name 名前 | Wataru Sakai |
---|---|
date 日付 | April 29, 2008 07:09:18 UTC 2008 年 4 月 29 日 (火) 16 時 9 分 18 秒 (日本時間) |
composite number 合成数 | 633865905488829556896400642079141824365163309702470659600118424221394547036781255642529888084966541508328054517246866001820594204902217663114060440336321276179921<162> |
prime factors 素因数 | 614269433286889380330990067993202633882411638463<48> 1031902079348278117543760295595941783929099708583219958186262256627756188911338017448835857763642355585371803328367<115> |
factorization results 素因数分解の結果 | Number: 11113_173 N=633865905488829556896400642079141824365163309702470659600118424221394547036781255642529888084966541508328054517246866001820594204902217663114060440336321276179921 ( 162 digits) SNFS difficulty: 173 digits. Divisors found: r1=614269433286889380330990067993202633882411638463 (pp48) r2=1031902079348278117543760295595941783929099708583219958186262256627756188911338017448835857763642355585371803328367 (pp115) Version: GGNFS-0.77.1-20060722-nocona Total time: 188.18 hours. Scaled time: 379.19 units (timescale=2.015). Factorization parameters were as follows: n: 633865905488829556896400642079141824365163309702470659600118424221394547036781255642529888084966541508328054517246866001820594204902217663114060440336321276179921 m: 10000000000000000000000000000000000 c5: 1000 c0: 17 skew: 0.44 type: snfsFactor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 10100001) Primes: RFBsize:501962, AFBsize:502426, largePrimes:6671675 encountered Relations: rels:7329088, finalFF:1319979 Max relations in full relation-set: 32 Initial matrix: 1004454 x 1319979 with sparse part having weight 79827464. Pruned matrix : 724483 x 729569 with weight 58377937. Total sieving time: 184.22 hours. Total relation processing time: 0.11 hours. Matrix solve time: 3.67 hours. Time per square root: 0.18 hours. Prototype def-par.txt line would be: snfs,173,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 188.18 hours. --------- CPU info (if available) ---------- |
name 名前 | Wataru Sakai |
---|---|
date 日付 | July 4, 2008 12:28:53 UTC 2008 年 7 月 4 日 (金) 21 時 28 分 53 秒 (日本時間) |
composite number 合成数 | 294040798693613020978721557691027645861505411458095217132747791724995390273507246425889611518903150754520207364042759151086227684121488178193073709170363929095423<162> |
prime factors 素因数 | 7316041903847007779820595674552294686019937425938604329901433463<64> 40191240367144016302815181110516174673310246906156873550846174801629866981184855893817082957652921<98> |
factorization results 素因数分解の結果 | Number: 11113_174 N=294040798693613020978721557691027645861505411458095217132747791724995390273507246425889611518903150754520207364042759151086227684121488178193073709170363929095423 ( 162 digits) SNFS difficulty: 175 digits. Divisors found: r1=7316041903847007779820595674552294686019937425938604329901433463 (pp64) r2=40191240367144016302815181110516174673310246906156873550846174801629866981184855893817082957652921 (pp98) Version: GGNFS-0.77.1-20060722-nocona Total time: 194.34 hours. Scaled time: 352.33 units (timescale=1.813). Factorization parameters were as follows: n: 294040798693613020978721557691027645861505411458095217132747791724995390273507246425889611518903150754520207364042759151086227684121488178193073709170363929095423 m: 100000000000000000000000000000000000 c5: 1 c0: 170 skew: 2.79 type: snfs Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 10100001) Primes: RFBsize:501962, AFBsize:502431, largePrimes:6427815 encountered Relations: rels:6885252, finalFF:1141474 Max relations in full relation-set: 32 Initial matrix: 1004457 x 1141474 with sparse part having weight 68636874. Pruned matrix : 885866 x 890952 with weight 51307737. Total sieving time: 187.27 hours. Total relation processing time: 0.10 hours. Matrix solve time: 6.75 hours. Time per square root: 0.22 hours. Prototype def-par.txt line would be: snfs,175,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 194.34 hours. --------- CPU info (if available) ---------- |
name 名前 | suberi |
---|---|
date 日付 | April 30, 2007 07:14:40 UTC 2007 年 4 月 30 日 (月) 16 時 14 分 40 秒 (日本時間) |
composite number 合成数 | 67693057680260064374474053316529172675201274394345224577395203297962141826802647514115798075335704075315438645817601122073256990628353242030163889411002801004389<161> |
prime factors 素因数 | 43731936268508244866927446133249317<35> |
composite cofactor 合成数の残り | 1547908998692254006817668407385442013503701471074265130054570365447559543406277463390309132007591482864040879451770914663198017<127> |
factorization results 素因数分解の結果 | Input number is 67693057680260064374474053316529172675201274394345224577395203297962141826802647514115798075335704075315438645817601122073256990628353242030163889411002801004389 (161 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3554299871 Step 1 took 71885ms Step 2 took 30311ms ********** Factor found in step 2: 43731936268508244866927446133249317 Found probable prime factor of 35 digits: 43731936268508244866927446133249317 Composite cofactor 1547908998692254006817668407385442013503701471074265130054570365447559543406277463390309132007591482864040879451770914663198017 has 127 digits |
software ソフトウェア | GMP-ECM 6.1.2 |
execution environment 実行環境 | Sempron 3400+ 1.80GHz, Windows Vista |
name 名前 | Justin Card |
---|---|
date 日付 | October 9, 2008 04:09:20 UTC 2008 年 10 月 9 日 (木) 13 時 9 分 20 秒 (日本時間) |
composite number 合成数 | 1547908998692254006817668407385442013503701471074265130054570365447559543406277463390309132007591482864040879451770914663198017<127> |
prime factors 素因数 | 710124167792898446935804545868140581401807318057<48> 2179772311514524087931982060767986518870830842019718570624060123823472397032281<79> |
factorization results 素因数分解の結果 | Msieve v. 1.38 Wed Oct 8 17:36:45 2008 random seeds: 52413acf cf6c524a factoring 1547908998692254006817668407385442013503701471074265130054570365447559543406277463390309132007591482864040879451770914663198017 (127 digits) no P-1/P+1/ECM available, skipping commencing number field sieve (127-digit input) R0: -100000000000000000000000000000 R1: 1 A0: 17 A1: 0 A2: 0 A3: 0 A4: 0 A5: 0 A6: 100 size score = 8.015950e-09, Murphy alpha = -1.265032, combined = 1.150603e-08 commencing relation filtering commencing duplicate removal, pass 1 error -15 reading relation 30050 error -11 reading relation 57741 error -15 reading relation 3597789 error -15 reading relation 5167541 error -11 reading relation 9339118 found 958927 hash collisions in 10721948 relations commencing duplicate removal, pass 2 found 835100 duplicates and 9886848 unique relations memory use: 50.6 MB reading rational ideals above 4915200 reading algebraic ideals above 4915200 commencing singleton removal, pass 1 relations with 0 large ideals: 137456 relations with 1 large ideals: 871545 relations with 2 large ideals: 2638586 relations with 3 large ideals: 3621314 relations with 4 large ideals: 1942464 relations with 5 large ideals: 82128 relations with 6 large ideals: 1244 relations with 7+ large ideals: 592111 9886848 relations and about 10243474 large ideals commencing singleton removal, pass 2 found 3672509 singletons current dataset: 6214339 relations and about 5185675 large ideals commencing singleton removal, pass 3 found 1055209 singletons current dataset: 5159130 relations and about 4059385 large ideals commencing singleton removal, pass 4 found 268425 singletons current dataset: 4890705 relations and about 3784822 large ideals commencing singleton removal, final pass memory use: 85.6 MB commencing in-memory singleton removal begin with 4890705 relations and 3998829 unique ideals reduce to 4317250 relations and 3413986 ideals in 15 passes max relations containing the same ideal: 55 reading rational ideals above 720000 reading algebraic ideals above 720000 commencing singleton removal, final pass keeping 3681423 ideals with weight <= 20, new excess is 429104 memory use: 127.8 MB commencing in-memory singleton removal begin with 4318889 relations and 3681423 unique ideals reduce to 4317135 relations and 3669929 ideals in 5 passes max relations containing the same ideal: 20 removing 561927 relations and 487204 ideals in 74723 cliques commencing in-memory singleton removal begin with 3755208 relations and 3669929 unique ideals reduce to 3697378 relations and 3123500 ideals in 8 passes max relations containing the same ideal: 20 removing 423906 relations and 349183 ideals in 74723 cliques commencing in-memory singleton removal begin with 3273472 relations and 3123500 unique ideals reduce to 3236125 relations and 2736235 ideals in 7 passes max relations containing the same ideal: 20 relations with 0 large ideals: 38894 relations with 1 large ideals: 235104 relations with 2 large ideals: 678797 relations with 3 large ideals: 1034849 relations with 4 large ideals: 822119 relations with 5 large ideals: 323075 relations with 6 large ideals: 64340 relations with 7+ large ideals: 38947 commencing 2-way merge reduce to 2013829 relation sets and 1513939 unique ideals commencing full merge memory use: 138.3 MB found 969439 cycles, need 902139 weight of 902139 cycles is about 63203125 (70.06/cycle) distribution of cycle lengths: 1 relations: 102303 2 relations: 96867 3 relations: 98547 4 relations: 92829 5 relations: 85292 6 relations: 77434 7 relations: 67639 8 relations: 58867 9 relations: 51014 10+ relations: 171347 heaviest cycle: 18 relations commencing cycle optimization start with 5307933 relations pruned 150799 relations memory use: 173.8 MB distribution of cycle lengths: 1 relations: 102303 2 relations: 99276 3 relations: 102677 4 relations: 96095 5 relations: 88079 6 relations: 79370 7 relations: 68613 8 relations: 59191 9 relations: 51176 10+ relations: 155359 heaviest cycle: 18 relations elapsed time 00:14:12 justin@riall:~/factoring_projects/11113_176$ ~/ggnfs/msieve -nc2 -nf 11113_176.fb -s 11113_176.dat -v -i 11113_176.ini Msieve v. 1.38 Wed Oct 8 18:53:11 2008 random seeds: 6da1b961 3bdc077b factoring 1547908998692254006817668407385442013503701471074265130054570365447559543406277463390309132007591482864040879451770914663198017 (127 digits) no P-1/P+1/ECM available, skipping commencing number field sieve (127-digit input) R0: -100000000000000000000000000000 R1: 1 A0: 17 A1: 0 A2: 0 A3: 0 A4: 0 A5: 0 A6: 100 size score = 8.015950e-09, Murphy alpha = -1.265032, combined = 1.150603e-08 commencing linear algebra read 902139 cycles cycles contain 2879140 unique relations read 2879140 relations using 32 quadratic characters above 134217324 building initial matrix memory use: 356.1 MB read 902139 cycles matrix is 901831 x 902139 (268.9 MB) with weight 86502896 (95.89/col) sparse part has weight 60564938 (67.13/col) filtering completed in 3 passes matrix is 895277 x 895477 (267.8 MB) with weight 86093846 (96.14/col) sparse part has weight 60354117 (67.40/col) read 895477 cycles matrix is 895277 x 895477 (267.8 MB) with weight 86093846 (96.14/col) sparse part has weight 60354117 (67.40/col) saving the first 48 matrix rows for later matrix is 895229 x 895477 (258.7 MB) with weight 67221065 (75.07/col) sparse part has weight 58856479 (65.73/col) matrix includes 64 packed rows using block size 10922 for processor cache size 256 kB commencing Lanczos iteration memory use: 247.2 MB linear algebra completed 894740 of 895477 dimensions (99.9%, ETA 0h 0m) lanczos halted after 14159 iterations (dim = 895225) recovered 50 nontrivial dependencies elapsed time 03:47:21 justin@riall:~/factoring_projects/11113_176$ ~/ggnfs/msieve -nc3 -nf 11113_176.fb -s 11113_176.dat -v -i 11113_176.ini Msieve v. 1.38 Wed Oct 8 23:20:44 2008 random seeds: ddd9cea2 c865422e factoring 1547908998692254006817668407385442013503701471074265130054570365447559543406277463390309132007591482864040879451770914663198017 (127 digits) no P-1/P+1/ECM available, skipping commencing number field sieve (127-digit input) R0: -100000000000000000000000000000 R1: 1 A0: 17 A1: 0 A2: 0 A3: 0 A4: 0 A5: 0 A6: 100 size score = 8.015950e-09, Murphy alpha = -1.265032, combined = 1.150603e-08 commencing square root phase reading relations for dependency 1 read 447370 cycles cycles contain 1763729 unique relations read 1763729 relations multiplying 1435668 relations multiply complete, coefficients have about 41.54 million bits initial square root is modulo 919693 reading relations for dependency 2 read 447432 cycles cycles contain 1761594 unique relations read 1761594 relations multiplying 1433372 relations multiply complete, coefficients have about 41.47 million bits initial square root is modulo 899161 prp48 factor: 710124167792898446935804545868140581401807318057 prp79 factor: 2179772311514524087931982060767986518870830842019718570624060123823472397032281 elapsed time 00:26:34 Sieve time: 51.75 hours Filtering: 0.25 hours Block Lanczos: 3.78 hours Square root: 0.5 hours Had to manually restart the filtering/linalg/sqrt, so all I had were the newest run times and the time spent sieving |
software ソフトウェア | msieve 1.38, ggnfs |
execution environment 実行環境 | Athlon 64 X2 3600, 3 GB RAM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Justin Card | September 24, 2008 01:54:43 UTC 2008 年 9 月 24 日 (水) 10 時 54 分 43 秒 (日本時間) | |
25 | 5e4 | 214 | Justin Card | September 24, 2008 01:56:37 UTC 2008 年 9 月 24 日 (水) 10 時 56 分 37 秒 (日本時間) |
name 名前 | suberi |
---|---|
date 日付 | May 19, 2007 10:06:16 UTC 2007 年 5 月 19 日 (土) 19 時 6 分 16 秒 (日本時間) |
composite number 合成数 | 3977600953998260770320210578419390064769131876240986049018656139170844673200319498989796345615376057172486277309982985080134888904647896152753<142> |
prime factors 素因数 | 297082579660968821734851624509405183<36> |
composite cofactor 合成数の残り | 13388873082149435308539000672775350680618901926900711188810262897346981830451724894509157440592356995091791<107> |
factorization results 素因数分解の結果 | Input number is 3977600953998260770320210578419390064769131876240986049018656139170844673200319498989796345615376057172486277309982985080134888904647896152753 (142 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=3577380463 Step 1 took 227094ms Step 2 took 134281ms ********** Factor found in step 2: 297082579660968821734851624509405183 Found probable prime factor of 36 digits: 297082579660968821734851624509405183 Composite cofactor 13388873082149435308539000672775350680618901926900711188810262897346981830451724894509157440592356995091791 has 107 digits |
software ソフトウェア | GMP-ECM 6.1.2 |
execution environment 実行環境 | Pentium 4 2.26GHz, Windows XP |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | May 22, 2007 02:45:38 UTC 2007 年 5 月 22 日 (火) 11 時 45 分 38 秒 (日本時間) |
composite number 合成数 | 13388873082149435308539000672775350680618901926900711188810262897346981830451724894509157440592356995091791<107> |
prime factors 素因数 | 6351389277783512750660674500861871<34> 2108022748500441599748310376090833021700915012375759080181462532721767521<73> |
factorization results 素因数分解の結果 | Number: 11113_178 N=13388873082149435308539000672775350680618901926900711188810262897346981830451724894509157440592356995091791 ( 107 digits) Divisors found: r1=6351389277783512750660674500861871 (pp34) r2=2108022748500441599748310376090833021700915012375759080181462532721767521 (pp73) Version: GGNFS-0.77.1-20050930-nocona Total time: 10.91 hours. Scaled time: 10.20 units (timescale=0.935). Factorization parameters were as follows: name: 11113_178 n: 13388873082149435308539000672775350680618901926900711188810262897346981830451724894509157440592356995091791 skew: 24447.50 # norm 1.03e+15 c5: 11040 c4: 634721972 c3: -57395841951390 c2: -297909801429328773 c1: 7360634883314650193640 c0: 44733769501169737130602075 # alpha -6.20 Y1: 59180280269 Y0: -261068129944292921856 # Murphy_E 1.60e-09 # M 1848511566881534751075889082385374038136846422142820742013036141739596195580891966762660131878038833277554 type: gnfs rlim: 1800000 alim: 1800000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 60000 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [900000, 1440001) Primes: RFBsize:135072, AFBsize:135129, largePrimes:4628918 encountered Relations: rels:4758229, finalFF:429445 Max relations in full relation-set: 28 Initial matrix: 270283 x 429445 with sparse part having weight 42261017. Pruned matrix : 196380 x 197795 with weight 17946254. Total sieving time: 10.57 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.19 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: gnfs,106,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,26,26,49,49,2.6,2.6,60000 total time: 10.91 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407676) Calibrating delay using timer specific routine.. 4810.30 BogoMIPS (lpj=2405150) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405148) Total of 4 processors activated (19246.21 BogoMIPS). |
execution environment 実行環境 | Core 2 Quad Q6600 |
name 名前 | Justin Card |
---|---|
date 日付 | October 29, 2008 11:19:14 UTC 2008 年 10 月 29 日 (水) 20 時 19 分 14 秒 (日本時間) |
composite number 合成数 | 2375078684637490748471009799403460903791906373419845536550774278476483193823770338103403225837841896931094354587473006789445556151466577<136> |
prime factors 素因数 | 64359895320324138046847817077342166028615808217898933063<56> 36903084954015880064848993395715905165599046095682487205693219081526100375034279<80> |
factorization results 素因数分解の結果 | Tue Oct 28 18:11:06 2008 Msieve v. 1.38 Tue Oct 28 18:11:06 2008 random seeds: d81d15f7 8c4cc99f Tue Oct 28 18:11:06 2008 factoring 2375078684637490748471009799403460903791906373419845536550774278476483193823770338103403225837841896931094354587473006789445556151466577 (136 digits) Tue Oct 28 18:11:07 2008 no P-1/P+1/ECM available, skipping Tue Oct 28 18:11:07 2008 commencing number field sieve (136-digit input) Tue Oct 28 18:11:07 2008 R0: -1000000000000000000000000000000000000 Tue Oct 28 18:11:07 2008 R1: 1 Tue Oct 28 18:11:07 2008 A0: 170 Tue Oct 28 18:11:07 2008 A1: 0 Tue Oct 28 18:11:07 2008 A2: 0 Tue Oct 28 18:11:07 2008 A3: 0 Tue Oct 28 18:11:07 2008 A4: 0 Tue Oct 28 18:11:07 2008 A5: 1 Tue Oct 28 18:11:07 2008 size score = 2.613876e-12, Murphy alpha = 0.851423, combined = 1.968017e-12 Tue Oct 28 18:11:07 2008 Tue Oct 28 18:11:07 2008 commencing relation filtering Tue Oct 28 18:11:07 2008 commencing duplicate removal, pass 1 Tue Oct 28 18:14:06 2008 error -9 reading relation 16302560 Tue Oct 28 18:14:58 2008 error -15 reading relation 21041764 Tue Oct 28 18:15:19 2008 found 1848518 hash collisions in 22933637 relations Tue Oct 28 18:16:47 2008 added 721562 free relations Tue Oct 28 18:16:47 2008 commencing duplicate removal, pass 2 Tue Oct 28 18:17:06 2008 found 1107318 duplicates and 22547881 unique relations Tue Oct 28 18:17:06 2008 memory use: 94.6 MB Tue Oct 28 18:17:06 2008 reading rational ideals above 18415616 Tue Oct 28 18:17:06 2008 reading algebraic ideals above 18415616 Tue Oct 28 18:17:06 2008 commencing singleton removal, pass 1 Tue Oct 28 18:21:41 2008 relations with 0 large ideals: 922249 Tue Oct 28 18:21:41 2008 relations with 1 large ideals: 4236483 Tue Oct 28 18:21:41 2008 relations with 2 large ideals: 7900596 Tue Oct 28 18:21:41 2008 relations with 3 large ideals: 6655370 Tue Oct 28 18:21:41 2008 relations with 4 large ideals: 2152524 Tue Oct 28 18:21:41 2008 relations with 5 large ideals: 17717 Tue Oct 28 18:21:41 2008 relations with 6 large ideals: 662941 Tue Oct 28 18:21:41 2008 relations with 7+ large ideals: 1 Tue Oct 28 18:21:41 2008 22547881 relations and about 18723100 large ideals Tue Oct 28 18:21:41 2008 commencing singleton removal, pass 2 Tue Oct 28 18:26:16 2008 found 6186686 singletons Tue Oct 28 18:26:16 2008 current dataset: 16361195 relations and about 11312019 large ideals Tue Oct 28 18:26:16 2008 commencing singleton removal, pass 3 Tue Oct 28 18:29:28 2008 found 1867860 singletons Tue Oct 28 18:29:28 2008 current dataset: 14493335 relations and about 9370319 large ideals Tue Oct 28 18:29:28 2008 commencing singleton removal, pass 4 Tue Oct 28 18:32:18 2008 found 423643 singletons Tue Oct 28 18:32:18 2008 current dataset: 14069692 relations and about 8941622 large ideals Tue Oct 28 18:32:18 2008 commencing singleton removal, final pass Tue Oct 28 18:35:28 2008 memory use: 218.4 MB Tue Oct 28 18:35:28 2008 commencing in-memory singleton removal Tue Oct 28 18:35:30 2008 begin with 14069692 relations and 9950674 unique ideals Tue Oct 28 18:35:54 2008 reduce to 12261335 relations and 8095900 ideals in 14 passes Tue Oct 28 18:35:54 2008 max relations containing the same ideal: 64 Tue Oct 28 18:35:57 2008 reading rational ideals above 720000 Tue Oct 28 18:35:57 2008 reading algebraic ideals above 720000 Tue Oct 28 18:35:57 2008 commencing singleton removal, final pass Tue Oct 28 18:39:45 2008 keeping 9433782 ideals with weight <= 20, new excess is 1020107 Tue Oct 28 18:39:55 2008 memory use: 348.3 MB Tue Oct 28 18:39:56 2008 commencing in-memory singleton removal Tue Oct 28 18:39:58 2008 begin with 12262644 relations and 9433782 unique ideals Tue Oct 28 18:40:25 2008 reduce to 12250914 relations and 9415970 ideals in 11 passes Tue Oct 28 18:40:25 2008 max relations containing the same ideal: 20 Tue Oct 28 18:40:37 2008 removing 2080308 relations and 1680308 ideals in 400000 cliques Tue Oct 28 18:40:38 2008 commencing in-memory singleton removal Tue Oct 28 18:40:39 2008 begin with 10170606 relations and 9415970 unique ideals Tue Oct 28 18:40:55 2008 reduce to 9954338 relations and 7510988 ideals in 8 passes Tue Oct 28 18:40:55 2008 max relations containing the same ideal: 20 Tue Oct 28 18:41:05 2008 removing 1568488 relations and 1168488 ideals in 400000 cliques Tue Oct 28 18:41:05 2008 commencing in-memory singleton removal Tue Oct 28 18:41:07 2008 begin with 8385850 relations and 7510988 unique ideals Tue Oct 28 18:41:18 2008 reduce to 8228753 relations and 6179332 ideals in 7 passes Tue Oct 28 18:41:18 2008 max relations containing the same ideal: 20 Tue Oct 28 18:41:25 2008 removing 1410938 relations and 1010938 ideals in 400000 cliques Tue Oct 28 18:41:26 2008 commencing in-memory singleton removal Tue Oct 28 18:41:27 2008 begin with 6817815 relations and 6179332 unique ideals Tue Oct 28 18:41:36 2008 reduce to 6663133 relations and 5006972 ideals in 7 passes Tue Oct 28 18:41:36 2008 max relations containing the same ideal: 19 Tue Oct 28 18:41:42 2008 removing 1327964 relations and 927964 ideals in 400000 cliques Tue Oct 28 18:41:42 2008 commencing in-memory singleton removal Tue Oct 28 18:41:43 2008 begin with 5335169 relations and 5006972 unique ideals Tue Oct 28 18:41:51 2008 reduce to 5164439 relations and 3899279 ideals in 9 passes Tue Oct 28 18:41:51 2008 max relations containing the same ideal: 19 Tue Oct 28 18:41:56 2008 removing 377053 relations and 295218 ideals in 81835 cliques Tue Oct 28 18:41:56 2008 commencing in-memory singleton removal Tue Oct 28 18:41:57 2008 begin with 4787386 relations and 3899279 unique ideals Tue Oct 28 18:42:02 2008 reduce to 4769762 relations and 3586176 ideals in 6 passes Tue Oct 28 18:42:02 2008 max relations containing the same ideal: 18 Tue Oct 28 18:42:07 2008 relations with 0 large ideals: 142358 Tue Oct 28 18:42:07 2008 relations with 1 large ideals: 686352 Tue Oct 28 18:42:07 2008 relations with 2 large ideals: 1396880 Tue Oct 28 18:42:07 2008 relations with 3 large ideals: 1417942 Tue Oct 28 18:42:07 2008 relations with 4 large ideals: 792619 Tue Oct 28 18:42:07 2008 relations with 5 large ideals: 262925 Tue Oct 28 18:42:07 2008 relations with 6 large ideals: 65802 Tue Oct 28 18:42:07 2008 relations with 7+ large ideals: 4884 Tue Oct 28 18:42:07 2008 commencing 2-way merge Tue Oct 28 18:42:12 2008 reduce to 3246628 relation sets and 2063042 unique ideals Tue Oct 28 18:42:12 2008 commencing full merge Tue Oct 28 18:42:58 2008 memory use: 188.1 MB Tue Oct 28 18:42:59 2008 found 1609067 cycles, need 1449242 Tue Oct 28 18:43:00 2008 weight of 1449242 cycles is about 101702624 (70.18/cycle) Tue Oct 28 18:43:00 2008 distribution of cycle lengths: Tue Oct 28 18:43:00 2008 1 relations: 183967 Tue Oct 28 18:43:00 2008 2 relations: 144810 Tue Oct 28 18:43:00 2008 3 relations: 147743 Tue Oct 28 18:43:00 2008 4 relations: 142868 Tue Oct 28 18:43:00 2008 5 relations: 138666 Tue Oct 28 18:43:00 2008 6 relations: 127732 Tue Oct 28 18:43:00 2008 7 relations: 116050 Tue Oct 28 18:43:00 2008 8 relations: 102946 Tue Oct 28 18:43:00 2008 9 relations: 90027 Tue Oct 28 18:43:00 2008 10+ relations: 254433 Tue Oct 28 18:43:00 2008 heaviest cycle: 17 relations Tue Oct 28 18:43:00 2008 commencing cycle optimization Tue Oct 28 18:43:04 2008 start with 8311173 relations Tue Oct 28 18:43:28 2008 pruned 344021 relations Tue Oct 28 18:43:28 2008 memory use: 259.1 MB Tue Oct 28 18:43:28 2008 distribution of cycle lengths: Tue Oct 28 18:43:28 2008 1 relations: 183967 Tue Oct 28 18:43:28 2008 2 relations: 150111 Tue Oct 28 18:43:28 2008 3 relations: 156291 Tue Oct 28 18:43:28 2008 4 relations: 150605 Tue Oct 28 18:43:28 2008 5 relations: 147049 Tue Oct 28 18:43:28 2008 6 relations: 134232 Tue Oct 28 18:43:28 2008 7 relations: 121130 Tue Oct 28 18:43:28 2008 8 relations: 105413 Tue Oct 28 18:43:28 2008 9 relations: 89711 Tue Oct 28 18:43:28 2008 10+ relations: 210733 Tue Oct 28 18:43:28 2008 heaviest cycle: 16 relations Tue Oct 28 18:43:30 2008 elapsed time 00:32:24 Tue Oct 28 18:49:39 2008 commencing linear algebra Tue Oct 28 18:49:39 2008 read 1449242 cycles Tue Oct 28 18:49:45 2008 cycles contain 4205356 unique relations Tue Oct 28 18:50:50 2008 read 4205356 relations Tue Oct 28 18:51:02 2008 using 32 quadratic characters above 268434108 Tue Oct 28 18:52:08 2008 building initial matrix Tue Oct 28 18:53:21 2008 memory use: 535.9 MB Tue Oct 28 18:53:22 2008 read 1449242 cycles Tue Oct 28 18:53:24 2008 matrix is 1448913 x 1449242 (426.1 MB) with weight 135761514 (93.68/col) Tue Oct 28 18:53:24 2008 sparse part has weight 95768962 (66.08/col) Tue Oct 28 18:54:31 2008 filtering completed in 3 passes Tue Oct 28 18:54:31 2008 matrix is 1445023 x 1445223 (425.4 MB) with weight 135504932 (93.76/col) Tue Oct 28 18:54:31 2008 sparse part has weight 95625280 (66.17/col) Tue Oct 28 18:54:54 2008 read 1445223 cycles Tue Oct 28 18:54:56 2008 matrix is 1445023 x 1445223 (425.4 MB) with weight 135504932 (93.76/col) Tue Oct 28 18:54:56 2008 sparse part has weight 95625280 (66.17/col) Tue Oct 28 18:54:56 2008 saving the first 48 matrix rows for later Tue Oct 28 18:54:57 2008 matrix is 1444975 x 1445223 (407.0 MB) with weight 103303242 (71.48/col) Tue Oct 28 18:54:57 2008 sparse part has weight 92233447 (63.82/col) Tue Oct 28 18:54:57 2008 matrix includes 64 packed rows Tue Oct 28 18:54:57 2008 using block size 10922 for processor cache size 256 kB Tue Oct 28 18:55:08 2008 commencing Lanczos iteration (2 threads) Tue Oct 28 18:55:08 2008 memory use: 401.3 MB Wed Oct 29 05:44:13 2008 lanczos halted after 22851 iterations (dim = 1444972) Wed Oct 29 05:44:18 2008 recovered 49 nontrivial dependencies Wed Oct 29 05:44:18 2008 elapsed time 10:54:41 Wed Oct 29 06:58:26 2008 commencing square root phase Wed Oct 29 06:58:26 2008 reading relations for dependency 1 Wed Oct 29 06:58:26 2008 read 722524 cycles Wed Oct 29 06:58:28 2008 cycles contain 2614791 unique relations Wed Oct 29 06:59:15 2008 read 2614791 relations Wed Oct 29 06:59:34 2008 multiplying 2100892 relations Wed Oct 29 07:03:48 2008 multiply complete, coefficients have about 49.51 million bits Wed Oct 29 07:03:49 2008 initial square root is modulo 12816931 Wed Oct 29 07:10:19 2008 prp56 factor: 64359895320324138046847817077342166028615808217898933063 Wed Oct 29 07:10:19 2008 prp80 factor: 36903084954015880064848993395715905165599046095682487205693219081526100375034279 Wed Oct 29 07:10:19 2008 elapsed time 00:11:55 |
software ソフトウェア | GGNFS for sieving, msieve for linear algebra |
execution environment 実行環境 | Athlon64 x2 2800, 3 GB ram, Linux |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Justin Card | September 24, 2008 02:32:10 UTC 2008 年 9 月 24 日 (水) 11 時 32 分 10 秒 (日本時間) | |
25 | 5e4 | 214 | Justin Card | October 20, 2008 01:16:54 UTC 2008 年 10 月 20 日 (月) 10 時 16 分 54 秒 (日本時間) | |
30 | 25e4 | 430 | Justin Card | October 20, 2008 01:41:41 UTC 2008 年 10 月 20 日 (月) 10 時 41 分 41 秒 (日本時間) | |
35 | 1e6 | 690 / 823 | 15 | Justin Card | September 24, 2008 02:16:31 UTC 2008 年 9 月 24 日 (水) 11 時 16 分 31 秒 (日本時間) |
75 | Justin Card | September 24, 2008 02:31:26 UTC 2008 年 9 月 24 日 (水) 11 時 31 分 26 秒 (日本時間) | |||
600 | Justin Card | October 20, 2008 02:43:23 UTC 2008 年 10 月 20 日 (月) 11 時 43 分 23 秒 (日本時間) |
name 名前 | Justin Card |
---|---|
date 日付 | September 30, 2008 01:02:00 UTC 2008 年 9 月 30 日 (火) 10 時 2 分 0 秒 (日本時間) |
composite number 合成数 | 29133892481734837183602135697334988973490703807163310757974571749978078052900604926957726939876253751243046373693076558774153<125> |
prime factors 素因数 | 7385184232314750943068830580286922326162032853<46> 3944910724671705496959005657530034323166977886486088453196723251979037296752101<79> |
factorization results 素因数分解の結果 | Number: 11113_181 N=29133892481734837183602135697334988973490703807163310757974571749978078052900604926957726939876253751243046373693076558774153 ( 125 digits) Divisors found: r1=7385184232314750943068830580286922326162032853 r2=3944910724671705496959005657530034323166977886486088453196723251979037296752101 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.096). Factorization parameters were as follows: name: 11113_181 n: 29133892481734837183602135697334988973490703807163310757974571749978078052900604926957726939876253751243046373693076558774153 skew: 59306.55 # norm 1.20e+17 c5: 81240 c4: -26753789998 c3: 2671095956360131 c2: 181566292555311624899 c1: -2830291977228100294497705 c0: 6437501435799513345248142525 # alpha -5.47 Y1: 34134483791353 Y0: -814567199780845767882556 # Murphy_E 1.44e-10 # M 11523274213504150547440140399716556813368765874185185755558534481244351005830591973008858940401959649125501491092593456176972 type: gnfs rlim: 8000000 alim: 8000000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 8000000/8000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved algebraic special-q in [4000000, 8300001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 977398 x 977646 Total sieving time: 39.40 hours. Total relation processing time: 1.00 hours. Matrix solve time: 4.00 hours. Time per square root: 0.16 hours. total time: 44.73 hours. --------- CPU info (if available) ---------- [ 27.172216] Memory: 3055428k/3111872k available (2523k kernel code, 56056k reserved, 1328k data, 328k init) [ 27.318604] Calibrating delay using timer specific routine.. 3982.80 BogoMIPS (lpj=19914039) [ 28.066173] Calibrating delay using timer specific routine.. 3979.59 BogoMIPS (lpj=19897994) |
software ソフトウェア | ggnfs/msieve 1.38 |
execution environment 実行環境 | Athlon 64x2 3800, 3GB Ram, Ubuntu linux |
name 名前 | Justin Card |
---|---|
date 日付 | November 9, 2008 00:00:35 UTC 2008 年 11 月 9 日 (日) 9 時 0 分 35 秒 (日本時間) |
composite number 合成数 | 40830562649504799217415961810238391197943215134935430982426238285068266711842023010787621084797361781299076622938184082903429550547622347219167653925734308110219683957419<170> |
prime factors 素因数 | 168065510093738558138055116999214544462198890554682324748107419<63> 242944329426849970997180630477373752133478580556976677728940298344363173643729480362319651902123233317150001<108> |
