name 名前 | KTakahashi |
---|---|
date 日付 | December 6, 2014 17:14:27 UTC 2014 年 12 月 7 日 (日) 2 時 14 分 27 秒 (日本時間) |
composite number 合成数 | 100048497608779377324143482635916416759776550845033172224937488423075690133110814269219675814874177923881<105> |
prime factors 素因数 | 20436697869632093215126113359781118400893403921417<50> 4895531472207475393300036090368534375965458233998671393<55> |
factorization results 素因数分解の結果 | Number: 11131_113 N=100048497608779377324143482635916416759776550845033172224937488423075690133110814269219675814874177923881 ( 105 digits) SNFS difficulty: 113 digits. Divisors found: r1=20436697869632093215126113359781118400893403921417 (pp50) r2=4895531472207475393300036090368534375965458233998671393 (pp55) Version: Msieve v. 1.51 (SVN Official Release) Total time: 1.61 hours. Scaled time: 3.35 units (timescale=2.075). Factorization parameters were as follows: n: 100048497608779377324143482635916416759776550845033172224937488423075690133110814269219675814874177923881 m: 10000000000000000000000 c5: 1000 c0: 179 skew: 0.71 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [300000, 550001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 85593 x 85824 Total sieving time: 1.57 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.02 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,113.000,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 1.61 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) |
name 名前 | KTakahashi |
---|---|
date 日付 | December 6, 2014 17:15:06 UTC 2014 年 12 月 7 日 (日) 2 時 15 分 6 秒 (日本時間) |
composite number 合成数 | 5847953216374269005847953216374269005847953216374269005847953216374269005847953216374269005847953216374269005849<112> |
prime factors 素因数 | 77179096938009065474374055726591207<35> 75771205525654139831624691834108576102364549719985308808952119218471654718207<77> |
factorization results 素因数分解の結果 | Number: 11131_114 N=5847953216374269005847953216374269005847953216374269005847953216374269005847953216374269005847953216374269005849 ( 112 digits) SNFS difficulty: 115 digits. Divisors found: r1=77179096938009065474374055726591207 (pp35) r2=75771205525654139831624691834108576102364549719985308808952119218471654718207 (pp77) Version: Msieve v. 1.51 (SVN Official Release) Total time: 1.45 hours. Scaled time: 3.03 units (timescale=2.080). Factorization parameters were as follows: n: 5847953216374269005847953216374269005847953216374269005847953216374269005847953216374269005847953216374269005849 m: 100000000000000000000000 c5: 1 c0: 1790 skew: 4.47 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [300000, 500001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 98703 x 98928 Total sieving time: 1.41 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.03 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,115.000,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 1.45 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 7, 2014 00:37:22 UTC 2014 年 12 月 7 日 (日) 9 時 37 分 22 秒 (日本時間) |
composite number 合成数 | 43284421936545037441024975111457386486603471410639310912002770203003938882396225598407133272735142622170280915898368177293<122> |
prime factors 素因数 | 498679170865081850802653843531558626770753201909557843<54> 86798134883912528909983412356861436712937054895908235298748739701151<68> |
factorization results 素因数分解の結果 | N=43284421936545037441024975111457386486603471410639310912002770203003938882396225598407133272735142622170280915898368177293 ( 122 digits) SNFS difficulty: 126 digits. Divisors found: r1=498679170865081850802653843531558626770753201909557843 (pp54) r2=86798134883912528909983412356861436712937054895908235298748739701151 (pp68) Version: Msieve v. 1.50 (SVN unknown) Total time: 1.18 hours. Scaled time: 2.53 units (timescale=2.137). Factorization parameters were as follows: n: 43284421936545037441024975111457386486603471410639310912002770203003938882396225598407133272735142622170280915898368177293 m: 10000000000000000000000000 deg: 5 c5: 10 c0: 179 skew: 1.78 # Murphy_E = 9.579e-09 type: snfs lss: 1 rlim: 880000 alim: 880000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 880000/880000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [440000, 740001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 116024 x 116250 Total sieving time: 1.11 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.04 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,126.000,5,0,0,0,0,0,0,0,0,880000,880000,26,26,46,46,2.3,2.3,50000 total time: 1.18 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 7, 2014 01:07:33 UTC 2014 年 12 月 7 日 (日) 10 時 7 分 33 秒 (日本時間) |
composite number 合成数 | 555044368818224643503757793652897932262997977886580477228951876311179958589252931490416948495082913<99> |
prime factors 素因数 | 72342834671969868314070802118316504188663398919<47> 7672416644094864206185879640096094738528273999515927<52> |
factorization results 素因数分解の結果 | N=555044368818224643503757793652897932262997977886580477228951876311179958589252931490416948495082913 ( 99 digits) SNFS difficulty: 127 digits. Divisors found: r1=72342834671969868314070802118316504188663398919 (pp47) r2=7672416644094864206185879640096094738528273999515927 (pp52) Version: Msieve v. 1.50 (SVN unknown) Total time: 1.36 hours. Scaled time: 2.86 units (timescale=2.104). Factorization parameters were as follows: n: 555044368818224643503757793652897932262997977886580477228951876311179958589252931490416948495082913 m: 10000000000000000000000000 deg: 5 c5: 100 c0: 179 skew: 1.12 # Murphy_E = 8.646e-09 type: snfs lss: 1 rlim: 920000 alim: 920000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 920000/920000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [460000, 810001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 125079 x 125306 Total sieving time: 1.28 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.04 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,127.000,5,0,0,0,0,0,0,0,0,920000,920000,26,26,46,46,2.3,2.3,50000 total time: 1.36 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 8, 2014 10:11:16 UTC 2014 年 12 月 8 日 (月) 19 時 11 分 16 秒 (日本時間) |
composite number 合成数 | 34509674214653982225717558210039126944173371854967302086360083716011501444045056207692582567939434737796460972111917<116> |
prime factors 素因数 | 614974319582666883825853294099355652048514321719535794151<57> 56115634613934602806245138718853564904152538405498091633867<59> |
factorization results 素因数分解の結果 | N=34509674214653982225717558210039126944173371854967302086360083716011501444045056207692582567939434737796460972111917 ( 116 digits) SNFS difficulty: 130 digits. Divisors found: r1=614974319582666883825853294099355652048514321719535794151 (pp57) r2=56115634613934602806245138718853564904152538405498091633867 (pp59) Version: Msieve v. 1.50 (SVN unknown) Total time: 1.90 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 34509674214653982225717558210039126944173371854967302086360083716011501444045056207692582567939434737796460972111917 m: 100000000000000000000000000 deg: 5 c5: 1 c0: 1790 skew: 4.47 # Murphy_E = 7.356e-09 type: snfs lss: 1 rlim: 1030000 alim: 1030000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1030000/1030000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [515000, 865001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 165070 x 165315 Total sieving time: 1.78 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.07 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,130.000,5,0,0,0,0,0,0,0,0,1030000,1030000,26,26,47,47,2.3,2.3,50000 total time: 1.90 hours. |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) |
name 名前 | KTakahashi |
---|---|
date 日付 | December 6, 2014 18:04:40 UTC 2014 年 12 月 7 日 (日) 3 時 4 分 40 秒 (日本時間) |
composite number 合成数 | 60139612771324330835615404454708344127374307774369379933889240126862819428937734864244238820172017<98> |
prime factors 素因数 | 116681201208068859997838366191696441<36> 515418183466262547123023298199679023659922702069534278858095737<63> |
factorization results 素因数分解の結果 | Input number is 60139612771324330835615404454708344127374307774369379933889240126862819428937734864244238820172017 (98 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2604244545 Step 1 took 2652ms ********** Factor found in step 1: 116681201208068859997838366191696441 Found probable prime factor of 36 digits: 116681201208068859997838366191696441 Probable prime cofactor 515418183466262547123023298199679023659922702069534278858095737 has 63 digits |
software ソフトウェア | GMP-ECM 6.4.4 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | December 9, 2014 14:33:07 UTC 2014 年 12 月 9 日 (火) 23 時 33 分 7 秒 (日本時間) |
composite number 合成数 | 958534948521045541029481546828087712135618627666477689670610088123589886897811017102671555338896820363987<105> |
prime factors 素因数 | 42684823856221157846294364778800708169231348836083<50> 22456106454831781112311730445193655658407553143263792289<56> |
factorization results 素因数分解の結果 | Number: 11131_134 N=958534948521045541029481546828087712135618627666477689670610088123589886897811017102671555338896820363987 ( 105 digits) SNFS difficulty: 135 digits. Divisors found: r1=42684823856221157846294364778800708169231348836083 r2=22456106454831781112311730445193655658407553143263792289 Version: Total time: 1.23 hours. Scaled time: 6.47 units (timescale=5.254). Factorization parameters were as follows: n: 958534948521045541029481546828087712135618627666477689670610088123589886897811017102671555338896820363987 m: 1000000000000000000000000000 deg: 5 c5: 1 c0: 1790 skew: 4.47 # Murphy_E = 4.85e-09 type: snfs lss: 1 rlim: 1200000 alim: 1200000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1200000/1200000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [600000, 1125001) Primes: rational ideals reading, algebraic ideals reading, Relations: 3169404 Max relations in full relation-set: Initial matrix: Pruned matrix : 190151 x 190399 Total sieving time: 1.05 hours. Total relation processing time: 0.14 hours. Matrix solve time: 0.03 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,135,5,0,0,0,0,0,0,0,0,1200000,1200000,26,26,47,47,2.3,2.3,25000 total time: 1.23 hours. --------- CPU info (if available) ---------- |
software ソフトウェア | GGNFS / Msieve v1.39 |
execution environment 実行環境 | Core i7-4930K |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) |
786 | KTakahashi | December 6, 2014 18:08:55 UTC 2014 年 12 月 7 日 (日) 3 時 8 分 55 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 10, 2014 23:04:28 UTC 2014 年 12 月 11 日 (木) 8 時 4 分 28 秒 (日本時間) |
composite number 合成数 | 55379806421571128408931309316892448533935621656723450552226427006624804832866202037666114262123543705077981<107> |
prime factors 素因数 | 188039201026798147380873588093542922651233261420280607<54> 294512027913151745839819393779398989748794514269386883<54> |
factorization results 素因数分解の結果 | N=55379806421571128408931309316892448533935621656723450552226427006624804832866202037666114262123543705077981 ( 107 digits) SNFS difficulty: 136 digits. Divisors found: r1=188039201026798147380873588093542922651233261420280607 (pp54) r2=294512027913151745839819393779398989748794514269386883 (pp54) Version: Msieve v. 1.50 (SVN unknown) Total time: 2.46 hours. Scaled time: 5.30 units (timescale=2.151). Factorization parameters were as follows: n: 55379806421571128408931309316892448533935621656723450552226427006624804832866202037666114262123543705077981 m: 1000000000000000000000000000 deg: 5 c5: 10 c0: 179 skew: 1.78 # Murphy_E = 4.178e-09 type: snfs lss: 1 rlim: 1290000 alim: 1290000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1290000/1290000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [645000, 1245001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 184266 x 184492 Total sieving time: 2.30 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.09 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,136.000,5,0,0,0,0,0,0,0,0,1290000,1290000,26,26,48,48,2.3,2.3,75000 total time: 2.46 hours. |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 937 / 2318 | Pierre Jammes | December 8, 2014 16:41:43 UTC 2014 年 12 月 9 日 (火) 1 時 41 分 43 秒 (日本時間) |
name 名前 | KTakahashi |
---|---|
date 日付 | December 6, 2014 22:13:55 UTC 2014 年 12 月 7 日 (日) 7 時 13 分 55 秒 (日本時間) |
composite number 合成数 | 6264152172271597228995821520096345754400684505927204194343111946343204812746476771684286176629389768811<103> |
prime factors 素因数 | 695175234728698485329315142701588069<36> 9010896619060756861236516901556780790393233921672692886912175269519<67> |
factorization results 素因数分解の結果 | Number: 11131_137 N=6264152172271597228995821520096345754400684505927204194343111946343204812746476771684286176629389768811 ( 103 digits) SNFS difficulty: 137 digits. Divisors found: r1=695175234728698485329315142701588069 (pp36) r2=9010896619060756861236516901556780790393233921672692886912175269519 (pp67) Version: Msieve v. 1.51 (SVN Official Release) Total time: 7.15 hours. Scaled time: 12.00 units (timescale=1.678). Factorization parameters were as follows: n: 6264152172271597228995821520096345754400684505927204194343111946343204812746476771684286176629389768811 m: 1000000000000000000000000000 c5: 100 c0: 179 skew: 1.12 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved rational special-q in [500000, 1850001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 152850 x 153075 Total sieving time: 7.05 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.08 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,137.000,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 7.15 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) |
786 | KTakahashi | December 6, 2014 18:05:53 UTC 2014 年 12 月 7 日 (日) 3 時 5 分 53 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 8, 2014 20:30:52 UTC 2014 年 12 月 9 日 (火) 5 時 30 分 52 秒 (日本時間) |
composite number 合成数 | 52910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052911<137> |
prime factors 素因数 | 51025377236524928561697507331678672459<38> 1036936045857959773296864167869500273160352545941284902078045204147534647651223106336282046706352429<100> |
factorization results 素因数分解の結果 | N=52910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052911 ( 137 digits) SNFS difficulty: 140 digits. Divisors found: r1=51025377236524928561697507331678672459 (pp38) r2=1036936045857959773296864167869500273160352545941284902078045204147534647651223106336282046706352429 (pp100) Version: Msieve v. 1.50 (SVN unknown) Total time: 3.54 hours. Scaled time: 5.87 units (timescale=1.657). Factorization parameters were as follows: n: 52910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052911 m: 10000000000000000000000000000 deg: 5 c5: 1 c0: 1790 skew: 4.47 # Murphy_E = 3.179e-09 type: snfs lss: 1 rlim: 1510000 alim: 1510000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1510000/1510000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [755000, 1505001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 229540 x 229765 Total sieving time: 3.40 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.07 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,140.000,5,0,0,0,0,0,0,0,0,1510000,1510000,26,26,48,48,2.3,2.3,75000 total time: 3.54 hours. |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) |
name 名前 | KTakahashi |
---|---|
date 日付 | December 6, 2014 18:07:51 UTC 2014 年 12 月 7 日 (日) 3 時 7 分 51 秒 (日本時間) |
composite number 合成数 | 156569581046256682326504085887775559705059665583698829715609272286633859706063949847403833953056167444743818478680114060357353356501<132> |
prime factors 素因数 | 1714606429696825228518703804261363<34> 91315172003607346049363059427442172005425804414507291228065015483244770936413162085554760970171927<98> |
factorization results 素因数分解の結果 | Input number is 156569581046256682326504085887775559705059665583698829715609272286633859706063949847403833953056167444743818478680114060357353356501 (132 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1111111111 Step 1 took 3588ms Step 2 took 2308ms ********** Factor found in step 2: 1714606429696825228518703804261363 Found probable prime factor of 34 digits: 1714606429696825228518703804261363 Probable prime cofactor 91315172003607346049363059427442172005425804414507291228065015483244770936413162085554760970171927 has 98 digits |
software ソフトウェア | GMP-ECM 6.4.4 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) |
name 名前 | Cyp |
---|---|
date 日付 | December 14, 2014 01:53:59 UTC 2014 年 12 月 14 日 (日) 10 時 53 分 59 秒 (日本時間) |
composite number 合成数 | 5495441523305086893017648542557230320130000116537010520316197771441344063239900185204432411269286616217870915309<112> |
prime factors 素因数 | 9843330612115261829783396783578962661633<40> 558290861077169036046855668130119604850002220640280388841338247936481773<72> |
factorization results 素因数分解の結果 | 12/14/14 01:46:52 v1.34.3, 12/14/14 01:46:52 v1.34.3, **************************** 12/14/14 01:46:52 v1.34.3, Starting factorization of 5495441523305086893017648542557230320130000116537010520316197771441344063239900185204432411269286616217870915309 12/14/14 01:46:52 v1.34.3, using pretesting plan: none 12/14/14 01:46:52 v1.34.3, no tune info: using qs/gnfs crossover of 95 digits 12/14/14 01:46:52 v1.34.3, **************************** 12/14/14 01:46:52 v1.34.3, nfs: commencing nfs on c112: 5495441523305086893017648542557230320130000116537010520316197771441344063239900185204432411269286616217870915309 12/14/14 01:46:52 v1.34.3, nfs: continuing with sieving - could not determine last special q; using default startq 12/14/14 01:46:52 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/14/14 01:47:11 v1.34.3, nfs: commencing lattice sieving with 8 threads [187 lines snipped] 12/14/14 02:49:03 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/14/14 02:49:22 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/14/14 02:49:41 v1.34.3, nfs: commencing msieve filtering 12/14/14 02:50:29 v1.34.3, nfs: commencing msieve linear algebra 12/14/14 02:53:36 v1.34.3, nfs: commencing msieve sqrt 12/14/14 02:53:58 v1.34.3, prp72 = 558290861077169036046855668130119604850002220640280388841338247936481773 12/14/14 02:53:58 v1.34.3, prp40 = 9843330612115261829783396783578962661633 12/14/14 02:53:58 v1.34.3, NFS elapsed time = 4025.9191 seconds. 12/14/14 02:53:58 v1.34.3, 12/14/14 02:53:58 v1.34.3, 12/14/14 02:53:58 v1.34.3, Total factoring time = 4025.9205 seconds -- Sun Dec 14 02:49:41 2014 Sun Dec 14 02:49:41 2014 commencing relation filtering Sun Dec 14 02:49:41 2014 estimated available RAM is 15987.3 MB Sun Dec 14 02:49:41 2014 commencing duplicate removal, pass 1 Sun Dec 14 02:49:53 2014 found 819087 hash collisions in 4486405 relations Sun Dec 14 02:49:57 2014 added 179791 free relations Sun Dec 14 02:49:57 2014 commencing duplicate removal, pass 2 Sun Dec 14 02:50:00 2014 found 732731 duplicates and 3933465 unique relations Sun Dec 14 02:50:00 2014 memory use: 20.6 MB Sun Dec 14 02:50:00 2014 reading ideals above 100000 Sun Dec 14 02:50:00 2014 commencing singleton removal, initial pass Sun Dec 14 02:50:16 2014 memory use: 94.1 MB Sun Dec 14 02:50:16 2014 reading all ideals from disk Sun Dec 14 02:50:16 2014 memory use: 124.2 MB Sun Dec 14 02:50:16 2014 keeping 4576761 ideals with weight <= 200, target excess is 19962 Sun Dec 14 02:50:16 2014 commencing in-memory singleton removal Sun Dec 14 02:50:16 2014 begin with 3933465 relations and 4576761 unique ideals Sun Dec 14 02:50:17 2014 reduce to 1384796 relations and 1327833 ideals in 17 passes Sun Dec 14 02:50:17 2014 max relations containing the same ideal: 99 Sun Dec 14 02:50:17 2014 removing 138610 relations and 121707 ideals in 16904 cliques Sun Dec 14 02:50:17 2014 commencing in-memory singleton removal Sun Dec 14 02:50:18 2014 begin with 1246186 relations and 1327833 unique ideals Sun Dec 14 02:50:18 2014 reduce to 1236304 relations and 1196072 ideals in 8 passes Sun Dec 14 02:50:18 2014 max relations containing the same ideal: 92 Sun Dec 14 02:50:18 2014 removing 101855 relations and 84951 ideals in 16904 cliques Sun Dec 14 02:50:18 2014 commencing in-memory singleton removal Sun Dec 14 02:50:18 2014 begin with 1134449 relations and 1196072 unique ideals Sun Dec 14 02:50:18 2014 reduce to 1128749 relations and 1105341 ideals in 7 passes Sun Dec 14 02:50:18 2014 max relations containing the same ideal: 83 Sun Dec 14 02:50:18 2014 relations with 0 large ideals: 458 Sun Dec 14 02:50:18 2014 relations with 1 large ideals: 131 Sun Dec 14 02:50:18 2014 relations with 2 large ideals: 2748 Sun Dec 14 02:50:18 2014 relations with 3 large ideals: 22571 Sun Dec 14 02:50:18 2014 relations with 4 large ideals: 96858 Sun Dec 14 02:50:18 2014 relations with 5 large ideals: 235091 Sun Dec 14 02:50:18 2014 relations with 6 large ideals: 345055 Sun Dec 14 02:50:18 2014 relations with 7+ large ideals: 425837 Sun Dec 14 02:50:18 2014 commencing 2-way merge Sun Dec 14 02:50:19 2014 reduce to 694471 relation sets and 671063 unique ideals Sun Dec 14 02:50:19 2014 commencing full merge Sun Dec 14 02:50:26 2014 memory use: 85.0 MB Sun Dec 14 02:50:26 2014 found 345727 cycles, need 343263 Sun Dec 14 02:50:26 2014 weight of 343263 cycles is about 24210478 (70.53/cycle) Sun Dec 14 02:50:26 2014 distribution of cycle lengths: Sun Dec 14 02:50:26 2014 1 relations: 26385 Sun Dec 14 02:50:26 2014 2 relations: 35123 Sun Dec 14 02:50:26 2014 3 relations: 37621 Sun Dec 14 02:50:26 2014 4 relations: 34669 Sun Dec 14 02:50:26 2014 5 relations: 31961 Sun Dec 14 02:50:26 2014 6 relations: 28318 Sun Dec 14 02:50:26 2014 7 relations: 24779 Sun Dec 14 02:50:26 2014 8 relations: 21200 Sun Dec 14 02:50:26 2014 9 relations: 18244 Sun Dec 14 02:50:26 2014 10+ relations: 84963 Sun Dec 14 02:50:26 2014 heaviest cycle: 25 relations Sun Dec 14 02:50:26 2014 commencing cycle optimization Sun Dec 14 02:50:26 2014 start with 2334630 relations Sun Dec 14 02:50:29 2014 pruned 63888 relations Sun Dec 14 02:50:29 2014 memory use: 70.7 MB Sun Dec 14 02:50:29 2014 distribution of cycle lengths: Sun Dec 14 02:50:29 2014 1 relations: 26385 Sun Dec 14 02:50:29 2014 2 relations: 35796 Sun Dec 14 02:50:29 2014 3 relations: 38958 Sun Dec 14 02:50:29 2014 4 relations: 35633 Sun Dec 14 02:50:29 2014 5 relations: 32876 Sun Dec 14 02:50:29 2014 6 relations: 28809 Sun Dec 14 02:50:29 2014 7 relations: 25167 Sun Dec 14 02:50:29 2014 8 relations: 21309 Sun Dec 14 02:50:29 2014 9 relations: 18187 Sun Dec 14 02:50:29 2014 10+ relations: 80143 Sun Dec 14 02:50:29 2014 heaviest cycle: 25 relations Sun Dec 14 02:50:29 2014 RelProcTime: 48 Sun Dec 14 02:50:29 2014 Sun Dec 14 02:50:29 2014 commencing linear algebra Sun Dec 14 02:50:29 2014 read 343263 cycles Sun Dec 14 02:50:29 2014 cycles contain 1109552 unique relations Sun Dec 14 02:50:34 2014 read 1109552 relations Sun Dec 14 02:50:35 2014 using 20 quadratic characters above 67107534 Sun Dec 14 02:50:38 2014 building initial matrix Sun Dec 14 02:50:44 2014 memory use: 134.0 MB Sun Dec 14 02:50:44 2014 read 343263 cycles Sun Dec 14 02:50:44 2014 matrix is 343101 x 343263 (102.8 MB) with weight 31167931 (90.80/col) Sun Dec 14 02:50:44 2014 sparse part has weight 23161181 (67.47/col) Sun Dec 14 02:50:45 2014 filtering completed in 2 passes Sun Dec 14 02:50:45 2014 matrix is 343004 x 343174 (102.8 MB) with weight 31164991 (90.81/col) Sun Dec 14 02:50:45 2014 sparse part has weight 23160396 (67.49/col) Sun Dec 14 02:50:46 2014 matrix starts at (0, 0) Sun Dec 14 02:50:46 2014 matrix is 343004 x 343174 (102.8 MB) with weight 31164991 (90.81/col) Sun Dec 14 02:50:46 2014 sparse part has weight 23160396 (67.49/col) Sun Dec 14 02:50:46 2014 saving the first 48 matrix rows for later Sun Dec 14 02:50:46 2014 matrix includes 64 packed rows Sun Dec 14 02:50:46 2014 matrix is 342956 x 343174 (97.4 MB) with weight 24723947 (72.04/col) Sun Dec 14 02:50:46 2014 sparse part has weight 22096401 (64.39/col) Sun Dec 14 02:50:46 2014 using block size 65536 for processor cache size 8192 kB Sun Dec 14 02:50:47 2014 commencing Lanczos iteration (8 threads) Sun Dec 14 02:50:47 2014 memory use: 93.2 MB Sun Dec 14 02:50:53 2014 linear algebra at 3.5%, ETA 0h 2m Sun Dec 14 02:53:36 2014 lanczos halted after 5425 iterations (dim = 342951) Sun Dec 14 02:53:36 2014 recovered 38 nontrivial dependencies Sun Dec 14 02:53:36 2014 BLanczosTime: 187 Sun Dec 14 02:53:36 2014 Sun Dec 14 02:53:36 2014 commencing square root phase Sun Dec 14 02:53:36 2014 reading relations for dependency 1 Sun Dec 14 02:53:36 2014 read 171405 cycles Sun Dec 14 02:53:36 2014 cycles contain 555006 unique relations Sun Dec 14 02:53:40 2014 read 555006 relations Sun Dec 14 02:53:41 2014 multiplying 555006 relations Sun Dec 14 02:53:49 2014 multiply complete, coefficients have about 13.29 million bits Sun Dec 14 02:53:49 2014 initial square root is modulo 43202801 Sun Dec 14 02:53:58 2014 sqrtTime: 22 -- n: 5495441523305086893017648542557230320130000116537010520316197771441344063239900185204432411269286616217870915309 m: 50000000000000000000000000000 deg: 5 c5: 16 c0: 895 skew: 2.24 # Murphy_E = 2.072e-09 type: snfs lss: 1 rlim: 1810000 alim: 1810000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 |
software ソフトウェア | yafu v1.34.3 |
execution environment 実行環境 | Gentoo Linux, Intel(R) Core(TM) i7-3770K CPU |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 418 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) |
300 | Ignacio Santos | December 10, 2014 18:40:09 UTC 2014 年 12 月 11 日 (木) 3 時 40 分 9 秒 (日本時間) | |||
40 | 3e6 | 410 / 1122 | 110 | Ignacio Santos | December 10, 2014 18:40:09 UTC 2014 年 12 月 11 日 (木) 3 時 40 分 9 秒 (日本時間) |
300 | Serge Batalov | December 10, 2014 19:45:58 UTC 2014 年 12 月 11 日 (木) 4 時 45 分 58 秒 (日本時間) | |||
45 | 11e6 | 323 / 4371 | 32 | Ignacio Santos | December 10, 2014 18:40:09 UTC 2014 年 12 月 11 日 (木) 3 時 40 分 9 秒 (日本時間) |
291 | Pierre Jammes | December 12, 2014 10:24:40 UTC 2014 年 12 月 12 日 (金) 19 時 24 分 40 秒 (日本時間) |
name 名前 | Cyp |
---|---|
date 日付 | December 14, 2014 04:33:00 UTC 2014 年 12 月 14 日 (日) 13 時 33 分 0 秒 (日本時間) |
composite number 合成数 | 3669308101856010327194298101667815089500297391838885835893620128406099759774326421139362589036833115693176499<109> |
prime factors 素因数 | 884971793853434578856951935781104679503<39> 4146242995925027389125424555327400646927751272076455068277282010634333<70> |
factorization results 素因数分解の結果 | 12/14/14 04:35:58 v1.34.3, 12/14/14 04:35:58 v1.34.3, **************************** 12/14/14 04:35:58 v1.34.3, Starting factorization of 3669308101856010327194298101667815089500297391838885835893620128406099759774326421139362589036833115693176499 12/14/14 04:35:58 v1.34.3, using pretesting plan: none 12/14/14 04:35:58 v1.34.3, no tune info: using qs/gnfs crossover of 95 digits 12/14/14 04:35:58 v1.34.3, **************************** 12/14/14 04:35:58 v1.34.3, nfs: commencing nfs on c109: 3669308101856010327194298101667815089500297391838885835893620128406099759774326421139362589036833115693176499 12/14/14 04:35:58 v1.34.3, nfs: continuing with sieving - could not determine last special q; using default startq 12/14/14 04:35:58 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/14/14 04:36:14 v1.34.3, nfs: commencing lattice sieving with 8 threads [178 lines snipped] 12/14/14 05:28:40 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/14/14 05:28:57 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/14/14 05:29:15 v1.34.3, nfs: commencing msieve filtering 12/14/14 05:30:00 v1.34.3, nfs: commencing msieve linear algebra 12/14/14 05:32:26 v1.34.3, nfs: commencing msieve sqrt 12/14/14 05:32:59 v1.34.3, prp70 = 4146242995925027389125424555327400646927751272076455068277282010634333 12/14/14 05:32:59 v1.34.3, prp39 = 884971793853434578856951935781104679503 12/14/14 05:32:59 v1.34.3, NFS elapsed time = 3421.0446 seconds. 12/14/14 05:32:59 v1.34.3, 12/14/14 05:32:59 v1.34.3, 12/14/14 05:32:59 v1.34.3, Total factoring time = 3421.0451 seconds -- Sun Dec 14 05:29:15 2014 Sun Dec 14 05:29:15 2014 commencing relation filtering Sun Dec 14 05:29:15 2014 estimated available RAM is 15987.3 MB Sun Dec 14 05:29:15 2014 commencing duplicate removal, pass 1 Sun Dec 14 05:29:26 2014 found 770387 hash collisions in 4481532 relations Sun Dec 14 05:29:30 2014 added 179785 free relations Sun Dec 14 05:29:30 2014 commencing duplicate removal, pass 2 Sun Dec 14 05:29:33 2014 found 664483 duplicates and 3996834 unique relations Sun Dec 14 05:29:33 2014 memory use: 20.6 MB Sun Dec 14 05:29:33 2014 reading ideals above 100000 Sun Dec 14 05:29:33 2014 commencing singleton removal, initial pass Sun Dec 14 05:29:48 2014 memory use: 94.1 MB Sun Dec 14 05:29:48 2014 reading all ideals from disk Sun Dec 14 05:29:49 2014 memory use: 125.4 MB Sun Dec 14 05:29:49 2014 keeping 4583511 ideals with weight <= 200, target excess is 20129 Sun Dec 14 05:29:49 2014 commencing in-memory singleton removal Sun Dec 14 05:29:49 2014 begin with 3996834 relations and 4583511 unique ideals Sun Dec 14 05:29:50 2014 reduce to 1463273 relations and 1360756 ideals in 13 passes Sun Dec 14 05:29:50 2014 max relations containing the same ideal: 103 Sun Dec 14 05:29:50 2014 removing 239988 relations and 200404 ideals in 39584 cliques Sun Dec 14 05:29:50 2014 commencing in-memory singleton removal Sun Dec 14 05:29:50 2014 begin with 1223285 relations and 1360756 unique ideals Sun Dec 14 05:29:50 2014 reduce to 1193416 relations and 1129458 ideals in 7 passes Sun Dec 14 05:29:50 2014 max relations containing the same ideal: 92 Sun Dec 14 05:29:50 2014 removing 184113 relations and 144529 ideals in 39584 cliques Sun Dec 14 05:29:50 2014 commencing in-memory singleton removal Sun Dec 14 05:29:50 2014 begin with 1009303 relations and 1129458 unique ideals Sun Dec 14 05:29:51 2014 reduce to 989745 relations and 964744 ideals in 7 passes Sun Dec 14 05:29:51 2014 max relations containing the same ideal: 78 Sun Dec 14 05:29:51 2014 relations with 0 large ideals: 507 Sun Dec 14 05:29:51 2014 relations with 1 large ideals: 141 Sun Dec 14 05:29:51 2014 relations with 2 large ideals: 2976 Sun Dec 14 05:29:51 2014 relations with 3 large ideals: 23446 Sun Dec 14 05:29:51 2014 relations with 4 large ideals: 95001 Sun Dec 14 05:29:51 2014 relations with 5 large ideals: 218698 Sun Dec 14 05:29:51 2014 relations with 6 large ideals: 303397 Sun Dec 14 05:29:51 2014 relations with 7+ large ideals: 345579 Sun Dec 14 05:29:51 2014 commencing 2-way merge Sun Dec 14 05:29:51 2014 reduce to 612977 relation sets and 587976 unique ideals Sun Dec 14 05:29:51 2014 commencing full merge Sun Dec 14 05:29:57 2014 memory use: 75.6 MB Sun Dec 14 05:29:57 2014 found 306157 cycles, need 302176 Sun Dec 14 05:29:58 2014 weight of 302176 cycles is about 21494677 (71.13/cycle) Sun Dec 14 05:29:58 2014 distribution of cycle lengths: Sun Dec 14 05:29:58 2014 1 relations: 21280 Sun Dec 14 05:29:58 2014 2 relations: 29674 Sun Dec 14 05:29:58 2014 3 relations: 31838 Sun Dec 14 05:29:58 2014 4 relations: 30349 Sun Dec 14 05:29:58 2014 5 relations: 28540 Sun Dec 14 05:29:58 2014 6 relations: 25488 Sun Dec 14 05:29:58 2014 7 relations: 22891 Sun Dec 14 05:29:58 2014 8 relations: 20169 Sun Dec 14 05:29:58 2014 9 relations: 17596 Sun Dec 14 05:29:58 2014 10+ relations: 74351 Sun Dec 14 05:29:58 2014 heaviest cycle: 23 relations Sun Dec 14 05:29:58 2014 commencing cycle optimization Sun Dec 14 05:29:58 2014 start with 2045659 relations Sun Dec 14 05:30:00 2014 pruned 58537 relations Sun Dec 14 05:30:00 2014 memory use: 61.7 MB Sun Dec 14 05:30:00 2014 distribution of cycle lengths: Sun Dec 14 05:30:00 2014 1 relations: 21280 Sun Dec 14 05:30:00 2014 2 relations: 30283 Sun Dec 14 05:30:00 2014 3 relations: 32964 Sun Dec 14 05:30:00 2014 4 relations: 31179 Sun Dec 14 05:30:00 2014 5 relations: 29370 Sun Dec 14 05:30:00 2014 6 relations: 26163 Sun Dec 14 05:30:00 2014 7 relations: 23424 Sun Dec 14 05:30:00 2014 8 relations: 20422 Sun Dec 14 05:30:00 2014 9 relations: 17627 Sun Dec 14 05:30:00 2014 10+ relations: 69464 Sun Dec 14 05:30:00 2014 heaviest cycle: 23 relations Sun Dec 14 05:30:00 2014 RelProcTime: 45 Sun Dec 14 05:30:00 2014 Sun Dec 14 05:30:00 2014 commencing linear algebra Sun Dec 14 05:30:00 2014 read 302176 cycles Sun Dec 14 05:30:00 2014 cycles contain 964046 unique relations Sun Dec 14 05:30:05 2014 read 964046 relations Sun Dec 14 05:30:05 2014 using 20 quadratic characters above 67108530 Sun Dec 14 05:30:08 2014 building initial matrix Sun Dec 14 05:30:13 2014 memory use: 113.4 MB Sun Dec 14 05:30:13 2014 read 302176 cycles Sun Dec 14 05:30:13 2014 matrix is 301998 x 302176 (90.9 MB) with weight 27320527 (90.41/col) Sun Dec 14 05:30:13 2014 sparse part has weight 20516532 (67.90/col) Sun Dec 14 05:30:14 2014 filtering completed in 2 passes Sun Dec 14 05:30:14 2014 matrix is 301878 x 302056 (90.9 MB) with weight 27316379 (90.43/col) Sun Dec 14 05:30:14 2014 sparse part has weight 20515279 (67.92/col) Sun Dec 14 05:30:15 2014 matrix starts at (0, 0) Sun Dec 14 05:30:15 2014 matrix is 301878 x 302056 (90.9 MB) with weight 27316379 (90.43/col) Sun Dec 14 05:30:15 2014 sparse part has weight 20515279 (67.92/col) Sun Dec 14 05:30:15 2014 saving the first 48 matrix rows for later Sun Dec 14 05:30:15 2014 matrix includes 64 packed rows Sun Dec 14 05:30:15 2014 matrix is 301830 x 302056 (85.8 MB) with weight 21530896 (71.28/col) Sun Dec 14 05:30:15 2014 sparse part has weight 19475895 (64.48/col) Sun Dec 14 05:30:15 2014 using block size 65536 for processor cache size 8192 kB Sun Dec 14 05:30:15 2014 commencing Lanczos iteration (8 threads) Sun Dec 14 05:30:15 2014 memory use: 81.8 MB Sun Dec 14 05:30:21 2014 linear algebra at 4.0%, ETA 0h 2m Sun Dec 14 05:32:26 2014 lanczos halted after 4775 iterations (dim = 301830) Sun Dec 14 05:32:26 2014 recovered 38 nontrivial dependencies Sun Dec 14 05:32:26 2014 BLanczosTime: 146 Sun Dec 14 05:32:26 2014 Sun Dec 14 05:32:26 2014 commencing square root phase Sun Dec 14 05:32:26 2014 reading relations for dependency 1 Sun Dec 14 05:32:26 2014 read 150947 cycles Sun Dec 14 05:32:26 2014 cycles contain 481268 unique relations Sun Dec 14 05:32:29 2014 read 481268 relations Sun Dec 14 05:32:30 2014 multiplying 481268 relations Sun Dec 14 05:32:35 2014 multiply complete, coefficients have about 9.64 million bits Sun Dec 14 05:32:36 2014 initial square root is modulo 348571 Sun Dec 14 05:32:42 2014 GCD is 1, no factor found Sun Dec 14 05:32:42 2014 reading relations for dependency 2 Sun Dec 14 05:32:42 2014 read 151078 cycles Sun Dec 14 05:32:43 2014 cycles contain 482218 unique relations Sun Dec 14 05:32:46 2014 read 482218 relations Sun Dec 14 05:32:47 2014 multiplying 482218 relations Sun Dec 14 05:32:52 2014 multiply complete, coefficients have about 9.66 million bits Sun Dec 14 05:32:52 2014 initial square root is modulo 357571 Sun Dec 14 05:32:59 2014 sqrtTime: 33 -- n: 3669308101856010327194298101667815089500297391838885835893620128406099759774326421139362589036833115693176499 m: 100000000000000000000000000000 deg: 5 c5: 1 c0: 179 skew: 2.82 # Murphy_E = 2.475e-09 type: snfs lss: 1 rlim: 1830000 alim: 1830000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 |
software ソフトウェア | yafu v1.34.3 |
execution environment 実行環境 | Gentoo Linux, Intel(R) Core(TM) i7-3770K CPU |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 355 / 1476 | Pierre Jammes | December 8, 2014 19:49:00 UTC 2014 年 12 月 9 日 (火) 4 時 49 分 0 秒 (日本時間) | |
45 | 11e6 | 244 / 4397 | Pierre Jammes | December 11, 2014 16:18:45 UTC 2014 年 12 月 12 日 (金) 1 時 18 分 45 秒 (日本時間) |
name 名前 | Cyp |
---|---|
date 日付 | December 14, 2014 07:58:37 UTC 2014 年 12 月 14 日 (日) 16 時 58 分 37 秒 (日本時間) |
composite number 合成数 | 192734682867092955032607742750594340361028036179160175921022504952408581760514719442529676370693866311103<105> |
prime factors 素因数 | 1694805088767132012459394924661821946537546132862331<52> 113720854477310872386775759722034516570941335317756813<54> |
factorization results 素因数分解の結果 | 12/14/14 07:22:55 v1.34.3, 12/14/14 07:22:55 v1.34.3, **************************** 12/14/14 07:22:55 v1.34.3, Starting factorization of 192734682867092955032607742750594340361028036179160175921022504952408581760514719442529676370693866311103 12/14/14 07:22:55 v1.34.3, using pretesting plan: none 12/14/14 07:22:55 v1.34.3, no tune info: using qs/gnfs crossover of 95 digits 12/14/14 07:22:55 v1.34.3, **************************** 12/14/14 07:22:55 v1.34.3, nfs: commencing nfs on c105: 192734682867092955032607742750594340361028036179160175921022504952408581760514719442529676370693866311103 12/14/14 07:22:55 v1.34.3, nfs: continuing with sieving - could not determine last special q; using default startq 12/14/14 07:22:55 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/14/14 07:23:08 v1.34.3, nfs: commencing lattice sieving with 8 threads [298 lines snipped] 12/14/14 08:44:21 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/14/14 08:44:37 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/14/14 08:44:54 v1.34.3, nfs: commencing msieve filtering 12/14/14 08:45:34 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/14/14 08:45:51 v1.34.3, nfs: commencing lattice sieving with 8 threads [15 lines snipped] 12/14/14 08:50:15 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/14/14 08:50:32 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/14/14 08:50:49 v1.34.3, nfs: commencing msieve filtering 12/14/14 08:51:51 v1.34.3, nfs: commencing msieve linear algebra 12/14/14 08:57:15 v1.34.3, nfs: commencing msieve sqrt 12/14/14 08:58:36 v1.34.3, prp54 = 113720854477310872386775759722034516570941335317756813 12/14/14 08:58:36 v1.34.3, prp52 = 1694805088767132012459394924661821946537546132862331 12/14/14 08:58:36 v1.34.3, NFS elapsed time = 5740.5287 seconds. 12/14/14 08:58:36 v1.34.3, 12/14/14 08:58:36 v1.34.3, 12/14/14 08:58:36 v1.34.3, Total factoring time = 5740.5292 seconds -- Sun Dec 14 08:44:54 2014 Sun Dec 14 08:44:54 2014 commencing relation filtering Sun Dec 14 08:44:54 2014 estimated available RAM is 15987.3 MB Sun Dec 14 08:44:54 2014 commencing duplicate removal, pass 1 Sun Dec 14 08:45:06 2014 found 841916 hash collisions in 4477508 relations Sun Dec 14 08:45:10 2014 added 180363 free relations Sun Dec 14 08:45:10 2014 commencing duplicate removal, pass 2 Sun Dec 14 08:45:14 2014 found 765444 duplicates and 3892427 unique relations Sun Dec 14 08:45:14 2014 memory use: 20.6 MB Sun Dec 14 08:45:14 2014 reading ideals above 100000 Sun Dec 14 08:45:14 2014 commencing singleton removal, initial pass Sun Dec 14 08:45:32 2014 memory use: 94.1 MB Sun Dec 14 08:45:32 2014 reading all ideals from disk Sun Dec 14 08:45:32 2014 memory use: 124.1 MB Sun Dec 14 08:45:32 2014 keeping 4616752 ideals with weight <= 200, target excess is 20034 Sun Dec 14 08:45:33 2014 commencing in-memory singleton removal Sun Dec 14 08:45:33 2014 begin with 3892427 relations and 4616752 unique ideals Sun Dec 14 08:45:34 2014 reduce to 1289027 relations and 1296000 ideals in 16 passes Sun Dec 14 08:45:34 2014 max relations containing the same ideal: 93 Sun Dec 14 08:50:49 2014 Sun Dec 14 08:50:49 2014 commencing relation filtering Sun Dec 14 08:50:49 2014 estimated available RAM is 15987.3 MB Sun Dec 14 08:50:49 2014 commencing duplicate removal, pass 1 Sun Dec 14 08:51:04 2014 found 922925 hash collisions in 4892208 relations Sun Dec 14 08:51:09 2014 added 1404 free relations Sun Dec 14 08:51:09 2014 commencing duplicate removal, pass 2 Sun Dec 14 08:51:13 2014 found 827135 duplicates and 4066477 unique relations Sun Dec 14 08:51:13 2014 memory use: 22.6 MB Sun Dec 14 08:51:13 2014 reading ideals above 100000 Sun Dec 14 08:51:13 2014 commencing singleton removal, initial pass Sun Dec 14 08:51:32 2014 memory use: 94.1 MB Sun Dec 14 08:51:32 2014 reading all ideals from disk Sun Dec 14 08:51:32 2014 memory use: 129.7 MB Sun Dec 14 08:51:32 2014 keeping 4705759 ideals with weight <= 200, target excess is 20683 Sun Dec 14 08:51:33 2014 commencing in-memory singleton removal Sun Dec 14 08:51:33 2014 begin with 4066477 relations and 4705759 unique ideals Sun Dec 14 08:51:34 2014 reduce to 1471061 relations and 1420968 ideals in 14 passes Sun Dec 14 08:51:34 2014 max relations containing the same ideal: 100 Sun Dec 14 08:51:35 2014 removing 116585 relations and 103535 ideals in 13050 cliques Sun Dec 14 08:51:35 2014 commencing in-memory singleton removal Sun Dec 14 08:51:35 2014 begin with 1354476 relations and 1420968 unique ideals Sun Dec 14 08:51:35 2014 reduce to 1347998 relations and 1310863 ideals in 7 passes Sun Dec 14 08:51:35 2014 max relations containing the same ideal: 97 Sun Dec 14 08:51:35 2014 removing 85620 relations and 72570 ideals in 13050 cliques Sun Dec 14 08:51:35 2014 commencing in-memory singleton removal Sun Dec 14 08:51:36 2014 begin with 1262378 relations and 1310863 unique ideals Sun Dec 14 08:51:36 2014 reduce to 1258780 relations and 1234647 ideals in 7 passes Sun Dec 14 08:51:36 2014 max relations containing the same ideal: 92 Sun Dec 14 08:51:36 2014 relations with 0 large ideals: 497 Sun Dec 14 08:51:36 2014 relations with 1 large ideals: 135 Sun Dec 14 08:51:36 2014 relations with 2 large ideals: 2561 Sun Dec 14 08:51:36 2014 relations with 3 large ideals: 21977 Sun Dec 14 08:51:36 2014 relations with 4 large ideals: 97185 Sun Dec 14 08:51:36 2014 relations with 5 large ideals: 247422 Sun Dec 14 08:51:36 2014 relations with 6 large ideals: 382952 Sun Dec 14 08:51:36 2014 relations with 7+ large ideals: 506051 Sun Dec 14 08:51:36 2014 commencing 2-way merge Sun Dec 14 08:51:37 2014 reduce to 776247 relation sets and 752114 unique ideals Sun Dec 14 08:51:37 2014 commencing full merge Sun Dec 14 08:51:47 2014 memory use: 94.4 MB Sun Dec 14 08:51:47 2014 found 390872 cycles, need 388314 Sun Dec 14 08:51:47 2014 weight of 388314 cycles is about 27264901 (70.21/cycle) Sun Dec 14 08:51:47 2014 distribution of cycle lengths: Sun Dec 14 08:51:47 2014 1 relations: 31656 Sun Dec 14 08:51:47 2014 2 relations: 42017 Sun Dec 14 08:51:47 2014 3 relations: 44826 Sun Dec 14 08:51:47 2014 4 relations: 41398 Sun Dec 14 08:51:47 2014 5 relations: 36382 Sun Dec 14 08:51:47 2014 6 relations: 32556 Sun Dec 14 08:51:47 2014 7 relations: 27474 Sun Dec 14 08:51:47 2014 8 relations: 23240 Sun Dec 14 08:51:47 2014 9 relations: 19740 Sun Dec 14 08:51:47 2014 10+ relations: 89025 Sun Dec 14 08:51:47 2014 heaviest cycle: 26 relations Sun Dec 14 08:51:47 2014 commencing cycle optimization Sun Dec 14 08:51:47 2014 start with 2548322 relations Sun Dec 14 08:51:50 2014 pruned 68667 relations Sun Dec 14 08:51:50 2014 memory use: 78.3 MB Sun Dec 14 08:51:50 2014 distribution of cycle lengths: Sun Dec 14 08:51:50 2014 1 relations: 31656 Sun Dec 14 08:51:50 2014 2 relations: 42826 Sun Dec 14 08:51:50 2014 3 relations: 46522 Sun Dec 14 08:51:50 2014 4 relations: 42428 Sun Dec 14 08:51:50 2014 5 relations: 37381 Sun Dec 14 08:51:50 2014 6 relations: 33007 Sun Dec 14 08:51:50 2014 7 relations: 27825 Sun Dec 14 08:51:50 2014 8 relations: 23243 Sun Dec 14 08:51:50 2014 9 relations: 19744 Sun Dec 14 08:51:50 2014 10+ relations: 83682 Sun Dec 14 08:51:50 2014 heaviest cycle: 26 relations Sun Dec 14 08:51:51 2014 RelProcTime: 62 Sun Dec 14 08:51:51 2014 Sun Dec 14 08:51:51 2014 commencing linear algebra Sun Dec 14 08:51:51 2014 read 388314 cycles Sun Dec 14 08:51:51 2014 cycles contain 1238967 unique relations Sun Dec 14 08:51:57 2014 read 1238967 relations Sun Dec 14 08:51:58 2014 using 20 quadratic characters above 67102670 Sun Dec 14 08:52:02 2014 building initial matrix Sun Dec 14 08:52:12 2014 memory use: 148.7 MB Sun Dec 14 08:52:12 2014 read 388314 cycles Sun Dec 14 08:52:12 2014 matrix is 388185 x 388314 (115.8 MB) with weight 34431112 (88.67/col) Sun Dec 14 08:52:12 2014 sparse part has weight 26093529 (67.20/col) Sun Dec 14 08:52:14 2014 filtering completed in 2 passes Sun Dec 14 08:52:14 2014 matrix is 388018 x 388176 (115.8 MB) with weight 34425763 (88.69/col) Sun Dec 14 08:52:14 2014 sparse part has weight 26091307 (67.22/col) Sun Dec 14 08:52:15 2014 matrix starts at (0, 0) Sun Dec 14 08:52:15 2014 matrix is 388018 x 388176 (115.8 MB) with weight 34425763 (88.69/col) Sun Dec 14 08:52:15 2014 sparse part has weight 26091307 (67.22/col) Sun Dec 14 08:52:15 2014 saving the first 48 matrix rows for later Sun Dec 14 08:52:15 2014 matrix includes 64 packed rows Sun Dec 14 08:52:15 2014 matrix is 387970 x 388176 (108.8 MB) with weight 27095768 (69.80/col) Sun Dec 14 08:52:15 2014 sparse part has weight 24647689 (63.50/col) Sun Dec 14 08:52:15 2014 using block size 65536 for processor cache size 8192 kB Sun Dec 14 08:52:16 2014 commencing Lanczos iteration (8 threads) Sun Dec 14 08:52:16 2014 memory use: 104.3 MB Sun Dec 14 08:52:25 2014 linear algebra at 3.1%, ETA 0h 4m Sun Dec 14 08:57:15 2014 lanczos halted after 6137 iterations (dim = 387960) Sun Dec 14 08:57:15 2014 recovered 36 nontrivial dependencies Sun Dec 14 08:57:15 2014 BLanczosTime: 324 Sun Dec 14 08:57:15 2014 Sun Dec 14 08:57:15 2014 commencing square root phase Sun Dec 14 08:57:15 2014 reading relations for dependency 1 Sun Dec 14 08:57:15 2014 read 193937 cycles Sun Dec 14 08:57:16 2014 cycles contain 619720 unique relations Sun Dec 14 08:57:20 2014 read 619720 relations Sun Dec 14 08:57:21 2014 multiplying 619720 relations Sun Dec 14 08:57:30 2014 multiply complete, coefficients have about 14.38 million bits Sun Dec 14 08:57:30 2014 initial square root is modulo 183239431 Sun Dec 14 08:57:41 2014 GCD is 1, no factor found Sun Dec 14 08:57:41 2014 reading relations for dependency 2 Sun Dec 14 08:57:42 2014 read 194366 cycles Sun Dec 14 08:57:42 2014 cycles contain 619584 unique relations Sun Dec 14 08:57:46 2014 read 619584 relations Sun Dec 14 08:57:47 2014 multiplying 619584 relations Sun Dec 14 08:57:56 2014 multiply complete, coefficients have about 14.38 million bits Sun Dec 14 08:57:56 2014 initial square root is modulo 182381011 Sun Dec 14 08:58:07 2014 GCD is 1, no factor found Sun Dec 14 08:58:07 2014 reading relations for dependency 3 Sun Dec 14 08:58:07 2014 read 194773 cycles Sun Dec 14 08:58:08 2014 cycles contain 621640 unique relations Sun Dec 14 08:58:12 2014 read 621640 relations Sun Dec 14 08:58:13 2014 multiplying 621640 relations Sun Dec 14 08:58:24 2014 multiply complete, coefficients have about 14.43 million bits Sun Dec 14 08:58:24 2014 initial square root is modulo 194164351 Sun Dec 14 08:58:36 2014 sqrtTime: 81 -- n: 192734682867092955032607742750594340361028036179160175921022504952408581760514719442529676370693866311103 m: 100000000000000000000000000000 deg: 5 c5: 10 c0: 179 skew: 1.78 # Murphy_E = 1.781e-09 type: snfs lss: 1 rlim: 1900000 alim: 1900000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 |
