033384686691597227036666451749
Found probable prime factor of 32 digits: 11033384686691597227036666451749
Composite cofactor ((10^251+10^125*72-1)/9/7/22444007)/11033384686691597227036666451749 has 211 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6918118Makoto KamadaDecember 7, 2011 14:00:00 UTC 2011 年 12 月 7 日 (水) 23 時 0 分 0 秒 (日本時間)
800Serge BatalovDecember 7, 2011 18:50:50 UTC 2011 年 12 月 8 日 (木) 3 時 50 分 50 秒 (日本時間)
403e60--
4511e63235630Dmitry DomanovDecember 15, 2011 20:57:57 UTC 2011 年 12 月 16 日 (金) 5 時 57 分 57 秒 (日本時間)
2605Thomas KozlowskiNovember 1, 2024 17:53:50 UTC 2024 年 11 月 2 日 (土) 2 時 53 分 50 秒 (日本時間)
5043e6400 / 6822Dmitry DomanovJuly 17, 2014 12:18:25 UTC 2014 年 7 月 17 日 (木) 21 時 18 分 25 秒 (日本時間)

10253+72×10126-19

c216

composite cofactor 合成数の残り
656623085076668965623437961079224329141326412302860946516532170363176636239248526994796839817160872600350429973363346027830139791681457699066403711587551249630066618072470670287395450894802488736652454845603444191649<216>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6918118Makoto KamadaDecember 7, 2011 14:00:00 UTC 2011 年 12 月 7 日 (水) 23 時 0 分 0 秒 (日本時間)
800Serge BatalovDecember 7, 2011 18:50:50 UTC 2011 年 12 月 8 日 (木) 3 時 50 分 50 秒 (日本時間)
403e60--
4511e63230630Dmitry DomanovDecember 15, 2011 20:56:57 UTC 2011 年 12 月 16 日 (金) 5 時 56 分 57 秒 (日本時間)
2600Thomas KozlowskiNovember 1, 2024 18:52:42 UTC 2024 年 11 月 2 日 (土) 3 時 52 分 42 秒 (日本時間)
5043e6400 / 6823Dmitry DomanovJuly 17, 2014 12:18:36 UTC 2014 年 7 月 17 日 (木) 21 時 18 分 36 秒 (日本時間)

10257+72×10128-19

c223

composite cofactor 合成数の残り
1691687400335249854499309565079163882566349468518847370289853398168129397923829336535180089278679092454560325289036742267950052818313577126013298063710199236153317083533476984855213474816048590583381274227046645722770124719<223>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6918118Makoto KamadaDecember 7, 2011 14:00:00 UTC 2011 年 12 月 7 日 (水) 23 時 0 分 0 秒 (日本時間)
800Serge BatalovDecember 7, 2011 18:50:50 UTC 2011 年 12 月 8 日 (木) 3 時 50 分 50 秒 (日本時間)
403e60--
4511e63231630Dmitry DomanovDecember 15, 2011 20:56:17 UTC 2011 年 12 月 16 日 (金) 5 時 56 分 17 秒 (日本時間)
2601Thomas KozlowskiNovember 1, 2024 19:51:47 UTC 2024 年 11 月 2 日 (土) 4 時 51 分 47 秒 (日本時間)
5043e6400 / 6823Dmitry DomanovJuly 17, 2014 12:18:52 UTC 2014 年 7 月 17 日 (木) 21 時 18 分 52 秒 (日本時間)

10263+72×10131-19

c217

name 名前Dmitry Domanov
date 日付July 21, 2014 05:18:20 UTC 2014 年 7 月 21 日 (月) 14 時 18 分 20 秒 (日本時間)
composite number 合成数
4985497433197069074963011361399516019883043883376632544353238144353823527108816593576792207332816285122232893478272918458714844370287086238346684466232469217995741275870024561835069157729382941244626560464370814438577<217>
prime factors 素因数
1669950278068351579747144647088943018471584413361<49>
2985416690947136767345884688580728266856205220159120350582267640205245396300379659243447161694531874495170710834182659819383950903689017093255094175718740493178853357057<169>
factorization results 素因数分解の結果
Using B1=43000000, B2=240490660426, polynomial Dickson(12), sigma=1735642798
Step 1 took 472325ms
Step 2 took 117897ms
********** Factor found in step 2: 1669950278068351579747144647088943018471584413361
Found probable prime factor of 49 digits: 1669950278068351579747144647088943018471584413361

