Phi_20501(10) = 1111111111...<17713> = 27841711067<11> * [3990814747...<17702>] (0.06%) Phi_20502(10) = 9990010000...<6336> = 3011401705124647<16> * [3317395345...<6321>] (0.24%) Phi_20503(10) = 1111110999...<16801> = 1066157 * [1042164521...<16795>] (0.04%) Phi_20504(10) = 1000099999...<9281> = 1150408047163409<16> * [8693437102...<9265>] (0.16%) Phi_20505(10) = 1109988900...<10929> = 58879176060005911<17> * [1885197746...<10912>] (0.15%) Phi_20506(10) = 9090909090...<10252> = 18609100373648087<17> * 238774232329829528877001<24> * [2045947470...<10213>] (0.39%) Phi_20507(10) = 1111111111...<20507> = 194078249 * 843074626353067<15> * 636462094490425603<18> * [1066945074...<20466>] (0.20%) Phi_20508(10) = 1009998990...<6833> = 20509 * [4924662294...<6828>] (0.06%) Phi_20509(10) = 1111111111...<20509> = 82037 * 2358165839<10> * 48931076889241<14> * [1173785127...<20481>] (0.14%) Phi_20510(10) = 9091000909...<7008> = [9091000909...<7008>] (0.00%) Phi_20511(10) = 1001000999...<13105> = 47231541163<11> * 221666506840496349757<21> * [9560977960...<13073>] (0.24%) Phi_20512(10) = 9999999999...<10240> = 641 * 430753 * 48428833 * 50726177 * 214265357249<12> * 491682916513<12> * 13909200614849<14> * 32257206972929<14> * [3118972264...<10167>] (0.72%) Phi_20513(10) = 9000000000...<20160> = 1148729 * 238279009 * [3288055497...<20146>] (0.07%) Phi_20514(10) = 9100000000...<6288> = 1277481839387340303289<22> * [7123388935...<6267>] (0.34%) Phi_20515(10) = 1111099999...<14881> = 6769951 * 28556881 * [5747207143...<14866>] (0.10%) Phi_20516(10) = 1009999999...<9769> = 36804419914023161<17> * [2744235617...<9752>] (0.17%) Phi_20517(10) = 1109999889...<11713> = [1109999889...<11713>] (0.00%) Phi_20518(10) = 9090909090...<10258> = [9090909090...<10258>] (0.00%) Phi_20519(10) = 9999999999...<19040> = 41039 * 1477369 * 5786359 * [2850420111...<19023>] (0.09%) Phi_20520(10) = 9999999999...<5184> = 123121 * 20202166797021789716881<23> * [4020406007...<5157>] (0.53%) Phi_20521(10) = 1111111111...<20521> = 31083217964360707<17> * [3574633464...<20504>] (0.08%) Phi_20522(10) = 1099999999...<9901> = 8619241 * [1276214460...<9894>] (0.07%) Phi_20523(10) = 9009009009...<13680> = [9009009009...<13680>] (0.00%) Phi_20524(10) = 1009999999...<8785> = 246289 * 2709169 * 5172049 * 1693065809<10> * [1728636945...<8757>] (0.32%) Phi_20525(10) = 9999900000...<16400> = 143018201 * 45433176597551<14> * 153942292219496602001<21> * [9997082920...<16358>] (0.26%) Phi_20526(10) = 9100000000...<6200> = [9100000000...<6200>] (0.00%) Phi_20527(10) = 9000000000...<18936> = 5200022803<10> * 5628380239<10> * 133337062443634453<18> * [2306231760...<18900>] (0.19%) Phi_20528(10) = 9999999900...<10256> = [9999999900...<10256>] (0.00%) Phi_20529(10) = 9990000009...<13680> = 19584667 * [5100929216...<13673>] (0.05%) Phi_20530(10) = 1099989000...<8209> = 1051085173242571<16> * [1046526987...<8194>] (0.18%) Phi_20531(10) = 9999999000...<17556> = 164249 * 5953991 * 352486884121<12> * [2900989032...<17533>] (0.13%) Phi_20532(10) = 9901000000...<6496> = 302289260847181<15> * 2408368617455209<16> * 213584744389917961<18> * [6367414954...<6449>] (0.73%) Phi_20533(10) = 1111111111...<20533> = 862387 * 54811490266359417079<20> * [2350626777...<20507>] (0.13%) Phi_20534(10) = 9090909090...<10266> = 706205329 * 5045682550211<13> * 369400877834471849<18> * [6906507343...<10227>] (0.38%) Phi_20535(10) = 1000000000...