factorization results 素因数分解の結果 | Fri Nov 7 17:54:24 2008 Msieve v. 1.38 Fri Nov 7 17:54:24 2008 random seeds: e74a4bc0 27e1dda1 Fri Nov 7 17:54:24 2008 factoring 40830562649504799217415961810238391197943215134935430982426238285068266711842023010787621084797361781299076622938184082903429550547622347219167653925734308110219683957419 (170 digits) Fri Nov 7 17:54:26 2008 no P-1/P+1/ECM available, skipping Fri Nov 7 17:54:26 2008 commencing number field sieve (170-digit input) Fri Nov 7 17:54:26 2008 R0: -2000000000000000000000000000000000000 Fri Nov 7 17:54:26 2008 R1: 1 Fri Nov 7 17:54:26 2008 A0: 68 Fri Nov 7 17:54:26 2008 A1: 0 Fri Nov 7 17:54:26 2008 A2: 0 Fri Nov 7 17:54:26 2008 A3: 0 Fri Nov 7 17:54:26 2008 A4: 0 Fri Nov 7 17:54:26 2008 A5: 125 Fri Nov 7 17:54:26 2008 size score = 8.925208e-13, Murphy alpha = 0.098689, combined = 8.636379e-13 Fri Nov 7 17:54:26 2008 Fri Nov 7 17:54:26 2008 commencing relation filtering Fri Nov 7 17:54:26 2008 commencing duplicate removal, pass 1 Fri Nov 7 17:59:19 2008 found 2177390 hash collisions in 23154021 relations Fri Nov 7 18:00:40 2008 added 3465 free relations Fri Nov 7 18:00:40 2008 commencing duplicate removal, pass 2 Fri Nov 7 18:00:57 2008 found 1506103 duplicates and 21651383 unique relations Fri Nov 7 18:00:57 2008 memory use: 94.6 MB Fri Nov 7 18:00:57 2008 reading rational ideals above 10944512 Fri Nov 7 18:00:57 2008 reading algebraic ideals above 10944512 Fri Nov 7 18:00:57 2008 commencing singleton removal, pass 1 Fri Nov 7 18:05:37 2008 relations with 0 large ideals: 392628 Fri Nov 7 18:05:37 2008 relations with 1 large ideals: 2450350 Fri Nov 7 18:05:37 2008 relations with 2 large ideals: 6519546 Fri Nov 7 18:05:37 2008 relations with 3 large ideals: 7895436 Fri Nov 7 18:05:37 2008 relations with 4 large ideals: 3690112 Fri Nov 7 18:05:37 2008 relations with 5 large ideals: 19077 Fri Nov 7 18:05:37 2008 relations with 6 large ideals: 684234 Fri Nov 7 18:05:37 2008 relations with 7+ large ideals: 0 Fri Nov 7 18:05:37 2008 21651383 relations and about 19194176 large ideals Fri Nov 7 18:05:37 2008 commencing singleton removal, pass 2 Fri Nov 7 18:10:16 2008 found 6735403 singletons Fri Nov 7 18:10:16 2008 current dataset: 14915980 relations and about 11124611 large ideals Fri Nov 7 18:10:16 2008 commencing singleton removal, pass 3 Fri Nov 7 18:13:22 2008 found 1602906 singletons Fri Nov 7 18:13:22 2008 current dataset: 13313074 relations and about 9447761 large ideals Fri Nov 7 18:13:22 2008 commencing singleton removal, pass 4 Fri Nov 7 18:16:08 2008 found 370857 singletons Fri Nov 7 18:16:08 2008 current dataset: 12942217 relations and about 9072150 large ideals Fri Nov 7 18:16:08 2008 commencing singleton removal, final pass Fri Nov 7 18:19:10 2008 memory use: 219.5 MB Fri Nov 7 18:19:10 2008 commencing in-memory singleton removal Fri Nov 7 18:19:12 2008 begin with 12942217 relations and 10108568 unique ideals Fri Nov 7 18:19:38 2008 reduce to 11020221 relations and 8131732 ideals in 15 passes Fri Nov 7 18:19:38 2008 max relations containing the same ideal: 43 Fri Nov 7 18:19:40 2008 reading rational ideals above 720000 Fri Nov 7 18:19:40 2008 reading algebraic ideals above 720000 Fri Nov 7 18:19:40 2008 commencing singleton removal, final pass Fri Nov 7 18:23:19 2008 keeping 8734777 ideals with weight <= 20, new excess is 864903 Fri Nov 7 18:23:29 2008 memory use: 256.8 MB Fri Nov 7 18:23:29 2008 commencing in-memory singleton removal Fri Nov 7 18:23:31 2008 begin with 11023686 relations and 8734777 unique ideals Fri Nov 7 18:23:45 2008 reduce to 11019203 relations and 8713341 ideals in 7 passes Fri Nov 7 18:23:45 2008 max relations containing the same ideal: 20 Fri Nov 7 18:23:56 2008 removing 2136396 relations and 1736396 ideals in 400000 cliques Fri Nov 7 18:23:57 2008 commencing in-memory singleton removal Fri Nov 7 18:23:58 2008 begin with 8882807 relations and 8713341 unique ideals Fri Nov 7 18:24:12 2008 reduce to 8621173 relations and 6704103 ideals in 9 passes Fri Nov 7 18:24:12 2008 max relations containing the same ideal: 20 Fri Nov 7 18:24:20 2008 removing 1619607 relations and 1219607 ideals in 400000 cliques Fri Nov 7 18:24:21 2008 commencing in-memory singleton removal Fri Nov 7 18:24:22 2008 begin with 7001566 relations and 6704103 unique ideals Fri Nov 7 18:24:33 2008 reduce to 6797292 relations and 5271165 ideals in 9 passes Fri Nov 7 18:24:33 2008 max relations containing the same ideal: 20 Fri Nov 7 18:24:39 2008 removing 1463385 relations and 1063385 ideals in 400000 cliques Fri Nov 7 18:24:40 2008 commencing in-memory singleton removal Fri Nov 7 18:24:40 2008 begin with 5333907 relations and 5271165 unique ideals Fri Nov 7 18:24:48 2008 reduce to 5118087 relations and 3980297 ideals in 9 passes Fri Nov 7 18:24:48 2008 max relations containing the same ideal: 19 Fri Nov 7 18:24:52 2008 removing 616616 relations and 482114 ideals in 134502 cliques Fri Nov 7 18:24:53 2008 commencing in-memory singleton removal Fri Nov 7 18:24:54 2008 begin with 4501471 relations and 3980297 unique ideals Fri Nov 7 18:24:59 2008 reduce to 4451213 relations and 3446730 ideals in 7 passes Fri Nov 7 18:24:59 2008 max relations containing the same ideal: 19 Fri Nov 7 18:25:03 2008 relations with 0 large ideals: 128141 Fri Nov 7 18:25:03 2008 relations with 1 large ideals: 644668 Fri Nov 7 18:25:03 2008 relations with 2 large ideals: 1377524 Fri Nov 7 18:25:03 2008 relations with 3 large ideals: 1403644 Fri Nov 7 18:25:03 2008 relations with 4 large ideals: 700436 Fri Nov 7 18:25:03 2008 relations with 5 large ideals: 159255 Fri Nov 7 18:25:03 2008 relations with 6 large ideals: 36585 Fri Nov 7 18:25:03 2008 relations with 7+ large ideals: 960 Fri Nov 7 18:25:03 2008 commencing 2-way merge Fri Nov 7 18:25:08 2008 reduce to 2874971 relation sets and 1870488 unique ideals Fri Nov 7 18:25:08 2008 commencing full merge Fri Nov 7 18:25:42 2008 memory use: 163.5 MB Fri Nov 7 18:25:43 2008 found 1409399 cycles, need 1272688 Fri Nov 7 18:25:44 2008 weight of 1272688 cycles is about 89474158 (70.30/cycle) Fri Nov 7 18:25:44 2008 distribution of cycle lengths: Fri Nov 7 18:25:44 2008 1 relations: 165517 Fri Nov 7 18:25:44 2008 2 relations: 128117 Fri Nov 7 18:25:44 2008 3 relations: 131193 Fri Nov 7 18:25:44 2008 4 relations: 129223 Fri Nov 7 18:25:44 2008 5 relations: 124960 Fri Nov 7 18:25:44 2008 6 relations: 114579 Fri Nov 7 18:25:44 2008 7 relations: 104913 Fri Nov 7 18:25:44 2008 8 relations: 91673 Fri Nov 7 18:25:44 2008 9 relations: 79160 Fri Nov 7 18:25:44 2008 10+ relations: 203353 Fri Nov 7 18:25:44 2008 heaviest cycle: 16 relations Fri Nov 7 18:25:44 2008 commencing cycle optimization Fri Nov 7 18:25:47 2008 start with 7122735 relations Fri Nov 7 18:26:05 2008 pruned 235546 relations Fri Nov 7 18:26:06 2008 memory use: 233.5 MB Fri Nov 7 18:26:06 2008 distribution of cycle lengths: Fri Nov 7 18:26:06 2008 1 relations: 165517 Fri Nov 7 18:26:06 2008 2 relations: 132065 Fri Nov 7 18:26:06 2008 3 relations: 137489 Fri Nov 7 18:26:06 2008 4 relations: 134742 Fri Nov 7 18:26:06 2008 5 relations: 130671 Fri Nov 7 18:26:06 2008 6 relations: 119077 Fri Nov 7 18:26:06 2008 7 relations: 108667 Fri Nov 7 18:26:06 2008 8 relations: 93246 Fri Nov 7 18:26:06 2008 9 relations: 78451 Fri Nov 7 18:26:06 2008 10+ relations: 172763 Fri Nov 7 18:26:06 2008 heaviest cycle: 16 relations Fri Nov 7 18:26:07 2008 Sat Nov 8 11:39:25 2008 Msieve v. 1.38 Sat Nov 8 11:39:25 2008 random seeds: 51fa03ca 0994addc Sat Nov 8 11:39:25 2008 factoring 40830562649504799217415961810238391197943215134935430982426238285068266711842023010787621084797361781299076622938184082903429550547622347219167653925734308110219683957419 (170 digits) Sat Nov 8 11:39:27 2008 no P-1/P+1/ECM available, skipping Sat Nov 8 11:39:27 2008 commencing number field sieve (170-digit input) Sat Nov 8 11:39:27 2008 R0: -2000000000000000000000000000000000000 Sat Nov 8 11:39:27 2008 R1: 1 Sat Nov 8 11:39:27 2008 A0: 68 Sat Nov 8 11:39:27 2008 A1: 0 Sat Nov 8 11:39:27 2008 A2: 0 Sat Nov 8 11:39:27 2008 A3: 0 Sat Nov 8 11:39:27 2008 A4: 0 Sat Nov 8 11:39:27 2008 A5: 125 Sat Nov 8 11:39:27 2008 size score = 8.925208e-13, Murphy alpha = 0.098689, combined = 8.636379e-13 Sat Nov 8 11:39:27 2008 Sat Nov 8 11:39:27 2008 commencing linear algebra Sat Nov 8 11:39:28 2008 read 1266783 cycles Sat Nov 8 11:39:35 2008 matrix is 1266583 x 1266783 (376.6 MB) with weight 119213116 (94.11/col) Sat Nov 8 11:39:35 2008 sparse part has weight 84786181 (66.93/col) Sat Nov 8 11:39:35 2008 saving the first 48 matrix rows for later Sat Nov 8 11:39:36 2008 matrix is 1266535 x 1266783 (359.5 MB) with weight 91770370 (72.44/col) Sat Nov 8 11:39:36 2008 sparse part has weight 81564776 (64.39/col) Sat Nov 8 11:39:36 2008 matrix includes 64 packed rows Sat Nov 8 11:39:36 2008 using block size 10922 for processor cache size 256 kB Sat Nov 8 11:39:44 2008 commencing Lanczos iteration (2 threads) Sat Nov 8 11:39:44 2008 memory use: 354.5 MB Sat Nov 8 11:39:45 2008 restarting at iteration 7907 (dim = 500003) Sat Nov 8 16:25:01 2008 lanczos halted after 20032 iterations (dim = 1266533) Sat Nov 8 16:25:05 2008 recovered 49 nontrivial dependencies Sat Nov 8 16:25:05 2008 elapsed time 04:45:40 Sat Nov 8 17:55:09 2008 Msieve v. 1.38 Sat Nov 8 17:55:09 2008 random seeds: a64a7e10 af28163f Sat Nov 8 17:55:09 2008 factoring 40830562649504799217415961810238391197943215134935430982426238285068266711842023010787621084797361781299076622938184082903429550547622347219167653925734308110219683957419 (170 digits) Sat Nov 8 17:55:11 2008 no P-1/P+1/ECM available, skipping Sat Nov 8 17:55:11 2008 commencing number field sieve (170-digit input) Sat Nov 8 17:55:11 2008 R0: -2000000000000000000000000000000000000 Sat Nov 8 17:55:11 2008 R1: 1 Sat Nov 8 17:55:11 2008 A0: 68 Sat Nov 8 17:55:11 2008 A1: 0 Sat Nov 8 17:55:11 2008 A2: 0 Sat Nov 8 17:55:11 2008 A3: 0 Sat Nov 8 17:55:11 2008 A4: 0 Sat Nov 8 17:55:11 2008 A5: 125 Sat Nov 8 17:55:11 2008 size score = 8.925208e-13, Murphy alpha = 0.098689, combined = 8.636379e-13 Sat Nov 8 17:55:11 2008 Sat Nov 8 17:55:11 2008 commencing square root phase Sat Nov 8 17:55:11 2008 reading relations for dependency 1 Sat Nov 8 17:55:14 2008 read 633249 cycles Sat Nov 8 17:55:16 2008 cycles contain 2386887 unique relations Sat Nov 8 17:56:05 2008 read 2386887 relations Sat Nov 8 17:56:22 2008 multiplying 1941296 relations Sat Nov 8 18:00:50 2008 multiply complete, coefficients have about 58.10 million bits Sat Nov 8 18:00:52 2008 initial square root is modulo 219677771 Sat Nov 8 18:09:53 2008 reading relations for dependency 2 Sat Nov 8 18:09:53 2008 read 633768 cycles Sat Nov 8 18:09:55 2008 cycles contain 2389302 unique relations Sat Nov 8 18:10:28 2008 read 2389302 relations Sat Nov 8 18:10:46 2008 multiplying 1944182 relations Sat Nov 8 18:15:13 2008 multiply complete, coefficients have about 58.19 million bits Sat Nov 8 18:15:14 2008 initial square root is modulo 225957161 Sat Nov 8 18:24:15 2008 prp63 factor: 168065510093738558138055116999214544462198890554682324748107419 Sat Nov 8 18:24:15 2008 prp108 factor: 242944329426849970997180630477373752133478580556976677728940298344363173643729480362319651902123233317150001 Sat Nov 8 18:24:15 2008 elapsed time 00:29:06 |
software ソフトウェア | GGNFS / msieve 1.38 |
execution environment 実行環境 | Athlon 64 X2 2800 - 3 GB RAM, Linux x86_64 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Justin Card | October 16, 2008 19:08:39 UTC 2008 年 10 月 17 日 (金) 4 時 8 分 39 秒 (日本時間) | |
25 | 5e4 | 214 | Justin Card | October 16, 2008 19:19:01 UTC 2008 年 10 月 17 日 (金) 4 時 19 分 1 秒 (日本時間) | |
30 | 25e4 | 430 | 178 | Justin Card | October 24, 2008 22:00:04 UTC 2008 年 10 月 25 日 (土) 7 時 0 分 4 秒 (日本時間) |
252 | Justin Card | October 24, 2008 22:25:55 UTC 2008 年 10 月 25 日 (土) 7 時 25 分 55 秒 (日本時間) |
name 名前 | yoyo@home |
---|---|
date 日付 | March 8, 2010 04:05:45 UTC 2010 年 3 月 8 日 (月) 13 時 5 分 45 秒 (日本時間) |
composite number 合成数 | 1119679103226195952706671836219380541737724281816806432671745918941447425776987886165832562887561828879602297806261423269671804791259<133> |
prime factors 素因数 | 4148400006483399883957442569065648756923044189<46> 269906253369078628129929458622943984187716798624981348124542297351320545556944250772631<87> |
factorization results 素因数分解の結果 | GMP-ECM 6.2.3 [powered by GMP 4.2.1_MPIR_1.1.1] [ECM] Input number is 1119679103226195952706671836219380541737724281816806432671745918941447425776987886165832562887561828879602297806261423269671804791259 (133 digits) [Sun Mar 07 06:37:33 2010] Using MODMULN Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1621297769 dF=32768, k=3, d=324870, d2=11, i0=23 Expected number of curves to find a factor of n digits: 20 25 30 35 40 45 50 55 60 65 2 7 26 122 681 4480 33652 283939 2655154 2.7e+007 Step 1 took 24804ms Using 17 small primes for NTT Estimated memory usage: 93M Initializing tables of differences for F took 31ms Computing roots of F took 1669ms Building F from its roots took 1841ms Computing 1/F took 951ms Initializing table of differences for G took 16ms Computing roots of G took 1466ms Building G from its roots took 1701ms Computing roots of G took 1435ms Building G from its roots took 1701ms Computing G * H took 546ms Reducing G * H mod F took 515ms Computing roots of G took 1435ms Building G from its roots took 1701ms Computing G * H took 562ms Reducing G * H mod F took 530ms Computing polyeval(F,G) took 3276ms Computing product of all F(g_i) took 0ms Step 2 took 19516ms ********** Factor found in step 2: 4148400006483399883957442569065648756923044189 Found probable prime factor of 46 digits: 4148400006483399883957442569065648756923044189 Probable prime cofactor 269906253369078628129929458622943984187716798624981348124542297351320545556944250772631 has 87 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Justin Card | October 24, 2008 22:28:14 UTC 2008 年 10 月 25 日 (土) 7 時 28 分 14 秒 (日本時間) | |
25 | 5e4 | 204 | Justin Card | June 14, 2009 02:22:49 UTC 2009 年 6 月 14 日 (日) 11 時 22 分 49 秒 (日本時間) | |
30 | 25e4 | 403 | Justin Card | June 14, 2009 02:30:52 UTC 2009 年 6 月 14 日 (日) 11 時 30 分 52 秒 (日本時間) | |
35 | 1e6 | 828 | JPascoa | December 7, 2009 09:36:32 UTC 2009 年 12 月 7 日 (月) 18 時 36 分 32 秒 (日本時間) | |
40 | 3e6 | 2280 | JPascoa | December 7, 2009 13:45:18 UTC 2009 年 12 月 7 日 (月) 22 時 45 分 18 秒 (日本時間) |
name 名前 | Justin Card |
---|---|
date 日付 | December 14, 2008 01:11:19 UTC 2008 年 12 月 14 日 (日) 10 時 11 分 19 秒 (日本時間) |
composite number 合成数 | 5601515784080136495058260409669476551922366725684158384351571184319213658664583664274625015281983236076984038434575826619948188356950956656183633054869264464184481<163> |
prime factors 素因数 | 15114737110291755253865525542276220443845732191<47> 62215924351208704620214741244687970502124398308107141<53> 5956668182002404597436168891848003944513400860278422888622352051<64> |
factorization results 素因数分解の結果 | Sieve time, ~ Thu Dec 11 06:25:45 2008 Msieve v. 1.39 Thu Dec 11 06:25:45 2008 random seeds: c119b89d 3c60b76b Thu Dec 11 06:25:45 2008 factoring 5601515784080136495058260409669476551922366725684158384351571184319213658664583664274625015281983236076984038434575826619948188356950956656183633054869264464184481 (163 digits) Thu Dec 11 06:25:47 2008 searching for 15-digit factors Thu Dec 11 06:25:48 2008 commencing number field sieve (163-digit input) Thu Dec 11 06:25:48 2008 R0: -10000000000000000000000000000000000000 Thu Dec 11 06:25:48 2008 R1: 1 Thu Dec 11 06:25:48 2008 A0: 17 Thu Dec 11 06:25:48 2008 A1: 0 Thu Dec 11 06:25:48 2008 A2: 0 Thu Dec 11 06:25:48 2008 A3: 0 Thu Dec 11 06:25:48 2008 A4: 0 Thu Dec 11 06:25:48 2008 A5: 1 Thu Dec 11 06:25:48 2008 skew 0.00, size 1.649244e-12, alpha 1.047729, combined = 1.163083e-12 Thu Dec 11 06:25:48 2008 Thu Dec 11 06:25:48 2008 commencing relation filtering Thu Dec 11 06:25:48 2008 commencing duplicate removal, pass 1 Thu Dec 11 06:28:46 2008 error -9 reading relation 14190429 Thu Dec 11 06:28:55 2008 error -9 reading relation 14949426 Thu Dec 11 06:29:13 2008 error -15 reading relation 16595032 Thu Dec 11 06:29:25 2008 error -9 reading relation 17527780 Thu Dec 11 06:29:35 2008 error -15 reading relation 18356803 Thu Dec 11 06:30:11 2008 found 3465609 hash collisions in 21585522 relations Thu Dec 11 06:31:19 2008 added 24327 free relations Thu Dec 11 06:31:19 2008 commencing duplicate removal, pass 2 Thu Dec 11 06:31:37 2008 found 3270865 duplicates and 18338984 unique relations Thu Dec 11 06:31:37 2008 memory use: 94.6 MB Thu Dec 11 06:31:37 2008 reading rational ideals above 8716288 Thu Dec 11 06:31:37 2008 reading algebraic ideals above 8716288 Thu Dec 11 06:31:37 2008 commencing singleton removal, pass 1 Thu Dec 11 06:35:35 2008 relations with 0 large ideals: 230675 Thu Dec 11 06:35:35 2008 relations with 1 large ideals: 1542279 Thu Dec 11 06:35:35 2008 relations with 2 large ideals: 4605346 Thu Dec 11 06:35:35 2008 relations with 3 large ideals: 6337724 Thu Dec 11 06:35:35 2008 relations with 4 large ideals: 3878423 Thu Dec 11 06:35:35 2008 relations with 5 large ideals: 969234 Thu Dec 11 06:35:35 2008 relations with 6 large ideals: 771397 Thu Dec 11 06:35:35 2008 relations with 7+ large ideals: 3906 Thu Dec 11 06:35:35 2008 18338984 relations and about 18219864 large ideals Thu Dec 11 06:35:35 2008 commencing singleton removal, pass 2 Thu Dec 11 06:39:35 2008 found 6773463 singletons Thu Dec 11 06:39:35 2008 current dataset: 11565521 relations and about 9662777 large ideals Thu Dec 11 06:39:35 2008 commencing singleton removal, pass 3 Thu Dec 11 06:41:58 2008 found 1929828 singletons Thu Dec 11 06:41:58 2008 current dataset: 9635693 relations and about 7596307 large ideals Thu Dec 11 06:41:58 2008 commencing singleton removal, pass 4 Thu Dec 11 06:43:59 2008 found 559893 singletons Thu Dec 11 06:43:59 2008 current dataset: 9075800 relations and about 7022668 large ideals Thu Dec 11 06:43:59 2008 commencing singleton removal, pass 5 Thu Dec 11 06:45:52 2008 found 175568 singletons Thu Dec 11 06:45:52 2008 current dataset: 8900232 relations and about 6845659 large ideals Thu Dec 11 06:45:52 2008 commencing singleton removal, final pass Thu Dec 11 06:47:54 2008 memory use: 157.8 MB Thu Dec 11 06:47:55 2008 commencing in-memory singleton removal Thu Dec 11 06:47:56 2008 begin with 8900232 relations and 7598828 unique ideals Thu Dec 11 06:48:16 2008 reduce to 7009060 relations and 5642900 ideals in 18 passes Thu Dec 11 06:48:16 2008 max relations containing the same ideal: 24 Thu Dec 11 06:48:18 2008 reading rational ideals above 720000 Thu Dec 11 06:48:18 2008 reading algebraic ideals above 720000 Thu Dec 11 06:48:18 2008 commencing singleton removal, final pass Thu Dec 11 06:50:15 2008 keeping 6366128 ideals with weight <= 20, new excess is 589025 Thu Dec 11 06:50:21 2008 memory use: 183.7 MB Thu Dec 11 06:50:21 2008 commencing in-memory singleton removal Thu Dec 11 06:50:22 2008 begin with 7033399 relations and 6366128 unique ideals Thu Dec 11 06:50:37 2008 reduce to 7004721 relations and 6218178 ideals in 11 passes Thu Dec 11 06:50:37 2008 max relations containing the same ideal: 20 Thu Dec 11 06:50:43 2008 removing 599456 relations and 547819 ideals in 51637 cliques Thu Dec 11 06:50:44 2008 commencing in-memory singleton removal Thu Dec 11 06:50:45 2008 begin with 6405265 relations and 6218178 unique idealsThu Dec 11 06:50:57 2008 reduce to 6365591 relations and 5630271 ideals in 10 passes Thu Dec 11 06:50:57 2008 max relations containing the same ideal: 20 Thu Dec 11 06:51:03 2008 removing 432595 relations and 380958 ideals in 51637 cliques Thu Dec 11 06:51:03 2008 commencing in-memory singleton removal Thu Dec 11 06:51:04 2008 begin with 5932996 relations and 5630271 unique ideals Thu Dec 11 06:51:13 2008 reduce to 5909684 relations and 5225798 ideals in 8 passes Thu Dec 11 06:51:13 2008 max relations containing the same ideal: 20 Thu Dec 11 06:51:20 2008 relations with 0 large ideals: 43999 Thu Dec 11 06:51:20 2008 relations with 1 large ideals: 279962 Thu Dec 11 06:51:20 2008 relations with 2 large ideals: 938340 Thu Dec 11 06:51:20 2008 relations with 3 large ideals: 1640855 Thu Dec 11 06:51:20 2008 relations with 4 large ideals: 1630210 Thu Dec 11 06:51:20 2008 relations with 5 large ideals: 952681 Thu Dec 11 06:51:20 2008 relations with 6 large ideals: 358387 Thu Dec 11 06:51:20 2008 relations with 7+ large ideals: 65250 Thu Dec 11 06:51:20 2008 commencing 2-way merge Thu Dec 11 06:51:27 2008 reduce to 3478218 relation sets and 2794332 unique ideals Thu Dec 11 06:51:27 2008 commencing full merge Thu Dec 11 06:52:41 2008 memory use: 269.3 MB Thu Dec 11 06:52:42 2008 found 1701886 cycles, need 1614532 Thu Dec 11 06:52:43 2008 weight of 1614532 cycles is about 113141746 (70.08/cycle) Thu Dec 11 06:52:43 2008 distribution of cycle lengths: Thu Dec 11 06:52:43 2008 1 relations: 209342 Thu Dec 11 06:52:43 2008 2 relations: 191075 Thu Dec 11 06:52:43 2008 3 relations: 185586 Thu Dec 11 06:52:43 2008 4 relations: 165144 Thu Dec 11 06:52:43 2008 5 relations: 146133 Thu Dec 11 06:52:43 2008 6 relations: 126188 Thu Dec 11 06:52:43 2008 7 relations: 106578 Thu Dec 11 06:52:43 2008 8 relations: 93386 Thu Dec 11 06:52:43 2008 9 relations: 78985 Thu Dec 11 06:52:43 2008 10+ relations: 312115 Thu Dec 11 06:52:43 2008 heaviest cycle: 20 relations Thu Dec 11 06:52:44 2008 commencing cycle optimization Thu Dec 11 06:52:48 2008 start with 9412575 relations Thu Dec 11 06:53:15 2008 pruned 235166 relations Thu Dec 11 06:53:15 2008 memory use: 315.3 MB Thu Dec 11 06:53:15 2008 distribution of cycle lengths: Thu Dec 11 06:53:15 2008 1 relations: 209342 Thu Dec 11 06:53:15 2008 2 relations: 195784 Thu Dec 11 06:53:15 2008 3 relations: 192349 Thu Dec 11 06:53:15 2008 4 relations: 169452 Thu Dec 11 06:53:15 2008 5 relations: 149844 Thu Dec 11 06:53:15 2008 6 relations: 127591 Thu Dec 11 06:53:15 2008 7 relations: 107695 Thu Dec 11 06:53:15 2008 8 relations: 93119 Thu Dec 11 06:53:15 2008 9 relations: 78380 Thu Dec 11 06:53:15 2008 10+ relations: 290976 Thu Dec 11 06:53:15 2008 heaviest cycle: 20 relations Thu Dec 11 06:53:21 2008 elapsed time 00:27:36 Fri Dec 12 20:24:42 2008 Msieve v. 1.39 Fri Dec 12 20:24:42 2008 random seeds: 8a67411e b53fa8c3 Fri Dec 12 20:24:42 2008 factoring 5601515784080136495058260409669476551922366725684158384351571184319213658664583664274625015281983236076984038434575826619948188356950956656183633054869264464184481 (163 digits) Fri Dec 12 20:24:45 2008 searching for 15-digit factors Fri Dec 12 20:24:46 2008 commencing number field sieve (163-digit input) Fri Dec 12 20:24:46 2008 R0: -10000000000000000000000000000000000000 Fri Dec 12 20:24:46 2008 R1: 1 Fri Dec 12 20:24:46 2008 A0: 17 Fri Dec 12 20:24:46 2008 A1: 0 Fri Dec 12 20:24:46 2008 A2: 0 Fri Dec 12 20:24:46 2008 A3: 0 Fri Dec 12 20:24:46 2008 A4: 0 Fri Dec 12 20:24:46 2008 A5: 1 Fri Dec 12 20:24:46 2008 skew 0.00, size 1.649244e-12, alpha 1.047729, combined = 1.163083e-12 Fri Dec 12 20:24:46 2008 Fri Dec 12 20:24:46 2008 commencing linear algebra Fri Dec 12 20:24:47 2008 read 1599998 cycles Fri Dec 12 20:24:54 2008 cycles contain 5294098 unique relations Fri Dec 12 20:26:00 2008 read 5294098 relations Fri Dec 12 20:26:14 2008 using 20 quadratic characters above 268434548 Fri Dec 12 20:27:04 2008 building initial matrix Fri Dec 12 20:28:25 2008 memory use: 643.5 MB Fri Dec 12 20:28:27 2008 read 1599998 cycles Fri Dec 12 20:28:29 2008 matrix is 1599798 x 1599998 (480.2 MB) with weight 141340528 (88.34/col) Fri Dec 12 20:28:29 2008 sparse part has weight 108280053 (67.68/col) Fri Dec 12 20:28:55 2008 filtering completed in 1 passes Fri Dec 12 20:28:55 2008 matrix is 1599798 x 1599998 (480.2 MB) with weight 141340528 (88.34/col) Fri Dec 12 20:28:55 2008 sparse part has weight 108280053 (67.68/col) Fri Dec 12 20:29:10 2008 read 1599998 cycles Fri Dec 12 20:29:12 2008 matrix is 1599798 x 1599998 (480.2 MB) with weight 141340528 (88.34/col) Fri Dec 12 20:29:12 2008 sparse part has weight 108280053 (67.68/col) Fri Dec 12 20:29:12 2008 saving the first 48 matrix rows for later Fri Dec 12 20:29:13 2008 matrix is 1599750 x 1599998 (452.7 MB) with weight 111950279 (69.97/col) Fri Dec 12 20:29:13 2008 sparse part has weight 102665798 (64.17/col) Fri Dec 12 20:29:13 2008 matrix includes 64 packed rows Fri Dec 12 20:29:13 2008 using block size 10922 for processor cache size 256 kB Fri Dec 12 20:29:23 2008 commencing Lanczos iteration (2 threads) Fri Dec 12 20:29:23 2008 memory use: 448.0 MB Sat Dec 13 00:51:35 2008 lanczos error: submatrix is not invertible Sat Dec 13 00:51:35 2008 lanczos halted after 7210 iterations (dim = 455967) Sat Dec 13 00:51:35 2008 linear algebra failed; retrying... Sat Dec 13 00:51:35 2008 commencing Lanczos iteration (2 threads) Sat Dec 13 00:51:35 2008 memory use: 448.0 MB Sat Dec 13 16:07:31 2008 lanczos halted after 25302 iterations (dim = 1599744) Sat Dec 13 16:07:38 2008 recovered 31 nontrivial dependencies Sat Dec 13 16:07:38 2008 elapsed time 19:42:56 Sat Dec 13 18:12:48 2008 Sat Dec 13 18:12:48 2008 Sat Dec 13 18:12:48 2008 Msieve v. 1.39 Sat Dec 13 18:12:48 2008 random seeds: 595748d8 c5a6942b Sat Dec 13 18:12:48 2008 factoring 5601515784080136495058260409669476551922366725684158384351571184319213658664583664274625015281983236076984038434575826619948188356950956656183633054869264464184481 (163 digits) Sat Dec 13 18:12:49 2008 searching for 15-digit factors Sat Dec 13 18:12:51 2008 commencing number field sieve (163-digit input) Sat Dec 13 18:12:51 2008 R0: -10000000000000000000000000000000000000 Sat Dec 13 18:12:51 2008 R1: 1 Sat Dec 13 18:12:51 2008 A0: 17 Sat Dec 13 18:12:51 2008 A1: 0 Sat Dec 13 18:12:51 2008 A2: 0 Sat Dec 13 18:12:51 2008 A3: 0 Sat Dec 13 18:12:51 2008 A4: 0 Sat Dec 13 18:12:51 2008 A5: 1 Sat Dec 13 18:12:51 2008 skew 0.00, size 1.649244e-12, alpha 1.047729, combined = 1.163083e-12 Sat Dec 13 18:12:51 2008 Sat Dec 13 18:12:51 2008 commencing square root phase Sat Dec 13 18:12:51 2008 reading relations for dependency 1 Sat Dec 13 18:12:51 2008 read 800041 cycles Sat Dec 13 18:12:54 2008 cycles contain 3218627 unique relations Sat Dec 13 18:13:39 2008 read 3218627 relations Sat Dec 13 18:14:03 2008 multiplying 2646900 relations Sat Dec 13 18:18:29 2008 multiply complete, coefficients have about 59.07 million bits Sat Dec 13 18:18:31 2008 initial square root is modulo 301859771 Sat Dec 13 18:27:26 2008 reading relations for dependency 2 Sat Dec 13 18:27:27 2008 read 799909 cycles Sat Dec 13 18:27:30 2008 cycles contain 3215839 unique relations Sat Dec 13 18:28:13 2008 read 3215839 relations Sat Dec 13 18:28:37 2008 multiplying 2645928 relations Sat Dec 13 18:33:02 2008 multiply complete, coefficients have about 59.05 million bits Sat Dec 13 18:33:04 2008 initial square root is modulo 299845591 Sat Dec 13 18:41:52 2008 Newton iteration failed to converge Sat Dec 13 18:41:52 2008 algebraic square root failed Sat Dec 13 18:41:52 2008 reading relations for dependency 3 Sat Dec 13 18:41:53 2008 read 800016 cycles Sat Dec 13 18:41:56 2008 cycles contain 3214264 unique relations Sat Dec 13 18:42:37 2008 read 3214264 relations Sat Dec 13 18:43:02 2008 multiplying 2644520 relations Sat Dec 13 18:47:26 2008 multiply complete, coefficients have about 59.01 million bits Sat Dec 13 18:47:28 2008 initial square root is modulo 296690551 Sat Dec 13 18:56:23 2008 prp47 factor: 15114737110291755253865525542276220443845732191 Sat Dec 13 18:56:23 2008 prp53 factor: 62215924351208704620214741244687970502124398308107141 Sat Dec 13 18:56:23 2008 prp64 factor: 5956668182002404597436168891848003944513400860278422888622352051 Sat Dec 13 18:56:23 2008 elapsed time 00:43:35 |
software ソフトウェア | ggnfs / msieve |
execution environment 実行環境 | Athlon 64x2 3800, 3 GB RAM, |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Justin Card | October 17, 2008 12:12:56 UTC 2008 年 10 月 17 日 (金) 21 時 12 分 56 秒 (日本時間) | |
25 | 5e4 | 214 | Justin Card | October 17, 2008 12:43:25 UTC 2008 年 10 月 17 日 (金) 21 時 43 分 25 秒 (日本時間) | |
30 | 25e4 | 430 | Justin Card | October 17, 2008 14:30:25 UTC 2008 年 10 月 17 日 (金) 23 時 30 分 25 秒 (日本時間) |
name 名前 | Erik Branger |
---|---|
date 日付 | September 9, 2009 05:13:12 UTC 2009 年 9 月 9 日 (水) 14 時 13 分 12 秒 (日本時間) |
composite number 合成数 | 20766084235548622733269488275884605676858882365997849091845587425547936007271922357156060196062766925993322190178505974392627<125> |
prime factors 素因数 | 2743641069602876421817939887754517698871698068469<49> 7568804996257901058444820569101293068078524183161107631106691480771145301383<76> |
factorization results 素因数分解の結果 | Number: 11113_187 N=2076608423554862273326948827588460567685888236599784909184558742554793600727192235715606019606276692599332219017 8505974392627 ( 125 digits) Divisors found: r1=2743641069602876421817939887754517698871698068469 (pp49) r2=7568804996257901058444820569101293068078524183161107631106691480771145301383 (pp76) Version: Msieve-1.40 Total time: 93.26 hours. Scaled time: 97.64 units (timescale=1.047). Factorization parameters were as follows: n: 207660842355486227332694882758846056768588823659978490918455874255479360072719223571560601960627669259933221901785 05974392627 Y0: -1235968266724011336173423 Y1: 25826703503071 c0: -6752457784721708041933315518400 c1: 65470140297054341898845356 c2: 1163854576425161625392 c3: 447583726895349 c4: -11493947732 c5: 7200 skew: 315435.66 type: gnfs rlim: 6900000 alim: 6900000 lbpr: 27 lbpa: 27 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5Factor base limits: 6900000/6900000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved algebraic special-q in [3450000, 7050001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 997410 x 997635 Total sieving time: 90.31 hours. Total relation processing time: 0.19 hours. Matrix solve time: 2.34 hours. Time per square root: 0.42 hours. Prototype def-par.txt line would be: gnfs,124,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,6900000,6900000,27,27,52,52,2.5,2.5,100000 total time: 93.26 hours. --------- CPU info (if available) ---------- |
software ソフトウェア | GGNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Justin Card | October 17, 2008 13:42:41 UTC 2008 年 10 月 17 日 (金) 22 時 42 分 41 秒 (日本時間) | |
25 | 5e4 | 0 | - | - | |
30 | 25e4 | 430 | Serge Batalov | October 21, 2008 05:35:00 UTC 2008 年 10 月 21 日 (火) 14 時 35 分 0 秒 (日本時間) | |
35 | 1e6 | 393 | Justin Card | October 25, 2008 02:30:57 UTC 2008 年 10 月 25 日 (土) 11 時 30 分 57 秒 (日本時間) | |
40 | 3e6 | 2229 | 500 | Erik Branger | August 25, 2009 07:05:12 UTC 2009 年 8 月 25 日 (火) 16 時 5 分 12 秒 (日本時間) |
1729 | Wataru Sakai | August 26, 2009 04:29:17 UTC 2009 年 8 月 26 日 (水) 13 時 29 分 17 秒 (日本時間) |
name 名前 | Justin Card |
---|---|
date 日付 | July 26, 2009 22:11:08 UTC 2009 年 7 月 27 日 (月) 7 時 11 分 8 秒 (日本時間) |
composite number 合成数 | 29236196756825705984570046178024533820243975892239644578877837946904172992070299514980635998415019069671574087205586916757001765454390541489468221491344352348710530363<167> |
prime factors 素因数 | 101101428297969763167582651911552568964064074821357008687845402353373<69> 289176891454586933473472026592329087156730099564830191435580236364586283574771523426365696790224631<99> |
factorization results 素因数分解の結果 | sieve over 6 days, Sat Jul 25 19:12:35 2009 Sat Jul 25 19:12:35 2009 Sat Jul 25 19:12:35 2009 Msieve v. 1.43 Sat Jul 25 19:12:35 2009 random seeds: d9fcc312 d1ea6900 Sat Jul 25 19:12:35 2009 factoring 29236196756825705984570046178024533820243975892239644578877837946904172992070299514980635998415019069671574087205586916757001765454390541489468221491344352348710530363 (167 digits) Sat Jul 25 19:12:39 2009 Sat Jul 25 19:12:39 2009 Sat Jul 25 19:12:39 2009 Msieve v. 1.43 Sat Jul 25 19:12:39 2009 random seeds: ed3f30ae 2d551ca1 Sat Jul 25 19:12:39 2009 factoring 29236196756825705984570046178024533820243975892239644578877837946904172992070299514980635998415019069671574087205586916757001765454390541489468221491344352348710530363 (167 digits) Sat Jul 25 19:12:41 2009 searching for 15-digit factors Sat Jul 25 19:12:41 2009 commencing number field sieve (167-digit input) Sat Jul 25 19:12:41 2009 R0: -20000000000000000000000000000000000000 Sat Jul 25 19:12:41 2009 R1: 1 Sat Jul 25 19:12:41 2009 A0: 68 Sat Jul 25 19:12:41 2009 A1: 0 Sat Jul 25 19:12:41 2009 A2: 0 Sat Jul 25 19:12:41 2009 A3: 0 Sat Jul 25 19:12:41 2009 A4: 0 Sat Jul 25 19:12:41 2009 A5: 125 Sat Jul 25 19:12:41 2009 skew 1.00, size 4.008652e-13, alpha 0.098689, combined = 4.774392e-11 Sat Jul 25 19:12:41 2009 Sat Jul 25 19:12:41 2009 commencing relation filtering Sat Jul 25 19:12:41 2009 estimated available RAM is 972.2 MB Sat Jul 25 19:12:41 2009 commencing duplicate removal, pass 1 Sat Jul 25 19:15:39 2009 found 151952 hash collisions in 18139084 relations Sat Jul 25 19:17:00 2009 added 675602 free relations Sat Jul 25 19:17:00 2009 commencing duplicate removal, pass 2 Sat Jul 25 19:17:23 2009 found 0 duplicates and 18814686 unique relations Sat Jul 25 19:17:23 2009 memory use: 132.2 MB Sat Jul 25 19:17:23 2009 reading ideals above 10551296 Sat Jul 25 19:17:30 2009 commencing singleton removal, initial pass Sat Jul 25 19:21:37 2009 memory use: 298.4 MB Sat Jul 25 19:21:37 2009 reading all ideals from disk Sat Jul 25 19:21:41 2009 memory use: 369.4 MB Sat Jul 25 19:21:44 2009 commencing in-memory singleton removal Sat Jul 25 19:21:47 2009 begin with 18814686 relations and 19739995 unique ideals Sat Jul 25 19:22:13 2009 reduce to 7464939 relations and 5902802 ideals in 19 passes Sat Jul 25 19:22:13 2009 max relations containing the same ideal: 30 Sat Jul 25 19:22:14 2009 reading ideals above 100000 Sat Jul 25 19:22:14 2009 commencing singleton removal, initial pass Sat Jul 25 19:24:22 2009 memory use: 149.2 MB Sat Jul 25 19:24:22 2009 reading all ideals from disk Sat Jul 25 19:24:27 2009 memory use: 287.9 MB Sat Jul 25 19:24:29 2009 keeping 7293870 ideals with weight <= 200, target excess is 40024 Sat Jul 25 19:24:31 2009 commencing in-memory singleton removal Sat Jul 25 19:24:34 2009 begin with 7470460 relations and 7293870 unique ideals Sat Jul 25 19:24:51 2009 reduce to 7462644 relations and 7259412 ideals in 8 passes Sat Jul 25 19:24:51 2009 max relations containing the same ideal: 200 Sat Jul 25 19:25:02 2009 removing 783390 relations and 704988 ideals in 78402 cliques Sat Jul 25 19:25:02 2009 commencing in-memory singleton removal Sat Jul 25 19:25:04 2009 begin with 6679254 relations and 7259412 unique ideals Sat Jul 25 19:25:26 2009 reduce to 6620572 relations and 6494876 ideals in 11 passes Sat Jul 25 19:25:26 2009 max relations containing the same ideal: 190 Sat Jul 25 19:25:35 2009 removing 562841 relations and 484439 ideals in 78402 cliques Sat Jul 25 19:25:36 2009 commencing in-memory singleton removal Sat Jul 25 19:25:38 2009 begin with 6057731 relations and 6494876 unique ideals Sat Jul 25 19:25:52 2009 reduce to 6024322 relations and 5976634 ideals in 8 passes Sat Jul 25 19:25:52 2009 max relations containing the same ideal: 180 Sat Jul 25 19:26:03 2009 relations with 0 large ideals: 704 Sat Jul 25 19:26:03 2009 relations with 1 large ideals: 76 Sat Jul 25 19:26:03 2009 relations with 2 large ideals: 1129 Sat Jul 25 19:26:03 2009 relations with 3 large ideals: 14195 Sat Jul 25 19:26:03 2009 relations with 4 large ideals: 101657 Sat Jul 25 19:26:03 2009 relations with 5 large ideals: 427840 Sat Jul 25 19:26:03 2009 relations with 6 large ideals: 1150165 Sat Jul 25 19:26:03 2009 relations with 7+ large ideals: 4328556 Sat Jul 25 19:26:03 2009 commencing 2-way merge Sat Jul 25 19:26:15 2009 reduce to 3653878 relation sets and 3606190 unique ideals Sat Jul 25 19:26:15 2009 commencing full merge Sat Jul 25 19:28:47 2009 memory use: 449.3 MB Sat Jul 25 19:28:48 2009 found 1907384 cycles, need 1902390 Sat Jul 25 19:28:51 2009 weight of 1902390 cycles is about 133337095 (70.09/cycle) Sat Jul 25 19:28:51 2009 distribution of cycle lengths: Sat Jul 25 19:28:51 2009 1 relations: 218410 Sat Jul 25 19:28:51 2009 2 relations: 247296 Sat Jul 25 19:28:51 2009 3 relations: 242476 Sat Jul 25 19:28:51 2009 4 relations: 209739 Sat Jul 25 19:28:51 2009 5 relations: 179661 Sat Jul 25 19:28:51 2009 6 relations: 147072 Sat Jul 25 19:28:51 2009 7 relations: 124095 Sat Jul 25 19:28:51 2009 8 relations: 103425 Sat Jul 25 19:28:51 2009 9 relations: 85413 Sat Jul 25 19:28:51 2009 10+ relations: 344803 Sat Jul 25 19:28:51 2009 heaviest cycle: 27 relations Sat Jul 25 19:28:51 2009 commencing cycle optimization Sat Jul 25 19:28:57 2009 start with 11102912 relations Sat Jul 25 19:29:48 2009 pruned 252249 relations Sat Jul 25 19:29:48 2009 memory use: 362.4 MB Sat Jul 25 19:29:48 2009 distribution of cycle lengths: Sat Jul 25 19:29:48 2009 1 relations: 218410 Sat Jul 25 19:29:48 2009 2 relations: 252454 Sat Jul 25 19:29:48 2009 3 relations: 250838 Sat Jul 25 19:29:48 2009 4 relations: 213542 Sat Jul 25 19:29:48 2009 5 relations: 182810 Sat Jul 25 19:29:48 2009 6 relations: 147901 Sat Jul 25 19:29:48 2009 7 relations: 123902 Sat Jul 25 19:29:48 2009 8 relations: 102741 Sat Jul 25 19:29:48 2009 9 relations: 84252 Sat Jul 25 19:29:48 2009 10+ relations: 325540 Sat Jul 25 19:29:48 2009 heaviest cycle: 27 relations Sat Jul 25 19:29:54 2009 RelProcTime: 1033 Sat Jul 25 19:29:54 2009 elapsed time 00:17:15 Sat Jul 25 19:30:08 2009 Sat Jul 25 19:30:08 2009 Sat Jul 25 19:30:08 2009 Msieve v. 1.43 Sat Jul 25 19:30:08 2009 random seeds: f59dc650 7a49ec57 Sat Jul 25 19:30:08 2009 factoring 29236196756825705984570046178024533820243975892239644578877837946904172992070299514980635998415019069671574087205586916757001765454390541489468221491344352348710530363 (167 digits) Sat Jul 25 19:30:10 2009 searching for 15-digit factors Sat Jul 25 19:30:10 2009 commencing number field sieve (167-digit input) Sat Jul 25 19:30:10 2009 R0: -20000000000000000000000000000000000000 Sat Jul 25 19:30:10 2009 R1: 1 Sat Jul 25 19:30:10 2009 A0: 68 Sat Jul 25 19:30:10 2009 A1: 0 Sat Jul 25 19:30:10 2009 A2: 0 Sat Jul 25 19:30:10 2009 A3: 0 Sat Jul 25 19:30:10 2009 A4: 0 Sat Jul 25 19:30:10 2009 A5: 125 Sat Jul 25 19:30:10 2009 skew 1.00, size 4.008652e-13, alpha 0.098689, combined = 4.774392e-11 Sat Jul 25 19:30:10 2009 Sat Jul 25 19:30:10 2009 commencing linear algebra Sat Jul 25 19:30:11 2009 read 1902390 cycles Sat Jul 25 19:30:16 2009 cycles contain 5965208 unique relations Sat Jul 25 19:32:01 2009 read 5965208 relations Sat Jul 25 19:33:00 2009 using 20 quadratic characters above 268434500 Sat Jul 25 19:33:58 2009 building initial matrix Sat Jul 25 19:36:15 