9w29w = { 2, 929, 99299, 9992999, 999929999, 99999299999, 9999992999999, 999999929999999, 99999999299999999, 9999999992999999999, … }
1017-7×108-1 = 99999999299999999
<17> =
definitely prime number 素数
1019-7×109-1 = 9999999992999999999
<19> =
definitely prime number 素数
1021-7×1010-1 = 999999999929999999999
<21> = 1531031 × 653154638887129
<15>
1023-7×1011-1 = 99999999999299999999999
<23> = 17 × 114203 × 3339151 × 15425438099
<11>
1025-7×1012-1 = 9999999999992999999999999
<25> = 17 × 588235294117235294117647
<24>
1027-7×1013-1 = 999999999999929999999999999
<27> = 233 × 4291845493561931330472103
<25>
1029-7×1014-1 = 99999999999999299999999999999
<29> = 80146861 × 10577745863
<11> × 117956086093
<12>
1031-7×1015-1 = 9999999999999992999999999999999
<31> = 331 × 12024223661137
<14> × 2512551430674317
<16>
1033-7×1016-1 = 999999999999999929999999999999999
<33> = 1945549 × 38158024423
<11> × 13470134899397837
<17>
1035-7×1017-1 = 99999999999999999299999999999999999
<35> = 19469 × 37397 × 1653521 × 609570613 × 136265481091
<12>
1037-7×1018-1 = 9999999999999999992999999999999999999
<37> = 139 × 71942446043165467575539568345323741
<35>
1039-7×1019-1 = 999999999999999999929999999999999999999
<39> = 47 × 107 × 289084649652697963
<18> × 687849352919694137
<18>
1041-7×1020-1 = 99999999999999999999299999999999999999999
<41> = 6485243 × 15419622672581428328791997462546893
<35>
1043-7×1021-1 = 9999999999999999999992999999999999999999999
<43> = 2215006022870241309047
<22> × 4514660410287207794617
<22>
1045-7×1022-1 = 999999999999999999999929999999999999999999999
<45> = 2503195320607
<13> × 399489401313481975270969442772257
<33>
1047-7×1023-1 = 99999999999999999999999299999999999999999999999
<47> = 1879 × 37509061 × 386057758970623
<15> × 3675231857582380954427
<22>
1049-7×1024-1 = 9999999999999999999999992999999999999999999999999
<49> = 67 × 179 × 2791 × 514375321 × 1752364011187
<13> × 331442259440932014499
<21>
1051-7×1025-1 = 999999999999999999999999929999999999999999999999999
<51> = 913873 × 1911745747330748779
<19> × 572379433868351998767479597
<27>
1053-7×1026-1 = 99999999999999999999999999299999999999999999999999999
<53> = 204923 × 487988171166730918442536949488344402531682632013
<48>
1055-7×1027-1 = 9999999999999999999999999992999999999999999999999999999
<55> = 17 × 71 × 43093483 × 7893526957
<10> × 25829075603
<11> × 942977158192333734995149
<24>
1057-7×1028-1 = 999999999999999999999999999929999999999999999999999999999
<57> = 17 × 131 × 7481 × 397314300333200966923
<21> × 151072679292396361548824834599
<30>
1059-7×1029-1 = 99999999999999999999999999999299999999999999999999999999999
<59> = 368572252583
<12> × 1419515173027907
<16> × 191133725113584418887941927137379
<33>
1061-7×1030-1 = 9999999999999999999999999999992999999999999999999999999999999
<61> = 769 × 1308411588478906396849933
<25> × 9938693057181485043670562261622587
<34>
1063-7×1031-1 = 999999999999999999999999999999929999999999999999999999999999999
<63> = 317 × 10987 × 49741 × 4649339 × 20711497 × 2900338505025763
<16> × 20667869429991283340429
<23>
1065-7×1032-1 = 99999999999999999999999999999999299999999999999999999999999999999
<65> = 2164535610451
<13> × 46199286127320456491163235758678361809365685983782949
<53>
1067-7×1033-1 = 9999999999999999999999999999999992999999999999999999999999999999999
<67> = 367 × 1013 × 33617 × 4045763 × 956464973 × 206774046923017974178724028448156679002043
<42>
1069-7×1034-1 = 999999999999999999999999999999999929999999999999999999999999999999999
<69> = 156511 × 605778599 × 10547297772287232120877843824250903001948313146748395191
<56>
1071-7×1035-1 = 99999999999999999999999999999999999299999999999999999999999999999999999
<71> = 1619 × 1647280127041391
<16> × 1643479245242580227
<19> × 22815052276530734674485880911517753
<35>
1073-7×1036-1 = 9999999999999999999999999999999999992999999999999999999999999999999999999
<73> = 131 × 1877 × 4730269 × 38584648463453530566055973
<26> × 222825066635850970198951407381447121
<36>
1075-7×1037-1 = 999999999999999999999999999999999999929999999999999999999999999999999999999
<75> = 2267 × 35831 × 419882909269851194684129
<24> × 29319823610349718187062827530908751420618203
<44>
1077-7×1038-1 = 99999999999999999999999999999999999999299999999999999999999999999999999999999
<77> = 336899 × 1282657 × 231414060364729755320541953515328899522337120965491931492340421493
<66>
1079-7×1039-1 = 9999999999999999999999999999999999999992999999999999999999999999999999999999999
<79> = 331 × 4931 × 6126846554966084840894985237363225809214287070944594313918786198175302559
<73>
1081-7×1040-1 = 999999999999999999999999999999999999999929999999999999999999999999999999999999999
<81> = 373 × 1291139 × 10899697 × 75411827 × 39669772243
<11> × 571482481373
<12> × 111429877238054909080802692544333437
<36>
1083-7×1041-1 = 99999999999999999999999999999999999999999299999999999999999999999999999999999999999
<83> = 761 × 12149 × 44189496733
<11> × 810297372421463
<15> × 6465752309654563
<16> × 46718862642650617634127078501296683
<35>
