Table of contents 目次

  1. About 7877...77 7877...77 について
    1. Classification 分類
    2. Sequence 数列
    3. General term 一般項
  2. Prime numbers of the form 7877...77 7877...77 の形の素数
    1. Last updated 最終更新日
    2. Known (probable) prime numbers 既知の (おそらく) 素数
    3. Range of search 捜索範囲
    4. Prime factors that appear periodically 周期的に現れる素因数
    5. Difficulty of search 捜索難易度
  3. Factor table of 7877...77 7877...77 の素因数分解表
    1. Last updated 最終更新日
    2. Range of factorization 分解範囲
    3. Terms that have not been factored yet まだ分解されていない項
    4. Factor table 素因数分解表
  4. Related links 関連リンク

1. About 7877...77 7877...77 について

1.1. Classification 分類

Near-repdigit of the form ABAA...AA ABAA...AA の形のニアレプディジット (Near-repdigit)

1.2. Sequence 数列

787w = { 78, 787, 7877, 78777, 787777, 7877777, 78777777, 787777777, 7877777777, 78777777777, … }

1.3. General term 一般項

709×10n-79 (0≤n)

2. Prime numbers of the form 7877...77 7877...77 の形の素数

2.1. Last updated 最終更新日

April 10, 2020 2020 年 4 月 10 日

2.2. Known (probable) prime numbers 既知の (おそらく) 素数

  1. 709×101-79 = 787 is prime. は素数です。
  2. 709×102-79 = 7877 is prime. は素数です。
  3. 709×104-79 = 787777 is prime. は素数です。
  4. 709×105-79 = 7877777 is prime. は素数です。
  5. 709×107-79 = 787777777 is prime. は素数です。
  6. 709×1011-79 = 78(7)11<13> is prime. は素数です。
  7. 709×1025-79 = 78(7)25<27> is prime. は素数です。
  8. 709×1031-79 = 78(7)31<33> is prime. は素数です。
  9. 709×10109-79 = 78(7)109<111> is prime. は素数です。 (discovered by:発見: Makoto Kamada / August 27, 2004 2004 年 8 月 27 日) (certified by:証明: Robert Backstrom / APLOG.UB / August 8, 2009 2009 年 8 月 8 日)
  10. 709×10205-79 = 78(7)205<207> is prime. は素数です。 (discovered by:発見: Makoto Kamada / August 27, 2004 2004 年 8 月 27 日) (certified by:証明: Robert Backstrom / APLOG.UB / August 8, 2009 2009 年 8 月 8 日)
  11. 709×10518-79 = 78(7)518<520> is prime. は素数です。 (discovered by:発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by:証明: Erik Branger / Primo 3.0.9 / April 10, 2010 2010 年 4 月 10 日)
  12. 709×101288-79 = 78(7)1288<1290> is prime. は素数です。 (discovered by:発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by:証明: Erik Branger / Primo 3.0.9 / September 4, 2010 2010 年 9 月 4 日) [certificate証明]
  13. 709×101697-79 = 78(7)1697<1699> is prime. は素数です。 (discovered by:発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by:証明: Ray Chandler / Primo 3.0.9 / February 12, 2011 2011 年 2 月 12 日) [certificate証明]
  14. 709×101711-79 = 78(7)1711<1713> is prime. は素数です。 (discovered by:発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by:証明: Ray Chandler / Primo 3.0.9 / February 21, 2011 2011 年 2 月 21 日) [certificate証明]
  15. 709×101775-79 = 78(7)1775<1777> is prime. は素数です。 (discovered by:発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by:証明: Ray Chandler / Primo 3.0.9 / February 21, 2011 2011 年 2 月 21 日) [certificate証明]
  16. 709×101997-79 = 78(7)1997<1999> is prime. は素数です。 (discovered by:発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by:証明: Ray Chandler / Primo 3.0.9 / June 3, 2011 2011 年 6 月 3 日) [certificate証明]
  17. 709×106784-79 = 78(7)6784<6786> is PRP. はおそらく素数です。 (Makoto Kamada / PFGW / December 25, 2004 2004 年 12 月 25 日)
  18. 709×108741-79 = 78(7)8741<8743> is PRP. はおそらく素数です。 (Ray Chandler / srsieve, PFGW / October 9, 2010 2010 年 10 月 9 日)
  19. 709×1013171-79 = 78(7)13171<13173> is PRP. はおそらく素数です。 (Ray Chandler / srsieve, PFGW / October 28, 2010 2010 年 10 月 28 日)
  20. 709×1020275-79 = 78(7)20275<20277> is PRP. はおそらく素数です。 (Ray Chandler / srsieve, PFGW / April 29, 2011 2011 年 4 月 29 日)
  21. 709×1067517-79 = 78(7)67517<67519> is PRP. はおそらく素数です。 (Bob Price / October 5, 2017 2017 年 10 月 5 日)

2.3. Range of search 捜索範囲

  1. n≤11000 / Completed 終了 / Ray Chandler / October 15, 2010 2010 年 10 月 15 日
  2. n≤20000 / Completed 終了 / Ray Chandler / December 12, 2010 2010 年 12 月 12 日
  3. n≤30000 / Completed 終了 / Ray Chandler / July 11, 2011 2011 年 7 月 11 日
  4. n≤100000 / Completed 終了 / Bob Price / October 5, 2017 2017 年 10 月 5 日
  5. n≤200000 / Completed 終了 / Bob Price / April 9, 2020 2020 年 4 月 9 日

2.4. Prime factors that appear periodically 周期的に現れる素因数

Cofactors are written verbosely to clarify that they are integers. 補因子はそれらが整数であることを明確にするために冗長に書かれています。

  1. 709×103k-79 = 3×(709×100-79×3+709×103-19×3×k-1Σm=0103m)
  2. 709×106k-79 = 13×(709×100-79×13+709×106-19×13×k-1Σm=0106m)
  3. 709×1016k+10-79 = 17×(709×1010-79×17+709×1010×1016-19×17×k-1Σm=01016m)
  4. 709×1018k+8-79 = 19×(709×108-79×19+709×108×1018-19×19×k-1Σm=01018m)
  5. 709×1022k+16-79 = 23×(709×1016-79×23+709×1016×1022-19×23×k-1Σm=01022m)
  6. 709×1028k+18-79 = 29×(709×1018-79×29+709×1018×1028-19×29×k-1Σm=01028m)
  7. 709×1032k+14-79 = 1409×(709×1014-79×1409+709×1014×1032-19×1409×k-1Σm=01032m)
  8. 709×1034k+12-79 = 103×(709×1012-79×103+709×1012×1034-19×103×k-1Σm=01034m)
  9. 709×1035k+34-79 = 71×(709×1034-79×71+709×1034×1035-19×71×k-1Σm=01035m)
  10. 709×1044k+26-79 = 89×(709×1026-79×89+709×1026×1044-19×89×k-1Σm=01044m)

Read more続きを読むHide more続きを隠す

2.5. Difficulty of search 捜索難易度

The difficulty of search, percentage of terms that are not divisible by prime factors that appear periodically, is 22.73%. 捜索難易度 (周期的に現れる素因数で割り切れない項の割合) は 22.73% です。

3. Factor table of 7877...77 7877...77 の素因数分解表

3.1. Last updated 最終更新日

October 11, 2024 2024 年 10 月 11 日

3.2. Range of factorization 分解範囲

3.3. Terms that have not been factored yet まだ分解されていない項

n=210, 216, 225, 227, 231, 232, 233, 236, 237, 241, 242, 243, 244, 246, 247, 249, 251, 252, 255, 258, 259, 261, 262, 263, 266, 268, 270, 272, 273, 274, 275, 276, 278, 279, 280, 281, 284, 285, 286, 287, 288, 290, 291, 292, 293, 295, 296, 298, 299, 300 (50/300)

