name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 28, 2011 07:28:33 UTC 2011 年 1 月 28 日 (金) 16 時 28 分 33 秒 (日本時間) |
composite number 合成数 | 4434550690415313649894860868052954155224809574969052889422573577240599506012886163984817084652793432697550670183890974444619347361766063<136> |
prime factors 素因数 | 17215023000330125342204890392093864856130332229517761<53> 257597720916798897923401135176504810192668766562767580568656693176838204456004687983<84> |
factorization results 素因数分解の結果 | Number: s15 N=4434550690415313649894860868052954155224809574969052889422573577240599506012886163984817084652793432697550670183890974444619347361766063 ( 136 digits) SNFS difficulty: 155 digits. Divisors found: r1=17215023000330125342204890392093864856130332229517761 (pp53) r2=257597720916798897923401135176504810192668766562767580568656693176838204456004687983 (pp84) Version: Msieve-1.40 Total time: 25.45 hours. Scaled time: 48.06 units (timescale=1.888). Factorization parameters were as follows: n: 4434550690415313649894860868052954155224809574969052889422573577240599506012886163984817084652793432697550670183890974444619347361766063 m: 10000000000000000000000000 deg: 6 c6: 100000 c3: 2700 c0: -1 skew: 0.15 type: snfs lss: 1 rlim: 2700000 alim: 2700000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2700000/2700000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1350000, 3050001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 487452 x 487677 Total sieving time: 25.04 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.26 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,155.000,6,0,0,0,0,0,0,0,0,2700000,2700000,27,27,50,50,2.4,2.4,100000 total time: 25.45 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | January 27, 2011 12:00:00 UTC 2011 年 1 月 27 日 (木) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 28, 2011 07:29:17 UTC 2011 年 1 月 28 日 (金) 16 時 29 分 17 秒 (日本時間) |
composite number 合成数 | 225208291495497439060701776423168928302958459666459188103823256772673921120205681074038076050154337374697117383862636108578702343<129> |
prime factors 素因数 | 43303898272485196932100949209995114005010912100519<50> 5200647065961546905496051942643819174157780321914088596577249966852539563208097<79> |
factorization results 素因数分解の結果 | Number: s16 N=225208291495497439060701776423168928302958459666459188103823256772673921120205681074038076050154337374697117383862636108578702343 ( 129 digits) SNFS difficulty: 157 digits. Divisors found: r1=43303898272485196932100949209995114005010912100519 (pp50) r2=5200647065961546905496051942643819174157780321914088596577249966852539563208097 (pp79) Version: Msieve-1.40 Total time: 22.15 hours. Scaled time: 42.44 units (timescale=1.916). Factorization parameters were as follows: n: 225208291495497439060701776423168928302958459666459188103823256772673921120205681074038076050154337374697117383862636108578702343 m: 100000000000000000000000000 deg: 6 c6: 10 c3: 27 c0: -1 skew: 0.68 type: snfs lss: 1 rlim: 2900000 alim: 2900000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2900000/2900000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1450000, 2850001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 554616 x 554864 Total sieving time: 21.45 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.44 hours. Time per square root: 0.19 hours. Prototype def-par.txt line would be: snfs,157.000,6,0,0,0,0,0,0,0,0,2900000,2900000,27,27,50,50,2.4,2.4,100000 total time: 22.15 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | January 27, 2011 12:00:00 UTC 2011 年 1 月 27 日 (木) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 28, 2011 07:27:43 UTC 2011 年 1 月 28 日 (金) 16 時 27 分 43 秒 (日本時間) |
composite number 合成数 | 1371742112482853223593964334705075445816186556927297668038408779149519890260631371742112482853223593964334705075445816186556927297668038408779149519890260631<157> |
prime factors 素因数 | 7387402179943784615502197078116858469428265917<46> 185686670235312905511441802542615460393243093630958912672848473814123221647879215635670576352200733338008828643<111> |
factorization results 素因数分解の結果 | N=1371742112482853223593964334705075445816186556927297668038408779149519890260631371742112482853223593964334705075445816186556927297668038408779149519890260631 ( 157 digits) SNFS difficulty: 159 digits. Divisors found: r1=7387402179943784615502197078116858469428265917 (pp46) r2=185686670235312905511441802542615460393243093630958912672848473814123221647879215635670576352200733338008828643 (pp111) Version: Msieve v. 1.47 Total time: 0.62 hours. Scaled time: 1.19 units (timescale=1.918). Factorization parameters were as follows: n: 1371742112482853223593964334705075445816186556927297668038408779149519890260631371742112482853223593964334705075445816186556927297668038408779149519890260631 m: 100000000000000000000000000 deg: 6 c6: 1000 c3: 270 c0: -1 skew: 0.32 type: snfs lss: 1 rlim: 3100000 alim: 3100000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 240000 Factor base limits: 3100000/3100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1550000, 3950001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 546567 x 546796 Total sieving time: 0.00 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.17 hours. Time per square root: 0.37 hours. Prototype def-par.txt line would be: snfs,159.000,6,0,0,0,0,0,0,0,0,3100000,3100000,27,27,50,50,2.4,2.4,100000 total time: 0.62 hours. --------- CPU info (if available) ---------- Intel(R) Xeon(R) CPU E5620 @ 2.40GHz stepping 02 Intel(R) Xeon(R) CPU E5620 @ 2.40GHz stepping 02 Intel(R) Xeon(R) CPU E5620 @ 2.40GHz stepping 02 Intel(R) Xeon(R) CPU E5620 @ 2.40GHz stepping 02 Intel(R) Xeon(R) CPU E5620 @ 2.40GHz stepping 02 Intel(R) Xeon(R) CPU E5620 @ 2.40GHz stepping 02 Intel(R) Xeon(R) CPU E5620 @ 2.40GHz stepping 02 Intel(R) Xeon(R) CPU E5620 @ 2.40GHz stepping 02 Intel(R) Xeon(R) CPU E5620 @ 2.40GHz stepping 02 Intel(R) Xeon(R) CPU E5620 @ 2.40GHz stepping 02 Intel(R) Xeon(R) CPU E5620 @ 2.40GHz stepping 02 Intel(R) Xeon(R) CPU E5620 @ 2.40GHz stepping 02 Intel(R) Xeon(R) CPU E5620 @ 2.40GHz stepping 02 Intel(R) Xeon(R) CPU E5620 @ 2.40GHz stepping 02 Intel(R) Xeon(R) CPU E5620 @ 2.40GHz stepping 02 Memory for crash kernel (0x0 to 0x0) notwithin permissible range Memory: 24622496k/26214400k available (2569k kernel code, 534140k reserved, 1365k data, 228k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 4800.31 BogoMIPS (lpj=2400155) Calibrating delay using timer specific routine.. 4757.97 BogoMIPS (lpj=2378989) Calibrating delay using timer specific routine.. 4800.06 BogoMIPS (lpj=2400034) Calibrating delay using timer specific routine.. 4800.07 BogoMIPS (lpj=2400036) Calibrating delay using timer specific routine.. 4800.11 BogoMIPS (lpj=2400056) Calibrating delay using timer specific routine.. 4800.11 BogoMIPS (lpj=2400055) Calibrating delay using timer specific routine.. 4800.39 BogoMIPS (lpj=2400195) Calibrating delay using timer specific routine.. 4800.32 BogoMIPS (lpj=2400160) Calibrating delay using timer specific routine.. 4800.31 BogoMIPS (lpj=2400159) Calibrating delay using timer specific routine.. 4800.21 BogoMIPS (lpj=2400108) Calibrating delay using timer specific routine.. 4800.18 BogoMIPS (lpj=2400094) Calibrating delay using timer specific routine.. 4800.07 BogoMIPS (lpj=2400037) Calibrating delay using timer specific routine.. 4800.18 BogoMIPS (lpj=2400090) Calibrating delay using timer specific routine.. 4800.10 BogoMIPS (lpj=2400053) Calibrating delay using timer specific routine.. 4800.11 BogoMIPS (lpj=2400055) Calibrating delay using timer specific routine.. 4800.10 BogoMIPS (lpj=2400054) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | January 27, 2011 12:00:00 UTC 2011 年 1 月 27 日 (木) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 28, 2011 11:46:36 UTC 2011 年 1 月 28 日 (金) 20 時 46 分 36 秒 (日本時間) |
composite number 合成数 | 14036642390821968232898188628253621655448531297811543107366447602031839244942886457521681497950864280729071477380566905183807<125> |
prime factors 素因数 | 494135386292507903858270358801094030903773853<45> 28406470736975009965415292213396698975676430621131905274980177481860750253070219<80> |
factorization results 素因数分解の結果 | Msieve v. 1.48 Fri Jan 28 12:45:47 2011 random seeds: cbd1b064 9f4bae3b factoring 14036642390821968232898188628253621655448531297811543107366447602031839244942886457521681497950864280729071477380566905183807 (125 digits) searching for 15-digit factors commencing number field sieve (125-digit input) R0: -100000000000000000000000000 R1: 1 A0: -1 A1: 0 A2: 0 A3: 2700 A4: 0 A5: 0 A6: 100000 skew 0.15, size 3.635e-08, alpha -1.390, combined = 1.736e-10 rroots = 2 commencing square root phase reading relations for dependency 1 read 317534 cycles cycles contain 1077734 unique relations read 1077734 relations multiplying 1077734 relations multiply complete, coefficients have about 39.81 million bits initial square root is modulo 519989 reading relations for dependency 2 read 317503 cycles cycles contain 1077912 unique relations read 1077912 relations multiplying 1077912 relations multiply complete, coefficients have about 39.82 million bits initial square root is modulo 520943 sqrtTime: 1219 prp45 factor: 494135386292507903858270358801094030903773853 prp80 factor: 28406470736975009965415292213396698975676430621131905274980177481860750253070219 elapsed time 00:20:21 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | January 27, 2011 12:00:00 UTC 2011 年 1 月 27 日 (木) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 28, 2011 12:30:44 UTC 2011 年 1 月 28 日 (金) 21 時 30 分 44 秒 (日本時間) |
composite number 合成数 | 37037037037037037037037037037037037037037037037037037037037037037037037037037037047037037037037037037037037037037037037037037037037037037037037037037037037037037037<164> |
prime factors 素因数 | 141326891199660212691600072077474909867<39> 262066452623745847255967779098176725114602921910586161773550665357810436328403766415851582149499960536479210112762289338285511<126> |
factorization results 素因数分解の結果 | Msieve v. 1.48 Fri Jan 28 14:43:39 2011 random seeds: 9e7250dc 9acc94a7 factoring 37037037037037037037037037037037037037037037037037037037037037037037037037037037047037037037037037037037037037037037037037037037037037037037037037037037037037037037 (164 digits) searching for 15-digit factors commencing number field sieve (164-digit input) R0: -1000000000000000000000000000 R1: 1 A0: -1 A1: 0 A2: 0 A3: 270 A4: 0 A5: 0 A6: 1000 skew 0.32, size 2.904e-08, alpha -0.221, combined = 1.535e-10 rroots = 2 commencing square root phase reading relations for dependency 1 read 365128 cycles cycles contain 1170628 unique relations read 1170628 relations multiplying 1170628 relations multiply complete, coefficients have about 36.29 million bits initial square root is modulo 162611 sqrtTime: 573 prp39 factor: 141326891199660212691600072077474909867 prp126 factor: 262066452623745847255967779098176725114602921910586161773550665357810436328403766415851582149499960536479210112762289338285511 elapsed time 00:09:36 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | January 27, 2011 12:00:00 UTC 2011 年 1 月 27 日 (木) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 28, 2011 11:48:45 UTC 2011 年 1 月 28 日 (金) 20 時 48 分 45 秒 (日本時間) |
composite number 合成数 | 448543155569995408326159720332300889722760913092738612931424917046537690606650981892708660518317917<99> |
prime factors 素因数 | 515611647987555439128982929847096080629<39> 869924403997989656596927670877677378315926589144901058608073<60> |
factorization results 素因数分解の結果 | N=448543155569995408326159720332300889722760913092738612931424917046537690606650981892708660518317917 ( 99 digits) Divisors found: r1=515611647987555439128982929847096080629 (pp39) r2=869924403997989656596927670877677378315926589144901058608073 (pp60) Version: Msieve v. 1.47 Total time: 0.51 hours. Scaled time: 0.84 units (timescale=1.657). Factorization parameters were as follows: name: 99 n: 448543155569995408326159720332300889722760913092738612931424917046537690606650981892708660518317917 skew: 1312.14 # norm 7.88e+13 c5: 819000 c4: 4003099830 c3: 14674888877147 c2: -2875492748022430 c1: -9572251211834790028 c0: 2934715370026345544016 # alpha -6.00 Y1: 57152493947 Y0: -3529370013200364115 # Murphy_E 3.81e-09 # M 380379336723055123002142337961470661719646276470274477570798582580561102046434969029220812206052266 type: gnfs rlim: 1800000 alim: 1800000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved algebraic special-q in [900000, 1400001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 177177 x 177402 Polynomial selection time: 0.33 hours. Total sieving time: 0.00 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.07 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: gnfs,98,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,26,26,48,48,2.5,2.5,100000 total time: 0.51 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | January 27, 2011 12:00:00 UTC 2011 年 1 月 27 日 (木) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | January 28, 2011 03:05:37 UTC 2011 年 1 月 28 日 (金) 12 時 5 分 37 秒 (日本時間) |
composite number 合成数 | 3580879535631541819301656872961136714399790876635119117957752783238619069615879052213771346518131783528670312002033939576238715753363341103841925653779081217928747659<166> |
