Phi_12801(10) = 1109999999...<8001> = 102409 * 578152070203<12> * 19098628629403<14> * [9816136396...<7970>] (0.38%) Phi_12802(10) = 1099999999...<6193> = 974627017293622358280863<24> * [1128636884...<6169>] (0.39%) Phi_12803(10) = 1111110999...<10441> = [1111110999...<10441>] (0.00%) Phi_12804(10) = 9901000000...<3840> = 18463369 * 984684177034801<15> * [5445918677...<3818>] (0.58%) Phi_12805(10) = 1111099999...<9409> = 76831 * 299989576222938031<18> * [4820704349...<9386>] (0.24%) Phi_12806(10) = 1099999999...<6049> = 7363451 * 148331454472206557<18> * [1007112598...<6025>] (0.40%) Phi_12807(10) = 9990000009...<8532> = 1511227 * 6454729 * [1024136326...<8520>] (0.15%) Phi_12808(10) = 9999000099...<6400> = 2126129 * 9810858386401518377<19> * [4793579722...<6375>] (0.40%) Phi_12809(10) = 1111111111...<12809> = 230563 * 2529751883<10> * 1484234127725113027<19> * 81439947641337961957<20> * 903444367846852997323<21> * [1744410268...<12735>] (0.58%) Phi_12810(10) = 1098890000...<2881> = 4047961 * 1899825481<10> * 9804292190281<13> * 3129116110749931<16> * 1156926796960293241<19> * [4025875948...<2818>] (2.17%) Phi_12811(10) = 9000000000...<12232> = 128111 * 264188443 * [2659146551...<12219>] (0.11%) Phi_12812(10) = 9900990099...<6404> = 371549 * [2664787174...<6399>] (0.09%) Phi_12813(10) = 9009009009...<8540> = [9009009009...<8540>] (0.00%) Phi_12814(10) = 1099999999...<6217> = 4725482851<10> * [2327804448...<6207>] (0.16%) Phi_12815(10) = 1111099999...<9281> = [1111099999...<9281>] (0.00%) Phi_12816(10) = 1000000000...<4225> = 9262825766722435171681<22> * [1079584162...<4203>] (0.52%) Phi_12817(10) = 9000000900...<10980> = 82795845180099211441<20> * [1087011175...<10961>] (0.18%) Phi_12818(10) = 9090909090...<5376> = 64091 * 29763397 * 537514010204862785849<21> * [8866209339...<5343>] (0.61%) Phi_12819(10) = 9009009009...<8544> = 734207584796758027<18> * 1096566136620207973<19> * [1118982576...<8509>] (0.42%) Phi_12820L(10) = 2824060999...<2561> = 692281 * [4079356503...<2555>] (0.23%) Phi_12820M(10) = 3576409999...<2560> = 12821 * 413504322985961<15> * 1625730505037501<16> * [4149509767...<2526>] (1.33%) Phi_12821(10) = 1111111111...<12821> = 25643 * 3475388471<10> * [1246767009...<12807>] (0.11%) Phi_12822(10) = 1098901098...<4273> = 12823 * 6036825254611<13> * 1377906744220291<16> * [1030245046...<4241>] (0.75%) Phi_12823(10) = 1111111111...<12823> = [1111111111...<12823>] (0.00%) Phi_12824(10) = 1000099999...<5473> = [1000099999...<5473>] (0.00%) Phi_12825(10) = 1000000000...<6481> = 20494351 * 51085291852801<14> * 7223364122267281951<19> * [1322301356...<6441>] (0.62%) Phi_12826(10) = 1000000000...<5721> = 166739 * 17174685027246808956762583<26> * [3491998322...<5690>] (0.53%) Phi_12827(10) = 9000000000...<12600> = 76963 * 3420651094647875222135349699809<31> * [3418627192...<12565>] (0.28%) Phi_12828(10) = 1009998990...<4273> = [1009998990...<4273>] (0.00%) Phi_12829(10) = 1111111111...<12829> = [1111111111...<12829>] (0.00%) Phi_12830(10) = 1099989000...<5129> = 16629780322321<14> * 6243997885367853931<19> * [1059349052...<5097>] (0.62%) Phi_12831(10) = 9009009909...<6624> = 128311 * 760594555267<12> * [9231238311...<6607>] (0.26%) Phi_12832(10) = 9999999999...<6400> = 51329 * [1948216407...<6396>] (0.07%) Phi_12833(10) = 9000000000...<12480> = 25667 * 7699801 * 36807212618820443<17> * [1237242893...<12453>] (0.22%) Phi_12834(10) = 9990010000...