Table of contents 目次

  1. About 99...99199...99 99...99199...99 について
    1. Classification 分類
    2. Sequence 数列
    3. General term 一般項
  2. Prime numbers of the form 99...99199...99 99...99199...99 の形の素数
    1. Last updated 最終更新日
    2. Known (probable) prime numbers 既知の (おそらく) 素数
    3. Range of search 捜索範囲
  3. Factor table of 99...99199...99 99...99199...99 の素因数分解表
    1. Last updated 最終更新日
    2. Range of factorization 分解範囲
    3. Terms that have not been factored yet まだ分解されていない項
    4. Factor table 素因数分解表
  4. Related links 関連リンク

1. About 99...99199...99 99...99199...99 について

1.1. Classification 分類

Near-repdigit-palindrome of the form AA...AABAA...AA AA...AABAA...AA の形のニアレプディジット回文数 (Near-repdigit-palindrome)

1.2. Sequence 数列

9w19w = { 1, 919, 99199, 9991999, 999919999, 99999199999, 9999991999999, 999999919999999, 99999999199999999, 9999999991999999999, … }

1.3. General term 一般項

102n+1-8×10n-1 (0≤n)

2. Prime numbers of the form 99...99199...99 99...99199...99 の形の素数

2.1. Last updated 最終更新日

December 11, 2018 2018 年 12 月 11 日

2.2. Known (probable) prime numbers 既知の (おそらく) 素数

  1. 103-8×101-1 = 919 is prime. は素数です。
  2. 1011-8×105-1 = 99999199999<11> is prime. は素数です。
  3. 1027-8×1013-1 = (9)131(9)13<27> is prime. は素数です。
  4. 1087-8×1043-1 = (9)431(9)43<87> is prime. は素数です。
  5. 10339-8×10169-1 = (9)1691(9)169<339> is prime. は素数です。 (Patrick De Geest / September 23, 2002 2002 年 9 月 23 日)
  6. 10363-8×10181-1 = (9)1811(9)181<363> is prime. は素数です。 (Patrick De Geest / September 23, 2002 2002 年 9 月 23 日)
  7. 103159-8×101579-1 = (9)15791(9)1579<3159> is prime. は素数です。 (Patrick De Geest / September 23, 2002 2002 年 9 月 23 日)
  8. 1036155-8×1018077-1 = (9)180771(9)18077<36155> is prime. は素数です。 (Daniel Heuer / OpenPFGW / July 19, 2001 2001 年 7 月 19 日)
  9. 1045305-8×1022652-1 = (9)226521(9)22652<45305> is prime. は素数です。 (Daniel Heuer / OpenPFGW / September 17, 2001 2001 年 9 月 17 日)
  10. 10314727-8×10157363-1 = (9)1573631(9)157363<314727> is prime. は素数です。 (Darren Bedwell / OpenPFGW / January 7, 2013 2013 年 1 月 7 日)

2.3. Range of search 捜索範囲

  1. n≤68000 / Completed 終了

3. Factor table of 99...99199...99 99...99199...99 の素因数分解表

3.1. Last updated 最終更新日

May 24, 2024 2024 年 5 月 24 日

3.2. Range of factorization 分解範囲

3.3. Terms that have not been factored yet まだ分解されていない項

n=114, 120, 121, 122, 123, 125, 127, 131, 133, 136, 137, 141, 143, 145, 146, 147, 149, 150 (18/150)

