Table of contents 目次

  1. About 99...9959 99...9959 について
    1. Classification 分類
    2. Sequence 数列
    3. General term 一般項
  2. Prime numbers of the form 99...9959 99...9959 の形の素数
    1. Last updated 最終更新日
    2. Known (probable) prime numbers 既知の (おそらく) 素数
    3. Range of search 捜索範囲
    4. Prime factors that appear periodically 周期的に現れる素因数
    5. Difficulty of search 捜索難易度
  3. Factor table of 99...9959 99...9959 の素因数分解表
    1. Last updated 最終更新日
    2. Range of factorization 分解範囲
    3. Terms that have not been factored yet まだ分解されていない項
    4. Factor table 素因数分解表
  4. Related links 関連リンク

1. About 99...9959 99...9959 について

1.1. Classification 分類

Near-repdigit of the form AA...AABA AA...AABA の形のニアレプディジット (Near-repdigit)

1.2. Sequence 数列

9w59 = { 59, 959, 9959, 99959, 999959, 9999959, 99999959, 999999959, 9999999959, 99999999959, … }

1.3. General term 一般項

10n-41 (2≤n)

2. Prime numbers of the form 99...9959 99...9959 の形の素数

2.1. Last updated 最終更新日

December 11, 2018 2018 年 12 月 11 日

2.2. Known (probable) prime numbers 既知の (おそらく) 素数

  1. 102-41 = 59 is prime. は素数です。
  2. 106-41 = 999959 is prime. は素数です。
  3. 108-41 = 99999959 is prime. は素数です。
  4. 1012-41 = (9)1059<12> is prime. は素数です。
  5. 1014-41 = (9)1259<14> is prime. は素数です。
  6. 1047-41 = (9)4559<47> is prime. は素数です。
  7. 1088-41 = (9)8659<88> is prime. は素数です。
  8. 10130-41 = (9)12859<130> is prime. は素数です。 (discovered by:発見: Makoto Kamada / August 23, 2004 2004 年 8 月 23 日) (certified by:証明: Robert Backstrom / APLOG.UB / August 8, 2009 2009 年 8 月 8 日)
  9. 10414-41 = (9)41259<414> is prime. は素数です。 (discovered by:発見: Makoto Kamada / PFGW / December 23, 2004 2004 年 12 月 23 日) (certified by:証明: Erik Branger / Primo 3.0.9 / April 10, 2010 2010 年 4 月 10 日)
  10. 101388-41 = (9)138659<1388> is prime. は素数です。 (discovered by:発見: Makoto Kamada / PFGW / December 23, 2004 2004 年 12 月 23 日) (certified by:証明: Erik Branger / Primo 3.0.9 / September 4, 2010 2010 年 9 月 4 日) [certificate証明]
  11. 101932-41 = (9)193059<1932> is prime. は素数です。 (discovered by:発見: Makoto Kamada / PFGW / December 23, 2004 2004 年 12 月 23 日) (certified by:証明: Ray Chandler / Primo 3.0.9 / June 3, 2011 2011 年 6 月 3 日) [certificate証明]
  12. 104106-41 = (9)410459<4106> is prime. は素数です。 (discovered by:発見: Makoto Kamada / PFGW / December 23, 2004 2004 年 12 月 23 日) (certified by:証明: Ivan Panchenko / PRIMO 4.2.1 - LX64 / February 12, 2017 2017 年 2 月 12 日) [certificate証明]
  13. 104412-41 = (9)441059<4412> is PRP. はおそらく素数です。 (Makoto Kamada / PFGW / December 23, 2004 2004 年 12 月 23 日)
  14. 1012870-41 = (9)1286859<12870> is PRP. はおそらく素数です。 (Ray Chandler / srsieve, PFGW / October 25, 2010 2010 年 10 月 25 日)
  15. 1022956-41 = (9)2295459<22956> is PRP. はおそらく素数です。 (Ray Chandler / srsieve, PFGW / December 17, 2010 2010 年 12 月 17 日)
  16. 1023932-41 = (9)2393059<23932> is PRP. はおそらく素数です。 (Bob Price / PFGW / December 25, 2010 2010 年 12 月 25 日)
  17. 1027312-41 = (9)2731059<27312> is PRP. はおそらく素数です。 (Bob Price / PFGW / December 25, 2010 2010 年 12 月 25 日)
  18. 1035316-41 = (9)3531459<35316> is PRP. はおそらく素数です。 (Bob Price / PFGW / December 25, 2010 2010 年 12 月 25 日)
  19. 1037169-41 = (9)3716759<37169> is PRP. はおそらく素数です。 (Bob Price / PFGW / December 25, 2010 2010 年 12 月 25 日)
  20. 1043873-41 = (9)4387159<43873> is PRP. はおそらく素数です。 (Bob Price / PFGW / April 26, 2011 2011 年 4 月 26 日)
  21. 10150029-41 = (9)15002759<150029> is PRP. はおそらく素数です。 (Serge Batalov / LLR / December 25, 2014 2014 年 12 月 25 日)

2.3. Range of search 捜索範囲

  1. n≤11000 / Completed 終了 / Ray Chandler / October 15, 2010 2010 年 10 月 15 日
  2. n≤20000 / Completed 終了 / Ray Chandler / December 12, 2010 2010 年 12 月 12 日
  3. n≤40000 / Completed 終了 / Bob Price / December 25, 2010 2010 年 12 月 25 日
  4. n≤100000 / Completed 終了 / Bob Price / May 29, 2011 2011 年 5 月 29 日
  5. n≤221000 / Completed 終了 / Serge Batalov / December 25, 2014 2014 年 12 月 25 日
  6. n≤250000 / Completed 終了 / Serge Batalov / December 27, 2014 2014 年 12 月 27 日

2.4. Prime factors that appear periodically 周期的に現れる素因数

Cofactors are written verbosely to clarify that they are integers. 補因子はそれらが整数であることを明確にするために冗長に書かれています。

  1. 106k+3-41 = 7×(103-417+9×103×106-19×7×k-1Σm=0106m)
  2. 108k+3-41 = 137×(103-41137+9×103×108-19×137×k-1Σm=0108m)
  3. 1015k+1-41 = 31×(101-4131+9×10×1015-19×31×k-1Σm=01015m)
  4. 1016k+9-41 = 17×(109-4117+9×109×1016-19×17×k-1Σm=01016m)
  5. 1018k+5-41 = 19×(105-4119+9×105×1018-19×19×k-1Σm=01018m)
  6. 1021k+9-41 = 43×(109-4143+9×109×1021-19×43×k-1Σm=01021m)
  7. 1022k+4-41 = 23×(104-4123+9×104×1022-19×23×k-1Σm=01022m)
  8. 1028k+21-41 = 29×(1021-4129+9×1021×1028-19×29×k-1Σm=01028m)
  9. 1041k+19-41 = 83×(1019-4183+9×1019×1041-19×83×k-1Σm=01041m)
  10. 1046k+25-41 = 47×(1025-4147+9×1025×1046-19×47×k-1Σm=01046m)

Read more続きを読むHide more続きを隠す

2.5. Difficulty of search 捜索難易度

The difficulty of search, percentage of terms that are not divisible by prime factors that appear periodically, is 25.50%. 捜索難易度 (周期的に現れる素因数で割り切れない項の割合) は 25.50% です。

3. Factor table of 99...9959 99...9959 の素因数分解表

3.1. Last updated 最終更新日

December 30, 2024 2024 年 12 月 30 日

3.2. Range of factorization 分解範囲

3.3. Terms that have not been factored yet まだ分解されていない項

n=215, 225, 228, 230, 232, 233, 238, 239, 240, 243, 244, 246, 249, 251, 253, 255, 256, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 271, 272, 274, 276, 277, 278, 281, 283, 285, 287, 288, 290, 291, 292, 294, 295, 297, 298, 299, 300 (48/300)