software ソフトウェア | yafu v1.34.3 |
execution environment 実行環境 | Gentoo Linux, Intel(R) Core(TM) i7-3770K CPU |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) |
786 | KTakahashi | December 6, 2014 18:08:39 UTC 2014 年 12 月 7 日 (日) 3 時 8 分 39 秒 (日本時間) | |||
40 | 3e6 | 0 / 1690 | - | - | |
45 | 11e6 | 120 / 4439 | Pierre Jammes | December 8, 2014 18:25:38 UTC 2014 年 12 月 9 日 (火) 3 時 25 分 38 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 15, 2014 11:52:32 UTC 2014 年 12 月 15 日 (月) 20 時 52 分 32 秒 (日本時間) |
composite number 合成数 | 681549463447680839353765802834905968866405662696750093630736046541416341437364712084921120422071033456288112382186232474396296987088643<135> |
prime factors 素因数 | 12013004302430230572753964384018853127399583136387<50> 56734306114399991858037440894170965508835822159530824064894396687387666184348534114689<86> |
factorization results 素因数分解の結果 | N=681549463447680839353765802834905968866405662696750093630736046541416341437364712084921120422071033456288112382186232474396296987088643 ( 135 digits) SNFS difficulty: 149 digits. Divisors found: r1=12013004302430230572753964384018853127399583136387 (pp50) r2=56734306114399991858037440894170965508835822159530824064894396687387666184348534114689 (pp86) Version: Msieve v. 1.50 (SVN unknown) Total time: 10.57 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 681549463447680839353765802834905968866405662696750093630736046541416341437364712084921120422071033456288112382186232474396296987088643 m: 500000000000000000000000000000 deg: 5 c5: 16 c0: 895 skew: 2.24 # Murphy_E = 1.345e-09 type: snfs lss: 1 rlim: 2200000 alim: 2200000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 2200000/2200000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [1100000, 2900001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 338724 x 338956 Total sieving time: 10.31 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.11 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,149.000,5,0,0,0,0,0,0,0,0,2200000,2200000,26,26,49,49,2.3,2.3,100000 total time: 10.57 hours. |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 / 2318 | Serge Batalov | December 10, 2014 19:45:59 UTC 2014 年 12 月 11 日 (木) 4 時 45 分 59 秒 (日本時間) |
name 名前 | KTakahashi |
---|---|
date 日付 | December 6, 2014 18:03:08 UTC 2014 年 12 月 7 日 (日) 3 時 3 分 8 秒 (日本時間) |
composite number 合成数 | 69190013255411188524615080499511895417124591742105846602579972387812173072165389271878010421437073<98> |
prime factors 素因数 | 757550224726954867808962718201<30> 91333895756349968960711584230592251505579228847628290820289926128473<68> |
factorization results 素因数分解の結果 | GMP-ECM 6.4.4 [configured with GMP 6.0.0] [P+1] Input number is 69190013255411188524615080499511895417124591742105846602579972387812173072165389271878010421437073 (98 digits) Using B1=2000000, B2=11183915446, polynomial x^1, x0=2270268000 Step 1 took 1092ms Step 2 took 1294ms ********** Factor found in step 2: 757550224726954867808962718201 Found probable prime factor of 30 digits: 757550224726954867808962718201 Probable prime cofactor 91333895756349968960711584230592251505579228847628290820289926128473 has 68 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 9, 2014 08:06:45 UTC 2014 年 12 月 9 日 (火) 17 時 6 分 45 秒 (日本時間) |
composite number 合成数 | 358422939068100358422939068100358422939068100358422939068100358422939068100358422939068100358422939068100358422939068100358422939068100358422939068101<150> |
prime factors 素因数 | 90215337707846850283525849520704136753933323733868893<53> 3972971206169137337135642473309218277546451914985076741553658328807276850129241439279568888888457<97> |
factorization results 素因数分解の結果 | N=358422939068100358422939068100358422939068100358422939068100358422939068100358422939068100358422939068100358422939068100358422939068100358422939068101 ( 150 digits) SNFS difficulty: 152 digits. Divisors found: r1=90215337707846850283525849520704136753933323733868893 (pp53) r2=3972971206169137337135642473309218277546451914985076741553658328807276850129241439279568888888457 (pp97) Version: Msieve v. 1.50 (SVN unknown) Total time: 13.54 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 358422939068100358422939068100358422939068100358422939068100358422939068100358422939068100358422939068100358422939068100358422939068100358422939068101 m: 1000000000000000000000000000000 deg: 5 c5: 100 c0: 179 skew: 1.12 # Murphy_E = 1.038e-09 type: snfs lss: 1 rlim: 2400000 alim: 2400000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1200000, 2000001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 457389 x 457620 Total sieving time: 13.12 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.20 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: snfs,152.000,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,50,50,2.4,2.4,100000 total time: 13.54 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2320 | Serge Batalov | December 8, 2014 19:27:20 UTC 2014 年 12 月 9 日 (火) 4 時 27 分 20 秒 (日本時間) |
name 名前 | Erik Branger |
---|---|
date 日付 | December 9, 2014 19:13:33 UTC 2014 年 12 月 10 日 (水) 4 時 13 分 33 秒 (日本時間) |
composite number 合成数 | 368165988228621824761281195218138132394820701936069178899955823710848727336661727510499444451656254941114023<108> |
prime factors 素因数 | 1641008358544219017504026367105556805567651<43> 224353511858544950179983138057507606399103796316705238095723350573<66> |
factorization results 素因数分解の結果 | Number: 11131_154 N = 368165988228621824761281195218138132394820701936069178899955823710848727336661727510499444451656254941114023 (108 digits) Divisors found: r1=1641008358544219017504026367105556805567651 (pp43) r2=224353511858544950179983138057507606399103796316705238095723350573 (pp66) Version: Msieve v. 1.51 (SVN 845) Total time: 6.96 hours. Factorization parameters were as follows: n: 368165988228621824761281195218138132394820701936069178899955823710848727336661727510499444451656254941114023 Y0: -150375683470759565797918815 Y1: 14328817877941 c0: 4641812114491842812518738098148 c1: -784129472192653616939792 c2: -262854245825286787 c3: 12383073578 c4: 720 skew: 12797008.23 type: gnfs Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 26/26 Sieved algebraic special-q in [0, 0) Total raw relations: 5649676 Relations: 568606 relations Pruned matrix : 345166 x 345394 Polynomial selection time: 0.00 hours. Total sieving time: 6.83 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.09 hours. time per square root: 0.02 hours. Prototype def-par.txt line would be: gnfs,107,4,59,2000,0.0006,0.25,200,15,15000,2000,2500000,2500000,26,26,49,49,2.6,2.6,150000 total time: 6.96 hours. Intel64 Family 6 Model 58 Stepping 9, GenuineIntel Windows-7-6.1.7601-SP1 processors: 8, speed: 2.29GHz |
software ソフトウェア | GGNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 418 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) |
300 | Ignacio Santos | December 8, 2014 17:06:36 UTC 2014 年 12 月 9 日 (火) 2 時 6 分 36 秒 (日本時間) | |||
40 | 3e6 | 110 / 2126 | Ignacio Santos | December 8, 2014 17:06:36 UTC 2014 年 12 月 9 日 (火) 2 時 6 分 36 秒 (日本時間) | |
45 | 11e6 | 32 / 4437 | Ignacio Santos | December 8, 2014 17:06:36 UTC 2014 年 12 月 9 日 (火) 2 時 6 分 36 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | December 10, 2014 20:20:33 UTC 2014 年 12 月 11 日 (木) 5 時 20 分 33 秒 (日本時間) |
composite number 合成数 | 80344487457569893734644111988765837917895699725734980198138457559419298591056165604987316556456752744850074772347135875269<122> |
prime factors 素因数 | 541534054029991949222848556778479<33> 6645310427459998852266986683747865686108207<43> 22326211735897618261761772345015525545642012773<47> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1660293133 Step 1 took 7680ms Step 2 took 6260ms ********** Factor found in step 2: 541534054029991949222848556778479 Found probable prime factor of 33 digits: 541534054029991949222848556778479 -- Input number is 80344487457569893734644111988765837917895699725734980198138457559419298591056165604987316556456752744850074772347135875269 (122 digits) Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=4294528441 Step 1 took 7678ms Step 2 took 6266ms ********** Factor found in step 2: 6645310427459998852266986683747865686108207 Found probable prime factor of 43 digits: 6645310427459998852266986683747865686108207 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 / 2318 | Serge Batalov | December 10, 2014 19:45:59 UTC 2014 年 12 月 11 日 (木) 4 時 45 分 59 秒 (日本時間) |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | January 1, 2015 13:04:22 UTC 2015 年 1 月 1 日 (木) 22 時 4 分 22 秒 (日本時間) |
composite number 合成数 | 263956648945902562623725028412348104744897076720405870610460428841422513957721478580964754973765846274108678949895395733<120> |
prime factors 素因数 | 279050769229794369019438036189987554184317649925718763386599<60> 945909053303981357492559544851217757628140708473118409746467<60> |
factorization results 素因数分解の結果 | Number: 11131_162 N=263956648945902562623725028412348104744897076720405870610460428841422513957721478580964754973765846274108678949895395733 ( 120 digits) SNFS difficulty: 162 digits. Divisors found: r1=279050769229794369019438036189987554184317649925718763386599 r2=945909053303981357492559544851217757628140708473118409746467 Version: Total time: 11.97 hours. Scaled time: 62.86 units (timescale=5.253). Factorization parameters were as follows: n: 263956648945902562623725028412348104744897076720405870610460428841422513957721478580964754973765846274108678949895395733 m: 100000000000000000000000000000000 deg: 5 c5: 100 c0: 179 skew: 1.12 # Murphy_E = 4.284e-10 type: snfs lss: 1 rlim: 3600000 alim: 3600000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3600000/3600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1800000, 3525001) Primes: rational ideals reading, algebraic ideals reading, Relations: 9713219 Max relations in full relation-set: Initial matrix: Pruned matrix : 668938 x 669186 Total sieving time: 10.94 hours. Total relation processing time: 0.53 hours. Matrix solve time: 0.42 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,162,5,0,0,0,0,0,0,0,0,3600000,3600000,27,27,51,51,2.4,2.4,75000 total time: 11.97 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM) i7-4930K CPU @ 3.40GHz stepping 04 Memory: 49373664k/51380224k available (5220k kernel code, 1086460k absent, 920100k reserved, 7121k data, 1264k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 6799.88 BogoMIPS (lpj=3399941) Total of 12 processors activated (81598.58 BogoMIPS). |
software ソフトウェア | GGNFS / Msieve v1.39 |
execution environment 実行環境 | Core i7-4930K |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 | Serge Batalov | December 10, 2014 19:46:00 UTC 2014 年 12 月 11 日 (木) 4 時 46 分 0 秒 (日本時間) | |
45 | 11e6 | 770 / 4409 | Pierre Jammes | December 15, 2014 07:46:30 UTC 2014 年 12 月 15 日 (月) 16 時 46 分 30 秒 (日本時間) |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | January 6, 2015 13:13:51 UTC 2015 年 1 月 6 日 (火) 22 時 13 分 51 秒 (日本時間) |
composite number 合成数 | 1542969024573610249137377463241758674676055795552640369895124130345832532915679496002005402559312416905510165108790735953462821316198049291645334279<148> |
prime factors 素因数 | 6458158084800648970279774422665544268045417101046714057013550139<64> 238917815933463443820641736151841695224996577562293140785088626555392633815413732261<84> |
factorization results 素因数分解の結果 | Number: 11131_163 N=1542969024573610249137377463241758674676055795552640369895124130345832532915679496002005402559312416905510165108790735953462821316198049291645334279 ( 148 digits) SNFS difficulty: 163 digits. Divisors found: r1=6458158084800648970279774422665544268045417101046714057013550139 r2=238917815933463443820641736151841695224996577562293140785088626555392633815413732261 Version: Total time: 13.68 hours. Scaled time: 71.13 units (timescale=5.198). Factorization parameters were as follows: n: 1542969024573610249137377463241758674676055795552640369895124130345832532915679496002005402559312416905510165108790735953462821316198049291645334279 m: 200000000000000000000000000000000 deg: 5 c5: 125 c0: 716 skew: 1.42 # Murphy_E = 3.387e-10 type: snfs lss: 1 rlim: 3800000 alim: 3800000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3800000/3800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1900000, 3900001) Primes: rational ideals reading, algebraic ideals reading, Relations: 9688360 Max relations in full relation-set: Initial matrix: Pruned matrix : 737967 x 738215 Total sieving time: 12.66 hours. Total relation processing time: 0.47 hours. Matrix solve time: 0.51 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,163,5,0,0,0,0,0,0,0,0,3800000,3800000,27,27,51,51,2.4,2.4,100000 total time: 13.68 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM) i7-4930K CPU @ 3.40GHz stepping 04 Memory: 49373664k/51380224k available (5220k kernel code, 1086460k absent, 920100k reserved, 7121k data, 1264k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 6800.24 BogoMIPS (lpj=3400120) Total of 12 processors activated (81602.88 BogoMIPS). |
software ソフトウェア | GGNFS / Msieve v1.39 |
execution environment 実行環境 | Core i7-4930K |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 / 2318 | Serge Batalov | December 10, 2014 19:46:00 UTC 2014 年 12 月 11 日 (木) 4 時 46 分 0 秒 (日本時間) |
name 名前 | Cyp |
---|---|
date 日付 | December 12, 2014 04:11:53 UTC 2014 年 12 月 12 日 (金) 13 時 11 分 53 秒 (日本時間) |
composite number 合成数 | 2320435667180097755177813981532078901505429212089350812332948917584222303374426484102208668804363664769836212373<112> |
prime factors 素因数 | 7632528962967057393035936940281833274594151592537956173<55> 304019241648321923513537692622867214190723705976294519401<57> |
factorization results 素因数分解の結果 | 12/12/14 03:09:18 v1.34.3, 12/12/14 03:09:18 v1.34.3, **************************** 12/12/14 03:09:18 v1.34.3, Starting factorization of 2320435667180097755177813981532078901505429212089350812332948917584222303374426484102208668804363664769836212373 12/12/14 03:09:18 v1.34.3, using pretesting plan: none 12/12/14 03:09:18 v1.34.3, no tune info: using qs/gnfs crossover of 95 digits 12/12/14 03:09:18 v1.34.3, **************************** 12/12/14 03:09:18 v1.34.3, rho: x^2 + 3, starting 1000 iterations on C112 12/12/14 03:09:18 v1.34.3, rho: x^2 + 2, starting 1000 iterations on C112 12/12/14 03:09:18 v1.34.3, rho: x^2 + 1, starting 1000 iterations on C112 12/12/14 03:09:18 v1.34.3, final ECM pretested depth: 0.00 12/12/14 03:09:18 v1.34.3, scheduler: switching to sieve method 12/12/14 03:09:18 v1.34.3, nfs: commencing nfs on c112: 2320435667180097755177813981532078901505429212089350812332948917584222303374426484102208668804363664769836212373 12/12/14 03:09:18 v1.34.3, nfs: commencing poly selection with 8 threads 12/12/14 03:09:18 v1.34.3, nfs: setting deadline of 575 seconds 12/12/14 03:18:54 v1.34.3, nfs: completed 147 ranges of size 250 in 575.7574 seconds 12/12/14 03:18:54 v1.34.3, nfs: best poly = # norm 1.284116e-10 alpha -5.933246 e 8.048e-10 rroots 3 12/12/14 03:18:54 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/12/14 03:23:54 v1.34.3, nfs: commencing lattice sieving with 8 threads [12 lines snipped] 12/12/14 04:29:48 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/12/14 04:34:57 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/12/14 04:39:49 v1.34.3, nfs: commencing msieve filtering 12/12/14 04:40:31 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/12/14 04:45:46 v1.34.3, nfs: commencing msieve filtering 12/12/14 04:46:32 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/12/14 04:51:44 v1.34.3, nfs: commencing msieve filtering 12/12/14 04:52:33 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/12/14 04:57:37 v1.34.3, nfs: commencing msieve filtering 12/12/14 04:58:29 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/12/14 05:03:44 v1.34.3, nfs: commencing msieve filtering 12/12/14 05:04:54 v1.34.3, nfs: commencing msieve linear algebra 12/12/14 05:10:48 v1.34.3, nfs: commencing msieve sqrt 12/12/14 05:11:52 v1.34.3, prp57 = 304019241648321923513537692622867214190723705976294519401 12/12/14 05:11:52 v1.34.3, prp55 = 7632528962967057393035936940281833274594151592537956173 12/12/14 05:11:52 v1.34.3, NFS elapsed time = 7353.6611 seconds. 12/12/14 05:11:52 v1.34.3, 12/12/14 05:11:52 v1.34.3, 12/12/14 05:11:52 v1.34.3, Total factoring time = 7353.6832 seconds -- Fri Dec 12 04:39:49 2014 Fri Dec 12 04:39:49 2014 commencing relation filtering Fri Dec 12 04:39:49 2014 estimated available RAM is 15987.3 MB Fri Dec 12 04:39:49 2014 commencing duplicate removal, pass 1 Fri Dec 12 04:40:03 2014 found 412430 hash collisions in 4509753 relations Fri Dec 12 04:40:07 2014 added 32692 free relations Fri Dec 12 04:40:07 2014 commencing duplicate removal, pass 2 Fri Dec 12 04:40:11 2014 found 177354 duplicates and 4365091 unique relations Fri Dec 12 04:40:11 2014 memory use: 19.6 MB Fri Dec 12 04:40:11 2014 reading ideals above 100000 Fri Dec 12 04:40:11 2014 commencing singleton removal, initial pass Fri Dec 12 04:40:30 2014 memory use: 172.2 MB Fri Dec 12 04:40:30 2014 reading all ideals from disk Fri Dec 12 04:40:30 2014 memory use: 148.2 MB Fri Dec 12 04:40:30 2014 keeping 5400397 ideals with weight <= 200, target excess is 23971 Fri Dec 12 04:40:30 2014 commencing in-memory singleton removal Fri Dec 12 04:40:30 2014 begin with 4365091 relations and 5400397 unique ideals Fri Dec 12 04:40:31 2014 reduce to 87 relations and 0 ideals in 22 passes Fri Dec 12 04:40:31 2014 max relations containing the same ideal: 0 Fri Dec 12 04:45:46 2014 Fri Dec 12 04:45:46 2014 commencing relation filtering Fri Dec 12 04:45:46 2014 estimated available RAM is 15987.3 MB Fri Dec 12 04:45:46 2014 commencing duplicate removal, pass 1 Fri Dec 12 04:46:01 2014 found 464427 hash collisions in 4825415 relations Fri Dec 12 04:46:06 2014 added 68 free relations Fri Dec 12 04:46:06 2014 commencing duplicate removal, pass 2 Fri Dec 12 04:46:09 2014 found 198580 duplicates and 4626903 unique relations Fri Dec 12 04:46:09 2014 memory use: 20.6 MB Fri Dec 12 04:46:09 2014 reading ideals above 100000 Fri Dec 12 04:46:09 2014 commencing singleton removal, initial pass Fri Dec 12 04:46:29 2014 memory use: 172.2 MB Fri Dec 12 04:46:30 2014 reading all ideals from disk Fri Dec 12 04:46:30 2014 memory use: 157.1 MB Fri Dec 12 04:46:30 2014 keeping 5530607 ideals with weight <= 200, target excess is 24941 Fri Dec 12 04:46:30 2014 commencing in-memory singleton removal Fri Dec 12 04:46:30 2014 begin with 4626903 relations and 5530607 unique ideals Fri Dec 12 04:46:32 2014 reduce to 931125 relations and 1088542 ideals in 36 passes Fri Dec 12 04:46:32 2014 max relations containing the same ideal: 63 Fri Dec 12 04:51:44 2014 Fri Dec 12 04:51:44 2014 commencing relation filtering Fri Dec 12 04:51:44 2014 estimated available RAM is 15987.3 MB Fri Dec 12 04:51:44 2014 commencing duplicate removal, pass 1 Fri Dec 12 04:52:00 2014 found 513273 hash collisions in 5101701 relations Fri Dec 12 04:52:05 2014 added 47 free relations Fri Dec 12 04:52:05 2014 commencing duplicate removal, pass 2 Fri Dec 12 04:52:09 2014 found 220099 duplicates and 4881649 unique relations Fri Dec 12 04:52:09 2014 memory use: 20.6 MB Fri Dec 12 04:52:09 2014 reading ideals above 100000 Fri Dec 12 04:52:09 2014 commencing singleton removal, initial pass Fri Dec 12 04:52:30 2014 memory use: 172.2 MB Fri Dec 12 04:52:30 2014 reading all ideals from disk Fri Dec 12 04:52:31 2014 memory use: 165.8 MB Fri Dec 12 04:52:31 2014 keeping 5649115 ideals with weight <= 200, target excess is 25982 Fri Dec 12 04:52:31 2014 commencing in-memory singleton removal Fri Dec 12 04:52:31 2014 begin with 4881649 relations and 5649115 unique ideals Fri Dec 12 04:52:33 2014 reduce to 1383142 relations and 1478930 ideals in 27 passes Fri Dec 12 04:52:33 2014 max relations containing the same ideal: 85 Fri Dec 12 04:57:37 2014 Fri Dec 12 04:57:37 2014 commencing relation filtering Fri Dec 12 04:57:37 2014 estimated available RAM is 15987.3 MB Fri Dec 12 04:57:37 2014 commencing duplicate removal, pass 1 Fri Dec 12 04:57:54 2014 found 564331 hash collisions in 5378317 relations Fri Dec 12 04:57:59 2014 added 40 free relations Fri Dec 12 04:57:59 2014 commencing duplicate removal, pass 2 Fri Dec 12 04:58:03 2014 found 242835 duplicates and 5135522 unique relations Fri Dec 12 04:58:03 2014 memory use: 20.6 MB Fri Dec 12 04:58:03 2014 reading ideals above 100000 Fri Dec 12 04:58:03 2014 commencing singleton removal, initial pass Fri Dec 12 04:58:25 2014 memory use: 172.2 MB Fri Dec 12 04:58:26 2014 reading all ideals from disk Fri Dec 12 04:58:26 2014 memory use: 174.5 MB Fri Dec 12 04:58:26 2014 keeping 5760817 ideals with weight <= 200, target excess is 26988 Fri Dec 12 04:58:27 2014 commencing in-memory singleton removal Fri Dec 12 04:58:27 2014 begin with 5135522 relations and 5760817 unique ideals Fri Dec 12 04:58:29 2014 reduce to 1764558 relations and 1781151 ideals in 23 passes Fri Dec 12 04:58:29 2014 max relations containing the same ideal: 96 Fri Dec 12 05:03:44 2014 Fri Dec 12 05:03:44 2014 commencing relation filtering Fri Dec 12 05:03:44 2014 estimated available RAM is 15987.3 MB Fri Dec 12 05:03:44 2014 commencing duplicate removal, pass 1 Fri Dec 12 05:04:01 2014 found 618588 hash collisions in 5663905 relations Fri Dec 12 05:04:08 2014 added 34 free relations Fri Dec 12 05:04:08 2014 commencing duplicate removal, pass 2 Fri Dec 12 05:04:13 2014 found 267068 duplicates and 5396871 unique relations Fri Dec 12 05:04:13 2014 memory use: 20.6 MB Fri Dec 12 05:04:13 2014 reading ideals above 100000 Fri Dec 12 05:04:13 2014 commencing singleton removal, initial pass Fri Dec 12 05:04:36 2014 memory use: 172.2 MB Fri Dec 12 05:04:37 2014 reading all ideals from disk Fri Dec 12 05:04:37 2014 memory use: 183.5 MB Fri Dec 12 05:04:37 2014 keeping 5867407 ideals with weight <= 200, target excess is 28305 Fri Dec 12 05:04:37 2014 commencing in-memory singleton removal Fri Dec 12 05:04:37 2014 begin with 5396871 relations and 5867407 unique ideals Fri Dec 12 05:04:39 2014 reduce to 2139382 relations and 2059591 ideals in 17 passes Fri Dec 12 05:04:39 2014 max relations containing the same ideal: 105 Fri Dec 12 05:04:40 2014 removing 246011 relations and 222532 ideals in 23479 cliques Fri Dec 12 05:04:40 2014 commencing in-memory singleton removal Fri Dec 12 05:04:40 2014 begin with 1893371 relations and 2059591 unique ideals Fri Dec 12 05:04:40 2014 reduce to 1868656 relations and 1811923 ideals in 10 passes Fri Dec 12 05:04:40 2014 max relations containing the same ideal: 94 Fri Dec 12 05:04:41 2014 removing 181634 relations and 158155 ideals in 23479 cliques Fri Dec 12 05:04:41 2014 commencing in-memory singleton removal Fri Dec 12 05:04:41 2014 begin with 1687022 relations and 1811923 unique ideals Fri Dec 12 05:04:41 2014 reduce to 1671456 relations and 1637984 ideals in 10 passes Fri Dec 12 05:04:41 2014 max relations containing the same ideal: 90 Fri Dec 12 05:04:42 2014 relations with 0 large ideals: 92 Fri Dec 12 05:04:42 2014 relations with 1 large ideals: 142 Fri Dec 12 05:04:42 2014 relations with 2 large ideals: 2459 Fri Dec 12 05:04:42 2014 relations with 3 large ideals: 23346 Fri Dec 12 05:04:42 2014 relations with 4 large ideals: 112783 Fri Dec 12 05:04:42 2014 relations with 5 large ideals: 306296 Fri Dec 12 05:04:42 2014 relations with 6 large ideals: 484160 Fri Dec 12 05:04:42 2014 relations with 7+ large ideals: 742178 Fri Dec 12 05:04:42 2014 commencing 2-way merge Fri Dec 12 05:04:42 2014 reduce to 951579 relation sets and 918107 unique ideals Fri Dec 12 05:04:42 2014 commencing full merge Fri Dec 12 05:04:50 2014 memory use: 102.9 MB Fri Dec 12 05:04:51 2014 found 466143 cycles, need 462307 Fri Dec 12 05:04:51 2014 weight of 462307 cycles is about 32590430 (70.50/cycle) Fri Dec 12 05:04:51 2014 distribution of cycle lengths: Fri Dec 12 05:04:51 2014 1 relations: 54679 Fri Dec 12 05:04:51 2014 2 relations: 53408 Fri Dec 12 05:04:51 2014 3 relations: 52592 Fri Dec 12 05:04:51 2014 4 relations: 46504 Fri Dec 12 05:04:51 2014 5 relations: 41360 Fri Dec 12 05:04:51 2014 6 relations: 35751 Fri Dec 12 05:04:51 2014 7 relations: 30983 Fri Dec 12 05:04:51 2014 8 relations: 26366 Fri Dec 12 05:04:51 2014 9 relations: 22478 Fri Dec 12 05:04:51 2014 10+ relations: 98186 Fri Dec 12 05:04:51 2014 heaviest cycle: 24 relations Fri Dec 12 05:04:51 2014 commencing cycle optimization Fri Dec 12 05:04:51 2014 start with 2868252 relations Fri Dec 12 05:04:53 2014 pruned 58094 relations Fri Dec 12 05:04:53 2014 memory use: 96.5 MB Fri Dec 12 05:04:53 2014 distribution of cycle lengths: Fri Dec 12 05:04:53 2014 1 relations: 54679 Fri Dec 12 05:04:53 2014 2 relations: 54534 Fri Dec 12 05:04:53 2014 3 relations: 54163 Fri Dec 12 05:04:53 2014 4 relations: 47401 Fri Dec 12 05:04:53 2014 5 relations: 42234 Fri Dec 12 05:04:53 2014 6 relations: 35899 Fri Dec 12 05:04:53 2014 7 relations: 31150 Fri Dec 12 05:04:53 2014 8 relations: 26328 Fri Dec 12 05:04:53 2014 9 relations: 22301 Fri Dec 12 05:04:53 2014 10+ relations: 93618 Fri Dec 12 05:04:53 2014 heaviest cycle: 24 relations Fri Dec 12 05:04:54 2014 RelProcTime: 70 Fri Dec 12 05:04:54 2014 Fri Dec 12 05:04:54 2014 commencing linear algebra Fri Dec 12 05:04:54 2014 read 462307 cycles Fri Dec 12 05:04:54 2014 cycles contain 1628031 unique relations Fri Dec 12 05:05:02 2014 read 1628031 relations Fri Dec 12 05:05:03 2014 using 20 quadratic characters above 67108530 Fri Dec 12 05:05:09 2014 building initial matrix Fri Dec 12 05:05:17 2014 memory use: 205.1 MB Fri Dec 12 05:05:17 2014 read 462307 cycles Fri Dec 12 05:05:18 2014 matrix is 462136 x 462307 (140.7 MB) with weight 44468218 (96.19/col) Fri Dec 12 05:05:18 2014 sparse part has weight 31334634 (67.78/col) Fri Dec 12 05:05:19 2014 filtering completed in 2 passes Fri Dec 12 05:05:19 2014 matrix is 461365 x 461542 (140.6 MB) with weight 44435671 (96.28/col) Fri Dec 12 05:05:19 2014 sparse part has weight 31325661 (67.87/col) Fri Dec 12 05:05:20 2014 matrix starts at (0, 0) Fri Dec 12 05:05:20 2014 matrix is 461365 x 461542 (140.6 MB) with weight 44435671 (96.28/col) Fri Dec 12 05:05:20 2014 sparse part has weight 31325661 (67.87/col) Fri Dec 12 05:05:20 2014 saving the first 48 matrix rows for later Fri Dec 12 05:05:20 2014 matrix includes 64 packed rows Fri Dec 12 05:05:20 2014 matrix is 461317 x 461542 (134.8 MB) with weight 35316426 (76.52/col) Fri Dec 12 05:05:20 2014 sparse part has weight 30718857 (66.56/col) Fri Dec 12 05:05:20 2014 using block size 65536 for processor cache size 8192 kB Fri Dec 12 05:05:21 2014 commencing Lanczos iteration (8 threads) Fri Dec 12 05:05:21 2014 memory use: 128.1 MB Fri Dec 12 05:05:30 2014 linear algebra at 2.6%, ETA 0h 4m Fri Dec 12 05:10:47 2014 lanczos halted after 7298 iterations (dim = 461316) Fri Dec 12 05:10:48 2014 recovered 33 nontrivial dependencies Fri Dec 12 05:10:48 2014 BLanczosTime: 354 Fri Dec 12 05:10:48 2014 Fri Dec 12 05:10:48 2014 commencing square root phase Fri Dec 12 05:10:48 2014 reading relations for dependency 1 Fri Dec 12 05:10:48 2014 read 230576 cycles Fri Dec 12 05:10:48 2014 cycles contain 814134 unique relations Fri Dec 12 05:10:53 2014 read 814134 relations Fri Dec 12 05:10:55 2014 multiplying 814134 relations Fri Dec 12 05:11:20 2014 multiply complete, coefficients have about 35.66 million bits Fri Dec 12 05:11:20 2014 initial square root is modulo 131909 Fri Dec 12 05:11:52 2014 sqrtTime: 64 -- n: 2320435667180097755177813981532078901505429212089350812332948917584222303374426484102208668804363664769836212373 skew: 22893.71 c0: -79393378350093157942116200 c1: -15918954611892353898546 c2: 89476705640516669 c3: 29138245007736 c4: -1015703712 c5: 32040 Y0: -2354916455965252876311 Y1: 85124506439 rlim: 3720000 alim: 3720000 lpbr: 26 lpba: 26 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 |
software ソフトウェア | yafu v1.34.3 |
execution environment 実行環境 | Gentoo Linux, Intel(R) Core(TM) i7-3770K CPU |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 418 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) |
300 | Ignacio Santos | December 8, 2014 22:33:10 UTC 2014 年 12 月 9 日 (火) 7 時 33 分 10 秒 (日本時間) | |||
40 | 3e6 | 110 / 2126 | Ignacio Santos | December 8, 2014 22:33:10 UTC 2014 年 12 月 9 日 (火) 7 時 33 分 10 秒 (日本時間) | |
45 | 11e6 | 32 / 4437 | Ignacio Santos | December 8, 2014 22:33:10 UTC 2014 年 12 月 9 日 (火) 7 時 33 分 10 秒 (日本時間) |
name 名前 | Maksym Voznyy |
---|---|
date 日付 | February 8, 2015 01:25:42 UTC 2015 年 2 月 8 日 (日) 10 時 25 分 42 秒 (日本時間) |
composite number 合成数 | 3146215132845102340753521711207541770636528404593154425815633434712066642039318922589213851270022896135791429171047329007<121> |
prime factors 素因数 | 164261387146750160389554437888765975098838164057745953637<57> 19153710969421512214162337349314945732649440973698495806175747011<65> |
factorization results 素因数分解の結果 | Number: example8 N = 3146215132845102340753521711207541770636528404593154425815633434712066642039318922589213851270022896135791429171047329007 (121 digits) SNFS difficulty: 166 digits. Divisors found: r2=164261387146750160389554437888765975098838164057745953637 (pp57) r3=533430676533041177960320831644413038217233435275987999469 (pp57) r4=10417393965966540313036700419805573317937398108616542956873773 (pp62) r5=19153710969421512214162337349314945732649440973698495806175747011 (pp65) r6=5430093009989847691469443628800863162615323828939017467532857013814297 (pp70) r7=2328908101716036508677199901942873845182242161115165372736474378987903966196973209 (pp82) Version: Msieve v. 1.51 (SVN 845) Total time: 52.01 hours. Factorization parameters were as follows: n: 3146215132845102340753521711207541770636528404593154425815633434712066642039318922589213851270022896135791429171047329007 m: 1000000000000000000000000000000000 deg: 5 c5: 1 c0: 179 skew: 2.82 # Murphy_E = 4.233e-10 type: snfs lss: 1 rlim: 3900000 alim: 3900000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3900000/3900000 Large primes per side: 3 Large prime bits: 27/27 Sieved rational special-q in [0, 0) Total raw relations: 9405840 Relations: 1090504 relations Pruned matrix : 647470 x 647703 Polynomial selection time: 0.00 hours. Total sieving time: 46.50 hours. Total relation processing time: 0.40 hours. Matrix solve time: 4.62 hours. time per square root: 0.49 hours. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,3900000,3900000,27,27,51,51,2.4,2.4,100000 total time: 52.01 hours. x86 Family 6 Model 15 Stepping 6, GenuineIntel Windows-XP-5.1.2600-SP3 processors: 4, speed: 2.66GHz |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 | Serge Batalov | December 10, 2014 19:46:01 UTC 2014 年 12 月 11 日 (木) 4 時 46 分 1 秒 (日本時間) | |
45 | 11e6 | 650 / 4409 | Pierre Jammes | January 6, 2015 07:39:53 UTC 2015 年 1 月 6 日 (火) 16 時 39 分 53 秒 (日本時間) |
name 名前 | Erik Branger |
---|---|
date 日付 | December 9, 2014 14:44:58 UTC 2014 年 12 月 9 日 (火) 23 時 44 分 58 秒 (日本時間) |
composite number 合成数 | 28490028490028490028490028490028490028490028490028490028490028490028490028490028490028490028490028490028490028490028490028490028490028490028490028490028490028490029<164> |
prime factors 素因数 | 40676850082494641821933449087055003092151077276871862983591<59> 700399082825964118616643598540999626468742637165129975752152130391838771147631736216928840379565973719819<105> |
factorization results 素因数分解の結果 | Number: 11131_166 N = 28490028490028490028490028490028490028490028490028490028490028490028490028490028490028490028490028490028490028490028490028490028490028490028490028490028490028490029 (164 digits) SNFS difficulty: 167 digits. Divisors found: r1=40676850082494641821933449087055003092151077276871862983591 (pp59) r2=700399082825964118616643598540999626468742637165129975752152130391838771147631736216928840379565973719819 (pp105) Version: Msieve v. 1.51 (SVN 845) Total time: 23.98 hours. Factorization parameters were as follows: n: 28490028490028490028490028490028490028490028490028490028490028490028490028490028490028490028490028490028490028490028490028490028490028490028490028490028490028490029 m: 1000000000000000000000000000000000 deg: 5 c5: 10 c0: 179 skew: 1.78 # Murphy_E = 3.04e-10 type: snfs lss: 1 rlim: 4100000 alim: 4100000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4100000/4100000 Large primes per side: 3 Large prime bits: 27/27 Sieved rational special-q in [0, 0) Total raw relations: 9828104 Relations: 1163306 relations Pruned matrix : 706900 x 707128 Polynomial selection time: 0.00 hours. Total sieving time: 23.52 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.36 hours. time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,167,5,0,0,0,0,0,0,0,0,4100000,4100000,27,27,51,51,2.4,2.4,100000 total time: 23.98 hours. Intel64 Family 6 Model 58 Stepping 9, GenuineIntel Windows-7-6.1.7601-SP1 processors: 8, speed: 2.29GHz |
software ソフトウェア | GGNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2320 | Serge Batalov | December 8, 2014 19:27:27 UTC 2014 年 12 月 9 日 (火) 4 時 27 分 27 秒 (日本時間) |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | March 30, 2015 10:38:48 UTC 2015 年 3 月 30 日 (月) 19 時 38 分 48 秒 (日本時間) |
composite number 合成数 | 6531988268190171294990324878990542320570057840365877187301064687998584807588512658063991203129145405213934925194522182655754687890657259078487<142> |
prime factors 素因数 | 969194676648758177433983661372458230033032022883128932030413<60> 6739603947037981997419764129461502479034352888246544882824905709616714164191845299<82> |
factorization results 素因数分解の結果 | Number: 11131_168 N=6531988268190171294990324878990542320570057840365877187301064687998584807588512658063991203129145405213934925194522182655754687890657259078487 ( 142 digits) SNFS difficulty: 168 digits. Divisors found: r1=969194676648758177433983661372458230033032022883128932030413 r2=6739603947037981997419764129461502479034352888246544882824905709616714164191845299 Version: Total time: 21.41 hours. Scaled time: 112.45 units (timescale=5.253). Factorization parameters were as follows: n: 6531988268190171294990324878990542320570057840365877187301064687998584807588512658063991203129145405213934925194522182655754687890657259078487 m: 2000000000000000000000000000000000 deg: 5 c5: 125 c0: 716 skew: 1.42 # Murphy_E = 2.159e-10 type: snfs lss: 1 rlim: 5400000 alim: 5400000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5400000/5400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2700000, 5500001) Primes: rational ideals reading, algebraic ideals reading, Relations: 10901966 Max relations in full relation-set: Initial matrix: Pruned matrix : 1006273 x 1006521 Total sieving time: 19.39 hours. Total relation processing time: 0.75 hours. Matrix solve time: 1.01 hours. Time per square root: 0.26 hours. Prototype def-par.txt line would be: snfs,168,5,0,0,0,0,0,0,0,0,5400000,5400000,27,27,52,52,2.4,2.4,100000 total time: 21.41 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM) i7-4930K CPU @ 3.40GHz stepping 04 Memory: 49373664k/51380224k available (5220k kernel code, 1086460k absent, 920100k reserved, 7121k data, 1264k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 6800.24 BogoMIPS (lpj=3400120) Total of 12 processors activated (81602.88 BogoMIPS). |
software ソフトウェア | GGNFS / Msieve v1.39 |
execution environment 実行環境 | Core i7-4930K |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2650 | 300 | Serge Batalov | December 10, 2014 19:46:01 UTC 2014 年 12 月 11 日 (木) 4 時 46 分 1 秒 (日本時間) |
2350 | Ignacio Santos | February 19, 2015 18:50:15 UTC 2015 年 2 月 20 日 (金) 3 時 50 分 15 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | March 8, 2015 21:45:39 UTC 2015 年 3 月 9 日 (月) 6 時 45 分 39 秒 (日本時間) |
composite number 合成数 | 8378214809936465712939808613242200775278874900760498201496865737471496491985739862905202917268455027674576500797734015681016010446326482668353953847<148> |
prime factors 素因数 | 2988487889210238593833554568069631<34> 2803496323403391442718320970233501382246933494973618483907620467462856186260893071742823503136192016106101712302537<115> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:3480413668 Step 1 took 10093ms ********** Factor found in step 1: 2988487889210238593833554568069631 Found probable prime factor of 34 digits: 2988487889210238593833554568069631 Probable prime cofactor 2803496323403391442718320970233501382246933494973618483907620467462856186260893071742823503136192016106101712302537 has 115 digits |
software ソフトウェア | GMP-ECM 7.0 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 280 / 2318 | Cyp | December 8, 2014 11:55:59 UTC 2014 年 12 月 8 日 (月) 20 時 55 分 59 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | December 9, 2014 00:54:24 UTC 2014 年 12 月 9 日 (火) 9 時 54 分 24 秒 (日本時間) |
composite number 合成数 | 8024879095891588200889719112957925145223746513574367970311825322982509519292612849855039518464706142271930788660747319<118> |
prime factors 素因数 | 3185164760970369631901538353687<31> |
composite cofactor 合成数の残り | 2519454941303188861383996920285646950321547019737959405293355111312199704478590531840737<88> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1138985116 Step 1 took 8965ms Step 2 took 7731ms ********** Factor found in step 2: 3185164760970369631901538353687 Found probable prime factor of 31 digits: 3185164760970369631901538353687 Composite cofactor |
name 名前 | Serge Batalov |
---|---|
date 日付 | December 9, 2014 16:23:13 UTC 2014 年 12 月 10 日 (水) 1 時 23 分 13 秒 (日本時間) |
composite number 合成数 | 2519454941303188861383996920285646950321547019737959405293355111312199704478590531840737<88> |
prime factors 素因数 | 21760271076886495601084304989786779861743811<44> 115782332508684798193539173355097017387971467<45> |
factorization results 素因数分解の結果 | ***factors found*** PRP45 = 115782332508684798193539173355097017387971467 PRP44 = 21760271076886495601084304989786779861743811 |
software ソフトウェア | yafu 1.31 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) |
name 名前 | Ben Meekins |
---|---|
date 日付 | August 23, 2015 13:44:20 UTC 2015 年 8 月 23 日 (日) 22 時 44 分 20 秒 (日本時間) |
composite number 合成数 | 50921584655641263672903368838462247004048667953585104554462013811664258392645851652373381374287529884530477405521169000937252105157225810352455540791657797516969871<164> |
prime factors 素因数 | 2531393107549567379545452274656849584349119593<46> 20116031960335960850670423937627304618379263145609226521058254342946047928979270425046509133233885254781608415093493047<119> |