1085-7×1042-1 = 9999999999999999999999999999999999999999992999999999999999999999999999999999999999999
<85> = 97014041 × 357566120950464235927585600631
<30> × 288276368143785857996479750280845867947450935969
<48>
1087-7×1043-1 = 999999999999999999999999999999999999999999929999999999999999999999999999999999999999999
<87> = 17 × 58823529411764705882352941176470588235294113529411764705882352941176470588235294117647
<86>
1089-7×1044-1 = 99999999999999999999999999999999999999999999299999999999999999999999999999999999999999999
<89> = 17 × 5571559771
<10> × 575207833999709488073
<21> × 27427091052889042865456723
<26> × 66922128285880634318721216056983
<32>
1091-7×1045-1 = 9999999999999999999999999999999999999999999992999999999999999999999999999999999999999999999
<91> = 227 × 39079 × 818861533042451
<15> × 1376639513046334505087599718409948368697036378074109797717236234033553
<70>
1093-7×1046-1 = 999999999999999999999999999999999999999999999929999999999999999999999999999999999999999999999
<93> = 173 × 31464780866796657207031
<23> × 183708472189265552171256057870678971434280389094498140482388867648573
<69>
1095-7×1047-1 = 99999999999999999999999999999999999999999999999299999999999999999999999999999999999999999999999
<95> = 1467136308647
<13> × 225730318172089
<15> × 135932507737607079122779
<24> × 2221346521636550338659780833602789543266260707
<46>
1097-7×1048-1 = 9999999999999999999999999999999999999999999999992999999999999999999999999999999999999999999999999
<97> = 41941 × 82183891 × 1813347328491823674543198431724239211389
<40> × 1599902521762693438787591381215338979751428261
<46> (Makoto Kamada / GGNFS-0.50.2-k2 / Total time: 0.43 hours (actual time: 0.52 hours))
1099-7×1049-1 = 999999999999999999999999999999999999999999999999929999999999999999999999999999999999999999999999999
<99> = 47 × 5584583 × 3809880835271111748868230131782901819435643037649573873781794889038001698300100892121315399
<91>
10101-7×1050-1 =
(9
)502
(9
)50<101> = 139 × 673 × 1068981367654761777502218136337883630688317102632893625664104674655520754273253017199910205565117
<97>
10103-7×1051-1 =
(9
)512
(9
)51<103> = 109 × 347 × 479 × 95597 × 96601 × 107581 × 279863 × 22761204866749602731
<20> × 87218039076828850959861664839941665588630867531057358107
<56>
10105-7×1052-1 =
(9
)522
(9
)52<105> = 263 × 373 × 2667600042931
<13> × 6828094416452291
<16> × 6583470735125718395053
<22> × 85008093615649948794042003413989433068137041908577
<50>
10107-7×1053-1 =
(9
)532
(9
)53<107> = 383573 ×
260706566937714594092910606325262727042831481882197128838578314949175254775492539881587077296890031363<102>
10109-7×1054-1 =
(9
)542
(9
)54<109> = 15575939 × 49294699 × 3251950302580251089849442830097243673
<37> × 4004991911122812313206006402584252891736108995278772639383
<58> (Kenichiro Yamaguchi / msieve.exe 0.88 for P37 x P58 / 10:17:22 on Pentium4 2.4BGHz /
May 28, 2005 2005 年 5 月 28 日)
10111-7×1055-1 =
(9
)552
(9
)55<111> = 733 × 2791 × 5393 × 1336891 × 67796889490723267706722347052500937570521090827341589269006205897234820145257628597246880415991
<95>
10113-7×1056-1 =
(9
)562
(9
)56<113> = 18699203 × 67228147867
<11> × 261946999079
<12> × 303677300083244831632250154883642907712328922365362173528681542177077487261849867481
<84>
10115-7×1057-1 =
(9
)572
(9
)57<115> = 67 × 1597 × 78853 × 15698663 × 4453729593176247033369383
<25> × 7402911973339244342588281
<25> × 2289881259627362886427200690921129350158747087133
<49>
10117-7×1058-1 =
(9
)582
(9
)58<117> = 2039 × 7753 × 5869294693987
<13> × 10777724414020322846126170248245847850469639190337549637670845306707420235947470188250395037359131
<98>
10119-7×1059-1 =
(9
)592
(9
)59<119> = 17 × 22395757 × 41946286906913353
<17> × 123658819313817785102748137207
<30> × 50636853728000579351440494333921542032222013836569228421518693701
<65> (Kenichiro Yamaguchi / GMP-ECM 6.0 B1=3000000, sigma=1215098690 for P30 /
May 20, 2005 2005 年 5 月 20 日)
10121-7×1060-1 =
(9
)602
(9
)60<121> = 17
2 × 2679387385562077
<16> × 1335873289098187876976634772360781468609
<40> × 9667215115747825770030400192699700127010095463540775936360554987
<64> (Anton Korobeynikov / GGNFS-0.77.1 / 3.44 hours /
May 31, 2005 2005 年 5 月 31 日)
10123-7×1061-1 =
(9
)612
(9
)61<123> = 269 × 673 × 98037133 ×
56343270642372413547462477350259424716300787338975763923358531262102920779426938345908773453625377377787088519<110>
10125-7×1062-1 =
(9
)622
(9
)62<125> = 71 × 26144460523
<11> × 472286871059656343279061123671
<30> × 55356921844173914450279278756291
<32> × 2060554760283018418628476621621143873632350669384223
<52> (Kenichiro Yamaguchi / GGNFS-0.77.0 / 6.20 hours on Pentium 4 2.4BGHz /
June 5, 2005 2005 年 6 月 5 日)
10127-7×1063-1 =
(9
)632
(9
)63<127> = 97 × 701 × 54799 × 279354377 × 717976517 × 2835109296977
<13> × 145195695426547
<15> × 61474340889102797765273
<23> × 528754973956412310078619620613655505879245820268651
<51>
10129-7×1064-1 =
(9
)642
(9
)64<129> = 139 × 179 × 13099 × 84155191976690091375532717318429
<32> × 36459701740409770008678743621002179900547434706089737737604298284369304773209328624822449