3.4. Factor table 素因数分解表

101-8×100-1 = 1
103-8×101-1 = 919 = definitely prime number 素数
105-8×102-1 = 99199 = 19 × 23 × 227
107-8×103-1 = 9991999 = 79 × 126481
109-8×104-1 = 999919999 = 13 × 76916923
1011-8×105-1 = 99999199999<11> = definitely prime number 素数
1013-8×106-1 = 9999991999999<13> = 19 × 526315368421<12>
1015-8×107-1 = 999999919999999<15> = 6131 × 163105516229<12>
1017-8×108-1 = 99999999199999999<17> = 17 × 23 × 127 × 1307 × 24733 × 62297
1019-8×109-1 = 9999999991999999999<19> = 67 × 21523 × 257837 × 26895347
1021-8×1010-1 = 999999999919999999999<21> = 13 × 1447 × 76649 × 693556143941<12>
1023-8×1011-1 = 99999999999199999999999<23> = 3119 × 6873161 × 4664747150761<13>
1025-8×1012-1 = 9999999999991999999999999<25> = 127 × 1511 × 52111288868465895767<20>
1027-8×1013-1 = 999999999999919999999999999<27> = definitely prime number 素数
1029-8×1014-1 = 99999999999999199999999999999<29> = 7688627 × 162701111 × 79939364076067<14>
1031-8×1015-1 = 9999999999999991999999999999999<31> = 17 × 2063 × 285135867240739984602663169<27>
1033-8×1016-1 = 999999999999999919999999999999999<33> = 13 × 79 × 4859513 × 200371896210449084572349<24>
1035-8×1017-1 = 99999999999999999199999999999999999<35> = 4877 × 13183 × 115875647 × 474810569 × 28269650723<11>
1037-8×1018-1 = 9999999999999999991999999999999999999<37> = 36083 × 277138818834354127760995482637253<33>
1039-8×1019-1 = 999999999999999999919999999999999999999<39> = 109 × 685039 × 34036967 × 211794299 × 1857774877544953<16>
1041-8×1020-1 = 99999999999999999999199999999999999999999<41> = 19 × 439 × 61328751196183<14> × 195486943947596742826933<24>
1043-8×1021-1 = 9999999999999999999991999999999999999999999<43> = 51941 × 9093325445303715281<19> × 21172247334699162019<20>
1045-8×1022-1 = 999999999999999999999919999999999999999999999<45> = 13 × 14249 × 62459 × 378493 × 228359657333277685437716049421<30>
1047-8×1023-1 = 99999999999999999999999199999999999999999999999<47> = 113 × 619 × 1474628993245813<16> × 969500726856482969681994809<27>
1049-8×1024-1 = 9999999999999999999999991999999999999999999999999<49> = 17 × 19 × 23 × 307 × 1746744057775001253151<22> × 2510163392527721929183<22>
1051-8×1025-1 = 999999999999999999999999919999999999999999999999999<51> = 2971 × 50475392255917<14> × 684952804408487<15> × 9735471672030132311<19>
1053-8×1026-1 = 99999999999999999999999999199999999999999999999999999<53> = 709 × 114865818283<12> × 1227899871890575574218026439264857005017<40>
1055-8×1027-1 = 9999999999999999999999999991999999999999999999999999999<55> = 821 × 186301 × 2107525878912829428881<22> × 31021924795581386818727599<26>
1057-8×1028-1 = 999999999999999999999999999919999999999999999999999999999<57> = 13 × 15654887 × 46910957 × 104744786951586897251271213882444621182497<42>
1059-8×1029-1 = 99999999999999999999999999999199999999999999999999999999999<59> = 79 × 33911093 × 5067443033<10> × 47811708034534183<17> × 154066418497255998908803<24>
1061-8×1030-1 = 9999999999999999999999999999991999999999999999999999999999999<61> = 23 × 6571 × 647003809 × 88149253097<11> × 1160152880236523539582758455347073011<37>
1063-8×1031-1 = 999999999999999999999999999999919999999999999999999999999999999<63> = 17 × 10317031 × 344387909 × 67035795598903<14> × 246968565693225008135065452965731<33>
1065-8×1032-1 = 99999999999999999999999999999999199999999999999999999999999999999<65> = 113 × 15942179123859419238173576594719<32> × 55510338037034407250677309418417<32>
1067-8×1033-1 = 9999999999999999999999999999999991999999999999999999999999999999999<67> = 2687 × 3290579 × 24881873 × 45454506054374476832787760623844419253510069098731<50>
1069-8×1034-1 = 999999999999999999999999999999999919999999999999999999999999999999999<69> = 13 × 109 × 1077107650217050755443597<25> × 655195701102268240363374634844028831004451<42>
1071-8×1035-1 = 99999999999999999999999999999999999199999999999999999999999999999999999<71> = 2207 × 326797472200460409732297151<27> × 138649714059990198816937387610253846280607<42>
1073-8×1036-1 = 9999999999999999999999999999999999991999999999999999999999999999999999999<73> = 739 × 756754961 × 94132170193595000267517210407<29> × 189960023021447065884541005982483<33>
1075-8×1037-1 = 999999999999999999999999999999999999919999999999999999999999999999999999999<75> = 70490999036439981131047105940143<32> × 14186208362333676601114110453273238264066993<44>
1077-8×1038-1 = 99999999999999999999999999999999999999199999999999999999999999999999999999999<77> = 19 × 397 × 2099 × 9049 × 697979818409716616758757574713857558364208682844716929296984854043<66>
1079-8×1039-1 = 9999999999999999999999999999999999999991999999999999999999999999999999999999999<79> = 83 × 2347 × 43761989 × 2244601651630210678314583<25> × 522603708505007920910446285438895570985877<42>
1081-8×1040-1 = 999999999999999999999999999999999999999919999999999999999999999999999999999999999<81> = 13 × 172 × 33457411321<11> × 2225694811079476871<19> × 3574381108618506295290908370998150887194823722677<49>
1083-8×1041-1 = 99999999999999999999999999999999999999999199999999999999999999999999999999999999999<83> = 59 × 7477 × 54495120366676220893278796872550561699<38> × 4159709399494495891975119257857732345907<40>
1085-8×1042-1 = 9999999999999999999999999999999999999999991999999999999999999999999999999999999999999<85> = 19 × 67 × 79 × 809 × 6217 × 991931 × 19931209447165513364284354306520240847681605141981248373422939921579<68>
1087-8×1043-1 = 999999999999999999999999999999999999999999919999999999999999999999999999999999999999999<87> = definitely prime number 素数
1089-8×1044-1 = 99999999999999999999999999999999999999999999199999999999999999999999999999999999999999999<89> = 199 × 1353080514375407<16> × 371384080603683993494866612869808012487690643003594999162490879483851143<72>
