Phi_100101(10) = 1109999999...<65521> = 28028281 * [3960285684...<65513>] (0.01%) Phi_100102(10) = 9090909090...<50050> = 100103 * 1541714846779<13> * 113009526840856161517<21> * [5212440499...<50013>] (0.07%) Phi_100103(10) = 1111111111...<100103> = [1111111111...<100103>] (0.00%) Phi_100104(10) = 9999000100...<32256> = 900937 * 5906137 * 1270319761<10> * 5953531440049<13> * [2484682650...<32222>] (0.11%) Phi_100105(10) = 9000090000...<80080> = 27509454631<11> * 144493170813628346471<21> * [2264214411...<80050>] (0.04%) Phi_100106(10) = 9090909090...<50052> = 21089130809<11> * [4310708285...<50042>] (0.02%) Phi_100107(10) = 1000000000...<56953> = 3114191086836481<16> * [3211106743...<56937>] (0.03%) Phi_100108(10) = 1009999999...<48273> = 82223705801<11> * [1228356214...<48262>] (0.02%) Phi_100109(10) = 1111111111...<100109> = 67106866843<11> * [1655733851...<100098>] (0.01%) Phi_100110(10) = 1098890109...<25761> = 559285638211<12> * 619253373837961<15> * [3172869544...<25734>] (0.10%) Phi_100111(10) = 1111111111...<86041> = 174898922551<12> * [6352875677...<86029>] (0.01%) Phi_100112(10) = 9999999900...<50048> = 645021617 * 13314281974360657<17> * [1164415494...<50024>] (0.05%) Phi_100113(10) = 9009009009...<57600> = 3403843 * 28231867 * [9374927146...<57586>] (0.02%) Phi_100114(10) = 1099999890...<42901> = [1099999890...<42901>] (0.00%) Phi_100115(10) = 9000090000...<80088> = 200231 * [4494853444...<80083>] (0.01%) Phi_100116(10) = 1000000000...<33049> = [1000000000...<33049>] (0.00%) Phi_100117(10) = 9000000000...<98176> = 2031193439072401<16> * 2696440775225444243<19> * 22599314490035872963133<23> * [7271182961...<98120>] (0.06%) Phi_100118(10) = 1099999999...<49505> = 200237 * 2213092040998752430410504041<28> * [2482269201...<49472>] (0.07%) Phi_100119(10) = 1109999999...<63801> = 3766601328037<13> * 4458992093719<13> * 135903373927930060098307<24> * [4863023661...<63752>] (0.08%) Phi_100120(10) = 1000099999...<40033> = [1000099999...<40033>] (0.00%) Phi_100121(10) = 9000000900...<85812> = 14617667 * [6156933866...<85805>] (0.01%) Phi_100122(10) = 1098901098...<28801> = [1098901098...<28801>] (0.00%) Phi_100123(10) = 9000000000...<98368> = 9495986790660578628569<22> * [9477687994...<98346>] (0.02%) Phi_100124(10) = 9900990099...<50060> = 1201489 * 2031716209<10> * [4055979784...<50045>] (0.03%) Phi_100125(10) = 1000000000...<52801> = 2352336751<10> * 44324736751<11> * [9590789107...<52780>] (0.04%) Phi_100126(10) = 1099999999...<46201> = 10312979 * 6758505001<10> * [1578185003...<46184>] (0.04%) Phi_100127(10) = 9000000000...<99456> = 377832246320161<15> * [2382009499...<99442>] (0.01%) Phi_100128(10) = 9999999999...<28416> = 12965255566706017<17> * [7712921622...<28400>] (0.06%) Phi_100129(10) = 1111111111...<100129> = 20426317 * 215557510942001<15> * [2523505542...<100107>] (0.02%) Phi_100130(10) = 1099989000...<34561> = 8410921 * [1307810405...<34554>] (0.02%) Phi_100131(10) = 9009009009...<66752> = 10213363 * [8820805653...<66745>] (0.01%) Phi_100132(10) = 9900990099...<50064> = 1022347721<10> * 5397240701470861<16> * [1794354326...<50040>] (0.05%) Phi_100133(10) = 9000000000...<91020> = 9212237 * 5994962711<10> * 1904718174391121<16> * [8555791553...<90988>] (0.04%) Phi_100134(10) = 1000999998...<33373> = 31241809 * [3204039814...<33365>] (0.02%) Phi_100135(10) = 1111099888...<68641> = 5807831 * 4893997991<10> * 3837462737953265401<19> * 815970507695643165200161<24> * [1248408489...