name 名前 | Eric Jeancolas |
---|---|
date 日付 | August 13, 2020 07:04:37 UTC 2020 年 8 月 13 日 (木) 16 時 4 分 37 秒 (日本時間) |
composite number 合成数 | 4779084362918422962899199555908850727140231702329166009738783135225584012889713030336235262916242390829856325739276523022520964679821499774708291310160718237<157> |
prime factors 素因数 | 2755789763805026938548882460543403284464443771024594526532978991988053<70> 1734197733690596872468260270961918884373821423196331015116189428785630201629797510789929<88> |
factorization results 素因数分解の結果 | 4779084362918422962899199555908850727140231702329166009738783135225584012889713030336235262916242390829856325739276523022520964679821499774708291310160718237=2755789763805026938548882460543403284464443771024594526532978991988053*1734197733690596872468260270961918884373821423196331015116189428785630201629797510789929 n: 4779084362918422962899199555908850727140231702329166009738783135225584012889713030336235262916242390829856325739276523022520964679821499774708291310160718237 skew: 0.53 type: snfs c0: 1 c5: 25 Y0: 10000000000000000000000000000000000000000 Y1: -1 # f(x) = 25*x^5+1 # g(x) = -x+10000000000000000000000000000000000000000 Info:Square Root: Factors: 2755789763805026938548882460543403284464443771024594526532978991988053 1734197733690596872468260270961918884373821423196331015116189428785630201629797510789929 Warning:Polynomial Selection (size optimized): some stats could not be displayed for polyselect1 (see log file for debug info) Warning:Polynomial Selection (root optimized): some stats could not be displayed for polyselect2 (see log file for debug info) Info:Generate Factor Base: Total cpu/real time for makefb: 14.76/4.68606 Info:Generate Free Relations: Total cpu/real time for freerel: 418.31/119.665 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 45835052 Info:Lattice Sieving: Average J: 1893.77 for 3263946 special-q, max bucket fill -bkmult 1.0,1s:1.075510 Info:Lattice Sieving: Total time: 926494s Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 187.75/410.012 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 408.4s Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 1432.7/1105.37 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 913.0s Info:Filtering - Singleton removal: Total cpu/real time for purge: 1089.34/1189.8 Info:Filtering - Merging: Total cpu/real time for merge: 2592.59/2404.83 Info:Filtering - Merging: Total cpu/real time for replay: 245.23/213.318 Info:Linear Algebra: Total cpu/real time for bwc: 474073/137255 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: WCT time 82079.81, iteration CPU time 0.67, COMM 0.02, cpu-wait 0.15, comm-wait 0.0 (97792 iterations) Info:Linear Algebra: Lingen CPU time 12440.29, WCT time 4181.9 Info:Linear Algebra: Mksol: WCT time 50459.96, iteration CPU time 0.84, COMM 0.02, cpu-wait 0.17, comm-wait 0.0 (49152 iterations) Info:Quadratic Characters: Total cpu/real time for characters: 278.85/143.267 Info:Square Root: Total cpu/real time for sqrt: 2706.2/1417.82 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 2.00064e+06/249505 Info:root: Cleaning up computation data in /tmp/cado.kfur39gv 2755789763805026938548882460543403284464443771024594526532978991988053 1734197733690596872468260270961918884373821423196331015116189428785630201629797510789929 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 18.04 LTS [4.15.0-109-generic|libc 2.27 (Ubuntu GLIBC 2.27-3ubuntu1.2)] GenuineIntel Intel(R) Core(TM) i7-5820K CPU @ 3.30GHz [Family 6 Model 63 Stepping 2] (4 processors) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | August 6, 2020 03:16:23 UTC 2020 年 8 月 6 日 (木) 12 時 16 分 23 秒 (日本時間) | |
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 2100 / 4425 | Eric Jeancolas | August 6, 2020 03:26:10 UTC 2020 年 8 月 6 日 (木) 12 時 26 分 10 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | February 2, 2021 05:03:12 UTC 2021 年 2 月 2 日 (火) 14 時 3 分 12 秒 (日本時間) |
composite number 合成数 | 329527674320638248986733457369232077006254750726578733953786010075043376233806560881680966990958606863985156550779836866286939168008359490418260320738710238011798991004675109607<177> |
prime factors 素因数 | 2382770705652615039300398761188786896247612461441447<52> 11118787586976797539738120424015488478025603212186209<53> 12438047401634931182656040578662688950126324110395515765910024225803392609<74> |
factorization results 素因数分解の結果 | 329527674320638248986733457369232077006254750726578733953786010075043376233806560881680966990958606863985156550779836866286939168008359490418260320738710238011798991004675109607=2382770705652615039300398761188786896247612461441447*11118787586976797539738120424015488478025603212186209*12438047401634931182656040578662688950126324110395515765910024225803392609 cado polynomial n: 329527674320638248986733457369232077006254750726578733953786010075043376233806560881680966990958606863985156550779836866286939168008359490418260320738710238011798991004675109607 skew: 1.85 type: snfs c0: 40 c6: 1 Y0: 10000000000000000000000000000000000 Y1: -1 # f(x) = x^6+40 # g(x) = -x+1000000000000000000000000000000000 cado parameters (extracts) tasks.lim0 = 17600000 tasks.lim1 = 17600000 tasks.lpb0 = 29 tasks.lpb1 = 29 tasks.sieve.mfb0 = 56 tasks.sieve.mfb1 = 56 tasks.sieve.lambda0 = 2.6 tasks.sieve.lambda1 = 2.6 tasks.I = 12 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 12438047401634931182656040578662688950126324110395515765910024225803392609 2382770705652615039300398761188786896247612461441447 11118787586976797539738120424015488478025603212186209 Warning:Polynomial Selection (size optimized): some stats could not be displayed for polyselect1 (see log file for debug info) Warning:Polynomial Selection (root optimized): some stats could not be displayed for polyselect2 (see log file for debug info) Info:Generate Factor Base: Total cpu/real time for makefb: 11.14/3.77257 Info:Generate Free Relations: Total cpu/real time for freerel: 330.29/83.5947 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 46928852 Info:Lattice Sieving: Average J: 1893.38 for 4575786 special-q, max bucket fill -bkmult 1.0,1s:1.147850 Info:Lattice Sieving: Total time: 1.60531e+06s Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 88.87/171.432 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 170.59999999999997s Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 762.6/589.197 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 506.0s Info:Filtering - Singleton removal: Total cpu/real time for purge: 565.74/542.332 Info:Filtering - Merging: Merged matrix has 3590225 rows and total weight 612313778 (170.6 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 512.43/232.216 Info:Filtering - Merging: Total cpu/real time for replay: 146.24/129.114 Info:Linear Algebra: Total cpu/real time for bwc: 241654/61794.4 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: WCT time 39622.97, iteration CPU time 0.33, COMM 0.02, cpu-wait 0.0, comm-wait 0.0 (112640 iterations) Info:Linear Algebra: Lingen CPU time 797.16, WCT time 229.32 Info:Linear Algebra: Mksol: WCT time 21482.6, iteration CPU time 0.36, COMM 0.02, cpu-wait 0.0, comm-wait 0.0 (56320 iterations) Info:Quadratic Characters: Total cpu/real time for characters: 131.25/56.7247 Info:Square Root: Total cpu/real time for sqrt: 1755.65/525.302 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 3.123e+06/123641 Info:root: Cleaning up computation data in /tmp/cado.n6eh_zpm 12438047401634931182656040578662688950126324110395515765910024225803392609 2382770705652615039300398761188786896247612461441447 11118787586976797539738120424015488478025603212186209 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | 6 x Linux Ubuntu 20.04.1 LTS [5.4.0-48-generic|libc 2.31 (Ubuntu GLIBC 2.31-0ubuntu9.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | August 6, 2020 03:19:54 UTC 2020 年 8 月 6 日 (木) 12 時 19 分 54 秒 (日本時間) | |
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 2100 / 4425 | Eric Jeancolas | August 6, 2020 16:44:33 UTC 2020 年 8 月 7 日 (金) 1 時 44 分 33 秒 (日本時間) |
name 名前 | ebina |
---|---|
date 日付 | February 11, 2022 12:47:56 UTC 2022 年 2 月 11 日 (金) 21 時 47 分 56 秒 (日本時間) |
composite number 合成数 | 314660957102720470722932828277477451568514723533756047809461656927855052376700715950928732360389597107404583178767840849912009396464199448558284474857020684886939077<165> |
prime factors 素因数 | 484070998808102453988112423967873180404176808771927617659664023197<66> 650030590300783017646367572017465398584608970911364895958825830761969666356321623558508278983604041<99> |
factorization results 素因数分解の結果 | 10/25/16 17:54:14 v1.34.5 @ XXX, Starting factorization of 10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000004 10/25/16 17:54:14 v1.34.5 @ XXX, using pretesting plan: light 10/25/16 17:54:14 v1.34.5 @ XXX, no tune info: using qs/gnfs crossover of 95 digits 10/25/16 17:54:14 v1.34.5 @ XXX, **************************** 10/25/16 17:54:14 v1.34.5 @ XXX, div: found prime factor = 2 10/25/16 17:54:14 v1.34.5 @ XXX, div: found prime factor = 2 10/25/16 17:54:14 v1.34.5 @ XXX, div: found prime factor = 7 10/25/16 17:54:14 v1.34.5 @ XXX, div: found prime factor = 19 10/25/16 17:54:14 v1.34.5 @ XXX, rho: x^2 + 3, starting 1000 iterations on C203 10/25/16 17:54:14 v1.34.5 @ XXX, rho: x^2 + 2, starting 1000 iterations on C203 10/25/16 17:54:15 v1.34.5 @ XXX, rho: x^2 + 1, starting 1000 iterations on C203 10/25/16 17:54:15 v1.34.5 @ XXX, pm1: starting B1 = 150K, B2 = gmp-ecm default on C203 10/25/16 17:54:15 v1.34.5 @ XXX, prp9 = 969897077 10/25/16 17:54:15 v1.34.5 @ XXX, current ECM pretesting depth: 0.00 10/25/16 17:54:15 v1.34.5 @ XXX, scheduled 30 curves at B1=2000 toward target pretesting depth of 43.11 10/25/16 17:54:16 v1.34.5 @ XXX, Finished 30 curves using Lenstra ECM method on C194 input, B1=2K, B2=gmp-ecm default 10/25/16 17:54:16 v1.34.5 @ XXX, current ECM pretesting depth: 15.18 10/25/16 17:54:16 v1.34.5 @ XXX, scheduled 74 curves at B1=11000 toward target pretesting depth of 43.11 10/25/16 17:54:28 v1.34.5 @ XXX, Finished 74 curves using Lenstra ECM method on C194 input, B1=11K, B2=gmp-ecm default 10/25/16 17:54:28 v1.34.5 @ XXX, current ECM pretesting depth: 20.24 10/25/16 17:54:28 v1.34.5 @ XXX, scheduled 214 curves at B1=50000 toward target pretesting depth of 43.11 10/25/16 17:56:45 v1.34.5 @ XXX, Finished 214 curves using Lenstra ECM method on C194 input, B1=50K, B2=gmp-ecm default 10/25/16 17:56:45 v1.34.5 @ XXX, pm1: starting B1 = 3750K, B2 = gmp-ecm default on C194 10/25/16 17:56:51 v1.34.5 @ XXX, current ECM pretesting depth: 25.33 10/25/16 17:56:51 v1.34.5 @ XXX, scheduled 430 curves at B1=250000 toward target pretesting depth of 43.11 10/25/16 18:05:04 v1.34.5 @ XXX, prp29 = 61591369081192018008285766693 (curve 167 stg2 B1=250000 sigma=538863150 thread=0) 10/25/16 18:05:04 v1.34.5 @ XXX, Finished 167 curves using Lenstra ECM method on C194 input, B1=250K, B2=gmp-ecm default 10/25/16 18:05:04 v1.34.5 @ XXX, current ECM pretesting depth: 27.27 10/25/16 18:05:04 v1.34.5 @ XXX, scheduled 263 curves at B1=250000 toward target pretesting depth of 36.67 10/25/16 18:14:26 v1.34.5 @ XXX, Finished 263 curves using Lenstra ECM method on C165 input, B1=250K, B2=gmp-ecm default 10/25/16 18:14:27 v1.34.5 @ XXX, pm1: starting B1 = 15M, B2 = gmp-ecm default on C165 10/25/16 18:14:45 v1.34.5 @ XXX, current ECM pretesting depth: 30.45 10/25/16 18:14:45 v1.34.5 @ XXX, scheduled 904 curves at B1=1000000 toward target pretesting depth of 36.67 10/25/16 20:29:03 v1.34.5 @ XXX, Finished 904 curves using Lenstra ECM method on C165 input, B1=1M, B2=gmp-ecm default 10/25/16 20:29:03 v1.34.5 @ XXX, current ECM pretesting depth: 35.56 10/25/16 20:29:03 v1.34.5 @ XXX, scheduled 523 curves at B1=3000000 toward target pretesting depth of 36.67 10/26/16 00:03:50 v1.34.5 @ XXX, Finished 523 curves using Lenstra ECM method on C165 input, B1=3M, B2=gmp-ecm default 10/26/16 00:03:50 v1.34.5 @ XXX, final ECM pretested depth: 36.67 10/26/16 00:03:50 v1.34.5 @ XXX, scheduler: switching to sieve method 10/26/16 00:03:50 v1.34.5 @ XXX, nfs: commencing nfs on c165: 314660957102720470722932828277477451568514723533756047809461656927855052376700715950928732360389597107404583178767840849912009396464199448558284474857020684886939077 10/26/16 00:03:50 v1.34.5 @ XXX, nfs: input divides 10^205 + 4 10/26/16 00:03:50 v1.34.5 @ XXX, nfs: using supplied cofactor: 314660957102720470722932828277477451568514723533756047809461656927855052376700715950928732360389597107404583178767840849912009396464199448558284474857020684886939077 10/26/16 00:03:50 v1.34.5 @ XXX, nfs: commencing snfs on c165: 314660957102720470722932828277477451568514723533756047809461656927855052376700715950928732360389597107404583178767840849912009396464199448558284474857020684886939077 10/26/16 00:03:58 v1.34.5 @ XXX, test: fb generation took 6.9114 seconds 10/26/16 00:03:58 v1.34.5 @ XXX, test: commencing test sieving of polynomial 0 on the rational side over range 18000000-18002000 skew: 1.0000 c5: 1 c0: 4 Y1: -1 Y0: 100000000000000000000000000000000000000000 m: 100000000000000000000000000000000000000000 rlim: 18000000 alim: 18000000 mfbr: 56 mfba: 56 lpbr: 28 lpba: 28 rlambda: 2.60 alambda: 2.60 10/26/16 00:12:51 v1.34.5 @ XXX, nfs: parsing special-q from .dat file 10/26/16 00:12:51 v1.34.5 @ XXX, test: new best estimated total sieving time = 8 days 4h 8m 1s (with 4 threads) 10/26/16 00:13:01 v1.34.5 @ XXX, test: fb generation took 9.9943 seconds 10/26/16 00:13:01 v1.34.5 @ XXX, test: commencing test sieving of polynomial 1 on the algebraic side over range 19000000-19002000 skew: 0.8584 c6: 5 c0: 2 Y1: -1 Y0: 10000000000000000000000000000000000 m: 10000000000000000000000000000000000 rlim: 19000000 alim: 19000000 mfbr: 56 mfba: 56 lpbr: 28 lpba: 28 rlambda: 2.60 alambda: 2.60 10/26/16 00:19:14 v1.34.5 @ XXX, nfs: parsing special-q from .dat file 10/26/16 00:19:14 v1.34.5 @ XXX, test: estimated total sieving time = 9 days 3h 1m 56s (with 4 threads) 10/26/16 00:19:14 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/26/16 01:57:03 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/26/16 03:36:44 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/26/16 05:16:41 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/26/16 06:55:41 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/26/16 08:36:09 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/26/16 10:15:19 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/26/16 11:56:18 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/26/16 13:35:49 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/26/16 15:08:54 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/26/16 16:43:19 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/26/16 18:16:30 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/26/16 19:49:25 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/26/16 21:23:07 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/26/16 22:56:34 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/27/16 00:30:04 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/27/16 