3.4. Factor table 素因数分解表

709×100-79 = 78 = 2 × 3 × 13
709×101-79 = 787 = definitely prime number 素数
709×102-79 = 7877 = definitely prime number 素数
709×103-79 = 78777 = 32 × 8753
709×104-79 = 787777 = definitely prime number 素数
709×105-79 = 7877777 = definitely prime number 素数
709×106-79 = 78777777 = 3 × 13 × 479 × 4217
709×107-79 = 787777777 = definitely prime number 素数
709×108-79 = 7877777777<10> = 19 × 199 × 2083517
709×109-79 = 78777777777<11> = 3 × 26259259259<11>
709×1010-79 = 787777777777<12> = 17 × 46339869281<11>
709×1011-79 = 7877777777777<13> = definitely prime number 素数
709×1012-79 = 78777777777777<14> = 33 × 13 × 103 × 107 × 1303 × 15629
709×1013-79 = 787777777777777<15> = 107999 × 7294306223<10>
709×1014-79 = 7877777777777777<16> = 61 × 1409 × 91656421573<11>
709×1015-79 = 78777777777777777<17> = 3 × 26259259259259259<17>
709×1016-79 = 787777777777777777<18> = 23 × 761 × 45008157331759<14>
709×1017-79 = 7877777777777777777<19> = 31013 × 1666793 × 152397653
709×1018-79 = 78777777777777777777<20> = 3 × 13 × 29 × 15527 × 4485941108021<13>
709×1019-79 = 787777777777777777777<21> = 2551 × 6977 × 44261338595351<14>
709×1020-79 = 7877777777777777777777<22> = 122561 × 2103407 × 30558224351<11>
709×1021-79 = 78777777777777777777777<23> = 32 × 367 × 883 × 27010613494845373<17>
709×1022-79 = 787777777777777777777777<24> = 1899419 × 414746708218554083<18>
709×1023-79 = 7877777777777777777777777<25> = 18959 × 2008591733<10> × 206869577891<12>
709×1024-79 = 78777777777777777777777777<26> = 3 × 13 × 47 × 9227 × 138863 × 472123 × 71045903
709×1025-79 = 787777777777777777777777777<27> = definitely prime number 素数
709×1026-79 = 7877777777777777777777777777<28> = 17 × 19 × 89 × 82217 × 163855403 × 20341773041<11>
709×1027-79 = 78777777777777777777777777777<29> = 3 × 421 × 62373537432919855722706079<26>
709×1028-79 = 787777777777777777777777777777<30> = 16603 × 47447917712327758704919459<26>
709×1029-79 = 7877777777777777777777777777777<31> = 150299 × 52414039865719517613409123<26>
709×1030-79 = 78777777777777777777777777777777<32> = 32 × 13 × 16755161907839<14> × 40185486937371379<17>
709×1031-79 = 787777777777777777777777777777777<33> = definitely prime number 素数
709×1032-79 = 7877777777777777777777777777777777<34> = 408311 × 499909001 × 38594168555650240607<20>
709×1033-79 = 78777777777777777777777777777777777<35> = 3 × 7517 × 65946232303841<14> × 52972190556727447<17>
709×1034-79 = 787777777777777777777777777777777777<36> = 71 × 11095461658841940532081377151799687<35>
709×1035-79 = 7877777777777777777777777777777777777<37> = 1423 × 5536034980869836807995627391270399<34>
709×1036-79 = 78777777777777777777777777777777777777<38> = 3 × 13 × 5636261 × 130369553 × 532527731 × 5162138091241<13>
709×1037-79 = 787777777777777777777777777777777777777<39> = 10909 × 7635057202433<13> × 9458156347493697555941<22>
709×1038-79 = 7877777777777777777777777777777777777777<40> = 23 × 619996439 × 552442007323667854708701401441<30>
709×1039-79 = 78777777777777777777777777777777777777777<41> = 33 × 343543 × 2254107378599<13> × 3767768900833004880643<22>
709×1040-79 = 787777777777777777777777777777777777777777<42> = 993821 × 72813649 × 10886361718504127889093709013<29>
709×1041-79 = 7877777777777777777777777777777777777777777<43> = 167 × 3309623 × 22530826997874913<17> × 632603507755880369<18>
709×1042-79 = 78777777777777777777777777777777777777777777<44> = 3 × 13 × 17 × 113 × 13643977 × 77067412005089505257188168903279<32>
709×1043-79 = 787777777777777777777777777777777777777777777<45> = 64153 × 135188891 × 885444977039501<15> × 102585072931752199<18>
709×1044-79 = 7877777777777777777777777777777777777777777777<46> = 192 × 59 × 499 × 4320326341<10> × 171564493937259547581478329397<30>
709×1045-79 = 78777777777777777777777777777777777777777777777<47> = 3 × 5023 × 169610783 × 35250480383<11> × 874381165157929668297797<24>
709×1046-79 = 787777777777777777777777777777777777777777777777<48> = 29 × 103 × 733 × 1409 × 9651119162128387<16> × 26459148120035897405989<23>
709×1047-79 = 7877777777777777777777777777777777777777777777777<49> = 43159 × 27981291979<11> × 10898626067581027<17> × 598539528006603191<18>
709×1048-79 = 78777777777777777777777777777777777777777777777777<50> = 32 × 13 × 12193483 × 3673129661<10> × 15033282814245073129653927040787<32>
709×1049-79 = 787777777777777777777777777777777777777777777777777<51> = 138113 × 5703864066219528775551742252921721907262732529<46>
709×1050-79 = 78(7)50<52> = 97 × 433 × 279847 × 55599053 × 144248477 × 83568923654492494764896111<26>
709×1051-79 = 78(7)51<53> = 3 × 27133205142595441<17> × 967790540087569470685240168596406699<36>
709×1052-79 = 78(7)52<54> = 710299 × 1109079102994341506573679222099112877503386289123<49>
709×1053-79 = 78(7)53<55> = 743 × 26317 × 1634289649<10> × 20961758621<11> × 11760391669500038121875969423<29>
709×1054-79 = 78(7)54<56> = 3 × 13 × 751 × 6163 × 12107224220603<14> × 118796486312743<15> × 303430220717344814959<21>
709×1055-79 = 78(7)55<57> = 29131 × 1266593 × 852157639 × 5619379853<10> × 4458645231124977600042348457<28>
709×1056-79 = 78(7)56<58> = 14959003 × 4637537393<10> × 113556932394860140603826190434206496060563<42>
709×1057-79 = 78(7)57<59> = 32 × 15299 × 15678133 × 62100317 × 10060591021284527<17> × 58409907119890856143501<23>
709×1058-79 = 78(7)58<60> = 17 × 827 × 4021 × 464292853 × 7200824439248666651<19> × 4168127550869157581372081<25>
709×1059-79 = 78(7)59<61> = 61321517 × 18145036046867<14> × 9035604280505901229<19> × 783566387471806562867<21>
709×1060-79 = 78(7)60<62> = 3 × 13 × 23 × 121379 × 34286891 × 71490746142933662473561<23> × 295181945616039934206329<24>
709×1061-79 = 78(7)61<63> = 43189 × 1033129723<10> × 5855152036377403849<19> × 3015348717039750427059927971359<31>
709×1062-79 = 78(7)62<64> = 19 × 647 × 1319 × 227189 × 429903893 × 30828779249<11> × 161356343129316999679848955190947<33>
709×1063-79 = 78(7)63<65> = 3 × 3813850793<10> × 6885235077223237154380008609649679931581754267978060163<55>
709×1064-79 = 78(7)64<66> = 829 × 29917 × 2421801176141<13> × 91039717933070441<17> × 144066088359850523518814552869<30>
709×1065-79 = 78(7)65<67> = 107 × 73624091381100726895119418483904465212876427829698857736240913811<65>
709×1066-79 = 78(7)66<68> = 34 × 132 × 458334997880465961791<21> × 12555932768070972852032798975156516866633223<44>
709×1067-79 = 78(7)67<69> = 2621467 × 4968808321<10> × 60479346134232348232226626575610385213970596595517411<53>
709×1068-79 = 78(7)68<70> = 406583 × 35432251 × 9437454287217699251<19> × 57942990373602466198275400694759080919<38>
709×1069-79 = 78(7)69<71> = 3 × 71 × 1907 × 59219 × 1335907 × 195565415393<12> × 4211440287626844851<19> × 2976551713127910267145613<25>
709×1070-79 = 78(7)70<72> = 47 × 89 × 188328419263155098679841687252636332244269131670518235184742476160119<69>
709×1071-79 = 78(7)71<73> = 423523781 × 52378574041955275417<20> × 355117646365935412491063463677283990116879301<45>
709×1072-79 = 78(7)72<74> = 3 × 13 × 4733 × 3600217 × 1438141168063<13> × 268768113185381933<18> × 306686511105788709752765558943497<33>
709×1073-79 = 78(7)73<75> = 109 × 440509 × 895510742679011<15> × 3664586661105937253<19> × 4999500836666225667621855407199799<34>
709×1074-79 = 78(7)74<76> = 17 × 29 × 61 × 72559 × 1675143131072146223<19> × 2155181060723428165644988882549425267872004340057<49>
709×1075-79 = 78(7)75<77> = 32 × 25253 × 3687714226734421249537<22> × 93992019049125354715711942368165270377802146161973<50>
709×1076-79 = 78(7)76<78> = 229 × 3521101 × 3840289 × 266595455923<12> × 20884169646099228586253<23> × 45693654899532881031262588343<29>
709×1077-79 = 78(7)77<79> = 12101 × 82326250845111113883298967<26> × 7907589695556558447068515590391907616614803264331<49>
709×1078-79 = 78(7)78<80> = 3 × 13 × 569 × 1409 × 7157417 × 113408813838568146702647<24> × 3103935804524321919996076703414216883922417<43>
709×1079-79 = 78(7)79<81> = 547 × 1987 × 10007 × 72429357466532983570715724997896483155411055481379429797179655897211999<71>
709×1080-79 = 78(7)80<82> = 19 × 103 × 8451507639211627<16> × 25080365676601519916743721<26> × 18990869412195465528054091803397501183<38>
709×1081-79 = 78(7)81<83> = 3 × 580553 × 2722473863<10> × 8572899180863441<16> × 1937979425343191084949996847860400788481330643905141<52>
709×1082-79 = 78(7)82<84> = 23 × 1471 × 5881 × 3959241906406428499458201199009559395250693437347186141117432099449442172049<76>
709×1083-79 = 78(7)83<85> = 4211 × 172177961 × 4246601210538529865881<22> × 2558582615333238315435669552958242106064093909942027<52>
709×1084-79 = 78(7)84<86> = 32 × 13 × 1367 × 2803 × 4169293 × 121608691960397<15> × 29734289071485564310837501<26> × 11655788509592530172553486992261<32>
709×1085-79 = 78(7)85<87> = 174395578882429<15> × 21334086142965899436433<23> × 211735759213724542279717668082091298819920404663861<51>
709×1086-79 = 78(7)86<88> = 283 × 229409 × 332947 × 581843 × 9527263 × 33855118411<11> × 1941929357631666388146997033715329460964173431906847<52>
709×1087-79 = 78(7)87<89> = 3 × 1385562131<10> × 3818691001575157<16> × 227032415300613959<18> × 33282932071915023733<20> × 656799025958608535456867191<27>
709×1088-79 = 78(7)88<90> = 51850744926405397367637491051120003242789<41> × 15193181484584530692030438751113135477435427225693<50> (Makoto Kamada / Msieve v. 1.53 (SVN 975M) for P41 x P50 / January 6, 2015 2015 年 1 月 6 日)
709×1089-79 = 78(7)89<91> = 179 × 6899 × 11971 × 2527075479869822927<19> × 139193730950743622602373<24> × 1514942778923505027057673978737829809257<40>
709×1090-79 = 78(7)90<92> = 3 × 13 × 17 × 941 × 1096831 × 2009669 × 2587362997<10> × 52529204115213413747<20> × 421481134570889444260542440885681443308099719<45>
709×1091-79 = 78(7)91<93> = 33022232352527045497<20> × 1036008240689275177073<22> × 1682625682610185030617919<25> × 13685055829644349395990167543<29>
709×1092-79 = 78(7)92<94> = 149 × 6834271489<10> × 143110016901570197<18> × 4945686646904856791631135409<28> × 10930212385525810635946708874171355209<38>
709×1093-79 = 78(7)93<95> = 33 × 1316262454433173501<19> × 2216651750131006933274066220516911299821882110096302108665946071030693174751<76>
709×1094-79 = 78(7)94<96> = 227 × 10781 × 12067160666964314324989<23> × 26675571181060265403952109425496237596087865728824370471000787602339<68>
709×1095-79 = 78(7)95<97> = 223 × 9277 × 979872770263415790279011325131720889082433<42> × 3886168407753058476477844296287636480882271517339<49> (Makoto Kamada / Msieve v. 1.53 (SVN 975M) for P42 x P49 / January 6, 2015 2015 年 1 月 6 日)
