9w59w = { 5, 959, 99599, 9995999, 999959999, 99999599999, 9999995999999, 999999959999999, 99999999599999999, 9999999995999999999, … }
1013-4×106-1 = 9999995999999
<13> = 31 × 113 × 2854694833
<10>
1015-4×107-1 = 999999959999999
<15> = 7 × 47 × 2957 × 1027904483
<10>
1017-4×108-1 = 99999999599999999
<17> = 2141 × 46707146006539
<14>
1019-4×109-1 = 9999999995999999999
<19> = 13 × 137 × 12251 × 458315495129
<12>
1021-4×1010-1 = 999999999959999999999
<21> = 137 × 1579 × 21499 × 388111 × 554017
1023-4×1011-1 = 99999999999599999999999
<23> = 13 × 173 × 43787 × 892351 × 1137966923
<10>
1025-4×1012-1 = 9999999999995999999999999
<25> = 499 × 1790557 × 11192092829389193
<17>
1027-4×1013-1 = 999999999999959999999999999
<27> = 7 × 193
2 × 50909 × 75334303200659677
<17>
1029-4×1014-1 = 99999999999999599999999999999
<29> = 458973066229
<12> × 217877708645556131
<18>
1031-4×1015-1 = 9999999999999995999999999999999
<31> = 13 × 47 × 223 × 97561231 × 752275044816094693
<18>
1033-4×1016-1 = 999999999999999959999999999999999
<33> = 6113 × 525961 × 311022681819554447797543
<24>
1035-4×1017-1 = 99999999999999999599999999999999999
<35> = 13
2 × 137 × 37621739 × 114803165205817843187597
<24>
1037-4×1018-1 = 9999999999999999995999999999999999999
<37> = 137 × 497888889033997
<15> × 146604397763419254691
<21>
1039-4×1019-1 = 999999999999999999959999999999999999999
<39> = 7 × 67 × 153146215961091013
<18> × 13922617340990150567
<20>
1041-4×1020-1 = 99999999999999999999599999999999999999999
<41> = 211949 × 471811615058339506200076433481639451
<36>
1043-4×1021-1 = 9999999999999999999995999999999999999999999
<43> = 13
2 × 31 × 4973347 × 6054617 × 40211671 × 1576391349924455629
<19>
1045-4×1022-1 = 999999999999999999999959999999999999999999999
<45> = 11299 × 622138507 × 142256758560010135477366785356543
<33>
1047-4×1023-1 = 99999999999999999999999599999999999999999999999
<47> = 13 × 677 × 6899 × 1296733567
<10> × 1270080011051171710148107842203
<31>
1049-4×1024-1 = 9999999999999999999999995999999999999999999999999
<49> = 2068133234617833654091
<22> × 4835278420467857664597144989
<28>
1051-4×1025-1 = 999999999999999999999999959999999999999999999999999
<51> = 7 × 137 × 661 × 174169 × 44753820497
<11> × 202385297440747737276100207157
<30>
1053-4×1026-1 = 99999999999999999999999999599999999999999999999999999
<53> = 43 × 137 × 269 × 63104262756053434165531315553496954272758079081
<47>
1055-4×1027-1 = 9999999999999999999999999995999999999999999999999999999
<55> = 13 × 6379 × 25847307363341903
<17> × 4665398423502992195279591215935679
<34>
1057-4×1028-1 = 999999999999999999999999999959999999999999999999999999999
<57> = 107 × 1019 × 44017 × 1316175517
<10> × 158309796516404792290681726538046377027
<39>
1059-4×1029-1 = 99999999999999999999999999999599999999999999999999999999999
<59> = 13 × 883 × 8711560240439062636118128756825507448384005575398553881
<55>
1061-4×1030-1 = 9999999999999999999999999999995999999999999999999999999999999
<61> = 70271 × 142306214512387755973303354157419134493603335657668170369
<57>
1063-4×1031-1 = 999999999999999999999999999999959999999999999999999999999999999
<63> = 7 × 21013 × 62357796923
<11> × 305282330734468349
<18> × 357125998293074036157207127307
<30>
1065-4×1032-1 = 99999999999999999999999999999999599999999999999999999999999999999
<65> = 51683 × 316241 × 6118347088742694034859497781562056758199779996805773733
<55>
1067-4×1033-1 = 9999999999999999999999999999999995999999999999999999999999999999999
<67> = 13 × 137 × 2241472133
<10> × 5739525849135414571
<19> × 436442184128509132538745347944168853
<36>
1069-4×1034-1 = 999999999999999999999999999999999959999999999999999999999999999999999
<69> = 137 × 5659508681
<10> × 3807585650264987363579
<22> × 338727940062478941662472044023278973
<36>
1071-4×1035-1 = 99999999999999999999999999999999999599999999999999999999999999999999999
<71> = 13 × 8237 × 1605209 × 4483537 × 50291700108583
<14> × 2580114149148249055140122245523013509561
<40>
1073-4×1036-1 = 9999999999999999999999999999999999995999999999999999999999999999999999999
<73> = 31 × 131507747019752954790816626929
<30> × 2452940244751037403306006357162582158474801
<43>
1075-4×1037-1 = 999999999999999999999999999999999999959999999999999999999999999999999999999
<75> = 7 × 2699 × 1085627 × 36495883 × 91121813 × 14660615771925344670269790464657113371195527531671
<50>
1077-4×1038-1 = 99999999999999999999999999999999999999599999999999999999999999999999999999999
<77> = 61 × 1151 × 2027 × 980491 × 716634118922624678967055583729547233783668686133478376168911837
<63>
1079-4×1039-1 = 9999999999999999999999999999999999999995999999999999999999999999999999999999999
<79> = 13 × 4623322337637763
<16> × 1872677320577553907
<19> × 30850310090034013207
<20> × 2879917120583141008607429
<25>
1081-4×1040-1 = 999999999999999999999999999999999999999959999999999999999999999999999999999999999
<81> = 2538281234207
<13> × 14627176672631679241
<20> × 29322024270098527103
<20> × 918556352796788574399718334759
<30>