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6918118Makoto KamadaDecember 7, 2011 14:00:00 UTC 2011 年 12 月 7 日 (水) 23 時 0 分 0 秒 (日本時間)
800Serge BatalovDecember 7, 2011 18:50:50 UTC 2011 年 12 月 8 日 (木) 3 時 50 分 50 秒 (日本時間)
403e60--
4511e6720 / 3035Dmitry DomanovDecember 15, 2011 20:55:38 UTC 2011 年 12 月 16 日 (金) 5 時 55 分 38 秒 (日本時間)
5043e6400 / 7386Dmitry DomanovJuly 17, 2014 12:19:04 UTC 2014 年 7 月 17 日 (木) 21 時 19 分 4 秒 (日本時間)

10267+72×10133-19

c252

name 名前Dmitry Domanov
date 日付December 9, 2011 05:13:06 UTC 2011 年 12 月 9 日 (金) 14 時 13 分 6 秒 (日本時間)
composite number 合成数
232273825548094395003686584185610955248343934255306547876939788187591702926525525083044746974509695837076621557885454518404887569502790448109531841015108063951786957826147560845805332701043434046907066371597676003211050670953723358259216145584235566729<252>
prime factors 素因数
1647071997154470666469598759515663517767<40>
141022266148278514849104599278825295873864983464435219289734990519576045388523815946177347245222350411444653763615337563293310612001209170742154152163002805826121216221123398062467627740836288273563121650690663087<213>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=2264257854
Step 1 took 151176ms
Step 2 took 43397ms
********** Factor found in step 2: 1647071997154470666469598759515663517767
Found probable prime factor of 40 digits: 1647071997154470666469598759515663517767

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6918118Makoto KamadaDecember 7, 2011 14:00:00 UTC 2011 年 12 月 7 日 (水) 23 時 0 分 0 秒 (日本時間)
800Serge BatalovDecember 7, 2011 18:50:50 UTC 2011 年 12 月 8 日 (木) 3 時 50 分 50 秒 (日本時間)
403e60--
4511e6800 / 4438Dmitry DomanovDecember 8, 2011 23:08:46 UTC 2011 年 12 月 9 日 (金) 8 時 8 分 46 秒 (日本時間)

10269+72×10134-19

c265

composite cofactor 合成数の残り
1711771855047159314606549239117410431537684657388863212311063181499169790650302127732415823619028055940704222941166401342029134356973025899108166863520429997089987846419829165168866293500402266385936082438932539071192591451411355894486382854893099847652304900802821<265>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6918118Makoto KamadaDecember 7, 2011 14:00:00 UTC 2011 年 12 月 7 日 (水) 23 時 0 分 0 秒 (日本時間)
800Serge BatalovDecember 7, 2011 18:55:56 UTC 2011 年 12 月 8 日 (木) 3 時 55 分 56 秒 (日本時間)
403e60--
4511e6800Dmitry DomanovDecember 8, 2011 23:09:15 UTC 2011 年 12 月 9 日 (金) 8 時 9 分 15 秒 (日本時間)
5043e61100800Dmitry DomanovJanuary 6, 2012 17:20:06 UTC 2012 年 1 月 7 日 (土) 2 時 20 分 6 秒 (日本時間)
300Dmitry DomanovJanuary 7, 2012 18:40:09 UTC 2012 年 1 月 8 日 (日) 3 時 40 分 9 秒 (日本時間)
5511e72610 / 17326yoyo@homeAugust 26, 2012 10:45:55 UTC 2012 年 8 月 26 日 (日) 19 時 45 分 55 秒 (日本時間)