3.4. Factor table 素因数分解表

102-41 = 59 = definitely prime number 素数
103-41 = 959 = 7 × 137
104-41 = 9959 = 23 × 433
105-41 = 99959 = 19 × 5261
106-41 = 999959 = definitely prime number 素数
107-41 = 9999959 = 797 × 12547
108-41 = 99999959 = definitely prime number 素数
109-41 = 999999959 = 7 × 17 × 43 × 195427
1010-41 = 9999999959<10> = 163 × 61349693
1011-41 = 99999999959<11> = 137 × 729927007
1012-41 = 999999999959<12> = definitely prime number 素数
1013-41 = 9999999999959<13> = 11831 × 845237089
1014-41 = 99999999999959<14> = definitely prime number 素数
1015-41 = 999999999999959<15> = 7 × 40543 × 3523595759<10>
1016-41 = 9999999999999959<16> = 31 × 322580645161289<15>
1017-41 = 99999999999999959<17> = 233 × 769 × 30893 × 18065819
1018-41 = 999999999999999959<18> = 61 × 373 × 11279 × 3896644057<10>
1019-41 = 9999999999999999959<19> = 83 × 137 × 761 × 908459 × 1272071
1020-41 = 99999999999999999959<20> = 37933331 × 2636204028589<13>
1021-41 = 999999999999999999959<21> = 7 × 29 × 10009 × 492167886340717<15>
1022-41 = 9999999999999999999959<22> = 64211120317<11> × 155736264227<12>
1023-41 = 99999999999999999999959<23> = 19 × 197 × 4967 × 5378807637756239<16>
1024-41 = 999999999999999999999959<24> = 6089 × 1123493447<10> × 146178493673<12>
1025-41 = 9999999999999999999999959<25> = 17 × 47 × 359 × 34862519653745454799<20>
1026-41 = 99999999999999999999999959<26> = 23 × 283 × 1098833 × 13981508621829347<17>
1027-41 = 999999999999999999999999959<27> = 72 × 137 × 148964695367197974080143<24>
1028-41 = 9999999999999999999999999959<28> = 19943617151<11> × 501413556241405609<18>
1029-41 = 99999999999999999999999999959<29> = 881 × 18082811 × 6277087007079190949<19>
1030-41 = 999999999999999999999999999959<30> = 43 × 23255813953488372093023255813<29>
1031-41 = 9999999999999999999999999999959<31> = 31 × 322580645161290322580645161289<30>
1032-41 = 99999999999999999999999999999959<32> = 11047 × 4886720669531<13> × 1852414325925187<16>
1033-41 = 999999999999999999999999999999959<33> = 7 × 3631 × 888968342081<12> × 44257758627740767<17>
1034-41 = 9999999999999999999999999999999959<34> = 113 × 1091 × 1999 × 40577380909170872353269827<26>
1035-41 = 99999999999999999999999999999999959<35> = 137 × 35407 × 267389 × 6513803 × 10708459 × 1105312717<10>
1036-41 = 999999999999999999999999999999999959<36> = 1900296386803673<16> × 526233700671301588783<21>
1037-41 = 9999999999999999999999999999999999959<37> = 12737521271<11> × 785082104064264137314036129<27>
1038-41 = 99999999999999999999999999999999999959<38> = 389 × 787 × 911 × 2819 × 8861 × 14354215992488014266737<23>
1039-41 = 999999999999999999999999999999999999959<39> = 7 × 19524601 × 7316776555748455865646480706937<31>
1040-41 = 9999999999999999999999999999999999999959<40> = 146977 × 197558445439<12> × 344393559647809971503753<24>
1041-41 = 99999999999999999999999999999999999999959<41> = 17 × 19 × 31560799841<11> × 12340789343639<14> × 794889092694667<15>
1042-41 = 999999999999999999999999999999999999999959<42> = 94159461548255923<17> × 10620281632425314022291533<26>
1043-41 = 9999999999999999999999999999999999999999959<43> = 137 × 19716127493504753<17> × 3702182426745495361603919<25>
1044-41 = 99999999999999999999999999999999999999999959<44> = 2551 × 113286197 × 3991345294399<13> × 86694838714458918403<20>
1045-41 = 999999999999999999999999999999999999999999959<45> = 7 × 107 × 109 × 30593 × 1365047 × 293306719673479801242382784569<30>
1046-41 = 9999999999999999999999999999999999999999999959<46> = 31 × 5197 × 1635187 × 37959297246389935411126408215147551<35>
1047-41 = 99999999999999999999999999999999999999999999959<47> = definitely prime number 素数
1048-41 = 999999999999999999999999999999999999999999999959<48> = 23 × 2333 × 38273 × 7758949716040483<16> × 62756972230498271000839<23>
1049-41 = 9999999999999999999999999999999999999999999999959<49> = 29 × 103651 × 2294377 × 1449985720329602522266192019462982073<37>
1050-41 = 99999999999999999999999999999999999999999999999959<50> = 11146903909<11> × 70066746427<11> × 128036499270524000132721033713<30>
1051-41 = 999999999999999999999999999999999999999999999999959<51> = 7 × 43 × 137 × 262508317 × 944423903 × 872888546951<12> × 112058319196605007<18>
1052-41 = (9)5059<52> = 863 × 342912706008484649<18> × 33791356554039142680596153513057<32>
1053-41 = (9)5159<53> = 181871 × 1601813 × 1476490903297<13> × 232484474505492067636112780789<30>
1054-41 = (9)5259<54> = 77241265243453<14> × 12946447690209999415148172578270590743203<41>
1055-41 = (9)5359<55> = 167 × 3057382457<10> × 19585459249254168083406167506938555469529561<44>
1056-41 = (9)5459<56> = 33911 × 2948895638583350535224558402878122143257350122379169<52>
1057-41 = (9)5559<57> = 7 × 17 × 1063 × 7905325818003589017921373629414136303627754017881847<52>
1058-41 = (9)5659<58> = 131 × 625697 × 17082685253069<14> × 7141813296255098413709440822437724273<37>
1059-41 = (9)5759<59> = 192 × 137 × 181 × 1020841 × 2057987 × 36544075791663025609<20> × 145504338135948207209<21>
1060-41 = (9)5859<60> = 59 × 83 × 3547 × 696793 × 82623754992509709682752845658624484239594246557<47>
1061-41 = (9)5959<61> = 31 × 149 × 3389 × 221603 × 1058009 × 1495859 × 1821481701228333871601445019384529593<37>
1062-41 = (9)6059<62> = 114190185773126857019<21> × 875732002036322733645639483465312386122261<42>
1063-41 = (9)6159<63> = 7 × 8117 × 28334387 × 523521503 × 1186473569760475357288980862953945915818401<43>
1064-41 = (9)6259<64> = 173226360124073<15> × 520006869462991<15> × 193518304492016717<18> × 573660423078791189<18>
1065-41 = (9)6359<65> = 12391 × 2581439966284514460699953<25> × 3126306930901099939480091105064740833<37>
1066-41 = (9)6459<66> = 935482583157068621<18> × 1068966988808276753532418825307307828642429420979<49>
1067-41 = (9)6559<67> = 137 × 971 × 44753 × 442430609347<12> × 9238935303405721<16> × 410932942395727526569040353447<30>
1068-41 = (9)6659<68> = 72908383 × 1106403173<10> × 11682269539<11> × 553023536987<12> × 191883787978743228395709017957<30>
1069-41 = (9)6759<69> = 72 × 20408163265306122448979591836734693877551020408163265306122448979591<68>
1070-41 = (9)6859<70> = 23 × 3424277200978951337<19> × 126970622755469128786318569820596829597671061173209<51>
1071-41 = (9)6959<71> = 47 × 97 × 359406027811<12> × 61030236253760020253663279972240446056582386656492051891<56>
1072-41 = (9)7059<72> = 43 × 85572659 × 40397587247<11> × 30604694901891942552989<23> × 219812828876304787964389299229<30>
1073-41 = (9)7159<73> = 17 × 258019 × 36774069754030939183939321991<29> × 61995147181846905986676298418150014763<38> (Makoto Kamada / Msieve v. 1.53 (SVN 975M) for P29 x P38 / November 14, 2014 2014 年 11 月 14 日)
1074-41 = (9)7259<74> = 307 × 176261 × 1219826282112911768110962363359<31> × 1514981775316423446667804436093094263<37> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=2777453178 for P31 / November 13, 2014 2014 年 11 月 13 日)
1075-41 = (9)7359<75> = 7 × 137 × 420146513 × 87720193911448729<17> × 28293133339285304711910371437258160496416758913<47>
1076-41 = (9)7459<76> = 31 × 1747 × 1007789 × 1698500344741<13> × 10573369990102889<17> × 10202267784703834607397643939812172667<38>
1077-41 = (9)7559<77> = 19 × 29 × 139997518071349<15> × 7340951681686552774721<22> × 176593900537714981787810403372029082221<39>
1078-41 = (9)7659<78> = 61 × 43714549999<11> × 375011126119926450077859065026666536025275696909910877485160599181<66>
1079-41 = (9)7759<79> = 6174875423<10> × 421698833605315919325497394484433<33> × 3840337561069753080071324506032542201<37> (Makoto Kamada / Msieve v. 1.53 (SVN 975M) for P33 x P37 / November 14, 2014 2014 年 11 月 14 日)
1080-41 = (9)7859<80> = 1086523 × 3134530523<10> × 470167652965240329423133<24> × 62450486489909674294922029228077176877787<41>
1081-41 = (9)7959<81> = 7 × 7309 × 883577920558573818025141972313080559<36> × 22120714124169049065473496414532611510427<41> (Makoto Kamada / Msieve v. 1.53 (SVN 975M) for P36 x P41 / November 14, 2014 2014 年 11 月 14 日)
1082-41 = (9)8059<82> = 5086612178741<13> × 340037565361651<15> × 427340067557577345151<21> × 13529160872266188095086382295364999<35>
1083-41 = (9)8159<83> = 137 × 15373 × 2843122902601<13> × 2881873185929893<16> × 5794958173487339277817753744453934449892881553863<49>
1084-41 = (9)8259<84> = 34422831903903349123681994797<29> × 29050486107350331351161672433207041615855834845652518547<56>
1085-41 = (9)8359<85> = 216787 × 33254581 × 2091235283<10> × 12307547580569<14> × 2593059756165103<16> × 20783961930757264082150128485977237<35>
1086-41 = (9)8459<86> = 2170681 × 21585487798099607<17> × 2134234458841282086717276149083407704182966954282123995921823177<64>
1087-41 = (9)8559<87> = 7 × 30529 × 5277179 × 114878062258981717<18> × 19185045421386570512219<23> × 402334822132154756125447654106770709<36>
1088-41 = (9)8659<88> = definitely prime number 素数
1089-41 = (9)8759<89> = 17 × 31765904641951<14> × 185178196795568669385992957626500844497910972041829375915659972156133208377<75>
1090-41 = (9)8859<90> = 983 × 193757 × 1459309174088057<16> × 3597839354209722378973832817063742584641383814197945597063702586077<67>
1091-41 = (9)8959<91> = 31 × 137 × 163 × 4951 × 161733256763992241737243575784538690731<39> × 18040055794821528153512037008269915399800199<44> (Makoto Kamada / Msieve v. 1.53 (SVN 975M) for P39 x P44 / November 14, 2014 2014 年 11 月 14 日)
1092-41 = (9)9059<92> = 23 × 269 × 4397 × 620981 × 9990594886624831034231744638775499407<37> × 592507370417069506128721653508795583082043<42> (Makoto Kamada / Msieve v. 1.53 (SVN 975M) for P37 x P42 / November 14, 2014 2014 年 11 月 14 日)
1093-41 = (9)9159<93> = 7 × 43 × 673 × 9426985067<10> × 194773743561379<15> × 216249568134709176097703<24> × 12432542735044249983776695580149712898677<41>
1094-41 = (9)9259<94> = 865877 × 220673957507<12> × 814079752881341<15> × 1917504841348950527779468291<28> × 33526582787812835788998846146469151<35>
1095-41 = (9)9359<95> = 19 × 1193502874398469<16> × 4409840987931845714720032810443039914555522237497199118441240099779332080556169<79>
1096-41 = (9)9459<96> = 1571757507152405921<19> × 2745201653776100641169<22> × 231760919271556669466767003930299293540214855240950925191<57>
1097-41 = (9)9559<97> = 383 × 77369 × 125621 × 1773179 × 1515023665865748026724749283475234185384486938952987193827599219075549768619863<79>
1098-41 = (9)9659<98> = 107 × 1597331094643516399<19> × 1498807699659204702668569951<28> × 390369034779039154311383000079322786137164904025813<51> (Makoto Kamada / Msieve v. 1.53 (SVN 975M) for P28 x P51 / November 14, 2014 2014 年 11 月 14 日)
