Table of contents 目次

10143+9

c142

name 名前Sinkiti Sibata
date 日付October 30, 2006 22:23:52 UTC 2006 年 10 月 31 日 (火) 7 時 23 分 52 秒 (日本時間)
composite number 合成数
1098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901099<142>
prime factors 素因数
14123789326633390707175391575607972980529708650840213007567<59>
77804976659407440945486259813469379792634366567097067716248415916074333006508991397<83>
factorization results 素因数分解の結果
Number: 10009_143
N=1098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901099
  ( 142 digits)
SNFS difficulty: 143 digits.
Divisors found:
 r1=14123789326633390707175391575607972980529708650840213007567 (pp59)
 r2=77804976659407440945486259813469379792634366567097067716248415916074333006508991397 (pp83)
Version: GGNFS-0.77.1
Total time: 14.91 hours.
Scaled time: 8.92 units (timescale=0.598).
Factorization parameters were as follows:
name: 10009_143
n: 1098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901099
m: 10000000000000000000000000000
c5: 1000
c0: 9
skew: 1
type: snfs
Factor base limits: 1300000/1300000
Large primes per side: 3
Large prime bits: 26/26
Sieved special-q in [650000, 1950001)
Relations: rels:2708264, finalFF:268021
Initial matrix: 199881 x 268021 with sparse part having weight 25165854.
Pruned matrix : 191247 x 192310 with weight 13144682.
Total sieving time: 13.45 hours.
Total relation processing time: 0.22 hours.
Matrix solve time: 1.15 hours.
Time per square root: 0.08 hours.
Prototype def-par.txt line would be:
snfs,143,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000
total time: 14.91 hours.
 --------- CPU info (if available) ----------
execution environment 実行環境
Pentium 4 2.4GHz, Windows XP and Cygwin

10144+9

c129

name 名前Sinkiti Sibata
date 日付October 31, 2006 22:15:54 UTC 2006 年 11 月 1 日 (水) 7 時 15 分 54 秒 (日本時間)
composite number 合成数
284886363614099255967532873170574356025189075001931636327243695405714234954473049582554837281255866762695290468589842291862587049<129>
prime factors 素因数
343319428714803493135074217320184461540413041<45>
829799713580309012101243243527869721960794456291028171104017893615600289042582210489<84>
factorization results 素因数分解の結果
Number: 10009_144
N=284886363614099255967532873170574356025189075001931636327243695405714234954473049582554837281255866762695290468589842291862587049
  ( 129 digits)
SNFS difficulty: 145 digits.
Divisors found:
 r1=343319428714803493135074217320184461540413041 (pp45)
 r2=829799713580309012101243243527869721960794456291028171104017893615600289042582210489 (pp84)
Version: GGNFS-0.77.1
Total time: 20.78 hours.
Scaled time: 12.41 units (timescale=0.597).
Factorization parameters were as follows:
name: 10009_144
n: 284886363614099255967532873170574356025189075001931636327243695405714234954473049582554837281255866762695290468589842291862587049
m: 100000000000000000000000000000
c5: 1
c0: 90
skew: 2.46
type: snfs
Factor base limits: 1300000/1300000
Large primes per side: 3
Large prime bits: 26/26
Sieved special-q in [650000, 2550001)
Relations: rels:2850045, finalFF:254863
Initial matrix: 200113 x 254863 with sparse part having weight 28420798.
Pruned matrix : 194157 x 195221 with weight 17535297.
Total sieving time: 18.93 hours.
Total relation processing time: 0.27 hours.
Matrix solve time: 1.49 hours.
Time per square root: 0.09 hours.
Prototype def-par.txt line would be:
snfs,145,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000
total time: 20.78 hours.
 --------- CPU info (if available) ----------
execution environment 実行環境
(上の枠に貼り付けた素因数分解ソフトウェアの出力結果に実行環境の情報が含まれていない場合は、それをここに記入してください。例:Pentium 4 2.43.06GHz, Windows XP and Cygwin)
Pentium 4 2.4GHz, Windows XP and Cygwin

10150+9

c136

name 名前Sinkiti Sibata
date 日付November 2, 2006 05:59:17 UTC 2006 年 11 月 2 日 (木) 14 時 59 分 17 秒 (日本時間)
composite number 合成数
3104314839949660628761284448066712660067595495580808482022733961156681326684053029198082216491817414591705050127114942813910431229430597<136>
prime factors 素因数
6485315883937021911089291466838963163589677<43>
478668255410426241114341996907533012450905011400520344471359974267559844215862172691771363961<93>
factorization results 素因数分解の結果
Number: 10009_150
N=3104314839949660628761284448066712660067595495580808482022733961156681326684053029198082216491817414591705050127114942813910431229430597
  ( 136 digits)
SNFS difficulty: 150 digits.
Divisors found:
 r1=6485315883937021911089291466838963163589677 (pp43)
 r2=478668255410426241114341996907533012450905011400520344471359974267559844215862172691771363961 (pp93)
Version: GGNFS-0.77.1-20060722-pentium4
Total time: 30.86 hours.
Scaled time: 20.83 units (timescale=0.675).
Factorization parameters were as follows:
name: 10009_150
n: 3104314839949660628761284448066712660067595495580808482022733961156681326684053029198082216491817414591705050127114942813910431229430597
m: 1000000000000000000000000000000
c5: 1
c0: 9
skew: 1.55
type: snfs
Factor base limits: 1500000/1500000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 45/45
Sieved algebraic special-q in [750000, 1650001)
Primes: RFBsize:114155, AFBsize:114062, largePrimes:2660088 encountered
Relations: rels:2608863, finalFF:256764
Max relations in full relation-set: 0
Initial matrix: 228281 x 256764 with sparse part having weight 19959461.
Pruned matrix : 219518 x 220723 with weight 14982825.
Total sieving time: 29.28 hours.
Total relation processing time: 0.18 hours.
Matrix solve time: 1.31 hours.
Time per square root: 0.10 hours.
Prototype def-par.txt line would be:
snfs,150,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,100000
total time: 30.86 hours.
 --------- CPU info (if available) ----------
execution environment 実行環境
:Pentium 4 2.4GHz, Windows XP and Cygwin

10153+9

c152

name 名前Sinkiti Sibata
date 日付November 3, 2006 22:35:01 UTC 2006 年 11 月 4 日 (土) 7 時 35 分 1 秒 (日本時間)
composite number 合成数
11235955056179775280898876404494382022471910112359550561797752808988764044943820224719101123595505617977528089887640449438202247191011235955056179775281<152>
prime factors 素因数
952968475741213558173290137369408967511606469763002925432064241<63>
11790479267890275373671218734902940171749839873008160665577378805343748249303568644645441<89>
factorization results 素因数分解の結果
Number: 10009_153
N=11235955056179775280898876404494382022471910112359550561797752808988764044943820224719101123595505617977528089887640449438202247191011235955056179775281
  ( 152 digits)
SNFS difficulty: 153 digits.
Divisors found:
 r1=952968475741213558173290137369408967511606469763002925432064241 (pp63)
 r2=11790479267890275373671218734902940171749839873008160665577378805343748249303568644645441 (pp89)
Version: GGNFS-0.77.1-20060722-pentium4
Total time: 37.55 hours.
Scaled time: 22.98 units (timescale=0.612).
Factorization parameters were as follows:
name: 10009_153
n: 11235955056179775280898876404494382022471910112359550561797752808988764044943820224719101123595505617977528089887640449438202247191011235955056179775281
m: 1000000000000000000000000000000
c5: 1000
c0: 9
skew: 1
type: snfs
Factor base limits: 2400000/2400000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 48/48
Sieved algebraic special-q in [1200000, 2100001)
Primes: RFBsize:176302, AFBsize:175423, largePrimes:5312210 encountered
Relations: rels:5104149, finalFF:395224
Max relations in full relation-set: 0
Initial matrix: 351792 x 395224 with sparse part having weight 34367720.
Pruned matrix : 330997 x 332819 with weight 25228972.
Total sieving time: 32.45 hours.
Total relation processing time: 0.29 hours.
Matrix solve time: 4.65 hours.
Time per square root: 0.16 hours.
Prototype def-par.txt line would be:
snfs,153,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000
total time: 37.55 hours.
 --------- CPU info (if available) ----------
execution environment 実行環境
Pentium 4 2.4GHz, Windows XP and Cygwin

10154+9

c149

name 名前Sinkiti Sibata
date 日付November 5, 2006 22:49:54 UTC 2006 年 11 月 6 日 (月) 7 時 49 分 54 秒 (日本時間)
composite number 合成数
20577952370271443769716250614766327061859382620272987116144020973049055780655490094802626569840541447082766582228468773986175731597651644075504622837<149>
prime factors 素因数
61663679403222757509249170662209857982446222255631728629<56>
333712690670157588584103442128065072187953963434123029832366265075137324719065556444993079553<93>
factorization results 素因数分解の結果
Number: 10009_154
N=20577952370271443769716250614766327061859382620272987116144020973049055780655490094802626569840541447082766582228468773986175731597651644075504622837
  ( 149 digits)
SNFS difficulty: 155 digits.
Divisors found:
 r1=61663679403222757509249170662209857982446222255631728629 (pp56)
 r2=333712690670157588584103442128065072187953963434123029832366265075137324719065556444993079553 (pp93)
Version: GGNFS-0.77.1-20060722-pentium4
Total time: 46.83 hours.
Scaled time: 31.57 units (timescale=0.674).
Factorization parameters were as follows:
name: 10009_154
n: 20577952370271443769716250614766327061859382620272987116144020973049055780655490094802626569840541447082766582228468773986175731597651644075504622837
m: 10000000000000000000000000000000
c5: 1
c0: 90
skew: 2.46
type: snfs
Factor base limits: 3000000/3000000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 48/48
Sieved algebraic special-q in [1500000, 2600001)
Primes: RFBsize:216816, AFBsize:216791, largePrimes:5594606 encountered
Relations: rels:5553568, finalFF:488763
Max relations in full relation-set: 0
Initial matrix: 433671 x 488763 with sparse part having weight 29962612.
Pruned matrix : 393661 x 395893 with weight 22762725.
Total sieving time: 40.33 hours.
Total relation processing time: 0.39 hours.
Matrix solve time: 5.95 hours.
Time per square root: 0.17 hours.
Prototype def-par.txt line would be:
snfs,155,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000
total time: 46.83 hours.
 --------- CPU info (if available) ----------
execution environment 実行環境
Pentium 4 2.4GHz, Windows XP and Cygwin

10156+9

c146

name 名前Sinkiti Sibata
date 日付November 8, 2006 04:40:30 UTC 2006 年 11 月 8 日 (水) 13 時 40 分 30 秒 (日本時間)
composite number 合成数
30922270259706918541273994104183262432014945588155444494107881550493940763192232543551971147645731712248062829627325026727144031780555472245719869<146>
prime factors 素因数
383981700070505184610830877165967851949977<42>
1245447807805174631186627010827838254868677573<46>
64659942178328230286420137484904735606524156752097366805889<59>
factorization results 素因数分解の結果
Number: 10009_156
N=30922270259706918541273994104183262432014945588155444494107881550493940763192232543551971147645731712248062829627325026727144031780555472245719869
  ( 146 digits)
SNFS difficulty: 156 digits.
Divisors found:
 r1=383981700070505184610830877165967851949977 (pp42)
 r2=1245447807805174631186627010827838254868677573 (pp46)
 r3=64659942178328230286420137484904735606524156752097366805889 (pp59)
Version: GGNFS-0.77.1-20060722-pentium4
Total time: 51.11 hours.
Scaled time: 31.23 units (timescale=0.611).
Factorization parameters were as follows:
name: 10009_156
n: 30922270259706918541273994104183262432014945588155444494107881550493940763192232543551971147645731712248062829627325026727144031780555472245719869
m: 10000000000000000000000000000000
c5: 10
c0: 9
skew: 2
type: snfs
Factor base limits: 3000000/3000000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 48/48
Sieved algebraic special-q in [1500000, 2700001)
Primes: RFBsize:216816, AFBsize:216791, largePrimes:5577567 encountered
Relations: rels:5506820, finalFF:485813
Max relations in full relation-set: 0
Initial matrix: 433674 x 485813 with sparse part having weight 32645438.
Pruned matrix : 399323 x 401555 with weight 25027274.
Total sieving time: 43.95 hours.
Total relation processing time: 0.31 hours.
Matrix solve time: 6.64 hours.
Time per square root: 0.21 hours.
Prototype def-par.txt line would be:
snfs,156,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000
total time: 51.11 hours.
 --------- CPU info (if available) ----------
execution environment 実行環境
Pentium 4 2.4GHz, Windows XP and Cygwin

10159+9

c157

name 名前Sinkiti Sibata
date 日付November 11, 2006 10:52:46 UTC 2006 年 11 月 11 日 (土) 19 時 52 分 46 秒 (日本時間)
composite number 合成数
2004008016032064128256513026052104208416833667334669338677354709418837675350701402805611222444889779559118236472945891783567134268537074148296593186372745491<157>
prime factors 素因数
25186187487813621841913773118823816536903<41>
79567739936888292295596294112639084452134355303693380058498429690502044773614914416009946349393011410085895946365397<116>
factorization results 素因数分解の結果
Number: 10009_159
N=2004008016032064128256513026052104208416833667334669338677354709418837675350701402805611222444889779559118236472945891783567134268537074148296593186372745491
  ( 157 digits)
SNFS difficulty: 160 digits.
Divisors found:
 r1=25186187487813621841913773118823816536903 (pp41)
 r2=79567739936888292295596294112639084452134355303693380058498429690502044773614914416009946349393011410085895946365397 (pp116)
Version: GGNFS-0.77.1-20060722-pentium4
Total time: 76.30 hours.
Scaled time: 51.50 units (timescale=0.675).
Factorization parameters were as follows:
name: 10009_159
n: 2004008016032064128256513026052104208416833667334669338677354709418837675350701402805611222444889779559118236472945891783567134268537074148296593186372745491
m: 100000000000000000000000000000000
c5: 1
c0: 90
skew: 2.46
type: snfs
Factor base limits: 4000000/4000000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 48/48
Sieved algebraic special-q in [2000000, 3700001)
Primes: RFBsize:283146, AFBsize:283222, largePrimes:5625429 encountered
Relations: rels:5626182, finalFF:634517
Max relations in full relation-set: 0
Initial matrix: 566432 x 634517 with sparse part having weight 41516401.
Pruned matrix : 514796 x 517692 with weight 29630223.
Total sieving time: 63.99 hours.
Total relation processing time: 0.41 hours.
Matrix solve time: 11.68 hours.
Time per square root: 0.21 hours.
Prototype def-par.txt line would be:
snfs,160,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,48,48,2.3,2.3,100000
total time: 76.30 hours.
 --------- CPU info (if available) ----------
execution environment 実行環境
:Pentium 4 2.4GHz, Windows XP and Cygwin

10163+9

c130

name 名前Sinkiti Sibata
date 日付November 16, 2006 03:37:38 UTC 2006 年 11 月 16 日 (木) 12 時 37 分 38 秒 (日本時間)
composite number 合成数
4950187705997164365857621953071374136800891903657774027127968403552641352310285897052129258301158018266953244295705051113242487921<130>
prime factors 素因数
21282218145805492933175466817926209552898014184560253546079961<62>
232597357666536071396985516556630866129009673684071188821993975702361<69>
factorization results 素因数分解の結果
Number: 10009_163
N=4950187705997164365857621953071374136800891903657774027127968403552641352310285897052129258301158018266953244295705051113242487921
  ( 130 digits)
SNFS difficulty: 163 digits.
Divisors found:
 r1=21282218145805492933175466817926209552898014184560253546079961 (pp62)
 r2=232597357666536071396985516556630866129009673684071188821993975702361 (pp69)
Version: GGNFS-0.77.1-20060722-pentium4
Total time: 108.09 hours.
Scaled time: 72.85 units (timescale=0.674).
Factorization parameters were as follows:
name: 10009_163
n: 4950187705997164365857621953071374136800891903657774027127968403552641352310285897052129258301158018266953244295705051113242487921
m: 100000000000000000000000000000000
c5: 1000
c0: 9
skew: 2
type: snfs
Factor base limits: 4500000/4500000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 48/48
Sieved algebraic special-q in [2250000, 4650001)
Primes: RFBsize:315948, AFBsize:315061, largePrimes:5821181 encountered
Relations: rels:5959009, finalFF:712522
Max relations in full relation-set: 0
Initial matrix: 631076 x 712522 with sparse part having weight 38928691.
Pruned matrix : 568676 x 571895 with weight 30046734.
Total sieving time: 93.04 hours.
Total relation processing time: 0.55 hours.
Matrix solve time: 14.28 hours.
Time per square root: 0.22 hours.
Prototype def-par.txt line would be:
snfs,163,5,0,0,0,0,0,0,0,0,4500000,4500000,27,27,48,48,2.3,2.3,100000
total time: 108.09 hours.
 --------- CPU info (if available) ----------
execution environment 実行環境
Pentium 4 2.4GHz, Windows XP and Cygwin

10165+9

c128

name 名前Sinkiti Sibata
date 日付November 20, 2006 20:33:42 UTC 2006 年 11 月 21 日 (火) 5 時 33 分 42 秒 (日本時間)
composite number 合成数
46841048825978561356978747541657395628214092574365582530196085768744223145586011443337758767687268157082158826887686500017351183<128>
prime factors 素因数
405476469408529846096552458965513686928349281<45>
115521003954448422975067155610313660368992451637991336302242072977588854951379884143<84>
factorization results 素因数分解の結果
Number: 10009_165
N=46841048825978561356978747541657395628214092574365582530196085768744223145586011443337758767687268157082158826887686500017351183
  ( 128 digits)
SNFS difficulty: 165 digits.
Divisors found:
 r1=405476469408529846096552458965513686928349281 (pp45)
 r2=115521003954448422975067155610313660368992451637991336302242072977588854951379884143 (pp84)
Version: GGNFS-0.77.1-20060722-pentium4
Total time: 109.42 hours.
Scaled time: 66.75 units (timescale=0.610).
Factorization parameters were as follows:
name: 10009_165
n: 46841048825978561356978747541657395628214092574365582530196085768744223145586011443337758767687268157082158826887686500017351183
m: 1000000000000000000000000000000000
c5: 1
c0: 9
skew: 2
type: snfs
Factor base limits: 5000000/5000000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 48/48
Sieved algebraic special-q in [2500000, 4800001)
Primes: RFBsize:348513, AFBsize:348501, largePrimes:5792990 encountered
Relations: rels:5968131, finalFF:784837
Max relations in full relation-set: 0
Initial matrix: 697078 x 784837 with sparse part having weight 37403878.
Pruned matrix : 623951 x 627500 with weight 27859202.
Total sieving time: 92.53 hours.
Total relation processing time: 0.64 hours.
Matrix solve time: 15.99 hours.
Time per square root: 0.26 hours.
Prototype def-par.txt line would be:
snfs,165,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,48,48,2.5,2.5,100000
total time: 109.42 hours.
 --------- CPU info (if available) ----------
execution environment 実行環境
Pentium 4 2.4GHz, Windows XP and Cygwin

10166+9

c153

name 名前Robert Backstrom
date 日付October 25, 2007 05:56:07 UTC 2007 年 10 月 25 日 (木) 14 時 56 分 7 秒 (日本時間)
composite number 合成数
443223191462926543459909958595746661943719852080722467101166627816472353539797980148447621698392127726651524401212365554604364053039646401916272115182417<153>
prime factors 素因数
96175707342105206747325741564689382490429756801<47>
4608473425480966721109597553701118029210118730372926247354918207318621993190226935764939329385047887076817<106>
factorization results 素因数分解の結果
Number: n
N=443223191462926543459909958595746661943719852080722467101166627816472353539797980148447621698392127726651524401212365554604364053039646401916272115182417
  ( 153 digits)
SNFS difficulty: 166 digits.
Divisors found:

Thu Oct 25 15:40:05 2007  prp47 factor: 96175707342105206747325741564689382490429756801
Thu Oct 25 15:40:05 2007  prp106 factor: 4608473425480966721109597553701118029210118730372926247354918207318621993190226935764939329385047887076817
Thu Oct 25 15:40:05 2007  elapsed time 01:54:23 (Msieve 1.28)

Version: GGNFS-0.77.1-20051202-athlon
Total time: 62.44 hours.
Scaled time: 82.79 units (timescale=1.326).
Factorization parameters were as follows:
name: KA_1_0_165_9
n: 443223191462926543459909958595746661943719852080722467101166627816472353539797980148447621698392127726651524401212365554604364053039646401916272115182417
skew: 0.98
deg: 5
c5: 10
c0: 9
m: 1000000000000000000000000000000000
type: snfs
rlim: 3500000
alim: 3500000
lpbr: 28
lpba: 28
mfbr: 48
mfba: 48
rlambda: 2.5
alambda: 2.5
qintsize: 100000
Factor base limits: 3500000/3500000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 48/48
Sieved  special-q in [100000, 2900000)
Primes: RFBsize:250150, AFBsize:250021, largePrimes:7553576 encountered
Relations: rels:7043754, finalFF:563405
Max relations in full relation-set: 28
Initial matrix: 500238 x 563405 with sparse part having weight 49550458.
Pruned matrix : 457419 x 459984 with weight 35024031.
Total sieving time: 62.12 hours.
Total relation processing time: 0.32 hours.
Matrix solve time: 0.00 hours.
Total square root time: 0.00 hours, sqrts: 0.
Prototype def-par.txt line would be:
snfs,166,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000
total time: 62.44 hours.
 --------- CPU info (if available) ----------

Cygwin on AMD 64 3200+

10167+9

c156

name 名前Sinkiti Sibata
date 日付December 2, 2006 22:34:48 UTC 2006 年 12 月 3 日 (日) 7 時 34 分 48 秒 (日本時間)
composite number 合成数
220600179573565709368504340113503800147035985155837573658020885780015632167763060253476327002737780573173682022539160307617346454159538787082518830731603849<156>
prime factors 素因数
578285490464535003292508528455551062720454372885574351763458327<63>
381472790189423991118742839850166453080558585132743676617075753578582424625410729307533832287<93>
factorization results 素因数分解の結果
Number: 10009_167
N=220600179573565709368504340113503800147035985155837573658020885780015632167763060253476327002737780573173682022539160307617346454159538787082518830731603849
  ( 156 digits)
SNFS difficulty: 167 digits.
Divisors found:
 r1=578285490464535003292508528455551062720454372885574351763458327 (pp63)
 r2=381472790189423991118742839850166453080558585132743676617075753578582424625410729307533832287 (pp93)
Version: GGNFS-0.77.1-20060722-pentium4
Total time: 178.55 hours.
Scaled time: 109.27 units (timescale=0.612).
Factorization parameters were as follows:
name: 10009_167
n: 220600179573565709368504340113503800147035985155837573658020885780015632167763060253476327002737780573173682022539160307617346454159538787082518830731603849
m: 1000000000000000000000000000000000
c5: 100
c0: 9
skew: 3
type: snfs
Factor base limits: 5000000/5000000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 48/48
Sieved algebraic special-q in [2500000, 6400001)
Primes: RFBsize:348513, AFBsize:348501, largePrimes:5953601 encountered
Relations: rels:6095608, finalFF:780802
Max relations in full relation-set: 0
Initial matrix: 697078 x 780802 with sparse part having weight 58659671.
Pruned matrix : 635534 x 639083 with weight 45096830.
Total sieving time: 153.34 hours.
Total relation processing time: 0.72 hours.
Matrix solve time: 24.20 hours.
Time per square root: 0.30 hours.
Prototype def-par.txt line would be:
snfs,167,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,48,48,2.5,2.5,100000
total time: 178.55 hours.
 --------- CPU info (if available) ----------
execution environment 実行環境
Pentium 4 2.4GHz, Windows XP and Cygwin

10173+9

c139

name 名前Sinkiti Sibata
date 日付December 26, 2006 05:41:14 UTC 2006 年 12 月 26 日 (火) 14 時 41 分 14 秒 (日本時間)
composite number 合成数
9760753183879009646135889360607373608838812644875806219835912669099476964166309210938898210949322811535458367356231635756270419228754515619<139>
prime factors 素因数
43621013613880185555572860857609538355052262229723114093<56>
223762640416341510155833285985486831687028975194572884766702131594185801601877826383<84>
factorization results 素因数分解の結果
Number: 10009_173
N=9760753183879009646135889360607373608838812644875806219835912669099476964166309210938898210949322811535458367356231635756270419228754515619
  ( 139 digits)
SNFS difficulty: 173 digits.
Divisors found:
 r1=43621013613880185555572860857609538355052262229723114093 (pp56)
 r2=223762640416341510155833285985486831687028975194572884766702131594185801601877826383 (pp84)
Version: GGNFS-0.77.1-20060722-pentium4
Total time: 366.05 hours.
Scaled time: 245.99 units (timescale=0.672).
Factorization parameters were as follows:
name: 10009_173
n: 9760753183879009646135889360607373608838812644875806219835912669099476964166309210938898210949322811535458367356231635756270419228754515619
m: 10000000000000000000000000000000000
c5: 1000
c0: 9
skew: 4
type: snfs
Factor base limits: 7400000/7400000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 48/48
Sieved algebraic special-q in [3700000, 10800001)
Primes: RFBsize:501962, AFBsize:500591, largePrimes:6442805 encountered
Relations: rels:6897642, finalFF:1125193
Max relations in full relation-set: 0
Initial matrix: 1002620 x 1125193 with sparse part having weight 66333627.
Pruned matrix : 895561 x 900638 with weight 50940551.
Total sieving time: 312.96 hours.
Total relation processing time: 1.54 hours.
Matrix solve time: 51.22 hours.
Time per square root: 0.33 hours.
Prototype def-par.txt line would be:
snfs,173,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000
total time: 366.05 hours.
 --------- CPU info (if available) ----------
execution environment 実行環境
Pentium 4 2.4GHz, Windows XP and Cygwin

10174+9

c136

name 名前Sinkiti Sibata
date 日付January 12, 2007 03:21:41 UTC 2007 年 1 月 12 日 (金) 12 時 21 分 41 秒 (日本時間)
composite number 合成数
1306165853052246849781899785761522612064909196147670902104619894369304705937455838360831479554162941730696135578839680075251560772582393<136>
prime factors 素因数
208421712381864306682687832510484289595729702062678553885057<60>
6266937537962105847323092604694692272408337913842644374735743827566692617849<76>
factorization results 素因数分解の結果
Number: 10009_174
N=1306165853052246849781899785761522612064909196147670902104619894369304705937455838360831479554162941730696135578839680075251560772582393
  ( 136 digits)
SNFS difficulty: 175 digits.
Divisors found:
 r1=208421712381864306682687832510484289595729702062678553885057 (pp60)
 r2=6266937537962105847323092604694692272408337913842644374735743827566692617849 (pp76)
Version: GGNFS-0.77.1-20060722-pentium4
Total time: 377.97 hours.
Scaled time: 255.13 units (timescale=0.675).
Factorization parameters were as follows:
name: 10009_174
n: 1306165853052246849781899785761522612064909196147670902104619894369304705937455838360831479554162941730696135578839680075251560772582393
m: 100000000000000000000000000000000000
c5: 1
c0: 90
skew: 4
type: snfs
Factor base limits: 7400000/7400000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 48/48
Sieved algebraic special-q in [3700000, 11100001)
Primes: RFBsize:501962, AFBsize:502106, largePrimes:6479175 encountered
Relations: rels:6943230, finalFF:1125572
Max relations in full relation-set: 0
Initial matrix: 1004132 x 1125572 with sparse part having weight 67043105.
Pruned matrix : 899940 x 905024 with weight 52364715.
Total sieving time: 323.38 hours.
Total relation processing time: 1.57 hours.
Matrix solve time: 52.66 hours.
Time per square root: 0.36 hours.
Prototype def-par.txt line would be:
snfs,175,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000
total time: 377.97 hours.
 --------- CPU info (if available) ----------
execution environment 実行環境
Pentium 4 2.4GHz, Windows XP and Cygwin

10175+9

c156

name 名前Serge Batalov
date 日付October 8, 2008 19:19:55 UTC 2008 年 10 月 9 日 (木) 4 時 19 分 55 秒 (日本時間)
composite number 合成数
138705712303549395821421358642400204296070680855511012025776877011088224302623733204392953440147869792198011279515236944228094761620670597318606436194873693<156>
prime factors 素因数
16208367959129657766791547475962271323480435637<47>
8557660626492680468621533137816698825726336699568343271840514655920348964720598883835279448245250317366446089<109>
factorization results 素因数分解の結果
SNFS difficulty: 175 digits.
Divisors found:
 r1=16208367959129657766791547475962271323480435637
 r2=8557660626492680468621533137816698825726336699568343271840514655920348964720598883835279448245250317366446089
Version:
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.735).
Factorization parameters were as follows:
n: 138705712303549395821421358642400204296070680855511012025776877011088224302623733204392953440147869792198011279515236944228094761620670597318606436194873693
Y1: 1
Y0: -100000000000000000000000000000000000
c5: 1
c0: 9
skew: 1.55
type: snfs
Factor base limits: 7400000/7400000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 54/54
Sieved rational special-q in [3700000, 6400001)
Primes: rational ideals reading, algebraic ideals reading,
Relations: relations
Max relations in full relation-set:
Initial matrix:
Pruned matrix : 1175765 x 1176013
Total sieving time: 0.00 hours.
Total relation processing time: 0.00 hours.
Matrix solve time: 0.00 hours.
Time per square root: 0.00 hours.
Prototype def-par.txt line would be:
snfs,175,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,54,54,2.6,2.6,100000
total time: 50.00 hours.
software ソフトウェア
Msieve-1.38
execution environment 実行環境
Opteron-2.6GHz; Linux x86_64

10176+9

c161

name 名前Ignacio Santos
date 日付June 23, 2010 20:41:30 UTC 2010 年 6 月 24 日 (木) 5 時 41 分 30 秒 (日本時間)
composite number 合成数
42251813442342396858921049759825349430663710419241563377027866884665187424936755825408268679095823687019034870716894393801855541276121488325116132121272418285797<161>
prime factors 素因数
1321311125723987051763742006304823182400502525384134776663162593<64>
31977187370757456727437751490164761296614012702121326304051984548270604874581130666994267181764229<98>
factorization results 素因数分解の結果
Number: 1
N=42251813442342396858921049759825349430663710419241563377027866884665187424936755825408268679095823687019034870716894393801855541276121488325116132121272418285797
  ( 161 digits)
SNFS difficulty: 176 digits.
Divisors found:
 r1=1321311125723987051763742006304823182400502525384134776663162593 (pp64)
 r2=31977187370757456727437751490164761296614012702121326304051984548270604874581130666994267181764229 (pp98)
Version: Msieve v. 1.43
Total time: 1.59 hours.
Scaled time: 4.07 units (timescale=2.554).
Factorization parameters were as follows:
n: 42251813442342396858921049759825349430663710419241563377027866884665187424936755825408268679095823687019034870716894393801855541276121488325116132121272418285797
m: 100000000000000000000000000000000000
deg: 5
c5: 10
c0: 9
skew: 0.98
type: snfs
lss: 1
rlim: 6000000
alim: 6000000
lpbr: 28
lpba: 28
mfbr: 53
mfba: 53
rlambda: 2.5
alambda: 2.5
Factor base limits: 6000000/6000000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 53/53
Sieved rational special-q in [3000000, 3000000)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 944501 x 944728
Total sieving time: 0.00 hours.
Total relation processing time: 0.00 hours.
Matrix solve time: 1.47 hours.
Time per square root: 0.12 hours.
Prototype def-par.txt line would be:
snfs,176.000,5,0,0,0,0,0,0,0,0,6000000,6000000,28,28,53,53,2.5,2.5,100000
total time: 1.59 hours.
 --------- CPU info (if available) ----------
software ソフトウェア
GGNFS, Msieve

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e60--
403e6500 / 2350Erik BrangerSeptember 21, 2009 13:28:34 UTC 2009 年 9 月 21 日 (月) 22 時 28 分 34 秒 (日本時間)

10177+9

c120

name 名前Sinkiti Sibata
date 日付August 10, 2007 16:46:06 UTC 2007 年 8 月 11 日 (土) 1 時 46 分 6 秒 (日本時間)
composite number 合成数
532415668670779658238030449477892100777113679642064502418427003147194580334216529773302144542970825544807513606040387757<120>
prime factors 素因数
47281281988259427195595389853<29>
6045096991231523085796053943692409216016933<43>
1862766037506329182860674793008889448818081551293<49>
factorization results 素因数分解の結果
Number: 10009_177
N=532415668670779658238030449477892100777113679642064502418427003147194580334216529773302144542970825544807513606040387757
  ( 120 digits)
Divisors found:
 r1=47281281988259427195595389853 (pp29)
 r2=6045096991231523085796053943692409216016933 (pp43)
 r3=1862766037506329182860674793008889448818081551293 (pp49)
Version: GGNFS-0.77.1-20060722-pentium4
Total time: 103.73 hours.
Scaled time: 70.75 units (timescale=0.682).
Factorization parameters were as follows:
name: 10009_177
n: 532415668670779658238030449477892100777113679642064502418427003147194580334216529773302144542970825544807513606040387757
skew: 48264.27
# norm 2.43e+16
c5: 75600
c4: 16297075446
c3: -73949054544926
c2: -41520893798791949092
c1: 676986651332945360199391
c0: -51146483475813285206452764
# alpha -5.94
Y1: 12936640435517
Y0: -93227321831539954601855
# Murphy_E 3.10e-10
# M 480158086077406144788789117762923709702782058085914313143143829119151924171861230494781642332247911106356265369031255073
type: gnfs
rlim: 4500000
alim: 4500000
lpbr: 27
lpba: 27
mfbr: 50
mfba: 50
rlambda: 2.4
alambda: 2.4
qintsize: 60000
Factor base limits: 4500000/4500000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 50/50
Sieved algebraic special-q in [2250000, 4170001)
Primes: RFBsize:315948, AFBsize:316216, largePrimes:7549833 encountered
Relations: rels:7503324, finalFF:708238
Max relations in full relation-set: 0
Initial matrix: 632249 x 708238 with sparse part having weight 69993656.
Pruned matrix : 571237 x 574462 with weight 47768804.
Polynomial selection time: 5.21 hours.
Total sieving time: 78.11 hours.
Total relation processing time: 0.69 hours.
Matrix solve time: 19.22 hours.
Time per square root: 0.50 hours.
Prototype def-par.txt line would be:
gnfs,119,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4500000,4500000,27,27,50,50,2.4,2.4,60000
total time: 103.73 hours.
 --------- CPU info (if available) ----------
execution environment 実行環境
Pentium 4 2.4GHz, Windows XP and Cygwin)

