Phi_32401(10) = 1111111111...<32401> = 388813 * 67532302667<11> * 28002660092159<14> * [1511144053...<32371>] (0.09%) Phi_32402(10) = 1099999999...<15233> = 194413 * 291619 * 96323531531<11> * 13509913444362139853<20> * [1490962098...<15192>] (0.27%) Phi_32403(10) = 1109999889...<18505> = 453643 * 2916271 * [8390364774...<18492>] (0.07%) Phi_32404(10) = 9900990099...<16200> = [9900990099...<16200>] (0.00%) Phi_32405(10) = 9000090000...<25920> = 194431 * 453671 * [1020329219...<25910>] (0.04%) Phi_32406(10) = 9100000000...<9800> = 1183564339<10> * [7688639899...<9791>] (0.09%) Phi_32407(10) = 9000000000...<30976> = 907397 * 166086460059866017369<21> * [5971878202...<30950>] (0.08%) Phi_32408(10) = 9999000099...<16200> = 38111809 * 283314527737<12> * [9260366275...<16181>] (0.12%) Phi_32409(10) = 1001000999...<19873> = 73503613 * 76679694001<11> * 88616382427<11> * [2004155599...<19843>] (0.15%) Phi_32410(10) = 9091000909...<11088> = 13612201 * 58111136993818721<17> * [1149275040...<11065>] (0.22%) Phi_32411(10) = 1111111111...<32411> = 7933179354993280763<19> * [1400587408...<32392>] (0.06%) Phi_32412(10) = 9901000000...<10368> = 7908529 * 12186231349<11> * [1027339366...<10352>] (0.16%) Phi_32413(10) = 1111111111...<32413> = 19919538803<11> * [5577996167...<32402>] (0.03%) Phi_32414(10) = 1099999999...<15337> = 453797 * 69341103366529927<17> * [3495749600...<15314>] (0.15%) Phi_32415(10) = 1109988900...<17281> = [1109988900...<17281>] (0.00%) Phi_32416(10) = 9999999999...<16192> = 226913 * 29636911233083518303073<23> * [1486988750...<16165>] (0.17%) Phi_32417(10) = 1111110999...<25201> = 87708731881<11> * [1266819136...<25190>] (0.04%) Phi_32418(10) = 1000999998...<10801> = 162091 * [6175543361...<10795>] (0.05%) Phi_32419(10) = 9000000000...<30496> = [9000000000...<30496>] (0.00%) Phi_32420L(10) = 3576409999...<6480> = 2626021 * 240518442796613528692681<24> * [5662402308...<6450>] (0.46%) Phi_32420M(10) = 2824060999...<6481> = 61533161 * [4589494434...<6473>] (0.12%) Phi_32421(10) = 1109999999...<21201> = 315072854413<12> * [3522994712...<21189>] (0.05%) Phi_32422(10) = 9090909090...<14112> = 32423 * 29957929 * 753519703 * [1242074708...<14092>] (0.15%) Phi_32423(10) = 1111111111...<32423> = 453923 * 1415458489<10> * 5101175437<10> * [3390064057...<32398>] (0.08%) Phi_32424(10) = 9999000100...<9216> = 64849 * 648481 * 2204896849<10> * 545382995977<12> * 448917605332183177<18> * [4404529523...<9167>] (0.54%) Phi_32425(10) = 9999900000...<25920> = 10311151 * 226391351 * 9858432151<10> * 99469459151<11> * [4368487231...<25884>] (0.14%) Phi_32426(10) = 1099999999...<15661> = 64853 * 67219099 * 2378122841<10> * [1061049495...<15639>] (0.14%) Phi_32427(10) = 9999999990...<21600> = 7393357 * 968721837893067402919<21> * [1396237287...<21573>] (0.13%) Phi_32428(10) = 1000000000...<14521> = 32429 * 313110986101<12> * [9848455736...<14504>] (0.11%) Phi_32429(10) = 1111111111...<32429> = [1111111111...<32429>] (0.00%) Phi_32430(10) = 1098890109...<8097> = 227011 * 2172811 * 18517531 * [1203101674...<8078>] (0.23%) Phi_32431(10) = 1111110999...<26881> = 389173 * [2855056748...<26875>] (0.02%) Phi_32432(10) = 9999999900...<16208> = 46110209751169<14> * [2168717070...<16195>] (0.08%) Phi_32433(10) = 1109999999...<20449> = 152052901817119117<18> * [7300090867...<20431>] (0.08%) Phi_32434(10) = 9090909090...<16216> = 97303 * 48553699 * [1924237893...<16204>] (0.08%) Phi_32435(10) = 1111099999...