Table of contents 目次

10155+27×1077-19

c136

name 名前Dmitry Domanov
date 日付January 28, 2011 07:28:33 UTC 2011 年 1 月 28 日 (金) 16 時 28 分 33 秒 (日本時間)
composite number 合成数
4434550690415313649894860868052954155224809574969052889422573577240599506012886163984817084652793432697550670183890974444619347361766063<136>
prime factors 素因数
17215023000330125342204890392093864856130332229517761<53>
257597720916798897923401135176504810192668766562767580568656693176838204456004687983<84>
factorization results 素因数分解の結果
Number: s15
N=4434550690415313649894860868052954155224809574969052889422573577240599506012886163984817084652793432697550670183890974444619347361766063
  ( 136 digits)
SNFS difficulty: 155 digits.
Divisors found:
 r1=17215023000330125342204890392093864856130332229517761 (pp53)
 r2=257597720916798897923401135176504810192668766562767580568656693176838204456004687983 (pp84)
Version: Msieve-1.40
Total time: 25.45 hours.
Scaled time: 48.06 units (timescale=1.888).
Factorization parameters were as follows:
n: 4434550690415313649894860868052954155224809574969052889422573577240599506012886163984817084652793432697550670183890974444619347361766063
m: 10000000000000000000000000
deg: 6
c6: 100000
c3: 2700
c0: -1
skew: 0.15
type: snfs
lss: 1
rlim: 2700000
alim: 2700000
lpbr: 27
lpba: 27
mfbr: 50
mfba: 50
rlambda: 2.4
alambda: 2.4
Factor base limits: 2700000/2700000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 50/50
Sieved rational special-q in [1350000, 3050001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 487452 x 487677
Total sieving time: 25.04 hours.
Total relation processing time: 0.07 hours.
Matrix solve time: 0.26 hours.
Time per square root: 0.09 hours.
Prototype def-par.txt line would be:
snfs,155.000,6,0,0,0,0,0,0,0,0,2700000,2700000,27,27,50,50,2.4,2.4,100000
total time: 25.45 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaJanuary 27, 2011 12:00:00 UTC 2011 年 1 月 27 日 (木) 21 時 0 分 0 秒 (日本時間)

10157+27×1078-19

c129

name 名前Dmitry Domanov
date 日付January 28, 2011 07:29:17 UTC 2011 年 1 月 28 日 (金) 16 時 29 分 17 秒 (日本時間)
composite number 合成数
225208291495497439060701776423168928302958459666459188103823256772673921120205681074038076050154337374697117383862636108578702343<129>
prime factors 素因数
43303898272485196932100949209995114005010912100519<50>
5200647065961546905496051942643819174157780321914088596577249966852539563208097<79>
factorization results 素因数分解の結果
Number: s16
N=225208291495497439060701776423168928302958459666459188103823256772673921120205681074038076050154337374697117383862636108578702343
  ( 129 digits)
SNFS difficulty: 157 digits.
Divisors found:
 r1=43303898272485196932100949209995114005010912100519 (pp50)
 r2=5200647065961546905496051942643819174157780321914088596577249966852539563208097 (pp79)
Version: Msieve-1.40
Total time: 22.15 hours.
Scaled time: 42.44 units (timescale=1.916).
Factorization parameters were as follows:
n: 225208291495497439060701776423168928302958459666459188103823256772673921120205681074038076050154337374697117383862636108578702343
m: 100000000000000000000000000
deg: 6
c6: 10
c3: 27
c0: -1
skew: 0.68
type: snfs
lss: 1
rlim: 2900000
alim: 2900000
lpbr: 27
lpba: 27
mfbr: 50
mfba: 50
rlambda: 2.4
alambda: 2.4
Factor base limits: 2900000/2900000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 50/50
Sieved rational special-q in [1450000, 2850001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 554616 x 554864
Total sieving time: 21.45 hours.
Total relation processing time: 0.06 hours.
Matrix solve time: 0.44 hours.
Time per square root: 0.19 hours.
Prototype def-par.txt line would be:
snfs,157.000,6,0,0,0,0,0,0,0,0,2900000,2900000,27,27,50,50,2.4,2.4,100000
total time: 22.15 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaJanuary 27, 2011 12:00:00 UTC 2011 年 1 月 27 日 (木) 21 時 0 分 0 秒 (日本時間)

10159+27×1079-19

c157

name 名前Dmitry Domanov
date 日付January 28, 2011 07:27:43 UTC 2011 年 1 月 28 日 (金) 16 時 27 分 43 秒 (日本時間)
composite number 合成数
1371742112482853223593964334705075445816186556927297668038408779149519890260631371742112482853223593964334705075445816186556927297668038408779149519890260631<157>
prime factors 素因数
7387402179943784615502197078116858469428265917<46>
185686670235312905511441802542615460393243093630958912672848473814123221647879215635670576352200733338008828643<111>
factorization results 素因数分解の結果
N=1371742112482853223593964334705075445816186556927297668038408779149519890260631371742112482853223593964334705075445816186556927297668038408779149519890260631
  ( 157 digits)
SNFS difficulty: 159 digits.
Divisors found:
 r1=7387402179943784615502197078116858469428265917 (pp46)
 r2=185686670235312905511441802542615460393243093630958912672848473814123221647879215635670576352200733338008828643 (pp111)
Version: Msieve v. 1.47
Total time: 0.62 hours.
Scaled time: 1.19 units (timescale=1.918).
Factorization parameters were as follows:
n: 1371742112482853223593964334705075445816186556927297668038408779149519890260631371742112482853223593964334705075445816186556927297668038408779149519890260631
m: 100000000000000000000000000
deg: 6
c6: 1000
c3: 270
c0: -1
skew: 0.32
type: snfs
lss: 1
rlim: 3100000
alim: 3100000
lpbr: 27
lpba: 27
mfbr: 50
mfba: 50
rlambda: 2.4
alambda: 2.4
qintsize: 240000
Factor base limits: 3100000/3100000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 50/50
Sieved rational special-q in [1550000, 3950001)
Primes: , ,
Relations: relations
Max relations in full relation-set:
Initial matrix:
Pruned matrix : 546567 x 546796
Total sieving time: 0.00 hours.
Total relation processing time: 0.08 hours.
Matrix solve time: 0.17 hours.
Time per square root: 0.37 hours.
Prototype def-par.txt line would be:
snfs,159.000,6,0,0,0,0,0,0,0,0,3100000,3100000,27,27,50,50,2.4,2.4,100000
total time: 0.62 hours.
 --------- CPU info (if available) ----------
Intel(R) Xeon(R) CPU           E5620  @ 2.40GHz stepping 02
Intel(R) Xeon(R) CPU           E5620  @ 2.40GHz stepping 02
Intel(R) Xeon(R) CPU           E5620  @ 2.40GHz stepping 02
Intel(R) Xeon(R) CPU           E5620  @ 2.40GHz stepping 02
Intel(R) Xeon(R) CPU           E5620  @ 2.40GHz stepping 02
Intel(R) Xeon(R) CPU           E5620  @ 2.40GHz stepping 02
Intel(R) Xeon(R) CPU           E5620  @ 2.40GHz stepping 02
Intel(R) Xeon(R) CPU           E5620  @ 2.40GHz stepping 02
Intel(R) Xeon(R) CPU           E5620  @ 2.40GHz stepping 02
Intel(R) Xeon(R) CPU           E5620  @ 2.40GHz stepping 02
Intel(R) Xeon(R) CPU           E5620  @ 2.40GHz stepping 02
Intel(R) Xeon(R) CPU           E5620  @ 2.40GHz stepping 02
Intel(R) Xeon(R) CPU           E5620  @ 2.40GHz stepping 02
Intel(R) Xeon(R) CPU           E5620  @ 2.40GHz stepping 02
Intel(R) Xeon(R) CPU           E5620  @ 2.40GHz stepping 02
Memory for crash kernel (0x0 to 0x0) notwithin permissible range
Memory: 24622496k/26214400k available (2569k kernel code, 534140k reserved, 1365k data, 228k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 4800.31 BogoMIPS (lpj=2400155)
Calibrating delay using timer specific routine.. 4757.97 BogoMIPS (lpj=2378989)
Calibrating delay using timer specific routine.. 4800.06 BogoMIPS (lpj=2400034)
Calibrating delay using timer specific routine.. 4800.07 BogoMIPS (lpj=2400036)
Calibrating delay using timer specific routine.. 4800.11 BogoMIPS (lpj=2400056)
Calibrating delay using timer specific routine.. 4800.11 BogoMIPS (lpj=2400055)
Calibrating delay using timer specific routine.. 4800.39 BogoMIPS (lpj=2400195)
Calibrating delay using timer specific routine.. 4800.32 BogoMIPS (lpj=2400160)
Calibrating delay using timer specific routine.. 4800.31 BogoMIPS (lpj=2400159)
Calibrating delay using timer specific routine.. 4800.21 BogoMIPS (lpj=2400108)
Calibrating delay using timer specific routine.. 4800.18 BogoMIPS (lpj=2400094)
Calibrating delay using timer specific routine.. 4800.07 BogoMIPS (lpj=2400037)
Calibrating delay using timer specific routine.. 4800.18 BogoMIPS (lpj=2400090)
Calibrating delay using timer specific routine.. 4800.10 BogoMIPS (lpj=2400053)
Calibrating delay using timer specific routine.. 4800.11 BogoMIPS (lpj=2400055)
Calibrating delay using timer specific routine.. 4800.10 BogoMIPS (lpj=2400054)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaJanuary 27, 2011 12:00:00 UTC 2011 年 1 月 27 日 (木) 21 時 0 分 0 秒 (日本時間)

10161+27×1080-19

c125

name 名前Dmitry Domanov
date 日付January 28, 2011 11:46:36 UTC 2011 年 1 月 28 日 (金) 20 時 46 分 36 秒 (日本時間)
composite number 合成数
14036642390821968232898188628253621655448531297811543107366447602031839244942886457521681497950864280729071477380566905183807<125>
prime factors 素因数
494135386292507903858270358801094030903773853<45>
28406470736975009965415292213396698975676430621131905274980177481860750253070219<80>
factorization results 素因数分解の結果
Msieve v. 1.48
Fri Jan 28 12:45:47 2011
random seeds: cbd1b064 9f4bae3b
factoring 14036642390821968232898188628253621655448531297811543107366447602031839244942886457521681497950864280729071477380566905183807 (125 digits)
searching for 15-digit factors
commencing number field sieve (125-digit input)
R0: -100000000000000000000000000
R1:  1
A0: -1
A1:  0
A2:  0
A3:  2700
A4:  0
A5:  0
A6:  100000
skew 0.15, size 3.635e-08, alpha -1.390, combined = 1.736e-10 rroots = 2

commencing square root phase
reading relations for dependency 1
read 317534 cycles
cycles contain 1077734 unique relations
read 1077734 relations
multiplying 1077734 relations
multiply complete, coefficients have about 39.81 million bits
initial square root is modulo 519989
reading relations for dependency 2
read 317503 cycles
cycles contain 1077912 unique relations
read 1077912 relations
multiplying 1077912 relations
multiply complete, coefficients have about 39.82 million bits
initial square root is modulo 520943
sqrtTime: 1219
prp45 factor: 494135386292507903858270358801094030903773853
prp80 factor: 28406470736975009965415292213396698975676430621131905274980177481860750253070219
elapsed time 00:20:21

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaJanuary 27, 2011 12:00:00 UTC 2011 年 1 月 27 日 (木) 21 時 0 分 0 秒 (日本時間)

10165+27×1082-19

c164

name 名前Dmitry Domanov
date 日付January 28, 2011 12:30:44 UTC 2011 年 1 月 28 日 (金) 21 時 30 分 44 秒 (日本時間)
composite number 合成数
37037037037037037037037037037037037037037037037037037037037037037037037037037037047037037037037037037037037037037037037037037037037037037037037037037037037037037037<164>
prime factors 素因数
141326891199660212691600072077474909867<39>
262066452623745847255967779098176725114602921910586161773550665357810436328403766415851582149499960536479210112762289338285511<126>
factorization results 素因数分解の結果
Msieve v. 1.48
Fri Jan 28 14:43:39 2011
random seeds: 9e7250dc 9acc94a7
factoring 37037037037037037037037037037037037037037037037037037037037037037037037037037037047037037037037037037037037037037037037037037037037037037037037037037037037037037037 (164 digits)
searching for 15-digit factors
commencing number field sieve (164-digit input)
R0: -1000000000000000000000000000
R1:  1
A0: -1
A1:  0
A2:  0
A3:  270
A4:  0
A5:  0
A6:  1000
skew 0.32, size 2.904e-08, alpha -0.221, combined = 1.535e-10 rroots = 2

commencing square root phase
reading relations for dependency 1
read 365128 cycles
cycles contain 1170628 unique relations
read 1170628 relations
multiplying 1170628 relations
multiply complete, coefficients have about 36.29 million bits
initial square root is modulo 162611
sqrtTime: 573
prp39 factor: 141326891199660212691600072077474909867
prp126 factor: 262066452623745847255967779098176725114602921910586161773550665357810436328403766415851582149499960536479210112762289338285511
elapsed time 00:09:36

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaJanuary 27, 2011 12:00:00 UTC 2011 年 1 月 27 日 (木) 21 時 0 分 0 秒 (日本時間)

10167+27×1083-19

c99

name 名前Dmitry Domanov
date 日付January 28, 2011 11:48:45 UTC 2011 年 1 月 28 日 (金) 20 時 48 分 45 秒 (日本時間)
composite number 合成数
448543155569995408326159720332300889722760913092738612931424917046537690606650981892708660518317917<99>
prime factors 素因数
515611647987555439128982929847096080629<39>
869924403997989656596927670877677378315926589144901058608073<60>
factorization results 素因数分解の結果
N=448543155569995408326159720332300889722760913092738612931424917046537690606650981892708660518317917
  ( 99 digits)
Divisors found:
 r1=515611647987555439128982929847096080629 (pp39)
 r2=869924403997989656596927670877677378315926589144901058608073 (pp60)
Version: Msieve v. 1.47
Total time: 0.51 hours.
Scaled time: 0.84 units (timescale=1.657).
Factorization parameters were as follows:
name: 99
n: 448543155569995408326159720332300889722760913092738612931424917046537690606650981892708660518317917
skew: 1312.14
# norm 7.88e+13
c5: 819000
c4: 4003099830
c3: 14674888877147
c2: -2875492748022430
c1: -9572251211834790028
c0: 2934715370026345544016
# alpha -6.00
Y1: 57152493947
Y0: -3529370013200364115
# Murphy_E 3.81e-09
# M 380379336723055123002142337961470661719646276470274477570798582580561102046434969029220812206052266
type: gnfs
rlim: 1800000
alim: 1800000
lpbr: 26
lpba: 26
mfbr: 48
mfba: 48
rlambda: 2.5
alambda: 2.5
qintsize: 100000
Factor base limits: 1800000/1800000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 48/48
Sieved algebraic special-q in [900000, 1400001)
Primes: , ,
Relations: relations
Max relations in full relation-set:
Initial matrix:
Pruned matrix : 177177 x 177402
Polynomial selection time: 0.33 hours.
Total sieving time: 0.00 hours.
Total relation processing time: 0.04 hours.
Matrix solve time: 0.07 hours.
Time per square root: 0.06 hours.
Prototype def-par.txt line would be:
gnfs,98,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,26,26,48,48,2.5,2.5,100000
total time: 0.51 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaJanuary 27, 2011 12:00:00 UTC 2011 年 1 月 27 日 (木) 21 時 0 分 0 秒 (日本時間)