factorization results 素因数分解の結果 | Number: 11131_176 N = 50921584655641263672903368838462247004048667953585104554462013811664258392645851652373381374287529884530477405521169000937252105157225810352455540791657797516969871 (164 digits) SNFS difficulty: 177 digits. Divisors found: r1=2531393107549567379545452274656849584349119593 (pp46) r2=20116031960335960850670423937627304618379263145609226521058254342946047928979270425046509133233885254781608415093493047 (pp119) Version: Msieve v. 1.53 (SVN unknown) Total time: 10.95 hours. Factorization parameters were as follows: n: 50921584655641263672903368838462247004048667953585104554462013811664258392645851652373381374287529884530477405521169000937252105157225810352455540791657797516969871 m: 100000000000000000000000000000000000 deg: 5 c5: 10 c0: 179 skew: 1.78 # Murphy_E = 1.22e-10 type: snfs lss: 1 rlim: 6000000 alim: 6000000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 28/28 Sieved rational special-q in [0, 0) Total raw relations: 17929732 Relations: 2383606 relations Pruned matrix : 1367901 x 1368130 Polynomial selection time: 0.00 hours. Total sieving time: 9.48 hours. Total relation processing time: 0.12 hours. Matrix solve time: 1.31 hours. time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,177,5,0,0,0,0,0,0,0,0,6000000,6000000,28,28,53,53,2.5,2.5,200000 total time: 10.95 hours. x86_64 Linux-3.13.0-62-generic-x86_64-with-Ubuntu-14.04-trusty processors: 4, speed: 0.80GHz |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2650 | 300 | Serge Batalov | December 10, 2014 19:46:01 UTC 2014 年 12 月 11 日 (木) 4 時 46 分 1 秒 (日本時間) |
2350 | Ignacio Santos | March 29, 2015 10:02:22 UTC 2015 年 3 月 29 日 (日) 19 時 2 分 22 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 9, 2014 12:26:21 UTC 2014 年 12 月 9 日 (火) 21 時 26 分 21 秒 (日本時間) |
composite number 合成数 | 4296407850605614657404204060055981039881745478688032701451568318938012946542730525557359664191982578120583<106> |
prime factors 素因数 | 389108836183711095266719913229390975402333189263<48> 11041660972656861039654252936735852165376506870295734581641<59> |
factorization results 素因数分解の結果 | N=4296407850605614657404204060055981039881745478688032701451568318938012946542730525557359664191982578120583 ( 106 digits) Divisors found: r1=389108836183711095266719913229390975402333189263 (pp48) r2=11041660972656861039654252936735852165376506870295734581641 (pp59) Version: Msieve v. 1.50 (SVN unknown) Total time: 8.35 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 4296407850605614657404204060055981039881745478688032701451568318938012946542730525557359664191982578120583 skew: 8822195.42 c0: -4274851237338025622111204791120 c1: 809354827121238627303062 c2: -146972687403134033 c3: 21831446482 c4: 3432 Y0: -33449392511825595557373663 Y1: 63969658599133 rlim: 2640000 alim: 2640000 lpbr: 26 lpba: 26 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 type: gnfs Factor base limits: 2640000/2640000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 52/52 Sieved algebraic special-q in [1320000, 2220001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 315220 x 315447 Total sieving time: 8.03 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.09 hours. Time per square root: 0.16 hours. Prototype def-par.txt line would be: gnfs,105,4,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2640000,2640000,26,26,52,52,2.5,2.5,150000 total time: 8.35 hours. |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 418 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) |
300 | Ignacio Santos | December 8, 2014 17:05:50 UTC 2014 年 12 月 9 日 (火) 2 時 5 分 50 秒 (日本時間) | |||
40 | 3e6 | 110 / 2126 | Ignacio Santos | December 8, 2014 17:05:50 UTC 2014 年 12 月 9 日 (火) 2 時 5 分 50 秒 (日本時間) | |
45 | 11e6 | 32 / 4437 | Ignacio Santos | December 8, 2014 17:05:50 UTC 2014 年 12 月 9 日 (火) 2 時 5 分 50 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | December 9, 2014 00:54:42 UTC 2014 年 12 月 9 日 (火) 9 時 54 分 42 秒 (日本時間) |
composite number 合成数 | 10351653646435154678351878267639810637289618573731365912131288013284055953443034971642318206465174333726284496029136949<119> |
prime factors 素因数 | 12283432043999387289138177963978797<35> 842733008930681477055441921494504735546457585201261471742144178770204401199763154217<84> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1001876367 Step 1 took 8143ms Step 2 took 7480ms ********** Factor found in step 2: 12283432043999387289138177963978797 Found probable prime factor of 35 digits: 12283432043999387289138177963978797 Probable prime cofactor |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) |
name 名前 | Robert Backstrom |
---|---|
date 日付 | December 25, 2014 02:31:19 UTC 2014 年 12 月 25 日 (木) 11 時 31 分 19 秒 (日本時間) |
composite number 合成数 | 52910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052911<179> |
prime factors 素因数 | 1590957813947489693254213200489568268620789856991485104045386154396552823347<76> 33256729025876754702824793266441370171197406924041308434993128523911956851053112138969124329809138440213<104> |
factorization results 素因数分解の結果 | Number: n N=52910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052911 ( 179 digits) SNFS difficulty: 181 digits. Divisors found: Thu Dec 25 13:27:58 2014 prp76 factor: 1590957813947489693254213200489568268620789856991485104045386154396552823347 Thu Dec 25 13:27:58 2014 prp104 factor: 33256729025876754702824793266441370171197406924041308434993128523911956851053112138969124329809138440213 Thu Dec 25 13:27:58 2014 elapsed time 00:27:25 (Msieve 1.44 - dependency 2) Version: GGNFS-0.77.1-20060513-nocona Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.272). Factorization parameters were as follows: # # N = 10^181+179 1(179)31 # n: 52910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052911 m: 1000000000000000000000000000000000000 deg: 5 c5: 10 c0: 179 skew: 1.78 # Murphy_E = 7.673e-11 type: snfs lss: 1 rlim: 7300000 alim: 7300000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 7300000/7300000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved special-q in [100000, 9250000) Primes: RFBsize:495666, AFBsize:496199, Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 3646542 hash collisions in 31972350 relations (29535025 unique) Msieve: matrix is 803009 x 803242 (224.9 MB) Total sieving time: 0.00 hours. Total relation processing time: 0hrs 17min 58sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 2min 36sec. Prototype def-par.txt line would be: snfs,181,5,0,0,0,0,0,0,0,0,7300000,7300000,28,28,53,53,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- [ 0.038684] smpboot: CPU0: Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz (fam: 06, model: 3c, stepping: 03) [ 0.000000] Memory: 16059644K/16661464K available (7373K kernel code, 1159K rwdata, 3228K rodata, 1468K init, 1504K bss, 601820K reserved) [ 1.137325] [drm] Memory usable by graphics device = 2048M [ 0.000027] Calibrating delay loop (skipped), value calculated using timer frequency.. 7200.13 BogoMIPS (lpj=3600065) [ 0.136532] smpboot: Total of 8 processors activated (57601.04 BogoMIPS) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2320 | Serge Batalov | December 8, 2014 19:27:33 UTC 2014 年 12 月 9 日 (火) 4 時 27 分 33 秒 (日本時間) |
name 名前 | KTakahashi |
---|---|
date 日付 | May 18, 2015 09:46:46 UTC 2015 年 5 月 18 日 (月) 18 時 46 分 46 秒 (日本時間) |
composite number 合成数 | 575793073477203531115864706343496402937084255910103365168913959479289266125720321496920125859565461108790033106536853291387686165466396631320729995651<150> |
prime factors 素因数 | 93402616979017433194308319140224471197<38> 6164635339998593443801612562486033856356891723692969578323226949670381650118295615134271730810773313063717197983<112> |
factorization results 素因数分解の結果 | GMP-ECM 6.4.4 [configured with GMP 6.0.0] [ECM] Input number is 575793073477203531115864706343496402937084255910103365168913959479289266125720321496920125859565461108790033106536853291387686165466396631320729995651 (150 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=2288192772 Step 1 took 43680ms Step 2 took 17816ms ********** Factor found in step 2: 93402616979017433194308319140224471197 Found probable prime factor of 38 digits: 93402616979017433194308319140224471197 Probable prime cofactor 6164635339998593443801612562486033856356891723692969578323226949670381650118295615134271730810773313063717197983 has 112 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 280 / 2318 | Cyp | December 8, 2014 17:40:14 UTC 2014 年 12 月 9 日 (火) 2 時 40 分 14 秒 (日本時間) |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | April 18, 2016 10:15:14 UTC 2016 年 4 月 18 日 (月) 19 時 15 分 14 秒 (日本時間) |
composite number 合成数 | 143504582066407027732155109418340630355677776793281975604102643315977436253818774262280009188553630653692157371005703336666899688346036326407896695383755812131545039<165> |
prime factors 素因数 | 47266147547776398106731379532339753133143415119<47> 150000857415628343386245419058492763783379392597<48> 20240527203096781646934758600149586187127415367009588610807506958389373<71> |
factorization results 素因数分解の結果 | Number: 11131_183 N=143504582066407027732155109418340630355677776793281975604102643315977436253818774262280009188553630653692157371005703336666899688346036326407896695383755812131545039 ( 165 digits) SNFS difficulty: 183 digits. Divisors found: r1=47266147547776398106731379532339753133143415119 r2=150000857415628343386245419058492763783379392597 r3=20240527203096781646934758600149586187127415367009588610807506958389373 Version: Total time: 78.38 hours. Scaled time: 412.02 units (timescale=5.257). Factorization parameters were as follows: n: 143504582066407027732155109418340630355677776793281975604102643315977436253818774262280009188553630653692157371005703336666899688346036326407896695383755812131545039 m: 2000000000000000000000000000000000000 deg: 5 c5: 125 c0: 716 skew: 1.42 # Murphy_E = 5.434e-11 type: snfs lss: 1 rlim: 7000000 alim: 7000000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 7000000/7000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3500000, 7200001) Primes: rational ideals reading, algebraic ideals reading, Relations: 18935142 Max relations in full relation-set: Initial matrix: Pruned matrix : 1489036 x 1489284 Total sieving time: 73.77 hours. Total relation processing time: 1.80 hours. Matrix solve time: 2.63 hours. Time per square root: 0.17 hours. Prototype def-par.txt line would be: snfs,183,5,0,0,0,0,0,0,0,0,7000000,7000000,28,28,53,53,2.5,2.5,100000 total time: 78.38 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM) i7-4930K CPU @ 3.40GHz stepping 04 Memory: 49365464k/51380224k available (5398k kernel code, 1086460k absent, 928300k reserved, 7010k data, 1296k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 6799.84 BogoMIPS (lpj=3399923) Total of 12 processors activated (81598.15 BogoMIPS). |
software ソフトウェア | GGNFS / Msieve v1.39 |
execution environment 実行環境 | Core i7-4930K |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 | Serge Batalov | December 10, 2014 19:46:02 UTC 2014 年 12 月 11 日 (木) 4 時 46 分 2 秒 (日本時間) | |
45 | 11e6 | 585 / 4409 | Cyp | January 26, 2015 14:21:07 UTC 2015 年 1 月 26 日 (月) 23 時 21 分 7 秒 (日本時間) |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | May 24, 2016 12:46:00 UTC 2016 年 5 月 24 日 (火) 21 時 46 分 0 秒 (日本時間) |
composite number 合成数 | 3248248687229643020761675584705739595679705553971231094897895912432070506487776827926530886564615868801955623156828202460880709728429201042928595200332723<154> |
prime factors 素因数 | 65277479657607356142285072756906148665551294351583868702552095274603597<71> 49760632675576900373376078368779271655745693774040948571030208492800081140972226559<83> |
factorization results 素因数分解の結果 | Number: 11131_184 N=3248248687229643020761675584705739595679705553971231094897895912432070506487776827926530886564615868801955623156828202460880709728429201042928595200332723 ( 154 digits) SNFS difficulty: 185 digits. Divisors found: r1=65277479657607356142285072756906148665551294351583868702552095274603597 r2=49760632675576900373376078368779271655745693774040948571030208492800081140972226559 Version: Total time: 70.60 hours. Scaled time: 347.23 units (timescale=4.918). Factorization parameters were as follows: n: 3248248687229643020761675584705739595679705553971231094897895912432070506487776827926530886564615868801955623156828202460880709728429201042928595200332723 m: 10000000000000000000000000000000000000 deg: 5 c5: 1 c0: 1790 skew: 4.47 # Murphy_E = 5.668e-11 type: snfs lss: 1 rlim: 7400000 alim: 7400000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [3700000, 6900001) Primes: rational ideals reading, algebraic ideals reading, Relations: 20236834 Max relations in full relation-set: Initial matrix: Pruned matrix : 1587512 x 1587760 Total sieving time: 65.60 hours. Total relation processing time: 1.70 hours. Matrix solve time: 3.22 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,185,5,0,0,0,0,0,0,0,0,7400000,7400000,28,28,54,54,2.5,2.5,100000 total time: 70.60 hours. --------- CPU info (if available) ---------- |
software ソフトウェア | GGNFS / Msieve v1.39 |
execution environment 実行環境 | Core i7-4930K |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 580 | 280 | Cyp | December 10, 2014 17:57:04 UTC 2014 年 12 月 11 日 (木) 2 時 57 分 4 秒 (日本時間) |
300 | Serge Batalov | December 10, 2014 19:46:02 UTC 2014 年 12 月 11 日 (木) 4 時 46 分 2 秒 (日本時間) | |||
45 | 11e6 | 600 / 4347 | KTakahashi | May 25, 2015 09:22:55 UTC 2015 年 5 月 25 日 (月) 18 時 22 分 55 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | December 11, 2014 01:31:56 UTC 2014 年 12 月 11 日 (木) 10 時 31 分 56 秒 (日本時間) |
composite number 合成数 | 2577594754479857066416435575496218410047026003274485383499661893612922876846248262307887948468518140130474102642582826265374605822461<133> |
prime factors 素因数 | 34000552387737679926903888711255347<35> 75810378757536545071073462481595412070996017132236422837932424880090182956438680696628684020814863<98> |
factorization results 素因数分解の結果 | Input number is 2577594754479857066416435575496218410047026003274485383499661893612922876846248262307887948468518140130474102642582826265374605822461 (133 digits) Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2194347548 Step 1 took 7356ms Step 2 took 1243ms ********** Factor found in step 2: 34000552387737679926903888711255347 Found probable prime factor of 35 digits: 34000552387737679926903888711255347 Probable prime cofactor 75810378757536545071073462481595412070996017132236422837932424880090182956438680696628684020814863 has 98 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 / 2318 | Serge Batalov | December 10, 2014 19:46:03 UTC 2014 年 12 月 11 日 (木) 4 時 46 分 3 秒 (日本時間) |
name 名前 | Robert Backstrom |
---|---|
date 日付 | December 27, 2014 10:20:45 UTC 2014 年 12 月 27 日 (土) 19 時 20 分 45 秒 (日本時間) |
composite number 合成数 | 3775308725871058105776599881455306007648775478614763722303391359828449971496419119673511301386670895012439642251745136458533896609395233295202715202035646464989674530634742656080701<181> |
prime factors 素因数 | 1278920038385863867371899187763723948082051358424258079<55> 2951950561847406949214997564874196796940400498304404881604178030438427033895575554346781019636464603425941656654605385204566819<127> |
factorization results 素因数分解の結果 | Number: n N=3775308725871058105776599881455306007648775478614763722303391359828449971496419119673511301386670895012439642251745136458533896609395233295202715202035646464989674530634742656080701 ( 181 digits) SNFS difficulty: 186 digits. Divisors found: Sat Dec 27 21:16:28 2014 prp55 factor: 1278920038385863867371899187763723948082051358424258079 Sat Dec 27 21:16:28 2014 prp127 factor: 2951950561847406949214997564874196796940400498304404881604178030438427033895575554346781019636464603425941656654605385204566819 Sat Dec 27 21:16:28 2014 elapsed time 00:41:59 (Msieve 1.44 - dependency 1) Version: GGNFS-0.77.1-20060513-nocona Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.186). Factorization parameters were as follows: # # N = 10^186+179 1(184)31 # n: 3775308725871058105776599881455306007648775478614763722303391359828449971496419119673511301386670895012439642251745136458533896609395233295202715202035646464989674530634742656080701 m: 10000000000000000000000000000000000000 deg: 5 c5: 10 c0: 179 skew: 1.78 # Murphy_E = 4.806e-11 type: snfs lss: 1 rlim: 8800000 alim: 8800000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 8800000/8800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved special-q in [100000, 10000000) Primes: RFBsize:590006, AFBsize:589895, Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 4209750 hash collisions in 31982483 relations (29548768 unique) Msieve: matrix is 1045770 x 1046001 (293.5 MB) Total sieving time: 0.00 hours. Total relation processing time: 0hrs 33min 51sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 1min 7sec. Prototype def-par.txt line would be: snfs,186,5,0,0,0,0,0,0,0,0,8800000,8800000,28,28,54,54,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- [ 0.038914] smpboot: CPU0: Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz (fam: 06, model: 3c, stepping: 03) [ 0.000000] Memory: 16059668K/16661464K available (7375K kernel code, 1160K rwdata, 3228K rodata, 1468K init, 1504K bss, 601796K reserved) [ 1.131637] [drm] Memory usable by graphics device = 2048M [ 0.000027] Calibrating delay loop (skipped), value calculated using timer frequency.. 7200.29 BogoMIPS (lpj=3600149) [ 0.136791] smpboot: Total of 8 processors activated (57602.38 BogoMIPS) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2600 | 280 | Cyp | December 8, 2014 02:30:34 UTC 2014 年 12 月 8 日 (月) 11 時 30 分 34 秒 (日本時間) |
2320 | Serge Batalov | December 8, 2014 19:27:36 UTC 2014 年 12 月 9 日 (火) 4 時 27 分 36 秒 (日本時間) |
name 名前 | LegionMammal978 |
---|---|
date 日付 | February 11, 2017 02:05:38 UTC 2017 年 2 月 11 日 (土) 11 時 5 分 38 秒 (日本時間) |
composite number 合成数 | 346343426527136913271555188037210805726380298143334858651735455835491159840658813723310905504952517702803732261075274281207713171719058748445273<144> |
prime factors 素因数 | 95994772571094942940745768728816392374063113209060251060039354431<65> 3607940487286748767432073447620943939863416733459471364676122442689186542452583<79> |
factorization results 素因数分解の結果 | Fri Feb 10 17:20:46 2017 Msieve v. 1.53 (SVN Unversioned directory) Fri Feb 10 17:20:46 2017 random seeds: 884cde0b 21436811 Fri Feb 10 17:20:46 2017 factoring 346343426527136913271555188037210805726380298143334858651735455835491159840658813723310905504952517702803732261075274281207713171719058748445273 (144 digits) Fri Feb 10 17:20:46 2017 no P-1/P+1/ECM available, skipping Fri Feb 10 17:20:46 2017 commencing number field sieve (144-digit input) Fri Feb 10 17:20:46 2017 R0: -10000000000000000000000000000000000000 Fri Feb 10 17:20:46 2017 R1: 1 Fri Feb 10 17:20:46 2017 A0: 179 Fri Feb 10 17:20:46 2017 A1: 0 Fri Feb 10 17:20:46 2017 A2: 0 Fri Feb 10 17:20:46 2017 A3: 0 Fri Feb 10 17:20:46 2017 A4: 0 Fri Feb 10 17:20:46 2017 A5: 100 Fri Feb 10 17:20:46 2017 skew 1.12, size 3.342e-13, alpha 0.515, combined = 4.311e-11 rroots = 1 Fri Feb 10 17:20:46 2017 Fri Feb 10 17:20:46 2017 commencing relation filtering Fri Feb 10 17:20:46 2017 estimated available RAM is 15929.4 MB Fri Feb 10 17:20:46 2017 commencing duplicate removal, pass 1 Fri Feb 10 17:23:36 2017 found 3238439 hash collisions in 22057778 relations Fri Feb 10 17:23:55 2017 added 401 free relations Fri Feb 10 17:23:55 2017 commencing duplicate removal, pass 2 Fri Feb 10 17:24:00 2017 found 2918320 duplicates and 19139859 unique relations Fri Feb 10 17:24:00 2017 memory use: 98.6 MB Fri Feb 10 17:24:00 2017 reading ideals above 720000 Fri Feb 10 17:24:01 2017 commencing singleton removal, initial pass Fri Feb 10 17:26:08 2017 memory use: 689.0 MB Fri Feb 10 17:26:08 2017 reading all ideals from disk Fri Feb 10 17:26:08 2017 memory use: 608.5 MB Fri Feb 10 17:26:08 2017 keeping 21326590 ideals with weight <= 200, target excess is 115996 Fri Feb 10 17:26:09 2017 commencing in-memory singleton removal Fri Feb 10 17:26:10 2017 begin with 19139859 relations and 21326590 unique ideals Fri Feb 10 17:26:18 2017 reduce to 7653913 relations and 7470464 ideals in 19 passes Fri Feb 10 17:26:18 2017 max relations containing the same ideal: 106 Fri Feb 10 17:26:20 2017 removing 366907 relations and 342460 ideals in 24447 cliques Fri Feb 10 17:26:20 2017 commencing in-memory singleton removal Fri Feb 10 17:26:20 2017 begin with 7287006 relations and 7470464 unique ideals Fri Feb 10 17:26:24 2017 reduce to 7271045 relations and 7111964 ideals in 12 passes Fri Feb 10 17:26:24 2017 max relations containing the same ideal: 102 Fri Feb 10 17:26:26 2017 removing 263738 relations and 239291 ideals in 24447 cliques Fri Feb 10 17:26:26 2017 commencing in-memory singleton removal Fri Feb 10 17:26:26 2017 begin with 7007307 relations and 7111964 unique ideals Fri Feb 10 17:26:29 2017 reduce to 6998399 relations and 6863730 ideals in 9 passes Fri Feb 10 17:26:29 2017 max relations containing the same ideal: 102 Fri Feb 10 17:26:32 2017 relations with 0 large ideals: 2866 Fri Feb 10 17:26:32 2017 relations with 1 large ideals: 831 Fri Feb 10 17:26:32 2017 relations with 2 large ideals: 16331 Fri Feb 10 17:26:32 2017 relations with 3 large ideals: 130704 Fri Feb 10 17:26:32 2017 relations with 4 large ideals: 553881 Fri Feb 10 17:26:32 2017 relations with 5 large ideals: 1363918 Fri Feb 10 17:26:32 2017 relations with 6 large ideals: 2069859 Fri Feb 10 17:26:32 2017 relations with 7+ large ideals: 2860009 Fri Feb 10 17:26:32 2017 commencing 2-way merge Fri Feb 10 17:26:35 2017 reduce to 4059560 relation sets and 3924892 unique ideals Fri Feb 10 17:26:35 2017 ignored 1 oversize relation sets Fri Feb 10 17:26:35 2017 commencing full merge Fri Feb 10 17:27:16 2017 memory use: 473.5 MB Fri Feb 10 17:27:17 2017 found 2063566 cycles, need 2051092 Fri Feb 10 17:27:17 2017 weight of 2051092 cycles is about 143891737 (70.15/cycle) Fri Feb 10 17:27:17 2017 distribution of cycle lengths: Fri Feb 10 17:27:17 2017 1 relations: 306386 Fri Feb 10 17:27:17 2017 2 relations: 265674 Fri Feb 10 17:27:17 2017 3 relations: 244415 Fri Feb 10 17:27:17 2017 4 relations: 208909 Fri Feb 10 17:27:17 2017 5 relations: 180893 Fri Feb 10 17:27:17 2017 6 relations: 149129 Fri Feb 10 17:27:17 2017 7 relations: 126433 Fri Feb 10 17:27:17 2017 8 relations: 103447 Fri Feb 10 17:27:17 2017 9 relations: 85329 Fri Feb 10 17:27:17 2017 10+ relations: 380477 Fri Feb 10 17:27:17 2017 heaviest cycle: 28 relations Fri Feb 10 17:27:17 2017 commencing cycle optimization Fri Feb 10 17:27:19 2017 start with 11953799 relations Fri Feb 10 17:27:30 2017 pruned 252685 relations Fri Feb 10 17:27:30 2017 memory use: 402.3 MB Fri Feb 10 17:27:30 2017 distribution of cycle lengths: Fri Feb 10 17:27:30 2017 1 relations: 306386 Fri Feb 10 17:27:30 2017 2 relations: 270953 Fri Feb 10 17:27:30 2017 3 relations: 252160 Fri Feb 10 17:27:30 2017 4 relations: 212684 Fri Feb 10 17:27:30 2017 5 relations: 183707 Fri Feb 10 17:27:30 2017 6 relations: 150367 Fri Feb 10 17:27:30 2017 7 relations: 126315 Fri Feb 10 17:27:30 2017 8 relations: 102330 Fri Feb 10 17:27:30 2017 9 relations: 83997 Fri Feb 10 17:27:30 2017 10+ relations: 362193 Fri Feb 10 17:27:30 2017 heaviest cycle: 28 relations Fri Feb 10 17:27:32 2017 RelProcTime: 406 Fri Feb 10 17:27:32 2017 elapsed time 00:06:46 Fri Feb 10 17:27:32 2017 LatSieveTime: 1155.19 Fri Feb 10 17:27:32 2017 -> Running matrix solving step ... Fri Feb 10 17:27:32 2017 -> ./msieve -s 11131_187/11131_187.dat -l 11131_187/11131_187.log -i 11131_187/11131_187.ini -nf 11131_187/11131_187.fb -t 6 -nc2 Fri Feb 10 17:27:32 2017 Fri Feb 10 17:27:32 2017 Fri Feb 10 17:27:32 2017 Msieve v. 1.53 (SVN Unversioned directory) Fri Feb 10 17:27:32 2017 random seeds: 259adf10 da541ddc Fri Feb 10 17:27:32 2017 factoring 346343426527136913271555188037210805726380298143334858651735455835491159840658813723310905504952517702803732261075274281207713171719058748445273 (144 digits) Fri Feb 10 17:27:33 2017 no P-1/P+1/ECM available, skipping Fri Feb 10 17:27:33 2017 commencing number field sieve (144-digit input) Fri Feb 10 17:27:33 2017 R0: -10000000000000000000000000000000000000 Fri Feb 10 17:27:33 2017 R1: 1 Fri Feb 10 17:27:33 2017 A0: 179 Fri Feb 10 17:27:33 2017 A1: 0 Fri Feb 10 17:27:33 2017 A2: 0 Fri Feb 10 17:27:33 2017 A3: 0 Fri Feb 10 17:27:33 2017 A4: 0 Fri Feb 10 17:27:33 2017 A5: 100 Fri Feb 10 17:27:33 2017 skew 1.12, size 3.342e-13, alpha 0.515, combined = 4.311e-11 rroots = 1 Fri Feb 10 17:27:33 2017 Fri Feb 10 17:27:33 2017 commencing linear algebra Fri Feb 10 17:27:33 2017 read 2051092 cycles Fri Feb 10 17:27:35 2017 cycles contain 6830333 unique relations Fri Feb 10 17:28:07 2017 read 6830333 relations Fri Feb 10 17:28:11 2017 using 20 quadratic characters above 4294917295 Fri Feb 10 17:28:37 2017 building initial matrix Fri Feb 10 17:29:15 2017 memory use: 826.2 MB Fri Feb 10 17:29:16 2017 read 2051092 cycles Fri Feb 10 17:29:16 2017 matrix is 2050913 x 2051092 (616.5 MB) with weight 181383740 (88.43/col) Fri Feb 10 17:29:16 2017 sparse part has weight 139052958 (67.79/col) Fri Feb 10 17:29:27 2017 filtering completed in 2 passes Fri Feb 10 17:29:28 2017 matrix is 2048177 x 2048356 (616.3 MB) with weight 181289500 (88.50/col) Fri Feb 10 17:29:28 2017 sparse part has weight 139019512 (67.87/col) Fri Feb 10 17:29:32 2017 matrix starts at (0, 0) Fri Feb 10 17:29:32 2017 matrix is 2048177 x 2048356 (616.3 MB) with weight 181289500 (88.50/col) Fri Feb 10 17:29:32 2017 sparse part has weight 139019512 (67.87/col) Fri Feb 10 17:29:32 2017 saving the first 48 matrix rows for later Fri Feb 10 17:29:33 2017 matrix includes 64 packed rows Fri Feb 10 17:29:33 2017 matrix is 2048129 x 2048356 (586.1 MB) with weight 145300599 (70.94/col) Fri Feb 10 17:29:33 2017 sparse part has weight 133167279 (65.01/col) Fri Feb 10 17:29:33 2017 using block size 8192 and superblock size 786432 for processor cache size 8192 kB Fri Feb 10 17:29:38 2017 commencing Lanczos iteration (6 threads) Fri Feb 10 17:29:38 2017 memory use: 472.4 MB Fri Feb 10 17:29:43 2017 linear algebra at 0.1%, ETA 1h52m Fri Feb 10 17:29:45 2017 checkpointing every 1050000 dimensions Fri Feb 10 19:20:34 2017 lanczos halted after 32388 iterations (dim = 2048127) Fri Feb 10 19:20:36 2017 recovered 39 nontrivial dependencies Fri Feb 10 19:20:36 2017 BLanczosTime: 6783 Fri Feb 10 19:20:36 2017 elapsed time 01:53:04 Fri Feb 10 19:20:36 2017 -> Running square root step ... Fri Feb 10 19:20:36 2017 -> ./msieve -s 11131_187/11131_187.dat -l 11131_187/11131_187.log -i 11131_187/11131_187.ini -nf 11131_187/11131_187.fb -t 6 -nc3 Fri Feb 10 19:20:36 2017 Fri Feb 10 19:20:36 2017 Fri Feb 10 19:20:36 2017 Msieve v. 1.53 (SVN Unversioned directory) Fri Feb 10 19:20:36 2017 random seeds: 26caf62a 8cd4d1c1 Fri Feb 10 19:20:36 2017 factoring 346343426527136913271555188037210805726380298143334858651735455835491159840658813723310905504952517702803732261075274281207713171719058748445273 (144 digits) Fri Feb 10 19:20:36 2017 no P-1/P+1/ECM available, skipping Fri Feb 10 19:20:36 2017 commencing number field sieve (144-digit input) Fri Feb 10 19:20:36 2017 R0: -10000000000000000000000000000000000000 Fri Feb 10 19:20:36 2017 R1: 1 Fri Feb 10 19:20:36 2017 A0: 179 Fri Feb 10 19:20:36 2017 A1: 0 Fri Feb 10 19:20:36 2017 A2: 0 Fri Feb 10 19:20:36 2017 A3: 0 Fri Feb 10 19:20:36 2017 A4: 0 Fri Feb 10 19:20:36 2017 A5: 100 Fri Feb 10 19:20:36 2017 skew 1.12, size 3.342e-13, alpha 0.515, combined = 4.311e-11 rroots = 1 Fri Feb 10 19:20:36 2017 Fri Feb 10 19:20:36 2017 commencing square root phase Fri Feb 10 19:20:36 2017 reading relations for dependency 1 Fri Feb 10 19:20:36 2017 read 1024132 cycles Fri Feb 10 19:20:38 2017 cycles contain 3416624 unique relations Fri Feb 10 19:20:54 2017 read 3416624 relations Fri Feb 10 19:21:04 2017 multiplying 3416624 relations Fri Feb 10 19:22:34 2017 multiply complete, coefficients have about 99.93 million bits Fri Feb 10 19:22:35 2017 initial square root is modulo 14895301 Fri Feb 10 19:24:30 2017 GCD is 1, no factor found Fri Feb 10 19:24:30 2017 reading relations for dependency 2 Fri Feb 10 19:24:30 2017 read 1024365 cycles Fri Feb 10 19:24:31 2017 cycles contain 3414366 unique relations Fri Feb 10 19:24:47 2017 read 3414366 relations Fri Feb 10 19:24:56 2017 multiplying 3414366 relations Fri Feb 10 19:26:26 2017 multiply complete, coefficients have about 99.87 million bits Fri Feb 10 19:26:26 2017 initial square root is modulo 14739371 Fri Feb 10 19:28:22 2017 sqrtTime: 466 Fri Feb 10 19:28:22 2017 p65 factor: 95994772571094942940745768728816392374063113209060251060039354431 Fri Feb 10 19:28:22 2017 p79 factor: 3607940487286748767432073447620943939863416733459471364676122442689186542452583 Fri Feb 10 19:28:22 2017 elapsed time 00:07:46 |
software ソフトウェア | Msieve 1.53 snfs |
execution environment 実行環境 | 64-bit Ubuntu 16.04.1 LTS, Core i7-2600K 3.4GHz |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 280 | Cyp | December 10, 2014 07:15:16 UTC 2014 年 12 月 10 日 (水) 16 時 15 分 16 秒 (日本時間) | |
45 | 11e6 | 600 / 4413 | KTakahashi | June 20, 2015 08:22:41 UTC 2015 年 6 月 20 日 (土) 17 時 22 分 41 秒 (日本時間) |
name 名前 | Cyp |
---|---|
date 日付 | January 28, 2015 15:13:47 UTC 2015 年 1 月 29 日 (木) 0 時 13 分 47 秒 (日本時間) |
composite number 合成数 | 6230030077004668974151127297861048113781620187616392209793072779252006201932490090503238982781714045561679078815784480645271948370577423030513344873415537668880325385106361<172> |
prime factors 素因数 | 31509261933370924928677482899714705074067<41> 197720596889213383272170041799638095574119770663979861127759440064190655761818640402709089445120184106642322395527615695283431796483<132> |
factorization results 素因数分解の結果 | Run 417 out of 591: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=3006584438 Step 1 took 50234ms Step 2 took 17320ms ********** Factor found in step 2: 31509261933370924928677482899714705074067 Found probable prime factor of 41 digits: 31509261933370924928677482899714705074067 Probable prime cofactor 197720596889213383272170041799638095574119770663979861127759440064190655761818640402709089445120184106642322395527615695283431796483 has 132 digits |
software ソフトウェア | GMP-ECM 6.4.4 |
execution environment 実行環境 | Gentoo Linux, Intel(R) Core(TM) i7-3770K CPU |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 280 / 879 | Cyp | December 7, 2014 11:06:56 UTC 2014 年 12 月 7 日 (日) 20 時 6 分 56 秒 (日本時間) | |
45 | 11e6 | 417 / 4413 | Cyp | January 28, 2015 15:13:47 UTC 2015 年 1 月 29 日 (木) 0 時 13 分 47 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | December 9, 2014 02:42:11 UTC 2014 年 12 月 9 日 (火) 11 時 42 分 11 秒 (日本時間) |
composite number 合成数 | 42198617028066940092142904012938125398092173519472134759311160193666090089169977074280842066866872586687327387678274585685973<125> |
prime factors 素因数 | 161542762792862709223301273761812279271<39> 261222578458534086629106845494001065046533809355081626925080105828506572431485271988963<87> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=844711469 Step 1 took 7653ms Step 2 took 6635ms ********** Factor found in step 2: 161542762792862709223301273761812279271 Found probable prime factor of 39 digits: 161542762792862709223301273761812279271 Probable prime cofactor |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2320 | Serge Batalov | December 9, 2014 00:57:20 UTC 2014 年 12 月 9 日 (火) 9 時 57 分 20 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | December 9, 2014 01:41:02 UTC 2014 年 12 月 9 日 (火) 10 時 41 分 2 秒 (日本時間) |
composite number 合成数 | 111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111131<192> |
prime factors 素因数 | 131978496309241968503066933577596952668305384839006563391391656358884763<72> 841887990985774012151025615182454569328719804480121939262653447090055770436741800958999789571342111911142675317006342337<120> |
factorization results 素因数分解の結果 | prp72 factor: 131978496309241968503066933577596952668305384839006563391391656358884763 prp120 factor: 841887990985774012151025615182454569328719804480121939262653447090055770436741800958999789571342111911142675317006342337 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) |
name 名前 | Cyp |
---|---|
date 日付 | December 11, 2014 10:12:54 UTC 2014 年 12 月 11 日 (木) 19 時 12 分 54 秒 (日本時間) |
composite number 合成数 | 900175732395062046812022217591993339670169306101297494009418957400815430790376365036668913354031856505961322223<111> |
prime factors 素因数 | 410608779797677895848794710881235863869834173<45> 2192295383548817104526095467793289030220710506711335006391205517851<67> |
factorization results 素因数分解の結果 | 12/11/14 09:22:37 v1.34.3, 12/11/14 09:22:37 v1.34.3, **************************** 12/11/14 09:22:37 v1.34.3, Starting factorization of 900175732395062046812022217591993339670169306101297494009418957400815430790376365036668913354031856505961322223 12/11/14 09:22:37 v1.34.3, using pretesting plan: none 12/11/14 09:22:37 v1.34.3, no tune info: using qs/gnfs crossover of 95 digits 12/11/14 09:22:37 v1.34.3, **************************** 12/11/14 09:22:37 v1.34.3, rho: x^2 + 3, starting 1000 iterations on C111 12/11/14 09:22:37 v1.34.3, rho: x^2 + 2, starting 1000 iterations on C111 12/11/14 09:22:37 v1.34.3, rho: x^2 + 1, starting 1000 iterations on C111 12/11/14 09:22:37 v1.34.3, final ECM pretested depth: 0.00 12/11/14 09:22:37 v1.34.3, scheduler: switching to sieve method 12/11/14 09:22:37 v1.34.3, nfs: commencing nfs on c111: 900175732395062046812022217591993339670169306101297494009418957400815430790376365036668913354031856505961322223 12/11/14 09:22:37 v1.34.3, nfs: commencing poly selection with 8 threads 12/11/14 09:22:37 v1.34.3, nfs: setting deadline of 550 seconds 12/11/14 09:31:58 v1.34.3, nfs: completed 147 ranges of size 250 in 560.6061 seconds 12/11/14 09:31:58 v1.34.3, nfs: best poly = # norm 1.703715e-10 alpha -6.227338 e 9.401e-10 rroots 5 12/11/14 09:31:58 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/11/14 09:36:56 v1.34.3, nfs: commencing lattice sieving with 8 threads [10 lines snipped] 12/11/14 10:35:10 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/11/14 10:40:26 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/11/14 10:45:38 v1.34.3, nfs: commencing msieve filtering 12/11/14 10:46:20 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/11/14 10:51:33 v1.34.3, nfs: commencing msieve filtering 12/11/14 10:52:20 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/11/14 10:57:34 v1.34.3, nfs: commencing msieve filtering 12/11/14 10:58:25 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/11/14 11:03:54 v1.34.3, nfs: commencing msieve filtering 12/11/14 11:05:02 v1.34.3, nfs: commencing msieve linear algebra 12/11/14 11:10:46 v1.34.3, nfs: commencing msieve sqrt 12/11/14 11:12:53 v1.34.3, prp67 = 2192295383548817104526095467793289030220710506711335006391205517851 12/11/14 11:12:53 v1.34.3, prp45 = 410608779797677895848794710881235863869834173 12/11/14 11:12:53 v1.34.3, NFS elapsed time = 6615.8050 seconds. 12/11/14 11:12:53 v1.34.3, 12/11/14 11:12:53 v1.34.3, 12/11/14 11:12:53 v1.34.3, Total factoring time = 6615.8275 seconds -- Thu Dec 11 10:45:38 2014 Thu Dec 11 10:45:38 2014 commencing relation filtering Thu Dec 11 10:45:38 2014 estimated available RAM is 15987.3 MB Thu Dec 11 10:45:38 2014 commencing duplicate removal, pass 1 Thu Dec 11 10:45:52 2014 found 406376 hash collisions in 4519576 relations Thu Dec 11 10:45:57 2014 added 32676 free relations Thu Dec 11 10:45:57 2014 commencing duplicate removal, pass 2 Thu Dec 11 10:46:00 2014 found 166886 duplicates and 4385366 unique relations Thu Dec 11 10:46:00 2014 memory use: 19.6 MB Thu Dec 11 10:46:00 2014 reading ideals above 100000 Thu Dec 11 10:46:00 2014 commencing singleton removal, initial pass Thu Dec 11 10:46:19 2014 memory use: 172.2 MB Thu Dec 11 10:46:19 2014 reading all ideals from disk Thu Dec 11 10:46:19 2014 memory use: 147.8 MB Thu Dec 11 10:46:19 2014 keeping 5389666 ideals with weight <= 200, target excess is 24026 Thu Dec 11 10:46:19 2014 commencing in-memory singleton removal Thu Dec 11 10:46:19 2014 begin with 4385366 relations and 5389666 unique ideals Thu Dec 11 10:46:20 2014 reduce to 89 relations and 0 ideals in 28 passes Thu Dec 11 10:46:20 2014 max relations containing the same ideal: 0 Thu Dec 11 10:51:33 2014 Thu Dec 11 10:51:33 2014 commencing relation filtering Thu Dec 11 10:51:33 2014 estimated available RAM is 15987.3 MB Thu Dec 11 10:51:33 2014 commencing duplicate removal, pass 1 Thu Dec 11 10:51:49 2014 found 463636 hash collisions in 4874287 relations Thu Dec 11 10:51:53 2014 added 86 free relations Thu Dec 11 10:51:53 2014 commencing duplicate removal, pass 2 Thu Dec 11 10:51:57 2014 found 189526 duplicates and 4684847 unique relations Thu Dec 11 10:51:57 2014 memory use: 20.6 MB Thu Dec 11 10:51:57 2014 reading ideals above 100000 Thu Dec 11 10:51:57 2014 commencing singleton removal, initial pass Thu Dec 11 10:52:17 2014 memory use: 172.2 MB Thu Dec 11 10:52:18 2014 reading all ideals from disk Thu Dec 11 10:52:18 2014 memory use: 158.0 MB Thu Dec 11 10:52:18 2014 keeping 5536775 ideals with weight <= 200, target excess is 25130 Thu Dec 11 10:52:18 2014 commencing in-memory singleton removal Thu Dec 11 10:52:18 2014 begin with 4684847 relations and 5536775 unique ideals Thu Dec 11 10:52:20 2014 reduce to 1088633 relations and 1214954 ideals in 30 passes Thu Dec 11 10:52:20 2014 max relations containing the same ideal: 78 Thu Dec 11 10:57:34 2014 Thu Dec 11 10:57:34 2014 commencing relation filtering Thu Dec 11 10:57:34 2014 estimated available RAM is 15987.3 MB Thu Dec 11 10:57:34 2014 commencing duplicate removal, pass 1 Thu Dec 11 10:57:52 2014 found 520264 hash collisions in 5197149 relations Thu Dec 11 10:57:57 2014 added 64 free relations Thu Dec 11 10:57:57 2014 commencing duplicate removal, pass 2 Thu Dec 11 10:58:01 2014 found 213498 duplicates and 4983715 unique relations Thu Dec 11 10:58:01 2014 memory use: 20.6 MB Thu Dec 11 10:58:01 2014 reading ideals above 100000 Thu Dec 11 10:58:01 2014 commencing singleton removal, initial pass Thu Dec 11 10:58:23 2014 memory use: 172.2 MB Thu Dec 11 10:58:23 2014 reading all ideals from disk Thu Dec 11 10:58:23 2014 memory use: 168.1 MB Thu Dec 11 10:58:23 2014 keeping 5673564 ideals with weight <= 200, target excess is 26304 Thu Dec 11 10:58:23 2014 commencing in-memory singleton removal Thu Dec 11 10:58:23 2014 begin with 4983715 relations and 5673564 unique ideals Thu Dec 11 10:58:25 2014 reduce to 1555065 relations and 1600456 ideals in 23 passes Thu Dec 11 10:58:25 2014 max relations containing the same ideal: 90 Thu Dec 11 11:03:54 2014 Thu Dec 11 11:03:54 2014 commencing relation filtering Thu Dec 11 11:03:54 2014 estimated available RAM is 15987.3 MB Thu Dec 11 11:03:54 2014 commencing duplicate removal, pass 1 Thu Dec 11 11:04:11 2014 found 578826 hash collisions in 5517956 relations Thu Dec 11 11:04:16 2014 added 57 free relations Thu Dec 11 11:04:16 2014 commencing duplicate removal, pass 2 Thu Dec 11 11:04:20 2014 found 238453 duplicates and 5279560 unique relations Thu Dec 11 11:04:20 2014 memory use: 20.6 MB Thu Dec 11 11:04:20 2014 reading ideals above 100000 Thu Dec 11 11:04:20 2014 commencing singleton removal, initial pass Thu Dec 11 11:04:43 2014 memory use: 172.2 MB Thu Dec 11 11:04:44 2014 reading all ideals from disk Thu Dec 11 11:04:44 2014 memory use: 178.1 MB Thu Dec 11 11:04:44 2014 keeping 5799655 ideals with weight <= 200, target excess is 27686 Thu Dec 11 11:04:45 2014 commencing in-memory singleton removal Thu Dec 11 11:04:45 2014 begin with 5279560 relations and 5799655 unique ideals Thu Dec 11 11:04:47 2014 reduce to 1983178 relations and 1927090 ideals in 18 passes Thu Dec 11 11:04:47 2014 max relations containing the same ideal: 109 Thu Dec 11 11:04:48 2014 removing 160053 relations and 148067 ideals in 11986 cliques Thu Dec 11 11:04:48 2014 commencing in-memory singleton removal Thu Dec 11 11:04:48 2014 begin with 1823125 relations and 1927090 unique ideals Thu Dec 11 11:04:48 2014 reduce to 1811679 relations and 1767454 ideals in 9 passes Thu Dec 11 11:04:48 2014 max relations containing the same ideal: 101 Thu Dec 11 11:04:49 2014 removing 115260 relations and 103274 ideals in 11986 cliques Thu Dec 11 11:04:49 2014 commencing in-memory singleton removal Thu Dec 11 11:04:49 2014 begin with 1696419 relations and 1767454 unique ideals Thu Dec 11 11:04:49 2014 reduce to 1689673 relations and 1657380 ideals in 7 passes Thu Dec 11 11:04:49 2014 max relations containing the same ideal: 93 Thu Dec 11 11:04:50 2014 relations with 0 large ideals: 92 Thu Dec 11 11:04:50 2014 relations with 1 large ideals: 164 Thu Dec 11 11:04:50 2014 relations with 2 large ideals: 2678 Thu Dec 11 11:04:50 2014 relations with 3 large ideals: 24176 Thu Dec 11 11:04:50 2014 relations with 4 large ideals: 115500 Thu Dec 11 11:04:50 2014 relations with 5 large ideals: 314921 Thu Dec 11 11:04:50 2014 relations with 6 large ideals: 494538 Thu Dec 11 11:04:50 2014 relations with 7+ large ideals: 737604 Thu Dec 11 11:04:50 2014 commencing 2-way merge Thu Dec 11 11:04:50 2014 reduce to 946986 relation sets and 914693 unique ideals Thu Dec 11 11:04:50 2014 ignored 1 oversize relation sets Thu Dec 11 11:04:50 2014 commencing full merge Thu Dec 11 11:04:58 2014 memory use: 99.4 MB Thu Dec 11 11:04:58 2014 found 463941 cycles, need 460893 Thu Dec 11 11:04:58 2014 weight of 460893 cycles is about 32377232 (70.25/cycle) Thu Dec 11 11:04:58 2014 distribution of cycle lengths: Thu Dec 11 11:04:58 2014 1 relations: 55869 Thu Dec 11 11:04:58 2014 2 relations: 55061 Thu Dec 11 11:04:58 2014 3 relations: 53902 Thu Dec 11 11:04:58 2014 4 relations: 47375 Thu Dec 11 11:04:58 2014 5 relations: 41680 Thu Dec 11 11:04:58 2014 6 relations: 34991 Thu Dec 11 11:04:58 2014 7 relations: 30334 Thu Dec 11 11:04:58 2014 8 relations: 24976 Thu Dec 11 11:04:58 2014 9 relations: 20981 Thu Dec 11 11:04:58 2014 10+ relations: 95724 Thu Dec 11 11:04:58 2014 heaviest cycle: 25 relations Thu Dec 11 11:04:58 2014 commencing cycle optimization Thu Dec 11 11:04:59 2014 start with 2850751 relations Thu Dec 11 11:05:01 2014 pruned 54316 relations Thu Dec 11 11:05:01 2014 memory use: 97.0 MB Thu Dec 11 11:05:01 2014 distribution of cycle lengths: Thu Dec 11 11:05:01 2014 1 relations: 55869 Thu Dec 11 11:05:01 2014 2 relations: 56235 Thu Dec 11 11:05:01 2014 3 relations: 55490 Thu Dec 11 11:05:01 2014 4 relations: 48219 Thu Dec 11 11:05:01 2014 5 relations: 42273 Thu Dec 11 11:05:01 2014 6 relations: 35130 Thu Dec 11 11:05:01 2014 7 relations: 30431 Thu Dec 11 11:05:01 2014 8 relations: 24775 Thu Dec 11 11:05:01 2014 9 relations: 20688 Thu Dec 11 11:05:01 2014 10+ relations: 91783 Thu Dec 11 11:05:01 2014 heaviest cycle: 25 relations Thu Dec 11 11:05:02 2014 RelProcTime: 68 Thu Dec 11 11:05:02 2014 Thu Dec 11 11:05:02 2014 commencing linear algebra Thu Dec 11 11:05:02 2014 read 460893 cycles Thu Dec 11 11:05:02 2014 cycles contain 1647154 unique relations Thu Dec 11 11:05:09 2014 read 1647154 relations Thu Dec 11 11:05:10 2014 using 20 quadratic characters above 67108710 Thu Dec 11 11:05:15 2014 building initial matrix Thu Dec 11 11:05:24 2014 memory use: 205.8 MB Thu Dec 11 11:05:24 2014 read 460893 cycles Thu Dec 11 11:05:24 2014 matrix is 460715 x 460893 (138.1 MB) with weight 43809670 (95.05/col) Thu Dec 11 11:05:24 2014 sparse part has weight 31143467 (67.57/col) Thu Dec 11 11:05:26 2014 filtering completed in 2 passes Thu Dec 11 11:05:26 2014 matrix is 459947 x 460125 (138.1 MB) with weight 43777855 (95.14/col) Thu Dec 11 11:05:26 2014 sparse part has weight 31134857 (67.67/col) Thu Dec 11 11:05:26 2014 matrix starts at (0, 0) Thu Dec 11 11:05:26 2014 matrix is 459947 x 460125 (138.1 MB) with weight 43777855 (95.14/col) Thu Dec 11 11:05:26 2014 sparse part has weight 31134857 (67.67/col) Thu Dec 11 11:05:26 2014 saving the first 48 matrix rows for later Thu Dec 11 11:05:26 2014 matrix includes 64 packed rows Thu Dec 11 11:05:27 2014 matrix is 459899 x 460125 (133.2 MB) with weight 34787353 (75.60/col) Thu Dec 11 11:05:27 2014 sparse part has weight 30305086 (65.86/col) Thu Dec 11 11:05:27 2014 using block size 65536 for processor cache size 8192 kB Thu Dec 11 11:05:28 2014 commencing Lanczos iteration (8 threads) Thu Dec 11 11:05:28 2014 memory use: 126.6 MB Thu Dec 11 11:05:36 2014 linear algebra at 2.6%, ETA 0h 4m Thu Dec 11 11:10:45 2014 lanczos halted after 7274 iterations (dim = 459897) Thu Dec 11 11:10:46 2014 recovered 30 nontrivial dependencies Thu Dec 11 11:10:46 2014 BLanczosTime: 344 Thu Dec 11 11:10:46 2014 Thu Dec 11 11:10:46 2014 commencing square root phase Thu Dec 11 11:10:46 2014 reading relations for dependency 1 Thu Dec 11 11:10:46 2014 read 229743 cycles Thu Dec 11 11:10:46 2014 cycles contain 823184 unique relations Thu Dec 11 11:10:51 2014 read 823184 relations Thu Dec 11 11:10:53 2014 multiplying 823184 relations Thu Dec 11 11:11:17 2014 multiply complete, coefficients have about 35.36 million bits Thu Dec 11 11:11:17 2014 initial square root is modulo 119429 Thu Dec 11 11:11:48 2014 GCD is N, no factor found Thu Dec 11 11:11:48 2014 reading relations for dependency 2 Thu Dec 11 11:11:48 2014 read 229968 cycles Thu Dec 11 11:11:48 2014 cycles contain 823114 unique relations Thu Dec 11 11:11:54 2014 read 823114 relations Thu Dec 11 11:11:55 2014 multiplying 823114 relations Thu Dec 11 11:12:20 2014 multiply complete, coefficients have about 35.35 million bits Thu Dec 11 11:12:20 2014 initial square root is modulo 119087 Thu Dec 11 11:12:53 2014 sqrtTime: 127 -- n: 900175732395062046812022217591993339670169306101297494009418957400815430790376365036668913354031856505961322223 skew: 34017.99 c0: 12394229448173459950828056 c1: 14321171051589650032694 c2: -2222165876673941993 c3: 11911174959078 c4: 1561601484 c5: 9360 Y0: -2492351392504725716185 Y1: 175022507033 rlim: 3460000 alim: 3460000 lpbr: 26 lpba: 26 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 |