2009 memory use: 732.8 MB Sat Jul 25 19:36:20 2009 read 1902390 cycles Sat Jul 25 19:36:28 2009 matrix is 1902213 x 1902390 (570.9 MB) with weight 169455496 (89.08/col) Sat Jul 25 19:36:28 2009 sparse part has weight 128720555 (67.66/col) Sat Jul 25 19:37:31 2009 filtering completed in 2 passes Sat Jul 25 19:37:32 2009 matrix is 1901602 x 1901778 (570.8 MB) with weight 169437007 (89.09/col) Sat Jul 25 19:37:32 2009 sparse part has weight 128715828 (67.68/col) Sat Jul 25 19:38:00 2009 read 1901778 cycles Sat Jul 25 19:38:09 2009 matrix is 1901602 x 1901778 (570.8 MB) with weight 169437007 (89.09/col) Sat Jul 25 19:38:09 2009 sparse part has weight 128715828 (67.68/col) Sat Jul 25 19:38:09 2009 saving the first 48 matrix rows for later Sat Jul 25 19:38:11 2009 matrix is 1901554 x 1901778 (541.8 MB) with weight 134697483 (70.83/col) Sat Jul 25 19:38:11 2009 sparse part has weight 123006791 (64.68/col) Sat Jul 25 19:38:11 2009 matrix includes 64 packed rows Sat Jul 25 19:38:11 2009 using block size 10922 for processor cache size 256 kB Sat Jul 25 19:38:23 2009 commencing Lanczos iteration Sat Jul 25 19:38:23 2009 memory use: 538.2 MB Sat Jul 25 19:39:31 2009 lanczos halted after 23 iterations (dim = 1460) Sat Jul 25 19:39:31 2009 BLanczosTime: 561 Sat Jul 25 19:39:31 2009 elapsed time 00:09:23 Sat Jul 25 19:40:06 2009 Sat Jul 25 19:40:06 2009 Sat Jul 25 19:40:06 2009 Msieve v. 1.43 Sat Jul 25 19:40:06 2009 random seeds: eb58ec47 f7b10534 Sat Jul 25 19:40:06 2009 factoring 29236196756825705984570046178024533820243975892239644578877837946904172992070299514980635998415019069671574087205586916757001765454390541489468221491344352348710530363 (167 digits) Sat Jul 25 19:40:08 2009 searching for 15-digit factors Sat Jul 25 19:40:08 2009 commencing number field sieve (167-digit input) Sat Jul 25 19:40:08 2009 R0: -20000000000000000000000000000000000000 Sat Jul 25 19:40:08 2009 R1: 1 Sat Jul 25 19:40:08 2009 A0: 68 Sat Jul 25 19:40:08 2009 A1: 0 Sat Jul 25 19:40:08 2009 A2: 0 Sat Jul 25 19:40:08 2009 A3: 0 Sat Jul 25 19:40:08 2009 A4: 0 Sat Jul 25 19:40:08 2009 A5: 125 Sat Jul 25 19:40:08 2009 skew 1.00, size 4.008652e-13, alpha 0.098689, combined = 4.774392e-11 Sat Jul 25 19:40:08 2009 Sat Jul 25 19:40:08 2009 commencing linear algebra Sat Jul 25 19:40:09 2009 read 1901778 cycles Sat Jul 25 19:40:14 2009 cycles contain 5965168 unique relations Sat Jul 25 19:41:38 2009 read 5965168 relations Sat Jul 25 19:42:42 2009 using 20 quadratic characters above 268434500 Sat Jul 25 19:43:41 2009 building initial matrix Sat Jul 25 19:46:58 2009 memory use: 732.8 MB Sat Jul 25 19:47:03 2009 read 1901778 cycles Sat Jul 25 19:47:11 2009 matrix is 1901602 x 1901778 (570.8 MB) with weight 169437007 (89.09/col) Sat Jul 25 19:47:11 2009 sparse part has weight 128715828 (67.68/col) Sat Jul 25 19:47:41 2009 filtering completed in 1 passes Sat Jul 25 19:47:42 2009 matrix is 1901602 x 1901778 (570.8 MB) with weight 169437007 (89.09/col) Sat Jul 25 19:47:42 2009 sparse part has weight 128715828 (67.68/col) Sat Jul 25 19:48:09 2009 read 1901778 cycles Sat Jul 25 19:48:17 2009 matrix is 1901602 x 1901778 (570.8 MB) with weight 169437007 (89.09/col) Sat Jul 25 19:48:17 2009 sparse part has weight 128715828 (67.68/col) Sat Jul 25 19:48:18 2009 saving the first 48 matrix rows for later Sat Jul 25 19:48:19 2009 matrix is 1901554 x 1901778 (541.8 MB) with weight 134697483 (70.83/col) Sat Jul 25 19:48:19 2009 sparse part has weight 123006791 (64.68/col) Sat Jul 25 19:48:19 2009 matrix includes 64 packed rows Sat Jul 25 19:48:19 2009 using block size 10922 for processor cache size 256 kB Sat Jul 25 19:48:31 2009 commencing Lanczos iteration (2 threads) Sat Jul 25 19:48:31 2009 memory use: 552.7 MB Sun Jul 26 15:44:14 2009 Sun Jul 26 15:44:14 2009 Sun Jul 26 15:44:14 2009 Msieve v. 1.43 Sun Jul 26 15:44:14 2009 random seeds: eccd68a9 d80b29f0 Sun Jul 26 15:44:14 2009 factoring 29236196756825705984570046178024533820243975892239644578877837946904172992070299514980635998415019069671574087205586916757001765454390541489468221491344352348710530363 (167 digits) Sun Jul 26 15:44:17 2009 searching for 15-digit factors Sun Jul 26 15:44:18 2009 commencing number field sieve (167-digit input) Sun Jul 26 15:44:19 2009 R0: -20000000000000000000000000000000000000 Sun Jul 26 15:44:19 2009 R1: 1 Sun Jul 26 15:44:19 2009 A0: 68 Sun Jul 26 15:44:19 2009 A1: 0 Sun Jul 26 15:44:19 2009 A2: 0 Sun Jul 26 15:44:19 2009 A3: 0 Sun Jul 26 15:44:19 2009 A4: 0 Sun Jul 26 15:44:19 2009 A5: 125 Sun Jul 26 15:44:19 2009 skew 1.00, size 4.008652e-13, alpha 0.098689, combined = 4.774392e-11 Sun Jul 26 15:44:19 2009 Sun Jul 26 15:44:19 2009 commencing linear algebra Sun Jul 26 15:44:20 2009 read 1901778 cycles Sun Jul 26 15:45:51 2009 matrix is 1901602 x 1901778 (570.8 MB) with weight 169437007 (89.09/col) Sun Jul 26 15:45:51 2009 sparse part has weight 128715828 (67.68/col) Sun Jul 26 15:45:56 2009 saving the first 48 matrix rows for later Sun Jul 26 15:47:30 2009 matrix is 1901554 x 1901778 (541.8 MB) with weight 134697483 (70.83/col) Sun Jul 26 15:47:30 2009 sparse part has weight 123006791 (64.68/col) Sun Jul 26 15:47:30 2009 matrix includes 64 packed rows Sun Jul 26 15:47:30 2009 using block size 10922 for processor cache size 256 kB Sun Jul 26 15:51:08 2009 commencing Lanczos iteration Sun Jul 26 15:51:08 2009 memory use: 538.2 MB Sun Jul 26 15:51:15 2009 restarting at iteration 23725 (dim = 1500119) Sun Jul 26 16:14:59 2009 lanczos halted after 23730 iterations (dim = 1500436) Sun Jul 26 16:17:00 2009 BLanczosTime: 1961 Sun Jul 26 16:17:00 2009 elapsed time 00:32:46 Sun Jul 26 17:40:20 2009 lanczos halted after 30075 iterations (dim = 1901553) Sun Jul 26 17:40:29 2009 recovered 38 nontrivial dependencies Sun Jul 26 17:40:29 2009 BLanczosTime: 79221 Sun Jul 26 17:40:29 2009 elapsed time 22:00:23 Sun Jul 26 17:40:40 2009 Sun Jul 26 17:40:40 2009 Sun Jul 26 17:40:40 2009 Msieve v. 1.43 Sun Jul 26 17:40:40 2009 random seeds: 40f05cc9 dbd37a0e Sun Jul 26 17:40:40 2009 factoring 29236196756825705984570046178024533820243975892239644578877837946904172992070299514980635998415019069671574087205586916757001765454390541489468221491344352348710530363 (167 digits) Sun Jul 26 17:40:42 2009 searching for 15-digit factors Sun Jul 26 17:40:43 2009 commencing number field sieve (167-digit input) Sun Jul 26 17:40:43 2009 R0: -20000000000000000000000000000000000000 Sun Jul 26 17:40:43 2009 R1: 1 Sun Jul 26 17:40:43 2009 A0: 68 Sun Jul 26 17:40:43 2009 A1: 0 Sun Jul 26 17:40:43 2009 A2: 0 Sun Jul 26 17:40:43 2009 A3: 0 Sun Jul 26 17:40:43 2009 A4: 0 Sun Jul 26 17:40:43 2009 A5: 125 Sun Jul 26 17:40:43 2009 skew 1.00, size 4.008652e-13, alpha 0.098689, combined = 4.774392e-11 Sun Jul 26 17:40:43 2009 Sun Jul 26 17:40:43 2009 commencing square root phase Sun Jul 26 17:40:43 2009 reading relations for dependency 1 Sun Jul 26 17:40:44 2009 read 952156 cycles Sun Jul 26 17:40:47 2009 cycles contain 3664144 unique relations Sun Jul 26 17:41:31 2009 read 3664144 relations Sun Jul 26 17:42:00 2009 multiplying 2983448 relations Sun Jul 26 17:50:53 2009 multiply complete, coefficients have about 87.65 million bits Sun Jul 26 17:50:55 2009 initial square root is modulo 1956611 Sun Jul 26 18:03:12 2009 sqrtTime: 1349 Sun Jul 26 18:03:12 2009 prp69 factor: 101101428297969763167582651911552568964064074821357008687845402353373 Sun Jul 26 18:03:12 2009 prp99 factor: 289176891454586933473472026592329087156730099564830191435580236364586283574771523426365696790224631 Sun Jul 26 18:03:12 2009 elapsed time 00:22:32 |
software ソフトウェア | cado-nfs for sieving, msieve 1.43 for postprocessing |
execution environment 実行環境 | Athlon 64 x2 2800+, 1 GB RAM, Linux |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Justin Card | September 24, 2008 22:11:05 UTC 2008 年 9 月 25 日 (木) 7 時 11 分 5 秒 (日本時間) | |
25 | 5e4 | 214 | 96 | Justin Card | September 24, 2008 22:12:41 UTC 2008 年 9 月 25 日 (木) 7 時 12 分 41 秒 (日本時間) |
118 | Justin Card | October 25, 2008 02:16:58 UTC 2008 年 10 月 25 日 (土) 11 時 16 分 58 秒 (日本時間) |
name 名前 | yoyo@home |
---|---|
date 日付 | March 8, 2010 04:05:49 UTC 2010 年 3 月 8 日 (月) 13 時 5 分 49 秒 (日本時間) |
composite number 合成数 | 21958906088608981321695433530728218215090199741813458065495722066366833100600692351735304214843570352216418621025344044037211006170418991813902091046013306425893773538258824353777<179> |
prime factors 素因数 | 357738966897234339137955830048844659966877037619<48> |
composite cofactor 合成数の残り | 61382483096723966227820877697687810857518878999648127411855677031402259915632422175619198914516551426478990862463180967782639140683<131> |
factorization results 素因数分解の結果 | GMP-ECM 6.2.3 [powered by GMP 4.2.1_MPIR_1.1.1] [ECM] Input number is 21958906088608981321695433530728218215090199741813458065495722066366833100600692351735304214843570352216418621025344044037211006170418991813902091046013306425893773538258824353777 (179 digits) [Sun Mar 07 01:48:26 2010] Using MODMULN Using B1=43000000, B2=240490660426, polynomial Dickson(12), sigma=2533385006 dF=65536, k=5, d=690690, d2=17, i0=46 Expected number of curves to find a factor of n digits: 20 25 30 35 40 45 50 55 60 65 2 5 14 55 246 1277 7553 49797 358989 2841353 Step 1 took 217500ms Using 22 small primes for NTT Estimated memory usage: 252M Initializing tables of differences for F took 47ms Computing roots of F took 6110ms Building F from its roots took 8547ms Computing 1/F took 4016ms Initializing table of differences for G took 78ms Computing roots of G took 5094ms Building G from its roots took 7312ms Computing roots of G took 4969ms Building G from its roots took 7265ms Computing G * H took 2328ms Reducing G * H mod F took 2187ms Computing roots of G took 5000ms Building G from its roots took 7328ms Computing G * H took 2313ms Reducing G * H mod F took 2187ms Computing roots of G took 4953ms Building G from its roots took 7266ms Computing G * H took 2250ms Reducing G * H mod F took 2187ms Computing roots of G took 4938ms Building G from its roots took 7266ms Computing G * H took 2328ms Reducing G * H mod F took 2172ms Computing polyeval(F,G) took 14438ms Computing product of all F(g_i) took 78ms Step 2 took 113547ms ********** Factor found in step 2: 357738966897234339137955830048844659966877037619 Found probable prime factor of 48 digits: 357738966897234339137955830048844659966877037619 Composite cofactor 61382483096723966227820877697687810857518878999648127411855677031402259915632422175619198914516551426478990862463180967782639140683 has 131 digits |
software ソフトウェア | GMP-ECM |
name 名前 | yoyo@home |
---|---|
date 日付 | March 19, 2010 18:36:43 UTC 2010 年 3 月 20 日 (土) 3 時 36 分 43 秒 (日本時間) |
composite number 合成数 | 61382483096723966227820877697687810857518878999648127411855677031402259915632422175619198914516551426478990862463180967782639140683<131> |
prime factors 素因数 | 160717173274484832013008581688270884964629777274171731969<57> 381928588252920313874936828281346242422917669666002112749086884609312780107<75> |
factorization results 素因数分解の結果 | GMP-ECM 6.2.3 [powered by GMP 4.2.1_MPIR_1.1.1] [ECM] Input number is 21958906088608981321695433530728218215090199741813458065495722066366833100600692351735304214843570352216418621025344044037211006170418991813902091046013306425893773538258824353777 (179 digits) [Sun Mar 07 01:48:26 2010] Using MODMULN Using B1=43000000, B2=240490660426, polynomial Dickson(12), sigma=2533385006 dF=65536, k=5, d=690690, d2=17, i0=46 Expected number of curves to find a factor of n digits: 20 25 30 35 40 45 50 55 60 65 2 5 14 55 246 1277 7553 49797 358989 2841353 Step 1 took 217500ms Using 22 small primes for NTT Estimated memory usage: 252M Initializing tables of differences for F took 47ms Computing roots of F took 6110ms Building F from its roots took 8547ms Computing 1/F took 4016ms Initializing table of differences for G took 78ms Computing roots of G took 5094ms Building G from its roots took 7312ms Computing roots of G took 4969ms Building G from its roots took 7265ms Computing G * H took 2328ms Reducing G * H mod F took 2187ms Computing roots of G took 5000ms Building G from its roots took 7328ms Computing G * H took 2313ms Reducing G * H mod F took 2187ms Computing roots of G took 4953ms Building G from its roots took 7266ms Computing G * H took 2250ms Reducing G * H mod F took 2187ms Computing roots of G took 4938ms Building G from its roots took 7266ms Computing G * H took 2328ms Reducing G * H mod F took 2172ms Computing polyeval(F,G) took 14438ms Computing product of all F(g_i) took 78ms Step 2 took 113547ms ********** Factor found in step 2: 357738966897234339137955830048844659966877037619 Found probable prime factor of 48 digits: 357738966897234339137955830048844659966877037619 Composite cofactor 61382483096723966227820877697687810857518878999648127411855677031402259915632422175619198914516551426478990862463180967782639140683 has 131 digits GMP-ECM 6.2.3 [powered by GMP 4.2.1_MPIR_1.1.1] [ECM] Input number is 61382483096723966227820877697687810857518878999648127411855677031402259915632422175619198914516551426478990862463180967782639140683 (131 digits) [Fri Mar 19 15:39:37 2010] Using MODMULN Using B1=110000000, B2=776278396540, polynomial Dickson(30), sigma=3567453223 dF=131072, k=4, d=1345890, d2=11, i0=71 Expected number of curves to find a factor of n digits: 20 25 30 35 40 45 50 55 60 65 2 4 10 34 135 613 3133 17769 111196 751771 Step 1 took 348000ms Using 17 small primes for NTT Estimated memory usage: 389M Initializing tables of differences for F took 234ms Computing roots of F took 23547ms Building F from its roots took 14250ms Computing 1/F took 6328ms Initializing table of differences for G took 203ms Computing roots of G took 19890ms Building G from its roots took 12407ms Computing roots of G took 19843ms Building G from its roots took 12328ms Computing G * H took 3609ms Reducing G * H mod F took 3469ms Computing roots of G took 19781ms Building G from its roots took 12344ms Computing G * H took 3657ms Reducing G * H mod F took 3484ms Computing roots of G took 19734ms Building G from its roots took 12375ms Computing G * H took 3609ms Reducing G * H mod F took 3453ms Computing polyeval(F,G) took 23766ms Computing product of all F(g_i) took 109ms Step 2 took 219984ms ********** Factor found in step 2: 160717173274484832013008581688270884964629777274171731969 Found probable prime factor of 57 digits: 160717173274484832013008581688270884964629777274171731969 Probable prime cofactor 381928588252920313874936828281346242422917669666002112749086884609312780107 has 75 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Luigi Morelli | January 28, 2009 11:45:56 UTC 2009 年 1 月 28 日 (水) 20 時 45 分 56 秒 (日本時間) | |
25 | 5e4 | 204 | Luigi Morelli | January 28, 2009 11:50:12 UTC 2009 年 1 月 28 日 (水) 20 時 50 分 12 秒 (日本時間) | |
30 | 25e4 | 403 | Sinkiti Sibata | February 22, 2009 12:17:14 UTC 2009 年 2 月 22 日 (日) 21 時 17 分 14 秒 (日本時間) | |
35 | 1e6 | 902 | Sinkiti Sibata | February 22, 2009 12:17:14 UTC 2009 年 2 月 22 日 (日) 21 時 17 分 14 秒 (日本時間) | |
40 | 3e6 | 2350 | Sinkiti Sibata | February 22, 2009 12:17:14 UTC 2009 年 2 月 22 日 (日) 21 時 17 分 14 秒 (日本時間) | |
45 | 11e6 | 0 | - | - | |
50 | 43e6 | 7467 | 1117 | yoyo@home | January 15, 2010 04:43:02 UTC 2010 年 1 月 15 日 (金) 13 時 43 分 2 秒 (日本時間) |
1820 | yoyo@home | March 12, 2010 17:07:33 UTC 2010 年 3 月 13 日 (土) 2 時 7 分 33 秒 (日本時間) | |||
4530 | yoyo@home | March 18, 2010 16:45:22 UTC 2010 年 3 月 19 日 (金) 1 時 45 分 22 秒 (日本時間) |
name 名前 | yoyo@home |
---|---|
date 日付 | March 16, 2010 17:59:21 UTC 2010 年 3 月 17 日 (水) 2 時 59 分 21 秒 (日本時間) |
composite number 合成数 | 99199018036574176028646980289867574094544828753519594080981747346919975752061110460212979741493363451746059921544994228560919814158223128194594538809139908884768901170633433423243<179> |
prime factors 素因数 | 44922173796158736537335306540708025830794886933<47> 2208241713473282858794869331813782436305401426915355846631836626397951822383244836337234511449362853440912603008927776617652628247071<133> |
factorization results 素因数分解の結果 | GMP-ECM 6.2.3 [powered by GMP 4.2.1_MPIR_1.1.1] [ECM] Input number is 99199018036574176028646980289867574094544828753519594080981747346919975752061110460212979741493363451746059921544994228560919814158223128194594538809139908884768901170633433423243 (179 digits) [Tue Mar 16 03:33:19 2010] Using MODMULN Using B1=43000000, B2=240490660426, polynomial Dickson(12), sigma=3357491682 dF=65536, k=5, d=690690, d2=17, i0=46 Expected number of curves to find a factor of n digits: 20 25 30 35 40 45 50 55 60 65 2 5 14 55 246 1277 7553 49797 358989 2841353 Step 1 took 219000ms Using 22 small primes for NTT Estimated memory usage: 252M Initializing tables of differences for F took 47ms Computing roots of F took 6000ms Building F from its roots took 8484ms Computing 1/F took 4000ms Initializing table of differences for G took 78ms Computing roots of G took 4828ms Building G from its roots took 7265ms Computing roots of G took 4828ms Building G from its roots took 7234ms Computing G * H took 2312ms Reducing G * H mod F took 2219ms Computing roots of G took 4844ms Building G from its roots took 7250ms Computing G * H took 2265ms Reducing G * H mod F took 2188ms Computing roots of G took 4812ms Building G from its roots took 7266ms Computing G * H took 2328ms Reducing G * H mod F took 2187ms Computing roots of G took 4828ms Building G from its roots took 7250ms Computing G * H took 2328ms Reducing G * H mod F took 2188ms Computing polyeval(F,G) took 14219ms Computing product of all F(g_i) took 62ms Step 2 took 112109ms ********** Factor found in step 2: 44922173796158736537335306540708025830794886933 Found probable prime factor of 47 digits: 44922173796158736537335306540708025830794886933 Probable prime cofactor 2208241713473282858794869331813782436305401426915355846631836626397951822383244836337234511449362853440912603008927776617652628247071 has 133 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Justin Card | October 24, 2008 23:18:38 UTC 2008 年 10 月 25 日 (土) 8 時 18 分 38 秒 (日本時間) | |
25 | 5e4 | 214 | Justin Card | October 24, 2008 23:19:02 UTC 2008 年 10 月 25 日 (土) 8 時 19 分 2 秒 (日本時間) | |
30 | 25e4 | 402 | Andreas Tete | July 26, 2009 22:48:22 UTC 2009 年 7 月 27 日 (月) 7 時 48 分 22 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2341 | 295 | Makoto Kamada | December 15, 2009 06:42:40 UTC 2009 年 12 月 15 日 (火) 15 時 42 分 40 秒 (日本時間) |
306 | yoyo | December 16, 2009 20:01:20 UTC 2009 年 12 月 17 日 (木) 5 時 1 分 20 秒 (日本時間) | |||
1740 | yoyo@home | March 12, 2010 16:49:11 UTC 2010 年 3 月 13 日 (土) 1 時 49 分 11 秒 (日本時間) | |||
45 | 11e6 | 4340 | yoyo@home | March 12, 2010 16:56:49 UTC 2010 年 3 月 13 日 (土) 1 時 56 分 49 秒 (日本時間) |
name 名前 | Erik Branger |
---|---|
date 日付 | March 12, 2011 15:46:25 UTC 2011 年 3 月 13 日 (日) 0 時 46 分 25 秒 (日本時間) |
composite number 合成数 | 146152334736754090451043910768667430319596427078609274288397123031829202523758034237827222211714513953682474342909131802707297117629673838553<141> |
prime factors 素因数 | 14134605493505458443815298458823667561067169392913901795247516363<65> 10340036359975372944321988055745271555477393526578538194952519731459351265131<77> |
factorization results 素因数分解の結果 | Number: 11113_193 N = 146152334736754090451043910768667430319596427078609274288397123031829202523758034237827222211714513953682474342909131802707297117629673838553 (141 digits) SNFS difficulty: 194 digits. Divisors found: r1=14134605493505458443815298458823667561067169392913901795247516363 (pp65) r2=10340036359975372944321988055745271555477393526578538194952519731459351265131 (pp77) Version: Msieve v. 1.48 Total time: 309.34 hours. Factorization parameters were as follows: n: 146152334736754090451043910768667430319596427078609274288397123031829202523758034237827222211714513953682474342909131802707297117629673838553 m: 100000000000000000000000000000000000000 deg: 5 c5: 1000 c0: 17 skew: 0.44 type: snfs lss: 1 rlim: 11500000 alim: 11500000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 Factor base limits: 11500000/11500000 Large primes per side: 3 Large prime bits: 28/28 Sieved rational special-q in [5750000, 18950000) Relations: 24135309 Relations in full relation-set: 3998712 relations Pruned matrix : 2450189 x 2450414 Polynomial selection time: 0.00 hours. Total sieving time: 301.39 hours. Total relation processing time: 0.19 hours. Matrix solve time: 5.74 hours. time per square root: 2.02 hours. |
software ソフトウェア | GGNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Justin Card | October 25, 2008 02:19:19 UTC 2008 年 10 月 25 日 (土) 11 時 19 分 19 秒 (日本時間) | |
25 | 5e4 | 214 | Justin Card | October 25, 2008 02:19:19 UTC 2008 年 10 月 25 日 (土) 11 時 19 分 19 秒 (日本時間) | |
30 | 25e4 | 740 | 339 | Justin Card | October 25, 2008 02:19:19 UTC 2008 年 10 月 25 日 (土) 11 時 19 分 19 秒 (日本時間) |
401 | Ignacio Santos | March 12, 2010 14:27:16 UTC 2010 年 3 月 12 日 (金) 23 時 27 分 16 秒 (日本時間) | |||
35 | 1e6 | 344 | Ignacio Santos | March 12, 2010 15:25:10 UTC 2010 年 3 月 13 日 (土) 0 時 25 分 10 秒 (日本時間) | |
40 | 3e6 | 2240 | 150 | Ignacio Santos | March 12, 2010 15:01:10 UTC 2010 年 3 月 13 日 (土) 0 時 1 分 10 秒 (日本時間) |
2090 | yoyo@home | March 14, 2010 07:47:46 UTC 2010 年 3 月 14 日 (日) 16 時 47 分 46 秒 (日本時間) | |||
45 | 11e6 | 4420 | yoyo@home | March 18, 2010 16:49:39 UTC 2010 年 3 月 19 日 (金) 1 時 49 分 39 秒 (日本時間) | |
50 | 43e6 | 7460 | yoyo@home | March 18, 2010 16:50:23 UTC 2010 年 3 月 19 日 (金) 1 時 50 分 23 秒 (日本時間) | |
55 | 11e7 | 14820 | yoyo@home | April 5, 2010 19:17:22 UTC 2010 年 4 月 6 日 (火) 4 時 17 分 22 秒 (日本時間) | |
60 | 26e7 | 10010 / 35471 | yoyo@home | April 21, 2010 19:03:20 UTC 2010 年 4 月 22 日 (木) 4 時 3 分 20 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | February 14, 2009 03:08:58 UTC 2009 年 2 月 14 日 (土) 12 時 8 分 58 秒 (日本時間) |
composite number 合成数 | 32112758280359074778400364810208229470457183424146269322674921064671732874512948167491811874362650921250522137754528029030398991988635684821917480116528219787697562759143892018230138119<185> |
prime factors 素因数 | 180219932950749045834203315868394030019<39> 178186495547831158629886584868040389093978707544314165250237649071872527239633949856494301323944055336016195990546166140103456946868516762554689901<147> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=96175819756, polynomial Dickson(12), sigma=410370439 Step 1 took 58922ms Step 2 took 44850ms ********** Factor found in step 2: 180219932950749045834203315868394030019 Found probable prime factor of 39 digits: 180219932950749045834203315868394030019 Probable prime cofactor has 147 digits |
software ソフトウェア | GMP-ECM 6.2.1 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Justin Card | October 24, 2008 23:18:12 UTC 2008 年 10 月 25 日 (土) 8 時 18 分 12 秒 (日本時間) | |
25 | 5e4 | 214 | Justin Card | October 25, 2008 02:23:00 UTC 2008 年 10 月 25 日 (土) 11 時 23 分 0 秒 (日本時間) | |
30 | 25e4 | 372 / 402 | Justin Card | October 25, 2008 02:23:00 UTC 2008 年 10 月 25 日 (土) 11 時 23 分 0 秒 (日本時間) |
name 名前 | suberi |
---|---|
date 日付 | April 29, 2007 11:12:48 UTC 2007 年 4 月 29 日 (日) 20 時 12 分 48 秒 (日本時間) |
composite number 合成数 | 22539582015218238341747144553929093064362151853366588165838362780265907058543434440965367110367706159771289650473754551669118999992362176597616373385375748129059169161454576236991<179> |
prime factors 素因数 | 1106470306688059445573370198780657763<37> 20370706632593519622375724577942747394309044829544818549592211014459360143604890305766200820243688122193921133924400853893810356993408166701557<143> |
factorization results 素因数分解の結果 | Input number is 22539582015218238341747144553929093064362151853366588165838362780265907058543434440965367110367706159771289650473754551669118999992362176597616373385375748129059169161454576236991 (179 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3061483303 Step 1 took 86300ms Step 2 took 34008ms ********** Factor found in step 2: 1106470306688059445573370198780657763 Found probable prime factor of 37 digits: 1106470306688059445573370198780657763 Probable prime cofactor 20370706632593519622375724577942747394309044829544818549592211014459360143604890305766200820243688122193921133924400853893810356993408166701557 has 143 digits |
software ソフトウェア | GMP-ECM 6.1.2 |
execution environment 実行環境 | Sempron 3400+ 1.80GHz, Windows Vista |
name 名前 | Serge Batalov |
---|---|
date 日付 | February 14, 2009 03:21:19 UTC 2009 年 2 月 14 日 (土) 12 時 21 分 19 秒 (日本時間) |
composite number 合成数 | 52114855818627273784665905718435775931825142980549134209824658135179401498225871520825691993065270825222298463381748305188842776996682367711<140> |
prime factors 素因数 | 22030472258797275743537418347333146628457907<44> 34282597905119932900091785459591793403348759523<47> 69002370162380621152740212076872714098090972363351<50> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=96175819756, polynomial Dickson(12), sigma=1005177743 Step 1 took 43500ms Step 2 took 35167ms ********** Factor found in step 2: 34282597905119932900091785459591793403348759523 Found probable prime factor of 47 digits: 34282597905119932900091785459591793403348759523 Composite cofactor has 94 digits N=1520154801653587145519307402953669982384665387658339424932743614496399400375403119312412966357 ( 94 digits) Divisors found: r1=22030472258797275743537418347333146628457907 (pp44) r2=69002370162380621152740212076872714098090972363351 (pp50) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.951). Factorization parameters were as follows: name: t n: 1520154801653587145519307402953669982384665387658339424932743614496399400375403119312412966357 m: 2670485256132997099992 deg: 4 c4: 29890080 c3: -13117314349 c2: -242242966401244948 c1: 324114490938892144 c0: 357487177208619254665813 skew: 1635.250 type: gnfs # adj. I(F,S) = 53.124 # E(F1,F2) = 6.714689e-05 # GGNFS version 0.77.1-20060722-k8 polyselect. # Options were: # lcd=1, enumLCD=24, maxS1=60.00000000, seed=1234577083. # maxskew=2000.0 # These parameters should be manually set: rlim: 1200000 alim: 1200000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.4 alambda: 2.4 qintsize: 60000 type: gnfs Factor base limits: 1200000/1200000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved algebraic special-q in [600000, 1200001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 140362 x 140589 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,93,4,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1200000,1200000,25,25,45,45,2.4,2.4,60000 total time: 3.00 hours. |
software ソフトウェア | GMP-ECM 6.2.1, Msieve-1.39 gnfs |
execution environment 実行環境 | Opteron-2.6GHz; Linux x86_64 |
name 名前 | Makoto Kamada |
---|---|
date 日付 | December 15, 2009 06:39:25 UTC 2009 年 12 月 15 日 (火) 15 時 39 分 25 秒 (日本時間) |
composite number 合成数 | 174249107424901328154797173904681562657513437449116292897023905780144007058356290870928174957782571238810560254724268067008224047626355412568808491125189068775485687967752135137<177> |
prime factors 素因数 | 434937654132758116503430906897943<33> |
composite cofactor 合成数の残り | 400630080585560047283559589031720836640469685776195262402744444159188517127238066932342627397734279890091910596475172516678632844545173721295559<144> |
factorization results 素因数分解の結果 | GMP-ECM 6.2.3 [powered by GMP 4.2.1_MPIR_1.1.1] [ECM] Input number is 174249107424901328154797173904681562657513437449116292897023905780144007058356290870928174957782571238810560254724268067008224047626355412568808491125189068775485687967752135137 (177 digits) [Mon Dec 14 18:53:21 2009] Using MODMULN Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3868083629 dF=16384, k=2, d=158340, d2=11, i0=8 Expected number of curves to find a factor of n digits: 20 25 30 35 40 45 50 55 60 65 3 11 54 322 2350 20265 199745 2246256 2.8e+007 4e+008 Step 1 took 15735ms Using 22 small primes for NTT Estimated memory usage: 60M Initializing tables of differences for F took 15ms Computing roots of F took 750ms Building F from its roots took 1672ms Computing 1/F took 890ms Initializing table of differences for G took 16ms Computing roots of G took 687ms Building G from its roots took 1453ms Computing roots of G took 688ms Building G from its roots took 1453ms Computing G * H took 532ms Reducing G * H mod F took 515ms Computing polyeval(F,G) took 2812ms Computing product of all F(g_i) took 16ms Step 2 took 11671ms ********** Factor found in step 2: 434937654132758116503430906897943 Found probable prime factor of 33 digits: 434937654132758116503430906897943 Composite cofactor 400630080585560047283559589031720836640469685776195262402744444159188517127238066932342627397734279890091910596475172516678632844545173721295559 has 144 digits |
software ソフトウェア | yoyo@home |
name 名前 | yoyo@home, UA_ReMMeR |
---|---|
date 日付 | March 14, 2010 19:26:33 UTC 2010 年 3 月 15 日 (月) 4 時 26 分 33 秒 (日本時間) |
composite number 合成数 | 400630080585560047283559589031720836640469685776195262402744444159188517127238066932342627397734279890091910596475172516678632844545173721295559<144> |
prime factors 素因数 | 98734944290675932774070974771995093114521<41> 4057632112558893517086301952318823156714640496509100865104765341440157762713744235625557003599706640479<103> |
factorization results 素因数分解の結果 | GMP-ECM 6.2 [powered by GMP 4.2.2] [ECM] Running on sand Input number is 400630080585560047283559589031720836640469685776195262402744444159188517127238066932342627397734279890091910596475172516678632844545173721295559 (144 digits) [Sun Mar 14 13:00:30 2010] Using MODMULN Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=3453697785 dF=32768, k=3, d=324870, d2=11, i0=23 Expected number of curves to find a factor of n digits: 20 25 30 35 40 45 50 55 60 65 2 7 26 122 681 4480 33652 283939 2655154 2.7e+07 Step 1 took 60555ms Using 18 small primes for NTT Estimated memory usage: 102M Initializing tables of differences for F took 56ms Computing roots of F took 1736ms Building F from its roots took 5189ms Computing 1/F took 3732ms Initializing table of differences for G took 48ms Computing roots of G took 1504ms Building G from its roots took 5560ms Computing roots of G took 1496ms Building G from its roots took 5573ms Computing G * H took 1996ms Reducing G * H mod F took 2060ms Computing roots of G took 1500ms Building G from its roots took 5573ms Computing G * H took 1992ms Reducing G * H mod F took 2064ms Computing polyeval(F,G) took 11116ms Computing product of all F(g_i) took 16ms Step 2 took 51343ms ********** Factor found in step 2: 98734944290675932774070974771995093114521 Found probable prime factor of 41 digits: 98734944290675932774070974771995093114521 Probable prime cofactor 4057632112558893517086301952318823156714640496509100865104765341440157762713744235625557003599706640479 has 103 digits |
software ソフトウェア | GMP-ECM 6.2 [powered by GMP 4.2.2] [ECM] |
execution environment 実行環境 | CPU type AuthenticAMD AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ [Family 15 Model 67 Stepping 3] Number of CPUs 2 Operating System Linux 2.6.33-rc8 Memory 2004.3 MB |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 273 | 118 | Makoto Kamada | February 17, 2009 17:00:00 UTC 2009 年 2 月 18 日 (水) 2 時 0 分 0 秒 (日本時間) |
155 | Ignacio Santos | March 12, 2010 16:45:32 UTC 2010 年 3 月 13 日 (土) 1 時 45 分 32 秒 (日本時間) | |||
40 | 3e6 | 2285 | 225 | yoyo | December 16, 2009 20:05:51 UTC 2009 年 12 月 17 日 (木) 5 時 5 分 51 秒 (日本時間) |
60 | Ignacio Santos | March 12, 2010 16:45:32 UTC 2010 年 3 月 13 日 (土) 1 時 45 分 32 秒 (日本時間) | |||
2000 | yoyo@home | March 14, 2010 07:48:49 UTC 2010 年 3 月 14 日 (日) 16 時 48 分 49 秒 (日本時間) |
name 名前 | yoyo@home |
---|---|
date 日付 | March 24, 2010 11:28:40 UTC 2010 年 3 月 24 日 (水) 20 時 28 分 40 秒 (日本時間) |
composite number 合成数 | 27364579939240990521640721345012862712815877004452899719074094485433357779660219132710544932483494469317926225134838420370303430497421096039496178897980075921<158> |
prime factors 素因数 | 547301832371245411523137447459098478413229492226957<51> 49999065087505621628282001792370767238687352793129588710884621932977227217725298853730530897509194473189653<107> |
factorization results 素因数分解の結果 | GMP-ECM 6.2.3 [powered by GMP 4.2.1_MPIR_1.1.1] [ECM] Input number is 27364579939240990521640721345012862712815877004452899719074094485433357779660219132710544932483494469317926225134838420370303430497421096039496178897980075921 (158 digits) [Wed Mar 24 02:14:32 2010] Using MODMULN Using B1=110000000, B2=776278396540, polynomial Dickson(30), sigma=2136131602 dF=131072, k=4, d=1345890, d2=11, i0=71 Expected number of curves to find a factor of n digits: 20 25 30 35 40 45 50 55 60 65 2 4 10 34 135 613 3133 17769 111196 751771 Step 1 took 477235ms Using 20 small primes for NTT Estimated memory usage: 471M Initializing tables of differences for F took 313ms Computing roots of F took 26937ms Building F from its roots took 17594ms Computing 1/F took 7829ms Initializing table of differences for G took 297ms Computing roots of G took 23078ms Building G from its roots took 15000ms Computing roots of G took 22906ms Building G from its roots took 15031ms Computing G * H took 4516ms Reducing G * H mod F took 4219ms Computing roots of G took 23015ms Building G from its roots took 14938ms Computing G * H took 4469ms Reducing G * H mod F took 4219ms Computing roots of G took 22844ms Building G from its roots took 15047ms Computing G * H took 4531ms Reducing G * H mod F took 4266ms Computing polyeval(F,G) took 29718ms Computing product of all F(g_i) took 141ms Step 2 took 262750ms ********** Factor found in step 2: 547301832371245411523137447459098478413229492226957 Found probable prime factor of 51 digits: 547301832371245411523137447459098478413229492226957 Probable prime cofactor 49999065087505621628282001792370767238687352793129588710884621932977227217725298853730530897509194473189653 has 107 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | February 17, 2009 17:00:00 UTC 2009 年 2 月 18 日 (水) 2 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2320 | 280 | Makoto Kamada | December 15, 2009 06:43:37 UTC 2009 年 12 月 15 日 (火) 15 時 43 分 37 秒 (日本時間) |
290 | yoyo | December 16, 2009 20:03:59 UTC 2009 年 12 月 17 日 (木) 5 時 3 分 59 秒 (日本時間) | |||
1750 | yoyo@home | March 12, 2010 17:13:58 UTC 2010 年 3 月 13 日 (土) 2 時 13 分 58 秒 (日本時間) | |||
45 | 11e6 | 4340 | yoyo@home | March 12, 2010 17:15:20 UTC 2010 年 3 月 13 日 (土) 2 時 15 分 20 秒 (日本時間) | |
50 | 43e6 | 6500 | yoyo@home | March 18, 2010 16:52:59 UTC 2010 年 3 月 19 日 (金) 1 時 52 分 59 秒 (日本時間) |
name 名前 | yoyo@home |
---|---|
date 日付 | March 25, 2010 02:26:00 UTC 2010 年 3 月 25 日 (木) 11 時 26 分 0 秒 (日本時間) |
composite number 合成数 | 2902924303571889615749331189876889355818086661817067087957416001636886083186840504479597070078983318905548914264981174274491684883957683914781501548010399006588823134083<169> |
prime factors 素因数 | 113730255268607295935679827830348527181402174614348767<54> 25524644226954243180294382745720320122916855328378627003374506775518302255780557195880898355683772526923401594083549<116> |