10179+9

c151

name 名前Justin Card
date 日付August 8, 2010 16:02:50 UTC 2010 年 8 月 9 日 (月) 1 時 2 分 50 秒 (日本時間)
composite number 合成数
1811872755059516195892304830314956296297708226109641486671117966207237623694298687193320614107231164397780494682776646101280094271754040891817466416201<151>
prime factors 素因数
1442442226672451541642074574429111173328536880788047019059<58>
1256114610038350326200782498923339690129173388326551582976691681542976645138719491787537013139<94>
factorization results 素因数分解の結果
Fri Jul  9 22:02:12 2010  Msieve v. 1.46
Fri Jul  9 22:02:12 2010  random seeds: e48965a0 036aed72
Fri Jul  9 22:02:12 2010  factoring 1811872755059516195892304830314956296297708226109641486671117966207237623694298687193320614107231164397780494682776646101280094271754040891817466416201 (151 digits)
Fri Jul  9 22:02:14 2010  no P-1/P+1/ECM available, skipping
Fri Jul  9 22:02:14 2010  commencing number field sieve (151-digit input)
Fri Jul  9 22:02:14 2010  R0: -100000000000000000000000000000000000
Fri Jul  9 22:02:14 2010  R1:  1
Fri Jul  9 22:02:14 2010  A0:  9
Fri Jul  9 22:02:14 2010  A1:  0
Fri Jul  9 22:02:14 2010  A2:  0
Fri Jul  9 22:02:14 2010  A3:  0
Fri Jul  9 22:02:14 2010  A4:  0
Fri Jul  9 22:02:14 2010  A5:  10000
Fri Jul  9 22:02:14 2010  skew 1.00, size 1.398e-12, alpha -0.172, combined = 9.732e-11 rroots = 1
Fri Jul  9 22:02:14 2010  
Fri Jul  9 22:02:14 2010  commencing relation filtering
Fri Jul  9 22:02:14 2010  estimated available RAM is 998.5 MB
Fri Jul  9 22:02:14 2010  commencing duplicate removal, pass 1
Fri Jul  9 22:03:18 2010  error -9 reading relation 6740878
Fri Jul  9 22:04:03 2010  error -1 reading relation 11468630
Fri Jul  9 22:04:03 2010  error -1 reading relation 11468631
Fri Jul  9 22:04:03 2010  error -1 reading relation 11468632
Fri Jul  9 22:04:03 2010  error -1 reading relation 11468633
Fri Jul  9 22:05:09 2010  found 2850632 hash collisions in 18418144 relations
Fri Jul  9 22:06:19 2010  added 683566 free relations
Fri Jul  9 22:06:19 2010  commencing duplicate removal, pass 2
Fri Jul  9 22:06:44 2010  found 2700048 duplicates and 16401662 unique relations
Fri Jul  9 22:06:44 2010  memory use: 98.6 MB
Fri Jul  9 22:06:44 2010  reading ideals above 10027008
Fri Jul  9 22:06:50 2010  commencing singleton removal, initial pass
Fri Jul  9 22:10:29 2010  memory use: 376.5 MB
Fri Jul  9 22:10:29 2010  reading all ideals from disk
Fri Jul  9 22:10:33 2010  memory use: 327.0 MB
Fri Jul  9 22:10:36 2010  commencing in-memory singleton removal
Fri Jul  9 22:10:38 2010  begin with 16401662 relations and 17615544 unique ideals
Fri Jul  9 22:10:56 2010  reduce to 6205958 relations and 4818649 ideals in 14 passes
Fri Jul  9 22:10:56 2010  max relations containing the same ideal: 26
Fri Jul  9 22:10:57 2010  reading ideals above 100000
Fri Jul  9 22:10:57 2010  commencing singleton removal, initial pass
Fri Jul  9 22:12:44 2010  memory use: 172.2 MB
Fri Jul  9 22:12:44 2010  reading all ideals from disk
Fri Jul  9 22:12:47 2010  memory use: 232.6 MB
Fri Jul  9 22:12:50 2010  keeping 6432282 ideals with weight <= 200, target excess is 32944
Fri Jul  9 22:12:52 2010  commencing in-memory singleton removal
Fri Jul  9 22:12:54 2010  begin with 6259399 relations and 6432282 unique ideals
Fri Jul  9 22:13:14 2010  reduce to 6195531 relations and 6107662 ideals in 11 passes
Fri Jul  9 22:13:14 2010  max relations containing the same ideal: 200
Fri Jul  9 22:13:23 2010  removing 277147 relations and 252320 ideals in 24827 cliques
Fri Jul  9 22:13:23 2010  commencing in-memory singleton removal
Fri Jul  9 22:13:25 2010  begin with 5918384 relations and 6107662 unique ideals
Fri Jul  9 22:13:39 2010  reduce to 5910697 relations and 5847599 ideals in 8 passes
Fri Jul  9 22:13:39 2010  max relations containing the same ideal: 198
Fri Jul  9 22:13:47 2010  removing 199028 relations and 174201 ideals in 24827 cliques
Fri Jul  9 22:13:48 2010  commencing in-memory singleton removal
Fri Jul  9 22:13:50 2010  begin with 5711669 relations and 5847599 unique ideals
Fri Jul  9 22:14:00 2010  reduce to 5707486 relations and 5669187 ideals in 6 passes
Fri Jul  9 22:14:00 2010  max relations containing the same ideal: 195
Fri Jul  9 22:14:03 2010  relations with 0 large ideals: 596
Fri Jul  9 22:14:03 2010  relations with 1 large ideals: 58
Fri Jul  9 22:14:03 2010  relations with 2 large ideals: 1119
Fri Jul  9 22:14:03 2010  relations with 3 large ideals: 14817
Fri Jul  9 22:14:03 2010  relations with 4 large ideals: 108475
Fri Jul  9 22:14:03 2010  relations with 5 large ideals: 449570
Fri Jul  9 22:14:03 2010  relations with 6 large ideals: 1193659
Fri Jul  9 22:14:03 2010  relations with 7+ large ideals: 3939192
Fri Jul  9 22:14:03 2010  commencing 2-way merge
Fri Jul  9 22:14:14 2010  reduce to 3616139 relation sets and 3577840 unique ideals
Fri Jul  9 22:14:14 2010  commencing full merge
Fri Jul  9 22:16:39 2010  memory use: 417.0 MB
Fri Jul  9 22:16:40 2010  found 1847472 cycles, need 1844040
Fri Jul  9 22:16:41 2010  weight of 1844040 cycles is about 129345416 (70.14/cycle)
Fri Jul  9 22:16:41 2010  distribution of cycle lengths:
Fri Jul  9 22:16:41 2010  1 relations: 141482
Fri Jul  9 22:16:41 2010  2 relations: 222887
Fri Jul  9 22:16:41 2010  3 relations: 246559
Fri Jul  9 22:16:41 2010  4 relations: 222045
Fri Jul  9 22:16:41 2010  5 relations: 193330
Fri Jul  9 22:16:41 2010  6 relations: 157955
Fri Jul  9 22:16:41 2010  7 relations: 129981
Fri Jul  9 22:16:41 2010  8 relations: 105893
Fri Jul  9 22:16:41 2010  9 relations: 85681
Fri Jul  9 22:16:41 2010  10+ relations: 338227
Fri Jul  9 22:16:41 2010  heaviest cycle: 28 relations
Fri Jul  9 22:16:42 2010  commencing cycle optimization
Fri Jul  9 22:16:48 2010  start with 11200347 relations
Fri Jul  9 22:17:26 2010  pruned 279884 relations
Fri Jul  9 22:17:26 2010  memory use: 354.8 MB
Fri Jul  9 22:17:26 2010  distribution of cycle lengths:
Fri Jul  9 22:17:26 2010  1 relations: 141482
Fri Jul  9 22:17:26 2010  2 relations: 228093
Fri Jul  9 22:17:26 2010  3 relations: 256160
Fri Jul  9 22:17:26 2010  4 relations: 227521
Fri Jul  9 22:17:26 2010  5 relations: 197153
Fri Jul  9 22:17:26 2010  6 relations: 158721
Fri Jul  9 22:17:26 2010  7 relations: 129863
Fri Jul  9 22:17:26 2010  8 relations: 104180
Fri Jul  9 22:17:26 2010  9 relations: 83926
Fri Jul  9 22:17:26 2010  10+ relations: 316941
Fri Jul  9 22:17:26 2010  heaviest cycle: 27 relations
Fri Jul  9 22:17:32 2010  RelProcTime: 918
Fri Jul  9 22:17:32 2010  elapsed time 00:15:20
Fri Jul  9 22:41:49 2010  
Fri Jul  9 22:41:49 2010  
Fri Jul  9 22:41:49 2010  Msieve v. 1.46
Fri Jul  9 22:41:49 2010  random seeds: b27f4572 ded603cd
Fri Jul  9 22:41:49 2010  factoring 1811872755059516195892304830314956296297708226109641486671117966207237623694298687193320614107231164397780494682776646101280094271754040891817466416201 (151 digits)
Fri Jul  9 22:41:51 2010  no P-1/P+1/ECM available, skipping
Fri Jul  9 22:41:51 2010  commencing number field sieve (151-digit input)
Fri Jul  9 22:41:51 2010  R0: -100000000000000000000000000000000000
Fri Jul  9 22:41:51 2010  R1:  1
Fri Jul  9 22:41:51 2010  A0:  9
Fri Jul  9 22:41:51 2010  A1:  0
Fri Jul  9 22:41:51 2010  A2:  0
Fri Jul  9 22:41:51 2010  A3:  0
Fri Jul  9 22:41:51 2010  A4:  0
Fri Jul  9 22:41:51 2010  A5:  10000
Fri Jul  9 22:41:51 2010  skew 1.00, size 1.398e-12, alpha -0.172, combined = 9.732e-11 rroots = 1
Fri Jul  9 22:41:51 2010  
Fri Jul  9 22:41:51 2010  commencing relation filtering
Fri Jul  9 22:41:51 2010  estimated available RAM is 998.5 MB
Fri Jul  9 22:41:51 2010  commencing duplicate removal, pass 1
Fri Jul  9 22:42:55 2010  error -9 reading relation 6740878
Fri Jul  9 22:43:40 2010  error -1 reading relation 11468630
Fri Jul  9 22:43:40 2010  error -1 reading relation 11468631
Fri Jul  9 22:43:40 2010  error -1 reading relation 11468632
Fri Jul  9 22:43:40 2010  error -1 reading relation 11468633
Fri Jul  9 22:45:17 2010  found 2882882 hash collisions in 19101710 relations
Fri Jul  9 22:46:20 2010  commencing duplicate removal, pass 2
Fri Jul  9 22:46:45 2010  found 2700048 duplicates and 16401662 unique relations
Fri Jul  9 22:46:45 2010  memory use: 98.6 MB
Fri Jul  9 22:46:45 2010  reading ideals above 10027008
Fri Jul  9 22:46:51 2010  commencing singleton removal, initial pass
Fri Jul  9 22:50:29 2010  memory use: 376.5 MB
Fri Jul  9 22:50:29 2010  reading all ideals from disk
Fri Jul  9 22:50:32 2010  memory use: 327.0 MB
Fri Jul  9 22:50:35 2010  commencing in-memory singleton removal
Fri Jul  9 22:50:37 2010  begin with 16401662 relations and 17615544 unique ideals
Fri Jul  9 22:50:54 2010  reduce to 6205958 relations and 4818649 ideals in 14 passes
Fri Jul  9 22:50:54 2010  max relations containing the same ideal: 26
Fri Jul  9 22:50:56 2010  reading ideals above 100000
Fri Jul  9 22:50:56 2010  commencing singleton removal, initial pass
Fri Jul  9 22:52:44 2010  memory use: 172.2 MB
Fri Jul  9 22:52:44 2010  reading all ideals from disk
Fri Jul  9 22:52:46 2010  memory use: 232.6 MB
Fri Jul  9 22:52:49 2010  keeping 6432282 ideals with weight <= 200, target excess is 32944
Fri Jul  9 22:52:51 2010  commencing in-memory singleton removal
Fri Jul  9 22:52:53 2010  begin with 6259399 relations and 6432282 unique ideals
Fri Jul  9 22:53:13 2010  reduce to 6195531 relations and 6107662 ideals in 11 passes
Fri Jul  9 22:53:13 2010  max relations containing the same ideal: 200
Fri Jul  9 22:53:21 2010  removing 277147 relations and 252320 ideals in 24827 cliques
Fri Jul  9 22:53:21 2010  commencing in-memory singleton removal
Fri Jul  9 22:53:24 2010  begin with 5918384 relations and 6107662 unique ideals
Fri Jul  9 22:53:37 2010  reduce to 5910697 relations and 5847599 ideals in 8 passes
Fri Jul  9 22:53:37 2010  max relations containing the same ideal: 198
Fri Jul  9 22:53:46 2010  removing 199028 relations and 174201 ideals in 24827 cliques
Fri Jul  9 22:53:46 2010  commencing in-memory singleton removal
Fri Jul  9 22:53:48 2010  begin with 5711669 relations and 5847599 unique ideals
Fri Jul  9 22:53:58 2010  reduce to 5707486 relations and 5669187 ideals in 6 passes
Fri Jul  9 22:53:58 2010  max relations containing the same ideal: 195
Fri Jul  9 22:54:02 2010  relations with 0 large ideals: 596
Fri Jul  9 22:54:02 2010  relations with 1 large ideals: 58
Fri Jul  9 22:54:02 2010  relations with 2 large ideals: 1119
Fri Jul  9 22:54:02 2010  relations with 3 large ideals: 14817
Fri Jul  9 22:54:02 2010  relations with 4 large ideals: 108475
Fri Jul  9 22:54:02 2010  relations with 5 large ideals: 449570
Fri Jul  9 22:54:02 2010  relations with 6 large ideals: 1193659
Fri Jul  9 22:54:02 2010  relations with 7+ large ideals: 3939192
Fri Jul  9 22:54:02 2010  commencing 2-way merge
Fri Jul  9 22:54:13 2010  reduce to 3616139 relation sets and 3577840 unique ideals
Fri Jul  9 22:54:13 2010  commencing full merge
Fri Jul  9 22:56:35 2010  memory use: 417.0 MB
Fri Jul  9 22:56:36 2010  found 1847472 cycles, need 1844040
Fri Jul  9 22:56:38 2010  weight of 1844040 cycles is about 129345416 (70.14/cycle)
Fri Jul  9 22:56:38 2010  distribution of cycle lengths:
Fri Jul  9 22:56:38 2010  1 relations: 141482
Fri Jul  9 22:56:38 2010  2 relations: 222887
Fri Jul  9 22:56:38 2010  3 relations: 246559
Fri Jul  9 22:56:38 2010  4 relations: 222045
Fri Jul  9 22:56:38 2010  5 relations: 193330
Fri Jul  9 22:56:38 2010  6 relations: 157955
Fri Jul  9 22:56:38 2010  7 relations: 129981
Fri Jul  9 22:56:38 2010  8 relations: 105893
Fri Jul  9 22:56:38 2010  9 relations: 85681
Fri Jul  9 22:56:38 2010  10+ relations: 338227
Fri Jul  9 22:56:38 2010  heaviest cycle: 28 relations
Fri Jul  9 22:56:38 2010  commencing cycle optimization
Fri Jul  9 22:56:45 2010  start with 11200347 relations
Fri Jul  9 22:57:22 2010  pruned 279884 relations
Fri Jul  9 22:57:22 2010  memory use: 354.8 MB
Fri Jul  9 22:57:22 2010  distribution of cycle lengths:
Fri Jul  9 22:57:22 2010  1 relations: 141482
Fri Jul  9 22:57:22 2010  2 relations: 228093
Fri Jul  9 22:57:22 2010  3 relations: 256160
Fri Jul  9 22:57:22 2010  4 relations: 227521
Fri Jul  9 22:57:22 2010  5 relations: 197153
Fri Jul  9 22:57:22 2010  6 relations: 158721
Fri Jul  9 22:57:22 2010  7 relations: 129863
Fri Jul  9 22:57:22 2010  8 relations: 104180
Fri Jul  9 22:57:22 2010  9 relations: 83926
Fri Jul  9 22:57:22 2010  10+ relations: 316941
Fri Jul  9 22:57:22 2010  heaviest cycle: 27 relations
Fri Jul  9 22:57:28 2010  RelProcTime: 937
Fri Jul  9 22:57:28 2010  elapsed time 00:15:39
Fri Jul  9 22:58:04 2010  
Fri Jul  9 22:58:04 2010  
Fri Jul  9 22:58:04 2010  Msieve v. 1.46
Fri Jul  9 22:58:04 2010  random seeds: 855bf614 12cb47d2
Fri Jul  9 22:58:04 2010  factoring 1811872755059516195892304830314956296297708226109641486671117966207237623694298687193320614107231164397780494682776646101280094271754040891817466416201 (151 digits)
Fri Jul  9 22:58:06 2010  no P-1/P+1/ECM available, skipping
Fri Jul  9 22:58:06 2010  commencing number field sieve (151-digit input)
Fri Jul  9 22:58:06 2010  R0: -100000000000000000000000000000000000
Fri Jul  9 22:58:06 2010  R1:  1
Fri Jul  9 22:58:06 2010  A0:  9
Fri Jul  9 22:58:06 2010  A1:  0
Fri Jul  9 22:58:06 2010  A2:  0
Fri Jul  9 22:58:06 2010  A3:  0
Fri Jul  9 22:58:06 2010  A4:  0
Fri Jul  9 22:58:06 2010  A5:  10000
Fri Jul  9 22:58:06 2010  skew 1.00, size 1.398e-12, alpha -0.172, combined = 9.732e-11 rroots = 1
Fri Jul  9 22:58:06 2010  
Fri Jul  9 22:58:06 2010  commencing linear algebra
Fri Jul  9 22:58:07 2010  read 1844040 cycles
Fri Jul  9 22:58:12 2010  cycles contain 5671823 unique relations
Fri Jul  9 22:59:10 2010  read 5671823 relations
Fri Jul  9 22:59:25 2010  using 20 quadratic characters above 268434578
Fri Jul  9 23:00:18 2010  building initial matrix
Fri Jul  9 23:02:02 2010  
Fri Jul  9 23:02:02 2010  
Fri Jul  9 23:02:02 2010  Msieve v. 1.46
Fri Jul  9 23:02:02 2010  random seeds: 3316fe1d f64e124b
Fri Jul  9 23:02:02 2010  factoring 2 (1 digits)
Fri Jul  9 23:02:02 2010  p1 factor: 2
Fri Jul  9 23:02:02 2010  elapsed time 00:00:00
Fri Jul  9 23:02:06 2010  
Fri Jul  9 23:02:06 2010  
Fri Jul  9 23:02:06 2010  Msieve v. 1.46
Fri Jul  9 23:02:06 2010  random seeds: c0b14d88 f2e24743
Fri Jul  9 23:02:06 2010  factoring 1811872755059516195892304830314956296297708226109641486671117966207237623694298687193320614107231164397780494682776646101280094271754040891817466416201 (151 digits)
Fri Jul  9 23:02:07 2010  no P-1/P+1/ECM available, skipping
Fri Jul  9 23:02:08 2010  commencing number field sieve (151-digit input)
Fri Jul  9 23:02:08 2010  R0: -100000000000000000000000000000000000
Fri Jul  9 23:02:08 2010  R1:  1
Fri Jul  9 23:02:08 2010  A0:  9
Fri Jul  9 23:02:08 2010  A1:  0
Fri Jul  9 23:02:08 2010  A2:  0
Fri Jul  9 23:02:08 2010  A3:  0
Fri Jul  9 23:02:08 2010  A4:  0
Fri Jul  9 23:02:08 2010  A5:  10000
Fri Jul  9 23:02:08 2010  skew 1.00, size 1.398e-12, alpha -0.172, combined = 9.732e-11 rroots = 1
Fri Jul  9 23:02:08 2010  
Fri Jul  9 23:02:08 2010  commencing linear algebra
Fri Jul  9 23:02:08 2010  read 1844040 cycles
Fri Jul  9 23:02:14 2010  cycles contain 5671823 unique relations
Fri Jul  9 23:03:12 2010  read 5671823 relations
Fri Jul  9 23:03:27 2010  using 20 quadratic characters above 268434578
Fri Jul  9 23:04:20 2010  building initial matrix
Fri Jul  9 23:06:05 2010  memory use: 686.3 MB
Fri Jul  9 23:06:07 2010  read 1844040 cycles
Fri Jul  9 23:06:13 2010  matrix is 1843863 x 1844040 (553.4 MB) with weight 162443932 (88.09/col)
Fri Jul  9 23:06:13 2010  sparse part has weight 124792798 (67.67/col)
Fri Jul  9 23:07:03 2010  filtering completed in 2 passes
Fri Jul  9 23:07:03 2010  matrix is 1843620 x 1843797 (553.4 MB) with weight 162437070 (88.10/col)
Fri Jul  9 23:07:03 2010  sparse part has weight 124791015 (67.68/col)
Fri Jul  9 23:07:28 2010  read 1843797 cycles
Fri Jul  9 23:07:34 2010  matrix is 1843620 x 1843797 (553.4 MB) with weight 162437070 (88.10/col)
Fri Jul  9 23:07:34 2010  sparse part has weight 124791015 (67.68/col)
Fri Jul  9 23:07:34 2010  saving the first 48 matrix rows for later
Fri Jul  9 23:07:36 2010  matrix is 1843572 x 1843797 (525.4 MB) with weight 130328257 (70.68/col)
Fri Jul  9 23:07:36 2010  sparse part has weight 119290391 (64.70/col)
Fri Jul  9 23:07:36 2010  matrix includes 64 packed rows
Fri Jul  9 23:07:36 2010  using block size 10922 for processor cache size 256 kB
Fri Jul  9 23:07:46 2010  commencing Lanczos iteration (2 threads)
Fri Jul  9 23:07:46 2010  memory use: 535.5 MB
Fri Jul  9 23:08:15 2010  linear algebra at 0.0%, ETA 17h33m
Sat Jul 10 14:04:39 2010  lanczos halted after 24380 iterations (dim = 1541510)
Sat Jul 10 14:04:39 2010  BLanczosTime: 54151
Sat Jul 10 14:04:39 2010  elapsed time 15:02:33
Sat Jul 10 14:04:54 2010  
Sat Jul 10 14:04:54 2010  
Sat Jul 10 14:04:54 2010  Msieve v. 1.46
Sat Jul 10 14:04:54 2010  random seeds: 0dae7226 dde4cab8
Sat Jul 10 14:04:54 2010  factoring 1811872755059516195892304830314956296297708226109641486671117966207237623694298687193320614107231164397780494682776646101280094271754040891817466416201 (151 digits)
Sat Jul 10 14:04:56 2010  no P-1/P+1/ECM available, skipping
Sat Jul 10 14:04:56 2010  commencing number field sieve (151-digit input)
Sat Jul 10 14:04:56 2010  R0: -100000000000000000000000000000000000
Sat Jul 10 14:04:56 2010  R1:  1
Sat Jul 10 14:04:56 2010  A0:  9
Sat Jul 10 14:04:56 2010  A1:  0
Sat Jul 10 14:04:56 2010  A2:  0
Sat Jul 10 14:04:56 2010  A3:  0
Sat Jul 10 14:04:56 2010  A4:  0
Sat Jul 10 14:04:56 2010  A5:  10000
Sat Jul 10 14:04:56 2010  skew 1.00, size 1.398e-12, alpha -0.172, combined = 9.732e-11 rroots = 1
Sat Jul 10 14:04:56 2010  
Sat Jul 10 14:04:56 2010  commencing linear algebra
Sat Jul 10 14:04:56 2010  read 1843797 cycles
Sat Jul 10 14:05:06 2010  matrix is 1843620 x 1843797 (553.4 MB) with weight 162437070 (88.10/col)
Sat Jul 10 14:05:06 2010  sparse part has weight 124791015 (67.68/col)
Sat Jul 10 14:05:06 2010  saving the first 48 matrix rows for later
Sat Jul 10 14:05:07 2010  matrix is 1843572 x 1843797 (525.4 MB) with weight 130328257 (70.68/col)
Sat Jul 10 14:05:07 2010  sparse part has weight 119290391 (64.70/col)
Sat Jul 10 14:05:07 2010  matrix includes 64 packed rows
Sat Jul 10 14:05:07 2010  using block size 10922 for processor cache size 256 kB
Sat Jul 10 14:05:18 2010  commencing Lanczos iteration (2 threads)
Sat Jul 10 14:05:18 2010  memory use: 535.5 MB
Sat Jul 10 14:05:19 2010  restarting at iteration 24380 (dim = 1541510)
Sat Jul 10 14:05:45 2010  linear algebra at 83.6%, ETA 2h52m
Sat Jul 10 16:57:02 2010  lanczos halted after 29159 iterations (dim = 1843567)
Sat Jul 10 16:57:08 2010  recovered 38 nontrivial dependencies
Sat Jul 10 16:57:08 2010  BLanczosTime: 10332
Sat Jul 10 16:57:08 2010  elapsed time 02:52:14
Sun Jul 11 00:47:13 2010  
Sun Jul 11 00:47:13 2010  
Sun Jul 11 00:47:13 2010  Msieve v. 1.46
Sun Jul 11 00:47:13 2010  random seeds: 412d15b3 599e25b5
Sun Jul 11 00:47:13 2010  factoring 1811872755059516195892304830314956296297708226109641486671117966207237623694298687193320614107231164397780494682776646101280094271754040891817466416201 (151 digits)
Sun Jul 11 00:47:15 2010  no P-1/P+1/ECM available, skipping
Sun Jul 11 00:47:15 2010  commencing number field sieve (151-digit input)
Sun Jul 11 00:47:15 2010  R0: -100000000000000000000000000000000000
Sun Jul 11 00:47:15 2010  R1:  1
Sun Jul 11 00:47:15 2010  A0:  9
Sun Jul 11 00:47:15 2010  A1:  0
Sun Jul 11 00:47:15 2010  A2:  0
Sun Jul 11 00:47:15 2010  A3:  0
Sun Jul 11 00:47:15 2010  A4:  0
Sun Jul 11 00:47:15 2010  A5:  10000
Sun Jul 11 00:47:15 2010  skew 1.00, size 1.398e-12, alpha -0.172, combined = 9.732e-11 rroots = 1
Sun Jul 11 00:47:15 2010  
Sun Jul 11 00:47:15 2010  commencing square root phase
Sun Jul 11 00:47:15 2010  reading relations for dependency 1
Sun Jul 11 00:47:15 2010  read 921195 cycles
Sun Jul 11 00:47:18 2010  cycles contain 2833738 unique relations
Sun Jul 11 00:47:52 2010  read 2833738 relations
Sun Jul 11 00:48:15 2010  multiplying 2833738 relations
Sun Jul 11 00:51:54 2010  multiply complete, coefficients have about 97.14 million bits
Sun Jul 11 00:51:56 2010  initial square root is modulo 9383741
Sun Jul 11 00:58:54 2010  sqrtTime: 699
Sun Jul 11 00:58:54 2010  prp58 factor: 1442442226672451541642074574429111173328536880788047019059
Sun Jul 11 00:58:54 2010  prp94 factor: 1256114610038350326200782498923339690129173388326551582976691681542976645138719491787537013139
Sun Jul 11 00:58:54 2010  elapsed time 00:11:41
software ソフトウェア
Cado-nfs for sieving, msieve fro post processing
execution environment 実行環境
Ubuntu Linux 10.04, Athlon 64x2 2800, 1 GB RAM

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e60--
403e6500 / 2350Erik BrangerSeptember 21, 2009 17:39:04 UTC 2009 年 9 月 22 日 (火) 2 時 39 分 4 秒 (日本時間)

10180+9

c137

name 名前Wataru Sakai
date 日付October 7, 2006 03:21:23 UTC 2006 年 10 月 7 日 (土) 12 時 21 分 23 秒 (日本時間)
composite number 合成数
34811337574321928884877042297477376549050218770910240020759068033357703284731619414781555242970773494812933511613821516140834024506469409<137>
prime factors 素因数
1153178324949098471581835646098710369<37>
composite cofactor 合成数の残り
30187297854265955340839026475771432703339043701378522512760624169899371628725359916608624530578900161<101>
factorization results 素因数分解の結果
Input number is 34811337574321928884877042297477376549050218770910240020759068033357703284731619414781555242970773494812933511613821516140834024506469409 (137 digits)
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=3589888326
Step 1 took 321265ms
Step 2 took 103520ms
********** Factor found in step 2: 1153178324949098471581835646098710369
Found probable prime factor of 37 digits: 1153178324949098471581835646098710369
Composite cofactor 30187297854265955340839026475771432703339043701378522512760624169899371628725359916608624530578900161 has 101 digits
software ソフトウェア
GMP-ECM 6.1

c101

name 名前JMB
date 日付October 8, 2006 02:29:06 UTC 2006 年 10 月 8 日 (日) 11 時 29 分 6 秒 (日本時間)
composite number 合成数
30187297854265955340839026475771432703339043701378522512760624169899371628725359916608624530578900161<101>
prime factors 素因数
280771938914481207966046774999018277<36>
107515366282598987181603343567825994793954957702377171456669085293<66>
factorization results 素因数分解の結果
Number: Job
N=30187297854265955340839026475771432703339043701378522512760624169899371628725359916608624530578900161
  ( 101 digits)
Divisors found:
 r1=280771938914481207966046774999018277 (pp36)
 r2=107515366282598987181603343567825994793954957702377171456669085293 (pp66)
Version: GGNFS-0.77.1-20060513-pentium4
Total time: 1.51 hours.
Scaled time: 1.99 units (timescale=1.320).
Factorization parameters were as follows:
name: Job
n: 30187297854265955340839026475771432703339043701378522512760624169899371628725359916608624530578900161
skew: 14419.32
# norm 2.67e+014
c5: 30000
c4: -200576340
c3: -19944828508384
c2: -76423963274765993
c1: 1256607135224133054124
c0: -2933090521390132407939712
# alpha -6.51
Y1: 23452030007
Y0: -15868703858252830905
# Murphy_E 2.94e-009
# M 26243756146532592332210597896072185256913651889324693570901958506917004720982464758064521831519658178
type: gnfs
rlim: 1800000
alim: 1800000
lpbr: 26
lpba: 26
mfbr: 48
mfba: 48
rlambda: 2.5
alambda: 2.5
qintsize: 10000
Factor base limits: 1800000/1800000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 48/48
Sieved algebraic special-q in [900000, 1440001)
Primes: RFBsize:135072, AFBsize:133877, largePrimes:3811261 encountered
Relations: rels:3721649, finalFF:307182
Max relations in full relation-set: 28
Initial matrix: 269029 x 307182 with sparse part having weight 22082602.
Pruned matrix : 240697 x 242106 with weight 14550235.
Total sieving time: 0.00 hours.
Total relation processing time: 0.27 hours.
Matrix solve time: 1.08 hours.
Time per square root: 0.16 hours.
Prototype def-par.txt line would be:
gnfs,100,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,26,26,48,48,2.5,2.5,100000
total time: 1.51 hours.
 --------- CPU info (if available) ----------
execution environment 実行環境
A mix of 4 systems (XP & 2K) with an experimental network version of GGNFS. One system local, the other 3 systems remote over the Internet. Actual real time, exactly 4.5 hours.