prime factors 素因数 | 2807620611750586741530107232347284184966527<43> |
composite cofactor 合成数の残り | 1275414320811250355984477290342243792170885216351402470072882778577718427714625647741473179930115683548298172325404324432117<124> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=3777674951 Step 1 took 43399ms ********** Factor found in step 1: 2807620611750586741530107232347284184966527 Found probable prime factor of 43 digits: 2807620611750586741530107232347284184966527 Composite cofactor has 124 digits |
name 名前 | Sinkiti Sibata |
---|---|
date 日付 | March 12, 2011 23:00:15 UTC 2011 年 3 月 13 日 (日) 8 時 0 分 15 秒 (日本時間) |
composite number 合成数 | 1275414320811250355984477290342243792170885216351402470072882778577718427714625647741473179930115683548298172325404324432117<124> |
prime factors 素因数 | 1372887826881543848496176190267296203268415365201<49> 929001114175729560687916735609746161019615957094595781782663902968515983717<75> |
factorization results 素因数分解の結果 | Number: 11411_85 N=1275414320811250355984477290342243792170885216351402470072882778577718427714625647741473179930115683548298172325404324432117 ( 124 digits) SNFS difficulty: 171 digits. Divisors found: r1=1372887826881543848496176190267296203268415365201 (pp49) r2=929001114175729560687916735609746161019615957094595781782663902968515983717 (pp75) Version: Msieve-1.40 Total time: 114.53 hours. Scaled time: 380.46 units (timescale=3.322). Factorization parameters were as follows: name: 11411_85 n: 1275414320811250355984477290342243792170885216351402470072882778577718427714625647741473179930115683548298172325404324432117 m: 10000000000000000000000000000 deg: 6 c6: 1000 c3: 270 c0: -1 skew: 0.32 type: snfs lss: 1 rlim: 5000000 alim: 5000000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2500000, 4700001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 952745 x 952993 Total sieving time: 112.07 hours. Total relation processing time: 0.11 hours. Matrix solve time: 1.73 hours. Time per square root: 0.61 hours. Prototype def-par.txt line would be: snfs,171.000,6,0,0,0,0,0,0,0,0,5000000,5000000,27,27,52,52,2.4,2.4,100000 total time: 114.53 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | January 27, 2011 12:00:00 UTC 2011 年 1 月 27 日 (木) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2376 | 300 | Serge Batalov | January 27, 2011 21:06:39 UTC 2011 年 1 月 28 日 (金) 6 時 6 分 39 秒 (日本時間) |
2076 | Carlos Pinho | March 6, 2011 19:54:04 UTC 2011 年 3 月 7 日 (月) 4 時 54 分 4 秒 (日本時間) | |||
45 | 11e6 | 4460 | 1344 | Carlos Pinho | March 6, 2011 23:18:46 UTC 2011 年 3 月 7 日 (月) 8 時 18 分 46 秒 (日本時間) |
3116 | Carlos Pinho | March 7, 2011 07:08:32 UTC 2011 年 3 月 7 日 (月) 16 時 8 分 32 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | March 6, 2011 19:44:30 UTC 2011 年 3 月 7 日 (月) 4 時 44 分 30 秒 (日本時間) |
composite number 合成数 | 23264029861955947365207127822771238836872355359703981413629819473860432626175831865984601964772325667077149389160629677428099069<128> |
prime factors 素因数 | 49060334384350705550657806189862902823783<41> 474192240103783747470429220216142750089234270096282395198383515153511605630059349550843<87> |
factorization results 素因数分解の結果 | SNFS difficulty: 174 digits. Divisors found: r1=49060334384350705550657806189862902823783 (pp41) r2=474192240103783747470429220216142750089234270096282395198383515153511605630059349550843 (pp87) Version: Msieve v. 1.49 SVN544 option -D density Total time: 47.56 hours. Scaled time: 114.15 units (timescale=2.400). Factorization parameters were as follows: name: 11411_86 #res 5345 n: 23264029861955947365207127822771238836872355359703981413629819473860432626175831865984601964772325667077149389160629677428099069 m: 100000000000000000000000000000 c6: 1 c3: 27 c0: -10 skew: 1.47 type: snfs lss: 1 rlim: 5400000 alim: 5400000 lpbr: 27 lpba: 27 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 5400000/5400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 53/53 Sieved rational special-q in [3375000, 7475001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1034634 x 1034863 Total sieving time: 46.75 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.47 hours. Time per square root: 0.27 hours. Prototype def-par.txt line would be: snfs,174.000,6,0,0,0,0,0,0,0,0,5400000,5400000,27,27,53,53,2.5,2.5,100000 total time: 47.56 hours. |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | January 27, 2011 12:00:00 UTC 2011 年 1 月 27 日 (木) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 | Serge Batalov | January 27, 2011 21:07:02 UTC 2011 年 1 月 28 日 (金) 6 時 7 分 2 秒 (日本時間) | |
45 | 11e6 | 800 / 4409 | Serge Batalov | January 28, 2011 07:37:37 UTC 2011 年 1 月 28 日 (金) 16 時 37 分 37 秒 (日本時間) |
name 名前 | Erik Branger |
---|---|
date 日付 | January 27, 2011 15:33:28 UTC 2011 年 1 月 28 日 (金) 0 時 33 分 28 秒 (日本時間) |
composite number 合成数 | 13120551490194854021484021790019671455139316414606610746696434122512537847541355163945652258818066215384717557200939006807848952061451662265073398432691490271<158> |
prime factors 素因数 | 21902383998903530270587752599039961703<38> |
composite cofactor 合成数の残り | 599046728924654531956581971311685894884652293149318999533883684668519809800980125020113569385755249385713123593960064457<120> |
factorization results 素因数分解の結果 | GMP-ECM 6.2.3 [powered by GMP 4.2.1_MPIR_1.1.1] [ECM] Input number is 13120551490194854021484021790019671455139316414606610746696434122512537847541355163945652258818066215384717557200939006807848952061451662265073398432691490271 (158 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2212010216 Step 1 took 19937ms Step 2 took 10671ms ********** Factor found in step 2: 21902383998903530270587752599039961703 Found probable prime factor of 38 digits: 21902383998903530270587752599039961703 Composite cofactor 599046728924654531956581971311685894884652293149318999533883684668519809800980125020113569385755249385713123593960064457 has 120 digits |
software ソフトウェア | GMP-ECM |
name 名前 | Erik Branger |
---|---|
date 日付 | January 31, 2011 16:23:15 UTC 2011 年 2 月 1 日 (火) 1 時 23 分 15 秒 (日本時間) |
composite number 合成数 | 599046728924654531956581971311685894884652293149318999533883684668519809800980125020113569385755249385713123593960064457<120> |
prime factors 素因数 | 26197986371239126489177876174273560364883<41> 22866136367728803298792449349547946343703228106248253513771841690966660687668979<80> |
factorization results 素因数分解の結果 | Number: 11411_88 N = 599046728924654531956581971311685894884652293149318999533883684668519809800980125020113569385755249385713123593960064457 (120 digits) Divisors found: r1=26197986371239126489177876174273560364883 (pp41) r2=22866136367728803298792449349547946343703228106248253513771841690966660687668979 (pp80) Version: Msieve v. 1.47 Total time: 74.45 hours. Factorization parameters were as follows: # Murphy_E = 2.973e-10, selected by Erik Branger n: 599046728924654531956581971311685894884652293149318999533883684668519809800980125020113569385755249385713123593960064457 Y0: -174788247105075224054307 Y1: 6925168855133 c0: -198734430332037285008047987850 c1: 3672678814440507846483101 c2: 16574685281271139910 c3: -440478054388892 c4: -662897430 c5: 3672 skew: 183587.04 type: gnfs # selected mechanically rlim: 5200000 alim: 5200000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.5 alambda: 2.5 Factor base limits: 5200000/5200000 Large primes per side: 3 Large prime bits: 27/27 Sieved algebraic special-q in [2600000, 4600000) Relations: 9203384 Relations in full relation-set: 1216120 relations Pruned matrix : 714016 x 714241 Polynomial selection time: 0.00 hours. Total sieving time: 72.47 hours. Total relation processing time: 0.15 hours. Matrix solve time: 1.65 hours. time per square root: 0.19 hours. Prototype def-par.txt line would be: gnfs,119,5,63,2000,2.6e-05,0.28,250,20,50000,3600,5200000,5200000,27,27,51,51,2.5,2.5,100000 total time: 74.45 hours. --------- CPU info (if available) ---------- |
software ソフトウェア | GGNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | January 27, 2011 12:00:00 UTC 2011 年 1 月 27 日 (木) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 500 / 2318 | Erik Branger | January 29, 2011 20:04:50 UTC 2011 年 1 月 30 日 (日) 5 時 4 分 50 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | March 21, 2011 08:41:21 UTC 2011 年 3 月 21 日 (月) 17 時 41 分 21 秒 (日本時間) |
composite number 合成数 | 3460292492720357861379125032596086336928533735352923455091401723993125272492226198617842855523218273611363227314598819399558312384794002965739415880165387<154> |
prime factors 素因数 | 75624855111533757952138291150842404383484094413374395279135461117<65> 45756021451109120672010186502309313415373314031691733843701470015874977565127607182374311<89> |
factorization results 素因数分解の結果 | Sieving took ~8 cpu-days. Msieve v. 1.48 Mon Mar 21 10:22:22 2011 random seeds: cfb35900 07f39e85 factoring 3460292492720357861379125032596086336928533735352923455091401723993125272492226198617842855523218273611363227314598819399558312384794002965739415880165387 (154 digits) searching for 15-digit factors commencing number field sieve (154-digit input) R0: -1000000000000000000000000000000 R1: 1 A0: -1 A1: 0 A2: 0 A3: 270 A4: 0 A5: 0 A6: 1000 skew 0.32, size 4.036e-09, alpha -0.221, combined = 4.229e-11 rroots = 2 commencing square root phase reading relations for dependency 1 read 684730 cycles cycles contain 2206894 unique relations read 2206894 relations multiplying 2206894 relations multiply complete, coefficients have about 71.57 million bits initial square root is modulo 137273 sqrtTime: 1307 prp65 factor: 75624855111533757952138291150842404383484094413374395279135461117 prp89 factor: 45756021451109120672010186502309313415373314031691733843701470015874977565127607182374311 elapsed time 00:21:50 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | January 27, 2011 12:00:00 UTC 2011 年 1 月 27 日 (木) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 800 / 4475 | Serge Batalov | January 28, 2011 07:37:53 UTC 2011 年 1 月 28 日 (金) 16 時 37 分 53 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | March 21, 2011 07:13:23 UTC 2011 年 3 月 21 日 (月) 16 時 13 分 23 秒 (日本時間) |
composite number 合成数 | 18643368410762524257556621321408426908970057198930475577858467075975452859883473489696848621053564197066856599623452781754386704385352922464511995811332650849714954770979807283<176> |
prime factors 素因数 | 250229592035971107646199646894343217247586757<45> 13616603632549573073201640843981744191646345238435850801<56> 5471632470812429702228514676280760458083298541834067661336406351650651432519<76> |
factorization results 素因数分解の結果 | N=18643368410762524257556621321408426908970057198930475577858467075975452859883473489696848621053564197066856599623452781754386704385352922464511995811332650849714954770979807283 ( 176 digits) SNFS difficulty: 193 digits. Divisors found: r1=250229592035971107646199646894343217247586757 (pp45) r2=13616603632549573073201640843981744191646345238435850801 (pp56) r3=5471632470812429702228514676280760458083298541834067661336406351650651432519 (pp76) Version: Msieve-1.40 Total time: 332.86 hours. Scaled time: 637.77 units (timescale=1.916). Factorization parameters were as follows: n: 18643368410762524257556621321408426908970057198930475577858467075975452859883473489696848621053564197066856599623452781754386704385352922464511995811332650849714954770979807283 m: 100000000000000000000000000000000 deg: 6 c6: 10 c3: 27 c0: -1 skew: 0.68 type: snfs lss: 1 rlim: 11500000 alim: 11500000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 qintsize: 600000Factor base limits: 11500000/11500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved rational special-q in [5750000, 11150001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1987405 x 1987630 Total sieving time: 327.20 hours. Total relation processing time: 0.24 hours. Matrix solve time: 4.82 hours. Time per square root: 0.61 hours. Prototype def-par.txt line would be: snfs,193.000,6,0,0,0,0,0,0,0,0,11500000,11500000,28,28,55,55,2.5,2.5,100000 total time: 332.86 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | January 27, 2011 12:00:00 UTC 2011 年 1 月 27 日 (木) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 800 / 4475 | Serge Batalov | January 28, 2011 07:38:26 UTC 2011 年 1 月 28 日 (金) 16 時 38 分 26 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | March 21, 2011 07:12:21 UTC 2011 年 3 月 21 日 (月) 16 時 12 分 21 秒 (日本時間) |
composite number 合成数 | 1271062807922966746886977545759515508129486605463770877418951752713479868623519139473729746533375243214015746237745178128669415686983441739047393699748646660436588113<166> |
prime factors 素因数 | 1369618813471320263380436485799150146543093080799<49> 928041288146034018101698814502252592944279360283652762282056005655735316590704601342706815793588829416796261822561487<117> |
