9w49w = { 4, 949, 99499, 9994999, 999949999, 99999499999, 9999994999999, 999999949999999, 99999999499999999, 9999999994999999999, … }
1015-5×107-1 = 999999949999999
<15> = 13 × 7963 × 9660061921
<10>
1017-5×108-1 = 99999999499999999
<17> = 8956609 × 11164939711
<11>
1019-5×109-1 = 9999999994999999999
<19> = 7 × 73
2 × 1913 × 140133274241
<12>
1021-5×1010-1 = 999999999949999999999
<21> = 73 × 13698630136301369863
<20>
1023-5×1011-1 = 99999999999499999999999
<23> = 7 × 29 × 877321 × 561494410182773
<15>
1025-5×1012-1 = 9999999999994999999999999
<25> = 2341 × 22072039477
<11> × 193533487207
<12>
1027-5×1013-1 = 999999999999949999999999999
<27> = 13 × 98459 × 781270142120812489697
<21>
1029-5×1014-1 = 99999999999999499999999999999
<29> =
definitely prime number 素数
1031-5×1015-1 = 9999999999999994999999999999999
<31> = 7 × 133187 × 393257 × 27274931056435128523
<20>
1033-5×1016-1 = 999999999999999949999999999999999
<33> = 269 × 3717472118959107620817843866171
<31>
1035-5×1017-1 = 99999999999999999499999999999999999
<35> = 7 × 73 × 1877 × 6156901 × 23079316361
<11> × 733718917297
<12>
1037-5×1018-1 = 9999999999999999994999999999999999999
<37> = 73 × 97 × 1171 × 50377 × 219217 × 109204863203521929061
<21>
1039-5×1019-1 = 999999999999999999949999999999999999999
<39> = 13 × 13239539239733899
<17> × 5810102264905028303377
<22>
1041-5×1020-1 = 99999999999999999999499999999999999999999
<41> = 47 × 163 × 419 × 3323 × 29996257033
<11> × 312538200345577394579
<21>
1043-5×1021-1 = 9999999999999999999994999999999999999999999
<43> = 7 × 22997475217
<11> × 62118620200334514461055724804921
<32>
1045-5×1022-1 = 999999999999999999999949999999999999999999999
<45> =
definitely prime number 素数
1047-5×1023-1 = 99999999999999999999999499999999999999999999999
<47> = 7
2 × 7459 × 40177 × 482281237441
<12> × 14120349335323832944493077
<26>
1049-5×1024-1 = 9999999999999999999999994999999999999999999999999
<49> = 25801 × 976380407 × 2302520591101
<13> × 172401437490400765009157
<24>
1051-5×1025-1 = 999999999999999999999999949999999999999999999999999
<51> = 13 × 67 × 73 × 1787 × 127235302477924244063
<21> × 69171438235751571811213
<23>
1053-5×1026-1 = 99999999999999999999999999499999999999999999999999999
<53> = 73 × 852652992145636311554731
<24> × 1606589112238349389966039573
<28>
1055-5×1027-1 = 9999999999999999999999999994999999999999999999999999999
<55> = 7 × 2131 × 1872582196826688353
<19> × 357995543329132365872773576271699
<33>
1057-5×1028-1 = 999999999999999999999999999949999999999999999999999999999
<57> = 3404730839554091347889762281
<28> × 293708973520787144658793555879
<30>
1059-5×1029-1 = 99999999999999999999999999999499999999999999999999999999999
<59> = 7 × 97 × 317 × 17211022013688365887
<20> × 26993817253793992967719610044427939
<35>
1061-5×1030-1 = 9999999999999999999999999999994999999999999999999999999999999
<61> = 29 × 2017 × 306731299709
<12> × 8999137581647
<13> × 278587252596073
<15> × 222318640049427617
<18>
1063-5×1031-1 = 999999999999999999999999999999949999999999999999999999999999999
<63> = 13 × 179 × 1239643 × 193525564942277550190007
<24> × 1791301297217519873468303098237
<31>
1065-5×1032-1 = 99999999999999999999999999999999499999999999999999999999999999999
<65> = 28181 × 144307 × 287223900610919
<15> × 4686750558921377
<16> × 18266855200714892105010119
<26>
1067-5×1033-1 = 9999999999999999999999999999999994999999999999999999999999999999999
<67> = 7 × 73 × 178439 × 456203021 × 1325485186171
<13> × 340948627029706849
<18> × 531945743351557069609
<21>
1069-5×1034-1 = 999999999999999999999999999999999949999999999999999999999999999999999
<69> = 73 × 482513 × 1034027 × 113837077763
<12> × 42783529213250537213
<20> × 5637361650656357833904227
<25>
1071-5×1035-1 = 99999999999999999999999999999999999499999999999999999999999999999999999
<71> = 7 × 61
2 × 719 × 22713308591
<11> × 8469160191241
<13> × 27758286293920173239480832056163894738553
<41>
1073-5×1036-1 = 9999999999999999999999999999999999994999999999999999999999999999999999999
<73> =
definitely prime number 素数
1075-5×1037-1 = 999999999999999999999999999999999999949999999999999999999999999999999999999
<75> = 13 × 199 × 2953 × 3583 × 36533671226136873562261962807823744276645706145142000100465915323
<65>
1077-5×1038-1 = 99999999999999999999999999999999999999499999999999999999999999999999999999999
<77> = 2609 × 15149 × 11272583863
<11> × 1087839905797
<13> × 206325779304608070973258023209704093143478649449
<48>
1079-5×1039-1 = 9999999999999999999999999999999999999994999999999999999999999999999999999999999
<79> = 7
2 × 29 × 340094622883214671
<18> × 89250497908187067885187373
<26> × 231843812022208525224137871025993
<33>
1081-5×1040-1 = 999999999999999999999999999999999999999949999999999999999999999999999999999999999
<81> = 4229 × 52597673 × 10249000651663
<14> × 81931002008498759
<17> × 5353847507331679718627203983754502271491
<40>
1083-5×1041-1 = 99999999999999999999999999999999999999999499999999999999999999999999999999999999999