1099-41 = (9)9759<99> = 7 × 137 × 90008137690187<14> × 198637925357914307004434789<27> × 58322676507688596189628406985803346116427724646681345407<56>
10100-41 = (9)9859<100> = 7523 × 22409582513<11> × 1513796761530654456167304599<28> × 39183894691265494333477298308825461045807627838711169624059<59>
10101-41 = (9)9959<101> = 83 × 179 × 37915096894948358175390345337<29> × 177523849377877558555674520823325194398765581672589635387433168355351<69>
10102-41 = (9)10059<102> = 18979 × 8584339 × 2000067549574921<16> × 291426165571212641023<21> × 10530442198772493716726966143235334901537302766332444233<56>
10103-41 = (9)10159<103> = 15083 × 632985087791146771<18> × 1047415002491072616237435679004459815547198321037089219665022376988110626679665863<82>
10104-41 = (9)10259<104> = 51949 × 2831089 × 2237697700322107595904951191<28> × 93804889300019035873254510051671<32> × 3239234541476351113422897393458579<34> (Makoto Kamada / Msieve v. 1.53 (SVN 975M) for P32 x P34 / November 14, 2014 2014 年 11 月 14 日)
10105-41 = (9)10359<105> = 7 × 17 × 29 × 286477 × 2905446754429<13> × 7867836369609912650923220338229069353723<40> × 44248345910736958154632305785887212511375751<44> (Makoto Kamada / Msieve v. 1.53 (SVN 975M) for P40 x P44 / November 14, 2014 2014 年 11 月 14 日)
10106-41 = (9)10459<106> = 31 × 11867 × 1734041627<10> × 260865317641<12> × 173137809476454815898393239<27> × 347079995731122595075818517620885162404096825131633279<54>
10107-41 = (9)10559<107> = 137 × 431 × 60497 × 32581729273<11> × 187656289524077871063099200710406452689577<42> × 4578582755121747205285616171516763290563877281<46> (Makoto Kamada / Msieve v. 1.53 (SVN 975M) for P42 x P46 / November 14, 2014 2014 年 11 月 14 日)
10108-41 = (9)10659<108> = 349 × 18862141 × 151909028402130108561001777905443070458660200933119162607241323614785331194332483663248497867434751<99>
10109-41 = (9)10759<109> = 83137 × 49806863376530809<17> × 2414996237607046374766095840746841257665805739901912220471166990961752637304117080980623<88>
10110-41 = (9)10859<110> = 223938989 × 328317742048253<15> × 738623983074384384547<21> × 1841418616186136952016269431141677177379780413346730861847510976741<67>
10111-41 = (9)10959<111> = 72 × 81811641406752171417473915827<29> × 249453047443951817742490321385626014358859532986448278841961866230130294702419933<81> (Serge Batalov / GMP-ECM B1=1000000, sigma=46426871 for P29 / November 17, 2014 2014 年 11 月 17 日)
10112-41 = (9)11059<112> = 3571 × 2800336040324838980677681321758611033323998879865583870064407728927471296555586670400448053766451974236908429<109>
10113-41 = (9)11159<113> = 19 × 12007 × 392127803 × 1117851856152328376076884723553747932566827228170131726801113037038900693341521697139645884828193841<100>
10114-41 = (9)11259<114> = 23 × 43 × 1011122345803842264914054600606673407482305358948432760364004044489383215369059656218402426693629929221435793731<112>
10115-41 = (9)11359<115> = 137 × 674483 × 29076031 × 36550999 × 4133285031901<13> × 24636482149247350301307473819753570444388184292311141812577704423164449122115841<80>
10116-41 = (9)11459<116> = 14157005138957<14> × 310987271532476775896471959039652033495550810461<48> × 22713601197846637122387933580332842329424809755429796367<56> (Dmitry Domanov / Msieve 1.50 snfs for P48 x P56 / November 18, 2014 2014 年 11 月 18 日)
10117-41 = (9)11559<117> = 7 × 47 × 257 × 60446580395977<14> × 3804265631604678983266339<25> × 51431407317678574755955429344551569095934425421335184588048371590281456301<74>
10118-41 = (9)11659<118> = 59 × 9817 × 10181863 × 1695672387711197667188646397782185628737362842123176598285614616525061956494959897466294453019894614211931<106>
10119-41 = (9)11759<119> = 12777441463<11> × 352990491383<12> × 1076648672511891568287441362053127<34> × 20592974604426449200122590514679611354225073852777215775084432673<65> (KTakahashi / GMP-ECM 6.4.4 B1=1000000, sigma=3728169066 for P34 / November 17, 2014 2014 年 11 月 17 日)
10120-41 = (9)11859<120> = 314268816316223<15> × 5713828606806803068673<22> × 18679149902236724964918486469<29> × 29813598174601961969525010973567437962977728510888423509<56> (Makoto Kamada / Msieve v. 1.53 (SVN 975M) for P29 x P56 / November 14, 2014 2014 年 11 月 14 日)
10121-41 = (9)11959<121> = 17 × 31 × 197 × 947 × 48297702425473<14> × 1915256689183410618116173558758371<34> × 1099561994600158244623456122790629323865327744646302646552099723661<67> (Serge Batalov / GMP-ECM B1=1000000, sigma=892634613 for P34 / November 18, 2014 2014 年 11 月 18 日)
10122-41 = (9)12059<122> = 3331 × 80309 × 411157 × 21074521049609<14> × 43141550267441441560973421576929098560152941410192028508827445580865382529514042696844728987517<95>
10123-41 = (9)12159<123> = 7 × 137 × 1042752867570385818561001042752867570385818561001042752867570385818561001042752867570385818561001042752867570385818561001<121>
10124-41 = (9)12259<124> = 367 × 347211338479<12> × 65832519325722729251892666492427457831<38> × 1192063969411827746924958261090238575249610253747531214926208431912135473<73> (Dmitry Domanov / Msieve 1.50 snfs for P38 x P73 / November 18, 2014 2014 年 11 月 18 日)
10125-41 = (9)12359<125> = 193 × 5689 × 1539227 × 59170342669416569918585148039030181490414395086274620642937494503275864417242481891532348173101025037345495811421<113>
10126-41 = (9)12459<126> = 30253 × 58099 × 591663329 × 527571607302251556279281<24> × 1822664889490212686272471293323211141400087894466377092788182573069786471421593537553<85>
10127-41 = (9)12559<127> = 20749 × 2250216583<10> × 9775118531<10> × 205795674124801<15> × 2406665953909531<16> × 2716651424285693338122466243<28> × 16284352809971291263608404660698379926597292599<47>
10128-41 = (9)12659<128> = 6483360328958749<16> × 15424100300786515109872700788893228084568895561645491185040910620174497261695049956946821813113823207744891996291<113>
10129-41 = (9)12759<129> = 7 × 6043 × 802640182225891<15> × 29452927469056411711546976407622451583873497833088073658183836706218610417364539400548408886003993486590851649<110>
10130-41 = (9)12859<130> = definitely prime number 素数
10131-41 = (9)12959<131> = 19 × 137 × 3871580953<10> × 33220961857<11> × 486510760779383<15> × 613949760349077779329363030243615441829682762108869607920586260876460143738447944785916953371<93>
10132-41 = (9)13059<132> = 641886745421<12> × 1557907227612436610098817646013858365354102503216393487212293723067336968593503416591247824591057205655749935167969977779<121>
10133-41 = (9)13159<133> = 29 × 2873287 × 8785061852224781131746853136613612812448218197<46> × 13660864090386906376546185345500354670945428843714848554633414017745849662631889<80> (Dmitry Domanov / Msieve 1.50 snfs for P46 x P80 / November 18, 2014 2014 年 11 月 18 日)
10134-41 = (9)13259<134> = 112643 × 1603041116536502438819880851669<31> × 62111167422292669076415980862287<32> × 8916233587902654250288798094888729644310538893810833376857058984071<67> (Serge Batalov / GMP-ECM B1=1000000, sigma=496989334 for P31, B1=1000000, sigma=1174441807 for P32 / November 17, 2014 2014 年 11 月 17 日)
10135-41 = (9)13359<135> = 7 × 43 × 2617 × 1062127272013411<16> × 1195234778231214921457908975498998937741909525046263887245146954498646031262362721173807713755036924928382413186457<115>
10136-41 = (9)13459<136> = 23 × 31 × 14025245441795231416549789621318373071528751753155680224403927068723702664796633941093969144460028050490883590462833099579242636746143<134>
10137-41 = (9)13559<137> = 17 × 33073 × 12568534327961048123605305479<29> × 14151186417980803078276322226269628265983119078417788584772378314467166484689823375253969195609020637681<104> (Serge Batalov / GMP-ECM B1=1000000, sigma=2661535331 for P29 / November 18, 2014 2014 年 11 月 18 日)
10138-41 = (9)13659<138> = 61 × 7409131 × 35533219 × 6469162861441979<16> × 9625432531210790600385508204381802503104294573135382204428758937372167020313217968033964719977654852381849<106>
10139-41 = (9)13759<139> = 137 × 28014073 × 116028467 × 2502751343<10> × 84297022079<11> × 1193338079666483245655826604058741787536059<43> × 89195960683576200617463736920903208249637035409455009050599<59> (Dmitry Domanov / Msieve 1.50 snfs for P43 x P59 / November 19, 2014 2014 年 11 月 19 日)
10140-41 = (9)13859<140> = 21407 × 26834861 × 10976467087<11> × 718793155991<12> × 22063699202124985885864079356121709555363124610571371960030777852053728707884391112938373689504077105343701<107>
10141-41 = (9)13959<141> = 7 × 1487 × 36768888242596108394559155925529<32> × 220021033836418697284879749821306582666993<42> × 11875346540975114588033524839386880095052849278934034998838038983<65> (Serge Batalov / GMP-ECM B1=1000000, sigma=3344743912 for P32 / November 18, 2014 2014 年 11 月 18 日) (Dmitry Domanov / Msieve 1.50 snfs for P42 x P65 / November 19, 2014 2014 年 11 月 19 日)
10142-41 = (9)14059<142> = 83 × 186026403267809323402441<24> × 45550460637144331395688477<26> × 14218524974190495545220506664558009143090968677726538149233402317336499865840801819173274889<92>
10143-41 = (9)14159<143> = 31556923 × 468047314848749<15> × 594567539012688454308582264803<30> × 11387133100321974081843868509568833204292605266659708063455083477327845061765610425348330339<92> (Serge Batalov / GMP-ECM B1=1000000, sigma=285595031 for P30 / November 18, 2014 2014 年 11 月 18 日)
10144-41 = (9)14259<144> = 11593 × 86258949365996722159924092124557922884499266798930389027861640645216941257655481756232209091693263176054515655999309928405072026222720607263<140>
10145-41 = (9)14359<145> = 2687767 × 446005438688765459446515034949360182070184758885650016069685205212001<69> × 8341962398770545514940786254226431935026696137894365533352859553591777<70> (Dmitry Domanov / Msieve 1.50 snfs for P69 x P70 / November 20, 2014 2014 年 11 月 20 日)
10146-41 = (9)14459<146> = 113 × 275881 × 6601869553<10> × 165135670219610908819<21> × 3063079228513014656637325214925658484539<40> × 960580359309915870479191091275192187080055645722729650391763157624511<69> (Dmitry Domanov / Msieve 1.50 snfs for P40 x P69 / November 20, 2014 2014 年 11 月 20 日)
10147-41 = (9)14559<147> = 7 × 137 × 121531 × 72108898619<11> × 77294335932150436150012700331128192787985095134377980469<56> × 1539422354433465121006289267484457936113540519867408262057258392631068461<73> (Dmitry Domanov / Msieve 1.50 snfs for P56 x P73 / November 21, 2014 2014 年 11 月 21 日)
10148-41 = (9)14659<148> = 3823 × 138245521 × 725628251 × 24044941523050642801<20> × 30524315800945175889175798607545892360609676070511<50> × 35527184086176658882290222737015428338167678607454903619093<59> (Jane Sullivan / yafu-x86 v.1.33 for P50 x P59 / November 21, 2014 2014 年 11 月 21 日)