<10657> = 11335321 * 3898857241<10> * [2262709724...<10640>] (0.16%) Phi_20536(10) = 1000099999...<9601> = 759833 * [1316210272...<9595>] (0.06%) Phi_20537(10) = 9000000000...<18660> = [9000000000...<18660>] (0.00%) Phi_20538(10) = 9990010000...<5832> = 41077 * 18884506158388473794496172343354383<35> * [1287838999...<5794>] (0.67%) Phi_20539(10) = 1111111111...<18217> = [1111111111...<18217>] (0.00%) Phi_20540L(10) = 3541003541...<3744> = 18803070521056735304978967641<29> * [1883204946...<3716>] (0.76%) Phi_20540M(10) = 2796097203...<3745> = 41081 * 60270733907708741<17> * [1129288169...<3724>] (0.57%) Phi_20541(10) = 1109999999...<13281> = 33481831 * 36359677715830627<17> * [9117877513...<13256>] (0.18%) Phi_20542(10) = 9090909090...<10270> = 20543 * [4425307448...<10266>] (0.04%) Phi_20543(10) = 1111111111...<20543> = 37841464187712307<17> * 1542782140420538405917<22> * [1903202308...<20505>] (0.18%) Phi_20544(10) = 1000000000...<6785> = 1705153 * 1275743083124134130113<22> * [4596988573...<6757>] (0.40%) Phi_20545(10) = 1111099888...<14065> = [1111099888...<14065>] (0.00%) Phi_20546(10) = 9090909090...<10272> = 226007 * 399044413 * 2183080055249<13> * 16155036927187458564613<23> * [2858160234...<10224>] (0.47%) Phi_20547(10) = 9999999990...<13680> = 5085670159<10> * 9827652496231<13> * [2000792350...<13658>] (0.17%) Phi_20548(10) = 1009999999...<9321> = 20549 * [4915081025...<9316>] (0.05%) Phi_20549(10) = 1111111111...<20549> = 899230610191<12> * [1235624208...<20537>] (0.06%) Phi_20550(10) = 9999900001...<5440> = 27034984051<11> * [3698874015...<5430>] (0.19%) Phi_20551(10) = 1111111111...<20551> = 36270436060841<14> * [3063407093...<20537>] (0.07%) Phi_20552(10) = 1000099999...<8785> = 904289 * 6901132095817<13> * 1167620679804535139177<22> * [1372505396...<8745>] (0.45%) Phi_20553(10) = 9009009009...<11520> = 2181442221478027<16> * [4129840763...<11505>] (0.13%) Phi_20554(10) = 1099999999...<9997> = 3638059 * 3447604637<10> * 95276253461675504087<20> * 909703837311232488410209<24> * [1011860850...<9937>] (0.60%) Phi_20555(10) = 9000090000...<16440> = 4800678132881<13> * [1874753889...<16428>] (0.08%) Phi_20556(10) = 1000000999...<6841> = 405079789650436883161<21> * 888998832158661081289<21> * [2776889945...<6799>] (0.61%) Phi_20557(10) = 9000000000...<20160> = 31822237 * [2828210977...<20153>] (0.04%) Phi_20558(10) = 1099999999...<9721> = 220834037 * 13106746052273571493<20> * 787721765154552614653691<24> * 9466808647824196688257013<25> * [5096304211...<9644>] (0.79%) Phi_20559(10) = 9009009910...<10560> = 185002043100799<15> * [4869681306...<10546>] (0.14%) Phi_20560(10) = 1000000009...<8193> = [1000000009...<8193>] (0.00%) Phi_20561(10) = 9000000000...<19824> = [9000000000...<19824>] (0.00%) Phi_20562(10) = 9100000000...<6512> = 386297174193481<15> * [2355699344...<6498>] (0.22%) Phi_20563(10) = 1111111111...<20563> = 3986219803<10> * 3647769563271037681<19> * [7641328193...<20534>] (0.14%) Phi_20564(10) = 1009999999...<9985> = 9391860259469<13> * [1075399305...<9972>] (0.13%) Phi_20565(10) = 1001000999...<10945> = 144663381991<12> * [6919518859...<10933>] (0.10%) Phi_20566(10) = 9090910000...<8064> = 452453 * 64063091 * 184291927 * [1701843756...<8043>] (0.27%) Phi_20567(10) = 9000000000...<20280> = [9000000000...<20280>] (0.00%) Phi_20568(10) = 1000099999...<6849> = 329089 * 3270313 * 267918769 * 6068632559497<13> * 18383746181081749921<20> * [3108942883...