<83> = 7 × 73 × 266239 × 735033996682159443736267773296610348827358735672138497398960922130726252031
<75>
1085-5×1042-1 = 9999999999999999999999999999999999999999994999999999999999999999999999999999999999999
<85> = 73 × 389 × 1109 × 1291 × 48259 × 436132348572881
<15> × 1543505227485072799
<19> × 7571205374825151755066433676233596033
<37>
1087-5×1043-1 = 999999999999999999999999999999999999999999949999999999999999999999999999999999999999999
<87> = 13 × 84533810727393720761
<20> × 14130473765000206235844997
<26> × 64397569651470927192571654520543136580919
<41>
1089-5×1044-1 = 99999999999999999999999999999999999999999999499999999999999999999999999999999999999999999
<89> = 354037 × 282456353431985922375344949821628812807700888607687897027711792835212138844245093027
<84>
1091-5×1045-1 = 9999999999999999999999999999999999999999999994999999999999999999999999999999999999999999999
<91> = 7 × 14436181031
<11> × 32266288409
<11> × 6727855881284073515673536775054251
<34> × 455852088953288354385781243603265333
<36>
1093-5×1046-1 = 999999999999999999999999999999999999999999999949999999999999999999999999999999999999999999999
<93> = 83 × 11783 × 4575799569961
<13> × 81972002618942963157750810637
<29> × 2726047955744136809720687062402830504300514663
<46>
1095-5×1047-1 = 99999999999999999999999999999999999999999999999499999999999999999999999999999999999999999999999
<95> = 7 × 794119 × 13537233152295961
<17> × 77743797612443513
<17> × 17093095260501667738725757062563476151646267266405763071
<56>
1097-5×1048-1 = 9999999999999999999999999999999999999999999999994999999999999999999999999999999999999999999999999
<97> = 47 × 611476932635213
<15> × 347954184518253403593489235802593537531879891529468508597556002417980499277345909
<81>
1099-5×1049-1 = 999999999999999999999999999999999999999999999999949999999999999999999999999999999999999999999999999
<99> = 13 × 73 × 15889 × 66318886007185916574422622804504988871359333564163953284711420994211621310406806015467819059
<92>
10101-5×1050-1 =
(9
)504
(9
)50<101> = 73 ×
1369863013698630136986301369863013698630136986301363013698630136986301369863013698630136986301369863<100>
10103-5×1051-1 =
(9
)514
(9
)51<103> = 7 × 94677613487661089747353
<23> × 71269943060057227761238102966919925787
<38> × 211713350845509700316662285486233591892387
<42> (Makoto Kamada / msieve 0.88)
10105-5×1052-1 =
(9
)524
(9
)52<105> = 17977 × 76296532761998391957077
<23> × 67568759393935788396520294335743
<32> × 10790263100751394184921067728683591121445228517
<47> (Makoto Kamada / msieve 0.88 / 13 minutes)
10107-5×1053-1 =
(9
)534
(9
)53<107> = 7 × 191 × 3691 × 2196600844153716033361
<22> × 69822974648095467867384822091
<29> × 132121974192898635000693635977899135467129312194847
<51>
10109-5×1054-1 =
(9
)544
(9
)54<109> = 61 × 2886557 × 123548692649705108867369047
<27> × 459676045988134598841901403865169123469696182453617425910704733986220806321
<75>
10111-5×1055-1 =
(9
)554
(9
)55<111> = 13 ×
76923076923076923076923076923076923076923076923076923073076923076923076923076923076923076923076923076923076923<110>
10113-5×1056-1 =
(9
)564
(9
)56<113> = 58207 × 637053467 × 38613981283
<11> × 192805168162571930340967679
<27> × 362231027180937258755991397381297488820571071563655831949356303
<63>
10115-5×1057-1 =
(9
)574
(9
)57<115> = 7 × 73 × 179 × 487 × 12269 × 561378329685167
<15> × 2355987824090587
<16> × 5198813831459935688390319272941
<31> × 2661061978958705483136906369853516795231313
<43> (Makoto Kamada / msieve 0.88 / 3.8 minutes)
10117-5×1058-1 =
(9
)584
(9
)58<117> = 29 × 67 × 73 × 1091 × 98407050041
<11> × 2990795615219
<13> × 21956678375774763943507732736494249805763129729735373021234563979202159132401812576769
<86>
10119-5×1059-1 =
(9
)594
(9
)59<119> = 7 × 3869743 × 2433114977184083421515578291
<28> × 31856661382193055759391714907693
<32> × 47627407843568202553750431024175318259489165660722673
<53> (Makoto Kamada / msieve 0.88 for P32 x P53 /
May 14, 2005 2005 年 5 月 14 日)
10121-5×1060-1 =
(9
)604
(9
)60<121> = 165149106706211
<15> × 27611806515679263468269678707072310135743844147387
<50> × 2192951110112010923330726818171905685664179773222579832207
<58> (Kenichiro Yamaguchi / GGNFS-0.77.0 / 3.35 hours on Pentium 4 2.4BGHz /
June 1, 2005 2005 年 6 月 1 日)
10123-5×1061-1 =
(9
)614
(9
)61<123> = 13 × 1501496951535744377
<19> ×
51230924474671306449496909813914846348057673568519980025511866368154068911967420164056013166681080066899<104>
10125-5×1062-1 =
(9
)624
(9
)62<125> = 1559 × 13063 × 13470606010794028627413277182587
<32> × 364522066719977324206584098453136145655901219209892192548908624460176317930811233012781
<87> (Makoto Kamada / GMP-ECM 6.0 B1=3000000, sigma=4018826674 for P32 /
May 7, 2005 2005 年 5 月 7 日)
10127-5×1063-1 =
(9
)634
(9
)63<127> = 7 × 70145326613
<11> × 75696543614080484504716919314397
<32> × 269046389681757996273662117203132637492382734106421397965951960948824725296394410537