software ソフトウェア | yafu v1.34.3 |
execution environment 実行環境 | Gentoo Linux, Intel(R) Core(TM) i7-3770K CPU |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 418 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) |
300 | Ignacio Santos | December 8, 2014 22:32:07 UTC 2014 年 12 月 9 日 (火) 7 時 32 分 7 秒 (日本時間) | |||
40 | 3e6 | 110 / 2126 | Ignacio Santos | December 8, 2014 22:32:07 UTC 2014 年 12 月 9 日 (火) 7 時 32 分 7 秒 (日本時間) | |
45 | 11e6 | 32 / 4437 | Ignacio Santos | December 8, 2014 22:32:07 UTC 2014 年 12 月 9 日 (火) 7 時 32 分 7 秒 (日本時間) |
name 名前 | Cyp |
---|---|
date 日付 | June 8, 2015 20:13:26 UTC 2015 年 6 月 9 日 (火) 5 時 13 分 26 秒 (日本時間) |
composite number 合成数 | 8901244124701637759000909523430843025656074608253186064878511094556735692523286957532603807447675935857717769905817802553339908595840203815338860343158284530671597<163> |
prime factors 素因数 | 27150988521731560784027093807099425573663<41> 327842358946787945049218321329368110981965247471953259685825223504768351996504681945274239827700685157457357740726417244019<123> |
factorization results 素因数分解の結果 | Run 52 out of 585: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=2655023250 Step 1 took 50548ms Step 2 took 17069ms ********** Factor found in step 2: 27150988521731560784027093807099425573663 Found probable prime factor of 41 digits: 27150988521731560784027093807099425573663 Probable prime cofactor 327842358946787945049218321329368110981965247471953259685825223504768351996504681945274239827700685157457357740726417244019 has 123 digits |
software ソフトウェア | GMP-ECM 6.4.4 |
execution environment 実行環境 | Gentoo Linux, Intel(R) Core(TM) i7-3770K CPU |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 / 2139 | Serge Batalov | December 10, 2014 19:46:03 UTC 2014 年 12 月 11 日 (木) 4 時 46 分 3 秒 (日本時間) | |
45 | 11e6 | 52 / 4409 | Cyp | June 8, 2015 20:13:26 UTC 2015 年 6 月 9 日 (火) 5 時 13 分 26 秒 (日本時間) |
name 名前 | Cyp |
---|---|
date 日付 | December 12, 2014 08:54:25 UTC 2014 年 12 月 12 日 (金) 17 時 54 分 25 秒 (日本時間) |
composite number 合成数 | 15699307299941612786168117804941107158198515245221524132236285185823318408775669345588321777369440540165749080607<113> |
prime factors 素因数 | 34216608456866436321671902917253931<35> 458821256926507157738270605494611319562425126309136814861180396537905501170397<78> |
factorization results 素因数分解の結果 | 12/12/14 07:34:12 v1.34.3, 12/12/14 07:34:12 v1.34.3, **************************** 12/12/14 07:34:12 v1.34.3, Starting factorization of 15699307299941612786168117804941107158198515245221524132236285185823318408775669345588321777369440540165749080607 12/12/14 07:34:12 v1.34.3, using pretesting plan: none 12/12/14 07:34:12 v1.34.3, no tune info: using qs/gnfs crossover of 95 digits 12/12/14 07:34:12 v1.34.3, **************************** 12/12/14 07:34:12 v1.34.3, rho: x^2 + 3, starting 1000 iterations on C113 12/12/14 07:34:12 v1.34.3, rho: x^2 + 2, starting 1000 iterations on C113 12/12/14 07:34:12 v1.34.3, rho: x^2 + 1, starting 1000 iterations on C113 12/12/14 07:34:12 v1.34.3, final ECM pretested depth: 0.00 12/12/14 07:34:12 v1.34.3, scheduler: switching to sieve method 12/12/14 07:34:12 v1.34.3, nfs: commencing nfs on c113: 15699307299941612786168117804941107158198515245221524132236285185823318408775669345588321777369440540165749080607 12/12/14 07:34:12 v1.34.3, nfs: commencing poly selection with 8 threads 12/12/14 07:34:12 v1.34.3, nfs: setting deadline of 650 seconds 12/12/14 07:44:59 v1.34.3, nfs: completed 144 ranges of size 250 in 646.7378 seconds 12/12/14 07:44:59 v1.34.3, nfs: best poly = # norm 1.233403e-10 alpha -7.041917 e 7.660e-10 rroots 5 12/12/14 07:44:59 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/12/14 07:50:51 v1.34.3, nfs: commencing lattice sieving with 8 threads [16 lines snipped] 12/12/14 09:28:41 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/12/14 09:34:09 v1.34.3, nfs: commencing lattice sieving with 8 threads 12/12/14 09:40:02 v1.34.3, nfs: commencing msieve filtering 12/12/14 09:41:52 v1.34.3, nfs: commencing msieve linear algebra 12/12/14 09:46:46 v1.34.3, nfs: commencing msieve sqrt 12/12/14 09:54:24 v1.34.3, prp78 = 458821256926507157738270605494611319562425126309136814861180396537905501170397 12/12/14 09:54:24 v1.34.3, prp35 = 34216608456866436321671902917253931 12/12/14 09:54:24 v1.34.3, NFS elapsed time = 8411.5361 seconds. 12/12/14 09:54:24 v1.34.3, 12/12/14 09:54:24 v1.34.3, 12/12/14 09:54:24 v1.34.3, Total factoring time = 8411.5592 seconds -- Fri Dec 12 09:40:02 2014 Fri Dec 12 09:40:02 2014 commencing relation filtering Fri Dec 12 09:40:02 2014 estimated available RAM is 15987.3 MB Fri Dec 12 09:40:02 2014 commencing duplicate removal, pass 1 Fri Dec 12 09:40:33 2014 found 993248 hash collisions in 10157153 relations Fri Dec 12 09:40:43 2014 added 62653 free relations Fri Dec 12 09:40:43 2014 commencing duplicate removal, pass 2 Fri Dec 12 09:40:51 2014 found 403886 duplicates and 9815920 unique relations Fri Dec 12 09:40:51 2014 memory use: 41.3 MB Fri Dec 12 09:40:51 2014 reading ideals above 100000 Fri Dec 12 09:40:51 2014 commencing singleton removal, initial pass Fri Dec 12 09:41:34 2014 memory use: 344.5 MB Fri Dec 12 09:41:34 2014 reading all ideals from disk Fri Dec 12 09:41:34 2014 memory use: 335.0 MB Fri Dec 12 09:41:35 2014 keeping 10467002 ideals with weight <= 200, target excess is 84394 Fri Dec 12 09:41:35 2014 commencing in-memory singleton removal Fri Dec 12 09:41:35 2014 begin with 9815920 relations and 10467002 unique ideals Fri Dec 12 09:41:38 2014 reduce to 3801505 relations and 3349187 ideals in 16 passes Fri Dec 12 09:41:38 2014 max relations containing the same ideal: 110 Fri Dec 12 09:41:39 2014 removing 972481 relations and 795271 ideals in 177210 cliques Fri Dec 12 09:41:39 2014 commencing in-memory singleton removal Fri Dec 12 09:41:39 2014 begin with 2829024 relations and 3349187 unique ideals Fri Dec 12 09:41:40 2014 reduce to 2629215 relations and 2341614 ideals in 10 passes Fri Dec 12 09:41:40 2014 max relations containing the same ideal: 83 Fri Dec 12 09:41:41 2014 removing 737138 relations and 559928 ideals in 177210 cliques Fri Dec 12 09:41:41 2014 commencing in-memory singleton removal Fri Dec 12 09:41:41 2014 begin with 1892077 relations and 2341614 unique ideals Fri Dec 12 09:41:42 2014 reduce to 1722033 relations and 1599225 ideals in 10 passes Fri Dec 12 09:41:42 2014 max relations containing the same ideal: 66 Fri Dec 12 09:41:42 2014 removing 164599 relations and 139689 ideals in 24910 cliques Fri Dec 12 09:41:42 2014 commencing in-memory singleton removal Fri Dec 12 09:41:42 2014 begin with 1557434 relations and 1599225 unique ideals Fri Dec 12 09:41:42 2014 reduce to 1546473 relations and 1448418 ideals in 7 passes Fri Dec 12 09:41:42 2014 max relations containing the same ideal: 61 Fri Dec 12 09:41:43 2014 relations with 0 large ideals: 701 Fri Dec 12 09:41:43 2014 relations with 1 large ideals: 9205 Fri Dec 12 09:41:43 2014 relations with 2 large ideals: 59654 Fri Dec 12 09:41:43 2014 relations with 3 large ideals: 202125 Fri Dec 12 09:41:43 2014 relations with 4 large ideals: 384665 Fri Dec 12 09:41:43 2014 relations with 5 large ideals: 432317 Fri Dec 12 09:41:43 2014 relations with 6 large ideals: 297293 Fri Dec 12 09:41:43 2014 relations with 7+ large ideals: 160513 Fri Dec 12 09:41:43 2014 commencing 2-way merge Fri Dec 12 09:41:43 2014 reduce to 872779 relation sets and 774724 unique ideals Fri Dec 12 09:41:43 2014 commencing full merge Fri Dec 12 09:41:49 2014 memory use: 83.9 MB Fri Dec 12 09:41:49 2014 found 431979 cycles, need 418924 Fri Dec 12 09:41:49 2014 weight of 418924 cycles is about 29408904 (70.20/cycle) Fri Dec 12 09:41:49 2014 distribution of cycle lengths: Fri Dec 12 09:41:49 2014 1 relations: 42974 Fri Dec 12 09:41:49 2014 2 relations: 41781 Fri Dec 12 09:41:49 2014 3 relations: 43010 Fri Dec 12 09:41:49 2014 4 relations: 41349 Fri Dec 12 09:41:49 2014 5 relations: 38471 Fri Dec 12 09:41:49 2014 6 relations: 35520 Fri Dec 12 09:41:49 2014 7 relations: 32190 Fri Dec 12 09:41:49 2014 8 relations: 28674 Fri Dec 12 09:41:49 2014 9 relations: 24794 Fri Dec 12 09:41:49 2014 10+ relations: 90161 Fri Dec 12 09:41:49 2014 heaviest cycle: 18 relations Fri Dec 12 09:41:49 2014 commencing cycle optimization Fri Dec 12 09:41:50 2014 start with 2614332 relations Fri Dec 12 09:41:52 2014 pruned 58481 relations Fri Dec 12 09:41:52 2014 memory use: 87.6 MB Fri Dec 12 09:41:52 2014 distribution of cycle lengths: Fri Dec 12 09:41:52 2014 1 relations: 42974 Fri Dec 12 09:41:52 2014 2 relations: 42705 Fri Dec 12 09:41:52 2014 3 relations: 44372 Fri Dec 12 09:41:52 2014 4 relations: 42229 Fri Dec 12 09:41:52 2014 5 relations: 39481 Fri Dec 12 09:41:52 2014 6 relations: 36252 Fri Dec 12 09:41:52 2014 7 relations: 32748 Fri Dec 12 09:41:52 2014 8 relations: 28856 Fri Dec 12 09:41:52 2014 9 relations: 25113 Fri Dec 12 09:41:52 2014 10+ relations: 84194 Fri Dec 12 09:41:52 2014 heaviest cycle: 18 relations Fri Dec 12 09:41:52 2014 RelProcTime: 110 Fri Dec 12 09:41:52 2014 Fri Dec 12 09:41:52 2014 commencing linear algebra Fri Dec 12 09:41:52 2014 read 418924 cycles Fri Dec 12 09:41:52 2014 cycles contain 1466876 unique relations Fri Dec 12 09:42:03 2014 read 1466876 relations Fri Dec 12 09:42:04 2014 using 20 quadratic characters above 134214258 Fri Dec 12 09:42:08 2014 building initial matrix Fri Dec 12 09:42:16 2014 memory use: 186.9 MB Fri Dec 12 09:42:16 2014 read 418924 cycles Fri Dec 12 09:42:16 2014 matrix is 418744 x 418924 (127.4 MB) with weight 41206352 (98.36/col) Fri Dec 12 09:42:16 2014 sparse part has weight 28366033 (67.71/col) Fri Dec 12 09:42:18 2014 filtering completed in 2 passes Fri Dec 12 09:42:18 2014 matrix is 417883 x 418062 (127.3 MB) with weight 41167266 (98.47/col) Fri Dec 12 09:42:18 2014 sparse part has weight 28354087 (67.82/col) Fri Dec 12 09:42:19 2014 matrix starts at (0, 0) Fri Dec 12 09:42:19 2014 matrix is 417883 x 418062 (127.3 MB) with weight 41167266 (98.47/col) Fri Dec 12 09:42:19 2014 sparse part has weight 28354087 (67.82/col) Fri Dec 12 09:42:19 2014 saving the first 48 matrix rows for later Fri Dec 12 09:42:19 2014 matrix includes 64 packed rows Fri Dec 12 09:42:19 2014 matrix is 417835 x 418062 (123.0 MB) with weight 32915747 (78.73/col) Fri Dec 12 09:42:19 2014 sparse part has weight 28075081 (67.16/col) Fri Dec 12 09:42:19 2014 using block size 65536 for processor cache size 8192 kB Fri Dec 12 09:42:20 2014 commencing Lanczos iteration (8 threads) Fri Dec 12 09:42:20 2014 memory use: 116.4 MB Fri Dec 12 09:42:27 2014 linear algebra at 2.9%, ETA 0h 3m Fri Dec 12 09:46:46 2014 lanczos halted after 6608 iterations (dim = 417835) Fri Dec 12 09:46:46 2014 recovered 32 nontrivial dependencies Fri Dec 12 09:46:46 2014 BLanczosTime: 294 Fri Dec 12 09:46:46 2014 Fri Dec 12 09:46:46 2014 commencing square root phase Fri Dec 12 09:46:46 2014 reading relations for dependency 1 Fri Dec 12 09:46:46 2014 read 209670 cycles Fri Dec 12 09:46:47 2014 cycles contain 734918 unique relations Fri Dec 12 09:46:55 2014 read 734918 relations Fri Dec 12 09:46:56 2014 multiplying 734918 relations Fri Dec 12 09:47:17 2014 multiply complete, coefficients have about 30.91 million bits Fri Dec 12 09:47:17 2014 initial square root is modulo 752721103 Fri Dec 12 09:47:43 2014 GCD is 1, no factor found Fri Dec 12 09:47:43 2014 reading relations for dependency 2 Fri Dec 12 09:47:43 2014 read 209530 cycles Fri Dec 12 09:47:43 2014 cycles contain 735448 unique relations Fri Dec 12 09:47:51 2014 read 735448 relations Fri Dec 12 09:47:53 2014 multiplying 735448 relations Fri Dec 12 09:48:13 2014 multiply complete, coefficients have about 30.93 million bits Fri Dec 12 09:48:14 2014 initial square root is modulo 764799683 Fri Dec 12 09:48:42 2014 GCD is 1, no factor found Fri Dec 12 09:48:42 2014 reading relations for dependency 3 Fri Dec 12 09:48:42 2014 read 209018 cycles Fri Dec 12 09:48:43 2014 cycles contain 732324 unique relations Fri Dec 12 09:48:51 2014 read 732324 relations Fri Dec 12 09:48:52 2014 multiplying 732324 relations Fri Dec 12 09:49:13 2014 multiply complete, coefficients have about 30.80 million bits Fri Dec 12 09:49:13 2014 initial square root is modulo 700343773 Fri Dec 12 09:49:41 2014 GCD is 1, no factor found Fri Dec 12 09:49:41 2014 reading relations for dependency 4 Fri Dec 12 09:49:41 2014 read 208915 cycles Fri Dec 12 09:49:41 2014 cycles contain 732132 unique relations Fri Dec 12 09:49:49 2014 read 732132 relations Fri Dec 12 09:49:51 2014 multiplying 732132 relations Fri Dec 12 09:50:11 2014 multiply complete, coefficients have about 30.79 million bits Fri Dec 12 09:50:11 2014 initial square root is modulo 696133729 Fri Dec 12 09:50:39 2014 GCD is N, no factor found Fri Dec 12 09:50:39 2014 reading relations for dependency 5 Fri Dec 12 09:50:39 2014 read 209065 cycles Fri Dec 12 09:50:39 2014 cycles contain 733904 unique relations Fri Dec 12 09:50:48 2014 read 733904 relations Fri Dec 12 09:50:49 2014 multiplying 733904 relations Fri Dec 12 09:51:09 2014 multiply complete, coefficients have about 30.87 million bits Fri Dec 12 09:51:10 2014 initial square root is modulo 732425159 Fri Dec 12 09:51:35 2014 GCD is 1, no factor found Fri Dec 12 09:51:35 2014 reading relations for dependency 6 Fri Dec 12 09:51:35 2014 read 209848 cycles Fri Dec 12 09:51:35 2014 cycles contain 735010 unique relations Fri Dec 12 09:51:44 2014 read 735010 relations Fri Dec 12 09:51:45 2014 multiplying 735010 relations Fri Dec 12 09:52:06 2014 multiply complete, coefficients have about 30.91 million bits Fri Dec 12 09:52:06 2014 initial square root is modulo 755166253 Fri Dec 12 09:52:32 2014 GCD is 1, no factor found Fri Dec 12 09:52:32 2014 reading relations for dependency 7 Fri Dec 12 09:52:32 2014 read 208832 cycles Fri Dec 12 09:52:32 2014 cycles contain 733618 unique relations Fri Dec 12 09:52:40 2014 read 733618 relations Fri Dec 12 09:52:42 2014 multiplying 733618 relations Fri Dec 12 09:53:02 2014 multiply complete, coefficients have about 30.85 million bits Fri Dec 12 09:53:02 2014 initial square root is modulo 725573347 Fri Dec 12 09:53:28 2014 GCD is 1, no factor found Fri Dec 12 09:53:28 2014 reading relations for dependency 8 Fri Dec 12 09:53:28 2014 read 209488 cycles Fri Dec 12 09:53:28 2014 cycles contain 734022 unique relations Fri Dec 12 09:53:36 2014 read 734022 relations Fri Dec 12 09:53:38 2014 multiplying 734022 relations Fri Dec 12 09:53:58 2014 multiply complete, coefficients have about 30.87 million bits Fri Dec 12 09:53:58 2014 initial square root is modulo 734215103 Fri Dec 12 09:54:24 2014 sqrtTime: 458 -- n: 15699307299941612786168117804941107158198515245221524132236285185823318408775669345588321777369440540165749080607 skew: 105577.68 c0: 18518120219931647004246383684 c1: 1233819477659561773642911 c2: 12707778468679523069 c3: -188279892119136 c4: -758792893 c5: 6960 Y0: -4684405204484441503389 Y1: 101233261657 rlim: 3980000 alim: 3980000 lpbr: 27 lpba: 27 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 |
software ソフトウェア | yafu v1.34.3 |
execution environment 実行環境 | Gentoo Linux, Intel(R) Core(TM) i7-3770K CPU |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 418 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) |
300 | Ignacio Santos | December 8, 2014 22:33:52 UTC 2014 年 12 月 9 日 (火) 7 時 33 分 52 秒 (日本時間) | |||
40 | 3e6 | 110 / 2126 | Ignacio Santos | December 8, 2014 22:33:52 UTC 2014 年 12 月 9 日 (火) 7 時 33 分 52 秒 (日本時間) | |
45 | 11e6 | 32 / 4437 | Ignacio Santos | December 8, 2014 22:33:52 UTC 2014 年 12 月 9 日 (火) 7 時 33 分 52 秒 (日本時間) |
name 名前 | Erik Branger |
---|---|
date 日付 | March 4, 2015 07:54:47 UTC 2015 年 3 月 4 日 (水) 16 時 54 分 47 秒 (日本時間) |
composite number 合成数 | 144666748608306385932395931834684105448552803449366072566201734795555280598409423277247595556329319251045820453157402607366333602101<132> |
prime factors 素因数 | 27311645371502717815288309002599563883636820683205635009003777327<65> 5296888804775318330074628644740613173084422195029428811537155321563<67> |
factorization results 素因数分解の結果 | Number: 11131_196 N = 144666748608306385932395931834684105448552803449366072566201734795555280598409423277247595556329319251045820453157402607366333602101 (132 digits) Divisors found: r1=27311645371502717815288309002599563883636820683205635009003777327 (pp65) r2=5296888804775318330074628644740613173084422195029428811537155321563 (pp67) Version: Msieve v. 1.52 (SVN 958) Total time: 57.23 hours. Factorization parameters were as follows: # Murphy_E = 6.574e-11, selected by Erik Branger # expecting poly E from 7.07e-011 to > 8.13e-011 n: 144666748608306385932395931834684105448552803449366072566201734795555280598409423277247595556329319251045820453157402607366333602101 Y0: -31479279873830271233891226 Y1: 19596124279109 c0: -51595068022465482650911770161614195 c1: 92027200822322349297901689404 c2: 49022626344842602101151 c3: -58426696361423336 c4: -18630905184 c5: 4680 skew: 1969469.89 type: gnfs # selected mechanically rlim: 10500000 alim: 10500000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.6 alambda: 2.6 Factor base limits: 10500000/10500000 Large primes per side: 3 Large prime bits: 28/28 Sieved algebraic special-q in [0, 0) Total raw relations: 19314338 Relations: 2719618 relations Pruned matrix : 1582343 x 1582576 Polynomial selection time: 0.00 hours. Total sieving time: 55.95 hours. Total relation processing time: 0.09 hours. Matrix solve time: 1.04 hours. time per square root: 0.14 hours. Prototype def-par.txt line would be: gnfs,131,5,65,2000,1e-05,0.28,250,20,50000,3600,10500000,10500000,28,28,54,54,2.6,2.6,100000 total time: 57.23 hours. Intel64 Family 6 Model 60 Stepping 3, GenuineIntel Windows-7-6.1.7601-SP1 processors: 8, speed: 3.50GHz |
software ソフトウェア | GGNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2320 | Serge Batalov | December 9, 2014 00:57:24 UTC 2014 年 12 月 9 日 (火) 9 時 57 分 24 秒 (日本時間) |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | November 19, 2018 04:50:47 UTC 2018 年 11 月 19 日 (月) 13 時 50 分 47 秒 (日本時間) |
composite number 合成数 | 38500790171944204770697292889021696898363168983737338818920769628227482592083539310399089307617866243458943610209217238232068407670502393173144992280120978701582506695454399751<176> |
prime factors 素因数 | 569140955793671239477050476307207522709351<42> 67647196674248421182585150037125586348759552613788959594733141018142164120399748257336931802208456296372877935021462495188525640450401<134> |
factorization results 素因数分解の結果 | GMP-ECM 6.4.4 [configured with GMP 6.0.0, --enable-asm-redc] [ECM] Input number is 38500790171944204770697292889021696898363168983737338818920769628227482592083539310399089307617866243458943610209217238232068407670502393173144992280120978701582506695454399751 (176 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=3632082768 Step 1 took 34792ms Step 2 took 11084ms ********** Factor found in step 2: 569140955793671239477050476307207522709351 Found probable prime factor of 42 digits: 569140955793671239477050476307207522709351 Probable prime cofactor 67647196674248421182585150037125586348759552613788959594733141018142164120399748257336931802208456296372877935021462495188525640450401 has 134 digits |
execution environment 実行環境 | Core i7-4930K |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 280 | Cyp | December 7, 2014 23:47:30 UTC 2014 年 12 月 8 日 (月) 8 時 47 分 30 秒 (日本時間) | |
45 | 11e6 | 591 / 4413 | Cyp | June 20, 2015 20:15:49 UTC 2015 年 6 月 21 日 (日) 5 時 15 分 49 秒 (日本時間) |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | July 3, 2019 00:43:04 UTC 2019 年 7 月 3 日 (水) 9 時 43 分 4 秒 (日本時間) |
composite number 合成数 | 2274026670459395590101705815842014892824962939379985193083237805251160748151475719262246399379536611944525603993059228593751786838545320255259342976190384679457056596463798065354446013<184> |
prime factors 素因数 | 218014442525876995190357469049308413328232532356279965946823<60> 10430623972031038190256736412437719755837296528991095902941909120750987185870537929984941478029128268438064074944811265821531<125> |
factorization results 素因数分解の結果 | Number: 11131_199 N=2274026670459395590101705815842014892824962939379985193083237805251160748151475719262246399379536611944525603993059228593751786838545320255259342976190384679457056596463798065354446013 ( 184 digits) SNFS difficulty: 200 digits. Divisors found: r1=218014442525876995190357469049308413328232532356279965946823 r2=10430623972031038190256736412437719755837296528991095902941909120750987185870537929984941478029128268438064074944811265821531 Version: Total time: 225.80 hours. Scaled time: 1184.77 units (timescale=5.247). Factorization parameters were as follows: n: 2274026670459395590101705815842014892824962939379985193083237805251160748151475719262246399379536611944525603993059228593751786838545320255259342976190384679457056596463798065354446013 m: 10000000000000000000000000000000000000000 deg: 5 c5: 1 c0: 1790 skew: 4.47 # Murphy_E = 1.614e-11 type: snfs lss: 1 rlim: 16000000 alim: 16000000 lpbr: 29 lpba: 29 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 Factor base limits: 16000000/16000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 56/56 Sieved rational special-q in [8000000, 16300001) Primes: rational ideals reading, algebraic ideals reading, Relations: 38216028 Max relations in full relation-set: Initial matrix: Pruned matrix : 3164352 x 3164600 Total sieving time: 198.87 hours. Total relation processing time: 8.31 hours. Matrix solve time: 18.41 hours. Time per square root: 0.21 hours. Prototype def-par.txt line would be: snfs,200,5,0,0,0,0,0,0,0,0,16000000,16000000,29,29,56,56,2.5,2.5,100000 total time: 225.80 hours. --------- CPU info (if available) ---------- |
software ソフトウェア | GGNFS / Msieve v1.39 |
execution environment 実行環境 | Core i7-4930K |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 | Serge Batalov | December 10, 2014 19:46:04 UTC 2014 年 12 月 11 日 (木) 4 時 46 分 4 秒 (日本時間) | |
45 | 11e6 | 585 / 4409 | Cyp | July 1, 2015 08:28:40 UTC 2015 年 7 月 1 日 (水) 17 時 28 分 40 秒 (日本時間) |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | September 4, 2019 15:20:36 UTC 2019 年 9 月 5 日 (木) 0 時 20 分 36 秒 (日本時間) |
composite number 合成数 | 16159956555041248162553726523660296813551147233713064482974884797581094664148841767719274905087693801281392528028592949094787697159523014131240303779076421134276959<164> |
prime factors 素因数 | 1339664637223659460399832396736007936009534047917<49> 12062688008643251118055039164534710783742485126390392334071161103835520112167483720890806575229039767056101689949627<116> |
factorization results 素因数分解の結果 | GMP-ECM 6.4.4 [configured with GMP 6.0.0, --enable-asm-redc] [ECM] Input number is 16159956555041248162553726523660296813551147233713064482974884797581094664148841767719274905087693801281392528028592949094787697159523014131240303779076421134276959 (164 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=3917548946 Step 1 took 29784ms Step 2 took 9794ms ********** Factor found in step 2: 1339664637223659460399832396736007936009534047917 Found probable prime factor of 49 digits: 1339664637223659460399832396736007936009534047917 Probable prime cofactor 12062688008643251118055039164534710783742485126390392334071161103835520112167483720890806575229039767056101689949627 has 116 digits |
execution environment 実行環境 | Core i7-4930K |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 | Serge Batalov | December 10, 2014 19:46:04 UTC 2014 年 12 月 11 日 (木) 4 時 46 分 4 秒 (日本時間) | |
45 | 11e6 | 585 / 4409 | Cyp | January 27, 2015 11:11:22 UTC 2015 年 1 月 27 日 (火) 20 時 11 分 22 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | November 16, 2021 01:51:47 UTC 2021 年 11 月 16 日 (火) 10 時 51 分 47 秒 (日本時間) |
composite number 合成数 | 50737634275398191533178405223070794198780023074062864977616852878816106882799393442616439099272512994694562945875684817121793853673767746656237119812463133392804389<164> |
prime factors 素因数 | 31988508944360738749051685918972733722176494091174723<53> 1586120639872548363869301657062354647913393310764397201996000378234131788299401869573012499934677699625871553143<112> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 50737634275398191533178405223070794198780023074062864977616852878816106882799393442616439099272512994694562945875684817121793853673767746656237119812463133392804389 (164 digits) Using B1=37130000, B2=192390318136, polynomial Dickson(12), sigma=1:710151980 Step 1 took 86791ms Step 2 took 29493ms ********** Factor found in step 2: 31988508944360738749051685918972733722176494091174723 Found prime factor of 53 digits: 31988508944360738749051685918972733722176494091174723 Prime cofactor 1586120639872548363869301657062354647913393310764397201996000378234131788299401869573012499934677699625871553143 has 112 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 | Serge Batalov | December 10, 2014 19:46:04 UTC 2014 年 12 月 11 日 (木) 4 時 46 分 4 秒 (日本時間) | |
45 | 11e6 | 585 | Cyp | January 28, 2015 10:45:30 UTC 2015 年 1 月 28 日 (水) 19 時 45 分 30 秒 (日本時間) | |
50 | 43e6 | 1200 / 7410 | yoyo@Home | June 11, 2021 14:48:05 UTC 2021 年 6 月 11 日 (金) 23 時 48 分 5 秒 (日本時間) |
name 名前 | ebina |
---|---|
date 日付 | August 2, 2022 20:46:01 UTC 2022 年 8 月 3 日 (水) 5 時 46 分 1 秒 (日本時間) |
composite number 合成数 | 128468483091744333575580095762216067789542926030142673763081140076005907966719098620203499558661383486578229529396879951747997144207882353809856875915699853<156> |
prime factors 素因数 | 655032250133739696753368723914336401891087905490787<51> 196125432092106270740041261497233629311072694312702412659660633952957794982175343461624986384829508752719<105> |
factorization results 素因数分解の結果 | Number: 11131_202 N = 128468483091744333575580095762216067789542926030142673763081140076005907966719098620203499558661383486578229529396879951747997144207882353809856875915699853 (156 digits) SNFS difficulty: 203 digits. Divisors found: r1=655032250133739696753368723914336401891087905490787 (pp51) r2=196125432092106270740041261497233629311072694312702412659660633952957794982175343461624986384829508752719 (pp105) Version: Msieve v. 1.53 (SVN unknown) Total time: 90.69 hours. Factorization parameters were as follows: n: 128468483091744333575580095762216067789542926030142673763081140076005907966719098620203499558661383486578229529396879951747997144207882353809856875915699853 m: 10000000000000000000000000000000000000000 deg: 5 c5: 100 c0: 179 skew: 1.12 # Murphy_E = 1.031e-11 type: snfs lss: 1 rlim: 16300000 alim: 16300000 lpbr: 29 lpba: 29 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 16300000/16300000 Large primes per side: 3 Large prime bits: 29/29 Sieved rational special-q in [0, 0) Total raw relations: 38988645 Relations: 6124122 relations Pruned matrix : 3617282 x 3617512 Total sieving time: 82.51 hours. Total relation processing time: 0.37 hours. Matrix solve time: 7.63 hours. time per square root: 0.18 hours. Prototype def-par.txt line would be: snfs,203,5,0,0,0,0,0,0,0,0,16300000,16300000,29,29,56,56,2.6,2.6,100000 total time: 90.69 hours. Intel64 Family 6 Model 42 Stepping 7, GenuineIntel processors: 8, speed: 2.19GHz Windows-7-6.1.7601-SP1 Running Python 3.2 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 280 | Cyp | December 10, 2014 11:33:41 UTC 2014 年 12 月 10 日 (水) 20 時 33 分 41 秒 (日本時間) | |
45 | 11e6 | 4591 | 591 | Cyp | July 6, 2015 17:23:17 UTC 2015 年 7 月 7 日 (火) 2 時 23 分 17 秒 (日本時間) |
4000 | yoyo@Home | July 18, 2021 12:27:57 UTC 2021 年 7 月 18 日 (日) 21 時 27 分 57 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | July 20, 2021 12:49:57 UTC 2021 年 7 月 20 日 (火) 21 時 49 分 57 秒 (日本時間) |
composite number 合成数 | 35400841988434038916155159188436293342620463243781077235907532459475763712047769681915406517529680125081495453459820510992992528418377916882753920321834600366556289992430256203<176> |
prime factors 素因数 | 7696485905173133543759168543681386397989<40> 8354987278135164280051631742096416082262935052963358417<55> 550522812940569802047285244134309327741405649957656517982532846968943685346600831<81> |
factorization results 素因数分解の結果 | # # N = 10^204+179 = 1(202)31 # n: 35400841988434038916155159188436293342620463243781077235907532459475763712047769681915406517529680125081495453459820510992992528418377916882753920321834600366556289992430256203 m: 10000000000000000000000000000000000 deg: 6 c6: 1 c0: 179 skew: 2.37 # Murphy_E = 9.485e-12 type: snfs lss: 1 rlim: 17600000 alim: 17600000 lpbr: 29 lpba: 29 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 35400841988434038916155159188436293342620463243781077235907532459475763712047769681915406517529680125081495453459820510992992528418377916882753920321834600366556289992430256203 (176 digit s) Using B1=44820000, B2=240492041806, polynomial Dickson(12), sigma=1:122044288 Step 1 took 119630ms Step 2 took 38339ms ********** Factor found in step 2: 7696485905173133543759168543681386397989 Found prime factor of 40 digits: 7696485905173133543759168543681386397989 Composite cofactor 4599611098441645485839157821158683406746611710479522841244027214479461121219323929452517160336852989905809793541149106399875684883044527 has 136 digits CADO STA:Tue 20 Jul 2021 10:25:03 AEST (4,599,611,098,441,645,485,839,157,821,158,683,406,746,611,710,479,522,841,244,027,214,479,461,121,219,323,929,452,517,160,336,852,989,905,809,793,541,149,106,399,875,68 4,883,044,527 - C136) /home/bob/cado-nfs/cado-nfs-2.3.0/cado-nfs.py -t 16 --no-colors --screenlog DEBUG 4599611098441645485839157821158683406746611710479522841244027214479461121219323929452517160336852989905809793541149106399 875684883044527 2>&1 | tee -a log33 Debug:root: Looking for parameter file for c136 in directory /home/bob/cado-nfs/cado-nfs-2.3.0/parameters/factor Info:root: Using default parameter file /home/bob/cado-nfs/cado-nfs-2.3.0/parameters/factor/params.c135 Debug:Parameters: Reading parameter file /home/bob/cado-nfs/cado-nfs-2.3.0/parameters/factor/params.c135 Info:root: No database exists yet Info:root: Created temporary directory /tmp/cado.roy8rko6 Info:Database: Opened connection to database /tmp/cado.roy8rko6/c135.db Info:root: tasks.polyselect.threads = 2 Info:root: tasks.sieve.las.threads = 2 Info:root: slaves.scriptpath is /home/bob/cado-nfs/cado-nfs-2.3.0 Info:root: Command line parameters: /home/bob/cado-nfs/cado-nfs-2.3.0/cado-nfs.py -t 16 --no-colors --screenlog DEBUG 4599611098441645485839157821158683406746611710479522841244027214479461121219323929452 517160336852989905809793541149106399875684883044527 Debug:root: Root parameter dictionary: N = 4599611098441645485839157821158683406746611710479522841244027214479461121219323929452517160336852989905809793541149106399875684883044527 ... n: 4599611098441645485839157821158683406746611710479522841244027214479461121219323929452517160336852989905809793541149106399875684883044527 skew: 236908.433 c0: -4561725289076024900295611928672 c1: 78849993065004134737329722 c2: -3353686888085705805021 c3: -5632944297629928 c4: -811893914 c5: 49140 Y0: -156452699131267812975789541 Y1: 9534619563939169601 # MurphyE (Bf=1.64e+07,Bg=3.34e+06,area=5.51e+14) = 3.44e-10 # f(x) = 49140*x^5-811893914*x^4-5632944297629928*x^3-3353686888085705805021*x^2+78849993065004134737329722*x-4561725289076024900295611928672 # g(x) = 9534619563939169601*x-156452699131267812975789541 ... Info:Square Root: Factors: 550522812940569802047285244134309327741405649957656517982532846968943685346600831 8354987278135164280051631742096416082262935052963358417 Debug:Square Root: Exit SqrtTask.run(sqrt) Info:Square Root: Total cpu/real time for sqrt: 1199.51/166.782 Info:Polynomial Selection (size optimized): Aggregate statistics: Info:Polynomial Selection (size optimized): potential collisions: 35600.4 Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 36222/40.620/48.782/53.820/0.963 Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 36222/39.510/43.830/49.550/1.421 Info:Polynomial Selection (size optimized): Total time: 8939.93 Info:Polynomial Selection (root optimized): Aggregate statistics: Info:Polynomial Selection (root optimized): Total time: 3137.15 Info:Polynomial Selection (root optimized): Rootsieve time: 3136.21 Info:Generate Factor Base: Total cpu/real time for makefb: 20.87/1.98147 Info:Generate Free Relations: Total cpu/real time for freerel: 303.86/19.9489 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 19120747 Info:Lattice Sieving: Average J: 3776.48 for 783791 special-q, max bucket fill: 0.738801 Info:Lattice Sieving: Total CPU time: 592010s Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 52.51/66.1366 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 66.0s Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 307.71/94.0388 Info:Filtering - Singleton removal: Total cpu/real time for purge: 213.94/79.5635 Info:Filtering - Merging: Total cpu/real time for merge: 555.77/460.319 Info:Filtering - Merging: Total cpu/real time for replay: 44/34.7276 Info:Linear Algebra: Total cpu/real time for bwc: 42117.3/0.000284433 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: WCT time 1772.11 Info:Linear Algebra: Lingen CPU time 309.68, WCT time 30.35 Info:Linear Algebra: Mksol: WCT time 988.5 Info:Quadratic Characters: Total cpu/real time for characters: 45.13/10.9201 Info:Square Root: Total cpu/real time for sqrt: 1199.51/166.782 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization: Total cpu/elapsed time for entire factorization: 648947/43336.2 Info:root: Cleaning up computation data in /tmp/cado.roy8rko6 550522812940569802047285244134309327741405649957656517982532846968943685346600831 8354987278135164280051631742096416082262935052963358417 END:Tue 20 Jul 2021 22:27:20 AEST (4,599,611,098,441,645,485,839,157,821,158,683,406,746,611,710,479,522,841,244,027,214,479,461,121,219,323,929,452,517,160,336,852,989,905,809,793,541,149,106,399,875,68 4,883,044,527 - C136) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1300 | 300 | Serge Batalov | December 10, 2014 19:46:05 UTC 2014 年 12 月 11 日 (木) 4 時 46 分 5 秒 (日本時間) |
1000 | Dmitry Domanov | November 23, 2016 11:54:30 UTC 2016 年 11 月 23 日 (水) 20 時 54 分 30 秒 (日本時間) | |||
45 | 11e6 | 600 / 4188 | Dmitry Domanov | January 10, 2017 18:54:23 UTC 2017 年 1 月 11 日 (水) 3 時 54 分 23 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | December 9, 2014 01:07:33 UTC 2014 年 12 月 9 日 (火) 10 時 7 分 33 秒 (日本時間) |
composite number 合成数 | 653594771241830065359477124183006535947712418300653594771241830065359477124183006535947712418300653594771241830065359477124183006535947712418300653594771241830065359477124183006535947712418300653594771243<204> |
prime factors 素因数 | 214187449904862065242372352333336371<36> 3051508253784917176615291161446544421051884427645889124728544375809840849592372484186301524707966973787884014123474862169235746450660182770990286565384540478095257301033<169> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2390111359 Step 1 took 16126ms Step 2 took 11084ms ********** Factor found in step 2: 214187449904862065242372352333336371 Found probable prime factor of 36 digits: 214187449904862065242372352333336371 Probable prime cofactor |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2320 | Serge Batalov | December 9, 2014 00:57:37 UTC 2014 年 12 月 9 日 (火) 9 時 57 分 37 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | December 9, 2014 02:20:13 UTC 2014 年 12 月 9 日 (火) 11 時 20 分 13 秒 (日本時間) |
composite number 合成数 | 29525804151972130083751415699173740443861031266667685456220978778238930061403188698703627593226233477987493200735483024613514647362629973<137> |
prime factors 素因数 | 34181331397841825525026757726692089301<38> 863799124976049332788100438201035796285703172133198234273572657928666964688543998657565206317811073<99> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3909238929 Step 1 took 9892ms Step 2 took 8613ms ********** Factor found in step 2: 34181331397841825525026757726692089301 Found probable prime factor of 38 digits: 34181331397841825525026757726692089301 Probable prime cofactor |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2320 | Serge Batalov | December 9, 2014 00:57:26 UTC 2014 年 12 月 9 日 (火) 9 時 57 分 26 秒 (日本時間) |
name 名前 | Maksym Voznyy |
---|---|
date 日付 | February 4, 2015 22:30:02 UTC 2015 年 2 月 5 日 (木) 7 時 30 分 2 秒 (日本時間) |
composite number 合成数 | 103989437616735303400797039471471446907382792753983587059200950806088065626306986071169164823870039742434235619580660234294999<126> |
prime factors 素因数 | 337808378022199699903472779928958822836583843520387<51> 307835578932567048200569624252639252027135156691494114771184960548415739677<75> |
factorization results 素因数分解の結果 | Number: example7 N = 103989437616735303400797039471471446907382792753983587059200950806088065626306986071169164823870039742434235619580660234294999 (126 digits) Divisors found: r1=145587187799416660931819594795433915359809 (pp42) r2=337808378022199699903472779928958822836583843520387 (pp51) r3=21390949585413314181751856160576154189696288795716393851 (pp56) r4=450095100686271691681877256315272211386841127314343476157589 (pp60) r5=2071958927393164663913393755778719537977064921181136987739253082894859 (pp70) r6=307835578932567048200569624252639252027135156691494114771184960548415739677 (pp75) Version: Msieve v. 1.51 (SVN 845) Total time: 43.37 hours. Factorization parameters were as follows: # Murphy_E = 1.394e-10, selected by Maksym Voznyy n: 103989437616735303400797039471471446907382792753983587059200950806088065626306986071169164823870039742434235619580660234294999 Y0: -1543239811322897892127013 Y1: 17220440837821 c0: -34777845865113674290594428994920 c1: 2282245903336331491155975834 c2: -170017521004174463309 c3: -15975976688585350 c4: 13966070268 c5: 11880 skew: 594589.01 type: gnfs # selected mechanically rlim: 7200000 alim: 7200000 lpbr: 27 lpba: 27 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 7200000/7200000 Large primes per side: 3 Large prime bits: 27/27 Sieved algebraic special-q in [0, 0) Total raw relations: 11214127 Relations: 1757380 relations Pruned matrix : 1027932 x 1028161 Polynomial selection time: 0.00 hours. Total sieving time: 37.87 hours. Total relation processing time: 0.23 hours. Matrix solve time: 3.55 hours. time per square root: 1.71 hours. Prototype def-par.txt line would be: gnfs,125,5,65,2000,1e-05,0.28,250,20,50000,3600,7200000,7200000,27,27,53,53,2.5,2.5,100000 total time: 43.37 hours. x86 Family 6 Model 15 Stepping 6, GenuineIntel Windows-XP-5.1.2600-SP3 processors: 4, speed: 2.66GHz |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2320 | Serge Batalov | December 9, 2014 00:57:21 UTC 2014 年 12 月 9 日 (火) 9 時 57 分 21 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | December 11, 2014 01:31:59 UTC 2014 年 12 月 11 日 (木) 10 時 31 分 59 秒 (日本時間) |
composite number 合成数 | 17386436760308533227331138617062893729821104780407148718018129862993511269757812305310882427510328849507795329547104726768451221898076726803671643860085717686186626492826589188422656268858494337325113<200> |
prime factors 素因数 | 500913492957417197955528393449821<33> 34709459826402718371552002466640444580997960640563796908029787783408529013738076245122077916043908917933051661185951756308210414152084082480525909228939109806485952653<167> |
factorization results 素因数分解の結果 | Input number is 17386436760308533227331138617062893729821104780407148718018129862993511269757812305310882427510328849507795329547104726768451221898076726803671643860085717686186626492826589188422656268858494337325113 (200 digits) Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1798192685 Step 1 took 15482ms Step 2 took 9903ms ********** Factor found in step 2: 500913492957417197955528393449821 Found probable prime factor of 33 digits: 500913492957417197955528393449821 Probable prime cofactor 34709459826402718371552002466640444580997960640563796908029787783408529013738076245122077916043908917933051661185951756308210414152084082480525909228939109806485952653 has 167 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 / 2318 | Serge Batalov | December 10, 2014 19:46:05 UTC 2014 年 12 月 11 日 (木) 4 時 46 分 5 秒 (日本時間) |
name 名前 | ebina |
---|---|
date 日付 | December 20, 2021 12:05:30 UTC 2021 年 12 月 20 日 (月) 21 時 5 分 30 秒 (日本時間) |
composite number 合成数 | 239173661714771884091259204730215574016227253215800678953897349682285283424339665012838436761492348199675259425565954297793121447429979664094382874937362540663148962156970524206598521828369476399654092413<204> |
prime factors 素因数 | 33064843222973878988459423052650066966092208898586511974840457<62> 7233473333047317855467159107556570332611912850243429729490540154982427133224914226379398030623747581631967963788420990240966907990453830381909<142> |