02:04:55 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/27/16 03:38:07 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/27/16 05:12:54 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/27/16 06:47:09 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/27/16 08:21:06 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/27/16 09:56:07 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/27/16 11:31:04 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/27/16 13:04:43 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/27/16 14:38:53 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/27/16 16:13:29 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/27/16 17:48:36 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/27/16 19:23:03 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/27/16 20:48:33 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/27/16 22:16:03 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/27/16 23:55:13 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/28/16 01:36:14 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/28/16 03:17:26 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/28/16 05:00:29 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/28/16 06:40:31 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/28/16 08:21:47 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/28/16 10:02:24 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/28/16 11:44:25 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/28/16 13:23:55 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/28/16 15:03:48 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/28/16 16:37:45 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/28/16 17:59:32 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/28/16 19:21:55 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/28/16 20:45:05 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/28/16 22:07:01 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/28/16 23:28:29 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/29/16 00:50:58 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/29/16 02:13:33 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/29/16 03:36:37 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/29/16 04:58:11 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/29/16 06:19:57 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/29/16 07:55:29 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/29/16 09:37:08 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/29/16 11:18:51 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/29/16 13:01:17 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/29/16 14:42:22 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/29/16 16:23:25 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/29/16 18:05:08 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/29/16 19:49:22 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/29/16 21:32:42 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/29/16 23:17:11 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/30/16 01:01:48 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/30/16 02:45:56 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/30/16 04:29:10 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/30/16 06:14:39 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/30/16 07:59:35 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/30/16 09:45:22 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/30/16 11:32:22 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/30/16 13:19:45 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/30/16 15:06:42 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/30/16 16:54:22 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/30/16 18:41:42 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/30/16 20:30:04 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/30/16 22:20:28 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/31/16 00:09:19 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/31/16 01:59:32 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/31/16 03:49:52 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/31/16 05:40:41 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/31/16 07:30:53 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/31/16 09:22:16 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/31/16 11:13:20 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/31/16 13:01:45 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/31/16 14:55:30 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/31/16 16:47:18 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/31/16 18:39:18 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/31/16 20:30:51 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 10/31/16 22:24:12 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 11/01/16 00:14:26 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 11/01/16 02:05:49 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 11/01/16 03:59:26 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 11/01/16 05:49:56 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 11/01/16 07:36:49 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 11/01/16 09:27:53 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 11/01/16 11:19:16 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 11/01/16 13:11:56 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 11/01/16 15:03:27 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 11/01/16 16:56:39 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 11/01/16 18:49:42 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 11/01/16 20:42:37 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 11/01/16 22:33:18 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 11/02/16 00:26:20 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 11/02/16 02:19:24 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 11/02/16 04:11:12 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 11/02/16 06:03:48 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 11/02/16 07:51:33 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 11/02/16 09:44:38 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 11/02/16 11:40:05 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 11/02/16 13:31:42 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 11/02/16 15:24:01 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 11/02/16 17:16:12 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 11/02/16 19:08:49 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 11/02/16 21:02:03 v1.34.5 @ XXX, nfs: commencing msieve filtering 11/02/16 21:09:50 v1.34.5 @ XXX, nfs: raising min_rels by 5.00 percent to 22086627 11/02/16 21:09:50 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 11/02/16 23:02:23 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 11/03/16 00:56:09 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 11/03/16 02:46:29 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 11/03/16 04:38:06 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 11/03/16 06:31:31 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 11/03/16 08:24:30 v1.34.5 @ XXX, nfs: commencing msieve filtering 11/03/16 08:32:48 v1.34.5 @ XXX, nfs: raising min_rels by 5.00 percent to 23245558 11/03/16 08:32:48 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 11/03/16 10:24:32 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 11/03/16 12:15:03 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 11/03/16 14:08:34 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 11/03/16 16:01:51 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 11/03/16 17:53:21 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 11/03/16 19:44:20 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 11/03/16 21:35:58 v1.34.5 @ XXX, nfs: commencing msieve filtering 11/03/16 21:45:00 v1.34.5 @ XXX, nfs: raising min_rels by 5.00 percent to 24579388 11/03/16 21:45:00 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 11/03/16 23:27:16 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 11/04/16 01:05:18 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 11/04/16 02:43:24 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 11/04/16 04:22:06 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 11/04/16 06:01:46 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 11/04/16 07:40:19 v1.34.5 @ XXX, nfs: commencing lattice sieving with 4 threads 11/04/16 09:19:59 v1.34.5 @ XXX, nfs: commencing msieve filtering 11/04/16 09:31:27 v1.34.5 @ XXX, nfs: commencing msieve linear algebra 11/04/16 21:22:30 v1.34.5 @ XXX, nfs: commencing msieve sqrt 11/04/16 21:32:41 v1.34.5 @ XXX, prp66 = 484070998808102453988112423967873180404176808771927617659664023197 11/04/16 21:32:41 v1.34.5 @ XXX, prp99 = 650030590300783017646367572017465398584608970911364895958825830761969666356321623558508278983604041 11/04/16 21:32:42 v1.34.5 @ XXX, NFS elapsed time = 854931.3559 seconds. 11/04/16 21:32:42 v1.34.5 @ XXX, 11/04/16 21:32:42 v1.34.5 @ XXX, 11/04/16 21:32:42 v1.34.5 @ XXX, Total factoring time = 877107.2206 seconds |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | August 6, 2020 03:20:41 UTC 2020 年 8 月 6 日 (木) 12 時 20 分 41 秒 (日本時間) | |
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 2100 / 4425 | Eric Jeancolas | August 6, 2020 16:43:56 UTC 2020 年 8 月 7 日 (金) 1 時 43 分 56 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | August 15, 2020 15:39:15 UTC 2020 年 8 月 16 日 (日) 0 時 39 分 15 秒 (日本時間) |
composite number 合成数 | 808803579795702233242239295907625676114095306948609814333864858556284380683230224195208328601158388545312183671864919527133440002447374928175411301612356730272802685867163271201937409389128352802632033197<204> |
prime factors 素因数 | 26291241822631182635344295425679574304691592774764190040009177188999325819<74> 30763232305729047171813749488843005992697344518316703396445165329745989546885296908036883512411705558049305457278197977781982441463<131> |
factorization results 素因数分解の結果 | Number: n N=808803579795702233242239295907625676114095306948609814333864858556284380683230224195208328601158388545312183671864919527133440002447374928175411301612356730272802685867163271201937409389128352802632033197 ( 204 digits) SNFS difficulty: 213 digits. Divisors found: Sun Aug 16 01:32:39 2020 p74 factor: 26291241822631182635344295425679574304691592774764190040009177188999325819 Sun Aug 16 01:32:39 2020 p131 factor: 30763232305729047171813749488843005992697344518316703396445165329745989546885296908036883512411705558049305457278197977781982441463 Sun Aug 16 01:32:39 2020 elapsed time 04:10:46 (Msieve 1.54 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.121). Factorization parameters were as follows: # # N = 10^213+4 = 10(212)4 # n: 808803579795702233242239295907625676114095306948609814333864858556284380683230224195208328601158388545312183671864919527133440002447374928175411301612356730272802685867163271201937409389128352802632033197 m: 2000000000000000000000000000000000000000000 deg: 5 c5: 125 c0: 16 skew: 0.66 # Murphy_E = 4.442e-12 type: snfs lss: 1 rlim: 25000000 alim: 25000000 lpbr: 29 lpba: 29 mfbr: 57 mfba: 57 rlambda: 2.6 alambda: 2.6 Factor base limits: 25000000/25000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 57/57 Sieved special-q in [100000, 52500000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 8826990 hash collisions in 59632609 relations (52962467 unique) Msieve: matrix is 3059638 x 3059865 (1069.8 MB) Sieving start time: 2020/08/14 23:10:02 Sieving end time : 2020/08/15 21:21:01 Total sieving time: 22hrs 10min 59secs. Total relation processing time: 3hrs 47min 14sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 4min 42sec. Prototype def-par.txt line would be: snfs,213,5,0,0,0,0,0,0,0,0,25000000,25000000,29,29,57,57,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- [ 0.154206] smpboot: CPU0: AMD Ryzen 7 1700 Eight-Core Processor (family: 0x17, model: 0x1, stepping: 0x1) [ 0.000000] Memory: 16283136K/16703460K available (12300K kernel code, 2481K rwdata, 4272K rodata, 2436K init, 2720K bss, 420324K reserved, 0K cma-reserved) [ 0.188728] x86/mm: Memory block size: 128MB [ 0.028000] Calibrating delay loop (skipped), value calculated using timer frequency.. 5988.50 BogoMIPS (lpj=11977004) [ 0.186225] smpboot: Total of 16 processors activated (95816.03 BogoMIPS) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | August 6, 2020 15:51:46 UTC 2020 年 8 月 7 日 (金) 0 時 51 分 46 秒 (日本時間) | |
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 2100 / 4425 | Eric Jeancolas | August 6, 2020 16:43:39 UTC 2020 年 8 月 7 日 (金) 1 時 43 分 39 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | August 21, 2020 08:06:32 UTC 2020 年 8 月 21 日 (金) 17 時 6 分 32 秒 (日本時間) |
composite number 合成数 | 202744539974009769689113204275950352565539290608549180672391532465195619178373538080206918626201400028275226444256404666831623566590008030425427837<147> |
prime factors 素因数 | 125136529633826031656487259607276613141580059761<48> 1620186691825959694522237443248443313473078889853216914852189144265710552350391362739140264924307917<100> |
