Table of contents 目次

  1. About 99...99899...99 99...99899...99 について
    1. Classification 分類
    2. Sequence 数列
    3. General term 一般項
  2. Prime numbers of the form 99...99899...99 99...99899...99 の形の素数
    1. Last updated 最終更新日
    2. Known (probable) prime numbers 既知の (おそらく) 素数
    3. Range of search 捜索範囲
  3. Factor table of 99...99899...99 99...99899...99 の素因数分解表
    1. Last updated 最終更新日
    2. Range of factorization 分解範囲
    3. Terms that have not been factored yet まだ分解されていない項
    4. Factor table 素因数分解表
  4. Related links 関連リンク

1. About 99...99899...99 99...99899...99 について

1.1. Classification 分類

Near-repdigit-palindrome of the form AA...AABAA...AA AA...AABAA...AA の形のニアレプディジット回文数 (Near-repdigit-palindrome)

1.2. Sequence 数列

9w89w = { 8, 989, 99899, 9998999, 999989999, 99999899999, 9999998999999, 999999989999999, 99999999899999999, 9999999998999999999, … }

1.3. General term 一般項

102n+1-10n-1 (0≤n)

2. Prime numbers of the form 99...99899...99 99...99899...99 の形の素数

2.1. Last updated 最終更新日

October 19, 2021 2021 年 10 月 19 日

2.2. Known (probable) prime numbers 既知の (おそらく) 素数

  1. 1053-1026-1 = (9)268(9)26<53> is prime. は素数です。
  2. 10757-10378-1 = (9)3788(9)378<757> is prime. は素数です。 (Patrick De Geest / September 23, 2002 2002 年 9 月 23 日)
  3. 102493-101246-1 = (9)12468(9)1246<2493> is prime. は素数です。 (Harvey Dubner / 1989)
  4. 103597-101798-1 = (9)17988(9)1798<3597> is prime. は素数です。 (Patrick De Geest / September 23, 2002 2002 年 9 月 23 日)
  5. 105835-102917-1 = (9)29178(9)2917<5835> is prime. は素数です。 (Patrick De Geest / October 4, 2002 2002 年 10 月 4 日)
  6. 1046069-1023034-1 = (9)230348(9)23034<46069> is prime. は素数です。 (Daniel Heuer / OpenPFGW / September 19, 2001 2001 年 9 月 19 日)
  7. 1095019-1047509-1 = (9)475098(9)47509<95019> is prime. は素数です。 (Daniel Heuer / OpenPFGW / January 2, 2003 2003 年 1 月 2 日)
  8. 10104281-1052140-1 = (9)521408(9)52140<104281> is prime. は素数です。 (Daniel Heuer / OpenPFGW / January 27, 2003 2003 年 1 月 27 日)
  9. 10134809-1067404-1 = (9)674048(9)67404<134809> is prime. は素数です。 (Darren Bedwell / OpenPFGW / November 24, 2010 2010 年 11 月 24 日)
  10. 101888529-10944264-1 = (9)9442648(9)944264<1888529> is prime. は素数です。 (Ryan Propper and Serge Batalov / EMsieve, OpenPFGW / October 18, 2021 2021 年 10 月 18 日)

2.3. Range of search 捜索範囲

  1. n≤68000 / Completed 終了

3. Factor table of 99...99899...99 99...99899...99 の素因数分解表

3.1. Last updated 最終更新日

July 3, 2024 2024 年 7 月 3 日

3.2. Range of factorization 分解範囲

3.3. Terms that have not been factored yet まだ分解されていない項

n=115, 116, 124, 127, 130, 131, 133, 136, 139, 140, 142, 143, 144, 145, 146, 148, 149, 150 (18/150)