10271+72×10135-19

c240

composite cofactor 合成数の残り
419720405842366039147341245895373181912160411985613480599630755720559345673751091357906598941280993473493679218932823168568666741325443971837911831498942586255915041627623735859652096761371577617409820338076116830431114685958464933598830649<240>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6918118Makoto KamadaDecember 7, 2011 14:00:00 UTC 2011 年 12 月 7 日 (水) 23 時 0 分 0 秒 (日本時間)
800Serge BatalovDecember 7, 2011 18:50:50 UTC 2011 年 12 月 8 日 (木) 3 時 50 分 50 秒 (日本時間)
403e60--
4511e63100700Dmitry DomanovDecember 15, 2011 20:54:18 UTC 2011 年 12 月 16 日 (金) 5 時 54 分 18 秒 (日本時間)
2400Thomas KozlowskiNovember 1, 2024 20:53:55 UTC 2024 年 11 月 2 日 (土) 5 時 53 分 55 秒 (日本時間)
5043e6400 / 6852Dmitry DomanovJuly 17, 2014 12:19:24 UTC 2014 年 7 月 17 日 (木) 21 時 19 分 24 秒 (日本時間)

10273+72×10136-19

c273

name 名前Alfred Reich
date 日付September 26, 2016 12:06:43 UTC 2016 年 9 月 26 日 (月) 21 時 6 分 43 秒 (日本時間)
composite number 合成数
111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111191111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111<273>
prime factors 素因数
3948668030455486680577648190829312836176810875381268954494131<61>
28138883860108702099859794645433640627032128516666703132108459140851790398343401144432329305636925651887362947667766281392609792021612518807556346263506955769171687873041572796737914113036617878199255496841191581<212>
factorization results 素因数分解の結果
Input number is 111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111191111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 (273 digits)
Using B1=1000000000-1000000000, B2=19071176724616, polynomial Dickson(30), sigma=3:2155181341
Step 1 took 0ms
Step 2 took 1310344ms
********** Factor found in step 2: 3948668030455486680577648190829312836176810875381268954494131
Found probable prime factor of 61 digits: 3948668030455486680577648190829312836176810875381268954494131
Probable prime cofactor 28138883860108702099859794645433640627032128516666703132108459140851790398343401144432329305636925651887362947667766281392609792021612518807556346263506955769171687873041572796737914113036617878199255496841191581 has 212 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6918118Makoto KamadaDecember 7, 2011 14:00:00 UTC 2011 年 12 月 7 日 (水) 23 時 0 分 0 秒 (日本時間)
800Serge BatalovDecember 7, 2011 18:55:15 UTC 2011 年 12 月 8 日 (木) 3 時 55 分 15 秒 (日本時間)
403e60--
4511e6800Dmitry DomanovDecember 8, 2011 23:09:45 UTC 2011 年 12 月 9 日 (金) 8 時 9 分 45 秒 (日本時間)
5043e61400600Dmitry DomanovDecember 9, 2011 23:23:32 UTC 2011 年 12 月 10 日 (土) 8 時 23 分 32 秒 (日本時間)
800Dmitry DomanovDecember 11, 2011 09:14:14 UTC 2011 年 12 月 11 日 (日) 18 時 14 分 14 秒 (日本時間)
5511e738982490yoyo@homeSeptember 5, 2012 18:10:08 UTC 2012 年 9 月 6 日 (木) 3 時 10 分 8 秒 (日本時間)
1408Alfred ReichJune 12, 2016 07:58:49 UTC 2016 年 6 月 12 日 (日) 16 時 58 分 49 秒 (日本時間)
6026e716896 / 403681408Alfred ReichJune 12, 2016 07:59:32 UTC 2016 年 6 月 12 日 (日) 16 時 59 分 32 秒 (日本時間)
7040Alfred ReichJune 23, 2016 19:13:07 UTC 2016 年 6 月 24 日 (金) 4 時 13 分 7 秒 (日本時間)
8448Alfred ReichAugust 22, 2016 06:51:34 UTC 2016 年 8 月 22 日 (月) 15 時 51 分 34 秒 (日本時間)