factorization results 素因数分解の結果 | 202744539974009769689113204275950352565539290608549180672391532465195619178373538080206918626201400028275226444256404666831623566590008030425427837=125136529633826031656487259607276613141580059761*1620186691825959694522237443248443313473078889853216914852189144265710552350391362739140264924307917 n: 202744539974009769689113204275950352565539290608549180672391532465195619178373538080206918626201400028275226444256404666831623566590008030425427837 skew: 437301.831 c0: -4553514627687066314946159065385534 c1: -307106684934362018269122933467 c2: 299943905688962774386434 c3: 1826168979367976612 c4: -1282877315160 c5: -2548800 Y0: -16399168220150514572907019529 Y1: 198742538492281320389 # MurphyE (Bf=5.369e+08,Bg=5.369e+08,area=3.355e+14) = 1.479e-07 # f(x) = -2548800*x^5-1282877315160*x^4+1826168979367976612*x^3+299943905688962774386434*x^2-307106684934362018269122933467*x-4553514627687066314946159065385534 # g(x) = 198742538492281320389*x-16399168220150514572907019529 Info:Square Root: Factors: 125136529633826031656487259607276613141580059761 1620186691825959694522237443248443313473078889853216914852189144265710552350391362739140264924307917 Info:Square Root: Total cpu/real time for sqrt: 2436.4/799.465 Info:Polynomial Selection (size optimized): Aggregate statistics: Info:Polynomial Selection (size optimized): potential collisions: 77228.6 Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 78359/43.450/52.736/57.870/0.892 Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 63738/42.660/47.379/53.500/1.284 Info:Polynomial Selection (size optimized): Total time: 41753.1 Info:Polynomial Selection (root optimized): Aggregate statistics: Info:Polynomial Selection (root optimized): Total time: 6946.07 Info:Polynomial Selection (root optimized): Rootsieve time: 6941.51 Info:Generate Factor Base: Total cpu/real time for makefb: 18.09/4.81157 Info:Generate Free Relations: Total cpu/real time for freerel: 469.81/118.662 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 51430874 Info:Lattice Sieving: Average J: 3824.76 for 1520390 special-q, max bucket fill -bkmult 1.0,1s:1.085780 Info:Lattice Sieving: Total time: 1.531e+06s Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 109.92/261.893 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 260.79999999999995s Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 1066.34/915.485 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 795.6s Info:Filtering - Singleton removal: Total cpu/real time for purge: 963.78/935.277 Info:Filtering - Merging: Total cpu/real time for merge: 532.93/154.299 Info:Filtering - Merging: Total cpu/real time for replay: 153.59/133.554 Info:Linear Algebra: Total cpu/real time for bwc: 247010/63194.6 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: WCT time 40058.74, iteration CPU time 0.33, COMM 0.02, cpu-wait 0.0, comm-wait 0.0 (114176 iterations) Info:Linear Algebra: Lingen CPU time 815.7, WCT time 235.25 Info:Linear Algebra: Mksol: WCT time 22413.26, iteration CPU time 0.37, COMM 0.02, cpu-wait 0.0, comm-wait 0.0 (57344 iterations) Info:Quadratic Characters: Total cpu/real time for characters: 142.88/59.5264 Info:Square Root: Total cpu/real time for sqrt: 2436.4/799.465 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 2.88221e+06/362.393 125136529633826031656487259607276613141580059761 1620186691825959694522237443248443313473078889853216914852189144265710552350391362739140264924307917 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 18.04.4 LTS [5.3.0-51-generic|libc 2.27 (Ubuntu GLIBC 2.27-3ubuntu1.2)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | August 6, 2020 15:52:18 UTC 2020 年 8 月 7 日 (金) 0 時 52 分 18 秒 (日本時間) | |
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 2100 / 4425 | Eric Jeancolas | August 6, 2020 16:43:16 UTC 2020 年 8 月 7 日 (金) 1 時 43 分 16 秒 (日本時間) |
name 名前 | ebina |
---|---|
date 日付 | September 14, 2021 10:55:43 UTC 2021 年 9 月 14 日 (火) 19 時 55 分 43 秒 (日本時間) |
composite number 合成数 | 375618506862202572783520708814973518730510191438356577509157946351986504713482948013563466621998599978024506850312933517541015350544554599100582167<147> |
prime factors 素因数 | 2052031676495703104300637037965685011069538614083581167492486503<64> 183047128933045545607889084570454593544811271658651252323265054636823843142131527889<84> |
factorization results 素因数分解の結果 | Number: 1054 N = 375618506862202572783520708814973518730510191438356577509157946351986504713482948013563466621998599978024506850312933517541015350544554599100582167 (147 digits) SNFS difficulty: 216 digits. Divisors found: Version: Msieve v. 1.53 (SVN unknown) Total time: 270.86 hours. Factorization parameters were as follows: n: 375618506862202572783520708814973518730510191438356577509157946351986504713482948013563466621998599978024506850312933517541015350544554599100582167 m: 500000000000000000000000000000000000 c6: 8 c0: 5 type: snfs Factor base limits: 27900000/27900000 Large primes per side: 3 Large prime bits: 29/29 Sieved rational special-q in [0, 0) Total raw relations: 48641343 Relations: 6453404 relations Pruned matrix : 4330541 x 4330766 Polynomial selection time: 0.00 hours. Total sieving time: 255.23 hours. Total relation processing time: 0.52 hours. Matrix solve time: 14.94 hours. time per square root: 0.18 hours. Prototype def-par.txt line would be: snfs,216,6,0,0,0,0,0,0,0,0,27900000,27900000,29,29,58,58,2.6,2.6,100000 total time: 270.86 hours. Intel64 Family 6 Model 60 Stepping 3, GenuineIntel Windows-post2008Server-6.2.9200 processors: 8, speed: 2.19GHz Tue Mar 7 14:47:13 2017 Msieve v. 1.53 (SVN unknown) Tue Mar 7 14:47:13 2017 random seeds: f7823ca0 de25dc46 Tue Mar 7 14:47:13 2017 factoring 375618506862202572783520708814973518730510191438356577509157946351986504713482948013563466621998599978024506850312933517541015350544554599100582167 (147 digits) Tue Mar 7 14:47:13 2017 searching for 15-digit factors Tue Mar 7 14:47:14 2017 commencing number field sieve (147-digit input) Tue Mar 7 14:47:14 2017 R0: -500000000000000000000000000000000000 Tue Mar 7 14:47:14 2017 R1: 1 Tue Mar 7 14:47:14 2017 A0: 5 Tue Mar 7 14:47:14 2017 A1: 0 Tue Mar 7 14:47:14 2017 A2: 0 Tue Mar 7 14:47:14 2017 A3: 0 Tue Mar 7 14:47:14 2017 A4: 0 Tue Mar 7 14:47:14 2017 A5: 0 Tue Mar 7 14:47:14 2017 A6: 8 Tue Mar 7 14:47:14 2017 skew 0.92, size 1.281e-10, alpha 0.465, combined = 4.000e-12 rroots = 0 Tue Mar 7 14:47:14 2017 Tue Mar 7 14:47:14 2017 commencing square root phase Tue Mar 7 14:47:14 2017 reading relations for dependency 1 Tue Mar 7 14:47:14 2017 read 2164366 cycles Tue Mar 7 14:47:18 2017 cycles contain 6453404 unique relations Tue Mar 7 14:48:30 2017 read 6453404 relations Tue Mar 7 14:49:02 2017 multiplying 6453404 relations Tue Mar 7 14:53:18 2017 multiply complete, coefficients have about 173.75 million bits Tue Mar 7 14:53:19 2017 initial square root is modulo 1719433 Tue Mar 7 14:58:13 2017 sqrtTime: 659 Tue Mar 7 14:58:13 2017 p64 factor: 2052031676495703104300637037965685011069538614083581167492486503 Tue Mar 7 14:58:13 2017 p84 factor: 183047128933045545607889084570454593544811271658651252323265054636823843142131527889 Tue Mar 7 14:58:13 2017 elapsed time 00:11:00 Tue Mar 07 14:58:13 2017 -> Computing 1.48887e+09 scale for this machine... Tue Mar 07 14:58:13 2017 -> procrels -speedtest> PIPE Tue Mar 07 14:58:16 2017 -> Factorization summary written to s216-1054.txt |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | August 6, 2020 15:53:40 UTC 2020 年 8 月 7 日 (金) 0 時 53 分 40 秒 (日本時間) | |
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 4425 | 2100 | Eric Jeancolas | August 6, 2020 16:43:01 UTC 2020 年 8 月 7 日 (金) 1 時 43 分 1 秒 (日本時間) |
2325 | Taiyo Kodama | November 2, 2020 02:32:32 UTC 2020 年 11 月 2 日 (月) 11 時 32 分 32 秒 (日本時間) | |||
50 | 43e6 | 6553 | Ignacio Santos | June 16, 2021 18:09:56 UTC 2021 年 6 月 17 日 (木) 3 時 9 分 56 秒 (日本時間) |
name 名前 | ebina |
---|---|
date 日付 | February 11, 2022 12:55:45 UTC 2022 年 2 月 11 日 (金) 21 時 55 分 45 秒 (日本時間) |
composite number 合成数 | 2048681848195848687843618840946548440903504767489165752608510434305874939328930289834472479345327288924888499726967251703513573071244891796704031386590052813176613<163> |
prime factors 素因数 | 3583734826093910256239692476684444571888937321485296720971161363221205333<73> 571661115459485128213710688855283577809065078508173957738424226092931083677889181338646161<90> |
factorization results 素因数分解の結果 | Thu May 9 11:19:31 2019 Thu May 9 11:19:31 2019 Thu May 9 11:19:31 2019 Msieve v. 1.53 (SVN unknown) Thu May 9 11:19:31 2019 random seeds: 76564760 b7b7ef6d Thu May 9 11:19:31 2019 factoring 2048681848195848687843618840946548440903504767489165752608510434305874939328930289834472479345327288924888499726967251703513573071244891796704031386590052813176613 (163 digits) Thu May 9 11:19:32 2019 searching for 15-digit factors Thu May 9 11:19:32 2019 commencing number field sieve (163-digit input) Thu May 9 11:19:32 2019 R0: -10000000000000000000000000000000000000000000 Thu May 9 11:19:32 2019 R1: 1 Thu May 9 11:19:32 2019 A0: 1 Thu May 9 11:19:32 2019 A1: 0 Thu May 9 11:19:32 2019 A2: 0 Thu May 9 11:19:32 2019 A3: 0 Thu May 9 11:19:32 2019 A4: 0 Thu May 9 11:19:32 2019 A5: 250 Thu May 9 11:19:32 2019 skew 0.33, size 5.590e-15, alpha 0.496, combined = 3.113e-12 rroots = 1 Thu May 9 11:19:32 2019 Thu May 9 11:19:32 2019 commencing square root phase Thu May 9 11:19:32 2019 reading relations for dependency 1 Thu May 9 11:19:33 2019 read 2247220 cycles Thu May 9 11:19:35 2019 cycles contain 6600642 unique relations Thu May 9 11:20:18 2019 read 6600642 relations Thu May 9 11:20:38 2019 multiplying 6600642 relations Thu May 9 11:22:28 2019 multiply complete, coefficients have about 208.23 million bits Thu May 9 11:22:29 2019 initial square root is modulo 29704721 Thu May 9 11:24:57 2019 sqrtTime: 325 Thu May 9 11:24:57 2019 p73 factor: 3583734826093910256239692476684444571888937321485296720971161363221205333 Thu May 9 11:24:57 2019 p90 factor: 571661115459485128213710688855283577809065078508173957738424226092931083677889181338646161 Thu May 9 11:24:57 2019 elapsed time 00:05:26 Thu May 09 11:24:57 2019 -> Computing 1.55737e+09 scale for this machine... Thu May 09 11:24:57 2019 -> procrels -speedtest> PIPE Thu May 09 11:24:58 2019 -> Factorization summary written to s218-1616.txt |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | August 6, 2020 16:06:03 UTC 2020 年 8 月 7 日 (金) 1 時 6 分 3 秒 (日本時間) | |
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 2100 / 4425 | Eric Jeancolas | August 6, 2020 16:42:44 UTC 2020 年 8 月 7 日 (金) 1 時 42 分 44 秒 (日本時間) |
name 名前 | Erik Branger |
---|---|
date 日付 | November 3, 2020 08:05:55 UTC 2020 年 11 月 3 日 (火) 17 時 5 分 55 秒 (日本時間) |
composite number 合成数 | 201582333448426538002405389862853840535060948805204317966087086743372110644854442135516604459997773784963617127848834228536574172049428267164242073781108701887703941323611942868142265205934270878184957<201> |
prime factors 素因数 | 1099434582361104516386854904446533301209373379355046432606965925056100839082663078489<85> 183350912080203872981862069129858481793158116131261099281760915708393266025916495886912593605227514908931645806521413<117> |
factorization results 素因数分解の結果 | Number: 10004_219 N = 201582333448426538002405389862853840535060948805204317966087086743372110644854442135516604459997773784963617127848834228536574172049428267164242073781108701887703941323611942868142265205934270878184957 (201 digits) SNFS difficulty: 221 digits. Divisors found: r1=1099434582361104516386854904446533301209373379355046432606965925056100839082663078489 (pp85) r2=183350912080203872981862069129858481793158116131261099281760915708393266025916495886912593605227514908931645806521413 (pp117) Version: Msieve v. 1.52 (SVN unknown) Total time: 52.31 hours. Factorization parameters were as follows: n: 201582333448426538002405389862853840535060948805204317966087086743372110644854442135516604459997773784963617127848834228536574172049428267164242073781108701887703941323611942868142265205934270878184957 m: 10000000000000000000000000000000000000000000000000000000 deg: 4 c4: 1 c0: 40 skew: 1.00 type: snfs lss: 1 rlim: 536870912 alim: 44739242 lpbr: 29 lpba: 28 mfbr: 58 mfba: 56 rlambda: 2.8 alambda: 2.8 side: 1 Factor base limits: 536870912/44739242 Large primes per side: 3 Large prime bits: 29/28 Relations: 6873032 relations Pruned matrix : 6014303 x 6014528 Total pre-computation time approximately 1000 CPU-days. Pre-computation saved approximately 18 G relations. Total batch smoothness checking time: 30.28 hours. Total relation processing time: 0.35 hours. Matrix solve time: 21.56 hours. time per square root: 0.12 hours. Prototype def-par.txt line would be: snfs,221,4,0,0,0,0,0,0,0,0,536870912,44739242,29,28,58,56,2.8,2.8,100000 total time: 52.31 hours. Intel64 Family 6 Model 60 Stepping 3, GenuineIntel Windows-10-10.0.18362-SP0 processors: 8, speed: 3.50GHz |
software ソフトウェア | GGNFS, NFS_factory, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | August 6, 2020 16:06:46 UTC 2020 年 8 月 7 日 (金) 1 時 6 分 46 秒 (日本時間) | |
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 2100 / 4425 | Eric Jeancolas | August 6, 2020 16:42:32 UTC 2020 年 8 月 7 日 (金) 1 時 42 分 32 秒 (日本時間) |
name 名前 | ebina |
---|---|
date 日付 | September 3, 2021 13:49:01 UTC 2021 年 9 月 3 日 (金) 22 時 49 分 1 秒 (日本時間) |
composite number 合成数 | 19045173872942235044002759870048850471263033958049460182635436778111996503314657007180114949423155128679248479949295087124736111127114578026916945275848661298695835001847899601<176> |
prime factors 素因数 | 691565963845721515139627538486861640054461975362267556649561<60> 27539200696104444494702559079910736641439591217230040097920633197065271979302347334100830018035589296959882184771641<116> |
factorization results 素因数分解の結果 | 19045173872942235044002759870048850471263033958049460182635436778111996503314657007180114949423155128679248479949295087124736111127114578026916945275848661298695835001847899601 (176 digits) Thu Apr 25 04:48:46 2019 searching for 15-digit factors Thu Apr 25 04:48:47 2019 commencing number field sieve (176-digit input) Thu Apr 25 04:48:47 2019 R0: -1000000000000000000000000000000000000000000000 Thu Apr 25 04:48:47 2019 R1: 1 Thu Apr 25 04:48:47 2019 A0: 2 Thu Apr 25 04:48:47 2019 A1: 0 Thu Apr 25 04:48:47 2019 A2: 0 Thu Apr 25 04:48:47 2019 A3: 0 Thu Apr 25 04:48:47 2019 A4: 0 Thu Apr 25 04:48:47 2019 A5: 5 Thu Apr 25 04:48:47 2019 skew 0.83, size 1.961e-15, alpha 1.104, combined = 1.525e-12 rroots = 1 Thu Apr 25 04:48:47 2019 Thu Apr 25 04:48:47 2019 commencing square root phase Thu Apr 25 04:48:47 2019 reading relations for dependency 1 Thu Apr 25 04:48:47 2019 read 4165070 cycles Thu Apr 25 04:48:52 2019 cycles contain 13686296 unique relations Thu Apr 25 04:50:17 2019 read 13686296 relations Thu Apr 25 04:51:01 2019 multiplying 13686296 relations Thu Apr 25 04:54:44 2019 multiply complete, coefficients have about 367.29 million bits Thu Apr 25 04:54:45 2019 initial square root is modulo 3893861 Thu Apr 25 04:59:27 2019 GCD is 1, no factor found Thu Apr 25 04:59:27 2019 reading relations for dependency 2 Thu Apr 25 04:59:28 2019 read 4167221 cycles Thu Apr 25 04:59:32 2019 cycles contain 13702804 unique relations Thu Apr 25 05:00:58 2019 read 13702804 relations Thu Apr 25 05:01:42 2019 multiplying 13702804 relations Thu Apr 25 05:05:24 2019 multiply complete, coefficients have about 367.74 million bits Thu Apr 25 05:05:26 2019 initial square root is modulo 3966871 Thu Apr 25 05:10:07 2019 Newton iteration failed to converge Thu Apr 25 05:10:07 2019 algebraic square root failed Thu Apr 25 05:10:07 2019 reading relations for dependency 3 Thu Apr 25 05:10:07 2019 read 4165167 cycles Thu Apr 25 05:10:12 2019 cycles contain 13698018 unique relations Thu Apr 25 05:11:38 2019 read 13698018 relations Thu Apr 25 05:12:23 2019 multiplying 13698018 relations Thu Apr 25 05:16:07 2019 multiply complete, coefficients have about 367.61 million bits Thu Apr 25 05:16:09 2019 initial square root is modulo 3946051 Thu Apr 25 05:20:53 2019 sqrtTime: 1926 Thu Apr 25 05:20:53 2019 p60 factor: 691565963845721515139627538486861640054461975362267556649561 Thu Apr 25 05:20:53 2019 p116 factor: 27539200696104444494702559079910736641439591217230040097920633197065271979302347334100830018035589296959882184771641 Thu Apr 25 05:20:53 2019 elapsed time 00:32:07 Thu Apr 25 05:20:53 2019 -> Computing 1.55614e+09 scale for this machine... Thu Apr 25 05:20:53 2019 -> procrels -speedtest> PIPE Thu Apr 25 05:20:54 2019 -> Factorization summary written to s226-1617.txt |
execution environment 実行環境 | core i9 9900k 3,6GHz windows 10 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | August 6, 2020 16:07:15 UTC 2020 年 8 月 7 日 (金) 1 時 7 分 15 秒 (日本時間) | |
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 2100 / 4425 | Eric Jeancolas | August 6, 2020 16:42:13 UTC 2020 年 8 月 7 日 (金) 1 時 42 分 13 秒 (日本時間) |