709×1096-79 = 78(7)96<98> = 3 × 13 × 369404905211<12> × 29969725286336622674589298781<29> × 182454130096719617822396200800920974787018509654124203273<57>
709×1097-79 = 78(7)97<99> = 131 × 487 × 3507529 × 572355709 × 25529924867<11> × 145783730317843902523<21> × 1652637426861416206583761746088092723012875284441<49>
709×1098-79 = 78(7)98<100> = 19 × 269 × 17631150640583231<17> × 11443998167976143222574025546951<32> × 7639050993549330608621919386140097851558250004047<49> (Makoto Kamada / Msieve v. 1.53 (SVN 975M) for P32 x P49 / January 6, 2015 2015 年 1 月 6 日)
709×1099-79 = 78(7)99<101> = 3 × 359 × 491 × 6575322969931869297271<22> × 22656323687187323430393105168392264171055330132895078410203275163119218641<74>
709×10100-79 = 78(7)100<102> = 19463 × 69716873 × 4400633981<10> × 190855487404753<15> × 7587824901558217<16> × 435597917588345987<18> × 209138047465318377532249097936209<33>
709×10101-79 = 78(7)101<103> = 2011420247<10> × 1473374761281671831501146566977<31> × 2658200174252825638151018876148071993433747129198303889332281783<64> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=4105005131 for P31 x P64 / December 24, 2014 2014 年 12 月 24 日)
709×10102-79 = 78(7)102<104> = 32 × 13 × 29 × 59 × 2297 × 3187 × 14891 × 1306010713608612448431952508077<31> × 2764102810601099711967995889607392602012865179486509102327<58> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=2005694526 for P31 x P58 / December 24, 2014 2014 年 12 月 24 日)
709×10103-79 = 78(7)103<105> = 1137603454539697001437253<25> × 132615990859672180987006243511202654499<39> × 5221760263276818526311599158271218454536991<43> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=1784450898 for P39 x P43 / December 24, 2014 2014 年 12 月 24 日)
709×10104-79 = 78(7)104<106> = 23 × 71 × 1353043 × 8903812205067919<16> × 65689420484032505183<20> × 1043408541342227595611<22> × 5842249938493144300843122344174360860289<40>
709×10105-79 = 78(7)105<107> = 3 × 26259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259<107>
709×10106-79 = 78(7)106<108> = 17 × 3594364985401339<16> × 19850471160381482237<20> × 33370223504216392332703224527<29> × 19462682350260959487189332338979213069888321<44>
709×10107-79 = 78(7)107<109> = 199 × 733 × 800707 × 6618487 × 139372633 × 187165339 × 65228248037<11> × 1559952560351<13> × 3839408253450675475732551384355380795558943020901511<52>
709×10108-79 = 78(7)108<110> = 3 × 13 × 1657 × 139121709586229<15> × 2904079493318873<16> × 3571375388792014085999867<25> × 844846293103885189877141370075645665901785863755841<51>
709×10109-79 = 78(7)109<111> = definitely prime number 素数
709×10110-79 = 78(7)110<112> = 1409 × 96989 × 370928110190710221387089269564821899936775597679<48> × 155410552413737089342118391958512343741743157228736283563<57> (KTakahashi / Msieve 1.51 snfs for P48 x P57 / January 8, 2015 2015 年 1 月 8 日)
709×10111-79 = 78(7)111<113> = 32 × 3079 × 11491 × 6918323 × 1528472722550619809308005653<28> × 23395653239414491596504197361173640808264117144021060643687368895746283<71>
709×10112-79 = 78(7)112<114> = 99301817 × 191581948363973<15> × 425523026586835245871027635254773<33> × 97312555723471498034757374122956589075775755428517674104689<59> (Makoto Kamada / Msieve v. 1.53 (SVN 975M) for P33 x P59 / January 6, 2015 2015 年 1 月 6 日)
709×10113-79 = 78(7)113<115> = 919 × 954762421 × 8978274872333157939624990459664115421206002937373215201355286499202371190984054796268548907390341524923<103>
709×10114-79 = 78(7)114<116> = 3 × 13 × 89 × 103 × 347 × 59771940652476046383305386183393<32> × 10623926465066870155432226752160432935821827617888420255908921124720419190699<77> (KTakahashi / Msieve 1.51 snfs for P32 x P77 / January 8, 2015 2015 年 1 月 8 日)
709×10115-79 = 78(7)115<117> = 48649 × 122033 × 318309971899<12> × 724646253793253463780835603<27> × 575275958415058471281377817393866813100759658920970273165782677218073<69>
709×10116-79 = 78(7)116<118> = 19 × 47 × 47054562113640500225719419679<29> × 54054026505079668143884213111193<32> × 3468346514565802130179879868232783245619221584445978387<55> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=2623223284 for P32 x P55 / December 24, 2014 2014 年 12 月 24 日)
709×10117-79 = 78(7)117<119> = 3 × 4127 × 42683 × 16791637 × 77406013 × 15907100999<11> × 122056789305510417162949<24> × 619980779300820288316647603293<30> × 95278327295003578232931001587353<32> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=386162800 for P30 x P32 / December 24, 2014 2014 年 12 月 24 日)
709×10118-79 = 78(7)118<120> = 107 × 668169253748405862459899326324633<33> × 145647353085116173685058435089973648283<39> × 75653820422945939008126454831307668376437908049<47> (KTakahashi / Msieve 1.51 snfs for P33 x P39 x P47 / January 8, 2015 2015 年 1 月 8 日)
709×10119-79 = 78(7)119<121> = 17624764789633<14> × 5399361075919079371<19> × 7631448844148756692059607<25> × 10847534177890067398320569833757586831831399215982237046591327877<65>
709×10120-79 = 78(7)120<122> = 33 × 13 × 224438113327002215891104779993668882557771446660335549224438113327002215891104779993668882557771446660335549224438113327<120>
709×10121-79 = 78(7)121<123> = 401 × 19609 × 144863349501039419103049771<27> × 691584711444370185652619373415755058436238592200300837203029240135644241071430062996521243<90>
709×10122-79 = 78(7)122<124> = 17 × 1049 × 538618809564240345148183<24> × 820158519353935239508860251690005811006552859964803008405847106996700474759084653729558591746143<96>
709×10123-79 = 78(7)123<125> = 3 × 419 × 72859 × 83904407 × 789125778711506814604059636126683<33> × 12991348664955370253858258628831122506732380768522885777247749725016512720759<77> (KTakahashi / GMP-ECM 6.4.4 B1=1000000, sigma=2839887668 for P33 x P77 / January 8, 2015 2015 年 1 月 8 日)
709×10124-79 = 78(7)124<126> = 2867304948174246809<19> × 179795459068701661887354848883651394135787<42> × 1528097701973193785727419084890824855208298510123193363010051956619<67> (KTakahashi / Msieve 1.51 snfs for P42 x P67 / January 8, 2015 2015 年 1 月 8 日)
709×10125-79 = 78(7)125<127> = 147249209 × 90044617645455964474332298933<29> × 594145752809518746923795319742345870119545912532201384882185951943869576911098443665858741<90>
709×10126-79 = 78(7)126<128> = 3 × 13 × 23 × 26376796415284143938489652175732181<35> × 3329578322553615464318549030068552283505089050965793020659169066799717570839192293274790061<91> (KTakahashi / GMP-ECM 6.4.4 B1=1000000, sigma=240791058 for P35 x P91 / January 8, 2015 2015 年 1 月 8 日)
709×10127-79 = 78(7)127<129> = 727 × 53181533 × 1327767241<10> × 15345693274827040506224074276482267450162310485472137362183845776858298153784067464063836044672573409532254667<110>
709×10128-79 = 78(7)128<130> = 2503 × 4650294993216831219613717<25> × 676803152172078137512466377301400899229272266335161150683120288036259273832628910748916365547316589227<102>
709×10129-79 = 78(7)129<131> = 32 × 199751382328789820622027499<27> × 61306132420495260111583510746700891748517830124167<50> × 714771954798441264604868189964288723650512663140845741<54> (KTakahashi / Msieve 1.51 snfs for P50 x P54 / January 8, 2015 2015 年 1 月 8 日)
709×10130-79 = 78(7)130<132> = 29 × 764021 × 3489762195551710699819520647098727016739296046610161631<55> × 10188367419385610334416512379444412969031466441412762988511853653210863<71> (KTakahashi / Msieve 1.51 snfs for P55 x P71 / January 8, 2015 2015 年 1 月 8 日)
709×10131-79 = 78(7)131<133> = 1296282409<10> × 2549928288413579896093<22> × 2383285832088996614230462765455812442259023467243645889201721263073161989058987873874228688053542797021<103>
709×10132-79 = 78(7)132<134> = 3 × 13 × 101515945839604263359529841127<30> × 707605148689880870548546229158009<33> × 1709649968322724114380809188010857<34> × 16447756448737670781487139800617061793<38> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=608311456 for P30, B1=1e6, sigma=3570376581 for P33 / December 24, 2014 2014 年 12 月 24 日) (Makoto Kamada / Msieve v. 1.53 (SVN 975M) for P34 x P38 / January 6, 2015 2015 年 1 月 6 日)
709×10133-79 = 78(7)133<135> = 5441 × 6163 × 2925155759<10> × 69547426399109237<17> × 1541333547892470132511783<25> × 646913292415877445201726156043193<33> × 115813734536398110894818129891689508913117247<45> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=3978642592 for P33 x P45 / December 24, 2014 2014 年 12 月 24 日)
709×10134-79 = 78(7)134<136> = 19 × 61 × 1216355437028345891<19> × 5588043639260487384915367965399593409235908407344565960979361525341864054041691846765000794173486459047624532936333<115>
709×10135-79 = 78(7)135<137> = 3 × 121349 × 19128529837<11> × 642755596997359779407<21> × 4095317510246383132152443<25> × 4297651854859707698696550251591707933265802854046519140445485698796284092943<76>
709×10136-79 = 78(7)136<138> = 2683 × 31263379283<11> × 1899482008978743510827329<25> × 133708505790426099585271771117<30> × 36978808503048487938876044808651943205432118342634514648951553760342901<71> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=331019 for P30 x P71 / December 24, 2014 2014 年 12 月 24 日)
709×10137-79 = 78(7)137<139> = 50354235097<11> × 284172606283<12> × 708339847583<12> × 777219768711987083746545767145252101529001323360972793768277575954974472818182167091272402308135957746869<105>
709×10138-79 = 78(7)138<140> = 32 × 13 × 17 × 1621 × 5034159405295582903574095741963824112872075612437<49> × 4853543926589286368870148767254536398600132222360446018684694083511555061995638324709<85> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P49 x P85 / January 11, 2015 2015 年 1 月 11 日)
709×10139-79 = 78(7)139<141> = 71 × 10221632227<11> × 1085488248103248895347032441397158772082537830131559997557107521825620669490965230380524940807745144475026424315672929947270355981<130>
709×10140-79 = 78(7)140<142> = 91807639294662782616107203244827721345041<41> × 85807432129841843087325424483705221962661458420326677752386912607500882811633500521746730446397836897<101> (Serge Batalov / Msieve 1.51 snfs for P41 x P101 / January 9, 2015 2015 年 1 月 9 日)
709×10141-79 = 78(7)141<143> = 3 × 8501 × 109063 × 5636916133<10> × 5024506840433735671149400339645785188293902846686594664301612888404857765578433567059694175563825001456676198737175071069221<124>
709×10142-79 = 78(7)142<144> = 1409 × 8832478579380332297<19> × 63300937168480017025258756725176069184675182089463811620814662842307775658567440995871986998989199447328984730285122542249<122>
709×10143-79 = 78(7)143<145> = 373 × 52402253533508960072183181069755078808161<41> × 439724572234327711482099636862707688413773704647149<51> × 916566953451035639176092520355435802418124340591041<51> (Cyp / yafu v1.34.3 for P41 x P51(4397...) x P51(9165...) / January 14, 2015 2015 年 1 月 14 日)