10275+72×10137-19

c251

name 名前Serge Batalov
date 日付December 7, 2011 18:44:05 UTC 2011 年 12 月 8 日 (木) 3 時 44 分 5 秒 (日本時間)
composite number 合成数
45936087572900060670021378744163482136347131234188068436734496455285672892126486746844444982435745275919594799448394586467586955049220366059213875046987442952532775904497738015694191957320789408493203223298630127327480067396525012667441716020526294631<251>
prime factors 素因数
5870827069209250475187539796569<31>
composite cofactor 合成数の残り
7824466132518404011893590826474965774947871248581558861263913848862706168776533174666070464675858714789329462855944331263099772970495163967718484804564547028253326796699577268854197718264170981084180936589018553114244799<220>
factorization results 素因数分解の結果
Using B1=250000, B2=128992510, polynomial Dickson(3), sigma=3028360965
Step 1 took 2120ms
Step 2 took 836ms
********** Factor found in step 2: 5870827069209250475187539796569
Found probable prime factor of 31 digits: 5870827069209250475187539796569
Composite cofactor ((10^275+10^137*72-1)/9/7/1453/20261/1173759057532951)/5870827069209250475187539796569 has 220 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6918118Makoto KamadaDecember 7, 2011 14:00:00 UTC 2011 年 12 月 7 日 (水) 23 時 0 分 0 秒 (日本時間)
800Serge BatalovDecember 7, 2011 18:50:50 UTC 2011 年 12 月 8 日 (木) 3 時 50 分 50 秒 (日本時間)
403e60--
4511e64620620Dmitry DomanovDecember 14, 2011 20:10:24 UTC 2011 年 12 月 15 日 (木) 5 時 10 分 24 秒 (日本時間)
4000Thomas KozlowskiNovember 1, 2024 22:24:02 UTC 2024 年 11 月 2 日 (土) 7 時 24 分 2 秒 (日本時間)

10277+72×10138-19

c229

composite cofactor 合成数の残り
2104431530158411043351869302827782290174775060580142518443351602785531581469141151484398539662963743639814799388808014797632193249502749680206670685410994700279171467045852518374237706096636500294594283574076008192322984688715959<229>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6918118Makoto KamadaDecember 7, 2011 14:00:00 UTC 2011 年 12 月 7 日 (水) 23 時 0 分 0 秒 (日本時間)
800Serge BatalovDecember 7, 2011 18:50:50 UTC 2011 年 12 月 8 日 (木) 3 時 50 分 50 秒 (日本時間)
403e60--
4511e64438620Dmitry DomanovDecember 13, 2011 17:40:05 UTC 2011 年 12 月 14 日 (水) 2 時 40 分 5 秒 (日本時間)
3818yas matOctober 15, 2014 07:29:20 UTC 2014 年 10 月 15 日 (水) 16 時 29 分 20 秒 (日本時間)

10279+72×10139-19

c236

composite cofactor 合成数の残り
23102653532873648257592688292066333637907635585174326354084369321422349557950731717413188450617119600752199755461625535544693466125877489723504482194536733412112883094641010952419878506275616138045121801216548049869236104322982890698899<236>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6918118Makoto KamadaDecember 7, 2011 14:00:00 UTC 2011 年 12 月 7 日 (水) 23 時 0 分 0 秒 (日本時間)
800Serge BatalovDecember 7, 2011 18:50:50 UTC 2011 年 12 月 8 日 (木) 3 時 50 分 50 秒 (日本時間)
403e60--
4511e64438620Dmitry DomanovDecember 13, 2011 17:39:33 UTC 2011 年 12 月 14 日 (水) 2 時 39 分 33 秒 (日本時間)
3818yas matOctober 29, 2014 09:20:56 UTC 2014 年 10 月 29 日 (水) 18 時 20 分 56 秒 (日本時間)