1083-4×1041-1 = 99999999999999999999999999999999999999999599999999999999999999999999999999999999999
<83> = 13 × 137 × 2969 × 966011 × 19576894984857248881997625912122528621643825060981473425904792886634081
<71>
1085-4×1042-1 = 9999999999999999999999999999999999999999995999999999999999999999999999999999999999999
<85> = 137 × 87037 × 19949644990069321
<17> × 42037835640022397405127233828635857223837222062393283928134651
<62>
1087-4×1043-1 = 999999999999999999999999999999999999999999959999999999999999999999999999999999999999999
<87> = 7 × 76018219698559
<14> × 128880567404353
<15> × 3486991762084429285438523
<25> × 4181632906804639258420048438806517
<34>
1089-4×1044-1 = 99999999999999999999999999999999999999999999599999999999999999999999999999999999999999999
<89> = 20935601 × 4776552629179358166025422437120386465141363727747772800981447821822741081089575599
<82>
1091-4×1045-1 = 9999999999999999999999999999999999999999999995999999999999999999999999999999999999999999999
<91> = 13 × 479 × 25030471261
<11> × 553173690733
<12> × 97318941159199440533
<20> × 1191772105565888695309828426385501062443596153
<46>
1093-4×1046-1 = 999999999999999999999999999999999999999999999959999999999999999999999999999999999999999999999
<93> = 29261537 × 34174554808928867953860386759588192513605830068324845683943396411473532644577077410527
<86>
1095-4×1047-1 = 99999999999999999999999999999999999999999999999599999999999999999999999999999999999999999999999
<95> = 13 × 43 × 1801 × 7213 × 2974269059557322418797
<22> × 61936948866945854264869
<23> × 74752975888871388528161788533520804331629
<41>
1097-4×1048-1 = 9999999999999999999999999999999999999999999999995999999999999999999999999999999999999999999999999
<97> = 736163692210603204451
<21> × 13583935347274882563494726417155744680909144849612245764874721038411155776949
<77>
1099-4×1049-1 = 999999999999999999999999999999999999999999999999959999999999999999999999999999999999999999999999999
<99> = 7 × 113 × 137 × 9227901482923768305849566750025376729078040362840717192503252835272730628327811972279383945297
<94>
10101-4×1050-1 =
(9
)505
(9
)50<101> = 137 × 1758560811461237726029
<22> × 170110589071199965225716045665378595373
<39> × 2440004871621207120718780266536678794831
<40>
10103-4×1051-1 =
(9
)515
(9
)51<103> = 13 × 31 × 61 × 6566643942114427521561609169
<28> × 61947195604635819770854250646250897150637806190952076410045507936140537
<71>
10105-4×1052-1 =
(9
)525
(9
)52<105> = 67 ×
14925373134328358208955223880597014925373134328358208358208955223880597014925373134328358208955223880597<104>
10107-4×1053-1 =
(9
)535
(9
)53<107> = 13 × 47 × 1637 × 3559 × 374546534899059572140342925545382219
<36> × 75002603471220634662157651405579337049820078686199957972326517
<62> (Kenichiro Yamaguchi / GGNFS-0.77.0 / 0.92 hours on Pentium M 1.3GHz /
May 29, 2005 2005 年 5 月 29 日)
10109-4×1054-1 =
(9
)545
(9
)54<109> = 163 × 173 × 1511 × 38971 × 3778126831
<10> × 697637286403
<12> × 828226457826773539
<18> × 39005950046315441269898777
<26> × 70725186403507264501279462608499
<32>
10111-4×1055-1 =
(9
)555
(9
)55<111> = 7 × 1590646496312418081825900969362419
<34> × 89810742480071673480034617705907970811706653082603487540435533001853035752403
<77> (Kenichiro Yamaguchi / GGNFS-0.77.0 / 1.26 hours on Pentium M 1.3GHz /
May 31, 2005 2005 年 5 月 31 日)
10113-4×1056-1 =
(9
)565
(9
)56<113> = 9283 × 92233 × 282363919 × 413633889443306629777357161514000460876645596909094077705711137549369107539589022982679384342339
<96>
10115-4×1057-1 =
(9
)575
(9
)57<115> = 13 × 137 × 1194883 × 4852747805592539495163744803133599
<34> × 968329084334870313982674682982929518043498846672500388409613165012933887
<72> (Kenichiro Yamaguchi / GGNFS-0.77.0 / 3.09 hours on Pentium M 1.3GHz /
May 31, 2005 2005 年 5 月 31 日)
10117-4×1058-1 =
(9
)585
(9
)58<117> = 137 ×
7299270072992700729927007299270072992700729927007299270072700729927007299270072992700729927007299270072992700729927<115>
10119-4×1059-1 =
(9
)595
(9
)59<119> = 13 × 308393971 × 23793448646153
<14> × 60310927767427422968803
<23> × 17381904743309183789954408103368527186167885113743947830584157191922531707
<74>
10121-4×1060-1 =
(9
)605
(9
)60<121> = 480393481 × 4094317156436531656764569430473
<31> × 114616664758410776631617120793419
<33> × 44358172628315269260833164220111213839258758176717
<50> (Makoto Kamada / GMP-ECM 6.0.1 B1=3000000, sigma=955481116 for P31 /
May 14, 2005 2005 年 5 月 14 日) (Makoto Kamada / GGNFS-0.77.1 gnfs for P33 x P50 / 1.60 hours on Pentium 4 3.06GHz, Windows XP and Cygwin /
May 17, 2005 2005 年 5 月 17 日)
10123-4×1061-1 =
(9
)615
(9
)61<123> = 7 × 47 × 2251368737
<10> × 197336517199
<12> × 268046355481
<12> × 7330358007080381107
<19> × 553112759426567517799203632543
<30> × 6295079838882981527709998026784590476277
<40>
10125-4×1062-1 =
(9
)625
(9
)62<125> = 7653623 × 5621531592701
<13> × 3113842239924497
<16> × 2601070024525834540547695133
<28> × 286965460970540223894355002958897711729977697815694127298406913
<63>
10127-4×1063-1 =
(9
)635
(9
)63<127> = 13 × 328543 × 600931 × 1159691297402406324541