709×10144-79 = 78(7)144<146> = 3 × 133 × 727621 × 993689 × 9637625191<10> × 124231060249<12> × 4644353420321<13> × 2972837852026247936215170759688740340159973777123163976751056045629808094727681767336694980897717<97>
709×10145-79 = 78(7)145<147> = 1973 × 1620547 × 565841007838778632050799474971208166082636078887530528657<57> × 435432249049417180823287810455777980329416790002190195694551322724013554205156031<81> (Cyp / yafu v1.34.3 for P57 x P81 / January 15, 2015 2015 年 1 月 15 日)
709×10146-79 = 78(7)146<148> = 97 × 4241 × 154595792525821<15> × 1497480545071393652528260227082516764229914940936707584653<58> × 82718920886318962337564764579354652854646247230339194390752916767561577<71> (Cyp / yafu v1.34.3 for P58 x P71 / January 17, 2015 2015 年 1 月 17 日)
709×10147-79 = 78(7)147<149> = 34 × 809434939 × 26477085989<11> × 45380217634021592180538793511400921092371451819404709917108114162253950653278649098694970138393771778416820326400958718306402327<128>
709×10148-79 = 78(7)148<150> = 23 × 103 × 5644609816833774370357343238929204771<37> × 234101180661117501194634689780034188809<39> × 251652433418674976273228737407060072092091968515704234947720309286857347<72> (KTakahashi / GMP-ECM 6.4.4 B1=1000000, sigma=3290698945 for P37 / January 8, 2015 2015 年 1 月 8 日) (Ignacio Santos / GMP-ECM 7.0 B1=110000000, sigma=2:1588750230674996840 for P39 x P72 / January 13, 2015 2015 年 1 月 13 日)
709×10149-79 = 78(7)149<151> = 961841 × 246651511 × 168578476846725003484747<24> × 1089312711161497365417867592777<31> × 946567996666565498886036457520561<33> × 191033769747096706532306963733809366189219062074653<51> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=1657763109 for P31 / December 24, 2014 2014 年 12 月 24 日) (Makoto Kamada / Msieve v. 1.53 (SVN 975M) for P33 x P51 / January 6, 2015 2015 年 1 月 6 日)
709×10150-79 = 78(7)150<152> = 3 × 13 × 66641467 × 15167865067<11> × 604495819357<12> × 185849174016599<15> × 17787551745001068185553925624101361237467624786027035356345225726653300161487933820713810858711901720418909<107>
709×10151-79 = 78(7)151<153> = 1667 × 14327898961<11> × 1738531180999<13> × 18971563832054000368648255216459805320079393074943036485344052997425652736751247614506521702813473496401973066368832575942252829<128>
709×10152-79 = 78(7)152<154> = 19 × 87539 × 35897207 × 131943464767724978882273673867743818870858433492913355820279999085756223124479188115363444291986463041457169013285050840180588356466345669471<141>
709×10153-79 = 78(7)153<155> = 3 × 809 × 2665406156426932423475016917277043979787359236367<49> × 12177848108979071409675472806205591558328014799108373590610932732049460750745245067805365042967402043853<104> (Cyp / yafu v1.34.3 for P49 x P104 / January 12, 2015 2015 年 1 月 12 日)
709×10154-79 = 78(7)154<156> = 17 × 113 × 588637409 × 113040500128522540213122655272616901262079713515146550500733<60> × 6163032127888817300293257418356021363246933054361191744541013705783464382376736138021<85> (Cyp / yafu v1.34.3 for P60 x P85 / January 13, 2015 2015 年 1 月 13 日)
709×10155-79 = 78(7)155<157> = 7156199646289<13> × 1100832588126991050664306377588699435601889807992764826682683182210716419428257065225400712070580621695162245073546106171829258254615095200796193<145>
709×10156-79 = 78(7)156<158> = 32 × 13 × 2677 × 73718639261169648171641<23> × 3411867701534116981559803949171759056304387399591470143924196086226500338330788033887953960723042420663754219595572043073028423233<130>
709×10157-79 = 78(7)157<159> = 836436868225489<15> × 1197553205888911<16> × 1104241853619337890441421<25> × 15172791441646962205839199792785342087097261<44> × 46940320278804587059469114364565638814591486751735626749603223<62> (Cyp / yafu v1.34.3 for P44 x P62 / January 9, 2015 2015 年 1 月 9 日)
709×10158-79 = 78(7)158<160> = 29 × 89 × 389 × 24133 × 983916746473<12> × 330442922555005235625327083169940260090963821771247112160359618923806692166558575320113641986895899989180609991141506715729631020876484717<138>
709×10159-79 = 78(7)159<161> = 3 × 619 × 262697 × 1173979 × 13362449 × 1231454363<10> × 2985374239<10> × 509261930220175371917<21> × 14954623034116507715907223<26> × 367668594745159188738197377009727414421932599052973684661590711425607134269<75>
709×10160-79 = 78(7)160<162> = 59 × 100708381 × 1738351318171519679297<22> × 3140366431136095209744251<25> × 24286684007451858659510508968617033970259163574791479786026288139165325173776624772054343621300803159622829<107>
709×10161-79 = 78(7)161<163> = 72559 × 108570649785385379867111974776082605573089179533590288975561650212623903000010719246100108570649785385379867111974776082605573089179533590288975561650212623903<159>
709×10162-79 = 78(7)162<164> = 3 × 13 × 47 × 4157 × 49470943 × 285472201581599949407<21> × 1882075901080914322233297800576666454330303121986432824205541<61> × 388964610417639948129771723951920441406541514809371085334878148346937<69> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P61 x P69 / February 8, 2015 2015 年 2 月 8 日)
709×10163-79 = 78(7)163<165> = 599 × 36697 × 3773027 × 1940622298380582250141<22> × 4894579773274208888731293191403582058747873176230501630516749515564892992215673270984958974157512288596331845781749254408631549737<130>
709×10164-79 = 78(7)164<166> = 739 × 32525212926335182216157<23> × 2083753901696165740956311956764964123769<40> × 157286957965902689199685171931855362070182280532269450471810884566624558966979070166931712747628069071<102> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P40 x P102 / February 15, 2015 2015 年 2 月 15 日)
709×10165-79 = 78(7)165<167> = 32 × 47657 × 1034309 × 30633449036265305759<20> × 5796799984033820696509717915396075194183877335300747704216558653773376385222583386942692918415931103035202848313346296629929534769675859<136>
709×10166-79 = 78(7)166<168> = 432631 × 37054869311<11> × 129871520815370182969241476545654204785557<42> × 378378872037445314143330646108954309149220911182093376717978775339242711140289689834452040819923895190137420421<111> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P42 x P111 / March 15, 2015 2015 年 3 月 15 日)
709×10167-79 = 78(7)167<169> = 421 × 2281 × 189585298970838118064051<24> × 3024542595019941831100921923551239300402952099115594704406833647<64> × 14306453306559359981036939642003742063450444205609015313336179065915435676441<77> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P64 x P77 / March 22, 2015 2015 年 3 月 22 日)
709×10168-79 = 78(7)168<170> = 3 × 13 × 193 × 733 × 93307 × 117269 × 132151 × 23305896247864974973<20> × 39321353935366544347498826084127705473399<41> × 10774959865616311401385175471086192087386055559553799892895144464551994555855099822445817<89> (Jo Yeong Uk / GMP-ECM 6.4.4 B1=11000000, sigma=4029497913 for P41 x P89 / March 24, 2015 2015 年 3 月 24 日)
709×10169-79 = 78(7)169<171> = 181 × 565427 × 543700175623058713048241235158868496744790670606203509657541146236127<69> × 14157583597370518099540110364193640554101113313617710410644653824771789393661366209904683951073<95> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P69 x P95 / April 9, 2015 2015 年 4 月 9 日)
709×10170-79 = 78(7)170<172> = 17 × 19 × 23 × 443 × 547 × 7825849 × 884813179 × 67522624315940346324309411009810799068187786125026593<53> × 9359441952295612584543400467349498159534224342126671232740766240235090278476183781492713734351<94> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P53 x P94 / April 25, 2015 2015 年 4 月 25 日)
709×10171-79 = 78(7)171<173> = 3 × 107 × 359483 × 47556529711<11> × 14355230825965557971003601831534694281777475948019606495014638387223163851662504346615062827828154930693378708474613989968614326816855991339272110193715949<155>
709×10172-79 = 78(7)172<174> = 523 × 2927 × 514611295362278004925316400661983195800016969833689097404450146540828599671534279826170256207471531797498060046065332117718386263173668102134591684970207344802415029437<168>
709×10173-79 = 78(7)173<175> = 15083 × 522295152010725835561743537610407596484636861219769129336191591711050704619623269759184365032008073843252521234355087036914259615313782256698122242112164541389496637126419<171>
709×10174-79 = 78(7)174<176> = 33 × 13 × 71 × 1409 × 164561303 × 370217000116571261624441<24> × 40227744167116743814968239980602082684489<41> × 915413922030944675414456664291581407349247320531268857287934003912298932506589735588007654018319<96> (KTakahashi / GMP-ECM 6.4.4 B1=11000000, sigma=1317580185 for P41 x P96 / April 27, 2015 2015 年 4 月 27 日)
709×10175-79 = 78(7)175<177> = 547671959 × 2939231623<10> × 8573361807485422853<19> × 23163224638381489628245823<26> × 99527687265175893789706111929472133943666848497<47> × 24760267103661756029045707789100982338065085853401656611882478004627<68> (Ignacio Santos / GMP-ECM 7.0 B1=43000000, sigma=1:3739622536 for P47 x P68 / January 10, 2015 2015 年 1 月 10 日)
709×10176-79 = 78(7)176<178> = 16475671 × 78685253611<11> × 3911393146811411<16> × 13636089337899943<17> × 12835337703664285394256328458269283021199309989059715067855679<62> × 8876436647102101601001406513253398110890503640172032878077211177151<67> (Kai Inouye / for P62 x P67 / June 26, 2015 2015 年 6 月 26 日)
709×10177-79 = 78(7)177<179> = 3 × 1453 × 4553465150207310550060104343<28> × 13771260806347532896208903293373617155354560782672769751018066997<65> × 288204751417481946382140757226446202672165786319888330027237048300582740879538562093<84> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P65 x P84 / November 4, 2015 2015 年 11 月 4 日)
709×10178-79 = 78(7)178<180> = 7508940299118151187474536610987627372234833697<46> × 4512206837691121780932333077074921228273505416969725277253805626281<67> × 23250702272564313708143112887144435092569228699572138736904020851561<68> (Serge Batalov / GMP-ECM B1=3000000, sigma=821267193 for P46 / January 10, 2015 2015 年 1 月 10 日) (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P67 x P68 / December 1, 2015 2015 年 12 月 1 日)
709×10179-79 = 78(7)179<181> = 751 × 7543769 × 188017996447472982718419289740209<33> × 28132864209910783940084591254371095827<38> × 40499972654977003538438417166401622746828334311<47> × 6490935700991375106046792345668149582414418878977039771<55> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=1329283438 for P33 / December 25, 2014 2014 年 12 月 25 日) (Cyp / GMP-ECM 6.4.4 B1=11000000, sigma=479782106 for P38 / May 11, 2015 2015 年 5 月 11 日) (Dmitry Domanov / Msieve 1.50 gnfs for P47 x P55 / May 11, 2015 2015 年 5 月 11 日)
709×10180-79 = 78(7)180<182> = 3 × 13 × 9602976043<10> × 210345523189703113478853757455221003618611549621984196281925788403533554771770768224025230239756729542329437530592308689259524274743941474916782005757527009902584531517301<171>