factorization results 素因数分解の結果 | Sieving took ~20 cpu-days. Msieve v. 1.48 Fri Mar 18 13:05:24 2011 random seeds: c23f024d 6a849529 factoring 1271062807922966746886977545759515508129486605463770877418951752713479868623519139473729746533375243214015746237745178128669415686983441739047393699748646660436588113 (166 digits) searching for 15-digit factors commencing number field sieve (166-digit input) R0: -1000000000000000000000000000000000 R1: 1 A0: -1 A1: 0 A2: 0 A3: 27 A4: 0 A5: 0 A6: 10 skew 0.68, size 1.175e-09, alpha -0.125, combined = 1.859e-11 rroots = 2 commencing square root phase reading relations for dependency 1 read 1146846 cycles cycles contain 3583974 unique relations read 3583974 relations multiplying 3583974 relations multiply complete, coefficients have about 96.39 million bits initial square root is modulo 8290309 sqrtTime: 1747 prp49 factor: 1369618813471320263380436485799150146543093080799 prp117 factor: 928041288146034018101698814502252592944279360283652762282056005655735316590704601342706815793588829416796261822561487 elapsed time 00:29:10 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | January 27, 2011 12:00:00 UTC 2011 年 1 月 27 日 (木) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 800 / 4475 | Serge Batalov | January 28, 2011 07:38:11 UTC 2011 年 1 月 28 日 (金) 16 時 38 分 11 秒 (日本時間) |
name 名前 | Robert Backstrom |
---|---|
date 日付 | June 22, 2012 00:52:10 UTC 2012 年 6 月 22 日 (金) 9 時 52 分 10 秒 (日本時間) |
composite number 合成数 | 37037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037047037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037<206> |
prime factors 素因数 | 3907659361508517466593272920919171708437300957393934886522160400243<67> 9478061829508909706441724008411906289379084009123514794272874357395469170115245521227781302149975165871680050942412896120607265513884828959<139> |
factorization results 素因数分解の結果 | Number: n N=37037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037047037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037 ( 206 digits) SNFS difficulty: 207 digits. Divisors found: Fri Jun 22 10:45:56 2012 prp67 factor: 3907659361508517466593272920919171708437300957393934886522160400243 Fri Jun 22 10:45:56 2012 prp139 factor: 9478061829508909706441724008411906289379084009123514794272874357395469170115245521227781302149975165871680050942412896120607265513884828959 Fri Jun 22 10:45:56 2012 elapsed time 09:53:15 (Msieve 1.44 - dependency 4) Version: GGNFS-0.77.1-20060513-nocona Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.089). Factorization parameters were as follows: name: KA_11411_103 n: 37037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037047037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037 m: 10000000000000000000000000000000000 # c206, diff: 207 skew: 0.32 deg: 6 c6: 1000 c3: 270 c0: -1 type: snfs lss: 1 rlim: 19700000 alim: 19700000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 19700000/19700000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [100000, 59250000) Primes: RFBsize:1252693, AFBsize:1250079, Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 9570009 hash collisions in 47197434 relations (38655793 unique) Msieve: matrix is 2369418 x 2369643 (665.5 MB) Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,207,6,0,0,0,0,0,0,0,0,19700000,19700000,28,28,56,56,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU1: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU2: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU3: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 Memory: 8109188k/9175040k available (3972k kernel code, 787464k absent, 278388k reserved, 2498k data, 1292k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 5661.11 BogoMIPS (lpj=2830559) Calibrating delay using timer specific routine.. 5660.89 BogoMIPS (lpj=2830449) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830459) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830459) Total of 4 processors activated (22643.85 BogoMIPS). |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | November 6, 2011 05:00:00 UTC 2011 年 11 月 6 日 (日) 14 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 4700 | 300 | Serge Batalov | November 8, 2011 19:19:27 UTC 2011 年 11 月 9 日 (水) 4 時 19 分 27 秒 (日本時間) |
400 | Serge Batalov | November 8, 2011 23:41:06 UTC 2011 年 11 月 9 日 (水) 8 時 41 分 6 秒 (日本時間) | |||
4000 | Wataru Sakai | December 4, 2011 09:07:45 UTC 2011 年 12 月 4 日 (日) 18 時 7 分 45 秒 (日本時間) | |||
50 | 43e6 | 0 | - | - | |
55 | 11e7 | 2710 / 17475 | yoyo@home | June 8, 2012 22:20:10 UTC 2012 年 6 月 9 日 (土) 7 時 20 分 10 秒 (日本時間) |
name 名前 | ebina |
---|---|
date 日付 | November 24, 2022 20:54:04 UTC 2022 年 11 月 25 日 (金) 5 時 54 分 4 秒 (日本時間) |
composite number 合成数 | 10330314068913919985438998046592341534607478810386360948536426335726882884360282762093292203479216271764458604648860102917851513374640706702836279320103919336419<161> |
prime factors 素因数 | 29050045490883146946481950751389409815037<41> 20611908089203094904848621164206099490541287<44> 17252359981004069518243909598289066613274196942558647922149006154756331520201<77> |
factorization results 素因数分解の結果 | C:\MYDATA\ALL\ECM>ecm70dev-svn2256-x64-nehalem\ecm -primetest -one -nn -sigma 1:3361871965 11e6 GMP-ECM 7.0-dev [configured with MPIR 2.6.0, --enable-openmp] [ECM] Input number is 10330314068913919985438998046592341534607478810386360948536426335726882884360282762093292203479216271764458604648860102917851513374640706702836279320103919336419 (161 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:3361871965 Step 1 took 37500ms Step 2 took 20688ms ********** Factor found in step 2: 29050045490883146946481950751389409815037 Found probable prime factor of 41 digits: 29050045490883146946481950751389409815037 Composite cofactor 355604058250301533253766154458758619720884343675259396976137643795511761521772822956160091077085272229037941217065038687 has 120 digits Number: 11411_104 N = 355604058250301533253766154458758619720884343675259396976137643795511761521772822956160091077085272229037941217065038687 (120 digits) Divisors found: r1=20611908089203094904848621164206099490541287 (pp44) r2=17252359981004069518243909598289066613274196942558647922149006154756331520201 (pp77) Version: Msieve v. 1.53 (SVN unknown) Total time: 5.02 hours. Factorization parameters were as follows: n: 355604058250301533253766154458758619720884343675259396976137643795511761521772822956160091077085272229037941217065038687 # norm 1.702698e-11 alpha -7.017592 e 2.598e-10 rroots 5 skew: 723391.87 c0: -37711982497074276132323145687984 c1: 201838685793914577633558840 c2: 337505724780292632840 c3: -1629033715400290 c4: -975257851 c5: 420 Y0: -242965014063272576381615 Y1: 310658409917 type: gnfs Factor base limits: 4200000/4200000 Large primes per side: 3 Large prime bits: 27/27 Sieved algebraic special-q in [0, 0) Total raw relations: 10656552 Relations: 1207464 relations Pruned matrix : 687839 x 688066 Polynomial selection time: 0.04 hours. Total sieving time: 4.54 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.24 hours. time per square root: 0.11 hours. Prototype def-par.txt line would be: gnfs,119,5,63,2000,2.6e-05,0.28,250,20,50000,3600,4200000,4200000,27,27,53,53,2.5,2.5,100000 total time: 5.02 hours. Intel64 Family 6 Model 42 Stepping 7, GenuineIntel processors: 8, speed: 2.19GHz Windows-7-6.1.7601-SP1 Running Python 3.2 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | November 6, 2011 05:00:00 UTC 2011 年 11 月 6 日 (日) 14 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 | Dmitry Domanov | November 11, 2011 06:27:48 UTC 2011 年 11 月 11 日 (金) 15 時 27 分 48 秒 (日本時間) | |
45 | 11e6 | 1909 / 4409 | 600 | Dmitry Domanov | November 16, 2011 21:34:49 UTC 2011 年 11 月 17 日 (木) 6 時 34 分 49 秒 (日本時間) |
1309 | KTakahashi | July 8, 2014 11:43:24 UTC 2014 年 7 月 8 日 (火) 20 時 43 分 24 秒 (日本時間) |
name 名前 | Wataru Sakai |
---|---|
date 日付 | December 1, 2011 05:24:15 UTC 2011 年 12 月 1 日 (木) 14 時 24 分 15 秒 (日本時間) |
composite number 合成数 | 58479532163742690058479532163742690058479532163742690058479532163742690058479532163742690058479532163742847953216374269005847953216374269005847953216374269005847953216374269005847953216374269005847953216374269<209> |
prime factors 素因数 | 120221334702136376038499551421160982896419<42> 486432231921506756436372923745971547114353102035597081356356926816376136794840441793282303230125454018303032508174263621269003781114472939350032456263297304502608685151<168> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=4059373404 Step 1 took 58966ms Step 2 took 20716ms ********** Factor found in step 2: 120221334702136376038499551421160982896419 Found probable prime factor of 42 digits: 120221334702136376038499551421160982896419 Probable prime cofactor 486432231921506756436372923745971547114353102035597081356356926816376136794840441793282303230125454018303032508174263621269003781114472939350032456263297304502608685151 has 168 digits |
software ソフトウェア | GMP-ECM 6.3 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1118 | 118 | Makoto Kamada | November 6, 2011 05:00:00 UTC 2011 年 11 月 6 日 (日) 14 時 0 分 0 秒 (日本時間) |
1000 | Markus Tervooren | November 9, 2011 12:06:03 UTC 2011 年 11 月 9 日 (水) 21 時 6 分 3 秒 (日本時間) | |||
40 | 3e6 | 2618 | 300 | Lionel Debroux | November 9, 2011 15:37:09 UTC 2011 年 11 月 10 日 (木) 0 時 37 分 9 秒 (日本時間) |
2318 | Wataru Sakai | November 11, 2011 05:34:46 UTC 2011 年 11 月 11 日 (金) 14 時 34 分 46 秒 (日本時間) |
name 名前 | Robert Backstrom |
---|---|
date 日付 | January 19, 2014 12:53:31 UTC 2014 年 1 月 19 日 (日) 21 時 53 分 31 秒 (日本時間) |
composite number 合成数 | 4115226337448559670781893004115226337448559670781893004115226337448559670781893004115226337448559670781894115226337448559670781893004115226337448559670781893004115226337448559670781893004115226337448559670781893<211> |
prime factors 素因数 | 15448893745002617609389503290844869715994236918691871042457223<62> 266376764924009282223261378678055197622117468383855788515935094954396532425851697367023831736874033439210995367993815212893731311562376273176884510291<150> |
factorization results 素因数分解の結果 | Number: n N=4115226337448559670781893004115226337448559670781893004115226337448559670781893004115226337448559670781894115226337448559670781893004115226337448559670781893004115226337448559670781893004115226337448559670781893 ( 211 digits) SNFS difficulty: 213 digits. Divisors found: Sun Jan 19 23:48:28 2014 prp62 factor: 15448893745002617609389503290844869715994236918691871042457223 Sun Jan 19 23:48:28 2014 prp150 factor: 266376764924009282223261378678055197622117468383855788515935094954396532425851697367023831736874033439210995367993815212893731311562376273176884510291 Sun Jan 19 23:48:28 2014 elapsed time 22:44:29 (Msieve 1.44 - dependency 1) Version: GGNFS-0.77.1-20060513-nocona Total time: 0.00 hours. Scaled time: 0.00 units (timescale=1.697). Factorization parameters were as follows: # # 10^213+27*10^106-1 - 1(106)41(106) # # c211, diff: 213 # skew: 0.316 n: 4115226337448559670781893004115226337448559670781893004115226337448559670781893004115226337448559670781894115226337448559670781893004115226337448559670781893004115226337448559670781893004115226337448559670781893 m: 100000000000000000000000000000000000 deg: 6 c6: 1000 c3: 270 c0: -1 # Murphy_E = 4.46e-12 type: snfs lss: 1 rlim: 25000000 alim: 25000000 lpbr: 29 lpba: 29 mfbr: 57 mfba: 57 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 25000000/25000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 57/57 Sieved special-q in [100000, 36500000) Primes: RFBsize:1565927, AFBsize:1563085, Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 8998198 hash collisions in 55388274 relations (48521896 unique) Msieve: matrix is 3536018 x 3536243 (1005.2 MB) Total sieving time: 0.00 hours. Total relation processing time: 21hrs 7min 26sec. Matrix solve time: 0.00 hours. Total square root time: 1hrs 1min 8sec. Prototype def-par.txt line would be: snfs,213,6,0,0,0,0,0,0,0,0,25000000,25000000,29,29,57,57,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | November 6, 2011 05:00:00 UTC 2011 年 11 月 6 日 (日) 14 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2618 | 300 | Lionel Debroux | November 9, 2011 18:14:04 UTC 2011 年 11 月 10 日 (木) 3 時 14 分 4 秒 (日本時間) |
2318 | Wataru Sakai | November 11, 2011 05:35:02 UTC 2011 年 11 月 11 日 (金) 14 時 35 分 2 秒 (日本時間) | |||
45 | 11e6 | 4000 | Wataru Sakai | December 11, 2011 08:19:46 UTC 2011 年 12 月 11 日 (日) 17 時 19 分 46 秒 (日本時間) |
name 名前 | Lionel Debroux |
---|---|
date 日付 | November 9, 2011 20:03:32 UTC 2011 年 11 月 10 日 (木) 5 時 3 分 32 秒 (日本時間) |
composite number 合成数 | 1556737711038564020301291950637030303627524224901461227182253215001963746785589596583409064731131081876510982465420146306257601452946894368200879939764213704158219224069929778831004243558028651352819859900767<208> |
prime factors 素因数 | 111267846827508738898633590463384372885430513<45> 13990903530755588487920354465035600505746966745409278757866040144567193373300267932542095921259529104624518245219673864842576239366052381019180016326250549820788559<164> |
factorization results 素因数分解の結果 | Run 53 out of 75: Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=150096334 Step 1 took 34839ms Step 2 took 12300ms ********** Factor found in step 2: 111267846827508738898633590463384372885430513 Found probable prime factor of 45 digits: 111267846827508738898633590463384372885430513 Probable prime cofactor 13990903530755588487920354465035600505746966745409278757866040144567193373300267932542095921259529104624518245219673864842576239366052381019180016326250549820788559 has 164 digits |
software ソフトウェア | GMP-ECM 6.3 |
execution environment 実行環境 | Core i5 M 520 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | November 6, 2011 05:00:00 UTC 2011 年 11 月 6 日 (日) 14 時 0 分 0 秒 (日本時間) |
name 名前 | NFS@Home + Mathew |
---|---|
date 日付 | January 8, 2013 07:10:59 UTC 2013 年 1 月 8 日 (火) 16 時 10 分 59 秒 (日本時間) |