<84> (Makoto Kamada / GMP-ECM 6.0 B1=3000000, sigma=1156737498 for P32 /
May 8, 2005 2005 年 5 月 8 日)
10129-5×1064-1 =
(9
)644
(9
)64<129> = 43499 × 2294077 × 4370312208203526199
<19> ×
2292980032032098110814478639056559014096341426507710343582937375201191240183016690243284145196522887<100>
10131-5×1065-1 =
(9
)654
(9
)65<131> = 7
2 × 73 × 1560457 × 68144661076921193
<17> ×
262904135862192854578920499183594181666955863150775846848994582475519423179025020205417250611670306282087<105>
10133-5×1066-1 =
(9
)664
(9
)66<133> = 47 × 73 × 829 × 6761 × 50506030969
<11> × 131323299422472148930024532895341746762555988587153
<51> × 78402297452355609333372855409892683866758653385085863058626413
<62> (Kenichiro Yamaguchi / GGNFS-0.77.1 / 18.98 hours on Pentium 4 2.4BGHz /
June 18, 2005 2005 年 6 月 18 日)
10135-5×1067-1 =
(9
)674
(9
)67<135> = 13 × 29 × 1373 × 8933 × 1266483249403
<13> × 3436340835467
<13> ×
49692986175320536435189903896666450296818394840550345711371990802826675859541439517584333278186452143<101>
10137-5×1068-1 =
(9
)684
(9
)68<137> = 4111 × 480019613 × 2198963711051
<13> × 21130146323149142509
<20> × 1090618785308088765443858022747074445985851349080727378101608203604294493462187899806861402827
<94>
10139-5×1069-1 =
(9
)694
(9
)69<139> = 7 × 991 × 15621479 × 25218953 × 151297957 × 14062828861246736581
<20> × 157705627562565010111
<21> × 1021498112798088086668342168804543
<34> × 10675508950385419139525256445370382764881
<41> (Makoto Kamada / msieve 0.88 / 4.1 minutes)
10141-5×1070-1 =
(9
)704
(9
)70<141> = 94199759 × 45991197802202921691212410956857205150918173681404816125050149
<62> × 230821090102296748368286382776743795682256488181171518047153819469404989
<72> (Kenichiro Yamaguchi / GGNFS-0.77.0 / 49.67 hours on Pentium M 1.3GHz /
June 15, 2005 2005 年 6 月 15 日)
10143-5×1071-1 =
(9
)714
(9
)71<143> = 7 × 829 × 51157 × 4226983455085368113131838522651325280201438948126519944281685689
<64> × 79691465468688137474165323187199380282822368311237342631970794505834321
<71> (Sinkiti Sibata / GGNFS-0.77.1 / 29.81 hours /
September 24, 2005 2005 年 9 月 24 日)
10145-5×1072-1 =
(9
)724
(9
)72<145> = 81839 × 98272507 × 152850960360368016481796770480122031721
<39> × 8134661370956745828048953759976786314450618333909639195969999821733276700744096239942518707403
<94> (Sinkiti Sibata / GGNFS-0.77.1 / 46.05 hours /
September 26, 2005 2005 年 9 月 26 日)
10147-5×1073-1 =
(9
)734
(9
)73<147> = 13 × 73 × 430384049 × 3785599269557668325208323767
<28> ×
646759745389145739294384287863834036907191004239058094454150857219428878001033162701912468496120968325731397<108>
10149-5×1074-1 =
(9
)744
(9
)74<149> = 73 × 1697 × 4253 × 94379 × 140363 × 419683619 × 7607082794944975537132889579438640845935478194747
<49> × 4487781874349498160146767447626885491119476257355891326606162986068662363
<73> (Sinkiti Sibata / GGNFS-0.77.1 / 67.74 hours /
September 23, 2005 2005 年 9 月 23 日)
10151-5×1075-1 =
(9
)754
(9
)75<151> = 7 × 293 × 9539 × 15683 × 54258411269768597
<17> × 427783759648005329
<18> × 3517062300547732144252876581838513053265293857
<46> × 399237126270832542031473445700832275264923599868927241797897
<60> (Sinkiti Sibata / GGNFS-0.77.1 gnfs / 20.20 hours for P46 x P60 /
June 25, 2005 2005 年 6 月 25 日)
10153-5×1076-1 =
(9
)764
(9
)76<153> = 2509513 × 43274123425841071
<17> × 2114801649031610767
<19> × 455177219870851008756824233
<27> × 9566038214914990066680193053262313222182794864151543092977389638342613775702680521583
<85>
10155-5×1077-1 =
(9
)774
(9
)77<155> = 7 × 3917570149
<10> × 10161271496069642718424131221
<29> ×
358869973718752654404185936846953904720909020370723694210934810077754221337388343365581003617143319381152823821544833<117>
10157-5×1078-1 =
(9
)784
(9
)78<157> = 577 × 45272775806455281933952896737651553289
<38> ×
382813340282486531088172386717216740018488071404816437186027921826199386850107261127083318834641847198914704002520583<117> (Dmitry Domanov / Msieve 1.40 snfs /
February 17, 2011 2011 年 2 月 17 日)
10159-5×1079-1 =
(9
)794
(9
)79<159> = 13 × 106739 × 14857534192507
<14> × 2626765611797539
<16> ×
18465686473466410276903870361130860351111919239263035492973634016647918547703273690372186370345904031992110078782530263873609<125>
10161-5×1080-1 =
(9
)804
(9
)80<161> = 5507 ×
18158707100054476121300163428363900490285091701470855275104412565825313237697475848919556927546758670782640276012347920828037043762484111131287452333393862357<158>
10163-5×1081-1 =
(9
)814
(9
)81<163> = 7
2 × 73 × 188355214391551
<15> × 306253497499490258753878198867053668223628508492981
<51> × 48464345833391783803874543368704688565508708075967998790372018641705757550965295774547884244677
<95> (Sinkiti Sibata / Msieve 1.40 snfs /
February 18, 2011 2011 年 2 月 18 日)
10165-5×1082-1 =
(9
)824
(9
)82<165> = 73 × 139439 × 1536649 × 5223911989
<10> × 12586886720134902370843
<23> × 131870178594955257437306276375132759
<36> × 7373224087748779991184849451692579658431266927960753896392681141130881987903865811281