<23905> = 155633314591<12> * [7139216965...<23893>] (0.05%) Phi_32436(10) = 9999990000...<9984> = 6697060921<10> * [1493190836...<9975>] (0.10%) Phi_32437(10) = 9000000000...<32076> = 48460879 * 2288365477<10> * 62125821424961375791<20> * [1306332377...<32040>] (0.11%) Phi_32438(10) = 1000000099...<13861> = 64877 * 604923715624326533<18> * 23086721331816265943<20> * [1103688232...<13819>] (0.30%) Phi_32439(10) = 1109999999...<19641> = 64879 * 129757 * 5829677569<10> * 29701363753438081<17> * [7614950937...<19604>] (0.18%) Phi_32440(10) = 1000099999...<12961> = 10231409972081<14> * 2320740757281761<16> * [4211931607...<12932>] (0.22%) Phi_32441(10) = 1111111111...<32441> = [1111111111...<32441>] (0.00%) Phi_32442(10) = 1098901098...<10813> = 129769 * [8468132596...<10807>] (0.05%) Phi_32443(10) = 1111111111...<32443> = 33870493 * 493634286330401<15> * 5592333926389734809<19> * 8274567314998660001<19> * 5705977624219226149151<22> * [2516878217...<32361>] (0.25%) Phi_32444(10) = 9900990099...<16220> = 162221 * 39463429867427021<17> * 6116857689203840450489<22> * [2528414936...<16177>] (0.27%) Phi_32445(10) = 9990000009...<14688> = 1702477400401<13> * [5867919308...<14676>] (0.08%) Phi_32446(10) = 9090909090...<16222> = [9090909090...<16222>] (0.00%) Phi_32447(10) = 9000000000...<31920> = 194683 * 1168093 * 48865960729<11> * [8098985407...<31898>] (0.07%) Phi_32448(10) = 1000000000...<9985> = 256306753 * [3901574922...<9976>] (0.08%) Phi_32449(10) = 9000000000...<31536> = [9000000000...<31536>] (0.00%) Phi_32450(10) = 9999900000...<11600> = 43385651 * 9592402492088691001<19> * [2402825019...<11574>] (0.23%) Phi_32451(10) = 1109999999...<20833> = 16733423053<11> * [6633430568...<20822>] (0.05%) Phi_32452(10) = 9900990099...<12960> = 2289326341<10> * 171044933915036161<18> * 3029003183789513141<19> * [8347587412...<12915>] (0.35%) Phi_32453(10) = 1111111111...<28865> = 324213064003<12> * [3427101602...<28853>] (0.04%) Phi_32454(10) = 1000000000...<10801> = 108169183 * 998220133 * [9261261052...<10783>] (0.16%) Phi_32455(10) = 9000090000...<25960> = 2077121 * 350529638961031<15> * [1236119080...<25940>] (0.08%) Phi_32456(10) = 9999000099...<16224> = 5292314167535989921<19> * [1889343637...<16206>] (0.12%) Phi_32457(10) = 1109999999...<20881> = 3602647480351<13> * [3081067481...<20868>] (0.06%) Phi_32458(10) = 9090909090...<16228> = 616703 * 363686299471893571<18> * [4053258599...<16205>] (0.14%) Phi_32459(10) = 9000000900...<27816> = 64919 * 2419017815983709499344861027<28> * [5731016575...<27784>] (0.12%) Phi_32460L(10) = 2529932837...<4321> = 292141 * 584281 * 22843367941<11> * 37125540721<11> * 1130677232401<13> * 8501042088778592613721<22> * [1818239047...<4255>] (1.53%) Phi_32460M(10) = 3913542626...<4320> = 143121402350281<15> * 12981698099343702538801<23> * [2106366701...<4284>] (0.84%) Phi_32461(10) = 1111111111...<27121> = 38888279 * 47717671 * 1062188843<10> * 7128074803775641<16> * [7908343854...<27080>] (0.15%) Phi_32462(10) = 9090909090...<16230> = 10163397733<11> * [8944753840...<16220>] (0.06%) Phi_32463(10) = 9990000009...<21636> = 129853 * 454483 * [1692761831...<21626>] (0.05%) Phi_32464(10) = 9999999900...<16224> = [9999999900...<16224>] (0.00%) Phi_32465(10) = 1111099999...<25201> = 2791991 * 452886751 * [8787179900...<25185>] (0.06%) Phi_32466(10) = 9100000909...<9264> = 649321 * [1401464130...<9259>] (0.06%) Phi_32467(10) = 1111111111...