9w19w = { 1, 919, 99199, 9991999, 999919999, 99999199999, 9999991999999, 999999919999999, 99999999199999999, 9999999991999999999, … }
1015-8×107-1 = 999999919999999
<15> = 6131 × 163105516229
<12>
1017-8×108-1 = 99999999199999999
<17> = 17 × 23 × 127 × 1307 × 24733 × 62297
1019-8×109-1 = 9999999991999999999
<19> = 67 × 21523 × 257837 × 26895347
1021-8×1010-1 = 999999999919999999999
<21> = 13 × 1447 × 76649 × 693556143941
<12>
1023-8×1011-1 = 99999999999199999999999
<23> = 3119 × 6873161 × 4664747150761
<13>
1025-8×1012-1 = 9999999999991999999999999
<25> = 127 × 1511 × 52111288868465895767
<20>
1027-8×1013-1 = 999999999999919999999999999
<27> =
definitely prime number 素数
1029-8×1014-1 = 99999999999999199999999999999
<29> = 7688627 × 162701111 × 79939364076067
<14>
1031-8×1015-1 = 9999999999999991999999999999999
<31> = 17 × 2063 × 285135867240739984602663169
<27>
1033-8×1016-1 = 999999999999999919999999999999999
<33> = 13 × 79 × 4859513 × 200371896210449084572349
<24>
1035-8×1017-1 = 99999999999999999199999999999999999
<35> = 4877 × 13183 × 115875647 × 474810569 × 28269650723
<11>
1037-8×1018-1 = 9999999999999999991999999999999999999
<37> = 36083 × 277138818834354127760995482637253
<33>
1039-8×1019-1 = 999999999999999999919999999999999999999
<39> = 109 × 685039 × 34036967 × 211794299 × 1857774877544953
<16>
1041-8×1020-1 = 99999999999999999999199999999999999999999
<41> = 19 × 439 × 61328751196183
<14> × 195486943947596742826933
<24>
1043-8×1021-1 = 9999999999999999999991999999999999999999999
<43> = 51941 × 9093325445303715281
<19> × 21172247334699162019
<20>
1045-8×1022-1 = 999999999999999999999919999999999999999999999
<45> = 13 × 14249 × 62459 × 378493 × 228359657333277685437716049421
<30>
1047-8×1023-1 = 99999999999999999999999199999999999999999999999
<47> = 113 × 619 × 1474628993245813
<16> × 969500726856482969681994809
<27>
1049-8×1024-1 = 9999999999999999999999991999999999999999999999999
<49> = 17 × 19 × 23 × 307 × 1746744057775001253151
<22> × 2510163392527721929183
<22>
1051-8×1025-1 = 999999999999999999999999919999999999999999999999999
<51> = 2971 × 50475392255917
<14> × 684952804408487
<15> × 9735471672030132311
<19>
1053-8×1026-1 = 99999999999999999999999999199999999999999999999999999
<53> = 709 × 114865818283
<12> × 1227899871890575574218026439264857005017
<40>
1055-8×1027-1 = 9999999999999999999999999991999999999999999999999999999
<55> = 821 × 186301 × 2107525878912829428881
<22> × 31021924795581386818727599
<26>
1057-8×1028-1 = 999999999999999999999999999919999999999999999999999999999
<57> = 13 × 15654887 × 46910957 × 104744786951586897251271213882444621182497
<42>
1059-8×1029-1 = 99999999999999999999999999999199999999999999999999999999999
<59> = 79 × 33911093 × 5067443033
<10> × 47811708034534183
<17> × 154066418497255998908803
<24>
1061-8×1030-1 = 9999999999999999999999999999991999999999999999999999999999999
<61> = 23 × 6571 × 647003809 × 88149253097
<11> × 1160152880236523539582758455347073011
<37>
1063-8×1031-1 = 999999999999999999999999999999919999999999999999999999999999999
<63> = 17 × 10317031 × 344387909 × 67035795598903
<14> × 246968565693225008135065452965731
<33>
1065-8×1032-1 = 99999999999999999999999999999999199999999999999999999999999999999
<65> = 113 × 15942179123859419238173576594719
<32> × 55510338037034407250677309418417
<32>
1067-8×1033-1 = 9999999999999999999999999999999991999999999999999999999999999999999
<67> = 2687 × 3290579 × 24881873 × 45454506054374476832787760623844419253510069098731
<50>
1069-8×1034-1 = 999999999999999999999999999999999919999999999999999999999999999999999
<69> = 13 × 109 × 1077107650217050755443597
<25> × 655195701102268240363374634844028831004451
<42>
1071-8×1035-1 = 99999999999999999999999999999999999199999999999999999999999999999999999
<71> = 2207 × 326797472200460409732297151
<27> × 138649714059990198816937387610253846280607
<42>
1073-8×1036-1 = 9999999999999999999999999999999999991999999999999999999999999999999999999
<73> = 739 × 756754961 × 94132170193595000267517210407
<29> × 189960023021447065884541005982483
<33>
1075-8×1037-1 = 999999999999999999999999999999999999919999999999999999999999999999999999999
<75> = 70490999036439981131047105940143
<32> × 14186208362333676601114110453273238264066993
<44>
1077-8×1038-1 = 99999999999999999999999999999999999999199999999999999999999999999999999999999
<77> = 19 × 397 × 2099 × 9049 × 697979818409716616758757574713857558364208682844716929296984854043
<66>
1079-8×1039-1 = 9999999999999999999999999999999999999991999999999999999999999999999999999999999
<79> = 83 × 2347 × 43761989 × 2244601651630210678314583
<25> × 522603708505007920910446285438895570985877
<42>
1081-8×1040-1 = 999999999999999999999999999999999999999919999999999999999999999999999999999999999
<81> = 13 × 17
2 × 33457411321
<11> × 2225694811079476871
<19> × 3574381108618506295290908370998150887194823722677
<49>
1083-8×1041-1 = 99999999999999999999999999999999999999999199999999999999999999999999999999999999999
<83> = 59 × 7477 × 54495120366676220893278796872550561699