10171+27×1085-19

c166

name 名前Serge Batalov
date 日付January 28, 2011 03:05:37 UTC 2011 年 1 月 28 日 (金) 12 時 5 分 37 秒 (日本時間)
composite number 合成数
3580879535631541819301656872961136714399790876635119117957752783238619069615879052213771346518131783528670312002033939576238715753363341103841925653779081217928747659<166>
prime factors 素因数
2807620611750586741530107232347284184966527<43>
composite cofactor 合成数の残り
1275414320811250355984477290342243792170885216351402470072882778577718427714625647741473179930115683548298172325404324432117<124>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=3777674951
Step 1 took 43399ms
********** Factor found in step 1: 2807620611750586741530107232347284184966527
Found probable prime factor of 43 digits: 2807620611750586741530107232347284184966527
Composite cofactor has 124 digits

c124

name 名前Sinkiti Sibata
date 日付March 12, 2011 23:00:15 UTC 2011 年 3 月 13 日 (日) 8 時 0 分 15 秒 (日本時間)
composite number 合成数
1275414320811250355984477290342243792170885216351402470072882778577718427714625647741473179930115683548298172325404324432117<124>
prime factors 素因数
1372887826881543848496176190267296203268415365201<49>
929001114175729560687916735609746161019615957094595781782663902968515983717<75>
factorization results 素因数分解の結果
Number: 11411_85
N=1275414320811250355984477290342243792170885216351402470072882778577718427714625647741473179930115683548298172325404324432117
  ( 124 digits)
SNFS difficulty: 171 digits.
Divisors found:
 r1=1372887826881543848496176190267296203268415365201 (pp49)
 r2=929001114175729560687916735609746161019615957094595781782663902968515983717 (pp75)
Version: Msieve-1.40
Total time: 114.53 hours.
Scaled time: 380.46 units (timescale=3.322).
Factorization parameters were as follows:
name: 11411_85
n: 1275414320811250355984477290342243792170885216351402470072882778577718427714625647741473179930115683548298172325404324432117
m: 10000000000000000000000000000
deg: 6
c6: 1000
c3: 270
c0: -1
skew: 0.32
type: snfs
lss: 1
rlim: 5000000
alim: 5000000
lpbr: 27
lpba: 27
mfbr: 52
mfba: 52
rlambda: 2.4
alambda: 2.4
Factor base limits: 5000000/5000000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 52/52
Sieved rational special-q in [2500000, 4700001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 952745 x 952993
Total sieving time: 112.07 hours.
Total relation processing time: 0.11 hours.
Matrix solve time: 1.73 hours.
Time per square root: 0.61 hours.
Prototype def-par.txt line would be:
snfs,171.000,6,0,0,0,0,0,0,0,0,5000000,5000000,27,27,52,52,2.4,2.4,100000
total time: 114.53 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaJanuary 27, 2011 12:00:00 UTC 2011 年 1 月 27 日 (木) 21 時 0 分 0 秒 (日本時間)
403e62376300Serge BatalovJanuary 27, 2011 21:06:39 UTC 2011 年 1 月 28 日 (金) 6 時 6 分 39 秒 (日本時間)
2076Carlos PinhoMarch 6, 2011 19:54:04 UTC 2011 年 3 月 7 日 (月) 4 時 54 分 4 秒 (日本時間)
4511e644601344Carlos PinhoMarch 6, 2011 23:18:46 UTC 2011 年 3 月 7 日 (月) 8 時 18 分 46 秒 (日本時間)
3116Carlos PinhoMarch 7, 2011 07:08:32 UTC 2011 年 3 月 7 日 (月) 16 時 8 分 32 秒 (日本時間)

10173+27×1086-19

c128

name 名前Serge Batalov
date 日付March 6, 2011 19:44:30 UTC 2011 年 3 月 7 日 (月) 4 時 44 分 30 秒 (日本時間)
composite number 合成数
23264029861955947365207127822771238836872355359703981413629819473860432626175831865984601964772325667077149389160629677428099069<128>
prime factors 素因数
49060334384350705550657806189862902823783<41>
474192240103783747470429220216142750089234270096282395198383515153511605630059349550843<87>
factorization results 素因数分解の結果
SNFS difficulty: 174 digits.
Divisors found:
 r1=49060334384350705550657806189862902823783 (pp41)
 r2=474192240103783747470429220216142750089234270096282395198383515153511605630059349550843 (pp87)
Version: Msieve v. 1.49 SVN544 option -D density
Total time: 47.56 hours.
Scaled time: 114.15 units (timescale=2.400).
Factorization parameters were as follows:
name: 11411_86
#res 5345
n: 23264029861955947365207127822771238836872355359703981413629819473860432626175831865984601964772325667077149389160629677428099069
m: 100000000000000000000000000000
c6: 1
c3: 27
c0: -10
skew: 1.47
type: snfs
lss: 1
rlim: 5400000
alim: 5400000
lpbr: 27
lpba: 27
mfbr: 53
mfba: 53
rlambda: 2.5
alambda: 2.5
Factor base limits: 5400000/5400000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 53/53
Sieved rational special-q in [3375000, 7475001)
Primes: , ,
Relations: relations
Max relations in full relation-set:
Initial matrix:
Pruned matrix : 1034634 x 1034863
Total sieving time: 46.75 hours.
Total relation processing time: 0.07 hours.
Matrix solve time: 0.47 hours.
Time per square root: 0.27 hours.
Prototype def-par.txt line would be:
snfs,174.000,6,0,0,0,0,0,0,0,0,5400000,5400000,27,27,53,53,2.5,2.5,100000
total time: 47.56 hours.

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaJanuary 27, 2011 12:00:00 UTC 2011 年 1 月 27 日 (木) 21 時 0 分 0 秒 (日本時間)
403e6300Serge BatalovJanuary 27, 2011 21:07:02 UTC 2011 年 1 月 28 日 (金) 6 時 7 分 2 秒 (日本時間)
4511e6800 / 4409Serge BatalovJanuary 28, 2011 07:37:37 UTC 2011 年 1 月 28 日 (金) 16 時 37 分 37 秒 (日本時間)

10177+27×1088-19

c158

name 名前Erik Branger
date 日付January 27, 2011 15:33:28 UTC 2011 年 1 月 28 日 (金) 0 時 33 分 28 秒 (日本時間)
composite number 合成数
13120551490194854021484021790019671455139316414606610746696434122512537847541355163945652258818066215384717557200939006807848952061451662265073398432691490271<158>
prime factors 素因数
21902383998903530270587752599039961703<38>
composite cofactor 合成数の残り
599046728924654531956581971311685894884652293149318999533883684668519809800980125020113569385755249385713123593960064457<120>
factorization results 素因数分解の結果
GMP-ECM 6.2.3 [powered by GMP 4.2.1_MPIR_1.1.1] [ECM]
Input number is 13120551490194854021484021790019671455139316414606610746696434122512537847541355163945652258818066215384717557200939006807848952061451662265073398432691490271 (158 digits)
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2212010216
Step 1 took 19937ms
Step 2 took 10671ms
********** Factor found in step 2: 21902383998903530270587752599039961703
Found probable prime factor of 38 digits: 21902383998903530270587752599039961703
Composite cofactor 599046728924654531956581971311685894884652293149318999533883684668519809800980125020113569385755249385713123593960064457 has 120 digits
software ソフトウェア
GMP-ECM

c120

name 名前Erik Branger
date 日付January 31, 2011 16:23:15 UTC 2011 年 2 月 1 日 (火) 1 時 23 分 15 秒 (日本時間)
composite number 合成数
599046728924654531956581971311685894884652293149318999533883684668519809800980125020113569385755249385713123593960064457<120>
prime factors 素因数
26197986371239126489177876174273560364883<41>
22866136367728803298792449349547946343703228106248253513771841690966660687668979<80>
factorization results 素因数分解の結果
Number: 11411_88
N = 599046728924654531956581971311685894884652293149318999533883684668519809800980125020113569385755249385713123593960064457 (120 digits)
Divisors found:
r1=26197986371239126489177876174273560364883 (pp41)
r2=22866136367728803298792449349547946343703228106248253513771841690966660687668979 (pp80)
Version: Msieve v. 1.47
Total time: 74.45 hours.
Factorization parameters were as follows:
# Murphy_E = 2.973e-10, selected by Erik Branger
n: 599046728924654531956581971311685894884652293149318999533883684668519809800980125020113569385755249385713123593960064457
Y0: -174788247105075224054307
Y1: 6925168855133
c0: -198734430332037285008047987850
c1: 3672678814440507846483101
c2: 16574685281271139910
c3: -440478054388892
c4: -662897430
c5: 3672
skew: 183587.04
type: gnfs
# selected mechanically
rlim: 5200000
alim: 5200000
lpbr: 27
lpba: 27
mfbr: 51
mfba: 51
rlambda: 2.5
alambda: 2.5
Factor base limits: 5200000/5200000
Large primes per side: 3
Large prime bits: 27/27
Sieved algebraic special-q in [2600000, 4600000)
Relations: 9203384
Relations in full relation-set: 1216120 relations
Pruned matrix : 714016 x 714241
Polynomial selection time: 0.00 hours.
Total sieving time: 72.47 hours.
Total relation processing time: 0.15 hours.
Matrix solve time: 1.65 hours.
time per square root: 0.19 hours.
Prototype def-par.txt line would be: gnfs,119,5,63,2000,2.6e-05,0.28,250,20,50000,3600,5200000,5200000,27,27,51,51,2.5,2.5,100000
total time: 74.45 hours.
 --------- CPU info (if available) ----------
software ソフトウェア
GGNFS, Msieve

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaJanuary 27, 2011 12:00:00 UTC 2011 年 1 月 27 日 (木) 21 時 0 分 0 秒 (日本時間)
403e6500 / 2318Erik BrangerJanuary 29, 2011 20:04:50 UTC 2011 年 1 月 30 日 (日) 5 時 4 分 50 秒 (日本時間)

10183+27×1091-19

c154

name 名前Dmitry Domanov
date 日付March 21, 2011 08:41:21 UTC 2011 年 3 月 21 日 (月) 17 時 41 分 21 秒 (日本時間)
composite number 合成数
3460292492720357861379125032596086336928533735352923455091401723993125272492226198617842855523218273611363227314598819399558312384794002965739415880165387<154>
prime factors 素因数
75624855111533757952138291150842404383484094413374395279135461117<65>
45756021451109120672010186502309313415373314031691733843701470015874977565127607182374311<89>
factorization results 素因数分解の結果
Sieving took ~8 cpu-days.

Msieve v. 1.48
Mon Mar 21 10:22:22 2011
random seeds: cfb35900 07f39e85
factoring 3460292492720357861379125032596086336928533735352923455091401723993125272492226198617842855523218273611363227314598819399558312384794002965739415880165387 (154 digits)
searching for 15-digit factors
commencing number field sieve (154-digit input)
R0: -1000000000000000000000000000000
R1:  1
A0: -1
A1:  0
A2:  0
A3:  270
A4:  0
A5:  0
A6:  1000
skew 0.32, size 4.036e-09, alpha -0.221, combined = 4.229e-11 rroots = 2

commencing square root phase
reading relations for dependency 1
read 684730 cycles
cycles contain 2206894 unique relations
read 2206894 relations
multiplying 2206894 relations
multiply complete, coefficients have about 71.57 million bits
initial square root is modulo 137273
sqrtTime: 1307
prp65 factor: 75624855111533757952138291150842404383484094413374395279135461117
prp89 factor: 45756021451109120672010186502309313415373314031691733843701470015874977565127607182374311
elapsed time 00:21:50

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaJanuary 27, 2011 12:00:00 UTC 2011 年 1 月 27 日 (木) 21 時 0 分 0 秒 (日本時間)
403e60--
4511e6800 / 4475Serge BatalovJanuary 28, 2011 07:37:53 UTC 2011 年 1 月 28 日 (金) 16 時 37 分 53 秒 (日本時間)

10193+27×1096-19

c176

name 名前Dmitry Domanov
date 日付March 21, 2011 07:13:23 UTC 2011 年 3 月 21 日 (月) 16 時 13 分 23 秒 (日本時間)
composite number 合成数
18643368410762524257556621321408426908970057198930475577858467075975452859883473489696848621053564197066856599623452781754386704385352922464511995811332650849714954770979807283<176>
prime factors 素因数
250229592035971107646199646894343217247586757<45>
13616603632549573073201640843981744191646345238435850801<56>
5471632470812429702228514676280760458083298541834067661336406351650651432519<76>
factorization results 素因数分解の結果
N=18643368410762524257556621321408426908970057198930475577858467075975452859883473489696848621053564197066856599623452781754386704385352922464511995811332650849714954770979807283
  ( 176 digits)
SNFS difficulty: 193 digits.
Divisors found:
 r1=250229592035971107646199646894343217247586757 (pp45)
 r2=13616603632549573073201640843981744191646345238435850801 (pp56)
 r3=5471632470812429702228514676280760458083298541834067661336406351650651432519 (pp76)
Version: Msieve-1.40
Total time: 332.86 hours.
Scaled time: 637.77 units (timescale=1.916).
Factorization parameters were as follows:
n: 18643368410762524257556621321408426908970057198930475577858467075975452859883473489696848621053564197066856599623452781754386704385352922464511995811332650849714954770979807283
m: 100000000000000000000000000000000
deg: 6
c6: 10
c3: 27
c0: -1
skew: 0.68
type: snfs
lss: 1
rlim: 11500000
alim: 11500000
lpbr: 28
lpba: 28
mfbr: 55
mfba: 55
rlambda: 2.5
alambda: 2.5
qintsize: 600000Factor base limits: 11500000/11500000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 55/55
Sieved rational special-q in [5750000, 11150001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1987405 x 1987630
Total sieving time: 327.20 hours.
Total relation processing time: 0.24 hours.
Matrix solve time: 4.82 hours.
Time per square root: 0.61 hours.
Prototype def-par.txt line would be:
snfs,193.000,6,0,0,0,0,0,0,0,0,11500000,11500000,28,28,55,55,2.5,2.5,100000
total time: 332.86 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaJanuary 27, 2011 12:00:00 UTC 2011 年 1 月 27 日 (木) 21 時 0 分 0 秒 (日本時間)
403e60--
4511e6800 / 4475Serge BatalovJanuary 28, 2011 07:38:26 UTC 2011 年 1 月 28 日 (金) 16 時 38 分 26 秒 (日本時間)

10199+27×1099-19

c166

name 名前Dmitry Domanov
date 日付March 21, 2011 07:12:21 UTC 2011 年 3 月 21 日 (月) 16 時 12 分 21 秒 (日本時間)
composite number 合成数
1271062807922966746886977545759515508129486605463770877418951752713479868623519139473729746533375243214015746237745178128669415686983441739047393699748646660436588113<166>
prime factors 素因数
1369618813471320263380436485799150146543093080799<49>
928041288146034018101698814502252592944279360283652762282056005655735316590704601342706815793588829416796261822561487<117>
factorization results 素因数分解の結果
Sieving took ~20 cpu-days.