10181+9

c155

name 名前Wataru Sakai
date 日付November 25, 2006 10:01:25 UTC 2006 年 11 月 25 日 (土) 19 時 1 分 25 秒 (日本時間)
composite number 合成数
41725456812143594721301541584784900479325302787363216030738075611321398619774382020636998129265056083880272107546605239560380697960819655414638982804140001<155>
prime factors 素因数
1972852879967879178904902617372213<34>
21149806574944880773112316633222849030124545193584976920415264370446417132428148912879467226040854694780865097353747249277<122>
factorization results 素因数分解の結果
Input number is 41725456812143594721301541584784900479325302787363216030738075611321398619774382020636998129265056083880272107546605239560380697960819655414638982804140001 (155 digits)
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=812881750
Step 1 took 374919ms
Step 2 took 117714ms
********** Factor found in step 2: 1972852879967879178904902617372213
Found probable prime factor of 34 digits: 1972852879967879178904902617372213
Probable prime cofactor 21149806574944880773112316633222849030124545193584976920415264370446417132428148912879467226040854694780865097353747249277 has 122 digits
software ソフトウェア
GMP-ECM 6.1

10182+9

c147

name 名前Justin Card
date 日付June 12, 2010 15:44:01 UTC 2010 年 6 月 13 日 (日) 0 時 44 分 1 秒 (日本時間)
composite number 合成数
125026047508049222643775306587551145519988708212134327609538854507435909032673048951394702008581084500016272676366420021444621156642137429333758989<147>
prime factors 素因数
185481973381830555554866977763949825676137<42>
674060369471443876063227959624443640761799502887562909668420396008356207299135243621775970766013275880197<105>
factorization results 素因数分解の結果
[2010-06-12 15:27:38 GMT] 10009_182: probable factor returned by justin@darkenedpath.com (c2)!  Factor=185481973381830555554866977763949825676137  Method=ECM  B1=3000000  Sigma=3432644851
[2010-06-12 15:27:38 GMT] 10009_182: Probable factor returned by justin@darkenedpath.com (c2)!  Factor=674060369471443876063227959624443640761799502887562909668420396008356207299135243621775970766013275880197  Method=ECM  B1=3000000  Sigma=3432644851
software ソフトウェア
GMP-ECM 6.2
execution environment 実行環境
Athlon 64x2 2600+, 1 GB RAM, Ubuntu Linux

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e60--
403e6500 / 2350Erik BrangerSeptember 22, 2009 05:46:02 UTC 2009 年 9 月 22 日 (火) 14 時 46 分 2 秒 (日本時間)

10183+9

c163

name 名前Dmitry Domanov
date 日付December 13, 2010 19:01:21 UTC 2010 年 12 月 14 日 (火) 4 時 1 分 21 秒 (日本時間)
composite number 合成数
5502347911213069718720698339698754684445480199542785002940489070902853403709437141555421371777394602341417121522356449261838837415786310525864870645421817071227957<163>
prime factors 素因数
15228218271150892025898604003628121651907419808655989322365652066863210692657023<80>
361325784358961828483852604877211051668800204941633004602069598969657510790143133259<84>
factorization results 素因数分解の結果
N=5502347911213069718720698339698754684445480199542785002940489070902853403709437141555421371777394602341417121522356449261838837415786310525864870645421817071227957
  ( 163 digits)
SNFS difficulty: 183 digits.
Divisors found:
 r1=15228218271150892025898604003628121651907419808655989322365652066863210692657023 (pp80)
 r2=361325784358961828483852604877211051668800204941633004602069598969657510790143133259 (pp84)
Version: Msieve v. 1.47
Total time: 224.64 hours.
Scaled time: 312.02 units (timescale=1.389).
Factorization parameters were as follows:
n: 5502347911213069718720698339698754684445480199542785002940489070902853403709437141555421371777394602341417121522356449261838837415786310525864870645421817071227957
m: 1000000000000000000000000000000000000
deg: 5
c5: 1000
c0: 9
skew: 0.39
type: snfs
lss: 1
rlim: 7900000
alim: 7900000
lpbr: 28
lpba: 28
mfbr: 53
mfba: 53
rlambda: 2.5
alambda: 2.5
qintsize: 240000
Factor base limits: 7900000/7900000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 53/53
Sieved rational special-q in [3950000, 9470001)
Primes: , ,
Relations: relations
Max relations in full relation-set:
Initial matrix:
Pruned matrix : 1541555 x 1541781
Total sieving time: 220.27 hours.
Total relation processing time: 0.29 hours.
Matrix solve time: 3.56 hours.
Time per square root: 0.52 hours.
Prototype def-par.txt line would be:
snfs,183.000,5,0,0,0,0,0,0,0,0,7900000,7900000,28,28,53,53,2.5,2.5,100000
total time: 224.64 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Xeon(R) CPU           E5504  @ 2.00GHz stepping 05
CPU1: Intel(R) Xeon(R) CPU           E5504  @ 2.00GHz stepping 05
CPU2: Intel(R) Xeon(R) CPU           E5504  @ 2.00GHz stepping 05
CPU3: Intel(R) Xeon(R) CPU           E5504  @ 2.00GHz stepping 05
CPU4: Intel(R) Xeon(R) CPU           E5504  @ 2.00GHz stepping 05
CPU5: Intel(R) Xeon(R) CPU           E5504  @ 2.00GHz stepping 05
CPU6: Intel(R) Xeon(R) CPU           E5504  @ 2.00GHz stepping 05
CPU7: Intel(R) Xeon(R) CPU           E5504  @ 2.00GHz stepping 05
Memory: 8285828k/9437184k available (2630k kernel code, 92872k reserved, 1532k data, 320k init, 7462464k highmem)
Calibrating delay loop (skipped), value calculated using timer frequency.. 4000.10 BogoMIPS (lpj=2000051)
Calibrating delay using timer specific routine.. 3999.39 BogoMIPS (lpj=1999698)
Calibrating delay using timer specific routine.. 3999.38 BogoMIPS (lpj=1999692)
Calibrating delay using timer specific routine.. 3999.38 BogoMIPS (lpj=1999692)
Calibrating delay using timer specific routine.. 3999.42 BogoMIPS (lpj=1999710)
Calibrating delay using timer specific routine.. 3999.43 BogoMIPS (lpj=1999717)
Calibrating delay using timer specific routine.. 3999.47 BogoMIPS (lpj=1999735)
Calibrating delay using timer specific routine.. 3999.48 BogoMIPS (lpj=1999743)
Total of 8 processors activated (31996.07 BogoMIPS).

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e60--
403e6500 / 2350Erik BrangerSeptember 22, 2009 17:40:09 UTC 2009 年 9 月 23 日 (水) 2 時 40 分 9 秒 (日本時間)

10185+9

c127

name 名前JMB
date 日付November 9, 2006 15:50:27 UTC 2006 年 11 月 10 日 (金) 0 時 50 分 27 秒 (日本時間)
composite number 合成数
1441040661382525705417821587285663316407691187456963366088056617767879156058816313976715675551433626176389802439909676048900179<127>
prime factors 素因数
4277579851308146456603644470753277<34>
336882235159639253303716540858681759020527027546821580356810549616254660757873213006852842127<93>
factorization results 素因数分解の結果
10^185+9 ) PRP-1: 4277579851308146456603644470753277  B1: 11000000 sigma: 1659787053 (found in step 2)
10^185+9  PRP-2: 336882235159639253303716540858681759020527027546821580356810549616254660757873213006852842127
software ソフトウェア
GMP-ECM 6.1.1
execution environment 実行環境
WinXP Pro

10186+9

c166

name 名前Justin Card
date 日付August 10, 2010 23:37:51 UTC 2010 年 8 月 11 日 (水) 8 時 37 分 51 秒 (日本時間)
composite number 合成数
5346229205208768543218293895405520496586461590225426072382697018519731469611368521865962713541428346931416138198151723435264152241762224615646373744369812707586185633<166>
prime factors 素因数
259107190136001847900040211752558490529<39>
composite cofactor 合成数の残り
20633272285507034305627146592697479457686714539499729771677283337922535494074636248424110943637834312242122893908294902724978177<128>
factorization results 素因数分解の結果
[2010-08-10 21:28:41 GMT] 10009_186: probable factor returned by justin@darkenedpath.com (c2)!  Factor=259107190136001847900040211752558490529  Method=ECM  B1=3000000  Sigma=595714175
[2010-08-10 21:28:41 GMT] 10009_186: Composite factor returned by justin@darkenedpath.com (c2)!  Factor=20633272285507034305627146592697479457686714539499729771677283337922535494074636248424110943637834312242122893908294902724978177  Method=ECM  B1=3000000  Sigma=595714175
software ソフトウェア
gmp-ecm 6.2
execution environment 実行環境
Athlon 64x2 2600+, Ubuntu linux 10.04

c128

name 名前Erik Branger
date 日付September 9, 2010 16:16:03 UTC 2010 年 9 月 10 日 (金) 1 時 16 分 3 秒 (日本時間)
composite number 合成数
20633272285507034305627146592697479457686714539499729771677283337922535494074636248424110943637834312242122893908294902724978177<128>
prime factors 素因数
151609825118022433677314030338314528599890370070416555010601<60>
136094558973633953111667600364970446237713429448191321463269057021977<69>
factorization results 素因数分解の結果
Number: 10009_186
N = 20633272285507034305627146592697479457686714539499729771677283337922535494074636248424110943637834312242122893908294902724978177 (128 digits)
Divisors found:
r1=151609825118022433677314030338314528599890370070416555010601 (pp60)
r2=136094558973633953111667600364970446237713429448191321463269057021977 (pp69)
Version: Msieve v. 1.44
Total time: 102.04 hours.
Factorization parameters were as follows:
# Murphy_E = 1.096559e-10, selected by Erik Branger
n: 20633272285507034305627146592697479457686714539499729771677283337922535494074636248424110943637834312242122893908294902724978177
Y0: -4051518957208701240351562
Y1: 87659983973941
c0: 12746736659752394080295878553295
c1: 66608953093623177987542649
c2: -2616393308642077897251
c3: 5142290607895931
c4: 34050264780
c5: 18900
skew: 278276.47
type: gnfs
# selected mechanically
rlim: 8300000
alim: 8300000
lpbr: 28
lpba: 28
mfbr: 53
mfba: 53
rlambda: 2.5
alambda: 2.5
Factor base limits: 8300000/8300000
Large primes per side: 3
Large prime bits: 28/28
Sieved algebraic special-q in [4150000, 8450000)
Relations: 17713761
Relations in full relation-set: 1893784 relations
Pruned matrix : 1136523 x 1136752
Polynomial selection time: 0.00 hours.
Total sieving time: 100.61 hours.
Total relation processing time: 0.08 hours.
Matrix solve time: 1.13 hours.
time per square root: 0.21 hours.
Prototype def-par.txt line would be: gnfs,127,5,65,2000,1e-05,0.28,250,20,50000,3600,8300000,8300000,28,28,53,53,2.5,2.5,100000
total time: 102.04 hours.
 --------- CPU info (if available) ----------
software ソフトウェア
GGNFS, Msieve

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62350500Erik BrangerSeptember 23, 2009 16:38:22 UTC 2009 年 9 月 24 日 (木) 1 時 38 分 22 秒 (日本時間)
1850Wataru SakaiAugust 24, 2010 07:46:36 UTC 2010 年 8 月 24 日 (火) 16 時 46 分 36 秒 (日本時間)

10187+9

c120

name 名前Tyler Cadigan
date 日付October 7, 2006 01:11:43 UTC 2006 年 10 月 7 日 (土) 10 時 11 分 43 秒 (日本時間)
composite number 合成数
624416717075815956418387439219885297129632171625703612920258713290457714163614874975484756782174120692018842001812960287<120>
prime factors 素因数
46380071957938637799624457780838279939<38>
13463038988859045230601743027672415432613633469191464238601408561268969782958135733<83>
factorization results 素因数分解の結果
Number: test
N=624416717075815956418387439219885297129632171625703612920258713290457714163614874975484756782174120692018842001812960287
  ( 120 digits)
Divisors found:
 r1=46380071957938637799624457780838279939 (pp38)
 r2=13463038988859045230601743027672415432613633469191464238601408561268969782958135733 (pp83)
Version: GGNFS-0.77.1-20060722-pentium4
Total time: 108.78 hours.
Scaled time: 95.62 units (timescale=0.879).
Factorization parameters were as follows:
name: test
n: 624416717075815956418387439219885297129632171625703612920258713290457714163614874975484756782174120692018842001812960287
skew: 82032.68
# norm 1.58e+16
c5: 26640
c4: -1892851050
c3: -665282759993338
c2: 21579123426525373733
c1: 1604607886731191767427182
c0: 12012190188221992101476024128
# alpha -5.34
Y1: 1507813949081
Y0: -118573636331197106730999
# Murphy_E 2.79e-10
# M 194582865165137178428195865785239108272202113357042784592412946166876127374665336547701087884574524171915983078141962741
type: gnfs
rlim: 4500000
alim: 4500000
lpbr: 27
lpba: 27
mfbr: 50
mfba: 50
rlambda: 2.4
alambda: 2.4
qintsize: 60000
Factor base limits: 4500000/4500000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 50/50
Sieved algebraic special-q in [2250000, 4710001)
Primes: RFBsize:315948, AFBsize:316939, largePrimes:7679259 encountered
Relations: rels:7699054, finalFF:710267
Max relations in full relation-set: 0
Initial matrix: 632966 x 710267 with sparse part having weight 73630538.
Pruned matrix : 573734 x 576962 with weight 53605846.
Total sieving time: 83.27 hours.
Total relation processing time: 1.75 hours.
Matrix solve time: 22.99 hours.
Time per square root: 0.77 hours.
Prototype def-par.txt line would be:
gnfs,119,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4500000,4500000,27,27,50,50,2.4,2.4,60000
total time: 108.78 hours.
 --------- CPU info (if available) ----------
software ソフトウェア
GGNFS-0.77.1-20060722-pentium4
execution environment 実行環境
Pentium 4 3.20 GHz, Windows XP and Cygwin

10190+9

c138

name 名前Dmitry Domanov
date 日付December 10, 2010 11:16:18 UTC 2010 年 12 月 10 日 (金) 20 時 16 分 18 秒 (日本時間)
composite number 合成数
453784202451725518980480133089420040136273460591104916659256777047754295589507064687162836139574199000297912034696834143699088261379945733<138>
prime factors 素因数
2120843155344649214416019395212483965513842002004835993<55>
213964055431521514547237047021892220323835693944249800433946627902989130072386767181<84>
factorization results 素因数分解の結果
Sieving took ~12 cpu-days

N=453784202451725518980480133089420040136273460591104916659256777047754295589507064687162836139574199000297912034696834143699088261379945733
  ( 138 digits)
SNFS difficulty: 190 digits.
Divisors found:
Version: Msieve v. 1.47
Total time: 2.77 hours.
Scaled time: 5.32 units (timescale=1.921).
Factorization parameters were as follows:
n: 453784202451725518980480133089420040136273460591104916659256777047754295589507064687162836139574199000297912034696834143699088261379945733
m: 100000000000000000000000000000000000000
deg: 5
c5: 1
c0: 9
skew: 1.55
type: snfs
lss: 1
rlim: 10300000
alim: 10300000
lpbr: 28
lpba: 28
mfbr: 54
mfba: 54
rlambda: 2.5
alambda: 2.5
qintsize: 320000
Factor base limits: 10300000/10300000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 54/54
Sieved rational special-q in [5150000, 13150001)
Primes: , ,
Relations: relations
Max relations in full relation-set:
Initial matrix:
Pruned matrix : 1949634 x 1949861
Total sieving time: 0.00 hours.
Total relation processing time: 0.18 hours.
Matrix solve time: 2.59 hours.
Time per square root: 0.00 hours.
Prototype def-par.txt line would be:
snfs,190.000,5,0,0,0,0,0,0,0,0,10300000,10300000,28,28,54,54,2.5,2.5,100000
total time: 2.77 hours.

Msieve v. 1.47
Fri Dec 10 12:07:00 2010
random seeds: 6f05e28a 66b4f135
factoring 453784202451725518980480133089420040136273460591104916659256777047754295589507064687162836139574199000297912034696834143699088261379945733 (138 digits)
searching for 15-digit factors
commencing number field sieve (138-digit input)
R0: -100000000000000000000000000000000000000
R1:  1
A0:  9
A1:  0
A2:  0
A3:  0
A4:  0
A5:  1
skew 1.55, size 6.188e-13, alpha 0.893, combined = 5.888e-11 rroots = 1

commencing square root phase
reading relations for dependency 1
read 975481 cycles
cycles contain 3262320 unique relations
read 3262320 relations
multiplying 3262320 relations
multiply complete, coefficients have about 74.47 million bits
initial square root is modulo 221621
reading relations for dependency 2
read 976239 cycles
cycles contain 3260426 unique relations
read 3260426 relations
multiplying 3260426 relations
multiply complete, coefficients have about 74.43 million bits
initial square root is modulo 219971
reading relations for dependency 3
read 975061 cycles
cycles contain 3258730 unique relations
read 3258730 relations
multiplying 3258730 relations
multiply complete, coefficients have about 74.39 million bits
initial square root is modulo 218641
reading relations for dependency 4
read 974924 cycles
cycles contain 3258008 unique relations
read 3258008 relations
multiplying 3258008 relations
multiply complete, coefficients have about 74.37 million bits
initial square root is modulo 218111
sqrtTime: 7326
prp55 factor: 2120843155344649214416019395212483965513842002004835993
prp84 factor: 213964055431521514547237047021892220323835693944249800433946627902989130072386767181
elapsed time 02:02:09

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e60--
403e6500 / 2350Erik BrangerSeptember 23, 2009 16:38:40 UTC 2009 年 9 月 24 日 (木) 1 時 38 分 40 秒 (日本時間)

10191+9

c188

name 名前matsui
date 日付August 20, 2008 14:35:24 UTC 2008 年 8 月 20 日 (水) 23 時 35 分 24 秒 (日本時間)
composite number 合成数
10668942707777659233969913581564067000960204843699989331057292222340766030086418435932999039795156300010668942707777659233969913581564067000960204843699989331057292222340766030086418435933<188>
prime factors 素因数
558512525126795884293354955450279221529<39>
19102423361688353491586596941283273631279087307124210159959098992316128275614458548628339728160988510023049614103059197070847250912364210612167195877<149>
factorization results 素因数分解の結果
N=10668942707777659233969913581564067000960204843699989331057292222340766030086418435932999039795156300010668942707777659233969913581564067000960204843699989331057292222340766030086418435933
  ( 188 digits)

SNFS difficulty: 191 digits.

Divisors found:

 r1=558512525126795884293354955450279221529 (pp39)

 r2=19102423361688353491586596941283273631279087307124210159959098992316128275614458548628339728160988510023049614103059197070847250912364210612167195877 (pp149)

Version: GGNFS-0.77.1-20060513-pentium-m

Total time: 477.36 hours.

Scaled time: 915.57 units (timescale=1.918).

Factorization parameters were as follows:

n: 10668942707777659233969913581564067000960204843699989331057292222340766030086418435932999039795156300010668942707777659233969913581564067000960204843699989331057292222340766030086418435933

m: 100000000000000000000000000000000000000

c5: 10

c0: 9

skew: 0.98

type: snfs

rlim: 10000000

alim: 10000000

lpbr: 28

lpba: 28

mfbr: 50

mfba: 50

rlambda: 2.6

alambda: 2.6

qintsize: 100000


Factor base limits: 10000000/10000000

Large primes per side: 3

Large prime bits: 28/28

Max factor residue bits: 50/50
Sieved algebraic special-q in [5000000, 14500001)

Primes: RFBsize:664579, AFBsize:664685, largePrimes:11579378 encountered

Relations: rels:11937015, finalFF:1530165

Max relations in full relation-set: 28

Initial matrix: 1329331 x 1530165 with sparse part having weight 146036484.

Pruned matrix : 1164732 x 1171442 with weight 119352904.

Total sieving time: 456.55 hours.

Total relation processing time: 0.53 hours.

Matrix solve time: 19.77 hours.

Time per square root: 0.50 hours.

Prototype def-par.txt line would be:

snfs,191,5,0,0,0,0,0,0,0,0,10000000,10000000,28,28,50,50,2.6,2.6,100000

total time: 477.36 hours.

10192+9

c193

name 名前Jo Yeong Uk
date 日付October 7, 2007 07:40:23 UTC 2007 年 10 月 7 日 (日) 16 時 40 分 23 秒 (日本時間)
composite number 合成数
1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000009<193>
prime factors 素因数
325208379747671632800443572929049811907718391209<48>
3074951515012920315894112276452006313835272802228418099697777887803931547784516799444634005241238767287033369894773351997005678938044816110863201<145>
factorization results 素因数分解の結果
GMP-ECM 6.1.3 [powered by GMP 4.2.2] [ECM]
Input number is 1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000009 (193 digits)
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=413694509
Step 1 took 110047ms
Step 2 took 41240ms
********** Factor found in step 2: 325208379747671632800443572929049811907718391209
Found probable prime factor of 48 digits: 325208379747671632800443572929049811907718391209
Probable prime cofactor 3074951515012920315894112276452006313835272802228418099697777887803931547784516799444634005241238767287033369894773351997005678938044816110863201 has 145 digits
execution environment 実行環境
Core 2 Quad Q6600

10195+9

c186

name 名前matsui
date 日付June 23, 2010 19:32:37 UTC 2010 年 6 月 24 日 (木) 4 時 32 分 37 秒 (日本時間)
composite number 合成数
125883371881026860367873965147118720337245863515924165285233348633697689128466015657527624042559507379533326984036214622892618555864137507302458211348952374718012954419377170131535584373<186>
prime factors 素因数
215491619629333658761950722732048846480483023<45>
2126529177081324186424571143772441853051119903<46>
274705045491364586582557853243988977346480595087235609855663840837954828213753527555089529799717<96>
factorization results 素因数分解の結果
Number: 10009_195
N=125883371881026860367873965147118720337245863515924165285233348633697689128466015657527624042559507379533326984036214622892618555864137507302458211348952374718012954419377170131535584373
  ( 186 digits)
SNFS difficulty: 195 digits.
Divisors found:
 r1=215491619629333658761950722732048846480483023 (pp45)
 r2=2126529177081324186424571143772441853051119903 (pp46)
 r3=274705045491364586582557853243988977346480595087235609855663840837954828213753527555089529799717 (pp96)
Version: Msieve v. 1.46
Total time:
Scaled time: 90.35 units (timescale=1.213).
Factorization parameters were as follows:
n: 125883371881026860367873965147118720337245863515924165285233348633697689128466015657527624042559507379533326984036214622892618555864137507302458211348952374718012954419377170131535584373
m: 1000000000000000000000000000000000000000
deg: 5
c5: 1
c0: 9
skew: 1.55
type: snfs
lss: 1
rlim: 12400000
alim: 12400000
lpbr: 28
lpba: 28
mfbr: 55
mfba: 55
rlambda: 2.5
alambda: 2.5
qintsize:
Factor base limits: 12400000/12400000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 55/55
Sieved rational special-q in [6200000, 12600001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1706089 x 1706319
Total sieving time:
Total relation processing time:
Matrix solve time:
Time per square root:
Prototype def-par.txt line would be:
snfs,195.000,5,0,0,0,0,0,0,0,0,12400000,12400000,28,28,55,55,2.5,2.5,100000
total time:

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e60--
403e6500 / 2350Erik BrangerSeptember 24, 2009 13:23:11 UTC 2009 年 9 月 24 日 (木) 22 時 23 分 11 秒 (日本時間)

10196+9

c173

name 名前Wataru Sakai
date 日付November 11, 2006 05:46:19 UTC 2006 年 11 月 11 日 (土) 14 時 46 分 19 秒 (日本時間)
composite number 合成数
40604534166281162973814454739382419214385932786832607919465443314347237705610842933608328690294696815289608109037755685389729377689954405906717339303278880604988695737278393<173>
prime factors 素因数
44401499461295046411183451748843306897700065477<47>
composite cofactor 合成数の残り
914485651586525533357484598772878668557145673386605657821723195587345693907083602731033750236232276619318600012074196323998309<126>
factorization results 素因数分解の結果
Input number is 40604534166281162973814454739382419214385932786832607919465443314347237705610842933608328690294696815289608109037755685389729377689954405906717339303278880604988695737278393 (173 digits)
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=2570867251
Step 1 took 417459ms
Step 2 took 129896ms
********** Factor found in step 2: 44401499461295046411183451748843306897700065477
Found probable prime factor of 47 digits: 44401499461295046411183451748843306897700065477
Composite cofactor 914485651586525533357484598772878668557145673386605657821723195587345693907083602731033750236232276619318600012074196323998309 has 126 digits
software ソフトウェア
GMP-ECM 6.1

c126

name 名前Sinkiti Sibata
date 日付April 8, 2010 14:12:32 UTC 2010 年 4 月 8 日 (木) 23 時 12 分 32 秒 (日本時間)
composite number 合成数
914485651586525533357484598772878668557145673386605657821723195587345693907083602731033750236232276619318600012074196323998309<126>
prime factors 素因数
158743489944996736735601792658521560454875110932593<51>
5760775776716179038342754458994841833456388196312921021251053632564837692213<76>
factorization results 素因数分解の結果
Number: 10009_196
N=914485651586525533357484598772878668557145673386605657821723195587345693907083602731033750236232276619318600012074196323998309
  ( 126 digits)
Divisors found:
 r1=158743489944996736735601792658521560454875110932593 (pp51)
 r2=5760775776716179038342754458994841833456388196312921021251053632564837692213 (pp76)
Version: Msieve-1.40
Total time: 117.69 hours.
Scaled time: 252.33 units (timescale=2.144).
Factorization parameters were as follows:
name: 10009_196
# Murphy_E = 1.351230e-10, selected by Jeff Gilchrist
n: 914485651586525533357484598772878668557145673386605657821723195587345693907083602731033750236232276619318600012074196323998309
Y0: -2144555406043205821893227
Y1: 61024673734267
c0: -818182740052913052462095914974900
c1: 1380025804792599906456170268
c2: 3878402356972635969483
c3: -12185887410032392
c4: 21368068
c5: 20160
skew: 646983.34
type: gnfs
# selected mechanically
rlim: 7600000
alim: 7600000
lpbr: 27
lpba: 27
mfbr: 53
mfba: 53
rlambda: 2.5
alambda: 2.5
Factor base limits: 7600000/7600000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 53/53
Sieved algebraic special-q in [3800000, 7500001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1011534 x 1011782
Total sieving time: 113.63 hours.
Total relation processing time: 0.17 hours.
Matrix solve time: 2.59 hours.
Time per square root: 1.29 hours.
Prototype def-par.txt line would be:
gnfs,125,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,7600000,7600000,27,27,53,53,2.5,2.5,100000
total time: 117.69 hours.
 --------- CPU info (if available) ----------
execution environment 実行環境
Core i7 2.93GHz,Windows 7 64bit,and Cygwin)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Serge BatalovJanuary 16, 2009 05:14:03 UTC 2009 年 1 月 16 日 (金) 14 時 14 分 3 秒 (日本時間)
351e60--
403e6956Wataru SakaiNovember 25, 2009 09:33:43 UTC 2009 年 11 月 25 日 (水) 18 時 33 分 43 秒 (日本時間)
4511e6400 / 4268Serge BatalovJanuary 16, 2009 05:14:11 UTC 2009 年 1 月 16 日 (金) 14 時 14 分 11 秒 (日本時間)

10198+9

c176

name 名前Wataru Sakai
date 日付November 15, 2006 14:30:48 UTC 2006 年 11 月 15 日 (水) 23 時 30 分 48 秒 (日本時間)
composite number 合成数
35495558075478617397786046306808840509175223506847629224553904772258122725530417524309321496295077566223530130181658438304715629684519047227833186097762071964299222178395971377<176>
prime factors 素因数
9690036302476528221435163969533038158217<40>
composite cofactor 合成数の残り
3663098565111345395412929971728350097530716199796536338138921821753864966157300030614431362264492489238686784881314038315456171995557481<136>
factorization results 素因数分解の結果
Input number is 35495558075478617397786046306808840509175223506847629224553904772258122725530417524309321496295077566223530130181658438304715629684519047227833186097762071964299222178395971377 (176 digits)
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=250750163
Step 1 took 460626ms
Step 2 took 35143ms
********** Factor found in step 2: 9690036302476528221435163969533038158217
Found probable prime factor of 40 digits: 9690036302476528221435163969533038158217
Composite cofactor 3663098565111345395412929971728350097530716199796536338138921821753864966157300030614431362264492489238686784881314038315456171995557481 has 136 digits
software ソフトウェア
GMP-ECM 6.1

c136

name 名前Sinkiti Sibata
date 日付March 15, 2010 23:08:42 UTC 2010 年 3 月 16 日 (火) 8 時 8 分 42 秒 (日本時間)
composite number 合成数
3663098565111345395412929971728350097530716199796536338138921821753864966157300030614431362264492489238686784881314038315456171995557481<136>
prime factors 素因数
18550644105745856479822800394948930855980530190637776372586613<62>
197464764254559829552451264146893583025407969235741009012620224923523145637<75>
factorization results 素因数分解の結果
Number: 10009_198
N=3663098565111345395412929971728350097530716199796536338138921821753864966157300030614431362264492489238686784881314038315456171995557481
  ( 136 digits)
Divisors found:
 r1=18550644105745856479822800394948930855980530190637776372586613 (pp62)
 r2=197464764254559829552451264146893583025407969235741009012620224923523145637 (pp75)
Version: Msieve-1.40
Total time: 405.00 hours.
Scaled time: 1196.36 units (timescale=2.954).
Factorization parameters were as follows:
name: 10009_198
# Murphy_E = 3.645535e-11, selected by Jeff Gilchrist
n: 3663098565111345395412929971728350097530716199796536338138921821753864966157300030614431362264492489238686784881314038315456171995557481
Y0: -131956436291492157976982759
Y1: 1296424507828307
c0: -4251511697945230867544865967400448
c1: 37679214937572173345550605176
c2: 124585683684350039775258
c3: -173847889987010841
c4: -216090152330
c5: 91560
skew: 760516.56
type: gnfs
# selected mechanically
rlim: 13800000
alim: 13800000
lpbr: 28
lpba: 28
mfbr: 55
mfba: 55
rlambda: 2.6
alambda: 2.6
Factor base limits: 13800000/13800000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 55/55
Sieved algebraic special-q in [6900000, 11400001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1908990 x 1909238
Total sieving time: 396.15 hours.
Total relation processing time: 0.32 hours.
Matrix solve time: 8.18 hours.
Time per square root: 0.35 hours.
Prototype def-par.txt line would be:
gnfs,135,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,13800000,13800000,28,28,55,55,2.6,2.6,100000
total time: 405.00 hours.
 --------- CPU info (if available) ----------
execution environment 実行環境
Core i7 2.93GHz,Windows 7 64bit,and Cygwin)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Serge BatalovJanuary 16, 2009 05:11:41 UTC 2009 年 1 月 16 日 (金) 14 時 11 分 41 秒 (日本時間)
351e60--
403e61194238JPascoaNovember 29, 2009 10:16:48 UTC 2009 年 11 月 29 日 (日) 19 時 16 分 48 秒 (日本時間)
956Wataru SakaiNovember 30, 2009 15:09:30 UTC 2009 年 12 月 1 日 (火) 0 時 9 分 30 秒 (日本時間)
4511e64400400Serge BatalovJanuary 16, 2009 05:11:49 UTC 2009 年 1 月 16 日 (金) 14 時 11 分 49 秒 (日本時間)
4000Wataru SakaiDecember 12, 2009 03:33:57 UTC 2009 年 12 月 12 日 (土) 12 時 33 分 57 秒 (日本時間)

10201+9

c160

name 名前Youcef Lemsafer
date 日付June 30, 2013 16:57:31 UTC 2013 年 7 月 1 日 (月) 1 時 57 分 31 秒 (日本時間)
composite number 合成数
5963520827945904301174895764578962397812823671501776958266351701393273132605965125964552737095826973221845774206338990903923045957087317436880858002628349482641<160>
prime factors 素因数
1707595486106514540765569469743527186553249<43>
3492349843078654203848524527378819096234988686118034594868130852092184424651636857946004146781842824411943283885946609<118>
factorization results 素因数分解の結果
GMP-ECM 6.4.4 [configured with MPIR 2.6.0] [ECM]
Input number is (10^201+9)/(16091*1481107807167727769*7036027911136239731) (160 digits)
Using MODMULN [mulredc:0, sqrredc:0]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3502034985
dF=16384, k=2, d=158340, d2=11, i0=8
Expected number of curves to find a factor of n digits:
35      40      45      50      55      60      65      70      75      80
324     2351    20272   201449  2247436 2.8e+007        3.9e+008        6e+009  1.1e+011        7.4e+015
Step 1 took 17191ms
Using 20 small primes for NTT
Estimated memory usage: 55M
Initializing tables of differences for F took 31ms
Computing roots of F took 639ms
Building F from its roots took 1669ms
Computing 1/F took 874ms
Initializing table of differences for G took 16ms
Computing roots of G took 577ms
Building G from its roots took 1529ms
Computing roots of G took 561ms
Building G from its roots took 1280ms
Computing G * H took 406ms
Reducing  G * H mod F took 530ms
Computing polyeval(F,G) took 2465ms
Computing product of all F(g_i) took 16ms
Step 2 took 10795ms
********** Factor found in step 2: 1707595486106514540765569469743527186553249
Found probable prime factor of 43 digits: 1707595486106514540765569469743527186553249
Probable prime cofactor ((10^201+9)/(16091*1481107807167727769*7036027911136239731))/1707595486106514540765569469743527186553249 has 118 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 25, 2010 13:00:00 UTC 2010 年 12 月 25 日 (土) 22 時 0 分 0 秒 (日本時間)
403e6400 / 1283Dmitry DomanovDecember 29, 2010 13:50:01 UTC 2010 年 12 月 29 日 (水) 22 時 50 分 1 秒 (日本時間)
4511e6300 / 4387Dmitry DomanovDecember 29, 2010 13:50:01 UTC 2010 年 12 月 29 日 (水) 22 時 50 分 1 秒 (日本時間)

10203+9

c202

name 名前Serge Batalov
date 日付January 27, 2011 19:05:51 UTC 2011 年 1 月 28 日 (金) 4 時 5 分 51 秒 (日本時間)
composite number 合成数
1098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901099<202>
prime factors 素因数
380988960547879856006854914515508284000685877<45>
2884338426291480937996959321914619536463978092706078367429439809703411158222602829216494419660899809726505898883138039863155785884465302311754439811360627487<157>
factorization results 素因数分解の結果
Using B1=43000000, B2=582162027730, polynomial Dickson(30), sigma=4190270458
Step 1 took 232411ms
Step 2 took 127688ms
********** Factor found in step 2: 380988960547879856006854914515508284000685877
Found probable prime factor of 45 digits: 380988960547879856006854914515508284000685877
Probable prime cofactor has 157 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6418118Makoto KamadaDecember 25, 2010 13:00:00 UTC 2010 年 12 月 25 日 (土) 22 時 0 分 0 秒 (日本時間)
300Ignacio SantosDecember 25, 2010 21:20:02 UTC 2010 年 12 月 26 日 (日) 6 時 20 分 2 秒 (日本時間)
403e6510110Ignacio SantosDecember 25, 2010 21:20:02 UTC 2010 年 12 月 26 日 (日) 6 時 20 分 2 秒 (日本時間)
400Dmitry DomanovDecember 29, 2010 13:50:23 UTC 2010 年 12 月 29 日 (水) 22 時 50 分 23 秒 (日本時間)
4511e633232Ignacio SantosDecember 25, 2010 21:20:02 UTC 2010 年 12 月 26 日 (日) 6 時 20 分 2 秒 (日本時間)
300Dmitry DomanovDecember 29, 2010 13:50:23 UTC 2010 年 12 月 29 日 (水) 22 時 50 分 23 秒 (日本時間)
5043e61200 / 7457Serge BatalovJanuary 26, 2011 21:48:42 UTC 2011 年 1 月 27 日 (木) 6 時 48 分 42 秒 (日本時間)