name 名前 | ebina |
---|---|
date 日付 | September 3, 2021 13:38:43 UTC 2021 年 9 月 3 日 (金) 22 時 38 分 43 秒 (日本時間) |
composite number 合成数 | 471698113207547169811320754716981132075471698113207547169811320754716981132075471698113207547169811320754716981132075471698113207547169811320754716981132075471698113207547169811320754716981132075471698113207547169811320754717<225> |
prime factors 素因数 | 36068581155787395937841305875961094498721136794527892306498167<62> 13077811715692084977178841511925482916020524599836722814125949614953959521029034366762929314856431716298163353108214761052369533346125842865467383337170649763344651<164> |
factorization results 素因数分解の結果 | Wed Sep 25 12:52:07 2019 factoring 471698113207547169811320754716981132075471698113207547169811320754716981132075471698113207547169811320754716981132075471698113207547169811320754716981132075471698113207547169811320754716981132075471698113207547169811320754717 (225 digits) Wed Sep 25 12:52:08 2019 searching for 15-digit factors Wed Sep 25 12:52:08 2019 commencing number field sieve (225-digit input) Wed Sep 25 12:52:08 2019 R0: -1000000000000000000000000000000000000000000000 Wed Sep 25 12:52:08 2019 R1: 1 Wed Sep 25 12:52:08 2019 A0: 1 Wed Sep 25 12:52:08 2019 A1: 0 Wed Sep 25 12:52:08 2019 A2: 0 Wed Sep 25 12:52:08 2019 A3: 0 Wed Sep 25 12:52:08 2019 A4: 0 Wed Sep 25 12:52:08 2019 A5: 25 Wed Sep 25 12:52:08 2019 skew 0.53, size 1.884e-15, alpha 0.535, combined = 1.481e-12 rroots = 1 Wed Sep 25 12:52:08 2019 Wed Sep 25 12:52:08 2019 commencing square root phase Wed Sep 25 12:52:08 2019 reading relations for dependency 1 Wed Sep 25 12:52:09 2019 read 4190473 cycles Wed Sep 25 12:52:13 2019 cycles contain 13789348 unique relations Wed Sep 25 12:53:39 2019 read 13789348 relations Wed Sep 25 12:54:25 2019 multiplying 13789348 relations Wed Sep 25 12:58:21 2019 multiply complete, coefficients have about 397.88 million bits Wed Sep 25 12:58:23 2019 initial square root is modulo 13783061 Wed Sep 25 13:03:23 2019 Newton iteration failed to converge Wed Sep 25 13:03:23 2019 algebraic square root failed Wed Sep 25 13:03:23 2019 reading relations for dependency 2 Wed Sep 25 13:03:23 2019 read 4189368 cycles Wed Sep 25 13:03:28 2019 cycles contain 13790046 unique relations Wed Sep 25 13:04:53 2019 read 13790046 relations Wed Sep 25 13:05:39 2019 multiplying 13790046 relations Wed Sep 25 13:09:36 2019 multiply complete, coefficients have about 397.90 million bits Wed Sep 25 13:09:37 2019 initial square root is modulo 13793401 Wed Sep 25 13:14:33 2019 sqrtTime: 1345 Wed Sep 25 13:14:33 2019 p62 factor: 36068581155787395937841305875961094498721136794527892306498167 Wed Sep 25 13:14:33 2019 p164 factor: 13077811715692084977178841511925482916020524599836722814125949614953959521029034366762929314856431716298163353108214761052369533346125842865467383337170649763344651 Wed Sep 25 13:14:33 2019 elapsed time 00:22:26 Wed Sep 25 13:14:34 2019 -> Computing 1.56938e+09 scale for this machine... Wed Sep 25 13:14:34 2019 -> procrels -speedtest> PIPE Wed Sep 25 13:14:35 2019 -> Factorization summary written to s227-1705.txt |
execution environment 実行環境 | core i9 9900k windows 10 3.6GHz |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | August 6, 2020 16:07:39 UTC 2020 年 8 月 7 日 (金) 1 時 7 分 39 秒 (日本時間) | |
40 | 3e6 | 2352 | ivelive | August 18, 2020 06:04:30 UTC 2020 年 8 月 18 日 (火) 15 時 4 分 30 秒 (日本時間) |
name 名前 | ebina |
---|---|
date 日付 | February 11, 2022 13:02:16 UTC 2022 年 2 月 11 日 (金) 22 時 2 分 16 秒 (日本時間) |
composite number 合成数 | 4129668525244475271574310364375545504702563713474199447674429497122179198061981700502192536743925216763492203078342219761437566817052826053292172452014082744821786507491527530350174993483368731<193> |
prime factors 素因数 | 146352750599553017547776185050004801821667903572925436225781843923321<69> 28217225220071045771640792085532495513169636765483063326041947436800230175984815265996393181309590461148348937263352527388211<125> |
factorization results 素因数分解の結果 | Mon Jan 18 16:35:41 2021 Msieve v. 1.53 (SVN unknown) Mon Jan 18 16:35:41 2021 random seeds: 3c17ba70 1a48c3c0 Mon Jan 18 16:35:41 2021 factoring 4129668525244475271574310364375545504702563713474199447674429497122179198061981700502192536743925216763492203078342219761437566817052826053292172452014082744821786507491527530350174993483368731 (193 digits) Mon Jan 18 16:35:42 2021 searching for 15-digit factors Mon Jan 18 16:35:43 2021 commencing number field sieve (193-digit input) Mon Jan 18 16:35:43 2021 R0: -10000000000000000000000000000000000000000000000 Mon Jan 18 16:35:43 2021 R1: 1 Mon Jan 18 16:35:43 2021 A0: 2 Mon Jan 18 16:35:43 2021 A1: 0 Mon Jan 18 16:35:43 2021 A2: 0 Mon Jan 18 16:35:43 2021 A3: 0 Mon Jan 18 16:35:43 2021 A4: 0 Mon Jan 18 16:35:43 2021 A5: 5 Mon Jan 18 16:35:43 2021 skew 0.83, size 9.101e-16, alpha 1.104, combined = 9.210e-13 rroots = 1 Mon Jan 18 16:35:43 2021 Mon Jan 18 16:35:43 2021 commencing square root phase Mon Jan 18 16:35:43 2021 reading relations for dependency 1 Mon Jan 18 16:35:45 2021 read 4885401 cycles Mon Jan 18 16:35:53 2021 cycles contain 15533542 unique relations Mon Jan 18 16:39:00 2021 read 15533542 relations Mon Jan 18 16:40:27 2021 multiplying 15533542 relations Mon Jan 18 16:50:18 2021 multiply complete, coefficients have about 420.37 million bits Mon Jan 18 16:50:21 2021 initial square root is modulo 34895741 Mon Jan 18 17:02:59 2021 sqrtTime: 1636 Mon Jan 18 17:02:59 2021 p69 factor: 146352750599553017547776185050004801821667903572925436225781843923321 Mon Jan 18 17:02:59 2021 p125 factor: 28217225220071045771640792085532495513169636765483063326041947436800230175984815265996393181309590461148348937263352527388211 Mon Jan 18 17:02:59 2021 elapsed time 00:27:18 Mon Jan 18 17:03:00 2021 -> Computing 1.61096e+09 scale for this machine... Mon Jan 18 17:03:00 2021 -> procrels -speedtest> PIPE Mon Jan 18 17:03:03 2021 -> Factorization summary written to s231-1949.txt |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | August 6, 2020 16:08:02 UTC 2020 年 8 月 7 日 (金) 1 時 8 分 2 秒 (日本時間) | |
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 2100 / 4425 | Eric Jeancolas | August 25, 2020 15:09:15 UTC 2020 年 8 月 26 日 (水) 0 時 9 分 15 秒 (日本時間) |
name 名前 | ebina |
---|---|
date 日付 | September 14, 2021 23:39:42 UTC 2021 年 9 月 15 日 (水) 8 時 39 分 42 秒 (日本時間) |
composite number 合成数 | 257045620456718658427497712293977935203939995270360583596376684934042093790805992247504087025365261826668997213625474249169742645924798733279182389290451269291273815276735314983703307663044037055696645040561798908070204299859139<228> |
prime factors 素因数 | 856270818653899019082176543136473596951874484473543427989351295442753171<72> 300191965972643279245370888159256545529657250610944319281686211724823906603707317881878918935493932786934839749250684381143785707180383950724741318759118609<156> |
factorization results 素因数分解の結果 | Number: 2017 N = 257045620456718658427497712293977935203939995270360583596376684934042093790805992247504087025365261826668997213625474249169742645924798733279182389290451269291273815276735314983703307663044037055696645040561798908070204299859139 (228 digits) SNFS difficulty: 233 digits. Divisors found: Version: Msieve v. 1.53 (SVN unknown) Total time: 1706.64 hours. Factorization parameters were as follows: n: 257045620456718658427497712293977935203939995270360583596376684934042093790805992247504087025365261826668997213625474249169742645924798733279182389290451269291273815276735314983703307663044037055696645040561798908070204299859139 m: 10000000000000000000000000000000000000000000000 c5: 250 c0: 1 type: snfs Factor base limits: 53500000/53500000 Large primes per side: 3 Large prime bits: 30/30 Sieved rational special-q in [0, 0) Total raw relations: 92796163 Relations: 16550122 relations Pruned matrix : 10607902 x 10608126 Polynomial selection time: 0.00 hours. Total sieving time: 1570.06 hours. Total relation processing time: 1.03 hours. Matrix solve time: 132.58 hours. time per square root: 2.96 hours. Prototype def-par.txt line would be: snfs,233,5,0,0,0,0,0,0,0,0,53500000,53500000,30,30,60,60,2.6,2.6,100000 total time: 1706.64 hours. Intel64 Family 6 Model 60 Stepping 3, GenuineIntel Windows-7-6.1.7601-SP1 processors: 2, speed: 2.99GHz Tue Mar 9 18:19:38 2021 Msieve v. 1.53 (SVN unknown) Tue Mar 9 18:19:38 2021 random seeds: a602b4e8 977762e4 Tue Mar 9 18:19:38 2021 factoring 257045620456718658427497712293977935203939995270360583596376684934042093790805992247504087025365261826668997213625474249169742645924798733279182389290451269291273815276735314983703307663044037055696645040561798908070204299859139 (228 digits) Tue Mar 9 18:19:40 2021 searching for 15-digit factors Tue Mar 9 18:19:41 2021 commencing number field sieve (228-digit input) Tue Mar 9 18:19:41 2021 R0: -10000000000000000000000000000000000000000000000 Tue Mar 9 18:19:41 2021 R1: 1 Tue Mar 9 18:19:41 2021 A0: 1 Tue Mar 9 18:19:41 2021 A1: 0 Tue Mar 9 18:19:41 2021 A2: 0 Tue Mar 9 18:19:41 2021 A3: 0 Tue Mar 9 18:19:41 2021 A4: 0 Tue Mar 9 18:19:41 2021 A5: 250 Tue Mar 9 18:19:41 2021 skew 0.33, size 5.590e-16, alpha 0.496, combined = 6.918e-13 rroots = 1 Tue Mar 9 18:19:41 2021 Tue Mar 9 18:19:41 2021 commencing square root phase Tue Mar 9 18:19:41 2021 reading relations for dependency 1 Tue Mar 9 18:19:43 2021 read 5307477 cycles Tue Mar 9 18:19:51 2021 cycles contain 16561060 unique relations Tue Mar 9 18:22:54 2021 read 16561060 relations Tue Mar 9 18:24:26 2021 multiplying 16561060 relations Tue Mar 9 18:35:32 2021 multiply complete, coefficients have about 532.75 million bits Tue Mar 9 18:35:36 2021 initial square root is modulo 60251 Tue Mar 9 18:49:19 2021 GCD is N, no factor found Tue Mar 9 18:49:19 2021 reading relations for dependency 2 Tue Mar 9 18:49:27 2021 read 5304435 cycles Tue Mar 9 18:49:34 2021 cycles contain 16554876 unique relations Tue Mar 9 18:52:35 2021 read 16554876 relations Tue Mar 9 18:54:06 2021 multiplying 16554876 relations Tue Mar 9 19:05:12 2021 multiply complete, coefficients have about 532.55 million bits Tue Mar 9 19:05:15 2021 initial square root is modulo 59971 Tue Mar 9 19:18:48 2021 GCD is 1, no factor found Tue Mar 9 19:18:48 2021 reading relations for dependency 3 Tue Mar 9 19:18:56 2021 read 5305219 cycles Tue Mar 9 19:19:03 2021 cycles contain 16558538 unique relations Tue Mar 9 19:22:04 2021 read 16558538 relations Tue Mar 9 19:23:34 2021 multiplying 16558538 relations Tue Mar 9 19:34:41 2021 multiply complete, coefficients have about 532.67 million bits Tue Mar 9 19:34:45 2021 initial square root is modulo 60101 Tue Mar 9 19:48:18 2021 GCD is N, no factor found Tue Mar 9 19:48:18 2021 reading relations for dependency 4 Tue Mar 9 19:48:25 2021 read 5304653 cycles Tue Mar 9 19:48:33 2021 cycles contain 16551588 unique relations Tue Mar 9 19:51:33 2021 read 16551588 relations Tue Mar 9 19:53:04 2021 multiplying 16551588 relations Tue Mar 9 20:04:10 2021 multiply complete, coefficients have about 532.44 million bits Tue Mar 9 20:04:14 2021 initial square root is modulo 59921 Tue Mar 9 20:18:03 2021 GCD is N, no factor found Tue Mar 9 20:18:03 2021 reading relations for dependency 5 Tue Mar 9 20:18:11 2021 read 5303631 cycles Tue Mar 9 20:18:19 2021 cycles contain 16555908 unique relations Tue Mar 9 20:21:20 2021 read 16555908 relations Tue Mar 9 20:22:51 2021 multiplying 16555908 relations Tue Mar 9 20:33:59 2021 multiply complete, coefficients have about 532.58 million bits Tue Mar 9 20:34:02 2021 initial square root is modulo 60041 Tue Mar 9 20:47:38 2021 GCD is 1, no factor found Tue Mar 9 20:47:38 2021 reading relations for dependency 6 Tue Mar 9 20:47:45 2021 read 5304384 cycles Tue Mar 9 20:47:53 2021 cycles contain 16550122 unique relations Tue Mar 9 20:50:55 2021 read 16550122 relations Tue Mar 9 20:52:25 2021 multiplying 16550122 relations Tue Mar 9 21:03:33 2021 multiply complete, coefficients have about 532.40 million bits Tue Mar 9 21:03:36 2021 initial square root is modulo 59771 Tue Mar 9 21:17:22 2021 sqrtTime: 10661 Tue Mar 9 21:17:22 2021 p72 factor: 856270818653899019082176543136473596951874484473543427989351295442753171 Tue Mar 9 21:17:22 2021 p156 factor: 300191965972643279245370888159256545529657250610944319281686211724823906603707317881878918935493932786934839749250684381143785707180383950724741318759118609 Tue Mar 9 21:17:22 2021 elapsed time 02:57:44 Tue Mar 09 21:17:23 2021 -> Computing 1.61529e+09 scale for this machine... Tue Mar 09 21:17:23 2021 -> procrels -speedtest> PIPE Tue Mar 09 21:17:28 2021 -> Factorization summary written to s233-2017.txt |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | August 6, 2020 16:08:40 UTC 2020 年 8 月 7 日 (金) 1 時 8 分 40 秒 (日本時間) | |
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 2100 / 4425 | Eric Jeancolas | August 6, 2020 16:41:39 UTC 2020 年 8 月 7 日 (金) 1 時 41 分 39 秒 (日本時間) |
name 名前 | ebina |
---|---|
date 日付 | September 3, 2021 13:59:46 UTC 2021 年 9 月 3 日 (金) 22 時 59 分 46 秒 (日本時間) |
composite number 合成数 | 3834464676276802191798223744926524439119516960092034131546763659962439872912737535758849154786296230449849303759755124304890941942023722276529048491073215877762356844151256229376503599749506934198151539<202> |
prime factors 素因数 | 5636666665492864638561151946900156489897604086357687036198755788971281718813733630774987101131207<97> 680271675412532193505651764424895555643563542652278078495255258115179309301305384546231561605037710469877<105> |
factorization results 素因数分解の結果 | Fri Oct 23 11:09:54 2020 Fri Oct 23 11:09:54 2020 Fri Oct 23 11:09:54 2020 Msieve v. 1.53 (SVN unknown) Fri Oct 23 11:09:54 2020 random seeds: d60296c4 f43fd1f0 Fri Oct 23 11:09:54 2020 factoring 3834464676276802191798223744926524439119516960092034131546763659962439872912737535758849154786296230449849303759755124304890941942023722276529048491073215877762356844151256229376503599749506934198151539 (202 digits) Fri Oct 23 11:09:55 2020 searching for 15-digit factors Fri Oct 23 11:09:56 2020 commencing number field sieve (202-digit input) Fri Oct 23 11:09:57 2020 R0: -1000000000000000000000000000000000000000 Fri Oct 23 11:09:57 2020 R1: 1 Fri Oct 23 11:09:58 2020 A0: 1 Fri Oct 23 11:09:58 2020 A1: 0 Fri Oct 23 11:09:58 2020 A2: 0 Fri Oct 23 11:09:58 2020 A3: 0 Fri Oct 23 11:09:58 2020 A4: 0 Fri Oct 23 11:09:58 2020 A5: 0 Fri Oct 23 11:09:58 2020 A6: 250 Fri Oct 23 11:09:58 2020 skew 0.40, size 7.081e-12, alpha 1.661, combined = 5.062e-13 rroots = 0 Fri Oct 23 11:09:58 2020 Fri Oct 23 11:09:58 2020 commencing square root phase Fri Oct 23 11:09:58 2020 reading relations for dependency 1 Fri Oct 23 11:10:07 2020 read 4457060 cycles Fri Oct 23 11:10:14 2020 cycles contain 12818852 unique relations Fri Oct 23 11:14:54 2020 read 12818852 relations Fri Oct 23 11:16:27 2020 multiplying 12818852 relations Fri Oct 23 11:37:13 2020 multiply complete, coefficients have about 421.21 million bits Fri Oct 23 11:37:17 2020 initial square root is modulo 36132073 Fri Oct 23 12:03:22 2020 GCD is N, no factor found Fri Oct 23 12:03:22 2020 reading relations for dependency 2 Fri Oct 23 12:03:25 2020 read 4455568 cycles Fri Oct 23 12:03:35 2020 cycles contain 12815576 unique relations Fri Oct 23 12:07:40 2020 read 12815576 relations Fri Oct 23 12:09:18 2020 multiplying 12815576 relations Fri Oct 23 12:30:07 2020 multiply complete, coefficients have about 421.11 million bits Fri Oct 23 12:30:11 2020 initial square root is modulo 35981833 Fri Oct 23 12:57:21 2020 GCD is 1, no factor found Fri Oct 23 12:57:21 2020 reading relations for dependency 3 Fri Oct 23 12:57:25 2020 read 4456721 cycles Fri Oct 23 12:57:35 2020 cycles contain 12817174 unique relations Fri Oct 23 13:01:11 2020 read 12817174 relations Fri Oct 23 13:02:45 2020 multiplying 12817174 relations Fri Oct 23 13:23:17 2020 multiply complete, coefficients have about 421.15 million bits Fri Oct 23 13:23:21 2020 initial square root is modulo 36045349 Fri Oct 23 13:49:43 2020 sqrtTime: 9585 Fri Oct 23 13:49:43 2020 p97 factor: 5636666665492864638561151946900156489897604086357687036198755788971281718813733630774987101131207 Fri Oct 23 13:49:43 2020 p105 factor: 680271675412532193505651764424895555643563542652278078495255258115179309301305384546231561605037710469877 Fri Oct 23 13:49:43 2020 elapsed time 02:39:49 Fri Oct 23 13:49:43 2020 -> Computing 1.60343e+09 scale for this machine... Fri Oct 23 13:49:43 2020 -> procrels -speedtest> PIPE Fri Oct 23 13:49:50 2020 -> Factorization summary written to s237-1777.txt |