Msieve v. 1.48
Fri Mar 18 13:05:24 2011
random seeds: c23f024d 6a849529
factoring 1271062807922966746886977545759515508129486605463770877418951752713479868623519139473729746533375243214015746237745178128669415686983441739047393699748646660436588113 (166 digits)
searching for 15-digit factors
commencing number field sieve (166-digit input)
R0: -1000000000000000000000000000000000
R1:  1
A0: -1
A1:  0
A2:  0
A3:  27
A4:  0
A5:  0
A6:  10
skew 0.68, size 1.175e-09, alpha -0.125, combined = 1.859e-11 rroots = 2

commencing square root phase
reading relations for dependency 1
read 1146846 cycles
cycles contain 3583974 unique relations
read 3583974 relations
multiplying 3583974 relations
multiply complete, coefficients have about 96.39 million bits
initial square root is modulo 8290309
sqrtTime: 1747
prp49 factor: 1369618813471320263380436485799150146543093080799
prp117 factor: 928041288146034018101698814502252592944279360283652762282056005655735316590704601342706815793588829416796261822561487
elapsed time 00:29:10

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaJanuary 27, 2011 12:00:00 UTC 2011 年 1 月 27 日 (木) 21 時 0 分 0 秒 (日本時間)
403e60--
4511e6800 / 4475Serge BatalovJanuary 28, 2011 07:38:11 UTC 2011 年 1 月 28 日 (金) 16 時 38 分 11 秒 (日本時間)

10207+27×10103-19

c206

name 名前Robert Backstrom
date 日付June 22, 2012 00:52:10 UTC 2012 年 6 月 22 日 (金) 9 時 52 分 10 秒 (日本時間)
composite number 合成数
37037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037047037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037<206>
prime factors 素因数
3907659361508517466593272920919171708437300957393934886522160400243<67>
9478061829508909706441724008411906289379084009123514794272874357395469170115245521227781302149975165871680050942412896120607265513884828959<139>
factorization results 素因数分解の結果
Number: n
N=37037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037047037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037
  ( 206 digits)
SNFS difficulty: 207 digits.
Divisors found:

Fri Jun 22 10:45:56 2012  prp67 factor: 3907659361508517466593272920919171708437300957393934886522160400243
Fri Jun 22 10:45:56 2012  prp139 factor: 9478061829508909706441724008411906289379084009123514794272874357395469170115245521227781302149975165871680050942412896120607265513884828959
Fri Jun 22 10:45:56 2012  elapsed time 09:53:15 (Msieve 1.44 - dependency 4)

Version: GGNFS-0.77.1-20060513-nocona
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.089).
Factorization parameters were as follows:
name: KA_11411_103
n: 37037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037047037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037
m: 10000000000000000000000000000000000
#  c206, diff: 207
skew: 0.32
deg: 6
c6: 1000
c3: 270
c0: -1
type: snfs
lss: 1
rlim: 19700000
alim: 19700000
lpbr: 28
lpba: 28
mfbr: 56
mfba: 56
rlambda: 2.6
alambda: 2.6
qintsize: 100000
Factor base limits: 19700000/19700000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 56/56
Sieved  special-q in [100000, 59250000)
Primes: RFBsize:1252693, AFBsize:1250079, 
Relations: 
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 

Msieve: found 9570009 hash collisions in 47197434 relations (38655793 unique)
Msieve: matrix is 2369418 x 2369643 (665.5 MB)

Total sieving time: 0.00 hours.
Total relation processing time: 0.00 hours.
Matrix solve time: 0.00 hours.
Total square root time: 0.00 hours, sqrts: 0.
Prototype def-par.txt line would be:
snfs,207,6,0,0,0,0,0,0,0,0,19700000,19700000,28,28,56,56,2.6,2.6,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM)2 Quad  CPU   Q9550  @ 2.83GHz stepping 07
CPU1: Intel(R) Core(TM)2 Quad  CPU   Q9550  @ 2.83GHz stepping 07
CPU2: Intel(R) Core(TM)2 Quad  CPU   Q9550  @ 2.83GHz stepping 07
CPU3: Intel(R) Core(TM)2 Quad  CPU   Q9550  @ 2.83GHz stepping 07
Memory: 8109188k/9175040k available (3972k kernel code, 787464k absent, 278388k reserved, 2498k data, 1292k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 5661.11 BogoMIPS (lpj=2830559)
Calibrating delay using timer specific routine.. 5660.89 BogoMIPS (lpj=2830449)
Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830459)
Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830459)
Total of 4 processors activated (22643.85 BogoMIPS).

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaNovember 6, 2011 05:00:00 UTC 2011 年 11 月 6 日 (日) 14 時 0 分 0 秒 (日本時間)
403e60--
4511e64700300Serge BatalovNovember 8, 2011 19:19:27 UTC 2011 年 11 月 9 日 (水) 4 時 19 分 27 秒 (日本時間)
400Serge BatalovNovember 8, 2011 23:41:06 UTC 2011 年 11 月 9 日 (水) 8 時 41 分 6 秒 (日本時間)
4000Wataru SakaiDecember 4, 2011 09:07:45 UTC 2011 年 12 月 4 日 (日) 18 時 7 分 45 秒 (日本時間)
5043e60--
5511e72710 / 17475yoyo@homeJune 8, 2012 22:20:10 UTC 2012 年 6 月 9 日 (土) 7 時 20 分 10 秒 (日本時間)

10209+27×10104-19

c161

name 名前ebina
date 日付November 24, 2022 20:54:04 UTC 2022 年 11 月 25 日 (金) 5 時 54 分 4 秒 (日本時間)
composite number 合成数
10330314068913919985438998046592341534607478810386360948536426335726882884360282762093292203479216271764458604648860102917851513374640706702836279320103919336419<161>
prime factors 素因数
29050045490883146946481950751389409815037<41>
20611908089203094904848621164206099490541287<44>
17252359981004069518243909598289066613274196942558647922149006154756331520201<77>
factorization results 素因数分解の結果
C:\MYDATA\ALL\ECM>ecm70dev-svn2256-x64-nehalem\ecm -primetest -one -nn -sigma 1:3361871965 11e6      
GMP-ECM 7.0-dev [configured with MPIR 2.6.0, --enable-openmp] [ECM]
Input number is 10330314068913919985438998046592341534607478810386360948536426335726882884360282762093292203479216271764458604648860102917851513374640706702836279320103919336419 (161 digits)
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:3361871965
Step 1 took 37500ms
Step 2 took 20688ms
********** Factor found in step 2: 29050045490883146946481950751389409815037
Found probable prime factor of 41 digits: 29050045490883146946481950751389409815037
Composite cofactor 355604058250301533253766154458758619720884343675259396976137643795511761521772822956160091077085272229037941217065038687 has 120 digits

Number: 11411_104
N = 355604058250301533253766154458758619720884343675259396976137643795511761521772822956160091077085272229037941217065038687 (120 digits)
Divisors found:
r1=20611908089203094904848621164206099490541287 (pp44)
r2=17252359981004069518243909598289066613274196942558647922149006154756331520201 (pp77)
Version: Msieve v. 1.53 (SVN unknown)
Total time: 5.02 hours.
Factorization parameters were as follows:
n: 355604058250301533253766154458758619720884343675259396976137643795511761521772822956160091077085272229037941217065038687
# norm 1.702698e-11 alpha -7.017592 e 2.598e-10 rroots 5
skew: 723391.87
c0: -37711982497074276132323145687984
c1: 201838685793914577633558840
c2: 337505724780292632840
c3: -1629033715400290
c4: -975257851
c5: 420
Y0: -242965014063272576381615
Y1: 310658409917
type: gnfs
Factor base limits: 4200000/4200000
Large primes per side: 3
Large prime bits: 27/27
Sieved algebraic special-q in [0, 0)
Total raw relations: 10656552
Relations: 1207464 relations
Pruned matrix : 687839 x 688066
Polynomial selection time: 0.04 hours.
Total sieving time: 4.54 hours.
Total relation processing time: 0.09 hours.
Matrix solve time: 0.24 hours.
time per square root: 0.11 hours.
Prototype def-par.txt line would be: gnfs,119,5,63,2000,2.6e-05,0.28,250,20,50000,3600,4200000,4200000,27,27,53,53,2.5,2.5,100000
total time: 5.02 hours.
Intel64 Family 6 Model 42 Stepping 7, GenuineIntel
processors: 8, speed: 2.19GHz
Windows-7-6.1.7601-SP1
Running Python 3.2

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaNovember 6, 2011 05:00:00 UTC 2011 年 11 月 6 日 (日) 14 時 0 分 0 秒 (日本時間)
403e6300Dmitry DomanovNovember 11, 2011 06:27:48 UTC 2011 年 11 月 11 日 (金) 15 時 27 分 48 秒 (日本時間)
4511e61909 / 4409600Dmitry DomanovNovember 16, 2011 21:34:49 UTC 2011 年 11 月 17 日 (木) 6 時 34 分 49 秒 (日本時間)
1309KTakahashiJuly 8, 2014 11:43:24 UTC 2014 年 7 月 8 日 (火) 20 時 43 分 24 秒 (日本時間)

10211+27×10105-19

c209

name 名前Wataru Sakai
date 日付December 1, 2011 05:24:15 UTC 2011 年 12 月 1 日 (木) 14 時 24 分 15 秒 (日本時間)
composite number 合成数
58479532163742690058479532163742690058479532163742690058479532163742690058479532163742690058479532163742847953216374269005847953216374269005847953216374269005847953216374269005847953216374269005847953216374269<209>
prime factors 素因数
120221334702136376038499551421160982896419<42>
486432231921506756436372923745971547114353102035597081356356926816376136794840441793282303230125454018303032508174263621269003781114472939350032456263297304502608685151<168>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=4059373404
Step 1 took 58966ms
Step 2 took 20716ms
********** Factor found in step 2: 120221334702136376038499551421160982896419
Found probable prime factor of 42 digits: 120221334702136376038499551421160982896419
Probable prime cofactor 486432231921506756436372923745971547114353102035597081356356926816376136794840441793282303230125454018303032508174263621269003781114472939350032456263297304502608685151 has 168 digits
software ソフトウェア
GMP-ECM 6.3

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61118118Makoto KamadaNovember 6, 2011 05:00:00 UTC 2011 年 11 月 6 日 (日) 14 時 0 分 0 秒 (日本時間)
1000Markus TervoorenNovember 9, 2011 12:06:03 UTC 2011 年 11 月 9 日 (水) 21 時 6 分 3 秒 (日本時間)
403e62618300Lionel DebrouxNovember 9, 2011 15:37:09 UTC 2011 年 11 月 10 日 (木) 0 時 37 分 9 秒 (日本時間)
2318Wataru SakaiNovember 11, 2011 05:34:46 UTC 2011 年 11 月 11 日 (金) 14 時 34 分 46 秒 (日本時間)

10213+27×10106-19

c211

name 名前Robert Backstrom
date 日付January 19, 2014 12:53:31 UTC 2014 年 1 月 19 日 (日) 21 時 53 分 31 秒 (日本時間)
composite number 合成数
4115226337448559670781893004115226337448559670781893004115226337448559670781893004115226337448559670781894115226337448559670781893004115226337448559670781893004115226337448559670781893004115226337448559670781893<211>
prime factors 素因数
15448893745002617609389503290844869715994236918691871042457223<62>
266376764924009282223261378678055197622117468383855788515935094954396532425851697367023831736874033439210995367993815212893731311562376273176884510291<150>
factorization results 素因数分解の結果
Number: n
N=4115226337448559670781893004115226337448559670781893004115226337448559670781893004115226337448559670781894115226337448559670781893004115226337448559670781893004115226337448559670781893004115226337448559670781893
  ( 211 digits)
SNFS difficulty: 213 digits.
Divisors found:

Sun Jan 19 23:48:28 2014  prp62 factor: 15448893745002617609389503290844869715994236918691871042457223
Sun Jan 19 23:48:28 2014  prp150 factor: 266376764924009282223261378678055197622117468383855788515935094954396532425851697367023831736874033439210995367993815212893731311562376273176884510291
Sun Jan 19 23:48:28 2014  elapsed time 22:44:29 (Msieve 1.44 - dependency 1)

Version: GGNFS-0.77.1-20060513-nocona
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=1.697).
Factorization parameters were as follows:
#
#  10^213+27*10^106-1 - 1(106)41(106)
#
#  c211, diff: 213
#
skew: 0.316
n: 4115226337448559670781893004115226337448559670781893004115226337448559670781893004115226337448559670781894115226337448559670781893004115226337448559670781893004115226337448559670781893004115226337448559670781893
m: 100000000000000000000000000000000000
deg: 6
c6: 1000
c3: 270
c0: -1
# Murphy_E = 4.46e-12
type: snfs
lss: 1
rlim: 25000000
alim: 25000000
lpbr: 29
lpba: 29
mfbr: 57
mfba: 57
rlambda: 2.6
alambda: 2.6
qintsize: 100000
Factor base limits: 25000000/25000000
Large primes per side: 3
Large prime bits: 29/29
Max factor residue bits: 57/57
Sieved  special-q in [100000, 36500000)
Primes: RFBsize:1565927, AFBsize:1563085,
Relations:
Max relations in full relation-set: 28
Initial matrix:
Pruned matrix :

Msieve: found 8998198 hash collisions in 55388274 relations (48521896 unique)
Msieve: matrix is 3536018 x 3536243 (1005.2 MB)

Total sieving time: 0.00 hours.
Total relation processing time: 21hrs 7min 26sec.
Matrix solve time: 0.00 hours.
Total square root time: 1hrs 1min 8sec.

