Phi_260001(10) = 1001000999...<148537> = [1001000999...<148537>] (0.00%) Phi_260002(10) = 1099999999...<128101> = [1099999999...<128101>] (0.00%) Phi_260003(10) = 1111111111...<260003> = 172121987 * 3407119016018119<16> * 18655726155895001<17> * [1015597625...<259963>] (0.02%) Phi_260004(10) = 9901000000...<84640> = 127340079049<12> * [7775242542...<84629>] (0.01%) Phi_260005(10) = 1111099999...<206017> = 11832827551<11> * [9389978812...<206006>] (0.00%) Phi_260006(10) = 9090909090...<130002> = [9090909090...<130002>] (0.00%) Phi_260007(10) = 1109999999...<157561> = 80082157 * [1386076551...<157553>] (0.01%) Phi_260008(10) = 1000099999...<111409> = [1000099999...<111409>] (0.00%) Phi_260009(10) = 1111111111...<260009> = 2390002729<10> * 58912319203<11> * 1146329613983650963<19> * [6884041214...<259970>] (0.01%) Phi_260010(10) = 9999999999...<68688> = 260011 * [3845991131...<68683>] (0.01%) Phi_260011(10) = 1111111111...<260011> = 31201321 * [3561102785...<260003>] (0.00%) Phi_260012(10) = 9900990099...<130004> = 3394456661<10> * [2916811462...<129995>] (0.01%) Phi_260013(10) = 9009009009...<155904> = 5516851828801<13> * [1632998182...<155892>] (0.01%) Phi_260014(10) = 1099999999...<125497> = [1099999999...<125497>] (0.00%) Phi_260015(10) = 1111099888...<152065> = [1111099888...<152065>] (0.00%) Phi_260016(10) = 1000000009...<86657> = [1000000009...<86657>] (0.00%) Phi_260017(10) = 1111111111...<260017> = 1091235185329<13> * [1018214154...<260005>] (0.00%) Phi_260018(10) = 9090909091...<115440> = 238335478866299<15> * [3814333113...<115426>] (0.01%) Phi_260019(10) = 1001000999...<171313> = [1001000999...<171313>] (0.00%) Phi_260020L(10) = 2824060999...<52001> = 5720441 * [4936788963...<51994>] (0.01%) Phi_260020M(10) = 3576409999...<52000> = 100107701 * [3572562314...<51992>] (0.02%) Phi_260021(10) = 9000000000...<253932> = 520043 * 207496759 * 394898053037<12> * [2112063368...<253907>] (0.01%) Phi_260022(10) = 1098900989...<72001> = 260023 * 317955941689<12> * [1329167931...<71984>] (0.02%) Phi_260023(10) = 1111111111...<260023> = 1040093 * 3120277 * 1106137843<10> * 18673291723<11> * 1191291872510237<16> * [1391373910...<259976>] (0.02%) Phi_260024(10) = 9999000099...<130008> = 588174289 * [1700006322...<130000>] (0.01%) Phi_260025(10) = 1000010000...<138641> = [1000010000...<138641>] (0.00%) Phi_260026(10) = 9090909090...<117504> = [9090909090...<117504>] (0.00%) Phi_260027(10) = 9000000000...<256080> = [9000000000...<256080>] (0.00%) Phi_260028(10) = 9999990000...<83520> = [9999990000...<83520>] (0.00%) Phi_260029(10) = 1000000000...<201961> = [1000000000...<201961>] (0.00%) Phi_260030(10) = 1099989000...<104009> = 190044850762121<15> * [5788049482...<103994>] (0.01%) Phi_260031(10) = 9009009009...<173352> = 20471200507<11> * [4400821049...<173342>] (0.01%) Phi_260032(10) = 1000000000...<121857> = [1000000000...<121857>] (0.00%) Phi_260033(10) = 9000000000...<259008> = 520067 * [1730546256...<259003>] (0.00%) Phi_260034(10) = 9100000000...<82080> = [9100000000...<82080>] (0.00%) Phi_260035(10) = 1111099999...<205921> = [1111099999...