<68582>] (0.09%) Phi_100136(10) = 9999000099...<50064> = 391957601457817<15> * 1546658379143032144324057<25> * 29303671942968558470094241<26> * [5628608456...<50000>] (0.13%) Phi_100137(10) = 1109999999...<64401> = 6811919563<10> * [1629496634...<64391>] (0.02%) Phi_100138(10) = 9090909090...<50068> = 15421253 * [5895052166...<50061>] (0.01%) Phi_100139(10) = 9000000000...<92424> = [9000000000...<92424>] (0.00%) Phi_100140L(10) = 2529932837...<13345> = [2529932837...<13345>] (0.00%) Phi_100140M(10) = 3913542626...<13344> = 18762230401<11> * 54502797241<11> * 6744138092298601<16> * 89751365468006201267230718101<29> * [6322652203...<13278>] (0.49%) Phi_100141(10) = 9000000000...<99484> = 47867399 * 433810813 * 388021169898847081<18> * [1116983830...<99451>] (0.03%) Phi_100142(10) = 9090910000...<40920> = 10375043394552677527<20> * [8762286242...<40901>] (0.05%) Phi_100143(10) = 9999999990...<66744> = [9999999990...<66744>] (0.00%) Phi_100144(10) = 1000000009...<45441> = 796754992267690193<18> * [1255090987...<45423>] (0.04%) Phi_100145(10) = 9000090000...<80112> = 11015951 * 268343663536471<15> * 668544845427588593671<21> * [4554104245...<80070>] (0.05%) Phi_100146(10) = 1098901098...<33381> = 200293 * 213010543 * 76274079807721<14> * [3376873250...<33353>] (0.08%) Phi_100147(10) = 1111111111...<91393> = 940869306139849<15> * [1180940970...<91378>] (0.02%) Phi_100148(10) = 9900990099...<50072> = 323691455389<12> * [3058774006...<50061>] (0.02%) Phi_100149(10) = 9009009909...<54000> = 114608712919<12> * [7860667553...<53989>] (0.02%) Phi_100150(10) = 1000009999...<40041> = 400601 * 910163201 * 452986361851<12> * [6054634267...<40014>] (0.07%) Phi_100151(10) = 1111111111...<100151> = 96745867 * 195182992328029698780209<24> * [5884141361...<100119>] (0.03%) Phi_100152(10) = 9999999999...<30528> = 15952310713<11> * 25185334708873<14> * 2015344433453833<16> * [1235035362...<30490>] (0.13%) Phi_100153(10) = 1111111111...<100153> = [1111111111...<100153>] (0.00%) Phi_100154(10) = 9090909090...<50076> = 300463 * 13992717905985061992173<23> * [2162291478...<50049>] (0.06%) Phi_100155(10) = 9009099100...<48480> = 990532951 * 12859717714801<14> * [7072631018...<48458>] (0.05%) Phi_100156(10) = 1000000000...<42337> = 799985943645944189<18> * [1250021963...<42319>] (0.04%) Phi_100157(10) = 9000000000...<97980> = 3115655511413<13> * [2888637709...<97968>] (0.01%) Phi_100158(10) = 1098901098...<33385> = 2167169626423<13> * 7937354837089<13> * 488995409945281<15> * [1306426929...<33345>] (0.12%) Phi_100159(10) = 9000000000...<97416> = 2294077591908190603<19> * [3923145420...<97398>] (0.02%) Phi_100160(10) = 1000000000...<39937> = 600961 * 5596339841<10> * 7764464840482201341692015032321<31> * [3829464994...<39890>] (0.12%) Phi_100161(10) = 1001000999...<64441> = 200323 * 1065512719<10> * 3678713209<10> * [1274820756...<64417>] (0.04%) Phi_100162(10) = 1099999999...<49201> = 7529758780286123677<19> * [1460870171...<49182>] (0.04%) Phi_100163(10) = 1111110999...<83521> = [1111110999...<83521>] (0.00%) Phi_100164(10) = 9901000000...<31360> = 200329 * [4942369801...<31355>] (0.02%) Phi_100165(10) = 9000090000...<69696> = [9000090000...<69696>] (0.00%) Phi_100166(10) = 9090909091...<43680> = 14477778082769<14> * 25534091748352169093<20> * [2459149800...<43648>] (0.07%) Phi_100167(10) = 1109999999...<66049> = 4607683 * 21909127243<11> * [1099550824...<66032>] (0.03%) Phi_100168(10) = 1000099999...