factorization results 素因数分解の結果 | Mon Dec 20 20:39:04 2021 Msieve v. 1.53 (SVN unknown) Mon Dec 20 20:39:04 2021 random seeds: 16524990 5cc93d07 Mon Dec 20 20:39:04 2021 factoring 239173661714771884091259204730215574016227253215800678953897349682285283424339665012838436761492348199675259425565954297793121447429979664094382874937362540663148962156970524206598521828369476399654092413 (204 digits) Mon Dec 20 20:39:05 2021 searching for 15-digit factors Mon Dec 20 20:39:05 2021 commencing number field sieve (204-digit input) Mon Dec 20 20:39:05 2021 R0: -1000000000000000000000000000000000000000000 Mon Dec 20 20:39:05 2021 R1: 1 Mon Dec 20 20:39:05 2021 A0: 179 Mon Dec 20 20:39:05 2021 A1: 0 Mon Dec 20 20:39:05 2021 A2: 0 Mon Dec 20 20:39:05 2021 A3: 0 Mon Dec 20 20:39:05 2021 A4: 0 Mon Dec 20 20:39:05 2021 A5: 1000 Mon Dec 20 20:39:05 2021 skew 0.71, size 4.751e-15, alpha 0.380, combined = 3.065e-12 rroots = 1 Mon Dec 20 20:39:05 2021 Mon Dec 20 20:39:05 2021 commencing square root phase Mon Dec 20 20:39:05 2021 reading relations for dependency 1 Mon Dec 20 20:39:06 2021 read 2472599 cycles Mon Dec 20 20:39:08 2021 cycles contain 7610542 unique relations Mon Dec 20 20:39:57 2021 read 7610542 relations Mon Dec 20 20:40:22 2021 multiplying 7610542 relations Mon Dec 20 20:42:40 2021 multiply complete, coefficients have about 259.02 million bits Mon Dec 20 20:42:41 2021 initial square root is modulo 1974974941 Mon Dec 20 20:45:37 2021 sqrtTime: 392 Mon Dec 20 20:45:37 2021 p62 factor: 33064843222973878988459423052650066966092208898586511974840457 Mon Dec 20 20:45:37 2021 p142 factor: 7233473333047317855467159107556570332611912850243429729490540154982427133224914226379398030623747581631967963788420990240966907990453830381909 Mon Dec 20 20:45:37 2021 elapsed time 00:06:33 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 | Serge Batalov | December 10, 2014 19:46:06 UTC 2014 年 12 月 11 日 (木) 4 時 46 分 6 秒 (日本時間) | |
45 | 11e6 | 585 / 4409 | 329 | Cyp | January 8, 2015 07:39:31 UTC 2015 年 1 月 8 日 (木) 16 時 39 分 31 秒 (日本時間) |
256 | Cyp | July 2, 2015 11:59:21 UTC 2015 年 7 月 2 日 (木) 20 時 59 分 21 秒 (日本時間) |
name 名前 | Cyp |
---|---|
date 日付 | December 10, 2014 11:57:20 UTC 2014 年 12 月 10 日 (水) 20 時 57 分 20 秒 (日本時間) |
composite number 合成数 | 97771447871757858038309124410724224302776713164687130494193771297814333097747780551934335937315006079316618878701580008858441338652883883586874244008249198377390764259345195513115629331052947<191> |
prime factors 素因数 | 166950842666636217514223656632223<33> |
composite cofactor 合成数の残り | 585630155021054560676039459459749414391222296614793453888189789859162872817757633525734393282707594967204311034742446205752808952749174182535250691320337723789<159> |
factorization results 素因数分解の結果 | Run 20 out of 280: Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2940960321 Step 1 took 16146ms Step 2 took 5740ms ********** Factor found in step 2: 166950842666636217514223656632223 Found probable prime factor of 33 digits: 166950842666636217514223656632223 Composite cofactor 585630155021054560676039459459749414391222296614793453888189789859162872817757633525734393282707594967204311034742446205752808952749174182535250691320337723789 has 159 digits |
software ソフトウェア | GMP-ECM 6.4.4 |
execution environment 実行環境 | Gentoo Linux, Intel(R) Core(TM) i7-3770K CPU |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1280 | 280 | Cyp | December 10, 2014 11:57:19 UTC 2014 年 12 月 10 日 (水) 20 時 57 分 19 秒 (日本時間) |
1000 | Dmitry Domanov | November 23, 2016 11:55:05 UTC 2016 年 11 月 23 日 (水) 20 時 55 分 5 秒 (日本時間) | |||
45 | 11e6 | 4201 | 600 | Dmitry Domanov | January 10, 2017 22:54:54 UTC 2017 年 1 月 11 日 (水) 7 時 54 分 54 秒 (日本時間) |
3601 | Thomas Kozlowski | October 13, 2024 03:37:48 UTC 2024 年 10 月 13 日 (日) 12 時 37 分 48 秒 (日本時間) |
name 名前 | Thomas Kozlowski |
---|---|
date 日付 | October 13, 2024 05:13:29 UTC 2024 年 10 月 13 日 (日) 14 時 13 分 29 秒 (日本時間) |
composite number 合成数 | 670520557277912005195789116030811914635026940615694527229268441367821458774229107024048278829866479474907466302324624482697276783998107754049569742576874969931133804978812600213693583196415487351<195> |
prime factors 素因数 | 65781458014633516774285517567859357962478283<44> |
composite cofactor 合成数の残り | 10193154385978345288511133413940458569503807869299456934488038647297364238422441489087196438730376372924140573694747741565769666861065464787722811723397<152> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.6 [configured with GMP 6.3.0, --enable-asm-redc] [ECM] Input number is 670520557277912005195789116030811914635026940615694527229268441367821458774229107024048278829866479474907466302324624482697276783998107754049569742576874969931133804978812600213693583196415487351 (195 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:3074188705 Step 1 took 34600ms Step 2 took 12967ms Run 2 out of 0: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:586865905 Step 1 took 32924ms Step 2 took 12956ms Run 3 out of 0: ... Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:3007763692 Step 1 took 32970ms Step 2 took 12900ms Run 68 out of 0: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:44137731 Step 1 took 34192ms Step 2 took 12915ms ** Factor found in step 2: 65781458014633516774285517567859357962478283 Found prime factor of 44 digits: 65781458014633516774285517567859357962478283 Composite cofactor 10193154385978345288511133413940458569503807869299456934488038647297364238422441489087196438730376372924140573694747741565769666861065464787722811723397 has 152 digits |
execution environment 実行環境 | 2x Xeon E5-2698v4, 128GB DDR4, Ubuntu Server 24.04 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 280 | Cyp | December 9, 2014 06:55:54 UTC 2014 年 12 月 9 日 (火) 15 時 55 分 54 秒 (日本時間) | |
45 | 11e6 | 756 / 4413 | 356 | Cyp | May 13, 2015 18:42:08 UTC 2015 年 5 月 14 日 (木) 3 時 42 分 8 秒 (日本時間) |
400 | Dmitry Domanov | January 11, 2017 00:05:17 UTC 2017 年 1 月 11 日 (水) 9 時 5 分 17 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 580 | 280 | Cyp | December 10, 2014 16:58:15 UTC 2014 年 12 月 11 日 (木) 1 時 58 分 15 秒 (日本時間) |
300 | Serge Batalov | December 10, 2014 19:46:06 UTC 2014 年 12 月 11 日 (木) 4 時 46 分 6 秒 (日本時間) | |||
45 | 11e6 | 4504 | 504 | Cyp | July 6, 2015 19:04:28 UTC 2015 年 7 月 7 日 (火) 4 時 4 分 28 秒 (日本時間) |
4000 | Thomas Kozlowski | October 13, 2024 05:49:40 UTC 2024 年 10 月 13 日 (日) 14 時 49 分 40 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | December 15, 2014 22:33:24 UTC 2014 年 12 月 16 日 (火) 7 時 33 分 24 秒 (日本時間) |
composite number 合成数 | 865708673448628414463221665571545194754151722370691259718661995302664737867742223122559242608795773263972754416629224766540013487741132329630697336993549604674134269683834535369826416753886815516615979423836249473<213> |
prime factors 素因数 | 13159610020255664622470001908293344644507017494144327132837928332359774983968764808086547120830092686362183<107> 65785283311291427224327292474315417367755799241059246127428469979585316918832901455668748336737027014064631<107> |
factorization results 素因数分解の結果 | Msieve v. 1.52 (SVN 923M) begin with 51217205 relations and 47646749 unique ideals RelProcTime: 2379 matrix is 3988948 x 3989125 (1596.6 MB) with weight 470464993 (117.94/col) BLanczosTime: 27355 sqrtTime: 1123 prp107 factor: 13159610020255664622470001908293344644507017494144327132837928332359774983968764808086547120830092686362183 prp107 factor: 65785283311291427224327292474315417367755799241059246127428469979585316918832901455668748336737027014064631 |
software ソフトウェア | Msieve v. 1.52 (SVN 923M) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2320 | Serge Batalov | December 9, 2014 00:57:44 UTC 2014 年 12 月 9 日 (火) 9 時 57 分 44 秒 (日本時間) | |
45 | 11e6 | 0 | - | - | |
50 | 43e6 | 7500 | 2000 | Serge Batalov | December 12, 2014 19:00:27 UTC 2014 年 12 月 13 日 (土) 4 時 0 分 27 秒 (日本時間) |
5500 | Serge Batalov | December 12, 2014 20:55:34 UTC 2014 年 12 月 13 日 (土) 5 時 55 分 34 秒 (日本時間) |
name 名前 | Erik Branger |
---|---|
date 日付 | December 25, 2017 09:39:21 UTC 2017 年 12 月 25 日 (月) 18 時 39 分 21 秒 (日本時間) |
composite number 合成数 | 1101091704313304365646034174202106077248960228598284024802832976318668407199566468906495807753149553938655705278154746948334664108156181369059600573395207458192108215433124791556448838228965766938867451961<205> |
prime factors 素因数 | 1202746007783575324114797971441391656730676273<46> 915481487519048285929747875457901883469452708382978161164296551347653954777407808792438638431131927566922011434763381769055725806199422533838485235832319582857<159> |
factorization results 素因数分解の結果 | Number: 11131_220 N = 1101091704313304365646034174202106077248960228598284024802832976318668407199566468906495807753149553938655705278154746948334664108156181369059600573395207458192108215433124791556448838228965766938867451961 (205 digits) SNFS difficulty: 221 digits. Divisors found: r1=1202746007783575324114797971441391656730676273 (pp46) r2=915481487519048285929747875457901883469452708382978161164296551347653954777407808792438638431131927566922011434763381769055725806199422533838485235832319582857 (pp159) Version: Msieve v. 1.52 (SVN unknown) Total time: 62.27 hours. Factorization parameters were as follows: n: 1101091704313304365646034174202106077248960228598284024802832976318668407199566468906495807753149553938655705278154746948334664108156181369059600573395207458192108215433124791556448838228965766938867451961 m: 10000000000000000000000000000000000000000000000000000000 deg: 4 c4: 1 c0: 179 skew: 1.00 type: snfs lss: 1 rlim: 536870912 alim: 67108864 lpbr: 29 lpba: 26 mfbr: 58 mfba: 52 rlambda: 2.8 alambda: 2.8 side: 1 Number of cores used: 4 Number of threads per core: 1 Factor base limits: 536870912/67108864 Large primes per side: 3 Large prime bits: 29/26 Total raw relations: 28061793 Relations: 6992292 relations Total pre-computation time approximately 1000 CPU-days. Pre-computation saved approximately 18 G rational relations. Total batch smoothness checking time: 38.57 hours. Total relation processing time: 0.24 hours. Pruned matrix : 6211256 x 6211481 Matrix solve time: 22.90 hours. time per square root: 0.56 hours. Prototype def-par.txt line would be: snfs,221,4,0,0,0,0,0,0,0,0,536870912,67108864,29,26,58,52,2.8,2.8,100000 total time: 62.27 hours. Intel64 Family 6 Model 60 Stepping 3, GenuineIntel Windows-10-10.0.15063-SP0 processors: 8, speed: 3.50GHz |
software ソフトウェア | GGNFS, NFS_factory, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 280 | Cyp | December 8, 2014 16:33:57 UTC 2014 年 12 月 9 日 (火) 1 時 33 分 57 秒 (日本時間) | |
45 | 11e6 | 591 / 4413 | 194 | Cyp | December 29, 2014 09:41:19 UTC 2014 年 12 月 29 日 (月) 18 時 41 分 19 秒 (日本時間) |
397 | Cyp | June 5, 2015 04:00:11 UTC 2015 年 6 月 5 日 (金) 13 時 0 分 11 秒 (日本時間) |
name 名前 | Erik Branger |
---|---|
date 日付 | August 16, 2019 15:41:56 UTC 2019 年 8 月 17 日 (土) 0 時 41 分 56 秒 (日本時間) |
composite number 合成数 | 181861786307586815318171469194894826427796660107241494057899154617871388580700805685104621175552302800638866936502318156403728981354719724089814530207069233341684366715703609886045766215214195770327646349<204> |
prime factors 素因数 | 6765989239747886152568911165902420856637392988279866495619231<61> 26878816956907152467711184608567361688741160251473093163275681840946704685523703680287259411680889140359127245570240120150064138071347584484179<143> |
factorization results 素因数分解の結果 | Number: 11131_221 N = 181861786307586815318171469194894826427796660107241494057899154617871388580700805685104621175552302800638866936502318156403728981354719724089814530207069233341684366715703609886045766215214195770327646349 (204 digits) SNFS difficulty: 222 digits. Divisors found: r1=6765989239747886152568911165902420856637392988279866495619231 (pp61) r2=26878816956907152467711184608567361688741160251473093163275681840946704685523703680287259411680889140359127245570240120150064138071347584484179 (pp143) Version: Msieve v. 1.52 (SVN unknown) Total time: 76.38 hours. Factorization parameters were as follows: n: 181861786307586815318171469194894826427796660107241494057899154617871388580700805685104621175552302800638866936502318156403728981354719724089814530207069233341684366715703609886045766215214195770327646349 m: 10000000000000000000000000000000000000000000000000000000 deg: 4 c4: 10 c0: 179 skew: 1.00 type: snfs lss: 1 rlim: 536870912 alim: 22369622 lpbr: 29 lpba: 28 mfbr: 58 mfba: 56 rlambda: 2.8 alambda: 2.8 side: 1 Factor base limits: 536870912/22369622 Large primes per side: 3 Large prime bits: 29/28 Relations: 8145930 relations Pruned matrix : 7072055 x 7072280 Total pre-computation time approximately 1000 CPU-days. Pre-computation saved approximately 18 G relations. Total batch smoothness checking time: 39.88 hours. Total relation processing time: 0.41 hours. Matrix solve time: 35.87 hours. time per square root: 0.22 hours. Prototype def-par.txt line would be: snfs,222,4,0,0,0,0,0,0,0,0,536870912,22369622,29,28,58,56,2.8,2.8,100000 total time: 76.38 hours. Intel64 Family 6 Model 60 Stepping 3, GenuineIntel Windows-10-10.0.17763-SP0 processors: 8, speed: 3.50GHz |
software ソフトウェア | GGNFS, NFS_factory, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 / 2318 | Serge Batalov | December 10, 2014 19:46:06 UTC 2014 年 12 月 11 日 (木) 4 時 46 分 6 秒 (日本時間) |
name 名前 | Cyp |
---|---|
date 日付 | December 6, 2014 16:10:57 UTC 2014 年 12 月 7 日 (日) 1 時 10 分 57 秒 (日本時間) |
composite number 合成数 | 90565132016185430084878110895436221562001491495929664589648466451216976427762905263416634163611166421354269980634826709175398849061876465437511190450078812317941<161> |
prime factors 素因数 | 199552205002084864167828634371359189<36> 453841800521518825497858895964933779650109199628703027070864811387567040780690230628030485974598438234991967663705304029035169<126> |
factorization results 素因数分解の結果 | Run 73 out of 280: Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2024396803 Step 1 took 13296ms Step 2 took 4959ms ********** Factor found in step 2: 199552205002084864167828634371359189 Found probable prime factor of 36 digits: 199552205002084864167828634371359189 Probable prime cofactor 453841800521518825497858895964933779650109199628703027070864811387567040780690230628030485974598438234991967663705304029035169 has 126 digits |
software ソフトウェア | GMP-ECM 6.4.4 |
execution environment 実行環境 | Gentoo Linux, Intel(R) Core(TM) i7-3770K CPU |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 700 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 73 / 2318 | Cyp | December 6, 2014 16:10:56 UTC 2014 年 12 月 7 日 (日) 1 時 10 分 56 秒 (日本時間) |
name 名前 | NFS@Home + Dmitry Domanov |
---|---|
date 日付 | March 24, 2016 15:21:25 UTC 2016 年 3 月 25 日 (金) 0 時 21 分 25 秒 (日本時間) |
composite number 合成数 | 111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111131<225> |
prime factors 素因数 | 7751829167692735534669866359608637543218345959863314579069916310606337688409399860571149<88> 14333534538427188535967998137251487252272175991367345730789033589253832856686462421009277199840158878026971897018764391318820453653795719<137> |
factorization results 素因数分解の結果 | prp88 factor: 7751829167692735534669866359608637543218345959863314579069916310606337688409399860571149 prp137 factor: 14333534538427188535967998137251487252272175991367345730789033589253832856686462421009277199840158878026971897018764391318820453653795719 |
software ソフトウェア | ggnfs-lasieve4I14e on the NFS@Home grid + msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2320 | Serge Batalov | December 9, 2014 00:57:47 UTC 2014 年 12 月 9 日 (火) 9 時 57 分 47 秒 (日本時間) | |
45 | 11e6 | 4000 | 1000 | Serge Batalov | December 18, 2014 00:18:42 UTC 2014 年 12 月 18 日 (木) 9 時 18 分 42 秒 (日本時間) |
2000 | Serge Batalov | December 20, 2014 04:01:58 UTC 2014 年 12 月 20 日 (土) 13 時 1 分 58 秒 (日本時間) | |||
1000 | Serge Batalov | December 21, 2014 10:24:36 UTC 2014 年 12 月 21 日 (日) 19 時 24 分 36 秒 (日本時間) | |||
50 | 43e6 | 9361 | 2000 | Serge Batalov | December 21, 2014 12:18:36 UTC 2014 年 12 月 21 日 (日) 21 時 18 分 36 秒 (日本時間) |
7361 | Lionel Debroux | March 8, 2016 18:12:21 UTC 2016 年 3 月 9 日 (水) 3 時 12 分 21 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | December 11, 2014 01:32:03 UTC 2014 年 12 月 11 日 (木) 10 時 32 分 3 秒 (日本時間) |
composite number 合成数 | 8265639809701827789196759174880852868553100577875676015683886226113024193445066599152920701022137284507537726239860436324941146578144970560683971775485054607362684785610380717849326809098518739486622764547381416378547127<220> |
prime factors 素因数 | 2901845778988446226436066365705695949<37> |
composite cofactor 合成数の残り | 2848407682293559145954788513536270373613208404429679334923258844868661093614857734536693196236648432616352346156420347038290053985193428574213515118869505774726065272685867574822424723<184> |
factorization results 素因数分解の結果 | Input number is 8265639809701827789196759174880852868553100577875676015683886226113024193445066599152920701022137284507537726239860436324941146578144970560683971775485054607362684785610380717849326809098518739486622764547381416378547127 (220 digits) Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1916186067 Step 1 took 16635ms Step 2 took 10262ms ********** Factor found in step 2: 2901845778988446226436066365705695949 Found probable prime factor of 37 digits: 2901845778988446226436066365705695949 Composite cofactor 2848407682293559145954788513536270373613208404429679334923258844868661093614857734536693196236648432616352346156420347038290053985193428574213515118869505774726065272685867574822424723 has 184 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 | Serge Batalov | December 10, 2014 19:46:07 UTC 2014 年 12 月 11 日 (木) 4 時 46 分 7 秒 (日本時間) | |
45 | 11e6 | 4585 | 585 | Cyp | June 10, 2015 05:55:34 UTC 2015 年 6 月 10 日 (水) 14 時 55 分 34 秒 (日本時間) |
4000 | Thomas Kozlowski | October 13, 2024 06:59:12 UTC 2024 年 10 月 13 日 (日) 15 時 59 分 12 秒 (日本時間) |
name 名前 | Cyp |
---|---|
date 日付 | December 10, 2014 18:12:30 UTC 2014 年 12 月 11 日 (木) 3 時 12 分 30 秒 (日本時間) |
composite number 合成数 | 937061316769214743399142326334030862282095384251705927409091259440749018646362830862880556415432426749709663429421845654124127165168930214840616693762793011359215382899901996238463905913205684381220035843<204> |
prime factors 素因数 | 571306976790313336486932882517310173589<39> |
composite cofactor 合成数の残り | 1640206324861921185906449111594761845227357501743648252087099626413788830313750064207091631119824121589022155289321744482993790137488253124605053535568236260540882487<166> |
factorization results 素因数分解の結果 | Run 120 out of 280: Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1002534901 Step 1 took 18690ms Step 2 took 6288ms ********** Factor found in step 2: 571306976790313336486932882517310173589 Found probable prime factor of 39 digits: 571306976790313336486932882517310173589 Composite cofactor 1640206324861921185906449111594761845227357501743648252087099626413788830313750064207091631119824121589022155289321744482993790137488253124605053535568236260540882487 has 166 digits |
software ソフトウェア | GMP-ECM 6.4.4 |
execution environment 実行環境 | Gentoo Linux, Intel(R) Core(TM) i7-3770K CPU |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1280 | 280 | Cyp | December 10, 2014 18:12:30 UTC 2014 年 12 月 11 日 (木) 3 時 12 分 30 秒 (日本時間) |
1000 | Dmitry Domanov | November 23, 2016 12:07:51 UTC 2016 年 11 月 23 日 (水) 21 時 7 分 51 秒 (日本時間) | |||
45 | 11e6 | 4200 | 400 | Dmitry Domanov | January 11, 2017 00:06:41 UTC 2017 年 1 月 11 日 (水) 9 時 6 分 41 秒 (日本時間) |
3800 | Thomas Kozlowski | October 13, 2024 07:56:48 UTC 2024 年 10 月 13 日 (日) 16 時 56 分 48 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 | Serge Batalov | December 10, 2014 19:46:07 UTC 2014 年 12 月 11 日 (木) 4 時 46 分 7 秒 (日本時間) | |
45 | 11e6 | 4586 | 585 | Cyp | July 1, 2015 20:48:45 UTC 2015 年 7 月 2 日 (木) 5 時 48 分 45 秒 (日本時間) |
4001 | Thomas Kozlowski | October 13, 2024 09:16:07 UTC 2024 年 10 月 13 日 (日) 18 時 16 分 7 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | November 23, 2016 12:50:26 UTC 2016 年 11 月 23 日 (水) 21 時 50 分 26 秒 (日本時間) |
composite number 合成数 | 26070293319649235763483552547698576220274540312993408263475955852434348726507747046050714232373156147448642765687103062669447791451821751391200197239956768943034293094229114921865961393422048329219513<200> |
prime factors 素因数 | 82743081988548769089812056314027918811<38> 315075202580165368535622958348548821783573352832940210105594383299386630902031806153833709241407241326682832823400604610925948659904475733998357810979711141036283<162> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1957327770 Step 1 took 23335ms Step 2 took 8902ms ********** Factor found in step 2: 82743081988548769089812056314027918811 Found probable prime factor of 38 digits: 82743081988548769089812056314027918811 Probable prime cofactor 315075202580165368535622958348548821783573352832940210105594383299386630902031806153833709241407241326682832823400604610925948659904475733998357810979711141036283 has 162 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1280 / 2318 | 280 | Cyp | December 6, 2014 22:57:34 UTC 2014 年 12 月 7 日 (日) 7 時 57 分 34 秒 (日本時間) |
1000 | Dmitry Domanov | November 23, 2016 12:08:32 UTC 2016 年 11 月 23 日 (水) 21 時 8 分 32 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2630 | 280 | Cyp | December 7, 2014 12:40:00 UTC 2014 年 12 月 7 日 (日) 21 時 40 分 0 秒 (日本時間) |
2350 | Ignacio Santos | July 23, 2023 15:17:31 UTC 2023 年 7 月 24 日 (月) 0 時 17 分 31 秒 (日本時間) | |||
45 | 11e6 | 4000 | Thomas Kozlowski | October 13, 2024 10:46:00 UTC 2024 年 10 月 13 日 (日) 19 時 46 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 280 | Cyp | December 9, 2014 00:29:00 UTC 2014 年 12 月 9 日 (火) 9 時 29 分 0 秒 (日本時間) | |
45 | 11e6 | 4594 | 591 | Cyp | June 15, 2015 22:07:28 UTC 2015 年 6 月 16 日 (火) 7 時 7 分 28 秒 (日本時間) |
4003 | Thomas Kozlowski | October 13, 2024 12:05:13 UTC 2024 年 10 月 13 日 (日) 21 時 5 分 13 秒 (日本時間) |
name 名前 | Cyp |
---|---|
date 日付 | June 23, 2015 18:43:26 UTC 2015 年 6 月 24 日 (水) 3 時 43 分 26 秒 (日本時間) |
composite number 合成数 | 4960216246874002969808134843255010249909178520771252485498652247219286999395552600954391100597318189707661193687246707005126951136695842632819290713307011944678214124562858355116236263242559<190> |
prime factors 素因数 | 53079962037446342346790614668829072973<38> 93447999140894584708926524413365875936103050947061288563096900531019106219847827622628159900340354491203471764145206146267423676182540304805000436874683<152> |
factorization results 素因数分解の結果 | Run 559 out of 591: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=734330887 Step 1 took 59207ms Step 2 took 19479ms ********** Factor found in step 2: 53079962037446342346790614668829072973 Found probable prime factor of 38 digits: 53079962037446342346790614668829072973 Probable prime cofactor 93447999140894584708926524413365875936103050947061288563096900531019106219847827622628159900340354491203471764145206146267423676182540304805000436874683 has 152 digits |
software ソフトウェア | GMP-ECM 6.4.4 |
execution environment 実行環境 | Gentoo Linux, Intel(R) Core(TM) i7-3770K CPU |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 280 / 389 | Cyp | December 9, 2014 23:52:22 UTC 2014 年 12 月 10 日 (水) 8 時 52 分 22 秒 (日本時間) | |
45 | 11e6 | 559 / 4413 | Cyp | June 23, 2015 18:43:26 UTC 2015 年 6 月 24 日 (水) 3 時 43 分 26 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 280 | Cyp | December 7, 2014 16:20:36 UTC 2014 年 12 月 8 日 (月) 1 時 20 分 36 秒 (日本時間) | |
45 | 11e6 | 4591 | 591 | Cyp | January 27, 2015 00:01:42 UTC 2015 年 1 月 27 日 (火) 9 時 1 分 42 秒 (日本時間) |
4000 | Thomas Kozlowski | October 13, 2024 13:24:49 UTC 2024 年 10 月 13 日 (日) 22 時 24 分 49 秒 (日本時間) |
name 名前 | Cyp |
---|---|
date 日付 | June 15, 2015 19:24:55 UTC 2015 年 6 月 16 日 (火) 4 時 24 分 55 秒 (日本時間) |
composite number 合成数 | 1770220317640194263966100377464937524358480829018143397167450348108264745550691671568685891798327707518309181871562780279060887891085122089567873100627746410574391391665440407790312770953451051<193> |
prime factors 素因数 | 1927346716755686720286832523469474226645199393<46> 918475281199023606841418966652456312215787551998923396698691610106104802527653238276811974283806182714243333755447497935037246739219625748570812107<147> |
factorization results 素因数分解の結果 | Run 55 out of 585: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=4243777341 Step 1 took 59760ms Step 2 took 19265ms ********** Factor found in step 2: 1927346716755686720286832523469474226645199393 Found probable prime factor of 46 digits: 1927346716755686720286832523469474226645199393 Probable prime cofactor 918475281199023606841418966652456312215787551998923396698691610106104802527653238276811974283806182714243333755447497935037246739219625748570812107 has 147 digits |
software ソフトウェア | GMP-ECM 6.4.4 |
execution environment 実行環境 | Gentoo Linux, Intel(R) Core(TM) i7-3770K CPU |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 / 2129 | Serge Batalov | December 10, 2014 19:46:08 UTC 2014 年 12 月 11 日 (木) 4 時 46 分 8 秒 (日本時間) | |
45 | 11e6 | 55 / 4409 | Cyp | June 15, 2015 19:24:54 UTC 2015 年 6 月 16 日 (火) 4 時 24 分 54 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 280 | Cyp | December 7, 2014 07:02:33 UTC 2014 年 12 月 7 日 (日) 16 時 2 分 33 秒 (日本時間) | |
45 | 11e6 | 4595 | 591 | Cyp | February 1, 2015 15:39:21 UTC 2015 年 2 月 2 日 (月) 0 時 39 分 21 秒 (日本時間) |
4004 | Thomas Kozlowski | October 13, 2024 14:34:34 UTC 2024 年 10 月 13 日 (日) 23 時 34 分 34 秒 (日本時間) |
name 名前 | Cyp |
---|---|
date 日付 | June 21, 2015 07:28:52 UTC 2015 年 6 月 21 日 (日) 16 時 28 分 52 秒 (日本時間) |
composite number 合成数 | 4523529860388107349779865702506783238966131865517435340162486849050493666614184682195645024939356493160547614033563247211674062676260232290333957086372208295780044514696824908504877571641049<190> |
prime factors 素因数 | 28735285699418256884485073338945093543<38> |
composite cofactor 合成数の残り | 157420737267271568485723633745894573338898382132638632180725443935714039890804643027053171942481590423504145901088183455795799590602652762132623091010943<153> |
factorization results 素因数分解の結果 | Run 29 out of 591: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=3929403612 Step 1 took 58882ms Step 2 took 19461ms ********** Factor found in step 2: 28735285699418256884485073338945093543 Found probable prime factor of 38 digits: 28735285699418256884485073338945093543 Composite cofactor 157420737267271568485723633745894573338898382132638632180725443935714039890804643027053171942481590423504145901088183455795799590602652762132623091010943 has 153 digits |
software ソフトウェア | GMP-ECM 6.4.4 |
execution environment 実行環境 | Gentoo Linux, Intel(R) Core(TM) i7-3770K CPU |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | March 2, 2016 06:15:08 UTC 2016 年 3 月 2 日 (水) 15 時 15 分 8 秒 (日本時間) |
composite number 合成数 | 157420737267271568485723633745894573338898382132638632180725443935714039890804643027053171942481590423504145901088183455795799590602652762132623091010943<153> |
prime factors 素因数 | 2507136624256636421769259474670003142376133<43> 62789054152143250052830517688183231717959143988585512872952703900608955735576204725669902573222419662234483571<110> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1799218659 Step 1 took 47338ms ********** Factor found in step 1: 2507136624256636421769259474670003142376133 Found probable prime factor of 43 digits: 2507136624256636421769259474670003142376133 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 280 | Cyp | December 9, 2014 20:35:30 UTC 2014 年 12 月 10 日 (水) 5 時 35 分 30 秒 (日本時間) | |
45 | 11e6 | 1391 / 4413 | 591 | Cyp | June 21, 2015 07:28:52 UTC 2015 年 6 月 21 日 (日) 16 時 28 分 52 秒 (日本時間) |
800 | Dmitry Domanov | March 1, 2016 13:14:24 UTC 2016 年 3 月 1 日 (火) 22 時 14 分 24 秒 (日本時間) |
name 名前 | Ray Chandler |
---|---|
date 日付 | February 13, 2022 05:25:38 UTC 2022 年 2 月 13 日 (日) 14 時 25 分 38 秒 (日本時間) |
composite number 合成数 | 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111131<239> |
prime factors 素因数 | 49383754917758737763635485127931846613929451697024418071107649304357433843624195787453467391627646082881790722183421907<119> 224995266755535415366731149377947580408085476528372147307326700783870529602722674519446833358213080078919156952552892633<120> |
factorization results 素因数分解の結果 | 02/05/22 13:09:01, 02/05/22 13:09:01, **************************** 02/05/22 13:09:01, Starting factorization of 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111131 02/05/22 13:09:01, using pretesting plan: normal 02/05/22 13:09:01, using specified qs/gnfs crossover of 100 digits 02/05/22 13:09:01, using specified qs/snfs crossover of 75 digits 02/05/22 13:09:01, **************************** 02/05/22 13:09:01, rho: x^2 + 3, starting 1000 iterations on C239 02/05/22 13:09:01, rho: x^2 + 2, starting 1000 iterations on C239 02/05/22 13:09:01, rho: x^2 + 1, starting 1000 iterations on C239 02/05/22 13:09:02, nfs: input divides 10^239 + 179 02/05/22 13:09:02, nfs: using supplied cofactor: 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111131 02/05/22 13:09:02, nfs: input divides 10^239 + 179 02/05/22 13:09:02, nfs: using supplied cofactor: 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111131 02/05/22 13:09:02, nfs: commencing snfs on c239: 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111131 02/05/22 13:09:02, pm1: starting B1 = 150K, B2 = gmp-ecm default on C239 02/05/22 13:09:02, nfs: input divides 10^239 + 179 02/05/22 13:09:02, nfs: using supplied cofactor: 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111131 02/05/22 13:09:02, nfs: commencing snfs on c239: 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111131 02/05/22 13:09:02, current ECM pretesting depth: 0.00 02/05/22 13:09:02, scheduled 30 curves at B1=2000 toward target pretesting depth of 57.20 02/05/22 13:09:02, ecm: commencing 48 curves using AVX-ECM method on 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111131, B1=2k, B2=200k 02/05/22 13:09:02, ecm: finished 384 curves using AVX-ECM method on C239 input, B1=2k, B2=200k 02/05/22 13:09:02, nfs: input divides 10^239 + 179 02/05/22 13:09:02, nfs: using supplied cofactor: 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111131 02/05/22 13:09:02, nfs: commencing snfs on c239: 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111131 02/05/22 13:09:02, current ECM pretesting depth: 17.27 02/05/22 13:09:02, scheduled 74 curves at B1=11000 toward target pretesting depth of 57.20 02/05/22 13:09:03, ecm: commencing 96 curves using AVX-ECM method on 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111131, B1=11k, B2=1100k 02/05/22 13:09:03, ecm: finished 384 curves using AVX-ECM method on C239 input, B1=11k, B2=1100k 02/05/22 13:09:03, nfs: input divides 10^239 + 179 02/05/22 13:09:03, nfs: using supplied cofactor: 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111131 02/05/22 13:09:03, nfs: commencing snfs on c239: 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111131 02/05/22 13:09:03, current ECM pretesting depth: 21.28 02/05/22 13:09:03, scheduled 214 curves at B1=50000 toward target pretesting depth of 57.20 02/05/22 13:09:04, ecm: commencing 240 curves using AVX-ECM method on 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111131, B1=50k, B2=5M 02/05/22 13:09:05, ecm: finished 384 curves using AVX-ECM method on C239 input, B1=50k, B2=5M 02/05/22 13:09:05, nfs: input divides 10^239 + 179 02/05/22 13:09:05, nfs: using supplied cofactor: 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111131 02/05/22 13:09:05, nfs: commencing snfs on c239: 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111131 02/05/22 13:09:05, pm1: starting B1 = 3750K, B2 = gmp-ecm default on C239 02/05/22 13:09:07, nfs: input divides 10^239 + 179 02/05/22 13:09:07, nfs: using supplied cofactor: 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111131 02/05/22 13:09:07, nfs: commencing snfs on c239: 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111131 02/05/22 13:09:07, current ECM pretesting depth: 25.62 02/05/22 13:09:07, scheduled 430 curves at B1=250000 toward target pretesting depth of 57.20 02/05/22 13:09:09, ecm: commencing 432 curves using AVX-ECM method on 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111131, B1=250k, B2=25M 02/05/22 13:09:21, ecm: finished 768 curves using AVX-ECM method on C239 input, B1=250k, B2=25M 02/05/22 13:09:21, nfs: input divides 10^239 + 179 02/05/22 13:09:21, nfs: using supplied cofactor: 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111131 02/05/22 13:09:21, nfs: commencing snfs on c239: 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111131 02/05/22 13:09:21, pm1: starting B1 = 15M, B2 = gmp-ecm default on C239 02/05/22 13:09:28, nfs: input divides 10^239 + 179 02/05/22 13:09:28, nfs: using supplied cofactor: 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111131 02/05/22 13:09:28, nfs: commencing snfs on c239: 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111131 02/05/22 13:09:28, current ECM pretesting depth: 30.81 02/05/22 13:09:28, scheduled 904 curves at B1=1000000 toward target pretesting depth of 57.20 02/05/22 13:09:30, ecm: commencing 912 curves using AVX-ECM method on 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111131, B1=1M, B2=100M 02/05/22 13:10:35, ecm: finished 1152 curves using AVX-ECM method on C239 input, B1=1M, B2=100M 02/05/22 13:10:36, nfs: input divides 10^239 + 179 02/05/22 13:10:36, nfs: using supplied cofactor: 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111131 02/05/22 13:10:36, nfs: commencing snfs on c239: 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111131 02/05/22 13:10:36, current ECM pretesting depth: 35.72 02/05/22 13:10:36, scheduled 2350 curves at B1=3000000 toward target pretesting depth of 57.20 02/05/22 13:10:38, ecm: commencing 2352 curves using AVX-ECM method on 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111131, B1=3M, B2=300M 02/05/22 13:17:58, ecm: finished 2688 curves using AVX-ECM method on C239 input, B1=3M, B2=300M 02/05/22 13:18:00, nfs: input divides 10^239 + 179 02/05/22 13:18:00, nfs: using supplied cofactor: 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111131 02/05/22 13:18:00, nfs: commencing snfs on c239: 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111131 02/05/22 13:18:00, current ECM pretesting depth: 40.73 02/05/22 13:18:00, scheduled 4480 curves at B1=11000000 toward target pretesting depth of 57.20 02/05/22 13:18:02, ecm: commencing 4512 curves using AVX-ECM method on 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111131, B1=11M, B2=1100M 02/05/22 14:03:09, ecm: finished 4608 curves using AVX-ECM method on C239 input, B1=11M, B2=1100M 02/05/22 14:03:11, nfs: input divides 10^239 + 179 02/05/22 14:03:11, nfs: using supplied cofactor: 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111131 02/05/22 14:03:11, nfs: commencing snfs on c239: 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111131 02/05/22 14:03:11, current ECM pretesting depth: 45.76 02/05/22 14:03:11, scheduled 7553 curves at B1=43000000 toward target pretesting depth of 57.20 02/05/22 14:03:13, ecm: commencing 7584 curves using AVX-ECM method on 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111131, B1=43M, B2=4300M 02/05/22 18:54:09, ecm: finished 7680 curves using AVX-ECM method on C239 input, B1=43M, B2=4300M 02/05/22 18:54:10, nfs: input divides 10^239 + 179 02/05/22 18:54:10, nfs: using supplied cofactor: 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111131 02/05/22 18:54:10, nfs: commencing snfs on c239: 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111131 02/05/22 18:54:10, current ECM pretesting depth: 50.88 02/05/22 18:54:10, scheduled 17769 curves at B1=110000000 toward target pretesting depth of 57.20 02/05/22 18:54:12, ecm: commencing 17808 curves using AVX-ECM method on 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111131, B1=110M, B2=11B 02/06/22 23:37:57, ecm: finished 18048 curves using AVX-ECM method on C239 input, B1=110M, B2=11B 02/06/22 23:37:59, nfs: input divides 10^239 + 179 02/06/22 23:37:59, nfs: using supplied cofactor: 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111131 02/06/22 23:37:59, nfs: commencing snfs on c239: 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111131 02/06/22 23:38:00, current ECM pretesting depth: 55.93 02/06/22 23:38:00, scheduled 10647 curves at B1=260000000 toward target pretesting depth of 57.20 02/06/22 23:38:02, ecm: commencing 10656 curves using AVX-ECM method on 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111131, B1=260M, B2=26B 02/08/22 15:45:37, ecm: finished 10752 curves using AVX-ECM method on C239 input, B1=260M, B2=26B 02/08/22 15:45:40, nfs: input divides 10^239 + 179 02/08/22 15:45:40, nfs: using supplied cofactor: 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111131 02/08/22 15:45:40, nfs: commencing snfs on c239: 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111131 02/08/22 15:45:40, final ECM pretested depth: 57.21 02/08/22 15:45:40, scheduler: switching to sieve method 02/08/22 15:45:40, nfs: commencing nfs on c239: 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111131 02/08/22 15:45:40, nfs: input divides 10^239 + 179 02/08/22 15:45:40, nfs: using supplied cofactor: 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111131 02/08/22 15:45:40, nfs: commencing snfs on c239: 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111131 02/08/22 15:45:48, test: fb generation took 8.3308 seconds 02/08/22 15:45:48, test: commencing test sieving of polynomial 0 on the algebraic side over range 47200000-47201000 skew: 4.4602 c6: 1 c0: 1790 Y1: -1 Y0: 10000000000000000000000000000000000000000 rlim: 47200000 alim: 47200000 mfbr: 60 mfba: 60 lpbr: 30 lpba: 30 rlambda: 2.60 alambda: 2.60 02/08/22 15:47:21, nfs: parsing special-q from .dat file 02/08/22 15:47:21, test: new best estimated total sieving time = 3 days 16h 40m 34s (with 48 threads) 02/08/22 15:47:29, test: fb generation took 8.4539 seconds 02/08/22 15:47:29, test: commencing test sieving of polynomial 1 on the algebraic side over range 47200000-47201000 skew: 2.2301 c6: 32 c0: 895 Y1: -1 Y0: 5000000000000000000000000000000000000000 rlim: 47200000 alim: 47200000 mfbr: 60 mfba: 60 lpbr: 30 lpba: 30 rlambda: 2.60 alambda: 2.60 02/08/22 15:49:01, nfs: parsing special-q from .dat file 02/08/22 15:49:01, test: new best estimated total sieving time = 3 days 10h 57m 23s (with 48 threads) 02/08/22 15:49:07, test: fb generation took 5.8128 seconds 02/08/22 15:49:07, test: commencing test sieving of polynomial 2 on the rational side over range 51000000-51001000 skew: 3.1085 c5: 16 c0: 895 Y1: -1 Y0: 500000000000000000000000000000000000000000000000 rlim: 51000000 alim: 51000000 mfbr: 60 mfba: 60 lpbr: 30 lpba: 30 rlambda: 2.60 alambda: 2.60 02/08/22 15:51:03, nfs: parsing special-q from .dat file 02/08/22 15:51:03, test: estimated total sieving time = 4 days 21h 28m 18s (with 48 threads) 02/08/22 15:51:11, test: fb generation took 8.4623 seconds 02/08/22 15:51:11, test: commencing test sieving of polynomial 0 on the rational side over range 47200000-47201000 skew: 2.2301 c6: 32 c0: 895 Y1: -1 Y0: 5000000000000000000000000000000000000000 rlim: 47200000 alim: 47200000 mfbr: 62 mfba: 62 lpbr: 31 lpba: 31 rlambda: 2.60 alambda: 2.60 02/08/22 15:53:20, nfs: parsing special-q from .dat file 02/08/22 15:53:20, test: new best estimated total sieving time = 1 day 16h 9m 14s (with 48 threads) 02/08/22 15:53:20, nfs: commencing lattice sieving with 48 threads 02/08/22 16:00:46, nfs: commencing lattice sieving with 48 threads 02/08/22 16:08:15, nfs: commencing lattice sieving with 48 threads 02/08/22 16:15:46, nfs: commencing lattice sieving with 48 threads 02/08/22 16:23:30, nfs: commencing lattice sieving with 48 threads 02/08/22 16:30:56, nfs: commencing lattice sieving with 48 threads 02/08/22 16:38:23, nfs: commencing lattice sieving with 48 threads 02/08/22 16:46:01, nfs: commencing lattice sieving with 48 threads 02/08/22 16:53:46, nfs: commencing lattice sieving with 48 threads 02/08/22 17:01:21, nfs: commencing lattice sieving with 48 threads 02/08/22 17:08:56, nfs: commencing lattice sieving with 48 threads 02/08/22 17:16:31, nfs: commencing lattice sieving with 48 threads 02/08/22 17:24:01, nfs: commencing lattice sieving with 48 threads 02/08/22 17:32:03, nfs: commencing lattice sieving with 48 threads 02/08/22 17:39:57, nfs: commencing lattice sieving with 48 threads 02/08/22 17:47:40, nfs: commencing lattice sieving with 48 threads 02/08/22 17:55:18, nfs: commencing lattice sieving with 48 threads 02/08/22 18:02:52, nfs: commencing lattice sieving with 48 threads 02/08/22 18:10:43, nfs: commencing lattice sieving with 48 threads 02/08/22 18:18:21, nfs: commencing lattice sieving with 48 threads 02/08/22 18:25:58, nfs: commencing lattice sieving with 48 threads 02/08/22 18:33:42, nfs: commencing lattice sieving with 48 threads 02/08/22 18:41:30, nfs: commencing lattice sieving with 48 threads 02/08/22 18:49:07, nfs: commencing lattice sieving with 48 threads 02/08/22 18:56:49, nfs: commencing lattice sieving with 48 threads 02/08/22 19:04:45, nfs: commencing lattice sieving with 48 threads 02/08/22 19:12:44, nfs: commencing lattice sieving with 48 threads 02/08/22 19:20:20, nfs: commencing lattice sieving with 48 threads 02/08/22 19:28:13, nfs: commencing lattice sieving with 48 threads 02/08/22 19:36:08, nfs: commencing lattice sieving with 48 threads 02/08/22 19:43:55, nfs: commencing lattice sieving with 48 threads 02/08/22 19:51:57, nfs: commencing lattice sieving with 48 threads 02/08/22 19:59:38, nfs: commencing lattice sieving with 48 threads 02/08/22 20:07:22, nfs: commencing lattice sieving with 48 threads 02/08/22 20:14:55, nfs: commencing lattice sieving with 48 threads 02/08/22 20:23:01, nfs: commencing lattice sieving with 48 threads 02/08/22 20:30:51, nfs: commencing lattice sieving with 48 threads 02/08/22 20:38:43, nfs: commencing lattice sieving with 48 threads 02/08/22 20:46:34, nfs: commencing lattice sieving with 48 threads 02/08/22 20:54:34, nfs: commencing lattice sieving with 48 threads 02/08/22 21:02:29, nfs: commencing lattice sieving with 48 threads 02/08/22 21:10:34, nfs: commencing lattice sieving with 48 threads 02/08/22 21:18:16, nfs: commencing lattice sieving with 48 threads 02/08/22 21:26:07, nfs: commencing lattice sieving with 48 threads 02/08/22 21:34:04, nfs: commencing lattice sieving with 48 threads 02/08/22 21:42:02, nfs: commencing lattice sieving with 48 threads 02/08/22 21:49:56, nfs: commencing lattice sieving with 48 threads 02/08/22 21:57:41, nfs: commencing lattice sieving with 48 threads 02/08/22 22:05:32, nfs: commencing lattice sieving with 48 threads 02/08/22 22:13:27, nfs: commencing lattice sieving with 48 threads 02/08/22 22:21:18, nfs: commencing lattice sieving with 48 threads 02/08/22 22:29:03, nfs: commencing lattice sieving with 48 threads 02/08/22 22:36:50, nfs: commencing lattice sieving with 48 threads 02/08/22 22:44:49, nfs: commencing lattice