<38> × 4159709399494495891975119257857732345907
<40>
1085-8×1042-1 = 9999999999999999999999999999999999999999991999999999999999999999999999999999999999999
<85> = 19 × 67 × 79 × 809 × 6217 × 991931 × 19931209447165513364284354306520240847681605141981248373422939921579
<68>
1087-8×1043-1 = 999999999999999999999999999999999999999999919999999999999999999999999999999999999999999
<87> =
definitely prime number 素数
1089-8×1044-1 = 99999999999999999999999999999999999999999999199999999999999999999999999999999999999999999
<89> = 199 × 1353080514375407
<16> × 371384080603683993494866612869808012487690643003594999162490879483851143
<72>
1091-8×1045-1 = 9999999999999999999999999999999999999999999991999999999999999999999999999999999999999999999
<91> = 59 × 41617 × 166987 × 2794449929270998505056756253449
<31> × 8727668113992304734811397487631827792659827509791
<49>
1093-8×1046-1 = 999999999999999999999999999999999999999999999919999999999999999999999999999999999999999999999
<93> = 13 × 23 × 1633033 × 2048018383799452043260529891128346246229191111607587176559810276656010410585353411797
<85>
1095-8×1047-1 = 99999999999999999999999999999999999999999999999199999999999999999999999999999999999999999999999
<95> = 17 × 264991 × 57679357 × 1264108316166947551
<19> × 304449493477795754592016280359627163392781175705453342781140731
<63>
1097-8×1048-1 = 9999999999999999999999999999999999999999999999991999999999999999999999999999999999999999999999999
<97> = 55553081 × 395303393 × 455366741355377298736018147830538902362626236819403657375559692873514994519884503
<81>
1099-8×1049-1 = 999999999999999999999999999999999999999999999999919999999999999999999999999999999999999999999999999
<99> = 6701459 × 51986051975215563583303
<23> × 99269206328873431576283567
<26> × 28915402951265110837130990524621566155179261
<44>
10101-8×1050-1 =
(9
)501
(9
)50<101> = 127 × 787401574803149606299212598425196850393700787401568503937007874015748031496062992125984251968503937
<99>
10103-8×1051-1 =
(9
)511
(9
)51<103> = 33811 × 8013832879987988879280484662735092200878796103
<46> × 36906401565395945334412131190452741609887798913426803
<53> (Makoto Kamada / GGNFS-0.72.7 / 0.66 hours)
10105-8×1052-1 =
(9
)521
(9
)52<105> = 13 × 23 × 7549777 × 3554457705692497033
<19> × 9849075689288913081825617
<25> × 12653942649770387767124787319266046298893937805735733
<53>
10107-8×1053-1 =
(9
)531
(9
)53<107> = 857 × 3152693 × 414356618114911461820039730429966789779
<39> × 89322982506893702114203748740442802204720125497732825880281
<59> (Kenichiro Yamaguchi / GGNFS-0.77.0 / 1.24 hours on Pentium 4 2.4BGHz /
May 29, 2005 2005 年 5 月 29 日)
10109-8×1054-1 =
(9
)541
(9
)54<109> = 127 × 71761 × 7456148442940953114594620702636947234993
<40> × 147161176532989056677907743727305226400991662335578342609981569
<63> (Kenichiro Yamaguchi / GGNFS-0.77.0 / 1.13 hours on Pentium M 1.3GHz /
May 31, 2005 2005 年 5 月 31 日)
10111-8×1055-1 =
(9
)551
(9
)55<111> = 79 × 5016332105457035533508494815374477
<34> × 2523403072601785194850307494500371919914170316323356023807466059956538685653
<76> (Kenichiro Yamaguchi / GGNFS-0.77.0 / 1.67 hours on Pentium 4 2.4BGHz /
June 3, 2005 2005 年 6 月 3 日)
10113-8×1056-1 =
(9
)561
(9
)56<113> = 17 × 19 × 313543 × 159335397601
<12> × 6197094229842667286156771479358884977109429692718683339030152891125256481542077869213157913891
<94>
10115-8×1057-1 =
(9
)571
(9
)57<115> = 7447549 ×
1342723626256101168317254441696187564526262264269761769944984584861408766830537133760382106918665456246075051<109>
10117-8×1058-1 =
(9
)581
(9
)58<117> = 13 × 809 × 432537038237
<12> × 41672282143267057
<17> × 551001035033436280372014708069058402493
<39> × 9573817057775709650651888717778755693138590331
<46> (Makoto Kamada / msieve 0.88 / 1.1 hours)
10119-8×1059-1 =
(9
)591
(9
)59<119> = 4491966554993345408153
<22> × 22261964503907163281959454395007405647836927093756760477087489611300536105321260065934128485636183
<98>
10121-8×1060-1 =
(9
)601
(9
)60<121> = 19 × 4481 × 503941416165261131
<18> × 233072697756471881138623029823601928024450509953075430672658551441090252414557104002700144689687311
<99>
10123-8×1061-1 =
(9
)611
(9
)61<123> = 911 × 136916487667
<12> × 518589890837
<12> × 15459727224713996345038585535150624413766630490660986469154624418407048560059777921691871993523071
<98>
10125-8×1062-1 =
(9
)621
(9
)62<125> = 311 × 91807 × 283007 × 316851147327813119486859679
<27> × 39058121600449204641292977018475065659076049457477469068459067018722999549731875886279
<86> (Makoto Kamada / GMP-ECM 6.0 B1=3000000, sigma=495719048 for P27 /
May 24, 2005 2005 年 5 月 24 日)
10127-8×1063-1 =
(9
)631
(9
)63<127> = 17 × 4724051 × 1060225916314822690553170423
<28> × 117445960798160808874889516667862686525004294847424941869359285457466958648247564886087157139
<93> (Makoto Kamada / GMP-ECM 6.0 B1=3000000, sigma=4226633517 for P28 /
May 22, 2005 2005 年 5 月 22 日)
10129-8×1064-1 =
(9
)641
(9
)64<129> = 13 × 355137916961
<12> × 8620582561926197
<16> × 17394065538852265094936421036067329135787440209