<22> × 3359676199224728130532719425228453904361780139328315643281493364260416653063247947996194630691
<94>
10129-4×1064-1 =
(9
)645
(9
)64<129> = 3023 × 34897 × 420865208494316969716449211
<27> × 4985055090497999350576552074159016833437
<40> × 4518151316303936463207381068077395206440013927504964047
<55> (Makoto Kamada / GMP-ECM 6.0 B1=3000000, sigma=3660474458 for P27 /
May 26, 2005 2005 年 5 月 26 日) (Kenichiro Yamaguchi / msieve.exe 0.88 for P40 x P55 /
May 28, 2005 2005 年 5 月 28 日)
10131-4×1065-1 =
(9
)655
(9
)65<131> = 13 × 137 × 347 × 8623 × 67057 × 408048752821026243131
<21> × 50612544294970722084709792667
<29> × 3095535203928056850631948075200751
<34> × 4377217507217188817598381172409681
<34> (Makoto Kamada / GMP-ECM 6.0 B1=3000000, sigma=3035171655 for P29 /
May 18, 2005 2005 年 5 月 18 日) (Makoto Kamada / msieve 0.88 for P34(3095...) x P34(4377...) /
May 18, 2005 2005 年 5 月 18 日)
10133-4×1066-1 =
(9
)665
(9
)66<133> = 31 × 137 × 7487097543124525709
<19> × 8115887942020483700339664052724822716727
<40> × 38749687619167420472280512971306132884586542208501397825133375024471019
<71> (Kenichiro Yamaguchi / GGNFS-0.77.1 / 17.31 hours on Pentium 4 2.4BGHz /
June 19, 2005 2005 年 6 月 19 日)
10135-4×1067-1 =
(9
)675
(9
)67<135> = 7 × 199 × 776868191153854013968671748788920791
<36> × 4793208491666876855263351806795609063791229239
<46> × 192785880758047470136230491036835852228315194280607
<51> (Makoto Kamada / GMP-ECM 6.0 B1=3000000, sigma=4037378392 for P36 /
June 5, 2005 2005 年 6 月 5 日) (Sinkiti Sibata / GGNFS-0.77.1 gnfs / 16.97 hours /
June 23, 2005 2005 年 6 月 23 日)
10137-4×1068-1 =
(9
)685
(9
)68<137> = 43 × 647 × 21193 ×
169603505994830115401634509352906604591693017355647186940222038431193824170549432236744961507661737469230383539350174987484490883<129>
10139-4×1069-1 =
(9
)695
(9
)69<139> = 13 × 3371 × 4459361 × 9093166788015632376354737529539617
<34> × 5627430068621602347797796257575031305382650518686424260015430403586239623261886314643346512049
<94> (Sinkiti Sibata / GGNFS-0.77.1 / 72.45 hours /
August 8, 2005 2005 年 8 月 8 日)
10141-4×1070-1 =
(9
)705
(9
)70<141> = 166609 × 168892705626840317
<18> × 69601747779002689794628246744089845171
<38> × 510587882640423485418476391438744702348606597088037480834827701746902682358566873
<81> (Sinkiti Sibata / GGNFS-0.77.1 gnfs / 161.09 hours for P38 x P81 /
August 5, 2005 2005 年 8 月 5 日)
10143-4×1071-1 =
(9
)715
(9
)71<143> = 13 × 461 × 1593281 × 7476829 × 52605349 × 11206497793
<11> × 8007815567553387533
<19> × 194869174557877606595293994307427768604111
<42> × 1522610685152418997386812466952309432069612472477
<49> (Makoto Kamada / msieve 0.88 / 2.8 hours)
10145-4×1072-1 =
(9
)725
(9
)72<145> = 65869487 × 165248121825939749137
<21> × 13229600165338069975361
<23> × 69443638555859011267751015980862364970490304305817364142593152436094142385631495472838954296161
<95>
10147-4×1073-1 =
(9
)735
(9
)73<147> = 7 × 137 × 29063 × 3286768633530139
<16> × 25663232614150611623750872789
<29> × 2016779576750328637594482016979767
<34> × 210912355506634775150586992064179278706741771958204658151188871
<63> (Kenichiro Yamaguchi / msieve.exe 0.88 for P34 x P63 / 10:36:20 on Pentium4 2.4BGHz /
May 28, 2005 2005 年 5 月 28 日)
10149-4×1074-1 =
(9
)745
(9
)74<149> = 137 × 25471 × 79768751 × 152368553102117459
<18> × 91920304832658984824899
<23> × 25650382490615389836607447409347806115577051816973331809126578330683650197772489098514700057807
<95>
10151-4×1075-1 =
(9
)755
(9
)75<151> = 13 × 1399 × 16302156079139241779389
<23> × 140684559337675769430249526788079461538589821
<45> × 239743837024742116073004013726167157177219146951323324165616082687053255604169333
<81> (Sinkiti Sibata / GGNFS-0.77.1 / 96.94 hours /
August 13, 2005 2005 年 8 月 13 日)
10153-4×1076-1 =
(9
)765
(9
)76<153> = 311 × 194000766069213137920662308153430392971
<39> ×
16574337043876024169265944257657898440722036087684656624150107100153149163850429054178770506285322908881542205579<113> (Dmitry Domanov / Msieve 1.40 snfs /
February 16, 2011 2011 年 2 月 16 日)
10155-4×1077-1 =
(9
)775
(9
)77<155> = 13 × 74317 ×
103506703611659409121631762481097088252920700409161999376889644257810357087776375836981082079780897009794839362771329885180013683586217461373885879719<150>
10157-4×1078-1 =
(9
)785
(9
)78<157> = 1147931 × 40950798218461
<14> × 26395973280529719883
<20> × 864355340749662550759573252435202532281900589447299
<51> × 9323776283224228996693176888970272641951210719066489941202465874417
<67> (Dmitry Domanov / Msieve 1.40 snfs /
February 16, 2011 2011 年 2 月 16 日)
10159-4×1079-1 =
(9
)795
(9
)79<159> = 7 × 12818227 × 15148061 × 17144623 × 684872900122112312052337849
<27> × 4300489148213381560316587136803909
<34> × 14570054581644806074208803571025190127944745567774637189539545521482435339317
<77> (Dmitry Domanov / Msieve 1.40 gnfs for P34 x P77 /
February 17, 2011 2011 年 2 月 17 日)
10161-4×1080-1 =
(9
)805
(9
)80<161> = 18653399229217
<14> × 38160663015389
<14> × 42358944171420785267
<20> ×