709×10181-79 = 78(7)181<183> = 109 × 3919 × 36726579817<11> × 2771553571410791<16> × 18117497101651981395150851285132710987787257351678482517484924962229727618785309578949927090133052191300294532723089964673901784034768895059995410616421<152>
709×10182-79 = 78(7)182<184> = 103 × 977 × 105037 × 349183 × 1897198140259<13> × 1125029332888664441569516763769635552952029579639953294851161808433966192200328673740635074930439566543709053516737244348742181878026965229418735034795451503<157>
709×10183-79 = 78(7)183<185> = 32 × 131941 × 44959450733<11> × 19828912952043153460199<23> × 26044558026583042002887738907143<32> × 1889316979252002869487359612397690152109414462609451<52> × 1512306164336062589520409893410988566845039735085902520573519243<64> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=3911677370 for P32 / December 25, 2014 2014 年 12 月 25 日) (Cyp / yafu v1.34.3 for P52 x P64 / January 11, 2015 2015 年 1 月 11 日)
709×10184-79 = 78(7)184<186> = 967 × 1637 × 3407 × 1286647 × 373301940891443733659876281330902825770873786053122053197874006078720927<72> × 304114255947462096128774895542722070382186391783526699757694767550282031803461772718180268965962061<99> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P72 x P99 / July 20, 2016 2016 年 7 月 20 日)
709×10185-79 = 78(7)185<187> = 1849227742567<13> × 35792788015339<14> × 193419494806957739608436283958099<33> × 615343408186381258655744810100789005936791294504586594608248133956281440068252604189235830837190178889165859423585549176802926871<129> (Serge Batalov / GMP-ECM B1=3000000, sigma=2411302865 for P33 x P129 / January 9, 2015 2015 年 1 月 9 日)
709×10186-79 = 78(7)186<188> = 3 × 13 × 17 × 29 × 5749 × 104701 × 291619 × 280388365562863<15> × 970947028253939744084917891267<30> × 85738862788362458116172652448668653455714519201678407138099455097461313567910480647201626674449191457908321231324142253779301<125> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=4199602541 for P30 x P125 / December 25, 2014 2014 年 12 月 25 日)
709×10187-79 = 78(7)187<189> = 2981981 × 33260262929<11> × 67334259677553938888419946282377461314139361<44> × 117960630762644222396254119675440077463044735592724652677133707271741779206106778866066846208320663888489294144520880294283986293<129> (Jo Yeong Uk / GMP-ECM 6.4.4 B1=11000000, sigma=3710794789 for P44 x P129 / February 17, 2017 2017 年 2 月 17 日)
709×10188-79 = 78(7)188<190> = 19 × 606564019 × 1368338453<10> × 499551133190662310839209663606166801287663431865099264173337101637675092672027982290635673443301221494815387354391445042418185396766230948882593716799377720132260302280069<171>
709×10189-79 = 78(7)189<191> = 3 × 27696324753105990310389453997<29> × 9468099442772033309254628241566102164555212027316128090203<58> × 100137678178423507316826466646784242499295791300692377428746462884396208623559138981415785488728376262149<105> (Eric Jeancolas / cado-nfs-3.0.0 for P58 x P105 / September 24, 2020 2020 年 9 月 24 日)
709×10190-79 = 78(7)190<192> = 63335893979<11> × 518424671504931570855305552578813292227001285523851801234275188219588470942929244771626159<90> × 23992094294976995878533888780111872696621047468796979157607682150900446014945325966987182157<92> (Edwin Hall / CADO-NFS/Msieve for P90 x P92 / December 21, 2020 2020 年 12 月 21 日)
709×10191-79 = 78(7)191<193> = 2088403 × 2750346359<10> × 1789866645518762689<19> × 85298973172191934506907<23> × 8983334061080614707435458070532309403707242902681588790150267292880276439920047703914924172040066325770618774339556398355194823848592087<136>
709×10192-79 = 78(7)192<194> = 32 × 13 × 23 × 240659 × 930551 × 87430589128402459187964228098863112313090195756162932796443329929217909<71> × 1495148519976730881988508551688463778033744733104678704530884335823951141359396565030650034886619459964870387<109> (Bob Backstrom / Msieve 1.54 snfs for P71 x P109 / March 1, 2021 2021 年 3 月 1 日)
709×10193-79 = 78(7)193<195> = 1423 × 179296562296745261<18> × 383851659859966057<18> × 14675840100316541351671356209253054493455687127929003300331593517151329<71> × 548100841256463329894066460118526604712858500913334904636932004629060588763490000793603<87> (Eric Jeancolas / cado-nfs-3.0.0 for P71 x P87 / January 15, 2021 2021 年 1 月 15 日)
709×10194-79 = 78(7)194<196> = 61 × 2971 × 54742321 × 78162861290291<14> × 156871765319073220706107734232977657891609677<45> × 1787290401089914747855548295405794775230809171743914997<55> × 36233282169398921203281042277888658835595761428555372045457522803611013<71> (Serge Batalov / GMP-ECM B1=3000000, sigma=1499255929 for P45 / January 9, 2015 2015 年 1 月 9 日) (Erik Branger / GGNFS, Msieve gnfs for P55 x P71 / February 11, 2015 2015 年 2 月 11 日)
709×10195-79 = 78(7)195<197> = 3 × 21871 × 617822109914238062810165765700200496338747<42> × 1943347133864792716938369096855941215048600837143072312994977048431332921114556813012181710633544001112911932448503814311058659672535286646486732915407<151> (Bob Backstrom / Msieve 1.54 snfs for P42 x P151 / February 25, 2021 2021 年 2 月 25 日)
709×10196-79 = 78(7)196<198> = 1269363628717<13> × 257867046460089820563863<24> × 1842463607351220911918324876094131495989168241<46> × 1306239796807754261662582467221663695010318410580146332632951056667428841666503018007319084468118464281514774206099107<118> (Eric Jeancolas / cado-nfs-3.0.0 for P46 x P118 / July 18, 2021 2021 年 7 月 18 日)
709×10197-79 = 78(7)197<199> = 3895794419251251043<19> × 24679632050464937166107880415167761636175957480977866745679250380810362773<74> × 81934916247607199695078968788970156601541956422982585880788139061396659368265122123733969868370340308418543<107> (Bob Backstrom / Msieve 1.54 snfs for P74 x P107 / April 1, 2021 2021 年 4 月 1 日)
709×10198-79 = 78(7)198<200> = 3 × 13 × 19117194256766001737427597593<29> × 145107266089834681244865058046651360835814616615559356707<57> × 728158302467772494507968580658388292886854448340937317756162015001768129941193524214102900662319304652837009888693<114> (Bob Backstrom / Msieve 1.54 snfs for P57 x P114 / April 11, 2021 2021 年 4 月 11 日)
709×10199-79 = 78(7)199<201> = 757428418812929<15> × 92729339633209293669713<23> × 27267844635654582751304409727<29> × 411333567323465197904192607080311979938874519856761081911325036019509795950259578411381574946822099556297240863541165084200082402823263<135>
709×10200-79 = 78(7)200<202> = 6833 × 7669 × 16942466929<11> × 8873131558092298071537101729952618195750003182193091016432246530492230774718008702569720778731318007590266322729788325782591201639937521234930730949566049559201181022892330026086914669<184>
709×10201-79 = 78(7)201<203> = 33 × 18678794893286610333584708669280651882264562048952871334552829462077<68> × 156203625015427767699271863489184671604748209451817964722775169062553876622209786298139479942312496757308973824255279209034759933311263<135> (Bob Backstrom / Msieve 1.54 snfs for P68 x P135 / September 3, 2020 2020 年 9 月 3 日)
709×10202-79 = 78(7)202<204> = 17 × 89 × 1567 × 39107 × 584206409299<12> × 2857531365728646509422997781071<31> × 799149216679022608951503814667183<33> × 6368777819016794702614263710083427638998028124941680226176778152034079952697123539229979083229182102645012708330922063<118> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=2446292055 for P31 / December 25, 2014 2014 年 12 月 25 日) (Serge Batalov / GMP-ECM B1=3000000, sigma=71121768 for P33 x P118 / January 9, 2015 2015 年 1 月 9 日)
709×10203-79 = 78(7)203<205> = 33967 × 476456853236920917538270041135311<33> × 486769049436068861465978199282208727608448846448291970943328068125310664173218430283933037561009553764154421542200479129110094192592597489751505091053034189731286663921<168> (Cyp / GMP-ECM 6.4.4 B1=3000000, sigma=1087522014 for P33 x P168 / January 8, 2015 2015 年 1 月 8 日)
709×10204-79 = 78(7)204<206> = 3 × 13 × 39343 × 28658118563248990175346304764680670294666883<44> × 1791529528654460079850694480452308733442207077376978295600892614553025444666144664710504428882752611981972978707976181413082615380799773745265570076217362947<157> (Bob Backstrom / Msieve 1.44 snfs for P44 x P157 / July 27, 2017 2017 年 7 月 27 日)
709×10205-79 = 78(7)205<207> = definitely prime number 素数
709×10206-79 = 78(7)206<208> = 19 × 199 × 887 × 1409 × 309414976550075359937<21> × 30144464086173354542473138473118945361868014057571826816893370646515319<71> × 178736618456707647997193681547375124187591112187548895255511729828737472395824232863855193519308417320641133<108> (Bob Backstrom / Msieve 1.44 snfs for P71 x P108 / October 4, 2024 2024 年 10 月 4 日)
709×10207-79 = 78(7)207<209> = 3 × 167 × 227 × 18115542431994183335850403312954778473983219867298474439500037981537663<71> × 38237439256529401939318259700842714058596121489454569365193758125639698560773002368564957729798395495920310767419804307397733815177777<134> (Bob Backstrom / GGNFS-0.77.1-20060513-nocona, Msieve 1.44 snfs for P71 x P134 / August 15, 2017 2017 年 8 月 15 日)
709×10208-79 = 78(7)208<210> = 47 × 1321652345203<13> × 76216186571311<14> × 45625916956667033908392256772826343748025071<44> × 3646950056414846127039718060262140262829794476275539309766361717636091039697602606547618035995771386118233917502781610350463977643157074437<139> (Bob Backstrom / GMP-ECM 7.0.4 B1=35710000, sigma=1:1922711517 for P44 x P139 / June 14, 2021 2021 年 6 月 14 日)
709×10209-79 = 78(7)209<211> = 71 × 7499 × 13591 × 1088655850784464395324461052835611398759637094272605029633291258837638274713690850457794167335299397677883413710959056865545144461578940144170004274338181878038040396558601002107425047680229196057047443<202>
709×10210-79 = 78(7)210<212> = 32 × 13 × 75229117 × 5635375152068734097<19> × 33915667072922377214565337<26> × [46828333594077146729295964688858571079555500941739658673723768641833035505987289828403331325089696598103114990925891476893275079808913053930576306044628988137<158>] Free to factor
709×10211-79 = 78(7)211<213> = 1163 × 677366962835578484761631795165759052259482182096111588802904366102990350625776249164039361803764211330849336008407375561287857074615458106429731537212190694563867392758192414254323110728957676507117607719499379<210>
709×10212-79 = 78(7)212<214> = 6163 × 154920039411278622750415874027<30> × 309249407148582387789026853803<30> × 51199676204027730165396720065689435873<38> × 521108154296371655425273797310741657840698561364609985856553805914311088894441090556774006941113329326229166147683<114> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=3609847930 for P30(1549...), B1=1e6, sigma=2431521565 for P30(3092...) / December 26, 2014 2014 年 12 月 26 日) (Cyp / GMP-ECM 6.4.4 B1=11000000, sigma=967828901 for P38 x P114 / June 24, 2015 2015 年 6 月 24 日)