<85> (Serge Batalov / GMP-ECM B1=2000000, sigma=1618548819 for P36 /
February 15, 2011 2011 年 2 月 15 日)
10167-5×1083-1 =
(9
)834
(9
)83<167> = 7 × 8387 × 45187201887649
<14> × 79994803123771
<14> × 419361270997727
<15> ×
1123646682049876267224067808715516901685331556014980066498941664374661398625599116450921616136180400540479765625876641767<121>
10169-5×1084-1 =
(9
)844
(9
)84<169> = 29761 × 221315041 × 1340854568113
<13> × 482881178994827
<15> × 61308578225621963
<17> ×
38247085842378671711280627923982417067076531853855227677547877017907923463596655581234322148169151140329088798023<113>
10171-5×1085-1 =
(9
)854
(9
)85<171> = 13 × 112792753 × 345898981 × 22693733390107561469
<20> × 7333376610004568531641601546182858178629037453
<46> × 11847213931064903401742037420878279213240420975977163751550089925407041500062342873486823
<89> (Sinkiti Sibata / Msieve 1.40 snfs /
March 26, 2011 2011 年 3 月 26 日)
10173-5×1086-1 =
(9
)864
(9
)86<173> = 29 × 3426990157189686264072919
<25> ×
1006211195218819846395016884505438000529647361201565035102047998157613731033138454191071989489613701830998373687090785837258865364106967307264367149<148>
10175-5×1087-1 =
(9
)874
(9
)87<175> = 7 × 83 × 3316661 × 10384673060492961190399
<23> ×
499723709759995935719473834221747603268575061459637088689952338007961368110716329404654817689229159505135018073433526380218286801264491313891961<144>
10177-5×1088-1 =
(9
)884
(9
)88<177> = 1163 × 384766987662664036207
<21> × 403034470498744989017198420079296269
<36> ×
5544728558856772659526980526715672796850207579635661712405654249752344958027193172243823558744132193570192182360463231<118> (Ignacio Santos / GMP-ECM 6.3 B1=3000000, sigma=1781052737 for P36 /
February 18, 2011 2011 年 2 月 18 日)
10179-5×1089-1 =
(9
)894
(9
)89<179> = 7 × 73 × 53490901 × 303344107606184779949
<21> ×
12060453078416415243784634714233261847936944163499856827829740860810986566311569303887820834036850935781694272698407688432560496931658736567724154641<149>
10181-5×1090-1 =
(9
)904
(9
)90<181> = 73 × 167 × 11963805217373749299775730148846456183048615858487
<50> ×
68563240441306585503263136530124473067201036470137625213694955036028108050672694117589868489745282026746147543725284489375452647<128> (Wataru Sakai /
September 3, 2011 2011 年 9 月 3 日)
10183-5×1091-1 =
(9
)914
(9
)91<183> = 13 × 67 × 131 × 11722927 ×
747608944576169504316528243887705921067560025681533426431887948559138443619773943382841747656152861067765131163777555020283272126040059174184657402654640948558768279255437<171>
10185-5×1092-1 =
(9
)924
(9
)92<185> = 32275567129940539182804845653243
<32> × 20012109446617285105127291628477094096046291193932078833714854309577123
<71> × 154822204985665031909000436865814751525686261870466742414287877768693212307219350991
<84> (Serge Batalov / GMP-ECM B1=250000, sigma=1987391156 for P32 /
February 15, 2011 2011 年 2 月 15 日) (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs /
April 24, 2012 2012 年 4 月 24 日)
10187-5×1093-1 =
(9
)934
(9
)93<187> = 7 × 1335743 × 97940761 × 530493563 × 7610499301353317
<16> × 14152836164578535507
<20> ×
191107983798405300648044494310785757785629406623881550438407629086671012558524938776606950585336496193894301164619526224793287747<129>
10189-5×1094-1 =
(9
)944
(9
)94<189> = 47 × 43889 × 10045223731
<11> × 3635434492091
<13> × 66541208066534827
<17> ×
199498593310129139880722472301622716472854674661337831882025584669699250035911867121366538563198232765171637876470678991161046024643457586192259<144>
10191-5×1095-1 =
(9
)954
(9
)95<191> = 7 × 29 × 61 × 6277 × 52548341 × 1080822079
<10> × 57454748509727427689
<20> ×
394260123002375217390472588820111946738625080530724061030710288326998702482374519532184154698650634604438444490131223775099662827103330822097031759<147>
10193-5×1096-1 =
(9
)964
(9
)96<193> = 37781 × 9202900459854165792437473438032800675041
<40> ×
28760857251308155921664617810875141636448143576694878018374242003239234965652392139539396418032818368239058839943875649342576987294061287897458611619<149> (Kenji Ibusuki / GGNFS-0.77.1-VC8 with factLat.pl (decomposed + modified) snfs /
June 6, 2011 2011 年 6 月 6 日)
10195-5×1097-1 =
(9
)974
(9
)97<195> = 13 × 73 × 1066797728669
<13> × 3398870802405227
<16> × 9379337015969833571
<19> × 2174585851440765118157573
<25> ×
14248473845519143378014865227877462382725212659308379974323938198158264055404924645636376338550242609441325178778663603219<122>
10197-5×1098-1 =
(9
)984
(9
)98<197> = 73 × 6379 × 186889 × 1742101 × 9066139 × 35893747 × 5655829101810464981
<19> ×
358368656565360025075914398497787822793153711076386770629266029010893465939473984874972081097361362628952500065003732201503048978927155428585104501<147>
10199-5×1099-1 =
(9
)994
(9
)99<199> = 7 × 3838981 × 138432171678904373321
<21> × 74238246170605100499591201206132768084130786653
<47> × 897658871813847986886377309489334093774182248484604281189093
<60> × 40337588788732092015071718788016948003539847063992270376502557533
<65> (Jo Yeong Uk / GMP-ECM 6.3 B1=3000000, sigma=7149967077 for P47 /