<89> (Makoto Kamada / GMP-ECM 6.0 B1=3000000, sigma=2973101344 for P32 /
May 30, 2005 2005 年 5 月 30 日)
10131-7×1065-1 =
(9
)652
(9
)65<131> = 47 × 769 × 49199 × 485897117863919
<15> × 758238983448091
<15> × 152640259108836065578323345688715951253788676773987291695922346345612194208611759982230106883
<93>
10133-7×1066-1 =
(9
)662
(9
)66<133> = 12659 × 746602123 × 4410268848809
<13> × 4106583907717825483024796569
<28> × 16190892924788094823835303809
<29> × 3608234986227038227691374458344815738114921516487663
<52> (Makoto Kamada / GMP-ECM 6.0 B1=3000000, sigma=810115398 for P28, msieve 0.88 for P29 x P52 /
May 26, 2005 2005 年 5 月 26 日)
10135-7×1067-1 =
(9
)672
(9
)67<135> = 1759 × 11202396544008702793
<20> ×
50748501006699662535505093076974286313180024697117500554973596240482675920806086770558738333064264593039698537177<113>
10137-7×1068-1 =
(9
)682
(9
)68<137> = 15511 × 66037 × 30477113 × 7097309627
<10> × 145231263439
<12> × 225171188093
<12> × 20720716874674361792249
<23> × 666081816298578810840362779064227851634546720747815255220148963909
<66>
10139-7×1069-1 =
(9
)692
(9
)69<139> = 11640271 × 8594963011
<10> × 100985135531476103167999
<24> × 889631446596705888137903
<24> × 1112564806943572976320554443825519370722463398257969779350986386082506281707
<76>
10141-7×1070-1 =
(9
)702
(9
)70<141> = 2144063848942308174619150267
<28> ×
466404020800645335317603705077097139450003543693708997687015676910602837533958429083018374604282996186473046432397<114> (Makoto Kamada / GMP-ECM 6.0 B1=3000000, sigma=3912877471 for P28 /
May 29, 2005 2005 年 5 月 29 日)
10143-7×1071-1 =
(9
)712
(9
)71<143> = 631 × 4993 × 113021 × 711889 × 8174189 × 1018445325323
<13> × 124081059014402609188910712167753797
<36> × 381900090388147519926382272844193239916998973958499765471774268565374743
<72> (Kenichiro Yamaguchi / GMP-ECM 6.0 B1=11000000, sigma=4224398204 for P36 /
July 8, 2005 2005 年 7 月 8 日)
10145-7×1072-1 =
(9
)722
(9
)72<145> = 107 × 269 × 4025029 × 7691253463
<10> × 10037114963
<11> × 1357432142821
<13> ×
823703246538141133108995931540283390161164324078153224904984920530185346213774608028999938448706464693<102>
10147-7×1073-1 =
(9
)732
(9
)73<147> = 1523 × 33359 × 163141831126890373902190714753
<30> × 6771196048922895791023493473450472633
<37> × 17817893241367170326405819488787733173549447168880253186019589405975907843
<74> (Makoto Kamada / GMP-ECM 6.0 B1=3000000, sigma=1818063565 for P30 /
May 6, 2005 2005 年 5 月 6 日) (Sinkiti Sibata / GGNFS-0.77.1 gnfs / 50.84 hours for P37 x P74 /
July 29, 2005 2005 年 7 月 29 日)
10149-7×1074-1 =
(9
)742
(9
)74<149> = 9721 × 4189623909880529
<16> × 7690770857933312118597753750628516117910872540228607770081
<58> × 319259732546553198230034160874462037912072645302944776190499583078669031
<72> (Sinkiti Sibata / GGNFS-0.77.1 / 64.62 hours /
September 20, 2005 2005 年 9 月 20 日)
10151-7×1075-1 =
(9
)752
(9
)75<151> = 17
2 × 6230153 × 772038462749
<12> × 1375058674458523
<16> ×
5231705363333506832058567959119668521872579487266650018676731183489928905287274299448455542573451594011537716712361<115>
10153-7×1076-1 =
(9
)762
(9
)76<153> = 17 × 211741 × 83491021 × 1096407467
<10> × 155463559909375465619621
<24> ×
19521165973306877964234323934966750936993133062827102826185067490397498839062594842972873043829543791693361<107>
10155-7×1077-1 =
(9
)772
(9
)77<155> = 199 × 619 × 4289 × 13711 × 35755021 × 41525746087419388733
<20> × 36657522330835579700666604430670763490190943293
<47> × 253637525847050716244066106459667276977130462301438964753300582099649
<69> (Dmitry Domanov / Msieve 1.40 gnfs for P47 x P69 /
February 16, 2011 2011 年 2 月 16 日)
10157-7×1078-1 =
(9
)782
(9
)78<157> = 263 × 26319623163747081556922129784166985861
<38> ×
1444656462277390835210043740203116962499385270342686018690953168519217394909824071530484341603602863004614587295720693<118> (Serge Batalov / GMP-ECM B1=3000000, sigma=2409943788 for P38 /
February 14, 2011 2011 年 2 月 14 日)
10159-7×1079-1 =
(9
)792
(9
)79<159> = 751 × 10201589 × 28914163 × 3394569438078682206674496899
<28> ×
1329832426052235255914542158088694231261627060949062940627603895104176211694632122462781601022626779116989205579093<115>
10161-7×1080-1 =
(9
)802
(9
)80<161> = 97 ×
1030927835051546391752577319587628865979381443298969072164948453608247422680412363917525773195876288659793814432989690721649484536082474226804123711340206185567<160>
10163-7×1081-1 =
(9
)812
(9
)81<163> = 35649919 × 289018382857063
<15> × 1575838546432930336397673403
<28> × 20374867261845196861085172115306080073283649258983412959
<56> × 30228004505778269816386878084236829923537477502030447349771
<59> (Dmitry Domanov / Msieve 1.40 gnfs for P56 x P59 /
February 16, 2011 2011 年 2 月 16 日)
10165-7×1082-1 =
(9
)822
(9
)82<165> = 20178956390111
<14> ×
49556576696407599500575498119476144014241469303974207999527713083682045850722575095498771438912834499181980509279984630734905994114615628774510556599009<152>
10167-7×1083-1 =
(9
)832
(9
)83<167> = 138889 × 2732349857
<10> ×
