-- Dec 29, 2022 (code740) -- # via yoyo@home n=573: c333(3709120344......) = 8571171562010649843819977618730389789759904896874763 * p281(4327436824......) # ECM B1=850000000, sigma=0:8520516725879229942 # 1212 of 300000 Phi_n(10) factorizations were finished. -- Dec 26, 2022 (Makoto Kamada) -- n=262767: x175168(3470158024......) is (probable) prime # ----------------8<----------------8<----------------8<---------------- # makoto@bellatrix /cygdrive/d/factor2/repunit2 # $ ./pfgw64 -tc -q"(10^262767-1)/(10^87589-1)/111/259613797" # PFGW Version 4.0.3.64BIT.20220704.Win_Dev [GWNUM 29.8] # # Primality testing (10^262767-1)/(10^87589-1)/111/259613797 [N-1/N+1, Brillhart-Lehmer-Selfridge] # Running N-1 test using base 2 # Running N+1 test using discriminant 5, base 1+sqrt(5) # # Calling N-1 BLS with factored part 0.01% and helper 0.00% (0.02% proof) # (10^262767-1)/(10^87589-1)/111/259613797 is Fermat and Lucas PRP! (1462.1650s+0.0084s) # ----------------8<----------------8<----------------8<---------------- # 1211 of 300000 Phi_n(10) factorizations were finished. -- Dec 23, 2022 (Alfred Eichhorn) -- # via Kurt Beschorner n=48539: c48539(1111111111......) = 51815542479681876910933 * c48516(2144358734......) # ECM B1=5e4, sigma=452523639394007 n=65419: c65393(1430767388......) = 6950583483619562342590824241 * c65365(2058485293......) # ECM B1=5e4, sigma=7199896427566567 n=84421: c84421(1111111111......) = 38512525260957891101711 * c84398(2885064283......) # ECM B1=5e4, sigma=2290092539869875 n=84467: c84467(1111111111......) = 543506603324001612634763 * c84443(2044337831......) # ECM B1=5e4, sigma=1063663203889283 # 206968 of 300000 Phi_n(10) factorizations were cracked. # 19977 of 25997 R_prime factorizations were cracked. -- Dec 23, 2022 (Kurt Beschorner) -- n=5603: c5151(1087346318......) = 292306358313079003551478311632597 * c5118(3719885959......) # ECM B1=1e6, sigma=0:926444492212831 n=142169: c142157(1270809026......) = 7126599804959124533 * c142138(1783191228......) # gr-mfaktc -- Dec 20, 2022 (Yousuke Koide) -- n=1940M: c344(1096560408......) = 5571625642084498030602199756991965375293044719417529765342701 * c283(1968115733......) # ECM B1=300000000, sigma=2:13803433046389983180 -- Dec 17, 2022 (grc.arikado.pool) -- # via yoyo@home n=537: c334(5250887427......) = 2167451486375064397900184401899510260456269195385135677227157 * c274(2422608976......) # ECM B1=850000000, sigma=0:5910846903816997764 -- Dec 15, 2022 (Kurt Beschorner) -- n=1381: c1340(2296894940......) = 71236855295678591990160932434313161 * c1305(3224307040......) # ECM B1=11e6, sigma=6012605352570225 -- Dec 13, 2022 (Kurt Beschorner) -- n=1315: c953(8147123872......) = 193413247904674241324507425343532732791 * p915(4212288434......) # ECM B1=43e6, sigma=0:7414637162882108 # 1210 of 300000 Phi_n(10) factorizations were finished. -- Dec 10, 2022 (Kurt Beschorner) -- n=5209: c5190(3400028943......) = 8418644810171006628494387152481 * c5159(4038689148......) n=5251: c5057(9006650945......) = 109300163867965785141575385067 * c5028(8240290431......) n=141961: c141942(5386609645......) = 444022226548698437 * c141925(1213139641......) -- Dec 6, 2022 (Adrian Westlake) -- # via yoyo@home n=1212: c322(2102176835......) = 10498042566741901780282937616325375954902715561 * p276(2002446477......) # ECM B1=850000000, sigma=0:3738033742963211035 # 1209 of 300000 Phi_n(10) factorizations were finished. -- Dec 4, 2022 (Yousuke Koide) -- n=880: c295(9899618362......) = 62716385987763617906038889384985304875217698799039986699716641 * p234(1578473983......) # ECM B1=300000000, sigma=2:10560429264819151247 # 1208 of 300000 Phi_n(10) factorizations were finished. -- Dec 5, 2022 (Kurt Beschorner) -- n=5167: c5121(6805685902......) = 31493160890621762208386571180804239 * c5087(2161004392......) # ECM B1=1e6, sigma=0:8576584531991617 n=141707: c141701(1306815946......) = 468665922804116951 * c141683(2788374155......) n=141833: c141814(1956105175......) = 4227424868250713249 * c141795(4627179043......) # gr-mfaktc -- Dec 2, 2022 (Alfred Eichhorn) -- # via Kurt Beschorner n=65257: c65257(1111111111......) = 29021845406574177689182183471831 * c65225(3828533628......) # ECM B1=5e4, sigma=8827912087270031 n=65267: c65267(1111111111......) = 196872763596771607155929 * c65243(5643803087......) # ECM B1=5e4, sigma=5907651863350580 n=65419: c65419(1111111111......) = 77658403478600955160498507 * c65393(1430767388......) # ECM B1=5e4, sigma=5773479858856831 n=83903: c83903(1111111111......) = 1072388632041797323856413 * c83879(1036108625......) # ECM B1=5e4, sigma=3013216190367338 n=83921: c83921(1111111111......) = 935916352185237988152529 * c83897(1187190616......) # ECM B1=5e4, sigma=2096569748642875 n=83987: c83966(3894917286......) = 971921165004064866353773 * c83942(4007441577......) # ECM B1=5e4, sigma=2917559887380640 # 206965 of 300000 Phi_n(10) factorizations were cracked. # 19974 of 25997 R_prime factorizations were cracked. -- Dec 2, 2022 (Kurt Beschorner) -- n=5167: c5159(3983695483......) = 58534812511619307791582990857213930867 * c5121(6805685902......) # ECM B1=1e6, sigma=0:8576584531991617 n=141551: c141544(9811924058......) = 683294806297822001 * c141527(1435972287......) # gr-mfaktc