April 16, 2012 2012 年 4 月 16 日) (Warut Roonguthai / Msieve 1.49 gnfs for P60 x P65 /
April 21, 2012 2012 年 4 月 21 日)
10201-5×10100-1 =
(9
)1004
(9
)100<201> = 9787583692868854482287
<22> × 4627646415829728241626312770642549
<34> × 1822549599672050204693450129963481617060000879066843822439954570694553173
<73> × 12113927959404615197607882613267050756700962638584677351029921355268013401
<74> (Serge Batalov / GMP-ECM B1=250000, sigma=3222244761 for P34 /
February 15, 2011 2011 年 2 月 15 日) (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs /
June 10, 2012 2012 年 6 月 10 日)
10203-5×10101-1 =
(9
)1014
(9
)101<203> = 7 × 163 × 28277 × 8158229 ×
379913854987302171292091170363870713738773952362389712131824029610792118912369588763280633453307894690104456759114109665183495110691359435608856977442617350764384966737788294623550131520283<189>
10205-5×10102-1 =
(9
)1024
(9
)102<205> = 197933 ×
50522146382866929718642166793814068396881773125249453097765405465485795698544456962709603754805919174644955616294402651402242172856471634340913339362309468355453613091298570728478828694558259613101403<200>
10207-5×10103-1 =
(9
)1034
(9
)103<207> = 13 × 131 × 77137 × 4571583589462441311423261827
<28> × 4443830583614597428120705183589
<31> × 6554279759009679447210495958919
<31> × 5088026524064685939759188615682822547
<37> × 11236320227712343170813854237842051239219707078308142717704805725442773771
<74> (Makoto Kamada / GMP-ECM 6.3 B1=1e6, sigma=80643606 for P31(6554...) /
November 30, 2011 2011 年 11 月 30 日) (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=3318955788 for P31(4443...), Msieve 1.48 gnfs for P37 x P74 /
December 5, 2011 2011 年 12 月 5 日)
10211-5×10105-1 =
(9
)1054
(9
)105<211> = 7 × 73 × 7027 × 16564991262373
<14> ×
168119440183378896965068175623961929908558795814962181269910059207996165845500960741995386380812329418717388112758079872424668423769939351864402937224259251996000175501873450850742547584134879<192>
10213-5×10106-1 =
(9
)1064
(9
)106<213> = 73 × 543480930571103590939787303966767118888178713958765882248124171704987
<69> ×
25205355637025630788265681766963199068004080360815711661966157137034812965665892883069147084562468273130384754879734406297881984637897103436549<143> (Youcef Lemsafer / GGNFS (SVN 440) win64, msieve 1.52 (SVN 959) win64 snfs /
March 24, 2014 2014 年 3 月 24 日)
10215-5×10107-1 =
(9
)1074
(9
)107<215> = 7
2 × 227 × 1217 × 260510477 × 326883275911
<12> × 313739024481320071
<18> × 619556685967449535162050704144580184226195505142425532753194710099901551
<72> × 446292921712052344886694209312185048765139507788732548159496473976544590141157129410156684667833447
<99> (ebina / Msieve 1.54 for P72 x P99 /
August 15, 2023 2023 年 8 月 15 日)
10217-5×10108-1 =
(9
)1084
(9
)108<217> = 317 × 498493 × 1191941 × 14399747227363238161262581
<26> ×
3686990734970316267266601185103339642522764782751480665654297596660317603428676416993391236139086210060048572509783263118174076396598142202464835620098214858668051140655725683599<178>
10219-5×10109-1 =
(9
)1094
(9
)109<219> = 13 × 2273 × 1022927304639631
<16> × 1160823655093759059463439352450276860121368009638921446866267666849936867
<73> ×
28500087359500733821327057688931720673026750436332387848188384572665700241491410170521078851394887518800097086984790345858534663<128> (Erik Branger / GGNFS, NFS_factory, Msieve snfs for P73 x P128 /
September 9, 2018 2018 年 9 月 9 日)
10221-5×10110-1 =
(9
)1104
(9
)110<221> = 357817 × 75430222781
<11> × 817951264453
<12> × 462066252413030932780901126682137746898271901
<45> × 2566965590769287973807648725702899914790850139920267361731
<58> × 3818931897409448084749776093659034196601956874297921055160135332694963008762218609361797809
<91> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3704279063 for P45 /
December 19, 2011 2011 年 12 月 19 日) (Erik Branger / GGNFS, NFS_factory, Msieve snfs for P58 x P91 /
August 31, 2017 2017 年 8 月 31 日)
10223-5×10111-1 =
(9
)1114
(9
)111<223> = 7 × 1481 × 82996399525212524473
<20> × 3273888042983588774204908987549
<31> × 190124909095631828790189368868963965826698183098436892900663806987509
<69> ×
18671740617988918433673861754029831811405756770111750479791860683565328173022394092112893754791766729<101> (Makoto Kamada / GMP-ECM 6.3 B1=1e6, sigma=2668758302 for P31 /
December 1, 2011 2011 年 12 月 1 日) (Erik Branger / GGNFS, NFS_factory, Msieve snfs for P69 x P101 /
September 15, 2019 2019 年 9 月 15 日)
10225-5×10112-1 =
(9
)1124
(9
)112<225> = 47 × 311 × 49613 × 248979577657
<12> × 27330971655623321845381
<23> × 36068168239288287767347
<23> ×
5618280004639074954800767089322574978693995654985355181860908594187428247427454809295074134965776189990006919773571793522685615543240833523838659065557564320181<160>
10227-5×10113-1 =
(9
)1134
(9
)113<227> = 7 × 73 × 6679 × 23599 × 1959319176653
<13> ×
[633678346444505962477704707956362332115034626460882119999980858184076670370308283235708819456120586779257840399174628816852081260368723266056503158721830877339099878849123329145822758028732930448643899693<204>]