factorization results 素因数分解の結果 | GMP-ECM 6.2.3 [powered by GMP 4.2.1_MPIR_1.1.1] [ECM] Input number is 2902924303571889615749331189876889355818086661817067087957416001636886083186840504479597070078983318905548914264981174274491684883957683914781501548010399006588823134083 (169 digits) [Thu Mar 25 01:21:34 2010] Using MODMULN Using B1=110000000, B2=776278396540, polynomial Dickson(30), sigma=1401805083 dF=131072, k=4, d=1345890, d2=11, i0=71 Expected number of curves to find a factor of n digits: 20 25 30 35 40 45 50 55 60 65 2 4 10 34 135 613 3133 17769 111196 751771 Step 1 took 473703ms Using 21 small primes for NTT Estimated memory usage: 478M Initializing tables of differences for F took 312ms Computing roots of F took 27266ms Building F from its roots took 18297ms Computing 1/F took 8172ms Initializing table of differences for G took 281ms Computing roots of G took 23594ms Building G from its roots took 15703ms Computing roots of G took 23046ms Building G from its roots took 15657ms Computing G * H took 4625ms Reducing G * H mod F took 4422ms Computing roots of G took 23218ms Building G from its roots took 15610ms Computing G * H took 4656ms Reducing G * H mod F took 4437ms Computing roots of G took 23079ms Building G from its roots took 15671ms Computing G * H took 4688ms Reducing G * H mod F took 4437ms Computing polyeval(F,G) took 31610ms Computing product of all F(g_i) took 250ms Step 2 took 270860ms ********** Factor found in step 2: 113730255268607295935679827830348527181402174614348767 Found probable prime factor of 54 digits: 113730255268607295935679827830348527181402174614348767 Probable prime cofactor 25524644226954243180294382745720320122916855328378627003374506775518302255780557195880898355683772526923401594083549 has 116 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | February 17, 2009 17:00:00 UTC 2009 年 2 月 18 日 (水) 2 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2320 | 280 | Makoto Kamada | December 15, 2009 06:44:24 UTC 2009 年 12 月 15 日 (火) 15 時 44 分 24 秒 (日本時間) |
290 | yoyo | December 16, 2009 20:06:36 UTC 2009 年 12 月 17 日 (木) 5 時 6 分 36 秒 (日本時間) | |||
1750 | yoyo@home | March 12, 2010 17:17:52 UTC 2010 年 3 月 13 日 (土) 2 時 17 分 52 秒 (日本時間) | |||
45 | 11e6 | 4340 | yoyo@home | March 12, 2010 17:18:14 UTC 2010 年 3 月 13 日 (土) 2 時 18 分 14 秒 (日本時間) | |
50 | 43e6 | 6500 | yoyo@home | March 18, 2010 16:54:55 UTC 2010 年 3 月 19 日 (金) 1 時 54 分 55 秒 (日本時間) |
name 名前 | Erik Branger |
---|---|
date 日付 | March 22, 2009 08:53:55 UTC 2009 年 3 月 22 日 (日) 17 時 53 分 55 秒 (日本時間) |
composite number 合成数 | 145829379949792239395107343637243079763628528658681310890575160988171862082801967137706829973725352350567726447106111950156737778528600209<138> |
prime factors 素因数 | 3563655936076273099916412456811109387<37> 40921284929194423257867202290995071601945357815830179626243613336714911803694463810877773792377543507<101> |
factorization results 素因数分解の結果 | GMP-ECM 6.2 [powered by GMP 4.2.2] [ECM] Input number is 145829379949792239395107343637243079763628528658681310890575160988171862082801967137706829973725352350567726447106111950156737778528600209 (138 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=560508884 Step 1 took 46594ms ********** Factor found in step 1: 3563655936076273099916412456811109387 Found probable prime factor of 37 digits: 3563655936076273099916412456811109387 Probable prime cofactor 40921284929194423257867202290995071601945357815830179626243613336714911803694463810877773792377543507 has 101 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | February 17, 2009 17:00:00 UTC 2009 年 2 月 18 日 (水) 2 時 0 分 0 秒 (日本時間) |
name 名前 | RSALS + Mathew |
---|---|
date 日付 | July 29, 2012 07:15:13 UTC 2012 年 7 月 29 日 (日) 16 時 15 分 13 秒 (日本時間) |
composite number 合成数 | 22007567486769391259628479967120314896249949937861125606374929593893296877986840211307335685146670446366476107027247789926746769084884364327770850599405680272899<161> |
prime factors 素因数 | 5468936479334907091474441914517840460261562081219412079361408473101564822340471<79> 4024103693639132208286202611579155894071718118491229827757735974884149573181152469<82> |
factorization results 素因数分解の結果 | prp79 factor: 5468936479334907091474441914517840460261562081219412079361408473101564822340471 prp82 factor: 4024103693639132208286202611579155894071718118491229827757735974884149573181152469 |
software ソフトウェア | ggnfs-lasieve4I14e on the RSALS grid + msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | February 17, 2009 17:00:00 UTC 2009 年 2 月 18 日 (水) 2 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2320 | 280 | Makoto Kamada | December 15, 2009 06:44:53 UTC 2009 年 12 月 15 日 (火) 15 時 44 分 53 秒 (日本時間) |
290 | yoyo | December 16, 2009 20:07:39 UTC 2009 年 12 月 17 日 (木) 5 時 7 分 39 秒 (日本時間) | |||
1750 | yoyo@home | March 12, 2010 17:20:11 UTC 2010 年 3 月 13 日 (土) 2 時 20 分 11 秒 (日本時間) | |||
45 | 11e6 | 4340 | yoyo@home | March 12, 2010 17:20:31 UTC 2010 年 3 月 13 日 (土) 2 時 20 分 31 秒 (日本時間) | |
50 | 43e6 | 6500 | yoyo@home | March 18, 2010 16:56:43 UTC 2010 年 3 月 19 日 (金) 1 時 56 分 43 秒 (日本時間) | |
55 | 11e7 | 15160 | yoyo@home | April 5, 2010 19:18:42 UTC 2010 年 4 月 6 日 (火) 4 時 18 分 42 秒 (日本時間) | |
60 | 26e7 | 10010 / 35456 | yoyo@home | April 21, 2010 19:04:07 UTC 2010 年 4 月 22 日 (木) 4 時 4 分 7 秒 (日本時間) |
name 名前 | Robert Backstrom |
---|---|
date 日付 | March 30, 2009 01:16:38 UTC 2009 年 3 月 30 日 (月) 10 時 16 分 38 秒 (日本時間) |
composite number 合成数 | 69141948420106478600566963977044873124524649104611767959621102122657816497268893037405794095277604922906727511581276360367835165594966466155016248357878725022471133236534605545184263292539583765470510959<203> |
prime factors 素因数 | 115951269499650019696884731749121224100590303382217461<54> 8291114615663811786913421243762707131703902669337013526581555333831<67> 71920580989461300167938721656900149535458931816276322011236571042026371770244374549<83> |
factorization results 素因数分解の結果 | Number: n N=69141948420106478600566963977044873124524649104611767959621102122657816497268893037405794095277604922906727511581276360367835165594966466155016248357878725022471133236534605545184263292539583765470510959 ( 203 digits) SNFS difficulty: 207 digits. Divisors found: Mon Mar 30 09:50:31 2009 prp54 factor: 115951269499650019696884731749121224100590303382217461 Mon Mar 30 09:50:31 2009 prp67 factor: 8291114615663811786913421243762707131703902669337013526581555333831 Mon Mar 30 09:50:31 2009 prp83 factor: 71920580989461300167938721656900149535458931816276322011236571042026371770244374549 Mon Mar 30 09:50:31 2009 elapsed time 18:58:17 (Msieve 1.39 - dependency 2) Version: GGNFS-0.77.1-20050930-k8 Total time: 107.71 hours. Scaled time: 216.94 units (timescale=2.014). Factorization parameters were as follows: name: KA_1_206_3 n: 69141948420106478600566963977044873124524649104611767959621102122657816497268893037405794095277604922906727511581276360367835165594966466155016248357878725022471133236534605545184263292539583765470510959 deg: 5 c5: 100 c0: 17 m: 100000000000000000000000000000000000000000 skew: 0.70 type: snfs rlim: 12000000 alim: 12000000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 12000000/12000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved special-q in [6000000, 31599990) Primes: RFBsize:788060, AFBsize:787814, largePrimes:36906914 encountered Relations: rels:32333155, finalFF:131025 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 7543613 hash collisions in 42811934 relations Msieve: matrix is 3331182 x 3331430 (903.7 MB) Total sieving time: 106.65 hours. Total relation processing time: 1.06 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,207,5,0,0,0,0,0,0,0,0,12000000,12000000,29,29,58,58,2.5,2.5,100000 total time: 107.71 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU1: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU2: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU3: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 Memory: 3368972k/3407296k available (2746k kernel code, 36964k reserved, 1423k data, 416k init, 2489792k highmem) Calibrating delay loop (skipped), value calculated using timer frequency.. 5660.99 BogoMIPS (lpj=2830497) Calibrating delay using timer specific routine.. 5660.89 BogoMIPS (lpj=2830447) Calibrating delay using timer specific routine.. 5660.90 BogoMIPS (lpj=2830454) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830458) Total of 4 processors activated (22643.71 BogoMIPS). |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | February 17, 2009 17:00:00 UTC 2009 年 2 月 18 日 (水) 2 時 0 分 0 秒 (日本時間) |
name 名前 | matsui |
---|---|
date 日付 | September 2, 2011 05:14:50 UTC 2011 年 9 月 2 日 (金) 14 時 14 分 50 秒 (日本時間) |
composite number 合成数 | 2321398548404512863893707148795950116996863252979447536618970475981709279052104518407712973540687028357247403421768690667316794826080710262724273679358319020682686802050033401027107946169993<190> |
prime factors 素因数 | 310809238815980555773417240341203094224871487070799621582725620349636442995923301<81> 7468885279111451966676904324110445587283600450561147315945353240542758156626487103548618062275671126735403093<109> |
factorization results 素因数分解の結果 | N=2321398548404512863893707148795950116996863252979447536618970475981709279052104518407712973540687028357247403421768690667316794826080710262724273679358319020682686802050033401027107946169993 ( 190 digits) SNFS difficulty: 208 digits. Divisors found: r1=310809238815980555773417240341203094224871487070799621582725620349636442995923301 (pp81) r2=7468885279111451966676904324110445587283600450561147315945353240542758156626487103548618062275671126735403093 (pp109) Version: Msieve v. 1.50 Total time: Scaled time: 351.27 units (timescale=1.520). Factorization parameters were as follows: n: 2321398548404512863893707148795950116996863252979447536618970475981709279052104518407712973540687028357247403421768690667316794826080710262724273679358319020682686802050033401027107946169993 m: 100000000000000000000000000000000000000000 deg: 5 c5: 1000 c0: 17 skew: 0.44 type: snfs lss: 1 rlim: 21000000 alim: 21000000 lpbr: 29 lpba: 29 mfbr: 57 mfba: 57 rlambda: 2.6 alambda: 2.6 qintsize: 320000 Factor base limits: 21000000/21000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 57/57 Sieved rational special-q in [10500000, 24900001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 3972939 x 3973166 Total sieving time: Total relation processing time: Matrix solve time: Time per square root: Prototype def-par.txt line would be: snfs,208.000,5,0,0,0,0,0,0,0,0,21000000,21000000,29,29,57,57,2.6,2.6,100000 total time: --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | February 17, 2009 17:00:00 UTC 2009 年 2 月 18 日 (水) 2 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2320 | 280 | Makoto Kamada | December 15, 2009 06:45:07 UTC 2009 年 12 月 15 日 (火) 15 時 45 分 7 秒 (日本時間) |
290 | yoyo | December 16, 2009 20:08:16 UTC 2009 年 12 月 17 日 (木) 5 時 8 分 16 秒 (日本時間) | |||
1750 | yoyo@home | March 14, 2010 07:49:46 UTC 2010 年 3 月 14 日 (日) 16 時 49 分 46 秒 (日本時間) | |||
45 | 11e6 | 3970 | yoyo@home | March 18, 2010 16:58:22 UTC 2010 年 3 月 19 日 (金) 1 時 58 分 22 秒 (日本時間) | |
50 | 43e6 | 7460 | yoyo@home | March 18, 2010 16:58:48 UTC 2010 年 3 月 19 日 (金) 1 時 58 分 48 秒 (日本時間) | |
55 | 11e7 | 14850 | yoyo@home | April 5, 2010 19:19:50 UTC 2010 年 4 月 6 日 (火) 4 時 19 分 50 秒 (日本時間) | |
60 | 26e7 | 10010 / 35467 | yoyo@home | April 21, 2010 19:04:43 UTC 2010 年 4 月 22 日 (木) 4 時 4 分 43 秒 (日本時間) |
name 名前 | NFS@Home + Greg Childers |
---|---|
date 日付 | August 4, 2012 06:05:35 UTC 2012 年 8 月 4 日 (土) 15 時 5 分 35 秒 (日本時間) |
composite number 合成数 | 1630472327903486092458239335900778241845901062520007431931633760207828051283687697902196276969433571940530603209128698262786746427429220219147222402965600910219803168039824908541533213711<187> |
prime factors 素因数 | 30606072118373968664815496163983177849659199341608336938679241854261441793891<77> 53272838200124759971514313987940793670779891434075945376705379527111415713679728991241805857437311906937362021<110> |
factorization results 素因数分解の結果 | prp77 factor: 30606072118373968664815496163983177849659199341608336938679241854261441793891 prp110 factor: 53272838200124759971514313987940793670779891434075945376705379527111415713679728991241805857437311906937362021 |
software ソフトウェア | ggnfs-lasiev4I14e on the NFS@Home grid + msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | February 17, 2009 17:00:00 UTC 2009 年 2 月 18 日 (水) 2 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2320 | 280 | Makoto Kamada | December 15, 2009 06:45:27 UTC 2009 年 12 月 15 日 (火) 15 時 45 分 27 秒 (日本時間) |
2040 | yoyo@home | March 14, 2010 07:50:40 UTC 2010 年 3 月 14 日 (日) 16 時 50 分 40 秒 (日本時間) | |||
45 | 11e6 | 4410 | yoyo@home | March 18, 2010 17:01:34 UTC 2010 年 3 月 19 日 (金) 2 時 1 分 34 秒 (日本時間) | |
50 | 43e6 | 7470 | yoyo@home | April 5, 2010 19:24:22 UTC 2010 年 4 月 6 日 (火) 4 時 24 分 22 秒 (日本時間) | |
55 | 11e7 | 17480 | yoyo@home | April 21, 2010 19:05:35 UTC 2010 年 4 月 22 日 (木) 4 時 5 分 35 秒 (日本時間) | |
60 | 26e7 | 10010 / 34465 | yoyo@home | April 21, 2010 19:05:45 UTC 2010 年 4 月 22 日 (木) 4 時 5 分 45 秒 (日本時間) |
name 名前 | RSALS + Lionel Debroux + Jeff Gilchrist |
---|---|
date 日付 | December 18, 2009 13:27:21 UTC 2009 年 12 月 18 日 (金) 22 時 27 分 21 秒 (日本時間) |
composite number 合成数 | 6582527613851446978131730819618752244107085954717989475947006360900491620682609825013574653008474800244477708589488281346603735332968305847034815192608016332462195046388618988800401944934168042595957471<202> |
prime factors 素因数 | 54717842005390052986694843098297751937806958850145813<53> 120299474039985466509894312228083847477033404838138052450639905530474929720985885145271068672098287759467609956582980764206909588207568280635808876067<150> |
factorization results 素因数分解の結果 | Thu Dec 17 06:26:40 2009 Msieve v. 1.43 Thu Dec 17 06:26:40 2009 random seeds: 55bc7df8 28c1ed01 Thu Dec 17 06:26:40 2009 factoring 6582527613851446978131730819618752244107085954717989475947006360900491620682609825013574653008474800244477708589488281346603735332968305847034815192608016332462195046388618988800401944934168042595957471 (202 digits) Thu Dec 17 06:26:42 2009 no P-1/P+1/ECM available, skipping Thu Dec 17 06:26:42 2009 commencing number field sieve (202-digit input) Thu Dec 17 06:26:42 2009 R0: -1000000000000000000000000000000000000000000 Thu Dec 17 06:26:42 2009 R1: 1 Thu Dec 17 06:26:42 2009 A0: 17 Thu Dec 17 06:26:42 2009 A1: 0 Thu Dec 17 06:26:42 2009 A2: 0 Thu Dec 17 06:26:42 2009 A3: 0 Thu Dec 17 06:26:42 2009 A4: 0 Thu Dec 17 06:26:42 2009 A5: 1 Thu Dec 17 06:26:42 2009 skew 1.76, size 2.505786e-14, alpha 1.047729, combined = 7.967069e-12 Thu Dec 17 06:26:42 2009 Thu Dec 17 06:26:42 2009 commencing linear algebra Thu Dec 17 06:26:43 2009 read 2888485 cycles Thu Dec 17 06:26:50 2009 cycles contain 8004660 unique relations Thu Dec 17 06:28:10 2009 read 8004660 relations Thu Dec 17 06:28:26 2009 using 20 quadratic characters above 536868864 Thu Dec 17 06:29:23 2009 building initial matrix Thu Dec 17 06:32:05 2009 memory use: 1052.8 MB Thu Dec 17 06:32:08 2009 read 2888485 cycles Thu Dec 17 06:32:11 2009 matrix is 2888023 x 2888485 (844.9 MB) with weight 248051754 (85.88/col) Thu Dec 17 06:32:11 2009 sparse part has weight 189723693 (65.68/col) Thu Dec 17 06:33:34 2009 filtering completed in 3 passes Thu Dec 17 06:33:35 2009 matrix is 2881653 x 2881853 (843.8 MB) with weight 247679676 (85.94/col) Thu Dec 17 06:33:35 2009 sparse part has weight 189487001 (65.75/col) Thu Dec 17 06:34:00 2009 read 2881853 cycles Thu Dec 17 06:34:04 2009 matrix is 2881653 x 2881853 (843.8 MB) with weight 247679676 (85.94/col) Thu Dec 17 06:34:04 2009 sparse part has weight 189487001 (65.75/col) Thu Dec 17 06:34:04 2009 saving the first 48 matrix rows for later Thu Dec 17 06:34:06 2009 matrix is 2881605 x 2881853 (799.4 MB) with weight 195469859 (67.83/col) Thu Dec 17 06:34:07 2009 sparse part has weight 180734590 (62.71/col) Thu Dec 17 06:34:07 2009 matrix includes 64 packed rows Thu Dec 17 06:34:07 2009 using block size 65536 for processor cache size 6144 kB Thu Dec 17 06:34:23 2009 commencing Lanczos iteration (5 threads) Thu Dec 17 06:34:23 2009 memory use: 885.9 MB Thu Dec 17 06:34:38 2009 linear algebra at 0.0%, ETA 14h51m Thu Dec 17 20:55:45 2009 lanczos halted after 45570 iterations (dim = 2881603) Thu Dec 17 20:55:53 2009 recovered 34 nontrivial dependencies Thu Dec 17 20:55:54 2009 BLanczosTime: 52152 Thu Dec 17 20:55:54 2009 elapsed time 14:29:14 Thu Dec 17 21:23:08 2009 Thu Dec 17 21:23:08 2009 Thu Dec 17 21:23:08 2009 Msieve v. 1.43 Thu Dec 17 21:23:08 2009 random seeds: f9fbe826 ee5d58a0 Thu Dec 17 21:23:08 2009 factoring 6582527613851446978131730819618752244107085954717989475947006360900491620682609825013574653008474800244477708589488281346603735332968305847034815192608016332462195046388618988800401944934168042595957471 (202 digits) Thu Dec 17 21:23:10 2009 no P-1/P+1/ECM available, skipping Thu Dec 17 21:23:10 2009 commencing number field sieve (202-digit input) Thu Dec 17 21:23:10 2009 R0: -1000000000000000000000000000000000000000000 Thu Dec 17 21:23:10 2009 R1: 1 Thu Dec 17 21:23:10 2009 A0: 17 Thu Dec 17 21:23:10 2009 A1: 0 Thu Dec 17 21:23:10 2009 A2: 0 Thu Dec 17 21:23:10 2009 A3: 0 Thu Dec 17 21:23:10 2009 A4: 0 Thu Dec 17 21:23:10 2009 A5: 1 Thu Dec 17 21:23:10 2009 skew 1.76, size 2.505786e-14, alpha 1.047729, combined = 7.967069e-12 Thu Dec 17 21:23:11 2009 Thu Dec 17 21:23:11 2009 commencing square root phase Thu Dec 17 21:23:11 2009 reading relations for dependency 1 Thu Dec 17 21:23:11 2009 read 1439936 cycles Thu Dec 17 21:23:15 2009 cycles contain 3996572 unique relations Thu Dec 17 21:24:02 2009 read 3996572 relations Thu Dec 17 21:24:33 2009 multiplying 3996572 relations Thu Dec 17 21:27:39 2009 multiply complete, coefficients have about 97.23 million bits Thu Dec 17 21:27:41 2009 initial square root is modulo 9532921 Thu Dec 17 21:33:58 2009 sqrtTime: 647 Thu Dec 17 21:33:59 2009 prp53 factor: 54717842005390052986694843098297751937806958850145813 Thu Dec 17 21:33:59 2009 prp150 factor: 120299474039985466509894312228083847477033404838138052450639905530474929720985885145271068672098287759467609956582980764206909588207568280635808876067 Thu Dec 17 21:33:59 2009 elapsed time 00:10:51 |
software ソフトウェア | ggnfs-lasieve4I14e on the RSALS grid + msieve (Lionel Debroux + Jeff Gilchrist) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1318 | 118 | Makoto Kamada | February 17, 2009 17:00:00 UTC 2009 年 2 月 18 日 (水) 2 時 0 分 0 秒 (日本時間) |
1200 | Dmitry Domanov | June 30, 2009 07:07:57 UTC 2009 年 6 月 30 日 (火) 16 時 7 分 57 秒 (日本時間) | |||
40 | 3e6 | 2500 | Dmitry Domanov | June 30, 2009 07:07:57 UTC 2009 年 6 月 30 日 (火) 16 時 7 分 57 秒 (日本時間) |
name 名前 | Ben Meekins |
---|---|
date 日付 | January 17, 2015 21:57:17 UTC 2015 年 1 月 18 日 (日) 6 時 57 分 17 秒 (日本時間) |
composite number 合成数 | 4046257427488473206989427431078331642677822125235705969171013135090949066816527563793194856465678170352166563438621437163717115815056172331047415740809904297096633747654317584943<178> |
prime factors 素因数 | 66554209562488164819423386428485306818393056054812915678691080795234665375539<77> 60796416246059037455405742018787230169196354582235485452546608771567185552006430093581607729694710037<101> |
factorization results 素因数分解の結果 | Number: 11113_211 N = 4046257427488473206989427431078331642677822125235705969171013135090949066816527563793194856465678170352166563438621437163717115815056172331047415740809904297096633747654317584943 (178 digits) SNFS difficulty: 212 digits. Divisors found: r1=66554209562488164819423386428485306818393056054812915678691080795234665375539 (pp77) r2=60796416246059037455405742018787230169196354582235485452546608771567185552006430093581607729694710037 (pp101) Version: Msieve v. 1.53 (SVN unknown) Total time: 209.13 hours. Factorization parameters were as follows: n: 4046257427488473206989427431078331642677822125235705969171013135090949066816527563793194856465678170352166563438621437163717115815056172331047415740809904297096633747654317584943 m: 100000000000000000000000000000000000 deg: 6 c6: 10 c0: 17 skew: 1.09 # Murphy_E = 5.812e-12 type: snfs lss: 1 rlim: 23000000 alim: 23000000 lpbr: 29 lpba: 29 mfbr: 57 mfba: 57 rlambda: 2.6 alambda: 2.6 Factor base limits: 23000000/23000000 Large primes per side: 3 Large prime bits: 29/29 Sieved rational special-q in [0, 0) Total raw relations: 42827507 Relations: 6674172 relations Pruned matrix : 4140380 x 4140606 Polynomial selection time: 0.00 hours. Total sieving time: 189.62 hours. Total relation processing time: 0.39 hours. Matrix solve time: 18.50 hours. time per square root: 0.62 hours. Prototype def-par.txt line would be: snfs,212,6,0,0,0,0,0,0,0,0,23000000,23000000,29,29,57,57,2.6,2.6,200000 total time: 209.13 hours. x86_64 Linux-3.13.0-43-generic-x86_64-with-Ubuntu-14.04-trusty processors: 4, speed: 0.80GHz |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | February 17, 2009 17:00:00 UTC 2009 年 2 月 18 日 (水) 2 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 580 | 280 | Makoto Kamada | December 15, 2009 06:45:43 UTC 2009 年 12 月 15 日 (火) 15 時 45 分 43 秒 (日本時間) |
300 | Serge Batalov | January 9, 2014 04:37:01 UTC 2014 年 1 月 9 日 (木) 13 時 37 分 1 秒 (日本時間) | |||
45 | 11e6 | 535 / 4347 | 230 | Ignacio Santos | November 21, 2013 18:26:07 UTC 2013 年 11 月 22 日 (金) 3 時 26 分 7 秒 (日本時間) |
274 | Cyp | March 10, 2014 03:16:15 UTC 2014 年 3 月 10 日 (月) 12 時 16 分 15 秒 (日本時間) | |||
31 | KTakahashi | March 14, 2014 07:24:54 UTC 2014 年 3 月 14 日 (金) 16 時 24 分 54 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | March 19, 2009 20:42:50 UTC 2009 年 3 月 20 日 (金) 5 時 42 分 50 秒 (日本時間) |
composite number 合成数 | 1959631589261218890848520478150107779737409367038996668626298255927885557515187144816774446404076033705663335292964922594552224181853811483441113070742700372330001959631589261218890848520478150107779737409367039<211> |
prime factors 素因数 | 2400620043423893687330474477519<31> |
composite cofactor 合成数の残り | 816302269336336417450842188577028118534151673845025146540677993240102379833555401451594875762033128334475072601234838476484961787092961779341206131926579524992582962870838310352081<180> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=4255587043 Step 1 took 13105ms Step 2 took 11832ms ********** Factor found in step 2: 2400620043423893687330474477519 Found probable prime factor of 31 digits: 2400620043423893687330474477519 Composite cofactor has 180 digits |
software ソフトウェア | GMP-ECM 6.2.2 |
name 名前 | Ben Meekins |
---|---|
date 日付 | January 30, 2015 03:39:09 UTC 2015 年 1 月 30 日 (金) 12 時 39 分 9 秒 (日本時間) |
composite number 合成数 | 816302269336336417450842188577028118534151673845025146540677993240102379833555401451594875762033128334475072601234838476484961787092961779341206131926579524992582962870838310352081<180> |
prime factors 素因数 | 3370382995043131780642041511106031644722128367020782740680348717437394382569263<79> 242198667195058630915502261590154141588577189738681409203936018426607262892151088591663526192229567487<102> |
factorization results 素因数分解の結果 | Number: 11113_214 N = 816302269336336417450842188577028118534151673845025146540677993240102379833555401451594875762033128334475072601234838476484961787092961779341206131926579524992582962870838310352081 (180 digits) SNFS difficulty: 216 digits. Divisors found: r1=3370382995043131780642041511106031644722128367020782740680348717437394382569263 (pp79) r2=242198667195058630915502261590154141588577189738681409203936018426607262892151088591663526192229567487 (pp102) Version: Msieve v. 1.53 (SVN unknown) Total time: 272.59 hours. Factorization parameters were as follows: n: 816302269336336417450842188577028118534151673845025146540677993240102379833555401451594875762033128334475072601234838476484961787092961779341206131926579524992582962870838310352081 m: 500000000000000000000000000000000000 deg: 6 c6: 16 c0: 425 skew: 1.73 # Murphy_E = 4.769e-12 type: snfs lss: 1 rlim: 27000000 alim: 27000000 lpbr: 29 lpba: 29 mfbr: 57 mfba: 57 rlambda: 2.6 alambda: 2.6 Factor base limits: 27000000/27000000 Large primes per side: 3 Large prime bits: 29/29 Sieved rational special-q in [0, 0) Total raw relations: 48668161 Relations: 5538456 relations Pruned matrix : 3780535 x 3780760 Polynomial selection time: 0.00 hours. Total sieving time: 256.54 hours. Total relation processing time: 0.47 hours. Matrix solve time: 15.23 hours. time per square root: 0.36 hours. Prototype def-par.txt line would be: snfs,216,6,0,0,0,0,0,0,0,0,27000000,27000000,29,29,57,57,2.6,2.6,200000 total time: 272.59 hours. x86_64 Linux-3.13.0-43-generic-x86_64-with-Ubuntu-14.04-trusty processors: 4, speed: 0.80GHz |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | February 17, 2009 17:00:00 UTC 2009 年 2 月 18 日 (水) 2 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1525 | 280 | Makoto Kamada | December 15, 2009 06:45:59 UTC 2009 年 12 月 15 日 (火) 15 時 45 分 59 秒 (日本時間) |
300 | Serge Batalov | January 9, 2014 04:37:02 UTC 2014 年 1 月 9 日 (木) 13 時 37 分 2 秒 (日本時間) | |||
290 | KTakahashi | March 14, 2014 09:19:17 UTC 2014 年 3 月 14 日 (金) 18 時 19 分 17 秒 (日本時間) | |||
655 | KTakahashi | March 19, 2014 03:28:47 UTC 2014 年 3 月 19 日 (水) 12 時 28 分 47 秒 (日本時間) | |||
45 | 11e6 | 326 / 4138 | 230 | Ignacio Santos | November 21, 2013 18:26:31 UTC 2013 年 11 月 22 日 (金) 3 時 26 分 31 秒 (日本時間) |
96 | KTakahashi | March 19, 2014 23:07:57 UTC 2014 年 3 月 20 日 (木) 8 時 7 分 57 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | February 19, 2009 17:31:13 UTC 2009 年 2 月 20 日 (金) 2 時 31 分 13 秒 (日本時間) |
composite number 合成数 | 48118642652086310909625664267737601364578914967267923863021970703694668389651134210976236101767600100290792136374869692850596533922391726735920307<146> |
prime factors 素因数 | 501928547260793544603300585296669<33> 95867515236356305111343622696905285564256741353453902846428516503461544038617123729098432688474118148620085298703<113> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=141999233 Step 1 took 30390ms Step 2 took 29422ms ********** Factor found in step 2: 501928547260793544603300585296669 Found probable prime factor of 33 digits: 501928547260793544603300585296669 Probable prime cofactor 95867515236356305111343622696905285564256741353453902846428516503461544038617123729098432688474118148620085298703 has 113 digits |
software ソフトウェア | GMP-ECM 6.2.1 |
execution environment 実行環境 | Windows XP and Cygwin |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | February 17, 2009 17:00:00 UTC 2009 年 2 月 18 日 (水) 2 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 5, 2019 09:46:40 UTC 2019 年 12 月 5 日 (木) 18 時 46 分 40 秒 (日本時間) |
composite number 合成数 | 9437684184074970622612613916033320197020717519381723718836023606554951100196618105912089085472075369496896969660591714296535264751626530602441262755726203985898325544365387795339703638030005361454008131150061<208> |
prime factors 素因数 | 92893405488469113136851865555851210008086731481739327470236221<62> 101596923209435714462901954836002567581556136271025630989907609414931190259393505308206203839273409902695797367130608507906137558595684210375165041<147> |
factorization results 素因数分解の結果 | Number: n N=9437684184074970622612613916033320197020717519381723718836023606554951100196618105912089085472075369496896969660591714296535264751626530602441262755726203985898325544365387795339703638030005361454008131150061 ( 208 digits) SNFS difficulty: 216 digits. Divisors found: Thu Dec 5 20:41:53 2019 p62 factor: 92893405488469113136851865555851210008086731481739327470236221 Thu Dec 5 20:41:53 2019 p147 factor: 101596923209435714462901954836002567581556136271025630989907609414931190259393505308206203839273409902695797367130608507906137558595684210375165041 Thu Dec 5 20:41:53 2019 elapsed time 05:41:20 (Msieve 1.54 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.131). Factorization parameters were as follows: # # N = 10^216+17 = 1(215)3 # n: 9437684184074970622612613916033320197020717519381723718836023606554951100196618105912089085472075369496896969660591714296535264751626530602441262755726203985898325544365387795339703638030005361454008131150061 m: 1000000000000000000000000000000000000 deg: 6 c6: 1 c0: 17 skew: 1.60 # Murphy_E = 3.959e-12 type: snfs lss: 1 rlim: 28000000 alim: 28000000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.6 alambda: 2.6 Factor base limits: 28000000/28000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved special-q in [100000, 68400000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 9684938 hash collisions in 60915883 relations (53721134 unique) Msieve: matrix is 3607163 x 3607388 (1257.4 MB) Sieving start time: 2019/12/04 08:10:09 Sieving end time : 2019/12/05 14:59:33 Total sieving time: 30hrs 49min 24secs. Total relation processing time: 5hrs 17min 14sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 5min 6sec. Prototype def-par.txt line would be: snfs,216,6,0,0,0,0,0,0,0,0,28000000,28000000,29,29,58,58,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- [ 0.149711] smpboot: CPU0: AMD Ryzen 7 1700 Eight-Core Processor (family: 0x17, model: 0x1, stepping: 0x1) [ 0.000000] Memory: 16283564K/16703460K available (12300K kernel code, 2481K rwdata, 4264K rodata, 2432K init, 2388K bss, 419896K reserved, 0K cma-reserved) [ 0.184572] x86/mm: Memory block size: 128MB [ 0.024000] Calibrating delay loop (skipped), value calculated using timer frequency.. 5988.54 BogoMIPS (lpj=11977084) [ 0.182221] smpboot: Total of 16 processors activated (95816.67 BogoMIPS) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | 118 | Makoto Kamada | February 17, 2009 17:00:00 UTC 2009 年 2 月 18 日 (水) 2 時 0 分 0 秒 (日本時間) |
786 | Andreas Tete | May 12, 2009 10:30:45 UTC 2009 年 5 月 12 日 (火) 19 時 30 分 45 秒 (日本時間) | |||
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 4716 | 716 | Dmitry Domanov | January 9, 2010 12:27:26 UTC 2010 年 1 月 9 日 (土) 21 時 27 分 26 秒 (日本時間) |
4000 | Wataru Sakai | May 17, 2011 08:01:40 UTC 2011 年 5 月 17 日 (火) 17 時 1 分 40 秒 (日本時間) | |||
50 | 43e6 | 0 | - | - | |
55 | 11e7 | 2763 / 17474 | 2705 | yoyo@home | August 29, 2011 22:25:04 UTC 2011 年 8 月 30 日 (火) 7 時 25 分 4 秒 (日本時間) |
58 | KTakahashi | August 25, 2014 10:27:51 UTC 2014 年 8 月 25 日 (月) 19 時 27 分 51 秒 (日本時間) |
name 名前 | Familie |
---|---|
date 日付 | September 5, 2011 00:34:49 UTC 2011 年 9 月 5 日 (月) 9 時 34 分 49 秒 (日本時間) |
composite number 合成数 | 31504041998517249661722986237771142963524806047964519593430130699527373526574464354022362205392195913858334142435891960252597770533927384890712494059164660182107791602665023945103929582014105512650673318404891<209> |
prime factors 素因数 | 2163546185225472963998269559670708978723650032010489<52> 14561298581769850460034223464946834845855539319796618931411101510838283653388087702755125457070888479716080359068510172446919922733652443717868298625458090419<158> |
factorization results 素因数分解の結果 | GMP-ECM 6.3 [configured with GMP 5.0.1] [ECM] Input number is 31504041998517249661722986237771142963524806047964519593430130699527373526574464354022362205392195913858334142435891960252597770533927384890712494059164660182107791602665023945103929582014105512650673318404891 (209 digits) [Sun Sep 04 17:07:43 2011] Using MODMULN Using B1=110000000, B2=776278396540, polynomial Dickson(30), sigma=2706288145 dF=131072, k=4, d=1345890, d2=11, i0=71 Expected number of curves to find a factor of n digits: 35 40 45 50 55 60 65 70 75 80 34 135 614 3135 17884 111314 752662 5482978 4.3e+007 3.6e+008 Step 1 took 806198ms Using 25 small primes for NTT Estimated memory usage: 728M Initializing tables of differences for F took 749ms Computing roots of F took 37471ms Building F from its roots took 31293ms Computing 1/F took 12870ms Initializing table of differences for G took 640ms Computing roots of G took 30670ms Building G from its roots took 24383ms Computing roots of G took 30919ms Building G from its roots took 30436ms Computing G * H took 7395ms Reducing G * H mod F took 7113ms Computing roots of G took 30732ms Building G from its roots took 30733ms Computing G * H took 7410ms Reducing G * H mod F took 7145ms Computing roots of G took 30748ms Building G from its roots took 30592ms Computing G * H took 7379ms Reducing G * H mod F took 7160ms Computing polyeval(F,G) took 62432ms Computing product of all F(g_i) took 234ms Step 2 took 431015ms ********** Factor found in step 2: 2163546185225472963998269559670708978723650032010489 Found probable prime factor of 52 digits: 2163546185225472963998269559670708978723650032010489 Probable prime cofactor 14561298581769850460034223464946834845855539319796618931411101510838283653388087702755125457070888479716080359068510172446919922733652443717868298625458090419 has 158 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | 118 | Makoto Kamada | February 17, 2009 17:00:00 UTC 2009 年 2 月 18 日 (水) 2 時 0 分 0 秒 (日本時間) |
786 | Andreas Tete | May 12, 2009 04:27:59 UTC 2009 年 5 月 12 日 (火) 13 時 27 分 59 秒 (日本時間) | |||
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 4643 | 643 | Dmitry Domanov | December 19, 2009 22:32:33 UTC 2009 年 12 月 20 日 (日) 7 時 32 分 33 秒 (日本時間) |
4000 | Wataru Sakai | May 30, 2011 10:50:44 UTC 2011 年 5 月 30 日 (月) 19 時 50 分 44 秒 (日本時間) | |||
50 | 43e6 | 0 / 1733 | - | - | |
55 | 11e7 | 1980 / 17478 | yoyo@home | August 30, 2011 11:40:20 UTC 2011 年 8 月 30 日 (火) 20 時 40 分 20 秒 (日本時間) |
name 名前 | ebina |
---|---|
date 日付 | November 21, 2021 00:25:02 UTC 2021 年 11 月 21 日 (日) 9 時 25 分 2 秒 (日本時間) |
composite number 合成数 | 2000607937998553847867999279634970191353296469676094338977065348682204772584145822075385889630675336835542521250884511837679951472229175024113083434303576334713107060864222400713954125449693133631<196> |
prime factors 素因数 | 4398319295793605436366547174626613616192487581964069362746394651131391138394724422592093<88> 454857367884105960057134571599493689198217067567872960240963758274984691620298517745664983901668638431073867<108> |