3316507445108930956143788954052924781161626248574138833511618813268865845928175490694809784155879784063063254155369<115>
10163-4×1081-1 =
(9
)815
(9
)81<163> = 13 × 31 × 107 × 137 × 4261 × 33214079 × 61586950631
<11> × 129755239474968123590687941302143586283
<39> × 1496729283349754277919200372641652762921510315487594255926186961590723313149884412520656979335401
<97> (Sinkiti Sibata / Msieve 1.40 snfs /
February 18, 2011 2011 年 2 月 18 日)
10165-4×1082-1 =
(9
)825
(9
)82<165> = 137 × 193 × 17257 × 7521935189
<10> × 741709706314010963
<18> ×
392819714104465188351507363992769469189057717272347752934940215629376933396684047874905217022177560393675329160266893831745740961<129>
10167-4×1083-1 =
(9
)835
(9
)83<167> = 13 × 439 × 126390636740041597901
<21> × 5346772964576658805219
<22> × 690162096543762891859999
<24> × 16992834495069766398608907654719838436957
<41> × 2210897203737565473047422601944101682556102651790222601321
<58> (Markus Tervooren / Msieve 1.49 for P41 x P58 /
February 15, 2011 2011 年 2 月 15 日)
10169-4×1084-1 =
(9
)845
(9
)84<169> = 661 × 3996248411
<10> × 12320950823
<11> × 3853523060257874851
<19> × 5970523486834687861896693818603029824176261
<43> × 13354617894934757771648197326875129099548080805005646075467743331127553159687945709073
<86> (Carlos Pinho / GMP-ECM 6.3 [configured with GMP 5.0.1 and --enable-asm-redc] [ECM] B1=11000000, sigma=3120047873 for P43 /
March 5, 2011 2011 年 3 月 5 日)
10171-4×1085-1 =
(9
)855
(9
)85<171> = 7 × 67 × 3404801 × 1104727065641577075214300061
<28> × 9516893139475623272376852907884931262457557
<43> × 59564189454156604229902582060565149609945451297889943927863097121996614999684229073804284323
<92> (Sinkiti Sibata / Msieve 1.40 snfs /
March 29, 2011 2011 年 3 月 29 日)
10173-4×1086-1 =
(9
)865
(9
)86<173> = 4919 × 176461 × 19359541 ×
5950855230712934657012739466594121243062560394098202244920637665293431044448416266573352751484169251451622609928673211674056044347426293348757621045174246921<157>
10175-4×1087-1 =
(9
)875
(9
)87<175> = 13 × 491 × 5695769 × 516213277 × 517446659 ×
1029741060575993922345834476216351690761620858731467867745558762115952204455186638065296113496883781403229862182245216312648080723520717540721212559<148>
10179-4×1089-1 =
(9
)895
(9
)89<179> = 13 × 43 × 137 × 13217 × 5279899 × 16254387760477
<14> × 92847491724960382984483177168116563
<35> ×
12398476645661935931792916367076909826178167398628675743886096581129858046951212169251230044737122708934179131494941<116> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3229708759 for P35 /
January 24, 2012 2012 年 1 月 24 日)
10181-4×1090-1 =
(9
)905
(9
)90<181> = 137 × 14330053 × 1621871731
<10> × 325289876808390065320347095830782151
<36> ×
9654828950071938772672734807151823904509049375498183812846330270890870049449765281910070777885074406552388959001801773827139839<127> (Serge Batalov / GMP-ECM B1=2000000, sigma=1484292846 for P36 /
February 15, 2011 2011 年 2 月 15 日)
10183-4×1091-1 =
(9
)915
(9
)91<183> = 7 × 9619 × 46307 × 4277960904051370738471
<22> × 1519500423240308942216240906358885684757
<40> ×
49338705699182755422847414813762084596709084030268079647681089029930819922259585143421525542646337155788497442507<113> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=1613326085 for P40 /
January 24, 2012 2012 年 1 月 24 日)
10185-4×1092-1 =
(9
)925
(9
)92<185> = 2000119058549833495996636939880174579033
<40> ×
49997023713430344036158788894794214873793996596032404511512067402354614677567437721031659269509370314205337992364127762952984040085202413053441303<146> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3132523065 for P40 /
February 15, 2011 2011 年 2 月 15 日)
10187-4×1093-1 =
(9
)935
(9
)93<187> = 13 × 3233886286075264056190265787598680419812423904851
<49> × 187837403704156864446185300366271145317885429912287087296927
<60> × 1266338545254288101572056327235143530405999122091273959637877469723551394247399
<79> (Markus Tervooren / GMP-ECM B1=11000000, sigma=1727314832 for P49 /
March 16, 2011 2011 年 3 月 16 日) (Markus Tervooren / Msieve 1.49 for P60 x P79 /
March 17, 2011 2011 年 3 月 17 日)
10189-4×1094-1 =
(9
)945
(9
)94<189> = 2677 × 304299827789
<12> × 289120496579271955683157525097
<30> ×
4245912511097563992368852704220994392103747889445357993115906348690647117256828296391747001874143557977201090927903339507693642790693422359425239<145> (Serge Batalov / GMP-ECM B1=250000, sigma=121289790 for P30 /
February 15, 2011 2011 年 2 月 15 日)
10191-4×1095-1 =
(9
)955
(9
)95<191> = 13
2 × 223 × 6986925299167271673690899
<25> ×
379771467108332607601332795300479855588359386560875483818909721036028143733008750078396839611018998127477579637675053097738661150683667928973526753572360687344323<162>
10193-4×1096-1 =
(9
)965
(9
)96<193> = 31 × 1021 × 98347 × 284884603889
<12> × 6404012061973152908185686045126317674150481704663
<49> × 23881173605376714727562167061928452635835007459509
<50> × 73735165826898672618239057601448410483260698191295985070587332284526855109
<74> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs /
May 9, 2012 2012 年 5 月 9 日)