1091-8×1045-1 = 9999999999999999999999999999999999999999999991999999999999999999999999999999999999999999999<91> = 59 × 41617 × 166987 × 2794449929270998505056756253449<31> × 8727668113992304734811397487631827792659827509791<49>
1093-8×1046-1 = 999999999999999999999999999999999999999999999919999999999999999999999999999999999999999999999<93> = 13 × 23 × 1633033 × 2048018383799452043260529891128346246229191111607587176559810276656010410585353411797<85>
1095-8×1047-1 = 99999999999999999999999999999999999999999999999199999999999999999999999999999999999999999999999<95> = 17 × 264991 × 57679357 × 1264108316166947551<19> × 304449493477795754592016280359627163392781175705453342781140731<63>
1097-8×1048-1 = 9999999999999999999999999999999999999999999999991999999999999999999999999999999999999999999999999<97> = 55553081 × 395303393 × 455366741355377298736018147830538902362626236819403657375559692873514994519884503<81>
1099-8×1049-1 = 999999999999999999999999999999999999999999999999919999999999999999999999999999999999999999999999999<99> = 6701459 × 51986051975215563583303<23> × 99269206328873431576283567<26> × 28915402951265110837130990524621566155179261<44>
10101-8×1050-1 = (9)501(9)50<101> = 127 × 787401574803149606299212598425196850393700787401568503937007874015748031496062992125984251968503937<99>
10103-8×1051-1 = (9)511(9)51<103> = 33811 × 8013832879987988879280484662735092200878796103<46> × 36906401565395945334412131190452741609887798913426803<53> (Makoto Kamada / GGNFS-0.72.7 / 0.66 hours)
10105-8×1052-1 = (9)521(9)52<105> = 13 × 23 × 7549777 × 3554457705692497033<19> × 9849075689288913081825617<25> × 12653942649770387767124787319266046298893937805735733<53>
10107-8×1053-1 = (9)531(9)53<107> = 857 × 3152693 × 414356618114911461820039730429966789779<39> × 89322982506893702114203748740442802204720125497732825880281<59> (Kenichiro Yamaguchi / GGNFS-0.77.0 / 1.24 hours on Pentium 4 2.4BGHz / May 29, 2005 2005 年 5 月 29 日)
10109-8×1054-1 = (9)541(9)54<109> = 127 × 71761 × 7456148442940953114594620702636947234993<40> × 147161176532989056677907743727305226400991662335578342609981569<63> (Kenichiro Yamaguchi / GGNFS-0.77.0 / 1.13 hours on Pentium M 1.3GHz / May 31, 2005 2005 年 5 月 31 日)
10111-8×1055-1 = (9)551(9)55<111> = 79 × 5016332105457035533508494815374477<34> × 2523403072601785194850307494500371919914170316323356023807466059956538685653<76> (Kenichiro Yamaguchi / GGNFS-0.77.0 / 1.67 hours on Pentium 4 2.4BGHz / June 3, 2005 2005 年 6 月 3 日)
10113-8×1056-1 = (9)561(9)56<113> = 17 × 19 × 313543 × 159335397601<12> × 6197094229842667286156771479358884977109429692718683339030152891125256481542077869213157913891<94>
10115-8×1057-1 = (9)571(9)57<115> = 7447549 × 1342723626256101168317254441696187564526262264269761769944984584861408766830537133760382106918665456246075051<109>
10117-8×1058-1 = (9)581(9)58<117> = 13 × 809 × 432537038237<12> × 41672282143267057<17> × 551001035033436280372014708069058402493<39> × 9573817057775709650651888717778755693138590331<46> (Makoto Kamada / msieve 0.88 / 1.1 hours)
10119-8×1059-1 = (9)591(9)59<119> = 4491966554993345408153<22> × 22261964503907163281959454395007405647836927093756760477087489611300536105321260065934128485636183<98>
10121-8×1060-1 = (9)601(9)60<121> = 19 × 4481 × 503941416165261131<18> × 233072697756471881138623029823601928024450509953075430672658551441090252414557104002700144689687311<99>
10123-8×1061-1 = (9)611(9)61<123> = 911 × 136916487667<12> × 518589890837<12> × 15459727224713996345038585535150624413766630490660986469154624418407048560059777921691871993523071<98>
10125-8×1062-1 = (9)621(9)62<125> = 311 × 91807 × 283007 × 316851147327813119486859679<27> × 39058121600449204641292977018475065659076049457477469068459067018722999549731875886279<86> (Makoto Kamada / GMP-ECM 6.0 B1=3000000, sigma=495719048 for P27 / May 24, 2005 2005 年 5 月 24 日)
10127-8×1063-1 = (9)631(9)63<127> = 17 × 4724051 × 1060225916314822690553170423<28> × 117445960798160808874889516667862686525004294847424941869359285457466958648247564886087157139<93> (Makoto Kamada / GMP-ECM 6.0 B1=3000000, sigma=4226633517 for P28 / May 22, 2005 2005 年 5 月 22 日)
10129-8×1064-1 = (9)641(9)64<129> = 13 × 355137916961<12> × 8620582561926197<16> × 17394065538852265094936421036067329135787440209<47> × 1444514437885723676563046033646529294763844095412943391<55> (Kenichiro Yamaguchi / GGNFS-0.77.0 / 9.29 hours on Pentium 4 2.4BGHz / June 11, 2005 2005 年 6 月 11 日)
10131-8×1065-1 = (9)651(9)65<131> = 86623547452681511<17> × 12349682394629342671581050237<29> × 93477749070193650427659700633795469514655311383408098352436339811727829399507869649757<86>
10133-8×1066-1 = (9)661(9)66<133> = 19993 × 3643201 × 402634549021948039744699<24> × 6118147212141979493205298499<28> × 55732425111329964667434258909633836387073169890728743732317075162507143<71>
10135-8×1067-1 = (9)671(9)67<135> = 313 × 551241850199<12> × 5795801203701013592550760375985289941601679448894953240153574970000182552342008222428829851835929181469596104931354919777<121>
10137-8×1068-1 = (9)681(9)68<137> = 23 × 79 × 33641 × 699133 × 37153102097025281291<20> × 62982702663225536917015672618162162150781940869849663197870842762832416119023724563879623917427964393889<104>
10139-8×1069-1 = (9)691(9)69<139> = 163 × 1062432269<10> × 302855476516074177647629415714756028303921414367<48> × 190667078116784852082971325091397033054587376040953643790001855636676885107219351<81> (Kenichiro Yamaguchi / GGNFS-0.77.1 / 208.65 hours on Pentium M 1.3GHz / August 9, 2005 2005 年 8 月 9 日)