709×10213-79 = 78(7)213<215> = 3 × 257 × 1663 × 1753 × 8239948179691<13> × 1243882755967722449<19> × 72220307280912527814352805372929000963<38> × 47349121187170769886257862725805413837323079812642050640086595630830864854054317324802020902091316970637179932093501877440823689850473149<137> (Cyp / GMP-ECM 6.4.4 B1=11000000, sigma=1752967162 for P38 x P137 / June 11, 2015 2015 年 6 月 11 日)
709×10214-79 = 78(7)214<216> = 23 × 29 × 379 × 130583921812553227<18> × 361477591130003847647<21> × 43896090565185845477423194254805192759<38> × 8524340475452092313082416689330214464214340485718861799<55> × 176433465164148983731706164753006209521554826267459716833288688124466021549357941<81> (Serge Batalov / GMP-ECM B1=3000000, sigma=3061971580 for P38 / June 20, 2015 2015 年 6 月 20 日) (Erik Branger / GGNFS, Msieve gnfs for P55 x P81 / August 14, 2015 2015 年 8 月 14 日)
709×10215-79 = 78(7)215<217> = 1379932855934519134013<22> × 4104460067063591554214033<25> × 129054578240481466229902759<27> × 10777457525544240068612944084692852370943467844195441516802855293626847584592574810133398229975604330568690630584557447005102102496679251985285507<146>
709×10216-79 = 78(7)216<218> = 3 × 13 × 103 × 34781 × 124832993177<12> × [4516795682903305239754140696576310368238826642211378487043322281143775634966802690506297311178592934920820698095000948060288846007942992421893581746306576829033699859001770894770874739334318681935613<199>] Free to factor
709×10217-79 = 78(7)217<219> = 1112269 × 1648553 × 61922149 × 21589168191883583971631884965573829<35> × 321372749746738299647850690546008443858987580012935927467601689145804700225759929043745944919689211242403245960288956007935546060418490113030933925468103401718651541<165> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=3608808871 for P35 x P165 / December 26, 2014 2014 年 12 月 26 日)
709×10218-79 = 78(7)218<220> = 17 × 59 × 2687 × 2526927393290635159666962022681974424127930733971714527<55> × 1156757603533104627682361704445672562664113623696948343161953740579245806531063967532796075398118663360896130719646248233529477651837715631266913306782255402291<160> (Bob Backstrom / Msieve 1.53 snfs for P55 x P160 / May 5, 2018 2018 年 5 月 5 日)
709×10219-79 = 78(7)219<221> = 32 × 691 × 1104801424219<13> × 45576081535289<14> × 554084869647157<15> × 441943499526113391625976863<27> × 65351214951245346563759456034654454190850504689<47> × 15720460102280868489147986355623275081560649187442852695273668371221841983689000088888547614852632316387<104> (Erik Branger / GGNFS, NFS_factory, Msieve snfs for P47 x P104 / December 8, 2017 2017 年 12 月 8 日)
709×10220-79 = 78(7)220<222> = 9091273 × 86652086872518048658067773102598258547265908501238250988368491164854226440871127484322358131559549226800006751285301604932310115181644834312838012649909179691092521121935044495724391708155478091767542100845258719849<215>
709×10221-79 = 78(7)221<223> = 7902017 × 1553277652838676156289<22> × 272765236171940289202023690305992022009161162658320297393894553929703222430901794959099<87> × 2353031023618146268718252739928707470711167335317821343734995723335234428540832050286898100606120560128187971<109> (Erik Branger / GGNFS, NFS_factory, Msieve snfs for P87 x P109 / February 21, 2020 2020 年 2 月 21 日)
709×10222-79 = 78(7)222<224> = 3 × 132 × 2953 × 20594831 × 29325870773<11> × 3703723491475520787267028837<28> × 55735460323468071378626353313<29> × 422039424311633075310355626365512481790258371915630818170344448204773287550720794959318933360975785633134801106705381973190707608527471993332029<144> (Cyp / GMP-ECM 6.4.4 B1=3000000, sigma=887907922 for P29 x P144 / January 9, 2015 2015 年 1 月 9 日)
709×10223-79 = 78(7)223<225> = 48953 × 314239 × 4666351009<10> × 569333319421243571<18> × 23871445993487346673<20> × 807498265236120547789134219313440387074579787740003527224140012041441186001363114052442361724317184008418271565126004916639683530269769780295500998587352159859614911373<168>
709×10224-79 = 78(7)224<226> = 19 × 107 × 10965884965627100835478993<26> × 7800451775411483263017731220499<31> × 45300490568739282788811754990690895963137610770239483445217988072877838310822394725351331316687967355788300388743407000044329590243963164369749406892169500079148477867<167> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=3035589382 for P31 x P167 / December 27, 2014 2014 年 12 月 27 日)
709×10225-79 = 78(7)225<227> = 3 × 145180171 × 34450629757<11> × [5250226046715463004567361794132049443729905770880662911397103071540724840152867200933579630395040922976482133150250820161830502417830065988883396377848940303991046215715736572703437918363710694005825608701797<208>] Free to factor
709×10226-79 = 78(7)226<228> = 30161 × 46447 × 223439 × 124341991 × 11580583325429<14> × 92495004399617<14> × 38485204570975460193569698861522612460778067<44> × 490999457287659729255123589611273037951468063048858814800147960291952533076814622338525773121639040962121236521398700844918330086483449<135> (Cyp / GMP-ECM 6.4.4 B1=11000000, sigma=996197733 for P44 x P135 / June 12, 2015 2015 年 6 月 12 日)
709×10227-79 = 78(7)227<229> = 131 × 283 × 1979 × 753129361 × 1075075157663753746582699836957691<34> × [132614738976053838893674481916983714623603541041526842140671392094775937829767649050887885634783830051331181364469574554739445528830089814490226775436567920973022764130657980367481<180>] (Serge Batalov / GMP-ECM B1=3000000, sigma=825547504 for P34 / January 9, 2015 2015 年 1 月 9 日) Free to factor
709×10228-79 = 78(7)228<230> = 35 × 13 × 563 × 12323954476795045039810043131<29> × 3594145211299186236363879769710640837900505312968493003988313626975166727927804660998118043509193171396880521514784305675096496716991536958993530319704487695155946201057830290330714536568402476151<196> (Serge Batalov / GMP-ECM B1=3000000, sigma=3324967763 for P29 x P196 / January 9, 2015 2015 年 1 月 9 日)
709×10229-79 = 78(7)229<231> = 233 × 733 × 2105027 × 35312269994803<14> × 12361036008566503<17> × 5020022358621213425704967848403853912529574986324906972789160731064125193596412597152828424109073394807898915024464355335018219569637715301229011148002836939515036124389152232678867921164051<190>
709×10230-79 = 78(7)230<232> = 17934685931<11> × 30658160851<11> × 6568749067768227233609028431571674629196800129<46> × 2181128134393422807287712352221514624979150141395891038118351653874892873412808487418606173662902534675388902066415234797954255221030392117316900753663024492071697473<166> (Cyp / GMP-ECM 6.4.4 B1=11000000, sigma=4196137260 for P46 x P166 / February 9, 2015 2015 年 2 月 9 日)
709×10231-79 = 78(7)231<233> = 3 × 24889 × 146894621735001859871<21> × [7182392393145010117445010548980715822326064131863364182289495607480937540234564237939470421082379487336594961140265636062566242032598412399020855408341107830929863308984163186268287315239255991183645202653261<208>] Free to factor
709×10232-79 = 78(7)232<234> = 25606149216709<14> × [30765179532099359671618627334433485752193018712254657491205850888239736386687148667110875488416749490853638802319574355593460725057660857603271424665631314178226539005474143591075783957179024155544382408065742744379825853<221>] Free to factor
709×10233-79 = 78(7)233<235> = 206887 × 175043851 × [217532256221119514728552601297518115281669389955891539665963889516304132853262359754598104499694144549402980937609483742663633857362408854970214159262974579200495805170187507702900922957233276980599260337555768900512801621<222>] Free to factor
709×10234-79 = 78(7)234<236> = 3 × 13 × 17 × 93309929 × 21630875558367038660563585003931507<35> × 58869214300225877768453415146429002444607322507057787026734186464968625948324268172409978801546915641228941618181195574033281454639851239497610734888877671969263282996331802839677990666032293<191> (Cyp / GMP-ECM 6.4.4 B1=11000000, sigma=3830934510 for P35 x P191 / June 19, 2015 2015 年 6 月 19 日)
709×10235-79 = 78(7)235<237> = 1261823 × 83672884549074539<17> × 5598920114722655233813<22> × 9950200266148812494497<22> × 133932030303949532750405915537020054925954042850662614081388593140466177035984544258039328868954892280126838032859086068186820617425000723318817358220214423212235723765081<171>
709×10236-79 = 78(7)236<238> = 23 × 509 × 15980061770545447<17> × 1280362702447731396179919785345888309<37> × [32888694838354366773672711360334757752625641558626031189375727675857832753106299042184191521050751938750182994473726062240790625695834415148038152928059379523210092484135362664039057<182>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=268237442 for P37 / December 27, 2014 2014 年 12 月 27 日) Free to factor
709×10237-79 = 78(7)237<239> = 32 × 48029 × 90709 × 11770639 × [170689675367968386815944356554857530934813123338074476224475527990752239811426891574119639552856884309934584004926816208365075215014792369729361682203073969151785180307835553784728858666256675197239402206524101222683733607<222>] Free to factor
709×10238-79 = 78(7)238<240> = 1409 × 11071 × 50501686531957371077652782185990930452688641766827929449870455338805023679841929863613891713315017532668376415866245207655277852550902512505916407913191176570414227298090464276535097949160700077599509673498333953635078274871790356943<233>
709×10239-79 = 78(7)239<241> = 1102583 × 1526675152383023<16> × 18760874643137180766419<23> × 222866902195385509488754701852659<33> × 1119301635472419651711044383436838571208202924980506429909224069511481636619395149940104039694684188595801016490877364149709785637405740657921960935085629367358187793<166> (Serge Batalov / GMP-ECM B1=3000000, sigma=2274416151 for P33 x P166 / January 9, 2015 2015 年 1 月 9 日)
709×10240-79 = 78(7)240<242> = 3 × 13 × 149 × 48788103961<11> × 45096770364420872649485954243928992016252169<44> × 6161599542538301389817866424501474015247850094792651378831285094781023615131264792243076328909379050435533083474978400198289785514037272602478771199459564889329845778598282919272369323<184> (Cyp / GMP-ECM 6.4.4 B1=11000000, sigma=2709328484 for P44 x P184 / July 4, 2015 2015 年 7 月 4 日)
709×10241-79 = 78(7)241<243> = 668029062637417985447579<24> × [1179256744710454407205071516128127876364835158752216201116843711596437004251740140244939623469916277846359929923541610737553135259470887926654450705784038884061327671240810983551839265804285189493420933199044078344225763<220>] Free to factor
709×10242-79 = 78(7)242<244> = 19 × 29 × 97 × 539245200168103044920039<24> × [273334281695629785127630316645892666346517239913092447890317020585307017860061218022061786366772918695925449633132522480646635812426759931493618154601381910064886709873262948974237022198806115794273717728769339014369<216>] Free to factor