execution environment 実行環境 | core i9 9900k 3.6GHz windows 10 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | August 6, 2020 16:09:03 UTC 2020 年 8 月 7 日 (金) 1 時 9 分 3 秒 (日本時間) | |
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 2100 / 4425 | Eric Jeancolas | August 6, 2020 16:41:05 UTC 2020 年 8 月 7 日 (金) 1 時 41 分 5 秒 (日本時間) |
name 名前 | ebina |
---|---|
date 日付 | August 19, 2021 13:47:33 UTC 2021 年 8 月 19 日 (木) 22 時 47 分 33 秒 (日本時間) |
composite number 合成数 | 91653663136035241782891021212936769085204657267466527072099026009025181812850229113361893815047138509820564048278093255735461701060235686504964263928695384749962650602878116058352128513026573417138241<200> |
prime factors 素因数 | 399607548596724645613801220002406825557238310276584344481019549314333282170374170844733558081<93> 229359188678715751385945781938763755727504063061822975544622819856151949720591273942646484045871857153391361<108> |
factorization results 素因数分解の結果 | Fri Jul 24 08:59:26 2020 Msieve v. 1.53 (SVN unknown) Fri Jul 24 08:59:26 2020 random seeds: 416bf300 2ab2d22c Fri Jul 24 08:59:26 2020 factoring 91653663136035241782891021212936769085204657267466527072099026009025181812850229113361893815047138509820564048278093255735461701060235686504964263928695384749962650602878116058352128513026573417138241 (200 digits) Fri Jul 24 08:59:27 2020 searching for 15-digit factors Fri Jul 24 08:59:27 2020 commencing number field sieve (200-digit input) Fri Jul 24 08:59:27 2020 R0: -100000000000000000000000000000000000000000000000 Fri Jul 24 08:59:27 2020 R1: 1 Fri Jul 24 08:59:27 2020 A0: 1 Fri Jul 24 08:59:27 2020 A1: 0 Fri Jul 24 08:59:27 2020 A2: 0 Fri Jul 24 08:59:27 2020 A3: 0 Fri Jul 24 08:59:27 2020 A4: 0 Fri Jul 24 08:59:27 2020 A5: 250 Fri Jul 24 08:59:27 2020 skew 0.33, size 2.595e-16, alpha 0.496, combined = 4.161e-13 rroots = 1 Fri Jul 24 08:59:27 2020 Fri Jul 24 08:59:27 2020 commencing linear algebra Fri Jul 24 08:59:28 2020 read 12022338 cycles Fri Jul 24 08:59:42 2020 cycles contain 35112705 unique relations Fri Jul 24 09:03:27 2020 read 35112705 relations Fri Jul 24 09:04:06 2020 using 20 quadratic characters above 4294917295 Fri Jul 24 09:05:50 2020 building initial matrix Fri Jul 24 09:09:31 2020 memory use: 4624.6 MB Fri Jul 24 09:09:37 2020 read 12022338 cycles Fri Jul 24 09:09:40 2020 matrix is 12022156 x 12022338 (3620.8 MB) with weight 1062448680 (88.37/col) Fri Jul 24 09:09:40 2020 sparse part has weight 816918077 (67.95/col) Fri Jul 24 09:10:50 2020 filtering completed in 2 passes Fri Jul 24 09:10:53 2020 matrix is 12013749 x 12013930 (3620.2 MB) with weight 1062208595 (88.41/col) Fri Jul 24 09:10:53 2020 sparse part has weight 816851786 (67.99/col) Fri Jul 24 09:11:11 2020 matrix starts at (0, 0) Fri Jul 24 09:11:13 2020 matrix is 12013749 x 12013930 (3620.2 MB) with weight 1062208595 (88.41/col) Fri Jul 24 09:11:13 2020 sparse part has weight 816851786 (67.99/col) Fri Jul 24 09:11:13 2020 saving the first 48 matrix rows for later Fri Jul 24 09:11:15 2020 matrix includes 64 packed rows Fri Jul 24 09:11:17 2020 matrix is 12013701 x 12013930 (3460.3 MB) with weight 846896743 (70.49/col) Fri Jul 24 09:11:17 2020 sparse part has weight 786956433 (65.50/col) Fri Jul 24 09:11:17 2020 using block size 8192 and superblock size 1572864 for processor cache size 16384 kB Fri Jul 24 09:11:51 2020 commencing Lanczos iteration (8 threads) Fri Jul 24 09:11:51 2020 memory use: 2874.4 MB Fri Jul 24 09:12:08 2020 linear algebra at 0.0%, ETA 35h15m Fri Jul 24 09:12:14 2020 checkpointing every 340000 dimensions Sat Jul 25 22:45:04 2020 lanczos halted after 189985 iterations (dim = 12013697) Sat Jul 25 22:45:14 2020 recovered 35 nontrivial dependencies Sat Jul 25 22:45:16 2020 BLanczosTime: 135949 Sat Jul 25 22:45:16 2020 elapsed time 37:45:50 Sat Jul 25 22:45:16 2020 -> Running square root step ... Sat Jul 25 22:45:16 2020 Sat Jul 25 22:45:16 2020 Sat Jul 25 22:45:16 2020 Msieve v. 1.53 (SVN unknown) Sat Jul 25 22:45:16 2020 random seeds: 66037938 928b429d Sat Jul 25 22:45:16 2020 factoring 91653663136035241782891021212936769085204657267466527072099026009025181812850229113361893815047138509820564048278093255735461701060235686504964263928695384749962650602878116058352128513026573417138241 (200 digits) Sat Jul 25 22:45:17 2020 searching for 15-digit factors Sat Jul 25 22:45:17 2020 commencing number field sieve (200-digit input) Sat Jul 25 22:45:17 2020 R0: -100000000000000000000000000000000000000000000000 Sat Jul 25 22:45:17 2020 R1: 1 Sat Jul 25 22:45:17 2020 A0: 1 Sat Jul 25 22:45:17 2020 A1: 0 Sat Jul 25 22:45:17 2020 A2: 0 Sat Jul 25 22:45:17 2020 A3: 0 Sat Jul 25 22:45:17 2020 A4: 0 Sat Jul 25 22:45:17 2020 A5: 250 Sat Jul 25 22:45:17 2020 skew 0.33, size 2.595e-16, alpha 0.496, combined = 4.161e-13 rroots = 1 Sat Jul 25 22:45:17 2020 Sat Jul 25 22:45:17 2020 commencing square root phase Sat Jul 25 22:45:17 2020 reading relations for dependency 1 Sat Jul 25 22:45:19 2020 read 6006239 cycles Sat Jul 25 22:45:24 2020 cycles contain 17553256 unique relations Sat Jul 25 22:47:17 2020 read 17553256 relations Sat Jul 25 22:48:19 2020 multiplying 17553256 relations Sat Jul 25 22:54:46 2020 multiply complete, coefficients have about 568.99 million bits Sat Jul 25 22:54:48 2020 initial square root is modulo 127291 Sat Jul 25 23:02:30 2020 sqrtTime: 1033 Sat Jul 25 23:02:30 2020 p93 factor: 399607548596724645613801220002406825557238310276584344481019549314333282170374170844733558081 Sat Jul 25 23:02:30 2020 p108 factor: 229359188678715751385945781938763755727504063061822975544622819856151949720591273942646484045871857153391361 Sat Jul 25 23:02:30 2020 elapsed time 00:17:14 Sat Jul 25 23:02:30 2020 -> Computing 1.59569e+09 scale for this machine... Sat Jul 25 23:02:30 2020 -> procrels -speedtest> PIPE Sat Jul 25 23:02:32 2020 -> Factorization summary written to s238-1873.txt |
software ソフトウェア | ggnfs factmsieve.py |
execution environment 実行環境 | core c9 9900k windows 10 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | August 6, 2020 16:09:30 UTC 2020 年 8 月 7 日 (金) 1 時 9 分 30 秒 (日本時間) | |
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 2100 / 4425 | Eric Jeancolas | August 6, 2020 16:40:46 UTC 2020 年 8 月 7 日 (金) 1 時 40 分 46 秒 (日本時間) |
name 名前 | ebina |
---|---|
date 日付 | August 19, 2021 13:32:20 UTC 2021 年 8 月 19 日 (木) 22 時 32 分 20 秒 (日本時間) |
composite number 合成数 | 8717091573811299518140026959493442459179697315361000361891022913642937890718502029150754322094466639529993715283727795362657070687939626767467859719736096983874814434583454798726089815572475880574016912193402344083209333<220> |
prime factors 素因数 | 1259566744700013869874171753611945947343039264667991405335689<61> 8469606587740885254149438485430039532365212152112790383497713178782835800891089<79> 817122528972873853405569140158670737313508293189206567287696599588186978203582973<81> |
factorization results 素因数分解の結果 | 07/18/19 07:47:20 v1.34.5 @ DESKTOP-272OUVM, nfs: commencing nfs on c240: 100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000004 07/18/19 07:47:20 v1.34.5 @ DESKTOP-272OUVM, nfs: input divides 10^239 + 4 07/18/19 07:47:20 v1.34.5 @ DESKTOP-272OUVM, nfs: using supplied cofactor: 8717091573811299518140026959493442459179697315361000361891022913642937890718502029150754322094466639529993715283727795362657070687939626767467859719736096983874814434583454798726089815572475880574016912193402344083209333 07/18/19 07:47:20 v1.34.5 @ DESKTOP-272OUVM, nfs: commencing snfs on c220: 8717091573811299518140026959493442459179697315361000361891022913642937890718502029150754322094466639529993715283727795362657070687939626767467859719736096983874814434583454798726089815572475880574016912193402344083209333 07/18/19 07:47:26 v1.34.5 @ DESKTOP-272OUVM, test: fb generation took 6.5924 seconds 07/18/19 07:47:26 v1.34.5 @ DESKTOP-272OUVM, test: commencing test sieving of polynomial 0 on the rational side over range 47200000-47202000 skew: 0.9247 c6: 8 c0: 5 Y1: -1 Y0: 5000000000000000000000000000000000000000 m: 5000000000000000000000000000000000000000 rlim: 47200000 alim: 47200000 mfbr: 60 mfba: 60 lpbr: 30 lpba: 30 rlambda: 2.60 alambda: 2.60 07/18/19 07:50:41 v1.34.5 @ DESKTOP-272OUVM, nfs: parsing special-q from .dat file 07/18/19 07:50:41 v1.34.5 @ DESKTOP-272OUVM, test: new best estimated total sieving time = 6 days 16h 42m 11s (with 16 threads) 07/18/19 07:50:48 v1.34.5 @ DESKTOP-272OUVM, test: fb generation took 6.4048 seconds 07/18/19 07:50:48 v1.34.5 @ DESKTOP-272OUVM, test: commencing test sieving of polynomial 1 on the rational side over range 47200000-47202000 skew: 1.8493 c6: 1 c0: 40 Y1: -1 Y0: 10000000000000000000000000000000000000000 m: 10000000000000000000000000000000000000000 rlim: 47200000 alim: 47200000 mfbr: 60 mfba: 60 lpbr: 30 lpba: 30 rlambda: 2.60 alambda: 2.60 07/18/19 07:54:02 v1.34.5 @ DESKTOP-272OUVM, nfs: parsing special-q from .dat file 07/18/19 07:54:02 v1.34.5 @ DESKTOP-272OUVM, test: estimated total sieving time = 6 days 22h 46m 24s (with 16 threads) 07/18/19 07:54:06 v1.34.5 @ DESKTOP-272OUVM, test: fb generation took 4.1084 seconds 07/18/19 07:54:06 v1.34.5 @ DESKTOP-272OUVM, test: commencing test sieving of polynomial 2 on the rational side over range 47200000-47202000 skew: 1.0456 c5: 4 c0: 5 Y1: -1 Y0: 500000000000000000000000000000000000000000000000 m: 500000000000000000000000000000000000000000000000 rlim: 47200000 alim: 47200000 mfbr: 60 mfba: 60 lpbr: 30 lpba: 30 rlambda: 2.60 alambda: 2.60 07/18/19 07:57:20 v1.34.5 @ DESKTOP-272OUVM, nfs: parsing special-q from .dat file 07/18/19 07:57:20 v1.34.5 @ DESKTOP-272OUVM, test: estimated total sieving time = 7 days 10h 37m 9s (with 16 threads) 07/18/19 07:47:20 v1.34.5 @ DESKTOP-272OUVM, nfs: commencing nfs on c240: 100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000004 07/18/19 07:47:20 v1.34.5 @ DESKTOP-272OUVM, nfs: input divides 10^239 + 4 07/18/19 07:47:20 v1.34.5 @ DESKTOP-272OUVM, nfs: using supplied cofactor: 8717091573811299518140026959493442459179697315361000361891022913642937890718502029150754322094466639529993715283727795362657070687939626767467859719736096983874814434583454798726089815572475880574016912193402344083209333 07/18/19 07:47:20 v1.34.5 @ DESKTOP-272OUVM, nfs: commencing snfs on c220: 8717091573811299518140026959493442459179697315361000361891022913642937890718502029150754322094466639529993715283727795362657070687939626767467859719736096983874814434583454798726089815572475880574016912193402344083209333 07/18/19 07:47:26 v1.34.5 @ DESKTOP-272OUVM, test: fb generation took 6.5924 seconds 07/18/19 07:47:26 v1.34.5 @ DESKTOP-272OUVM, test: commencing test sieving of polynomial 0 on the rational side over range 47200000-47202000 skew: 0.9247 c6: 8 c0: 5 Y1: -1 Y0: 5000000000000000000000000000000000000000 m: 5000000000000000000000000000000000000000 rlim: 47200000 alim: 47200000 mfbr: 60 mfba: 60 lpbr: 30 lpba: 30 rlambda: 2.60 alambda: 2.60 07/18/19 07:50:41 v1.34.5 @ DESKTOP-272OUVM, nfs: parsing special-q from .dat file 07/18/19 07:50:41 v1.34.5 @ DESKTOP-272OUVM, test: new best estimated total sieving time = 6 days 16h 42m 11s (with 16 threads) 07/18/19 07:50:48 v1.34.5 @ DESKTOP-272OUVM, test: fb generation took 6.4048 seconds 07/18/19 07:50:48 v1.34.5 @ DESKTOP-272OUVM, test: commencing test sieving of polynomial 1 on the rational side over range 47200000-47202000 skew: 1.8493 c6: 1 c0: 40 Y1: -1 Y0: 10000000000000000000000000000000000000000 m: 10000000000000000000000000000000000000000 rlim: 47200000 alim: 47200000 mfbr: 60 mfba: 60 lpbr: 30 lpba: 30 rlambda: 2.60 alambda: 2.60 07/18/19 07:54:02 v1.34.5 @ DESKTOP-272OUVM, nfs: parsing special-q from .dat file 07/18/19 07:54:02 v1.34.5 @ DESKTOP-272OUVM, test: estimated total sieving time = 6 days 22h 46m 24s (with 16 threads) 07/18/19 07:54:06 v1.34.5 @ DESKTOP-272OUVM, test: fb generation took 4.1084 seconds 07/18/19 07:54:06 v1.34.5 @ DESKTOP-272OUVM, test: commencing test sieving of polynomial 2 on the rational side over range 47200000-47202000 skew: 1.0456 c5: 4 c0: 5 Y1: -1 Y0: 500000000000000000000000000000000000000000000000 m: 500000000000000000000000000000000000000000000000 rlim: 47200000 alim: 47200000 mfbr: 60 mfba: 60 lpbr: 30 lpba: 30 rlambda: 2.60 alambda: 2.60 07/18/19 07:57:20 v1.34.5 @ DESKTOP-272OUVM, nfs: parsing special-q from .dat file 07/18/19 07:57:20 v1.34.5 @ DESKTOP-272OUVM, test: estimated total sieving time = 7 days 10h 37m 9s (with 16 threads) 07/28/19 23:35:51 v1.34.5 @ DESKTOP-272OUVM, nfs: commencing msieve filtering 07/28/19 23:57:49 v1.34.5 @ DESKTOP-272OUVM, nfs: commencing msieve linear algebra 08/01/19 10:38:32 v1.34.5 @ DESKTOP-272OUVM, nfs: commencing msieve sqrt 08/01/19 10:58:42 v1.34.5 @ DESKTOP-272OUVM, prp79 = 8469606587740885254149438485430039532365212152112790383497713178782835800891089 08/01/19 10:58:42 v1.34.5 @ DESKTOP-272OUVM, C142 = 1029220363839405487524457489575953069882586059024760126413601893447851948429435112529473889474906574706383028441776601012926536694529629623397 08/01/19 10:58:43 v1.34.5 @ DESKTOP-272OUVM, NFS elapsed time = 1221083.4001 seconds. Number: 142 N=1029220363839405487524457489575953069882586059024760126413601893447851948429435112529473889474906574706383028441776601012926536694529629623397 ( 142 digits) Divisors found: Version: Msieve v. 1.53 (SVN unknown) Total time: 222.77 hours. Scaled time: 1072.62 units (timescale=4.815). Factorization parameters were as follows: n: 1029220363839405487524457489575953069882586059024760126413601893447851948429435112529473889474906574706383028441776601012926536694529629623397 Y0: -3031492273393287534302037768 Y1: 34449046161649 c0: -1165530399977260153402969308062267 c1: 