10141-8×1070-1 = (9)701(9)70<141> = 13 × 12491 × 114682796422603<15> × 53698377678516309152911620590144736286824531722474351248278451171994068187539834635247175428318039584359788238173227370451<122>
10143-8×1071-1 = (9)711(9)71<143> = 939623 × 692765651 × 5545315714417291165686064725832927750643<40> × 27703442430900092553537300647051906583048198294477171096908738767897374226177031471283041<89> (Sinkiti Sibata / GGNFS-0.77.1 / 174.95 hours / September 6, 2005 2005 年 9 月 6 日)
10145-8×1072-1 = (9)721(9)72<145> = 17 × 12281 × 47897996426809466560013794622970921126369283972851415625284394353784181169381684764126316596176781925212068379179698913194461075693203753287<140>
10147-8×1073-1 = (9)731(9)73<147> = 268621621 × 1246336831459<13> × 3257510230715911<16> × 6918532079648681928624227305677184757812901<43> × 132532947820656116347673308311597774490809937550021677979979509663531<69> (Sinkiti Sibata / GGNFS-0.77.1 gnfs / 46.39 hours / August 17, 2005 2005 年 8 月 17 日)
10149-8×1074-1 = (9)741(9)74<149> = 19 × 23 × 246289 × 1886729098152791531<19> × 492452107297163657920285541552714078377479844183760949367334964747832811911605974270369012672538993838138892728044167041753<123>
10151-8×1075-1 = (9)751(9)75<151> = 67 × 149253731343283582089552238805970149253731343283582089552238805970149253731223880597014925373134328358208955223880597014925373134328358208955223880597<150>
10153-8×1076-1 = (9)761(9)76<153> = 13 × 2833 × 161641 × 60627655411<11> × 47614333343939476124471869<26> × 7552668345066629699182446033425101283<37> × 7704592058815443018290470242216645192352519071772135150967208177930503<70> (Dmitry Domanov / Msieve 1.47 gnfs for P37 x P70 / February 13, 2011 2011 年 2 月 13 日)
10155-8×1077-1 = (9)771(9)77<155> = 2239 × 5279 × 56678511434595650298883<23> × 149271125949526097694051242540040145995475728845603377817047674862326701600786985192784888342606625897461847375223251758978613<126>
10157-8×1078-1 = (9)781(9)78<157> = 19 × 43771396044238225928792490925679371405614739653877146753614764415801797<71> × 12024194726203275938851484234771221099529007521421633366995271365796552634899864472993<86> (Serge Batalov / Msieve 1.48 snfs / February 13, 2011 2011 年 2 月 13 日)
10159-8×1079-1 = (9)791(9)79<159> = 17 × 4363 × 3294930313<10> × 62144347780309<14> × 875614317495699739632788576484738312257<39> × 75197801425496992310870776164738177471202757542432111172344432515065362339377520243394682001<92> (Dmitry Domanov / Msieve 1.40 snfs / February 15, 2011 2011 年 2 月 15 日)
10161-8×1080-1 = (9)801(9)80<161> = 83 × 149 × 881 × 3870667 × 474548258504571771591585675417606925115995686006523958813206512849592823<72> × 4996818065016377309788918994630122182301253662551492996533477571198905331157<76> (Dmitry Domanov / Msieve 1.40 snfs / February 15, 2011 2011 年 2 月 15 日)
10163-8×1081-1 = (9)811(9)81<163> = 79 × 2417 × 30734173242196486263578394334024264549<38> × 911800281137035673388462892491452686927513624550167<51> × 1868852395465617451474642521033009285671070033298663207346750294358971<70> (Serge Batalov / GMP-ECM B1=250000, sigma=2353264473 for P38 / February 13, 2011 2011 年 2 月 13 日) (Sinkiti Sibata / Msieve 1.40 snfs / February 16, 2011 2011 年 2 月 16 日)
10165-8×1082-1 = (9)821(9)82<165> = 13 × 643 × 1039 × 9623 × 1165830521327<13> × 10263233755189700696277225640056260069646814563430088965700616251043586340332842505738575191732118015732881375289087677746776281680655271624319<143>
10167-8×1083-1 = (9)831(9)83<167> = 1763697839860600391407603<25> × 23170965025116663586553803991197905655157250876213537058664461<62> × 2446987187215174730125046108911846761664247597545511902174577382863708846580755353<82> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs / February 16, 2011 2011 年 2 月 16 日)
10169-8×1084-1 = (9)841(9)84<169> = 62762959659509<14> × 2437829950805286579122499272441769607<37> × 197291716147824103596753671717191053852212748027819157<54> × 331271692051871495059393253310041574732691626017488860815187495089<66> (Serge Batalov / GMP-ECM B1=3000000, sigma=3244007055 for P37 / February 19, 2011 2011 年 2 月 19 日) (Sinkiti Sibata / Msieve 1.40 snfs / March 6, 2011 2011 年 3 月 6 日)
10171-8×1085-1 = (9)851(9)85<171> = 773 × 3627427 × 280198241576284051<18> × 6705307525481110851979<22> × 189818142254891247696574639604394347535742354449011459400610937815625830962057862746548144522913414916841412764173952318561<123>
10173-8×1086-1 = (9)861(9)86<173> = 739 × 36190868172510142837<20> × 807032837888331700677569498607736006747<39> × 5976539497752849845378864423464819684057724785899337889<55> × 775203205394986477539370750206516715629123435988538001971<57> (Serge Batalov / GMP-ECM B1=11000000, sigma=135510480 for P39 / February 19, 2011 2011 年 2 月 19 日) (Dmitry Domanov / Msieve 1.40 gnfs for P55 x P57 / February 22, 2011 2011 年 2 月 22 日)
10175-8×1087-1 = (9)871(9)87<175> = 191 × 2210214895192327<16> × 609575726774630068637078305479479572713442063697<48> × 38860149425530280913628152470964444580523578963242040296686377938495994768055542632694245016785565732819295431<110> (Warut Roonguthai / Msieve 1.48 snfs / October 24, 2011 2011 年 10 月 24 日)
10177-8×1088-1 = (9)881(9)88<177> = 13 × 17 × 313 × 59393 × 217727 × 1122497411695661414280599<25> × 995933840657167529453836412584938293190386726779604807285395073793776881919957219868574986313632757029241102621226429120275909994292325867<138>
10179-8×1089-1 = (9)891(9)89<179> = 272748075435643869148661401901889733<36> × 366638700714115389599962109806209888163310590721017062767428295025325640218478173959811727180679413909526903307931873478640332060778963066927603<144> (Sinkiti Sibata / Msieve 1.40 snfs / February 28, 2011 2011 年 2 月 28 日)