10149-41 = (9)14759<149> = 19 × 5263157894736842105263157894736842105263157894736842105263157894736842105263157894736842105263157894736842105263157894736842105263157894736842105261<148>
10150-41 = (9)14859<150> = 1193 × 1499 × 611879 × 8591515377238544232407323<25> × 10022894723783657867779429684138351629508917771001<50> × 10612786677182855891364812336005123531401913755285790120561364761<65> (Jane Sullivan / yafu-x64 v.1.33 for P50 x P65 / November 22, 2014 2014 年 11 月 22 日)
10151-41 = (9)14959<151> = 31 × 107 × 3557 × 20890112389<11> × 594877242299<12> × 68202851419055506929450631500348382880734896383377450211486989188074897841013185450307104435548835279641481126249613233001<122>
10152-41 = (9)15059<152> = 25579246299401<14> × 3909419332747960684843009954136958404537824012598766703440619407748575102669909257119091724176968261288527644714528905379983882258587515359<139>
10153-41 = (9)15159<153> = 72 × 17 × 109 × 70991 × 3266883215323205718482633810348531709534018173<46> × 320800903693052087570574113857516284243085245161<48> × 148032138895145305081210369830718009368779186505689<51> (Dmitry Domanov / Msieve 1.50 snfs for P46 x P48 x P51 / November 24, 2014 2014 年 11 月 24 日)
10154-41 = (9)15259<154> = 47894893 × 138259476457997432898637<24> × 809557712393887019051387<24> × 222014685395560022977038066536890873<36> × 8402071400366015381669343805820472839396973723168855581286632149<64> (KTakahashi / Msieve 1.51 gnfs for P36 x P64 / November 18, 2014 2014 年 11 月 18 日)
10155-41 = (9)15359<155> = 137 × 97463357483<11> × 9283627803349<13> × 128793467932096441<18> × 57932212699602407973279307<26> × 108120087954196224788878864223743134240143294785524089340132088641369643719039635829683<87>
10156-41 = (9)15459<156> = 43 × 23255813953488372093023255813953488372093023255813953488372093023255813953488372093023255813953488372093023255813953488372093023255813953488372093023255813<155>
10157-41 = (9)15559<157> = 12729996092417<14> × 322671155542779337471<21> × 767677468560037180505599319<27> × 6792543534374484081332888939<28> × 466874721984452302848294463808824296821053613034695158693478489392957<69>
10158-41 = (9)15659<158> = 23 × 10463 × 1099247 × 5489221 × 26591820763633093469904967405270076503<38> × 38096405909941668735790255353453214771<38> × 67979482353995177133649744719589033338874732480548925464347357161<65> (Serge Batalov / GMP-ECM B1=1000000, sigma=3242235565 for P38(2659...) / November 18, 2014 2014 年 11 月 18 日) (Serge Batalov / Msieve 1.51 gnfs for P38(3809...) x P65 / November 19, 2014 2014 年 11 月 19 日)
10159-41 = (9)15759<159> = 7 × 290987 × 198049225594085539<18> × 512327770264636259821007<24> × 61888197088025385458236400322667880294639477834952913561<56> × 78180689475411860766344713047409895347042855853150134967<56> (Rich Smith / YAFU 1.31 for P56(6188...) x P56(7818...) / November 23, 2014 2014 年 11 月 23 日)
10160-41 = (9)15859<160> = 541 × 28909 × 5007631301069081<16> × 8891128073106708373541543434763465272142756482807<49> × 14360860193120013985758041225334656217827679741217078896362845726852082700067271158421233<89> (Dmitry Domanov / Msieve 1.50 snfs for P49 x P89 / December 5, 2014 2014 年 12 月 5 日)
10161-41 = (9)15959<161> = 29 × 1913 × 95419 × 1317413 × 574215571 × 24073806571<11> × 5845537122278551082549<22> × 11734331828842785474679<23> × 1129889901983879641843922461<28> × 13384174166656822926686923054140967638860329584299551691<56>
10162-41 = (9)16059<162> = 677 × 1907 × 176497 × 1159393 × 72307758710630967751<20> × 52348921213585947057592244249144094170877296917437483174257726720141969213018167365174736803784294717182854551043717927512511<125>
10163-41 = (9)16159<163> = 47 × 137 × 386129 × 199554253 × 4901185318031776639523358615248915473<37> × 15379440347018632706789989953250786436681594117<47> × 267390830854178423047811752175747600180701822420526755799988593<63> (Jo Yeong Uk / GMP-ECM 6.4.4 B1=3000000, sigma=5400595585 for P37 / December 9, 2014 2014 年 12 月 9 日) (Cyp / yafu v1.34.3 for P47 x P63 / December 10, 2014 2014 年 12 月 10 日)
10164-41 = (9)16259<164> = 8468857 × 139186637537<12> × 31818235634872010383351605499935941<35> × 2666254265544491356047247840900569116506099588292064755715417343416150114085976660809583174079655671307769501411<112> (Serge Batalov / GMP-ECM B1=1000000, sigma=4234271323 for P35 / November 18, 2014 2014 年 11 月 18 日)
10165-41 = (9)16359<165> = 7 × 443 × 39320174632259<14> × 145796171560168189237<21> × 56251832605043460132425639799058140564509074865985350522962894958603919871808801235434237752543053704814268856354966683305111773<128>
10166-41 = (9)16459<166> = 31 × 2377 × 27164301873112438085857319203215369756395499734947<50> × 4995863644410594347831490885910771522768653861756816988228491002081241334939177551813077560679908968251287864331<112> (Dmitry Domanov / Msieve 1.50 snfs / November 25, 2014 2014 年 11 月 25 日)
10167-41 = (9)16559<167> = 19 × 97 × 283 × 156679 × 480607121 × 1122737393523169<16> × 557024502714939579526832820059<30> × 4071315418938206603481236285011089330538237476765846244447847761320212328169671647607884717898448509299<103> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=1107237847 for P30 / November 13, 2014 2014 年 11 月 13 日)
10168-41 = (9)16659<168> = 1991734573<10> × 2801052327193798471<19> × 11123251839564300768767799798843533<35> × 72730983270035000258931523213995998540911<41> × 221562413259471311909267000999833924362379927688720896845244287271<66> (Serge Batalov / GMP-ECM B1=1000000, sigma=2865555227 for P35 / November 18, 2014 2014 年 11 月 18 日) (Erik Branger / GGNFS, Msieve gnfs for P41 x P66 / November 19, 2014 2014 年 11 月 19 日)
10169-41 = (9)16759<169> = 17 × 588235294117647058823529411764705882352941176470588235294117647058823529411764705882352941176470588235294117647058823529411764705882352941176470588235294117647058823527<168>
10170-41 = (9)16859<170> = 569 × 10627 × 30029711 × 550713725227338625379498550041668107191712272929440346267344452403374066233623180838984996918217037613323075163752543161772880265316337925187535638172472363<156>
10171-41 = (9)16959<171> = 7 × 137 × 2393 × 5246561 × 46047747874109536288009525903<29> × 535395397958376382509900577746162781527804227<45> × 3368844299975907661102206853992099505015531502556559882672977142021229610562616037077<85> (Daniel Morel / GMP-ECM 7.0 for P45 x P85 / April 22, 2015 2015 年 4 月 22 日)
10172-41 = (9)17059<172> = 163 × 401 × 1117 × 1399 × 8943133 × 1983037470785269<16> × 5412418686462847521299224434809<31> × 1019964697656892773831209346377970041108639908343022713464088075400543997320865042097755926176544201087542447<109> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=1560541207 for P31 / November 13, 2014 2014 年 11 月 13 日)
10173-41 = (9)17159<173> = 4957 × 11321 × 375253 × 2828239507<10> × 17611615321946663722340111914223203012426633<44> × 95335959605056742598506559188741913761820632891110225511044060878336415121494741006238823542914447912794829<107> (Ben Meekins / Msieve 1.53 snfs for P44 x P107 / January 5, 2015 2015 年 1 月 5 日)
10174-41 = (9)17259<174> = 7331 × 161047 × 14573736811<11> × 126893255281019<15> × 47423158670825738149<20> × 113261154966077910708679391<27> × 2092140603051352896141342668734159<34> × 40757951572295066779721166763503006497744576724058235734622503<62> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=1107511793 for P34 / November 13, 2014 2014 年 11 月 13 日)
10175-41 = (9)17359<175> = 2855087226996911<16> × 3502519959965769299473782508490089824554675816728750821313479649876573574345113602293157558901258593210555520374098681084686730947947530890585364915339946702169<160>
10176-41 = (9)17459<176> = 59 × 133606076420108078026873451960810722714173187<45> × 12685914440806067845693066333954597132682070116349213457043240650453852989745777158904478221617505596051316078504937230160305084423<131> (Serge Batalov / GMP-ECM B1=3000000, sigma=2787182531 for P45 / November 22, 2014 2014 年 11 月 22 日)
10177-41 = (9)17559<177> = 7 × 43 × 437473 × 820343 × 9257351911763144581723580237132038921616349290330466038559478956823564539749422734753838767252430938014807876426440443673611469325129504539663975176506009593134181<163>
10178-41 = (9)17659<178> = 2017 × 27847 × 8901643 × 20000714660073758571869905556867680609705186263676551449318629380735824307783881813668878918723161619002812646089135883979418094750206820860515002249561687013813587<164>
10179-41 = (9)17759<179> = 137 × 2777 × 124559787747295048084849937<27> × 236635696008661598630566314460073477<36> × 8917547594387909166575093504067253045503970145417609207559204038210463095612511073966660230204152407247091660059<112> (Cyp / GMP-ECM 6.4.4 B1=11000000, sigma=2967763543 for P36 x P112 / December 4, 2014 2014 年 12 月 4 日)
10180-41 = (9)17859<180> = 23 × 522822931 × 1088538864364103811856570453<28> × 337813109020433742198212175598271286419<39> × 226150263729620137872921627393021935532783247464279450470727359926249720170261322475906468336611007805749<105> (Cyp / GMP-ECM 6.4.4 B1=11000000, sigma=1212421222 for P39 x P105 / December 1, 2014 2014 年 12 月 1 日)
10181-41 = (9)17959<181> = 312 × 3797 × 1110290846112466194259674550529561175483520236869826324082736657<64> × 2468307460837684858491314301898609920385486058726425197900532358347921611656708947313373920770319630275716979211<112> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P64 x P112 / January 21, 2016 2016 年 1 月 21 日)
10182-41 = (9)18059<182> = 11831 × 38975144656334703142685533233980671521019498297799457930217<59> × 216865670790034516891905985094912856227704240714550146656806069209090469332161527232107366172688957178308122638932140217<120> (Dmitry Domanov / Msieve 1.50 snfs / November 28, 2014 2014 年 11 月 28 日)
10183-41 = (9)18159<183> = 7 × 83 × 160997 × 266647 × 48485894227<11> × 34788618281515421471<20> × 22288136606433810630271839622389038840441448381821389361544519793<65> × 1066456220073004285101578809289857033480106298281991095407330153992687420541<76> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P65 x P76 / April 10, 2016 2016 年 4 月 10 日)
10184-41 = (9)18259<184> = 10639 × 939937964094369771595074725068145502396841808440642917567440548923771031111946611523639439796973399755616129335463859385280571482282169376821129805432841432465457279819531910893881<180>
10185-41 = (9)18359<185> = 17 × 19 × 51050825453<11> × 6064495930723893000125748847313322190193635123953499530870931085661491516005645849852300785887039784395658900174124286919152999456061847851925668834444795707233899367760561<172>