10206+9

c191

name 名前Youcef Lemsafer
date 日付July 3, 2013 20:21:02 UTC 2013 年 7 月 4 日 (木) 5 時 21 分 2 秒 (日本時間)
composite number 合成数
19719458877811310039637332763570750699950767903839563891453129870858380657688018250885318378929196628721829245012752774933260397726396194397862741254965397531663534420942783166654269652863021<191>
prime factors 素因数
714902433921788662965698501260406986772877197213<48>
27583426691716434582993900973456902116802885348789173518170013697359653364175169546230341816661166914390438515216318755450399783879088778980817<143>
factorization results 素因数分解の結果
GMP-ECM 6.4.4 [configured with MPIR 2.6.0] [ECM]
Input number is (10^206+9)/(17*53*1373*3677*1114849) (191 digits)
Using MODMULN [mulredc:0, sqrredc:0]
Using B1=110000000, B2=776278396540, polynomial Dickson(30), sigma=3698384810
dF=131072, k=4, d=1345890, d2=11, i0=71
Expected number of curves to find a factor of n digits:
35      40      45      50      55      60      65      70      75      80
34      135     614     3135    17884   111314  752662  5482978 4.3e+007        3.6e+008
Step 1 took 566408ms
********** Factor found in step 1: 714902433921788662965698501260406986772877197213
Found probable prime factor of 48 digits: 714902433921788662965698501260406986772877197213
Probable prime cofactor ((10^206+9)/(17*53*1373*3677*1114849))/714902433921788662965698501260406986772877197213 has 143 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 25, 2010 13:00:00 UTC 2010 年 12 月 25 日 (土) 22 時 0 分 0 秒 (日本時間)
403e61400400Dmitry DomanovDecember 29, 2010 13:52:36 UTC 2010 年 12 月 29 日 (水) 22 時 52 分 36 秒 (日本時間)
1000Youcef LemsaferJuly 3, 2013 20:02:07 UTC 2013 年 7 月 4 日 (木) 5 時 2 分 7 秒 (日本時間)
4511e64800300Dmitry DomanovDecember 29, 2010 13:52:36 UTC 2010 年 12 月 29 日 (水) 22 時 52 分 36 秒 (日本時間)
4500Youcef LemsaferJuly 3, 2013 20:02:07 UTC 2013 年 7 月 4 日 (木) 5 時 2 分 7 秒 (日本時間)
5043e61048Youcef LemsaferJuly 3, 2013 20:02:07 UTC 2013 年 7 月 4 日 (木) 5 時 2 分 7 秒 (日本時間)
5511e72297 / 17084Youcef LemsaferJuly 3, 2013 20:02:07 UTC 2013 年 7 月 4 日 (木) 5 時 2 分 7 秒 (日本時間)

10207+9

c204

name 名前matsui
date 日付January 19, 2012 22:37:23 UTC 2012 年 1 月 20 日 (金) 7 時 37 分 23 秒 (日本時間)
composite number 合成数
653167864141084258654474199869366427171783148269105160026126714565643370346178967994774657086871325930764206401045068582625734813847158719790986283474853037230568256041802743305029392553886348791639451339<204>
prime factors 素因数
2010760617786081515608129876188742564646473899189327829219785708917783<70>
324836212905465174072156088045744081837498528308465033293962958024183080138267367289944498294218160333309919145441411032868948745031533<135>
factorization results 素因数分解の結果
N=653167864141084258654474199869366427171783148269105160026126714565643370346178967994774657086871325930764206401045068582625734813847158719790986283474853037230568256041802743305029392553886348791639451339
  ( 204 digits)
SNFS difficulty: 207 digits.
Divisors found:
 r1=2010760617786081515608129876188742564646473899189327829219785708917783 (pp70)
 r2=324836212905465174072156088045744081837498528308465033293962958024183080138267367289944498294218160333309919145441411032868948745031533 (pp135)
Version: Msieve v. 1.50
Total time:
Scaled time: 259.23 units (timescale=0.564).
Factorization parameters were as follows:
n: 653167864141084258654474199869366427171783148269105160026126714565643370346178967994774657086871325930764206401045068582625734813847158719790986283474853037230568256041802743305029392553886348791639451339
m: 100000000000000000000000000000000000000000
deg: 5
c5: 100
c0: 9
skew: 0.62
type: snfs
lss: 1
rlim: 19700000
alim: 19700000
lpbr: 29
lpba: 29
mfbr: 56
mfba: 56
rlambda: 2.6
alambda: 2.6
qintsize: 1600000
Factor base limits: 19700000/19700000
Large primes per side: 3
Large prime bits: 29/29
Max factor residue bits: 56/56
Sieved rational special-q in [9850000, 24250001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 3995235 x 3995464
Total sieving time:
Total relation processing time:
Matrix solve time:
Time per square root:
Prototype def-par.txt line would be:
snfs,207.000,5,0,0,0,0,0,0,0,0,19700000,19700000,29,29,56,56,2.6,2.6,100000
total time:

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6418118Makoto KamadaDecember 25, 2010 13:00:00 UTC 2010 年 12 月 25 日 (土) 22 時 0 分 0 秒 (日本時間)
300Ignacio SantosDecember 25, 2010 22:43:03 UTC 2010 年 12 月 26 日 (日) 7 時 43 分 3 秒 (日本時間)
403e6510110Ignacio SantosDecember 25, 2010 22:43:03 UTC 2010 年 12 月 26 日 (日) 7 時 43 分 3 秒 (日本時間)
400Dmitry DomanovDecember 29, 2010 13:52:55 UTC 2010 年 12 月 29 日 (水) 22 時 52 分 55 秒 (日本時間)
4511e6480032Ignacio SantosDecember 25, 2010 22:43:03 UTC 2010 年 12 月 26 日 (日) 7 時 43 分 3 秒 (日本時間)
300Dmitry DomanovDecember 29, 2010 13:52:55 UTC 2010 年 12 月 29 日 (水) 22 時 52 分 55 秒 (日本時間)
200Dmitry DomanovDecember 29, 2010 23:31:56 UTC 2010 年 12 月 30 日 (木) 8 時 31 分 56 秒 (日本時間)
268Andreas TeteAugust 22, 2011 12:07:07 UTC 2011 年 8 月 22 日 (月) 21 時 7 分 7 秒 (日本時間)
4000Wataru SakaiOctober 24, 2011 00:53:16 UTC 2011 年 10 月 24 日 (月) 9 時 53 分 16 秒 (日本時間)
5043e60--
5511e72690 / 17465yoyo@homeDecember 12, 2011 09:25:04 UTC 2011 年 12 月 12 日 (月) 18 時 25 分 4 秒 (日本時間)

10208+9

c178

name 名前Bob Backstrom
date 日付August 24, 2024 17:55:12 UTC 2024 年 8 月 25 日 (日) 2 時 55 分 12 秒 (日本時間)
composite number 合成数
4870021728076606615420234825820892980398633378503286498696765898506785158698051081181067981217223497644512419082093963644304306555752889650316133912190178697207201486363459066749<178>
prime factors 素因数
5104128819310876577243434222735265389826552303712050324739983923444990547796449394734281<88>
954133780803385474157199405959594893408359086107052743217147707204568479082496022683684629<90>
factorization results 素因数分解の結果
08/23/24 03:19:01 v1.34.5 @ RYZEN-9,
08/23/24 03:19:01 v1.34.5 @ RYZEN-9, ****************************
08/23/24 03:19:01 v1.34.5 @ RYZEN-9, Starting factorization of 10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000009
08/23/24 03:19:01 v1.34.5 @ RYZEN-9, using pretesting plan: normal
08/23/24 03:19:01 v1.34.5 @ RYZEN-9, no tune info: using qs/gnfs crossover of 125 digits
08/23/24 03:19:01 v1.34.5 @ RYZEN-9, ****************************
08/23/24 03:19:01 v1.34.5 @ RYZEN-9, div: found prime factor = 29
08/23/24 03:19:01 v1.34.5 @ RYZEN-9, rho: x^2 + 3, starting 1000 iterations on C207
08/23/24 03:19:01 v1.34.5 @ RYZEN-9, rho: x^2 + 2, starting 1000 iterations on C207
08/23/24 03:19:01 v1.34.5 @ RYZEN-9, rho: x^2 + 1, starting 1000 iterations on C207
08/23/24 03:19:01 v1.34.5 @ RYZEN-9, pm1: starting B1 = 150K, B2 = gmp-ecm default on C207
08/23/24 03:19:01 v1.34.5 @ RYZEN-9, current ECM pretesting depth: 0.00
08/23/24 03:19:01 v1.34.5 @ RYZEN-9, scheduled 30 curves at B1=2000 toward target pretesting depth of 63.69
08/23/24 03:19:01 v1.34.5 @ RYZEN-9, Finished 30 curves using Lenstra ECM method on C207 input, B1=2K, B2=gmp-ecm default
08/23/24 03:19:01 v1.34.5 @ RYZEN-9, current ECM pretesting depth: 15.18
08/23/24 03:19:01 v1.34.5 @ RYZEN-9, scheduled 74 curves at B1=11000 toward target pretesting depth of 63.69
08/23/24 03:19:04 v1.34.5 @ RYZEN-9, Finished 74 curves using Lenstra ECM method on C207 input, B1=11K, B2=gmp-ecm default
08/23/24 03:19:04 v1.34.5 @ RYZEN-9, current ECM pretesting depth: 20.24
08/23/24 03:19:04 v1.34.5 @ RYZEN-9, scheduled 214 curves at B1=50000 toward target pretesting depth of 63.69
08/23/24 03:19:34 v1.34.5 @ RYZEN-9, Finished 214 curves using Lenstra ECM method on C207 input, B1=50K, B2=gmp-ecm default
08/23/24 03:19:34 v1.34.5 @ RYZEN-9, pm1: starting B1 = 3750K, B2 = gmp-ecm default on C207
08/23/24 03:19:36 v1.34.5 @ RYZEN-9, current ECM pretesting depth: 25.33
08/23/24 03:19:36 v1.34.5 @ RYZEN-9, scheduled 430 curves at B1=250000 toward target pretesting depth of 63.69
08/23/24 03:24:22 v1.34.5 @ RYZEN-9, Finished 430 curves using Lenstra ECM method on C207 input, B1=250K, B2=gmp-ecm default
08/23/24 03:24:22 v1.34.5 @ RYZEN-9, pm1: starting B1 = 15M, B2 = gmp-ecm default on C207
08/23/24 03:24:26 v1.34.5 @ RYZEN-9, current ECM pretesting depth: 30.45
08/23/24 03:24:26 v1.34.5 @ RYZEN-9, scheduled 904 curves at B1=1000000 toward target pretesting depth of 63.69
08/23/24 03:33:04 v1.34.5 @ RYZEN-9, prp29 = 70806169964068039306357852129 (curve 189 stg2 B1=1000000 sigma=2224830845 thread=0)
08/23/24 03:33:04 v1.34.5 @ RYZEN-9, Finished 189 curves using Lenstra ECM method on C207 input, B1=1M, B2=gmp-ecm default
08/23/24 03:33:04 v1.34.5 @ RYZEN-9, current ECM pretesting depth: 31.50
08/23/24 03:33:04 v1.34.5 @ RYZEN-9, scheduled 715 curves at B1=1000000 toward target pretesting depth of 54.77
08/23/24 03:52:13 v1.34.5 @ RYZEN-9, nfs: commencing nfs on c209: 10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000009
08/23/24 03:52:13 v1.34.5 @ RYZEN-9, nfs: input divides 10^208 + 9
08/23/24 03:52:13 v1.34.5 @ RYZEN-9, nfs: using supplied cofactor: 4870021728076606615420234825820892980398633378503286498696765898506785158698051081181067981217223497644512419082093963644304306555752889650316133912190178697207201486363459066749
08/23/24 03:52:13 v1.34.5 @ RYZEN-9, nfs: commencing snfs on c178: 4870021728076606615420234825820892980398633378503286498696765898506785158698051081181067981217223497644512419082093963644304306555752889650316133912190178697207201486363459066749
08/23/24 03:52:13 v1.34.5 @ RYZEN-9, gen: best 3 polynomials:
n: 4870021728076606615420234825820892980398633378503286498696765898506785158698051081181067981217223497644512419082093963644304306555752889650316133912190178697207201486363459066749
# 10^208+9, difficulty: 211.00, anorm: 1.90e+032, rnorm: 1.60e+047
# scaled difficulty: 213.49, suggest sieving rational side
# size = 2.040e-014, alpha = -0.493, combined = 7.301e-012, rroots = 1
type: snfs
size: 211
skew: 0.3898
c5: 1000
c0: 9
Y1: -1
Y0: 100000000000000000000000000000000000000000
m: 100000000000000000000000000000000000000000
n: 4870021728076606615420234825820892980398633378503286498696765898506785158698051081181067981217223497644512419082093963644304306555752889650316133912190178697207201486363459066749
# 10^208+9, difficulty: 208.60, anorm: 1.34e+032, rnorm: 2.27e+047
# scaled difficulty: 211.14, suggest sieving rational side
# size = 1.889e-014, alpha = -0.262, combined = 6.931e-012, rroots = 1
type: snfs
size: 208
skew: 0.7796
c5: 125
c0: 36
Y1: -1
Y0: 200000000000000000000000000000000000000000
m: 200000000000000000000000000000000000000000
n: 4870021728076606615420234825820892980398633378503286498696765898506785158698051081181067981217223497644512419082093963644304306555752889650316133912190178697207201486363459066749
# 10^208+9, difficulty: 209.40, anorm: 1.20e+038, rnorm: 4.01e+040
# scaled difficulty: 209.40, suggest sieving algebraic side
# size = 1.491e-010, alpha = 0.246, combined = 4.464e-012, rroots = 0
type: snfs
size: 209
skew: 1.5536
c6: 16
c0: 225
Y1: -1
Y0: 50000000000000000000000000000000000
m: 50000000000000000000000000000000000
08/23/24 03:52:15 v1.34.5 @ RYZEN-9, test: fb generation took 1.8604 seconds
08/23/24 03:52:15 v1.34.5 @ RYZEN-9, test: commencing test sieving of polynomial 0 on the rational side over range 22600000-22602000
skew: 0.3898
c5: 1000
c0: 9
Y1: -1
Y0: 100000000000000000000000000000000000000000
m: 100000000000000000000000000000000000000000
rlim: 22600000
alim: 22600000
mfbr: 58
mfba: 58
lpbr: 29
lpba: 29
rlambda: 2.60
alambda: 2.60
08/23/24 03:55:27 v1.34.5 @ RYZEN-9, nfs: parsing special-q from .dat file
08/23/24 03:55:28 v1.34.5 @ RYZEN-9, test: fb generation took 1.5798 seconds
08/23/24 03:55:28 v1.34.5 @ RYZEN-9, test: commencing test sieving of polynomial 1 on the rational side over range 20200000-20202000
skew: 0.7796
c5: 125
c0: 36
Y1: -1
Y0: 200000000000000000000000000000000000000000
m: 200000000000000000000000000000000000000000
rlim: 20200000
alim: 20200000
mfbr: 56
mfba: 56
lpbr: 28
lpba: 28
rlambda: 2.60
alambda: 2.60
08/23/24 03:58:54 v1.34.5 @ RYZEN-9, nfs: parsing special-q from .dat file
08/23/24 03:58:57 v1.34.5 @ RYZEN-9, test: fb generation took 3.0479 seconds
08/23/24 03:58:57 v1.34.5 @ RYZEN-9, test: commencing test sieving of polynomial 2 on the algebraic side over range 21400000-21402000
skew: 1.5536
c6: 16
c0: 225
Y1: -1
Y0: 50000000000000000000000000000000000
m: 50000000000000000000000000000000000
rlim: 21400000
alim: 21400000
mfbr: 56
mfba: 56
lpbr: 28
lpba: 28
rlambda: 2.60
alambda: 2.60
08/23/24 04:02:08 v1.34.5 @ RYZEN-9, nfs: parsing special-q from .dat file
08/23/24 04:02:08 v1.34.5 @ RYZEN-9, gen: selected polynomial:
n: 4870021728076606615420234825820892980398633378503286498696765898506785158698051081181067981217223497644512419082093963644304306555752889650316133912190178697207201486363459066749
# 10^208+9, difficulty: 208.60, anorm: 1.34e+032, rnorm: 2.27e+047
# scaled difficulty: 211.14, suggest sieving rational side
# size = 1.889e-014, alpha = -0.262, combined = 6.931e-012, rroots = 1
type: snfs
size: 208
skew: 0.7796
c5: 125
c0: 36
Y1: -1
Y0: 200000000000000000000000000000000000000000
m: 200000000000000000000000000000000000000000
08/24/24 04:41:09 v1.34.5 @ RYZEN-9, nfs: commencing msieve filtering
08/24/24 04:43:15 v1.34.5 @ RYZEN-9, nfs: raising min_rels by 5.00 percent to 22188367
08/24/24 06:12:33 v1.34.5 @ RYZEN-9, nfs: commencing msieve filtering
08/24/24 06:14:48 v1.34.5 @ RYZEN-9, nfs: raising min_rels by 5.00 percent to 23405167
08/24/24 07:44:39 v1.34.5 @ RYZEN-9, nfs: commencing msieve filtering
08/24/24 07:46:58 v1.34.5 @ RYZEN-9, nfs: raising min_rels by 5.00 percent to 24611755
08/24/24 09:28:25 v1.34.5 @ RYZEN-9, nfs: commencing msieve filtering
08/24/24 09:30:50 v1.34.5 @ RYZEN-9, nfs: raising min_rels by 5.00 percent to 25947889
08/24/24 11:12:58 v1.34.5 @ RYZEN-9, nfs: commencing msieve filtering
08/24/24 11:17:24 v1.34.5 @ RYZEN-9, nfs: commencing msieve linear algebra
08/24/24 15:43:23 v1.34.5 @ RYZEN-9, nfs: commencing msieve sqrt
08/24/24 15:46:53 v1.34.5 @ RYZEN-9, prp88 = 5104128819310876577243434222735265389826552303712050324739983923444990547796449394734281
08/24/24 15:46:53 v1.34.5 @ RYZEN-9, prp90 = 954133780803385474157199405959594893408359086107052743217147707204568479082496022683684629
08/24/24 15:46:54 v1.34.5 @ RYZEN-9, NFS elapsed time = 129280.9932 seconds.
08/24/24 15:46:54 v1.34.5 @ RYZEN-9,
08/24/24 15:46:54 v1.34.5 @ RYZEN-9,
08/23/24 04:02:08 v1.34.5 @ RYZEN-9, test: test sieving took 594.88 seconds
software ソフトウェア
YAFU

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 25, 2010 13:00:00 UTC 2010 年 12 月 25 日 (土) 22 時 0 分 0 秒 (日本時間)
403e62000400Dmitry DomanovDecember 29, 2010 13:53:11 UTC 2010 年 12 月 29 日 (水) 22 時 53 分 11 秒 (日本時間)
300Serge BatalovJanuary 9, 2014 04:38:36 UTC 2014 年 1 月 9 日 (木) 13 時 38 分 36 秒 (日本時間)
1300Serge BatalovMay 26, 2014 18:01:24 UTC 2014 年 5 月 27 日 (火) 3 時 1 分 24 秒 (日本時間)
4511e64780300Dmitry DomanovDecember 29, 2010 13:53:11 UTC 2010 年 12 月 29 日 (水) 22 時 53 分 11 秒 (日本時間)
4480Ignacio SantosAugust 20, 2024 12:47:49 UTC 2024 年 8 月 20 日 (火) 21 時 47 分 49 秒 (日本時間)

10211+9

c189

name 名前Dmitry Domanov
date 日付December 25, 2010 21:02:18 UTC 2010 年 12 月 26 日 (日) 6 時 2 分 18 秒 (日本時間)
composite number 合成数
232201637774874551186894300413966136747836185431551375171627151469828141312964742880252975581722554220533041932974826681167738945535964680871056231704774050562064568828131302330175162311893<189>
prime factors 素因数
69479751745619746382608992142877<32>
composite cofactor 合成数の残り
3342004424900861539972371217194545829742122100676790260078368563208964501561202879671877673749681091803431583137773169119443448526103861023653042161508138009<157>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3499259311
Step 1 took 43573ms
Step 2 took 18286ms
********** Factor found in step 2: 69479751745619746382608992142877
Found probable prime factor of 32 digits: 69479751745619746382608992142877
Composite cofactor 3342004424900861539972371217194545829742122100676790260078368563208964501561202879671877673749681091803431583137773169119443448526103861023653042161508138009 has 157 digits

c157

name 名前anonymous
date 日付April 3, 2021 21:35:04 UTC 2021 年 4 月 4 日 (日) 6 時 35 分 4 秒 (日本時間)
composite number 合成数
3342004424900861539972371217194545829742122100676790260078368563208964501561202879671877673749681091803431583137773169119443448526103861023653042161508138009<157>
prime factors 素因数
1433516348206441210442559652778533031044036455474184367<55>
2331333318299609840094778295070948661820263401004329246471822748129283921853461845678412197453744550327<103>
factorization results 素因数分解の結果
p55:1433516348206441210442559652778533031044036455474184367
p103:2331333318299609840094778295070948661820263401004329246471822748129283921853461845678412197453744550327
software ソフトウェア
factordb, July 27, 2020, http://factordb.com/index.php?id=1000000000022550235

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 25, 2010 13:00:00 UTC 2010 年 12 月 25 日 (土) 22 時 0 分 0 秒 (日本時間)
403e6165454Dmitry DomanovDecember 25, 2010 21:02:07 UTC 2010 年 12 月 26 日 (日) 6 時 2 分 7 秒 (日本時間)
300Serge BatalovJanuary 9, 2014 04:38:37 UTC 2014 年 1 月 9 日 (木) 13 時 38 分 37 秒 (日本時間)
1300Serge BatalovMay 26, 2014 18:01:25 UTC 2014 年 5 月 27 日 (火) 3 時 1 分 25 秒 (日本時間)
4511e6320 / 4109Dmitry DomanovDecember 29, 2010 13:53:31 UTC 2010 年 12 月 29 日 (水) 22 時 53 分 31 秒 (日本時間)

10212+9

c152

name 名前anonymous
date 日付April 3, 2021 21:36:15 UTC 2021 年 4 月 4 日 (日) 6 時 36 分 15 秒 (日本時間)
composite number 合成数
61016855602887484023792250130273910308710401384391100885335435968072504628681463516008595485120298308840856428288349408930126775826232536777529525531521<152>
prime factors 素因数
502493264612630231717534386314245998296012877434589426688309<60>
121428205908242571190329679186102603233559923384220595322622113438228834874905656706181299869<93>
factorization results 素因数分解の結果
p60: 502493264612630231717534386314245998296012877434589426688309
p93: 121428205908242571190329679186102603233559923384220595322622113438228834874905656706181299869
software ソフトウェア
factordb, http://factordb.com/index.php?id=1000000000022550236, July 19, 2020

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 25, 2010 13:00:00 UTC 2010 年 12 月 25 日 (土) 22 時 0 分 0 秒 (日本時間)
403e62000400Dmitry DomanovDecember 29, 2010 15:24:13 UTC 2010 年 12 月 30 日 (木) 0 時 24 分 13 秒 (日本時間)
300Serge BatalovJanuary 9, 2014 04:38:37 UTC 2014 年 1 月 9 日 (木) 13 時 38 分 37 秒 (日本時間)
1300Serge BatalovMay 26, 2014 18:01:25 UTC 2014 年 5 月 27 日 (火) 3 時 1 分 25 秒 (日本時間)
4511e6300 / 4033Dmitry DomanovDecember 29, 2010 15:24:13 UTC 2010 年 12 月 30 日 (木) 0 時 24 分 13 秒 (日本時間)

10215+9

c190

name 名前anonymous
date 日付January 16, 2019 12:29:32 UTC 2019 年 1 月 16 日 (水) 21 時 29 分 32 秒 (日本時間)
composite number 合成数
9126474119146110409934220781647899329984972271217773105567869210782376580813971859190255888171046782093766903964020822890721725953164137458259372994750413959081268690660288674605967190386327<190>
prime factors 素因数
703309690989455121491394778262873470897375013339186700904426021343632545727<75>
12976465753381671609548043093962657805439610290914603340238278732264354502635752245203803758352890322741136805717801<116>
factorization results 素因数分解の結果
Sun Feb 26 12:15:00 2017  
Sun Feb 26 12:15:00 2017  
Sun Feb 26 12:15:00 2017  Msieve v. 1.53 (SVN unknown)
Sun Feb 26 12:15:00 2017  random seeds: 3085c760 e0ce6da6
Sun Feb 26 12:15:00 2017  factoring 9126474119146110409934220781647899329984972271217773105567869210782376580813971859190255888171046782093766903964020822890721725953164137458259372994750413959081268690660288674605967190386327 (190 digits)
Sun Feb 26 12:15:01 2017  searching for 15-digit factors
Sun Feb 26 12:15:01 2017  commencing number field sieve (190-digit input)
Sun Feb 26 12:15:01 2017  R0: -1000000000000000000000000000000000000
Sun Feb 26 12:15:01 2017  R1: 1
Sun Feb 26 12:15:01 2017  A0: 90
Sun Feb 26 12:15:01 2017  A1: 0
Sun Feb 26 12:15:01 2017  A2: 0
Sun Feb 26 12:15:01 2017  A3: 0
Sun Feb 26 12:15:01 2017  A4: 0
Sun Feb 26 12:15:01 2017  A5: 0
Sun Feb 26 12:15:01 2017  A6: 1
Sun Feb 26 12:15:01 2017  skew 2.12, size 1.643e-10, alpha -1.091, combined = 4.750e-12 rroots = 0
Sun Feb 26 12:15:01 2017  
Sun Feb 26 12:15:01 2017  commencing linear algebra
Sun Feb 26 12:15:02 2017  read 3771341 cycles
Sun Feb 26 12:15:07 2017  cycles contain 11050959 unique relations
Sun Feb 26 12:16:54 2017  read 11050959 relations
Sun Feb 26 12:17:09 2017  using 20 quadratic characters above 4294917295
Sun Feb 26 12:17:50 2017  building initial matrix
Sun Feb 26 12:19:23 2017  memory use: 1452.1 MB
Sun Feb 26 12:19:26 2017  read 3771341 cycles
Sun Feb 26 12:19:27 2017  matrix is 3771163 x 3771341 (1129.8 MB) with weight 342057118 (90.70/col)
Sun Feb 26 12:19:27 2017  sparse part has weight 254675736 (67.53/col)
Sun Feb 26 12:19:54 2017  filtering completed in 2 passes
Sun Feb 26 12:19:55 2017  matrix is 3769984 x 3770162 (1129.7 MB) with weight 342018127 (90.72/col)
Sun Feb 26 12:19:55 2017  sparse part has weight 254664245 (67.55/col)
Sun Feb 26 12:20:02 2017  matrix starts at (0, 0)
Sun Feb 26 12:20:03 2017  matrix is 3769984 x 3770162 (1129.7 MB) with weight 342018127 (90.72/col)
Sun Feb 26 12:20:03 2017  sparse part has weight 254664245 (67.55/col)
Sun Feb 26 12:20:03 2017  saving the first 48 matrix rows for later
Sun Feb 26 12:20:04 2017  matrix includes 64 packed rows
Sun Feb 26 12:20:05 2017  matrix is 3769936 x 3770162 (1080.2 MB) with weight 269963624 (71.61/col)
Sun Feb 26 12:20:05 2017  sparse part has weight 245458373 (65.11/col)
Sun Feb 26 12:20:05 2017  using block size 8192 and superblock size 786432 for processor cache size 8192 kB
Sun Feb 26 12:20:18 2017  commencing Lanczos iteration (8 threads)
Sun Feb 26 12:20:18 2017  memory use: 882.7 MB
Sun Feb 26 12:20:28 2017  linear algebra at 0.0%, ETA 6h11m
Sun Feb 26 12:20:32 2017  checkpointing every 570000 dimensions
Sun Feb 26 18:54:17 2017  lanczos halted after 59614 iterations (dim = 3769936)
Sun Feb 26 18:54:20 2017  recovered 40 nontrivial dependencies
Sun Feb 26 18:54:21 2017  BLanczosTime: 23960
Sun Feb 26 18:54:21 2017  elapsed time 06:39:21
Sun Feb 26 18:54:21 2017 -> Running square root step ...
Sun Feb 26 18:54:21 2017  
Sun Feb 26 18:54:21 2017  
Sun Feb 26 18:54:21 2017  Msieve v. 1.53 (SVN unknown)
Sun Feb 26 18:54:21 2017  random seeds: 0e35f4b0 26c22077
Sun Feb 26 18:54:21 2017  factoring 9126474119146110409934220781647899329984972271217773105567869210782376580813971859190255888171046782093766903964020822890721725953164137458259372994750413959081268690660288674605967190386327 (190 digits)
Sun Feb 26 18:54:22 2017  searching for 15-digit factors
Sun Feb 26 18:54:23 2017  commencing number field sieve (190-digit input)
Sun Feb 26 18:54:23 2017  R0: -1000000000000000000000000000000000000
Sun Feb 26 18:54:23 2017  R1: 1
Sun Feb 26 18:54:23 2017  A0: 90
Sun Feb 26 18:54:23 2017  A1: 0
Sun Feb 26 18:54:23 2017  A2: 0
Sun Feb 26 18:54:23 2017  A3: 0
Sun Feb 26 18:54:23 2017  A4: 0
Sun Feb 26 18:54:23 2017  A5: 0
Sun Feb 26 18:54:23 2017  A6: 1
Sun Feb 26 18:54:23 2017  skew 2.12, size 1.643e-10, alpha -1.091, combined = 4.750e-12 rroots = 0
Sun Feb 26 18:54:23 2017  
Sun Feb 26 18:54:23 2017  commencing square root phase
Sun Feb 26 18:54:23 2017  reading relations for dependency 1
Sun Feb 26 18:54:23 2017  read 1887208 cycles
Sun Feb 26 18:54:26 2017  cycles contain 5528846 unique relations
Sun Feb 26 18:55:45 2017  read 5528846 relations
Sun Feb 26 18:56:09 2017  multiplying 5528846 relations
Sun Feb 26 18:59:37 2017  multiply complete, coefficients have about 135.24 million bits
Sun Feb 26 18:59:38 2017  initial square root is modulo 71443
Sun Feb 26 19:03:23 2017  GCD is 1, no factor found
Sun Feb 26 19:03:23 2017  reading relations for dependency 2
Sun Feb 26 19:03:23 2017  read 1885579 cycles
Sun Feb 26 19:03:26 2017  cycles contain 5528018 unique relations
Sun Feb 26 19:04:20 2017  read 5528018 relations
Sun Feb 26 19:04:45 2017  multiplying 5528018 relations
Sun Feb 26 19:08:13 2017  multiply complete, coefficients have about 135.22 million bits
Sun Feb 26 19:08:14 2017  initial square root is modulo 71341
Sun Feb 26 19:11:59 2017  sqrtTime: 1056
Sun Feb 26 19:11:59 2017  p75 factor: 703309690989455121491394778262873470897375013339186700904426021343632545727
Sun Feb 26 19:11:59 2017  p116 factor: 12976465753381671609548043093962657805439610290914603340238278732264354502635752245203803758352890322741136805717801
Sun Feb 26 19:11:59 2017  elapsed time 00:17:38
Sun Feb 26 19:11:59 2017 -> Computing 1.4881e+09 scale for this machine...
Sun Feb 26 19:11:59 2017 -> procrels -speedtest> PIPE
Sun Feb 26 19:12:01 2017 -> Factorization summary written to s217-1057.txt



Number: 1057
N = 9126474119146110409934220781647899329984972271217773105567869210782376580813971859190255888171046782093766903964020822890721725953164137458259372994750413959081268690660288674605967190386327 (190 digits)
SNFS difficulty: 217 digits.
Divisors found:
Version: Msieve v. 1.53 (SVN unknown)
Total time: 129.97 hours.
Factorization parameters were as follows:
n: 9126474119146110409934220781647899329984972271217773105567869210782376580813971859190255888171046782093766903964020822890721725953164137458259372994750413959081268690660288674605967190386327
m: 1000000000000000000000000000000000000
c6: 1
c0: 90
type: snfs
Factor base limits: 29000000/29000000
Large primes per side: 3
Large prime bits: 29/29
Sieved rational special-q in [0, 0)
Total raw relations: 50249437
Relations: 5528018 relations
Pruned matrix : 3769936 x 3770162
Polynomial selection time: 0.00 hours.
Total sieving time: 122.60 hours.
Total relation processing time: 0.42 hours.
Matrix solve time: 6.66 hours.
time per square root: 0.29 hours.
Prototype def-par.txt line would be: snfs,217,6,0,0,0,0,0,0,0,0,29000000,29000000,29,29,58,58,2.6,2.6,100000
total time: 129.97 hours.
Intel64 Family 6 Model 42 Stepping 7, GenuineIntel
Windows-7-6.1.7601-SP1
processors: 8, speed: 3.41GHz
execution environment 実行環境
ci7 2700 3.4GHz windows 7

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 25, 2010 13:00:00 UTC 2010 年 12 月 25 日 (土) 22 時 0 分 0 秒 (日本時間)
403e6700400Dmitry DomanovDecember 29, 2010 15:24:31 UTC 2010 年 12 月 30 日 (木) 0 時 24 分 31 秒 (日本時間)
300Serge BatalovJanuary 9, 2014 04:38:38 UTC 2014 年 1 月 9 日 (木) 13 時 38 分 38 秒 (日本時間)
4511e6769 / 4320300Dmitry DomanovDecember 29, 2010 15:24:31 UTC 2010 年 12 月 30 日 (木) 0 時 24 分 31 秒 (日本時間)
169CypMarch 8, 2014 18:49:21 UTC 2014 年 3 月 9 日 (日) 3 時 49 分 21 秒 (日本時間)
300Serge BatalovMay 27, 2014 00:29:55 UTC 2014 年 5 月 27 日 (火) 9 時 29 分 55 秒 (日本時間)