709×10243-79 = 78(7)243<245> = 3 × 4673 × 26316797110921<14> × 124855794009139<15> × [1710192339865172625699533556736372831150709167645467543252047962995684304476823419492143029984327327889864575594393759372160788687217275760609255594357082113161836772802903015037830290171741424953373112603699122257<214>] Free to factor
709×10244-79 = 78(7)244<246> = 71 × 27974689 × 320373211811<12> × 3778721032171<13> × [327626546453530808438689339424788330160176047842187014916267729395536434858035192681554318487962793795580025241742733279207988856063897659243995737987133549953692282576195546832064997953760561201337448529044278343<213>] Free to factor
709×10245-79 = 78(7)245<247> = 479 × 9371 × 12007 × 98327 × 606914939 × 23922171389<11> × 102387408258628887951540569890877977047529140257820789062089010452484674777200017105966711817554772540844824175187972565207416704309498223771318945265341754717618533756111483364223571653610640968026293884323423987<213>
709×10246-79 = 78(7)246<248> = 32 × 13 × 89 × 31373963 × 66703315506953160290257930831<29> × 71848348307905977774557858856679<32> × [50314628147188135759789407044861172758813033643054506403599518388947703977760577241171461416077868756544415553176627137450645201126122456375255553774962490596640570498564153767<176>] (Serge Batalov / GMP-ECM B1=3000000, sigma=4237426428 for P32, B1=3000000, sigma=2072130114 for P29 / January 9, 2015 2015 年 1 月 9 日) Free to factor
709×10247-79 = 78(7)247<249> = 1129 × [697765967916543647278811140635764196437358527703966145064462159236295640192894400157464816455073319555161893514417872256667650821769510874913886428501131778368270839484302726109634878456844798740281468359413443558704851884657021946658793425843913<246>] Free to factor
709×10248-79 = 78(7)248<250> = 72559 × 73141 × 6560183183<10> × 5967484201474643<16> × 36698849049133949<17> × 1033217740984147463687338295277466723793636446541587573535299850539449186903756073442481924464972999855199746784664931243980928472461635479481384248169156099672596658758494717576235078982368566786443<199>
709×10249-79 = 78(7)249<251> = 3 × 7573573929774555409056101821<28> × [3467221618584097669034412094363174763109988254783156848357580881796995417140388446631529921166426039699000637618061421132370210177481012578949190070595494487488678388196360180044238418529157771060232116687446006434922947479<223>] Free to factor
709×10250-79 = 78(7)250<252> = 17 × 103 × 5449 × 3880181 × 6103771 × 3486186008371060056854989381379985190214290495262939694528508587228271148897607178194355469654607050647651295810115386813145096538937553926406240907452362986629646679603711166825487868684159731741744449771855542970284968185103083673<232>
709×10251-79 = 78(7)251<253> = 313 × 5305968713183<13> × 620836117039777<15> × 4048039776889547<16> × 476624773964126854001017003174938144660743<42> × [3960010575450226070573595604336707997679013540177410124812858785655185288180643418947263525336624088910934606393754265715560862217253035433684691410370107536631307939<166>] (Erik Branger / GMP-ECM B1=3e6, sigma=3:2779582195 for P42 / December 16, 2018 2018 年 12 月 16 日) Free to factor
709×10252-79 = 78(7)252<254> = 3 × 13 × 31541 × 299972927 × 207075618225005613484797283<27> × [1030985679457804474249891282977950195915257279897050872489777430607140712236024534029724961727318569488563619617326562966175414094788432157438024877411898820900405772242015307387010446335928646760199485524475542503<214>] Free to factor
709×10253-79 = 78(7)253<255> = 435231961 × 1810018216419032190004487693811111858528647388967323054148998441265157403681063252102889056389353211534429976703337229817499036514411168847450010174638295411806344290459352955877653888055748226122984055800483314638232135203365218341071642433396057<247>
709×10254-79 = 78(7)254<256> = 47 × 61 × 377665374737420926684125383618044638781<39> × 7275600821153403397818809323918151433096490856467170045528566282668356471235469334800122441436744074426839854155969408639115948242488425774435687846548091884083749474880096881590045641430929439992014222134080886951<214> (Erik Branger / GMP-ECM B1=3e6, sigma=3:3827846989 for P39 x P214 / December 16, 2018 2018 年 12 月 16 日)
709×10255-79 = 78(7)255<257> = 33 × 263 × 832123 × 744239435881934932381298237<27> × [17913646846759227945774978903279743468381555888546629784183413848907700373868265232593238011807519579752703801031442521633808872398905640468040381967755512690187189900858073320858121591036549151198156731875624427501018027<221>] Free to factor
709×10256-79 = 78(7)256<258> = 1823293 × 24629996501395266193714298268160597704487<41> × 17542153663537860808676804267856572945942467533216065148660173638762475535004695937440855540962854721039951000838958518307025219615913230640411247026228234748736337257470289441273771281781316269866899854299463347<212> (Erik Branger / GMP-ECM B1=3e6, sigma=3:504539670 for P41 x P212 / December 16, 2018 2018 年 12 月 16 日)
709×10257-79 = 78(7)257<259> = 1243088165791<13> × 65371995023372269<17> × 96941571294843998406165722077700144595081269680712348326069535912771357251076220550804700301505886007889940500767428701986667609087265102587376784865687121348464092106251577712869726805356484245791620070793345405079520917024252363<230>
709×10258-79 = 78(7)258<260> = 3 × 13 × 23 × 26449 × 2670692684081599<16> × 1160498680655209455379078105481<31> × [1071355141835753178606570148792240430324507470709919406878412407183058522108934358654814493479698112781348519439956017248723972246361999918668302435995023377723335946405986886011257445322870174703994812206311<208>] (Erik Branger / GMP-ECM B1=3e6, sigma=3:3235864663 for P31 / December 16, 2018 2018 年 12 月 16 日) Free to factor
709×10259-79 = 78(7)259<261> = 8865827 × [88855532346590766747171784175100391399220600376905366840315943202791773150748122851684087426675230384912516088772968136844738542470745005263217721006486792239209921170103790405314448136398079702861084225733005818608661975671054463140074555681920905717851<254>] Free to factor
709×10260-79 = 78(7)260<262> = 19 × 10559 × 27109 × 827779 × 4866585447926806247999685036731<31> × 359563069831590417126264920839903115217328005718598260507838719767062114056627593053886613245957207417019278308219762649269714578227343660882617931169821620984386638793144817848499353788984507207030690210918162560257<216> (Erik Branger / GMP-ECM B1=3e6, sigma=3:182923179 for P31 x P216 / December 16, 2018 2018 年 12 月 16 日)
709×10261-79 = 78(7)261<263> = 3 × 547 × 3623 × 523169 × 3023477 × 1052946030813765896339104826526643819<37> × [7955583298451742695328747765951242518152064720316049320947081357158138758193739748864737244017748985617318874814855617219394679639027833575561166867844073684048976523755942922067118423639739561967268687497337<208>] (Erik Branger / GMP-ECM B1=3e6, sigma=3:3669892397 for P37 / December 16, 2018 2018 年 12 月 16 日) Free to factor
709×10262-79 = 78(7)262<264> = 13577 × 12347953027<11> × 16165238213<11> × [290685139517207834914926325288981234283270669335733396929694546919017468322818452783546799482154940311014306360938669727834457200398014822858906758441438694029256564155790328476515140110975460313032834728533172305282676473403471666946601351<240>] Free to factor
709×10263-79 = 78(7)263<265> = 1787 × 345673 × 25984043670763229<17> × 103930970030071060466930283417997<33> × 1449529512622649490883790226421763<34> × [3257878879254572676262129949798692902242142936410272413032291610576608719674164121485669560482459968909053422334502728593384927143774212682412581348180149323647139786158192833<175>] (Erik Branger / GMP-ECM B1=3e6, sigma=3:1547977150 for P33, B1=3e6, sigma=3:77869096 for P34 / December 16, 2018 2018 年 12 月 16 日) Free to factor
709×10264-79 = 78(7)264<266> = 32 × 13 × 839 × 2459 × 19385011 × 105149686673<12> × 177121577496139827991801<24> × 903965525746788508449552835535130573426971927905343069021986805518940825429380750737584529381939989054097308468311394569857486867018275980476827020301380579221292074686261942868564053310759821404916801864579754025427<216>
709×10265-79 = 78(7)265<267> = 30071 × 19904281 × 1316162039685730061883011050172067594609816382319794950991575851474293590243411812017248839479432053864894465164569665626370932441217536869619728214911687263359946074665902247723016353973808243258303367577324859558669724713172741946173859867432875874566127<256>
709×10266-79 = 78(7)266<268> = 173 × 113 × 4538899 × 11316553 × 2482761541553<13> × [111270189590546229751588829133199261688372622367903598410561175682318547030018271831229881282673901077142224868099340809271280903647326111396959786884066790716198779543450839514215361300924561559759054014501677603937629678252266709926563<237>] Free to factor
709×10267-79 = 78(7)267<269> = 3 × 179 × 9469083167<10> × 15492500151371457528015727678628462049320585941996932918245174736965955796911337207064847754316602342906701643813245862184880990771846445586811287215627642299170010956846148273922044499866042448997633308299145741596431228713028016670375182036326966937445063<257>
709×10268-79 = 78(7)268<270> = [787777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777<270>] Free to factor
709×10269-79 = 78(7)269<271> = 93794703009489070577<20> × 43611605272042573768800213093466303<35> × 1925853913825671389421387628190811638830520386933977267492457497892698380088842682998724355635257766177654974453022559268316721507756066692573602244186508316153887370206478761622848076529790590701024366215684977407167<217> (Erik Branger / GMP-ECM B1=3e6, sigma=3:4137245501 for P35 x P217 / December 16, 2018 2018 年 12 月 16 日)
709×10270-79 = 78(7)270<272> = 3 × 13 × 29 × 1409 × 107227 × 546361 × 556769 × 73064365697<11> × 4056168878911099759709306909<28> × [5113868869746621918661681513593805718775215030232574963499919425124081937655424316498349378169184974402577447584106719126572389433877556853699745296828747684016701261543785555032882931461483904929588264097085317<211>] Free to factor
709×10271-79 = 78(7)271<273> = 388351 × 16652633 × 671635260917<12> × 224746107857512069<18> × 152108946869319303948127<24> × 12288652356945497581989377<26> × 431729476467093026389614838695486510656073383900485946197556444736345113408702710822161625430205140703640777556871448200510403804759715097243346430213266969297226833341967289276819057<183>