10186-41 = (9)18459<186> = 131534266668007703033113<24> × 33427923849790556420291973081264073<35> × 111663334378463373419084326470681477484494752383<48> × 2036765808565920279512792853318274292265154961030473876777823907903276351364295177<82> (Serge Batalov / GMP-ECM B1=1000000, sigma=2042645429 for P35 / November 18, 2014 2014 年 11 月 18 日) (Erik Branger / GGNFS, Msieve gnfs for P48 x P82 / February 18, 2015 2015 年 2 月 18 日)
10187-41 = (9)18559<187> = 137 × 5746498793784103960857077165695345714592501852401354608236847190164623<70> × 12702117123714016405483896232140514610450843482372418619819102850147989331793036346307201609365364057209069051189809<116> (Serge Batalov / Msieve v. 1.52 (SVN 923M) for P70 x P116 / December 2, 2014 2014 年 12 月 2 日)
10188-41 = (9)18659<188> = 131 × 55967 × 788819 × 711777000442584982900397390835426445814173<42> × 38988213329066673908141609135348992340454810497220191957525625497<65> × 623077443424318180533747714631065659737821548812760718033157651709453<69> (LegionMammal978 / Msieve 1.53 snfs for P42 x P65 x P69 / July 22, 2017 2017 年 7 月 22 日)
10189-41 = (9)18759<189> = 7 × 29 × 1941667221503<13> × 277708224841400482235618368325210764825608792960808963<54> × 726332490949170335804708156331889811046127554019844575393<57> × 12577807648020483477067799450269921447887658123043092513693909289<65> (Kenji Ibusuki / Msieve v. 1.49 (SVN unknown) + GGNFS-0.77.1-VC8 with factMsieve.pl (decomposed + modified) snfs (without procrels.exe, matbuild.exe for "finalFF" calculation) / March 28, 2018 2018 年 3 月 28 日)
10190-41 = (9)18859<190> = 1307 × 2605081 × 54088260973<11> × 552800027166529501011367427908066022586332085225683161320589891<63> × 98227277447262385194017298202703904004067011569379895533201495079955517148157309041394903319021927990381339<107> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P63 x P107 / August 19, 2018 2018 年 8 月 19 日)
10191-41 = (9)18959<191> = 1236830389<10> × 866985566681753770494129497624203<33> × 93256258032361595012944642206167661053866679921674149108817108012969587426536488944862954398680535309893605960118642737742095737491381560378040302577<149> (Serge Batalov / GMP-ECM B1=1000000, sigma=2509682389 for P33 / November 18, 2014 2014 年 11 月 18 日)
10192-41 = (9)19059<192> = 3068810455313<13> × 99659775198349<14> × 8955858339123074532904037330318808766558829721353412616214741<61> × 365092419975143098689472018730376091813687700434885538652721845162341301731448634480636398570024837263927<105> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P61 x P105 / October 21, 2018 2018 年 10 月 21 日)
10193-41 = (9)19159<193> = 6761 × 12105575551397<14> × 1638939567632387127418296473<28> × 9561289532716835991792999334922381<34> × 7796940351430001540890269961835933990528740852893884961912286327808210189779811305147326012107550087272887727996279<115> (Pierre Jammes / GMP-ECM 6.4.4 B1=11000000, sigma=3106067246 for P34 x P115 / April 27, 2015 2015 年 4 月 27 日)
10194-41 = (9)19259<194> = 8693 × 430108710178825747402436516201289245285231<42> × 26745583843980015457556928237200750930542847633645120266216176830575716996575751595127176009375061355609200867241878292630011848730032839286235140373<149> (Robert Backstrom / GGNFS-0.77.1-20060513-nocona, Msieve 1.44 snfs for P42 x P149 / December 31, 2014 2014 年 12 月 31 日)
10195-41 = (9)19359<195> = 72 × 137 × 138771703809997873157<21> × 1073451512645229495384535446422491843199625645914179949500041706751894374089813808095347005982981657449437238333514004636324339059130316966972424388817246524176949270816899<172>
10196-41 = (9)19459<196> = 31 × 1453051276772332219<19> × 2832670636034115616179871<25> × 78372064126637816586906322603891702310780402777881807167097569339397503358146602114955629093903088536723871935672881727862659744934155549046687465477461<152>
10197-41 = (9)19559<197> = 4628178733<10> × 54007320450130175256254339657556211827052333<44> × 275199929869773110478264366332818305973759984945862739931<57> × 1453747323820947340538174015813116232566730956750330673985541991732972484689028331441901<88> (Jo Yeong Uk / GMP-ECM 6.4.4 B1=11000000, sigma=2347587407 for P44 / January 17, 2019 2019 年 1 月 17 日) (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P57 x P88 / April 25, 2019 2019 年 4 月 25 日)
10198-41 = (9)19659<198> = 43 × 61 × 223 × 599 × 40593187060116781<17> × 212096297908331122441<21> × 1338920075680927845406903816142842282020625148447<49> × 247587738212826035899901979475816656303179103211307840635504797242578155833660479706132101538224934190467<105> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P49 x P105 / June 13, 2019 2019 年 6 月 13 日)
10199-41 = (9)19759<199> = 25866829 × 15239693546270216313820819<26> × 25367669683436267111287372149854763304178029550281557537554970518094983939877364977738275192254881385389108496748565753373789468776476035552076948001493284250523053409<167>
10200-41 = (9)19859<200> = 209519 × 2907347 × 56626370026063<14> × 73422088926993958387<20> × 4314962537830570487390821<25> × 231739241521265003845218791<27> × 560632821870086621427203204961977177606460461129<48> × 70433477118988808242870527669259474612145848767580686317<56> (Serge Batalov / Msieve 1.51 gnfs for P48 x P56 / November 19, 2014 2014 年 11 月 19 日)
10201-41 = (9)19959<201> = 7 × 172 × 1559 × 12029525723633681<17> × 9599216456841574363834950343455673<34> × 17277943107017460462272188856997271192964033<44> × 158921140226580180184854736945904445188959309913530996924612976606721536014499767450577474349391116703<102> (Serge Batalov / GMP-ECM B1=1000000, sigma=899055590 for P34 / November 18, 2014 2014 年 11 月 18 日) (Eric Jeancolas / cado-nfs-3.0.0 for P44 x P102 / May 26, 2020 2020 年 5 月 26 日)
10202-41 = (9)20059<202> = 23 × 467 × 443035454852947168126239012567860316987184024725075610256630943407845017723758989<81> × 2101439060591555304447056192443905170578503556052861758994310994382066746776255623910132145109033518275791901519832391<118> (Bob Backstrom / Msieve 1.54 snfs for P81 x P118 / April 13, 2021 2021 年 4 月 13 日)
10203-41 = (9)20159<203> = 19 × 137 × 409 × 679747 × 1987626409981242386140610107<28> × 14800097745278991605147975171239<32> × 807380073950322548460378688364423<33> × 5818055438043364518870939038928846674485048568731128919627788691543037690654487716412644410456847309<100> (Serge Batalov / GMP-ECM B1=1000000, sigma=2973648052 for P32 / November 17, 2014 2014 年 11 月 17 日)
10204-41 = (9)20259<204> = 107 × 359 × 373 × 1181 × 1579 × 91309 × 5474671 × 651391331 × 174902160841<12> × 12778305767515123769370864079672205247354283370470124661318599929066107644251<77> × 51427910200377476150958788467286364073421662583371788073712800692151725923634825611<83> (ebina / Msieve 1.53 snfs for P77 x P83 / November 28, 2022 2022 年 11 月 28 日)
10205-41 = (9)20359<205> = 5190649 × 3126206527<10> × 179334630564207473<18> × 544976725246240993700686807693<30> × 6305485843043994665123685295134545424109002190374929953185618690308255104232927869520138931941892949756029245870149892386354446288085867904197<142> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=2925393803 for P30 / November 14, 2014 2014 年 11 月 14 日)
10206-41 = (9)20459<206> = 797 × 365473 × 589548139 × 8319733221265457<16> × 78946110716949359932693<23> × 485815156276725689416801<24> × 26056135017983311003249191243351778353659070269<47> × 70039963673513461035753365346775941360422399009705067743536409482007817341195929<80> (Erik Branger / GGNFS, Msieve gnfs for P47 x P80 / December 3, 2014 2014 年 12 月 3 日)
10207-41 = (9)20559<207> = 7 × 10825789399<11> × 442426924458553<15> × 267354855318048676308382536347969202025218563024130973194796792924766979849715221089<84> × 111561093262989615873328742781386657926201674890884835366684457324526937450808299548835170730021839<99> (Bob Backstrom / Msieve 1.44 snfs for P84 x P99 / May 23, 2024 2024 年 5 月 23 日)
10208-41 = (9)20659<208> = 1291 × 7745933384972889233152594887683965917893106119287374128582494190549961270333075135553834237025561580170410534469403563129357087529047250193648334624322230828814872192099147947327652982184353214562354763749<205>
10209-41 = (9)20759<209> = 47 × 149 × 313 × 769 × 59326017605193873240083231531320834912772371953810037015454209859668392917526890708449357547313073019362444159689974951493431372013747705862157631932856882565935643429172412655966891516445986923011549<200>
10210-41 = (9)20859<210> = 14423 × 41423423 × 5350037149<10> × 3572672792872551318372409475934251614758871635532250616077431698685453803496706076216269<88> × 87568593135447980958677762181449642050808452439527788791404929482153319362415882667686073613858084791<101> (Bob Backstrom / Msieve 1.44 snfs for P88 x P101 / December 27, 2024 2024 年 12 月 27 日)
10211-41 = (9)20959<211> = 31 × 137 × 11933 × 801305960111059795324483621285462287782202155942638030037<57> × 246246306617305156853419419005610432923033092272192182551211122637615113716434703773301961078981486173174263602405151760334368184219162459591719457<147> (Bob Backstrom / Msieve 1.54 snfs for P57 x P147 / November 7, 2019 2019 年 11 月 7 日)
10212-41 = (9)21059<212> = 47501 × 172807 × 542093 × 400055669296067<15> × 16216792873020941640245482366109<32> × 3463990707596000089728424215444950905624768515437426320179461455813909347825511078059781743435514059420913243891165985605990551196032369792397325740703<151> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=3874035963 for P32 / November 14, 2014 2014 年 11 月 14 日)
10213-41 = (9)21159<213> = 7 × 39786565071853147898097222909315862167000293241933272565655990446638203720001402887461780439504581536323<104> × 3590587491007274518683721867174151782671220638178765491139202821375972734254606666660256500832567916396129019<109> (Bob Backstrom / Msieve 1.53 snfs for P104 x P109 / October 3, 2017 2017 年 10 月 3 日)
10214-41 = (9)21259<214> = 6080909941<10> × 856986859090777<15> × 6368456724098725793<19> × 3488671141035309840439<22> × 57749180413917621423097423933<29> × 2630887326117513735232435848630470576954555279553518627<55> × 568479695381326937433450472498673653512831463028760560128357069091<66> (Cyp / yafu v1.34.3 for P55 x P66 / November 29, 2014 2014 年 11 月 29 日)
10215-41 = (9)21359<215> = 26107561 × 37383691 × 65750090431<11> × 66349529903<11> × [23486446643950813314816977035838892829902920821447906327448746599426132591776659178497301207025954532899887748867036859301729400428649463940092787607963987661213339606394258707213<179>] Free to factor