Prototype def-par.txt line would be:
snfs,213,6,0,0,0,0,0,0,0,0,25000000,25000000,29,29,57,57,2.6,2.6,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaNovember 6, 2011 05:00:00 UTC 2011 年 11 月 6 日 (日) 14 時 0 分 0 秒 (日本時間)
403e62618300Lionel DebrouxNovember 9, 2011 18:14:04 UTC 2011 年 11 月 10 日 (木) 3 時 14 分 4 秒 (日本時間)
2318Wataru SakaiNovember 11, 2011 05:35:02 UTC 2011 年 11 月 11 日 (金) 14 時 35 分 2 秒 (日本時間)
4511e64000Wataru SakaiDecember 11, 2011 08:19:46 UTC 2011 年 12 月 11 日 (日) 17 時 19 分 46 秒 (日本時間)

10215+27×10107-19

c208

name 名前Lionel Debroux
date 日付November 9, 2011 20:03:32 UTC 2011 年 11 月 10 日 (木) 5 時 3 分 32 秒 (日本時間)
composite number 合成数
1556737711038564020301291950637030303627524224901461227182253215001963746785589596583409064731131081876510982465420146306257601452946894368200879939764213704158219224069929778831004243558028651352819859900767<208>
prime factors 素因数
111267846827508738898633590463384372885430513<45>
13990903530755588487920354465035600505746966745409278757866040144567193373300267932542095921259529104624518245219673864842576239366052381019180016326250549820788559<164>
factorization results 素因数分解の結果
Run 53 out of 75:
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=150096334
Step 1 took 34839ms
Step 2 took 12300ms
********** Factor found in step 2: 111267846827508738898633590463384372885430513
Found probable prime factor of 45 digits: 111267846827508738898633590463384372885430513
Probable prime cofactor 13990903530755588487920354465035600505746966745409278757866040144567193373300267932542095921259529104624518245219673864842576239366052381019180016326250549820788559 has 164 digits
software ソフトウェア
GMP-ECM 6.3
execution environment 実行環境
Core i5 M 520

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaNovember 6, 2011 05:00:00 UTC 2011 年 11 月 6 日 (日) 14 時 0 分 0 秒 (日本時間)

10217+27×10108-19

c215

name 名前NFS@Home + Mathew
date 日付January 8, 2013 07:10:59 UTC 2013 年 1 月 8 日 (火) 16 時 10 分 59 秒 (日本時間)
composite number 合成数
65359477124183006535947712418300653594771241830065359477124183006535947712418300653594771241830065359477124359477124183006535947712418300653594771241830065359477124183006535947712418300653594771241830065359477124183<215>
prime factors 素因数
47900800801223886139201610745670452318691497498742261311799912721<65>
1364475667022941371781835892014764310532189565871850947023815893714797869685893030409033728507638580307710172399652041261314342813476975784077453819623<151>
factorization results 素因数分解の結果
prp65 factor: 47900800801223886139201610745670452318691497498742261311799912721
prp151 factor: 1364475667022941371781835892014764310532189565871850947023815893714797869685893030409033728507638580307710172399652041261314342813476975784077453819623
software ソフトウェア
ggnfs-lasieve4I14e on the NFS@Home grid, msieve

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaNovember 6, 2011 05:00:00 UTC 2011 年 11 月 6 日 (日) 14 時 0 分 0 秒 (日本時間)
403e62618300Lionel DebrouxNovember 10, 2011 07:28:30 UTC 2011 年 11 月 10 日 (木) 16 時 28 分 30 秒 (日本時間)
2318Wataru SakaiNovember 11, 2011 05:35:32 UTC 2011 年 11 月 11 日 (金) 14 時 35 分 32 秒 (日本時間)
4511e64000Wataru SakaiNovember 24, 2011 06:36:13 UTC 2011 年 11 月 24 日 (木) 15 時 36 分 13 秒 (日本時間)
5043e60--
5511e72730 / 17498yoyo@homeJune 8, 2012 22:45:05 UTC 2012 年 6 月 9 日 (土) 7 時 45 分 5 秒 (日本時間)

10219+27×10109-19

c113

name 名前Norbert Schneider
date 日付November 7, 2011 16:15:19 UTC 2011 年 11 月 8 日 (火) 1 時 15 分 19 秒 (日本時間)
composite number 合成数
23535296101934554079861821810113710970752720993129304119955944512437275513121312394988222813395796073060041239091<113>
prime factors 素因数
30590408941191651172261716056953<32>
769368469286561137470537167152746411572287900939788529004810562426487996334939147<81>
factorization results 素因数分解の結果
GMP-ECM 6.3 [configured with GMP 5.0.1 and --enable-asm-redc] [ECM]
Input number is 23535296101934554079861821810113710970752720993129304119955944512437275513121312394988222813395796073060041239091 (113 digits)
Using B1=250000, B2=128992510, polynomial Dickson(3), sigma=4202274970
Step 1 took 6875ms
********** Factor found in step 1: 30590408941191651172261716056953
Found probable prime factor of 32 digits: 30590408941191651172261716056953
Probable prime cofactor 769368469286561137470537167152746411572287900939788529004810562426487996334939147 has 81 digits
software ソフトウェア
GMP-ECM 6.3

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaNovember 6, 2011 05:00:00 UTC 2011 年 11 月 6 日 (日) 14 時 0 分 0 秒 (日本時間)

10221+27×10110-19

c190

name 名前Serge Batalov
date 日付November 6, 2011 22:11:48 UTC 2011 年 11 月 7 日 (月) 7 時 11 分 48 秒 (日本時間)
composite number 合成数
3757070557172848897867096992606594657911380032392665045811764195304124195948363792033516932049892369175487425984849186850314142388993023293213006767888899410548435880719479795060653677355939<190>
prime factors 素因数
1549142730678785532813430236019<31>
2425257842785486241698336145367819080163582326760771359764185136091802830121612055537288069561779942789577336345673469208810107985912129626034689535220942033681<160>
factorization results 素因数分解の結果
Input number is 3757070557172848897867096992606594657911380032392665045811764195304124195948363792033516932049892369175487425984849186850314142388993023293213006767888899410548435880719479795060653677355939 (190 digits)
Using B1=250000, B2=128992510, polynomial Dickson(3), sigma=4132305856
Step 1 took 1168ms
Step 2 took 580ms
********** Factor found in step 2: 1549142730678785532813430236019
Found probable prime factor of 31 digits: 1549142730678785532813430236019
Probable prime cofactor 2425257842785486241698336145367819080163582326760771359764185136091802830121612055537288069561779942789577336345673469208810107985912129626034689535220942033681 has 160 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaNovember 6, 2011 05:00:00 UTC 2011 年 11 月 6 日 (日) 14 時 0 分 0 秒 (日本時間)

10223+27×10111-19

c121

name 名前Norbert Schneider
date 日付November 9, 2011 08:32:48 UTC 2011 年 11 月 9 日 (水) 17 時 32 分 48 秒 (日本時間)
composite number 合成数
3365911220730587113244495678132624923725415550950987677726700618053359145492203363037174824857793734555915144783715140891<121>
prime factors 素因数
8462975508229499942691484713455780673497<40>
397721961673826688077094642301756095453854020607817066523469164323609874665693203<81>
factorization results 素因数分解の結果
GMP-ECM 6.3 [configured with GMP 5.0.1 and --enable-asm-redc] [ECM]
Input number is 3365911220730587113244495678132624923725415550950987677726700618053359145492203363037174824857793734555915144783715140891 (121 digits)
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2651657487
Step 1 took 32438ms
Step 2 took 17140ms
********** Factor found in step 2: 8462975508229499942691484713455780673497
Found probable prime factor of 40 digits: 8462975508229499942691484713455780673497
Probable prime cofactor 397721961673826688077094642301756095453854020607817066523469164323609874665693203 has 81 digits
software ソフトウェア
GMP-ECM 6.3

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaNovember 6, 2011 05:00:00 UTC 2011 年 11 月 6 日 (日) 14 時 0 分 0 秒 (日本時間)

10225+27×10112-19

c152

name 名前Rich Smith
date 日付November 28, 2020 14:17:46 UTC 2020 年 11 月 28 日 (土) 23 時 17 分 46 秒 (日本時間)
composite number 合成数
69534028937005840670588557195498324416863174051203164099981054692907168683010165443388529924422460169685256737463785556519502598372055750264190629502069<152>
prime factors 素因数
83408245778490462248846997477339792507362081530679796177797827069593991<71>
833658930097501929468783972166281909927195946411426025847780139390874334237882659<81>
factorization results 素因数分解の結果
Msieve v. 1.53 (SVN 988)
Fri Nov 27 17:15:00 2020
random seeds: a395db80 d7891aa7
factoring 69534028937005840670588557195498324416863174051203164099981054692907168683010165443388529924422460169685256737463785556519502598372055750264190629502069 (152 digits)
searching for 15-digit factors
commencing number field sieve (152-digit input)
R0: -238843652543247333923137805258
R1: 1031797155538357
A0: -88520077565351084078168955136062503169
A1: 15619625230415676728921312155987
A2: 17329220103057447872846353
A3: -3212080196212821503
A4: -960399267528
A5: 89460
skew 4874043.74, size 8.921e-015, alpha -7.392, combined = 4.077e-012 rroots = 3

commencing relation filtering
setting target matrix density to 110.0
estimated available RAM is 12043.5 MB
commencing duplicate removal, pass 1
error -15 reading relation 3530000
read 10M relations
error -9 reading relation 19807273
read 20M relations
error -1 reading relation 24802091
error -9 reading relation 28642596
error -9 reading relation 29362360
read 30M relations
error -15 reading relation 33264107
error -15 reading relation 33264394
error -1 reading relation 33540907
error -15 reading relation 33541193
error -15 reading relation 33710496
error -15 reading relation 33775594
error -1 reading relation 33839827
error -15 reading relation 33840114
error -5 reading relation 34208665
error -15 reading relation 38015147
error -5 reading relation 39169030
read 40M relations
error -9 reading relation 44402292
error -1 reading relation 48210297
read 50M relations
error -9 reading relation 52030653
error -15 reading relation 53504263
error -9 reading relation 59619892
read 60M relations
error -15 reading relation 61759328
error -1 reading relation 61801598
error -15 reading relation 62116046
skipped 10 relations with composite factors
found 12501011 hash collisions in 62454479 relations
added 121703 free relations
commencing duplicate removal, pass 2
found 12190829 duplicates and 50385353 unique relations
memory use: 330.4 MB
reading ideals above 720000
commencing singleton removal, initial pass
memory use: 1378.0 MB
reading all ideals from disk
memory use: 1774.0 MB
keeping 45598338 ideals with weight <= 200, target excess is 276336
commencing in-memory singleton removal
begin with 50385353 relations and 45598338 unique ideals
reduce to 32553848 relations and 26038368 ideals in 14 passes
max relations containing the same ideal: 155
removing 4331539 relations and 3331539 ideals in 1000000 cliques
commencing in-memory singleton removal
begin with 28222309 relations and 26038368 unique ideals
reduce to 27778466 relations and 22246594 ideals in 7 passes
max relations containing the same ideal: 141
removing 3437620 relations and 2437620 ideals in 1000000 cliques
commencing in-memory singleton removal
begin with 24340846 relations and 22246594 unique ideals
reduce to 24020439 relations and 19477291 ideals in 7 passes
max relations containing the same ideal: 130
removing 3201474 relations and 2201474 ideals in 1000000 cliques
commencing in-memory singleton removal
begin with 20818965 relations and 19477291 unique ideals
reduce to 20516511 relations and 16961928 ideals in 7 passes
max relations containing the same ideal: 119
removing 3092862 relations and 2092862 ideals in 1000000 cliques
commencing in-memory singleton removal
begin with 17423649 relations and 16961928 unique ideals
reduce to 17107940 relations and 14539831 ideals in 7 passes
max relations containing the same ideal: 104
removing 3036932 relations and 2036932 ideals in 1000000 cliques
commencing in-memory singleton removal
begin with 14071008 relations and 14539831 unique ideals
reduce to 13717424 relations and 12131473 ideals in 7 passes
max relations containing the same ideal: 93
removing 3012757 relations and 2012757 ideals in 1000000 cliques
commencing in-memory singleton removal
begin with 10704667 relations and 12131473 unique ideals
reduce to 10276652 relations and 9663875 ideals in 8 passes
max relations containing the same ideal: 73
removing 1141143 relations and 848916 ideals in 292227 cliques
commencing in-memory singleton removal
begin with 9135509 relations and 9663875 unique ideals
reduce to 9046625 relations and 8723809 ideals in 7 passes
max relations containing the same ideal: 66
relations with 0 large ideals: 868
relations with 1 large ideals: 4637
relations with 2 large ideals: 64260
relations with 3 large ideals: 387762
relations with 4 large ideals: 1220402
relations with 5 large ideals: 2221772
relations with 6 large ideals: 2484578
relations with 7+ large ideals: 2662346
commencing 2-way merge
reduce to 5841479 relation sets and 5518663 unique ideals
commencing full merge
memory use: 703.5 MB
found 2698972 cycles, need 2662863
weight of 2662863 cycles is about 293592958 (110.25/cycle)
distribution of cycle lengths:
1 relations: 107742
2 relations: 163844
3 relations: 197733
4 relations: 208893
5 relations: 218787
6 relations: 217069
7 relations: 212822
8 relations: 201345
9 relations: 185958
10+ relations: 948670
heaviest cycle: 26 relations
commencing cycle optimization
start with 21902317 relations
pruned 994720 relations
memory use: 598.2 MB
distribution of cycle lengths:
1 relations: 107742
2 relations: 168605
3 relations: 206805
4 relations: 218454
5 relations: 231044
6 relations: 228226
7 relations: 224549
8 relations: 211004
9 relations: 194208
10+ relations: 872226
heaviest cycle: 26 relations
RelProcTime: 2139

commencing linear algebra
read 2662863 cycles
cycles contain 8863186 unique relations
read 8863186 relations
using 20 quadratic characters above 4294917295
building initial matrix
memory use: 1223.6 MB
read 2662863 cycles
matrix is 2662685 x 2662863 (1164.9 MB) with weight 358559640 (134.65/col)
sparse part has weight 273429619 (102.68/col)
filtering completed in 2 passes
matrix is 2662560 x 2662738 (1164.9 MB) with weight 358552977 (134.66/col)
sparse part has weight 273427008 (102.69/col)
matrix starts at (0, 0)
matrix is 2662560 x 2662738 (1164.9 MB) with weight 358552977 (134.66/col)
sparse part has weight 273427008 (102.69/col)
saving the first 48 matrix rows for later
matrix includes 64 packed rows
matrix is 2662512 x 2662738 (1131.7 MB) with weight 302538830 (113.62/col)
sparse part has weight 270041869 (101.42/col)
using block size 8192 and superblock size 786432 for processor cache size 8192 kB
commencing Lanczos iteration (6 threads)
memory use: 925.0 MB
linear algebra at 0.1%, ETA 4h53m2662738 dimensions (0.1%, ETA 4h53m)
checkpointing every 520000 dimensions738 dimensions (0.1%, ETA 5h 7m)
linear algebra completed 2662422 of 2662738 dimensions (100.0%, ETA 0h 0m)
lanczos halted after 42107 iterations (dim = 2662512)
recovered 30 nontrivial dependencies
BLanczosTime: 18349

commencing square root phase
handling dependencies 1 to 64
reading relations for dependency 1
read 1330792 cycles
cycles contain 4430578 unique relations
read 4430578 relations
multiplying 4430578 relations
multiply complete, coefficients have about 229.49 million bits
initial square root is modulo 172155913
GCD is 1, no factor found
reading relations for dependency 2
read 1330681 cycles
cycles contain 4430880 unique relations
read 4430880 relations
multiplying 4430880 relations
multiply complete, coefficients have about 229.51 million bits
initial square root is modulo 172437631
GCD is N, no factor found
reading relations for dependency 3
read 1332329 cycles
cycles contain 4431620 unique relations
read 4431620 relations
multiplying 4431620 relations
multiply complete, coefficients have about 229.55 million bits
initial square root is modulo 172947487
sqrtTime: 2334
p71 factor: 83408245778490462248846997477339792507362081530679796177797827069593991
p81 factor: 833658930097501929468783972166281909927195946411426025847780139390874334237882659
elapsed time 06:20:23
execution environment 実行環境
Core i7-10510U with 12 GB memory, 6 threads, Windows 10

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaNovember 6, 2011 05:00:00 UTC 2011 年 11 月 6 日 (日) 14 時 0 分 0 秒 (日本時間)
403e62618300Lionel DebrouxNovember 9, 2011 10:06:26 UTC 2011 年 11 月 9 日 (水) 19 時 6 分 26 秒 (日本時間)
2318Wataru SakaiNovember 11, 2011 05:33:39 UTC 2011 年 11 月 11 日 (金) 14 時 33 分 39 秒 (日本時間)
4511e64000Wataru SakaiNovember 20, 2011 02:15:25 UTC 2011 年 11 月 20 日 (日) 11 時 15 分 25 秒 (日本時間)
5043e60--
5511e72730 / 17498yoyo@homeJune 11, 2012 04:25:11 UTC 2012 年 6 月 11 日 (月) 13 時 25 分 11 秒 (日本時間)