10216+9

c171

name 名前Thomas Kozlowski
date 日付October 5, 2024 18:14:14 UTC 2024 年 10 月 6 日 (日) 3 時 14 分 14 秒 (日本時間)
composite number 合成数
167269435313748444526479044369923766555043704245374295792466183231975442693001534429836626441578039608682686791964222612510751902578615071830314377340679536996422337119829<171>
prime factors 素因数
255566166293918185408456213486672772576997911957<48>
654505397719107331636532361549712023144827269419697859349912624104162811577132701952504530533335876565195972486034628380097<123>
factorization results 素因数分解の結果
GMP-ECM 7.0.6 [configured with GMP 6.3.0, --enable-asm-redc] [ECM]
Input number is 167269435313748444526479044369923766555043704245374295792466183231975442693001534429836626441578039608682686791964222612510751902578615071830314377340679536996422337119829 (171 digits)
Using B1=43000000, B2=240490660426, polynomial Dickson(12), sigma=1:178249681
Step 1 took 117176ms
Step 2 took 52179ms
Run 2 out of 0:
Using B1=43000000, B2=240490660426, polynomial Dickson(12), sigma=1:89810701
Step 1 took 105497ms
Step 2 took 41411ms
Run 3 out of 0:
...
Using B1=43000000, B2=240490660426, polynomial Dickson(12), sigma=1:3691386583
Step 1 took 114089ms
Step 2 took 34924ms
Run 44 out of 0:
Using B1=43000000, B2=240490660426, polynomial Dickson(12), sigma=1:2352248056
Step 1 took 107422ms
Step 2 took 34811ms
** Factor found in step 2: 255566166293918185408456213486672772576997911957
Found prime factor of 48 digits: 255566166293918185408456213486672772576997911957
Prime cofactor 654505397719107331636532361549712023144827269419697859349912624104162811577132701952504530533335876565195972486034628380097 has 123 digits
execution environment 実行環境
4x Xeon E7-8890v4, 1024GB DDR4, Ubuntu Server 24.04

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 25, 2010 13:00:00 UTC 2010 年 12 月 25 日 (土) 22 時 0 分 0 秒 (日本時間)
403e62000400Dmitry DomanovDecember 29, 2010 15:24:46 UTC 2010 年 12 月 30 日 (木) 0 時 24 分 46 秒 (日本時間)
300Serge BatalovJanuary 9, 2014 04:38:38 UTC 2014 年 1 月 9 日 (木) 13 時 38 分 38 秒 (日本時間)
1300Serge BatalovMay 26, 2014 18:01:25 UTC 2014 年 5 月 27 日 (火) 3 時 1 分 25 秒 (日本時間)
4511e64100300Dmitry DomanovDecember 29, 2010 15:24:46 UTC 2010 年 12 月 30 日 (木) 0 時 24 分 46 秒 (日本時間)
3800Thomas KozlowskiSeptember 28, 2024 22:36:39 UTC 2024 年 9 月 29 日 (日) 7 時 36 分 39 秒 (日本時間)

10217+9

c187

name 名前Dmitry Domanov
date 日付December 26, 2010 20:18:07 UTC 2010 年 12 月 27 日 (月) 5 時 18 分 7 秒 (日本時間)
composite number 合成数
7038068360616528177283279744399610197624966357464778840156358587854335311347961800049901574966262462334745773973577024910982488901907909089283396554170679136463976779589328995013869737579<187>
prime factors 素因数
99392829692462887897537886520494087887<38>
composite cofactor 合成数の残り
70810624693888112470617047202340743518981521262537763822952738453157783243556129744714694379427802818359757504181973708219130565884369463502944900517<149>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=882749456
Step 1 took 159353ms
Step 2 took 58395ms
********** Factor found in step 2: 99392829692462887897537886520494087887
Found probable prime factor of 38 digits: 99392829692462887897537886520494087887
Composite cofactor 70810624693888112470617047202340743518981521262537763822952738453157783243556129744714694379427802818359757504181973708219130565884369463502944900517 has 149 digits

c149

name 名前Wataru Sakai
date 日付January 7, 2011 03:46:10 UTC 2011 年 1 月 7 日 (金) 12 時 46 分 10 秒 (日本時間)
composite number 合成数
70810624693888112470617047202340743518981521262537763822952738453157783243556129744714694379427802818359757504181973708219130565884369463502944900517<149>
prime factors 素因数
4237675047808325679254621470828525303518108659<46>
16709781636161675914215104372013427188263282735032910160954369236227436269674572162372673476241841645063<104>
factorization results 素因数分解の結果
Using B1=43000000, B2=240490660426, polynomial Dickson(12), sigma=3613375423
Step 1 took 163930ms
Step 2 took 53842ms
********** Factor found in step 2: 4237675047808325679254621470828525303518108659
Found probable prime factor of 46 digits: 4237675047808325679254621470828525303518108659
Probable prime cofactor 16709781636161675914215104372013427188263282735032910160954369236227436269674572162372673476241841645063 has 104 digits
software ソフトウェア
GMP-ECM 6.3

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 25, 2010 13:00:00 UTC 2010 年 12 月 25 日 (土) 22 時 0 分 0 秒 (日本時間)
403e6400Dmitry DomanovDecember 26, 2010 20:17:57 UTC 2010 年 12 月 27 日 (月) 5 時 17 分 57 秒 (日本時間)
4511e6600 / 4387200Dmitry DomanovDecember 26, 2010 20:17:57 UTC 2010 年 12 月 27 日 (月) 5 時 17 分 57 秒 (日本時間)
400Dmitry DomanovDecember 27, 2010 20:16:22 UTC 2010 年 12 月 28 日 (火) 5 時 16 分 22 秒 (日本時間)

10218+9

c189

name 名前Thomas Kozlowski
date 日付October 19, 2024 19:37:50 UTC 2024 年 10 月 20 日 (日) 4 時 37 分 50 秒 (日本時間)
composite number 合成数
160111063044292521571996816573593769036452629872412444985050915218700288581689340032135064305819412827769510446845344315080946880636930677845603152193114582538431208117914370437012374499721<189>
prime factors 素因数
67282334765291981200989865960596841680528955909826510791293855200224210425987721<80>
2379689462365191705082954540151164738711973862633374532496655461230136345569649209594029042092592914200672001<109>
factorization results 素因数分解の結果
FACTORS
2379689462365191705082954540151164738711973862633374532496655461230136345569649209594029042092592914200672001
67282334765291981200989865960596841680528955909826510791293855200224210425987721
POLYNOMIAL
n: 160111063044292521571996816573593769036452629872412444985050915218700288581689340032135064305819412827769510446845344315080946880636930677845603152193114582538431208117914370437012374499721
skew: 0.67
type: snfs
c0: 9
c6: 100
Y0: -1000000000000000000000000000000000000
Y1: 1
# MurphyE = 2.977e-12
# f(x) = 100*x^6+9
# g(x) = x-1000000000000000000000000000000000000
software ソフトウェア
cado-nfs
execution environment 実行環境
2x Xeon E5-2698v4, 256GB DDR4, Ubuntu Server 24.04

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 25, 2010 13:00:00 UTC 2010 年 12 月 25 日 (土) 22 時 0 分 0 秒 (日本時間)
403e62000400Dmitry DomanovDecember 29, 2010 15:25:22 UTC 2010 年 12 月 30 日 (木) 0 時 25 分 22 秒 (日本時間)
300Serge BatalovJanuary 9, 2014 04:38:39 UTC 2014 年 1 月 9 日 (木) 13 時 38 分 39 秒 (日本時間)
1300Serge BatalovMay 26, 2014 18:01:26 UTC 2014 年 5 月 27 日 (火) 3 時 1 分 26 秒 (日本時間)
4511e64100300Dmitry DomanovDecember 29, 2010 15:25:22 UTC 2010 年 12 月 30 日 (木) 0 時 25 分 22 秒 (日本時間)
3800Thomas KozlowskiSeptember 28, 2024 23:42:50 UTC 2024 年 9 月 29 日 (日) 8 時 42 分 50 秒 (日本時間)
5043e66624Thomas KozlowskiOctober 5, 2024 22:02:15 UTC 2024 年 10 月 6 日 (日) 7 時 2 分 15 秒 (日本時間)

10220+9

c172

name 名前Erik Branger
date 日付November 13, 2018 17:22:35 UTC 2018 年 11 月 14 日 (水) 2 時 22 分 35 秒 (日本時間)
composite number 合成数
9430267313050264728292983717542055808013161492947900884455942754503343825223438269940038795928305512077894919880663977664744091770983791644899995128351092331850650684240953<172>
prime factors 素因数
384640372913916003244242494305452142034092792067905979187909800097649<69>
24517102148194918867964935357866104059208295166265218747180108986422640596925521205948654184609054881097<104>
factorization results 素因数分解の結果
Number: 10009_220
N = 9430267313050264728292983717542055808013161492947900884455942754503343825223438269940038795928305512077894919880663977664744091770983791644899995128351092331850650684240953 (172 digits)
SNFS difficulty: 221 digits.
Divisors found:
r1=384640372913916003244242494305452142034092792067905979187909800097649 (pp69)
r2=24517102148194918867964935357866104059208295166265218747180108986422640596925521205948654184609054881097 (pp104)
Version: Msieve v. 1.52 (SVN unknown)
Total time: 25.20 hours.
Factorization parameters were as follows:
n: 9430267313050264728292983717542055808013161492947900884455942754503343825223438269940038795928305512077894919880663977664744091770983791644899995128351092331850650684240953
m: 10000000000000000000000000000000000000000000000000000000
deg: 4
c4: 1
c0: 9
skew: 1.00
type: snfs
lss: 1
rlim: 536870912
alim: 536870912
lpbr: 29
lpba: 27
mfbr: 58
mfba: 54
rlambda: 2.8
alambda: 2.8
side: 1
Number of cores used: 6
Number of threads per core: 1
Factor base limits: 536870912/536870912
Large primes per side: 3
Large prime bits: 29/27
Total raw relations: 26055782
Relations: 6933386 relations
Total pre-computation time approximately 1000 CPU-days.
Pre-computation saved approximately 18 G rational relations.
Total batch smoothness checking time: 13.12 hours.
Total relation processing time: 0.21 hours.
Pruned matrix : 6249349 x 6249574
Matrix solve time: 11.77 hours.
time per square root: 0.09 hours.
Prototype def-par.txt line would be: snfs,221,4,0,0,0,0,0,0,0,0,536870912,536870912,29,27,58,54,2.8,2.8,100000
total time: 25.20 hours.
Intel64 Family 6 Model 158 Stepping 10, GenuineIntel
Windows-10-10.0.17134-SP0
processors: 12, speed: 3.19GHz
software ソフトウェア
GGNFS, NFS_factory, Msieve

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 25, 2010 13:00:00 UTC 2010 年 12 月 25 日 (土) 22 時 0 分 0 秒 (日本時間)
403e61873400Dmitry DomanovDecember 29, 2010 15:25:40 UTC 2010 年 12 月 30 日 (木) 0 時 25 分 40 秒 (日本時間)
1473Youcef LemsaferNovember 10, 2013 15:16:33 UTC 2013 年 11 月 11 日 (月) 0 時 16 分 33 秒 (日本時間)
4511e6600 / 4061300Dmitry DomanovDecember 29, 2010 15:25:40 UTC 2010 年 12 月 30 日 (木) 0 時 25 分 40 秒 (日本時間)
300Serge BatalovMay 27, 2014 00:29:56 UTC 2014 年 5 月 27 日 (火) 9 時 29 分 56 秒 (日本時間)

10221+9

c169

name 名前Dmitry Domanov
date 日付December 26, 2010 15:04:35 UTC 2010 年 12 月 27 日 (月) 0 時 4 分 35 秒 (日本時間)
composite number 合成数
2150924315744439228276189858274318907687570955790070725288394026800143809490798245804647947488885149318455017624198151182547268993005959516953789559672137625632979412329<169>
prime factors 素因数
5800286590968351406642067537711373841<37>
370830696382080803667417483021908498873428907027637518643412556911170063479736062704624994789414266831727920001923951735972710865369<132>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=2610169057
Step 1 took 106720ms
Step 2 took 50185ms
********** Factor found in step 2: 5800286590968351406642067537711373841
Found probable prime factor of 37 digits: 5800286590968351406642067537711373841
Probable prime cofactor 370830696382080803667417483021908498873428907027637518643412556911170063479736062704624994789414266831727920001923951735972710865369 has 132 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaDecember 25, 2010 13:00:00 UTC 2010 年 12 月 25 日 (土) 22 時 0 分 0 秒 (日本時間)

10222+9

c153

name 名前Markus Tervooren
date 日付February 6, 2011 02:03:37 UTC 2011 年 2 月 6 日 (日) 11 時 3 分 37 秒 (日本時間)
composite number 合成数
685193952818294077989306719819580230905868084781593919838901423464018103578435970112331148009643661332659622558112088700711188354784205750517129577856457<153>
prime factors 素因数
4474162869148080664676307748172983048422139274333<49>
153144615620298359218414781577193814075248215718294525246275718380301954827168379519528440047000908097629<105>
factorization results 素因数分解の結果
~40 cpu-days of sieving on Phenom 2, 3.6Ghz

Fri Feb  4 16:34:42 2011  Msieve v. 1.48
Fri Feb  4 16:34:42 2011  random seeds: 64cc48de c208d6b3
Fri Feb  4 16:34:42 2011  factoring 685193952818294077989306719819580230905868084781593919838901423464018103578435970112331148009643661332659622558112088700711188354784205750517129577856457 (153 digits)
Fri Feb  4 16:34:43 2011  searching for 15-digit factors
Fri Feb  4 16:34:43 2011  commencing number field sieve (153-digit input)
Fri Feb  4 16:34:43 2011  R0: -1048786989049084098598733914515
Fri Feb  4 16:34:43 2011  R1:  76309007402674829
Fri Feb  4 16:34:43 2011  A0: -140119182697903749836750614826809428925952
Fri Feb  4 16:34:43 2011  A1:  5941185865492536365686800404564512
Fri Feb  4 16:34:43 2011  A2:  808922136768650401477662884
Fri Feb  4 16:34:43 2011  A3: -6099728542518896572
Fri Feb  4 16:34:43 2011  A4: -285268568007
Fri Feb  4 16:34:43 2011  A5:  540
Fri Feb  4 16:34:43 2011  skew 55580331.43, size 6.080e-15, alpha -7.962, combined = 3.141e-12 rroots = 5
Fri Feb  4 16:34:43 2011  
Fri Feb  4 16:34:43 2011  commencing relation filtering
Fri Feb  4 16:34:43 2011  estimated available RAM is 8000.1 MB
Fri Feb  4 16:34:43 2011  commencing duplicate removal, pass 1
Fri Feb  4 17:13:44 2011  skipped 1 relations with b > 2^32
Fri Feb  4 17:13:44 2011  found 21747511 hash collisions in 213754763 relations
Fri Feb  4 17:14:52 2011  added 1 free relations
Fri Feb  4 17:14:52 2011  commencing duplicate removal, pass 2
Fri Feb  4 17:28:45 2011  found 14566796 duplicates and 199187968 unique relations
Fri Feb  4 17:28:45 2011  memory use: 788.8 MB
Fri Feb  4 17:28:45 2011  reading ideals above 54984704
Fri Feb  4 17:28:45 2011  commencing singleton removal, initial pass
Fri Feb  4 18:09:54 2011  memory use: 6024.0 MB
Fri Feb  4 18:09:54 2011  reading all ideals from disk
Fri Feb  4 18:10:03 2011  memory use: 3593.7 MB
Fri Feb  4 18:10:34 2011  commencing in-memory singleton removal
Fri Feb  4 18:11:04 2011  begin with 199187967 relations and 219329927 unique ideals
Fri Feb  4 18:15:08 2011  reduce to 52868558 relations and 40944831 ideals in 23 passes
Fri Feb  4 18:15:08 2011  max relations containing the same ideal: 21
Fri Feb  4 18:15:18 2011  reading ideals above 720000
Fri Feb  4 18:15:19 2011  commencing singleton removal, initial pass
Fri Feb  4 18:36:44 2011  memory use: 1378.0 MB
Fri Feb  4 18:36:48 2011  reading all ideals from disk
Fri Feb  4 18:36:50 2011  memory use: 1880.5 MB
Fri Feb  4 18:37:03 2011  keeping 47221314 ideals with weight <= 200, target excess is 284020
Fri Feb  4 18:37:18 2011  commencing in-memory singleton removal
Fri Feb  4 18:37:30 2011  begin with 52868558 relations and 47221314 unique ideals
Fri Feb  4 18:40:14 2011  reduce to 52840889 relations and 47193643 ideals in 12 passes
Fri Feb  4 18:40:14 2011  max relations containing the same ideal: 200
Fri Feb  4 18:41:12 2011  removing 9066548 relations and 8066548 ideals in 1000000 cliques
Fri Feb  4 18:41:14 2011  commencing in-memory singleton removal
Fri Feb  4 18:41:22 2011  begin with 43774341 relations and 47193643 unique ideals
Fri Feb  4 18:43:11 2011  reduce to 42766103 relations and 38093402 ideals in 11 passes
Fri Feb  4 18:43:11 2011  max relations containing the same ideal: 182
Fri Feb  4 18:44:00 2011  removing 6437478 relations and 5437478 ideals in 1000000 cliques
Fri Feb  4 18:44:02 2011  commencing in-memory singleton removal
Fri Feb  4 18:44:10 2011  begin with 36328625 relations and 38093402 unique ideals
Fri Feb  4 18:45:38 2011  reduce to 35673541 relations and 31985562 ideals in 10 passes
Fri Feb  4 18:45:38 2011  max relations containing the same ideal: 163
Fri Feb  4 18:46:18 2011  removing 5570500 relations and 4570500 ideals in 1000000 cliques
Fri Feb  4 18:46:20 2011  commencing in-memory singleton removal
Fri Feb  4 18:46:26 2011  begin with 30103041 relations and 31985562 unique ideals
Fri Feb  4 18:47:58 2011  reduce to 29499394 relations and 26795868 ideals in 13 passes
Fri Feb  4 18:47:58 2011  max relations containing the same ideal: 144
Fri Feb  4 18:48:29 2011  removing 5097038 relations and 4097038 ideals in 1000000 cliques
Fri Feb  4 18:48:31 2011  commencing in-memory singleton removal
Fri Feb  4 18:48:36 2011  begin with 24402356 relations and 26795868 unique ideals
Fri Feb  4 18:49:28 2011  reduce to 23774436 relations and 22051412 ideals in 10 passes
Fri Feb  4 18:49:28 2011  max relations containing the same ideal: 123
Fri Feb  4 18:49:53 2011  removing 4792326 relations and 3792326 ideals in 1000000 cliques
Fri Feb  4 18:49:55 2011  commencing in-memory singleton removal
Fri Feb  4 18:49:58 2011  begin with 18982110 relations and 22051412 unique ideals
Fri Feb  4 18:50:41 2011  reduce to 18260819 relations and 17510039 ideals in 11 passes
Fri Feb  4 18:50:41 2011  max relations containing the same ideal: 106
Fri Feb  4 18:50:58 2011  removing 2445047 relations and 2023731 ideals in 421316 cliques
Fri Feb  4 18:50:59 2011  commencing in-memory singleton removal
Fri Feb  4 18:51:02 2011  begin with 15815772 relations and 17510039 unique ideals
Fri Feb  4 18:51:29 2011  reduce to 15568946 relations and 15233971 ideals in 10 passes
Fri Feb  4 18:51:29 2011  max relations containing the same ideal: 91
Fri Feb  4 18:51:47 2011  relations with 0 large ideals: 884
Fri Feb  4 18:51:47 2011  relations with 1 large ideals: 2965
Fri Feb  4 18:51:47 2011  relations with 2 large ideals: 45758
Fri Feb  4 18:51:47 2011  relations with 3 large ideals: 346667
Fri Feb  4 18:51:47 2011  relations with 4 large ideals: 1397493
Fri Feb  4 18:51:47 2011  relations with 5 large ideals: 3225615
Fri Feb  4 18:51:47 2011  relations with 6 large ideals: 4453358
Fri Feb  4 18:51:47 2011  relations with 7+ large ideals: 6096206
Fri Feb  4 18:51:47 2011  commencing 2-way merge
Fri Feb  4 18:52:06 2011  reduce to 8854884 relation sets and 8519909 unique ideals
Fri Feb  4 18:52:06 2011  commencing full merge
Fri Feb  4 18:55:04 2011  memory use: 960.1 MB
Fri Feb  4 18:55:05 2011  found 4726759 cycles, need 4678109
Fri Feb  4 18:55:07 2011  weight of 4678109 cycles is about 327520168 (70.01/cycle)
Fri Feb  4 18:55:07 2011  distribution of cycle lengths:
Fri Feb  4 18:55:07 2011  1 relations: 607768
Fri Feb  4 18:55:07 2011  2 relations: 591554
Fri Feb  4 18:55:07 2011  3 relations: 583957
Fri Feb  4 18:55:07 2011  4 relations: 539093
Fri Feb  4 18:55:07 2011  5 relations: 474141
Fri Feb  4 18:55:07 2011  6 relations: 421529
Fri Feb  4 18:55:07 2011  7 relations: 354719
Fri Feb  4 18:55:07 2011  8 relations: 286350
Fri Feb  4 18:55:07 2011  9 relations: 225346
Fri Feb  4 18:55:07 2011  10+ relations: 593652
Fri Feb  4 18:55:07 2011  heaviest cycle: 19 relations
Fri Feb  4 18:55:10 2011  commencing cycle optimization
Fri Feb  4 18:55:20 2011  start with 24489617 relations
Fri Feb  4 18:55:56 2011  pruned 365043 relations
Fri Feb  4 18:55:56 2011  memory use: 879.5 MB
Fri Feb  4 18:55:57 2011  distribution of cycle lengths:
Fri Feb  4 18:55:57 2011  1 relations: 607768
Fri Feb  4 18:55:57 2011  2 relations: 600993
Fri Feb  4 18:55:57 2011  3 relations: 597796
Fri Feb  4 18:55:57 2011  4 relations: 545905
Fri Feb  4 18:55:57 2011  5 relations: 481382
Fri Feb  4 18:55:57 2011  6 relations: 423671
Fri Feb  4 18:55:57 2011  7 relations: 355441
Fri Feb  4 18:55:57 2011  8 relations: 284318
Fri Feb  4 18:55:57 2011  9 relations: 221756
Fri Feb  4 18:55:57 2011  10+ relations: 559079
Fri Feb  4 18:55:57 2011  heaviest cycle: 19 relations
Fri Feb  4 18:56:06 2011  RelProcTime: 8483
Fri Feb  4 18:56:06 2011  
Fri Feb  4 18:56:06 2011  commencing linear algebra
Fri Feb  4 18:56:09 2011  read 4678109 cycles
Fri Feb  4 18:56:20 2011  cycles contain 15205386 unique relations
Fri Feb  4 19:11:15 2011  read 15205386 relations
Fri Feb  4 19:11:41 2011  using 20 quadratic characters above 4294917296
Fri Feb  4 19:13:04 2011  building initial matrix
Fri Feb  4 19:15:58 2011  memory use: 1986.2 MB
Fri Feb  4 19:16:02 2011  read 4678109 cycles
Fri Feb  4 19:16:03 2011  matrix is 4677927 x 4678109 (1433.0 MB) with weight 441637587 (94.41/col)
Fri Feb  4 19:16:03 2011  sparse part has weight 319511406 (68.30/col)
Fri Feb  4 19:17:33 2011  filtering completed in 2 passes
Fri Feb  4 19:17:34 2011  matrix is 4668428 x 4668608 (1432.2 MB) with weight 441303187 (94.53/col)
Fri Feb  4 19:17:34 2011  sparse part has weight 319417342 (68.42/col)
Fri Feb  4 19:17:49 2011  matrix starts at (0, 0)
Fri Feb  4 19:17:50 2011  matrix is 4668428 x 4668608 (1432.2 MB) with weight 441303187 (94.53/col)
Fri Feb  4 19:17:50 2011  sparse part has weight 319417342 (68.42/col)
Fri Feb  4 19:17:50 2011  saving the first 48 matrix rows for later
Fri Feb  4 19:17:51 2011  matrix includes 64 packed rows
Fri Feb  4 19:17:52 2011  matrix is 4668380 x 4668608 (1377.4 MB) with weight 352935078 (75.60/col)
Fri Feb  4 19:17:52 2011  sparse part has weight 314386326 (67.34/col)
Fri Feb  4 19:17:52 2011  using block size 65536 for processor cache size 6144 kB
Fri Feb  4 19:18:07 2011  commencing Lanczos iteration (4 threads)
Fri Feb  4 19:18:07 2011  memory use: 1202.7 MB
Fri Feb  4 19:18:59 2011  linear algebra at 0.0%, ETA 42h47m
Fri Feb  4 19:19:13 2011  checkpointing every 120000 dimensions
Fri Feb  4 19:29:59 2011  lanczos halted after 534 iterations (dim = 33750)
Fri Feb  4 19:29:59 2011  BLanczosTime: 2033
Fri Feb  4 23:18:07 2011  Msieve v. 1.48
Fri Feb  4 23:18:07 2011  random seeds: 43615b1e 79ec9912
Fri Feb  4 23:18:07 2011  factoring 685193952818294077989306719819580230905868084781593919838901423464018103578435970112331148009643661332659622558112088700711188354784205750517129577856457 (153 digits)
Fri Feb  4 23:18:08 2011  searching for 15-digit factors
Fri Feb  4 23:18:08 2011  commencing number field sieve (153-digit input)
Fri Feb  4 23:18:08 2011  R0: -1048786989049084098598733914515
Fri Feb  4 23:18:08 2011  R1:  76309007402674829
Fri Feb  4 23:18:08 2011  A0: -140119182697903749836750614826809428925952
Fri Feb  4 23:18:08 2011  A1:  5941185865492536365686800404564512
Fri Feb  4 23:18:08 2011  A2:  808922136768650401477662884
Fri Feb  4 23:18:08 2011  A3: -6099728542518896572
Fri Feb  4 23:18:08 2011  A4: -285268568007
Fri Feb  4 23:18:08 2011  A5:  540
Fri Feb  4 23:18:08 2011  skew 55580331.43, size 6.080e-15, alpha -7.962, combined = 3.141e-12 rroots = 5
Fri Feb  4 23:18:08 2011  
<some restarts snipped>
Sat Feb  5 16:05:29 2011  
Sat Feb  5 16:05:29 2011  Msieve v. 1.48
Sat Feb  5 16:05:29 2011  random seeds: 81ab4813 300b9f38
Sat Feb  5 16:05:29 2011  factoring 685193952818294077989306719819580230905868084781593919838901423464018103578435970112331148009643661332659622558112088700711188354784205750517129577856457 (153 digits)
Sat Feb  5 16:05:30 2011  searching for 15-digit factors
Sat Feb  5 16:05:30 2011  commencing number field sieve (153-digit input)
Sat Feb  5 16:05:30 2011  R0: -1048786989049084098598733914515
Sat Feb  5 16:05:30 2011  R1:  76309007402674829
Sat Feb  5 16:05:30 2011  A0: -140119182697903749836750614826809428925952
Sat Feb  5 16:05:30 2011  A1:  5941185865492536365686800404564512
Sat Feb  5 16:05:30 2011  A2:  808922136768650401477662884
Sat Feb  5 16:05:30 2011  A3: -6099728542518896572
Sat Feb  5 16:05:30 2011  A4: -285268568007
Sat Feb  5 16:05:30 2011  A5:  540
Sat Feb  5 16:05:30 2011  skew 55580331.43, size 6.080e-15, alpha -7.962, combined = 3.141e-12 rroots = 5
Sat Feb  5 16:05:30 2011  
Sat Feb  5 16:05:30 2011  commencing linear algebra
Sat Feb  5 16:05:35 2011  matrix starts at (0, 0)
Sat Feb  5 16:05:36 2011  matrix is 4668428 x 4668608 (1432.2 MB) with weight 441303187 (94.53/col)
Sat Feb  5 16:05:36 2011  sparse part has weight 319417342 (68.42/col)
Sat Feb  5 16:05:36 2011  saving the first 48 matrix rows for later
Sat Feb  5 16:05:37 2011  matrix includes 64 packed rows
Sat Feb  5 16:05:38 2011  matrix is 4668380 x 4668608 (1377.4 MB) with weight 352935078 (75.60/col)
Sat Feb  5 16:05:38 2011  sparse part has weight 314386326 (67.34/col)
Sat Feb  5 16:05:38 2011  using block size 65536 for processor cache size 6144 kB
Sat Feb  5 16:05:52 2011  commencing Lanczos iteration (2 threads)
Sat Feb  5 16:05:52 2011  memory use: 1131.5 MB
Sat Feb  5 16:05:52 2011  restarting at iteration 61313 (dim = 3877204)
Sat Feb  5 16:06:20 2011  checkpointing every 110000 dimensions
Sat Feb  5 16:06:43 2011  linear algebra at 83.1%, ETA 7h22m
Sat Feb  5 23:25:14 2011  lanczos halted after 73826 iterations (dim = 4668380)
Sat Feb  5 23:25:19 2011  recovered 27 nontrivial dependencies
Sat Feb  5 23:25:19 2011  BLanczosTime: 26389
Sat Feb  5 23:25:19 2011  elapsed time 07:19:50
Sun Feb  6 01:04:59 2011  
Sun Feb  6 01:04:59 2011  
Sun Feb  6 01:04:59 2011  Msieve v. 1.48
Sun Feb  6 01:04:59 2011  random seeds: 51849596 53e956f4
Sun Feb  6 01:04:59 2011  factoring 685193952818294077989306719819580230905868084781593919838901423464018103578435970112331148009643661332659622558112088700711188354784205750517129577856457 (153 digits)
Sun Feb  6 01:05:00 2011  searching for 15-digit factors
Sun Feb  6 01:05:00 2011  commencing number field sieve (153-digit input)
Sun Feb  6 01:05:00 2011  R0: -1048786989049084098598733914515
Sun Feb  6 01:05:00 2011  R1:  76309007402674829
Sun Feb  6 01:05:00 2011  A0: -140119182697903749836750614826809428925952
Sun Feb  6 01:05:00 2011  A1:  5941185865492536365686800404564512
Sun Feb  6 01:05:00 2011  A2:  808922136768650401477662884
Sun Feb  6 01:05:00 2011  A3: -6099728542518896572
Sun Feb  6 01:05:00 2011  A4: -285268568007
Sun Feb  6 01:05:00 2011  A5:  540
Sun Feb  6 01:05:00 2011  skew 55580331.43, size 6.080e-15, alpha -7.962, combined = 3.141e-12 rroots = 5
Sun Feb  6 01:05:00 2011  
Sun Feb  6 01:05:00 2011  commencing square root phase
Sun Feb  6 01:05:00 2011  reading relations for dependency 1
Sun Feb  6 01:05:01 2011  read 2335835 cycles
Sun Feb  6 01:05:05 2011  cycles contain 7604214 unique relations
Sun Feb  6 01:18:34 2011  read 7604214 relations
Sun Feb  6 01:19:21 2011  multiplying 7604214 relations
Sun Feb  6 01:27:19 2011  multiply complete, coefficients have about 373.28 million bits
Sun Feb  6 01:27:24 2011  initial square root is modulo 4988099
Sun Feb  6 01:37:57 2011  sqrtTime: 1977
Sun Feb  6 01:37:57 2011  prp49 factor: 4474162869148080664676307748172983048422139274333
Sun Feb  6 01:37:57 2011  prp105 factor: 153144615620298359218414781577193814075248215718294525246275718380301954827168379519528440047000908097629
Sun Feb  6 01:37:57 2011  elapsed time 00:32:58
software ソフトウェア
gnfs-lasieve4I15e, 64bit binary
execution environment 実行環境
Linux, Phenom 2 1090T

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6418118Makoto KamadaDecember 25, 2010 13:00:00 UTC 2010 年 12 月 25 日 (土) 22 時 0 分 0 秒 (日本時間)
300Ignacio SantosDecember 25, 2010 19:44:55 UTC 2010 年 12 月 26 日 (日) 4 時 44 分 55 秒 (日本時間)
403e6110Ignacio SantosDecember 25, 2010 19:44:55 UTC 2010 年 12 月 26 日 (日) 4 時 44 分 55 秒 (日本時間)
4511e6666232Ignacio SantosDecember 25, 2010 19:44:55 UTC 2010 年 12 月 26 日 (日) 4 時 44 分 55 秒 (日本時間)
600Dmitry DomanovDecember 27, 2010 13:35:15 UTC 2010 年 12 月 27 日 (月) 22 時 35 分 15 秒 (日本時間)
1530Wataru SakaiJanuary 7, 2011 10:30:46 UTC 2011 年 1 月 7 日 (金) 19 時 30 分 46 秒 (日本時間)
4500Markus TervoorenJanuary 29, 2011 04:24:22 UTC 2011 年 1 月 29 日 (土) 13 時 24 分 22 秒 (日本時間)
5043e62600 / 60521300Markus TervoorenJanuary 30, 2011 09:01:28 UTC 2011 年 1 月 30 日 (日) 18 時 1 分 28 秒 (日本時間)
1300Markus TervoorenFebruary 6, 2011 01:29:34 UTC 2011 年 2 月 6 日 (日) 10 時 29 分 34 秒 (日本時間)