10195-4×1097-1 =
(9
)975
(9
)97<195> = 7 × 137 × 173 × 75611 × 9624395560394893
<16> × 20867295785614669
<17> × 56018872304243914250091873257298465254336599423140195900799445701120567
<71> × 7085594747144658620710856896965047416455555411838958907490121309546487969041575633
<82> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs /
May 15, 2012 2012 年 5 月 15 日)
10197-4×1098-1 =
(9
)985
(9
)98<197> = 61 × 137 × 3361 × 4157 × 8693 ×
98521582991506450233685153497993531330596641727735056676932754780685731681917130483938776831034807544395432320254130408843415697875435474304886481814502068523974416127100959476469587<182>
10199-4×1099-1 =
(9
)995
(9
)99<199> = 13
2 × 47 ×
1258970162407150950522472617398967644466826136220571572453732846531537202568299131310587939065844138990305929749464937680976960846027949137605438751101598892106257081707163540224096688908472869193<196>
10201-4×10100-1 =
(9
)1005
(9
)100<201> = 167 × 152242225847
<12> ×
39332214954040656704544988786009472898836602257465270311687931844093424799265474640575324880543106500894429954089728577516503713959386208084167111585086225538422001687395150167350007193951<188>
10203-4×10101-1 =
(9
)1015
(9
)101<203> = 13 × 9497682493081577
<16> × 3826335454610429945526168613592370230353
<40> × 2288928691306591596797748227616870071286472534472908255610919355204921259
<73> × 92474862815522227101420157884090787379371131857473918079167571562313182137
<74> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2159675344 for P40 /
December 25, 2011 2011 年 12 月 25 日) (Eric Jeancolas / cado-nfs-3.0.0 for P73 x P74 /
December 25, 2021 2021 年 12 月 25 日)
10205-4×10102-1 =
(9
)1025
(9
)102<205> = 2719 ×
3677822728944464876792938580360426627436557557925707980875321809488782640676719382125781537329900698784847370356748804707613093048915042294961382861346083118793674144906215520411916145641780066200809121<202>
10207-4×10103-1 =
(9
)1035
(9
)103<207> = 7 × 110813 × 1244226287
<10> × 140967760019
<12> × 173980379945408791
<18> × 32325024423482326129622101
<26> × 1390823886054409468210307876952347216126741325260666750766484933
<64> × 939681764047309832231365390758747580507470675330248921452263053648217477871
<75> (Dmitry Domanov / Msieve 1.40 gnfs for P64 x P75 /
August 13, 2012 2012 年 8 月 13 日)
10209-4×10104-1 =
(9
)1045
(9
)104<209> = 32491 × 25788192599413
<14> × 184847538990887
<15> × 2643672822019769
<16> × 26550500459284621166731919420376940790120052774235058425974544384304977607
<74> × 9198604063720972120044822104015516016506019456467196516324566621081339712008688690588193
<88> (ebina / Msieve 1.54 snfs for P74 x P88 /
July 17, 2023 2023 年 7 月 17 日)
10211-4×10105-1 =
(9
)1055
(9
)105<211> = 13 × 137 × 443 × 981241 × 349297771 × 481451027 × 59527435171
<11> × 1412440914349
<13> × 8499651433594341893
<19> × 168710935828745921765025523
<27> ×
637054995847177156143826425847415218753760409246840555766751675631327727481439275151756349796300043503559810894329<114>
10213-4×10106-1 =
(9
)1065
(9
)106<213> = 137 × 20331739 × 355637342557616979560177337535195333943679009117491
<51> ×
1009479608131806060019048443065569478222787696808616416893362017820653236673864846752908006866218543636111870731835901034089185656458838952898430129307623<154> (Bob Backstrom / Msieve 1.54 snfs for P51 x P154 /
October 16, 2019 2019 年 10 月 16 日)
10215-4×10107-1 =
(9
)1075
(9
)107<215> = 13 × 47 × 269 × 648019 × 3119652209806345927432903387135211663
<37> ×
[300962641629658732589326451771830699525033076890414068240783649750571808964256421656814425599601840487526961345741131138275278506881775735155682880072530638871296987613<168>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1510581852 for P37 /
December 25, 2011 2011 年 12 月 25 日)
Free to factor
10217-4×10108-1 =
(9
)1085
(9
)108<217> = 26759 × 1675234235056052449067
<22> ×
[223076889790405042634680850531961807650971229619374123798825454279469469021590466345210373584533168848955016801998034120779824234431564427365755988629636881476493774287881717909901818565483483<192>]
Free to factor
10219-4×10109-1 =
(9
)1095
(9
)109<219> = 7 × 181 × 72869 ×
10831299765828382192766959830597605158462836234549326892667007513228564264749763452536589132504196614172519620818291049870629330901980928832262516739367614346546114589107657194951362210871044137189112858385098913<212>
10221-4×10110-1 =
(9
)1105
(9
)110<221> = 43 × 853 × 647065444659758051
<18> ×
4213415664308330963220386210586640047915015238597247647618546568496796749967292599996432527281863762020253249464079302971216301982518387322005494964795956186906694066733334728846146395714006880826531<199>
10223-4×10111-1 =
(9
)1115
(9
)111<223> = 13 × 31 × 61 × 321893669064419
<15> ×
1263725310070485966363581831469817059458081577048002396151957683975026505151021913323978733176751740322865809944886251611453389645137312588315678174901737851215722388255644923190115047632309589847943394787<205>
10227-4×10113-1 =
(9
)1135
(9
)113<227> = 13 × 137 × 309883081 × 914429528557
<12> × 77365254862475227
<17> ×