Free to factor
10229-5×10114-1 =
(9
)1144
(9
)114<229> = 29 × 61 × 73 × 97 ×
[798321035064734655251846736092389374059627715758434122029277785304171091693637277568799506382137598773267964678125740193284699083663166321645620662272760911072704773137519020996561711134079694313295821292323688204862589391<222>]
Free to factor
10231-5×10115-1 =
(9
)1154
(9
)115<231> = 13 × 803917760860919
<15> × 7662764517802885758705239
<25> ×
12487041196664378440754563805816322444997978312393282857335345001834147513319763269476366077331026573713316577846365789243738394171773036685471219334156575729935843819381884833451976174593003<191>
10233-5×10116-1 =
(9
)1164
(9
)116<233> = 2601853 × 8008704089
<10> × 1530055823483843
<16> × 340355694449203541
<18> × 8679068493733992028993
<22> × 107558011802802556289783
<24> × 721403395052706610131515270626453
<33> ×
13684238535017068762204594745181110647171352604736152454146148400869425183150149056304939965878537735299167<107> (Makoto Kamada / GMP-ECM 6.3 B1=1e6, sigma=284002450 /
December 1, 2011 2011 年 12 月 1 日)
10235-5×10117-1 =
(9
)1174
(9
)117<235> = 7 × 269 × 14737 ×
360363334169496389717954789608894430155838042771596205244360394901997569637601694082448464169307919694184142997071939620690923899876507089013455282207554073148927967729895861122601696424810136271034452860890275454885735813819869<228>
10237-5×10118-1 =
(9
)1184
(9
)118<237> = 340531604455394509
<18> × 386231622468588965771
<21> × 141340362428255634092409831593
<30> ×
53793344464684711694947045851488822072849604422189427963516489300901205012293634322037416448101596793018822600276954511585201671697321648080496054717023194110120333445737<170> (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=2999262989 for P30 /
December 4, 2011 2011 年 12 月 4 日)
10239-5×10119-1 =
(9
)1194
(9
)119<239> = 7 × 111356917170875718624168336585576613387
<39> ×
[128287623693758025152832912337296027298175369590539017454373661220499465481141553514475589431580452729703391388225905931766998252406293669289920300639028312049431066446612735158259218419515660578578811<201>] (Wataru Sakai / GMP-ECM 6.3 B1=3000000, sigma=3327405000 for P39 /
December 12, 2011 2011 年 12 月 12 日)
Free to factor
10241-5×10120-1 =
(9
)1204
(9
)120<241> = 181 × 31326389 × 884186044251305848276972849
<27> ×
[1994653359325654121672948287747608009545659738798523815002525964795088792529940030698542258070195464078323627914436847901329579678287094813124553901162078880965026895699899277708926210442618695569567905639<205>]
Free to factor
10243-5×10121-1 =
(9
)1214
(9
)121<243> = 13 × 73 × 1069 × 2797 ×
352422490543682553253803956644975345486437075605546147024346938948837338767596037772722888799740017364849940510572583615079049931146918463363777440634055256908018523271125067430184541628367842667542613236809643711022400739313028414507<234>
10245-5×10122-1 =
(9
)1224
(9
)122<245> = 73 × 22369 × 36625567109
<11> × 263212434106076400754443306937
<30> × 163222481788009753304251858616678363833
<39> × 14330047390534455341614689556894667052960470533
<47> ×
2715890195685046445941646167332658163307170707411127857765335475908721729333659918091655671222089370774811117553071<115> (Makoto Kamada / GMP-ECM 6.3 B1=1e6, sigma=36266829 for P30 /
December 1, 2011 2011 年 12 月 1 日) (Serge Batalov / GMP-ECM B1=3000000, sigma=1138556035 for P39 /
December 4, 2011 2011 年 12 月 4 日) (Wataru Sakai / GMP-ECM 6.3 B1=11000000, sigma=3561897294 for P47 /
December 12, 2011 2011 年 12 月 12 日)
10247-5×10123-1 =
(9
)1234
(9
)123<247> = 7
2 × 29 × 26203 × 1329313 ×
[202035484417215585307330151603917619567030615878414836490113410556308230775257323875494551984403768362807369854404647804430521947746677028123442526290929183892925393332214651748069587056028955696685819522664015938159935644520921928321<234>]
Free to factor
10249-5×10124-1 =
(9
)1244
(9
)124<249> = 67 × 268199 × 52525648820030508127
<20> × 1144763204527681894789
<22> × 27016802221019958728332211341929526202160898369
<47> × 55742535758857773897075735642790240818401176555154951141597161
<62> × 614554341456702783356536948306774987822484409636127080096389597392518465654483847272409339889
<93> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3466375606 for P47 /
December 19, 2011 2011 年 12 月 19 日) (Jason Parker-Burlingham / CADO-NFS-3.0.0-dev for P62 x P93 /
April 20, 2021 2021 年 4 月 20 日)
10251-5×10125-1 =
(9
)1254
(9
)125<251> = 7 × 97 × 174419736017
<12> × 7455099951890177
<16> × 9544675843131794165022618471409
<31> ×
11866426318239577810180425027532350581741722589419898353146225103264604791804811573904038197622977543266794243520797271362024857764938020422154722310211168050226004513466164258233337838895401<191> (Serge Batalov / GMP-ECM B1=3000000, sigma=3486331634 for P31 /
December 4, 2011 2011 年 12 月 4 日)
10253-5×10126-1 =
(9
)1264
(9
)126<253> = 205537 ×