709×10272-79 = 78(7)272<274> = 10631 × 102605371238919058434274906373<30> × [7222033715258835173564176562706007132023716909555874964442158620320461378676662337775343324278815952630471520477434526479908799563180465803908053599195756455426042692711350900738060301467878813807384668028336226793130850273707767104365282779<241>] (Erik Branger / GMP-ECM B1=3e6, sigma=3:4223327619 for P30 / December 16, 2018 2018 年 12 月 16 日) Free to factor
709×10273-79 = 78(7)273<275> = 32 × 33911 × 87691 × 1488953 × [1976899573312118467319306077868304104359289690074496056883518219826522828917597354167209864625770357860212542256165670975260664671827843405330436226969631346192166750663084462888870822453426679482623857790267156576851343702789832463950104795521719224669264101<259>] Free to factor
709×10274-79 = 78(7)274<276> = 587 × 48611 × [27607753539065767560401296492814957536646674175118971213769199250503616629342268868967928290772087352505333348768754352918199709839784574168099437038187554796182683316564056746074704096768283486911294492790916595835645677387247997331027240936443629856065127321410514161<269>] Free to factor
709×10275-79 = 78(7)275<277> = 35915333 × 11895067116499103804078512998490558727<38> × [18439830786634511465252366806607714788379049678270040871623157842626664043984064918464056378753799582688476995667914479682299028973350415673857726333754845319432763237191175043871073961809228058013702866303784035670131184923460571547<233>] (Erik Branger / GMP-ECM B1=3e6, sigma=3:4179098485 for P38 / December 16, 2018 2018 年 12 月 16 日) Free to factor
709×10276-79 = 78(7)276<278> = 3 × 13 × 59 × 217409 × 17683555422350459<17> × 88936092008464137874582087<26> × [100129479545051389431230230581428479438476733905406547433528986356544002371814654304479050735034610763440582542337900351774284990276813490521198995132837757975778084830856288191879148190569739318543113978573459095866056092749641<228>] Free to factor
709×10277-79 = 78(7)277<279> = 107 × 3307 × 5903 × 11853835611841<14> × 65150823179230343<17> × 83987521903637174056518393953<29> × 5814593989125992149655850877989542338166051417059197139218475192756545702348070523047200763478864208139694298025573028289726601528621131128984347828682312552971894316964593414775890226153716814336560915254182769<211>
709×10278-79 = 78(7)278<280> = 19 × 359 × [1154930036325726107283063741061102151851308866409291566893091596214305494469693267523497695026796331590350062714818615712912736809526136604277639316489924905113293912590203456645327338774047467787388620111094821547834302562348303441984720389646353581260486406359445503266057437<277>] Free to factor
709×10279-79 = 78(7)279<281> = 3 × 71 × 577 × 3187 × 3639049551711583<16> × 15478034550121733<17> × [3570774828606895225622078171945768189659036982286487365070596138457833653593844490199363044212297463796887462305669581349433680929063730924872252880451842426361141652181884276382305754665052004653853485838281211772158148121368422175339288589<241>] Free to factor
709×10280-79 = 78(7)280<282> = 23 × 26897617 × 109014461 × [11680944826003918107164780066777848107139650054709775025127219063581475566793475745795298898771298337805882274025627117401590317741309434359893292739275915231118083536648321662655249446520998991282241914483710397957144008078321820129487768298990132817202296283217427<266>] Free to factor
709×10281-79 = 78(7)281<283> = 30113 × [261607205452056513060066342701749336757472778460391783541253869683451591597575059867093208175132925240852049871410280535907341605877122099351701184796525679200935734658711446145444750698295678868853245368371725758900733164340244338916008958847599966053789983654161916042167096529<279>] Free to factor
709×10282-79 = 78(7)282<284> = 33 × 13 × 17 × 363079127956073640031<21> × 570145917356699784119450260032198593208529<42> × 63776456465588790457675190477421337988840345542569464544374755194653291254086717966945021631193098815455263355133848475763581193973912035476223555098675581862152791994074907339715038903669974192831921563234225447705169<218> (Erik Branger / GMP-ECM B1=3e6, sigma=3:3208494386 for P42 x P218 / December 16, 2018 2018 年 12 月 16 日)
709×10283-79 = 78(7)283<285> = 236315996968021758299<21> × 6564001733515538636501381587<28> × 507857554759921915082837208302005244312396594989682635957458631114821613828140486257183172032046685576627007471324505588219079945389039651448298003209425784904800198830738317790134518242686795917956059248068606535698560868958661300073329<237>
709×10284-79 = 78(7)284<286> = 103 × 30677 × 188719 × 93454160894585525825278153<26> × 1094180737952774549695945687971772760831<40> × [129196360772377912443159288378157026931545371595946535420761781021288939869207634015939485106428258272057097932401217479123714892552500464319169010913192203096975203276161882987366400394707380411447640958907651<210>] (Erik Branger / GMP-ECM B1=3e6, sigma=3:2897469354 for P40 / December 16, 2018 2018 年 12 月 16 日) Free to factor
709×10285-79 = 78(7)285<287> = 3 × 677 × 7044750435572711<16> × [5505898357354950394691074595397415317008614536038584186271443800531684166981840972182226678397170571476996671572950288809369133755593443679665112333337451368959300827059129694867836979641065817273507775617684745702890225694714439051916429950441964557621867620799509897<268>] Free to factor
709×10286-79 = 78(7)286<288> = 74699137 × 2355686041<10> × 26539257790124308955611<23> × 31917521446152700824853<23> × [5285095033832833586989676117190689295434804096917191082555452816125390937664997594975169634200340909112495145559737773331687692749279648934887146774730178485544423823411663834323168346747906659964533794009027897425718867127407<226>] Free to factor
709×10287-79 = 78(7)287<289> = 347 × 20362328839809290265857<23> × [1114927953357262426865167887590403240002627982698408210471429004988132369770545926533307845712935123799903035316327134020383853932205996462342716632848785722460774179609520816213504723852255648677978072450789264999962596827219123305352373508380058719166366730160163<265>] Free to factor
709×10288-79 = 78(7)288<290> = 3 × 13 × 1247651 × 11517525132731<14> × 401765138895577277<18> × 1777571986906125428668140852773<31> × 19376758598786922339059221633627<32> × [10157954295761881956845670189684812375035503155889638185872524163023536987952722903843114740026814077491046905446617257545757443166190396794386345716241324804891624172527920461219209189453509<191>] (Erik Branger / GMP-ECM B1=3e6, sigma=3:3000317036 for P31, B1=3e6, sigma=3:2452089130 for P32 / December 16, 2018 2018 年 12 月 16 日) Free to factor
709×10289-79 = 78(7)289<291> = 109 × 383 × 754703 × 7280293 × 27744631 × 629647865155151<15> × 204815748358032390812814731<27> × 959872356135697723028194473752134289656676351024821724196428057865028206092068606791197158641943050943661843216972857128256225118698256140367994826611861135695944193625563319806644631869638457146579587515906607747860245970939<225>
709×10290-79 = 78(7)290<292> = 89 × 733 × [120756285202841604883390986369357539092505445955175403188034057019448745003261611934604254913281999138185044955742565994416937899930680101442092336829985710222385728616855124818397194502778757112953964433952784122166527856550389775400122289157652525066722531351499575053693115529190149421<288>] Free to factor
709×10291-79 = 78(7)291<293> = 32 × 6163 × 1031076267545028078559<22> × [1377457657947329313098272405721544022035007793619523406110607486568567338748348150041117747200085900941454833692421179063792878002348719624162182707087513104919865075243678173847180814248827152170263517319136296792695521422713132876604533388223368654347545071955428109<268>] Free to factor
709×10292-79 = 78(7)292<294> = [787777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777<294>] Free to factor
709×10293-79 = 78(7)293<295> = 593 × 1182549673<10> × 22451914805129807<17> × [500352707814392951746314194025530293755288771519292201147802176381303196786600063294801111143066105224969262483721733579529639111685177369804036897194894692444911219495702627897757771693816400552321730099655772493401791514895518173487263967970193769189483625592046199<267>] Free to factor
709×10294-79 = 78(7)294<296> = 3 × 13 × 28643 × 3503389 × 4522027 × 199700143829618661167<21> × 22290546945400903870927883709649412449701058301551967653805511384632574120586443614726965559583961391969090333618246267336693253091577711153974501265786823503865635655801476911667646480209677539156005473683020370526227050439898533012468474668209289584439101<257>
709×10295-79 = 78(7)295<297> = 20504489273<11> × 17321447636914021<17> × [2218046180828109898966139728776408270148406733033924735169964968766260559735703402798631591575977291960668967507982174131007006108483041045711184316053523803204706645953252346936747494183922993780654224645131733965009405854755373901925481455304909600223748467207940670469<271>] Free to factor
709×10296-79 = 78(7)296<298> = 19 × 60024090493<11> × [6907557942744481536356327694718339237104279950741871418606717297468800357698072668753259679892904013267572969014714080907875998237324645986879968410817367067167708007005237288596803905592883048762274806333283210347110500446696721523825365926199556445689277291138061920496422237776612231<286>] Free to factor
709×10297-79 = 78(7)297<299> = 3 × 255896288567<12> × 102616803886875965373130331975328852872018994198245226397556090738779906844022106638368762876717346943932705823577304322956524121768073799557269915968015983512016386138223186414047211823934273540882805465230931995673656734373168753701001617931993378082213579771208559027569818795601958877<288>
709×10298-79 = 78(7)298<300> = 17 × 292 × 72719 × 655331 × 223052927159<12> × [5183728787134238998446030969781086044074805189302830013430520507803213043762159186818558675313869668096540826690064794285825378597810452583319202363894228815913105527805777434847688373739261609510679675321983607963750496280567155735413077892785244299875031653276091002834091<274>] Free to factor
709×10299-79 = 78(7)299<301> = 42774618141881<14> × 25900899346670528960811839779<29> × [7110542562412721495548011109174151064617340358601117608617921934708824447233425473953533452894212970863010176492024537413010516436022857072250966546273833948583633683475822633896468511074522250383413794113445250829430819712925296338120475867084173893660691123<259>] Free to factor
709×10300-79 = 78(7)300<302> = 32 × 132 × 47 × [1101987463144037066568435908315886493737012013062204006011971096531925773606079116171860307157633944322433138581529198004920863622445728283153269514426088348619717959597937775788294064344255288063253147813977055657361167453911589208915995604484420632811249286972145673727779565204551565708139630671<298>] Free to factor
plain text versionプレーンテキスト版

4. Related links 関連リンク