10216-41 = (9)21459<216> = 969128132811887538509606747593532399<36> × 37482818721560924274040606675516033891<38> × 27528754105634081938480531931718601515115279148270052832807033500769315282639253481488817149780060987767463037833923985756993925504976445860051<143> (Serge Batalov / GMP-ECM B1=1000000, sigma=4279766420 for P38 / November 17, 2014 2014 年 11 月 17 日) (Cyp / GMP-ECM 6.4.4 B1=11000000, sigma=930025779 for P36 x P143 / August 2, 2015 2015 年 8 月 2 日)
10217-41 = (9)21559<217> = 17 × 29 × 229 × 1009 × 3271 × 69864166884336220574668043944279342336700804454527<50> × 384141655311869306246804621614903835330318564376880100480826731889982419017923928585769831679519054685578731341272895830407344696914641783818594714445977599<156> (Bob Backstrom / Msieve 1.54 snfs for P50 x P156 / June 22, 2020 2020 年 6 月 22 日)
10218-41 = (9)21659<218> = 737129 × 22206155637161<14> × 2876026705554152310079457<25> × 2124174587073889642598908427150031903373156870440874110017343389044364901215015015104259447610382177963852704005680088628353376278682575247906712121142603969572838763272518023<175>
10219-41 = (9)21759<219> = 7 × 43 × 137 × 197 × 5021 × 354073 × 224335136588238187269505521735319741138662299396787110135527<60> × 308650069110390420964986839487648009583665487157355989001757906842847601478306598052599076557680958837262350550290082551836894912929371440407941<144> (Erik Branger / GGNFS, NFS_factory, Msieve snfs for P60 x P144 / November 29, 2019 2019 年 11 月 29 日)
10220-41 = (9)21859<220> = 337 × 52259 × 9622267 × 3556060709<10> × 2939442641494844939<19> × 94398937431526876523<20> × 1739839897689290634002034125969870020730927051363<49> × 34373286047276237625974683297734065617345785617514413463344036052642740456370624957951885280519846229132825281<110> (Erik Branger / GGNFS, NFS_factory, Msieve snfs for P49 x P110 / March 13, 2018 2018 年 3 月 13 日)
10221-41 = (9)21959<221> = 19 × 167 × 3242417 × 1873300462351312439304445248795045902777<40> × 5188640961421314624598291793553509298631635576427947410729899663047974321051314117223722891671736035513432299611998413116359916231899713955434060134424990918640359322485587<172> (Erik Branger / GGNFS, NFS_factory, Msieve snfs for P40 x P172 / October 2, 2019 2019 年 10 月 2 日)
10222-41 = (9)22059<222> = 379 × 2638522427440633245382585751978891820580474934036939313984168865435356200527704485488126649076517150395778364116094986807387862796833773087071240105540897097625329815303430079155672823218997361477572559366754617414248021<220>
10223-41 = (9)22159<223> = 9643 × 12218091232521419182459<23> × 598932646786335374784195133692388043857<39> × 141711952961829131259262511983450172733296578733869678310096866958603689940195779503507729750555848369601699015143835498740978970520865760231199083739684271951<159> (Cyp / GMP-ECM 6.4.4 B1=11000000, sigma=2244362138 for P39 x P159 / May 31, 2015 2015 年 5 月 31 日)
10224-41 = (9)22259<224> = 23 × 83 × 349 × 491 × 3449 × 230009567 × 45429774127<11> × 14199412612184627<17> × 165499491252204625608403<24> × 3609445077636905764513372552156492707831489105548321339868769523902882002128621100507037140613205594828892923276855116873287393463429374323983344243860309<154>
10225-41 = (9)22359<225> = 7 × 31547412647582090084801<23> × [4528331513363963773692482633450263499000658923285607239213760628428823674431359899696703340978393927913698037825937811060808599462809837183346623300196109366251222988170000729068135123282757069876119537<202>] Free to factor
10226-41 = (9)22459<226> = 31 × 23893 × 670471 × 39095415993077038953098347<26> × 254506463705342848615946557112367947<36> × 2023778463302179275186249250835632935074269856666444257446512786617281652375619232343137071714628124561116078793227108595551461925406535376619498048328107<154> (Serge Batalov / GMP-ECM B1=1000000, sigma=4269711382 for P36 / November 18, 2014 2014 年 11 月 18 日)
10227-41 = (9)22559<227> = 137 × 307 × 29147 × 255251 × 2389500937<10> × 866603857054051<15> × 154330556209708465017694451609286438995406055485734281394872035716107626797577961822946851506155261809189998875877776586682380508630574813007428602716092763858413190828049388616689967299359<189>
10228-41 = (9)22659<228> = 10866683 × 161108872537<12> × 334317574246057<15> × [1708536796202851074514858399361204370984818462934218822439103832904555998883798794063506306939837132986829173276837039733324585047919301874904822759756632074764686961112990305793209249556959845397<196>] Free to factor
10229-41 = (9)22759<229> = 17573 × 16167713 × 35196987970855111542424737974997674717061185882028456450753949079306916241447758354674489678109131804758951805494036746020765189681143836169889222910095476836325710452460748007794335494314277896205143233732344098570091<218>
10230-41 = (9)22859<230> = 34217 × 12849026418451644293153637651096058978322153<44> × [227450998733722671431203849231099836504041146518598110552924213960872546375027733319012483556867487680574365145714596944410250222821687549084697845535481267830751915281190061311237159<183>] (Serge Batalov / GMP-ECM B1=3000000, sigma=2899328320 for P44 / November 22, 2014 2014 年 11 月 22 日) Free to factor
10231-41 = (9)22959<231> = 7 × 523 × 14995494433<11> × 2652727957882572347933<22> × 38588952350845177695569<23> × 177944176052318500516002209076941742484987876031337275428133272558900377422238416663381837667503704066234232515818547744760112382956487636377044156562705139244725361266565759<174>
10232-41 = (9)23059<232> = 12475423369<11> × 144153676078361268663214244953<30> × [5560565812944129177757215011638970234287548406067140710577725630665386633160367745502781086827298554004369155613515796504667296666463897570925920158456415057528718944875069286291547394521594487<193>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=4010214149 for P30 / November 14, 2014 2014 年 11 月 14 日) Free to factor
10233-41 = (9)23159<233> = 17 × 16567 × 985403 × 274123498298054153597255704907194219<36> × [1314459049545620590312437023659793039135724164636949257239544760148041246960338872663762028118942699131949279470528048631533958760409325426669721290356575657688540624422927450774913760233<187>] (Cyp / GMP-ECM 6.4.4 B1=11000000, sigma=2022611717 for P36 / July 1, 2015 2015 年 7 月 1 日) Free to factor
10234-41 = (9)23259<234> = 59 × 16949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101<233>
10235-41 = (9)23359<235> = 137 × 27283 × 8831429 × 47432058833<11> × 15927088881631<14> × 8198404876602562000933905569<28> × 48912356447169878716415806765084141333640547544875375750818290864799565147049601174119069681477291903194240873187441256143636705977649839029296162628655495715921381039823<170>
10236-41 = (9)23459<236> = 36176821 × 2764200867732407996822053546385405174213621478791627379310083658262841834554783019768375999649057057832693480723472081750908959081838617052614987922791778746949600684924747810206983084555715937561235687347984500904598554969769179<229>
10237-41 = (9)23559<237> = 72 × 2166726792531326339<19> × 16052255485040704103<20> × 376435085085421442083<21> × 11187808408521336073397<23> × 282186573682474261907917<24> × 86438866209975441579316632763243749447846358050500837532721<59> × 5711933992918089436270732715848227637852902258704108047124139828177809689<73> (Erik Branger / GGNFS, Msieve gnfs for P59 x P73 / December 12, 2014 2014 年 12 月 12 日)
10238-41 = (9)23659<238> = 6073 × 153532053956927587397259511506595651<36> × [10725008842263014708589021891272969754427646425913913458059339065794000049487158974784411308820908823280820558037716664740150913479142353178892846003031622211786963409443821152931988329873728464196933<200>] (Serge Batalov / GMP-ECM B1=3000000, sigma=2810938313 for P36 / November 22, 2014 2014 年 11 月 22 日) Free to factor
10239-41 = (9)23759<239> = 19 × 181 × 2886997 × 29426792839<11> × 38721828481799<14> × [8839398285681950754157958879230113412685379569825516668787393027205000965659051219187098134212329991873378831354238318696880934160665692939431191969964303594892529405336006936293374638007754015046375636293<205>] Free to factor
10240-41 = (9)23859<240> = 43 × 24229 × [959833833566732927195643890129740739283215289769035184628837055728912210718080485906279904822877063522762939279951854734908292676371866502471092204517553921065185195139017533284637763510381082826940999974084486493698210965717614966497<234>] Free to factor
10241-41 = (9)23959<241> = 31 × 2887 × 149713 × 765277883 × 975243012129409410423592961365209664397609932167594097228678963560841478491468826917496730094124351825300333557263817780149996892090930660541129886658106612879300851768984902888507489277057037032549935705618140907832486093<222>
10242-41 = (9)24059<242> = 6113 × 131274633001<12> × 20464334359727<14> × 41306132638317494102305663563458741<35> × 1133270034211430385369924652477541276702077<43> × 130082605711535087082313447314682622949994603001124858273514484490330308165498256214277647746493647770605872499758979326981389521956871537<138> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=656640886 for P35 / November 14, 2014 2014 年 11 月 14 日) (Serge Batalov / GMP-ECM B1=1000000, sigma=712360434 for P43 / November 17, 2014 2014 年 11 月 17 日)
10243-41 = (9)24159<243> = 7 × 137 × 660903629 × 3276962799998263<16> × 372164657848589537616663111090821<33> × [1293709050614614440180358129356526880189831096854375499773423810284164074072581562403366972832227108230618488551782150757100842345972231437842402487485237890078208821223221250001783903<184>] (Serge Batalov / GMP-ECM B1=1000000, sigma=3387933016 for P33 / November 18, 2014 2014 年 11 月 18 日) Free to factor
10244-41 = (9)24259<244> = 25811059 × 329637673 × 710004379819051<15> × [1655374683436931370924193435646742863015011387227277950822295966106929456291444646572816227303671962134663803020940469652823014880871118073171723030817504094499092752975111210417495640101853931819980525149299531087<214>] Free to factor
10245-41 = (9)24359<245> = 29 × 571 × 967 × 10103 × 186917 × 8353661 × 137095337 × 252790006043821503896575921824761833<36> × 11423017281919352906557727720223453258076377355266910879398150730655335647995550441872081297165997086978776345267763345964978241235017499010810888901770914559881289362548694462713<179> (Serge Batalov / GMP-ECM B1=1000000, sigma=3713480697 for P36 / November 17, 2014 2014 年 11 月 17 日)
10246-41 = (9)24459<246> = 23 × 301691893719737<15> × [144114779928277615434848962699355891062650528262699141986695285699855956742968689845030898542683356533237862474719409131515936372288127680909640527007894641573099948412016167634360337829972931043201137685262269646204185990499134409<231>] Free to factor