factorization results 素因数分解の結果 | Sun Nov 21 08:12:18 2021 Msieve v. 1.53 (SVN unknown) Sun Nov 21 08:12:18 2021 random seeds: c0c67db8 2da0376d Sun Nov 21 08:12:18 2021 factoring 2000607937998553847867999279634970191353296469676094338977065348682204772584145822075385889630675336835542521250884511837679951472229175024113083434303576334713107060864222400713954125449693133631 (196 digits) Sun Nov 21 08:12:20 2021 searching for 15-digit factors Sun Nov 21 08:12:21 2021 commencing number field sieve (196-digit input) Sun Nov 21 08:12:21 2021 R0: -1000000000000000000000000000000000000 Sun Nov 21 08:12:21 2021 R1: 1 Sun Nov 21 08:12:21 2021 A0: 17 Sun Nov 21 08:12:21 2021 A1: 0 Sun Nov 21 08:12:21 2021 A2: 0 Sun Nov 21 08:12:21 2021 A3: 0 Sun Nov 21 08:12:21 2021 A4: 0 Sun Nov 21 08:12:21 2021 A5: 0 Sun Nov 21 08:12:21 2021 A6: 100 Sun Nov 21 08:12:21 2021 skew 0.74, size 9.777e-11, alpha -1.265, combined = 3.305e-12 rroots = 0 Sun Nov 21 08:12:21 2021 Sun Nov 21 08:12:21 2021 commencing square root phase Sun Nov 21 08:12:21 2021 reading relations for dependency 1 Sun Nov 21 08:12:22 2021 read 2050330 cycles Sun Nov 21 08:12:25 2021 cycles contain 5810162 unique relations Sun Nov 21 08:13:40 2021 read 5810162 relations Sun Nov 21 08:14:14 2021 multiplying 5810162 relations Sun Nov 21 08:19:16 2021 multiply complete, coefficients have about 177.10 million bits Sun Nov 21 08:19:18 2021 initial square root is modulo 2269159 Sun Nov 21 08:25:09 2021 GCD is N, no factor found Sun Nov 21 08:25:09 2021 reading relations for dependency 2 Sun Nov 21 08:25:09 2021 read 2050183 cycles Sun Nov 21 08:25:13 2021 cycles contain 5811196 unique relations Sun Nov 21 08:26:23 2021 read 5811196 relations Sun Nov 21 08:26:56 2021 multiplying 5811196 relations Sun Nov 21 08:31:58 2021 multiply complete, coefficients have about 177.14 million bits Sun Nov 21 08:32:00 2021 initial square root is modulo 2277307 Sun Nov 21 08:37:51 2021 sqrtTime: 1530 Sun Nov 21 08:37:51 2021 p88 factor: 4398319295793605436366547174626613616192487581964069362746394651131391138394724422592093 Sun Nov 21 08:37:51 2021 p108 factor: 454857367884105960057134571599493689198217067567872960240963758274984691620298517745664983901668638431073867 Sun Nov 21 08:37:51 2021 elapsed time 00:25:33 Sun Nov 21 08:37:51 2021 -> Computing 1.63745e+09 scale for this machine... Sun Nov 21 08:37:51 2021 -> procrels -speedtest> PIPE Sun Nov 21 08:37:54 2021 -> Factorization summary written to s219-11113_218.txt |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | February 17, 2009 17:00:00 UTC 2009 年 2 月 18 日 (水) 2 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 280 | Makoto Kamada | December 15, 2009 06:46:10 UTC 2009 年 12 月 15 日 (火) 15 時 46 分 10 秒 (日本時間) | |
45 | 11e6 | 601 | 230 | Ignacio Santos | November 21, 2013 18:32:45 UTC 2013 年 11 月 22 日 (金) 3 時 32 分 45 秒 (日本時間) |
371 | Cyp | January 7, 2014 16:56:26 UTC 2014 年 1 月 8 日 (水) 1 時 56 分 26 秒 (日本時間) | |||
50 | 43e6 | 1280 / 7407 | Robert Balfour | July 11, 2020 13:57:15 UTC 2020 年 7 月 11 日 (土) 22 時 57 分 15 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 8, 2010 10:30:13 UTC 2010 年 1 月 8 日 (金) 19 時 30 分 13 秒 (日本時間) |
composite number 合成数 | 63029570512094460652498501629535001234434138479370011879183154414442999176392602118461682653802079206866138869649112490072054774713721266473329762077868118061192762768231003880163390295047092228460258815804210993<212> |
prime factors 素因数 | 142696734285125126286399579576382843<36> 441702964176838463664490072755710160233401342582483483116730849669585228344966467962882882162753117874480582064064814597031983269764175842794177075659803942562872676312601002051<177> |
factorization results 素因数分解の結果 | Factor=142696734285125126286399579576382843 Method=ECM B1=11000000 Sigma=377269811 |
software ソフトウェア | ECMNET |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | February 17, 2009 17:00:00 UTC 2009 年 2 月 18 日 (水) 2 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 350 / 2318 | Serge Batalov | May 10, 2009 23:41:36 UTC 2009 年 5 月 11 日 (月) 8 時 41 分 36 秒 (日本時間) |
name 名前 | RSALS, Lionel Debroux, Jeff Gilchrist |
---|---|
date 日付 | January 26, 2010 09:08:36 UTC 2010 年 1 月 26 日 (火) 18 時 8 分 36 秒 (日本時間) |
composite number 合成数 | 34839366557982356737476103515734488867538681230663309166211024096053823337506912915909270373881381743101810873009375526269002000457868828781486664443810353131519011851338409195637979044162982874568167955049699<209> |
prime factors 素因数 | 2199383024360263530584374444682248979660150453219567<52> 792259195056401987851787856415857022330884562795567939183517075721536907103<75> 19994110736630588381222195464534957063827305932738138163737190127540770351753894099<83> |
factorization results 素因数分解の結果 | Sat Jan 23 09:22:27 2010 Sat Jan 23 09:22:27 2010 Sat Jan 23 09:22:27 2010 Msieve v. 1.43 Sat Jan 23 09:22:27 2010 random seeds: 3c6db364 afe3e736 Sat Jan 23 09:22:27 2010 factoring 34839366557982356737476103515734488867538681230663309166211024096053823337506912915909270373881381743101810873009375526269002000457868828781486664443810353131519011851338409195637979044162982874568167955049699 (209 digits) Sat Jan 23 09:22:32 2010 searching for 15-digit factors Sat Jan 23 09:22:32 2010 commencing number field sieve (209-digit input) Sat Jan 23 09:22:32 2010 R0: -1000000000000000000000000000000000000 Sat Jan 23 09:22:32 2010 R1: 1 Sat Jan 23 09:22:32 2010 A0: 17 Sat Jan 23 09:22:32 2010 A1: 0 Sat Jan 23 09:22:32 2010 A2: 0 Sat Jan 23 09:22:32 2010 A3: 0 Sat Jan 23 09:22:32 2010 A4: 0 Sat Jan 23 09:22:32 2010 A5: 0 Sat Jan 23 09:22:32 2010 A6: 10000 Sat Jan 23 09:22:32 2010 skew 0.35, size 7.883216e-011, alpha -2.627909, combined = 2.847648e-012 Sat Jan 23 09:22:32 2010 Sat Jan 23 09:22:32 2010 commencing linear algebra Sat Jan 23 09:22:34 2010 read 4304991 cycles Sat Jan 23 09:22:42 2010 cycles contain 11701293 unique relations Sat Jan 23 09:24:25 2010 read 11701293 relations Sat Jan 23 09:24:44 2010 using 20 quadratic characters above 536870768 Sat Jan 23 09:25:34 2010 building initial matrix Sat Jan 23 09:28:10 2010 memory use: 1511.1 MB Sat Jan 23 09:28:14 2010 read 4304991 cycles Sat Jan 23 09:28:24 2010 matrix is 4304597 x 4304991 (1269.6 MB) with weight 376829331 (87.53/col) Sat Jan 23 09:28:24 2010 sparse part has weight 285454223 (66.31/col) Sat Jan 23 09:29:38 2010 filtering completed in 3 passes Sat Jan 23 09:29:40 2010 matrix is 4296290 x 4296490 (1268.2 MB) with weight 376377359 (87.60/col) Sat Jan 23 09:29:40 2010 sparse part has weight 285185407 (66.38/col) Sat Jan 23 09:29:59 2010 read 4296490 cycles Sat Jan 23 09:30:05 2010 matrix is 4296290 x 4296490 (1268.2 MB) with weight 376377359 (87.60/col) Sat Jan 23 09:30:05 2010 sparse part has weight 285185407 (66.38/col) Sat Jan 23 09:30:06 2010 saving the first 48 matrix rows for later Sat Jan 23 09:30:08 2010 matrix is 4296242 x 4296490 (1211.3 MB) with weight 298591985 (69.50/col) Sat Jan 23 09:30:08 2010 sparse part has weight 274580316 (63.91/col) Sat Jan 23 09:30:08 2010 matrix includes 64 packed rows Sat Jan 23 09:30:08 2010 using block size 65536 for processor cache size 6144 kB Sat Jan 23 09:30:24 2010 commencing Lanczos iteration (4 threads) Sat Jan 23 09:30:24 2010 memory use: 1311.0 MB Sat Jan 23 09:30:42 2010 linear algebra at 0.0%, ETA 25h 3m Sat Jan 23 12:05:02 2010 lanczos halted after 6463 iterations (dim = 408832) Sat Jan 23 12:05:06 2010 BLanczosTime: 9754 Sat Jan 23 12:05:06 2010 elapsed time 02:42:39 Sat Jan 23 15:17:41 2010 Sat Jan 23 15:17:41 2010 Sat Jan 23 15:17:41 2010 Msieve v. 1.43 Sat Jan 23 15:17:41 2010 random seeds: b8c1b9cd 4df02b22 Sat Jan 23 15:17:41 2010 factoring 34839366557982356737476103515734488867538681230663309166211024096053823337506912915909270373881381743101810873009375526269002000457868828781486664443810353131519011851338409195637979044162982874568167955049699 (209 digits) Sat Jan 23 15:17:44 2010 no P-1/P+1/ECM available, skipping Sat Jan 23 15:17:44 2010 commencing number field sieve (209-digit input) Sat Jan 23 15:17:44 2010 R0: -1000000000000000000000000000000000000 Sat Jan 23 15:17:44 2010 R1: 1 Sat Jan 23 15:17:44 2010 A0: 17 Sat Jan 23 15:17:44 2010 A1: 0 Sat Jan 23 15:17:44 2010 A2: 0 Sat Jan 23 15:17:44 2010 A3: 0 Sat Jan 23 15:17:44 2010 A4: 0 Sat Jan 23 15:17:44 2010 A5: 0 Sat Jan 23 15:17:44 2010 A6: 10000 Sat Jan 23 15:17:44 2010 skew 0.35, size 7.883216e-11, alpha -2.627909, combined = 2.847648e-12 Sat Jan 23 15:17:44 2010 Sat Jan 23 15:17:44 2010 commencing linear algebra Sat Jan 23 15:17:45 2010 read 4296490 cycles Sat Jan 23 15:17:50 2010 matrix is 4296290 x 4296490 (1268.2 MB) with weight 376377359 (87.60/col) Sat Jan 23 15:17:50 2010 sparse part has weight 285185407 (66.38/col) Sat Jan 23 15:17:50 2010 saving the first 48 matrix rows for later Sat Jan 23 15:17:54 2010 matrix is 4296242 x 4296490 (1211.3 MB) with weight 298591985 (69.50/col) Sat Jan 23 15:17:54 2010 sparse part has weight 274580316 (63.91/col) Sat Jan 23 15:17:54 2010 matrix includes 64 packed rows Sat Jan 23 15:17:54 2010 using block size 65536 for processor cache size 6144 kB Sat Jan 23 15:18:19 2010 commencing Lanczos iteration (8 threads) Sat Jan 23 15:18:19 2010 memory use: 1442.1 MB Sat Jan 23 15:18:19 2010 restarting at iteration 6463 (dim = 408832) Sat Jan 23 15:18:41 2010 linear algebra at 9.5%, ETA 31h30m Sun Jan 24 21:42:17 2010 lanczos halted after 67936 iterations (dim = 4296240) Sun Jan 24 21:42:32 2010 recovered 38 nontrivial dependencies Sun Jan 24 21:42:32 2010 BLanczosTime: 109488 Sun Jan 24 21:42:32 2010 elapsed time 30:24:51 Mon Jan 25 05:48:03 2010 Mon Jan 25 05:48:03 2010 Mon Jan 25 05:48:03 2010 Msieve v. 1.43 Mon Jan 25 05:48:03 2010 random seeds: 757e3a48 38307c31 Mon Jan 25 05:48:03 2010 factoring 34839366557982356737476103515734488867538681230663309166211024096053823337506912915909270373881381743101810873009375526269002000457868828781486664443810353131519011851338409195637979044162982874568167955049699 (209 digits) Mon Jan 25 05:48:04 2010 searching for 15-digit factors Mon Jan 25 05:48:05 2010 commencing number field sieve (209-digit input) Mon Jan 25 05:48:05 2010 R0: -1000000000000000000000000000000000000 Mon Jan 25 05:48:05 2010 R1: 1 Mon Jan 25 05:48:05 2010 A0: 17 Mon Jan 25 05:48:05 2010 A1: 0 Mon Jan 25 05:48:05 2010 A2: 0 Mon Jan 25 05:48:05 2010 A3: 0 Mon Jan 25 05:48:05 2010 A4: 0 Mon Jan 25 05:48:05 2010 A5: 0 Mon Jan 25 05:48:05 2010 A6: 10000 Mon Jan 25 05:48:05 2010 skew 0.35, size 7.883216e-011, alpha -2.627909, combined = 2.847648e-012 Mon Jan 25 05:48:05 2010 Mon Jan 25 05:48:05 2010 commencing square root phase Mon Jan 25 05:48:05 2010 reading relations for dependency 1 Mon Jan 25 05:48:06 2010 read 2147242 cycles Mon Jan 25 05:48:10 2010 cycles contain 5845544 unique relations Mon Jan 25 05:49:22 2010 read 5845544 relations Mon Jan 25 05:49:57 2010 multiplying 5845544 relations Mon Jan 25 05:57:50 2010 multiply complete, coefficients have about 214.99 million bits Mon Jan 25 05:57:52 2010 initial square root is modulo 51945403 Mon Jan 25 06:12:03 2010 reading relations for dependency 2 Mon Jan 25 06:12:05 2010 read 2147821 cycles Mon Jan 25 06:12:09 2010 cycles contain 5848596 unique relations Mon Jan 25 06:13:03 2010 read 5848596 relations Mon Jan 25 06:13:37 2010 multiplying 5848596 relations Mon Jan 25 06:21:42 2010 multiply complete, coefficients have about 215.10 million bits Mon Jan 25 06:21:45 2010 initial square root is modulo 52418659 Mon Jan 25 06:36:00 2010 reading relations for dependency 3 Mon Jan 25 06:36:02 2010 read 2147375 cycles Mon Jan 25 06:36:06 2010 cycles contain 5843850 unique relations Mon Jan 25 06:37:05 2010 read 5843850 relations Mon Jan 25 06:37:39 2010 multiplying 5843850 relations Mon Jan 25 06:45:30 2010 multiply complete, coefficients have about 214.93 million bits Mon Jan 25 06:45:32 2010 initial square root is modulo 51663739 Mon Jan 25 07:00:28 2010 sqrtTime: 4343 Mon Jan 25 07:00:28 2010 prp52 factor: 2199383024360263530584374444682248979660150453219567 Mon Jan 25 07:00:28 2010 prp75 factor: 792259195056401987851787856415857022330884562795567939183517075721536907103 Mon Jan 25 07:00:28 2010 prp83 factor: 19994110736630588381222195464534957063827305932738138163737190127540770351753894099 Mon Jan 25 07:00:28 2010 elapsed time 01:12:25 |
software ソフトウェア | ggnfs-lasieve4I14e on the RSALS grid + msieve (Lionel Debroux, Jeff Gilchrist) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | February 17, 2009 17:00:00 UTC 2009 年 2 月 18 日 (水) 2 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 280 / 2318 | Makoto Kamada | December 15, 2009 06:46:25 UTC 2009 年 12 月 15 日 (火) 15 時 46 分 25 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | July 8, 2009 16:49:06 UTC 2009 年 7 月 9 日 (木) 1 時 49 分 6 秒 (日本時間) |
composite number 合成数 | 111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111113<222> |
prime factors 素因数 | 551004498127928469834445340613015226657914601778213<51> 676677276408056094567102599764052489094573413056051<51> 298003080664845879339921984943623072483939555335465806206783935206506443967104530715870831039336178009293998396643169751<120> |
factorization results 素因数分解の結果 | Sieving took about 150 cpu-days on various cpu's. Using siever 14e for sieving on rational side in 5M-43M for 57.7M relations. Postprocessing took 6 days on Xeon E5430 x 1 thread. Factors found in 6th dependency: C222=P51 · P51 · P120. I'm very surprised that this split is similar to Serge Batalov's С222=P55 · P55 · P114 Postprocessing log below. ================================= Wed Jul 01 14:11:35 2009 Msieve v. 1.42 Wed Jul 01 14:11:35 2009 random seeds: f8ebc210 61bba000 Wed Jul 01 14:11:35 2009 factoring 111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111113 (222 digits) Wed Jul 01 14:11:37 2009 searching for 15-digit factors Wed Jul 01 14:11:41 2009 commencing number field sieve (222-digit input) Wed Jul 01 14:11:41 2009 R0: -10000000000000000000000000000000000000 Wed Jul 01 14:11:41 2009 R1: 1 Wed Jul 01 14:11:41 2009 A0: 17 Wed Jul 01 14:11:41 2009 A1: 0 Wed Jul 01 14:11:41 2009 A2: 0 Wed Jul 01 14:11:41 2009 A3: 0 Wed Jul 01 14:11:41 2009 A4: 0 Wed Jul 01 14:11:41 2009 A5: 0 Wed Jul 01 14:11:41 2009 A6: 1 Wed Jul 01 14:11:41 2009 skew 1.60, size 6.533884e-011, alpha 1.099275, combined = 2.482264e-012 Wed Jul 01 14:11:41 2009 Wed Jul 01 14:11:41 2009 commencing relation filtering Wed Jul 01 14:11:41 2009 commencing duplicate removal, pass 1 ... <errors skipped> ... Wed Jul 01 14:20:30 2009 found 12936357 hash collisions in 57701157 relations Wed Jul 01 14:20:56 2009 added 9 free relations Wed Jul 01 14:20:56 2009 commencing duplicate removal, pass 2 Wed Jul 01 14:23:12 2009 found 11910252 duplicates and 45790914 unique relations Wed Jul 01 14:23:12 2009 memory use: 298.4 MB Wed Jul 01 14:23:12 2009 reading rational ideals above 42926080 Wed Jul 01 14:23:12 2009 reading algebraic ideals above 42926080 Wed Jul 01 14:23:12 2009 commencing singleton removal, pass 1 Wed Jul 01 14:30:55 2009 relations with 0 large ideals: 1510351 Wed Jul 01 14:30:55 2009 relations with 1 large ideals: 6811639 Wed Jul 01 14:30:55 2009 relations with 2 large ideals: 14796919 Wed Jul 01 14:30:55 2009 relations with 3 large ideals: 15230713 Wed Jul 01 14:30:55 2009 relations with 4 large ideals: 6426946 Wed Jul 01 14:30:55 2009 relations with 5 large ideals: 11119 Wed Jul 01 14:30:55 2009 relations with 6 large ideals: 0 Wed Jul 01 14:30:55 2009 relations with 7+ large ideals: 1003227 Wed Jul 01 14:30:55 2009 45790914 relations and about 35545167 large ideals Wed Jul 01 14:30:55 2009 commencing singleton removal, pass 2 Wed Jul 01 14:38:32 2009 found 10279629 singletons Wed Jul 01 14:38:32 2009 current dataset: 35511285 relations and about 24146004 large ideals Wed Jul 01 14:38:32 2009 commencing singleton removal, pass 3 Wed Jul 01 14:44:37 2009 found 2264708 singletons Wed Jul 01 14:44:37 2009 current dataset: 33246577 relations and about 21818327 large ideals Wed Jul 01 14:44:37 2009 commencing singleton removal, pass 4 Wed Jul 01 14:50:24 2009 found 493843 singletons Wed Jul 01 14:50:24 2009 current dataset: 32752734 relations and about 21321359 large ideals Wed Jul 01 14:50:24 2009 commencing singleton removal, final pass Wed Jul 01 14:56:34 2009 memory use: 542.2 MB Wed Jul 01 14:56:34 2009 commencing in-memory singleton removal Wed Jul 01 14:56:38 2009 begin with 32752734 relations and 26008754 unique ideals Wed Jul 01 14:57:39 2009 reduce to 25669667 relations and 18602735 ideals in 15 passes Wed Jul 01 14:57:39 2009 max relations containing the same ideal: 29 Wed Jul 01 14:57:47 2009 reading rational ideals above 720000 Wed Jul 01 14:57:47 2009 reading algebraic ideals above 720000 Wed Jul 01 14:57:47 2009 commencing singleton removal, final pass Wed Jul 01 15:04:42 2009 keeping 21666592 ideals with weight <= 20, new excess is 2133916 Wed Jul 01 15:05:28 2009 memory use: 695.6 MB Wed Jul 01 15:05:28 2009 commencing in-memory singleton removal Wed Jul 01 15:05:34 2009 begin with 25669677 relations and 21666592 unique ideals Wed Jul 01 15:06:28 2009 reduce to 25657866 relations and 21654721 ideals in 10 passes Wed Jul 01 15:06:28 2009 max relations containing the same ideal: 20 Wed Jul 01 15:06:56 2009 removing 3005017 relations and 2605017 ideals in 400000 cliques Wed Jul 01 15:06:58 2009 commencing in-memory singleton removal Wed Jul 01 15:07:03 2009 begin with 22652849 relations and 21654721 unique ideals Wed Jul 01 15:07:46 2009 reduce to 22377318 relations and 18768304 ideals in 9 passes Wed Jul 01 15:07:46 2009 max relations containing the same ideal: 20 Wed Jul 01 15:08:10 2009 removing 2232892 relations and 1832892 ideals in 400000 cliques Wed Jul 01 15:08:12 2009 commencing in-memory singleton removal Wed Jul 01 15:08:16 2009 begin with 20144426 relations and 18768304 unique ideals Wed Jul 01 15:08:54 2009 reduce to 19976966 relations and 16764856 ideals in 9 passes Wed Jul 01 15:08:54 2009 max relations containing the same ideal: 20 Wed Jul 01 15:09:16 2009 removing 1985426 relations and 1585426 ideals in 400000 cliques Wed Jul 01 15:09:17 2009 commencing in-memory singleton removal Wed Jul 01 15:09:21 2009 begin with 17991540 relations and 16764856 unique ideals Wed Jul 01 15:09:51 2009 reduce to 17842569 relations and 15027706 ideals in 8 passes Wed Jul 01 15:09:51 2009 max relations containing the same ideal: 20 Wed Jul 01 15:10:10 2009 removing 1626832 relations and 1287312 ideals in 339520 cliques Wed Jul 01 15:10:11 2009 commencing in-memory singleton removal Wed Jul 01 15:10:15 2009 begin with 16215737 relations and 15027706 unique ideals Wed Jul 01 15:10:41 2009 reduce to 16105168 relations and 13627906 ideals in 8 passes Wed Jul 01 15:10:41 2009 max relations containing the same ideal: 20 Wed Jul 01 15:11:00 2009 relations with 0 large ideals: 188734 Wed Jul 01 15:11:00 2009 relations with 1 large ideals: 934969 Wed Jul 01 15:11:00 2009 relations with 2 large ideals: 2781036 Wed Jul 01 15:11:00 2009 relations with 3 large ideals: 4487783 Wed Jul 01 15:11:00 2009 relations with 4 large ideals: 4224982 Wed Jul 01 15:11:00 2009 relations with 5 large ideals: 2362319 Wed Jul 01 15:11:00 2009 relations with 6 large ideals: 790965 Wed Jul 01 15:11:00 2009 relations with 7+ large ideals: 334380 Wed Jul 01 15:11:00 2009 commencing 2-way merge Wed Jul 01 15:11:25 2009 reduce to 10513011 relation sets and 8035749 unique ideals Wed Jul 01 15:11:25 2009 commencing full merge Wed Jul 01 15:14:22 2009 memory use: 668.7 MB Wed Jul 01 15:14:24 2009 found 5321363 cycles, need 4983949 Wed Jul 01 15:14:25 2009 weight of 4983949 cycles is about 348959609 (70.02/cycle) Wed Jul 01 15:14:25 2009 distribution of cycle lengths: Wed Jul 01 15:14:25 2009 1 relations: 646624 Wed Jul 01 15:14:25 2009 2 relations: 592897 Wed Jul 01 15:14:25 2009 3 relations: 585016 Wed Jul 01 15:14:25 2009 4 relations: 540378 Wed Jul 01 15:14:25 2009 5 relations: 485992 Wed Jul 01 15:14:25 2009 6 relations: 431904 Wed Jul 01 15:14:25 2009 7 relations: 374722 Wed Jul 01 15:14:25 2009 8 relations: 322521 Wed Jul 01 15:14:25 2009 9 relations: 271731 Wed Jul 01 15:14:25 2009 10+ relations: 732164 Wed Jul 01 15:14:25 2009 heaviest cycle: 17 relations Wed Jul 01 15:14:27 2009 commencing cycle optimization Wed Jul 01 15:14:40 2009 start with 26812971 relations Wed Jul 01 15:15:54 2009 pruned 764649 relations Wed Jul 01 15:15:54 2009 memory use: 702.9 MB Wed Jul 01 15:15:54 2009 distribution of cycle lengths: Wed Jul 01 15:15:54 2009 1 relations: 646624 Wed Jul 01 15:15:54 2009 2 relations: 608083 Wed Jul 01 15:15:54 2009 3 relations: 609511 Wed Jul 01 15:15:54 2009 4 relations: 558036 Wed Jul 01 15:15:54 2009 5 relations: 502517 Wed Jul 01 15:15:54 2009 6 relations: 441832 Wed Jul 01 15:15:54 2009 7 relations: 381306 Wed Jul 01 15:15:54 2009 8 relations: 323543 Wed Jul 01 15:15:54 2009 9 relations: 269057 Wed Jul 01 15:15:54 2009 10+ relations: 643440 Wed Jul 01 15:15:54 2009 heaviest cycle: 17 relations Wed Jul 01 15:16:18 2009 RelProcTime: 3714 Wed Jul 01 15:16:18 2009 Wed Jul 01 15:16:18 2009 commencing linear algebra Wed Jul 01 15:16:34 2009 read 4983949 cycles Wed Jul 01 15:16:48 2009 cycles contain 14619558 unique relations Wed Jul 01 15:24:04 2009 read 14619558 relations Wed Jul 01 15:24:44 2009 using 20 quadratic characters above 536870730 Wed Jul 01 15:26:02 2009 building initial matrix Wed Jul 01 15:30:16 2009 memory use: 1620.3 MB Wed Jul 01 15:30:38 2009 read 4983949 cycles Wed Jul 01 15:34:16 2009 matrix is 4983422 x 4983949 (1411.7 MB) with weight 433789956 (87.04/col) Wed Jul 01 15:34:16 2009 sparse part has weight 335172179 (67.25/col) Wed Jul 01 15:37:37 2009 filtering completed in 3 passes Wed Jul 01 15:37:39 2009 matrix is 4960805 x 4961005 (1408.5 MB) with weight 432669651 (87.21/col) Wed Jul 01 15:37:39 2009 sparse part has weight 334512750 (67.43/col) Wed Jul 01 15:38:37 2009 read 4961005 cycles Wed Jul 01 16:11:38 2009 matrix is 4960805 x 4961005 (1408.5 MB) with weight 432669651 (87.21/col) Wed Jul 01 16:11:38 2009 sparse part has weight 334512750 (67.43/col) Wed Jul 01 16:11:39 2009 saving the first 48 matrix rows for later Wed Jul 01 16:11:42 2009 matrix is 4960757 x 4961005 (1336.0 MB) with weight 344782488 (69.50/col) Wed Jul 01 16:11:42 2009 sparse part has weight 320465925 (64.60/col) Wed Jul 01 16:11:42 2009 matrix includes 64 packed rows Wed Jul 01 16:11:42 2009 using block size 65536 for processor cache size 6144 kB Wed Jul 01 16:12:22 2009 commencing Lanczos iteration Wed Jul 01 16:12:22 2009 memory use: 1379.2 MB Tue Jul 07 06:20:38 2009 lanczos halted after 78450 iterations (dim = 4960755) Tue Jul 07 06:21:31 2009 recovered 34 nontrivial dependencies Tue Jul 07 06:21:51 2009 BLanczosTime: 486333 Tue Jul 07 06:21:51 2009 Tue Jul 07 06:21:51 2009 commencing square root phase Tue Jul 07 06:21:51 2009 reading relations for dependency 1 Tue Jul 07 06:22:29 2009 read 2480662 cycles Tue Jul 07 06:22:37 2009 cycles contain 8947738 unique relations Tue Jul 07 06:37:31 2009 read 8947738 relations Tue Jul 07 06:38:47 2009 multiplying 7302868 relations Tue Jul 07 07:01:05 2009 multiply complete, coefficients have about 177.09 million bits Tue Jul 07 07:01:07 2009 initial square root is modulo 2265643 Tue Jul 07 07:30:25 2009 reading relations for dependency 2 Tue Jul 07 07:30:27 2009 read 2481818 cycles Tue Jul 07 07:30:35 2009 cycles contain 8947960 unique relations Tue Jul 07 07:44:37 2009 read 8947960 relations Tue Jul 07 07:45:54 2009 multiplying 7304400 relations Tue Jul 07 08:07:55 2009 multiply complete, coefficients have about 177.13 million bits Tue Jul 07 08:07:57 2009 initial square root is modulo 2273239 Tue Jul 07 08:37:11 2009 reading relations for dependency 3 Tue Jul 07 08:37:13 2009 read 2482950 cycles Tue Jul 07 08:37:21 2009 cycles contain 8953002 unique relations Tue Jul 07 08:51:19 2009 read 8953002 relations Tue Jul 07 08:52:29 2009 multiplying 7306608 relations Tue Jul 07 09:15:24 2009 multiply complete, coefficients have about 177.18 million bits Tue Jul 07 09:15:26 2009 initial square root is modulo 2282737 Tue Jul 07 09:40:26 2009 reading relations for dependency 4 Tue Jul 07 09:40:29 2009 read 2481076 cycles Tue Jul 07 09:40:36 2009 cycles contain 8944839 unique relations Tue Jul 07 09:52:26 2009 read 8944839 relations Tue Jul 07 09:53:35 2009 multiplying 7300174 relations Tue Jul 07 10:13:57 2009 multiply complete, coefficients have about 177.03 million bits Tue Jul 07 10:13:59 2009 initial square root is modulo 2254477 Tue Jul 07 10:39:07 2009 reading relations for dependency 5 Tue Jul 07 10:39:09 2009 read 2482085 cycles Tue Jul 07 10:39:16 2009 cycles contain 8950605 unique relations Tue Jul 07 10:51:17 2009 read 8950605 relations Tue Jul 07 10:52:27 2009 multiplying 7305078 relations Tue Jul 07 11:14:34 2009 multiply complete, coefficients have about 177.14 million bits Tue Jul 07 11:14:36 2009 initial square root is modulo 2276503 Tue Jul 07 11:43:26 2009 reading relations for dependency 6 Tue Jul 07 11:43:28 2009 read 2478711 cycles Tue Jul 07 11:43:35 2009 cycles contain 8941063 unique relations Tue Jul 07 11:57:15 2009 read 8941063 relations Tue Jul 07 11:58:30 2009 multiplying 7295494 relations Tue Jul 07 12:20:25 2009 multiply complete, coefficients have about 176.91 million bits Tue Jul 07 12:20:27 2009 initial square root is modulo 2233243 Tue Jul 07 12:48:44 2009 sqrtTime: 23213 Tue Jul 07 12:48:44 2009 prp51 factor: 551004498127928469834445340613015226657914601778213 Tue Jul 07 12:48:44 2009 prp51 factor: 676677276408056094567102599764052489094573413056051 Tue Jul 07 12:48:44 2009 prp120 factor: 298003080664845879339921984943623072483939555335465806206783935206506443967104530715870831039336178009293998396643169751 Tue Jul 07 12:48:44 2009 elapsed time 142:37:09 |
software ソフトウェア | GGNFS/msieve 1.42beta |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | February 17, 2009 17:00:00 UTC 2009 年 2 月 18 日 (水) 2 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1939 | Jo Yeong Uk | March 6, 2009 08:20:01 UTC 2009 年 3 月 6 日 (金) 17 時 20 分 1 秒 (日本時間) | |
45 | 11e6 | 2810 | 50 | Makoto Kamada | February 20, 2009 14:11:40 UTC 2009 年 2 月 20 日 (金) 23 時 11 分 40 秒 (日本時間) |
60 | Makoto Kamada | February 21, 2009 13:12:29 UTC 2009 年 2 月 21 日 (土) 22 時 12 分 29 秒 (日本時間) | |||
2700 | Jo Yeong Uk | May 1, 2009 03:20:38 UTC 2009 年 5 月 1 日 (金) 12 時 20 分 38 秒 (日本時間) | |||
50 | 43e6 | 1924 / 6849 | 45 | Dmitry Domanov | May 5, 2009 01:03:21 UTC 2009 年 5 月 5 日 (火) 10 時 3 分 21 秒 (日本時間) |
122 | Dmitry Domanov | May 26, 2009 14:22:29 UTC 2009 年 5 月 26 日 (火) 23 時 22 分 29 秒 (日本時間) | |||
350 | Dmitry Domanov | May 27, 2009 19:29:46 UTC 2009 年 5 月 28 日 (木) 4 時 29 分 46 秒 (日本時間) | |||
200 | Dmitry Domanov | May 28, 2009 10:53:02 UTC 2009 年 5 月 28 日 (木) 19 時 53 分 2 秒 (日本時間) | |||
1207 | Dmitry Domanov | June 1, 2009 13:15:37 UTC 2009 年 6 月 1 日 (月) 22 時 15 分 37 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 7, 2010 18:34:18 UTC 2010 年 1 月 8 日 (金) 3 時 34 分 18 秒 (日本時間) |
composite number 合成数 | 186406989799828158852383130413480342087397029011843312174835142124238506475881349490420144019158761286034498304320856237393178775468996724214046150679816039415534304785904395545790066173922157969596908119454147394281<216> |
prime factors 素因数 | 1440753351836151551475189259809686931548717<43> |
composite cofactor 合成数の残り | 129381611059425204857764193540199518541099205111705450494504413499411480415502247763038162235783108782157622190368480959495160841609898594095452863677403827579311627602670893<174> |
factorization results 素因数分解の結果 | Factor=1440753351836151551475189259809686931548717 Method=ECM B1=11000000 Sigma=3191198134 |
software ソフトウェア | ECMNET |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | February 17, 2009 17:00:00 UTC 2009 年 2 月 18 日 (水) 2 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 400 | Serge Batalov | May 10, 2009 23:21:18 UTC 2009 年 5 月 11 日 (月) 8 時 21 分 18 秒 (日本時間) | |
45 | 11e6 | 1887 | 820 | Dmitry Domanov | January 7, 2010 18:33:53 UTC 2010 年 1 月 8 日 (金) 3 時 33 分 53 秒 (日本時間) |
1067 | KTakahashi | October 12, 2014 22:19:01 UTC 2014 年 10 月 13 日 (月) 7 時 19 分 1 秒 (日本時間) | |||
50 | 43e6 | 1280 | Robert Balfour | July 11, 2020 13:57:27 UTC 2020 年 7 月 11 日 (土) 22 時 57 分 27 秒 (日本時間) | |
55 | 11e7 | 0 | - | - | |
60 | 26e7 | 10000 / 41837 | Thomas Kozlowski | July 21, 2024 06:04:54 UTC 2024 年 7 月 21 日 (日) 15 時 4 分 54 秒 (日本時間) |
name 名前 | Makoto Kamada |
---|---|
date 日付 | December 15, 2009 06:40:15 UTC 2009 年 12 月 15 日 (火) 15 時 40 分 15 秒 (日本時間) |
composite number 合成数 | 3886657098257806331434095545293329839817212614797090398280354923445762056113132379813681173655176220583770329799839670015856368240944943756244089374109897160110332176285865766830274002285359517<193> |
prime factors 素因数 | 435014947587352996741211293991<30> |
composite cofactor 合成数の残り | 8934536893073881695362159200583021969912162189671777515715892258132715300674118774530310082315129943003392553047646488635199933129656686153169261847420414263935387<163> |
factorization results 素因数分解の結果 | GMP-ECM 6.2.3 [powered by GMP 4.2.1_MPIR_1.1.1] [ECM] Input number is 3886657098257806331434095545293329839817212614797090398280354923445762056113132379813681173655176220583770329799839670015856368240944943756244089374109897160110332176285865766830274002285359517 (193 digits) [Mon Dec 14 20:03:58 2009] Using MODMULN Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2823076904 dF=16384, k=2, d=158340, d2=11, i0=8 Expected number of curves to find a factor of n digits: 20 25 30 35 40 45 50 55 60 65 3 11 54 322 2350 20265 199745 2246256 2.8e+007 4e+008 Step 1 took 16578ms Using 24 small primes for NTT Estimated memory usage: 62M Initializing tables of differences for F took 15ms Computing roots of F took 469ms Building F from its roots took 1781ms Computing 1/F took 1047ms Initializing table of differences for G took 16ms Computing roots of G took 437ms Building G from its roots took 1641ms Computing roots of G took 437ms Building G from its roots took 1625ms Computing G * H took 578ms Reducing G * H mod F took 562ms Computing polyeval(F,G) took 3141ms Computing product of all F(g_i) took 16ms Step 2 took 11922ms ********** Factor found in step 2: 435014947587352996741211293991 Found probable prime factor of 30 digits: 435014947587352996741211293991 Composite cofactor 8934536893073881695362159200583021969912162189671777515715892258132715300674118774530310082315129943003392553047646488635199933129656686153169261847420414263935387 has 163 digits |
software ソフトウェア | yoyo@home |
name 名前 | Robert Balfour |
---|---|
date 日付 | July 10, 2020 21:22:29 UTC 2020 年 7 月 11 日 (土) 6 時 22 分 29 秒 (日本時間) |
composite number 合成数 | 8934536893073881695362159200583021969912162189671777515715892258132715300674118774530310082315129943003392553047646488635199933129656686153169261847420414263935387<163> |
prime factors 素因数 | 76592124005025509807689015613418148827975643<44> 116650856849036484093220850874747246087647353248353170627964020742303413044462081808398396431126374386634087098550182209<120> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.5-dev [configured with GMP 6.2.0, --enable-asm-redc, --enable-assert] [ECM] Input number is 8934536893073881695362159200583021969912162189671777515715892258132715300674118774530310082315129943003392553047646488635199933129656686153169261847420414263935387 (163 digits) Using B1=43000000, B2=240490660426, polynomial Dickson(12), sigma=1:4172582254 Step 1 took 70488ms Step 2 took 23580ms ********** Factor found in step 2: 76592124005025509807689015613418148827975643 Found prime factor of 44 digits: 76592124005025509807689015613418148827975643 Prime cofactor 116650856849036484093220850874747246087647353248353170627964020742303413044462081808398396431126374386634087098550182209 has 120 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 427 | 118 | Makoto Kamada | February 17, 2009 17:00:00 UTC 2009 年 2 月 18 日 (水) 2 時 0 分 0 秒 (日本時間) |
309 | Ignacio Santos | March 12, 2010 18:33:35 UTC 2010 年 3 月 13 日 (土) 3 時 33 分 35 秒 (日本時間) | |||
40 | 3e6 | 1440 | 40 | yoyo | December 16, 2009 20:09:01 UTC 2009 年 12 月 17 日 (木) 5 時 9 分 1 秒 (日本時間) |
130 | Ignacio Santos | March 12, 2010 17:53:01 UTC 2010 年 3 月 13 日 (土) 2 時 53 分 1 秒 (日本時間) | |||
300 | Serge Batalov | January 9, 2014 04:37:03 UTC 2014 年 1 月 9 日 (木) 13 時 37 分 3 秒 (日本時間) | |||
315 | KTakahashi | March 14, 2014 11:12:19 UTC 2014 年 3 月 14 日 (金) 20 時 12 分 19 秒 (日本時間) | |||
655 | KTakahashi | March 19, 2014 03:29:27 UTC 2014 年 3 月 19 日 (水) 12 時 29 分 27 秒 (日本時間) | |||
45 | 11e6 | 1642 / 4142 | 230 | Ignacio Santos | November 21, 2013 17:57:25 UTC 2013 年 11 月 22 日 (金) 2 時 57 分 25 秒 (日本時間) |
345 | KTakahashi | March 20, 2014 04:56:38 UTC 2014 年 3 月 20 日 (木) 13 時 56 分 38 秒 (日本時間) | |||
1067 | KTakahashi | July 12, 2014 11:02:13 UTC 2014 年 7 月 12 日 (土) 20 時 2 分 13 秒 (日本時間) |
name 名前 | RSALS + Lionel Debroux |
---|---|
date 日付 | June 12, 2012 16:51:23 UTC 2012 年 6 月 13 日 (水) 1 時 51 分 23 秒 (日本時間) |
composite number 合成数 | 2096436058700209643605870020964360587002096436058700209643605870020964360587002096436058700209643605870020964360587002096436058700209643605870020964360587002096436058700209643605870020964360587002096436058700209643605870021<223> |
prime factors 素因数 | 149585295903736691426664091118486250990542087820969174363915154937323942539486811<81> 14014987542955684054032101432696511435832129086375763375422702769335977507196219617116404494850148219982111681222562766420228764514409916694111<143> |