10223+9

c224

name 名前Dmitry Domanov
date 日付December 25, 2010 22:02:26 UTC 2010 年 12 月 26 日 (日) 7 時 2 分 26 秒 (日本時間)
composite number 合成数
10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000009<224>
prime factors 素因数
426599455932706145117142072767<30>
composite cofactor 合成数の残り
23441192577557924057913729053111374465183973795697710044842426046534450748609286262637897043275835601874913776685960175481909178347045563010022519891762419122133935284213231783667026760925135927<194>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=198566059
Step 1 took 59638ms
Step 2 took 23148ms
********** Factor found in step 2: 426599455932706145117142072767
Found probable prime factor of 30 digits: 426599455932706145117142072767
Composite cofactor 23441192577557924057913729053111374465183973795697710044842426046534450748609286262637897043275835601874913776685960175481909178347045563010022519891762419122133935284213231783667026760925135927 has 194 digits

c194

name 名前Youcef Lemsafer
date 日付October 30, 2013 19:00:42 UTC 2013 年 10 月 31 日 (木) 4 時 0 分 42 秒 (日本時間)
composite number 合成数
23441192577557924057913729053111374465183973795697710044842426046534450748609286262637897043275835601874913776685960175481909178347045563010022519891762419122133935284213231783667026760925135927<194>
prime factors 素因数
1803846320013293513896997686392671754195779<43>
composite cofactor 合成数の残り
12995116223307301089710399141080860857485473396184904568852581150079234141075636734064757385738317724959438109070574339882845291640061388414012600265213<152>
factorization results 素因数分解の結果
GMP-ECM 6.4.4 [configured with MPIR 2.6.0] [ECM]
Input number is (10^223+9)/426599455932706145117142072767 (194 digits)
Using MODMULN [mulredc:0, sqrredc:0]
Using B1=43000000, B2=240490660426, polynomial Dickson(12), sigma=3966417650
dF=65536, k=5, d=690690, d2=17, i0=46
Expected number of curves to find a factor of n digits:
35      40      45      50      55      60      65      70      75      80
55      246     1286    7557    49831   361851  2844041 2.4e+007        2.2e+008        2.2e+009
Step 1 took 264250ms
Using 24 small primes for NTT
Estimated memory usage: 273M
Initializing tables of differences for F took 63ms
Computing roots of F took 4165ms
Building F from its roots took 6318ms
Computing 1/F took 3136ms
Initializing table of differences for G took 78ms
Computing roots of G took 3370ms
Building G from its roots took 6287ms
Computing roots of G took 3339ms
Building G from its roots took 6349ms
Computing G * H took 1716ms
Reducing  G * H mod F took 1748ms
Computing roots of G took 3432ms
Building G from its roots took 6271ms
Computing G * H took 1716ms
Reducing  G * H mod F took 1810ms
Computing roots of G took 3307ms
Building G from its roots took 6318ms
Computing G * H took 1731ms
Reducing  G * H mod F took 1763ms
Computing roots of G took 3338ms
Building G from its roots took 6272ms
Computing G * H took 1732ms
Reducing  G * H mod F took 1778ms
Computing polyeval(F,G) took 12262ms
Computing product of all F(g_i) took 31ms
Step 2 took 88671ms
********** Factor found in step 2: 1803846320013293513896997686392671754195779
Found probable prime factor of 43 digits: 1803846320013293513896997686392671754195779
Composite cofactor ((10^223+9)/426599455932706145117142072767)/1803846320013293513896997686392671754195779 has 152 digits

c152

name 名前Youcef Lemsafer
date 日付November 10, 2013 05:28:42 UTC 2013 年 11 月 10 日 (日) 14 時 28 分 42 秒 (日本時間)
composite number 合成数
12995116223307301089710399141080860857485473396184904568852581150079234141075636734064757385738317724959438109070574339882845291640061388414012600265213<152>
prime factors 素因数
20152029601456141106264122452491785948394584210171303<53>
644853966588472196439382650517393318626911310405273640670616470404109230133517262839119903140310971<99>
factorization results 素因数分解の結果
<Polynomial selection using msieve 1.51 (SVN 845)>

Mon Nov 04 08:09:46 2013  Msieve v. 1.51 (SVN 845)
Mon Nov 04 08:09:46 2013  random seeds: 433d14e0 f7ba732f
Mon Nov 04 08:09:46 2013  factoring 12995116223307301089710399141080860857485473396184904568852581150079234141075636734064757385738317724959438109070574339882845291640061388414012600265213 (152 digits)
Mon Nov 04 08:09:48 2013  searching for 15-digit factors
Mon Nov 04 08:09:50 2013  commencing number field sieve (152-digit input)
Mon Nov 04 08:09:50 2013  commencing number field sieve polynomial selection
Mon Nov 04 08:09:50 2013  polynomial degree: 5
Mon Nov 04 08:09:50 2013  max stage 1 norm: 1.62e+023
Mon Nov 04 08:09:50 2013  max stage 2 norm: 2.20e+021
Mon Nov 04 08:09:50 2013  min E-value: 3.77e-012
Mon Nov 04 08:09:50 2013  poly select deadline: 799879
Mon Nov 04 10:00:46 2013  polynomial selection complete
Mon Nov 04 10:00:46 2013  R0: -120684563853763502177844404796
Mon Nov 04 10:00:46 2013  R1: 27884833409574017
Mon Nov 04 10:00:46 2013  A0: -2999333066089190911786778618191142695
Mon Nov 04 10:00:46 2013  A1: -8124175916059959995245434462573
Mon Nov 04 10:00:46 2013  A2: 3506390554952520825139479
Mon Nov 04 10:00:46 2013  A3: 21948009512592453
Mon Nov 04 10:00:46 2013  A4: -362729504024
Mon Nov 04 10:00:46 2013  A5: 507600
Mon Nov 04 10:00:46 2013  skew 1951984.22, size 1.168e-014, alpha -7.804, combined = 4.836e-012 rroots = 3

Mon Nov 04 19:32:00 2013 -> factmsieve.py (v0.76)
Mon Nov 04 19:32:00 2013 -> This is client 1 of 1
Mon Nov 04 19:32:00 2013 -> Running on 12 Cores with 2 hyper-threads per Core
Mon Nov 04 19:32:00 2013 -> Working with NAME = 10009_223
Mon Nov 04 19:32:00 2013 -> Converting msieve polynomial (*.fb) to ggnfs (*.poly) format.
Mon Nov 04 19:32:00 2013 -> Selected lattice siever: gnfs-lasieve4I14e
Mon Nov 04 19:32:00 2013 -> Creating param file to detect parameter changes...
Mon Nov 04 19:32:00 2013 -> Running setup ...
Mon Nov 04 19:32:00 2013 -> Estimated minimum relations needed: 5.09703e+07
Mon Nov 04 19:32:00 2013 -> cleaning up before a restart
Mon Nov 04 19:32:00 2013 -> Running lattice siever ...
Mon Nov 04 19:32:00 2013 -> entering sieving loop
  ...<snip>...
Mon Nov 04 20:36:13 2013 Found 499128 relations, 1.0% of the estimated minimum (50970286).
  ...<snip>...
Mon Nov 04 21:40:11 2013 Found 995536 relations, 2.0% of the estimated minimum (50970286).
  ...<snip>...
Mon Nov 04 23:48:00 2013 Found 2000042 relations, 3.9% of the estimated minimum (50970286).
  ...<snip>...
Tue Nov 05 04:09:36 2013 Found 3985202 relations, 7.8% of the estimated minimum (50970286).
  ...<snip>...
Tue Nov 05 13:30:15 2013 Found 8227946 relations, 16.1% of the estimated minimum (50970286).
  ...<snip>...
Wed Nov 06 07:16:43 2013 Found 16189725 relations, 31.8% of the estimated minimum (50970286).
  ...<snip>...
Thu Nov 07 21:17:43 2013 Found 32499156 relations, 63.8% of the estimated minimum (50970286).
  ...<snip>...
Sat Nov 09 19:36:30 2013 Found 51013483 relations, 100.1% of the estimated minimum (50970286).
Sat Nov 09 19:36:30 2013  
Sat Nov 09 19:36:30 2013  
Sat Nov 09 19:36:30 2013  Msieve v. 1.50 (SVN 708)
Sat Nov 09 19:36:30 2013  random seeds: 671170c8 02921e71
Sat Nov 09 19:36:30 2013  factoring 12995116223307301089710399141080860857485473396184904568852581150079234141075636734064757385738317724959438109070574339882845291640061388414012600265213 (152 digits)
Sat Nov 09 19:36:31 2013  searching for 15-digit factors
Sat Nov 09 19:36:32 2013  commencing number field sieve (152-digit input)
Sat Nov 09 19:36:32 2013  R0: -120684563853763502177844404796
Sat Nov 09 19:36:32 2013  R1: 27884833409574017
Sat Nov 09 19:36:32 2013  A0: -2999333066089190911786778618191142695
Sat Nov 09 19:36:32 2013  A1: -8124175916059959995245434462573
Sat Nov 09 19:36:32 2013  A2: 3506390554952520825139479
Sat Nov 09 19:36:32 2013  A3: 21948009512592453
Sat Nov 09 19:36:32 2013  A4: -362729504024
Sat Nov 09 19:36:32 2013  A5: 507600
Sat Nov 09 19:36:32 2013  skew 1951984.22, size 1.413e-014, alpha -7.804, combined = 5.359e-012 rroots = 3
Sat Nov 09 19:36:32 2013  
Sat Nov 09 19:36:32 2013  commencing relation filtering
Sat Nov 09 19:36:32 2013  estimated available RAM is 4096.0 MB
Sat Nov 09 19:36:32 2013  commencing duplicate removal, pass 1
Sat Nov 09 19:42:16 2013  found 7542890 hash collisions in 51013482 relations
Sat Nov 09 19:43:14 2013  added 122043 free relations
Sat Nov 09 19:43:14 2013  commencing duplicate removal, pass 2
Sat Nov 09 19:43:56 2013  found 6599293 duplicates and 44536232 unique relations
Sat Nov 09 19:43:56 2013  memory use: 213.2 MB
Sat Nov 09 19:43:56 2013  reading ideals above 32702464
Sat Nov 09 19:43:56 2013  commencing singleton removal, initial pass
Sat Nov 09 19:49:59 2013  memory use: 753.0 MB
Sat Nov 09 19:49:59 2013  reading all ideals from disk
Sat Nov 09 19:50:00 2013  memory use: 757.5 MB
Sat Nov 09 19:50:02 2013  commencing in-memory singleton removal
Sat Nov 09 19:50:03 2013  begin with 44536232 relations and 40523292 unique ideals
Sat Nov 09 19:50:24 2013  reduce to 23771936 relations and 17053933 ideals in 16 passes
Sat Nov 09 19:50:24 2013  max relations containing the same ideal: 39
Sat Nov 09 19:50:27 2013  reading ideals above 720000
Sat Nov 09 19:50:27 2013  commencing singleton removal, initial pass
Sat Nov 09 19:54:34 2013  memory use: 689.0 MB
Sat Nov 09 19:54:34 2013  reading all ideals from disk
Sat Nov 09 19:54:35 2013  memory use: 826.3 MB
Sat Nov 09 19:54:37 2013  keeping 20946380 ideals with weight <= 200, target excess is 135513
Sat Nov 09 19:54:39 2013  commencing in-memory singleton removal
Sat Nov 09 19:54:42 2013  begin with 23771969 relations and 20946380 unique ideals
Sat Nov 09 19:55:04 2013  reduce to 23749197 relations and 20923491 ideals in 10 passes
Sat Nov 09 19:55:04 2013  max relations containing the same ideal: 200
Sat Nov 09 19:55:16 2013  removing 2842384 relations and 2442384 ideals in 400000 cliques
Sat Nov 09 19:55:18 2013  commencing in-memory singleton removal
Sat Nov 09 19:55:20 2013  begin with 20906813 relations and 20923491 unique ideals
Sat Nov 09 19:55:36 2013  reduce to 20698284 relations and 18268313 ideals in 8 passes
Sat Nov 09 19:55:36 2013  max relations containing the same ideal: 194
Sat Nov 09 19:55:46 2013  removing 2110032 relations and 1710032 ideals in 400000 cliques
Sat Nov 09 19:55:47 2013  commencing in-memory singleton removal
Sat Nov 09 19:55:49 2013  begin with 18588252 relations and 18268313 unique ideals
Sat Nov 09 19:56:03 2013  reduce to 18450835 relations and 16418316 ideals in 8 passes
Sat Nov 09 19:56:03 2013  max relations containing the same ideal: 178
Sat Nov 09 19:56:12 2013  removing 1874962 relations and 1474962 ideals in 400000 cliques
Sat Nov 09 19:56:13 2013  commencing in-memory singleton removal
Sat Nov 09 19:56:14 2013  begin with 16575873 relations and 16418316 unique ideals
Sat Nov 09 19:56:28 2013  reduce to 16449429 relations and 14814520 ideals in 9 passes
Sat Nov 09 19:56:28 2013  max relations containing the same ideal: 163
Sat Nov 09 19:56:36 2013  removing 1758166 relations and 1358166 ideals in 400000 cliques
Sat Nov 09 19:56:37 2013  commencing in-memory singleton removal
Sat Nov 09 19:56:39 2013  begin with 14691263 relations and 14814520 unique ideals
Sat Nov 09 19:56:49 2013  reduce to 14567386 relations and 13329876 ideals in 8 passes
Sat Nov 09 19:56:49 2013  max relations containing the same ideal: 150
Sat Nov 09 19:56:57 2013  removing 1674382 relations and 1274382 ideals in 400000 cliques
Sat Nov 09 19:56:57 2013  commencing in-memory singleton removal
Sat Nov 09 19:56:58 2013  begin with 12893004 relations and 13329876 unique ideals
Sat Nov 09 19:57:06 2013  reduce to 12761469 relations and 11920929 ideals in 7 passes
Sat Nov 09 19:57:06 2013  max relations containing the same ideal: 135
Sat Nov 09 19:57:13 2013  removing 1617445 relations and 1217445 ideals in 400000 cliques
Sat Nov 09 19:57:14 2013  commencing in-memory singleton removal
Sat Nov 09 19:57:15 2013  begin with 11144024 relations and 11920929 unique ideals
Sat Nov 09 19:57:22 2013  reduce to 10995975 relations and 10551481 ideals in 8 passes
Sat Nov 09 19:57:22 2013  max relations containing the same ideal: 126
Sat Nov 09 19:57:28 2013  removing 1226352 relations and 939054 ideals in 287298 cliques
Sat Nov 09 19:57:29 2013  commencing in-memory singleton removal
Sat Nov 09 19:57:29 2013  begin with 9769623 relations and 10551481 unique ideals
Sat Nov 09 19:57:35 2013  reduce to 9674999 relations and 9515740 ideals in 7 passes
Sat Nov 09 19:57:35 2013  max relations containing the same ideal: 115
Sat Nov 09 19:57:43 2013  relations with 0 large ideals: 518
Sat Nov 09 19:57:43 2013  relations with 1 large ideals: 551
Sat Nov 09 19:57:43 2013  relations with 2 large ideals: 9556
Sat Nov 09 19:57:43 2013  relations with 3 large ideals: 87157
Sat Nov 09 19:57:43 2013  relations with 4 large ideals: 430786
Sat Nov 09 19:57:43 2013  relations with 5 large ideals: 1264676
Sat Nov 09 19:57:43 2013  relations with 6 large ideals: 2329364
Sat Nov 09 19:57:43 2013  relations with 7+ large ideals: 5552391
Sat Nov 09 19:57:43 2013  commencing 2-way merge
Sat Nov 09 19:57:50 2013  reduce to 6220568 relation sets and 6061309 unique ideals
Sat Nov 09 19:57:50 2013  commencing full merge
Sat Nov 09 19:59:41 2013  memory use: 650.7 MB
Sat Nov 09 19:59:42 2013  found 3322518 cycles, need 3299509
Sat Nov 09 19:59:43 2013  weight of 3299509 cycles is about 231081663 (70.04/cycle)
Sat Nov 09 19:59:43 2013  distribution of cycle lengths:
Sat Nov 09 19:59:43 2013  1 relations: 422533
Sat Nov 09 19:59:43 2013  2 relations: 408970
Sat Nov 09 19:59:43 2013  3 relations: 410096
Sat Nov 09 19:59:43 2013  4 relations: 379596
Sat Nov 09 19:59:43 2013  5 relations: 348907
Sat Nov 09 19:59:43 2013  6 relations: 299499
Sat Nov 09 19:59:43 2013  7 relations: 253052
Sat Nov 09 19:59:43 2013  8 relations: 203114
Sat Nov 09 19:59:43 2013  9 relations: 161366
Sat Nov 09 19:59:43 2013  10+ relations: 412376
Sat Nov 09 19:59:43 2013  heaviest cycle: 20 relations
Sat Nov 09 19:59:43 2013  commencing cycle optimization
Sat Nov 09 19:59:48 2013  start with 17305756 relations
Sat Nov 09 20:00:19 2013  pruned 431152 relations
Sat Nov 09 20:00:19 2013  memory use: 457.6 MB
Sat Nov 09 20:00:19 2013  distribution of cycle lengths:
Sat Nov 09 20:00:19 2013  1 relations: 422533
Sat Nov 09 20:00:19 2013  2 relations: 417827
Sat Nov 09 20:00:19 2013  3 relations: 424052
Sat Nov 09 20:00:19 2013  4 relations: 389234
Sat Nov 09 20:00:19 2013  5 relations: 357548
Sat Nov 09 20:00:19 2013  6 relations: 304279
Sat Nov 09 20:00:19 2013  7 relations: 255473
Sat Nov 09 20:00:19 2013  8 relations: 201632
Sat Nov 09 20:00:19 2013  9 relations: 157522
Sat Nov 09 20:00:19 2013  10+ relations: 369409
Sat Nov 09 20:00:19 2013  heaviest cycle: 19 relations
Sat Nov 09 20:00:23 2013  RelProcTime: 1431
Sat Nov 09 20:00:23 2013  elapsed time 00:23:53
Sat Nov 09 20:00:23 2013 LatSieveTime: 3457.45
Sat Nov 09 20:00:23 2013 -> Running matrix solving step ...
Sat Nov 09 20:00:23 2013  
Sat Nov 09 20:00:23 2013  
  ...<snip>...
Sat Nov 09 20:00:25 2013  commencing linear algebra
Sat Nov 09 20:00:26 2013  read 3299509 cycles
Sat Nov 09 20:00:32 2013  cycles contain 9556802 unique relations
Sat Nov 09 20:01:45 2013  read 9556802 relations
Sat Nov 09 20:02:01 2013  using 20 quadratic characters above 536870768
Sat Nov 09 20:02:56 2013  building initial matrix
Sat Nov 09 20:05:41 2013  memory use: 1189.7 MB
Sat Nov 09 20:05:45 2013  read 3299509 cycles
Sat Nov 09 20:05:47 2013  matrix is 3299332 x 3299509 (950.1 MB) with weight 313118545 (94.90/col)
Sat Nov 09 20:05:47 2013  sparse part has weight 222657215 (67.48/col)
Sat Nov 09 20:06:22 2013  filtering completed in 2 passes
Sat Nov 09 20:06:24 2013  matrix is 3298429 x 3298606 (950.0 MB) with weight 313086581 (94.91/col)
Sat Nov 09 20:06:24 2013  sparse part has weight 222650387 (67.50/col)
Sat Nov 09 20:06:47 2013  matrix starts at (0, 0)
Sat Nov 09 20:06:48 2013  matrix is 3298429 x 3298606 (950.0 MB) with weight 313086581 (94.91/col)
Sat Nov 09 20:06:48 2013  sparse part has weight 222650387 (67.50/col)
Sat Nov 09 20:06:48 2013  saving the first 48 matrix rows for later
Sat Nov 09 20:06:50 2013  matrix includes 64 packed rows
Sat Nov 09 20:06:51 2013  matrix is 3298381 x 3298606 (913.3 MB) with weight 250160596 (75.84/col)
Sat Nov 09 20:06:51 2013  sparse part has weight 219612141 (66.58/col)
Sat Nov 09 20:06:51 2013  using block size 65536 for processor cache size 15360 kB
Sat Nov 09 20:07:13 2013  commencing Lanczos iteration (24 threads)
Sat Nov 09 20:07:13 2013  memory use: 1342.3 MB
Sat Nov 09 20:07:27 2013  linear algebra at 0.0%, ETA 7h51m
Sat Nov 09 20:07:31 2013  checkpointing every 430000 dimensions
Sun Nov 10 04:02:17 2013  lanczos halted after 52166 iterations (dim = 3298379)
Sun Nov 10 04:02:23 2013  recovered 31 nontrivial dependencies
Sun Nov 10 04:02:27 2013  BLanczosTime: 28922
Sun Nov 10 04:02:27 2013  elapsed time 08:02:04
Sun Nov 10 04:02:27 2013 -> Running square root step ...
  ...<snip>...
Sun Nov 10 04:02:29 2013  
Sun Nov 10 04:02:29 2013  commencing square root phase
Sun Nov 10 04:02:29 2013  reading relations for dependency 1
Sun Nov 10 04:02:30 2013  read 1650434 cycles
Sun Nov 10 04:02:33 2013  cycles contain 4779034 unique relations
Sun Nov 10 04:03:18 2013  read 4779034 relations
Sun Nov 10 04:03:47 2013  multiplying 4779034 relations
Sun Nov 10 04:19:25 2013  multiply complete, coefficients have about 255.77 million bits
Sun Nov 10 04:19:30 2013  initial square root is modulo 1509827873
Sun Nov 10 04:38:04 2013  sqrtTime: 2135
Sun Nov 10 04:38:04 2013  prp53 factor: 20152029601456141106264122452491785948394584210171303
Sun Nov 10 04:38:04 2013  prp99 factor: 644853966588472196439382650517393318626911310405273640670616470404109230133517262839119903140310971
Sun Nov 10 04:38:04 2013  elapsed time 00:35:37
Sun Nov 10 04:38:04 2013 -> Computing 1.38405e+09 scale for this machine...
Sun Nov 10 04:38:04 2013 -> procrels -speedtest> PIPE
Sun Nov 10 04:38:10 2013 -> Factorization summary written to g152-10009_223.txt




Number: 10009_223
N = 12995116223307301089710399141080860857485473396184904568852581150079234141075636734064757385738317724959438109070574339882845291640061388414012600265213 (152 digits)
Divisors found:
r1=20152029601456141106264122452491785948394584210171303 (pp53)
r2=644853966588472196439382650517393318626911310405273640670616470404109230133517262839119903140310971 (pp99)
Version: Msieve v. 1.50 (SVN 708)
Total time: 129.47 hours.
Factorization parameters were as follows:
n: 12995116223307301089710399141080860857485473396184904568852581150079234141075636734064757385738317724959438109070574339882845291640061388414012600265213
Y0: -120684563853763502177844404796
Y1: 27884833409574017
c0: -2999333066089190911786778618191142695
c1: -8124175916059959995245434462573
c2: 3506390554952520825139479
c3: 21948009512592453
c4: -362729504024
c5: 507600
skew: 1951984.22
type: gnfs
Factor base limits: 23100000/23100000
Large primes per side: 3
Large prime bits: 29/29
Sieved algebraic special-q in [0, 0)
Total raw relations: 51013483
Relations: 4779034 relations
Pruned matrix : 3298381 x 3298606
Polynomial selection time: 0.00 hours.
Total sieving time: 120.44 hours.
Total relation processing time: 0.40 hours.
Matrix solve time: 8.03 hours.
time per square root: 0.59 hours.
Prototype def-par.txt line would be: gnfs,151,5,67,2000,5e-06,0.28,250,20,50000,3600,23100000,23100000,29,29,58,58,2.6,2.6,100000
total time: 129.47 hours.
Intel64 Family 6 Model 45 Stepping 7, GenuineIntel
Windows-7-6.1.7601-SP1
processors: 24, speed: 2.00GHz
software ソフトウェア
msieve 1.51 (SVN 845) for polynomial selection, GGNFS (SVN 430), msieve 1.50 (SVN 708)
execution environment 実行環境
Windows 7 Pro 64 bits, 2x Intel Xeon E5-2620, 2x NVIDIA GeForce GTX 660, 32 GB RAM

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 25, 2010 13:00:00 UTC 2010 年 12 月 25 日 (土) 22 時 0 分 0 秒 (日本時間)
403e61416Youcef LemsaferOctober 30, 2013 06:51:57 UTC 2013 年 10 月 30 日 (水) 15 時 51 分 57 秒 (日本時間)
4511e63808400Dmitry DomanovDecember 29, 2010 15:26:38 UTC 2010 年 12 月 30 日 (木) 0 時 26 分 38 秒 (日本時間)
3408Youcef LemsaferOctober 30, 2013 18:58:42 UTC 2013 年 10 月 31 日 (木) 3 時 58 分 42 秒 (日本時間)
5043e6949 / 6645449Youcef LemsaferOctober 30, 2013 18:58:42 UTC 2013 年 10 月 31 日 (木) 3 時 58 分 42 秒 (日本時間)
500Youcef LemsaferNovember 2, 2013 19:46:11 UTC 2013 年 11 月 3 日 (日) 4 時 46 分 11 秒 (日本時間)

10224+9

c225

name 名前Dmitry Domanov
date 日付December 25, 2010 23:09:02 UTC 2010 年 12 月 26 日 (日) 8 時 9 分 2 秒 (日本時間)
composite number 合成数
100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000009<225>
prime factors 素因数
95506040354362086140990382790857769<35>
1047054192896739220916714122150331634327095276616020593593176792806243864878461773711102281287988204178354902319833710378824582744542580646206572202700372406417096551740423300702433874036961<190>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3934960915
Step 1 took 56935ms
Step 2 took 22120ms
********** Factor found in step 2: 95506040354362086140990382790857769
Found probable prime factor of 35 digits: 95506040354362086140990382790857769
Probable prime cofactor 1047054192896739220916714122150331634327095276616020593593176792806243864878461773711102281287988204178354902319833710378824582744542580646206572202700372406417096551740423300702433874036961 has 190 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaDecember 25, 2010 13:00:00 UTC 2010 年 12 月 25 日 (土) 22 時 0 分 0 秒 (日本時間)

10227+9

c194

composite cofactor 合成数の残り
28696486977544796269337216780914010903135094898108095334114281250359610122826390446050164739014762308403033476204126279686876913794731368961821313038671285415911395124408463777295456548279722771<194>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 25, 2010 13:00:00 UTC 2010 年 12 月 25 日 (土) 22 時 0 分 0 秒 (日本時間)
403e62000400Dmitry DomanovDecember 29, 2010 23:23:40 UTC 2010 年 12 月 30 日 (木) 8 時 23 分 40 秒 (日本時間)
300Serge BatalovJanuary 9, 2014 04:38:39 UTC 2014 年 1 月 9 日 (木) 13 時 38 分 39 秒 (日本時間)
1300Serge BatalovMay 26, 2014 18:01:26 UTC 2014 年 5 月 27 日 (火) 3 時 1 分 26 秒 (日本時間)
4511e64100300Dmitry DomanovDecember 29, 2010 23:23:40 UTC 2010 年 12 月 30 日 (木) 8 時 23 分 40 秒 (日本時間)
3800Thomas KozlowskiSeptember 29, 2024 00:58:35 UTC 2024 年 9 月 29 日 (日) 9 時 58 分 35 秒 (日本時間)

10228+9

c208

composite cofactor 合成数の残り
6522956206336315548104826326014667605614679361604966968612364823833155364871879993571757752584976893324600079831980734102593913424806335570186287171153824516042566935327562767502408197023515481438122473132493<208>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 25, 2010 13:00:00 UTC 2010 年 12 月 25 日 (土) 22 時 0 分 0 秒 (日本時間)
403e62000400Dmitry DomanovDecember 29, 2010 23:23:55 UTC 2010 年 12 月 30 日 (木) 8 時 23 分 55 秒 (日本時間)
300Serge BatalovJanuary 9, 2014 04:38:40 UTC 2014 年 1 月 9 日 (木) 13 時 38 分 40 秒 (日本時間)
1300Serge BatalovMay 26, 2014 18:01:27 UTC 2014 年 5 月 27 日 (火) 3 時 1 分 27 秒 (日本時間)
4511e64100300Dmitry DomanovDecember 29, 2010 23:23:55 UTC 2010 年 12 月 30 日 (木) 8 時 23 分 55 秒 (日本時間)
3800Thomas KozlowskiSeptember 29, 2024 02:14:05 UTC 2024 年 9 月 29 日 (日) 11 時 14 分 5 秒 (日本時間)

10232+9

c223

composite cofactor 合成数の残り
6788705980429136874342784101152283928731711131895428426806246408125366343608057259058181760769114550239841350330861876182302788904216074730189482824409922264856344257240845848678832651891965480730805583689216592066923074417<223>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6418118Makoto KamadaDecember 25, 2010 13:00:00 UTC 2010 年 12 月 25 日 (土) 22 時 0 分 0 秒 (日本時間)
300Ignacio SantosDecember 26, 2010 01:39:46 UTC 2010 年 12 月 26 日 (日) 10 時 39 分 46 秒 (日本時間)
403e6510110Ignacio SantosDecember 26, 2010 01:39:46 UTC 2010 年 12 月 26 日 (日) 10 時 39 分 46 秒 (日本時間)
400Dmitry DomanovDecember 29, 2010 23:24:31 UTC 2010 年 12 月 30 日 (木) 8 時 24 分 31 秒 (日本時間)
4511e6224432Ignacio SantosDecember 26, 2010 01:39:46 UTC 2010 年 12 月 26 日 (日) 10 時 39 分 46 秒 (日本時間)
300Dmitry DomanovDecember 29, 2010 23:24:31 UTC 2010 年 12 月 30 日 (木) 8 時 24 分 31 秒 (日本時間)
200Dmitry DomanovDecember 29, 2010 23:32:45 UTC 2010 年 12 月 30 日 (木) 8 時 32 分 45 秒 (日本時間)
1712Wataru SakaiMay 30, 2011 06:32:29 UTC 2011 年 5 月 30 日 (月) 15 時 32 分 29 秒 (日本時間)
5043e6600Dmitry DomanovMay 27, 2011 06:11:04 UTC 2011 年 5 月 27 日 (金) 15 時 11 分 4 秒 (日本時間)
5511e72680 / 17411yoyo@homeAugust 22, 2011 23:15:04 UTC 2011 年 8 月 23 日 (火) 8 時 15 分 4 秒 (日本時間)

10234+9

c193

name 名前Serge Batalov
date 日付January 9, 2014 07:26:22 UTC 2014 年 1 月 9 日 (木) 16 時 26 分 22 秒 (日本時間)
composite number 合成数
5071057810254313921454466497219902552921121952235123844227913757409312855820307266799301194115760376876319188758933706900210097700245315648937713615277496469049801041255380285222837186971521613<193>
prime factors 素因数
17256649533863999004404607247934925077<38>
293861088173750201283588403174470334996356756465823763184176910834089957097840913259243736863253256028840292802009274694003586149628081385930423243142586969<156>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=93551033
Step 1 took 18946ms
Step 2 took 7261ms
********** Factor found in step 2: 17256649533863999004404607247934925077
Found probable prime factor of 38 digits: 17256649533863999004404607247934925077
Probable prime cofactor 

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 25, 2010 13:00:00 UTC 2010 年 12 月 25 日 (土) 22 時 0 分 0 秒 (日本時間)
403e6700 / 1283400Dmitry DomanovDecember 29, 2010 23:24:47 UTC 2010 年 12 月 30 日 (木) 8 時 24 分 47 秒 (日本時間)
300Serge BatalovJanuary 9, 2014 04:38:41 UTC 2014 年 1 月 9 日 (木) 13 時 38 分 41 秒 (日本時間)
4511e6300 / 4320Dmitry DomanovDecember 29, 2010 23:24:47 UTC 2010 年 12 月 30 日 (木) 8 時 24 分 47 秒 (日本時間)

10235+9

c229

name 名前ebina
date 日付May 24, 2022 12:50:11 UTC 2022 年 5 月 24 日 (火) 21 時 50 分 11 秒 (日本時間)
composite number 合成数
1019910800641197522147108058223443894043914707307528298190096890506150113123406453118423168946490277853279507880799761014501193754596610489639797082626747629905783699969168096496616598905492923399905291083052458398093419545713371<229>
prime factors 素因数
2279229232663749104126105527410652006065103579437179<52>
2281086689966629846123229114067871515487451399403154596655936462991553634996226569409<85>
196169910560546710401607398001285209269643331316476127325944826462894611048903535105375038561<93>
factorization results 素因数分解の結果
Number: 10009_235
N = 1019910800641197522147108058223443894043914707307528298190096890506150113123406453118423168946490277853279507880799761014501193754596610489639797082626747629905783699969168096496616598905492923399905291083052458398093419545713371 (229 digits)
SNFS difficulty: 236 digits.
Divisors found:
r1=2279229232663749104126105527410652006065103579437179 (pp52)
r2=2281086689966629846123229114067871515487451399403154596655936462991553634996226569409 (pp85)
r3=196169910560546710401607398001285209269643331316476127325944826462894611048903535105375038561 (pp93)
Version: Msieve v. 1.53 (SVN unknown)
Total time: 493.72 hours.
Factorization parameters were as follows:
n: 1019910800641197522147108058223443894043914707307528298190096890506150113123406453118423168946490277853279507880799761014501193754596610489639797082626747629905783699969168096496616598905492923399905291083052458398093419545713371
m: 1000000000000000000000000000000000000000
deg: 6
c6: 10
c0: 9
skew: 0.98
# Murphy_E = 8.522e-13
type: snfs
lss: 1
rlim: 58000000
alim: 58000000
lpbr: 30
lpba: 30
mfbr: 60
mfba: 60
rlambda: 2.7
alambda: 2.7
Factor base limits: 58000000/58000000
Large primes per side: 3
Large prime bits: 30/30
Sieved rational special-q in [0, 0)
Total raw relations: 93697879
Relations: 11364934 relations
Pruned matrix : 7718519 x 7718744
Total sieving time: 448.77 hours.
Total relation processing time: 1.09 hours.
Matrix solve time: 42.14 hours.
time per square root: 1.72 hours.
Prototype def-par.txt line would be: snfs,236,6,0,0,0,0,0,0,0,0,58000000,58000000,30,30,60,60,2.7,2.7,100000
total time: 493.72 hours.
Intel64 Family 6 Model 42 Stepping 7, GenuineIntel
processors: 8, speed: 2.19GHz
Windows-7-6.1.7601-SP1
Running Python 3.2
execution environment 実行環境
core i7 3960x  3.3GHz +
core i7 2670qm 2.2GHz

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6418118Makoto KamadaDecember 25, 2010 13:00:00 UTC 2010 年 12 月 25 日 (土) 22 時 0 分 0 秒 (日本時間)
300Ignacio SantosDecember 26, 2010 10:10:07 UTC 2010 年 12 月 26 日 (日) 19 時 10 分 7 秒 (日本時間)
403e6510110Ignacio SantosDecember 26, 2010 10:10:07 UTC 2010 年 12 月 26 日 (日) 19 時 10 分 7 秒 (日本時間)
400Dmitry DomanovDecember 29, 2010 23:25:04 UTC 2010 年 12 月 30 日 (木) 8 時 25 分 4 秒 (日本時間)
4511e653232Ignacio SantosDecember 26, 2010 10:10:07 UTC 2010 年 12 月 26 日 (日) 19 時 10 分 7 秒 (日本時間)
300Dmitry DomanovDecember 29, 2010 23:25:04 UTC 2010 年 12 月 30 日 (木) 8 時 25 分 4 秒 (日本時間)
200Dmitry DomanovDecember 29, 2010 23:33:24 UTC 2010 年 12 月 30 日 (木) 8 時 33 分 24 秒 (日本時間)
5043e6600Dmitry DomanovMay 26, 2011 06:02:26 UTC 2011 年 5 月 26 日 (木) 15 時 2 分 26 秒 (日本時間)
5511e72995 / 17471200Dmitry DomanovMay 28, 2011 08:04:30 UTC 2011 年 5 月 28 日 (土) 17 時 4 分 30 秒 (日本時間)
2795yoyo@homeAugust 23, 2011 04:20:04 UTC 2011 年 8 月 23 日 (火) 13 時 20 分 4 秒 (日本時間)
6026e720 / 4080615Dmitry DomanovMay 30, 2011 06:28:50 UTC 2011 年 5 月 30 日 (月) 15 時 28 分 50 秒 (日本時間)
5Dmitry DomanovMay 30, 2011 06:29:01 UTC 2011 年 5 月 30 日 (月) 15 時 29 分 1 秒 (日本時間)