263509236255341220614180043822903485008853874968902562413903686693716646008708973194457604923593792756680481037374517399080122023895465291925045500537063<153>
10169-7×1084-1 =
(9
)842
(9
)84<169> = 54121 × 25027517 × 3166057638463474129
<19> × 165766414683886612447978757
<27> ×
14066986190956609846556252048272135803235330406327688764389695072283597019249625442179402104168722309102712593319<113>
10171-7×1085-1 =
(9
)852
(9
)85<171> = 1536487 × 3733799609
<10> × 5304344021362817
<16> × 44027096364631459327831871693
<29> ×
746394407395301600599279988078226806410044947596092949977864555644070195292503192789832320873735833673168143413<111> (Serge Batalov / GMP-ECM B1=250000, sigma=2943646302 for P29 /
February 14, 2011 2011 年 2 月 14 日)
10173-7×1086-1 =
(9
)862
(9
)86<173> = 2791 × 100565797 × 2242778425861
<13> ×
158855952851842937927264334320027111488655772761008597122652234989489715790671276067918801608530611524213276283997068081355259051714954335933447756017<150>
10175-7×1087-1 =
(9
)872
(9
)87<175> = 11489 × 2355883896728877766073581400862753003635342597964227250414328302524178720797452388507
<85> × 369456989366175137591610721639326867415594958166028325308431796486402002372601873120013
<87> (Dmitry Domanov / Msieve 1.40 snfs /
March 14, 2011 2011 年 3 月 14 日)
10177-7×1088-1 =
(9
)882
(9
)88<177> = 1553 × 6000099772637
<13> × 5333899468227333920687102375278321335475392731
<46> × 223018212562717917367856725303053690550289461772848301633
<57> × 90216280027675092777712272443938186291571654799161033693633
<59> (Robert Backstrom / Msieve 1.44 snfs /
January 7, 2012 2012 年 1 月 7 日)
10179-7×1089-1 =
(9
)892
(9
)89<179> = 173 ×
578034682080924855491329479768786127167630057803468208092485549132947976878612716763005776300578034682080924855491329479768786127167630057803468208092485549132947976878612716763<177>
10181-7×1090-1 =
(9
)902
(9
)90<181> = 67 × 4229767 × 383323559 × 127793497651439371
<18> × 104218372690016249713
<21> × 91119124391406930625069
<23> × 515753241266959536564067602299
<30> × 2415099939341643093294567373567
<31> × 60898077963831206774646643461611881757161919
<44> (Makoto Kamada / GMP-ECM 6.3 B1=1e6, sigma=2689190187 for P31 /
February 13, 2011 2011 年 2 月 13 日) (Makoto Kamada / Msieve 1.49 for P30 x P44 /
February 14, 2011 2011 年 2 月 14 日)
10183-7×1091-1 =
(9
)912
(9
)91<183> = 17 × 19362041 × 714994277 × 2719534980510269673667647393696073963473635970964789091
<55> ×
1562437767370029533235730515001075729717098907445702130452035208257976907393687762267045142783886978392905476681<112> (Dmitry Domanov / Msieve 1.40 snfs /
February 5, 2012 2012 年 2 月 5 日)
10185-7×1092-1 =
(9
)922
(9
)92<185> = 17 × 489793121 ×
12009872513453431266616939925636601220312793581896554143195442041719151245731046228441271660333362280448822151491468530589240830301733958119071928353531747299392841363467389807<176>
10187-7×1093-1 =
(9
)932
(9
)93<187> = 4589546537
<10> × 1523051128147905814524257
<25> × 425908329742595314814748537227
<30> × 204580239894126042610714779069587
<33> × 1234556118432236336718438173854514334697
<40> × 13299186791414928574244124912615559200877771815881087
<53> (Makoto Kamada / GMP-ECM 6.3 B1=1e6, sigma=839370670 for P30 /
February 13, 2011 2011 年 2 月 13 日) (Makoto Kamada / GMP-ECM 6.3 B1=1e6, sigma=2592950813 for P33 /
February 13, 2011 2011 年 2 月 13 日) (Norbert Schneider / Msieve v. 1.47 for P40 x P53 /
February 15, 2011 2011 年 2 月 15 日)
10189-7×1094-1 =
(9
)942
(9
)94<189> = 3877 × 423184631202708564140232253391
<30> × 16549765112320687994876138838267798866523372393470859571
<56> ×
36828368301561902317238805645372006318140082754036145681498377825127722275695013829348060020816290767<101> (Makoto Kamada / GMP-ECM 6.3 B1=1e6, sigma=977223473 for P30 /
February 13, 2011 2011 年 2 月 13 日) (Dmitry Domanov / Msieve 1.40 snfs /
April 8, 2012 2012 年 4 月 8 日)
10191-7×1095-1 =
(9
)952
(9
)95<191> = 47 × 467 × 26298538841619345407567
<23> × 7881385003174033472124290040778542176330443114884641365159
<58> ×
21981184865172419984770464009366392347393009271157709007089844434637369069539548359694637888222094561264467<107> (Dmitry Domanov / Msieve 1.40 snfs /
April 8, 2012 2012 年 4 月 8 日)
10193-7×1096-1 =
(9
)962
(9
)96<193> = 139 × 62844437917505925187863725241811723
<35> × 222139345404887071059790617024941232259087298352136747209718223
<63> × 5153388283530189468476118684382195960834350461141150783373164505986269081726163817736057931929
<94> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3488428613 for P35 /
February 14, 2011 2011 年 2 月 14 日) (Dmitry Domanov / Msieve 1.40 snfs /
April 15, 2012 2012 年 4 月 15 日)
10195-7×1097-1 =
(9
)972
(9
)97<195> = 71 × 52259 × 451181 × 516160697129351
<15> × 5806772491120292728002357013496940469773827945584141161135031059531250564433
<76> × 199301244573385037686482023924494382886439070809143134747775086021439829394644641386352896617
<93> (Dmitry Domanov / Msieve 1.40 snfs /
April 15, 2012 2012 年 4 月 15 日)
10197-7×1098-1 =
(9
)982
(9
)98<197> = 1226111 ×