2561191270690028312649314177131903858675190371478112296782639385176564959713700181250562077316126472567827500728880909388400669346146084020003253385834640485382025786534215176603023852981<187>
10229-4×10114-1 =
(9
)1145
(9
)114<229> = 137 × 2683 × 22422079109
<11> × 531868564899232555817803
<24> ×
[2281279809445179269271118108768913503204593672999208604366712464992277807960074187517335502429405914658129607504821030056478301819577367453137812860780292834383866624571572482921619846279747<190>]
Free to factor
10231-4×10115-1 =
(9
)1155
(9
)115<231> = 7 × 19222479506419249783767057388878164113
<38> ×
[7431775011617852785668145514145305272305343368323163761656589537584784406927287589672095510284037708357683403685406757752592706554450347020457798962094880098386556001582527320575107145742213689<193>] (Wataru Sakai / GMP-ECM 6.3 B1=3000000, sigma=1288326603 for P38 /
December 28, 2011 2011 年 12 月 28 日)
Free to factor
10233-4×10116-1 =
(9
)1165
(9
)116<233> = 179 × 521145868775852238708833
<24> × 143984192381168245020338203426400777
<36> ×
7445139762819295687705173465773799824038006807745528751167665354509761868381567615338439560657789642718958929466662319389614829429440046142202588778249607398823957044343741<172> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3768765822 for P36 /
December 25, 2011 2011 年 12 月 25 日)
10235-4×10117-1 =
(9
)1175
(9
)117<235> = 13 × 319433 × 1841089937
<10> × 7175291941
<10> × 1128129520271833258935368982407
<31> ×
[161585848669669826397211356308568125416685522688764250460757582672744502127755939502956342101571445484060803812825475053525146705417051028440081610501394399534801964304584689461649<180>] (Makoto Kamada / GMP-ECM 6.3 B1=1e6, sigma=1846998639 for P31 /
December 22, 2011 2011 年 12 月 22 日)
Free to factor
10237-4×10118-1 =
(9
)1185
(9
)118<237> = 67 × 113 × 2083 × 3929 ×
[16138956649931556378631140679715067269715542735805446339903659224854061954116429571686394306705761550232343354035139328074413714097508892848231759318988953530651308375967180843032337243800329333992836540139099982781464964571567<227>]
Free to factor
10239-4×10119-1 =
(9
)1195
(9
)119<239> = 13 × 271333 × 8967269 × 1606408838653
<13> × 370456279369013
<15> ×
[5312522562142335179927192492302036445727310130920021528468480064983659207546115016140207321464019251033583516390681813333485747712829755608746430254335996365911378526808624305009415271196726368179091<199>]
Free to factor
10241-4×10120-1 =
(9
)1205
(9
)120<241> = 607 × 285978135511
<12> × 39837280914272615384643201199416858813377
<41> ×
[1446068248882562409391944638661164103545397050702960123696492971297462035639236872722042059594121042894851921862812813070374087178271497821609440645913141725708348606009447290031703682631<187>] (Serge Batalov / GMP-ECM B1=3000000, sigma=1771755444 for P41 /
December 25, 2011 2011 年 12 月 25 日)
Free to factor
10243-4×10121-1 =
(9
)1215
(9
)121<243> = 7 × 137 × 1447 × 1021958597842564220323
<22> × 4562134350407007099568592584283
<31> × 4118987117837687170748623815546084170120109077
<46> × 1939611922516629203444058938928521328695726603873690611596368359
<64> × 19346669406991199637363443252707377662635140789892921421117585383422298166749
<77> (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=4152188571 for P31 /
December 24, 2011 2011 年 12 月 24 日) (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3042980000 for P46 /
December 25, 2011 2011 年 12 月 25 日) (Markus Tervooren / GMP-ECM 6.4.2 B1=680000000, x0=1650700349 for P64 /
September 13, 2012 2012 年 9 月 13 日)
10245-4×10122-1 =
(9
)1225
(9
)122<245> = 137 × 233 × 3019 × 10909 × 21793374882698039
<17> × 468329684010500795107
<21> ×
9319643120160196180843888544456954730188003001298033371109590117820137234223037646273515821903182554742901982949020254753866507309192581318489959673364958766617397012829736913052112387899737012893<196>
10247-4×10123-1 =
(9
)1235
(9
)123<247> = 13 × 3058768987
<10> ×
[251483774191532049415679121775654785913137927742030304156876417692922434082868765934290293878028903014626135533402663347576605685299854559783701336750566747876119706755440868825875498169184531187651627946585076016701184411177280933024929<237>]
Free to factor
10249-4×10124-1 =
(9
)1245
(9
)124<249> = 97673 ×
10238243936400028667083021920080267832461376224749930891853429299806497189602039458192130885710482937966479989352226306143969776703899747115374770919291923049358574017384538204007248676706971220296294779519416829625382654367122951071432227944263<245>
10251-4×10125-1 =
(9
)1255
(9
)125<251> = 13 × 1279 × 622613 × 5708468378100596671
<19> × 628474405651689688961
<21> × 57063600035507892546043908902111
<32> ×
[47184738905524134145454343060432520565644262345078027038639504931090819565766978803788961152029753183530303648624238921866612295977340391346554702556207855748979534953489<170>] (Makoto Kamada / GMP-ECM 6.3 B1=1e6, sigma=572207915 for P32 /
December 22, 2011 2011 年 12 月 22 日)
Free to factor
10253-4×10126-1 =
(9
)1265
(9
)126<253> = 31 × 2251 × 443509585179520740306539
<24> × 2579207951045375783656183