3.4. Factor table 素因数分解表

101-100-1 = 8 = 23
103-101-1 = 989 = 23 × 43
105-102-1 = 99899 = 283 × 353
107-103-1 = 9998999 = 269 × 37171
109-104-1 = 999989999 = 127 × 7873937
1011-105-1 = 99999899999<11> = 139 × 719423741
1013-106-1 = 9999998999999<13> = 131 × 22091 × 3455519
1015-107-1 = 999999989999999<15> = 173267 × 5771439397<10>
1017-108-1 = 99999999899999999<17> = 107 × 934579438317757<15>
1019-109-1 = 9999999998999999999<19> = 23 × 59 × 163 × 599 × 75475452511<11>
1021-1010-1 = 999999999989999999999<21> = 31394683 × 31852527384653<14>
1023-1011-1 = 99999999999899999999999<23> = 349 × 1567 × 220719539 × 828447127
1025-1012-1 = 9999999999998999999999999<25> = 31 × 2957 × 2907601 × 37519079267797<14>
1027-1013-1 = 999999999999989999999999999<27> = 353 × 389 × 23087 × 315433772731765981<18>
1029-1014-1 = 99999999999999899999999999999<29> = 61 × 223 × 5717 × 13166701 × 97660768252549<14>
1031-1015-1 = 9999999999999998999999999999999<31> = 61 × 35345033599<11> × 4638117708116885141<19>
1033-1016-1 = 999999999999999989999999999999999<33> = 127 × 183959 × 42803101495613131101234343<26>
1035-1017-1 = 99999999999999999899999999999999999<35> = 139 × 487727 × 705073 × 84437999 × 24776296201229<14>
1037-1018-1 = 9999999999999999998999999999999999999<37> = 157697971 × 1168460597<10> × 54270000151843535377<20>
1039-1019-1 = 999999999999999999989999999999999999999<39> = 59 × 24563993 × 325018590983<12> × 2122955154480399619<19>
1041-1020-1 = 99999999999999999999899999999999999999999<41> = 42902192475991<14> × 2330883207331703966521684889<28>
1043-1021-1 = 9999999999999999999998999999999999999999999<43> = 631 × 4241 × 241327 × 15484473893986641360107966833447<32>
1045-1022-1 = 999999999999999999999989999999999999999999999<45> = 43 × 3527 × 82705169 × 5675131815569<13> × 14048096376829785019<20>
1047-1023-1 = 99999999999999999999999899999999999999999999999<47> = 23 × 2794031 × 237252523 × 6558886326738351092137453084901<31>
1049-1024-1 = 9999999999999999999999998999999999999999999999999<49> = 367 × 6551 × 2957197 × 102780163 × 13684747144040102169978836977<29>
1051-1025-1 = 999999999999999999999999989999999999999999999999999<51> = 907 × 81053616549270254621<20> × 13602549514176858412352500417<29>
1053-1026-1 = 99999999999999999999999999899999999999999999999999999<53> = definitely prime number 素数
1055-1027-1 = 9999999999999999999999999998999999999999999999999999999<55> = 31 × 10106851 × 11870776909<11> × 16110162912853<14> × 166895016016144064626427<24>
1057-1028-1 = 999999999999999999999999999989999999999999999999999999999<57> = 733 × 51933367 × 1457767381841<13> × 1969632706761913<16> × 9149051439944564773<19>
1059-1029-1 = 99999999999999999999999999999899999999999999999999999999999<59> = 34191344695471031<17> × 2924716792821721097400097205789950134427129<43>
1061-1030-1 = 9999999999999999999999999999998999999999999999999999999999999<61> = 1392269 × 84525695164721<14> × 13599425109257257<17> × 6248381612447367512408243<25>
1063-1031-1 = 999999999999999999999999999999989999999999999999999999999999999<63> = 23 × 1366288931549436361<19> × 31822156987145325308294176988056244464534033<44>
1065-1032-1 = 99999999999999999999999999999999899999999999999999999999999999999<65> = 83 × 289543 × 337859239 × 345154766951<12> × 2311564232375456083<19> × 15436654946555037233<20>
1067-1033-1 = 9999999999999999999999999999999998999999999999999999999999999999999<67> = 373 × 1117375391975261<16> × 3409253042687528261598517<25> × 7037733686918958126150499<25>
1069-1034-1 = 999999999999999999999999999999999989999999999999999999999999999999999<69> = 353 × 45008407 × 62940712160768091985879016331993893947041629777747298891769<59>
1071-1035-1 = 99999999999999999999999999999999999899999999999999999999999999999999999<71> = 7001 × 3963465146691984353452727<25> × 3603834834478825495086710600284569969394337<43>
1073-1036-1 = 9999999999999999999999999999999999998999999999999999999999999999999999999<73> = 4952345079280229<16> × 341653603917544643<18> × 5910212486264108940083164612452458258417<40>
1075-1037-1 = 999999999999999999999999999999999999989999999999999999999999999999999999999<75> = 15567230256149571193<20> × 64237502981942911916009739093489034309955934566208805943<56>
1077-1038-1 = 99999999999999999999999999999999999999899999999999999999999999999999999999999<77> = 3592 × 65239 × 559591 × 128793261445584607<18> × 165021277683845028870492331516761817141866353<45>
1079-1039-1 = 9999999999999999999999999999999999999998999999999999999999999999999999999999999<79> = 4040255276580827<16> × 116812817413393767057762776117<30> × 21188523531074432543884994105182361<35>
1081-1040-1 = 999999999999999999999999999999999999999989999999999999999999999999999999999999999<81> = 5526359227<10> × 691044797694261181<18> × 181291064358740245125683<24> × 1444369428878735443946701647019<31>
1083-1041-1 = 99999999999999999999999999999999999999999899999999999999999999999999999999999999999<83> = 1591841 × 325860793 × 39166994854175921447168042353<29> × 4922071891109276417023906267948361568391<40>
1085-1042-1 = 9999999999999999999999999999999999999999998999999999999999999999999999999999999999999<85> = 31 × 15887 × 20304692211323114658566448120496165458875889599327508593960978442508279238249167<80>
1087-1043-1 = 999999999999999999999999999999999999999999989999999999999999999999999999999999999999999<87> = 43 × 307 × 234128897 × 323547575513700107831007741566580683678903727964754138044628049188101044367<75>
1089-1044-1 = 99999999999999999999999999999999999999999999899999999999999999999999999999999999999999999<89> = 13548553 × 8051046785123261109669994435396781<34> × 916758056129819848192822914320507817024404674243<48>