<47> × 1444514437885723676563046033646529294763844095412943391
<55> (Kenichiro Yamaguchi / GGNFS-0.77.0 / 9.29 hours on Pentium 4 2.4BGHz /
June 11, 2005 2005 年 6 月 11 日)
10131-8×1065-1 =
(9
)651
(9
)65<131> = 86623547452681511
<17> × 12349682394629342671581050237
<29> × 93477749070193650427659700633795469514655311383408098352436339811727829399507869649757
<86>
10133-8×1066-1 =
(9
)661
(9
)66<133> = 19993 × 3643201 × 402634549021948039744699
<24> × 6118147212141979493205298499
<28> × 55732425111329964667434258909633836387073169890728743732317075162507143
<71>
10135-8×1067-1 =
(9
)671
(9
)67<135> = 313 × 551241850199
<12> ×
5795801203701013592550760375985289941601679448894953240153574970000182552342008222428829851835929181469596104931354919777<121>
10137-8×1068-1 =
(9
)681
(9
)68<137> = 23 × 79 × 33641 × 699133 × 37153102097025281291
<20> ×
62982702663225536917015672618162162150781940869849663197870842762832416119023724563879623917427964393889<104>
10139-8×1069-1 =
(9
)691
(9
)69<139> = 163 × 1062432269
<10> × 302855476516074177647629415714756028303921414367
<48> × 190667078116784852082971325091397033054587376040953643790001855636676885107219351
<81> (Kenichiro Yamaguchi / GGNFS-0.77.1 / 208.65 hours on Pentium M 1.3GHz /
August 9, 2005 2005 年 8 月 9 日)
10141-8×1070-1 =
(9
)701
(9
)70<141> = 13 × 12491 × 114682796422603
<15> ×
53698377678516309152911620590144736286824531722474351248278451171994068187539834635247175428318039584359788238173227370451<122>
10143-8×1071-1 =
(9
)711
(9
)71<143> = 939623 × 692765651 × 5545315714417291165686064725832927750643
<40> × 27703442430900092553537300647051906583048198294477171096908738767897374226177031471283041
<89> (Sinkiti Sibata / GGNFS-0.77.1 / 174.95 hours /
September 6, 2005 2005 年 9 月 6 日)
10145-8×1072-1 =
(9
)721
(9
)72<145> = 17 × 12281 ×
47897996426809466560013794622970921126369283972851415625284394353784181169381684764126316596176781925212068379179698913194461075693203753287<140>
10147-8×1073-1 =
(9
)731
(9
)73<147> = 268621621 × 1246336831459
<13> × 3257510230715911
<16> × 6918532079648681928624227305677184757812901
<43> × 132532947820656116347673308311597774490809937550021677979979509663531
<69> (Sinkiti Sibata / GGNFS-0.77.1 gnfs / 46.39 hours /
August 17, 2005 2005 年 8 月 17 日)
10149-8×1074-1 =
(9
)741
(9
)74<149> = 19 × 23 × 246289 × 1886729098152791531
<19> ×
492452107297163657920285541552714078377479844183760949367334964747832811911605974270369012672538993838138892728044167041753<123>
10151-8×1075-1 =
(9
)751
(9
)75<151> = 67 ×
149253731343283582089552238805970149253731343283582089552238805970149253731223880597014925373134328358208955223880597014925373134328358208955223880597<150>
10153-8×1076-1 =
(9
)761
(9
)76<153> = 13 × 2833 × 161641 × 60627655411
<11> × 47614333343939476124471869
<26> × 7552668345066629699182446033425101283
<37> × 7704592058815443018290470242216645192352519071772135150967208177930503
<70> (Dmitry Domanov / Msieve 1.47 gnfs for P37 x P70 /
February 13, 2011 2011 年 2 月 13 日)
10155-8×1077-1 =
(9
)771
(9
)77<155> = 2239 × 5279 × 56678511434595650298883
<23> ×
149271125949526097694051242540040145995475728845603377817047674862326701600786985192784888342606625897461847375223251758978613<126>
10157-8×1078-1 =
(9
)781
(9
)78<157> = 19 × 43771396044238225928792490925679371405614739653877146753614764415801797
<71> × 12024194726203275938851484234771221099529007521421633366995271365796552634899864472993
<86> (Serge Batalov / Msieve 1.48 snfs /
February 13, 2011 2011 年 2 月 13 日)
10159-8×1079-1 =
(9
)791
(9
)79<159> = 17 × 4363 × 3294930313
<10> × 62144347780309
<14> × 875614317495699739632788576484738312257
<39> × 75197801425496992310870776164738177471202757542432111172344432515065362339377520243394682001
<92> (Dmitry Domanov / Msieve 1.40 snfs /
February 15, 2011 2011 年 2 月 15 日)
10161-8×1080-1 =
(9
)801
(9
)80<161> = 83 × 149 × 881 × 3870667 × 474548258504571771591585675417606925115995686006523958813206512849592823
<72> × 4996818065016377309788918994630122182301253662551492996533477571198905331157
<76> (Dmitry Domanov / Msieve 1.40 snfs /
February 15, 2011 2011 年 2 月 15 日)
10163-8×1081-1 =
(9
)811
(9
)81<163> = 79 × 2417 × 30734173242196486263578394334024264549
<38> × 911800281137035673388462892491452686927513624550167
<51> × 1868852395465617451474642521033009285671070033298663207346750294358971
<70> (Serge Batalov / GMP-ECM B1=250000, sigma=2353264473 for P38 /
February 13, 2011 2011 年 2 月 13 日) (Sinkiti Sibata / Msieve 1.40 snfs /
February 16, 2011 2011 年 2 月 16 日)
10165-8×1082-1 =
(9
)821
(9
)82<165> = 13 × 643 × 1039 × 9623 × 1165830521327
<13> ×
10263233755189700696277225640056260069646814563430088965700616251043586340332842505738575191732118015732881375289087677746776281680655271624319<143>
10167-8×1083-1 =
(9
)831
(9
)83<167> = 1763697839860600391407603
<25> × 23170965025116663586553803991197905655157250876213537058664461
<62> × 2446987187215174730125046108911846761664247597545511902174577382863708846580755353