10247-41 = (9)24559<247> = 263 × 96768667 × 195624636344523842563153430511450283<36> × 44064086712459229816243303511850397741<38> × 45582818175763736701081508749040344654604774719141053639010759613466685991168939931995709788262732113746968154906245711187975816525666765412261594671363581934478893<164> (Serge Batalov / GMP-ECM B1=1000000, sigma=782359539 for P36 / November 17, 2014 2014 年 11 月 17 日)
10248-41 = (9)24659<248> = 877 × 1105656040861<13> × 8203478185915980752937931177656721<34> × 19298173615673920486872752638736071567<38> × 8443855293142879782665237304118581214166281213<46> × 77148119550781045072496668812159094800372846468609425500637446066026949570396516568632743035636900666752770553622117<116> (Serge Batalov / GMP-ECM B1=1000000, sigma=1148317906 for P34 / November 18, 2014 2014 年 11 月 18 日) (Cyp / GMP-ECM 6.4.4 B1=11000000, sigma=2151555186 for P38 / December 3, 2014 2014 年 12 月 3 日) (Dmitry Domanov / GMP-ECM B1=43000000, sigma=4135769216 for P46 x P116 / March 1, 2016 2016 年 3 月 1 日)
10249-41 = (9)24759<249> = 7 × 17 × 233 × 10859 × 2531574959603<13> × [1311947611305206745435168331355369477316376762800460635326935230646929755487793182324948849483800305547781960870611248888374965210329859840967073498714191181270545998908532174962632383940982013159471053791299289668960776312562921<229>] Free to factor
10250-41 = (9)24859<250> = 9456228473907856204227837276299918911513979108458846735787007148939579381013963709713267771746649904684169657369485566404693<124> × 1057504059635672719692295202974660417514878944415136443985191083254561862210324116583281233632957829302735582696946576621495163<127> (NFS@home + Rich Dickerson / GGNFS-lasieve4I14e + Msieve v1.54 for P124 x P127 / February 13, 2020 2020 年 2 月 13 日)
10251-41 = (9)24959<251> = 137 × [729927007299270072992700729927007299270072992700729927007299270072992700729927007299270072992700729927007299270072992700729927007299270072992700729927007299270072992700729927007299270072992700729927007299270072992700729927007299270072992700729927007<249>] Free to factor
10252-41 = (9)25059<252> = 21611 × 33997 × 1361082786108751519089185394633847000850065615147006869998669827403963778227909330005678287664539239374972981656018999964376380239175646490878750666248322446751232654757389191524814607356056032440929105761382176956014487838832151117014713932377<244>
10253-41 = (9)25159<253> = 163 × 4073 × 20189253173<11> × 9151473397110885873820260856792333643<37> × [81524230797659737647789414986501262153377338051520909596784700704079273549623092456530583546161996298696715860691730908686646190773533379165838011340177265819060973699603288430321346551499553148459619<200>] (Erik Branger / GMP-ECM B1=3000000, sigma=1:2913156509 for P37 / June 12, 2018 2018 年 6 月 12 日) Free to factor
10254-41 = (9)25259<254> = 941 × 20297 × 38993 × 481177 × 437594648027<12> × 668258380253<12> × 954268524943812958516479139099349376980982011516012178027700331433683741696925003428343373483663404050822353149504108748297399558947621853595596258049256490670314770530201274704890738302629937601188093176331594637<213>
10255-41 = (9)25359<255> = 7 × 47 × 1301 × 6869 × 559469321 × 17798452561067279<17> × [34156610484660103957536120377483332971980399991897432312100971458383514565726926701353555649314156203728674270428671989063558194343085560952116536743323913693375138403194755530030879905273704234011057435873488708979252401<221>] Free to factor
10256-41 = (9)25459<256> = 31 × 77573 × 1943968877<10> × [2139136072008756518869839589249113209515737454528680656342294190814153467641021021960111101085849192341532853216810727744756114626833090306734029477965458095003777835064384077749774221329428208219138448693750598840886948746770628162920909609<241>] Free to factor
10257-41 = (9)25559<257> = 19 × 107 × 1453 × 12207697 × 7623964629509262901<19> × 12179098091172176227058388685125086181263<41> × 29865326334601007619748284986703168212670157700577775068686272324815861720876378759918849160388468792123331432334289365599843646434172319183191030778913278745671380968621623989512205481<185> (Erik Branger / GMP-ECM B1=3000000, sigma=1:1940962746 for P41 x P185 / June 12, 2018 2018 年 6 月 12 日)
10258-41 = (9)25659<258> = 61 × 113 × 1025131649<10> × 83559679777724631373<20> × [1693617422848873573001351355383624061707469418212769487008425639851486493656404218011238941369328325929455457838585157449237202428895290242377134476604511795279633306215526255027451399576997333741840022159331888054385877807519<226>] Free to factor
10259-41 = (9)25759<259> = 137 × 13388439304231<14> × 1433017471166160129342137<25> × 7894546473554676019408357849769<31> × [481915403364393464323361274932072295038149015908363488105834427008915256989193706408657086314221302493321704462895116261839075141153291837330195037007828017577950106539665151305629969135849<189>] (Erik Branger / GMP-ECM B1=3000000, sigma=1:3068635858 for P31 / June 12, 2018 2018 年 6 月 12 日) Free to factor
10260-41 = (9)25859<260> = 783707466548927<15> × 2794230694093780963165031423<28> × 1356311364720984582176671067857<31> × [33668545561951602314501611760702009147934674293848085063674368691915963542385930983421655031942699803087315681831819950842773909488167776476859732722099476357056759072345596158416414476647<188>] (Erik Branger / GMP-ECM B1=3000000, sigma=1:2027160534 for P31 / June 12, 2018 2018 年 6 月 12 日) Free to factor
10261-41 = (9)25959<261> = 7 × 43 × 109 × 20011 × 59712677 × [25507721868426110365927811009520010375822794078633353249428065329040427419323327288982097139216603603507780717965731303447972245924645148749234878888478880916005452969368933751101502279474876922701920469127933493443237980442774819745927487651833<245>] Free to factor
10262-41 = (9)26059<262> = 1123 × 9687664907057<13> × 24648514153579<14> × 4271193892195938167<19> × [8730942018149011829463167870636875701014704600743845955748546000507023326267912855137386996694007468427567627794216901917850086703828866696523626459377853466196440127999420165027759087139863050686538717168219906833<214>] Free to factor
10263-41 = (9)26159<263> = 97 × 237901 × 8051973049<10> × [538182641045861951842409594308429902461975084289190577445328287169995896370029940472181570820548429639654769750858062041675411295784190765216607612148913126934660183082572062681485403233472588819872608589657026961251667304943366835201333175212203<246>] Free to factor
10264-41 = (9)26259<264> = 12049 × 4423207 × 11943420901<11> × 2081260377411868870858044514951<31> × [754842905180033483196935326285316110731115868724563990612710695857759592560245043277954909275540467231273156638954995163819016134558886384899447582651983723949514568049053373882191867273884516979856384942418117163<213>] (Erik Branger / GMP-ECM B1=3000000, sigma=1:4171120486 for P31 / June 12, 2018 2018 年 6 月 12 日) Free to factor
10265-41 = (9)26359<265> = 17 × 83 × 16217 × 56920769 × 646948464274933<15> × [11867576078280375488553087458443390266353481099446653871051061411862425627448875152770880236832773284524340475039876672098438296970420758098168896821132405579672083571384043662306260246309273760350785023560450121683225719168721126432241<236>] Free to factor
10266-41 = (9)26459<266> = 14867 × 30137 × 97240123931<11> × 1696961430066037167367<22> × [1352568177504527737046366402749333882348009264892510404762266242283650355321272148243003087765624359632414798206596154219855086895636429959175822009264945730879743226588489158598244730556279895342755362128125663097327022054073<226>] Free to factor
10267-41 = (9)26559<267> = 7 × 137 × 677056852425009139<18> × 35704936378038056383242883<26> × 189392981890165637940887759411<30> × [227753001712855667228592512437994565243254403139816894967050407201470725896302367717917380781294836211115881930439569882517911079937920113758485708246785034261066213010527331743869816345008043<192>] (Erik Branger / GMP-ECM B1=3000000, sigma=1:1233943939 for P30 / June 12, 2018 2018 年 6 月 12 日) Free to factor
10268-41 = (9)26659<268> = 23 × 184176043 × 119849350381081<15> × 2304191297233261204385073507410159319967<40> × [8548399488385537618869246195325441801259361131160479239440813125358012984993365021091242896724066124254249237585776553967564240433904154397493468245400134819449987959602558318766822314838542033067019681253<205>] (Erik Branger / GMP-ECM B1=3000000, sigma=1:1387269314 for P40 / June 12, 2018 2018 年 6 月 12 日) Free to factor
10269-41 = (9)26759<269> = 18713 × 136649 × 3237224029621<13> × 1509653207879390949477982931<28> × 8002029993851311184573845567907071698957360646494195861066786487749411123077323768415383346988736149786881303632199383853154841569917831756723725220680073103881400945341206217896794101997343475883633756498970224579596857<220>
10270-41 = (9)26859<270> = 487 × 204859 × 93000179 × 448818919 × 471782869651<12> × 372038943933619991558753<24> × 1368139809318242163026057610727230945973974887309458772370849198764117802026678906169165957997382091197456180079021569281957763564350993203399569818802996311283165424279851079383203226422986188042463909291818141<211>
10271-41 = (9)26959<271> = 31 × 230939 × [1396821867078710493163325212676605426736762912814988569108250761372679197928122060999490299700702978541044702629894306679783755213113810671132399297175109360676028259941285989639213483130372788010351567492546907722734770486103787496460802594289317287947424742380651<265>] Free to factor
10272-41 = (9)27059<272> = 84032827031<11> × 19147713670056221<17> × 858918352460643767301805639<27> × 60912741843434580731015635758842089<35> × [1187884102202645028455603025258818728159518063662598967227922910410556654229629978192436951494976777418288887008811707038635434922553923014746917060226062603666034895774542226488601579<184>] (Erik Branger / GMP-ECM B1=3000000, sigma=1:2541734793 for P35 / June 12, 2018 2018 年 6 月 12 日) Free to factor
10273-41 = (9)27159<273> = 7 × 29 × 5113 × 334393 × 1898572409<10> × 283766403316104318358777088699143377115577<42> × 5347894743564551095952015113957936229109841168678028853800154122463736319747354716834154706497198247893342752934819708993350889033967058254800588622606470324429345161675815549533932315787857418097789031799296069<211> (Erik Branger / GMP-ECM B1=3000000, sigma=1:2280878255 for P42 x P211 / June 12, 2018 2018 年 6 月 12 日)