1091-1045-1 = 9999999999999999999999999999999999999999999998999999999999999999999999999999999999999999999<91> = 23 × 353 × 13203263 × 93285938345290255200185413317576457478793327426576986238669490709850779245191367<80>
1093-1046-1 = 999999999999999999999999999999999999999999999989999999999999999999999999999999999999999999999<93> = 127 × 349 × 1481 × 1567607706133097<16> × 31094372946638945208619623498991<32> × 312533518044068406724766034725680985099<39>
1095-1047-1 = 99999999999999999999999999999999999999999999999899999999999999999999999999999999999999999999999<95> = 27909570243413814130901772554828693<35> × 3583000351773539267800974555826777531487049822276097779173443<61> (Makoto Kamada / GGNFS-0.50.2 / Total time: 0.80 hours (actual time: 2.0 hours))
1097-1048-1 = 9999999999999999999999999999999999999999999999998999999999999999999999999999999999999999999999999<97> = 490913 × 1916951 × 3939521 × 1880129243<10> × 1434674340811183606548319461218669781287749904796273309161995753909691<70>
1099-1049-1 = 999999999999999999999999999999999999999999999999989999999999999999999999999999999999999999999999999<99> = 9749 × 11237753507624591<17> × 9127680453986244150392840833873266696712898279308227257525736684312919750469261<79>
10101-1050-1 = (9)508(9)50<101> = 277 × 9844258787141<13> × 315929612074325379869310190187693<33> × 116077186952663070405343709194883721743038816553782499<54> (Makoto Kamada / GGNFS-0.50.2-k2 / Total time: 0.61 hours (actual time: 0.73 hours))
10103-1051-1 = (9)518(9)51<103> = 139 × 11540370533<11> × 6233980602047751218933871347607237902308672865486253916113487276192569844553179155757661977<91>
10105-1052-1 = (9)528(9)52<105> = 337 × 14518287073<11> × 9366495289372359673865144882571886727<37> × 21821148284857181963150552519403939629066397499627226137<56> (Makoto Kamada / GGNFS-0.72.7 / 0.62 hours)
10107-1053-1 = (9)538(9)53<107> = 23 × 32839 × 173651 × 3062906343272328403335314588051<31> × 248926558232605450464903638036099864754505132117548139106701056967<66> (Sinkiti Sibata / GGNFS-0.73.4 / 1.84 hours / May 19, 2005 2005 年 5 月 19 日)
10109-1054-1 = (9)548(9)54<109> = 365839 × 13835897 × 5480292912533378123538546154177489<34> × 360494719038064366749818935134129293322105503442872232632531977<63> (Sinkiti Sibata / GGNFS-0.73.4 / 2.69 hours / May 20, 2005 2005 年 5 月 20 日)
10111-1055-1 = (9)558(9)55<111> = 1097 × 20618985152145703<17> × 44210567180316589412501580367018014076723995435424524805378771588467816225800478451735469089<92>
10113-1056-1 = (9)568(9)56<113> = 1087 × 50095838034814903462011545148739<32> × 1836406451235725389377129252823059601781791833991426950438618187866012010892843<79> (Sinkiti Sibata / GGNFS-0.73.4 / 3.16 hours / May 20, 2005 2005 年 5 月 20 日)
10115-1057-1 = (9)578(9)57<115> = 312 × 2940707668138657<16> × 3973249710067366420956494214167<31> × 890592222105420775989886473748923695401195757525847169120130701561<66> (Sinkiti Sibata / GGNFS-0.73.4 / 3.92 hours / May 21, 2005 2005 年 5 月 21 日)
10117-1058-1 = (9)588(9)58<117> = 127 × 131 × 60397 × 66173 × 263711764951<12> × 9739375666816007<16> × 1882110043281803856777181<25> × 3111165804827677456546971759247249642436589158140351<52>
10119-1059-1 = (9)598(9)59<119> = 373 × 3823 × 3007030997<10> × 7247415287213<13> × 557279419977487912170601<24> × 1309253586979421996922270881381<31> × 4410309218022549660523324395940334641<37> (Makoto Kamada / msieve 0.81 / 2.1 minutes)
10121-1060-1 = (9)608(9)60<121> = 164963 × 495988049 × 141711241752071084469553066263261787<36> × 862457966742904708912917315169458428756335831525053401912917042242675071<72> (Sinkiti Sibata / GGNFS-0.73.4 / 5.28 hours / May 21, 2005 2005 年 5 月 21 日)
10123-1061-1 = (9)618(9)61<123> = 107 × 8887 × 20707 × 591566821 × 85849950830736198868395865628820470479255606934716031206837188247339471156132681178701680782255334840613<104>
10125-1062-1 = (9)628(9)62<125> = 759210964394892258539<21> × 17917584972714049336810799980595241433<38> × 7351196906759077269924957981770147293433930420124404381630195708677<67> (Sinkiti Sibata / GGNFS-0.73.4 / 6.50 hours / May 22, 2005 2005 年 5 月 22 日)
10127-1063-1 = (9)638(9)63<127> = 139 × 19963 × 3774747091927625657743729451228357<34> × 954710136764649859877801672538641593146625737922693616350593097127077693656695281647451<87> (Sinkiti Sibata / 8.79 hours / May 22, 2005 2005 年 5 月 22 日)
10129-1064-1 = (9)648(9)64<129> = 43 × 491 × 19655059563859<14> × 1266822658254916747764361237<28> × 1196242807645941468977500951234458571367<40> × 1590158905895296818289853912013192282867836543<46> (Makoto Kamada / msieve 0.88 / 40 minutes)
10131-1065-1 = (9)658(9)65<131> = 134534758392309648280446413525895437621<39> × 743302334615975765465545033092533822909903868321676440025588043284561046359265067290782741219<93> (Sinkiti Sibata / GGNFS-0.73.4 / 13.08 hours / May 23, 2005 2005 年 5 月 23 日)
10133-1066-1 = (9)668(9)66<133> = 353 × 5223404198864323076899326379413653580057029684034084525587<58> × 5423400299784617038126491337385214152139516430815776771963160171909199109<73> (Sinkiti Sibata / GGNFS-0.73.4 / 18.21 hours / May 24, 2005 2005 年 5 月 24 日)
10135-1067-1 = (9)678(9)67<135> = 23 × 59 × 39724027106266234183<20> × 457218875534555213276407439012533005109793918496731<51> × 40573524158501361881716107525796537655755812002892882570878359<62> (Sinkiti Sibata / GGNFS-0.77.1 / 32.58 hours / May 28, 2005 2005 年 5 月 28 日)
10137-1068-1 = (9)688(9)68<137> = 1109 × 10111 × 8918141184698360372988769652350344895733106432039884781183150171063316216150414796123712097788488267159685293066617890379813823101<130>
10139-1069-1 = (9)698(9)69<139> = 3137 × 458663 × 2154899 × 34697241587098301383<20> × 92954389819967583294799410578798471446877028263417284583528177631749174895881412379878091766839435311637<104>