<82> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs /
February 16, 2011 2011 年 2 月 16 日)
10169-8×1084-1 =
(9
)841
(9
)84<169> = 62762959659509
<14> × 2437829950805286579122499272441769607
<37> × 197291716147824103596753671717191053852212748027819157
<54> × 331271692051871495059393253310041574732691626017488860815187495089
<66> (Serge Batalov / GMP-ECM B1=3000000, sigma=3244007055 for P37 /
February 19, 2011 2011 年 2 月 19 日) (Sinkiti Sibata / Msieve 1.40 snfs /
March 6, 2011 2011 年 3 月 6 日)
10171-8×1085-1 =
(9
)851
(9
)85<171> = 773 × 3627427 × 280198241576284051
<18> × 6705307525481110851979
<22> ×
189818142254891247696574639604394347535742354449011459400610937815625830962057862746548144522913414916841412764173952318561<123>
10173-8×1086-1 =
(9
)861
(9
)86<173> = 739 × 36190868172510142837
<20> × 807032837888331700677569498607736006747
<39> × 5976539497752849845378864423464819684057724785899337889
<55> × 775203205394986477539370750206516715629123435988538001971
<57> (Serge Batalov / GMP-ECM B1=11000000, sigma=135510480 for P39 /
February 19, 2011 2011 年 2 月 19 日) (Dmitry Domanov / Msieve 1.40 gnfs for P55 x P57 /
February 22, 2011 2011 年 2 月 22 日)
10175-8×1087-1 =
(9
)871
(9
)87<175> = 191 × 2210214895192327
<16> × 609575726774630068637078305479479572713442063697
<48> ×
38860149425530280913628152470964444580523578963242040296686377938495994768055542632694245016785565732819295431<110> (Warut Roonguthai / Msieve 1.48 snfs /
October 24, 2011 2011 年 10 月 24 日)
10177-8×1088-1 =
(9
)881
(9
)88<177> = 13 × 17 × 313 × 59393 × 217727 × 1122497411695661414280599
<25> ×
995933840657167529453836412584938293190386726779604807285395073793776881919957219868574986313632757029241102621226429120275909994292325867<138>
10179-8×1089-1 =
(9
)891
(9
)89<179> = 272748075435643869148661401901889733
<36> ×
366638700714115389599962109806209888163310590721017062767428295025325640218478173959811727180679413909526903307931873478640332060778963066927603<144> (Sinkiti Sibata / Msieve 1.40 snfs /
February 28, 2011 2011 年 2 月 28 日)
10181-8×1090-1 =
(9
)901
(9
)90<181> = 23 × 1789 × 168143 × 7218143 × 934535987711
<12> × 1664003446713978031
<19> × 45517285490740055422516241
<26> ×
2828986949883198584621084828581179810108926179618585917045962706761863794041762463314620186858491403446862493<109>
10183-8×1091-1 =
(9
)911
(9
)91<183> = 24971 × 289251791 × 145596367448077669
<18> × 593845286310979751
<18> × 24669897216947122548988110025109572695232993
<44> × 64907788937176291213196499605891657928224076603316474757554255703246122535678117152634316977
<92> (Jo Yeong Uk / GMP-ECM 6.3 B1=3000000, sigma=4208437602 for P44 /
April 17, 2012 2012 年 4 月 17 日)
10185-8×1092-1 =
(9
)921
(9
)92<185> = 19 × 127 × 425653 × 699899220965616554262510744323
<30> ×
139107795855540480298335718945182536013968822637706267668589085140853770568206624305811842492255498636792121864238704494489698811428413244180570117<147> (Makoto Kamada / GMP-ECM 6.3 B1=1e6, sigma=1954107748 for P30 /
February 12, 2011 2011 年 2 月 12 日)
10187-8×1093-1 =
(9
)931
(9
)93<187> = 50019775114615199495075917230691916547419255646795574679062925400535109003749027
<80> ×
199920930813583680285643755589862706279286424969580548098469179485993277480268624034902644118801184584418037<108> (Sinkiti Sibata / Msieve 1.40 snfs /
March 2, 2011 2011 年 3 月 2 日)
10189-8×1094-1 =
(9
)941
(9
)94<189> = 13 × 79 ×
973709834469328140214216163583252190847127555988315481986368062317429406037000973709834469328062317429406037000973709834469328140214216163583252190847127555988315481986368062317429406037<186>
10191-8×1095-1 =
(9
)951
(9
)95<191> = 17
2 × 182233 × 17070619 × 21183206292461
<14> ×
5250905077331488735795353700945484781685598851724064454699366598251082327254969212520251228999320618735361446616326396179173017889019161396345693903362177578785353<163>
10193-8×1096-1 =
(9
)961
(9
)96<193> = 19 × 23 × 127 × 418813 × 8181521 × 189284079767779833398218777730830699
<36> ×
277809153292760207240421423753452980489404408136913155490560225691488824551500700779895536024957335402993351362009133834994800559898078590963<141> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=833766556 for P36 /
January 18, 2012 2012 年 1 月 18 日)
10195-8×1097-1 =
(9
)971
(9
)97<195> = 675113 × 262133051 × 1347073199
<10> × 4311168349299007605693072662896247419313961853488266281171991
<61> ×
973006113465185015034050460119730293866141016974092666901657297476830372888398478534600172070122527440266857197<111> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs /
May 18, 2012 2012 年 5 月 18 日)
10197-8×1098-1 =
(9
)981
(9
)98<197> = 2713 × 89819 × 918420718448071256237989243418739458571020694987973
<51> ×
446827936714569696497372986497996429735123782015431971724224232031616688185737482087944562567018007589306550612867879924624338948694276529<138> (Robert Backstrom / Msieve 1.44 snfs /
January 5, 2012 2012 年 1 月 5 日)
10199-8×1099-1 =
(9
)991
(9
)99<199> = 59 × 565788759054756936642344181791
<30> × 8185958784068556639549641564543240106092873348961011570312637307557518386277