81558684327927895598359365506059402452143403003480109060272683305181994126143554702632959006158495682691045101136846500846986936745531195788962010780426894465509240191140932590931816124315009<191>
10199-7×1099-1 =
(9
)992
(9
)99<199> = 2243 × 12799 × 374317 × 3284569934952963341
<19> × 371592018921308992073
<21> × 134277080100091995499481
<24> ×
5678169546616171355361766971872955541468088470732476800411232027449981186348815730156840000171508690707321249658588869011187<124>
10201-7×10100-1 =
(9
)1002
(9
)100<201> = 859513 × 6000592110389
<13> ×
193889121838558135880794183304821306922764808056987803452659149032124084628584592385949025628116841933108214383731918000149609615555974845164843076098613689899493941948918421417717307<183>
10203-7×10101-1 =
(9
)1012
(9
)101<203> = 2915111 × 1078761927125908796473153817
<28> × 1704037406116341607763857544441799584251706844993077
<52> ×
18661225865869912700765266755773661123010340507876672738445813348271330726381553601121012581149803607909207139333609901<119> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3889787504 for P28 /
January 20, 2012 2012 年 1 月 20 日) (Bob Backstrom / Msieve 1.54 snfs for P52 x P119 /
February 8, 2022 2022 年 2 月 8 日)
10205-7×10102-1 =
(9
)1022
(9
)102<205> = 233 × 523 × 5527 × 1266017220067
<13> × 9943116614712582817662347419
<28> ×
1179480539331713789729154898072960746887843732788835606500889872056807003209853928644974672136350567393908193722219055668956162652337361200411358476750550691<157> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3855679178 for P28 /
January 20, 2012 2012 年 1 月 20 日)
10207-7×10103-1 =
(9
)1032
(9
)103<207> = 21297780538485595883
<20> × 316494223358171731801
<21> × 23001139412613990604854440952971
<32> × 1676778912489027073002027706250465552791973816715317699
<55> × 3846579483533180699200278357177429384459197807603265117183940878641115055382027557
<82> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2864170560 for P32 /
January 20, 2012 2012 年 1 月 20 日) (Dmitry Domanov / Msieve 1.40 gnfs for P55 x P82 /
March 1, 2012 2012 年 3 月 1 日)
10209-7×10104-1 =
(9
)1042
(9
)104<209> = 551736821 × 1998021044011
<13> × 4392901342369
<13> × 459142066547992265360617802357
<30> × 21567227731299510327030401245264158764707255266840068407
<56> × 2085331555798132824557905731158305555352489695616612276128607308898148787036419466692090659
<91> (Makoto Kamada / GMP-ECM 6.3 B1=1e6, sigma=3887057208 for P30 /
January 16, 2012 2012 年 1 月 16 日) (Eric Jeancolas / cado-nfs-3.0.0 for P56 x P91 /
November 25, 2021 2021 年 11 月 25 日)
10211-7×10105-1 =
(9
)1052
(9
)105<211> = 5234577113
<10> × 396314153260009
<15> ×
4820352694724440013535195843573317149753973867998921680088215662510987980328777570573244955829074366683692231170481497029184279845333568364192586644372666494458796773117967249780416683647<187>
10213-7×10106-1 =
(9
)1062
(9
)106<213> = 977 × 5749 × 395959 × 2729539 × 43504861287127
<14> × 439155730319733565147241902082788194804958147128282028085209631923
<66> ×
8622183524609874737754463925383548535152201667936665905700881573874279255277091560979832614129685595532565470627803<115> (ebina / Msieve 1.53 for P66 x P115 /
July 1, 2022 2022 年 7 月 1 日)
10215-7×10107-1 =
(9
)1072
(9
)107<215> = 17 × 2111507 × 1313467043623644241729657606686395917
<37> ×
2120993671918983160138289859129839464899781832363779002760988973623765013402372831623638107876472974331007265432774826382784440770575798165984683291249096675252564861638313<172> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3033301501 for P37 /
January 22, 2012 2012 年 1 月 22 日)
10217-7×10108-1 =
(9
)1082
(9
)108<217> = 17 × 74493284315993019013800367061
<29> ×
7896487576281535795755221298367443269254718678838270612482490767989783877541721428560127405587696687704912092814741897981818749550170349055818488691949832395627982526174907007013695987027<187> (Serge Batalov / GMP-ECM B1=50000, sigma=777148027 for P29 /
January 20, 2012 2012 年 1 月 20 日)
10219-7×10109-1 =
(9
)1092
(9
)109<219> = 222389 × 4169514726131
<13> × 941304323311509087873513812715916754353769412230291
<51> ×
1145700579104002402854767892500478036637572110097533142685147417511357770090757555574832960887315057661633203581863564260495422344551244370523383192971<151> (Erik Branger / GGNFS, NFS_factory, Msieve snfs for P51 x P151 /
September 9, 2018 2018 年 9 月 9 日)
10221-7×10110-1 =
(9
)1102
(9
)110<221> = 109 × 139 × 317 × 1773041 × 1969667459
<10> × 9577851442843
<13> × 31431538746282304832603264238214247
<35> ×
19804049900524144919205606516885050710409815302058203938269768869993651080508572186460126441500512091649083510676187020346999635854387554627876761321203<152> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3880320897 for P35 /
January 21, 2012 2012 年 1 月 21 日)
10223-7×10111-1 =
(9
)1112
(9
)111<223> = 47 × 95400059 × 297216001603
<12> × 1152513264044452758741939866928478010714785203754693641952040023934771820202221879881036117261
<94> ×
6510815355524712843981732931217642788061269785949452918244202262515203330431901474635844739883487064759358661<109> (Erik Branger / GGNFS, NFS_factory, Msieve snfs for P94 x P109 /