16076013867309983326680354726 c2: 62029583485312209292328 c3: -22509044353373426 c4: -8878645381 c5: 4020 skew: 1524000.90 type: gnfs Factor base limits: 13600000/13600000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved algebraic special-q in [6800000, 13700001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 2271772 x 2272000 Total sieving time: 214.69 hours. Total relation processing time: 0.22 hours. Matrix solve time: 7.61 hours. Time per square root: 0.25 hours. Prototype def-par.txt line would be: gnfs,141,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,13600000,13600000,28,28,56,56,2.5,2.5,100000 total time: 222.77 hours. --------- CPU info (if available) ---------- Mon Nov 4 16:23:59 2019 Msieve v. 1.53 (SVN unknown) Mon Nov 4 16:23:59 2019 random seeds: 65204ae4 ce3b5011 Mon Nov 4 16:23:59 2019 factoring 1029220363839405487524457489575953069882586059024760126413601893447851948429435112529473889474906574706383028441776601012926536694529629623397 (142 digits) Mon Nov 4 16:23:59 2019 searching for 15-digit factors Mon Nov 4 16:24:00 2019 commencing number field sieve (142-digit input) Mon Nov 4 16:24:00 2019 R0: -3031492273393287534302037768 Mon Nov 4 16:24:00 2019 R1: 34449046161649 Mon Nov 4 16:24:00 2019 A0: -1165530399977260153402969308062267 Mon Nov 4 16:24:00 2019 A1: 16076013867309983326680354726 Mon Nov 4 16:24:00 2019 A2: 62029583485312209292328 Mon Nov 4 16:24:00 2019 A3: -22509044353373426 Mon Nov 4 16:24:00 2019 A4: -8878645381 Mon Nov 4 16:24:00 2019 A5: 4020 Mon Nov 4 16:24:00 2019 skew 1524000.90, size 1.154e-13, alpha -5.718, combined = 1.827e-11 rroots = 3 Mon Nov 4 16:24:00 2019 Mon Nov 4 16:24:00 2019 commencing square root phase Mon Nov 4 16:24:00 2019 reading relations for dependency 1 Mon Nov 4 16:24:00 2019 read 1136356 cycles Mon Nov 4 16:24:02 2019 cycles contain 3765864 unique relations Mon Nov 4 16:24:39 2019 read 3765864 relations Mon Nov 4 16:24:54 2019 multiplying 3765864 relations Mon Nov 4 16:27:45 2019 multiply complete, coefficients have about 172.68 million bits Mon Nov 4 16:27:47 2019 initial square root is modulo 1574129 Mon Nov 4 16:31:26 2019 GCD is 1, no factor found Mon Nov 4 16:31:26 2019 reading relations for dependency 2 Mon Nov 4 16:31:26 2019 read 1136010 cycles Mon Nov 4 16:31:28 2019 cycles contain 3766086 unique relations Mon Nov 4 16:32:05 2019 read 3766086 relations Mon Nov 4 16:32:20 2019 multiplying 3766086 relations Mon Nov 4 16:35:11 2019 multiply complete, coefficients have about 172.69 million bits Mon Nov 4 16:35:13 2019 initial square root is modulo 1575583 Mon Nov 4 16:38:51 2019 sqrtTime: 891 Mon Nov 4 16:38:51 2019 p61 factor: 1259566744700013869874171753611945947343039264667991405335689 Mon Nov 4 16:38:51 2019 p81 factor: 817122528972873853405569140158670737313508293189206567287696599588186978203582973 Mon Nov 4 16:38:51 2019 elapsed time 00:14:52 |
execution environment 実行環境 | core i7 2600, 3,4GHz,windows 7 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | August 6, 2020 16:40:11 UTC 2020 年 8 月 7 日 (金) 1 時 40 分 11 秒 (日本時間) | |
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 2100 / 4425 | Eric Jeancolas | August 6, 2020 16:40:26 UTC 2020 年 8 月 7 日 (金) 1 時 40 分 26 秒 (日本時間) |
name 名前 | ebina |
---|---|
date 日付 | September 12, 2021 06:16:54 UTC 2021 年 9 月 12 日 (日) 15 時 16 分 54 秒 (日本時間) |
composite number 合成数 | 149451292171229072614934896263802399578822102505546337146558971358349003283407786606233836460125346287857517607354601971090036515142172088384621698438029424761531547585579673695643724417849<189> |
prime factors 素因数 | 5892614649239341554457731983185255271328486982393973<52> 25362475075562806992820583913719059739955816004239835197192376011227731131674268070948308070651257635186663193863270182756261270098159413<137> |
factorization results 素因数分解の結果 | Number: 2208 N = 149451292171229072614934896263802399578822102505546337146558971358349003283407786606233836460125346287857517607354601971090036515142172088384621698438029424761531547585579673695643724417849 (189 digits) SNFS difficulty: 242 digits. Divisors found: Version: Msieve v. 1.53 (SVN unknown) Total time: 732.16 hours. Factorization parameters were as follows: n: 149451292171229072614934896263802399578822102505546337146558971358349003283407786606233836460125346287857517607354601971090036515142172088384621698438029424761531547585579673695643724417849 m: 10000000000000000000000000000000000000000 c6: 25 c0: 1 type: snfs Factor base limits: 75600000/75600000 Large primes per side: 3 Large prime bits: 30/30 Sieved rational special-q in [0, 0) Total raw relations: 114195128 Relations: 11658084 relations Pruned matrix : 8722392 x 8722617 Polynomial selection time: 0.00 hours. Total sieving time: 714.23 hours. Total relation processing time: 0.66 hours. Matrix solve time: 17.06 hours. time per square root: 0.21 hours. Prototype def-par.txt line would be: snfs,242,6,0,0,0,0,0,0,0,0,75600000,75600000,30,30,60,60,2.6,2.6,100000 total time: 732.16 hours. Intel64 Family 6 Model 158 Stepping 12, GenuineIntel Windows-post2008Server-6.2.9200 processors: 16, speed: 3.60GHz Sun Sep 12 14:55:15 2021 Msieve v. 1.53 (SVN unknown) Sun Sep 12 14:55:15 2021 random seeds: 38a80ea8 f986186b Sun Sep 12 14:55:15 2021 factoring 149451292171229072614934896263802399578822102505546337146558971358349003283407786606233836460125346287857517607354601971090036515142172088384621698438029424761531547585579673695643724417849 (189 digits) Sun Sep 12 14:55:15 2021 searching for 15-digit factors Sun Sep 12 14:55:16 2021 commencing number field sieve (189-digit input) Sun Sep 12 14:55:16 2021 R0: -10000000000000000000000000000000000000000 Sun Sep 12 14:55:16 2021 R1: 1 Sun Sep 12 14:55:16 2021 A0: 1 Sun Sep 12 14:55:16 2021 A1: 0 Sun Sep 12 14:55:16 2021 A2: 0 Sun Sep 12 14:55:16 2021 A3: 0 Sun Sep 12 14:55:16 2021 A4: 0 Sun Sep 12 14:55:16 2021 A5: 0 Sun Sep 12 14:55:16 2021 A6: 25 Sun Sep 12 14:55:16 2021 skew 0.58, size 5.840e-12, alpha 1.376, combined = 4.334e-13 rroots = 0 Sun Sep 12 14:55:16 2021 Sun Sep 12 14:55:16 2021 commencing square root phase Sun Sep 12 14:55:16 2021 reading relations for dependency 1 Sun Sep 12 14:55:17 2021 read 4361648 cycles Sun Sep 12 14:55:21 2021 cycles contain 11658084 unique relations Sun Sep 12 14:56:47 2021 read 11658084 relations Sun Sep 12 14:57:28 2021 multiplying 11658084 relations Sun Sep 12 15:02:20 2021 multiply complete, coefficients have about 349.28 million bits Sun Sep 12 15:02:22 2021 initial square root is modulo 1850491 Sun Sep 12 15:07:49 2021 sqrtTime: 753 Sun Sep 12 15:07:49 2021 p52 factor: 5892614649239341554457731983185255271328486982393973 Sun Sep 12 15:07:49 2021 p137 factor: 25362475075562806992820583913719059739955816004239835197192376011227731131674268070948308070651257635186663193863270182756261270098159413 Sun Sep 12 15:07:49 2021 elapsed time 00:12:34 Sun Sep 12 15:07:49 2021 -> Computing 1.63143e+09 scale for this machine... Sun Sep 12 15:07:49 2021 -> procrels -speedtest> PIPE Sun Sep 12 15:07:51 2021 -> Factorization summary written to s242-2208.txt |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | August 6, 2020 16:30:59 UTC 2020 年 8 月 7 日 (金) 1 時 30 分 59 秒 (日本時間) | |
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 2100 / 4425 | Eric Jeancolas | August 6, 2020 16:31:15 UTC 2020 年 8 月 7 日 (金) 1 時 31 分 15 秒 (日本時間) |
name 名前 | ebina |
---|---|
date 日付 | August 19, 2021 13:00:56 UTC 2021 年 8 月 19 日 (木) 22 時 0 分 56 秒 (日本時間) |
composite number 合成数 | 28661550312428095335653696015826678790120294819585285710371365414474105837016438086981385010949285450353780980126424951966107831401755026977970847076069015637397911857019677988628701882846027744151410027896860150092513752098455406124423<236> |
prime factors 素因数 | 4952218431266011169287178577617715395025198608362524856270535953451<67> 5787618359374529012669985645894173863879562597786608831865606036858911367114943144291244782978401913147961380596230725236519999412220866476810129457506562349725522647573<169> |
factorization results 素因数分解の結果 | Tue Apr 9 18:42:38 2019 Msieve v. 1.53 (SVN unknown) Tue Apr 9 18:42:38 2019 random seeds: 096c7cd8 12735c3b Tue Apr 9 18:42:38 2019 factoring 28661550312428095335653696015826678790120294819585285710371365414474105837016438086981385010949285450353780980126424951966107831401755026977970847076069015637397911857019677988628701882846027744151410027896860150092513752098455406124423 (236 digits) Tue Apr 9 18:42:39 2019 searching for 15-digit factors Tue Apr 9 18:42:40 2019 commencing number field sieve (236-digit input) Tue Apr 9 18:42:40 2019 R0: -10000000000000000000000000000000000000000 Tue Apr 9 18:42:40 2019 R1: 1 Tue Apr 9 18:42:40 2019 A0: 1 Tue Apr 9 18:42:40 2019 A1: 0 Tue Apr 9 18:42:40 2019 A2: 0 Tue Apr 9 18:42:40 2019 A3: 0 Tue Apr 9 18:42:40 2019 A4: 0 Tue Apr 9 18:42:40 2019 A5: 0 Tue Apr 9 18:42:40 2019 A6: 250 Tue Apr 9 18:42:40 2019 skew 0.40, size 3.668e-12, alpha 1.661, combined = 3.126e-13 rroots = 0 Tue Apr 9 18:42:40 2019 Tue Apr 9 18:42:40 2019 commencing linear algebra Tue Apr 9 18:42:41 2019 read 9538910 cycles Tue Apr 9 18:42:50 2019 cycles contain 24988368 unique relations Tue Apr 9 18:45:33 2019 read 24988368 relations Tue Apr 9 18:46:01 2019 using 20 quadratic characters above 4294917295 Tue Apr 9 18:47:14 2019 building initial matrix Tue Apr 9 18:50:04 2019 memory use: 3286.7 MB Tue Apr 9 18:50:08 2019 read 9538910 cycles Tue Apr 9 18:50:10 2019 matrix is 9538733 x 9538910 (2819.6 MB) with weight 826632556 (86.66/col) Tue Apr 9 18:50:10 2019 sparse part has weight 643740171 (67.49/col) Tue Apr 9 18:51:05 2019 filtering completed in 2 passes Tue Apr 9 18:51:07 2019 matrix is 9537471 x 9537647 (2819.5 MB) with weight 826599577 (86.67/col) Tue Apr 9 18:51:07 2019 sparse part has weight 643730651 (67.49/col) Tue Apr 9 18:51:19 2019 matrix starts at (0, 0) Tue Apr 9 18:51:21 2019 matrix is 9537471 x 9537647 (2819.5 MB) with weight 826599577 (86.67/col) Tue Apr 9 18:51:21 2019 sparse part has weight 643730651 (67.49/col) Tue Apr 9 18:51:21 2019 saving the first 48 matrix rows for later Tue Apr 9 18:51:23 2019 matrix includes 64 packed rows Tue Apr 9 18:51:24 2019 matrix is 9537423 x 9537647 (2711.3 MB) with weight 659921456 (69.19/col) Tue Apr 9 18:51:24 2019 sparse part has weight 615380641 (64.52/col) Tue Apr 9 18:51:24 2019 using block size 8192 and superblock size 1572864 for processor cache size 16384 kB Tue Apr 9 18:51:49 2019 commencing Lanczos iteration (16 threads) Tue Apr 9 18:51:49 2019 memory use: 2255.6 MB Tue Apr 9 18:52:01 2019 linear algebra at 0.0%, ETA 20h52m Tue Apr 9 18:52:05 2019 checkpointing every 460000 dimensions Wed Apr 10 15:33:20 2019 lanczos halted after 150828 iterations (dim = 9537421) Wed Apr 10 15:33:28 2019 recovered 36 nontrivial dependencies Wed Apr 10 15:33:29 2019 BLanczosTime: 75049 Wed Apr 10 15:33:29 2019 elapsed time 20:50:51 Wed Apr 10 15:33:30 2019 -> Running square root step ... Wed Apr 10 15:33:30 2019 Wed Apr 10 15:33:30 2019 Wed Apr 10 15:33:30 2019 Msieve v. 1.53 (SVN unknown) Wed Apr 10 15:33:30 2019 random seeds: 5288c300 1b56eb00 Wed Apr 10 15:33:30 2019 factoring 28661550312428095335653696015826678790120294819585285710371365414474105837016438086981385010949285450353780980126424951966107831401755026977970847076069015637397911857019677988628701882846027744151410027896860150092513752098455406124423 (236 digits) Wed Apr 10 15:33:30 2019 searching for 15-digit factors Wed Apr 10 15:33:31 2019 commencing number field sieve (236-digit input) Wed Apr 10 15:33:31 2019 R0: -10000000000000000000000000000000000000000 Wed Apr 10 15:33:31 2019 R1: 1 Wed Apr 10 15:33:31 2019 A0: 1 Wed Apr 10 15:33:31 2019 A1: 0 Wed Apr 10 15:33:31 2019 A2: 0 Wed Apr 10 15:33:31 2019 A3: 0 Wed Apr 10 15:33:31 2019 A4: 0 Wed Apr 10 15:33:31 2019 A5: 0 Wed Apr 10 15:33:31 2019 A6: 250 Wed Apr 10 15:33:31 2019 skew 0.40, size 3.668e-12, alpha 1.661, combined = 3.126e-13 rroots = 0 Wed Apr 10 15:33:31 2019 Wed Apr 10 15:33:31 2019 commencing square root phase Wed Apr 10 15:33:31 2019 reading relations for dependency 1 Wed Apr 10 15:33:32 2019 read 4771154 cycles Wed Apr 10 15:33:36 2019 cycles contain 12497826 unique relations Wed Apr 10 15:35:03 2019 read 12497826 relations Wed Apr 10 15:35:48 2019 multiplying 12497826 relations Wed Apr 10 15:41:27 2019 multiply complete, coefficients have about 413.85 million bits Wed Apr 10 15:41:29 2019 initial square root is modulo 26655193 Wed Apr 10 15:48:17 2019 sqrtTime: 886 Wed Apr 10 15:48:17 2019 p67 factor: 4952218431266011169287178577617715395025198608362524856270535953451 Wed Apr 10 15:48:17 2019 p169 factor: 5787618359374529012669985645894173863879562597786608831865606036858911367114943144291244782978401913147961380596230725236519999412220866476810129457506562349725522647573 Wed Apr 10 15:48:17 2019 elapsed time 00:14:47 Wed Apr 10 15:48:17 2019 -> Computing 1.55488e+09 scale for this machine... Wed Apr 10 15:48:17 2019 -> procrels -speedtest> PIPE Wed Apr 10 15:48:19 2019 -> Factorization summary written to s243-1553.txt |
execution environment 実行環境 | core i9 9900k,3.6GHz,windows 10 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | August 6, 2020 16:09:44 UTC 2020 年 8 月 7 日 (金) 1 時 9 分 44 秒 (日本時間) | |
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 2100 / 4425 | Eric Jeancolas | August 6, 2020 16:30:25 UTC 2020 年 8 月 7 日 (金) 1 時 30 分 25 秒 (日本時間) |
name 名前 | ebina |
---|---|
date 日付 | September 14, 2021 14:13:27 UTC 2021 年 9 月 14 日 (火) 23 時 13 分 27 秒 (日本時間) |
composite number 合成数 | 4857049537932533025818710859633786753807064981626946140261524016710263135856514483395002282938892589680306298414881398081031445786588950326908520538852858747609529842593322996692454413473242024163596384027877<208> |
prime factors 素因数 | 3184945525966241101366799927121580949288747478637<49> 1694100901911906502066613262599319775417879455220073976603181281856417597<73> 900183919332444161599605377734373064337915634837784882226986640567417362603551387734093<87> |