factorization results 素因数分解の結果 | Sun Jun 10 10:03:04 2012 Msieve v. 1.51 (SVN 719M) Sun Jun 10 10:03:04 2012 random seeds: afc956e5 627679ea Sun Jun 10 10:03:04 2012 factoring 2096436058700209643605870020964360587002096436058700209643605870020964360587002096436058700209643605870020964360587002096436058700209643605870020964360587002096436058700209643605870020964360587002096436058700209643605870021 (223 digits) Sun Jun 10 10:03:05 2012 no P-1/P+1/ECM available, skipping Sun Jun 10 10:03:05 2012 commencing number field sieve (223-digit input) Sun Jun 10 10:03:05 2012 R0: -10000000000000000000000000000000000000 Sun Jun 10 10:03:05 2012 R1: 1 Sun Jun 10 10:03:05 2012 A0: 17 Sun Jun 10 10:03:05 2012 A1: 0 Sun Jun 10 10:03:05 2012 A2: 0 Sun Jun 10 10:03:05 2012 A3: 0 Sun Jun 10 10:03:05 2012 A4: 0 Sun Jun 10 10:03:05 2012 A5: 0 Sun Jun 10 10:03:05 2012 A6: 1000 Sun Jun 10 10:03:05 2012 skew 0.51, size 3.229e-11, alpha -0.463, combined = 1.514e-12 rroots = 0 Sun Jun 10 10:03:05 2012 Sun Jun 10 10:03:05 2012 commencing relation filtering Sun Jun 10 10:03:05 2012 estimated available RAM is 7963.2 MB Sun Jun 10 10:03:05 2012 commencing duplicate removal, pass 1 Sun Jun 10 10:04:28 2012 error -15 reading relation 20970420 Sun Jun 10 10:04:30 2012 error -9 reading relation 21268037 Sun Jun 10 10:04:30 2012 error -15 reading relation 21399649 Sun Jun 10 10:04:30 2012 error -9 reading relation 21419889 Sun Jun 10 10:06:02 2012 error -15 reading relation 44513644 Sun Jun 10 10:06:54 2012 error -15 reading relation 57119881 Sun Jun 10 10:06:55 2012 skipped 10 relations with b > 2^32 Sun Jun 10 10:06:55 2012 found 11936832 hash collisions in 57492082 relations Sun Jun 10 10:07:11 2012 added 1219871 free relations Sun Jun 10 10:07:11 2012 commencing duplicate removal, pass 2 Sun Jun 10 10:08:51 2012 found 12014214 duplicates and 46697739 unique relations Sun Jun 10 10:08:51 2012 memory use: 330.4 MB Sun Jun 10 10:08:51 2012 reading ideals above 44236800 Sun Jun 10 10:08:51 2012 commencing singleton removal, initial pass Sun Jun 10 10:12:51 2012 memory use: 1378.0 MB Sun Jun 10 10:12:51 2012 reading all ideals from disk Sun Jun 10 10:12:58 2012 memory use: 859.6 MB Sun Jun 10 10:12:59 2012 commencing in-memory singleton removal Sun Jun 10 10:13:01 2012 begin with 46697739 relations and 41783062 unique ideals Sun Jun 10 10:13:19 2012 reduce to 27259838 relations and 20053760 ideals in 15 passes Sun Jun 10 10:13:19 2012 max relations containing the same ideal: 30 Sun Jun 10 10:13:20 2012 reading ideals above 720000 Sun Jun 10 10:13:21 2012 commencing singleton removal, initial pass Sun Jun 10 10:16:19 2012 memory use: 689.0 MB Sun Jun 10 10:16:28 2012 reading all ideals from disk Sun Jun 10 10:16:30 2012 memory use: 996.9 MB Sun Jun 10 10:16:33 2012 keeping 25254529 ideals with weight <= 200, target excess is 146033 Sun Jun 10 10:16:35 2012 commencing in-memory singleton removal Sun Jun 10 10:16:37 2012 begin with 27259862 relations and 25254529 unique ideals Sun Jun 10 10:16:57 2012 reduce to 27246814 relations and 25241378 ideals in 9 passes Sun Jun 10 10:16:57 2012 max relations containing the same ideal: 200 Sun Jun 10 10:17:08 2012 removing 2953234 relations and 2553234 ideals in 400000 cliques Sun Jun 10 10:17:09 2012 commencing in-memory singleton removal Sun Jun 10 10:17:11 2012 begin with 24293580 relations and 25241378 unique ideals Sun Jun 10 10:17:31 2012 reduce to 24043850 relations and 22433397 ideals in 10 passes Sun Jun 10 10:17:31 2012 max relations containing the same ideal: 191 Sun Jun 10 10:17:41 2012 removing 2189270 relations and 1789270 ideals in 400000 cliques Sun Jun 10 10:17:42 2012 commencing in-memory singleton removal Sun Jun 10 10:17:44 2012 begin with 21854580 relations and 22433397 unique ideals Sun Jun 10 10:18:01 2012 reduce to 21705498 relations and 20492405 ideals in 10 passes Sun Jun 10 10:18:01 2012 max relations containing the same ideal: 181 Sun Jun 10 10:18:10 2012 removing 1945657 relations and 1545657 ideals in 400000 cliques Sun Jun 10 10:18:11 2012 commencing in-memory singleton removal Sun Jun 10 10:18:12 2012 begin with 19759841 relations and 20492405 unique ideals Sun Jun 10 10:18:28 2012 reduce to 19630670 relations and 18815299 ideals in 10 passes Sun Jun 10 10:18:28 2012 max relations containing the same ideal: 168 Sun Jun 10 10:18:36 2012 removing 1816650 relations and 1416650 ideals in 400000 cliques Sun Jun 10 10:18:37 2012 commencing in-memory singleton removal Sun Jun 10 10:18:38 2012 begin with 17814020 relations and 18815299 unique ideals Sun Jun 10 10:18:48 2012 reduce to 17692798 relations and 17275221 ideals in 7 passes Sun Jun 10 10:18:48 2012 max relations containing the same ideal: 157 Sun Jun 10 10:18:55 2012 removing 1170514 relations and 922336 ideals in 248178 cliques Sun Jun 10 10:18:56 2012 commencing in-memory singleton removal Sun Jun 10 10:18:57 2012 begin with 16522284 relations and 17275221 unique ideals Sun Jun 10 10:19:06 2012 reduce to 16466058 relations and 16295922 ideals in 7 passes Sun Jun 10 10:19:06 2012 max relations containing the same ideal: 148 Sun Jun 10 10:19:16 2012 relations with 0 large ideals: 5185 Sun Jun 10 10:19:16 2012 relations with 1 large ideals: 459 Sun Jun 10 10:19:16 2012 relations with 2 large ideals: 6277 Sun Jun 10 10:19:16 2012 relations with 3 large ideals: 64018 Sun Jun 10 10:19:16 2012 relations with 4 large ideals: 374475 Sun Jun 10 10:19:16 2012 relations with 5 large ideals: 1330937 Sun Jun 10 10:19:16 2012 relations with 6 large ideals: 2993724 Sun Jun 10 10:19:16 2012 relations with 7+ large ideals: 11690983 Sun Jun 10 10:19:16 2012 commencing 2-way merge Sun Jun 10 10:19:26 2012 reduce to 11025253 relation sets and 10855117 unique ideals Sun Jun 10 10:19:26 2012 commencing full merge Sun Jun 10 10:22:39 2012 memory use: 1403.7 MB Sun Jun 10 10:22:41 2012 found 5528572 cycles, need 5509317 Sun Jun 10 10:22:41 2012 weight of 5509317 cycles is about 451859024 (82.02/cycle) Sun Jun 10 10:22:41 2012 distribution of cycle lengths: Sun Jun 10 10:22:41 2012 1 relations: 512468 Sun Jun 10 10:22:41 2012 2 relations: 589780 Sun Jun 10 10:22:41 2012 3 relations: 605861 Sun Jun 10 10:22:41 2012 4 relations: 570513 Sun Jun 10 10:22:41 2012 5 relations: 520887 Sun Jun 10 10:22:41 2012 6 relations: 469326 Sun Jun 10 10:22:41 2012 7 relations: 409773 Sun Jun 10 10:22:41 2012 8 relations: 354372 Sun Jun 10 10:22:41 2012 9 relations: 302199 Sun Jun 10 10:22:41 2012 10+ relations: 1174138 Sun Jun 10 10:22:41 2012 heaviest cycle: 27 relations Sun Jun 10 10:22:43 2012 commencing cycle optimization Sun Jun 10 10:22:50 2012 start with 34940012 relations Sun Jun 10 10:23:43 2012 pruned 1097893 relations Sun Jun 10 10:23:43 2012 memory use: 1045.8 MB Sun Jun 10 10:23:43 2012 distribution of cycle lengths: Sun Jun 10 10:23:43 2012 1 relations: 512468 Sun Jun 10 10:23:43 2012 2 relations: 602836 Sun Jun 10 10:23:43 2012 3 relations: 629744 Sun Jun 10 10:23:43 2012 4 relations: 588291 Sun Jun 10 10:23:43 2012 5 relations: 538666 Sun Jun 10 10:23:43 2012 6 relations: 479612 Sun Jun 10 10:23:43 2012 7 relations: 417910 Sun Jun 10 10:23:43 2012 8 relations: 357398 Sun Jun 10 10:23:43 2012 9 relations: 301850 Sun Jun 10 10:23:43 2012 10+ relations: 1080542 Sun Jun 10 10:23:43 2012 heaviest cycle: 26 relations Sun Jun 10 10:23:51 2012 RelProcTime: 1246 Sun Jun 10 10:23:51 2012 Sun Jun 10 10:23:51 2012 commencing linear algebra Sun Jun 10 10:23:53 2012 read 5509317 cycles Sun Jun 10 10:24:01 2012 cycles contain 16352564 unique relations Sun Jun 10 10:25:45 2012 read 16352564 relations Sun Jun 10 10:26:07 2012 using 20 quadratic characters above 536870840 Sun Jun 10 10:27:09 2012 building initial matrix Sun Jun 10 10:29:35 2012 memory use: 2160.2 MB Sun Jun 10 10:29:37 2012 read 5509317 cycles Sun Jun 10 10:29:38 2012 matrix is 5509139 x 5509317 (1878.7 MB) with weight 551462569 (100.10/col) Sun Jun 10 10:29:38 2012 sparse part has weight 431879142 (78.39/col) Sun Jun 10 10:30:25 2012 filtering completed in 2 passes Sun Jun 10 10:30:26 2012 matrix is 5508571 x 5508749 (1878.6 MB) with weight 551445341 (100.10/col) Sun Jun 10 10:30:26 2012 sparse part has weight 431874346 (78.40/col) Sun Jun 10 10:31:06 2012 matrix starts at (0, 0) Sun Jun 10 10:31:07 2012 matrix is 5508571 x 5508749 (1878.6 MB) with weight 551445341 (100.10/col) Sun Jun 10 10:31:07 2012 sparse part has weight 431874346 (78.40/col) Sun Jun 10 10:31:07 2012 saving the first 48 matrix rows for later Sun Jun 10 10:31:07 2012 matrix includes 64 packed rows Sun Jun 10 10:31:08 2012 matrix is 5508523 x 5508749 (1800.6 MB) with weight 451513631 (81.96/col) Sun Jun 10 10:31:08 2012 sparse part has weight 416924385 (75.68/col) Sun Jun 10 10:31:08 2012 using block size 65536 for processor cache size 8192 kB Sun Jun 10 10:31:23 2012 commencing Lanczos iteration (4 threads) Sun Jun 10 10:31:23 2012 memory use: 1603.2 MB Sun Jun 10 10:31:53 2012 linear algebra at 0.0%, ETA 29h 7m Sun Jun 10 10:32:03 2012 checkpointing every 190000 dimensions Mon Jun 11 07:09:09 2012 Mon Jun 11 07:09:09 2012 Mon Jun 11 07:09:09 2012 Msieve v. 1.51 (SVN 719M) Mon Jun 11 07:09:09 2012 random seeds: eb8dbf75 3b13e969 Mon Jun 11 07:09:09 2012 factoring 2096436058700209643605870020964360587002096436058700209643605870020964360587002096436058700209643605870020964360587002096436058700209643605870020964360587002096436058700209643605870020964360587002096436058700209643605870021 (223 digits) Mon Jun 11 07:09:11 2012 no P-1/P+1/ECM available, skipping Mon Jun 11 07:09:11 2012 commencing number field sieve (223-digit input) Mon Jun 11 07:09:11 2012 R0: -10000000000000000000000000000000000000 Mon Jun 11 07:09:11 2012 R1: 1 Mon Jun 11 07:09:11 2012 A0: 17 Mon Jun 11 07:09:11 2012 A1: 0 Mon Jun 11 07:09:11 2012 A2: 0 Mon Jun 11 07:09:11 2012 A3: 0 Mon Jun 11 07:09:11 2012 A4: 0 Mon Jun 11 07:09:11 2012 A5: 0 Mon Jun 11 07:09:11 2012 A6: 1000 Mon Jun 11 07:09:11 2012 skew 0.51, size 3.229e-11, alpha -0.463, combined = 1.514e-12 rroots = 0 Mon Jun 11 07:09:11 2012 Mon Jun 11 07:09:11 2012 commencing linear algebra Mon Jun 11 07:09:34 2012 matrix starts at (0, 0) Mon Jun 11 07:09:35 2012 matrix is 5508571 x 5508749 (1878.6 MB) with weight 551445341 (100.10/col) Mon Jun 11 07:09:35 2012 sparse part has weight 431874346 (78.40/col) Mon Jun 11 07:09:35 2012 saving the first 48 matrix rows for later Mon Jun 11 07:09:36 2012 matrix includes 64 packed rows Mon Jun 11 07:09:37 2012 matrix is 5508523 x 5508749 (1800.6 MB) with weight 451513631 (81.96/col) Mon Jun 11 07:09:37 2012 sparse part has weight 416924385 (75.68/col) Mon Jun 11 07:09:37 2012 using block size 65536 for processor cache size 8192 kB Mon Jun 11 07:09:51 2012 commencing Lanczos iteration (4 threads) Mon Jun 11 07:09:51 2012 memory use: 1603.2 MB Mon Jun 11 07:09:54 2012 restarting at iteration 27041 (dim = 1710004) Mon Jun 11 07:10:23 2012 linear algebra at 31.1%, ETA 20h 9m Mon Jun 11 07:10:32 2012 checkpointing every 200000 dimensions Tue Jun 12 03:40:09 2012 lanczos halted after 87113 iterations (dim = 5508522) Tue Jun 12 03:40:14 2012 recovered 35 nontrivial dependencies Tue Jun 12 03:40:14 2012 BLanczosTime: 73863 Tue Jun 12 03:40:14 2012 Tue Jun 12 03:40:14 2012 commencing square root phase Tue Jun 12 03:40:14 2012 reading relations for dependency 1 Tue Jun 12 03:40:16 2012 read 2754399 cycles Tue Jun 12 03:40:20 2012 cycles contain 8178298 unique relations Tue Jun 12 03:41:58 2012 read 8178298 relations Tue Jun 12 03:42:36 2012 multiplying 8178298 relations Tue Jun 12 03:51:18 2012 multiply complete, coefficients have about 276.71 million bits Tue Jun 12 03:51:19 2012 initial square root is modulo 92311 Tue Jun 12 04:06:23 2012 GCD is 1, no factor found Tue Jun 12 04:06:23 2012 reading relations for dependency 2 Tue Jun 12 04:06:26 2012 read 2751096 cycles Tue Jun 12 04:06:29 2012 cycles contain 8167842 unique relations Tue Jun 12 04:08:06 2012 read 8167842 relations Tue Jun 12 04:08:45 2012 multiplying 8167842 relations Tue Jun 12 04:17:25 2012 multiply complete, coefficients have about 276.36 million bits Tue Jun 12 04:17:26 2012 initial square root is modulo 91081 Tue Jun 12 04:32:32 2012 GCD is 1, no factor found Tue Jun 12 04:32:32 2012 reading relations for dependency 3 Tue Jun 12 04:32:35 2012 read 2753364 cycles Tue Jun 12 04:32:39 2012 cycles contain 8175110 unique relations Tue Jun 12 04:34:15 2012 read 8175110 relations Tue Jun 12 04:34:54 2012 multiplying 8175110 relations Tue Jun 12 04:43:36 2012 multiply complete, coefficients have about 276.61 million bits Tue Jun 12 04:43:37 2012 initial square root is modulo 91939 Tue Jun 12 04:58:42 2012 sqrtTime: 4708 Tue Jun 12 04:58:42 2012 prp81 factor: 149585295903736691426664091118486250990542087820969174363915154937323942539486811 Tue Jun 12 04:58:42 2012 prp143 factor: 14014987542955684054032101432696511435832129086375763375422702769335977507196219617116404494850148219982111681222562766420228764514409916694111 Tue Jun 12 04:58:42 2012 elapsed time 21:49:33 |
software ソフトウェア | ggnfs-lasieve4I14e on the RSALS grid + msieve SVN r719 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | February 17, 2009 17:00:00 UTC 2009 年 2 月 18 日 (水) 2 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 400 | Serge Batalov | May 10, 2009 09:14:31 UTC 2009 年 5 月 10 日 (日) 18 時 14 分 31 秒 (日本時間) | |
45 | 11e6 | 605 | Dmitry Domanov | December 19, 2009 22:31:05 UTC 2009 年 12 月 20 日 (日) 7 時 31 分 5 秒 (日本時間) | |
50 | 43e6 | 800 | Dmitry Domanov | June 11, 2011 07:04:07 UTC 2011 年 6 月 11 日 (土) 16 時 4 分 7 秒 (日本時間) | |
55 | 11e7 | 2855 / 17424 | 120 | Dmitry Domanov | June 11, 2011 23:24:03 UTC 2011 年 6 月 12 日 (日) 8 時 24 分 3 秒 (日本時間) |
2735 | yoyo@home | August 30, 2011 12:00:04 UTC 2011 年 8 月 30 日 (火) 21 時 0 分 4 秒 (日本時間) | |||
60 | 26e7 | 8 / 40835 | 7 | Dmitry Domanov | June 11, 2011 23:24:50 UTC 2011 年 6 月 12 日 (日) 8 時 24 分 50 秒 (日本時間) |
1 | Dmitry Domanov | June 11, 2011 23:24:56 UTC 2011 年 6 月 12 日 (日) 8 時 24 分 56 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | November 21, 2013 17:56:51 UTC 2013 年 11 月 22 日 (金) 2 時 56 分 51 秒 (日本時間) |
composite number 合成数 | 1169552076886731129487360093696751790761757322670325136971577183489366204064184036511359011560011937716545169911006049992117975334266045455374268093969228853357613237765251<172> |
prime factors 素因数 | 69163823074175852562062225877701963<35> |
composite cofactor 合成数の残り | 16909881855900681286836616833755510452379661078353294364196117100879782293833628170596158424427373873756117840277775408799889027570180777<137> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:4216000000 Step 1 took 36890ms Step 2 took 21547ms ********** Factor found in step 2: 69163823074175852562062225877701963 Found probable prime factor of 35 digits: 69163823074175852562062225877701963 Composite cofactor 16909881855900681286836616833755510452379661078353294364196117100879782293833628170596158424427373873756117840277775408799889027570180777 has 137 digits |
software ソフトウェア | GMP-ECM 7.0 |
name 名前 | Ignacio Santos |
---|---|
date 日付 | December 22, 2013 18:29:58 UTC 2013 年 12 月 23 日 (月) 3 時 29 分 58 秒 (日本時間) |
composite number 合成数 | 16909881855900681286836616833755510452379661078353294364196117100879782293833628170596158424427373873756117840277775408799889027570180777<137> |
prime factors 素因数 | 51392056562075504754865997496240284599<38> 329036878208513624845461578263325490316497820862449371822054466686928763525298262262176730835365023<99> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:988570298 Step 1 took 33968ms Step 2 took 19735ms ********** Factor found in step 2: 51392056562075504754865997496240284599 Found probable prime factor of 38 digits: 51392056562075504754865997496240284599 Probable prime cofactor 329036878208513624845461578263325490316497820862449371822054466686928763525298262262176730835365023 has 99 digits |
software ソフトウェア | GMP-ECM 7.0 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | February 17, 2009 17:00:00 UTC 2009 年 2 月 18 日 (水) 2 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 280 / 2318 | Makoto Kamada | December 15, 2009 06:46:41 UTC 2009 年 12 月 15 日 (火) 15 時 46 分 41 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | February 17, 2009 17:00:00 UTC 2009 年 2 月 18 日 (水) 2 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1525 | 280 | Makoto Kamada | December 15, 2009 06:46:53 UTC 2009 年 12 月 15 日 (火) 15 時 46 分 53 秒 (日本時間) |
10 | yoyo | December 15, 2009 20:44:36 UTC 2009 年 12 月 16 日 (水) 5 時 44 分 36 秒 (日本時間) | |||
280 | yoyo | December 15, 2009 20:45:10 UTC 2009 年 12 月 16 日 (水) 5 時 45 分 10 秒 (日本時間) | |||
300 | Serge Batalov | January 9, 2014 04:37:04 UTC 2014 年 1 月 9 日 (木) 13 時 37 分 4 秒 (日本時間) | |||
655 | KTakahashi | March 19, 2014 03:29:46 UTC 2014 年 3 月 19 日 (水) 12 時 29 分 46 秒 (日本時間) | |||
45 | 11e6 | 326 | 230 | Ignacio Santos | November 21, 2013 18:27:23 UTC 2013 年 11 月 22 日 (金) 3 時 27 分 23 秒 (日本時間) |
96 | KTakahashi | March 19, 2014 23:08:34 UTC 2014 年 3 月 20 日 (木) 8 時 8 分 34 秒 (日本時間) | |||
50 | 43e6 | 1280 | Robert Balfour | July 11, 2020 13:57:47 UTC 2020 年 7 月 11 日 (土) 22 時 57 分 47 秒 (日本時間) | |
55 | 11e7 | 0 | - | - | |
60 | 26e7 | 10000 / 41860 | Thomas Kozlowski | July 21, 2024 06:05:16 UTC 2024 年 7 月 21 日 (日) 15 時 5 分 16 秒 (日本時間) |
name 名前 | Robert Balfour |
---|---|
date 日付 | July 10, 2020 21:26:18 UTC 2020 年 7 月 11 日 (土) 6 時 26 分 18 秒 (日本時間) |
composite number 合成数 | 4790831883815614104242904472782635408958153433498493159635133979814970259065608633405529472909462454649714787573878706171775415242718141587609301174718245412533520238778198387970083111274092754707278035044701<208> |
prime factors 素因数 | 11400562577918176837933943230340935155821<41> 420227673070713832034650265021442903863179632327576485841598201680418640550279090866125402582354010903807900981416816310340413495692801122573556892858677627338058479281<168> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.5-dev [configured with GMP 6.2.0, --enable-asm-redc, --enable-assert] [ECM] Input number is 4790831883815614104242904472782635408958153433498493159635133979814970259065608633405529472909462454649714787573878706171775415242718141587609301174718245412533520238778198387970083111274092754707278035044701 (208 digits) Using B1=43000000, B2=240490660426, polynomial Dickson(12), sigma=1:4146166921 Step 1 took 95908ms Step 2 took 30052ms ********** Factor found in step 2: 11400562577918176837933943230340935155821 Found prime factor of 41 digits: 11400562577918176837933943230340935155821 Prime cofactor 420227673070713832034650265021442903863179632327576485841598201680418640550279090866125402582354010903807900981416816310340413495692801122573556892858677627338058479281 has 168 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | February 17, 2009 17:00:00 UTC 2009 年 2 月 18 日 (水) 2 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2318 | 280 | Makoto Kamada | December 15, 2009 06:47:04 UTC 2009 年 12 月 15 日 (火) 15 時 47 分 4 秒 (日本時間) |
300 | Serge Batalov | January 9, 2014 04:37:05 UTC 2014 年 1 月 9 日 (木) 13 時 37 分 5 秒 (日本時間) | |||
1738 | KTakahashi | March 24, 2014 04:20:45 UTC 2014 年 3 月 24 日 (月) 13 時 20 分 45 秒 (日本時間) | |||
45 | 11e6 | 151 / 3963 | KTakahashi | March 25, 2014 01:55:39 UTC 2014 年 3 月 25 日 (火) 10 時 55 分 39 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | February 17, 2009 17:00:00 UTC 2009 年 2 月 18 日 (水) 2 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2318 | 280 | Makoto Kamada | December 15, 2009 06:47:15 UTC 2009 年 12 月 15 日 (火) 15 時 47 分 15 秒 (日本時間) |
300 | Serge Batalov | January 9, 2014 04:37:05 UTC 2014 年 1 月 9 日 (木) 13 時 37 分 5 秒 (日本時間) | |||
1738 | KTakahashi | March 23, 2014 00:33:54 UTC 2014 年 3 月 23 日 (日) 9 時 33 分 54 秒 (日本時間) | |||
45 | 11e6 | 151 | KTakahashi | March 24, 2014 22:45:22 UTC 2014 年 3 月 25 日 (火) 7 時 45 分 22 秒 (日本時間) | |
50 | 43e6 | 1280 / 7431 | Robert Balfour | July 11, 2020 13:58:01 UTC 2020 年 7 月 11 日 (土) 22 時 58 分 1 秒 (日本時間) |
name 名前 | Makoto Kamada |
---|---|
date 日付 | December 15, 2009 06:40:19 UTC 2009 年 12 月 15 日 (火) 15 時 40 分 19 秒 (日本時間) |
composite number 合成数 | 1171448638544762932351907908494663970476643690362893130411085823792270499423543789663011576627567935696315395295800785938152719188074903690312546061914970458942515265396550984538283442184575306771<196> |
prime factors 素因数 | 11034650601549874189730158399<29> |
composite cofactor 合成数の残り | 106160918079293499828871171668387354975740392989821399884697192605813176167742276299320496961036627957248078891805720005695913237091468581973936046925810427808436406829<168> |
factorization results 素因数分解の結果 | GMP-ECM 6.2.3 [powered by GMP 4.2.1_MPIR_1.1.1] [ECM] Input number is 1171448638544762932351907908494663970476643690362893130411085823792270499423543789663011576627567935696315395295800785938152719188074903690312546061914970458942515265396550984538283442184575306771 (196 digits) [Mon Dec 14 20:25:19 2009] Using MODMULN Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2768889511 dF=16384, k=2, d=158340, d2=11, i0=8 Expected number of curves to find a factor of n digits: 20 25 30 35 40 45 50 55 60 65 3 11 54 322 2350 20265 199745 2246256 2.8e+007 4e+008 Step 1 took 11485ms Using 24 small primes for NTT Estimated memory usage: 66M Initializing tables of differences for F took 16ms Computing roots of F took 547ms Building F from its roots took 1016ms Computing 1/F took 687ms Initializing table of differences for G took 16ms Computing roots of G took 531ms Building G from its roots took 1032ms Computing roots of G took 515ms Building G from its roots took 1031ms Computing G * H took 375ms Reducing G * H mod F took 360ms Computing polyeval(F,G) took 1781ms Computing product of all F(g_i) took 16ms Step 2 took 7984ms ********** Factor found in step 2: 11034650601549874189730158399 Found probable prime factor of 29 digits: 11034650601549874189730158399 Composite cofactor 106160918079293499828871171668387354975740392989821399884697192605813176167742276299320496961036627957248078891805720005695913237091468581973936046925810427808436406829 has 168 digits |
software ソフトウェア | yoyo@home |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 318 | 118 | Makoto Kamada | February 17, 2009 17:00:00 UTC 2009 年 2 月 18 日 (水) 2 時 0 分 0 秒 (日本時間) |
200 | Ignacio Santos | March 12, 2010 19:29:49 UTC 2010 年 3 月 13 日 (土) 4 時 29 分 49 秒 (日本時間) | |||
40 | 3e6 | 2264 | 170 | yoyo | December 16, 2009 20:09:52 UTC 2009 年 12 月 17 日 (木) 5 時 9 分 52 秒 (日本時間) |
70 | Ignacio Santos | March 12, 2010 19:19:27 UTC 2010 年 3 月 13 日 (土) 4 時 19 分 27 秒 (日本時間) | |||
300 | Serge Batalov | January 9, 2014 04:37:06 UTC 2014 年 1 月 9 日 (木) 13 時 37 分 6 秒 (日本時間) | |||
358 | KTakahashi | March 14, 2014 14:14:49 UTC 2014 年 3 月 14 日 (金) 23 時 14 分 49 秒 (日本時間) | |||
1366 | KTakahashi | March 19, 2014 03:30:18 UTC 2014 年 3 月 19 日 (水) 12 時 30 分 18 秒 (日本時間) | |||
45 | 11e6 | 1465 | 398 | KTakahashi | March 19, 2014 23:09:05 UTC 2014 年 3 月 20 日 (木) 8 時 9 分 5 秒 (日本時間) |
1067 | KTakahashi | July 13, 2014 08:05:07 UTC 2014 年 7 月 13 日 (日) 17 時 5 分 7 秒 (日本時間) | |||
50 | 43e6 | 1280 / 7137 | Robert Balfour | July 11, 2020 13:58:14 UTC 2020 年 7 月 11 日 (土) 22 時 58 分 14 秒 (日本時間) |
name 名前 | Cyp |
---|---|
date 日付 | January 11, 2014 07:54:22 UTC 2014 年 1 月 11 日 (土) 16 時 54 分 22 秒 (日本時間) |
composite number 合成数 | 322533128785260550275554849346415902698557712934864144560509035179395404929418697237077740665190498363059358723468449654108464605286658980864434581906101988295828586578410004120238197375337363217074066886733<207> |
prime factors 素因数 | 826514527156001625362140838849717593<36> 390232861236065835843451321011203383044569980012921174494698485046352182604840932464386298812449055657004282904863871790073011763886904567934331614729284432021549485096981<171> |
factorization results 素因数分解の結果 | Run 4 out of 39: Using B1=43000000, B2=240490660426, polynomial Dickson(12), sigma=3262850865 Step 1 took 271179ms Step 2 took 65416ms ********** Factor found in step 2: 826514527156001625362140838849717593 Found probable prime factor of 36 digits: 826514527156001625362140838849717593 Probable prime cofactor 390232861236065835843451321011203383044569980012921174494698485046352182604840932464386298812449055657004282904863871790073011763886904567934331614729284432021549485096981 has 171 digits |
software ソフトウェア | GMP-ECM 6.4.4 |
execution environment 実行環境 | Gentoo Linux, Intel(R) Core(TM) i7-3770K CPU |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | February 17, 2009 17:00:00 UTC 2009 年 2 月 18 日 (水) 2 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 580 / 2280 | 280 | Makoto Kamada | December 15, 2009 06:47:34 UTC 2009 年 12 月 15 日 (火) 15 時 47 分 34 秒 (日本時間) |
300 | Serge Batalov | January 9, 2014 04:37:07 UTC 2014 年 1 月 9 日 (木) 13 時 37 分 7 秒 (日本時間) | |||
45 | 11e6 | 0 / 4333 | - | - | |
50 | 43e6 | 4 / 7531 | Cyp | January 11, 2014 07:54:21 UTC 2014 年 1 月 11 日 (土) 16 時 54 分 21 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | February 19, 2009 17:32:44 UTC 2009 年 2 月 20 日 (金) 2 時 32 分 44 秒 (日本時間) |
composite number 合成数 | 370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370371<234> |
prime factors 素因数 | 1462632956704910743229377279655903083<37> |
composite cofactor 合成数の残り | 253221677162778007115933666937499898630720100146308997547782269439806975654231771169379649040305075932932943995847187788035663927744145241864622405151602202392552517630064393035746096398124433056137<198> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3955205230 Step 1 took 84796ms Step 2 took 55438ms ********** Factor found in step 2: 1462632956704910743229377279655903083 Found probable prime factor of 37 digits: 1462632956704910743229377279655903083 Composite cofactor has 198 digits |
software ソフトウェア | GMP-ECM 6.2.1 |
execution environment 実行環境 | Windows XP and Cygwin |
name 名前 | Robert Balfour |
---|---|
date 日付 | July 10, 2020 21:30:00 UTC 2020 年 7 月 11 日 (土) 6 時 30 分 0 秒 (日本時間) |
composite number 合成数 | 253221677162778007115933666937499898630720100146308997547782269439806975654231771169379649040305075932932943995847187788035663927744145241864622405151602202392552517630064393035746096398124433056137<198> |
prime factors 素因数 | 2935975094026755636739398698477209589385682151<46> |
composite cofactor 合成数の残り | 86247896883715999846072210793769813697130757540322594890616956504736978180171482312155465628665934135659962032232780835536890832299610331927930761859087<152> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.5-dev [configured with GMP 6.2.0, --enable-asm-redc, --enable-assert] [ECM] Input number is 253221677162778007115933666937499898630720100146308997547782269439806975654231771169379649040305075932932943995847187788035663927744145241864622405151602202392552517630064393035746096398124433056137 (198 digits) Using B1=43000000, B2=240490660426, polynomial Dickson(12), sigma=1:2337520542 Step 1 took 96260ms Step 2 took 29336ms ********** Factor found in step 2: 2935975094026755636739398698477209589385682151 Found prime factor of 46 digits: 2935975094026755636739398698477209589385682151 Composite cofactor 86247896883715999846072210793769813697130757540322594890616956504736978180171482312155465628665934135659962032232780835536890832299610331927930761859087 has 152 digits |
name 名前 | NFS@Home and Caleb Birtwistle |
---|---|
date 日付 | November 15, 2023 11:14:14 UTC 2023 年 11 月 15 日 (水) 20 時 14 分 14 秒 (日本時間) |
composite number 合成数 | 86247896883715999846072210793769813697130757540322594890616956504736978180171482312155465628665934135659962032232780835536890832299610331927930761859087<152> |
prime factors 素因数 | 42318799738888422270866190369454644519405196167708792848664830252528189<71> 2038051585013631405010146550877038692378441678342743215720427536637829215296154683<82> |
factorization results 素因数分解の結果 | Msieve v. 1.53 (SVN 1005) Tue Nov 14 21:22:46 2023 random seeds: b0b124c8 263388a5 factoring 86247896883715999846072210793769813697130757540322594890616956504736978180171482312155465628665934135659962032232780835536890832299610331927930761859087 (152 digits) searching for 15-digit factors commencing number field sieve (152-digit input) R0: -384722488742427811165352524196 R1: 4822283727213087671089 A0: -59959187481863067510154883369950343118 A1: 35977942110600584436551915397979 A2: 8593607460246613175475992 A3: -4225542010562443971 A4: -326105056170 A5: 25200 skew 5768867.69, size 9.533e-015, alpha -7.354, combined = 4.282e-012 rroots = 5 commencing relation filtering setting target matrix density to 125.0 estimated available RAM is 16335.2 MB commencing duplicate removal, pass 1 read 10M relations error -9 reading relation 18251982 read 20M relations error -1 reading relation 29717269 read 30M relations read 40M relations error -9 reading relation 47169130 read 50M relations error -15 reading relation 55493430 read 60M relations error -15 reading relation 62686801 error -9 reading relation 64220809 error -15 reading relation 66966793 read 70M relations error -15 reading relation 73725458 error -15 reading relation 77471289 error -9 reading relation 77730959 read 80M relations error -15 reading relation 88583699 read 90M relations error -15 reading relation 93983232 read 100M relations error -15 reading relation 109838171 read 110M relations error -15 reading relation 110541066 error -9 reading relation 111486207 error -15 reading relation 112579455 error -1 reading relation 114605245 error -15 reading relation 115471848 error -1 reading relation 116169921 read 120M relations error -1 reading relation 123897795 read 130M relations read 140M relations read 150M relations read 160M relations error -15 reading relation 162531576 error -9 reading relation 166022421 error -15 reading relation 166032188 skipped 4 relations with composite factors found 22068795 hash collisions in 169848966 relations added 121892 free relations commencing duplicate removal, pass 2 found 18906383 duplicates and 151064475 unique relations memory use: 788.8 MB reading ideals above 51838976 commencing singleton removal, initial pass memory use: 3012.0 MB reading all ideals from disk memory use: 2619.4 MB commencing in-memory singleton removal begin with 151064475 relations and 132069963 unique ideals reduce to 81551200 relations and 54199918 ideals in 12 passes max relations containing the same ideal: 28 reading ideals above 720000 commencing singleton removal, initial pass memory use: 1506.0 MB reading all ideals from disk memory use: 2898.9 MB keeping 59979304 ideals with weight <= 200, target excess is 432052 commencing in-memory singleton removal begin with 81551200 relations and 59979304 unique ideals reduce to 81550761 relations and 59978865 ideals in 4 passes max relations containing the same ideal: 200 removing 8900656 relations and 6900656 ideals in 2000000 cliques commencing in-memory singleton removal begin with 72650105 relations and 59978865 unique ideals reduce to 71927624 relations and 52333522 ideals in 9 passes max relations containing the same ideal: 193 removing 6927810 relations and 4927810 ideals in 2000000 cliques commencing in-memory singleton removal begin with 64999814 relations and 52333522 unique ideals reduce to 64502484 relations and 46894500 ideals in 7 passes max relations containing the same ideal: 179 removing 6383708 relations and 4383708 ideals in 2000000 cliques commencing in-memory singleton removal begin with 58118776 relations and 46894500 unique ideals reduce to 57681960 relations and 42061300 ideals in 7 passes max relations containing the same ideal: 171 removing 6091442 relations and 4091442 ideals in 2000000 cliques commencing in-memory singleton removal begin with 51590518 relations and 42061300 unique ideals reduce to 51174610 relations and 37540557 ideals in 6 passes max relations containing the same ideal: 159 removing 5905822 relations and 3905822 ideals in 2000000 cliques commencing in-memory singleton removal begin with 45268788 relations and 37540557 unique ideals reduce to 44854456 relations and 33205532 ideals in 6 passes max relations containing the same ideal: 148 removing 5770395 relations and 3770395 ideals in 2000000 cliques commencing in-memory singleton removal begin with 39084061 relations and 33205532 unique ideals reduce to 38656154 relations and 28990226 ideals in 7 passes max relations containing the same ideal: 135 removing 5672198 relations and 3672198 ideals in 2000000 cliques commencing in-memory singleton removal begin with 32983956 relations and 28990226 unique ideals reduce to 32526143 relations and 24839479 ideals in 6 passes max relations containing the same ideal: 121 removing 5595663 relations and 3595663 ideals in 2000000 cliques commencing in-memory singleton removal begin with 26930480 relations and 24839479 unique ideals reduce to 26420765 relations and 20707360 ideals in 7 passes max relations containing the same ideal: 106 removing 5543072 relations and 3543072 ideals in 2000000 cliques commencing in-memory singleton removal begin with 20877693 relations and 20707360 unique ideals reduce to 20284377 relations and 16532712 ideals in 8 passes max relations containing the same ideal: 86 removing 5491520 relations and 3491520 ideals in 2000000 cliques commencing in-memory singleton removal begin with 14792857 relations and 16532712 unique ideals reduce to 14050764 relations and 12236654 ideals in 7 passes max relations containing the same ideal: 68 removing 3804484 relations and 2491555 ideals in 1312929 cliques commencing in-memory singleton removal begin with 10246280 relations and 12236654 unique ideals reduce to 9662599 relations and 9112440 ideals in 8 passes max relations containing the same ideal: 51 removing 266764 relations and 217786 ideals in 48978 cliques commencing in-memory singleton removal begin with 9395835 relations and 9112440 unique ideals reduce to 9390419 relations and 8889210 ideals in 6 passes max relations containing the same ideal: 51 relations with 0 large ideals: 1358 relations with 1 large ideals: 12282 relations with 2 large ideals: 153794 relations with 3 large ideals: 760529 relations with 4 large ideals: 1898039 relations with 5 large ideals: 2670239 relations with 6 large ideals: 2269614 relations with 7+ large ideals: 1624564 commencing 2-way merge reduce to 5960432 relation sets and 5459223 unique ideals commencing full merge memory use: 726.9 MB found 2733341 cycles, need 2689423 weight of 2689423 cycles is about 336389621 (125.08/cycle) distribution of cycle lengths: 1 relations: 56708 2 relations: 130975 3 relations: 173208 4 relations: 191408 5 relations: 205808 6 relations: 210287 7 relations: 209233 8 relations: 202144 9 relations: 189493 10+ relations: 1120159 heaviest cycle: 28 relations commencing cycle optimization start with 24526217 relations pruned 1218296 relations memory use: 638.8 MB distribution of cycle lengths: 1 relations: 56708 2 relations: 134834 3 relations: 181249 4 relations: 200382 5 relations: 218071 6 relations: 222859 7 relations: 222536 8 relations: 214007 9 relations: 199867 10+ relations: 1038910 heaviest cycle: 26 relations RelProcTime: 4127 commencing linear algebra read 2689423 cycles cycles contain 9139459 unique relations read 9139459 relations using 20 quadratic characters above 4294917295 building initial matrix memory use: 1271.2 MB read 2689423 cycles matrix is 2689244 x 2689423 (1295.0 MB) with weight 394039921 (146.51/col) sparse part has weight 309903030 (115.23/col) filtering completed in 2 passes matrix is 2689152 x 2689331 (1295.0 MB) with weight 394034247 (146.52/col) sparse part has weight 309900355 (115.23/col) matrix starts at (0, 0) matrix is 2689152 x 2689331 (1295.0 MB) with weight 394034247 (146.52/col) sparse part has weight 309900355 (115.23/col) saving the first 48 matrix rows for later matrix includes 64 packed rows matrix is 2689104 x 2689331 (1262.7 MB) with weight 339436371 (126.22/col) sparse part has weight 304113597 (113.08/col) using block size 8192 and superblock size 589824 for processor cache size 6144 kB commencing Lanczos iteration (4 threads) memory use: 1031.3 MB linear algebra at 0.1%, ETA 3h56m2689331 dimensions (0.1%, ETA 3h56m) checkpointing every 670000 dimensions331 dimensions (0.1%, ETA 4h 4m) linear algebra completed 2688994 of 2689331 dimensions (100.0%, ETA 0h 0m) lanczos halted after 42527 iterations (dim = 2689102) recovered 29 nontrivial dependencies BLanczosTime: 14407 commencing square root phase handling dependencies 1 to 64 reading relations for dependency 1 read 1343909 cycles cycles contain 4569384 unique relations read 4569384 relations multiplying 4569384 relations multiply complete, coefficients have about 231.27 million bits initial square root is modulo 199313077 sqrtTime: 834 p71 factor: 42318799738888422270866190369454644519405196167708792848664830252528189 p82 factor: 2038051585013631405010146550877038692378441678342743215720427536637829215296154683 elapsed time 05:22:49 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | February 17, 2009 17:00:00 UTC 2009 年 2 月 18 日 (水) 2 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2318 | 280 | Makoto Kamada | December 15, 2009 06:47:41 UTC 2009 年 12 月 15 日 (火) 15 時 47 分 41 秒 (日本時間) |
300 | Serge Batalov | January 9, 2014 04:37:08 UTC 2014 年 1 月 9 日 (木) 13 時 37 分 8 秒 (日本時間) | |||
1738 | KTakahashi | March 22, 2014 11:58:46 UTC 2014 年 3 月 22 日 (土) 20 時 58 分 46 秒 (日本時間) | |||
45 | 11e6 | 151 | KTakahashi | March 24, 2014 22:45:46 UTC 2014 年 3 月 25 日 (火) 7 時 45 分 46 秒 (日本時間) | |
50 | 43e6 | 1280 | Robert Balfour | July 10, 2020 21:25:14 UTC 2020 年 7 月 11 日 (土) 6 時 25 分 14 秒 (日本時間) | |