<205921>] (0.00%) Phi_260036(10) = 9900990099...<108000> = [9900990099...<108000>] (0.00%) Phi_260037(10) = 9999999990...<173340> = 3640519 * 170064199 * 39353479507<11> * [4104314787...<173315>] (0.01%) Phi_260038(10) = 1099999999...<124345> = [1099999999...<124345>] (0.00%) Phi_260039(10) = 1111111111...<236161> = [1111111111...<236161>] (0.00%) Phi_260040(10) = 1000099999...<62721> = 6259667277601<13> * 12005847609361<14> * 441032913380401<15> * [3017368484...<62680>] (0.06%) Phi_260041(10) = 9000000000...<259012> = 3120493 * 106096729 * [2718424665...<258998>] (0.01%) Phi_260042(10) = 9090909090...<130020> = 49147939 * [1849703014...<130013>] (0.01%) Phi_260043(10) = 9999999000...<141120> = 13522237 * 556328192911<12> * [1329291856...<141102>] (0.01%) Phi_260044(10) = 9900990099...<130020> = 541411609 * 6731795954249<13> * [2716565111...<129999>] (0.02%) Phi_260045(10) = 9000090000...<208032> = 120140791 * [7491285787...<208024>] (0.00%) Phi_260046(10) = 1000999998...<86677> = 7281289 * 873231347449<12> * [1574332606...<86658>] (0.02%) Phi_260047(10) = 1111111111...<260047> = 20283667 * 280330667 * 1458863671<10> * [1339447508...<260022>] (0.01%) Phi_260048(10) = 9999999900...<130016> = [9999999900...<130016>] (0.00%) Phi_260049(10) = 1109999999...<163137> = 128541700603<12> * [8635329973...<163125>] (0.01%) Phi_260050(10) = 9999900000...<89040> = [9999900000...<89040>] (0.00%) Phi_260051(10) = 1111111111...<230921> = 3120613 * 13002551 * 3068343309307<13> * [8924523987...<230894>] (0.01%) Phi_260052(10) = 9901000000...<79968> = [9901000000...<79968>] (0.00%) Phi_260053(10) = 9000000000...<246348> = 5389338373<10> * [1669963802...<246339>] (0.00%) Phi_260054(10) = 9090909090...<130026> = [9090909090...<130026>] (0.00%) Phi_260055(10) = 1001000999...<138673> = 1334082151<10> * [7503293550...<138663>] (0.01%) Phi_260056(10) = 9999000099...<130024> = [9999000099...<130024>] (0.00%) Phi_260057(10) = 1111110999...<220033> = 2805502717711<13> * [3960470232...<220020>] (0.01%) Phi_260058(10) = 9100000000...<85536> = 15863539 * [5736424892...<85529>] (0.01%) Phi_260059(10) = 9000000000...<251640> = [9000000000...<251640>] (0.00%) Phi_260060L(10) = 2824060999...<52009> = 224095782481<12> * 225584365921<12> * 690928838069941<15> * 400319418500908393336337381<27> * [2019721160...<51945>] (0.12%) Phi_260060M(10) = 3576409999...<52008> = [3576409999...<52008>] (0.00%) Phi_260061(10) = 1109999999...<165793> = 520123 * 5228786467<10> * [4081464406...<165777>] (0.01%) Phi_260062(10) = 1099999999...<118201> = [1099999999...<118201>] (0.00%) Phi_260063(10) = 9000000000...<253680> = [9000000000...<253680>] (0.00%) Phi_260064(10) = 9999999999...<72576> = 520129 * [1922599970...<72571>] (0.01%) Phi_260065(10) = 1111099999...<192001> = 154896274391<12> * [7173187375...<191989>] (0.01%) Phi_260066(10) = 1099999999...<122369> = 95184157 * 25717406609<11> * [4493666582...<122350>] (0.02%) Phi_260067(10) = 9009009009...<173376> = [9009009009...<173376>] (0.00%) Phi_260068(10) = 1009999999...<128233> = 1960912721<10> * 376647642089<12> * [1367501643...