10227+27×10113-19

c192

name 名前Dmitry Domanov
date 日付November 9, 2011 08:27:31 UTC 2011 年 11 月 9 日 (水) 17 時 27 分 31 秒 (日本時間)
composite number 合成数
241214123196859559888650360031487301292373251717592966058154232569293465366547650604358153385823100861884803348105173443341920900330043148780762831910920510934311440151254196531300731926512917<192>
prime factors 素因数
564497404289501411829929189226815449<36>
composite cofactor 合成数の残り
427307763266796810879618373432238070973596786530613234840937436421655411215410433290067711832866666965329491761962479705039785543459795053101432788870251933<156>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=4194787313
Step 1 took 23390ms
Step 2 took 9320ms
********** Factor found in step 2: 564497404289501411829929189226815449
Found probable prime factor of 36 digits: 564497404289501411829929189226815449
Composite cofactor 427307763266796810879618373432238070973596786530613234840937436421655411215410433290067711832866666965329491761962479705039785543459795053101432788870251933 has 156 digits

c156

name 名前Roald
date 日付June 12, 2012 04:08:51 UTC 2012 年 6 月 12 日 (火) 13 時 8 分 51 秒 (日本時間)
composite number 合成数
427307763266796810879618373432238070973596786530613234840937436421655411215410433290067711832866666965329491761962479705039785543459795053101432788870251933<156>
prime factors 素因数
37535534521454833477394866431390975608840058839<47>
11384086272237661504899110046128927920416355690958531773821020171129823584062105194118395520571394971536453547<110>
factorization results 素因数分解の結果
GMP-ECM 6.3 [configured with GMP 5.0.1] [ECM]
Input number is 427307763266796810879618373432238070973596786530613234840937436421655411215410433290067711832866666965329491761962479705039785543459795053101432788870251933 (156 digits)
[Tue Jun 12 01:56:34 2012]
Using MODMULN
Using B1=110000000, B2=776278396540, polynomial Dickson(30), sigma=180703008
dF=131072, k=4, d=1345890, d2=11, i0=71
Expected number of curves to find a factor of n digits:
35        40      45      50      55      60      65      70      75      80
34      135     614     3135    17884   111314  752662  5482978 4.3e+007        3.6e+008
Step 1 took 639437ms
Using 20 small primes for NTT
Estimated memory usage: 608M
Initializing tables of differences for F took 422ms
Computing roots of F took 21468ms
Building F from its roots took 10828ms
Computing 1/F took 3813ms
Initializing table of differences for G took 343ms
Computing roots of G took 18016ms
Building G from its roots took 10890ms
Computing roots of G took 18016ms
Building G from its roots took 10937ms
Computing G * H took 2125ms
Reducing  G * H mod F took 2079ms
Computing roots of G took 18031ms
Building G from its roots took 10922ms
Computing G * H took 2109ms
Reducing  G * H mod F took 2094ms
Computing roots of G took 18031ms
Building G from its roots took 10937ms
Computing G * H took 2093ms
Reducing  G * H mod F took 2110ms
Computing polyeval(F,G) took 24047ms
Computing product of all F(g_i) took 93ms
Step 2 took 189984ms
********** Factor found in step 2: 37535534521454833477394866431390975608840058839
Found probable prime factor of 47 digits: 37535534521454833477394866431390975608840058839
Probable prime cofactor 11384086272237661504899110046128927920416355690958531773821020171129823584062105194118395520571394971536453547 has 110 digits
software ソフトウェア
GMP-ECM

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaNovember 6, 2011 05:00:00 UTC 2011 年 11 月 6 日 (日) 14 時 0 分 0 秒 (日本時間)
403e62618300Lionel DebrouxNovember 10, 2011 12:34:31 UTC 2011 年 11 月 10 日 (木) 21 時 34 分 31 秒 (日本時間)
300Dmitry DomanovNovember 11, 2011 06:28:28 UTC 2011 年 11 月 11 日 (金) 15 時 28 分 28 秒 (日本時間)
2018Wataru SakaiNovember 13, 2011 03:14:57 UTC 2011 年 11 月 13 日 (日) 12 時 14 分 57 秒 (日本時間)
4511e64000Wataru SakaiNovember 20, 2011 02:15:04 UTC 2011 年 11 月 20 日 (日) 11 時 15 分 4 秒 (日本時間)
5043e60 / 5170--
5511e7575 / 17498yoyo@homeJune 11, 2012 08:15:08 UTC 2012 年 6 月 11 日 (月) 17 時 15 分 8 秒 (日本時間)

10233+27×10116-19

c183

composite cofactor 合成数の残り
450503696124288919179706421093543375997946769211143841282689953234496748277115480244939197470332348319383728607454277292949922233289741462772432121682613508401762178886239783141888103<183>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaNovember 6, 2011 05:00:00 UTC 2011 年 11 月 6 日 (日) 14 時 0 分 0 秒 (日本時間)
403e6300Dmitry DomanovNovember 11, 2011 06:28:52 UTC 2011 年 11 月 11 日 (金) 15 時 28 分 52 秒 (日本時間)
4511e63807600Dmitry DomanovNovember 15, 2011 22:04:41 UTC 2011 年 11 月 16 日 (水) 7 時 4 分 41 秒 (日本時間)
3207Rytis SlatkevičiusApril 14, 2023 08:41:54 UTC 2023 年 4 月 14 日 (金) 17 時 41 分 54 秒 (日本時間)
5043e6234 / 6687Rytis SlatkevičiusApril 14, 2023 08:41:54 UTC 2023 年 4 月 14 日 (金) 17 時 41 分 54 秒 (日本時間)

10237+27×10118-19

c196

name 名前Dmitry Domanov
date 日付November 16, 2011 06:00:10 UTC 2011 年 11 月 16 日 (水) 15 時 0 分 10 秒 (日本時間)
composite number 合成数
1349244142777048224044763356635127663176041225010310164829209833239919163152287693254126509893073822557196049158138695755746350865747765598292203697738858322334239772681691567225644348930554361801<196>
prime factors 素因数
16334946481019898183982911388167161<35>
82598626469010998247821391277175585470892816592940656073464255848866938480430775515737661705900417665479986502224971178080401299698270168572579778687224191516241<161>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1037239633
Step 1 took 96703ms
Step 2 took 30358ms
********** Factor found in step 2: 16334946481019898183982911388167161
Found probable prime factor of 35 digits: 16334946481019898183982911388167161
Probable prime cofactor 82598626469010998247821391277175585470892816592940656073464255848866938480430775515737661705900417665479986502224971178080401299698270168572579778687224191516241 has 161 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaNovember 6, 2011 05:00:00 UTC 2011 年 11 月 6 日 (日) 14 時 0 分 0 秒 (日本時間)
403e6300Dmitry DomanovNovember 11, 2011 06:29:01 UTC 2011 年 11 月 11 日 (金) 15 時 29 分 1 秒 (日本時間)
4511e6600 / 4409Dmitry DomanovNovember 15, 2011 22:04:10 UTC 2011 年 11 月 16 日 (水) 7 時 4 分 10 秒 (日本時間)

10241+27×10120-19

c193

name 名前Serge Batalov
date 日付November 6, 2011 22:10:39 UTC 2011 年 11 月 7 日 (月) 7 時 10 分 39 秒 (日本時間)
composite number 合成数
2819377505206924267500740321093905602831977631282371871047230082185003896463568947001535905857265963886798303495127097499760266849900000685651093838876871001486683981070317722040660272181166489<193>
prime factors 素因数
96772666275681680889529939170797<32>
composite cofactor 合成数の残り
29134027341720715215737157541332581915618852802605721578986509532391620707280396695884064547806693611107968140406036296590690468515847681102249644676740319651037<161>
factorization results 素因数分解の結果
Input number is 2819377505206924267500740321093905602831977631282371871047230082185003896463568947001535905857265963886798303495127097499760266849900000685651093838876871001486683981070317722040660272181166489 (193 digits)
Using B1=250000, B2=128992510, polynomial Dickson(3), sigma=2347445442
Step 1 took 1188ms
Step 2 took 604ms
********** Factor found in step 2: 96772666275681680889529939170797
Found probable prime factor of 32 digits: 96772666275681680889529939170797
Composite cofactor 29134027341720715215737157541332581915618852802605721578986509532391620707280396695884064547806693611107968140406036296590690468515847681102249644676740319651037 has 161 digits

c161

name 名前Grzegorz Roman Granowski
date 日付June 14, 2012 01:47:46 UTC 2012 年 6 月 14 日 (木) 10 時 47 分 46 秒 (日本時間)
composite number 合成数
29134027341720715215737157541332581915618852802605721578986509532391620707280396695884064547806693611107968140406036296590690468515847681102249644676740319651037<161>
prime factors 素因数
670184293952808897256839593926083520758191096327227<51>
43471665338328849349511194671580688887630507424480756794616856418046484059480299632497497699262990890703641031<110>
factorization results 素因数分解の結果
GMP-ECM 6.3 [configured with GMP 5.0.1] [ECM]
Input number is 29134027341720715215737157541332581915618852802605721578986509532391620707280396695884064547806693611107968140406036296590690468515847681102249644676740319651037 (161 digits)
[Wed Jun 13 15:02:29 2012]
Using MODMULN
Using B1=110000000, B2=776278396540, polynomial Dickson(30), sigma=1203282712
dF=131072, k=4, d=1345890, d2=11, i0=71
Expected number of curves to find a factor of n digits:
35  40      45      50      55      60      65      70      75      80
34      135     614     3135    17884   111314  752662  5482978 4.3e+007        3.6e+008
Step 1 took 949562ms
Using 20 small primes for NTT
Estimated memory usage: 608M
Initializing tables of differences for F took 639ms
Computing roots of F took 29968ms
Building F from its roots took 15693ms
Computing 1/F took 5600ms
Initializing table of differences for G took 530ms
Computing roots of G took 25194ms
Building G from its roots took 15554ms
Computing roots of G took 25225ms
Building G from its roots took 15397ms
Computing G * H took 3073ms
Reducing  G * H mod F took 3011ms
Computing roots of G took 24352ms
Building G from its roots took 15038ms
Computing G * H took 3058ms
Reducing  G * H mod F took 2995ms
Computing roots of G took 24336ms
Building G from its roots took 15054ms
Computing G * H took 3058ms
Reducing  G * H mod F took 3010ms
Computing polyeval(F,G) took 33337ms
Computing product of all F(g_i) took 125ms
Step 2 took 264983ms
********** Factor found in step 2: 670184293952808897256839593926083520758191096327227
Found probable prime factor of 51 digits: 670184293952808897256839593926083520758191096327227
Probable prime cofactor 43471665338328849349511194671580688887630507424480756794616856418046484059480299632497497699262990890703641031 has 110 digits
software ソフトウェア
GMP-ECM

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaNovember 6, 2011 05:00:00 UTC 2011 年 11 月 6 日 (日) 14 時 0 分 0 秒 (日本時間)
403e62618300Lionel DebrouxNovember 9, 2011 09:20:33 UTC 2011 年 11 月 9 日 (水) 18 時 20 分 33 秒 (日本時間)
2318Wataru SakaiNovember 11, 2011 05:33:59 UTC 2011 年 11 月 11 日 (金) 14 時 33 分 59 秒 (日本時間)
4511e64000Wataru SakaiNovember 20, 2011 02:14:44 UTC 2011 年 11 月 20 日 (日) 11 時 14 分 44 秒 (日本時間)
5043e60 / 2482--
5511e71690 / 17498yoyo@homeJune 11, 2012 14:25:08 UTC 2012 年 6 月 11 日 (月) 23 時 25 分 8 秒 (日本時間)

10243+27×10121-19

c216

name 名前Serge Batalov
date 日付November 6, 2011 22:13:03 UTC 2011 年 11 月 7 日 (月) 7 時 13 分 3 秒 (日本時間)
composite number 合成数
130862846170761313983974867187106890868919443026902100346276333498510196947635915374754938789154353776498182792535509106017051529761877948907154339093554683257291847618987757071943797560090237464695296396422775426811<216>
prime factors 素因数
82665796016523103805414330220757238507<38>
1583034973069208246616908650456054097654237674109638871157561954957110896736391891907958793659446534382152861995891924174831564720355367967895927309548953351289874228245597159473<178>
factorization results 素因数分解の結果
Input number is 130862846170761313983974867187106890868919443026902100346276333498510196947635915374754938789154353776498182792535509106017051529761877948907154339093554683257291847618987757071943797560090237464695296396422775426811 (216 digits)
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2437464072
Step 1 took 6385ms
Step 2 took 2956ms
********** Factor found in step 2: 82665796016523103805414330220757238507
Found probable prime factor of 38 digits: 82665796016523103805414330220757238507
Probable prime cofactor 1583034973069208246616908650456054097654237674109638871157561954957110896736391891907958793659446534382152861995891924174831564720355367967895927309548953351289874228245597159473 has 178 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaNovember 6, 2011 05:00:00 UTC 2011 年 11 月 6 日 (日) 14 時 0 分 0 秒 (日本時間)

10247+27×10123-19

c197

composite cofactor 合成数の残り
41614699818058835927793050417450896800034008356439208635676226045986252179035497379415009050015467990096443096676822520748574107178887381466772282912365227730359605194863308257827537025319834685049<197>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaNovember 6, 2011 05:00:00 UTC 2011 年 11 月 6 日 (日) 14 時 0 分 0 秒 (日本時間)
403e6300Dmitry DomanovNovember 11, 2011 06:29:23 UTC 2011 年 11 月 11 日 (金) 15 時 29 分 23 秒 (日本時間)
4511e63807600Dmitry DomanovNovember 15, 2011 22:03:40 UTC 2011 年 11 月 16 日 (水) 7 時 3 分 40 秒 (日本時間)
3207Rytis SlatkevičiusApril 18, 2023 13:02:06 UTC 2023 年 4 月 18 日 (火) 22 時 2 分 6 秒 (日本時間)
5043e6180 / 6687Rytis SlatkevičiusApril 18, 2023 13:02:20 UTC 2023 年 4 月 18 日 (火) 22 時 2 分 20 秒 (日本時間)

10249+27×10124-19

c224

composite cofactor 合成数の残り
91605847168215186271344434952516975992195729330461457706584286171583763730076130061338986863169543156310395959515277013354118688160431929018795541497414945509112228360363096175084079001649375173140536029604645593379274658567<224>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaNovember 6, 2011 05:00:00 UTC 2011 年 11 月 6 日 (日) 14 時 0 分 0 秒 (日本時間)
403e6300Dmitry DomanovNovember 11, 2011 06:29:34 UTC 2011 年 11 月 11 日 (金) 15 時 29 分 34 秒 (日本時間)
4511e64602600Dmitry DomanovNovember 14, 2011 12:48:32 UTC 2011 年 11 月 14 日 (月) 21 時 48 分 32 秒 (日本時間)
4002Thomas KozlowskiOctober 30, 2024 00:23:49 UTC 2024 年 10 月 30 日 (水) 9 時 23 分 49 秒 (日本時間)