10141-1070-1 = (9)708(9)70<141> = 211966639 × 4717723528182187197863716657789719447313593532046333008091900725943953803032183757935606083747924124984592504672397999385176834360241<133>
10143-1071-1 = (9)718(9)71<143> = 83008147 × 61472649501964109609<20> × 19597350000037221348317850777298048149828170302996847565744793394887360712136624889864406185227447272334135804104413<116>
10145-1072-1 = (9)728(9)72<145> = 31 × 1368793 × 22237603 × 10597722855424188072822206751894247196197941457784418105452351775452103838922983657131636733082859266090678709247678411826699246051<131>
10147-1073-1 = (9)738(9)73<147> = 83 × 113 × 3708202526668109917228307<25> × 15862558419952376316679770375454352915971<41> × 1812620068912988621361116139700801998459166922290934821642168987677184217078173<79> (Sinkiti Sibata / GGNFS-0.77.1 / 85.26 hours / May 31, 2005 2005 年 5 月 31 日)
10149-1074-1 = (9)748(9)74<149> = 61 × 18917 × 44457307 × 2986416743<10> × 34754472743<11> × 34517731760870911581764325642423398651167757<44> × 544090801698841188467997932847833144106032723664810376251870210457031777<72> (Sinkiti Sibata / GGNFS-0.77.1 / 64.30 hours / June 3, 2005 2005 年 6 月 3 日)
10151-1075-1 = (9)758(9)75<151> = 23 × 61 × 49177 × 168009464541559<15> × 862673683618300651289725538445729629343776366298501594932974038681389563496817833037381221227696854235954292578368978185831958931<129>
10153-1076-1 = (9)768(9)76<153> = 172283 × 1797928278947<13> × 232367410537762253436893435743680173134834583<45> × 13893446489946086391859294936143559777128365342772247306385364377047320856811668498730095753<92> (Dmitry Domanov / Msieve 1.40 snfs / February 9, 2011 2011 年 2 月 9 日)
10155-1077-1 = (9)778(9)77<155> = 59 × 353 × 3793 × 301450577 × 9072728781312443293153<22> × 12680866817208352486487<23> × 36499545042659701318612435079556318363541835726587299477105380275531241063954729005734753662747<95>
10157-1078-1 = (9)788(9)78<157> = 6359 × 90313 × 120091 × 551014880786554031390483670954154780331<39> × 1896406149083444313662548861284542023195305613240351<52> × 138757275057840250839145808691163084894093451702866007<54> (Dmitry Domanov / Msieve 1.40 snfs / February 9, 2011 2011 年 2 月 9 日)
10159-1079-1 = (9)798(9)79<159> = 10753080187126840473567899674247<32> × 3384684079111676294540535616532299037<37> × 12749334725754328935236819726113523834959<41> × 2155070358960166202984093855458929077714417969769299<52> (Dmitry Domanov / Msieve 1.40 snfs / February 9, 2011 2011 年 2 月 9 日)
10161-1080-1 = (9)808(9)80<161> = 1399 × 160343 × 114906871 × 569738624296398546714086861<27> × 1100015463116760050845946254703346501892733958201797627<55> × 6190301888215718042286289832607750860949568351275619092230806711<64> (Sinkiti Sibata / Msieve 1.40 snfs / February 11, 2011 2011 年 2 月 11 日)
10163-1081-1 = (9)818(9)81<163> = 998328344108243519326272248489<30> × 10016744550043299499579324668470026899491798034311333054898575946360718518275839850691562248439208905213034514529655164380071583487591<134> (Serge Batalov / GMP-ECM B1=1000000, sigma=4270254010 for P30 / February 7, 2011 2011 年 2 月 7 日)
10165-1082-1 = (9)828(9)82<165> = 286553 × 27064637 × 630152197 × 848855124892693694893968316120546678530011201<45> × 241053701185483192017557135226899912173173299527966297981265801318615137272944090168892021471459847<99> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs / February 11, 2011 2011 年 2 月 11 日)
10167-1083-1 = (9)838(9)83<167> = 18477165953<11> × 2273374863239311613<19> × 3140144282879293001154597089<28> × 55236558137451343933095469346036353<35> × 13725158680334267699281708764762542528943670098663422829356691905625627034123<77> (Erik Branger / GMP-ECM B1=3000000, sigma=3718025736 for P35 / February 7, 2011 2011 年 2 月 7 日)
10169-1084-1 = (9)848(9)84<169> = 100036320130834943529138780664396063768786416272340778924697781016049<69> × 99963693055894657701001596134073004248220745363699422403371443828602899053089704053788701792852493551<101> (Kenji Ibusuki / GGNFS-0.77.1 snfs / February 12, 2011 2011 年 2 月 12 日)
10171-1085-1 = (9)858(9)85<171> = 43 × 7109 × 1182451213<10> × 28476499728822840568309<23> × 92748814534140226490116523<26> × 5083119224908346872214850085471223<34> × 206069885479237270777823496485008696195184411920025283392381585174570855389<75> (Serge Batalov / GMP-ECM B1=1000000, sigma=2734683917 for P34 / February 6, 2011 2011 年 2 月 6 日)
10173-1086-1 = (9)868(9)86<173> = 175601 × 2434967 × 2627149518869<13> × 89179053048931<14> × 998233840435009839377267198808473978241188421373146776781168267972743789476202782382850021085111755883193114931021038457208886525602423<135>
10175-1087-1 = (9)878(9)87<175> = 31 × 6373 × 3355646825441<13> × 144718991950626799213409101<27> × 122501719946408614107830157174796229887324990829<48> × 850844952078243934542776187798948749775704334465504076495508113487298819352558719557<84> (Serge Batalov / Msieve 1.49 snfs / March 6, 2011 2011 年 3 月 6 日)
10177-1088-1 = (9)888(9)88<177> = 127 × 7874015748031496062992125984251968503937007874015748031496062992125984251968503937007873937007874015748031496062992125984251968503937007874015748031496062992125984251968503937<175>
10179-1089-1 = (9)898(9)89<179> = 23 × 733 × 125387 × 7057226869098732611<19> × 25507158186695050346590311778565052166001<41> × 262796467564301986439543346530265149118762674300657759218271361492617173794406585318804925547804926292735073373<111> (Serge Batalov / GMP-ECM B1=3000000, sigma=321970931 for P41 / February 20, 2011 2011 年 2 月 20 日)
10181-1090-1 = (9)908(9)90<181> = 163 × 601254998668209602484877<24> × 102036063546123345273233993118993235392604533277877640957093243171167036923891792702920192257209454963678694829140963267378043111697403705396023065052157449<156>