10181-8×1090-1 = (9)901(9)90<181> = 23 × 1789 × 168143 × 7218143 × 934535987711<12> × 1664003446713978031<19> × 45517285490740055422516241<26> × 2828986949883198584621084828581179810108926179618585917045962706761863794041762463314620186858491403446862493<109>
10183-8×1091-1 = (9)911(9)91<183> = 24971 × 289251791 × 145596367448077669<18> × 593845286310979751<18> × 24669897216947122548988110025109572695232993<44> × 64907788937176291213196499605891657928224076603316474757554255703246122535678117152634316977<92> (Jo Yeong Uk / GMP-ECM 6.3 B1=3000000, sigma=4208437602 for P44 / April 17, 2012 2012 年 4 月 17 日)
10185-8×1092-1 = (9)921(9)92<185> = 19 × 127 × 425653 × 699899220965616554262510744323<30> × 139107795855540480298335718945182536013968822637706267668589085140853770568206624305811842492255498636792121864238704494489698811428413244180570117<147> (Makoto Kamada / GMP-ECM 6.3 B1=1e6, sigma=1954107748 for P30 / February 12, 2011 2011 年 2 月 12 日)
10187-8×1093-1 = (9)931(9)93<187> = 50019775114615199495075917230691916547419255646795574679062925400535109003749027<80> × 199920930813583680285643755589862706279286424969580548098469179485993277480268624034902644118801184584418037<108> (Sinkiti Sibata / Msieve 1.40 snfs / March 2, 2011 2011 年 3 月 2 日)
10189-8×1094-1 = (9)941(9)94<189> = 13 × 79 × 973709834469328140214216163583252190847127555988315481986368062317429406037000973709834469328062317429406037000973709834469328140214216163583252190847127555988315481986368062317429406037<186>
10191-8×1095-1 = (9)951(9)95<191> = 172 × 182233 × 17070619 × 21183206292461<14> × 5250905077331488735795353700945484781685598851724064454699366598251082327254969212520251228999320618735361446616326396179173017889019161396345693903362177578785353<163>
10193-8×1096-1 = (9)961(9)96<193> = 19 × 23 × 127 × 418813 × 8181521 × 189284079767779833398218777730830699<36> × 277809153292760207240421423753452980489404408136913155490560225691488824551500700779895536024957335402993351362009133834994800559898078590963<141> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=833766556 for P36 / January 18, 2012 2012 年 1 月 18 日)
10195-8×1097-1 = (9)971(9)97<195> = 675113 × 262133051 × 1347073199<10> × 4311168349299007605693072662896247419313961853488266281171991<61> × 973006113465185015034050460119730293866141016974092666901657297476830372888398478534600172070122527440266857197<111> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs / May 18, 2012 2012 年 5 月 18 日)
10197-8×1098-1 = (9)981(9)98<197> = 2713 × 89819 × 918420718448071256237989243418739458571020694987973<51> × 446827936714569696497372986497996429735123782015431971724224232031616688185737482087944562567018007589306550612867879924624338948694276529<138> (Robert Backstrom / Msieve 1.44 snfs / January 5, 2012 2012 年 1 月 5 日)
10199-8×1099-1 = (9)991(9)99<199> = 59 × 565788759054756936642344181791<30> × 8185958784068556639549641564543240106092873348961011570312637307557518386277<76> × 36595199573156592567574308409239210740181770997876744738502841925278072818038635147828961623<92> (Makoto Kamada / GMP-ECM 6.3 B1=1e6, sigma=1818331022 for P30 / February 13, 2011 2011 年 2 月 13 日) (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs / May 23, 2012 2012 年 5 月 23 日)
10201-8×10100-1 = (9)1001(9)100<201> = 13 × 6673 × 311276849084618472119357<24> × 15052222737145410960825250279<29> × 2194553694984661002966316506054906175360403868523<49> × 1121093549133517645919637898888285530729921842240304880079520241013994352695027452454887088598979<97> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs / May 31, 2012 2012 年 5 月 31 日)
10203-8×10101-1 = (9)1011(9)101<203> = 23136725041020309444248679160655143435538789<44> × 6305851673891850899702893364808962383186364030678269<52> × 685416197841865460088678162353086943047030593032196661893119493263540339280935634615920167887443294511602639<108> (Erik Branger / GMP-ECM B1=11000000, sigma=512867386 for P44 / February 13, 2012 2012 年 2 月 13 日) (ebina / Msieve 1.53 for P52 x P108 / November 21, 2021 2021 年 11 月 21 日)
10205-8×10102-1 = (9)1021(9)102<205> = 322804678249<12> × 30978485362242356180481539710090869910464474100013959367393443156728455632773124023436525657054775121274298865032865423985015822564166991971294849076343257268379886800071119746233328078312115751<194>
10207-8×10103-1 = (9)1031(9)103<207> = 59 × 3727 × 6701 × 21632213983<11> × 318606174070733707036978171357564183849702990777742936008693373141157137303978745929707<87> × 98467705919369685295385556809018328632185480721261731171962557391784889855591508923384048993013809203<101> (Bob Backstrom / Msieve 1.44 snfs for P87 x P101 / May 22, 2024 2024 年 5 月 22 日)
10209-8×10104-1 = (9)1041(9)104<209> = 17 × 953 × 1487601149<10> × 214754646683<12> × 654891405884851<15> × 1226957263726778987830896259816115399350339975769<49> × 24045309754251979001979612803114271867298313762100205311412544567363583402668960716352771842659534709182502764607861721963<122> (Rytis Slatkevicius / yafu2 for P49 x P122 / December 19, 2023 2023 年 12 月 19 日)
10211-8×10105-1 = (9)1051(9)105<211> = 383042837342788509222852311452838731477<39> × 26106740617762574954428610093556123637512988267371711860909876496671466512748750039451130178592119947691493147118098751904797687531274322384230854016827080438277519589299587<173> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=1986105636 for P39 / January 19, 2012 2012 年 1 月 19 日)
10213-8×10106-1 = (9)1061(9)106<213> = 13 × 5443831 × 10785461 × 36582991 × 37110153214531334886327965677367443241<38> × 965031174223961011260190231497770742259632026268081299170553857111233577223869521949638408699539915799071034885151350268658699165565527941761667105334863<153> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=14622147 for P38 / January 23, 2012 2012 年 1 月 23 日)