10251+27×10125-19

c233

composite cofactor 合成数の残り
26287474185105385231013561767505070592339559352284239963173707418611771442945184523155429876209172967315885486834946098369753300171457904128127029084614663138378701529029082335385593968751329615786366740888029617235634540544846780979<233>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaNovember 6, 2011 05:00:00 UTC 2011 年 11 月 6 日 (日) 14 時 0 分 0 秒 (日本時間)
403e6300Dmitry DomanovNovember 11, 2011 06:29:44 UTC 2011 年 11 月 11 日 (金) 15 時 29 分 44 秒 (日本時間)
4511e64601600Dmitry DomanovNovember 14, 2011 12:46:25 UTC 2011 年 11 月 14 日 (月) 21 時 46 分 25 秒 (日本時間)
4001Thomas KozlowskiOctober 30, 2024 02:06:02 UTC 2024 年 10 月 30 日 (水) 11 時 6 分 2 秒 (日本時間)

10253+27×10126-19

c183

name 名前Thomas Kozlowski
date 日付October 30, 2024 05:16:56 UTC 2024 年 10 月 30 日 (水) 14 時 16 分 56 秒 (日本時間)
composite number 合成数
220693949658099481307375337186887562691290835671638617042677565928555183433328150037589638977018096010783021776452811737245036634367986748997672678609361081916976067547373394227548307<183>
prime factors 素因数
120801778711667794360835157267789266622773<42>
1826909769142194541256563308443215256870999509413432008533697410593393297449873962476078942944809081984125103614203831279487472294026677633959<142>
factorization results 素因数分解の結果
GMP-ECM 7.0.6 [configured with GMP 6.3.0, --enable-asm-redc] [ECM]
Input number is 220693949658099481307375337186887562691290835671638617042677565928555183433328150037589638977018096010783021776452811737245036634367986748997672678609361081916976067547373394227548307 (183 digits)
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:1538573326
Step 1 took 29109ms
Step 2 took 12110ms
Run 2 out of 0:
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:2705422212
Step 1 took 28008ms
Step 2 took 11991ms
Run 3 out of 0:
...
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:1150619984
Step 1 took 27925ms
Step 2 took 11979ms
Run 18 out of 0:
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:3834689850
Step 1 took 27648ms
Step 2 took 11967ms
** Factor found in step 2: 120801778711667794360835157267789266622773
Found prime factor of 42 digits: 120801778711667794360835157267789266622773
Prime cofactor 1826909769142194541256563308443215256870999509413432008533697410593393297449873962476078942944809081984125103614203831279487472294026677633959 has 142 digits
execution environment 実行環境
2x Xeon E5-2698v4, 128GB DDR4, Ubuntu Server 24.04

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaNovember 6, 2011 05:00:00 UTC 2011 年 11 月 6 日 (日) 14 時 0 分 0 秒 (日本時間)
403e6300Dmitry DomanovNovember 11, 2011 06:29:53 UTC 2011 年 11 月 11 日 (金) 15 時 29 分 53 秒 (日本時間)
4511e6600 / 4409Dmitry DomanovNovember 15, 2011 22:02:47 UTC 2011 年 11 月 16 日 (水) 7 時 2 分 47 秒 (日本時間)

10255+27×10127-19

c240

composite cofactor 合成数の残り
488608501181375452753870947373254163277817722858790424377119226541128805448630771733139070016728538487642597167541715821591247324950884357577687509212301125508950084631356577349546447962754265990965479865796569117222585494662874546194567669<240>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaNovember 6, 2011 05:00:00 UTC 2011 年 11 月 6 日 (日) 14 時 0 分 0 秒 (日本時間)
403e6300Dmitry DomanovNovember 11, 2011 06:30:04 UTC 2011 年 11 月 11 日 (金) 15 時 30 分 4 秒 (日本時間)
4511e64600600Dmitry DomanovNovember 14, 2011 12:39:14 UTC 2011 年 11 月 14 日 (月) 21 時 39 分 14 秒 (日本時間)
4000Thomas KozlowskiOctober 30, 2024 04:00:32 UTC 2024 年 10 月 30 日 (水) 13 時 0 分 32 秒 (日本時間)

10257+27×10128-19

c194

name 名前Dmitry Domanov
date 日付November 9, 2011 08:26:07 UTC 2011 年 11 月 9 日 (水) 17 時 26 分 7 秒 (日本時間)
composite number 合成数
10716594523999394840169315489444540061077962716072113997058277954079751245348959223573563590911503821317214310569182997213961567790128083324940679043007107180198190867010022140940104860794660783<194>
prime factors 素因数
31041975810761664964737814650349907<35>
218056772882146960514068505803359749<36>
1583207586575943606867299879644527070006614687253688344439870401168623634851301881487623519552636693570828398213345286500081<124>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1286981068
Step 1 took 28393ms
Step 2 took 10101ms
********** Factor found in step 2: 31041975810761664964737814650349907
Found probable prime factor of 35 digits: 31041975810761664964737814650349907
Composite cofactor 345229137131282556128303064448336440902172260760981821664062438184005201137429182378888185372543652376306343632677647807596489231237192094398439861943160639669 has 159 digits

Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2411502958
Step 1 took 19902ms
Step 2 took 8017ms
********** Factor found in step 2: 218056772882146960514068505803359749
Found probable prime factor of 36 digits: 218056772882146960514068505803359749
Probable prime cofactor 1583207586575943606867299879644527070006614687253688344439870401168623634851301881487623519552636693570828398213345286500081 has 124 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaNovember 6, 2011 05:00:00 UTC 2011 年 11 月 6 日 (日) 14 時 0 分 0 秒 (日本時間)

10259+27×10129-19

c254

name 名前Roald
date 日付June 12, 2012 07:28:48 UTC 2012 年 6 月 12 日 (火) 16 時 28 分 48 秒 (日本時間)
composite number 合成数
63048919656761681388589406520519270902293089207916422352102996715151285882716399654491920280945985990530052267554395455433871140788237593548834540720144760319531924820468201277371112245991664932821376105720428480457987352386716853606713448965051983834257<254>
prime factors 素因数
23332188862120152141673789809707828458985570620361042563<56>
composite cofactor 合成数の残り
2702229097721804767688704946063904081640275115596373471294010624631040023353536165987450736639416786184229159044783713672447963310549109055487808986719746843976763562188516671869214211158394339586139<199>
factorization results 素因数分解の結果
GMP-ECM 6.3 [configured with GMP 5.0.1] [ECM]
Input number is 63048919656761681388589406520519270902293089207916422352102996715151285882716399654491920280945985990530052267554395455433871140788237593548834540720144760319531924820468201277371112245991664932821376105720428480457987352386716853606713448965051983834257 (254 digits)
[Tue Jun 12 05:48:18 2012]
Using MODMULN
Using B1=110000000, B2=776278396540, polynomial Dickson(30), sigma=2172818433
dF=131072, k=4, d=1345890, d2=11, i0=71
Expected number of curves to find a factor of n digits:
35     40      45      50      55      60      65      70      75      80
34      135     614     3135    17884   111314  752662  5482978 4.3e+007        3.6e+008
Step 1 took 1330750ms
Using 30 small primes for NTT
Estimated memory usage: 890M
Initializing tables of differences for F took 844ms
Computing roots of F took 36140ms
Building F from its roots took 18078ms
Computing 1/F took 6750ms
Initializing table of differences for G took 703ms
Computing roots of G took 30390ms
Building G from its roots took 18094ms
Computing roots of G took 30453ms
Building G from its roots took 18188ms
Computing G * H took 3672ms
Reducing  G * H mod F took 3657ms
Computing roots of G took 30500ms
Building G from its roots took 17921ms
Computing G * H took 3610ms
Reducing  G * H mod F took 3781ms
Computing roots of G took 30031ms
Building G from its roots took 17985ms
Computing G * H took 3829ms
Reducing  G * H mod F took 3781ms
Computing polyeval(F,G) took 35594ms
Computing product of all F(g_i) took 156ms
Step 2 took 314781ms
********** Factor found in step 2: 23332188862120152141673789809707828458985570620361042563
Found probable prime factor of 56 digits: 23332188862120152141673789809707828458985570620361042563
Composite cofactor 2702229097721804767688704946063904081640275115596373471294010624631040023353536165987450736639416786184229159044783713672447963310549109055487808986719746843976763562188516671869214211158394339586139 has 199 digits
software ソフトウェア
GMP-ECM

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaNovember 6, 2011 05:00:00 UTC 2011 年 11 月 6 日 (日) 14 時 0 分 0 秒 (日本時間)
403e62609159Serge BatalovNovember 7, 2011 19:01:33 UTC 2011 年 11 月 8 日 (火) 4 時 1 分 33 秒 (日本時間)
300Lionel DebrouxNovember 10, 2011 09:40:59 UTC 2011 年 11 月 10 日 (木) 18 時 40 分 59 秒 (日本時間)
2150Wataru SakaiNovember 11, 2011 05:35:50 UTC 2011 年 11 月 11 日 (金) 14 時 35 分 50 秒 (日本時間)
4511e64000Wataru SakaiNovember 13, 2011 03:16:09 UTC 2011 年 11 月 13 日 (日) 12 時 16 分 9 秒 (日本時間)
5043e60 / 4712--
5511e7765 / 17498yoyo@homeJune 11, 2012 18:45:07 UTC 2012 年 6 月 12 日 (火) 3 時 45 分 7 秒 (日本時間)

10261+27×10130-19

c219

composite cofactor 合成数の残り
880841319920515037582719493303700536284722855502184203841986966833113114239100511568875059155118007540057588922603152130324529361487905269693864989485504256307241215119638774048425248694594931592865376263653558588603081<219>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaNovember 6, 2011 05:00:00 UTC 2011 年 11 月 6 日 (日) 14 時 0 分 0 秒 (日本時間)
403e6300Dmitry DomanovNovember 11, 2011 06:30:26 UTC 2011 年 11 月 11 日 (金) 15 時 30 分 26 秒 (日本時間)
4511e64600600Dmitry DomanovNovember 14, 2011 12:37:37 UTC 2011 年 11 月 14 日 (月) 21 時 37 分 37 秒 (日本時間)
4000Thomas KozlowskiOctober 30, 2024 05:30:26 UTC 2024 年 10 月 30 日 (水) 14 時 30 分 26 秒 (日本時間)

10265+27×10132-19

c228

name 名前Dmitry Domanov
date 日付November 9, 2011 08:28:29 UTC 2011 年 11 月 9 日 (水) 17 時 28 分 29 秒 (日本時間)
composite number 合成数
247956936009639537887893512097161954960294282936021237809147138130049678478037856540206876729017605406564018623362128986630542476829658430897667999119965494435290035974545790834177023706962989774843087481925519563560847628065993<228>
prime factors 素因数
979456782971673892171758863519659793<36>
4597309916813743297661275380506264249<37>
composite cofactor 合成数の残り
55066465447727646808367175902659767660451398875296527482155420030200108719554212274158008806624197617764794964050482296146618648976799778783103051000574849<155>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3314483817
Step 1 took 30836ms
Step 2 took 11265ms
********** Factor found in step 2: 4597309916813743297661275380506264249
Found probable prime factor of 37 digits: 4597309916813743297661275380506264249
Composite cofactor 53935223097052156965091083437680907833237951684617938992224374988747737406424300425614376113557939934981842466646106895489767666574068636769967421070889475314139714261705179791263855912346257 has 191 digits

Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=4264438362
Step 1 took 23381ms
Step 2 took 9275ms
********** Factor found in step 2: 979456782971673892171758863519659793
Found probable prime factor of 36 digits: 979456782971673892171758863519659793
Composite cofactor 55066465447727646808367175902659767660451398875296527482155420030200108719554212274158008806624197617764794964050482296146618648976799778783103051000574849 has 155 digits

c155

name 名前Grzegorz Roman Granowski
date 日付June 14, 2012 01:47:47 UTC 2012 年 6 月 14 日 (木) 10 時 47 分 47 秒 (日本時間)
composite number 合成数
55066465447727646808367175902659767660451398875296527482155420030200108719554212274158008806624197617764794964050482296146618648976799778783103051000574849<155>
prime factors 素因数
2088142199585182715589910613856190298743768176015941<52>
26371032326566077169056780490927463915470473723573427259719790902198192722205837138795994007369050482189<104>
factorization results 素因数分解の結果
GMP-ECM 6.3 [configured with GMP 5.0.1] [ECM]
Input number is 55066465447727646808367175902659767660451398875296527482155420030200108719554212274158008806624197617764794964050482296146618648976799778783103051000574849 (155 digits)
[Wed Jun 13 19:23:01 2012]
Using MODMULN
Using B1=110000000, B2=776278396540, polynomial Dickson(30), sigma=3513962027
dF=131072, k=4, d=1345890, d2=11, i0=71
Expected number of curves to find a factor of n digits:
35        40      45      50      55      60      65      70      75      80
34      135     614     3135    17884   111314  752662  5482978 4.3e+007        3.6e+008
Step 1 took 981542ms
********** Factor found in step 1: 2088142199585182715589910613856190298743768176015941
Found probable prime factor of 52 digits: 2088142199585182715589910613856190298743768176015941
Probable prime cofactor 26371032326566077169056780490927463915470473723573427259719790902198192722205837138795994007369050482189 has 104 digits
software ソフトウェア
GMP-ECM

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaNovember 6, 2011 05:00:00 UTC 2011 年 11 月 6 日 (日) 14 時 0 分 0 秒 (日本時間)
403e62618300Lionel DebrouxNovember 10, 2011 10:58:57 UTC 2011 年 11 月 10 日 (木) 19 時 58 分 57 秒 (日本時間)
300Dmitry DomanovNovember 11, 2011 06:30:37 UTC 2011 年 11 月 11 日 (金) 15 時 30 分 37 秒 (日本時間)
2018Wataru SakaiNovember 13, 2011 03:14:40 UTC 2011 年 11 月 13 日 (日) 12 時 14 分 40 秒 (日本時間)
4511e64000Wataru SakaiNovember 22, 2011 03:17:36 UTC 2011 年 11 月 22 日 (火) 12 時 17 分 36 秒 (日本時間)
5043e60 / 2192--
5511e71810 / 17498yoyo@homeJune 11, 2012 21:05:07 UTC 2012 年 6 月 12 日 (火) 6 時 5 分 7 秒 (日本時間)