<76> × 36595199573156592567574308409239210740181770997876744738502841925278072818038635147828961623
<92> (Makoto Kamada / GMP-ECM 6.3 B1=1e6, sigma=1818331022 for P30 /
February 13, 2011 2011 年 2 月 13 日) (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs /
May 23, 2012 2012 年 5 月 23 日)
10201-8×10100-1 =
(9
)1001
(9
)100<201> = 13 × 6673 × 311276849084618472119357
<24> × 15052222737145410960825250279
<29> × 2194553694984661002966316506054906175360403868523
<49> × 1121093549133517645919637898888285530729921842240304880079520241013994352695027452454887088598979
<97> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs /
May 31, 2012 2012 年 5 月 31 日)
10203-8×10101-1 =
(9
)1011
(9
)101<203> = 23136725041020309444248679160655143435538789
<44> × 6305851673891850899702893364808962383186364030678269
<52> ×
685416197841865460088678162353086943047030593032196661893119493263540339280935634615920167887443294511602639<108> (Erik Branger / GMP-ECM B1=11000000, sigma=512867386 for P44 /
February 13, 2012 2012 年 2 月 13 日) (ebina / Msieve 1.53 for P52 x P108 /
November 21, 2021 2021 年 11 月 21 日)
10205-8×10102-1 =
(9
)1021
(9
)102<205> = 322804678249
<12> ×
30978485362242356180481539710090869910464474100013959367393443156728455632773124023436525657054775121274298865032865423985015822564166991971294849076343257268379886800071119746233328078312115751<194>
10207-8×10103-1 =
(9
)1031
(9
)103<207> = 59 × 3727 × 6701 × 21632213983
<11> × 318606174070733707036978171357564183849702990777742936008693373141157137303978745929707
<87> ×
98467705919369685295385556809018328632185480721261731171962557391784889855591508923384048993013809203<101> (Bob Backstrom / Msieve 1.44 snfs for P87 x P101 /
May 22, 2024 2024 年 5 月 22 日)
10209-8×10104-1 =
(9
)1041
(9
)104<209> = 17 × 953 × 1487601149
<10> × 214754646683
<12> × 654891405884851
<15> × 1226957263726778987830896259816115399350339975769
<49> ×
24045309754251979001979612803114271867298313762100205311412544567363583402668960716352771842659534709182502764607861721963<122> (Rytis Slatkevicius / yafu2 for P49 x P122 /
December 19, 2023 2023 年 12 月 19 日)
10211-8×10105-1 =
(9
)1051
(9
)105<211> = 383042837342788509222852311452838731477
<39> ×
26106740617762574954428610093556123637512988267371711860909876496671466512748750039451130178592119947691493147118098751904797687531274322384230854016827080438277519589299587<173> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=1986105636 for P39 /
January 19, 2012 2012 年 1 月 19 日)
10213-8×10106-1 =
(9
)1061
(9
)106<213> = 13 × 5443831 × 10785461 × 36582991 × 37110153214531334886327965677367443241
<38> ×
965031174223961011260190231497770742259632026268081299170553857111233577223869521949638408699539915799071034885151350268658699165565527941761667105334863<153> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=14622147 for P38 /
January 23, 2012 2012 年 1 月 23 日)
10215-8×10107-1 =
(9
)1071
(9
)107<215> = 79 × 434237 × 1462973 × 2207833 × 85358330293
<11> × 1365449430177945188653184051
<28> × 10543786453982646764690824291361
<32> × 108488271056944538267870681231458143513914275694120541137
<57> × 6769282371060309309571103798151161767683703567195969372418593403180207
<70> (Makoto Kamada / GMP-ECM 6.3 B1=1e6, sigma=1267450376 for P32 /
January 14, 2012 2012 年 1 月 14 日) (Warut Roonguthai / Msieve 1.48 gnfs for P57 x P70 /
January 21, 2012 2012 年 1 月 21 日)
10217-8×10108-1 =
(9
)1081
(9
)108<217> = 67 × 293 × 4391 × 935059 × 252021201931
<12> × 1378339059308333
<16> × 286759285864000842025753
<24> ×
1245502183363306734465523695467166211946200428116571462896860072537034264445005385626880823973093329064811223073514098031914677287395506266480675165599339<154>
10219-8×10109-1 =
(9
)1091
(9
)109<219> = 11361075457
<11> × 18331335583805475110859533
<26> × 10746688649890976440426819783407206483435495329319
<50> ×
446798576686097114773841579071406430706039777862400759969599240231414325702428464206913694577373715120399874632524548507336702600692941<135> (Erik Branger / GGNFS, NFS_factory, Msieve snfs for P50 x P135 /
September 5, 2018 2018 年 9 月 5 日)
10221-8×10110-1 =
(9
)1101
(9
)110<221> = 19 × 293 × 76523407548278972452760386199
<29> × 120788340594615692219761059968633455810628790823014789900452830531084663320594366330899873
<90> ×
1943387759935001694835085133723784476767543360792011998426559458593003015898181033520327330988066311<100> (Erik Branger / GGNFS, NFS_factory, Msieve snfs for P90 x P100 /
September 9, 2018 2018 年 9 月 9 日)
10223-8×10111-1 =
(9
)1111
(9
)111<223> = 17 × 1933459169925133
<16> ×
304239832558980070092570184801123229500857196427700571002526164391705078396498277223337267420728713622269982690840439153536817752883486205953774469483150456017844566371063122170470200402163805908485638635659<207>
10225-8×10112-1 =
(9
)1121
(9
)112<225> = 13 × 23 × 64489 × 19043437277857189
<17> ×
2723314693211999139160954055357533832911543612794545046828115716819403521793114101782229282282396526899098047795264170532006691818174698226444440617784673361878751876986023353958559624481093478766011281<202>