10215-8×10107-1 = (9)1071(9)107<215> = 79 × 434237 × 1462973 × 2207833 × 85358330293<11> × 1365449430177945188653184051<28> × 10543786453982646764690824291361<32> × 108488271056944538267870681231458143513914275694120541137<57> × 6769282371060309309571103798151161767683703567195969372418593403180207<70> (Makoto Kamada / GMP-ECM 6.3 B1=1e6, sigma=1267450376 for P32 / January 14, 2012 2012 年 1 月 14 日) (Warut Roonguthai / Msieve 1.48 gnfs for P57 x P70 / January 21, 2012 2012 年 1 月 21 日)
10217-8×10108-1 = (9)1081(9)108<217> = 67 × 293 × 4391 × 935059 × 252021201931<12> × 1378339059308333<16> × 286759285864000842025753<24> × 1245502183363306734465523695467166211946200428116571462896860072537034264445005385626880823973093329064811223073514098031914677287395506266480675165599339<154>
10219-8×10109-1 = (9)1091(9)109<219> = 11361075457<11> × 18331335583805475110859533<26> × 10746688649890976440426819783407206483435495329319<50> × 446798576686097114773841579071406430706039777862400759969599240231414325702428464206913694577373715120399874632524548507336702600692941<135> (Erik Branger / GGNFS, NFS_factory, Msieve snfs for P50 x P135 / September 5, 2018 2018 年 9 月 5 日)
10221-8×10110-1 = (9)1101(9)110<221> = 19 × 293 × 76523407548278972452760386199<29> × 120788340594615692219761059968633455810628790823014789900452830531084663320594366330899873<90> × 1943387759935001694835085133723784476767543360792011998426559458593003015898181033520327330988066311<100> (Erik Branger / GGNFS, NFS_factory, Msieve snfs for P90 x P100 / September 9, 2018 2018 年 9 月 9 日)
10223-8×10111-1 = (9)1111(9)111<223> = 17 × 1933459169925133<16> × 304239832558980070092570184801123229500857196427700571002526164391705078396498277223337267420728713622269982690840439153536817752883486205953774469483150456017844566371063122170470200402163805908485638635659<207>
10225-8×10112-1 = (9)1121(9)112<225> = 13 × 23 × 64489 × 19043437277857189<17> × 2723314693211999139160954055357533832911543612794545046828115716819403521793114101782229282282396526899098047795264170532006691818174698226444440617784673361878751876986023353958559624481093478766011281<202>
10227-8×10113-1 = (9)1131(9)113<227> = 9161 × 11953486700317<14> × 56031808694624597357202800774170846053098324059<47> × 16297758290279544040825462411263602737233755691842061043529501239131141389798870955298470644055430645792234911338085230613158776530375691414589646848046751478318153<164> (Serge Batalov / GMP-ECM B1=11000000, sigma=2654200053 for P47 / May 27, 2014 2014 年 5 月 27 日)
10229-8×10114-1 = (9)1141(9)114<229> = 19 × 823 × 218130156959411<15> × 40097215288633377839<20> × 120551317863006526267<21> × [606519372778065923519303683071281388228029010271229286924679708422969480765980364395332116217904180417580496025599988632201077214189033161232738229184828184981657148225389<171>] Free to factor
10231-8×10115-1 = (9)1151(9)115<231> = 227 × 720653 × 22897210807<11> × 266971782612173041870461045023039479956453135695979802256882282421494566115782884096701130274027575157746984904408831338869424278309410514394985583706913290371764333705107760029292633711886708470745263851701349247<213>
10233-8×10116-1 = (9)1161(9)116<233> = 886323589 × 3414805123<10> × 9095258663<10> × 178410326341349<15> × 20361357326387857581406513258483918617698268248071157300404361473726490098990541098417390381627938424308484198536944868433444782920642773089007098653975891440873932824472372081621208140276091<191>
10235-8×10117-1 = (9)1171(9)117<235> = 853 × 1979039 × 16823561477<11> × 12414981785839<14> × 92211496190624521939<20> × 4269928947030981406137838197081156902737<40> × 72032232116452620254176457066928021909434766452074735809957879418099049508420545202865695049781683621059478899278239988233212970297139093430493<143> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=824772584 for P40 / January 23, 2012 2012 年 1 月 23 日)
10237-8×10118-1 = (9)1181(9)118<237> = 13 × 23 × 7830220523<10> × 22593523956982847269875191<26> × 1287803020447261053051892007<28> × 107704753035759316625156975150609<33> × 136297075010476079913354692014304590846276577766153192021278973746167953537189557468551538155532795282018921210932795110361999917597014043239<141> (Serge Batalov / GMP-ECM B1=1000000, sigma=3924700829 for P33 / January 18, 2012 2012 年 1 月 18 日)
10239-8×10119-1 = (9)1191(9)119<239> = 109741 × 24032927 × 36207834266897756103313<23> × 36357505920467357202602131793661430333<38> × 15651170783699477100158823882092629571541321815452078885173572932393702799512631<80> × 1840267501531636659108143792373867942492126045462827701590392073412708697057354643610543<88> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2814903470 for P38 / January 23, 2012 2012 年 1 月 23 日) (Erik Branger / GGNFS, NFS_factory, Msieve snfs for P80 x P88 / February 1, 2024 2024 年 2 月 1 日)
10241-8×10120-1 = (9)1201(9)120<241> = 17 × 79 × [7446016381236038719285182427401340282948622486969471332836932241250930752047654504839910647803425167535368577810871183910647803425167535368577810871183916604616530156366344005956813104988830975428145941921072226358897989575577066269545793<238>] Free to factor
10243-8×10121-1 = (9)1211(9)121<243> = 83 × 17389 × 224663675279<12> × [3084000507913270998937192810143449204113238845493221408754073917010870217002892223926249662323908021039567798645971434358089192065840255357249219937593794981963018745469774479625617358672373772959124430328759203822163512507863<226>] Free to factor
10245-8×10122-1 = (9)1221(9)122<245> = 5101 × 564325430384630641<18> × 44622375251647331487438629<26> × [778506729332186171656452024165411452618349506170571384902996935590218086010646082259298506951500202002128126454880337112685825875992951959999085436390094037956478897871529830640035328005224904342191<198>] Free to factor