<128212>] (0.02%) Phi_260069(10) = 9000000000...<258060> = 11443037 * 47332559 * [1661656391...<258046>] (0.01%) Phi_260070(10) = 9100090999...<69344> = 88163731 * 518694791011<12> * [1989957897...<69325>] (0.03%) Phi_260071(10) = 1111110999...<218401> = 12483409 * 127954933 * [6956122374...<218385>] (0.01%) Phi_260072(10) = 9999000099...<116928> = [9999000099...<116928>] (0.00%) Phi_260073(10) = 9990000009...<151200> = 38265060637<11> * [2610736751...<151190>] (0.01%) Phi_260074(10) = 1099999999...<128737> = [1099999999...<128737>] (0.00%) Phi_260075(10) = 1000010000...<204001> = 520151 * [1922537878...<203995>] (0.00%) Phi_260076(10) = 1009998990...<86689> = 3376566709<10> * [2991201054...<86679>] (0.01%) Phi_260077(10) = 9000000000...<258876> = 18205391 * 80527641511<11> * [6138998382...<258858>] (0.01%) Phi_260078(10) = 9090910000...<102816> = 123155775653<12> * [7381635129...<102805>] (0.01%) Phi_260079(10) = 9009009009...<173384> = 15781593721<11> * [5708554641...<173374>] (0.01%) Phi_260080(10) = 1000000009...<104001> = 13108032001<11> * [7628910349...<103990>] (0.01%) Phi_260081(10) = 1111111111...<260081> = 3120973 * [3560143298...<260074>] (0.00%) Phi_260082(10) = 1000999998...<86689> = 95190013 * [1051580903...<86681>] (0.01%) Phi_260083(10) = 9000000000...<244768> = [9000000000...<244768>] (0.00%) Phi_260084(10) = 9900990099...<112640> = 5201681 * 308319698809<12> * [6173531069...<112622>] (0.02%) Phi_260085(10) = 9009100000...<118848> = 1560511 * [5773173018...<118842>] (0.01%) Phi_260086(10) = 9090909090...<130042> = 550081891 * [1652646494...<130034>] (0.01%) Phi_260087(10) = 9000000000...<258456> = [9000000000...<258456>] (0.00%) Phi_260088(10) = 1000099999...<86689> = 1560529 * 28609681 * 224280644689<12> * [9987729512...<86663>] (0.03%) Phi_260089(10) = 1111111111...<260089> = 21847477 * 211390975997<12> * 122592744113216159<18> * 1574156194848974479<19> * [1246686241...<260035>] (0.02%) Phi_260090(10) = 9091000000...<100560> = 49937281 * 44486833961<11> * [4092185071...<100542>] (0.02%) Phi_260091(10) = 1000000000...<151633> = 132110903438281<15> * [7569397937...<151618>] (0.01%) Phi_260092(10) = 1000000000...<111385> = 9779199109<10> * 590851168060721<15> * [1730687324...<111360>] (0.02%) Phi_260093(10) = 9000000000...<258588> = 669999569 * [1343284446...<258580>] (0.00%) Phi_260094(10) = 9100000000...<85272> = 622404943 * 158999764154761<15> * [9195426536...<85249>] (0.03%) Phi_260095(10) = 1111099999...<189121> = 137330161 * [8090720872...<189112>] (0.00%) Phi_260096(10) = 9999999999...<129024> = [9999999999...<129024>] (0.00%) Phi_260097(10) = 1109999999...<172081> = 1467047997637<13> * [7566214614...<172068>] (0.01%) Phi_260098(10) = 1099999999...<127237> = [1099999999...<127237>] (0.00%) Phi_260099(10) = 1111110999...<219457> = 1362398563<10> * 1816915842323<13> * 9623197422791<13> * [4664435188...<219422>] (0.02%) Phi_260100L(10) = 1000000000...<32641> = 3121201 * 8323201 * 11704501 * 2425874090503718240211601<25> * [1355709754...<32596>] (0.14%) Phi_260100M(10) = 9999999999...<32640> = 492369301 * [2030995835...<32632>] (0.03%)