sieving with 48 threads 02/08/22 22:52:55, nfs: commencing lattice sieving with 48 threads 02/08/22 23:00:57, nfs: commencing lattice sieving with 48 threads 02/08/22 23:08:53, nfs: commencing lattice sieving with 48 threads 02/08/22 23:16:57, nfs: commencing lattice sieving with 48 threads 02/08/22 23:24:40, nfs: commencing lattice sieving with 48 threads 02/08/22 23:32:38, nfs: commencing lattice sieving with 48 threads 02/08/22 23:40:33, nfs: commencing lattice sieving with 48 threads 02/08/22 23:48:45, nfs: commencing lattice sieving with 48 threads 02/08/22 23:56:39, nfs: commencing lattice sieving with 48 threads 02/09/22 00:04:36, nfs: commencing lattice sieving with 48 threads 02/09/22 00:12:43, nfs: commencing lattice sieving with 48 threads 02/09/22 00:20:50, nfs: commencing lattice sieving with 48 threads 02/09/22 00:28:35, nfs: commencing lattice sieving with 48 threads 02/09/22 00:36:29, nfs: commencing lattice sieving with 48 threads 02/09/22 00:44:31, nfs: commencing lattice sieving with 48 threads 02/09/22 00:52:34, nfs: commencing lattice sieving with 48 threads 02/09/22 01:00:37, nfs: commencing lattice sieving with 48 threads 02/09/22 01:08:36, nfs: commencing lattice sieving with 48 threads 02/09/22 01:16:36, nfs: commencing lattice sieving with 48 threads 02/09/22 01:24:34, nfs: commencing lattice sieving with 48 threads 02/09/22 01:32:32, nfs: commencing lattice sieving with 48 threads 02/09/22 01:40:20, nfs: commencing lattice sieving with 48 threads 02/09/22 01:48:27, nfs: commencing lattice sieving with 48 threads 02/09/22 01:56:20, nfs: commencing lattice sieving with 48 threads 02/09/22 02:04:10, nfs: commencing lattice sieving with 48 threads 02/09/22 02:12:22, nfs: commencing lattice sieving with 48 threads 02/09/22 02:20:24, nfs: commencing lattice sieving with 48 threads 02/09/22 02:28:26, nfs: commencing lattice sieving with 48 threads 02/09/22 02:36:28, nfs: commencing lattice sieving with 48 threads 02/09/22 02:44:29, nfs: commencing lattice sieving with 48 threads 02/09/22 02:52:32, nfs: commencing lattice sieving with 48 threads 02/09/22 03:00:43, nfs: commencing lattice sieving with 48 threads 02/09/22 03:08:46, nfs: commencing lattice sieving with 48 threads 02/09/22 03:16:55, nfs: commencing lattice sieving with 48 threads 02/09/22 03:24:52, nfs: commencing lattice sieving with 48 threads 02/09/22 03:33:02, nfs: commencing lattice sieving with 48 threads 02/09/22 03:41:01, nfs: commencing lattice sieving with 48 threads 02/09/22 03:49:11, nfs: commencing lattice sieving with 48 threads 02/09/22 03:57:27, nfs: commencing lattice sieving with 48 threads 02/09/22 04:05:40, nfs: commencing lattice sieving with 48 threads 02/09/22 04:13:58, nfs: commencing lattice sieving with 48 threads 02/09/22 04:22:11, nfs: commencing lattice sieving with 48 threads 02/09/22 04:30:34, nfs: commencing lattice sieving with 48 threads 02/09/22 04:38:41, nfs: commencing lattice sieving with 48 threads 02/09/22 04:46:50, nfs: commencing lattice sieving with 48 threads 02/09/22 04:55:01, nfs: commencing lattice sieving with 48 threads 02/09/22 05:03:16, nfs: commencing lattice sieving with 48 threads 02/09/22 05:11:28, nfs: commencing lattice sieving with 48 threads 02/09/22 05:19:35, nfs: commencing lattice sieving with 48 threads 02/09/22 05:27:32, nfs: commencing lattice sieving with 48 threads 02/09/22 05:35:57, nfs: commencing lattice sieving with 48 threads 02/09/22 05:44:49, nfs: commencing lattice sieving with 48 threads 02/09/22 05:52:59, nfs: commencing lattice sieving with 48 threads 02/09/22 06:01:04, nfs: commencing lattice sieving with 48 threads 02/09/22 06:09:13, nfs: commencing lattice sieving with 48 threads 02/09/22 06:17:18, nfs: commencing lattice sieving with 48 threads 02/09/22 06:25:37, nfs: commencing lattice sieving with 48 threads 02/09/22 06:33:42, nfs: commencing lattice sieving with 48 threads 02/09/22 06:41:52, nfs: commencing lattice sieving with 48 threads 02/09/22 06:50:12, nfs: commencing lattice sieving with 48 threads 02/09/22 06:58:31, nfs: commencing lattice sieving with 48 threads 02/09/22 07:06:49, nfs: commencing lattice sieving with 48 threads 02/09/22 07:15:03, nfs: commencing lattice sieving with 48 threads 02/09/22 07:23:33, nfs: commencing lattice sieving with 48 threads 02/09/22 07:31:50, nfs: commencing lattice sieving with 48 threads 02/09/22 07:40:03, nfs: commencing lattice sieving with 48 threads 02/09/22 07:48:29, nfs: commencing lattice sieving with 48 threads 02/09/22 07:56:41, nfs: commencing lattice sieving with 48 threads 02/09/22 08:04:55, nfs: commencing lattice sieving with 48 threads 02/09/22 08:13:25, nfs: commencing lattice sieving with 48 threads 02/09/22 08:21:56, nfs: commencing lattice sieving with 48 threads 02/09/22 08:30:09, nfs: commencing lattice sieving with 48 threads 02/09/22 08:38:36, nfs: commencing lattice sieving with 48 threads 02/09/22 08:47:03, nfs: commencing lattice sieving with 48 threads 02/09/22 08:55:32, nfs: commencing lattice sieving with 48 threads 02/09/22 09:03:46, nfs: commencing lattice sieving with 48 threads 02/09/22 09:12:12, nfs: commencing lattice sieving with 48 threads 02/09/22 09:20:37, nfs: commencing lattice sieving with 48 threads 02/09/22 09:28:58, nfs: commencing lattice sieving with 48 threads 02/09/22 09:37:49, nfs: commencing lattice sieving with 48 threads 02/09/22 09:46:18, nfs: commencing lattice sieving with 48 threads 02/09/22 09:54:56, nfs: commencing lattice sieving with 48 threads 02/09/22 10:03:37, nfs: commencing lattice sieving with 48 threads 02/09/22 10:12:02, nfs: commencing lattice sieving with 48 threads 02/09/22 10:20:35, nfs: commencing lattice sieving with 48 threads 02/09/22 10:28:55, nfs: commencing lattice sieving with 48 threads 02/09/22 10:37:21, nfs: commencing lattice sieving with 48 threads 02/09/22 10:45:46, nfs: commencing lattice sieving with 48 threads 02/09/22 10:54:18, nfs: commencing lattice sieving with 48 threads 02/09/22 11:02:38, nfs: commencing lattice sieving with 48 threads 02/09/22 11:11:17, nfs: commencing lattice sieving with 48 threads 02/09/22 11:19:50, nfs: commencing lattice sieving with 48 threads 02/09/22 11:28:18, nfs: commencing lattice sieving with 48 threads 02/09/22 11:36:55, nfs: commencing lattice sieving with 48 threads 02/09/22 11:45:39, nfs: commencing lattice sieving with 48 threads 02/09/22 11:53:59, nfs: commencing lattice sieving with 48 threads 02/09/22 12:02:49, nfs: commencing lattice sieving with 48 threads 02/09/22 12:11:11, nfs: commencing lattice sieving with 48 threads 02/09/22 12:19:41, nfs: commencing lattice sieving with 48 threads 02/09/22 12:28:09, nfs: commencing lattice sieving with 48 threads 02/09/22 12:36:38, nfs: commencing lattice sieving with 48 threads 02/09/22 12:45:15, nfs: commencing lattice sieving with 48 threads 02/09/22 12:53:50, nfs: commencing lattice sieving with 48 threads 02/09/22 13:02:22, nfs: commencing lattice sieving with 48 threads 02/09/22 13:10:46, nfs: commencing lattice sieving with 48 threads 02/09/22 13:19:12, nfs: commencing lattice sieving with 48 threads 02/09/22 13:27:41, nfs: commencing lattice sieving with 48 threads 02/09/22 13:36:26, nfs: commencing lattice sieving with 48 threads 02/09/22 13:45:13, nfs: commencing lattice sieving with 48 threads 02/09/22 13:53:33, nfs: commencing lattice sieving with 48 threads 02/09/22 14:02:08, nfs: commencing lattice sieving with 48 threads 02/09/22 14:10:40, nfs: commencing lattice sieving with 48 threads 02/09/22 14:19:08, nfs: commencing lattice sieving with 48 threads 02/09/22 14:27:30, nfs: commencing lattice sieving with 48 threads 02/09/22 14:36:00, nfs: commencing lattice sieving with 48 threads 02/09/22 14:44:32, nfs: commencing lattice sieving with 48 threads 02/09/22 14:53:01, nfs: commencing lattice sieving with 48 threads 02/09/22 15:01:34, nfs: commencing lattice sieving with 48 threads 02/09/22 15:10:14, nfs: commencing lattice sieving with 48 threads 02/09/22 15:18:42, nfs: commencing lattice sieving with 48 threads 02/09/22 15:27:10, nfs: commencing lattice sieving with 48 threads 02/09/22 15:35:41, nfs: commencing lattice sieving with 48 threads 02/09/22 15:43:55, nfs: commencing lattice sieving with 48 threads 02/09/22 15:52:21, nfs: commencing lattice sieving with 48 threads 02/09/22 16:01:02, nfs: commencing lattice sieving with 48 threads 02/09/22 16:09:31, nfs: commencing lattice sieving with 48 threads 02/09/22 16:18:03, nfs: commencing lattice sieving with 48 threads 02/09/22 16:26:29, nfs: commencing lattice sieving with 48 threads 02/09/22 16:35:12, nfs: commencing lattice sieving with 48 threads 02/09/22 16:43:32, nfs: commencing lattice sieving with 48 threads 02/09/22 16:52:04, nfs: commencing lattice sieving with 48 threads 02/09/22 17:00:26, nfs: commencing lattice sieving with 48 threads 02/09/22 17:09:14, nfs: commencing lattice sieving with 48 threads 02/09/22 17:17:26, nfs: commencing lattice sieving with 48 threads 02/09/22 17:25:48, nfs: commencing lattice sieving with 48 threads 02/09/22 17:34:21, nfs: commencing lattice sieving with 48 threads 02/09/22 17:42:48, nfs: commencing lattice sieving with 48 threads 02/09/22 17:51:27, nfs: commencing lattice sieving with 48 threads 02/09/22 18:00:01, nfs: commencing lattice sieving with 48 threads 02/09/22 18:08:17, nfs: commencing lattice sieving with 48 threads 02/09/22 18:16:46, nfs: commencing lattice sieving with 48 threads 02/09/22 18:25:11, nfs: commencing lattice sieving with 48 threads 02/09/22 18:33:37, nfs: commencing lattice sieving with 48 threads 02/09/22 18:42:12, nfs: commencing lattice sieving with 48 threads 02/09/22 18:50:33, nfs: commencing lattice sieving with 48 threads 02/09/22 18:59:05, nfs: commencing lattice sieving with 48 threads 02/09/22 19:07:24, nfs: commencing lattice sieving with 48 threads 02/09/22 19:15:49, nfs: commencing lattice sieving with 48 threads 02/09/22 19:24:29, nfs: commencing lattice sieving with 48 threads 02/09/22 19:33:01, nfs: commencing lattice sieving with 48 threads 02/09/22 19:41:29, nfs: commencing lattice sieving with 48 threads 02/09/22 19:49:45, nfs: commencing lattice sieving with 48 threads 02/09/22 19:58:30, nfs: commencing lattice sieving with 48 threads 02/09/22 20:07:10, nfs: commencing lattice sieving with 48 threads 02/09/22 20:15:29, nfs: commencing lattice sieving with 48 threads 02/09/22 20:24:02, nfs: commencing lattice sieving with 48 threads 02/09/22 20:32:59, nfs: commencing lattice sieving with 48 threads 02/09/22 20:41:25, nfs: commencing lattice sieving with 48 threads 02/09/22 20:49:43, nfs: commencing lattice sieving with 48 threads 02/09/22 20:58:06, nfs: commencing lattice sieving with 48 threads 02/09/22 21:06:37, nfs: commencing lattice sieving with 48 threads 02/09/22 21:14:59, nfs: commencing lattice sieving with 48 threads 02/09/22 21:23:22, nfs: commencing lattice sieving with 48 threads 02/09/22 21:31:43, nfs: commencing lattice sieving with 48 threads 02/09/22 21:40:04, nfs: commencing lattice sieving with 48 threads 02/09/22 21:48:28, nfs: commencing lattice sieving with 48 threads 02/09/22 21:56:50, nfs: commencing lattice sieving with 48 threads 02/09/22 22:05:29, nfs: commencing lattice sieving with 48 threads 02/09/22 22:13:45, nfs: commencing lattice sieving with 48 threads 02/09/22 22:22:14, nfs: commencing lattice sieving with 48 threads 02/09/22 22:30:48, nfs: commencing lattice sieving with 48 threads 02/09/22 22:38:59, nfs: commencing lattice sieving with 48 threads 02/09/22 22:47:14, nfs: commencing lattice sieving with 48 threads 02/09/22 22:55:27, nfs: commencing lattice sieving with 48 threads 02/09/22 23:03:57, nfs: commencing lattice sieving with 48 threads 02/09/22 23:12:26, nfs: commencing lattice sieving with 48 threads 02/09/22 23:20:47, nfs: commencing lattice sieving with 48 threads 02/09/22 23:29:17, nfs: commencing lattice sieving with 48 threads 02/09/22 23:37:46, nfs: commencing lattice sieving with 48 threads 02/09/22 23:46:21, nfs: commencing lattice sieving with 48 threads 02/09/22 23:54:50, nfs: commencing lattice sieving with 48 threads 02/10/22 00:03:19, nfs: commencing lattice sieving with 48 threads 02/10/22 00:11:35, nfs: commencing lattice sieving with 48 threads 02/10/22 00:19:50, nfs: commencing lattice sieving with 48 threads 02/10/22 00:28:13, nfs: commencing lattice sieving with 48 threads 02/10/22 00:36:39, nfs: commencing lattice sieving with 48 threads 02/10/22 00:45:16, nfs: commencing lattice sieving with 48 threads 02/10/22 00:53:42, nfs: commencing lattice sieving with 48 threads 02/10/22 01:02:00, nfs: commencing lattice sieving with 48 threads 02/10/22 01:10:26, nfs: commencing lattice sieving with 48 threads 02/10/22 01:18:56, nfs: commencing lattice sieving with 48 threads 02/10/22 01:27:31, nfs: commencing lattice sieving with 48 threads 02/10/22 01:36:02, nfs: commencing lattice sieving with 48 threads 02/10/22 01:44:15, nfs: commencing lattice sieving with 48 threads 02/10/22 01:52:48, nfs: commencing lattice sieving with 48 threads 02/10/22 02:01:12, nfs: commencing lattice sieving with 48 threads 02/10/22 02:09:34, nfs: commencing lattice sieving with 48 threads 02/10/22 02:18:04, nfs: commencing lattice sieving with 48 threads 02/10/22 02:26:32, nfs: commencing lattice sieving with 48 threads 02/10/22 02:35:00, nfs: commencing lattice sieving with 48 threads 02/10/22 02:43:27, nfs: commencing lattice sieving with 48 threads 02/10/22 02:52:00, nfs: commencing lattice sieving with 48 threads 02/10/22 03:00:22, nfs: commencing lattice sieving with 48 threads 02/10/22 03:08:51, nfs: commencing lattice sieving with 48 threads 02/10/22 03:17:10, nfs: commencing lattice sieving with 48 threads 02/10/22 03:25:32, nfs: commencing lattice sieving with 48 threads 02/10/22 03:33:41, nfs: commencing lattice sieving with 48 threads 02/10/22 03:42:12, nfs: commencing lattice sieving with 48 threads 02/10/22 03:50:43, nfs: commencing lattice sieving with 48 threads 02/10/22 03:59:03, nfs: commencing lattice sieving with 48 threads 02/10/22 04:07:18, nfs: commencing lattice sieving with 48 threads 02/10/22 04:15:43, nfs: commencing lattice sieving with 48 threads 02/10/22 04:24:23, nfs: commencing lattice sieving with 48 threads 02/10/22 04:32:51, nfs: commencing lattice sieving with 48 threads 02/10/22 04:41:16, nfs: commencing lattice sieving with 48 threads 02/10/22 04:49:30, nfs: commencing lattice sieving with 48 threads 02/10/22 04:57:54, nfs: commencing lattice sieving with 48 threads 02/10/22 05:06:07, nfs: commencing lattice sieving with 48 threads 02/10/22 05:15:02, nfs: commencing lattice sieving with 48 threads 02/10/22 05:23:28, nfs: commencing lattice sieving with 48 threads 02/10/22 05:31:51, nfs: commencing lattice sieving with 48 threads 02/10/22 05:40:12, nfs: commencing lattice sieving with 48 threads 02/10/22 05:48:37, nfs: commencing lattice sieving with 48 threads 02/10/22 05:56:55, nfs: commencing lattice sieving with 48 threads 02/10/22 06:05:17, nfs: commencing lattice sieving with 48 threads 02/10/22 06:13:31, nfs: commencing lattice sieving with 48 threads 02/10/22 06:21:49, nfs: commencing lattice sieving with 48 threads 02/10/22 06:30:23, nfs: commencing lattice sieving with 48 threads 02/10/22 06:38:51, nfs: commencing lattice sieving with 48 threads 02/10/22 06:47:05, nfs: commencing lattice sieving with 48 threads 02/10/22 06:55:21, nfs: commencing lattice sieving with 48 threads 02/10/22 07:03:30, nfs: commencing lattice sieving with 48 threads 02/10/22 07:12:06, nfs: commencing lattice sieving with 48 threads 02/10/22 07:20:19, nfs: commencing lattice sieving with 48 threads 02/10/22 07:28:36, nfs: commencing lattice sieving with 48 threads 02/10/22 07:37:19, nfs: commencing lattice sieving with 48 threads 02/10/22 07:45:26, nfs: commencing lattice sieving with 48 threads 02/10/22 07:53:48, nfs: commencing lattice sieving with 48 threads 02/10/22 08:02:06, nfs: commencing lattice sieving with 48 threads 02/10/22 08:10:21, nfs: commencing lattice sieving with 48 threads 02/10/22 08:18:58, nfs: commencing lattice sieving with 48 threads 02/10/22 08:27:25, nfs: commencing lattice sieving with 48 threads 02/10/22 08:35:47, nfs: commencing lattice sieving with 48 threads 02/10/22 08:44:07, nfs: commencing lattice sieving with 48 threads 02/10/22 08:52:29, nfs: commencing lattice sieving with 48 threads 02/10/22 09:00:54, nfs: commencing lattice sieving with 48 threads 02/10/22 09:09:06, nfs: commencing lattice sieving with 48 threads 02/10/22 09:17:25, nfs: commencing lattice sieving with 48 threads 02/10/22 09:25:55, nfs: commencing lattice sieving with 48 threads 02/10/22 09:34:16, nfs: commencing lattice sieving with 48 threads 02/10/22 09:42:39, nfs: commencing lattice sieving with 48 threads 02/10/22 09:50:59, nfs: commencing lattice sieving with 48 threads 02/10/22 09:59:42, nfs: commencing lattice sieving with 48 threads 02/10/22 10:08:07, nfs: commencing lattice sieving with 48 threads 02/10/22 10:16:29, nfs: commencing lattice sieving with 48 threads 02/10/22 10:24:50, nfs: commencing lattice sieving with 48 threads 02/10/22 10:32:58, nfs: commencing lattice sieving with 48 threads 02/10/22 10:41:10, nfs: commencing lattice sieving with 48 threads 02/10/22 10:49:54, nfs: commencing lattice sieving with 48 threads 02/10/22 10:58:20, nfs: commencing lattice sieving with 48 threads 02/10/22 11:06:36, nfs: commencing lattice sieving with 48 threads 02/10/22 11:14:58, nfs: commencing lattice sieving with 48 threads 02/10/22 11:23:11, nfs: commencing lattice sieving with 48 threads 02/10/22 11:31:50, nfs: commencing lattice sieving with 48 threads 02/10/22 11:40:06, nfs: commencing lattice sieving with 48 threads 02/10/22 11:48:31, nfs: commencing lattice sieving with 48 threads 02/10/22 11:56:50, nfs: commencing lattice sieving with 48 threads 02/10/22 12:05:16, nfs: commencing lattice sieving with 48 threads 02/10/22 12:13:30, nfs: commencing lattice sieving with 48 threads 02/10/22 12:21:45, nfs: commencing lattice sieving with 48 threads 02/10/22 12:30:11, nfs: commencing lattice sieving with 48 threads 02/10/22 12:38:32, nfs: commencing lattice sieving with 48 threads 02/10/22 12:47:10, nfs: commencing lattice sieving with 48 threads 02/10/22 12:55:48, nfs: commencing lattice sieving with 48 threads 02/10/22 13:04:06, nfs: commencing lattice sieving with 48 threads 02/10/22 13:12:32, nfs: commencing lattice sieving with 48 threads 02/10/22 13:20:49, nfs: commencing lattice sieving with 48 threads 02/10/22 13:29:06, nfs: commencing lattice sieving with 48 threads 02/10/22 13:37:12, nfs: commencing lattice sieving with 48 threads 02/10/22 13:45:41, nfs: commencing lattice sieving with 48 threads 02/10/22 13:53:58, nfs: commencing lattice sieving with 48 threads 02/10/22 14:02:29, nfs: commencing lattice sieving with 48 threads 02/10/22 14:10:42, nfs: commencing lattice sieving with 48 threads 02/10/22 14:18:51, nfs: commencing lattice sieving with 48 threads 02/10/22 14:27:17, nfs: commencing lattice sieving with 48 threads 02/10/22 14:35:29, nfs: commencing lattice sieving with 48 threads 02/10/22 14:44:07, nfs: commencing lattice sieving with 48 threads 02/10/22 14:52:34, nfs: commencing lattice sieving with 48 threads 02/10/22 15:00:50, nfs: commencing lattice sieving with 48 threads 02/10/22 15:08:55, nfs: commencing lattice sieving with 48 threads 02/10/22 15:17:18, nfs: commencing lattice sieving with 48 threads 02/10/22 15:25:41, nfs: commencing lattice sieving with 48 threads 02/10/22 15:34:06, nfs: commencing lattice sieving with 48 threads 02/10/22 15:42:29, nfs: commencing lattice sieving with 48 threads 02/10/22 15:50:41, nfs: commencing lattice sieving with 48 threads 02/10/22 15:59:09, nfs: commencing lattice sieving with 48 threads 02/10/22 16:07:26, nfs: commencing lattice sieving with 48 threads 02/10/22 16:15:39, nfs: commencing lattice sieving with 48 threads 02/10/22 16:23:58, nfs: commencing lattice sieving with 48 threads 02/10/22 16:32:08, nfs: commencing lattice sieving with 48 threads 02/10/22 16:40:33, nfs: commencing lattice sieving with 48 threads 02/10/22 16:48:46, nfs: commencing lattice sieving with 48 threads 02/10/22 16:57:08, nfs: commencing lattice sieving with 48 threads 02/10/22 17:05:17, nfs: commencing lattice sieving with 48 threads 02/10/22 17:13:55, nfs: commencing lattice sieving with 48 threads 02/10/22 17:22:44, nfs: commencing lattice sieving with 48 threads 02/10/22 17:31:01, nfs: commencing lattice sieving with 48 threads 02/10/22 17:39:18, nfs: commencing lattice sieving with 48 threads 02/10/22 17:47:36, nfs: commencing lattice sieving with 48 threads 02/10/22 17:55:48, nfs: commencing lattice sieving with 48 threads 02/10/22 18:04:04, nfs: commencing lattice sieving with 48 threads 02/10/22 18:12:20, nfs: commencing lattice sieving with 48 threads 02/10/22 18:20:48, nfs: commencing lattice sieving with 48 threads 02/10/22 18:29:02, nfs: commencing lattice sieving with 48 threads 02/10/22 18:37:12, nfs: commencing lattice sieving with 48 threads 02/10/22 18:45:26, nfs: commencing lattice sieving with 48 threads 02/10/22 18:53:36, nfs: commencing lattice sieving with 48 threads 02/10/22 19:01:52, nfs: commencing lattice sieving with 48 threads 02/10/22 19:10:11, nfs: commencing lattice sieving with 48 threads 02/10/22 19:18:25, nfs: commencing lattice sieving with 48 threads 02/10/22 19:26:45, nfs: commencing lattice sieving with 48 threads 02/10/22 19:34:55, nfs: commencing lattice sieving with 48 threads 02/10/22 19:43:21, nfs: commencing lattice sieving with 48 threads 02/10/22 19:51:39, nfs: commencing lattice sieving with 48 threads 02/10/22 20:00:09, nfs: commencing lattice sieving with 48 threads 02/10/22 20:08:20, nfs: commencing lattice sieving with 48 threads 02/10/22 20:16:38, nfs: commencing lattice sieving with 48 threads 02/10/22 20:25:05, nfs: commencing lattice sieving with 48 threads 02/10/22 20:33:17, nfs: commencing lattice sieving with 48 threads 02/10/22 20:41:39, nfs: commencing lattice sieving with 48 threads 02/10/22 20:49:51, nfs: commencing lattice sieving with 48 threads 02/10/22 20:58:16, nfs: commencing lattice sieving with 48 threads 02/10/22 21:06:41, nfs: commencing lattice sieving with 48 threads 02/10/22 21:14:56, nfs: commencing lattice sieving with 48 threads 02/10/22 21:23:11, nfs: commencing lattice sieving with 48 threads 02/10/22 21:31:27, nfs: commencing lattice sieving with 48 threads 02/10/22 21:39:50, nfs: commencing lattice sieving with 48 threads 02/10/22 21:48:23, nfs: commencing lattice sieving with 48 threads 02/10/22 21:56:40, nfs: commencing lattice sieving with 48 threads 02/10/22 22:05:03, nfs: commencing lattice sieving with 48 threads 02/10/22 22:13:25, nfs: commencing lattice sieving with 48 threads 02/10/22 22:21:43, nfs: commencing lattice sieving with 48 threads 02/10/22 22:29:56, nfs: commencing lattice sieving with 48 threads 02/10/22 22:38:01, nfs: commencing lattice sieving with 48 threads 02/10/22 22:46:15, nfs: commencing lattice sieving with 48 threads 02/10/22 22:54:36, nfs: commencing lattice sieving with 48 threads 02/10/22 23:02:42, nfs: commencing lattice sieving with 48 threads 02/10/22 23:10:47, nfs: commencing lattice sieving with 48 threads 02/10/22 23:19:06, nfs: commencing lattice sieving with 48 threads 02/10/22 23:27:38, nfs: commencing lattice sieving with 48 threads 02/10/22 23:36:10, nfs: commencing lattice sieving with 48 threads 02/10/22 23:44:21, nfs: commencing lattice sieving with 48 threads 02/10/22 23:52:30, nfs: commencing lattice sieving with 48 threads 02/11/22 00:00:57, nfs: commencing lattice sieving with 48 threads 02/11/22 00:09:13, nfs: commencing lattice sieving with 48 threads 02/11/22 00:17:33, nfs: commencing lattice sieving with 48 threads 02/11/22 00:25:50, nfs: commencing lattice sieving with 48 threads 02/11/22 00:33:56, nfs: commencing lattice sieving with 48 threads 02/11/22 00:42:00, nfs: commencing lattice sieving with 48 threads 02/11/22 00:50:04, nfs: commencing lattice sieving with 48 threads 02/11/22 00:58:28, nfs: commencing lattice sieving with 48 threads 02/11/22 01:06:25, nfs: commencing lattice sieving with 48 threads 02/11/22 01:14:56, nfs: commencing lattice sieving with 48 threads 02/11/22 01:23:09, nfs: commencing lattice sieving with 48 threads 02/11/22 01:31:38, nfs: commencing lattice sieving with 48 threads 02/11/22 01:39:45, nfs: commencing lattice sieving with 48 threads 02/11/22 01:47:51, nfs: commencing lattice sieving with 48 threads 02/11/22 01:56:10, nfs: commencing lattice sieving with 48 threads 02/11/22 02:04:38, nfs: commencing lattice sieving with 48 threads 02/11/22 02:12:45, nfs: commencing lattice sieving with 48 threads 02/11/22 02:20:49, nfs: commencing lattice sieving with 48 threads 02/11/22 02:28:48, nfs: commencing lattice sieving with 48 threads 02/11/22 02:37:38, nfs: commencing lattice sieving with 48 threads 02/11/22 02:45:47, nfs: commencing lattice sieving with 48 threads 02/11/22 02:54:05, nfs: commencing lattice sieving with 48 threads 02/11/22 03:02:07, nfs: commencing lattice sieving with 48 threads 02/11/22 03:10:24, nfs: commencing lattice sieving with 48 threads 02/11/22 03:18:41, nfs: commencing lattice sieving with 48 threads 02/11/22 03:26:46, nfs: commencing lattice sieving with 48 threads 02/11/22 03:35:02, nfs: commencing lattice sieving with 48 threads 02/11/22 03:43:08, nfs: commencing lattice sieving with 48 threads 02/11/22 03:51:15, nfs: commencing lattice sieving with 48 threads 02/11/22 03:59:21, nfs: commencing lattice sieving with 48 threads 02/11/22 04:07:27, nfs: commencing lattice sieving with 48 threads 02/11/22 04:15:44, nfs: commencing lattice sieving with 48 threads 02/11/22 04:23:59, nfs: commencing lattice sieving with 48 threads 02/11/22 04:32:09, nfs: commencing lattice sieving with 48 threads 02/11/22 04:40:23, nfs: commencing lattice sieving with 48 threads 02/11/22 04:48:22, nfs: commencing lattice sieving with 48 threads 02/11/22 04:56:22, nfs: commencing lattice sieving with 48 threads 02/11/22 05:04:21, nfs: commencing lattice sieving with 48 threads 02/11/22 05:12:30, nfs: commencing lattice sieving with 48 threads 02/11/22 05:20:40, nfs: commencing lattice sieving with 48 threads 02/11/22 05:28:32, nfs: commencing lattice sieving with 48 threads 02/11/22 05:36:28, nfs: commencing lattice sieving with 48 threads 02/11/22 05:44:41, nfs: commencing lattice sieving with 48 threads 02/11/22 05:52:58, nfs: commencing lattice sieving with 48 threads 02/11/22 06:01:19, nfs: commencing lattice sieving with 48 threads 02/11/22 06:09:31, nfs: commencing lattice sieving with 48 threads 02/11/22 06:17:50, nfs: commencing lattice sieving with 48 threads 02/11/22 06:25:58, nfs: commencing lattice sieving with 48 threads 02/11/22 06:34:08, nfs: commencing lattice sieving with 48 threads 02/11/22 06:42:23, nfs: commencing lattice sieving with 48 threads 02/11/22 06:50:35, nfs: commencing lattice sieving with 48 threads 02/11/22 06:58:49, nfs: commencing lattice sieving with 48 threads 02/11/22 07:07:18, nfs: commencing lattice sieving with 48 threads 02/11/22 07:15:43, nfs: commencing lattice sieving with 48 threads 02/11/22 07:23:42, nfs: commencing lattice sieving with 48 threads 02/11/22 07:31:56, nfs: commencing lattice sieving with 48 threads 02/11/22 07:39:56, nfs: commencing lattice sieving with 48 threads 02/11/22 07:48:12, nfs: commencing lattice sieving with 48 threads 02/11/22 07:56:32, nfs: commencing lattice sieving with 48 threads 02/11/22 08:04:42, nfs: commencing lattice sieving with 48 threads 02/11/22 08:12:55, nfs: commencing lattice sieving with 48 threads 02/11/22 08:20:55, nfs: commencing lattice sieving with 48 threads 02/11/22 08:29:06, nfs: commencing lattice sieving with 48 threads 02/11/22 08:37:05, nfs: commencing lattice sieving with 48 threads 02/11/22 08:45:18, nfs: commencing lattice sieving with 48 threads 02/11/22 08:53:37, nfs: commencing lattice sieving with 48 threads 02/11/22 09:01:49, nfs: commencing lattice sieving with 48 threads 02/11/22 09:10:03, nfs: commencing lattice sieving with 48 threads 02/11/22 09:18:29, nfs: commencing lattice sieving with 48 threads 02/11/22 09:26:39, nfs: commencing lattice sieving with 48 threads 02/11/22 09:34:49, nfs: commencing lattice sieving with 48 threads 02/11/22 09:43:02, nfs: commencing lattice sieving with 48 threads 02/11/22 09:51:15, nfs: commencing lattice sieving with 48 threads 02/11/22 09:59:34, nfs: commencing lattice sieving with 48 threads 02/11/22 10:07:47, nfs: commencing lattice sieving with 48 threads 02/11/22 10:16:07, nfs: commencing lattice sieving with 48 threads 02/11/22 10:24:13, nfs: commencing lattice sieving with 48 threads 02/11/22 10:32:18, nfs: commencing lattice sieving with 48 threads 02/11/22 10:40:19, nfs: commencing lattice sieving with 48 threads 02/11/22 10:48:33, nfs: commencing lattice sieving with 48 threads 02/11/22 10:56:35, nfs: commencing lattice sieving with 48 threads 02/11/22 11:04:38, nfs: commencing lattice sieving with 48 threads 02/11/22 11:12:51, nfs: commencing lattice sieving with 48 threads 02/11/22 11:21:01, nfs: commencing lattice sieving with 48 threads 02/11/22 11:29:03, nfs: commencing lattice sieving with 48 threads 02/11/22 11:37:17, nfs: commencing lattice sieving with 48 threads 02/11/22 11:45:37, nfs: commencing lattice sieving with 48 threads 02/11/22 11:53:51, nfs: commencing lattice sieving with 48 threads 02/11/22 12:02:11, nfs: commencing lattice sieving with 48 threads 02/11/22 12:10:13, nfs: commencing lattice sieving with 48 threads 02/11/22 12:18:16, nfs: commencing lattice sieving with 48 threads 02/11/22 12:26:23, nfs: commencing lattice sieving with 48 threads 02/11/22 12:34:35, nfs: commencing lattice sieving with 48 threads 02/11/22 12:42:32, nfs: commencing lattice sieving with 48 threads 02/11/22 12:50:36, nfs: commencing lattice sieving with 48 threads 02/11/22 12:58:46, nfs: commencing lattice sieving with 48 threads 02/11/22 13:07:24, nfs: commencing lattice sieving with 48 threads 02/11/22 13:15:40, nfs: commencing lattice sieving with 48 threads 02/11/22 13:23:38, nfs: commencing lattice sieving with 48 threads 02/11/22 13:32:00, nfs: commencing lattice sieving with 48 threads 02/11/22 13:40:12, nfs: commencing lattice sieving with 48 threads 02/11/22 13:48:20, nfs: commencing lattice sieving with 48 threads 02/11/22 13:56:30, nfs: commencing lattice sieving with 48 threads 02/11/22 14:04:41, nfs: commencing lattice sieving with 48 threads 02/11/22 14:12:52, nfs: commencing lattice sieving with 48 threads 02/11/22 14:20:59, nfs: commencing lattice sieving with 48 threads 02/11/22 14:29:08, nfs: commencing lattice sieving with 48 threads 02/11/22 14:37:23, nfs: commencing lattice sieving with 48 threads 02/11/22 14:45:30, nfs: commencing lattice sieving with 48 threads 02/11/22 14:53:47, nfs: commencing lattice sieving with 48 threads 02/11/22 15:02:22, nfs: commencing lattice sieving with 48 threads 02/11/22 15:10:15, nfs: commencing lattice sieving with 48 threads 02/11/22 15:18:10, nfs: commencing lattice sieving with 48 threads 02/11/22 15:26:22, nfs: commencing lattice sieving with 48 threads 02/11/22 15:34:24, nfs: commencing lattice sieving with 48 threads 02/11/22 15:42:31, nfs: commencing lattice sieving with 48 threads 02/11/22 15:50:44, nfs: commencing lattice sieving with 48 threads 02/11/22 15:59:08, nfs: commencing lattice sieving with 48 threads 02/11/22 16:07:05, nfs: commencing lattice sieving with 48 threads 02/11/22 16:15:17, nfs: commencing lattice sieving with 48 threads 02/11/22 16:23:34, nfs: commencing lattice sieving with 48 threads 02/11/22 16:31:37, nfs: commencing lattice sieving with 48 threads 02/11/22 16:39:54, nfs: commencing lattice sieving with 48 threads 02/11/22 16:48:02, nfs: commencing lattice sieving with 48 threads 02/11/22 16:56:05, nfs: commencing lattice sieving with 48 threads 02/11/22 17:04:06, nfs: commencing lattice sieving with 48 threads 02/11/22 17:12:13, nfs: commencing lattice sieving with 48 threads 02/11/22 17:20:41, nfs: commencing lattice sieving with 48 threads 02/11/22 17:28:43, nfs: commencing lattice sieving with 48 threads 02/11/22 17:37:03, nfs: commencing lattice sieving with 48 threads 02/11/22 17:45:20, nfs: commencing lattice sieving with 48 threads 02/11/22 17:53:26, nfs: commencing lattice sieving with 48 threads 02/11/22 18:01:53, nfs: commencing lattice sieving with 48 threads 02/11/22 18:09:48, nfs: commencing lattice sieving with 48 threads 02/11/22 18:18:06, nfs: commencing lattice sieving with 48 threads 02/11/22 18:26:11, nfs: commencing lattice sieving with 48 threads 02/11/22 18:34:12, nfs: commencing lattice sieving with 48 threads 02/11/22 18:42:17, nfs: commencing lattice sieving with 48 threads 02/11/22 18:50:29, nfs: commencing lattice sieving with 48 threads 02/11/22 18:58:27, nfs: commencing lattice sieving with 48 threads 02/11/22 19:06:29, nfs: commencing lattice sieving with 48 threads 02/11/22 19:14:41, nfs: commencing lattice sieving with 48 threads 02/11/22 19:22:57, nfs: commencing lattice sieving with 48 threads 02/11/22 19:30:54, nfs: commencing lattice sieving with 48 threads 02/11/22 19:38:53, nfs: commencing lattice sieving with 48 threads 02/11/22 19:47:08, nfs: commencing lattice sieving with 48 threads 02/11/22 19:55:34, nfs: commencing lattice sieving with 48 threads 02/11/22 20:03:52, nfs: commencing lattice sieving with 48 threads 02/11/22 20:12:02, nfs: commencing lattice sieving with 48 threads 02/11/22 20:20:16, nfs: commencing lattice sieving with 48 threads 02/11/22 20:28:23, nfs: commencing lattice sieving with 48 threads 02/11/22 20:36:52, nfs: commencing lattice sieving with 48 threads 02/11/22 20:45:08, nfs: commencing lattice sieving with 48 threads 02/11/22 20:53:32, nfs: commencing lattice sieving with 48 threads 02/11/22 21:01:47, nfs: commencing lattice sieving with 48 threads 02/11/22 21:09:44, nfs: commencing lattice sieving with 48 threads 02/11/22 21:18:03, nfs: commencing lattice sieving with 48 threads 02/11/22 21:26:26, nfs: commencing lattice sieving with 48 threads 02/11/22 21:34:29, nfs: commencing lattice sieving with 48 threads 02/11/22 21:42:37, nfs: commencing lattice sieving with 48 threads 02/11/22 21:50:50, nfs: commencing lattice sieving with 48 threads 02/11/22 21:58:41, nfs: commencing lattice sieving with 48 threads 02/11/22 22:07:11, nfs: commencing lattice sieving with 48 threads 02/11/22 22:15:00, nfs: commencing lattice sieving with 48 threads 02/11/22 22:23:03, nfs: commencing lattice sieving with 48 threads 02/11/22 22:31:03, nfs: commencing lattice sieving with 48 threads 02/11/22 22:39:06, nfs: commencing lattice sieving with 48 threads 02/11/22 22:47:18, nfs: commencing lattice sieving with 48 threads 02/11/22 22:55:21, nfs: commencing lattice sieving with 48 threads 02/11/22 23:03:21, nfs: commencing lattice sieving with 48 threads 02/11/22 23:11:24, nfs: commencing lattice sieving with 48 threads 02/11/22 23:19:40, nfs: commencing lattice sieving with 48 threads 02/11/22 23:27:55, nfs: commencing lattice sieving with 48 threads 02/11/22 23:36:03, nfs: commencing lattice sieving with 48 threads 02/11/22 23:44:10, nfs: commencing lattice sieving with 48 threads 02/11/22 23:52:14, nfs: commencing lattice sieving with 48 threads 02/12/22 00:00:19, nfs: commencing lattice sieving with 48 threads 02/12/22 00:08:23, nfs: commencing lattice sieving with 48 threads 02/12/22 00:16:20, nfs: commencing lattice sieving with 48 threads 02/12/22 00:24:23, nfs: commencing lattice sieving with 48 threads 02/12/22 00:32:24, nfs: commencing lattice sieving with 48 threads 02/12/22 00:40:40, nfs: commencing lattice sieving with 48 threads 02/12/22 00:48:56, nfs: commencing lattice sieving with 48 threads 02/12/22 00:56:55, nfs: commencing lattice sieving with 48 threads 02/12/22 01:05:14, nfs: commencing lattice sieving with 48 threads 02/12/22 01:13:11, nfs: commencing lattice sieving with 48 threads 02/12/22 01:21:16, nfs: commencing lattice sieving with 48 threads 02/12/22 01:29:24, nfs: commencing lattice sieving with 48 threads 02/12/22 01:37:34, nfs: commencing lattice sieving with 48 threads 02/12/22 01:45:28, nfs: commencing lattice sieving with 48 threads 02/12/22 01:53:22, nfs: commencing lattice sieving with 48 threads 02/12/22 02:01:22, nfs: commencing lattice sieving with 48 threads 02/12/22 02:09:20, nfs: commencing lattice sieving with 48 threads 02/12/22 02:17:27, nfs: commencing lattice sieving with 48 threads 02/12/22 02:25:26, nfs: commencing lattice sieving with 48 threads 02/12/22 02:33:29, nfs: commencing lattice sieving with 48 threads 02/12/22 02:41:42, nfs: commencing lattice sieving with 48 threads 02/12/22 02:49:42, nfs: commencing lattice sieving with 48 threads 02/12/22 02:57:43, nfs: commencing lattice sieving with 48 threads 02/12/22 03:06:03, nfs: commencing lattice sieving with 48 threads 02/12/22 03:13:56, nfs: commencing lattice sieving with 48 threads 02/12/22 03:21:50, nfs: commencing lattice sieving with 48 threads 02/12/22 03:30:04, nfs: commencing lattice sieving with 48 threads 02/12/22 03:38:03, nfs: commencing lattice sieving with 48 threads 02/12/22 03:46:29, nfs: commencing lattice sieving with 48 threads 02/12/22 03:54:38, nfs: commencing lattice sieving with 48 threads 02/12/22 04:02:34, nfs: commencing lattice sieving with 48 threads 02/12/22 04:10:48, nfs: commencing lattice sieving with 48 threads 02/12/22 04:18:56, nfs: commencing lattice sieving with 48 threads 02/12/22 04:26:59, nfs: commencing lattice sieving with 48 threads 02/12/22 04:35:05, nfs: commencing lattice sieving with 48 threads 02/12/22 04:42:57, nfs: commencing lattice sieving with 48 threads 02/12/22 04:50:57, nfs: commencing lattice sieving with 48 threads 02/12/22 04:59:07, nfs: commencing lattice sieving with 48 threads 02/12/22 05:07:24, nfs: commencing lattice sieving with 48 threads 02/12/22 05:15:19, nfs: commencing lattice sieving with 48 threads 02/12/22 05:23:31, nfs: commencing lattice sieving with 48 threads 02/12/22 05:31:30, nfs: commencing lattice sieving with 48 threads 02/12/22 05:39:25, nfs: commencing lattice sieving with 48 threads 02/12/22 05:47:31, nfs: commencing lattice sieving with 48 threads 02/12/22 05:55:34, nfs: commencing lattice sieving with 48 threads 02/12/22 06:03:41, nfs: commencing lattice sieving with 48 threads 02/12/22 06:11:43, nfs: commencing lattice sieving with 48 threads 02/12/22 06:19:51, nfs: commencing lattice sieving with 48 threads 02/12/22 06:28:00, nfs: commencing lattice sieving with 48 threads 02/12/22 06:36:11, nfs: commencing lattice sieving with 48 threads 02/12/22 06:44:05, nfs: commencing lattice sieving with 48 threads 02/12/22 06:52:01, nfs: commencing lattice sieving with 48 threads 02/12/22 07:00:16, nfs: commencing lattice sieving with 48 threads 02/12/22 07:08:37, nfs: commencing lattice sieving with 48 threads 02/12/22 07:16:32, nfs: commencing lattice sieving with 48 threads 02/12/22 07:24:33, nfs: commencing lattice sieving with 48 threads 02/12/22 07:32:46, nfs: commencing lattice sieving with 48 threads 02/12/22 07:40:42, nfs: commencing lattice sieving with 48 threads 02/12/22 07:48:52, nfs: commencing lattice sieving with 48 threads 02/12/22 07:56:52, nfs: commencing lattice sieving with 48 threads 02/12/22 08:04:58, nfs: commencing lattice sieving with 48 threads 02/12/22 08:13:11, nfs: commencing lattice sieving with 48 threads 02/12/22 08:21:08, nfs: commencing lattice sieving with 48 threads 02/12/22 08:29:05, nfs: commencing lattice sieving with 48 threads 02/12/22 08:37:15, nfs: commencing lattice sieving with 48 threads 02/12/22 08:45:12, nfs: commencing lattice sieving with 48 threads 02/12/22 08:53:16, nfs: commencing lattice sieving with 48 threads 02/12/22 09:01:31, nfs: commencing lattice sieving with 48 threads 02/12/22 09:09:55, nfs: commencing lattice sieving with 48 threads 02/12/22 09:17:44, nfs: commencing lattice sieving with 48 threads 02/12/22 09:25:40, nfs: commencing lattice sieving with 48 threads 02/12/22 09:33:36, nfs: commencing lattice sieving with 48 threads 02/12/22 09:41:31, nfs: commencing lattice sieving with 48 threads 02/12/22 09:49:36, nfs: commencing lattice sieving with 48 threads 02/12/22 09:57:32, nfs: commencing lattice sieving with 48 threads 02/12/22 10:05:35, nfs: commencing lattice sieving with 48 threads 02/12/22 10:13:34, nfs: commencing lattice sieving with 48 threads 02/12/22 10:21:25, nfs: commencing lattice sieving with 48 threads 02/12/22 10:29:17, nfs: commencing lattice sieving with 48 threads 02/12/22 10:37:27, nfs: commencing lattice sieving with 48 threads 02/12/22 10:45:23, nfs: commencing lattice sieving with 48 threads 02/12/22 10:53:19, nfs: commencing lattice sieving with 48 threads 02/12/22 11:01:31, nfs: commencing lattice sieving with 48 threads 02/12/22 11:09:20, nfs: commencing lattice sieving with 48 threads 02/12/22 11:17:25, nfs: commencing lattice sieving with 48 threads 02/12/22 11:25:36, nfs: commencing lattice sieving with 48 threads 02/12/22 11:33:45, nfs: commencing lattice sieving with 48 threads 02/12/22 11:41:53, nfs: commencing lattice sieving with 48 threads 02/12/22 11:50:09, nfs: commencing lattice sieving with 48 threads 02/12/22 11:58:27, nfs: commencing msieve filtering 02/12/22 12:45:41, nfs: commencing msieve linear algebra 02/12/22 22:35:34, nfs: commencing msieve sqrt 02/12/22 22:52:25, prp119 = 49383754917758737763635485127931846613929451697024418071107649304357433843624195787453467391627646082881790722183421907 02/12/22 22:52:25, prp120 = 224995266755535415366731149377947580408085476528372147307326700783870529602722674519446833358213080078919156952552892633 02/12/22 22:52:28, NFS elapsed time = 371208.2783 seconds. 02/12/22 22:52:28, 02/12/22 22:52:28, 02/12/22 22:52:28, Total factoring time = 639807.0407 seconds |
software ソフトウェア | YAFU Version 2.07 Built with GCC 9 Using GMP-ECM 7.0.5-dev, Powered by GMP 6.2.1 Detected Intel(R) Xeon(R) Gold 6248R CPU @ 3.00GHz Detected L1 = 32768 bytes, L2 = 37486592 bytes, CL = 64 bytes Using 1 random witness for Rabin-Miller PRP checks Cached 664579 primes; max prime is 9999991 |
execution environment 実行環境 | Ubuntu 20.04.3 LTS |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2320 | Serge Batalov | December 9, 2014 00:57:55 UTC 2014 年 12 月 9 日 (火) 9 時 57 分 55 秒 (日本時間) | |
45 | 11e6 | 4000 | 1000 | Serge Batalov | December 18, 2014 00:18:59 UTC 2014 年 12 月 18 日 (木) 9 時 18 分 59 秒 (日本時間) |
1000 | Serge Batalov | December 18, 2014 01:48:48 UTC 2014 年 12 月 18 日 (木) 10 時 48 分 48 秒 (日本時間) | |||
2000 | Serge Batalov | December 20, 2014 04:02:04 UTC 2014 年 12 月 20 日 (土) 13 時 2 分 4 秒 (日本時間) | |||