factorization results 素因数分解の結果 | Z:\ALL\ECM>ecm70dev-svn2256-x64-nehalem\ecm -primetest -one -nn -sigma 2:12889205333767116437 2e8 GMP-ECM 7.0-dev [configured with MPIR 2.6.0, --enable-openmp] [ECM] Input number is 4857049537932533025818710859633786753807064981626946140261524016710263135856514483395002282938892589680306298414881398081031445786588950326908520538852858747609529842593322996692454413473242024163596384027877 (208 digits) Using B1=200000000, B2=2383901369866, polynomial Dickson(30), sigma=2:12889205333767116437 Step 1 took 860875ms Step 2 took 357281ms ********** Factor found in step 2: 3184945525966241101366799927121580949288747478637 Found probable prime factor of 49 digits: 3184945525966241101366799927121580949288747478637 Composite cofactor 1525002389627688541793144589985042603961246474766168629642892975356122386438221903047556990005321521851099914410577394866594012280976392643557046262380202034521 has 160 digits Number: 160 N = 1525002389627688541793144589985042603961246474766168629642892975356122386438221903047556990005321521851099914410577394866594012280976392643557046262380202034521 (160 digits) Divisors found: Version: Msieve v. 1.53 (SVN unknown) Total time: 730.49 hours. Factorization parameters were as follows: n: 1525002389627688541793144589985042603961246474766168629642892975356122386438221903047556990005321521851099914410577394866594012280976392643557046262380202034521 Y0: -8597108820954772415560620714336 Y1: 285622309306042439 c0: -1095187191286020620442091450787957205025 c1: 935037029885470127385585811956507 c2: 233480732490516631770838571 c3: -13553156546893076451 c4: -1427169629914 c5: 32472 skew: 12552753.57 type: gnfs Factor base limits: 35400000/35400000 Large primes per side: 3 Large prime bits: 29/29 Sieved algebraic special-q in [0, 0) Total raw relations: 80000258 Relations: 4464688 relations Pruned matrix : 3584998 x 3585230 Polynomial selection time: 310.56 hours. Total sieving time: 415.92 hours. Total relation processing time: 0.50 hours. Matrix solve time: 3.25 hours. time per square root: 0.26 hours. Prototype def-par.txt line would be: gnfs,159,5,65,2000,1e-05,0.28,250,20,50000,3600,35400000,35400000,29,29,58,58,2.6,2.6,100000 total time: 730.49 hours. Intel64 Family 6 Model 158 Stepping 12, GenuineIntel Windows-post2008Server-6.2.9200 processors: 16, speed: 3.60GHz Sun Jun 28 15:42:03 2020 Msieve v. 1.53 (SVN unknown) Sun Jun 28 15:42:03 2020 random seeds: 5cd98bf0 0a05e0ab Sun Jun 28 15:42:03 2020 factoring 1525002389627688541793144589985042603961246474766168629642892975356122386438221903047556990005321521851099914410577394866594012280976392643557046262380202034521 (160 digits) Sun Jun 28 15:42:04 2020 searching for 15-digit factors Sun Jun 28 15:42:04 2020 commencing number field sieve (160-digit input) Sun Jun 28 15:42:04 2020 R0: -8597108820954772415560620714336 Sun Jun 28 15:42:04 2020 R1: 285622309306042439 Sun Jun 28 15:42:04 2020 A0: -1095187191286020620442091450787957205025 Sun Jun 28 15:42:04 2020 A1: 935037029885470127385585811956507 Sun Jun 28 15:42:04 2020 A2: 233480732490516631770838571 Sun Jun 28 15:42:04 2020 A3: -13553156546893076451 Sun Jun 28 15:42:04 2020 A4: -1427169629914 Sun Jun 28 15:42:04 2020 A5: 32472 Sun Jun 28 15:42:04 2020 skew 12552753.57, size 1.818e-15, alpha -7.383, combined = 1.626e-12 rroots = 5 Sun Jun 28 15:42:04 2020 Sun Jun 28 15:42:04 2020 commencing square root phase Sun Jun 28 15:42:04 2020 reading relations for dependency 1 Sun Jun 28 15:42:05 2020 read 1791911 cycles Sun Jun 28 15:42:06 2020 cycles contain 4463752 unique relations Sun Jun 28 15:42:56 2020 read 4463752 relations Sun Jun 28 15:43:15 2020 multiplying 4463752 relations Sun Jun 28 15:46:14 2020 multiply complete, coefficients have about 236.00 million bits Sun Jun 28 15:46:15 2020 initial square root is modulo 294645499 Sun Jun 28 15:50:14 2020 GCD is N, no factor found Sun Jun 28 15:50:14 2020 reading relations for dependency 2 Sun Jun 28 15:50:14 2020 read 1792999 cycles Sun Jun 28 15:50:16 2020 cycles contain 4464688 unique relations Sun Jun 28 15:51:04 2020 read 4464688 relations Sun Jun 28 15:51:23 2020 multiplying 4464688 relations Sun Jun 28 15:54:15 2020 multiply complete, coefficients have about 236.04 million bits Sun Jun 28 15:54:17 2020 initial square root is modulo 295765727 Sun Jun 28 15:57:31 2020 sqrtTime: 927 Sun Jun 28 15:57:31 2020 p73 factor: 1694100901911906502066613262599319775417879455220073976603181281856417597 Sun Jun 28 15:57:31 2020 p87 factor: 900183919332444161599605377734373064337915634837784882226986640567417362603551387734093 Sun Jun 28 15:57:31 2020 elapsed time 00:15:28 Sun Jun 28 15:57:31 2020 -> Computing 1.59333e+09 scale for this machine... Sun Jun 28 15:57:31 2020 -> procrels -speedtest> PIPE Sun Jun 28 15:57:33 2020 -> Factorization summary written to g160-160.txt |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | August 6, 2020 16:29:45 UTC 2020 年 8 月 7 日 (金) 1 時 29 分 45 秒 (日本時間) | |
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 2100 / 4425 | Eric Jeancolas | August 6, 2020 16:30:06 UTC 2020 年 8 月 7 日 (金) 1 時 30 分 6 秒 (日本時間) |
name 名前 | ebina |
---|---|
date 日付 | December 22, 2022 23:13:57 UTC 2022 年 12 月 23 日 (金) 8 時 13 分 57 秒 (日本時間) |
composite number 合成数 | 2239183432129459873318179926894882429127689168355519072008131584136797180369618469012368723801311025013384331719063855871752843589965426526017512943864810722774271512684880213735630140155105675434939<199> |
prime factors 素因数 | 8793243827216729940607058113455805715162636798897689<52> 254648168085453226335665387408279256527942491122500061564590898062177267783686130730903753796505885062613380764020651404383170331615215767197035251<147> |
factorization results 素因数分解の結果 | Number: 10004_247 N = 2239183432129459873318179926894882429127689168355519072008131584136797180369618469012368723801311025013384331719063855871752843589965426526017512943864810722774271512684880213735630140155105675434939 (199 digits) SNFS difficulty: 247 digits. Divisors found: r1=8793243827216729940607058113455805715162636798897689 (pp52) r2=254648168085453226335665387408279256527942491122500061564590898062177267783686130730903753796505885062613380764020651404383170331615215767197035251 (pp147) Version: Msieve v. 1.53 (SVN unknown) Total time: 1631.92 hours. Factorization parameters were as follows: n: 2239183432129459873318179926894882429127689168355519072008131584136797180369618469012368723801311025013384331719063855871752843589965426526017512943864810722774271512684880213735630140155105675434939 m: 100000000000000000000000000000000000000000 c6: 5 c0: 2 type: snfs Factor base limits: 91600000/91600000 Large primes per side: 3 Large prime bits: 30/30 Sieved rational special-q in [0, 0) Total raw relations: 134577731 Relations: 10823572 relations Pruned matrix : 8546510 x 8546735 Total sieving time: 1602.77 hours. Total relation processing time: 1.31 hours. Matrix solve time: 27.48 hours. time per square root: 0.35 hours. Prototype def-par.txt line would be: snfs,247,6,0,0,0,0,0,0,0,0,91600000,91600000,30,30,60,60,2.6,2.6,100000 total time: 1631.92 hours. Intel64 Family 6 Model 94 Stepping 3, GenuineIntel processors: 8, speed: 2.81GHz Windows-post2008Server-6.2.9200 Running Python 3.2 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | August 6, 2020 16:10:30 UTC 2020 年 8 月 7 日 (金) 1 時 10 分 30 秒 (日本時間) | |
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 2100 / 4425 | Eric Jeancolas | August 6, 2020 16:29:30 UTC 2020 年 8 月 7 日 (金) 1 時 29 分 30 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | August 6, 2020 16:10:56 UTC 2020 年 8 月 7 日 (金) 1 時 10 分 56 秒 (日本時間) | |
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 4500 | 2100 | Eric Jeancolas | August 6, 2020 16:29:10 UTC 2020 年 8 月 7 日 (金) 1 時 29 分 10 秒 (日本時間) |
2400 | Thomas Kozlowski | September 24, 2024 23:06:37 UTC 2024 年 9 月 25 日 (水) 8 時 6 分 37 秒 (日本時間) | |||
50 | 43e6 | 6600 | Thomas Kozlowski | October 19, 2024 13:14:08 UTC 2024 年 10 月 19 日 (土) 22 時 14 分 8 秒 (日本時間) | |
55 | 11e7 | 15205 | Thomas Kozlowski | October 20, 2024 16:17:24 UTC 2024 年 10 月 21 日 (月) 1 時 17 分 24 秒 (日本時間) |
name 名前 | Thomas Kozlowski |
---|---|
date 日付 | September 24, 2024 23:39:28 UTC 2024 年 9 月 25 日 (水) 8 時 39 分 28 秒 (日本時間) |
composite number 合成数 | 116181989675569759327813022609653434415273801216799971480754204629267485230286018905004750523564050192033790189176861652209564858663072912614946232428107115056580201609985883445789712540927373807366123885797<207> |
prime factors 素因数 | 6017287000683015266819464202445725701812853<43> |
composite cofactor 合成数の残り | 19308035276094039799323519859828117605655802953153845931409376220531810003509816679446526514315451088188491432755608412217726979005413508480970389576150189783952049<164> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.6 [configured with GMP 6.3.0, --enable-asm-redc] [ECM] Input number is 116181989675569759327813022609653434415273801216799971480754204629267485230286018905004750523564050192033790189176861652209564858663072912614946232428107115056580201609985883445789712540927373807366123885797 (207 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:1201520104 Step 1 took 34818ms Step 2 took 13128ms Run 2 out of 0: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:1434699600 Step 1 took 33017ms Step 2 took 13079ms Run 3 out of 0: ... Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:2103352851 Step 1 took 33009ms Step 2 took 13085ms Run 41 out of 0: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:2298485650 Step 1 took 32851ms Step 2 took 13115ms ** Factor found in step 2: 6017287000683015266819464202445725701812853 Found prime factor of 43 digits: 6017287000683015266819464202445725701812853 Composite cofactor 19308035276094039799323519859828117605655802953153845931409376220531810003509816679446526514315451088188491432755608412217726979005413508480970389576150189783952049 has 164 digits |
execution environment 実行環境 | 2x Xeon E5-2698v4, 128GB DDR4, Ubuntu Server 24.04 |
name 名前 | Thomas Kozlowski |
---|---|
date 日付 | October 23, 2024 12:01:27 UTC 2024 年 10 月 23 日 (水) 21 時 1 分 27 秒 (日本時間) |
composite number 合成数 | 19308035276094039799323519859828117605655802953153845931409376220531810003509816679446526514315451088188491432755608412217726979005413508480970389576150189783952049<164> |
prime factors 素因数 | 98233188508276455328616799418504547029190960758117<50> 196553075078768079015696736242746153271245143308229711970785521960181424277252437949374782620187360126124222159197<114> |
factorization results 素因数分解の結果 | FACTORS 196553075078768079015696736242746153271245143308229711970785521960181424277252437949374782620187360126124222159197 98233188508276455328616799418504547029190960758117 POLYNOMIAL n: 19308035276094039799323519859828117605655802953153845931409376220531810003509816679446526514315451088188491432755608412217726979005413508480970389576150189783952049 skew: 2170979.934 c0: 44517755105653089515215413784455030090 c1: 32526463097289291696729800715499 c2: -34830207894530565010080996 c3: 15195740269958836874 c4: 2681568774768 c5: 466200 Y0: -18726096949281960433822957448689 Y1: 15393623184506937748727393 # MurphyE (Bf=4.295e+09,Bg=2.147e+09,area=1.208e+15) = 2.201e-07 # f(x) = 466200*x^5+2681568774768*x^4+15195740269958836874*x^3-34830207894530565010080996*x^2+32526463097289291696729800715499*x+44517755105653089515215413784455030090 # g(x) = 15393623184506937748727393*x-18726096949281960433822957448689 |
software ソフトウェア | cado-nfs |
execution environment 実行環境 | 2x Xeon E5-2698v4, 256GB DDR4, Ubuntu Server 24.04 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | August 6, 2020 16:11:12 UTC 2020 年 8 月 7 日 (金) 1 時 11 分 12 秒 (日本時間) | |
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 6580 | 2100 | Eric Jeancolas | August 6, 2020 16:28:34 UTC 2020 年 8 月 7 日 (金) 1 時 28 分 34 秒 (日本時間) |
4480 | Ignacio Santos | September 28, 2024 07:47:51 UTC 2024 年 9 月 28 日 (土) 16 時 47 分 51 秒 (日本時間) | |||
50 | 43e6 | 6103 | Thomas Kozlowski | October 19, 2024 15:37:42 UTC 2024 年 10 月 20 日 (日) 0 時 37 分 42 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | August 6, 2020 16:11:28 UTC 2020 年 8 月 7 日 (金) 1 時 11 分 28 秒 (日本時間) | |
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 4500 | 2100 | Eric Jeancolas | August 6, 2020 16:28:16 UTC 2020 年 8 月 7 日 (金) 1 時 28 分 16 秒 (日本時間) |
2400 | Thomas Kozlowski | September 25, 2024 00:26:14 UTC 2024 年 9 月 25 日 (水) 9 時 26 分 14 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | August 6, 2020 16:11:50 UTC 2020 年 8 月 7 日 (金) 1 時 11 分 50 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | February 10, 2022 20:28:50 UTC 2022 年 2 月 11 日 (金) 5 時 28 分 50 秒 (日本時間) | |
45 | 11e6 | 4000 | Thomas Kozlowski | September 25, 2024 02:20:56 UTC 2024 年 9 月 25 日 (水) 11 時 20 分 56 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | August 6, 2020 16:27:27 UTC 2020 年 8 月 7 日 (金) 1 時 27 分 27 秒 (日本時間) | |
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 4502 | 2100 | Eric Jeancolas | August 6, 2020 16:27:42 UTC 2020 年 8 月 7 日 (金) 1 時 27 分 42 秒 (日本時間) |
2402 | Thomas Kozlowski | September 25, 2024 03:23:07 UTC 2024 年 9 月 25 日 (水) 12 時 23 分 7 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | August 6, 2020 16:12:03 UTC 2020 年 8 月 7 日 (金) 1 時 12 分 3 秒 (日本時間) | |
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 4500 | 2100 | Eric Jeancolas | August 6, 2020 16:27:11 UTC 2020 年 8 月 7 日 (金) 1 時 27 分 11 秒 (日本時間) |
2400 | Thomas Kozlowski | September 25, 2024 04:25:11 UTC 2024 年 9 月 25 日 (水) 13 時 25 分 11 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | August 6, 2020 16:12:20 UTC 2020 年 8 月 7 日 (金) 1 時 12 分 20 秒 (日本時間) | |
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 4501 | 2100 | Eric Jeancolas | August 6, 2020 16:26:29 UTC 2020 年 8 月 7 日 (金) 1 時 26 分 29 秒 (日本時間) |
2401 | Thomas Kozlowski | September 25, 2024 05:20:20 UTC 2024 年 9 月 25 日 (水) 14 時 20 分 20 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | August 6, 2020 16:12:43 UTC 2020 年 8 月 7 日 (金) 1 時 12 分 43 秒 (日本時間) | |
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 4500 | 2100 | Eric Jeancolas | August 6, 2020 16:26:11 UTC 2020 年 8 月 7 日 (金) 1 時 26 分 11 秒 (日本時間) |
2400 | Thomas Kozlowski | September 25, 2024 06:08:16 UTC 2024 年 9 月 25 日 (水) 15 時 8 分 16 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | August 6, 2020 16:13:04 UTC 2020 年 8 月 7 日 (金) 1 時 13 分 4 秒 (日本時間) | |
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 4500 | 2100 | Eric Jeancolas | August 6, 2020 16:25:53 UTC 2020 年 8 月 7 日 (金) 1 時 25 分 53 秒 (日本時間) |
2400 | Thomas Kozlowski | September 25, 2024 06:57:14 UTC 2024 年 9 月 25 日 (水) 15 時 57 分 14 秒 (日本時間) |
name 名前 | Thomas Kozlowski |
---|---|
date 日付 | September 25, 2024 07:50:32 UTC 2024 年 9 月 25 日 (水) 16 時 50 分 32 秒 (日本時間) |
composite number 合成数 | 6597717060127870953913025711950080531127143626357834239170617596460907207644975168590477066559225004882335771078581659027972508249453015371294897147801206771542841600780666233607610262784117004186039343707424735872583193877291121051304668914524029173641<253> |
prime factors 素因数 | 4825820409033445760407444080471660201821917<43> |
composite cofactor 合成数の残り | 1367170035539991209081920553001254067117990827715561637252777014338137064253991798235225053145531660555418710913530295424720541496916466918713477675614818510754225595276117856163511245448476035210554209367446173<211> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.6 [configured with GMP 6.3.0, --enable-asm-redc] [ECM] Input number is 6597717060127870953913025711950080531127143626357834239170617596460907207644975168590477066559225004882335771078581659027972508249453015371294897147801206771542841600780666233607610262784117004186039343707424735872583193877291121051304668914524029173641 (253 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:2123846483 Step 1 took 48568ms Step 2 took 17385ms Run 2 out of 0: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:3367148017 Step 1 took 48161ms Step 2 took 17378ms Run 3 out of 0: ... Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:2831795637 Step 1 took 48451ms Step 2 took 17342ms Run 44 out of 0: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:3421962959 Step 1 took 48165ms Step 2 took 17396ms ** Factor found in step 2: 4825820409033445760407444080471660201821917 Found prime factor of 43 digits: 4825820409033445760407444080471660201821917 Composite cofactor 1367170035539991209081920553001254067117990827715561637252777014338137064253991798235225053145531660555418710913530295424720541496916466918713477675614818510754225595276117856163511245448476035210554209367446173 has 211 digits |