10281+72×10140-19

c267

composite cofactor 合成数の残り
295830085954798550344668103615077984505333957582635548520443678902653463590188983561435405444065624749871952902525348278472891901829456399942539231784574379989426856713156811891720326894031881692266659868465452442368343821612340901332427362613687528510663947520955851<267>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6918118Makoto KamadaDecember 7, 2011 14:00:00 UTC 2011 年 12 月 7 日 (水) 23 時 0 分 0 秒 (日本時間)
800Serge BatalovDecember 7, 2011 18:50:50 UTC 2011 年 12 月 8 日 (木) 3 時 50 分 50 秒 (日本時間)
403e60--
4511e64442640Dmitry DomanovDecember 11, 2011 09:13:33 UTC 2011 年 12 月 11 日 (日) 18 時 13 分 33 秒 (日本時間)
3802Thomas KozlowskiNovember 2, 2024 00:13:12 UTC 2024 年 11 月 2 日 (土) 9 時 13 分 12 秒 (日本時間)
5043e60 / 6491--
5511e725 / 17491Alfred ReichFebruary 16, 2015 22:11:55 UTC 2015 年 2 月 17 日 (火) 7 時 11 分 55 秒 (日本時間)

10283+72×10141-19

c252

name 名前Serge Batalov
date 日付December 7, 2011 18:49:56 UTC 2011 年 12 月 8 日 (木) 3 時 49 分 56 秒 (日本時間)
composite number 合成数
152264644120116858282710221906079355571143294395025684582321387617905170845653201099669823225174512562151232353281865662911932832101009627580718227278586862633252313476145657925679235440283665531630941519487126160005470145357353658012957915698724084149<252>
prime factors 素因数
9524303493415816732805275971790193<34>
15986958440097790094292937875707119530488025116152441800716515073998814760727138995864291568416785264394888783197292767933568772443299534091830429118719890201635558904858718011782627862925017330381373095645371093583493<218>
factorization results 素因数分解の結果
Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=262610489
Step 1 took 8429ms
Step 2 took 4688ms
********** Factor found in step 2: 9524303493415816732805275971790193
Found probable prime factor of 34 digits: 9524303493415816732805275971790193
Probable prime cofactor ((10^283+10^141*72-1)/9/3/7/37946291/9157349528504558869349)/9524303493415816732805275971790193 has 218 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6918118Makoto KamadaDecember 7, 2011 14:00:00 UTC 2011 年 12 月 7 日 (水) 23 時 0 分 0 秒 (日本時間)
800Serge BatalovDecember 7, 2011 18:50:50 UTC 2011 年 12 月 8 日 (木) 3 時 50 分 50 秒 (日本時間)

10285+72×10142-19

c250

name 名前Serge Batalov
date 日付December 7, 2011 18:46:42 UTC 2011 年 12 月 8 日 (木) 3 時 46 分 42 秒 (日本時間)
composite number 合成数
5081603002668915212092575571065947332387627502887556473813473322791991532680067799212825089876550300065949022234966089788278090806303309781031547672838879300856377426950257161999214597819095144889701767583287489241626384435537361402699908509597936639<250>
prime factors 素因数
335484553192786689753228952679977<33>
composite cofactor 合成数の残り
15147055070964070901504522852697314598292084378924805183496866266327423690417564676095399540368833352632775845919511735750977705605971870043798381710478992956592527045328705991811776865844929376783192344125617668818407<218>
factorization results 素因数分解の結果
Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=3481554341
Step 1 took 7208ms
Step 2 took 4481ms
********** Factor found in step 2: 335484553192786689753228952679977
Found probable prime factor of 33 digits: 335484553192786689753228952679977
Composite cofactor ((10^285+10^142*72-1)/9/167/1742810549269/75125972389320369763)/335484553192786689753228952679977 has 218 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6918118Makoto KamadaDecember 7, 2011 14:00:00 UTC 2011 年 12 月 7 日 (水) 23 時 0 分 0 秒 (日本時間)
800Serge BatalovDecember 7, 2011 18:50:50 UTC 2011 年 12 月 8 日 (木) 3 時 50 分 50 秒 (日本時間)
403e60--
4511e64622620Dmitry DomanovDecember 14, 2011 20:08:43 UTC 2011 年 12 月 15 日 (木) 5 時 8 分 43 秒 (日本時間)
4002Thomas KozlowskiNovember 2, 2024 01:43:15 UTC 2024 年 11 月 2 日 (土) 10 時 43 分 15 秒 (日本時間)