10183-1091-1 = (9)918(9)91<183> = 25707466780191985577549<23> × 5059376613324184256661411113960709456914442282239818477994718072707<67> × 7688536984454226647810753817805243446028990837454475688002251898173545795361565609259501901993<94> (Serge Batalov / Msieve 1.49 snfs / March 7, 2011 2011 年 3 月 7 日)
10185-1092-1 = (9)928(9)92<185> = 7193 × 120907 × 57252529043<11> × 7046752398775349705519<22> × 142618128102950409918855566882775469211<39> × 1998389203230910796696645628886647730494967121457311996476663188268439286162299825203795025561167279182827<106> (Serge Batalov / GMP-ECM B1=3000000, sigma=738710693 for P39 / February 19, 2011 2011 年 2 月 19 日)
10187-1093-1 = (9)938(9)93<187> = 1973 × 2074739 × 10571854537021<14> × 1239864702243677<16> × 71256564380083602391<20> × 30491044960837855680766548818590459<35> × 85780146085582238940853664780786606101137199290394167240120226446557159888511835878954467692429<95> (Serge Batalov / GMP-ECM B1=1000000, sigma=50243986 for P35 / February 6, 2011 2011 年 2 月 6 日)
10189-1094-1 = (9)948(9)94<189> = 113 × 142903 × 4090706443<10> × 387059048680486639<18> × 3363560397016739847345619971246041087<37> × 92714616383738288045013496948869930274723439<44> × 125417238661907896335048251899148324004706928120282288074456695029552194981<75> (Serge Batalov / GMP-ECM B1=3000000, sigma=867999050 for P37 / February 20, 2011 2011 年 2 月 20 日) (Dmitry Domanov / Msieve 1.40 gnfs for P44 x P75 / February 22, 2011 2011 年 2 月 22 日)
10191-1095-1 = (9)958(9)95<191> = 2141 × 775553503 × 85510966144297324353030692388914542042841054742163<50> × 1650314414984519644104272753011430864607146121797915394521<58> × 426759367181644910756283980247904234077442096327830329316871879559354831<72> (Serge Batalov / Msieve 1.49 snfs / March 28, 2011 2011 年 3 月 28 日)
10193-1096-1 = (9)968(9)96<193> = 223 × 7717 × 80080245492089<14> × 693368971886433790237<21> × 24024957484613347557923<23> × 1362602819813531617516739<25> × 1726832106367074954723306036126432110596511555479<49> × 1851291519976626026454045890890762630353225391712410912471<58> (Dmitry Domanov / Msieve 1.40 gnfs for P49 x P58 / February 7, 2011 2011 年 2 月 7 日)
10195-1097-1 = (9)978(9)97<195> = 23 × 139 × 312793243665936815764779480763215514544885830466061933062245855489521426337191116671879887394432277134813888020018767594619956208945886768845792930872693149827963715983734751329371285580231467<192>
10197-1098-1 = (9)988(9)98<197> = 353 × 136296161 × 1858002799506935757352550326081771276441<40> × 1118652782402547369912056578669352839661516628189027067718712917265512642906641056083524152583509530935824358530509755393187238472962377579195832983<148> (Serge Batalov / GMP-ECM B1=11000000, sigma=960949948 for P40 / March 26, 2011 2011 年 3 月 26 日)
10199-1099-1 = (9)998(9)99<199> = 1478382144061848794582747<25> × 97339192929666402516556929262980516117532989612111993815732551663706215314907<77> × 69490518228993644913321945992687650197757347374570382882526742677894025977478013460666121779217431<98> (Serge Batalov / Msieve 1.49 snfs / March 28, 2011 2011 年 3 月 28 日)
10201-10100-1 = (9)1008(9)100<201> = 127 × 443 × 487 × 869069 × 37964827 × 408563843 × 2950189363189<13> × 44815190889672228509705492561689981853052494086776310594395864204732205576903<77> × 20478249701934975256799222215361166158562956319797990177215458156199930499244394819<83> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs / June 18, 2012 2012 年 6 月 18 日)
10203-10101-1 = (9)1018(9)101<203> = 7559586366702775181064356434868239<34> × 84457674463514099333628480045031031941<38> × 156625636134910292334863786095808946581445431605507502615551605697705019226472666618448107754204501404958206272167717834195094031901<132> (Serge Batalov / GMP-ECM B1=250000, sigma=2852525604 for P34 / February 6, 2011 2011 年 2 月 6 日) (Serge Batalov / GMP-ECM B1=3000000, sigma=2363450818 for P38 / February 7, 2011 2011 年 2 月 7 日)
10205-10102-1 = (9)1028(9)102<205> = 31 × 24747625099107650179219872679210683194006146384818390363990780542148507244061<77> × 13034812183772815230530442009487945137455735861180066232750242252129067058913621715625089679461445876442576190925697372099032789<128> (Dmitry Domanov / Msieve 1.40 snfs / November 24, 2011 2011 年 11 月 24 日)
10207-10103-1 = (9)1038(9)103<207> = 79589 × 552843528150711282596603<24> × 2352846423855842777681686274159<31> × 240375359727667139328466774999386175099700058283970692168697671407493<69> × 40184742918640359706793271569019021977114335944039704865838933574696949993661531<80> (Serge Batalov / GMP-ECM B1=1000000, sigma=3088155025 for P31 / February 6, 2011 2011 年 2 月 6 日) (ebina / Msieve 1.53 snfs for P69 x P80 / August 3, 2022 2022 年 8 月 3 日)
10209-10104-1 = (9)1048(9)104<209> = 820255307836584135664867297252206789143752842966295302533<57> × 121913261693787857857550818941776341211834531114664350243968029763258424083324072892211751956089787483075423844864124832992101705777583364242629599002803<153> (Erik Branger / GGNFS, Msieve snfs / September 24, 2011 2011 年 9 月 24 日)
10211-10105-1 = (9)1058(9)105<211> = 1657608881<10> × 6032786210681505150550650313510235108350629064951299570166817898461778330686923968043098340518603917880432133133582070860055919307058780170712659206608099730614317334850234794319975654136230463403266479<202>
10213-10106-1 = (9)1068(9)106<213> = 43 × 77003 × 19163137034843636981886862097633742601500892098973<50> × 122262198379864019975620599575399166898940717656093988839122096992053<69> × 128903613900824761215694618334046213054471793536567524072542030548838419293022661086541399<90> ([P3D] Crashtest / GMP-ECM B1=110000000, sigma=2265369094 for P50 / July 5, 2012 2012 年 7 月 5 日) (ebina / Msieve 1.53 for P69 x P90 / May 5, 2023 2023 年 5 月 5 日)