execution environment 実行環境 | 2x Xeon E5-2698v4, 128GB DDR4, Ubuntu Server 24.04 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | August 6, 2020 16:13:18 UTC 2020 年 8 月 7 日 (金) 1 時 13 分 18 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | February 10, 2022 20:51:48 UTC 2022 年 2 月 11 日 (金) 5 時 51 分 48 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | February 10, 2022 21:21:27 UTC 2022 年 2 月 11 日 (金) 6 時 21 分 27 秒 (日本時間) |
composite number 合成数 | 13979263538599215770500489989503693809943659875575099264062987552400575630076235825633073617793156334200715146555276940972374948274118254155823303012949100938049305738889590979281115686246143738504874267945861961617347896977571469013122481828147929918301059<257> |
prime factors 素因数 | 174467259301208790369914630418641243445851<42> |
composite cofactor 合成数の残り | 80125426367045366469642833090960437830242542507346835930925994177157291704576867413914775948773632398126699086861106973620597022953327321486037328876192514889131523016092186728078318570546535241055745603080313148409<215> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:3391124127 Step 1 took 15375ms Step 2 took 5859ms ********** Factor found in step 2: 174467259301208790369914630418641243445851 Found prime factor of 42 digits: 174467259301208790369914630418641243445851 Composite cofactor 80125426367045366469642833090960437830242542507346835930925994177157291704576867413914775948773632398126699086861106973620597022953327321486037328876192514889131523016092186728078318570546535241055745603080313148409 has 215 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | August 6, 2020 16:25:23 UTC 2020 年 8 月 7 日 (金) 1 時 25 分 23 秒 (日本時間) | |
40 | 3e6 | 587 | Marlon Trifunovic | February 21, 2022 10:34:00 UTC 2022 年 2 月 21 日 (月) 19 時 34 分 0 秒 (日本時間) | |
45 | 11e6 | 4480 | ivelive | March 11, 2023 00:37:14 UTC 2023 年 3 月 11 日 (土) 9 時 37 分 14 秒 (日本時間) |
name 名前 | Thomas Kozlowski |
---|---|
date 日付 | September 25, 2024 09:35:24 UTC 2024 年 9 月 25 日 (水) 18 時 35 分 24 秒 (日本時間) |
composite number 合成数 | 4189211607132384113839311896858258863114997209985069649832180183018276692399597165411858149943613211767998109827722861868287835702472137553600962513258854736573995720301422153556389301758966169602745441718850279252845731444725028528531044571535815245714017604742857813131<271> |
prime factors 素因数 | 2692625246531598077943379502589479060046103<43> 1555809376937454013388194503293259142693290586922049474742821558525098225380755647506584135904764530509817243893344066682082221595539568302849312516122139515994147986155732052425881346007532287872692576462986938985879120421474477<229> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.6 [configured with GMP 6.3.0, --enable-asm-redc] [ECM] Input number is 4189211607132384113839311896858258863114997209985069649832180183018276692399597165411858149943613211767998109827722861868287835702472137553600962513258854736573995720301422153556389301758966169602745441718850279252845731444725028528531044571535815245714017604742857813131 (271 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:3238052042 Step 1 took 57996ms Step 2 took 20428ms Run 2 out of 0: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:1861792945 Step 1 took 56913ms Step 2 took 19549ms Run 3 out of 0: ... Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:5738263 Step 1 took 60391ms Step 2 took 20261ms Run 76 out of 0: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:1036433509 Step 1 took 61196ms Step 2 took 19033ms ** Factor found in step 2: 2692625246531598077943379502589479060046103 Found prime factor of 43 digits: 2692625246531598077943379502589479060046103 Prime cofactor 1555809376937454013388194503293259142693290586922049474742821558525098225380755647506584135904764530509817243893344066682082221595539568302849312516122139515994147986155732052425881346007532287872692576462986938985879120421474477 has 229 digits |
execution environment 実行環境 | 2x Xeon E5-2698v4, 128GB DDR4, Ubuntu Server 24.04 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | August 6, 2020 16:25:02 UTC 2020 年 8 月 7 日 (金) 1 時 25 分 2 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | February 10, 2022 21:22:02 UTC 2022 年 2 月 11 日 (金) 6 時 22 分 2 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | August 6, 2020 16:13:40 UTC 2020 年 8 月 7 日 (金) 1 時 13 分 40 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | February 10, 2022 22:35:17 UTC 2022 年 2 月 11 日 (金) 7 時 35 分 17 秒 (日本時間) | |
45 | 11e6 | 4001 | Thomas Kozlowski | September 25, 2024 11:20:28 UTC 2024 年 9 月 25 日 (水) 20 時 20 分 28 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | August 6, 2020 16:13:50 UTC 2020 年 8 月 7 日 (金) 1 時 13 分 50 秒 (日本時間) | |
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 4500 | 2100 | Eric Jeancolas | August 6, 2020 16:24:39 UTC 2020 年 8 月 7 日 (金) 1 時 24 分 39 秒 (日本時間) |
2400 | Thomas Kozlowski | September 25, 2024 12:22:03 UTC 2024 年 9 月 25 日 (水) 21 時 22 分 3 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | August 6, 2020 16:14:03 UTC 2020 年 8 月 7 日 (金) 1 時 14 分 3 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | February 10, 2022 22:35:39 UTC 2022 年 2 月 11 日 (金) 7 時 35 分 39 秒 (日本時間) | |
45 | 11e6 | 4001 | Thomas Kozlowski | September 25, 2024 14:16:52 UTC 2024 年 9 月 25 日 (水) 23 時 16 分 52 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | August 6, 2020 16:14:17 UTC 2020 年 8 月 7 日 (金) 1 時 14 分 17 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | February 10, 2022 22:36:12 UTC 2022 年 2 月 11 日 (金) 7 時 36 分 12 秒 (日本時間) | |
45 | 11e6 | 4003 | Thomas Kozlowski | September 25, 2024 16:11:25 UTC 2024 年 9 月 26 日 (木) 1 時 11 分 25 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | August 6, 2020 16:14:29 UTC 2020 年 8 月 7 日 (金) 1 時 14 分 29 秒 (日本時間) | |
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 4500 | 2100 | Eric Jeancolas | August 6, 2020 16:24:02 UTC 2020 年 8 月 7 日 (金) 1 時 24 分 2 秒 (日本時間) |
2400 | Thomas Kozlowski | September 25, 2024 17:13:29 UTC 2024 年 9 月 26 日 (木) 2 時 13 分 29 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | August 6, 2020 16:14:41 UTC 2020 年 8 月 7 日 (金) 1 時 14 分 41 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | February 10, 2022 22:36:38 UTC 2022 年 2 月 11 日 (金) 7 時 36 分 38 秒 (日本時間) | |
45 | 11e6 | 4003 | Thomas Kozlowski | September 25, 2024 19:08:09 UTC 2024 年 9 月 26 日 (木) 4 時 8 分 9 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | August 6, 2020 16:14:58 UTC 2020 年 8 月 7 日 (金) 1 時 14 分 58 秒 (日本時間) | |
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 4500 | 2100 | Eric Jeancolas | August 6, 2020 16:23:13 UTC 2020 年 8 月 7 日 (金) 1 時 23 分 13 秒 (日本時間) |
2400 | Thomas Kozlowski | September 25, 2024 20:02:45 UTC 2024 年 9 月 26 日 (木) 5 時 2 分 45 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | August 6, 2020 16:22:57 UTC 2020 年 8 月 7 日 (金) 1 時 22 分 57 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | February 10, 2022 22:50:44 UTC 2022 年 2 月 11 日 (金) 7 時 50 分 44 秒 (日本時間) | |
45 | 11e6 | 4001 | Thomas Kozlowski | September 25, 2024 22:09:54 UTC 2024 年 9 月 26 日 (木) 7 時 9 分 54 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | August 6, 2020 16:15:13 UTC 2020 年 8 月 7 日 (金) 1 時 15 分 13 秒 (日本時間) | |
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 4501 | 2100 | Eric Jeancolas | August 6, 2020 16:22:37 UTC 2020 年 8 月 7 日 (金) 1 時 22 分 37 秒 (日本時間) |
2401 | Thomas Kozlowski | September 25, 2024 23:11:45 UTC 2024 年 9 月 26 日 (木) 8 時 11 分 45 秒 (日本時間) |
name 名前 | iczero |
---|---|
date 日付 | October 26, 2024 03:03:48 UTC 2024 年 10 月 26 日 (土) 12 時 3 分 48 秒 (日本時間) |
composite number 合成数 | 581742196121209064993666870195341172467423024238341444753544881055460317810789903902264465587722055961775335900469459125384771522034964181197753801491146159825054198901575223015724638638823022133<195> |
prime factors 素因数 | 655499783447320558817354141111975110049558459089<48> 127788153147581113495262838559036307920196099220932353231483738788086917<72> 6944922759997493714807471236218766004497410963654413412026007491074397003041<76> |
factorization results 素因数分解の結果 | 655499783447320558817354141111975110049558459089 * 127788153147581113495262838559036307920196099220932353231483738788086917 * 6944922759997493714807471236218766004497410963654413412026007491074397003041 P48: gmp-ecm 7.0.6, B1=11e7, sigma=-1:4006712017 P72: cado-nfs 8f87afffe4e00542f4edbb62fbbd502cb4ce4440 GNFS polynomial: n: 887478853252681440503379659208429586033213115532758006525515286937705635529040108736251097336337006192688680402832451573926307292654599018621314597 skew: 498079.744 c0: -2770133938906313576885146153249110 c1: -905012993634006982263000589 c2: 9846828817219135745778 c3: -863147024732296625 c4: 155952187626 c5: 385560 Y0: -27613047755312444867319615316 Y1: 9854897728402060745389 # MurphyE (Bf=2.147e+09,Bg=1.074e+09,area=3.087e+14) = 6.882e-07 # f(x) = 385560*x^5+155952187626*x^4-863147024732296625*x^3+9846828817219135745778*x^2-905012993634006982263000589*x-2770133938906313576885146153249110 # g(x) = 9854897728402060745389*x-27613047755312444867319615316 cado-nfs parameters: N = 887478853252681440503379659208429586033213115532758006525515286937705635529040108736251097336337006192688680402832451573926307292654599018621314597 name = 10004_294 tasks.I = 14 tasks.lim0 = 17000000 tasks.lim1 = 24000000 tasks.lpb0 = 30 tasks.lpb1 = 31 tasks.qmin = 2300000 tasks.filter.required_excess = 0.08 tasks.filter.target_density = 130.0 tasks.filter.purge.keep = 180 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.bwc.interleaving = 0 tasks.linalg.bwc.interval = 4000 tasks.linalg.bwc.threads = 64 tasks.linalg.characters.nchar = 50 tasks.polyselect.P = 260000 tasks.polyselect.admax = 1e5 tasks.polyselect.admin = 2160 tasks.polyselect.adrange = 840 tasks.polyselect.degree = 5 tasks.polyselect.incr = 420 tasks.polyselect.nq = 156250 tasks.polyselect.nrkeep = 256 tasks.polyselect.ropteffort = 21 tasks.polyselect.sopteffort = 5 tasks.polyselect.threads = 2 tasks.sieve.lambda0 = 1.94 tasks.sieve.lambda1 = 1.91 tasks.sieve.mfb0 = 58 tasks.sieve.mfb1 = 59 tasks.sieve.ncurves0 = 12 tasks.sieve.ncurves1 = 14 tasks.sieve.qrange = 10000 tasks.sieve.rels_wanted = 119000000 tasks.sieve.las.threads = 2 sieving statistics: Total number of relations: 119091530 Average J: 7766.52 for 577126 special-q, max bucket fill -bkmult 1.0,1s:1.078470 elapsed 4h34m for ecm, 3h21m for cado-nfs |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | August 6, 2020 16:15:28 UTC 2020 年 8 月 7 日 (金) 1 時 15 分 28 秒 (日本時間) | |
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 2100 | Eric Jeancolas | August 6, 2020 16:22:17 UTC 2020 年 8 月 7 日 (金) 1 時 22 分 17 秒 (日本時間) | |
50 | 43e6 | 2472 / 7075 | 680 | Dmitry Domanov | September 5, 2020 17:27:10 UTC 2020 年 9 月 6 日 (日) 2 時 27 分 10 秒 (日本時間) |
1792 | Dmitry Domanov | September 21, 2024 21:42:33 UTC 2024 年 9 月 22 日 (日) 6 時 42 分 33 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | August 6, 2020 16:15:38 UTC 2020 年 8 月 7 日 (金) 1 時 15 分 38 秒 (日本時間) | |
40 | 3e6 | 2400 | ebina | October 17, 2021 09:39:35 UTC 2021 年 10 月 17 日 (日) 18 時 39 分 35 秒 (日本時間) | |
45 | 11e6 | 4001 | Thomas Kozlowski | September 26, 2024 01:20:40 UTC 2024 年 9 月 26 日 (木) 10 時 20 分 40 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | August 6, 2020 16:15:56 UTC 2020 年 8 月 7 日 (金) 1 時 15 分 56 秒 (日本時間) | |
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 4500 | 2100 | Eric Jeancolas | August 6, 2020 16:18:33 UTC 2020 年 8 月 7 日 (金) 1 時 18 分 33 秒 (日本時間) |
2400 | Thomas Kozlowski | September 26, 2024 02:37:50 UTC 2024 年 9 月 26 日 (木) 11 時 37 分 50 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | August 6, 2020 16:16:15 UTC 2020 年 8 月 7 日 (金) 1 時 16 分 15 秒 (日本時間) | |
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 4500 | 2100 | Eric Jeancolas | August 6, 2020 16:18:12 UTC 2020 年 8 月 7 日 (金) 1 時 18 分 12 秒 (日本時間) |
2400 | Thomas Kozlowski | September 26, 2024 03:47:29 UTC 2024 年 9 月 26 日 (木) 12 時 47 分 29 秒 (日本時間) |
name 名前 | Thomas Kozlowski |
---|---|
date 日付 | September 26, 2024 03:59:54 UTC 2024 年 9 月 26 日 (木) 12 時 59 分 54 秒 (日本時間) |
composite number 合成数 | 4090696241159297799879785483499613151022359887324934237950112360760851480866792095470312329890863829760362933314204837172841404362380292485395178410462656390775873406225921572858097836512875350217855510968597631270648621981063454831278241315243849526918882166149989714763302658211<280> |
prime factors 素因数 | 11668752497904287411402400813273515775298397<44> |
composite cofactor 合成数の残り | 350568429820924599388014370926874750733094968358820590698902272594349538838135008035853651993895043433020236623570855362467832405303095589499070738895400887536902731123709563630577855681021432710232762984899906826563323373004938183793663<237> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.6 [configured with GMP 6.3.0, --enable-asm-redc] [ECM] Input number is 4090696241159297799879785483499613151022359887324934237950112360760851480866792095470312329890863829760362933314204837172841404362380292485395178410462656390775873406225921572858097836512875350217855510968597631270648621981063454831278241315243849526918882166149989714763302658211 (280 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:3238993556 Step 1 took 57189ms Step 2 took 19138ms Run 2 out of 0: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:3409922572 Step 1 took 56373ms Step 2 took 19944ms Run 3 out of 0: ... Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:3889282770 Step 1 took 62567ms Step 2 took 20508ms Run 8 out of 0: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:1967514968 Step 1 took 59025ms Step 2 took 19279ms ** Factor found in step 2: 11668752497904287411402400813273515775298397 Found prime factor of 44 digits: 11668752497904287411402400813273515775298397 Composite cofactor 350568429820924599388014370926874750733094968358820590698902272594349538838135008035853651993895043433020236623570855362467832405303095589499070738895400887536902731123709563630577855681021432710232762984899906826563323373004938183793663 has 237 digits |
execution environment 実行環境 | 2x Xeon E5-2698v4, 128GB DDR4, Ubuntu Server 24.04 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
20 | 11e3 | 74 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
25 | 5e4 | 214 | Makoto Kamada | August 5, 2020 00:00:00 UTC 2020 年 8 月 5 日 (水) 9 時 0 分 0 秒 (日本時間) | |
30 | 25e4 | 0 | - | - | |
35 | 1e6 | 1200 | Eric Jeancolas | August 6, 2020 16:16:37 UTC 2020 年 8 月 7 日 (金) 1 時 16 分 37 秒 (日本時間) | |
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 2100 / 4425 | Eric Jeancolas | August 6, 2020 16:17:31 UTC 2020 年 8 月 7 日 (金) 1 時 17 分 31 秒 (日本時間) |