<6796>] (0.77%) Phi_20569(10) = 9000000000...<20196> = 197907883403<12> * [4547570235...<20185>] (0.06%) Phi_20570(10) = 9999999999...<7040> = 13366256976714330371<20> * [7481526067...<7021>] (0.27%) Phi_20571(10) = 9009009009...<13712> = 91458667 * [9850361157...<13704>] (0.06%) Phi_20572(10) = 1009999999...<9937> = 699449 * 115633463381<12> * 322145567669<12> * 4605224673641<13> * 256791311462559989<18> * [3277920966...<9878>] (0.59%) Phi_20573(10) = 9000000900...<17628> = 12600324677177830601<20> * [7142673804...<17609>] (0.11%) Phi_20574(10) = 1000000000...<6805> = 27061100190814319271001<23> * [3695341257...<6782>] (0.33%) Phi_20575(10) = 9999900000...<16440> = 11230908800127358274951<23> * [8903909895...<16418>] (0.13%) Phi_20576(10) = 9999999999...<10272> = 432097 * 5308609 * [4359513329...<10260>] (0.12%) Phi_20577(10) = 9999999999...<12996> = [9999999999...<12996>] (0.00%) Phi_20578(10) = 9090909090...<10288> = 125250445783<12> * 216871428479446357<18> * [3346768667...<10260>] (0.28%) Phi_20579(10) = 9000000000...<18984> = 864319 * 15344484403<11> * 31912152017899921<17> * [2126473902...<18952>] (0.17%) Phi_20580L(10) = 1000000000...<2353> = [1000000000...<2353>] (0.00%) Phi_20580M(10) = 9999999999...<2352> = 41161 * [2429484220...<2348>] (0.20%) Phi_20581(10) = 9000000000...<18700> = 262893395699639<15> * 3423440887...<18686> (100.00%) Phi_20582(10) = 1099999999...<10001> = [1099999999...<10001>] (0.00%) Phi_20583(10) = 9990000009...<13716> = 125144641 * 419975533 * 542032723 * 15326348797<11> * 298356883399<12> * [7668827498...<13669>] (0.34%) Phi_20584(10) = 1000099999...<9841> = 1235041 * 1482049 * [5463859074...<9828>] (0.12%) Phi_20585(10) = 1111099999...<15665> = 698243201 * [1591279368...<15656>] (0.06%) Phi_20586(10) = 9100000000...<6624> = 411721 * 7266859 * 1107691489<10> * [2745824786...<6603>] (0.32%) Phi_20587(10) = 1111110999...<16513> = [1111110999...<16513>] (0.00%) Phi_20588(10) = 9900990099...<10292> = [9900990099...<10292>] (0.00%) Phi_20589(10) = 9009009009...<13724> = 576493 * 80461813 * 3233955409<10> * [6005637870...<13701>] (0.17%) Phi_20590(10) = 9091000000...<7840> = 736360171 * [1234586056...<7832>] (0.11%) Phi_20591(10) = 9000000000...<20184> = 80346083 * 626172311 * 1346580472364947<16> * 1188043559620381799<19> * [1118199424...<20135>] (0.25%) Phi_20592(10) = 9999999999...<5760> = 452200321 * 17538511310974369<17> * [1260887695...<5736>] (0.43%) Phi_20593(10) = 1111111111...<20593> = 82373 * 1729813 * 60151792355655907<17> * 4370093857505741191<19> * 123427624275150133129<21> * [2403376131...<20526>] (0.32%) Phi_20594(10) = 1099999890...<8821> = 2718409 * 133877063321<12> * [3022537272...<8803>] (0.20%) Phi_20595(10) = 1109988900...<10977> = 205951 * 95601991 * [5637516082...<10963>] (0.12%) Phi_20596(10) = 1009999999...<9721> = 2986421 * 78881376685121<14> * 49986394396894741<17> * 13322234931574825508453125901<29> * [6438237034...<9655>] (0.67%) Phi_20597(10) = 9000000000...<20076> = 19761256129<11> * 41269332868397<14> * 404385981866847763<18> * [2729005566...<20035>] (0.21%) Phi_20598(10) = 1098901098...<6865> = 49868478931<11> * 57820831183<11> * 96149513410597<14> * [3963702629...<6829>] (0.52%) Phi_20599(10) = 1111111111...<20599> = 20244903191<11> * 558276775871<12> * 57262679197484070433153733<26> * [1716803383...<20551>] (0.23%) Phi_20600(10) = 1000000000...<8161> = 951299110135523656247201<24> * [1051194087...<8137>] (0.29%)