10267+27×10133-19

c182

name 名前Dmitry Domanov
date 日付November 8, 2011 22:24:00 UTC 2011 年 11 月 9 日 (水) 7 時 24 分 0 秒 (日本時間)
composite number 合成数
42750494860865080797996793728293696839162873602853738655036313220644929201710934236287969727675610864353672396681317852832696636715525940315300269202796098482522204193642711031669051<182>
prime factors 素因数
513790426089128720035364840369646847<36>
composite cofactor 合成数の残り
83206094722849172117909262105848347103994593298478731945662358401139180683652757206017041472195524985755152650459576421515647213267584138215227333<146>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3147837266
Step 1 took 23408ms
Step 2 took 8968ms
********** Factor found in step 2: 513790426089128720035364840369646847
Found probable prime factor of 36 digits: 513790426089128720035364840369646847
Composite cofactor 83206094722849172117909262105848347103994593298478731945662358401139180683652757206017041472195524985755152650459576421515647213267584138215227333 has 146 digits

c146

name 名前Ignacio Santos
date 日付May 5, 2021 17:59:13 UTC 2021 年 5 月 6 日 (木) 2 時 59 分 13 秒 (日本時間)
composite number 合成数
83206094722849172117909262105848347103994593298478731945662358401139180683652757206017041472195524985755152650459576421515647213267584138215227333<146>
prime factors 素因数
213682936566287274702297985766689884202844891<45>
389390449513209214178764657403250861020590823476241116171884117205311673712932835939964337329709431263<102>
factorization results 素因数分解の結果
Using B1=43000000, B2=240490660426, polynomial Dickson(12), sigma=1:1120663732
Step 1 took 84296ms
Step 2 took 32063ms
********** Factor found in step 2: 213682936566287274702297985766689884202844891
Found prime factor of 45 digits: 213682936566287274702297985766689884202844891
Prime cofactor 389390449513209214178764657403250861020590823476241116171884117205311673712932835939964337329709431263 has 102 digits
 
software ソフトウェア
GMP-ECM

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaNovember 6, 2011 05:00:00 UTC 2011 年 11 月 6 日 (日) 14 時 0 分 0 秒 (日本時間)
403e62618280Serge BatalovNovember 7, 2011 07:57:56 UTC 2011 年 11 月 7 日 (月) 16 時 57 分 56 秒 (日本時間)
311Serge BatalovNovember 7, 2011 19:02:08 UTC 2011 年 11 月 8 日 (火) 4 時 2 分 8 秒 (日本時間)
300Dmitry DomanovNovember 11, 2011 06:30:49 UTC 2011 年 11 月 11 日 (金) 15 時 30 分 49 秒 (日本時間)
1727Wataru SakaiNovember 13, 2011 03:14:00 UTC 2011 年 11 月 13 日 (日) 12 時 14 分 0 秒 (日本時間)
4511e64000Wataru SakaiNovember 24, 2011 06:35:00 UTC 2011 年 11 月 24 日 (木) 15 時 35 分 0 秒 (日本時間)

10269+27×10134-19

c223

composite cofactor 合成数の残り
7955417727514683049770497870448886278936517792552634339832891099902944857931533210691730954543499604688977667869917953434426544508220709013925976635680289317927056516250187291753161869967423467513930260594175033478644564339<223>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaNovember 6, 2011 05:00:00 UTC 2011 年 11 月 6 日 (日) 14 時 0 分 0 秒 (日本時間)
403e6300Dmitry DomanovNovember 11, 2011 06:31:00 UTC 2011 年 11 月 11 日 (金) 15 時 31 分 0 秒 (日本時間)
4511e64601600Dmitry DomanovNovember 13, 2011 07:12:33 UTC 2011 年 11 月 13 日 (日) 16 時 12 分 33 秒 (日本時間)
4001Thomas KozlowskiOctober 30, 2024 07:00:43 UTC 2024 年 10 月 30 日 (水) 16 時 0 分 43 秒 (日本時間)

10271+27×10135-19

c179

name 名前Dmitry Domanov
date 日付November 8, 2011 22:24:45 UTC 2011 年 11 月 9 日 (水) 7 時 24 分 45 秒 (日本時間)
composite number 合成数
66605276175326223813365999981204308352804476710590264262081683771667852514286163471075031167497755386279764699666093585560086292747163454172172693363026349673966044534103826499887<179>
prime factors 素因数
73204781415708608182746935600171737<35>
composite cofactor 合成数の残り
909848713256778700950246889444191335961442139131264725922821728110608397091620802136683244666377083036592980383092858354973672835238708792794951<144>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3630527666
Step 1 took 23532ms
Step 2 took 8934ms
********** Factor found in step 2: 73204781415708608182746935600171737
Found probable prime factor of 35 digits: 73204781415708608182746935600171737
Composite cofactor 909848713256778700950246889444191335961442139131264725922821728110608397091620802136683244666377083036592980383092858354973672835238708792794951 has 144 digits

c144

name 名前Robert Balfour
date 日付March 31, 2020 08:43:05 UTC 2020 年 3 月 31 日 (火) 17 時 43 分 5 秒 (日本時間)
composite number 合成数
909848713256778700950246889444191335961442139131264725922821728110608397091620802136683244666377083036592980383092858354973672835238708792794951<144>
prime factors 素因数
18377569103862667156196376410166045968006623149052633577499217375622159<71>
49508654170455179980171855720927015799701074858848694519796973581975849289<74>
factorization results 素因数分解の結果
PID14202 2020-03-31 03:16:01,869 Debug:root: Root parameter dictionary:
N = 909848713256778700950246889444191335961442139131264725922821728110608397091620802136683244666377083036592980383092858354973672835238708792794951
name = 11411_135
tasks.I = 14
tasks.lim0 = 13000000
tasks.lim1 = 20000000
tasks.lpb0 = 30
tasks.lpb1 = 31
tasks.qmin = 100000
tasks.threads = 6
tasks.wutimeout = 1800
tasks.filter.required_excess = 0.07
tasks.filter.target_density = 135.0
tasks.filter.purge.keep = 175
tasks.linalg.m = 64
tasks.linalg.n = 64
tasks.linalg.bwc.interleaving = 0
tasks.linalg.bwc.threads = 6
tasks.linalg.characters.nchar = 50
tasks.polyselect.P = 300000
tasks.polyselect.admax = 20e4
tasks.polyselect.admin = 12600
tasks.polyselect.adrange = 840
tasks.polyselect.degree = 5
tasks.polyselect.incr = 60
tasks.polyselect.nq = 15625
tasks.polyselect.nrkeep = 100
tasks.polyselect.threads = 2
tasks.sieve.lambda0 = 1.81
tasks.sieve.lambda1 = 1.79
tasks.sieve.mfb0 = 56
tasks.sieve.mfb1 = 58
tasks.sieve.ncurves0 = 19
tasks.sieve.ncurves1 = 22
tasks.sieve.qrange = 5000
tasks.sieve.rels_wanted = 85000000
tasks.sieve.las.threads = 2
tasks.sqrt.threads = 2
PID14202 2020-03-31 03:39:51,974 Info:Polynomial Selection (root optimized): Best polynomial is:
n: 909848713256778700950246889444191335961442139131264725922821728110608397091620802136683244666377083036592980383092858354973672835238708792794951
skew: 482637.336
c0: -6258461396795096039945120434355340
c1: 35713003291841029485024662936
c2: -104254046673948309500139
c3: -28198095052032941
c4: 742637778612
c5: 232560
Y0: -7478234225138948168210535393
Y1: 8590357995919411627
# MurphyE (Bf=2.147e+09,Bg=1.074e+09,area=1.342e+13) = 2.789e-06
PID14202 2020-03-31 08:16:47,870 Info:Square Root: Factors: 49508654170455179980171855720927015799701074858848694519796973581975849289 18377569103862667156196376410166045968006623149052633577499217375622159
PID14202 2020-03-31 08:16:47,870 Debug:Square Root: Exit SqrtTask.run(sqrt)
PID14202 2020-03-31 08:16:47,870 Info:Polynomial Selection (size optimized): Aggregate statistics:
PID14202 2020-03-31 08:16:47,870 Info:Polynomial Selection (size optimized): potential collisions: 144726
PID14202 2020-03-31 08:16:47,870 Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 147333/42.270/52.436/59.900/1.227
PID14202 2020-03-31 08:16:47,871 Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 122140/41.710/46.316/52.650/0.970
PID14202 2020-03-31 08:16:47,871 Info:Polynomial Selection (size optimized): Total time: 61536.8
PID14202 2020-03-31 08:16:47,871 Info:Polynomial Selection (root optimized): Aggregate statistics:
PID14202 2020-03-31 08:16:47,871 Info:Polynomial Selection (root optimized): Total time: 1842.31
PID14202 2020-03-31 08:16:47,871 Info:Polynomial Selection (root optimized): Rootsieve time: 1840.46
PID14202 2020-03-31 08:16:47,871 Info:Generate Factor Base: Total cpu/real time for makefb: 14.38/2.73544
PID14202 2020-03-31 08:16:47,871 Info:Generate Free Relations: Total cpu/real time for freerel: 1342.76/227.007
PID14202 2020-03-31 08:16:47,871 Info:Lattice Sieving: Aggregate statistics:
PID14202 2020-03-31 08:16:47,871 Info:Lattice Sieving: Total number of relations: 96426613
PID14202 2020-03-31 08:16:47,871 Info:Lattice Sieving: Average J: 7953.95 for 518602 special-q, max bucket fill -bkmult 1.0,1s:1.085950
PID14202 2020-03-31 08:16:47,871 Info:Lattice Sieving: Total time: 498128s
PID14202 2020-03-31 08:16:47,871 Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 279.7/205.396
PID14202 2020-03-31 08:16:47,871 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics:
PID14202 2020-03-31 08:16:47,871 Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 205.1s
PID14202 2020-03-31 08:16:47,871 Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 1079.66/436.034
PID14202 2020-03-31 08:16:47,871 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics:
PID14202 2020-03-31 08:16:47,871 Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 341.19999999999993s
PID14202 2020-03-31 08:16:47,871 Info:Filtering - Singleton removal: Total cpu/real time for purge: 448.73/257.409
PID14202 2020-03-31 08:16:47,872 Info:Filtering - Merging: Total cpu/real time for merge: 142.07/32.8708
PID14202 2020-03-31 08:16:47,872 Info:Filtering - Merging: Total cpu/real time for replay: 50.83/51.8891
PID14202 2020-03-31 08:16:47,872 Info:Linear Algebra: Total cpu/real time for bwc: 37641.4/6662.65
PID14202 2020-03-31 08:16:47,872 Info:Linear Algebra: Aggregate statistics:
PID14202 2020-03-31 08:16:47,872 Info:Linear Algebra: Krylov: WCT time 4263.45, iteration CPU time 0.06, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (64512 iterations)
PID14202 2020-03-31 08:16:47,872 Info:Linear Algebra: Lingen CPU time 249.68, WCT time 47.02
PID14202 2020-03-31 08:16:47,872 Info:Linear Algebra: Mksol: WCT time 2272.94, iteration CPU time 0.07, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (31232 iterations)
PID14202 2020-03-31 08:16:47,872 Info:Quadratic Characters: Total cpu/real time for characters: 66.75/20.9153
PID14202 2020-03-31 08:16:47,872 Info:Square Root: Total cpu/real time for sqrt: 578.7/131.335
PID14202 2020-03-31 08:16:47,872 Info:HTTP server: Shutting down HTTP server
PID14202 2020-03-31 08:16:48,048 Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 1.12997e+06/18045.3
software ソフトウェア
CADO-NFS

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaNovember 6, 2011 05:00:00 UTC 2011 年 11 月 6 日 (日) 14 時 0 分 0 秒 (日本時間)
403e62318280Serge BatalovNovember 7, 2011 07:58:11 UTC 2011 年 11 月 7 日 (月) 16 時 58 分 11 秒 (日本時間)
310Serge BatalovNovember 7, 2011 19:02:32 UTC 2011 年 11 月 8 日 (火) 4 時 2 分 32 秒 (日本時間)
1728Wataru SakaiNovember 13, 2011 03:14:19 UTC 2011 年 11 月 13 日 (日) 12 時 14 分 19 秒 (日本時間)
4511e64000Wataru SakaiNovember 20, 2011 02:17:56 UTC 2011 年 11 月 20 日 (日) 11 時 17 分 56 秒 (日本時間)

10273+27×10136-19

c251

name 名前Dmitry Domanov
date 日付November 8, 2011 22:25:20 UTC 2011 年 11 月 9 日 (水) 7 時 25 分 20 秒 (日本時間)
composite number 合成数
57810017163815151078169027310938342488067591433717942452702559820500689926323014056804109349688205814913848974745778164189952065361153679039596110712194834885040087883451025701745287033392446475669930571759140448928144104247723407706136625173724161957<251>
prime factors 素因数
653294703915336321340144055429<30>
composite cofactor 合成数の残り
88489952264035246122670695039870643181076106721918862222405232458544075652104399992330178038420899427474346121738456766189923588085750963956981492247754461919488124684955297966811437815753707175959355201464550907610243233<221>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=677397629
Step 1 took 40981ms
Step 2 took 13318ms
********** Factor found in step 2: 653294703915336321340144055429
Found probable prime factor of 30 digits: 653294703915336321340144055429
Composite cofactor 88489952264035246122670695039870643181076106721918862222405232458544075652104399992330178038420899427474346121738456766189923588085750963956981492247754461919488124684955297966811437815753707175959355201464550907610243233 has 221 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaNovember 6, 2011 05:00:00 UTC 2011 年 11 月 6 日 (日) 14 時 0 分 0 秒 (日本時間)
403e6300Dmitry DomanovNovember 11, 2011 06:31:10 UTC 2011 年 11 月 11 日 (金) 15 時 31 分 10 秒 (日本時間)
4511e64602600Dmitry DomanovNovember 13, 2011 07:11:35 UTC 2011 年 11 月 13 日 (日) 16 時 11 分 35 秒 (日本時間)
4002Thomas KozlowskiOctober 30, 2024 08:31:04 UTC 2024 年 10 月 30 日 (水) 17 時 31 分 4 秒 (日本時間)

10277+27×10138-19

c260

composite cofactor 合成数の残り
14397397799661763600122938609595608921779662120983194221839731838821957887333166661510165268991089593700090041908594271287744426718082722340024671175449271488244279926111657890126118990191503299741139498096495360078871866175036312776911697337659548833102648117<260>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaNovember 6, 2011 05:00:00 UTC 2011 年 11 月 6 日 (日) 14 時 0 分 0 秒 (日本時間)
403e6300Dmitry DomanovNovember 11, 2011 06:31:18 UTC 2011 年 11 月 11 日 (金) 15 時 31 分 18 秒 (日本時間)
4511e64604600Dmitry DomanovNovember 13, 2011 07:11:04 UTC 2011 年 11 月 13 日 (日) 16 時 11 分 4 秒 (日本時間)
4004Thomas KozlowskiOctober 30, 2024 10:25:47 UTC 2024 年 10 月 30 日 (水) 19 時 25 分 47 秒 (日本時間)

10281+27×10140-19

c250

composite cofactor 合成数の残り
1958638944915016460836743512560269887094540819173661856401803404106475183773591207233747092807310038419348038763053650710441844816024344393288340426396621153921571139196755730573815333438009884555429774212052619491262996145856702600817660303374717997<250>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaNovember 6, 2011 05:00:00 UTC 2011 年 11 月 6 日 (日) 14 時 0 分 0 秒 (日本時間)
403e6300Dmitry DomanovNovember 11, 2011 06:31:34 UTC 2011 年 11 月 11 日 (金) 15 時 31 分 34 秒 (日本時間)
4511e64601600Dmitry DomanovNovember 13, 2011 07:10:31 UTC 2011 年 11 月 13 日 (日) 16 時 10 分 31 秒 (日本時間)
4001Thomas KozlowskiOctober 30, 2024 12:08:59 UTC 2024 年 10 月 30 日 (水) 21 時 8 分 59 秒 (日本時間)