<3960> = 38297387539<11> * 3130018906089169<16> * 181339995219253201<18> * [4595748061...<3917>] (1.09%) Phi_12835(10) = 1111099999...<9601> = 1848241 * 51723675244997141349671<23> * [1162265030...<9572>] (0.30%) Phi_12836(10) = 9900990099...<6416> = 256721 * [3856712189...<6411>] (0.08%) Phi_12837(10) = 1109999999...<7761> = 179719 * 1098693157<10> * 105303104635609<15> * [5338403421...<7732>] (0.36%) Phi_12838(10) = 1000000099...<5461> = 110996815505437<15> * [9009268378...<5446>] (0.26%) Phi_12839(10) = 9000000000...<12456> = 25679 * 14559427 * 402859374450839<15> * [5975395351...<12430>] (0.21%) Phi_12840(10) = 9999000100...<3392> = 154081 * 1000518481<10> * 16123477034614561<17> * 127553885875156478720698097521<30> * [3153769669...<3333>] (1.75%) Phi_12841(10) = 1111111111...<12841> = 4522160233632425161342305395203<31> * [2457036136...<12810>] (0.24%) Phi_12842(10) = 9090909090...<6420> = 12700739 * 1103704983691<13> * 190841903655098081<18> * 9006669323727909767286426197<28> * [3773004835...<6356>] (1.00%) Phi_12843(10) = 9990000009...<8556> = 30960928333<11> * 183962746028996959962277<24> * [1753967859...<8523>] (0.39%) Phi_12844(10) = 1000000000...<5617> = [1000000000...<5617>] (0.00%) Phi_12845(10) = 1111099888...<8785> = 1952441 * [5690824403...<8778>] (0.07%) Phi_12846(10) = 1098901098...<4281> = 18124223533063<14> * 2446966657913569264009<22> * [2477827941...<4246>] (0.81%) Phi_12847(10) = 9000000000...<12376> = [9000000000...<12376>] (0.00%) Phi_12848(10) = 1000000009...<5761> = 18431226881<11> * 761833286369<12> * [7121735090...<5738>] (0.38%) Phi_12849(10) = 9009009009...<8564> = 3277420129<10> * 75146990413249<14> * 1916886553737057176359<22> * [1908257163...<8520>] (0.52%) Phi_12850(10) = 1000009999...<5121> = 4626001 * [2161715918...<5114>] (0.13%) Phi_12851(10) = 9000000000...<12600> = 1156591 * [7781488875...<12594>] (0.05%) Phi_12852(10) = 9999999999...<3456> = 128521 * 8932141 * [8711046536...<3444>] (0.35%) Phi_12853(10) = 1111111111...<12853> = [1111111111...<12853>] (0.00%) Phi_12854(10) = 9090909090...<6426> = 1966663 * 29564201 * [1563548010...<6413>] (0.21%) Phi_12855(10) = 1109988900...<6849> = 31170363433441<14> * 33981691489231<14> * 574238315457511<15> * [1824902264...<6807>] (0.61%) Phi_12856(10) = 9999000099...<6424> = 2725214881<10> * [3669068508...<6415>] (0.15%) Phi_12857(10) = 1111111111...<11089> = 179999 * 79954504302496047751484569<26> * 7364197116775169489545806769<28> * [1048380799...<11030>] (0.53%) Phi_12858(10) = 1098901098...<4285> = 1480009212133<13> * [7424961208...<4272>] (0.28%) Phi_12859(10) = 1111110999...<9961> = 7682455243<10> * 94328454683<11> * 618646044245362519<18> * [2478405979...<9922>] (0.39%) Phi_12860L(10) = 2824060999...<2569> = [2824060999...<2569>] (0.00%) Phi_12860M(10) = 3576409999...<2568> = [3576409999...<2568>] (0.00%) Phi_12861(10) = 9990000009...<8568> = 7305049 * 4429791397<10> * 774486397053952386409<21> * [3986073345...<8531>] (0.44%) Phi_12862(10) = 1099999999...<6265> = [1099999999...<6265>] (0.00%) Phi_12863(10) = 9000000000...<12168> = 848959 * 52582174231283<14> * [2016124061...<12149>] (0.16%) Phi_12864(10) = 1000000000...<4225> = 411416449 * [2430627172...<4216>] (0.20%) Phi_12865(10) = 1111099999...<9841> = 40140652561<11> * [2768016783...<9830>] (0.11%) Phi_12866(10) = 1099999890...<5509> = 25733 * [4274666342...<5504>] (0.08%) Phi_12867(10) = 9009009009...<8576> = 308809 * 15424883815042711<17> * [1891320677...