composite number 合成数 | 65359477124183006535947712418300653594771241830065359477124183006535947712418300653594771241830065359477124359477124183006535947712418300653594771241830065359477124183006535947712418300653594771241830065359477124183<215> |
prime factors 素因数 | 47900800801223886139201610745670452318691497498742261311799912721<65> 1364475667022941371781835892014764310532189565871850947023815893714797869685893030409033728507638580307710172399652041261314342813476975784077453819623<151> |
factorization results 素因数分解の結果 | prp65 factor: 47900800801223886139201610745670452318691497498742261311799912721 prp151 factor: 1364475667022941371781835892014764310532189565871850947023815893714797869685893030409033728507638580307710172399652041261314342813476975784077453819623 |
software ソフトウェア | ggnfs-lasieve4I14e on the NFS@Home grid, msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | November 6, 2011 05:00:00 UTC 2011 年 11 月 6 日 (日) 14 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2618 | 300 | Lionel Debroux | November 10, 2011 07:28:30 UTC 2011 年 11 月 10 日 (木) 16 時 28 分 30 秒 (日本時間) |
2318 | Wataru Sakai | November 11, 2011 05:35:32 UTC 2011 年 11 月 11 日 (金) 14 時 35 分 32 秒 (日本時間) | |||
45 | 11e6 | 4000 | Wataru Sakai | November 24, 2011 06:36:13 UTC 2011 年 11 月 24 日 (木) 15 時 36 分 13 秒 (日本時間) | |
50 | 43e6 | 0 | - | - | |
55 | 11e7 | 2730 / 17498 | yoyo@home | June 8, 2012 22:45:05 UTC 2012 年 6 月 9 日 (土) 7 時 45 分 5 秒 (日本時間) |
name 名前 | Norbert Schneider |
---|---|
date 日付 | November 7, 2011 16:15:19 UTC 2011 年 11 月 8 日 (火) 1 時 15 分 19 秒 (日本時間) |
composite number 合成数 | 23535296101934554079861821810113710970752720993129304119955944512437275513121312394988222813395796073060041239091<113> |
prime factors 素因数 | 30590408941191651172261716056953<32> 769368469286561137470537167152746411572287900939788529004810562426487996334939147<81> |
factorization results 素因数分解の結果 | GMP-ECM 6.3 [configured with GMP 5.0.1 and --enable-asm-redc] [ECM] Input number is 23535296101934554079861821810113710970752720993129304119955944512437275513121312394988222813395796073060041239091 (113 digits) Using B1=250000, B2=128992510, polynomial Dickson(3), sigma=4202274970 Step 1 took 6875ms ********** Factor found in step 1: 30590408941191651172261716056953 Found probable prime factor of 32 digits: 30590408941191651172261716056953 Probable prime cofactor 769368469286561137470537167152746411572287900939788529004810562426487996334939147 has 81 digits |
software ソフトウェア | GMP-ECM 6.3 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | November 6, 2011 05:00:00 UTC 2011 年 11 月 6 日 (日) 14 時 0 分 0 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | November 6, 2011 22:11:48 UTC 2011 年 11 月 7 日 (月) 7 時 11 分 48 秒 (日本時間) |
composite number 合成数 | 3757070557172848897867096992606594657911380032392665045811764195304124195948363792033516932049892369175487425984849186850314142388993023293213006767888899410548435880719479795060653677355939<190> |
prime factors 素因数 | 1549142730678785532813430236019<31> 2425257842785486241698336145367819080163582326760771359764185136091802830121612055537288069561779942789577336345673469208810107985912129626034689535220942033681<160> |
factorization results 素因数分解の結果 | Input number is 3757070557172848897867096992606594657911380032392665045811764195304124195948363792033516932049892369175487425984849186850314142388993023293213006767888899410548435880719479795060653677355939 (190 digits) Using B1=250000, B2=128992510, polynomial Dickson(3), sigma=4132305856 Step 1 took 1168ms Step 2 took 580ms ********** Factor found in step 2: 1549142730678785532813430236019 Found probable prime factor of 31 digits: 1549142730678785532813430236019 Probable prime cofactor 2425257842785486241698336145367819080163582326760771359764185136091802830121612055537288069561779942789577336345673469208810107985912129626034689535220942033681 has 160 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | November 6, 2011 05:00:00 UTC 2011 年 11 月 6 日 (日) 14 時 0 分 0 秒 (日本時間) |
name 名前 | Norbert Schneider |
---|---|
date 日付 | November 9, 2011 08:32:48 UTC 2011 年 11 月 9 日 (水) 17 時 32 分 48 秒 (日本時間) |
composite number 合成数 | 3365911220730587113244495678132624923725415550950987677726700618053359145492203363037174824857793734555915144783715140891<121> |
prime factors 素因数 | 8462975508229499942691484713455780673497<40> 397721961673826688077094642301756095453854020607817066523469164323609874665693203<81> |
factorization results 素因数分解の結果 | GMP-ECM 6.3 [configured with GMP 5.0.1 and --enable-asm-redc] [ECM] Input number is 3365911220730587113244495678132624923725415550950987677726700618053359145492203363037174824857793734555915144783715140891 (121 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2651657487 Step 1 took 32438ms Step 2 took 17140ms ********** Factor found in step 2: 8462975508229499942691484713455780673497 Found probable prime factor of 40 digits: 8462975508229499942691484713455780673497 Probable prime cofactor 397721961673826688077094642301756095453854020607817066523469164323609874665693203 has 81 digits |
software ソフトウェア | GMP-ECM 6.3 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | November 6, 2011 05:00:00 UTC 2011 年 11 月 6 日 (日) 14 時 0 分 0 秒 (日本時間) |
name 名前 | Rich Smith |
---|---|
date 日付 | November 28, 2020 14:17:46 UTC 2020 年 11 月 28 日 (土) 23 時 17 分 46 秒 (日本時間) |
composite number 合成数 | 69534028937005840670588557195498324416863174051203164099981054692907168683010165443388529924422460169685256737463785556519502598372055750264190629502069<152> |
prime factors 素因数 | 83408245778490462248846997477339792507362081530679796177797827069593991<71> 833658930097501929468783972166281909927195946411426025847780139390874334237882659<81> |
factorization results 素因数分解の結果 | Msieve v. 1.53 (SVN 988) Fri Nov 27 17:15:00 2020 random seeds: a395db80 d7891aa7 factoring 69534028937005840670588557195498324416863174051203164099981054692907168683010165443388529924422460169685256737463785556519502598372055750264190629502069 (152 digits) searching for 15-digit factors commencing number field sieve (152-digit input) R0: -238843652543247333923137805258 R1: 1031797155538357 A0: -88520077565351084078168955136062503169 A1: 15619625230415676728921312155987 A2: 17329220103057447872846353 A3: -3212080196212821503 A4: -960399267528 A5: 89460 skew 4874043.74, size 8.921e-015, alpha -7.392, combined = 4.077e-012 rroots = 3 commencing relation filtering setting target matrix density to 110.0 estimated available RAM is 12043.5 MB commencing duplicate removal, pass 1 error -15 reading relation 3530000 read 10M relations error -9 reading relation 19807273 read 20M relations error -1 reading relation 24802091 error -9 reading relation 28642596 error -9 reading relation 29362360 read 30M relations error -15 reading relation 33264107 error -15 reading relation 33264394 error -1 reading relation 33540907 error -15 reading relation 33541193 error -15 reading relation 33710496 error -15 reading relation 33775594 error -1 reading relation 33839827 error -15 reading relation 33840114 error -5 reading relation 34208665 error -15 reading relation 38015147 error -5 reading relation 39169030 read 40M relations error -9 reading relation 44402292 error -1 reading relation 48210297 read 50M relations error -9 reading relation 52030653 error -15 reading relation 53504263 error -9 reading relation 59619892 read 60M relations error -15 reading relation 61759328 error -1 reading relation 61801598 error -15 reading relation 62116046 skipped 10 relations with composite factors found 12501011 hash collisions in 62454479 relations added 121703 free relations commencing duplicate removal, pass 2 found 12190829 duplicates and 50385353 unique relations memory use: 330.4 MB reading ideals above 720000 commencing singleton removal, initial pass memory use: 1378.0 MB reading all ideals from disk memory use: 1774.0 MB keeping 45598338 ideals with weight <= 200, target excess is 276336 commencing in-memory singleton removal begin with 50385353 relations and 45598338 unique ideals reduce to 32553848 relations and 26038368 ideals in 14 passes max relations containing the same ideal: 155 removing 4331539 relations and 3331539 ideals in 1000000 cliques commencing in-memory singleton removal begin with 28222309 relations and 26038368 unique ideals reduce to 27778466 relations and 22246594 ideals in 7 passes max relations containing the same ideal: 141 removing 3437620 relations and 2437620 ideals in 1000000 cliques commencing in-memory singleton removal begin with 24340846 relations and 22246594 unique ideals reduce to 24020439 relations and 19477291 ideals in 7 passes max relations containing the same ideal: 130 removing 3201474 relations and 2201474 ideals in 1000000 cliques commencing in-memory singleton removal begin with 20818965 relations and 19477291 unique ideals reduce to 20516511 relations and 16961928 ideals in 7 passes max relations containing the same ideal: 119 removing 3092862 relations and 2092862 ideals in 1000000 cliques commencing in-memory singleton removal begin with 17423649 relations and 16961928 unique ideals reduce to 17107940 relations and 14539831 ideals in 7 passes max relations containing the same ideal: 104 removing 3036932 relations and 2036932 ideals in 1000000 cliques commencing in-memory singleton removal begin with 14071008 relations and 14539831 unique ideals reduce to 13717424 relations and 12131473 ideals in 7 passes max relations containing the same ideal: 93 removing 3012757 relations and 2012757 ideals in 1000000 cliques commencing in-memory singleton removal begin with 10704667 relations and 12131473 unique ideals reduce to 10276652 relations and 9663875 ideals in 8 passes max relations containing the same ideal: 73 removing 1141143 relations and 848916 ideals in 292227 cliques commencing in-memory singleton removal begin with 9135509 relations and 9663875 unique ideals reduce to 9046625 relations and 8723809 ideals in 7 passes max relations containing the same ideal: 66 relations with 0 large ideals: 868 relations with 1 large ideals: 4637 relations with 2 large ideals: 64260 relations with 3 large ideals: 387762 relations with 4 large ideals: 1220402 relations with 5 large ideals: 2221772 relations with 6 large ideals: 2484578 relations with 7+ large ideals: 2662346 commencing 2-way merge reduce to 5841479 relation sets and 5518663 unique ideals commencing full merge memory use: 703.5 MB found 2698972 cycles, need 2662863 weight of 2662863 cycles is about 293592958 (110.25/cycle) distribution of cycle lengths: 1 relations: 107742 2 relations: 163844 3 relations: 197733 4 relations: 208893 5 relations: 218787 6 relations: 217069 7 relations: 212822 8 relations: 201345 9 relations: 185958 10+ relations: 948670 heaviest cycle: 26 relations commencing cycle optimization start with 21902317 relations pruned 994720 relations memory use: 598.2 MB distribution of cycle lengths: 1 relations: 107742 2 relations: 168605 3 relations: 206805 4 relations: 218454 5 relations: 231044 6 relations: 228226 7 relations: 224549 8 relations: 211004 9 relations: 194208 10+ relations: 872226 heaviest cycle: 26 relations RelProcTime: 2139 commencing linear algebra read 2662863 cycles cycles contain 8863186 unique relations read 8863186 relations using 20 quadratic characters above 4294917295 building initial matrix memory use: 1223.6 MB read 2662863 cycles matrix is 2662685 x 2662863 (1164.9 MB) with weight 358559640 (134.65/col) sparse part has weight 273429619 (102.68/col) filtering completed in 2 passes matrix is 2662560 x 2662738 (1164.9 MB) with weight 358552977 (134.66/col) sparse part has weight 273427008 (102.69/col) matrix starts at (0, 0) matrix is 2662560 x 2662738 (1164.9 MB) with weight 358552977 (134.66/col) sparse part has weight 273427008 (102.69/col) saving the first 48 matrix rows for later matrix includes 64 packed rows matrix is 2662512 x 2662738 (1131.7 MB) with weight 302538830 (113.62/col) sparse part has weight 270041869 (101.42/col) using block size 8192 and superblock size 786432 for processor cache size 8192 kB commencing Lanczos iteration (6 threads) memory use: 925.0 MB linear algebra at 0.1%, ETA 4h53m2662738 dimensions (0.1%, ETA 4h53m) checkpointing every 520000 dimensions738 dimensions (0.1%, ETA 5h 7m) linear algebra completed 2662422 of 2662738 dimensions (100.0%, ETA 0h 0m) lanczos halted after 42107 iterations (dim = 2662512) recovered 30 nontrivial dependencies BLanczosTime: 18349 commencing square root phase handling dependencies 1 to 64 reading relations for dependency 1 read 1330792 cycles cycles contain 4430578 unique relations read 4430578 relations multiplying 4430578 relations multiply complete, coefficients have about 229.49 million bits initial square root is modulo 172155913 GCD is 1, no factor found reading relations for dependency 2 read 1330681 cycles cycles contain 4430880 unique relations read 4430880 relations multiplying 4430880 relations multiply complete, coefficients have about 229.51 million bits initial square root is modulo 172437631 GCD is N, no factor found reading relations for dependency 3 read 1332329 cycles cycles contain 4431620 unique relations read 4431620 relations multiplying 4431620 relations multiply complete, coefficients have about 229.55 million bits initial square root is modulo 172947487 sqrtTime: 2334 p71 factor: 83408245778490462248846997477339792507362081530679796177797827069593991 p81 factor: 833658930097501929468783972166281909927195946411426025847780139390874334237882659 elapsed time 06:20:23 |