10283+27×10141-19

c280

name 名前btolksdorf
date 日付June 16, 2012 10:08:20 UTC 2012 年 6 月 16 日 (土) 19 時 8 分 20 秒 (日本時間)
composite number 合成数
1886436521411054518015468779475570647047726843991699679305791360120731937370307489152990001886436521411054518015468779475570647047726843991704772684399169967930579136012073193737030748915299000188643652141105451801546877947557064704772684399169967930579136012073193737030748915299<280>
prime factors 素因数
226564858804379242303687762572356453219039096103929<51>
composite cofactor 合成数の残り
8326253821382964775337112466717492450861797698844932750306523159489951611170517474655454339752229938943120009285267034318730312234096969511476091724926830923243297348251857938378595099695466631020258700498692843600943548932201531<229>
factorization results 素因数分解の結果
GMP-ECM 6.3 [configured with GMP 5.0.1] [ECM]
Input number is 1886436521411054518015468779475570647047726843991699679305791360120731937370307489152990001886436521411054518015468779475570647047726843991704772684399169967930579136012073193737030748915299000188643652141105451801546877947557064704772684399169967930579136012073193737030748915299 (280 digits)
[Sat Jun 16 09:54:20 2012]
Using MODMULN
Using B1=110000000, B2=776278396540, polynomial Dickson(30), sigma=1493728821
dF=131072, k=4, d=1345890, d2=11, i0=71
Expected number of curves to find a factor of n digits:
35   40      45      50      55      60      65      70      75      80
34      135     614     3135    17884   111314  752662  5482978 4.3e+007        3.6e+008
Step 1 took 809738ms
Using 33 small primes for NTT
Estimated memory usage: 954M
Initializing tables of differences for F took 531ms
Computing roots of F took 22994ms
Building F from its roots took 16708ms
Computing 1/F took 7301ms
Initializing table of differences for G took 436ms
Computing roots of G took 19282ms
Building G from its roots took 16755ms
Computing roots of G took 19453ms
Building G from its roots took 16552ms
Computing G * H took 4259ms
Reducing  G * H mod F took 4243ms
Computing roots of G took 19406ms
Building G from its roots took 16521ms
Computing G * H took 4243ms
Reducing  G * H mod F took 4306ms
Computing roots of G took 19453ms
Building G from its roots took 16364ms
Computing G * H took 4072ms
Reducing  G * H mod F took 4181ms
Computing polyeval(F,G) took 32948ms
Computing product of all F(g_i) took 156ms
Step 2 took 250975ms
********** Factor found in step 2: 226564858804379242303687762572356453219039096103929
Found probable prime factor of 51 digits: 226564858804379242303687762572356453219039096103929
Composite cofactor 8326253821382964775337112466717492450861797698844932750306523159489951611170517474655454339752229938943120009285267034318730312234096969511476091724926830923243297348251857938378595099695466631020258700498692843600943548932201531 has 229 digits
software ソフトウェア
GMP-ECM

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaNovember 6, 2011 05:00:00 UTC 2011 年 11 月 6 日 (日) 14 時 0 分 0 秒 (日本時間)
403e62318600Serge BatalovNovember 7, 2011 19:01:11 UTC 2011 年 11 月 8 日 (火) 4 時 1 分 11 秒 (日本時間)
1718Wataru SakaiNovember 11, 2011 05:36:14 UTC 2011 年 11 月 11 日 (金) 14 時 36 分 14 秒 (日本時間)
4511e64000Wataru SakaiNovember 17, 2011 12:40:15 UTC 2011 年 11 月 17 日 (木) 21 時 40 分 15 秒 (日本時間)
5043e60 / 420--
5511e72550 / 17501yoyo@homeJune 11, 2012 23:30:12 UTC 2012 年 6 月 12 日 (火) 8 時 30 分 12 秒 (日本時間)

10285+27×10142-19

c268

name 名前Dmitry Domanov
date 日付November 13, 2011 15:31:46 UTC 2011 年 11 月 14 日 (月) 0 時 31 分 46 秒 (日本時間)
composite number 合成数
9989407111287098120266601738425175223493417583188768112074856163732443136125147129619709895121841974025784422381724124477293428142558457491993004775208636231782982790601366021776922513957314385466505002300423501204831949986840240633296772733293848806330459438309968401<268>
prime factors 素因数
1517272919723881277696422322818657384903<40>
composite cofactor 合成数の残り
6583790550420557136789269513825207800624843310555347877979011178224649663401343101391129158657324318791199988915925281435868131252282114148919746149823469726821342334202496907122052711629331891772103277716793230022017113465003367<229>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1025921750
Step 1 took 154607ms
Step 2 took 44898ms
********** Factor found in step 2: 1517272919723881277696422322818657384903
Found probable prime factor of 40 digits: 1517272919723881277696422322818657384903
Composite cofactor 6583790550420557136789269513825207800624843310555347877979011178224649663401343101391129158657324318791199988915925281435868131252282114148919746149823469726821342334202496907122052711629331891772103277716793230022017113465003367 has 229 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaNovember 6, 2011 05:00:00 UTC 2011 年 11 月 6 日 (日) 14 時 0 分 0 秒 (日本時間)
403e6300Dmitry DomanovNovember 11, 2011 06:31:48 UTC 2011 年 11 月 11 日 (金) 15 時 31 分 48 秒 (日本時間)
4511e64601600Dmitry DomanovNovember 13, 2011 07:09:21 UTC 2011 年 11 月 13 日 (日) 16 時 9 分 21 秒 (日本時間)
4001Thomas KozlowskiOctober 30, 2024 13:38:59 UTC 2024 年 10 月 30 日 (水) 22 時 38 分 59 秒 (日本時間)

10291+27×10145-19

c229

composite cofactor 合成数の残り
8777095034674773429519418782039419284515929056937231287435863236218744290036449625258192108182939319956600284234987336789535793984066723378997814754725994109819951040810196936273218977889029031498366075632756003587854591287488109<229>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaNovember 6, 2011 05:00:00 UTC 2011 年 11 月 6 日 (日) 14 時 0 分 0 秒 (日本時間)
403e6300Dmitry DomanovNovember 11, 2011 06:31:57 UTC 2011 年 11 月 11 日 (金) 15 時 31 分 57 秒 (日本時間)
4511e64600600Dmitry DomanovNovember 13, 2011 07:09:54 UTC 2011 年 11 月 13 日 (日) 16 時 9 分 54 秒 (日本時間)
4000Thomas KozlowskiOctober 30, 2024 15:08:49 UTC 2024 年 10 月 31 日 (木) 0 時 8 分 49 秒 (日本時間)

10295+27×10147-19

c290

name 名前Dull Man Real Dull
date 日付June 12, 2012 07:28:49 UTC 2012 年 6 月 12 日 (火) 16 時 28 分 49 秒 (日本時間)
composite number 合成数
12830530503944746603437812343226955404925127439244230431195638646071099101734559418828290293318757850680852101191827978511427511993338388562351887598137520192047380583044967160257175153421068500919307510607641094136319254392211354762885381021849110395167508990994250639281182359046999516289<290>
prime factors 素因数
580544724702926264081506466832985830553197917<45>
composite cofactor 合成数の残り
22100847631524561654229488081476443520774878036856261004594135153121822863799204720917235523376849453849782211123489970467593562149322885633176380483950633580927157337994767149681668042416075846006344857535903995463234133198244467424661826080117<245>
factorization results 素因数分解の結果
GMP-ECM 6.3 [configured with GMP 5.0.1] [ECM]
Input number is 12830530503944746603437812343226955404925127439244230431195638646071099101734559418828290293318757850680852101191827978511427511993338388562351887598137520192047380583044967160257175153421068500919307510607641094136319254392211354762885381021849110395167508990994250639281182359046999516289 (290 digits)
[Mon Jun 11 23:47:53 2012]
Using MODMULN
Using B1=110000000, B2=776278396540, polynomial Dickson(30), sigma=3559027848
dF=131072, k=4, d=1345890, d2=11, i0=71
Expected number of curves to find a factor of n digits:
35 40      45      50      55      60      65      70      75      80
34      135     614     3135    17884   111314  752662  5482978 4.3e+007        3.6e+008
Step 1 took 1056080ms
Using 34 small primes for NTT
Estimated memory usage: 1003M
Initializing tables of differences for F took 624ms
Computing roots of F took 27706ms
Building F from its roots took 12434ms
Computing 1/F took 5585ms
Initializing table of differences for G took 452ms
Computing roots of G took 23338ms
Building G from its roots took 12652ms
Computing roots of G took 22917ms
Building G from its roots took 12760ms
Computing G * H took 3026ms
Reducing  G * H mod F took 3011ms
Computing roots of G took 22526ms
Building G from its roots took 12699ms
Computing G * H took 2933ms
Reducing  G * H mod F took 2995ms
Computing roots of G took 22449ms
Building G from its roots took 12651ms
Computing G * H took 2995ms
Reducing  G * H mod F took 3011ms
Computing polyeval(F,G) took 26973ms
Computing product of all F(g_i) took 125ms
Step 2 took 234236ms
********** Factor found in step 2: 580544724702926264081506466832985830553197917
Found probable prime factor of 45 digits: 580544724702926264081506466832985830553197917
Composite cofactor 22100847631524561654229488081476443520774878036856261004594135153121822863799204720917235523376849453849782211123489970467593562149322885633176380483950633580927157337994767149681668042416075846006344857535903995463234133198244467424661826080117 has 245 digits
software ソフトウェア
GMP-ECM

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaNovember 6, 2011 05:00:00 UTC 2011 年 11 月 6 日 (日) 14 時 0 分 0 秒 (日本時間)
403e62318600Serge BatalovNovember 7, 2011 07:31:25 UTC 2011 年 11 月 7 日 (月) 16 時 31 分 25 秒 (日本時間)
1718Wataru SakaiNovember 11, 2011 05:36:29 UTC 2011 年 11 月 11 日 (金) 14 時 36 分 29 秒 (日本時間)
4511e64000Wataru SakaiNovember 17, 2011 12:42:23 UTC 2011 年 11 月 17 日 (木) 21 時 42 分 23 秒 (日本時間)
5043e60--
5511e72925 / 17501190yoyo@homeJune 12, 2012 01:13:45 UTC 2012 年 6 月 12 日 (火) 10 時 13 分 45 秒 (日本時間)
2735yoyo@homeApril 4, 2013 07:50:09 UTC 2013 年 4 月 4 日 (木) 16 時 50 分 9 秒 (日本時間)

10297+27×10148-19

c288

name 名前Polybius
date 日付June 18, 2012 18:07:52 UTC 2012 年 6 月 19 日 (火) 3 時 7 分 52 秒 (日本時間)
composite number 合成数
123504816618129638074950742385643346013798869331114451726203213925901395893268499489730031509276258987114049249694857297981874348388819094279188509664620006474574514751177982364272235572555652689747234198771438380890377758719971834104105959780663631585447212411299089258302737920467002657<288>
prime factors 素因数
44630987488307312926761443753995860804987007158257<50>
composite cofactor 合成数の残り
2767243647711943458635184644940039509917184232095008307993922297274086817750326658294297823458447745928879774098745343352542480302000461267538606254087404058743335882307018369899065082879766467880407696414365239952904631359422504524849201<238>
factorization results 素因数分解の結果
GMP-ECM 6.3 [configured with GMP 5.0.1] [ECM]
Input number is 123504816618129638074950742385643346013798869331114451726203213925901395893268499489730031509276258987114049249694857297981874348388819094279188509664620006474574514751177982364272235572555652689747234198771438380890377758719971834104105959780663631585447212411299089258302737920467002657 (288 digits)
[Mon Jun 18 09:09:54 2012]
Using MODMULN
Using B1=110000000, B2=776278396540, polynomial Dickson(30), sigma=3198367606
dF=131072, k=4, d=1345890, d2=11, i0=71
Expected number of curves to find a factor of n digits:
35   40      45      50      55      60      65      70      75      80
34      135     614     3135    17884   111314  752662  5482978 4.3e+007        3.6e+008
Step 1 took 742954ms
Using 34 small primes for NTT
Estimated memory usage: 961M
Initializing tables of differences for F took 468ms
Computing roots of F took 21154ms
Building F from its roots took 15117ms
Computing 1/F took 6989ms
Initializing table of differences for G took 390ms
Computing roots of G took 17535ms
Building G from its roots took 14898ms
Computing roots of G took 17566ms
Building G from its roots took 14773ms
Computing G * H took 3884ms
Reducing  G * H mod F took 3682ms
Computing roots of G took 17581ms
Building G from its roots took 14555ms
Computing G * H took 3916ms
Reducing  G * H mod F took 3682ms
Computing roots of G took 17550ms
Building G from its roots took 14477ms
Computing G * H took 3869ms
Reducing  G * H mod F took 3681ms
Computing polyeval(F,G) took 29110ms
Computing product of all F(g_i) took 140ms
Step 2 took 225796ms
********** Factor found in step 2: 44630987488307312926761443753995860804987007158257
Found probable prime factor of 50 digits: 44630987488307312926761443753995860804987007158257
Composite cofactor 2767243647711943458635184644940039509917184232095008307993922297274086817750326658294297823458447745928879774098745343352542480302000461267538606254087404058743335882307018369899065082879766467880407696414365239952904631359422504524849201 has 238 digits
software ソフトウェア
GMP-ECM

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaNovember 6, 2011 05:00:00 UTC 2011 年 11 月 6 日 (日) 14 時 0 分 0 秒 (日本時間)
403e62318600Serge BatalovNovember 7, 2011 07:31:09 UTC 2011 年 11 月 7 日 (月) 16 時 31 分 9 秒 (日本時間)
1718Wataru SakaiNovember 11, 2011 05:36:46 UTC 2011 年 11 月 11 日 (金) 14 時 36 分 46 秒 (日本時間)
4511e64000Wataru SakaiNovember 13, 2011 08:06:55 UTC 2011 年 11 月 13 日 (日) 17 時 6 分 55 秒 (日本時間)
5043e60 / 962--
5511e72325 / 17501yoyo@homeJune 15, 2012 10:00:16 UTC 2012 年 6 月 15 日 (金) 19 時 0 分 16 秒 (日本時間)

10301+27×10150-19

c259

name 名前Dmitry Domanov
date 日付December 15, 2011 07:11:27 UTC 2011 年 12 月 15 日 (木) 16 時 11 分 27 秒 (日本時間)
composite number 合成数
5911847553973332173610429440681848676457036270597436897043142243932120595946925157892789943722836971539530768170946594794665459463476305491302141513780569816039874191493111585853419406274236303521458694255882477864683523498652874094690578326323536657732811289<259>
prime factors 素因数
679631759105723814588071084882109248210255035141<48>
8698604023084922631902418011231838912645903063096379468337898480916193607181897300454981294284280566313485141080880793585417206588945147718974568729220808759137319120116092820443558185126329113636431076221204229<211>
factorization results 素因数分解の結果
Using B1=43000000, B2=240490660426, polynomial Dickson(12), sigma=4137875207
Step 1 took 592767ms
********** Factor found in step 1: 679631759105723814588071084882109248210255035141
Found probable prime factor of 48 digits: 679631759105723814588071084882109248210255035141

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaNovember 6, 2011 05:00:00 UTC 2011 年 11 月 6 日 (日) 14 時 0 分 0 秒 (日本時間)
403e6300Dmitry DomanovNovember 11, 2011 06:32:16 UTC 2011 年 11 月 11 日 (金) 15 時 32 分 16 秒 (日本時間)
4511e6600Dmitry DomanovNovember 12, 2011 23:10:48 UTC 2011 年 11 月 13 日 (日) 8 時 10 分 48 秒 (日本時間)
5043e61100 / 7407400Dmitry DomanovNovember 29, 2011 18:08:47 UTC 2011 年 11 月 30 日 (水) 3 時 8 分 47 秒 (日本時間)
400Dmitry DomanovDecember 13, 2011 20:08:47 UTC 2011 年 12 月 14 日 (水) 5 時 8 分 47 秒 (日本時間)
300Dmitry DomanovDecember 14, 2011 16:21:18 UTC 2011 年 12 月 15 日 (木) 1 時 21 分 18 秒 (日本時間)