10215-10107-1 = (9)1078(9)107<215> = 158261 × 36949340732511729323657<23> × 1352315832875337262159635823390033485293218399<46> × 16674130897728498503357903235374789919668736092132261466911<59> × 758399540520618149316027202809334115733467817423457670161072141123566146731754195083<84> (Dmitry Domanov / GMP-ECM B1=43000000, sigma=1043111032 for P46 / September 4, 2011 2011 年 9 月 4 日) (Dmitry Domanov / Msieve 1.40 gnfs for P59 x P84 / December 7, 2011 2011 年 12 月 7 日)
10217-10108-1 = (9)1088(9)108<217> = 22711151124973<14> × 147531391737139683185833537693610710422739918589958615625625204137778807700711389597176562421259<96> × 2984533193861394254380010005291027575332117614627903377291334604440734249431933626480603288174860361641591857<109> (Bob Backstrom / Msieve 1.54 snfs for P96 x P109 / October 2, 2019 2019 年 10 月 2 日)
10219-10109-1 = (9)1098(9)109<219> = 139 × 353 × 409 × 14407 × 121069177 × 28568013340517988034895151638900793654590161894315263931708507258290118700267910537372559311144016971501935766184944935023539151619841565502030320859889548653593344307373102280110537429950461955707947<200>
10221-10110-1 = (9)1108(9)110<221> = 821 × 857 × 3313 × 402037 × 136418350709050918447<21> × 38694589449281169985369<23> × 1364024688209557924939979805273603204139082546859550035332895129836380167101<76> × 14819832420512057343769188884121813431329615280935543745313708108181600994203628631644749<89> (Erik Branger / GGNFS, NFS_factory, Msieve snfs for P76 x P89 / September 12, 2018 2018 年 9 月 12 日)
10223-10111-1 = (9)1118(9)111<223> = 23 × 8969875861<10> × 10493734547109130209733<23> × 29154307807335799892293234155485274016188633245520758421707676487245643<71> × 158435654655007667170047889555557457679696300965848045800590529892063928889049264729202906342278255134895387034921406707<120> (Erik Branger / GGNFS, NFS_factory, Msieve snfs for P71 x P120 / September 21, 2019 2019 年 9 月 21 日)
10225-10112-1 = (9)1128(9)112<225> = 743 × 126001 × 540307 × 45794479 × 1634520590521473348148202848741644245791960940194114612202624954201929<70> × 264115009070927090455589573617437080289082067331968321887743550522113823971865910037735391488725710232640721368774902665706971292753989<135> (Bob Backstrom / Msieve 1.54 snfs for P70 x P135 / October 6, 2019 2019 年 10 月 6 日)
10227-10113-1 = (9)1138(9)113<227> = 60413 × 1871763593257<13> × 296376012864178413013672659353<30> × 2983840129747746191380720197421290593121725369712096053147254916255039918871093018846052632161903660187282431845377925231647088393488755841509345840993092355107825897821805901125163<181> (Serge Batalov / GMP-ECM B1=250000, sigma=1039667421 for P30 / February 6, 2011 2011 年 2 月 6 日)
10229-10114-1 = (9)1148(9)114<229> = 83 × 107 × 1466018201<10> × 20884237703197015109<20> × 19574360025501946753913064012065826843932679851293<50> × 156032171285273956744185153021179440139941760074454565846444610752739<69> × 12041439725549072957631715515671829983900816971165463152391725473629593794755453<80> (Mr. Ice / GMP-ECM B1=110000000, sigma=335566135 for P50 / July 11, 2012 2012 年 7 月 11 日) (Bob Backstrom / for P69 x P80 / June 28, 2024 2024 年 6 月 28 日)
10231-10115-1 = (9)1158(9)115<231> = 337 × 541 × 7963 × 16421 × 1526103624663171143359364913971323014541<40> × [27486060199983305869057368785364671661605199886184785931250084133516498988072814278659204638260061646506206463527535902070997187402178132975235989100714093967862988545281885087329<179>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2907889767 for P40 / February 27, 2011 2011 年 2 月 27 日) Free to factor
10233-10116-1 = (9)1168(9)116<233> = 4955893 × 198462349 × 1298005824995413355310403<25> × [78329131290121643510139894478144533790459344446078618848654220620631609346143369487467299133821521730019215863154884402851997282793547499403647887164383888348629468505300342650823182685858480869<194>] Free to factor
10235-10117-1 = (9)1178(9)117<235> = 31 × 79699 × 4047486733350359760858293846727343889448566359961613635820905188028019941157637870552469796642124056277874535196742258473312289100644400362816710777526248963337460420639106250169488506959046314985941054831707525370658716323392571<229>
10237-10118-1 = (9)1188(9)118<237> = 17417 × 4182853 × 1883728955446124461<19> × 272434164391348944161<21> × 44032632897242593187695915034940373513<38> × 188428648419655099409995182147536045642951443<45> × 3223684090219162499327627143857491979500481857617221949359435125134231629645730113818883409991479799477141<106> (Serge Batalov / GMP-ECM B1=3000000, sigma=1194739938 for P38 / February 20, 2011 2011 年 2 月 20 日) (Serge Batalov / GMP-ECM B1=11000000, sigma=602313332 for P45 / February 22, 2011 2011 年 2 月 22 日)
10239-10119-1 = (9)1198(9)119<239> = 23 × 277 × 550163 × 507798283 × 31488736678837<14> × 5329886557303492057<19> × 2110248616008252961840961860876949305475346925545683198133976113129929266780403421883796749<91> × 158636441950878520255445619382885407556460714059496040058370991555934494487738775164862248871474621<99> (Erik Branger / GGNFS, NFS_factory, Msieve snfs for P91 x P99 / February 12, 2024 2024 年 2 月 12 日)
10241-10120-1 = (9)1208(9)120<241> = 15373 × 21179 × 69318562463<11> × 136847101288747941340536937196329648549<39> × 16954652980607022299896603608007213260317<41> × 190968557196548920929256758077341023970046353302584566977030302264685103503349621692297267818615607902563402121461346313594419985647835520640143<144> (Serge Batalov / GMP-ECM B1=1000000, sigma=2513455804 for P39 / February 7, 2011 2011 年 2 月 7 日) (Serge Batalov / GMP-ECM B1=3000000, sigma=3034432945 for P41 / February 19, 2011 2011 年 2 月 19 日)
10243-10121-1 = (9)1218(9)121<243> = 35465053667<11> × 198074549311613601871<21> × 142354336736360212384689353052885852169975739510201166604452981674927200592136316427278966827461051722839449288608364095794521718958976998045825703403557766494370573306344170281267630664339431372732057662225166907<213>