10227-8×10113-1 =
(9
)1131
(9
)113<227> = 9161 × 11953486700317
<14> × 56031808694624597357202800774170846053098324059
<47> ×
16297758290279544040825462411263602737233755691842061043529501239131141389798870955298470644055430645792234911338085230613158776530375691414589646848046751478318153<164> (Serge Batalov / GMP-ECM B1=11000000, sigma=2654200053 for P47 /
May 27, 2014 2014 年 5 月 27 日)
10229-8×10114-1 =
(9
)1141
(9
)114<229> = 19 × 823 × 218130156959411
<15> × 40097215288633377839
<20> × 120551317863006526267
<21> ×
[606519372778065923519303683071281388228029010271229286924679708422969480765980364395332116217904180417580496025599988632201077214189033161232738229184828184981657148225389<171>]
Free to factor
10231-8×10115-1 =
(9
)1151
(9
)115<231> = 227 × 720653 × 22897210807
<11> ×
266971782612173041870461045023039479956453135695979802256882282421494566115782884096701130274027575157746984904408831338869424278309410514394985583706913290371764333705107760029292633711886708470745263851701349247<213>
10233-8×10116-1 =
(9
)1161
(9
)116<233> = 886323589 × 3414805123
<10> × 9095258663
<10> × 178410326341349
<15> ×
20361357326387857581406513258483918617698268248071157300404361473726490098990541098417390381627938424308484198536944868433444782920642773089007098653975891440873932824472372081621208140276091<191>
10235-8×10117-1 =
(9
)1171
(9
)117<235> = 853 × 1979039 × 16823561477
<11> × 12414981785839
<14> × 92211496190624521939
<20> × 4269928947030981406137838197081156902737
<40> ×
72032232116452620254176457066928021909434766452074735809957879418099049508420545202865695049781683621059478899278239988233212970297139093430493<143> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=824772584 for P40 /
January 23, 2012 2012 年 1 月 23 日)
10237-8×10118-1 =
(9
)1181
(9
)118<237> = 13 × 23 × 7830220523
<10> × 22593523956982847269875191
<26> × 1287803020447261053051892007
<28> × 107704753035759316625156975150609
<33> ×
136297075010476079913354692014304590846276577766153192021278973746167953537189557468551538155532795282018921210932795110361999917597014043239<141> (Serge Batalov / GMP-ECM B1=1000000, sigma=3924700829 for P33 /
January 18, 2012 2012 年 1 月 18 日)
10239-8×10119-1 =
(9
)1191
(9
)119<239> = 109741 × 24032927 × 36207834266897756103313
<23> × 36357505920467357202602131793661430333
<38> × 15651170783699477100158823882092629571541321815452078885173572932393702799512631
<80> × 1840267501531636659108143792373867942492126045462827701590392073412708697057354643610543
<88> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2814903470 for P38 /
January 23, 2012 2012 年 1 月 23 日) (Erik Branger / GGNFS, NFS_factory, Msieve snfs for P80 x P88 /
February 1, 2024 2024 年 2 月 1 日)
10241-8×10120-1 =
(9
)1201
(9
)120<241> = 17 × 79 ×
[7446016381236038719285182427401340282948622486969471332836932241250930752047654504839910647803425167535368577810871183910647803425167535368577810871183916604616530156366344005956813104988830975428145941921072226358897989575577066269545793<238>]
Free to factor
10243-8×10121-1 =
(9
)1211
(9
)121<243> = 83 × 17389 × 224663675279
<12> ×
[3084000507913270998937192810143449204113238845493221408754073917010870217002892223926249662323908021039567798645971434358089192065840255357249219937593794981963018745469774479625617358672373772959124430328759203822163512507863<226>]
Free to factor
10245-8×10122-1 =
(9
)1221
(9
)122<245> = 5101 × 564325430384630641
<18> × 44622375251647331487438629
<26> ×
[778506729332186171656452024165411452618349506170571384902996935590218086010646082259298506951500202002128126454880337112685825875992951959999085436390094037956478897871529830640035328005224904342191<198>]
Free to factor
10247-8×10123-1 =
(9
)1231
(9
)123<247> = 9144905298679729564128817613730935596381
<40> ×
[1093505036235172645343582123002680994052099863597132376389381862490118031446983244707949293180853456328817521949936515005742235401444402276041265877760294940210725770760784302789657833381137862303704502003979<208>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1623188512 for P40 /
January 18, 2012 2012 年 1 月 18 日)
Free to factor
10249-8×10124-1 =
(9
)1241
(9
)124<249> = 13 × 1153 × 29371365524808165293
<20> ×
2271450109371576549360910989523784530161809398994869229666889157076114681798139050855985731734879971958318691697125448549628282878502494429290657040124592350302969532708176036799319033712372444060342147183169332011835424545287<226>
10251-8×10125-1 =
(9
)1251
(9
)125<251> = 18617 × 539539120615873287885550511
<27> ×
[9955598222571350106937076317097608090141814524941723972245367316113124015827183909701665329287706471069078827334964578814372132584769840194600918931657477687635430845437209385793379374745951856440911638609936504840398777<220>]
Free to factor
10253-8×10126-1 =
(9
)1261
(9
)126<253> = 142686685133
<12> × 8789959984856521
<16> × 2078941532820471095336443922989157537961511
<43> × 54440334449992071363140146959841093156721461