10247-8×10123-1 = (9)1231(9)123<247> = 9144905298679729564128817613730935596381<40> × [1093505036235172645343582123002680994052099863597132376389381862490118031446983244707949293180853456328817521949936515005742235401444402276041265877760294940210725770760784302789657833381137862303704502003979<208>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1623188512 for P40 / January 18, 2012 2012 年 1 月 18 日) Free to factor
10249-8×10124-1 = (9)1241(9)124<249> = 13 × 1153 × 29371365524808165293<20> × 2271450109371576549360910989523784530161809398994869229666889157076114681798139050855985731734879971958318691697125448549628282878502494429290657040124592350302969532708176036799319033712372444060342147183169332011835424545287<226>
10251-8×10125-1 = (9)1251(9)125<251> = 18617 × 539539120615873287885550511<27> × [9955598222571350106937076317097608090141814524941723972245367316113124015827183909701665329287706471069078827334964578814372132584769840194600918931657477687635430845437209385793379374745951856440911638609936504840398777<220>] Free to factor
10253-8×10126-1 = (9)1261(9)126<253> = 142686685133<12> × 8789959984856521<16> × 2078941532820471095336443922989157537961511<43> × 54440334449992071363140146959841093156721461<44> × 70447663415741517717216847774493933092750778017218748450938213885474657586368473651738929625270063464442495148355671013019084087464829930033<140> (Serge Batalov / GMP-ECM B1=3000000, sigma=425007819 for P43 / May 19, 2014 2014 年 5 月 19 日) (Rytis Slatkevicius / yafu2 for P44 x P140 / December 22, 2023 2023 年 12 月 22 日)
10255-8×10127-1 = (9)1271(9)127<255> = 17 × 109 × 490738211 × 915287016913<12> × 335484587865769<15> × 28499981132543235541<20> × 582545336729255661868021190063<30> × [215710123355700602165516304286740601421643486738639263785010142723475240160376711574817582477484893166409127591954393521509041937777195620818178267040532333602310905203<168>] (Makoto Kamada / GMP-ECM 6.3 B1=1e6, sigma=588995698 for P30 / January 15, 2012 2012 年 1 月 15 日) Free to factor
10257-8×10128-1 = (9)1281(9)128<257> = 19 × 244744325149275541<18> × 1094579375861894707<19> × 1509564990865024172324166859767539<34> × 13014715897241468121772449314190352272481642777512654399528649028188035716234568726659064154426340085748884798807606347556761731286405733123467030321499043155864795032304775295394796424297<188> (Serge Batalov / GMP-ECM 6.4 [configured with GMP 5.0.2, --enable-asm-redc] [ECM] B1=1000000, sigma=3024877522 for P34 / January 17, 2012 2012 年 1 月 17 日)
10259-8×10129-1 = (9)1291(9)129<259> = 1373 × 430019 × 76634529486865274544855173083919957987<38> × 221012747013013116815961470189634781646685701902088377804033732141926345464357040348758084950865648991984536588587104466702484194217472894286165277327820462214372542923115657075489842915655581024570118710317346771<213> (Dmitry Domanov / GMP-ECM B1=43000000, sigma=3117508329 for P38 / January 25, 2012 2012 年 1 月 25 日)
10261-8×10130-1 = (9)1301(9)130<261> = 13 × 4283 × 6619 × 43239457 × 125132447912455231<18> × 153151352608717889<18> × 784819883378532529889<21> × 206296655742446809886104487<27> × 3793850752080434500477013464083897317<37> × 5330927256233628483768589555193975403990452939049765781973943934246000138268111672887155859621024228456413262789554735748436783<127> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2754663328 for P37 / March 10, 2012 2012 年 3 月 10 日)
10263-8×10131-1 = (9)1311(9)131<263> = 233 × 55793 × 9642565927322143<16> × [797759065284748820445070361899109033658474396464609848072453964967729313383389106960966509879600116855718802310965532223620107298843332161075082871915181281432207590761898859129258893634234606913290956219778042620211694808905880203553234697<240>] Free to factor
10265-8×10132-1 = (9)1321(9)132<265> = 19 × 229 × 14627 × 224200601 × 220677400956227194540455281<27> × 32511086858214150747108886001<29> × 97685371869188303167827352629792381834350448318452298961436344687414290353584660166412394566631745883520142265445366474475481321840291401385539032697383411015343774499937347540284129219210168227<194>
10267-8×10133-1 = (9)1331(9)133<267> = 79 × 5113 × 4708296613057393397569573<25> × 418648146813293307522515291<27> × [1255984061402103871827337111281523184963519119211124027767971105869035272592517652184108481179798375284936787103979908151441681558685664744887216915507525215785222127406308761423732567247550981591583649966196159<211>] Free to factor
10269-8×10134-1 = (9)1341(9)134<269> = 23 × 127 × 192461057 × 9167650173705548699<19> × 19402940129923437989169784009708249772601595457404066429567238136892806742985274489326454331831152446715098940903324759635638890521257731551702215037491750725707707435583525006298123352202060700957091682616870684822536302819550550870392933<239>
10271-8×10135-1 = (9)1351(9)135<271> = 113 × 587 × 301078132822273100192254541280044316371305620547<48> × 500730725655677345236048118503343729537347853507952783035717708181325571182031371190304584365783348487786098943138896521281910756541862253466842250455585121549932798316310154797774918250253500153627576305530053322369807<219> (Mr. Hankey / GMP-ECM B1=110000000, sigma=4102924851 for P48 / November 30, 2012 2012 年 11 月 30 日)
10273-8×10136-1 = (9)1361(9)136<273> = 13 × 17 × 607 × 12766121 × 4887435694079<13> × [119475545620991679562500067188260357244865301113464069801751116595129646475849900049300150890638778066196761178707825352041144240815025923800166530690664955017064414839786823131920266334475822819265865738028987817621469755691316342505037530956659763<249>] Free to factor