execution environment 実行環境 | Core i7-10510U with 12 GB memory, 6 threads, Windows 10 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | November 6, 2011 05:00:00 UTC 2011 年 11 月 6 日 (日) 14 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2618 | 300 | Lionel Debroux | November 9, 2011 10:06:26 UTC 2011 年 11 月 9 日 (水) 19 時 6 分 26 秒 (日本時間) |
2318 | Wataru Sakai | November 11, 2011 05:33:39 UTC 2011 年 11 月 11 日 (金) 14 時 33 分 39 秒 (日本時間) | |||
45 | 11e6 | 4000 | Wataru Sakai | November 20, 2011 02:15:25 UTC 2011 年 11 月 20 日 (日) 11 時 15 分 25 秒 (日本時間) | |
50 | 43e6 | 0 | - | - | |
55 | 11e7 | 2730 / 17498 | yoyo@home | June 11, 2012 04:25:11 UTC 2012 年 6 月 11 日 (月) 13 時 25 分 11 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | November 9, 2011 08:27:31 UTC 2011 年 11 月 9 日 (水) 17 時 27 分 31 秒 (日本時間) |
composite number 合成数 | 241214123196859559888650360031487301292373251717592966058154232569293465366547650604358153385823100861884803348105173443341920900330043148780762831910920510934311440151254196531300731926512917<192> |
prime factors 素因数 | 564497404289501411829929189226815449<36> |
composite cofactor 合成数の残り | 427307763266796810879618373432238070973596786530613234840937436421655411215410433290067711832866666965329491761962479705039785543459795053101432788870251933<156> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=4194787313 Step 1 took 23390ms Step 2 took 9320ms ********** Factor found in step 2: 564497404289501411829929189226815449 Found probable prime factor of 36 digits: 564497404289501411829929189226815449 Composite cofactor 427307763266796810879618373432238070973596786530613234840937436421655411215410433290067711832866666965329491761962479705039785543459795053101432788870251933 has 156 digits |
name 名前 | Roald |
---|---|
date 日付 | June 12, 2012 04:08:51 UTC 2012 年 6 月 12 日 (火) 13 時 8 分 51 秒 (日本時間) |
composite number 合成数 | 427307763266796810879618373432238070973596786530613234840937436421655411215410433290067711832866666965329491761962479705039785543459795053101432788870251933<156> |
prime factors 素因数 | 37535534521454833477394866431390975608840058839<47> 11384086272237661504899110046128927920416355690958531773821020171129823584062105194118395520571394971536453547<110> |
factorization results 素因数分解の結果 | GMP-ECM 6.3 [configured with GMP 5.0.1] [ECM] Input number is 427307763266796810879618373432238070973596786530613234840937436421655411215410433290067711832866666965329491761962479705039785543459795053101432788870251933 (156 digits) [Tue Jun 12 01:56:34 2012] Using MODMULN Using B1=110000000, B2=776278396540, polynomial Dickson(30), sigma=180703008 dF=131072, k=4, d=1345890, d2=11, i0=71 Expected number of curves to find a factor of n digits: 35 40 45 50 55 60 65 70 75 80 34 135 614 3135 17884 111314 752662 5482978 4.3e+007 3.6e+008 Step 1 took 639437ms Using 20 small primes for NTT Estimated memory usage: 608M Initializing tables of differences for F took 422ms Computing roots of F took 21468ms Building F from its roots took 10828ms Computing 1/F took 3813ms Initializing table of differences for G took 343ms Computing roots of G took 18016ms Building G from its roots took 10890ms Computing roots of G took 18016ms Building G from its roots took 10937ms Computing G * H took 2125ms Reducing G * H mod F took 2079ms Computing roots of G took 18031ms Building G from its roots took 10922ms Computing G * H took 2109ms Reducing G * H mod F took 2094ms Computing roots of G took 18031ms Building G from its roots took 10937ms Computing G * H took 2093ms Reducing G * H mod F took 2110ms Computing polyeval(F,G) took 24047ms Computing product of all F(g_i) took 93ms Step 2 took 189984ms ********** Factor found in step 2: 37535534521454833477394866431390975608840058839 Found probable prime factor of 47 digits: 37535534521454833477394866431390975608840058839 Probable prime cofactor 11384086272237661504899110046128927920416355690958531773821020171129823584062105194118395520571394971536453547 has 110 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | November 6, 2011 05:00:00 UTC 2011 年 11 月 6 日 (日) 14 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2618 | 300 | Lionel Debroux | November 10, 2011 12:34:31 UTC 2011 年 11 月 10 日 (木) 21 時 34 分 31 秒 (日本時間) |
300 | Dmitry Domanov | November 11, 2011 06:28:28 UTC 2011 年 11 月 11 日 (金) 15 時 28 分 28 秒 (日本時間) | |||
2018 | Wataru Sakai | November 13, 2011 03:14:57 UTC 2011 年 11 月 13 日 (日) 12 時 14 分 57 秒 (日本時間) | |||
45 | 11e6 | 4000 | Wataru Sakai | November 20, 2011 02:15:04 UTC 2011 年 11 月 20 日 (日) 11 時 15 分 4 秒 (日本時間) | |
50 | 43e6 | 0 / 5170 | - | - | |
55 | 11e7 | 575 / 17498 | yoyo@home | June 11, 2012 08:15:08 UTC 2012 年 6 月 11 日 (月) 17 時 15 分 8 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | November 6, 2011 05:00:00 UTC 2011 年 11 月 6 日 (日) 14 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 | Dmitry Domanov | November 11, 2011 06:28:52 UTC 2011 年 11 月 11 日 (金) 15 時 28 分 52 秒 (日本時間) | |
45 | 11e6 | 3807 | 600 | Dmitry Domanov | November 15, 2011 22:04:41 UTC 2011 年 11 月 16 日 (水) 7 時 4 分 41 秒 (日本時間) |
3207 | Rytis Slatkevičius | April 14, 2023 08:41:54 UTC 2023 年 4 月 14 日 (金) 17 時 41 分 54 秒 (日本時間) | |||
50 | 43e6 | 234 / 6687 | Rytis Slatkevičius | April 14, 2023 08:41:54 UTC 2023 年 4 月 14 日 (金) 17 時 41 分 54 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | November 16, 2011 06:00:10 UTC 2011 年 11 月 16 日 (水) 15 時 0 分 10 秒 (日本時間) |
composite number 合成数 | 1349244142777048224044763356635127663176041225010310164829209833239919163152287693254126509893073822557196049158138695755746350865747765598292203697738858322334239772681691567225644348930554361801<196> |
prime factors 素因数 | 16334946481019898183982911388167161<35> 82598626469010998247821391277175585470892816592940656073464255848866938480430775515737661705900417665479986502224971178080401299698270168572579778687224191516241<161> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1037239633 Step 1 took 96703ms Step 2 took 30358ms ********** Factor found in step 2: 16334946481019898183982911388167161 Found probable prime factor of 35 digits: 16334946481019898183982911388167161 Probable prime cofactor 82598626469010998247821391277175585470892816592940656073464255848866938480430775515737661705900417665479986502224971178080401299698270168572579778687224191516241 has 161 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | November 6, 2011 05:00:00 UTC 2011 年 11 月 6 日 (日) 14 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 | Dmitry Domanov | November 11, 2011 06:29:01 UTC 2011 年 11 月 11 日 (金) 15 時 29 分 1 秒 (日本時間) | |
45 | 11e6 | 600 / 4409 | Dmitry Domanov | November 15, 2011 22:04:10 UTC 2011 年 11 月 16 日 (水) 7 時 4 分 10 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | November 6, 2011 22:10:39 UTC 2011 年 11 月 7 日 (月) 7 時 10 分 39 秒 (日本時間) |
composite number 合成数 | 2819377505206924267500740321093905602831977631282371871047230082185003896463568947001535905857265963886798303495127097499760266849900000685651093838876871001486683981070317722040660272181166489<193> |
prime factors 素因数 | 96772666275681680889529939170797<32> |
composite cofactor 合成数の残り | 29134027341720715215737157541332581915618852802605721578986509532391620707280396695884064547806693611107968140406036296590690468515847681102249644676740319651037<161> |
factorization results 素因数分解の結果 | Input number is 2819377505206924267500740321093905602831977631282371871047230082185003896463568947001535905857265963886798303495127097499760266849900000685651093838876871001486683981070317722040660272181166489 (193 digits) Using B1=250000, B2=128992510, polynomial Dickson(3), sigma=2347445442 Step 1 took 1188ms Step 2 took 604ms ********** Factor found in step 2: 96772666275681680889529939170797 Found probable prime factor of 32 digits: 96772666275681680889529939170797 Composite cofactor 29134027341720715215737157541332581915618852802605721578986509532391620707280396695884064547806693611107968140406036296590690468515847681102249644676740319651037 has 161 digits |
name 名前 | Grzegorz Roman Granowski |
---|---|
date 日付 | June 14, 2012 01:47:46 UTC 2012 年 6 月 14 日 (木) 10 時 47 分 46 秒 (日本時間) |
composite number 合成数 | 29134027341720715215737157541332581915618852802605721578986509532391620707280396695884064547806693611107968140406036296590690468515847681102249644676740319651037<161> |
prime factors 素因数 | 670184293952808897256839593926083520758191096327227<51> 43471665338328849349511194671580688887630507424480756794616856418046484059480299632497497699262990890703641031<110> |
factorization results 素因数分解の結果 | GMP-ECM 6.3 [configured with GMP 5.0.1] [ECM] Input number is 29134027341720715215737157541332581915618852802605721578986509532391620707280396695884064547806693611107968140406036296590690468515847681102249644676740319651037 (161 digits) [Wed Jun 13 15:02:29 2012] Using MODMULN Using B1=110000000, B2=776278396540, polynomial Dickson(30), sigma=1203282712 dF=131072, k=4, d=1345890, d2=11, i0=71 Expected number of curves to find a factor of n digits: 35 40 45 50 55 60 65 70 75 80 34 135 614 3135 17884 111314 752662 5482978 4.3e+007 3.6e+008 Step 1 took 949562ms Using 20 small primes for NTT Estimated memory usage: 608M Initializing tables of differences for F took 639ms Computing roots of F took 29968ms Building F from its roots took 15693ms Computing 1/F took 5600ms Initializing table of differences for G took 530ms Computing roots of G took 25194ms Building G from its roots took 15554ms Computing roots of G took 25225ms Building G from its roots took 15397ms Computing G * H took 3073ms Reducing G * H mod F took 3011ms Computing roots of G took 24352ms Building G from its roots took 15038ms Computing G * H took 3058ms Reducing G * H mod F took 2995ms Computing roots of G took 24336ms Building G from its roots took 15054ms Computing G * H took 3058ms Reducing G * H mod F took 3010ms Computing polyeval(F,G) took 33337ms Computing product of all F(g_i) took 125ms Step 2 took 264983ms ********** Factor found in step 2: 670184293952808897256839593926083520758191096327227 Found probable prime factor of 51 digits: 670184293952808897256839593926083520758191096327227 Probable prime cofactor 43471665338328849349511194671580688887630507424480756794616856418046484059480299632497497699262990890703641031 has 110 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | November 6, 2011 05:00:00 UTC 2011 年 11 月 6 日 (日) 14 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2618 | 300 | Lionel Debroux | November 9, 2011 09:20:33 UTC 2011 年 11 月 9 日 (水) 18 時 20 分 33 秒 (日本時間) |
2318 | Wataru Sakai | November 11, 2011 05:33:59 UTC 2011 年 11 月 11 日 (金) 14 時 33 分 59 秒 (日本時間) | |||
45 | 11e6 | 4000 | Wataru Sakai | November 20, 2011 02:14:44 UTC 2011 年 11 月 20 日 (日) 11 時 14 分 44 秒 (日本時間) | |
50 | 43e6 | 0 / 2482 | - | - | |
55 | 11e7 | 1690 / 17498 | yoyo@home | June 11, 2012 14:25:08 UTC 2012 年 6 月 11 日 (月) 23 時 25 分 8 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | November 6, 2011 22:13:03 UTC 2011 年 11 月 7 日 (月) 7 時 13 分 3 秒 (日本時間) |
composite number 合成数 | 130862846170761313983974867187106890868919443026902100346276333498510196947635915374754938789154353776498182792535509106017051529761877948907154339093554683257291847618987757071943797560090237464695296396422775426811<216> |
prime factors 素因数 | 82665796016523103805414330220757238507<38> 1583034973069208246616908650456054097654237674109638871157561954957110896736391891907958793659446534382152861995891924174831564720355367967895927309548953351289874228245597159473<178> |
factorization results 素因数分解の結果 | Input number is 130862846170761313983974867187106890868919443026902100346276333498510196947635915374754938789154353776498182792535509106017051529761877948907154339093554683257291847618987757071943797560090237464695296396422775426811 (216 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2437464072 Step 1 took 6385ms Step 2 took 2956ms ********** Factor found in step 2: 82665796016523103805414330220757238507 Found probable prime factor of 38 digits: 82665796016523103805414330220757238507 Probable prime cofactor 1583034973069208246616908650456054097654237674109638871157561954957110896736391891907958793659446534382152861995891924174831564720355367967895927309548953351289874228245597159473 has 178 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | November 6, 2011 05:00:00 UTC 2011 年 11 月 6 日 (日) 14 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | November 6, 2011 05:00:00 UTC 2011 年 11 月 6 日 (日) 14 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 | Dmitry Domanov | November 11, 2011 06:29:23 UTC 2011 年 11 月 11 日 (金) 15 時 29 分 23 秒 (日本時間) | |
45 | 11e6 | 3807 | 600 | Dmitry Domanov | November 15, 2011 22:03:40 UTC 2011 年 11 月 16 日 (水) 7 時 3 分 40 秒 (日本時間) |
3207 | Rytis Slatkevičius | April 18, 2023 13:02:06 UTC 2023 年 4 月 18 日 (火) 22 時 2 分 6 秒 (日本時間) | |||
50 | 43e6 | 180 / 6687 | Rytis Slatkevičius | April 18, 2023 13:02:20 UTC 2023 年 4 月 18 日 (火) 22 時 2 分 20 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | November 6, 2011 05:00:00 UTC 2011 年 11 月 6 日 (日) 14 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 | Dmitry Domanov | November 11, 2011 06:29:34 UTC 2011 年 11 月 11 日 (金) 15 時 29 分 34 秒 (日本時間) | |