<44> ×
70447663415741517717216847774493933092750778017218748450938213885474657586368473651738929625270063464442495148355671013019084087464829930033<140> (Serge Batalov / GMP-ECM B1=3000000, sigma=425007819 for P43 /
May 19, 2014 2014 年 5 月 19 日) (Rytis Slatkevicius / yafu2 for P44 x P140 /
December 22, 2023 2023 年 12 月 22 日)
10255-8×10127-1 =
(9
)1271
(9
)127<255> = 17 × 109 × 490738211 × 915287016913
<12> × 335484587865769
<15> × 28499981132543235541
<20> × 582545336729255661868021190063
<30> ×
[215710123355700602165516304286740601421643486738639263785010142723475240160376711574817582477484893166409127591954393521509041937777195620818178267040532333602310905203<168>] (Makoto Kamada / GMP-ECM 6.3 B1=1e6, sigma=588995698 for P30 /
January 15, 2012 2012 年 1 月 15 日)
Free to factor
10257-8×10128-1 =
(9
)1281
(9
)128<257> = 19 × 244744325149275541
<18> × 1094579375861894707
<19> × 1509564990865024172324166859767539
<34> ×
13014715897241468121772449314190352272481642777512654399528649028188035716234568726659064154426340085748884798807606347556761731286405733123467030321499043155864795032304775295394796424297<188> (Serge Batalov / GMP-ECM 6.4 [configured with GMP 5.0.2, --enable-asm-redc] [ECM] B1=1000000, sigma=3024877522 for P34 /
January 17, 2012 2012 年 1 月 17 日)
10259-8×10129-1 =
(9
)1291
(9
)129<259> = 1373 × 430019 × 76634529486865274544855173083919957987
<38> ×
221012747013013116815961470189634781646685701902088377804033732141926345464357040348758084950865648991984536588587104466702484194217472894286165277327820462214372542923115657075489842915655581024570118710317346771<213> (Dmitry Domanov / GMP-ECM B1=43000000, sigma=3117508329 for P38 /
January 25, 2012 2012 年 1 月 25 日)
10261-8×10130-1 =
(9
)1301
(9
)130<261> = 13 × 4283 × 6619 × 43239457 × 125132447912455231
<18> × 153151352608717889
<18> × 784819883378532529889
<21> × 206296655742446809886104487
<27> × 3793850752080434500477013464083897317
<37> ×
5330927256233628483768589555193975403990452939049765781973943934246000138268111672887155859621024228456413262789554735748436783<127> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2754663328 for P37 /
March 10, 2012 2012 年 3 月 10 日)
10263-8×10131-1 =
(9
)1311
(9
)131<263> = 233 × 55793 × 9642565927322143
<16> ×
[797759065284748820445070361899109033658474396464609848072453964967729313383389106960966509879600116855718802310965532223620107298843332161075082871915181281432207590761898859129258893634234606913290956219778042620211694808905880203553234697<240>]
Free to factor
10265-8×10132-1 =
(9
)1321
(9
)132<265> = 19 × 229 × 14627 × 224200601 × 220677400956227194540455281
<27> × 32511086858214150747108886001
<29> ×
97685371869188303167827352629792381834350448318452298961436344687414290353584660166412394566631745883520142265445366474475481321840291401385539032697383411015343774499937347540284129219210168227<194>
10267-8×10133-1 =
(9
)1331
(9
)133<267> = 79 × 5113 × 4708296613057393397569573
<25> × 418648146813293307522515291
<27> ×
[1255984061402103871827337111281523184963519119211124027767971105869035272592517652184108481179798375284936787103979908151441681558685664744887216915507525215785222127406308761423732567247550981591583649966196159<211>]
Free to factor
10269-8×10134-1 =
(9
)1341
(9
)134<269> = 23 × 127 × 192461057 × 9167650173705548699
<19> ×
19402940129923437989169784009708249772601595457404066429567238136892806742985274489326454331831152446715098940903324759635638890521257731551702215037491750725707707435583525006298123352202060700957091682616870684822536302819550550870392933<239>
10271-8×10135-1 =
(9
)1351
(9
)135<271> = 113 × 587 × 301078132822273100192254541280044316371305620547
<48> ×
500730725655677345236048118503343729537347853507952783035717708181325571182031371190304584365783348487786098943138896521281910756541862253466842250455585121549932798316310154797774918250253500153627576305530053322369807<219> (Mr. Hankey / GMP-ECM B1=110000000, sigma=4102924851 for P48 /
November 30, 2012 2012 年 11 月 30 日)
10273-8×10136-1 =
(9
)1361
(9
)136<273> = 13 × 17 × 607 × 12766121 × 4887435694079
<13> ×
[119475545620991679562500067188260357244865301113464069801751116595129646475849900049300150890638778066196761178707825352041144240815025923800166530690664955017064414839786823131920266334475822819265865738028987817621469755691316342505037530956659763<249>]
Free to factor
10275-8×10137-1 =
(9
)1371
(9
)137<275> = 397 × 5303 × 31365946938281710242828685690363
<32> × 142273443619143125511691953159922298587
<39> ×
[10644018465157079979932251911839646674574847982913445642968701006945896639943057389483876775357298110490094363919565348607924213115639313264477284845811979996981141340774685869035806927024875702433669<200>] (Serge Batalov / GMP-ECM B1=1000000, sigma=882766411 for P32 /
January 18, 2012 2012 年 1 月 18 日) (Youcef Lemsafer / GMP-ECM 6.4.4 B1=3000000, sigma=3189498166 for P39 /
March 30, 2014 2014 年 3 月 30 日)
Free to factor
10277-8×10138-1 =
(9
)1381
(9
)138<277> = 127 × 104160893 × 5540663517984426093714973194517568047442991895229