<47377> = [1000099999...<47377>] (0.00%) Phi_100169(10) = 1111111111...<100169> = 27245969 * 2534418941671<13> * [1609076998...<100149>] (0.02%) Phi_100170(10) = 1000000000...<22465> = 817746029699330971<18> * [1222873563...<22447>] (0.08%) Phi_100171(10) = 9000000000...<99144> = 9689140147<10> * 26939788399<11> * [3447966927...<99124>] (0.02%) Phi_100172(10) = 1009999999...<49297> = 73025389 * 30227902721<11> * 340257492271303914975039056389<30> * [1344719745...<49249>] (0.10%) Phi_100173(10) = 9009009009...<66780> = 61305877 * 2969954606258713681<19> * [4947947697...<66754>] (0.04%) Phi_100174(10) = 9090909090...<50086> = 975494413 * 78836938001<11> * 17250196556450322527819<23> * [6852652866...<50044>] (0.08%) Phi_100175(10) = 9999900000...<80120> = 200351 * 68327564351<11> * 290759670245407201<18> * [2512314674...<80087>] (0.04%) Phi_100176(10) = 1000000009...<33377> = 1101937 * 778050275581630272769<21> * [1166367950...<33350>] (0.08%) Phi_100177(10) = 1111110999...<78001> = 9416639 * 634342602587<12> * 700003416883<12> * 6756804212467<13> * [3932748293...<77957>] (0.06%) Phi_100178(10) = 1099999999...<46225> = 500891 * [2196086573...<46219>] (0.01%) Phi_100179(10) = 9990000009...<66780> = [9990000009...<66780>] (0.00%) Phi_100180L(10) = 2824060999...<20033> = [2824060999...<20033>] (0.00%) Phi_100180M(10) = 3576409999...<20032> = 43277761 * 59787008954261<14> * [1382215279...<20011>] (0.11%) Phi_100181(10) = 1111111111...<91841> = 200363 * [5545490490...<91835>] (0.01%) Phi_100182(10) = 9100000000...<32712> = 100183 * 63415207 * 1601204502099463<16> * 24343771209685339<17> * [3674677964...<32668>] (0.14%) Phi_100183(10) = 1111111111...<100183> = 1001831 * [1109080384...<100177>] (0.01%) Phi_100184(10) = 1000099999...<42913> = 81449593 * 353581229644525121<18> * [3472684326...<42887>] (0.06%) Phi_100185(10) = 1109988900...<53425> = [1109988900...<53425>] (0.00%) Phi_100186(10) = 9090909090...<50092> = 3134407374053<13> * [2900359782...<50080>] (0.02%) Phi_100187(10) = 9000000000...<94896> = 4212448211184003403<19> * [2136524782...<94878>] (0.02%) Phi_100188(10) = 9999999999...<29040> = 100189 * [9981135653...<29035>] (0.02%) Phi_100189(10) = 1111111111...<100189> = 2497225760285439791<19> * 342589204796374215133<21> * [1298751345...<100150>] (0.04%) Phi_100190(10) = 9091000000...<38976> = 950265107753201<15> * 204778739426775281<18> * [4671775981...<38944>] (0.08%) Phi_100191(10) = 9009009909...<52704> = 1001911 * 34352021211409357<17> * 255101965378397273674357<24> * [1026081411...<52659>] (0.09%) Phi_100192(10) = 1000000000...<48001> = 100193 * 1127560769<10> * 32736290957835841<17> * [2703915966...<47970>] (0.06%) Phi_100193(10) = 1111111111...<100193> = 1202317 * 20299286555893<14> * [4552581491...<100173>] (0.02%) Phi_100194(10) = 1098901098...<33397> = 426230986986026617893247<24> * [2578182094...<33373>] (0.07%) Phi_100195(10) = 1111099999...<77281> = 287158871 * 8640738247121<13> * [4477958466...<77259>] (0.03%) Phi_100196(10) = 1009999999...<48673> = 5955449849<10> * [1695925623...<48663>] (0.02%) Phi_100197(10) = 9999999999...<66744> = 102802123 * 1061086231<10> * 6132796855831<13> * [1494819168...<66715>] (0.04%) Phi_100198(10) = 9090910000...<40320> = 143683933 * [6327019180...<40312>] (0.02%) Phi_100199(10) = 9000000000...<91080> = [9000000000...<91080>] (0.00%) Phi_100200(10) = 9999999999...<26560> = 13965917082001<14> * 6627404997622668001<19> * [1080406105...<26529>] (0.12%)