55 | 11e7 | 3000 / 17285 | yoyo@Home | December 4, 2022 13:49:53 UTC 2022 年 12 月 4 日 (日) 22 時 49 分 53 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | February 17, 2009 17:00:00 UTC 2009 年 2 月 18 日 (水) 2 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2318 | 280 | Makoto Kamada | December 15, 2009 06:47:52 UTC 2009 年 12 月 15 日 (火) 15 時 47 分 52 秒 (日本時間) |
300 | Serge Batalov | January 9, 2014 04:37:08 UTC 2014 年 1 月 9 日 (木) 13 時 37 分 8 秒 (日本時間) | |||
1738 | KTakahashi | March 25, 2014 22:25:30 UTC 2014 年 3 月 26 日 (水) 7 時 25 分 30 秒 (日本時間) | |||
45 | 11e6 | 151 | KTakahashi | March 26, 2014 10:38:13 UTC 2014 年 3 月 26 日 (水) 19 時 38 分 13 秒 (日本時間) | |
50 | 43e6 | 1280 / 7431 | Robert Balfour | July 11, 2020 13:58:40 UTC 2020 年 7 月 11 日 (土) 22 時 58 分 40 秒 (日本時間) |
name 名前 | Makoto Kamada |
---|---|
date 日付 | December 15, 2009 06:40:20 UTC 2009 年 12 月 15 日 (火) 15 時 40 分 20 秒 (日本時間) |
composite number 合成数 | 1719389271348978713120039345953880983197197850781980217907177570052513982585072918121216259313173002381434952114088919670771135995384994134329291632029354871682571868524334037507490025036216312932327429399336120762515923242549597<229> |
prime factors 素因数 | 245770041528399372761722440431<30> 6995927008257020513213147481935171254602692742046147638121409624025066318654782565640266876425207293906006549803982132091174899763423630705114910859456080952174977330381795175212974818157466438019187<199> |
factorization results 素因数分解の結果 | GMP-ECM 6.2.3 [powered by GMP 4.2.1_MPIR_1.1.1] [ECM] Input number is 1719389271348978713120039345953880983197197850781980217907177570052513982585072918121216259313173002381434952114088919670771135995384994134329291632029354871682571868524334037507490025036216312932327429399336120762515923242549597 (229 digits) [Mon Dec 14 20:27:43 2009] Using MODMULN Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3076026454 dF=16384, k=2, d=158340, d2=11, i0=8 Expected number of curves to find a factor of n digits: 20 25 30 35 40 45 50 55 60 65 3 11 54 322 2350 20265 199745 2246256 2.8e+007 4e+008 Step 1 took 26785ms Using 27 small primes for NTT Estimated memory usage: 72M Initializing tables of differences for F took 16ms Computing roots of F took 1076ms Building F from its roots took 2277ms Computing 1/F took 1389ms Initializing table of differences for G took 15ms Computing roots of G took 952ms Building G from its roots took 2075ms Computing roots of G took 952ms Building G from its roots took 2028ms Computing G * H took 748ms Reducing G * H mod F took 702ms Computing polyeval(F,G) took 4150ms Computing product of all F(g_i) took 31ms Step 2 took 16520ms ********** Factor found in step 2: 245770041528399372761722440431 Found probable prime factor of 30 digits: 245770041528399372761722440431 Probable prime cofactor 6995927008257020513213147481935171254602692742046147638121409624025066318654782565640266876425207293906006549803982132091174899763423630705114910859456080952174977330381795175212974818157466438019187 has 199 digits |
software ソフトウェア | yoyo@home |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | February 17, 2009 17:00:00 UTC 2009 年 2 月 18 日 (水) 2 時 0 分 0 秒 (日本時間) |
name 名前 | KTakahashi |
---|---|
date 日付 | March 28, 2014 10:28:10 UTC 2014 年 3 月 28 日 (金) 19 時 28 分 10 秒 (日本時間) |
composite number 合成数 | 3558757296577773074030321458119751347552491321185700155418864003028724622641189805955050666543638730108494043215236756202195631084334528665415070952002434367607012366060659755501085756095267759869511862756126979871406493204321<226> |
prime factors 素因数 | 3247224071082911680176958626450269993491<40> |
composite cofactor 合成数の残り | 1095938321062940588943631887785649651155215279019685406368965787817601949690803324639150960362224517417469457326788129242951039413930755136266858286006237620118270899864082764534777827131<187> |
factorization results 素因数分解の結果 | GMP-ECM 6.4.4 [configured with GMP 5.1.2] [ECM] Input number is 3558757296577773074030321458119751347552491321185700155418864003028724622641189805955050666543638730108494043215236756202195631084334528665415070952002434367607012366060659755501085756095267759869511862756126979871406493204321 (226 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2559412907 Step 1 took 19656ms Step 2 took 8175ms ********** Factor found in step 2: 3247224071082911680176958626450269993491 Found probable prime factor of 40 digits: 3247224071082911680176958626450269993491 Composite cofactor 1095938321062940588943631887785649651155215279019685406368965787817601949690803324639150960362224517417469457326788129242951039413930755136266858286006237620118270899864082764534777827131 has 187 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | February 17, 2009 17:00:00 UTC 2009 年 2 月 18 日 (水) 2 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2318 | 280 | Makoto Kamada | December 15, 2009 06:48:04 UTC 2009 年 12 月 15 日 (火) 15 時 48 分 4 秒 (日本時間) |
300 | Serge Batalov | January 9, 2014 04:37:09 UTC 2014 年 1 月 9 日 (木) 13 時 37 分 9 秒 (日本時間) | |||
1738 | KTakahashi | March 28, 2014 22:32:26 UTC 2014 年 3 月 29 日 (土) 7 時 32 分 26 秒 (日本時間) | |||
45 | 11e6 | 151 | KTakahashi | March 29, 2014 04:10:28 UTC 2014 年 3 月 29 日 (土) 13 時 10 分 28 秒 (日本時間) | |
50 | 43e6 | 1280 / 7431 | Robert Balfour | July 11, 2020 13:58:52 UTC 2020 年 7 月 11 日 (土) 22 時 58 分 52 秒 (日本時間) |
name 名前 | Wataru Sakai |
---|---|
date 日付 | July 3, 2010 04:37:59 UTC 2010 年 7 月 3 日 (土) 13 時 37 分 59 秒 (日本時間) |
composite number 合成数 | 216357330667025798182532276335707788137553725917339569045312560543937815462288544203037494184206205067020031011720916810781419735543209400423181261106972353208123629187199042822104608022871154679755461854489900383418497503953911<228> |
prime factors 素因数 | 1150262176975562302996781848635447127<37> |
composite cofactor 合成数の残り | 188093927626051448089997455997717519926459494295733323265494783603891283467558437636937364132825297967762580572663720128479136551316154476615117018568575564589858989831433577999374877962679393<192> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1531963043 Step 1 took 23990ms Step 2 took 8567ms ********** Factor found in step 2: 1150262176975562302996781848635447127 Found probable prime factor of 37 digits: 1150262176975562302996781848635447127 Composite cofactor 188093927626051448089997455997717519926459494295733323265494783603891283467558437636937364132825297967762580572663720128479136551316154476615117018568575564589858989831433577999374877962679393 has 192 digits |
software ソフトウェア | GMP-ECM 6.2.3 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | February 17, 2009 17:00:00 UTC 2009 年 2 月 18 日 (水) 2 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2318 | 280 | Makoto Kamada | December 15, 2009 06:48:12 UTC 2009 年 12 月 15 日 (火) 15 時 48 分 12 秒 (日本時間) |
300 | Serge Batalov | January 9, 2014 04:37:10 UTC 2014 年 1 月 9 日 (木) 13 時 37 分 10 秒 (日本時間) | |||
1738 | KTakahashi | March 21, 2014 10:32:52 UTC 2014 年 3 月 21 日 (金) 19 時 32 分 52 秒 (日本時間) | |||
45 | 11e6 | 151 | KTakahashi | March 24, 2014 22:46:07 UTC 2014 年 3 月 25 日 (火) 7 時 46 分 7 秒 (日本時間) | |
50 | 43e6 | 1280 / 7431 | Robert Balfour | July 11, 2020 13:58:59 UTC 2020 年 7 月 11 日 (土) 22 時 58 分 59 秒 (日本時間) |
name 名前 | Ben Meekins |
---|---|
date 日付 | May 5, 2015 04:19:20 UTC 2015 年 5 月 5 日 (火) 13 時 19 分 20 秒 (日本時間) |
composite number 合成数 | 2358547011266171834282305720730406120259528822364868974000596698599093724329408162725657885669990860196272667987170031429794683334021431342120100044465254149905038908971894632488787661093332133474465956801<205> |
prime factors 素因数 | 449695601667888699520225358727102056475180265695683782397<57> 5244763352184211514447647415782387090710874812419576532098981228154424265309061898111023798238097871002823979705643827294126588155524334500986234133<148> |
factorization results 素因数分解の結果 | Number: 11113_240 N = 2358547011266171834282305720730406120259528822364868974000596698599093724329408162725657885669990860196272667987170031429794683334021431342120100044465254149905038908971894632488787661093332133474465956801 (205 digits) SNFS difficulty: 241 digits. Divisors found: r1=449695601667888699520225358727102056475180265695683782397 (pp57) r2=5244763352184211514447647415782387090710874812419576532098981228154424265309061898111023798238097871002823979705643827294126588155524334500986234133 (pp148) Version: Msieve v. 1.53 (SVN unknown) Total time: 2228.22 hours. Factorization parameters were as follows: n: 2358547011266171834282305720730406120259528822364868974000596698599093724329408162725657885669990860196272667987170031429794683334021431342120100044465254149905038908971894632488787661093332133474465956801 m: 10000000000000000000000000000000000000000 deg: 6 c6: 1 c0: 17 skew: 1.60 # Murphy_E = 5.962e-13 type: snfs lss: 1 rlim: 70000000 alim: 70000000 lpbr: 30 lpba: 30 mfbr: 61 mfba: 61 rlambda: 2.7 alambda: 2.7 Factor base limits: 70000000/70000000 Large primes per side: 3 Large prime bits: 30/30 Sieved rational special-q in [0, 0) Total raw relations: 110482263 Relations: 10922842 relations Pruned matrix : 8051841 x 8052066 Polynomial selection time: 0.00 hours. Total sieving time: 2142.94 hours. Total relation processing time: 1.05 hours. Matrix solve time: 83.85 hours. time per square root: 0.38 hours. Prototype def-par.txt line would be: snfs,241,6,0,0,0,0,0,0,0,0,70000000,70000000,30,30,61,61,2.7,2.7,200000 total time: 2228.22 hours. x86_64 Linux-3.13.0-46-generic-x86_64-with-Ubuntu-14.04-trusty processors: 4, speed: 0.80GHz |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | February 17, 2009 17:00:00 UTC 2009 年 2 月 18 日 (水) 2 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1946 | 280 | Makoto Kamada | December 15, 2009 06:48:22 UTC 2009 年 12 月 15 日 (火) 15 時 48 分 22 秒 (日本時間) |
300 | Serge Batalov | January 9, 2014 04:37:10 UTC 2014 年 1 月 9 日 (木) 13 時 37 分 10 秒 (日本時間) | |||
1366 | KTakahashi | March 19, 2014 08:16:15 UTC 2014 年 3 月 19 日 (水) 17 時 16 分 15 秒 (日本時間) | |||
45 | 11e6 | 96 / 3908 | KTakahashi | March 19, 2014 23:09:43 UTC 2014 年 3 月 20 日 (木) 8 時 9 分 43 秒 (日本時間) | |
50 | 43e6 | 39 / 7458 | Cyp | January 29, 2014 12:43:22 UTC 2014 年 1 月 29 日 (水) 21 時 43 分 22 秒 (日本時間) |
name 名前 | Makoto Kamada |
---|---|
date 日付 | December 15, 2009 06:40:22 UTC 2009 年 12 月 15 日 (火) 15 時 40 分 22 秒 (日本時間) |
composite number 合成数 | 635802821254124632245644134156344521699797959589567830765446538580491656222953927253387514145875048283079324184181135147768813698398498051741476677385558200484481165819627480049581712885502706227662268928773697<210> |
prime factors 素因数 | 5698757463712416358165250190011999<34> 111568675330136835985158131132148286419662624343188790396091914312571328418864051146305057278675143858079578156757844170432496065307678374623319281825292812203036012184988862303<177> |
factorization results 素因数分解の結果 | GMP-ECM 6.2.3 [powered by GMP 4.2.1_MPIR_1.1.1] [ECM] Input number is 635802821254124632245644134156344521699797959589567830765446538580491656222953927253387514145875048283079324184181135147768813698398498051741476677385558200484481165819627480049581712885502706227662268928773697 (210 digits) [Tue Dec 15 06:52:15 2009] Using MODMULN Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=978631340 dF=16384, k=2, d=158340, d2=11, i0=8 Expected number of curves to find a factor of n digits: 20 25 30 35 40 45 50 55 60 65 3 11 54 322 2350 20265 199745 2246256 2.8e+007 4e+008 Step 1 took 26067ms Using 25 small primes for NTT Estimated memory usage: 66M Initializing tables of differences for F took 15ms Computing roots of F took 952ms Building F from its roots took 1841ms Computing 1/F took 1029ms Initializing table of differences for G took 32ms Computing roots of G took 826ms Building G from its roots took 1592ms Computing roots of G took 734ms Building G from its roots took 1684ms Computing G * H took 546ms Reducing G * H mod F took 546ms Computing polyeval(F,G) took 3276ms Computing product of all F(g_i) took 16ms Step 2 took 13136ms ********** Factor found in step 2: 5698757463712416358165250190011999 Found probable prime factor of 34 digits: 5698757463712416358165250190011999 Probable prime cofactor 111568675330136835985158131132148286419662624343188790396091914312571328418864051146305057278675143858079578156757844170432496065307678374623319281825292812203036012184988862303 has 177 digits |
software ソフトウェア | yoyo@home |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | February 17, 2009 17:00:00 UTC 2009 年 2 月 18 日 (水) 2 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | February 17, 2009 17:00:00 UTC 2009 年 2 月 18 日 (水) 2 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1946 | 280 | Makoto Kamada | December 15, 2009 06:48:39 UTC 2009 年 12 月 15 日 (火) 15 時 48 分 39 秒 (日本時間) |
300 | Serge Batalov | January 9, 2014 04:37:13 UTC 2014 年 1 月 9 日 (木) 13 時 37 分 13 秒 (日本時間) | |||
1366 | KTakahashi | March 19, 2014 08:17:47 UTC 2014 年 3 月 19 日 (水) 17 時 17 分 47 秒 (日本時間) | |||
45 | 11e6 | 96 | KTakahashi | March 19, 2014 23:10:10 UTC 2014 年 3 月 20 日 (木) 8 時 10 分 10 秒 (日本時間) | |
50 | 43e6 | 1319 / 7458 | 39 | Cyp | January 26, 2014 19:49:12 UTC 2014 年 1 月 27 日 (月) 4 時 49 分 12 秒 (日本時間) |
1280 | Robert Balfour | July 11, 2020 13:59:14 UTC 2020 年 7 月 11 日 (土) 22 時 59 分 14 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | February 17, 2009 17:00:00 UTC 2009 年 2 月 18 日 (水) 2 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 280 | Makoto Kamada | December 15, 2009 06:48:48 UTC 2009 年 12 月 15 日 (火) 15 時 48 分 48 秒 (日本時間) | |
45 | 11e6 | 601 | 600 | Dmitry Domanov | August 28, 2011 20:49:05 UTC 2011 年 8 月 29 日 (月) 5 時 49 分 5 秒 (日本時間) |
1 | KTakahashi | March 14, 2014 06:45:40 UTC 2014 年 3 月 14 日 (金) 15 時 45 分 40 秒 (日本時間) | |||
50 | 43e6 | 1280 / 7407 | Robert Balfour | July 11, 2020 13:59:24 UTC 2020 年 7 月 11 日 (土) 22 時 59 分 24 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | February 17, 2009 17:00:00 UTC 2009 年 2 月 18 日 (水) 2 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2500 | Dmitry Domanov | July 17, 2009 14:34:46 UTC 2009 年 7 月 17 日 (金) 23 時 34 分 46 秒 (日本時間) | |
45 | 11e6 | 0 | - | - | |
50 | 43e6 | 1118 | yoyo@home | January 15, 2010 04:43:27 UTC 2010 年 1 月 15 日 (金) 13 時 43 分 27 秒 (日本時間) | |
55 | 11e7 | 2640 / 17351 | yoyo@home | June 16, 2010 01:10:53 UTC 2010 年 6 月 16 日 (水) 10 時 10 分 53 秒 (日本時間) |
name 名前 | KTakahashi |
---|---|
date 日付 | August 4, 2015 14:41:47 UTC 2015 年 8 月 4 日 (火) 23 時 41 分 47 秒 (日本時間) |
composite number 合成数 | 41953893510110259027533920771750261897180236863291979380500417651009893147628619100181282773857186429257974071654732881657715803486284642903142304670013748290903263131883322865836902560823705963620100781642989986864235941984477898479129406364993<245> |
prime factors 素因数 | 129758053734658770980260007871825773<36> 50635177716674212311688015044227441587<38> |
composite cofactor 合成数の残り | 6385363274612774414193132528090889285327557659435967227726366301487512108416381639632861732312487629067544590914803560009015775752118189426010248763392671380190273293404743<172> |
factorization results 素因数分解の結果 | Input number is 41953893510110259027533920771750261897180236863291979380500417651009893147628619100181282773857186429257974071654732881657715803486284642903142304670013748290903263131883322865836902560823705963620100781642989986864235941984477898479129406364993 (245 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=609989704 Step 1 took 22246ms Step 2 took 9594ms ********** Factor found in step 2: 129758053734658770980260007871825773 Found probable prime factor of 36 digits: 129758053734658770980260007871825773 Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=695661403 Step 1 took 65208ms Step 2 took 24913ms ********** Factor found in step 2: 50635177716674212311688015044227441587 Found probable prime factor of 38 digits: 50635177716674212311688015044227441587 Composite cofactor 6385363274612774414193132528090889285327557659435967227726366301487512108416381639632861732312487629067544590914803560009015775752118189426010248763392671380190273293404743 has 172 digits |
software ソフトウェア | GMP-ECM 6.4.4 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | 118 | Makoto Kamada | August 4, 2015 12:00:00 UTC 2015 年 8 月 4 日 (火) 21 時 0 分 0 秒 (日本時間) |
786 | KTakahashi | August 4, 2015 13:32:26 UTC 2015 年 8 月 4 日 (火) 22 時 32 分 26 秒 (日本時間) | |||
40 | 3e6 | 2104 | KTakahashi | August 4, 2015 13:32:26 UTC 2015 年 8 月 4 日 (火) 22 時 32 分 26 秒 (日本時間) | |
45 | 11e6 | 1474 | KTakahashi | August 4, 2015 13:32:26 UTC 2015 年 8 月 4 日 (火) 22 時 32 分 26 秒 (日本時間) | |
50 | 43e6 | 7141 | 1200 | Erik Branger | November 3, 2015 13:43:54 UTC 2015 年 11 月 3 日 (火) 22 時 43 分 54 秒 (日本時間) |
5941 | ebina | October 22, 2021 08:42:49 UTC 2021 年 10 月 22 日 (金) 17 時 42 分 49 秒 (日本時間) |
name 名前 | Robert Balfour |
---|---|
date 日付 | July 10, 2020 23:13:32 UTC 2020 年 7 月 11 日 (土) 8 時 13 分 32 秒 (日本時間) |
composite number 合成数 | 69159496473933578368152692913362028835311080300825022495821730801784010377687388660882436781608172725526148157132910873291833923339269446167175499654290669258720956998727884036227444564846257<191> |
prime factors 素因数 | 6098059419620899071807171817875513094252664489<46> |
composite cofactor 合成数の残り | 11341230334917439901720169530920311961949518674029518792314200482193146743305140782939246393941797128260766716799468628043712469838568612171431113<146> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.5-dev [configured with GMP 6.2.0, --enable-asm-redc, --enable-assert] [ECM] Input number is 69159496473933578368152692913362028835311080300825022495821730801784010377687388660882436781608172725526148157132910873291833923339269446167175499654290669258720956998727884036227444564846257 (191 digits) Using B1=43000000, B2=240490660426, polynomial Dickson(12), sigma=1:560454079 Step 1 took 83688ms Step 2 took 27092ms ********** Factor found in step 2: 6098059419620899071807171817875513094252664489 Found prime factor of 46 digits: 6098059419620899071807171817875513094252664489 Composite cofactor 11341230334917439901720169530920311961949518674029518792314200482193146743305140782939246393941797128260766716799468628043712469838568612171431113 has 146 digits |
name 名前 | Jason Parker-Burlingham |
---|---|
date 日付 | November 21, 2020 17:26:36 UTC 2020 年 11 月 22 日 (日) 2 時 26 分 36 秒 (日本時間) |
composite number 合成数 | 11341230334917439901720169530920311961949518674029518792314200482193146743305140782939246393941797128260766716799468628043712469838568612171431113<146> |
prime factors 素因数 | 367333323389954938301768330177708361489774075662377405270984367262851<69> 30874493580528708696615456668038380336832380400154684728478984217340856346563<77> |
factorization results 素因数分解の結果 | Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 49652086 Info:Lattice Sieving: Average J: 3784.82 for 1284148 special-q, max bucket fill -bkmult 1.0,1s:1.245000 Info:Lattice Sieving: Total time: 1.65717e+06s Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 146.93/186.235 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 185.5s Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 1588.35/842.59 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 628.5000000000002s Info:Generate Free Relations: Total cpu/real time for freerel: 610.24/14.4092 Info:Filtering - Singleton removal: Total cpu/real time for purge: 2215.5/633.153 Info:Polynomial Selection (root optimized): Aggregate statistics: Info:Polynomial Selection (root optimized): Total time: 4034.59 Info:Polynomial Selection (root optimized): Rootsieve time: 4032.77 Info:Filtering - Merging: Total cpu/real time for merge: 3116.39/77.9005 Info:Filtering - Merging: Total cpu/real time for replay: 142.21/114.95 Info:Generate Factor Base: Total cpu/real time for makefb: 25.01/0.959135 Info:Square Root: Total cpu/real time for sqrt: 12536.2/461.835 Info:Quadratic Characters: Total cpu/real time for characters: 177.28/26.6141 Info:Polynomial Selection (size optimized): Aggregate statistics: Info:Polynomial Selection (size optimized): potential collisions: 77228.6 Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 78544/42.790/52.284/58.290/0.903 Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 64088/42.270/46.860/53.070/1.199 Info:Polynomial Selection (size optimized): Total time: 57713.4 Info:Linear Algebra: Total cpu/real time for bwc: 663193/17389.4 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 172996.72, WCT time 7570.55, iteration CPU time 0.11, COMM 0.01, cpu-wait 0.04, comm-wait 0.0 (113664 iterations) Info:Linear Algebra: Lingen CPU time 27268.19, WCT time 452.22 Info:Linear Algebra: Mksol: CPU time 205669.09, WCT time 9362.18, iteration CPU time 0.11, COMM 0.01, cpu-wait 0.04, comm-wait 0.0 (56832 iterations) Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 3.74801e+06/17881.8 367333323389954938301768330177708361489774075662377405270984367262851 30874493580528708696615456668038380336832380400154684728478984217340856346563 (timing information may be inaccurate because of a crash during linear algebra) Total wall-clock time: 23 hours 3 minutes 37 seconds |
software ソフトウェア | cado-nfs-3.0.0-dev, 3a63c870c97596722881ebfe24ccddc98b6c1e9e |
execution environment 実行環境 | AMD Ryzen Threadripper 2990WX 32-Core Processor w/ 64 GB RAM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | 118 | Makoto Kamada | August 4, 2015 12:00:00 UTC 2015 年 8 月 4 日 (火) 21 時 0 分 0 秒 (日本時間) |
786 | KTakahashi | August 4, 2015 13:32:56 UTC 2015 年 8 月 4 日 (火) 22 時 32 分 56 秒 (日本時間) | |||
40 | 3e6 | 2104 | KTakahashi | August 4, 2015 13:32:56 UTC 2015 年 8 月 4 日 (火) 22 時 32 分 56 秒 (日本時間) | |
45 | 11e6 | 162 | KTakahashi | August 4, 2015 13:32:56 UTC 2015 年 8 月 4 日 (火) 22 時 32 分 56 秒 (日本時間) | |
50 | 43e6 | 1280 / 7432 | Robert Balfour | July 10, 2020 23:13:05 UTC 2020 年 7 月 11 日 (土) 8 時 13 分 5 秒 (日本時間) |
name 名前 | KTakahashi |
---|---|
date 日付 | August 4, 2015 14:39:07 UTC 2015 年 8 月 4 日 (火) 23 時 39 分 7 秒 (日本時間) |
composite number 合成数 | 42054089970520082930665421865603539272211918970179444801904209193865149355100530302074528258245755690969725260630222592298213962798952012077934639533367817687109159801336478979263128235536547106888880478070894784872302755804515768181034446505094853<248> |
prime factors 素因数 | 65074722138283545387824143025565690121<38> |
composite cofactor 合成数の残り | 646243096991721244636937476711675641002771440945693396542481205324251062812639195790330945992706232106955695692910412479608279854084919825880794431779258639523686950280991175765273366681655935864616437793321693<210> |
factorization results 素因数分解の結果 | Input number is 42054089970520082930665421865603539272211918970179444801904209193865149355100530302074528258245755690969725260630222592298213962798952012077934639533367817687109159801336478979263128235536547106888880478070894784872302755804515768181034446505094853 (248 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3153006073 Step 1 took 21668ms Step 2 took 9017ms ********** Factor found in step 2: 65074722138283545387824143025565690121 Found probable prime factor of 38 digits: 65074722138283545387824143025565690121 Composite cofactor 646243096991721244636937476711675641002771440945693396542481205324251062812639195790330945992706232106955695692910412479608279854084919825880794431779258639523686950280991175765273366681655935864616437793321693 has 210 digits |
software ソフトウェア | GMP-ECM 6.4.4 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | 118 | Makoto Kamada | August 4, 2015 12:00:00 UTC 2015 年 8 月 4 日 (火) 21 時 0 分 0 秒 (日本時間) |
786 | KTakahashi | August 4, 2015 13:33:33 UTC 2015 年 8 月 4 日 (火) 22 時 33 分 33 秒 (日本時間) | |||
40 | 3e6 | 2104 | KTakahashi | August 4, 2015 13:33:33 UTC 2015 年 8 月 4 日 (火) 22 時 33 分 33 秒 (日本時間) | |
45 | 11e6 | 162 | KTakahashi | August 4, 2015 13:33:33 UTC 2015 年 8 月 4 日 (火) 22 時 33 分 33 秒 (日本時間) | |
50 | 43e6 | 1280 / 7432 | Robert Balfour | July 11, 2020 13:59:58 UTC 2020 年 7 月 11 日 (土) 22 時 59 分 58 秒 (日本時間) |
name 名前 | KTakahashi |
---|---|
date 日付 | August 4, 2015 13:51:00 UTC 2015 年 8 月 4 日 (火) 22 時 51 分 0 秒 (日本時間) |
composite number 合成数 | 31229339574745757117377588650677106073186740457148629191220492544624196959035074364345231168902830768830026748438465941601619781007476966245699766437015407966210065269726069140392586690760036496244028099410431127421<215> |
prime factors 素因数 | 652430556355798253560163664589<30> |
composite cofactor 合成数の残り | 47866151072352693673022182988486338101355758231531802652011917122603364713016087122742613894604946287786780315437093261864575195146528453454609534456023141106409082320031689567340511089<185> |
factorization results 素因数分解の結果 | Input number is 31229339574745757117377588650677106073186740457148629191220492544624196959035074364345231168902830768830026748438465941601619781007476966245699766437015407966210065269726069140392586690760036496244028099410431127421 (215 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3447677882 Step 1 took 7379ms Step 2 took 3822ms ********** Factor found in step 2: 652430556355798253560163664589 Found probable prime factor of 30 digits: 652430556355798253560163664589 Composite cofactor 47866151072352693673022182988486338101355758231531802652011917122603364713016087122742613894604946287786780315437093261864575195146528453454609534456023141106409082320031689567340511089 has 185 digits |
software ソフトウェア | GMP-ECM 6.4.4 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | 118 | Makoto Kamada | August 4, 2015 12:00:00 UTC 2015 年 8 月 4 日 (火) 21 時 0 分 0 秒 (日本時間) |
786 | KTakahashi | August 4, 2015 13:34:06 UTC 2015 年 8 月 4 日 (火) 22 時 34 分 6 秒 (日本時間) | |||
40 | 3e6 | 2104 | KTakahashi | August 4, 2015 13:34:06 UTC 2015 年 8 月 4 日 (火) 22 時 34 分 6 秒 (日本時間) | |
45 | 11e6 | 162 | KTakahashi | August 4, 2015 13:34:06 UTC 2015 年 8 月 4 日 (火) 22 時 34 分 6 秒 (日本時間) | |
50 | 43e6 | 1280 / 7432 | Robert Balfour | July 11, 2020 14:00:07 UTC 2020 年 7 月 11 日 (土) 23 時 0 分 7 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | 118 | Makoto Kamada | August 4, 2015 12:00:00 UTC 2015 年 8 月 4 日 (火) 21 時 0 分 0 秒 (日本時間) |
786 | KTakahashi | August 4, 2015 13:34:47 UTC 2015 年 8 月 4 日 (火) 22 時 34 分 47 秒 (日本時間) | |||
40 | 3e6 | 2104 | KTakahashi | August 4, 2015 13:34:47 UTC 2015 年 8 月 4 日 (火) 22 時 34 分 47 秒 (日本時間) | |
45 | 11e6 | 162 | KTakahashi | August 4, 2015 13:34:47 UTC 2015 年 8 月 4 日 (火) 22 時 34 分 47 秒 (日本時間) | |
50 | 43e6 | 1280 / 7432 | Robert Balfour | July 11, 2020 14:00:16 UTC 2020 年 7 月 11 日 (土) 23 時 0 分 16 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | 118 | Makoto Kamada | August 4, 2015 12:00:00 UTC 2015 年 8 月 4 日 (火) 21 時 0 分 0 秒 (日本時間) |
786 | KTakahashi | August 4, 2015 13:35:15 UTC 2015 年 8 月 4 日 (火) 22 時 35 分 15 秒 (日本時間) | |||
40 | 3e6 | 2104 | KTakahashi | August 4, 2015 13:35:15 UTC 2015 年 8 月 4 日 (火) 22 時 35 分 15 秒 (日本時間) | |
45 | 11e6 | 162 | KTakahashi | August 4, 2015 13:35:15 UTC 2015 年 8 月 4 日 (火) 22 時 35 分 15 秒 (日本時間) | |
50 | 43e6 | 1280 / 7432 | Robert Balfour | July 11, 2020 14:00:25 UTC 2020 年 7 月 11 日 (土) 23 時 0 分 25 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | 118 | Makoto Kamada | August 4, 2015 12:00:00 UTC 2015 年 8 月 4 日 (火) 21 時 0 分 0 秒 (日本時間) |
786 | KTakahashi | August 4, 2015 13:35:44 UTC 2015 年 8 月 4 日 (火) 22 時 35 分 44 秒 (日本時間) | |||
40 | 3e6 | 2104 | KTakahashi | August 4, 2015 13:35:44 UTC 2015 年 8 月 4 日 (火) 22 時 35 分 44 秒 (日本時間) | |
45 | 11e6 | 0 | - | - | |
50 | 43e6 | 1280 / 7469 | Robert Balfour | July 11, 2020 14:00:33 UTC 2020 年 7 月 11 日 (土) 23 時 0 分 33 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | 118 | Makoto Kamada | August 4, 2015 12:00:00 UTC 2015 年 8 月 4 日 (火) 21 時 0 分 0 秒 (日本時間) |
786 | KTakahashi | August 4, 2015 13:36:12 UTC 2015 年 8 月 4 日 (火) 22 時 36 分 12 秒 (日本時間) | |||
40 | 3e6 | 2104 | KTakahashi | August 4, 2015 13:36:12 UTC 2015 年 8 月 4 日 (火) 22 時 36 分 12 秒 (日本時間) | |
45 | 11e6 | 162 | KTakahashi | August 4, 2015 13:36:12 UTC 2015 年 8 月 4 日 (火) 22 時 36 分 12 秒 (日本時間) | |
50 | 43e6 | 1280 / 7432 | Robert Balfour | July 11, 2020 14:00:44 UTC 2020 年 7 月 11 日 (土) 23 時 0 分 44 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | 118 | Makoto Kamada | August 4, 2015 12:00:00 UTC 2015 年 8 月 4 日 (火) 21 時 0 分 0 秒 (日本時間) |
786 | KTakahashi | August 4, 2015 13:36:40 UTC 2015 年 8 月 4 日 (火) 22 時 36 分 40 秒 (日本時間) | |||
40 | 3e6 | 2104 | KTakahashi | August 4, 2015 13:36:40 UTC 2015 年 8 月 4 日 (火) 22 時 36 分 40 秒 (日本時間) | |
45 | 11e6 | 0 | - | - | |
50 | 43e6 | 1280 / 7469 | Robert Balfour | July 11, 2020 14:00:53 UTC 2020 年 7 月 11 日 (土) 23 時 0 分 53 秒 (日本時間) |
name 名前 | KTakahashi |
---|---|
date 日付 | August 4, 2015 13:52:44 UTC 2015 年 8 月 4 日 (火) 22 時 52 分 44 秒 (日本時間) |
composite number 合成数 | 116405633656714531506872126081849707164763363085214549667025067899649792868508061184498075254879038484915713109350240768506373039774819022415943609492182004204169491670900669221595241002265206317404755449292796861456266116634827<228> |
prime factors 素因数 | 13116605219961679483267163330329<32> |
composite cofactor 合成数の残り | 8874676923230187278016383565895415263555332842712056367961725663538435344971249778180916478285126237137851607487472990060354156123401894892795390150815953626566267435824209229107134765475171032963<196> |
factorization results 素因数分解の結果 | Input number is 116405633656714531506872126081849707164763363085214549667025067899649792868508061184498075254879038484915713109350240768506373039774819022415943609492182004204169491670900669221595241002265206317404755449292796861456266116634827 (228 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=211638044 Step 1 took 6303ms Step 2 took 3276ms ********** Factor found in step 2: 13116605219961679483267163330329 Found probable prime factor of 32 digits: 13116605219961679483267163330329 Composite cofactor 8874676923230187278016383565895415263555332842712056367961725663538435344971249778180916478285126237137851607487472990060354156123401894892795390150815953626566267435824209229107134765475171032963 has 196 digits |
software ソフトウェア | GMP-ECM 6.4.4 |
name 名前 | Robert Balfour |
---|---|
date 日付 | July 11, 2020 03:22:14 UTC 2020 年 7 月 11 日 (土) 12 時 22 分 14 秒 (日本時間) |
composite number 合成数 | 8874676923230187278016383565895415263555332842712056367961725663538435344971249778180916478285126237137851607487472990060354156123401894892795390150815953626566267435824209229107134765475171032963<196> |
prime factors 素因数 | 21962099306066256412060016707948948471889<41> |
composite cofactor 合成数の残り | 404090556169139548085115999858299821145518295114425984728420284862730680843587848556330159221776443890312636471613183635685955275982448896026864420753547667<156> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.5-dev [configured with GMP 6.2.0, --enable-asm-redc, --enable-assert] [ECM] Input number is 8874676923230187278016383565895415263555332842712056367961725663538435344971249778180916478285126237137851607487472990060354156123401894892795390150815953626566267435824209229107134765475171032963 (196 digits) Using B1=43000000, B2=240490660426, polynomial Dickson(12), sigma=1:4034824165 Step 1 took 96228ms Step 2 took 29388ms ********** Factor found in step 2: 21962099306066256412060016707948948471889 Found prime factor of 41 digits: 21962099306066256412060016707948948471889 Composite cofactor 404090556169139548085115999858299821145518295114425984728420284862730680843587848556330159221776443890312636471613183635685955275982448896026864420753547667 has 156 digits |
name 名前 | Bob Backstrom |
---|---|
date 日付 | July 1, 2022 19:44:28 UTC 2022 年 7 月 2 日 (土) 4 時 44 分 28 秒 (日本時間) |
composite number 合成数 | 404090556169139548085115999858299821145518295114425984728420284862730680843587848556330159221776443890312636471613183635685955275982448896026864420753547667<156> |
prime factors 素因数 | 13275329200692839588955413367797947369559414642639<50> 30439211718233703549146499419597264361113220946872509160852821664965808074570380861812328832898308040640253<107> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.1, --enable-asm-redc] [ECM] Input number is 404090556169139548085115999858299821145518295114425984728420284862730680843587848556330159221776443890312636471613183635685955275982448896026864420753547667 (156 digits) Using B1=54300000, B2=288595837546, polynomial Dickson(12), sigma=1:937280895 Step 1 took 126975ms Step 2 took 32150ms ********** Factor found in step 2: 13275329200692839588955413367797947369559414642639 Found prime factor of 50 digits: 13275329200692839588955413367797947369559414642639 Prime cofactor 30439211718233703549146499419597264361113220946872509160852821664965808074570380861812328832898308040640253 has 107 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | 118 | Makoto Kamada | August 4, 2015 12:00:00 UTC 2015 年 8 月 4 日 (火) 21 時 0 分 0 秒 (日本時間) |
786 | KTakahashi | August 4, 2015 13:37:07 UTC 2015 年 8 月 4 日 (火) 22 時 37 分 7 秒 (日本時間) | |||
40 | 3e6 | 2104 | KTakahashi | August 4, 2015 13:37:07 UTC 2015 年 8 月 4 日 (火) 22 時 37 分 7 秒 (日本時間) | |
45 | 11e6 | 162 | KTakahashi | August 4, 2015 13:37:07 UTC 2015 年 8 月 4 日 (火) 22 時 37 分 7 秒 (日本時間) | |
50 | 43e6 | 1280 / 7432 | Robert Balfour | July 11, 2020 03:21:59 UTC 2020 年 7 月 11 日 (土) 12 時 21 分 59 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | 118 | Makoto Kamada | August 4, 2015 12:00:00 UTC 2015 年 8 月 4 日 (火) 21 時 0 分 0 秒 (日本時間) |
786 | KTakahashi | August 4, 2015 13:37:41 UTC 2015 年 8 月 4 日 (火) 22 時 37 分 41 秒 (日本時間) | |||
40 | 3e6 | 2104 | KTakahashi | August 4, 2015 13:37:41 UTC 2015 年 8 月 4 日 (火) 22 時 37 分 41 秒 (日本時間) | |
45 | 11e6 | 162 | KTakahashi | August 4, 2015 13:37:41 UTC 2015 年 8 月 4 日 (火) 22 時 37 分 41 秒 (日本時間) | |
50 | 43e6 | 1280 / 7432 | Robert Balfour | July 11, 2020 14:01:02 UTC 2020 年 7 月 11 日 (土) 23 時 1 分 2 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | 118 | Makoto Kamada | August 4, 2015 12:00:00 UTC 2015 年 8 月 4 日 (火) 21 時 0 分 0 秒 (日本時間) |
786 | KTakahashi | August 4, 2015 13:38:06 UTC 2015 年 8 月 4 日 (火) 22 時 38 分 6 秒 (日本時間) | |||
40 | 3e6 | 2104 | KTakahashi | August 4, 2015 13:38:06 UTC 2015 年 8 月 4 日 (火) 22 時 38 分 6 秒 (日本時間) | |
45 | 11e6 | 0 | - | - | |
50 | 43e6 | 1280 / 7469 | Robert Balfour | July 11, 2020 14:01:10 UTC 2020 年 7 月 11 日 (土) 23 時 1 分 10 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | 118 | Makoto Kamada | August 4, 2015 12:00:00 UTC 2015 年 8 月 4 日 (火) 21 時 0 分 0 秒 (日本時間) |
786 | KTakahashi | August 4, 2015 13:38:29 UTC 2015 年 8 月 4 日 (火) 22 時 38 分 29 秒 (日本時間) | |||
40 | 3e6 | 2104 | KTakahashi | August 4, 2015 13:38:29 UTC 2015 年 8 月 4 日 (火) 22 時 38 分 29 秒 (日本時間) | |
45 | 11e6 | 0 | - | - | |
50 | 43e6 | 1280 / 7469 | Robert Balfour | July 11, 2020 14:01:20 UTC 2020 年 7 月 11 日 (土) 23 時 1 分 20 秒 (日本時間) |
name 名前 | Robert Balfour |
---|---|
date 日付 | July 11, 2020 12:56:26 UTC 2020 年 7 月 11 日 (土) 21 時 56 分 26 秒 (日本時間) |
composite number 合成数 | 1938593610345050238102147710992978246166957921061575892977917842537385072664569176198647259578490560372334477029286748244390785538320339229052667728282077177274593916884225934444825996030786377228689907590352181776421659884659127124947577<238> |
prime factors 素因数 | 241072150616445924742247674017670547431<39> |