<25> ×
125277604935827158315229933408010703548655808150734449047023728255628468916141837168574048764117842309486248345955756205738254510905546089235338996877059014117582160610233982682650850489284140251031167<201>
10255-4×10127-1 =
(9
)1275
(9
)127<255> = 7 × 103592062397
<12> × 16271680105848917987599
<23> ×
[84750658816290934518385908376030109757624330038908993486340439008433760498962764032617203232845477981014409882813310048419041021414520225054186923233678264508837757697726257911212893774293765050467992068185989262606167219<221>]
Free to factor
10257-4×10128-1 =
(9
)1285
(9
)128<257> = 4639 × 3271997439705629
<16> ×
[6588137767383756296979194247479533532128526760920215908750542148086746221354864568095310717643444682499251352474250284799708882263138320245672404042006062425137942493083655308929246988263869799702048899488888754378626568833832063226275029<238>]
Free to factor
10259-4×10129-1 =
(9
)1295
(9
)129<259> = 13 × 137 × 41680973 × 93469889 × 198213791 × 113488165883
<12> × 713270494882046723565521
<24> ×
[89823050570891183417563528709307402593087947267281352356738883206716522575651400273923595285626493741008788511934700485040242801476712279798185428360339949231128132547921578259501347601718097689939<197>]
Free to factor
10261-4×10130-1 =
(9
)1305
(9
)130<261> = 137 × 13364731 × 9524423076330913
<16> ×
[57343016147624832763897830855197917949096236431442448844156565423412517518623779889082321584409947580686826099234720933135241156329660093994886685573303530237758121764200178271092853316694343745441869393115683749904497545673342466575109<236>]
Free to factor
10263-4×10131-1 =
(9
)1315
(9
)131<263> = 13 × 43 × 76764601 × 90730091 × 5813336652999163
<16> × 91428777864098141871960082103
<29> × 7142833346622606161021388134287
<31> ×
6765453957884378226886514185116274131035808086068522911655487192535628579857928108449082818237416328192116577379121559030495273867399421991616183525698194188504640593497<169> (Makoto Kamada / GMP-ECM 6.3 B1=1e6, sigma=1482488096 for P31 /
December 22, 2011 2011 年 12 月 22 日)
10265-4×10132-1 =
(9
)1325
(9
)132<265> = 21764438833
<11> × 3553703645576977
<16> ×
[129291900182028768063548763996592989191926295008229216742655684990636424288915334168136248378265951420574344395000449463692060752633783954413376991989551058714497434639128820418792247846367847553411138827871347844281057495398664461366226239<240>]
Free to factor
10267-4×10133-1 =
(9
)1335
(9
)133<267> = 7 × 111491 ×
[1281333406796448656329722962904116539836014950598190500962922055207531165231786806622443579686765235374540161473635924488459670671687733923430078276657821195048415182775803812479418582153332043457703824908352628078884009856016565078283064488229030658464424418627<262>]
Free to factor
10269-4×10134-1 =
(9
)1345
(9
)134<269> = 107 × 5026350542131
<13> ×
[185935985048927141571560009507912463829361626238146809361271397075002878492926853674341253932523411120339948347593658938264734042135063697213830321564752021438417929317893399026088225531618036242584599968514342663175431923658155148712144837581411670989647<255>]
Free to factor
10271-4×10135-1 =
(9
)1355
(9
)135<271> = 13 × 163 ×
4719207173194903256252949504483246814535158093440302029259084473808400188768286927796130250117980179329872581406323737612081170363378950448324681453515809344030202925908447380840018876828692779613025011798017932987258140632373761208117036337895233600755073147711184521<268>
10273-4×10136-1 =
(9
)1365
(9
)136<273> = 7211 × 7209277 × 4540179907
<10> ×
[4236817228940492509570085395166027864810713754658886081068332439272236967372075932807250507373406930592185071395075185142480074387337900122884872906634881413641989743332995065243082531107200329504564974492654415280258122231525703618127770977053388892331<253>]
Free to factor
10275-4×10137-1 =
(9
)1375
(9
)137<275> = 13 × 137 ×
[56148231330713082537900056148231330713082537900056148231330713082537900056148231330713082537900056148231330713082537900056148231330713082313307130825379000561482313307130825379000561482313307130825379000561482313307130825379000561482313307130825379000561482313307130825379<272>]
Free to factor
10277-4×10138-1 =
(9
)1385
(9
)138<277> = 137 × 292420015334346695330239
<24> ×
[249615952746834851221304896509490739747310137385968606568614776820672627522522440053645040554381829504134704721247863003176894978836467949801146023794966659394638729216871650408197720146629796855688332607067391843932493210547895239298922596556003414393<252>]
Free to factor
10279-4×10139-1 =
(9
)1395
(9
)139<279> = 7 × 229 × 5107 × 2280552563
<10> × 47770508887
<11> × 616775513625917714084417
<24> × 189566442631982729846442495084327710951
<39> × 19117936953341223857282158373514750807553
<41> × 30473911080741856558646525108434662435650171266273
<50> ×
16460493842235377035697927961180911563015335662788363600997790761289120743680872106595246793973500013<101> (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=2625065914 for P39 /
December 25, 2011 2011 年 12 月 25 日) (Wataru Sakai / GMP-ECM 6.3 B1=11000000, sigma=601235746 for P41 /