10245-10122-1 = (9)1228(9)122<245> = 2543 × 8467 × 17981 × 152184767706359<15> × 1697223565833701876797810065947824536805260888733458998556996794653862425337888950850934281574112148301604111265151696719078688728821690700114986112417461138338990486182545664826357980360395316195925765566756417692974001<220>
10247-10123-1 = (9)1238(9)123<247> = 14411 × 436127 × 25817296479504737<17> × 84790425259283963083<20> × 726834163304042025731937777374644471996520842953532608610292735610573258402341235560572097447679856750917993803706733767544612483971681660665983658404066539073890333692837205577012946496760070949146377<201>
10249-10124-1 = (9)1248(9)124<249> = 18199 × [54948074070003846365184900269245562943018847189406011319303258420792351228089455464585966261882521017638331776471234683224352436947085004670586295950326941040716522885872850156602011099510962140776965767349854387603714489807132260014286499258201<245>] Free to factor
10251-10125-1 = (9)1258(9)125<251> = 59 × 2176313 × 6920201 × 125126803 × 950630839 × 68412234753401592667<20> × 13829672587643939345677529872910072134162540658928528243347769797226515972012051037554708120983587396737282452701097637829657189205229955614400498927288462924475795688004115302166590853134121020973723<200>
10253-10126-1 = (9)1268(9)126<253> = 546575179812049671663821029<27> × 5691978652647575874223595681<28> × 3214303128919184715811223260172733477355597712943353231862393314438848773205046062981687501296982019190473915416082774183185861753383245695432267380713147416393553356145018220977111562371065932563251<199>
10255-10127-1 = (9)1278(9)127<255> = 43 × 349 × 1009 × 5281 × 36779 × 1396001 × 12618323 × [19302408274572321850500636179326404313200215298163083860818897961228208328012101212396038668396080637023168637621115368807924758688333784300144945311858908587511820699715360345091845618062033247097101730239483350492176142373249<227>] Free to factor
10257-10128-1 = (9)1288(9)128<257> = 2657999 × 33713132569481<14> × 34006224761527<14> × 10988133966973311663620594807682361<35> × 2986508202191085199686156340594280241172142106561917176427768915351944400327843583593066279603452650676177895765289294887980128143936874372308172026594978782263232977124179649521484312357943<190> (Serge Batalov / GMP-ECM B1=3000000, sigma=1803600794 for P35 / February 19, 2011 2011 年 2 月 19 日)
10259-10129-1 = (9)1298(9)129<259> = 122011 × 39757846366432697<17> × 2061475426491389308885320234928912178148648870282115709061663875472193081146546883201142191341245069240281988144815970543765078096359916462380200990332706009721634088546387527473052418247964818075957268229480805243159840405907446895142997<238>
10261-10130-1 = (9)1308(9)130<261> = 127 × 269 × 353 × 7076903 × 26197132983778839613249928550807916883<38> × [447272591722527624432056811204234005982420011229536975552927970024400583166876975162170497039791448341999088413797895975922403496820303021203399821089839208639712566917871248490416255599900849541595945704035009<210>] (Serge Batalov / GMP-ECM B1=3000000, sigma=2681266139 for P38 / February 7, 2011 2011 年 2 月 7 日) Free to factor
10263-10131-1 = (9)1318(9)131<263> = 140587 × [711303321075206100137281540967514777326495337406730352024013600119498957940634624823063298882542482590851216684330699140034284820075113630705541764174496930726169560485677907630150725173735836172619089958531016381315484361996486161593888481865321829187620477<258>] Free to factor
10265-10132-1 = (9)1328(9)132<265> = 31 × 84218135739613<14> × 10564855992295429301<20> × 38088006437811233859914690349437262257<38> × 81566669787019140530390988244891349250983<41> × 41076937845186288049710453655772779760129803502207898137437<59> × 2840992367329388218550962506913738996616119439238514119434451501569093838962105863156090945939<94> (Serge Batalov / GMP-ECM B1=1000000, sigma=4068956508 for P41 / February 7, 2011 2011 年 2 月 7 日) (Serge Batalov / GMP-ECM B1=3000000, sigma=2950517912 for P38 / February 20, 2011 2011 年 2 月 20 日) (RSALS + Lionel Debroux / ggnfs-lasieve4I14e on the RSALS grid + msieve SVN r719 for P59 x P94 / June 19, 2012 2012 年 6 月 19 日)
10267-10133-1 = (9)1338(9)133<267> = 23 × 739 × [58833911866800023533564746720009413425898688003765370359475201506148143790080602459257516032240983703006412896393481202565158557392480437724304288992175089721715596870035888686238748014355474495499205742189798199682296875919279872918750367711949167500147084779667<263>] Free to factor
10269-10134-1 = (9)1348(9)134<269> = 61 × 467 × 102942591841<12> × 17911680356719396564909<23> × 125706926938946875316119217323<30> × 15144768731693904365994997710453674080428899767232444753706041670430045759387119915994959964835024869805408973324069064367612365062738110425346733086204541082926397741154160564328930520039935870613840071<203> (Serge Batalov / GMP-ECM B1=1000000, sigma=4193963714 for P30 / February 6, 2011 2011 年 2 月 6 日)
10271-10135-1 = (9)1358(9)135<271> = 59 × 61 × 2481013 × 6691114947944112745045824250938633007<37> × 167375012588233852639684347188283641667420911010045352056806942242386982212322992664108207061363971378774604786005801922972064146881385759501739508622095433069166308971769463135223187302272136789029027664282752427926516272611<225> (Serge Batalov / GMP-ECM B1=1000000, sigma=677010577 for P37 / February 6, 2011 2011 年 2 月 6 日)
10273-10136-1 = (9)1368(9)136<273> = 131 × 6781 × 18518917 × [60788212746439901663130464769272494831155082050551436485227917079495039744186317901900057436487146902357419072714170849077052134338320096101268114463723820520290559905382868771113677667790495230427572509039560806539730812075229363909148730625777661660328419877<260>] Free to factor