10287+72×10143-19

c280

composite cofactor 合成数の残り
2438225068703696429665582071009355201383858525794019575192435084878637712939033815767860102252819996254398649457381544747732822515428539634116708227432075255524158531345858056630751855227168088627335609318905965485802568967573337726039617109912821018845992463787664146492853403839<280>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6918118Makoto KamadaDecember 7, 2011 14:00:00 UTC 2011 年 12 月 7 日 (水) 23 時 0 分 0 秒 (日本時間)
800Serge BatalovDecember 7, 2011 18:51:21 UTC 2011 年 12 月 8 日 (木) 3 時 51 分 21 秒 (日本時間)
403e60--
4511e6640Dmitry DomanovDecember 11, 2011 09:13:01 UTC 2011 年 12 月 11 日 (日) 18 時 13 分 1 秒 (日本時間)
5043e61080540Dmitry DomanovDecember 16, 2011 22:41:27 UTC 2011 年 12 月 17 日 (土) 7 時 41 分 27 秒 (日本時間)
540Dmitry DomanovDecember 19, 2011 21:15:40 UTC 2011 年 12 月 20 日 (火) 6 時 15 分 40 秒 (日本時間)
5511e72635 / 17341yoyo@homeSeptember 5, 2012 21:40:08 UTC 2012 年 9 月 6 日 (木) 6 時 40 分 8 秒 (日本時間)
6026e71 / 40885Dmitry DomanovDecember 20, 2011 19:40:49 UTC 2011 年 12 月 21 日 (水) 4 時 40 分 49 秒 (日本時間)

10293+72×10146-19

c243

name 名前Dmitry Domanov
date 日付December 12, 2011 06:35:21 UTC 2011 年 12 月 12 日 (月) 15 時 35 分 21 秒 (日本時間)
composite number 合成数
115267957882096868683650167925142097354646017255035472601505766158041792522725041629331644150285103290998820124545635471488250847374726955416934837404132979764602145116614712972611313466791644025698336100853238123263296990138774471942232227057<243>
prime factors 素因数
800188895640859840175106445232997893<36>
144050934110726955380172955301879214898101819953613628018676072894406071932837227989632985594383879172158496181058504467645071380938967425758495562710202299566629920197643720244671077539215665665868779537149<207>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=3339353465
Step 1 took 211089ms
Step 2 took 50561ms
********** Factor found in step 2: 800188895640859840175106445232997893
Found probable prime factor of 36 digits: 800188895640859840175106445232997893

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6918118Makoto KamadaDecember 7, 2011 14:00:00 UTC 2011 年 12 月 7 日 (水) 23 時 0 分 0 秒 (日本時間)
800Serge BatalovDecember 7, 2011 18:50:50 UTC 2011 年 12 月 8 日 (木) 3 時 50 分 50 秒 (日本時間)
403e60--
4511e6640 / 4438Dmitry DomanovDecember 11, 2011 09:15:07 UTC 2011 年 12 月 11 日 (日) 18 時 15 分 7 秒 (日本時間)

10295+72×10147-19

c275

composite cofactor 合成数の残り
51257537355547604042898832292299379673752070885023887341126108180710174287836494005703786977012988227373096420677816748094897544300579957103929105305929750751084732565775935879254156667010619812113599746446019018321692238454500930316392098252141935959634493682490404970922759<275>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6918118Makoto KamadaDecember 7, 2011 14:00:00 UTC 2011 年 12 月 7 日 (水) 23 時 0 分 0 秒 (日本時間)
800Serge BatalovDecember 7, 2011 18:50:50 UTC 2011 年 12 月 8 日 (木) 3 時 50 分 50 秒 (日本時間)
403e60--
4511e64444640Dmitry DomanovDecember 11, 2011 09:12:28 UTC 2011 年 12 月 11 日 (日) 18 時 12 分 28 秒 (日本時間)
3804Thomas KozlowskiNovember 2, 2024 03:44:26 UTC 2024 年 11 月 2 日 (土) 12 時 44 分 26 秒 (日本時間)