50 | 43e6 | 500 | Serge Batalov | January 11, 2015 01:24:47 UTC 2015 年 1 月 11 日 (日) 10 時 24 分 47 秒 (日本時間) | |
55 | 11e7 | 8000 / 17322 | yoyo@Home | May 25, 2020 13:33:32 UTC 2020 年 5 月 25 日 (月) 22 時 33 分 32 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | December 11, 2014 01:32:06 UTC 2014 年 12 月 11 日 (木) 10 時 32 分 6 秒 (日本時間) |
composite number 合成数 | 64542042341943983239850753388637301915726515709228723902058002524722585109419286887246297754833641220370223402471472664794304432155666891637911019858334175852436776500286619010585141777717385522488883623<203> |
prime factors 素因数 | 31881606761558064607367528403641959<35> |
composite cofactor 合成数の残り | 2024428781919703735929446813214948904358661299148594243706296335034925395827918906743512022255272868839125049442801032098976502906752372876483212935568761930197406370497<169> |
factorization results 素因数分解の結果 | Input number is 64542042341943983239850753388637301915726515709228723902058002524722585109419286887246297754833641220370223402471472664794304432155666891637911019858334175852436776500286619010585141777717385522488883623 (203 digits) Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=324589831 Step 1 took 16074ms Step 2 took 10528ms ********** Factor found in step 2: 31881606761558064607367528403641959 Found probable prime factor of 35 digits: 31881606761558064607367528403641959 Composite cofactor 2024428781919703735929446813214948904358661299148594243706296335034925395827918906743512022255272868839125049442801032098976502906752372876483212935568761930197406370497 has 169 digits |
name 名前 | Erik Branger |
---|---|
date 日付 | November 22, 2024 22:10:39 UTC 2024 年 11 月 23 日 (土) 7 時 10 分 39 秒 (日本時間) |
composite number 合成数 | 2024428781919703735929446813214948904358661299148594243706296335034925395827918906743512022255272868839125049442801032098976502906752372876483212935568761930197406370497<169> |
prime factors 素因数 | 925032671124109665765357057449908175052787161491326086164268881897<66> 2188494358215041285392619866800912359427587100197239780849732561351876533295892786667638455491323243801<103> |
factorization results 素因数分解の結果 | Number: 11131_240 N = 2024428781919703735929446813214948904358661299148594243706296335034925395827918906743512022255272868839125049442801032098976502906752372876483212935568761930197406370497 (169 digits) SNFS difficulty: 241 digits. Divisors found: r1=925032671124109665765357057449908175052787161491326086164268881897 (pp66) r2=2188494358215041285392619866800912359427587100197239780849732561351876533295892786667638455491323243801 (pp103) Version: Msieve v. 1.52 (SVN unknown) Total time: 77.45 hours. Factorization parameters were as follows: n: 2024428781919703735929446813214948904358661299148594243706296335034925395827918906743512022255272868839125049442801032098976502906752372876483212935568761930197406370497 m: 1000000000000000000000000000000000000000000000000000000000000 deg: 4 c4: 1 c0: 179 skew: 1.00 type: snfs lss: 1 rlim: 500000000 alim: 100000000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.8 alambda: 2.8 side: 1 Number of cores used: 8 Number of threads per core: 1 Factor base limits: 500000000/100000000 Large primes per side: 3 Large prime bits: 29/29 Total raw relations: 72905616 Relations: 14299670 relations Total pre-computation time approximately 1000 CPU-days. Pre-computation saved approximately 18 G rational relations. Total batch smoothness checking time: 20.32 hours. Total relation processing time: 1.03 hours. Pruned matrix : 10584165 x 10584413 Matrix solve time: 55.44 hours. time per square root: 0.67 hours. Prototype def-par.txt line would be: snfs,241,4,0,0,0,0,0,0,0,0,500000000,100000000,29,29,58,58,2.8,2.8,100000 total time: 77.45 hours. Intel64 Family 6 Model 165 Stepping 5, GenuineIntel Windows-10-10.0.26100-SP0 processors: 16, speed: 3.79GHz |
software ソフトウェア | GGNFS, NFS_factory, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1100 | 300 | Serge Batalov | December 10, 2014 19:46:08 UTC 2014 年 12 月 11 日 (木) 4 時 46 分 8 秒 (日本時間) |
800 | Dmitry Domanov | November 23, 2016 12:50:41 UTC 2016 年 11 月 23 日 (水) 21 時 50 分 41 秒 (日本時間) | |||
45 | 11e6 | 4401 | 800 | Dmitry Domanov | January 11, 2017 00:07:54 UTC 2017 年 1 月 11 日 (水) 9 時 7 分 54 秒 (日本時間) |
3601 | Thomas Kozlowski | October 13, 2024 15:29:11 UTC 2024 年 10 月 14 日 (月) 0 時 29 分 11 秒 (日本時間) |
name 名前 | Cyp |
---|---|
date 日付 | June 23, 2015 17:49:51 UTC 2015 年 6 月 24 日 (水) 2 時 49 分 51 秒 (日本時間) |
composite number 合成数 | 393373014929307292288750208567258547344454170291967870707743292115203765697281876798555795527656043850791273783056200666984272695695358146915739168003750592016920784276004789038703580132739<189> |
prime factors 素因数 | 1864076838222539704911178479779066353<37> |
composite cofactor 合成数の残り | 211028326120076553875451583947025634815968741322916634137794274118734859104602983008445687111886643981649606403079501750601030073068975060585346842192563<153> |
factorization results 素因数分解の結果 | Run 340 out of 585: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=393068994 Step 1 took 59336ms Step 2 took 19469ms ********** Factor found in step 2: 1864076838222539704911178479779066353 Found probable prime factor of 37 digits: 1864076838222539704911178479779066353 Composite cofactor 211028326120076553875451583947025634815968741322916634137794274118734859104602983008445687111886643981649606403079501750601030073068975060585346842192563 has 153 digits |
software ソフトウェア | GMP-ECM 6.4.4 |
execution environment 実行環境 | Gentoo Linux, Intel(R) Core(TM) i7-3770K CPU |
name 名前 | NFS@Home + Rich Dickerson |
---|---|
date 日付 | October 28, 2022 11:26:37 UTC 2022 年 10 月 28 日 (金) 20 時 26 分 37 秒 (日本時間) |
composite number 合成数 | 211028326120076553875451583947025634815968741322916634137794274118734859104602983008445687111886643981649606403079501750601030073068975060585346842192563<153> |
prime factors 素因数 | 130355111152663520332389032326384974915031176575866944365034673003<66> 1618872664478293865641530238259748583684554781460609382454765396566909485876668533186521<88> |
factorization results 素因数分解の結果 | p66 factor: 130355111152663520332389032326384974915031176575866944365034673003 p88 factor: 1618872664478293865641530238259748583684554781460609382454765396566909485876668533186521 Complete post-processing log at: https://pastebin.com/v7v57B3A |
software ソフトウェア | GGNFS + Msieve |
execution environment 実行環境 | GTX 1660 for LA phase. |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 | Serge Batalov | December 10, 2014 19:46:09 UTC 2014 年 12 月 11 日 (木) 4 時 46 分 9 秒 (日本時間) | |
45 | 11e6 | 4409 | 585 | Cyp | June 23, 2015 17:49:51 UTC 2015 年 6 月 24 日 (水) 2 時 49 分 51 秒 (日本時間) |
800 | Dmitry Domanov | March 1, 2016 13:14:11 UTC 2016 年 3 月 1 日 (火) 22 時 14 分 11 秒 (日本時間) | |||
3024 | Ben Meekins | January 27, 2017 16:52:50 UTC 2017 年 1 月 28 日 (土) 1 時 52 分 50 秒 (日本時間) | |||
50 | 43e6 | 0 | - | - | |
55 | 11e7 | 3283 / 17491 | 38 | Ben Meekins | January 27, 2017 21:26:06 UTC 2017 年 1 月 28 日 (土) 6 時 26 分 6 秒 (日本時間) |
3245 | Ben Meekins | February 22, 2017 19:02:07 UTC 2017 年 2 月 23 日 (木) 4 時 2 分 7 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 280 | Cyp | December 8, 2014 19:07:19 UTC 2014 年 12 月 9 日 (火) 4 時 7 分 19 秒 (日本時間) | |
45 | 11e6 | 4592 | 591 | Cyp | May 17, 2015 20:21:23 UTC 2015 年 5 月 18 日 (月) 5 時 21 分 23 秒 (日本時間) |
4001 | Thomas Kozlowski | October 13, 2024 17:11:50 UTC 2024 年 10 月 14 日 (月) 2 時 11 分 50 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2630 | 280 | Cyp | December 10, 2014 10:28:18 UTC 2014 年 12 月 10 日 (水) 19 時 28 分 18 秒 (日本時間) |
2350 | Ignacio Santos | July 23, 2023 15:39:12 UTC 2023 年 7 月 24 日 (月) 0 時 39 分 12 秒 (日本時間) | |||
45 | 11e6 | 4000 | Thomas Kozlowski | October 13, 2024 18:42:10 UTC 2024 年 10 月 14 日 (月) 3 時 42 分 10 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | December 9, 2014 02:39:20 UTC 2014 年 12 月 9 日 (火) 11 時 39 分 20 秒 (日本時間) |
composite number 合成数 | 28490028490028490028490028490028490028490028490028490028490028490028490028490028490028490028490028490028490028490028490028490028490028490028490028490028490028490028490028490028490028490028490028490028490028490028490028490028490028490028490029<242> |
prime factors 素因数 | 811402080478984382671802098486967<33> |
composite cofactor 合成数の残り | 35112096918965679705241534412586814407513172267884404780549415247981068316518547790393135261853188376344650538438202444085784200547859213901098175646996772733572426172290359674923037751312421016945586940841787<209> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3219882228 Step 1 took 20919ms ********** Factor found in step 1: 811402080478984382671802098486967 Found probable prime factor of 33 digits: 811402080478984382671802098486967 Composite cofactor |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2320 | Serge Batalov | December 9, 2014 00:57:59 UTC 2014 年 12 月 9 日 (火) 9 時 57 分 59 秒 (日本時間) | |
45 | 11e6 | 4001 | Thomas Kozlowski | October 13, 2024 20:01:26 UTC 2024 年 10 月 14 日 (月) 5 時 1 分 26 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | December 11, 2014 01:32:10 UTC 2014 年 12 月 11 日 (木) 10 時 32 分 10 秒 (日本時間) |
composite number 合成数 | 2433016059732044920850268691099225734651695484050337557221824745120093042963855743634646558377102473123049685404460339549081947470973443113354043952190377575369577489608761793575303<181> |
prime factors 素因数 | 11546551574760611575455625901<29> 210713652814778799463993976635363300692349034195763339820177802323674348476960212856064187620014805673495075469155135908408483071886463870536692054857603<153> |
factorization results 素因数分解の結果 | Input number is 2433016059732044920850268691099225734651695484050337557221824745120093042963855743634646558377102473123049685404460339549081947470973443113354043952190377575369577489608761793575303 (181 digits) Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=881952710 Step 1 took 13614ms ********** Factor found in step 1: 11546551574760611575455625901 Found probable prime factor of 29 digits: 11546551574760611575455625901 Probable prime cofactor 210713652814778799463993976635363300692349034195763339820177802323674348476960212856064187620014805673495075469155135908408483071886463870536692054857603 has 153 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 / 2318 | Serge Batalov | December 10, 2014 19:46:09 UTC 2014 年 12 月 11 日 (木) 4 時 46 分 9 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2650 | 300 | Serge Batalov | December 10, 2014 19:46:09 UTC 2014 年 12 月 11 日 (木) 4 時 46 分 9 秒 (日本時間) |
2350 | Ignacio Santos | July 23, 2023 15:39:48 UTC 2023 年 7 月 24 日 (月) 0 時 39 分 48 秒 (日本時間) | |||
45 | 11e6 | 4000 | Thomas Kozlowski | October 13, 2024 21:21:05 UTC 2024 年 10 月 14 日 (月) 6 時 21 分 5 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | December 11, 2014 01:32:13 UTC 2014 年 12 月 11 日 (木) 10 時 32 分 13 秒 (日本時間) |
composite number 合成数 | 651429961251678432016088286120242930584332416706167375763980576697494988935587364990957246208863672148438918343875102973830727281418439326538629282347666622006068852424516322549429597761435925839928343082349356437614947441<222> |
prime factors 素因数 | 301493240494731068879444913799<30> |
composite cofactor 合成数の残り | 2160678495420738622437290616998075600515031338578737125023517811487910783175642301532294615114117309478832482427861419933057125652332471396721282365435632813015478040191699339160739685753426759<193> |
factorization results 素因数分解の結果 | Input number is 651429961251678432016088286120242930584332416706167375763980576697494988935587364990957246208863672148438918343875102973830727281418439326538629282347666622006068852424516322549429597761435925839928343082349356437614947441 (222 digits) Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=701292891 Step 1 took 18086ms Step 2 took 11576ms ********** Factor found in step 2: 301493240494731068879444913799 Found probable prime factor of 30 digits: 301493240494731068879444913799 Composite cofactor 2160678495420738622437290616998075600515031338578737125023517811487910783175642301532294615114117309478832482427861419933057125652332471396721282365435632813015478040191699339160739685753426759 has 193 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 | Serge Batalov | December 10, 2014 19:46:10 UTC 2014 年 12 月 11 日 (木) 4 時 46 分 10 秒 (日本時間) | |
45 | 11e6 | 4585 | 585 | Cyp | January 24, 2015 10:17:39 UTC 2015 年 1 月 24 日 (土) 19 時 17 分 39 秒 (日本時間) |
4000 | Thomas Kozlowski | October 13, 2024 22:31:24 UTC 2024 年 10 月 14 日 (月) 7 時 31 分 24 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | December 6, 2014 04:00:00 UTC 2014 年 12 月 6 日 (土) 13 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1300 | 300 | Serge Batalov | December 10, 2014 19:46:10 UTC 2014 年 12 月 11 日 (木) 4 時 46 分 10 秒 (日本時間) |
1000 | Dmitry Domanov | December 17, 2014 13:28:24 UTC 2014 年 12 月 17 日 (水) 22 時 28 分 24 秒 (日本時間) | |||
45 | 11e6 | 4303 | 39 | Cyp | January 1, 2015 16:38:59 UTC 2015 年 1 月 2 日 (金) 1 時 38 分 59 秒 (日本時間) |
256 | Cyp | January 25, 2015 21:58:16 UTC 2015 年 1 月 26 日 (月) 6 時 58 分 16 秒 (日本時間) | |||
800 | Dmitry Domanov | October 25, 2015 21:33:19 UTC 2015 年 10 月 26 日 (月) 6 時 33 分 19 秒 (日本時間) | |||
3208 | Thomas Kozlowski | October 13, 2024 23:53:23 UTC 2024 年 10 月 14 日 (月) 8 時 53 分 23 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | October 27, 2015 09:00:00 UTC 2015 年 10 月 27 日 (火) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2950 | 600 | Dmitry Domanov | April 15, 2016 06:31:03 UTC 2016 年 4 月 15 日 (金) 15 時 31 分 3 秒 (日本時間) |
2350 | Ignacio Santos | July 24, 2023 06:12:03 UTC 2023 年 7 月 24 日 (月) 15 時 12 分 3 秒 (日本時間) | |||
45 | 11e6 | 4002 | Thomas Kozlowski | October 14, 2024 01:23:36 UTC 2024 年 10 月 14 日 (月) 10 時 23 分 36 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | July 24, 2023 06:43:50 UTC 2023 年 7 月 24 日 (月) 15 時 43 分 50 秒 (日本時間) |
composite number 合成数 | 5780487143553170272733551082887039550234131985717878750421571116169991012309536195272885861978885279536504168923646470652850979474645587473141078099537965612201828084008565877137135299433768452515681862449660113602541169<220> |
prime factors 素因数 | 3465377983686579969102295818650802820379<40> |
composite cofactor 合成数の残り | 1668068294646375951923026632817122862989642434446891599423714914845471782489518003454488967680786519732801465350719765115724496156078543164036338035599190526547115047850837113223011<181> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:2274549552 Step 1 took 7578ms Step 2 took 3484ms ********** Factor found in step 2: 3465377983686579969102295818650802820379 Found prime factor of 40 digits: 3465377983686579969102295818650802820379 Composite cofactor 1668068294646375951923026632817122862989642434446891599423714914845471782489518003454488967680786519732801465350719765115724496156078543164036338035599190526547115047850837113223011 has 181 digits |
software ソフトウェア | GMP-ECM |
name 名前 | Thomas Kozlowski |
---|---|
date 日付 | October 14, 2024 03:00:22 UTC 2024 年 10 月 14 日 (月) 12 時 0 分 22 秒 (日本時間) |
composite number 合成数 | 1668068294646375951923026632817122862989642434446891599423714914845471782489518003454488967680786519732801465350719765115724496156078543164036338035599190526547115047850837113223011<181> |
prime factors 素因数 | 1165410596952535255307603019455971349283923<43> |
composite cofactor 合成数の残り | 1431313821075811701251493946843747124963265992644356955644170039533777678709417121611272663914099629687224327263660540764368445045217287857<139> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.6 [configured with GMP 6.3.0, --enable-asm-redc] [ECM] Input number is 1668068294646375951923026632817122862989642434446891599423714914845471782489518003454488967680786519732801465350719765115724496156078543164036338035599190526547115047850837113223011 (181 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:600796408 Step 1 took 27357ms Step 2 took 12195ms Run 2 out of 0: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:3667169657 Step 1 took 28774ms Step 2 took 12025ms Run 3 out of 0: ... Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:729749688 Step 1 took 27973ms Step 2 took 11999ms Run 69 out of 0: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:166434317 Step 1 took 30726ms Step 2 took 12014ms ** Factor found in step 2: 1165410596952535255307603019455971349283923 Found prime factor of 43 digits: 1165410596952535255307603019455971349283923 Composite cofactor 1431313821075811701251493946843747124963265992644356955644170039533777678709417121611272663914099629687224327263660540764368445045217287857 has 139 digits |
execution environment 実行環境 | 2x Xeon E5-2698v4, 128GB DDR4, Ubuntu Server 24.04 |
name 名前 | Bob Backstrom |
---|---|
date 日付 | October 18, 2024 06:13:27 UTC 2024 年 10 月 18 日 (金) 15 時 13 分 27 秒 (日本時間) |
composite number 合成数 | 1431313821075811701251493946843747124963265992644356955644170039533777678709417121611272663914099629687224327263660540764368445045217287857<139> |
prime factors 素因数 | 12552931986100285648145989457520118630288272629<47> 114022271662165357631594803041047862099261121352603467098815591241137145346981869688460825933<93> |
factorization results 素因数分解の結果 | CADO - NFS STA:Fri Oct 18 08:09:51 AEDT 2024 (1431313821075811701251493946843747124963265992644356955644170039533777678709417121611272663914099629687224327263660540764368445045217287857 - C139) ./cado-nfs.py -t 16 --no-colors 1431313821075811701251493946843747124963265992644356955644170039533777678709417121611272663914099629687224327263660540764368445045217287857 2>&1 | tee -a log-10 Info:root: Using default parameter file ./parameters/factor/params.c140 Info:root: No database exists yet Info:root: Created temporary directory /tmp/cado.rikp4j4g Info:Database: Opened connection to database /tmp/cado.rikp4j4g/c140.db Info:root: Set tasks.threads=16 based on --server-threads 16 Info:root: tasks.threads = 16 [via tasks.threads] Info:root: tasks.polyselect.threads = 2 [via tasks.polyselect.threads] Info:root: tasks.sieve.las.threads = 2 [via tasks.sieve.las.threads] Info:root: tasks.linalg.bwc.threads = 16 [via tasks.threads] Info:root: tasks.sqrt.threads = 8 [via tasks.sqrt.threads] Info:root: slaves.scriptpath is /home/bob/Math/cado-nfs/build/TrigKey-2 Info:root: Command line parameters: ./cado-nfs.py -t 16 --no-colors 1431313821075811701251493946843747124963265992644356955644170039533777678709417121611272663914099629687224327263660540764368445045217287857 Info:root: If this computation gets interrupted, it can be resumed with ./cado-nfs.py /tmp/cado.rikp4j4g/c140.parameters_snapshot.0 Info:Server Launcher: Adding TrigKey-2 to whitelist to allow clients on localhost to connect Info:HTTP server: Using non-threaded HTTPS server Info:HTTP server: Using whitelist: localhost,TrigKey-2 Info:Lattice Sieving: param rels_wanted is 71000000 Info:Complete Factorization / Discrete logarithm: Factoring 1431313821075811701251493946843747124963265992644356955644170039533777678709417121611272663914099629687224327263660540764368445045217287857 Info:HTTP server: serving at https://TrigKey-2:33543 (0.0.0.0) === Info:Polynomial Selection (root optimized): Best polynomial is: n: 1431313821075811701251493946843747124963265992644356955644170039533777678709417121611272663914099629687224327263660540764368445045217287857 skew: 364046.539 c0: -1136333352190284453046774525934880 c1: -11178327892032782183132641715 c2: 772343576045644910922 c3: 78109818818861675 c4: -158401347258 c5: 229320 Y0: -537464158551576422393681662 Y1: 148405823673213883703 # MurphyE (Bf=1.074e+09,Bg=1.074e+09,area=8.053e+13) = 1.333e-06 # f(x) = 229320*x^5-158401347258*x^4+78109818818861675*x^3+772343576045644910922*x^2-11178327892032782183132641715*x-1136333352190284453046774525934880 # g(x) = 148405823673213883703*x-537464158551576422393681662 === Info:Square Root: Starting Info:Square Root: Creating file of (a,b) values Info:Square Root: finished Info:Square Root: Factors: 114022271662165357631594803041047862099261121352603467098815591241137145346981869688460825933 12552931986100285648145989457520118630288272629 Info:Complete Factorization / Discrete logarithm: Square Root Info:Square Root: Total cpu/real time for sqrt: 2378.43/182.83 Info:HTTP server: Got notification to stop serving Workunits Info:Quadratic Characters: Total cpu/real time for characters: 44.79/9.6607 Info:Generate Factor Base: Total cpu/real time for makefb: 1.4/0.5295 Info:Generate Free Relations: Total cpu/real time for freerel: 372.78/29.5993 Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 281.22/176.953 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 176.7s Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 1055.07/587.143 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 494.7s Info:Linear Algebra: Total cpu/real time for bwc: 53931/3918.49 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 32861.38, WCT time 2350.66, iteration CPU time 0.03, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (64000 iterations) Info:Linear Algebra: Lingen CPU time 99.8, WCT time 37.98 Info:Linear Algebra: Mksol: CPU time 17145.6, WCT time 1243.73, iteration CPU time 0.03, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (32000 iterations) Info:Polynomial Selection (root optimized): Aggregate statistics: Info:Polynomial Selection (root optimized): Total time: 1257.78 Info:Polynomial Selection (root optimized): Rootsieve time: 1272.79 Info:Polynomial Selection (size optimized): Aggregate statistics: Info:Polynomial Selection (size optimized): potential collisions: 93020.2 Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 88429/40.860/51.442/62.840/2.416 Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 75037/40.150/44.821/60.860/1.417 Info:Polynomial Selection (size optimized): Total time: 16592.7 Info:Filtering - Singleton removal: Total cpu/real time for purge: 321.1/155.457 Info:Square Root: Total cpu/real time for sqrt: 2378.43/182.83 Info:Filtering - Merging: Total cpu/real time for merge: 203.58/21.3196 Info:Filtering - Merging: Total cpu/real time for replay: 37.66/33.0897 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 73586642 Info:Lattice Sieving: Average J: 3855.8 for 651271 special-q, max bucket fill -bkmult 1.0,1s:1.182250 Info:Lattice Sieving: Total time: 160869s Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire Complete Factorization 378238/26618.2 [07:23:38] Info:root: Cleaning up computation data in /tmp/cado.rikp4j4g 114022271662165357631594803041047862099261121352603467098815591241137145346981869688460825933 12552931986100285648145989457520118630288272629 END:Fri Oct 18 15:33:31 AEDT 2024 (1431313821075811701251493946843747124963265992644356955644170039533777678709417121611272663914099629687224327263660540764368445045217287857 - C139) |
software ソフトウェア | CADO-NFS |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | October 27, 2015 09:00:00 UTC 2015 年 10 月 27 日 (火) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2950 | 600 | Dmitry Domanov | April 15, 2016 06:31:14 UTC 2016 年 4 月 15 日 (金) 15 時 31 分 14 秒 (日本時間) |
2350 | Ignacio Santos | July 26, 2023 06:20:39 UTC 2023 年 7 月 26 日 (水) 15 時 20 分 39 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | April 15, 2016 09:35:53 UTC 2016 年 4 月 15 日 (金) 18 時 35 分 53 秒 (日本時間) |
composite number 合成数 | 1479129988048060639948415995785115376151605023854665915544907884659665534410951731016428166593696948129281209005887901310834156035932525381168475630573064261924493141532702665743427028303087439168716453<202> |
prime factors 素因数 | 1124218752027008871780425134655407<34> 1315695886926928949176942607740914207372796717462992441537444173889573288863404544293217346899032062152955919212374469773183301136790073901267319959824664869304048639979<169> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2740848589 Step 1 took 22757ms Step 2 took 7823ms ********** Factor found in step 2: 1124218752027008871780425134655407 Found probable prime factor of 34 digits: 1124218752027008871780425134655407 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | October 27, 2015 09:00:00 UTC 2015 年 10 月 27 日 (火) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 600 / 2336 | Dmitry Domanov | April 15, 2016 06:31:26 UTC 2016 年 4 月 15 日 (金) 15 時 31 分 26 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | July 24, 2023 06:44:36 UTC 2023 年 7 月 24 日 (月) 15 時 44 分 36 秒 (日本時間) |
composite number 合成数 | 4765926239929709116059145828619222312887940883760371540774170334698535074291843671710870341037496231416607605396277043933146102303225955827272867005112847730788164888542558672961198245030142453061660547665579910620608032272808631852405332881<241> |
prime factors 素因数 | 20783563654398735093691230621796971061<38> |
composite cofactor 合成数の残り | 229312273832357193937653852500306890275400725876284534105436397965181731579449122824731028752542036421846936747735323013159903374907709034880193451619109750473286362175269981734513153035605006699474464621<204> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:289091238 Step 1 took 8938ms Step 2 took 3953ms ********** Factor found in step 2: 20783563654398735093691230621796971061 Found prime factor of 38 digits: 20783563654398735093691230621796971061 Composite cofactor 229312273832357193937653852500306890275400725876284534105436397965181731579449122824731028752542036421846936747735323013159903374907709034880193451619109750473286362175269981734513153035605006699474464621 has 204 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | October 27, 2015 09:00:00 UTC 2015 年 10 月 27 日 (火) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2950 | 600 | Dmitry Domanov | April 15, 2016 06:31:39 UTC 2016 年 4 月 15 日 (金) 15 時 31 分 39 秒 (日本時間) |
2350 | Ignacio Santos | July 26, 2023 06:21:10 UTC 2023 年 7 月 26 日 (水) 15 時 21 分 10 秒 (日本時間) | |||
45 | 11e6 | 4000 | Thomas Kozlowski | October 14, 2024 03:29:56 UTC 2024 年 10 月 14 日 (月) 12 時 29 分 56 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | October 27, 2015 09:00:00 UTC 2015 年 10 月 27 日 (火) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2950 | 600 | Dmitry Domanov | April 15, 2016 06:31:54 UTC 2016 年 4 月 15 日 (金) 15 時 31 分 54 秒 (日本時間) |
2350 | Ignacio Santos | July 24, 2023 06:45:19 UTC 2023 年 7 月 24 日 (月) 15 時 45 分 19 秒 (日本時間) | |||
45 | 11e6 | 4000 | Thomas Kozlowski | October 14, 2024 05:12:55 UTC 2024 年 10 月 14 日 (月) 14 時 12 分 55 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | July 24, 2023 06:46:06 UTC 2023 年 7 月 24 日 (月) 15 時 46 分 6 秒 (日本時間) |
composite number 合成数 | 13659010780164144033540813827807253920553747860238532245686181645194794341246977451599080580112597477237286052616158055001454862941178365821848327790172172845208762159242914365365684560491897803176077329007047<209> |
prime factors 素因数 | 20891888890771198661116390492460011990957<41> |
composite cofactor 合成数の残り | 653794917806493191065585152520907681441705988201430001111049195832566011910076324080775756806109312802924656545804144025825073861115163778330087878760291704040979666371<168> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:2936144423 Step 1 took 6265ms ********** Factor found in step 2: 20891888890771198661116390492460011990957 Found prime factor of 41 digits: 20891888890771198661116390492460011990957 Composite cofactor 653794917806493191065585152520907681441705988201430001111049195832566011910076324080775756806109312802924656545804144025825073861115163778330087878760291704040979666371 has 168 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | October 27, 2015 09:00:00 UTC 2015 年 10 月 27 日 (火) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2950 | 600 | Dmitry Domanov | April 15, 2016 06:32:10 UTC 2016 年 4 月 15 日 (金) 15 時 32 分 10 秒 (日本時間) |
2350 | Ignacio Santos | July 26, 2023 06:21:51 UTC 2023 年 7 月 26 日 (水) 15 時 21 分 51 秒 (日本時間) | |||
45 | 11e6 | 4480 | Ignacio Santos | July 26, 2023 16:12:09 UTC 2023 年 7 月 27 日 (木) 1 時 12 分 9 秒 (日本時間) | |
50 | 43e6 | 1792 / 6436 | Dmitry Domanov | June 16, 2024 13:20:01 UTC 2024 年 6 月 16 日 (日) 22 時 20 分 1 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | October 27, 2015 09:00:00 UTC 2015 年 10 月 27 日 (火) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 600 | Dmitry Domanov | October 29, 2015 07:31:46 UTC 2015 年 10 月 29 日 (木) 16 時 31 分 46 秒 (日本時間) | |
45 | 11e6 | 4400 | 800 | Dmitry Domanov | February 5, 2016 14:31:53 UTC 2016 年 2 月 5 日 (金) 23 時 31 分 53 秒 (日本時間) |
3600 | Thomas Kozlowski | October 14, 2024 06:56:01 UTC 2024 年 10 月 14 日 (月) 15 時 56 分 1 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | April 15, 2016 09:36:35 UTC 2016 年 4 月 15 日 (金) 18 時 36 分 35 秒 (日本時間) |
composite number 合成数 | 50578076277564540911273859726303887382957263027384224074429025350171250902667342276451080178102448524172674926254744730842678958459058452325004284249291362381907063179480492339069606671583880791459223718926727509491333835064121806742184116794569<245> |
prime factors 素因数 | 33097663825838813782824994392225929<35> |
composite cofactor 合成数の残り | 1528146413707877783645387119633098719995603684500768371567368875631912881006483669027597840718554646481736822250833683630633639204837268708130269587997026656349074176615504672552977131817820908494439275302980161<211> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2203083590 Step 1 took 27689ms Step 2 took 8623ms ********** Factor found in step 2: 33097663825838813782824994392225929 Found probable prime factor of 35 digits: 33097663825838813782824994392225929 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | October 27, 2015 09:00:00 UTC 2015 年 10 月 27 日 (火) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2950 | 600 | Dmitry Domanov | April 15, 2016 06:32:28 UTC 2016 年 4 月 15 日 (金) 15 時 32 分 28 秒 (日本時間) |
2350 | Ignacio Santos | July 23, 2023 15:58:24 UTC 2023 年 7 月 24 日 (月) 0 時 58 分 24 秒 (日本時間) | |||
45 | 11e6 | 4001 | Thomas Kozlowski | October 14, 2024 08:16:00 UTC 2024 年 10 月 14 日 (月) 17 時 16 分 0 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | July 23, 2023 16:14:37 UTC 2023 年 7 月 24 日 (月) 1 時 14 分 37 秒 (日本時間) |
composite number 合成数 | 152354137264662542653966292594459371914975414316674733938387031059552623603748421058175232994154398773725763117623769385363017966255308886490977934989228380402198307920103060885487811690018532125228891982532222667966607942177226159<231> |
prime factors 素因数 | 74077372974768431041274191557774120709<38> |
composite cofactor 合成数の残り | 2056689258089052908181704186225837117410431122604239668919888897122090652483782587898871487755744233732819447845474138258521497925307792352057256250653634092180546100596680574568668495526230051<193> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:1312063741 Step 1 took 6594ms ********** Factor found in step 2: 74077372974768431041274191557774120709 Found prime factor of 38 digits: 74077372974768431041274191557774120709 Composite cofactor 2056689258089052908181704186225837117410431122604239668919888897122090652483782587898871487755744233732819447845474138258521497925307792352057256250653634092180546100596680574568668495526230051 has 193 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | October 27, 2015 09:00:00 UTC 2015 年 10 月 27 日 (火) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2950 | 600 | Dmitry Domanov | April 15, 2016 06:32:44 UTC 2016 年 4 月 15 日 (金) 15 時 32 分 44 秒 (日本時間) |
2350 | Ignacio Santos | July 26, 2023 06:35:27 UTC 2023 年 7 月 26 日 (水) 15 時 35 分 27 秒 (日本時間) | |||
45 | 11e6 | 4001 | Thomas Kozlowski | October 14, 2024 09:26:22 UTC 2024 年 10 月 14 日 (月) 18 時 26 分 22 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | October 27, 2015 09:00:00 UTC 2015 年 10 月 27 日 (火) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 825 | KTakahashi | October 28, 2015 21:21:10 UTC 2015 年 10 月 29 日 (木) 6 時 21 分 10 秒 (日本時間) | |
40 | 3e6 | 2111 | KTakahashi | October 29, 2015 09:54:04 UTC 2015 年 10 月 29 日 (木) 18 時 54 分 4 秒 (日本時間) | |
45 | 11e6 | 4003 | Thomas Kozlowski | October 14, 2024 10:35:51 UTC 2024 年 10 月 14 日 (月) 19 時 35 分 51 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | July 23, 2023 16:15:20 UTC 2023 年 7 月 24 日 (月) 1 時 15 分 20 秒 (日本時間) |
composite number 合成数 | 12022920571387985466901045388645184987282397723440782398872765310771837842607170026597053828160765080218882796306975776829654710072297013379552359175888394456577226761720107207015439152883070660774253784477694944500082545073253<227> |
prime factors 素因数 | 10997901737480172637852482017959901889961<41> 1093201308610951822949674294506602489972455323214294995060389302367538619956632921478063895514560888395116185474006802195280807208265112440060159583105510559169219743447039870193958510173<187> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:3753212749 Step 1 took 9719ms Step 2 took 4406ms ********** Factor found in step 2: 10997901737480172637852482017959901889961 Found prime factor of 41 digits: 10997901737480172637852482017959901889961 Prime cofactor 1093201308610951822949674294506602489972455323214294995060389302367538619956632921478063895514560888395116185474006802195280807208265112440060159583105510559169219743447039870193958510173 has 187 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | October 27, 2015 09:00:00 UTC 2015 年 10 月 27 日 (火) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 600 / 2336 | Dmitry Domanov | April 15, 2016 06:33:09 UTC 2016 年 4 月 15 日 (金) 15 時 33 分 9 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | April 20, 2016 14:10:16 UTC 2016 年 4 月 20 日 (水) 23 時 10 分 16 秒 (日本時間) |
composite number 合成数 | 8614105158792273148647990244202823063650140586883618860247003386250856388721396546986991457490565642625821324674301838384573586372757095520422731299532021164828837009041669117406001349880994225510083466505341501596151555829<223> |
prime factors 素因数 | 18945294431351488917819534003618569179<38> |
composite cofactor 合成数の残り | 454683097695081531704294080441026025325802895221080457452346958902648348887766162549062038159150335162635210110339989157280379093859952057447354813566979683165622440674875393969435306351<186> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2045676002 Step 1 took 27386ms Step 2 took 8616ms ********** Factor found in step 2: 18945294431351488917819534003618569179 Found probable prime factor of 38 digits: 18945294431351488917819534003618569179 |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | May 8, 2016 23:16:54 UTC 2016 年 5 月 9 日 (月) 8 時 16 分 54 秒 (日本時間) |
composite number 合成数 | 454683097695081531704294080441026025325802895221080457452346958902648348887766162549062038159150335162635210110339989157280379093859952057447354813566979683165622440674875393969435306351<186> |
prime factors 素因数 | 556189795848117719141718918799508418240937063<45> |
composite cofactor 合成数の残り | 817496295489830837630981833483938828010985171029988574872254274416711100019252834419287377877802008867309639051471460294364912201392587867577<141> |
factorization results 素因数分解の結果 | Using B1=43000000, B2=240490660426, polynomial Dickson(12), sigma=3297395578 Step 1 took 255919ms Step 2 took 67993ms ********** Factor found in step 2: 556189795848117719141718918799508418240937063 Found probable prime factor of 45 digits: 556189795848117719141718918799508418240937063 Composite cofactor 817496295489830837630981833483938828010985171029988574872254274416711100019252834419287377877802008867309639051471460294364912201392587867577 has 141 digits |
name 名前 | Erik Branger |
---|---|
date 日付 | November 29, 2016 19:54:09 UTC 2016 年 11 月 30 日 (水) 4 時 54 分 9 秒 (日本時間) |
composite number 合成数 | 817496295489830837630981833483938828010985171029988574872254274416711100019252834419287377877802008867309639051471460294364912201392587867577<141> |
prime factors 素因数 | 132780340816129776166825092678831665744175398538793336335158081<63> 6156757020392613158427139619570936992325440284671330660665334290035077863044217<79> |
factorization results 素因数分解の結果 | Number: 11131_269 N = 817496295489830837630981833483938828010985171029988574872254274416711100019252834419287377877802008867309639051471460294364912201392587867577 (141 digits) Divisors found: r1=132780340816129776166825092678831665744175398538793336335158081 (pp63) r2=6156757020392613158427139619570936992325440284671330660665334290035077863044217 (pp79) Version: Msieve v. 1.51 (SVN 845) Total time: 409.50 hours. Factorization parameters were as follows: # Murphy_E = 1.902e-11, selected by Erik Branger # expecting poly E from 1.81e-011 to > 2.08e-011 n: 817496295489830837630981833483938828010985171029988574872254274416711100019252834419287377877802008867309639051471460294364912201392587867577 Y0: -2799768305202511530154265401 Y1: 954073551148213 c0: -35476837350196944213017001234161640 c1: 86344509537542178448859869806 c2: 90101665854929350189309 c3: -153367360054809998 c4: -35404531464 c5: 4752 skew: 1824253.46 type: gnfs # selected mechanically rlim: 19300000 alim: 19300000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 19300000/19300000 Large primes per side: 3 Large prime bits: 28/28 Sieved algebraic special-q in [0, 0) Total raw relations: 23254732 Relations: 3886092 relations Pruned matrix : 2407648 x 2407873 Polynomial selection time: 0.00 hours. Total sieving time: 402.93 hours. Total relation processing time: 0.21 hours. Matrix solve time: 5.72 hours. time per square root: 0.64 hours. Prototype def-par.txt line would be: gnfs,140,5,65,2000,1e-05,0.28,250,20,50000,3600,19300000,19300000,28,28,56,56,2.6,2.6,100000 total time: 409.50 hours. Intel64 Family 6 Model 58 Stepping 9, GenuineIntel Windows-post2008Server-6.2.9200 processors: 8, speed: 2.29GHz |
execution environment 実行環境 | GGNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | October 27, 2015 09:00:00 UTC 2015 年 10 月 27 日 (火) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 600 | Dmitry Domanov | April 20, 2016 11:59:13 UTC 2016 年 4 月 20 日 (水) 20 時 59 分 13 秒 (日本時間) | |
45 | 11e6 | 800 | Dmitry Domanov | April 30, 2016 23:43:53 UTC 2016 年 5 月 1 日 (日) 8 時 43 分 53 秒 (日本時間) | |
50 | 43e6 | 1000 / 7334 | 400 | Dmitry Domanov | May 4, 2016 14:40:34 UTC 2016 年 5 月 4 日 (水) 23 時 40 分 34 秒 (日本時間) |
600 | Dmitry Domanov | May 7, 2016 20:52:16 UTC 2016 年 5 月 8 日 (日) 5 時 52 分 16 秒 (日本時間) | |||
55 | 11e7 | 5 / 17356 | Dmitry Domanov | May 7, 2016 20:52:40 UTC 2016 年 5 月 8 日 (日) 5 時 52 分 40 秒 (日本時間) | |
60 | 26e7 | 1 / 41885 | Dmitry Domanov | May 7, 2016 20:53:06 UTC 2016 年 5 月 8 日 (日) 5 時 53 分 6 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | July 23, 2023 16:26:03 UTC 2023 年 7 月 24 日 (月) 1 時 26 分 3 秒 (日本時間) |
composite number 合成数 | 151292598679458709409748360536089118493987638052826061026976520026282841270604463159102703578095913135109479490751305550206511490777219531762843576090823443065351950844318039578028218790176805253709597652984218996784680179<222> |
prime factors 素因数 | 3172932721189870658022676967469705249691<40> 47682258646418127938788233831263867209799358789876990872656074066326653297306046237983575690754883246670105708067283961117941805272782311702531594166099233652462998188968321398066569<182> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:3660955982 Step 1 took 9500ms Step 2 took 4375ms ********** Factor found in step 2: 3172932721189870658022676967469705249691 Found prime factor of 40 digits: 3172932721189870658022676967469705249691 Prime cofactor 47682258646418127938788233831263867209799358789876990872656074066326653297306046237983575690754883246670105708067283961117941805272782311702531594166099233652462998188968321398066569 has 182 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | October 27, 2015 09:00:00 UTC 2015 年 10 月 27 日 (火) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 600 / 2336 | Dmitry Domanov | April 20, 2016 11:59:23 UTC 2016 年 4 月 20 日 (水) 20 時 59 分 23 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | October 27, 2015 09:00:00 UTC 2015 年 10 月 27 日 (火) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 894 | 294 | KTakahashi | October 28, 2015 09:07:56 UTC 2015 年 10 月 28 日 (水) 18 時 7 分 56 秒 (日本時間) |
600 | Dmitry Domanov | October 29, 2015 07:12:26 UTC 2015 年 10 月 29 日 (木) 16 時 12 分 26 秒 (日本時間) | |||
45 | 11e6 | 600 | Dmitry Domanov | November 19, 2015 22:49:43 UTC 2015 年 11 月 20 日 (金) 7 時 49 分 43 秒 (日本時間) | |
50 | 43e6 | 3292 / 7385 | 1500 | Erik Branger | November 23, 2015 08:26:53 UTC 2015 年 11 月 23 日 (月) 17 時 26 分 53 秒 (日本時間) |
1792 | Dmitry Domanov | April 23, 2024 20:29:01 UTC 2024 年 4 月 24 日 (水) 5 時 29 分 1 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | October 27, 2015 09:00:00 UTC 2015 年 10 月 27 日 (火) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2950 | 600 | Dmitry Domanov | April 20, 2016 11:59:41 UTC 2016 年 4 月 20 日 (水) 20 時 59 分 41 秒 (日本時間) |
2350 | Ignacio Santos | July 24, 2023 07:18:57 UTC 2023 年 7 月 24 日 (月) 16 時 18 分 57 秒 (日本時間) | |||
45 | 11e6 | 4005 | Thomas Kozlowski | October 14, 2024 12:05:38 UTC 2024 年 10 月 14 日 (月) 21 時 5 分 38 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | October 27, 2015 09:00:00 UTC 2015 年 10 月 27 日 (火) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2950 | 600 | Dmitry Domanov | April 20, 2016 11:59:52 UTC 2016 年 4 月 20 日 (水) 20 時 59 分 52 秒 (日本時間) |
2350 | Ignacio Santos | July 24, 2023 07:19:30 UTC 2023 年 7 月 24 日 (月) 16 時 19 分 30 秒 (日本時間) | |||
45 | 11e6 | 4000 | Thomas Kozlowski | October 14, 2024 13:35:41 UTC 2024 年 10 月 14 日 (月) 22 時 35 分 41 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | October 27, 2015 09:00:00 UTC 2015 年 10 月 27 日 (火) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2950 | 600 | Dmitry Domanov | April 20, 2016 12:00:03 UTC 2016 年 4 月 20 日 (水) 21 時 0 分 3 秒 (日本時間) |
2350 | Ignacio Santos | July 24, 2023 07:24:49 UTC 2023 年 7 月 24 日 (月) 16 時 24 分 49 秒 (日本時間) | |||
45 | 11e6 | 4000 | Thomas Kozlowski | October 14, 2024 15:05:37 UTC 2024 年 10 月 15 日 (火) 0 時 5 分 37 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | October 27, 2015 09:00:00 UTC 2015 年 10 月 27 日 (火) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2950 | 600 | Dmitry Domanov | April 14, 2016 21:21:48 UTC 2016 年 4 月 15 日 (金) 6 時 21 分 48 秒 (日本時間) |
2350 | Ignacio Santos | July 24, 2023 07:37:35 UTC 2023 年 7 月 24 日 (月) 16 時 37 分 35 秒 (日本時間) | |||
45 | 11e6 | 4003 | Thomas Kozlowski | October 14, 2024 17:00:32 UTC 2024 年 10 月 15 日 (火) 2 時 0 分 32 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | October 27, 2015 09:00:00 UTC 2015 年 10 月 27 日 (火) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2950 | 600 | Dmitry Domanov | April 20, 2016 16:57:44 UTC 2016 年 4 月 21 日 (木) 1 時 57 分 44 秒 (日本時間) |
2350 | Ignacio Santos | July 24, 2023 10:18:17 UTC 2023 年 7 月 24 日 (月) 19 時 18 分 17 秒 (日本時間) | |||
45 | 11e6 | 4002 | Thomas Kozlowski | October 14, 2024 18:30:55 UTC 2024 年 10 月 15 日 (火) 3 時 30 分 55 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | October 27, 2015 09:00:00 UTC 2015 年 10 月 27 日 (火) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 1400 | 600 | Dmitry Domanov | April 20, 2016 16:58:00 UTC 2016 年 4 月 21 日 (木) 1 時 58 分 0 秒 (日本時間) |
800 | Dmitry Domanov | November 24, 2016 20:38:01 UTC 2016 年 11 月 25 日 (金) 5 時 38 分 1 秒 (日本時間) | |||