10275-10137-1 = (9)1378(9)137<275> = 8191050228152895045287791103281050427444807905547<49> × 12208446684443086654124286139759587594004153919754878538190074240611055183187600613521261829685982808540353185547446936297579771170127592515697979139500661561643970495405425014470592521002411569372877867147366030195762736033117<227> (skneo / GMP-ECM / May 14, 2011 2011 年 5 月 14 日)
10277-10138-1 = (9)1388(9)138<277> = 29203004587<11> × 77756664863<11> × 5616059328522771097<19> × 784157231168764273505690645370088124860435667730801153489080908136825140861108058929849761585611033686361678524167935051497172267417229837322444879832109990864138098788771319072638424287654174970911137559168858104102663774010560641788507<237>
10279-10139-1 = (9)1398(9)139<279> = 401 × 2861 × 1201567 × 21079326683<11> × 142889500983730810799128003551194314421659475941<48> × [240842276289344112209805086043952029282047322349358624814004287429157505155804756984209586151057354127573023026017655968090112315832731653022192114065854745361212385112768522199533262038772208374346409835192259<210>] (stelf / GMP-ECM B1=110000000, sigma=1648794011 for P48 / December 8, 2011 2011 年 12 月 8 日) Free to factor
10281-10140-1 = (9)1408(9)140<281> = 1193 × 1163589980183266593637<22> × [72037657730370221431332948278360401493481480442082738864842920915399670657753868069557707477756792170566230809063317145121936998330970066534579565209991012257161984828832467776238859122813910785326366791596978337909128611387151365580460745670695388556709339<257>] Free to factor
10283-10141-1 = (9)1418(9)141<283> = 23 × 353 × 1291 × 22877 × 79961069369<11> × 48967879551701064457093071969028328789<38> × 10650800557267913056667264511526335351634561195225529611170377849143679208584359396568122332446861018902846996089066749968836418542265661763871724174143894575604755735100276620445148508522392116259400544619269930712358806083<224> (Serge Batalov / GMP-ECM B1=3000000, sigma=1250313992 for P38 / February 20, 2011 2011 年 2 月 20 日)
10285-10142-1 = (9)1428(9)142<285> = 127 × 487 × 493021 × [32794566885039267471099287569454897054470312532037781012656228500348247916152898031661762460497677906756353752345680301350300920677992820217849133490552732314890977278296172539189031824415674345987149028080625960447491020077652432205057010962329959337309140432101965584641731<275>] Free to factor
10287-10143-1 = (9)1438(9)143<287> = 139 × 283 × 726614583491827<15> × 401211144498956539567<21> × 111383149939719909515501932462507258241<39> × [78289256825972312538389218234696784666306623902431586115690922852433524021706448760279320705749652511408255267656719618734968512197562784177510361736449508015443061881129157324360740694499226998116973849136083<209>] (Serge Batalov / GMP-ECM B1=3000000, sigma=3425573835 for P39 / February 20, 2011 2011 年 2 月 20 日) Free to factor
10289-10144-1 = (9)1448(9)144<289> = 245112947 × [40797518541523634816401599545045656033828355872201234641432465825642412924030487871373028696032119429415533892626243035623899540484085485700598259299619942148547542859904499455102222731629104846917776236438461163783404717499479943831771562846086624710199416761122781490608082811717<281>] Free to factor
10291-10145-1 = (9)1458(9)145<291> = 21523 × 199285432314961499443<21> × 205360175078587279478419580474721236501<39> × 20644859171897745225722220599691884140467461<44> × [54991237197905976836352167110373899509855486260238892358799821414313633641378295210693033788318084402191544548137997725517707651141635752905563555162633814572916867366910361489295634031<185>] (Serge Batalov / GMP-ECM B1=3000000, sigma=1644286386 for P39 / February 7, 2011 2011 年 2 月 7 日) (Dmitry Domanov / GMP-ECM B1=43000000, sigma=3052254140 for P44 / July 20, 2011 2011 年 7 月 20 日) Free to factor
10293-10146-1 = (9)1468(9)146<293> = 1295705266719460499440246583901883763451487031<46> × [77178045477260138614817018614931347091915166454447101735777979630426387078050656611920652788097193819229904682290794298191754001110234503492231665370503037304050096151116589357380305401483595496714376486317427580253750387012607021917105536036683129<248>] (Dmitry Domanov / GMP-ECM B1=43000000, sigma=2576648024 for P46 / February 10, 2011 2011 年 2 月 10 日) Free to factor
10295-10147-1 = (9)1478(9)147<295> = 31 × 11523749 × 2095997474869<13> × 2009665694922623843659501968495913<34> × 6645534877232741946958245806747291765108266826215403930433887381805421318914664552903805680834998476590410789255866689172934961756778047173905581965020721855685945768407509689243022060171546692712013559170431326825276191712155530917653858193<241> (Serge Batalov / GMP-ECM B1=3000000, sigma=3439622354 for P34 / February 7, 2011 2011 年 2 月 7 日)
10297-10148-1 = (9)1488(9)148<297> = 43 × 3467 × 290918081 × [23057222400684070874789955560320532224148800624745173935037788794620539042253800909399913736466367201854902133770414714592976749842701491222380473873964779509773846712608211475562899998277014772324895226736336845570125588951116786464267944105177224633821498788082799868519259310815959<284>] Free to factor
10299-10149-1 = (9)1498(9)149<299> = 34352041103<11> × [2911035175469293860200700517309229070760290653812682124398190523438953047528903336617552253398629732071556900989657039535593385203338611643369982026185630463787582875494325470328952988735599208216864947083141594132250127565294791676996323370404066903866966999186522835245455953249416441233<289>] Free to factor
10301-10150-1 = (9)1508(9)150<301> = 733 × 121237637775652817<18> × [112527471274457124930849654885647556211437880026489787684893288746110190666008028945901775511194941570942261611582565708742405673696637125516592695244136853601302258122278985685718294877505322360662722838745680947543790579342471792486484839921955624134474596856839446581996789391259<282>] Free to factor
plain text versionプレーンテキスト版

4. Related links 関連リンク