10297+72×10148-19

c235

composite cofactor 合成数の残り
7663383754251302619096919256799402679542676874625557552068435977043971526583781082360294443185291117415387484894532948353060767865745429996906829155717917060060969233962162955227506106301235808060686620055057733847131208738501858195631<235>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6918118Makoto KamadaDecember 7, 2011 14:00:00 UTC 2011 年 12 月 7 日 (水) 23 時 0 分 0 秒 (日本時間)
800Serge BatalovDecember 7, 2011 18:50:50 UTC 2011 年 12 月 8 日 (木) 3 時 50 分 50 秒 (日本時間)
403e60--
4511e64610610Dmitry DomanovDecember 13, 2011 17:38:38 UTC 2011 年 12 月 14 日 (水) 2 時 38 分 38 秒 (日本時間)
4000Thomas KozlowskiNovember 2, 2024 05:26:32 UTC 2024 年 11 月 2 日 (土) 14 時 26 分 32 秒 (日本時間)

10299+72×10149-19

c245

composite cofactor 合成数の残り
12878456849419188158458508597353068522479324400717929465794091836531902845878209232338974486831978658442574095227248984661421992393795888323611183754321355659673945474540234495462577566965011654623873881999886367649735083278320510396473508014667<245>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6918118Makoto KamadaDecember 7, 2011 14:00:00 UTC 2011 年 12 月 7 日 (水) 23 時 0 分 0 秒 (日本時間)
800Serge BatalovDecember 7, 2011 18:50:50 UTC 2011 年 12 月 8 日 (木) 3 時 50 分 50 秒 (日本時間)
403e60--
4511e63739620Dmitry DomanovDecember 13, 2011 17:37:35 UTC 2011 年 12 月 14 日 (水) 2 時 37 分 35 秒 (日本時間)
3119Erik BrangerDecember 19, 2021 07:55:06 UTC 2021 年 12 月 19 日 (日) 16 時 55 分 6 秒 (日本時間)
5043e6200 / 6709Alfred ReichFebruary 16, 2015 17:34:47 UTC 2015 年 2 月 17 日 (火) 2 時 34 分 47 秒 (日本時間)

10301+72×10150-19

c271

composite cofactor 合成数の残り
8377134142707078238691725266991343082977169928250427136740405610452351594613405361815089722529637310639460690954760866444599576516195889352956033548586373594271814056272649925269848279196710849211522997668490605311745377332590344517497773197682515527873131453354495028049<271>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6918118Makoto KamadaDecember 7, 2011 14:00:00 UTC 2011 年 12 月 7 日 (水) 23 時 0 分 0 秒 (日本時間)
800Serge BatalovDecember 7, 2011 18:50:50 UTC 2011 年 12 月 8 日 (木) 3 時 50 分 50 秒 (日本時間)
403e60--
4511e6640Dmitry DomanovDecember 11, 2011 09:11:29 UTC 2011 年 12 月 11 日 (日) 18 時 11 分 29 秒 (日本時間)
5043e61120400Dmitry DomanovDecember 13, 2011 20:06:44 UTC 2011 年 12 月 14 日 (水) 5 時 6 分 44 秒 (日本時間)
400Dmitry DomanovDecember 14, 2011 22:16:02 UTC 2011 年 12 月 15 日 (木) 7 時 16 分 2 秒 (日本時間)
320Dmitry DomanovDecember 16, 2011 22:37:03 UTC 2011 年 12 月 17 日 (土) 7 時 37 分 3 秒 (日本時間)
5511e72620 / 17329yoyo@homeSeptember 5, 2012 23:45:08 UTC 2012 年 9 月 6 日 (木) 8 時 45 分 8 秒 (日本時間)