September 13, 2019 2019 年 9 月 13 日)
10225-7×10112-1 =
(9
)1122
(9
)112<225> = 33887177 × 291134717594509
<15> ×
[101360935719850308866986853008745961410460847873560517493727376316292560723787621050329048441909365462944248857267615786736425251978237108547720663067801103537597863284527472561866712292771800625121811043<204>]
Free to factor
10227-7×10113-1 =
(9
)1132
(9
)113<227> = 715159 × 2851097 × 1664172977
<10> × 191142915609889
<15> × 5545922256127177855195649308618662460105567
<43> × 243739767407497823071902614378013483641893485737
<48> ×
114058736662304377699709187912015795148147904213188236051817242883116460646855434730637993022143963799<102> (Dmitry Domanov / GMP-ECM B1=43000000, sigma=2211870427 for P43 /
February 5, 2012 2012 年 2 月 5 日) (Ignacio Santos / GMP-ECM B1=43000000 for P48 x P102 /
November 4, 2023 2023 年 11 月 4 日)
10229-7×10114-1 =
(9
)1142
(9
)114<229> = 162870139 × 2323259780168425907
<19> ×
26427784629669510559700051007399595168499449138317612236629011703473741267941368488635920670193094719205483436106869621915104197977899373932045902654192440080809572691729509286308173587191798571586148863<203>
10231-7×10115-1 =
(9
)1152
(9
)115<231> = 70079 × 73714347205271
<14> × 163721942303661093325017703
<27> × 32300149130722840060812681872191591
<35> ×
[36605695638147534784755477709163458182415851744347157652145944864762047892255830570273828631217790828838182759660565844517449616952026480355222893816407<152>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2428108871 for P35 /
January 21, 2012 2012 年 1 月 21 日)
Free to factor
10233-7×10116-1 =
(9
)1162
(9
)116<233> = 733 × 30139 × 15504211 × 1864733402789
<13> ×
[156567193325686156453162801553718713696906938207330688351538809298957671669088954130208025069759864727004978596503170482708238354335324560527842529515682179253152085639508898470494626810312371604767828994063<207>]
Free to factor
10235-7×10117-1 =
(9
)1172
(9
)117<235> = 2791 × 15187 × 2137016028102264914839197943623283642941414392548180444175573947534582353815003
<79> ×
110397792931775201996786234287403497843413860030982454188756395923575132162402043984751594380845097946635312114017014711780752924036893760206058078249<150> (Bob Backstrom / Msieve 1.54 snfs for P79 x P150 /
January 9, 2021 2021 年 1 月 9 日)
10237-7×10118-1 =
(9
)1182
(9
)118<237> = 167 × 4517 × 90771589 × 973734490068431758063
<21> ×
14998331456364168298203705772776530106310543129275490720882300575234228225204659591128724889798128966313536435336272119239427263615712081288456772117590497294508858333054230840928010660258567582393421663<203>
10239-7×10119-1 =
(9
)1192
(9
)119<239> = 369581 × 1470301860303165254161754971304170034551252235687455629377079940052697787732532075795887
<88> ×
184027979140596262871895650158559459030353606531171039205902807033472760873689086546507935119281252344197330741263263625247069749045538512311527317<147> (Erik Branger / GGNFS, NFS_factory, Msieve snfs for P88 x P147 /
February 8, 2024 2024 年 2 月 8 日)
10241-7×10120-1 =
(9
)1202
(9
)120<241> = 9811 × 38037959287
<11> × 44110914317824128720623
<23> ×
[607468069907495831530702006017327017954249226682221713186350208756738855551041037905196253425941326351695441827808166708423930104240588987827942477676631943451184212180501080418373023130541737573168822509<204>]
Free to factor
10243-7×10121-1 =
(9
)1212
(9
)121<243> = 80459720761712533954865396668777277684482114892759716094416081
<62> ×
12428579052139325823363479161041331551680498285926935573958494295438771090914956058413598356292971555140000524019783154704407154804985574617962713060073816632546829645882158803401679<182> (NFS@Home + Jon Becker / ggnfs-lasieve4I14e on the NFS@Home grid + msieve for P62 x P182 /
December 29, 2018 2018 年 12 月 29 日)
10245-7×10122-1 =
(9
)1222
(9
)122<245> = 37049 × 206967707231
<12> × 183503349887180231
<18> ×
[71068463203520727353466326321897053860184272992251031940127553355558823820409865742532787629956231529496853294479327373437269691517734854780428213158295721176698750657491052391661007151052153115811872895642339791<212>]
Free to factor
10247-7×10123-1 =
(9
)1232
(9
)123<247> = 17 × 67 × 971 × 8803 × 6282777961609
<13> × 84114993224783
<14> ×
1943574615394898455776654341894963824513996623210609675923951230005614828817965310536097785238325591901152337466463986586073383826562480913781279710906759522516655885067116715341016475627057603995223181922544531<211>
10249-7×10124-1 =
(9
)1242
(9
)124<249> = 17 × 24103 ×
[2440506551539837608694060539205517497211721264865735532067035833957696259435608454890897154613411559703332023594817340287149830018718685250310554458683444335706319203613902101520191530954164846455530309871116849013181175884866662924556620972249<244>]
Free to factor
10251-7×10125-1 =
(9
)1252
(9
)125<251> = 107 × 331 × 444167 × 16927880643327821
<17> ×
375525429436682171824145660517526571223153704515446224112441926721449865846849160914587623021521673013721896765849495396202572281890075689068984457642494528544793048897394046202465703306043986859502337003980115178641473412021<225>