45 | 11e6 | 4602 | 600 | Dmitry Domanov | November 14, 2011 12:48:32 UTC 2011 年 11 月 14 日 (月) 21 時 48 分 32 秒 (日本時間) |
4002 | Thomas Kozlowski | October 30, 2024 00:23:49 UTC 2024 年 10 月 30 日 (水) 9 時 23 分 49 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | November 6, 2011 05:00:00 UTC 2011 年 11 月 6 日 (日) 14 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 | Dmitry Domanov | November 11, 2011 06:29:44 UTC 2011 年 11 月 11 日 (金) 15 時 29 分 44 秒 (日本時間) | |
45 | 11e6 | 4601 | 600 | Dmitry Domanov | November 14, 2011 12:46:25 UTC 2011 年 11 月 14 日 (月) 21 時 46 分 25 秒 (日本時間) |
4001 | Thomas Kozlowski | October 30, 2024 02:06:02 UTC 2024 年 10 月 30 日 (水) 11 時 6 分 2 秒 (日本時間) |
name 名前 | Thomas Kozlowski |
---|---|
date 日付 | October 30, 2024 05:16:56 UTC 2024 年 10 月 30 日 (水) 14 時 16 分 56 秒 (日本時間) |
composite number 合成数 | 220693949658099481307375337186887562691290835671638617042677565928555183433328150037589638977018096010783021776452811737245036634367986748997672678609361081916976067547373394227548307<183> |
prime factors 素因数 | 120801778711667794360835157267789266622773<42> 1826909769142194541256563308443215256870999509413432008533697410593393297449873962476078942944809081984125103614203831279487472294026677633959<142> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.6 [configured with GMP 6.3.0, --enable-asm-redc] [ECM] Input number is 220693949658099481307375337186887562691290835671638617042677565928555183433328150037589638977018096010783021776452811737245036634367986748997672678609361081916976067547373394227548307 (183 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:1538573326 Step 1 took 29109ms Step 2 took 12110ms Run 2 out of 0: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:2705422212 Step 1 took 28008ms Step 2 took 11991ms Run 3 out of 0: ... Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:1150619984 Step 1 took 27925ms Step 2 took 11979ms Run 18 out of 0: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:3834689850 Step 1 took 27648ms Step 2 took 11967ms ** Factor found in step 2: 120801778711667794360835157267789266622773 Found prime factor of 42 digits: 120801778711667794360835157267789266622773 Prime cofactor 1826909769142194541256563308443215256870999509413432008533697410593393297449873962476078942944809081984125103614203831279487472294026677633959 has 142 digits |
execution environment 実行環境 | 2x Xeon E5-2698v4, 128GB DDR4, Ubuntu Server 24.04 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | November 6, 2011 05:00:00 UTC 2011 年 11 月 6 日 (日) 14 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 | Dmitry Domanov | November 11, 2011 06:29:53 UTC 2011 年 11 月 11 日 (金) 15 時 29 分 53 秒 (日本時間) | |
45 | 11e6 | 600 / 4409 | Dmitry Domanov | November 15, 2011 22:02:47 UTC 2011 年 11 月 16 日 (水) 7 時 2 分 47 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | November 6, 2011 05:00:00 UTC 2011 年 11 月 6 日 (日) 14 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 | Dmitry Domanov | November 11, 2011 06:30:04 UTC 2011 年 11 月 11 日 (金) 15 時 30 分 4 秒 (日本時間) | |
45 | 11e6 | 4600 | 600 | Dmitry Domanov | November 14, 2011 12:39:14 UTC 2011 年 11 月 14 日 (月) 21 時 39 分 14 秒 (日本時間) |
4000 | Thomas Kozlowski | October 30, 2024 04:00:32 UTC 2024 年 10 月 30 日 (水) 13 時 0 分 32 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | November 9, 2011 08:26:07 UTC 2011 年 11 月 9 日 (水) 17 時 26 分 7 秒 (日本時間) |
composite number 合成数 | 10716594523999394840169315489444540061077962716072113997058277954079751245348959223573563590911503821317214310569182997213961567790128083324940679043007107180198190867010022140940104860794660783<194> |
prime factors 素因数 | 31041975810761664964737814650349907<35> 218056772882146960514068505803359749<36> 1583207586575943606867299879644527070006614687253688344439870401168623634851301881487623519552636693570828398213345286500081<124> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1286981068 Step 1 took 28393ms Step 2 took 10101ms ********** Factor found in step 2: 31041975810761664964737814650349907 Found probable prime factor of 35 digits: 31041975810761664964737814650349907 Composite cofactor 345229137131282556128303064448336440902172260760981821664062438184005201137429182378888185372543652376306343632677647807596489231237192094398439861943160639669 has 159 digits Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2411502958 Step 1 took 19902ms Step 2 took 8017ms ********** Factor found in step 2: 218056772882146960514068505803359749 Found probable prime factor of 36 digits: 218056772882146960514068505803359749 Probable prime cofactor 1583207586575943606867299879644527070006614687253688344439870401168623634851301881487623519552636693570828398213345286500081 has 124 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | November 6, 2011 05:00:00 UTC 2011 年 11 月 6 日 (日) 14 時 0 分 0 秒 (日本時間) |
name 名前 | Roald |
---|---|
date 日付 | June 12, 2012 07:28:48 UTC 2012 年 6 月 12 日 (火) 16 時 28 分 48 秒 (日本時間) |
composite number 合成数 | 63048919656761681388589406520519270902293089207916422352102996715151285882716399654491920280945985990530052267554395455433871140788237593548834540720144760319531924820468201277371112245991664932821376105720428480457987352386716853606713448965051983834257<254> |
prime factors 素因数 | 23332188862120152141673789809707828458985570620361042563<56> |
composite cofactor 合成数の残り | 2702229097721804767688704946063904081640275115596373471294010624631040023353536165987450736639416786184229159044783713672447963310549109055487808986719746843976763562188516671869214211158394339586139<199> |
factorization results 素因数分解の結果 | GMP-ECM 6.3 [configured with GMP 5.0.1] [ECM] Input number is 63048919656761681388589406520519270902293089207916422352102996715151285882716399654491920280945985990530052267554395455433871140788237593548834540720144760319531924820468201277371112245991664932821376105720428480457987352386716853606713448965051983834257 (254 digits) [Tue Jun 12 05:48:18 2012] Using MODMULN Using B1=110000000, B2=776278396540, polynomial Dickson(30), sigma=2172818433 dF=131072, k=4, d=1345890, d2=11, i0=71 Expected number of curves to find a factor of n digits: 35 40 45 50 55 60 65 70 75 80 34 135 614 3135 17884 111314 752662 5482978 4.3e+007 3.6e+008 Step 1 took 1330750ms Using 30 small primes for NTT Estimated memory usage: 890M Initializing tables of differences for F took 844ms Computing roots of F took 36140ms Building F from its roots took 18078ms Computing 1/F took 6750ms Initializing table of differences for G took 703ms Computing roots of G took 30390ms Building G from its roots took 18094ms Computing roots of G took 30453ms Building G from its roots took 18188ms Computing G * H took 3672ms Reducing G * H mod F took 3657ms Computing roots of G took 30500ms Building G from its roots took 17921ms Computing G * H took 3610ms Reducing G * H mod F took 3781ms Computing roots of G took 30031ms Building G from its roots took 17985ms Computing G * H took 3829ms Reducing G * H mod F took 3781ms Computing polyeval(F,G) took 35594ms Computing product of all F(g_i) took 156ms Step 2 took 314781ms ********** Factor found in step 2: 23332188862120152141673789809707828458985570620361042563 Found probable prime factor of 56 digits: 23332188862120152141673789809707828458985570620361042563 Composite cofactor 2702229097721804767688704946063904081640275115596373471294010624631040023353536165987450736639416786184229159044783713672447963310549109055487808986719746843976763562188516671869214211158394339586139 has 199 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | November 6, 2011 05:00:00 UTC 2011 年 11 月 6 日 (日) 14 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2609 | 159 | Serge Batalov | November 7, 2011 19:01:33 UTC 2011 年 11 月 8 日 (火) 4 時 1 分 33 秒 (日本時間) |
300 | Lionel Debroux | November 10, 2011 09:40:59 UTC 2011 年 11 月 10 日 (木) 18 時 40 分 59 秒 (日本時間) | |||
2150 | Wataru Sakai | November 11, 2011 05:35:50 UTC 2011 年 11 月 11 日 (金) 14 時 35 分 50 秒 (日本時間) | |||
45 | 11e6 | 4000 | Wataru Sakai | November 13, 2011 03:16:09 UTC 2011 年 11 月 13 日 (日) 12 時 16 分 9 秒 (日本時間) | |
50 | 43e6 | 0 / 4712 | - | - | |
55 | 11e7 | 765 / 17498 | yoyo@home | June 11, 2012 18:45:07 UTC 2012 年 6 月 12 日 (火) 3 時 45 分 7 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | November 6, 2011 05:00:00 UTC 2011 年 11 月 6 日 (日) 14 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 | Dmitry Domanov | November 11, 2011 06:30:26 UTC 2011 年 11 月 11 日 (金) 15 時 30 分 26 秒 (日本時間) | |
45 | 11e6 | 4600 | 600 | Dmitry Domanov | November 14, 2011 12:37:37 UTC 2011 年 11 月 14 日 (月) 21 時 37 分 37 秒 (日本時間) |
4000 | Thomas Kozlowski | October 30, 2024 05:30:26 UTC 2024 年 10 月 30 日 (水) 14 時 30 分 26 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | November 9, 2011 08:28:29 UTC 2011 年 11 月 9 日 (水) 17 時 28 分 29 秒 (日本時間) |
composite number 合成数 | 247956936009639537887893512097161954960294282936021237809147138130049678478037856540206876729017605406564018623362128986630542476829658430897667999119965494435290035974545790834177023706962989774843087481925519563560847628065993<228> |
prime factors 素因数 | 979456782971673892171758863519659793<36> 4597309916813743297661275380506264249<37> |
composite cofactor 合成数の残り | 55066465447727646808367175902659767660451398875296527482155420030200108719554212274158008806624197617764794964050482296146618648976799778783103051000574849<155> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3314483817 Step 1 took 30836ms Step 2 took 11265ms ********** Factor found in step 2: 4597309916813743297661275380506264249 Found probable prime factor of 37 digits: 4597309916813743297661275380506264249 Composite cofactor 53935223097052156965091083437680907833237951684617938992224374988747737406424300425614376113557939934981842466646106895489767666574068636769967421070889475314139714261705179791263855912346257 has 191 digits Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=4264438362 Step 1 took 23381ms Step 2 took 9275ms ********** Factor found in step 2: 979456782971673892171758863519659793 Found probable prime factor of 36 digits: 979456782971673892171758863519659793 Composite cofactor 55066465447727646808367175902659767660451398875296527482155420030200108719554212274158008806624197617764794964050482296146618648976799778783103051000574849 has 155 digits |
name 名前 | Grzegorz Roman Granowski |
---|---|
date 日付 | June 14, 2012 01:47:47 UTC 2012 年 6 月 14 日 (木) 10 時 47 分 47 秒 (日本時間) |
composite number 合成数 | 55066465447727646808367175902659767660451398875296527482155420030200108719554212274158008806624197617764794964050482296146618648976799778783103051000574849<155> |
prime factors 素因数 | 2088142199585182715589910613856190298743768176015941<52> 26371032326566077169056780490927463915470473723573427259719790902198192722205837138795994007369050482189<104> |
factorization results 素因数分解の結果 | GMP-ECM 6.3 [configured with GMP 5.0.1] [ECM] Input number is 55066465447727646808367175902659767660451398875296527482155420030200108719554212274158008806624197617764794964050482296146618648976799778783103051000574849 (155 digits) [Wed Jun 13 19:23:01 2012] Using MODMULN Using B1=110000000, B2=776278396540, polynomial Dickson(30), sigma=3513962027 dF=131072, k=4, d=1345890, d2=11, i0=71 Expected number of curves to find a factor of n digits: 35 40 45 50 55 60 65 70 75 80 34 135 614 3135 17884 111314 752662 5482978 4.3e+007 3.6e+008 Step 1 took 981542ms ********** Factor found in step 1: 2088142199585182715589910613856190298743768176015941 Found probable prime factor of 52 digits: 2088142199585182715589910613856190298743768176015941 Probable prime cofactor 26371032326566077169056780490927463915470473723573427259719790902198192722205837138795994007369050482189 has 104 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | November 6, 2011 05:00:00 UTC 2011 年 11 月 6 日 (日) 14 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2618 | 300 | Lionel Debroux | November 10, 2011 10:58:57 UTC 2011 年 11 月 10 日 (木) 19 時 58 分 57 秒 (日本時間) |
300 | Dmitry Domanov | November 11, 2011 06:30:37 UTC 2011 年 11 月 11 日 (金) 15 時 30 分 37 秒 (日本時間) | |||
2018 | Wataru Sakai | November 13, 2011 03:14:40 UTC 2011 年 11 月 13 日 (日) 12 時 14 分 40 秒 (日本時間) | |||
45 | 11e6 | 4000 | Wataru Sakai | November 22, 2011 03:17:36 UTC 2011 年 11 月 22 日 (火) 12 時 17 分 36 秒 (日本時間) | |
50 | 43e6 | 0 / 2192 | - | - | |
55 | 11e7 | 1810 / 17498 | yoyo@home | June 11, 2012 21:05:07 UTC 2012 年 6 月 12 日 (火) 6 時 5 分 7 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | November 8, 2011 22:24:00 UTC 2011 年 11 月 9 日 (水) 7 時 24 分 0 秒 (日本時間) |
composite number 合成数 | 42750494860865080797996793728293696839162873602853738655036313220644929201710934236287969727675610864353672396681317852832696636715525940315300269202796098482522204193642711031669051<182> |
prime factors 素因数 | 513790426089128720035364840369646847<36> |
composite cofactor 合成数の残り | 83206094722849172117909262105848347103994593298478731945662358401139180683652757206017041472195524985755152650459576421515647213267584138215227333<146> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3147837266 Step 1 took 23408ms Step 2 took 8968ms ********** Factor found in step 2: 513790426089128720035364840369646847 Found probable prime factor of 36 digits: 513790426089128720035364840369646847 Composite cofactor 83206094722849172117909262105848347103994593298478731945662358401139180683652757206017041472195524985755152650459576421515647213267584138215227333 has 146 digits |