December 31, 2011 2011 年 12 月 31 日) (NFS@Home + Lionel Debroux / ggnfs-lasieve4I14e on the NFS@Home grid + msieve SVN for P50 x P101 /
September 7, 2015 2015 年 9 月 7 日)
10281-4×10140-1 =
(9
)1405
(9
)140<281> = 173 × 45115105986707399425179251
<26> ×
12812442073199063975564922902004911655709447455046842380181394645108823425993907424298536778648275242983152638416151019403899867525622498415784675564848864355384457136981139505586643579893770042909310893451862162014687038581352739595821231187619524011513<254>
10283-4×10141-1 =
(9
)1415
(9
)141<283> = 13 × 31 × 2478673 × 457958134855434390999164475418455200669987553469
<48> ×
[21859989039719560446280665190158296290059057546376748600861935476215821094117434561088444506915827418977463168590945674444970952620354290280095329011091297792392732709327150200766468546934941559502940993544474855382242293871609<227>] (Dmitry Domanov / GMP-ECM B1=43000000, sigma=2413883493 for P48 /
January 2, 2012 2012 年 1 月 2 日)
Free to factor
10285-4×10142-1 =
(9
)1425
(9
)142<285> = 147139049 × 17216931317
<11> × 530832184408523637414724981249
<30> ×
743633698425480345764758483899685354933508457385383395963408908264848257974356663817798785773951495073914742601737109370984538510798978480864251818096346918823115859798081317881581797288735621323016454148776930077251814925545400163435947<237> (Makoto Kamada / GMP-ECM 6.3 B1=1e6, sigma=2173771306 for P30 /
December 23, 2011 2011 年 12 月 23 日)
10287-4×10143-1 =
(9
)1435
(9
)143<287> = 13 × 947 × 106471719187
<12> × 519582572608109
<15> × 6181086389170213
<16> ×
23754889395448273141474301583260852416354975486877833423866868528525072530421511555950074698967908732830436540014076579449936202866586097115119181340852723925643308513549796839790565065521137004966383979072768887987705153342981316654883527971<242>
10289-4×10144-1 =
(9
)1445
(9
)144<289> = 24772729 × 101729795821
<12> × 241180394009
<12> × 804574681853336796817
<21> × 181464139159888765163413206990329
<33> ×
112688292959853577592301732830326561634015579274402098049482462281084750567841693547220608662819283208247352986193828959671130040813099847755844755162939034489475671108970651519918136725552711384602025939603<207> (Makoto Kamada / GMP-ECM 6.3 B1=1e6, sigma=3272366823 for P33 /
December 23, 2011 2011 年 12 月 23 日)
10291-4×10145-1 =
(9
)1455
(9
)145<291> = 7 × 47 × 137 × 677 ×
32771390287890437114962790871896274879343114522802185891057870637624092556106504527809982040950408333161556629240974292122403371179810359174109840065456264105420843475942079975890743593004763223264174011363348496764857507864887883666545729312707588323566748980752412113603597459706019<284>
10293-4×10146-1 =
(9
)1465
(9
)146<293> = 137 × 37663 × 1152056111
<10> × 68458549661
<11> × 209438803660216141416190885679
<30> ×
[1173291834117758332808136794594896274553083403416078788076222698948469442854948642926220023598768940462064420302466634468251018982357323374066180698001111634560861824906384015830635191934745220946695042521725130489846347979009976546440781<238>] (Makoto Kamada / GMP-ECM 6.3 B1=1e6, sigma=1786422624 for P30 /
December 23, 2011 2011 年 12 月 23 日)
Free to factor
10295-4×10147-1 =
(9
)1475
(9
)147<295> = 13 × 6778589 ×
113479482120950131475625793101008075687909499931441370876627978069000677098025971073149475616419695784885207049613240931227609576156744306340040791516210368127780438808589357324499697049500555805481506095601447893790739772403508027544239210118348092342385254966324566502420625159147881207<288>
10297-4×10148-1 =
(9
)1485
(9
)148<297> = 167 × 3067 × 3259 ×
[599080788051788504441367196749503146806931959724797886032729229632291563015081611418838310210659084893516484176064880823172420439347026838821101962465191107241666939153570772122236340952191381538593798909610781159945146269950688000881674384745273763448413399862604775193523448310501746449<288>]
Free to factor
10299-4×10149-1 =
(9
)1495
(9
)149<299> = 13 × 15299 × 20521 × 110702689998745083827645490263329
<33> × 246547085695419251152615291998087089
<36> ×
[897712009769021566706688254510842011655293507130271290174357811067527791068725157318638188461863018960774068955736967317299516394915448661501859478437976290562362034501695230677762584576559825731597052174557408448723395377<222>] (Makoto Kamada / GMP-ECM 6.3 B1=1e6, sigma=1746278200 for P33 /
December 23, 2011 2011 年 12 月 23 日) (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1701987181 for P36 /
December 25, 2011 2011 年 12 月 25 日)
Free to factor
10301-4×10150-1 =
(9
)1505
(9
)150<301> = 179 × 1567 × 1627079 × 1963860126721318667439420870345069571
<37> ×
[11157291509955696036829306702354717776345658784763158215232534999211722589847960558324246569090219445622890518041626188582973949125660929719514340672777468115717756010345578531323565385990587730881953556088099145415673880900481430177939470559079904585327<254>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=49896649 for P37 /
December 26, 2011 2011 年 12 月 26 日)
Free to factor