10236+9

c232

name 名前Wataru Sakai
date 日付May 17, 2011 08:00:31 UTC 2011 年 5 月 17 日 (火) 17 時 0 分 31 秒 (日本時間)
composite number 合成数
2919793278635872580221320330520599141580776081053461414931822826943852375251832170282344010044088878507401675961341936990861047037869718823907267365470524686852170866302665771263394551665742065461765307016263248562001810271832754241<232>
prime factors 素因数
58481718838784595391569193223769802548046421<44>
composite cofactor 合成数の残り
49926598202163129132808207831668573285357845747530134200993524677777884350571412823998833593691227211382972973134610834894273368509954819461018797177406306518361781831243203525267062991421<188>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=3176846419
Step 1 took 78885ms
Step 2 took 24201ms
********** Factor found in step 2: 58481718838784595391569193223769802548046421
Found probable prime factor of 44 digits: 58481718838784595391569193223769802548046421
Composite cofactor 49926598202163129132808207831668573285357845747530134200993524677777884350571412823998833593691227211382972973134610834894273368509954819461018797177406306518361781831243203525267062991421 has 188 digits
software ソフトウェア
GMP-ECM 6.3

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6418118Makoto KamadaDecember 25, 2010 13:00:00 UTC 2010 年 12 月 25 日 (土) 22 時 0 分 0 秒 (日本時間)
300Ignacio SantosDecember 26, 2010 10:10:33 UTC 2010 年 12 月 26 日 (日) 19 時 10 分 33 秒 (日本時間)
403e6510110Ignacio SantosDecember 26, 2010 10:10:33 UTC 2010 年 12 月 26 日 (日) 19 時 10 分 33 秒 (日本時間)
400Dmitry DomanovDecember 29, 2010 23:25:25 UTC 2010 年 12 月 30 日 (木) 8 時 25 分 25 秒 (日本時間)
4511e6453232Ignacio SantosDecember 26, 2010 10:10:33 UTC 2010 年 12 月 26 日 (日) 19 時 10 分 33 秒 (日本時間)
300Dmitry DomanovDecember 29, 2010 23:25:25 UTC 2010 年 12 月 30 日 (木) 8 時 25 分 25 秒 (日本時間)
200Dmitry DomanovDecember 29, 2010 23:34:02 UTC 2010 年 12 月 30 日 (木) 8 時 34 分 2 秒 (日本時間)
4000Wataru SakaiMay 17, 2011 07:59:22 UTC 2011 年 5 月 17 日 (火) 16 時 59 分 22 秒 (日本時間)
5043e60--
5511e72715 / 17481yoyo@homeAugust 23, 2011 06:25:05 UTC 2011 年 8 月 23 日 (火) 15 時 25 分 5 秒 (日本時間)

10237+9

c231

name 名前Dmitry Domanov
date 日付December 26, 2010 00:37:57 UTC 2010 年 12 月 26 日 (日) 9 時 37 分 57 秒 (日本時間)
composite number 合成数
372782827535379886204314066549935937271088044966555788627663393509179963519472497387724336045825447423269178651323919572850524896860311191648769984421405637296474555521715158878177181441230600847633593249946785251369324521244334167<231>
prime factors 素因数
16523072047165595261642773691596936447<38>
22561350968588670306828456331752498809520734670508670001053165704305612320536211623747877155590248407161680416719886192100467898646885071495422769572641351198848929591614779498393811645879534761<194>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3969866649
Step 1 took 59286ms
Step 2 took 24434ms
********** Factor found in step 2: 16523072047165595261642773691596936447
Found probable prime factor of 38 digits: 16523072047165595261642773691596936447
Probable prime cofactor 22561350968588670306828456331752498809520734670508670001053165704305612320536211623747877155590248407161680416719886192100467898646885071495422769572641351198848929591614779498393811645879534761 has 194 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaDecember 25, 2010 13:00:00 UTC 2010 年 12 月 25 日 (土) 22 時 0 分 0 秒 (日本時間)

10239+9

c181

composite cofactor 合成数の残り
2497836193097889334014264488129945941863986172647519815192827192746589627804881007507070606811257513030334591757267806066999682591555180124464776862017079509908723701841411161803579<181>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 25, 2010 13:00:00 UTC 2010 年 12 月 25 日 (土) 22 時 0 分 0 秒 (日本時間)
403e62000400Dmitry DomanovDecember 29, 2010 23:25:40 UTC 2010 年 12 月 30 日 (木) 8 時 25 分 40 秒 (日本時間)
300Serge BatalovJanuary 9, 2014 04:38:43 UTC 2014 年 1 月 9 日 (木) 13 時 38 分 43 秒 (日本時間)
1300Serge BatalovMay 26, 2014 18:01:27 UTC 2014 年 5 月 27 日 (火) 3 時 1 分 27 秒 (日本時間)
4511e64100300Dmitry DomanovDecember 29, 2010 23:25:40 UTC 2010 年 12 月 30 日 (木) 8 時 25 分 40 秒 (日本時間)
3800Thomas KozlowskiSeptember 29, 2024 03:19:55 UTC 2024 年 9 月 29 日 (日) 12 時 19 分 55 秒 (日本時間)

10240+9

c181

name 名前Erik Branger
date 日付November 9, 2024 16:02:18 UTC 2024 年 11 月 10 日 (日) 1 時 2 分 18 秒 (日本時間)
composite number 合成数
7534646894338556238645400776805029618233687319332463393005384702939551164384311187929283274522252318521374208972596707464012984870876596078848329749833386323065553037250270855130401<181>
prime factors 素因数
5387758520170312618547141170422172841166502547128112676577768669130941201<73>
1398475240887443904667894466429670632130059815140468424696302450641734648118225730157859909739983408897149201<109>
factorization results 素因数分解の結果
Number: 10009_240
N = 7534646894338556238645400776805029618233687319332463393005384702939551164384311187929283274522252318521374208972596707464012984870876596078848329749833386323065553037250270855130401 (181 digits)
SNFS difficulty: 241 digits.
Divisors found:
r1=5387758520170312618547141170422172841166502547128112676577768669130941201 (pp73)
r2=1398475240887443904667894466429670632130059815140468424696302450641734648118225730157859909739983408897149201 (pp109)
Version: Msieve v. 1.52 (SVN unknown)
Total time: 72.92 hours.
Factorization parameters were as follows:
n: 7534646894338556238645400776805029618233687319332463393005384702939551164384311187929283274522252318521374208972596707464012984870876596078848329749833386323065553037250270855130401
m: 1000000000000000000000000000000000000000000000000000000000000
deg: 4
c4: 1
c0: 9
skew: 1.00
type: snfs
lss: 1
rlim: 500000000
alim: 100000000
lpbr: 29
lpba: 29
mfbr: 58
mfba: 58
rlambda: 2.8
alambda: 2.8
side: 1
Number of cores used: 8
Number of threads per core: 1
Factor base limits: 500000000/100000000
Large primes per side: 3
Large prime bits: 29/29
Total raw relations: 71440696
Relations: 14158532 relations
Total pre-computation time approximately 1000 CPU-days.
Pre-computation saved approximately 18 G rational relations.
Total batch smoothness checking time: 23.02 hours.
Total relation processing time: 1.02 hours.
Pruned matrix : 10601731 x 10601979
Matrix solve time: 48.55 hours.
time per square root: 0.33 hours.
Prototype def-par.txt line would be: snfs,241,4,0,0,0,0,0,0,0,0,500000000,100000000,29,29,58,58,2.8,2.8,100000
total time: 72.92 hours.
Intel64 Family 6 Model 165 Stepping 5, GenuineIntel
Windows-10-10.0.22631-SP0
processors: 16, speed: 3.79GHz
software ソフトウェア
GGNFS, NFS_factory, Msieve

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 25, 2010 13:00:00 UTC 2010 年 12 月 25 日 (土) 22 時 0 分 0 秒 (日本時間)
403e62000400Dmitry DomanovDecember 29, 2010 23:25:53 UTC 2010 年 12 月 30 日 (木) 8 時 25 分 53 秒 (日本時間)
300Serge BatalovJanuary 9, 2014 04:38:44 UTC 2014 年 1 月 9 日 (木) 13 時 38 分 44 秒 (日本時間)
1300Serge BatalovMay 26, 2014 18:01:27 UTC 2014 年 5 月 27 日 (火) 3 時 1 分 27 秒 (日本時間)
4511e64104300Dmitry DomanovDecember 29, 2010 23:25:53 UTC 2010 年 12 月 30 日 (木) 8 時 25 分 53 秒 (日本時間)
3804Thomas KozlowskiSeptember 29, 2024 04:25:38 UTC 2024 年 9 月 29 日 (日) 13 時 25 分 38 秒 (日本時間)

10242+9

c238

name 名前Dmitry Domanov
date 日付December 26, 2010 07:00:12 UTC 2010 年 12 月 26 日 (日) 16 時 0 分 12 秒 (日本時間)
composite number 合成数
3092050338579512074456572152994650752914257444111190130175319254197458334621687641074796697690238397081104480380940601712995887573049689248940972759036517114498624037599332117126866825391917380414953155437370520392071982931882131041093349<238>
prime factors 素因数
1108512700684649280871502416400546777<37>
composite cofactor 合成数の残り
2789368436346983647932894801979093101859097867999660417447540170060977216840570978302924819095690546176607907993375747990676768593114671766771149545583157084991301266613396240865018959199619287677433837<202>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3402460584
Step 1 took 52135ms
Step 2 took 20226ms
********** Factor found in step 2: 1108512700684649280871502416400546777
Found probable prime factor of 37 digits: 1108512700684649280871502416400546777
Composite cofactor 2789368436346983647932894801979093101859097867999660417447540170060977216840570978302924819095690546176607907993375747990676768593114671766771149545583157084991301266613396240865018959199619287677433837 has 202 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 25, 2010 13:00:00 UTC 2010 年 12 月 25 日 (土) 22 時 0 分 0 秒 (日本時間)
403e6294Dmitry DomanovDecember 26, 2010 06:59:58 UTC 2010 年 12 月 26 日 (日) 15 時 59 分 58 秒 (日本時間)
4511e64598600Dmitry DomanovDecember 29, 2010 23:27:23 UTC 2010 年 12 月 30 日 (木) 8 時 27 分 23 秒 (日本時間)
896Youcef LemsaferMay 8, 2013 11:22:37 UTC 2013 年 5 月 8 日 (水) 20 時 22 分 37 秒 (日本時間)
300Serge BatalovMay 27, 2014 00:29:56 UTC 2014 年 5 月 27 日 (火) 9 時 29 分 56 秒 (日本時間)
2802Thomas KozlowskiSeptember 29, 2024 05:21:30 UTC 2024 年 9 月 29 日 (日) 14 時 21 分 30 秒 (日本時間)

10243+9

c212

name 名前Serge Batalov
date 日付December 26, 2010 01:32:26 UTC 2010 年 12 月 26 日 (日) 10 時 32 分 26 秒 (日本時間)
composite number 合成数
16479163678427227151045947737473068025532728963834843969328367046411740523163551449131976351251637186556235489254527130254707586251926368831939216762673716227644204692266872302268805158101433134262868357225292357<212>
prime factors 素因数
49403373495286302519554559851037430051<38>
333563530433798103362723352339645963230328836163085078670047427654675661107191114232510532422012468679266175855991370740665878450033397349361570852197244512632706767994182007<174>
factorization results 素因数分解の結果
Using B1=2000000, B2=2853999340, polynomial Dickson(6), sigma=2154317645
Step 1 took 7143ms
Step 2 took 3498ms
********** Factor found in step 2: 49403373495286302519554559851037430051
Found probable prime factor of 38 digits: 49403373495286302519554559851037430051
Probable prime cofactor 333563530433798103362723352339645963230328836163085078670047427654675661107191114232510532422012468679266175855991370740665878450033397349361570852197244512632706767994182007 has 174 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaDecember 25, 2010 13:00:00 UTC 2010 年 12 月 25 日 (土) 22 時 0 分 0 秒 (日本時間)

10244+9

c243

name 名前Dmitry Domanov
date 日付December 27, 2010 21:59:27 UTC 2010 年 12 月 28 日 (火) 6 時 59 分 27 秒 (日本時間)
composite number 合成数
103092783505154639175257731958762886597938144329896907216494845360824742268041237113402061855670103092783505154639175257731958762886597938144329896907216494845360824742268041237113402061855670103092783505154639175257731958762886597938144329897<243>
prime factors 素因数
3561432134624197142293653032441273417928677<43>
composite cofactor 合成数の残り
28947002107070335986937572595595491162868090265411721723415044877193771146316201020976456305637886559462539259692011569695632818008591478789308353333997782885026233202240367431308390154927892691007861<200>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1494080447
Step 1 took 216882ms
Step 2 took 79245ms
********** Factor found in step 2: 3561432134624197142293653032441273417928677
Found probable prime factor of 43 digits: 3561432134624197142293653032441273417928677
Composite cofactor 28947002107070335986937572595595491162868090265411721723415044877193771146316201020976456305637886559462539259692011569695632818008591478789308353333997782885026233202240367431308390154927892691007861 has 200 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6418118Makoto KamadaDecember 25, 2010 13:00:00 UTC 2010 年 12 月 25 日 (土) 22 時 0 分 0 秒 (日本時間)
300Ignacio SantosDecember 26, 2010 10:11:38 UTC 2010 年 12 月 26 日 (日) 19 時 11 分 38 秒 (日本時間)
403e6810110Ignacio SantosDecember 26, 2010 10:11:38 UTC 2010 年 12 月 26 日 (日) 19 時 11 分 38 秒 (日本時間)
400Dmitry DomanovDecember 27, 2010 21:59:05 UTC 2010 年 12 月 28 日 (火) 6 時 59 分 5 秒 (日本時間)
300Serge BatalovJanuary 9, 2014 04:38:44 UTC 2014 年 1 月 9 日 (木) 13 時 38 分 44 秒 (日本時間)
4511e6419632Ignacio SantosDecember 26, 2010 10:11:38 UTC 2010 年 12 月 26 日 (日) 19 時 11 分 38 秒 (日本時間)
263Dmitry DomanovDecember 27, 2010 21:59:05 UTC 2010 年 12 月 28 日 (火) 6 時 59 分 5 秒 (日本時間)
300Serge BatalovMay 27, 2014 00:29:57 UTC 2014 年 5 月 27 日 (火) 9 時 29 分 57 秒 (日本時間)
3601Thomas KozlowskiSeptember 29, 2024 06:32:18 UTC 2024 年 9 月 29 日 (日) 15 時 32 分 18 秒 (日本時間)
5043e632 / 6559CypFebruary 20, 2014 20:38:56 UTC 2014 年 2 月 21 日 (金) 5 時 38 分 56 秒 (日本時間)
5511e78 / 17489CypFebruary 20, 2014 20:13:21 UTC 2014 年 2 月 21 日 (金) 5 時 13 分 21 秒 (日本時間)

10246+9

c231

composite cofactor 合成数の残り
563246966593273513729722464637506585345814660176193204408164558645337196684824171163739429913420371172343395274733371423101830297822589118883590921829684084155777591835157504764505695262366886879239219928900220512719961684049859529<231>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 25, 2010 13:00:00 UTC 2010 年 12 月 25 日 (土) 22 時 0 分 0 秒 (日本時間)
403e6400Dmitry DomanovDecember 29, 2010 23:27:52 UTC 2010 年 12 月 30 日 (木) 8 時 27 分 52 秒 (日本時間)
4511e64400300Dmitry DomanovDecember 29, 2010 23:27:52 UTC 2010 年 12 月 30 日 (木) 8 時 27 分 52 秒 (日本時間)
4100Dmitry DomanovJuly 25, 2011 14:03:44 UTC 2011 年 7 月 25 日 (月) 23 時 3 分 44 秒 (日本時間)
5043e60--
5511e72730 / 17491yoyo@homeAugust 23, 2011 08:30:05 UTC 2011 年 8 月 23 日 (火) 17 時 30 分 5 秒 (日本時間)

10247+9

c184

name 名前Dmitry Domanov
date 日付December 26, 2010 11:23:33 UTC 2010 年 12 月 26 日 (日) 20 時 23 分 33 秒 (日本時間)
composite number 合成数
3909194610996417164112173390110469080449692791770891571497605392029427214024757151539295063377372582743431026525389839955870376472252615629149765187085876622682770950430024588870725477<184>
prime factors 素因数
57505123923704156524034473205766533412309931<44>
composite cofactor 合成数の残り
67979935425980538306099964904570220516769139593344491245001277889060326053420916455826628019399996108854297071201173245590154668104081957167<140>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=3179959723
Step 1 took 150842ms
Step 2 took 54817ms
********** Factor found in step 2: 57505123923704156524034473205766533412309931
Found probable prime factor of 44 digits: 57505123923704156524034473205766533412309931
Composite cofactor 67979935425980538306099964904570220516769139593344491245001277889060326053420916455826628019399996108854297071201173245590154668104081957167 has 140 digits

c140

name 名前Sinkiti Sibata
date 日付May 21, 2011 22:17:53 UTC 2011 年 5 月 22 日 (日) 7 時 17 分 53 秒 (日本時間)
composite number 合成数
67979935425980538306099964904570220516769139593344491245001277889060326053420916455826628019399996108854297071201173245590154668104081957167<140>
prime factors 素因数
6639241905730002148516281386617561744154232541013<49>
10239111089974054080127996434337718314682420859326890458593135660613274098889035257168479859<92>
factorization results 素因数分解の結果
Number: 10009_247
N=67979935425980538306099964904570220516769139593344491245001277889060326053420916455826628019399996108854297071201173245590154668104081957167
  ( 140 digits)
Divisors found:
 r1=6639241905730002148516281386617561744154232541013 (pp49)
 r2=10239111089974054080127996434337718314682420859326890458593135660613274098889035257168479859 (pp92)
Version: Msieve v. 1.42
Total time: 17.93 hours.
Scaled time: 18.34 units (timescale=1.023).
Factorization parameters were as follows:
name: 10009_247
# Murphy_E = 1.841e-11, selected by Andreas Tete
n: 67979935425980538306099964904570220516769139593344491245001277889060326053420916455826628019399996108854297071201173245590154668104081957167
Y0: -1173276731245140523216274788
Y1: 3546696199572613
c0: -89132043044719404674413456482585
c1: 4841380113480259870133771903
c2: 13226493282698444238840
c3: -325522425631172722
c4: -51482578668
c5: 30576
skew: 514615.02
type: gnfs
# selected mechanically
rlim: 18000000
alim: 18000000
lpbr: 28
lpba: 28
mfbr: 55
mfba: 55
rlambda: 2.6
alambda: 2.6
Factor base limits: 18000000/18000000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 55/55
Sieved algebraic special-q in [9000000, 17200001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 2476320 x 2476545
Total sieving time: 0.00 hours.
Total relation processing time: 0.25 hours.
Matrix solve time: 17.06 hours.
Time per square root: 0.62 hours.
Prototype def-par.txt line would be:
gnfs,139,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,18000000,18000000,28,28,55,55,2.6,2.6,100000
total time: 17.93 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM)2 Quad CPU    Q6600  @ 2.40GHz stepping 0b
CPU1: Intel(R) Core(TM)2 Quad CPU    Q6600  @ 2.40GHz stepping 0b
CPU2: Intel(R) Core(TM)2 Quad CPU    Q6600  @ 2.40GHz stepping 0b
CPU3: Intel(R) Core(TM)2 Quad CPU    Q6600  @ 2.40GHz stepping 0b
Memory: 3057976k/3145344k available (3786k kernel code, 496k absent, 86872k reserved, 2294k data, 1304k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 4788.09 BogoMIPS (lpj=2394045)
Calibrating delay using timer specific routine.. 4787.75 BogoMIPS (lpj=2393879)
Calibrating delay using timer specific routine.. 4787.77 BogoMIPS (lpj=2393885)
Calibrating delay using timer specific routine.. 4787.78 BogoMIPS (lpj=2393892)
Total of 4 processors activated (19151.40 BogoMIPS).

Total time: 17 days.

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 25, 2010 13:00:00 UTC 2010 年 12 月 25 日 (土) 22 時 0 分 0 秒 (日本時間)
403e6400Dmitry DomanovDecember 26, 2010 11:23:18 UTC 2010 年 12 月 26 日 (日) 20 時 23 分 18 秒 (日本時間)
4511e6439068Dmitry DomanovDecember 26, 2010 11:23:18 UTC 2010 年 12 月 26 日 (日) 20 時 23 分 18 秒 (日本時間)
500Dmitry DomanovDecember 27, 2010 13:35:34 UTC 2010 年 12 月 27 日 (月) 22 時 35 分 34 秒 (日本時間)
3165Wataru SakaiJanuary 7, 2011 04:22:57 UTC 2011 年 1 月 7 日 (金) 13 時 22 分 57 秒 (日本時間)
27Andreas TeteMarch 4, 2011 09:41:26 UTC 2011 年 3 月 4 日 (金) 18 時 41 分 26 秒 (日本時間)
230Andreas TeteMarch 23, 2011 22:27:28 UTC 2011 年 3 月 24 日 (木) 7 時 27 分 28 秒 (日本時間)
400Andreas TeteMarch 24, 2011 08:22:06 UTC 2011 年 3 月 24 日 (木) 17 時 22 分 6 秒 (日本時間)

10249+9

c223

name 名前Dmitry Domanov
date 日付December 26, 2010 06:59:10 UTC 2010 年 12 月 26 日 (日) 15 時 59 分 10 秒 (日本時間)
composite number 合成数
9944344520227294681861760187424552795941445594337726539921340514251166246921156666281273393476663270705406219075759024105126018737413202330198189049869457623993601240913826936166752485797797283087977316004330845908654461691<223>
prime factors 素因数
287988017390985032740006777101887<33>
34530410710548491049445566809774225969910811606174778111424887033500819284044886554408222353700198282309342588482309568263330041523171112286919829287232396982234604815399914898244044882842693<191>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3339507168
Step 1 took 51483ms
Step 2 took 20773ms
********** Factor found in step 2: 287988017390985032740006777101887
Found probable prime factor of 33 digits: 287988017390985032740006777101887
Probable prime cofactor 34530410710548491049445566809774225969910811606174778111424887033500819284044886554408222353700198282309342588482309568263330041523171112286919829287232396982234604815399914898244044882842693 has 191 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaDecember 25, 2010 13:00:00 UTC 2010 年 12 月 25 日 (土) 22 時 0 分 0 秒 (日本時間)

10250+9

c185

composite cofactor 合成数の残り
88222295497941471953003790136166453010130489490395797700226088135015022414549786853205174121738189462902211726861434688184800950017295797106406027979740245077365027332692361000423169801<185>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaDecember 25, 2010 13:00:00 UTC 2010 年 12 月 25 日 (土) 22 時 0 分 0 秒 (日本時間)
403e6400Dmitry DomanovDecember 29, 2010 23:28:16 UTC 2010 年 12 月 30 日 (木) 8 時 28 分 16 秒 (日本時間)
4511e65600300Dmitry DomanovDecember 29, 2010 23:28:16 UTC 2010 年 12 月 30 日 (木) 8 時 28 分 16 秒 (日本時間)
300Dmitry DomanovMarch 2, 2011 22:28:27 UTC 2011 年 3 月 3 日 (木) 7 時 28 分 27 秒 (日本時間)
5000Dmitry DomanovJuly 25, 2011 14:01:40 UTC 2011 年 7 月 25 日 (月) 23 時 1 分 40 秒 (日本時間)
5043e60--
5511e72620 / 17416yoyo@homeAugust 29, 2011 12:15:07 UTC 2011 年 8 月 29 日 (月) 21 時 15 分 7 秒 (日本時間)

10251+9

c228

composite cofactor 合成数の残り
170022432512522049660598207804730079306254787965463413019256412068380540328977609211235428820622560580404574509076980210103903997514487157283163084443776641652258877286622821085538234737458161503753757967975195960155380804118419<228>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaOctober 27, 2015 09:00:00 UTC 2015 年 10 月 27 日 (火) 18 時 0 分 0 秒 (日本時間)
351e60--
403e6600Dmitry DomanovApril 10, 2016 09:57:55 UTC 2016 年 4 月 10 日 (日) 18 時 57 分 55 秒 (日本時間)
4511e64400600Dmitry DomanovSeptember 27, 2016 06:17:46 UTC 2016 年 9 月 27 日 (火) 15 時 17 分 46 秒 (日本時間)
3800Thomas KozlowskiSeptember 29, 2024 07:57:43 UTC 2024 年 9 月 29 日 (日) 16 時 57 分 43 秒 (日本時間)

10252+9

c250

name 名前Dmitry Domanov
date 日付October 29, 2015 08:52:22 UTC 2015 年 10 月 29 日 (木) 17 時 52 分 22 秒 (日本時間)
composite number 合成数
1062699256110520722635494155154091392136025504782146652497343251859723698193411264612114771519659936238044633368756641870350690754516471838469713071200850159404888416578108395324123273113708820403825717321997874601487778958554729011689691817215727949<250>
prime factors 素因数
11232313824946554381139116795299717<35>
composite cofactor 合成数の残り
94610894306594684237527677821884744985995545622728188078274856252606320560043094976520039903072921061503599961547688204129241177002267865043552909976526970450266496362596162777498603018963542267178183537686260736297<215>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3853903575
Step 1 took 36288ms
Step 2 took 10707ms
********** Factor found in step 2: 11232313824946554381139116795299717
Found probable prime factor of 35 digits: 11232313824946554381139116795299717

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaOctober 27, 2015 09:00:00 UTC 2015 年 10 月 27 日 (火) 18 時 0 分 0 秒 (日本時間)
351e60--
403e6600Dmitry DomanovOctober 29, 2015 07:29:41 UTC 2015 年 10 月 29 日 (木) 16 時 29 分 41 秒 (日本時間)
4511e64400600Dmitry DomanovSeptember 27, 2016 06:21:01 UTC 2016 年 9 月 27 日 (火) 15 時 21 分 1 秒 (日本時間)
3800Thomas KozlowskiSeptember 29, 2024 09:23:00 UTC 2024 年 9 月 29 日 (日) 18 時 23 分 0 秒 (日本時間)

10253+9

c215

composite cofactor 合成数の残り
55637082395033255789416271119643855208498481334645173383672573566988568205855968010820032290902273010132048901318311278542344628287488298480622860933934693783486196167760274629979236018626456327234463328595261851979<215>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaOctober 27, 2015 09:00:00 UTC 2015 年 10 月 27 日 (火) 18 時 0 分 0 秒 (日本時間)
351e60--
403e6600Dmitry DomanovApril 10, 2016 09:58:10 UTC 2016 年 4 月 10 日 (日) 18 時 58 分 10 秒 (日本時間)
4511e64402600Dmitry DomanovSeptember 27, 2016 06:21:30 UTC 2016 年 9 月 27 日 (火) 15 時 21 分 30 秒 (日本時間)
3802Thomas KozlowskiSeptember 29, 2024 10:48:21 UTC 2024 年 9 月 29 日 (日) 19 時 48 分 21 秒 (日本時間)

10256+9

c231

name 名前Thomas Kozlowski
date 日付September 29, 2024 17:35:23 UTC 2024 年 9 月 30 日 (月) 2 時 35 分 23 秒 (日本時間)
composite number 合成数
299279430862387936394096779640669428426447297239868639366604452737269830230536417057484337414181097092144608899143908113533614936651918871135098104280139170030917008818502117758416365996812953399025789774311748376032638631762541213<231>
prime factors 素因数
17370045089701791693698656425539266122547417<44>
17229628899456469680724609779587673374442404692745367154148621955938425389115752135691975918633786602933208141945227488662804799751586244198753145620166808529557044652898114039318431788389<188>
factorization results 素因数分解の結果
GMP-ECM 7.0.6 [configured with GMP 6.3.0, --enable-asm-redc] [ECM]
Input number is 299279430862387936394096779640669428426447297239868639366604452737269830230536417057484337414181097092144608899143908113533614936651918871135098104280139170030917008818502117758416365996812953399025789774311748376032638631762541213 (231 digits)
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:2646426278
Step 1 took 37246ms
Step 2 took 15267ms
Run 2 out of 0:
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:283818974
Step 1 took 38327ms
Step 2 took 15091ms
Run 3 out of 0:
...
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:1175715336
Step 1 took 39215ms
Step 2 took 14935ms
Run 77 out of 0:
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:758100887
Step 1 took 37941ms
Step 2 took 14970ms
** Factor found in step 2: 17370045089701791693698656425539266122547417
Found prime factor of 44 digits: 17370045089701791693698656425539266122547417
Prime cofactor 17229628899456469680724609779587673374442404692745367154148621955938425389115752135691975918633786602933208141945227488662804799751586244198753145620166808529557044652898114039318431788389 has 188 digits
execution environment 実行環境
2x Xeon E5-2698v4, 128GB DDR4, Ubuntu Server 24.04

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaOctober 27, 2015 09:00:00 UTC 2015 年 10 月 27 日 (火) 18 時 0 分 0 秒 (日本時間)
351e60--
403e6600Dmitry DomanovApril 10, 2016 09:58:24 UTC 2016 年 4 月 10 日 (日) 18 時 58 分 24 秒 (日本時間)
4511e6600 / 4346Dmitry DomanovSeptember 27, 2016 06:22:10 UTC 2016 年 9 月 27 日 (火) 15 時 22 分 10 秒 (日本時間)

10258+9

c249

name 名前Dmitry Domanov
date 日付September 27, 2016 13:54:40 UTC 2016 年 9 月 27 日 (火) 22 時 54 分 40 秒 (日本時間)
composite number 合成数
448305860826654479716913964649873344605783960535057653480861419550188306685180437484985704357705609822085887488542719964555575793227783803962442536328477760499118496858315340536514351646679901017311663907075856938547062412030594057847389733543928837<249>
prime factors 素因数
872190341427559621937098566113547400157<39>
composite cofactor 合成数の残り
514000029045138005744914660572194147034054106685609971736497868345970839546910829304628872544850978833790225779010672906443279202163597970228428818858424446584894925280580739946957187762554722570795719505863241<210>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1761657942
Step 1 took 87344ms
Step 2 took 26790ms
********** Factor found in step 2: 872190341427559621937098566113547400157
Found probable prime factor of 39 digits: 872190341427559621937098566113547400157

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaOctober 27, 2015 09:00:00 UTC 2015 年 10 月 27 日 (火) 18 時 0 分 0 秒 (日本時間)
351e60--
403e6600Dmitry DomanovApril 10, 2016 09:58:36 UTC 2016 年 4 月 10 日 (日) 18 時 58 分 36 秒 (日本時間)
4511e64402600Dmitry DomanovSeptember 27, 2016 11:28:02 UTC 2016 年 9 月 27 日 (火) 20 時 28 分 2 秒 (日本時間)
3802Thomas KozlowskiSeptember 29, 2024 13:12:46 UTC 2024 年 9 月 29 日 (日) 22 時 12 分 46 秒 (日本時間)

10259+9

c249

composite cofactor 合成数の残り
537232894571938680339917595203351902014539766578703603335416894233931943032089682427856532014170395862670928899319946270773044855322899713123710402622353324958648629411834234247549091732280956641102044154128191139802517832870961810088876510930775969<249>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaOctober 27, 2015 09:00:00 UTC 2015 年 10 月 27 日 (火) 18 時 0 分 0 秒 (日本時間)
351e60--
403e6600Dmitry DomanovApril 10, 2016 09:58:48 UTC 2016 年 4 月 10 日 (日) 18 時 58 分 48 秒 (日本時間)
4511e64401600Dmitry DomanovSeptember 27, 2016 11:51:19 UTC 2016 年 9 月 27 日 (火) 20 時 51 分 19 秒 (日本時間)
3801Thomas KozlowskiSeptember 29, 2024 14:50:43 UTC 2024 年 9 月 29 日 (日) 23 時 50 分 43 秒 (日本時間)

10260+9

c219

name 名前Dmitry Domanov
date 日付September 27, 2016 08:42:54 UTC 2016 年 9 月 27 日 (火) 17 時 42 分 54 秒 (日本時間)
composite number 合成数
148801322036872754520107638735636024541154252760365389086031146701504792458577598850541257916146931549157902718266011270754636710963068455668826170420072562558895783495885179005798833262303500322163537087216628319333021<219>
prime factors 素因数
1259598719466871808552162241871969687153<40>
118133910218528383724915913017296532172584722058583961940736281536214949610393608231843124855635675833463922858080575249086522889137551143386326044714400880818492091958122493650157<180>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=3066206910
Step 1 took 75367ms
Step 2 took 22131ms
********** Factor found in step 2: 1259598719466871808552162241871969687153
Found probable prime factor of 40 digits: 1259598719466871808552162241871969687153

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaOctober 27, 2015 09:00:00 UTC 2015 年 10 月 27 日 (火) 18 時 0 分 0 秒 (日本時間)
351e60--
403e6600Dmitry DomanovApril 10, 2016 09:59:40 UTC 2016 年 4 月 10 日 (日) 18 時 59 分 40 秒 (日本時間)
4511e6600 / 4346Dmitry DomanovSeptember 27, 2016 06:22:53 UTC 2016 年 9 月 27 日 (火) 15 時 22 分 53 秒 (日本時間)