name 名前 | Ignacio Santos |
---|---|
date 日付 | May 5, 2021 17:59:13 UTC 2021 年 5 月 6 日 (木) 2 時 59 分 13 秒 (日本時間) |
composite number 合成数 | 83206094722849172117909262105848347103994593298478731945662358401139180683652757206017041472195524985755152650459576421515647213267584138215227333<146> |
prime factors 素因数 | 213682936566287274702297985766689884202844891<45> 389390449513209214178764657403250861020590823476241116171884117205311673712932835939964337329709431263<102> |
factorization results 素因数分解の結果 | Using B1=43000000, B2=240490660426, polynomial Dickson(12), sigma=1:1120663732 Step 1 took 84296ms Step 2 took 32063ms ********** Factor found in step 2: 213682936566287274702297985766689884202844891 Found prime factor of 45 digits: 213682936566287274702297985766689884202844891 Prime cofactor 389390449513209214178764657403250861020590823476241116171884117205311673712932835939964337329709431263 has 102 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | November 6, 2011 05:00:00 UTC 2011 年 11 月 6 日 (日) 14 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2618 | 280 | Serge Batalov | November 7, 2011 07:57:56 UTC 2011 年 11 月 7 日 (月) 16 時 57 分 56 秒 (日本時間) |
311 | Serge Batalov | November 7, 2011 19:02:08 UTC 2011 年 11 月 8 日 (火) 4 時 2 分 8 秒 (日本時間) | |||
300 | Dmitry Domanov | November 11, 2011 06:30:49 UTC 2011 年 11 月 11 日 (金) 15 時 30 分 49 秒 (日本時間) | |||
1727 | Wataru Sakai | November 13, 2011 03:14:00 UTC 2011 年 11 月 13 日 (日) 12 時 14 分 0 秒 (日本時間) | |||
45 | 11e6 | 4000 | Wataru Sakai | November 24, 2011 06:35:00 UTC 2011 年 11 月 24 日 (木) 15 時 35 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | November 6, 2011 05:00:00 UTC 2011 年 11 月 6 日 (日) 14 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 | Dmitry Domanov | November 11, 2011 06:31:00 UTC 2011 年 11 月 11 日 (金) 15 時 31 分 0 秒 (日本時間) | |
45 | 11e6 | 4601 | 600 | Dmitry Domanov | November 13, 2011 07:12:33 UTC 2011 年 11 月 13 日 (日) 16 時 12 分 33 秒 (日本時間) |
4001 | Thomas Kozlowski | October 30, 2024 07:00:43 UTC 2024 年 10 月 30 日 (水) 16 時 0 分 43 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | November 8, 2011 22:24:45 UTC 2011 年 11 月 9 日 (水) 7 時 24 分 45 秒 (日本時間) |
composite number 合成数 | 66605276175326223813365999981204308352804476710590264262081683771667852514286163471075031167497755386279764699666093585560086292747163454172172693363026349673966044534103826499887<179> |
prime factors 素因数 | 73204781415708608182746935600171737<35> |
composite cofactor 合成数の残り | 909848713256778700950246889444191335961442139131264725922821728110608397091620802136683244666377083036592980383092858354973672835238708792794951<144> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3630527666 Step 1 took 23532ms Step 2 took 8934ms ********** Factor found in step 2: 73204781415708608182746935600171737 Found probable prime factor of 35 digits: 73204781415708608182746935600171737 Composite cofactor 909848713256778700950246889444191335961442139131264725922821728110608397091620802136683244666377083036592980383092858354973672835238708792794951 has 144 digits |
name 名前 | Robert Balfour |
---|---|
date 日付 | March 31, 2020 08:43:05 UTC 2020 年 3 月 31 日 (火) 17 時 43 分 5 秒 (日本時間) |
composite number 合成数 | 909848713256778700950246889444191335961442139131264725922821728110608397091620802136683244666377083036592980383092858354973672835238708792794951<144> |
prime factors 素因数 | 18377569103862667156196376410166045968006623149052633577499217375622159<71> 49508654170455179980171855720927015799701074858848694519796973581975849289<74> |
factorization results 素因数分解の結果 | PID14202 2020-03-31 03:16:01,869 Debug:root: Root parameter dictionary: N = 909848713256778700950246889444191335961442139131264725922821728110608397091620802136683244666377083036592980383092858354973672835238708792794951 name = 11411_135 tasks.I = 14 tasks.lim0 = 13000000 tasks.lim1 = 20000000 tasks.lpb0 = 30 tasks.lpb1 = 31 tasks.qmin = 100000 tasks.threads = 6 tasks.wutimeout = 1800 tasks.filter.required_excess = 0.07 tasks.filter.target_density = 135.0 tasks.filter.purge.keep = 175 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.bwc.interleaving = 0 tasks.linalg.bwc.threads = 6 tasks.linalg.characters.nchar = 50 tasks.polyselect.P = 300000 tasks.polyselect.admax = 20e4 tasks.polyselect.admin = 12600 tasks.polyselect.adrange = 840 tasks.polyselect.degree = 5 tasks.polyselect.incr = 60 tasks.polyselect.nq = 15625 tasks.polyselect.nrkeep = 100 tasks.polyselect.threads = 2 tasks.sieve.lambda0 = 1.81 tasks.sieve.lambda1 = 1.79 tasks.sieve.mfb0 = 56 tasks.sieve.mfb1 = 58 tasks.sieve.ncurves0 = 19 tasks.sieve.ncurves1 = 22 tasks.sieve.qrange = 5000 tasks.sieve.rels_wanted = 85000000 tasks.sieve.las.threads = 2 tasks.sqrt.threads = 2 PID14202 2020-03-31 03:39:51,974 Info:Polynomial Selection (root optimized): Best polynomial is: n: 909848713256778700950246889444191335961442139131264725922821728110608397091620802136683244666377083036592980383092858354973672835238708792794951 skew: 482637.336 c0: -6258461396795096039945120434355340 c1: 35713003291841029485024662936 c2: -104254046673948309500139 c3: -28198095052032941 c4: 742637778612 c5: 232560 Y0: -7478234225138948168210535393 Y1: 8590357995919411627 # MurphyE (Bf=2.147e+09,Bg=1.074e+09,area=1.342e+13) = 2.789e-06 PID14202 2020-03-31 08:16:47,870 Info:Square Root: Factors: 49508654170455179980171855720927015799701074858848694519796973581975849289 18377569103862667156196376410166045968006623149052633577499217375622159 PID14202 2020-03-31 08:16:47,870 Debug:Square Root: Exit SqrtTask.run(sqrt) PID14202 2020-03-31 08:16:47,870 Info:Polynomial Selection (size optimized): Aggregate statistics: PID14202 2020-03-31 08:16:47,870 Info:Polynomial Selection (size optimized): potential collisions: 144726 PID14202 2020-03-31 08:16:47,870 Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 147333/42.270/52.436/59.900/1.227 PID14202 2020-03-31 08:16:47,871 Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 122140/41.710/46.316/52.650/0.970 PID14202 2020-03-31 08:16:47,871 Info:Polynomial Selection (size optimized): Total time: 61536.8 PID14202 2020-03-31 08:16:47,871 Info:Polynomial Selection (root optimized): Aggregate statistics: PID14202 2020-03-31 08:16:47,871 Info:Polynomial Selection (root optimized): Total time: 1842.31 PID14202 2020-03-31 08:16:47,871 Info:Polynomial Selection (root optimized): Rootsieve time: 1840.46 PID14202 2020-03-31 08:16:47,871 Info:Generate Factor Base: Total cpu/real time for makefb: 14.38/2.73544 PID14202 2020-03-31 08:16:47,871 Info:Generate Free Relations: Total cpu/real time for freerel: 1342.76/227.007 PID14202 2020-03-31 08:16:47,871 Info:Lattice Sieving: Aggregate statistics: PID14202 2020-03-31 08:16:47,871 Info:Lattice Sieving: Total number of relations: 96426613 PID14202 2020-03-31 08:16:47,871 Info:Lattice Sieving: Average J: 7953.95 for 518602 special-q, max bucket fill -bkmult 1.0,1s:1.085950 PID14202 2020-03-31 08:16:47,871 Info:Lattice Sieving: Total time: 498128s PID14202 2020-03-31 08:16:47,871 Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 279.7/205.396 PID14202 2020-03-31 08:16:47,871 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: PID14202 2020-03-31 08:16:47,871 Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 205.1s PID14202 2020-03-31 08:16:47,871 Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 1079.66/436.034 PID14202 2020-03-31 08:16:47,871 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: PID14202 2020-03-31 08:16:47,871 Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 341.19999999999993s PID14202 2020-03-31 08:16:47,871 Info:Filtering - Singleton removal: Total cpu/real time for purge: 448.73/257.409 PID14202 2020-03-31 08:16:47,872 Info:Filtering - Merging: Total cpu/real time for merge: 142.07/32.8708 PID14202 2020-03-31 08:16:47,872 Info:Filtering - Merging: Total cpu/real time for replay: 50.83/51.8891 PID14202 2020-03-31 08:16:47,872 Info:Linear Algebra: Total cpu/real time for bwc: 37641.4/6662.65 PID14202 2020-03-31 08:16:47,872 Info:Linear Algebra: Aggregate statistics: PID14202 2020-03-31 08:16:47,872 Info:Linear Algebra: Krylov: WCT time 4263.45, iteration CPU time 0.06, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (64512 iterations) PID14202 2020-03-31 08:16:47,872 Info:Linear Algebra: Lingen CPU time 249.68, WCT time 47.02 PID14202 2020-03-31 08:16:47,872 Info:Linear Algebra: Mksol: WCT time 2272.94, iteration CPU time 0.07, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (31232 iterations) PID14202 2020-03-31 08:16:47,872 Info:Quadratic Characters: Total cpu/real time for characters: 66.75/20.9153 PID14202 2020-03-31 08:16:47,872 Info:Square Root: Total cpu/real time for sqrt: 578.7/131.335 PID14202 2020-03-31 08:16:47,872 Info:HTTP server: Shutting down HTTP server PID14202 2020-03-31 08:16:48,048 Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 1.12997e+06/18045.3 |
software ソフトウェア | CADO-NFS |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | November 6, 2011 05:00:00 UTC 2011 年 11 月 6 日 (日) 14 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2318 | 280 | Serge Batalov | November 7, 2011 07:58:11 UTC 2011 年 11 月 7 日 (月) 16 時 58 分 11 秒 (日本時間) |
310 | Serge Batalov | November 7, 2011 19:02:32 UTC 2011 年 11 月 8 日 (火) 4 時 2 分 32 秒 (日本時間) | |||
1728 | Wataru Sakai | November 13, 2011 03:14:19 UTC 2011 年 11 月 13 日 (日) 12 時 14 分 19 秒 (日本時間) | |||
45 | 11e6 | 4000 | Wataru Sakai | November 20, 2011 02:17:56 UTC 2011 年 11 月 20 日 (日) 11 時 17 分 56 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | November 8, 2011 22:25:20 UTC 2011 年 11 月 9 日 (水) 7 時 25 分 20 秒 (日本時間) |
composite number 合成数 | 57810017163815151078169027310938342488067591433717942452702559820500689926323014056804109349688205814913848974745778164189952065361153679039596110712194834885040087883451025701745287033392446475669930571759140448928144104247723407706136625173724161957<251> |
prime factors 素因数 | 653294703915336321340144055429<30> |
composite cofactor 合成数の残り | 88489952264035246122670695039870643181076106721918862222405232458544075652104399992330178038420899427474346121738456766189923588085750963956981492247754461919488124684955297966811437815753707175959355201464550907610243233<221> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=677397629 Step 1 took 40981ms Step 2 took 13318ms ********** Factor found in step 2: 653294703915336321340144055429 Found probable prime factor of 30 digits: 653294703915336321340144055429 Composite cofactor 88489952264035246122670695039870643181076106721918862222405232458544075652104399992330178038420899427474346121738456766189923588085750963956981492247754461919488124684955297966811437815753707175959355201464550907610243233 has 221 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | November 6, 2011 05:00:00 UTC 2011 年 11 月 6 日 (日) 14 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 | Dmitry Domanov | November 11, 2011 06:31:10 UTC 2011 年 11 月 11 日 (金) 15 時 31 分 10 秒 (日本時間) | |
45 | 11e6 | 4602 | 600 | Dmitry Domanov | November 13, 2011 07:11:35 UTC 2011 年 11 月 13 日 (日) 16 時 11 分 35 秒 (日本時間) |
4002 | Thomas Kozlowski | October 30, 2024 08:31:04 UTC 2024 年 10 月 30 日 (水) 17 時 31 分 4 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | November 6, 2011 05:00:00 UTC 2011 年 11 月 6 日 (日) 14 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 | Dmitry Domanov | November 11, 2011 06:31:18 UTC 2011 年 11 月 11 日 (金) 15 時 31 分 18 秒 (日本時間) | |
45 | 11e6 | 4604 | 600 | Dmitry Domanov | November 13, 2011 07:11:04 UTC 2011 年 11 月 13 日 (日) 16 時 11 分 4 秒 (日本時間) |
4004 | Thomas Kozlowski | October 30, 2024 10:25:47 UTC 2024 年 10 月 30 日 (水) 19 時 25 分 47 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | November 6, 2011 05:00:00 UTC 2011 年 11 月 6 日 (日) 14 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 | Dmitry Domanov | November 11, 2011 06:31:34 UTC 2011 年 11 月 11 日 (金) 15 時 31 分 34 秒 (日本時間) | |
45 | 11e6 | 4601 | 600 | Dmitry Domanov | November 13, 2011 07:10:31 UTC 2011 年 11 月 13 日 (日) 16 時 10 分 31 秒 (日本時間) |
4001 | Thomas Kozlowski | October 30, 2024 12:08:59 UTC 2024 年 10 月 30 日 (水) 21 時 8 分 59 秒 (日本時間) |
name 名前 | btolksdorf |
---|---|
date 日付 | June 16, 2012 10:08:20 UTC 2012 年 6 月 16 日 (土) 19 時 8 分 20 秒 (日本時間) |
composite number 合成数 | 1886436521411054518015468779475570647047726843991699679305791360120731937370307489152990001886436521411054518015468779475570647047726843991704772684399169967930579136012073193737030748915299000188643652141105451801546877947557064704772684399169967930579136012073193737030748915299<280> |
prime factors 素因数 | 226564858804379242303687762572356453219039096103929<51> |
composite cofactor 合成数の残り | 8326253821382964775337112466717492450861797698844932750306523159489951611170517474655454339752229938943120009285267034318730312234096969511476091724926830923243297348251857938378595099695466631020258700498692843600943548932201531<229> |