45 | 11e6 | 4203 | 600 | Dmitry Domanov | January 11, 2017 00:09:07 UTC 2017 年 1 月 11 日 (水) 9 時 9 分 7 秒 (日本時間) |
3603 | Thomas Kozlowski | October 14, 2024 19:42:07 UTC 2024 年 10 月 15 日 (火) 4 時 42 分 7 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | October 27, 2015 09:00:00 UTC 2015 年 10 月 27 日 (火) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2950 | 600 | Dmitry Domanov | April 14, 2016 21:22:04 UTC 2016 年 4 月 15 日 (金) 6 時 22 分 4 秒 (日本時間) |
2350 | Ignacio Santos | July 23, 2023 16:42:48 UTC 2023 年 7 月 24 日 (月) 1 時 42 分 48 秒 (日本時間) | |||
45 | 11e6 | 4001 | Thomas Kozlowski | October 14, 2024 21:49:30 UTC 2024 年 10 月 15 日 (火) 6 時 49 分 30 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | April 20, 2016 20:48:56 UTC 2016 年 4 月 21 日 (木) 5 時 48 分 56 秒 (日本時間) |
composite number 合成数 | 49042926063043615507090794843577861676301557584804928532263820091426445492646342461872486208450128205129358512284717434801471939892906419926430522057969362803024600788685405304759276246508054969270546595265641<209> |
prime factors 素因数 | 273656983949903345069434804616249207<36> |
composite cofactor 合成数の残り | 179213135200019576698363753593816619529017004843856139167224944760559286533303483309358051070109231059582251156386473026660248331197388894461081047105057166108135152064600863<174> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1778641655 Step 1 took 22354ms Step 2 took 7230ms ********** Factor found in step 2: 273656983949903345069434804616249207 Found probable prime factor of 36 digits: 273656983949903345069434804616249207 |
name 名前 | NFS@Home / Sergey Batalov |
---|---|
date 日付 | November 17, 2024 09:14:59 UTC 2024 年 11 月 17 日 (日) 18 時 14 分 59 秒 (日本時間) |
composite number 合成数 | 179213135200019576698363753593816619529017004843856139167224944760559286533303483309358051070109231059582251156386473026660248331197388894461081047105057166108135152064600863<174> |
prime factors 素因数 | 73243120863021056505193464866455356106294331796722292389669171940503023844748841<80> 2446825491436706355420389377657912196164105124666163353088104733460162811491856463919561332743<94> |
factorization results 素因数分解の結果 | Found 320537245 unique, 89119055 duplicate, and 1 bad relations. Largest dimension used: 1120 of 1800 Average dimension used: 978.2 of 1800 Sat Nov 16 17:41:30 2024 Sat Nov 16 17:41:30 2024 Msieve v. 1.54 (SVN msieve-lacuda-nfsathome-cuda11.5) Sat Nov 16 17:41:30 2024 random seeds: 18f762d1 2440ac68 Sat Nov 16 17:41:30 2024 factoring 179213135200019576698363753593816619529017004843856139167224944760559286533303483309358051070109231059582251156386473026660248331197388894461081047105057166108135152064600863 (174 digits) Sat Nov 16 17:41:30 2024 no P-1/P+1/ECM available, skipping Sat Nov 16 17:41:30 2024 commencing number field sieve (174-digit input) Sat Nov 16 17:41:30 2024 R0: -3235508949918997376540722683237575 Sat Nov 16 17:41:30 2024 R1: 497036865870312941487487 Sat Nov 16 17:41:30 2024 A0: 481249864292311113922261261951428717540 Sat Nov 16 17:41:30 2024 A1: -418513812515152272299781968528667 Sat Nov 16 17:41:30 2024 A2: -936992402329937059908716346 Sat Nov 16 17:41:30 2024 A3: 79385320444353079391 Sat Nov 16 17:41:30 2024 A4: 34170049279780 Sat Nov 16 17:41:30 2024 A5: 5049000 Sat Nov 16 17:41:30 2024 skew 3312222.03, size 5.319e-17, alpha -5.597, combined = 2.010e-13 rroots = 3 Sat Nov 16 17:41:30 2024 Sat Nov 16 17:41:30 2024 commencing relation filtering Sat Nov 16 17:41:30 2024 setting target matrix density to 136.0 Sat Nov 16 17:41:30 2024 estimated available RAM is 1031034.1 MB Sat Nov 16 17:41:30 2024 commencing duplicate removal, pass 1 Sat Nov 16 18:28:52 2024 skipped 1 relations with b > 2^32 Sat Nov 16 18:28:52 2024 skipped 2 relations with composite factors Sat Nov 16 18:28:52 2024 found 11390264 hash collisions in 320537240 relations Sat Nov 16 18:29:18 2024 added 121552 free relations Sat Nov 16 18:29:18 2024 commencing duplicate removal, pass 2 Sat Nov 16 18:34:47 2024 found 0 duplicates and 320658792 unique relations Sat Nov 16 18:34:47 2024 memory use: 1044.8 MB Sat Nov 16 18:34:47 2024 reading ideals above 720000 Sat Nov 16 18:34:47 2024 commencing singleton removal, initial pass Sat Nov 16 18:41:49 2024 lanczos halted after 106600 iterations (dim = 27207417) Sat Nov 16 18:43:30 2024 recovered 36 nontrivial dependencies Sat Nov 16 18:43:31 2024 BLanczosTime: 72380 Sat Nov 16 18:43:31 2024 Sat Nov 16 18:43:31 2024 commencing square root phase Sat Nov 16 18:43:31 2024 handling dependencies 1 to 64 Sat Nov 16 18:43:31 2024 reading relations for dependency 1 Sat Nov 16 18:43:37 2024 read 13602357 cycles Sat Nov 16 18:44:01 2024 cycles contain 47439918 unique relations Sat Nov 16 19:00:15 2024 read 47439918 relations Sat Nov 16 19:03:30 2024 multiplying 47439918 relations Sat Nov 16 19:43:28 2024 multiply complete, coefficients have about 1543.56 million bits Sat Nov 16 19:43:32 2024 initial square root is modulo 8394643 Sat Nov 16 19:47:00 2024 memory use: 6024.0 MB Sat Nov 16 19:47:01 2024 reading all ideals from disk Sat Nov 16 19:47:05 2024 memory use: 15273.0 MB Sat Nov 16 19:47:30 2024 keeping 298594477 ideals with weight <= 200, target excess is 1960825 Sat Nov 16 19:48:05 2024 commencing in-memory singleton removal Sat Nov 16 19:48:39 2024 begin with 320658792 relations and 298594477 unique ideals Sat Nov 16 19:51:43 2024 reduce to 181614567 relations and 142879507 ideals in 14 passes Sat Nov 16 19:51:43 2024 max relations containing the same ideal: 147 Sat Nov 16 19:52:59 2024 removing 12237345 relations and 10237345 ideals in 2000000 cliques Sat Nov 16 19:53:08 2024 commencing in-memory singleton removal Sat Nov 16 19:53:26 2024 begin with 169377222 relations and 142879507 unique ideals Sat Nov 16 19:54:46 2024 reduce to 168794017 relations and 132050708 ideals in 8 passes Sat Nov 16 19:54:46 2024 max relations containing the same ideal: 141 Sat Nov 16 19:55:44 2024 removing 9190869 relations and 7190869 ideals in 2000000 cliques Sat Nov 16 19:55:50 2024 commencing in-memory singleton removal Sat Nov 16 19:56:02 2024 begin with 159603148 relations and 132050708 unique ideals Sat Nov 16 19:57:00 2024 reduce to 159220930 relations and 124472983 ideals in 8 passes Sat Nov 16 19:57:00 2024 max relations containing the same ideal: 134 Sat Nov 16 19:57:53 2024 removing 8253659 relations and 6253659 ideals in 2000000 cliques Sat Nov 16 19:57:59 2024 commencing in-memory singleton removal Sat Nov 16 19:58:10 2024 begin with 150967271 relations and 124472983 unique ideals Sat Nov 16 19:59:04 2024 reduce to 150636198 relations and 117884293 ideals in 8 passes Sat Nov 16 19:59:04 2024 max relations containing the same ideal: 130 Sat Nov 16 19:59:55 2024 removing 7745091 relations and 5745091 ideals in 2000000 cliques Sat Nov 16 20:00:00 2024 commencing in-memory singleton removal Sat Nov 16 20:00:10 2024 begin with 142891107 relations and 117884293 unique ideals Sat Nov 16 20:01:02 2024 reduce to 142582089 relations and 111826352 ideals in 8 passes Sat Nov 16 20:01:02 2024 max relations containing the same ideal: 124 Sat Nov 16 20:01:50 2024 removing 7427057 relations and 5427057 ideals in 2000000 cliques Sat Nov 16 20:01:54 2024 commencing in-memory singleton removal Sat Nov 16 20:02:04 2024 begin with 135155032 relations and 111826352 unique ideals Sat Nov 16 20:02:47 2024 reduce to 134858672 relations and 106099100 ideals in 7 passes Sat Nov 16 20:02:47 2024 max relations containing the same ideal: 121 Sat Nov 16 20:03:32 2024 removing 7199564 relations and 5199564 ideals in 2000000 cliques Sat Nov 16 20:03:37 2024 commencing in-memory singleton removal Sat Nov 16 20:03:47 2024 begin with 127659108 relations and 106099100 unique ideals Sat Nov 16 20:04:26 2024 reduce to 127368525 relations and 100605027 ideals in 7 passes Sat Nov 16 20:04:26 2024 max relations containing the same ideal: 117 Sat Nov 16 20:05:08 2024 removing 7038880 relations and 5038880 ideals in 2000000 cliques Sat Nov 16 20:05:12 2024 commencing in-memory singleton removal Sat Nov 16 20:05:21 2024 begin with 120329645 relations and 100605027 unique ideals Sat Nov 16 20:06:04 2024 reduce to 120039326 relations and 95271522 ideals in 8 passes Sat Nov 16 20:06:04 2024 max relations containing the same ideal: 111 Sat Nov 16 20:06:43 2024 removing 6914103 relations and 4914103 ideals in 2000000 cliques Sat Nov 16 20:06:47 2024 commencing in-memory singleton removal Sat Nov 16 20:06:55 2024 begin with 113125223 relations and 95271522 unique ideals Sat Nov 16 20:07:30 2024 reduce to 112829350 relations and 90057131 ideals in 7 passes Sat Nov 16 20:07:30 2024 max relations containing the same ideal: 107 Sat Nov 16 20:08:07 2024 removing 6828043 relations and 4828043 ideals in 2000000 cliques Sat Nov 16 20:08:11 2024 commencing in-memory singleton removal Sat Nov 16 20:08:19 2024 begin with 106001307 relations and 90057131 unique ideals Sat Nov 16 20:08:46 2024 reduce to 105698553 relations and 84921469 ideals in 6 passes Sat Nov 16 20:08:46 2024 max relations containing the same ideal: 100 Sat Nov 16 20:09:21 2024 removing 6765646 relations and 4765646 ideals in 2000000 cliques Sat Nov 16 20:09:25 2024 commencing in-memory singleton removal Sat Nov 16 20:09:32 2024 begin with 98932907 relations and 84921469 unique ideals Sat Nov 16 20:10:02 2024 reduce to 98617278 relations and 79834798 ideals in 7 passes Sat Nov 16 20:10:02 2024 max relations containing the same ideal: 97 Sat Nov 16 20:10:35 2024 removing 6717423 relations and 4717423 ideals in 2000000 cliques Sat Nov 16 20:10:39 2024 commencing in-memory singleton removal Sat Nov 16 20:10:46 2024 begin with 91899855 relations and 79834798 unique ideals Sat Nov 16 20:11:13 2024 reduce to 91569677 relations and 74781108 ideals in 7 passes Sat Nov 16 20:11:13 2024 max relations containing the same ideal: 93 Sat Nov 16 20:11:44 2024 removing 6697358 relations and 4697358 ideals in 2000000 cliques Sat Nov 16 20:11:48 2024 commencing in-memory singleton removal Sat Nov 16 20:11:54 2024 begin with 84872319 relations and 74781108 unique ideals Sat Nov 16 20:12:18 2024 reduce to 84519815 relations and 69724401 ideals in 7 passes Sat Nov 16 20:12:18 2024 max relations containing the same ideal: 88 Sat Nov 16 20:12:47 2024 removing 6693377 relations and 4693377 ideals in 2000000 cliques Sat Nov 16 20:12:50 2024 commencing in-memory singleton removal Sat Nov 16 20:12:56 2024 begin with 77826438 relations and 69724401 unique ideals Sat Nov 16 20:13:18 2024 reduce to 77444790 relations and 64641486 ideals in 7 passes Sat Nov 16 20:13:18 2024 max relations containing the same ideal: 83 Sat Nov 16 20:13:45 2024 removing 6712792 relations and 4712792 ideals in 2000000 cliques Sat Nov 16 20:13:48 2024 commencing in-memory singleton removal Sat Nov 16 20:13:53 2024 begin with 70731998 relations and 64641486 unique ideals Sat Nov 16 20:14:14 2024 reduce to 70312167 relations and 59499586 ideals in 7 passes Sat Nov 16 20:14:14 2024 max relations containing the same ideal: 77 Sat Nov 16 20:14:39 2024 removing 6749812 relations and 4749812 ideals in 2000000 cliques Sat Nov 16 20:14:42 2024 commencing in-memory singleton removal Sat Nov 16 20:14:46 2024 begin with 63562355 relations and 59499586 unique ideals Sat Nov 16 20:15:07 2024 reduce to 63092637 relations and 54268474 ideals in 8 passes Sat Nov 16 20:15:07 2024 max relations containing the same ideal: 72 Sat Nov 16 20:15:29 2024 removing 6828838 relations and 4828838 ideals in 2000000 cliques Sat Nov 16 20:15:32 2024 commencing in-memory singleton removal Sat Nov 16 20:15:36 2024 begin with 56263799 relations and 54268474 unique ideals Sat Nov 16 20:15:51 2024 reduce to 55724058 relations and 48885310 ideals in 7 passes Sat Nov 16 20:15:51 2024 max relations containing the same ideal: 66 Sat Nov 16 20:16:11 2024 removing 6934283 relations and 4934283 ideals in 2000000 cliques Sat Nov 16 20:16:13 2024 commencing in-memory singleton removal Sat Nov 16 20:16:16 2024 begin with 48789775 relations and 48885310 unique ideals Sat Nov 16 20:16:33 2024 reduce to 48146720 relations and 43288438 ideals in 9 passes Sat Nov 16 20:16:33 2024 max relations containing the same ideal: 61 Sat Nov 16 20:16:50 2024 removing 7092744 relations and 5092744 ideals in 2000000 cliques Sat Nov 16 20:16:53 2024 commencing in-memory singleton removal Sat Nov 16 20:16:55 2024 begin with 41053976 relations and 43288438 unique ideals Sat Nov 16 20:17:07 2024 reduce to 40251453 relations and 37365115 ideals in 8 passes Sat Nov 16 20:17:07 2024 max relations containing the same ideal: 57 Sat Nov 16 20:17:22 2024 removing 2879088 relations and 2267308 ideals in 611780 cliques Sat Nov 16 20:17:24 2024 commencing in-memory singleton removal Sat Nov 16 20:17:26 2024 begin with 37372365 relations and 37365115 unique ideals Sat Nov 16 20:17:36 2024 reduce to 37222347 relations and 34945893 ideals in 8 passes Sat Nov 16 20:17:36 2024 max relations containing the same ideal: 53 Sat Nov 16 20:17:55 2024 relations with 0 large ideals: 18080 Sat Nov 16 20:17:55 2024 relations with 1 large ideals: 208759 Sat Nov 16 20:17:55 2024 relations with 2 large ideals: 1359884 Sat Nov 16 20:17:55 2024 relations with 3 large ideals: 4622720 Sat Nov 16 20:17:55 2024 relations with 4 large ideals: 8968337 Sat Nov 16 20:17:55 2024 relations with 5 large ideals: 10412879 Sat Nov 16 20:17:55 2024 relations with 6 large ideals: 7444490 Sat Nov 16 20:17:55 2024 relations with 7+ large ideals: 4187198 Sat Nov 16 20:17:55 2024 commencing 2-way merge Sat Nov 16 20:18:13 2024 reduce to 22520438 relation sets and 20243984 unique ideals Sat Nov 16 20:18:13 2024 commencing full merge Sat Nov 16 20:20:44 2024 cycles contain 47435744 unique relations Sat Nov 16 20:23:38 2024 memory use: 2359.7 MB Sat Nov 16 20:23:39 2024 found 9635128 cycles, need 9454184 Sat Nov 16 20:23:43 2024 weight of 9454184 cycles is about 1286452071 (136.07/cycle) Sat Nov 16 20:23:43 2024 distribution of cycle lengths: Sat Nov 16 20:23:43 2024 1 relations: 471953 Sat Nov 16 20:23:43 2024 2 relations: 508174 Sat Nov 16 20:23:43 2024 3 relations: 557434 Sat Nov 16 20:23:43 2024 4 relations: 573658 Sat Nov 16 20:23:43 2024 5 relations: 601612 Sat Nov 16 20:23:43 2024 6 relations: 612183 Sat Nov 16 20:23:43 2024 7 relations: 613877 Sat Nov 16 20:23:43 2024 8 relations: 611365 Sat Nov 16 20:23:43 2024 9 relations: 591461 Sat Nov 16 20:23:43 2024 10+ relations: 4312467 Sat Nov 16 20:23:43 2024 heaviest cycle: 28 relations Sat Nov 16 20:23:45 2024 commencing cycle optimization Sat Nov 16 20:24:00 2024 start with 89780295 relations Sat Nov 16 20:26:47 2024 pruned 4158734 relations Sat Nov 16 20:26:48 2024 memory use: 2410.0 MB Sat Nov 16 20:26:48 2024 distribution of cycle lengths: Sat Nov 16 20:26:48 2024 1 relations: 471953 Sat Nov 16 20:26:48 2024 2 relations: 521416 Sat Nov 16 20:26:48 2024 3 relations: 579988 Sat Nov 16 20:26:48 2024 4 relations: 598240 Sat Nov 16 20:26:48 2024 5 relations: 632574 Sat Nov 16 20:26:48 2024 6 relations: 643904 Sat Nov 16 20:26:48 2024 7 relations: 650434 Sat Nov 16 20:26:48 2024 8 relations: 645936 Sat Nov 16 20:26:48 2024 9 relations: 626501 Sat Nov 16 20:26:48 2024 10+ relations: 4083238 Sat Nov 16 20:26:48 2024 heaviest cycle: 27 relations Sat Nov 16 20:27:17 2024 RelProcTime: 9947 Sat Nov 16 20:27:17 2024 Sat Nov 16 20:27:17 2024 commencing linear algebra Sat Nov 16 20:27:17 2024 using VBITS=256 Sat Nov 16 20:27:18 2024 read 9454184 cycles Sat Nov 16 20:27:40 2024 cycles contain 35897331 unique relations Sat Nov 16 20:36:32 2024 read 35897331 relations Sat Nov 16 20:37:08 2024 read 47435744 relations Sat Nov 16 20:37:35 2024 using 20 quadratic characters above 4294917295 Sat Nov 16 20:40:38 2024 building initial matrix Sat Nov 16 20:41:15 2024 multiplying 47435744 relations Sat Nov 16 20:53:16 2024 memory use: 4928.3 MB Sat Nov 16 20:53:22 2024 read 9454184 cycles Sat Nov 16 20:53:23 2024 matrix is 9454006 x 9454184 (4935.9 MB) with weight 1494431008 (158.07/col) Sat Nov 16 20:53:23 2024 sparse part has weight 1189925005 (125.86/col) Sat Nov 16 20:55:39 2024 filtering completed in 2 passes Sat Nov 16 20:55:41 2024 matrix is 9453153 x 9453331 (4935.8 MB) with weight 1494378695 (158.08/col) Sat Nov 16 20:55:41 2024 sparse part has weight 1189901351 (125.87/col) Sat Nov 16 20:59:35 2024 matrix starts at (0, 0) Sat Nov 16 20:59:36 2024 matrix is 9453153 x 9453331 (4935.8 MB) with weight 1494378695 (158.08/col) Sat Nov 16 20:59:36 2024 sparse part has weight 1189901351 (125.87/col) Sat Nov 16 20:59:36 2024 saving the first 240 matrix rows for later Sat Nov 16 20:59:39 2024 matrix includes 256 packed rows Sat Nov 16 20:59:42 2024 matrix is 9452913 x 9453331 (4474.1 MB) with weight 1087419846 (115.03/col) Sat Nov 16 20:59:42 2024 sparse part has weight 1021592929 (108.07/col) Sat Nov 16 20:59:42 2024 using GPU 0 (NVIDIA L40S) Sat Nov 16 20:59:42 2024 selected card has CUDA arch 8.9 Sat Nov 16 21:01:04 2024 commencing Lanczos iteration Sat Nov 16 21:01:04 2024 memory use: 10174.2 MB Sat Nov 16 21:01:31 2024 linear algebra at 0.3%, ETA 2h13m Sat Nov 16 21:02:11 2024 checking every 30000 dimensions, checkpointing every 2100000 dimensions Sat Nov 16 23:17:36 2024 lanczos halted after 37036 iterations (dim = 9452913) Sat Nov 16 23:18:17 2024 recovered 32 nontrivial dependencies Sat Nov 16 23:18:17 2024 BLanczosTime: 10260 Sat Nov 16 23:18:17 2024 Sat Nov 16 23:18:17 2024 commencing square root phase Sat Nov 16 23:18:17 2024 handling dependencies 1 to 64 Sat Nov 16 23:18:17 2024 reading relations for dependency 1 Sat Nov 16 23:18:19 2024 read 4729116 cycles Sat Nov 16 23:18:28 2024 cycles contain 17953530 unique relations Sat Nov 16 23:24:45 2024 read 17953530 relations Sat Nov 16 23:25:49 2024 multiplying 17953530 relations Sat Nov 16 23:44:38 2024 multiply complete, coefficients have about 1066.07 million bits Sat Nov 16 23:44:42 2024 initial square root is modulo 60661 Sun Nov 17 00:02:40 2024 sqrtTime: 2663 Sun Nov 17 00:02:40 2024 p80 factor: 73243120863021056505193464866455356106294331796722292389669171940503023844748841 Sun Nov 17 00:02:40 2024 p94 factor: 2446825491436706355420389377657912196164105124666163353088104733460162811491856463919561332743 Sun Nov 17 00:02:40 2024 elapsed time 06:21:10 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | October 27, 2015 09:00:00 UTC 2015 年 10 月 27 日 (火) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 600 | Dmitry Domanov | April 20, 2016 19:38:33 UTC 2016 年 4 月 21 日 (木) 4 時 38 分 33 秒 (日本時間) | |
45 | 11e6 | 2000 | Dmitry Domanov | April 21, 2016 14:39:23 UTC 2016 年 4 月 21 日 (木) 23 時 39 分 23 秒 (日本時間) | |
50 | 43e6 | 2392 / 6985 | 400 | Dmitry Domanov | April 22, 2016 00:14:07 UTC 2016 年 4 月 22 日 (金) 9 時 14 分 7 秒 (日本時間) |
200 | Dmitry Domanov | April 23, 2016 20:40:15 UTC 2016 年 4 月 24 日 (日) 5 時 40 分 15 秒 (日本時間) | |||
1792 | Dmitry Domanov | May 24, 2024 18:48:01 UTC 2024 年 5 月 25 日 (土) 3 時 48 分 1 秒 (日本時間) | |||
55 | 11e7 | 40 / 16786 | Dmitry Domanov | April 23, 2016 22:25:27 UTC 2016 年 4 月 24 日 (日) 7 時 25 分 27 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | November 25, 2016 01:20:36 UTC 2016 年 11 月 25 日 (金) 10 時 20 分 36 秒 (日本時間) |
composite number 合成数 | 317981139976564996085517940817961675551342600847339330649331732111706910860822564708531360542838170380652432318163314995329195823745566010204832209784072587638182423151893119074468741440893948177477<198> |
prime factors 素因数 | 6829294895305549651367380726107713023<37> |
composite cofactor 合成数の残り | 46561342693686416664580848564352680345658532401471481787093677574348896157270059911007948029311697946832894572362221820875095026483028929521068138539456236973499<161> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=14367199 Step 1 took 25752ms Step 2 took 8634ms ********** Factor found in step 2: 6829294895305549651367380726107713023 Found probable prime factor of 37 digits: 6829294895305549651367380726107713023 Composite cofactor 46561342693686416664580848564352680345658532401471481787093677574348896157270059911007948029311697946832894572362221820875095026483028929521068138539456236973499 has 161 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | October 27, 2015 09:00:00 UTC 2015 年 10 月 27 日 (火) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 1400 | 600 | Dmitry Domanov | April 20, 2016 19:38:55 UTC 2016 年 4 月 21 日 (木) 4 時 38 分 55 秒 (日本時間) |
800 | Dmitry Domanov | November 24, 2016 20:38:49 UTC 2016 年 11 月 25 日 (金) 5 時 38 分 49 秒 (日本時間) | |||
45 | 11e6 | 1600 | Dmitry Domanov | November 26, 2016 12:10:07 UTC 2016 年 11 月 26 日 (土) 21 時 10 分 7 秒 (日本時間) | |
50 | 43e6 | 600 / 6982 | Dmitry Domanov | November 29, 2016 23:44:17 UTC 2016 年 11 月 30 日 (水) 8 時 44 分 17 秒 (日本時間) | |
55 | 11e7 | 66 / 17444 | Dmitry Domanov | December 1, 2016 00:17:56 UTC 2016 年 12 月 1 日 (木) 9 時 17 分 56 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | April 15, 2016 15:29:54 UTC 2016 年 4 月 16 日 (土) 0 時 29 分 54 秒 (日本時間) |
composite number 合成数 | 279150892060125497578995825803991499454923760232648191833129717578185059089974261763370893771782725285719360184308384467879869555109714117468292437198806843800617431834146625463290317349315872446462317891913054914634292593676971459415714802195420359237838069657068785477<270> |
prime factors 素因数 | 11076922529605149926015083953686533<35> |
composite cofactor 合成数の残り | 25201123445076234819147659009499202333249845114626765700854629667715916201777455787259663822340406947476963883652173194290256983178533538954834744698602260375256509041307129949194694737921389541013945878854007166184546846397359902395969<236> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=4120151874 Step 1 took 36231ms Step 2 took 2776ms ********** Factor found in step 2: 11076922529605149926015083953686533 Found probable prime factor of 35 digits: 11076922529605149926015083953686533 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | October 27, 2015 09:00:00 UTC 2015 年 10 月 27 日 (火) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2950 | 600 | Dmitry Domanov | April 14, 2016 21:22:17 UTC 2016 年 4 月 15 日 (金) 6 時 22 分 17 秒 (日本時間) |
2350 | Ignacio Santos | July 24, 2023 11:11:02 UTC 2023 年 7 月 24 日 (月) 20 時 11 分 2 秒 (日本時間) | |||
45 | 11e6 | 4003 | Thomas Kozlowski | October 14, 2024 23:31:22 UTC 2024 年 10 月 15 日 (火) 8 時 31 分 22 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | October 27, 2015 09:00:00 UTC 2015 年 10 月 27 日 (火) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2950 | 600 | Dmitry Domanov | April 20, 2016 20:49:38 UTC 2016 年 4 月 21 日 (木) 5 時 49 分 38 秒 (日本時間) |
2350 | Ignacio Santos | July 24, 2023 11:11:22 UTC 2023 年 7 月 24 日 (月) 20 時 11 分 22 秒 (日本時間) | |||
45 | 11e6 | 4003 | Thomas Kozlowski | October 15, 2024 01:01:45 UTC 2024 年 10 月 15 日 (火) 10 時 1 分 45 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | July 24, 2023 11:12:00 UTC 2023 年 7 月 24 日 (月) 20 時 12 分 0 秒 (日本時間) |
composite number 合成数 | 22027711996019539168844191185966565200862823504929675103076983566670451736108743650760810097855217091283034476935368364694367397360206165850862668214378758881613197296952955999816451482662202825752891543129<206> |
prime factors 素因数 | 344968941121982190611555438045846313541<39> |
composite cofactor 合成数の残り | 63854189088374959831875802017518077433795404276455489638097416096810033283675374030305515706993630784602174232021577346288142107693282875201004361247541652441013636869<167> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:2786287661 Step 1 took 6250ms ********** Factor found in step 2: 344968941121982190611555438045846313541 Found prime factor of 39 digits: 344968941121982190611555438045846313541 Composite cofactor 63854189088374959831875802017518077433795404276455489638097416096810033283675374030305515706993630784602174232021577346288142107693282875201004361247541652441013636869 has 167 digits |
software ソフトウェア | GMP-ECM |
name 名前 | Ignacio Santos |
---|---|
date 日付 | July 26, 2023 06:36:30 UTC 2023 年 7 月 26 日 (水) 15 時 36 分 30 秒 (日本時間) |
composite number 合成数 | 63854189088374959831875802017518077433795404276455489638097416096810033283675374030305515706993630784602174232021577346288142107693282875201004361247541652441013636869<167> |
prime factors 素因数 | 20355983810617194586599145522725338401<38> |
composite cofactor 合成数の残り | 3136875607803841006685511164317682477439543465302220224620605176401080425560894130385529022149519852280738484867577472932608807269<130> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:251192937 Step 1 took 3688ms ********** Factor found in step 2: 20355983810617194586599145522725338401 Found prime factor of 38 digits: 20355983810617194586599145522725338401 Composite cofactor 3136875607803841006685511164317682477439543465302220224620605176401080425560894130385529022149519852280738484867577472932608807269 has 130 digits |
software ソフトウェア | GMP-ECM |
name 名前 | Bob Backstrom |
---|---|
date 日付 | August 3, 2023 10:25:56 UTC 2023 年 8 月 3 日 (木) 19 時 25 分 56 秒 (日本時間) |
composite number 合成数 | 3136875607803841006685511164317682477439543465302220224620605176401080425560894130385529022149519852280738484867577472932608807269<130> |
prime factors 素因数 | 541810922483641210277936979492256013454440339216026701931<57> 5789613087577709491002922608249602639139328453442042189308787624589433199<73> |
factorization results 素因数分解の結果 | # # N = 10^288+179 = 1(286)31 # # 10^288+179 = 1(286(31)<288> = 834013 × 5159155489<10> × 190000005631<12> × 559031360748659<15> × 902480375932172657<18> × # 12229511535221924364859<23> × 20355983810617194586599145522725338401<38> × 344968941121982190611555438045846313541<39> × # [3136875607803841006685511164317682477439543465302220224620605176401080425560894130385529022149519852280738484867577472932608807269<130>] # (Ignacio Santos / GMP-ECM B1=3000000 for P39 / July 24, 2023 ) (Ignacio Santos / GMP-ECM B1=3000000 for P38 / July 26, 2023 ) Reserved # CADO: Info:root: Using default parameter file ./parameters/factor/params.c130 Info:root: No database exists yet Info:Database: Opened connection to database /home/bob/tmpg/c130.db Info:root: Set tasks.threads=16 based on --server-threads 16 Info:root: tasks.threads = 16 [via tasks.threads] Info:root: tasks.polyselect.threads = 2 [via tasks.polyselect.threads] Info:root: tasks.sieve.las.threads = 2 [via tasks.sieve.las.threads] Info:root: tasks.linalg.bwc.threads = 16 [via tasks.threads] Info:root: tasks.sqrt.threads = 8 [via tasks.sqrt.threads] Info:root: slaves.scriptpath is /home/bob/Math/cado-nfs/build/LINUX-7 Info:root: Command line parameters: ./cado-nfs.py -t 16 --no-colors workdir=/home/bob/tmpg 3136875607803841006685511164317682477439543465302220224620605176401080425560894130385529022149519852280738484867577472932608807269 Info:root: If this computation gets interrupted, it can be resumed with ./cado-nfs.py /home/bob/tmpg/c130.parameters_snapshot.0 Info:Server Launcher: Adding LINUX-7 to whitelist to allow clients on localhost to connect Info:HTTP server: Using non-threaded HTTPS server Info:HTTP server: Using whitelist: localhost,LINUX-7 Info:Lattice Sieving: param rels_wanted is 22957083 Info:Complete Factorization / Discrete logarithm: Factoring 3136875607803841006685511164317682477439543465302220224620605176401080425560894130385529022149519852280738484867577472932608807269 ... n: 3136875607803841006685511164317682477439543465302220224620605176401080425560894130385529022149519852280738484867577472932608807269 skew: 65925.906 c0: 353376052124353035298960525914 c1: 5123867921988216485321677 c2: 18729555168112905726 c3: -744589366942285 c4: -22683309024 c5: 355680 Y0: -10131367334870711822792990 Y1: 1349502565918464527 # MurphyE (Bf=2.684e+08,Bg=2.684e+08,area=9.547e+13) = 4.580e-07 # f(x) = 355680*x^5-22683309024*x^4-744589366942285*x^3+18729555168112905726*x^2+5123867921988216485321677*x+353376052124353035298960525914 # g(x) = 1349502565918464527*x-10131367334870711822792990 ... Info:Square Root: Starting Info:Square Root: Creating file of (a,b) values Info:Square Root: finished Info:Square Root: Factors: 5789613087577709491002922608249602639139328453442042189308787624589433199 541810922483641210277936979492256013454440339216026701931 Info:Complete Factorization / Discrete logarithm: Square Root Info:Square Root: Total cpu/real time for sqrt: 15691.6/1259.5 Info:HTTP server: Got notification to stop serving Workunits Info:Filtering - Merging: Total cpu/real time for merge: 505.91/545.963 Info:Filtering - Merging: Total cpu/real time for replay: 92.49/106.72 Info:Filtering - Singleton removal: Total cpu/real time for purge: 257.6/492.482 Info:Polynomial Selection (root optimized): Aggregate statistics: Info:Polynomial Selection (root optimized): Total time: 4095.82 Info:Polynomial Selection (root optimized): Rootsieve time: 4093.75 Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 136.05/312.796 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 312.09999999999997s Info:Quadratic Characters: Total cpu/real time for characters: 58.59/14.1298 Info:Linear Algebra: Total cpu/real time for bwc: 50684.9/3453.65 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 29260.13, WCT time 1960.36, iteration CPU time 0.05, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (48128 iterations) Info:Linear Algebra: Lingen CPU time 143.35, WCT time 61.78 Info:Linear Algebra: Mksol: CPU time 21276.74, WCT time 1430.1, iteration CPU time 0.05, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (24064 iterations) Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 24493899 Info:Lattice Sieving: Average J: 7736.77 for 63498 special-q, max bucket fill -bkmult 1.0,1s:1.068950 Info:Lattice Sieving: Total time: 314097s Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 441.44/754.335 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 670.6s Info:Polynomial Selection (size optimized): Aggregate statistics: Info:Polynomial Selection (size optimized): potential collisions: 40925.7 Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 28094/38.810/46.227/51.650/0.845 Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 22247/37.400/41.391/47.040/0.883 Info:Polynomial Selection (size optimized): Total time: 5506.63 Info:Generate Factor Base: Total cpu/real time for makefb: 34.78/40.1312 Info:Generate Free Relations: Total cpu/real time for freerel: 216.06/215.643 Info:Square Root: Total cpu/real time for sqrt: 15691.6/1259.5 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire Complete Factorization 275395/4741.74 [01:19:02] 5789613087577709491002922608249602639139328453442042189308787624589433199 541810922483641210277936979492256013454440339216026701931 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | October 27, 2015 09:00:00 UTC 2015 年 10 月 27 日 (火) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 600 / 2336 | Dmitry Domanov | April 20, 2016 20:49:57 UTC 2016 年 4 月 21 日 (木) 5 時 49 分 57 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | October 27, 2015 09:00:00 UTC 2015 年 10 月 27 日 (火) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2950 | 600 | Dmitry Domanov | April 20, 2016 20:50:14 UTC 2016 年 4 月 21 日 (木) 5 時 50 分 14 秒 (日本時間) |
2350 | Ignacio Santos | July 24, 2023 11:12:36 UTC 2023 年 7 月 24 日 (月) 20 時 12 分 36 秒 (日本時間) | |||
45 | 11e6 | 4000 | Thomas Kozlowski | October 15, 2024 02:20:59 UTC 2024 年 10 月 15 日 (火) 11 時 20 分 59 秒 (日本時間) |
name 名前 | Thomas Kozlowski |
---|---|
date 日付 | October 15, 2024 03:43:57 UTC 2024 年 10 月 15 日 (火) 12 時 43 分 57 秒 (日本時間) |
composite number 合成数 | 3721193602869738557416991065533963911380088257020083568388539305820557057208415230073496092702949791582868627305798755620307281003289165120873291583559705407022855665974963943262381574008557871994794722311030554864418554936764022365310665793416070830888825967<259> |
prime factors 素因数 | 163455802927453242207861261075027951674167679<45> |
composite cofactor 合成数の残り | 22765747903861937263587718724147884002401819842495641870646868062919548715415478876360204646792281900233819997894875046034789615373095168011949467083414971017994074229583425277411025666760293668314923878483031782673<215> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.6 [configured with GMP 6.3.0, --enable-asm-redc] [ECM] Input number is 3721193602869738557416991065533963911380088257020083568388539305820557057208415230073496092702949791582868627305798755620307281003289165120873291583559705407022855665974963943262381574008557871994794722311030554864418554936764022365310665793416070830888825967 (259 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:3892959922 Step 1 took 50107ms Step 2 took 17508ms Run 2 out of 0: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:1742107911 Step 1 took 48858ms Step 2 took 17537ms Run 3 out of 0: ... Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:1737032679 Step 1 took 48485ms Step 2 took 17493ms Run 65 out of 0: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:2782726385 Step 1 took 49329ms Step 2 took 17454ms ** Factor found in step 2: 163455802927453242207861261075027951674167679 Found prime factor of 45 digits: 163455802927453242207861261075027951674167679 Composite cofactor 22765747903861937263587718724147884002401819842495641870646868062919548715415478876360204646792281900233819997894875046034789615373095168011949467083414971017994074229583425277411025666760293668314923878483031782673 has 215 digits |
execution environment 実行環境 | 2x Xeon E5-2698v4, 128GB DDR4, Ubuntu Server 24.04 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | October 27, 2015 09:00:00 UTC 2015 年 10 月 27 日 (火) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2950 | 600 | Dmitry Domanov | April 14, 2016 21:22:31 UTC 2016 年 4 月 15 日 (金) 6 時 22 分 31 秒 (日本時間) |
2350 | Ignacio Santos | July 24, 2023 11:28:35 UTC 2023 年 7 月 24 日 (月) 20 時 28 分 35 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | October 27, 2015 09:00:00 UTC 2015 年 10 月 27 日 (火) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2950 | 600 | Dmitry Domanov | April 20, 2016 16:57:00 UTC 2016 年 4 月 21 日 (木) 1 時 57 分 0 秒 (日本時間) |
2350 | Ignacio Santos | July 24, 2023 11:28:46 UTC 2023 年 7 月 24 日 (月) 20 時 28 分 46 秒 (日本時間) | |||
45 | 11e6 | 4000 | Thomas Kozlowski | October 15, 2024 05:15:08 UTC 2024 年 10 月 15 日 (火) 14 時 15 分 8 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | April 15, 2016 10:33:43 UTC 2016 年 4 月 15 日 (金) 19 時 33 分 43 秒 (日本時間) |
composite number 合成数 | 225558986613029663051142525920739777557547053710629944594336608184922097394675855639328827153596909097268445696715968614679692215534172931953414335722107994986846821514786305993206052845544620033675818097095541095196319605487579192936392174174616222487207529387<261> |
prime factors 素因数 | 787173163560701668540411679388549254929<39> |
composite cofactor 合成数の残り | 286543034054585148183087420672047061939562565415774930940551145311649108447758850435566359868453757044153758367087568536265168368133448568904711527926266441104303845870090162389177042956323229066419695608650744256556017403<222> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=4226410435 Step 1 took 38403ms ********** Factor found in step 1: 787173163560701668540411679388549254929 Found probable prime factor of 39 digits: 787173163560701668540411679388549254929 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | October 27, 2015 09:00:00 UTC 2015 年 10 月 27 日 (火) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2950 | 600 | Dmitry Domanov | April 14, 2016 21:22:42 UTC 2016 年 4 月 15 日 (金) 6 時 22 分 42 秒 (日本時間) |
2350 | Ignacio Santos | July 24, 2023 12:12:31 UTC 2023 年 7 月 24 日 (月) 21 時 12 分 31 秒 (日本時間) | |||
45 | 11e6 | 4001 | Thomas Kozlowski | October 15, 2024 06:45:08 UTC 2024 年 10 月 15 日 (火) 15 時 45 分 8 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | October 27, 2015 09:00:00 UTC 2015 年 10 月 27 日 (火) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2950 | 600 | Dmitry Domanov | April 14, 2016 21:22:54 UTC 2016 年 4 月 15 日 (金) 6 時 22 分 54 秒 (日本時間) |
2350 | Ignacio Santos | July 24, 2023 12:12:57 UTC 2023 年 7 月 24 日 (月) 21 時 12 分 57 秒 (日本時間) | |||
45 | 11e6 | 4000 | Thomas Kozlowski | October 15, 2024 08:39:30 UTC 2024 年 10 月 15 日 (火) 17 時 39 分 30 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | October 27, 2015 09:00:00 UTC 2015 年 10 月 27 日 (火) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2950 | 600 | Dmitry Domanov | April 14, 2016 21:23:30 UTC 2016 年 4 月 15 日 (金) 6 時 23 分 30 秒 (日本時間) |
2350 | Ignacio Santos | July 24, 2023 12:13:19 UTC 2023 年 7 月 24 日 (月) 21 時 13 分 19 秒 (日本時間) | |||
45 | 11e6 | 4002 | Thomas Kozlowski | October 15, 2024 10:21:37 UTC 2024 年 10 月 15 日 (火) 19 時 21 分 37 秒 (日本時間) |
name 名前 | Thomas Kozlowski |
---|---|
date 日付 | October 15, 2024 17:26:15 UTC 2024 年 10 月 16 日 (水) 2 時 26 分 15 秒 (日本時間) |
composite number 合成数 | 116995179650637128841529370969729712857763135442375750185158859749586925040642307474305114304609164462365350270884214410879883970793330150417644367083145406241974539630057492208697263523984311398205905750929393773930904908672241566286203287184395116230438703802789696884972730009521<282> |
prime factors 素因数 | 1348024986376914743687566947275977238384701<43> |
composite cofactor 合成数の残り | 86790067567727318646015669443065899862450206831760470551528196790282664968970687239089795564567603278027492671862683365047597686052123826859164798064503861901192159899222464557743393878824210778497747698945648494081637932681166504717170821<239> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.6 [configured with GMP 6.3.0, --enable-asm-redc] [ECM] Input number is 116995179650637128841529370969729712857763135442375750185158859749586925040642307474305114304609164462365350270884214410879883970793330150417644367083145406241974539630057492208697263523984311398205905750929393773930904908672241566286203287184395116230438703802789696884972730009521 (282 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:1741547881 Step 1 took 59631ms Step 2 took 19148ms Run 2 out of 0: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:1004245803 Step 1 took 55546ms Step 2 took 19433ms Run 3 out of 0: ... Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:3482277368 Step 1 took 55343ms Step 2 took 19087ms Run 97 out of 0: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:1323645377 Step 1 took 55335ms Step 2 took 22478ms ** Factor found in step 2: 1348024986376914743687566947275977238384701 Found prime factor of 43 digits: 1348024986376914743687566947275977238384701 Composite cofactor 86790067567727318646015669443065899862450206831760470551528196790282664968970687239089795564567603278027492671862683365047597686052123826859164798064503861901192159899222464557743393878824210778497747698945648494081637932681166504717170821 has 239 digits |
execution environment 実行環境 | 2x Xeon E5-2698v4, 128GB DDR4, Ubuntu Server 24.04 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | October 27, 2015 09:00:00 UTC 2015 年 10 月 27 日 (火) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2950 | 600 | Dmitry Domanov | April 13, 2016 12:38:59 UTC 2016 年 4 月 13 日 (水) 21 時 38 分 59 秒 (日本時間) |
2350 | Ignacio Santos | July 24, 2023 12:33:05 UTC 2023 年 7 月 24 日 (月) 21 時 33 分 5 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | October 27, 2015 09:00:00 UTC 2015 年 10 月 27 日 (火) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2950 | 600 | Dmitry Domanov | April 13, 2016 12:39:25 UTC 2016 年 4 月 13 日 (水) 21 時 39 分 25 秒 (日本時間) |
2350 | Ignacio Santos | July 24, 2023 14:08:44 UTC 2023 年 7 月 24 日 (月) 23 時 8 分 44 秒 (日本時間) | |||
45 | 11e6 | 4004 | Thomas Kozlowski | October 15, 2024 14:32:54 UTC 2024 年 10 月 15 日 (火) 23 時 32 分 54 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | July 24, 2023 14:09:08 UTC 2023 年 7 月 24 日 (月) 23 時 9 分 8 秒 (日本時間) |
composite number 合成数 | 688122722177447289405708253463522179450764165490866923908046367283367815263101631131097083316965174185952167769019384597487621053535009028122036719878045694405678712219003426798422247169186562025652247803720050292119040885127543413107093682682827238360700779671939872952909827<276> |
prime factors 素因数 | 237203784875513031622560637430931257<36> |
composite cofactor 合成数の残り | 2900976991318166024996658344497461709117829160880786671682217180059132068298094848349096905876912338015631748901176102336834869289527059765918796306503012866158793604426838006175952860902089887757494299655657341286445597942945437900385738011<241> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:753383547 Step 1 took 11563ms ********** Factor found in step 2: 237203784875513031622560637430931257 Found prime factor of 36 digits: 237203784875513031622560637430931257 Composite cofactor 2900976991318166024996658344497461709117829160880786671682217180059132068298094848349096905876912338015631748901176102336834869289527059765918796306503012866158793604426838006175952860902089887757494299655657341286445597942945437900385738011 has 241 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | October 27, 2015 09:00:00 UTC 2015 年 10 月 27 日 (火) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2950 | 600 | Dmitry Domanov | April 13, 2016 12:39:42 UTC 2016 年 4 月 13 日 (水) 21 時 39 分 42 秒 (日本時間) |
2350 | Ignacio Santos | July 26, 2023 06:49:06 UTC 2023 年 7 月 26 日 (水) 15 時 49 分 6 秒 (日本時間) | |||
45 | 11e6 | 4002 | Thomas Kozlowski | October 15, 2024 16:15:33 UTC 2024 年 10 月 16 日 (水) 1 時 15 分 33 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | October 27, 2015 09:00:00 UTC 2015 年 10 月 27 日 (火) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2950 | 600 | Dmitry Domanov | April 14, 2016 21:23:12 UTC 2016 年 4 月 15 日 (金) 6 時 23 分 12 秒 (日本時間) |
2350 | Ignacio Santos | August 26, 2023 15:49:58 UTC 2023 年 8 月 27 日 (日) 0 時 49 分 58 秒 (日本時間) | |||
45 | 11e6 | 4002 | Thomas Kozlowski | October 15, 2024 18:09:43 UTC 2024 年 10 月 16 日 (水) 3 時 9 分 43 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | October 28, 2015 18:20:15 UTC 2015 年 10 月 29 日 (木) 3 時 20 分 15 秒 (日本時間) |
composite number 合成数 | 589336212386193497257590879541578423002651622940177299451967811492843066089045771287890610286369479477968317083889116390601164892929204404569771015261519301816352671010601196116710193927934118849852531604889039746230494080797478194868087<237> |
prime factors 素因数 | 154023037784871944164636063110019723<36> 3826286124867469452005992483152678622831758912638892927724384383927932384568476803295363970613037619567436306067665075086091610708665631408676350041045511113715007395583331458521973783261833062699366469<202> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3497265807 Step 1 took 32232ms ********** Factor found in step 1: 154023037784871944164636063110019723 Found probable prime factor of 36 digits: 154023037784871944164636063110019723 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | October 27, 2015 09:00:00 UTC 2015 年 10 月 27 日 (火) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 1336 / 2336 | 136 | KTakahashi | October 28, 2015 09:09:26 UTC 2015 年 10 月 28 日 (水) 18 時 9 分 26 秒 (日本時間) |
1200 | Dmitry Domanov | October 28, 2015 15:32:00 UTC 2015 年 10 月 29 日 (木) 0 時 32 分 0 秒 (日本時間) |