<32467> = 1929546233282145557<19> * 2482848384536358089<19> * 35618910644475990493<20> * [6511356418...<32410>] (0.17%) Phi_32468(10) = 9900990099...<16232> = 5386132786469<13> * 18953071585487954021<20> * [9698888513...<16200>] (0.20%) Phi_32469(10) = 1109999999...<21217> = 2207893 * [5027417542...<21210>] (0.03%) Phi_32470(10) = 9091000000...<12160> = 34288321 * 121957321 * 5594158891<10> * 129290478991736373960652891<27> * [3005773287...<12109>] (0.42%) Phi_32471(10) = 9000000000...<30744> = 2823093683<10> * 31381515538603<14> * [1015882094...<30722>] (0.07%) Phi_32472(10) = 9999999999...<9600> = 454609 * 21429993817<11> * [1026455024...<9585>] (0.17%) Phi_32473(10) = 9000000900...<27828> = 8767711 * 300245359 * 79782189422209<14> * [4285229374...<27799>] (0.11%) Phi_32474(10) = 1099999999...<14977> = 97423 * [1129096825...<14972>] (0.03%) Phi_32475(10) = 1000010000...<17281> = 64951 * 361901401 * [4254301223...<17267>] (0.08%) Phi_32476(10) = 1009999999...<15489> = 97429 * 5358541 * 5381930611669<13> * [3594582673...<15464>] (0.16%) Phi_32477(10) = 9000000000...<31740> = [9000000000...<31740>] (0.00%) Phi_32478(10) = 1098901098...<10825> = 51798382729<11> * [2121496929...<10814>] (0.10%) Phi_32479(10) = 1111111111...<32479> = 100944733 * 28752652760413<14> * 21387982497394824352787<23> * [1789888951...<32435>] (0.13%) Phi_32480(10) = 9999999999...<10752> = [9999999999...<10752>] (0.00%) Phi_32481(10) = 9999999999...<21600> = 9999999999...<21600> (100.00%) Phi_32482(10) = 1099999999...<15985> = 9775403083474247<16> * 2518313683072754656087<22> * [4468360310...<15947>] (0.23%) Phi_32483(10) = 9000000000...<29520> = 2923471 * [3078532333...<29514>] (0.02%) Phi_32484(10) = 1009998990...<10825> = 19165462549<11> * 1181629848707041<16> * [4459849272...<10799>] (0.23%) Phi_32485(10) = 1111099999...<25345> = 36643081 * 3236093227307777973641<22> * [9370011857...<25315>] (0.11%) Phi_32486(10) = 1099999999...<15769> = 191327010002729<15> * [5749318927...<15754>] (0.09%) Phi_32487(10) = 9999999000...<16128> = 161135521 * 4393152037<10> * 6474713288317<13> * [2181784708...<16098>] (0.19%) Phi_32488(10) = 1000099999...<15601> = [1000099999...<15601>] (0.00%) Phi_32489(10) = 9000000000...<31824> = 8494898831<10> * [1059459350...<31815>] (0.03%) Phi_32490(10) = 9999999999...<8208> = [9999999999...<8208>] (0.00%) Phi_32491(10) = 1111111111...<32491> = 100787083 * 76300986884631569<17> * [1444848992...<32466>] (0.08%) Phi_32492(10) = 9900990099...<16244> = 6026705155589<13> * [1642852909...<16232>] (0.08%) Phi_32493(10) = 9009009009...<21660> = 372818004428557<15> * [2416462966...<21646>] (0.07%) Phi_32494(10) = 9090910000...<12600> = 2451087409<10> * [3708929337...<12591>] (0.07%) Phi_32495(10) = 1111099999...<25345> = 33534841 * 4225506257284212721<19> * [7841120840...<25318>] (0.10%) Phi_32496(10) = 1000000009...<10817> = 32497 * 66897272977<11> * [4599899249...<10801>] (0.14%) Phi_32497(10) = 1111111111...<32497> = 52604323769<11> * [2112204913...<32486>] (0.03%) Phi_32498(10) = 9090909090...<16248> = 290987093 * 381396529 * 786768598861547209<18> * [1041141683...<16214>] (0.22%) Phi_32499(10) = 1001000999...<20593> = 13175029603<11> * 167691485782239877<18> * 3218271530282438653<19> * [1407826758...<20547>] (0.22%) Phi_32500L(10) = 1000000000...<6001> = 1019395001<10> * 27178637055752812501<20> * [3609356886...<5972>] (0.47%) Phi_32500M(10) = 9999999999...<6000> = 156052195001<12> * 354747802501<12> * [1806385358...<5978>] (0.38%)