10261+9

c252

name 名前Thomas Kozlowski
date 日付September 29, 2024 17:36:00 UTC 2024 年 9 月 30 日 (月) 2 時 36 分 0 秒 (日本時間)
composite number 合成数
309125057534626192769969796265452204497696571790221426096328268796451675630782763617464899400732358251282158542105219745347841071417359573136453941783302041907236429061513008804230022525995493807991553600469948728867268621913794770639657281877323003129<252>
prime factors 素因数
125665242334576969090029657400723232677<39>
composite cofactor 合成数の残り
2459908975559027718182172119021833750819097621025236772450401403114655371853454907863689025848449821315831074718927777582770842108261370452839923222515659908457989062091939606946155282618237560549772015927834331077<214>
factorization results 素因数分解の結果
GMP-ECM 7.0.6 [configured with GMP 6.3.0, --enable-asm-redc] [ECM]
Input number is 309125057534626192769969796265452204497696571790221426096328268796451675630782763617464899400732358251282158542105219745347841071417359573136453941783302041907236429061513008804230022525995493807991553600469948728867268621913794770639657281877323003129 (252 digits)
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:1892173439
Step 1 took 50527ms
Step 2 took 17457ms
Run 2 out of 0:
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:593022148
Step 1 took 49177ms
Step 2 took 17459ms
Run 3 out of 0:
...
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:2489038861
Step 1 took 48626ms
Step 2 took 17826ms
Run 10 out of 0:
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:1604407724
Step 1 took 48604ms
Step 2 took 17403ms
** Factor found in step 2: 125665242334576969090029657400723232677
Found prime factor of 39 digits: 125665242334576969090029657400723232677
Composite cofactor 2459908975559027718182172119021833750819097621025236772450401403114655371853454907863689025848449821315831074718927777582770842108261370452839923222515659908457989062091939606946155282618237560549772015927834331077 has 214 digits
execution environment 実行環境
2x Xeon E5-2698v4, 128GB DDR4, Ubuntu Server 24.04

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaOctober 27, 2015 09:00:00 UTC 2015 年 10 月 27 日 (火) 18 時 0 分 0 秒 (日本時間)
351e60--
403e6600Dmitry DomanovApril 10, 2016 09:59:56 UTC 2016 年 4 月 10 日 (日) 18 時 59 分 56 秒 (日本時間)
4511e6600 / 4346Dmitry DomanovSeptember 27, 2016 08:43:12 UTC 2016 年 9 月 27 日 (火) 17 時 43 分 12 秒 (日本時間)

10263+9

c246

name 名前Dmitry Domanov
date 日付September 27, 2016 11:51:09 UTC 2016 年 9 月 27 日 (火) 20 時 51 分 9 秒 (日本時間)
composite number 合成数
596031251532962710332610747677556836904256151359572776956423546385075966460122329816364730921755252585133827098779024894551874619907302914927667595939692166590859283284675597619629924511784139501039388350957804863438565062905839078325416713514943<246>
prime factors 素因数
748282494904914150344547263129023<33>
composite cofactor 合成数の残り
796532399984449282571054981159864687826502843047567592557217186143898457891372256572303617472855028450151842374364763096986844211575720194049226343033304399880353528916377272643968327704265775704957848362119575041<213>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=2933961561
Step 1 took 101310ms
Step 2 took 29401ms
********** Factor found in step 2: 748282494904914150344547263129023
Found probable prime factor of 33 digits: 748282494904914150344547263129023

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaOctober 27, 2015 09:00:00 UTC 2015 年 10 月 27 日 (火) 18 時 0 分 0 秒 (日本時間)
351e60--
403e6600Dmitry DomanovApril 10, 2016 10:00:08 UTC 2016 年 4 月 10 日 (日) 19 時 0 分 8 秒 (日本時間)
4511e64401600Dmitry DomanovSeptember 27, 2016 09:00:22 UTC 2016 年 9 月 27 日 (火) 18 時 0 分 22 秒 (日本時間)
3801Thomas KozlowskiSeptember 29, 2024 16:27:42 UTC 2024 年 9 月 30 日 (月) 1 時 27 分 42 秒 (日本時間)

10264+9

c193

name 名前Dmitry Domanov
date 日付September 27, 2016 11:24:33 UTC 2016 年 9 月 27 日 (火) 20 時 24 分 33 秒 (日本時間)
composite number 合成数
7501177702671602604513930130333978044607379845437131102319281791004229408828977249021560558318443424956993617228625489760144150565615739808030920925326385991644536520840589511287536559091969437<193>
prime factors 素因数
25697196965205596848300526847756440401<38>
291906456288921843390725331386984309732753644680394472347649554516088049018257912585230606472428576813082549304508484674702828583221979031462634288945834637<156>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=3094815671
Step 1 took 109728ms
Step 2 took 34737ms
********** Factor found in step 2: 25697196965205596848300526847756440401
Found probable prime factor of 38 digits: 25697196965205596848300526847756440401

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaOctober 27, 2015 09:00:00 UTC 2015 年 10 月 27 日 (火) 18 時 0 分 0 秒 (日本時間)
351e60--
403e6600Dmitry DomanovApril 10, 2016 10:00:24 UTC 2016 年 4 月 10 日 (日) 19 時 0 分 24 秒 (日本時間)
4511e6600 / 4346Dmitry DomanovSeptember 27, 2016 08:44:01 UTC 2016 年 9 月 27 日 (火) 17 時 44 分 1 秒 (日本時間)

10265+9

c208

composite cofactor 合成数の残り
3300220408245454912802632798789223988450582485880878568416970702564797670573762384642280042939993043880276149316064437244515643550716005102429016548308822069249621989904662467216036745578012779155250659802927<208>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaOctober 27, 2015 09:00:00 UTC 2015 年 10 月 27 日 (火) 18 時 0 分 0 秒 (日本時間)
351e60--
403e6600Dmitry DomanovApril 10, 2016 10:00:37 UTC 2016 年 4 月 10 日 (日) 19 時 0 分 37 秒 (日本時間)
4511e64400600Dmitry DomanovSeptember 27, 2016 08:59:55 UTC 2016 年 9 月 27 日 (火) 17 時 59 分 55 秒 (日本時間)
3800Thomas KozlowskiSeptember 29, 2024 17:42:59 UTC 2024 年 9 月 30 日 (月) 2 時 42 分 59 秒 (日本時間)

10266+9

c238

name 名前Dmitry Domanov
date 日付September 27, 2016 14:24:15 UTC 2016 年 9 月 27 日 (火) 23 時 24 分 15 秒 (日本時間)
composite number 合成数
1862004736277434112943448844981928936267536465254458336547466619531907131307445219272547991521270465012816117246323062501965590689723112948155961066485785504478256037912393539091903615389435250698290870536900119764672600986429335122055969<238>
prime factors 素因数
55335204220852499854201848620754451681<38>
composite cofactor 合成数の残り
33649550272659098107906995420168392828868770707702493416178818331610092797926437391906593210106701822208047208422186165399647681146908008019931314061949830491031426026645911435335994361482092851715649<200>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=2460249250
Step 1 took 133974ms
Step 2 took 41190ms
********** Factor found in step 2: 55335204220852499854201848620754451681
Found probable prime factor of 38 digits: 55335204220852499854201848620754451681

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaOctober 27, 2015 09:00:00 UTC 2015 年 10 月 27 日 (火) 18 時 0 分 0 秒 (日本時間)
351e60--
403e6600Dmitry DomanovApril 10, 2016 12:49:03 UTC 2016 年 4 月 10 日 (日) 21 時 49 分 3 秒 (日本時間)
4511e64400600Dmitry DomanovSeptember 27, 2016 11:24:47 UTC 2016 年 9 月 27 日 (火) 20 時 24 分 47 秒 (日本時間)
3800Thomas KozlowskiSeptember 29, 2024 18:57:44 UTC 2024 年 9 月 30 日 (月) 3 時 57 分 44 秒 (日本時間)

10267+9

c223

composite cofactor 合成数の残り
3123453486756578436177541401303376521631545426035857639543232474675973902413853253384487080925006851984640090361866415750836931563779926023408712375794574121447797844072622139735001075887683996657010306978285919727225894343<223>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaOctober 27, 2015 09:00:00 UTC 2015 年 10 月 27 日 (火) 18 時 0 分 0 秒 (日本時間)
351e60--
403e6600Dmitry DomanovApril 10, 2016 12:49:17 UTC 2016 年 4 月 10 日 (日) 21 時 49 分 17 秒 (日本時間)
4511e64400600Dmitry DomanovSeptember 28, 2016 11:07:24 UTC 2016 年 9 月 28 日 (水) 20 時 7 分 24 秒 (日本時間)
3800Thomas KozlowskiSeptember 29, 2024 20:23:15 UTC 2024 年 9 月 30 日 (月) 5 時 23 分 15 秒 (日本時間)

10268+9

c248

composite cofactor 合成数の残り
87616183299223472636256547096583667958579520741990857874560831940705255057842129682487492680851224226970456335640573915231262687010606714543271956020725839947882248096233453495371366215098868356760539839025235133571230191823131433096388435129336897<248>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaOctober 27, 2015 09:00:00 UTC 2015 年 10 月 27 日 (火) 18 時 0 分 0 秒 (日本時間)
351e60--
403e6600Dmitry DomanovApril 10, 2016 12:49:28 UTC 2016 年 4 月 10 日 (日) 21 時 49 分 28 秒 (日本時間)
4511e64401600Dmitry DomanovSeptember 28, 2016 11:08:10 UTC 2016 年 9 月 28 日 (水) 20 時 8 分 10 秒 (日本時間)
3801Thomas KozlowskiSeptember 29, 2024 22:00:52 UTC 2024 年 9 月 30 日 (月) 7 時 0 分 52 秒 (日本時間)

10269+9

c183

composite cofactor 合成数の残り
350477233443027267567069266506818833404724550773860831372734002812637709484903700554079016527996894642294358446785802048913714597977350998657192849054899334521030407322956568150618413<183>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaOctober 27, 2015 09:00:00 UTC 2015 年 10 月 27 日 (火) 18 時 0 分 0 秒 (日本時間)
351e60--
403e6894294KTakahashiOctober 28, 2015 09:53:30 UTC 2015 年 10 月 28 日 (水) 18 時 53 分 30 秒 (日本時間)
600Dmitry DomanovOctober 29, 2015 07:12:09 UTC 2015 年 10 月 29 日 (木) 16 時 12 分 9 秒 (日本時間)
4511e60--
5043e63292 / 75201500Erik BrangerNovember 13, 2015 22:59:27 UTC 2015 年 11 月 14 日 (土) 7 時 59 分 27 秒 (日本時間)
1792Dmitry DomanovApril 21, 2024 16:52:57 UTC 2024 年 4 月 22 日 (月) 1 時 52 分 57 秒 (日本時間)

10271+9

c250

name 名前Dmitry Domanov
date 日付September 29, 2016 15:25:59 UTC 2016 年 9 月 30 日 (金) 0 時 25 分 59 秒 (日本時間)
composite number 合成数
3685714114943769440209555899457008487366868709759855488208089651534562481761158464381803973093012405477795480251159578735669830376176346071968976590050241708190770347991979998719210911856493726252928418827864672899859017600035245275207587066831926859<250>
prime factors 素因数
8359410144052104973958909307921824806534973<43>
2122654555412579024752451557026047219008942049<46>
207714440384304372907544357413715537345031679318507034536649731281644772300544926099291722340181835056383141557418404803511851729223324754430523728545864270050567<162>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=4061673962
Step 1 took 136107ms
Step 2 took 44871ms
********** Factor found in step 2: 2122654555412579024752451557026047219008942049
Found probable prime factor of 46 digits: 2122654555412579024752451557026047219008942049


Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1546027844
Step 1 took 91809ms
Step 2 took 31854ms
********** Factor found in step 2: 8359410144052104973958909307921824806534973
Found probable prime factor of 43 digits: 8359410144052104973958909307921824806534973

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaOctober 27, 2015 09:00:00 UTC 2015 年 10 月 27 日 (火) 18 時 0 分 0 秒 (日本時間)
351e60--
403e6600Dmitry DomanovApril 10, 2016 12:49:46 UTC 2016 年 4 月 10 日 (日) 21 時 49 分 46 秒 (日本時間)
4511e6600 / 4346Dmitry DomanovSeptember 28, 2016 21:58:52 UTC 2016 年 9 月 29 日 (木) 6 時 58 分 52 秒 (日本時間)

10273+9

c263

composite cofactor 合成数の残り
21389658822985168001109903236102959347849208559269250562907603251568416342165113415334148672291041191569025358370364507610653553966535003634938621047099958976535918183811155306504263552213523911241777962496456718259449420841887940130947971726052362749668132539849<263>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaOctober 27, 2015 09:00:00 UTC 2015 年 10 月 27 日 (火) 18 時 0 分 0 秒 (日本時間)
351e60--
403e6600Dmitry DomanovApril 10, 2016 12:50:00 UTC 2016 年 4 月 10 日 (日) 21 時 50 分 0 秒 (日本時間)
4511e64401600Dmitry DomanovSeptember 30, 2016 06:36:49 UTC 2016 年 9 月 30 日 (金) 15 時 36 分 49 秒 (日本時間)
3801Thomas KozlowskiSeptember 29, 2024 23:49:59 UTC 2024 年 9 月 30 日 (月) 8 時 49 分 59 秒 (日本時間)

10275+9

c274

composite cofactor 合成数の残り
1098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901099<274>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaOctober 27, 2015 09:00:00 UTC 2015 年 10 月 27 日 (火) 18 時 0 分 0 秒 (日本時間)
351e60--
403e6600Dmitry DomanovOctober 28, 2015 23:08:29 UTC 2015 年 10 月 29 日 (木) 8 時 8 分 29 秒 (日本時間)
4511e6800Dmitry DomanovJanuary 23, 2016 15:43:16 UTC 2016 年 1 月 24 日 (日) 0 時 43 分 16 秒 (日本時間)
5043e67500Erik BrangerDecember 15, 2018 09:09:11 UTC 2018 年 12 月 15 日 (土) 18 時 9 分 11 秒 (日本時間)

10276+9

c230

composite cofactor 合成数の残り
53291742195221618305724450436741763355516836353128715589686756922583358142398535905428832895647233538170718698880095667508858976643537501841382771900006184052065276724274575208441350014207789974760017766480028457915046157906669157<230>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaOctober 27, 2015 09:00:00 UTC 2015 年 10 月 27 日 (火) 18 時 0 分 0 秒 (日本時間)
351e60--
403e6600Dmitry DomanovApril 10, 2016 12:53:20 UTC 2016 年 4 月 10 日 (日) 21 時 53 分 20 秒 (日本時間)
4511e64404600Dmitry DomanovSeptember 28, 2016 21:59:06 UTC 2016 年 9 月 29 日 (木) 6 時 59 分 6 秒 (日本時間)
3804Thomas KozlowskiSeptember 30, 2024 01:16:30 UTC 2024 年 9 月 30 日 (月) 10 時 16 分 30 秒 (日本時間)

10277+9

c261

composite cofactor 合成数の残り
390299481060058509717793705711151206315708741295127531991423341874252931085195759818246134111352142401306978558606845555533361796149619969431771589147342376850192173605254764042745757324583598800637525879131631444546920125977314907188757341459153256420312052407<261>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaOctober 27, 2015 09:00:00 UTC 2015 年 10 月 27 日 (火) 18 時 0 分 0 秒 (日本時間)
351e60--
403e6600Dmitry DomanovApril 10, 2016 12:53:44 UTC 2016 年 4 月 10 日 (日) 21 時 53 分 44 秒 (日本時間)
4511e64401600Dmitry DomanovSeptember 30, 2016 06:37:31 UTC 2016 年 9 月 30 日 (金) 15 時 37 分 31 秒 (日本時間)
3801Thomas KozlowskiSeptember 30, 2024 03:05:48 UTC 2024 年 9 月 30 日 (月) 12 時 5 分 48 秒 (日本時間)

10278+9

c238

composite cofactor 合成数の残り
3352682004377406155624896231500962355108948265382291641218152084918294151053030593465571249310111534885410217168274254723324694439753421115118684664793125894034213109469794668332721887952118028758927274962021294743458290330044422682009921<238>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaOctober 27, 2015 09:00:00 UTC 2015 年 10 月 27 日 (火) 18 時 0 分 0 秒 (日本時間)
351e60--
403e6600Dmitry DomanovApril 10, 2016 12:53:57 UTC 2016 年 4 月 10 日 (日) 21 時 53 分 57 秒 (日本時間)
4511e64403600Dmitry DomanovSeptember 28, 2016 21:59:18 UTC 2016 年 9 月 29 日 (木) 6 時 59 分 18 秒 (日本時間)
3803Thomas KozlowskiSeptember 30, 2024 04:43:05 UTC 2024 年 9 月 30 日 (月) 13 時 43 分 5 秒 (日本時間)

10280+9

c243

composite cofactor 合成数の残り
653774353002822134738096154014819447453509526972020586131385322800575920399996531745058080801273515750150546513409149559063693670619264160994103339491043124165058050438373925685116246814641514001690840093471845623578961138410739735389765101013<243>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaOctober 27, 2015 09:00:00 UTC 2015 年 10 月 27 日 (火) 18 時 0 分 0 秒 (日本時間)
351e60--
403e6600Dmitry DomanovApril 10, 2016 12:54:10 UTC 2016 年 4 月 10 日 (日) 21 時 54 分 10 秒 (日本時間)
4511e64402600Dmitry DomanovSeptember 28, 2016 21:59:31 UTC 2016 年 9 月 29 日 (木) 6 時 59 分 31 秒 (日本時間)
3802Thomas KozlowskiSeptember 30, 2024 06:20:36 UTC 2024 年 9 月 30 日 (月) 15 時 20 分 36 秒 (日本時間)

10281+9

c256

composite cofactor 合成数の残り
1854976429562497481097378013171598128328151989991962000460464871335176927070103569715707594714643781050123511175431938257986127974239920430182157818166688235514068710628734757024761615402410352264342124151379830138119334248914867906619090773504917600802531<256>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaOctober 27, 2015 09:00:00 UTC 2015 年 10 月 27 日 (火) 18 時 0 分 0 秒 (日本時間)
351e60--
403e6600Dmitry DomanovApril 10, 2016 12:54:25 UTC 2016 年 4 月 10 日 (日) 21 時 54 分 25 秒 (日本時間)
4511e64401600Dmitry DomanovSeptember 30, 2016 06:38:00 UTC 2016 年 9 月 30 日 (金) 15 時 38 分 0 秒 (日本時間)
3801Thomas KozlowskiSeptember 30, 2024 08:09:04 UTC 2024 年 9 月 30 日 (月) 17 時 9 分 4 秒 (日本時間)

10282+9

c246

name 名前Dmitry Domanov
date 日付September 29, 2016 15:25:19 UTC 2016 年 9 月 30 日 (金) 0 時 25 分 19 秒 (日本時間)
composite number 合成数
185734203228884322548967660249752895536437525063509795795358237216416904993165869337903387869694906359502486745121678039932815039151840005236512871161043361363996929133519261126005086731467280625217920331355384398365285759911850252219894995774429<246>
prime factors 素因数
11521768135620475100314650100303552045457<41>
48272822879416595787677705799168273892373<41>
333941243321341471216475165418536847345056680415838976140996345493996648483709303480420319290775637617118612022231262003750555590628058361425509785093227888350958489<165>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1332171300
Step 1 took 123362ms
Step 2 took 43508ms
********** Factor found in step 2: 48272822879416595787677705799168273892373
Found probable prime factor of 41 digits: 48272822879416595787677705799168273892373

Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=469069900
Step 1 took 91895ms
Step 2 took 29970ms
********** Factor found in step 2: 11521768135620475100314650100303552045457
Found probable prime factor of 41 digits: 11521768135620475100314650100303552045457

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaOctober 27, 2015 09:00:00 UTC 2015 年 10 月 27 日 (火) 18 時 0 分 0 秒 (日本時間)
351e60--
403e6600Dmitry DomanovApril 10, 2016 12:55:07 UTC 2016 年 4 月 10 日 (日) 21 時 55 分 7 秒 (日本時間)
4511e6600 / 4346Dmitry DomanovSeptember 28, 2016 21:59:44 UTC 2016 年 9 月 29 日 (木) 6 時 59 分 44 秒 (日本時間)

10285+9

c266

composite cofactor 合成数の残り
86526363537062887498559993030636732765369780240100815910218067914020462503514211643222039556282472402593873841248850601440268966533440054491870412321710215346324180997238279758833140213197144433505490864691387125518673378348609927265100444908940060877274329897203019<266>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaOctober 27, 2015 09:00:00 UTC 2015 年 10 月 27 日 (火) 18 時 0 分 0 秒 (日本時間)
351e60--
403e6600Dmitry DomanovApril 10, 2016 12:55:20 UTC 2016 年 4 月 10 日 (日) 21 時 55 分 20 秒 (日本時間)
4511e64401600Dmitry DomanovSeptember 29, 2016 00:44:13 UTC 2016 年 9 月 29 日 (木) 9 時 44 分 13 秒 (日本時間)
3801Thomas KozlowskiSeptember 30, 2024 09:57:45 UTC 2024 年 9 月 30 日 (月) 18 時 57 分 45 秒 (日本時間)

10286+9

c222

composite cofactor 合成数の残り
648934582786008989017499538790718033865960912575226475914748743199570272319437014190313607631855086452054189450955673024913804866409255679684272086821197776548443602859868408367660031344833428228898824676728759461522677281<222>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaOctober 27, 2015 09:00:00 UTC 2015 年 10 月 27 日 (火) 18 時 0 分 0 秒 (日本時間)
351e60--
403e6600Dmitry DomanovApril 10, 2016 12:55:35 UTC 2016 年 4 月 10 日 (日) 21 時 55 分 35 秒 (日本時間)
4511e64403600Dmitry DomanovSeptember 28, 2016 21:59:57 UTC 2016 年 9 月 29 日 (木) 6 時 59 分 57 秒 (日本時間)
3803Thomas KozlowskiSeptember 30, 2024 11:23:29 UTC 2024 年 9 月 30 日 (月) 20 時 23 分 29 秒 (日本時間)

10288+9

c264

composite cofactor 合成数の残り
415671979490276030255491712613464441495119370154129398166703635001828889769483777014117090943647423196045937136647342708611903445006434647703787411622206086350028319601115574187425649273085162321163374814981912071393885018773059624142461610962093479653812797346061<264>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaOctober 27, 2015 09:00:00 UTC 2015 年 10 月 27 日 (火) 18 時 0 分 0 秒 (日本時間)
351e60--
403e6600Dmitry DomanovApril 10, 2016 12:55:48 UTC 2016 年 4 月 10 日 (日) 21 時 55 分 48 秒 (日本時間)
4511e64400600Dmitry DomanovSeptember 29, 2016 00:43:50 UTC 2016 年 9 月 29 日 (木) 9 時 43 分 50 秒 (日本時間)
3800Thomas KozlowskiSeptember 30, 2024 13:12:27 UTC 2024 年 9 月 30 日 (月) 22 時 12 分 27 秒 (日本時間)

10290+9

c266

name 名前Dmitry Domanov
date 日付April 10, 2016 16:29:13 UTC 2016 年 4 月 11 日 (月) 1 時 29 分 13 秒 (日本時間)
composite number 合成数
11300202548761248325430051195177907714403826439667865519907310322832542790774858081833131728596789820065722729788376052745909072107018306974972345873038490128583878196397508203949359895494280995534780351480551503775680750453265315663385886446405581541471868056919257<266>
prime factors 素因数
121184124308880636148682953415117<33>
composite cofactor 合成数の残り
93248208981224984681854421422049371076133202225051492182818016520684447351806908222940839924250693615296686201519055452119673703130495947898757998986708731590438025614527964937332801963231632342208777923357990868551165234533807215421<233>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2479669090
Step 1 took 30293ms
Step 2 took 10496ms
********** Factor found in step 2: 121184124308880636148682953415117
Found probable prime factor of 33 digits: 121184124308880636148682953415117

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaOctober 27, 2015 09:00:00 UTC 2015 年 10 月 27 日 (火) 18 時 0 分 0 秒 (日本時間)
351e60--
403e6600Dmitry DomanovApril 10, 2016 16:17:24 UTC 2016 年 4 月 11 日 (月) 1 時 17 分 24 秒 (日本時間)
4511e64402600Dmitry DomanovSeptember 28, 2016 22:00:12 UTC 2016 年 9 月 29 日 (木) 7 時 0 分 12 秒 (日本時間)
3802Thomas KozlowskiSeptember 30, 2024 14:49:38 UTC 2024 年 9 月 30 日 (月) 23 時 49 分 38 秒 (日本時間)

10291+9

c260

composite cofactor 合成数の残り
71631341510880493904388046571343188689572422128048118401695451203232104646095957159993042058579572495178685663638711972981396542267116734043519718687508650451522480003494843290652574056576899412798493077404069474994560374030847447183003994302208657197897250293<260>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaOctober 27, 2015 09:00:00 UTC 2015 年 10 月 27 日 (火) 18 時 0 分 0 秒 (日本時間)
351e60--
403e6600Dmitry DomanovApril 10, 2016 16:17:38 UTC 2016 年 4 月 11 日 (月) 1 時 17 分 38 秒 (日本時間)
4511e64403600Dmitry DomanovSeptember 30, 2016 06:38:26 UTC 2016 年 9 月 30 日 (金) 15 時 38 分 26 秒 (日本時間)
600Dmitry DomanovSeptember 30, 2016 13:30:16 UTC 2016 年 9 月 30 日 (金) 22 時 30 分 16 秒 (日本時間)
3203Thomas KozlowskiSeptember 30, 2024 16:21:54 UTC 2024 年 10 月 1 日 (火) 1 時 21 分 54 秒 (日本時間)

10292+9

c271

name 名前Dmitry Domanov
date 日付April 10, 2016 17:22:38 UTC 2016 年 4 月 11 日 (月) 2 時 22 分 38 秒 (日本時間)
composite number 合成数
1044118268013169039553458920092326525271308331764153033395923765495393809428213841464079781056944893730964086908772103942672025090519203055564095926549004540283283263634775668136203793423186926234462082934357188135496935225487860395589600768173788017892053851289505007553<271>
prime factors 素因数
1122096122322820658408405377<28>
composite cofactor 合成数の残り
930506974617974987844821091110353086898424930504124153018963147486382467785049055517334555292774737620171736387997157551047947194915658703246133409458516015781697408659602449842486803160946435285589964217198762753666217298469435070895027777089<243>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2844371329
Step 1 took 29036ms
Step 2 took 8921ms
********** Factor found in step 2: 1122096122322820658408405377
Found probable prime factor of 28 digits: 1122096122322820658408405377

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaOctober 27, 2015 09:00:00 UTC 2015 年 10 月 27 日 (火) 18 時 0 分 0 秒 (日本時間)
351e60--
403e6600Dmitry DomanovApril 10, 2016 16:17:51 UTC 2016 年 4 月 11 日 (月) 1 時 17 分 51 秒 (日本時間)
4511e64400600Dmitry DomanovSeptember 28, 2016 22:00:26 UTC 2016 年 9 月 29 日 (木) 7 時 0 分 26 秒 (日本時間)
3800Thomas KozlowskiSeptember 30, 2024 17:59:34 UTC 2024 年 10 月 1 日 (火) 2 時 59 分 34 秒 (日本時間)

10293+9

c235

composite cofactor 合成数の残り
2479816255666438340734921871307903201533460281457823882687798336572455944028829957120895598182667748111839403435243220184992323031425838786764428827105970480696021484128782137452135443048245905729086144182841056497728193293189109335211<235>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaOctober 27, 2015 09:00:00 UTC 2015 年 10 月 27 日 (火) 18 時 0 分 0 秒 (日本時間)
351e60--
403e6600Dmitry DomanovApril 10, 2016 12:56:04 UTC 2016 年 4 月 10 日 (日) 21 時 56 分 4 秒 (日本時間)
4511e64401600Dmitry DomanovSeptember 30, 2016 06:38:56 UTC 2016 年 9 月 30 日 (金) 15 時 38 分 56 秒 (日本時間)
600Dmitry DomanovSeptember 30, 2016 13:29:54 UTC 2016 年 9 月 30 日 (金) 22 時 29 分 54 秒 (日本時間)
3201Thomas KozlowskiSeptember 30, 2024 19:21:26 UTC 2024 年 10 月 1 日 (火) 4 時 21 分 26 秒 (日本時間)

10294+9

c281

composite cofactor 合成数の残り
28768026340022047938656259682954260251686769510934920663015886671381614321328240302885800433400361680899639746286787264855656528213891597833820010525412502878115392042966837719013497765018173560396807041453660728803264449789003825152578264010490986530826346881190473137648791183701<281>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaOctober 27, 2015 09:00:00 UTC 2015 年 10 月 27 日 (火) 18 時 0 分 0 秒 (日本時間)
351e60--
403e6600Dmitry DomanovApril 10, 2016 16:18:09 UTC 2016 年 4 月 11 日 (月) 1 時 18 分 9 秒 (日本時間)
4511e64401600Dmitry DomanovSeptember 29, 2016 00:43:05 UTC 2016 年 9 月 29 日 (木) 9 時 43 分 5 秒 (日本時間)
3801Thomas KozlowskiSeptember 30, 2024 21:22:20 UTC 2024 年 10 月 1 日 (火) 6 時 22 分 20 秒 (日本時間)

10295+9

c296

composite cofactor 合成数の残り
10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000009<296>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaOctober 27, 2015 09:00:00 UTC 2015 年 10 月 27 日 (火) 18 時 0 分 0 秒 (日本時間)
351e60--
403e62336600Dmitry DomanovOctober 28, 2015 18:45:19 UTC 2015 年 10 月 29 日 (木) 3 時 45 分 19 秒 (日本時間)
1736Serge BatalovNovember 16, 2015 04:21:28 UTC 2015 年 11 月 16 日 (月) 13 時 21 分 28 秒 (日本時間)
4511e6800Dmitry DomanovFebruary 6, 2016 15:50:10 UTC 2016 年 2 月 7 日 (日) 0 時 50 分 10 秒 (日本時間)
5043e64600600Dmitry DomanovFebruary 10, 2016 14:15:07 UTC 2016 年 2 月 10 日 (水) 23 時 15 分 7 秒 (日本時間)
4000Dmitry DomanovAugust 17, 2016 08:44:40 UTC 2016 年 8 月 17 日 (水) 17 時 44 分 40 秒 (日本時間)
5511e71150 / 16060150Dmitry DomanovFebruary 12, 2016 20:07:08 UTC 2016 年 2 月 13 日 (土) 5 時 7 分 8 秒 (日本時間)
1000Dmitry DomanovSeptember 7, 2016 09:49:21 UTC 2016 年 9 月 7 日 (水) 18 時 49 分 21 秒 (日本時間)

10296+9

c288

composite cofactor 合成数の残り
437374962425663696714263894898481619140067201700751785890540013876070582924121309217393476770248152513944027717711008806094372229440099734087831969181965317538837026885434566555923180388834476770716143723739487873195271173635747561919971639907636380084843132386232550614244367418534200533<288>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaOctober 27, 2015 09:00:00 UTC 2015 年 10 月 27 日 (火) 18 時 0 分 0 秒 (日本時間)
351e60--
403e6600Dmitry DomanovOctober 28, 2015 18:44:40 UTC 2015 年 10 月 29 日 (木) 3 時 44 分 40 秒 (日本時間)
4511e60--
5043e61500 / 7531Erik BrangerNovember 8, 2015 09:13:44 UTC 2015 年 11 月 8 日 (日) 18 時 13 分 44 秒 (日本時間)

10297+9

c245

composite cofactor 合成数の残り
21647800630630642781858001741148571540840479274950652348525454178302643787923753829998802737035988898028336120616174193243551435172146111502049994760605973899265967446400654092229598102563878210142850888692086591389914400459247013801193616599169<245>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaOctober 27, 2015 09:00:00 UTC 2015 年 10 月 27 日 (火) 18 時 0 分 0 秒 (日本時間)
351e60--
403e6600Dmitry DomanovApril 10, 2016 16:18:37 UTC 2016 年 4 月 11 日 (月) 1 時 18 分 37 秒 (日本時間)
4511e64401600Dmitry DomanovSeptember 29, 2016 15:26:40 UTC 2016 年 9 月 30 日 (金) 0 時 26 分 40 秒 (日本時間)
3801Thomas KozlowskiSeptember 30, 2024 22:59:51 UTC 2024 年 10 月 1 日 (火) 7 時 59 分 51 秒 (日本時間)

10298+9

c234

composite cofactor 合成数の残り
433465444262722158971328673762440667921815264932705711079165766569109364868588432868994716459232043737765094888976106452551741824489522773706355846769006981338608245387786959069847784975011553680972021950807559709725564473421367100889<234>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaOctober 27, 2015 09:00:00 UTC 2015 年 10 月 27 日 (火) 18 時 0 分 0 秒 (日本時間)
351e60--
403e6600Dmitry DomanovApril 10, 2016 16:28:10 UTC 2016 年 4 月 11 日 (月) 1 時 28 分 10 秒 (日本時間)
4511e64400600Dmitry DomanovSeptember 30, 2016 14:46:54 UTC 2016 年 9 月 30 日 (金) 23 時 46 分 54 秒 (日本時間)
3800Thomas KozlowskiOctober 1, 2024 00:36:52 UTC 2024 年 10 月 1 日 (火) 9 時 36 分 52 秒 (日本時間)

10300+9

c291

name 名前Dmitry Domanov
date 日付October 28, 2015 13:44:21 UTC 2015 年 10 月 28 日 (水) 22 時 44 分 21 秒 (日本時間)
composite number 合成数
829016623738956181471636138396164493574648212039246519093290359012770162952892019890871086887856995501214451737122220948401334664038762449654556192586759422838593392273756901199661583144743726750171792348091837390488323695052041390057636294753673830484217774678652037440290834152870842827021<291>
prime factors 素因数
314141575836165677358249770562769<33>
2638990466423691071684819163106157065178274440022000578797688964282858432434505644545282003356632332488357727369097574522290237306881438814672559156207044645664311610602969085236222298418873677512595749246358401964948736380471075549462707836466443560687830909<259>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3919808161
Step 1 took 40805ms
Step 2 took 11887ms
********** Factor found in step 2: 314141575836165677358249770562769
Found probable prime factor of 33 digits: 314141575836165677358249770562769

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaOctober 27, 2015 09:00:00 UTC 2015 年 10 月 27 日 (火) 18 時 0 分 0 秒 (日本時間)
351e60--
403e61200 / 2336Dmitry DomanovOctober 28, 2015 13:12:22 UTC 2015 年 10 月 28 日 (水) 22 時 12 分 22 秒 (日本時間)