10274-41 = (9)27259<274> = 6487441680101472054888494549701<31> × [1541439675777337692939725779087811951840176482612477424213116491167797681194672322596470706336161339224808237054623181414482846279079724093827777488695091261389546067830791218456422635545287867647411649670256891090329633705694213030446995847659<244>] (Erik Branger / GMP-ECM B1=3000000, sigma=1:2557169573 for P31 / June 12, 2018 2018 年 6 月 12 日) Free to factor
10275-41 = (9)27359<275> = 19 × 137 × 631 × 10987 × 2234959 × 42263064383<11> × 95494013975689868816810293083091<32> × 614342634085682687401140421312392836790433690668265593834283103427683422584800612989998987019324292411912259336612091066381471863108110105296955041748389555855834180334301491931381652788676741035522832402024327165187<216> (Erik Branger / GMP-ECM B1=3000000, sigma=1:142047417 for P32 x P216 / June 12, 2018 2018 年 6 月 12 日)
10276-41 = (9)27459<276> = 11385001 × 25703452089440519<17> × 1091179654392059978494723724376946286777370229<46> × [3131693220940485476723136091490092057806636059345325802299650986343085294041911974936521387506610672884433796832668105147924990506447103270646868940553962415352612400762544543933150385855426446118761654450309<208>] (Erik Branger / GMP-ECM B1=3000000, sigma=1:1843970684 for P46 / June 12, 2018 2018 年 6 月 12 日) Free to factor
10277-41 = (9)27559<277> = 10340123243<11> × 2372421411209<13> × [407645309906944812218281486039937625067604760823735068051505451800306710301186223652573138240097753749526991549348146335429746584337499692477100612753573224484597024668428441638714249815646198738248707381418282521723818017608484347808559949542347122907357<255>] Free to factor
10278-41 = (9)27659<278> = 122091647239<12> × 4655371069809055386023<22> × [175938037532787760011104951069948454514662017972571312501891835977000956956525741449238181684637348494112824240179985226816598937160190985434120087180852717474238538144775044519074861743965244283122325569547251621485755139865995121882295257167847<246>] Free to factor
10279-41 = (9)27759<279> = 73 × 179 × 644358948750269803<18> × 298600681263362855553469<24> × 84651408845919260296801369641584694815213514328076531073341529634095285440078445693397109468987077343097033691667206418550462298427777587456447921795227289678856742800002031059410804705609157881116056600085911656469920103439650927621<233>
10280-41 = (9)27859<280> = 14083 × 67563761 × 356066677 × 29516147517289279240070247835115969782494922837696027802641869467057298507209817941846066413278024225162929271630208284764824951282598562387659838520673003951577473297535892024950858694595779192981773064503569891828245272864920922554881199276460004989786326809<260>
10281-41 = (9)27959<281> = 17 × 823 × 90268829018140763937547<23> × [79179623920338759624789345974755913706828198716871488771440377325776223213038249409864736262741830502034746309206863480965234206243992174686053215461027200810492373446837405565492281558100352167524644137589821038084842107516214540684679603308142681912467<254>] Free to factor
10282-41 = (9)28059<282> = 43 × 21517 × 205657 × 4594957 × 1219140761<10> × 246284914531<12> × 672342236191<12> × 50780283053137735920689<23> × 60430653572551028599863005315551<32> × 1846249585471686664485557735412215940561649585461478819253996003151100149854577336620370065942129379784425676539455041499930631609866561637103757191329826139632468575842507326079<178> (Erik Branger / GMP-ECM B1=3000000, sigma=1:300997644 for P32 x P178 / June 12, 2018 2018 年 6 月 12 日)
10283-41 = (9)28159<283> = 137 × 11909 × 75017 × 276979127 × 415760023173106459079<21> × 2896374471876733560438906197<28> × [244962702201854936520368060547498778043185748306072161948687290303981994977842028687726947217481336564526296351171410955263268318984491682559024197779229393062661073347387776878941656270240573085265888628933088354319<216>] Free to factor
10284-41 = (9)28259<284> = 281426707 × 15276805777<11> × 37719803497<11> × 630149449475209<15> × 6669142890264167851<19> × 146730071269492585254405835759930709176840462460333331076355637903394819388583868764681184224425129259243515378762785941863852680408353166704121835894276532048684795117254577995674521850057359325789004086800358069214645447<222>
10285-41 = (9)28359<285> = 7 × [142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857137<285>] Free to factor
10286-41 = (9)28459<286> = 31 × 4280117 × 566618437948753<15> × 1007123591455603<16> × 1444585765410784002812415732061<31> × 81442820214107881786957107678247606859<38> × 338220312400887031215480527480185247921777<42> × 573690538729364269353556057885203092106979963001<48> × 5785430547687809127236573669112014231083326308973327820634210645998109626167229771186322081<91> (Erik Branger / GMP-ECM B1=3000000, sigma=1:3536385716 for P31, B1=3000000, sigma=1:2070990562 for P38 / June 12, 2018 2018 年 6 月 12 日) (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3:582318740 for P42 / July 8, 2018 2018 年 7 月 8 日) (Kenji Ibusuki / Msieve v. 1.52 (SVN 958) + Msieve v. 1.49 (SVN unknown) + GGNFS-0.77.1-VC8 with factMsieve.pl (decomposed + modified) nfs (without procrels.exe, matbuild.exe for "finalFF" calculation) gnfs / September 22, 2018 2018 年 9 月 22 日)
10287-41 = (9)28559<287> = 2069459713<10> × [48321791128291464352850632178506197380610714019732163783369094269485786312574619325290532969172132900564467282287219862395069490294542399724405748796521751858814755288739462404794347402693313508345644223710481094057422706638599830524944362615866975323911512163851435169252797143<278>] Free to factor
10288-41 = (9)28659<288> = 3083 × 4871220421511<13> × [66586884217350532821161393242667148133846127087898644742621626192774513971631580865004333057193629720150101842777499860883864061708172240919705978274060612810113566244349574309444441976191919508873329432992370582787008153373044043939740968736249178092171453063959691611443<272>] Free to factor
10289-41 = (9)28759<289> = 115859 × 69271801 × 390552338593341984483553795493<30> × 3190321881630424265386953518244014154725266622608963293846827960996832105372835491327428966427363642869409412226114947937410165357416103804082316109186347363554273440510471568858917570927025958487540001466023926651051696924059657818723872466195057<247> (Erik Branger / GMP-ECM B1=3000000, sigma=1:3621482427 for P30 x P247 / June 12, 2018 2018 年 6 月 12 日)
10290-41 = (9)28859<290> = 23 × 27527 × 147053071181147<15> × [1074086311935407402103230911059556742870644333491560499294992546634842267159157203098516824662750397666501028512564540944821896248687823156769333603143296374248280109242225042906607369756366695172560819020646425200501325998434063345154436745924490185209254335656461278357<271>] Free to factor
10291-41 = (9)28959<291> = 7 × 137 × 23503783866029<14> × 3809069887268249<16> × 29981889066774797<17> × 72692063846131748955561959<26> × [5344150434047318147213244767913580045440595418224165371116089749778387034218805885434424553963761244188615648981399937720778384970886597733168050132152726659345414400299568141706830337929044268430360392573478853508047<217>] Free to factor
10292-41 = (9)29059<292> = 59 × 14983 × 17839 × 38116709630964848549248765753<29> × [16636551149211814387784328124265731513595670025754440643468518378919646264785849126902087208176169856245504898576361218493288221075603631172026777563053732064410454255898571839544006340888525802767853988357270779203356626212389799172885207150201814902741<254>] Free to factor
10293-41 = (9)29159<293> = 19 × 4289 × 1227129376250138052054828140530856168165809721318918653593648378348529285442564209544612288473573768882453277048999275993668012418549287651397086794860782172264421837994379747456774367721588887116368678749800591476359352566541090427163735872673055920285675718791032138518363991115583315949<289>
10294-41 = (9)29259<294> = 250793 × 92415836926793<14> × [43145766479795619995740144587979456114825225741909666104861341763734135380417033988440642976423080234000388866922222972073548775780108290188324716970661533370708310316461716928559359404592599686953163835483755980927431091946427200020954374635711155694872835038146010028768391<275>] Free to factor
10295-41 = (9)29359<295> = 169843 × 139331682187052137302210636328669519<36> × [422573703011703602251087241982017117196185958473556708643812651278731062767613353941071998980145735269909481394516823549414465812414625902727396071895360782709694002169681463876444461585902861103926848292539144216599394631630065938951496400991454364493027<255>] (Erik Branger / GMP-ECM B1=3000000, sigma=1:1266761642 for P36 / June 12, 2018 2018 年 6 月 12 日) Free to factor
10296-41 = (9)29459<296> = 184139026211817152717702619521566121<36> × 281421723235652794655331502444179973<36> × 1929729961348137475652968560047861015350045892160889799239539880383788142814588645124541080383992560430084344482930414593814580416231849474580634071436061668959791245915299124449452109483883720568991730957160930879210279276723<226> (Erik Branger / GMP-ECM B1=3000000, sigma=1:4177794019 for P36(2814...), B1=3000000, sigma=1:3525740615 for P36(1841...) x P226 / June 12, 2018 2018 年 6 月 12 日)
10297-41 = (9)29559<297> = 7 × 17 × 8243 × 36523 × 5993599249697<13> × 81594820992689969141101<23> × [57075667618941037778765742405635648693532614205765060130606448941144331107798713349182862385821891817342010043136854707893666289877705946368641727771404950681423907024251595486317630828216036158143231412494503520498435738382430793687572130332551808917<251>] Free to factor
10298-41 = (9)29659<298> = 22842885205692692634629<23> × [437773070693709587299550010467956489729372025268540183630933995186267577773366633173132233730898515134430019797847495223097426958801028181499247907723450347375548495269433984668919550784307175354312739032800826625777891534765118129314827679024642723384963360670315817081769771<276>] Free to factor
10299-41 = (9)29759<299> = 137 × 56392337 × 697806919 × [18549152366729458025433791842242632197741445194736663581775096916159029607657158135725578590159226534243931652741444969813022472159305891490242008745600022305559938574886465156733870845782503905218916752527308503345693235456759774655516623627293542778179729337250436444787714092569<281>] Free to factor
10300-41 = (9)29859<300> = 761449265849<12> × 7536065546939464756349273843374049<34> × [174266681244984306199691354416623245135347502678057999390113223954067622440316246335666486288489000596153362877405993414217632365077502689043022495863303611974479935196972918934997820764308079043236593773767131986265536434650794538821057291056449469496559<255>] (Erik Branger / GMP-ECM B1=3000000, sigma=1:3798231004 for P34 / June 12, 2018 2018 年 6 月 12 日) Free to factor
plain text versionプレーンテキスト版

4. Related links 関連リンク