factorization results 素因数分解の結果 | GMP-ECM 6.3 [configured with GMP 5.0.1] [ECM] Input number is 1886436521411054518015468779475570647047726843991699679305791360120731937370307489152990001886436521411054518015468779475570647047726843991704772684399169967930579136012073193737030748915299000188643652141105451801546877947557064704772684399169967930579136012073193737030748915299 (280 digits) [Sat Jun 16 09:54:20 2012] Using MODMULN Using B1=110000000, B2=776278396540, polynomial Dickson(30), sigma=1493728821 dF=131072, k=4, d=1345890, d2=11, i0=71 Expected number of curves to find a factor of n digits: 35 40 45 50 55 60 65 70 75 80 34 135 614 3135 17884 111314 752662 5482978 4.3e+007 3.6e+008 Step 1 took 809738ms Using 33 small primes for NTT Estimated memory usage: 954M Initializing tables of differences for F took 531ms Computing roots of F took 22994ms Building F from its roots took 16708ms Computing 1/F took 7301ms Initializing table of differences for G took 436ms Computing roots of G took 19282ms Building G from its roots took 16755ms Computing roots of G took 19453ms Building G from its roots took 16552ms Computing G * H took 4259ms Reducing G * H mod F took 4243ms Computing roots of G took 19406ms Building G from its roots took 16521ms Computing G * H took 4243ms Reducing G * H mod F took 4306ms Computing roots of G took 19453ms Building G from its roots took 16364ms Computing G * H took 4072ms Reducing G * H mod F took 4181ms Computing polyeval(F,G) took 32948ms Computing product of all F(g_i) took 156ms Step 2 took 250975ms ********** Factor found in step 2: 226564858804379242303687762572356453219039096103929 Found probable prime factor of 51 digits: 226564858804379242303687762572356453219039096103929 Composite cofactor 8326253821382964775337112466717492450861797698844932750306523159489951611170517474655454339752229938943120009285267034318730312234096969511476091724926830923243297348251857938378595099695466631020258700498692843600943548932201531 has 229 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | November 6, 2011 05:00:00 UTC 2011 年 11 月 6 日 (日) 14 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2318 | 600 | Serge Batalov | November 7, 2011 19:01:11 UTC 2011 年 11 月 8 日 (火) 4 時 1 分 11 秒 (日本時間) |
1718 | Wataru Sakai | November 11, 2011 05:36:14 UTC 2011 年 11 月 11 日 (金) 14 時 36 分 14 秒 (日本時間) | |||
45 | 11e6 | 4000 | Wataru Sakai | November 17, 2011 12:40:15 UTC 2011 年 11 月 17 日 (木) 21 時 40 分 15 秒 (日本時間) | |
50 | 43e6 | 0 / 420 | - | - | |
55 | 11e7 | 2550 / 17501 | yoyo@home | June 11, 2012 23:30:12 UTC 2012 年 6 月 12 日 (火) 8 時 30 分 12 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | November 13, 2011 15:31:46 UTC 2011 年 11 月 14 日 (月) 0 時 31 分 46 秒 (日本時間) |
composite number 合成数 | 9989407111287098120266601738425175223493417583188768112074856163732443136125147129619709895121841974025784422381724124477293428142558457491993004775208636231782982790601366021776922513957314385466505002300423501204831949986840240633296772733293848806330459438309968401<268> |
prime factors 素因数 | 1517272919723881277696422322818657384903<40> |
composite cofactor 合成数の残り | 6583790550420557136789269513825207800624843310555347877979011178224649663401343101391129158657324318791199988915925281435868131252282114148919746149823469726821342334202496907122052711629331891772103277716793230022017113465003367<229> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1025921750 Step 1 took 154607ms Step 2 took 44898ms ********** Factor found in step 2: 1517272919723881277696422322818657384903 Found probable prime factor of 40 digits: 1517272919723881277696422322818657384903 Composite cofactor 6583790550420557136789269513825207800624843310555347877979011178224649663401343101391129158657324318791199988915925281435868131252282114148919746149823469726821342334202496907122052711629331891772103277716793230022017113465003367 has 229 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | November 6, 2011 05:00:00 UTC 2011 年 11 月 6 日 (日) 14 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 | Dmitry Domanov | November 11, 2011 06:31:48 UTC 2011 年 11 月 11 日 (金) 15 時 31 分 48 秒 (日本時間) | |
45 | 11e6 | 4601 | 600 | Dmitry Domanov | November 13, 2011 07:09:21 UTC 2011 年 11 月 13 日 (日) 16 時 9 分 21 秒 (日本時間) |
4001 | Thomas Kozlowski | October 30, 2024 13:38:59 UTC 2024 年 10 月 30 日 (水) 22 時 38 分 59 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | November 6, 2011 05:00:00 UTC 2011 年 11 月 6 日 (日) 14 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 | Dmitry Domanov | November 11, 2011 06:31:57 UTC 2011 年 11 月 11 日 (金) 15 時 31 分 57 秒 (日本時間) | |
45 | 11e6 | 4600 | 600 | Dmitry Domanov | November 13, 2011 07:09:54 UTC 2011 年 11 月 13 日 (日) 16 時 9 分 54 秒 (日本時間) |
4000 | Thomas Kozlowski | October 30, 2024 15:08:49 UTC 2024 年 10 月 31 日 (木) 0 時 8 分 49 秒 (日本時間) |
name 名前 | Dull Man Real Dull |
---|---|
date 日付 | June 12, 2012 07:28:49 UTC 2012 年 6 月 12 日 (火) 16 時 28 分 49 秒 (日本時間) |
composite number 合成数 | 12830530503944746603437812343226955404925127439244230431195638646071099101734559418828290293318757850680852101191827978511427511993338388562351887598137520192047380583044967160257175153421068500919307510607641094136319254392211354762885381021849110395167508990994250639281182359046999516289<290> |
prime factors 素因数 | 580544724702926264081506466832985830553197917<45> |
composite cofactor 合成数の残り | 22100847631524561654229488081476443520774878036856261004594135153121822863799204720917235523376849453849782211123489970467593562149322885633176380483950633580927157337994767149681668042416075846006344857535903995463234133198244467424661826080117<245> |
factorization results 素因数分解の結果 | GMP-ECM 6.3 [configured with GMP 5.0.1] [ECM] Input number is 12830530503944746603437812343226955404925127439244230431195638646071099101734559418828290293318757850680852101191827978511427511993338388562351887598137520192047380583044967160257175153421068500919307510607641094136319254392211354762885381021849110395167508990994250639281182359046999516289 (290 digits) [Mon Jun 11 23:47:53 2012] Using MODMULN Using B1=110000000, B2=776278396540, polynomial Dickson(30), sigma=3559027848 dF=131072, k=4, d=1345890, d2=11, i0=71 Expected number of curves to find a factor of n digits: 35 40 45 50 55 60 65 70 75 80 34 135 614 3135 17884 111314 752662 5482978 4.3e+007 3.6e+008 Step 1 took 1056080ms Using 34 small primes for NTT Estimated memory usage: 1003M Initializing tables of differences for F took 624ms Computing roots of F took 27706ms Building F from its roots took 12434ms Computing 1/F took 5585ms Initializing table of differences for G took 452ms Computing roots of G took 23338ms Building G from its roots took 12652ms Computing roots of G took 22917ms Building G from its roots took 12760ms Computing G * H took 3026ms Reducing G * H mod F took 3011ms Computing roots of G took 22526ms Building G from its roots took 12699ms Computing G * H took 2933ms Reducing G * H mod F took 2995ms Computing roots of G took 22449ms Building G from its roots took 12651ms Computing G * H took 2995ms Reducing G * H mod F took 3011ms Computing polyeval(F,G) took 26973ms Computing product of all F(g_i) took 125ms Step 2 took 234236ms ********** Factor found in step 2: 580544724702926264081506466832985830553197917 Found probable prime factor of 45 digits: 580544724702926264081506466832985830553197917 Composite cofactor 22100847631524561654229488081476443520774878036856261004594135153121822863799204720917235523376849453849782211123489970467593562149322885633176380483950633580927157337994767149681668042416075846006344857535903995463234133198244467424661826080117 has 245 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | November 6, 2011 05:00:00 UTC 2011 年 11 月 6 日 (日) 14 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2318 | 600 | Serge Batalov | November 7, 2011 07:31:25 UTC 2011 年 11 月 7 日 (月) 16 時 31 分 25 秒 (日本時間) |
1718 | Wataru Sakai | November 11, 2011 05:36:29 UTC 2011 年 11 月 11 日 (金) 14 時 36 分 29 秒 (日本時間) | |||
45 | 11e6 | 4000 | Wataru Sakai | November 17, 2011 12:42:23 UTC 2011 年 11 月 17 日 (木) 21 時 42 分 23 秒 (日本時間) | |
50 | 43e6 | 0 | - | - | |
55 | 11e7 | 2925 / 17501 | 190 | yoyo@home | June 12, 2012 01:13:45 UTC 2012 年 6 月 12 日 (火) 10 時 13 分 45 秒 (日本時間) |
2735 | yoyo@home | April 4, 2013 07:50:09 UTC 2013 年 4 月 4 日 (木) 16 時 50 分 9 秒 (日本時間) |
name 名前 | Polybius |
---|---|
date 日付 | June 18, 2012 18:07:52 UTC 2012 年 6 月 19 日 (火) 3 時 7 分 52 秒 (日本時間) |
composite number 合成数 | 123504816618129638074950742385643346013798869331114451726203213925901395893268499489730031509276258987114049249694857297981874348388819094279188509664620006474574514751177982364272235572555652689747234198771438380890377758719971834104105959780663631585447212411299089258302737920467002657<288> |
prime factors 素因数 | 44630987488307312926761443753995860804987007158257<50> |
composite cofactor 合成数の残り | 2767243647711943458635184644940039509917184232095008307993922297274086817750326658294297823458447745928879774098745343352542480302000461267538606254087404058743335882307018369899065082879766467880407696414365239952904631359422504524849201<238> |
factorization results 素因数分解の結果 | GMP-ECM 6.3 [configured with GMP 5.0.1] [ECM] Input number is 123504816618129638074950742385643346013798869331114451726203213925901395893268499489730031509276258987114049249694857297981874348388819094279188509664620006474574514751177982364272235572555652689747234198771438380890377758719971834104105959780663631585447212411299089258302737920467002657 (288 digits) [Mon Jun 18 09:09:54 2012] Using MODMULN Using B1=110000000, B2=776278396540, polynomial Dickson(30), sigma=3198367606 dF=131072, k=4, d=1345890, d2=11, i0=71 Expected number of curves to find a factor of n digits: 35 40 45 50 55 60 65 70 75 80 34 135 614 3135 17884 111314 752662 5482978 4.3e+007 3.6e+008 Step 1 took 742954ms Using 34 small primes for NTT Estimated memory usage: 961M Initializing tables of differences for F took 468ms Computing roots of F took 21154ms Building F from its roots took 15117ms Computing 1/F took 6989ms Initializing table of differences for G took 390ms Computing roots of G took 17535ms Building G from its roots took 14898ms Computing roots of G took 17566ms Building G from its roots took 14773ms Computing G * H took 3884ms Reducing G * H mod F took 3682ms Computing roots of G took 17581ms Building G from its roots took 14555ms Computing G * H took 3916ms Reducing G * H mod F took 3682ms Computing roots of G took 17550ms Building G from its roots took 14477ms Computing G * H took 3869ms Reducing G * H mod F took 3681ms Computing polyeval(F,G) took 29110ms Computing product of all F(g_i) took 140ms Step 2 took 225796ms ********** Factor found in step 2: 44630987488307312926761443753995860804987007158257 Found probable prime factor of 50 digits: 44630987488307312926761443753995860804987007158257 Composite cofactor 2767243647711943458635184644940039509917184232095008307993922297274086817750326658294297823458447745928879774098745343352542480302000461267538606254087404058743335882307018369899065082879766467880407696414365239952904631359422504524849201 has 238 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | November 6, 2011 05:00:00 UTC 2011 年 11 月 6 日 (日) 14 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2318 | 600 | Serge Batalov | November 7, 2011 07:31:09 UTC 2011 年 11 月 7 日 (月) 16 時 31 分 9 秒 (日本時間) |
1718 | Wataru Sakai | November 11, 2011 05:36:46 UTC 2011 年 11 月 11 日 (金) 14 時 36 分 46 秒 (日本時間) | |||
45 | 11e6 | 4000 | Wataru Sakai | November 13, 2011 08:06:55 UTC 2011 年 11 月 13 日 (日) 17 時 6 分 55 秒 (日本時間) | |
50 | 43e6 | 0 / 962 | - | - | |
55 | 11e7 | 2325 / 17501 | yoyo@home | June 15, 2012 10:00:16 UTC 2012 年 6 月 15 日 (金) 19 時 0 分 16 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 15, 2011 07:11:27 UTC 2011 年 12 月 15 日 (木) 16 時 11 分 27 秒 (日本時間) |
composite number 合成数 | 5911847553973332173610429440681848676457036270597436897043142243932120595946925157892789943722836971539530768170946594794665459463476305491302141513780569816039874191493111585853419406274236303521458694255882477864683523498652874094690578326323536657732811289<259> |
prime factors 素因数 | 679631759105723814588071084882109248210255035141<48> 8698604023084922631902418011231838912645903063096379468337898480916193607181897300454981294284280566313485141080880793585417206588945147718974568729220808759137319120116092820443558185126329113636431076221204229<211> |
factorization results 素因数分解の結果 | Using B1=43000000, B2=240490660426, polynomial Dickson(12), sigma=4137875207 Step 1 took 592767ms ********** Factor found in step 1: 679631759105723814588071084882109248210255035141 Found probable prime factor of 48 digits: 679631759105723814588071084882109248210255035141 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | November 6, 2011 05:00:00 UTC 2011 年 11 月 6 日 (日) 14 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 | Dmitry Domanov | November 11, 2011 06:32:16 UTC 2011 年 11 月 11 日 (金) 15 時 32 分 16 秒 (日本時間) | |
45 | 11e6 | 600 | Dmitry Domanov | November 12, 2011 23:10:48 UTC 2011 年 11 月 13 日 (日) 8 時 10 分 48 秒 (日本時間) | |
50 | 43e6 | 1100 / 7407 | 400 | Dmitry Domanov | November 29, 2011 18:08:47 UTC 2011 年 11 月 30 日 (水) 3 時 8 分 47 秒 (日本時間) |
400 | Dmitry Domanov | December 13, 2011 20:08:47 UTC 2011 年 12 月 14 日 (水) 5 時 8 分 47 秒 (日本時間) | |||
300 | Dmitry Domanov | December 14, 2011 16:21:18 UTC 2011 年 12 月 15 日 (木) 1 時 21 分 18 秒 (日本時間) |