<49> ×
136436260640207150274265082167207483170229226561425680113406340319284418999527667030340298081641339639419885565523687667743595528380511089635896674864661856399245739477002526383880313327973669156182705786632528969638521<219> (Dmitry Domanov / GMP-ECM B1=43000000, sigma=3176861911 for P49 /
January 22, 2012 2012 年 1 月 22 日)
10279-8×10139-1 =
(9
)1391
(9
)139<279> = 881 × 56830513 × 71512117051
<11> ×
279294819391105608802821828287731595639447029500118046302763813594968494517642444732584194375593718236230875794489778868525934347634932798069063350121305007320303374733567450491682675092673278882294093305481559917071165333233816946709075133027163204520906733<258>
10281-8×10140-1 =
(9
)1401
(9
)140<281> = 23 × 2109769 × 92660787983
<11> × 958360926033476843
<18> × 1658761213536614323
<19> × 820401086608300081756974253
<27> ×
17053050217502050006474643444775157528845056230469182412603533265615853697271665329507442291186742542665604348950630004911063750061016521232388981601572566001081891617745479466221583067412705789023307<200>
10283-8×10141-1 =
(9
)1411
(9
)141<283> = 67 × 149 × 1021 × 2303621 × 5957716402729558059469274236367
<31> ×
[71486219718414360515732264746532790948430631455978923618024130814097690488582570971703564425119360465901510843946736815209721132557872148370837781935199164986824584861150191571791802731622774954018618279076747471211101109424331085875799199<239>] (Serge Batalov / GMP-ECM B1=1000000, sigma=2239686861 for P31 /
January 18, 2012 2012 年 1 月 18 日)
Free to factor
10285-8×10142-1 =
(9
)1421
(9
)142<285> = 13 × 109 × 531548779 × 148944602785525636314151
<24> × 83251310549235626146144761435667
<32> ×
107070831497527101301109575506816616880968165728919815254430760478371472931990730409465165081913685099784867449060226980893318785056566775868917230963051860210402799511282868213975194868533118092180189461130932651468529<219> (Serge Batalov / GMP-ECM B1=1000000, sigma=299502759 for P32 /
January 18, 2012 2012 年 1 月 18 日)
10287-8×10143-1 =
(9
)1431
(9
)143<287> = 17 × 199 × 25310503 × 4663818810249037363509739373
<28> ×
[250412241929366705407498008565195168890005082947467781848405649320438659880308621873483859289686540554394039528029333986371259940717837543542927221653617385002383377571762154590623882639688875763229018842745101613826030830903412968424295209986116987<249>]
Free to factor
10289-8×10144-1 =
(9
)1441
(9
)144<289> = 113 × 4241141887733089
<16> × 490865945396316027840192377505861842771
<39> ×
42508506941584565106874390422292327793440588981662022141627315173908165147252192440729866798862789601892090173879645261279457287956335215648491662639834695109245053174205437138505563071205738819546986424955310632336598664999636477717<233> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=613650560 for P39 /
January 20, 2012 2012 年 1 月 20 日)
10291-8×10145-1 =
(9
)1451
(9
)145<291> = 7823 × 40906053514741790544590300410432210711
<38> ×
[3124921323798947112568697629383360192939270207930929072482023983353312858695249596174817129255463269769026009311483562667070827070109598254505152463125583065607386686690140851498740161692050631906458132588309041880174207007433602529668199354476812183<250>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3532666646 for P38 /
January 19, 2012 2012 年 1 月 19 日)
Free to factor
10293-8×10146-1 =
(9
)1461
(9
)146<293> = 19 × 79 × 1838453 × 5487838935053
<13> × 5497734900959050755828259
<25> ×
[1201106798244741805426876047029758936017602395883367401807186797319213593008537663421473026161974315375708583098470798303027758464735273555025136713614057955692960528324703156682480334989464224999325837413993685617279977286401351287271317440305929<247>]
Free to factor
10295-8×10147-1 =
(9
)1471
(9
)147<295> = 4517 × 2849081386817513
<16> ×
[777043002721767976101188773066651138788765208917678252255295413501109691536917505390785256102753541457370687478084844806737105317146293789475988310452790417867574320622999168377922066337170427005074212081330986212589359420934159820205246909646321905306985460700334160474505819<276>]
Free to factor
10297-8×10148-1 =
(9
)1481
(9
)148<297> = 13 × 1987 ×
38713174093143896868104215864658743370368936549107661337153033177190197824319615965312996012543068406178622585265765940149432851999535441910882273234485695482172583330107235492238008594324648677945104719135921954241028221903913901900816847973365336223916998954744299485114784561186171654213929<293>
10299-8×10149-1 =
(9
)1491
(9
)149<299> =
[99999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999199999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999<299>]
Free to factor
10301-8×10150-1 =
(9
)1501
(9
)150<301> = 19 × 163 × 11135791 ×
[289959754431897456310908925900006415959783497405248613423567014254966391246631930754436626206974110639186761611996038572038645550634301030217261949184974231349258555758247962329637952367765261238511361655739825262046698207678992827595151871015361075634510187611825695857110587865595840101337<291>]
Free to factor