10275-8×10137-1 = (9)1371(9)137<275> = 397 × 5303 × 31365946938281710242828685690363<32> × 142273443619143125511691953159922298587<39> × [10644018465157079979932251911839646674574847982913445642968701006945896639943057389483876775357298110490094363919565348607924213115639313264477284845811979996981141340774685869035806927024875702433669<200>] (Serge Batalov / GMP-ECM B1=1000000, sigma=882766411 for P32 / January 18, 2012 2012 年 1 月 18 日) (Youcef Lemsafer / GMP-ECM 6.4.4 B1=3000000, sigma=3189498166 for P39 / March 30, 2014 2014 年 3 月 30 日) Free to factor
10277-8×10138-1 = (9)1381(9)138<277> = 127 × 104160893 × 5540663517984426093714973194517568047442991895229<49> × 136436260640207150274265082167207483170229226561425680113406340319284418999527667030340298081641339639419885565523687667743595528380511089635896674864661856399245739477002526383880313327973669156182705786632528969638521<219> (Dmitry Domanov / GMP-ECM B1=43000000, sigma=3176861911 for P49 / January 22, 2012 2012 年 1 月 22 日)
10279-8×10139-1 = (9)1391(9)139<279> = 881 × 56830513 × 71512117051<11> × 279294819391105608802821828287731595639447029500118046302763813594968494517642444732584194375593718236230875794489778868525934347634932798069063350121305007320303374733567450491682675092673278882294093305481559917071165333233816946709075133027163204520906733<258>
10281-8×10140-1 = (9)1401(9)140<281> = 23 × 2109769 × 92660787983<11> × 958360926033476843<18> × 1658761213536614323<19> × 820401086608300081756974253<27> × 17053050217502050006474643444775157528845056230469182412603533265615853697271665329507442291186742542665604348950630004911063750061016521232388981601572566001081891617745479466221583067412705789023307<200>
10283-8×10141-1 = (9)1411(9)141<283> = 67 × 149 × 1021 × 2303621 × 5957716402729558059469274236367<31> × [71486219718414360515732264746532790948430631455978923618024130814097690488582570971703564425119360465901510843946736815209721132557872148370837781935199164986824584861150191571791802731622774954018618279076747471211101109424331085875799199<239>] (Serge Batalov / GMP-ECM B1=1000000, sigma=2239686861 for P31 / January 18, 2012 2012 年 1 月 18 日) Free to factor
10285-8×10142-1 = (9)1421(9)142<285> = 13 × 109 × 531548779 × 148944602785525636314151<24> × 83251310549235626146144761435667<32> × 107070831497527101301109575506816616880968165728919815254430760478371472931990730409465165081913685099784867449060226980893318785056566775868917230963051860210402799511282868213975194868533118092180189461130932651468529<219> (Serge Batalov / GMP-ECM B1=1000000, sigma=299502759 for P32 / January 18, 2012 2012 年 1 月 18 日)
10287-8×10143-1 = (9)1431(9)143<287> = 17 × 199 × 25310503 × 4663818810249037363509739373<28> × [250412241929366705407498008565195168890005082947467781848405649320438659880308621873483859289686540554394039528029333986371259940717837543542927221653617385002383377571762154590623882639688875763229018842745101613826030830903412968424295209986116987<249>] Free to factor
10289-8×10144-1 = (9)1441(9)144<289> = 113 × 4241141887733089<16> × 490865945396316027840192377505861842771<39> × 42508506941584565106874390422292327793440588981662022141627315173908165147252192440729866798862789601892090173879645261279457287956335215648491662639834695109245053174205437138505563071205738819546986424955310632336598664999636477717<233> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=613650560 for P39 / January 20, 2012 2012 年 1 月 20 日)
10291-8×10145-1 = (9)1451(9)145<291> = 7823 × 40906053514741790544590300410432210711<38> × [3124921323798947112568697629383360192939270207930929072482023983353312858695249596174817129255463269769026009311483562667070827070109598254505152463125583065607386686690140851498740161692050631906458132588309041880174207007433602529668199354476812183<250>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3532666646 for P38 / January 19, 2012 2012 年 1 月 19 日) Free to factor
10293-8×10146-1 = (9)1461(9)146<293> = 19 × 79 × 1838453 × 5487838935053<13> × 5497734900959050755828259<25> × [1201106798244741805426876047029758936017602395883367401807186797319213593008537663421473026161974315375708583098470798303027758464735273555025136713614057955692960528324703156682480334989464224999325837413993685617279977286401351287271317440305929<247>] Free to factor
10295-8×10147-1 = (9)1471(9)147<295> = 4517 × 2849081386817513<16> × [777043002721767976101188773066651138788765208917678252255295413501109691536917505390785256102753541457370687478084844806737105317146293789475988310452790417867574320622999168377922066337170427005074212081330986212589359420934159820205246909646321905306985460700334160474505819<276>] Free to factor
10297-8×10148-1 = (9)1481(9)148<297> = 13 × 1987 × 38713174093143896868104215864658743370368936549107661337153033177190197824319615965312996012543068406178622585265765940149432851999535441910882273234485695482172583330107235492238008594324648677945104719135921954241028221903913901900816847973365336223916998954744299485114784561186171654213929<293>
10299-8×10149-1 = (9)1491(9)149<299> = [99999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999199999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999<299>] Free to factor
10301-8×10150-1 = (9)1501(9)150<301> = 19 × 163 × 11135791 × [289959754431897456310908925900006415959783497405248613423567014254966391246631930754436626206974110639186761611996038572038645550634301030217261949184974231349258555758247962329637952367765261238511361655739825262046698207678992827595151871015361075634510187611825695857110587865595840101337<291>] Free to factor
plain text versionプレーンテキスト版

4. Related links 関連リンク