10253-7×10126-1 =
(9
)1262
(9
)126<253> =
211857628677636264166676902114066256198845941934180788645905936104472665184004014226679863567582409810768749673482061<117> ×
47201510100993602326827859852217555163129145401663287219390072454758015933440888931227171966024510895342063068118093723212737563878094459<137> (Serge Batalov / Msieve 1.52 for P117 x P137 /
November 11, 2013 2013 年 11 月 11 日)
10255-7×10127-1 =
(9
)1272
(9
)127<255> = 283 × 921911 × 2181737 × 4189072884446378897074977663209
<31> × 33570215353549430912150859311715285277357873
<44> ×
[12492522112704850282421783872720220864512034619428274875109285751984876280742300486654878498419598361974569985871976393240428635262846727704055621791557317869535253947<167>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1676407086 for P31 /
January 21, 2012 2012 年 1 月 21 日) (Seth Troisi / gmp-ecm + ecm-db B1=10000000000 for P44 /
December 6, 2023 2023 年 12 月 6 日)
Free to factor
10257-7×10128-1 =
(9
)1282
(9
)128<257> = 2969 × 135528771766653583399007
<24> × 84699266347993099839843797728655895358021
<41> ×
[2934125267098307749294603143539595747061749698837949399698402928603808738373032306578423160330498716732576169335302526806078298492497530453420609273210148387360100114762252717846554225000693<190>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3153677333 for P41 /
January 29, 2012 2012 年 1 月 29 日)
Free to factor
10259-7×10129-1 =
(9
)1292
(9
)129<259> = 120917 × 44074447 ×
1876401469751180118692418420950102543072868983938811729338193041135770268728002011524428544458778907971515513727668539283777596999296436006680186636503864337797744448292955319547314003701608461617615829968764587792730314259385229644072735971317901<247>
10261-7×10130-1 =
(9
)1302
(9
)130<261> = 167 × 4261 × 42703 × 224911 × 3959985733817
<13> × 389453204769636140801038803763013183
<36> ×
[94875484861890413300347903446564968964885578964002363643494143088501409563489163018713411988434389934787867601070170301994954062360879032478072910509868905326685352786891663493821908217800914038979<197>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2285285033 for P36 /
January 23, 2012 2012 年 1 月 23 日)
Free to factor
10263-7×10131-1 =
(9
)1312
(9
)131<263> = 444682666156969
<15> × 2236002663332944101563716515326771110873537
<43> ×
[100572091685046366322455265338021603578610261204126604102516771812062512888805840017468414135202268750473398401083412855625114786124508146649212968611150962004858046871662159834085262503171648563814799282983<207>] (Dmitry Domanov / GMP-ECM B1=43000000, sigma=4071704944 for P43 /
February 7, 2012 2012 年 2 月 7 日)
Free to factor
10265-7×10132-1 =
(9
)1322
(9
)132<265> = 71 × 173 × 121171 × 865687 × 15928233467981909089273649495028857651
<38> × 21586029968755843092641989855451671957
<38> ×
[22573326950553357320175305558217848970990408687931924688345464439367482473276672028430397715131373293614608161073186030342904144850641681735918871343933706456387221070895479127<176>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3465797344 for P38(2158...) /
January 20, 2012 2012 年 1 月 20 日) (Dmitry Domanov / GMP-ECM B1=43000000, sigma=2355155821 for P38(1592...) /
February 7, 2012 2012 年 2 月 7 日)
Free to factor
10267-7×10133-1 =
(9
)1332
(9
)133<267> = 1668137 × 4078369003133
<13> ×
146987961632210407598457391845586044492622918201261875069762876233359289648121283694915520097972215526520706394596458981054805908103299149967678834851222652982442070206921538895106969512492259513392645511611346220015081563250637190517496908940992819<249>
10269-7×10134-1 =
(9
)1342
(9
)134<269> = 110059 ×
908603567177604739276206398386320064692573983045457436465895565105988606111267592836569476371764235546388755122252609963746717669613564542654394461152654485321509372245795436992885634068999354891467303900635113893457145712754068272472037725220109214148774748089661<264>
10271-7×10135-1 =
(9
)1352
(9
)135<271> = 13763 × 1041311 × 4834787661147079
<16> × 2078900694290779246631
<22> × 1295849772131455691932463459
<28> ×
53572341417705120996614912510638357880927319266849339007964719422992445981295198081474609359975987728953038977236131090186281860261427411590208214283956002374950621029399131879760532145904590594473<197>
10273-7×10136-1 =
(9
)1362
(9
)136<273> = 691 × 1471 × 3567265969
<10> × 3869284633
<10> ×
[71275965768647034292323979936758096960540270499075528758586960706426056704056152317703536630485603307674840278395684525908689043691237630430303758301651140440782921817895621504889038252383075388979105756233775406822307932358144316944856156705808867<248>]
Free to factor
10275-7×10137-1 =
(9
)1372
(9
)137<275> = 64651384567351079297
<20> × 1353707612333292459412272643
<28> ×
[1142608100821948527987939131563954558317547564591804132468408357172747311665443782853184563542219222322886798952400880538671754014336623311014956258941392320147391913656420440549771528687263532276793938130916247049059177275354069<229>]
Free to factor
10277-7×10138-1 =
(9
)1382
(9
)138<277> = 134248909703