[48653040571770532799447301459104686747398278655424570758549555554474376876182877048901171078686562516724482696546120649810009852240715783532891888078545468699066348151427723475578606284999781061317427032602402487143434028909636707746050589431586527<248>]
Free to factor
10255-5×10127-1 =
(9
)1274
(9
)127<255> = 13 × 15679 × 70305632609345124151
<20> × 1225242102683278938464497
<25> × 8111230537121042023133801
<25> ×
[7021655372446804983181338493785202324871759346669085992106879037390711097819114900912457473188156189735784262871357991144707881258966552799458092819985916913900382055865073614858971<181>]
Free to factor
10257-5×10128-1 =
(9
)1284
(9
)128<257> = 83 × 47717 × 2109647986622447
<16> × 171816970279810093184987179024821655801
<39> ×
69658276364907624189192917920856677179187159881623592822304945939401732802219085316461292864410533889090691052964394751209963478110310185882643846926109851492162883614208848107985592444955876448647<197> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2975399048 for P39 /
December 20, 2011 2011 年 12 月 20 日)
10259-5×10129-1 =
(9
)1294
(9
)129<259> = 7 × 73 × 22291 × 34913579819
<11> × 1747369528619321
<16> × 35246759705184047
<17> × 290280233607778049
<18> × 51228873852546287153591
<23> × 25754077693559419773913191481
<29> × 305118707424443433113965269725917
<33> ×
3493848755359579215538978646574489287626062629853067620769085262631393146180922421619038130531627829205045981<109> (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=2749048265 for P33 /
December 4, 2011 2011 年 12 月 4 日)
10261-5×10130-1 =
(9
)1304
(9
)130<261> = 73 × 50129551 ×
273264568776734133722103629027719338365934493668489044119644843844100319464234382170833753724684541831027710308064994697712306063469456765392007972106851431830495809022878145008446243012689535133281704164902052743574316676743948920864322397354609000713<252>
10263-5×10131-1 =
(9
)1314
(9
)131<263> = 7 × 439 × 11959 × 9904962203
<10> × 1351888784680508161421046410243595859
<37> ×
203211736064201892105164404621333450028327749999138451932527637487835177586928824782206034111682820968977146127728757506259079976608507157515070699267646270769974345897646166657489763827993084604236291278765241<210> (Serge Batalov / GMP-ECM B1=6000000, sigma=1810957502 for P37 /
December 11, 2011 2011 年 12 月 11 日)
10265-5×10132-1 =
(9
)1324
(9
)132<265> = 5616235134305678745660899278719002510083
<40> ×
1780552231318975083949307510644529380594980955128340668432098541313158580504224662174437828489671284476228876763563811423387669224839043145236832213728679312162105617995512683187059754487428657098809888413664711257802720903253<226> (Serge Batalov / GMP-ECM B1=11000000, sigma=1201685269 for P40 /
December 5, 2011 2011 年 12 月 5 日)
10267-5×10133-1 =
(9
)1334
(9
)133<267> = 13 × 130785803 × 7527180343
<10> ×
[78138257673580139319031313073456279363315825621999477402707347367948301733054778016512546175497395524387826188363512235657467738416799179373463167131082626634672748456142216052677961183224006900601010669147701907014642184010386050072773677743482487<248>]
Free to factor
10269-5×10134-1 =
(9
)1344
(9
)134<269> = 4091 × 5323 ×
[4592128733165313465825125400703413095088796386068161058628947411079511652825148774638664906534337435956450639001601413053116739764937173020343635422082986838086546288910197386683827757884420987442686215297455368297219838014495789086833618405031540347384435980743<262>]
Free to factor
10271-5×10135-1 =
(9
)1354
(9
)135<271> = 7 × 1783 × 1643852502677134847
<19> × 2087232354721855190879
<22> ×
[233516176663272730821457586485917862067003811937762661985080954817838109955257841588795943461973939311309156669235607712399242030554313226145002176381003228989115702046887040577074403432511437232660622564473874670707529783455583<228>]
Free to factor
10273-5×10136-1 =
(9
)1364
(9
)136<273> = 199 × 33739 × 114269 × 7751782388461126693
<19> ×
168145294442047760066524960534530403113154024693203540849678869056987306414790861118963127762532468528387774187381864742909015993879813356490839278493995992483891980626780385781355572342867088490464019995180135644161568438842275748133364483627<243>
10275-5×10137-1 =
(9
)1374
(9
)137<275> = 7 × 73 × 193 × 46591 × 544121066551
<12> × 155462224082098694051620606144568061839
<39> ×
[257276039545626255375078726806881213870654648018005970948117924143709999902364872735226095669930002293170499478288750469203723129430928582989998628352202073091775322546821085431711620057663662468333496381517634399287<216>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=852055419 for P39 /
December 18, 2011 2011 年 12 月 18 日)
Free to factor
10277-5×10138-1 =
(9
)1384
(9
)138<277> = 73 × 11887 × 33679 × 2064077 × 7087667 × 1764163334119819
<16> ×
13257990340519329977047641202119026659688040535267303331540044172864726214664197844454234602923737558743219991242471493807122198610937908474113720208164556581113910719778262923043485319078389206315262502301282691739335593530107539021038611<239>
10279-5×10139-1 =
(9
)1394
(9