<8555>] (0.25%) Phi_12868(10) = 9900990099...<6432> = 1158121 * 3548850440356649<16> * [2409001066...<6411>] (0.34%) Phi_12869(10) = 9000000000...<12096> = 3324153360432031<16> * [2707456312...<12081>] (0.13%) Phi_12870(10) = 1000999998...<2881> = 14092651 * 1268920996201<13> * [5597663616...<2861>] (0.67%) Phi_12871(10) = 9000000000...<12600> = 75681481 * [1189194487...<12593>] (0.06%) Phi_12872(10) = 9999000099...<6432> = 1086510539321833<16> * 1772100126661273<16> * 66651097071111483242519631353<29> * [7791607562...<6373>] (0.92%) Phi_12873(10) = 1109999889...<7345> = 4727101046094273883<19> * [2348161966...<7326>] (0.25%) Phi_12874(10) = 1099999999...<6241> = 47440691 * 327139405325290127<18> * 172062247787576966443993037<27> * [4119298151...<6189>] (0.82%) Phi_12875(10) = 9999999999...<10200> = [9999999999...<10200>] (0.00%) Phi_12876(10) = 9901000000...<4032> = 8415166647541<13> * 245562844883041726141<21> * [4791303521...<3999>] (0.83%) Phi_12877(10) = 9000000000...<12636> = [9000000000...<12636>] (0.00%) Phi_12878(10) = 1099999999...<6257> = 2649332030601650197361<22> * [4151989963...<6235>] (0.34%) Phi_12879(10) = 9999999999...<8424> = 25759 * 180307 * 85323004213591<14> * [2523435885...<8401>] (0.28%) Phi_12880(10) = 9999999900...<4224> = 51521 * 386401 * 39815789441<11> * 27952092506826619737096937601<29> * 84537643288109619097286339932481<32> * [5338972421...<4143>] (1.92%) Phi_12881(10) = 9000000000...<11700> = 25763 * 788652107 * 18995964705698369408449<23> * [2331842717...<11665>] (0.30%) Phi_12882(10) = 9100000000...<4032> = 54846758919320501179<20> * [1659168231...<4013>] (0.49%) Phi_12883(10) = 9000000000...<11880> = 128831 * [6985896251...<11875>] (0.04%) Phi_12884(10) = 9900990099...<6440> = 193261 * 386521 * 41789833781<11> * 214767224165998489<18> * 59744703402567129901<20> * [2471856484...<6382>] (0.91%) Phi_12885(10) = 1109988900...<6865> = [1109988900...<6865>] (0.00%) Phi_12886(10) = 1099999999...<6049> = [1099999999...<6049>] (0.00%) Phi_12887(10) = 9999999000...<11004> = 1005187 * [9948396666...<10998>] (0.05%) Phi_12888(10) = 1000000000...<4273> = [1000000000...<4273>] (0.00%) Phi_12889(10) = 1111111111...<12889> = 747563 * 23261276308275361<17> * [6389636500...<12866>] (0.17%) Phi_12890(10) = 1099989000...<5153> = 20690460841<11> * [5316406476...<5142>] (0.20%) Phi_12891(10) = 9009009009...<8592> = 77347 * [1164752221...<8588>] (0.06%) Phi_12892(10) = 1009999999...<5841> = 6044319878329815620341<22> * [1670990318...<5819>] (0.37%) Phi_12893(10) = 1111111111...<12893> = 77359 * 163560599 * 76891995409<11> * 1495202509882497043<19> * [7638125719...<12850>] (0.33%) Phi_12894(10) = 9100000909...<3672> = 6462273350949834894673051<25> * 234727238099089060112103037<27> * [5999190081...<3621>] (1.39%) Phi_12895(10) = 9000090000...<10312> = 128951 * 266765266995711361<18> * [2616332008...<10290>] (0.22%) Phi_12896(10) = 1000000000...<5761> = 787755909648245177730689<24> * 5005818621047576360540553669909682337<37> * [2535906405...<5700>] (1.05%) Phi_12897(10) = 9990000009...<8592> = 15785929 * 26180653217454163<17> * [2417212688...<8569>] (0.27%) Phi_12898(10) = 9090909090...<6448> = 12899 * [7047762687...<6444>] (0.06%) Phi_12899(10) = 1111111111...<12899> = 25799 * [4306799143...<12894>] (0.03%) Phi_12900L(10) = 9900498997...<1680> = 66873601 * [1480479419...<1673>] (0.47%) Phi_12900M(10) = 1010050099...<1681> = 1126643298828643700234551817529041101<37> * [8965127656...<1644>] (2.15%)