<12> × 6322798780079
<13> ×
[11780938039973101136888105202498608723528738440951661828852489037181961931277019853191878302936345714376728048504919399695875909508414497991535947769455298974303014233910172972302035970600847770048776505849328371420318640929870830455103084536946290315527<254>]
Free to factor
10279-7×10139-1 =
(9
)1392
(9
)139<279> = 17 ×
[58823529411764705882352941176470588235294117647058823529411764705882352941176470588235294117647058823529411764705882352941176470588235294113529411764705882352941176470588235294117647058823529411764705882352941176470588235294117647058823529411764705882352941176470588235294117647<278>]
Free to factor
10281-7×10140-1 =
(9
)1402
(9
)140<281> = 17 × 823 × 3188981 × 6375805857100152749671
<22> ×
[351531483833015837796823485970510548365000973836128614360818417029311504274960089118761335148151888815870641160736839169072548486077650798607625430959306010960733711328695483750178562703643812259630502973322429348543391244665299933971283736103173139<249>]
Free to factor
10283-7×10141-1 =
(9
)1412
(9
)141<283> = 47 × 4271 × 7522295270629487
<16> ×
[6622503461539197382190120126331608857837976286271722789845473582153983030211672458801043150670379667875022257089982120486776452343052233688802045965960367100578268910588074352011145217657398062544106949147190165663476592183469653634419177997214464094456828266321<262>]
Free to factor
10285-7×10142-1 =
(9
)1422
(9
)142<285> = 139 × 463537 ×
15520324384712648100561396517546510493299076666413737113610466211454517774752383700660869380593010797505194768973996208664118653624896698660934814280616746029586735821714184752358402532122298976606882428871168161892131169152399233401513601011229839350829529521697902380046400493<278>
10287-7×10143-1 =
(9
)1432
(9
)143<287> = 35967569559389162966115414457
<29> × 11942977471274916459463787068482526951
<38> ×
[232796418610001704413055469259523178173691708003450981174420645685210526713650271585547372466091387639487736685129752456888577518711910833057840062082772943102940983378128201533210163558904654164043481948648848229551062257<222>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1848278955 for P38 /
January 20, 2012 2012 年 1 月 20 日)
Free to factor
10289-7×10144-1 =
(9
)1442
(9
)144<289> = 1319 × 34601689 × 63246374009785877
<17> × 480557956097413259733703651633348303057159013
<45> ×
[7209024514096482068021466204755984285762154711194812267800098481576368431477104449064111649620907732744397778754311212751163155832985841027919164342127688136029278874761335467844772273906856927578725222354722243486089<217>] (Dmitry Domanov / GMP-ECM B1=43000000, sigma=975195925 for P45 /
February 8, 2012 2012 年 2 月 8 日)
Free to factor
10291-7×10145-1 =
(9
)1452
(9
)145<291> = 293651512049864219809865429
<27> × 29082967569374257211050253224007
<32> ×
[117092489484861416331717328761289041757424772585026176552931444086405541288748843798683597770539707584066241792462565422140446745815336466372839671130976803035760808731418377524874326312056386065327564724321209945387685804926832239333<234>] (Makoto Kamada / GMP-ECM 6.3 B1=1e6, sigma=1881620711 for P32 /
January 19, 2012 2012 年 1 月 19 日)
Free to factor
10293-7×10146-1 =
(9
)1462
(9
)146<293> = 1205986139
<10> ×
[82919692661575441208284069672877061151695376160538110463307737900957748901623155388521426447339955704084588985479210387508442167924452405335647061943553565170785101370058118056031819781968489108812219938789860336860803671309857401271508312086827392632246497154806851391183360856189741<284>]
Free to factor
10295-7×10147-1 =
(9
)1472
(9
)147<295> = 104711 × 1168473515707
<13> × 246051711060775093
<18> ×
[332171547756674332074368479823305155463231085705002010575622141297185880015109270648052402922071725331750222554338612365162949873881162895150546688805863841969079501980710714799261213147630832319576400092118891728941765361130163468866688458166541553341245087359<261>]
Free to factor
10297-7×10148-1 =
(9
)1482
(9
)148<297> = 223 × 307 × 761 × 2791 × 104709127694882661749
<21> × 162725035851868910633
<21> ×
403620625132518726725524789230088407748083402998131105730460339123488826711126912194748284743384248175725465451140086334952635796682140704382373524025741857339122980483537994719427642800209554125782583472672034085617236406979685715775041737737977<246>
10299-7×10149-1 =
(9
)1492
(9
)149<299> = 257 × 331 × 367 × 147097 × 197728969 ×
110128240661413260567068523912021665320050498525846414813232364992772755827616519009368041361289190326593652816235923526335483349105542811480562235812193555670433868304200868371022438313473733455451715032393898140981135648692716133100670531255735518255280733715956849670220719187<279>
10301-7×10150-1 =
(9
)1502
(9
)150<301> = 489327896719492242493
<21> ×
[20436194353604391065622778380947513487093148875041835145894583928830993903650630783290547732263984186471008490832666178099033574618542919861668192177936577435607983860632111567289943486003082265574339099669804614168495397435405166329309489773473813744429717046843488552177513489643<281>]
Free to factor