composite cofactor 合成数の残り | 8041549409120339600557279612414416454615227091950650553710119494030393421866824457099973472448833568737278509796473286795873277085327559971952218837861411518668515442853416024365103239832407377028767<199> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.5-dev [configured with GMP 6.2.0, --enable-asm-redc, --enable-assert] [ECM] Input number is 1938593610345050238102147710992978246166957921061575892977917842537385072664569176198647259578490560372334477029286748244390785538320339229052667728282077177274593916884225934444825996030786377228689907590352181776421659884659127124947577 (238 digits) Using B1=43000000, B2=240490660426, polynomial Dickson(12), sigma=1:130061968 Step 1 took 129936ms Step 2 took 36844ms ********** Factor found in step 2: 241072150616445924742247674017670547431 Found prime factor of 39 digits: 241072150616445924742247674017670547431 Composite cofactor 8041549409120339600557279612414416454615227091950650553710119494030393421866824457099973472448833568737278509796473286795873277085327559971952218837861411518668515442853416024365103239832407377028767 has 199 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | 118 | Makoto Kamada | August 4, 2015 12:00:00 UTC 2015 年 8 月 4 日 (火) 21 時 0 分 0 秒 (日本時間) |
786 | KTakahashi | August 4, 2015 13:38:56 UTC 2015 年 8 月 4 日 (火) 22 時 38 分 56 秒 (日本時間) | |||
40 | 3e6 | 2104 | KTakahashi | August 4, 2015 13:38:56 UTC 2015 年 8 月 4 日 (火) 22 時 38 分 56 秒 (日本時間) | |
45 | 11e6 | 0 | - | - | |
50 | 43e6 | 1280 / 7469 | Robert Balfour | July 11, 2020 12:54:04 UTC 2020 年 7 月 11 日 (土) 21 時 54 分 4 秒 (日本時間) |
name 名前 | KTakahashi |
---|---|
date 日付 | August 4, 2015 13:54:39 UTC 2015 年 8 月 4 日 (火) 22 時 54 分 39 秒 (日本時間) |
composite number 合成数 | 46245138736163470701883029998831131520086001677402993769652593612929142410729439921292026122167659833737621431424485042208663799857670539190941686463351199962904688382406995166972521834396261251517588413<203> |
prime factors 素因数 | 598356244625816147058411719531<30> 77286966003142501542880089356511949177937445796837995042669407950848185949709399161090042035618328254943060737431273408641188792856904970497683690752233766007414960755343223<173> |
factorization results 素因数分解の結果 | Input number is 46245138736163470701883029998831131520086001677402993769652593612929142410729439921292026122167659833737621431424485042208663799857670539190941686463351199962904688382406995166972521834396261251517588413 (203 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2033232391 Step 1 took 5834ms Step 2 took 3214ms ********** Factor found in step 2: 598356244625816147058411719531 Found probable prime factor of 30 digits: 598356244625816147058411719531 Probable prime cofactor 77286966003142501542880089356511949177937445796837995042669407950848185949709399161090042035618328254943060737431273408641188792856904970497683690752233766007414960755343223 has 173 digits |
software ソフトウェア | GMP-ECM 6.4.4 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | August 4, 2015 12:00:00 UTC 2015 年 8 月 4 日 (火) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 6, 2017 15:08:46 UTC 2017 年 12 月 7 日 (木) 0 時 8 分 46 秒 (日本時間) |
composite number 合成数 | 24856599826789179786110906601633932715692205349134005439311232631603916223269143783594570224099100238043618662473985994516717839980403253361977240212620628944764839574623911859471472459898060023716053699759765546479656635559882444407494447616366936100208271231<260> |
prime factors 素因数 | 879099006617040113105070323979276701<36> |
composite cofactor 合成数の残り | 28275085786346933549425294701083695413521776411104793612609342822470182221983858128483012271116870579346543296325292283255956684925764669016210333042556620071866515125272433722774250677548646657962136981282418001057174243531<224> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=2478587631 Step 1 took 133416ms Step 2 took 39563ms ********** Factor found in step 2: 879099006617040113105070323979276701 Found probable prime factor of 36 digits: 879099006617040113105070323979276701 Composite cofactor 28275085786346933549425294701083695413521776411104793612609342822470182221983858128483012271116870579346543296325292283255956684925764669016210333042556620071866515125272433722774250677548646657962136981282418001057174243531 has 224 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | 118 | Makoto Kamada | August 4, 2015 12:00:00 UTC 2015 年 8 月 4 日 (火) 21 時 0 分 0 秒 (日本時間) |
786 | KTakahashi | August 4, 2015 13:39:21 UTC 2015 年 8 月 4 日 (火) 22 時 39 分 21 秒 (日本時間) | |||
40 | 3e6 | 604 | KTakahashi | August 4, 2015 13:39:21 UTC 2015 年 8 月 4 日 (火) 22 時 39 分 21 秒 (日本時間) | |
45 | 11e6 | 600 | Dmitry Domanov | December 6, 2017 13:24:00 UTC 2017 年 12 月 6 日 (水) 22 時 24 分 0 秒 (日本時間) | |
50 | 43e6 | 1280 / 7391 | Robert Balfour | July 11, 2020 14:01:30 UTC 2020 年 7 月 11 日 (土) 23 時 1 分 30 秒 (日本時間) |
name 名前 | Robert Balfour |
---|---|
date 日付 | July 11, 2020 12:58:40 UTC 2020 年 7 月 11 日 (土) 21 時 58 分 40 秒 (日本時間) |
composite number 合成数 | 27085861463852899795518531683383886220967072143290455400385339448433979972788262917978872380631607517051053391779544677882109474826084833115590461663514673601883204358858821421564511089746069688314200193655401277886852453774067667<230> |
prime factors 素因数 | 9114993998783765242000176423679833976513571<43> 2971572056708652689929210914296691005611775215978282204244484497049070055062060556027480330351444836256278326588752242885170671748832672154622570500266712470102966324205306464940524613777<187> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.5-dev [configured with GMP 6.2.0, --enable-asm-redc, --enable-assert] [ECM] Input number is 27085861463852899795518531683383886220967072143290455400385339448433979972788262917978872380631607517051053391779544677882109474826084833115590461663514673601883204358858821421564511089746069688314200193655401277886852453774067667 (230 digits) Using B1=43000000, B2=240490660426, polynomial Dickson(12), sigma=1:3561691520 Step 1 took 107476ms Step 2 took 33448ms ********** Factor found in step 2: 9114993998783765242000176423679833976513571 Found prime factor of 43 digits: 9114993998783765242000176423679833976513571 Prime cofactor 2971572056708652689929210914296691005611775215978282204244484497049070055062060556027480330351444836256278326588752242885170671748832672154622570500266712470102966324205306464940524613777 has 187 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | 118 | Makoto Kamada | August 4, 2015 12:00:00 UTC 2015 年 8 月 4 日 (火) 21 時 0 分 0 秒 (日本時間) |
786 | KTakahashi | August 4, 2015 13:40:02 UTC 2015 年 8 月 4 日 (火) 22 時 40 分 2 秒 (日本時間) | |||
40 | 3e6 | 2104 | KTakahashi | August 4, 2015 13:40:02 UTC 2015 年 8 月 4 日 (火) 22 時 40 分 2 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | April 24, 2024 12:31:18 UTC 2024 年 4 月 24 日 (水) 21 時 31 分 18 秒 (日本時間) |
composite number 合成数 | 38397550512888104509163569358190841122157734417546682169161739586471990461513988143413580811544083000844462153005170414021691269633488062879853397308108073452168309025399128311536213<182> |
prime factors 素因数 | 15178679577220258785901718356665481796229223<44> 2529702950611994146885190350276087769712962778882142928873199163481866299740345062614924754913244338282082055366446367359273335838128796131<139> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @578dd4c6899e with GMP-ECM 7.0.5-dev on Wed Apr 24 00:18:26 2024 Input number is 38397550512888104509163569358190841122157734417546682169161739586471990461513988143413580811544083000844462153005170414021691269633488062879853397308108073452168309025399128311536213 (182 digits) Using B1=43000000-43000000, B2=240490660426, polynomial Dickson(12), sigma=3:1551864000 Step 1 took 0ms Step 2 took 23814ms ********** Factor found in step 2: 15178679577220258785901718356665481796229223 Found prime factor of 44 digits: 15178679577220258785901718356665481796229223 Prime cofactor 2529702950611994146885190350276087769712962778882142928873199163481866299740345062614924754913244338282082055366446367359273335838128796131 has 139 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | 118 | Makoto Kamada | August 4, 2015 12:00:00 UTC 2015 年 8 月 4 日 (火) 21 時 0 分 0 秒 (日本時間) |
786 | KTakahashi | August 4, 2015 13:40:37 UTC 2015 年 8 月 4 日 (火) 22 時 40 分 37 秒 (日本時間) | |||
40 | 3e6 | 2104 | KTakahashi | August 4, 2015 13:40:37 UTC 2015 年 8 月 4 日 (火) 22 時 40 分 37 秒 (日本時間) | |
45 | 11e6 | 162 | KTakahashi | August 4, 2015 13:40:37 UTC 2015 年 8 月 4 日 (火) 22 時 40 分 37 秒 (日本時間) | |
50 | 43e6 | 2992 / 7432 | 1200 | Erik Branger | November 4, 2015 14:46:29 UTC 2015 年 11 月 4 日 (水) 23 時 46 分 29 秒 (日本時間) |
1792 | Dmitry Domanov | April 23, 2024 07:21:35 UTC 2024 年 4 月 23 日 (火) 16 時 21 分 35 秒 (日本時間) |
name 名前 | Erik Branger |
---|---|
date 日付 | May 17, 2019 11:28:57 UTC 2019 年 5 月 17 日 (金) 20 時 28 分 57 秒 (日本時間) |
composite number 合成数 | 6849668406897507912454221303763898092938871452858577439926187199055875281038493924296218598020581165819382577760388371896643026641972631244460114875541802666423598790049549268828340728605945761646024804722542949349<214> |
prime factors 素因数 | 995631260277842108771192082295144879357763<42> |
composite cofactor 合成数の残り | 6879724130986034781729336725783020379155905811408550472680010324423914480807965569332708724235166835851054343170372810785886580461541745467020491685883795530243729563101623<172> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.1-dev [configured with MPIR 2.7.0, --enable-gpu, --enable-openmp] [ECM] Input number is 6849668406897507912454221303763898092938871452858577439926187199055875281038493924296218598020581165819382577760388371896643026641972631244460114875541802666423598790049549268828340728605945761646024804722542949349 (214 digits) Using B1=110000000, B2=110000004, sigma=3:413404195-3:413405154 (960 curves) Block: 32x32x1 Grid: 30x1x1 GPU: factor 995631260277842108771192082295144879357763 found in Step 1 with curve 148 (-sigma 3:413404343) Computing 960 Step 1 took 794250ms of CPU time / 23455174ms of GPU time ********** Factor found in step 1: 995631260277842108771192082295144879357763 Found probable prime factor of 42 digits: 995631260277842108771192082295144879357763 Composite cofactor 6879724130986034781729336725783020379155905811408550472680010324423914480807965569332708724235166835851054343170372810785886580461541745467020491685883795530243729563101623 has 172 digits |
software ソフトウェア | GMP-ECM GPU version |
name 名前 | Erik Branger |
---|---|
date 日付 | September 6, 2019 15:06:42 UTC 2019 年 9 月 7 日 (土) 0 時 6 分 42 秒 (日本時間) |
composite number 合成数 | 6879724130986034781729336725783020379155905811408550472680010324423914480807965569332708724235166835851054343170372810785886580461541745467020491685883795530243729563101623<172> |
prime factors 素因数 | 79606991974019015171966781117645935243165894081<47> 86421103980807868900216543583867687124152868637698544464706762291122675505020638777000309279494681393000187767098654039620983<125> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by erik_@ALTISSA with GMP-ECM 7.0.1-dev on Sat May 11 03:19:15 2019 Input number is 6879724130986034781729336725783020379155905811408550472680010324423914480807965569332708724235166835851054343170372810785886580461541745467020491685883795530243729563101623 (172 digits) Using B1=110000000-110000000, B2=776278396540, polynomial Dickson(30), sigma=3:413404286 Step 1 took 0ms Step 2 took 297203ms ********** Factor found in step 2: 79606991974019015171966781117645935243165894081 Found prime factor of 47 digits: 79606991974019015171966781117645935243165894081 Prime cofactor 86421103980807868900216543583867687124152868637698544464706762291122675505020638777000309279494681393000187767098654039620983 has 125 digits |
software ソフトウェア | GMP-ECM GPU |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | 118 | Makoto Kamada | August 4, 2015 12:00:00 UTC 2015 年 8 月 4 日 (火) 21 時 0 分 0 秒 (日本時間) |
786 | KTakahashi | August 4, 2015 13:41:05 UTC 2015 年 8 月 4 日 (火) 22 時 41 分 5 秒 (日本時間) | |||
40 | 3e6 | 2104 | KTakahashi | August 4, 2015 13:41:05 UTC 2015 年 8 月 4 日 (火) 22 時 41 分 5 秒 (日本時間) | |
45 | 11e6 | 4162 | 162 | KTakahashi | August 4, 2015 13:41:05 UTC 2015 年 8 月 4 日 (火) 22 時 41 分 5 秒 (日本時間) |
4000 | Dmitry Domanov | May 23, 2019 14:34:43 UTC 2019 年 5 月 23 日 (木) 23 時 34 分 43 秒 (日本時間) | |||
50 | 43e6 | 0 | - | - | |
55 | 11e7 | 3800 / 17492 | Erik Branger | September 6, 2019 15:06:14 UTC 2019 年 9 月 7 日 (土) 0 時 6 分 14 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | 118 | Makoto Kamada | August 4, 2015 12:00:00 UTC 2015 年 8 月 4 日 (火) 21 時 0 分 0 秒 (日本時間) |
786 | KTakahashi | August 4, 2015 13:41:30 UTC 2015 年 8 月 4 日 (火) 22 時 41 分 30 秒 (日本時間) | |||
40 | 3e6 | 604 | KTakahashi | August 4, 2015 13:41:30 UTC 2015 年 8 月 4 日 (火) 22 時 41 分 30 秒 (日本時間) | |
45 | 11e6 | 600 | Dmitry Domanov | December 6, 2017 13:24:29 UTC 2017 年 12 月 6 日 (水) 22 時 24 分 29 秒 (日本時間) | |
50 | 43e6 | 1280 / 7391 | Robert Balfour | July 11, 2020 14:01:47 UTC 2020 年 7 月 11 日 (土) 23 時 1 分 47 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | 118 | Makoto Kamada | August 4, 2015 12:00:00 UTC 2015 年 8 月 4 日 (火) 21 時 0 分 0 秒 (日本時間) |
786 | KTakahashi | August 4, 2015 13:41:56 UTC 2015 年 8 月 4 日 (火) 22 時 41 分 56 秒 (日本時間) | |||
40 | 3e6 | 2104 | KTakahashi | August 4, 2015 13:41:56 UTC 2015 年 8 月 4 日 (火) 22 時 41 分 56 秒 (日本時間) | |
45 | 11e6 | 0 | - | - | |
50 | 43e6 | 1280 / 7469 | Robert Balfour | July 11, 2020 14:01:55 UTC 2020 年 7 月 11 日 (土) 23 時 1 分 55 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | August 5, 2015 21:42:29 UTC 2015 年 8 月 6 日 (木) 6 時 42 分 29 秒 (日本時間) |
composite number 合成数 | 2913557572961090225273649339535831236955820648504888993310792303814362562696481217853080421385500931304110409147685057595643135930775736743291191345242266828205952741921353116738880647891293768445186702371732011790235159350184592810371309312857549964380301891764191450917<271> |
prime factors 素因数 | 625505367989891482213316421498410464106491589<45> 4657925770204061543354826816473913124313664245110517101414988427516900346650308736481689670388240719490852666138218051276049402443261393181690941326857457681345906126108330935553944965756229266837749662817434792663544095280353<226> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1278583950 Step 1 took 108033ms Step 2 took 30008ms ********** Factor found in step 2: 625505367989891482213316421498410464106491589 Found probable prime factor of 45 digits: 625505367989891482213316421498410464106491589 Probable prime cofactor 4657925770204061543354826816473913124313664245110517101414988427516900346650308736481689670388240719490852666138218051276049402443261393181690941326857457681345906126108330935553944965756229266837749662817434792663544095280353 has 226 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | 118 | Makoto Kamada | August 4, 2015 12:00:00 UTC 2015 年 8 月 4 日 (火) 21 時 0 分 0 秒 (日本時間) |
786 | KTakahashi | August 4, 2015 13:42:18 UTC 2015 年 8 月 4 日 (火) 22 時 42 分 18 秒 (日本時間) | |||
40 | 3e6 | 604 / 2104 | KTakahashi | August 4, 2015 13:42:18 UTC 2015 年 8 月 4 日 (火) 22 時 42 分 18 秒 (日本時間) |
name 名前 | Robert Balfour |
---|---|
date 日付 | July 11, 2020 13:01:05 UTC 2020 年 7 月 11 日 (土) 22 時 1 分 5 秒 (日本時間) |
composite number 合成数 | 18581835839738513431463908518199431991245798196196884588885469380478024995782555052366052751971093288925883162273696250570882775953342074177080267223931683930900258135630841937418524819917151809750840867083567060208324946428688976355396147<239> |
prime factors 素因数 | 7003232663422508126446461287691104420832167<43> 2653322648666293931796786632523060361391702536221040355625338527082797751263566093491659461729933895369017786199146278663737414876192195698266567304663674767686842164177929103413407948728240481941<196> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.5-dev [configured with GMP 6.2.0, --enable-asm-redc, --enable-assert] [ECM] Input number is 18581835839738513431463908518199431991245798196196884588885469380478024995782555052366052751971093288925883162273696250570882775953342074177080267223931683930900258135630841937418524819917151809750840867083567060208324946428688976355396147 (239 digits) Using B1=43000000, B2=240490660426, polynomial Dickson(12), sigma=1:1912430922 Step 1 took 130836ms Step 2 took 37080ms ********** Factor found in step 2: 7003232663422508126446461287691104420832167 Found prime factor of 43 digits: 7003232663422508126446461287691104420832167 Prime cofactor 2653322648666293931796786632523060361391702536221040355625338527082797751263566093491659461729933895369017786199146278663737414876192195698266567304663674767686842164177929103413407948728240481941 has 196 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | 118 | Makoto Kamada | August 4, 2015 12:00:00 UTC 2015 年 8 月 4 日 (火) 21 時 0 分 0 秒 (日本時間) |
786 | KTakahashi | August 4, 2015 13:42:50 UTC 2015 年 8 月 4 日 (火) 22 時 42 分 50 秒 (日本時間) | |||
40 | 3e6 | 2104 | KTakahashi | August 4, 2015 13:42:50 UTC 2015 年 8 月 4 日 (火) 22 時 42 分 50 秒 (日本時間) |
name 名前 | Robert Balfour |
---|---|
date 日付 | July 11, 2020 13:03:59 UTC 2020 年 7 月 11 日 (土) 22 時 3 分 59 秒 (日本時間) |
composite number 合成数 | 49827817845105991596361833058975331918404319252615808052161384427847660114725375020690711259650891927667925898925285386444818955140322293628714943641556068540081669334814453253666001360873044224745651609137417881<212> |
prime factors 素因数 | 371075939682433501563980934552355475616500602663028226166627<60> |
composite cofactor 合成数の残り | 134279301125663385956186078379747059866265578114288439049899528668944954929213996047876381175176482831494372282854040579532526619421477867133783996834003<153> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.5-dev [configured with GMP 6.2.0, --enable-asm-redc, --enable-assert] [ECM] Input number is 49827817845105991596361833058975331918404319252615808052161384427847660114725375020690711259650891927667925898925285386444818955140322293628714943641556068540081669334814453253666001360873044224745651609137417881 (212 digits) Using B1=43000000, B2=240490660426, polynomial Dickson(12), sigma=1:3945973550 Step 1 took 100992ms Step 2 took 18040ms ********** Factor found in step 2: 371075939682433501563980934552355475616500602663028226166627 Found prime factor of 60 digits: 371075939682433501563980934552355475616500602663028226166627 Composite cofactor 134279301125663385956186078379747059866265578114288439049899528668944954929213996047876381175176482831494372282854040579532526619421477867133783996834003 has 153 digits |
name 名前 | Thomas Kozlowski |
---|---|
date 日付 | June 26, 2024 22:41:41 UTC 2024 年 6 月 27 日 (木) 7 時 41 分 41 秒 (日本時間) |
composite number 合成数 | 134279301125663385956186078379747059866265578114288439049899528668944954929213996047876381175176482831494372282854040579532526619421477867133783996834003<153> |
prime factors 素因数 | 76351257152693336683541585188420616153644459771278738813019859492707049<71> 1758704520832196966055041521792396785666684484976952118953767827096309390262112347<82> |
factorization results 素因数分解の結果 | Prime factors: 1758704520832196966055041521792396785666684484976952118953767827096309390262112347 76351257152693336683541585188420616153644459771278738813019859492707049 Used the default c155 parameters file in cado-nfs |
software ソフトウェア | cado-nfs latest development version |
execution environment 実行環境 | 2x E5-2698 v4, 384GB DDR4, Ubuntu Server 22.04 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | 118 | Makoto Kamada | August 4, 2015 12:00:00 UTC 2015 年 8 月 4 日 (火) 21 時 0 分 0 秒 (日本時間) |
786 | KTakahashi | August 4, 2015 13:43:18 UTC 2015 年 8 月 4 日 (火) 22 時 43 分 18 秒 (日本時間) | |||
40 | 3e6 | 2104 | KTakahashi | August 4, 2015 13:43:18 UTC 2015 年 8 月 4 日 (火) 22 時 43 分 18 秒 (日本時間) | |
45 | 11e6 | 162 | KTakahashi | August 4, 2015 13:43:18 UTC 2015 年 8 月 4 日 (火) 22 時 43 分 18 秒 (日本時間) | |
50 | 43e6 | 7734 | 1280 | Robert Balfour | July 11, 2020 13:01:19 UTC 2020 年 7 月 11 日 (土) 22 時 1 分 19 秒 (日本時間) |
6454 | Ignacio Santos | February 22, 2024 07:40:50 UTC 2024 年 2 月 22 日 (木) 16 時 40 分 50 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | 118 | Makoto Kamada | August 4, 2015 12:00:00 UTC 2015 年 8 月 4 日 (火) 21 時 0 分 0 秒 (日本時間) |
786 | KTakahashi | August 4, 2015 13:43:45 UTC 2015 年 8 月 4 日 (火) 22 時 43 分 45 秒 (日本時間) | |||
40 | 3e6 | 2104 | KTakahashi | August 4, 2015 13:43:45 UTC 2015 年 8 月 4 日 (火) 22 時 43 分 45 秒 (日本時間) | |
45 | 11e6 | 162 | KTakahashi | August 4, 2015 13:43:45 UTC 2015 年 8 月 4 日 (火) 22 時 43 分 45 秒 (日本時間) | |
50 | 43e6 | 1280 / 7432 | Robert Balfour | July 11, 2020 14:02:04 UTC 2020 年 7 月 11 日 (土) 23 時 2 分 4 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | 118 | Makoto Kamada | August 4, 2015 12:00:00 UTC 2015 年 8 月 4 日 (火) 21 時 0 分 0 秒 (日本時間) |
786 | KTakahashi | August 4, 2015 13:44:18 UTC 2015 年 8 月 4 日 (火) 22 時 44 分 18 秒 (日本時間) | |||
40 | 3e6 | 2104 | KTakahashi | August 4, 2015 13:44:18 UTC 2015 年 8 月 4 日 (火) 22 時 44 分 18 秒 (日本時間) | |
45 | 11e6 | 162 | KTakahashi | August 4, 2015 13:44:18 UTC 2015 年 8 月 4 日 (火) 22 時 44 分 18 秒 (日本時間) | |
50 | 43e6 | 1280 / 7432 | Robert Balfour | July 11, 2020 14:02:12 UTC 2020 年 7 月 11 日 (土) 23 時 2 分 12 秒 (日本時間) |
name 名前 | KTakahashi |
---|---|
date 日付 | August 4, 2015 13:58:20 UTC 2015 年 8 月 4 日 (火) 22 時 58 分 20 秒 (日本時間) |
composite number 合成数 | 854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854701<282> |
prime factors 素因数 | 455641527981154692555443845296503053<36> 1875818603470676358427372584557894311957229014862916693228322285969093107616368373143190973525208642824140468116526351496293034002548736445650484148443446092843817207880089121797338416610219079573852420646146237176049548922433542372449614700707617<247> |
factorization results 素因数分解の結果 | Input number is 854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854701 (282 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2150813586 Step 1 took 10421ms Step 2 took 5039ms ********** Factor found in step 2: 455641527981154692555443845296503053 Found probable prime factor of 36 digits: 455641527981154692555443845296503053 Probable prime cofactor 1875818603470676358427372584557894311957229014862916693228322285969093107616368373143190973525208642824140468116526351496293034002548736445650484148443446092843817207880089121797338416610219079573852420646146237176049548922433542372449614700707617 has 247 digits |
software ソフトウェア | GMP-ECM 6.4.4 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 118 / 904 | Makoto Kamada | August 4, 2015 12:00:00 UTC 2015 年 8 月 4 日 (火) 21 時 0 分 0 秒 (日本時間) |
name 名前 | KTakahashi |
---|---|
date 日付 | August 4, 2015 13:59:35 UTC 2015 年 8 月 4 日 (火) 22 時 59 分 35 秒 (日本時間) |
composite number 合成数 | 270785976982835791908609979369141951451422812806379735802038913259982793993622000018279635051848595293794553519805522067582133252061884663140862037780970197802891745300636630440383596481985249754895989971468201749257688068297494548910128001294669183299<252> |
prime factors 素因数 | 1120534420169662928943684406717<31> |
composite cofactor 合成数の残り | 241657884049501493669813625247681826734249704561897042128914952727846942038042560888339962391304030891944920360622084480221939093070078922704430645720552110840392630995487530230412451814991638956210927736962205327972782847<222> |
factorization results 素因数分解の結果 | Input number is 270785976982835791908609979369141951451422812806379735802038913259982793993622000018279635051848595293794553519805522067582133252061884663140862037780970197802891745300636630440383596481985249754895989971468201749257688068297494548910128001294669183299 (252 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3119710295 Step 1 took 8034ms ********** Factor found in step 1: 1120534420169662928943684406717 Found probable prime factor of 31 digits: 1120534420169662928943684406717 Composite cofactor 241657884049501493669813625247681826734249704561897042128914952727846942038042560888339962391304030891944920360622084480221939093070078922704430645720552110840392630995487530230412451814991638956210927736962205327972782847 has 222 digits |
software ソフトウェア | GMP-ECM 6.4.4 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | 118 | Makoto Kamada | August 4, 2015 12:00:00 UTC 2015 年 8 月 4 日 (火) 21 時 0 分 0 秒 (日本時間) |
786 | KTakahashi | August 4, 2015 13:45:13 UTC 2015 年 8 月 4 日 (火) 22 時 45 分 13 秒 (日本時間) | |||
40 | 3e6 | 2104 | KTakahashi | August 4, 2015 13:45:13 UTC 2015 年 8 月 4 日 (火) 22 時 45 分 13 秒 (日本時間) | |
45 | 11e6 | 162 | KTakahashi | August 4, 2015 13:45:13 UTC 2015 年 8 月 4 日 (火) 22 時 45 分 13 秒 (日本時間) | |
50 | 43e6 | 1280 / 7432 | Robert Balfour | July 11, 2020 14:02:20 UTC 2020 年 7 月 11 日 (土) 23 時 2 分 20 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | 118 | Makoto Kamada | August 4, 2015 12:00:00 UTC 2015 年 8 月 4 日 (火) 21 時 0 分 0 秒 (日本時間) |
786 | KTakahashi | August 4, 2015 13:45:44 UTC 2015 年 8 月 4 日 (火) 22 時 45 分 44 秒 (日本時間) | |||
40 | 3e6 | 604 | KTakahashi | August 4, 2015 13:45:44 UTC 2015 年 8 月 4 日 (火) 22 時 45 分 44 秒 (日本時間) | |
45 | 11e6 | 600 | Dmitry Domanov | December 23, 2017 00:40:07 UTC 2017 年 12 月 23 日 (土) 9 時 40 分 7 秒 (日本時間) | |
50 | 43e6 | 1280 / 7391 | Robert Balfour | July 11, 2020 14:02:27 UTC 2020 年 7 月 11 日 (土) 23 時 2 分 27 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | 118 | Makoto Kamada | August 4, 2015 12:00:00 UTC 2015 年 8 月 4 日 (火) 21 時 0 分 0 秒 (日本時間) |
786 | KTakahashi | August 4, 2015 13:46:05 UTC 2015 年 8 月 4 日 (火) 22 時 46 分 5 秒 (日本時間) | |||
40 | 3e6 | 2104 | funecm2017 | November 25, 2017 13:02:07 UTC 2017 年 11 月 25 日 (土) 22 時 2 分 7 秒 (日本時間) | |
45 | 11e6 | 0 | - | - | |
50 | 43e6 | 1280 / 7469 | Robert Balfour | July 11, 2020 14:02:35 UTC 2020 年 7 月 11 日 (土) 23 時 2 分 35 秒 (日本時間) |
name 名前 | Robert Balfour |
---|---|
date 日付 | July 11, 2020 13:06:57 UTC 2020 年 7 月 11 日 (土) 22 時 6 分 57 秒 (日本時間) |
composite number 合成数 | 911654484874087247784879242670418668058012100129838263392884985528268741552043986107860797140826390774562552401292983121065574155769891097563655499882387738775590808499702451450127889463845354971085619847446560442589743870454817660226800406566369502722681169097174011759<270> |
prime factors 素因数 | 232191439773686854145291963300953175329819<42> |
composite cofactor 合成数の残り | 3926305318415966393858738830609927185981952479716636614759502299006002360358399589569776621021627762526536326012306104401907007388362905190023381635160108498130130911623294374067739375589694556656569072122735388940502902732691261<229> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.5-dev [configured with GMP 6.2.0, --enable-asm-redc, --enable-assert] [ECM] Input number is 911654484874087247784879242670418668058012100129838263392884985528268741552043986107860797140826390774562552401292983121065574155769891097563655499882387738775590808499702451450127889463845354971085619847446560442589743870454817660226800406566369502722681169097174011759 (270 digits) Using B1=43000000, B2=240490660426, polynomial Dickson(12), sigma=1:977167706 Step 1 took 168020ms Step 2 took 45324ms ********** Factor found in step 2: 232191439773686854145291963300953175329819 Found prime factor of 42 digits: 232191439773686854145291963300953175329819 Composite cofactor 3926305318415966393858738830609927185981952479716636614759502299006002360358399589569776621021627762526536326012306104401907007388362905190023381635160108498130130911623294374067739375589694556656569072122735388940502902732691261 has 229 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | 118 | Makoto Kamada | August 4, 2015 12:00:00 UTC 2015 年 8 月 4 日 (火) 21 時 0 分 0 秒 (日本時間) |
786 | KTakahashi | August 4, 2015 13:46:34 UTC 2015 年 8 月 4 日 (火) 22 時 46 分 34 秒 (日本時間) | |||
40 | 3e6 | 604 | KTakahashi | August 4, 2015 13:46:34 UTC 2015 年 8 月 4 日 (火) 22 時 46 分 34 秒 (日本時間) | |
45 | 11e6 | 600 | Dmitry Domanov | December 23, 2017 21:10:31 UTC 2017 年 12 月 24 日 (日) 6 時 10 分 31 秒 (日本時間) | |
50 | 43e6 | 1280 / 7391 | Robert Balfour | July 11, 2020 13:03:21 UTC 2020 年 7 月 11 日 (土) 22 時 3 分 21 秒 (日本時間) |
name 名前 | KTakahashi |
---|---|
date 日付 | August 4, 2015 14:40:15 UTC 2015 年 8 月 4 日 (火) 23 時 40 分 15 秒 (日本時間) |
composite number 合成数 | 9663327099733181878338888164407443164891032575240558597130260958689898221269867541372099487397143031054097223269463198767548941492909960571837741537596901020278910922772832208775570262325371024652650356874881977866947678460868130988601567019873001<247> |
prime factors 素因数 | 9317212475271165045959887838376823<34> |
composite cofactor 合成数の残り | 1037147872862257939194092928718511045246284113337634019339588475678064735845984737829602306177802062030934254526353218698193918792282744571612606839185631100631094010968995918286079834896286547100514250950058697887<214> |
factorization results 素因数分解の結果 | Input number is 9663327099733181878338888164407443164891032575240558597130260958689898221269867541372099487397143031054097223269463198767548941492909960571837741537596901020278910922772832208775570262325371024652650356874881977866947678460868130988601567019873001 (247 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2549146458 Step 1 took 21295ms ********** Factor found in step 1: 9317212475271165045959887838376823 Found probable prime factor of 34 digits: 9317212475271165045959887838376823 Composite cofactor 1037147872862257939194092928718511045246284113337634019339588475678064735845984737829602306177802062030934254526353218698193918792282744571612606839185631100631094010968995918286079834896286547100514250950058697887 has 214 digits |
software ソフトウェア | GMP-ECM 6.4.4 |
name 名前 | Robert Balfour |
---|---|
date 日付 | July 11, 2020 13:07:45 UTC 2020 年 7 月 11 日 (土) 22 時 7 分 45 秒 (日本時間) |
composite number 合成数 | 1037147872862257939194092928718511045246284113337634019339588475678064735845984737829602306177802062030934254526353218698193918792282744571612606839185631100631094010968995918286079834896286547100514250950058697887<214> |
prime factors 素因数 | 12127683769569862210281744268456228227371651<44> 85519039955891174264972375392494227776365845805479297532072220971956930028067733786932900375572395689456346155075177541038266355225169311551095465185611833160742430726837<170> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.5-dev [configured with GMP 6.2.0, --enable-asm-redc, --enable-assert] [ECM] Input number is 1037147872862257939194092928718511045246284113337634019339588475678064735845984737829602306177802062030934254526353218698193918792282744571612606839185631100631094010968995918286079834896286547100514250950058697887 (214 digits) Using B1=43000000, B2=240490660426, polynomial Dickson(12), sigma=1:693829488 Step 1 took 110860ms Step 2 took 32188ms ********** Factor found in step 2: 12127683769569862210281744268456228227371651 Found prime factor of 44 digits: 12127683769569862210281744268456228227371651 Prime cofactor 85519039955891174264972375392494227776365845805479297532072220971956930028067733786932900375572395689456346155075177541038266355225169311551095465185611833160742430726837 has 170 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | 118 | Makoto Kamada | August 4, 2015 12:00:00 UTC 2015 年 8 月 4 日 (火) 21 時 0 分 0 秒 (日本時間) |
786 | KTakahashi | August 4, 2015 13:47:06 UTC 2015 年 8 月 4 日 (火) 22 時 47 分 6 秒 (日本時間) | |||
40 | 3e6 | 2104 | KTakahashi | August 4, 2015 13:47:06 UTC 2015 年 8 月 4 日 (火) 22 時 47 分 6 秒 (日本時間) | |
45 | 11e6 | 162 / 3974 | KTakahashi | August 4, 2015 13:47:06 UTC 2015 年 8 月 4 日 (火) 22 時 47 分 6 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | 118 | Makoto Kamada | August 4, 2015 12:00:00 UTC 2015 年 8 月 4 日 (火) 21 時 0 分 0 秒 (日本時間) |
786 | KTakahashi | August 4, 2015 13:47:33 UTC 2015 年 8 月 4 日 (火) 22 時 47 分 33 秒 (日本時間) | |||
40 | 3e6 | 2104 | KTakahashi | August 4, 2015 13:47:33 UTC 2015 年 8 月 4 日 (火) 22 時 47 分 33 秒 (日本時間) | |
45 | 11e6 | 162 | KTakahashi | August 4, 2015 13:47:33 UTC 2015 年 8 月 4 日 (火) 22 時 47 分 33 秒 (日本時間) | |
50 | 43e6 | 1280 / 7432 | Robert Balfour | July 11, 2020 14:02:43 UTC 2020 年 7 月 11 日 (土) 23 時 2 分 43 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | 118 | Makoto Kamada | August 4, 2015 12:00:00 UTC 2015 年 8 月 4 日 (火) 21 時 0 分 0 秒 (日本時間) |
786 | KTakahashi | August 4, 2015 13:47:57 UTC 2015 年 8 月 4 日 (火) 22 時 47 分 57 秒 (日本時間) | |||
40 | 3e6 | 2104 | funecm2017 | November 14, 2017 06:44:24 UTC 2017 年 11 月 14 日 (火) 15 時 44 分 24 秒 (日本時間) | |
45 | 11e6 | 4482 | funecm2017 | November 14, 2017 06:44:24 UTC 2017 年 11 月 14 日 (火) 15 時 44 分 24 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | 118 | Makoto Kamada | August 4, 2015 12:00:00 UTC 2015 年 8 月 4 日 (火) 21 時 0 分 0 秒 (日本時間) |
786 | KTakahashi | August 4, 2015 13:48:16 UTC 2015 年 8 月 4 日 (火) 22 時 48 分 16 秒 (日本時間) | |||
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 1200 | Serge Batalov | August 5, 2015 22:52:09 UTC 2015 年 8 月 6 日 (木) 7 時 52 分 9 秒 (日本時間) | |
50 | 43e6 | 1280 / 7279 | Robert Balfour | July 11, 2020 14:03:02 UTC 2020 年 7 月 11 日 (土) 23 時 3 分 2 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | 118 | Makoto Kamada | August 4, 2015 12:00:00 UTC 2015 年 8 月 4 日 (火) 21 時 0 分 0 秒 (日本時間) |
786 | KTakahashi | August 4, 2015 13:48:37 UTC 2015 年 8 月 4 日 (火) 22 時 48 分 37 秒 (日本時間) | |||
40 | 3e6 | 2104 | Kai Inouye | August 5, 2015 14:40:27 UTC 2015 年 8 月 5 日 (水) 23 時 40 分 27 秒 (日本時間) | |
45 | 11e6 | 1200 | Serge Batalov | August 5, 2015 22:52:10 UTC 2015 年 8 月 6 日 (木) 7 時 52 分 10 秒 (日本時間) | |
50 | 43e6 | 1280 / 7199 | Robert Balfour | July 11, 2020 14:03:11 UTC 2020 年 7 月 11 日 (土) 23 時 3 分 11 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | August 8, 2015 21:54:54 UTC 2015 年 8 月 9 日 (日) 6 時 54 分 54 秒 (日本時間) |
composite number 合成数 | 122787098916866556614117943810352810983193681610984499021731290831436251185436531672235620731405612303928108513570408938780469692717113148811228517456138773454242685137818684209076646159246108468776989365173000223301640783960398439984931601861618482598708397910547810812877505971301438371<288> |
prime factors 素因数 | 313002267521127703336265663992054841443<39> |
composite cofactor 合成数の残り | 392288208929919038728790076557423896911394119934349123507392455943355265024044216931426642460666036085896830276262865680211922237531396478803217004801267872218105874725927062738765084219165593987636660283576899228718884922667666036318252952455848897<249> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=800238739 Step 1 took 46379ms Step 2 took 13857ms ********** Factor found in step 2: 313002267521127703336265663992054841443 Found probable prime factor of 39 digits: 313002267521127703336265663992054841443 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | 118 | Makoto Kamada | August 4, 2015 12:00:00 UTC 2015 年 8 月 4 日 (火) 21 時 0 分 0 秒 (日本時間) |
786 | KTakahashi | August 4, 2015 13:48:55 UTC 2015 年 8 月 4 日 (火) 22 時 48 分 55 秒 (日本時間) | |||
40 | 3e6 | 1200 | Dmitry Domanov | August 8, 2015 20:05:57 UTC 2015 年 8 月 9 日 (日) 5 時 5 分 57 秒 (日本時間) | |
45 | 11e6 | 600 | Dmitry Domanov | August 9, 2015 22:15:17 UTC 2015 年 8 月 10 日 (月) 7 時 15 分 17 秒 (日本時間) | |
50 | 43e6 | 800 / 7108 | Dmitry Domanov | September 6, 2015 17:23:23 UTC 2015 年 9 月 7 日 (月) 2 時 23 分 23 秒 (日本時間) | |
55 | 11e7 | 108 / 17436 | Dmitry Domanov | September 7, 2015 11:48:55 UTC 2015 年 9 月 7 日 (月) 20 時 48 分 55 秒 (日本時間) |