)139<279> = 13 × 2539 × 179813371702032654476659024831
<30> × 13630346088404401801227555637371700433
<38> ×
[12361326540940833213063227678635700053086110917075968699447833807705353590753902990214926611066469441191897441116444395277122726897913027664611193588643100407892484804147506606870599131787306537649622767440159<209>] (Makoto Kamada / GMP-ECM 6.3 B1=1e6, sigma=3242843616 for P30 /
December 2, 2011 2011 年 12 月 2 日) (Dmitry Domanov / GMP-ECM B1=3000000, sigma=698156847 for P38 /
December 12, 2011 2011 年 12 月 12 日)
Free to factor
10281-5×10140-1 =
(9
)1404
(9
)140<281> = 47 × 2267 × 22433 × 52957 × 54413 × 859373 × 13440278071967
<14> ×
[1257034685283032429378444318949173373436541389514371407701928863591113517667298889748771510882954572815863137527608164212248607945837579868274571833107684103340553527010353539350123581361907668815063959510911737863887160894579724078679174745337<244>]
Free to factor
10283-5×10141-1 =
(9
)1414
(9
)141<283> = 7 × 223300691 × 903368061880755812827
<21> × 6635200721161906278741334394290613
<34> ×
1067316185814560290900633545748834221174437737347196588519916483980125881557412433225403950134350216301917352293659425847032223444185004887209766195820727569839228768875287347263518043714084245563007935746714446482939077<220> (Serge Batalov / GMP-ECM B1=6000000, sigma=999014207 for P34 /
December 11, 2011 2011 年 12 月 11 日)
10285-5×10142-1 =
(9
)1424
(9
)142<285> = 29 × 223 × 787 × 20477593 ×
[9594967316179506343695316308752401281439878316026886337569166060329883303573833018818404826753109487790492979651496930532519872872467612725529250877159278953749455474887096390041889236679584173751600710019601596871465541074176213700712998988786433301914816486976736405967<271>]
Free to factor
10287-5×10143-1 =
(9
)1434
(9
)143<287> = 7 × 293 × 1429 × 17099 ×
[1995406573230352966713876410483239490290390934147627968075486483523225212481113886590999686353793698637143941219711768197330801851259463936489216969211404220415813025839875136582838747837685374176817109858841760127473017859349110845906097608025763696599606952224145098050147619<277>]
Free to factor
10289-5×10144-1 =
(9
)1444
(9
)144<289> = 36359373608199621142417
<23> ×
[275032240867451022944381080541332503190337643534183145391929455132046636576222408138779178535650807620509010079759273448285217376781806574449323798171064042626065326923288685020458962054556809266388154776200874556722593537863693534800251879822098523041490811540719247<267>]
Free to factor
10291-5×10145-1 =
(9
)1454
(9
)145<291> = 13 × 73 × 7073148731016150918608979481
<28> ×
[148977608112136120049561771613235867057102963221018497547016862169837496895219229126098368675145070944775282908915081878363462392162182562452442128753618754257946282537573418748917853160611587967583626747190832219986240997878153174014850410342281877837413361371<261>]
Free to factor
10293-5×10146-1 =
(9
)1464
(9
)146<293> = 73 × 809 × 4858492338989264456942199873515203775999966112458946931501
<58> ×
348519510996327796252049933075911896911312131299814938942919846910434148014018584623746511781654108488584125644258364911748225315573504828542386271319621333089243376125050985635745337847565162184280262090305378839737924461515343307<231> (kh9 / GMP-ECM B1=110000000, sigma=2829420857 for P58 /
December 11, 2012 2012 年 12 月 11 日)
10295-5×10147-1 =
(9
)1474
(9
)147<295> = 7 × 11617 × 249063351709
<12> × 987989700150650117
<18> × 4569838558017123384403
<22> ×
[109356566887638339980607624699265267026519061693597031433481314472737142918020083983699767084964730151628487228385682907182972926017341406484846345268476850057488364044587568343621352518993519475089838012950589171601944864135946917178000419<240>]
Free to factor
10297-5×10148-1 =
(9
)1484
(9
)148<297> = 191 × 23039 × 77899 × 644794778093
<12> × 678492069769279
<15> ×
[6668141970382211765427030058480590988911648800557362294402508334100826785229146046791305344073658362471013389802137829766928110217096884327009150608504194334882468154561276494333156333346035611933344819166808435758005222404202526482943586900076063882564449167<259>]
Free to factor
10299-5×10149-1 =
(9
)1494
(9
)149<299> = 7
3 × 181 × 25253 ×
[63784378225916854655760083133854122023249483680288129140587230329591250779503305165835113023261596971557013010454905726979201015816740475280836541866366970577776100617162399247575491520871837743303493561798447463868348701457440321076170233537679494685919021066652775109455763052169091782001<290>]
Free to factor
10301-5×10150-1 =
(9
)1504
(9
)150<301> = 193 × 977 × 18163448517793
<14> × 7949874091726382530114753
<25> × 45417409244607996230213972304678438124284876923
<47> ×
[8086623294285424002309687982701832750562965122141889124968324699797819596742573000282126886359431100549215672379183021873737918879942209871663576144278098017140257137178477046852781243787214322580858309836104477<211>] (Dmitry Domanov / GMP-ECM B1=43000000, sigma=3380296037 for P47 /
December 14, 2011 2011 年 12 月 14 日)
Free to factor